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Foreword

Bioinspired computing is successful in practice. Over the past decade a body
of theory for bioinspired computing has been developed. The authors have
contributed significantly to this body and give a highly readable account of
it. (Kurt Mehlhorn, Max Planck Institute for Informatics, and Saarland Uni-
versity, Germany)

Bioinspired algorithms belong to the most powerful methods used to tackle
real world optimization problems. This book gives such algorithms a solid
foundation. It presents some of the most exciting results that have been ob-
tained in bioinspired computing in the last decade. (Zbigniew Michalewicz,
University of Adelaide, Australia)

This book presents a most welcome theoretical computer science approach
and perspective to the design and analysis of discrete evolutionary algorithms.
It describes the design and derivation of evolutionary algorithms which have
precise computation complexity bounds for combinatorial optimization. The
book should appeal to researchers and practitioners of evolutionary algorithms
and computation who want to learn the state of the art in evolutionary algo-
rithm theory. (Una-May O’Reilly, CSAIL, MIT, USA)

The evolutionary computation community has been in need of rigorous results
concerning the computational complexity of their approaches for decades. This
is the first textbook covering such a fundamental topic. It provides an excel-
lent overview of the state of the art in this research area, in terms of both the
results obtained and the analytical methods. It is an indispensable book for
everyone who is interested in the foundations of evolutionary computation.
(Xin Yao, University of Birmingham, UK )





Preface

Inspiration from biology has led to several successful algorithmic approaches.
Such methods are frequently used to tackle hard and complex optimization
problems. Biologically inspired algorithms such as evolutionary algorithms
and ant colony optimization have found numerous applications for solving
problems from computational biology, engineering, logistics, and telecommuni-
cations. Many problems arising in these application domains belong to the field
of combinatorial optimization. Bio-inspired algorithms have achieved tremen-
dous success when applied to such problems in recent years.

In contrast to many successful applications of bio-inspired algorithms, the
theoretical foundation of these algorithms lags far behind their practical suc-
cess. This is mainly due to the fact that these algorithms make use of random
decisions in different modules. This leads to stochastic processes that are hard
to analyze. This book treats bio-inspired computing methods as stochastic al-
gorithms and presents rigorous results on their runtime behavior.

The book is meant to give researchers a state-of-the-art presentation on
theoretical results of bio-inspired computing methods in the context of com-
binatorial optimization. Furthermore, it can be used as basic material for
courses on bio-inspired computing that are meant for graduate students and
advanced undergraduates.

The book is organized into three parts. It starts with a general introduction
into bio-inspired algorithms and their computational complexity. Later on,
different methods that have been developed in recent years are presented in a
comprehensive manner. Afterwards, we present some of the major results that
have been achieved in the field of single-objective optimization. We consider
different problems such as minimum spanning trees, maximum matchings,
and the computation of shortest paths. After these studies, we turn to multi-
objective optimization. We tackle classical multi-objective problems such as
the computation of multi-objective minimum spanning trees as well as show
that multi-objective approaches lead provably to better algorithms for classical
single-objective problems.



X Preface

Taking the book as basic material for a course on theoretical aspects of
bio-inspired computing, we suggest you spend 12 hours of class time on Part I.
This part of the book gives all the basics for the different analyses that are
carried out later. Therefore, we see it as mandatory for a teaching course.
The chapters of Parts II and III can be studied more or less independently
depending on the focus that lecturers want to set during their course. We
suggest you spend four hours on each chapter of Parts II and III if they are
made to be part of a course.

We thank all our colleagues who worked with us on bio-inspired computa-
tion during recent years. In particular, we like to mention the research groups
at the University of Adelaide, Technical University of Berlin, University of
Birmingham, Massachusetts Institute of Technology, Technical University of
Denmark, Technical University of Dortmund, Max Planck Institute for Infor-
matics, and Swiss Federal Institute of Technology Zurich.

Saarbrücken, Kongens Lyngby Frank Neumann
September 2010 Carsten Witt
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Part I

Basics





1

Introduction

Algorithms play an important role in computer science and are essential for
several important applications. The term “algorithm” refers to a procedure to
solve a given problem. Such a problem may have different features and struc-
tures, and in the case where the problem is well understood, specific algorithms
may be designed that achieve good solutions for the problem at hand. The
design and the analysis of such problem-specific algorithms has been widely
studied for a wide range of problems (Cormen, Leiserson, Rivest, and Stein,
2001). The goal in this field of research is to obtain algorithms that are prov-
ably optimal with respect to the runtime and/or approximation ability for
the studied problem. Studying a specific problem allows us to obtain knowl-
edge about the problem at hand, which can be used for the development
and the analysis of problem-specific algorithms. When looking at the results
obtained in this field, the reader may observe the following. Often problem-
specific algorithms are very complicated as they try to incorporate as much
problem knowledge as possible so that good guarantees about the runtime
and/or approximation quality can be proven. On the other hand, there are
also many simple randomized algorithms available for which good performance
guarantees can be given (Motwani and Raghavan, 1995). The proof that such
simple algorithms work well is usually more complicated as knowledge about
the problem is only implicitly present in the algorithm and is worked out in
the analysis.

In many situations, it is not possible to develop problem-specific algo-
rithms that have good performance guarantee. This is the case if a newly
given problem is complex and/or has not been studied extensively before. In
fact, most of the algorithms used in practice such as so-called bio-inspired
computing and mixed integer programming do not come along with rigorous
proofs that give bounds on the runtime and/or approximation quality. Instead
they provide high performance results in experimental studies and it is often
hard to understand why they perform well in a particular setting. Another im-
portant advantage is that these algorithms often can be applied without much

F. Neumann, C. Witt, Bioinspired Computation
in Combinatorial Optimization, Natural Computing Series,
DOI 10.1007/978-3-642-16544-3 1, © Springer-Verlag Berlin Heidelberg 2010
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4 1 Introduction

knowledge about the problem at hand, which makes them highly suitable for
various applications.

We discuss such algorithms that are highly successful in practice. As their
application often does not require specific knowledge about the problem at
hand, we refer to them as general-purpose algorithms. The design of such an
algorithm should only involve the following three steps, which makes it very
easy to apply such methods to a newly given problem.

1. Choose a representation of possible solutions.
2. Determine a function to evaluate the quality of a solution.
3. Define operators that produce from a current set of solutions a new set of

solutions.

Well-known simple approaches fitting this setting are local search (LS)
(Aarts and Lenstra, 2003; Hoos and Stützle, 2004), and simulated annealing
(SA) (van Laarhoven and Aarts, 1997). On the other hand, general-purpose
algorithms have been designed that are inspired by processes observed in na-
ture. Such algorithms belonging to the field of bio-inspired computation usu-
ally involve more complicated operators than the two approaches mentioned
before. The field of bio-inspired computation covers many algorithmic ap-
proaches inspired by processes observed in nature. It includes well-known ap-
proaches such as evolutionary algorithms (EAs) (Eiben and Smith, 2007), ant
colony optimization (ACO) (Dorigo and Stützle, 2004), and particle swarm
optimization (PSO) (Kennedy and Eberhart, 1995).

Throughout this book, we will concentrate on evolutionary algorithms and
ant colony optimization. However, we are optimistic that the insights and
methods presented in this book may also be useful for obtaining similar re-
sults for other bio-inspired computation methods. Evolutionary algorithms
are perhaps the most popular kind of algorithms belonging to the field of
bio-inspired computation. They were introduced in the 1960s and have been
applied to complex engineering problems as well as to problems from com-
binatorial optimization. In the case of a complex engineering problem, the
structure of the problem is often not known. Then the quality of a certain
parameter setting can often only be evaluated by experiments or simulations.
Such problems are considered in the field of black-box optimization, where
the value of a parameter setting can only be given after having executed some
experiments or simulations. EAs have shown to be very successful on many
problems from black-box optimization. In the case of combinatorial optimiza-
tion, often much more is known about the structure of a given problem, and
the function to be optimized can be given and analyzed. Nevertheless, it is
often difficult to obtain good solutions for such problems, especially if the
problem is new and there are not enough resources (such as time, knowledge,
money) to design specific algorithms for the given problem.

Ant colony optimization is a more recent but also very well established
branch in the field of bio-inspired computation, with the very first publica-
tions dating back to the early 1990s (Dorigo, Maniezzo, and Colorni, 1991).
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This approach is inspired by the way ant colonies find shortest paths in un-
known environments using pheromone trails as a means of communication.
ACO algorithms construct solutions to problems by letting so-called artificial
ants perform guided random walks on construction graphs. Promising paths
through the graphs are rewarded by means of so-called pheromone updates
which increase the probability of rediscovering and, possibly, further improv-
ing the solution. The underlying concept of a construction graph makes the
approach very attractive for the solution of combinatorial optimization prob-
lems, in particular graph problems; however, in principle, any black-box prob-
lem in the above sense can be treated by ACO.

Due to the biological models that have been in mind when designing these
algorithms, they are not designed for analysis in a classical sense. A major
point in the design and analysis of algorithms is to prove bounds on the
runtime that such algorithms have in order to obtain optimal or nearly op-
timal solutions. Often the design process for a certain problem is influenced
by the goal of proving that the algorithm achieves good solutions quickly. In
the case of bio-inspired computation methods, the goal was rather the de-
velopment of algorithms that behave well for a wide range of problems by
imitating optimization processes observed in nature. Such algorithms have
then been examined experimentally to show their efficiency. Due to this back-
ground, bio-inspired computation methods are from a natural point of view
not easy to analyze. However, there has been a lot of progress in understand-
ing such methods rigorously in recent years. The goal of this book is to give
an overview of the different results that have been achieved by studying the
computational complexity of bio-inspired computation. We will, in particu-
lar, emphasize problems from combinatorial optimization as these algorithms
have been used for many applications in this area.

Until the 1990s, theoretical work in the area of evolutionary algorithms
was concentrated on showing that an algorithm converges to an optimal so-
lution after a finite number of steps. In contrast, it has been considered what
happens in one iteration of the algorithms. Although these are interesting in-
vestigations, the two aspects do not allow us to give upper or lower bounds
on the runtime of an evolutionary algorithm for a considered problem.

As bio-inspired computation methods make use of a lot of random deci-
sions, it seems appropriate to treat them as randomized algorithms in a clas-
sical sense. Therefore, we also refer to them as stochastic search algorithms
to point out that we regard bio-inspired computation methods as algorithms
that involve random decisions. Taking this point of view, it seems natural to
analyze the runtime of stochastic search algorithms in a classical way, e.g., by
bounding the expected runtime to achieve good solutions for a certain prob-
lem. Runtime analyses of bio-inspired computation methods have to consider
problems where the function to be optimized can at least be covered analyt-
ically. As explained before, this is often not possible for complex engineering
problems. Therefore, we consider combinatorial optimization problems, which
seem to be natural, but non-trivial examples where bio-inspired computation
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methods have been applied. The rigorous analysis of such algorithms with re-
spect to their runtime behavior is a relatively new research area. Most of the
results in recent years have been obtained for evolutionary algorithms. Later
on, newer variants such as ant colony optimization, particle swarm optimiza-
tion, and artificial immune systems have been taken into account. We will
mainly focus on evolutionary algorithms throughout this book but will dis-
cuss general methods that are also applicable for analyzing other bio-inspired
computation methods.

The first theoretical result on the runtime of an evolutionary algorithm
was given by Mühlenbein (1992). He presented an upper bound on the ex-
pected runtime of the simplest evolutionary algorithm, called (1+1) EA. The
function considered is the simplest non-trivial pseudo-boolean function called
OneMax, which counts the number of ones in a given bitstring. Since the
mid-1990s, more rigorous results on the runtime of the (1+1) EA for different
kinds of pseudo-boolean functions have been obtained. The first step was a
much simpler proof for Mühlenbein’s result and a generalization of the given
bound to linear pseudo-boolean functions done by Droste, Jansen, and We-
gener (2002). Considering different pseudo-boolean functions, the main aim
was to show the behavior of EAs in different situations. Together with these
results, many techniques have been developed that are very useful to analyze
more complicated EAs as well as the behavior of bio-inspired computation
methods on more natural problems. Recently, some of these techniques were
transferred and further developed in order to prove the first rigorous results
on the runtime of ACO (Gutjahr, 2007; Neumann and Witt, 2009) and PSO
(Sudholt and Witt, 2010).

In this book, we present the major results that have been obtained re-
garding the computational complexity of bio-inspired computation methods
for combinatorial optimization problems. We study some of the most promi-
nent combinatorial optimization problems such as minimum spanning trees,
Eulerian cycles, shortest paths, maximum matchings, scheduling and cover-
ing problems. We cannot hope that general-purpose algorithms beat the best-
known problem-specific algorithms for such problems. Our goal is to under-
stand which structures and problems can be provably solved efficiently by
bio-inspired computation methods. Looking at the results presented in this
book, we can observe that bio-inspired computation methods are efficient
problem solvers for most of the mentioned problems although they only use a
small amount of problem knowledge.

The book is divided into three major parts. The first one sets up and
reviews concepts of stochastic search algorithms and tools for their analysis.
Such analyses will be provided for two significant formulations of the inves-
tigated combinatorial problems, namely single-objective and multi-objective
problems. The second part of the book concentrates on problems that are
naturally formulated as single-objective ones. The third part elaborates on a
classical multi-objective problem as well as on multi-objective reformulations
of originally single-objective problems. This kind of reformulation may intro-
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duce helpful information into the stochastic search algorithms and provably
speed them up compared to the plain single-objective problem formulation.
Finally, the book contains an appendix with frequently used mathematical
tools.





2

Combinatorial Optimization and
Computational Complexity

Combinatorial optimization problems arise in several applications. Examples
are the task of finding the shortest path from Paris to Rome in the road net-
work of Europe or scheduling exams for given courses at a university. In this
chapter, we give a basic introduction to the field of combinatorial optimiza-
tion. Later on, we discuss how to measure the computational complexity of
algorithms applied to these problems and point out some general limitations
for solving difficult problems.

2.1 Combinatorial Optimization

Optimization problems can be divided naturally into two categories. The first
category consists of problems with continuous variables. Such problems are
well known from school courses on mathematics. A simple example consists of
finding the minimum of the function f : R → R with f(x) = x2. It is obvious
that x0 = 0 is the unique solution for this problem. More complicated prob-
lems are often tackled by computing the derivatives, using Newton methods
or linear programming techniques. As this book deals with combinatorial op-
timization problems, we will not go into detail the different methods to tackle
continuous optimization problems, and refer the interested reader to Nocedal
and Wright (2000).

In the case of discrete variables we are dealing with discrete optimiza-
tion. When speaking of combinatorial optimization problems, most people
have “natural” discrete optimization problems in mind, such as computing
shortest paths or scheduling different jobs on a set of available machines. In a
combinatorial optimization problem, one aims at either minimizing or maxi-
mizing a given objective function under a given set of constraints.

A problem consists of a general question that has to be answered and is
given by a set of input parameters. An instance of a problem is given by the
problem together with a specified parameter setting. Formally, a combinatorial
optimization problem can be defined as a triple (S, f, Ω), where S is a given

F. Neumann, C. Witt, Bioinspired Computation
in Combinatorial Optimization, Natural Computing Series,
DOI 10.1007/978-3-642-16544-3 2, © Springer-Verlag Berlin Heidelberg 2010
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10 2 Combinatorial Optimization and Computational Complexity

Fig. 2.1. Example graph G

search space, f is the objective function, which should be either maximized or
minimized, and Ω is the set of constraints that have to be fulfilled to obtain
feasible solutions. The goal is to find a globally optimal solution, which is in the
case of a maximization problem a solution s∗ with the highest objective value
that fulfills all constraints. Similarly, in the case of minimization problems,
one tries to achieve a smallest objective value under the condition that all
constraints are fulfilled.

Throughout this book, we consider many combinatorial optimization prob-
lems on graphs. A directed graph G is a pair G = (V,E), where V is a finite
set and E is a binary relation on V . The elements of V are called vertices. E
is called the edge set of G and its elements are called edges. For an illustration
see Figure 2.1.

We use the notation e = (u, v) for an edge in a directed graph. Note that
self-loops that are edges of the kind (u, u) are possible. In an undirected graph
G = (V,E), no self-loops are possible. The edge set E consists of unordered
pairs of vertices in this case, and an edge is a set {u, v} consisting of two
distinct vertices u, v ∈ V . Note that one can think of an undirected edge
{u, v} as two directed edges (u, v) and (v, u). If (u, v) is an edge in a directed
graph G = (V,E) we say that v is adjacent to vertex u. This leads to the
representation of graphs by adjacency matrices, which will be discussed later
in greater detail. A path of length k from a vertex v0 to a vertex vk in a graph
G = (V,E) is a sequence v0, v1, . . . , vk of vertices such that (vi−1, vi) ∈ E, 1 ≤
i ≤ n, holds. Note that a path implies a sequence of directed edges. Therefore,
it is sometimes useful to denote a path (v0, v1, . . . , vk) by its sequence of
directed edges (v0, v1), (v1, v2), . . . , (vk−1, vk).

The graph G in Figure 2.1 consists of the vertex set
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Fig. 2.2. Single source shortest path tree for G and s = v1

V = {v1, v2, v2, v3, v4, v5}

and the edge set
E = {e1, e2, e3, e4, e5, e6, e6, e7, e8}

where e1 = {v1, v2}, e2 = {v1, v3}, e3 = {v1, v4}, e4 = {v2, v3}, e5 = {v2, v5},
e6 = {v3, v4}, e7 = {v3, v5}, and e8 = {v4, v5}. In addition, there is a weight
function w : E → N assigning weights to the edges, i.e., w(e1) = w(e4) =
w(e6) = 3, w(e2) = w(e7) = 1, and w(e3) = w(e5) = w(e8) = 4. Clearly,
(v1, v2, v3, v5) is a path in G whereas (v1, v5, v2) is not as there is no edge
from v1 to v5.

There are many well-known combinatorial optimization problems on weigh-
ted graphs. We want to introduce two basic problems in the following. In the
case of the single source shortest path problem, an undirected connected graph
G = (V,E) with positive weights on the edges is given. The goal is to com-
pute from a designated vertex s ∈ V the shortest paths to all other vertices of
V \{s}. The solution of this problem can be given by a tree rooted at s which
contains the shortest paths. Considering the graph G of Figure 2.1 and s = v1,
a shortest path tree is shown in Figure 2.2. Another well-known combinatorial
optimization problem on undirected connected graphs with positive weights
is the minimum spanning tree problem. Here, one searches for a connected
subgraph of the given graph G that has minimal cost. As the edge weights are
positive, such a graph does not contain cycles, i.e., it is a tree. Considering
again the graph G of Figure 2.1, a minimum spanning tree of G is given in
Figure 2.3.

Other important problems on graphs are covering problems. In the case of
the so-called vertex cover problem for a given undirected graph G = (V,E),
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Fig. 2.3. Minimum spanning tree of G

one searches for a minimal subset of vertices V ′ ⊆ V such that each edge
e ∈ E contains at least one vertex of V , i.e., ∀e ∈ E : e ∩ V ′ �= ∅ holds.

Another class of combinatorial optimization problems that has been widely
examined in the literature is scheduling problems. Here, n jobs are given
that have to be processed on m ≥ 1 machines. Associated with each job j,
1 ≤ j ≤ n, is usually a processing time pj . The processing time need not be
the same for each machine. There are variants of scheduling problems where
the processing time may depend on the machine by which it is processed.
Often, also a specific due date for each job is given. Consider the following
simple scheduling problem on two machines. Given are n jobs and for each
job j a processing time pj which holds independently of the chosen machine.
The goal is to find an assignment of the jobs to the two machines such that
the overall completion time is minimized. Let x ∈ {0, 1}n be a decision vector.
Job j is on machine 1 iff xj = 0 holds and on machine 2 iff xj = 1 holds. The
goal is to minimize

max

{
n∑

i=1

pjxj ,

n∑
i=1

pj(1 − xj)

}
.

2.2 Computational Complexity

In contrast to the description of a problem, which is usually short, the search
space is most of the time exponential in the problem dimension. In addition,
for a lot of combinatorial optimization problems, one cannot hope to come up
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with an algorithm that produces for all problem instances an optimal solu-
tion within a time bound that is polynomial in the problem dimension. The
performance measure most widely used to analyze algorithms is the time an
algorithm takes to present its final answer. Time is expressed in terms of num-
ber of elementary operations such as comparisons or branching instructions
(Papadimitriou and Steiglitz, 1998). The time an algorithm needs to give the
final answer is analyzed with respect to the input size. The input of a combi-
natorial optimization problem is often a graph or a set of integers. This input
has to be represented as a sequence of symbols of a finite alphabet. The size
of the input is the length of this sequence, that is, the number of symbols in
it.

In this book, we are dealing with combinatorial optimization problems.
Often we are considering a graph G = (V,E) with n vertices and m edges and
are searching for a subgraph G′ = (V ′, E′) of the given one that fulfills given
properties.

One approach to represent a graph is to do it by an adjacency matrix
AG = [aij ], where aij = 1 if (vi, vj) ∈ E and aij = 0 otherwise. This matrix
has n2 entries, i.e., the number of entries is quadratic with respect to the
number of vertices. An entry aij = 1 means that there is an edge from vi to
vj and aij = 0 holds if this is not the case. Note that the adjacency matrix
of a given undirected graph is symmetric. An undirected graph may have up
to

(
n
2

)
= Θ(n2) edges. However, if we are considering so-called sparse graphs,

the number of edges is far less than
(
n
2

)
.

In the case of sparse graphs, it is better to represent a given graph by so-
called adjacency lists. Here, for each vertex v ∈ V we record a set A(v) ⊆ V
of vertices that are adjacent to it. The size of the representation is given by
the sum of the length of lists. As each edge contributes 2 to this total length,
we have to write down 2m elements. Another factor which effects the total
length of the representation is how to encode the vertices. Our alphabet has
finite size. Assume the alphabet is the set {0, 1}. Therefore we need Θ(log n)
bits to encode one single vertex. This implies that we need Θ(m log n) bits
(or symbols) to represent the graph G. In practice we say that a graph G can
be encoded in Θ(m) space, which seems to be a contradiction to the previous
explanation. The reason is that computers treat all integers in their range
the same. Here the same space is needed to store small integers such as 5 or
large integers such as 312. We assume that graphs are considered where the
number of vertices is within the integer range of the computer. This range
is in most cases 0 to 231, which means that integers are represented by 32
bits. Therefore Θ(m) is a reasonable approximation of the size of a graph and
analyzing graph algorithms with respect to m is accepted in practice. In most
cases both parameters n and m are taken into account when analyzing the
complexity of a graph algorithm.

Considering graph algorithms where we can bound the runtime by a poly-
nomial in n and m, we obviously get a polynomial-time algorithm. We have to
be careful when the input includes numbers. Let N(I) be the largest integer
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that appears in the input. An algorithm A is called pseudo-polynomial if it is
polynomial in the input size |I| and N(I). Note that N(I) can be encoded by
Θ(log(N(I))) bits. Therefore a function that is polynomial in |I| and N(I) is
not necessarily polynomial in the input size. Often the input consists of small
integers. In the case where N(I) is bounded by a polynomial in |I|, A is a
polynomial-time algorithm.

An important issue that comes up when considering combinatorial opti-
mization problems is the classification of difficult problems (Papadimitriou
and Steiglitz, 1998). To distinguish between easy and difficult problems, one
considers the class of problems that are solvable by a deterministic Turing
machine in polynomial time and problems that are solvable by a nondeter-
ministic Turing machine in polynomial time. We do not want to formalize
the characterization of the classes P and NP via Turing machines and prefer
to outline the characteristics and notions connected with these classes at a
more intuitive level. This leads to a straightforward definition to characterize
problems that belong to P .

Definition 2.1. A problem is in P iff it can be solved by an algorithm in
polynomial time.

Problems in P can therefore be solved in polynomial time by using an
appropriate algorithm. Examples of problems belonging to this class are the
single source shortest path problem and the minimum spanning tree problem
introduced in Section 2.1.

A class that is intuitively associated with hard problems is called NP .
Typically, NP is restricted to so-called decision problems, i.e., problems whose
output is either YES or NO. This restriction has a technical background and
captures the essentials of the problems without simplifying them too much.

Definition 2.2. A decision problem is in NP iff any given solution of the
problem can be verified in polynomial time.

For problems in NP , it is therefore not necessary that a solution be com-
putable in polynomial time. It is only necessary that we can verify the solution
of the problem in polynomial time. Therefore P ⊆ NP holds (slightly abusing
notation by restricting P to decision problems), and it is widely assumed that
P �= NP.

Consider the following decision variant of the vertex cover problem. The
question is whether a given graph G = (V,E) contains a vertex cover of at
most k vertices. Given a solution x we can easily check whether each edge is
covered by x. This can be done in linear time by examining each edge at most
once. Additionally, we can count the number of vertices chosen by x in linear
time and therefore verify whether x is a vertex cover with at most k vertices
in polynomial time.

Many optimization and decision problems, including the vertex cover prob-
lem, are at least as difficult as any problem in NP . Such problems are called
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NP -hard. Showing that a problem is NP -hard is usually done by giving a
polynomial-time reduction from an NP -hard problem to the considered prob-
lem. This reduction involves a transformation of the known NP -hard problem
to the considered one, which has to be done in polynomial time. Such a re-
duction links the considered problem to the known NP -hard problem in such
a way that iff the considered problem can be solved in polynomial time also
the NP -hard problem to which it has been reduced can. We do not want to go
into the details and refer the reader to a book on complexity theory (Wegener,
2005a) for further reading.

Definition 2.3. A problem is called NP-hard iff it is at least as difficult as
any problem in NP, i.e., each problem in NP can be reduced to it.

As we are considering optimization problems in this book, we want to
point out that many optimization problems are NP -hard but not in NP . We
consider the vertex cover problem again, but at this time its optimization
variant where the task is to compute a vertex cover of minimal size. Clearly,
this optimization variant is at least as difficult as the problem of deciding
whether a given graph contains a vertex cover of at most k vertices. However,
since the output of the optimization problem is a number, it is not a decision
problem and, therefore, not in NP .

In summary, many optimization problems are at least as difficult as any
problem in NP , i.e., NP -hard but not in NP . Problems that are NP -hard and
also in NP are called NP -complete. This holds for many decision variants of
NP -hard optimization problems.

Definition 2.4. A problem is NP-complete iff it is NP-hard and in NP.

The classical approach to deal with NP -hard problems is to search for
good approximation algorithms (Hochbaum, 1997; Vazirani, 2001). These are
algorithms that run in polynomial time but guarantee that the produced solu-
tion is within a given ratio of an optimal one. Such approximation algorithms
can be totally different for different optimization problems. In the case of the
NP -hard bin packing problem, even simple greedy heuristics work very well
whereas in the case of more complicated scheduling problems often methods
based on linear programming are used.

Another approach to solve NP -hard problems is to use sophisticated exact
methods that have in the worst case an exponential runtime. The hope is that
such algorithms produce good results for interesting problem instances in a
small amount of time. A class of algorithms that tries to come up with exact
solutions is branch and bound. Here the search space is shrunk during the
optimization process by computing lower bounds on the value of an optimal
solution in the case where we are considering maximization problems. The
hope is to come up in a short period of time with a solution that matches
such a lower bound. In this case an optimal solution has been obtained.

Related to this is the research on parametrized complexity (Downey and
Fellows, 1999). Here, parametrized versions of given optimization problems are
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studied. These are usually decision problems in the classical sense. Consider
for example the decision variant of the vertex cover problem where we ask
whether a given graph has a vertex cover of at most k vertices. This question
can be answered in time O(1.2738k +kn) (Chen, Kanj, and Xia, 2006), i.e., in
polynomial time for any fixed k, and a corresponding solution with k vertices
can be computed within that time bound if it exists. Obviously, this approach
can be turned into an optimization algorithm that is efficient iff the value of
an optimal solution is small.

A crucial consideration in combinatorial optimization problems and
stochastic search algorithms that search more or less locally is the neigh-
borhood of the current search point. Let s ∈ S be a search point in a given
search space. The neighborhood is defined by a mapping N : S → 2S . In the
case we are considering combinatorial optimization problems from the search
space {0, 1}n, the neighborhood can be naturally defined by all solutions hav-
ing at most Hamming distance k from the current solution s. The parameter
k determines the size of the neighborhood from which the next solution is
sampled. Choosing a small value k, e.g. k = 1, such a heuristic may get stuck
in local optima. If the value of k is large (in the extreme case k = n) and
all search points of the neighborhood are chosen with the same probability,
the next solution will be somehow independent of s. This leads to stochastic
search algorithms that behave almost as if they were choosing in each step
a search point uniformly at random from {0, 1}n. In this case the stochastic
search algorithm does not take the previously sampled function values into ac-
count and the search cannot be directed into “good” regions of the considered
search space.

2.3 Approximation Versus Exact Optimization

As already mentioned, NP -hard problems probably do not allow exact so-
lutions in polynomial time, so good approximations of optimal solutions are
desired. A formal definition of the quality of approximations is based on a
fixed approximation algorithm and the worst case from the set of instances
for the combinatorial optimization problem.

Definition 2.5. Given an algorithm A for the solution of a combinatorial
optimization problem (S, f, Ω), let sA ∈ S denote a solution produced by A
and fA := f(sA) its f -value. Given fopt, the f -value of an optimal solution,
the approximation ratio of sA is defined by fA/fopt for minimization problems
and by fopt/fA for maximization problems.

We say that an algorithm maintains a certain approximation ratio if it
produces solutions of this approximation ratio on all instances of the underly-
ing problem. In particular, we are interested in algorithms achieving a certain
approximation ratio within polynomial time.
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Definition 2.6. A polynomial-time approximation algorithm with ratio r to
a combinatorial optimization problem is an algorithm that computes solutions
of approximation ratio r in polynomial time with respect to the input size.

In the previous definition, r might depend on the problem size, which
is for example the case if the possible approximation ratios become worse
for growing inputs. The special case of a constant approximation ratio is
given if r can be bounded independently of the problem size. Often, constant
approximation ratios are obtainable even for NP -hard problems. An even
stronger property is demanded by specifying the constant approximation ratio
as a parameter of the approximation algorithm.

Definition 2.7. A polynomial-time approximation scheme (PTAS) to a com-
binatorial optimization problem is an algorithm with parameter ε that com-
putes solutions of approximation ratio 1+ ε in polynomial time with respect to
the input size. If the time is also polynomial with respect to 1/ε, the algorithm
is called fully polynomial-time approximation scheme (FPTAS).

Definitions 2.6 and 2.7 require polynomial time with probability 1 and are
more suitable for deterministic than for randomized algorithms. A natural
relaxation of the definitions is to allow expected polynomial time, resulting in
expected-polynomial-time approximation algorithms and schemes. However,
it is more convenient to prescribe polynomial time with a certain success
probability. This results in the following definition (Motwani and Raghavan,
1995).

Definition 2.8. A polynomial-time randomized approximation scheme
(PRAS) to a combinatorial optimization problem is an algorithm with param-
eter ε that with probability at least 3/4 computes solutions of approximation
ratio 1 + ε in polynomial time with respect to the input size.

The somewhat mysterious bound 3/4 on the success probability goes back
to applications of PRASs to a generalization of optimization problems, the
so-called number problems. However, the exact value is not too significant.
Any constant success probability can be boosted to at least 3/4 by running
the approximation algorithm a constant number of times and taking the best
solution out of the runs. In the domain of EAs, this is usually referred to as
multistart schemes.

We will get to know characterizations of EAs as approximation algorithms
in Chapter 12 and characterizations as PRASs in Chapters 6 and 7.

2.4 Multi-objective Optimization

Many problems in computer science ask for solutions with certain attributes
or properties that can be expressed as functions mapping possible solutions
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to scalar numeric values. The usual optimization approach is to take these
attributes as constraints to determine the feasibility of a solution, while one
of them is chosen as an objective function to determine the preference order
of the feasible solutions. In the minimum spanning tree problem, as a simple
example, constraints are imposed on the number of connected components
(one) and the number of cycles (zero) of the chosen subgraph, while the total
weight of its edges is the objective to be minimized.

A more general approach is multi-objective optimization (Ehrgott, 2005),
where several attributes are employed as objective functions and used to define
a partial preference order of the solutions, with respect to which the set of min-
imal (maximal) elements is sought. Most of the best known single-objective
polynomial solvable problems like shortest path or minimum spanning tree
become NP-hard when at least two weight functions have to be optimized
at the same time. In this sense, multi-objective optimization is considered as
more (at least as) difficult than (as) single-objective optimization.

In the case of multi-objective optimization, the objective function f =
(f1, . . . , fk) is vector-valued, i.e., f : S → Rk. Since there is no canonical
complete order on Rk, one compares the quality of search points with respect
to the canonical partial order on Rk, namely f(s) ≤ f(s′) iff fi(s) ≤ fi(s′) for
all i ∈ {1, . . . , k}. A Pareto optimal search point s is a search point such that
(in the case of minimization problems) f(s) is minimal with respect to this
partial order and all f(s′), s′ ∈ S. Again, there can be many Pareto optimal
search points, but they do not necessarily have the same objective vector. The
Pareto front, denoted by F , consists of all objective vectors y = (y1, . . . , yk)
such that there exists a search point s where f(s) = y and f(s′) ≤ f(s) implies
f(s′) = f(s). The Pareto set consists of all solutions whose objective vector
belongs to the Pareto front. The problem is to compute the Pareto front and
for each element y of the Pareto front one search point s such that f(s) = y.
We sometimes say that a search point s belongs to the Pareto front, which
means that its objective vector belongs to the Pareto front.

As in the case of optimization problems, one may be satisfied with approx-
imate solutions. This can be formalized as follows. For each element y of the
Pareto front, we have to compute a solution s such that f(s) is close enough to
y. Close enough is measured by an appropriate metric and an approximation
parameter. In the single-objective case, one switches to the approximation
variant if exact optimization is too difficult. The same reason may hold in
the multi-objective case. There may be another reason. The size of the Pareto
front may be too large for exact optimization.

The Pareto front F may contain exponentially many objective vectors.
Papadimitriou and Yannakakis (2000) have examined how to approximate
the Pareto front for different multi-objective combinatorial optimization prob-
lems. W. l. o. g., they have considered the task of maximizing all objective func-
tions. Given an instance I and a parameter ε > 0 they have examined how to
obtain an ε-approximate Pareto set. This is a set of solutions X with the prop-
erty that there is no solution s′ such that for all s ∈ X fi(s′) ≥ (1 + ε) · fi(s)
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holds for at least one i. Papadimitriou and Yannakakis (2000) showed that
there exists an algorithm which constructs such a set X, which is polyno-
mially bounded in |I| and 1/ε if and only if the corresponding gap problem
problem can be solved. Given an instance I of the considered problem and
a vector (b1, . . . , bk), the gap problem consists of either presenting a solution
s with fi(s) ≥ bi, 1 ≤ i ≤ k, or answering that there is no solution s′ with
fi(s′) ≥ (1+ε) ·bi, 1 ≤ i ≤ k. In the case of some multi-objective optimization
problems (e.g., the multi-objective variants of the minimum spanning tree
problem and the shortest path problem), such a set can also be computed
within a time bound that is polynomial in |I| and 1/ε. Algorithms with such
properties constitute an FPTAS (Definition 2.7), which is the best we can
hope for when dealing with NP-hard problems.





3

Stochastic Search Algorithms

We want to analyze bio-inspired computation methods in a rigorous way with
respect to their runtime behavior. As these algorithms make use of many
random decisions, we treat them as randomized algorithms to study their be-
havior in a rigorous manner. The term stochastic search algorithms stresses
this point of view and will be used in the following to point out that bio-
inspired computation methods can be treated as algorithms which are based
on random decisions. Mainly we will consider stochastic search algorithms be-
longing to the field of evolutionary computation throughout this book. These
algorithms are inspired by the evolution process in nature and follow Darwin’s
principle of the survival of the fittest. We take a closer look at the different
approaches developed in this field in Section 3.1. Another kind of bio-inspired
stochastic search algorithm is ant colony optimization, which will be intro-
duced in Section 3.2. Here, solutions for a given problem are constructed by
walks of ants on a so-called construction graph. To give a more complete
picture, we describe other popular variants in Section 3.3.

A stochastic search algorithm is a problem-independent algorithm to solve
problems from a considered search space although it might have modules
that are adjusted to the considered problem or are combined with problem-
dependent algorithms. The independence from the considered problem dis-
tinguishes stochastic search algorithms from problem-dependent algorithms
developed and analyzed in the classical algorithm community. In contrast to
the classical approach to algorithms, where one designs an algorithm with the
task to prove bounds on the runtime and/or approximation quality in mind,
stochastic search algorithms are general-purpose algorithms. Assuming that
one considers different problems from the same search space, e.g., {0, 1}n, a
stochastic search algorithm is usually applicable to each of these problems.
Their easy adaptation to different problems usually has to be paid for by the
disadvantage that the algorithm is often not rigorously analyzed with respect
to its runtime and/or approximation quality.

In the general approach, the only problem-dependent component of the
algorithm is the fitness function that guides the search. This function is the
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only part of such an algorithm that has to be adjusted to the considered
problem. Therefore, we get algorithms that can be implemented very easily
and adjusted quickly to similar problems. As already mentioned, stochastic
search algorithms are not designed with the focus of proving special proper-
ties on the runtime or approximation quality. This makes a rigorous analysis
of such algorithms more difficult than the analysis of algorithms that have
been designed in a special way to prove properties such as the runtime or
approximation quality of the algorithm.

We start with a general description of stochastic search algorithms, which
covers all important approaches such as evolutionary algorithms, ant colony
optimization, randomized local search, the Metropolis algorithm, and simu-
lated annealing.

Given a search space S, the aim is to optimize a considered function
f : S → R, where R is the set of all possible function values. A stochastic
search algorithm working in a given search space S under the consideration
of a function f chooses the first search point s1 with respect to a probabil-
ity distribution on S that may be determined by a heuristic. After that the
function value f(s1) is computed. The search point st is chosen according to
a probability distribution that can depend on the previous sampled search
points s1, . . . , st−1 and their function values. The process is iterated until a
stopping criterion has been fulfilled.

The No Free Lunch Theorem by Wolpert and Macready (1997) shows
the basic limitations of stochastic search algorithms when considering the
optimization of all possible functions. It is assumed that each search point of
the considered search space is not evaluated more than once. This is a realistic
restriction as function values for evaluated search points can be stored such
that another evaluation is not necessary. Wolpert and Macready (1997) have
given the following result.

Theorem 3.1 (No Free Lunch (NFL) Theorem). Let S and R be two
finite sets, F = RS be the set of all functions f : S → R, and A and A′ be two
stochastic search algorithms that do not evaluate each search point more than
once. Then the average number of fitness evaluations among all functions of F
is the same for A and A′.

This implies that no stochastic search algorithm behaves on the average
better than blind random search, where in each step a solution is drawn uni-
formly at random from the so far unseen part of the search space. This should
make clear that an analysis of these algorithms with respect to their runtime
makes sense only for specific classes of functions or specific classes of problems.

3.1 Evolutionary Algorithms

Evolutionary algorithms (EAs) have become quite popular since the mid-
1960s. Many different approaches have been proposed in the last 40 years. In
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this section, we give a brief overview of the main approaches proposed in the
literature. For a more complete overview we refer the reader to a general book
on evolutionary computation (Eiben and Smith, 2007).

Inspired by the evolution process in nature, evolutionary algorithms try to
solve problems by evolving sets of search points such that satisfying results are
obtained. A lot of the tasks that have been solved by EAs lie in the field of real-
world applications. In real-world applications, the function to be optimized
is often unknown and function values can only be obtained by experiments.
Often these experiments have high costs or need a large amount of time.
Therefore, the main aim is to minimize the number of function evaluations
until a satisfying result has been obtained.

The main difference between evolutionary algorithms and local search pro-
cedures or simulated annealing is that evolutionary algorithms usually work at
each time step with a set of solutions which is called the population of an EA.
This population produces a set of solutions, called the offspring population,
by some variation operators such as crossover or mutation. After that, a new
population is created by selecting individuals from the parent and offspring
population as a result of the fitness function f . We consider discrete search
spaces throughout this book. In this case another important issue is that evo-
lutionary algorithms often have a positive probability of sampling each search
point of the given search space in the next step. In the case of local search and
simulated annealing, this is usually not the case. There, the search points that
can be constructed in the next step depend on the current solution and the
neighborhood defined for the search process. Especially in the case of multi-
objective optimization, EAs seem to be a good heuristic approach to obtain a
good set of solutions. EAs have the advantage that their population may be
evolved to obtain a good approximation of the Pareto front.

3.1.1 Representation

We want to take a look at the different modules of an EA. The first impor-
tant issue is representation. Solutions can be represented in different ways. A
good example is the different representations of spanning trees. For a given
undirected connected graph with n vertices and m edges, the most natural
representation seems to be a set of n − 1 edges such that the graph is con-
nected. This is known as the representation of spanning trees by edge sets
(Raidl and Julstrom, 2003). It is more general to represent them as bitstrings
of length m, where each bit corresponds to an edge which is included in the
solution if the bit is set to 1 and excluded otherwise. In this case, information
to obtain a connected graph or a spanning tree has to be incorporated into the
fitness function. We will use this representation later for the analysis of EAs
on the minimum spanning tree problem. There, it turns out that guiding such
an algorithm to compute connected graphs or spanning trees by the fitness
function is a minor term in the overall complexity.
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Spanning trees can also be represented by Prüfer numbers. A Prüfer num-
ber consists of n − 2 node identifiers which determine a spanning tree. This
number can be decoded by an algorithm into a corresponding spanning tree
and a spanning tree can be encoded into a Prüfer number using a complemen-
tary algorithm. The disadvantage is that small changes in the Prüfer number
can result in a totally different spanning tree. Therefore Prüfer numbers are a
poor representation of spanning trees when using an EA (Gottlieb, Julstrom,
Raidl, and Rothlauf, 2001). This is not the case when edge sets are consid-
ered. If the set of edges is changed by one edge, then the two spanning trees
have n − 2 edges in common. It should be clear that this point of locality is
important for the success of an EA. If only small changes lead to a completely
different solution with a fitness value that does not depend on the last sam-
pled search point, the search cannot be directed into “good” regions of the
search space.

3.1.2 Variation Operators

Variation operators are important for constructing new solutions. They have
to be adjusted to the chosen representation. The most popular variation oper-
ators are mutation and crossover. In the case of mutation, one single individual
is altered, in a crossover operation at least two individuals produce new so-
lutions. Often, in a first step crossover is used to produce offspring and these
offspring are additionally altered by a mutation operator. Throughout this
book, we will analyze EAs that use only mutation to obtain new solutions.

Nevertheless, to give a more complete picture, we also present some pop-
ular crossover operators for the search space {0, 1}n and the representation
of permutations. Crossover operators produce new search points by combin-
ing search points of the current population. We first take a look at the case
where solutions are represented as bitstrings of length n. The most impor-
tant crossover operators for individuals that are bitstrings of length n are
uniform and k-point crossover, where usually k ∈ {1, 2} is chosen. Consider
two individuals x = (x1, . . . , xn) and y = (y1, . . . , yn) that should produce a
new solution z = (z1, . . . , zn) by a crossover operator. In the case of uniform
crossover Prob(zi = xi) = Prob(zi = yi) = 1/2 if xi �= yi holds. Otherwise
zi = xi = yi holds for the created child z. In the case of k-point crossover, k
positions in the two bitstrings are selected at random. Based on these positions
the individuals are partitioned into different intervals, where the intervals are
numbered based on their position in the bitstrings. The new individual z is
formed by taking all entries of intervals with odd numbers from x and all
entries of intervals with even numbers from y.

In the case of the representation of permutations, it is a little bit more
difficult to obtain sensible crossover operators. We assume that we are work-
ing with permutations consisting of n elements. Most crossover operators are
applied to two parents P1 and P2 and produce two offspring O1 and O2. To
give an impression of how crossover operators for permutation problems are
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designed we consider the order crossover operator (OX-operator), which gets
two parameters i and j, 1 ≤ i, j ≤ n. W. l. o. g., we assume i < j. In a first
step the elements of P1 at positions i + 1, . . . , j − 1 are copied into O1 to the
same positions. After that the remaining elements of P2 are placed into O1.
This is done by examining P2 from position j on in a circular way and placing
the elements that up to now do not occur in O1 at the next position, where
the positions j, . . . , n, 1, . . . , i are considered one after another. In the same
way the offspring O2 is constructed by starting copy the elements between the
positions i and j of P2 into O2.

We describe important mutation operators for the search space of binary
strings and permutations of elements in the following. In the case of bitstrings
of length n each bit is often flipped with a certain probability p, where p = o(1)
usually holds. It is necessary to choose p not too large to prevent the algorithm
from sampling the next solution nearly uniformly at random from a very large
neighborhood of the parent solution. In a lot of algorithms p = 1/n is used
such that on average one bit is flipped. In the case of permutations with n
elements, often jumps or exchange operations are used. Both operations get
two parameters i and j, 1 ≤ i, j ≤ n. Then a jump(i, j) places the element
at position i at position j and shifts the elements between i and j, including
j, in the appropriate direction. If i < j the elements are shifted to the left,
and to the right if i > j. An exchange(i, j) places the element at position i
at position j and the element at position j at position i. W. l. o. g., assume
that i < j holds for exchange(i, j). Then this operation can be simulated by
executing sequentially the two jump operations jump(i, j) and jump(j−1, i). In
contrast to this, �k/2� exchange operations are needed to simulate jump(i, j)
if |i− j| = k holds. Therefore the jump operator seems to be the more flexible
one. We will see later that this can make the difference between a polynomial
and an exponential expected runtime.

3.1.3 Selection Methods

Selection methods are used to decide which individuals of the current pop-
ulation are used to produce offsprings. In addition, they are used to decide
which individuals from the parent and offspring population constitute the
population of the next generation. A widely used selection method is fitness-
proportional selection. We assume that the function f should be maximized
and that all function values are positive. If the population contains μ individ-
uals x1, . . . , xμ, then xi has probability f(xi)/(

∑μ
i=1 f(xi)) of being chosen

in each selection step. Note that this selection method allows us to choose
individuals more than once for a certain purpose. Therefore the population of
the next generation may include duplicates even if the parent and offspring
population before have contained only individuals that were pairwise distinct
from each other.

Another important method is tournament selection. Here, tournaments of
size q ∈ {1, . . . , μ} are chosen. In each tournament, q individuals compete
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against each other. The individuals that take part in a certain tournament
are chosen uniformly at random from the population. In each tournament, the
individual with the highest fitness value wins the competition and is chosen
for reproduction for the next generation.

Two other important selection methods are (μ + λ)- and (μ, λ)-selection.
These two methods have their main application in evolution strategies. We
will discuss the different approaches in evolutionary computation together
with these two methods in the following.

3.1.4 Major Approaches

The class of evolutionary algorithms covers historically different approaches
to solve problems inspired by the evolution process in nature. The approaches
differ by the search spaces that are considered and the variation operators
used to produce new search points.

Evolution Strategies

Evolution strategies (ESs) (Rechenberg, 1973; Schwefel, 1981) are used to
solve continuous optimization problems. There, usually a real-valued search
space is considered. Mutation is the variation operator that is mainly used
in ES. The most important strategies are called (μ, λ)- and (μ + λ)-ES and
differ from each other by the chosen selection method. In the case of a (μ, λ)-
ES, the parent population has size μ and λ children are produced in one
generation. The next parent population is created by choosing μ individuals
from the offspring population. Note that in this case λ >> μ should hold
as the parent population is not involved in the selection process. In contrast
to this, a (μ + λ) strategy considers both populations for the next parent
population. After having created λ children, individuals from the parent and
the offspring population are chosen according to their fitness values to build
the parent population of the next generation.

Genetic Algorithms

Genetic algorithms (GAs) introduced by Holland (1975), work in discrete
search spaces. Here, bitstrings of length n are used to represent possible so-
lutions. The other main difference with evolution strategies is that crossover
is seen as the variation operator that has the main effect of getting good so-
lutions. Working with a population of size μ, in each iteration μ children are
produced by using crossover. Mutation is seen as the minor variation operator.
If it takes place, it is often applied to each child that has been produced by
crossover. Then each bit is flipped with a certain probability p, where often
p = 1/n is chosen. The major selection method for GAs is fitness proportional
selection. This method is used to select the individuals that are used to ob-
tain new solutions as well as to select the individuals from the parents and
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children to form the population of the next generation. Another variant is to
produce only a few children in each iteration. In the extreme case, one child is
produced. This is known as the steady state GA. A lot of theoretical work for
GAs has been concentrated on schemata. A schema fixes some positions in the
bitstrings such that a search space of a smaller dimension is obtained. It is as-
sumed that genetic algorithms combine schemata to obtain better ones. This
implicitly assumes that the function which should be optimized is separable
and comforms to the so-called building block hypothesis. This hypothesis says
that functions are optimized by separating the variables and optimizing func-
tions that depend on these partitions. It is assumed that such a partitioning
is found by a GA and that the different blocks can be optimized in parallel.
The problem is that even simple functions are not separable. Despite the fact
that the schema theorem considers the behavior of a GA in only one step, the
major lack is that the building block hypothesis has no clear formulation that
can be verified or falsified.

Evolutionary Programming

Evolutionary programming (EP) (Fogel, Owens, and Walsh, 1966) considers
a representation that is fit to the problem. This means that the different pa-
rameters that have to be optimized can have different codomains. The main
variation operator is mutation, which can be handled very flexibly, and EP
makes usually no use of crossover operators. In a standard approach, a parent
population of size μ produces μ children by mutation. The new parent popu-
lation consists of μ individuals from the parents and children that have been
selected by a probabilistic selection method (e.g., fitness-proportional selec-
tion). In the selection step, it is important to ensure that a best individual of
the parents and the children is integrated into the new parent population such
that the best solution found will not get lost during the optimization process.

Genetic Programming

Genetic programming (GP) developed by Koza (1991) is an evolutionary com-
putation approach that has become very popular in recent years. Instead of
searching the considered search space, one tries to construct good computer
programs that solve the given task. Therefore, individuals are possible com-
puter programs, usually represented as trees that represent expressions. These
trees are evolved during the evolution process. Similarly to the other ap-
proaches, a set of computer programs constitutes a population, and a parent
population creates an offspring population using crossover and mutation. The
fitness of a program is given by its performance with respect to the evaluation
of some test cases. To select individuals from the parents and the children for
the new parent population, often fitness-proportional selection is used.
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3.2 Ant Colony Optimization

Ant colony optimization (ACO) is another bio-inspired approach to solve op-
timization problems. Introduced by Colorni, Dorigo, and Maniezzo (1992), it
has been shown to be especially successful for solving combinatorial optimiza-
tion problems. A good overview of the different techniques used in this field
is given in the book of Dorigo and Stützle (2004). In contrast to EAs, where
solutions are constructed from the current set of solutions, solutions are in
this case obtained by random walks on a so-called construction graph which
is usually a directed graph. ACO algorithms are inspired by the search of an
ant colony for a common source of food. It has been noticed that ants find
very quickly a shortest path to a source of food. The information about which
path to take to get to the food is distributed between the ants by them leaving
a piece of information, called pheromone, on the path. As longer paths to the
source take much more time than shorter paths, shorter paths are more often
visited. This implies larger pheromone values on shorter paths after a small
amount of time.

Construction of Solutions

The above-mentioned ideas are used to solve optimization problems. Solutions
of a given problem are obtained by random walks of ants on a construction
graph that has positive values, the pheromone values, on the edges. These
values influence the random walks in the way that edges with large values
have a larger probability of being traversed. In addition, the model of ACO
algorithms allows us to include heuristic information to guide the random
walks. This information additionally influences the probability of which vertex
to visit next in the random walk.

In an ACO algorithm, each ant of the colony exploits the construction
graph to search for an optimal solution. We assume that the ant colony is
a set A = {a1, . . . , ak} of k ants. Each ai has memory that can be used to
store information about the path it has followed so far. This memory can
be used to build feasible solutions, compute a heuristic value η, evaluate the
solution that has been found, and retrace the path backwards. An ant has a
start state and one or more termination conditions. In a single step, the ant
moves from a current vertex v of the construction graph to one of its succes-
sors. This move is chosen based on a probabilistic rule and depends on the
pheromone values on the edges, heuristic information associated with compo-
nents and connections in the neighborhood of v, the ant’s private memory,
and the problem constraints. When adding a component to the solution the
ant builds up, the algorithm may update the pheromone value of the con-
nection that corresponds to this solution. This is not always done. Usually
the pheromone values are updated after the complete solution has been built.
Here, the ant retraces the path it has taken to build the solution and increases
the pheromone values along these edges.
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Let C = (V,E) be the construction graph of a given problem. The
pheromone value of an edge e = (u, v) ∈ E is denoted by τ(u,v). In addition it
is possible to assign to each edge (u, v) ∈ E a piece of heuristic information
η(u,v). We assume that an ant is at vertex u and denote the set of allowed
successors by N(u). Due to the problem constraints, this set may be a subset
of the successors of u in C. The probability that the ant visits the vertex
v ∈ N(u) in the next step is given by

pv =
[τ(u,v)]α · [η(u,v)]β∑

w∈N(v)[τ(u,w)]α · [η(u,w)]β
.

Here α, β ≥ 0 are parameters that determine the importance of the
pheromone values and the heuristic information, respectively.

Updating Pheromone Values

In the update procedure of an ACO algorithm, the pheromone values are
usually decreased by an amount that depends on the value before the update
and the evaporation factor ρ, 0 ≤ ρ ≤ 1. Let τ(u,v) be the pheromone value
on edge (u, v) ∈ E before the update. The value is decreased to (1 − ρ)τ(u,v)

in a first step. This implies that information about which paths are taken so
far gets lost during the run of the algorithm and helps to escape from local
optima. In addition, the pheromone values on edges an ant ai has traversed
are increased by a value Δi that may depend on ρ as well as on the function
value of the solution the ant ai has constructed. Hence, the pheromone value
τ ′
(u,v) of edge (u, v) after the update is given by

τ ′
(u,v) = (1 − ρ)τ(u,v) +

k∑
i=1

Δi.

There are different possibilities which ants to take into account for the
update. If all ants of the colony leave pheromone values on the edges this
is known as the AS-update rule. This is the update rule of the Ant System
(AS) which was the first ACO algorithm proposed in the literature (Colorni
et al., 1992). Using the AS-update, the amount by which an ant increases
a pheromone value should depend on the function value of the constructed
solution as otherwise the pheromone values are totally independent of the
function f that should be optimized. If this is not the case, it would not be
possible to direct the search. In the case of the IB-update rule, where IB stands
for iteration-best, the ants that have constructed the best solutions of the last
iteration update the pheromone values along the edges they have taken. Such
an update introduces a much stronger bias towards the best solutions found
so far. In the case of the best-so-far update, BS-update for short, this bias
is even more extreme. Here, the pheromone values on the edges of a best
solution constructed since the first iteration of the algorithm are increased in
each iteration.
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3.3 Other Stochastic Search Algorithms

In this section, we describe other import stochastic search algorithms that
have been proposed. One important method is randomized local search (RLS).
This can be seen as a simplification of the perhaps simplest evolutionary
algorithms called (1+1) EA. In the case of a runtime analysis of (1+1) EA,
RLS is often considered in a first step and the results are later adjusted to the
EA. Local search procedures work with a predefined neighborhood and have
problems if there is no better solution in this neighborhood than the current
one. Then they get stuck in local optima. To escape from local optima, the
Metropolis algorithm (MA) allows us to accept worsenings with a certain
probability that depends on a parameter that is called the temperature. It
has been shown to be useful in an approach called simulated annealing (SA)
to vary this temperature over time, starting with a high temperature and
cooling it down during the run of the algorithm.

3.3.1 Randomized Local Search

Apart from sampling in each iteration a search point from the given search
space uniformly at random, randomized local search seems to be the simplest
stochastic search algorithm that can be considered. RLS works in each iter-
ation with one single solution s. A new solution s′ is constructed from s by
choosing one individual from the neighborhood of s. s is replaced by s′ if s′

is not inferior to s. The definition of the neighborhood is a crucial parameter.
If it is too small, RLS often gets stuck in local optima. If the neighborhood
is too large, even individuals that are close to the current solution may only
get a too small probability of being chosen in the next step, and RLS behaves
like random sampling of search points from the search space independently
of s. Considering problems from the search space {0, 1}n, RLS often uses a
neighborhood that is defined by all search points that have Hamming distance
1 or 2 from the current solution s.

3.3.2 Metropolis Algorithm

In contrast to RLS, the following two approaches accept worsenings during the
optimization process. The acceptance of a worsening depends on the difference
between the fitness values of s and s′ and on a so-called temperature T . In the
case of the Metropolis algorithm (MA), this temperature is a fixed parameter
and therefore constant during the optimization process. We assume that we
are considering a function f that should be maximized. In the case where
f(s′) ≥ f(s) holds, s is replaced by s′. In the other case s is replaced by s′

with probability M(s, s′, T ) = e−
f(s)−f(s′)

T , where M is called the Metropolis
function.

MA has been subject to rigorous analysis with respect to its runtime for the
NP -hard graph bisection problem (Jerrum and Sorkin, 1998). Let G = (V,E)
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Fig. 3.1. Connected triangles with two different weight profiles

be an undirected graph where |V | is even. A bisection of G is a partitioning
of V into sets L and R with |L| = |R| = n/2. The cut width of a bisection
is defined as the number of edges that have exactly one endpoint in L and
one endpoint in R. One is interested in finding a bisection with minimum cut
width. Jerrum and Sorkin have considered MA for finding an optimal bisection
of a random graph G = (V,E) where an edge between vertices of the same
partition occurs with probability p and an edge between vertices of L and R
occurs with probability r. In the case where p− r = Θ(nΔ−2) for a parameter
Δ with 3/2 < Δ ≤ 2, such a random graph specifies with high probability a
planted bisection of density r that separates L and R, which have a slightly
higher density p (Bui, Chaudhuri, Leighton, and Sipser, 1984). Then it can
be shown that MA for an appropriate choice of T finds the optimal solution
in about O(n2) steps with high probability if Δ ≥ 11/6.

3.3.3 Simulated Annealing

Simulated annealing (SA) can be seen as MA that uses different temperatures
during the run of the algorithm. Starting with a temperature T0, the tem-
perature is decreased during the optimization process according to a cooling
schedule. Such a cooling schedule can be adaptive or non-adaptive. In the case
of a non-adaptive cooling schedule, the temperature Ti is known in advance
for all time steps i. In the case of adaptive cooling schedules, the temperature
for a given time step i may depend on the history of sampled search points.

For a long time, there were only artificial example functions (Sorkin, 1991)
where it could be proven that a cooling schedule can be useful in reducing
the runtime significantly. Wegener (2005b) has presented the first “natural”
example where this is the case. He has shown that SA can outperform MA
for each fixed temperature on a class of instances of the minimum spanning
tree problem. Wegener has investigated connected triangles (see Figure 3.1)
with m = 6n edges and 4n + 1 vertices. The structure of this graph is the
same as the triangle part of the graph we will investigate in Chapter 5 for
the analysis of evolutionary algorithms until they have computed a minimum
spanning tree. The number of triangles equals 2n. Each triangle gets a weight
profile (w1, w2, w3), which is the ordered vector of the three edge weights. The
basic idea is to construct weight profiles such that for each fixed temperature
it is hard to optimize all triangles while an appropriate cooling schedule is
able to optimize all triangles. Wegener uses n triangles with the weight profile
(1, 1, m) and n triangles with the weight profile (m2, m2, m3). Then he distin-
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guishes between high temperatures (T ≥ m) and low temperatures (T < m).
He shows that high temperatures are not able to optimize the triangles with
the weight profile (1, 1, m) and low temperatures are not able to optimize the
triangles with weight profile (m2, m2, m3) in a polynomial number of steps.
Hence, different temperatures are necessary to find an optimal solution solu-
tion quickly. An optimal solution can be obtained in a polynomial number of
steps by using an appropriate cooling schedule in SA.
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Analyzing Stochastic Search Algorithms

In this chapter, we introduce the stochastic search algorithms for single-
objective optimization that will be subject to the analyses throughout this
book. We start by describing algorithms for single-objective optimization
problems in Section 4.1. There, we consider different variants of RLS and vari-
ants of a well-known evolutionary algorithm called (1+1) EA. Afterwards, we
introduce some basic methods methods for analyzing stochastic search algo-
rithms.

4.1 Simple Stochastic Search Algorithms

In this section, we introduce the stochastic search algorithms that we will
consider for single-objective optimization problems. We investigate heuristics
for discrete search spaces. Most of the problems we examine in this book are
graph problems where one searches for a good set of vertices or edges. In this
case, solutions can be represented as binary strings where each bit corresponds
to a vertex or an edge. All our algorithms are described for the minimization
of a given fitness function f but can also be easily applied to problems where
the goal is to maximize a given fitness function.

4.1.1 Randomized Local Search

Randomized local search (RLS) in the binary case produces from a current
solution s ∈ {0, 1}n a new one s′ by flipping a randomly chosen bit (see
Algorithm 1). We index the algorithm with the subscript “b” to indicate
the binary search space and the superscript “1” to emphasize that only one
bit is flipped. We will sometimes also refer to the bit-flip operators in RLS
algorithms as mutation operators.

For all stochastic search algorithms, we consider no stopping criterion to be
defined. In applications this is, of course, necessary. Often such an algorithm is
stopped after a predefined number of iterations or if no progress has been made
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Algorithm 1 RLS1
b

1. Choose s ∈ {0, 1}n uniform at random.
2. Choose i ∈ {1, . . . , n} uniform at random and flip the ith bit of s.
3. Replace s with s′ if f(s′) ≤ f(s).
4. Repeat Steps 2 and 3 forever.

Algorithm 2 RLS1,2
b

1. Choose s ∈ {0, 1}n uniform at random.
2. Choose b ∈ {0, 1} uniform at random.

If b = 0, choose i ∈ {1, . . . , n} uniform at random and define s′ by flipping the
ith bit of s.
If b = 1, choose (i, j) ∈ {(k, l) | 1 ≤ k < l ≤ n} uniform at random and define
s′ by flipping the ith and the jth bits of s.

3. Replace s with s′ if f(s′) ≤ f(s).
4. Repeat Steps 2 and 3 forever.

for a certain number of steps. We consider the algorithms we analyze as infinite
stochastic processes and are interested in the number of fitness evaluations
until a given task has been achieved. In the case of exact optimization, the
number of fitness evaluations until an optimal solution has been produced is
investigated. Often the expectation of this value is analyzed and called the
expected optimization time of the considered algorithm. Especially in the case
where one cannot hope to compute optimal solutions in a polynomial number
of steps, e.g., for NP -hard problems, one is interested in the number of fitness
evaluations until the algorithm has produced a good approximation of an
optimal solution.

Flipping one single bit is not useful for most graph problems. Often the
number of 1s (or edges) is the same for all good search points, e.g., for traveling
salesperson problems (TSPs) or minimum spanning trees. Then, all Hamming
neighbors of good search points are bad, implying that we have many local op-
tima. Therefore, we work with the larger neighborhood of Hamming distance 2
and investigate a variant of randomized local search given in Algorithm 2. This
time the superscript “1,2” is used for clarification.

4.1.2 A Simple Evolutionary Algorithm

The evolutionary algorithms that we consider for single-objective optimization
problems use a population of size 1 and produce at each time step one single
child. They can be seen as variants of RLS, which we introduced in the last
section, with a more flexible mutation operator. Usually, a mutation operator
in this scenario should be able to search globally. Here, each search point of
the considered search space should get a positive probability of being chosen
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Algorithm 3 (1+1) EAb

1. Choose s ∈ {0, 1}n uniform at random.
2. Produce s′ by flipping each bit of s independently of the other bits with prob-

ability 1/n.
3. Replace s with s′ if f(s′) ≤ f(s).
4. Repeat Steps 2 and 3 forever.

in the next step. Again we consider the algorithm for the search space {0, 1}n

first. The perhaps simplest evolutionary algorithm that can be considered in
this case is (1+1) EAb. Starting with a randomly chosen bitstring s of length
n, the algorithm produces in each iteration a child by flipping each bit of s
with probability 1/n. (1+1) EAb for minimizing a fitness function f is given
in Algorithm 3.

(1+1) EAb has been the subject of the first analyses of evolutionary al-
gorithms with respect to their expected optimization time. In the beginning,
the behavior of this algorithm on pseudo-boolean functions that depend on n
variables was considered. Some of first main results were obtained by Droste
et al. (2002). It has been shown that the expected time to reach an opti-
mal search point by this algorithm in the considered search space is always
bounded above by nn, as the probability to choose an optimal search point in
the next step is at least n−n. More detailed analyses consider pseudo-boolean
functions with different properties. One major result is that the expected op-
timization time on linear functions is O(n log n). The class of functions of
degree 2 is too huge to get a polynomial upper bound on the runtime for each
function, as optimizing polynomials of degree at least 2 is NP -hard.

4.1.3 Algorithms for Multi-Objective Optimization

In this case of multi-objective optimization, one searches for a set of optimal
solutions instead of a single one. We want to examine multi-objective evolu-
tionary algorithms (MOEAs) that are generalizations of RLS1

b and (1+1) EAb.
Therefore, we investigate and analyze a simple algorithm called SEMO (Sim-
ple Evolutionary Multi-Objective Optimizer) due to Laumanns, Thiele, and
Zitzler (2004).

The fitness of a search point s is given by a vector f(s) = (f1(s), . . . , fk(s)).
W. l. o. g., we assume that each function fi should be minimized and write
f(s) ≤ f(s′) iff fi(s) ≤ fi(s′) holds for all i, 1 ≤ i ≤ k. A solution s domintates
a solution s′ iff f(s) ≤ f(s′) and f(s) �= f(s′) holds. If s dominates s′ we also
say that f(s) dominates f(s′).

SEMO (see Algorithm 4) starts with an initial solution s ∈ {0, 1}n that
is chosen uniformly at random. All non-dominated solutions are stored in
the population P . In each step a search point from P is chosen uniformly
at random and one bit is flipped to obtain a new search point s′. The new
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Algorithm 4 SEMO

1. Choose an initial solution s ∈ {0, 1}n uniformly at random.
2. Determine f(s) and initialize P := {s}.
3. Repeat

a) Choose s ∈ P randomly.
b) Choose i ∈ {1, . . . , n} randomly.
c) Define s′ by flipping the ith bit of s.
d) Determine f(s′),
e) Let P be unchanged, if there is an s′′ ∈ P such that f(s′′) ≤ f(s′) and

f(s′′) �= f(s′)
f) Otherwise, exclude all s′′ where f(s′) ≤ f(s′′) from P and add s′ to P .

Algorithm 5 Global SEMO (GSEMO)

1. Choose an initial solution s ∈ {0, 1}n uniformly at random.
2. Determine f(s) and initialize P := {s}.
3. Repeat

a) Choose s ∈ P randomly.
b) Define s′ by flipping each bit of s independently of the other bits with

probability 1/n.
c) Determine f(s′),
d) Let P be unchanged, if there is an s′′ ∈ P such that f(s′′) ≤ f(s′) and

f(s′′) �= f(s′)
e) Otherwise, exclude all s′′ where f(s′) ≤ f(s′′) from P and add s′ to P .

population contains for each non-dominated fitness vector f(s), s ∈ P ∪ {s′},
one corresponding search point, and in the case where f(s′) is not dominated
s′ is chosen.

Applying SEMO to a single-objective optimization problem, we obtain
RLS1

b where in each step a single bit is flipped. Giel (2003) has introduced
an algorithm called Global SEMO (GSEMO), which is shown in Algorithm 5.
This algorithm differs from SEMO by using the more general mutation opera-
tor of (1+1) EAb. GSEMO applied to single-objective optimization problems
equals (1+1) EAb.

We will analyze the algorithms until they have achieved certain goals for
different combinatorial optimization problems. In the case of polynomially
solvable problems, we are interested in the time until a solution is produced for
each Pareto optimal objective vector, whereas in the case of NP -hard problems
we are interested in the time to achieve a good approximation of the Pareto
front. We will also examine how multi-objective models of single-objective
optimization problems can help to speed up stochastic search algorithms. In
this case, we are mainly interested in the quality of a particular solution in the
population, namely the one solving the single-objective optimization problem.



4.2 Basic Methods for the Analysis 37

4.2 Basic Methods for the Analysis

Until the early 1990s, theory on evolutionary algorithms mainly dealt with
the convergence of EAs or results that showed the behavior of an EA in one
single iteration. The first runtime analysis of an EA was given by Mühlenbein
(1992). Evolutionary algorithms are stochastic search algorithms, but for a
long time they were not analyzed in the way randomized algorithms normally
are. The main reason for this is that the people who worked on theoretical
aspects of evolutionary computation had a different background than peo-
ple in theoretical computer science or discrete mathematics. With regard to
evolutionary algorithms as a class of randomized algorithms, a lot of strong
methods are available. Such methods have already been applied in the field
of randomized algorithms (Motwani and Raghavan, 1995). A very important
issue when analyzing the runtime of EAs is the application of large deviation
inequalities such as Chernoff bounds or Markov’s inequality. Another useful
method is to follow the considerations of the coupon collectors problem. Since
the mid-1990s, a lot of new methods for analyzing the runtime of EAs have
been obtained. In this section, we want to discuss some important methods
that have been used. These methods will be applied in our analysis of evolu-
tionary algorithms for combinatorial optimization problems.

To show how to apply different methods that have been developed, we
consider the class of linear pseudo-boolean functions. A linear pseudo-boolean
function f : {0, 1}n → R is defined by

f(x) = w1x1 + w2x2 + · · · + wnxn,

where wi ∈ Z.
W. l. o. g., we assume that all wi attain non-negative values. The case of

(partially) negative weights can be handled analogously to the following inves-
tigations, as a weight wi �= 0 determines independently of the other weights
whether the bit xi has to be set to 1 or 0 in an optimal solution. In the case
where some weights are 0, the function value does not depend on the corre-
sponding bits. The upper bound given in Theorem 4.4 also holds in this case,
but the lower bound given in Theorem 4.3 needs the condition that there are
Θ(n) weights distinct from 0.

4.2.1 Fitness-Based Partitions

This simple method has been used for a wide class of problems. We assume
that we are considering a stochastic search algorithm that works in each iter-
ation with one solution that produces one offspring. All variants of RLS and
(1+1) EA we have discussed in Section 4.1 fit into this scenario. Assume that
we are working in a search space S and consider w. l. o. g. a function f : S → R

that should be maximized. S is partitioned into disjoint sets A1, . . . , Am such
that A1 <f A2 <f · · · <f Am holds, where Ai <f Aj means that f(a) < f(b)
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Fig. 4.1. Illustration of fitness-based partitions

holds for all a ∈ Ai and all b ∈ Aj . In addition, Am contains only opti-
mal search points. An illustration is given in Figure 4.1. We denote for a
search point x ∈ Ai by p(x) the probability that in the next step a solution
x′ ∈ Ai+1 ∪ · · · ∪ Am is produced. Let pi = mina∈Ai

p(x) be the smallest
probability of producing a solution with a higher partition number.

Lemma 4.1. The expected optimization time of a stochastic search algorithm
that works at each time step with a population of size 1 and produces at
each time step a new solution from the current solution is upper bounded
by

∑m−1
i=1 (1/pi).

Proof. The expected time of a success for independent Bernoulli trials with
probability p is 1/p. Hence, the expected time to produce from a search point
x ∈ Ai a search point x′ with x′ ∈ Aj , j > i, is upper bounded by 1/pi.
This implies that the expected time until an optimal search point has been
produced is upper bounded by

∑m−1
i=1 (1/pi). ��

To come up with good upper bounds using this method, one has to use
a good partitioning of the search space such that there are not too many
partitions and that there is a high probability of leaving the current partition
and producing a search point in a better one.

We consider a simple example. OneMax: {0, 1}n → R is a simple linear
pseudo-boolean function where wi = 1, 1 ≤ i ≤ n, holds. It is defined by
OneMax(x) =

∑n
i=1 xi and should be maximized. The function returns for

a bitstring x of length n the number of 1s in x. We consider (1+1) EAb for
maximization problems, where a new solution is accepted if its fitness value
is not smaller than the value of the best solution up to now.

Theorem 4.2. The expected optimization time of (1+1) EAb on OneMax is
O(n log n).
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Proof. The search space is partitioned into n + 1 sets A0, . . . , An where Ai

contains all solutions x with OneMax(x) = i. Assume that the currently best
solution x belongs to An−k. Then there are exactly k 0-bits that can be
flipped to obtain an improvement. The probability of an improvement in the
next step is at least k

n
(1 − 1

n
)n−1 ≥ k

en
. Hence, the expected waiting time for

an improvement is upper bounded by en/k. Summing up the waiting times
for the different values of k we get

n∑
k=1

en

k
= en ·

n∑
k=1

1
k

= O(n log n). �

In the case where one works with a larger population, often an individual
with the highest partition number in the population is considered. Then one
can analyze the time until this individual has become an optimal one. The
method works in nearly the same way as in the case of a population of size 1,
but one often has to add an additional factor to choose the right individual
in the next step.

4.2.2 Chernoff Bounds and Coupon Collectors

Large deviation inequalities have widely been used in the analysis of random-
ized algorithms. In the case of stochastic search algorithms, they are often use-
ful for showing the typical behavior of such a heuristic. We consider (1+1) EAb

which chooses the initial solution x uniformly at random from {0, 1}n by set-
ting each bit with equal probability to 0 or 1. Hence, n Bernoulli trials are
considered where Prob(xi = 1) = Prob(xi = 0) = 1/2, 1 ≤ i ≤ n, holds.
The expected number of 1s in the initial solution is therefore n/2 and there
are at most 2n/3 1s in the initial bitstring with probability 1 − e−Ω(n) using
Chernoff bounds (see Appendix A.5).

In the coupon collector’s problem (Motwani and Raghavan, 1995), n dif-
ferent coupons are given and at each time step a coupon is chosen uniformly
at random from among all coupons. Let t be the number of trials. Then one
studies the number of trials until each of the n coupons has been chosen at
least once. The expected number of trials until each coupon has been chosen
at least once is Θ(n log n) (see Appendix A.13). Using Chernoff bounds and
the ideas of the coupon collectors problem, it is easy to obtain a lower bound
of Ω(n log n) on each linear pseudo-boolean function with non-zero weights.
To show how to use Chernoff bounds and the ideas of the coupon collectors
problem, we present the proof which can be found in Droste et al. (2002).
W. l. o. g., we assume that all weights attain positive values. Hence, the only
optimal solution is the bitstring (1, . . . , 1).

Theorem 4.3. The expected optimization time of (1+1) EAb on each linear
pseudo-boolean function with non-zero weights is Ω(n log n).
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Proof. Using Chernoff bounds, the expected number of 0s in the initial bit-
string is at least n/3 with probability 1 − e−Ω(n). To obtain the proposed
lower bound, we analyze the expected time until each of the 0-bits has been
flipped at least once under the condition that there are at least n/3 0-bits af-
ter initialization. This is done in a similar fashion as in the case of the coupon
collector’s theorem.

Let t be a specific number of steps. The probability that a specific 0-bit has
not been flipped at least once in t steps is (1 − 1/n)t. Hence, the probability
that it has flipped at least once in t steps is 1− (1−1/n)t, and the probability
that each of the n/3 0-bits has flipped at least once is (1− (1−1/n)t)n/3. The
probability that at least one of the n/3 0-bits has never flipped during t steps
is 1−(1−(1−1/n)t)n/3. Hence, the probability that at least one 0-bit has not
been flipped during t = (n − 1) ln n steps is 1 − (1 − (1 − 1/n)(n−1) ln n)n/3 ≥
1 − e−1/3.

Altogether, the optimization time of (1+1) EAb is Ω(n log n) with proba-
bility at least 1 − e−1/3 − e−Ω(n) = Ω(1), which proves the theorem. ��

4.2.3 Expected Multiplicative Distance Decrease

The method of the expected multiplicative distance decrease has been de-
veloped to analyze the runtime behavior of stochastic search algorithms on
problems with a large number of different values that the fitness function may
attain. For example, this is the case for the minimum spanning tree prob-
lem where an exponential number of spanning trees with different weights is
possible.

The method is illustrated in Figure 4.2. It can be applied to problems
where we are able to transform each solution s into an optimal solution sopt

by a set O = {o1, . . . , or} consisting of r operations that all have the same
probability of happening in the next step. We assume that this probability can
be lower bounded by α and that the set of possible fitness values contains only
integers. For simplicity, the value of r does not change in all considerations.

Note that the number of operations until sopt has been reached depends
on the solution s. W. l. o. g., we assume that O′ = {o1, . . . , or1}, O′ ⊆ O, is
the set of operations necessary to turn s into sopt. Then r− r1 operations are
added such that one can work at each time step with the same value of r. It is
important that the application of each of the operations of O′ lead to a solution
s′ that is not inferior to s. This implies that each operation of O′ applied to s is
accepted. W. l. o. g., we assume that the considered fitness function f should be
maximized. Let d = f(sopt)−f(s) be the distance (measured as the difference
of the function values) of s from an optimal one. As all operations have the
same probability, the expected decrease in the distance when producing a
solution s′ by an operation that is chosen uniformly at random from the set O

is at least f(sopt)−f(s)
r . Note that non-accepted operations of O \O′ contribute

a distance decrease of 0. The expected distance of s′ from sopt is
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Fig. 4.2. Illustration of the expected multiplicative distance decrease

(1 − 1/r) · (f(sopt) − f(s))

after 1 step, and the expected distance after t such steps is

(1 − 1/r)t · (f(sopt) − f(s)).

Let
dmax = max

s∈{0,1}n
(f(sopt) − f(s))

be the maximum distance of any search point in the search space from an
optimal one. After having executed t randomly chosen operations of O, the
expected distance to an optimal solution is at most (1−1/r)t ·dmax. Choosing
t = c · r · log dmax, c an appropriate constant, the expected distance is at most
1/2. Using Markov’s inequality (see Appendix A.4), the probability that the
distance is at least 1 is upper bounded by 1/2. As the set of possible fitness
values contains only integers, the probability of having achieved an optimal
solution (i.e., the distance is 0) is at least 1/2. This implies that the expected
number of operations belonging to the set O until an optimal solution has
been achieved is at most 2t = O(r · log dmax). The probability of an operation
belonging to the set O is at least r · α. Using this, the expected optimization
time is O((r · α)−1r · log dmax) = O(α · log dmax).

We consider linear pseudo-boolean functions and define wmax = maxi |wi|.
Applying the method of expected multiplicative distance decrease, we show in
a simple way an upper bound on the expected optimization time of (1+1) EAb

on each linear pseudo-boolean function, which is according to Theorem 4.3
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optimal as long as the weights are polynomially bounded in n. W. l. o. g., we
assume that wi ≥ 0, 1 ≤ i ≤ n, holds.

Theorem 4.4. The expected optimization time of (1+1) EAb on linear func-
tions is upper bounded by O(n(log n + log wmax)).

Proof. The set of operations O contains all steps where only one single bit flips.
Hence, O contains r = n operations. The set O′ contains all operations flipping
one single 0-bit. As wi ≥ 0, 1 ≤ i ≤ n, each operation of O′ is accepted. The
probability of one specific operation of O is 1/n · (1− 1/n)n−1 ≥ 1/(en) := α
and dmax ≤ n · wmax holds. Using the method of expected multiplica-
tive distance decrease, the expected optimization time is upper bounded by
O(n log dmax) = O(n(log n + log wmax)). ��

Note that the given upper bound is O(n log n) as long as all weights are
polynomially bounded in n. It is possible to obtain a more general upper
bound of O(n log n) even if the weights are not polynomially bounded. This
proof is much more complicated than the one presented here and can be found
in Droste et al. (2002).

4.2.4 Cover Time of Random Walks

In the following, we show how classical results on random walks on a given
graph can be used for the analysis of stochastic search algorithms. In partic-
ular, we show how results on the cover time of a random walk can be directly
used to give bounds on the runtime of this class of algorithms when dealing
with plateau functions.

Plateaus are regions in the search space where all search points have the
same objective vectors. Consider a function f : {0, 1}n → R and assume that
the number of different objective values for that function is N . Then there are
at least 2n/N search points with the same objective value. Often, the number
of different objective values for a given function is polynomially bounded. This
implies an exponential number of solutions with the same objective value.
Nevertheless, such functions where N is polynomially bounded are easy to
optimize for evolutionary algorithms if for each non-optimal solution there is
a better Hamming neighbor, which means that an improvement can be made
by flipping a single bit of a non-optimal solution. Polynomial upper bounds
for such functions and typical stochastic search algorithms can be obtained
by using the method of fitness-based partitions introduced in Section 4.2.1.

If this is not the case, the search for a stochastic search algorithm may
become much harder. In the extreme case, we end up with the function NEE-
DLE , where only one single solution has objective value 1 and the remaining
ones get an objective value of 0. Here, typical stochastic search algorithms re-
quire an exponential number of steps to reach the optimal solution as the func-
tion does not give any hints towards the optimum. The behavior of (1+1) EAb
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Algorithm 6 Random Walk on a graph G = (V,E)
Start at a vertex v ∈ V .
repeat

Choose a neighbor w of v in G uniformly at random.
Set v := w.

until stop

on plateaus of different structures has been studied by Jansen and Wegener
(2001).

We want to relate the behavior of stochastic search algorithms on plateau
functions to random walks on a given graph, and we consider the following
problem. Given a connected graph G = (V,E), a random walk starts at a
vertex v ∈ V and moves in each step to a neighbor of the current vertex
that is chosen uniformly at random from among all neighbors. An algorithm
describing this random walk procedure is stated in Algorithm 6.

Definition 4.5. Given an undirected connected graph G = (V,E), the cover
time of a random walk on G is the number of steps until each vertex v ∈ V
has been visited at least once.

The following result has been obtained by Aleliunas, Karp, Lipton, Lovász,
and Rackoff (1979).

Theorem 4.6 (Upper bound for Cover Time). Given an undirected con-
nected graph G = (V,E) with n vertices and m edges, the cover time is upper
bounded by 2|E|(|V | − 1).

To illustrate how to use this bound for the analysis of stochastic search
algorithms, we consider the function SPC (short path with constant values),
which was introduced by Jansen and Wegener (2001). Let |x|0 denote the
number of zeros in a bitstring x. The function SPC is defined as

SPC(x) :=

⎧⎨
⎩

|x|0 : x �∈ {1i0n−i, 0 ≤ i ≤ n}
n + 1 : x ∈ {1i0n−i, 0 ≤ i < n}
2n : x = 1n.

We denote by SP := {1i0n−i, 0 ≤ i < n} the set of search points that con-
stitute the plateau of fitness n + 1. Consider the graph GSP = (V,E) with
V = {v0, v1, . . . , vn} shown in Figure 4.3. The vertex vi corresponds to the
search point 1i0n−i. The edge set is given by E = {{vi, vi+1}, 0 ≤ i ≤ n− 1},
i.e., an edge is present between two vertices if the corresponding search points
have Hamming distance 1. The graph GSP consists of n + 1 vertices and n
edges. Hence, the cover time of a random walk on GSP is upper bounded by
2n2. This observation is very useful to bound the expected optimization time
of RLS1

b on SPC as shown in the following theorem.
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Fig. 4.3. Graph GSP and corresponding search points of SP ∪ {1n}

We want to point out the relation between the search process of RLS1
b on

SP∪{1n} and the random walk on GSP. We identify search points with their
corresponding vertices in the graph GSP. Note that once a solution with a
corresponding vertex in this graph has been obtained, no search point that
does not have a corresponding vertex in the graph is accepted. The optimum
has been reached if the vertex vn has been visited for the first time. We call a
step of the algorithm relevant if it is accepted by the algorithm. RLS1

b always
flips exactly one bit in each mutation step. Hence, a relevant step consists
of moving to a neighbor of the current solution in the graph. This step is
unique in the case where the current solution is 0n. Then, only the mutation
step flipping the first bit is accepted. For a search point x corresponding to
a vertex vi, 1 ≤ i ≤ n − 1, the probability of moving to vi−1 as well as the
probability of moving to vi+1 is 1/n, as the bit xi or the bit xi+1 has to be
flipped. Both accepted mutation steps occur with the same probability. Hence,
in the next mutation step, the neighbor of vi is chosen uniformly at random.

In summary, we have shown that with regard to the relevant steps when
we are at a vertex vi, 1 ≤ i ≤ n−1, RLS1

b acts like the random walk algorithm
on the graph GSP. This implies that the expected number of relevant steps
until the solution 1n has been obtained for the first time is at most 2n2 after
a solution of SP ∪ {1n} has been obtained for the first time.

Theorem 4.7. The expected optimization time of RLS1
b on SPC is upper

bounded by O(n3).

Proof. As long as no search point of SP∪{1n} has been produced, RLS1
b max-

imizes the number of zeros in the bitstring. RLS1
b behaves as on the function

OneMax. The only difference is that it maximizes the number of zeros instead
of the number of 1s. Hence, after an expected number O(n log n) steps, a so-
lution of SP ∪ {1n} is obtained using similar arguments as those in the proof
for (1+1) EA on OneMax (see Theorem 4.2).

We already know that the expected number of relevant steps to reach the
optimum after having reached a solution of SP∪{1n} is upper bounded by 2n2.
A relevant step happens with probability at least 1/n in the next mutation
step, and the expected waiting time for such a step is therefore upper bounded
by n. Hence, after an expected number of at most 2n3 steps, the optimum is
found after a search point of SP ∪ {1n} is first produced. This completes the
proof. ��
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4.2.5 Gambler’s Ruin Theorem and Drift Analysis

Closely related to the previous discussion of random walks is the analysis
of a simple combinatorial game, whose basic properties often reappear in the
stochastic processes induced by search algorithms. This time the random walk
is not necessarily “fair,” i.e., not all neighboring states are necessarily chosen
with the same probability. Typically, the game is formulated as a Markov
process on the state space S = {0, . . . , b}, where 0 and b are absorbing states.
In state i, 1 ≤ i ≤ b − 1, the probability of moving to state i + 1 is denoted
by p, and the probability of going to state i − 1 by q := 1 − p. Hence, the
process necessarily changes state by +1 or −1 until an absorbing state has been
reached, and the transition probabilities are the same for all non-absorbing
states. Starting in state a, 1 ≤ a ≤ b − 1, we are interested in the absorbing
state that is eventually reached. Interpreting the state space as the capital of a
gambler and b as the capital of the bank, we are confronted with a game where
the gambler either wins or loses one unit of money with a certain probability
in each step until either the bank or he is ruined.

The following list of results is commonly subsumed under the headline
“gambler’s ruin theorem” (Feller, 1968). We only state those propositions
that will be relevant in the course of this book.

Theorem 4.8 (Gambler’s Ruin Theorem). If p = q = 1/2, the probability
of the gambler’s game ending at state 0 equals

qa = 1 − a

b
,

and the expected duration of the game is

Da = a(b − a).

If q �= p then

qa =
rb − ra

rb − 1
,

and
Da =

a

q − p
− b

q − p
· ra − 1
rb − 1

where r = q/p.

The theorem is often used in the case q > p, i.e., when there is a tendency
towards decreasing the state. We see that qa becomes close to 1 in this case,
particularly if b � a. If the initial capital is low compared to the capital of the
bank and the game is in favor of the bank, the probability of the gambler’s
ruin is high. This scenario reappears in situations where stochastic search
algorithms tend to walk towards an undesired state. Due to the nature of
the above expression, the gambler’s ruin theorem allows then for exponential
lower bounds (with respect to the parameter b) on the optimization time.
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Fig. 4.4. Illustration of the scenario underlying the drift theorems for lower bounds

A drawback of the gambler’s ruin theorem is that it restricts the change
of state to either +1 or −1, i.e., assumes a local behavior of the process.
Therefore, it can often be directly applied to processes induced by RLS1

b while
it is not well suited to model the behavior of the (1+1) EA, which is allowed
to flip all bits in a step. This allows us, in principle, to move from any state
to any other state in a single step. Still, the (1+1) EA is inclined to perform
only small changes. Therefore the intuition of the gambler’s ruin theorem can
still be carried over in many cases. Since it is more convenient to deal with
a positive value for the expected direction of the movement, we now turn
things around and wait for a Markov process to reach the lower limit of the
interval [a, b] given a starting point above state b. With the aim of showing
that the whole interval is not passed in exponential time, we intuitively need
the following two conditions (see also Figure 4.4):

• In the interval at time t, there must be a drift, an expected displacement,
towards increasing the state. This will be made precise by the first condi-
tion of the following theorem.

• Drift alone is not enough. In exponentially long phases, the probability
must be exponentially small of leaving the interval towards the optimum
using large jumps. The random step length towards the optimum has to
exhibit exponential decay, which is formalized by the second condition.

The idea behind the following theorem goes back to Hajek (1982). The
variant presented here is due to Oliveto and Witt (2008).

Theorem 4.9 (Simplified Drift Theorem). Let Xt, t ≥ 0, be the random
variables describing a Markov process over a finite state space S ⊆ [0, N ] and
denote Δt(i) := (Xt+1 − Xt | Xt = i) for i ∈ S and t ≥ 0. Suppose there
exist an interval [a, b] in the state space, two constants δ, ε > 0 and, possibly
depending on � := b−a, a function r(�) satisfying 1 ≤ r(�) = o(�/log(�)) such
that for all t ≥ 0 the following two conditions hold:

1. E(Δt(i)) ≥ ε for a < i < b,

2. Prob(Δt(i) ≤ −j) ≤ r(�)
(1+δ)j for i > a and j ∈ N0.

Then there is a constant c∗ > 0 such that for T ∗ := min{t ≥ 0: Xt ≤ a |
X0 ≥ b} it holds that Prob(T ∗ ≤ 2c∗�/r(�)) = 2−Ω(�/r(�)).
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The theorem contains a sharp concentration result for the random vari-
able T ∗. Not only is the expected first hitting time for states less than a (given
starting state at least b) exponential, but the exponential time holds also with
high probability.

As an example of an application of the simplified drift theorem, reconsider
the function

NEEDLE(x) =

{
1 if x = 1n,
0 otherwise.

mentioned in Section 4.2.4.
Informally speaking, the NEEDLE function is difficult since every search

point except the all-1s string has the same value. Therefore, the simple search
algorithms (1+1) EAb and RLS1

b walk randomly on a plateau of exponential
size and tend to sample search points that have only about half the bits
correct for a long time. It is well known that the algorithms need expected
optimization time 2Ω(n) (Garnier, Kallel, and Schoenauer, 1999). Using the
simplified drift theorem, we can give a short proof for this result.

Theorem 4.10. The optimization time of RLS1
b and (1+1) EAb on the

NEEDLE function is at least 2Ω(n) with probability 1 − 2−Ω(n).

Proof. We set a := 0, b := n/3 and denote by Xt, t ≥ 0, the number of zero-
bits in the search point at time t. By Chernoff bounds, the initial value X0

satisfies X0 ≥ b with probability 1 − 2−Ω(n).
Let us consider some Xt such that Xt = i for a < i < b. Both algorithms

flip each bit (not necessarily independently) with probability 1/n. Using the
linearity of expectation, the expected number of 0-bits flipped equals i/n and
the expected number of 1-bits flipped is (n − i)/n. We obtain

E(Δt(i)) =
n − i

n
− i

n
=

n − 2i

n
≥ 1

3
,

where we used i < b. This already establishes the first condition of Theo-
rem 4.9 for both search algorithms.

The second condition is almost trivial to prove for RLS1
b since its mutation

operator guarantees that Prob(Δt(i) < −1) = 0. We set r(�) = 2 and δ = 1,
which implies that r(�)

(1+δ)j ≥ 1 for j ∈ {0, 1}. Hence, Prob(Δt(i) = −j) ≤
r(�)

(1+δ)j for j ∈ N0. For (1+1) EAb, we observe that the probability of flipping
at least j bits in a single step is at most(

n

j

)(
1
n

)j

≤ nj

j!

(
1
n

)j

=
1
j!

≤ 2
2j

.

Thus, the above choices for r(�) and δ also work for (1+1) EAb. We have
established the second condition for both algorithms.

Since optimizing NEEDLE is equivalent to reaching an Xt-value of 0, The-
orem 4.9 and the assumption X0 ≥ b together yield that the optimization time
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of the search algorithms is at least 2Ω(b−a) = 2Ω(n) with probability at least
(1 − 2−Ω(n)) · (1 − 2−Ω(b−a)) = 1 − 2−Ω(n). ��

Conclusions

We have defined basic evolutionary algorithms for single and multi-objective
optimization that are often used in their complexity analysis. These algorithms
are simplified algorithms but capture important features of algorithms that are
used in practice and allow us to treat them in a rigorous fashion. Furthermore,
we have introduced basic tools for the analysis of stochastic search algorithms
and exemplified these methods by presenting results on some pseudo-Boolean
functions. We will make use of the methods presented in this chapter during
our investigations of combinatorial optimization problems that are carried out
in the remaining part of this book.
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Single-objective Optimization
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Minimum Spanning Trees

In this chapter, we study the behavior of stochastic search algorithms on an
important graph problem. We consider the well-known problem of comput-
ing a minimum spanning tree in a given undirected connected graph with
n vertices and m edges. The problem has many applications in the area of
network design. Assume that we have n computers that should be connected
with minimum cost, where costs of a certain amount occur when one com-
puter is connected to another one. The cost for a connection can, for example,
be the distance between two considered computers. One needs to make n− 1
connections between these computers such that all computers are able to
communicate with each other. Considering a graph as a model for a possible
computer network, it has n vertices and one searches for the set of edges with
minimal cost that makes the graph connected.

This classical minimum spanning tree (MST) problem has the following
description. Given an undirected connected graph G = (V,E) on n vertices
and m weighted edges, find an edge set E′ ⊆ E of minimal weight, that
connects all vertices. The weight of an edge set is the sum of the weights of
the considered edges. Weights are positive integers. Therefore, the solution is
a tree on V , a so-called spanning tree. One can also consider graphs which
are not necessarily connected. Then the aim is to find a minimum spanning
forest, i.e., a collection of spanning trees on the connected components. All
our results hold also in this case. To simplify the presentation, we assume that
G is connected.

The famous algorithms due to Kruskal (1956) and Prim (1957) have worst-
case runtimes of magnitude O((n+m) log n) and O(n log n+m), respectively;
see any textbook on efficient algorithms (Cormen et al., 2001; Mehlhorn and
Sanders, 2008). Karger, Klein, and Tarjan (1995) have given a randomized
greedy algorithm that computes a minimum spanning tree in time O(m) with
high probability. Greedy algorithms use global ideas. Considering only the
neighborhoods of two vertices u and v, it is not possible to decide whether the
edge {u, v} belongs to some minimum spanning tree. Therefore, it is interest-
ing to analyze the runtimes obtainable by more or less local search heuristics
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like randomized local search and evolutionary algorithms. We present such
results, due to Neumann and Wegener (2007).

One goal is to estimate the expected time until a better spanning tree has
been found. For large weights, there may be exponentially many spanning
trees with different weights, which means that the distance from a starting
solution to an optimal one may be exponentially. Then it is important to
know how much progress a stochastic search algorithm can make with respect
to an optimal solution. Therefore, we have to analyze how much better the
better spanning tree is. To do this, we make use of the method of expected
multiplicative distance decrease. Infact this method has been developed for
analyzing stochastic search algorithms until they have computed a minimum
spanning tree. In Chapter 7, we will see that this method can also be used for
analyzing stochastic search algorithms on an NP -hard scheduling problem.

Having analyzed evolutionary algorithms for the minimum spanning tree
problem, we turn to ant colony optimization. It is widely assumed and ob-
served in experiments that the choice of the construction graph has a great
effect on the runtime behavior of an ACO algorithm. The first runtime analy-
ses of ACO algorithms for the optimization of pseudo-Boolean functions were
carried out in Doerr, Neumann, Sudholt, and Witt (2007c); Gutjahr (2007);
Neumann, Sudholt, and Witt (2009); Neumann and Witt (2009). The con-
struction graph used in these papers is a general one for the optimization of
pseudo-Boolean functions and does not take knowledge about the given prob-
lem into account. ACO algorithms have the advantage that more knowledge
about the structure of a given problem can be incorporated into the construc-
tion of solutions. This is done by choosing an appropriate construction graph
together with a procedure which allows us to obtain feasible solutions. The
choice of such a construction graph together with its procedure has been ob-
served experimentally as a crucial point for the success of such an algorithm.

We examine ACO algorithms that work on construction graphs which seem
to be more suitable for the MST problem. The results we present are due to
Neumann and Witt (2010). First, we consider the input graph itself. It is well
known how to choose a spanning tree of a given graph uniformly at random by
using random walk algorithms (Broder, 1989; Wilson, 1996). Our construction
procedure produces solutions by a variant of Broder’s algorithm. We show a
polynomial, but relatively large, upper bound for obtaining a minimum span-
ning tree by this procedure if no heuristic information influences the random
walk. Using only heuristic information for constructing solutions, we show
that a simple ACO algorithm together with the Broder-based construction
procedure does not find a minimum spanning tree or even does not present a
feasible solution in polynomial time.

After that, we consider a more incremental construction procedure that
follows a general approach proposed by Dorigo and Stützle (2004) to obtain
an ACO construction graph. We call this the Kruskal-based construction pro-
cedure as in each step an edge that does not create a cycle is chosen to be
included into the solution. Using such a construction procedure, we are able
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to show the resulting algorithms are more efficient than simple evolutionary
algorithms. Our analyses show how ACO algorithms for combinatorial op-
timization can be analyzed rigorously and are a first step in understanding
ACO algorithms on more complicated structures. In particular, we provide
insight into the working principles of ACO algorithms by studying the effect
of the (guided) random walks of these algorithms.

Having motivated the analysis of stochastic search algorithms on the min-
imum spanning tree problem, we now give a survey on the rest of this chapter.
In Section 5.1, we describe our model of the minimum spanning tree problem.
The theory on minimum spanning trees is well established. In Section 5.2,
we deduce some properties of local changes in non-optimal spanning trees
which will be used in our analyses. In Section 5.3, we analyze evolutionary
algorithms with respect to their computational complexity, and we study the
impact of the construction graph for ACO algorithms in Section 5.4.

5.1 Representation for Evolutionary Algorithms

There are many ways to choose the search space for evolutionary algorithms
when applying them to spanning tree problems. This problem has been inves-
tigated intensively by Raidl and Julstrom (2003). Their experiments point out
that one should work with “edge sets”. The search space equals S = {0, 1}m,
where each position corresponds to one edge. A search point s ∈ S corre-
sponds to the choice of all edges ei, 1 ≤ i ≤ m, where si = 1. The weight
of edge ei is denoted by wi; wmax = max1≤i≤m wi and wmin = min1≤i≤m wi

refer to the maximum and minimum weight of the given input graph. In many
cases, many search points correspond to non-connected graphs and others cor-
respond to connected graphs with cycles, i.e., graphs which are not trees. If all
graphs which are not spanning trees have the same “bad” fitness, it will take
exponential time to find a spanning tree when we apply a stochastic search
algorithm. We will investigate two fitness functions f and f ′.

Let
f(s) = (c(s), e(s) − (n − 1), w(s))

be the first fitness function, where c(s) is the number of connected components
of the graph described by s, and e(s) =

∑n
i=1 si is the number of edges in

this graph and w(s) =
∑m

i=1 wisi is the weight of the chosen edges. The
fitness function has to be minimized with respect to the lexicographic order
and takes the weight of all edges into account for which the corresponding bit
si = 1 holds. The most important issue is to decrease c(s) until we have graphs
connecting all vertices. Then we have at least n− 1 edges, and the next issue
is to decrease e(s) under the condition that s describes a connected graph.
Hence, we look for spanning trees. Finally, we look for minimum spanning
trees.

It is necessary to penalize non-connected graphs since the empty graph has
the smallest weight. However, it is not necessary to penalize extra connections
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Fig. 5.1. Bijection. Continuous edges belong to a minimum spanning tree T , dashed
edges correspond to a spanning tree S

since breaking a cycle decreases the weight. Therefore, it is also interesting to
investigate the fitness function

f ′(s) = (c(s), w(s)),

which should also be minimized with respect to the lexicographic order.
The fitness function f ′ is appropriate in the black-box scenario, which uses

as little problem-specific knowledge as possible. The fitness function f contains
the knowledge that optimal solutions are trees. This simplifies the analysis of
stochastic search algorithms. Therefore, we always start with results on the
fitness function f and discuss afterwards how to obtain similar results for f ′.

5.2 Properties of Local Changes

The theory on minimum spanning trees is well established. Here we want to
show how an arbitrary spanning tree can be turned into an optimal solution
in a specific way that can be used later for analyzing the runtime of stochastic
search algorithms. We identify a tree T by its set of edges. Let e ∈ E \T be an
edge that is not contained in T . We denote by Cyc(T, e) the edges of T that are
contained in the cycle created when introducing e into T . We can construct
from a spanning tree T another spanning tree T ′ by introducing an edge
e ∈ E \T into T and removing one edge of Cyc(T, e) from T . Such operations
are called exchange operations. In this section, we recall some facts from the
theory of minimum spanning trees that show that an arbitrary spanning tree
T can be turned into an optimal solution T ∗ by a set of exchange operations
where each operation is directly applicable on T and its execution of the
operation does not lead to a weight increase. Using this, we can estimate the
weight decrease possible when considering the current spanning tree T .

The following result was proven by Kano (1987) using an existence proof.
Later, Mayr and Plaxton (1992) gave an explicit construction procedure,
which we present in the following.
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Theorem 5.1. Let T be a minimum spanning tree and S be an arbitrary span-
ning tree of a given weighted graph G = (V,E). Then there exists a bijection
Φ from T \ S to S \ T such that for every edge e ∈ T \ S, Φ(e) ∈ Cyc(S, e)
and w(Φ(e)) ≥ w(e).

Proof. Let C and D be disjoint subsets of E. The graph G′ = G[C, D] is
constructed from G by contracting the edges of C and deleting the edges of
D. We determine the bijection between the disjoint spanning trees T ′ = T \S
and S′ = S \ T of the graph G′ = G[T ∩ S, E \ T \ S]. It is easy to see that
Cyc(T ′, e) ⊆ Cyc(T, e) holds for all e ∈ T ′. Let t be the heaviest edge in T ′ and
s be any edge in S′ for which t ∈ Cyc(T ′, s) and s ∈ Cyc(S′, t) holds. We can
determine such an s by removing t from G′. This partitions the vertices of T ′

into two classes. Let s be the edge in S′ that connects these two components.
Note that s ∈ Cyc(S′, t) and t ∈ Cyc(T ′, s) holds as s and t connect the two
components of T ′ \ {t}.

T ′ is a minimum spanning tree of G′, which implies that w(t) ≤ w(s). Set
Φ(t) = s and determine the next component of the bijection by repeating the
procedure on the graph G′[s, t]. T ′[s, t] is a minimum spanning tree of G′[s, t].
In addition, for all e ∈ T ′[s, t],

Cyc(S′[s, t], e) = Cyc(S′, e) \ {s} ⊆ Cyc(S′, e) ⊆ Cyc(S, e)

holds. Hence, the next assignment of an edge e ∈ T ′[s, t] to Φ will be guaran-
teed to satisfy Φ(e) ∈ Cyc(S, e). The process is iterated until for each e ∈ T ′

a corresponding Φ(e) ∈ S′ has been determined. ��

An illustration of the bijection is given in Figure 5.1. Note that the bi-
jection gives a set of edge exchanges to transform an arbitrary spanning tree
into a minimum spanning tree.

We denote by wopt the weight of minimum spanning trees and want to
show the following. For a search point s representing a non-minimum spanning
tree, there are either many weight-decreasing local changes which, on average,
decrease f(s) by an amount that is not too small with respect to w(s)−wopt,
or there are few of these local changes which, on the average, cause a larger
decrease of the weight. This enables use to use the method of the expected
multiplicative distance decrease presented in Section 4.2.3. Distance is in this
case measured by the weight difference w(s) − wopt. The statement of the
decrease by these local changes is made precise in the following lemma.

Lemma 5.2. Let s be a search point describing a non-minimum spanning
tree T . Then there exist some k ∈ {1, . . . , n − 1} and k different accepted
2-bit flips such that the average distance decrease of these flips is at least
(w(s) − wopt)/k.

Proof. Let s∗ be a search point describing a minimum spanning tree T ∗. Let
k := |T ∗ \ T |. Then there exists a bijection Φ : T ∗ \ T → T \ T ∗ such that
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Φ(e) lies on the cycle Cyc(T, e) and the weight of Φ(e) is not smaller than the
weight of e due to Theorem 5.1.

We consider the k 2-bit flips flipping e and Φ(e) for e ∈ T ∗ \ T . They are
accepted since e creates a cycle which is destroyed by the elimination of Φ(e).
Performing all the k 2-bit flips simultaneously changes T to T ∗ and leads to
a distance decrease of w(s) − wopt. Hence, the average distance decrease of
these steps is (w(s) − wopt)/k. ��

The analysis of stochastic search algorithms will be simplified if we can
ensure that we always have the same parameter k in Lemma 5.2. This is easy
if we allow also non-accepted 2-bit flips whose distance decrease is defined
as 0. We add n − k non-accepted 2-bit flips to the set of the k accepted 2-bit
flips whose existence is proven in Lemma 5.2. Then we obtain a set of exactly
n 2-bit flips. The total distance decrease is at least w(s) − wopt since this
holds for the k accepted 2-bit flips. Therefore, the average distance decrease
is bounded below by (w(s) − wopt)/n. We state this result as Lemma 5.3.

Lemma 5.3. Let s be a search point describing a spanning tree T . Then there
exists a set of n 2-bit flips such that the average distance decrease of these
flips is at least (w(s) − wopt)/n.

When analyzing the fitness function f ′ instead of f , we may accept non-
spanning trees as improvements of spanning trees. Non-spanning trees can be
improved by 1-bit flips eliminating edges of cycles. A 1-bit flip leading to a
non-connected graph is not accepted and its distance decrease is defined as 0.

Lemma 5.4. Let s be a search point describing a connected graph and con-
sider the fitness function f ′. Then there exist a set of n 2-bit flips and a set
of m− (n− 1) 1-bit flips such that the average distance decrease of these flips
is at least (w(s) − wopt)/(m + 1).

Proof. We consider all 1-bit flips concerning the edges that are not contained
in the minimum spanning tree T ∗. If we try them in some arbitrary order we
obtain a spanning tree T . If we consider their weight decrease with respect
to the graph G′ described by s, this weight decrease can be only larger. The
reason is that a 1-bit flip, which is accepted in the considered sequence of 1-bit
flips, is also accepted when applied to s. Then we apply Lemma 5.3 to T . At
least the same weight decrease is possible by adding ei and deleting a non-T ∗

edge with respect to G′. Altogether, we obtain at least a weight decrease of
w(s) − wopt. This proves the lemma, since we have chosen m + 1 flips. ��

5.3 Analysis of Evolutionary Algorithms

In this section, we analyze the computational complexity of evolutionary al-
gorithms for computing a minimum spanning tree. We start by presenting
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upper bounds on the expected optimization time of RLS1,2
b and (1+1) EAb.

Afterwards, we present matching lower bounds and discuss how stochastic
search algorithms can be sped up by using other mutation operators or par-
allelization.

5.3.1 Upper Bounds

The fitness function f penalizes solutions that are not connected or have
more than n − 1 edges. In the case of f ′, unconnected graphs are penalized.
We first show that RLS1,2

b and (1+1) EAb using the fitness functions f and
f ′ construct connected graphs efficiently. In the case of f it is also easy to
show that spanning trees are obtained in a small amount of time. We use the
method of fitness-based partitions (see Section 4.2.1) and partition the search
space into fitness levels with respect to the number of connected components
or the number of edges for connected graphs.

Lemma 5.5. The expected time until RLS1,2
b or (1+1) EAb working on one

of the fitness function f or f ′ has constructed a connected graph is O(m log n).

Proof. The fitness functions are defined in such a way that the number of
connected components will never be increased in accepted steps. For each
edge set leading to a graph with k connected components, there are at least
k − 1 edges whose inclusion decreases the number of connected components
by 1. Otherwise, the graph would not be connected. The probability of a
step decreasing the number of connected components is at least 1

2
· k−1

m
for

RLS1,2
b and 1

e
· k−1

m
for (1+1) EAb. Hence, the expected time until s describes

a connected graph is bounded above by

em ·
n∑

k=2

1
k − 1

= O(m log n). ��

Lemma 5.6. If s describes a connected graph, the expected time until RLS1,2
b

or (1+1) EAb constructs a spanning tree for the fitness function f is bounded
by O(m log n).

Proof. The fitness function f is defined in such a way that, starting with s,
only connected graphs are accepted and that the number of edges does not
increase. If s describes a graph with r edges, it contains a spanning tree with
n−1 edges, and there are at least r− (n−1) edges whose exclusion decreases
the number of edges. If r = n − 1, s describes a spanning tree. Otherwise, by
the same arguments as in the proof of Lemma 5.5, we obtain an upper bound
of

em ·
m∑

r=n

1
r − (n − 1)

= O(m log(m − (n − 1))) = O(m log n). ��
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This lemma holds also for RLS1,2
b and the fitness function f ′. RLS1,2

b does
not accept steps including only one edge or only two edges if s describes a
connected graph. Since RLS1,2

b does not affect more than two edges in a step,
it does not accept steps in which the number of edges of a connected graph is
increased. This does not hold for (1+1) EAb. It is possible that the exclusion
of one edge and the inclusion of two or more edges creates a connected graph
whose weight is not larger than the weight of the given graph.

In the following, we prove an upper bound of size O(m2(log n+log wmax))
on the expected optimization time for arbitrary graphs using the method
of expected multiplicative distance decrease (see Section 4.2.3). This bound
relies on the properties of minimum spanning trees, which we have stated in
Section 5.1 and is O(m2 log n) as long as wmax is polynomially bounded. But
it is always polynomially bounded with respect to the bit length of the input.
Theorem 5.9 shows that the bound is optimal.

Theorem 5.7. The expected time until RLS1,2
b or (1+1) EAb working on

the fitness function f constructs a minimum spanning tree is bounded by
O(m2(log n + log wmax)).

Proof. By Lemmas 5.5 and 5.6, it is sufficient to investigate the search process
after finding a search point s describing a spanning T . Then, by Lemma 5.3,
there always exists a set of n 2-bit flips whose average distance decrease is at
least (w(s)−wopt)/n. The choice of such a 2-bit flip is called a “good step”. The
probability of performing a good step equals Θ(n/m2) and each good step is
chosen with the same probability. A good step decreases the difference between
the weight of the current spanning tree and wopt on average by a factor not
larger than 1− 1/n. This holds independently of previous good steps. Hence,
after N good steps, the expected difference in the weight of T and wopt is
bounded above by (1− 1/n)N · (w(s)−wopt). Since w(s) ≤ (n− 1) ·wmax and
wopt ≥ 0, we obtain the upper bound (1−1/n)N ·D, where D := (n−1)·wmax.

If N := 
(ln 2) · (n−1) · (log D+1)�, this bound is at most 1
2 . Since the dif-

ference is not negative, by Markov’s inequality, the probability that the bound
is less than 1 is at least 1/2. The difference is an integer implying that the
probability of finding a minimum spanning tree is at least 1/2. Repeating the
same arguments, the expected number of good steps until a minimum span-
ning tree is found is bounded by 2N = O(n log D) = O(n(log n + log wmax).

By our construction, there are always exactly n good 2-bit flips. Therefore,
the probability of a good step does not depend on the current search point.
Hence, the expected time until r steps are good equals Θ(rm2/n). Altogether,
the expected optimization time is bounded by

O(Nm2/n) = O(m2(log n + log wmax)). ��

Applying Lemma 5.4 instead of Lemma 5.3, it is not too difficult to obtain
the same upper bound for the fitness function f ′. The main difference is that
a good 1-bit flip has a larger probability than a good 2-bit flip.
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Fig. 5.2. Example graph TG with p connected triangles and a complete graph on
q vertices with edges of weight 1

Theorem 5.8. The expected time until RLS1,2
b or (1+1) EAb working on

the fitness function f ′ constructs a minimum spanning tree is bounded by
O(m2(log n + log wmax)).

Proof. By Lemma 5.5, it is sufficient to analyze the phase after having con-
structed a connected graph. We apply Lemma 5.4. The total distance decrease
of the chosen 1-bit flips and 2-bit flips is at least w(s)−wopt if s is the current
search point. If the total distance decrease of the 1-bit flips is larger than the
total distance decrease of the chosen 2-bit flips, the step is called a 1-step.
Otherwise, it is called a 2-step.

If more than half of the steps are 2-steps, we adapt the proof of Theorem 5.7
with N ′ := 2N since we guarantee only an expected distance decrease by a
factor of 1 − 1/(2n). Otherwise, we consider the good 1-steps which have an
expected weight decrease of a factor of 1 − 1/(2m′) for m′ = m − (n − 1).
Choosing M := 
2 · (ln 2) ·m′ · (log D + 1)�, we can apply the proof technique
of Theorem 5.7, where M plays the role of N . The probability of performing
a good 1-bit flip equals Θ(m′/m). In this case, we obtain the bound

O(Mm/m′) = O(m(log n + log wmax))

for the expected number of steps, which is even smaller than the proposed
bound. ��

5.3.2 Lower Bound

After having given upper bounds we show lower bounds on the expected
optimization time. To do this, we investigate the example graph TG shown in
Figure 5.2. The graph TG consists of a connected sequence of p triangles and
the last triangle is connected to a complete graph on q vertices. The number of
vertices equals n := 2p+q and the number of edges equals m := 3p+q(q−1)/2.
We consider the case of p = n/4 and q = n/2 implying that m = Θ(n2). The
edges in the complete graph have the weight 1 and we set a := n2. Each
triangle edge has a weight which is larger than the weight of all edges of the
complete graph altogether. Theorems 5.7 and 5.9 prove that this graph is a
worst-case instance with polynomial weights.

Theorem 5.9. The expected optimization time until RLS1,2
b and (1+1) EAb

find a minimum spanning tree for the example graph TG equals Θ(m2 log n) =
Θ(n4 log n) with respect to the fitness functions f and f ′.
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Proof. The upper bounds are contained in Theorems 5.9 and 5.7. Here we
prove the lower bound by investigating typical runs of the algorithm. We
partition the graph TG into its triangle part T and its clique part C. Each
search point x describes an edge set. We use the following notation:

• d(x): number of disconnected triangles with respect to the edges chosen
by x,

• b(x): number of bad triangles (exactly one 2a-edge and the 3a-edge are
chosen),

• g(x): number of good triangles (exactly the two 2a-edges are chosen),
• c(x): number of complete triangles (all three edges are chosen),
• conG(x): number of connected components in the graph,
• conC(x): number of connected components in the clique part C of the

graph,
• conT (x): number of connected components in the tree part T of the graph.

We investigate four phases of the search. The first phase of length 1 is
the initialization step producing the random edge set x. In the following, all
statements hold with probability 1 − o(1).

Claim. After initialization, b(x) = Θ(n) and conC(x) = 1.

Proof. The statements can be proved independently since the corresponding
parts of x are created independently. The probability that a given triangle is
bad equals 1/4. There are n/4 triangles and b(x) = Θ(n) by Chernoff bounds.
We consider one vertex of C. It has n/2 − 1 possible neighbors. By Chernoff
bounds, it is connected to at least n/6 of these vertices. For each other vertex,
the probability of not being connected to at least one of these n/6 vertices
is (1/2)n/6. This is unlikely even for one of the remaining vertices. Hence,
conC(x) = 1. ��

For the following phases, we distinguish between the steps by the number
k of flipping triangle edges and call them k-steps. Let pk be the probability
of a k-step. For RLS1,2

b , p1 = Θ(n−1), p2 = Θ(n−2) and pk = 0, if k ≥ 3. For
(1+1) EAb and constant k

pk =
(

3n/4
k

) (
1
m

)k (
1 − 1

m

)3n/4−k

= Θ(nkm−k) = Θ(n−k).

For a phase of length n5/2, the following statements hold. The number of 1-
steps equals Θ(n3/2), the number of 2-steps equals Θ(n1/2), and there is no
k-step, k ≥ 3.

Claim. Let b(x) = Θ(n) and conC(x) = 1. In a phase of length n5/2, a search
point y where b(y) = Θ(n) and conG(y) = 1 is produced.
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Proof. By Lemma 5.5, the probability of creating a connected graph is large
enough. Let y be the first search point where conG(y) = 1. We prove that
b(y) = Θ(n). All the 2-steps can decrease the b-value by at most O(n1/2). A
1-step has two ways to destroy a bad triangle.

• It may destroy an edge of a bad triangle. This increases the conG-value.
In order to accept the step, it is necessary to decrease the conC-value.

• It may add the missing edge to a bad triangle. This increases the weight by
at least 2a. No triangle edge is eliminated in this step. In order to accept
the step, it is necessary to decrease the conC-value.

However, conC(x) = 1. In order to decrease this value, it has to be in-
creased before. A step increasing the conC-value can be accepted only if the
conT -value is decreased in the same step at least by the same amount. This
implies that triangle edges have to be added. For a 1-step, the total weight
is increased without decreasing the conG-value and the step is not accepted.
Hence, only the O(n1/2) 2-steps can increase the conC-value. By Chernoff
bounds, the number of clique edges flipping in these steps is O(n1/2). This
implies that the number of bad triangles is decreased by only O(n1/2). ��

Claim. Let b(y) = Θ(n) and conG(y) = 1. In a phase of length n5/2, a search
point z where b(z) = Θ(n), conG(z) = 1, and T (z) is a tree is produced.

Proof. Only search points x describing connected graphs are accepted, in par-
ticular, d(x) = 0. Let z be the first search point where T (z) is a tree. Then
conG(z) = 1 and we have to prove that b(z) = Θ(n) and that z is produced
within n5/2 steps. A 1-step can be accepted only if it turns a complete trian-
gle into a good or bad triangle. Such a step is accepted if no other edge flips.
Moreover, c(x) cannot be increased. In order to increase c(x) it is necessary
to add the missing edge to a good or bad triangle. To compensate for this
weight increase, we have to eliminate an edge of a complete triangle. Remem-
ber that we have no k-steps for k ≥ 3. If c(x) = l, the probability of decreasing
the c-value is at least 3l/(em) and the expected time to eliminate all com-
plete triangles is O(m log n) = O(n2 log n). Hence, n5/2 steps are sufficient to
create z. The number of bad triangles can be decreased only in the O(n1/2)
2-steps implying that b(z) = Θ(n). ��

Claim. Let b(z) = Θ(n), conG(z) = 1, and T (z) be a tree. The expected time
of finding a minimum spanning tree is Ω(n4 log n).

Proof. First, we assume that only 2-steps change the number of bad triangles.
Later, we complete the arguments. The expected waiting time for a 2-step
flipping those two edges of a bad triangle that turn it into a good one equals
Θ(n4). The expected time to decrease the number of bad triangles from b to
b − 1 equals Θ(n4/b). Since b has to be decreased from Θ(n) to 0, we obtain
an expected waiting time of
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Θ

⎛
⎝n4 ·

∑
1≤b≤Θ(n)

(1/b)

⎞
⎠ = Θ(n4 log n). (∗)

Similarly to the coupon collector’s theorem (see Appendix A.13) we obtain
that the optimization step if only 2-steps can be accepted equals Θ(n4 log n)
with probability 1− o(1). Hence, it is sufficient to limit the influence of all k-
steps, k = 2, to a time period of αn4 log n for some constant α > 0. Again with
probability 1−o(1), the number of 4-steps is O(log n) and there are no k-steps
for k ≥ 5. The 4-steps can decrease the number of bad triangles by at most
O(log n). Because of the weight increase, a k-step, k ≤ 4, can be accepted only
if it eliminates at least 
k/2� triangle edges. Moreover, it is not possible to
disconnect a good or a bad triangle. Hence, a 4-step cannot create a complete
triangle. As long as there is no complete triangle, a 3-step or a 1-step has to
disconnect a triangle and is not accepted. A 2-step can only be accepted if
it changes a bad triangle into a good one. Hence, no complete triangles are
created. The 4-steps eliminate O(log n) terms of the sum in (∗). The largest
terms are those for the smallest values of b. We only have to subtract a term
of O(n4 log log n) = o(n4 log n) from the bound Θ(n4 log n), and this proves
the claim. ��

This completes the proof since the sum of all failure probabilities is
o(1). ��

5.3.3 Speed-Up Techniques

Theorems 5.9, 5.7, and 5.8 contain matching upper and lower bounds for
RLS1,2

b and (1+1) EAb with respect to the fitness functions f and f ′. The
bounds are worst-case bounds and one can hope that the algorithms are more
efficient for many graphs. Here we discuss what can be gained by other evo-
lutionary algorithms.

First, we introduce more problem-specific mutation operators. It is easy
to construct spanning trees. Afterwards, it is good to create children with the
same number of edges. The new mutation operators are:

– If RLS1,2
b flips two bits, it chooses randomly a 0-bit and a 1-bit.

– If s contains k 1-bits, (1+1) EAb flips each 1-bit with probability 1/k and
each 0-bit with probability 1/(m − k).

Jansen and Sudholt (2005) have analyzed this mutation operator in greater
detail. One important result of their work is that simple but not trivial pseudo-
boolean functions can be optimized by evolutionary algorithms in time O(n),
which breaks for the first time the Θ(n log n) bound that is often the result
of the analysis on simple pseudo-Boolean functions.

For spanning trees, the probability of a specific edge exchange is increased
from Θ(1/m2) to Θ(1/(n(m − n + 1))). The following result can be obtained
by adjusting the proofs to the modified mutation operators.
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Theorem 5.10. For the modified mutation operators, the bounds of Theo-
rems 5.7, 5.8, and 5.9 can be replaced by bounds of size Θ(mn log n) and
O(mn(log n + log wmax)) respectively.

When using larger populations, we have to pay for improving all members
of the population. This holds at least if we guarantee a large diversity in
the population. The lower bound of Theorem 5.9 holds with overwhelming
probability. Hence, we do not expect that large populations help. The analysis
in the proof of Theorems 5.7 and 5.8 is quite precise in most aspects. There
is only one essential exception. We know that the weight distance to wopt is
decreased on average by a factor of at most 1 − 1/n and we work under the
pessimistic assumption that this factor equals 1 − 1/n. For large populations
or multi-starts the probability of having sometimes much larger improvements
may increase for many graphs.

It is more interesting to “parallelize” the algorithms by producing more
children in parallel. The algorithm (1+λ) EAb differs from (1+1) EAb by
producing in each iteration independently λ children from the single individual
of the current population. The selection procedure selects an individual with
the smallest f -value (or f ′-value) from among the parent and its children. In a
similar way, we obtain λ-PRLS1,2

b (parallel RLS1,2
b ) from RLS1,2

b . In the proofs
of Theorems 5.7 and 5.8, we have seen that the probability of a good step is
Θ(n/m2). Choosing λ = 
m2/n�, this probability is increased to a positive
constant. We have seen that the expected number of good steps is bounded
by O(n(log n + log wmax)). This leads to the following result.

Theorem 5.11. The expected number of generations until λ-PRLS1,2
b or

(1+λ) EAb with λ := 
m2/n� children constructs a minimum spanning tree
is O(n(log n + log wmax)). This holds for the fitness functions f and f ′.

If we use the modified mutation operator defined above, the probability
of a good step is O(1/m) and we obtain the same bound on the expected
number of generations as in Theorem 5.11 for λ := m.

Crossover operators are considered important in evolutionary computa-
tion. But one-point crossover or two-point crossover is not appropriate for
edge set representations. It is not possible to build blocks of all edges adja-
cent to a vertex. For uniform crossover, it is very likely to create graphs which
are not spanning trees. Hence, only problem-specific crossover operators seem
to be useful. Such operators are described by Raidl and Julstrom (2003). It
is difficult to analyze stochastic search algorithms with these crossover opera-
tors. Up to now, no results which prove better runtime bounds than the ones
presented in this chapter have been obtained for such algorithms.

5.4 Analysis of Ant Colony Optimization

In this section, we investigate the computational complexity of ACO algo-
rithms for the computation of minimum spanning trees. We focus in partic-
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Algorithm 7 MMAS
Set τ(u,v) = 1/|A| for all (u, v) ∈ A.
Compute a solution x using a construction procedure.
Update the pheromone values and set x∗ := x.
repeat

Compute x using a construction procedure.
if f(x) < f(x∗) then

set x∗ := x.
end if
update the pheromone values.

until stop

ular on the impact of the chosen construction graph. Formulating the MST
problem as a problem of pseudo-Boolean optimization with the fitness func-
tions presented in the previous sections, similar results as in the previous
section can be obtained. This is due to the fact that simple ACO algorithms
for pseudo-Boolean optimization behave like (1+1) EAb when choosing a cer-
tain parameter setting (Neumann and Witt, 2009). Hence, many results on
(1+1) EAb for combinatorial optimization problems can be transfered to ACO
algorithms in this scenario. However, it is more natural to investigate construc-
tion graphs which are more related to the given problem. As the MST problem
is a graph problem, it seems natural to take the input graph as a construction
graph into account.

We study a variant of the Max-Min Ant System (MMAS) introduced by
Stützle and Hoos (2000). In our MMAS, solutions are constructed iteratively
by different construction procedures on a given directed construction graph
C = (X,A). In the initialization step, each edge (u, v) ∈ A gets a pheromone
value τ(u,v) = 1/|A| such that the pheromone values sum up to 1. Afterwards,
an initial solution x∗ is produced by a random walk of an imaginary ant on
the construction graph and the pheromone values are updated with respect to
this walk. In each iteration, a new solution is constructed and the pheromone
values are updated if this solution is not inferior (with respect to a fitness
function f) to the best solution obtained so far.

Our construction procedures construct in each iteration a tree T of the
given graph. Therefore, the fitness of a solution is given by the weight of
the edges contained in T . We consider the expected number of solutions that
are constructed by the algorithm until a minimum spanning tree has been
obtained for the first time. We call this the expected optimization time of the
MMAS.

5.4.1 Broder-Based Construction Graph

Since the MST problem is a graph problem, the first idea is to use the input
graph G to the MST problem itself as the construction graph C of the MMAS.
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Algorithm 8 BroderConstruct(G, τ, η)
Choose an arbitrary node s ∈ V .
u := s, T = ∅.
while not all nodes of G have been visited do

Let R :=
P

{u,v}∈E [τ{u,v}]
α · [η{u,v}]

β .

Choose neighbor v of u with probability
[τ{u,v}]α·[η{u,v}]β

R
.

if v has not been visited before then
set T := T ∪ {u, v}.

end if
Set u := v.

end while
Return T .

(Note that each undirected edge {u, v} can be considered as two directed edges
(u, v) and (v, u).) However, it is not obvious how a random walk of an ant
on G is translated into a spanning tree. Interestingly, the famous algorithm
of Broder (1989), which chooses uniformly at random from all spanning trees
of G, is a random walk algorithm.

We will use an ACO variant of Broder’s algorithm as given in Algorithm 8.
As usual in ACO algorithms, the construction procedure maintains pheromone
values τ and heuristic information η for all edges of the construction graph G.
In the MST problem, we assume that the heuristic information η{u,v} of an
edge {u, v} is the inverse of the weight of the edge {u, v} in G. α and β are
parameters that control the extent to which pheromone values and heuristic
information is used.

Obviously, Algorithm 8 outputs a spanning tree T , whose cost f(T ) is
measured by the sum of the w-values of its edges. After a new solution has been
accepted, the pheromone values τ are updated with respect to the constructed
spanning tree T . We maintain upper and lower bounds on these values, which
are common measures to ensure convergence (Dorigo and Blum, 2005). We
assume that after each update, the τ -value of each edge in the construction
graph attains either the upper bound h or the lower bound 
. Hence, for the
new pheromone values τ ′ after an update, it holds that

τ ′
{u,v} = h if {u, v} ∈ T and τ ′

{u,v} = 
 if {u, v} /∈ T .

So the last constructed solution is indirectly saved by the n − 1 undirected
edges that obtain the high pheromone value h. The ratio of the parameters

 and h is crucial since too large values of 
 will lead to too large changes of
the tree in subsequent steps whereas too large values of h will make changes
of the tree too unlikely. We choose h and 
 such that h = n3
 holds and will
argue later on the optimality of this choice.

Note that choosing β = 0 or α = 0 in Algorithm 8, only the pheromone
value or the heuristic information influences the random walk. We examine
the cases where one of these values is 0 to study the effect of the pheromone
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values or the heuristic information separately. First, we consider the case α = 1
and β = 0 for the Broder-based construction graph. This has the following
consequences. Let u be the current node of the random walk and denote by
R :=

∑
{u,v}∈E τ{u,v} the sum over the pheromone values of all edges that are

incident on u. Then the next node is chosen proportionally to the pheromone
values on the corresponding edges, which means that a neighbor v of u is
chosen with probability τ{u,v}/R.

For simplicity, we call the described setting of α, β, h, and 
 the cu-
bic update scheme. To become acquainted therewith, we derive the following
simple estimations on the probabilities of traversing edges depending on the
pheromone values. Assume that a node v has k adjacent edges with value h
and i adjacent edges with value 
. Note that k + i ≤ n− 1 and h = n3
. Then
the probability of choosing an edge with value h is

kh

kh + i

= 1 − i

kn3 + i
≥ 1 − 1

n2
,

where among the edges with values h one edge is chosen uniformly at random.
The probability of choosing a specific edge with value 
 is at least





 + (n − 2)h
≥ 


nh
=

1
n4

.

This leads us to the following theorem, which shows that the MMAS in
the described setting is able to construct MSTs in expected polynomial time.

Theorem 5.12. The expected optimization time of the MMAS using the pro-
cedure BroderConstruct with cubic update scheme is O(n6(log n+log wmax)).
The expected number of traversed edges in a run of BroderConstruct is
bounded above by O(n2) except for the initial run, where it is O(n3).

Proof. We use the following idea of Theorem 5.1. Suppose the spanning
tree T ∗ was constructed in the last accepted solution. Let T = T ∗ \ {e}∪ {e′}
be any spanning tree that is obtained from T ∗ by including one edge e′ and re-
moving another edge e, and let s(m, n) be a lower bound on the probability of
producing T from T ∗ in the next step. Then the expected number of steps until
a minimum spanning tree has been obtained is O(s(m, n)−1(log n+log wmax)).
To prove the theorem, it therefore suffices to show that the probability of the
MMAS producing T by the next constructed solution is Ω(1/n6).

To simplify our argumentation, we first concentrate on the probability
of rediscovering T ∗ in the next constructed solution. This happens if the ant
traverses all edges of T ∗ in some arbitrary order and no other edges in between,
which might require that an edge has to be taken more than once. (This
is a pessimistic assumption since newly traversed edges are not necessarily
included in the solution.) Hence, we are confronted with the cover time for
the tree T ∗. The cover time for trees on n nodes in general is bounded above by
2n2 (Motwani and Raghavan, 1995), i.e., by Markov’s inquality, it is at most
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4n2 with probability at least 1/2. We can apply this result if no so-called
error occurs such that an edge with pheromone value 
 is taken. According
to the above calculations, the probability of an error is bounded above by
1/n2 in a single step of the ant. Hence, there is no error in O(n2) steps with
probability Ω(1). Therefore, the probability of rediscovering T ∗ in the next
solution (using O(n2) steps of BroderConstruct) is at least Ω(1). Additionally,
taking into account the number of steps O(n3) for the initial solution (Broder,
1989), we have already bounded the expected number of traversed edges in a
run of BroderConstruct.

To construct T instead of T ∗, exactly one error is desired, namely e′ has
to be traversed instead of e. Consider the ant when it is for the first time on
a node on which e′ is incident. By the calculations above, the probability of
including e′ is Ω(1/n4). Note that inserting e′ into T ∗ closes a cycle c. Hence,
when e′ has been included, there may be at most n− 2 edges of T̃ := T ∗ \ {e}
left to traverse. We partition the edges of the forest T̃ into two subsets: The
edges that belong to the cycle c are called critical and the remaining ones are
called uncritical. The order of inclusion for the uncritical edges is irrelevant.
However, all critical edges have to be included before the ant traverses edge e.

We are faced with the following problem: Let v1, . . . , vk, v1 describe the
cycle c and suppose w. l. o. g. that e′ = {v1, vk}. It holds that e = {vi, vi+1} for
some 1 ≤ i ≤ k−1. Moreover, let vs be the node of c that is visited first by the
ant. W. l. o. g., 1 ≤ s ≤ i. With probability Ω(1/n4), the edge e′ is traversed
exactly once until a new solution has been constructed. Hence, after e′ has
been taken, the ant must visit the nodes vk, vk−1, . . . , vi+1 in the described
order (unless an error other than including e′ occurs), possibly traversing
uncritical edges in between. To ensure that e has not been traversed before,
we would like the ant to visit all the nodes in {v1, . . . , vi}, without visiting
nodes in {vi+1, . . . , vk}, before visiting vk by traversing e′. We apply results
from the fair gambler’s ruin problem given in Section 4.2.5. The probability
of going from vs to vi before visiting vk is at least Ω(1/n). The same lower
bound holds on the probability of going from vi to v1 before visiting vi+1.
These random walks are still completed in expected time O(n2). Hence, in
total, the probability of constructing T is Ω((1/n4) · (1/n) · (1/n)) = Ω(1/n6),
as suggested. ��

We see that the ratio h/
 = n3 leads to relatively large exponents in the
expected optimization time. However, this ratio seems to be necessary for our
argumentation. Consider the complete graph on n nodes where the spanning
tree T ∗ equals a path of length n − 1. The cover time for this special tree T ∗

is bounded below by Ω(n2). To each node of the path, at most two edges with
value h and at least n − 3 edges with value 
 are incident. Hence, the ratio is
required to obtain an error probability of O(1/n2). It is much more difficult
to improve the upper bound of Theorem 5.12 or to come up with a matching
lower bound. The reasons are two. First, we cannot control the effects of steps
where the ant traverses edges to nodes that have been visited before in the
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construction step. These steps might reduce the time until certain edges of T ∗

are reached. Second, our argumentation concerning the cycle v1, . . . , vk, v1

makes a worst-case assumption on the starting node vs. It seems more likely
that vs is uniform over the path, which could improve the upper bound of the
theorem by a factor Ω(n). However, a formal proof of this is open.

ACO algorithms often use heuristic information to direct the search pro-
cess. In the following, we set α = 0 and examine the effect of heuristic in-
formation for the MST problem. Recall that the heuristic information for an
edge e is given by η(e) = 1/w(e). Interestingly, for the obvious Broder-based
graph, heuristic information alone does not help us find MSTs in reasonable
time, regardless of β. On the following example graph G∗ (see Figure 5.3),
either the runtime of BroderConstruct explodes or MSTs are found only with
exponentially small probability. W. l. o. g., n = 4k + 1. Then G∗, a connected
graph on the nodes {1, . . . , n}, consists of k triangles with weights (1, 1, 2) and
two paths of length k with exponentially increasing weights along the path.
More precisely, let

T ∗ :=
k⋃

i=1

{
{1, 2i}, {1, 2i + 1}, {2i, 2i + 1}

}
,

where w({1, 2i}) = w({2i, 2i + 1}) := 1 and w({1, 2i + 1}) := 2. Moreover,
denote

P ∗
1 := {1, 2k + 2} ∪

k⋃
i=2

{
2k + i, 2k + i + 1

}
,

where w({1, 2k + 2}) := 2 and w({2k + i, 2k + i + 1}) := 2i, and, similarly,

P ∗
2 := {1, 3k + 2} ∪

k⋃
i=2

{
3k + i, 3k + i + 1

}
,

where w({1, 3k + 2}) := 2 and w({3k + i, 3k + i + 1}) := 2i. Finally, the edge
set of G∗ is T ∗ ∪ P ∗

1 ∪ P ∗
2 . Hence, all triangles and one end of each path are

glued by node 1.

Theorem 5.13. Choosing α = 0 and β arbitrarily, the probability that the
MMAS using BroderConstruct finds an MST for G∗, or the probability of
termination within polynomial time, is 2−Ω(n).

Proof. Regardless of the ant’s starting point, at least one path, w. l. o. g. P ∗
1 ,

must be traversed from noded 1 to its other end, and for least k− 1 triangles,
both nodes 2i and 2i + 1 must be visited through node 1. For each of these
initially undiscovered triangles, the first move into the triangle must go from 1
to 2i, otherwise the resulting tree will not be minimal. If the triangle is entered
at node 2i, we consider it a success, and otherwise (entrance at 2i + 1) an
error. The proof idea is to show that for too small β, i.e., when the influence
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Fig. 5.3. Graph G∗ consisting of k triangles and two paths of length k

of heuristic information is low, with overwhelming probability at least one
triangle contains an error. If, on the other hand, β is too large, the ant with
overwhelming probability will not be able to traverse P ∗

1 in polynomial time
due to its exponentially increasing edge weights.

We study the success probabilities for the triangles and the path P1. Given
that the ant moves from 1 to either 2i or 2i + 1, the probability of going to
2i equals

(η({1, 2i}))β

(η({1, 2i}))β + (η({1, 2i + 1}))β
=

1
1 + 2−β

since η(e) = 1/w(e). Therefore, the probability of k − 1 successes equals, due
to independence, (1 + 2−β)−k+1. This probability increases with β. However,
for β ≤ 1, it is still bounded above by (2/3)k−1 = 2−Ω(n).

Considering the path P ∗
1 , we are faced with the unfair gambler’s ruin

problem (see Section 4.2.5). At each of the nodes 2k + i, 2 ≤ i ≤ k − 1, the
probability of going to a lower-numbered node and the probability of going
to a higher-numbered one have the same ratio of r := (2−i+1)β/(2i)β = 2β .
Hence, starting in 2k + 2, the probability of reaching 3k + 1 before returning
to 1 equals r

rk−1
= 2β

2kβ−1
. This probability decreases with β. However, for

β ≥ 1, it is still bounded above by 2/(2k − 1) = 2−Ω(n). Then the probability
of reaching the end in a polynomial number of trials is also 2−Ω(n). ��

5.4.2 A Kruskal-Based Construction Procedure

Dorigo and Stützle (2004) present a general approach on how to obtain an
ACO construction graph from any combinatorial optimization algorithm. The
idea is to identify the so-called components of the problem, which may be ob-
jects, binary variables etc., with nodes of the construction graph and to allow
the ant to choose from these components by moving to the corresponding
nodes. In our setting, the components to choose from are the edges from the
edge set {1, . . . ,m} of the input graph G. Hence, the canonical construction
graph C(G) for the MST problem is a directed graph on the m + 1 nodes
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Algorithm 9 Construct(C(G), τ, η)
v0 := s; k := 0.
while N(vk) �= ∅ do

Let R :=
P

y∈N(vk)[τ(vk,y)]
α · [η(vk,y)]

β.

Choose neighbor vk+1 ∈ N(vk) with probability
[τ(vk,vk+1)]

α·[η(vk,vk+1)]
β

R
.

Set k := k + 1.
end while
Return the path p = (v0, . . . , vk).

{0, 1, . . . ,m} with the designated start node s := 0. Its edge set A of cardi-
nality m2 is given by

A :=
{
(i, j) | 0 ≤ i ≤ m, 1 ≤ j ≤ m, i = j

}
,

i.e., C(G) is obtained from the complete directed graph by removing all self-
loops and the edges pointing to s. When the MMAS visits node e in the
construction graph C(G), this corresponds to choosing the edge e for a span-
ning tree. To ensure that a walk of the MMAS actually constructs a tree,
we define the feasible neigborhood N(vk) of node vk depending on the nodes
v1, . . . , vk visited so far:

N(vk) :=
(
E \

{
v1, . . . , vk

})
\

{
e ∈ E

∣∣ (
V, {v1, . . . , vk, e}

)
contains a cycle

}
.

Note that the feasible neighborhood depends on the memory of the ant about
the path followed so far, which is very common in ACO algorithms (Dorigo
and Stützle, 2004).

A new solution is constructed using Algorithm 9. Again, the random walk
of an ant is controlled by the pheromone values τ and the heuristic information
η on the edges. As in the Broder-based construction graph, we assume that
the η(u,v)-value of an edge (u, v) is the inverse of the weight of the edge of G
corresponding to the node v in C(G).

A run of Algorithm 9 returns a sequence of k +1 nodes of C(G). It is easy
to see that k := n − 1 after the run. Hence the number of steps is bounded
above by n, and v1, . . . , vn−1 is a sequence of edges that form a spanning tree
for G. Accordingly, we measure the fitness f(p) of a path p = (v0, . . . , vn−1)
simply by w(v1) + · · · + w(vn−1), i.e., the cost of the corresponding spanning
tree. It remains to specify the update scheme for the pheromone values. As
in the case of the Broder-based construction procedure, we only consider two
different values h and 
. To allow the ant to rediscover the edges of the previous
spanning tree equiprobably in each order, we reward all edges pointing to
nodes from p except s, i.e., we reward (m + 1)(n − 1) edges. Hence, the τ ′-
values are

τ ′
(u,v) = h if v ∈ p and v = s and τ ′

(u,v) = 
 otherwise.



5.4 Analysis of Ant Colony Optimization 71

We choose h and 
 such that h = (m − n + 1)(log n)
 holds. In this case,
the probability of taking a rewarded edge (if applicable) is always at least
1 − 1/log n.

We consider the case where the random walk to construct solutions is only
influenced by the pheromone values on the edges of C(G). The following result
can be obtained by showing that the probability of obtaining from the current
tree T ∗ a tree T = T ∗ \ {e}∪ {e′} is lower bounded by Ω(1/(mn)). The proof
can be carried out in a similar fashion as done for Theorem 5.12.

Theorem 5.14. Choosing α = 1 and β = 0, the expected optimization time
of the MMAS with construction graph C(G) is bounded by O(mn(log n +
log wmax)).

Proof. Let e1, . . . , en−1 be the edges of T ∗ and suppose w. l. o. g. that the edges
of T are e1, . . . , en−2, e

′ where e′ = ei for 1 ≤ i ≤ n−1. With probability Ω(1),
exactly n − 2 (but not n − 1) out of the n − 1 nodes visited by the MMAS
in C(G) form a uniformly random subset of {e1, . . . , en−1}. Hence, en−1 is
missing with probability 1/(n− 1). Furthermore, the probability of visiting e′

rather than en−1 as the missing node has probability at least Ω(1/m). Hence,
in total, T is constructed with probability Ω(1/(nm)). Again we use the proof
idea of Theorem 5.1. It suffices to show the following claim. Suppose the
MMAS has constructed the spanning tree T ∗ in the last accepted solution.
Let T = T ∗ \ {e} ∪ {e′} be any spanning tree that is obtained from T ∗ by
including one edge e′ and removing another edge e. Then the probability of
producing T by the next constructed solution is Ω(1/(nm)).

Let e1, . . . , en−1 be the edges of T ∗ and suppose w. l. o. g. that the edges
of T are e1, . . . , en−2, e

′ where e′ = ei for 1 ≤ i ≤ n − 1. We show that with
probability Ω(1), exactly n−2 (but not n−1) out of the n−1 nodes visited by
the MMAS in C(G) form a uniformly random subset of {e1, . . . , en−1}. Hence,
en−1 is missing with probability 1/(n − 1). Furthermore, we show that the
probability of visiting e′ rather than en−1 as the missing node has probability
at least Ω(1/m). Hence, in total, T is constructed with probability Ω(1/(nm)).

We still have to prove the statements on the probabilities in detail. We
study the events Ei, 1 ≤ i ≤ n−1, defined as follows. Ei occurs iff the first i−1
and the last n − i − 1 nodes visited by the MMAS (excluding s) correspond
to edges of T ∗ whereas the ith one does not. Edges in C(G) pointing to nodes
of T ∗ have pheromone value h and all remaining edges have value 
. Hence,
if j − 1 edges of T∗ have been found, the probability of not choosing another
edge of T ∗ by the next node visited in C(G) is at most

(m − (n − 1))

((n − 1) − (j − 1))h

=
1

(n − j) log n
.

Therefore, the first i−1 and last n−i−1 nodes (excluding s) visited correspond
to edges of T ∗ with probability at least



72 5 Minimum Spanning Trees

1 −
n−2∑
j=1

1
(n − j) log n

≥ 1 − (ln(n − 1) + 1)
log n

+
1

log n
≥ 1 − ln n

log n
= Ω(1)

(estimating the (n − 1)-th Harmonic number by ln(n − 1) + 1) and, due to
the symmetry of the update scheme, each subset of T ∗ of size n− 2 is equally
likely, i.e., has probability Ω(1/n). Additionally, the probability of choosing
by the ith visited node an edge e′ not contained in T ∗ equals




(n − i)h + k

≥ 1

(n − i + 1)(m − n + 1) log n
,

where k is the number of edges outside T ∗ that can still be chosen; note that
k
 ≤ h. Hence, with probability at least c/((n − i + 1)mn log n) for some
small enough constant c (and large enough n), Ei occurs and the tree T is
constructed. Since the Ei are mutually disjoint events, T is constructed instead
of T ∗ with probability at least

n−1∑
i=1

c

(n − i + 1)mn log n
= Ω(1/(mn))

as suggested. ��

In the following, we examine the use of heuristic information for the
Kruskal-based construction graph. Here it can be proven that strong heuristic
information helps the MMAS mimic the greedy algorithm by Kruskal.

Theorem 5.15. Choosing α = 0 and β ≥ 6wmax log n, the expected optimiza-
tion time of the MMAS using the construction graph C(G) is constant.

Proof. We show that the next solution that the MMAS constructs is with
probability at least 1/e a minimum spanning tree, where e is Euler’s number.
This implies that the expected number of solutions that have to be constructed
until a minimum spanning tree has been computed is bounded above by e.

Let (w1, w2, . . . , wn−1) be the weights of edges of a minimum spanning tree.
Let wi ≤ wi+1, 1 ≤ i ≤ n − 2, and assume that the ant has already included
i − 1 edges that have weights w1, . . . , wi−1, and consider the probability of
choosing an edge of weight wi in the next step. Let M = {e1, . . . , er} be
the set of edges that can be included without creating a cycle and denote
by Mi = {e1, . . . , es} the subset of M that includes all edges of weight wi.
W. l. o. g., we assume w(ei) ≤ w(ei+1), 1 ≤ i ≤ r − 1.

The probability of choosing an edge of Mi in the next step is given by∑s
k=1(η(ek))β∑r
l=1(η(el))β

=
∑s

k=1(η(ek))β∑s
l=1(η(el))β +

∑r
l=s+1(η(el))β

,

where η(ej) = 1/w(ej) holds. Let a =
∑s

k=1(η(ei))β =
∑s

k=1(1/wi)β and
b =

∑r
l=s+1(η(el))β . The probability of choosing an edge of weight wi is
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a/(a+ b), which is at least 1−1/n if b ≤ a/n. The number of edges in M \Mi

is bounded above by m, and the weight of such an edge is at least wi + 1.
Hence, b ≤ m · (1/(wi + 1))β.

We would like m · (1/(wi + 1))β ≤ s · (1/wi)β/n to hold. This can be
achieved by choosing

β ≥ log(mn/s)
log((wi + 1)/wi)

=
log(mn/s)

log(1 + 1/wi)
,

which is at most

(log(mn/s))/(wi/2) ≤ 6wmax log n

since mn ≤ n3 and ex ≤ 1 + 2x for 0 ≤ x ≤ 1. Due to our choices, the ant
traverses the edge with weight wi with probability at least 1−1/n. Therefore,
the probability that in every step i such an edge is taken is at least (1 −
1/n)n−1 ≥ 1/e, as suggested. ��

The result of Theorem 5.15 does not necessarily improve upon Kruskal’s
algorithm since the computational efforts in a run of the construction algo-
rithm and for initializing suitable random number generators (both of which
are assumed constant in our cost measure for the optimization time) must
not be neglected. With a careful implementation of the MMAS, however,
the expected computational effort with respect to the well-known uniform
cost measure could be at least bounded above by the runtime O(m log m) of
Kruskal’s algorithm.

Conclusions

The minimum spanning tree problem is one of the fundamental problems that
is efficiently solvable. Several important variants of this problem are difficult,
and stochastic search algorithms have a good chance of being competitive on
them. As a first step towards the analysis of stochastic search algorithms on
these problems, simple algorithms have been analyzed on the basic minimum
spanning tree problem. The asymptotic worst-case (with respect to the prob-
lem instance) expected optimization time for simple evolutionary algorithms
has been obtained exactly. The analysis is based on the investigation of the
expected multiplicative distance decrease (with respect to the difference in
the weights of the current graph and of a minimum spanning tree). The re-
sults presented in this chapter may be generalized to the computation of a
minimum weight basis of a weighted matroid (Reichel and Skutella, 2007).
On the other hand, it has been investigated for which search algorithms and
problems one may consider a transformation of the weights such that better
bounds can be obtained (Reichel and Skutella, 2009). This leads to an up-
per bound of O(m2 log n) for RLS1,2

b on f and f ′. The bound for (1+1) EAb
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given in this paper is O(m3 log n), which is worse than the one presented in
this chapter unless wmax is very large.

We studied simple ACO algorithms and investigated the impact of different
construction graphs. In the case of the Broder-based construction procedure
a polynomial, but relatively large, upper bound was proven. In addition, it
was shown that heuristic information can mislead the algorithm such that
an optimal solution is not found within a polynomial number of steps with
high probability. In the case of the Kruskal-based construction procedure,
the upper bound obtained shows that this construction graph leads to a bet-
ter optimization process than simple evolutionary algorithms. In addition, a
large influence of heuristic information makes the algorithm mimic Kruskal’s
algorithm for the minimum spanning tree problem.



6

Maximum Matchings

The maximum matching problem is a very well-studied combinatorial opti-
mization problem. Given an undirected graph G = (V,E), a matching is a
subset E′ ⊂ E of the edge set such that no two edges in E′ share a common
endpoint. The maximum matching problem asks for a matching of maximum
cardinality. Such problems arise, e.g., in team planning when edges of a graph
denote possible collaborations of workers and the aim is to find a biggest par-
tition of the workers into teams of size 2. Therefore, matching problems have
numerous generalizations to hypergraphs and weighted graphs, which will not
be discussed in this chapter. The maximum matching problem should not
be confused with the maximal matching problem, where the aim is to find a
subset of edges which is maximum with respect to inclusion, i.e., no proper
superset of the matching is a matching.

The maximum matching problem is solvable in polynomial time. The best
algorithms for the general case run in time O(

√
|V |·|E|) (Micali and Vazirani,

1980), which is also the best bound known for the special case of bipartite
graphs (Hopcroft and Karp, 1973). However, the algorithms for the latter
case are much simpler to describe and to analyze. All of them rely on the
fundamental concept of so-called augmenting paths, which will be explained
in detail below. Augmenting paths represent a way to improve the size of a
matching by performing local changes along the path. Hence, there is some
hope that locally searching algorithms are able to find maximum matchings.
This motivated early analyses of stochastic search algorithms for this problem,
most notably a study by Sasakik and Hajek (1988) with respect to simulated
annealing.

The contents of this chapter are based on and follow closely the works
by Giel and Wegener (2003, 2004, 2006), who concentrate on variants of ran-
domized local search and (1+1) EAb for the maximum matching problem. In
Section 6.1, we describe the investigated search algorithms and fitness func-
tions precisely and supply additional concepts for the analysis. Section 6.2
deals with a general result on the approximation capability of the algorithms.
For certain graph classes, exact solutions to the problem can be found in

F. Neumann, C. Witt, Bioinspired Computation
in Combinatorial Optimization, Natural Computing Series,
DOI 10.1007/978-3-642-16544-3 6, © Springer-Verlag Berlin Heidelberg 2010
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expected polynomial time, which will be presented in Section 6.3. However,
there are also graph instances for which no optimal solutions are found within
polynomial time, with high probability. A worst-case result in this vein is
described in Section 6.4.

6.1 Representations and Underlying Concepts

Giel and Wegener (2003, 2004, 2006) work with the following model of the
maximum matching problem. Let n = |V | denote the number of vertices and
m := |E| the number of edges of the graph for which a maximum matching is
sought. Again, the encoding for binary search spaces is straightforward. When
working with bitstrings of length m (!), a search point s = (s1, . . . , sm) ∈
{0, 1}m is interpreted as the characteristic vector of the chosen subset of edges.
If s describes a valid matching, the fitness function f : {0, 1}m just returns
the number of chosen edges, i.e., f(s) = s1 + · · · + sm. As in Chapter 5,
several ways to handle invalid search points, in this case non-matchings, make
sense. One way would be to assign large negative fvalues to them and to
force the search algorithm to start from the empty matching, i.e., the all-
zeros string. This kind of initialization is used in Sasaki’s (1988) definition
of simulated annealing. We stick with the uniform initialization used in the
common stochastic search algorithms and introduce a component in the fitness
function to direct the search towards valid matchings. The following idea
is similar to that in Chapter 5 with the MST problem, where the number
of connected components was to be minimized first in order to direct the
algorithm to trees.

If d(v) > 1 edges incident on a vertex v are chosen by the search point s,
a penalty p(v) of value d(v)− 1 is assigned to the vertex; otherwise, p(v) = 0.
Hence, exactly the vertices that are in accordance with the definition of a
matching have no penalty. The penalty p(s) of the search point is simply the
sum of all vertex penalties, and the fitness function equals

f(s) = (−p(s), |s|1).

This function has to be maximized in lexicographic order. As soon as a value
of 0 has been obtained with respect to the first component, only valid match-
ings are considered.

The stochastic search algorithms studied are a randomized local search
algorithm on the one hand and (1+1) EAb on the other hand. As for the
MST problem studied in Chapter 5, a neighborhood of size 1 is not sufficient.
In order for the search algorithm to accept a different matching, it can be
necessary to flip out one edge and to include another edge. Of course, if there
is an edge that is neither included in the current matching nor incident on
another matching edge, then this edge can be chosen and leads to a larger
matching. We call such edges free edges since both of its vertices are free, i.e.,
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not incident on any matching edges. However, the lack of free edges does not
mean that a matching is maximum. Instead, a characterization of optimality
is based on the above-mentioned augmenting paths. We call a path through
the vertices v1, . . . , vk an alternating path of length k − 1 with respect to
a current matching if the edges {v2i, v2i+1}, 1 ≤ i ≤ k/2, belong to the
matching and the other edges do not belong to it. If additionally v1 and vk

are free vertices, which is only possible for even k, i.e., an odd number of
edges, then the path is called augmenting. In this case, we swap matching and
non-matching edges along the augmenting path, which means that we remove
from the matching all edges on the path that so far belong to the matching
and add to the matching those edges on the path that do not belong to it.
This procedure leads to a valid matching of increased (that is, “augmented”)
cardinality. A single free edge appears as the special case of an augmenting
path of length 1. The following theorem is a fundamental characterization of
optimal matchings.

Theorem 6.1 (Hopcroft and Karp, 1973). A matching is of maximum
cardinality if and only if there exists no augmenting path with respect to the
matching.

(1+1) EAb can flip all edges of an augmenting path at once. A local
search algorithm cannot do this in a single step. However, it can approach the
improved matching by flipping two adjacent edges. If v1, . . . , vk is augmenting
then {v1, v2} can be turned into a matching edge and {v2, v3} into a non-
matching edge. This results in v3 becoming free and v3, . . . , vk forming a
new and shorter augmenting path. This motivates us to study the algorithm
RLS1,2

b defined in Definition 2. The only change is that we apply both search
algorithms for maximization, i.e., the condition f(s′) ≤ f(s) is replaced by
f(s′) ≥ f(s) in the definition of both RLS1,2

b and (1+1) EAb (see Algorithms 2
and 3).

6.2 Approximation Quality for General Graphs

The stochastic search algorithms start from a completely random string. The
definition of the fitness function and the elitist selection of (1+1) EAb and
RLS1,2

b ensure that only matchings are accepted as future search points once
a valid matching has been found. This happens efficiently as the following
lemma shows.

Lemma 6.2. RLS1,2
b and (1+1) EAb find search points that represent match-

ings in expected time O(m log m). ��

Proof. We argue as in the proof of the coupon collector’s problem (Sec-
tion 4.2.2). Let k = −p(s) be the sum of the vertex penalties with respect
to the search point s. Then k is less than 2m, the sum of all vertex degrees.
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Until a valid matching is found, only the first component of the fitness func-
tion is relevant, i.e., new search points are only accepted if they have a lower
total penalty. By definition, there are at least �k/2	 ≤ m edges chosen by s,
whose elimination decreases k. The probability of a specific 1-bit mutation
equals Θ(1/m) for both algorithms. Hence, the expected waiting time to de-
crease k is bounded by O(m/k). Summing up for 1 ≤ k < 2m and estimating
the Harmonic series according to

∑2m
k=1 1/k = O(ln m) yields the claim. ��

The aim of this section is to show that the search algorithms are able
to find good approximate solutions to the maximum matching problem for
arbitrary graphs. The result is also based on the result by Hopcroft and Karp
(1973). The main idea is as follows. Given a matching that is far away from
optimality, there must not only be one, but many augmenting paths. The
pigeonhole principle guarantees the existence of a relatively short augmenting
path. This is made precise by the following lemma.

Lemma 6.3. Let G = (V,E) be a graph, M a non-maximum matching, and
M∗a maximum matching. Then there exists an augmenting path with respect
to M whose length is bounded from above by L := 2
|M |/(|M∗| − |M |)� + 1.

Proof. Let G′ = (V,E′) be the graph whose edge set is defined by E′ :=
M ⊕M∗, where ⊗ denotes the symmetric difference, i.e., the exclusive OR of
the search points. The graph G′ consists of vertex-disjoint cycles and paths.
Each cycle and each path of even length has the same number of M and
M∗ edges. Paths of odd length alternate between M and M∗ edges. There
is no odd-length path starting and ending with an M edge. Otherwise, it
would be an augmenting path with respect to M∗. Hence, there are |M∗| −
|M | disjoint augmenting paths with respect to M . At least one has at most

|M |/(|M∗| − |M |)� M edges and, therefore, at most L edges. ��

By means of the preceding lemma, we arrive at the announced result on
the approximation quality of the search algorithms.

Theorem 6.4. For ε > 0, RLS1,2
b and (1+1) EAb find a (1 + ε) optimal

matching in expected time O(m2�1/ε�) independently of the choice of the first
search point.

Proof. The first phase of the search finishes when a matching is found. By
Lemma 6.3, this phase is short enough to be captured by the proposed runtime
bound. Afterwards, let M be the current matching, and let M∗ be an arbitrary
maximum matching. The search is successful if |M∗| ≤ (1+ ε)|M |. Otherwise,
by Lemma 2, there exists an augmenting path for M whose length is bounded
from above by L := 2
|M |/(|M∗| − |M |)� + 1. Since |M∗| > (1 + ε)|M |, we
conclude that

|M |
|M∗| − |M | < ε−1.

Consequently,



6.3 Upper Bounds for Simple Graph Classes 79

⌊
|M |

|M∗| − |M |

⌋
≤

{

ε−1� = �ε−1	 − 1 if ε−1 is not an integer,

ε−1� − 1 = �ε−1	 − 1 if ε−1 is an integer.

In any case, L ≤ 2�1/ε	 − 1.
The probability that (1+1) EAb flips exactly the edges of an augmenting

path of length � is (1/m)�(1−1/m)m−� = Θ(m−�). The expected waiting time
is therefore Θ(m�). It is sufficient to wait |M∗| ≤ m times for such an event,
where � is always at most L. This proves the result for (1+1) EAb.

RLS1,2
b can flip the augmenting path in 
�/2�+1 steps. In each of the first

�/2 steps, the length of the augmenting path is decreased by 2 by flipping
the first two or the last two edges, and in the last step the remaining edge
of the augmenting path is flipped. The probability that a phase of length

�/2� + 1 is successful is bounded from below by Ω((m−2)��/2� · m−1) =
Ω(m−�), where we used the fact that the length � of an augmenting path is
odd. The expected number of unsuccessful phases preceding a successful phase
is O(m�). Again, we have � ≤ L. The difference with the case of (1+1) EAb

is that a phase may consist of more than one step. However, in each step
the probability that a phase is continued successfully is bounded from above
by O(m−1). Hence, the expected phase length is O(1). This also holds under
the assumption that a phase is unsuccessful. The length of the successful
phase equals 
�/2� + 1. Hence, the expected number of steps to improve the
matching again is bounded from above by O(� + m�) = O(m�), which proves
the theorem. ��

The previous theorem also implies that the simple stochastic search algo-
rithms are PRASs (polynomial-time randomized approximation schemes) in
the sense of Definition 2.8. The following corollary, which follows from Theo-
rem 6.4 by using Markov’s inequality, makes this explicit. We just let c be a
constant such that Theorem 6.4 holds for the bound c · m2�1/ε�.

Corollary 6.5. If we run RLS1,2
b or (1+1) EAb for 4cm2�1/ε� iterations, we

obtain a PRAS for the maximum matching problem, i.e., independently of the
choice of the first search point, the probability of producing a (1 + ε) optimal
solution is at least 3/4.

6.3 Upper Bounds for Simple Graph Classes

After seeing that RLS1,2
b and (1+1) EAb find good approximations to max-

imum matchings in expected polynomial time, we are interested in graphs
where even maximum matchings can be found in expected polynomial time.
We start with the simple graph called path. As the name suggests, it consists of
a path of m edges. This graph allows a matching of maximal size for connected
graphs, namely �m/2	. The analysis of the search algorithms on this graph
contains typical aspects of their behavior on more complicated instances.
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As in Chapter 5, there are typically many steps of RLS1,2
b and (1+1) EAb

leading to infeasible search points, in this case search points that do not en-
code a matching. Such steps slow the search algorithms down, but cannot be
avoided without introducing problem-specific knowledge, which is not always
available. In the forthcoming analysis, we account for such steps by the con-
sideration of so-called relevant steps, where the exact definition will depend
on the situation. Denoting by R the number of relevant steps and by T the
total number of steps until a certain goal is achieved, the following argumen-
tation is typical. If an expected number of E(R) relevant steps is necessary
and every step is relevant with probability at least p, then the expected total
number of steps E(T ) is at most p−1 · E(R).

We start with a simple upper bound for RLS1,2
b on the path graph.

Fig. 6.1. An augmenting path (indicated by gray area) and environments of possible
mutations leading to extensions or shortenings (dotted)

Theorem 6.6. For a path of m edges, the expected optimization time of
RLS1,2

b is O(m4) independently of the choice of the first search point.

Proof. By Lemma 6.2, the expected waiting time for a matching is small
enough to be captured by the O(m4) bound. The size of a maximum match-
ing equals �m/2	. If the current matching size is �m/2	−i, there exist at least
i augmenting paths and one of length at most � := m/i. In every step, we con-
ceptually select a shortest augmenting path P ; hence the considered P might
be different in the course of optimization. Now a step is called P relevant
if it is accepted and P is altered. The probability of a P relevant step is
Ω(1/m2). This is due to the following observations. If the length of P is
at least 3, it is lower bounded by the probability that a pair of edges at one
end of P flips; otherwise the path consists of only a free edge, and the consid-
ered probability is even Ω(1/m). If we can show that an expected number of
O(�2) P relevant steps is sufficient to improve the matching by one edge, then∑�m/2�

i=1 O((m/i)2) = O(m2) P relevant steps are sufficient, and the expected
optimization time is O(m4).

If |P | ≥ 3, there are no free edges. Only mixed mutation steps, where a
non-matching edge and a matching edge flip, can be accepted. Since each non-
matching edge e has at least one neighbor e′ in the matching, e′ must flip, too.
That means that only a non-matching edge e incident on a free vertex together
with a matching edge e′ such that e and e′ have an endpoint in common can
flip. In the considered case of a path graph, only pairs of neighbored edges
located at one end of an alternating path can flip in accepted steps. Such a
pair consists of either two neighbored edges outside P or two edges inside P ,
in both cases with one edge incident on an endpoint of P . (See Figure 6.1
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for an illustration, where either the first two or the last two edges in one of
the dotted boxes are allowed to flip together.) The first case increases the
length of P and the second one decreases it. Since P might be aligned with
an endpoint of the whole graph itself, the situation can even be in favor of
decreasing steps. Hence, P is shortened with probability at least 1/2 if a pair
of neighbored edges flips. If |P | = 1, the probability that the length of P is
decreased to 0 is at least 1/(2m) since a 1-bit mutation of RLS1,2

b is sufficient.
In contrast, the probability that the path grows at either end is at most
2·(1/2)·

(
m
2

)−1 = 2/(m(m−1)) in this case. Hence, the conditional probability
that the next P relevant step is decreasing is at least 1/(1+4/(m− 1)) ≥ 1/2,
for m ≥ 5.

Taking the two cases together, we are confronted with a random walk on
the numbers {0, 1, 3, 5, . . . , �} describing the current length of P . This walk
goes from a state to the lower neighboring state with probability at least 1/2
and to the higher neighboring state otherwise. Since we are interested in reach-
ing state 0, we may pessimistically assume the transition probabilities to be
exactly 1/2 and arrive at the scenario relevant for Theorem 4.7. The graph
on which the random walk takes place is itself a path; hence its number of
edges is trivially bounded by �. The time to reach state 0, i.e., one end of
this path, is bounded by the cover time for the graphs, which is O(�2) using
Theorem 4.7. ��

Basically the same ideas as in the proof of Theorem 6.6 can be used to prove
also the bound O(m4) for (1+1) EAb. However, the analysis is complicated by
the fact that the latter search algorithm can flip many bits in a step. We are
only interested in P relevant steps. For our analysis, we define P clean steps,
which are P relevant steps causing only small changes in P . Then, a phase
including Θ(�2) P relevant steps is called P clean if all its P relevant steps are
P clean. The idea is to prove that a phase is P clean with probability Ω(1) and
that a P clean phase plus the next P relevant step improve the matching with
probability Ω(1).

Theorem 6.7. For a path of m edges, the expected optimization time of
(1+1) EAb is O(m4) independently of the choice of the first search point.

Fig. 6.2. An augmenting path (indicated by gray area) and the environments Eu

and Ev (dotted); free vertices are indicated by a circle

Proof. For the definition of P , �, and P relevant steps, see the proof of Theo-
rem 6.6. With the same arguments as used there, it suffices to prove that the
expected number of P relevant steps to improve the matching is O(�2).
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P clean steps are only defined for situations without free edges. Let u and v
be the endpoints of P , and let Eu be the set of edges where at least one
endpoint has at most a distance of 3 from u, and analogously for Ev (see
Figure 6.2 for an illustration). Then we call a P relevant step a P clean step if

• at most three edges in E′ := Eu ∪ Ev flip and
• at most two of the flipping edges in E′ are neighbors.

We describe the effect of clean steps on P . The free vertices partition the
graph into alternating paths (see also Figure 6.2 for an example). As there
is no free edge, there is an augmenting path of at least three edges between
a free vertex and the next free vertex. Hence, a P clean step cannot flip all
edges of P because this would require flipping a block of three edges in E′.
Consequently, P cannot vanish in a P clean step; however, it is possible that
new free vertices are created between u and v. Then, we interpret this event as
a step shortening P by at least two edges. It is impossible that a P clean step
lengthens P by more than two edges, i.e., at least four edges, since this requires
flipping more than three edges in E′. Thus, P clean steps lengthen P only by 2,
and to this end it is necessary to flip a pair of neighbored edges outside the
augmenting path but touching either u or v (the situation already discussed
in Figure 6.1). For a P clean step to decrease the length of P by at least 2, it
is sufficient to flip a pair of neighbored edges at either end of the augmenting
path (see again Figure 6.1). Since at most three edges of E ′ may flip, at most
one of the discussed pairs of neighbored edges can flip in a P relevant step.
Hence, P relevant steps either lengthen or shorten P , and the probability of
shortening steps is only larger than the probability of lengthening steps.

As the aim of a phase is to produce an improved matching or some free
edge, it is convenient to include these good events into P clean steps. We
broaden our definition of P clean steps and call accepted steps that produce a
free edge or improve the matching P clean, too. Now, we upper bound the prob-
ability of P relevant but not P clean steps (in situations without free edges).
A necessary event to violate the first property is that four out of at most
16 edges of E′ flip. The probability of this event is O(1/m4). For the sec-
ond property, let k denote the length of the longest block B of flipping edges
in E′. The probability that a block of length k ≥ 4 flips is upper bounded
by the probability of the event that one out of at most ten potential blocks
of length 4 in E′ flips. The probability of this event is O(1/m4). A muta-
tion step where k = 3 produces a local surplus of either one non-matching
edge or one matching edge in B. If the surplus is not balanced outside B, the
step is either not accepted because the fitness would decrease or the step is
clean because the matching is improved. To compensate for a surplus of one
non-matching edge, one more non-matching edge than the number of flipping
matching edges must flip elsewhere. This may be a non-matching edge next
to B but outside E′ if B is located at a border of E′. The probability of
such a step is only O(1/m4). If B is not located at a border of E′, another
block B′ of at least three edges not neighboring B has to flip. This results in
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a probability of at most O((1/m3) · (m · 1/m3)) = O(1/m5). If a local surplus
of one matching edge has to be balanced, either only another matching edge
flips and, because a free edge is created, the step is clean, or another block
of at least three edges flips. The probability of the last possibility is again
O(1/m5). Altogether, the probability of a P relevant but not P clean step is
O(1/m4), and the conditional probability that a P relevant step is not P clean
is O(1/m2). Hence, a phase of O(�2) = O(m2) P relevant steps is clean with
probability Ω(1).

Pessimistically assuming that shortenings shorten the path by exactly two
edges and that the probability of shortening in a clean, relevant step is ex-
actly 1/2, we treat this as a fair random walk as in the last paragraph of
the proof of Theorem 6.6. Hence, an expected number of O(�2) clean relevant
steps reduces the length of P to at most 1. By Markov’s inequality, this hap-
pens with probability Ω(1) in c�2 clean relevant steps if c is a large enough
constant. Afterwards, at least one free edge exists, and a step is P relevant
with a probability of Ω(1/m), Hence, the next P relevant step improves the
matching with probability Ω(1). ��

The results from the previous two theorems deserve some discussion. On
the one hand, paths are difficult since augmenting paths tend to be rather long
in the final stages of optimization. On the other hand, paths are easy since
there are not many ways to lengthen an augmenting path. As indicated above,
the relatively large time bound O(m4) = O(n4) can the explained by the
characteristics of general (and somehow blind) local search. As the search al-
gorithm does not “know” that only matchings are valid search points, it keeps
wasting a lot of steps by producing invalid search points and rejecting them
immediately. Moreover, while the analysis focuses on a shortest augmenting
path, there may be many steps which alter the search point at a completely
different place. In the case of O(1) augmenting paths and no selectable edge,
a step is relevant only with a probability of Θ(1/m2), and the expected num-
ber of relevant steps is O(m2) = O(n2). Actually, the search on the level of
second-best matchings is responsible for this. If the number of edges is odd,
the path graph has a unique maximum matching consisting of �m/2	 edges.
Therefore, any second-best matching of size 
m/2� = �m/2	 − 1 has only
one augmenting path P . We show that the simple search algorithms have an
expected optimization time of Ω(m4) if the initial situation is a second-best
matching and P is not too short.

Theorem 6.8. For a path of m edges, m odd, the expected optimization time
of RLS1,2

b and (1+1) EAb is Θ(m4) if the initial situation is a second-best
matching with an augmenting path of length Ω(m).

Proof. The upper bounds follow from Theorems 6.6 and 6.7. For the lower
bounds, we would like to exploit the properties of the random walk describ-
ing the length of the augmenting path, analyzed in the two theorems and
illustrated in Figure 6.1. Note that only 2-bit flips of RLS1,2

b are possible in



84 6 Maximum Matchings

relevant steps. Hence, as long as the augmenting path P is not adjacent to a
border of the path graph itself and at most two edges flip, we are confronted
with a fair random walk increasing or decreasing the length of the path with
probability 1/2 each in relevant steps. Only if P is at a border can the prob-
ability of decreasing the length be greater than 1/2 in relevant steps. This
corresponds to the scenario of the gambler’s ruin theorem with p = q = 1/2
(see Theorem 4.8) except for the fact that the game might be changed when P
touches a border. If we assume P to be at distance Ω(m) from both borders
and to have initial length Ω(m), then an endpoint of the path has to move by
a distance of Ω(m) or the whole path has to shrink in length by at least Ω(m)
before the process differs from the fair gambler’s ruin game. Using a = Ω(m)
and b − a = Ω(m) in Theorem 4.8, the expected number of steps needed for
the process to move by at least Ω(m) states is Ω(m2). It is easy to see that
Ω(m2) is not only a lower bound on the expectation, but that Ω(m2) relevant
steps are also needed with probability Ω(1). (If the latter did not hold, we
would immediately obtain a better bound on the expectation by repeating in-
dependent phases.) Since a relevant step has probability Θ(1/m2), the lower
bound for RLS1,2

b follows.
For (1+1) EAb, the considered 2-bit flips have also probability Θ(1/m2)

but we must also take into account 2k-bit flips for k ≥ 2. We pessimistically
assume that the latter only decrease the length of P and show that this
additional decrease is at most half the initial length of P . Then, the length
of P is always at least Ω(m) and the probability of a step flipping exactly the
edges of P is small enough. If 2k edges flip in an accepted step, they form
one or two blocks where the last or first edge of a block is adjacent to one of
the exposed endpoints of P . Thus, there are O(k) possibilities for an accepted
2k-bit flip, and the expected decrease by means of 2k-bit flips in a single step
is 2k ·O(k/m2k) = O(k2/m2k). The sum for all k ≥ 2 is O(1/m4). Hence, the
expected decrease by steps flipping more than two bits is O(1/m4) in each
step. Within βm4 steps, this expected decrease is O(1) and the decrease is less
than half the initial length of P with probability 1−o(1) if the constant β > 0
is small enough. ��

Giel and Wegener (2004, 2006) extend the previous results from paths to
trees, i.e., connected graphs without cycles. They conjecture that path graphs
represent the most difficult instance within the class of tree graphs since a
path is a tree with maximal diameter and the diameter bounds the length of
a longest augmenting path.

We do not present the complete involved analysis that Giel and Wegener
(2004, 2006) perform for RLS1,2

b on trees since such a presentation would be
beyond the scope of this book. However, it is possible to present the gen-
eral idea behind why RLS1,2

b finds maximum matchings on complete trees in
expected polynomial time. More precisely, the authors obtain the following
theorem.
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Theorem 6.9. The expected time until RLS1,2
b finds a maximum matching

on a complete kary tree, k ≥ 2, is bounded by O(m7/2) independently of the
choice of the first search point.

When RLS1,2
b operates on complete kary trees, there are two essential

differences with respect to the path graph. Given a situation without free
edges and an augmenting path P shorter than the diameter, there must be
a free vertex v at one end of P that is not a leaf (vertex of degree 1) of the
graph. This means that v must have degree k, which implies that there are k−1
ways to lengthen and only one way to shorten P . Each of these possibilities
is chosen with the same probability, and for k ≥ 2, RLS1,2

b is confronted with
an unfair game that is biased towards increasing the length of P . In terms
of the gambler’s ruin theorem (Theorem 4.8), the event of P reaching its
maximal length D, where D is the diameter of the graph, corresponds to the
gambler’s ruin. The probability of the gambler’s gain, i.e., reaching length 0
before length D, starting from a worst-case length D − 1, equals

1 − (k − 1)D − (k − 1)
(k − 1)D − 1

=
1

(k − 1)D−1
,

which is exponentially small in D. On the other hand, it holds that D ≤
2�logk m	 since the depth of the kary tree is at most �logk m	. Inserting
this into the above formula results in a probability of Ω(1/poly(n)) for the
gambler’s gain. Since the expected length of the unfair game is also polyno-
mial (Theorem 4.8), we obtain an overall expected polynomial time until the
matching is improved.

Finally, using much more sophisticated arguments, Giel and Wegener
(2004, 2006) extend the analysis to the case of arbitrary trees. They obtain
the following theorem.

Theorem 6.10. The expected time until RLS1,2
b finds a maximum matching

in a tree with diameter D is bounded by O(D2m4) independently of the choice
of the first search point.

The authors also believe that basically the same results hold for (1+1) EAb,
but in the case of arbitrary trees it is much more difficult to control the ef-
fect of steps flipping more than two bits than it is for the path graph. This
concludes the presentation of the positive results. In the following section, we
explore the limits of the search algorithms.

6.4 A Worst-Case Result

The result of Theorem 6.4 shows that RLS1,2
b and (1+1) EAb represent good

approximation algorithms for the maximum matching problem. However, in
the worst case they are not able to find an optimum in expected polynomial



86 6 Maximum Matchings

time. The analysis by Giel and Wegener (2003, 2006) is based on a graph
class that was introduced by Sasakik and Hajek (1988). The graph Gh,� for
odd � = 2�′+1 is best illustrated by placing its n := h(�+1) vertices in h rows
and � + 1 columns on a grid, i.e., V = {(i, j) | 1 ≤ i ≤ h, 0 ≤ j ≤ �}. Between
column j, j even, and column j + 1, there are exactly the horizontal edges
{(i, j), (i, j + 1)}, 1 ≤ i ≤ h. In contrast, there are complete bipartite graphs
between column j and column j + 1 for odd values of j. The graph G3,11 is
shown in Figure 6.3. The unique perfect matching M∗ consists of all horizontal
edges between the columns j and j +1 for even j. The set of all other edges is
denoted by M

∗
. Obviously, we have m = |M |+|M∗| = (�′+1)h+�′h2 = Θ(�h2)

for the number of edges.

Fig. 6.3. The graph Gh,�, h = 3, � = 11, and its perfect matching

For the forthcoming analyses, it is sufficient to consider second-best (also
called almost perfect) matchings of size |M∗|−1 for the graph Gh,� and to show
that the final improvement takes in expectation an exponential time. Given
an almost perfect matching, there is only one unique augmenting path left
(a formal proof for this fact is already contained in the proof of Lemma 6.3).
This augmenting path has the following properties.

Lemma 6.11. Let Q be the unique augmenting path for an almost perfect
matching in the graph Gh,�. Then

• Q “runs from left to right”, i.e., it contains at most one vertex from each
column,

• if the endpoints of Q are not in the first or last column, there are 2h length-
enings and two shortenings by 2-bit flips; otherwise there are h lengthen-
ings and still two shortenings.

Proof. For the first property, assume that two vertices belonging to the same
column both lie on Q. Due to the structure of Gh,�, this implies in particular
the existence of an odd column j with this property. Then Q runs along
adjacent edges e′ = {(i′, j), (i, j + 1)} and e′′ = {(i, j), (i, j + 1)}, both of
which are in M

∗
. Either e′ or e′′ is contained in the almost perfect matching,

and w. l. o. g., this is the case for e′. We consider Q as running from left to right
in row i′, then changing direction via e′ and e′′, and subsequently running to



6.4 A Worst-Case Result 87

Fig. 6.4. An almost perfect matching in Gh,� and its augmenting path; the free
vertices are marked by a circle

the left in row i. We exploit the fact that e′′ is not included in the almost
perfect matching. Hence, as long as Q continues along row i to the left, the
almost perfect matching can only contain M∗ edges. This implies that Q will
not change to another row again and ends at a free vertex (i, j′) in the very
same row. If also (i, j′−1) is a free vertex, then edge {(i, j′−1), (i, j′)} is free;
hence there is another augmenting path in contradiction to the fact that we
have an almost perfect matching. If (i, j′ − 1) is not free, the almost perfect
matching must include another M

∗
edge, which again implies the existence of

another augmenting path.
As a consequence of the first property and the fact that we are dealing

with an almost perfect matching, at least one endpoint of Q is adjacent to
h different M

∗
edges that are not contained in the almost perfect matching.

If the other endpoint of Q is not in the first or last column, this also holds for
the other endpoint. This implies the second property. ��

Lemma 6.11 implies that the search algorithms are confronted with an
unfair game if h ≥ 3. The tendency towards increasing the length of Q will
provably result in an exponential expected optimization time. To formalize
this, we use a potential function, denoted by P , which maps search points
(i.e., selections of edges) to integral values. For the sake of convenience, this
function is defined only for almost perfect matchings and denotes the current
length of the unique augmenting path for such a matching; hence, P takes only
odd values. Note that P is not injective. In particular, we cannot determine
from the Pvalue whether the augmenting path is adjacent to a border of
the Gh,�. Assuming a worst-case perspective, we assume one endpoint of the
path to be at a border. Then there are, according to Lemma 6.11, h 2-bit
flips increasing and two such flips decreasing the potential. Giel and Wegener
(2003, 2004) consider also the case h = 2, which is of some special interest
since G2,� is the only planar graph in this class of graphs. However, much
additional effort is required in this case to show that the augmenting path
is likely to be far away from a border and that the game is, therefore, still
unfair. In the following, we present the analysis only for the case h ≥ 3.

The proof strategy for an exponential lower bound with respect to the
search algorithms RLS1,2

b and (1+1) EAb is as follows. As already mentioned,
we consider only second-best matchings. Starting from such a search point,
with overwhelming probability, O(m3) steps are enough to obtain either the
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perfect matching or an augmenting path of maximal length, which is � accord-
ing to Lemma 6.11. We estimate the probability of which of these two events
happens first. If the augmenting path has reached length �, we prove that it is
very likely to need exponentially many steps to obtain the perfect matching.
To obtain this result, it is required that � be polynomial in m. We are mainly
interested in the case 3 ≤ h ≤ �, implying that � = Ω(m1/3). Then, 2� is
exponential in m. In a phase of this length, it is quite likely that (1+1) EA
performs certain steps of exponentially small probability, which can change
the current matching at a significant number of places and not only locally.
Therefore, the following analysis will again be easier to conduct for RLS1,2

b .
We concentrate now on specific Pvalues. If the Pvalue is 1, i.e., we have a

free edge, it is likely we will find the perfect matching in the next step.

Lemma 6.12. For RLS1,2
b and (1+1) EAb starting with an almost perfect

matching with a Pvalue of 1, the following holds. The probability of reaching
an almost perfect matching with a Pvalue of at least 3 is Θ(h/m).

Proof. Since P = 1, the augmenting path consists of a free edge. To improve
the matching, it is sufficient that only the free edge flip, and it is necessary
that this edge flip. Therefore, the probability of creating the perfect matching
is Θ(1/m). To increase P , it is sufficient that one of the h or 2h edge pairs
lengthening the augmenting path flip. (If also the free edge flips, the path
moves to another position. Then, at least a matching edge has to flip and
additionally, one of the h or 2h pairs lengthening this augmenting path.)
Hence, the unconditional probability of reaching a situation where P ≥ 3
equals Θ(h/m2). The conditional probability of reaching P ≥ 3 rather than
P = 0 is, therefore, Θ(h/m). ��

We prove the worst-case result for RLS1,2
b first. Assuming a Pvalue of at

least 3, we will apply the results of the gambler’s ruin theorem from Theo-
rem 4.8. From the perspective of a lower bound, increasing the Pvalue to its
maximum before improving the matching is a success. Hence, increasing P
by 2 (recall that only odd values are taken) corresponds to the gambler’s
winning a unit of money and decreasing P corresponds to his losing a unit.
The probability ph of winning is at least h/(h + 2) if the Pvalue is at least 3,
pessimistically assuming that one endpoint of the augmenting path is at a
border of Gh,�. Since only h ≥ 3 is considered, we have ph ≥ 3/5, i.e., an
unfair game. More generally, we obtain rh = (1 − ph)/ph ≤ 2/h for the setup
of Theorem 4.8. Given an initial Pvalue of P0 ≥ 3, the probability of reaching
a Pvalue of � before a value of at most 1 is at least

1 − r�′

h − r
P ′

0
h

r�′
h − 1

=
r

P ′
0

h − 1
r�′
h − 1

=
1 − r

P ′
0

h

1 − r�′
h

,

where �′ := 
�/2� is the number of different values greater than 1 the Pvalue
can take and P ′

0 := 
P0/2� is the number of possible Pvalues greater than 1
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and less than or equal to P0. Since rh < 1, the probability under consideration
is at least 1−r

P ′
0

h . Our considerations are summarized by the following lemma,
which pessimistically assumes the matching to be improved once the Pvalue
has dropped to 1.

Lemma 6.13. For RLS1,2
b starting with an almost perfect matching with a

Pvalue of P0 ≥ 3, the probability of constructing an augmenting path of max-
imal length before the perfect matching is at least 1 − (2/h)�P0/2�.

For (1+1) EAb, we have to estimate the probabilities of steps where many
flipping bits influence the augmenting path. In order to simplify the analysis,
we interpret the following event as a loss of the whole game. At least the
leftmost i ≤ 4 and the rightmost j ≥ 4− i edges of the augmenting path flip.
The probability of this event is bounded from above by O(1/m4). Now, the
only way of decreasing the Pvalue by 1 without losing the game is by flipping
exactly the two leftmost or the two rightmost edges of the augmenting path.
The probability of this event equals 2(1/m)2(1−1/m)m−2. This leads basically
to the same probabilities as in Lemma 6.13, but we have to take into account
the probability of Θ(1/m3) of turning a search point with a short augmenting
path of length 3 into the perfect matching. We obtain the following result,
which provides in essence the same bounds as the preceding lemma.

Lemma 6.14. For (1+1) EAb starting with an almost perfect matching with
a Pvalue of P0 ≥ 3, the probability of constructing an augmenting path
of maximal length before the perfect matching is at least 1 − O(1/m) −
((2/h) + O(1/m))�P0/2�.

Proof. Since we pessimistically consider the event of a Pvalue of 1 as the
event that the perfect matching is created, we can include the event that an
augmenting path of length 3 is flipped in the event in which the gambler loses
one unit of money. Since 2-bits are necessary and sufficient, the probability
that a step changes the augmenting path is Θ(1/m2). The probability of
flipping an augmenting path of length 3 is Θ(1/m3). Therefore, it is sufficient
to increase the value of rh from the above analysis by O(1/m).

In addition, there is a probability of O(1/m4) for each step that the game is
immediately lost because the Pvalue changes by more than 1. If we can prove
that the game is finished anyway within O(m3) steps with probability at least
1 − O(1/m), the probability of observing a step of probability of O(1/m4)
until the end of the game is O(1/m). This is accounted for by first the term
−O(1/m) in the bound of the lemma.

We are left with the claim on the number of steps until the end of the game.
Using ph > 1/2 in Theorem 4.8, we obtain D�P0/2� = O(�), which means that
the expected number of steps of (1+1) EAb is O(�m2) = O(m3) since a step
is relevant, i.e., changes the length of the path, with probability Ω(m2). The
bound O(m3) holds also with probability 1 − 2−Ω(m). By Chernoff bounds,
there is with probability 1−2−Ω(m) a surplus of at least 
�/2� increasing steps
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within some cm relevant steps, c an appropriate constant. Also by Chernoff
bounds, there are with probability 1 − 2−Ω(m) at least cm relevant steps
within c′m3 steps of (1+1) EAb, c′ another appropriate constant. This proves
the lemma. ��

Putting the previous arguments presented until Lemma 6.13 together, we
obtain a first lower bound on the runtime of RLS1,2

b .

Lemma 6.15. Starting with an almost perfect matching and an augmenting
path of maximal length, the probability that RLS1,2

b finds the perfect matching
within 2c� steps, c > 0 an appropriate constant, is bounded from above by
2−Ω(�).

Proof. We essentially apply the argumentation leading to Lemma 6.13. Start-
ing from a Pvalue of �, the value k := ��/2	 = Ω(�) or, if k is even, the
value k − 1 has to be taken at least once before 0 is reached. Starting from
k − 1 (analogously for k), we have an unfair game where the probability of
the gamber not winning (where winning means returning to a Pvalue of �) is
bounded from above by

1 − r
�(k−1)/2�
h

1 − r
��/2�
h

≤ 2−c′�

for some constant c′ > 0. The game is repeated until it is lost (i.e., a Pvalue
of at most 1 is reached) for the first time. The probability of losing at least
once in 2c� games is bounded from above by 2(c−c′)� = 2−Ω(�) if the constant
c < c′ is chosen small enough. ��

To prove a corresponding result for (1+1) EAb, we still exploit the fact
that the game is unfair, i.e., there is a drift towards increasing the Pvalue.
However, we cannot apply the gambler’s ruin theorem any longer since, as
mentioned above, exponentially long phases allow for steps that change the
situation in a significant number of places. Therefore, the simplified drift the-
orem (Theorem 4.9) will be applied.

Lemma 6.16. Starting with an almost perfect matching and an augmenting
path of maximal length, the probability that (1+1) EAb finds the perfect match-
ing within 2c� steps, c > 0 an appropriate constant, is bounded from above by
2−Ω(�).

Proof. To apply Theorem 4.9, we set a := 0 and b := ��/2	 − 1. The random
variables Xt are obtained by taking the random Pvalues at the respective
time points, dividing them by 2 and rounding the result up. In this way, we
obtain a process on the state space {0, 1, . . . , ��/2	}.

Given a current Xtvalue of i, where i ≤ ��/2	 − 1, we need an estimate
of the expected change of this value. The probability of increasing the value
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by 1, i.e., lengthening the augmenting path of length 2i − 1 by 2, is bounded
from below by

p1(i) ≥ h

m2

(
1 − 1

m

)m−2

since at least one end of the path is not at a border of Gh,� and there are
h appropriate 2-bit flips. Here we use the fact that i ≤ ��/2	 − 1, i.e., the
augmenting path can still be lengthened. On the other hand, the probability
of decreasing the Xtvalue by j ≥ 2 is bounded from above according to

p−j(i) ≤ (j + 1) ·
(

1
m

)2j

since it is necessary to flip the 2k leftmost edges and the 2(j − k) rightmost
edges of the augmenting path for some k ∈ {0, . . . , j}. For p−1(i), we need
a better bound that is at least by a constant factor smaller than p1(i). We
estimate

p−1(i) ≤ 2
m2

(
1 − 1

m

)m−2

+
3

m4

since there are exactly two ways of flipping exactly two edges, and otherwise
one has to flip at least the 2k, 0 ≤ k ≤ 2, leftmost edges and the 4 − 2k
rightmost edges of the augmenting path.

Since most other mutations of (1+1) EAb will be rejected in this setting
due to worse fitness, we use the condition Crel that a step is relevant, meaning
it is accepted and changes the matching. Of course, if we obtain a lower bound
on the required number of relevant steps, this also bounds the actual number
of steps of (1+1) EAb from below. The probability prel of a relevant step is
bounded according to

1
m2

(
1 − 1

m

)m−2

≤ prel ≤ 2h + 2
m2

.

The lower bound holds because, unless the optimum has been found, there
always are two edges that, when flipped, lengthen or shorten the augmenting
path. The upper bound holds because there are at most 2(h + 1) = 2h + 2
couples of edges adjacent to a border of the augmenting path that, when
flipped, lengthen or shorten the path. The probability that more than two
bits flip and the step is relevant is lower since at least one of the 2h + 2
couples considered in the bound has to be flipped anyway.

Let R(i) = (Δ(i) | Crel) denote the random increase of the Xtvalue in rele-
vant steps, given a current value of i. We first concentrate on the contribution
of steps of length 1, i.e., we consider R1(i) := R(i) · 1{|R(i)| ≤ 1}. Thus,

E(R1(i)) =
p1(i)
prel

− p−1(i)
prel

≥
h

m2 ·
(
1 − 1

m

)m−2

2h+2
m2

−
2

m2 ·
(
1 − 1

m

)m−2 + 3
m4

2h+2
m2

=
(h − 2)

(
1 − 1

m

)m−2

2h + 2
− 3

m2(2h + 2)
≥ 1

8 · e − O(m−2)
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since h ≥ 3. The unconditional decrease Δ−
>1(i) = −Δ(i) · 1{Δ(i) < −1}, for

negative steps of length greater than 1, is in expectation at most

E(Δ−
>1(i)) ≤

∞∑
j=2

j · p−j(i) ≤
∞∑

j=2

j · (j + 1) · 1
m2j

≤ 6
m4

+
∞∑

j=3

2m2

m2j
= O(m−4)

using p−j ≤ (j + 1)/m2j . Hence, the total conditional drift is

E(R(i)) ≥ E(R1(i)) −
E(Δ−

>1(i))
prel

≥ 1
8 · e − O(m−2) − O(m−4) · em2

=
1

8 · e − O(m−2),

which is bounded from below by a constant such that the first condition of
Theorem 4.9 has been established.

The second condition follows with δ = 1 and r = 8 from

p−j

prel
≤ min

{
1,

j + 1
m2j

· em2

}
≤ min

{
1,

1
m2j−7

}
≤ 8 ·

(
1
2

)j

for m ≥ 2. From Theorem 4.9, the lemma follows. ��

We summarize our results. Note that the exponentially small failure prob-
ability 2−Ω(�) = 2−Ω(m1/3) from Lemma 6.15 is captured by the O(1/m) term
of the following lemma.

Theorem 6.17. Starting with an almost perfect matching and an augmenting
path of length 2k+1, the probability that (1+1) EAb finds the perfect matching
within 2c� steps, c > 0 an appropriate constant, is bounded from above by
O(1/m) + ((2/h) + O(1/m))k if 3 ≤ h ≤ � and k ≥ 1. For RLS1,2

b , the bound
2−Ω(�) + (2/h)k holds.

So far, we have only considered the case of almost perfect matchings and
shown that it can take exponential time to achieve the final improvement. We
return to the question of whether an almost perfect matching will be reached.

Lemma 6.18. If (1+1) EAb or RLS1,2
b do no start with the perfect matching,

an almost perfect matching is constructed before the perfect matching with a
probability of Ω(1/h).

Proof. Let M denote the set of edges selected by the current search point, and
let d := |M ⊕ M∗| denote the Hamming distance to M∗. We investigate the
situations when M is neither an almost perfect nor the perfect matching; this
includes the case where M is not even a matching. Then, any step producing
an almost perfect matching will be accepted.
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For (1+1) EAb, the probability of producing M∗ in the next step is
Θ(1/md). We argue that this probability is at most by a factor of O(h) larger
than the probability of producing an almost perfect matching in the next step.
If M⊕M∗ contains at least one M∗ edge, this edge is not included in M . Then
the step where everything works as in the step creating the perfect matching,
except for the M∗ edge, produces an almost perfect matching. The probability
Θ(1/md−1) of this step is even larger than the probability of the step creat-
ing M∗. If M⊕M∗ contains no M∗ edge, all M∗ edges are included in M , and
there are |M∗| ways to produce an almost perfect matching by additionally
flipping an M∗ edge. Their probability is Θ(|M∗|/md+1) = Θ(1/(hmd)). The
ratio of the relevant probabilities is always at least Ω(1/h).

For RLS1,2
b , a necessary event is a situation where d ≤ 2. We argue that in

any situation where d = 1, the next step produces M∗ with a probability that
is at most by a factor O(h) larger than the probability that it produces an
almost perfect matching. In situations where d = 2, the first probability will
be proven to be even smaller than the last probability since we investigate the
next two steps.

Let us consider the case d = 1. Then we are only interested in the case
where M is a superset of M∗ since otherwise M would be almost perfect.
Let M = M∗ ∪ {e}, implying that e is an M

∗
edge. The next step produces

M∗ with probability Θ(1/m). If e and another edge of M flip, an almost
perfect matching is obtained. This happens with probabiliy Θ(|M∗|/m2) =
Θ(1/(hm)). The ratio is Ω(1/h).

Finally, assume d = 2. Then a necessary event to produce M∗ is that
each of the two edges in M ⊕ M∗ flips at least once in the next two steps.
The probability of this event is Θ(1/m2). If M ⊕M∗ contains two M∗ edges,
both are free, and the first step produces an almost perfect matching with
a probability of Θ(1/m) by flipping only one of these edges. If M ⊕ M∗

contains one M∗ edge and one M
∗

edge, the first step removes the latter edge
from M with probability Θ(1/m) and produces an almost perfect matching.
Finally, if M ⊕M∗ contains two M

∗
edges then M = M∗ ∪ {e1, e2} is a non-

matching where e1 and e2 are the two M
∗

edges. Any step flipping e1 and
an arbitrary M∗ edge in the first step will be accepted even though it leads
still to a non-matching. The reason is that the penalty term in the underlying
fitness function (cf. Section 6.1) decreases by at least 1 and optimization
proceeds in lexicographic order. If the second step flips e2, an almost perfect
matching is obtained. Ths probability of these events is Θ((|M∗|/m)·(1/m)) =
Θ(1/(hm2)), and the ratio of the relevant probabilities is again bounded from
below by Ω(1/h). ��

Taking the previous lemma, Lemma 6.12, and Theorem 6.17 together,
we obtain that the 2Ω(�) bound of the theorem holds with a probability of
Ω(1/(hm)) if we start with any search point which is not the optimum. If
h ≤ � then it holds that � = Ω(m1/3), and if h is a constant, then � = Ω(m).
Altogether, given a initial search point that is not the optimum, we obtain
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an exponential lower bound of 2Ω(�) = 2Ω(m1/3) for the expected optimization
time. This is summarized by the following theorem.

Theorem 6.19. For Gh,�, 3 ≤ h ≤ �, the expected optimization time of
RLS1,2

b and (1+1) EAb is 2Ω(�) if the initial search point is not the perfect
matching.

For example, if the initial search point is drawn uniformly at random, the
probability of not starting with the perfect matching is 1−2−Ω(m). In general,
the precondition of not starting with the optimum is the weakest condition
one can think of. Early analyses of simulated annealing for the maximum
matching problem (Sasakik and Hajek, 1988) are based on the deterministic
choice of the empty matching as initial starting point. Theorem 6.19 is far less
restrictive in this sense.

However, Theorem 6.19 contains a result on the expected optimization
time, only. This statement goes back to Lemma 6.12 and Theorem 6.17,
which imply a lower bound of Ω(1/(hm)) on the probability of observing an
exponential optimization time. Giel and Wegener (2004) improve upon this
bound and show that an exponential time holds with probability 1 − 2−Ω(�)

if h = ω(log n). Very careful analyses are required to show these improved re-
sults, and the interested reader is referred to the works by Giel and Wegener
(2003, 2004, 2006).

Conclusions

In this chapter, we have analyzed the simple search algorithms RLS1,2
b and

(1+1) EA for the maximum matching problem. Optimal solutions are found
on simple graph classes like paths in expected polynomial time. More gen-
erally, solutions that are only by a factor 1 + ε away from optimality can
be found in expected polynomial time. This proves that the algorithms are
polynomial-time randomized approximation schemes (PRASs) for the prob-
lem. Consistently with this result, the limits of the search algorithms have
been determined. On a worst-case graph, the expected time until the optimal
solution is found was proven to be exponential.

The analyses make use of the techniques presented in Section 4.2. Most
notably, the gambler’s ruin theorem and the drift theorem were used to in-
vestigate the stochastic processes behind the algorithms.
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Makespan Scheduling

In this chapter, we study the simple scheduling problem introduced in Sec-
tion 2.1. Given n jobs with positive processing times p1, . . . , pn, schedule them
on two identical machines in a way such that the makespan, i.e., the overall
completion time, is minimized. Let x ∈ {0, 1}n be a decision vector. Job j is
scheduled on machine 1 iff xj = 0 holds and on machine 2 iff xj = 1 holds.
Hence, the goal is to minimize

fp1,...,pn
(x) := max

{
n∑

i=1

pjxj,

n∑
i=1

pj(1 − xj)

}
,

where the index p1, . . . , pn is often omitted for the sake of readability. Note
that the representation is redundant in the sense that a search point x and
its bitwise binary complement x̄ lead to the same fvalue.

We see that the problem is very easy to describe and leads to a pseudo-
boolean fitness function in a natural way. In the domain of theoretical com-
puter science, this is a very well-studied problem also known as PARTITION:
a set of n numbers has to be split into two subsets such that the numbers in
the two subsets sum up to a maximum value as small as possible. In the best
case, there is a perfect partition with value (p1 + · · ·+pn)/2. In the following,
we also refer to our scheduling problem briefly by the name PARTITION.

Despite its simplicity, PARTITION is an NP -hard problem with an NP -
complete decision variant. Hence, we cannot hope for exact solutions in poly-
nomial time. However, the problem is perfectly suited for investigating the
capabilities of stochastic search algorithms to approximate optimal solutions.
There are efficient approximation algorithms based on the knapsack problem
which guarantee solutions with an approximation ratio 1+ ε in time O(n3/ε),
i.e., polynomial in n and 1/ε (Hochbaum, 1997). Of course, an approximation
ratio of 2 is trivially obtained by placing all jobs on the same machine.

In this chapter, we investigate the simple search algorithms RLS1
b and

(1+1) EAb for the minimization of functions fp1,...,pn induced by instances to
the PARTITION problem. The results are due to Witt (2005). We will start

F. Neumann, C. Witt, Bioinspired Computation
in Combinatorial Optimization, Natural Computing Series,
DOI 10.1007/978-3-642-16544-3 7, © Springer-Verlag Berlin Heidelberg 2010
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in Section 7.2 with a worst-case perspective, which means that the maximum
approximation ratio obtainable in polynomial time over all possible instances
is elaborated on. Later, we will relax this perspective by appropriate average-
case models, which will be dealt with in Section 7.3.1. Both sections rely on
concepts and tools developed in the following section.

7.1 Representations and Neighborhood Structure

Like many of the analyses in previous chapters, we focus on the progress
that our stochastic search algorithms achieve by local steps. Our aim is to
characterize search points having better Hamming neighbors. To this end,
some notions and notations are helpful.

Given the processing times of the n jobs, we assume w. l. o. g. throughout
this section that they appear sorted in nonincreasing order, i.e., p1 ≥ · · · ≥ pn.
Moreover, we denote by P := p1 + · · · + pn the sum of all processing times,
which rephrases our lower bound on optima by P/2. As long as a current
point x ∈ {0, 1}n leads to a worse fvalue, the two machines have different
loads. We briefly refer to the machine with higher load as the fuller machine
and call the other machine emptier. A local step of a search algorithm might
improve a current solution by shifting a job from the fuller to the emptier
machine. We describe sufficient conditions for such steps to be successful.

Suppose that a current solution x is given and we know that there exists
a job, say job i, on the fuller machine with processing time pi. If f(x) ≥
P/2 + pi/2 holds for this search point, the loads of the machines differ by at
least pi. Hence, a step shifting job i from the fuller to the emptier machine will
be accepted. More generally, for an arbitrary search point x, let s(x) denote
the smallest processing time of the jobs scheduled on the fuller machine. We
call s(x) the critical job size with respect to x (and, implicitly, the underlying
instance to the PARTITION problem). Our sufficient condition for improvable
solutions now reads as f(x) ≥ P/2+ s(x)/2; see Figure 7.1 for an illustration.
Only if the current fvalue is less than this bound can the search algorithm
be stuck in a local optimum. Therefore, P/2 + s(x)/2 is a possible barrier
for locally searching algorithms, and it would be nice to have upper bounds
on s(x).

Fig. 7.1. A sufficient condition for locally improvable solutions
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In general, given an arbitrary instance to the problem and an arbitrary
search point x, there can be no better bound on s(x) than p1, i.e., the process-
ing time of the largest job. If the processing times of the jobs differ heavily,
P/2 + p1/2 might be very close to P ; hence our characterization of improv-
able situations would be trivial. However, after the algorithm has taken some
improving steps and has obtained an already relatively good – but not opti-
mal – solution, we might be able to conclude that there must be some quite
small jobs on the fuller machine, leading to much better estimates on the
critical job size s(x). Actually, we will describe situations where the critical
job size is guaranteed to respect a certain bound for the rest of the optimiza-
tion process. This will be possible since RLS1

b and (1+1) EAb do not accept
worsenings.

Given a bound s∗ on the critical job size that is maintained for the rest
of the optimization, we can estimate the progress of the search algorithms to-
wards the possible barrier P/2+s∗/2 using the techniques from Section 4.2. We
allow for barriers L ≥ P/2 in a slightly more general setting and bound the ex-
pected time to reach that barrier using the fitness-level method (Lemma 4.1).
Moreover, we present an improved bound for the case where solutions slightly
worse than the barrier are sufficient. In that case, the method of expected mul-
tiplicative distance decrease (see Section 4.2.3) gives very good time bounds.

Lemma 7.1. Let a current search point of RLS1
b or (1+1) EAb on an arbitary

instance to the PARTITION problem be given. Suppose that the critical job
size is guaranteed to be bounded from above by s∗ for all following search points
of value greater than L + s∗/2. Then the algorithm reaches an fvalue at most
L + s∗/2 in expected time O(n2).

Proof. The proof uses a fitness-based partition which has to be defined care-
fully. In particular, since we are dealing with minimization, we now assume
Ai >f Ai+1 for the sets of the partition.

Let r be the smallest i such that pi ≤ s∗, i.e., thanks to p1 ≥ · · · ≥ pn it
holds that pi ≤ s∗ for all i ≥ r. We define

Ai :=
{

x
∣∣∣ P −

r+i−1∑
j=r

pj ≥ f(x) > P −
r+i∑
j=r

pj

}

for 0 ≤ i ≤ n − r and An−r+1 := {x | f(x) ≤ P −
∑n

j=r pj}. Some sets might
contain search points of value less than L + s∗/2, which we pessimistically
ignore in the following. Using the expected time until set An−r+1 is reached,
we obtain an upper bound on the expected time to reach the barrier L+s∗/2.

Consider some x such that f(x) > L + s∗/2. By our assumptions, there
must be a job from pr, . . . , pn on the fuller machine whose move to the emptier
machine decreases the fvalue by its processing time or leads to an fvalue of
at most L+ s∗/2. If x ∈ Ai, there is, thanks to pr ≥ · · · ≥ pn, even a job from
pr, . . . , pr+i with this property. Moving this job to the emptier machine by a
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1-bit flip of the search algorithm has probability at least 1/(en) and, again
due to pr ≥ · · · ≥ pn, leads to some x′ ∈ Aj such that j > i. The expected
waiting time for such a step is at most en. After at most n − r + 1 sets are
left, the fvalue drops to at most L + s∗/2. Hence, the total expected time
is O(n2). ��

We now turn to a result that is obtained by the method of expected mul-
tiplicative distance decrease.

Lemma 7.2. Let a current search point of RLS1
b or (1+1) EAb on an arbitary

instance to the PARTITION problem be given. Suppose that the critical job
size is guaranteed to be bounded from above by s∗ for all following search points
of value greater than L+s∗/2. Then for any γ > 1 and 0 < δ < 1, (1+1) EAb

(RLS1
b) reaches an fvalue at most L + s∗/2 + δP/2 in at most �en ln(γ/δ)�

(�n ln(γ/δ)�) steps with probability at least 1 − γ−1. Moreover, the expected
number of steps is at most 2�en ln(2/δ)� (2�n ln(2/δ)�).

Proof. Let r be the smallest i such that pi ≤ s∗. Moreover, consider a current
search point x satisfying f(x) > L+s∗/2. We are interested in the contribution
of the so-called small jobs pr, . . . , pn to the fvalue and estimate the average
decrease of the fvalue using the method of expected multiplicative distance
decrease.

Let d(x) := max{f(x) − L − s∗/2, 0} denote the distance of the fvalue
from the barrier L + s∗/2. By our assumptions, d(x) is a lower bound on the
contribution of small jobs to f(x). Moreover, f(x) ≥ P/2 and f(x) > L+s∗/2
together imply d(x) ≤ P/2. As long as d(x) > 0, all steps moving only a small
job to the emptier machine are accepted and decrease the dvalue by its size or
lead to an fvalue of at most L + s∗/2. Let d0 be some current dvalue. Since a
1-bit flip of (1+1) EAb has probability at least 1/(en), the expected ddecrease
is at least d0/(en) and the expected dvalue after the step, therefore, is at most
(1−1/(en))d0. The expected dvalue dt after t steps is at most (1−1/(en))td0.
For t′ := en ln(γ/δ), we have dt′ ≤ δd0/γ ≤ δP/(2γ). Markov’s inequality
implies that dt′ ≤ δP/2 with probability at least 1 − 1/γ. Moreover, we can
repeat independent phases of length �en ln(2/δ)�. The expected number of
phases until the dvalue is at most δP/2 is at most 2, implying the lemma for
(1+1) EAb.

The statements regarding RLS1
b follow in the same way, taking into account

that a 1-bit flip has probability 1/n. ��

7.2 Worst-Case Analysis

7.2.1 Approximations Obtainable in Expected Polynomial Time

In this section, we will study bounds on the approximation ratios obtainable
by the search algorithms within polynomial time regardless of the problem
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instance. This is a classical worst-case analysis, and we cannot hope for exact
solutions in polynomial time due to the NP -hardness of the problem at hand.

Theorem 7.3. Let ε > 0 be a constant. On every instance to the PARTITION
problem, (1+1) EAb and RLS1

b reach an fvalue with approximation ratio 4/3+
ε in an expected number of O(n) steps and an fvalue with approximation ratio
4/3 in an expected number of O(n2) steps.

Proof. We define L := max{p1, P/2} and are interested in an upper bound on
the smallest job on the fuller machine. To this end, we still have to distinguish
between two cases. The first case holds if p1 +p2 > 2P/3. Recalling p1 ≥ · · · ≥
pn, this implies p1 > P/3 and, therefore, P − p1 < 2P/3. Hence, if we start
with p1 and p2 on the same machine, a step separating p1 and p2 by putting
p2 onto the emptier machine is accepted, and these jobs will remain separated
afterwards. The expected time until such a separating step occurs is O(n).
We claim that for all following search points x of value at least f(x) > L,
the critical job size is bounded from above by p3. This holds since by the
definition of L, the biggest job is not sufficient for obtaining an fvalue greater
than L. Now, since p3+· · ·+pn < P/3, we know that pi < P/3 for i ≥ 3. When
working with s∗ ≤ P/3, search points of value L+s∗/2 have an approximation
ratio of

L + s∗/2
L

≤ P/2 + s∗/2
P/2

≤ 1 +
P/6
P/2

=
4
3

since L ≥ P/2. Likewise, search points of value L + s∗/2 + δP/2 have an
approximation ratio of 4/3 + δ. Hence, the first statement of the theorem
follows for δ := ε by Lemma 7.2 and the second one by Lemma 7.1.

If p1 +p2 ≤ 2P/3, we have pi ≤ P/3 for i ≥ 2. Since p1 < P/2, this implies
that the critical job size is always at most p2 ≤ P/3. Therefore, the theorem
holds also in this case. ��

The approximation ratio 4/3 that the search algorithms are able to obtain
within expected polynomial time is at least almost tight. We present a simple
worst-case instance where both RLS and (1+1) EAb get stuck at approxima-
tion ratios close to 4/3 with probability Ω(1). This instance is called P ∗

ε in
the following.

Definition 7.4. Let n be even and ε > 0 be an arbitrarily small constant.
Then the instance P ∗

ε = {p1, . . . , pn} is defined by p1 := p2 := 1/3 − ε/4 and
pi := (1/3 + ε/2)/(n − 2) for 3 ≤ i ≤ n.

Note that the total processing time P := p1 + · · ·+pn has been normalized
to 1 for the instance P ∗

ε , which is only a cosmectic aspect and does not play a
crucial role. However, it is important that the processing times in the instance
be highly diverse: the times p1 = p2 of the two big jobs are almost as large as
the total processing time of all n − 2 small jobs.

It is worth noting that the instance P ∗
ε has an exponential number of

perfect partitions. Each solution that puts one big job and half of the small
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jobs on each machine is such a perfect partition. However, the difference in job
sizes can trick the search algorithm into bad local optima as follows: suppose
the two big jobs are on one machine and all the small jobs on the other one.
Then the current makespan is p1 + p2 = 2/3 − ε/2. A step that tries to move
a big job from the fuller to the emptier machine would make the previously
emptier machine have a makespan of (1/3+ε/2)+1/3−ε/4 = 2/3+ε/4. This
is worse than the previous makespan by an amount of 3ε/4. To compensate
for this, one would need at least (3ε/4)/p3 = Ω(n) small jobs. An illustration
is given in Figure 7.2.

Fig. 7.2. A worst-case instance

In the following theorem, we make our ideas precise. As a technical detail,
we do not wait for all small jobs to be scheduled on the emptier machine but
for only for almost all of these.

Theorem 7.5. Let ε be any constant s. t. 0 < ε < 1/3. With probability Ω(1),
both (1+1) EAb and RLS1

b need on the instance P ∗
ε at least nΩ(n) steps to

create a solution with a better approximation ratio than 4/3 − ε.

Proof. The proof idea is to show that the search algorithm reaches a situation
where the two big jobs are one the same machine and at least k := n −
2 − (n − 2)ε/2 small jobs are on the other one. Since ε < 1/3, at least k
jobs yield a total processing time of at least 1/3 + ε/2 − (ε/2)(1/3 + ε/2) =
1/3 + ε/3 − ε2/4 ≥ 1/3 + ε/4. To leave the situation by separating the big
jobs, the search algorithm has to transfer small jobs of a total processing time
of at least ε/4 from the emptier to the fuller machine in a single step. For
this, (n − 2)ε/2 small jobs are not enough. Flipping Ω(n) bits in one step of
(1+1) EAb has probability n−Ω(n), and flipping Ω(n) bits at least once within
ncn steps is, therefore, still exponentially unlikely if the constant c is small
enough. For RLS1

b, the probability is even 0. The makespan is at least 2/3−ε/2
unless the two big jobs are separated, which corresponds to an approximation
ratio no better than (2/3− ε/2)/(1/2) = 4/3− ε. This will imply the theorem
if we can prove that the described situation is reached with probability Ω(1).

The open claim is shown by considering the initial search point of the
search algorithm. With probability 1/2, it puts the two big jobs onto the same
machine. Therefore, we estimate the probability that enough small jobs are
transferred from this machine to the other one in order to reach the situation,
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before a bit at the first two positions (denoting the large jobs) flips. In a
phase of length cn for any constant c, with probability (1 − 2/n)cn = Ω(1),
the latter never happens. Under this assumption, each step moving a small
job onto the emptier machine is accepted. By the same idea as that in the
proof of Lemma 7.2, we estimate the expected decrease of the contribution of
small jobs to the fvalue. Reducing it to at most an ε/2fraction of its initial
contribution suffices for obtaining at least k jobs in the emptier machine. Each
step leads to an expected decrease by at least a 1/(en)fraction. Since ε is a
positive constant, O(n) steps are sufficient to decrease the contribution to at
most an expected ε/4fraction. By Markov’s inequality, we obtain the desired
fraction within O(n) steps with probability at least 1/2. Since c may be chosen
appropriately, this proves the theorem. ��

7.2.2 The Success Probability for Certain Approximations

The worst-case example P ∗
ε studied in the previous subsection suggests that

the search algorithms are likely to arrive at a bad approximation if they mis-
place big jobs. If we take the worst-case perspective on what is doable in
expected polynomial time then the probability Ω(1) of getting stuck in a lo-
cal optimum as proved in Theorem 7.5 necessarily limits our result to the
relatively bad approximation ratio of only 4/3 − ε.

However, with similar techniques as before, it can easily be shown for P ∗
ε

that the search algorithms are able to find an optimal solution with probabil-
ity Ω(1) in polynomial time if they separate the two big jobs in the beginning.
This is a finer result from a more relaxed perspective and relates to the suc-
cess probability within polynomial time. Even if the expected optimization
time of a search algorithm is exponential, it might have a good probability of
finding optima in polynomial time (Droste et al., 2002). Multiple restarts of
the search algorithms will help us find the optimum within polynomial time
with a probability very close to 1.

An obvious question is whether the observation regarding the success
probability on P ∗

ε can be generalized to arbitrary instances to the PARTI-
TION problem. We can achieve this in the following way. In order to obtain a
(1 + ε) approximation in polynomial time according to Lemma 7.1, the critical
job size should be bounded above by εP . Due to the ordering p1 ≥ · · · ≥ pn,
all objects of index at least s := �1/ε� are bounded by this volume. Let those
jobs be called small and the first s− 1 jobs be called large; see Figure 7.3 for
an illustration. The idea is to bound the probability that the search algorithm
distributes the large jobs in such a nice way that it makes mistakes only with
the small jobs, resulting in a critical job size of at most ps. Interestingly, this
is essentially the same idea as that for the classical approximation (PTAS, see
Definition 2.7) scheme for the PARTITION problem presented by Graham
(1969).

Hence, as long as ε does not depend on the input size, we can achieve
almost arbitrarily good approximations in polynomial time. In the following,
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Fig. 7.3. Example of large and small jobs, s = 3

we will show that the search algorithms are able to achieve similar results
with certain properties. Actually, the analysis is based on the above-described
distinction of large and small jobs and a simulation of Graham’s PTAS. Even
if the search algorithm does not know the latter’s algorithmic idea, it is able
to behave accordingly by chance.

Theorem 7.6. Let an arbitrary instance to the PARTITION problem be given
and choose ε ≥ 4/n. Then, with probability at least 2−(e log e+e)�2/ε� ln(4/ε)−�2/ε�,
(1+1) EAb creates a solution of approximation ratio (1 + ε) in �en ln(4/ε))�
steps. The same holds for RLS1

b with �n ln(4/ε))� steps and a probability of at
least 2−(log e+1)�2/ε� ln(4/ε)−�2/ε�.

Proof. Let s := �2/ε� ≤ n/2 + 1. Since p1 ≥ · · · ≥ pn, it holds that pi ≤ εP/2
for i ≥ s. If p1 + · · ·+ ps−1 ≤ P/2, the critical job size for all search points of
value at least P/2 + ps/2 is always bounded above by ps and, therefore, by
εP/2. Therefore, in this case, the theorem follows for δ := ε/2 and γ := 2 by
Lemma 7.2.

In the following, we assume p1+· · ·+ps−1 > P/2. Consider all partitions of
only the first s−1 jobs, i.e., the large jobs. Let L∗ be the minimum makespan
over all these partitions and let L := max{P/2, L∗}. A search point and its
complement lead to the same fvalue. Hence, there at least two search points
such that the contribution of the large jobs to the makespan is at most L.
Since the initial solution is drawn uniformly, the probability is at least 2−s+2

that the big jobs in the inital solution contribute at most L to the makespan.
As long as the big jobs are not moved, we can be sure that the critical job

size for search points of fvalue greater than L is at most ps ≤ εP/2, and we
can apply the arguments from the first paragraph. The probability that in a
phase of t := �en ln(4/ε)� steps it never happens that at least one of the first
s − 1 bits flips is bounded from below by(

1 − s − 1
n

)en(ln(4/ε))+1

≥ e−e(ln(4/ε))(s−1)

(
1 − s − 1

n

)se ln(4/ε)

,

which is at least 2−(e log e+e)�2/ε� ln(4/ε) since s − 1 ≤ n/2. Assuming this to
happen, we apply Lemma 7.2 for δ := ε/2 and γ := 2. Hence, (1+1) EAb
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reaches a solution of approximation ratio (1 + ε) within t steps with proba-
bility at least 1/2. Altogether, the desired approximation is reached within t
steps with probability at least

1
2
· 2−�2/ε�+2 · 2−(e log e+e)�2/ε� ln(4/ε) ≥ 2−(e log e+e)�2/ε� ln(4/ε)−�2/ε�.

The statement for RLS1
b follows by redefining t := �n ln(4/ε)�. ��

Theorem 7.6 allows us to design a PRAS (see Definition 2.8) for the
PARTITION problem using multistart variants of the considered search algo-
rithms. The idea is as follows. If �(n) is a lower bound on the probability that a
single run of the algorithm achieves the desired approximation in O(n ln(1/ε))
steps, then this holds for at least one out of �2/�(n)� parallel runs with a prob-
ability of at least

1 − (1 − �(n))�2/�(n)� ≥ 1 − e−2 > 3/4,

which is the success probability required in a PRAS.
We terminate each run definitely after O(n ln(1/ε)) steps. Hence, the com-

putational effort c(n), i.e., the number of fevaluations, incurred by the parallel
runs can be bounded according to

O(n ln(1/ε)) · 2(e log e+e)�2/ε� ln(4/ε)+O(1/ε).

For ε > 0 a constant, c(n) = O(n) holds, which is a polynomial in n. Moreover,
c(n) is still a polynomial for any ε = Ω(log log n/log n). Hence, the multistart
strategy is really a PRAS. This is the second example where a stochastic
search algorithm is characterized in such a way. Compared to the result for
the maximum matching problem in Section 6.2, the statement from this sec-
tion might be considered even more promising since we are dealing with an
NP-hard problem.

7.3 Average-Case Analysis

7.3.1 Introductory Results

So far, the analyses in this chapter were based on a pessimistic model. All
possible instances to the problem had to be taken into account, resulting in all
statements dealing implicitly with the worst case. It is commonly objected that
this perspective of worst-case instances might be very unlikely in applications
or that they do not even appear at all.

A well-established relaxation to the worst-case perspective is a so-called
average-case analysis. The average is taken of a set of instances, each of which
obtains a certain probability of occurrence, in the simplest case uniform over
the considered set. In such a model, even the behavior of a deterministic
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algorithm has to be analyzed in a stochastic environment. A classical example
is the average-case analysis of QuickSort (Cormen et al., 2001), where each
initial order of the objects to be sorted is equally likely and an expectation of
the runtime is computed. The worst-case runtime Ω(n2) in the deterministic
case decreases to an expectation of only O(n log n) in the average-case model.

We aim at an average case of stochastic search algorithms, which entails
two sources of randomness. We have to deal with random inputs and random
decisions of the search algorithm at the same time. This might explain why
average-case analyses of stochastic search algorithms are relatively rare and
our attempt is one of the first such analyses. As a result, we must restrict
ourselves to fairly simple distributions on the set of possible instances.

Two distributions are considered:

Uniform distribution model, where each job size pi is drawn indepen-
dently from the unit interval [0, 1].

Exponential distribution model, where each job size pi independently
follows an exponential distribution with parameter 1, i.e., Prob(pi ≥ t) =
e−t for 1 ≤ i ≤ n.

Using the properties of the two distributions, the expected job size is 1/2 in the
first and 1 in the second model. It is crucial for our analyses that we assume
independence of the random job sizes. We also drop the assumption that the
jobs appear sorted in decreasing size since it would introduce dependencies. If
we change our perspective from random job sizes pi to a sorted representation,
this will be made explicit in the following.

Our two models slightly abuse the definition of the PARTITION problem
in that the random job sizes are positve reals rather than integers now. By
limiting the precision of the numbers and normalizing the job sizes, however,
we can easily arrive at an instance according to the original formulation. This
is a technical detail that will not be discussed hereinafter.

A different motivation for our average-case models is taken from the lit-
erature. In the last two decades, some average-case analyses of deterministic
algorithms for the PARTITION problem have been performed. The first such
analyses studied the LPT (longest processing time) rule, a greedy algorithm
displayed as Algorithm 10.

Algorithm 10 Longest Processing Time (LPT)

1. Sort the jobs according to decreasing processing time.
2. For i = 1, . . . , n, schedule the ith job on the currently emptier machine (breaking

ties arbitrarily)

Extending a result that showed convergence in expectation, Frenk and Rin-
nooy Kan (1986) were able to prove that the LPT rule converges to optimality
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at a speed of O(log n/n) almost surely in several input models, including the
above-mentioned uniform distribution and exponential distribution models.
Further results on average-case analyses of more elaborate deterministic algo-
rithms are contained in a survey by Coffman and Whitt (1995).

In our random input models, the optimum fvalue is itself random and
an appropriate generalization of the approximation ratio is no longer obvious.
Therefore, for a current search point, we now consider the so-called discrepancy
measure also studied by Frenk and Rinnooy Kan (1986). The discrepancy de-
notes the absolute difference of the loads of the two machines; formally, we
have |f(x) − f(x̄)| as the discrepancy of a search point x. As a first observa-
tion, we show that the random initial search point is likely to have a relatively
high discrepancy.

Lemma 7.7. With probabilty Ω(1), the initial discrepancy of (1+1) EAb and
RLS is Ω(

√
n) in both the uniform and the exponential distribution models.

Proof. We show that the discrepancy is a consequence of a bias of the bino-
mial distribution. Let F be the random random number of jobs which are
scheduled on the first machine by the initial search point. Since each bit of
the initial search point is drawn uniformly and independently, F follows a bi-
nomial distribution with parameters n and 1/2. It is well known (Jansen and
Wegener, 2001) that such a random variable is likely to exceed its expectation
in the order of its standard deviation; more precisely, the probability of the
event F ≥ n/2 + c

√
n is Ω(1) for a constant c > 0. Let us assume this event

to happen. Then there are Ω(
√

n) more jobs on the first than on the second
machine, which does not say anything about the discrepancy so far.

Let pf
1, . . . , p

f
k, where k = n/2 + c

√
n, denote the processing times of the

jobs on the first machine (without assuming any specific order), and accord-
ingly ps

1, . . . , p
s
n−k on the second machine. Note that the initial search point

decides on which machine to schedule a job independently of the job size.
Hence, we can apply the principle of deferred decisions (Motwani and Ragha-
van, 1995). This principle means that the outcomes of random variables are
only revealed at the time when they are first needed. Here, we assume the pro-
cessing times to be chosen independently after the initial schedule has been
fixed. If we study only n− k of the jobs on the first machine, we can compare
their processing times to those of the jobs ps

1, . . . , p
s
n−k. Since no specific order

is assumed, pf
1 + · · · + pf

n−k follows the same distribution as ps
1 + · · · + ps

n−k.
By symmetry, pf

1 + · · ·+ pf
n−k ≥ ps

1 + · · ·+ ps
n−k holds with probability Ω(1).

If we can show that pf
n−k+1 + · · · + pf

k = Ω(
√

n), we have proved the lemma.
The last claim follows in almost the same way for both random models.

For 1 ≤ i ≤ n, we have Prob(pi ≥ 1/2) = 1/2 in the uniform distribution
model and Prob(pi ≥ 1/2) ≥ e−1/2 ≥ 1/2 in the exponential distribution
model. Note that there are Ω(

√
n) jobs in the set pf

n−k+1, . . . , p
f
k. Counting

the jobs of size at least 1/2 among these and applying Chernoff bounds, we
obtain that pf

n−k+1+· · ·+pf
k = Ω(

√
n) with probability Ω(1). All assumptions

together hold with probability Ω(1), which proves the lemma. ��
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We continue by showing a simple upper bound on the discrepancy after
polynomially many steps in the uniform distribution model.

Lemma 7.8. The discrepancy of (1+1) EAb (RLS1
b) in the uniform distri-

bution model is bounded from above by 1 after an expected number of O(n2)
(O(n log n)) steps. Moreover, for any constant c ≥ 1, it is bounded from above
by 1 with probability at least 1−O(1/nc) after O(n2 log n) (O(n log n)) steps.

Proof. Recall the argumentation behind the critical job size defined in Sec-
tion 7.1. If the discrepancy is greater than 1, steps flipping one bit can im-
prove the fvalue by the job moved or lead to a discrepancy of less than 1. By
a fitness-level argument as in the proof of Lemma 7.1, we obtain the O(n2)
bound for (1+1) EAb. This holds for any random instance. Hence, by Markov’s
inequality and repeating phases, the discrepancy is at most 1 with probability
1−O(1/nc) after O(n2 log n) steps. The statements for RLS1

b follow immedi-
ately by the Coupon Collector’s Theorem (see Section 4.2.2). ��

The preceding upper bound on the discrepancy was easy to obtain; how-
ever, for (1+1) EAb, we can show that with a high probability, the discrepancy
provably becomes much lower than 1 in a polynomial number of steps. The
reason is as follows. All proofs so far considered only local steps; however,
(1+1) EAb is able to leave local optima by flipping several bits in a step. In
particular, it can swap two jobs that are on different machines, which changes
the makespan by the difference of the two job sizes. This allows for further im-
provements of the fvalue until there are no more possible operations swapping
two jobs.

Using this observation, we extend the set of jobs used to determine the
critical job size by “difference jobs” of size pi − pj , 1 ≤ i, j ≤ n, such that
pi > pj , and pi is on the fuller and pj on the emptier machine. The aim is
therefore to bound the difference jobs in our random instance. To this end, we
finally sort the n random job sizes p1, . . . , pn decreasingly. Let X(1) ≥ · · · ≥
X(n) be the resulting sequence, which is now a sequence of dependent random
variables. The X(i), 1 ≤ i ≤ n, are typically called order statistics (David and
Nagaraja, 2003). We state useful properties that hold for the order statistic
in our models.

Uniform distribution model. For 1 ≤ i ≤ n − 1 and 0 < t < 1 it holds
that Prob(X(i) − X(i+1) ≥ t) = Prob(X(n) ≥ t) = (1 − t)n.

Exponential distribution model. For 1 ≤ i ≤ n it holds that X(i) =∑n
j=i

Yj

j
, where Y1, . . . , Yn is a sequence of independent, exponentially

distributed random variables with parameter 1 (the same sequence is used
in all X(i)).

With respect to the uniform distribution model, the properties immedi-
ately allow us to bound the size of the “difference jobs” X(i) − X(i+1) if we
know that X(i) is on the fuller and X(i+1) on the emptier machine. With re-
gard to the exponential distribution model, a little bit more work is required
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to estimate the size of the difference jobs. However, the basic ideas of the
upcoming analyses are contained in the proofs for the uniform distribution
model.

7.3.2 Asymptotically Vanishing Discrepancies

The following theorem bounds the discrepancy of (1+1) EAb in the uniform
distribution model.

Theorem 7.9. Let c ≥ 1 be an arbitrary constant. After O(nc+4 log n) steps,
the discrepancy of (1+1) EAb in the uniform distribution model is bounded
from above by O(log n/n) with probability at least 1−O(1/nc). Moreover, the
expected discrepancy after O(n5 log n) steps is also bounded by O(log n/n).

Before giving the proof, we try to interpret the result. First, the solution
of (1+1) EAb after a polynomial number of steps converges to optimality in
expectation. Second, the asymptotic discrepancy after a polynomial number of
steps is at most O(log n/n), i.e., convergent to 0, with probability 1−O(1/nc),
i.e., convergent to 1 polynomially fast. This is almost as strong as the above-
mentioned result for the LPT rule proved by Frenk and Rinnooy Kan (1987).

Proof. By Lemma 7.8, the discrepancy is at most 1 after O(n2 log n) steps
with probability at least 1−O(1/n2). Since the discrepancy is always bounded
by n, the failure probability contributes only an O(1/n) term to the expected
discrepancy after O(n5 log n) steps. From now on, we consider the time after
the first step where the discrepancy is at most 1 and concentrate on steps
flipping two bits. If an accepted step moves an object of size p′ from the fuller
to the emptier machine and one of size p′′ < p′ the other way round, the
discrepancy may be decreased by 2(p′ − p′′). We look for combinations where
p′ − p′′ is small.

Let X(1) ≥ · · · ≥ X(n) be the order statistics of the random job sizes. If
for the current search point there is some i s. t. X(i) is the order statistic of a
job on the fuller and X(i+1) on the emptier machine, then a step exchanging
X(i) and X(i+1) may decrease the discrepancy by 2(X(i)−X(i+1)). If no such i
exists, all jobs on the emptier machine are larger than every job on the fuller
machine. In this case, X(n) can be moved onto the emptier machine, possibly
decreasing the discrepancy by 2X(n). Hence, we need upper bounds on both
X(i) − X(i+1) and X(n).

Let t∗ := (c+1)(ln n)/n, i.e., t∗ = O(log n/n) since c is a constant. We ob-
tain (1− t∗)n ≤ n−c−1. By the above-mentioned properties of order statistics,
this implies that with probability 1 − O(1/nc), X(i) − X(i+1) ≤ t∗ holds for
all i and Prob(X(n) ≥ t∗) = O(1/nc+1). Now assume X(i) − X(i+1) ≤ t∗ for
all i and X(n) ≤ t∗. If this does not hold, we bound the expected discrepancy
after O(nc+4 log n) steps by 1, yielding a term of O(1/nc) = O(1/n) in the
total expected discrepancy. By the arguments explaining the critical job size,
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there is always a step flipping at most two bits that decreases the discrepancy
as long as the discrepancy is greater than t∗.

It remains to estimate the time to decrease the discrepancy. Therefore, we
need lower bounds on X(i) − X(i+1) and Xn. Let �∗ := 1/nc+2. We obtain
Prob(X(i) − X(i+1) ≥ �∗) ≥ e−2/nc+1 ≥ 1 − 2/nc+1. Hence, with probability
1−O(1/nc), X(i)−X(i+1) ≥ �∗ for all i. Moreover, X(n) ≥ �∗ with probability
1 − O(1/nc+1). We assume these lower bounds to hold, introducing a failure
probability of only O(1/nc). The contribution of this failure probability to the
expected discrepancy is negligible, as above. A step flipping one or two specific
bits has probability at least n−2(1 − 1/n)n−2 ≥ 1/(en2). Hence, the discrep-
ancy is decreased by at least �∗ or drops below t∗ with probability Ω(1/n2)
in each step. The expected time until the discrepancy becomes at most t∗

is, therefore, bounded from above by O(�∗n2) = O(nc+4), and, by repeating
phases, the time is at most O(nc+4 log n) with probability 1 − O(1/nc). The
sum of all failure probabilities is O(1/nc). ��

We finally elaborate on a result for the exponential distribution model
similar in flavor to Theorem 7.9. The line of proof will also be similar, but
more arguments are needed to bound the size of the “difference jobs.”

Theorem 7.10. Let c ≥ 1 be an arbitrary constant. With probability 1 −
O(1/nc), the discrepancy of (1+1) EAb in the exponential distribution model
is bounded above by O(log n) after O(n2 log n) steps and by O(log n/n) af-
ter O(nc+4 log2 n) steps. Moreover, the expected discrepancy is O(log n) after
O(n2 log n) steps and it is O(log n/n) after O(n6 log2 n) steps.

The proof of the theorem relies on the following probabilistic argument.

Lemma 7.11. Let Sk denote the sum of k independent, exponentially dis-
tributed random variables with parameter 1. Then Prob(Sk > 2k) = 2−Ω(k).

Proof. It is well known (Feller, 1971) that Sk follows a gamma distribution,
i.e.,

Prob(Sk ≥ 2k) = e−2k

(
1 +

2k

1!
+ · · · + (2k)k−1

(k − 1)!

)
≤ ke−2k(2k)k−1

(k − 1)!
.

By Stirling’s formula, the last expression is bounded above by

e−2k+(k−1) · 2k−1 · k · kk−1

(k − 1)k−1
= e−2k+(k−1) ·2k−1 ·k·

(
1 − 1

k

)−(k−1)

= 2−Ω(k). ��

Proof (Theorem 7.10). Each job has an expected size of 1 in the exponential
distribution model. At first, this bounds the initial discrepancy trivially by n.
In the following, all failure probabilities will be bounded by O(1/n2). In the
case of a failure, we will tacitly bound the contribution of the failure to the
expected discrepancy after O(n2 log n) or O(n6 log2 n) steps by the expected
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initial discrepancy multiplied by the failure probability, which yields a con-
tribtuion of O(1/n). Next, we will show that with probability 1 − O(1/nc),
the critical job size of all search points is always O(log n). Together with
Lemma 7.1, this claim implies the theorem for the situation after O(n2 log n)
steps.

To show the claim, we again consider the order statistics X(1) ≥ · · · ≥
X(n) of the random job sizes. Our goal is to show that with high probability,
X(1) + · · · + X(k) ≤ P/2 holds for k := �δn� and some constant δ > 0.
Afterwards, we will prove that X(k) = O(log n) with high probability.

Each job in the exponential distribution model has a size of at least 1
with probability e−1 > 1/3. By Chernoff bounds, P ≥ n/3 with probability
1− 2−Ω(n). To bound X(1) + · · ·+ X(k), we use the above-mentioned identity
X(i) =

∑n
j=i Yj/j. Hence,

X(1) + · · · + X(k) = Y1 + 2 · Y2

2
+ · · · + k · Yk

k
+ k

n∑
i=k+1

Yi

i

≤
k∑

j=1

Yj +
�n/k�∑
i=1

1
i

(i+1)k∑
j=ik+1

Yj ,

where Yj := 0 for j > n. Essentially, we are confronted with �n/k� sums of
k exponentially distributed random variables each. By Lemma 7.11, a single
sum is bounded above by 2k with probability 1 − 2−Ω(k), which is at least
1−2−Ω(n) for the values of k considered. Since we consider at most n sums, this
statement also holds for all sums together. Hence, with probability 1−2−Ω(n),
the considered expression is bounded above by

2�δn� +
1/δ∑
i=1

2�δn�
i

≤ 2(δn + 1) ln(1/δ + 2),

which is strictly less than n/6 for δ ≤ 1/50 and n large enough. Together with
the above lower bound on w, this implies that with probability 1 − 2−Ω(n),
the critical job size is always bounded above by the �n/50�th largest size.

How large is X(�n/50�)? Since with probability at least 1 − ne−(c+1) ln n ≥
1− n−c, all random variables Yj are bounded above by (c + 1) lnn, it follows
that with at least the same probability, we have

X�n/50� =
n∑

j=�n/50�

Yj

j
≤ (c + 1)(lnn)((lnn) + 1 − ln(n/49))

(for n large enough), which equals (c + 1)(ln(49) + 1)(lnn) = O(log n). The
sum of all failure probabilities is O(1/nc), bounding the critical size as desired.

We still have to show the theorem for the case of O(nc+4 log2 n) steps. Now
we assume that the discrepancy has been decreased to O(log n) and use the
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same idea as that in the proof of Theorem 7.9 by investigating steps swapping
X(i) and X(i+1) or moving X(n). Above, we have shown that with probability
1−O(1/nc), the smallest job on the fuller machine is always at most X(k) for
some k ≥ n/50. Since X(k)−X(k+1) = Yk/k, we obtain X(k)−X(k+1) ≤ 50Yk/n
with the mentioned probability. Moreover, it was shown that Yj ≤ (c+1) lnn
for all j with at least the same probability. Altogether, X(k) − X(k+1) ≤
50(c + 1)(lnn/n) =: t∗ with probability 1 − O(1/nc). Since X(n) = Yn/n,
Prob(X(n) ≤ t∗) with probability 1−O(1/nc), too. In the following, we assume
these upper bounds to hold. This implies that as long as the discrepancy is
greater than t∗, there is a step flipping at most two bits and decreasing the
discrepancy.

It remains to establish lower bounds on X(k) −X(k+1) and X(n). We know
that X(k) − X(k+1) ≥ Yk/n and obtain Prob(X(k) − X(k+1) ≥ 1/nc+2) ≥
e−1/nc+1 ≥ 1−1/nc+1 for any fixed k and Prob(X(n) ≥ 1/nc+2) ≥ 1−1/nc+1.
All events together occur with probability 1−O(1/nc). By the same arguments
as those in the proof of Theorem 7.9, the expected time until the discrepancy
becomes at most t∗ is O(nc+4 log n), and the time is bounded by O(nc+4 log2 n)
with probability 1 − O(1/nc). The sum of all failure probabilities is O(1/nc).
This proves the theorem. ��

Conclusions

In this chapter, we have studied (1+1) EAb and RLS1
b on an NP -hard schedul-

ing problem. Two different perspectives were taken, namely regarding the
worst-case and average-case models. In the worst case, the approximation
ratios obtainable in polynomial time are bounded by roughly 4/3. Using a
result on the success probability and employing multistart variants of the
search algorithms, we obtain a drastic improvement. The simple algorithms
then serve as polynomial-time randomized approximation schemes. An even
more encouraging result is obtained in the two average-case models investi-
gated. With growing problem size, the makespan converges to optimality.
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Shortest Paths

Computing shortest paths in a given graph is one of the fundamental problems
in computer science. The input is given by a connected directed graph G =
(V,E) where V = {v1, . . . , vn} is a set of n vertices and E is a set of m edges. In
addition, there is a weight function w : E → N which assigns positive integer
weights to the edges. We denote by wmax = maxe∈E w(e) the maximum of the
weights of all edges and distinguish between two problems. In the single-source
shortest-path (SSSP) problem, there is one designated vertex s ∈ V and the
task is to compute a shortest path from s to every other vertex vi ∈ V \ {s}.
W. l. o. g., we assume s = v1 throughout this chapter. The length of a path is
measured by the sum of the weights of the edges that are used in this path.
A generalization of the SSSP problem is the all-pairs shortest-path (APSP)
problem, where the task is to compute from each vertex vi ∈ V a shortest
path to every other vertex vj ∈ V \ {vi}. The SSSP and APSP problems can
be solved by using Dijkstra’s algorithm and the Floyd-Warshall algorithm,
respectively. Using appropriate data structures, single-source shortest paths
and all-pairs shortest paths can be computed in time O(m + n log n) and
O(nm + n2 log n), respectively (Mehlhorn and Sanders, 2008).

The basic algorithms for computing shortest paths in a given graph date
back to the 1950s. However, the computation of shortest paths is still an im-
portant field of research. This especially holds for planning tasks in road net-
works where additional properties of the network can be taken into account
(Bast, Funke, Sanders, and Schultes, 2007; Sanders and Schultes, 2006). On
the other hand, several related problems in the area of routing and planning
are NP -hard, and stochastic search algorithms have found many applications
in this area. Examples are vehicle routing (El-Fallahi, Prins, and Calvo, 2008;
Rizzoli, Montemanni, Lucibello, and Gambardella, 2007) and routing prob-
lems in computer networks (Dorigo and Stützle, 2004; Farooq, 2008; Kim and
Choi, 2007). Therefore, it seems to be important to understand the basic prob-
lem of computing shortest paths in the context of stochastic search algorithms
from a theoretical point of view in order to gain new insights that can help
practitioners solve related problems arising in applications.

F. Neumann, C. Witt, Bioinspired Computation
in Combinatorial Optimization, Natural Computing Series,
DOI 10.1007/978-3-642-16544-3 8, © Springer-Verlag Berlin Heidelberg 2010
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The chapter is organized as follows. We start by analyzing evolutionary
algorithms for the computation of shortest paths and study in Section 8.1
how a variant of the (1+1) EA can solve the SSSP problem. For the APSP
problem, we examine a population-based approach which computes for each
pair of vertices a shortest path between them. The results presented in Sec-
tion 8.2 show that using crossover and mutation as variation operators leads
provably to faster evolutionary algorithms than algorithms that rely only on
mutation. Having presented different results for evolutionary algorithms, we
turn in Section 8.3 to ant colony optimization and point out that this kind
of stochastic search algorithm leads even to better runtime bounds than the
ones presented for evolutionary algorithms.

8.1 Single Source Shortest Paths

In the following, we discuss evolutionary algorithms for the SSSP problem.
We will examine two approaches that rely on the fact that an optimal solution
of the SSSP problem can be represented by a shortest path tree.

8.1.1 Evolutionary Algorithms

The SSSP problem consists of finding for each vertex vi ∈ V \{s} a path from
s to vi. Scharnow, Tinnefeld, and Wegener (2004) have examined a represen-
tation of possible solutions where for each vertex vi its predecessor p(vi) is
stored. In this way directed graphs containing exactly n − 1 edges are repre-
sented. An optimal solution is a shortest path tree which contains for each ver-
tex vi ∈ V \{s} a shortest path from s to vi. Note that we fixed s = v1. There-
fore, the search space consists of all I = (p(v2), . . . , p(vn−1)) ∈ {v1, . . . , vn}n−1

where p(vi) �= vi. A search point I is a vector of length n− 1 which stores for
each vertex vi ∈ V \ {s} its predecessor.

A mutation carries out a set of local operations. A local operation for the
SSSP problem picks one vertex vi �= s uniformly at random and replaces the
predecessor p(vi) of vi with another predecessor p′(vi) ∈ V \ {vi, p(vi)}. For a
mutation step, we choose S from a Poisson distribution with parameter λ = 1
and perform sequentially S+1 local operations. The (1+1) EASP which we will
analyze for the SSSP problem is given in Algorithm 11. The algorithm uses a
fitness function f to determine whether to replace the current individual with
the offspring.

We will investigate two different approaches for defining the fitness of a
search point I. Consider a candidate solution I = (p(v2), . . . , p(vn−1)). As-
sociated with I consider the subgraph TI of the input graph G consisting of
those pairs (vj , p(vj)) which are edges in G. If there is a path in TI from the
source s to vj , s �= vj , it has to be unique. Let γ(vj) denote the unique path
in such cases. Whenever such a unique path γ(vj) exists for a vertex vj , we
define its cost fj(I) to be the sum of the weights of the edges in γ(vj). On



8.1 Single Source Shortest Paths 113

Fig. 8.1. Graph G marked with a tree given by the individual I = (v1, v5, v1, v2, v4)

Algorithm 11 (1+1) EASP

1. Set I = (p(v2), . . . p(vn)) where each p(vi) ∈ V \ {vi} is chosen uniformly at
random.

2. Choose S from a Poisson distribution with parameter λ = 1 and perform S + 1
local changes chosen uniformly at random to produce I ′.

3. Replace I with I′ if f(I ′) ≤ f(I).
4. Repeat Steps 2 and 3 forever.

the other hand, if vj is unreachable from s in TI , then the cost fj(I) is set
to a large penalty value, i.e., fj(I) = dpenalty := n · wmax. First, we consider
a multi-criteria fitness function which assigns to each search point a vector
consisting of n−1 components. In this vector, the length of the path from s to
vi is stored for each vertex vi �= s. Later on, we investigate a single-criterion
fitness function which takes the sum of the lengths of the different paths into
account.

8.1.2 Multi-Criteria Fitness Function

We consider the multi-criteria fitness function fmult defined as

fmult(I) = (f2(I), f3(I), . . . fn(I)).

We define fmult(I ′) ≤ fmult(I) iff fi(I ′) ≤ fi(I), 2 ≤ i ≤ n. Using fmult

in the (1+1)EASP we will see that the algorithm is able to follow the ideas
of Dijkstra’s algorithm for the computation of shortest paths. This leads to
a polynomial bound on the expected optimization time. The basic result can
be found in Scharnow et al. (2004) and the refined analysis which we present
in the following is due Doerr, Happ, and Klein (2007a). To show an upper
bound on the optimization time, we take the depth of the shortest path tree
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into account. We introduce the edge radius of the vertex s in the graph G,
which is given by the following definition.

Definition 8.1. The edge radius �G(s) of a vertex s ∈ V of a given weighted
graph G is the maximum number of edges in any shortest path with the mini-
mum number of edges from s to v, i.e.,

�G(s) = max
v∈V

{min
γ∈Γv

|γ|}

where Γv := {γ | γ is a shortest path from s to v} and |γ| denotes the number
of edges in γ.

We use the abbreviation � = �G(s) and take this parameter into account
for analyzing the expected optimization time.

Theorem 8.2. The expected optimization time of (1+1) EASP using the fit-
ness function fmult is O(n2(log n + �)).

Proof. We distinguish between two cases depending on the parameter �. First,
we investigate the case � ≥ log n and show an upper bound of O(n2�). Consider
a vertex v �= s and fix a shortest path γ := (s = v1, v2, . . . , v = v�′+1) where
�′ ≤ �. Note that such a path exists according to Definition 8.1. There may be
different possible shortest paths from s to v and optimal sub-paths of γ may
be exchanged for different optimal sub-paths. However, this can only speed
up the optimization process.

As γ is a shortest path from s to v, the sub-path γ ′ = (s = v1, v2, . . . , vj) is
a shortest path from s to vj . We investigate a typical run and consider a phase
of length cn2� where c is an appropriate constant. We assume that the current
search point I already contains shortest paths from s to v2, . . . , vj , j < �′ +1.
The local operation which sets p(vj+1) = vj happens with probability at
least 1/(en2) in the next step. It produces from I a search point I ′ which
contains shortest paths from s to v2, . . . , vj , vj+1. We call such an operation
a success. A success happens in the next iteration with probability at least
p = 1/(en2) independently of previous steps if a shortest path from s to v has
not been obtained. If a shortest path from s to v has already been computed,
we consider one fixed mutation operation that happens with probability at
least p = 1/(en2) and define it as a success. Hence, a success happens in each
iteration with probability at least p = 1/(en2) and we investigate the number
of successes. Note that a shortest path from s to v has been obtained if the
number of successes is at least �.

When considering a phase of length cn2�, the expected number of successes
is cn2�/(en2) = c�/e. Using Chernoff bounds the probability that the number
of successes is less than (1− δ)c�/e is upper bounded by e−c�δ2/(2e). Choosing
δ = 1 − e/c, the probability of having less than

(1 − δ)c�/e = (1 − (1 − e/c))c�/e = �
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successes is upper bounded by

e−c�(1−e/c)2/(2e) = e−c′�,

where c′ = c(1 − e/c)2/(2e). Our previous computation holds independently
for each vertex v �= s. There are n − 1 vertices for which a shortest path has
to be computed. The probability that a shortest path has not been computed
for at least one vertex v �= s is therefore upper bounded by

(n − 1)e−c′�.

Remember that we work under the assumption that � ≥ log n holds. Hence,
within a phase of cn2� steps all shortest paths have been computed with
probability at least

α = 1 − (n − 1)e−c′� = 1 − O(n1−c′).

The expected number of phases of lenth cn2� is upper bounded upper by α−1

which leads to an upper bound of α−1cn2� = O(n2�) on the expected time to
compute an optimal solution.

In the case where � < log n holds, we consider a phase of cn2 log n steps, c
again an appropriate constant. Following the ideas of the first case, an optimal
solution has been obtained with probability at least

α = 1 − (n − 1)e−c′ log n = 1 − O(n1−c′)

and an optimal solution has been found after an expected number of at most
α−1cn2 log n = O(n2 log n) steps. This completes the proof. ��

The previous theorem shows that (1+1) EASP solves the SSSP efficiently
when using the multi-criteria fitness function. A basic property when using
this fitness function is that shortest paths that have been obtained during
the optimization process cannot get lost. This might happen when consid-
ering a single-criterion fitness function which takes the sum of the different
path lengths into account. We want to examine such an approach in the next
section.

8.1.3 Single-Criterion Fitness Function

Using penalty values is a common approach for handling constraints
(Michalewicz, 1995) and leads the algorithm towards feasible solutions. When
large penalty values are used for vertices v that are not connected to the
source, it does not seem necessary to use a multi-criteria fitness function.

Therefore, we investigate a single-objective fitness function which leads
the algorithm towards valid solutions. The fitness of a candidate solution I is
given by
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fsing(I) :=
n∑

i=2

fi(I),

which returns the sum of the different path lengths. Note that vertices not
connected to s contribute a large value dpenalty = n ·wmax to the fitness value.

This kind of fitness function has already been proposed in Scharnow et al.
(2004). However, it took quite some time until Baswana, Biswas, Doerr,
Friedrich, Kurur, and Neumann (2009) were able to show that it leads to
a polynomial upper bound on the expected optimization time of (1+1) EASP.
The idea is to show that there is always a set of local operations which re-
duces the difference between the fitness of the current solution and an optimal
one by the fraction 1/n. This enables us to use the method of the expected
multiplicative distance decrease and leads to the following result.

Theorem 8.3. The expected optimization time of (1+1) EASP using the fit-
ness function fsing is O

(
n3 · (log n + log wmax)

)
.

Proof. Let Iopt be an optimal search point and Topt be the corresponding
shortest path tree. We define the total distance of the current solution I from
an optimal one as

d = fsing(I) − fsing(Iopt).

The total distance can be split into d(vi) = fi(I)−fi(Iopt), 2 ≤ i ≤ n. We
define d(v1) = 0. Note that d =

∑n
i=2 d(vi). Hence, there is at least one vertex

v with distance at least d/n. Consider the path γ = (s = v1, v2, . . . , v = v�′)
from s to v in Topt. Obviously,

d(v) = d(v�′) − d(v1) =
�′∑

j=2

d(vj) − d(vj−1) ≥ d/n

holds.
Consider two vertices vi and vi+1 in γ for which d(vi) < d(vi+1) holds. At

such a pair of vertices the distance increases and we call the edge (vi, vi+1)
positive. Note that if (vi, vi+1) is a positive edge, vi has to be connected to the
source as otherwise d(vi+1) ≤ d(vi). On the other hand, p(vi+1) �= vi holds as
otherwise (vi, vi+1) is not a positive edge. Setting p(vi+1) = vi implies that
d(vi+1) = d(vi). Hence, such an operation is accepted and reduces the distance
by d(vi+1)−d(vi). Considering all positive edges in γ, we can achieve d(v) = 0
by setting p(vi+1) = vi for each positive edge (vi, vi+1) in γ. Each of these
operations is accepted and the total distance decrease is at least d/n. Denote
by k, 1 ≤ k ≤ n−1, the number of positive edges in γ. We may add n−k non-
accepted operations changing the predecessor of a particular vertex such that
the total number of considered operations is n. The probability of choosing
one of these operations in the next step is Ω(n/n2) = Ω(1/n) and the average
distance decrease of these n operations is at least d/n2. Hence, the expected
distance after such an operation has happened is (1− 1/n2) · d. Following the
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ideas of the expected multiplicative distance decrease (see Section 4.2.3) and
taking into account that the distance of the initial solution is upper bounded
by dmax = (n− 1)dpenalty = (n− 1) · n ·wmax, the expected optimization time
is upper bounded by O

(
n3 · (log n + log wmax)

)
��

8.2 All Pairs Shortest Paths

Having examined how evolutionary algorithms can cope with the SSSP prob-
lem we turn to the APSP problem. For the APSP problem we examine
population-based evolutionary algorithms. Each individual of the population
P is a path. Our goal is to evolve an initial population consisting of a set of
paths into a population which contains for each pair of vertices (u, v), u �= v,
a shortest path from u to v. The approach and the results that we present in
this section are due to Doerr, Happ, and Klein (2008).

We investigate two evolutionary algorithms for the APSP problem. The
first one, called Steady State EASP (see Algorithm 12), works with mutation
as a variation operator. Our second algorithm, called Steady State GASP

(see Algorithm 13), relies on crossover and mutation. Both algorithms start
with a population P := {Iu,v = (u, v)|(u, v) ∈ E} of size |E| which contains
all paths corresponding to the edges of the given graph G. The variation
operators produce in each iteration one single offspring. In Steady State EASP

an offspring is obtained by choosing one individual uniformly at random from
the population and applying a mutation operator. In Steady State GASP,
either with probability pc a crossover operator is applied to two randomly
chosen individuals of P or (if this is not the case) mutation is used as in
Steady State EASP. Note, that both algorithms are equivalent if pc = 0. In
the following, we assume that 0 < pc < 1 is a constant. The selection operator
only accepts individuals that are paths in the graph. In addition, it ensures
diversity with respect to the different pairs of vertices. Each individual Iu,v

that is a valid path is indexed by the start vertex u and the end vertex v. In
the selection step an offspring is only compared to an individual of the current
population that has the same start and end vertex. It is ensured that for each
pair of vertices (u, v), u �= v, at most one individual Iu,v is contained in the
population. This implies that the population size of our algorithms is always
at most n(n − 1).

The mutation operator takes an individual Iu,v from the population and
applies sequentially S + 1 local operations. Here, S is a parameter that is
chosen according to the Poisson distribution with parameter λ = 1. In a
local operation, the current path is either lengthened or shortened by a sin-
gle edge. Assume that the current individual represents a path γ = (u =
v1, v2, . . . v

�′ , v = v�′+1) from u to v consisting of �′ edges, and denote by
E−(v) and E+(v) the set of incoming and outgoing edges of a vertex v in G.
Then an edge

e = (x, y) ∈ E−(u) ∪ E+(v) ∪ {(u, v2), (v�′ , v)}
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Algorithm 12 Steady State EASP

1. Set P = {Iu,v = (u, v) | (u, v) ∈ E}.
2. Choose an individual Ix,y ∈ P uniformly at random.
3. Mutate Ix,y to obtain an individual I ′

s,t.
4. If there is no individual Is,t ∈ P , P = P ∪ {I ′

s,t},
else if f(I ′

s,t) ≤ f(Is,t), P = (P ∪ {I ′
s,t}) \ {Is,t}

5. Repeat Steps 2–4 forever.

Algorithm 13 Steady State GASP

1. Set P = {Iu,v = (u, v) | (u, v) ∈ E}.
2. Choose r ∈ [0, 1] uniformly at random.
3. If r ≤ pc, choose two individuals Ix,y ∈ P and Ix′,y′ ∈ P uniformly at random

and perform crossover to obtain an individual I ′
s,t,

else choose an individual Ix,y ∈ P uniformly at random and mutate Ix,y to
obtain an individual I′

s,t.
4. If I ′

s,t is a path from s to t then
a) If there is no individual Is,t ∈ P , P = P ∪ {I ′

s,t},
b) else if f(I ′

s,t) ≤ f(Is,t), P = (P ∪ {I ′
s,t}) \ {Is,t}.

5. Repeat Steps 2–4 forever.

is chosen uniformly at random. If

e ∈ {(u, v2), (v�′ , v)},

the edge is removed. This means that either the first edge or the last edge in
the path is removed, leading to an individual I ′v2,v or I ′

u,v�′ consisting of �′−1
edges.

If
e ∈ (E−(u) ∪ E+(v)) \ {(u, v2), (v�′ , v)},

the edge is added and the path is lengthened. Here, a new individual I ′x,v or
I ′u,y is produced that contains �′+1 edges. Note that a local operation applied
to a valid path always leads to a new valid solution, which implies that the
mutation operator only constructs solutions which are paths.

In Doerr et al. (2008), different crossover operators have been discussed
which are all motivated by the 1-point crossover operator known from binary
encodings. We discuss one of them and note that the other operators lead
to the same runtime bounds. Our crossover operator chooses two individuals
Iu,v and Iw,x uniformly at random from the population and produces a new
individual I ′u,x if v = w holds. Note that the crossover operator only constructs
a valid solution, namely a path from u to x, iff the end vertex of the first
individual equals the start vertex of the second individual.
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First, we will consider how Steady State EASP can solve the APSP prob-
lem. Later on, we will show that the use of crossover leads to improved runtime
bounds.

8.2.1 Results for Steady State EASP

In the following, we consider the algorithm that uses only mutation as varia-
tion operator. We already know that the (1+1) EASP introduced in Section 8.1
computes a shortest path from a predefined vertex s to any other vertex v �= s
in the given graph in time O(n3). Therefore, the APSP problem can be solved
by applying the (1+1) EASP for each given vertex in the graph. This leads to
n runs of the algorithm which can be carried out sequentially and leads to a
solution for the APSP problem by evolutionary algorithms in expected time
O(n4). Note that these n runs of the (1+1) EASP can also be carried out in
parallel.

We now study Steady State EASP and show that this algorithm produces
in expected time O(n4) a population which contains for any two vertices u
and v an individual representing a shortest path from u to v. The actual upper
bound again depends on the edge radius � := �(G) defined in Definition 8.1.

Lemma 8.4. Let � ≥ log n. The expected time until Steady State EASP has
found all shortest paths with at most � edges is O(n3�).

Proof. To prove the lemma, we can reuse the ideas used in the proof of Theo-
rem 8.2. In this proof an upper bound of O(n2�) has been shown for the case
where � ≥ log n holds. The major difference is that Steady State EASP works
with a population whose size is bounded by O(n2).

Consider two vertices u and v, u �= v, and let γ := (v1 = u, v2, . . . , v�′+1 =
v) be a shortest path from u to v consisting of �′, �′ ≤ �, edges in G. As γ is a
shortest path from u to v, the sub-path γ′ = (v1 = u, v2, . . . , vj) is a shortest
path from u to vj . Again, we investigate a typical run but consider this time a
phase of length cn3� where c is an appropriate constant. We assume that the
current population already contains individuals that represent shortest paths
from u to v2, . . . , vj , j < �′ + 1.

Then there is a local operation which picks the individual representing the
shortest path from u to vj and produces an individual representing a shortest
path from u to vj+1. The probability that such a step happens in the next
iteration is at least 1/(2n3) as the population size is bounded by n2 and the
probability of appending the right edge to the shortest path from u to vj is
at least 1/(2en). We call such an operation a success. A success happens in
the next iteration with probability at least p = 1/(2en3) independently of
previous steps. If a shortest path from u to v has already been computed, we
consider one fixed mutation operation that happens with probability at least
p = 1/(2en3) and define it as a success. Hence, a success happens in each
iteration with probability at least p = 1/(2en3). We may lower bound the
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probability of having for each pair of vertices enough successes by α = 1−o(1)
using similar calculations as in the proof of Theorem 8.2. ��

As the number of edges in any shortest path is upper bounded by n − 1
we get the following theorem.

Theorem 8.5. The expected optimization time of Steady State EASP is O(n4).

Doerr et al. (2008) have investigated a worst-case example for Steady
State EASP. The example is the complete directed graph where all edges
in the path (v1, v2, . . . , vn) get weight 1 and all other edges get a large weight
of n. For this input graph they have shown a lower bound of Ω(n4) on the
expected optimization time.

8.2.2 Results for Steady State GASP

Our investigations for the Steady State EASP have shown that this algorithm
computes a population representing for each pair of vertices a shortest path
in expected time O(n4). Due to the lower bound for the complete directed
graph given by Doerr et al. (2008), the question arises about whether the
computation can be sped up by using a crossover operator. We will examine
Steady State GASP where the probability of using crossover is a constant. To
make sure that both operators, mutation and crossover, are used we require
pc �∈ {0, 1}. All the following results hold if the crossover probability is chosen
as an arbitrary constant, i.e., pc ∈ ]0, 1[ and pc = Ω(1).

Theorem 8.6. The expected optimization time of Steady State GASP is
O(n3.5

√
log n).

Proof. The main idea is that the mutation operator constructs for any pair
of vertices for which a shortest path of at most �∗ :=

√
n log n edges exists

such a solution. For pairs of vertices for which no shortest path of at most �∗

exists, the crossover operator constructs a shortest path by joining shortest
paths of a smaller number of edges.

Mutation is used with probability 1−pc = Ω(1) in each iteration. Hence, all
shortest paths with at most �∗ edges are obtained in expected time O(n3�∗) =
O(n3

√
n log n) = O(n3.5 log n) due to Lemma 8.4.

In the following, we work under the assumption that all shortest paths
with at most �∗ edges have already been obtained and examine how to obtain
shortest paths consisting of more than �∗ edges by crossover.

We assume that the population contains an individual Iu,v which repre-
sents a shortest path from u to v if there exists such a path containing at most
k edges. We consider a pair of vertices x and y for which a shortest path of
at most r, k < r ≤ 2k, edges exists. The shortest path from x to y of length r
can be split up at 2k−r positions such that two paths of lengths at most k are
obtained. Hence, there are 2k − r pairs of paths in the population which can
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be joined to obtain the desired path of length r. Each of these pairs of paths is
selected with probability at least 1/n4 in the next step as the population size
is upper bounded by n2. Taking the number of different pairs into account,
the probability of selecting two paths from the population which are joined by
the crossover operator to the desired shortest path from x to y is Ω(2k+1−r

n4 ).
Note that this probability is Ω( k

n4 ) for r ≤ 3k
2

. There are at most n2 paths of
at most r edges. Assuming that all shortest paths consisting of at most k edges
are already contained in the population, the expected number of additional
steps until all shortest paths containing at most 3k

2 are in the population is
O(n4 log n

k ) using arguments from the coupon collectors problem. The upper
bound on the expected optimization time can be computed by summing up
over the different values of k, namely√

n log n, c ·
√

n log n, c2 ·
√

n log n, . . . , clogc(n/
√

n log n) ·
√

n log n,

where c = 3/2. Hence, the expected optimization time is upper bounded by

logc(n/
√

n log n)∑
s=0

(
O

(
n4 log n√
n log n

)
c−s

)
= O(n3.5

√
log n)

∞∑
s=0

c−s = O(n3.5
√

log n)

��

Using a more sophisticated analysis, the upper bound on the expected op-
timization time of Steady State GASP may be improved to O(n3.25 log1/4 n).
We refer the interested reader to the original work of Doerr and Theile
(2009). In this work, also a worst-case graph is given and a lower bound
of Ω(n3.25 log1/4 n) on the expected optimization time of Steady State GASP

is proven.

8.3 Analysis of Ant Colony Optimization

In this section, we revisit the ACO framework that was introduced in Sec-
tion 5.4. Both the SSSP and APSP problems are considered, based on studies
by Attiratanasunthron and Fakcharoenphol (2008) and Horoba and Sudholt
(2009). Shortest path problems are maybe the most natural combinatorial
optimization problems to be treated by ACO since these search algorithms
were inspired by the way ants find shortest paths to food sources.

Both the SSSP and the APSP problems make sense in the simple case of
undirected, weighted graphs. ACO algorithms, however, implicitly direct edges
according to the direction they are being traversed by the artificial ants. Since
it turns out to be more convenient, we replace the SSSP problem in this section
with the single-destination shortest path (SDSP) problem, where the aim is to
find shortest paths from every vertex to a specified destination vertex. Given
a directed graph, the two problem variants can be converted into each other
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just by turning around the directions of all edges. Hence, the SSSP and SDSP
problem are conceptually equivalent, but the consideration of a destination
will ease the presentation of the ACO framework.

Throughout this section, we denote by d the destination vertex of the SDSP
problem. The ACO approach is population-based and uses n = |V | ants that
proceed, to some extent, independently. From each vertex u ∈ V , there is one
ant au heading for the destination. The walk of each ant is again controlled
by pheromone values τ : E → R+ that are global variables in the algorithm
(so the same pheromone values control different ants). Heuristic information
is not used. In order to complete the path construction in linear time, we
disallow vertices from being visited more than once. This leads for ant au to
the procedure described in Algorithm 14. Note that the destination d is not
necessarily reached if the ant takes wrong decisions. In this case, we define
the length of the path output by Algorithm 14 to be infinite.

Algorithm 14 Path construction from u to d
i ← 0.
pi ← u.
V1 ← {p ∈ V \ {p0} | (p0, p) ∈ E}.
while pi �= d and Vi+1 �= ∅ do

i ← i + 1.
Choose pi ∈ Vi with probability τ((pi−1, pi))/

P

p∈Vi
τ((pi−1, p)).

Vi+1 ← {p ∈ V \ {p0, . . . , pi} | (pi, p) ∈ E}.
end while
return (p0, . . . , pi).

While the ants walk through the graph to probabilistically construct short
paths from their start vertex to d, each ant memorizes the best path it has
found so far. Initially, all best-so-far paths are empty, which corresponds to
infinite length. Pheromone initialization and update will be described below.
The top-level framework of the ACO approach, called MMASSDSP, is dis-
played in Algorithm 15. Note that one iteration of the main loop corresponds
to n constructed solutions and, therefore, n evaluations of the objective func-
tion.

Finally, pheromone update and initialization are similar as in Section 5.4.
Since we want the first path to choose successors of a vertex uniformly, we ini-
tialize for each vertex u ∈ V the pheromones on the outgoing edges e = (u, ·)
according to τ(e) = 1/outdeg(u), i.e., inversely proportional to the outde-
gree of the vertex. Vertices of outdegree 1 are special since we keep the value
τ(e) = 1 fixed on the unique outgoing edge e throughout the run of the algo-
rithm. When pheromones are updated, the n best-so-far solutions p∗1, . . . , p

∗
n

are consulted, where solution p∗u, 1 ≤ u ≤ n, is used to update the pheromones
on the outgoing edges of u according to
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Algorithm 15 MMASSDSP

Initialize pheromones τ and best-so-far paths p∗
1, . . . , p

∗
n.

loop
for u = 1 to n do

Construct a simple path pu =(pu,0, . . . , pu,�u) from u to d with respect to τ .
if w(pu) < w(p∗

u) then
p∗

u ← pu

end if
end for
Update pheromones with respect to p∗

1, . . . , p
∗
n.

end loop

τ(e) ←
{

min{(1 − ρ) · τ(e) + ρ, τmax} if e = (u, v) ∈ p∗u,

max{(1 − ρ) · τ(e) + ρ, τmin} if e = (u, v) /∈ p∗u.

Here, τmax and τmin are again bounds on the pheromone values that are typical
for the MMAS approach. We will consider different choices of these bounds
but ensure in any case that τmax + τmin = 1.

8.3.1 Single-Destination Shortest Path

In this section, we show that MMASSDSP finds the shortest path in polynomial
time. The exact bound depends on the parameters, one of which was relevant
in the analysis of evolutionary algorithms earlier in this chapter. Namely,
we consider the maximum outdegree Δ(G) := maxv∈V outdeg(v) and the
edge radius �(G) of the graph (see Definition 8.1). To show the forthcoming
theorem, a careful inspection of pheromone values is necessary.

Lemma 8.7. For every vertex u with outdeg(u) > 1 it holds that

1 ≤
∑

e=(u,·)∈E

τ(e) ≤ 1 + outdeg(u) · τmin.

Proof. Initially the sum of pheromones on outgoing edges of u equals 1. As-
sume for induction that

∑
τ(e) ≥ 1. If the pheromones are not capped by the

bound τmax then (1− ρ)
∑

τ(e) + ρ ≥ 1 holds after the pheromone update. If
at least one pheromone is capped at τmax then the sum of pheromones is still
at least τmax + τmin ≥ 1 as outdeg(u) ≥ 2.

For the second inequality, observe that the sum of pheromones can only
increase if a pheromone value is maximized with the lower border τmin. The
reason is that

∑
τ(e) ≥ 1 implies that (1 − ρ)

∑
τ(e) + ρ ≤

∑
τ(e) ≥ 1.

Consider an edge e with (1 − ρ)τ(e) < τmin. When its pheromone value is
set to the lower border then the difference from the former value is at most
τmin−τ(e)+ρ·τ(e) ≤ τmin ·ρ, where we used τ(e) ≥ τmin and ρ ≤ 1. If currently∑

τ(e) ≤ 1 + outdeg(u) · τmin then the sum of the pheromone values after the
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next update is at most (1 − ρ)(1 + outdeg(u)τmin) + ρ + outdeg(u)τmin · ρ =
1 + outdeg(u) · τmin. Hence, the second inequality follows by induction. ��

As an immediate consequence, we obtain the following direct relation be-
tween pheromone values and probabilities that ant au, i.e., the ant starting
at u, chooses an edge (u, ·). We suppose τmin ≤ 1/outdeg(u) since τmin should
be chosen below the initial pheromone value of 1/outdeg(u).

Corollary 8.8. If τmin ≤ 1/outdeg(u) for every edge e = (u, ·) then

τ(e)
2

≤ Prob(ant au chooses edge e) ≤ τ(e).

The lower bound also holds for every other ant leaving vertex u and every edge
e = (u, v) unless v has already been traversed by the ant. The upper bound also
holds for every other ant and every edge e = (u, ·) unless the ant has travesed
a successor of u before.

Proof. The upper bound holds since
∑

e′=(u,·)∈E τ(e′) ≥ 1 according to
Lemma 8.7 and the probability of choosing edge e is proportional to τ(e).
For the upper bound, we note that

∑
e′=(u,·)∈E τ(e′) ≤ 1+outdeg(u)τmin ≤ 2

since τmin ≤ 1/outdeg(u). If some successors of v have already been visited,
this only increases the probability of visiting an unvisited neighbor. ��

Moreover, we need a technical lemma to analyze the number of iterations
that suffice to raise a pheromone value from its lower to its upper border and
vice versa.

Lemma 8.9. Suppose that edge e is rewarded in each iteration of MMASSDSP.
Then τ(e) = τmax holds after at most T ∗ := log(τmax/τmin)/ρ iterations. If e
is never rewarded then τ(e) = τmin holds after also at most T ∗ iterations.

Proof. Both statements are proved together by investigating the following
symmetrical situation: Let e1 be an edge with initial pheromone value τmin =
1 − τmax and e2 be an edge with initial value τmax. Assume further that e1

is rewarded in each iteration while e2 is never rewarded. Obviously τ(e1) +
τ(e2) = 1 holds in the beginning, and the sum of pheromone values remains 1
since for all following iterations

(1− ρ)τ(e1) + ((1− ρ)τ(e2) + ρ) = τ(e1)+ τ(e2)− ρ(τ(e1)+ τ(e2)) + ρ = 1.

Hence, the time τ(e1) reaches τmax equals the time τ(e2) reaches τmin. We
therefore only study the time for the latter.

Since e2 is never rewarded, it holds that τ(e2) = (1 − ρ)t · τmax after t
iterations or the lower pheromone border is reached. Solving the equation

(1 − ρ)T · τmax ≤ τmin

with respect to T yields T ≤ ln(τmin/τmax)/ln(1− ρ) which, using ln(1− ρ) ≤
−ρ, implies the lemma. ��
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The following theorem gives two upper bounds for MMASSDSP, each con-
sisting of two additive terms. Intuitively, the first terms cover waiting times
until improvements of best-so-far paths have been found. The second terms
grow with 1/ρ. They reflect the time to adapt the pheromones after a change
of the best-so-far path. This time is called freezing time by Neumann et al.
(2009). The theorem is restricted to acyclic graphs but allows (other than the
results from the beginning of this chapter) negative weights. A statement for
graphs that may contain cycles but no negative weights is given afterwards.

Theorem 8.10. Consider a directed acyclic graph G. The expected number
of iterations of MMASSDSP on G with τmin := 1/n2 is O(n3 + (n log n)/ρ).
Let Δ := Δ(G) and � = �(G). Choosing τmin = 1/(Δ�) the expected number
of iterations is O(nΔ� + n log(Δ�)/ρ).

Proof. We start by defining the following notions. Call an edge (u, v) incorrect
if it does not belong to any shortest path from u to d. We say that a vertex u
has been processed if a shortest path from u to d has been found and if all
incorrect edges leaving u have pheromone τmin.

The proof proceeds inductively. We estimate the expected time (where
time is measured in iterations of the main loop of MMASSDSP) until a vertex u
has been processed given that all vertices reachable from u on shortest paths
from u to d have already been processed. To this end, we first consider the
expected time until a shortest path from u to d has been found for the first
time. We say then that vertex u has been optimized. By Corollary 8.8, the
probability of choosing an outgoing edge of u that belongs to a shortest path
from u to d is at least τmin/2. Since all vertices reachable from u have been
processed, all incorrect edges at any reachable vertex v have pheromone τmin

and the probability of choosing some incorrect edge is at most outdeg(v)τmin.
Hence, the probability of continuing in the construction procedure on an edge
on a shortest path is at least 1−outdeg(v)τmin ≥ 1−1/� if τmin ≤ 1/(Δ�). As
there is, by definition, a shortest path with at most � edges, the probability
that no incorrect edge is chosen on the way from v to d is at least (1−1/�)�−1 ≥
1/e. Together with the choice of an appropriate successor of u, the probability
of optimizing u is at least τmin/(2e).

The expected time until u is optimized is thus at most 2e/τmin. After-
wards, the update mechanism of MMASSDSP ensures that a shortest path
from u to d is reinforced automatically in each iteration. The precise path
may change, but it is guaranteed that only shortest paths are rewarded
and hence the pheromone on incorrect edges decreases in every iteration.
Lemma 8.9 states that ln(τmax/τmin)/ρ iterations are enough for the vertex
to become processed; hence the expected time until u is processed is at most
2e/τmin + ln(τmax/τmin)/ρ.

Finally, the inductive argument is made precise. Let v0 = d, v1, . . . , vn−1

be a topological ordering of the vertices starting from the destination d, i.e.,
for every edge (u, v) ∈ E it holds that v precedes u in the ordering. Such a
topological ordering exists since G is assumed to be acyclic. Consequently, all
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shortest paths from vi to d only use vertices from {v0, . . . , vi−1}. If v1, . . . , vi−1

have been processed then we can wait for vi to be processed using the above
argumentation. The expected time until all vertices v1, . . . , vn−1 have been
processed is bounded by 2en/τmin +n ln(τmax/τmin)/ρ. Choosing τmin = 1/n2,
we obtain the bound O(n3 + (n log n)/ρ), and choosing τmin = 1/(Δ�), we
obtain O(nΔ� + n log(Δ�)/ρ). ��

The bound from the previous theorem can be improved by a factor of �/n
if the shortest paths are unique and � is not too small. Moreover, we can drop
the assumption of acyclic graphs and again demand positive weights instead.

Theorem 8.11. Consider a directed graph G with positive weights where all
shortest paths are unique. If � := �(G) ≥ ln n holds, the number of iterations
of MMASSDSP on G with τmin = 1/(Δ�) is bounded from above by O(Δ�2 +
� log(Δ�)/ρ) with probability at least 1 − 1/n2. The bound on the number of
iterations holds also in expectation.

Proof. The main change from the proof of Theorem 8.10 is that here the
vertices to be processed are enumerated in a different order. Since all shortest
paths are unique, they all have length at most �, and we wait for MMASSDSP

to process every shortest path in reverse order. Doing this, we exploit the
fact that all weights are positive and additionally use a concentration result
similar to the one from the proof of Theorem 8.2.

Let u be an arbitrary but fixed vertex and let u = v�′ , v�′−1, . . . , v0 = d
be the unique shortest path of length �′ ≤ � from u to d. Since all weights are
positive, all shortest paths from vi to d, 1 ≤ i ≤ �′, use only vertices from
{v0, . . . , vi−1}. Hence, if v1, . . . , vi−1 have been processed then we can wait
for vi has been processed. Since τmin = 1/(Δ�), the probability of finding a
shortest path from u to d given the processed successors is at least τmin/(2e)
using the same argumentation as that in the proof of Theorem 8.10.

Given processed successors, let Ti denote the random time (number of it-
erations) until vi is optimized (recall that this notion does not yet imply vi to
be processed). Consider random variables X1, . . . , XT that are independently
set to 1 with probability τmin/(2e) and to 0 otherwise. The random first point
of time T ∗

1 where X1 = 1 stochastically dominates the random time until v1 is
optimized. As v1 becomes processed after an additional (deterministic) wait-
ing time of at most F := ln(τmax/τmin)/ρ iterations, T ∗

1 + F stochastically
dominates T1. Inductively, we have that T ∗

�′ +�′F stochastically dominates T�′

and hence the time until u is processed.
Let T := 16e�/τmin and X :=

∑T
i=1. We have E(X) = T · τmin/(2e) = 8�.

By Chernoff bounds,

Prob(X < �) ≤ Prob(X ≤ (1 − 7/8) · E(X)) ≤ e−8�∗(7/8)2/2 < e−3�∗ ≤ 1/n3,

where we used the assumption � ≥ ln n. Hence, the probability that u is not
processed after T + �F = O(Δ�2 + � log(Δ�)/ρ) iterations is at most 1/n3. By
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the union bound, the probability that there is an unprocessed vertex remaining
after this time is at most 1/n2. This proves the first statement of the theorem.

The preceding argumentation holds for arbitrary initilization of the ACO
algorithm, in particular, if the pheromone values have assumed an arbitrary
value. Hence, we can repeat the argumentation with another phase of T + �F
iterations if the algorithm does not find all shortest paths within the first
T + �F iterations. The expected number of phases is 1 + o(1), which implies
the bound on the expected number of iterations. ��

Horoba and Sudholt (2009) also show a lower bound that is tight with the
upper bound from Theorem 8.11 if ρ = Ω((log n)/n), and almost tight with
a gap of at most O(log2 n) otherwise. The underlying graph is similar to the
example mentioned above following Theorem 8.5. All vertices are lined up on
a single path that contains all shortest paths as subsets. Then MMASSDSP

has to optimize n− 1 vertices sequentially with respect to increasing distance
from the destination.

The lower bound shows that no significant improvements are possible with
the setting of Theorem 8.11. However, there is room for improvement if the
degrees of the vertices differ significantly. Rather than choosing τmin = 1/(Δ�)
for all vertices, we set the pheromone bounds of edges adaptively with respect
to the vertices they are leaving. More precisely, for every vertex u, we re-
strict the pheromone values of the outgoing edges e = (u, ·) to the interval
[τmin(u), τmax(u) = 1 − τmin(u)]. The choice τmin(u) := 1/(outdeg(u)�) yields
the following bound.

Theorem 8.12. Consider a directed acyclic graph G. Let � := �(G). Then
the expected number of iterations of MMASSDSP on G with τmin(u) =
1/(outdeg(u) · �) for all vertices u ∈ V is O(�|E| + (n log n)/ρ).

Proof. The structure of the proof is the same as that for Theorem 8.10.
Only the expected time (number of iterations) until the vertices consid-
ered in topographical ordering have been processed is (are) added up more
carefully. The expected time until vertex u has been optimized is at most
2e/τmin(u) = 2e outdeg(u)�. Since τmin(u) ≥ 1/n2, the processing time for ver-
tex u is at most 2e outdeg(u)�+log(τmax/τmin)/ρ = O(outdeg(u)�+(log n)/ρ).
Adding this up over n − 1 vertices and noting that

∑
u∈V outdeg(u) = 2|E|

yields the result. ��

8.3.2 All Pairs Shortest Paths

It is straighforward to compute shortest paths between all pairs of vertices by
calling the MMASSDSP ACO algorithm sequentially for all n destination ver-
tices. This can also be done in parallel by letting ants head for all destinations
and extending the pheromone values on edges to vector-valued values. That is,
we have ants au,v and best-so-far paths p∗u,v for every start vertex u and every
destination v. For every v, we introduce a pheromone function τv : E → R+

0
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such that τv(e) denotes the pheromone value on edge e ∈ E that controls
the ants heading to v and is updated by these ants. The resulting algorith-
mic framework is called MMASAPSP and displayed in Algorithm 16. Note
that the framework is nothing else than a parallelization of Algorithm 15. For
this reason, it is easy to obtain results in the vein of Theorem 8.11 also for
MMASAPSP. Basically, the number of constructed solutions grows by a factor
of n.

Algorithm 16 MMASAPSP

For all v ∈ V , initialize pheromones τv and best-so-far paths p∗
1,v, . . . , p∗

n,v .
loop

for all v ∈ V do
for all u �= v do

Construct a simple path pu,v from u to v with respect to τv.
if w(pu,v) ≤ w(p∗

u,v) then
p∗

u,v ← pu,v

end if
end for
Update pheromones with respect to p∗

1,v, . . . , p∗
n,v.

end for
end loop

Remarkable improvements over the plain parallelization can be obtained
by introducing a small dose of interaction into MMASAPSP. Consider an ar-
bitrary ant au,v heading for destination v. The idea is to give au,v access to
additional pheromone trails beside τv and let it follow these “foreign” trails
with a certain probability. More precisely, the decision to follow a foreign trail
is made with probability 1/2. In this case, an intermediate destination w ∈ V is
chosen uniformly at random and the ant travels first to w using the pheromone
information τw; afterwards it travels from w to the actual destination v using
its own pheromone vector τv. This path construction with (possible) inter-
action is stated as Algorithm 17. The pheromone update for ant au,v always
applies exclusively to the pheromone values τv.

Theorem 8.13. Consider a directed graph G with positive weights where all
shortest paths are unique. Let � := �(G) and Δ := Δ(G). If � ≥ lnn holds, the
number of iterations of MMASAPSP with interaction on G with τmin = 1/(Δ�)
is O(n log n + log(�) log(Δ�)/ρ) with probability at least 1 − 1/n2. The bound
on the number of iterations holds also in expectation.

Proof. As a preparation, we introduce concepts similar to those in the proof
of Theorem 8.10. For an arbitrary pair of vertices (u, v), we denote by �u,v the
maximum number of edges on a shortest path from u to v. We call an edge
incorrect with respect to v if it does not belong to a shortest path to v. We
call the pair (u, v) optimized if a shortest path from u to v has been found.
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Algorithm 17 Path construction from u to v for MMASAPSP with interaction
Choose b ∈ {0, 1} uniformly at random.
if b = 0 then

Construct a simple path from u to v with respect to τv.
else

Choose w ∈ V uniformly at random.
Construct a simple path p′ = (p′

0, . . . , p
′
�′) from u to w with respect to τw.

Construct a simple path p′′ = (p′′
0 , . . . , p′′

�′′) from w to v with respect to τv.
if p′

�′ = w then p ← (p′
0, . . . , p

′
�′ , p

′′
1 , . . . , p′′

�′′) else p ← p′ end if
end if
return p.

Finally, we call (u, v) processed if it has been optimized and the pheromone
values τv(·) on all incorrect edges (u, ·), i.e., all incorrect edges leaving u, equal
τmin.

The actual proof divides the run of MMASAPSP into phases such that
all pairs (u, v) with a certain bound on the �u,v-value are processed in a
phase. Since the bound increases by a factor 3/2 from phase to phase, the
total number of phases is bounded by α := �log(�)/log(3/2). While going
from one phase to the next, we exploit the ants’ capability of using foreign
pheromone trails and let them follow shortest paths with lower �u,v-values
between previously processed pairs. More precisely, the ith phase, 0 ≤ i ≤ �,
finishes when all pairs (u, v) satisfying (3/2)i−1 < �u,v ≤ (3/2)i have been
processed. Hence, the aim for the 0th phase is to process all pairs (u, v) such
that (u, v) ∈ E.

We reserve t∗ := (ln(2))/ρ iterations at the beginning of the first phase. We
fix an arbitrary pair (u, v) such that (u, v) ∈ E. The probability of optimizing
(u, v) in the tth iteration, 1 ≤ t ≤ t∗, is at least (1− ρ)t−1/(4Δ) since the ant
au,v decides with probability 1/2 to head directly for v (instead of following
foreign pheromone trails) and chooses (u, v) with probability at least (1 −
ρ)t−1/(2Δ). The latter bound follows from Corollary 8.8 along with the fact
that τv(u, v) ≥ (1/Δ) · (1− ρ)t−1 after t− 1 iterations. Hence, the probability
of not optimizing (u, v) within the first t∗ iterations is at most

t∗∏
t=1

(
1 − (1 − ρ)t−1

4Δ

)
≤ e−

1
4Δ ·

Pt∗−1
t=0 (1−ρ)t

= e−
1−(1−ρ)t∗

4Δρ .

Since ρ ≤ 1/(23Δ log n) ≤ 1/(8Δ ln(2n4)) and, therefore, 1−(1−ρ)t ≥ 1/2, the
last probability is at most e− ln(2n4) = 1/(2n4). By the union bound, the prob-
ability that there is a pair (u, v) ∈ E left after the t∗ iterations that is not opti-
mized is at most 1/(2n2). By Lemma 8.9 (which applies also to MMASAPSP),
all optimized pairs become processed after at most ln(τmax/τmin/ρ) iterations.
Hence, the total length of the first phase is chosen to be t∗ + ln(τmax/τmin)/ρ
iterations.
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Consider phase i, i ≥ 1, where all pairs (u′, v′) with �u′,v′ ≤ (3/2)i−1 have
already been processed. Now let (u, v) be a pair where (3/2)i−1 < �u,v ≤
(3/2)i. If ant au,v decides to use foreign pheromone information to head for
an intermediate vertex w and chooses w on the middle third of a shortest path
pu,v from u to v, then both �u,w ≤ (3/2)i−1 and �w,v ≤ (3/2)i−1 hold. The
probability of choosing w in the desired way is at least (1/2)·(1/3)·(�u,v/n). In
this case, the ant follows the shortest path from u to v via w with a probability
of at least (1−1/�)�−1 ≥ 1/e since (u,w) and (w, v) have been processed by as-
sumption. Altogether, the probability of optimizing (u, v) in a single iteration
of phase i is at least (1/2) · (1/3) · (�u,v/n) · (1/e) ≥ (3/2)i−1/(6en). By reserv-
ing t∗i := 6en ln(2αn4)/(3/2)i−1 iterations for phase i, the probability of not
optmizing a pair (u, v) with (3/2)i−1 < �u,v ≤ (3/2)i in the phase is at most
(1− (3/2)i−1/(6en))t ≤ 1/(2αn4). By the union bound, all such pairs are op-
timized within t∗i iterations with probability at least 1−1/(2αn2). We already
know that optimized pairs become processed after at most ln(τmax/τmin)/ρ ad-
ditional iterations. Altogether, the number of iterations reserved for all phases
is at most

ln 2
ρ

+
α∑

i=1

(
6en ln(2αn4)

(3/2)i−1

)
+ α · ln(τmax/τmin)

ρ

≤ ln 2
ρ

+ 6en ln(2αn4) ·
α∑

i=1

(
2
3

)i−1

+
α ln(Δ�)

ρ

= O(n log n + log(�) log(Δ�)/ρ).

Summing over all phases, the total failure probability is at most 1/(2n2)+
α · 1/(2αn2) = 1/n2. This proves the first statement of the theorem. The
second statement follows since the weaker upper bound O(n3 + (n log n)/ρ)
on the expected number of iterations of MMASAPSP follows easily using the
proof ideas for Theorems 8.10 and 8.11. In the case where the time bounds set
up for the phases are not sufficient, we estimate the number of iterations by
the weaker bound. The contribution to the total expected number of iterations
is at most (1/n2) · O(n3 + (n log n)/ρ) = O(n log n + log(�) log(Δ�)/ρ). ��

Since each iteration of MMASAPSP constructs n2 solutions, the bound of
the last theorem corresponds to O(n3 log n + n2 log(�) log(Δ�)/ρ) evaluations
of the objective function, which is an optimization time of O(n3 log n) if ρ is
chosen appropriately. This beats the bound for Steady State GASP presented
in Theorem 8.6 (and also the lower bound Ω(n3.25 log1/4 n) given by Doerr
and Theile (2009)). Hence, the ACO variant can be called the most efficient
algorithm among the stochastic search algorithms considered in this chapter.

Conclusions

We have considered different search algorithms for the computation of short-
est paths. For the single-source shortest-path (SSSP) problem, a simple evo-
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lutionary algorithm was investigated on two different fitness functions. With
respect to the all-pairs shortest-paths (APSP) problem, a population-based
evolutionary algorithm using crossover is compared to the same algorithm
without crossover and a benefit of the crossover-based variant is proven. Fi-
nally, both the SSSP and the APSP were solved by ACO algorithms with
a nontrivial colony. A variant using interaction leads to even better runtime
bounds than the ones presented for evolutionary algorithms.





9

Eulerian Cycles

In this chapter, we analyze stochastic search algorithms on arc routing prob-
lems. For such problems, the choice of a good representation is not straightfor-
ward, and it has a large impact on the success of stochastic search algorithms.
The Eulerian cycle problems is the simplest problem belonging to the wide
class of arc routing problems, and we consider this problem as an example
of how the choice of the representation influences the runtime of stochastic
search algorithms.

Euler initiated the study of graph theory with the famous seven bridges
problem (Euler, 1741). The generalization of the seven bridges problem can
be described as follows and is known as the Eulerian cycle problem. Given an
undirected connected graph G = (V,E) on n vertices and m edges, the task is
to compute a cycle such that every edge is used exactly one time. Euler proved
that a tour of all edges in a connected undirected graph without repetition
is possible iff the degree of each vertex is even. Such graphs are known as
Eulerian graphs. If an Eulerian cycle exists, we call G Eulerian. In the rest of
this chapter, we assume that G is Eulerian.

The Eulerian cycle problem can be solved in time O(m + n) by the al-
gorithm of Hierholzer (1873) (see Algorithm 18). This algorithm computes
cycles in the given graph and joins them together such that an Eulerian tour
is obtained.

Stochastic search algorithms do not have the knowledge that the problem
can be solved by computing cycles and building up the solution by putting
the cycles together. We will see that they are able to compute a single cycle
and integrate another cycle if the solution is not optimal. Hence, they follow
the idea of the algorithm without having this global knowledge.

We do not and cannot hope to compete with the best algorithms for the
Eulerian cycle problem. This can be different for generalizations of the prob-
lem. For example, the problem of finding the largest Eulerian subgraph of
a given graph and the mixed Chinese postman problem (see Edmonds and
Johnson, 1973) are NP -hard and stochastic search algorithms have a good
chance to be competitive on these problems. For other NP -hard variants such
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Algorithm 18 Algorithm of Hierholzer

1. Find a cycle C in G
2. Delete the edges of C from G
3. If G is not empty go to step 1.
4. Construct the Eulerian cycle from the cycles produced in Step 1.

as the capacitated arc routing problem, evolutionary algorithms have been
developed and successfully applied (Lacomme, Prins, and Ramdane-Chérif,
2001).

We consider stochastic search algorithms that use different representations
to find an Eulerian cycle. The representation of permutations has successfully
been applied to difficult combinatorial optimization problems such as the trav-
eling salesperson problem (see Michalewicz and Fogel, 2004 for an overview).
We start with this general approach as it is important to understand how
evolutionary algorithms, using this encoding, work on simple problems. Later
on, we investigate a representation based on adjacency list matchings, which
is more related to the Eulerian cycle problem, and show that it leads provably
to a better runtime behavior of stochastic search algorithms.

9.1 Edge Permutations

In this section, we examine how the general approach of representing solutions
by permutations of the edges can solve the Eulerian cycle problem.

9.1.1 Algorithms

To find such a cycle, we use a permutation of the edges of G. The search
space Sm contains all permutations of the edges of G. A search point π ∈ Sm

corresponds to the order of using the edges for the Eulerian tour. Usually a
permutation does not correspond to an Eulerian tour. It normally describes
a walk w which is part of such a tour. The ideas can be used to define the
fitness function walk, which is appropriate for the Eulerian cycle problem.

The fitness of a permutation π is given by

walk(π) := length of the walk implied by π,

where we start with the first edge in π and extend the walk if the edge on
the second position has one vertex with the first edge of π in common. This
walk can be further extended if the third edge has one vertex which is equal
to the ”free” vertex of the second edge. We can extend the procedure to build
up a walk of length � implied by π. In the rest of this section, the walk will
be named by w. Usually a walk w is written as a sequence of vertices and
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Algorithm 19 RLSp

1. Choose π ∈ Sm randomly.
2. Choose i und j uniform at random and define π′ by executing jump(i, j) on π.
3. Replace π with π′ if walk(π′) ≥ walk(π).
4. Repeat Steps 2 and 3 forever.

Algorithm 20 RLSa

1. Choose π ∈ Sm randomly.
2. Choose i uniform at random and define π′ by executing jump(i, 1) on π.
3. Replace π with π′ if walk(π′) ≥ walk(π).
4. Repeat Steps 2 and 3 forever.

denoted by w = (v0, v1, . . . , v�). This implies a set of edges that is a subset
of the edge set E. To make the connection to the fitness function walk more
precise, we represent a walk w by a sequence of directed edges and denote it
by w = (v0, v1), (v1, v2), . . . , (v�−1, v�).

The fitness function describes the processing order in which to use the
edges for a tour starting with the edge on position 1. The fitness of a permu-
tation can therefore be easily evaluated. If the resulting walk is short, most
edges in the permutation do not have to be considered.

In the case where we are searching for a good permutation of the input ele-
ments, jumps and exchanges are popular operators that lead to new solutions
(see Section 3.1.2). Both operators have been integrated into one mutation
operator by Scharnow et al. (2004) for the sorting problem. We consider the
jump operator in this section and show that it leads to an efficient optimiza-
tion process.

We investigate a variant of RLS with permutations of the edges. The algo-
rithm RLSp executes in one mutation step exactly one jump operation. This
jump is chosen according to the uniform distribution from among all possible
jumps, which means that the positions i and j are chosen uniformly at random
from the set {1, . . . , m}. Our algorithm starts with a permutation π chosen
randomly from the set Sm that consists of all permutations of m elements. We
will analyze such stochastic search algorithms until they have found a good
permutation of the edges of a given graph for the Eulerian cycle problem. The
underlying fitness function walk should be maximized. Therefore, we describe
RLSp as shown in Algorithm 19.

We also want to examine whether a slight modification of the mutation
operator leads to significantly better results. The idea is to use asymmetric
jumps which choose one edge uniformly at random and place this edge at the
first position of the permutation. The algorithm RLSa (Algorithm 20) differs
from RLSp by using this asymmetric mutation operator.
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Working with a mutation operator that allows more than one jump opera-
tion in a single mutation step, we obtain variants of (1+1) EA for the Eulerian
cycle problem. All results given in this section can be generalized to a variant
of (1+1) EA, where the number of jump operations in a single mutation op-
eration is chosen according to a Poisson distribution with parameter λ = 1.
We do not want to give the full proofs (which can be found in Neumann, 2008
and Doerr, Hebbinghaus, and Neumann, 2007b) as they follow similar ideas
as those for RLSp and RLSa, but involve more technicalities.

9.1.2 Runtime Analysis

In the following, we show an upper bound of O(m5) on the expected opti-
mization time for RLSp on the proposed fitness function.

Theorem 9.1. The expected time until RLSp working on the fitness function
walk constructs an Eulerian cycle is O(m5).

Proof. The fitness walk(π) of a search point π can take values from {1, . . . , m},
where the optimum is reached if walk(π) equals m. Our goal is to show that
an improvement, i.e., a solution of fitness at least � + 1, has been obtained
after an expected number of O(m4) steps.

W. l. o. g., the walk w implied by π is of the form (v0, v1), . . . , (v�−1, v�) and
has length � ∈ {1, . . . m − 1}. If v0 �= v� holds, we say that w is a path, and
otherwise we say that w is a cycle. In the first case, we consider a typical run
consisting of a phase of cm2 steps, c an appropriate constant, and show that
an improvement has been reached with probability Ω(1) within this phase.
Hence, the expected number of such phases to reach an improvement is upper
bounded by α−1. In the second case, we show that either an improvement
has been reached in expected time O(m4) or a path of length � has been
produced. If a path of length � has been produced before the improvement,
we may return to the first case.

Claim. Let w be a path described by π of length � ∈ {1, . . . , m − 1}. Consid-
ering a phase of length cm2, c an appropriate constant, an improvement has
been achieved with probability at least α = Ω(1).

Proof. We work under the assumption that w has not been turned into a
cycle of length � before having achieved an improvement. If v0 �= v� holds,
there is an edge incident to v� which can be placed after {v�−1, v�}. Such a
jump lengthens the path and has probability at least 1/m2. In this case, the
expected time for an improvement of π is bounded by m2. Using Markov’s
inequality, the probability that that an improvement has been achieved within
a phase of cm2 steps is at least 1 − 1/c.

However, it might happen that the path turns into a cycle of length � before
an improvement has been obtained. This can happen if the edge e = {v�−1, v0}
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is put on position � (assuming that it exists in the set of edges E). Our goal
is to bound the probability for this event in the following.

Let k be the position of e in π. The operation jump(k, �) takes e and puts
it directly in position �. The probability for this event is 1/m2. Therefore,
the probability of an improvement is at least as high as the the probability of
executing this jump. Hence, an improvement happens before this jump with
probability at least 1/2.

If k = � + 1, jump(�, ∗1), where ∗1 ∈ {� + 1, . . . , m}, can be executed such
that e is put in position �. The probability of this operation is m−�

m
. However,

with probability m−�−1
m

, jump(k, ∗2) with ∗2 ∈ {� + 2, . . . , m} is executed.
After this has happened, the probability of putting e in position � is again
1/m2, and an improvement happens with a probability of 1/2 before this event.
The probability of executing jump(k, ∗2) before jump(�, ∗1) is m−�−2

2m−2�−3 ≥ 1/3.
Altogether with probability at least α = (1− 1/c) · 1

6 = Ω(1), an improve-
ment has been achieved during the considered phase. ��

If v0 = v� the analysis for an improvement is more complicated. In this
case, w is a cycle C. If the graph is Eulerian and w is not an Eulerian tour,
there is at least one vertex vk on C which is also a vertex on another cycle
C′ having vk in common with C (see Figure 9.1). We want to show that an
improvement is reached in expected time O(m4).

Claim. Let w be a cycle described by π of length � ∈ {1, . . . , m − 1}. The
expected time to produce an improvement is O(m4).

Proof. We bound the time the reach an improvement by O(m4) when starting
with a cycle under the condition that no path of length � has been produced
before. If we reach a path of length � before the improvement, we already
know that after an additional phase of length cm2, an improvement happens
with probability α = Ω(1). This implies that an improvement is reached in
expected time α−1(O(m4) + O(m2)) = O(m4) when starting with a cycle.

We inspect the case where w is a cycle whose corresponding permutation
π does not start with the vertex vk. We call an operation relevant if it changes
w and is accepted.

1. Case i, j ∈ {� + 2, . . . , m}: These operations are not relevant as they do
not change w.

2. i ∈ {1, . . . , �+1}, j ∈ {�+2, . . . , m}: If i ∈ {1, . . . , �}, the cycle is destroyed.
If i = � and the edge at position � + 1 contains v�−1, a path of length �
is constructed. If i = � + 1, an improvement may happen if the edge at
position � + 2 contains v�. Otherwise, w is unchanged.

3. i ∈ {� + 2, . . . , m} and j ∈ {1, . . . , � + 1}: If j ∈ {2, . . . , �}, the cycle
property is destroyed and either the fitness is decreased or a path is con-
structed. If j = � + 1, an improvement is reached if the edge at position i
contains v�. The same holds for j = 1 if the edge at position i contains v0.
The walk w remains unchanged for all other cases where j = � + 1 holds.
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Fig. 9.1. Situation in which w is a cycle C that does not include all edges of G.
Then there is another cycle C′ which has one vertex vk with C in common

4. i, j ∈ {1, . . . , � + 1}: If i or j ∈ {2, . . . , �− 1}, we destroy the cycle. These
steps are not accepted by the algorithm.
If i = �+1 and j = 1, an improvement may happen if the edge on position
� + 1 contains v0. If i = � + 1 and j = �, the cycle may be turned into a
path of length �.
An operation where i = 1 and j �= � or i = � and j �= 1 shortens the walk
by at least 1 and is not accepted. The algorithm accepts the two jump
operations jump(1, �) and jump(�, 1). These operations revolve the cycle.

The only two relevant operations that produce from a cycle w another cycle
w′ are jump(1, �) and jump(�, 1). All other relevant operations produce a path
of length at least �.

If w is a cycle C which is not an optimal solution, then there is at least
another cycle C ′ that shares with C at least one vertex vk.

To reach an improvement we examine how to construct a cycle

w∗ = (vk, vk+1), . . . , (v�−1, v0), . . . , (vk−1, vk).

We investigate how this can be done by the two jump operations jump(1, �)
and jump(�, 1). If we have not reached such a walk, there is exactly one jump
which places the edge e = {vk, vk+1} one position further to the left and one
which places e one position further to the right. The probability of placing e
further to the left is in each relevant step 1

2 . Hence, the algorithm performs a
random walk shifting the edge e to the left or to the right with equal proba-
bility. Using the results on fair random walks presented in Section 4.2.4, the
expected number of relevant steps when starting with e in the permutation
is O(m2) as the number of edges in w is upper bounded by m. Each relevant
step happens with probability 1/m2, which implies that an expected number
of O(m4) steps suffices when starting with e.

The vertex vk is also a vertex in another cycle C ′. Hence, there are two
edges {vk, vs} and {vk, vt} in C ′. If we place one of these edges at position
� + 1 or 1 (see 3.), we have lengthened the walk and achieved an improve-
ment. On the other hand, the operations jump(1, �) and jump(�, 1) put e at
position � and position 2, respectively. This yields a probability of at least 1

2
for an improvement in the next relevant step. Therefore, the algorithm has to
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produce a cycle starting with vk at most twice in expectation, which implies
that the expected time to reach an improvement is O(m4). �

There are at most m− 1 improvements, which leads to an upper bound of
O(m5) on the expected optimization time of RLSp. �

In Doerr et al. (2007b), it has been shown that RLSp needs an expected
number of Ω(m4) steps to find an Eulerian cycle if the given graph consists of
two cycles that contain m/2 edges and share one single vertex v. The reason
for this lower bound is that the random walk revolving the cycle needs Ω(m4)
to produce a permutation that starts with an edge containing v.

We want to discuss whether using asymmetric jumps leads to more effi-
cient evolutionary algorithms and examine RLSa in the following. Using an
asymmetric jump operation has the following effect. In the case where the
current solution is a path, the upper bound on the expected waiting time to
lengthen the walk reduces from O(m2) to O(m). In the case where the current
solution is a cycle, the algorithm performs a directed walk instead of a ran-
dom walk. This reduces the expected time for an improvement significantly,
as shown in the following theorem.

Theorem 9.2. The expected time until RLSa has computed a Eulerian cycle
is bounded by O(m3).

Proof. RLSa executes only jumps to the first position in the permutation.
We assume that our current solution represents a walk of length �. Again, we
assume that the walk is of the form (v0, v1), . . . , (v�−1, v�). If � ≥ 2 holds, a
jump is only accepted if the edge e = (vi, vj) at position i, which is jumped
to position 1, contains v0 or v1. If the edge e contains v1, a path of length at
most 2 is obtained as v0 ∩ e = ∅. If e contains v0, this may either lead to an
improvement if e �= {v�−1, v�} or revolve the cycle.

We distinguish between two cases. In the first case, the current walk is
a path. Then there exists at least one edge e �= {v�−1, v�} that can jump to
position 1 and lengthen the walk. In this case, the expected waiting time for
an improvement is O(m).

In the second case, w is a cycle C that is not a Eulerian cycle. Then there
is at least another cycle C ′ that shares a vertex vk with C. As for RLSp, we
consider the time to construct a walk

w∗ = (vk, vk+1), . . . , (v�−1, v0), . . . , (vk−1, vk).

This is achieved by executing � − k times the operation jump(�) :=
jump(�, 1). Each of these jumps happens with probability 1/m, and the ex-
pected time to produce a cycle which starts with vk is therefore at most
(�− k)m = O(m2). Afterwards, an improvement can be achieved by jumping
one of the edges {vk, vs} and {vk, vt} contained in C ′ to position 1. On the
other hand, jump(�) is also accepted and revolves the cycle further. However,
the probability that the next accepted mutation step is an improvement is at
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least 2/3. Altogether, the expected time for an improvement is upper bounded
by O(m2) in the second case. The number of improvements is at most m− 1,
which completes the proof. ��

9.2 Adjacency List Matchings

In the previous section, we have shown that simple stochastic search algo-
rithms representing possible solutions as permutations of the edges achieve
an Euler tour of a given Eulerian graph in expected polynomial time. In the
following, we want to examine how representations that are more related to
the given problem speed up the optimization process.

The fitness function walk considers a walk starting with the first edge in the
permutation. This walk is extended as long as possible, resulting in the fitness
value of a permutation of the edges. The idea that leads to a more efficient
optimization process is to consider not only one specific walk, but a set of walks
which can be merged such that an Eulerian tour is obtained. This idea has
been used by Doerr and Johannsen (2007), who have chosen a representation
of possible solutions for the Eulerian cycle problem based on adjacency list
matchings. We will see that this representation in combination with suitable
mutation operators leads to significantly improved runtime bounds.

9.2.1 Algorithms

The representation by adjacency list matchings is based on a phenotype-
genotype mapping which is often used in evolutionary algorithms. Solutions
are represented in the genotype space and are mapped via a specific function
to the phenotype. The Eulerian cycle problem consists of finding a tour in the
graph such that each edge is used exactly once. Therefore, it seems appro-
priate that solutions in the phenotype space consist of different edge-disjoint
paths and cycles in the graph.

Phenotype

We first describe how these ideas are represented in the phenotype and dis-
cuss the genotype representation afterwards. A phenotype consists of different
walks that can later be joined such that an Eulerian tour is obtained. A path
of length k is given by a sequence of vertices (v0, v1, . . . , vk) such that there is
an edge ei = {vi−1, vi} ∈ E, 1 ≤ i ≤ k, and v0 �= vk holds. Similarly, a cycle
of length k + 1 consists of a sequence of vertices (v0, v1, . . . , vk, v0) such that
there is an edge ei = {vi−1, vi}, 1 ≤ i ≤ k and ek+1 = {vk, v0}. As we consider
the Eulerian cycle problem, we require that all edges be different, but allow
that vertices appear more than once.

A phenotype is a cover C = {C1, . . . , Cr} for the given graph. It consists
of a set of r edge-disjoint paths and cycles which cover all edges of G. The
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Fig. 9.2. Graph G with six vertices and nine edges and four edge-disjoint walks,

fitness of a cover C = {C1, . . . , Cr} is given by the number of edge-disjoint
walks, i.e.,

f(C) = r.

An optimal solution has fitness 1 as it uses all edges in a single walk, which
implies that this walk is an Eulerian cycle.

Genotype

We have to give a suitable representation for the genome. This is based on
adjacency lists, which are a common representation for graph problems. For
each vertex v ∈ V , we store its neighbors in G in a list Av. As the graph is
Eulerian, the number of entries in each list is even. In total, we have n lists and
the total number of entries in all lists is 2m as each edge {u, v} contributes
an entry u to list Av and an entry v to list Au.

The idea behind the adjacency list matching is that we can match two
vertices u and w in a list Av such that a path u, v, w of length 2 is obtained.
A matching Mv of a list Av is a set of disjoint pairs of vertices. Mv is called
perfect iff all vertices in Av are matched. A matching M = ∪v∈V Mv is a set
of n matchings, one for each list Av. M is called perfect if for each v ∈ V , Mv

is a perfect matching.
In Doerr and Johannsen (2007), it is shown that there exists a mapping be-

tween the phenotype space of paths of G and the genotype space of matchings.
This mapping is used to match search points in the genotype to a collection
of paths in the phenome. We present the theorem giving the mapping from
the genotype to the phenome in the following.

Theorem 9.3. There exists a 1↔1 correspondence between the phenotype
space and the genotype space. Moreover, this 1↔1 correspondence maps cycle
covers of G to perfect matchings and vice versa.
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Proof. The idea behind the mapping is that unmatched vertices correspond
to end vertices of a path and matched vertices to interior vertices of paths
and cycles.

First, we show that a walk cover defines a matching M . Let C =
{C1, . . . , Cr} be a cover consisting of r walks (either paths or cycles), where
each edge e ∈ E only occurs at most once in all walks. For a vertex v ∈ V
and u,w ∈ Av, {u,w} ∈ Mv holds iff there exists a walk or a cycle Ci such
that the {u, v} and {v, w} are subsequent in Ci. Each edge e = {u, v} appears
exactly once in C (u once in Av and v once in Au). Hence, M is a matching.

Now, we show that a matching M defines a walk cover C of G. The empty
matching defines of a set of m paths u, v corresponding to the edges {u, v} ∈ E
in G. Let M be a non-empty matching, v ∈ V and {u,w} ∈ Mv. We define
recursively a walk cover C corresponding to M . Let M ′

v = Mv \ {u,w} and
M ′ = (M \ Mv) ∪ M ′

v and let C ′ be the cover corresponding to M ′. Since u
and w are not matched in M ′, there exist either two walks (v′, . . . , u, v) and
(v, w, . . . , v′′) or one path (v, u, . . . w) in C ′. In the first case, the walk cover
C is defined as the walk cover C ′, where the two walks are joined to one walk
(v′, . . . , u, v, w, . . . , v′′). In the second case, the walk cover C is defined as C ′,
where the path is replaced by the cycle (v, u, . . . , w, v). ��

Due to this 1↔1 correspondence, we identify a matching M with its walk
cover C and vice versa.

We want to illustrate the use of adjacency list matchings and consider the
Eulerian graph G given in Figure 9.2. Consider the matching M = ∪6

i=1Mvi

with

Mv1 = {{v2, v4}},
Mv2 = {{v1, v4}},
Mv3 = ∅,
Mv4 = {{v1, v2}, {v5, v6}},
Mv5 = {{v2, v6}},
Mv6 = {{v4, v5}}.

This matching corresponds to the set of walks

C = { (v1, v2, v4, v1),
(v2, v5, v6, v4, v5),
(v2, v3),
(v3, v5)}.

Mutation

The mutation operator works on the genome, i.e., it matches or unmatches
vertices in the adjacency lists. It carries out a sequence of local operations. In
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Algorithm 21 Local operation
Input: u, w, Av

1. If u and w are unmatched, Mv := Mv ∪ {u, w}.
2. If {u, w} ∈ Mv, Mv := Mv \ {u, w}.
3. If u is matched to some w′ and w is unmatched,

Mv = (Mv \ {u, w′}) ∪ {u, w}.
4. If w is matched to some v′ and u is unmatched,

Mv = (Mv \ {w, v′}) ∪ {u, w}.
5. If u is matched to some w′ and w is matched to some u′,

Mv = (Mv \ ({u, w′} ∪ {u′, w}) ∪ ({u, w} ∪ {u′, w′}).

Algorithm 22 (1+1) EAM

1. Choose a matching M .
2. Define M ′ in the following way. Choose � from a Poisson distribution with

parameter λ = 1 and perform sequentially � + 1 randomly chosen edge-based
mutation operations to produce M ′ from M .

3. Replace M with M ′ if f(C′) ≤ f(C).
4. Repeat Steps 2 and 3 forever.

a local operation, two vertices u and w from an adjacency list Av are chosen.
A question that arises is about how to pick the vertices u and w that are
used in the operation. We discuss the edge-based approach where u is chosen
uniformly from all 2m vertices in all lists. Other approaches can be found in
Doerr and Johannsen (2007).

Suppose that u is in list Av. Then w is chosen uniformly at random from
Av. Hence, the probability of choosing a specific pair (u,w) in list Av is 1

2d(v)m ,
where d(v) denotes the degree of vertex v in G. Having chosen u and w, a
step of the local operation works as follows. If u = w, nothing is changed.
Otherwise, an operation according to the different cases given in Algorithm 21
is executed. The important cases are 1 and 5, which are necessary for achieving
the improvements by the stochastic search algorithm. Case 1 joins two walks
into a single one. Case 5 joins two cycles into a single cycle.

Analyzing stochastic search algorithms based on adjacency list match-
ings in Section 9.2.2, we will also consider the special case where we always
work with perfect matchings. In this case, nothing is changed if {u,w} ∈ Mv

as deleting {u,w} from Mv would destroy the property of having a perfect
matching.

Finally, we can describe a variant of the (1+1) EA (see Algorithm 22) that
works in the genotype space. Possible solutions are represented as adjacency
list matchings. The mutation operator carries out sequentially a number of
� + 1 local operations, where � is chosen from a Poisson distribution with
parameter λ = 1 to produce an offspring M ′.
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9.2.2 Runtime Analysis

We first consider (1+1) EAM which always works with a perfect matching.
A perfect matching represents different cycles in the phenoype that have to
be joined during the optimization process. We are not allowed to produce
solutions consisting of unmatched vertices in this case. Hence, only local op-
erations due to Case 5 in Algorithm 21 are executed. As there is a 1↔1
correspondence, between matchings and walk covers we identify a matching
M with its walk cover C.

Theorem 9.4. The expected optimization time of (1+1) EAM working with
perfect matchings is O(m log m).

Proof. The algorithm works at each time step with a perfect matching. All
walks are cycles. Hence, only the number of different cycles determines the
fitness. Assume that the number of cycles of the current solution M is r. We
want to compute a lower bound on the probability of obtaining a matching
of at most r − 1 cycles in the next step and use the method of fitness-based
partitions (see Section 4.2.1) according to the different possible values of r
afterwards.

To reduce the number of cycles, the mutation operator has to join two
cycles into one. We know that each cycle shares at least one vertex v with
another cycle as the graph is Eulerian. Consider such a vertex v and assume
that s(v) cycles c1, . . . , cs(v), s ≥ 2, have this vertex in common. We count
the number of pairs (u,w) in Av such that the edges {u, v} and {v, w} are in
different cycles of c1, . . . , cs(v). Let di be the number of vertices in ci, 1 ≤ i ≤
s(v), that are incident to vertex v. We know that di ≥ 2 and

∑s(v)
i=1 di = d(v).

The total number of pairs (u,w) for list Av is d(v)2, and the number of pairs
where both vertices belong to cycle ci is d2

i . Hence, the number of pairs that
are in different cycles is

d(v)2 −
s(v)∑
i=1

d2
i ≥ s(v) · d(v).

Therefore, the probability that two cycles sharing the vertex v are joined
is at least

s(v) · d(v) · 1
2d(v)m

=
s(v)
2m

.

Let V ′ ⊆ V be the set of vertices that are contained in at least two of the
cycles given by M . Clearly,

∑
v∈V ′ s(v) ≥ r. This implies that the probability

of joining two of the r cycles in the next step is at least r/(2m). A perfect
matching consists of at most m/3 cycles. Using the method of fitness-based
partitions, the expected optimization time is upper bounded by

m/3∑
r=2

2em/r = O(m log m). ��
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When working with perfect matchings during the whole optimization pro-
cess, the evolutionary algorithm has to join the different cycles and produces
an Eulerian cycle in expected time O(m log m). This shows that joining cycles
is much easier for the representation by adjacency list matchings than by the
standard approach, which uses a permutation of the edges.

The general approach for an evolutionary algorithm using adjacency list
matchings would be to start with an arbitrary matching and evolve this into
a perfect matching describing an Eulerian cycle. We want to examine the
runtime of this approach in the following.

Theorem 9.5. The expected optimization time of (1+1) EAM working with
arbitrary matchings is O(Δ(G)m log m), where Δ(G) denotes the maximum
degree of the given input graph G.

Proof. Let M be a matching whose corresponding cover C has fitness f(C) =
r, 1 ≤ r ≤ m. In the following, we show that there are �r/2� operations, where
each one improves the fitness of C by at least 1 and happens with probability
Ω( k

mΔ(G) ). Afterwards, we use the method of fitness-based partitions to obtain
the upper bound on the expected optimization time.

We distinguish between paths and cycles of the matching M and examine
how to improve the fitness of the current solution. First, we consider the case
of a path. Let u be an end vertex of such a path and Av the list in which u is
not matched. The number of vertices in Av is even, which implies that there
is another unmatched vertex w in Av. Setting Mv = Mv ∪ {u,w} reduces the
number of walks by 1. Consider the case of a cycle defined by M . As G is
Eulerian, there exists a least one vertex v in the cycle which is also contained
in another path or cycle. Hence, there exists a mutation that connects the
cycle to another component and reduces the fitness by at least 1.

As each of the r walks has at least one local operation that joins two
components, the number of different mutations leading to an improvement is
at least �r/2�. Hence, f(C) = r implies that the probability of an improvement
in the next step is Ω( r

Δ(G)m ). Using the method of fitness-based partitions
according to the different values of r, the expected optimization time is upper
bounded by O(mΔ(G) log m). ��

Conclusions

The Eulerian cycle problem is a fundamental problem in graph theory belong-
ing to the class of arc routing problems. Several important problems belonging
to this class are difficult and stochastic search algorithms have a good chance
of being competitive on these problems. We examined how such algorithms
working with different representations of possible solutions can deal with the
basic Eulerian cycle problem. Our results showed that a general approach rep-
resenting possible solutions by a permutation of the edges of the input graph
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leads to an expected optimization time when using jump operations in the
mutation operator. Later on, we examined a more problem-specific represen-
tation based on adjacency list matchings and showed that this leads provably
to more efficient stochastic search algorithms.
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Multi-objective Minimum Spanning Trees

In this chapter, we analyze multi-objective evolutionary algorithms (MOEAs)
on an NP -hard multi-objective combinatorial optimization problem, namely
the multi-objective minimum spanning tree problem. Many successful evolu-
tionary algorithms have been proposed for this problem (Knowles and Corne,
2001; Zhou and Gen, 1999). In Chapter 5, we showed that stochastic search al-
gorithms are able to compute minimum spanning trees in expected polynomial
time. The analysis is based on the investigation of the expected multiplicative
distance decrease (where the distance is measured as the weight difference
between the current solution and an optimal one) and serves as a starting
point for the analysis of the multi-objective minimum spanning tree problem.

The problem of computing multi-objective minimum spanning trees can
be stated as follows. Given an undirected connected graph G = (V,E) on
n vertices and m edges and for each edge e ∈ E a weight vector w(e) =
(w1(e), . . . , wk(e)), where wi(e), 1 ≤ i ≤ k, is a positive integer, the goal
is to find for each objective vector q of the Pareto front F a spanning tree
s with w(s) = q. In the case of at least two weight functions, the problem
is NP -hard (see Ehrgott, 2005). Papadimitriou and Yannakakis (2000) have
given a fully polynomial-time approximation scheme (FPTAS) to compute
an ε-approximation of the Pareto front. This algorithm is based on a pseudo-
polynomial algorithm given by Barahona and Pulleyblank (1987). The results
given in these papers make use of matrix multiplication algorithms and do not
give insights into how the problem may be tackled by using stochastic search
algorithms. In this chapter, we consider the case k = 2 and examine which
parts of the Pareto front can be computed by simple MOEAs in pseudo-
polynomial time. The results we present are due to Neumann (2007).

The outline of this chapter is as follows. In Section 10.1, we introduce
the algorithms that are subject to our investigations. In Section 10.2, we
show that the extremal points give a 2-approximation of the Pareto front. We
analyze GSEMO in Section 10.3 with respect to the expected time until it has
produced a population that includes for each extremal point of the Pareto
front a corresponding spanning tree, and finish with some conclusions.

F. Neumann, C. Witt, Bioinspired Computation
in Combinatorial Optimization, Natural Computing Series,
DOI 10.1007/978-3-642-16544-3 10, © Springer-Verlag Berlin Heidelberg 2010
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10.1 Representation

Again, we use the edge set encoding for our algorithms. The search space
equals S = {0, 1}m, where each position corresponds to one edge. A search
point s corresponds to the choice of all edges ej , 1 ≤ j ≤ m, where sj = 1
holds. Let wmax

i be the maximum weight of wi, wmax = max wmax
i , wmin =

min wmax
i , and wub = n2 ·wmax. The fitness of an individual s is described by

a vector f(s) = (f1(s), . . . fk(s)) with

fi(s) := ((c(s), e(s) − (n − 1), wi(s)),

where wi(s) :=
∑m

j=1 wj
i sj and wj

i is the value of edge ej with respect to
the function wi, c(s) is the number of connected components in the graph
described by s, and e(s) is the number of edges in this graph. Each fi should
be minimized with respect to the lexicographic order. Note that the number
of connected components and the number of chosen edges is the same for a
particular search point s in each objective function fi.

The fitness function f is a generalization of the first fitness function used
for RLS1,2

b and (1+1) EAb in Chapter 5 to the multi-objective case. Again, the
most important issue is to decrease c(s) until we have graphs connecting all
vertices. The next issue is to decrease e(s) under the condition that s describes
a connected graph. Finally, we look for Pareto optimal spanning trees.

The fitness function f penalizes the number of connected components as
well as the extra connections. This is not necessary since breaking a cycle
decreases the fitness value. Therefore, we are also interested in the fitness
function f ′(s) = (f ′

1(s), . . . f
′
k(s)) with

f ′
i(s) := ((c(s), wi(s)),

which generalizes the second function of Chapter 5 to the multi-objective case.
Note that the fitness functions f and f ′ compute the same objective vector

if s describes a spanning tree. This implies that the Pareto fronts for a given
connected graph G contain the same objective vectors. As both fitness func-
tions take only the weight vectors on the edges into account if s is a spanning
tree, the Pareto sets of f and f ′ consist of all Pareto optimal spanning trees.

When considering a spanning tree T , we can create another spanning tree
T ′ by integrating an edge e ∈ E\T into T and removing one edge of the created
cycle Cyc(T, e). Using such local changes we can transform a spanning tree T
into another spanning tree S. The properties of such local changes have been
examined in detail in Section 5.2. We will also make use of these results to
obtain upper bounds on the runtime of simple MOEAs for the multi-objective
minimum spanning tree problem.

10.2 Extremal Points of the Convex Hull

Let F be the Pareto front of a given instance. If we consider the bi-objective
problem, the convex hull of F , denoted by conv(F ), is a piecewise linear
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Fig. 10.1. The convex hull of the Pareto front F

function (see Figure 10.1). Note that for each spanning tree T on the convex
hull there is a λ ∈ [0, 1] such that T is a minimum spanning tree with respect
to the single weight function λw1 +(1−λ)w2 (Knowles and Corne, 2001). We
will use this in Section 10.3 to transform an arbitrary spanning tree S into a
desired Pareto optimal spanning tree T on conv(F ) using Theorem 5.1.

Let q1 and qr be the Pareto optimal objective vectors with minimal weight
with respect to f1 and f2, respectively. We denote by gi, 1 ≤ i ≤ r − 1, the
linear functions with gradients mi describing conv(F ). Then i < j holds for
two linear functions gi and gj iff mi < mj . Hence, the linear functions are
ordered with respect to their increasing gradients. Let qi = (xi, yi), 2 ≤ i ≤
r − 1, be the intersecting point of gi−1 and gi. Our aim is to analyze the
expected time until a simple MOEA has produced a population that includes
a spanning tree for each vector of F ′ = {q1, q2, . . . , qr}. We call the vectors of
F ′ the extremal points of the Pareto front.

The general idea of evolutionary algorithms is to create good approxi-
mations of optimal solutions for a given task. In the case of multi-objective
problems, the task is to approximate the Pareto front.

Definition 10.1. A solution x is called a c-approximation of a solution x∗

if f1(x) ≤ c · f1(x∗) and f2(x) ≤ c · f2(x∗) holds. We also call the vector
(f1(x), f2(x)) a c-approximation of the vector (f1(x∗), f2(x∗)) in this case. A
set P of solutions is called a c-approximation of the Pareto front F if there
exists for each solution x∗ of the Pareto set a solution x in P that is a c-
approximation of x∗.

In the case of the minimization of two arbitrary functions with positive
function values, the extremal points of the Pareto front give a 2-approximation
of the Pareto front. This is shown in the following theorem.
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Fig. 10.2. Possible Pareto optimal vectors between two extremal points qi and qi+1

Theorem 10.2. In the minimization of two objective functions with positive
objective values, a set P containing for each extremal point a solution is a
2-approximation of the Pareto front.

Proof. Consider the different possibilities for an arbitrary solution x∗ of the
Pareto set together with its Pareto optimal objective vector q = (q1, q2),
which is not an extremal point. Assume that xi < q1 < xi+1 holds for some
i ∈ {1, . . . , r − 1}. This has to be the case because otherwise q would be
dominated or the extremal points are not Pareto optimal. The situation for
the two extremal points qi and qi+1 is shown in Figure 10.2. If q2 ≥ yi, q is not
Pareto optimal as it is dominated by qi. Let dx = xi+1−xi and dy = yi+1−yi.
Consider the vector s = (s1, s2) with s1 = xi + (dx/2) and s2 = yi − (dy/2)
in the objective space. As a 2-approximation of a vector q that dominates a
vector q′ is also a 2-approximation of q′, it is not necessary to consider the
vectors dominated by s. Note that s is a point on the linear function gi which
separates the possible vectors that have to be considered into two classes,
Class 1 and Class 2. Class 1 includes all vectors q with xi < q1 < xi + dx/2
and yi − dy/2 < q2 < yi, and in addition the vector s. Class 2 includes all
vectors q with xi + dx/2 < q1 < xi+1 and yi+1 < q2 < yi − dy/2.

Clearly, xi ≤ q1 and yi+1 ≤ q2. In the following, we show that if q belongs
to Class 1, yi ≤ 2 · q2 holds and that if q belongs to Class 2, xi+1 ≤ 2 · q1

holds. Hence, either qi or qi+1 is a 2-approximation of q.
If q belongs to Class 1 then q1 ≤ xi + (dx/2) holds. In this case, we get

q2 ≥ yi + (q1 − xi) · mi

≥ yi + (dx/2) · mi

= yi + (dx/2)
yi+1 − yi

xi+1 − xi

= yi + (1/2)(yi+1 − yi),

which implies that 2 · q2 ≥ 2yi + yi+1 − yi ≥ yi.
If q belongs to Class 2 then q2 < yi+1 − (dy/2) holds. In this case, we get
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q1 ≥ xi+1 + (q2 − yi+1) · (1/mi)
≥ xi+1 − (dy/2) · (1/mi)

= xi+1 − (dy/2)
xi+1 − xi

yi+1 − yi

= xi+1 − (1/2)(xi+1 − xi),

which implies that 2 · q1 ≥ 2xi + xi+1 − xi ≥ xi+1. �

10.3 Analysis of GSEMO

In GSEMO, the first search point is chosen uniformly at random from the
underlying search space. All results in this section hold for an arbitrary initial
solution.

We start by analyzing GSEMO until it produces a population consisting
of solutions which are connected graphs.

Lemma 10.3. GSEMO working on the fitness function f or f ′ constructs a
population consisting of connected graphs in expected time O(m log n).

Proof. Due to the fitness functions, no steps increasing the number of con-
nected components are accepted. The current population P consists at each
time step of solutions having the same number of connected components, as
otherwise the solution s with the smallest number of connected components
would dominate a solution with a larger number of connected components
in P . The decomposition of the objective space due to the number of con-
nected components is shown in Figure 10.3. If P consists of search points
with �, � ≥ 2, components, there are for each search point in P at least
� − 1 edges whose inclusion decreases the number of connected components.
The probability of a step decreasing the number of connected components
is therefore at least 1

e · �−1
m , and its expected waiting time is bounded by

O(m/(�− 1)). After we have decreased the number of connected components
for one solution, all solutions with more connected components are deleted
from the population. Hence, the expected time until the population consists
only of solutions describing connected graphs is upper bounded by

em

(
1 + . . . +

1
n − 1

)
= O(m log n). ��

Now we bound the expected time until P includes corresponding solutions
for the objective vectors q1 and qr. Later, these solutions will serve as a basis
for collecting solutions for the remaining extremal points.

Lemma 10.4. GSEMO working on the fitness function f constructs a popu-
lation that includes for each of the objective vectors q1 and qr a spanning tree
in expected time O(m2nwmin(log n + log wmax)).
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Fig. 10.3. Decomposition of the objective space due to the number of connected
components

Proof. Using Lemma 10.3, we work under the assumption that P consists
of individuals describing connected graphs. In this case, all individuals of P
have the same number of edges. If there are N edges in each solution there
are N − (n− 1) edges whose exclusion decreases the number of edges without
increasing the number of connected components. Hence, the probability of
decreasing the number of edges in the next step is at least 1

e · N−(n−1)
m , and

we can bound the expected time to create a population consisting of spanning
trees by

em

(
1 + . . . +

1
m − (n − 1)

)
= O(m log(m − n + 1) = O(m log n).

If P consists of spanning trees, the population size is bounded from above
by (n−1)wmin because there is only one spanning tree for each value of one sin-
gle function in the population. We show an upper bound on the expected time
to create a population including a spanning tree with vector q1. The expected
optimization time of (1+1) EAb in the case of one cost function is bounded
by O(m2(log n + wmax)); see Theorem 5.7. We are working with a population
of size O(nwmin) and consider in each step the individual with the smallest
weight with respect to the function w1. In each step this individual is chosen
with probability Ω

(
1

nwmin

)
. Following the ideas in the proof of Theorem 5.7,

we can upper bound the expected time until P includes a spanning tree having
minimal weight with respect to w1 by O(m2nwmin(log n + log wmax

1 )).
It remains to bound the expected time to create, from a population with a

minimal spanning tree S with respect to w1, a population with a spanning tree
T which is minimal with respect to w1 and also Pareto optimal. If |S \T | = k
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holds, we can consider pairs of edges si, ti with si ∈ S \ T and ti ∈ T \ S
due to the bijection given by Theorem 5.1. As S and T are both minimum
spanning trees with respect to w1, w1(si) = w1(ti) holds for i = 1, . . . k
because otherwise we are able to improve T or S with respect to w1. This
contradicts the assumption that S and T are both minimum spanning trees
with respect to w1. w2(ti) ≤ w2(si) holds for i = 1, . . . , k because otherwise we
are able to improve T with respect to w2 without changing the value of w1 – a
contradiction to the assumption that T is Pareto optimal. Hence, there are k
exchange operations which turn S into T and the expected time to create T
from S is bounded by O(m2nwmin(log n + log wmax

2 )) using the ideas in the
proof of Theorem 5.7.

Altogether we obtain an upper bound of O(m2nwmin(log n + log wmax
1 +

log wmax
2 )) = O(m2nwmin(log n+log wmax)) to construct a spanning tree with

vector q1. After we have constructed a population including a spanning tree for
q1, we can upper bound the expected time to create a population including for
each of the vectors q1 and qr a spanning tree by O(m2nwmin(log n+log wmax))
using the same arguments as before, and this proves the lemma. ��

We give a similar bound for the fitness function f ′. The main difference is
that we can only guarantee a population size bounded by O(mwmin).

Lemma 10.5. GSEMO working on the fitness function f ′ constructs a popu-
lation that includes for each of the objective vectors q1 and qr a spanning tree
in expected time O(m3wmin(log n + log wmax)).

Proof. We consider the expected time to create a spanning tree with vector
q1. At each time step, the population size is bounded by mwmin, because
there is only one search point for each value of one single function in the
population. We consider in each step the connected graph with the minimal
weight with respect to w1 in P . Using the ideas of Lemma 10.4, a connected
subgraph with minimal costs with respect to w1 is constructed in expected
time O(m3wmin(log n + log wmax

1 )). This is a spanning tree because otherwise
the weight of w1 can be decreased. After that, we consider the spanning tree
with minimal weight with respect to w1 in P . We are in a position to minimize
the weight of this spanning tree with respect to w2 and this can be done in
expected time O(m3wmin(log n + log wmax

2 )) using the ideas of Lemma 10.4.
The expected time to create a spanning tree with vector qr can be bounded
in the same way. ��

In the following, we work under the assumption that F = F ′ holds, which
means that the Pareto front consists only of extremal points. In this case
we call the Pareto front strongly convex. Let d(T, T ′) = |T \ T ′| denote the
distance of two spanning trees T and T ′, which equals the minimal number
of exchanges of two edges for constructing T ′ from T .

Lemma 10.6. Assume that the Pareto front F is strongly convex. For each
spanning tree T with w(T ) = qi, 1 ≤ i ≤ r − 1, there is a spanning tree T ′

with w(T ′) = qi+1 and d(T, T ′) = 1.
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Fig. 10.4. The strongly convex Pareto front and the classification of exchange
operations creating a spanning tree T ′ with vector qi+1 from a spanning tree T with
vector qi.

Proof. As T and T ′ are different, d(T, T ′) > 0 holds. We assume that T ′ is a
spanning tree with vector qi+1, which has minimal distance from T . Working
under the assumption that d(T, T ′) > 1 holds for all spanning trees T ′ with
vector qi+1, we show a contradiction. We can apply Theorem 5.1 because for
each spanning tree T ′ of the convex hull conv(F ) there is a λ ∈ [0, 1] such
that T ′ is a minimum spanning tree for the single weight function λw1 + (1−
λ)w2. We partition the different exchange operations exchange(e, e′) inserting
e and deleting e′ due to Theorem 5.1 into four groups (see Figure 10.4).
Let d = exchange(e, e′) and w(d) = (w1(e) − w1(e′), w2(e) − w2(e′)) be the
vector describing the weight changes of this operation. d belongs to group 1
if w1(d) < 0 and w2(d) > 0, to group 2 if w1(d) ≥ 0 and w2(d) ≥ 0, to group
3 if w1(d) < 0 and w2(d) < 0, and to group 4 if w1(d) > 0 and w2(d) < 0.

There is no exchange operation d with w(d) = (0, 0) because otherwise
T ′ is not a spanning tree with vector qi+1 and minimal distance from T . All
other operations belonging to group 2 are not possible because the remaining
operations applied to T would construct a spanning tree dominating T ′ – a
contradiction to the assumption that T ′ is Pareto optimal. Operations be-
longing to group 3 are not possible because they would construct a spanning
tree dominating T . Let qi = (xi, yi), 1 ≤ i ≤ r. There is no exchange oper-
ation belonging to group 4 which constructs a spanning tree T ′′ with value
xi < w1(T ′′) < xi+1 because qi+1 lexicographically follows qi in the Pareto
front. There is also no operation belonging to group 4 constructing a span-
ning tree with value w1(T ′′) ≥ xi+1 and w2(T ′′) ≥ yi+1 because otherwise the
remaining operations applied to T construct a spanning tree which dominates
T ′ – a contradiction to the assumption that T ′ is Pareto optimal.

Let M be the set of exchange operations constructing T ′ from T , M1 ⊆ M
be the set of operations belonging to group 4, and M2 ⊂ M be the subset
of operations belonging to group 1. Note that M1 ∪ M2 = M holds due to
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previous observations. We assume that M consists of more than one operation.
As xi+1 > xi holds, M1 is not empty. Let v = (vx, vy) be the vector of
the spanning tree constructed when all operations of M1 are applied to T .
vx > xi+1 and vy < yi+1 holds because otherwise we produce a spanning tree
with vector qi+1 by one single operation (a contradiction to d(T, T ′) > 1),
construct a spanning tree dominating T ′, or the remaining operations applied
to T construct a spanning tree dominating T ′. We consider the linear function
tv with the gradient mv intersecting the points qi+1 and v. As F is strongly
convex, mv ≥ mi > mi−1 holds. To construct a spanning tree with vector
qi+1, M2 cannot be empty. Let w = (wx, wy) be the vector of the spanning
tree constructed when the operations of M2 are applied to T and let tw be
the linear function with gradient mw defined by qi and w. As F is strongly
convex, mw ≤ mi−1 holds, which implies that mv > mw. Let z = (zx, zy),
zx < 0, zy > 0, be the vector such that qi + v + z = qi+1. As the operations of
M applied to T construct T ′ with vector qi+1, wx = zx must hold. Taking the
gradient mw into account, we can compute the value of the second component
as

vy + mw · zx > vy + mv · zx = yi+1.

A contradiction to the assumption that the operations of M applied to T
construct a spanning tree T ′ with vector qi+1. Hence, T ′ has to be constructed
from T by one single operation belonging to group 4. ��

Let |F | be the number of Pareto optimal objective vectors. Note that
|F | ≤ (n − 1)wmin holds. In the following, we show an upper bound on the
expected time until the population P includes a corresponding spanning tree
for each vector of a strongly convex Pareto front F .

Theorem 10.7. The expected time until GSEMO working on the fitness func-
tion f or f ′ has constructed a population that includes a spanning tree for each
vector of a strongly convex Pareto front F is bounded by O(m2nwmin(|F | +
log n + log wmax)) or O(m3wmin(|F | + log n + log wmax)), respectively.

Proof. We consider the fitness function f . Due to Lemma 10.4, the expected
time to create a population including spanning trees for the Pareto optimal
vectors q1 and qr is bounded by O(m2nwmin(log n + log wmax)). We assume
that the population includes a spanning tree for each qj , 1 ≤ j ≤ i. For
each spanning tree T with vector qi, there exists a spanning tree T ′ with
vector qi+1 and d(T, T ′) = 1. The probability of choosing the individual
representing T in the next mutation step is at least 1

(n−1)wmin
because the

population size is bounded by (n − 1)wmin. As d(T, T ′) = 1 holds for at
least one spanning tree T ′ with vector qi+1, the probability of construct-
ing such a T ′, after having chosen the individual x describing T , is at least
1

m2

(
1 − 1

m

)m−2 ≥ 1
em2 . Hence, the expected time to create a spanning tree

with vector qi+1 is bounded by O(m2nwmin). As there are |F | Pareto opti-
mal vectors, the expected time until GSEMO constructs a spanning tree for
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Fig. 10.5. Situation to compute the next extremal point

each Pareto optimal vector of a strongly convex Pareto front is bounded by
O(m2nwmin(|F | + log n + log wmax)). The ideas can be easily adapted to f ′

using Lemma 10.5 and the upper bound mwmin on the population size. ��

We consider the general case now and give an upper bound on the expected
time until GSEMO has constructed a population including a spanning tree for
each extremal point q ∈ F ′ of an arbitrary Pareto front F. Let C = conv(F )
be the set of objective vectors on the convex hull of F . Note that |C| ≤
(n − 1) · wmax holds.

Theorem 10.8. The expected time until GSEMO working on the fitness func-
tion f or f ′ has constructed a population that includes a spanning tree for
each vector q ∈ F ′ is bounded by O(m2nwmin(|C| + log n + log wmax)) or
O(m3wmin(|C| + log n + log wmax)), respectively.

Proof. Again, we consider the fitness function f and adapt the ideas to
achieve the upper bound for f ′. By Lemma 10.4, the population P in-
cludes spanning trees for the vectors q1 and qr after an expected number of
O(m2nwmin(log n+log wmax)) steps. To transform a spanning tree of conv(F )
into another spanning tree of conv(F ), we use the set of exchange opera-
tions described by Theorem 5.1. Let T be a spanning tree with vector qi,
1 ≤ i ≤ r − 2, and suppose that T ′ is a spanning tree with vector qi+1 and
minimal distance to T . We denote by M the set of exchange operations clas-
sified as in the proof of Lemma 10.6 that construct T ′ from T . Using the
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arguments in the proof of Lemma 10.6, there are no exchanges belonging to
group 2 or 3 in M . We show that each subset of M applied to T constructs
a spanning tree on gi. Suppose that a subset M ′ ⊆ M of the operations con-
structs a spanning with a vector v not lying on gi. This vector has to lie above
gi because otherwise it is outside of conv(F ). To construct a spanning tree
with vector qi+1 on gi, the operations of M ′′ = M \ M ′ have to construct a
spanning lying below gi – a contradiction to the assumption that gi is part of
conv(F ).

We consider the spanning tree T ′′ with the lexicographic greatest vector
v = (vx, vy) on gi in the population (see Figure 10.5). If v 
= qi+1, T ′ can
be constructed from T ′′ by a set N of exchanges of two edges, where each
single exchange operation executed on T ′′ yields a spanning tree with a vector
on gi. As vx < xi+1 holds, there is at least one operation in this set N
which constructs a spanning tree on gi with vector s = (sx, sy) where vx <
sx ≤ xi+1 holds. Such a spanning tree is a spanning tree of conv(F ). Let
Ci be the set of Pareto optimal vectors on gi, 1 ≤ i ≤ r − 2, excluding the
lexicographic smallest vector and including the lexicographic greatest vector.
The expected time to construct a population including spanning trees for the
vectors of {q1, . . . qi, qi+1, qr} from a population P having spanning trees for
the vectors of {q1, . . . , qi, qr}, 1 ≤ i ≤ r − 2 is therefore upper bounded by
O(m2nwmin|Ci|).

As |C| = 1+
∑r−2

i=1 |Ci| holds, the expected time, starting with a population
including spanning trees for q1 and qr, to construct a population including a
spanning tree for each vector of F ′ is bounded by O(m2nwmin|C|). Together
with Lemma 10.4 we obtain the proposed bound.

To prove the upper bound for f ′, we use Lemma 10.5 and the upper bound
of mwmin on the population size. Together with previous ideas we obtain an
upper bound of O(m3wmin|C|) after constructing a population which includes
spanning trees for q1 and qr and this proves the theorem. ��

Conclusions

The multi-objective minimum spanning tree problem is one of the best-known
multi-objective combinatorial optimization problems. We have analyzed evo-
lutionary algorithms with respect to the expected time until they produce
solutions of the Pareto front. In the case of a strongly convex Pareto front,
we have achieved a pseudo-polynomial bound on the expected time until the
population includes for each Pareto optimal objective vector a corresponding
spanning tree. For an arbitrary Pareto front, we have considered the extremal
points of the Pareto front. These points are of particular interest as they give
a 2-approximation of the Pareto front. It has been shown that the population
includes a solution for each extremal point after a pseudo-polynomial number
of steps.
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Minimum Spanning Trees Made Easier

In the previous chapter, we analyzed simple MOEAs on a given multi-objective
optimization problem. In this chapter, we consider a multi-objective model of
the minimum spanning tree problem. A single-objective model for the compu-
tation of minimum spanning trees has already been examined in Chapter 5.
Our goal is to show that sometimes single-objective optimization problems can
be solved much more easily by using a multi-objective model of the problem.
This approach has opened a new research area in the field of multi-objective
optimization and we want to discuss different results in the remainder of this
book.

Sometimes, people try to turn multi-objective problems into single-objec-
tive ones, e.g., by optimizing a weighted sum of the fitness values of the single
criteria. This may be useful in some applications but, in general, we do not
obtain the information contained in the Pareto front and the correspond-
ing search points. Many variants of evolutionary algorithms specialized for
multi-objective optimization problems have been developed and applied, for a
survey see the monographs of Deb (2001) and Coello Coello, Van Veldhuizen,
and Lamont (2007). A conclusion from this discussion is that “multi-objective
optimization is more (at least as) difficult than (as) single-objective optimiza-
tion”. This is true at least if the fitness values for the different criteria are
“somehow independent”. Without such an assumption, there is no reason to
believe in the conclusion above.

The question arises about whether working in the more general framework
of multi-objective optimization can lead to better understanding of a given
problem or help us design more efficient algorithms for single-objective prob-
lems. Note that many single-objective problems have additional constraints
that classify feasible and unfeasible solutions of the given search space. Such
constraints can be relaxed such that additional objectives have to be opti-
mized. Then the set of minimal elements contains the solution of the cor-
responding constrained single-objective problem. This has already been con-
sidered in the average case analysis of a well-known algorithm for the 0/1
knapsack problem. Beier and Vöcking (2004) have considered different input
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distributions for this problem and shown that the number of minimal ele-
ments in the objective space is polynomially bounded. This implies that the
well-known algorithm of Nemhauser and Ullman (1969) has an expected poly-
nomial runtime for these distributions. A welcome by-product of a successful
multi-objective approach is more information (a set of minimal elements in-
stead of only one specific element) with even less computational effort.

We discuss the following scenario. The considered problem is a single-
objective problem. It is possible to add some further criteria such that the
Pareto front of the newly created multi-objective optimization problem is not
too large and such that the solution of the multi-objective problem includes
the solution of the single-objective problem. Solving the multi-objective prob-
lem instead of the single-objective problem implies computing the Pareto front
instead of a single optimal value. Each considered search point contains more
information than in the single-objective case since it contains also the fitness
values for the additional criteria. At least in principle it is possible that this ad-
ditional information improves the search behavior of evolutionary algorithms.
This would imply that for solving difficult single-objective optimization prob-
lems one should also think about the possibility of modeling the problems as
generalized multi-objective optimization problems.

The purpose of this chapter is to show that the considered scenario is
not a fiction. We do not investigate artificial problems to support this claim
but one of the combinatorial optimization problems contained in each text-
book, namely the computation of minimum spanning trees. (Nobody should
expect that evolutionary algorithms computing minimum spanning trees beat
the well-known problem-specific algorithms.) In Chapter 5, we have already
considered the runtime behavior of RLS1,2

b and (1+1) EAb on this problem.
In Section 11.1, we introduce the two-objective variant of the minimum

spanning tree problem which is the subject of our investigations and distin-
guish it from other multi-objective variants of the minimum spanning tree
problem. In Section 11.2, we prove upper bounds on the expected optimiza-
tion time of some evolutionary algorithms for multi-objective optimization
applied to our problems. It turns out that they are asymptotically smaller
than the lower bounds for the worst-case instances of simple evolutionary al-
gorithms for the single-objective case. In order to investigate what happens for
small problem dimensions and typical problem instances we present several
experimental results in Section 11.3. We finish with some conclusions.

11.1 A Two-Objective Model

In Chapter 5, we have considered RLS1,2
b and (1+1) EAb for the minimum

spanning tree problem. We have penalized edge sets which do not describe
connected graphs (and in one model additionally, edge sets containing cycles)
and have shown the following results:
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• The expected optimization time of RLS1,2
b and (1+1) EAb is O(m2(log n+

log wmax)) where wmax is the largest weight of the considered graph.
• There are graphs with n vertices, m = Θ(n2) edges, and wmax = Θ(n2)

such that the expected optimization time of RLS1,2
b and (1+1) EAb equals

Θ(m2 log n).

We discuss the reason for the expected optimization time of RLS1,2
b and

(1+1) EAb. If a search point describes a non-minimum spanning tree, 1-bit
flips are not accepted. The new search point describes either an unconnected
graph or a connected graph with a larger weight. We have to wait until a mu-
tation step includes an edge and excludes a heavier one from the newly created
cycle. The expected waiting time for a specified 2-bit flip equals Θ(m2).

As already mentioned, the considered algorithms penalize the number of
connected components. This motivates the following two-objective optimiza-
tion model of the minimum spanning tree problem.

• The search space S equals {0, 1}m for graphs on m edges and the search
point s describes an edge set.

• The fitness function f : S → R
2 is defined by f(s) = (c(s), w(s)) where

c(s) is the number of connected components of the graph described by s
and w(s) is the total weight of all chosen edges.

• Both objectives have to be minimized.

We state some simple properties of this problem that are direct conse-
quences of the presented model.

• The parameter c(s) is an integer from {1, . . . , n}.
• The first property implies that the populations of SEMO and GSEMO

contain at most n search points and the Pareto front contains exactly n
elements.

• The parameter w(s) is an integer.

We have to be careful when discussing this model of the minimum spanning
tree problem. In Chapter 10, we have discussed another type of multi-objective
minimum spanning tree problem. Each edge has k different types of weights,
i.e., w(e) = (w1(e), . . . , wk(e)). Unconnected graphs are penalized, and the
aim is to minimize f(s) where s is not legal if s does not describe a connected
graph, and f(s) is the sum of all w(ei) where si = 1 otherwise. Similarly to
other optimization problems, this multi-objective variant of a polynomially
solvable problem is NP -hard.

11.2 Analysis of the Expected Optimization Time

The essential steps are 1-bit flips. In SEMO and GSEMO the initial search
point is chosen uniformly at random from {0, 1}m. We discuss another possi-
bility.
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• The first search point is s = 0m describing the empty edge set. This is
quite typical, e.g., for simulated annealing. We call the variants of SEMO
and GSEMO using this initialization SEMOz and GSEMOz, respectively.

Our analysis is simplified by knowing that P contains 0m. Note that
f(0m) = (n, 0) belongs to the Pareto front and 0m is the only search point s
with c(s) = n. First, we investigate the expected time until the population
contains the empty edge set when starting with an arbitrary initial solution
of the considered search space.

One might expect that we only have to wait until all edges of the initial
search point s have been excluded. This is not true. It is possible that we
accept the inclusion of edges since this decreases the number of connected
components (although it increases the total weight). Later, we may exclude
edges of the new search point s′ without increasing the number of connected
components. It is possible to construct a search point s′′ which dominates s.
Then s is eliminated and all search points in the population (perhaps only
one) have more edges than s.

Hence, the situation is more complicated. Instead of the minimal number
of edges of all search points in P , we analyze the minimal weight of all search
points in P . One search point s∗ with minimal weight has the largest number
of connected components (otherwise, the search point s∗∗ with c(s∗∗) > c(s∗)
is dominated by s∗ and will be excluded from P ). We analyze w(s∗) and apply
the method of the expected multiplicative distance decrease (see Section 4.2.3)
and measure distance by w(s∗). We have reached the aim of our investigations
if w(s∗) = 0 since this implies s∗ = 0m. After initialization, w(s∗) ≤ W :=
w1 + · · · + wm ≤ m · wmax.

Lemma 11.1. The expected time until the population of SEMO or GSEMO
contains the empty edge set is O(mn(log n + log wmax)).

Proof. We only investigate steps where the solution with minimal weight s∗

is chosen for mutation. The probability of such a step is always at least 1/n
since |P | ≤ n. Hence, the expected time is only by a factor of at most n larger
than the expected number of steps where s∗ is chosen.

By renumbering, we may assume that s∗ has chosen the first k edges.
We investigate only steps flipping exactly one bit. This has probability 1 for
SEMO and probability at least e−1 for GSEMO. These steps are accepted if
they flip one of the first k edges. If the edge i is flipped, we obtain a search
point whose weight is w(s∗)−wi and the minimal weight has been decreased
by a factor of 1 − wi

w(s∗) . The average factor of the weight decrease equals

1
m

⎛
⎝ ∑

1≤i≤k

(1 − wi

w(s∗)
) +

∑
k+1≤i≤m

1

⎞
⎠ = 1 − 1

m

if the choice of a non-existing edge is considered as a weight decrease by
a factor of 1. The result 1 − 1

m does not depend on the population. After
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M := �(ln 2) · m · (log W + 1)� steps choosing the current s∗, the expected
weight of the new s∗ is bounded above by (1 − 1/m)M · W ≤ 1

2
. Applying

Markov’s inequality, the probability that w(s∗) ≥ 1 is bounded above by
1/2. Hence, w(s∗) < 1 holds with probability at least 1/2. Since weights
are integers, w(s∗) < 1 implies w(s∗) = 0. The expected number of phases of
length M until w(s∗) = 0 is at most 2. Hence, altogether the expected waiting
time for s∗ = 0m is bounded above by 2 · n · M = O(mn(log n + log wmax))
for SEMO. The corresponding value for GSEMO is larger at most by a factor
of 3. ��

One may expect that the upper bound given in Theorem 11.1 is not exact
for many graphs and starting points.

After having analyzed the expected time to produce a population that
includes the empty edge set, we analyze to expected optimization under the
condition that the empty edge set is included in the population.

Theorem 11.2. The expected optimization time of SEMOz or GSEMOz is
O(mn2).

Proof. As long as the algorithm has not reached its goal, we consider the
smallest i such that the population contains for each j, i ≤ j ≤ n, a Pareto
optimal search point sj with f(sj) = (j, w(sj)). This implies that the graph
described by sj consists of j connected components and has the minimal
possible weight among all possible search points describing graphs with j
connected components. After initialization, the population includes 0m which
has the smallest weight among all search points representing graphs with
n connected components. Hence, i is well defined. The search point sj is
only excluded from the population if a search point s′j with f(s′j) = f(sj) is
included in the population. Hence, the crucial parameter i can only decrease
and the search is successful if i = 1.

Finally, we investigate the probability of decreasing i. It is well known that
a solution with i−1 components and minimal weight can be constructed from
a solution with i components and minimal weight by introducing the lightest
edge that does not create a cycle. Therefore, it is sufficient to choose si for
mutation (probability at least 1/n) and to flip exactly one bit of a lightest
edge connecting two components in the graph described by si (probability at
least 1/m for SEMOz and at least 1/(em) for GSEMOz). Hence, the expected
waiting time to decrease the parameter i is bounded above by O(nm). After
at most n − 1 of such events the search is successful. ��

Corollary 11.3. If the weights are bounded above by 2n, SEMO and GSEMO
find the Pareto front in the two-objective variant of the minimum spanning
tree problem in an expected number of O(mn2) rounds.

For dense graphs, this bound beats the bound O(m2 log n) for the applica-
tion of RLS1,2

b and (1+1) EAb to the single-objective variant of the minimum
spanning tree problem.
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11.3 Experimental Results

The theoretical results are asymptotic ones. They reveal differences for worst-
case instances and large m. We add experimental results that show what
happens for typical instances and reasonable m. In order to compare random-
ized algorithms on perhaps randomly chosen instances, one may compare the
average runtimes, but these values can be highly influenced by outliers. We
have no hypothesis about the probability distribution describing the random
runtime for constant input length. Hence, only parameter-free statistical tests
can be applied. We apply the Mann-Whitney test (MWT) (Swinscow and
Campbell, 2001) that ranks all observed runtimes. Small ranks correspond to
small runtimes. If the average rank of the results of algorithm A1 is smaller
than that of A2, MWT decides how likely it can be that such a difference or a
larger one can occur under the assumption that A1 is not more efficient than
A2. If the corresponding p-value is at most 0.05, we call the result significant,
for 0.01 very significant, and for 0.001 highly significant. The statistical eval-
uation has been performed with the software SPSS. The tables contain the
considered class of graphs, the average rank AR of different algorithms, and
the p-value for the hypothesis that the algorithm with the smaller AR-value
is likely to be faster.

The experiments consider the following graph classes.

• uniformn: these are complete graphs with m =
(
n
2

)
edges and the weights

are chosen independently and uniformly at random from {1, . . . , n}.
• uniformbdn: each possible edge is chosen with probability 3/n leading

to a small average degree of 3, unconnected graphs are rejected and the
construction is repeated, and the weights of existing edges are chosen as
for uniformn.

• planen: the n vertices are placed randomly on the points of the two-
dimensional grid {1, . . . , n} × {1, . . . , n}, and the weight of an edge is the
rounded Euclidean distance between the vertices.

• planebdn: the n vertices are placed as for planen but each edge is only
considered with probability 3/n as for uniformbdn.

These graph classes reflect different choices of weights (one non-metric and
one metric) and the possibility of dense and sparse graphs. Our algorithms are
RLS1,2

b , (1+1) EAb, SEMO, and GSEMO. The index z denotes the case where
the initial search point is the empty edge set (or all-zero string). Without an
index the initial search point is chosen uniformly at random. The runtimes
of RLS1,2

b and (1+1) EAb denote the number of fitness evaluations until a
minimum spanning tree is constructed. The runtimes of SEMO and GSEMO
denote the number of rounds until, in one experiment, P contains a minimum
spanning tree or until f(P ) equals the Pareto front. In each experiment, the
compared algorithms are considered for 100 runs leading to an average rank
of 100.5.
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Table 11.1. Comparison of SEMO and GSEMO with different initial solutions until
they have computed the Pareto front

Class AR SEMOz AR SEMO p-value AR GSEMOz AR GSEMO p-value

uniform12 92.76 108.25 0.058 89.35 111.66 0.006

uniform16 83.51 117.49 < 0.001 91.28 109.72 0.024

uniform20 99.12 101.89 0.735 94.21 106.80 0.124

uniform24 98.01 102.99 0.543 93.65 107.35 0.094

uniform28 94.62 106.38 0.151 94.48 106.52 0.141

uniform32 91.24 109.76 0.024 96.76 104.24 0.361

plane12 81.61 119.39 < 0.001 88.14 112.86 0.003

plane16 94.51 106.49 0.143 89.38 111.63 0.007

plane20 97.17 103.83 0.416 95.15 105.85 0.191

plane24 93.33 107.67 0.080 103.11 97.89 0.524

plane28 90.58 110.43 0.015 93.09 107.91 0.070

plane32 94.55 106.45 0.146 97.44 103.56 0.455

We analyze the influence of the initial search point. First, we consider the
time until the Pareto front is computed. The results are shown in Table 11.1
and can be summarized as follows.

Result 1 In 23 out of 24 experiments the variant starting with the empty
edge set has the smaller AR-value. Only eight results are significant, among
them five very significant and two of these highly significant.

If we are only interested in the computation of a minimum spanning tree,
we may expect that one sometimes computes a minimum spanning tree with-
out computing the empty edge set. Indeed, the influence of the choice of
the initial search point gets smaller. For the classes uniformn, n = 4i and
3 ≤ i ≤ 11, there is no real difference between SEMOz and SEMO, while the
AR-values of GSEMO are in eight of the nine experiments smaller than those
for GSEMOz. For the classes planen, n = 4i and 3 ≤ i ≤ 11, SEMOz beats
SEMO (seven cases) and GSEMOz beats GSEMO (7 cases). We do not show
the results in detail since they are not significant (with the exception of three
out of 36 cases). The remaining experiments consider the more general case
of an initial search point chosen uniformly at random.

We do not consider the worst-case instances for RLS1,2
b and (1+1) EAb

presented in Chapter 3. This would be unfair to these algorithms. Neverthe-
less, the experiments of Briest, Brockhoff, Degener, Englert, Gunia, Heering,
Jansen, Leifhelm, Plociennik, Roglin, Schweer, Sudholt, Tannenbaum, and
Wegener (2004) indicate that, for n and m of reasonable size, dense random
graphs are even harder than the asymptotic worst-case examples. This leads
to the conjecture that SEMO beats RLS1,2

b and GSEMO beats its counterpart
(1+1) EAb. Here, the runtime measures the rounds until a minimum span-
ning tree is constructed. Table 11.2 shows that our conjecture holds for the
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Table 11.2. Comparison of SEMO and GSEMO with their single-criteria counter-
parts on complete uniform and complete geometric instances

Class AR RLS1,2
b AR SEMO p-value AR (1+1) EAb AR GSEMO p-value

uniform12 146.36 54.64 < 0.001 147.79 53.32 < 0.001

uniform16 148.45 52.55 < 0.001 149.28 51.72 < 0.001

uniform20 149.74 51.26 < 0.001 149.40 51.60 < 0.001

uniform24 150.00 51.00 < 0.001 150.29 50.71 < 0.001

uniform28 150.40 50.60 < 0.001 150.23 50.77 < 0.001

uniform32 150.50 50.50 < 0.001 150.50 50.50 < 0.001

plane12 141.43 59.58 < 0.001 145.04 55.96 < 0.001

plane16 144.25 56.75 < 0.001 148.28 52.72 < 0.001

plane20 149.47 51.53 < 0.001 149.54 51.46 < 0.001

plane24 149.95 51.05 < 0.001 149.89 51.11 < 0.001

plane28 150.40 50.60 < 0.001 150.36 50.64 < 0.001

plane32 150.34 50.66 < 0.001 150.28 50.72 < 0.001

considered cases. Note that the average rank of 100 runs of one algorithm is at
least 50.5. In several experiments, the AR-value of SEMO or GSEMO comes
close to this value. For n ≥ 20, all values are at most 51.6 and for small values
of n the AR-values are smaller than 60. We can state the following result.

Result 2 It is highly significant for all considered graph classes and graph
sizes that SEMO outperforms RLS1,2

b and GSEMO outperforms (1+1) EAb.

The theoretical analysis of the algorithms gives values of O(m2 log n) for
RLS1,2

b and (1+1) EAb and O(mn2) for SEMO and GSEMO (if the weights
are reasonably bounded). For complete graphs, m = Θ(n2) and we get values
n4 log n versus n4. For sparse graphs, m = Θ(n) and we get values n2 log n
versus n3. Although these are only upper bounds, one may expect different
results for the sparse graphs from uniformbdn and planebdn. Table 11.3 shows
that this is indeed the case and we obtain the following result.

Result 3 It is highly significant for uniformbdn and n ≥ 24 and for planebdn

and n ≥ 16 (and the considered values of n) that RLS1,2
b outperforms SEMO.

Similar results hold for (1+1) EAb and GSEMO, but the results are highly
significant only for large values of n, namely n ≥ 32, for both graph classes.

Note that the last group of experiments considers values of n up to 100.

Conclusions

It has been investigated whether the multi-objective variant of a single-variant
optimization problem can lead to more efficient optimization processes. This
is indeed the case for the well-known minimum spanning tree problem and
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Table 11.3. Comparison of SEMO and GSEMO with their single-criteria counter-
parts on uniform and geometric instances with bounded average degree

Class AR RLS1,2
b AR SEMO p-value AR (1+1) EAb AR GSEMO p-value

uniformbd12 91.91 109.09 0.036 101.44 99.57 0.819

uniformbd16 90.62 110.39 0.016 103.54 97.46 0.458

uniformbd20 89.79 111.22 0.009 98.98 102.02 0.710

uniformbd24 73.19 127.82 < 0.001 91.53 109.47 0.028

uniformbd28 78.01 122.99 < 0.001 93.03 107.98 0.068

uniformbd32 77.92 123.08 < 0.001 80.85 120.15 < 0.001

uniformbd40 73.02 127.98 < 0.001 84.37 116.63 < 0.001

uniformbd60 65.40 135.60 < 0.001 71.22 129.78 < 0.001

uniformbd80 56.70 144.30 < 0.001 58.72 142.28 < 0.001

uniformbd100 54.99 146.01 < 0.001 58.47 142.53 < 0.001

planebd12 97.56 103.45 0.472 105.24 95.77 0.247

planebd16 81.88 119.13 < 0.001 96.79 104.22 0.364

planebd20 81.06 119.95 < 0.001 101.70 99.30 0.769

planebd24 84.45 116.55 < 0.001 86.52 114.48 0.001

planebd28 81.94 119.06 < 0.001 88.45 112.55 0.003

planebd32 71.53 129.47 < 0.001 80.86 120.14 < 0.001

planebd40 67.18 133.82 < 0.001 74.57 126.44 < 0.001

planebd60 56.59 144.41 < 0.001 60.69 140.31 < 0.001

planebd80 52.98 148.02 < 0.001 59.60 141.40 < 0.001

planebd100 52.21 148.79 < 0.001 52.30 148.70 < 0.001

randomly chosen dense graphs. For sparse connected graphs, it is better to
use the single-objective variant of the problem. The results are obtained by a
rigorous asymptotic analysis of the expected optimization time and by exper-
iments on graphs of reasonable size.

We will see in the following chapters that a multi-objective approach for
a single-objective optimization problem can also help with other problems. In
particular, we examine NP -hard combinatorial optimization problems belong-
ing to different areas of combinatorial optimization and show how a multi-
objective approach can help us achieve better results than single-objective
ones.
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Covering Problems

In this chapter, we investigate the behavior of stochastic search algorithms on
a class of covering problems. Such problems occur frequently in combinato-
rial optimization and it is therefore important to understand how stochastic
search algorithms may deal with them. We will mainly consider the vertex
cover problem, which is a well-known problem on graphs, but also extend our
investigations to the much broader class of set covering problems. The goal
is show the impact of different approaches that may be applied to covering
problems.

In recent years, a number of publications regarding stochastic search algo-
rithms for the vertex cover problem have appeared. First, some simple evolu-
tionary algorithms for single-objective optimization have been investigated on
this problem. It is shown in Friedrich, Hebbinghaus, Neumann, He, and Witt
(2007) that a natural single-objective approach which minimizes the number
of vertices and penalizes the number of uncovered edges has an exponen-
tial optimization even on simple bipartite graphs. Additional negative results
regarding the single-objective search algorithms were presented by Oliveto,
He, and Yao (2009) and Oliveto, He, and Yao (2008), who show that the
use of populations in single-objective formulations does not necessarily al-
low for a significant increase in success probability. Based on these negative
results, the combination of evolutionary algorithms and classical approxima-
tion algorithms was studied by Friedrich, He, Hebbinghaus, Neumann, and
Witt (2009). The idea is to start with a solution produced by an approxi-
mation algorithm for the vertex cover problem and improve it over time by
the stochastic search process of the evolutionary algorithm. The combination
of evolutionary algorithms and different approximation algorithms is investi-
gated and the benefits and limitations of this approach are pointed out. As a
reaction to inherent worst-case assumptions, Witt (2009) studies the problem
in random graphs and points out domains where a memetic local-search algo-
rithm is efficient. We start this chapter with a presentation of the results by
Friedrich, Hebbinghaus, Neumann, He, and Witt (2007). Later, extensions by

F. Neumann, C. Witt, Bioinspired Computation
in Combinatorial Optimization, Natural Computing Series,
DOI 10.1007/978-3-642-16544-3 12, © Springer-Verlag Berlin Heidelberg 2010
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Oliveto et al. (2009) and an alternative view taken by Kratsch and Neumann
(2009) are dealt with.

In Section 12.1, we introduce the problems investigated in this chapter. We
start our analyses with investigations of (1+1) EAb and RLS in Section 12.2.
After carrying out these investigations, we consider multi-objective models
and prove that they can significantly help us come up with better stochastic
search algorithms in Section 12.3. In this section we also present a character-
ization of the multi-objective models as so-called fixed-parameter algorithms.

12.1 Problem Formulation and Representation

We first investigate the vertex cover problem mentioned in Section 2.1 as a
classical NP -hard problem. Recall that the input is given by an undirected
graph G = (V,E) and the task is to compute a minimum set of vertices
V ′ ⊆ V such that each for each edge e, e ∩ V ′ �= ∅, i.e., each edge contains at
least one of the vertices in V ′.

As we are looking for optimal subsets, we are able to proceed as in the
previous chapters and to encode solutions as bitstrings. We consider the search
space {0, 1}n where each bit xi of a search point x corresponds to a vertex vi

of the given graph G. The vertex vi is chosen in the solution x iff xi = 1.
The task is to find a solution x with a minimum number of vertices that
covers all edges. This motivates us to introduce a fitness function which is
based on the number of uncovered edges of x (u(x)) as well as the number of
chosen vertices (|x|1). Note that u(x) may be used to direct the search process
towards a feasible solution, i.e., a solution x for which u(x) = 0 holds. We
consider the fitness function

f(x) = (u(x), |x|1),

which takes into the account the number of uncovered edges and the number
of chosen vertices. When considering (1+1) EAb our aim is to minimize f
with respect to the lexicographic order, i.e., the main goal is to minimize the
number of uncovered edges, which leads to solutions that are vertex covers.
Afterwards, the number of chosen vertices is minimized.

Taking a multi-objective view on the problem, we do not give a preference
to u(x) or |x|1. Instead, we treat these two objectives in the same way and
optimize with respect to Pareto dominance. In the end, we pick the solution
with u(x) = 0 and compare its number of chosen vertices to the number of
vertices chosen in a minimum vertex cover.

The set cover problem generalizes vertex cover in the following way to
weighted set systems. We are given a ground set S = {S1, . . . , Sm} and a col-
lection C1, . . . , Cn of subsets of S with corresponding positive costs c1, . . . , cn.
We assume

n⋃
i=1

Ci = S,
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i.e., S can be covered by the collection of subsets. Furthermore, we denote by
cmax = maxi ci the maximum cost of a subset for a given instance. The goal
is to find a minimum-cost selection Ci1 , . . . , Cik

, 1 ≤ ij ≤ n and 1 ≤ j ≤ k,
of subsets such that all elements of S are covered. Note that the vertex cover
problem for a given graph G = (V,E) is a special set cover problem where
S = E and Ci denotes the set of edges incident to vertex vi and ci = 1 for
i ∈ {1, . . . , n}.

The set cover problem is, as a generalization of vertex cover, NP -hard. It
cannot be approximated better than by a factor lnm unless certain assump-
tions from complexity theory do not hold (Feige, 1998; Raz and Safra, 1997).
It is well known that Chvátal’s simple greedy algorithm (Chvátal, 1979)
achieves a worst-case approximation ratio of O(log m). In considering stochas-
tic search algorithms for the search space {0, 1}n, a search point x ∈ {0, 1}n

encodes a selection of subsets. The function p(x) =
∑n

i=1 cixi measures the to-
tal cost of the selection and u(x) denotes the number of elements of S that are
uncovered. We use the same ideas as above and arrive at vector-valued fitness
functions. Considering RLS1

b and (1+1) EAb for the set cover problem, the
fitness of a search point x is given by the vector f(x) = (u(x), p(x)), which
should be minimized with respect to the lexicographic order. In the multi-
objective setting with the algorithms SEMO and GSEMO, we would like to
minimize u(x) and p(x) at the same time and consider Pareto dominance.

12.2 Single-objective Optimization

12.2.1 The Vertex Cover problem

We start with the runtime behavior of (1+1) EAb and RLS1
b for the vertex

cover problem. One result is that these algorithms are not able to achieve a
good approximation even for bipartite graphs. Since the initial search point
is drawn uniformly at random, it does not necessarily represent a valid ver-
tex cover. In this case, the fitness function points the search towards such
solutions.

Theorem 12.1. The expected time until RLS1
b and (1+1) EAb have produced

a (not necessarily minimum) vertex cover is O(n log n).

Proof. We prove the theorem for (1+1) EAb using the method of expected
multiplicative distance decrease presented in Section 4.2.3. As the proof only
works with 1-bit flips and all 1-bit flips are equally likely, the result also holds
for RLS1

b. Choosing all vertices is certainly a vertex cover and each vertex
that has not been chosen before and is incident to an uncovered edge leads
to an improvement with respect to the fitness function. Let k be the number
of vertices that are incident to at least one uncovered edge. The number of
uncovered edges is reduced from u(x) to 0 by these k accepted 1-bit flips.
As the prior aim is to minimize the number of uncovered edges, there are
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Fig. 12.1. The considered complete bipartite graph B = (V, E) for n = 9 and ε = 1
3

no accepted steps increasing the number of uncovered edges. Non-accepted
1-bit flips contribute a value of 0 to the reduction of the number of uncovered
edges. We consider the expected decrease of u(x) of an arbitrary 1-bit flip.
Note that the probability of such steps is at least (1/n)(1 − 1/n)n−1 ≥ 1/e.
Choosing a 1-bit flip uniformly at random from among all 1-bit flips, the
expected number of uncovered edges after this step is at most (1−1/n) ·u(x),
and after t steps this expected value is at most (1 − 1/n)t · u(x). Choosing
t∗ = cn log n, c an appropriate constant, this value is strictly less than 1/2.
As the number of uncovered edges is an integer, the probability of obtaining
a vertex cover after t∗ 1-bit flips is at least 1/2 using Markov’s inequality.
This implies that the expected number of 1-bit flips to obtain a vertex cover
is at most 2t∗ = O(n log n). The result follows as the probability of flipping a
single bit in the next mutation step is at least 1/e and the expected waiting
time for this event is therefore upper bounded by e. 	


Friedrich et al. (2007) prove that the previous upper bound is the best
possible. They present the complete graph on n nodes as an instance where
also a lower bound of Ω(n log n) holds for the expected time until a minimum
vertex cover is found. The proof goes back to the coupon collector’s theorem;
see Section 4.2.2. The interested reader is referred to the original work for
more details.

In the following, we are dealing with the approximation quality of the
single-objective search algorithms. The aim is to present an instance where
RLS1

b and (1+1) EAb may get stuck with arbitrary bad approximations. This
instance is a complete bipartite graph B = (V,E), where V = V1 ∪ V2 con-
sists of two sets of non-equal size and the edge set E = { {vi, vj} | vi ∈
V1 ∧ vj ∈ V2} consists of all edges that connect these two sets. W. l. o. g., we
assume |V1| < |V2|. A minimum vertex cover is the set V1 but both algorithms
have a chance to determine the set V2 as vertex cover. We consider the case
V1 = {v1, v2, . . . , vεn} and V2 = {vεn+1, vεn+2, . . . , vn}, 0 < ε < 1/2 and not
necessarily constant.
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The idea for the upcoming results is as follows. If RLS1
b has chosen all

vertices of V2 but some vertices of V1 are missing, the algorithm cannot pro-
duce an approximation better than a factor of (1− ε)/ε. On the graph B, the
expected optimization time of RLS1

b is therefore infinite, as the next theorem
shows.

Theorem 12.2. With probability ε, RLS1
b cannot obtain an approximation

better than a factor of (1 − ε)/ε for B within a finite number of steps. In
particular, the expected time to produce an approximation better than a factor
of (1 − ε)/ε on B is infinite.

For the proof of Theorem 12.2, we will use the following lemma, which
may be of independent interest.

Lemma 12.3. A bin contains k red and � blue balls. We take out the balls at
random from the bin without replacement until there is either no red or no
blue ball left. With probability k/(� + k), there is no blue ball left, and with
probability �/(� + k), there is no red ball left.

Proof. We take an alternative view on the model. Instead of taking out the
balls until there is either no red or no blue ball left, we take out the balls at
random from the bin without replacement until there is no ball left in the bin.
The color of the last ball taken out of the bin clearly determines the ball color
that has been removed at the time when there is only a single color left. Since
every one of the

(
�+k

k

)
orders of taking out all balls is equally likely and there

are
(
�+k−1

k

)
orders in which the last ball taken out is blue, the probability

that the last ball is blue is(
� + k − 1

k

)/(
� + k

k

)
=

(� + k − 1)! �! k!
k! (� − 1)! (� + k)!

=
�

� + k
.

This proves the lemma. 	


We are now able to prove Theorem 12.2.

Proof (Theorem 12.2). In the phase until the larger or the smaller vertex set
is chosen completely by RLS1

b, only steps that increase the number of vertices
are accepted. This is because a reduction of the number of vertices in this
phase reduces also the number of covered edges and thus the fitness value.
Moreover, if the larger vertex set is the vertex set that is first determined
completely by RLS1

b, there is no chance for RLS1
b to determine the optimal

solution, since only steps that reduce the number of vertices in the smaller
vertex set are accepted. In this situation, the optimization time is infinite.
Therefore, we have to prove that this happens with positive probability.

For this purpose, we apply Lemma 12.3. This is possible since the uniform
choice of the initial search point is equivalent to the following procedure: We
first choose a k ∈ {0, 1, . . . , n} following the binomial distribution B(n, 1/2).
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In other words, we choose k with probability
(
n
k

)
(1/2)n. Afterwards, we choose

successively k of the n vertices without repetition. It is easy to verify that
the obtained search point is uniform on {0, 1}n. Lemma 12.3 is now applied
starting with the empty subgraph and identifying the choice of a vertex in the
initial search point with the event that the corresponding ball is taken out of
the urn. Therefore, the probability is ε that the larger set of vertices is the
first set that is completely chosen by RLS1

b. This proves the theorem. 	


Theorem 12.2 shows that the approximability of RLS1
b for the vertex cover

problem can be arbitrarily bad. Choosing, e.g., ε = 1/n, leads to a graph
where V1 consists of one single vertex. In this case, RLS1

b does not obtain an
approximation better than a factor of n−1 with probability 1/n. Note that an
approximation of almost that quality can be obtained for an arbitrary graph
by choosing all vertices of the given input.

Now we consider the behavior of (1+1) EAb on the graph B. After ob-
taining the vertex set V2 and discarding the set V1, (1+1) EAb cannot obtain
a better approximation ratio than (1 − ε)/ε without flipping at least εn bits.
If ε is not too small, (1+1) EAb can only leave this local optimum in the
next mutation step with a probability that is exponentially small. Therefore,
the expected optimization time under the condition that such a solution is
produced before the optimal solution is exponential. The following theorem
shows that this can lead to almost arbitrarily bad approximation ratios of
roughly n1−δ, δ > 0 a constant.

Theorem 12.4. Let δ > 0 be a constant and nδ−1 ≤ ε < 1/2. The expected
optimization time of (1+1) EAb on B (with |V1| = εn and |V2| = (1− ε)n) is
exponential. Moreover, the expected time to produce an approximation better
than a factor of (1 − ε)/ε is exponential.

Proof. We investigate a run of two phases. In the first phase, we examine
the probability that a vertex cover including all vertices of V2 with at least
one vertex missing in V1 is constructed. In the second phase, we give a lower
bound for the probability that a local optimum is obtained by removing all
vertices of V1. This local optimum can only be left by including all vertices
of V1 and removing at least εn vertices of V2.

The first phase consists of 12en lnn mutation steps. First we prove that
(1+1) EAb obtains a vertex cover including all vertices of V2 within this
phase with probability at least 1/4. We consider only the effect of steps
that flip exactly one bit in V2 and no other bit; these steps are called
simple V2-steps in the following. The probability of a simple V2-step is
((1 − ε)n)(1/n)(1 − 1/n)n−1 ≥ (1 − ε)/e. Thus, the average waiting time for
such a simple V2-step is at most e/(1 − ε). We apply Markov’s inequality on
the waiting time for k(1 − ε)/(2e) of such steps. Hence, with probability at
least 1/2, there are in k steps of (1+1) EAb at least k(1 − ε)/(2e) simple
V2-steps. Using 1− ε ≥ 1/2, this means that the considered phase of 12en lnn
mutation steps contains with probability at least 1/2 at least 3n ln n such
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simple V2-steps. Considering this number, we apply the method of expected
multiplicative distance decrease in a more precise way than in Theorem 12.1,
where distance denotes the number of uncovered edges.

Let N be the current number of uncovered edges. All simple V2-steps that
add a vertex of V2 are accepted and the total distance decrease of these steps
is N since choosing all vertices from V2 is clearly a valid vertex cover. Simple
V2-steps removing vertices of V2 contribute a distance decrease of 0. There
are, altogether, (1− ε)n simple V2-steps. Thus, a simple V2-step decreases the
number of uncovered edges by an expected factor of 1−1/((1−ε)n) ≤ 1−1/n.
Since N ≤ n2, the expected number of uncovered edges after t simple V2-steps
is at most (1 − 1/n)t · n2. Assuming 3n ln n such steps, the expected number
of uncovered edges after the phase is at most n2(1 − 1/n)3n ln n ≤ 1/n, which
is strictly less than 1/2. Hence, using Markov’s inequality and the bound 1/2
on the probability of having enough simple V2-steps, a cover is produced by
means of simple V2-steps with probability at least (1/2) · (1/2) = 1/4 in this
phase.

Now we prove a lower bound on the probability that after 12en lnn steps of
(1+1) EAb, at least one vertex of V1 has not been chosen. This is exactly the
case if (1+1) EAb completely discovers V2 before completely discovering V1.
We base the analysis on the assumption that 12en lnn steps lead to a vertex
cover including all vertices from V2 and note that this assumption does not
decrease the probability of an unchosen vertex from V1. By Chernoff bounds,
there are with probability 1− 2−Ω(εn) = 1− 2−Ω(nδ) at least |V1|/3 = εn/3 ≥
nδ/3 unchosen vertices in V1 in the initial solution. The probability that after
12en lnn mutation steps of (1+1) EAb, a single vertex is chosen at least once is
1−(1−1/n)12en ln n. Thus, the probability that at least one of the initially not
chosen vertices of V1 is not chosen after 12en lnn mutation steps of (1+1) EAb

is

1 −
(

1 −
(

1 − 1
n

)12en ln n
)nδ

3

≥ 1 −
(

1 − 1
n13e

)nδ

3

≥ 1 − e−
nδ−13e

3 ≥ 1 − 1
1 + nδ−13e

3

=
nδ−13e

3

1+ nδ−13e

3

≥ nδ−13e

6
.

For this estimation we used the fact ex ≤ 1/(1 − x) for x < 1. Altogether,
the probability that (1+1) EAb chooses all vertices of V2 before choosing all
vertices of V1 is bounded from below by (nδ−13e/6)·(1/4) = nδ−13e/24. Hence,
the probability is at least bounded by an inverse polynomial from below.

We consider a second phase of n3/2 mutation steps and show that all
vertices of V1 are removed with probability at least 1/15. Let us assume that
we start this phase with all vertices of V2 and all but one vertex of V1 in
the current solution. This is the worst case for our analysis. In this phase (all
vertices of V2 and some vertices of V1 chosen) the only mutation steps accepted
by (1+1) EAb are the following. Either all missing vertices of V1 are chosen
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and at least as many vertices of V2 are removed (“bad event”), or all vertices
of V2 are kept and the number of vertices in V1 is decreased or stays the same
by adding and removing some vertices (“good event”). The former mutation
step has a probability of at most n−k, where k denotes the current number
of missing vertices in V1. For the latter kind of mutation steps we restrict
ourselves to 1-bit flips reducing the number of vertices in V1. The probability
of such a mutation step is at least (εn−k)/(en) ≥ 1/(en). For our calculations
we take only those two kinds of mutation steps into account, the “good event”
with probability at least (εn − k)/(en) and the “bad event” with probability
at most n−k, since all other accepted mutation steps reduce or preserve the
number of vertices in V1. The probability that the “good event” occurs before
the “bad event” is at least 1

en/( 1
en + n−k) = 1 − e/(nk−1 + e). Thus, the

probability that the vertices of V1 were all removed by (1+1) EAb before the
“bad event” occurs is at least

εn−1∏
k=1

(
1 − e

nk−1 + e

)
≥ 1

1 + e

(
1 − e

n

) n−1
2 ≥ e−e/2

1 + e
>

1
15

.

The expected waiting time for removing all vertices of V1 by (1+1) EAb

is O(n log n) and therefore all vertices of V1 are removed within n3/2 steps
with probability 1−o(1) using Markov’s inequality (always assuming that the
“bad event” does not occur during this phase). Hence, the probability that
(1+1) EAb determines the local minimum V2 as vertex cover is at least (1 −
o(1)) · nδ−13e/360. But if the current solution is V2, every accepted mutation
step has to add all the vertices of V1 (and remove at least |V1| vertices of V2).
This occurs with probability at most n−εn = n−Ω(nδ). Thus, the expected
time until an approximation better than a factor of (1− ε)/ε is determined is
at least

(1 − o(1)) · nδ−13e

360
· nΩ(nδ) = nΩ(nδ).

This proves the theorem. 	


The preceding theorem proves that also the simple (1+1) EAb gets stuck
on the bipartite graph class with at least constant probability. Multi-start vari-
ants of the algorithms can improve the success probability both for (1+1) EA
and RLS1

b drastically (Oliveto et al., 2009) while the straightforward use of
populations in single-objective formulations does not necessarily allow for a
significant increase in success probability (Oliveto et al., 2008). We do not
go into these results but present an instance which builds upon the bipar-
tite graph class we have just considered. This instance is very difficult for
the search algorithms in two respects. First, the probability of finding an
optimum is so small that even multistart variants fail with overwhelming
probability. Second, the approximation ratio where the search algorithms are
stuck is 2− o(1), i.e., roughly the approximation ratio guaranteed by the best
problem-specific algorithms for the vertex cover problem (Karakostas, 2005).



12.2 Single-objective Optimization 179

Fig. 12.2. Graph B̃ consisting of independent copies of the bipartite instance from
Figure 12.1

The following instance has, in essence, been proposed and investigated by
Oliveto et al. (2009). We present a slightly simplified variant, which will be
called B̃ in the following. This graph consists of N :=

√
n independent copies

of the graph B on N vertices each and ε := N−2/3 = n−1/3. More precisely,
the vertex set of B̃ equals the disjoint union of the sets V

(k)
1 and V

(k)
2 for

all k ∈ {1, . . . , N}, where |V (k)
1 | = εN and |V (k)

2 | = (1 − ε)N . For each k,
there is a complete bipartite graph on the sets V

(k)
1 and V

(k)
2 ; this subgraph

is denoted by Bk in the following. The edge set of B̃ equals the union of the
edges of the Bk; hence there are no edges between different subgraphs. See
Figure 12.2 for an illustration.

It will be shown that at least RLS1
b needs with overwhelming probability

exponential time to obtain a better approximation ratio than 2 − o(1). The
underlying idea is to consider the situation after the algorithm has reached
a local optimum. We will prove that each subgraph has a probability of at
most 1 − ε of being optimized, i.e., that only the εN vertices in the corre-
sponding V1 set are chosen. Hence, this happens for an expected number of at
most (1− ε)N of the N subgraphs. Otherwise, (1− ε)N vertices are chosen to
cover the subgraph. In expectation, this happens for at least εN subgraphs.
The total expected number of vertices in the cover is then at least

εN · (1 − ε)N + (1 − ε)N · εN = 2εn − 2ε2n = (1 − o(1)) · 2εn

using ε = o(1) while an optimal vertex cover consists of only εn vertices. This
corresponds to the desired approximation ratio 2− o(1). Since the subgraphs
are independent, Chernoff bounds can be applied such that an approximation
ratio 2 − o(1) holds also with overwhelming probability.

We make the ideas precise for RLS1
b.

Theorem 12.5. With probability 1−2−Ω(n1/12), RLS1
b needs on B̃ an infinite

number of steps in order to obtain a solution with an approximation ratio
better than 2 − o(1).

Proof. For each subgraph Bk, 1 ≤ k ≤ N , the ideas of Theorem 12.2 are
applied. Steps that flip a vertex belonging to Bk are called relevant with
respect to Bk. As long as there are uncovered edges with respect to Bk,
the relevant steps add vertices from the corresponding V1 and V2 sets of the
subgraph in the manner analyzed in Theorem 12.2. Hence, when all edges
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of Bk are covered for the first time, the set V
(k)
2 has been completely chosen

with probability exactly ε. This happens independently for each subgraph. By
Chernoff bounds, the probability that this happens for less than (1−n−1/24) ·
εN subgraphs is 2−Ω(n−1/12εN) = 2−Ω(n1/12) according to Chernoff bounds.
Otherwise, at least

((1 − n−1/24) · εN) · (1 − ε)N + ((1 − ε)N) · εN = (1 − o(1)) · 2εn

vertices are in the cover, corresponding to an approximation ratio of 2− o(1).
Since RLS1

b flips only one bit per step, the corresponding search point will
never be improved. 	


It would be nice to have a result in the flavor of Theorem 12.5 also for
(1+1) EAb. However, this would mean that we would have to bound the
probability by at least ε that a subgraph ends up with the larger vertex set
(the V2-set) chosen. The proof of Theorem 12.4 reveals only a significanly
smaller constant for this probability. One reason for this is that the balls-
and-bins game cannot be applied in the same manner as for RLS1

b. In fact,
steps flipping several bits might change the game in favor of the smaller vertex
set. Consider a 2-bit flip removing a vertex from V2 and adding at the same
time a vertex from V1. Since vertices in V1 have a comparatively large degree
of |V2| (as opposed to the degree |V1| for the vertices from V2), the number of
uncovered edges might be decreased considerably by the considered step. The
opposite step, removing a vertex from V1 in favor of V2, would be rejected
in this case. Hence, the probability of (1+1) EAb ending up with the set V2

completely chosen seems to be lower than that for RLS1
b.

Due to these difficulties, Oliveto et al. (2009) consider a modified (1+1) EAb

that starts not from a random search point but from the all-ones string, i.e.,
the vertex cover choosing all the vertices. This algorithm behaves as follows
on the B̃ instance: Considering an arbitrary subgraph Bk, the first step rele-
vant for Bk is studied. If this step flips only one bit of Bk, the probability of
removing a vertex from V

(k)
1 equals ε. This wrong decision leads with proba-

bility 1 − o(1) to the removal of more vertices of V
(k)
1 until only V

(k)
2 covers

the edges of Bk. To support this, the authors exploit the fact that a sub-
graph contains only N =

√
n vertices. Hence, given that a step is relevant

for Bk, the probability of flipping at least j ≥ 2 vertices of Bk is at most
(
√

n/n)j−1 = (1/
√

n)j−1. This means that most steps relevant for a subgraph
flip only one vertex in it. Subgraphs where too many j-bit flips, j ≥ 2, are
observed, can be taken out of the consideration without spoiling the approx-
imation ratio 2 − o(1). The final result is as follows.

Theorem 12.6. With a probability exponentially close to 1, (1+1) EAb ini-
tialized with the all-ones string needs on B̃ an exponential number of steps in
order to obtain a solution with an approximation ratio better than 2 − o(1).
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12.2.2 The Set Cover problem

Finally, we generalize the negative results obtained for the graph B to the set
cover problem. The idea is to consider subsets Ci, 1 ≤ i ≤ n, that correspond
to the set of edges incident to the different vertices of B and assign large costs
to subsets corresponding to vertices in V2 and small costs corresponding to
vertices in V1. We make this precise and denote our class of instances by C∗.
Let

S = {{v1, vεn+1}, . . . , {v1, vn},
{v2, vεn+1}, . . . , {v2, vn},
. . .

{vεn, vεn+1}, . . . , {vεn, vn}}

be the ground set,
Ci = {{vi, vεn+1}, . . . , {vi, vn}}

with ci = 1, 1 ≤ i ≤ εn, and

Ck = {{vk, v1}, . . . , {vk, vεn}}

with ck = cmax, εn + 1 ≤ k ≤ n, be the subsets with associated costs, where
cmax ≥ 1. We assume that cmax is a large value (e.g., cmax = 2n) to show that
the approximation achievable by RLS1

b and (1+1) EAb in expected polynomial
time may be arbitrarily bad.

In the proofs of the Theorems 12.2 and 12.4, we examine the probability
that RLS1

b and (1+1) EAb obtain the larger partition of the bipartite graph
before the smaller one. As long as a vertex cover has not been obtained,
each mutation step decreasing the number of uncovered edges is accepted.
We can translate the arguments given in the proofs to the set cover instance.
Vertices in the graph B are mapped to sets of C∗. Again, each mutation step
reducing the number of uncovered elements is accepted and the probability
of choosing the sets Ci, 1 ≤ i ≤ εn, before the sets Cj , εn + 1 ≤ j ≤ n, can
be bounded in the same way as for the graph B. Therefore, we can generalize
the Theorems 12.2 and 12.4 to C∗ in the following way.

Theorem 12.7. With probability ε, RLS1
b cannot obtain an approximation

better than a factor of ((1 − ε)cmax)/ε for C∗ within a finite number of steps.
Moreover, the expected time to produce an approximation better than a factor
of ((1 − ε)cmax)/ε on C∗ is infinite.

Theorem 12.8. Let δ > 0 be a constant and nδ−1 ≤ ε < 1/2. The expected
optimization time of (1+1) EAb on C∗ is exponential. In particular, the ex-
pected time to produce an approximation better than a factor of ((1 − ε)cmax)/ε
is exponential.

Theorems 12.7 and 12.8 show that the approximation quality achievable in
expected polynomial time can be made arbitrarily bad as long as cmax grows.
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12.3 Multi-objective Optimization

12.3.1 General Results

In this section, we turn our view to the multi-objective approaches SEMO
and GSEMO and investigate these on the vertex cover and the more general
set cover problems. We also revisit the instances discussed in the last section,
namely the bipartite graph B and its generalization to a set cover instance C∗.
In contrast to the single-objective formulations, the multi-objective ones have
the ability to find optimal solutions for these instances efficiently. The main
reason for this is that the multi-objective model makes the algorithm behave
more like a greedy algorithm. With regard to the instance B, each vertex
of V1 is incident on (1 − ε)n edges while each vertex of V2 is incident on εn
edges. A greedy algorithm that starts with the empty vertex set and adds in
each step a vertex which covers a largest number of edges uncovered up to now
ends up with V1 and produces therefore an optimal solution. Examples of such
greedy algorithms for the vertex cover problem are discussed in Papadimitriou
and Steiglitz (1998). We will comment on the relationship between greedy
algorithms and multi-objective optimization in greater detail when the set
cover problem is studied.

We start with the announced positive result for the simple bipartite graph
instance.

Theorem 12.9. The expected optimization time of SEMO and GSEMO on
the bipartite graph B is O

(
n2 log n

)
.

Proof. We prove the theorem for GSEMO. All subsets of V1 are Pareto
optimal. The objective vector of a subset V ′ ⊆ V1 with |V ′| = k is
(m − k (1 − ε)n, k). The Pareto front contains the |V1| + 1 = εn + 1 ob-
jective vectors (m, 0), (m− (1−ε)n, 1), (m−2 (1−ε)n, 2), . . . , (0, εn), where
m = ε (1− ε)n2. The population size is bounded by O(n) as a population can
never contain two individuals with equal number of vertices.

First, we determine the time until the Pareto optimal search point 0n

with value (m, 0) is found. Since it is the only one with |x|1 = 0, it is never
removed from the population again. One way for GSEMO to get “closer” to
(m, 0) is to select the individual with the smallest |x|1-value from the current
population and mutate it so that the |x|1-value decreases. By the Coupon
Collector’s theorem (see Section 4.2.2), this shows that (m, 0) is included in the
population after O

(
n2 log n

)
steps with high probability since the population

size is bounded by O(n).
We now bound the time to discover the whole Pareto set after (m, 0) is

found. Since the probability of flipping a single bit in one step is at least 1/e,
the probability to get from one Pareto optimal solution (m− k (1− ε)n, k) to
the “next” Pareto optimal solution (m−(k+1) (1−ε)n, k+1) is (εn−k)/(e n).
Using again the linear size of the population, the expected number of steps to
gain the whole Pareto front is at most

∑εn−1
k=0 (en2)/(εn − k) = O

(
n2 log n

)
,
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which completes the proof. As only 1-bit flips are used in the proof, the result
also holds for SEMO. 	


We now turn our view to the set cover problem. In the following, we want
to support our claim that a multi-objective model might be superior to a
corresponding single-objective approach as it has the ability to simulate a
greedy approach using partial solutions.

We start by showing that the expected optimization time of SEMO and
GSEMO on C∗ is polynomial. The following properties hold for the multi-
objective model of the set cover problem. The all-zeros string is Pareto optimal
since it covers no elements at zero cost. Moreover, any population of the multi-
objective algorithms, which is a set of mutually non-dominating search points,
can have at most m + 1 elements.

Theorem 12.10. The expected optimization time of SEMO and GSEMO
on C∗ is O(mn (log cmax + log n)).

Proof. To prove the theorem, we generalize some ideas already used in the
proof of Theorem 12.9. The Pareto front consists of the objective vectors
(m, 0), (m−(1−ε)n, 1), (m−2(1−ε)n, 2), (0, εn), and a solution corresponding
to the objective vector (m − i(1 − ε)n, i), 1 ≤ i ≤ εn, chooses exactly i
subsets from the set {C1, . . . , Cεn} of subsets with costs 1. We first consider
the time until the search point 0n with Pareto optimal objective vector (m, 0)
is included in the population.

To estimate this time, we consider the expected multiplicative decrease of
the minimum p-value for the current population. The probability of choosing
an individual with minimum p-value from among all individuals in the pop-
ulation is Ω(1/m) as the population size is bounded above by m + 1. Since
flipping a single bit decreases the p-value by an expected factor of 1− 1/(en)
or better, the expected time until the all-zeros string is reached is bounded
above by O(mn (log cmax + log n)).

After obtaining a Pareto optimal solution x with objective vector (m −
k(1−ε)n, k), 0 ≤ k < εn, there are εn−k subsets of cost 1 that can be chosen
to obtain a Pareto optimal solution whose objective vector is (m− (k +1)(1−
ε)n, k+1). Taking into account the upper bound on the population size as well
as flipping one of the desired bits in x, the probability that such a step happens
in the next iteration is at least (εn − k)/(enm). Hence, the expected time to
obtain for the “next” Pareto optimal objective vector a corresponding solution
is upper bounded by O((mn)/(εn − k)). Summing up over the different values
of k, a solution for each Pareto optimal objective vector is produced after an
expected number of O(mn log n) steps under the condition that the search
point 0n has been obtained before, which completes the proof. 	


Up to now, we have pointed out classes of problems where the multi-
objective approach achieves better approximations than the single-objective
one. We have also shown that the single-objective algorithms can only achieve
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an almost trivial approximation ratio within an expected polynomial number
of steps. In contrast to this we point out in the following that the multi-
objective model leads to good approximations within an expected polynomial
number of steps. Here, we are in particular interested in the expected number
of steps until a solution x with u(x) = 0 has been produced that is a good
approximation of an optimal one.

We will show that SEMO and GSEMO are able to efficiently find approx-
imate solutions to arbitrary instances of the NP -hard set cover problem. As
mentioned in Section 12.1, the following approximation quality is, up to a
constant factor, the best we can hope for in polynomial time for arbitrary
instances, unless P = NP (Raz and Safra, 1997).

Theorem 12.11. For any instance of the set cover problem and any initial
search point, SEMO and GSEMO find an (ln(m)+1)-approximate solution in
an expected number of O

(
m2n + mn (log n + log cmax)

)
steps.

Proof. The proof idea is to show that SEMO is able to proceed along the lines
of the greedy algorithm for set cover introduced by Chvátal (1979); see also
Vazirani (2001) for a detailed presentation. Let Hm :=

∑m
i=1 1/i be the mth

harmonic number and Rk := Hm − Hm−k, 0 ≤ k ≤ m, the sum of the last
k terms of Hm. While the greedy algorithm is able to find Hm-approximate
solutions, SEMO creates Rk-approximate solutions that cover k elements for
increasing values of k, i.e., it arrives at partial solutions that are at least as
good as in the greedy algorithm. This procedure can be viewed as a kind
of greedy algorithm based on the archive of non-dominating solutions. The
expected time until the all-zeros string 0n is reached is bounded above by
O(mn (log cmax + log n)) using the same ideas as those in the proof of Theo-
rem 12.10.

Let OPT be the cost of an optimal solution. Let c(x) = m − u(x) be
the number of elements of S covered in a solution x. The remainder of the
proof studies the so-called potential of the current population, which is the
largest k such that there is an individual x in the population where c(x) = k
and p(x) ≤ Rk · OPT. The potential is well defined since now the all-zeros
string is always in the population.

It is easy to see that the potential cannot decrease. We examine the ex-
pected time until the potential increases at least by 1. To this end, we apply
the analysis of the greedy algorithm by Chvátal (1979) and use the notion of
cost-effectiveness of a set, defined as the cost of the set divided by the number
of newly covered elements. If there are n − k elements left to cover and we
add the most cost-effective set to cover some of these, all the newly covered
elements are covered at a relative cost of at most OPT/(n− k). Hence, if the
cost of the selection was bounded above by Rk ·OPT before and k′ ≥ k+1 ele-
ments are covered after the step, the cost is at most Rk′ ·OPT afterwards. The
probability of choosing an individual that determines the current potential is
bounded below by Ω(1/m). The probability of adding a most cost-effective
set is bounded below by 1/(en) as it suffices to flip a certain bit. Since the
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potential can increase at most m times, the expected time is O
(
m2n

)
until an

Rm-optimal, i.e., Hm-optimal, individual covering all elements is created. 	


12.3.2 Specialized Bounds for Vertex Cover

This section is based on a recent study by Kratsch and Neumann (2009) and
takes a closer look at the vertex cover problem using multi-objective algo-
rithms. In particular, we replace the O(log n) approximation ratio delivered
by Theorem 12.11 with a ratio that is bounded by OPT. This improves upon
the previous bound if OPT is sufficiently small. Moreover, by introducing
speed-up techniques similar to those in Section 5.3.3, we can obtain a bound
on the expected optimization time that is polynomial if OPT is assumed to be
fixed. Runtime bounds of this kind are considered in the area of so-called fixed-
parameter tractable (FPT) algorithms (see Downey and Fellows, 1999, for an
introduction to this area), which motivates Kratsch and Neumann (2009) to
characterize a variant of GSEMO as an evolutionary FPT algorithm.

In the following, we again consider GSEMO in the multi-objective formu-
lation of the vertex cover problem. We have already explained that its pop-
ulation size is bounded from above by n + 1 and that the all-zeros string 0n

is reached after an expected number of O(n2 log n) steps (see the proof of
Theorem 12.9 for more details). Afterwards, the idea is to wait for GSEMO
to create a partial solution that “approximates” a minimum vertex cover in
certain respects. More precisely, for an arbitrary search point x, we define the
residual graph R(x) as the induced subgraph on the vertices that are not cho-
sen by x; for example, R(0n) is the input graph G itself. Our partial solutions
correspond to residual graphs with maximum degree OPT.

We bound the time until GSEMO obtains certain partial solutions. Later
it will be shown how these solutions can be extended to valid vertex covers
with approximation ratio OPT.

Lemma 12.12. The expected number of steps of GSEMO until the current
population contains for the first time a search point x satisfying the following
two properties is bounded by O(OPT · n4):

1. The vertices chosen by x form a subset of a minimum vertex cover,
2. the residual graph R(x) has maximum degree OPT.

Proof. We start our considerations at the first point of time where the all-zeros
string 0n is contained in the current population of GSEMO. The expected
time for this is O(n2 log n) and is covered by the bound O(OPT · n4). In the
remaining proof, the expected time until finding a so-called good search point,
i.e., a search point satisfying the two properties, is bounded by O(OPT · n4).

We denote by L ⊆ V the set of vertices in the input graph that have
a larger degree than OPT. Every optimal vertex cover must include all the
vertices in L since otherwise the more than OPT neighbors of a vertex in L
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vertices would have to be chosen. We assume L �= ∅ since otherwise 0n would
be a good search point.

The expected time until a good search point is found is bounded by means
of a potential function taking on at most O(|E| · OPT) different values. We
will prove that if there is no good search point in the current population,
the potential is decreased in the next step with probability Ω(1/n2), which
implies the bound O(n2 · |E| ·OPT) = O(OPT ·n4) and, therefore, the lemma.

With respect to a population P , the value si, 1 ≤ i ≤ OPT, denotes
the smallest number of uncovered edges from among all search points x in P
satisfying |x|1 ≤ i, i.e., search points choosing at most i vertices. The current
potential of P is defined as the sum of its si-values.

Let a population P including 0n be given and denote by k the largest
index such that P contains search points x0, . . . , xk with objective vec-
tors (0, s0), . . . , (k, sk) and selecting only vertices from L. This condition is
trivially fulfilled for the point 0n; hence k is well defined. If k = OPT then
|L| ≥ OPT, which means that xk is optimal since L is a subset of a vertex
cover of size OPT. Hence, we assume k < OPT since otherwise there is noth-
ing to show. For the same reason, we assume that xk does not constitute a
good search point. Now the idea is to show that xk can be mutated into a
search point that is better in at least one si-value and, therefore, has a lower
potential. The probability of the corresponding mutation will be bounded
by Ω(1/n2).

The definition of k ensures that xk chooses only vertices from L, which,
as mentioned above, are a subset of a minimum vertex cover. This is the first
property of a good search point. Hence, since xk is assumed not to be good,
the second property must be violated, which means that the residual graph
R(xk) has a vertex of degree at least OPT + 1. Let v be such a vertex. We
distinguish between two cases:

Case 1: sk − sk+1 ≤ OPT. Then choosing xk and flipping in v leads to a
search point choosing k+1 vertices and leaving at most sk−(OPT+1) < sk+1

edges uncovered. This search point dominates the search point with objective
vector (k + 1, sk+1), and, therefore, improves the sk+1-value.

Case 2: sk − sk+1 > OPT. Then P contains a search point xk+1 with
objective vector (k+1, sk+1) that, due to the definition of k, selects at least one
vertex u outside L. Hence, u has degree at most OPT and flipping u out leads
to a search point choosing k vertices and leaving at most sk+1 + OPT < sk

edges uncovered. This search point dominates the search point with objective
vector (k, sk) and improves the sk-value.

In both cases, we have identified a mutation improving the potential. Since
this mutation changes only one bit and the population size is O(n), its prob-
ability is Ω(1/n2). This completes the proof. 	


The partial solutions studied in Lemma 12.12 are useful for approximat-
ing optimal vertex covers since the residual graphs of such solutions have a
bounded maximum degree. More precisely, given such a partial solution x,
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there are at most (OPT− |x|1) · OPT uncovered edges since OPT − |x|1 ver-
tices of degree at most OPT suffice to cover all of them. This will be exploited
in the following theorem.

Theorem 12.13. The expected number of steps until GSEMO finds an OPT-
approximation to the vertex cover problem is bounded by O(OPT · n4).

Proof. We start our considerations at the first point of time where the current
population contains a search point satisfying the conditions of Lemma 12.12.
Let x be such a search point. Then |x|1 ≤ OPT and the maximum degree
of R(x) is at most OPT. Hence, as mentioned above, the number of uncovered
edges with respect to x satisfies u(x) ≤ (OPT − |x|1) · OPT. This implies
|x|1 + u(x) ≤ OPT2. If x is dominated by any solution x′ then |x′|1 + u(x′) <
|x|1 + u(x) ≤ OPT2. Hence, in all following steps, there is a search point y in
the population such that |y|1 + u(y) ≤ OPT2.

In the following, we again consider a potential function u(P ) for the current
population P , defined as the minimum u-value among all search points x in P
that satisfy |x|1 + u(x) ≤ OPT2. We already know that the u-value and thus
the potential are bounded from above by OPT2 and note that the potential
cannot increase in the run of GSEMO. Now let y be a search point that
determines the current potential. If u(y) = 0 then |y|1 ≤ OPT2, which means
that y represents an OPT-approximation. Hence, it remains to estimate the
number of steps until the potential drops to 0.

We consider still y, a search point determining the current potential. As-
suming u(y) > 0, there is at least one vertex v ∈ R(y) incident on an uncovered
edge. Choosing y for mutation and flipping in v leads to a search point y′ with
|y′|1 + u(y′) ≤ |y|1 + u(y) ≤ OPT2 and u(y′) < u(y). By the choice of y, the
new search point y′ cannot be dominated by any other search point in the
current population; hence y′ is accepted and leads to a population with de-
creased potential. Since the considered step has probability Ω(1/n2) and the
potential can take on at most OPT2 values, the potential reaches 0 after at
most O(OPT2 · n2) = O(OPT · n4) steps. 	


The previous theorem proves that GSEMO obtains an OPT-approximation
in expected polynomial time, which is an important supplement to the
O(log n) bound from Theorem 12.11 and yields a significant improvement
if OPT is not too big. Although one cannot hope to obtain a general polyno-
mial bound for the NP -hard vertex cover problem, it would also be nice to
have a bound on the expected number of steps until an optimal vertex cover
is produced. Trivially, this expected optimization time of GSEMO is bounded
from above by O(nOPT+1) since it is sufficient to wait for a step that flips OPT
bits of the all-zeros string. This bound is polynomial only if OPT does not
depend on n. However, it is well known that an optimal vertex cover can be
found in time 2O(OPT) using the ideas of fixed-parameter algorithms (Downey
and Fellows, 1999). Bounds of this kind cannot be proved for random search,
the plain (1+1) EA, nor the original GSEMO. Nevertheless, Lemma 12.12
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shows that GSEMO is “close” to such an optimization time bound. To make
this clear, we introduce a different mutation operator that shares similarities
with the speed-up techniques of Section 5.3.3. The new mutation operator is
problem-specific and asymmetric since it favors flipping in vertices that are
incident on uncovered edges.

Given a current search point x ∈ {0, 1}n for the vertex cover problem,
we now use the mutation operator described as Algorithm 23. GSEMOalt

denotes GSEMO with this new mutation operator. It is easy to verify that also

Algorithm 23 Alternative mutation operator in GSEMOalt

1. Let U(x) ⊆ E denote the set of edges that are not covered by x and
S(x) ⊆ {1, . . . , n} the vertices being incident on the edges in U(x).

2. Choose b ∈ {0, 1} uniform at random.
3. If b = 0 or S(x) = ∅ flip each bit of x independently with probability 1/n.
4. Otherwise flip each bit of S(x) independently with probability 1/2 and each

other bit independently with probability 1/n.

GSEMOalt reaches the all-zeros string in an expected number of O(n2 log n)
steps and that Lemma 12.12 also applies to GSEMOalt. The reason is that
GSEMOalt uses the standard mutation operator of GSEMO if b = 0, i.e., with
probability at least 1/2. Based on these prerequisites, we prove the following
theorem.

Theorem 12.14. The expected optimization time of GSEMOalt for the vertex
cover problem is bounded by O(OPT · n4 + n · 2OPT+OPT2

).

Proof. We start our considerations with a population containing a so-called
good search point, i.e., one satisfying the two conditions of Lemma 12.12. The
expected time until such a population is obtained appears as O(OPT · n4) in
the bound of the theorem.

Since a good search point is, by definition, a subset of a minimum vertex
cover, we wait for a step that chooses a good search point and mutates the bits
corresponding to the missing vertices from the minimum vertex cover. Let x be
an arbitrary good search point. The residual graph R(x) has maximum degree
OPT and a vertex cover of size OPT−|x|1. Each vertex in such a vertex cover
can be adjacent to at most OPT non-isolated vertices, implying that R(x)
has at most (OPT− |x|1) + (OPT− |x|1) ·OPT ≤ OPT + OPT2 non-isolated
vertices. These are each independently flipped with probability 1/2 if b = 1
holds in the alternative mutation operator. All n′ ≤ n − 1 isolated vertices
of R(x), however, are not flipped with probability at least (1 − 1/n)n−1 ≥
1/e. Altogether, x is chosen and mutated into a minimum vertex cover with
probability at least Ω((1/n) · 2−OPT+OPT2

). Since this holds for any good
search point, the expected time to obtain a minimum vertex cover from a
good search point is at most O(n · 2OPT+OPT2

). 	
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The previous theorem contains a runtime bound in the style of parameter-
ized complexity and shows how stochastic search algorithms combined with
a problem-specific component are able to follow the ideas of FPT algorithms.
Kratsch and Neumann (2009) continue their research further in this direction
by introducing a modified fitness function. Here the objective of minimiz-
ing the number of uncovered edges is replaced. Instead, the objective value
of a linear program is minimized, where the linear program corresponds to
a relaxation of an integer programming formulation of vertex cover. In this
model, strong characterizations of fractional solutions to the problem can be
exploited. Kratsch and Neumann (2009) show an improved approximation ra-
tio of 2 for GSEMO and also an improved bound for GSEMOalt where the
expected runtime is, in essence, dominated by the term n · 4OPT instead of
n · 2OPT+OPT2

. We refer the interested reader to the original work for further
details.

Conclusions

In this section, we have considered the vertex cover and the more general set
cover problems. Here the single-objective search algorithms (1+1) EAb and
RLSb are likely to get stuck at solutions whose approximation ratios are close
to trivial. Multi-objective models represent a promising alternative. For the set
cover problem, a simple GSEMO obtains the asymptotically best possible ap-
proximation ratio of O(log n). Moreover, using insights from the domain of pa-
rameterized complexity, an alternative approximation ratio bounded by OPT
has been proved. Finally, by introducing an asymmetric mutation operator to
GSEMO, bounds on the expected optimization time were obtained that match
the requirements for fixed-parameter tractable algorithms. All analyses show
that the archiving strategies of multi-objective algorithms enable the search
to proceed in a structured way and also to make decisions that resemble thos
of components of problem-specific greedy algorithms.
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Cutting Problems

In this chapter, we consider another important class of problems belonging
to the field of combinatorial optimization. We study cutting problems in a
given weighted graph. The minimum s-t cut problem is one of the basic,
classical problems in combinatorial optimization, operations research, and
computer science (Cormen et al., 2001). Evolutionary algorithms have pro-
duced good results for various kinds of difficult cutting problems (Duarte,
Sánchez, Fernández, and Cabido, 2005; Liang, Yao, Newton, and Hoffman,
2002; Puchinger, Raidl, and Koller, 2004).

The basic minimum s-t cut problem has the following formulation. We are
given a connected directed graph G = (V,E) on n + 2 vertices and m edges
and a function c : E → N+ that imposes positive integer costs on the edges.
We denote by cmax = maxe∈E c(e) the largest cost among all edges. Two nodes
s, t ∈ V are distinguished. We call s the source node and t the target node.
An s-t cut S ⊆ E is a set of edges such that there is no path from s to t when
the edges of S are deleted from E. The cost of a subset of E is defined as the
sum of the costs of its elements. In the minimum s-t cut problem, the goal is
to find an s-t cut S ⊆ E of minimum cost. The minimum s-t cut problem is
highly related to the problem of computing a maximum flow from s to t. A
flow in G is a vector in R|E| (one component for each edge) such that:

1. 0 ≤ flow((u, v)) ≤ c((u, v)) ∀(u, v) ∈ E
2.

∑
(u,v)∈E flow((u, v)) =

∑
(v,u)∈E flow((v, u)) ∀v ∈ V \ {s, t}

Here the function c : E → N+ imposes capacity constraints for the flow
that can be sent along each edge. The value of the flow from s to t in G
(denoted by |flow |) is given by the value of the flow that leaves s, i.e.,

|flow | =
∑

(s,u)∈E

flow((s, u)).

The maximum flow in a given directed graph is the maximal value of a
flow that can be sent from s to t without violating the capacity constraints.

F. Neumann, C. Witt, Bioinspired Computation
in Combinatorial Optimization, Natural Computing Series,
DOI 10.1007/978-3-642-16544-3 13, © Springer-Verlag Berlin Heidelberg 2010
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Due to the classical maximum flow minimum cut theorem (Papadimitriou and
Steiglitz, 1998) the maximum flow from s to t in a given network equals the
value of a minimum s-t cut.

The two mentioned basic problems can be solved in polynomial time.
We consider different variants of evolutionary algorithms for this problem
and present rigorous runtime results that are due to Neumann, Reichel, and
Skutella (2008). Besides the classical minimum s-t cut problem, there are
many other variants of cutting problems some of which are NP -hard. Ex-
amples are the maximum cut problem and the minimum multicut problem
(see Korte and Vygen, 2005). The minimum multicut is a generalization of
the minimum s-t cut problem. Instead of one source-sink pair, k source-sink
pairs (si, ti), i = 1, . . . , k, are given and the goal is to find a set of edges of
minimum cost that disconnects every sink ti from its associated source si,
i = 1, . . . , k. We examine this problem as a generalization of the basic mini-
mum s-t cut problem and present results based that have been obtained by
Neumann and Reichel (2008).

We start by analyzing single-objective and multi-objective approaches for
the minimum s-t cut problem. In Section 13.1, we investigate two simple
single-objective approaches and present instances where they fail to achieve
a minimum cut in polynomial time. In Section 13.2, we show that a multi-
objective approach leads to a minimum s-t cut in expected polynomial time.
Furthermore, our results show that this multi-objective approach computes
in expected polynomial time to a factor k-approximation for the multicut
problem consisting of k pairs of sink and terminal nodes.

13.1 Single-objective Approaches

We start by considering two single-objective models for the minimum s-t cut
problem. The first one is node-based, the second is edge-based. In the node-
based approach, we are searching for a partitioning of the vertices into two
subsets, one containing s and the other containing t, such that the cost of the
edges connecting the s to the t side of the cut is minimal. In the edge-based
approach we search for a subset of edges of minimal cost such that the deletion
of those edges disconnects t from s, i.e., the chosen edges constitute a cut.

13.1.1 Node-Based Approach

The minimum s-t cut problem consists of splitting the input graph into two
components such that the cost of the edges crossing the partitions is minimal.
Therefore, it seems natural to assign the vertices of V \ {s, t} to either s or
t such that the graph is split into two partitions S and T of vertices where
s ∈ S and t ∈ T holds. Obviously, the edges leading from S to T constitute
a cut and the goal is to minimize the cost of such a solution. The underlying
search space is {0, 1}n, where vi ∈ S iff xi = 0 and vi ∈ T iff xi = 1, 1 ≤ i ≤ n.
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Fig. 13.1. Illustration of graph Gk

Fig. 13.2. Illustration of graph G′
k,�

The fitness of a search point x is given by

cost(x) =
∑

e∈E∩(S×T )

c(e),

which computes the sum of the cost of all edges leading from S to T .
The node-based approach has a major drawback that has been pointed out

in Neumann et al. (2008). The problem is that it imposes local optima with a
large inferior neighborhood that make it hard to escape for stochastic search
algorithms. We discuss such a class of instances in the following. To ease the
presentation we use real-valued costs on the edges. However, an appropriate
scaling can be used to come up with a corresponding class of instances that
uses positive integer costs.

Consider the graph Gk (see Figure 13.1) given by a chain consisting of
k interior vertices. Obviously, an optimal cut has cost 0 and assigns all ver-
tices V \ {s, t} to the source node s, i.e., the search point 0k is the global
optimum. However, the search of a single-objective algorithm such as RLS1

b

and (1+1) EAb leads to a cut which assigns all vertices V \ {s, t} to t, which
constitutes a local optimum of cost 1, i.e., the search point 1k is a local op-
timum. The probability of getting stuck in a local optimum becomes even
higher if different copies of the graph Gk that share the vertices s and t are
considered. Such a graph, called G′

k,�, is depicted in Figure 13.2 and contains
a chain part consisting of � copies of the graph Gk. In addition, it contains a
star part consisting of n − k� vertices that is directly connected t. Choosing
k = Θ(n1/5) and � = Θ(n1/5), mutations affecting the chain part become
unlikely in comparison to the clique part. In this way, the effect of mutation
steps flipping more than one bit in the chain part can be controlled in a similar
way to that in the proof of the lower bound of (1+1) EAb for the computa-
tion of a minimum spanning tree (see Theorem 5.9). Then it can be shown by
investigating a typical run that RLS1

b and (1+1) EAb working on the fitness
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function cost compute with probability 1−o(1) a local optimal solution which
is not optimal with respect to at least one Gk in the chain part. We state the
following theorem whose proof can be found in Neumann et al. (2008).

Theorem 13.1. With probability 1−o(1), the optimization time of RLS1
b and

(1+1) EAb on G′
k,� is 2Ω(n1/10).

13.1.2 Edge-Based Approach

A solution to the minimum s-t cut problem is a set of edges. Therefore another
natural approach is to work with a set of edges in stochastic search algorithms.
The drawback of this approach is that not each edge set constitutes an s-t
cut.

We now consider such an edge-based approach to obtain a minimum s-
t cut. We work with bitstrings of length m = |E| and consider RLS1

b and
(1+1) EAb. Note, that (1+1) EAb flips each bit with probability 1/m in a
mutation step.

As not every search point of the underlying search space represents a
feasible solution, we have to penalize search points that do not represent an
s-t cut. For a search point x, we do this by considering the value of a maximum
flow that can be sent from s to t after taking out the chosen edges. Note that
the flow value is 0 iff x represents a cut. Let E(x) := {ei ∈ E | xi = 1} denote
the subset of E corresponding to the 1s in a bitstring x. The fitness of a search
point x ∈ {0, 1}m is given by

f(x) := cost(x) + α · flow(x)

for some α > 1, where cost(x) :=
∑

e∈E(x) c(e) and flow(x) denotes the max-
imum value of an s-t flow in the graph G(x) := (V,E \E(x)). The capacity of
an edge e ∈ E equals its cost c(e). The fitness function should be minimized.

Note that flow(x) vanishes if and only if E(x) contains an s-t cut of G.
Hence, flow(x) is a penalty term that penalizes bitstrings that do not cor-
respond to a feasible solution. If E(x) contains an s-t cut of G, the fitness
function equals the value of the corresponding cut. A factor α ≤ 1 is unsuit-
able, since the empty set would have fitness smaller (or equal) than the global
optimum.

It is well known that the value of a maximum flow in the graph is equal
to the value of a minimum cut in the graph. However, considering just the
value of a maximum flow, it is hard to gain structural information about the
minimum cut. Therefore, it is interesting to examine whether stochastic search
algorithms can take advantage of the value of a maximum flow in G(x) for a
given solution x.

In the following, we consider a class of graphs where simple stochastic
search algorithms such RLS1

b and (1+1) EAb fail to obtain a minimum s-t
cut when working with the introduced fitness function. Again, we show that
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Fig. 13.3. Illustration of graph Hk

Fig. 13.4. Illustration of graph H ′
k,�

the search space can contain local optima with a large inferior neighborhood
which are produced by these algorithms before achieving an optimal solution.
The instance is based on a graph Hk (see Figure 13.3), which consists of two
vertices s, t and one interior vertex v. There are k + 1 edges of cost 1 leading
form s to v and k edges of cost 1 + ε, where 1/k < ε < 2/k, leading from v to
t. As ε > 1/k holds, all edges having weight 1 constitute a minimum s-t cut.
The graph has the following property. If the number of chosen (1+ ε)-edges is
at some point of time larger than the number of chosen 1-edges by at least 2,
then this property also holds for all later time steps if only 1-bit flips occur.
This implies that if RLS1

b chooses an initial solution which satisfies the stated
property, it will end up in the local optimum which consists of all (1+ε)-edges.

The probability of getting stuck in a local optimum becomes even higher
when different copies of the graph Hk that share the vertices s and t are
considered. Such a graph, called H ′

k,�, is depicted in Figure 13.4 and contains
a bundle part consisting of � copies of the graph Hk. In addition, it contains
a clique part consisting of n − � − 1 vertices that is directly connected to t.
All edges in the clique part have cost δ, where 0 < δ ≤ (α − 1)/n2, which
implies that the influence of the edges in the clique part with respect to the
fitness function is low. Choosing � = Θ(n1/10) and k = Θ(n4/10), bit flips in
the bundle part become less likely than in the clique part. Again, a typical
run investigating the effect of 1-bit flips can be considered in order to show
that with probability 1−o(1) a local optimum is reached which is not optimal
with respect to at least one Hk. This leads to the following theorem, whose
proof can be found in Neumann et al. (2008).

Theorem 13.2. With probability 1−o(1), the optimization time of RLS1
b and

(1+1) EAb on H ′
k,� is 2Ω(n1/10).



196 13 Cutting Problems

13.2 Multi-objective Model for the Multicut Problem

We have seen in the previous section that simple single-objective approaches
may get stuck in local optima when dealing with the minimum s-t cut prob-
lem. This even holds if the fitness function takes into account the value of a
maximum flow that can be sent from s to t by using the unchosen edges. We
now consider a multi-objective approach for stochastic search algorithms to
solve the minimum multi-cut which is a generalization of the minimum s-t cut
problem. For the special case of the minimum s-t cut problem, we will show
a polynomial upper bound on the expected time to compute a minimum cut
and obtain approximation results for the general case.

The minimum multicut problem can be stated as follows. We are given a
connected directed or undirected graph G = (V, E) on n vertices and m edges
and a cost function c : E → N+ that imposes positive integer weights on the
edges. Let {(s1, t1), . . . , (sk, tk)} be a set of k pairs with si �= ti, 1 ≤ i ≤ k.
The source of commodity i is given by si, the target by ti. We denote by
cmax = maxe∈E c(e) the largest cost among all edges.

A multicut S ⊆ E is a set of edges such that there is no path from si to
ti in (V,E \ S) for any commodity i. The cost of a subset of E is defined as
the sum of the costs of its elements. The goal is to find a multicut S ⊆ E of
minimum cost.

To deal with the multicut problem we consider a generalization of the
multi-objective approach to the multicut problem presented in Neumann and
Reichel (2008). We want to consider a multi-objective model which takes into
account the cost of a set of edges as well as the flow that can be sent through
the network after the chosen edges have been deleted. Let Fi denote the value
of a maximum si-ti flow in G and define F :=

∑k
i=1 Fi. We denote by F ∗ the

sum of all flow values of a maximum multicommodity flow in G and by C∗

the cost of a minimum multicut of G. Note that F ∗ ≤ C∗ ≤ C := m · cmax.
Furthermore, we have F ∗ ≤ F =

∑k
i=1 Fi ≤ k · F ∗ ≤ k · C∗ ≤ k · C.

We consider the fitness function f : {0, 1}m → N2, f(x) = (cost(x), f low),
where cost(x) =

∑
e∈E(x) c(e), flow(x) :=

∑k
i=1 flow i(x), and flow i(x) de-

notes the value of a maximum si-ti flow in G(x) := (V,E \ E(x)).
Our goal is to show that the multi-objective model leads to an F/C∗-

approximation for the multicut problem. Note that F/C∗ ≤ k; hence in the
worst case we get a k-approximation. For the case k = 1, F = C∗ holds due
to the maximum flow minimum cut theorem, which implies that a minimum
s-t cut is obtained.

We denote by L = {x ∈ {0, 1}m | cost(x) + flow(x) ≤ F} the set of
search points whose objective vectors lie on or below the line given by the two
objective values (0, F ) and (F, 0). Figure 13.5 shows a graphical representation
of the objective space for the general case.

The figure shows the case where the sequence F ∗, C∗, F , k · F ∗, k · C∗

is strictly increasing. Note that subsequent values may coincide and that C
can be as small as C∗. Minimum multicuts x∗ have objective vector (C∗, 0);
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Fig. 13.5. Objective space of the fitness function f(x) = (cost(x),flow(x)) for the
multicut problem

k-approximations lie on the the segment from (C∗, 0) to (min{k · C∗, C}, 0).
The following lemma shows that the search points of L represent subsets of
F/C∗-approximations of minimum multicuts.

Lemma 13.3. Let x ∈ L. Then E(x) is a subset of an F/C∗-approximation
of a minimum multicut of G.

Proof. Since x ∈ L we have cost(x) + flow(x) ≤ F . Let S denote a minimum
multicut of G(x). Then E(x) ∪ S is a multicut of G with cost(E(x) ∪ S) =
cost(x) + cost(S). Since S is a minimum multicut of G(x), its cost is not
larger than the sum of the cost of the individual minimum si-ti cuts, i.e.,
cost(S) ≤ flow(x). Hence, we have cost(E(x)∪S) ≤ cost(x) +flow(x) ≤ F ≤
k · F ∗ ≤ k · C∗, which implies that E(x) ∪ S is an F/C∗-approximation of a
minimum multicut of G. 	


Note that for k = 1 the set L is given by all search points x for which
cost(x) + flow(x) = F holds. This is an immediate consequence of the maxi-
mum flow minimum cut theorem. The preceding lemma implies the following
condition for F/C∗-approximate solutions which will be essential for the anal-
ysis of the algorithms.

Corollary 13.4. Let x ∈ {0, 1}m such that flow(x) = 0. Then E(x) is an
F/C∗-approximation of a minimum multicut of G if and only if x ∈ L.

In the following, we examine how to obtain from a solution x ∈ L with
flow(x) > 0 another solution x′ ∈ L for which flow(x′) < flow(x). As a
minimum multicut is a solution z ∈ L for which flow(z) = 0; this is essential
for our upper bound on the time to achieve an F/C∗-approximation of a
minimum multicut. For x ∈ {0, 1}m and e ∈ E, let x(e) be the value of bit
corresponding to edge e in x. We define x+e ∈ {0, 1}m by x+e(e) = 1 and
x+e(e′) = x(e′) for e′ �= e. We can bound flow(x+e) in terms of flow(x) as
follows.
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Lemma 13.5. Let x ∈ {0, 1}m and e ∈ E. Then flow(x+e) ≥ flow(x)−kc(e).

Proof. By the (single-commodity) maximum flow minimum cut theorem, we
have

flow i(x
+e) ≥ flow i(x) − c(e)

for each commodity i. Hence, we get

flow(x+e) ≥
k∑

i=1

(flow i(x) − c(e)) ≥ flow(x) − kc(e). 	


Now, we investigate how introducing an edge of a minimum si-ti cut for
some i in G(x) changes the cost and flow value of a solution x.

Lemma 13.6. Let x ∈ {0, 1}m such that flow i(x) > 0 for some commodity i.
Let e ∈ E\E(x) be an edge of a minimum si-ti cut of G(x). Then flow(x+e) ≤
flow(x) − c(e) and cost(x+e) + flow(x+e) ≤ cost(x) + flow(x).

Proof. Since flow i(x) > 0 the minimum si-ti cut of G(x) is not the empty set.
Let x ∈ E \ E(x) be an edge from such a minimum si-ti cut. By the (single-
commodity) maximum flow minimum cut theorem we have flow i(x+e) =
flow i(x) − c(e). Furthermore, flow j(x

+e) ≤ flow j(x) holds for j �= i. Sum-
mation over i yields the first claim.

Since cost(x+e) = cost(x) + c(e), the second claim follows directly from
the first one. 	


Lemma 13.6 shows that we can make progress in L towards an F/C∗-
approximation by choosing an edge e ∈ G(x) that belongs to a minimum si-ti
cut in G(x) for some i. The following corollary is an immediate consequence
of the preceding lemma and the definition of L.

Corollary 13.7. Let x ∈ L a search point such that flow(x) > 0. Then there
exists a 1-bit flip leading to a search point x′ ∈ L with flow(x′) < flow(x).

After having examined some basic properties for the multi-objective model,
we are now able to show runtime results for stochastic search algorithms First,
we consider GSEMO and prove an upper bound on the expected time until
this algorithm has achieved a F/C∗-approximation of the multicut problem.

Theorem 13.8. The expected time until GSEMO working on the fitness
function f constructs an F/C∗-approximation of a minimum multicut is
O(Fm(log n + log cmax)).

Proof. The size of the population P is at most F as GSEMO keeps at each
time step at most one solution per fixed flow value. First, we consider the time
until 0m ∈ L has been included into the population. Note that cost(0m) = 0.
Afterwards we study the time until x ∈ L with flow(x) = 0 has been included.
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Algorithm 24 DEMO (Diversity Evolutionary Multi-objective Optimizer)
1. Choose x ∈ {0, 1}m uniformly at random.
2. Determine f(x) and initialize P := {x}.
3. Repeat

a) Choose x ∈ P uniformly at random.
b) Create an offspring y by flipping each bit of x independently with probability

1/m.
c) Let P unchanged if there is an z ∈ P such that b(z) ≤ b(y) and (b(z) �=

b(y) or cost(z)+flow(z) < cost(y)+flow(y)). Otherwise, exclude all z with
b(y) ≤ b(z) and add y to P .

By Lemma 13.3, the edge set E(x) is an F/C∗-approximation of a minimum
multicut.

The expected time until GSEMO working on the fitness function f con-
structs 0m is O(Fm(log n+log cmax)). This can be proved using the technique
of the expected multiplicative distance decrease where distance is measured
with respect to minx∈P cost(x).

Now we bound the time until a cut with the claimed approximation qual-
ity has been constructed. Once again we apply the method of the expected
multiplicative distance decrease, now with respect to the flow value. Let x be
the solution with the smallest flow value in P ∩L. Note that minx∈P∩L flow(x)
does not increase during a run of GSEMO.

Consider a mutation step that selects x and performs an arbitrary 1-bit
flip. Such a step is called a good step. The probability of a good step is
lower bounded by Ω(1/F ). By Lemma 13.3, E(x) is a subset of an F/C∗-
approximation of a minimum multicut, which can be obtained by including the
remaining edges one by one. Therefore, a randomly chosen 1-bit flip decreases
the minimum flow value in P ∩ L on average by a factor of at least 1 − 1/m.

Using the method of the multiplicative distance decrease with respect to
the flow value the expected time until x′ ∈ L with flow(x′) = 0 has been
discovered is O(Fm(log n + log cmax)). 	


We can state the following corollary for the minimum s-t cut problem.

Corollary 13.9. If k = 1, the expected time until GSEMO working on the
fitness function f constructs a minimum s-t cut is O(Fm(log n + log cmax)).

The upper bound on the expected optimization time of GSEMO is only
polynomial if cmax = poly(n) holds. The reason for the pseudo-polynomial
bound is that the population size can only be upper bounded by F . In fact,
it is not too hard to come up with instances whose number of Pareto opti-
mal objective vectors is exponential in the number of vertices. Due to this,
the question arises about whether one has to keep for each Pareto optimal
objective vector a corresponding individual in the population.
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Dealing with a large Pareto front, multi-objective evolutionary algorithms
usually do not keep for each nondominated objective vector one corresponding
solution. Instead they work with a smaller population size and ensure diversity
of the search points in the population with respect to the objective values.

One popular diversity mechanism that has been proposed in the literature
is the so-called ε-dominance approach (see Laumanns, Thiele, Deb, and Zit-
zler, 2003). Here, objective vectors that are close to each other are grouped
together and only one representative of such a group is kept.

We consider the DEMO algorithm (Diversity Evolutionary Multi-objective
Optimizer) which differs from GSEMO by its partitioning of the objective
space into boxes. A box includes objective vectors that are similar to each
other and the algorithm keeps at most one individual per box in the popula-
tion.

The objective space is partitioned into boxes by using the function

b : {0, 1}m → N2

with

b1(x) :=
⌊

log(1 + cost(x))
log(1 + ε)

⌋
and

b2(x) :=
⌊

log(1 + flow(x))
log(1 + ε)

⌋
,

where ε, 0 < ε < 1 is a parameter that determines the size of the boxes. This
has the consequence that the population size of DEMO is upper bounded, as
stated in the following lemma.

Lemma 13.10. The population size |P | of DEMO is upper bounded by

B ≤ log(1 + C)
log(1 + ε)

= O(ε−1 log C) = O(ε−1(log n + log cmax)).

Proof. Since the bi(·), 1 ≤ i ≤ 2, value is a nonnegative integer and the
population contains at most one search point per box, the population size is
upper bounded by

min{ max
x∈{0,1}m

b1(x), max
x∈{0,1}m

b2(x)}.

Hence, we have B ≤ log(1 + C)/ log(1 + ε) ≤ 2 log(1 + C)/ε = O(ε−1 log C).
	


To obtain the upper bound on the runtime of DEMO, we first consider
the time until the search point 0m has been included in the population and
analyze the time to achieve an F/C∗-approximation afterwards. DEMO does
not keep all nondominated objective vectors found so far. The following lemma
shows that for each search point x �= 0m there is a 1-bit flip which produces
from x a solution x′ with a small b1-value. Such operations will be essential for
bounding the time until the solution 0m has been included in the population.
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Lemma 13.11. Let ε ≤ 1/m and x ∈ {0, 1}m a search point such that
cost(x) > 0. Then there exists a 1-bit flip leading to a search point x′ ∈ {0, 1}m

with b1(x′) < b1(x).

Proof. Consider all 1-bit flips that remove a single edge from E(x). Among
all resulting search points, consider a point x′ that minimizes y′ := cost(x′).
Let y := cost(x).

The repeated removal of edges in E(x) yields the search point 0m. Let
� := |E(x)| ≤ m. Since y′ was minimal, y′ ≤ (1− 1

� )y holds. Since ε ≤ 1
m ≤ 1

�
and � ≤ y, we have

(1 + ε)(1 + y′) ≤ 1 + ε + (1 + ε)
(

1 − 1
�

)
y

≤ 1 +
y

�2
+

(
1 +

1
�

) (
1 − 1

�

)
y = 1 + y.

This implies that

1 +
log(1 + y′)
log(1 + ε)

≤ log(1 + y)
log(1 + ε)

and finally b1(x′) < b1(x). 	


Using Lemma 13.11, we now bound the expected time until DEMO has
produced a population which includes the search point 0m.

Lemma 13.12. The expected time until DEMO working on the fitness func-
tion f includes the search point 0m into the population is O(mε−2(log2 n +
log2 cmax)).

Proof. The archiving strategy of DEMO guarantees that whenever a non-
empty box becomes empty, another search point whose box dominates the
considered box is included into the population. Therefore, minx∈P b1(x) will
never increase during the run of the algorithm.

Since the population size is bounded by B, the probability of picking a
search point x ∈ P with minimal b1-value is Ω(1/B). By Lemma 13.11, there
exists at least one 1-bit flip leading to a search point x′ with b1(x′) < b1(x).
The probability of generating such a search point x′ is Ω(1/m). After at most
B such steps, the b1-value is zero, implying that we have found the search
point 0m. Hence, the expected time to include 0m in the population is

O(B2m) = O(mε−2 log2 C) = O(mε−2(log2 n + log2 cmax)).

This concludes the proof. 	


To come up with an upper bound for DEMO, it is necessary to examine
how the algorithm progresses from a solution x ∈ L to a solution of x′ ∈ L
with b2(x′) < b2(x). The following lemma points out that this is possible by
carrying out a special 1-bit flip.
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Lemma 13.13. Let ε ≤ 1/m and x ∈ L be a search point such that flow(x) >
0. Then there exists a 1-bit flip leading to a search point x′ ∈ L with b2(x′) <
b2(x).

Proof. By Lemma 13.7, there exists at least one 1-bit flip leading to a search
point x′ ∈ L with flow(x′) < flow(x). Among all such search points, consider
a point x′ that minimizes y′ := flow(x′). Let y := flow(x).

The repeated application of Lemma 13.7 yields an F/C∗-approximation
E(x∗) of a minimum multicut of G. Let � := |E(x∗)| − |E(x)| ≤ m. Since
y′ was minimal, y′ ≤ (1 − 1

� )y holds. Since ε ≤ 1
m ≤ 1

� and � ≤ y, we have
b2(x′) < b2(x) by the same calculation as that in the proof of Lemma 13.11.
	


Finally, we are able to prove the following theorem, which shows that
the expected runtime of DEMO with an appropriate choice of ε is always
polynomially bounded with respect to the given input.

Theorem 13.14. Choosing ε ≤ 1/m, the expected time until DEMO working
on the fitness function f constructs an F/C∗-approximation of a minimum
multicut is O(mε−2(log2 n + log2 cmax)).

Proof. Due to Lemma 13.12, the search point 0m ∈ L has been included into
the population after an expected number of O(mε−2(log2 n+log2 cmax)) steps.
Hence, it is sufficient to consider the search process after having found a search
point x ∈ L.

The archiving strategy of DEMO guarantees that whenever a non-empty
box becomes empty, another search point whose box dominates the considered
box is included into the population. Moreover, the tie-break rule ensures that
a non-empty box with a search point x ∈ P ∩ L will never exchange that
search point for a search point x′ �∈ L. Therefore, minx∈P∩L b2(x) will never
increase during the run of the algorithm.

Since the population size is bounded by B, the probability of picking a
search point x ∈ L with minimal b2-value from among the search points in L
is Ω(1/B). By Lemma 13.13, there exists at least one 1-bit flip leading to a
search point x′ ∈ L with b2(x′) < b2(x). The probability of generating such a
search point x′ is Ω(1/m). After at most B such steps, the b2-value is zero,
implying that we have found a multicut. Since x′ ∈ L, this multicut is an
F/C∗-approximation of a minimum cut. Hence, the expected time to obtain
an F/C∗-approximation of a minimum multicut is

O(B2m) = O(mε−2 log2 C) = O(mε−2(log2 n + log2 cmax)).

This concludes the proof. 	

For the minimum s-t cut problem, we get the following results as an im-

mediate consequence of the previous theorem.

Corollary 13.15. If k = 1 and ε ≤ 1/m, the expected time until DEMO work-
ing on the fitness function f constructs a minimum s-t cut is O(mε−2(log2 n+
log2 cmax)).
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Conclusions

Finding minimum cuts in a given graph is one of the fundamental combina-
torial optimization problems. We have examined how stochastic search algo-
rithms can deal with this problem. Investigating two natural single-objective
approaches, we have pointed out that they have to deal with local optima that
have a large distance from the global one. This leads to exponential lower
bounds on the runtime of RLS1

b and (1+1) EAb. Taking a multi-objective
view on the problem, we have shown that GSEMO can solve the minimum
s-t cut problem efficiently. To deal with a large number of trade-offs we have
proposed using the ε-dominance approach leading to the algorithm DEMO.
We have shown that this algorithm solves the minimum s-t cut problem as
well as the generalized multicut problem in expected polynomial time.

The benefits and drawbacks for the use of the ε-dominance approach have
been investigated in greater detail by Horoba and Neumann (2008). There
are other diversity mechanisms that have been used in evolutionary multi-
objective optimization, such as the density estimator or the use of the hy-
pervolume indicator to direct the search. In Horoba and Neumann (2009),
an approach using the density estimator is compared to the approach using
ε-dominance as well as the approach of keeping all nondominated objective
vectors. It is pointed out in which situations one mechanism is favored over
the other. For the hypervolume indicator, the first runtime analysis was pre-
sented by Brockhoff, Friedrich, and Neumann (2008). We refer the interested
reader to the mentioned papers for further reading. For future research, it
would be interesting to see how the other mentioned mechanisms can help us
deal with combinatorial optimization problems that encounter an exponential
number of trade-offs.





A

Appendix

We present some elementary mathematical material that is used throughout
this book. Most of these basics in mathematics can be found in Feller (1968,
1971) and Motwani and Raghavan (1995).

A.1 Probability Distributions

Definition A.1 (Binomial distribution). A random variable X follows the
binomial distribution with parameters n and p if

Prob(X = k) =
(

n

k

)
· pk · (1 − p)n−k

for k ∈ {0, . . . , n}. Its expectation is E(X) = np.
Illustratively, the random variable X counts the number of successes in n

independent Bernoulli trials with probability p for a success.

Definition A.2 (Geometric distribution). A random variable X follows
the geometric distribution with parameter p if

Prob(X = k) = pk · (1 − p)

for k ∈ N0. Its expectation is E(X) = 1/p.
Illustratively, X counts the number of consecutive successes before the first

failure in independent Bernoulli trials with success probability p.

Definition A.3 (Poisson distribution). Let λ be a positive real number. A
random variable X follows the Poisson distribution with parameter λ if

Prob(X = k) =
λke−λ

k!

for k ∈ N0. Its expectation is E(X) = λ.
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A.2 Deviation Inequalities

Proposition A.4 (Markov’s inequality). Let X be a random variable as-
suming only non-negative values. Then for all t ∈ R+,

Prob(X ≥ k · E(X)) ≤ 1/k.

Proposition A.5 (Chernoff bounds). Let X1, X2, . . . , Xn be independent
Poisson trials such that for 1 ≤ i ≤ n Prob(Xi = 1) = pi, where 0 < pi < 1.
Let X =

∑n
i=1 Xi, μ = E(X) =

∑n
i=1 pi. Then the following inequalities hold.

Prob(X ≥ (1 + δ)μ) ≤
(

eδ

(1 + δ)(1+δ)

)μ

δ > 0

Prob(X ≥ (1 + δ)μ) ≤ e−μδ2/3 0 < δ ≤ 1

Prob(X ≤ (1 − δ)μ) ≤ e−μδ2/2 0 < δ ≤ 1

Proposition A.6 (Chernoff-Hoeffding bound). Let X1, . . . , Xn be inde-
pendent random variables such ai ≤ Xi ≤ bi for 1 ≤ i ≤ n. Denote
X =

∑n
i=1 Xi. Then for any δ ≥ 0 the following inequalities hold.

Prob(X ≥ μ + δ) ≤ e−2δ2/
Pn

i=1(bi−ai)
2

Prob(X ≤ μ − δ) ≤ e−2δ2/
Pn

i=1(bi−ai)
2

A.3 Other Useful Formulas

Proposition A.7 (Union bound). For a finite or countably infinite se-
quence A1, A2, A3, . . . , of events

Prob (∪i≥1Ai) ≤
∑
i≥1

Prob(Ai).

Proposition A.8 (Law of total probability). For an event A and a par-
tition of the sample space Ω into mutually disjoint events B1, . . . , Bk, i.e.,
∪k

i=1Bi = Ω, it holds

Prob(A) =
k∑

i=1

Prob(A | Bi) · Prob(Bi),

where Prob(A | Bi) denotes the conditional probability of A, given Bi.
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Proposition A.9 (Stirling’s formula). For any n ∈ N

√
2πnnne−n < n! <

√
3πnnne−n

holds.

Proposition A.10 (Inequalities with e).

ex ≥ 1 + x for x ∈ R

e−x ≤ 1 − x

2
for 0 ≤ x ≤ 1

ex ≤ 1
1 − x

for x < 1(
1 − 1

n

)n

≤ e−1 ≤
(

1 − 1
n

)n−1

for n ∈ N

Proposition A.11 (Binomial coefficients). Let n ≥ k ≥ 0. The binomial
coefficients are defined as(

n

k

)
=

(
n

n − k

)
=

n!
k!(n − k)!

,

and it holds (n

k

)k

≤
(

n

k

)
≤ nk

k!
≤

(ne

k

)k

.

Proposition A.12 (Harmonic sum). Let Hn =
∑n

i=1 1/i be the nth Har-
monic sum. Then for any n ∈ N

Hn = lnn + Θ(1).

Proposition A.13 (Coupon collector’s theorem). In the coupon collec-
tor’s problem, n different coupons are given and at each trial a coupon is cho-
sen uniformly at random. Let X be a random variable describing the number
of trials required to choose each coupon at least once. Then

E(X) = nHn

holds, where Hn denotes the nth Harmonic number, and

lim
n→∞

Prob(X ≤ n(lnn − c)) = e−ec

holds for each constant c ∈ R.
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Beier R, Vöcking B (2004) Random knapsack in expected polynomial time.
Journal of Computer and System Sciences 69(3):306–329

Briest P, Brockhoff D, Degener B, Englert M, Gunia C, Heering O, Jansen T,
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Lacomme P, Prins C, Ramdane-Chérif W (2001) A genetic algorithm for
the capacitated arc routing problem and its extensions. In: Proceedings of
Applications of Evolutionary Computing, EvoWorkshops 2001: EvoCOP,
EvoFlight, EvoIASP, EvoLearn, and EvoSTIM, volume 2037 of Lecture
Notes in Computer Science, Springer, 473–483

Laumanns M, Thiele L, Deb K, Zitzler E (2003) Combining convergence and
diversity in evolutionary multiobjective optimization. Evolutionary Com-
putation 10(3):263–282



214 References

Laumanns M, Thiele L, Zitzler E (2004) Running time analysis of multiob-
jective evolutionary algorithms on pseudo-boolean functions. IEEE Trans-
actions on Evolutionary Computation 8(2):170–182

Liang K H, Yao X, Newton C S, Hoffman D (2002) A new evolutionary ap-
proach to cutting stock problems with and without contiguity. Computers
and Operations Research 29(12):1641–1659

Mayr E W, Plaxton C G (1992) On the spanning trees of weighted graphs.
Combinatorica 12(4):433–447

Mehlhorn K, Sanders P (2008) Algorithms and Data Structures: The Basic
Toolbox. Springer

Micali S, Vazirani V V (1980) An O(
√

|V |·|E|) algorithm for finding maximum
matching in general graphs. In: Proceedings of the 21st Annual Symposium
on Foundations of Computer Science (FOCS ’80), IEEE Press, 17–27

Michalewicz Z (1995) A survey of constraint handling techniques in evolution-
ary computation methods. In: Evolutionary Programming, 135–155

Michalewicz Z, Fogel D B (2004) How to solve it: Modern heuristics. Springer
Motwani R, Raghavan P (1995) Randomized Algorithms. Cambridge Univer-

sity Press
Mühlenbein H (1992) How genetic algorithms really work: Mutation and hill-

climbing. In: Proceedings of Parallel Problem Solving from Nature II (PPSN
’92), Elsevier, 15–26

Nemhauser G, Ullman Z (1969) Discrete dynamic programming and capital
allocation. Management Science 15(9):494–505

Neumann F (2007) Expected runtimes of a simple evolutionary algorithm for
the multi-objective minimum spanning tree problem. European Journal of
Operational Research 181(3):1620–1629

Neumann F (2008) Expected runtimes of evolutionary algorithms for the Eu-
lerian cycle problem. Computers and Operations Research 35(9):2750–2759

Neumann F, Reichel J (2008) Approximating minimum multicuts by evo-
lutionary multi-objective algorithms. In: Proceedings of Parallel Problem
Solving from Nature X (PPSN ’08), volume 5199 of Lecture Notes in Com-
puter Science, Springer, 72–81

Neumann F, Reichel J, Skutella M (2008) Computing minimum cuts by ran-
domized search heuristics. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO ’08), ACM Press, 779–786

Neumann F, Sudholt D, Witt C (2009) Analysis of different MMAS ACO
algorithms on unimodal functions and plateaus. Swarm Intelligence 3(1):35–
68

Neumann F, Wegener I (2007) Randomized local search, evolutionary algo-
rithms, and the minimum spanning tree problem. Theoretical Computer
Science 378(1):32–40

Neumann F, Witt C (2009) Runtime analysis of a simple ant colony optimiza-
tion algorithm. Algorithmica 54(2):243–255

Neumann F, Witt C (2010) Ant colony optimization and the minimum span-
ning tree problem. Theoretical Computer Science 411(25):2406–2413



References 215

Nocedal J, Wright S (2000) Numerical Optimization. Springer
Oliveto P S, He J, Yao X (2008) Analysis of population-based evolutionary al-

gorithms for the vertex cover problem. In: Proceedings of the IEEE Congress
on Evolutionary Computation (CEC ’08), IEEE Press, 1563–1570

Oliveto P S, He J, Yao X (2009) Analysis of the (1+1)-EA for finding approx-
imate solutions to vertex cover problems. IEEE Transactions on Evolution-
ary Computation 13(5):1006–1029

Oliveto P S, Witt C (2008) Simplified drift analysis for proving lower bounds
in evolutionary computation. In: Proceedings of Parallel Problem Solving
from Nature X (PPSN ’08), volume 5199 of Lecture Notes in Computer
Science, Springer, 82–91

Papadimitriou C H, Steiglitz K (1998) Combinatorial Optimization: Algo-
rithms and Complexity. Dover

Papadimitriou C H, Yannakakis M (2000) On the approximability of trade-
offs and optimal access of web sources. In: Proceedings of the 41st Annual
Symposium on Foundations of Computer Science (FOCS ’00), IEEE Press,
86–92

Prim R C (1957) Shortest connection networks and some generalizations. Bell
System Technical Journal 36:1389–1401

Puchinger J, Raidl G R, Koller G (2004) Solving a real-world glass cutting
problem. In: Proceedings of the 4th European Conference on Evolutionary
Computation in Combinatorial Optimization (EvoCOP ’04), volume 3004
of Lecture Notes in Computer Science, Springer, 165–176

Raidl G R, Julstrom B A (2003) Edge sets: an effective evolutionary coding of
spanning trees. IEEE Transactions on Evolutionary Computation 7(3):225–
239

Raz R, Safra S (1997) A sub-constant error-probability low-degree test, and a
sub-constant error-probability PCP characterization of NP. In: Proceedings
of the 29th Annual ACM Symposium on the Theory of Computing (STOC
’97), ACM Press, 475–484

Rechenberg I (1973) Evolutionsstrategie – Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution. Frommann-Holzboog

Reichel J, Skutella M (2007) Evolutionary algorithms and matroid optimiza-
tion problems. In: Proceedings of the Genetic and Evolutionary Computa-
tion Conference (GECCO ’07), ACM Press, 947–954

Reichel J, Skutella M (2009) On the size of weights in randomized search
heuristics. In: Proceedings of the 10th International Workshop on Founda-
tions of Genetic Algorithms (FOGA ’09), ACM Press, 21–28

Rizzoli A E, Montemanni R, Lucibello E, Gambardella L M (2007) Ant colony
optimization for real-world vehicle routing problems. Swarm Intelligence
1(2):135–151

Sanders P, Schultes D (2006) Engineering highway hierarchies. In: Proceedings
of the 14th Annual European Symposium on Algorithms (ESA ’06), volume
4168 of Lecture Notes in Computer Science, Springer, 804–816



216 References

Sasakik G H, Hajek B (1988) The time complexity of maximum matching by
simulated annealing. Journal of the ACM 35:387–403

Scharnow J, Tinnefeld K, Wegener I (2004) The analysis of evolutionary al-
gorithms on sorting and shortest paths problems. Journal of Mathematical
Modelling and Algorithms 3(4):349–366

Schwefel H P (1981) Numerical optimization for computer models. Wiley
Sorkin G B (1991) Efficient simulated annealing on fractal energy landscapes.

Algorithmica 6(3):367–418
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