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PREFACE

Bioinformatics, broadly defined as the interface between biological and computational
sciences, is a rapidly evolving field, driven by advances in high throughput technolo-
gies that result in an ever increasing variety and volume of experimental data to be
managed, integrated, and analyzed. At the core of many of the recent developments in
the field are novel algorithmic techniques that promise to provide the answers to key
challenges in postgenomic biomedical sciences, from understanding mechanisms of
genome evolution and uncovering the structure of regulatory and protein-interaction
networks to determining the genetic basis of disease susceptibility and elucidation of
historical patterns of population migration.

This book aims to provide an in-depth survey of the most important develop-
ments in bioinformatics algorithms in the postgenomic era. It is neither intended as
an introductory text in bioinformatics algorithms nor as a comprehensive review of
the many active areas of bioinformatics research—to readers interested in these we
recommend the excellent textbook An Introduction to Bioinformatics Algorithms by
Jones and Pevzner and the Handbook of Computational Molecular Biology edited
by Srinivas Aluru. Rather, our intention is to make a carefully selected set of ad-
vanced algorithmic techniques accessible to a broad readership, including graduate
students in bioinformatics and related areas and biomedical professionals who want
to expand their repertoire of algorithmic techniques. We hope that our emphasis on
both in-depth presentation of theoretical underpinnings and applications to current
biomedical problems will best prepare the readers for developing their own extensions
to these techniques and for successfully applying them in new contexts.

The book features 21 chapters authored by renowned bioinformatics experts who
are active contributors to the respective subjects. The chapters are intended to be
largely independent, so that readers do not have to read every chapter nor have to read
them in a particular order. The opening chapter is a thought provoking discussion of
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PREFACE

the role that algorithms should play in 21st century bioinformatics education. The
remaining 20 chapters are grouped into the following five parts:

Part I focuses on algorithmic techniques that find applications to a wide range of
bioinformatics problems, including chapters on dynamic programming, graph-
theoretical methods, hidden Markov models, sorting the fast Fourier transform,
seeding, and phylogenetic networks comparison approximation algorithms.

Part II is devoted to algorithms and tools for genome and sequence analysis.
It includes chapters on formal and approximate models for gene clusters, and
on advanced algorithms for multiple and non-overlapping local alignments and
genome things, multiplex PCR primer set selection, and sequence and network
motif finding.

Part III concentrates on algorithms for microarray design and data analysis.
The first chapter is devoted to algorithms for microarray layout, with next two
chapters describing methods for missing value imputation and meta-analysis
of gene expression data.

Part IV explores algorithmic issues arising in analysis of genetic variation across
human population. Two chapters are devoted to computational inference of
haplotypes from commonly available genotype data, with a third chapter
describing optimization techniques for disease association search in epidemi-
ologic case/control genotype data studies.

Part V gives an overview of algorithmic approaches in structural and systems bi-
ology. First two chapters give a formal introduction to topological and structural
classification in biochemistry, while the third chapter surveys protein—protein
and domain—domain interaction prediction.

We are grateful to all the authors for their excellent contributions, without which
this book would not have been possible. We hope that their deep insights and fresh
enthusiasm will help attracting new generations of researchers to this dynamic field.
We would also like to thank series editors Yi Pan and Albert Y. Zomaya for nurturing
this project since its inception, and the editorial staff at Wiley Interscience for their
patience and assistance throughout the project. Finally, we wish to thank our friends
and families for their continuous support.

JIoN I. MANDOIU AND ALEXANDER ZELIKOVSKY
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EDUCATING BIOLOGISTS IN THE
21ST CENTURY: BIOINFORMATICS
SCIENTISTS VERSUS

BIOINFORMATICS TECHNICIANS!

PAVEL PEVZNER

Department of Computer Science and Engineering, University of California, San Diego,
CA, USA

For many years algorithms were taught exclusively to computer scientists, with
relatively few students from other disciplines attending algorithm courses. A biology
student in an algorithm class would be a surprising and unlikely (though not entirely
unwelcome) guest in the 1990s. Things have changed; some biology students now
take some sort of Algorithms 101. At the same time, curious computer science
students often take Genetics 101.

Here comes an important question of how to teach bioinformatics in the 21st
century. Will we teach bioinformatics to future biology students as a collection of
cookbook-style recipes or as a computational science that first explain ideas and
builds on applications afterward? This is particularly important at the time when
bioinformatics courses may soon become required for all graduate biology students
in leading universities. Not to mention that some universities have already started
undergraduate bioinformatics programs, and discussions are underway about adding
new computational courses to the standard undergraduate biology curriculum—a
dramatic paradigm shift in biology education.

IReprinted from Bioinformatics 20:2159-2161 (2004) with the permission of Oxford University Press.

Bioinformatics Algorithms: Techniques and Applications, Edited by Ion I. Mandoiu
and Alexander Zelikovsky
Copyright © 2008 John Wiley & Sons, Inc.



2 EDUCATING BIOLOGISTS IN THE 21ST CENTURY

Since bioinformatics is a computational science, a bioinformatics course should
strive to present the principles and the ideas that drive an algorithm’s design or explain
the crux of a statistical approach, rather than to be a stamp collection of the algorithms
and statistical techniques themselves. Many existing bioinformatics books and courses
reduce bioinformatics to a compendium of computational protocols without even try-
ing to explain the computational ideas that drove the development of bioinformatics in
the past 30 years. Other books (written by computer scientists for computer scientists)
try to explain bioinformatics ideas at the level that is well above the computational
level of most biologists. These books often fail to connect the computational ideas
and applications, thus reducing a biologist’s motivation to invest time and effort into
such a book. We feel that focusing on ideas has more intellectual value and represents
a long-term investment: protocols change quickly, but the computational ideas don’t
seem to. However, the question of how to deliver these ideas to biologists remains an
unsolved educational riddle.

Imagine Alice (a computer scientist), Bob (a biologist), and a chessboard with a
lonely king in the lower right corner. Alice and Bob are bored one Sunday afternoon
so they play the following game. In each turn, a player may either move a king one
square to the left, one square up, or one square “north—west” along the diagonal.
Slowly but surely, the king moves toward the upper left corner and the player who
places the king to this square wins the game. Alice moves first.

It is not immediately clear what the winning strategy is. Does the first player (or
the second) always have an advantage? Bob tries to analyze the game and applies a
reductionist approach, and he first tries to find a strategy for the simpler game on a
2 x 2 board. He quickly sees that the second player (himself, in this case) wins in
2 x 2 game and decides to write the recipe for the “winning algorithm:”

If Alice moves the king diagonally, I will move him diagonally and win. If Alice moves
the king to the left, I will move him to the left as well. As a result, Alice’s only choice
will be to move the king up. Afterward, [ will move the king up again and will win the
game. The case when Alice moves the king up is symmetric.

Inspired by this analysis Bob makes a leap of faith: the second player (i.e., himself)
wins in any #n x n game. Of course, every hypothesis must be confirmed by experi-
ment, so Bob plays a few rounds with Alice. He tries to come up with a simple recipe
for the 3 x 3 game, but there are already a large number of different game sequences
to consider. There is simply no hope of writing a recipe for the 8 x 8 game since the
number of different strategies Alice can take is enormous.

Meanwhile, Alice does not lose hope of finding a winning strategy for the 3 x 3
game. Moreover, she understands that recipes written in the cookbook style that Bob
uses will not help very much: recipe-style instructions are not a sufficiently expressive
language for describing algorithms. Instead, she begins by drawing the following table
that is filled by the symbols 1, <—, N\, and *. The entry in position (i, j) (that s, the ith
row and the jth column) describes the move that Alice will make in the i x j game.
A <« indicates that she should move the king to the left. A 1 indicates that she should
move the king up. A N\ indicates that she should move the king diagonally, and *
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indicates that she should not bother playing the game because she will definitely lose
against an opponent who has a clue.

0 1 2 3 4 5 6 7 8
0 “— %k < k<« ok << x
R L N R U A N A N |
2| % <« % <« % <« %k < x
3TN TN TN N
4 * <~ % <~ % <~ % <~ ok
S5t N NN N
6 * <~ % <~ % <~ % <~ %
TN N NN
8 | ¥ <« % <«  x <« x <« %

For example, if she is faced with the 3 x 3 game, she finds a N in the third row
and third column, indicating that she should move the king diagonally. This makes
Bob take the first move in a 2 x 2 game, which is marked with a . No matter what
he does, Alice wins using instructions in the table.

Impressed by the table, Bob learns how to use it to win the 8 x 8 game. However,
Bob does not know how to construct a similar table for the 20 x 20 game. The problem
is not that Bob is stupid (quite the opposite, a bit later he even figured out how to use
the symmetry in this game, thus eliminating the need to memorize Alice’s table) but
that he has not studied algorithms. Even if Bob figured out the logic behind 20 x 20
game, a more general 20 x 20 x 20 game on a three-dimensional chessboard would
turn into an impossible conundrum for him since he never took Algorithms 101.

There are two things Bob could do to remedy this situation. First, he could take a
class in algorithms to learn how to solve puzzle-like combinatorial problems. Second,
he could memorize a suitably large table that Alice gives him and use that to play the
game. Leading questions notwithstanding, what would you do as a biologist?

Of course, the answer we expect to hear is “Why in the world do I care about a
game with a lonely king and two nerdy people? I’m interested in biology, and this
game has nothing to do with me.” This is not actually true: the chess game is, in fact,
the ubiquitous sequence alignment problem in disguise. Although it is not immedi-
ately clear what DNA sequence alignment and our chess game have in common, the
computational idea used to solve both problems is the same. The fact that Bob was
not able to find the strategy for the game indicates that he does not understand how
alignment algorithms work either. He might disagree if he uses alignment algorithms
or BLAST on a daily basis, but we argue that since he failed to come up with a strat-
egy, he will also fail when confronted with a new flavor of an alignment problem or
a particularly complex bioinformatics analysis. More troubling to Bob, he may find
it difficult to compete with the scads of new biologists and computer scientists who
think algorithmically about biological problems.



4 EDUCATING BIOLOGISTS IN THE 21ST CENTURY

Many biologists are comfortable using algorithms such as BLAST or GenScan
without really understanding how the underlying algorithm works. This is not sub-
stantially different from a diligent robot following Alice’s table, but it does have an
important consequence. BLAST solves a particular problem only approximately and
ithas certain systematic weaknesses (we’re not picking on BLAST here). Users that do
not know how BLAST works might misapply the algorithm or misinterpret the results
itreturns (see Iyer et al. Quoderat demonstrandum? The mystery of experimental vali-
dation of apparently erroneous computational analyses of protein sequences. Genome
Biol., 2001, 2(12):RESEARCHO0051). Biologists sometimes use bioinformatics tools
simply as computational protocols in quite the same way that an uninformed mathe-
matician might use experimental protocols without any background in biochemistry
or molecular biology. In either case, important observations might be missed or incor-
rect conclusions drawn. Besides, intellectually interesting work can quickly become
mere drudgery if one does not really understand it.

Many recent bioinformatics books cater to a protocol-centric pragmatic approach
to bioinformatics. They focus on parameter settings, application-specific features, and
other details without revealing the computational ideas behind the algorithms. This
trend often follows the tradition of biology books to present material as a collection of
facts and discoveries. In contrast, introductory books in algorithms and mathematics
usually focus on ideas rather than on the details of computational recipes. In princi-
ple, one can imagine a calculus book teaching physicists and engineers how to take
integrals without any attempt to explain what is integral. Although such a book is not
that difficult to write, physicists and engineers somehow escaped this curse, probably
because they understand that the recipe-based approach to science is doomed to fail.
Biologists are less lucky and many biology departments now offer recipe-based bioin-
formatics courses without first sending their students to Algorithms 101 and Statistics
101. Some of the students who take these classes get excited about bioinformatics
and try to pursue a research career in bioinformatics. Many of them do not understand
that, with a few exceptions, such courses prepare bioinformatics technicians rather
than bioinformatics scientists.

Bioinformatics is often defined as “applications of computers in biology.” In recent
decades, biology has raised fascinating mathematical problems, and reducing bioin-
formatics to “applications of computers in biology” diminishes the rich intellectual
content of bioinformatics. Bioinformatics has become a part of modern biology and
often dictates new fashions, enables new approaches, and drives further biological
developments. Simply using bioinformatics as a toolkit without understanding the
main computational ideas is not very different than using a PCR kit without knowing
how PCR works.

Bioinformatics has affected more than just biology: it has also had a profound
impact on the computational sciences. Biology has rapidly become a large source for
new algorithmic and statistical problems, and has arguably been the target for more
algorithms than any of the other fundamental sciences. This link between computer
science and biology has important educational implications that change the way we
teach computational ideas to biologists, as well as how applied algorithms are taught
to computer scientists.
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Although modern biologists deal with algorithms on a daily basis, the language
they use to describe an algorithm is very different: it is closer to the language used in a
cookbook. Accordingly, some bioinformatics books are written in this familiar lingo
as an effort to make biologists feel at home with different bioinformatics concepts.
Some of such books often look like collections of somewhat involved pumpkin pie
recipes that lack logic, clarity, and algorithmic culture. Unfortunately, attempts to
present bioinformatics in the cookbook fashion are hindered by the fact that natural
languages are not suitable for communicating algorithmic ideas more complex than
the simplistic pumpkin pie recipe. We are afraid that biologists who are serious about
bioinformatics have no choice but to learn the language of algorithms.

Needless to say, presenting computational ideas to biologists (who typically
have limited computational background) is a difficult educational challenge. In fact,
the difficulty of this task is one of the reasons why some biology departments have
chosen the minimal resistance path of teaching the recipe-style bioinformatics. We
argue that the best way to address this challenge is to introduce an additional required
course Algorithms and Statistics in Biology in the undergraduate molecular biology
curriculum. We envision it as a problem-driven course with all examples and problems
being biology motivated. Computational curriculum of biologists is often limited to
ayear or less of Calculus. This tradition has remained unchanged in the past 30 years
and was not affected by the recent computational revolution in biology. We are not
picking on Calculus here but simply state that today algorithms and statistics play
a somehow larger role in the everyday work of molecular biologists. Modern bioin-
formatics is a blend of algorithms and statistics (BLAST and GenScan are good
examples), and it is important that this Algorithms and Statistics in Biology course
is not reduced to Algorithms 101 or Statistics 101. And, god forbid, it should not be
reduced to stamp collection of bioinformatics tools 101 as it is often done today.
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TECHNIQUES
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DYNAMIC PROGRAMMING
ALGORITHMS FOR BIOLOGICAL
SEQUENCE AND STRUCTURE
COMPARISON

YUZHEN YE
The Burnham Institute for Medical Research, San Diego, CA, USA

Haixu TANG

School of Informatics and Center for Genomic and Bioinformatics, Indiana University,
Bloomington, IN, USA

2.1 INTRODUCTION

When dynamic programming algorithm was first introduced by Richard Bellman
in 1953 to study multistage decision problems, he probably did not anticipate its
broad applications in current computer programming. In fact, as Bellman wrote in his
entertaining autobiography [9], he decided to use the term “dynamic programming”
as “an umbrella” for his mathematical research activities at RAND Corporation to
shield his boss, Secretary of Defense Wilson, who “had a pathological fear of the word
research.” Dynamic programming algorithm provides polynomial time solutions to a
class of optimization problems that have an optimal substructure, in which the optimal
solution of the overall problem can be deduced from the optimal solutions of many
overlapping subproblems that can be computed independently and memorized for
repeated use. Because it is one of the early algorithms introduced in bioinformatics
and it has been broadly applied since then [61], dynamic programming has become an

Bioinformatics Algorithms: Techniques and Applications, Edited by Ion I. Méandoiu
and Alexander Zelikovsky
Copyright © 2008 John Wiley & Sons, Inc.



10 DYNAMIC PROGRAMMING ALGORITHMS

115
~

~

y@‘”
~
0G0 =0
12

//
//
(&)

FIGURE 2.1 The dynamic programming algorithm for finding the shortest path between two
nodes (e.g., A to B) in a weighted acylic graph.

unavoidable algorithmic topic in any bioinformatics textbook. In this chapter, we will
review the classical dynamic programming algorithms used in biomolecular sequence
analysis, as well as several recently developed variant algorithms that attempt to
address specific issues in this area.

A useful example to illustrate the idea of dynamic programming is the shortest
path problem in graph theory [19], which is formalized as finding a path between two
vertices in a weighted acylic graph such that the sum of the weights of the constituent
edges is minimal. Assume that we want to find a shortest path from the source vertex
A to the target vertex B (Fig. 2.1). This problem can be divided into subproblems
of finding shortest paths from A to all adjacent vertices of A (C, D and E). More
importantly, all these subproblems can be solved without depending on each other or
vertex B, since there should be no path between A and any vertex of C-E (e.g., C) that
passes through B or any other vertex (e.g., D or E) on the acylic graph. Notably, the
“acylic” condition is vital for the correctness of this simple solution of the shortest
path problem. The vertices and edges in an acylic graph can be sorted in a partial
order according to their adjacency to the source vertex.

Similar to the shortest path problem, those dynamic programming solvable prob-
lems are often associated to the objects with a similar optimal substructure. A typical
example of such objects is strings, with naturally ordered letters. Hence, many compu-
tational problems related to strings can be solved by dynamic programming. Interest-
ingly, the primary structures of two most important biomolecules, deoxyribonucleic
acids (DNAs) and proteins, are both linear molecules, thus can be represented by plain
sequences,! although on two different alphabets with limited size (4 nucleotides and
20 amino acids, respectively). Life is simple, in this perspective. Dynamic program-
ming became a natural choice to compare their sequences. Needleman and Wunsch
first demonstrated the use of bottom-up dynamic programming to compute an optimal
pairwise alignment between two protein sequences [50]. Although this algorithm pro-
vides a similar assessment of a pair of sequences, it assumes the similarity between two
input sequences is across the entire sequences (called a global alignment algorithm).
Smith and Waterman adapted a simple yet important modification to this algorithm
to perform local alignments, in which similar parts of input sequences were aligned
[63]. The obvious advantage of local alignments in identifying common functional

'In bioinformatics, the term sequence is used interchangeable with the term string that is often used in
computer science. From now on, we will mainly use the term sequence.
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domains or motifs has attracted considerable interests and led to the development of
several commonly used tools in bioinformatics nowadays, such as FASTA [54] and
BLAST [2].

A third class of biomolecules, ribonucleic acids (RNAs), which are also linear,
fold into stable secondary structures (i.e., a set of base pairs formed by two comple-
mentary bases) to perform their biological functions. So they are often represented by
sequences of four letters, similar to DNAs, but with annotated arcs, where each arc rep-
resents a base pair. Interestingly, the base pairs in native secondary structure of an RNA
usually do not form pseudoknots, that is, the arcs are not crossing. As a result, RNA
sequences with annotated arcs can also be sorted into partial ordered trees (instead
of sequences) [41]. Therefore, many bioinformatics problems related to RNAs, for
example, RNA secondary structure prediction [67,53], RNA structure comparison
[41], and RNA consensus folding [60], can be addressed by dynamic program
algorithms. Unlike RNAs, the native three-dimensional (3D) structures of proteins
are difficult to be predicted from their primary sequences and are determined
mainly by experimental methods, for example crystallography and nuclear magnetic
resonance (NMR). It has been observed that proteins sharing similar 3D structures
may have unrelated primary sequences [37]. With more and more protein structures
being solved experimentally,” there is a need to automatically identify proteins with
similar structure but lacking obvious sequence similarity [38]. Although it is not
straightforward to represent the protein 3D structures as partially ordered sequences,
several commonly used methods for protein structure comparison are also based on
dynamic programming algorithms.

2.2 SEQUENCE ALIGNMENT: GLOBAL, LOCAL, AND BEYOND

The study of algorithms for the sequence alignment problem can be traced
back to the introduction of the measure of edit distance between two strings
by Levenshtein [45]. After 40 years of algorithm and software development, se-
quence alignment is still an active research area, and many problems remain un-
solved, especially those related to the alignment of very long genomic sequences
[8, 48]. Indeed sequence alignment represents a collection of distinct compu-
tational problems, for example, global alignment, local alignment, and multiple
alignment, even though their classical solutions all employ dynamic programming
algorithms.

2.2.1 Global Sequence Alignment

Given two strings, V = v;...v,, and W = wy...w,, a pairwise global alignment is
to insert gaps (denoted by “-”) into each sequence and shift the characters accord-
ingly so that the resulting strings are of the same length /, and form a 2 x [ table

2Up to date, in the main protein structure repository, Protein Data Bank (http://www.rcsb.org/pdb) [68],
there are about 36,000 known protein structures.
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(Fig.2.2b). Each column may consist of two aligned characters, v;and w; (1 <i < m,
1 < j < n), which is called a match (if v; = w;) or a mismatch (otherwise), or one
character and one gap, which is called an indel (insertion or deletion). A global align-
ment can be evaluated by the sum of the scores of all columns, which are defined
by a similarity matrix between any pair of characters (4 nucleotides for DNAs or
20 amino acids for proteins) for matches and mismatches, and a gap penalty function.
A simple scoring function for the global alignment of two DNA sequences rewards
each match by score +1, and penalizes each mismatch by score —u and each indel by
score —o. The alignment of two protein sequences usually involves more complicated
scoring schemes reflecting models of protein evolution, for example, PAM [21] and
BLOSUM [33].

Itis useful to map the global alignment problem, that is, to find the global alignment
with the highest score for two given sequences, onto an alignment graph (Fig. 2.2 a).
Given two sequences V and W, the alignment graph is a directed acylic graph G on
(n 4+ 1) x (m + 1) nodes, each labeled with a pair of positions (i, j) (0 <i < m,
0 < j < n)), with three types of weighted edges: horizontal edges from (i, j) to (i +
1, j) with weight §(v(i 4+ 1), —), vertical edges from (i, j) to (i, j + 1) with weight
8(—, w(j + 1)),and diagonal edges from (i, j)to (i + 1, j 4+ 1) with weight §(v(i + 1),
w(j + 1)), where §(v;, —) and 8(—, w;) represent the penalty score for indels, and
8(v;, wj) represents similarity scores for match/mismatches. Any global alignment
between V and W corresponds to a path in the alignment graph from node (0, 0)
to node (m, n), and the alignment score is equal to the total weight of the path.
Therefore, the global alignment problem can be transformed into the problem of
finding the longest path between two nodes in the alignment graph, thus can be
solved by a dynamic programming algorithm. To compute the optimal alignment
score S(i, j) between two subsequences V = vy...v; and W = wj...w;, that is, the
total weight of the longest path from (0, 0) to node (i, j), one can use the following

A
9]
T

ATCT--GC
A A-CTAAGC
A

. 4
6 @
Cc
©7)
(@) (b)

FIGURE 2.2 The alignment graph for the alignment of two DNA sequences, ACCTGC and
ACTAAGC. The optimal global alignment (b) can be represented as a path in the alignment
graph from (0,0) to (6,7) (highlighted in bold).
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recurrence:

SG—1,j— 1)+ 8vi, w))
S@, j) = max ¢ SG—1, /) + (i, —) 2.1)
SG j—1+8(— wj)

2.2.2 Fast Global Sequence Alignment

The rigorous global alignment algorithm described above requires both time and space
in proportional to the number of edges in the alignment graph, which is the product of
two input sequence lengths. Exact algorithms using linear space were devised later,
utilizing the divide-and-conquer strategy [35, 49]. These alignment algorithms work
well for aligning protein sequences, which are not longer than a few thousands amino
acid residues. However, the availability of the whole genomes of human and other
model organisms poses new challenges for sequence comparison. To improve the
speed of dynamic programming algorithms, heuristic strategies are required, such as
the commonly used chaining method, which was first laid out by Miller and colleagues
[15] and later adopted by many newly developed genome global alignment programs
[42, 39, 10, 22, 12, 17]. In general, the chaining method consists of three steps
(Fig. 2.3a): (1) identify the putative anchors, that is, pairs of short similar segments,
from the input sequences; (2) build an optimal chain of nonoverlapping anchors from
the whole set of putative anchors; and (3) compute the optimal global alignment within
the regions constrained by the chained anchors. Given two sequences V and W, an an-
chor is defined as two subsequences, v(i, k) = v;...vViqx—1 and w(j, [) = wj.. w1,
which are similar to each other, for example, with a similarity score S(i, k; j, [) above
athreshold. Anchors can be defined in different ways, depending on the fast algorithm
used for searching them. For instances, the exact word matching (i.e., k = [) is often
used since they can be rapidly identified by the hashing technique [19]. Instead of the
words with fixed length, maximal exact matches (MEMs) that combine adjacent word
matchings are often used to reduce the total number of putative anchors. The remain-
ing anchors are, however, usually still too many to be used for constructing the global
alignment. A chaining procedure, first proposed by Wilbur and Lipman [70] and
later implemented in FASTA programs [54], is often used to select a nonoverlapping
chain of anchors with the highest total similarity score. The original Wilber—Lipman
algorithm runs in 0(M2) time, where M < nm is the total number of anchors. An
improved sparse dynamic programming algorithm [26] can reduce the complexity to
O(MlogM). The selected chain of anchors may be used to define a constrained region
(Fig. 2.3a) in which an optimal alignment path is constructed. This procedure runs
much faster than the regular dynamic programming applied on the entire alignment
graph [15]. An interesting extension of the chaining strategy in genome alignment is
the glocal alignment approach [13]. It extends the definition of putative anchors from
the matchings of the words in the same DNA strands to the words from opposite DNA
strands, and allowing the swapping of anchors in the chaining step. The resulting
alignment can be used to determine putative rearrangement events (Fig. 2.3b).
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FIGURE 2.3 Fast global sequence alignment. (a) The chaining strategy is often adopted for
fast aligning two long genomic sequences, which identifies a set of word matching anchors be-
tween two sequences, and then selects a nonoverlapping chain of anchors (highlighted in bold).
The selected anchors can then be used to define a small constrained region in the alignment
graph in which the optimal global alignment is computed. (b) Global alignment generalizes
the chaining procedure to handle rearrangements between two input genomes, for example,
translocations (left) and inversions (right).

Several heuristic methods further speed up the global alignment algorithm, most
of which aim at identifying high quality anchors. Maximal unique matches (MUMs)
are a special set of word matchings in which two words are unique in each input
sequence. Selecting an optimal chain of MUMs can be done in O(MlogM) time by
using an extension of the longest increasing subsequence algorithm [22]. The other
methods for filtering anchors include eliminating isolated anchors that are not close
to another anchor within certain distance [23] or examining the word similarity after
ungapped extension of the exact matchings [17]. Instead of exact word matching,
matching of nonconsecutive positions (patterns) can also be used to define anchors
with good quality [46].

2.2.3 Local Sequence Alignment

When comparing two biological sequences, their similarity is often not present over
the whole sequences. Given two sequences V and W, the local sequence alignment
problem aims at finding two subsequences of V and W, respectively, with the highest
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alignment score. This problem is equivalent to finding the longest path between two
arbitrary nodes in the alignment graph. The Smith—Waterman algorithm for local
alignment problem adopts a slight different dynamic programming recurrence from
the global alignment algorithm,

0

SGE—1,j =D+, w))
SE—1, j)+8(vi, —)

S@, j—1+8(— wj)

S(i, j) = max 2.2)

and the largest score S(i, j) defines the optimal local alignment score, rather than
S(m, n) for global alignment [63].

Similar to the global alignment, the rigorous local alignment algorithm runs in
quadratic time and needs to be speeded up by heuristic methods in some practices.
Various anchoring techniques, as described above, are commonly applied to speed up
the local alignment as well. The most successful method, BLAST [2, 3], which filters
exact word matchings with ungapped extension, has revolutionized the bioinformatics
applications in molecular biology.

2.2.4 Multiple Sequence Alignment

The multiple sequence alignment problem is a natural extension of the pairwise (global
and local) alignment algorithms. However, the exact algorithms for this problem
are not feasible when the number of sequences to align is large [66]. So heuristic
methods for suboptimal multiple alignments are seeked. The most commonly used
strategy for multiple alignment is the progressive alignment strategy [27], which can
lead to a performance guaranteed approximation [32]. Several recently developed
programs for multiple genome alignment follow the same approach [12, 11]. On
the contrary, some programs for multiple protein alignment [23, 51] are designed
based on the strategy of searching for the multiple alignment most consist with the
pairwise alignments between all pairs of sequences. Depending on the choice of the
target function measuring the consistency, dynamic programming [64] or probabilistic
algorithms [23] can be used to solve this optimization problem.

2.2.5 Variants of Sequence Alignment Algorithm: Beyond Linear Sequences

As protein sequences are linear sequences of 20 amino acids and DNAs are linear se-
quences of 4 nucleotides, classical sequence alignment algorithms use single residues
as the basic comparison unit, and position-wise scoring functions (e.g., PAM250 for
amino acids) as their similarity measures. As a result, protein/nucleic acid sequence
alignment can be solved by dynamic programming that assumes the independence
between positions. However, in reality, dependences between residue positions are
often observed. For example, a segment of residues in a protein together determines
the local structure they form, such as a helix, a strand, or a loop. And the local and
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global interactions among residues determine the global structure of a protein. By
considering the independence of residues, we will be able to generate alignments that
are of better quality, and conduct similarity searching with higher sensitivity. Variants
of sequence alignment algorithms were developed to account for independence of
residues and address different issues. One pioneer work along this direction is the
spliced sequence alignment algorithm, which attempts to address eukaryotic gene
recognition by assembling different putative exons (i.e, exons are independent units).
More recent developments include segment alignment in which local structure
segments are used as basic units for protein comparison, partial order alignment that
emphasizes not only commonality but also dissimilarity of protein sequences, and
RNA alignment that uses the information of secondary structures of RNA. Figure
2.4 shows the commonality and differences of these different algorithms.

2.2.5.1 Spliced Alignment Eukaryotic genes are mosaic structures of exons and
introns. Hence, it is a challenge to derive gene structures (i.e., the boundaries of exons
and introns) from genomic sequences. One approach that has been developed to pre-
dict gene structures is spliced sequence alignment [30]. This method essentially uses
related proteins to derive the correct exon—intron structure of a genomic sequence. It
starts with the identification of candidate blocks in a given genomic sequences that
contains all putative (true or false) exons by selecting all blocks between potential
splicing acceptor and donor sites (i.e., between AG and GU dinucleotides). Then, in-
stead of finding the actual exons, the spliced sequence alignment algorithm explores all
possible assemblies of blocks to find an assembly with the highest similarity score to a
known target protein. This problem is formulated as finding the best path in a weighted
graph, in which vertices represent the candidate blocks, edges represent the potential
junctions between these blocks, and the path weight is defined as the weight of the
optimal alignment between the target protein sequence and the concatenated blocks in
the path (see Fig. 2.4a). Using this formulation, the gene recognition (i.e, exon assem-
bly problem) can be solved by a dynamic programming process in polynominal time.

Briefly, the inputs for the original spliced alignment algorithm are a genomic
sequence of length n (G = g;...g»), and a target protein sequence of length m (T =
t..ty). Let B = {By, ...Bp} be a set of candidate blocks (exons), By = gr..8i..81
be a block including position i (first (k) = f, last (k) =1, f <i <I). B] < By if
B ends before B, starts (last (B;) <first (B3)). A sequence I' = (B, .., Bp) is a
chainif By < B;.. < B), and the concatenation of strings from the chain I" by * =
By * By... x Bp. Given two strings G and T, s(G, T) denotes the score of the optimal
alignment between G and T, which can be found as

m]flx S(last (k), m, k) 2.3)
where

S, j, k) = max s(T*@), T())) 2.4)

all chains T containing block By,



SEQUENCE ALIGNMENT: GLOBAL, LOCAL, AND BEYOND 17

fa) D— Genomic sequence

Network of
candidatc cxons

(%) g Protein sequence
HHHH - = EEEEELEp HHHLL
" EEELLLLEE";’ Network of local structure
‘EEEEEEL segments (LSS)
LLLHHH
(c)
TGSTANESFILSNG Y]T :
Ll I 11 Sequence alignment
- ASTANDSFIL - --VIF
T G._ ﬁE'a NG,
)S T A } Fl L—}V IF Network of amino acids

FIGURE 2.4 Various algorithms adopt the similar network matching approach, including
the spliced alignment for gene recognition (a), the segment alignment for pairwise protein
sequence alignment (b), and partial order alignment for multiple protein sequence alignments
(¢). In the network matching method, the optimal chain (or path) of the candidates (exons in
spliced alignment, local structure segments in segment alignment, and alignment blocks in
partial order alignment, respectively) is seeked in a predefined directed acylic graph (network).

The three-dimensional table S(i, j, k) (1 <i <n,1 < j <m,andl <k < b)can
be computed recursively by dynamic programming as

SG—1,j—1Lk+ Ag if i # first(k)
SG—1, j, k) + Ainger ifi # first(k)
S(i, j, k) = max { MaxXem( sirsicky SUast(l), j —1,1) + Agi i) ifi = first(k)
max;es( firsi(y) SUast(l), j, 1) + Aindei ifi = first(k)
SG, j— 1, k) + Aindel
(2.5)

where Ajnqe is the gap penalty, Agit; is the mismatch score, and B(i) =
{k : last(k) < i} is the set of blocks ending before position i in G.



18 DYNAMIC PROGRAMMING ALGORITHMS

This algorithm can be extended to the alignment of two genomic sequences for
gene recognition by finding two chains of blocks of candidate exons, each from one
genomic sequence, with the highest pairwise similarity [52].

2.2.5.2 Segmental Alignment The similar idea as spliced alignment is adopted
in the segment alignment (SEA) approach for pairwise protein sequence alignment
incorporating local structure information [74]. It is known that secondary or local
structure information can help to improve the quality of protein sequence alignment,
especially in the cases of comparing distantly homologous or analogous proteins, and
to enhance the capability of recognizing of distant homologs. In a secondary structure
alignment (SSA) approach, proteins are represented as strings of Q3 symbols (a for
a-helix, b for B-strand, and ¢ for coil) of predicted secondary structure [4, 71]. The
SSA algorithm is based on an alignment of two sequences of secondary structure sym-
bols, which is mathematically equivalent to the comparison of amino acid sequences
and can be solved by regular pairwise sequence alignment algorithm. However, in
such approaches, the currently unavoidable mistakes in secondary structure predic-
tion will be propagated into the step of protein comparison and make it even more
difficult. Segment alignment algorithm was developed to address this problem by in-
corporating potential local structure segments and then finding the optimal collection
of nonoverlapping segments by matching two networks of local structure segments,
deduced from two given proteins.

Asthe name says, the comparisons in the segment alignment algorithm are not done
on individual amino acids, but on predicted (or real) structure segments corresponding
to minimal structural units that are often reproduced in various, even nonhomologous
proteins ( (see Fig. 2.4 b). Given a protein sequence, its local structure segments can
be predicted by different local structure prediction methods, for example, the one
based on the I-site library of sequence—structure motifs [14], or the one based on
profile—profile alignment [55]. All these approaches identify locally similar segments
of several consecutive residues from a database of known structures. Once the local
structures are predicted for a protein sequence, the protein is then represented as a
collection of predicted overlapping local structure segments (LSSs). Afterwards, the
task of SEA is to find a chain of LSSs from each protein (represented as a network)
optimally matching each other. Similar to the spliced sequence alignment, the segment
alignment problem is formulated as a network alignment problem and can be solved
by dynamic programming in polynomial time. In SEA, the LSS representation of
protein complements the uncertainties of the local structures, caused by either the
variance of the structural context or the drawbacks of the prediction methods, by
exploiting all potential local structures to make the best use of this information in
protein comparison; and SEA not only reports the alignment of two proteins, but also
simultaneously confirmed the local structure of each protein based on the collection
of matched LSSs.

2.2.5.3 Partial Order Alignment As compared with the conventional reduced
representation of multiple sequence alignments as a linear consensus or profile in
row-and-column format, Lee and colleagues first proposed a graph representation of
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multiple sequence alignment (MSA) (see Fig. 2.4 ¢) to avoid the loss of (individual)
sequence information and gap scoring artifacts [44]. And such graphs themselves can
be aligned directly by pairwise dynamic programming, eliminating the need to reduce
the MSA to a consensus (profile). In constructing partial order-MSA (PO-MSA), the
amino acids that are matched in the alignment are merged into a single node, and the
mismatched positions are kept as separate nodes. In short, the PO-MSA is a com-
pact graph representation of MSA with minimum number of nodes and edges, while
it keeps all the information of a typical MSA in row-and-column format. The term
“partial order” was used because in PO-MSA, the graph obeyed only the linear or-
dering in the regions of nodes with single outgoing edges. Based on this PO-MSA
representation, Lee et al. developed partial order alignment (POA) method, which
guarantees that the optimal alignment of each new sequence versus each sequence in
the MSA is considered. Also the algorithm has improved speed (linear to the number
of sequences) over existing MSA algorithms, enabling construction of massive and
complex alignments.

The development of POA is also significant in a way that this algorithm introduces
a new edit operator, homologous recombination, into the framework of sequence
alignment (it happens naturally in aligning two graphs; e.g., part of a sequence S1 is
aligned to sequence S2 and then the next part of S1 can be aligned to sequence S3
instead of S2 as long as the order of the amino acid positions is obeyed). So when it
is applied to align protein sequences, it may reveal the multidomain structure of the
input sequences if there is any. It can also be applied to align ESTs to detect alternative
mRNA forms.

2.3 DYNAMIC PROGRAMMING ALGORITHM
FOR RNA SEQUENCE ANALYSIS

RNAs usually function as single strand molecules. The nucleotides of a single RNA
secondary molecule can pair with each other (through hydrogen bonds) and form
a stable secondary structure (Fig. 2.5). The stable secondary structure of an RNA
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FIGURE 2.5 A schematic illustration of an RNA secondary structure and its loop
components.
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molecule is often assumed to be the one with the lowest free energy, and the compu-
tational problem of finding this stable structure from a given RNA sequence is called
the problem of RNA secondary structure prediction. RNA secondary structures can
be represented by a set of arcs (base pairs) in an RNA sequence. In real RNA struc-
ture, these base pairs rarely cross each other and form pseudoknots. Hence, for the
algorithmic simplicity, the secondary structures with only noncrossing (also called
nested) arcs are considered.

Since the base pairs are important to stabilize the structure of an RNA, it is often
observed that in homologous RNA sequences, two paired bases may both mutate
into other bases but maintaining the base pair (referred to as the compensating muta-
tions, e. g., a G—C pair may mutate to a A-T pair). Therefore, when comparing two
RNA sequences, it is important to take into consideration their secondary structures.
Dynamic programming solutions are known to the problem of comparing two RNA
sequences with annotated noncrossing arcs (base pairs).

2.3.1 RNA Secondary Structure Prediction

The simplest yet popular formulation of RNA secondary structure prediction is to
determine the noncrossing structure with the maximum number of base—pairs [67,53].
Consider a given RNA sequence R = rj...r,. The maximum number of nested base
pairs that can be formed by the subsequence r;...r j, denoted as S(i, j), can be computed
recursively:

SG+1,j—D+1 if i is paired with j
o SE+1, ) if 7 is unpaired
SG ) =maxq g i if j is unpaired
max; k< ;(SE k) + S(k+1, j) if i, j pair with middle bases

(2.6)

This recursion can run efficiently in O(n3) time, with initiation of S(i,i) =
S(i,i — 1) = 0. With a sophisticated data structure, it is recently shown that the al-
gorithm can speed up to nearly quadratic time for average RNA sequences [69]. In
practice, more complex scoring schemes than the simple base pair maximization are
adopted. These schemes are based on the thermodynamic model that computes the
overall free energy of RNA folding by a sum of energy components for different RNA
secondary elements (i.e., stacks and loops). Generalized dynamic programming al-
gorithms have been developed accordingly to optimize these complex target-scoring
functions. Nonetheless, the general idea of the algorithm remains the same [47].

The dynamic programming algorithm described above cannot handle pseudoknots,
because crossing base pairs are not considered in any of the four conditions in the
recursion equation 2.6. Complex dynamic programming algorithms are needed for
RNA secondary structure prediction that allows certain type of pseudoknots [57, 1].
But their running time is O(n°), thus inefficient to be used in practice. To search for
pseudoknotted RNA structure, efficient heuristic approaches have to be used [56].
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Even the exact algorithms for the RNA secondary structure prediction some-
times make wrong predictions for two reasons. First, the thermodynamic model
used for the prediction may be incomplete. For example, the dependence between
the secondary structure elements is neglected but may be strong in specific cases.
Second, some RNA sequences may have more than one stable structure, and their
functional structures are determined by not only their sequences, but also the envi-
ronment (e.g., their interactions with other RNA molecules [34]). Two approaches
have been proposed to overcome these limitations. One approach is to predict all
suboptimal structures, that is, those with low free energy, but not the lowest free
energy. This approach was first proposed by Zuker [75] and was implemented in
MFOLD, which can report a collection of possible but not all suboptimal structures
[76]. An efficient dynamic programming algorithm to compute k suboptimal struc-
tures has been proposed recently, running in time O(n*) [18]. The other approach
attempts to use evolutionary conservation of structures among homologous RNA
sequences as the basis for structure prediction. If the similarity between these se-
quences are appropriate, one can first align them using a multiple sequence align-
ment algorithm and then deduce their common structure by seeking the highest
possible number of compensating mutations. A similar dynamic programming al-
gorithm as in equation 2.6 can be used for the second step, in which the columns
in the multiple alignment are treated as the bases in the single sequences, and in
the scoring function the number of base pairs is replaced by a measure of com-
pensating mutations between two columns (e.g., the mutual information content)
[16,36].

Multiple homologous RNA sequences are useful for deducing their common
secondary structures. However, aligning multiple RNA sequences so as to preserve
their conserved structures is not easy, because there may exist many compensating
mutations that decrease their overall sequence similarity. Sankoff first proposed
an approach to simultaneously aligning RNA sequences and figuring out their
common structures [60]. However, the complexity of this dynamic programming
algorithm is O(n®), where n is the length of RNA sequences. The complexity can be
reduced to O(n*), but only for RNA structures without multiloop (Fig. 2.3) [42]. A
recent developed method attempted to solve the same problem based on a dynamic
programming algorithm that finds the structurally conserved anchors first [6]. This
algorithm considers the RNA secondary structures as a collection of stacks (instead
of individual base pairs), thus reduces the computational complexity to O(k*), where
k is the number of predicted putative stacks.

2.3.2 Alignment of RNA Sequences with Known Secondary Structures

Since the secondary structures are preserved among RNA sequences with similar
function, it is important to incorporate them when comparing RNA sequences. The
RNA secondary structure can be represented as a collection of arcs (base pairs), and
based on the knowledge of their configurations, they fall into three classes: crossing
(i.e., structure known with pseudoknots), nested (i.e., structure known without pseu-
doknots), and plain (i.e., structure unknown) [41]. As result, there are six different
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computational problems that can be formulated for a pairwise comparison of RNA
sequences:

® Align(crossing, crossing), for aligning two RNA sequences both with pseudo-
knotted structures;

@ Align(crossing, nested), for aligning one RNA sequence with pseudoknotted
structures and another RNA sequence without pseudoknotted structure;

® Align(crossing, plain), for aligning one RNA sequence with pseudoknotted
structures and another RNA sequence without known structure;

® Align(nested, nested), for aligning two RNA sequences both without pseudo-
knotted structures;

® Align(nested, plain), for aligning one RNA sequence with known nonpseudo-
knotted structures and another RNA sequence without known structure;

® Align(plain, plain), for aligning two RNA sequences without known structures.

Note that the last problem Align(plain,plain) is the same as the pairwise sequence
alignment problem. The problems Align(nested, nested) and Align(nested, plain)
can be solved by exact dynamic programming algorithms [20, 5], whereas the other
problems related to pseudoknotted structures can be solved efficiently only when
specific types of pseudoknots are considered [43, 24].

2.4 DYNAMIC PROGRAMMING ALGORITHMS FOR PROTEIN
STRUCTURE COMPARISON

Proteins fold into three-dimensional structures, and protein structures are more
conserved than protein sequences. So given a protein structure (solved by X ray or
NMR techniques), it is of great interests to search for geometrically similar proteins
through protein structure comparsion, especially for the cases where the similarity
at sequence level is too low to be detected by any sequence-based similarity search
program. Generally speaking, protein structure comparison (alignment) is to find the
largest structural similarity between two structures (e.g, Fig. 2.6a). It is more difficult
than protein sequence comparison, because very often the structural similarity is a
global measurement (for examples, RMSD, the root mean squared distance of the
Coa atoms over all aligned positions) that often cannot be calculated as the sum of
pairwise similarity by a dynamic programming procedure. So, for protein structure
comparison, either we can use the global measurement of structural similarity and
then apply some heuristics methods to find the best structural similarity, or we can
carefully design a scoring function that reflects the global structural similarity to
a large extent and then apply a dynamic programming algorithm to find alignment
with the highest score. Quite a few successful programs belonging to the first type
have been developed, but here we focus on the second type of approaches, in which
dynamic programming algorithms can be applied to find the solution.
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FIGURE 2.6 Structure alignment. (a) An example of structure alignment; (b) Definition of
aligned fragment pair (AFP); (¢) Pairwise structure alignment by chaining aligned fragment
pairs; (d) Multiple structure alignment by partial order alignment.

24.1 Structure-Based Sequence Alignment

A simple strategy for protein structure comparison is to represent a protein structure as
a sequence of characters (1D representation) that describe the structural environment
of a residue in a protein (called 3D environment). Then protein structure comparison
can be essentially transformed as a general sequence alignment problem, and conven-
tional dynamic programming algorithms for sequence alignment can be used directly
for solving these problems, just with different sets of characters and with a different
scoring function. This type of structure alignment could be as fast as sequence align-
ment. Though they may not be as accurate as those methods that consider real 3D
structural information, but at least can serve as a quick filter to speed up the struc-
tural similarity search, which is often much more time consuming. Main development
along this direction includes to find a better 1D representation of 3D structures so that
spatial information can be retained as much as possible.

2.4.2 Comparison of Distance Matrix: Double Dynamic Programming

Double dynamic programming algorithm was one of the early programs for structure
comparison [65]. It was named because dynamic programming procedure is applied
at two different levels: at a low level to get the best score (describing the similarity
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of spatial environment of residues i and j, measured by a simple distance or more
complex function) by assuming residues i in protein A is equivalent to residue j in
protein B; and at a high level to get the best alignment out of all the possible (i, j)
pairs between protein A and B. Essentially, the low level dynamic programming pro-
cedure is to prepare the positional pairwise scoring matrix for the high level dynamic
programming.

2.4.3 Segment Chaining Algorithm for Protein Structure Alignment

Given two protein structures, denote a match of two fragments, one from each protein
as an aligned fragment pair (AFP), the starting positions of an AFP k in the two
proteins as bl (k) and b%(k), and its ending positions in the two proteins as e! (k) and
% (k), respectively. Each AFP describes one way of superimposing one protein on the
other (see Fig. 2.6 b). We call two consecutive AFPs compatible if they result in the
same (or very similar) superposition of the proteins.

Two programs, FlexProt [62] and FATCAT [72], use the formulation of structure
alignment as finding a chain of AFP (consequently the alignment is order depen-
dent, see Fig.2.6¢), and adopt dynamic programming algorithm to find the optimal.
Both programs allow the structural flexibility (e.g, hinge movement) in structure com-
parison. FlexProt first searches for the largest set of congruent AFPs in a graph, in
which AFPs are represented as vertices and edges and are connected between con-
secutive vertices with weight that rewards long matching fragments while penalizes
interfragment gaps and discrepancies in the relative number of gaps in both proteins.
FlexProt then looks for a subset of the AFPs that describes a possible alignment of
two structures with flexibility by clustering consecutive AFPs that have a similar 3D
transformation. In contrast, FATCAT searches for the best chain of AFPs considering
the gaps and twists (structural changes) between consecutive AFPs, each with its own
score penalty (equation 2.7); therefore, the minimization algorithm compares on-the-
fly solutions involving twists and simple extensions and in this way it performs the
alignment and structural flexibility detection simultaneously. A dynamic program-
ming algorithm is used in the chaining process. Denote S(k) as the best score ending
at AFP k, calculated as the following

Sk) = alk) + max (S(m) + C(m — k), 0) 2.7
el(m)<b!(k)and e2(m)<b2(k)

where S(k) is the score of AFP k itself (determined by its RMSD and length).
C(m — k) is the score of introducing a connection between AFP m and AFP k
(determined by the similarity of their 3D transformations, the mismatched regions,
and the gaps created by the connection of these two AFPs).

2.4.4 Partial Order Structural Alignment

Partial order structural alignment [73] is the first algorithm that can perform and vi-
sualize multiple alignments of protein structures, simultaneously accounting for their
conformational flexibility. It combines the partial order alignment representation and
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the flexible structure alignment FATCAT. Similar to the partial order sequence align-
ment, POSA identifies structural regions that are conserved only in a subset of input
structures and allows internal rearrangements in protein structures. POSA shows its
advantages in cases in which structural flexibilities exist and provides new insights by
visualizing the mosaic nature of multiple structural alignments. POSA adopts a pro-
gressive strategy to build a multiple structure alignment given a set of input structures
in the order provided by a guide tree. So each step involves a pairwise alignment of
two partial order alignments (or single structures), using the same formulation of AFP
chaining for structure alignment as described above, but in a high dimensional space
(see Fig. 2.6d).

2.5 SUMMARY

As one of the most commonly used algorithms in bioinformatics, dynamic
programming has been applied to many research topics. Its recent applications have
shifted from the classical topics as the comparison of linear sequences to the analysis
of nonlinear representations of biomolecules. It should be stressed that although
dynamic programming is guaranteed to report an optimal solution, this solution may
not be biologically the meaningful one. The biological solution depends not only
on the algorithm, but also on how correctly the formulation of the computational
problem reflects the reality of the biological systems.
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3.1 INTRODUCTION

Graphs are used in Computational Biology to model the relationships between
biological entities. For example, experimentally determined protein interactions
are commonly represented by a graph, the so-called protein interaction network,
where proteins are nodes and every pair of interacting proteins is connected by
an edge. Even though such a representation may not capture all the complexity of
protein interactions in underlying biological processes, the study of the topological
properties of these networks has become an important tool in searching for general
principles that govern the organization of molecular networks. For example, it was
observed that in protein interaction networks some types of small-size subnetworks
are much more abundant than would be expected by chance [54]. The discovery of
these overrepresented subnetworks or network motifs has led to investigation of their
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FIGURE 3.1 Elena’s story. (a) The order in which Elena’s friends, Merrick, Nilani, Dami,
Teresa, Raja, and Praveen, join the walk. Each friend is represented by an interval showing
his/her stretch of the walk. (b) Julian’s pictures. There are six pictures showing the participants
when each friend joins the walk. (¢) The supporters overlap graph: Elena’s friends are nodes
and there is an edge between two friends if they were walking together.

information processing properties [65] and network evolution mechanisms that could
account for their emergence [53]. Usage of graph theoretical tools is not limited to
the study of protein interaction networks, graphs are also used to model metabolic
networks (processes), gene coexpression, gene coregulation, phylogenies, and so on.

In general, graphs are not required to have any type of regularity. This makes them
very flexible combinatorial objects, which are able to represent complex and diverse
relationships. In practice, however, graphs that model real world phenomena often
belong to families of graphs with a special structure, which can be exploited to gain
an insight into the phenomenon that generated the graph. To clarify this statement,
we start with a following toy example taken from everyday life.

Example Elena decided to walk 40 miles to raise funds for an important cause.
Her friends provide her with support by walking along her, but each of them walks
only for 10 miles (see Fig. 3.1a). Her husband, Julian, volunteers to document
the event and takes a group picture every time a new supporter joins Elena (see
Fig. 3.1b). After the event is completed Julian handles Elena a box with photographs.
Elena notices that the pictures are not ordered and then she learns that Julian lost
somewhere the film. Can she reconstruct the order her supporters joined the walk
without the film, that is, can she use the information in Fig. 3.1b to tell that her
friends joined the walk in the following order (Merrick, Nilani, Dami, Teresa, Raja,
and Praveen)? If Julian had lost the film before developing it (so Elena does not
have her precious pictures) but her supporters remember their walking partners.
However, they do not remember the order in which these partners joined. Would she
still be able to reconstruct the history of events? Interestingly, if except for the very
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beginning and very end, she never walked alone and remembers a person who
supported her first, she can reconstruct this order: in the first case she would be able to
recover the order completely; in the second case she still would be able to reconstruct
the order except for the relative placement of Dami and Teresa; she would not be
able to tell whether Dami joined the walk before Teresa or the other way around.

In the example above, Elena exploits the special structure of the supporters overlap
graph in Fig. 3.1c to understand the “real world phenomenon,” the participation of
her friends in the fund raising event in Fig. 3.1a. The graph in Fig. 3.1c is an inferval
graph, meaning that there is a set of intervals on a real line such that vertices of the
graph are in one-to-one correspondence with the intervals in the set and there is an
edge between a pair of vertices if and only if the corresponding intervals intersect;
the set of intervals is called an interval representation of the graph. Interval graphs
are a special case of intersection graphs, graphs whose vertices are in one-to-one
correspondence with a family of sets such that there is an edge between a pair of
vertices if and only if the corresponding pair of sets have a nonempty intersection.
Coming back to our example, the supporters overlap graph in Fig. 3.1c is an interval
graph with one possible interval representation shown in Fig. 3.1a. Given the graph
in Fig. 3.1c, Elena won’t be able to reconstruct the history of events up to the smallest
detail, such as Merrick joined the walk 8 miles before Nilani, but she would be able
to tell that all possible valid (Merrick is the first to join the walk and everybody
walks for exactly 10 miles) interval representations of this graph result in the same
order (up to relative placement of Dami and Teresa) of her friends joining the walk.

In this chapter, we will demonstrate how graph theoretical tools are used in Com-
putational Biology to elucidate the dynamics of biological processes. In particular,
we will show applications of the well-studied graph family known as chordal graphs.
Chordal graphs are exactly these graphs that are intersection graphs of subtrees of
a tree, and therefore they include interval graphs that can be seen as intersection
graphs of subtrees of a path (a degenerate tree). We start with a background infor-
mation on graph theoretical tools used to deal with chordal graphs (see Section 3.2).
We then proceed to show how these tools are applied to two problems in Computa-
tional Biology: phylogenetic tree reconstruction (see Section 3.3) and formation of
multiprotein complexes (see Section 3.4). In both applications, structure of a certain
graph is exploited (in a manner similar to the toy example above) to elucidate the
dynamic behavior of the underlying biological process. In the first application, we are
interested in the dynamics of evolution, that is, the order in which the taxa evolved
from a common ancestor. In the second application, we are interested in the dynamics
of multiprotein complex formation during a biological process, such as cell signaling,
that is, how multiprotein complexes are formed during the process and the order in
which proteins join these complexes.

3.2 GRAPH THEORY BACKGROUND

The purpose of this section is to provide the reader with an overview of relevant
graph theoretic results for chordal, interval, and cograph graph families. We state
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here results that are used in the biological applications of these graph families dis-
cussed in latter sections. For a thorough treatment of chordal graphs and interval
graphs, we refer the reader to now a classical book by Golumbic [36]; other excellent
references are a recent book on intersection graph theory by McKee and McMor-
ris [51], a chapter “An introduction to chordal graphs and clique trees” by Blair and
Peyton in [33], and a set of lecture notes by Shamir [64]. For an overview of struc-
tural and algorithmic properties of cographs, we refer the reader to the paper by
Corneil et al. [19]; modular decomposition is surveyed in a paper by Mohring and
Radermacher[55], a nice overview can also be found in a chapter “Decompositions
and forcing relations in graphs and other combinatorial structures” by McConnel
in [37].

We assume that all graphs are undirected and connected. We denote by G = (V, E)
a graph with a set of vertices V and a set of edges E. Given a graph G = (V, E), a
subgraph G’ = (V’, E') is an induced subgraph of G if V' is a subset of V and E’
contains all the edges of the original graph whose both end points are in V’; we may
also say that G’ is a subgraph of G induced by V'. For a vertex v € V, we use N (v) to
denote the set of v’s neighbors in G, that is, N'(v) = {u | (v, u) € E}. We use “—" to
denote set difference operation such that for two sets X and Y the set X — Y contains
elements that are in X but notin Y.

3.2.1 Chordal Graphs

In a cycle, a chord is an edge that connects two nonconsecutive vertices of the cycle.
For example, a cycle {a, b, ¢, d} in Fig. 3.2a has a chord (b, d). A chordal graph is a
graph that does not contain chordless cycles of length greater than three; other names
given to graphs having this property are rigid circuit graphs and triangulated graphs.
Chordality is a hereditary graph property, meaning that any induced subgraph of a
chordal graph is chordal.

In a graph, an ordering of vertices {vy, ..., v,} is a perfect elimination order-
ing (PEO) if and only if for every position i, the subgraph induced by the neigh-
bors of v; that appear later on in the ordering is complete, that is, the subgraph in-
duced by N (v;) N {vis1, ..., vy} is complete. For example, in the graph of Fig. 3.2a,
the ordering {a, b, c, e, f,d} is a PEO while the ordering {a, b, ¢, d, e, f} is not.
It was shown by Fulkerson and Gross [26] that only chordal graphs can have a
PEO.

Theorem 3.1 [26] A graph is chordal if and only if there exists a perfect elimination
ordering of its vertices.

This alternative characterization of chordal graphs is used by two linear time
chordal graph recognition algorithms [60,67]. Given a graph, both algorithms produce
an ordering of its vertices, which is a PEO if and only if the input graph is chordal.
Therefore, to determine whether the input graph is chordal it suffices to check that the
ordering output by the algorithm is a PEO. The earliest algorithm, due to Rose and
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A chordal graph G=(V,E Maximal cliques in G The cli raph K
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FIGURE 3.2 (a) A chordal graph G = (V, E). (b) A tree representation of G: the tree is on
the left and the family of subtrees is on the right. (¢) There are four maximal cliques in the
graph, Oy, Q,, O3, and Qy. (d) The clique graph of G. The clique graph is the intersection
graph of {Q1, 0>, O3, Q4}. (e) A clique tree representation of G: the clique tree is on the left
and the family of subtrees is on the right. It should be noted that a clique tree is a valid tree
representation of a chordal graph. Indeed, every vertex in the graph corresponds to a subtree of
the clique tree and two vertices are adjacent if and only if their corresponding subtrees intersect.

Tarjan [60], uses a Lexicographic Breadth-First Search(LexBFS), a modified version
of the widely known Breadth First Search [17] algorithm, to order the vertices of the
graph.

A maximal clique in a graph is a subset of vertices that form a maximal complete
subgraph. Given a graph G, we will use Q(G) to denote the set of all maximal cliques
in G and K(G) to denote the clique graph of G, where vertices of K(G) are maximal
cliques in G, and there is an edge between a pair of vertices (maximal cliques) if
their intersection is not empty. As an illustration consider the graph in Fig. 3.2a. This
graph has four maximal cliques, which are shown in Fig. 3.2c. The clique graph K(G)
is shown in Fig. 3.2d; it has four vertices Q1, Q2, O3, and Q4 and is complete as
every pair of vertices (maximal cliques) has a nonempty intersection. (In this case,
all maximal cliques contain vertex d € V of the original graph G.)

Even though computing all maximal cliques of a general graph is a diffi-
cult problem [28], all maximal cliques of a chordal graph can be computed effi-
ciently. Moreover, the number of maximal cliques in a chordal graph is at most
|V]. (For details please refer to Section 4.2.1 in the chapter by Blair and Peyton
[331)

LetF = {Ry, ..., R,}beafamily of subsets. The intersection graph of F is a graph
G = (V,E) where V = F and E = {(R;, Rj) | R; N R; # {J}, that is, the vertices of
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the graph are the subsets in F, and there is an edge between two vertices (subsets) if
their intersection is not empty. It can be shown that every graph is isomorphic to the
intersection graph of some family of subsets; the family of subsets can be thought as
an alternative representation of the graph and is called an intersection representation
of the graph. A variety of well-known graph classes can be characterized by putting
restrictions on intersection representations of graphs in the class. For example, an
interval graph is isomorphic to the intersection graph of a family of closed intervals
on the real line and a chordal graph is isomorphic to the intersection graph of a family
of subtrees of a tree.

Even though the study of chordal graphs goes back to 1958, the characterization in
terms of allowable intersection representations was given only in the 70’s [13,31,69].
In particular, it was established that a graph is chordal if and only if it is iso-
morphic to the intersection graph of a family of subtrees of a tree; the tree and
the family of subtrees are called a tree representation of the chordal graph. Fig-
ure 3.2b shows a tree representation of a chordal graph in Fig. 3.2a. Moreover, it
was shown that every chordal graph G = (V, E) has a special tree representation,
the so-called clique tree representation, in which the tree is a spanning tree of K(G)
and the family of subtrees F = {T, | v € V} is defined by setting each T, to the set
of maximal cliques that contain v. For example, Fig. 3.2e shows a clique tree rep-
resentation for a chordal graph in Fig. 3.2a. This is summarized in the following
theorem.

Theorem 3.2 [13,31,69] Let G = (V, E) be a graph. The following statements are
equivalent

1. G is a chordal graph.
2. G is isomorphic to the intersection graph of a family of subtrees of a tree.

3. There exists a spanning tree of the clique graph K(G) such that for everyv € V
the subgraph of this tree induced by the set of maximal cliques containing v,
{O| Q € Q(G), and v € Q}, is connected.

Given a chordal graph, all possible clique tree representations can be efficiently com-
puted. One approach [7] is based on the fact that clique trees are exactly maxi-
mum weight spanning trees of the clique graph K(G), where the weight function
on the edges of K(G) is defined as the amount of overlap between two maximal
cliques, thatis, w(Q’, Q") = |Q’ N Q”|. Thus, in order to compute all possible clique
tree representations of a chordal graph, one simply needs to compute all maximum
weight spanning trees of the clique graph K(G), for example, by using an algo-
rithm from [32]. Another approach [40] builds on a connection between the edges
of a clique tree of a chordal graph and the set of minimal vertex separators in the
graph.

Given a graph G = (V, E) not necessarily chordal, one is often interested in find-
ing a set of edges E’ such that addition of E’ to the graph makes it chordal; the set
of edges that does the job is called a triangulation of G. As a complete graph is
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chordal by definition, any graph can be trivially triangulated by setting E’ to be the
set of all the nonedges in the graph, E’ = (V x V) — E. One may further ask for a
triangulation that possesses additional properties. A minimal triangulation of a graph
is a triangulation that is not properly contained in any other triangulation. A minimal
triangulation can be found efficiently [60] using a variant of the LexBFS algorithm for
recognition of chordal graphs. A minimum triangulation of a graph is the triangulation
with the smallest number of edges. Even though finding a minimum triangulation of a
graph is a difficult problem [72], there are fixed-parameter tractable solutions [14,46].
For example, an algorithm in [14] takes (|V]| + |E|)O(4%/(k + 1)*>/?) to find a min-
imum triangulation of G = (V, E) when G has a triangulation whose size does not
exceed k. Therefore, if the size of minimum triangulation is small, it can be found
efficiently.

3.2.2 Interval Graphs

An interval graph is any graph that is isomorphic to the intersection graph of a family
of intervals on a real line; the family of intervals is called an interval representation
or sometimes an interval realizer of the graph. Not every graph has an interval rep-
resentation; consider, for example, a chordless cycle of length four. The “invention”
of interval graphs is commonly attributed to the Hungarian mathematician Gyorgy
Hajos who in 1957 posed the problem of characterizing this family of graphs. Interval
graphs also appear in the work of the American biologists Seymour Benzer [6] who
used them to support his hypothesis that genetic material is organized into a structure
having linear topology.

The first linear time algorithm for recognizing interval graphs is due to Booth and
Leuker [11]. In their paper, the authors show how to test whether a family of subsets of
some ground set U has a consecutive ones property, meaning that the members of the
family can be linearly ordered in such a way that for every element in U the subsets
containing it are consecutive in the linear order. Therefore, according to the theorem
below, an interval graph is recognized by testing whether the set of its maximal cliques
has a consecutive ones property.

Theorem 3.3 [34] A graph is an interval graph if and only if its maximal cliques
can be ordered in a linear fashion such that for every vertex in the graph the set of
maximal cliques that contain it is consecutive.

The above characterization implies that interval graphs are chordal. Indeed, if
maximal cliques of a chordal graph can be arranged in a tree then maximal cliques
of an interval graph can be arranged on a path. Therefore, interval graphs are exactly
these chordal graphs that have a clique tree representation, which is a path.

In a graph G = (V, E), an ordering of vertices {vy, ..., v,} is an interval order-
ing (I-ordering) if and only if for every pair of positions i < j the following holds:
if (v;, vj) € E then (v;, v¢) € E for every i < k < j. Recently, another linear time
algorithm for recognition of interval graphs was proposed [18], which utilizes the fact
that only interval graphs can have an I-ordering. The main idea is to use a multisweep
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FIGURE 3.3 (a) A prime graph. (b) A nonprime graph. (¢) The modular decomposition
tree of the graph in (b). (d) The modular decomposition tree can be used to derive a Boolean
expression for the maximal cliques in a graph. The Boolean expression is constructed by moving
along the tree from the leaves to the root, replacing each “series” node with an A operator and
each “parallel” node with an Vv operator. The Boolean expression for the cograph in (b) is
((aveynbyvev fynd.
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LexBFS algorithm to produce an ordering of the vertices of a graph, which is an
I-ordering if and only if the input graph is an interval graph.

3.2.3 Modular Decomposition and Cographs

A moduleinagraph G = (V, E)is aset of vertices, X, that have exactly the same set of
neighbors in V — X, that is, for every pair of vertices u and v in X the following holds
Nw)N (V- X)=Nw) N(V — X). For any vertex v, the set {v} trivially satisfies
the requirement for being a module and so does the set of all vertices in the graph, V;
these sets are called frivial modules.

A graph that only has trivial modules is prime; for example, the graph in Fig. 3.3ais
prime, while the graph in Fig. 3.3b is not. A nonprime graph will have other modules
in addition to the trivial modules. Two modules in a graph overlap if they share
vertices but neither module properly contains the other. A module is strong if it does
not overlap any other module in the graph and weak otherwise; by definition trivial
modules are strong modules.

The strong modules in a graph G = (V, E) can be organized into a hierarchical
structure where every module is attached to the smallest module that contains it. It can
be argued that this construction results in a unique tree, the modular decomposition
tree of the graph, with the trivial modules of the form {v} being the leaves of the tree,
the module V being the root, and all other strong modules being the internal nodes.
The modular decomposition tree of the graph in Fig. 3.3b is shown in Fig. 3.3c. This
graph has 11 modules, all of which are strong.

Even though weak modules of a graph do not directly appear in the modular de-
composition tree, it can be shown that every weak module is a union of strong modules
that are directly attached to the same internal node in the modular decomposition tree.
When this happens the internal node is labeled as degenerate; internal nodes that are
not degenerate are labeled as prime. Furthermore, the union of any subset of chil-
dren of a degenerate node is a module (necessarily weak). Therefore, the modular
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decomposition tree captures all modules in the graph: the strong modules are the nodes
of the tree and the weak modules are the unions of children of degenerate internal
nodes.

Let X be a module in a graph G = (V, E) represented by an internal node of the
modular decomposition tree and let C be the set of modules that correspond to its chil-
dren. A quotient graph associated with X is obtained by contracting every module in C
into one node in the subgraph of G induced by X, G x. For any pair of modules Y and ¥’
inC, either all edges Y x Y’ belong to E or none does (Y x Y') N E = @). Therefore,
the quotient graph associated with X completely specifies the edges of G x that are not
within one module in C. Moreover, it can be shown that the quotient graph associated
with a module that corresponds to a degenerate node is either a complete graph or a
complement of a complete graph. If we label degenerate nodes as series whenever the
corresponding quotient graph is complete and parallel otherwise, and record the struc-
ture of quotient graphs associated with prime nodes, then the modular decomposition
tree together with this additional information completely specifies the structure of the
graph.

A complement reducible graph (a cograph) can be recursively defined in the fol-
lowing manner: (i) a single vertex graph is a cograph; (ii) if G1, ..., G are cographs
then so is their union G| U G3 - - - U Gy; (iii) if G is a cograph then so is its com-
plement G; A pair of nodes, u and v, in a graph are siblings if they have exactly the
same set of neighbors, that is, N'(u) — {v} = N (v) — {u}. If the nodes of the pair are
connected by an edge, we call them strong siblings and weak siblings otherwise. The
following theorem summarizes some of the structural properties of cographs given in
the paper by Corneil et al. [19].

Theorem 3.4 Let G = (V, E) be a graph. The following statements are equivalent.
® G is a cograph.
® Every nontrivial induced subgraph of G has a pair of siblings.

® G does not contain an induced subgraph isomorphic to a path of length four
(Ps4).

Cographs are exactly graphs with the modular decomposition tree without
prime modules. Therefore, the modular decomposition tree of a cograph with
the “series”/“parallel” labeling of nodes provides an alternative representation of
the graph. This representation is closely related to the cotree representation for
cographs [19]. In particular, the modular decomposition tree can be used to generate
a Boolean expression describing all the maximal cliques in a cograph and obtain
efficient algorithms for other otherwise difficult combinatorial problems [19]. The
Boolean expression is constructed by moving along the tree from the leaves to the
root, replacing each “series” node with an A operator and every “parallel” node with
an V operator. For example, Fig. 3.3d shows how to obtain the Boolean expression
for the graph in Fig. 3.3b. For a cograph, the modular decomposition tree can be
constructed in linear time [20].
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3.3 RECONSTRUCTING PHYLOGENIES

Consider a set of taxa, where each taxon is represented by a vector of attributes, the
so-called characters. We assume that every character can take one of a finite number
of states and the set of taxa evolved from a common ancestor through changes of
states of the corresponding characters. For example, the set of taxa can be described
by columns in multiple sequence alignment of protein sequences. In this case, each
column in the alignment is a character that can assume one of twenty possible states.
Parsimony methods seek a phylogenetic tree that explains the observed characters
with the minimum number of character changes along the branches of the tree.

In our working example for this section, the set of taxa includes eight species
shown in Fig. 3.4a; each species is described by two binary characters. As there

105 256
Ag 1 0
At 0 1
Ce 1 1
Dm 1 0
Hs 1 1
Pf 0 1
Sc 0 0
sp 0 0
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FIGURE 3.4 A set of eight species: Anopheles gambiae (Ag), Arabidopsis thaliana (At),
Caenorhabditis elegans (Ce), Drosophila melanogaster (Dm), Homo sapiens (Hm), Plasmod-
ium falciparum (Pf), Saccharomyces cerevisiae (Ag), and Saccharomyces pombe (Sp). (a)
The species are described by binary characters that correspond to the presence (value of 1) or
absence (value of 0) of introns. This is truncated data limited to just two introns (105 and 256)
out of about 7236 from the study of Rogozin et al. [59]. (b) A phylogenetic tree: the leaves
are the species in the set and are labeled with the input character states; the internal nodes are
ancestral species and are labeled with the inferred character states. This particular tree requires
three character changes , which are marked with solid bars on the corresponding edges.(c¢) The
character overlap graph. There are four vertices, one vertex per character state, 105 (state “1”
of the character “intron 105”"), —105 (state “0” of the character “intron 105”), 256 (state “1” of
the character “intron 256), and —256 (state “0” of the character “intron 256”). Two vertices
are connected by an edge if corresponding character states are observed together in some taxon.
The edge (105, —256), for example, is due to species Ag and Dm.
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are (2n — 5)Y/(2"3(n — 3)!) unrooted binary trees on n labeled vertices [15], there
are 111/(235!) = 10, 395 possible phylogenetic trees for the set of species in our
example. One such tree is shown in Fig. 3.4b. Once the tree topology is fixed, an
optimal assignment/assignments of the character states to the internal nodes can be
efficiently computed [25]; the assignment of characters in Fig. 3.4b is optimal for this
tree topology and requires three character changes.

We call a phylogenetic tree a perfect phylogeny if every character state arose only
once during evolution or in other words the subgraph of the tree induced by the
nodes having this character state is connected. The phylogenetic tree in Fig. 3.4b
is not a perfect phylogeny as the character state O for the character “intron 256”
arose twice, once in the part of the tree defined by Sc and Sp, and another time
in the part of the tree defined by Dm and Ag. Given a phylogenetic tree, the num-
ber of changes due to a specific character is bounded from below by the number
of states this character assumes minus one. It is easy to see that the lower bound is
achieved only when each character state induces a connected subgraph of the tree;
in the phylogenetic tree of Fig. 3.4b the character “intron 105” achieves the lower
bound, while the character “intron 256” does not. Therefore, a perfect phylogeny
is the best tree in a sense that it achieves this lower bound for every character. A
perfect phylogeny often does not exist and we start this section with an example of
how Chordal Graph Theory can be used to address the Character Compati-
bility Problem: Given a set of taxa, does there exist a perfect phylogeny for the
set?

When a set of taxa admits a perfect phylogeny, we say that the characters describing
the set are fully compatible or just compatible. The compatibility criteria is quite
restrictive, in the case of intron data, for example, it means that for every intron
the transition from “0” state to “1” state occurred only once during evolution. We
conclude this section by showing how Chordal Graph Theory can be used to relax the
compatibility criteria in a meaningful way when taxa are described by a set of binary
characters.

3.3.1 A Perfect Phylogeny and Triangulating Vertex-Colored Graphs

From the set of input taxa we can construct a partition intersection graph in the
following manner: (i) introduce a vertex for every character state; (ii) put an edge
between two vertices if the corresponding character states are observed in one or
more taxa together. In our working example, the partition intersection graph will
have four vertices, 105 (state “1” of the character “intron 105”), —105 (state “0”
of the character “intron 105”), 256 (state “1” of the character “intron 256”), and
—256 (state “0” of the character “intron 256”) (see Fig. 3.4c). The name “partition
intersection graph” is due to the fact that each character state corresponds to a subset
of taxa, the taxa that have this character state, and the subsets of character states of a
character partition the set of taxa under consideration.

There is an important connection between partition intersection graphs and the
Character Compatibility Problem. Indeed, if a set of taxa admits a per-
fect phylogeny then there exists a phylogenetic tree, where for each character state
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the tree vertices having this state form a subtree. As there is an edge in the partition
intersection graph between every pair of character states whose subtrees intersect in
the leaves of the phylogenetic tree, this graph is either chordal or can be triangulated
without introducing edges between vertices that correspond to the states of the same
character. (Additional edges may be necessary to account for subtree intersection,
which occurs only at internal nodes of the phylogenetic tree.) The partition inter-
section graphs were used by Buneman [13] (in his paper the author refers to these
graphs as attribute overlap graphs) to show that the Character Compatibil-
ity Problem reduces in polynomial time to the Triangulating Vertex
Colored Graph Problem. In the latter problem, we are given a graph G(V, E)
and a proper coloring of its vertices, ¢ : V — Z. A vertex coloring is proper if there
does not exist an edge in G whose end points are assigned the same color by the col-
oring. We want to determine if there exists a chordal graph G(V, E) such that E C E
and G is properly colored by ¢, that is, no edges between vertices of the same color
were introduced in the process of triangulating G. If such chordal graph exists, we
say that G can be c-triangulated.

Theorem 3.5 [I3] A set of taxa has a perfect phylogeny if and only if the
corresponding partition intersection graph can be c-triangulated, where vertex
coloring function c assigns the same color to the character states of the same character
and different colors to the character states of different characters.

Kannan and Warnow [44] showed the polynomial time reduction in the opposite
direction: from the Triangulating Vertex Colored Graph Problem
to the Character Compatibility Problem, thus, establishing that the
two problems are equivalent. This result was later used by Bodlaender et al. [9]
to show that the Character Compatibility Problem is NP-complete.
Even though the Character Compatibility Problem is hard in general,
there are efficient algorithms when one or more of the problem’s natural parameters
are fixed: n the number of taxonomic units, £ the number of characters, and r the
maximum number of states per character. Later on, we will see how to apply the
Buneman’s theorem to derive a polynomial time solution for two characters k = 2.
For three characters there is a series of algorithms that run in linear time [10,42,44].
For arbitrary fixed k there is an O(**F1k**1 4 nk?) algorithm due to McMorris et
al. [52]. When the number of character states is bounded, the problem can also be
solved efficiently. There is a simple linear time algorithm to test if any number of
binary characters is compatible due to Gusfield [39]. For four-state characters there
is an O(n’k) algorithm due to Kannan and Warnow [45]. For arbitrary fixed r there
is an OQ2% (nk3 + k%)) algorithm due to Agarwala and Fernandez-Baca [2].

The Buneman’s theorem can be used to readily derive a well-known test for
checking whether a pair of binary characters is compatible. The test is attributed
to Wilson [70]; it says that a pair of binary characters is compatible if and only if
there does not exist a set of four taxa having all possible character states, 00, 01,
10, and 11. The same test can be derived through application of the Buneman’s
theorem. According to the theorem, a pair of binary characters, is compatible if and
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only if the corresponding partition intersection can be c-triangulated. As there are
only two binary characters, the partition intersection graph is bipartite and each set
of the bipartition contains two vertices (see, for example, Fig. 3.4c). Such a graph
is either acyclic and therefore can be trivially c-triangulated, or it contains a square
and therefore does not have a c-triangulation as any attempt to eliminate the square
would add an edge between two vertices of the same color. The square in the partition
intersection graph corresponds to the presence of the four taxa with all possible
combinations of character values: 00, 01, 10, and 11, where 00, for example, means
that both characters have state “0.” The compatibility test can be extended to a pair
of characters with more than two states (» > 2). In this case, the partition intersection
graph would still be bipartite and the number of vertices in each bipartition is r. It
can be easily shown that this graph can be c-triangulated if and only if it is acyclic.
Therefore, testing compatibility of two characters reduces to testing whether the
partition intersection graph is acyclic, which can be done efficiently, for example,
using any of the graph search algorithms such as BFS or DFS [17].

3.3.2 Character Stability

Assume that we are dealing with a set of characters that are difficult to gain but
relatively easy to lose. A classic example of such characters are introns [23]. Introns
are noncoding DNA sequences that interrupt the flow of a gene coding sequences
in eukaryotic genes. They are remarkably conserved between some lineages (e.g.,
between Arabidopsis and Human), but they are lost at a significant rate in other
organisms (e.g., Worm) [59]. Parsimony methods applied to introns produced an
incorrect tree [59] indicating that the data contains misleading characters. One way
of eliminating such misleading characters is to restrict attention to a maximum set
of compatible characters. However, under the condition that the characters are hard
to gain but are frequently lost, a large enough set of compatible characters may not
exist. To address this problem, Przytycka [57] proposed a new consistency criterion
called stability criterion.

The definition of the stability criterion is phrased as a property of a graph closely
related to the partition intersection graph and called a character overlap graph. A
character overlap graph for a set of taxa is a graph G = (V, E), where V is a set of
characters, and (u, v) € E if there exists a taxon 7 in the set such that both u# and v
are present in 7. Note that the character overlap graph is simply a subgraph of the
partition intersection graph for a set of binary characters that is induced by the set of
characters in state “1.”

To motivate the concept of stability, consider a set of characters A, B, C, D, and
a set of four taxa described respectively by character pairs: (A, B), (B, C), (C, D),
and (D, A). That is the first taxon has characters A and B in state “1” (and the rest in
state “0”), second B and C in state “1,” and so on. In such a case, the corresponding
character overlap graph is simply a square (see Fig. 3.5a). There are two possible
topologies for the evolutionary tree for this set of taxa as illustrated in Fig. 3.5b—c.
The number of character changes implied by each topology is the same. However, in
the first case, characters, B and D, have to change their state twice (and at least three
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FIGURE 3.5 The two possible (up to symmetry) topologies for an evolutionary tree for
four taxa containing characters respectively: (A, B), (B, C), (C, D), and (D, A). In each case,
one pair of characters has to change state twice and the selection of such pair determines the
topology of the tree.

of these character changes have to be deletions) while in the second case, characters,
C and A, have to change their state twice. If we knew which pair is more preserved
in a given lineage relative to the other pair, we would be able to select the more likely
topology. Similar situation occurs when we consider a larger cycle. This motivates
the following concept of stability.

We say that a character is stable if it does not belong to a chordless cycle in
the character overlap graph. Otherwise, we say that the stability of the character
is challenged and number of challenges is equal to the number of chordless cycles
to which the character belongs. Note that the stability criterion can also identify
characters that are preferentially conserved in one lineage but lost in many other
lineages, as stability of such characters is likely to be challenged by other characters.
Directly from the property of stability, we observe that the set of characters is stable
only if the corresponding character overlap graph is chordal. In particular, it can be
easily shown that a set of characters such that each character is gained at most once
and lost at most once (called in [57] persistent characters) is stable [57]. Note that
even the persistency criterion is significantly less stringent than the compatibility
criterion discussed before as it allows for two changes of a character state.

Unfortunately, the problem of finding the minimum number of nodes whose re-
moval leaves a graph chordal is NP-complete [48]. To go around this problem, [57]
use a simple heuristic. Namely, rather than considering all chordless cycles, they con-
sidered only squares. The squares were then eliminated by a greedy algorithm that
iteratively removed characters belonging to the largest number of squares. After all
squares are removed, they applied the Dollo parsimony (the maximum parsimony
model that does not allow for multiple insertions of the same character) to construct
the evolutionary tree based on the remaining characters.

The utility of a variant of this approach has been demonstrated by using it to con-
struct the evolutionary tree from intron data compiled by Rogozin et al. [59]. This
data contains information about introns found in conserved (and orthologous) genes
of eight fully sequenced organisms: Arabidopsis thaliana (At), Homo sapiens (Hs),
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FIGURE 3.6 Three tree topologies for organisms: Arabidopsis thaliana (At), Homo sapiens
(Hs), C. elegans (Ce), Drosophila melanogaster (Dm), Anopheles gambaie (Ag), Saccha-
romyces cerevisiae (Sc), Schizosaccharomyces pombe (Sp), and Plasmodium falciparum (Pf).
(a) The incorrect Dollo parsimony tree computed from intron data. (b) The tree consistent with
Coelomata hypothesis. This is also exactly the tree obtained after applying the squares removal
procedure. (c) The tree consistent with Ecdysozoa hypothesis.

C.elegans (Ce), Drosophila melanogaster (Dm), Anopheles gambaie (Ag), Saccha-
romyces cerevisiae (Sc), Schizosaccharomyces pombe (Sp), and Plasmodium falci-
parum (Pf). Introns are identified by their starting position with respect to the coding
sequence. The data contains 7236 introns; however, most of these introns are ob-
served in one organism only and thus are not informative. After eliminating these
single-organism entries, 1790 introns were left. Define intron pattern to be a 0/1 vec-
tor of length eight that defines, for a given intron, which species have that intron and
which do not. Note that with eight species there are 28 — 9 different intron patterns
(the subtraction corresponds to the assumption that each intron of interest must be in
at least two species). Thus, some patterns are represented multiple times. The patterns
that appear significantly more often than is expected by chance are considered to be
more informative. Let n; be the number of times pattern i is observed in the intron data,
and r; expected number of occurrences of the pattern by chance. Define p; = n;/r;
to be the significance of the intron pattern i. Let S; be the number of squares, in
which an intron with pattern i is involved. In this setting, the greedy square removal
algorithm was set to remove iteratively intron patterns that maximize the value S;/ p;.
This provides a trade-off between maximizing the number of removed squares and
minimizing the significance of the removed intron patterns. The resulting evolution-
ary tree was consistent with the Coelomata hypothesis ([1,8,16,71]). In contrast, the
compatibility criterion failed to produce a meaningful tree in this case. The counter-
part to the Coleometa hypothesis is the Ecdysozoa hypothesis ([3,35,49,56,61]) (see
Fig. 3.6).

3.4 FORMATION OF MULTIPROTEIN COMPLEXES
The complexity in biological systems arises not only from various individual protein

molecules but also from their organization into systems with numerous interacting
partners. In fact, most cellular processes are carried out by multiprotein complexes,
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groups of proteins that bind together to perform a specific task. Some proteins form
stable complexes, such as the ribosomal complex that consists of more than 80
proteins and four RNA molecules, while other proteins form transient associations
and are part of several complexes at different stages of a cellular process. A better
understanding of this higher order organization of proteins into overlapping com-
plexes is an important step toward unveiling functional and evolutionary mechanisms
behind biological networks.

Data on protein interactions are collected from the study of individual systems,
and more recently through high-throughput experiments. There are many types of
protein interactions, but in our quest to understand the dynamics of multiprotein
complex formation, we are mostly interested in physical protein interactions and
interactions through being a member of the same protein complex, which we briefly
review here.

There is a physical interaction between a pair of proteins if they come into a close
contact or bind each other. High-throughput discovery of physical protein interac-
tions is based on an experimental technique called yeast two hybrid (Y2H) [24]. To
determine whether a pair of proteins, A and B, are able to physically interact, A
is fused to a DNA binding domain and B is fused to a transcription activation do-
main. Physical interaction between A and B brings the DNA-binding domain and
the transcription activation domain in proximity, which activates the transcription
of the corresponding gene called a reporter gene. The expression level of the re-
porter gene is monitored and serves as a measure of physical interaction between pro-
teins A and B. This technique was applied on a genome-wide scale to map physical
protein interaction maps for several model organisms, most notably Saccharomyces
cerevisiae [43,68].

A pair of proteins may not physically interact but may still be members of the
same protein complex. High-throughput discovery of this type of protein interaction
is based on an experimental technique called tandem affinity purification followed by
mass spectrometry (TAP/MS) [58]. In the TAP/MS approach, a protein of interest,
which is called a bait, is tagged and used as a “hook” to pull out proteins that form a
complex with it. These proteins are then identified by mass spectrometry techniques.
The TAP/MS approach was used not only to map the interactome of Saccharomyces
cerevisiae [29,30,41,47] but also to study protein complexes involved in different
signaling pathways [12].

Protein interactions are routinely represented by a graph, a protein interaction
network, with vertices being the proteins and edges being the interactions. These
graphs offer a static view of protein interactions in the cell, even though some proteins
change their interacting partners and participate in different protein complexes. Can
the topology of inherently static protein interaction network be used to elucidate the
temporal order of dynamic multiprotein complex formation? In this section, we review
two such attempts: Farach-Colton et al. [22] used interval graphs to study the way
in which various proteins join the ribosome maturation pathway, Zotenko et al. [73]
used chordal graph and cographs to study the order in which various complexes are
formed during cell signaling and other cellular processes.
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3.4.1 Ribosomal Assembly

Ribosomes are massive molecular machines that are the major players in protein syn-
thesis, they use a messenger RNA template to produce a polypeptide chain of newly
created protein molecule. In eukaryotic cells, ribosomes consists of two subunits,
the so-called 40S (small) and 60S (large) particles, which together account for four
ribosomal RNAs and around 80 ribosomal proteins. Recent proteomic studies in
Saccharomyces cerevisiae have identified around 200 auxiliary proteins that are
involved in the assembly of ribosomal subunits but are not part of mature ribosomes.
The ribosome synthesis is believed to proceed in an orderly pathway, the ribosome
assembly pathway, and even though the main players of the pathway are known, little
is known about the order in which these proteins join the pathway. For a minireview
see [21].

Farach-Colton and colleagues [22] proposed an interval model to represent the
assembly pathway of the 60S ribosomal particle. In this model, an auxiliary protein
“enters” the pathway at some point and “leaves” the pathway at a latter point to never
enter the pathway again. The model further assumes that a protein participates in the
pathway through binding to other proteins currently in the pathway, therefore, the
assembly line can be thought of as an evolution of one protein complex to which
proteins bind as they enter the pathway and from which proteins dissociate as they
leave the pathway. Under this model, the protein interaction network that spans the
auxiliary proteins involved in the pathway should be an interval graph: each auxiliary
protein is an interval and two proteins interact if and only if their intervals overlap.
Therefore, the protein interaction network can be used to reconstruct the order in
which the auxiliary proteins join the pathway.

Unfortunately, even if the proposed model captures correctly the ribosome assem-
bly mechanism, experimental errors, and incompleteness of protein interaction data
may make the protein interaction network loose its interval graph property. To over-
come this problem, the authors use a variant of the multisweep LexBFS algorithm [18]
to produce an ordering of vertices in the protein interaction network. The algorithm
uses several iterations/sweeps of the LexBFS algorithm, where the first LexBFS sweep
starts from an arbitrary vertex of the graph and every subsequent LexBFS sweep uses
the orderings produced by the previous iterations to choose the start vertex and break
ties. If the network is an interval graph, then the ordering produced by the algorithm is
an [-ordering. If, on the contrary, the network is not an interval graph then the ordering
as a whole won’t be an I-ordering but it will induce an [-ordering on the vertices of
some interval subgraph of the network; which subgraph would be correctly ordered
depends on the order, in which the vertices of the network are encountered by the
algorithm. Thus, the authors suggest that computing an I-ordering of vertices of the
graph is a reasonable step toward reconstruction, the order in which the auxiliary
proteins join the pathway.

The authors tested their approach on the protein interaction network spanning
96 auxiliary proteins involved in the assembly of the 60S particle. As part of the
interaction data comes from TAP/MS experiments, it captures only interaction be-
tween the 25 bait proteins and other auxiliary proteins in a 96 x 25 protein interaction
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matrix. The rows/columns of the matrix were randomly permuted and supplied as an
input to the multisweep LexBFS algorithm. The experiment was performed 5000
times and the rank of each protein in each of the 5000 orderings was recorded.
Even though the input graph is not an interval graph only two different orderings
emerged, which are denoted by O and O;. If an ordering of vertices is close to an
I-ordering, then the absolute difference in rank between any pair of adjacent ver-
tices cannot be arbitrarily large. Therefore, the authors establish significance of the
two discovered orderings by the average difference in rank over two sets of protein
interactions: a set of protein interactions comprising the network and thus seen by
the algorithm, and a set of protein interactions not seen by the algorithm. The au-
thors found that for both seen and unseen interactions, the average difference for the
O and O, is significantly lower than average differences obtained with: (i) order-
ings produced by randomly permuting the proteins; (ii) orderings computed by the
algorithm on random graph having the same degree distribution as the original input
graph.

3.4.2 Multiprotein Complex Formation During Cell Signaling

In order to adapt to their environment, cells have to detect and respond to a vast variety
of external stimuli. The detection and translation of these stimuli to a specific cellular
response is achieved through a mechanism called signal transduction pathway or
signaling pathway. The general principles of signal propagation through a pathway
are common to almost all signaling pathways. First, an extracellular stimulus, usually
a chemical ligand, binds to a membrane bound receptor protein. The energy from
this interaction changes the state of the receptor protein, thus activating it. The active
receptor is able to pass the signal to the effector system that generates the cell’s
response. A variety of proteins, the so-called signaling proteins, carry information
between the receptor protein and the effector system. Protein kinases, for example,
are special enzymes that add a phosphate group to certain residues of certain proteins
through a process called phosphorylation, thus, activating or suppressing the protein’s
ability to interact with other proteins.

The pattern of protein interaction during cell signaling is an excellent example
of transient protein interactions and dynamic complex formation. For example, con-
sider a sequence of events in one of the best-studied signaling pathways, the mating
pheromone signaling pathway in Saccharomyces cerevisiae (for more information
see areview by Bardwell [4]). There are two mating types of yeast cells. When a yeast
cell is stimulated by a pheromone secreted by a cell of an opposite mating type, it
undergoes a series of physiological changes in preparation for mating, which include
significant changes in gene expression of about 200 genes, oriented growth toward
the partner, and changes in the cell cycle. Signal propagation through the pathway is
achieved through interaction of some 20 proteins, a schematic representation of the
pathway and description of corresponding protein interactions are given in Fig. 3.7.

Research efforts required to obtain the amount of detailed knowledge about a
signaling pathway as is currently available for the mating pheromone pathway is
enormous. Can the readily available high-throughput experimental data on protein
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FIGURE 3.7 A schematic representation of the key components of the pheromone signaling
pathway assembled from information in [4,38,50]. A pheromone peptide binds a G-protein
coupled receptor or GPCR (STE2/STE3). Activated receptor binds and activates a trimeric
G-protein: G, subunit (GPA1), Gg subunit (STE4), and G, subunit (STE18). The flow of
information then proceeds via a three-tiered mitogen-activated protein kinase (MAPK) cas-
cade and results in activation of STE12 transcription factor and subsequent upregulation of
about 200 genes. The MAPK cascade also activates FAR1 protein, which is hypothesized
to trigger a G cell cycle arrest through an interaction with CDC28, a master regulator of
the cell cycle. The MAPK cascade consists of three protein kinases STE11, STE7, and ei-
ther FUS3 or KSS1, which activate each other sequentially through phosphorylation. Thus,
STE11 activates STE7, which in turn activates either FUS3 or KSS1. The phosphorylation
process is enhanced through a presence of a scaffold protein STES, which binds and thus
colocalizes all three components of the MAPK cascade. Activated FUS3 and KSS1 proteins
in turn bind their substrates, DIG1/DIG2/STE12 complex and FAR1 protein. Another branch
of the pathway, which includes proteins STE4, STE18, FAR1, CDC24, CDC42, and BEM1
is responsible for triggering a “polarized growth toward the mating partner” or polarization
response.

interactions be used to elucidate some information about the pathway, such as the
order of complex formation during signal propagation? In a recent work Zotenko
et al. [73] have proposed a graph-theoretic method, Complex Overlap Decomposition
(COD), that tries to recover the order of protein complex formation from the
topology of protein interaction network that spans the pathway components. (The
pathway components can be obtained from literature. Alternatively, putative pathway
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FIGURE 3.8 An illustration of the Complex Overlap Decomposition (COD) method. An
edge, (3, 4), connecting a pair of weak siblings is added to the graph. A fill-in edge between
proteins 5 and 8 is added to eliminate all five 4-cycles in the graph: {5, 6, 8, 7}, {1, 5, 7,
8}, {2, 5,7, 8}, {1, 5, 6, 8}, and {2, 5, 6, 8}. If the modified graph is chordal, all clique
tree representations are computed and each such representation is extended into a Tree of
Complexes representation of the original graph. The Tree of Complexes is constructed by
projecting each maximal clique in the modified graph, G*, to a functional group in the original
graph G. For example, a four node maximal clique, {1, 2, 5, 8}, in G* is projected to a four node
functional group in G, by removing a fill-in edge (5, 8). Each functional group is represented
by a Boolean expression, such as (1 A 2) A (5 Vv 8), which means that the functional group
contains two variants of a complex, {1, 2,5} and {1, 2, 8}. This figure is reproduced from
[73].

components can be automatically extracted from genome-wide protein interaction
networks by computational methods [63,66].)

The main idea behind the COD method, which is depicted in Fig. 3.8, is to pro-
vide a representation of the protein interaction network that is analogous to a clique
tree representation for chordal graphs, but in which nodes are cographs (representing
functional groups) rather than maximal cliques (representing protein complexes). A
functional group is either a protein complex (maximal clique in the protein interaction
network) or a set of alternative variants of such complex. Such a representation ac-
counts for two phenomena that are clearly illustrated in the pheromone signaling
pathway described above: (i) the dynamic complex formation does not always follow
a linear pathway but rather has a tree structure, where various branches correspond
to the activation of different response systems; (ii) there may be several variants of a
protein complex, such as MAPK complex centered at the scaffold protein, which may
include either KSS1 or FUS3 proteins but not both. It should be noted that cographs
and their modular decomposition were previously used by Gagneur et al. to expose
the hierarchical organization of protein complexes [27].
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If a set of functional groups in a network were known then each functional
group could be turned into a clique through addition of missing edges and clique
tree construction algorithm could be applied to the modified network. As the
functional groups are not known in advance, the authors propose a heuristic for
their automatic delineation, where a set of edges is added to the network so that
the maximal cliques in the modified network correspond to putative functional
groups.

The COD method’s edge addition strategy and its biological motivation builds
on a functional interpretation of weak siblings in the network. Recall that a pair of
nodes in a graph are weak siblings if they are not adjacent to each other but are
adjacent to exactly the same set of nodes. In terms of protein interaction networks,
weak siblings are proteins that interact with the same set of proteins but do not
interact with each other. In particular, proteins that can substitute for each other in
a protein interaction network may have this property. Similarly, weak siblings may
correspond to a pair of proteins that belong to the same protein complex but are
not connected by an edge due to missing data or an experimental error. Therefore,
the heuristic first connects every pair of weak siblings by an edge. If the modified
graph is not chordal an additional set of edges that connect pairs of proteins close to
being weak siblings is added; each such edge is a diagonal in one or more squares,
chordless cycles of length four, in the graph. The heuristic finds a minimum cost set
of diagonals that eliminates all the squares in the graph, where the cost of a diagonal
is inversely proportional to the amount of overlap between the neighborhoods of its
end points.

If the modification step succeeds, that is, the modified graph is chordal, all the
clique tree representations of the modified graph are constructed and then extended
to the Tree of Complexes representations of the original graph. The COD algorithm
keeps track of all the edge additions and uses this information to delineate functional
groups by projecting each maximal clique onto the original network and removing
all introduced edges contained in the clique. For example, in the modified graph of
Fig. 3.8, a maximal clique with four nodes, {1, 2, 5, 8}, is projected to a functional
group by removing an edge connecting proteins 5 and 8. This functional group con-
tains two variants of a protein complex, {1, 2, 5} and {1, 2, 8}, which are compactly
represented by the Boolean expression (1 A 2) A (5V 8) . If, on the contrary, the
modified graph is not chordal, the COD method stops without producing the repre-
sentation.

The authors demonstrated the effectiveness of their approach by decomposing
protein interaction networks for two signaling pathways: the mating pheromone
signaling pathway and the NF-kB signaling pathway. Here, we apply the COD
method to the pheromone signaling pathway, where the pathway components were
taken from [4] (Table 1) and protein interactions that span the pathway compo-
nents from the DIP database [62] (version 01/16/2006; core set of interactions).
The network is shown in Fig. 3.9a. Since proteins STE2/STE3 are disconnected
from the rest of the components, we have removed them from the network in our
analysis. The COD method adds three diagonals to eliminate eleven squares in
the network: (STE4,BEM1), (FUS3, KSS1), and (GPA1, STES), which results in
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(b)
FIGURE 3.9 The mating pheromone signaling pathway. (a) The protein interaction network
for the components of the pathway. The network was drawn with Pajek [5]. (b) One of the twelve
possible Tree of Complexes representations for the network.The activation of the pathway
corresponds to node A in the tree that contains the Gg (STE4) protein. From node A, the Tree
of Complexes splits into two branches. One branch roughly corresponds to the MAPK cascade
activated response, while another branch roughly corresponds to the polarization response.
The MAPK cascade branch spans four nodes in the tree: I, D, E, and H. The activation of
transcription factor complex by FUS3 and KSS1 is in nodes F and G. The polarization branch

spans nodes J, K, and L.

twelve functional groups listed in Fig. 3.9 along with the corresponding Boolean
expressions. There are twelve Tree of Complexes representations for this pro-
tein interaction network one of which is shown in Fig. 3.9b. All the representa-
tions agree on the interconnection pattern between functional groups, B — E, H,
and J — L. The difference between various tree variants comes from how func-
tional groups A, F — G, and [ are connected to the rest of the tree: (i) functional
group A can be attached either through (A, C), or (A, B), or (A, J); (i) func-
tional group I through (I, E), or (I, D); (iii) functional group F through (F, E) or
(F, H).

Compare the representation in Fig. 3.9b to the schematic representation of the
pheromone signaling pathway shown in Fig. 3.7. Using only protein interaction in-
formation, the COD method was able to recover two branches of the pathway, the
MAPK cascade branch and the polarization branch. The MAPK cascade branch spans
four nodes in the tree: I, D, E, and H. The polarization branch spans nodes J, K,
and L.
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4.1 INTRODUCTION

One of the most basic tasks of bioinformatics is to identify features in a biological
sequence. Whether these features are the binding sites of a protein, the regions of a
DNA sequence that are most subjected to selective pressures, or coding sequences
found in an expressed sequence tag, this phase is fundamental to the process of
sequence analysis.

While a variety of computational tools that people have been needing to perform
this task have been used over the course of the time, the currently dominant tool in
biological sequence annotation is the hidden Markov model (HMM). HMMs have
been used in so many contexts over the course of the last 15 years that they almost
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require no introduction. They are used in computational gene finders to predict the
structure of genes in newly sequenced genomes. They are used in protein sequence
analysis to identify substructural elements. They are used to discover regulatory se-
quences in DNA to identify ancestry patterns in pedigrees, and truly for almost any
feature detection problem in biological sequences.

As such, it may seem that their use is so routinized that there is nothing more to learn
about them: that 15 years of their use in biological sequence analysis mined the field
for all of its interesting problems many years ago. Fortunately, this is anything but the
case. As the fields of genomics and proteomics advance, a variety of new challenges
have come to fore in the algorithmic analysis of HMMs. For example, if we have alarge
amount of training data and can train an HMM to closely model the many complex
features of the data, will that necessarily improve the quality of our predictions on
new data? How can we properly model the distributions of the lengths of complex
sequence features in HMMs? How can we incorporate evolutionary conservation
information into the creation of HMMs that properly model DNA sequences and into
the algorithms for their analysis?

This chapter considers the use of HMMs in sequence analysis, starting from the
simplest cases (simple HMMs, with simple structures, simple training algorithms, and
simple decoding procedures) and moving to situations of great complexity, incorpo-
rating very recent ideas from machine learning theory. We present the basic algorithms
and their extensions, and give suggestions of directions where future research can be
most useful. Throughout, we make reference to the important applications in which
these algorithms are used and to why the field has experienced continuous advance-
ment over the last many years.

4.2 HIDDEN MARKOV MODELS FOR SEQUENCE ANNOTATION

In this section, we illustrate the use of HMMs for biological sequence annotation.
We will focus on the simplification of one of the most prominent uses of HMMs in
sequence annotation: the problem of gene finding. Assume we are given a section of a
DNA sequence containing a single protein-coding gene, and our goal is to locate the
regions of this sequence that code for a protein. In eukaryotes, such regions may be in-
terrupted by noncoding segments called introns. Therefore, our task is to label each nu-
cleotide of the DNA sequence with one of the three labels, indicating whether the nu-
cleotide comes from a coding region, an intron, or an intergenic region (see Fig. 4.1).

.. .CATCATGGTGCAT. . .GGCAGGTAAGCA. . . TTCATAGGCTCC. . . CACTGAGTTATCT. ..

.. .XXXXCcccceeeeee. . .CCCCC1111111...1111111CCCCC. . .CCCCCCXXXXXXX . . .

Upstream Coding Intron Coding Downstream
intergenic region 1 region 2 intergenic

FIGURE 4.1 In gene finding, the goal is to label each nucleotide of a given DNA sequence
as coding (c), intron (i), or intergenic (X).
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More generally, the problem of labeling every symbol of a biological sequence
with its functional category is the sequence annotation problem, and such a sequence
of labels is an annotation of a sequence.

For our gene finding problem, we use our knowledge of gene structure and a col-
lection of training data to design an HMM that characterizes typical DNA sequences
and their gene annotations. Then we use this model to find the highest probability
annotations for novel, unannotated DNA sequences.

4.2.1 Hidden Markov Models

An HMM is a generative probabilistic model for modeling sequence data that come
from a finite alphabet. An HMM consists of a finite set of states and three sets of
parameters called the initial, emission, and transition probabilities. The initial prob-
ability sy is defined for each state k of the model. The transition probability ay ¢ is
defined for each pair of states (k, £), and the emission probability e 5, is defined for
each state k and each symbol b of the output alphabet. The initial probabilities form
a probability distribution, as do the transition probabilities ay ¢ at each state k and the
emission probabilities ey 5, for each k.

An HMM generates a sequence step by step, one symbol in each step. First, a start
state is randomly generated according to the initial probabilities. Then, in each step,
the model randomly generates one symbol and moves to a new state. Both the new
symbol and the next state depend only on the current state. If the current state is k,
the symbol b will be generated with probability e 5, and the next state will be £ with
probability ay ¢.

In n steps, the HMM generates a sequence X = x1, .. ., X, and traverses a sequence
of states (or state path) H = hy, ..., h,. For a fixed length n, the HMM defines a
probability distribution over all possible sequences X and all possible state paths H;
in particular, the probability that the model will traverse the state path H and generate
the sequence X is the following product of the model parameters:

n—1
Pr(H, X) = s, (H eh,.,x,.ah,.,h,.+l> Chy oy - 4.1

i=1

4.2.2 Choosing the Topology and the Parameters of an HMM

To approach our gene finding problem, we will first build an HMM that models
DNA sequences and their corresponding genes. Our model will have four states:
one state representing the intergenic region upstream of the gene, one representing
coding regions of the gene, one representing introns, and one representing the region
downstream of the gene. Each state will emit symbols over the alphabet {A,C,G,T}.
In this way, the sequence generated by the HMM will represent a DNA sequence,
with the corresponding state path identifying its correct annotation.

Transitions between some pairs of states should never occur. There will be no tran-
sitions between introns and intergenic regions, nor between the two states representing
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Upstream Coding Downstream

19, )

Intron

FIGURE 4.2 Topology of a simplified HMM for gene finding.

upstream and downstream intergenic regions. To visualize the structure of the HMM
(also called its fopology), we use a directed graph, where vertices correspond to the
states and edges to nonzero probability transitions (see Fig. 4.2).

Next, we determine the emission and transition probabilities for each state, using
a training set T containing sequences with known annotation. Because we have des-
ignated each state in our model to represent a region of a particular function, we can
use these annotations to determine the proper state path H; for each of the sequences
X; in the training set 7. We would like our generative model to generate sequences
whose distributions and annotations are similar to those observed in the training set
T. Formally, using the maximum likelihood estimation principle, we want to set the
emission and transition probabilities to maximize the likelihood of the training data:
that is, to maximize [[; Pr(H;, X;) over all possible parameters for the model. To
maximize this probability it is sufficient to count the frequency of using each tran-
sition in the training set to estimate the transition probabilities and the frequency of
emission of each symbol in each state to estimate the emission probabilities. In other
contexts, this training process can be quite a bit more complicated; for example, when
the training set 7" is unannotated or when a given sequence and a annotation could
correspond to multiple-paths in the HMM; we discuss this scenario in Section 4.6.

However, in our simple case, we have created a probabilistic model of sequences
and their annotations. In the next section, we show how to use this probabilistic model
to annotate a novel DNA sequence.

4.2.3 HMM Decoding: The Viterbi Algorithm

Once the HMM topology is set and its parameters trained, we can use it to find genes
in a newly unlabeled DNA sequence X. In other words, we seek an appropriate state
path H* that best explains how the model could have produced X; this process is
called HMM decoding.

The simplest measure of “best” is to find the path that has the maximum probability
in the HMM, given the sequence X. Recall that the model gives the joint probabilities
Pr(H, X) for all sequence/annotation pairs, and as such, it also gives the posterior
probability Pr(H|X) = Pr(H, X)/ Pr(X), for every possible state path H through the
model, conditioned on the sequence X. We will seek the path with maximum posterior
probability. Given that the denominator Pr(X) is constant in the conditional probability
formula for a given sequence X, maximizing the posterior probability is equivalent
to finding the state path H* that maximizes the joint probability Pr(H*, X).
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The most probable state path can be found in time linear in the sequence length by
the Viterbi algorithm [30,76]. This simple dynamic programming algorithm computes
the optimal paths for all prefixes of X; when we move from the i-length prefix to the
(i + 1)-length prefix, we need only add one edge to one of the precomputed optimal
paths for the i-length prefix.

For every position i in the sequence and every state k, the algorithm finds the
most probable state path Ay, ..., h; to generate the first i symbols of X, provided
that #; = k. The value V[i, k] stores the joint probability Pr(ky, ..., h;, x1, ..., x;) of
this optimal state path. Again, if i1, ..., h; is the most probable state path generating
X1, ..., x; thatends in state h;, then &1, . .., h;—1 must be the most probable state path
generating x1, ..., xj—1 and ending in state 4;_1. To compute Vi, k], we consider all
possible states as candidates for the second-to-last state, #;_1 and select the one that
leads to the most probable state path, as expressed in the following recurrence:

| S iti=1
VI, k] = maxg V[i — 1, £] - ag i - exx,;, otherwise. “2

The probability Pr(H*, X) is then the maximum over all states k of V[n, k], and the
most probable state path H* can be traced back through the dynamic programming
table by standard techniques. The running time of the algorithm is O(nm?), where n
is the length of the sequence and m is the number of states in the HMM.

4.2.4 More Complex HMMs

We have demonstrated the basic techniques needed to use HMMs for sequence an-
notation. However, the models actually used in practice are more complex than the
one shown in Fig. 4.2. We rarely have only one state for each feature in the HMM,
and it is quite possible that we need to incorporate more positional dependencies into
the probabilities of the HMM. We will explain this in the context of our gene-finding
example.

First, note that coding regions are composed of codons that each encode one amino
acid. Therefore, it is advisable to model coding regions by a three-state cycle rather
than a single state to properly keep this structure. Codons can be interrupted by an
intron, so we use multiple copies of the intron submodel, a technique that originated
in finite state machines to enforce that the next coding region after the intron starts
at the proper codon position. Boundaries of coding regions are marked by special
sequence signals that require additional states in the model. Finally, DNA sequence
usually contains multiple genes on both strands. Figure 4.3 shows an HMM topology
that encodes all of these additional constraints.

In addition, as noted, we may want to incorporate positional dependencies into the
HMM. This is most often done by allowing higher order states. In a state of order o,
the probability of generating the character b is a function of the o previously generated
characters (all states in a standard HMM are of order zero). The emission table has
the form ey p, .. p, », Where > . exp, .»,» =1 for a fixed state k and characters

,,,,,
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FIGURE 4.3 Topology of a simple HMM gene finder. The acceptor and donor regions cor-
respond to the signals at the ends and beginnings of introns.

by, ..., b,.Inan HMM with all states of order o, Formula (4.1) generalizes as follows
(we ignore the special case of the first o characters):

n—1
Pr(l{’ X) = shl <H ehisxim-nvxiahihi+l> ehnaxu—o’--wxn' (43)

i=1

The Viterbi algorithm for finding the most probable state path can be adapted
easily to handle higher order states with the same running time. Similarly, training
the parameters of higher order HMMs by maximum likelihood is straightforward
using procedures analogous to those shown in Section 4.2.2. HMMs for gene finding
typically use states of order between two and five.
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4.2.5 More Examples of Biological Sequence Annotation with HMMs

The use of HMMs in sequence annotation is not only limited to gene finding, but they
have also been used in a host of applications across the field.

One of the first applications of HMMs in bioinformatics was to segment DNA
sequences into regions with similar GC content levels [20]. Similarly, we can partition
the sequence to homogeneous regions based on other criteria, for example, the degree
of sequence conservation in multiple species [69].

In DNA sequences, eukaryote and prokaryote gene finding is the dominant HMM
application. In eukaryotic organisms the difficulty in the problem stems from the
presence of introns and the often small, and highly variable, proportion of protein
coding sequence in the genome [15,41,70]. The existence of alternative splicing also
complicates the field, as individual positions of a sequence may be found in both intron
and exon depending on the transcript, though recent work [3,17] has moved in this
direction. Gene finding in prokaryotes and viruses needs to handle overlapping genes
and the problem of insufficient training data in newly sequenced genomes [46,51].
HMMs can also be used for other tasks related to gene finding, such as promoter
detection [57].

Proteins are generally hard to analyze from sequence only since their function is
largely determined by their fold. Amino acids that are distant in the sequence may
interact once the protein is folded because they are physically close. However, HMMs
can successfully be applied to recognize aspects of protein function that are governed
by motifs located in contiguous stretches of the sequence.

One such example is transmembrane protein topology prediction. Transmembrane
proteins are partially embedded inside the cellular membrane. The topology of such a
protein identifies the regions that are found in transmembrane helices (parts traversing
the membrane), cytoplasmic loops (parts inside the cell), and noncytoplasmic loops
(parts extending outside the cell).

Figure 4.4 shows an overview of a simple HMM that could be used for predicting
these topologies. The HMM topology enforces the simple physical constraint that
cytoplasmic loops must be separated from noncytoplasmic loops by transmembrane
helices. Krogh et al. [44] and Tusnady and Simon [73] used similar HMMs in their
topology prediction tools. A special class of transmembrane proteins, S-barrel pro-
teins, is also successfully modeled by HMMs [26,49]. More generally, we can try to
predict the secondary structure of arbitrary proteins, labeling each amino acid as a
part of an a-helix, B-sheet, or loop [6,16,33].

A

N\
Cytoplasmic Transmembrane Noncycoplasmic
loop helix loop

FIGURE 4.4 Simplified topology of an HMM for transmembrane topology prediction.
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Delete states
Insert states

Match states

FIGURE 4.5 A section of a profile HMM with three match states. Delete states are silent;
that is, they do not emit any characters.

HMMs are closely related to the problem of aligning two DNA or protein se-
quences. In Section 4.5 we discuss pair HMMs, which provide a probabilistic frame-
work for scoring pairwise alignments.

In protein sequence analysis, HMMs are often used to align the residues of a
newly sequenced protein to a model of a family of homologous proteins. This is
most typically done using a prominent class of hidden Markov models called pro-
file HMMs [43]. A profile HMM has a regular structure consisting of a match
state for every conserved column of the multiple alignment and insert and delete
states that model insertions and deletions in the alignment, as shown in Fig. 4.5.
Thanks to their regular structure, they can be created automatically and stored
in a database, such as Pfam [29]. Computing the maximum probability path
in a profile HMM is equivalent to optimizing a very simple form of multiple
alignment.

We can also create a handcrafted topology for recognizing a particular signal,
protein family, or fold. Examples include models to identify signal peptides [56],
and for discovering coiled-coil proteins [23] and glycolipid-anchored membrane
proteins [32].

Schultz et al. [64] use profile HMMs to detect recombination in HIV strains. They
build a profile HMM for each known subtype, adding transitions with a low probability
between states corresponding to the profiles of different subtypes. In their formulation,
the annotation of a given query sequence identifies which parts belong to which
subtype.

Another interesting recent use of HMMs that incorporates recombination is due
to Rastas et al. [62], who use an HMM to assist them in haplotype inference and in
discovering recombination points in genotype data. From genotype data, they train a
hidden model to represent approximations of ancestral haplotypes and allow transi-
tions between these due to recombinations over the course of evolutionary time scales.
Given a genotype, which is the conflation of two haplotypes and each representing
a path through the network, they compute the maximum probability pair of paths
that can give rise to that genotype. The sequences from these two paths are then the
inferred haplotypes.

Finally, we note that although the focus of this chapter is biological sequence
annotation, hidden Markov models are used for similar tasks in other domains. Speech
recognition was one of the first HMM application areas [61]. In natural language
processing, HMMs were applied to several tasks, for example, tagging the words
with their parts of speech [19], segmentation of text to topics [79], and extraction of
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information [66]. They can also be applied to areas as diverse as music composer
recognition [60] and fire detection [54].

4.3 ALTERNATIVES TO VITERBI DECODING

The Viterbi decoding algorithm is widely used because of its simplicity and efficiency.
It is not the only appropriate decoding algorithm for all HMM applications. This
section presents several alternative decoding contexts and appropriate algorithms for
them.

4.3.1 Maximizing the Number of Correctly Explained States: Posterior
Decoding

Posterior decoding focuses on individual positions in the sequence and tries to max-
imize the probability that they are properly explained. This is in contrast to Viterbi
decoding, which computes the globally optimal state path. The simplest posterior
decoding question is what state most likely generated symbol i in the HMM output?

The most probable path is not necessarily helpful in answering this question. Many
different state paths in the HMM can generate the same sequence s, and in position i,
it is possible that many of them will agree on the same state. To compute the posterior
probability P(h; = k| X) of state k at position i, conditioned on the entire sequence
X, we add the probabilities of all paths using state k at position i. The posterior
probability can be decomposed as follows:

Fi(k, X) - ar e - Biv1(£, X)
Pr(X)

Pr(h,-:le):Z

J4

, 4.4)

where Fj(k, X) = Pr(h; =k, x1, ..., x;), and the probability of generating the first i
symbols of X and ending in the state k, is called the forward probability of state k at
position i, and B;1(¢, X) = Pr(hiy1 = £, Xi+1, - . ., Xn), the probability of starting
in state £ and generating the rest of the sequence, x;1, ..., Xy, is called the backward
probability of state £ at position i + 1. The forward probabilities for a given sequence
X and a given hidden Markov model can be computed in O(nm?) time using the
standard forward algorithm [8]; the backward probabilities can be computed by the
backward algorithm in the same running time.

Using Formula (4.4) and the results of the forward and backward algorithms, we
can compute the posterior probabilities of all states at all positions of the sequence
X in O(nm?) time. Note that the posterior probability of the whole sequence Pr(X),
which is the denominator in Formula 4.4, is also obtained as a side product of the
forward algorithm: itis ), F;, (¢, X).

We can use the posterior probabilities in a number of ways. A human user can sim-
ply examine them to look for interesting features; [44] display a plot of the posterior
probabilities of individual states along with the most probable annotation. The plot
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highlights the parts of the annotation that are most certain and the other hypotheses
that might be reasonably likely. We can also compute the posterior probability of
an entire candidate sequence feature, such as an exon, by summing the probabilities
of all paths sharing that feature in a specific location of the sequence. Genscan [15]
provides a list of the most probable alternative exons, including the ones not found on
the most probable path. These exons can then be tested experimentally or used as an
input for further processing. Larsen and Krogh [46] go one step further and compute
the statistical significance of discovered genes, computing the expected number of
genes with a given score that would occur in a random sequence of certain length.

We can also decode sequences using posterior probabilities. In posterior decoding,
we choose the highest posterior probability state at each position of the sequence: h} =
arg maxy Pr(h; = k| X). This approach maximizes the expected number of positions
in the decoding that have the right state. By contrast, Viterbi decoding maximizes the
probability of the entire state path, even though this path may have exceedingly low
probability. It may be the case that the posterior decoding has better overall quality.

Still, the posterior decoding can be a composition of unrelated high probability
paths. This can reach a point of ridiculousness: two adjacent states in the posterior
annotation may not even be connected by an edge in the HMM. The probability of such
a sequence of states being the source of the query sequence is zero: it is inconsistent
with the basic assumptions encoded in the model topology.

Different authors have addressed this concern through adding a postprocessing
step where we attempt to maximize a different objective function. After computing
all posterior state probabilities, using the forward—backward algorithm, we restrict the
choice to the paths that use only transitions present in the HMM topology. Kill et al.
[37] find the path that maximizes the sum of the posterior state probabilities, trying
to maximize the number of correctly predicted states. This is done by straightforward
dynamic programming, similar to the Viterbi algorithm, in time O(nm?). Using a
similar method, Furiselli et al. [26] maximize the product of posterior probabilities
in the postprocessing step.

4.3.2 Maximizing the Annotation Probability: The Multiple Path Problem

Each state in an HMM used to annotate sequences is labeled with the feature to which it
corresponds. In gene finding, we label states as coming from exons, introns, and so on.
Each state path naturally corresponds to a sequence of labels or an annotation. This an-
notation encapsulates the semantic meaning given to the sequence by the HMM path.

This mapping between state paths and annotations is not always one to one: several
state paths may correspond to the same annotation. Such paths provide “alternative
origins” of the sequence but have the same semantic meaning. Thus, if we seek the
most probable meaning, or annotation, for the sequence, we should add probabilities
of all of these state paths.

We will describe an HMM that has multiple state paths with the same annotation
as having the multiple-path problem. Figure 4.6a shows a simplified HMM for gene
finding with its state labels depicted by the state colors. If the start state of the HMM
is fixed, this HMM does not have the multiple-path problem, even though multiple
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FIGURE 4.6 Simple models of exon/intron structure.

states share the same color. Given an annotation, we can identify the single state that
corresponds to each black and gray position.

However, if we move to a slightly more complex model, things quickly change.
The model in Fig. 4.6a embodies the assumption that the nucleotide composition of
introns is homogeneous. However, vertebrate intronic sequences contain a variable-
length tail that is rich in nucleotides C and T [15]. To incorporate this information,
we can include a second intron state representing such a tail, as shown in Fig. 4.6b,
where the new state has substantially different emission probabilities from the first
one. This change creates the multiple-path problem because there are always several
high-probability alternatives for the transfer from the “intron” state to the “tail” state.
The probabilities of all of these paths may be quite low, and Viterbi decoding may
thus lead us to a completely different gene structure that results from fewer paths.

Even though the model in Fig. 4.6b is a more truthful representation of real se-
quences than the one in Fig. 4.6a, it may provide worse results when used with the
Viterbi algorithm [13]. This paradoxical conclusion results because we will be bi-
ased toward annotations with fewer uses of the intron module, since each use of that
module tends to greatly drop path probabilities.

In practice, gene finders often solve this problem by fixing the number of nu-
cleotides in the pyrimidine-rich intron tail [12,15,70]. The resulting model does not
have the multiple-path problem and can be decoded by the Viterbi algorithm.

Sometimes, though, the multiple-path problem is not easily removed. In these
cases, we would like to compute the most probable annotation directly. Unfortunately,
this is not feasible for all model topologies. Brejova et al. [13] constructed an HMM
with 34 states for which it is NP-hard to compute the most probable annotation.
As such, we are not likely to find an efficient algorithm to find the most probable
annotation.

We can respond to this negative conclusion by resorting to heuristic algorithms, not
guaranteed to find the most probable annotation, that perform better than the Viterbi
algorithm. A popular example is the N-best algorithm [65], which was shown to
give good results in several biological applications [41,44]. We can also use posterior
decoding, as in Section 4.3.1, and thereby join together all of the many paths that go
through all states with the same label. Still, this approach will be prey to all of the
other limitations of the posterior decoding technique.
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However, we can characterize special classes of HMM:s for which the most proba-
ble annotation can be computed efficiently. For example, for HMMs that do not have
the multiple-path problem, we can find the most probable annotation by the Viterbi
algorithm in O(nm?) time. Vinar [75] has shown a hierarchy of algorithms that can
decode increasingly wider classes of HMMs but at a cost of increasing running time
Ot ma+2) for a parameter d. In the rest of this section, we describe the most
practical of these algorithms that runs in O(n?m?) time.

This running time is feasible for analyzing protein or mRNA sequences that are
much shorter than genomic DNA. This algorithm can find the most probable labeling
for a wide class of models with the multiple-path problem, including the gene-
finding HMM shown in Fig. 4.6b and models used for predicting the topology of
transmembrane proteins and finding coding regions in mRINA sequences. It can also
be applied as a heuristic to HMMs outside of its target class, much as the N-best
algorithm can.

The main observation is that many HMMs with the multiple-path problem still have
a fair amount of structure in the way that sequence features flow from one to another.
Specifically, for these HMMs, while many paths may represent the same annotation,
the edges used to transition between the sequence features in the annotation are always
the same for all of the paths. We call the edges that transition between states of different
labels critical edges.

The extended annotation of a state path h1hy, . . ., hy is the pair (L, C), where L =
A, A2, ..., Ay isthe sequence of labels of each state in the pathand C = ¢y, ¢3, . . ., ¢k
is the sequence of all critical edges followed on that path. There can be several state
paths with the same extended annotation; for example, in Fig. 4.6b, these are the paths
that differ only in position of entering the intron tail state; they all follow the same
edge from gray to white.

We can extend the Viterbi algorithm to compute the most probable extended an-
notation. Fortunately, many HMMs (including the one Fig. 4.6b) have one to one
correspondence between extended annotations and annotations, and thus can be
decoded by this algorithm. We can even test automatically if a given HMM has
this property [13], called the critical edge condition.

The algorithm again uses dynamic programming, summing all of the paths within
every feature, to obtain the maximum probability extended annotation. In the Viterbi
algorithm, we compute the values V[i, k], the maximum probability of a state path
for the sequence xp, ..., x; over all paths ending in state k. In the extended Viterbi
algorithm, we instead compute L[i, k], the maximum probability of an extended an-
notation (L, C) of the sequence x1, ..., x;, where the model is in state k at position
i;thatis, L[i, k] = maxPr(xq,...,x;, (L, C), h; = k).

At each step, we examine all possible durations of the last segment with the same
label and instead of choosing the single most probable path in that segment with
that length, we compute the sum of all possible appropriate-length state paths in this
segment. If the segment starts at position j of the sequence, let P[j, i, k, £] be this
sum; it is the probability of generating the sequence x;, . . ., x;, starting in state kK and
ending in state £, using only states with the same label A (both states k and £ must
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also have this same label). We get the following recurrence:

Lli, k] = max max max L[j—=1,€1-age- Plji ¢kl 4.5

J=t

We compute the values of L in the order of increasing i. For each i, we compute
all relevant values of P[}, i, k, £] in order of decreasing j by the following recurrence
(this is similar to the standard backward algorithm):

Plj, i k, 0] = > ek are - P L j+1.0). (4.6)
¢ with label A

This algorithm finds the most probable extended annotation in any HMM in O(n’m?)
time.

4.3.3 Finding Many Paths: Sampling from the Posterior Distribution

Instead of finding the most probable state path, we can also sample a collection of
state paths according to the conditional probability distribution Pr(H | X) defined by
the HMM. The following algorithm for sampling from HMM was introduced by Zhu
et al. [82].

We first precompute all values of B;(k, X) by the backward algorithm as outlined
in Section 4.3.1. In the first step, we randomly choose initial state &;, where the
probability of starting in state k is proportional to s - B1(k, X). After that, in the ith
step, we choose the next state i; with probability proportional to ap, , p; - Bi(h;, X).
The probability of choosing path H = hy, ..., h, by this randomized algorithm is
exactly Pr(H | X), so we are sampling from the conditional distribution of state paths,
given the output sequence X.

Sampling may be useful if we need to provide several alternative annotations
instead of a single prediction. For example, several possible high probability anno-
tations may be needed for the purpose of experimental verification. In gene finding,
genes may have several splicing variants; the same DNA sequence is transcribed
into multiple proteins using different combinations of splice sites. SLAM [17] and
AUGUSTUS [71] use this method to generate multiple gene annotations as potential
alternative transcripts. On the contrary, as each of these will likely have extremely low
probability, they are likely unreliable as overall predictions for the entire sequence.

44 GENERALIZED HIDDEN MARKOV MODELS

The lengths of features found in biological sequences can come from extremely
complex distributions. Unfortunately, simple HMMs are not necessarily effective
at modeling these distributions. For example, the simplest way to model a region of
variable length is with a single HMM state that has a transition to itself (a self-loop),
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FIGURE 4.7 Length distribution of internal exons on human chromosome 22. (a) Best fit
by geometric distribution. (b) Best fit by geometric-tail distribution with # = 130.

with transition probability p. The probability that the HMM stays in such a state for
exactly € steps is (1 — p)p®~!, so the distribution of lengths of regions generated
by this state will be geometric. However, length distributions of biological sequence
elements are far from geometric. Figure 4.7a shows length distribution of internal
exons in human genes and its best approximation by a geometric distribution.

This section shows a variety of methods to address this problem. Some involve
changes to the generative behavior to improve the ability to model more complicated
distributions. The simplest such approaches can substantially increase the decoding
time from O(nm?) to O(n*m?); for long DNA sequences, this order of magnitude
change is unacceptable. We thus present methods that compromise between modeling

accuracy and decoding time.

4.4.1 Generalized HMMs and Explicit State Duration

In generalized HMMs, self-loop transitions are replaced by states generating their
state durations explicitly. Upon entering a state, the generative model first chooses
the duration d, which is the number of symbols that will be generated in this state. For
each state &, the probability distribution §;, that determines these random variables
is explicitly represented in the model. After d symbols are generated in the state, the
model follows a transition to a new state.

To compute the most probable state path that generates a particular sequence
of symbols, we must modify the Viterbi algorithm. In each step of the dynamic
programming, in addition to examining all potential last transitions, we also have
to consider all possible durations of the last state. If V[i, k] is again the probability
of the most probable path generating the first i symbols x, ..., x; and finishing in
state k, assuming that in the next step the model will transit out of state k or finish
the generation process, the recurrence characterizing the dynamic programming must
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change as follows:

VIi, k] = 1n<1a‘1§_[emit(k, JD-&(i—j+1)- meax V(iji—1,¢) - apxl, 4.7
<jsi

where emit(k, j, ) is the emission probability of generating the sequence of symbols
Xj, ..., in state k. The straightforward implementation of this dynamic program-
ming gives an O(n>m?) running time, where n is the length of the sequence and m
is the number of the states, since the computation of emit(v, j, i) takes O(n) time in
the worst case. However, it is possible to reduce the running time to O(n>m?) using
a precomputation that requires O(nm) time, after which it is possible to compute
emit(v, j, i) in constant time for any i and j (see [53] for details).

This sort of runtime, which is quadratic in the length of the query sequence, is
reasonable for short sequences, such as proteins. It is not feasible for long DNA se-
quences. Two straightforward solutions to reduce the running time are used in practice.

First, we can place an upper bound of d on the number of characters produced by
each state (as in [61]). Then, the running time will be O(ndm?).In speech recognition
applications, it is usually possible to keep the bound d relatively small, as the state
durations may be phonemic durations, so this approach yields a reasonable decoding
algorithm with practical running time. However, such a bound is often hard to find in
biological applications.

Second, we observe that we can stop our dynamic programming search for lengths
that may be emitted by the current state whenever emit(k, j, i) = 0. For example,
this is a common stopping condition for exon states in gene finding: we can stop
searching upon reading an in-frame stop codon. Burge and Karlin [15] used this
approach in their gene finder Genscan to model exons with generalized states and
complex distributions, still achieving reasonable decoding runtimes. Unfortunately,
this approach does not extend to intron distributions: there is no common sequence
forbidden to them.

4.4.2 Distributions with Geometric Tails

One way of decreasing the running time, even when no upper bound on the length
of the state durations is available, is to restrict the family of length distributions
allowed in the generalized states. One example of this approach is due to Brejova
and Vinar [14], which restricts the family of durations to ones with geometric tails.
Such distributions are robust enough to characterize the lengths of many important
biological elements effectively.

A geometric-tail distribution for the duration of a state is the joining of two dis-
tributions: the first part is an arbitrary length distribution, and the second part is a
geometric tail. Specifically, there is a parameter ¢ where, for values of i less than or
equal to 7, the probability & (i) is explicitly set, while for values of i greater than ¢,
Si(i) = 8() - q}{_’. The values of 8;(¢) and g are set to maximize the likelihood of
the length distributions of training data, and the explicit probabilities found in & (i)
for i < t are set to match observed values after smoothing.

Such distributions can model the lengths of many functional segments of biological
sequences, even with small values of the tail start parameter ¢. For example, Fig. 4.7b
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shows the geometric-tail distribution with # = 130 that best approximates the length
distribution of human internal exons.

[14] emphasize models with small values of the parameter ¢ because they also
design an efficient decoding algorithm with O(nmt + nm?) runtime. The Viterbi
algorithm for generalized HMMs in recurrence (4.7) explicitly considers all possible
durations of state k. For geometric-tail distributions, we can reduce the running time
by distinguishing between two cases: durations less than or equal to #; and durations
longer than #.

In particular, let Q[i, k] be the probability of the most probable path generating
the first i symbols of the sequence and spending at least last #; steps in state k. To
compute the value of Q[i, k], we consider two cases: either the ith character extends
the duration of the state k, which was already at least #, or generating the ith character
brings the duration of state k to exactly #; steps. The value of Q[i, k] can then be used
in computing V[i, k], instead of checking all durations longer than ¢:

oli, k], (duration at least ;)
Vi, k] = max { max [emit (k,i —d + 1,i) - 6x(d) (4.8)
1<d<1y
-m?x VIi—d, £]-agi] (duration less than ),
Oli—1,k]-qx ey (duration more than 1)
Qli, k] = max ¢ emit (ki —tp +1,10) - 6k(ty) - mng VIi —t, €] - ag 4.9)
(duration exactly f).

A straightforward dynamic programming algorithm implemented based on this
recurrence would take O(ntm2) time, which [14] improve to O(nmt + nm?) by pre-
computing values of max, V[i, £] - a(¢, k).

In gene finding, this technique was used in ExonHunter [12,14] to model the
length distributions of exons and introns; the gene finder Augustus [70] uses a similar
approach shown in Section 4.4.3 to model the length distributions of introns.

The distributions of much longer features can also be modeled in an extension
of this approach. The gene finder ExonHunter [12] models the lengths of intergenic
features, for which a simple geometric tail distribution would require t &~ 10*, by
replacing a single-state model of intergenic region with a two-state model that al-
lows one to approximate this distribution. The first state generates symbols in blocks
of length /7, where the number of blocks is determined by a geometric-tail dis-
tribution and tail begins at /7. The second state generates only up to /z symbols,
with uniform length distribution. This method replaces the original length distribu-
tion with a step-function approximation, where the steps happen at intervals of /7,
as shown in Fig. 4.8. The model that represents this distribution can be decoded in
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FIGURE 4.8 Step-function approximation of intergenic length distribution in human chro-
mosome 22. The right plot shows detail of the step-function character of the distribution.

O(nm+/t + nm?) time, which is practical even for the large values of ¢ needed to
model intergenic regions.

4.4.3 Gadgets of States

An alternative way of avoiding the geometric length distributions for individual states
in hidden Markov models is to model a single sequence element by multiple states
instead of a single state. Durbin et al. [25] (recently also reexamined by Johnson
[35]) discuss several ways to model nongeometric length distributions by replacing a
single state with a group of states that shares the same set of emission probabilities.
Transitions are added inside this group so that the probability of staying within the
group for £ steps is close to the probability that the modeled feature has length £.

Consider the gadget in Fig. 4.9a. The leftmost transition is the sole entry point to
the submodel, and the rightmost transition is the exit. If the gadget consists of # states,
the probability of generating a feature of length ¢ > nis £(¢) = (!2}) p*~"(1 — p",
which can be used to model a wide variety of gamma distributions (see Fig. 4.9b). One
example of this approach is found in [46], who used three copies of their codon model,
each with its own self-loop, to model the length distribution of genes in bacteria.

The geometric-tail distributions with parameter # discussed in the previous sections
can be generated by a gadget of ¢ states, shown in Fig. 4.10; for i < ¢, the probability
of generating a feature with length i is Hj<i(1 — pj)pi, while if i > ¢, then 6;(i) =
iz = ppd ™A = ).

Such a construction was used by Nielsen and Krogh [56] for protein modeling
and by Stanke and Waack [70] in gene finding. The modified Viterbi algorithm for
geometric-tail distributions shown in the previous section is essentially equivalent to
running the classical Viterbi algorithm on such an HMM, though it is more memory
efficient, since the Viterbi probabilities V[i, k] are not stored for the extra states within
the gadget.

In general, one can use any topology of states in a gadget; distributions that can
be represented in such a way are called phase-type distributions, and they play an
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FIGURE 4.9 (a) A gadget of states generating nongeometric length distributions; (b) de-
pending on the number of states and probability p, different distributions from a subclass of
the discrete gamma distributions I'(p¢, 1) can be generated.

important role in queuing and systems theory (see [21] for a recent overview). This
approach of using phase-type distributions suggests what appears to be an ideal frame-
work for modeling general length distributions in HMMs: fix the number of states
in each gadget depending on the desired running time, and then find the best ap-
proximation of the length distribution observed in training data. With increasing
size of the gadget, we can approximate any desired length distribution arbitrarily
well [5].

Unfortunately, most gadgets, such as the one shown in Fig. 4.9a, introduce the
multiple-path problem discussed in Section 4.3.2, so Viterbi decoding is inappro-
priate for them. Indeed, Vinar [75] showed that the result of decoding the HMM
with a gadget shown in Fig. 4.9a with Viterbi decoding is equivalent to the result
of decoding an HMM where the same feature has essentially a geometric length
distribution.

This unhappy resultleaves us with two options: compute the most probable labeling
by the extended Viterbi algorithm from Section 4.3.2 or use other decoding strategy,
such as posterior decoding. Note that since the extended Viterbi runs in quadratic
time in the length of the sequence, the former strategy is no better than using arbitrary
length distributions and the algorithm from Section 4.4.1.

q
I—p 1~ 1-p2 ~ 1—P3ﬂ 1—q
N4
W
FIGURE 4.10 A gadget of states generating a geometric-tail length distribution with t = 4.
The black circle represents the first state of the next submodel of the HMM.
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4.5 HMMS WITH MULTIPLE OUTPUTS OR EXTERNAL INFLUENCES

In the previous sections, we have considered HMMs that modeled a single DNA or
protein sequence and its annotation. This approach, however, is not appropriate to the
more contemporary domain in which we may have much external information that
is helpful in annotating a sequence accurately. In this section, we consider a variety
of ways in which HMMs can incorporate such external evidence. Many of these
change the structure of the output of the HMM, while others influence the decoding
algorithms.

Perhaps the most readily available source of information is predicted evolutionary
homology. A large number of DNA and protein sequences are publicly available in
databases such as GenBank [9]. For a given sequence of interest, we may find its
likely homologs in a database and exploit typical patterns of evolution to improve
the annotation. Functionally important regions usually evolve much more slowly and
are well conserved even between relatively distant species; on the contrary, random
mutations often accumulate more quickly in regions with fewer functional constraints
[68]. Another source of evidence is the results of biological experiments aimed at elu-
cidating sequence features and their function. For example, in gene finding, EST se-
quencing and tiling array experiments may confirm that certain regions of the genome
are exons.

An example of additional information in gene finding is illustrated in Fig. 4.11. The
figure shows significant alignments of a distantly related genome, known proteins,
and expressed sequence tags to a genomic region containing the human URO-D gene.
In this case, the additional evidence provides a human observer enough information
to have a very good idea about the structure of the gene. The process of incorporating
such information into the automatic annotation that results from decoding an HMM,
on the contrary, is not necessarily nearly as simple: we must design systems that are
efficient to decode and efficiently trained, and that are able to accommodate errors
and imprecisions in the external sources of information.
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FIGURE 4.11 Evidence supporting annotation of human URO-D gene. Significant align-
ments from fruit fly genome, known mouse proteins, and mouse ESTs are represented
as boxes.



74 ADVANCES IN HIDDEN MARKOV MODELS

4.5.1 HMMs with Multiple Outputs

One way of incorporating additional evidence into HMMs is to represent each source
of evidence as a new informant sequence. We can then extend the HMM to generate the
informant sequences as part of its output, alongside with the original query sequence
whose annotation we seek.

These extensions are perhaps most easily described in the framework of Bayesian
networks. A Bayesian network is a generative probabilistic model whose output is
N variables. The dependencies among these variables are shown by representing
the variables as the vertices of a directed acyclic graph. We generate values for the
variables in topological order so that the values of all of the variables that are the pre-
decessors of a variable are determined before its value. To be more specific, consider a
variable X, with parents X1, ..., X. The parameters of the Bayesian network specify
the conditional probability Pr(X = x| X| = x1, ..., Xx = xi) for all combinations
of the values x, xi, ..., x¢. Once the values of the parent variables are fixed, we can
generate the value of X from this conditional distribution.

HMMs easily fit into this Bayesian network framework: an HMM that generates
a sequence of a fixed length n can be represented as a Bayesian network with 2n
variables: for each emitted symbol, we have one variable representing the symbol itself
and one variable representing the hidden state emitting the symbol (see Fig. 4.12).
We can also represent higher order states by including additional edges between the
observed variables as demonstrated in the figure.

One approach to incorporating external evidence into the HMM is to represent the
evidence sources by informant sequences, which also depend on the hidden states of
the network. We translate each external source into a sequence of n symbols from
a finite alphabet, where each symbol in the informant sequence must correspond to
one symbol of the query sequence. For example, we can encode a genome-to-genome
alignment as a sequence of n symbols from the alphabet {0, 1, ...} by characteriz-
ing each base of the query DNA sequence as “aligned with match” (symbol “17),
“aligned with mismatch” (symbol “0”), or “unaligned” (symbol “.”); this is the en-
coding scheme used in the gene finder TwinScan [39].

We can represent this approach by adding a variable for each informant se-
quence at each sequence position to our Bayesian network. If we have k — 1 external

—()

FIGURE 4.12 A hidden Markov model with second-order states, represented as a Bayesian
network. The top row of variables represents the state path 4, ..., h, through the HMM. The
bottom row represents the emitted DNA sequence xi, ..., x,. The conditional probabilities
of the Bayesian network are defined by the initial, transition, and emission probabilities of
the HMM: PI"(I’Z]) = Sny» Pr(hi|h,»,1) = Ap;hi_y» and Pr(xi|h,», Xi—1, Xl‘,z) = €hyxi_0.Xi_1.Xi The
observed variables, which indicate the DNA sequence, are shaded in the figure.
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FIGURE 4.13 A representation of the generative probabilistic model of the TwinScan gene
finder [39] as a Bayesian network. The h; variables each represent one state of the HMM;
variable x; represents one nucleotide of the query DNA sequence, and y; represents the conser-
vation between this nucleotide and some other genome over a special alphabet with symbols

for matched, mismatched, and unaligned positions. (TwinScan actually uses emission tables of
order 5, which can be depicted by adding additional edges, as shown in Fig. 4.12.)

information sources, the network will have n(k + 1) variables: n state variables, n
variables for the query sequence, and n variables for each of the kK — 1 informant
sequences. The simplest way to add these new variables is to make the symbols of all
k sequences conditionally independent given the state at each position. Figure 4.13
shows such a model for k = 2. Korf et al. [39] used this approach to incorporate
genome-to-genome alignments into gene finding. Pavlovic et al. [58] transformed
the outputs of a collection of gene-finding programs into informant sequences and
used this same sort of approach to join their predictions into a single prediction;
their system does not even involve the query DNA sequence as one of the network’s
outputs.

Training and decoding of these extended HMMs is analogous to regular HMMs:
maximum likelihood parameters can be obtained by simple frequency counting from
annotated sequences, and we can straightforwardly modify the Viterbi algorithm (and
other decoding algorithms) to account for the multiple emission probabilities in each
step. The main limiting factor of these models is not their algorithms but is the
assumption of conditional independence between individual output sequences, which
is clearly violated in most applications.

Instead, when the evidence consists of multiple alignment of sequences known
to have evolved from a common ancestor, we can use phylogenetic HMMs, a model
design that reflects known evolutionary relationships between these sequences. In
particular, we can arrange the Bayesian network so that the topology of the net-
work is identical to the phylogenetic tree representing the evolutionary history of the
sequences, as in Fig. 4.14, which shows a model of a human query sequence and
additional sequences from mouse, rat, and chicken. In this Bayesian network, we
can partition all sequence variables into two sets at every position i: the set of ob-
served variables O;, corresponding to the sequences in the leaves of the phylogenetic
tree, and the set of unobserved variables U;, corresponding to the unknown ancestral
sequences.

The unobserved variables complicate both training and decoding. To train the
model, we must use the EM algorithm instead of simple frequency counting [24]. For
decoding, at each position i and for each state 4;, we need to compute the likelihood of
the corresponding tree submodel Pr(O; | ;). This probability can be computed from
the probability distribution Pr(O;, U; | h;) defined by the phylogenetic tree model by
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FIGURE4.14 A simple phylogenetic hidden Markov model depicted as a Bayesian network.
Each variable k; represents one state of the HMM, the variables H;, M;, R;, C; each represent
single positions of human, mouse, rat, and chicken from one column of a multiple genome
alignment, and the variables a;, b;, ¢; represent the unknown ancestral sequences. Observed
variables are shaded. For example, the value of H; depends on its ancestor b; and on the
HMM state h;. The state determines mutation rate, since mutations occur more frequently in
noncoding regions.

marginalizing unobserved variables:

Pr(O; | hi) = Z Pr(O;, U; | h). (4.10)
Ui

The number of terms in this sum is exponential in the number of unobserved
variables. However, since the generative model has a tree structure, we can compute
this sum in time linear in the number of all variables by using Felsenstein’s peeling
algorithm [27], which performs dynamic programming by starting at the leaves and
proceeding to the root of the tree.

We can introduce higher order states for the observed variables, as described at the
beginning of this section. However, introducing higher order states for the unobserved
variables is more complicated: it requires substantial modification of the decoding
algorithm [69], and the running time becomes exponential in the order of the states.

Another modification of phylogenetic HMMs [34] involves rooting the phyloge-
netic tree in the query sequence rather than in the common ancestor (see Fig. 4.15).
The advantage of this approach is that the resulting probability distribution can be

FIGURE4.15 Modified phylogenetic hidden Markov model, with query sequence positioned
at the root of the phylogenetic tree.
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decomposed into a product of two terms: the probability that the HMM generates the
query sequence and that the contribution from the variables introduced by the other
sequences. The emission and transition probabilities of HMM states can be trained
and tuned separately as in a single-sequence gene finder, and the parameters required
for including additional evidence can be trained afterward.

An important issue is the parametrization of random variables associated with the
query and informant sequences. In phylogenetic HMMs, most variables have two
parents: the state variable and the parent in the phylogenetic tree. Thus if the alphabet
size is o, the number of states is m, and the number of sequences is N, we must
train ®(Nmo?) parameters. We can reduce this number by employing a nucleotide
substitution model based on a standard continuous Markov chain model of evolution.
For example, the simplest Jukes—Cantor model [36], which assumes a uniform rate
for all single-point mutations, requires only a single parameter per sequence and
state. In more complex models of evolution, such as the general reversible model of
Rodriguez et al. [63], the substitution rate matrix (requiring ®(c?) parameters for
each state) is shared among all branches of the phylogenetic tree, and one parameter
corresponding to the branch length of an edge in the phylogenetic tree needs to be
trained for each sequence and state. Using such a model of evolution will reduce the
number of parameters to @(Nm + mo?), thus substantial savings even for moderate
number of species.

Phylogenetic HMMs were first introduced in evolution studies [28,80]. [33] were
the first to apply them for sequence annotation in the problem of secondary struc-
ture prediction. As genomes of multiple organisms have become available, phyloge-
netic HMMs have been applied to genomic sequences for tasks such as gene find-
ing [34,50,59,67] and identifying conserved elements in genomes [68]. Phylogenetic
HMMs are also useful for finding overlapping genes in compact viral genomes [51].

The accuracy of HMM when used to analyze protein sequences can also be im-
proved by using multiple sequence alignments of several proteins that are known to
be homologous with a query sequence. However, we typically do not know the phy-
logenetic tree representing the evolution of these proteins. Instead, researchers have
developed variants of HMMs that emit a profile specifying the relative frequency of
each amino acid at each position of the sequence. Unlike phylogenetic HMMs, these
models do not capture the strong correlation between closely related sequences but
only summarize the features of the many rows of the alignment. However, they re-
quire far simpler parameter estimation. HMMs emitting profiles were used to predict
secondary structure of proteins by [16], topology of S-barrel membrane proteins by
[49], and topology of helical transmembrane proteins by [74].

4.5.2 Positional Score Modification

We can incorporate external evidence into an HMM using other methods besides
Bayesian network approaches. In an HMM, the joint probability Pr(H, X) of sequence
X and state path H is computed as a product of emission and transition probabilities
(see Eq. 4.1). The methods presented in this section place additional factors into this
product, while keeping the decoding algorithm viable.
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All possible annotations of a particular sequence are represented as different state
paths through the HMM. Consider a piece of additional evidence E. It can be seen as a
probabilistic hypothesis about the true annotation, whose validity depends on whether
E comes from a believable source: if the origin of the evidence is trustworthy (with
some probability Pfg), then only paths from some set Hr should be considered. On
the contrary, with probability 1 — Pg, the evidence is untrustworthy and we should
disregard it.

For example, in transmembrane topology prediction, we may see a motif that
suggests that the ith amino acid in the query sequence is found inside the cytoplasm.
Then the set Hg consists of all paths through the HMM that mark the ith amino acid
as being from a cytoplasmic loop, and the probability (1 — Pg) is the probability that
the match is not a real functional occurrence of this motif, and we should disregard
the evidence entirely.

When given such an evidence, we recognize two events: E. (the evidence is
correct), and E_ (the evidence is wrong). We can write as follows:

Pr(H, X |E) = Pg -Pr(H, X | E4) + (1 — Pg) - Pr(H, X | E_). 4.11)

Note that Pr(H, X | E4) = 0 for paths H not found in Hg; if the evidence is
correct, it is specifically eliminating certain paths from being possible. If the ev-
idence is wrong, it should have no effect on predictions, and therefore we say
Pr(H, X | E_) = Pr(H, X).If we already know that H € Hp, additional evidence does
not give us any new information, and addition of such evidence should not change rela-
tive probabilities of paths; consequently, we can say Pr(H | Hg, X) = Pr(H | E4, X).
Finally, we assume (obviously unrealistically) that the probability of the sequence
should be independent of the event E, and we can say Pr(X) = Pr(X | E4).

Using these assumptions, we obtain after simple manipulation the following up-
dated probability distribution over all possible annotations:

(1 = Pg) - Pr(H, X), if H¢ Hg

. . (4.12)
(1= Pe + wptsg ) - Pr(H, X),if H € He.

Pr(H,X|E)={

Intuitively, the probabilities of all paths that agree with the evidence are multiplied
by a factor greater than one, and probabilities of all paths that do not agree with the
evidence are multiplied by a factor smaller than one. The relative probability of paths
within each category remains unchanged.

The computational complexity of decoding under this new probabilistic model
depends on the form of the set Hg of paths that are consistent with evidence. If Hg
contains all the paths that annotate a point in the sequence with a particular label or
with any label from a set of labels, we can slightly modify the Viterbi algorithm to
compute the most probable state path. The quantity Pr(Hg | X) needed for the bonus
factor can be obtained by the forward—backward algorithm.

This method was first derived and used in a gene finding program GenomeScan
[81] to incorporate protein homology into gene finding. The same method was also
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used to improve prediction of transmembrane protein topology by Xu et al. [77]. In
their case, the evidence was composed of motif hits that indicate strong preference
for cytoplasmic or noncytoplasmic loops at certain sites in the sequence.

A disadvantage of the GenomeScan approach is that it is unclear how to integrate
multiple pieces of additional evidence (such as multiple protein hits or multiple mo-
tifs), particularly if they are not independent. In an attempt to solve this problem,
the next method incorporates evidence in the form of additional multiplicative terms
at each position of the sequence. An important difference is that given a particular
alignment, GenomeScan method alters the probability at one position only, while in
what follows we boost the probability independently at each position covered by the
alignment.

Assuming independence between the sequence X and all additional evidence E,
we can use Bayes’ rule to obtain

b Pr(H | E)
F(H | X, E) o Pr(H | X) - = (4.13)

Though this independence assumption is not true in practice, we can often limit de-
pendencies by avoiding using the same features of the sequence in both the HMM
and the additional evidence. For example, in gene finding, the HMM mostly mod-
els short windows of the sequence (signals, local coding potential, etc.), while the
additional evidence may represent database searches, such as alignments to EST or
protein sequences.

Whether we can develop an efficient decoding algorithm depends mostly on
the family of probability distributions that we use to represent the contribution of
the additional evidence Pr(H | E)/ Pr(H). In the simplest case, we assume posi-
tional independence for both the posterior probability conditioned on the evidence
Pr(H | E) = [\, Pr(h; | E) and the prior probability Pr(H) = [[;_, Pr(h;). To par-
tially compensate for the positional independence assumption, we can add a scaling
factor @ < 1 as follows:

4.14)

<Pr(H|E))°‘
Pr(H | X, E) x Pr(H | X)- [ ———— ) .

Pr(H)

In this particular scenario, we can easily modify the Viterbi algorithm to find the most
probable annotation H given both sequence X and evidence E are in time linear in
the length of the sequence.

For a single source of evidence, we can directly estimate the posterior probabilities
Pr(h; | E) from a training dataset. However, multiple sources of evidence would typ-
ically present many combinations of local information, requiring exponential num-
ber of parameters to train. Brejova et al. [12] developed a method for expressing
and combining information from several sources of additional evidence using partial
probabilistic statements to express the implications of the evidence and the quadratic
programming to combine all the statements concerning a particular position in the
sequence into a posterior distribution Pr(h; | E).
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In the context of gene finding, the method of multiplying Pr(H, X) by additional
factors was successfully used to incorporate a variety of sources of information (such
as genome, EST, and protein alignments) into a single model; two examples are
HMMGene [42] and ExonHunter [12].

[72] designed a method that tries to overcome the positional independence assump-
tions. Let us assume that the evidence E is expressed as a set of “hints”: intervals
in the query sequence. In the simplest case, each hint supports a single state of the
generalized HMM (more complex variations are possible). We say that a given state
path is compatible with hint (i, j) if the part of the query sequence x;, ..., x; is all
generated in the state supported by the interval. Otherwise, we say that the state path
is incompatible. For example, in gene finding, we can represent EST alignments as a
set of intervals, each supporting an exon state in the HMM.

Each hint is assigned a position in the sequence at its right end. Only a single hint
e; is allowed to end at each position i. Also, if there is no hint ending at position i, we
will say e; = M, corresponding to a vacuous hint. We will create a model that will
generate not only the sequence X but also the sequence of hints as follows:

n
Pr(H X, e1,...,e,) =Pr(H, X) - HPr(ei | H, X). 4.15)

i=1

The probability Pr(e; | H, X) is either qm if the hint at position i is M, g™ if the hint
is compatible with H, or ¢~ if the hint is incompatible with H. These parameters are
trained by frequency counting on the training data. Note that this model is not truly
a generative model for hints, since we do not generate the left ends of the hints, yet
we use them to determine compatibility or incompatibility of each state path. The
Viterbi algorithm can be again easily modified to accommodate these interval hints,
and if g* > ¢, it asymptotically takes no longer than the underlying decoding of
the generalized HMM.

The interval hints were used in the gene finder AUGUSTUS+ [72]. They enforce
better consistency of final predictions with the evidence, since the bonus factor g™ is
not awarded for state paths that match an interval only partially.

4.5.3 Pair Hidden Markov Models

In the previous sections, we have reviewed several methods that break the problem
of sequence annotation into two steps. First, a general search tool is used to identify
local alignments between the query sequence and a sequence database. Next, this
information is incorporated using some HMM-based method. The main disadvantage
of the two-step approach is that the initial general-purpose alignment algorithm does
not take into account the structure of the annotation problem.

For example, in gene finding, alignments of a protein or EST with the query DNA
may extend beyond exon boundaries to surrounding introns, and alignments of two
homologous genes may have misaligned splice sites. Such mistakes are propagated
to the second stage and may affect the accuracy of gene finding.



HMMS WITH MULTIPLE OUTPUTS OR EXTERNAL INFLUENCES 81

)

a\: 1/4 a,a: 1/8 Aa:1/4
e 1/4 ce 1/8 Ac:1/4
g 1/4 9,90 1/8 Ag:1/4
tA 1/4 tt: 1/8 At 1/4

a,c: 1/24

a,g: 1/24

t,g: 1/24

FIGURE 4.16 A simple pair HMM. The symbol A in the emission probability tables repre-
sents empty string. State B generates the ungapped portion of the alignment. State A generates
characters only in the first sequence, and state C generates characters only in the second se-
quence. The alignment gaps induced by states A and C have geometrically distributed lengths.

This problem can be avoided by simultaneously annotating and aligning two se-
quences in a single step. This process can be modeled by a pair HMM. Pair HMMs are
HMMs that generate two sequences at the same time, but where a state of a model can
generate a character in one sequence or both sequences. Pairs of characters generated
in the same step correspond to homologous positions from the two sequences. If only
one character is generated in a given step, it corresponds to a sequence position in
that sequence with no homolog in the other sequence due to an insertion or deletion.
Simple pair HMMs, such as the one in Fig. 4.16, can be used to represent a traditional
global alignment of two sequences [25], with a natural relationship between the loga-
rithm of the probability of a path in the HMM and the score of an alignment according
to traditional schema. More complex pair HMMs can represent pairwise alignments
that incorporate more flexibility in the models of the lengths and conservation levels
of different parts of the alignment.

Pair HMMs differ in an essential way from the multiple output HMMs introduced
in Section 4.5.1: they have an alignment of the output sequences fixed and in each
step generate a character in each output sequence. If the alignment contains a
gap, they generate a special character, for example, a dash. On the contrary, the
output sequences of pair HMMs do not identify the pairs of characters emitted
in the same step; when we decode a pair HMM, the goal is to discover such
homologies.

The program SLAM [2], predicts genes simultaneously in two homologous ge-
nomic sequences, under the assumption that they have the same exon structure. Their
pair HMM has separate states for exons, introns, signals, and intergenic regions, as
in HMMs for gene finding. Each state not only can emits pairs of sequences with
conservation patterns typical for the sequence feature represented by the state but
can also allow for insertions or deletions, where a position in one sequence is not
matched to the other. DoubleScan [52], is similar, but can also predict genes with dif-
ferent exon—intron structure. GeneWise, by [10], uses pair HMMs to align a protein
sequence to a genomic sequence. The noncoding states emit characters only in the
genomic sequence, while coding states emit a triplet of nucleotides in the genomic
sequence and a single amino acid in the protein sequence.
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The main disadvantage of pair HMMs is their high running time. Given two
sequences generated by a pair HMM, we do not know which pairs of characters
from these two sequences were generated at the same time; indeed, this is what
decoding is to discover. The modified Viterbi algorithm that finds the most proba-
ble alignment of two sequences, and their annotations, is equivalent to an extension
of classic global alignment algorithms, and as for those algorithms, its runtime is
proportional to the product of the sequence lengths. Although such a running time
is infeasible in many situations, different heuristics can be used to make the pair
HMM approach more practical [2,52]. This approach is also hard to extend to mul-
tiple sources of information because its running time grows exponentially with the
number of sequences, again as is true for classical algorithms for multiple align-
ment.

4.6 TRAINING THE PARAMETERS OF AN HMM

In the previous sections, we considered the simplest scenario of HMM parameter
estimation: maximum likelihood training in an HMM without the multiple paths
problem on a completely annotated training set. This method is applied if we can
determine the target state path for each sequence in the training set. In this case, it
is sufficient to count the frequency of each transition and emission to estimate the
model parameters that maximize the likelihood of the training data. Unfortunately,
HMM training is not always so simple.

In this section, we explore several other scenarios for HMM training. First, when
only unannotated or partially annotated sequences are available, we need to use unsu-
pervised or semisupervised training to estimate the parameters of the model. Second,
often a single parameter set does not capture properties of all query sequences well,
and we may want to adapt the parameter set to the query sequence before making a
prediction. Finally, we may choose to use different optimization criteria instead of
maximum likelihood principle.

4.6.1 Unsupervised and Semisupervised Training

Supervised learning can be applied only when the annotation is known for each
sequence in the training set, and there is a one to one correspondence between such
an annotation and the state paths in the HMM. If this is not the case, we need to apply
more complex methods for training. The task is, as in the supervised case, to find the
parameters of the HMM with a given topology that maximize the likelihood of the
training set.

There is no general exact algorithm known for solving this unsupervised training
problem efficiently; some modifications have even been shown to be NP-hard [1,31].
The method most commonly used, the Baum—Welch algorithm [7], is an iterative
heuristic and can be considered a special case of the general EM algorithm for learning
maximum likelihood models from incomplete data [24].
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The Baum—Welch algorithm starts from an initial set of model parameters 6y. In
each iteration, it changes the parameters as follows:

1. Calculate the expected number of times each transition and emission is used to
generate the training set 7 in an HMM whose parameters are 6.

2. Use the frequencies obtained in step 1 to reestimate the parameters of the model,
resulting in a new set of parameters 6y 1.

The first step of the algorithm can be viewed as creating a new annotated training
set T®), where for each unannotated sequence X € T, we add every possible pair
(X, H) of the sequence X and any state path, weighted by the conditional probability
Pr(H| X, 6¢) of the path H in the model with parameters 6k, given the sequence X.
The second step then estimates new parameters 61, as in the supervised scenario,
based on the new training set 7®). The Baum—Welch algorithm achieves the same
result in O(nm?) time per iteration using the forward and backward algorithms to
avoid explicitly creating this exponentially large training set. Details can be found,
for example, in [25, Chapter 3.3].

Baum [7] has shown that the likelihood of the training set improves (or stays the
same) in each iteration of this algorithm. However, this does not guarantee that the
Baum—Welch algorithm reaches optimal model parameters: it may instead reach a
local maximum or a saddle point in the parameter space [24].

A modification of the Baum—Welch algorithm, called Viterbi training, is also often
used in practice. In the first step of the algorithm, instead of considering all possible
paths through the model, we only consider the most probable path. However, this
algorithm is not guaranteed to increase the likelihood of the observed data in each
step [25, Chapter 3.3].

The Baum—Welch algorithm can also be used in the semisupervised scenario. For
example, Krogh et al. [44] train a transmembrane topology predictor on a dataset
where the exact boundaries of transmembrane helices are not known. Therefore, they
allow the boundary to occur anywhere within a short window of the sequence. We
can modify step 1 of the algorithm to include only paths that agree with such partial
annotations.

4.6.2 Adjusting Models to Query Sequences

Supervised and semisupervised training assume that the training and testing sets
contain samples independently generated from the same underlying distribution
of sequences and their annotations. In some situations, such an assumption is not
appropriate.

For example, Tusnddy and Simon [73] argue that the amino acid composition
of transmembrane helices cannot be adequately described by the same set of emis-
sion probabilities for all transmembrane proteins. Instead, they propose to segment
a given protein so that the difference in distribution between helix and nonhelix re-
gions is maximized. This is essentially achieved by optimizing the HMM emission
probabilities with respect to the query sequence using unsupervised training. We can
train the parameters not only on the single query sequence but also on its homologs,
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assuming that they represent independent samples generated by the same HMM. In
this way, we can use the information from homologous sequences without construct-
ing multiple sequence alignment and without assuming that the annotation is the same
in all sequences. Tusnady and Simon [73] use emission parameters estimated on an
annotated training set as pseudocounts in each step of the Baum—Welch algorithm.

Chatterji and Pachter [18] use a similar approach to find genes in multiple ho-
mologous genomic regions by biasing parameters of a typical HMM gene finder to
match specifically the genes on the input. The parameters of the model and gene pre-
dictions are iteratively improved by Gibbs sampling. Thus, after each iteration, gene
predictions in all input sequences will tend to be more similar to each other, and the
parameters of the model will fit the input sequences more closely.

We may also need to adjust parameters of a gene finder when applying it to a newly
sequenced genome. In such a case, we rarely have sufficiently large training set of man-
ually annotated sequences. One approach is to identify easy to find genes, such as those
with a strong protein match in a database, and train the HMM using those genes [46].
Korf [40] has considered adjusting parameters trained on a different species by Viterbi
training on the new species. Lomsadze et al. [48] have shown that a careful procedure
can obtain parameters of a eukaryotic gene finder on a new species in a completely
unsupervised fashion, starting with a very simple set of manually created parameters.

4.6.3 Beyond Maximum Likelihood

So far, we have considered algorithms that trained HMM parameters by maximizing
the likelihood of the training set. A common criticism of the maximum likelihood
(ML) approach in the machine learning literature is that it maximizes the wrong
objective (see, for example, [41]). Our goal in decoding is to retrieve the annotation
H that maximizes Pr(H|X), where the sequence X is fixed. Therefore, instead of
maximizing the joint probability Pr(H, X) of the training sequences, this perspective
argues that we should concentrate on maximizing the conditional probability Pr(H | X),
since the sequence X is fixed in the decoding phase, and it does not matter whether
its probability is low or high. This optimization criterion is known as conditional
maximum likelihood (CML).

In the context of hidden Markov models, CML was used in applications in bioin-
formatics [41] and natural language processing [38]. Even if the sequences are an-
notated, there is no known closed formula or EM algorithm that would estimate the
parameters of the model to optimize the conditional maximum likelihood. Instead,
numerical gradient descent methods are used to achieve local maximum. In these
studies, slight [38] to significant [41] improvement was observed compared to models
trained by ML.

A theoretical analysis is available in the context of the simpler data classification
problem, where a similar dichotomy occurs between the naive Bayes classifier (which
is equivalent to ML) and logistic regression (equivalent to CML). In this context,
Ng and Jordan [55] have shown that even though using CML gives asymptotically
lower error, ML requires significantly fewer training samples to converge to the best
model: it requires only a logarithmic number of samples with respect to the number



CONCLUSION 85

of parameters compared to the linear number of samples required for convergence
in CML. Thus ML training is appropriate if only a small number of samples are
available, while it is better to use CML when the training set is large. It is not known
whether these results extend to the case of more complex models, such as HMMs,
where we are doing more than merely classifying a sample into categories. We may
also ask (and no known answer exists to this question) whether the better response
to an increase in training data is to switch from ML to CML, or to switch to a more
accurate model of reality that requires a larger number of parameters.

One major disadvantage of HMMs optimized for CML is that it is hard to interpret
their emission and transition probabilities. The generative process associated with the
HMM no longer generates sequences that look like sequences from the training set.
The probabilities no longer represent frequencies observed directly in the sequence,
which makes it hard to incorporate prior knowledge about the problem into the prob-
abilistic model by applying restrictions on parameters of the model or by creating a
custom model topology.

For example, the HMM modeling the topology of transmembrane proteins in
Fig. 4.4 has two states representing transmembrane helices. It may be reasonable
to assume that since the sequences corresponding to these two states serve the same
function (membrane transition) that in an ML model both states should share the same
emission probabilities. On the basis of this assumption, we can reduce the number of
parameters (and thus the number of sequences required for training) by tying those
parameters together, forcing them to be the same. On the contrary, since in CML
method the emission probabilities are set to maximize the conditional probability of
the annotation given the sequence, rather than the likelihood of the sequence, it is not
clear that the emission probabilities in these two states should be similar, even if the
sequences attributed to these states are similar.

Conditional random fields [45] further continue in the direction of CML training,
abandoning the probabilistic interpretation of emission and transition probabilities
and replacing them with undirected potentials that do not need to be normalized to 1.
They were applied in bioinformatics for recognizing protein structure motifs [47] and
for finding genes [22].

Some recent extensions abolish the probabilistic interpretation of HMMs alto-
gether. Instead, they consider the following problem directly: set the parameters of
the model (without normalization restrictions) so that the model discriminates well
between correct and incorrect annotations. These models, such as hidden Markov
support vector machines [4] and convex hidden Markov models [78], are inspired
by maximum margin training and kernel methods in support vector machines [11],
which are very successful methods for the classification problem.

4.7 CONCLUSION

On our tour through HMMs and their use in biological sequence annotation, we
have seen both the most traditional HMM algorithms and their most exotic exten-
sions. We have seen extensions to the decoding algorithms to handle many cases
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where multiple different paths through the HMM correspond to the same seman-
tic meaning and algorithms to handle generalized HMMs, in which the lengths of
features may come from complex, nongeometric distributions. We have seen many
ways in which HMMs can operate on multiple sequences, and in all these cases we
have argued why these extensions are useful in modeling and annotating biological
sequences.

Many of these extensions rely upon the conceptual simplicity of the basic HMM
framework: unlike the parameters of a neural network or of a support vector ma-
chine, the parameters of a hidden Markov model trained for maximum likelihood are
extremely simple to understand. Even for their more complex extensions (such as
phylogenetic HMMSs or pair HMMs), one can quickly determine the semantic mean-
ing of the parameters and imagine ways to make them estimated more accurately, or
to change the topology of the HMM to more closely model reality (though, of course,
our discussion of the multiple-path problem in Section 4.3.2 shows that this may not
be entirely wise). Even the more complex decoding approaches to handle external
information, such as those of Section 4.5.2, can be seen as a way of mathematically
encoding sensible intuitive concepts.

Perhaps the most important question for the future of HMMs, then, is whether
increasingly sophisticated HMM modeling, training, and decoding procedures can
continue to maintain this conceptual simplicity while still allowing the use of ever
more and more complex forms of sequence data. Can we incorporate a useful under-
standing of the three-dimensional geometry of molecules into HMM analysis? Can we
usefully train HMMs to understand the evolutionary relationships among thousands
of sequences? Can we annotate features and subfeatures of biological sequences that
are allowed to overlap each other in complex ways, and where a feature is not simply
a contiguous segment of DNA? These questions, and numerous others, will be the
subject of the research of the next many years in HMM analysis.
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5.1 INTRODUCTION

Molecular Biologists have witnessed an astronomical growth of biosequence data
(DNA, RNA, and protein sequences) due to efforts of several sequencing projects
over the past decade. Understanding the information contained in such data is vital
to decipher gene function, causes of disease in humans, and rational drug design. A
fundamental technique adopted by molecular biologists to extract such meaningful
information is identifying common patterns or motifs among biosequences. Discov-
ering motifs in a set of unaligned DNA sequences could aid in locating biologically
functional regions such as promoters, transcription factor binding sites, splice sites.
Ungapped regions in the multiple alignment of a set of protein sequences could help
classifying proteins of unknown function into known protein families. Identifying
unique regions in the messenger RNA (mRNA) of genes could aid in the design of
gene-specific short-interference RNAs (siRNAs), thus, reducing the risk of off-target
gene silencing in gene-based therapy for certain neurological disorders and cancers.
The huge volume of biosequence data available calls for novel computational tech-
niques to discover motifs in a given set of sequences, say DNA, RNA, or proteins.

Bioinformatics Algorithms: Techniques and Applications, Edited by Ion I. Méandoiu
and Alexander Zelikovsky
Copyright © 2008 John Wiley & Sons, Inc.

93



94 SORTING- AND FFT-BASED TECHNIQUES

Therefore, several variants of the motif discovery problem could be identified in
the computational literature; many of them have been proved to be NP-hard. The
numerous algorithms proposed for such variants adopt fundamental concepts and
salient data structures of computer science to identify the desired motifs. Dynamic
programming algorithms have been proposed for alignment of the input sequences
to identify ungapped segments of biological importance. Algorithms that represent
the patterns of the input as graphs and trees to discover common motifs have been
proposed. Data structures such as suffix trees and suffix arrays (refer [34]) have been
proved to be powerful to solve complex string problems efficiently in linear time. In
this chapter, we would discuss novel algorithms, which adopt strategies significantly
different from those adopted by several known algorithms, to address a few salient
problems in the domain of molecular biology that require discovering motifs in a
set of biosequences. These algorithms employ basic sorting techniques and simple
data structures such as arrays and linked lists and have been proved to perform better
in practice than many of the known algorithms when applied to synthetic and real
biological datasets.

Measuring similarities among biological sequences has numerous applications.
For instance, functionalities of newly sequenced genes can be inferred. Similarity
measurements can also help in identifying motifs. In this chapter, we also consider
FFT-based efficient algorithms for measuring similarities.

The rest of this chapter is organized as follows: Section 2 describes how sorting
can be used as a technique to identify biopatterns (or motifs) in a given set of DNA,
RNA, or protein sequences. In Section 3, we discuss some classic motif discovery
problems, a brief account of the algorithms proposed for the same in the literature
and algorithms that are based on sorting for these problems. Section 4 is devoted to
a discussion on FFT-based similarity algorithms. Section 5, concludes the chapter.

5.2 SORTING AND BIOPATTERN DISCOVERY

The basic idea is to create a collection of all the /-mers (where the length of the
desired motif is /) that represent the “motif space” from the input sequences, sort
the collection lexicographically and scan through the sorted collection to identify the
motifs of interest. In the following section, we explain in detail how the elements of
the collection are generated from the input for each of the problems that we discuss.

There are many ways to sort such a collection. For instance, it can be sorted
using any comparison-based algorithm such as quick sort, merge sort. But, if we
have additional information about the elements in the collection, radix sort could be
employed. For a detailed discussion on sorting algorithms refer [37] and [19]. We
know that DNA and RNA sequences are from a fixed alphabet of size 4 and protein
sequences are from an alphabet of size 20. In our problems, if we represent every
[-mer in the collection as an integer value, we know that the values of elements in the
collection lie strictly in the range [0, |Z |l ], that is, every element in the collection can
be thought of as a (log,|X|)/-bit binary number, where X is the alphabet of the input
sequences. Radix sort sorts the elements with respect to some number of bits at a time
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starting from the Least Significant Bits (LSBs). For example, these elements can be
sorted with respect to w bits at a time, where w is the word length of the computer. In
this case, the elements in the collection can be sorted in (log,|X|)(//w) phases where
each phase takes linear time.

For DNA sequences, the alphabet ¥ = {q, c, ¢, g}. In this alphabet g is the com-
plement of ¢ and a is the complement of r. We map the elements of X into integers
as follows: a = 0,c = 1,¢ = 2, and g = 3. Thus, we need two bits to represent each
member of ¥ and a 2/-bit number can represent an /-mer.

5.3 MOTIF DISCOVERY AND RELATED PROBLEMS

In this section, we will discuss a few salient problems in molecular biology that require
discovery of biopatterns in a set of DNA, RNA, or protein sequences. We will deal
with a classic motif discovery problem, called the Planted (I, d)-motif problem, in
detail. We will discuss algorithms to discover motifs based on edit distances. We will
also look at three problems that are very closely related to motif discovery, called
the Primer Selection Problem, the problem of discovering patterns that participate
in a phenomenon called RNA Interference (RNAi) in the cells of organisms and
the Specific Selection of siRNA Patterns in entire genomic data. For each of these
problems, we give a brief account of the algorithms that have been proposed in the
literature followed by a discussion on algorithms that employ sorting techniques to
identify the patterns of interest.

5.3.1 Planted (I, d)-Motif Problem

The Planted (I, d)-motif Problem is a classic problem of motif discovery in molec-
ular biology with application in identifying transcription factors and their binding
sites for a set of coregulated genes, promoters, splicing sites, and so on. Tompa [62]
studied the problem of identifying very short motifs of length about 5-7 with 0, 1,
or 2 substitutions, to address the ribosome binding site problem and proposed an
exact algorithm for the same. When concluding the paper, he had posed the question
of devising algorithms to accommodate longer patterns with proportionately more
substitutions allowed. Pevzner and Sze [48] addressed this question by devising two
novel algorithms that effectively identified motifs of length 15 with 4 substitutions.
They formally formulated the problem as the Planted (I, d)-motif problem, which had
also been considered by Sagot [57] as follows.

5.3.1.1 Planted (1, d)-Motif Problem (PMP) Input are t nucleotide sequences of
length n each and integers / and d. The problem is to identify a motif M of length /,
given that each input sequence contains a variant of M, the variants being ata hamming
distance of at most d from M.

But there are algorithms earlier to Tompa’s work that have been proposed in the
literature to identify motifs in a set of DNA sequences that could be binding sites
for regulatory elements. Lawrence and Reilly [42] proposed an algorithm based on
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Expectation Maximization (EM) to identify such motifs. Bailey and Elkan’s [4] con-
tribution, algorithm MEME, was an extension of Lawrence and Reilly’s work to
discover multiple occurrences of a motif in a set of sequences and also to discover
multiple planted motifs for a given input. Lawrence et al. [41] presented an algorithm
based on Gibbs Sampling, called the GibbsDNA. Hertz and Stormo [35] devised a
greedy algorithm CONSENSUS to identify functional relationships by aligning DNA,
RNA or protein sequences. They used a log-likelihood scoring scheme to arrive at the
information content of an alignment and the algorithm picked those alignments with
highest information content. CONSENSUS successfully identified 19 of 24 sites of
the DNA binding protein CRP-transcription factor in 18 DNA sequences of E. coli,
each about 105 nt in length.

The “challenge problem” addressed by Pevzner and Sze was the (15, 4) instance
of PMP stated above in r =20 sequences each of length n = 600. Algorithm
WINNOWER attempts to identify large cliques in a multipartite graph G, constructed
with the patterns of length / in the input sequences as its vertices. Two vertices « and v
in G are connected by an edge iff u and v belong to two different sequences of the in-
put and their hamming distance, that is, the number of substitutions needed to convert
u to v and vice versa, d(u, v) < 2d. Algorithm WINNOWER treats all edges of G
equally and does not distinguish edges that correspond to high and low similarities.
Algorithm SP-STAR attempts to overcome this drawback by using a sum-of-pairs
scoring function and a local improvement strategy to identify the best occurrences of
the motif in the input set.

Buhler and Tompa [12] showed that there are instances of PMP that are more
challenging than the (15, 4) instance and devised an algorithm called PROJECTION
to solve such instances. They concluded that WINNOWER and SP-STAR failed to
solve the (14, 4), (16, 5), and (18, 6)-motif problems for the same values of ¢ and
n as above, while their algorithm PROJECTION succeeded in doing so. Algorithm
PROJECTION uses the principle of random projections to arrive at better seeds of
the input for an EM algorithm. It uses a hash function &(x) constructed using k of
the [ positions chosen at random, and hashes all substrings of length / of the input
sequences into buckets based on their value w.r.t. the k positions. It is based on an
intuition that if k < (I — d) a number of the ¢ variants of M would hash into the same
bucket. A probability weight matrix arrived from the substrings hashed on to highly
enriched buckets is used as the initial seed to the EM algorithm. The work presented
a probabilistic analysis of PMP to arrive at the difficult instances of PMP, such as the
9, 2), (11, 3), (13, 4), (15, 5), (17, 6)-motif problems and stated that these problems
are inherently unsolvable by PROJECTION as the number of spurious hits (patterns
that appear by random chance) for these instances is more than one (Table 2 of [12]).

Algorithms MULTIPROFILER [38], PatternBranching, and ProfileBranching [49]
also address PMP and were shown to perform well in practice for several instances
on the problem on random and real biological data.

All the algorithms discussed above employ local search techniques and may not
output the desired planted motif always. We refer to such algorithms as approximate
algorithms. The performance of such approximate algorithms is measured using
a factor called the performance coefficient in the literature. Let K be the number



MOTIF DISCOVERY AND RELATED PROBLEMS 97

TABLE 5.1 Performance of Approximate Algorithms on (15, 4) Instance of PMP

Algorithm Year P
GibbsDNA 1993 0.12
MEME 1995 0.10
CONSENSUS 1999 0.07
WINNOWER 2000 0.92
PROJECTION 2001 0.93
PatternBranching and ProfileBranching 2003 ~ 1.00 and 0.57

of actual residue positions (#/) of the input that correspond to the variants of motif
M. Let P be the number of such residue positions predicted by an algorithm.
Performance Coefficient (p) is defined as the ratio (K N P)/(K U P). Algorithms
that always output the correct answer are referred to as exact algorithms. While
for approximate algorithms 0 < p < 1, for exact algorithms p = 1. Table 5.1 gives
the performance of several algorithms discussed above on the (15,4) instance of
PMP. There are several exact algorithms in the literature proposed for PMP in
[10,11,32,57,58,60,62,63]. Such algorithms are exhaustive enumeration algorithms
and as aptly stated in [12], they become impractical for the challenging instances of
PMP. A salient exact algorithm called MITRA was proposed by Eskin and Pevzner
[28] that adopts a mismatch tree data structure to represent the pattern space and
performs a depth first search on the mismatch tree to identify the planted motif for
a given input. MITRA was shown to be successful in identifying monads (simple
planted motifs) and dyads (complex planted motifs that appear in pairs separated by
a varying gap length in each input sequence) in synthetic and real biological data.
The voting algorithm [18] adopts hashing techniques to identify planted motifs.

There have also been contributions to PMP by researchers who have addressed
closely related problems in [9,10] (Substring Parsimony Problem), [33] (Closest
String Problem), [29] (Common Approximate Substring Problem), and [43] (Con-
sensus Patterns Problem).

For PMP, exact algorithms that adopt sorting techniques were first presented in [51].
The runtime of the basic algorithm Planted Motif Search (PMS) is O(ml|Z|%(1/w)),
where w is the word length of the computer. Like most of the algorithms in the liter-
ature, the sorting approach is based on exploring the neighborhood of input patterns,
exploiting the fact that the motif M is an element in the d-neighborhood of at least one
substring of length / in every input sequence. The basic algorithm for PMP, Algorithm
PMS is as follows:

Algorithm PMS {
1. Generate all possible /-mers from out of
each of the ¢ input sequences.
Let C; be the collection of /-mers from
outof S; for1 <i <t.
2.Forall 1 <i <t and for
all u € C;, generate all [-mers v,
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such that # and v are at a hamming
distance of at most d.
Let the collection of /-mers
corresponding to C; be le, forl <i<t.
The total number of patterns in any
Clis O(ml|z|%).
3. Sort all the /-mers lexicographically
inevery Cj, 1 <i <t.
Let L; be the sorted list corresponding to C;.
4. Merge all the Lis (1 <i <1t).
Output the generated (in step 2) [-mer
that occurs in all the L;s.

}

We know that there are (n — [ 4 1) substrings of length / in each of the ¢ input
sequences, and the number of elements in the d-neighborhood of a string of length /
is Z?:O ! Cil Z|i. If d < (1/2), then, the total number of elements in the collection is
O(tnld| x |d ). Each element in the collection is represented as (2//w) computer words
and hence the following theorem holds.

Theorem 5.1 PMP can be solved by PMS in time O(tnl?|Z|4(I/w)), where w is the
word length of the computer. The space complexity of PMS is O(tnl¢|Z|%(1/w)).

Algorithm PMS generates the neighborhood of /-mers of all the input sequences
at the same time. But we know that a variant of the motif M appears in every input
sequence and hence will be contained in the collection of elements that represent the
neighborhood of /-mers from one input sequence. Therefore, PMS could be modified
into a memory efficient version described as follows.

Algorithm PMST1 {
Generate all possible /-mers from out of the
first input sequence Sj.
Let Cy be the collection of these [-mers. For all u € Cy,
generate all /-mers v such that u
and v are at a hamming distance of
at most d.
Sort the collection of these /-mers and
let L be the sorted collection.
fori:=2totdo{
1. Generate all possible /-mers from out
of the input sequence ;.
Let C; be the collection of these /-mers.
2. For all u € C;, generate all [-mers v such that
u and v are at a hamming distance of at most d.
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Let the collection of these /-mers be C;.
3. Sort all the /-mers in C}. Let L; be
the sorted list.
4. Merge L; and L and keep the
intersectionin L,ie., L := LN L;.
}

L now has the motif(s) of interest, output L.

}

Note that the space complexity of PMS1 improves by a factor of ¢ as it retains the
neighborhood of only one sequence at every stage of processing. Hence, we get the
following theorem.

Theorem 5.2 PMP can be solved by PMSI in time O(tnl?|Z|%(I/w)), where w
is the word length of the computer. The space complexity of PMSI is O(nl?|Z|?
I/ w)).

If motif M occurs in every input sequence, then every substring of M also occurs in
every input sequence. In particular, there are atleast (I — k + 1) k-mers (ford < k <)
such that each one of them occurs in every input sequence at a hamming distance of at
most d. Let K be the collection of k-mers that represent the (I — k + 1) substrings of
M. Also, in every input sequence S;, there will be (I — k 4 1) consecutive positions
at which there would be occurrences of the elements of K such that an /-mer could
be formed by putting together the k-mers of these positions.

An improved algorithm, algorithm PMS2, is presented in [51] that exploits the
above fact to discover planted motifs in two phases. In the first phase, all (d + ¢)-
mers (for some appropriate value c) that occur in each of the input sequences at a
hamming distance of at most d are identified (all valid M) for the input set).
Potential /-mers are formed from the strategy explained above from the (d + c¢)-mers.
In the second phase, each [-mer M’ of the first phase is checked to see if it is a valid
planted motif for the input.

For instances with [ from 9 to 20, algorithm PMS|1 took about 1 or 2 s whend = 2
and around 20s when d = 3. Algorithm PMS?2 found the planted motif in about
220 seconds for instances with / from 13 to 20 and d = 4. These results show better
performance when compared to the two different versions of MITRA reported in [28],
namely, MITRA-Count and MITRA-Graph. For the (11, 2) instance, MITRA-Count
and MITRA-Graph take 1 min each. For the (12, 3) instance, MITRA-Count and
MITRA-Graph take 1 min and 4 min, respectively. For the (14, 4) instance, MITRA-
Count takes 4 min and MITRA-Graph takes 10 min. Also, the PMS algorithms solve
the challenge instances (9, 2), (11, 3), and (13,4) intime 1.43 s, 19.84 s, and 228.94 s,
respectively, which were deemed difficult in [12] owing to the number of spurious
solutions possible being greater than one.

Buhler and Tompa [12] examined orthologous sequences from a several organisms
taken upstream of the following types of genes: preproinsulin, dihydrofolate reductase
(DHFR), metallothioneins, and c-fos, to identify known transcriptional regulatory
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elements (data due to Blanchette [10]). On these datasets, the PMS algorithms found
the published motifs similar to the ones reported in [12].

Space efficient exact algorithms PMSi and PMSP that adopt better pruning tech-
niques while searching the motif space have been proposed in [20] and have solved
the (15, 5) and (17, 6) instances of PMP in 35 minutes and 12 h, respectively. These
algorithms explore the d-neighborhood of substrings of length / (say ) from the first
sequence, one at a time, to check for the planted motif, considering only a subset
of substrings from other sequences that would qualify to be a variant w.r.t. u, that
is, those substrings at a hamming distance of at most 2d from u. Furthermore, im-
provements on these algorithms is included in [21] , obtaining a significantly faster
algorithm called PMSprune, which handles harder instances reducing the running
time.

5.3.2 Discovering Edit Distance-based Motifs

The discussion in the previous section considers only point mutations as events of
divergence, but evolutionarily speaking, there are insertions and deletions of residues
that occur to cause such divergence in biosequences. Therefore, researchers have
considered to employ the Levenshtein distance (or edit distance) instead of hamming
distance to extract common motifs in a set of sequences. Rocke and Tompa [55]
present an algorithm based on the Gibbs Sampling approach of Lawrence et al. [41]
that adopts a relative entropy scoring function to identify best scoring motif occur-
rences, taking into account gaps in the occurrences. Sagot [57] proposed algorithms
that adopt suffix tree data structure to discover common motifs in a set of biose-
quences based on hamming distance and also extended them to the edit distance-based
model. The problem of discovering motifs based on edit distance is formally stated as
follows.

Given n sequences S1, S2, . .., Sy, each of average length m from a fixed alphabet
¥, and integers [, d, and g, find all the patterns of length / in the input, with occurrences
in at least g of the n sequences, each such occurrence being at an edit distance of at
most d from the patterns themselves.

The suffix tree algorithm given by Sagot [57] has a runtime of O(n’mi?||?)
and a space requirement of O(n’m/w), where w is the word length of the com-
puter. An algorithm with an expected runtime of O(nm + d(nm)1 PO log nm)
where € = d/I and pow(e) is an increasing concave function was proposed by Ade-
biyi and Kaufmann [1]. The value of pow(e) is roughly 0.9 for protein and DNA
sequences.

A sorting-based algorithm Deterministic Motif Search (DMS) that has the same
runtime complexity as Sagot’s algorithm was proposed by Rajasekaran et al. in
[52]. Algorithm DMS generates the neighborhood of every substring of length / in
the input, the elements being at an edit distance of at most d from the substrings
themselves. Call this collection A. Note that the elements in A will have lengths in the
range [(I — d), (I + d)]. The number of elements in A is O(nmld|2|d). A collection
B consisting of all substrings of the input with lengths in the range [({ — d), (I + d)]
is also generated, duplicates within the same sequences removed. Clearly, the size of
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B is O(nmd). Collections A and B are sorted and merged. Let the merged collection
be C. Collection C is then scanned to identify those elements of A that have occurred
in collection B from at least ¢ distinct sequences of the input. The significance
of algorithm DMS lies in the fact that it uses simple radix sorting techniques and
arrays as underlying data structure to identify the desired patterns with a potential
to perform better in practice than the suffix tree-based approach. A survey on motif
search algorithms is [50].

5.3.3 Primer Selection Problem

An experimental method in molecular biology, Polymerase Chain Reaction (PCR),
is performed in the laboratories to create multiple copies of a DNA sequence. This
process, called amplification, requires a pair of short single-stranded synthetic DNA
strings, typically 15 to 20 nucleotides long that exactly match the beginning and end of
the DNA fragment to be amplified, called forward and reverse primers. Multiplex PCR
(MP-PCR) is a variant of PCR, which enables simultaneous amplification of multiple
DNA fragments of interest in one reaction by using a mixture of multiple primers [15].
The presence of multiple primers in MP-PCR can lead to severe problems, such as
unintended amplification products caused by mispriming or lack of amplification due
to primer cross hybridization. To minimize these problems, it is critical to minimize
the number of primers involved in a single MP-PCR reaction, particularly, when the
number of DNA sequences to be amplified is large. This can be achieved by selecting
primers that would simultaneously act as forward and/or reverse primers for several
of the DNA sequences in the input set. The problem of minimizing the number of
primers is called the Primer Selection Problem (PSP) and has been well studied, for
example, in [24-26, 47].

Pearson et al. [47] proved that PSP is NP-Complete by a reduction from the mini-
mum set cover problem, and gave an exact algorithm based on the branch-and-bound
technique and a greedy heuristic guaranteeing a logarithmic approximation factor. Doi
and Imai [24] considered biological constraints such as the GC-content, complemen-
tarity of the primers and the length of amplification in their approximation algorithm.
In [25], the authors analyzed a more rigorous version of the primer selection problem
by considering primer orientation and the length constraint on the amplified prod-
uct. Konwar et al. [39] address MP-PCR primer design with amplification length
constraints using a potential greedy technique.

An advanced technique of designing primers with multiple bases in each position
of the primer [40] led to a higher degree of primer reuse in MP-PCR. Such primers
are called Degenerate Primers and require no involved methods than those required
to synthesize regular primers. The advent of this technique shifted the focus to the
problem of selecting degenerate primers for a given set of DNA sequences, called
the Degenerate Primer Design Problem (DPDP). The degeneracy of a degenerate
primer py is the product of the number of bases in each position of the primer, that
is, Hle palil, where [ is the length of p,. It can also be viewed as the number of
distinct nondegenerate primers that could be formed out of it. For example, if the de-
generate primer is p; = A{CT}GC{ACG}T{GA}, it has degeneracy 12; the distinct
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nondegenerate primers represented in p; are ACGCATG, ACGCATA, ACGCCTG,
ACGCCTA, ACGCGTG, ACGCGTA, ATGCATG, ATGCATA, ATGCCTG, ATGC-
CTA, ATGCGTG, and ATGCGTA. p; is said to cover a given DNA sequence s iff s
contains at least one of the nondegenerate primers of p, as its substring. Linhart and
Shamir formulated many variants of DPDP in [45] and proved them to be NP-hard.
One such variant, called the Maximum Coverage Degenerate Primer Design Problem
(MC-DPDP), emerges when a bound is imposed on the degeneracy of the primers
designed, as highly degenerate primers may give excessive mispriming. The goal is
then shifted to design a minimum number of degenerate primers for the given set of
sequences such that each degenerate primer has a degeneracy of at most the bound
specified and covers as many input sequences as possible. A number of algorithms
have been proposed for MC-DPDP, defined as follows.

Given n DNA sequences of length m nucleotides each, primer length / and degen-
eracy threshold d, find a set of degenerate primers of maximum coverage, each of
length / and degeneracy at most d, that collectively cover all the input sequences.

Rose et al. [56] proposed an algorithm called CODEHOP that designs hybrid
primers with nondegenerate consensus clamp at the 5’ region and a degenerate 3’
core region. In Wei, Kuhn, and Narasimhan’s [64] work, algorithm DePiCt that has a
similar flavor, designs primers of low degeneracy and high coverage for a given set of
aligned amino acid sequences based on hierarchical clustering. In an effort to identify
genes belonging to the same family, Fuchs et al. [31] devised a two phase algorithm
called DEFOG. In its first phase, DEFOG introduces degeneracy into a set of non-
degenerate primer candidates selected due to their best entropy score. Linhart and
Shamir [46] proposed an algorithm called HYDEN for the first phase of DEFOG and
reported good practical performance in experiments on synthetic and real biological
data. Souvenir et al. [59] proposed the MIPS algorithm for a variation of MC-DPDP,
discussed in their paper as the Partial Threshold Multiple Degenerate Primer Design
(PT-MDPD), that uses an iterative beam search technique to design its degenerate
primers. Experimental results for varying number of input sequences and different
target degeneracy, the sequences being uniformly distributed i.i.d. sequences of equal
length, were reported in [59]. It was shown that MIPS always produced a smaller num-
ber of primers than HYDEN. For a survey of algorithms on Primer Selection, see [5].

MIPS starts with a set of primers (called 2 primers) that cover two sequences from
an input of n sequences, adopting a FASTA lookup table to identify those substrings
of length / that match in at least six consecutive positions. It extends the coverage of
the primers in the candidate set by one additional sequence, introducing degeneracy
in the primers if necessary, retains a subset of these primers of lowest degeneracy (the
number determined by an input parameter called beam size b) for the next iterative
step until none of the primers can be extended further without crossing the target
degeneracy d. At this point, the primer with the lowest degeneracy is selected and the
sequences that it covers are removed from the input set and the procedure is repeated
until all the sequences are covered.

MIPS has an overall time complexity of O(bn’mp), where b is the beam size,
n is the number of sequences, m is the sequence length, / is the primer length, and
p is the cardinality of the final set of selected degenerate primers. The number of
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iterations MIPS takes to identify an n-primer, that is, a primer that covers all the n
input sequences, is O(n). This is because in the kth step of the iteration, it generates
candidate primers for the (k + 1)th step such that their degeneracy either increases
or remains the same while their coverage increases by exactly one more sequence.
Thus, even in the simplest case of a string of length / appearing as a substring in all
the input sequences, MIPS would perform n iterations to identify the nondegenerate
n-primer.

An algorithm called DPS has been given in [8]. DPS has been shown to have a
better runtime than that of MIPS in the worst case. It employs sorting techniques and
a new strategy of ranking the primers in every iteration as defined below.

Let the coverage efficiency e(P) of a degenerate primer P be the ratio of the
number (c(P)) of sequences it amplifies or covers to its degeneracy (d(P)), that is,
e(P) = c(P)/d(P).

Candidate primers are kept in a priority queue. Let P1 and P2 be two degenerate
primers in the priority queue of candidate primers and let e(P1) > e(P2), then the
priority of P1 is higher than that of P2.If e(P1) = e(P2), then the primers are ranked
in the nondecreasing order of their degeneracy.

Similar to MIPS, at any time the algorithm DPS keeps a collection of b best
primers. In a given iteration, these b primers are merged with every [-mer in the
input sequences that are yet to be covered. Each such merged /-mer is a potential
primer. Thus, a collection of at most bmn candidate primers is examined in any
iteration. There could be duplicates in this collection. This collection is sorted to
identify duplicates. The coverage lists of duplicates are merged. As a result, for
each candidate in the collection of unique candidates, its coverage efficiency is com-
puted. Based on the coverage efficiency, the best b primers are picked for the next
iteration.

Now, let us look into the number of iterations algorithm DPS will perform to
design 1 primer of degeneracy at most d. As the algorithm identifies unique primer
candidates in each iteration, the candidates generated for the next iteration will always
have a degeneracy strictly greater than the degeneracy of the candidate in the current
iteration. For a degeneracy of d, the number of positions that can be degenerate in any
primer strictly lies in the range, [[logsd] : [log,d]]. If we consider the number of
symbols that could be added to a nondegenerate primer to create a degenerate primer
of degeneracy at most d, strictly the range is [|log,d] : (|| — 1) % [logmdﬂ. Thus,
the number of iterative steps algorithm DPS can perform to identify a single primer
P of the output is O(] Z|log, 5 d). Thus, the overall time complexity of algorithm DPS
is O(|Z|log g dbn*mp).

[45] introduced another variant of DPDP called the Minimum Degeneracy Degen-
erate Primer Design with Errors Problem (MD-DPDEP). Here, the goal is to identify
one degenerate primer of minimum degeneracy to cover all the input sequences. A
special case of MD-DPDEP, called Minimum Degeneracy Degenerate Primer Design
Problem (MD-DPDP) is discussed in [46]. Apart from proving its NP-hardness, little
focus has been given to MD-DPDERP in the literature.

Let S = {51, S2, ..., S,} be the set of input DNA sequences and |S;| =m, | <
i <n.Let[,] <m be the length of the degenerate primer p; designed for the
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input set. Consider any input string S;. Let Si[J, ..., (j + [ — 1)] denote the substring
of length [ starting at position j of S;. Let dist(pg, Si[Jj, ..., (j + 1 — 1)]) denote the

hamming distance between pg and S;[J, ..., (j + [ — 1)]. Asdiscussed earlier, we say
that pg covers S; iff for some j of S;, dist(pg, Silj, ..., (j + 11— 1)]) = 0. Generally,
a small number of mismatches or errors are allowed between S;[j, ..., (j+1— 1)]

and pg, which will not hinder the proper binding of the primer to the string dur-
ing MP-PCR experiments. Let e, 0 < e < [, be the number of mismatches allowed,
(i.e.) paq covers S; iff for some j of S;, dist(pg, SilJj, ..., (j+1—1)]) < e. The MD-
DPDEP is defined as follows. MD-DPDP is a special case of MD-DPDEP where
e=0.

Given the set S of n input DNA sequences and integers / and e, MD-DPDEP is
to find a single degenerate primer p, of length / and minimum degeneracy, say d,
that covers all the input strings of S such that for some j of S;, dist(pg, SilJ, - .,
(j +1—1)]) < e for each input sequence S;, 1 <i <n.

In [7], algorithm MinDPS is proposed for MD-DPDEP. It designs p; consisting
of two parts, the nondegenerate part « and the degenerate part 8, similar to algorithm
CODEHOP. MinDPS consists of two phases, Phase I designing « adopting algorithm
PMS1, and Phase II designing g of p,; adopting algorithm DPS. Based on the proba-
bilistic analysis of [12], MinDPS arrives at the expected length of «, such that there
exists a planted (|«|, e)-motif for the input sequences. In Phase I, it finds a set of (|«/|,
e)-motifs for the input sequences using algorithm PMSI.

Let M be a (|a|, e)-motif for the input set. Let S;[ji, ..., (Ji + |e|] — D],
1 <i <n, be the variants of M in the input sequences. Let the hamming dis-
tance dist(er, Si[Ji, ..., (Ji + la| — D) =e}. If e/ = e — ¢}, then, dist(B, S;[(j; +
la]), ..., (i + lal + 18l — D) < €/. Let N; denote the set of strings of length |A],
such that for each element v € N;, dist(v, S;[(j; + |&|), ..., (i + || + |8 — D]
< ¢/. If there are more than one variant of M in a given input sequence S;, all
such variants are considered to construct the elements of N;. Phase II of MinDPS
constructs a degenerate primer 8 of length (I — |«|) considering the elements of the
sets N;, 1 <i < n as candidates from each sequence of the input. Algorithm DPS is
employed to design .

Algorithm MinDPS is reported to perform well in practice, achieving primers with
degeneracy around 200-fold less than the expected degeneracy on real biological
datasets when e = 3.

5.3.4 Discovering Endogenous RNAi Patterns in Genomes

RNA Interference or RNAi ([30]) is a phenomenon that inhibits the expression of
target genes by the introduction of double-stranded RNA (dsRNA) molecules into
the cells of organisms. RNAi has become a widely adopted technique in laboratories
to study pathways and determine gene functions in various species. Recent studies
show that it could be adopted as a therapy to treat diseases like cancers and genetic
disorders in which the mutant gene responsible for the initiation and progression of
such disorders is targeted and suppressed [13]. The dsRNA molecules, either syn-
thetic (in vitro) or those synthesized in vivo as a hairpin loop, are cut into fragments
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21-23 nt long (short-interference RNA or siRNA) by a Dicer enzyme present in the
cell. These siRNAs associate themselves to RNA Induced Silencing Complex (RISC)
and eventually become single stranded. Then, the RISC identifies the substring of the
target mRNA that is antisense to one of the two strands of the siRNA attached to it,
binds to the mRNA and cleaves it into two near the center of the siRNA strand. The
cell identifies the split mRNA as unwanted material and destroys it. Thus, the pro-
tein that would be translated from the mRNA will not be produced and the silencing
of the gene responsible for the production of the protein is achieved. This process is
called RNAi by degradation. RNAi by inhibition is another process where micro RNAs
(miRNA) approximately 22 nt long bind to sites within the 3’ Untranslated Region
(UTR) of the target mRNA and prevent its translation into the corresponding protein
([44]). For a detailed treatment of RNAi please refer to [2]. In RNAi by inhibition,
perfect matching between the miRNA and the mRNA target site is not necessary but
for RNAi by degradation, an exact matching is necessary between the siRNA strand
and the substring of the target mRNA.

In [36], the problem of detecting endogenous dsRNA control elements and their
corresponding mRNA target for RNAi by degradation in genome sequences is dis-
cussed. In this case, the dSRNA control element is a Stem-Loop-Stem (hpRNA)
structure formed in vivo by the occurrence of two substrings 20-25 nt long, com-
plementary to one another within a small distance along the genome sequence and
a third occurrence, which is part of the target gene, that is either one of the above
two occurrences that is anywhere in the genome. The first phase is of detecting all
such triple repeats in a genome sequence and an algorithm based on a suffix tree
data structure is given to detect triplets of at least 20 nt length in [36]. Formally, the
problem is described as follows.

5.3.4.1 The Triple Repeat Identification Problem (TRIP) Input are a sequence
S =s1,52,...,5, from an alphabet ¥, and integers / and d. For each element of X,
a member of this alphabet is defined to be its complement. If L is an /-mer of S, let
L' stand for the reverse complement of L. The goal is to output every /-mer, L, of S
if L™ occurs within a distance d of L in S, and either L or L"¢ occurs one more time
in S.

In [36], the authors report a memory requirement of 12 GB for a genome (C.
elegans) of size 100 Mb and the time required is mentioned as 4 h on a single processor.
Such large memory requirements are due to building a suffix tree for the entire genome
sequence and its reverse complement. Also, paging could become a very serious issue
if the entire suffix tree does not reside in the main memory.

In [6], two algorithms are proposed, CaTScanl and CaTScan2 (for Control And
Target Scan), that adopt sorting techniques to identify the triplets. Implementation
results of both the algorithms show better performance in practice in space as well as
time when compared to the suffix tree algorithm.

Algorithm CaTScanl adopts the radix sorting approach as follows. Let C be a col-
lection of elements of the form e = (p, o, v), holding the positional (p), orientational
(0), and value (v) information of /-mers in S. For every /-mer /; starting at position



106 SORTING- AND FFT-BASED TECHNIQUES
. . _ 3 f — f f f rc __ rc rc rc
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elements representing itself and its reverse complement respectively in C, such that,

pf = p{c = i, Oif = 0, O;C = l’ Ulf

; = 2I-bit number of /;, and v = 2/-bit number of
I7°. Elements of C are sorted with respect to the integer values of their corresponding
[-mers using radix sort. A scan of the sorted collection C will be sufficient to identify
the desired triplets and output them.

For very large genomes, the memory required by CaTScanl could become a
bottleneck as it involves holding the values of each vif and vi¢, two 2/-bit integers
in memory in addition to position i and its two orientations 0 and 1. In an effort to
further reduce the memory requirement of CaTScanl, algorithm CaTScan2 employs
a combination of MSBs first and LSBs first integer sorting. Let k be any integer,
1 <k <. In the first phase, the [-mers and their corresponding reverse comple-
ments of S are partitioned into 4k parts (as |X| = 4), with respect to the value of
the first k symbols. In particular, two /-mers will be in the same part if their first
k symbols are the same. Let A[1 : 4°] be an array of linked lists. For each posi-
tion 7 in S, let vif be the 2k-bit integer value of s;, Si+1, ..., Si+k—1 and v}, the
value of the reverse complement. The tuple (i, 0) is added to the list A[vif ] and
(i, 1) to the list A[v}°]. Now, there are at most 4% independent sorting subprob-
lems (one for each list of the array A). Each list of A is processed independently,
sorted w.r.t. the last (/ — k) symbols of the corresponding /-mers using LSBs first
sorting.

The advantage of the first phase is very clear. There are nearly 2n [-mers and
their reverse complements in S. Assume that each symbol of § is picked uniformly
randomly from the alphabet 2. Also assume that the /-mers are independent (which
is clearly false since the [-mers could be overlapping). An analysis making this
assumption has been proved to hold well in practice (as in [12]). Then, the expected
size of each list of A is 2n/4%. Using Chernoff bounds [17], we can show that the
size of each list is no more than (1 4 €)2n/4% with high probability, for any fixed
€ > 0. If cln is the amount of memory employed by algorithm CaTScan!, then with
CaTScan2, the space occupied by A is no more than 16n (considering that each i
is a 32-bit integer; there are n positions on S, and 2n entries in the linked lists of A;
each entry in the linked list is an i and a reference to the next element in the list, thus,
requiring 4 *x 2n x 2 = 16n bytes of space). The space used to process each list of A is
no more than cl(1 + €)2n /4% with high probability and can be reused for the different
lists of A. As aresult, the memory used by the new algorithm is 16n + cl(1 + €)2n /4
with high probability (where the probability is over the space of all possible inputs).
An example value for k is 6. Also, the memory requirement of CaTScan2 is
further reduced (to nearly 8n + cl(1 + €)2n/4%) by realizing the lists of A as an
array of 4% arrays whose initial size is calculated by an additional prescan of the
sequence S.

When run on a PowerEdge 2600 Linux server with 4 GB of RAM and dual 2.8
GHz Intel Xeon CPUs, employing only one of these CPUs to process the C. elegans
genome to identify triplets of length 21 nt, CaTScanl takes about 8 min and no
more than 2.5 GB of memory, while CaTScan?2 takes about 11 min and no more than
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1 GB of memory, achieving a speedup of 30 and 23, respectively, while reducing
the memory requirement by a factor of 4.8 and 12, respectively, over the suffix tree
approach.

5.3.5 Specific Selection of siRNA Patterns in Complete mRNA Data

The Specific Selection Problem arises from the need to design siRNA that aims
at gene silencing [27]. These short sequences target specific mRNA and cause the
degradation of such mRNA, inhibiting the synthesis of the protein generated by it.
These sequences are usually of small length, usually consisting of between 20 and
25 nucleotides. However, a length of 21 is used in practice and usually two of the
nucleotides are predetermined, so the problem becomes one of designing sequences
of length 19.

An important criterion in the design of the siRNA is that the sequence should
minimize the risk of off-target gene silencing caused by hybridization with the wrong
mRNA. This hybridization may occur because the number of mismatches between
the sequence and an unrelated sequence may be too small or because they share a
long enough subsequence. Formally, the problem can be described as follows.

5.3.5.1 The Specific Selection Problem Input are a collection of strings S =
{s1,...,s,} from an alphabet X, and integers / and d. We are interested in find-
ing a collection of I-mers X = {x1, ..., x,} where foralli = 1, ..., n, x; appears in
s; and it does not appear in x; for j # i with less than a distance of d.

It is clear that this problem can be solved in O(N 2) time, where N := Sy lsil
However, such an approach becomes impractical when we are dealing with complete
mRNA data where N could be of the order of 103,

In [66], this problem was studied under the name of unique oligo problem, and in
[61], a more general problem is considered under the name of probe design problem,
imposing more conditions on the designed /-mers, which include homogeneity—
which is measured by the melting temperature of the probe and the CG content—and
sensitivity—which is calculated using the free energy of the probe. Their solution
strategy is based on determining whether for each candidate /-mer it appears with
up to d mistakes in the other sequences by making use of a precalculated index
for small g-mers or seeds, and then extending contigous hits of g-mers with few
mismatches. The running time of these approaches depends critically on the values
of g and the number of mismatches which are used, which in turn depends heavily
on the combination of values of / and d.

In [65], this problem was considered in the context of designing an siRNA that
would target a particular mRNA sequence. It is pointed out that in cases such as
the ones that arise from designing siRNA where N ~ 108, 19 <1 <23, and d =
3, 4 the previous strategy is computationally very intensive, hence, the occurrences
of an /-mer in a sequence with up to d mistakes is calculated by making use of
overlapping—instead of contiguous—g-mers or seeds allowing a few mismatches,
and it is shown that this approach outperforms the previous methods by orders of
magnitude. In particular it is claimed that for / = 19, d =3, and N =5 x 107, the
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number of occurrences of an [-mer with up to d mismatches in a database of size N
can be calculated in nearly 10~2 s on a Xeon CPU with a clock rate of 3.2 GHz and
2 GB of main memory. This would imply that if we want to solve the (/, d) specific
selection problem in this case, we would take close to 6 days of calculation.

In [22], the algorithm SOS (for Specific Off-target Selection) is proposed, adopting
sorting techniques to identify specific /-mers. The algorithm is shown to be practical
when processing the complete mRNA of Human and Drosophila, running in less than
4 h and outperforming previous approaches.

The algorithm SOS can be described as follows:

Algorithm SOS {
Let X be a collection of (x, i) such that x is an /[-mer of s;.
forall (ji,..., jo)withl < j1 <--- < jg <ldo{
1. Sort the collection of X = {(x, i)} according to the values

of positions {1, ...,n}\ {ji, ..., jq¢} using radix-sort.
2. Scan the sorted collection, marking consecutive /-mers that agree on the
set of positions {1, ...,n}\ {j1, ..., js} and appear at different s;.

}

Output the unmarked /-mers.

}

It is clear then that Algorithm SOS can be implemented in O(N(l/ w)(( é)) time
and O(N log | Z|(l/w)) memory, where w is the word size of the computer. One big
advantage of Algorithm SOS is the fact that for a fixed value of / and d, the algorithm
is linear in NV, making it practical for high values of N. However, it is sensitive on the
parameter [ and particularly sensitive on parameter d, making it practical for values of
d < 5. Notice furthermore, that we can decrease the memory used by the algorithm
SOS to O(N) by storing the /-mers in collection X by their position numbers.

This algorithm was implemented in C was run on a Power Edge 2600 Linux
Server with 4GB of RAM and dual Xeon 2.8 Ghz CPU’s—only one that was used.
In processing the Human mRNA data, we used close to 1.5 Gb of RAM and in the
case of the Drosophila we used close to 700 Mb of RAM, due to the fact that we store
the /-mers as 64 bit numbers. In the particular case of the Human mRNA with/ = 19
and d = 3, SOS took 3 h and 22 min, outperforming the results in [65] by almost two
orders of magnitude.

5.4 FFT-BASED ALGORITHMS FOR SIMILARITY MEASUREMENT

Measuring similarities among biological sequences has numerous applications. For
instance, functionalities of newly sequenced genes can be inferred. Similarities can
be defined in a number of ways. The edit distance can serve as a measure of simi-
larity. (The edit distance refers to the minimum number of deletions, insertions, or
replacements needed to transform one sequence into the other.) Another measure of
similarity employs a matrix M that assigns a score for every pair of bases. Given two
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sequences, A and B, for each possible alignment between the two, we compute the
total score and pick the alignment with the maximum score.

Both global and local similarities could be of interest depending on the context.
Global similarity captures the similarity between the two entire sequences. Local
similarity refers to the similarity between a subsequence of one sequence and a
subsequence of the other sequence. Often, local similarities could give biologically
more meaningful information than global similarities.

Given two sequences, BLAST identifies all the maximal segment pairs in them.
BLAST is a widely employed local similarity software [3]. If A and B are any two
sequences, BLAST identifies all the pairs (A’, B') where A’ is a subsequence of A,
B’ is a subsequence of B, both A’ and B’ are of the same length, the similarity score
between A’ and B’ is at least S (for some specified S), and these two subsequences
are maximal, i.e., they can neither be expanded nor shrunk to increase the similarity
score. Any such pair is called a Maximal Segment Pair (MSP). Any similarity score
matrix such as PAM [23] can be used by BLAST in computing scores between two
subsequences. Other local alignment algorithms can be found, for example, in [54].

54.1 A Simple Algorithm

Global similarity between two sequences of length n each can be computed as follows.
We align the two sequences in each possible way and compute a score for each
alignment. For each alignment, the score can be computed in O(n) time. Since there
are ©(n) possible alignments, this simple algorithm runs in time O(n?).

Let A =ag,a1,...,a,—1 and B = by, b1, ...,b,—1 be two given sequences.
There are 2n — 1 possible alignments between A and B. In alignment 0, ay over-
laps with b,,_1; In alignment 1, ag overlaps with b, > and a; aligns with b, _; and
soon.Letc; = > j_oai—kbp—k—1 for0 <i < (n—1)and ¢,4; = ZZ;,I agbi—j for
l<j<m-1.

Note that ¢; computes something corresponding to alignment j (for 0 < j <
(2n — 1)). In particular, c¢; computes the sum of products of matching elements in
alignment j. Given A and B, the problem of computing c; for 0 < j < (2n — 1) is
known as the convolution problem. The c; values are known as convolution coeffi-
cients. The convolution problem can be solved in O(nlogn) time using FFT algo-
rithms (see, for example, [37]).

Theorem 5.3 The convolution of two given sequences of length n each can be
computed in O(nlogn) time.

Global similarities for all possible alignments of two given sequences
ao, ai, . ..,an—1 and by, b1, ..., by_1 from an alphabet £ can be computed by per-
forming |E|2 convolution operations. Since each convolution takes O(n logn) time,
the total time needed is O (l ¥|%n log n) More details on this algorithm follow.

Let ¥ = {01, 02, ..., ox}. Define the binary sequence A% =ag’, aj’,...,a,",,
where aj‘ = lifa; = oy and aj“ = O otherwise (for ] <¢ <kand0 < j<n—1).

Similarly, define B = b{", b{", ..., b" |, where b‘;”’ =1ifb; = o), and b‘;"’ =0
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otherwise (for 1 <m <k and 0 < j <n — 1). The basic idea behind the algorithm
is to compute the convolution of A%t and B (for 1 < ¢ <kand 1 <m < k) and
from all of these convolution results compute the similarity scores for each possible
alignment of A and B.

If s; is the score corresponding to the ith alignment of A and B (for 0 <i <
(2n — 1)), then s; is given by Z]lf:l an:l cfe’“”’ M(oy¢, 0,), Wwhere M(oy, 0,,) is the
score of aligning o, with o,,. Here, cfe’"m is the ith convolution coefficient (corres-
ponding to the ith alignment) of A%¢ and B°™.

Since k2(= | Z|?) convolutions are involved, the total runtime of the above algo-
rithm is O (| £|*nlogn), yielding the following.

Theorem 5.4 [f A and B are two given sequences of length n each, we can
compute the global similarity scores between them for each possible alignment in
O (I1Z*nlogn) time.

Example 1 Let ¥ ={g,c,t,a}, A=a,t,c 1t gt a,a,c,tg,t, and B={g,g,
a,t,a,cgtc,c,g a}. Then, A=0,0,1,0,0,0,0,0,1,0,0,0, and B' =0,0,
0,1,0,0,0,1,0,0,0,0. When A€ and B’ are convolved, the convolution coefficients
give us information about the global similarities between A° and B'. In particular,
for each possible alignment between A€ and B’, we get to know the number of
matches such that a ¢ in the sequence A pairs with a ¢ in B corresponding to this
alignment.

Some clever encodings [16] can be used to reduce the number of FFT computations
involved in the above algorithm (though the asymptotic runtime will remain the same).

5.4.2 Faster Algorithms

In this section, we describe two algorithms of Rajasekaran, Jin, and Spouge [53]
whose runtimes are better than that of the previous algorithm (c.f. Theorem 5.4).
Let A =ag,a1,...,a,—1 and B =bgy, by, ...,b,_1 be the two given input se-
quences and let ¥ = {01, 02, ..., 0x}. We perform k different computations, one
for each member of X. The computation corresponding to o, (for 1 < g < k) pro-
ceeds as follows. Form the binary sequence A% = ag", ai]", e, a::"_l, where a?” =1
if a; = o4 and a?q = 0 otherwise (for 0 <i < (n — 1)). Define a sequence B% =
M(oy, bo), M(oy, by), ..., M(oy4, by—1), where M(oy, b;) is the score for matching
o4 withbj (for0 < j < (n — 1)).

Now, we compute the global similarity scores between A% and B°¢ for each
possible alignment between the two. This can be done using a convolution operation
in O(nlogn) time (c.f. Theorem 5.3). Let sfq be the similarity score corresponding
to alignment i, for 0 <i < (2n — 1).

We repeat the above computation for each o, in X. Then, the global similarity
score between A and B with respect to alignment i is computed as s; = ZZ=1 57" (for
0 <i < (2n — 1)). The total runtime of the above algorithm is O (| X|n logn). Thus,
we get the following.
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Theorem 5.5 The global similarities between two given sequences of length n each,
for all possible alignments, can be computed in O (|X|nlogn) time.

A slightly different algorithm can also be devised for the similarities problem.
The idea is to perform only one convolution operation that can give us all the results
corresponding to the |X| operations done above. This is done constructing two
sequences of length | X|n each and computing the similarities between them using a
convolution operation.

To be more specific, let A = ag, ay, ...,a,—1 and B = by, by, ..., b,—1 be the
two given input sequences with ¥ = {o1, 02, ..., 0% }.
A’ and B’ are the two sequences we will construct with |A’| = |B’| = |Z|n. For

every element of A there will be k binary entries in A’ and for every element of B there
will be k entries in B'. In particular, a; will be represented in A’ as a;', ai*, ..., a’*
where a?" = lifa; = 0, and af" = 0 otherwise (for 1 < g < k).

Consider the example of ¥ = {g, ¢, t,a}, A =c,t,a,a,and B = g, g, t, c. In this
case A’ =0,1,0,0, 0,0,1,0, 0,0,0,1, 0,0,0, 1.

The elements in B corresponding to bjare: M(o1,bj), M(02, b)), ..., M(oy, b))
(for 0 < j < (n — 1)). Here, M(oy, bj) is the score for matching o, in A with b; in
B(forl <g<kand0<j<(m-—1).

In the above example, B’ = M(g, g), M(c, g), M(t, g), M(a, g), M(g, g), M(c, g),
M(t, g), M(a, g), M(g,t), M(c,t), M(t, 1), M(a, t), M(g, c), M(c, c), M(t, ¢),
M(a, c).

We compute the global similarities between A’ and B’ for all possible alignments.
This involves the convolution of two sequences of length kn each. The time needed is
O(kn log(kn)). Clearly, the similarities of interest will be given by these convolution
coefficients (though some of the coefficients are not of interest to us). We obtain the
following.

Theorem 5.6 The global similarities between two sequences of length n each from
an alphabet T can be computed in time O (| X|n log (|X|n)).

5.5 SUMMARY

In this chapter, we discussed in detail how sorting-based techniques could be applied
to discover motifs in a set of biosequences. We also looked at some problems related
to motif discovery, in which such techniques could be employed to obtain better per-
formance in time and space compared to existing algorithms in the literature. A related
problem of similarity measurement has also been discussed. FFT-based algorithms
for similarity measurement have been explored. We hope that through this discussion,
we could impress upon our readers the power and utility of basic techniques such
as sorting and FFT in solving several challenging problems in computational
biology.
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A SURVEY OF SEEDING
FOR SEQUENCE ALIGNMENT
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We survey recent work in the seeding of alignments, particularly the follow-ups from
the 2002 work of Ma, Tromp, and Li that brought the concept of spaced seeds into
the bioinformatics literature [25]. Our focus is on the extensions of this work to
increasingly complicated models of alignments, coming up to the most recent efforts
in this area.

6.1 INTRODUCTION

Sequence alignment is one of the basic tasks of bioinformatics. The basic use of
alignment is to attempt to identify regions of sequences that are homologous, that is,
which share a common evolutionary origin. In practice, of course, this is not really
possible; the algorithms used in sequence alignment do not identify sequences with
common origin, but only sequences that have surprisingly strong similarity, according
to a scoring function. This similarity may arise due to chance, due to convergent
evolution, or due to any of a variety of other origins. However, the standard claim
made of sequence alignment algorithms is that if two sequences have an extremely
strong match that is highly improbable for unrelated random sequences, it is probably
the case that those sequences are, in fact homologous.

As such, the process of finding local alignments among a set of long sequences
consists largely of two phases: first, one runs a combinatorial algorithm that creates
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the alignments and then one performs statistical tests to identify which alignments
are “surprisingly strong,” for a variety of definitions of this threshold. Descriptions
of what makes a homology “surprisingly strong” are beyond the scope of this sur-
vey; here, we will focus instead on the first phase: identifying the alignments them-
selves. In fact, we will focus the majority of our attention on only one part of this
phase, which is the process of finding “seeds” for local alignments. Despite the
seeming smallness of this focus, however, there is a host of beautiful mathemat-
ics and algorithmic ideas hiding inside it. Moreover, this single part of the align-
ment process turns out to control both the runtime of heuristic alignment algorithms
and their usefulness, as it is largely responsible for the algorithms’ sensitivity and
specificity.

This area has had an amazing renaissance since 2000. Spurred on by advances
in the technology of genome sequencing (which were creating enormous corpora
of DNA sequence needing analysis), sequence alignment technology simply had to
become substantially more speedy, or it was going to become a limiting factor in
analysis. Still, one probably would not have expected that the technology devel-
oped would be as mathematically lovely as what has happened, nor that the wealth
of research that would develop in this area would be as large or as deep as it has
been.

We will begin with a formal description of alignments, to get a proper mathe-
matical description of the domain, and a brief review of the standard results in this
area. Then, in Section 6.3, we will describe how to estimate the usefulness of simple
approaches to alignment seeding. In Section 6.4, we will present the first of several
recent advances in this area, due to Ma, Tromp, and Li [25], which gives a quite
novel way of understanding the problem of alignment seeding. We will present the
mathematical algorithms, as well, that allow one to compute sensitivity and specificity
of such approaches. In Section 6.5, we will discuss a variety of extensions to this
idea, due to a host of different authors, all of which build upon the basic ideas. In
Section 6.4.5, we will focus on a particularly useful trick, where one seeds alignments
off of a match to any of a potentially large number of patterns. In Section 6.6, we
will mention some theoretical developments in this domain.

6.2 ALIGNMENTS

A sequence alignment is a way of representing the relationship between two bio-
logical sequences. In a very important sense, a sequence alignment is a hypothesis:
it hypothesizes that specific positions of two biological sequences share a common
ancestry. It can also be seen as a combinatorial object as well, and this perspective
can be exceedingly useful. Here, we will give a formal definition of sequences and
sequence alignments, and briefly discuss how they are produced. As this is largely
standard material, the reader is referred to standard textbooks [12,15] for more detail.
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6.2.1 Formal Definitions

A biological sequence S = sy,...,s, is a sequence of symbols over a finite al-
phabet ¥. Common examples of X include the DNA alphabet {A, C, G, T}, or
the 20-letter alphabet of symbols that represent the amino acids found in proteins.
More esoteric alphabets include the ITUPAC alphabet that allows a position in a
sequence to be any nonempty subset of the DNA alphabet. This 15-letter alpha-
bet conveniently allows for uncertainty in a position of a sequence, particularly in
inferred ancestral sequence; we will use it when discussing multiple alignments in
Section 6.4.5.

The length of biological sequences can be extremely large; the human genome, for
example, is approximately 3 x 10° letters long. Moreover, the sequence S might not
be a single sequence, but the concatenation of a collection of sequences; for example,
one might use all of the sequences of GenBank as the sequence S, which is in the
order of 10'! in length.

A global alignment A between two sequences S = s1,...,s, and T =11, ...y,
over the same alphabet ¥, is a pair of sequences S’ and T”, both of the same length,
which result from inserting zero or more special gap characters, indicated by the
symbol — (not found in X), before the first character of either S or 7', and after each
symbol of § and symbol of T. The ith column of A consists of the ith symbols of S’
and of T". If this consists of two symbols s; and 7, we say that they are aligned to
each other, while if it consists of a character from S, s, and the special gap character
(—), we say that s; is aligned to a gap (and correspondingly if a gap is aligned to
t). By convention, we will never choose to align a gap character (—) to another gap
character: each column of the alignment will include at least one character from S or
from 7.

In addition to global alignments, local alignments are important; these consist of
global alignments (as defined before) of consecutive substrings of § with consecutive
substrings of 7. Whether one is computing local or global alignments tends to be
application dependent: if we are aligning short regions that are known to be completely
homologous in § and T, global alignment is appropriate, as it allows us to potentially
identify the exact evolutionary homology between two sequences. Meanwhile, if
two sequences include long stretches of homologous and nonhomologous regions,
a collection of local alignments may be a better representation of the evolutionary
relationship.

Considering global alignments, the length (number of columns) of alignments is
always between max(n, m) and n 4 m, inclusive. With this in mind, we can easily
count all possible alignments.

Theorem 6.1 The number of distinct alignments of two sequences S and T that
are n and m symbols long, respectively, and where S is at least as long as T, equals:

Zi:n,...,ner (;i) ’ (l—nm>

Proof. This is easily shown by noting that the number of columns in an alignment
must be between n and n + m, and that for a given number of columns i, we must
pick which i — n columns are the gap symbol in §’, and then which i — m columns
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are the gaps in 7', noting that they must be among the n columns where we did not
place a gap in §'. [

This number, of course, grows exponentially fast as a function of n and m, so we
cannot simply explore all possible alignments of reasonably long sequences (let alone
those of million-symbol or billion-symbol sequences). Instead, one must develop
algorithms to cleverly find correct alignments.

However, a preliminary step in the process is more philosophical: one must give
a way of preferring one of this large combinatorial set of alignments over another!
Scoring of alignments is itself a rich and beautiful topic, which we discuss in a broader
context in Section 6.5.3.1.

6.2.2 Meanings and Algorithms for Alignment

For now, though, we note that this process derives from an even more important task:
identifying the meaning of an alignment. We will say that if s; is aligned to #; in an
alignment that this represents the hypothesis that these positions of the sequence are
homologous: they derive from a common ancestral symbol (which may or may not
be equal to s; or #, regardless of whether these symbols are themselves the same
character). If the positions s; to s; are aligned to gap positions in 7', then we say
that these columns of the alignment result from one or more insertion events adding
symbols to the sequence S since the common ancestor that it shared with T, or deletion
events removing characters from 7', or both. Again, the ancestral or inserted symbols
need not exactly match the symbols in §; subsequent mutations may have changed
them. And, finally, gaps in S’ aligned to symbols in T correspond in this interpretation
to insertions into T or deletions from S.

With this understanding of the meaning of an alignment A of S and T, there are
still an infinite number of different explanations that can be given for how we get
from a common ancestor to S and 7, given an alignment A. Still, with a probabilistic
model of evolution, we can assign a probability to each of these. Satisfyingly, as we
shall see in Section 6.5.3.1, we can easily represent the probability of the highest
likelihood such explanation with the score of an alignment, using a simple scoring
function. We give a scoring matrix M[a, b], for all a and b in X, which gives the
score of aligning the symbol a in S to the symbol b in T, and add these values from
M up for all columns where there are no gaps. Typically, M[a, a] is positive, while
the score for aligning different symbols may be positive or negative. For gaps, we
traditionally use “affine” penalties, where the score of a string of k gap symbols in S’ or
T’ flanked by symbols from X on both sides is of the form o + (k — 1)e, for (typically
negative) constants o and e, called the “gap open” and “gap extension” penalties,
respectively.

Now, with this scoring approach in mind, and with a match scoring matrix M and
the constants o and e known, we can declare one alignment to be the best of all of the
numerous possible alignments of S and 7. (It is interesting that over the wide range
of all possible choices of M, o, and e, there are typically only a very small number of
optimal alignments [31].)
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For simple alignment-scoring models, the optimal global alignment of S and T is
easily computed by classical dynamic programming models, in ®(nm) time. The key
observation is that if a region of an optimal alignment starts and ends with matching
symbols (not a gap), then the region must be an optimal alignment of the subintervals
of § and T. (This is not quite true for regions that are flanked by gaps, as we need to
keep track of whether a gap is being opened, at cost o, or extended, at cost e; however,
the addition to the accounting is quite small, and results in only a doubling of the
overall runtime [33].)

As such, in ®(nm) time, we can compute the optimal global or local align-
ment of S and T, assuming we know the parameters of the alignment process;
additionally, we can even use recent mathematical technology of Pachter and
Sturmfels [31] to find the range of parameter space over which that alignment is
optimal.

However, there is a serious problem: the ®(nm) runtime is still unacceptable if
the values of n and m are large, such as if they are both on the order of billions. One
must compromise something: either one must develop a faster algorithm or one must
reduce one’s requirements, and not demand optimal alignments. Typically, for local
alignment, practitioners reduce their requirements and run heuristic algorithms that
are not guaranteed to always find the optimal alignments.

Heuristic sequence alignment has a fairly wide history, but the most important
place in this history probably comes when this area was joined by several people who
were familiar with ideas from string indexing. In particular, the simple idea of hash
tables and other such structures has been extremely useful here.

Consider the idea of local alignment: while one can compute in ®(nm) time the
optimal alignment between an interval in S and an interval of 7, this may be of
no interest at all! Suppose that S and T are unrelated: then, the best local align-
ment is no better than no alignment! As such, we can easily imagine a slight vari-
ation on the traditional local alignment problem: find the optimal local alignment
of S and T that is above a certain threshold of score, or that satisfies some other
easily tested minimum standard, or fail if no such alignment exists. This problem,
we shall see, can be solved in much less time than the classical algorithms for the
traditional sequence alignment will give. Or, we can solve a much less well-posed
problem: given § and 7, efficiently find many or most alignments between them
that satisfy a threshold. This is much more vague of a problem, yet still it is the
underlying problem behind classic sequence alignment programs like BLASTP and
BLASTN [2].

6.3 TRADITIONAL APPROACHES TO HEURISTIC ALIGNMENT

With the vague problem from the previous section (find many high scoring align-
ments between S and T') in mind, we now will describe the way in which traditional
programs have solved this problem. In particular, we will focus on how BLASTN and
BLASTP, and programs of their ilk, have solved this problem, before moving on to
more contemporary solutions in Sections 6.4 and 6.5.
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6.3.1 Indexing and Heuristic Methods

The trick is quite simple: we find all alignments between S and T that share a highly
conserved “core.” In the case of BLASTN, this is a region of 10 or 11 consecutive
symbols that are identical in both S and T (and that are not highly repetitive). In
the case of BLASTP, this is a Three or Four letter interval of S and of T where the
score of the ungapped alignment between those symbols is above some minimum
threshold score (such as +11 or 4+13). Focusing solely on BLASTN, such intervals,
or “seeds,” can easily be found by indexing the k-letter subsequences of S: we produce
a trie structure of all k-letter subsequences of S (for k = 11, for example), and then
traverse through the trie, following the links corresponding to the sequence T, thus
finding the places in § where each k-letter subsequence of 7 is matched (if it is
matched at all).

From each of these initial seeds, then, we can start to build actual local align-
ments: we align the intervals to the left and to the right of each seed. If the inter-
vals on both sides of the seed are not closely aligning, we can quickly assert that
the exact match of k symbols occurred by chance, while if they do form a good
alignment, we can build the local alignment in its totality, by building a global
alignment in both directions until it has a low score (or a region that does not
allign well).

We see, then, that heuristic local alignment seems to consist of three phases: in-
dexing one or more of the sequences, using the index to identify possible alignment
seeds, and then building local alignments from the seeds. How does the timing of
these three phases balance out?

The first phase, typically, requires linear time: most indexing structures allow us
to build an index of a sequence S in O(n) time, or at most O(kn) time, where the
word size in the index is k. Similarly, the second phase requires linear time to traverse
through T, though if there are r seeds found between S and 7, we clearly need
O(r) time and space to store them all. So the overall work of the first two phases is
®(n + m + r). The third phase, however, is much harder to predict: if each of the r
seeds is a good one, it may take extensive time to build the local alignments around
each.

Still, in practice, most seeds turn out to be of low usefulness, and are discarded. If
our procedure consists of attempting to build an ungapped (or nearly ungapped) short
alignment around each alignment seed, and then throwing out the seed as unuseful
if it quickly seems not to be extending to a good alignment, we can assume that
the algorithm is expected to take O(1) time for each bad seed. Assuming that bad
seeds profoundly dominate good seeds, then, the final phase of the algorithm will
take O(r) time overall, giving an overall runtime of O(n + m + r). Since we need
O(n + m) time just to read in the sequences, this may be a huge improvement over
the O(nm) runtime from the traditional sequence alignment approach. Similarly, if an
index for § already exists, and we read in a new sequence 7', the runtime to find seeds
and build alignments will be O(m + r), again assuming the overall alignment time
is O(r).



TRADITIONAL APPROACHES TO HEURISTIC ALIGNMENT 123

6.3.2 How Many Alignments are Found?

But what of r? How large is it? And how many good alignments that we might want
to be finding are not found with our approach to heuristic alignment search?

In order to answer these questions, we need some models of what related and
unrelated sequences actually look like, to see if truly homologous sequences will
satisfy the seeding requirements, and to see how often unrelated sequences will.

The simplest probabilistic model of unrelated sequences is to imagine S and T
as random noise; for the case of nucleotide sequences, where ¥ = {A, C, G, T}, this
corresponds to choosing uniformly over all 4" and 4™ possible sequences. In two
such random noise sequences, a k-letter sequence of one sequence matches a k-letter
sequence of the other with probability 4. As such, if we assume that unrelated seeds
dominate related seeds, then the expected value of r is (n — k + 1)(m — k + D4k,
and thus the overall expected runtime for a heuristic aligner of the type we have been
describing is O(n + m + nm4=%).

In this very abstracted model, then, the runtime roughly quadruples (because the
number of false hits quadruples) every time we reduce k by 1, thereby reducing the
stringency of the seeding requirement. However, each time we do this, the probability
of finding a seed in a true alignment goes up: more true alignments will thus be
discovered. Can we characterize the tradeoff?

For this, we will need models of true alignments as well. For now, we note that
a seed of the sort we need can only occur in ungapped regions of alignments.
If we model the positions of such ungapped alignments as independent of each
other, and as being matching characters with probability p and mismatching with
probability 1 — p, and we fix a length a for the ungapped regions, we can eas-
ily compute the probability that such an alignment includes a k-letter long exact
match.

Theorem 6.2 The probability that an a-letter ungapped alignment, in which posi-
tions have probability p of being matching and 1 — p of being mismatched, includes
k consecutive matching symbols can be computed in O(ak) time.

Proof. We will demonstrate this by dynamic programming: let P(i, j) be the prob-
ability that an alignment of length i that is forced to start with j matching symbols,
but for which the i — j subsequent symbols are unfixed, has a region of length k with
matching symbols. We seek P(a, 0).

Clearly, P(i, j) = 0 if i is less than k, as the alignment is too short. And, if i > k
and j = k, then P(i, j) = 1. We need only to consider what happens for i > k and
J < k. In this case, position j + 1 of the alignment is a match with probability p,
and a mismatch with probability 1 — p. If it is a mismatch, then any region of k
consecutive symbols must occur after the first j + 1 symbols. As such, P(i, j) =
p-PG,j+ 1)+ —p)-PG—(j+1),0). We can easily compute each value of P
in constant time, and the overall value of P(a, 0) can be found in O(ak) time, as
desired. ]
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FIGURE 6.1 The simplest automaton that accepts all binary strings corresponding to
alignments with k consecutive matches in them. The automaton has a total of k+ 1
states.

In the interest of having consistent terminology, we will call the fraction of align-
ments that have a seed, according to our model, the “sensitivity” of that approach,
and the fraction of random, unrelated positions with a seed, we will call the seed
approach’s “false positive rate.”

6.3.2.1 A Different Perspective We can see a remarkably different perspective on
this process if we instead consider the alignment as being represented by a binary
sequence A = ay, ..., a,, where a; = 1 if position i of the ungapped alignment is
of matching sequences and a; = 0 otherwise. In this formulation, there is a match
to the seeding requirement exactly when A is in the regular language represented
by the regular expression (0 + 1)*1%(0 + 1)*. The smallest deterministic finite au-
tomaton for this language is shown in Fig. 6.1. We can compute, for each i in the
range from O to a, the probability that after reading in i random characters, the
automaton is in state j of the automaton; then, if we are interested in sensitivity,
the question we are seeking to answer is whether after a symbols are read, the au-
tomaton is in its accept state. The two approaches are equivalent (and give compa-
rable algorithms), but we will often use the automaton representation in what fol-
lows.

Itis, for example, very convenient when we consider BLASTP’s seeding approach.
Recall that in BLASTP, we will find a seed between two sequences when they share a
region of length k, where k is 3 or 4, for which the total score of their short ungapped
region crosses a threshold. We can treat the alignment sequence A as a sequence of
scores over a discrete set F of possibilities, each with an attached probability; let
us treat this set F' as the alphabet for the sequence A. With this in mind, we then
identify a regular expression that defines all possible score substrings of length k
over the set F that cross the threshold. Then, we can compute a deterministic finite
automaton for the language of all strings over F that include a substring satisfying
the regular expression, and compute the probability of ending a string in the accept
state.

To be more formal, let D be such a finite automaton with g states, dy, ..., dy,
where d, is the accept state and dj is the start state; suppose that 6 ;( f) be the label of
the state that the automaton transitions to from state d; upon reading the symbol f.
Let A =ay, ..., a, be an a-letter-long random string of symbols over the alphabet F,
where the probability that a; = f is p s, and all positions of A are independent. Let
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P[i, j] be the probability that the automaton is in state d; after reading in i symbols of
A. If we have computed P[i — 1, j] for all states d;, then we can compute the values
of P[i, j] by starting them all at zero and adding P[i — 1, jIpy to P[i, §;(f)] for all
choices of jand f. In this manner, we can work our way to longer and longer strings,
and, in O(| F|ga) time, we can compute the value of P(a, ¢g), which is what we desired.
(For that matter, it is worth noting that if one thinks of the transitions in the automaton
as being akin to traversing the states of a Markov chain, we are simply computing the
a power of the transition matrix of the Markov chain; we can use successive doubling
approaches to reduce the dependency of the runtime of this check to be logarithmic,
not linear, in a.)

6.3.2.2 Which Seeding Approach to Use? With the traditional BLASTN al-
gorithm, then, there is only one parameter that is k, the seed size. Increas-
ing it will reduce runtime, by reducing the number of seeds found, and at the
same time will reduce the number of true alignments found; reducing k will in-
crease both runtime (by increasing the number of false seeds found) and the
sensitivity.

Yet, this turns out to be an unhappy bargain. The traditional approach to nu-
cleotide alignment is to set k = 11, which places a false positive hit roughly ev-
ery 411 cells, if the DNA is totally random noise. Yet if we are assuming that un-
gapped regions of alignments are 64 positions long and 70% conserved (that is, every
position has probability 0.7 of being a match and 0.3 of being a mismatch), the
algorithm described in the previous section finds that the probability of an align-
ment having a hit is just 0.30. Meanwhile, BLASTN has traditionally been very
slow, and certainly would not scale comfortably to large-scale alignments of many
genomes.

One faster way is to change the seeding requirement; instead of requiring one
11-letter exact match, we can require two nine-letter exact matches between S and
T, separated by the same amount in both sequences. This is the approach used in
Version 2 of BLAST [3]. Interestingly, we can estimate the sensitivity of the ap-
proach in a way analogous to that presented in Section 6.3.2.1. If we again look
at the binary sequence A that represents the alignments we can represent the un-
gapped alignments that are hit as the regular language represented by the expression
(04 1)*150 + 1)*1%(0 + 1)*. All we need to do is produce a deterministic automa-
ton for this language (the smallest such automaton is in Fig. 6.2), and again ap-
ply the algorithm of Section 6.3.2.1 to it, to ask what the probability is that after
a symbols are read, we are in the accept state of the automaton. We can similarly
compute the probability that two hits are found in a short range of unrelated se-
quences, though there is some awkwardness here, in that we need to estimate this
probability by putting an upper limit on how far the two matches are from each
other.

The two-hit approach to seeding does often give robust improvements in sen-
sitivity and false positive rates. Still, there is substantial overhead in placing
two matching hits together, which may not be properly accounted for in this
estimate.
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FIGURE 6.2 A simple automaton that accepts all binary strings that have two nonoverlapping
hits to a k-continuous match pattern. The automaton has 2k + 1 states, and accepts the regular
language (0 + 1)*1¥(0 + 1)*1%(0 + 1)*.

6.4 MORE CONTEMPORARY SEEDING APPROACHES

We focused in the previous section on the sensitivity of a seeding approach and the
false positive rate. However, the other great advantage of BLAST-style seeding is the
simple way in which we find the seed matches for alignments. At its simplest, we can
think of this as a hash table of the k-symbol substrings of S being used to find exact
matches to k-symbol substrings of 7. The ease of lookup is the key feature here; it is
trivial to find all matches for a position of T in S. But, if all we are doing is building
hash tables, they need not be of consecutive substrings of §, but could be of more
complex patterns, such as of nonconsecutive positions.

This idea seems trivial, but is actually extremely useful. We will characterize such
a nonconsecutive pattern by a sequence Q, of length ¢, of zeros and ones: ones will
indicate positions in the seed pattern where there must be a match between S and T
in order to create a hit, and zeros will indicate “don’t care” positions. To be formal,
we will call such a sequence Q = q1, ..., q¢ a “spaced seed pattern”; its number of
ones is its “weight,” w. The alignment sequence A hits the seed pattern Q if and only
if there exists a position 7 such that in all positions j, where g; = 1, aj1; 1 = 1.

It is a triviality to find all spaced seed hits between S and T for a given Q: we first
produce a hash table of the £-symbol substrings of S, projected onto the w positions
of Q that have value 1. Then in the second phase, we compare them against the
£-symbol substrings of T, again projected onto the w positions of Q with value 1.
Exact matches will give rise to seed hits. With the hits, we can proceed to the third
phase of extension and alignment building. The overall runtime may go up by a modest
factor, as we can no longer build a trie of k-letter substrings of S, but need a hash
table, but nonetheless, the overall runtime is still only slightly worsened.

But why would anyone make this change? Is there an advantage to be
borne by switching to this approach for seeding? In fact, there is an enormous
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improvement in sensitivity: for the simple Bernoulli model of alignments
with a =64 and p =0.7, the best seed of weight 11 is 50% more sen-
sitive than the BLAST consecutive pattern, which is equivalent to the seed
o=({1,1,1,1,1,1,1,1, 1, 1, 1).

6.4.1 Why are Spaced Seeds Better?

This surprising result arises because of an unexpected advantage: the hits to
spaced seeds are more independent than hits to unspaced seeds. As such, even
though the expected number of hits in an alignment of a given length and
strength is similar for spaced and for unspaced seeds, in the spaced seed, the
expected number of hits, given that there is at least one hit, is substantially
greater.

If X is the random variable that is the number of hits in a random align-
ment, it is sufficient to find at least one hit: then we will find the alignment.
Thus, the sensitivity is Pr[X > 1]. Meanwhile, E[X] is the expected number of
hits, and E[X|X > 1] is the expected number of hits, assuming that the num-
ber of hits is at least 1. A simple identity shows that E[X] = E[X|X > 1] -
Pr[X > 1], so Pr[X > 1] = E[X]/E[X|X > 1]. If we hold the numerator of the
fraction roughly constant, and drop the denominator, then the sensitivity will
rise.

That does not explain, however, why the expected value of X, given that X is at least
1, is smaller for spaced seeds. (Nor, for that matter, does it explain why E[X] stays
roughly constant.) Let us answer the second question first: for any position i of A, if
there are enough positions that follow position i to allow for a hit to the seed (spaced
or unspaced), then the probability of a hit occurring in the model where all sites in A
are independent and equal to 1 with probability p is p¥, where w is the seed weight.
In an alignment of length a, then, the expected number of hits is (a — £ + 1)p™.
If £ is small in comparison to a, then, this is roughly constant for all spaced seed
patterns.

Why is E[X|X > 1] smaller for spaced seeds? Consider the unspaced seed of
length w, and suppose there is a hit at site i. Then, the probability of a hit at site i + 1
is p; the first w — 1 needed matches for the hit already exist. As such, if there is one hit,
there is likely to be more than one hit, and the subsequent hits are wasted. Meanwhile,
if we consider the spaced seed 101001, and move forward one position from a hit,
none of the needed matches for the next match are already included, so the probability
of an immediately neighbouring hit is just p>, which is much smaller. (Of course, if
we move one position further to the right, one of the needed matches is present,
but the overall probabilities give substantially lower conditional expectation to the
spaced seed.)

This, then, is the essential property: a good spaced seed has very little inter-
nal periodicity, and as such, hits to spaced seeds tend to be more independent.
The real benefit, though, is that we can also compute the theoretical sensitivity
of a seeding approach, and use it to pick the best seed pattern for a particular
task.



128 A SURVEY OF SEEDING FOR SEQUENCE ALIGNMENT

6.4.2 Computing the Sensitivity of Spaced Seeds

With the automaton-based approach described in Section 6.3.2.1, computing the sen-
sitivity of a spaced seed Q is no more complicated than for a consecutive seed: we
identify a finite automaton that accepts the language of all strings that include a match
to Q, and then compute the probability that a random string (according to a fixed prob-
ability distribution) of length a is a member of Q using the same algorithm in Section
6.3.2.1. For example, for the seed 10011, there is a hit in any alignment A that is a
member of the language represented by the regular expression (0 + 1)*1(0 + 1)(0 +
1)11(0 + 1)*. The smallest automaton for this language is found in Fig. 6.3.

In general, for a seed of weight w and length ¢, this automaton will have o2t
states, and then we can simply apply the same algorithm as before, which will give us
the sensitivity of the spaced seed in O(£a2°~") time. A variety of other exponential-
time algorithms exist for this operation, coming from a variety of different perspec-
tives, with the first due to Keich et al. [17]; still, the important feature to note is that
they all require time exponential in the number of “don’t-care” positions in the seed.
Also, recall the important fact that these slow algorithms are computing the theoretical
sensitivity of a spaced seeding approach, not actually being used to align sequences;
there, the runtime is, again, the index-building time plus the seed-finding time plus
the alignment-building time.

There are an exponential number of spaced seeds of a given maximum length ¢ that
have £ — w don’t-care positions, so we see a very slow procedure will be necessary
to find the optimal seed pattern for a single probabilistic model of alignment. Still,
this procedure, conceivably, would only be done once, and then the optimal seed
pattern found will be used for a large number of alignments, so the overall cost is still
moderate.

Some complexity results exist that show that computing the optimal spaced seed
for a given probabilistic model of alignments is NP-hard, though for Bernoulli models,
there is a strong connection to combinatorial design problems of finding patterns with

FIGURE 6.3 A simple automaton that accepts all binary strings that have a hit to the spaced
seed 10011. This automaton accepts the language (0 + 1)*1(0 + 1)(0 + 1)11(0 + 1)*.
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low autocorrelation. In some very nice work, Buhler et al. [9] give a connection to
spectral graph theory, showing the importance of the eigenvalues of the transition
matrix of the Markov chain that describes transitions in the automaton that we have
described. There are also some theoretical results that document that any spaced seed
will, in fact, have its first hit start at a position whose expected distance from the
start of the alignment is shorter than that for an unspaced seed, which gives some
theoretical justification to the use of them (though, of course, the true test is in the
usefulness of these models). See Section 6.6 for more details on this fascinating
work.

6.4.3 Spaced Seeds in Practice

Spaced seeds were initially described [25] in context of the PatternHunter sequence
alignment package. The idea is similar to a few earlier ideas in the pattern-matching
literature, though the PatternHunter authors were unfamiliar with this work [22]. One
advantage of the spaced-seeds approach is that it is possible to optimize the seed to
a specific domain; most previous work had been theoretical and had not considered
the question of choosing a pattern that maximized sensitivity. For example, Buhler
[8] had used locality-sensitive hashing to find matches between long intervals of two
alignments, but his approach chose a large number of random seed patterns, not a
pattern specifically chosen for its quality.

A program that uses similar approaches to PatternHunter is YASS [29,30], due to
Kucherov and Noé. Their approach also allows for multihit models, as for BLAST
version 2, described above, where there is a mismatch in the lengths of the regions
between the hits; this allows one to model short gaps. YASS also includes several
extensions to spaced seeds, some of which are described in Section 6.5. Spaced seeds
have also been used by Brown and Hudek in their multiple DNA alignment software,
as a way of finding good anchors for multiple alignments [7,16]. There, the seeds are
used to anchor multiple alignments; further detail is in Section 6.4.5

6.4.4 More Complicated Alignment Models

The independent Bernoulli model of DNA sequence alignments in the previous section
is clearly unrealistic; in practice, DNA sequence alignments have internal variation,
positional dependence, and of course, they also have gaps. In this section, we continue
using spaced seeds as our framework for alignment seed generation, but we consider
their sensitivity to more realistic alignment models.

A first observation, made by both Buhler et al. [9] and Brejova et al. [4], concerns
the structure of alignments of coding sequences. Both groups made the observa-
tion that the redundancy of the genetic code makes modeling alignments of coding
sequences with independent Bernoulli variables silly: as is well known, the third po-
sition of codons are subject to substantially less evolutionary pressure than the other
two positions. In fact, this observation had been used by Kent in his program WABA
[19], which had implicitly used the seed model 110110110.. ., though without the
language or structure of spaced seeds.
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FIGURE 6.4 A hidden Markov model for three-periodic sequences. This HMM emits binary
sequences where the probability that position i in the sequence is a one equals p; mod 3- Each
state is labeled with its probability of emitting a one.

How can we incorporate this dissimilarity into the spaced seed framework we
have developed? The approach of Brejova et al. [4] is to model the binary alignment
sequence A, which represents whether positions are matches or mismatches, as the
emissions from a hidden Markov model. A simple HMM for three-periodic sequences,
where each position of a codon has a specified probability of being a match, but all
positions are independent, is shown in Fig. 6.4; we can also very easily create an HMM
that models sequences with dependencies within codons (which has seven degrees
of freedom, since we emit one of the eight choices of binary sequences of length
three), or even an HMM with various levels of conservation inside an alignment.
Brejova et al. [4] represented coding alignments with a model with four levels of
similarity, using Baum—Welch [12] training to set the parameters of each of the four
submodels.

Joining such an HMM into the automaton-based framework we have described
before to compute seed sensitivity turns out to be quite straightforward. Suppose
that the automaton D, with the g states dy, ..., dy, accepts the language of binary
strings that correspond to alignments that satisfy a seeding requirement that we wish
to analyze, and suppose that the hidden Markov model H, with 7 states, describes the
sequences that corresponds to our probabilistic model of a particular type of alignment.
What we are seeking is that if we read in a string from H into the automaton D, of
length ¢, we will wind up in the accept state of D at the end. Before, we were computing
the probability that after reading i symbols, the automaton was in each state; now, we
need to compute the probability of being in a particular state in both the automaton
and the HMM.

Specifically, let P[i, j, k] be the probability that after i symbols of A have been
read, the automaton D is in state d;, and the hidden Markov model is in state A.
If we know all of the values of P[i — 1, j, k], we can compute them for moving
forward one symbol: if the probability that state & emits symbol a is Ex(a), and the
probability that from state & we transition to state Ay is Ti(k"), then we need to add
pli — 1, j, K1Ex(@)Ti (k") to pli, 8;(a), k'] (and do so for all choices of j, k, a, and
k’). The overall runtime to compute the values of P[£, ...]is O(fg|Z|n?). In fact, if
the HMM includes only ¢ nonzero probability transitions, not 7%, then the runtime is
O(Lq|Z|t).

What we find when we use this approach is that seeds that are aware of the three-
periodic structure of alignments, and that optimize the sensitivity for these models,
dramatically outperform seeds that are optimal for nonaware models. Table 6.1, from
Brejova et al. [4], shows that the optimal seed for the Bernouill model, PH-OPT, is in
the middle of the pack among the possible seeds with length at most 18 and weight
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TABLE 6.1 Ranks of Seeds Under Different Probabilistic Models. The Table Shows
the Rank of Each of the Chosen Seeds in a Testing Set of True Alignments as well as
Under Each of the Considered Probabilistic Models. The Seed DATA-OPT is the One
that Performs Best, but its Sensitivity is very Close to that of HMM-OPT, Which has
the Best Sensitivity According to a Hidden Markov Model of Coding Alignments. The
WABA Seed is Designed to be a Good Spaced Seed, Yet is Reasonably Effective. The Seed
PH-OPT Optimizes the Bernoulli Model of Alignments, but is Quite Poor in this Domain,
While the BLAST Seed is Truly Awful. The Seed WORST is the Worst According to Both
the HMM and the Real Data

Testing Data Rank Under a Model

Seed Rank Sens HMM Bernoulli Name
11011011000011011 1 0.855 2 9746  DATA-OPT
11011000011011011 2 0.851 1 9746 HMM-OPT
11011011011011 22 0.814 17 24187  WABA
111001001001010111 11258  0.585 10427 1 PH-OPT
1111111111 24270  0.451 24285 24310 BLAST
101010101010101011 24310  0.386 24310 24306  WORST

10, while the optimal seeds are very much aware of the three-periodicity of codon
alignments, such as the seed 11011000011011011.

Note again that the switch here has no effect on the overall runtime: the runtime
results largely from false positives, which are comparably frequent for both spaced
seed approaches (and, indeed, for unspaced seeds). The advantage comes in that we
are modeling the difference between homologous sequences and nonhomologous
sequences more accurately.

6.4.5 Multiple Seeds

In our formulation so far, we have not changed the actual algorithm for local alignment
much from the traditional one: we still build an index (albeit of spaced patterns) of
one string, we still search the other string to find matches against the index, and then
we build alignments out of the discovered matches.

A remarkable opportunity of the spaced seeds approach, though, is to change
this theme. Instead of a single seed pattern, we attempt to find matches to a collec-
tion of seed patterns, chosen not to have much overlap in the alignments that they
match. Clever choice of such patterns can allow us to match an increasing fraction of
true alignments, while having minimal effect on the runtime (and the false-positive
rate). The initial suggestion of this multiple-seed approach is to be found in the orig-
inal Ma et al. [25] paper that proposed spaced seeds, yet they offered no sort of
optimization.

In their work on vector seeds, discussed in Section 6.5, Brejova et al. [5] discuss the
use of greedy algorithms for this domain. More interesting optimization algorithms
for this problem were proposed essentially simultaneously and independently by Sun
and Buhler [34], who used hill climbing, and by Xu et al. [36,37], who used integer
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programming techniques. The multiple seed approach is also implemented in the
second version of PatternHunter [23].

To be specific, the idea is to first build a set of g indexes of the string S, each of which
corresponds to a different spaced seed pattern, and then search the string 7 against
each of the indexes, extending all pairs from S and T that match in any of the indexes.
We note that the runtime now must be seen to increase: it is no longer O(n + m + f),
where f is the number of hits found, but rather O(gn + gm + f): we need to build g
indexes, and we need compare T against each of them. Memory issues may begin to
be significant as well: storing multiple indexes can be quite expensive, and we might
run into paging issues. Still, it is immediately clear that this is potentially useful: if
we have two different seed patterns Q1 and Q3, which have corresponding regular
expressions g1 and g, the regular language (0 + 1)*(¢1 + ¢2)(0 4+ 1)* consists of all
alignment patterns that can be detected in this approach. It is thus clear how to extend
our previous algorithms for computing seed sensitivity to this domain. The result of
wisely choosing two seeds is striking: Xu et al. [36,37] show that using three seeds of
the same weight gives sensitivity comparable to that of using one seed with the weight
lowered by one. The difference is that the false positive rate is only three-fourths as
high. Similar results are shown by Brejova et al. [5] for the vector seed model described
in Section 6.5: multiple vector seeds strictly dominate the false-positive performance
of a single seed with comparable sensitivity.

This can be continued in a remarkably effective direction: we can achieve 100%
sensitivity without requiring quadratic runtime! To be specific, suppose that we want
to find all ungapped alignments of length 25 that include at most five mismatches in
them. We can find the smallest set of seeds Q1, ..., O of a fixed weight such that
the union of the languages corresponding to each of the Q; includes all alignment
strings of length 25 with at least 20 ones: if we use the corresponding set of seed
patterns to build a collection of hash tables, then with those seeds, we can find all
desired alignments. The number of false positives will still not be extremely large, as
there are only a constant number of hash tables. In this manner, we can discover all
alignments of the desired type, in an overall runtime that is vastly smaller than might
be predicted. Some interesting theorems toward this direction are shown by Kucherov
et al. [21], and preliminary results of the use of this idea appear in Xu et al. [37].

To actually find these optimal sets of seeds, however, is not easy: it is NP-hard
[36,37], in fact. However, a good set of seeds can be found either by using the obvious
greedy algorithm (choose the best seed, then add the seed that most increases its
sensitivity, and so on) [34] or by using integer programming [36,37].

We will briefly describe the integer programming approach described by Xu et al.
[36,37]. We collect all of the possible alignment patterns (or a large subset of them)
of a particular length and with fewer than a set bound of mismatches in them; let this
setbe A ={Ay,...,A,}. Thenlet @ = {01, ..., O} be a set of seeds, and let H;
be the set of all of the A ; that are matched by seed Q ;. We can now cast the question
of finding the optimal set of seeds as an instance of MAXIMUM-COVER: we want to
choose the set of k seeds such that the union of their corresponding H; sets is as large
as possible.
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As an integer program, this is easily cast: let y; = 1 if we choose to include seed
Q; and zero otherwise, and let x; = 1 if one of our chosen seeds matches alignment
pattern A ;. Then we want to maximize ) | ;xj subject to the requirements that x; <
>oi Ajem; i and >~ i = k. The first requirement maintains the requirement that we
only count alignments that are actually hit, while the second forces us to use only k
seeds.

While this can easily be shown to be NP-hard, as we can encode any SET-COVER
instance in this manner, in practice, such integer programs easily solve using standard
solvers, and easily identify a good set of relatively nonredundant seeds for homology
search.

6.5 MORE COMPLICATED SEED DESCRIPTIONS

A different generalization of spaced seeds is required in order to make them useful
for protein alignment, as positions do not simply match or not match in such domains.
The broadest generalization of this form is called “vector seeds”, is due to Brejova
et al. [5], and has also been applied to nucleotide alignments as well. However, the
vector seed model is largely theoretical; more practical descriptions of how to make
variations on it practical as a way of aligning sequences have been developed by
Kisman et al. [20], by Brown and Hudek (for multiple DNA alignment) [7,16], and
by Sun and Buhler [35], for DNA alignments that incorporate different penalties for
different sorts of mismatches. Csuros and Ma [10,11] have approximated vector seeds
using multipass filters and what they call “daughter seeds.”

In order to work our way into this domain, we will begin with a presentation of
the simpler results in this domain for DNA alignment, which also gives context for
why this approach arose. Then, we will present the application to protein alignment,
and some extensions.

6.5.1 Why Extend Spaced Seeds?

Contemporaneously with the development of spaced seeds, Jim Kent developed his
extremely widely used alignment program BLAT [18], the BLAST-like Alignment
Tool. BLAT is similar to BLAST, yet it includes an extension to the seeding ideas
that is very helpful. Instead of requiring k consecutive positions that exactly match,
BLAT allows one or two of the k positions to include a mismatch.

In effect, this is equivalent to the union of a collection of spaced seeds. For example,
if we allow one mismatch in k positions, this is equivalent to the k spaced seeds 1¥~10,
lk_201, 1¥-3011, and so on. And, if we allow two mismatches in & positions, this is
equivalent to the k(k — 1)/2 seeds of length k with weight k — 2. (We note that Kent’s
idea slightly preceded the spaced seed idea of Ma, Tromp, and Li, let alone the idea
of using multiple seeds.)

One can implement BLAT-style seeding in a variety of ways, but perhaps the
simplest is to still build a single hash table structure of all of the k-letter substrings
of S, and then for each k-letter substring of T, look up all 3k + 1 strings that differ
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from that substring in at most one position (or all (9k(k — 1)/2) + 3k + 1 strings that
differ in at most two positions, if that is the seeding requirement). This will find all
of the desired matches between S and T'.

What is the consequence of this strategy? The memory usage is clearly much lower
than for the multiple seeds approach: we only build a single hash table. However, the
hash table is queried many more times for each substring of 7'; instead of looking into
the table a couple of times, we look into it potentially dozens or hundreds of times.
The consequence of this is that if the hash table is largely empty, our runtime will now
be dominated by lookups that are largely empty. If, instead, most substrings from T
have enough matches in S that most hash table cells examined are populated, then
the majority of runtime will continue to be dominated by the extension phase applied
after we have a large number of seeds.

To see this in its most extreme form, consider again the question in the last section,
about guaranteeing 100% sensitivity for ungapped alignments with length 25 and at
most five mismatches. Essentially tautologically, we can do this by using the BLAT
approach, where there is a hit exactly when there is a seed of length 25, and we can
allow at most five mismatches. We could build a hash tabel of 25-letter substrings
of S, and search for all nearby strings to substrings of T in it. However, for every
substring of 7', there are Zi:O...S (215) .31 = 14, 000, 116 hash table entries we would
have to examine, which is of course silly, particularly as unless our input data is of
the length approximately 425 = 10!, the vast majority of these would be empty. (Of
course, we would have no false positives, either.)

As such, the BLAT search approach only really works when the number of
possible hash table entries is comparable to the length of the string S or smaller;
otherwise, we are dominated by misses in the table lookup phase. Still, for mod-
est lengths of seeds, there is a huge increase in sensitivity over the BLAST
approach.

Why does this advantage exist? For a different reason than for spaced seeds, actu-
ally. For BLAT-style seeds, the advantage is that at a given expected number of hits
per true alignment, the false positive rate is substantially smaller for seeds that allow
one or two internal mismatches than for BLASTN-style unspaced seeds. For example,
if the true alignments have probability p = 0.7 of a match, and the null model is of
random DNA, so there, p = 1/4, then the probability of a hit to the 11-letter unspaced
seed at a single place is 0.7'! & 0.02, while the probability of a false positive in ran-
dom noise is 0.26'! & 2.4 x 1077, For the BLAT seed that requires 13 matches in
14 consecutive positions, the probability of a true hit at a site is approximately 3.4%,
while the probability of a false hit drops to 1.53 x 10~7. As such, we will have higher
sensitivity at lower false positive rates. In fact, the overall effect is comparable to that
of a single well-chosen spaced seed.

6.5.2 Vector Seeds

However, as with unspaced seeds, the BLAT hits cluster. Brejova et al. [5] proposed
resolving this by a generalization of all of the seeding approaches we have seen, called
“vector seeds.” Vector seeds are described by a seed pattern vector of integers, v of
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length ¢ and a threshold T'; there is a hit between the vector seed Q = (v, T') and an
alignment sequence A when there exists a position i such that v - (a;, . .., @j+¢—1) >
k

—
T. For example, the BLASTN approach is equivalent to the vector seed ((1, ..., 1), k),
/—/kA /—/k%
while the BLAT approach is equivalent to ((1,...,1),k— 1) or ((1,...,1),k —1).
A spaced seed v with weight w is equivalent to the vector seed (v, w). And, we
can generalize this: if we are willing to allow two mismatches, then the vector seed
(v, w — 2) allows this many mismatches.

Vector seeds are more general: the vector seed ((1, 2,0, 1, 2,0, 1, 2), 8) can be
useful for coding sequence alignments, as it allows a single mismatch, but only in the
first position of a triplet (second positions mutate less often than first positions). They
are not universally general, of course, but they do allow for substantial improvements
over the sensitivity and false positive rates of a single vector seed.

‘We note that for both BLAT and vector seed approaches, it is still straightforward
to estimate the sensitivity of a seed to a particular alignment model; again, one creates
a DFA that accepts the language of strings that include a hit, and again, one computes
the probability that the DFA accepts a string of a given length.

What is the relative advantage of multiple seeds versus the vector seed approach
for DNA alignment? For simple DNA alignment scoring approaches, where positions
either count as matches or mismatches, the primary advantage is that one need only
build one hash table, rather than many. Aside from that, there is really no advantage;
the vector seed idea is largely a handy generalization, not a useful way of actually dis-
covering alignments. After all, even vector seed hits will cluster more than well-chosen
spaced seed hits, and a single vector seed does represent many different spaced seeds.

Still, the idea has been productive; Csuros and Ma [10] have explored an approach
that approaches the simplicity of the one hash table vector seed through “daughter”
seeds, where they essentially implement a multipass filter as their way of identifying
hits. In subsequent work [11], they extend this to still more complicated models for
seeding that are also extremely efficient.

6.5.3 More Complicated Alignments

Vector seeds, and their analogs, do shine, though, in the case of more complicated
scoring schema. We first explain how they can be made useful for DNA alignment,
and then extend to protein alignment. We first give a quick review of how scoring
schema work for alignment.

6.5.3.1 Alignment Scoring For DNA alignment, it has been traditional to score
all matches with the same positive score, and all mismatches with the same negative
score. This is, however, not appropriate for protein alignments, where sequences that
are very closely related may have had many minor modifications in them that have had
minimal effect on their biochemistry. For example, substitutions of valine, leucine,
and isoleucine for each other tend to be moderate in their effects, while changing
valine to tryptophan might be very important.
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The way this is taken into account is to make the score of aligning two symbols
reflect the extent to which those symbols often occur homologously in real sequences.
In particular, we can imagine a model that creates ungapped alignments of two
sequences, where p;; is the probability of seeing symbol i in § aligned with sym-
bol j from T'. Our null model will assume that the sequences are unrelated, so g;q;
is the probability of seeing symbol i randomly in S and symbol j in 7. The amount
by which p;; is bigger than g;q; indicates the strength of the extent to which the p
model of related sequences is preferred over the ¢ model of unrelated sequences; as
such, if log(p;j/qgiqj) > 0, we have evidence of the sequences being related. In prac-
tice, such log-odds ratio values are the typical form of the scores used in sequence
alignment software, and if we work from the initial scoring matrix, we can compute
the probabilities of the p;; and g; values.

Further, we can use these values to estimate the score of an ungapped alignment
of a given length that is presumed to come from a particular model; as such, we
can compute the probability that at a given position in an alignment, the pair of
aligned symbols has a given score, so we can give the distribution of scores in true
and unrelated alignments. This will be essential as we compute the sensitivity of
alignment seeding approaches.

6.5.3.2 Complicated DNA Scoring Many researchers have built DNA alignment
systems that include more complex scoring schemes; perhaps the most significant is
BLASTZ [32]. All of them give less negative scores to transitions, where two aligned
symbols are not the same, but either are both purines (A and G) or both pyrimidines
(C and T), than to transversions, where the matched symbols are one purine and one
pyrimidine. Transition mutations are more common to be retained, and as such, they
are more common in true homologies. However, this gives rise to a question: how to
seed local alignments?

Vector seeds offer an obvious answer: if, for the purpose of the seeding phase,
we see an alignment as being a string over a three-symbol alphabet corresponding to
matches, transitions and transversions, where matches score +2, transitions score -+ 1
and transversions score 0, then we might seek a hit to a vector seed where the vector has
k ones, and the threshold is 2k — 1 or 2k — 2; this would allow at most one transition,
with the threshold 2k — 1, or at most two transitions or one transversion, with the
threshold 2k — 2. (To allow only transitions, we can instead score transversions with
the score —00.) These approaches are used in the seeding in both BLASTZ and in
the very interesting alignment program YASS [29,30]. Sun and Buhler [35] also give
an approach that picks many such seeds to maximize overall performance, where the
false positive rate is estimated using a hidden Markov model trained on real data.

6.5.3.3 Protein Alignments Vector seeds were originally created for use with
protein alignments [5], but they actually are not immediately useful for this purpose.
The reason is that it is actually rarer that protein alignments cluster as many hits
together: while after a BLASTN hit, another BLASTN hit is very likely, this is less
true for protein alignments, as highly conserved regions of proteins tend to be much
shorter in practice.
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As such, the expansion in seed length required for a vector seed like ((1, 0,
0, 1, 1), 13), as compared to the traditional BLASTP seeding approach, which is es-
sentially the vector seed ((1, 1, 1), 13), is harmful enough that it is not always better
to switch to using a single vector seed for protein alignment.

However, in follow-up work [6], Brown examined the effect of using multiple
vector seeds for protein alignment, particularly in concert with a system of filtration
that threw out hits with no high scoring region around the hit. This approach has
been quite successful, and resulted in a fivefold reduction in false positive rates at the
same level of sensitivity as for BLASTP. The optimization is slightly different than
the multiple spaced seed optimization of Xu et al. [36,37], because the sensitivity
of protein alignment must be extremely high, almost 100%, due to the constraints
of the field. As such, the optimization done in his paper [6] focuses on computing
the minimum false positive rate needed to ensure 100% sensitivity to a set of test
alignments.

A somewhat similar approach was derived by Kisman et al. [20] in the protein
alignment package tPatternHunter; they allow hits to a collection of possible seed
patterns, with an extra immediate filtration step to throw out bad hits. Again, the
reported speed is substantially improved over BLASTP.

6.5.3.4 Seeding Multiple Alignments Another use for more complicated seeding
models has been in the seeding of global multiple alignments. Brown and Hudek
[7,16] used an extension to vector seeds in finding the anchor points upon which
they hung their heuristic multiple alignments. Their progressive alignment system
works by attempting to find surprisingly strong matches between inferred ancestral
sequences at internal nodes of a guide phylogenetic tree.

What is different between this application and previous uses for vector seeds is that
Brown and Hudek allow uncertainty in the estimation of the positions of the ancestral
sequence: they allow the use of the full 15-letter [UPAC DNA alphabet that includes
ambiguous symbols. As such, they build a theoretical log-odds scoring system for
this more complicated scenario, and then pick, at each internal node of the guide
tree, a seeding pattern and threshold that will minimize the amount of alignment error
induced by the anchoring process.

Their seeding approach is a two-pass filter that slightly extends vector seeds. An
ungapped alignment seed consists of a binary vector and threshold (v, T'), where each
position of a seed match, even the ones where v; = 0 must have a nonnegative score,
and the total score of the positions with value v; = 1 is at least T. This approach was
more successful at both avoiding hit clustering and in avoiding false positive rates
than the simpler vector seed approach.

6.5.3.5 Seeding Alignments with Gaps Continuing our tour through alignment
models, we note that none of the alignments we have discussed have allowed for
gaps to be present in seeds, but only mismatches. Generally, this limitation has not
been especially serious: strong alignments of homologous protein or DNA sequences
usually do have reasonably long, highly conserved, ungapped stretches in them.
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However, two different systems have arisen which do not require the seeding of an
alignment to be found in an ungapped region. The first of these is YASS [29,30], which
is a DNA sequence alignment program. It uses spaced seeds and some extensions to
them, but allows one to set a seeding requirement that requires multiple hits, yet still
allows for the region between the gaps to be unequal in length in S and in 7. This
implicitly allows for the existence of small gaps in the alignment that includes S and T'.
The mathematics used to estimate the sensitivity of YASS is based on a simple model
of evolution where after every position of aligned sequence, there is a possibility of
a position that is a gap from either sequence. As a general rule, this approach has
the potential to increase sensitivity quite a bit, but may also be costly due to false
positives rising; allowing many positions for the two seed matches to occur can be
quite costly. Still, YASS is comparable in speed and effectiveness to PatternHunter
[29,30].

A much more recent paper uses the possibility of gaps in a domain where allowing
for their existence is essential: tandem repeat finding. Tandem repeats are often quite
short, and the matches between them can be interspersed with many small gaps, as
they are highly prone to insertion and deletion mutations. As such, if one is searching
for them, even a spaced seed will not be effective; one would need a very short pattern
to avoid having it be disrupted by a gap. Mak et al. [27] use an approach that allows
the seed pattern to include positions that can represent zero or one symbols from
each of S and T, thus allowing for very short gaps to exist in the seed region. This,
combined with the now straightforward extension of “don’t care” positions, as in
spaced seeds, gives a nice improvement in sensitivity of a seeding approach for such
alignments, again at minimal cost in false positives. This clear advantage is particularly
nice in this case, as the false positive rates tolerated are substantially higher than for
typical DNA alignment, because consumers expect tandem repeat finders to be very
sensitive.

Computing the sensitivity in these models requires small changes to the model
that is generating the alignment, but can still be done using essentially the same
dynamic programming calculation described in Section 6.3.2.1; Mak and her co-
authors describe it by reference to the Aho—Corasick automaton [1] for the set of
patterns their seed models will match, but the technique is equivalent.

6.6 SOME THEORETICAL ISSUES IN ALIGNMENT SEEDING

In Section 6.4.1, we have given somewhat informal arguments for why alignments
are better seeded with spaced seeds and their extensions than with the unspaced seeds
that preceded them. We will conclude this review with some comments about the
theoretical status of such questions.

6.6.1 Algorithmic and Complexity Questions

Early questions in this area consisted mostly of development of reasonably efficient
dynamic programming algorithms to compute the sensitivity of a particular seeding
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approach to the Bernoulli model of DNA alignments; Keich et al. [17] gave the first
such algorithm, and then it was expanded and slightly varied to include all of the
various extensions discussed in this chapter. There were still questions that existed
at that time, though, about other complexity issues in spaced seeds, many of which
have been since resolved.

The simplest such question is whether computing the optimal single seed of a
given weight and length for a given alignment model is NP-hard. The answer is yes,
if we are allowed to make the alignment model extremely perverse: we can encode the
clauses of a SAT instance in the set of possible alignments we may need to discover,
and then allow the seed to encode the truth assignment. If the instance is satisfiable,
there exists a seed with 100% sensitivity, while if not, there is no such seed. See Li
et al. [23] for more detail.

The same authors also discussed whether multiple seed selection is NP-hard; here,
they show that the problem of computing the sensitivity of a nonconstant-sized set
of seeds is NP-hard, even for the simple Bernoulli model of alignments, if the set
of possible seeds is given. This is done by showing that if we could compute the
sensitivity of a particular set of seeds, we could solve a 3-SET-COVER instance. They
finally show, by a simple reduction, that computing the optimal seed set for a particular
set of alignments is equivalent to MAXIMUM-COVERAGE, and is hence also NP-hard.

More recently, Li et al. [24] have extended this by showing that computing the
probability of a single seed having a hit to the uniform Bernoulli model is also NP-hard.
This is done by an exceedingly detailed counting argument, where they again show
that computing the sensitivity of a single seed to the Bernoulli model is equivalent to
solving 3-SET-COVER.

Similar work by Nicolas and Rivals [28] show that identifying whether a seed
misses any ungapped alignments of a given length with a fixed number of mismatches
is also NP-hard. Their work starts from the ExacT-3-SET-COVER problem, but again
does very delicate counting to identify which strings are missed. They also prove
some nonapproximability results about estimating the sensitivity of multiple seeds.

Finally, we note that computing the optimal single seed for the Bernoulli model
should not be NP-hard, as the set of optimal seeds for different lengths £ and a constant
weight w is sparse, and if a sparse set is NP-hard, then P = NP [26].

6.6.2 Combinatorial Questions

But there is another obvious set of questions. Fundamentally, why is a spaced seed
better, past the heuristic observation about seed hits not clumping as much? Much
of the work that seeks to resolve this question has relied on work from the early
1980s of Guibas and Odlyzko [14], who were studying patterns in binary strings. The
connection between this theory and questions about spaced seeds has been extremely
fruitful.

Buhler et al. [9] gave a partial answer to this, by studying the spectral structure of
the transition matrix of the Markov chain that describes the behavior of the automaton
we have been discussing throughout this chapter. Using this approach, they show that
the asymptotic spacing of spaced seed hits is preferable to that of unspaced seed hits.
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This approach was very recently extended by Li et al. [24], giving tighter bounds on
the asymptotic bounds given by the spectral results. In fact, their results also show
that one can estimate the sensitivity of a spaced seed for regions of arbitrary length
very accurately, in time not dependent on the length of the homology region. (The
proofs are not found in the conference version of their paper.)

Analogously, Li et al. [23] used a martingale argument to show that the expected
position of the first hit, in an infinite-length alignment, to a spaced seed comes before
the first hit to an unspaced seed; this suggests that for large alignments, the sensitivity
of the spaced seed will again be higher.

6.7 CONCLUSIONS

Alignment seeding has been an extremely active area of research for the past few years:
dozens of researchers have worked on this problem, largely due to the excitement
caused by the original PatternHunter paper of Ma, Tromp, and Li [25]. In many
ways, the area seems to have achieved a new level of mathematical maturity that was
previously lacking: an extensive amount of combinatorial and probabilistic analysis
has been joined into the field, along with much algorithm and complexity research.

What may be the next focus is research into the other two phases of the alignment
process: the indexing phase at the beginning of the process, which is highly memory
constrained, and the alignment phase at the end, which is of course the current time
bottleneck. Another focus may be on using multiple scoring functions for heuristic
alignment; the recent work of Pachter and Sturmfels [31] on parameter estimation, and
of Fernandez-Baca and Venkatachalam on parametric alignment [13], for example,
may point the way in this direction.

Still, looking back at the past 6 years, it is not exaggeration to say that sequence
alignment has had a surprising renaissance. We can hope that subsequent periods are
comparably fruitful for it and for other domains of bioinformatics.
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7.1 INTRODUCTION

Studying the evolutionary histories of extant species and their ancestors has been one
of the fundamental tasks of biology since Darwin’s work, where the idea of evolution-
ary tree (or phylogeny) has been introduced. A phylogeny is a rooted tree whose leaves
are labeled by the extant species and where each internal node is a (hypothetical)
common ancestor of its descendent leaves. For the last 150 years, biologists have
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struggled to compile phylogenies by using the scarce information available, such as
phenotypes and a few genetic data, with the ultimate goal of building the “tree of
life,” where the evolutionary history of all species on earth is represented.

In the last two decades, terrific advances in both Biotechnology and Bioinfor-
matics have led to a huge increase in the number of phylogenies that are avail-
able for interested scholars. More precisely, biotechnology advances allow to ob-
tain genetic sequences from various species, making feasible to compare separately
different genes of the same set of species to obtain a phylogeny with a stronger
evidence. Moreover the number of efficient computational methods in phylogenet-
ics has tremendously increased, in turn leading to the availability of an even larger
number of phylogenies.

Unfortunately, the underlying problems under the most widely accepted models,
such as maximum parsimony or maximum likelihood, are NP-hard and therefore
unlikely to have an efficient exact algorithmic solution. The main consequence is
that the number of possible solutions taken into account during the execution of
an algorithm, usually increases exponentially with the number of investigated taxa,
hence even the most impressive algorithmic solution can assume unpractical time
requirements for very large instances, even though it is currently tractable dealing
with fairly large datasets (i.e., a few hundreds of taxa).

Evolutionary trees are a suitable mean for representing histories where the only
interesting event is speciation, that is, a genetic mutation appears in some individuals
of a species giving rise to a new subspecies. But the actual biological representation
of evolutionary histories is even more complex, as recent findings have shown that an
evolutionary tree is not always adequate, due to some kinds of biological events such
as gene duplications, where a single gene mutates into two distinct copies afterward
evolving separately, or lateral gene transfer, where some genetic material is inherited
by an unrelated species. In these cases a more involved representation, such as an
evolutionary network, is needed.

These facts result in the broad problem of comparing phylogenies (or evolutionary
networks) to combine them into a single representation (i.e., an evolutionary tree or
network). The main goal of the present review is to give a unified description of some
fundamental computational approaches to face comparison of general phylogenetic
representations, with an emphasis on combinatorial properties, models, and methods.
We analyze how these methods have been implemented by efficient computational
procedures.

The general problem will be classified into three related subproblems, each with
its own motivations and results: (i) computing a common subtree (or subnetwork),
(ii) computing a supertree (or supernetwork), (iii) reconciling trees.

The problem of computing a common subtree (also known as consensus tree) of a
set of trees over the same set of taxa arises from the aforementioned fact according to
which phylogenetic trees are usually constructed by using data obtained from different
sources, such as molecular and morphological data. Therefore, there are strong moti-
vations for extracting from those phylogenetic trees a strongly supported phylogeny.

The problem of computing a supertree finds its main motivation in the daunting
task of computing the “tree of life.” Since the set of known species is too large for any
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known phylogeny reconstructing algorithm, a sound approach is to construct some
phylogenies on overlapping sets of taxa, and then to combine them into a unique
phylogeny summarizing all information contained in the original phylogenies.

The two problems are easily generalized to networks and share two common
computational issues: (i) finding some suitable criteria to amalgamate or combine the
input phylogenetic networks into a single representation, (ii) designing some efficient
polynomial-time algorithms to compute the desired output data.

A first step in facing these issues has been the introduction of some basic math-
ematical tools to compare the branching structures of the phylogenies of interest.
These tools are efficiently computable functions (mappings) relating nodes of two
compatible trees or networks. As all the interesting instances are those where the in-
put trees are not the same and the goal is to determine a unique phylogeny agreeing on
all input data, edges or taxa must be removed to guarantee the removal of branching
differences among phylogenies; this leads to the introduction of optimization criteria.
The most commonly used criterion is the one of maximizing the number of taxa in-
ducing a common phylogeny, which can be found (by means of the chosen mapping)
in all input data.

The most investigated mapping in phylogenetic comparison is homeomorphism.
A homeomorphism between two trees specifies an isomorphism of trees under con-
traction of degree-2 nodes (each internal node x with only one child is deleted and
the two edges previously incident on x are merged into a new edge). In consensus
tree methods, this notion leads to the maximum agreement subtree (MAST) prob-
lem. It consists of finding a phylogenetic tree with the largest set of taxa for which a
homeomorphic copy is included in all input trees.

The MAST is applied to compare different types of phylogenetic data. Mainly, it
is a first basic approach in finding a consensus among gene trees, when reconciling
different gene trees to a species tree.

More generally, it is practically used to obtain the largest intersection of a set
of phylogenies inferred from different datasets. This largest intersection is used to
measure the similarity of different estimated histories or to identify species that are
implied in horizontal gene transfer.

The refinement mapping has been introduced as a less restrictive mapping to com-
pare general trees. Indeed, while homeomorphic trees are obtained by contracting
nodes with only one child, trees obtained through refinement, that is, comparable
trees, differ only by the contraction of a set of edges (endpoints of an edge are merged
together). This notion is crucial in the recent methods of amalgamating phylogenies
over overlapping sets of taxa, or supertree methods. Indeed, in most cases the input
phylogenies have different sets of taxa, and thus the primary goal is to compute a
supertree 7T including all input taxa and displaying all input trees, that is, the subtree
of T over the set of taxa of each input tree 7; is a refinement of 7;.

The third and final subproblem examined in this review arises in comparative
phylogenetics and is the reconciliation (or inference) of species tree from gene trees.

A gene tree is obtained by analyzing the evolutionary history of a specific gene,
present in all species under investigation, where different copies of a gene may be
present in the species studied, resulting in two or more leaves in the tree sharing
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a common label. Instead a species tree is a phylogenetic tree representing the
evolutionary history of a set of species, therefore, each label can be associated to
at most one leaf of a species tree.

Different studies have shown that the species and gene evolutions do not necessarily
agree, and that similarly the evolutionary histories of two different genes for a given
set of species do not necessarily agree. Thus the problem is twofold: a species tree
and a gene tree might not agree, and two gene trees over the same set of species might
be different. This divergence between gene trees is due to biological events that affect
the evolution of a gene. Indeed events such as duplication of a gene, loss of a gene,
and lateral gene transfer (or horizontal gene transfer) are involved in genes evolution.
On the contrary, species trees represent the evolution history of a set of species only
in term of speciation.

Just as for the above mentioned comparison problems, a basic task in reconciliation
of gene trees is to infer a single tree from trees over the same sets of taxa, but in this
case, the single tree must be inferred with respect to mappings that preserve the set of
taxa and minimize the differences between gene trees due to the specific evolutionary
events. Moreover, the comparison of gene trees with a putative species tree is also
relevant to infer a scenario of evolutionary events.

In this review, we present several approaches dealing with the problem of
comparing gene trees in order to infer a species tree. It must be observed that this
framework takes into account events that give rise to nontree structures, such as
lateral gene transfers and hybridizations. Indeed, these events are represented by
edges that connect nodes on different branches of a tree. Phylogenetic networks
appear to be a natural mathematical structure that allows to handle such situations
and are therefore central in our treatment of the subject.

This review is structured as follows: first we will introduce the basic definitions
that will be used throughout the paper, then we will devote one section to each class
of problems studied, beginning with the problem of computing a common subtree,
going on with the problem of computing a supertree, and concluding with the problem
of reconciling a set of gene trees with a species tree.

7.2 BASIC DEFINITIONS

Let A be a finite set of labels, representing the set of extant species (taxa) under
investigation. A rooted network N over A or simply network, is a directed connected
graph N = (V, E) containing a unique vertex with no incoming edges, called root
of N and denoted by r(N) and a labeling function from the set L(N) (or simply
L whenever the network is clear from the context) of all vertices with no outgoing
edges, called leaves of NV, to the set of labels A is defined. The root of N represents
the common ancestor of all taxa.

A phylogenetic network N is a network over A in which each internal node, that
is, distinct from the leaves, has outdegree at least 2. Given a phylogenetic network N,
then A(N) denotes the set of all labels associated to leaves of N.
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The undirected version N, of a phylogenetic network N, obtained by removing
the direction of all edges in N, might clearly contain some cycles: in fact N, contains
a cycle if and only if N is not a phylogenetic tree. Indeed phylogenetic trees are a
special case of phylogenetic networks, more precisely they consist of all phylogenetic
networks N such that N, is acyclic. Consequently, all properties of networks also
hold for trees. In particular, phylogenetic trees whose leaves are in bijection with the
set of labels, are called uniquely labeled. Moreover, the undirected version N, of a
phylogenetic network N may be unrooted if no vertex is distinguished as the root
of N.

Given a rooted network N and a node v of N, we denote by N(v) the complete
subgraph of N rooted at v consisting of v and all of its descendants. Then L(v) is the
set of leaves of such a subgraph.

The branching structure of a network represents the evolutionary relationships
among the ancestor species. Notice that two or more leaves may share a common
label. Also when a network is acyclic, it is possible to topologically sort the vertices
so that a vertex always appears after all its ancestors, allowing for the definition of
children and parent of any given vertex, as usual for trees.

Given a phylogenetic network N, its internal nodes can be classified according to
their indegree: the vertices with indegree one are called regular, while vertices with
indegree at least 2 are called hybridization nodes. Clearly a phylogenetic tree does
not contain hybridization nodes.

Given a node x of a network N, the cluster of x, denoted by C(x), is the set of
labels of all the descendants of x in N. An important property of uniquely labeled
phylogenetic trees is that a tree of this type is completely specified by its set of clusters
(or clades).

A collection C of subsets of a set A of labels is a cluster system over A if A and all
of its singletons are elements of C; C is treelike if no two of its sets overlap, that is for
each C1,C, € C,C1 N Cy € {Cq, Ca, ¥}. By the above definition, it is immediate to
verify that a uniquely labeled phylogenetic tree over the set A of leaves is equivalent
to a treelike cluster system over A. Let C(T) denote the set of clusters of all nodes of T'.

Some classes of phylogenetic trees are of particular interest since they can be
used to represent specific situations. A special type of phylogenetic tree is the gene
tree, which represents the evolutionary histories of different genes and is a rooted
directed binary tree, leaf-labeled by the set A, where an element of A can be used
to label more than one leaf. Indeed, multiple occurrences of the same label in a
gene tree are related to different biological events such as gene duplications. Simi-
larly, a species tree is a rooted binary trees whose leaves are uniquely labeled by the
set A.

When dealing with rooted networks, a fundamental notion is that of least common
ancestor of a set of nodes. Let A be a subset of the nodes of a phylogenetic network
N, then a least common ancestor (or shortly Ica) of A in N is a node x of N from
which all nodes in A can be reached and closest to set A (i.e., the sum of the lengths
of every path from x to anode in A is minimum). It is immediate to notice that such a
node always exists, since all nodes of N can be reached from the root of N. Moreover,
the least common ancestor of a set A of nodes is unique in phylogenetic trees.
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In the following, given a network N, by V(N) we denote the set of vertices of N,
by A(N) the set of directed edges or arcs of N and by E(N) the undirected edges (or
simply edges) underlying the set A(N). Observe that when dealing with phylogenetic
trees there exists a unique orientation of the tree induced by the root, that is, arcs are
directed from the root toward the leaves.

7.2.1 Network Mappings and Display

In this section, we introduce some basic mappings between vertices of two given
networks. These mappings are used in the next sections to compare a collection of
phylogenetic networks by identifying a branching structure representing their com-
mon history. We assume that all mappings map a leaf /; to another leaf /; only if /;
and /> have the same label.

Two networks Ny, N> are isomorphic if there exists a bijection or isomorphism
¢ from V(Njp) to V(N3) preserving leaf labels such that (¢(vy), ¢(v2)) € A(N) if
and only if (vy, v2) € A(N7). A network Nj is homeomorphic to N if there ex-
ists an homeomorphism ¢ from V(Np) to V(N»), that is, a surjection such that
(¢(v1), p(v2)) € A(N>) if and only if there exists a path from v; to vy in A(N7)
consisting of nodes with both indegree and outdegree 1.

The notion of homeomorphic network can be alternatively defined by means of the
vertex contraction operation that is applied to a node v of indegree and outdegree 1:
it consists of creating an arc connecting the vertex parent of v to the child of v and
removing v and all arcs incident on it. Thus, a network N; is homeomorphic to N>
whenever N> is isomorphic to the network obtained from N; after contracting all
nodes of indegree and outdegree 1. Similarly, the arc contraction operation consists
of removing an arc and merging its incident vertices. This operation is used to define
another mapping between two networks.

A network N is a refinement of N; if there exists a surjection ¢ from V(N7) to
V(N3), such that (¢(vy), ¢(v2)) € A(N>) if and only if vy is connected to v, after
a sequence of some arc contractions applied to network Nj. Observing the type of
mappings we have defined above, assume that two networks related by the mapping
are all leaf-labeled by the same set A. Whenever networks to be compared are over
different, but overlapping, set of leaves, then the notion of network displaying another
network as defined below, has a crucial role.

Let L be a subset of the leaves of N. Then, the restriction of N to L, denoted by
N|L, consists of the network obtained from N by retaining only nodes along with
their incident arcs that are in a path from a leaf in L to the least common ancestor
of L in N. We also say that N|L is the subgraph induced by L. The fopological
restriction of N to L, denoted by N|(L, consists of the network obtained from
N|L by applying all possible vertex contractions. Since in uniquely leaf-labeled
networks the leaves can be identified by the set of their labels, the notion of
restriction and topological restriction are simply given w.rt. to a set A of leaf
labels.

A network Nj displays N if all leaves of N, are also leaves of N and the topo-
logical restriction of N to the leaves of N is a refinement of N,. Informally, network
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N displays N if all information represented by the branching in N is contained
in Nj.

Observe that when mappings are applied to trees 77 and 7> over the same set of
leaf labels, they induce fundamental relationships between clusters of the two trees.
Indeed, notice that 7' is homeomorphic to 7> iff C(T1) = C(T3), while T; displays 7>
if and only if C(T7) 2 C(T»).

Some mappings defined on pairs of trees are also characterized in terms of triples
of leaves, as a phylogenetic tree can be described by listing the set of triples of leaves
and their induced branchings. More precisely let T be a phylogenetic tree, and let
a, b, c be three of its leaves. Then, the tree T|{a, b, c} assumes one of four possible
configurations. Three of these configurations are binary trees and are called rooted
triples: they are denoted as (ab|c) if a and b are at distance 2 from the root while ¢
is at distance 1, (ac|b) if a and c are at distance 2 from the root while b is at distance
1, (bc|a) if b and ¢ are at distance 2 from the root while a is at distance 1. A last
configuration, denoted (a|b|c), occurs if a, b, and ¢ are all at distance 1 from the
root and is called a fan. We will denote by #(T) and f(T), respectively, the set of
rooted triples and the set of fans of the tree 7. A well-known characterization of
homeomorphism and refinement states that

Lemma 7.1 A tree T is homeomorphic to T' iff all rooted triples and fans of T and
T’ are isomorphic, that is, f(T) = f(T') and {(T) = t(T"). A tree T is a refinement
of tree T' iff rooted triples of T refine fans of T', that is, t(T') C (T and for each
(alb|c) € f(T") — f(T) one of (ab|c), (ac|b), (bc|a) is in «(T).

T1 T2

D E A B F C D E

FIGURE 7.1 Examples of phylogenetic trees.
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If tree T is a refinement of tree 7", then T is called compatible to T'. Observe that
if there exists a triple a, b, ¢ such that T|{a, b, ¢} and T’|{a, b, ¢} induce different
rooted triples, then T and 7’ are not homeomorphic and they are in hard conflict on
the triple a, b, c. Similarly, if given a triple a, b, ¢, T|{a, b, c} is a rooted triple while
T’|{a, b, c} is a fan, then T cannot be homeomorphic to 7’ (and vice versa) and trees
T and T’ are in soft conflict on the triple a, b, c.

In Fig. 7.1, some examples of phylogenetic trees are represented (note that the
orientation of edges is not represented as implicitly given by the root). Please no-
tice that Ty displays 77 and 7>, while also T3 displays 77, but not 7>. In the next
two sections, we will assume that all phylogenetic trees are uniquely labeled, if not
differently specified.

7.3 SUBTREES AND SUBNETWORKS

In this section, we will deal with trees or networks that are uniquely leaf-labeled by
the same set of species or taxa. The methods used to compare such kinds of networks
remove as fewer leaves as possible inducing branching differences in the networks so
that the result is a consensus subnetwork or subtree. A classical criterion used to infer
a consensus subtree consists of finding a largest set of taxa (leaves) that induces an
agreement subtree that can be retrieved in all input trees according to some specific
notions of mappings, as introduced in Section 7.2.1. The choice of different mappings
leads to the definition of different comparison problems on unrooted and rooted phy-
logenetic trees. The foremost example of mapping is homeomorphism, which leads
to the MAST problem, initially proposed by Finden and Gordon [17]. Note that this
criterion is weaker than isomorphism among trees while it is more restrictive of the
refinement mapping. This last notion leads to a variant of the maximum agreement
subtree that is of particular interest in comparing nonbinary input trees: the maximum
compatible tree (MCT) problem, that was initially proposed by Hamel and Steel in
[25] to specifically compare nonbinary trees over a common subset of leaves. Indeed,
in an evolutionary tree, a node with more than two descendants usually represents an
incomplete resolution of the grouping of its descendants. In this situation, the com-
patible subtree of two input trees is able to group sets of taxa with a least common
ancestor that can have many children in one input trees and only a few in the other tree.

Clearly, the maximum compatibility criterion on a set of trees produces a subset
of taxa that is at least as large as the set of taxa of a maximum agreement subtree, as
it is a weaker criterion than homeomorphism. Notice that over binary trees the two
criteria produce the same tree. Recently, those notions on trees have been extended
to obtain phylogenetic subnetworks (Fig. 7.2).

7.3.1 Subtrees

Let us now give more formal definitions of the problems studied. The notions of
homeomorphism and isomorphism applied to a collection 7 = {71, ..., T, } of phy-
logenetic trees lead to the following notions of consensus subtree. An agreement
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FIGURE 7.2 Examples of phylogenetic networks.

homeomorphic subtree (respectively, agreement isomorphic subtree, compatible sub-
tree) of T is a phylogenetic tree T such that each tree T;|L(T) is homeomorphic
(respectively isomorphic, compatible) to 7. Clearly, the above different notions lead
to the general comparison Problem 7.1, where o-subtree stands for one of agreement
homeomorphic, agreement isomorphic, or compatible subtree.

PROBLEM 7.1 Maximum Consensus c-Subtree

Input: aset 7 = {T1, ..., Ty} of phylogenetic trees.
Output: a o-subtree of 7 with the largest set of leaves, or maximum o-subtree.

The three main variants of Problem 7.1, for o equal to agreement homeomorphic,
agreement isomorphic, or compatible, are called respectively Maximum Agreement
Homeomorphic Subtree problem (MAST), Maximum Agreement Isomorphic Subtree
(MIT), and Maximum Compatible Subtree (MCT). Observe that the problem MCT
over binary trees is equivalent to the MAST problem.

Variants of the MAST, MIT, and MCT problems are naturally obtained by changing
the parameter used in the objective function. Instead of using the size of the leaf set
to find an agreement subtree, the whole size of the solution tree could be maximized
in an optimal solution.

7.3.2 Computational Complexity and Algorithmic Solutions

The degree of the input trees is a key parameter for determining whether MAST and
MIT are easy or hard to solve; in fact both have polynomial-time algorithms when at
least one of the input trees has bounded degree [2], while both are NP-hard for three
unbounded-degree trees.

Algorithms for computing a MAST over two rooted or unrooted binary trees have
been extensively studied. We list some of the most interesting results that appeared
in the literature for the MAST problem, starting with instances of two trees on n
leaves each. MAST can be solved in O(n logn) time for two (rooted and unrooted)
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binary trees [9], in 0(d*n logn(2n/d)) time for two trees of maximum degree d
[30], and 0(n1'5) time for two generic trees [29]. For k trees, the most efficient
algorithm is a O(n + kn3) time algorithm [14] when one tree has maximum degree
d. Given p the smallest number of leaves whose removal leads to the existence of
an agreement subtree, a O(min(3”kn, c? + kn?)) time algorithm for general trees has
been proposed in [5] (where ¢ &~ 2.311). This result improves over the previously
known O(3Pknlogn) time algorithm [13], which established that MAST is fixed-
parameter tractable in p.

The computational complexity of MCT problem is quite different; in fact, it is
NP-hard just on two trees one of which is of unbounded degree [26]. Moreover, it
has a 0(2%4p*) time algorithm for trees of maximum degree d [19]. Similarly as
MAST, the problem on general trees can be solved in O(min(3Pkn, c? + kn?)) time,
given p is the smallest number of leaves whose removal leads to the existence of an
agreement subtree [5] (where ¢ =~ 2.311).

7.3.3 Dynamic Programming Algorithms

We will now concentrate on an exact algorithm for solving MAST on two input
trees. A main technique used in several algorithms for the MAST problem as well
as in its restrictions is dynamic programming (DP). An earlier DP algorithm for
two trees has been proposed in [37] and has been later extended to MCT on two
trees and on k rooted trees of bounded degree d to achieve the result in [19] listed
previously.

Let us describe the basic idea of the DP algorithm of [37] on two d-bounded-
degree input trees T, T’ having the same set L of leaves. Recall that given a node v,
T(v) is the complete subtree of T with root v. Then, let us denote by mast(x, y) the
optimum over the trees T(x) and T'(y), where x and y are two nodes of T and T’,
respectively. Clearly, the value of the solution for 7, T’ is given by mast(r(T), r(T")).
As usual for a DP algorithm, the main step consists in defining the value of mast(x, y)
recursively. First notice that if x and y are both leaves, then mast(x, y) = 1 if and
only if x and y have the same label, otherwise mast(x, y) = 0. Similarly if x is
a leaf, but y is not, then mast(x, y) = 1 if and only if x has the same label as
one of the leaves of T'(y). A symmetric property holds for the case that only y is
a leaf.

Let us now assume that neither x nor y is a leaf. As a consequence, two main
distinct cases must be considered. Let L” be the subset of L that is the leaf set of
a maximum agreement subtree of T'(x) and T’(y). The first case holds when the
least common ancestor of L’ in T(x) and T’(y) is the root of each tree T(x) and
T’(y), respectively. Then, observe that L' = Ly U Ly - - - U Ly, where sets L;, L are
pairwise disjoint and each set L; is the leaf set of a maximum agreement subtree of
trees T'(x1), T'(yk), for x; and yg children of x and y, respectively. Notice that the size
of L;j is given by mast(xi, yx). Since sets L;, L ; are pairwise disjoint, it follows that
the cardinality of L’ is obtained by summing mast(x;,,, yj,), for each pair (x;,, yj,)
in a set {(x;;, yj,), ..., (xi,, ¥j,)}, where all x;,, ..., x;, are distinct children of x,
Yii» - - - » Yjm are distinct children of y and m is the minimum of the numbers of children
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of x and y. Let us define a pairing of x and y as a set of m disjoint pairs each one
made of a child of x and a child of y. Then mast(x, y) is equal to the maximum cost
of a possible pairing. This value corresponds to the maximum weight matching in a
bipartite undirected graph G, where the vertices are the children of x and y, and each
edge (xi, yj) has weight equal to mast(x;, yj). For our purposes, maximal weighted
matching in bipartite graphs can be computed in O(m./n log n) time [18].

A different situation holds if only a descendant of node x or of node y is the
least common ancestor in T and T’ of the leaf set of an optimal solution. In
this case, given x; a child of x and y; a child of y, it holds that mast(x, y) =
max;, j{mast(x;, y), mast(x, y;), mast(x;, y;)}. Clearly, we are unable to know which
of the two cases discussed above holds, therefore we must choose the maximum over
all possibilities.

The basic implementation of the above equations leads to a quadratic time al-
gorithm [37], which has been subsequently improved to O(n logn) time in [28] by
using sparse dynamic programming based on the proof that the number of interest-
ing pairs of nodes x, y for which mast(x, y) must be computed to get the optimal
solution is at most O(n logn). The further efficiency achieved by the algorithm of
[29] for two trees of bounded degree d is based on an improved technique to com-
pute the maximum weight matchings of bipartite graphs satisfying certain structural
properties.

An O(n? + kn?) time algorithm improving a previous result in [2] has been given
in [14] by cleverly extending the DP algorithm discussed above. In this case, the
coefficient of the recurrence equation has a k-tuple of parameters consisting of one
node from each input tree, and instead of a pairing it is necessary to construct a k-
pairing that is defined as a set of disjoint k-tuples, where each k-tuple contains exactly
one child of each node currently considered.

Let Tq, ..., Tx be a collection of k input trees all with leaf set L and where some
tree has maximum degree d. The basic idea in [14] is to find recursively a k-tuple
v = (v1, ..., vx), where each v; consists of the root of the subtree 7;|L’ such that L’

is the leaf set of a maximum agreement subtree.

A fast recurrence for computing mast(?) is obtained by defining a linear ordering
> among k-tuples representing roots of agreement subtrees of the input trees such
that > is of size O(n>) and can be computed in O(kn>). The linear order obeys the
following properties proved in [14]: (i) v > w iff each element wj is a child of v; in
some agreement tree, (ii) there are O(n) active directions, where an active direction

for (v, w) is defined as d = {d, ..., di} such that v > w and wj is a d; child of v;.
Given a vertex v of the linear ordering, mast(v) is computed by finding a k-pairing
for v, consisting of a set {dy, ..., d;} such that d; is an active direction for (v, w;)

and mast(wp) + ...+ mast(w;) is of maximum value. Due to the degree bound,
it must be that [ < d. Computing an optimal k-pairing can be done by construct-
ing the vertex-weighted compatibility graph G(v) with vertices the active directions
from ¥ and edges the pairs (di, dj) where d; and dj differ in all coordinates. Each
vertex d is weighted by the value max{mast(w) : d active direction for the pair (v, w)}.
Consequently, it can be easily proved that an optimal k-pairing for v corresponds to
a maximum weighted clique of graph G(v). The computation of such clique requires
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O(n“) time. Based on the above steps the optimum for all input trees is computed via
DP as the maximum value mast(v) over all k-tuples in the linear ordering.

7.3.4 Fixed-Parameter and Approximation Algorithms

Since in practice the input trees usually agree on the majority of the leaves, it is
relevant to study the approximation of the complementary versions of MAST and
MCT (called, respectively, CMAST and CMCT), where we want to minimize the
number p of leaves that must be removed in order to obtain an homeomorphic (or
compatible) subtree. The parameter p is used to design fixed-parameter algorithms
for CMAST and CMIT [5]. The algorithms rely on two well-known characterizations
of homeomorphism and refinement based on rooted triples stated in Lemma 7.1. By
this result, the homeomorphism or refinement among two trees is simply tested by
verifying that no conflicting triples exist between the two trees. Precisely, given trees
T and T', T is homeomorphic to 7’ if the trees are not in hard or soft conflicts on all
triples. However, a soft conflict among two homeomorphic trees T and T’ does not
forbid the existence of a tree compatible with both trees 7, T’. Indeed, the following
result relates MAST and MCT problems over a collection 7 of trees to conflicting
triples.

Observation 7.1 Let T be a collection of trees over the same leaf set L and let
L' C L. Then T is an agreement (or compatible) subtree of T with leaf set L’ iff no
triple of elements in L' is a hard or soft conflict (or hard conflict) in T.

Observation 7.1 leads to a reduction from MAST and MCT problems to the
3-Hitting Set problem. More precisely, we consider parametric versions of MAST
and MCT consisting in finding an agreement and compatible subtree of a set 7 of
trees [5] having at least n — p leaves, for a fixed value p. The instance of 3-Hitting
Set problem is a collection of triples of elements over the universe U and a parameter
p. The problem asks for a hitting set (i.e., a subset H of U intersecting each triple
in the collection) of size at most p, if such set exists. Clearly, in the reduction of
parametric MAST and MCT, the input collection of 3-Hitting Set consists of all
conflicting triples over the leaf set of the input trees. The hitting set H to be computed
is the set of leaves that must be removed to get the agreement and compatible subtree.

The above reduction leads to algorithms solving CMAST and CMCT. Indeed, it
is possible to compute triples in a tree over n leaves in O(n?). Thus, knowing the set
X of triples on which k trees are in conflict requires O(kn?) time. The set X and the
parameter p constitute the instance of the 3-Hitting Set problem, which can be solved
in O(2.277 + kn?) time [13], using the fixed-parameter algorithm in [32].

An alternative algorithm for CMAST and CMCT has been recently given in [5]
based on two linear-time procedures: (P1) a linear-time algorithm to test whether two
rooted trees are isomorphic (or compatible), or otherwise identify a triple of leaves
on which they disagree, or are a conflict and (P2) a linear-time algorithm that on two
input trees returns a tree 7 minimally refining them if such a tree exists, or otherwise
returns a conflict. The algorithm works in two steps on input, a collection 7 of trees
and a parameter p:
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1. it uses the procedure P1 or P2 to test whether the collection 7 consists of all
isomorphic or comparable trees, otherwise it finds a triple a, b, ¢ on which two
trees in 7 have a conflict,

2. alternatively, for each label [ in {a, b, c}, recursively the algorithm looks for a
subtree without conflicts in the new input consisting of the collection 7 of trees
topologically restricted to L — {/} and parameter p — 1.

The above algorithm can be implemented to run in O(3”kn) time. By combining the
two strategies in [5] the fixed-parameter O(min{3”kn, 2.277 + kn’}) time complexity
of CMAST and CMCT stated before has been proved.

The reduction to 3-Hitting Set leads also to an interesting approximation algorithm
for CMAST. Starting from [2] several papers propose 3-approximation algorithms;
most recently a linear time (i.e., O(kn) time) 3-approximation algorithm has been
proposed for CMAST on & (rooted and unrooted) trees on n taxa [4]. In the same paper,
an O(kn + n*) time 3-approximation algorithm has been proposed also for CMCT.

The simplest 3-approximation algorithm basically consists of the reduction to
3-Hitting Set, which can be computed in O(kn>) time as seen before. Successively
given ct(L) the set of all conflicting triples, the algorithm iteratively chooses an
arbitrary triple {a, b, ¢} € ct(L) and removes from ct(L) all triples intersecting
{a, b, ¢} while adding a, b, ¢ to the hitting set H (which is initially empty). Let X
be the set of triples chosen by the algorithm, the 3-factor approximation follows
from the fact that | H| = 3| X|, while the optimal solution of CMAST has at least | X|
elements. Indeed, all triples in X are disjoint which implies that at least one element
of each triple in X must be in the hitting set.

The complement versions are hard to approximate, more precisely CMAST is
APX-hard (i.e., it cannot be approximated arbitrarily well by a polynomial-time
algorithm) on three input trees, while CMCT is APX-hard even on two trees [4].
On the other hand, the original problems MAST, MIT, and MCT are even harder to
approximate, as they are as hard as Max Clique, that is, no polynomial-time algo-
rithm can compute an approximate solution within a factor n' =€ unless NP = P [4,7].
Moreover, MAST and MIT cannot be approximated with any constant ratio even on
instances of three trees [7,26].

7.3.5 Subnetworks

The MAST problem can be generalized to phylogenetic networks that are not trees
but such that their leaves are in bijection with the set L of leaf labels. Indeed, given
two networks Ny and N, an agreement homeomorphic network of Ni and N, is
a network N such that for a given leaf subset L’ C L every restriction N;|L, for
i € {1, 2}, is homeomorphic to N.

The NP-hardness results of the MAST problem clearly extends also to phylogenetic
networks, while some polynomial-time algorithms have been given for the case of
two input networks [8].
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7.3.6 Open Problems

Variants of the MAST, MIT and MCT problems are naturally obtained by changing
the parameter used in the objective function. Indeed, the whole size of the solution tree
could be maximized in an optimal agreement subtree, instead of the size of the leaf
set. In this case, optimization criteria based either on edges or clusters could be used
to find an optimal consensus subtree. Few papers have investigated this direction and
thus we do not know whether these criteria could produce consensus trees retaining
as many leaves as in the MAST or MCT solutions. In particular, it could be interesting
to define mappings between a pair of trees based on clusters or edges that allow to
find an agreement subtree retaining all leaves. This question is partially addressed in
the next two sections.

Another research direction that has been deeply explored regards the application
of the maximum agreement subtree as a measure of similarity to compare networks or
trees that are not necessarily uniquely leaf-labeled. Examples of such an application
come from gene tree inference and several other areas of computational biology where
it is required to compare unrestricted labeled trees. Algorithms for computing MAST
for unrestricted labeled trees are given in [30].

Restricted versions of the MAST problem obtained by assuming a leaf ordering
of the input trees [12] have been recently investigated. More precisely, in the ordered
maximum homeomorphic (OMAST) problem the input trees are ordered trees, that
is rooted trees where the left to right order of the children of each node is relevant,
while in the uniformly ordered MAST (UOMAST) problem the input trees are leaf
ordered trees, that is, trees having the same leaf label ordering. The leaf-labeled
ordered variants of MAST problem on k trees with n leaves can be solved in O(kn3)
time for UOMAST and O(n’min{nk, n + nlog"=! n}) for OMAST [12].

7.4 SUPERTREES AND SUPERNETWORKS

The goal of this section is to give an overview of computational methods for com-
paring phylogenetic networks that infer a supernetwork merging the information of a
collection of input networks. We focus on methods for comparing arbitrary and usu-
ally large structures, hence we do not study problems where the input structures have
fixed size, such as quartet-based methods for reconstructing phylogenies (we refer the
interested reader to [16] for a complete description of quartet-based methods), even
though those problems have been deeply investigated in the literature. Moreover, we
deal only with methods that do not use additional information besides the branching
structure of the networks to infer a supernetwork.

We first deal with supertree methods that applied in comparing phylogenetic trees.
As observed in the introduction, in contrast to consensus tree methods introduced in
the previous section, the supertree approaches are specifically designed to merge a
collection of input trees over different sets of leaves, even though sometimes they can
also be used to compare identically leaf-labeled trees.
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By using tree mappings introduced in Section 7.2.1, we can define methods for
supertree inference that are based on the idea of retaining a largest set of taxa obtained
by removing those taxa that induce conflicts among all trees or contradictory rooted
triples. These methods naturally lead to extend to the case of a supertree the notions
of agreement and compatible subtree discussed in the previous section.

A complementary approach to compute a supertree requires that all taxa appearing
in at least one input tree must necessarily appear also in the output supertree, where
all information encoded in the input trees must be present. Also for this approach, the
notion of tree mapping (especially of tree refinement) is central for formally defining
the idea of information preservation.

7.4.1 Models and Problems

The simplest and more general problem that arises in supertree inference is the con-
struction of a compatible supertree.

PROBLEM 7.2 Compatible Supertree

Input: aset 7 = {71, ..., Tx} of phylogenetic trees.
Output: a tree T displaying all trees in 7 .

This formulation has the drawback that such a supertree is not guaranteed to exist,
even though the problem seems quite easy to solve, as we are looking for a tree T
whose set of clusters contains those of the input trees. Moreover, such a supertree
exists if and only if no two input clusters (possibly in different trees) are overlapping.
Please notice that the problem is much harder on unrooted trees than on rooted trees;
in fact, computing (if it exists) a compatible unrooted supertree displaying all input
trees not only is NP-hard [35] but also cannot be solved by any generic algorithm
(without time constraints!) invariant with respect to permutations of leaves’ labels
[36].

By requiring that clusters of the supertree displaying all trees preserve some strict
relationships between clusters of the input trees, we obtain a variant of the Compatible
supertree problem that is related to the agreement subtree method.

PROBLEM 7.3 Total Agreement Supertree

Input: aset 7 = {T, ..., Ty} of phylogenetic trees, with T; leaf-labeled over A(T;).
Output: a phylogenetic tree T leaf-labeled over S = U;<x A(T;) such that each tree
T|A(T;) is homeomorphic to T;.

Observe that in the total agreement supertree problem, the computed tree T is such
that C(T'|A(T;)) = C(T;) while given the output tree 7’ of the Compatible supertree
problem, it holds that C(T;) is included in C(T'| A(T})).



158 THE COMPARISON OF PHYLOGENETIC NETWORKS

Again, the total agreement supertree problem might not have a solution, thus we
consider an optimization version of the above mentioned problem obtained by relaxing
the constraint of retaining in the supertree all leaves of the input trees and requiring to
construct an agreement supertree with as many leaves as possible. Such optimization
criterion leads to problems that are strongly related to MAST, MIT and MCT.

Indeed, applying network mappings to an instance consisting of a collection 7 =
{T1, ..., T} of phylogenetic trees lead to the following notions of supertree of 7°
over a set S of leaves such that S C U;<x A(T;).

An agreement homeomorphic (resp. agreement isomorphic) supertree of 7 over
S is a phylogenetic tree T such that for each tree 7;, T|A(T;) is homeomorphic to the
topological restriction of 7; to S (resp. for each T;, T|A(T;) is isomorphic to T|S5). A
compatible supertree of T over S is a phylogenetic tree T such that for each tree T;,
T A(T;) is a refinement of the topological restriction of 7; to S. As in Section 7.3, we
use the notion of o-supertree to denote either agreement homeomorphic, or agreement
isomorphic, or compatible supertree. The following general problem is then defined,
leading to three different variants that we group under the name of consensus supertree
problems (please notice that those problems must not be confused with computing
the strict consensus tree).

PROBLEM 7.4 Maximum Consensus o-Supertree

Input: a set 7 = {Ty, ..., Ty} of leaf-labeled phylogenetic trees, where each 7; is
labeled over A(T;).

Output: a leaf-labeled phylogenetic o-supertree T of 7 over a set S € U;<x A(T;)
such that T has the largest set of leaves.

Then the Maximum Agreement Homeomorphic Supertree (MASP), the Maximum
Agreement Isomorphic Supertree (MISP), and the Maximum Compatible Supertree
(MCSP) problems are three variants of Problem 7.4 where the o-supertree is,
respectively, an agreement homeomorphic, an isomorphic, or a compatible supertree.

Since the most common application of supertree methods is to amalgamate the
results of various studies and to construct the tree of life, obtaining a result that
excludes some of the species studied is not acceptable. Therefore, the main application
of Problem 7.4 is to measure the similarity among the input trees. Thus, we need to
find some generalizations of Problem 7.2 guaranteeing that all input species are in the
resulting supertree. The problems introduced in the following of the current section
have only appeared in the literature in their decision version (i.e., construct such a
tree if it exists), while we give the optimization versions in order to overcome the fact
that, among all possible solutions, some are more interesting.

PROBLEM 7.5 Most Compatible Supertree

Input: aset 7 = {71, ..., T} of phylogenetic trees, with 7; leaf-labeled over A(T;).
Qutput: a tree T displaying the trees {71, ..., Ty},
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Goal: to minimize the sum over all 7; of the number of edges where each pair
T;, T|, A(T;) differs.

A different formulation with an important biological motivation is called
NESTEDSUPERTREE [10], where nested taxa are allowed in the input data. The notion
of nested taxon allows to represent the fact that some information is known about
the taxonomy of some species. This results in some internal nodes being labeled
(besides all leaves), and that such labels must be taken into account when computing
the supertree.

PROBLEM 7.6 Most Compatible NestedSupertree

Input: a set 7 = {T}, ..., Tx} of phylogenetic trees, where all leaves and possibly
some internal nodes of 7; are labeled over A(T;).

Output: a tree T displaying the trees {T7, ..., Tk},

Goal: to minimize the sum over all 7; of the number of edges where each pair
T;, T|, A(T;) differs.

In Section 7.2, we have introduced the fact that a tree 77 displays another tree 7>
(over the same label set as 77) if and only if the clusters of 7 include those of 7>.
Such property can be generalized to a class of networks, called regular networks [3],
therefore, such class is a natural candidate for generalizing the supertree problems.
Notice that the property does not hold for generic networks.

Definition 7.1 A network N is regular if and only if for each pair vy, vy of vertices
of N the following conditions hold: (i) the sets C(v1) and C(v;) are different, (ii)
C(v1) C C(vy) implies that there exists a path from v; to v», and (iii) if there exist two
distinct (directed) paths from v to v, both contain at least two arcs.

PROBLEM 7.7 Minimum Compatible Regular Supernetwork

Input: a set V' = {Ny, ..., N} of networks.
Output: a regular network N minimizing the number of nontree arcs and displaying
all networks in N/

The most natural problem modeling regular network comparison is that of comput-
ing a minimum-size (i.e., minimum number of arcs) regular network displaying a set
of input networks. The criterion of minimizing the number of arcs in N is due to the
fact that adding hybridization arcs (i.e., arcs inducing a cycle in the undirected version
of N) allows N to display more networks, and at the same time it makes N less likely
to represent an evolutionary history which is usually “treelike.” Two versions of Prob-
lem 7.7 are possible, depending on the fact that introducing new species is allowed or
forbidden. Those two versions, albeit apparently similar, can lead to hugely different
solutions. Given a set N of regular networks, h(N\') and 2T (N') denote the optima
of Problem 7.7 where the creation of additional species is, respectively, forbidden or
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allowed. In [3] it is shown that it is possible to construct a set A, consisting of two
phylogenies, for which AT (N) = 1, but A(\) is arbitrarily large.

7.4.2 Algorithms

Among all possible algorithms, we are interested in those satisfying three funda-
mental properties: (i) being polynomial-time computable, (ii) computing a supertree
displaying all (not necessarily proper) subtrees shared by all input trees, (iii) being
invariant w.r.t. instance isomorphisms. The first polynomial-time algorithm for solv-
ing Problem 7.2 with all the above properties appeared in the celebrated paper [1] and
is called the BuiLD algorithm. Such algorithm is guaranteed to compute a supertree
displaying all input trees, provided that such a supertree exists. The drawback of this
approach is that nothing is computed if such a supertree does not exist.

Clearly, we are interested in finding a suitable supertree (or a supernetwork) that
displays all input trees. A brief description of BUILD will help in gaining some insights
in the problem. At each step BuiLD computes an undirected graph G whose vertices
are the species in the input trees and two species are adjacent if and only if they are
clustered together in some proper cluster of an input tree (i.e., for at least one input
tree the least common ancestor of those two species is not the root). The algorithm
computes the connected components Cy, ..., C, of G, makes each such C; one of
the clusters of the supertree, then recurses over the new set of trees obtained by the
topological restriction of each input tree on the sets C1, ..., Cp, provided that p > 1.
If, at any point, p = 1 and G contains more than two vertices, the algorithm halts
without computing any supertree. In fact, it is immediate to notice that in such case
no supertree can display all input trees, as all edges of G represent a pair of species
that must be included in some proper cluster of the supertree. On the contrary, the
main contribution of [1] is the proof that such procedure successfully computes the
desired supertree, that is, all graphs considered during the execution of the algorithm
G are not connected.

Since failures of BUILD correspond to graphs G that are connected, a natural
approach for constructing a supertree (or a supernetwork) is therefore to remove some
edges of G whenever G is connected, so that the resulting graph is disconnected
and the idea of BUILD can be applied: the MINCuUT approach, introduced by [34],
exploits exactly this idea. In that paper, a nontrivial weighting scheme is em-
ployed and a minimum-weight cut of a closely related graph is computed. Then, the
algorithm recurses on all connected components. The algorithm uses an associated
graph G/E™®, computed from G by first weighting all edges (x, y) with the number
of input trees where x and y are in the same proper cluster, and then merging all nodes
that are connected by an edge whose weight is equal to the number of input trees. The
minimum cut is computed on G/E™®* and the recursive steps are on the connected
components of this new graph.

The rationale for dealing with G/ E™®* is that edges with weight equal to the num-
ber of input trees corresponds to proper clusters that are confirmed by all input trees,
therefore, merging nodes connected by such edges enforces the goal of guaranteeing
that clusters of all input trees must also be in the result.
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There is an important drawback of MINCUT pointed out by [33]: a branching
appearing in an input tree and not contradicted by any input trees might not be in
the computed supertree as it can be in a minimum cut. In [33], a modified version of
MiNCur is presented for overcoming such difficulty. The algorithm removes from
G/E™* all contradicted edges, hence ensuring that all uncontradicted edges are not
present in a minimum cut. Nonetheless some difficulties are still present; for example,
the removal of all contradicted edges might be too harsh, as it does not allow to
discriminate among all possible cuts that are preserving all uncontradicted edges.

A different extension of BUILD, due to Daniel and Semple [10] and called
NESTEDSUPERTREE, has been designed to solve Problem 7.6, that is, when nested
taxa are allowed in the input data (i.e., some internal nodes can be labeled).
NESTEDSUPERTREE is a polynomial-time algorithm that computes a supertree dis-
playing all input trees (if such a supertree exists), moreover, it removes some (but not
all) conflicts among input trees (from this point of view it is also an improvement
of MINCuT). The first kind of unremoved conflict is the pairwise inconsistency that
happens when there are two nodes a and b both appearing in two input trees, and a is
a proper descendant of b in exactly one such tree. If the input trees have no pairwise
inconsistencies, the algorithm creates new labels for all previously unlabeled internal
nodes, then it constructs a mixed (i.e., containing both directed arcs and undirected
edges) graph—called descendancy graph—whose vertices are the labels of the input
trees and all rooted triples (ab|c) that are not contradicted by any input tree. The arcs
of the descendancy graph are the pairs of labels (a, b) where b is an ancestor of a in
some input tree, moreover, for each rooted triple ab|c there are two outgoing arcs
((ab|c),a) and ((ab|c), b). Undirected edges of the descendancy graph are the
(unordered) pairs of labels (a, b) where a and b are not comparable (i.e., the associated
clusters are disjoint) in some input tree. The algorithm looks for a directed cycle in
the descendancy graph D; if such a cycle exists the computation finishes with an
ancestor—descendant contradiction without computing any tree.

If D is acyclic, then NESTEDSUPERTREE is guaranteed to compute a supertree with
arecursive procedure. Initially, it computes a set Sy containing a set of labels in D that
have neither incoming arcs nor incident edges (this case corresponds to unconflicting
input trees). If no such label exists, then Sy is posed equal to any nonempty set of
labels with no incoming arcs (this case corresponds to some conflicts in the input
trees, the arbitrary choice of Sy represents how the conflicts are resolved). Then Sy
is made the root of the computed tree and its elements are removed from D; the
algorithm also removes all rooted triples ab|c where ¢ and ab are not in the same
strongly connected component of D. Finally, all strongly connected components of
D are added to the set of clusters of the output tree and the procedure recurses on all
such strongly connected components.

Now, we can survey some known results related to the MASP and MCSP problem:s.
Observe that agreement and compatible subtree and supertree problems share the same
optimal solutions whenever the collection of input trees are over the same leaf-labeled
set. Given 77, T» two trees with n leaves, a simple procedure working in O(n) time, can
be used to extend an optimal solution of MAST and MCT over L(77) N L(7T>) to an op-
timal solution of MASP and MCSP, respectively, over the two trees as proved in [5,27].
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On the negative side, we notice that increasing the number of input trees quickly
leads to hard problems. In fact some recent results on MASP have been given in
[27], showing that, differently from MAST, the problem is NP-hard on just three
bounded-degree trees or on an unrestricted number of rooted triples. Moreover the
optimization versions of both MASP and MCSP, where we want to minimize the
number of leaves to remove in order to obtain a feasible solution, cannot have a
constant approximation factor unless P = NP, and are W[2]-hard (i.e., no efficient
fixed-parameter algorithm is possible).

7.4.3 Open Problems

The optimization criterion of Problems 7.5 and 7.6 is inspired by parsimony, but
it would be interesting to investigate if a different criterion, such as computing the
supertree with fewest edges, would be more biologically meaningful.

Another research direction is that of improving the algorithms MINCUT and its
variant of [33]. In fact, it is reasonable that the difference (or the ratio) between the
number of input trees where an edge e is present and the number of input trees where e
is contradicted should be a key parameter for determining whether e must be retained
in the output solution or not. It would be interesting to design and analyze some
algorithms with a more refined criterion for choosing the edges to cut.

Also, NESTEDSUPERTREE could be extended with a more refined algorithm for
selecting the set Sp, which is currently any set of labels with no incoming arcs
or incident edges. It would be interesting to find an optimization criterion leading
to a more biologically meaningful supertree without making the overall algorithm
unfeasible.

7.5 RECONCILIATION OF GENE TREES AND SPECIES TREES

Until now, we have considered the possibility of representing the evolution of a set
of species by means of a uniquely leaf-labeled phylogenetic tree or network; in this
section we will consider a different scenario, where we are given the information
concerning the evolution of a set of homologous genes in different species. Different
evolutionary trees can be built to represent the evolutionary histories of different genes
in the studied set of species. Each tree representing the evolution of a gene is a gene
tree. Similarly, the evolution of a set of species is usually represented using a species
tree. Many studies have shown that the evolution of the species and the evolution
of the genes might not agree. Thus a species tree and a gene tree can be different,
moreover, gene trees that represent the evolution of different genes can be different.
This divergence between genes evolution is due to some biological events such as
duplication of a gene, the loss of a gene, and lateral (or horizontal) gene transfer (in
Fig. 7.3, the tree T presents a gene duplication in the topmost node labeled BD). On
the contrary, species trees represent the evolutionary history of a set of species only
in terms of speciation. The inference of a species tree from a collection of divergent
gene trees is a fundamental issue in phylogenetics and strongly motivates the design



RECONCILIATION OF GENE TREES AND SPECIES TREES 163
Ty ABCD T ABCD

AB CD

FIGURE 7.3 A species tree T and a gene tree 7. Each node is associated with a cluster.

of combinatorial models to compare gene trees and to reconcile them into a species
tree.

Preliminary definitions on species and gene trees have been given in Section 7.2,
while we introduce here the basic mappings used to compare a gene tree and a species
tree. First, given a set S of taxa, a species tree Ts, and a gene tree T are two leaf-
labeled rooted binary trees, where each leaf is labeled by a taxon in S. A species tree
has the additional restriction that no two leaves share a common label. An example
of species tree and gene tree is given in Fig. 7.3.

Notice that for a species tree, a cluster identifies unambiguously a node of the tree.
Given a gene tree T and a species tree Ts, the trees T and T are called comparable
iff A(Tg) € A(Ts),in which case we can define a mapping A7, 7 : V(Ig) — V(Ts)
associating each vertex of Tz with a vertex of Ts. The mapping usually adopted when
comparing a gene tree and a species tree is the least common ancestor mapping, in
short Ica. We recall that the lca mapping associates with each node g of T the node
s of Tg such that C(s) is the smallest cluster of Ts containing C(g). Observe that a leaf
with label x of T is mapped by lca mapping in the unique leaf of Ts having label x.
In what follows we assume that, unless otherwise stated, Az, 7y is the lca mapping.
In the following, given two nodes x, y, by x C y we denote that y is an ancestor of
x. Moreover, given a tree T and a node v of T, let us recall that T(v) denotes the
complete subtree of T rooted in v.

7.5.1 Evolutionary Events

In gene trees and species trees comparison (Fig. 7.4), speciation is by far the most
common evolutionary event and is considered the “normal” event, while other events
can be considered “special.” Indeed, speciation is represented in a species tree as a
node evolving in its two children, modeling the fact that along the evolutionary process
two different species were generated from a single species. Usually, the models we will
introduce follow the parsimonious principle of minimizing the number of “special”
events. The models mainly differ in the set of possible special events. The first of
such “special” events is gene duplication. In this case, the portion of DNA encoding a
given gene appears twice in a certain species, and those two copies of the gene evolve
independently from that point. This fact is modeled by the following definition.
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FIGURE 7.4 A duplication in node BCD of gene tree 1.

Definition 7.2 (Duplication). Let 7 be a gene tree and let T be a species tree
comparable with 7. Let g be an internal node of 7, then a duplication happens in
gif Arg 1,(f(8)) = Arg,15(g) for some children f(g) of g in Tg.

Given a gene tree T and a species tree Ts which are comparable, a measure of the
similarity of the two trees is the duplication cost, denoted by dup(7, Ts), and defined
as the number of nodes of T where a duplication occurs. Furthermore, duplications
can be efficiently computed, as the following property shows a recurrence that can be
easily translated into a DP algorithm.

Proposition7.1  Letrg be the root of the gene tree Tg, let ¢i(ry), ¢;(ry) be the children
of re. If a duplication occurs in rg then dup(Tg, Ts) = 1 + dup(Tg(c1(re)), Ts) +
dup(TG(ci(rg)), Ts).

Another event that can occur during the evolution is the /oss of a gene in some
species. The number of gene losses can be computed from the /ca mapping Az, 7.
Assume that T = Ts|(A(T¢). Given the lca mapping Arg, 1, from Tg to Tg, letg, g
be two nodes of T such that C(g) € C(g’), then we denote by d(g, g’) the number of
nodes in Ts on the path from ATG’T& (g to ATG’T& (g). The number of losses associated
with T is the sum over all nodes g of T of the value [, associated with node g and
defined as follows:

0 if Ay 74(8) = Arg, 1y (cr(8)) = Agy i(c1(8))
d(ci(g), &) + 1 if Az, (c1(8)) C Ay 77(8) and
lg = Mg, 1,(8) = Ay 17, (r(8))

d(ci(g), g) + d(ci(g), 8) if Ary 17(c1(8)) C Ary 77(g) and
Mg, 1y (€(8) C Arg 77(8);

Given a gene tree T and a species tree Ts, which are comparable, another measure
of the similarity of the two trees is the mutation cost, denoted by (T, Ts) and defined
as follows: (T, Ts) = dup(Tg, Ts) + deTG L.

The last evolutionary event that is considered during gene evolution is lateral gene
transfer or horizontal gene transfer. During a lateral gene transfer event, some genetic
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FIGURE 7.5 A mixed graph corresponding to a scheme violating Condition 1 of
Definition 7.3 (edges are dashed).

material is transferred from a taxon #; to another taxon #,, which is not a descendant
of t1. When a later transfer occurs during the evolution of a gene along an arc (u, v) of
the gene tree 7, then the evolution occurs not only along an arc (x, y) of the species
tree Ts but also along another arc (x’, y") of Ts. This situation is described in Tg by
means of the subdivision operation of an arc e = (x, y) in T consisting of removing
edge e, which is replaced by a path made of two new edges (x, s(e)) and (s(e), ).

A single lateral transfer is modeled by the subdivision of a pair of arcs (a, a’),
called lateral pair and by the addition of a new arc, called transfer arc for the lat-
eral pair, that is either (s(a), s(a’)) or (s(a’), s(a)), depending on the direction of the
transfer.

The occurrence of lateral transfers in a species tree T implies adding a set of
transfer arcs A’ to a tree T obtained by subdivisions. Mainly, we have two different
representations: the mixed graph and the union graph induced by T and A’, which
are both graphs with vertex set V(7). The union graph induced by T and A" and
denoted as T4 U A” has arcs of Tg and of A’. The mixed graph induced by Tg and A’,
denoted by Tg U E(A’), has arcs of T and edges obtained by removing the direction
of the arcs in A’.

Definition 7.3 Let 7 be a gene tree and T's be a species tree, then a lateral transfer
scheme for Ts is a pair (Tg, A"), where T is obtained by subdivisions of lateral pairs
Pin Ts and A’ is a set of transfer arcs for P such that

1. the mixed graph T U E(A’) does not contain a directed mixed cycle;

2. for each arc (u, v) in A’, vertex u has indegree 1 and outdegree 2 in Tg U A’,
vertex v in A’ has indegree 2 and outdegree 1in Tg U A’

Observe that condition 1 of Definition 7.3 forbids cycles in the mixed graph Tg U
E(A"). Indeed there is a mixed cycle in Fig. 7.5. The lateral transfer from x to y would
imply that there is a point in time where the two species x and y coexisted. Similarly,
the lateral transfer from u to v would imply that there is a point in time where the
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two species u and v coexisted. However, since y exists after u, it follows that no such
point in evolution can exist.

Informally, the pair (T, A”) represents the evolutionary histories of the taxa in
L(Ts) using speciation and lateral gene transfers that are represented by the set A’
(see Fig. 7.5). In order to model the evolution represented by a gene tree T, we have
to define a scenario that defines the mapping from 7 to the species tree Ts showing
at which point of evolution lateral gene transfers occurred. A fundamental parameter
associated with a scenario is the a-activity of a gene. Informally, the activity level of
a gene tree is the number of copies of the gene that exist in the genome of a taxon at
a certain point of evolution.

Definition 7.4 Let T; be a gene tree and Ts a species tree, a lateral transfer
scenario [24] for Ts and T is a triple (T, A’, h), where (T, A’) is a lateral transfer
scheme for T and h : V(Tg) — 2VT6) jg a function such that

1. r(Tg) € h(r(Ty)) and the subtree of T induced by h(r(Ty)) is connected;

2. if v; and v, are distinct children of vg in T, with vy, vy ¢ h(r(T_é)), then there
exists a node xg of 7 with children x; and x2 in Tg U A’ s.t. (a) v; € h(x;) with
i €{0, 1,2}, (b) xj is a vertex such that the set {v € h(x;)} is maximal;

3. if vy and vy are children of vy in Tg, vy € h(r(Té)) and vy ¢ h(r(TLé)), then
there exists a child x of r(Tg) s.t. vy € h(x);

4. for each v € V(T), the inverse image of v through % induces a directed path
in Tg;

5. foreach x € V(Ts) \ {r(Tg)}, no two members of /(x) are one the ancestor of
the other one;

6. h(l) = {I} for each I € L(T).

The requirements of Definition 7.4 guarantee that # is leaf-preserving and maps the
root of T to the root of T (Fig. 7.6). The combination of conditions 2 — 4 ensures
that T appears in Ts and arcs direction in T and T is the same. Conditions 2 and
5 forbid both outgoing arcs from a vertex in a gene tree to correspond to lateral gene
transfers. Condition 6 establishes leaf to leaf association between T and T.

T, ABC Ty ABC g(r(S"))=ABC
g(w)=C
BC BC (x)=ABC
A C
B C B A 2(C) g(A)=A

FIGURE 7.6 A gene tree T, a species tree T, a lateral transfer scheme, and a possible
1-activity scenario (the arc representing a lateral transfer is dashed).
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A lateral transfer scenario (or scenario) is «-active iff maxxeT§{|h(x)|} < «a. The
cost of ascenario (T¢, A’, h) w.r.t. Tg is expressed by the formula Z( ryear @, v) €
E(TG) s u € h(x), v € hYM+IV(TGIR((To)) \ L(TGIh(r(Tg)DI,  where by
Tg[V'] we denote the forest of subtrees that have nodes in V’, with V' C V(Tg).
Hence, the first part of the cost of a a-active lateral transfer scenario is the number of
arcs of T that are related by the function & to the arcs in A’, while the second part
is the number of internal nodes of 7 that are associated by & with the root of T§.

The model described above has been extended [24] in order to handle both lateral
transfers and duplications. Such extension is obtained by adding to the scenario a set
D C V(T ) (representing the set of duplications) and to condition 2 of Definition 7.4
the requirement that x; = x; if and only if vg € D, thus forbidding duplications to
lateral gene transfer.

A different model for comparing a gene tree and a species tree, is called reconciled
tree. More precisely, given a gene tree and species tree, a minimum reconciled tree of
T and T is arooted full binary tree of minimum size that satisfies three fundamental
properties.

Definition 7.5 A minimum reconciled tree [31] R(Tg, Ts) of a gene tree T and a
species tree T, is a smallest tree satisfying the following properties:

1. asubtree of R(7g, Ts) is homeomorphic to Tg,

2. C(R(Tg, Ts)) = C(Ts),

3. for every internal node x of R(Tg, Ts) either C(ci(x)) NC(cr(x)) =@ or
Cla(x)) = Cler(x)) = C(x).

Given a gene tree T and a species tree T, a reconciled tree R(Tg, Ts) is used
to represent and identify evolutionary events (Fig. 7.7). More precisely, a duplication
occurs in a node x of R(T, Ts) if and only if C(ci(x)) = C(cr(x)) = C(x). Let R be
subtree of R(Tg, Ts) homeomorphic to T . A loss occurs in a node x of R’ if at least
one of ¢j(x) and ¢;(x) is not in R’.

7.5.2 Combinatorial Problems

In the previous section, we have introduced the evolutionary events that are commonly
considered in phylogenetic comparison of gene trees and species trees. In what follows
we consider two of the most relevant classes of combinatorial problems that have been
studied in this field.

In the first type of problem, we are given a set of (possibly contradictory) gene
trees and we want to compute a species tree that better represents the evolution-
ary histories of the given gene trees. The assumption behind this approach is that
the correct species tree is the one that minimizes the differences with the given
gene trees. In what follows we will refer to this kind of problems as agreement
problems.
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Te ABCD Ts ABCD

AC BD AB CDh

A B C D A B C D

FIGURE 7.7 A gene tree Tg, a species tree Ts, and a reconciled tree R(Tg, Ts). Note that
C(R(Tg, Ts) = {ABCD, AB,CD, A, B, C, D} the setof clusters of Ts; the subtree of R(Tg, Ts)
homeomorphic to 7 consists of the root, both children of the root (each with cluster ABCD),
the left leaves with labels A and C, the right leaves with labels B and D; a duplication occurs
in the root, since the root has cluster ABCD and its two children have both cluster ABCD:;
four losses occurred in the two nodes with clusters A B and in the two nodes with clusters CD.

In the second problem, we are given a gene tree and a species tree and we want to
compare the two trees in order to explain the differences between them by identifying
which evolutionary events occurred during the evolution of the gene in that set of
species. The assumption behind this approach is that the gene tree and the species
tree considered are correct. In what follows, we will refer to this kind of problems as
events inference problems.

7.5.2.1 Agreement Problems Informally, the instance of an agreement problem
is a collection of gene trees T,, ..., TG, and the solution is a species tree having
minimum distance from the trees in the collection. Different definitions of an agree-
ment problem can be introduced on the basis of the distinct measures of similarity
between a gene tree and a species tree discussed in Section 7.5.1.

The first problem we introduce regards the reconstruction, based on the duplication
cost, of a species tree from a collection of gene trees.

PROBLEM 7.8 Optimal Species Tree Reconstruction with Duplication Cost

Input: gene trees T,, TG, ,. - -, 1G,-
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Output: a species tree T such that the duplication cost Zle dup(Tg,, Ts) is mini-
mum.

The problem is known to be NP-hard [31] and W[1]-hard if parameterized by
the number of trees [15]. However, it is known to have fixed-parameter algorithms.
More precisely, [38] proposed a fixed-parameter O(49n>k?) time algorithm when the
parameter d is the number of duplications. This algorithm is based on a property of
bipartitions of A(Ts). Observe that the set of clusters of a species tree are a treelike
cluster system for A(Ts), hence each internal node x of T produces a bipartition
(Ay,, Ax,) of a subset Ay, of A(Ts), where each Ay, is the cluster associated to a
children of x.

Given a bipartition (A1, Ap) of A7, the number of duplications induced by such
a bipartition can be easily computed, hence the algorithm first builds all bipartitions
of A(Ts) inducing no more than d duplications. Then, for each bipartition (A1, Aj),
it computes recursively the bipartitions of A1 and of Aj, so that the clusters obtained
induce at most d duplications. The procedure stops when either we find a treelike
cluster system (the species tree) that induces at most d duplications or there is no
such cluster system. Finally, the algorithm computes such solutions using a search
tree whose height is at most d.

Another main agreement problem is obtained by using the mutation cost that is
computed by combining three such events: speciation, duplication, and loss.

PROBLEM 7.9 Optimal Species Tree Reconstruction with Mutation Cost

Input: gene trees T, TG,,. - ., IGy-
Output: a species tree Ts minimizing the mutation cost Z{F:l (Tg;, Ts).

The problem is known to be NP-hard [31] and admits a dynamic programming
algorithm for a restriction called width-k version [22].

7.5.2.2 EventInference Problems Inthis section, we will deal with event inference
problems. Informally, the instance of this kind of problem is a collection of gene trees
(eventually consisting of exactly one gene tree) and a species tree; the solution is a
description (usually given by a tree) of the special evolutionary events that explain
the differences between the gene trees and the species tree. In [31], the problem of
computing all loss events is investigated. Consider a duplication d,, in a node u of 7.
A node v of T can be classified as follows:

® mixed in d,, if C(v) N C(c(u)) # O for every child c(u) of u;

® speciated in d,, if (v) N C(c;(u)) # @, but C(v) N C(c,(u)) = @ or vice versa, for
c;(u) and ¢,(u) the two children of u;

® gapped in d,, if C(v) N C(c(u)) = O for every child c(u) of u.
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We say that a loss event occurs at a maximal node v € Ty so that v is a descendant
of Ica(u) in Ts and is speciated or gapped in d,,. Informally, this fact is equivalent
to computing the root r4 of the minimal subtree in T, such that all the loss events
associated with d,, are contained in the subtree of T rooted in ry4. In particular, a
unique loss event occurs in a node on the path from Ica(u) to any leaf in Ts. Next we
state formally the problem of computing all loss events.

PROBLEM 7.10 Loss Events Computation Problem

Input: a gene tree T and a species tree Ts, such that A(Tg) = A(Ts).
Qutput: for each duplication d that occurs at a node g € Tg, the (unique) subtree
Ts(lca™! (g)) of T with all the loss events as its leaves.

Observe that a tree that is a solution of the previous problem, does not necessarily
have leaves with labels in A(T5s). Indeed the leaves of such a tree can be labeled by
clusters of Ts. In [31], a linear time algorithm to compute all loss events is proposed.
Next, we define formally the problem concerning the construction of reconciled trees.

PROBLEM 7.11 Minimum Reconciliation Gene-Species Tree

Input: a gene trees T and a species tree 7.
Output: computing a minimum reconciled tree R(7g, Ts).

The Minimum Reconciliation Gene-Species Tree problem has a polynomial-time
dynamic programming algorithm relying on the following recursive definition [6].

Two basic operations on trees allow to construct a minimum reconciled tree. Given
two trees 77 and 7», the composition of the trees, denoted by 77 A T», is a tree obtained
connecting a new node r to r(77) and (7). The node r is the root of the tree 77 A T>.
The replacement of Ty with T, denoted by T (t — 7> ) is the tree obtained by replacing
in 7T} the subtree rooted at ¢ with 75.

Definition 7.6 Let T, Ts be, respectively, a gene tree and a species tree. Let G; and
G, (S; and S;, respectively) the subtrees of T (of Ts) rooted in the children ¢;(r(Tg))
and ¢, (r(Tg)) of r(Tg) (respectively, ¢;(r(Ts)) and c,(r(Ts)) of #(Ts).)

Then R(Tg, Ts) is equal to T if T and Ty are both single nodes, in which case
they are simultaneously roots and leaves, otherwise R(Tg, Ts) is equal to

L. Ts(lca(ei(r(Ts))) — R(Tg, 1)) if lea(r(T)) < a(r(Ts)).
2. R(Gy, 8) A R(G,, S)),if lca(r(Tg)) = r(Ts), Ica(c)(r(Tg))) and Ica(c,(r(Tg)))
are mapped to s1 € ¢1(r(Ts)) and s € ¢ (r(Ts)), respectively.

3. R(Gy, Ts) A R(G,, Ts),if Ica(r(Tg)) = r(Ts), and at least one of Ica(ci(r(Tg)))
and lca(c,(r(Tg))) is equal to r(Ty).
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In [6], it is shown that Definition 7.6 computes a tree that satisfies the properties
for the reconciled tree and such a tree has also minimum size. Furthermore, given a
gene tree T and a species tree T, there exists a unique minimum reconciled tree for
T and Ty [6], which is also the tree inducing the minimum number of duplications
and losses [21]. Next, we introduce the main problem for the lateral gene transfer
model.

PROBLEM 7.12 «-Active Lateral Gene Transfer Problem

Input: gene tree 7 and species tree Ts.
Output: find a minimum cost «-active lateral transfer scenario for T and Tg.

The restriction of w«-active Lateral Gene Transfer Problem where o =1 is
APX-hard [11,23], while it has a OQ*T|S|?) fixed-parameter algorithm [23],
where the parameter 7' is the cost of the scenario. For arbitrary o there is an
O(4% (4T (a + T))T |L|?) time algorithm [23].

The extension of the problem that considers both duplications and lateral gene
transfers is known to be NP-hard [24] and admits a fixed-parameter tractable
algorithm [24] that computes the minimum number of duplications and lateral
transfers.

7.5.3 Open Problems

A deep understanding of the approximation complexity of the agreement problems
is still needed. More precisely, the only known result is the 2-factor approxima-
tion algorithm for the variant of Optimal Species Tree Reconstruction with Dupli-
cation Cost (see Problem 7.8) in which the duplication cost is slightly modified to
obtain a metric d [31]. In this variant, all gene trees are uniquely labeled. More-
over, given a gene tree 7g and a species tree Ts, the symmetric duplication cost
between T and Ty is defined as d(Tg, Ts) = %(dup(Ts, Tc) + dup(Tg, Ts)). The
new version of the problem remains NP-hard while admitting a 2-approximation
algorithm [31].

An interesting open problem on species trees and gene trees is the computational
complexity of reconstructing a species tree from a set of gene trees over instances
consisting of a constant number of gene trees or even of two gene trees only.

An extension of the reconciliation approach (see Definition 7.5 and
Problem 7.11) is proposed in [20] by introducing a notion of extended recon-
ciled tree allowing the identification of lateral gene transfers, in addition to du-
plication and losses. A notion of scenario is also introduced to identify lat-
eral transfers. A dynamic programming algorithm to compute a scenario induc-
ing a minimum reconciliation cost is given [20]. Also notice that no approxi-
mation algorithms are known for the event inference problems presented in this
section.
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8.1 INTRODUCTION

Genomes evolve through small-scale events, such as point mutations in the DNA
sequence, and large-scale events, known as rearrangements, that reorganize the
genetic material along chromosomes [23,39,48]. Such rearrangements not only can
involve very few genes, such as the mutation/loss of genes due to the accumulation
of point mutations, and tandem duplications or short reversals, but can also be at
a much higher scale, such as large reversals or even whole-genome duplications. It
results from these evolutionary events that, when comparing two or more genomes
in terms of their gene orders, that is, the order of genetic markers along their chro-
mosomes, it is very unlikely that these gene orders are identical, even for very close
species; see, for example, recent works on primates [43] or on different strains of a
same bacterial organism [35]. However, gene orders are not random, and the compar-
ison of gene orders of related species shows genome segments that exhibit homoge-
neous gene content, with sometimes similar gene order. These groups of segments are
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usually called conserved gene clusters or gene clusters, the notion of conserved being
implicit.

Conserved gene clusters can be the result of several biological mechanisms, but
basically they could be defined as “genomic regions that share a common ances-
tor” [28]. For example, they can result from functional pressure that requires that
a group of genes stays close along the genomes. The most widely studied exam-
ple of such groups of genes are operons in prokaryotic genomes, which are tran-
scribed in a single messenger RNA and need to have their genes located contigu-
ously in the genome [35,36,52]; it has also been suggested that being part of a
given biochemical network [45] or coexpression [42] could be correlated with be-
longing to a same gene cluster. Segments of genomes with homogeneous gene con-
tent can also result very mechanically from the evolutionary proximity between the
genomes: there was not enough time from the speciation event leading to observed
genomes to break such groups of genes. This phenomenon can add noise in the
detection of functional gene clusters, but it is worth noting that the resulting clus-
ters carry an important information for computing evolution scenarios [6,7], recon-
structing ancestral genomes [9], or identifying positional and ancestral homologs
[12,17].

The detection of conserved gene clusters is a challenge for both the biological
and mathematical communities, with applications in comparative genomics, annota-
tion of genomes, and phylogenomics. There are essentially two families of meth-
ods for detecting conserved gene clusters. The first approach attacks this prob-
lem on very pragmatic grounds, primarily based on the detection of short con-
served genomic segments, such as consecutive gene pairs that are easy to de-
tect. This collection of conserved segments is then processed, in general using a
heuristic, to obtain a set of gene clusters. See [37] for a survey on this topic.
However, these methods lack a formal definition of the notion of gene cluster
in terms of genomic segments and sets of genes involved in clusters. This can
produce incoherent results as clustering short conserved segments can form ge-
nomic segments that have very different gene content but are grouped in a same
cluster [47].

In this chapter, we survey a different approach in the detection of gene clus-
ters that has been developed in the last fews years by various groups of researchers
for gene order analysis. This approach relies on (1) formal definitions of what is
a set of genomic segments that defines a conserved gene cluster and (2) algo-
rithms that search and compare genomes of a dataset to detect all the sets of ge-
nomic segments that satisfy a given definition. Starting with conserved adjacen-
cies and common intervals, we will work through several variants that allow for
duplications and missing genes. We will also show that most variants are nec-
essary, in the sense that they try to capture a biological reality that does not
care about formal models. We will also see that the algorithmic challenges in de-
tecting gene clusters are nontrivial. Depending on the model, efficient solutions
can be easy to obtain, can require a lot of ingenuity, or sometimes do not even
exist.
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8.2 GENOME PLASTICITY

8.2.1 Genome Representations

The genetic information of species is stored in molecules called chromosomes that
consist of two complementary strands of DNA. Each DNA strand is a string of basic
units, the nucleotides, that have two extremities called the 5’ and 3’ extremities.
Consecutive nucleotides are connected by joining the 3’ extremity of one to the 5’
extremity of the other. Figure 8.1 illustrates a small segment of chromosome: note
that the 5" and 3’ extremities of the two strands of DNA are in opposite directions.
Nucleotides on a strand come in four different types, cytosine, guanine, adenine, and
thymine, abbreviated, by the letters C, G, A, and T respectively. The nucleotides on
the complementary strand are uniquely determined by the Watson—Crick complement
relation in which C is always paired with G, and A is always paired with T.

From an information processing perspective, the knowledge of only one strand
is sufficient to recover the whole molecule. However, the information contained
on a strand is decoded in a sequential way going from the 5’ extremity to the 3’
extremity, allowing both strands to carry biologically meaningful information. It is
thus customary to represent the information present on a chromosome by identifying
a substring of one strand of a chromosome and specifying in which orientation it
must be read, positive or negative. These substrings can correspond to any type of
features found on a chromosome: genes, domains, operons, synteny blocks, banding
patterns, among others. We will refer collectively to such features as “genes,” using
a more detailed terminology when necessary. We will also assume that genes are
nonoverlapping substrings of chromosomes. This is not always the case, especially
for small organisms such as viruses that have to compress their genetic information in
very short chromosomes, but this assumption constitutes a reasonable compromise.
A chromosome, or part of it, can thus be represented by a string such as

(a b —c d —e f),

in which letters stand for genes and a negative sign signals a negative orientation.

The comparison of gene content and order between two species also relies in a
fundamental way on our ability to tell when two genes are the “same” or not. This
is not a trivial task, and numerous approaches have been tried since the discovery of
the first rearranged chromosomes. In [22], Dobzhansky and Sturtevant divided the
genome of fruit flies into 100 arbitrary sections that were called “genes” and that
were recognizable under the microscope by their banding patterns. Two genes from
different genomes were “equal” if they shared the same pattern.

5 3
EDTVIN LY I TP I X,
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FIGURE 8.1 The double strand structure of chromosomes.



180 FORMAL MODELS OF GENE CLUSTERS

When the term gene is taken in its modern sense of a sequence of nucleotides
that is transcribed into RNA, most of the techniques of identification of similar genes
rely on sequence alignments [44], either of the nucleotide sequences themselves, or
the corresponding amino acid sequences if the RNA molecules are translated into
proteins. This produces reliable results, especially for slow evolving genes such as
those found in animal mitochondria [14], for example.

In some recent studies, such as [16], based on very large synteny blocks,
equivalent segments of chromosomes are detected using small anchors whose order
and orientation are conserved between species. This approach allows to ignore
rearrangements whose size fall below a fixed threshold.

Whatever the approach used to define equal genes, comparing gene orders ulti-
mately boils down to comparing strings of signed letters. For a fixed set S of genes,
when strings representing two genomes contain exactly one occurrence of each gene
in S, in either orientation, we refer to these strings as permutations. For example, the
following strings

Gi=@ b —c d —e fl)andGo=(—a d —e b —c f)
are permutations of the set of genes {a, b, c, d, e, f}. The strings
Gzi=@ b —c ad —e flandGa=(—a d —e —c f)

are not permutations since gene a is duplicated in genome G3, and gene b is missing
in genome Gy.

The choice of representing genomes by permutations or strings with duplicated
genes has implications on both the biological and computational sides of genome
analysis. Indeed, as we will see later, the computational complexity of handling strings
with duplicated genes is higher than for permutations. At the same time, from a
biological point of view, it is a strong hypothesis to assume that a gene is present
in a single copy in a set of genomes. Thus, aside from a few exceptions, such as
animal mitochondrial genomes that have few duplicated genes, representing a set of
genomes by a set of permutations often implies a nontrivial preliminary analysis that
clears ambiguities due to duplicated genes; examples of such “preprocessing” can be
found in the alignment process used to define synteny blocks [16] or in the process
of ortholog assignments [5,24].

8.2.2 Genome Rearrangements

The goal of this section is to give the reader some intuitions about the nature and
extent of genome rearrangements that happened during evolution.

8.2.2.1 Rearrangements That Preserve Gene Content These type of rear-
rangements can be described as the result of a series of cut and join operations
performed on the chromosomes of a genome. Breaking and repairing chromosomes
into new configurations can affect gene order and gene orientation. While the
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FIGURE 8.2 An inversion changes the orientation of the genes of the inverted segment.

first modification is easy to understand, the change in gene orientation deserves a
little more attention since it is a consequence of the double strand structure of the
chromosomes.

The upper part of Fig. 8.2 shows a chromosome that is broken at two places.
The segment in the middle can either be correctly repaired or repaired in the wrong
direction, as shown in the lower part of Fig. 8.2. However, since a 3’ extremity can
only be reconnected to a 5’ extremity, this results in the exchange of strands. Genomic
features that are on one of the strands of the inverted segment thus change their
orientation, but are otherwise intact.

In one of the first papers on genome rearrangements [22], Dobzhansky and Sturte-
vant observed inversions of large segments of chromosomes in closely related species
of Drosophila (see Fig. 8.3). When comparing more distant species, hundreds of small
and large inversions can be detected [16].

Closely related to inversions are translocations between chromosomes. This hap-
pens when two different chromosomes exchange parts of their genetic material. Even
inrelatively close species, translocations can be extensive. For example, a comparison

69 70 71 72 73 74 75 76 77 78
69 70 76 75 74 73 72 71 77 78

FIGURE 8.3 Fragment of the dataset constructed in 1938 by Dobzhansky and Sturtevant to
compare whole genomes.
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TABLE 8.1 Number of Occurrences of Four Domains in Two Species
of a-Proteobacteria

Agrobacterium Rhizobium
PFAM family tumefaciens meliloti
ABC _tran PF00005 497 262
BPD_transp1 PF00528 420 189
HTH_1 PF000126 149 95
LysR _substrate PF03466 148 89

between human and concolor gibbon chromosomes reveals that at least 31 transloca-
tions are necessary to explain the observed rearrangements [31]. Fusions and fissions
of chromosomes are the special cases of translocations that modify the total number
of chromosomes of an organism. A striking example of this type of rearrangement
is given by the human chromosome 2, which is the result of a fusion of two smaller
chromosomes found in most great apes [30].

A last rearrangement operation that does not change gene content is the transpo-
sition, in which a genomic segment is displaced within a chromosome but keeps its
original orientation. Animal mitochondrial genomes, for example, provide numerous
examples of transposed elements [49].

8.2.2.2 Rearrangements That Modify Gene Content Gene content is modified by
three main processes: duplications, losses, and exchanges of genetic material with
close or symbiotic species.

Duplications can affect whole genomes: the bread wheat (Triticum aestivum) has
21 pairs of chromosomes that can be grouped into seven groups of triplicated chro-
mosomes. This organization is quite recent, and the triplicated chromosomes retain a
high similarity [41]. More ancient duplications are more difficult to establish, since
many genes are lost or change function. For example, evidence of an ancient whole-
genome duplication was discovered in yeasts [51]. Having access to extra genetic
material meant that the evolving yeasts could “experiment” with part of their genetic
material while retaining vital functions: as a result, modern yeasts with duplicated
genomes are adapted to many different environments, but different species can have
very different gene content.

On a smaller genomic scale, duplications are extensive. Most sequenced genomes
contain segments that are similar at the nucleotide level, but at different places along
the same chromosome or even on different chromosomes. Domains, genes, or even
groups of genes can be present in several hundred copies in a genome. Table 8.1 gives
examples of the number of occurrences of four different domains in two species of
a-proteobacteria, as identified by the Pfam database [3].

8.3 BASIC CONCEPTS

Before introducing formally the notion of gene cluster, we give an intuitive definition.
Basically, a gene cluster is a set of genes that, for biological reasons, has been kept
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“more or less together,” or in other words, in a same segment in different genomes.
There are several biological reasons that can prevent a set of genes to be dispersed by
the rearrangements that occur during the evolution: co-transcription as operons, for
example [36,52], co-regulation as part of a biochemical network [45], or evolutionary
proximity.

From the combinatorial point of view, it is important to note the very different
nature of the two notions used to define a cluster, that is, sets—with no order between
the genes in a given set—and genome segments that are strings of genes and thus
totally ordered. The key point in a formal definition of a gene cluster is then the
relationship between the set of genes and the genome segments that define the cluster.
We discuss this approach in the next section.

8.3.1 Highlighting Sets of Genes

In order to formalize the notion of sets of genes that are “more or less together” in
different genomes, we must first look at the problem in a more general context: How
do sets of letters behave in strings or permutations? For example, highlighting the set
of letters {e, g, n} in the sentence

“rearrangements of genomes involve genes and chromosomes”

reveals groups that, at least in the case of the substrings “gene” and “gen”, share
a common—semantic—function. On the other hand, highlighting the set of letters
{a, ¢, v} in the same sentence

“rearrangements of genomes involve genes and chromosomes”

does not seem to produce any interesting result.

These examples illustrate a major pitfall that one has to face in defining clusters
as sets of genes: there is an exponential number of sets of genes. As we will see it
with max-gap clusters in strings, for example, this can result in models that define
an exponential number of gene clusters, ruling out any hope of a polynomial time
detection of all gene clusters in such models. However, depending on both the com-
binatorial nature of the considered data (strings or permutations) and the definition
of genome segments that define clusters, it is possible to define gene cluster models
that are tractable.

A second question is what is an occurrence of a gene cluster. In our example, it
seems reasonable to consider the substrings “nge”, “gene”, and “gen” as occurrences
of the set {e, g, n}, but given the proximity of the substrings “nge” and “en” in the
word “rearrangement”—they are separated by a single letter, it might be interesting
to join them together in a single occurrence by bridging the gap of one letter. This
would reduce the number of occurrences of the cluster defined by the set {e, g, n} to
two “gene” and “ngemen”, and this last occurrence being a nonexact occurrence due
to the letter “m”. Such a decision to accept an outsider in an occurrence of a cluster
may also be wise from a biological point of view since genes can be gained or lost,
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or can change function, which translates, in terms of strings, as gaps or as missing
genes.

This example illustrates the importance of the definition of the genome segments
that define a cluster. In this chapter, we take the point of view to consider the intruder
genes in occurrences of clusters under the point of view of the gaps they create,
which has been followed in most recent approaches.! We thus have the following
definition:

Definition 8.1 Given a set of genes S and a chromosome C represented by the string
8182 - - - &k an occurrence of the set § is a substring g; .. . g; such that

(1) Both g; and g; belong to the set of genes S.

(2) The set of genes S is contained in the multiset {g; ... g;}.

(3) If asubstring of g; . .. g; contains no gene of S, then its length must be smaller
or equal to 4, a fixed integer that represents the maximal allowed gap size.

(4) The flanking substrings g;—1-s...gi—1 and gjy1...gj+14s contain no gene
in S. (Extremities of chromosomes are padded with characters not in S as
necessary.)

When § = 0, we usually refer to occurrences as “without gaps.”

With a gap size § = 0, the three occurrences of the set {e, g, n} in the sentence
“rearrangements of genomes involve genes and chromosomes” are the substrings
“nge,” “gene,” and “gen”; with a gap size § = 1, there are again three occurrences,
but the first occurrence is now the substring “ngemen,”

The next basic concept is illustrated by the following example. When the set of

letters {m, o, s} is highlighted in the sentence
“rearrangements of genomes involve genes and chromosomes,”

the two occurrences of the set with gap size § = 1 are the substrings “omes” and
“omosome.” The presence of the letter “e” in both occurrences suggests that a more
meaningful set of genes to consider could be the set {e, m, o, s}. The relationship
between these two sets is captured by the following definition.

Definition 8.2 Given a set of genes S and genomes represented by a set of strings
G, a set of genes T is an extension of the set S if

(H) Scr

(2) Each occurrence of S in G is a substring of an occurrence of 7.
In the example sentence, with § = 1, the two occurrences of the set {e, m, o, s} are
“enomes” and “omosomes,” and both of which contain an occurrence of {m, o, s} as

a substring. Since {m, o, s} has only two occurrences, {e, m, o, s} is an extension

'Note however that a different point of view was taken in [19].
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of {m, o, s}. On the other hand, the set {e, g, n, m} is not an extension of the set
{e, g, n} since there is one occurrence of {e, g, n}, namely the occurrence within the
word “gene” that is not a substring of an occurrence of {e, g, n, m}.

The point of view of this chapter will be purely combinatorial. Once gene clusters
are identified, it is necessary to distinguish clusters whose existence could be merely
due to random factors from those whose existence rests on other causes. These aspects
are studied, for example, in [29].

8.3.2 An Elementary Model: Conserved Segments

Various formal models for gene clusters are obtained by imposing requirements on
the subsets of genes that are allowable, on the types of strings that are considered,
and on the number and nature of the occurrences.

Perhaps the simplest model is when we assume that genomes are permutations of
each other and require occurrences of clusters to be equal. Because strings represent
DNA molecules, the notion of equality must be adapted to capture the fact that an
inverted string is the “same” as the original. Two strings g1g> ... gk and hihy ... hg
are equal if either (1) for all i, g; = h;, or (2) for all i, gi = —hy—;11. We have

Definition 8.3 Let G be a set of signed permutations on the set of genes S. A subset
of S is a conserved segment if it has an occurrence in each permutation of G, without
gaps, and all occurrences are equal.

Conserved segments capture the notion of sets of genes that occur in the same or-
der and same orientation in different genomes. For example, consider the following
permutations:

Gi=(@ b —c d —e flandGy=(—a d —e f ¢ —D).

Apart from the trivial conserved segments formed by singletons, the sets {b, c}, {d, e},
{e, f}, {d, e, f} are all conserved segments. We are usually interested in maximal
conserved segments, that is, conserved segments without extension. In this example,
these are {a}, {b, c}, and {d, e, f}. In each permutation, the boundaries between two
occurrences of maximal conserved segments are called breakpoints. For example, the
breakpoints of G with respect to G, are

Gi=@llb —clld —e )

Maximal conserved segments form a partition of the set S and appear as consecutive
elements in each permutation of G, which are very desirable properties from a com-
putational point of view. Identifying them can be done in O(Kn) time complexity,
where K is the number of permutations in G, and n the number of genes in S. The
computation involves the following steps:

(1) Choose an arbitrary ordering / of the set of genes S.
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(2) For each permutation in G, construct a table indexed by I, which gives the
position and the sign of the corresponding gene.

(3) Choose one permutation G in G and test, for each consecutive pair of genes
gigi+1 of G, whether it is a conserved segment. If it is not, mark a breakpoint
between g; and g4 1.

When using very large datasets, it is a current practice to consider conserved seg-
ments as a single “gene,” since there are no rearrangements within these segments.
This is especially true when comparing close species, which often share very long con-
served segments. For example, in the following three permutations, each integer rep-
resents a large conserved block in the chromosomes X of the human, mouse, and rat;
reverse orientation is indicated by overlined integers. This dataset is adapted from [16].

Human = (1 23 4 6 7 891011 1213 14 15 16)

Mouse = (

wi

5
41314151613 9 101112 7 8 2)
Rat =(1345

|

6128 7213 9 1011 1415 16)

By construction, this set of permutations does not have any conserved segment. How-
ever, the comparison of these permutations two by two reveals conserved segments
for each pair of species. For example, rat and mouse share the segment {4, 5, 13}, rat
and human share {5, 7}, and mouse and human share {5, 6}.

This type of analysis was used, for example, in phylogenetic studies and for the
reconstruction of ancestral genomes [11]. For larger sets of permutations, it is possible
to relax the definition of conserved segments and ask for occurrences in at least J
permutations in the set G, but not necessarily in all. This is done at the cost of added
algorithmic complexity.

Most properties of conserved segments do not hold anymore when the chromo-
somes contain duplicated genes. Indeed, the definition of conserved segment can be
extended to strings, but they do not form a partition of the set S of genes, neither
do they define clear breakpoint regions (see [13] for an example of using conserved
segments to define breakpoints in a set of strings). We observe a similar phenomenon
with the various gene cluster models in the next section.

8.4 MODELS OF GENE CLUSTERS

8.4.1 Common Intervals in Permutations

The notion of common intervals is a first generalization of conserved segments in
which we relax the conditions that genes appear in the same order or the same
orientation. It was first introduced by Uno and Yagiura [50] in the case of two permuta-
tions, and various efficient algorithms have since been developed for K permutations.
Since orientation is not necessarily conserved, in this section we ignore the signs of
genes.
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Definition 8.4 Let G be a set of permutations on the set of genes S. A subset of S
is a common interval if it has an occurrence in each permutation of G, without gaps.

Intuitively, a common interval is a set whose elements are consecutive in both permu-
tations, thus intervals in both permutations. Note that singletons are always common
intervals and are sometimes referred to as frivial common intervals. Consider the
following two permutations:

G, = (1 2 3 4 5 6 7 8 9 10 11 )
G, = ( 4 2 1 3 7 8 6 5 11 9 10 ).

The common intervals of G| and G, except for the singletons, are underlined in the
second permutation. When, as it is the case in this example, one of the permutation is
the identity permutation, all common intervals are sets of consecutive integers since
their occurrence in the identity permutation is an interval.

Underlining the same common intervals in the identity permutation highlights
some of the properties of common intervals of permutations:

G, = ( 4 2 1 3 7 8 6 5 11 9 10 )
G, = (1 2 3 4 5 6 7 8 9 10 11 ).

For example, if two common intervals have a nontrivial intersection, such as
{1,2,3,4,5,6,7,8}and {5, 6,7, 8,9, 10, 11}, then the intersection of these common
intervals is also a common interval, since it is an interval in both permutations. More
formally we have

Definition 8.5 Two sets S and T overlap if

(1) their intersection is nonempty, and
(2) neither S is contained in 7', nor T is contained in S.

Proposition 8.1 Let S and T be two overlapping common intervals of a set of
permutations G, then SNT, SUT, S\ T, and T \ S are all common intervals of the
set G.

The number of common intervals of a set of permutations on n elements is On?).
This bound is achieved, for example, when one compares two equal permutations:
each interval is then a common interval and there are (n 4+ 1)(n/2) of them. On the
other hand, from a biological perspective, a huge number of common intervals merely
reflect that parts of genomes under study are very similar. This fact has hindered the
use of common intervals in comparative genomics because most of common intervals
in “real” genomes are very repetitive. For example, the following permutations
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Gy = (1 2 3 4 5 6 7 8 9 10 11 )
Gs = ( 4 2 3 111 10 9 8 7 6 5 )

have 26 nontrivial common intervals, but most of them seems to be related, such as
{5, 6}, {6, 7}, and {5, 6, 7}. A significant advance has been made in recent years to
formally distinguish interesting common intervals from less interesting ones [33]. It
is the identification of strong common intervals.

Definition 8.6 Let G be a set of permutations. A strong common interval is a
common interval of G that does not overlap any other common intervals of G.

For example, permutations G3 and G4 have only four strong common intervals
that are underlined in G4, and these illustrate very nicely the respective structures of
the two permutations:

Gz = (1 2 3 4 5 6 7 8 9 10 11 )

Gy = ( 4 2 3 1 11 10 9 8 7 6 5 )

Strong intervals have very rich and deep combinatorial properties [10], as well as
they capture relevant biological relations [7,33]. One of their most attractive features,
from both point of views, is that there are few of them, and these few can be used
to generate all common intervals. The proof of the following proposition is worth
reading, since it introduces a basic construction.

Proposition 8.2 Let G be a set of permutations on n elements. The number of strong
common intervals of G is in O(n).

Proof. Two strong common intervals are either disjoint, or one is contained in the
other. All singletons and the set {1, 2, ..., n} are strong common intervals. Consider
the tree in which each strong common interval is the child of the smallest strong
common interval that properly contains it. Each node of this tree has thus at least two
children, its root is the set {1, 2, ..., n} and its leaves are the singletons. Therefore,
the total number of its internal nodes is less than n. |

It is thus possible to report and display the strong common intervals as a tree using
the inclusion relation. For example, the tree in Fig. 8.4 corresponds to the strong
common intervals of G3 and G4.

Such trees are examples of a general structure, known as PQ-trees [15], that was
developed to represent sets of permutations. These are ordered trees whose nodes are
classified as either P-nodes or Q-nodes. In the tree of strong common intervals of a
set of permutations G , if the leaves are ordered according to one of the permutations
in G, then for each node N exactly one of the following is true:
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|4,2,3, 1,11,10,9,8,7,6,5 |

4231 111098765

b e

FIGURE 8.4 The tree of strong common intervals of the permutations G3 and G4. Leaves
are ordered according to G4.

(1) [Q-nodes] Any union of consecutive children of N is a common interval of G.

(2) [P-nodes] No union of consecutive children of N is a common interval of G,
except the union of all its children—in this case the union equals N itself.

In PQ-trees, the P-nodes are traditionally depicted as roundish boxes and the Q-
nodes as rectangular boxes. The tree of Fig. 8.4 has only Q-nodes. A more general
example is given by the tree of Fig. 8.5, which represents the strong common intervals
of the permutations:

Gs = ( 1 2 3 4 5 6 7 8 9 10 11 )
Ge = (1 4 2 5 3 11 10 8 9 7 6 ).

In Fig. 8.5, the node corresponding to the strong common interval {4, 2, 3, 5} is a
P-node, since no union of consecutive children is a common interval. This represen-
tation of strong common intervals allows them to serve as a basis for generating all
common intervals of a set of permutations. We have

| 1,4,2,5,3,11,10,8,9,7,6

11,10, 8,9,7,6

FIGURE 8.5 The tree of strong common intervals of the permutations Gs and Ge. Leaves
are ordered according to Gg.
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Proposition 8.3 [10] Let T be the PQ-tree of the strong common intervals of a set
G of permutations, ordered according to one of the permutations in G. A set S is a
common interval of G if and only if it is the union of consecutive nodes of children of
a Q-node or the union of all children of a P-node.

8.4.1.1 Computing Common Intervals and Strong Intervals The algorithmic
history of efficient computation of common and strong intervals has an interesting
twist. From the start, Uno and Yagiura [50] proposed an algorithm to compute the
common intervals of two permutations whose theoretical running time was O(n 4+ N),
where n is the number of elements of the permutation, and N is the number of common
intervals of the two permutations. Such an algorithm can be considered as optimal
since it runs in time proportional to the sum of the size of the input and the size
of the output. However, the authors acknowledged that their algorithm was “quite
complicated” and that, in practice, simpler O(n?) algorithms run faster on randomly
generated permutations.

Building on Uno and Yagiura’s work, Heber and Stoye [27] proposed an algorithm
to generate all common intervals of a set of K permutations in time proportional
to Kn + N, based on Uno and Yagiura analysis. They achieved the extension to K
permutations by considering the set of irreducible common intervals that are common
intervals and that are not the union of two overlapping common intervals. As for the
strong intervals, the irreducible common intervals also form a basis of size O(n) that
generates the common intervals by unions of overlapping irreducible intervals.

The drawback of these algorithms is that they use complex data structures that are
difficult to implement. A simpler way to generate the common intervals is to compute
a basis that generates intervals using intersections instead of unions.

Definition 8.7 Let G be a set of K permutations on n elements that contains the
identity permutation. A generator for the common intervals of G is a pair (R, L) of
vectors of size n such that

(1) R[i]=iand L[j] < jforalli, je {1,2,...,n},
) @, ..., j)isacommon interval of G ifandonly if (i, ..., j)) = (G, ..., R[iD N
(LLJ1, -5 D)

It is not immediate that such generators even exist, but it turns out that they are far
from unique, and some of them can be computed using elementary data structures such
as stacks and arrays [10]. The algorithms are easy to implement, and the theoretical
complexity is O(Kn + N). The strong common intervals can also be computed in
O(Kn).

8.4.1.2 The Use of Common Intervals in Comparative Genomics Datasets based
on permutations that use real “genes” are not frequent in comparative genomics since
real genes are often found in several copies within the genome of an organism. In
order to obtain permutations, it is possible to eliminate all duplicates, or even better,
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FIGURE 8.6 Comparing the rat and mouse X chromosomes.

to retain only one copy [38]. However, in some small chromosomes, such as animal
mitochondrion genomes, genes are not often duplicated, and it is possible to extract
permutations from the gene order without sacrificing too much information. In [1],
for example, common intervals are used to define a distance between plant chloroplast
genomes.

On the other hand, datasets that are constructed using large synteny blocks, such
as in [16], naturally yield permutations. In this context, common intervals and strong
common intervals have been used, for example, for the evaluation of proposed evo-
lution scenarios between species [6] or for the construction of evolution scenarios
[7]. In these applications, the impact of rearrangement operations on the structure of
common intervals is taken into account to propose a rearrangement scenario between
two genomes.

For example, Fig. 8.6 represents the strong common intervals of two signed
permutations representing conserved block in the chromosomes X of the rat and
the mouse. Each strong interval is marked by either a “+” or a “—”" sign, using the
sign of the element of the permutation for the leaves and the fact that the numbers are
increasing or decreasing for the other nodes. Inverting all strong intervals that have a
sign different from their parent yields a scenario that conserves, for each intermediate
scenario, all common intervals of the two permutations.

8.4.2 Max-gap Clusters in Permutations

The first formal model of gene clusters in permutations that allows gaps was intro-
duced in [8] under the name of gene teams. Even if the range of its applications is
limited, it remains the only model whose formal properties can be fully analyzed, as
in [28] where they are called max-gap clusters, whose output size is reasonable, and
for which efficient algorithms exist.
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TSV STV
G = (1 % 2 3 4 = % 5 6 7 %= = 8)
Gy = (8 % 4 % 2 1 5 3 6 % 7 =% & )
N P

FIGURE 8.7 Gene teams of G, and G, with gap size § = 1.

Definition 8.8 Let G be a set of strings on the set of genes S U {*} such that each
string is a permutation of S when the symbols {x} are removed. Let § > 0 be a fixed
integer. A subset of S is a gene team if it has an occurrence with maximum gap size
d in each permutation of G and has no extension.

Consider, for example, the two following strings:

G =(1%234%x%x567%x%8)
Gy=(8%x4%x21536%7%x).

The gene teams of G| and G, with gap size § = 1 are {1, 2, 3, 4}, {5, 6, 7}, and
{8}. It is important to note that occurrences of teams can overlap; Fig. 8.7 illustrates
this fact by joining the various members of a team with arcs. Even though occurrences
of gene teams can overlap, they always form a partition of the set of genes S. This is
a consequence of the following proposition.

Proposition 8.4 Let S and T be two gene teams of the set of strings G. If SN'T # @,
then S =T.

Proof. Consider a substring g; ... g; in one of the strings G of G that contains all
genes of S U T, and such that both g; and g; are in S U T. We first show that each
substring of g; ... g; of length greater than & contains at least a gene from SU T,
implying that g; ... g; is an occurrence of S U T. In order to prove this, suppose that a
substring gy . . . gk+s contains no gene in S U T, and both flanking genes are in SU T.
Then these genes cannot be both in S, or both in 7, since S or 7 would not have
an occurrence in the string G. Therefore, one is an element of S and the other of 7',
and the occurrences of S and 7T in this string are on different sides of the substring
8k - - - 8k+s, implying that S N T = @J. Now, since the string G was arbitrary, we have
shown that S U T is an extension of both S and T, which is ruled out by definition,
thus S =T. |

The first consequence of Proposition 8.4 is that the number of gene teams is
O(n), where n is the number of elements of S. This will be our last model with
such a desirable property. Proposition 8.4 also allows the computation of gene teams
through partition refinement techniques. The best complexity achieved up to now is
O(Kn logz(n)) [4], where K is the number of strings in G.

8.4.3 Common Intervals in Strings

In the previous section, we generalized the notion of common intervals in permutations
by allowing gaps in occurrences of a set of genes defining a cluster. We now describe
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another natural extension of common intervals in permutations, which is the notion
of common intervals in strings.

Definition 8.9 Let G be a set of strings on the set of genes S. A subset of S is a
common interval if it has an occurrence in each string of G, without gaps.

The above definition is identical to the definition of common intervals in permu-
tations (Defination 8.4) except for one word “strings” instead of “permutations,” and
this model is used to analyze genomes with many duplicates. This representation is
particularly adapted to the study of genomes at the level of “genes” and “domains”
under the classical biological definition of these two words.

For example, in

Gi=(fecebedandGy=@bbecbcdbeoc),

the set {b, e} is a common interval that has one occurrence in G, (¢ b e) and two
occurrences in G, (b b e) and (b e). The other common intervals are {b}, {c}, {e},
{c,e}, {b,c, e}, and {b, c, d, e}.

8.4.3.1 Properties of Common Intervals in Strings. A major difference with
common intervals of permutations, due to the possible repetition of genes in strings,
is that a common interval S of the strings G can have two or more occurrences in a
genome that do not overlap due to the point 3 of Definition 8.1. Hence, using common
intervals of sequences allows to detect gene clusters that have been rearranged by du-
plication events, either internal duplications resulting in several copies of a gene of the
cluster, or large-scale duplications resulting in several copies of the whole clusters;
this is an important strength of this model.

The first question raised by the definition of gene clusters as common intervals
in strings is the computational cost of such a higher biological accuracy. It happens
that this model is very tractable and, in fact, only slightly more costly to handle
than common intervals of permutations. Indeed, since every occurrence of a common
interval is without gap, every substring of a genome of G can be occurrence of at most
one gene cluster, which immediately leads to the following proposition.

Proposition 8.5 Let N be the sum of the lengths of the strings in G. The number of
common intervals in G and the number of occurrences of all common intervals in G
are in O(N?).

Hence the maximum number of common intervals is quadratic in the size of the
genomes in both cases, permutations and strings, which is a direct consequence of
considering occurrences without gaps. However, an important difference with per-
mutations relies on the internal structure of the set of common intervals in strings.
In permutations, the existence of linear space basis of the set of common intervals,
irreducible intervals, and strong intervals is central in the linear time and space com-
plexity of algorithms. Currently, no such basis has been found for common intervals
in strings (see [33] for an attempt to use PQ-trees with strings, which is applicable
when very few duplicated genes exist).
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8.4.3.2 Detecting Common Intervals in Strings. Because of the lack of internal
structure, the algorithms used to detect the set of common intervals in a set of strings
G and the occurrences of each common interval are very different in nature than the
algorithms used for detecting common intervals in permutations and are much less
elegant. They rely on the enumeration of the fingerprints of G.

Given a substring g;...g; of a string of G, its fingerprint is the subset of S,
the gene alphabet, containing the genes appearing in g; ...g;. For example, the
fingerprint of (b b e ¢ b c)is {b, c, e}. The fingerprint of G is the set of all the
fingerprints of all substrings of G. It follows immediately that a common interval of G
is a fingerprint of G that appears in each string of G, which implies that computing the
common intervals of G reduces to the appropriate filtering of the set of fingerprints
of G.

Detecting the set of fingerprints of a set of strings was first considered by Amir et
al. in [2]. The key of their algorithm is an efficient encoding scheme for fingerprints
that associates, to each fingerprint, a unique name computed from the elements of S
it contains. Their encoding is efficient in the sense that, if two fingerprints differ only
by one element, computing the name of the second one from the first one requires a
limited complexity (O(log(n))), where n is the number of elements of S. This property
allows to compute the number of different fingerprints by using a sliding window on
the considered string of total length N in time O(n N log(n) log(N)). Two recent papers
used the same principle but improved the fingerprint naming technique introduced by
Amir et al. to compute the set of fingerprints of G in time O(nN log(n)) (see [21])
and O((occ + N)log(n)) respectively, where occ is the total number of occurrences
of the fingerprints of G (see [32]). Another family of algorithms, initiated by Didier
[20] and improved in [40] and [21], allows to compute the fingerprints of G in time
O(N?), and note that the property to be independent from the number of genes is
important as in most comparative genomics applications, n is in O(N). These two
families of algorithms offer, as far as we know, the only nontrivial ways to compute
the set of common intervals of a set of strings.

8.4.3.3 Using Common Intervals in Strings. Common intervals of strings have
been used in two problems: detection of conserved gene clusters, which was the initial
goal they were designed for, and assignment of positional homologs. We conclude
this section by describing briefly these applications, which will allow us to outline
the advantages and shortcomings of this formal model.

Detection of Conserved Gene Clusters. The algorithm of Schmidt and Stoye, de-
scribed in [40] and adapted to compute intervals that are common to a subset of the
strings in G, is the basis of the algorithm used in the software GECKO [25]. However,
GECKO brings additional important features that address weaknesses of the common
interval model.

A first improvement of the basic common interval model relies on the ability of
GECKO to avoid displaying clusters that have an extension (see Definition 8.2). This
is an important practical feature, as it reduces significantly the size of the output.
A second improvement addresses the main problem of common intervals as models
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of gene clusters: it is very unlikely that a cluster keeps the same gene content in
all the genomes of a dataset, especially if they span a large evolutionary spectrum.
In such a case, these clusters cannot be detected by common intervals. To solve this
problem, GECKO uses a heuristic postprocessing that agglomerates common intervals
in groups such that all common intervals in a given group share at least a minimum
fraction—a user-defined parameter—of their genes with a particular common interval
of this group. This way of grouping common intervals, in order to define less strict
clusters, is inspired from the heuristic methods used to compute gene clusters, and it
adds flexibility. The price to pay is more noisy output, since a given common interval
can belong to several groups.

Inferring Positional Homologs. 'When genomes contain duplicated genes, a major
question is to elucidate the evolutionary relationships between the several copies of
a given gene that form a family of homologous genes. Several kinds of relationships
have been defined, and the most commonly considered being the notions of orthologs
and paralogs that are defined in terms of the evolutionary history of gene families.
This problem has attracted a lot of attention since such knowledge has been shown
to be helpful in understanding the function of the genes of a gene family. Recently,
several other notions of homology have been defined in terms of gene order, such
as positional homologs [18] and ancestral homologs [38], that are used to propose
interesting putative pairs of orthologs. In the gene order approaches, these homologs
are deduced from a pairing between the genes of two compared genomes that define a
signed permutation and that optimize a given combinatorial criterion, for example, a
genetic distance [24] or the number of common intervals in the resulting permutation
[17].

In [12], it was shown that using directly common intervals in strings as anchors
of a global matching, in a way that is similar to methods for whole-genome align-
ments, offers an interesting alternative to the parsimonious approach to infer positional
homologs from gene orders and performs at least as well as methods based on more
complicated combinatorial objects, such as the breakpoint graph in [24].

8.4.4 Max-Gap Clusters in Strings

Max-gap clusters in strings are the most general formal model of gene clusters: gaps
are allowed, duplications and missing genes are taken care of, and there is no require-
ment that a cluster be present in all species under study. Unfortunately, there is little
hope that the automatic detection of these types of clusters will be computationally
feasible for large datasets.

Definition 8.10 Let G be a set of strings on the set of genes S, and § > 0 a fixed
integer. A subset of S is a max-gap cluster if it has an occurrence with maximum gap
size § in at least one string of G and has no extension.

Each type of cluster that we examined in the preceding sections provides examples
of max-gap clusters, but the general notion indeed seems to be truly adapted for certain
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type of biological data. For example, in the genome of Nostoc sp. PCC 7120, we have
the following five occurrences with gap size § = 1 of a set of three domains:

CABC, CAx ABCC, ABCC, Ax*ABCxCB, AxBCCABC,

where stars “x” stand in for domains not in the set {A, B, C}. These five patterns
are among the dozens of variations on the associations of these three domains that
are actually found in bacteria. Thus, there is clearly a need to be able to consider
models that allow for gaps and duplicate genes. However, as we will see in the next
paragraphs, known bounds for the size of the output—that is, the number of max-gap
clusters in a given set of strings G—are currently exponential in the number of genes
in S. This implies that the running time of algorithms that detect max-gap clusters
can be unreasonably long.

8.4.4.1 Algorithmic Complexity Clearly, testing for all possible subsets as
candidate max-gap clusters is out of the question for any realistic set of genes. Some
reasonable hypothesis, such as limiting the size of the gap, and considering sets that
have at least one occurrence in the genomes under study are helpful and allow the
computation of max-gap clusters for interesting sets of genomes with thousands of
genes [34]. For the comparison of exactly two genomes, and with the additional hypo-
thesis that a cluster must have an occurrence in both genomes, He and Goldwasser
[26] describe a polynomial algorithm to compute them.

However, even with a gap size equal to 1, there can be an exponential number of
subsets that have at least one occurrence and possibly no extension, as the following
example shows. Consider a genome segment of the form

agy - - - 8nl

in which all the genes are different. We will compute T;,, the number of subsets
of {a, g1,..., gn, z} that contain genes a and z and that have an occurrence with
maximum gap size of 1 in the segment.

For n = 0, the number of such subsets is 1, and for n = 1, there are two of them:
{a, z} and {a, g1, z}. Suppose now that n > 2. A subset that has an occurrence in the
segment, and contains both a and z, either

(1) contains both g, and g, or
(2) contains g,—_1 but not g, or
(3) contains g, but not g,_1.

Clearly, the three cases are disjoint. In the first case, removing genes g,—_ and g,
from the subset yields a subset that has an occurrence in the segment agy ... g,-22.
Conversely, adding genes g,—1 and g, to such a subset yields a subset that has an
occurrence in the segment agy . .. g,—18,2. Thus, the number of subsets covered by
case (1)is T,,—».
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The two remaining cases are treated together. Consider the 7,,_; subsets that have
an occurrence in ag . .. g,—12. All subsets that contain gene g,_1 also have occur-
rences with gap size 1 in ag; ... g,—18,z by skipping gene g,, and all those that do
not contain gene g, can be extended to occurrences in agj ... g,—18,2 by adding
gene g, since they must contain gene g,_». The inverse bijection is obtained by
removing gene g, from all subsets covered by case (3). Thus, the total number of
subsets covered by case (2) and (3) is 7,,—1, yielding the recurrence equation

Ty =Th-1+ Th-2,

with initial conditions 7y = 1 and 77 = 2.
This equation has, unfortunately, a well-known solution that grows exponentially
with . Its closed form is

e e G )
- m+2,/5 ’

T,

and the sequence {7}, } is known as the Fibonacci sequence. As a measure of its growth,
we have, for example, T190 = 144 and T>o = 17711, and T3¢9 = 2178309.

8.4.4.2 The Combinatorial Beauty of Nature 1In the preceding section, we proved
that the theoretical number of max-gap clusters could be exponential with respect to
the number of genes. How do real genomes behave? It seems that, at least at certain
levels of complexity, nature does experiment in a combinatorial way.

The STRING database [46] predicts functional associations between genes or
domains in prokaryotic genomes, based on the identification of genomic segments
where they appear close together. Using STRING, we looked at occurrences of
subsets of the following five domains: (A) COG2202—PAS/PAC domain, (B)
COGO0642—Signal transduction histidine kinase, (C) COG0784—CheY-like receiver,
(D) COG2203—GAF domain, and (E) COG2200—EAL domain.

The first of these five domains, COG2202, was chosen among the few dozens
that have many duplicates in bacterial genomes. The next four are the best scoring
for functional association with COG2202, as predicted by STRING. This choice is
somewhat arbitrary, and other sets of domains were also shown to exhibit the same
combinatorial behavior.

If we exclude trivial subsets consisting of one element, there are 26 possible subsets
ofthe set {A, B, C, D, E}. Of these, we found that 19 had at least one occurrence with
8 = 2 among 11 different genomes. Table 8.2 gives examples of occurrences for each
of the 19 subsets. It illustrates in a striking way why the general model of max-gap
clusters must eventually be replaced by heuristics in some applications. With more
and more organisms to compare, it is tempting to predict that all the “not found” lines
in Table 8.2 will eventually be filled up.
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TABLE 8.2 Occurrences of Various Subsets of Domains in Prokaryotic Genomes. Stars

¢4’ Stand in for Domains Not in the Set {A, B, C, D, E}.

Subset Occurrence Species

{A, B} ABAB Nostoc sp. PCC 7120

{A, C} AC Leptospira interrogans

{A, D} Ax ADA Methanosarcina acetivorans
{A, E} AE Escherischia coli

{B, C} BC % xC Xanthomonas campestris
{B, D} DB Leptospira interrogans

{B, E} (not found)

{C, D} CC *x D *xC Nostoc sp. PCC 7120

{C, E} E x xC Bacillus halodurans

{D, E} ExD Xanthomonas axohopodis
{A, B,C} CAB Xanthomonas campestris
{A, B, D} ADADB Methanosarcina acetivorans
{A, B, E} BxAxE Pseudomonas aeruginosa
{A, C, D} ADA xC Sinorhizobium meliloti
{A,C, E} AC*x E Agrobacterium tumafaciens
{A, D, E} (not found)

{B, C, D} DBCB Nostoc sp. PCC 7120

{B, D, E} (not found)

{B,C, E} CxEBBxC Xylella fastidiosa

{C, D, E} (not found)

{A, B, C, D} DAD x CAB Nostoc sp. PCC 7120

{A, B,C, E} CE x ABC Pseudomonas aeruginosa
{A, B, D, E} (not found)

{A,C, D, E} (not found)

{B,C, D, E} (not found)

{A,B,C, D, E} ADABCECB Nostoc sp. PCC 7120

8.5 CONCLUSION

We described in this chapter a hierarchy of formal models that have been defined to
detect conserved gene clusters. One of the important points that we can outline is the
strong link between the biological complexity that these models try to capture and
their computational complexity. It appears very clearly that the limiting factors are the
presence of duplicated genes (i.e. strings versus permutations) and the existence of
clusters whose occurrences do not have the same gene content: indeed, the detection of
common intervals in strings and max-gap clusters in permutations is very tractable.
It then remains open to define general models of gene clusters that consider both
nonexact occurrences and strings and that are tractable.

The first way to attack this problem could be to try to extend the notion of common
intervals, that is, the only known tractable model handling strings to define a model
with nonexact occurrences but without using the notion of gap, as it was shown that
even the shortest possible gap of 1 can lead to an exponential number of clusters. The
first attempt was done in [19], with a model of common intervals with errors that adds
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flexibility by bounding a number of genes of an occurrence of a cluster that do not
belong to the cluster. However, even in this model the number of generated clusters
can be exponential.

Another possibility would be to rely on combinatorial properties of gene clusters in
order to refine gene cluster models and then reduce the number of produced clusters by
eliminating nonsignificant clusters. For example, one of the reasons for the definition
of common intervals with errors is that it ensures a minimum density [28] of each
occurrence, roughly defined as the ratio between genes belonging to the cluster and
the intruders. Other properties of gene clusters that are worth to be investigated are
also described in [28].

Finally, it would be very natural to include the phylogenetic information, when
available, in the definition of gene cluster models. This approach has been shown to
be very interesting in a heuristic approach and in a probabilistic framework [53], but
it is not obvious how it would fit in the purely combinatorial framework we described
in this chapter.
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