

BIOINFORMATICS
ALGORITHMS
Techniques and Applications

Edited by

Ion I. Măndoiu and Alexander Zelikovsky

A JOHN WILEY & SONS, INC., PUBLICATION

BIOINFORMATICS
ALGORITHMS

BIOINFORMATICS
ALGORITHMS
Techniques and Applications

Edited by

Ion I. Măndoiu and Alexander Zelikovsky

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2008 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400, fax
978-646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201)-748-6011, fax (201)-748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor
author shall be liable for any loss of profit or any other commerical damages, including but not limited to
special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department
within the U. S. at 877-762-2974, outside the U. S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,
however, may not available in electronic format.

Library of Congress Cataloging-in-Publication Data:
Bioinformatics algorithms : techniques and applications / edited by Ion I.
Mandoiu and Alexander Zelikovsky.

p. cm.
ISBN 978-0-470-09773-1 (cloth)

1. Bioinformatics. 2. Algorithms. I. Mandoiu, Ion. II. Zelikovsky,
Alexander.

QH324.2B5472 2008
572.80285–dc22

2007034307
Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

http://www.copyright.com

CONTENTS

Preface ix

Contributors xi

1 Educating Biologists in the 21st Century: Bioinformatics Scientists
versus Bioinformatics Technicians 1
Pavel Pevzner

PART I TECHNIQUES 7

2 Dynamic Programming Algorithms for Biological Sequence
and Structure Comparison 9
Yuzhen Ye and Haixu Tang

3 Graph Theoretical Approaches to Delineate Dynamics
of Biological Processes 29
Teresa M. Przytycka and Elena Zotenko

4 Advances in Hidden Markov Models for Sequence Annotation 55
Broňa Brejová, Daniel G. Brown, and Tomáš Vinař

5 Sorting- and FFT-Based Techniques in the Discovery of Biopatterns 93
Sudha Balla, Sanguthevar Rajasekaran, and Jaime Davila

v

vi CONTENTS

6 A Survey of Seeding for Sequence Alignment 117
Daniel G. Brown

7 The Comparison of Phylogenetic Networks: Algorithms
and Complexity 143
Paola Bonizzoni, Gianluca Della Vedova, Riccardo Dondi, and
Giancarlo Mauri

PART II GENOME AND SEQUENCE ANALYSIS 175

8 Formal Models of Gene Clusters 177
Anne Bergeron, Cedric Chauve, and Yannick Gingras

9 Integer Linear Programming Techniques for Discovering
Approximate Gene Clusters 203
Sven Rahmann and Gunnar W. Klau

10 Efficient Combinatorial Algorithms for DNA
Sequence Processing 223
Bhaskar DasGupta and Ming-Yang Kao

11 Algorithms for Multiplex PCR Primer Set Selection with
Amplification Length Constraints 241
K.M. Konwar, I.I. Măndoiu, A.C. Russell, and A.A. Shvartsman

12 Recent Developments in Alignment and Motif Finding
for Sequences and Networks 259
Sing-Hoi Sze

PART III MICROARRAY DESIGN AND DATA ANALYSIS 277

13 Algorithms for Oligonucleotide Microarray Layout 279
Sérgio A. De Carvalho Jr. and Sven Rahmann

14 Classification Accuracy Based Microarray Missing Value
Imputation 303
Yi Shi, Zhipeng Cai, and Guohui Lin

15 Meta-Analysis of Microarray Data 329
Saumyadipta Pyne, Steve Skiena, and Bruce Futcher

CONTENTS vii

PART IV GENETIC VARIATION ANALYSIS 353

16 Phasing Genotypes Using a Hidden Markov Model 355
P. Rastas, M. Koivisto, H. Mannila, and E. Ukkonen

17 Analytical and Algorithmic Methods for Haplotype
Frequency Inference: What Do They Tell Us? 373
Steven Hecht Orzack, Daniel Gusfield, Lakshman Subrahmanyan,
Laurent Essioux, and Sebastien Lissarrague

18 Optimization Methods for Genotype Data Analysis
in Epidemiological Studies 395
Dumitru Brinza, Jingwu He, and Alexander Zelikovsky

PART V STRUCTURAL AND SYSTEMS BIOLOGY 417

19 Topological Indices in Combinatorial Chemistry 419
Sergey Bereg

20 Efficient Algorithms for Structural Recall in Databases 439
Hao Wang, Patra Volarath, and Robert W. Harrison

21 Computational Approaches to Predict Protein–Protein
and Domain–Domain Interactions 465
Raja Jothi and Teresa M. Przytycka

Index 493

PREFACE

Bioinformatics, broadly defined as the interface between biological and computational
sciences, is a rapidly evolving field, driven by advances in high throughput technolo-
gies that result in an ever increasing variety and volume of experimental data to be
managed, integrated, and analyzed. At the core of many of the recent developments in
the field are novel algorithmic techniques that promise to provide the answers to key
challenges in postgenomic biomedical sciences, from understanding mechanisms of
genome evolution and uncovering the structure of regulatory and protein-interaction
networks to determining the genetic basis of disease susceptibility and elucidation of
historical patterns of population migration.

This book aims to provide an in-depth survey of the most important develop-
ments in bioinformatics algorithms in the postgenomic era. It is neither intended as
an introductory text in bioinformatics algorithms nor as a comprehensive review of
the many active areas of bioinformatics research—to readers interested in these we
recommend the excellent textbook An Introduction to Bioinformatics Algorithms by
Jones and Pevzner and the Handbook of Computational Molecular Biology edited
by Srinivas Aluru. Rather, our intention is to make a carefully selected set of ad-
vanced algorithmic techniques accessible to a broad readership, including graduate
students in bioinformatics and related areas and biomedical professionals who want
to expand their repertoire of algorithmic techniques. We hope that our emphasis on
both in-depth presentation of theoretical underpinnings and applications to current
biomedical problems will best prepare the readers for developing their own extensions
to these techniques and for successfully applying them in new contexts.

The book features 21 chapters authored by renowned bioinformatics experts who
are active contributors to the respective subjects. The chapters are intended to be
largely independent, so that readers do not have to read every chapter nor have to read
them in a particular order. The opening chapter is a thought provoking discussion of

ix

x PREFACE

the role that algorithms should play in 21st century bioinformatics education. The
remaining 20 chapters are grouped into the following five parts:

� Part I focuses on algorithmic techniques that find applications to a wide range of
bioinformatics problems, including chapters on dynamic programming, graph-
theoretical methods, hidden Markov models, sorting the fast Fourier transform,
seeding, and phylogenetic networks comparison approximation algorithms.

� Part II is devoted to algorithms and tools for genome and sequence analysis.
It includes chapters on formal and approximate models for gene clusters, and
on advanced algorithms for multiple and non-overlapping local alignments and
genome things, multiplex PCR primer set selection, and sequence and network
motif finding.

� Part III concentrates on algorithms for microarray design and data analysis.
The first chapter is devoted to algorithms for microarray layout, with next two
chapters describing methods for missing value imputation and meta-analysis
of gene expression data.

� Part IV explores algorithmic issues arising in analysis of genetic variation across
human population. Two chapters are devoted to computational inference of
haplotypes from commonly available genotype data, with a third chapter
describing optimization techniques for disease association search in epidemi-
ologic case/control genotype data studies.

� Part V gives an overview of algorithmic approaches in structural and systems bi-
ology. First two chapters give a formal introduction to topological and structural
classification in biochemistry, while the third chapter surveys protein–protein
and domain–domain interaction prediction.

We are grateful to all the authors for their excellent contributions, without which
this book would not have been possible. We hope that their deep insights and fresh
enthusiasm will help attracting new generations of researchers to this dynamic field.
We would also like to thank series editors Yi Pan and Albert Y. Zomaya for nurturing
this project since its inception, and the editorial staff at Wiley Interscience for their
patience and assistance throughout the project. Finally, we wish to thank our friends
and families for their continuous support.

Ion I. Măndoiu and Alexander Zelikovsky

CONTRIBUTORS

Sudha Balla, Department of Computer Science and Engineering, University of
Connecticut, Storrs, Connecticut, USA

Sergey Bereg, Department of Computer Science, University of Texas at Dallas, Dal-
las, TX, USA

Anne Bergeron, Comparative Genomics Laboratory, Université du Québec à
Montréal, Canada

Paola Bonizzoni, Dipartimento di Informatica, Sistemistica e Comunicazione, Uni-
versità degli Studi di Milano-Bicocca, Milano, Italy

Broňa Brejová, Department of Biological Statistics and Computational Biology,
Cornell University, Ithaca, NY, USA

Dumitru Brinza, Department of Computer Science, Georgia State University,
Atlanta, GA, USA

Daniel G. Brown, Cheriton School of Computer Science, University of Waterloo,
Waterloo, Ontario, Canada

Zhipeng Cai, Department of Computing Science, University of Alberta, Edmonton,
Alberta, Canada

Cedric Chauve, Department of Mathematics, Simon Fraser University, Vancouver,
Canada

Bhaskar DasGupta, Department of Computer Science, University of Illinois at
Chicago, Chicago, IL, USA

Sérgio A. de Carvalho Jr., Technische Fakultät, Bielefeld University, D-33594
Bielefeld, Germany

xi

xii CONTRIBUTORS

Jaime Davila, Department of Computer Science and Engineering, University of
Connecticut, Storrs, Connecticut, USA

Gianluca Della Vedova, Dipartimento di Statistica, Università degli Studi di Milano-
Bicocca, Milano, Italy

Riccardo Dondi, Dipartimento di Scienze dei Linguaggi, della Comunicazione e
degli Studi Culturali, Università degli Studi di Bergamo, Bergamo, Italy

Laurent Essioux, Hoffmann-La Roche Ltd, Basel, Switzerland

Bruce Futcher, Department of Molecular Genetics and Microbiology, Stony Brook
University, Stony Brook, NY, USA

Yannick Gingras, Comparative Genomics Laboratory, Université du Québec à
Montréal, Canada

Daniel Gusfield, Department of Computer Science, University of California, Davis,
CA, USA

Robert W. Harrison, Department of Computer Science, Georgia State University,
Atlanta, GA, USA

Jingwu He, Department of Computer Science, Georgia State University, Atlanta,
GA, USA

Raja Jothi, National Center for Biotechnology Information, National Library of
Medicine, National Institutes of Health, Bethesda, MD, USA

Ming-Yang Kao, Department of Electrical Engineering and Computer Science,
Northwestern University, Evanston, IL, USA

Gunnar W. Klau, Mathematics in Life Sciences Group, Department of Mathematics
and Computer Science, University Berlin, and DFG Research Center Matheon
“Mathematics for Key Technologies,” Berlin, Germany

Mikko Koivisto, Department of Computer Science and HIIT Basic Research Unit,
University of Helsinki, Finland

Kishori M. Konwar, Department of Computer Science and Engineering, University
of Connecticut, Storrs, Connecticut, USA

Guohui Lin, Department of Computing Science, University of Alberta, Edmonton,
Alberta, Canada

Sebastien Lissarrague, Genset SA, Paris, France

Ion I. Măndoiu, Department of Computer Science and Engineering, University of
Connecticut, Storrs, Connecticut, USA

Heikki Mannila, Department of Computer Science and HIIT Basic Research Unit,
University of Helsinki, Finland

Giancarlo Mauri, Dipartimento di Informatica, Sistemistica e Comunicazione,
Università degli Studi di Milano-Bicocca, Milano, Italy

CONTRIBUTORS xiii

Steven Hecht Orzack, Fresh Pond Research Institute, Cambridge, MA, USA

Pavel Pevzner, Department of Computer Science and Engineering, University of
California, San Diego, CA, USA

Teresa M. Przytycka, National Center for Biotechnology Information, National Li-
brary of Medicine, National Institutes of Health, Bethesda, MD, USA

Saumyadipta Pyne, The Broad Institute of MIT and Harvard, Cambridge, MA, USA

Sven Rahmann, Bioinformatics for High-Throughput Technologies, Department of
Computer Science 11, Technical University of Dortmund, Dortmund, Germany

Sanguthevar Rajasekaran, Department of Computer Science and Engineering,
University of Connecticut, Storrs, Connecticut, USA

Pasi Rastas, Department of Computer Science and HIIT Basic Research Unit, Uni-
versity of Helsinki, Finland

Alexander C. Russell, Department of Computer Science and Engineering, Univer-
sity of Connecticut, Storrs, Connecticut, USA

Yi Shi, Department of Computing Science, University of Alberta, Edmonton, Al-
berta, Canada

Alexander A. Shvartsman, Department of Computer Science and Engineering, Uni-
versity of Connecticut, Storrs, Connecticut, USA

Steve Skiena, Department of Computer Science, Stony Brook University, Stony
Brook, NY, USA

Lakshman Subrahmanyan, University of Massachusetts Medical School,
Worcester, MA, USA

Sing-Hoi Sze, Departments of Computer Science and of Biochemistry and Bio-
physics, Texas A&M University, College Station, Texas, USA

Haixu Tang, School of Informatics and Center for Genomic and Bioinformatics,
Indiana University, Bloomington, IN, USA

Esko Ukkonen, Department of Computer Science and HIIT Basic Research Unit,
University of Helsinki, Finland

Tomáš Vinař, Department of Biological Statistics and Computational Biology,
Cornell University, Ithaca, NY, USA

Patra Volarath, Department of Computer Science, Georgia State University,
Atlanta, GA, USA

Hao Wang, Department of Computer Science, Georgia State University, Atlanta,
GA, USA

Yuzhen Ye, The Burnham Institute for Medical Research, San Diego, CA, USA

xiv CONTRIBUTORS

Alexander Zelikovsky, Department of Computer Science, Georgia State University,
Atlanta, GA, USA

Elena Zotenko, National Center for Biotechnology Information, National Library
of Medicine, National Institutes of Health, Bethesda, MD, USA and Department
of Computer Science, University of Maryland, College Park, MD, USA

1
EDUCATING BIOLOGISTS IN THE
21ST CENTURY: BIOINFORMATICS
SCIENTISTS VERSUS
BIOINFORMATICS TECHNICIANS1

Pavel Pevzner
Department of Computer Science and Engineering, University of California, San Diego,
CA, USA

For many years algorithms were taught exclusively to computer scientists, with
relatively few students from other disciplines attending algorithm courses. A biology
student in an algorithm class would be a surprising and unlikely (though not entirely
unwelcome) guest in the 1990s. Things have changed; some biology students now
take some sort of Algorithms 101. At the same time, curious computer science
students often take Genetics 101.

Here comes an important question of how to teach bioinformatics in the 21st
century. Will we teach bioinformatics to future biology students as a collection of
cookbook-style recipes or as a computational science that first explain ideas and
builds on applications afterward? This is particularly important at the time when
bioinformatics courses may soon become required for all graduate biology students
in leading universities. Not to mention that some universities have already started
undergraduate bioinformatics programs, and discussions are underway about adding
new computational courses to the standard undergraduate biology curriculum—a
dramatic paradigm shift in biology education.

1Reprinted from Bioinformatics 20:2159–2161 (2004) with the permission of Oxford University Press.

Bioinformatics Algorithms: Techniques and Applications, Edited by Ion I. Mǎndoiu
and Alexander Zelikovsky
Copyright © 2008 John Wiley & Sons, Inc.

1

2 EDUCATING BIOLOGISTS IN THE 21ST CENTURY

Since bioinformatics is a computational science, a bioinformatics course should
strive to present the principles and the ideas that drive an algorithm’s design or explain
the crux of a statistical approach, rather than to be a stamp collection of the algorithms
and statistical techniques themselves. Many existing bioinformatics books and courses
reduce bioinformatics to a compendium of computational protocols without even try-
ing to explain the computational ideas that drove the development of bioinformatics in
the past 30 years. Other books (written by computer scientists for computer scientists)
try to explain bioinformatics ideas at the level that is well above the computational
level of most biologists. These books often fail to connect the computational ideas
and applications, thus reducing a biologist’s motivation to invest time and effort into
such a book. We feel that focusing on ideas has more intellectual value and represents
a long-term investment: protocols change quickly, but the computational ideas don’t
seem to. However, the question of how to deliver these ideas to biologists remains an
unsolved educational riddle.

Imagine Alice (a computer scientist), Bob (a biologist), and a chessboard with a
lonely king in the lower right corner. Alice and Bob are bored one Sunday afternoon
so they play the following game. In each turn, a player may either move a king one
square to the left, one square up, or one square “north–west” along the diagonal.
Slowly but surely, the king moves toward the upper left corner and the player who
places the king to this square wins the game. Alice moves first.

It is not immediately clear what the winning strategy is. Does the first player (or
the second) always have an advantage? Bob tries to analyze the game and applies a
reductionist approach, and he first tries to find a strategy for the simpler game on a
2× 2 board. He quickly sees that the second player (himself, in this case) wins in
2× 2 game and decides to write the recipe for the “winning algorithm:”

If Alice moves the king diagonally, I will move him diagonally and win. If Alice moves
the king to the left, I will move him to the left as well. As a result, Alice’s only choice
will be to move the king up. Afterward, I will move the king up again and will win the
game. The case when Alice moves the king up is symmetric.

Inspired by this analysis Bob makes a leap of faith: the second player (i.e., himself)
wins in any n× n game. Of course, every hypothesis must be confirmed by experi-
ment, so Bob plays a few rounds with Alice. He tries to come up with a simple recipe
for the 3× 3 game, but there are already a large number of different game sequences
to consider. There is simply no hope of writing a recipe for the 8× 8 game since the
number of different strategies Alice can take is enormous.

Meanwhile, Alice does not lose hope of finding a winning strategy for the 3× 3
game. Moreover, she understands that recipes written in the cookbook style that Bob
uses will not help very much: recipe-style instructions are not a sufficiently expressive
language for describing algorithms. Instead, she begins by drawing the following table
that is filled by the symbols ↑,←,↖, and ∗. The entry in position (i, j) (that is, the ith
row and the jth column) describes the move that Alice will make in the i× j game.
A← indicates that she should move the king to the left. A ↑ indicates that she should
move the king up. A ↖ indicates that she should move the king diagonally, and ∗

EDUCATING BIOLOGISTS IN THE 21ST CENTURY 3

indicates that she should not bother playing the game because she will definitely lose
against an opponent who has a clue.

0 1 2 3 4 5 6 7 8

0 ← ∗ ← ∗ ← ∗ ← ∗
1 ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑
2 ∗ ← ∗ ← ∗ ← ∗ ← ∗
3 ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑
4 ∗ ← ∗ ← ∗ ← ∗ ← ∗
5 ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑
6 ∗ ← ∗ ← ∗ ← ∗ ← ∗
7 ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑
8 ∗ ← ∗ ← ∗ ← ∗ ← ∗

For example, if she is faced with the 3× 3 game, she finds a ↖ in the third row
and third column, indicating that she should move the king diagonally. This makes
Bob take the first move in a 2× 2 game, which is marked with a ∗. No matter what
he does, Alice wins using instructions in the table.

Impressed by the table, Bob learns how to use it to win the 8× 8 game. However,
Bob does not know how to construct a similar table for the 20× 20 game. The problem
is not that Bob is stupid (quite the opposite, a bit later he even figured out how to use
the symmetry in this game, thus eliminating the need to memorize Alice’s table) but
that he has not studied algorithms. Even if Bob figured out the logic behind 20× 20
game, a more general 20× 20× 20 game on a three-dimensional chessboard would
turn into an impossible conundrum for him since he never took Algorithms 101.

There are two things Bob could do to remedy this situation. First, he could take a
class in algorithms to learn how to solve puzzle-like combinatorial problems. Second,
he could memorize a suitably large table that Alice gives him and use that to play the
game. Leading questions notwithstanding, what would you do as a biologist?

Of course, the answer we expect to hear is “Why in the world do I care about a
game with a lonely king and two nerdy people? I’m interested in biology, and this
game has nothing to do with me.” This is not actually true: the chess game is, in fact,
the ubiquitous sequence alignment problem in disguise. Although it is not immedi-
ately clear what DNA sequence alignment and our chess game have in common, the
computational idea used to solve both problems is the same. The fact that Bob was
not able to find the strategy for the game indicates that he does not understand how
alignment algorithms work either. He might disagree if he uses alignment algorithms
or BLAST on a daily basis, but we argue that since he failed to come up with a strat-
egy, he will also fail when confronted with a new flavor of an alignment problem or
a particularly complex bioinformatics analysis. More troubling to Bob, he may find
it difficult to compete with the scads of new biologists and computer scientists who
think algorithmically about biological problems.

4 EDUCATING BIOLOGISTS IN THE 21ST CENTURY

Many biologists are comfortable using algorithms such as BLAST or GenScan
without really understanding how the underlying algorithm works. This is not sub-
stantially different from a diligent robot following Alice’s table, but it does have an
important consequence. BLAST solves a particular problem only approximately and
it has certain systematic weaknesses (we’re not picking on BLAST here). Users that do
not know how BLAST works might misapply the algorithm or misinterpret the results
it returns (see Iyer et al. Quoderat demonstrandum? The mystery of experimental vali-
dation of apparently erroneous computational analyses of protein sequences. Genome
Biol., 2001, 2(12):RESEARCH0051). Biologists sometimes use bioinformatics tools
simply as computational protocols in quite the same way that an uninformed mathe-
matician might use experimental protocols without any background in biochemistry
or molecular biology. In either case, important observations might be missed or incor-
rect conclusions drawn. Besides, intellectually interesting work can quickly become
mere drudgery if one does not really understand it.

Many recent bioinformatics books cater to a protocol-centric pragmatic approach
to bioinformatics. They focus on parameter settings, application-specific features, and
other details without revealing the computational ideas behind the algorithms. This
trend often follows the tradition of biology books to present material as a collection of
facts and discoveries. In contrast, introductory books in algorithms and mathematics
usually focus on ideas rather than on the details of computational recipes. In princi-
ple, one can imagine a calculus book teaching physicists and engineers how to take
integrals without any attempt to explain what is integral. Although such a book is not
that difficult to write, physicists and engineers somehow escaped this curse, probably
because they understand that the recipe-based approach to science is doomed to fail.
Biologists are less lucky and many biology departments now offer recipe-based bioin-
formatics courses without first sending their students to Algorithms 101 and Statistics
101. Some of the students who take these classes get excited about bioinformatics
and try to pursue a research career in bioinformatics. Many of them do not understand
that, with a few exceptions, such courses prepare bioinformatics technicians rather
than bioinformatics scientists.

Bioinformatics is often defined as “applications of computers in biology.” In recent
decades, biology has raised fascinating mathematical problems, and reducing bioin-
formatics to “applications of computers in biology” diminishes the rich intellectual
content of bioinformatics. Bioinformatics has become a part of modern biology and
often dictates new fashions, enables new approaches, and drives further biological
developments. Simply using bioinformatics as a toolkit without understanding the
main computational ideas is not very different than using a PCR kit without knowing
how PCR works.

Bioinformatics has affected more than just biology: it has also had a profound
impact on the computational sciences. Biology has rapidly become a large source for
new algorithmic and statistical problems, and has arguably been the target for more
algorithms than any of the other fundamental sciences. This link between computer
science and biology has important educational implications that change the way we
teach computational ideas to biologists, as well as how applied algorithms are taught
to computer scientists.

EDUCATING BIOLOGISTS IN THE 21ST CENTURY 5

Although modern biologists deal with algorithms on a daily basis, the language
they use to describe an algorithm is very different: it is closer to the language used in a
cookbook. Accordingly, some bioinformatics books are written in this familiar lingo
as an effort to make biologists feel at home with different bioinformatics concepts.
Some of such books often look like collections of somewhat involved pumpkin pie
recipes that lack logic, clarity, and algorithmic culture. Unfortunately, attempts to
present bioinformatics in the cookbook fashion are hindered by the fact that natural
languages are not suitable for communicating algorithmic ideas more complex than
the simplistic pumpkin pie recipe. We are afraid that biologists who are serious about
bioinformatics have no choice but to learn the language of algorithms.

Needless to say, presenting computational ideas to biologists (who typically
have limited computational background) is a difficult educational challenge. In fact,
the difficulty of this task is one of the reasons why some biology departments have
chosen the minimal resistance path of teaching the recipe-style bioinformatics. We
argue that the best way to address this challenge is to introduce an additional required
course Algorithms and Statistics in Biology in the undergraduate molecular biology
curriculum. We envision it as a problem-driven course with all examples and problems
being biology motivated. Computational curriculum of biologists is often limited to
a year or less of Calculus. This tradition has remained unchanged in the past 30 years
and was not affected by the recent computational revolution in biology. We are not
picking on Calculus here but simply state that today algorithms and statistics play
a somehow larger role in the everyday work of molecular biologists. Modern bioin-
formatics is a blend of algorithms and statistics (BLAST and GenScan are good
examples), and it is important that this Algorithms and Statistics in Biology course
is not reduced to Algorithms 101 or Statistics 101. And, god forbid, it should not be
reduced to stamp collection of bioinformatics tools 101 as it is often done today.

PART I

TECHNIQUES

2
DYNAMIC PROGRAMMING
ALGORITHMS FOR BIOLOGICAL
SEQUENCE AND STRUCTURE
COMPARISON

Yuzhen Ye
The Burnham Institute for Medical Research, San Diego, CA, USA

Haixu Tang
School of Informatics and Center for Genomic and Bioinformatics, Indiana University,
Bloomington, IN, USA

2.1 INTRODUCTION

When dynamic programming algorithm was first introduced by Richard Bellman
in 1953 to study multistage decision problems, he probably did not anticipate its
broad applications in current computer programming. In fact, as Bellman wrote in his
entertaining autobiography [9], he decided to use the term “dynamic programming”
as “an umbrella” for his mathematical research activities at RAND Corporation to
shield his boss, Secretary of Defense Wilson, who “had a pathological fear of the word
research.” Dynamic programming algorithm provides polynomial time solutions to a
class of optimization problems that have an optimal substructure, in which the optimal
solution of the overall problem can be deduced from the optimal solutions of many
overlapping subproblems that can be computed independently and memorized for
repeated use. Because it is one of the early algorithms introduced in bioinformatics
and it has been broadly applied since then [61], dynamic programming has become an

Bioinformatics Algorithms: Techniques and Applications, Edited by Ion I. Mǎndoiu
and Alexander Zelikovsky
Copyright © 2008 John Wiley & Sons, Inc.

9

10 DYNAMIC PROGRAMMING ALGORITHMS

A B

C

D

E

5

16

12

115

33

24

FIGURE 2.1 The dynamic programming algorithm for finding the shortest path between two
nodes (e.g., A to B) in a weighted acylic graph.

unavoidable algorithmic topic in any bioinformatics textbook. In this chapter, we will
review the classical dynamic programming algorithms used in biomolecular sequence
analysis, as well as several recently developed variant algorithms that attempt to
address specific issues in this area.

A useful example to illustrate the idea of dynamic programming is the shortest
path problem in graph theory [19], which is formalized as finding a path between two
vertices in a weighted acylic graph such that the sum of the weights of the constituent
edges is minimal. Assume that we want to find a shortest path from the source vertex
A to the target vertex B (Fig. 2.1). This problem can be divided into subproblems
of finding shortest paths from A to all adjacent vertices of A (C, D and E). More
importantly, all these subproblems can be solved without depending on each other or
vertex B, since there should be no path between A and any vertex of C–E (e.g., C) that
passes through B or any other vertex (e.g., D or E) on the acylic graph. Notably, the
“acylic” condition is vital for the correctness of this simple solution of the shortest
path problem. The vertices and edges in an acylic graph can be sorted in a partial
order according to their adjacency to the source vertex.

Similar to the shortest path problem, those dynamic programming solvable prob-
lems are often associated to the objects with a similar optimal substructure. A typical
example of such objects is strings, with naturally ordered letters. Hence, many compu-
tational problems related to strings can be solved by dynamic programming. Interest-
ingly, the primary structures of two most important biomolecules, deoxyribonucleic
acids (DNAs) and proteins, are both linear molecules, thus can be represented by plain
sequences,1 although on two different alphabets with limited size (4 nucleotides and
20 amino acids, respectively). Life is simple, in this perspective. Dynamic program-
ming became a natural choice to compare their sequences. Needleman and Wunsch
first demonstrated the use of bottom-up dynamic programming to compute an optimal
pairwise alignment between two protein sequences [50]. Although this algorithm pro-
vides a similar assessment of a pair of sequences, it assumes the similarity between two
input sequences is across the entire sequences (called a global alignment algorithm).
Smith and Waterman adapted a simple yet important modification to this algorithm
to perform local alignments, in which similar parts of input sequences were aligned
[63]. The obvious advantage of local alignments in identifying common functional

1In bioinformatics, the term sequence is used interchangeable with the term string that is often used in
computer science. From now on, we will mainly use the term sequence.

SEQUENCE ALIGNMENT: GLOBAL, LOCAL, AND BEYOND 11

domains or motifs has attracted considerable interests and led to the development of
several commonly used tools in bioinformatics nowadays, such as FASTA [54] and
BLAST [2].

A third class of biomolecules, ribonucleic acids (RNAs), which are also linear,
fold into stable secondary structures (i.e., a set of base pairs formed by two comple-
mentary bases) to perform their biological functions. So they are often represented by
sequences of four letters, similar to DNAs, but with annotated arcs, where each arc rep-
resents a base pair. Interestingly, the base pairs in native secondary structure of an RNA
usually do not form pseudoknots, that is, the arcs are not crossing. As a result, RNA
sequences with annotated arcs can also be sorted into partial ordered trees (instead
of sequences) [41]. Therefore, many bioinformatics problems related to RNAs, for
example, RNA secondary structure prediction [67,53], RNA structure comparison
[41], and RNA consensus folding [60], can be addressed by dynamic program
algorithms. Unlike RNAs, the native three-dimensional (3D) structures of proteins
are difficult to be predicted from their primary sequences and are determined
mainly by experimental methods, for example crystallography and nuclear magnetic
resonance (NMR). It has been observed that proteins sharing similar 3D structures
may have unrelated primary sequences [37]. With more and more protein structures
being solved experimentally,2 there is a need to automatically identify proteins with
similar structure but lacking obvious sequence similarity [38]. Although it is not
straightforward to represent the protein 3D structures as partially ordered sequences,
several commonly used methods for protein structure comparison are also based on
dynamic programming algorithms.

2.2 SEQUENCE ALIGNMENT: GLOBAL, LOCAL, AND BEYOND

The study of algorithms for the sequence alignment problem can be traced
back to the introduction of the measure of edit distance between two strings
by Levenshtein [45]. After 40 years of algorithm and software development, se-
quence alignment is still an active research area, and many problems remain un-
solved, especially those related to the alignment of very long genomic sequences
[8, 48]. Indeed sequence alignment represents a collection of distinct compu-
tational problems, for example, global alignment, local alignment, and multiple
alignment, even though their classical solutions all employ dynamic programming
algorithms.

2.2.1 Global Sequence Alignment

Given two strings, V = v1...vm and W = w1...wn, a pairwise global alignment is
to insert gaps (denoted by “-”) into each sequence and shift the characters accord-
ingly so that the resulting strings are of the same length l, and form a 2× l table

2Up to date, in the main protein structure repository, Protein Data Bank (http://www.rcsb.org/pdb) [68],
there are about 36,000 known protein structures.

12 DYNAMIC PROGRAMMING ALGORITHMS

(Fig. 2.2 b). Each column may consist of two aligned characters, vi and wj (1 ≤ i ≤ m,
1 ≤ j ≤ n), which is called a match (if vi = wj) or a mismatch (otherwise), or one
character and one gap, which is called an indel (insertion or deletion). A global align-
ment can be evaluated by the sum of the scores of all columns, which are defined
by a similarity matrix between any pair of characters (4 nucleotides for DNAs or
20 amino acids for proteins) for matches and mismatches, and a gap penalty function.
A simple scoring function for the global alignment of two DNA sequences rewards
each match by score +1, and penalizes each mismatch by score−μ and each indel by
score−σ. The alignment of two protein sequences usually involves more complicated
scoring schemes reflecting models of protein evolution, for example, PAM [21] and
BLOSUM [33].

It is useful to map the global alignment problem, that is, to find the global alignment
with the highest score for two given sequences, onto an alignment graph (Fig. 2.2 a).
Given two sequences V and W , the alignment graph is a directed acylic graph G on
(n+ 1)× (m+ 1) nodes, each labeled with a pair of positions (i, j) ((0 ≤ i ≤ m,
0 ≤ j ≤ n)), with three types of weighted edges: horizontal edges from (i, j) to (i+
1, j) with weight δ(v(i+ 1),−), vertical edges from (i, j) to (i, j + 1) with weight
δ(−, w(j + 1)), and diagonal edges from (i, j) to (i+ 1, j + 1) with weight δ(v(i+ 1),
w(j + 1)), where δ(vi,−) and δ(−, wj) represent the penalty score for indels, and
δ(vi, wj) represents similarity scores for match/mismatches. Any global alignment
between V and W corresponds to a path in the alignment graph from node (0, 0)
to node (m, n), and the alignment score is equal to the total weight of the path.
Therefore, the global alignment problem can be transformed into the problem of
finding the longest path between two nodes in the alignment graph, thus can be
solved by a dynamic programming algorithm. To compute the optimal alignment
score S(i, j) between two subsequences V = v1...vi and W = w1...wj , that is, the
total weight of the longest path from (0, 0) to node (i, j), one can use the following

A T TC CG

A

C

T

A

A

G

C

(0,0)

(6,7)

i

j (i,j)

(a)

ATCT
CTAAGCA

GC

(b)

FIGURE 2.2 The alignment graph for the alignment of two DNA sequences, ACCTGC and
ACTAAGC. The optimal global alignment (b) can be represented as a path in the alignment
graph from (0,0) to (6,7) (highlighted in bold).

SEQUENCE ALIGNMENT: GLOBAL, LOCAL, AND BEYOND 13

recurrence:

S(i, j) = max

⎧⎪⎨
⎪⎩

S(i− 1, j − 1)+ δ(vi, wj)

S(i− 1, j)+ δ(vi,−)

S(i, j − 1)+ δ(−, wj)
(2.1)

2.2.2 Fast Global Sequence Alignment

The rigorous global alignment algorithm described above requires both time and space
in proportional to the number of edges in the alignment graph, which is the product of
two input sequence lengths. Exact algorithms using linear space were devised later,
utilizing the divide-and-conquer strategy [35, 49]. These alignment algorithms work
well for aligning protein sequences, which are not longer than a few thousands amino
acid residues. However, the availability of the whole genomes of human and other
model organisms poses new challenges for sequence comparison. To improve the
speed of dynamic programming algorithms, heuristic strategies are required, such as
the commonly used chaining method, which was first laid out by Miller and colleagues
[15] and later adopted by many newly developed genome global alignment programs
[42, 39, 10, 22, 12, 17]. In general, the chaining method consists of three steps
(Fig. 2.3a): (1) identify the putative anchors, that is, pairs of short similar segments,
from the input sequences; (2) build an optimal chain of nonoverlapping anchors from
the whole set of putative anchors; and (3) compute the optimal global alignment within
the regions constrained by the chained anchors. Given two sequences V and W , an an-
chor is defined as two subsequences, v(i, k) = vi...vi+k−1 and w(j, l) = wj...wj+l−1,
which are similar to each other, for example, with a similarity score S(i, k; j, l) above
a threshold. Anchors can be defined in different ways, depending on the fast algorithm
used for searching them. For instances, the exact word matching (i.e., k = l) is often
used since they can be rapidly identified by the hashing technique [19]. Instead of the
words with fixed length, maximal exact matches (MEMs) that combine adjacent word
matchings are often used to reduce the total number of putative anchors. The remain-
ing anchors are, however, usually still too many to be used for constructing the global
alignment. A chaining procedure, first proposed by Wilbur and Lipman [70] and
later implemented in FASTA programs [54], is often used to select a nonoverlapping
chain of anchors with the highest total similarity score. The original Wilber–Lipman
algorithm runs in O(M2) time, where M ≤ nm is the total number of anchors. An
improved sparse dynamic programming algorithm [26] can reduce the complexity to
O(MlogM). The selected chain of anchors may be used to define a constrained region
(Fig. 2.3a) in which an optimal alignment path is constructed. This procedure runs
much faster than the regular dynamic programming applied on the entire alignment
graph [15]. An interesting extension of the chaining strategy in genome alignment is
the glocal alignment approach [13]. It extends the definition of putative anchors from
the matchings of the words in the same DNA strands to the words from opposite DNA
strands, and allowing the swapping of anchors in the chaining step. The resulting
alignment can be used to determine putative rearrangement events (Fig. 2.3b).

14 DYNAMIC PROGRAMMING ALGORITHMS

A

B

A

B

Chaining

A

B

Constrained
aligning

(a)

(b)

FIGURE 2.3 Fast global sequence alignment. (a) The chaining strategy is often adopted for
fast aligning two long genomic sequences, which identifies a set of word matching anchors be-
tween two sequences, and then selects a nonoverlapping chain of anchors (highlighted in bold).
The selected anchors can then be used to define a small constrained region in the alignment
graph in which the optimal global alignment is computed. (b) Global alignment generalizes
the chaining procedure to handle rearrangements between two input genomes, for example,
translocations (left) and inversions (right).

Several heuristic methods further speed up the global alignment algorithm, most
of which aim at identifying high quality anchors. Maximal unique matches (MUMs)
are a special set of word matchings in which two words are unique in each input
sequence. Selecting an optimal chain of MUMs can be done in O(MlogM) time by
using an extension of the longest increasing subsequence algorithm [22]. The other
methods for filtering anchors include eliminating isolated anchors that are not close
to another anchor within certain distance [23] or examining the word similarity after
ungapped extension of the exact matchings [17]. Instead of exact word matching,
matching of nonconsecutive positions (patterns) can also be used to define anchors
with good quality [46].

2.2.3 Local Sequence Alignment

When comparing two biological sequences, their similarity is often not present over
the whole sequences. Given two sequences V and W , the local sequence alignment
problem aims at finding two subsequences of V and W , respectively, with the highest

SEQUENCE ALIGNMENT: GLOBAL, LOCAL, AND BEYOND 15

alignment score. This problem is equivalent to finding the longest path between two
arbitrary nodes in the alignment graph. The Smith–Waterman algorithm for local
alignment problem adopts a slight different dynamic programming recurrence from
the global alignment algorithm,

S(i, j) = max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0

S(i− 1, j − 1)+ δ(vi, wj)

S(i− 1, j)+ δ(vi,−)

S(i, j − 1)+ δ(−, wj)

(2.2)

and the largest score S(i, j) defines the optimal local alignment score, rather than
S(m, n) for global alignment [63].

Similar to the global alignment, the rigorous local alignment algorithm runs in
quadratic time and needs to be speeded up by heuristic methods in some practices.
Various anchoring techniques, as described above, are commonly applied to speed up
the local alignment as well. The most successful method, BLAST [2, 3], which filters
exact word matchings with ungapped extension, has revolutionized the bioinformatics
applications in molecular biology.

2.2.4 Multiple Sequence Alignment

The multiple sequence alignment problem is a natural extension of the pairwise (global
and local) alignment algorithms. However, the exact algorithms for this problem
are not feasible when the number of sequences to align is large [66]. So heuristic
methods for suboptimal multiple alignments are seeked. The most commonly used
strategy for multiple alignment is the progressive alignment strategy [27], which can
lead to a performance guaranteed approximation [32]. Several recently developed
programs for multiple genome alignment follow the same approach [12, 11]. On
the contrary, some programs for multiple protein alignment [23, 51] are designed
based on the strategy of searching for the multiple alignment most consist with the
pairwise alignments between all pairs of sequences. Depending on the choice of the
target function measuring the consistency, dynamic programming [64] or probabilistic
algorithms [23] can be used to solve this optimization problem.

2.2.5 Variants of Sequence Alignment Algorithm: Beyond Linear Sequences

As protein sequences are linear sequences of 20 amino acids and DNAs are linear se-
quences of 4 nucleotides, classical sequence alignment algorithms use single residues
as the basic comparison unit, and position-wise scoring functions (e.g., PAM250 for
amino acids) as their similarity measures. As a result, protein/nucleic acid sequence
alignment can be solved by dynamic programming that assumes the independence
between positions. However, in reality, dependences between residue positions are
often observed. For example, a segment of residues in a protein together determines
the local structure they form, such as a helix, a strand, or a loop. And the local and

16 DYNAMIC PROGRAMMING ALGORITHMS

global interactions among residues determine the global structure of a protein. By
considering the independence of residues, we will be able to generate alignments that
are of better quality, and conduct similarity searching with higher sensitivity. Variants
of sequence alignment algorithms were developed to account for independence of
residues and address different issues. One pioneer work along this direction is the
spliced sequence alignment algorithm, which attempts to address eukaryotic gene
recognition by assembling different putative exons (i.e, exons are independent units).
More recent developments include segment alignment in which local structure
segments are used as basic units for protein comparison, partial order alignment that
emphasizes not only commonality but also dissimilarity of protein sequences, and
RNA alignment that uses the information of secondary structures of RNA. Figure
2.4 shows the commonality and differences of these different algorithms.

2.2.5.1 Spliced Alignment Eukaryotic genes are mosaic structures of exons and
introns. Hence, it is a challenge to derive gene structures (i.e., the boundaries of exons
and introns) from genomic sequences. One approach that has been developed to pre-
dict gene structures is spliced sequence alignment [30]. This method essentially uses
related proteins to derive the correct exon–intron structure of a genomic sequence. It
starts with the identification of candidate blocks in a given genomic sequences that
contains all putative (true or false) exons by selecting all blocks between potential
splicing acceptor and donor sites (i.e., between AG and GU dinucleotides). Then, in-
stead of finding the actual exons, the spliced sequence alignment algorithm explores all
possible assemblies of blocks to find an assembly with the highest similarity score to a
known target protein. This problem is formulated as finding the best path in a weighted
graph, in which vertices represent the candidate blocks, edges represent the potential
junctions between these blocks, and the path weight is defined as the weight of the
optimal alignment between the target protein sequence and the concatenated blocks in
the path (see Fig. 2.4a). Using this formulation, the gene recognition (i.e, exon assem-
bly problem) can be solved by a dynamic programming process in polynominal time.

Briefly, the inputs for the original spliced alignment algorithm are a genomic
sequence of length n (G = g1...gn), and a target protein sequence of length m (T =
t1..tm). Let B = {B1, ...Bb} be a set of candidate blocks (exons), Bk = gf ..gi..gl

be a block including position i (first (k) = f , last (k) = l, f ≤ i ≤ l). B1 < B2 if
B1 ends before B2 starts (last (B1) <first (B2)). A sequence � = (B1, .., Bp) is a
chain if B1 < B2.. < Bp, and the concatenation of strings from the chain � by �∗ =
B1 ∗ B2... ∗ Bp. Given two strings G and T , s(G, T) denotes the score of the optimal
alignment between G and T, which can be found as

max
k

S(last (k), m, k) (2.3)

where

S(i, j, k) = max
all chains � containing block Bk

s(�∗(i), T (j)) (2.4)

SEQUENCE ALIGNMENT: GLOBAL, LOCAL, AND BEYOND 17

FIGURE 2.4 Various algorithms adopt the similar network matching approach, including
the spliced alignment for gene recognition (a), the segment alignment for pairwise protein
sequence alignment (b), and partial order alignment for multiple protein sequence alignments
(c). In the network matching method, the optimal chain (or path) of the candidates (exons in
spliced alignment, local structure segments in segment alignment, and alignment blocks in
partial order alignment, respectively) is seeked in a predefined directed acylic graph (network).

The three-dimensional table S(i, j, k) (1 ≤ i ≤ n, 1 ≤ j ≤ m, and1 ≤ k ≤ b) can
be computed recursively by dynamic programming as

S(i, j, k) = max

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

S(i− 1, j − 1, k)+�gi,tj if i �= first(k)

S(i− 1, j, k)+�indel if i �= first(k)

maxl∈B(first(k)) S(last(l), j − 1, l)+�gi,tj if i = first(k)

maxl∈B(first(k)) S(last(l), j, l)+�indel if i = first(k)

S(i, j − 1, k)+	indel

(2.5)

where �indel is the gap penalty, �gi,tj is the mismatch score, and B(i) =
{k : last(k) < i} is the set of blocks ending before position i in G.

18 DYNAMIC PROGRAMMING ALGORITHMS

This algorithm can be extended to the alignment of two genomic sequences for
gene recognition by finding two chains of blocks of candidate exons, each from one
genomic sequence, with the highest pairwise similarity [52].

2.2.5.2 Segmental Alignment The similar idea as spliced alignment is adopted
in the segment alignment (SEA) approach for pairwise protein sequence alignment
incorporating local structure information [74]. It is known that secondary or local
structure information can help to improve the quality of protein sequence alignment,
especially in the cases of comparing distantly homologous or analogous proteins, and
to enhance the capability of recognizing of distant homologs. In a secondary structure
alignment (SSA) approach, proteins are represented as strings of Q3 symbols (a for
α-helix, b for β-strand, and c for coil) of predicted secondary structure [4, 71]. The
SSA algorithm is based on an alignment of two sequences of secondary structure sym-
bols, which is mathematically equivalent to the comparison of amino acid sequences
and can be solved by regular pairwise sequence alignment algorithm. However, in
such approaches, the currently unavoidable mistakes in secondary structure predic-
tion will be propagated into the step of protein comparison and make it even more
difficult. Segment alignment algorithm was developed to address this problem by in-
corporating potential local structure segments and then finding the optimal collection
of nonoverlapping segments by matching two networks of local structure segments,
deduced from two given proteins.

As the name says, the comparisons in the segment alignment algorithm are not done
on individual amino acids, but on predicted (or real) structure segments corresponding
to minimal structural units that are often reproduced in various, even nonhomologous
proteins ((see Fig. 2.4 b). Given a protein sequence, its local structure segments can
be predicted by different local structure prediction methods, for example, the one
based on the I-site library of sequence–structure motifs [14], or the one based on
profile–profile alignment [55]. All these approaches identify locally similar segments
of several consecutive residues from a database of known structures. Once the local
structures are predicted for a protein sequence, the protein is then represented as a
collection of predicted overlapping local structure segments (LSSs). Afterwards, the
task of SEA is to find a chain of LSSs from each protein (represented as a network)
optimally matching each other. Similar to the spliced sequence alignment, the segment
alignment problem is formulated as a network alignment problem and can be solved
by dynamic programming in polynomial time. In SEA, the LSS representation of
protein complements the uncertainties of the local structures, caused by either the
variance of the structural context or the drawbacks of the prediction methods, by
exploiting all potential local structures to make the best use of this information in
protein comparison; and SEA not only reports the alignment of two proteins, but also
simultaneously confirmed the local structure of each protein based on the collection
of matched LSSs.

2.2.5.3 Partial Order Alignment As compared with the conventional reduced
representation of multiple sequence alignments as a linear consensus or profile in
row-and-column format, Lee and colleagues first proposed a graph representation of

DYNAMIC PROGRAMMING ALGORITHMFOR RNA SEQUENCE ANALYSIS 19

multiple sequence alignment (MSA) (see Fig. 2.4 c) to avoid the loss of (individual)
sequence information and gap scoring artifacts [44]. And such graphs themselves can
be aligned directly by pairwise dynamic programming, eliminating the need to reduce
the MSA to a consensus (profile). In constructing partial order-MSA (PO-MSA), the
amino acids that are matched in the alignment are merged into a single node, and the
mismatched positions are kept as separate nodes. In short, the PO-MSA is a com-
pact graph representation of MSA with minimum number of nodes and edges, while
it keeps all the information of a typical MSA in row-and-column format. The term
“partial order” was used because in PO-MSA, the graph obeyed only the linear or-
dering in the regions of nodes with single outgoing edges. Based on this PO-MSA
representation, Lee et al. developed partial order alignment (POA) method, which
guarantees that the optimal alignment of each new sequence versus each sequence in
the MSA is considered. Also the algorithm has improved speed (linear to the number
of sequences) over existing MSA algorithms, enabling construction of massive and
complex alignments.

The development of POA is also significant in a way that this algorithm introduces
a new edit operator, homologous recombination, into the framework of sequence
alignment (it happens naturally in aligning two graphs; e.g., part of a sequence S1 is
aligned to sequence S2 and then the next part of S1 can be aligned to sequence S3
instead of S2 as long as the order of the amino acid positions is obeyed). So when it
is applied to align protein sequences, it may reveal the multidomain structure of the
input sequences if there is any. It can also be applied to align ESTs to detect alternative
mRNA forms.

2.3 DYNAMIC PROGRAMMING ALGORITHM
FOR RNA SEQUENCE ANALYSIS

RNAs usually function as single strand molecules. The nucleotides of a single RNA
secondary molecule can pair with each other (through hydrogen bonds) and form
a stable secondary structure (Fig. 2.5). The stable secondary structure of an RNA

ACUGGCC
C A UG A G

GGCCCG
G C U A G

GGC ACCUC
C G G

G

U
AA

A
A

CCG UGGA
A| | | | | | |

U
TGGCCGG

U

G
A

A

A

C
G
U

G
C
A

-
-

-

G CUGGGC
UA A

| | | | | || | | | | | |

Multiloop Internal
loop

Hairpin
loop

Bulge

FIGURE 2.5 A schematic illustration of an RNA secondary structure and its loop
components.

20 DYNAMIC PROGRAMMING ALGORITHMS

molecule is often assumed to be the one with the lowest free energy, and the compu-
tational problem of finding this stable structure from a given RNA sequence is called
the problem of RNA secondary structure prediction. RNA secondary structures can
be represented by a set of arcs (base pairs) in an RNA sequence. In real RNA struc-
ture, these base pairs rarely cross each other and form pseudoknots. Hence, for the
algorithmic simplicity, the secondary structures with only noncrossing (also called
nested) arcs are considered.

Since the base pairs are important to stabilize the structure of an RNA, it is often
observed that in homologous RNA sequences, two paired bases may both mutate
into other bases but maintaining the base pair (referred to as the compensating muta-
tions, e. g., a G–C pair may mutate to a A–T pair). Therefore, when comparing two
RNA sequences, it is important to take into consideration their secondary structures.
Dynamic programming solutions are known to the problem of comparing two RNA
sequences with annotated noncrossing arcs (base pairs).

2.3.1 RNA Secondary Structure Prediction

The simplest yet popular formulation of RNA secondary structure prediction is to
determine the noncrossing structure with the maximum number of base–pairs [67,53].
Consider a given RNA sequence R = r1...rn. The maximum number of nested base
pairs that can be formed by the subsequence ri...rj , denoted as S(i, j), can be computed
recursively:

S(i, j) = max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S(i+ 1, j − 1)+ 1 if i is paired with j

S(i+ 1, j) if i is unpaired

S(i, j − 1) if j is unpaired

maxi<k<j(S(i, k)+ S(k + 1, j) if i, j pair with middle bases

(2.6)

This recursion can run efficiently in O(n3) time, with initiation of S(i, i) =
S(i, i− 1) = 0. With a sophisticated data structure, it is recently shown that the al-
gorithm can speed up to nearly quadratic time for average RNA sequences [69]. In
practice, more complex scoring schemes than the simple base pair maximization are
adopted. These schemes are based on the thermodynamic model that computes the
overall free energy of RNA folding by a sum of energy components for different RNA
secondary elements (i.e., stacks and loops). Generalized dynamic programming al-
gorithms have been developed accordingly to optimize these complex target-scoring
functions. Nonetheless, the general idea of the algorithm remains the same [47].

The dynamic programming algorithm described above cannot handle pseudoknots,
because crossing base pairs are not considered in any of the four conditions in the
recursion equation 2.6. Complex dynamic programming algorithms are needed for
RNA secondary structure prediction that allows certain type of pseudoknots [57, 1].
But their running time is O(n6), thus inefficient to be used in practice. To search for
pseudoknotted RNA structure, efficient heuristic approaches have to be used [56].

DYNAMIC PROGRAMMING ALGORITHMFOR RNA SEQUENCE ANALYSIS 21

Even the exact algorithms for the RNA secondary structure prediction some-
times make wrong predictions for two reasons. First, the thermodynamic model
used for the prediction may be incomplete. For example, the dependence between
the secondary structure elements is neglected but may be strong in specific cases.
Second, some RNA sequences may have more than one stable structure, and their
functional structures are determined by not only their sequences, but also the envi-
ronment (e.g., their interactions with other RNA molecules [34]). Two approaches
have been proposed to overcome these limitations. One approach is to predict all
suboptimal structures, that is, those with low free energy, but not the lowest free
energy. This approach was first proposed by Zuker [75] and was implemented in
MFOLD, which can report a collection of possible but not all suboptimal structures
[76]. An efficient dynamic programming algorithm to compute k suboptimal struc-
tures has been proposed recently, running in time O(n4) [18]. The other approach
attempts to use evolutionary conservation of structures among homologous RNA
sequences as the basis for structure prediction. If the similarity between these se-
quences are appropriate, one can first align them using a multiple sequence align-
ment algorithm and then deduce their common structure by seeking the highest
possible number of compensating mutations. A similar dynamic programming al-
gorithm as in equation 2.6 can be used for the second step, in which the columns
in the multiple alignment are treated as the bases in the single sequences, and in
the scoring function the number of base pairs is replaced by a measure of com-
pensating mutations between two columns (e.g., the mutual information content)
[16,36].

Multiple homologous RNA sequences are useful for deducing their common
secondary structures. However, aligning multiple RNA sequences so as to preserve
their conserved structures is not easy, because there may exist many compensating
mutations that decrease their overall sequence similarity. Sankoff first proposed
an approach to simultaneously aligning RNA sequences and figuring out their
common structures [60]. However, the complexity of this dynamic programming
algorithm is O(n6), where n is the length of RNA sequences. The complexity can be
reduced to O(n4), but only for RNA structures without multiloop (Fig. 2.3) [42]. A
recent developed method attempted to solve the same problem based on a dynamic
programming algorithm that finds the structurally conserved anchors first [6]. This
algorithm considers the RNA secondary structures as a collection of stacks (instead
of individual base pairs), thus reduces the computational complexity to O(k4), where
k is the number of predicted putative stacks.

2.3.2 Alignment of RNA Sequences with Known Secondary Structures

Since the secondary structures are preserved among RNA sequences with similar
function, it is important to incorporate them when comparing RNA sequences. The
RNA secondary structure can be represented as a collection of arcs (base pairs), and
based on the knowledge of their configurations, they fall into three classes: crossing
(i.e., structure known with pseudoknots), nested (i.e., structure known without pseu-
doknots), and plain (i.e., structure unknown) [41]. As result, there are six different

22 DYNAMIC PROGRAMMING ALGORITHMS

computational problems that can be formulated for a pairwise comparison of RNA
sequences:

� Align(crossing, crossing), for aligning two RNA sequences both with pseudo-
knotted structures;

� Align(crossing, nested), for aligning one RNA sequence with pseudoknotted
structures and another RNA sequence without pseudoknotted structure;

� Align(crossing, plain), for aligning one RNA sequence with pseudoknotted
structures and another RNA sequence without known structure;

� Align(nested, nested), for aligning two RNA sequences both without pseudo-
knotted structures;

� Align(nested, plain), for aligning one RNA sequence with known nonpseudo-
knotted structures and another RNA sequence without known structure;

� Align(plain, plain), for aligning two RNA sequences without known structures.

Note that the last problem Align(plain,plain) is the same as the pairwise sequence
alignment problem. The problems Align(nested, nested) and Align(nested, plain)
can be solved by exact dynamic programming algorithms [20, 5], whereas the other
problems related to pseudoknotted structures can be solved efficiently only when
specific types of pseudoknots are considered [43, 24].

2.4 DYNAMIC PROGRAMMING ALGORITHMS FOR PROTEIN
STRUCTURE COMPARISON

Proteins fold into three-dimensional structures, and protein structures are more
conserved than protein sequences. So given a protein structure (solved by X ray or
NMR techniques), it is of great interests to search for geometrically similar proteins
through protein structure comparsion, especially for the cases where the similarity
at sequence level is too low to be detected by any sequence-based similarity search
program. Generally speaking, protein structure comparison (alignment) is to find the
largest structural similarity between two structures (e.g, Fig. 2.6a). It is more difficult
than protein sequence comparison, because very often the structural similarity is a
global measurement (for examples, RMSD, the root mean squared distance of the
Cα atoms over all aligned positions) that often cannot be calculated as the sum of
pairwise similarity by a dynamic programming procedure. So, for protein structure
comparison, either we can use the global measurement of structural similarity and
then apply some heuristics methods to find the best structural similarity, or we can
carefully design a scoring function that reflects the global structural similarity to
a large extent and then apply a dynamic programming algorithm to find alignment
with the highest score. Quite a few successful programs belonging to the first type
have been developed, but here we focus on the second type of approaches, in which
dynamic programming algorithms can be applied to find the solution.

DYNAMIC PROGRAMMING ALGORITHMS FOR PROTEIN STRUCTURE COMPARISON 23

FIGURE 2.6 Structure alignment. (a) An example of structure alignment; (b) Definition of
aligned fragment pair (AFP); (c) Pairwise structure alignment by chaining aligned fragment
pairs; (d) Multiple structure alignment by partial order alignment.

2.4.1 Structure-Based Sequence Alignment

A simple strategy for protein structure comparison is to represent a protein structure as
a sequence of characters (1D representation) that describe the structural environment
of a residue in a protein (called 3D environment). Then protein structure comparison
can be essentially transformed as a general sequence alignment problem, and conven-
tional dynamic programming algorithms for sequence alignment can be used directly
for solving these problems, just with different sets of characters and with a different
scoring function. This type of structure alignment could be as fast as sequence align-
ment. Though they may not be as accurate as those methods that consider real 3D
structural information, but at least can serve as a quick filter to speed up the struc-
tural similarity search, which is often much more time consuming. Main development
along this direction includes to find a better 1D representation of 3D structures so that
spatial information can be retained as much as possible.

2.4.2 Comparison of Distance Matrix: Double Dynamic Programming

Double dynamic programming algorithm was one of the early programs for structure
comparison [65]. It was named because dynamic programming procedure is applied
at two different levels: at a low level to get the best score (describing the similarity

24 DYNAMIC PROGRAMMING ALGORITHMS

of spatial environment of residues i and j, measured by a simple distance or more
complex function) by assuming residues i in protein A is equivalent to residue j in
protein B; and at a high level to get the best alignment out of all the possible (i, j)
pairs between protein A and B. Essentially, the low level dynamic programming pro-
cedure is to prepare the positional pairwise scoring matrix for the high level dynamic
programming.

2.4.3 Segment Chaining Algorithm for Protein Structure Alignment

Given two protein structures, denote a match of two fragments, one from each protein
as an aligned fragment pair (AFP), the starting positions of an AFP k in the two
proteins as b1(k) and b2(k), and its ending positions in the two proteins as e1(k) and
e2(k), respectively. Each AFP describes one way of superimposing one protein on the
other (see Fig. 2.6 b). We call two consecutive AFPs compatible if they result in the
same (or very similar) superposition of the proteins.

Two programs, FlexProt [62] and FATCAT [72], use the formulation of structure
alignment as finding a chain of AFP (consequently the alignment is order depen-
dent, see Fig.2.6c), and adopt dynamic programming algorithm to find the optimal.
Both programs allow the structural flexibility (e.g, hinge movement) in structure com-
parison. FlexProt first searches for the largest set of congruent AFPs in a graph, in
which AFPs are represented as vertices and edges and are connected between con-
secutive vertices with weight that rewards long matching fragments while penalizes
interfragment gaps and discrepancies in the relative number of gaps in both proteins.
FlexProt then looks for a subset of the AFPs that describes a possible alignment of
two structures with flexibility by clustering consecutive AFPs that have a similar 3D
transformation. In contrast, FATCAT searches for the best chain of AFPs considering
the gaps and twists (structural changes) between consecutive AFPs, each with its own
score penalty (equation 2.7); therefore, the minimization algorithm compares on-the-
fly solutions involving twists and simple extensions and in this way it performs the
alignment and structural flexibility detection simultaneously. A dynamic program-
ming algorithm is used in the chaining process. Denote S(k) as the best score ending
at AFP k, calculated as the following

S(k) = a(k)+ max
e1(m)<b1(k) and e2(m)<b2(k)

(S(m)+ C(m→ k), 0) (2.7)

where S(k) is the score of AFP k itself (determined by its RMSD and length).
C(m→ k) is the score of introducing a connection between AFP m and AFP k

(determined by the similarity of their 3D transformations, the mismatched regions,
and the gaps created by the connection of these two AFPs).

2.4.4 Partial Order Structural Alignment

Partial order structural alignment [73] is the first algorithm that can perform and vi-
sualize multiple alignments of protein structures, simultaneously accounting for their
conformational flexibility. It combines the partial order alignment representation and

REFERENCES 25

the flexible structure alignment FATCAT. Similar to the partial order sequence align-
ment, POSA identifies structural regions that are conserved only in a subset of input
structures and allows internal rearrangements in protein structures. POSA shows its
advantages in cases in which structural flexibilities exist and provides new insights by
visualizing the mosaic nature of multiple structural alignments. POSA adopts a pro-
gressive strategy to build a multiple structure alignment given a set of input structures
in the order provided by a guide tree. So each step involves a pairwise alignment of
two partial order alignments (or single structures), using the same formulation of AFP
chaining for structure alignment as described above, but in a high dimensional space
(see Fig. 2.6d).

2.5 SUMMARY

As one of the most commonly used algorithms in bioinformatics, dynamic
programming has been applied to many research topics. Its recent applications have
shifted from the classical topics as the comparison of linear sequences to the analysis
of nonlinear representations of biomolecules. It should be stressed that although
dynamic programming is guaranteed to report an optimal solution, this solution may
not be biologically the meaningful one. The biological solution depends not only
on the algorithm, but also on how correctly the formulation of the computational
problem reflects the reality of the biological systems.

REFERENCES

1. Akutsu T. Dynamic programming algorithm for RNA secondary structure prediction with
pseudoknots. Disc Appl Math 2000;104:45.

2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool.
J Mol Biol 1990;215:3.

3. Altschul SF, Madden TL, Schoffer AA, et al., Gapped BLAST and PSI BLAST: a new
generation of protein database search programs. Nucleic Acids Res 1997;25:3389.

4. Aurora R, Rose GD. Seeking an ancient enzyme in Methanococcus jannaschii using ORF,
a program based on predicted secondary structure comparisons. Proc Natl Acad Sci USA
1998;95:2818.

5. Bafna V, Muthukrishnan S, Ravi R. Computing similarity between RNA strings. Proceed-
ing of the 6th Annual Symposium on Combinatorial Pattern Matching (CPM’95); LNCS
937 1995.p1.

6. Bafna V, Tang H, Zhang S. Consensus folding of unaligned RNA sequences revisited. J
Comp Biol 2006;13:2.

7. Baker D, Sali A. Protein structure prediction and structural genomics. Science
2001;294:93.

8. Batzoglou S. The many faces of sequence alignment. Brief Bioinfo 2005;6:6.

9. Bellman R. Eye of the Hurrican. Singapore: World Scientific Publishing Company; 1984.

10. Bray N, Dubchak I, Pachter L. AVID: a global alignment program. Genome Res
2003;13:97.

26 DYNAMIC PROGRAMMING ALGORITHMS

11. Bray N, Pachter L. L. MAVID: constrained ancestral alignment of multiple sequences.
Genome Res 2004;13:693.

12. Brudno M, Do CB, Cooper GM, Kim MF, Davydov E. NISC Comparative Sequencing
Program, Green ED, Sidow A, Batzoglou S. LAGAN and Multi-LAGAN: efficient tools
for large-scale multiple alignment of genomic DNA. Genome Res 2003;13:721–731.

13. Brudno M, Malde S, Poliakov A, Do CB, Couronne O, Dubchak I, Batzoglou S. Glocal
alignment: finding rearrangements during alignment. Bioinformatics 2003;19:i54.

14. Bystroff C, Baker D. Prediction of local structure in proteins using a library of sequence-
structure motifs. J Mol Biol 1998;281:565.

15. Chao KM, Hardison RC, Miller W. Constrained sequence alignment. Bull Math Biol
1993;55:503.

16. Chiu DK, Kolodziejczak T. Inferring consensus structure from nucleic acid sequences.
Comput Appl Biosci 1991;7:347.

17. Choi j, Cho H, Kim S. GAME: a simple and efficient whole genome alignment method
using maximal exact match filtering. Comp Biol Chem 2005;29:244.

18. Clote P. An efficient algorithm to compute the landscape of locally optimal RNA sec-
ondary structures with respect to the NussinovâŁ“Jacobson energy model. J Comp Biol
2005;12:83.

19. Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to Algorithms. 2nd ed.
Cambridge, MA: MIT Press; 2001.

20. Corpet F, Michot B. RNAlign program: alignment of RNA sequences using both primary
and secondary structures. Comput Appl Biosci 1994;10:389.

21. Dayhoff MA, Schwartz RM, Orcutt BC. A model of evolutionary change in proteins.
Atlas of Protein Sequence and Structure. Chapter 5, 1978. p345.

22. Delcher AL, Kasif S, Fleischman RD, Peterson J, White O, Salzberg SL. Alignment of
whole genomes. Nucleic Acid Res 1999;27(11):2369–2376.

23. Do CB, Brudno M, Batzoglou S. ProbCons: probabilistic consistencybased multiple align-
ment of amino acid sequences. Genome Res 2005;15:330.

24. Dost B, Han B, Zhang S, Bafna V. Structural alignment of pseudoknotted RNA. 10th
Annual International Conference of Research in Computational Molecular Biology
(RECOMB’06); LNCS 3909; 2006.p143.

25. Eddy SR. How do RNA folding algorithms work?. Nat Biotechnol 2004;22:1457.

26. Eppstein D, Galil Z, Giancarlo R, Italiano GF. Sparse dynamic programming I: linear cost
functions. J. ACM 1992;39:519.

27. Feng D, Doolittle R. Progressive sequence alignment as a prerequisite to correct phylo-
genetic trees. J Mol Evol 1987;25:351.

28. Fischer D, Eisenberg D. Protein fold recognition using sequence-derived predictions.
Protein Sci 1996;5:947.

29. Friedberg I, Harder T, Kolodny R, Sitbon E, Li Z, Godzik A. Using an alignment of
fragment strings for comparing protein structures. Bioinformatics 2007;23(2):e219-e224.

30. Gelfand MS, Mironov AA, Pevzner PA. Gene recognition via spliced sequence alignment.
Proc Natl Acad Sci USA 1996;93:9061.

31. Gorodkin J, Heyer LJ, Stormo GD. Finding the most significant common stem-loop motifs
in unaligned RNA sequences. Nucleic Acids Res 1997;25:3724.

REFERENCES 27

32. Gusfield D. Efficient methods for multiple sequence alignment with guaranteed error
bounds. Bull Math Biol 1993;55:141.

33. Henikoff S, Henikoff JG. Amino acid substitution matrices from protein blocks. Proc
Natl Acad Sci USA 1992;89:10915.

34. Herschlag D. RNA chaperones and the RNA folding problem. J Biol Chem
1995;270:20781.

35. Hirschberg DS. A linear space algorithm for computing maximal common subsequences.
Commun ACM 1975;18:341.

36. Hofacker IL, Fekete M, Stadler PF. Secondary structure prediction for aligned RNA
sequences. J Mol Biol 2002;319:1059.

37. Holm L, Sander C. Globin fold in a bacterial toxin. Nature 1993;361.

38. Holm L, Sander C. Searching protein structure databases has come of age. Proteins
1994;19:165.

39. Jareborg N, Birney NE, Durbin R. Comparative analysis of non-coding regions of 77
orthologous mouse and human gene pairs. Genome Res1999;10:950.

40. Jennings AJ, Edge CM, Sternberg MJ. An approach to improving multiple alignments of
protein sequences using predicted secondary structure. Protein Eng 2001;14:227.

41. Jiang T, Lin G, Ma B, Zhang K. A general edit distance between RNA structures. J Comput
Biol 2002;9:371.

42. Kent WJ, Zahler AM. Conservation, regulation, synteny and introns in a large-scale
C. Bbriggsae-C. elegans genomic alignment. Genome Res 2000;10:1115.

43. Klein R, Eddy S. Rsearch: finding homologs of single structured RNA sequences. BMC
Bioinfor 2003;4:44.

44. Lee C, Grasso C, Sharlow MF. Multiple sequence alignment using partial order graphs.
Bioinformatics 2002;18:452.

45. Levenshtein VI. Binary codes capable of correcting deletions, insertions, and reversals.
Cybernetics Control Theory 1966;10:707.

46. Ma B, Tromp J, Li M. PatternHunter: faster and more sensitive homology search. Bioin-
formatics 2002;18:440.

47. Mathews DH. Revolutions in RNA secondary structure prediction. J Mol Biol
2006;359:526.

48. Miller W. Comparison of genomic sequences: solved and unsolved problems. Bioinfor-
matics 2000;17:391.

49. Myers EW, Miller W. Optimal alignments in linear space. Comput Appl Biosci 1988;4:11.

50. Needleman SB, Wunsch CD. A general method applicable to the search for similarity in
the amino acid sequence of two proteins. J Mol Biol. 1970;48:443.

51. Notredame C, Higgins DG, Heringa J. T-Coffee: a novel method for fast and accurate
multiple sequence alignment. J Mol Biol 2000;302:205.

52. Novichkov PS, Gelfand MS, Mironov AA. Gene recognition in eukaryotic DNA by com-
parison of genomic sequences. Bioinformatics 2001:17:1011.

53. Nussinov R, Jacobson AB, A.B. Fast algorithm for predicting the secondary structure of
single-stranded RNA. Proc Natl Acad Sci USA 1990;77:6309.

54. Pearson WR, Lipman DJ. Improved tools for biological sequence comparison. Proc Natl
Acad Sci USA 1988;85:8.

28 DYNAMIC PROGRAMMING ALGORITHMS

55. Plewczynski D, Rychlewski L, Ye Y, Jaroszewski L, Godzik A. Integrated web service for
improving alignment quality based on segments comparison. BMC Bioinfor 2004;5:98.

56. Reeder J, Hochsmann M, Rehmsmeier M, Voss B, Giegerich R. Beyond Mfold: recent
advances in RNA bioinformatics. J Biotechnol 2006;124:41.

57. Rivas E, Eddy SR. A dynamic programming algorithm for RNA structure prediction
including pseudoknots. J Mol Biol 1999;285:2053.

58. Rychlewski L, Godzik A. Secondary structure prediction using segment similarity. Protein
Eng 1997;10:1143.

59. Rychlewski L, Jaroszewski L, Li W, Godzik A. Comparison of sequence profiles. Strate-
gies for structural predictions using sequence information. Protein Sci 2000;9:232.

60. Sankoff D. Simultaneous solution of the RNA folding, alignment and protosequence
problems. SIAM J Appl Math 1985;45:810.

61. Sankoff D. The early introduction of dynamic programming into computational biology.
Bioinformatics 2000;16:41.

62. Shatsky M, Nussinov R, Wolfson HJ. Flexible protein alignment and hinge detection.
Proteins 2002;48:242.

63. Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol
1980;147:195.

64. Sze SH, Lu Y, Yang Q. A polynomial time solvable formulation of multiple sequence
alignment. J Comp Biol 2006;13:309.

65. Taylor WR, Orengo CA. Protein structure alignment. J Mol Biol 1989;208:1.

66. Wang L. Jiang T. On the complexity of multiple sequence alignment. J Comput Biol
1994;1:337.

67. Waterman MS, Secondary structure of single stranded nucleic acids. Adv Math Suppl
Stud 1978;I:167.

68. Westbrook J, Feng Z, Jain S, Bhat TN, Thanki N, Ravichandran V, Gilliland GL, Bluhm
W, Weissig H, Greer DS, Bourne PE, Berman HM. The Protein Data Bank: unifying the
archive. Nucleic Acids Res 2002;30:245.

69. Wexler Y, Zilberstein CB, M. Ziv-Ukelson: A Study of accessible motifs and RNA fold-
ing complexity. 10th Annual International Conference of Research in Computational
Molecular Biology (RECOMB’06); LNCS 3909 2006.p473.

70. Wilbur WJ, Lipman DJ. Rapid similarity searches of nucleic acid and protein data banks.
Proc Natl Acad Sci USA 1983;80:726.

71. Xu H, Aurora R, Rose GD, White RH. Identifying two ancient enzymes in archaea using
predicted secondary structure alignment. Nat Struct Biol 1999;6:750.

72. Ye Y, Godzik A. Flexible structure alignment by chaining aligned fragment pairs allowing
twists. Bioinformatics 2003;19:ii246.

73. Ye Y, GodzikA. Multiple flexible structure alignment using partial order graphs. Bioin-
formatics 2005;21:2362.

74. Ye Y, Jaroszewski L, Li W, Godzik A. A segment alignment approach to protein compar-
ison. Bioinformatics 2003;19:742.

75. Zuker M. On finding all suboptimal foldings of a RNA molecule. Science 1989;244:48.

76. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic
Acids Res 2003;31:3406.

3
GRAPH THEORETICAL APPROACHES
TO DELINEATE DYNAMICS OF
BIOLOGICAL PROCESSES

Teresa M. Przytycka
National Center for Biotechnology Information, National Library of Medicine, National
Institutes of Health, Bethesda, MD, USA

Elena Zotenko
National Center for Biotechnology Information, National Library of Medicine, National
Institutes of Health, Bethesda, MD, USA, and Department of Computer Science, University of
Maryland, College Park, MD, USA

3.1 INTRODUCTION

Graphs are used in Computational Biology to model the relationships between
biological entities. For example, experimentally determined protein interactions
are commonly represented by a graph, the so-called protein interaction network,
where proteins are nodes and every pair of interacting proteins is connected by
an edge. Even though such a representation may not capture all the complexity of
protein interactions in underlying biological processes, the study of the topological
properties of these networks has become an important tool in searching for general
principles that govern the organization of molecular networks. For example, it was
observed that in protein interaction networks some types of small-size subnetworks
are much more abundant than would be expected by chance [54]. The discovery of
these overrepresented subnetworks or network motifs has led to investigation of their

Bioinformatics Algorithms: Techniques and Applications, Edited by Ion I. Mǎndoiu
and Alexander Zelikovsky
Copyright © 2008 John Wiley & Sons, Inc.

29

30 GRAPH THEORETICAL APPROACHES

FIGURE 3.1 Elena’s story. (a) The order in which Elena’s friends, Merrick, Nilani, Dami,
Teresa, Raja, and Praveen, join the walk. Each friend is represented by an interval showing
his/her stretch of the walk. (b) Julian’s pictures. There are six pictures showing the participants
when each friend joins the walk. (c) The supporters overlap graph: Elena’s friends are nodes
and there is an edge between two friends if they were walking together.

information processing properties [65] and network evolution mechanisms that could
account for their emergence [53]. Usage of graph theoretical tools is not limited to
the study of protein interaction networks, graphs are also used to model metabolic
networks (processes), gene coexpression, gene coregulation, phylogenies, and so on.

In general, graphs are not required to have any type of regularity. This makes them
very flexible combinatorial objects, which are able to represent complex and diverse
relationships. In practice, however, graphs that model real world phenomena often
belong to families of graphs with a special structure, which can be exploited to gain
an insight into the phenomenon that generated the graph. To clarify this statement,
we start with a following toy example taken from everyday life.

Example Elena decided to walk 40 miles to raise funds for an important cause.
Her friends provide her with support by walking along her, but each of them walks
only for 10 miles (see Fig. 3.1a). Her husband, Julian, volunteers to document
the event and takes a group picture every time a new supporter joins Elena (see
Fig. 3.1b). After the event is completed Julian handles Elena a box with photographs.
Elena notices that the pictures are not ordered and then she learns that Julian lost
somewhere the film. Can she reconstruct the order her supporters joined the walk
without the film, that is, can she use the information in Fig. 3.1b to tell that her
friends joined the walk in the following order (Merrick, Nilani, Dami, Teresa, Raja,
and Praveen)? If Julian had lost the film before developing it (so Elena does not
have her precious pictures) but her supporters remember their walking partners.
However, they do not remember the order in which these partners joined. Would she
still be able to reconstruct the history of events? Interestingly, if except for the very

GRAPH THEORY BACKGROUND 31

beginning and very end, she never walked alone and remembers a person who
supported her first, she can reconstruct this order: in the first case she would be able to
recover the order completely; in the second case she still would be able to reconstruct
the order except for the relative placement of Dami and Teresa; she would not be
able to tell whether Dami joined the walk before Teresa or the other way around.

In the example above, Elena exploits the special structure of the supporters overlap
graph in Fig. 3.1c to understand the “real world phenomenon,” the participation of
her friends in the fund raising event in Fig. 3.1a. The graph in Fig. 3.1c is an interval
graph, meaning that there is a set of intervals on a real line such that vertices of the
graph are in one-to-one correspondence with the intervals in the set and there is an
edge between a pair of vertices if and only if the corresponding intervals intersect;
the set of intervals is called an interval representation of the graph. Interval graphs
are a special case of intersection graphs, graphs whose vertices are in one-to-one
correspondence with a family of sets such that there is an edge between a pair of
vertices if and only if the corresponding pair of sets have a nonempty intersection.
Coming back to our example, the supporters overlap graph in Fig. 3.1c is an interval
graph with one possible interval representation shown in Fig. 3.1a. Given the graph
in Fig. 3.1c, Elena won’t be able to reconstruct the history of events up to the smallest
detail, such as Merrick joined the walk 8 miles before Nilani, but she would be able
to tell that all possible valid (Merrick is the first to join the walk and everybody
walks for exactly 10 miles) interval representations of this graph result in the same
order (up to relative placement of Dami and Teresa) of her friends joining the walk.

In this chapter, we will demonstrate how graph theoretical tools are used in Com-
putational Biology to elucidate the dynamics of biological processes. In particular,
we will show applications of the well-studied graph family known as chordal graphs.
Chordal graphs are exactly these graphs that are intersection graphs of subtrees of
a tree, and therefore they include interval graphs that can be seen as intersection
graphs of subtrees of a path (a degenerate tree). We start with a background infor-
mation on graph theoretical tools used to deal with chordal graphs (see Section 3.2).
We then proceed to show how these tools are applied to two problems in Computa-
tional Biology: phylogenetic tree reconstruction (see Section 3.3) and formation of
multiprotein complexes (see Section 3.4). In both applications, structure of a certain
graph is exploited (in a manner similar to the toy example above) to elucidate the
dynamic behavior of the underlying biological process. In the first application, we are
interested in the dynamics of evolution, that is, the order in which the taxa evolved
from a common ancestor. In the second application, we are interested in the dynamics
of multiprotein complex formation during a biological process, such as cell signaling,
that is, how multiprotein complexes are formed during the process and the order in
which proteins join these complexes.

3.2 GRAPH THEORY BACKGROUND

The purpose of this section is to provide the reader with an overview of relevant
graph theoretic results for chordal, interval, and cograph graph families. We state

32 GRAPH THEORETICAL APPROACHES

here results that are used in the biological applications of these graph families dis-
cussed in latter sections. For a thorough treatment of chordal graphs and interval
graphs, we refer the reader to now a classical book by Golumbic [36]; other excellent
references are a recent book on intersection graph theory by McKee and McMor-
ris [51], a chapter “An introduction to chordal graphs and clique trees” by Blair and
Peyton in [33], and a set of lecture notes by Shamir [64]. For an overview of struc-
tural and algorithmic properties of cographs, we refer the reader to the paper by
Corneil et al. [19]; modular decomposition is surveyed in a paper by Mohring and
Radermacher[55], a nice overview can also be found in a chapter “Decompositions
and forcing relations in graphs and other combinatorial structures” by McConnel
in [37].

We assume that all graphs are undirected and connected. We denote by G = (V, E)
a graph with a set of vertices V and a set of edges E. Given a graph G = (V, E), a
subgraph G′ = (V ′, E′) is an induced subgraph of G if V ′ is a subset of V and E′
contains all the edges of the original graph whose both end points are in V ′; we may
also say that G′ is a subgraph of G induced by V ′. For a vertex v ∈ V , we use N (v) to
denote the set of v’s neighbors in G, that is, N (v) = {u | (v, u) ∈ E}. We use “−” to
denote set difference operation such that for two sets X and Y the set X− Y contains
elements that are in X but not in Y .

3.2.1 Chordal Graphs

In a cycle, a chord is an edge that connects two nonconsecutive vertices of the cycle.
For example, a cycle {a, b, c, d} in Fig. 3.2a has a chord (b, d). A chordal graph is a
graph that does not contain chordless cycles of length greater than three; other names
given to graphs having this property are rigid circuit graphs and triangulated graphs.
Chordality is a hereditary graph property, meaning that any induced subgraph of a
chordal graph is chordal.

In a graph, an ordering of vertices {v1, . . . , vn} is a perfect elimination order-
ing (PEO) if and only if for every position i, the subgraph induced by the neigh-
bors of vi that appear later on in the ordering is complete, that is, the subgraph in-
duced by N (vi) ∩ {vi+1, . . . , vn} is complete. For example, in the graph of Fig. 3.2a,
the ordering {a, b, c, e, f, d} is a PEO while the ordering {a, b, c, d, e, f } is not.
It was shown by Fulkerson and Gross [26] that only chordal graphs can have a
PEO.

Theorem 3.1 [26] A graph is chordal if and only if there exists a perfect elimination
ordering of its vertices.

This alternative characterization of chordal graphs is used by two linear time
chordal graph recognition algorithms [60,67]. Given a graph, both algorithms produce
an ordering of its vertices, which is a PEO if and only if the input graph is chordal.
Therefore, to determine whether the input graph is chordal it suffices to check that the
ordering output by the algorithm is a PEO. The earliest algorithm, due to Rose and

GRAPH THEORY BACKGROUND 33

FIGURE 3.2 (a) A chordal graph G = (V, E). (b) A tree representation of G: the tree is on
the left and the family of subtrees is on the right. (c) There are four maximal cliques in the
graph, Q1, Q2, Q3, and Q4. (d) The clique graph of G. The clique graph is the intersection
graph of {Q1, Q2, Q3, Q4}. (e) A clique tree representation of G: the clique tree is on the left
and the family of subtrees is on the right. It should be noted that a clique tree is a valid tree
representation of a chordal graph. Indeed, every vertex in the graph corresponds to a subtree of
the clique tree and two vertices are adjacent if and only if their corresponding subtrees intersect.

Tarjan [60], uses a Lexicographic Breadth-First Search(LexBFS), a modified version
of the widely known Breadth First Search [17] algorithm, to order the vertices of the
graph.

A maximal clique in a graph is a subset of vertices that form a maximal complete
subgraph. Given a graph G, we will use Q(G) to denote the set of all maximal cliques
in G and K(G) to denote the clique graph of G, where vertices of K(G) are maximal
cliques in G, and there is an edge between a pair of vertices (maximal cliques) if
their intersection is not empty. As an illustration consider the graph in Fig. 3.2a. This
graph has four maximal cliques, which are shown in Fig. 3.2c. The clique graph K(G)
is shown in Fig. 3.2d; it has four vertices Q1, Q2, Q3, and Q4 and is complete as
every pair of vertices (maximal cliques) has a nonempty intersection. (In this case,
all maximal cliques contain vertex d ∈ V of the original graph G.)

Even though computing all maximal cliques of a general graph is a diffi-
cult problem [28], all maximal cliques of a chordal graph can be computed effi-
ciently. Moreover, the number of maximal cliques in a chordal graph is at most
|V |. (For details please refer to Section 4.2.1 in the chapter by Blair and Peyton
[33].)

LetF = {R1, . . . , Rn}be a family of subsets. The intersection graph ofF is a graph
G = (V, E) where V = F and E = {(Ri, Rj) | Ri ∩ Rj �= ∅}, that is, the vertices of

34 GRAPH THEORETICAL APPROACHES

the graph are the subsets in F , and there is an edge between two vertices (subsets) if
their intersection is not empty. It can be shown that every graph is isomorphic to the
intersection graph of some family of subsets; the family of subsets can be thought as
an alternative representation of the graph and is called an intersection representation
of the graph. A variety of well-known graph classes can be characterized by putting
restrictions on intersection representations of graphs in the class. For example, an
interval graph is isomorphic to the intersection graph of a family of closed intervals
on the real line and a chordal graph is isomorphic to the intersection graph of a family
of subtrees of a tree.

Even though the study of chordal graphs goes back to 1958, the characterization in
terms of allowable intersection representations was given only in the 70’s [13,31,69].
In particular, it was established that a graph is chordal if and only if it is iso-
morphic to the intersection graph of a family of subtrees of a tree; the tree and
the family of subtrees are called a tree representation of the chordal graph. Fig-
ure 3.2b shows a tree representation of a chordal graph in Fig. 3.2a. Moreover, it
was shown that every chordal graph G = (V, E) has a special tree representation,
the so-called clique tree representation, in which the tree is a spanning tree of K(G)
and the family of subtrees F = {Tv | v ∈ V } is defined by setting each Tv to the set
of maximal cliques that contain v. For example, Fig. 3.2e shows a clique tree rep-
resentation for a chordal graph in Fig. 3.2a. This is summarized in the following
theorem.

Theorem 3.2 [13,31,69] Let G = (V, E) be a graph. The following statements are
equivalent

1. G is a chordal graph.

2. G is isomorphic to the intersection graph of a family of subtrees of a tree.

3. There exists a spanning tree of the clique graph K(G) such that for every v ∈ V

the subgraph of this tree induced by the set of maximal cliques containing v,
{Q |Q ∈ Q(G), and v ∈ Q}, is connected.

Given a chordal graph, all possible clique tree representations can be efficiently com-
puted. One approach [7] is based on the fact that clique trees are exactly maxi-
mum weight spanning trees of the clique graph K(G), where the weight function
on the edges of K(G) is defined as the amount of overlap between two maximal
cliques, that is, w(Q′, Q′′) = |Q′ ∩Q′′|. Thus, in order to compute all possible clique
tree representations of a chordal graph, one simply needs to compute all maximum
weight spanning trees of the clique graph K(G), for example, by using an algo-
rithm from [32]. Another approach [40] builds on a connection between the edges
of a clique tree of a chordal graph and the set of minimal vertex separators in the
graph.

Given a graph G = (V, E) not necessarily chordal, one is often interested in find-
ing a set of edges E′ such that addition of E′ to the graph makes it chordal; the set
of edges that does the job is called a triangulation of G. As a complete graph is

GRAPH THEORY BACKGROUND 35

chordal by definition, any graph can be trivially triangulated by setting E′ to be the
set of all the nonedges in the graph, E′ = (V × V)− E. One may further ask for a
triangulation that possesses additional properties. A minimal triangulation of a graph
is a triangulation that is not properly contained in any other triangulation. A minimal
triangulation can be found efficiently [60] using a variant of the LexBFS algorithm for
recognition of chordal graphs. A minimum triangulation of a graph is the triangulation
with the smallest number of edges. Even though finding a minimum triangulation of a
graph is a difficult problem [72], there are fixed-parameter tractable solutions [14,46].
For example, an algorithm in [14] takes (|V | + |E|)O(4k/(k + 1)3/2) to find a min-
imum triangulation of G = (V, E) when G has a triangulation whose size does not
exceed k. Therefore, if the size of minimum triangulation is small, it can be found
efficiently.

3.2.2 Interval Graphs

An interval graph is any graph that is isomorphic to the intersection graph of a family
of intervals on a real line; the family of intervals is called an interval representation
or sometimes an interval realizer of the graph. Not every graph has an interval rep-
resentation; consider, for example, a chordless cycle of length four. The “invention”
of interval graphs is commonly attributed to the Hungarian mathematician Gyorgy
Hajos who in 1957 posed the problem of characterizing this family of graphs. Interval
graphs also appear in the work of the American biologists Seymour Benzer [6] who
used them to support his hypothesis that genetic material is organized into a structure
having linear topology.

The first linear time algorithm for recognizing interval graphs is due to Booth and
Leuker [11]. In their paper, the authors show how to test whether a family of subsets of
some ground set U has a consecutive ones property, meaning that the members of the
family can be linearly ordered in such a way that for every element in U the subsets
containing it are consecutive in the linear order. Therefore, according to the theorem
below, an interval graph is recognized by testing whether the set of its maximal cliques
has a consecutive ones property.

Theorem 3.3 [34] A graph is an interval graph if and only if its maximal cliques
can be ordered in a linear fashion such that for every vertex in the graph the set of
maximal cliques that contain it is consecutive.

The above characterization implies that interval graphs are chordal. Indeed, if
maximal cliques of a chordal graph can be arranged in a tree then maximal cliques
of an interval graph can be arranged on a path. Therefore, interval graphs are exactly
these chordal graphs that have a clique tree representation, which is a path.

In a graph G = (V, E), an ordering of vertices {v1, . . . , vn} is an interval order-
ing (I-ordering) if and only if for every pair of positions i < j the following holds:
if (vi, vj) ∈ E then (vi, vk) ∈ E for every i < k < j. Recently, another linear time
algorithm for recognition of interval graphs was proposed [18], which utilizes the fact
that only interval graphs can have an I-ordering. The main idea is to use a multisweep

36 GRAPH THEORETICAL APPROACHES

FIGURE 3.3 (a) A prime graph. (b) A nonprime graph. (c) The modular decomposition
tree of the graph in (b). (d) The modular decomposition tree can be used to derive a Boolean
expression for the maximal cliques in a graph. The Boolean expression is constructed by moving
along the tree from the leaves to the root, replacing each “series” node with an ∧ operator and
each “parallel” node with an ∨ operator. The Boolean expression for the cograph in (b) is
(((a ∨ c) ∧ b) ∨ e ∨ f) ∧ d.

LexBFS algorithm to produce an ordering of the vertices of a graph, which is an
I-ordering if and only if the input graph is an interval graph.

3.2.3 Modular Decomposition and Cographs

A module in a graph G = (V, E) is a set of vertices, X, that have exactly the same set of
neighbors in V −X, that is, for every pair of vertices u and v in X the following holds
N (u) ∩ (V −X) = N (v) ∩ (V −X). For any vertex v, the set {v} trivially satisfies
the requirement for being a module and so does the set of all vertices in the graph, V ;
these sets are called trivial modules.

A graph that only has trivial modules is prime; for example, the graph in Fig. 3.3a is
prime, while the graph in Fig. 3.3b is not. A nonprime graph will have other modules
in addition to the trivial modules. Two modules in a graph overlap if they share
vertices but neither module properly contains the other. A module is strong if it does
not overlap any other module in the graph and weak otherwise; by definition trivial
modules are strong modules.

The strong modules in a graph G = (V, E) can be organized into a hierarchical
structure where every module is attached to the smallest module that contains it. It can
be argued that this construction results in a unique tree, the modular decomposition
tree of the graph, with the trivial modules of the form {v} being the leaves of the tree,
the module V being the root, and all other strong modules being the internal nodes.
The modular decomposition tree of the graph in Fig. 3.3b is shown in Fig. 3.3c. This
graph has 11 modules, all of which are strong.

Even though weak modules of a graph do not directly appear in the modular de-
composition tree, it can be shown that every weak module is a union of strong modules
that are directly attached to the same internal node in the modular decomposition tree.
When this happens the internal node is labeled as degenerate; internal nodes that are
not degenerate are labeled as prime. Furthermore, the union of any subset of chil-
dren of a degenerate node is a module (necessarily weak). Therefore, the modular

GRAPH THEORY BACKGROUND 37

decomposition tree captures all modules in the graph: the strong modules are the nodes
of the tree and the weak modules are the unions of children of degenerate internal
nodes.

Let X be a module in a graph G = (V, E) represented by an internal node of the
modular decomposition tree and let C be the set of modules that correspond to its chil-
dren. A quotient graph associated with X is obtained by contracting every module in C
into one node in the subgraph of G induced by X, GX. For any pair of modules Y and Y ′
in C, either all edges Y × Y ′ belong to E or none does ((Y × Y ′) ∩ E = ∅). Therefore,
the quotient graph associated with X completely specifies the edges of GX that are not
within one module in C. Moreover, it can be shown that the quotient graph associated
with a module that corresponds to a degenerate node is either a complete graph or a
complement of a complete graph. If we label degenerate nodes as series whenever the
corresponding quotient graph is complete and parallel otherwise, and record the struc-
ture of quotient graphs associated with prime nodes, then the modular decomposition
tree together with this additional information completely specifies the structure of the
graph.

A complement reducible graph (a cograph) can be recursively defined in the fol-
lowing manner: (i) a single vertex graph is a cograph; (ii) if G1, . . . , Gk are cographs
then so is their union G1 ∪G2 · · · ∪Gk; (iii) if G is a cograph then so is its com-
plement Ḡ; A pair of nodes, u and v, in a graph are siblings if they have exactly the
same set of neighbors, that is, N (u)− {v} = N (v)− {u}. If the nodes of the pair are
connected by an edge, we call them strong siblings and weak siblings otherwise. The
following theorem summarizes some of the structural properties of cographs given in
the paper by Corneil et al. [19].

Theorem 3.4 Let G = (V, E) be a graph. The following statements are equivalent.
�

G is a cograph.
� Every nontrivial induced subgraph of G has a pair of siblings.
�

G does not contain an induced subgraph isomorphic to a path of length four
(P4).

Cographs are exactly graphs with the modular decomposition tree without
prime modules. Therefore, the modular decomposition tree of a cograph with
the “series”/“parallel” labeling of nodes provides an alternative representation of
the graph. This representation is closely related to the cotree representation for
cographs [19]. In particular, the modular decomposition tree can be used to generate
a Boolean expression describing all the maximal cliques in a cograph and obtain
efficient algorithms for other otherwise difficult combinatorial problems [19]. The
Boolean expression is constructed by moving along the tree from the leaves to the
root, replacing each “series” node with an ∧ operator and every “parallel” node with
an ∨ operator. For example, Fig. 3.3d shows how to obtain the Boolean expression
for the graph in Fig. 3.3b. For a cograph, the modular decomposition tree can be
constructed in linear time [20].

38 GRAPH THEORETICAL APPROACHES

3.3 RECONSTRUCTING PHYLOGENIES

Consider a set of taxa, where each taxon is represented by a vector of attributes, the
so-called characters. We assume that every character can take one of a finite number
of states and the set of taxa evolved from a common ancestor through changes of
states of the corresponding characters. For example, the set of taxa can be described
by columns in multiple sequence alignment of protein sequences. In this case, each
column in the alignment is a character that can assume one of twenty possible states.
Parsimony methods seek a phylogenetic tree that explains the observed characters
with the minimum number of character changes along the branches of the tree.

In our working example for this section, the set of taxa includes eight species
shown in Fig. 3.4a; each species is described by two binary characters. As there

FIGURE 3.4 A set of eight species: Anopheles gambiae (Ag), Arabidopsis thaliana (At),
Caenorhabditis elegans (Ce), Drosophila melanogaster (Dm), Homo sapiens (Hm), Plasmod-
ium falciparum (Pf), Saccharomyces cerevisiae (Ag), and Saccharomyces pombe (Sp). (a)
The species are described by binary characters that correspond to the presence (value of 1) or
absence (value of 0) of introns. This is truncated data limited to just two introns (105 and 256)
out of about 7236 from the study of Rogozin et al. [59]. (b) A phylogenetic tree: the leaves
are the species in the set and are labeled with the input character states; the internal nodes are
ancestral species and are labeled with the inferred character states. This particular tree requires
three character changes , which are marked with solid bars on the corresponding edges.(c) The
character overlap graph. There are four vertices, one vertex per character state, 105 (state “1”
of the character “intron 105”),−105 (state “0” of the character “intron 105”), 256 (state “1” of
the character “intron 256”), and −256 (state “0” of the character “intron 256”). Two vertices
are connected by an edge if corresponding character states are observed together in some taxon.
The edge (105,−256), for example, is due to species Ag and Dm.

RECONSTRUCTING PHYLOGENIES 39

are (2n− 5)!/(2n−3(n− 3)!) unrooted binary trees on n labeled vertices [15], there
are 11!/(255!) = 10, 395 possible phylogenetic trees for the set of species in our
example. One such tree is shown in Fig. 3.4b. Once the tree topology is fixed, an
optimal assignment/assignments of the character states to the internal nodes can be
efficiently computed [25]; the assignment of characters in Fig. 3.4b is optimal for this
tree topology and requires three character changes.

We call a phylogenetic tree a perfect phylogeny if every character state arose only
once during evolution or in other words the subgraph of the tree induced by the
nodes having this character state is connected. The phylogenetic tree in Fig. 3.4b
is not a perfect phylogeny as the character state 0 for the character “intron 256”
arose twice, once in the part of the tree defined by Sc and Sp, and another time
in the part of the tree defined by Dm and Ag. Given a phylogenetic tree, the num-
ber of changes due to a specific character is bounded from below by the number
of states this character assumes minus one. It is easy to see that the lower bound is
achieved only when each character state induces a connected subgraph of the tree;
in the phylogenetic tree of Fig. 3.4b the character “intron 105” achieves the lower
bound, while the character “intron 256” does not. Therefore, a perfect phylogeny
is the best tree in a sense that it achieves this lower bound for every character. A
perfect phylogeny often does not exist and we start this section with an example of
how Chordal Graph Theory can be used to address the Character Compati-
bility Problem: Given a set of taxa, does there exist a perfect phylogeny for the
set?

When a set of taxa admits a perfect phylogeny, we say that the characters describing
the set are fully compatible or just compatible. The compatibility criteria is quite
restrictive, in the case of intron data, for example, it means that for every intron
the transition from “0” state to “1” state occurred only once during evolution. We
conclude this section by showing how Chordal Graph Theory can be used to relax the
compatibility criteria in a meaningful way when taxa are described by a set of binary
characters.

3.3.1 A Perfect Phylogeny and Triangulating Vertex-Colored Graphs

From the set of input taxa we can construct a partition intersection graph in the
following manner: (i) introduce a vertex for every character state; (ii) put an edge
between two vertices if the corresponding character states are observed in one or
more taxa together. In our working example, the partition intersection graph will
have four vertices, 105 (state “1” of the character “intron 105”), −105 (state “0”
of the character “intron 105”), 256 (state “1” of the character “intron 256”), and
−256 (state “0” of the character “intron 256”) (see Fig. 3.4c). The name “partition
intersection graph” is due to the fact that each character state corresponds to a subset
of taxa, the taxa that have this character state, and the subsets of character states of a
character partition the set of taxa under consideration.

There is an important connection between partition intersection graphs and the
Character Compatibility Problem. Indeed, if a set of taxa admits a per-
fect phylogeny then there exists a phylogenetic tree, where for each character state

40 GRAPH THEORETICAL APPROACHES

the tree vertices having this state form a subtree. As there is an edge in the partition
intersection graph between every pair of character states whose subtrees intersect in
the leaves of the phylogenetic tree, this graph is either chordal or can be triangulated
without introducing edges between vertices that correspond to the states of the same
character. (Additional edges may be necessary to account for subtree intersection,
which occurs only at internal nodes of the phylogenetic tree.) The partition inter-
section graphs were used by Buneman [13] (in his paper the author refers to these
graphs as attribute overlap graphs) to show that the Character Compatibil-
ity Problem reduces in polynomial time to the Triangulating Vertex
Colored Graph Problem. In the latter problem, we are given a graph G(V, E)
and a proper coloring of its vertices, c : V → Z. A vertex coloring is proper if there
does not exist an edge in G whose end points are assigned the same color by the col-
oring. We want to determine if there exists a chordal graph Ĝ(V, Ê) such that E ⊂ Ê

and Ĝ is properly colored by c, that is, no edges between vertices of the same color
were introduced in the process of triangulating G. If such chordal graph exists, we
say that G can be c-triangulated.

Theorem 3.5 [13] A set of taxa has a perfect phylogeny if and only if the
corresponding partition intersection graph can be c-triangulated, where vertex
coloring function c assigns the same color to the character states of the same character
and different colors to the character states of different characters.

Kannan and Warnow [44] showed the polynomial time reduction in the opposite
direction: from the Triangulating Vertex Colored Graph Problem
to the Character Compatibility Problem, thus, establishing that the
two problems are equivalent. This result was later used by Bodlaender et al. [9]
to show that the Character Compatibility Problem is NP-complete.
Even though the Character Compatibility Problem is hard in general,
there are efficient algorithms when one or more of the problem’s natural parameters
are fixed: n the number of taxonomic units, k the number of characters, and r the
maximum number of states per character. Later on, we will see how to apply the
Buneman’s theorem to derive a polynomial time solution for two characters k = 2.
For three characters there is a series of algorithms that run in linear time [10,42,44].
For arbitrary fixed k there is an O(rk+1kk+1 + nk2) algorithm due to McMorris et
al. [52]. When the number of character states is bounded, the problem can also be
solved efficiently. There is a simple linear time algorithm to test if any number of
binary characters is compatible due to Gusfield [39]. For four-state characters there
is an O(n2k) algorithm due to Kannan and Warnow [45]. For arbitrary fixed r there
is an O(23r(nk3 + k4)) algorithm due to Agarwala and Fernandez-Baca [2].

The Buneman’s theorem can be used to readily derive a well-known test for
checking whether a pair of binary characters is compatible. The test is attributed
to Wilson [70]; it says that a pair of binary characters is compatible if and only if
there does not exist a set of four taxa having all possible character states, 00, 01,
10, and 11. The same test can be derived through application of the Buneman’s
theorem. According to the theorem, a pair of binary characters, is compatible if and

RECONSTRUCTING PHYLOGENIES 41

only if the corresponding partition intersection can be c-triangulated. As there are
only two binary characters, the partition intersection graph is bipartite and each set
of the bipartition contains two vertices (see, for example, Fig. 3.4c). Such a graph
is either acyclic and therefore can be trivially c-triangulated, or it contains a square
and therefore does not have a c-triangulation as any attempt to eliminate the square
would add an edge between two vertices of the same color. The square in the partition
intersection graph corresponds to the presence of the four taxa with all possible
combinations of character values: 00, 01, 10, and 11, where 00, for example, means
that both characters have state “0.” The compatibility test can be extended to a pair
of characters with more than two states (r > 2). In this case, the partition intersection
graph would still be bipartite and the number of vertices in each bipartition is r. It
can be easily shown that this graph can be c-triangulated if and only if it is acyclic.
Therefore, testing compatibility of two characters reduces to testing whether the
partition intersection graph is acyclic, which can be done efficiently, for example,
using any of the graph search algorithms such as BFS or DFS [17].

3.3.2 Character Stability

Assume that we are dealing with a set of characters that are difficult to gain but
relatively easy to lose. A classic example of such characters are introns [23]. Introns
are noncoding DNA sequences that interrupt the flow of a gene coding sequences
in eukaryotic genes. They are remarkably conserved between some lineages (e.g.,
between Arabidopsis and Human), but they are lost at a significant rate in other
organisms (e.g., Worm) [59]. Parsimony methods applied to introns produced an
incorrect tree [59] indicating that the data contains misleading characters. One way
of eliminating such misleading characters is to restrict attention to a maximum set
of compatible characters. However, under the condition that the characters are hard
to gain but are frequently lost, a large enough set of compatible characters may not
exist. To address this problem, Przytycka [57] proposed a new consistency criterion
called stability criterion.

The definition of the stability criterion is phrased as a property of a graph closely
related to the partition intersection graph and called a character overlap graph. A
character overlap graph for a set of taxa is a graph G = (V, E), where V is a set of
characters, and (u, v) ∈ E if there exists a taxon T in the set such that both u and v

are present in T . Note that the character overlap graph is simply a subgraph of the
partition intersection graph for a set of binary characters that is induced by the set of
characters in state “1.”

To motivate the concept of stability, consider a set of characters A, B, C, D, and
a set of four taxa described respectively by character pairs: (A, B), (B, C), (C, D),
and (D, A). That is the first taxon has characters A and B in state “1” (and the rest in
state “0”), second B and C in state “1,” and so on. In such a case, the corresponding
character overlap graph is simply a square (see Fig. 3.5a). There are two possible
topologies for the evolutionary tree for this set of taxa as illustrated in Fig. 3.5b–c.
The number of character changes implied by each topology is the same. However, in
the first case, characters, B and D, have to change their state twice (and at least three

42 GRAPH THEORETICAL APPROACHES

FIGURE 3.5 The two possible (up to symmetry) topologies for an evolutionary tree for
four taxa containing characters respectively: (A, B), (B, C), (C, D), and (D, A). In each case,
one pair of characters has to change state twice and the selection of such pair determines the
topology of the tree.

of these character changes have to be deletions) while in the second case, characters,
C and A, have to change their state twice. If we knew which pair is more preserved
in a given lineage relative to the other pair, we would be able to select the more likely
topology. Similar situation occurs when we consider a larger cycle. This motivates
the following concept of stability.

We say that a character is stable if it does not belong to a chordless cycle in
the character overlap graph. Otherwise, we say that the stability of the character
is challenged and number of challenges is equal to the number of chordless cycles
to which the character belongs. Note that the stability criterion can also identify
characters that are preferentially conserved in one lineage but lost in many other
lineages, as stability of such characters is likely to be challenged by other characters.
Directly from the property of stability, we observe that the set of characters is stable
only if the corresponding character overlap graph is chordal. In particular, it can be
easily shown that a set of characters such that each character is gained at most once
and lost at most once (called in [57] persistent characters) is stable [57]. Note that
even the persistency criterion is significantly less stringent than the compatibility
criterion discussed before as it allows for two changes of a character state.

Unfortunately, the problem of finding the minimum number of nodes whose re-
moval leaves a graph chordal is NP-complete [48]. To go around this problem, [57]
use a simple heuristic. Namely, rather than considering all chordless cycles, they con-
sidered only squares. The squares were then eliminated by a greedy algorithm that
iteratively removed characters belonging to the largest number of squares. After all
squares are removed, they applied the Dollo parsimony (the maximum parsimony
model that does not allow for multiple insertions of the same character) to construct
the evolutionary tree based on the remaining characters.

The utility of a variant of this approach has been demonstrated by using it to con-
struct the evolutionary tree from intron data compiled by Rogozin et al. [59]. This
data contains information about introns found in conserved (and orthologous) genes
of eight fully sequenced organisms: Arabidopsis thaliana (At), Homo sapiens (Hs),

FORMATION OF MULTIPROTEIN COMPLEXES 43

FIGURE 3.6 Three tree topologies for organisms: Arabidopsis thaliana (At), Homo sapiens
(Hs), C. elegans (Ce), Drosophila melanogaster (Dm), Anopheles gambaie (Ag), Saccha-
romyces cerevisiae (Sc), Schizosaccharomyces pombe (Sp), and Plasmodium falciparum (Pf).
(a) The incorrect Dollo parsimony tree computed from intron data. (b) The tree consistent with
Coelomata hypothesis. This is also exactly the tree obtained after applying the squares removal
procedure. (c) The tree consistent with Ecdysozoa hypothesis.

C.elegans (Ce), Drosophila melanogaster (Dm), Anopheles gambaie (Ag), Saccha-
romyces cerevisiae (Sc), Schizosaccharomyces pombe (Sp), and Plasmodium falci-
parum (Pf). Introns are identified by their starting position with respect to the coding
sequence. The data contains 7236 introns; however, most of these introns are ob-
served in one organism only and thus are not informative. After eliminating these
single-organism entries, 1790 introns were left. Define intron pattern to be a 0/1 vec-
tor of length eight that defines, for a given intron, which species have that intron and
which do not. Note that with eight species there are 28 − 9 different intron patterns
(the subtraction corresponds to the assumption that each intron of interest must be in
at least two species). Thus, some patterns are represented multiple times. The patterns
that appear significantly more often than is expected by chance are considered to be
more informative. Let ni be the number of times pattern i is observed in the intron data,
and ri expected number of occurrences of the pattern by chance. Define pi = ni/ri
to be the significance of the intron pattern i. Let Si be the number of squares, in
which an intron with pattern i is involved. In this setting, the greedy square removal
algorithm was set to remove iteratively intron patterns that maximize the value Si/pi.
This provides a trade-off between maximizing the number of removed squares and
minimizing the significance of the removed intron patterns. The resulting evolution-
ary tree was consistent with the Coelomata hypothesis ([1,8,16,71]). In contrast, the
compatibility criterion failed to produce a meaningful tree in this case. The counter-
part to the Coleometa hypothesis is the Ecdysozoa hypothesis ([3,35,49,56,61]) (see
Fig. 3.6).

3.4 FORMATION OF MULTIPROTEIN COMPLEXES

The complexity in biological systems arises not only from various individual protein
molecules but also from their organization into systems with numerous interacting
partners. In fact, most cellular processes are carried out by multiprotein complexes,

44 GRAPH THEORETICAL APPROACHES

groups of proteins that bind together to perform a specific task. Some proteins form
stable complexes, such as the ribosomal complex that consists of more than 80
proteins and four RNA molecules, while other proteins form transient associations
and are part of several complexes at different stages of a cellular process. A better
understanding of this higher order organization of proteins into overlapping com-
plexes is an important step toward unveiling functional and evolutionary mechanisms
behind biological networks.

Data on protein interactions are collected from the study of individual systems,
and more recently through high-throughput experiments. There are many types of
protein interactions, but in our quest to understand the dynamics of multiprotein
complex formation, we are mostly interested in physical protein interactions and
interactions through being a member of the same protein complex, which we briefly
review here.

There is a physical interaction between a pair of proteins if they come into a close
contact or bind each other. High-throughput discovery of physical protein interac-
tions is based on an experimental technique called yeast two hybrid (Y2H) [24]. To
determine whether a pair of proteins, A and B, are able to physically interact, A

is fused to a DNA binding domain and B is fused to a transcription activation do-
main. Physical interaction between A and B brings the DNA-binding domain and
the transcription activation domain in proximity, which activates the transcription
of the corresponding gene called a reporter gene. The expression level of the re-
porter gene is monitored and serves as a measure of physical interaction between pro-
teins A and B. This technique was applied on a genome-wide scale to map physical
protein interaction maps for several model organisms, most notably Saccharomyces
cerevisiae [43,68].

A pair of proteins may not physically interact but may still be members of the
same protein complex. High-throughput discovery of this type of protein interaction
is based on an experimental technique called tandem affinity purification followed by
mass spectrometry (TAP/MS) [58]. In the TAP/MS approach, a protein of interest,
which is called a bait, is tagged and used as a “hook” to pull out proteins that form a
complex with it. These proteins are then identified by mass spectrometry techniques.
The TAP/MS approach was used not only to map the interactome of Saccharomyces
cerevisiae [29,30,41,47] but also to study protein complexes involved in different
signaling pathways [12].

Protein interactions are routinely represented by a graph, a protein interaction
network, with vertices being the proteins and edges being the interactions. These
graphs offer a static view of protein interactions in the cell, even though some proteins
change their interacting partners and participate in different protein complexes. Can
the topology of inherently static protein interaction network be used to elucidate the
temporal order of dynamic multiprotein complex formation? In this section, we review
two such attempts: Farach-Colton et al. [22] used interval graphs to study the way
in which various proteins join the ribosome maturation pathway, Zotenko et al. [73]
used chordal graph and cographs to study the order in which various complexes are
formed during cell signaling and other cellular processes.

FORMATION OF MULTIPROTEIN COMPLEXES 45

3.4.1 Ribosomal Assembly

Ribosomes are massive molecular machines that are the major players in protein syn-
thesis, they use a messenger RNA template to produce a polypeptide chain of newly
created protein molecule. In eukaryotic cells, ribosomes consists of two subunits,
the so-called 40S (small) and 60S (large) particles, which together account for four
ribosomal RNAs and around 80 ribosomal proteins. Recent proteomic studies in
Saccharomyces cerevisiae have identified around 200 auxiliary proteins that are
involved in the assembly of ribosomal subunits but are not part of mature ribosomes.
The ribosome synthesis is believed to proceed in an orderly pathway, the ribosome
assembly pathway, and even though the main players of the pathway are known, little
is known about the order in which these proteins join the pathway. For a minireview
see [21].

Farach-Colton and colleagues [22] proposed an interval model to represent the
assembly pathway of the 60S ribosomal particle. In this model, an auxiliary protein
“enters” the pathway at some point and “leaves” the pathway at a latter point to never
enter the pathway again. The model further assumes that a protein participates in the
pathway through binding to other proteins currently in the pathway, therefore, the
assembly line can be thought of as an evolution of one protein complex to which
proteins bind as they enter the pathway and from which proteins dissociate as they
leave the pathway. Under this model, the protein interaction network that spans the
auxiliary proteins involved in the pathway should be an interval graph: each auxiliary
protein is an interval and two proteins interact if and only if their intervals overlap.
Therefore, the protein interaction network can be used to reconstruct the order in
which the auxiliary proteins join the pathway.

Unfortunately, even if the proposed model captures correctly the ribosome assem-
bly mechanism, experimental errors, and incompleteness of protein interaction data
may make the protein interaction network loose its interval graph property. To over-
come this problem, the authors use a variant of the multisweep LexBFS algorithm [18]
to produce an ordering of vertices in the protein interaction network. The algorithm
uses several iterations/sweeps of the LexBFS algorithm, where the first LexBFS sweep
starts from an arbitrary vertex of the graph and every subsequent LexBFS sweep uses
the orderings produced by the previous iterations to choose the start vertex and break
ties. If the network is an interval graph, then the ordering produced by the algorithm is
an I-ordering. If, on the contrary, the network is not an interval graph then the ordering
as a whole won’t be an I-ordering but it will induce an I-ordering on the vertices of
some interval subgraph of the network; which subgraph would be correctly ordered
depends on the order, in which the vertices of the network are encountered by the
algorithm. Thus, the authors suggest that computing an I-ordering of vertices of the
graph is a reasonable step toward reconstruction, the order in which the auxiliary
proteins join the pathway.

The authors tested their approach on the protein interaction network spanning
96 auxiliary proteins involved in the assembly of the 60S particle. As part of the
interaction data comes from TAP/MS experiments, it captures only interaction be-
tween the 25 bait proteins and other auxiliary proteins in a 96× 25 protein interaction

46 GRAPH THEORETICAL APPROACHES

matrix. The rows/columns of the matrix were randomly permuted and supplied as an
input to the multisweep LexBFS algorithm. The experiment was performed 5000
times and the rank of each protein in each of the 5000 orderings was recorded.
Even though the input graph is not an interval graph only two different orderings
emerged, which are denoted by O1 and O2. If an ordering of vertices is close to an
I-ordering, then the absolute difference in rank between any pair of adjacent ver-
tices cannot be arbitrarily large. Therefore, the authors establish significance of the
two discovered orderings by the average difference in rank over two sets of protein
interactions: a set of protein interactions comprising the network and thus seen by
the algorithm, and a set of protein interactions not seen by the algorithm. The au-
thors found that for both seen and unseen interactions, the average difference for the
O1 and O2 is significantly lower than average differences obtained with: (i) order-
ings produced by randomly permuting the proteins; (ii) orderings computed by the
algorithm on random graph having the same degree distribution as the original input
graph.

3.4.2 Multiprotein Complex Formation During Cell Signaling

In order to adapt to their environment, cells have to detect and respond to a vast variety
of external stimuli. The detection and translation of these stimuli to a specific cellular
response is achieved through a mechanism called signal transduction pathway or
signaling pathway. The general principles of signal propagation through a pathway
are common to almost all signaling pathways. First, an extracellular stimulus, usually
a chemical ligand, binds to a membrane bound receptor protein. The energy from
this interaction changes the state of the receptor protein, thus activating it. The active
receptor is able to pass the signal to the effector system that generates the cell’s
response. A variety of proteins, the so-called signaling proteins, carry information
between the receptor protein and the effector system. Protein kinases, for example,
are special enzymes that add a phosphate group to certain residues of certain proteins
through a process called phosphorylation, thus, activating or suppressing the protein’s
ability to interact with other proteins.

The pattern of protein interaction during cell signaling is an excellent example
of transient protein interactions and dynamic complex formation. For example, con-
sider a sequence of events in one of the best-studied signaling pathways, the mating
pheromone signaling pathway in Saccharomyces cerevisiae (for more information
see a review by Bardwell [4]). There are two mating types of yeast cells. When a yeast
cell is stimulated by a pheromone secreted by a cell of an opposite mating type, it
undergoes a series of physiological changes in preparation for mating, which include
significant changes in gene expression of about 200 genes, oriented growth toward
the partner, and changes in the cell cycle. Signal propagation through the pathway is
achieved through interaction of some 20 proteins, a schematic representation of the
pathway and description of corresponding protein interactions are given in Fig. 3.7.

Research efforts required to obtain the amount of detailed knowledge about a
signaling pathway as is currently available for the mating pheromone pathway is
enormous. Can the readily available high-throughput experimental data on protein

FORMATION OF MULTIPROTEIN COMPLEXES 47

FIGURE 3.7 A schematic representation of the key components of the pheromone signaling
pathway assembled from information in [4,38,50]. A pheromone peptide binds a G-protein
coupled receptor or GPCR (STE2/STE3). Activated receptor binds and activates a trimeric
G-protein: Gα subunit (GPA1), Gβ subunit (STE4), and Gγ subunit (STE18). The flow of
information then proceeds via a three-tiered mitogen-activated protein kinase (MAPK) cas-
cade and results in activation of STE12 transcription factor and subsequent upregulation of
about 200 genes. The MAPK cascade also activates FAR1 protein, which is hypothesized
to trigger a G1 cell cycle arrest through an interaction with CDC28, a master regulator of
the cell cycle. The MAPK cascade consists of three protein kinases STE11, STE7, and ei-
ther FUS3 or KSS1, which activate each other sequentially through phosphorylation. Thus,
STE11 activates STE7, which in turn activates either FUS3 or KSS1. The phosphorylation
process is enhanced through a presence of a scaffold protein STE5, which binds and thus
colocalizes all three components of the MAPK cascade. Activated FUS3 and KSS1 proteins
in turn bind their substrates, DIG1/DIG2/STE12 complex and FAR1 protein. Another branch
of the pathway, which includes proteins STE4, STE18, FAR1, CDC24, CDC42, and BEM1
is responsible for triggering a “polarized growth toward the mating partner” or polarization
response.

interactions be used to elucidate some information about the pathway, such as the
order of complex formation during signal propagation? In a recent work Zotenko
et al. [73] have proposed a graph-theoretic method, Complex Overlap Decomposition
(COD), that tries to recover the order of protein complex formation from the
topology of protein interaction network that spans the pathway components. (The
pathway components can be obtained from literature. Alternatively, putative pathway

48 GRAPH THEORETICAL APPROACHES

FIGURE 3.8 An illustration of the Complex Overlap Decomposition (COD) method. An
edge, (3, 4), connecting a pair of weak siblings is added to the graph. A fill-in edge between
proteins 5 and 8 is added to eliminate all five 4-cycles in the graph: {5, 6, 8, 7}, {1, 5, 7,
8}, {2, 5, 7, 8}, {1, 5, 6, 8}, and {2, 5, 6, 8}. If the modified graph is chordal, all clique
tree representations are computed and each such representation is extended into a Tree of
Complexes representation of the original graph. The Tree of Complexes is constructed by
projecting each maximal clique in the modified graph, G∗, to a functional group in the original
graph G. For example, a four node maximal clique, {1, 2, 5, 8}, in G∗ is projected to a four node
functional group in G, by removing a fill-in edge (5, 8). Each functional group is represented
by a Boolean expression, such as (1 ∧ 2) ∧ (5 ∨ 8), which means that the functional group
contains two variants of a complex, {1, 2, 5} and {1, 2, 8}. This figure is reproduced from
[73].

components can be automatically extracted from genome-wide protein interaction
networks by computational methods [63,66].)

The main idea behind the COD method, which is depicted in Fig. 3.8, is to pro-
vide a representation of the protein interaction network that is analogous to a clique
tree representation for chordal graphs, but in which nodes are cographs (representing
functional groups) rather than maximal cliques (representing protein complexes). A
functional group is either a protein complex (maximal clique in the protein interaction
network) or a set of alternative variants of such complex. Such a representation ac-
counts for two phenomena that are clearly illustrated in the pheromone signaling
pathway described above: (i) the dynamic complex formation does not always follow
a linear pathway but rather has a tree structure, where various branches correspond
to the activation of different response systems; (ii) there may be several variants of a
protein complex, such as MAPK complex centered at the scaffold protein, which may
include either KSS1 or FUS3 proteins but not both. It should be noted that cographs
and their modular decomposition were previously used by Gagneur et al. to expose
the hierarchical organization of protein complexes [27].

FORMATION OF MULTIPROTEIN COMPLEXES 49

If a set of functional groups in a network were known then each functional
group could be turned into a clique through addition of missing edges and clique
tree construction algorithm could be applied to the modified network. As the
functional groups are not known in advance, the authors propose a heuristic for
their automatic delineation, where a set of edges is added to the network so that
the maximal cliques in the modified network correspond to putative functional
groups.

The COD method’s edge addition strategy and its biological motivation builds
on a functional interpretation of weak siblings in the network. Recall that a pair of
nodes in a graph are weak siblings if they are not adjacent to each other but are
adjacent to exactly the same set of nodes. In terms of protein interaction networks,
weak siblings are proteins that interact with the same set of proteins but do not
interact with each other. In particular, proteins that can substitute for each other in
a protein interaction network may have this property. Similarly, weak siblings may
correspond to a pair of proteins that belong to the same protein complex but are
not connected by an edge due to missing data or an experimental error. Therefore,
the heuristic first connects every pair of weak siblings by an edge. If the modified
graph is not chordal an additional set of edges that connect pairs of proteins close to
being weak siblings is added; each such edge is a diagonal in one or more squares,
chordless cycles of length four, in the graph. The heuristic finds a minimum cost set
of diagonals that eliminates all the squares in the graph, where the cost of a diagonal
is inversely proportional to the amount of overlap between the neighborhoods of its
end points.

If the modification step succeeds, that is, the modified graph is chordal, all the
clique tree representations of the modified graph are constructed and then extended
to the Tree of Complexes representations of the original graph. The COD algorithm
keeps track of all the edge additions and uses this information to delineate functional
groups by projecting each maximal clique onto the original network and removing
all introduced edges contained in the clique. For example, in the modified graph of
Fig. 3.8, a maximal clique with four nodes, {1, 2, 5, 8}, is projected to a functional
group by removing an edge connecting proteins 5 and 8. This functional group con-
tains two variants of a protein complex, {1, 2, 5} and {1, 2, 8}, which are compactly
represented by the Boolean expression (1 ∧ 2) ∧ (5 ∨ 8) . If, on the contrary, the
modified graph is not chordal, the COD method stops without producing the repre-
sentation.

The authors demonstrated the effectiveness of their approach by decomposing
protein interaction networks for two signaling pathways: the mating pheromone
signaling pathway and the NF-kB signaling pathway. Here, we apply the COD
method to the pheromone signaling pathway, where the pathway components were
taken from [4] (Table 1) and protein interactions that span the pathway compo-
nents from the DIP database [62] (version 01/16/2006; core set of interactions).
The network is shown in Fig. 3.9a. Since proteins STE2/STE3 are disconnected
from the rest of the components, we have removed them from the network in our
analysis. The COD method adds three diagonals to eliminate eleven squares in
the network: (STE4,BEM1), (FUS3, KSS1), and (GPA1, STE5), which results in

50 GRAPH THEORETICAL APPROACHES

FIGURE 3.9 The mating pheromone signaling pathway. (a) The protein interaction network
for the components of the pathway. The network was drawn with Pajek [5]. (b) One of the twelve
possible Tree of Complexes representations for the network.The activation of the pathway
corresponds to node A in the tree that contains the Gβ (STE4) protein. From node A, the Tree
of Complexes splits into two branches. One branch roughly corresponds to the MAPK cascade
activated response, while another branch roughly corresponds to the polarization response.
The MAPK cascade branch spans four nodes in the tree: I, D, E, and H . The activation of
transcription factor complex by FUS3 and KSS1 is in nodes F and G. The polarization branch
spans nodes J , K, and L.

twelve functional groups listed in Fig. 3.9 along with the corresponding Boolean
expressions. There are twelve Tree of Complexes representations for this pro-
tein interaction network one of which is shown in Fig. 3.9b. All the representa-
tions agree on the interconnection pattern between functional groups, B − E, H ,
and J − L. The difference between various tree variants comes from how func-
tional groups A, F −G, and I are connected to the rest of the tree: (i) functional
group A can be attached either through (A, C), or (A, B), or (A, J); (ii) func-
tional group I through (I, E), or (I, D); (iii) functional group F through (F, E) or
(F, H).

Compare the representation in Fig. 3.9b to the schematic representation of the
pheromone signaling pathway shown in Fig. 3.7. Using only protein interaction in-
formation, the COD method was able to recover two branches of the pathway, the
MAPK cascade branch and the polarization branch. The MAPK cascade branch spans
four nodes in the tree: I, D, E, and H . The polarization branch spans nodes J , K,
and L.

REFERENCES 51

ACKNOWLEDGMENTS

This work was supported by the Intramural Research Program of the NIH, National
Library of Medicine.

REFERENCES

1. Adoutte A, Balavoine G, Lartillot N, Lespinet O, Prud’homme B, de Rosa R. The new
animal phylogeny: reliability and implications. Proc Nat Acad Sci USA 2000;97:4453–
4456.

2. Agarwala R, Fernandez-Baca D. A polynomial time algorithm for the perfect phylogeny
problem when the number of character states is fixed. SIAM J Comput 1994;23:1216–
1224.

3. Aguinaldo AM, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA.
Evidence for a clade of nematodes, arthropods and other moulting animals. Nature
1997;387:489–493.

4. Bardwell L. A walk-through of the yeast mating pheromone response pathway. Peptides
2005;26:339–350.

5. Batagelj V, Mrvar A. Pajek—Program for large network analysis. Connections 1998;
2:47–57.

6. Benzer S. On the topology of genetic fine structure. Proc Nat Acad Sci USA 1959;45:
1607–1620.

7. Bernstein PA, Goodman N. Power of natural semijoins. SIAM J Comput 1981;10:751–
771.

8. Blair JE, Ikeo K, Gojobori T, Hedges SB. The evolutionary position of nematodes. BMC
Evol Biol 2002;2:7.

9. Bodlaender H, Fellows M, Warnow TJ. Two strikes against perferct phylogeny. ICALP;
1992.

10. Bodlaender H, Kloks T. A simple linear time algorithm for triangulating three-colored
graphs. J Algorithms 1993;15:160–172.

11. Booth KS, Lueker GS. Testing for consecutive ones property, interval graphs, and graph
planarity using PQ-Tree algorithms. J Comput Syst Sci 1976;13:335–379.

12. Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K,
Cruciat C, Eberhard D, Gagneur J, Ghidelli S. A physical and functional map of the
human TNF-alpha/NF-kappaB signal transduction pathway. Nat Cell Biol 2004;6:97–
105.

13. Buneman P. A characterization of rigid circuit graphs. Discrete Math 1974;9:202–215.

14. Cai L. Fixed-parameter tractability of graph modification problems for hereditary prop-
erties. Inf Process Lett 1996;58:171–176.

15. Cavalli-Sforza LL, Edwards AWF. Phylogenetic analysis. Models and Estimation Proce-
dures. Evolution 1967;21:550–570.

16. Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P. Toward au-
tomatic reconstruction of a highly resolved tree of life. Science, 2006;311:1283–
1287.

52 GRAPH THEORETICAL APPROACHES

17. Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to algorithms. 2nd ed. The
MIT Press; 2001.

18. Corneil DG, Olariu S, Stewart L. The ultimate interval graph recognition algo-
rithm? Proceedings of the 9th ACM-SIAM Simposium on Discrete Algorithms (SODA);
1998.

19. Corneil DG, Perl Y, Stewart L. Complement reducible graphs. Discrete Appl Math
1981;3:163–174.

20. Corneil DG, Perl Y, Stewart LK. A linear time recognition algorithm for cographs. SIAM
J Comput 1985;14:926–934.

21. Dlakic M. The ribosomal subunit assembly line. Genome Biol 2005;6:234.

22. Farach-Colton M, Huang Y, Woolford JLL. Discovering temporal relations in molecular
pathways using protein–protein interactions. Proceedings of the 8th Annual International
Conference on Research in Computational Molecular Biology; San Diego. California:
USA; 2004. pp.150–156.

23. Felsenstein J. Inferring phylogenies. Sinauer Associates; 2004.

24. Fields S, Song O. A novel genetic system to detect protein–protein interactions. Nature
1989;340:245–246.

25. Fitch WM. Toward defining the course of evolution: Minimum change for a specified tree
topology. Syst Zool 1971;20:406–416.

26. Fulkerson DR, Gross OA. Incidence matrices and interval graphs. Pacific J Math
1965;15:835–855.

27. Gagneur J, Krause R, Bouwmeester T, Casari G. Modular decomposition of protein in-
teraction networks. Genome Biol 2004;5:R57.

28. Garey MR, Johnson DS. Computers and intractability: A guide to the theory of NP-
completeness. W.H. Freeman and Company; 1979.

29. AC Gavin, et al. Proteome survey reveals modularity of the yeast cell machinery. Nature
2006;440:631–636.

30. Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM,
Michon AM, Cruciat CM. Functional organization of the yeast proteome by systematic
analysis of protein complexes. Nature 2002;415:141–147.

31. Gavril F. The intersection graphs of subtrees in trees are exactly the chordal graphs.
J Comb Theory B 1974;16:47–56.

32. Gavril F. Generating the maximum spanning trees of a weighted graph. J Algorithm
1987;8:592–597.

33. George A, Gilbert JR, Liu JWH, editors. Graph theory and sparse matrix computations,
chapter 1. Springer: New York; 1993.

34. Gilmore PC, Hoffman AJ. A characterization of comparability graphs and of interval
graphs. Canad J Math 1964;16:539–548.

35. Giribet G, Distel DL, Polz M, Sterrer W, Wheeler WC. Triploblastic relationships
with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora,
Plathelminthes, and Chaetognatha: A combined approach of 18S rDNA sequences and
morphology. Syst Biol 2000;49(3):539–562.

36. Golumbic MC. Algorithmic Graph Theory and Perfect Graphs, Vol. 57 of Annals of
Discrete Mathematics. 2nd ed. Elsevier, 2004.

REFERENCES 53

37. Golumbic MC, Hartman IB-A, editors. Graph Theory, Combinatorics and Algorithms:
Interdisciplinary Applications, Chapter 4, Springer; 2005; pp. 63–105.

38. Gruhler A, Olsen JV, Mohammed S, Mortensen P, Faergeman NJ, Mann M, Jensen ON.
Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol
Cell Proteomics 2005;4(3):310–327.

39. Gusfield D. Efficient algorithms for inferring evolutionary trees. Networks 1991;21:19–28.

40. Ho C, Lee RCT. Counting clique trees and computing perfect elimination schemes in
parallel. Inform Proc Lett 1989;31:61–68.

41. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P,
Bennett K, Boutilier K. Systematic identification of protein complexes in saccharomyces
cerevisiae by mass spectrometry. Nature 2002;415:180–183.

42. Idury R, Schaffer A. Triangulating three-colored graphs in linear time and linear space.
SIAM J Discrete Math 1993;6:289–294.

43. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y. A comprehensive two-
hybrid analysis to explore the yeast protein interactome. Proc Nat Acad Sci USA
2001;98:4569–4574.

44. Kannan S, Warnow TJ. Triangulating three-colored graphs. SIAM J Discrete Math
1992;5:249–258.

45. Kannan S, Warnow TJ. Inferring evolutionary history from DNA sequences. SIAM J
Comput 1994;23:713–737.

46. Kaplan H, Shamir R, Tarjan RE. Tractability of parameterized completion problems on
chordal, strongly chordal, and proper interval graphs. SIAM J Comput 1999;28:1906–
1922.

47. Krogan NJ et al. Global landscape of protein complexes in the yeast Saccharomyces
cerevisiae. Nature 2006;440(7084):637–643.

48. Lewis JM, Yannakakis M. The node-deletion problem for hereditary properties is
NP-complete. J Comput Syst Sci 1980;20:219–230.

49. Mallatt J, Winchell CJ. Testing the new animal phylogeny: first use of combined
large-subunit and small-subunit rRNA gene sequences to classify the protostomes. Mol
Biol Evol 2002;19:289–301.

50. Matheos D, Metodiev M, Muller E, Stone D, Rose MD. Pheromoneinduced polarization
is dependent on the Fus3p MAPK acting through the formin Bni1p. J Cell Biol
2004;165(1):99–109.

51. McKee TA, McMorris FR. Topics in intersection graph theory. SIAM Monographs on
Discrete Mathematics and Applications. SIAM; 1999.

52. McMorris FR, Warnow TJ, Wimer T. Triangulating vertex-colored graphs. SIAM J Dis
Math 1994;7:196–306.

53. Middendorf M, Ziv E, Wiggins CH. Inferring network mechanisms: The Drosophila
melanogaster protein interaction network. Proc Nat Acad Sci USA 2005;102:3192–
3197.

54. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs:
Simple building blocks of complex networks. Science 2002;298:824–827.

55. Mohring RH, Radermacher FJ. Substitution decomposition for discrete structures and
connections with combinatorial optimization. Ann Discrete Math 1984;19:257–356.

54 GRAPH THEORETICAL APPROACHES

56. Peterson KJ, Eernisse DJ. Animal phylogeny and the ancestry of bilaterians: Inferences
from morphology and 18S rDNA gene sequences. Evol Dev 2001;3(3):170–205.

57. Przytycka TM. An important connection between network motifs and parsimony models.
RECOMB; 2006.

58. Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Séraphin B. A generic protein
purification method for protein complex characterization and proteome exploration. Nat
Biotechnol 1999;17(10):1030–1032.

59. Rogozin IB, Wolf YI, Sorokin AV, Mirkin BG, Koonin EV. Remarkable interkingdom
conservation of intron positions and massive, lineage-specific intron loss and gain in
eukaryotic evolution. Curr Biol 2003;13:1512–1517.

60. Rose DJ, Tarjan RE. Algorithmic aspects of vertex elimination. SIAM J Appl Math
1978;34:176–197.

61. Roy SW, Gilbert W. Resolution of a deep animal divergence by the pattern of intron
conservation. Proc Nat Acad Sci USA 2005;102(12):4403–4408.

62. Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D. The Database of
Interacting Proteins: the 2004 update. Nucl Acid Res 2004;32:D449–D451.

63. Scott J, Ideker T, Karp RM, Sharan R. Efficient algorithms for detecting signaling
pathways in protein interaction networks. J Comput Biol 2006;13(2):133–144.

64. Shamir R. Advanced topics in graph theory. Technical report, Tel-Aviv University; 1994.

65. Shen-Orr S, Milo R, Mangan S, Alon U. Network motifs in the transcriptional regulation
network of escherichia coli. Nat Genet 2002;31.

66. Steffen M, Petti A, Aach J, D’haeseleer P, Church G. Automated modelling of signal
transduction networks. BMC Bioinformatics 2002;3:34.

67. Tarjan RE, Yannakakis M. Simple linear-time algorithms to test chordality of graphs, test
acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J Comput
1984;13(3):566–579.

68. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan
V, Srinivasan M, Pochart P. A comprehensive analysis of protein–protein interactions in
Saccharomyces cerevisiae. Nature 2000;403:623–627.

69. Walter JR. Representation of rigid circuit graphs. Ph.D. thesis, Wayne State University;
1972.

70. Wilson EO. A consistency test for phylogenies based on contemporaneous species. Syst
Zool 1965;14:214–220.

71. Wolf YI, Rogozin IB, Koonin EV. Coelomata and not Ecdysozoa: Evidence from
genome-wide phylogenetic analysis. Genome Res 2004;14:29–36.

72. Yannakakis M. Computing the minimum fill-in is NP-complete. SIAM J Algebraic
Discrete Method 1981;2:77–79.

73. Zotenko E, Guimarães KS, Jothi R, Przytycka TM. Decomposition of overlapping
protein complexes: A graph theoretical method for analyzing static and dynamic protein
associations. Algorithms Mol Biol 2006;1(1):7.

4
ADVANCES IN HIDDEN MARKOV
MODELS FOR SEQUENCE
ANNOTATION

Broňa Brejová
Department of Biological Statistics and Computational Biology, Cornell University, Ithaca,
NY, USA

Daniel G. Brown
Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada

Tomáš Vinař
Department of Biological Statistics and Computational Biology, Cornell University, Ithaca,
NY, USA

4.1 INTRODUCTION

One of the most basic tasks of bioinformatics is to identify features in a biological
sequence. Whether these features are the binding sites of a protein, the regions of a
DNA sequence that are most subjected to selective pressures, or coding sequences
found in an expressed sequence tag, this phase is fundamental to the process of
sequence analysis.

While a variety of computational tools that people have been needing to perform
this task have been used over the course of the time, the currently dominant tool in
biological sequence annotation is the hidden Markov model (HMM). HMMs have
been used in so many contexts over the course of the last 15 years that they almost

Bioinformatics Algorithms: Techniques and Applications, Edited by Ion I. Mǎndoiu
and Alexander Zelikovsky
Copyright © 2008 John Wiley & Sons, Inc.

55

56 ADVANCES IN HIDDEN MARKOV MODELS

require no introduction. They are used in computational gene finders to predict the
structure of genes in newly sequenced genomes. They are used in protein sequence
analysis to identify substructural elements. They are used to discover regulatory se-
quences in DNA to identify ancestry patterns in pedigrees, and truly for almost any
feature detection problem in biological sequences.

As such, it may seem that their use is so routinized that there is nothing more to learn
about them: that 15 years of their use in biological sequence analysis mined the field
for all of its interesting problems many years ago. Fortunately, this is anything but the
case. As the fields of genomics and proteomics advance, a variety of new challenges
have come to fore in the algorithmic analysis of HMMs. For example, if we have a large
amount of training data and can train an HMM to closely model the many complex
features of the data, will that necessarily improve the quality of our predictions on
new data? How can we properly model the distributions of the lengths of complex
sequence features in HMMs? How can we incorporate evolutionary conservation
information into the creation of HMMs that properly model DNA sequences and into
the algorithms for their analysis?

This chapter considers the use of HMMs in sequence analysis, starting from the
simplest cases (simple HMMs, with simple structures, simple training algorithms, and
simple decoding procedures) and moving to situations of great complexity, incorpo-
rating very recent ideas from machine learning theory. We present the basic algorithms
and their extensions, and give suggestions of directions where future research can be
most useful. Throughout, we make reference to the important applications in which
these algorithms are used and to why the field has experienced continuous advance-
ment over the last many years.

4.2 HIDDEN MARKOV MODELS FOR SEQUENCE ANNOTATION

In this section, we illustrate the use of HMMs for biological sequence annotation.
We will focus on the simplification of one of the most prominent uses of HMMs in
sequence annotation: the problem of gene finding. Assume we are given a section of a
DNA sequence containing a single protein-coding gene, and our goal is to locate the
regions of this sequence that code for a protein. In eukaryotes, such regions may be in-
terrupted by noncoding segments called introns. Therefore, our task is to label each nu-
cleotide of the DNA sequence with one of the three labels, indicating whether the nu-
cleotide comes from a coding region, an intron, or an intergenic region (see Fig. 4.1).

...CATCATGGTGCAT...GGCAGGTAAGCA...TTCATAGGCTCC...CACTGAGTTATCT...

...xxxxccccccccc...ccccciiiiiii...iiiiiiiccccc...ccccccxxxxxxx...

Upstream
intergenic

Coding
1region

CodingIntron
2region

Downstream
intergenic

FIGURE 4.1 In gene finding, the goal is to label each nucleotide of a given DNA sequence
as coding (c), intron (i), or intergenic (x).

HIDDEN MARKOV MODELS FOR SEQUENCE ANNOTATION 57

More generally, the problem of labeling every symbol of a biological sequence
with its functional category is the sequence annotation problem, and such a sequence
of labels is an annotation of a sequence.

For our gene finding problem, we use our knowledge of gene structure and a col-
lection of training data to design an HMM that characterizes typical DNA sequences
and their gene annotations. Then we use this model to find the highest probability
annotations for novel, unannotated DNA sequences.

4.2.1 Hidden Markov Models

An HMM is a generative probabilistic model for modeling sequence data that come
from a finite alphabet. An HMM consists of a finite set of states and three sets of
parameters called the initial, emission, and transition probabilities. The initial prob-
ability sk is defined for each state k of the model. The transition probability ak,	 is
defined for each pair of states (k,), and the emission probability ek,b is defined for
each state k and each symbol b of the output alphabet. The initial probabilities form
a probability distribution, as do the transition probabilities ak,	 at each state k and the
emission probabilities ek,b for each k.

An HMM generates a sequence step by step, one symbol in each step. First, a start
state is randomly generated according to the initial probabilities. Then, in each step,
the model randomly generates one symbol and moves to a new state. Both the new
symbol and the next state depend only on the current state. If the current state is k,
the symbol b will be generated with probability ek,b, and the next state will be 	 with
probability ak,	.

In n steps, the HMM generates a sequence X = x1, . . . , xn and traverses a sequence
of states (or state path) H = h1, . . . , hn. For a fixed length n, the HMM defines a
probability distribution over all possible sequences X and all possible state paths H ;
in particular, the probability that the model will traverse the state path H and generate
the sequence X is the following product of the model parameters:

Pr(H, X) = sh1

(
n−1∏
i=1

ehi,xiahi,hi+1

)
ehn,xn . (4.1)

4.2.2 Choosing the Topology and the Parameters of an HMM

To approach our gene finding problem, we will first build an HMM that models
DNA sequences and their corresponding genes. Our model will have four states:
one state representing the intergenic region upstream of the gene, one representing
coding regions of the gene, one representing introns, and one representing the region
downstream of the gene. Each state will emit symbols over the alphabet {A,C,G,T}.
In this way, the sequence generated by the HMM will represent a DNA sequence,
with the corresponding state path identifying its correct annotation.

Transitions between some pairs of states should never occur. There will be no tran-
sitions between introns and intergenic regions, nor between the two states representing

58 ADVANCES IN HIDDEN MARKOV MODELS

Upstream Coding

Intron

Downstream

FIGURE 4.2 Topology of a simplified HMM for gene finding.

upstream and downstream intergenic regions. To visualize the structure of the HMM
(also called its topology), we use a directed graph, where vertices correspond to the
states and edges to nonzero probability transitions (see Fig. 4.2).

Next, we determine the emission and transition probabilities for each state, using
a training set T containing sequences with known annotation. Because we have des-
ignated each state in our model to represent a region of a particular function, we can
use these annotations to determine the proper state path Hi for each of the sequences
Xi in the training set T . We would like our generative model to generate sequences
whose distributions and annotations are similar to those observed in the training set
T . Formally, using the maximum likelihood estimation principle, we want to set the
emission and transition probabilities to maximize the likelihood of the training data:
that is, to maximize

∏
i Pr(Hi, Xi) over all possible parameters for the model. To

maximize this probability it is sufficient to count the frequency of using each tran-
sition in the training set to estimate the transition probabilities and the frequency of
emission of each symbol in each state to estimate the emission probabilities. In other
contexts, this training process can be quite a bit more complicated; for example, when
the training set T is unannotated or when a given sequence and a annotation could
correspond to multiple-paths in the HMM; we discuss this scenario in Section 4.6.

However, in our simple case, we have created a probabilistic model of sequences
and their annotations. In the next section, we show how to use this probabilistic model
to annotate a novel DNA sequence.

4.2.3 HMM Decoding: The Viterbi Algorithm

Once the HMM topology is set and its parameters trained, we can use it to find genes
in a newly unlabeled DNA sequence X. In other words, we seek an appropriate state
path H∗ that best explains how the model could have produced X; this process is
called HMM decoding.

The simplest measure of “best” is to find the path that has the maximum probability
in the HMM, given the sequence X. Recall that the model gives the joint probabilities
Pr(H, X) for all sequence/annotation pairs, and as such, it also gives the posterior
probability Pr(H |X) = Pr(H, X)/ Pr(X), for every possible state path H through the
model, conditioned on the sequence X. We will seek the path with maximum posterior
probability. Given that the denominator Pr(X) is constant in the conditional probability
formula for a given sequence X, maximizing the posterior probability is equivalent
to finding the state path H∗ that maximizes the joint probability Pr(H∗, X).

HIDDEN MARKOV MODELS FOR SEQUENCE ANNOTATION 59

The most probable state path can be found in time linear in the sequence length by
the Viterbi algorithm [30,76]. This simple dynamic programming algorithm computes
the optimal paths for all prefixes of X; when we move from the i-length prefix to the
(i+ 1)-length prefix, we need only add one edge to one of the precomputed optimal
paths for the i-length prefix.

For every position i in the sequence and every state k, the algorithm finds the
most probable state path h1, . . . , hi to generate the first i symbols of X, provided
that hi = k. The value V [i, k] stores the joint probability Pr(h1, . . . , hi, x1, . . . , xi) of
this optimal state path. Again, if h1, . . . , hi is the most probable state path generating
x1, . . . , xi that ends in state hi, then h1, . . . , hi−1 must be the most probable state path
generating x1, . . . , xi−1 and ending in state hi−1. To compute V [i, k], we consider all
possible states as candidates for the second-to-last state, hi−1 and select the one that
leads to the most probable state path, as expressed in the following recurrence:

V [i, k] =
{

sk · ek,x1 , if i = 1

max	 V [i− 1,] · a	,k · ek,xi, otherwise.
(4.2)

The probability Pr(H∗, X) is then the maximum over all states k of V [n, k], and the
most probable state path H∗ can be traced back through the dynamic programming
table by standard techniques. The running time of the algorithm is O(nm2), where n

is the length of the sequence and m is the number of states in the HMM.

4.2.4 More Complex HMMs

We have demonstrated the basic techniques needed to use HMMs for sequence an-
notation. However, the models actually used in practice are more complex than the
one shown in Fig. 4.2. We rarely have only one state for each feature in the HMM,
and it is quite possible that we need to incorporate more positional dependencies into
the probabilities of the HMM. We will explain this in the context of our gene-finding
example.

First, note that coding regions are composed of codons that each encode one amino
acid. Therefore, it is advisable to model coding regions by a three-state cycle rather
than a single state to properly keep this structure. Codons can be interrupted by an
intron, so we use multiple copies of the intron submodel, a technique that originated
in finite state machines to enforce that the next coding region after the intron starts
at the proper codon position. Boundaries of coding regions are marked by special
sequence signals that require additional states in the model. Finally, DNA sequence
usually contains multiple genes on both strands. Figure 4.3 shows an HMM topology
that encodes all of these additional constraints.

In addition, as noted, we may want to incorporate positional dependencies into the
HMM. This is most often done by allowing higher order states. In a state of order o,
the probability of generating the character b is a function of the o previously generated
characters (all states in a standard HMM are of order zero). The emission table has
the form ek,b1,...,bo,b, where

∑
b ek,b1,...,bo,b = 1 for a fixed state k and characters

60 ADVANCES IN HIDDEN MARKOV MODELS

Intergenic
x

C
od

in
g

re
gi

on

Donor Intron Acceptor

Donor Intron Acceptor

AcceptorIntronDonor

c
c

c

c

i i i i i

c

i i i i i

i i i i i

R
ev

er
se

 s
tr

an
d

c

c

c

c

AcceptorIntronDonor

AcceptorIntronDonor

AcceptorIntronDonor

C
od

in
g

re
gi

on

c

i i i i

i i i i

i i i i

c

c

c

c

c

c
c

c

i

i

i

Fo
rw

ar
d

st
ra

nd

tr
an

sl
at

io
n

st
op

T
ra

ns
la

tio
n

st
ar

t
T

ra
ns

la
tio

n
st

ar
t

tr
an

sl
at

io
n

st
op

FIGURE 4.3 Topology of a simple HMM gene finder. The acceptor and donor regions cor-
respond to the signals at the ends and beginnings of introns.

b1, . . . , bo. In an HMM with all states of order o, Formula (4.1) generalizes as follows
(we ignore the special case of the first o characters):

Pr(H, X) = sh1

(
n−1∏
i=1

ehi,xi−o,...,xiahihi+1

)
ehn,xn−o,...,xn . (4.3)

The Viterbi algorithm for finding the most probable state path can be adapted
easily to handle higher order states with the same running time. Similarly, training
the parameters of higher order HMMs by maximum likelihood is straightforward
using procedures analogous to those shown in Section 4.2.2. HMMs for gene finding
typically use states of order between two and five.

HIDDEN MARKOV MODELS FOR SEQUENCE ANNOTATION 61

4.2.5 More Examples of Biological Sequence Annotation with HMMs

The use of HMMs in sequence annotation is not only limited to gene finding, but they
have also been used in a host of applications across the field.

One of the first applications of HMMs in bioinformatics was to segment DNA
sequences into regions with similar GC content levels [20]. Similarly, we can partition
the sequence to homogeneous regions based on other criteria, for example, the degree
of sequence conservation in multiple species [69].

In DNA sequences, eukaryote and prokaryote gene finding is the dominant HMM
application. In eukaryotic organisms the difficulty in the problem stems from the
presence of introns and the often small, and highly variable, proportion of protein
coding sequence in the genome [15,41,70]. The existence of alternative splicing also
complicates the field, as individual positions of a sequence may be found in both intron
and exon depending on the transcript, though recent work [3,17] has moved in this
direction. Gene finding in prokaryotes and viruses needs to handle overlapping genes
and the problem of insufficient training data in newly sequenced genomes [46,51].
HMMs can also be used for other tasks related to gene finding, such as promoter
detection [57].

Proteins are generally hard to analyze from sequence only since their function is
largely determined by their fold. Amino acids that are distant in the sequence may
interact once the protein is folded because they are physically close. However, HMMs
can successfully be applied to recognize aspects of protein function that are governed
by motifs located in contiguous stretches of the sequence.

One such example is transmembrane protein topology prediction. Transmembrane
proteins are partially embedded inside the cellular membrane. The topology of such a
protein identifies the regions that are found in transmembrane helices (parts traversing
the membrane), cytoplasmic loops (parts inside the cell), and noncytoplasmic loops
(parts extending outside the cell).

Figure 4.4 shows an overview of a simple HMM that could be used for predicting
these topologies. The HMM topology enforces the simple physical constraint that
cytoplasmic loops must be separated from noncytoplasmic loops by transmembrane
helices. Krogh et al. [44] and Tusnády and Simon [73] used similar HMMs in their
topology prediction tools. A special class of transmembrane proteins, β-barrel pro-
teins, is also successfully modeled by HMMs [26,49]. More generally, we can try to
predict the secondary structure of arbitrary proteins, labeling each amino acid as a
part of an α-helix, β-sheet, or loop [6,16,33].

Cytoplasmic
loop

Transmembrane
helix

Noncycoplasmic
loop

FIGURE 4.4 Simplified topology of an HMM for transmembrane topology prediction.

62 ADVANCES IN HIDDEN MARKOV MODELS

Delete states

Insert states

Match states

FIGURE 4.5 A section of a profile HMM with three match states. Delete states are silent;
that is, they do not emit any characters.

HMMs are closely related to the problem of aligning two DNA or protein se-
quences. In Section 4.5 we discuss pair HMMs, which provide a probabilistic frame-
work for scoring pairwise alignments.

In protein sequence analysis, HMMs are often used to align the residues of a
newly sequenced protein to a model of a family of homologous proteins. This is
most typically done using a prominent class of hidden Markov models called pro-
file HMMs [43]. A profile HMM has a regular structure consisting of a match
state for every conserved column of the multiple alignment and insert and delete
states that model insertions and deletions in the alignment, as shown in Fig. 4.5.
Thanks to their regular structure, they can be created automatically and stored
in a database, such as Pfam [29]. Computing the maximum probability path
in a profile HMM is equivalent to optimizing a very simple form of multiple
alignment.

We can also create a handcrafted topology for recognizing a particular signal,
protein family, or fold. Examples include models to identify signal peptides [56],
and for discovering coiled-coil proteins [23] and glycolipid-anchored membrane
proteins [32].

Schultz et al. [64] use profile HMMs to detect recombination in HIV strains. They
build a profile HMM for each known subtype, adding transitions with a low probability
between states corresponding to the profiles of different subtypes. In their formulation,
the annotation of a given query sequence identifies which parts belong to which
subtype.

Another interesting recent use of HMMs that incorporates recombination is due
to Rastas et al. [62], who use an HMM to assist them in haplotype inference and in
discovering recombination points in genotype data. From genotype data, they train a
hidden model to represent approximations of ancestral haplotypes and allow transi-
tions between these due to recombinations over the course of evolutionary time scales.
Given a genotype, which is the conflation of two haplotypes and each representing
a path through the network, they compute the maximum probability pair of paths
that can give rise to that genotype. The sequences from these two paths are then the
inferred haplotypes.

Finally, we note that although the focus of this chapter is biological sequence
annotation, hidden Markov models are used for similar tasks in other domains. Speech
recognition was one of the first HMM application areas [61]. In natural language
processing, HMMs were applied to several tasks, for example, tagging the words
with their parts of speech [19], segmentation of text to topics [79], and extraction of

ALTERNATIVES TO VITERBI DECODING 63

information [66]. They can also be applied to areas as diverse as music composer
recognition [60] and fire detection [54].

4.3 ALTERNATIVES TO VITERBI DECODING

The Viterbi decoding algorithm is widely used because of its simplicity and efficiency.
It is not the only appropriate decoding algorithm for all HMM applications. This
section presents several alternative decoding contexts and appropriate algorithms for
them.

4.3.1 Maximizing the Number of Correctly Explained States: Posterior
Decoding

Posterior decoding focuses on individual positions in the sequence and tries to max-
imize the probability that they are properly explained. This is in contrast to Viterbi
decoding, which computes the globally optimal state path. The simplest posterior
decoding question is what state most likely generated symbol i in the HMM output?

The most probable path is not necessarily helpful in answering this question. Many
different state paths in the HMM can generate the same sequence s, and in position i,
it is possible that many of them will agree on the same state. To compute the posterior
probability P(hi = k |X) of state k at position i, conditioned on the entire sequence
X, we add the probabilities of all paths using state k at position i. The posterior
probability can be decomposed as follows:

Pr(hi = k |X) =
∑

	

Fi(k, X) · ak,	 · Bi+1(, X)

Pr(X)
, (4.4)

where Fi(k, X) = Pr(hi = k, x1, . . . , xi), and the probability of generating the first i

symbols of X and ending in the state k, is called the forward probability of state k at
position i, and Bi+1(, X) = Pr(hi+1 = 	, xi+1, . . . , xn), the probability of starting
in state 	 and generating the rest of the sequence, xi+1, . . . , xn, is called the backward
probability of state 	 at position i+ 1. The forward probabilities for a given sequence
X and a given hidden Markov model can be computed in O(nm2) time using the
standard forward algorithm [8]; the backward probabilities can be computed by the
backward algorithm in the same running time.

Using Formula (4.4) and the results of the forward and backward algorithms, we
can compute the posterior probabilities of all states at all positions of the sequence
X in O(nm2) time. Note that the posterior probability of the whole sequence Pr(X),
which is the denominator in Formula 4.4, is also obtained as a side product of the
forward algorithm: it is

∑
	 Fn(, X).

We can use the posterior probabilities in a number of ways. A human user can sim-
ply examine them to look for interesting features; [44] display a plot of the posterior
probabilities of individual states along with the most probable annotation. The plot

64 ADVANCES IN HIDDEN MARKOV MODELS

highlights the parts of the annotation that are most certain and the other hypotheses
that might be reasonably likely. We can also compute the posterior probability of
an entire candidate sequence feature, such as an exon, by summing the probabilities
of all paths sharing that feature in a specific location of the sequence. Genscan [15]
provides a list of the most probable alternative exons, including the ones not found on
the most probable path. These exons can then be tested experimentally or used as an
input for further processing. Larsen and Krogh [46] go one step further and compute
the statistical significance of discovered genes, computing the expected number of
genes with a given score that would occur in a random sequence of certain length.

We can also decode sequences using posterior probabilities. In posterior decoding,
we choose the highest posterior probability state at each position of the sequence: h∗i =
arg maxk Pr(hi = k |X). This approach maximizes the expected number of positions
in the decoding that have the right state. By contrast, Viterbi decoding maximizes the
probability of the entire state path, even though this path may have exceedingly low
probability. It may be the case that the posterior decoding has better overall quality.

Still, the posterior decoding can be a composition of unrelated high probability
paths. This can reach a point of ridiculousness: two adjacent states in the posterior
annotation may not even be connected by an edge in the HMM. The probability of such
a sequence of states being the source of the query sequence is zero: it is inconsistent
with the basic assumptions encoded in the model topology.

Different authors have addressed this concern through adding a postprocessing
step where we attempt to maximize a different objective function. After computing
all posterior state probabilities, using the forward–backward algorithm, we restrict the
choice to the paths that use only transitions present in the HMM topology. Kill et al.
[37] find the path that maximizes the sum of the posterior state probabilities, trying
to maximize the number of correctly predicted states. This is done by straightforward
dynamic programming, similar to the Viterbi algorithm, in time O(nm2). Using a
similar method, Furiselli et al. [26] maximize the product of posterior probabilities
in the postprocessing step.

4.3.2 Maximizing the Annotation Probability: The Multiple Path Problem

Each state in an HMM used to annotate sequences is labeled with the feature to which it
corresponds. In gene finding, we label states as coming from exons, introns, and so on.
Each state path naturally corresponds to a sequence of labels or an annotation. This an-
notation encapsulates the semantic meaning given to the sequence by the HMM path.

This mapping between state paths and annotations is not always one to one: several
state paths may correspond to the same annotation. Such paths provide “alternative
origins” of the sequence but have the same semantic meaning. Thus, if we seek the
most probable meaning, or annotation, for the sequence, we should add probabilities
of all of these state paths.

We will describe an HMM that has multiple state paths with the same annotation
as having the multiple-path problem. Figure 4.6a shows a simplified HMM for gene
finding with its state labels depicted by the state colors. If the start state of the HMM
is fixed, this HMM does not have the multiple-path problem, even though multiple

ALTERNATIVES TO VITERBI DECODING 65

CodingNon-
coding

Intron

problem-pathmultipleWithout(a)

CodingNon-
coding

Intron Intron
tail

problempathmultiple-With(b)

FIGURE 4.6 Simple models of exon/intron structure.

states share the same color. Given an annotation, we can identify the single state that
corresponds to each black and gray position.

However, if we move to a slightly more complex model, things quickly change.
The model in Fig. 4.6a embodies the assumption that the nucleotide composition of
introns is homogeneous. However, vertebrate intronic sequences contain a variable-
length tail that is rich in nucleotides C and T [15]. To incorporate this information,
we can include a second intron state representing such a tail, as shown in Fig. 4.6b,
where the new state has substantially different emission probabilities from the first
one. This change creates the multiple-path problem because there are always several
high-probability alternatives for the transfer from the “intron” state to the “tail” state.
The probabilities of all of these paths may be quite low, and Viterbi decoding may
thus lead us to a completely different gene structure that results from fewer paths.

Even though the model in Fig. 4.6b is a more truthful representation of real se-
quences than the one in Fig. 4.6a, it may provide worse results when used with the
Viterbi algorithm [13]. This paradoxical conclusion results because we will be bi-
ased toward annotations with fewer uses of the intron module, since each use of that
module tends to greatly drop path probabilities.

In practice, gene finders often solve this problem by fixing the number of nu-
cleotides in the pyrimidine-rich intron tail [12,15,70]. The resulting model does not
have the multiple-path problem and can be decoded by the Viterbi algorithm.

Sometimes, though, the multiple-path problem is not easily removed. In these
cases, we would like to compute the most probable annotation directly. Unfortunately,
this is not feasible for all model topologies. Brejova et al. [13] constructed an HMM
with 34 states for which it is NP-hard to compute the most probable annotation.
As such, we are not likely to find an efficient algorithm to find the most probable
annotation.

We can respond to this negative conclusion by resorting to heuristic algorithms, not
guaranteed to find the most probable annotation, that perform better than the Viterbi
algorithm. A popular example is the N-best algorithm [65], which was shown to
give good results in several biological applications [41,44]. We can also use posterior
decoding, as in Section 4.3.1, and thereby join together all of the many paths that go
through all states with the same label. Still, this approach will be prey to all of the
other limitations of the posterior decoding technique.

66 ADVANCES IN HIDDEN MARKOV MODELS

However, we can characterize special classes of HMMs for which the most proba-
ble annotation can be computed efficiently. For example, for HMMs that do not have
the multiple-path problem, we can find the most probable annotation by the Viterbi
algorithm in O(nm2) time. Vinar [75] has shown a hierarchy of algorithms that can
decode increasingly wider classes of HMMs but at a cost of increasing running time
O(nd+1md+2) for a parameter d. In the rest of this section, we describe the most
practical of these algorithms that runs in O(n2m3) time.

This running time is feasible for analyzing protein or mRNA sequences that are
much shorter than genomic DNA. This algorithm can find the most probable labeling
for a wide class of models with the multiple-path problem, including the gene-
finding HMM shown in Fig. 4.6b and models used for predicting the topology of
transmembrane proteins and finding coding regions in mRNA sequences. It can also
be applied as a heuristic to HMMs outside of its target class, much as the N-best
algorithm can.

The main observation is that many HMMs with the multiple-path problem still have
a fair amount of structure in the way that sequence features flow from one to another.
Specifically, for these HMMs, while many paths may represent the same annotation,
the edges used to transition between the sequence features in the annotation are always
the same for all of the paths. We call the edges that transition between states of different
labels critical edges.

The extended annotation of a state path h1h2, . . . , hn is the pair (L, C), where L =
λ1, λ2, . . . , λn is the sequence of labels of each state in the path and C = c1, c2, . . . , ck

is the sequence of all critical edges followed on that path. There can be several state
paths with the same extended annotation; for example, in Fig. 4.6b, these are the paths
that differ only in position of entering the intron tail state; they all follow the same
edge from gray to white.

We can extend the Viterbi algorithm to compute the most probable extended an-
notation. Fortunately, many HMMs (including the one Fig. 4.6b) have one to one
correspondence between extended annotations and annotations, and thus can be
decoded by this algorithm. We can even test automatically if a given HMM has
this property [13], called the critical edge condition.

The algorithm again uses dynamic programming, summing all of the paths within
every feature, to obtain the maximum probability extended annotation. In the Viterbi
algorithm, we compute the values V [i, k], the maximum probability of a state path
for the sequence x1, . . . , xi over all paths ending in state k. In the extended Viterbi
algorithm, we instead compute L[i, k], the maximum probability of an extended an-
notation (L, C) of the sequence x1, . . . , xi, where the model is in state k at position
i; that is, L[i, k] = max Pr(x1, . . . , xi, (L, C), hi = k).

At each step, we examine all possible durations of the last segment with the same
label and instead of choosing the single most probable path in that segment with
that length, we compute the sum of all possible appropriate-length state paths in this
segment. If the segment starts at position j of the sequence, let P[j, i, k,] be this
sum; it is the probability of generating the sequence xj, . . . , xi, starting in state k and
ending in state 	, using only states with the same label λ (both states k and 	 must

GENERALIZED HIDDEN MARKOV MODELS 67

also have this same label). We get the following recurrence:

L[i, k] = max
j≤i

max
	

max
	′

L[j − 1, 	′] · a	′,	 · P[j, i, 	, k] . (4.5)

We compute the values of L in the order of increasing i. For each i, we compute
all relevant values of P[j, i, k,] in order of decreasing j by the following recurrence
(this is similar to the standard backward algorithm):

P[j, i, k,] =
∑

	′ with label λ

ek,xj · ak,	′ · P[′, 	, j + 1, i] . (4.6)

This algorithm finds the most probable extended annotation in any HMM in O(n2m3)
time.

4.3.3 Finding Many Paths: Sampling from the Posterior Distribution

Instead of finding the most probable state path, we can also sample a collection of
state paths according to the conditional probability distribution Pr(H |X) defined by
the HMM. The following algorithm for sampling from HMM was introduced by Zhu
et al. [82].

We first precompute all values of Bi(k, X) by the backward algorithm as outlined
in Section 4.3.1. In the first step, we randomly choose initial state h1, where the
probability of starting in state k is proportional to sk · B1(k, X). After that, in the ith
step, we choose the next state hi with probability proportional to ahi−1,hi · Bi(hi, X).
The probability of choosing path H = h1, . . . , hn by this randomized algorithm is
exactly Pr(H |X), so we are sampling from the conditional distribution of state paths,
given the output sequence X.

Sampling may be useful if we need to provide several alternative annotations
instead of a single prediction. For example, several possible high probability anno-
tations may be needed for the purpose of experimental verification. In gene finding,
genes may have several splicing variants; the same DNA sequence is transcribed
into multiple proteins using different combinations of splice sites. SLAM [17] and
AUGUSTUS [71] use this method to generate multiple gene annotations as potential
alternative transcripts. On the contrary, as each of these will likely have extremely low
probability, they are likely unreliable as overall predictions for the entire sequence.

4.4 GENERALIZED HIDDEN MARKOV MODELS

The lengths of features found in biological sequences can come from extremely
complex distributions. Unfortunately, simple HMMs are not necessarily effective
at modeling these distributions. For example, the simplest way to model a region of
variable length is with a single HMM state that has a transition to itself (a self-loop),

68 ADVANCES IN HIDDEN MARKOV MODELS

(b)(a)

6004002000
Length

0.002

0.004

0.006

0.008

0.010

6004002000
Length

0.000

0.002

0.004

0.006

0.008

0.010

FIGURE 4.7 Length distribution of internal exons on human chromosome 22. (a) Best fit
by geometric distribution. (b) Best fit by geometric-tail distribution with t = 130.

with transition probability p. The probability that the HMM stays in such a state for
exactly 	 steps is (1− p)p	−1, so the distribution of lengths of regions generated
by this state will be geometric. However, length distributions of biological sequence
elements are far from geometric. Figure 4.7a shows length distribution of internal
exons in human genes and its best approximation by a geometric distribution.

This section shows a variety of methods to address this problem. Some involve
changes to the generative behavior to improve the ability to model more complicated
distributions. The simplest such approaches can substantially increase the decoding
time from O(nm2) to O(n2m2); for long DNA sequences, this order of magnitude
change is unacceptable. We thus present methods that compromise between modeling
accuracy and decoding time.

4.4.1 Generalized HMMs and Explicit State Duration

In generalized HMMs, self-loop transitions are replaced by states generating their
state durations explicitly. Upon entering a state, the generative model first chooses
the duration d, which is the number of symbols that will be generated in this state. For
each state h, the probability distribution δh that determines these random variables
is explicitly represented in the model. After d symbols are generated in the state, the
model follows a transition to a new state.

To compute the most probable state path that generates a particular sequence
of symbols, we must modify the Viterbi algorithm. In each step of the dynamic
programming, in addition to examining all potential last transitions, we also have
to consider all possible durations of the last state. If V [i, k] is again the probability
of the most probable path generating the first i symbols x1, . . . , xi and finishing in
state k, assuming that in the next step the model will transit out of state k or finish
the generation process, the recurrence characterizing the dynamic programming must

GENERALIZED HIDDEN MARKOV MODELS 69

change as follows:

V [i, k] = max
1≤j≤i

[emit(k, j, i) · δk(i− j + 1) ·max
	

V (j − 1,) · a	,k], (4.7)

where emit(k, j, i) is the emission probability of generating the sequence of symbols
xj, . . . , xi in state k. The straightforward implementation of this dynamic program-
ming gives an O(n3m2) running time, where n is the length of the sequence and m

is the number of the states, since the computation of emit(v, j, i) takes O(n) time in
the worst case. However, it is possible to reduce the running time to O(n2m2) using
a precomputation that requires O(nm) time, after which it is possible to compute
emit(v, j, i) in constant time for any i and j (see [53] for details).

This sort of runtime, which is quadratic in the length of the query sequence, is
reasonable for short sequences, such as proteins. It is not feasible for long DNA se-
quences. Two straightforward solutions to reduce the running time are used in practice.

First, we can place an upper bound of d on the number of characters produced by
each state (as in [61]). Then, the running time will be O(ndm2). In speech recognition
applications, it is usually possible to keep the bound d relatively small, as the state
durations may be phonemic durations, so this approach yields a reasonable decoding
algorithm with practical running time. However, such a bound is often hard to find in
biological applications.

Second, we observe that we can stop our dynamic programming search for lengths
that may be emitted by the current state whenever emit(k, j, i) = 0. For example,
this is a common stopping condition for exon states in gene finding: we can stop
searching upon reading an in-frame stop codon. Burge and Karlin [15] used this
approach in their gene finder Genscan to model exons with generalized states and
complex distributions, still achieving reasonable decoding runtimes. Unfortunately,
this approach does not extend to intron distributions: there is no common sequence
forbidden to them.

4.4.2 Distributions with Geometric Tails

One way of decreasing the running time, even when no upper bound on the length
of the state durations is available, is to restrict the family of length distributions
allowed in the generalized states. One example of this approach is due to Brejova
and Vinar [14], which restricts the family of durations to ones with geometric tails.
Such distributions are robust enough to characterize the lengths of many important
biological elements effectively.

A geometric-tail distribution for the duration of a state is the joining of two dis-
tributions: the first part is an arbitrary length distribution, and the second part is a
geometric tail. Specifically, there is a parameter t where, for values of i less than or
equal to t, the probability δk(i) is explicitly set, while for values of i greater than t,
δk(i) = δk(t) · qi−t

k . The values of δk(t) and qk are set to maximize the likelihood of
the length distributions of training data, and the explicit probabilities found in δk(i)
for i < t are set to match observed values after smoothing.

Such distributions can model the lengths of many functional segments of biological
sequences, even with small values of the tail start parameter t. For example, Fig. 4.7b

70 ADVANCES IN HIDDEN MARKOV MODELS

shows the geometric-tail distribution with t = 130 that best approximates the length
distribution of human internal exons.

[14] emphasize models with small values of the parameter t because they also
design an efficient decoding algorithm with O(nmt + nm2) runtime. The Viterbi
algorithm for generalized HMMs in recurrence (4.7) explicitly considers all possible
durations of state k. For geometric-tail distributions, we can reduce the running time
by distinguishing between two cases: durations less than or equal to tk and durations
longer than tk.

In particular, let Q[i, k] be the probability of the most probable path generating
the first i symbols of the sequence and spending at least last tk steps in state k. To
compute the value of Q[i, k], we consider two cases: either the ith character extends
the duration of the state k, which was already at least tk, or generating the ith character
brings the duration of state k to exactly tk steps. The value of Q[i, k] can then be used
in computing V [i, k], instead of checking all durations longer than t:

V [i, k] = max

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Q[i, k], (duration at least tk)

max
1≤d<tk

[emit (k, i− d + 1, i) · δk(d)

·max
	

V [i− d,] · a	,k] (duration less than tk),

(4.8)

Q[i, k] = max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Q[i− 1, k] · qk · ek,xi (duration more than tk)

emit (k, i− tk + 1, i) · δk(tk) ·max
	

V [i− tk,] · a	,k

(duration exactly tk).

(4.9)

A straightforward dynamic programming algorithm implemented based on this
recurrence would take O(ntm2) time, which [14] improve to O(nmt + nm2) by pre-
computing values of max	 V [i,] · a(, k).

In gene finding, this technique was used in ExonHunter [12,14] to model the
length distributions of exons and introns; the gene finder Augustus [70] uses a similar
approach shown in Section 4.4.3 to model the length distributions of introns.

The distributions of much longer features can also be modeled in an extension
of this approach. The gene finder ExonHunter [12] models the lengths of intergenic
features, for which a simple geometric tail distribution would require t ≈ 104, by
replacing a single-state model of intergenic region with a two-state model that al-
lows one to approximate this distribution. The first state generates symbols in blocks
of length

√
t, where the number of blocks is determined by a geometric-tail dis-

tribution and tail begins at
√

t. The second state generates only up to
√

t symbols,
with uniform length distribution. This method replaces the original length distribu-
tion with a step-function approximation, where the steps happen at intervals of

√
t,

as shown in Fig. 4.8. The model that represents this distribution can be decoded in

GENERALIZED HIDDEN MARKOV MODELS 71

6000040000200000
Length

0.00000

0.00002

0.00004

300020001000
Length

0.00001

0.00002

0.00003

FIGURE 4.8 Step-function approximation of intergenic length distribution in human chro-
mosome 22. The right plot shows detail of the step-function character of the distribution.

O(nm
√

t + nm2) time, which is practical even for the large values of t needed to
model intergenic regions.

4.4.3 Gadgets of States

An alternative way of avoiding the geometric length distributions for individual states
in hidden Markov models is to model a single sequence element by multiple states
instead of a single state. Durbin et al. [25] (recently also reexamined by Johnson
[35]) discuss several ways to model nongeometric length distributions by replacing a
single state with a group of states that shares the same set of emission probabilities.
Transitions are added inside this group so that the probability of staying within the
group for 	 steps is close to the probability that the modeled feature has length 	.

Consider the gadget in Fig. 4.9a. The leftmost transition is the sole entry point to
the submodel, and the rightmost transition is the exit. If the gadget consists of n states,
the probability of generating a feature of length 	 > n is f () = (−1

n−1

)
p	−n(1− p)n,

which can be used to model a wide variety of gamma distributions (see Fig. 4.9b). One
example of this approach is found in [46], who used three copies of their codon model,
each with its own self-loop, to model the length distribution of genes in bacteria.

The geometric-tail distributions with parameter t discussed in the previous sections
can be generated by a gadget of t states, shown in Fig. 4.10; for i < t, the probability
of generating a feature with length i is

∏
j<i(1− pj)pi, while if i ≥ t, then δk(i) =∏

j=1...t−1(1− pj)qi−t−1(1− q).
Such a construction was used by Nielsen and Krogh [56] for protein modeling

and by Stanke and Waack [70] in gene finding. The modified Viterbi algorithm for
geometric-tail distributions shown in the previous section is essentially equivalent to
running the classical Viterbi algorithm on such an HMM, though it is more memory
efficient, since the Viterbi probabilities V [i, k] are not stored for the extra states within
the gadget.

In general, one can use any topology of states in a gadget; distributions that can
be represented in such a way are called phase-type distributions, and they play an

72 ADVANCES IN HIDDEN MARKOV MODELS

(b)(a)

p p p

10080604020
0.0

0.1

0.2

1 state
2 states
4 states
8 states

FIGURE 4.9 (a) A gadget of states generating nongeometric length distributions; (b) de-
pending on the number of states and probability p, different distributions from a subclass of
the discrete gamma distributions �(p	, 1) can be generated.

important role in queuing and systems theory (see [21] for a recent overview). This
approach of using phase-type distributions suggests what appears to be an ideal frame-
work for modeling general length distributions in HMMs: fix the number of states
in each gadget depending on the desired running time, and then find the best ap-
proximation of the length distribution observed in training data. With increasing
size of the gadget, we can approximate any desired length distribution arbitrarily
well [5].

Unfortunately, most gadgets, such as the one shown in Fig. 4.9a, introduce the
multiple-path problem discussed in Section 4.3.2, so Viterbi decoding is inappro-
priate for them. Indeed, Vinar [75] showed that the result of decoding the HMM
with a gadget shown in Fig. 4.9a with Viterbi decoding is equivalent to the result
of decoding an HMM where the same feature has essentially a geometric length
distribution.

This unhappy result leaves us with two options: compute the most probable labeling
by the extended Viterbi algorithm from Section 4.3.2 or use other decoding strategy,
such as posterior decoding. Note that since the extended Viterbi runs in quadratic
time in the length of the sequence, the former strategy is no better than using arbitrary
length distributions and the algorithm from Section 4.4.1.

q

1 2 3

p1
p2

p3

FIGURE 4.10 A gadget of states generating a geometric-tail length distribution with t = 4.
The black circle represents the first state of the next submodel of the HMM.

HMMS WITH MULTIPLE OUTPUTS OR EXTERNAL INFLUENCES 73

4.5 HMMS WITH MULTIPLE OUTPUTS OR EXTERNAL INFLUENCES

In the previous sections, we have considered HMMs that modeled a single DNA or
protein sequence and its annotation. This approach, however, is not appropriate to the
more contemporary domain in which we may have much external information that
is helpful in annotating a sequence accurately. In this section, we consider a variety
of ways in which HMMs can incorporate such external evidence. Many of these
change the structure of the output of the HMM, while others influence the decoding
algorithms.

Perhaps the most readily available source of information is predicted evolutionary
homology. A large number of DNA and protein sequences are publicly available in
databases such as GenBank [9]. For a given sequence of interest, we may find its
likely homologs in a database and exploit typical patterns of evolution to improve
the annotation. Functionally important regions usually evolve much more slowly and
are well conserved even between relatively distant species; on the contrary, random
mutations often accumulate more quickly in regions with fewer functional constraints
[68]. Another source of evidence is the results of biological experiments aimed at elu-
cidating sequence features and their function. For example, in gene finding, EST se-
quencing and tiling array experiments may confirm that certain regions of the genome
are exons.

An example of additional information in gene finding is illustrated in Fig. 4.11. The
figure shows significant alignments of a distantly related genome, known proteins,
and expressed sequence tags to a genomic region containing the human URO-D gene.
In this case, the additional evidence provides a human observer enough information
to have a very good idea about the structure of the gene. The process of incorporating
such information into the automatic annotation that results from decoding an HMM,
on the contrary, is not necessarily nearly as simple: we must design systems that are
efficient to decode and efficiently trained, and that are able to accommodate errors
and imprecisions in the external sources of information.

3000200010000

Human gene URO-D

Drosophila genome

Mouse protein DCUP_MOUSE

Mouse ESTs

FIGURE 4.11 Evidence supporting annotation of human URO-D gene. Significant align-
ments from fruit fly genome, known mouse proteins, and mouse ESTs are represented
as boxes.

74 ADVANCES IN HIDDEN MARKOV MODELS

4.5.1 HMMs with Multiple Outputs

One way of incorporating additional evidence into HMMs is to represent each source
of evidence as a new informant sequence. We can then extend the HMM to generate the
informant sequences as part of its output, alongside with the original query sequence
whose annotation we seek.

These extensions are perhaps most easily described in the framework of Bayesian
networks. A Bayesian network is a generative probabilistic model whose output is
N variables. The dependencies among these variables are shown by representing
the variables as the vertices of a directed acyclic graph. We generate values for the
variables in topological order so that the values of all of the variables that are the pre-
decessors of a variable are determined before its value. To be more specific, consider a
variable X, with parents X1, . . . , Xk. The parameters of the Bayesian network specify
the conditional probability Pr(X = x |X1 = x1, . . . , Xk = xk) for all combinations
of the values x, x1, . . . , xk. Once the values of the parent variables are fixed, we can
generate the value of X from this conditional distribution.

HMMs easily fit into this Bayesian network framework: an HMM that generates
a sequence of a fixed length n can be represented as a Bayesian network with 2n

variables: for each emitted symbol, we have one variable representing the symbol itself
and one variable representing the hidden state emitting the symbol (see Fig. 4.12).
We can also represent higher order states by including additional edges between the
observed variables as demonstrated in the figure.

One approach to incorporating external evidence into the HMM is to represent the
evidence sources by informant sequences, which also depend on the hidden states of
the network. We translate each external source into a sequence of n symbols from
a finite alphabet, where each symbol in the informant sequence must correspond to
one symbol of the query sequence. For example, we can encode a genome-to-genome
alignment as a sequence of n symbols from the alphabet {0, 1, . . .} by characteriz-
ing each base of the query DNA sequence as “aligned with match” (symbol “1”),
“aligned with mismatch” (symbol “0”), or “unaligned” (symbol “.”); this is the en-
coding scheme used in the gene finder TwinScan [39].

We can represent this approach by adding a variable for each informant se-
quence at each sequence position to our Bayesian network. If we have k − 1 external

FIGURE 4.12 A hidden Markov model with second-order states, represented as a Bayesian
network. The top row of variables represents the state path h1, . . . , hn through the HMM. The
bottom row represents the emitted DNA sequence x1, . . . , xn. The conditional probabilities
of the Bayesian network are defined by the initial, transition, and emission probabilities of
the HMM: Pr(h1) = sh1 , Pr(hi|hi−1) = ahi,hi−1 , and Pr(xi|hi, xi−1, xi−2) = ehi,xi−2,xi−1,xi

. The
observed variables, which indicate the DNA sequence, are shaded in the figure.

HMMS WITH MULTIPLE OUTPUTS OR EXTERNAL INFLUENCES 75

FIGURE 4.13 A representation of the generative probabilistic model of the TwinScan gene
finder [39] as a Bayesian network. The hi variables each represent one state of the HMM;
variable xi represents one nucleotide of the query DNA sequence, and yi represents the conser-
vation between this nucleotide and some other genome over a special alphabet with symbols
for matched, mismatched, and unaligned positions. (TwinScan actually uses emission tables of
order 5, which can be depicted by adding additional edges, as shown in Fig. 4.12.)

information sources, the network will have n(k + 1) variables: n state variables, n

variables for the query sequence, and n variables for each of the k − 1 informant
sequences. The simplest way to add these new variables is to make the symbols of all
k sequences conditionally independent given the state at each position. Figure 4.13
shows such a model for k = 2. Korf et al. [39] used this approach to incorporate
genome-to-genome alignments into gene finding. Pavlovic et al. [58] transformed
the outputs of a collection of gene-finding programs into informant sequences and
used this same sort of approach to join their predictions into a single prediction;
their system does not even involve the query DNA sequence as one of the network’s
outputs.

Training and decoding of these extended HMMs is analogous to regular HMMs:
maximum likelihood parameters can be obtained by simple frequency counting from
annotated sequences, and we can straightforwardly modify the Viterbi algorithm (and
other decoding algorithms) to account for the multiple emission probabilities in each
step. The main limiting factor of these models is not their algorithms but is the
assumption of conditional independence between individual output sequences, which
is clearly violated in most applications.

Instead, when the evidence consists of multiple alignment of sequences known
to have evolved from a common ancestor, we can use phylogenetic HMMs, a model
design that reflects known evolutionary relationships between these sequences. In
particular, we can arrange the Bayesian network so that the topology of the net-
work is identical to the phylogenetic tree representing the evolutionary history of the
sequences, as in Fig. 4.14, which shows a model of a human query sequence and
additional sequences from mouse, rat, and chicken. In this Bayesian network, we
can partition all sequence variables into two sets at every position i: the set of ob-
served variables Oi, corresponding to the sequences in the leaves of the phylogenetic
tree, and the set of unobserved variables Ui, corresponding to the unknown ancestral
sequences.

The unobserved variables complicate both training and decoding. To train the
model, we must use the EM algorithm instead of simple frequency counting [24]. For
decoding, at each position i and for each state hi, we need to compute the likelihood of
the corresponding tree submodel Pr(Oi |hi). This probability can be computed from
the probability distribution Pr(Oi, Ui |hi) defined by the phylogenetic tree model by

76 ADVANCES IN HIDDEN MARKOV MODELS

FIGURE 4.14 A simple phylogenetic hidden Markov model depicted as a Bayesian network.
Each variable hi represents one state of the HMM, the variables Hi, Mi, Ri, Ci each represent
single positions of human, mouse, rat, and chicken from one column of a multiple genome
alignment, and the variables ai, bi, ci represent the unknown ancestral sequences. Observed
variables are shaded. For example, the value of Hi depends on its ancestor bi and on the
HMM state hi. The state determines mutation rate, since mutations occur more frequently in
noncoding regions.

marginalizing unobserved variables:

Pr(Oi |hi) =
∑
Ui

Pr(Oi, Ui |hi). (4.10)

The number of terms in this sum is exponential in the number of unobserved
variables. However, since the generative model has a tree structure, we can compute
this sum in time linear in the number of all variables by using Felsenstein’s peeling
algorithm [27], which performs dynamic programming by starting at the leaves and
proceeding to the root of the tree.

We can introduce higher order states for the observed variables, as described at the
beginning of this section. However, introducing higher order states for the unobserved
variables is more complicated: it requires substantial modification of the decoding
algorithm [69], and the running time becomes exponential in the order of the states.

Another modification of phylogenetic HMMs [34] involves rooting the phyloge-
netic tree in the query sequence rather than in the common ancestor (see Fig. 4.15).
The advantage of this approach is that the resulting probability distribution can be

FIGURE 4.15 Modified phylogenetic hidden Markov model, with query sequence positioned
at the root of the phylogenetic tree.

HMMS WITH MULTIPLE OUTPUTS OR EXTERNAL INFLUENCES 77

decomposed into a product of two terms: the probability that the HMM generates the
query sequence and that the contribution from the variables introduced by the other
sequences. The emission and transition probabilities of HMM states can be trained
and tuned separately as in a single-sequence gene finder, and the parameters required
for including additional evidence can be trained afterward.

An important issue is the parametrization of random variables associated with the
query and informant sequences. In phylogenetic HMMs, most variables have two
parents: the state variable and the parent in the phylogenetic tree. Thus if the alphabet
size is σ, the number of states is m, and the number of sequences is N, we must
train �(Nmσ2) parameters. We can reduce this number by employing a nucleotide
substitution model based on a standard continuous Markov chain model of evolution.
For example, the simplest Jukes–Cantor model [36], which assumes a uniform rate
for all single-point mutations, requires only a single parameter per sequence and
state. In more complex models of evolution, such as the general reversible model of
Rodriguez et al. [63], the substitution rate matrix (requiring �(σ2) parameters for
each state) is shared among all branches of the phylogenetic tree, and one parameter
corresponding to the branch length of an edge in the phylogenetic tree needs to be
trained for each sequence and state. Using such a model of evolution will reduce the
number of parameters to �(Nm+mσ2), thus substantial savings even for moderate
number of species.

Phylogenetic HMMs were first introduced in evolution studies [28,80]. [33] were
the first to apply them for sequence annotation in the problem of secondary struc-
ture prediction. As genomes of multiple organisms have become available, phyloge-
netic HMMs have been applied to genomic sequences for tasks such as gene find-
ing [34,50,59,67] and identifying conserved elements in genomes [68]. Phylogenetic
HMMs are also useful for finding overlapping genes in compact viral genomes [51].

The accuracy of HMM when used to analyze protein sequences can also be im-
proved by using multiple sequence alignments of several proteins that are known to
be homologous with a query sequence. However, we typically do not know the phy-
logenetic tree representing the evolution of these proteins. Instead, researchers have
developed variants of HMMs that emit a profile specifying the relative frequency of
each amino acid at each position of the sequence. Unlike phylogenetic HMMs, these
models do not capture the strong correlation between closely related sequences but
only summarize the features of the many rows of the alignment. However, they re-
quire far simpler parameter estimation. HMMs emitting profiles were used to predict
secondary structure of proteins by [16], topology of β-barrel membrane proteins by
[49], and topology of helical transmembrane proteins by [74].

4.5.2 Positional Score Modification

We can incorporate external evidence into an HMM using other methods besides
Bayesian network approaches. In an HMM, the joint probability Pr(H, X) of sequence
X and state path H is computed as a product of emission and transition probabilities
(see Eq. 4.1). The methods presented in this section place additional factors into this
product, while keeping the decoding algorithm viable.

78 ADVANCES IN HIDDEN MARKOV MODELS

All possible annotations of a particular sequence are represented as different state
paths through the HMM. Consider a piece of additional evidence E. It can be seen as a
probabilistic hypothesis about the true annotation, whose validity depends on whether
E comes from a believable source: if the origin of the evidence is trustworthy (with
some probability PE), then only paths from some set HE should be considered. On
the contrary, with probability 1− PE, the evidence is untrustworthy and we should
disregard it.

For example, in transmembrane topology prediction, we may see a motif that
suggests that the ith amino acid in the query sequence is found inside the cytoplasm.
Then the set HE consists of all paths through the HMM that mark the ith amino acid
as being from a cytoplasmic loop, and the probability (1− PE) is the probability that
the match is not a real functional occurrence of this motif, and we should disregard
the evidence entirely.

When given such an evidence, we recognize two events: E+ (the evidence is
correct), and E− (the evidence is wrong). We can write as follows:

Pr(H, X |E) = PE · Pr(H, X |E+)+ (1− PE) · Pr(H, X |E−) . (4.11)

Note that Pr(H, X |E+) = 0 for paths H not found in HE; if the evidence is
correct, it is specifically eliminating certain paths from being possible. If the ev-
idence is wrong, it should have no effect on predictions, and therefore we say
Pr(H, X |E−) = Pr(H, X). If we already know that H ∈ HE, additional evidence does
not give us any new information, and addition of such evidence should not change rela-
tive probabilities of paths; consequently, we can say Pr(H |HE, X) = Pr(H |E+, X).
Finally, we assume (obviously unrealistically) that the probability of the sequence
should be independent of the event E+, and we can say Pr(X) = Pr(X |E+).

Using these assumptions, we obtain after simple manipulation the following up-
dated probability distribution over all possible annotations:

Pr(H, X |E) =
{

(1− PE) · Pr(H, X), if H /∈ HE(
1− PE + PE

Pr(HE |X)

)
· Pr(H, X), if H ∈ HE.

(4.12)

Intuitively, the probabilities of all paths that agree with the evidence are multiplied
by a factor greater than one, and probabilities of all paths that do not agree with the
evidence are multiplied by a factor smaller than one. The relative probability of paths
within each category remains unchanged.

The computational complexity of decoding under this new probabilistic model
depends on the form of the set HE of paths that are consistent with evidence. If HE

contains all the paths that annotate a point in the sequence with a particular label or
with any label from a set of labels, we can slightly modify the Viterbi algorithm to
compute the most probable state path. The quantity Pr(HE |X) needed for the bonus
factor can be obtained by the forward–backward algorithm.

This method was first derived and used in a gene finding program GenomeScan
[81] to incorporate protein homology into gene finding. The same method was also

HMMS WITH MULTIPLE OUTPUTS OR EXTERNAL INFLUENCES 79

used to improve prediction of transmembrane protein topology by Xu et al. [77]. In
their case, the evidence was composed of motif hits that indicate strong preference
for cytoplasmic or noncytoplasmic loops at certain sites in the sequence.

A disadvantage of the GenomeScan approach is that it is unclear how to integrate
multiple pieces of additional evidence (such as multiple protein hits or multiple mo-
tifs), particularly if they are not independent. In an attempt to solve this problem,
the next method incorporates evidence in the form of additional multiplicative terms
at each position of the sequence. An important difference is that given a particular
alignment, GenomeScan method alters the probability at one position only, while in
what follows we boost the probability independently at each position covered by the
alignment.

Assuming independence between the sequence X and all additional evidence E,
we can use Bayes’ rule to obtain

Pr(H |X, E) ∝ Pr(H |X) · Pr(H |E)

Pr(H)
. (4.13)

Though this independence assumption is not true in practice, we can often limit de-
pendencies by avoiding using the same features of the sequence in both the HMM
and the additional evidence. For example, in gene finding, the HMM mostly mod-
els short windows of the sequence (signals, local coding potential, etc.), while the
additional evidence may represent database searches, such as alignments to EST or
protein sequences.

Whether we can develop an efficient decoding algorithm depends mostly on
the family of probability distributions that we use to represent the contribution of
the additional evidence Pr(H |E)/ Pr(H). In the simplest case, we assume posi-
tional independence for both the posterior probability conditioned on the evidence
Pr(H |E) =∏n

i=1 Pr(hi |E) and the prior probability Pr(H) =∏n
i=1 Pr(hi). To par-

tially compensate for the positional independence assumption, we can add a scaling
factor α < 1 as follows:

Pr(H |X, E) ∝ Pr(H |X) ·
(

Pr(H |E)

Pr(H)

)α

. (4.14)

In this particular scenario, we can easily modify the Viterbi algorithm to find the most
probable annotation H given both sequence X and evidence E are in time linear in
the length of the sequence.

For a single source of evidence, we can directly estimate the posterior probabilities
Pr(hi |E) from a training dataset. However, multiple sources of evidence would typ-
ically present many combinations of local information, requiring exponential num-
ber of parameters to train. Brejova et al. [12] developed a method for expressing
and combining information from several sources of additional evidence using partial
probabilistic statements to express the implications of the evidence and the quadratic
programming to combine all the statements concerning a particular position in the
sequence into a posterior distribution Pr(hi |E).

80 ADVANCES IN HIDDEN MARKOV MODELS

In the context of gene finding, the method of multiplying Pr(H, X) by additional
factors was successfully used to incorporate a variety of sources of information (such
as genome, EST, and protein alignments) into a single model; two examples are
HMMGene [42] and ExonHunter [12].

[72] designed a method that tries to overcome the positional independence assump-
tions. Let us assume that the evidence E is expressed as a set of “hints”: intervals
in the query sequence. In the simplest case, each hint supports a single state of the
generalized HMM (more complex variations are possible). We say that a given state
path is compatible with hint (i, j) if the part of the query sequence xi, . . . , xj is all
generated in the state supported by the interval. Otherwise, we say that the state path
is incompatible. For example, in gene finding, we can represent EST alignments as a
set of intervals, each supporting an exon state in the HMM.

Each hint is assigned a position in the sequence at its right end. Only a single hint
ei is allowed to end at each position i. Also, if there is no hint ending at position i, we
will say ei = �, corresponding to a vacuous hint. We will create a model that will
generate not only the sequence X but also the sequence of hints as follows:

Pr(H, X, e1, . . . , en) = Pr(H, X) ·
n∏

i=1

Pr(ei |H, X) . (4.15)

The probability Pr(ei |H, X) is either q� if the hint at position i is �, q+ if the hint
is compatible with H , or q− if the hint is incompatible with H . These parameters are
trained by frequency counting on the training data. Note that this model is not truly
a generative model for hints, since we do not generate the left ends of the hints, yet
we use them to determine compatibility or incompatibility of each state path. The
Viterbi algorithm can be again easily modified to accommodate these interval hints,
and if q+ > q−, it asymptotically takes no longer than the underlying decoding of
the generalized HMM.

The interval hints were used in the gene finder AUGUSTUS+ [72]. They enforce
better consistency of final predictions with the evidence, since the bonus factor q+ is
not awarded for state paths that match an interval only partially.

4.5.3 Pair Hidden Markov Models

In the previous sections, we have reviewed several methods that break the problem
of sequence annotation into two steps. First, a general search tool is used to identify
local alignments between the query sequence and a sequence database. Next, this
information is incorporated using some HMM-based method. The main disadvantage
of the two-step approach is that the initial general-purpose alignment algorithm does
not take into account the structure of the annotation problem.

For example, in gene finding, alignments of a protein or EST with the query DNA
may extend beyond exon boundaries to surrounding introns, and alignments of two
homologous genes may have misaligned splice sites. Such mistakes are propagated
to the second stage and may affect the accuracy of gene finding.

HMMS WITH MULTIPLE OUTPUTS OR EXTERNAL INFLUENCES 81

A B C

a,λ: 1/4
c,λ: 1/4
g,λ: 1/4
t,λ: 1/4

a,a: 1/8
c,c: 1/8
g,g: 1/8
t,t: 1/8
a,c: 1/24
a,g: 1/24

. . .
t,g: 1/24

λ,a: 1/4
λ,c: 1/4
λ,g: 1/4
λ,t: 1/4

FIGURE 4.16 A simple pair HMM. The symbol λ in the emission probability tables repre-
sents empty string. State B generates the ungapped portion of the alignment. State A generates
characters only in the first sequence, and state C generates characters only in the second se-
quence. The alignment gaps induced by states A and C have geometrically distributed lengths.

This problem can be avoided by simultaneously annotating and aligning two se-
quences in a single step. This process can be modeled by a pair HMM. Pair HMMs are
HMMs that generate two sequences at the same time, but where a state of a model can
generate a character in one sequence or both sequences. Pairs of characters generated
in the same step correspond to homologous positions from the two sequences. If only
one character is generated in a given step, it corresponds to a sequence position in
that sequence with no homolog in the other sequence due to an insertion or deletion.
Simple pair HMMs, such as the one in Fig. 4.16, can be used to represent a traditional
global alignment of two sequences [25], with a natural relationship between the loga-
rithm of the probability of a path in the HMM and the score of an alignment according
to traditional schema. More complex pair HMMs can represent pairwise alignments
that incorporate more flexibility in the models of the lengths and conservation levels
of different parts of the alignment.

Pair HMMs differ in an essential way from the multiple output HMMs introduced
in Section 4.5.1: they have an alignment of the output sequences fixed and in each
step generate a character in each output sequence. If the alignment contains a
gap, they generate a special character, for example, a dash. On the contrary, the
output sequences of pair HMMs do not identify the pairs of characters emitted
in the same step; when we decode a pair HMM, the goal is to discover such
homologies.

The program SLAM [2], predicts genes simultaneously in two homologous ge-
nomic sequences, under the assumption that they have the same exon structure. Their
pair HMM has separate states for exons, introns, signals, and intergenic regions, as
in HMMs for gene finding. Each state not only can emits pairs of sequences with
conservation patterns typical for the sequence feature represented by the state but
can also allow for insertions or deletions, where a position in one sequence is not
matched to the other. DoubleScan [52], is similar, but can also predict genes with dif-
ferent exon–intron structure. GeneWise, by [10], uses pair HMMs to align a protein
sequence to a genomic sequence. The noncoding states emit characters only in the
genomic sequence, while coding states emit a triplet of nucleotides in the genomic
sequence and a single amino acid in the protein sequence.

82 ADVANCES IN HIDDEN MARKOV MODELS

The main disadvantage of pair HMMs is their high running time. Given two
sequences generated by a pair HMM, we do not know which pairs of characters
from these two sequences were generated at the same time; indeed, this is what
decoding is to discover. The modified Viterbi algorithm that finds the most proba-
ble alignment of two sequences, and their annotations, is equivalent to an extension
of classic global alignment algorithms, and as for those algorithms, its runtime is
proportional to the product of the sequence lengths. Although such a running time
is infeasible in many situations, different heuristics can be used to make the pair
HMM approach more practical [2,52]. This approach is also hard to extend to mul-
tiple sources of information because its running time grows exponentially with the
number of sequences, again as is true for classical algorithms for multiple align-
ment.

4.6 TRAINING THE PARAMETERS OF AN HMM

In the previous sections, we considered the simplest scenario of HMM parameter
estimation: maximum likelihood training in an HMM without the multiple paths
problem on a completely annotated training set. This method is applied if we can
determine the target state path for each sequence in the training set. In this case, it
is sufficient to count the frequency of each transition and emission to estimate the
model parameters that maximize the likelihood of the training data. Unfortunately,
HMM training is not always so simple.

In this section, we explore several other scenarios for HMM training. First, when
only unannotated or partially annotated sequences are available, we need to use unsu-
pervised or semisupervised training to estimate the parameters of the model. Second,
often a single parameter set does not capture properties of all query sequences well,
and we may want to adapt the parameter set to the query sequence before making a
prediction. Finally, we may choose to use different optimization criteria instead of
maximum likelihood principle.

4.6.1 Unsupervised and Semisupervised Training

Supervised learning can be applied only when the annotation is known for each
sequence in the training set, and there is a one to one correspondence between such
an annotation and the state paths in the HMM. If this is not the case, we need to apply
more complex methods for training. The task is, as in the supervised case, to find the
parameters of the HMM with a given topology that maximize the likelihood of the
training set.

There is no general exact algorithm known for solving this unsupervised training
problem efficiently; some modifications have even been shown to be NP-hard [1,31].
The method most commonly used, the Baum–Welch algorithm [7], is an iterative
heuristic and can be considered a special case of the general EM algorithm for learning
maximum likelihood models from incomplete data [24].

TRAINING THE PARAMETERS OF AN HMM 83

The Baum–Welch algorithm starts from an initial set of model parameters θ0. In
each iteration, it changes the parameters as follows:

1. Calculate the expected number of times each transition and emission is used to
generate the training set T in an HMM whose parameters are θk.

2. Use the frequencies obtained in step 1 to reestimate the parameters of the model,
resulting in a new set of parameters θk+1.

The first step of the algorithm can be viewed as creating a new annotated training
set T (k), where for each unannotated sequence X ∈ T , we add every possible pair
(X, H) of the sequence X and any state path, weighted by the conditional probability
Pr(H |X, θk) of the path H in the model with parameters θk, given the sequence X.
The second step then estimates new parameters θk+1, as in the supervised scenario,
based on the new training set T (k). The Baum–Welch algorithm achieves the same
result in O(nm2) time per iteration using the forward and backward algorithms to
avoid explicitly creating this exponentially large training set. Details can be found,
for example, in [25, Chapter 3.3].

Baum [7] has shown that the likelihood of the training set improves (or stays the
same) in each iteration of this algorithm. However, this does not guarantee that the
Baum–Welch algorithm reaches optimal model parameters: it may instead reach a
local maximum or a saddle point in the parameter space [24].

A modification of the Baum–Welch algorithm, called Viterbi training, is also often
used in practice. In the first step of the algorithm, instead of considering all possible
paths through the model, we only consider the most probable path. However, this
algorithm is not guaranteed to increase the likelihood of the observed data in each
step [25, Chapter 3.3].

The Baum–Welch algorithm can also be used in the semisupervised scenario. For
example, Krogh et al. [44] train a transmembrane topology predictor on a dataset
where the exact boundaries of transmembrane helices are not known. Therefore, they
allow the boundary to occur anywhere within a short window of the sequence. We
can modify step 1 of the algorithm to include only paths that agree with such partial
annotations.

4.6.2 Adjusting Models to Query Sequences

Supervised and semisupervised training assume that the training and testing sets
contain samples independently generated from the same underlying distribution
of sequences and their annotations. In some situations, such an assumption is not
appropriate.

For example, Tusnády and Simon [73] argue that the amino acid composition
of transmembrane helices cannot be adequately described by the same set of emis-
sion probabilities for all transmembrane proteins. Instead, they propose to segment
a given protein so that the difference in distribution between helix and nonhelix re-
gions is maximized. This is essentially achieved by optimizing the HMM emission
probabilities with respect to the query sequence using unsupervised training. We can
train the parameters not only on the single query sequence but also on its homologs,

84 ADVANCES IN HIDDEN MARKOV MODELS

assuming that they represent independent samples generated by the same HMM. In
this way, we can use the information from homologous sequences without construct-
ing multiple sequence alignment and without assuming that the annotation is the same
in all sequences. Tusnády and Simon [73] use emission parameters estimated on an
annotated training set as pseudocounts in each step of the Baum–Welch algorithm.

Chatterji and Pachter [18] use a similar approach to find genes in multiple ho-
mologous genomic regions by biasing parameters of a typical HMM gene finder to
match specifically the genes on the input. The parameters of the model and gene pre-
dictions are iteratively improved by Gibbs sampling. Thus, after each iteration, gene
predictions in all input sequences will tend to be more similar to each other, and the
parameters of the model will fit the input sequences more closely.

We may also need to adjust parameters of a gene finder when applying it to a newly
sequenced genome. In such a case, we rarely have sufficiently large training set of man-
ually annotated sequences. One approach is to identify easy to find genes, such as those
with a strong protein match in a database, and train the HMM using those genes [46].
Korf [40] has considered adjusting parameters trained on a different species by Viterbi
training on the new species. Lomsadze et al. [48] have shown that a careful procedure
can obtain parameters of a eukaryotic gene finder on a new species in a completely
unsupervised fashion, starting with a very simple set of manually created parameters.

4.6.3 Beyond Maximum Likelihood

So far, we have considered algorithms that trained HMM parameters by maximizing
the likelihood of the training set. A common criticism of the maximum likelihood
(ML) approach in the machine learning literature is that it maximizes the wrong
objective (see, for example, [41]). Our goal in decoding is to retrieve the annotation
H that maximizes Pr(H |X), where the sequence X is fixed. Therefore, instead of
maximizing the joint probability Pr(H, X) of the training sequences, this perspective
argues that we should concentrate on maximizing the conditional probability Pr(H |X),
since the sequence X is fixed in the decoding phase, and it does not matter whether
its probability is low or high. This optimization criterion is known as conditional
maximum likelihood (CML).

In the context of hidden Markov models, CML was used in applications in bioin-
formatics [41] and natural language processing [38]. Even if the sequences are an-
notated, there is no known closed formula or EM algorithm that would estimate the
parameters of the model to optimize the conditional maximum likelihood. Instead,
numerical gradient descent methods are used to achieve local maximum. In these
studies, slight [38] to significant [41] improvement was observed compared to models
trained by ML.

A theoretical analysis is available in the context of the simpler data classification
problem, where a similar dichotomy occurs between the naive Bayes classifier (which
is equivalent to ML) and logistic regression (equivalent to CML). In this context,
Ng and Jordan [55] have shown that even though using CML gives asymptotically
lower error, ML requires significantly fewer training samples to converge to the best
model: it requires only a logarithmic number of samples with respect to the number

CONCLUSION 85

of parameters compared to the linear number of samples required for convergence
in CML. Thus ML training is appropriate if only a small number of samples are
available, while it is better to use CML when the training set is large. It is not known
whether these results extend to the case of more complex models, such as HMMs,
where we are doing more than merely classifying a sample into categories. We may
also ask (and no known answer exists to this question) whether the better response
to an increase in training data is to switch from ML to CML, or to switch to a more
accurate model of reality that requires a larger number of parameters.

One major disadvantage of HMMs optimized for CML is that it is hard to interpret
their emission and transition probabilities. The generative process associated with the
HMM no longer generates sequences that look like sequences from the training set.
The probabilities no longer represent frequencies observed directly in the sequence,
which makes it hard to incorporate prior knowledge about the problem into the prob-
abilistic model by applying restrictions on parameters of the model or by creating a
custom model topology.

For example, the HMM modeling the topology of transmembrane proteins in
Fig. 4.4 has two states representing transmembrane helices. It may be reasonable
to assume that since the sequences corresponding to these two states serve the same
function (membrane transition) that in an ML model both states should share the same
emission probabilities. On the basis of this assumption, we can reduce the number of
parameters (and thus the number of sequences required for training) by tying those
parameters together, forcing them to be the same. On the contrary, since in CML
method the emission probabilities are set to maximize the conditional probability of
the annotation given the sequence, rather than the likelihood of the sequence, it is not
clear that the emission probabilities in these two states should be similar, even if the
sequences attributed to these states are similar.

Conditional random fields [45] further continue in the direction of CML training,
abandoning the probabilistic interpretation of emission and transition probabilities
and replacing them with undirected potentials that do not need to be normalized to 1.
They were applied in bioinformatics for recognizing protein structure motifs [47] and
for finding genes [22].

Some recent extensions abolish the probabilistic interpretation of HMMs alto-
gether. Instead, they consider the following problem directly: set the parameters of
the model (without normalization restrictions) so that the model discriminates well
between correct and incorrect annotations. These models, such as hidden Markov
support vector machines [4] and convex hidden Markov models [78], are inspired
by maximum margin training and kernel methods in support vector machines [11],
which are very successful methods for the classification problem.

4.7 CONCLUSION

On our tour through HMMs and their use in biological sequence annotation, we
have seen both the most traditional HMM algorithms and their most exotic exten-
sions. We have seen extensions to the decoding algorithms to handle many cases

86 ADVANCES IN HIDDEN MARKOV MODELS

where multiple different paths through the HMM correspond to the same seman-
tic meaning and algorithms to handle generalized HMMs, in which the lengths of
features may come from complex, nongeometric distributions. We have seen many
ways in which HMMs can operate on multiple sequences, and in all these cases we
have argued why these extensions are useful in modeling and annotating biological
sequences.

Many of these extensions rely upon the conceptual simplicity of the basic HMM
framework: unlike the parameters of a neural network or of a support vector ma-
chine, the parameters of a hidden Markov model trained for maximum likelihood are
extremely simple to understand. Even for their more complex extensions (such as
phylogenetic HMMs or pair HMMs), one can quickly determine the semantic mean-
ing of the parameters and imagine ways to make them estimated more accurately, or
to change the topology of the HMM to more closely model reality (though, of course,
our discussion of the multiple-path problem in Section 4.3.2 shows that this may not
be entirely wise). Even the more complex decoding approaches to handle external
information, such as those of Section 4.5.2, can be seen as a way of mathematically
encoding sensible intuitive concepts.

Perhaps the most important question for the future of HMMs, then, is whether
increasingly sophisticated HMM modeling, training, and decoding procedures can
continue to maintain this conceptual simplicity while still allowing the use of ever
more and more complex forms of sequence data. Can we incorporate a useful under-
standing of the three-dimensional geometry of molecules into HMM analysis? Can we
usefully train HMMs to understand the evolutionary relationships among thousands
of sequences? Can we annotate features and subfeatures of biological sequences that
are allowed to overlap each other in complex ways, and where a feature is not simply
a contiguous segment of DNA? These questions, and numerous others, will be the
subject of the research of the next many years in HMM analysis.

ACKNOWLEDGMENTS

The work of all three authors has been supported by the Natural Sciences and Engineer-
ing Research Council of Canada. We are grateful to many colleagues for interesting
discussions over the last several years, including Ming Li, Burkhard Morgenstern,
Dale Schuurmans, Gregory Kucherov, Ian Korf, and Dan Gusfield.

REFERENCES

1. Abe N, Warmuth MK. On the computational complexity of approximating distributions
by probabilistic automata. Machine Learning 1992;9(2–3):205–260.

2. Alexandersson M, Cawley S, Pachter L. SLAM: cross-species gene finding and alignment
with a generalized pair hidden Markov model. Genome Res 2003;13(3):496–502.

3. Allen JE, Salzberg SL. A phylogenetic generalized hidden Markov model for predicting
alternatively spliced exons. Algor Mol Biol 2006;1(1):14.

REFERENCES 87

4. Altun Y, Tsochantaridis I, Hofmann T. Hidden Markov support vector machines. ICML
2003: 20th International Conference on Machine Learning. AAAI Press; 2003. pp. 3–10.

5. Asmussen S, Nerman O, Olsson M. Fitting phase-type distributions via the EM algorithm.
Scan J Stat 1996;23(4):419–441.

6. Aydin Z, Altunbasak Y, Borodovsky M. Protein secondary structure prediction for a
single-sequence using hidden semi-Markov models. BMC Bioinformatics 2006;7:178.

7. Baum LE. An inequality and associated maximization technique in statistical estimation
for probabilistic functions of Markov processes. Inequalities III, Proceeding of the Third
Symposium. New York: Academic Press; 1972. pp. 1–8.

8. Baum LE, Eagon JA. An inequality with applications to statistical estimation for prob-
abilistic functions of Markov processes and to a model for ecology. Bull Am Mathe Soc
1967;73:360–363.

9. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Rapp BA, Wheeler DL. GenBank.
Nucleic Acids Res 2000;28(1):15–18.

10. Birney E, Clamp M, Durbin R. GeneWise and Genomewise. Genome Res 2004;
14(5):988–995.

11. Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers.
COLT 1992: 5th Annual Workshop on Computational Learning Theory. ACM Press;1992.
pp. 144–152.

12. Brejová B, Brown DG, Li M, Vinař T. Exonhunter: A comprehensive approach to gene
finding. Bioinformatics 2005;21(S1):i57–i65.

13. Brejová B, Brown DG, Vinař T. The most probable labeling problem in HMMs and its
applications to bio informatics. WABI 2004: Algorithms in Bioinformatics, Vol. 3240 of
Lecture Notes in Bioinformatics. Bergen, Norway: Springer; 2004. pp. 426–437.

14. Brejová B, Vinař T. A better method for length distribution modeling in HMMs and its
application to gene finding. CPM 2002: Combinatorial Pattern Matching, 13th Annual
Symposium, Vol. 2373 of Lecture Notes in Computer Science. Fukuoka, Japan: Springer;
2002. pp. 190–202.

15. Burge C, Karlin S. Prediction of complete gene structures in human genomic DNA. J Mol
Biol 1997;268(1):78–94.

16. Bystroff C, Thorsson V, Baker D. HMMSTR: a hidden Markov model for local sequence-
structure correlations in proteins. J Mol Biol. 2000;301(1):173–180.

17. Cawley SL, Pachter L. HMM sampling and applications to gene finding and alternative
splicing. Bioinformatics 2003;19(S2):II36–II41.

18. Chatterji S, Pachter L. Large multiple organism gene finding by collapsed Gibbs sampling.
J Comput Biol 2005;12(6):599–608.

19. Church KW. A stochastic parts program and noun phrase parser for unrestricted text.
Proceedings of the 2nd conference on Applied natural language processing, Morristown,
NJ, USA: 1988; pp.136–143. Association for Computational Linguistics.

20. Churchill GA. Stochastic models for heterogeneous DNA sequences. Bull Math Biol
1989;51(1):79–94.

21. Commault C, Mocanu S. Phase-type distributions and representations: some resuts and
open problems for system theory. Int J Control 2003;76(6):566–580.

22. Culotta A, Kulp D, McCallum A. Gene prediction with conditional random fields. Tech-
nical Report UM-CS-2005-028, University of Massachusetts, Amherst, 2005.

88 ADVANCES IN HIDDEN MARKOV MODELS

23. Delorenzi M, Speed T. An HMM model for coiled-coil domains and a comparison with
PSSM-based predictions. Bioinformatics 2002;18(4):617–625.

24. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the
EM algorithm. J R Stat Soc Ser B 1977;39(1):1–38.

25. Durbin R, Eddy S, Krogh A, Mitchison G. Biological sequence analysis: Probabilistic
models of proteins and nucleic acids. Cambridge University Press; 1998.

26. Furiselli P, Martelli PL, Casadio R. A new decoding algorithm for hidden Markov models
improves the prediction of the topology of all-beta membrane proteins. BMC Bioinfor-
matics 2005;6(S4):S12.

27. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach.
J Mol Evol 1981;17(6):368–376.

28. Felsenstein J, Churchill GA. A hidden Markov model approach to variation among sites
in rate of evolution. Mol Biol Evol 1996;13(1):93–104.

29. Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon
S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer EL, Bateman A. Pfam: clans,
web tools and services. Nucleic Acid Res 2006;34(Database issue):D247–D251.

30. Forney GD. The Viterbi algorithm. Proc IEEE 1973;61:268–278.

31. Gillman D, Sipser M. Inference and minimization of hidden Markov chains. COLT 1994:
Proceedings of the 7th Annual Conference on Computational Learning Theory. ACM
Press; 1994. pp. 147–158.

32. Gilson PR, Nebl T, Vukcevic D, Moritz RL, Sargeant T, Speed TP, Schofield L, Crabb
BS. Identification and stoichiometry of glycosylphosphatidylinositol-anchored membrane
proteins of the human malaria parasite Plasmodium falciparum. Mol Cell Proteomics
2006;5(7):1286–1289.

33. Goldman N, Thorne JL, Jones DT. Using evolutionary trees in protein secondary
structure prediction and other comparative sequence analyses. J Mol Biol 1996;
263(2):196–208.

34. Gross SS, Brent MR. Using multiple alignments to improve gene prediction. RECOMB
2005: Proceedings of the 9th Annual International Conference on Research in Compu-
tational Molecular Biology, Vol. 3500 of Lecture Notes in Computer Science. Springer;
2005. pp. 374–388.

35. Johnson MT. Capacity and complexity of HMM duration modeling techniques. IEEE
Signal Proc Let 2005;12(5):407–410.

36. Jukes TH, Cantor C. Evolution of protein molecules. Academic Press; 1969. pp. 21–132.

37. Käll L, Krogh A, Sonnhammer ELL. An HMM posterior decoder for sequence feature
prediction that includes homology information. Bioinformatics 2005; 21(S1):i251–i257.

38. Klein D, Manning CD. Conditional structure versus conditional estimation in NLP mod-
els. EMNLP 2002: Conference on Empirical Methods in Natural Language Processing:
Association for Computational Linguistics; 2002. pp. 9–16.

39. Korf I, Flicek P, Duan D, Brent MR. Integrating genomic homology into gene structure
prediction. Bioinformatics 2001;17(S1):S140–S148. ISMB.

40. Korf I. Gene finding in novel genomes. BMC Bioinformatics 2004;5:59.

41. Krogh A. Two methods for improving performance of an HMM and their application
for gene finding. In ISMB 1997: Proceedings of the 5th International Conference on
Intelligent Systems for Molecular Biology. 1997; pp.179–186.

REFERENCES 89

42. Krogh A. Using database matches with for HMMGene for automated gene detection in
Drosophila. Genome Res 2000;10(4):523–528.

43. Krogh A, Brown M, Mian IS, Sjolander K, Haussler D. Hidden Markov models in
computational biology. applications to protein modeling. J Mol Biol 1994;235(5):1501–
1501.

44. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein
topology with a hidden Markov model: application to complete genomes. J Mol Biol
2001;305(3):567–570.

45. Lafferty J, McCallum A, Pereira F. Conditional random fields: Probabilistic models
for segmenting and labeling sequence data. In ICML 2001: 18th International Con-
ference on Machine Learning. Morgan Kaufmann, San Francisco, CA: 2001. pp. 282–
289.

46. Larsen TS, Krogh A. EasyGene–a prokaryotic gene finder that ranks ORFs by statistical
significance. BMC Bioinformatics 2003;4:21.

47. Liu Y, Carbonell J, Weigele P, Gopalakrishnan V. Protein fold recognition using segmen-
tation conditional random fields (SCRFs). J Comput Biol 2006;13(2):394–406.

48. Lomsadze A, Ter-Hovhannisyan V, Chernoff YO, Borodovsky M. Gene identifi-
cation in novel eukaryotic genomes by self-training algorithm. Nucleic Acid Res
2005;33(20):6494–6496.

49. Martelli PL, Fariselli P, Krogh A, Casadio R. A sequence-profile-based HMM for pre-
dicting and discriminating beta barrel membrane proteins. Bioinformatics 2002;18(S1):
S46–S53.

50. McAuliffe JD, Pachter L, Jordan MI. Multiple-sequence functional annotation and the
generalized hidden Markov phylogeny. Bioinformatics 2004;20(12):1850–1850.

51. McCauley S, Hein J. Using hidden Markov models and observed evolution to annotate
viral genomes. Bioinformatics. 2006;22(11):1308–1316.

52. Meyer IM, Durbin R. Comparative ab initio prediction of gene structures using pair
HMMs. Bioinformatics 2002;18(10):1309–1318.

53. Mitchell C, Harper M, Jamieson L. On the complexity of explicit duration HMMs. IEEE
Trans Speech Audio Process, 1995;3(3):213–217.

54. Müller HC. New approach to fire detection algorithms based on the hidden Markov
model. AUBE 2001: 12th International Conference on Automatic Fire Detection. National
Institute of Standards and Technology, 2001. pp. 129–138.

55. Ng AY, Jordan MI. On discriminative vs. generative classifiers: A comparison of logistic
regression and naive Bayes. In NIPS 2002: Advances in Neural Information Processing
Systems MIT Press; 2002. pp. 841–848.

56. Nielsen H, Krogh A. Prediction of signal peptides and signal anchors by a hidden Markov
model. In ISMB 1998: Proceedings of the 6th International Conference on Intelligent
Systems for Molecular Biology. AAAI Press; 1998.pp.122–130.

57. Ohler U, Niemann H, Rubin GM. Joint modeling of DNA sequence and physical prop-
erties to improve eukaryotic promoter recognition. Bioinformatics 2001;17(S1):S199–
S206.

58. Pavlović V, Garg A, Kasif S. A Bayesian framework for combining gene predictions.
Bioinformatics 2002;18(1):19–27.

59. Pedersen JS, Hein J. Gene finding with a hidden Markov model of genome structure and
evolution. Bioinformatics 2003;19(2):219–227.

90 ADVANCES IN HIDDEN MARKOV MODELS

60. Pollastri E, Simoncelli G. Classification of melodies by composer with hidden Markov
models. WEDELMUSIC 2001: The 1st International Conference on WEB Delivering of
Music. IEEE Computer Society; 2001. pp. 88–95.

61. Rabiner LR. A tutorial on hidden Markov models and selected applications in speech
recognition. Proc IEEE 1989;77(2):257–285.

62. Rastas P, Koivisto M, Mannila H, Ukkonen E. A hidden Markov technique for haplotype
reconstruction. WABI 2005: Algorithms in Bioinformatics, Vol. 3692 of Lecture Notes in
Computer Science. Springer; 2005. pp. 140–151.

63. Rodriguez F, Oliver JL, Marin A, Medina JR. The general stochastic model of nucleotide
substitution. J Theor Biol 1990;142(4):485–501.

64. Schultz A, Zhang M, Leitner T, Kuiken C, Korber B, Morgenstern B, Stanke M. A jumping
profile hidden Markov model and applications to recombination sites in HIV and HCV
genomes. BMC Bioinformatics 2006;7:265.

65. Schwartz R, Chow YL. The N-best algorithms: an efficient and exact procedure for
finding the N most likely sentence hypotheses. ICASSP 1990: Acoustics, Speech, and
Signal Processing. pages 81–84, vol. 1, 1990.

66. Seymore K, McCallum A, Rosenfeld R. Learning hidden Markov model structure for
information extraction. AAAI’99 Workshop on Machine Learning for Information Ex-
traction. 1999.

67. Siepel A, Haussler D. Computational identification of evolutionarily conserved exons.
RECOMB 2004: Proceedings of the 8th Annual International Conference on Research in
Computational Molecular Biology. ACM Press; 2004. pp. 177–186.

68. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, Clawson H,
Spieth J, Hillier LW, Richards S, Weinstock GM, Wilson RK, Gibbs RA, Kent WJ, Miller
W, Haussler D. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast
genomes. Genome Res 2005;15(8):1034–1040.

69. Siepel A, Haussler D. Combining phylogenetic and hidden Markov models in biosequence
analysis. In RECOMB ’03: Proceedings of the 7th Annual International Conference on
Research in Computational Molecular Biology New York, NY, USA: ACM Press; 2003.
pp. 277–286.

70. Stanke M, Waack S. Gene prediction with a hidden Markov model and a new intron
submodel. Bioinformatics 2003;19(S2):II215–II225.

71. Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B.AUGUSTUS: ab initio
prediction of alternative transcripts. Nucleic Acids Res 2006;34(W):W435–W439.

72. Stanke M, Schoffmann O, Morgenstern B, Waack S. Gene prediction in eukaryotes with
a generalized hidden Markov model that uses hints from external sources. BMC Bioin-
formatics 2006;7:62.

73. Tusnády GE, Simon I. Principles governing amino acid composition of integral membrane
proteins: application to topology prediction. J Mol Biol 1998;283(2):489–506.

74. Viklund H, Elofsson A. Best alpha-helical transmembrane protein topology predictions
are achieved using hidden Markov models and evolutionary information. Protein Sci
2004;13(7):1908–1917.

75. Vinař T. Enhancements to Hidden Markov Models for Gene Finding and Other Biological
Applications. PhD thesis, University of Waterloo, October 2005.

76. Viterbi AJ. Error bounds for convolutional codes and an asymtotically optimum decoding
algorithm. IEEE Trans Inform Theory 1967;IT13:260–267.

REFERENCES 91

77. Xu EW, Kearney P, Brown DG. The use of functional domains to improve transmembrane
protein topology prediction. J Bioinform Comput Biol 2006;4(1):109–113.

78. Xu L, Wilkinson D, Southey F, Schuurmans D. Discriminative unsupervised learning of
structured predictors. ICML 2006: International Conference on Machine Learning. 2006.

79. Yamron JP, Carp I, Gillick L, Lowe S, van Mulbregt P. A hidden Markov model approach
to text segmentation and event tracking. ICASSP 1998: IEEE International Conference
on Acoustics, Speech, and Signal Processing. 1998. pp. 333–336.

80. Yang Z. A space-time process model for the evolution of DNA sequences. Genetics 1995;
139(2):993–1005.

81. Yeh RF, Lim LP, Burge CB. Computational inference of homologous gene structures in
the human genome. Genome Res 2001;11(5):803–806.

82. Zhu J, Liu JS, Lawrence CE. Bayesian adaptive sequence alignment algorithms. Bioin-
formatics 1998;14(1):25–39.

5
SORTING- AND FFT-BASED
TECHNIQUES IN THE DISCOVERY
OF BIOPATTERNS

Sudha Balla, Sanguthevar Rajasekaran,
and Jaime Davila
Department of Computer Science and Engineering, University of Connecticut, Storrs,
Connecticut, USA

5.1 INTRODUCTION

Molecular Biologists have witnessed an astronomical growth of biosequence data
(DNA, RNA, and protein sequences) due to efforts of several sequencing projects
over the past decade. Understanding the information contained in such data is vital
to decipher gene function, causes of disease in humans, and rational drug design. A
fundamental technique adopted by molecular biologists to extract such meaningful
information is identifying common patterns or motifs among biosequences. Discov-
ering motifs in a set of unaligned DNA sequences could aid in locating biologically
functional regions such as promoters, transcription factor binding sites, splice sites.
Ungapped regions in the multiple alignment of a set of protein sequences could help
classifying proteins of unknown function into known protein families. Identifying
unique regions in the messenger RNA (mRNA) of genes could aid in the design of
gene-specific short-interference RNAs (siRNAs), thus, reducing the risk of off-target
gene silencing in gene-based therapy for certain neurological disorders and cancers.
The huge volume of biosequence data available calls for novel computational tech-
niques to discover motifs in a given set of sequences, say DNA, RNA, or proteins.

Bioinformatics Algorithms: Techniques and Applications, Edited by Ion I. Mǎndoiu
and Alexander Zelikovsky
Copyright © 2008 John Wiley & Sons, Inc.

93

94 SORTING- AND FFT-BASED TECHNIQUES

Therefore, several variants of the motif discovery problem could be identified in
the computational literature; many of them have been proved to be NP-hard. The
numerous algorithms proposed for such variants adopt fundamental concepts and
salient data structures of computer science to identify the desired motifs. Dynamic
programming algorithms have been proposed for alignment of the input sequences
to identify ungapped segments of biological importance. Algorithms that represent
the patterns of the input as graphs and trees to discover common motifs have been
proposed. Data structures such as suffix trees and suffix arrays (refer [34]) have been
proved to be powerful to solve complex string problems efficiently in linear time. In
this chapter, we would discuss novel algorithms, which adopt strategies significantly
different from those adopted by several known algorithms, to address a few salient
problems in the domain of molecular biology that require discovering motifs in a
set of biosequences. These algorithms employ basic sorting techniques and simple
data structures such as arrays and linked lists and have been proved to perform better
in practice than many of the known algorithms when applied to synthetic and real
biological datasets.

Measuring similarities among biological sequences has numerous applications.
For instance, functionalities of newly sequenced genes can be inferred. Similarity
measurements can also help in identifying motifs. In this chapter, we also consider
FFT-based efficient algorithms for measuring similarities.

The rest of this chapter is organized as follows: Section 2 describes how sorting
can be used as a technique to identify biopatterns (or motifs) in a given set of DNA,
RNA, or protein sequences. In Section 3, we discuss some classic motif discovery
problems, a brief account of the algorithms proposed for the same in the literature
and algorithms that are based on sorting for these problems. Section 4 is devoted to
a discussion on FFT-based similarity algorithms. Section 5, concludes the chapter.

5.2 SORTING AND BIOPATTERN DISCOVERY

The basic idea is to create a collection of all the l-mers (where the length of the
desired motif is l) that represent the “motif space” from the input sequences, sort
the collection lexicographically and scan through the sorted collection to identify the
motifs of interest. In the following section, we explain in detail how the elements of
the collection are generated from the input for each of the problems that we discuss.

There are many ways to sort such a collection. For instance, it can be sorted
using any comparison-based algorithm such as quick sort, merge sort. But, if we
have additional information about the elements in the collection, radix sort could be
employed. For a detailed discussion on sorting algorithms refer [37] and [19]. We
know that DNA and RNA sequences are from a fixed alphabet of size 4 and protein
sequences are from an alphabet of size 20. In our problems, if we represent every
l-mer in the collection as an integer value, we know that the values of elements in the
collection lie strictly in the range [0, |
|l], that is, every element in the collection can
be thought of as a (log2|
|)l-bit binary number, where
 is the alphabet of the input
sequences. Radix sort sorts the elements with respect to some number of bits at a time

MOTIF DISCOVERY AND RELATED PROBLEMS 95

starting from the Least Significant Bits (LSBs). For example, these elements can be
sorted with respect to w bits at a time, where w is the word length of the computer. In
this case, the elements in the collection can be sorted in (log2|
|)(l/w) phases where
each phase takes linear time.

For DNA sequences, the alphabet
 = {a, c, t, g}. In this alphabet g is the com-
plement of c and a is the complement of t. We map the elements of
 into integers
as follows: a = 0, c = 1, t = 2, and g = 3. Thus, we need two bits to represent each
member of
 and a 2l-bit number can represent an l-mer.

5.3 MOTIF DISCOVERY AND RELATED PROBLEMS

In this section, we will discuss a few salient problems in molecular biology that require
discovery of biopatterns in a set of DNA, RNA, or protein sequences. We will deal
with a classic motif discovery problem, called the Planted (l, d)-motif problem, in
detail. We will discuss algorithms to discover motifs based on edit distances. We will
also look at three problems that are very closely related to motif discovery, called
the Primer Selection Problem, the problem of discovering patterns that participate
in a phenomenon called RNA Interference (RNAi) in the cells of organisms and
the Specific Selection of siRNA Patterns in entire genomic data. For each of these
problems, we give a brief account of the algorithms that have been proposed in the
literature followed by a discussion on algorithms that employ sorting techniques to
identify the patterns of interest.

5.3.1 Planted (l, d)-Motif Problem

The Planted (l, d)-motif Problem is a classic problem of motif discovery in molec-
ular biology with application in identifying transcription factors and their binding
sites for a set of coregulated genes, promoters, splicing sites, and so on. Tompa [62]
studied the problem of identifying very short motifs of length about 5–7 with 0, 1,
or 2 substitutions, to address the ribosome binding site problem and proposed an
exact algorithm for the same. When concluding the paper, he had posed the question
of devising algorithms to accommodate longer patterns with proportionately more
substitutions allowed. Pevzner and Sze [48] addressed this question by devising two
novel algorithms that effectively identified motifs of length 15 with 4 substitutions.
They formally formulated the problem as the Planted (l, d)-motif problem, which had
also been considered by Sagot [57] as follows.

5.3.1.1 Planted (l, d)-Motif Problem (PMP) Input are t nucleotide sequences of
length n each and integers l and d. The problem is to identify a motif M of length l,
given that each input sequence contains a variant of M, the variants being at a hamming
distance of at most d from M.

But there are algorithms earlier to Tompa’s work that have been proposed in the
literature to identify motifs in a set of DNA sequences that could be binding sites
for regulatory elements. Lawrence and Reilly [42] proposed an algorithm based on

96 SORTING- AND FFT-BASED TECHNIQUES

Expectation Maximization (EM) to identify such motifs. Bailey and Elkan’s [4] con-
tribution, algorithm MEME, was an extension of Lawrence and Reilly’s work to
discover multiple occurrences of a motif in a set of sequences and also to discover
multiple planted motifs for a given input. Lawrence et al. [41] presented an algorithm
based on Gibbs Sampling, called the GibbsDNA. Hertz and Stormo [35] devised a
greedy algorithm CONSENSUS to identify functional relationships by aligning DNA,
RNA or protein sequences. They used a log-likelihood scoring scheme to arrive at the
information content of an alignment and the algorithm picked those alignments with
highest information content. CONSENSUS successfully identified 19 of 24 sites of
the DNA binding protein CRP-transcription factor in 18 DNA sequences of E. coli,
each about 105 nt in length.

The “challenge problem” addressed by Pevzner and Sze was the (15, 4) instance
of PMP stated above in t = 20 sequences each of length n = 600. Algorithm
WINNOWER attempts to identify large cliques in a multipartite graph G, constructed
with the patterns of length l in the input sequences as its vertices. Two vertices u and v

in G are connected by an edge iff u and v belong to two different sequences of the in-
put and their hamming distance, that is, the number of substitutions needed to convert
u to v and vice versa, d(u, v) ≤ 2d. Algorithm WINNOWER treats all edges of G

equally and does not distinguish edges that correspond to high and low similarities.
Algorithm SP-STAR attempts to overcome this drawback by using a sum-of-pairs
scoring function and a local improvement strategy to identify the best occurrences of
the motif in the input set.

Buhler and Tompa [12] showed that there are instances of PMP that are more
challenging than the (15, 4) instance and devised an algorithm called PROJECTION
to solve such instances. They concluded that WINNOWER and SP-STAR failed to
solve the (14, 4), (16, 5), and (18, 6)-motif problems for the same values of t and
n as above, while their algorithm PROJECTION succeeded in doing so. Algorithm
PROJECTION uses the principle of random projections to arrive at better seeds of
the input for an EM algorithm. It uses a hash function h(x) constructed using k of
the l positions chosen at random, and hashes all substrings of length l of the input
sequences into buckets based on their value w.r.t. the k positions. It is based on an
intuition that if k < (l− d) a number of the t variants of M would hash into the same
bucket. A probability weight matrix arrived from the substrings hashed on to highly
enriched buckets is used as the initial seed to the EM algorithm. The work presented
a probabilistic analysis of PMP to arrive at the difficult instances of PMP, such as the
(9, 2), (11, 3), (13, 4), (15, 5), (17, 6)-motif problems and stated that these problems
are inherently unsolvable by PROJECTION as the number of spurious hits (patterns
that appear by random chance) for these instances is more than one (Table 2 of [12]).

Algorithms MULTIPROFILER [38], PatternBranching, and ProfileBranching [49]
also address PMP and were shown to perform well in practice for several instances
on the problem on random and real biological data.

All the algorithms discussed above employ local search techniques and may not
output the desired planted motif always. We refer to such algorithms as approximate
algorithms. The performance of such approximate algorithms is measured using
a factor called the performance coefficient in the literature. Let K be the number

MOTIF DISCOVERY AND RELATED PROBLEMS 97

TABLE 5.1 Performance of Approximate Algorithms on (15, 4) Instance of PMP

Algorithm Year ρ

GibbsDNA 1993 0.12
MEME 1995 0.10
CONSENSUS 1999 0.07
WINNOWER 2000 0.92
PROJECTION 2001 0.93
PatternBranching and ProfileBranching 2003 ≈ 1.00 and 0.57

of actual residue positions (tl) of the input that correspond to the variants of motif
M. Let P be the number of such residue positions predicted by an algorithm.
Performance Coefficient (ρ) is defined as the ratio (K ∩ P)/(K ∪ P). Algorithms
that always output the correct answer are referred to as exact algorithms. While
for approximate algorithms 0 < ρ < 1, for exact algorithms ρ = 1. Table 5.1 gives
the performance of several algorithms discussed above on the (15,4) instance of
PMP. There are several exact algorithms in the literature proposed for PMP in
[10,11,32,57,58,60,62,63]. Such algorithms are exhaustive enumeration algorithms
and as aptly stated in [12], they become impractical for the challenging instances of
PMP. A salient exact algorithm called MITRA was proposed by Eskin and Pevzner
[28] that adopts a mismatch tree data structure to represent the pattern space and
performs a depth first search on the mismatch tree to identify the planted motif for
a given input. MITRA was shown to be successful in identifying monads (simple
planted motifs) and dyads (complex planted motifs that appear in pairs separated by
a varying gap length in each input sequence) in synthetic and real biological data.
The voting algorithm [18] adopts hashing techniques to identify planted motifs.

There have also been contributions to PMP by researchers who have addressed
closely related problems in [9,10] (Substring Parsimony Problem), [33] (Closest
String Problem), [29] (Common Approximate Substring Problem), and [43] (Con-
sensus Patterns Problem).

For PMP, exact algorithms that adopt sorting techniques were first presented in [51].
The runtime of the basic algorithm Planted Motif Search (PMS) is O(tnld |
|d(l/w)),
where w is the word length of the computer. Like most of the algorithms in the liter-
ature, the sorting approach is based on exploring the neighborhood of input patterns,
exploiting the fact that the motif M is an element in the d-neighborhood of at least one
substring of length l in every input sequence. The basic algorithm for PMP, Algorithm
PMS is as follows:

Algorithm PMS {
1. Generate all possible l-mers from out of

each of the t input sequences.
Let Ci be the collection of l-mers from
out of Si for 1 ≤ i ≤ t.

2. For all 1 ≤ i ≤ t and for
all u ∈ Ci, generate all l-mers v,

98 SORTING- AND FFT-BASED TECHNIQUES

such that u and v are at a hamming
distance of at most d.
Let the collection of l-mers
corresponding to Ci be C′i, for 1 ≤ i ≤ t.
The total number of patterns in any
C′i is O(nld |
|d).

3. Sort all the l-mers lexicographically
in every C′i, 1 ≤ i ≤ t.
Let Li be the sorted list corresponding to C′i.

4. Merge all the Lis (1 ≤ i ≤ t).
Output the generated (in step 2) l-mer
that occurs in all the Lis.

}

We know that there are (n− l+ 1) substrings of length l in each of the t input
sequences, and the number of elements in the d-neighborhood of a string of length l

is
∑d

i=0
lCi|
|i. If d < (l/2), then, the total number of elements in the collection is

O(tnld |
|d). Each element in the collection is represented as (2l/w) computer words
and hence the following theorem holds.

Theorem 5.1 PMP can be solved by PMS in time O(tnld |
|d(l/w)), where w is the
word length of the computer. The space complexity of PMS is O(tnld |
|d(l/w)).

Algorithm PMS generates the neighborhood of l-mers of all the input sequences
at the same time. But we know that a variant of the motif M appears in every input
sequence and hence will be contained in the collection of elements that represent the
neighborhood of l-mers from one input sequence. Therefore, PMS could be modified
into a memory efficient version described as follows.

Algorithm PMS1 {
Generate all possible l-mers from out of the
first input sequence S1.
Let C1 be the collection of these l-mers. For all u ∈ C1,
generate all l-mers v such that u

and v are at a hamming distance of
at most d.
Sort the collection of these l-mers and
let L be the sorted collection.
for i := 2 to t do {

1. Generate all possible l-mers from out
of the input sequence Si.
Let Ci be the collection of these l-mers.

2. For all u ∈ Ci, generate all l-mers v such that
u and v are at a hamming distance of at most d.

MOTIF DISCOVERY AND RELATED PROBLEMS 99

Let the collection of these l-mers be C′i.
3. Sort all the l-mers in C′i. Let Li be

the sorted list.
4. Merge Li and L and keep the

intersection in L, i.e., L := L ∩ Li.
}
L now has the motif(s) of interest, output L.

}

Note that the space complexity of PMS1 improves by a factor of t as it retains the
neighborhood of only one sequence at every stage of processing. Hence, we get the
following theorem.

Theorem 5.2 PMP can be solved by PMS1 in time O(tnld |
|d(l/w)), where w

is the word length of the computer. The space complexity of PMS1 is O(nld |
|d
(l/w)).

If motif M occurs in every input sequence, then every substring of M also occurs in
every input sequence. In particular, there are at least (l− k + 1) k-mers (for d < k ≤ l)
such that each one of them occurs in every input sequence at a hamming distance of at
most d. Let K be the collection of k-mers that represent the (l− k + 1) substrings of
M. Also, in every input sequence Si, there will be (l− k + 1) consecutive positions
at which there would be occurrences of the elements of K such that an l-mer could
be formed by putting together the k-mers of these positions.

An improved algorithm, algorithm PMS2, is presented in [51] that exploits the
above fact to discover planted motifs in two phases. In the first phase, all (d + c)-
mers (for some appropriate value c) that occur in each of the input sequences at a
hamming distance of at most d are identified (all valid M(d+c) for the input set).
Potential l-mers are formed from the strategy explained above from the (d + c)-mers.
In the second phase, each l-mer M ′ of the first phase is checked to see if it is a valid
planted motif for the input.

For instances with l from 9 to 20, algorithm PMS1 took about 1 or 2 s when d = 2
and around 20 s when d = 3. Algorithm PMS2 found the planted motif in about
220 seconds for instances with l from 13 to 20 and d = 4. These results show better
performance when compared to the two different versions of MITRA reported in [28],
namely, MITRA-Count and MITRA-Graph. For the (11, 2) instance, MITRA-Count
and MITRA-Graph take 1 min each. For the (12, 3) instance, MITRA-Count and
MITRA-Graph take 1 min and 4 min, respectively. For the (14, 4) instance, MITRA-
Count takes 4 min and MITRA-Graph takes 10 min. Also, the PMS algorithms solve
the challenge instances (9, 2), (11, 3), and (13, 4) in time 1.43 s, 19.84 s, and 228.94 s,
respectively, which were deemed difficult in [12] owing to the number of spurious
solutions possible being greater than one.

Buhler and Tompa [12] examined orthologous sequences from a several organisms
taken upstream of the following types of genes: preproinsulin, dihydrofolate reductase
(DHFR), metallothioneins, and c-fos, to identify known transcriptional regulatory

100 SORTING- AND FFT-BASED TECHNIQUES

elements (data due to Blanchette [10]). On these datasets, the PMS algorithms found
the published motifs similar to the ones reported in [12].

Space efficient exact algorithms PMSi and PMSP that adopt better pruning tech-
niques while searching the motif space have been proposed in [20] and have solved
the (15, 5) and (17, 6) instances of PMP in 35 minutes and 12 h, respectively. These
algorithms explore the d-neighborhood of substrings of length l (say u) from the first
sequence, one at a time, to check for the planted motif, considering only a subset
of substrings from other sequences that would qualify to be a variant w.r.t. u, that
is, those substrings at a hamming distance of at most 2d from u. Furthermore, im-
provements on these algorithms is included in [21] , obtaining a significantly faster
algorithm called PMSprune, which handles harder instances reducing the running
time.

5.3.2 Discovering Edit Distance-based Motifs

The discussion in the previous section considers only point mutations as events of
divergence, but evolutionarily speaking, there are insertions and deletions of residues
that occur to cause such divergence in biosequences. Therefore, researchers have
considered to employ the Levenshtein distance (or edit distance) instead of hamming
distance to extract common motifs in a set of sequences. Rocke and Tompa [55]
present an algorithm based on the Gibbs Sampling approach of Lawrence et al. [41]
that adopts a relative entropy scoring function to identify best scoring motif occur-
rences, taking into account gaps in the occurrences. Sagot [57] proposed algorithms
that adopt suffix tree data structure to discover common motifs in a set of biose-
quences based on hamming distance and also extended them to the edit distance-based
model. The problem of discovering motifs based on edit distance is formally stated as
follows.

Given n sequences S1, S2, . . . , Sn, each of average length m from a fixed alphabet

, and integers l, d, and q, find all the patterns of length l in the input, with occurrences
in at least q of the n sequences, each such occurrence being at an edit distance of at
most d from the patterns themselves.

The suffix tree algorithm given by Sagot [57] has a runtime of O(n2mld |
|d)
and a space requirement of O(n2m/w), where w is the word length of the com-
puter. An algorithm with an expected runtime of O(nm+ d(nm)(1+pow(ε)) log nm)
where ε = d/l and pow(ε) is an increasing concave function was proposed by Ade-
biyi and Kaufmann [1]. The value of pow(ε) is roughly 0.9 for protein and DNA
sequences.

A sorting-based algorithm Deterministic Motif Search (DMS) that has the same
runtime complexity as Sagot’s algorithm was proposed by Rajasekaran et al. in
[52]. Algorithm DMS generates the neighborhood of every substring of length l in
the input, the elements being at an edit distance of at most d from the substrings
themselves. Call this collection A. Note that the elements in A will have lengths in the
range [(l− d), (l+ d)]. The number of elements in A is O(nmld |
|d). A collection
B consisting of all substrings of the input with lengths in the range [(l− d), (l+ d)]
is also generated, duplicates within the same sequences removed. Clearly, the size of

MOTIF DISCOVERY AND RELATED PROBLEMS 101

B is O(nmd). Collections A and B are sorted and merged. Let the merged collection
be C. Collection C is then scanned to identify those elements of A that have occurred
in collection B from at least q distinct sequences of the input. The significance
of algorithm DMS lies in the fact that it uses simple radix sorting techniques and
arrays as underlying data structure to identify the desired patterns with a potential
to perform better in practice than the suffix tree-based approach. A survey on motif
search algorithms is [50].

5.3.3 Primer Selection Problem

An experimental method in molecular biology, Polymerase Chain Reaction (PCR),
is performed in the laboratories to create multiple copies of a DNA sequence. This
process, called amplification, requires a pair of short single-stranded synthetic DNA
strings, typically 15 to 20 nucleotides long that exactly match the beginning and end of
the DNA fragment to be amplified, called forward and reverse primers. Multiplex PCR
(MP-PCR) is a variant of PCR, which enables simultaneous amplification of multiple
DNA fragments of interest in one reaction by using a mixture of multiple primers [15].
The presence of multiple primers in MP-PCR can lead to severe problems, such as
unintended amplification products caused by mispriming or lack of amplification due
to primer cross hybridization. To minimize these problems, it is critical to minimize
the number of primers involved in a single MP-PCR reaction, particularly, when the
number of DNA sequences to be amplified is large. This can be achieved by selecting
primers that would simultaneously act as forward and/or reverse primers for several
of the DNA sequences in the input set. The problem of minimizing the number of
primers is called the Primer Selection Problem (PSP) and has been well studied, for
example, in [24–26, 47].

Pearson et al. [47] proved that PSP is NP-Complete by a reduction from the mini-
mum set cover problem, and gave an exact algorithm based on the branch-and-bound
technique and a greedy heuristic guaranteeing a logarithmic approximation factor. Doi
and Imai [24] considered biological constraints such as the GC-content, complemen-
tarity of the primers and the length of amplification in their approximation algorithm.
In [25], the authors analyzed a more rigorous version of the primer selection problem
by considering primer orientation and the length constraint on the amplified prod-
uct. Konwar et al. [39] address MP-PCR primer design with amplification length
constraints using a potential greedy technique.

An advanced technique of designing primers with multiple bases in each position
of the primer [40] led to a higher degree of primer reuse in MP-PCR. Such primers
are called Degenerate Primers and require no involved methods than those required
to synthesize regular primers. The advent of this technique shifted the focus to the
problem of selecting degenerate primers for a given set of DNA sequences, called
the Degenerate Primer Design Problem (DPDP). The degeneracy of a degenerate
primer pd is the product of the number of bases in each position of the primer, that
is,
∏l

i=1 pd[i], where l is the length of pd . It can also be viewed as the number of
distinct nondegenerate primers that could be formed out of it. For example, if the de-
generate primer is pd =A{CT}GC{ACG}T{GA}, it has degeneracy 12; the distinct

102 SORTING- AND FFT-BASED TECHNIQUES

nondegenerate primers represented in pd are ACGCATG, ACGCATA, ACGCCTG,
ACGCCTA, ACGCGTG, ACGCGTA, ATGCATG, ATGCATA, ATGCCTG, ATGC-
CTA, ATGCGTG, and ATGCGTA. pd is said to cover a given DNA sequence s iff s

contains at least one of the nondegenerate primers of pd as its substring. Linhart and
Shamir formulated many variants of DPDP in [45] and proved them to be NP-hard.
One such variant, called the Maximum Coverage Degenerate Primer Design Problem
(MC-DPDP), emerges when a bound is imposed on the degeneracy of the primers
designed, as highly degenerate primers may give excessive mispriming. The goal is
then shifted to design a minimum number of degenerate primers for the given set of
sequences such that each degenerate primer has a degeneracy of at most the bound
specified and covers as many input sequences as possible. A number of algorithms
have been proposed for MC-DPDP, defined as follows.

Given n DNA sequences of length m nucleotides each, primer length l and degen-
eracy threshold d, find a set of degenerate primers of maximum coverage, each of
length l and degeneracy at most d, that collectively cover all the input sequences.

Rose et al. [56] proposed an algorithm called CODEHOP that designs hybrid
primers with nondegenerate consensus clamp at the 5′ region and a degenerate 3′
core region. In Wei, Kuhn, and Narasimhan’s [64] work, algorithm DePiCt that has a
similar flavor, designs primers of low degeneracy and high coverage for a given set of
aligned amino acid sequences based on hierarchical clustering. In an effort to identify
genes belonging to the same family, Fuchs et al. [31] devised a two phase algorithm
called DEFOG. In its first phase, DEFOG introduces degeneracy into a set of non-
degenerate primer candidates selected due to their best entropy score. Linhart and
Shamir [46] proposed an algorithm called HYDEN for the first phase of DEFOG and
reported good practical performance in experiments on synthetic and real biological
data. Souvenir et al. [59] proposed the MIPS algorithm for a variation of MC-DPDP,
discussed in their paper as the Partial Threshold Multiple Degenerate Primer Design
(PT-MDPD), that uses an iterative beam search technique to design its degenerate
primers. Experimental results for varying number of input sequences and different
target degeneracy, the sequences being uniformly distributed i.i.d. sequences of equal
length, were reported in [59]. It was shown that MIPS always produced a smaller num-
ber of primers than HYDEN. For a survey of algorithms on Primer Selection, see [5].

MIPS starts with a set of primers (called 2 primers) that cover two sequences from
an input of n sequences, adopting a FASTA lookup table to identify those substrings
of length l that match in at least six consecutive positions. It extends the coverage of
the primers in the candidate set by one additional sequence, introducing degeneracy
in the primers if necessary, retains a subset of these primers of lowest degeneracy (the
number determined by an input parameter called beam size b) for the next iterative
step until none of the primers can be extended further without crossing the target
degeneracy d. At this point, the primer with the lowest degeneracy is selected and the
sequences that it covers are removed from the input set and the procedure is repeated
until all the sequences are covered.

MIPS has an overall time complexity of O(bn3mp), where b is the beam size,
n is the number of sequences, m is the sequence length, l is the primer length, and
p is the cardinality of the final set of selected degenerate primers. The number of

MOTIF DISCOVERY AND RELATED PROBLEMS 103

iterations MIPS takes to identify an n-primer, that is, a primer that covers all the n

input sequences, is O(n). This is because in the kth step of the iteration, it generates
candidate primers for the (k + 1)th step such that their degeneracy either increases
or remains the same while their coverage increases by exactly one more sequence.
Thus, even in the simplest case of a string of length l appearing as a substring in all
the input sequences, MIPS would perform n iterations to identify the nondegenerate
n-primer.

An algorithm called DPS has been given in [8]. DPS has been shown to have a
better runtime than that of MIPS in the worst case. It employs sorting techniques and
a new strategy of ranking the primers in every iteration as defined below.

Let the coverage efficiency e(P) of a degenerate primer P be the ratio of the
number (c(P)) of sequences it amplifies or covers to its degeneracy (d(P)), that is,
e(P) = c(P)/d(P).

Candidate primers are kept in a priority queue. Let P1 and P2 be two degenerate
primers in the priority queue of candidate primers and let e(P1) > e(P2), then the
priority of P1 is higher than that of P2. If e(P1) = e(P2), then the primers are ranked
in the nondecreasing order of their degeneracy.

Similar to MIPS, at any time the algorithm DPS keeps a collection of b best
primers. In a given iteration, these b primers are merged with every l-mer in the
input sequences that are yet to be covered. Each such merged l-mer is a potential
primer. Thus, a collection of at most bmn candidate primers is examined in any
iteration. There could be duplicates in this collection. This collection is sorted to
identify duplicates. The coverage lists of duplicates are merged. As a result, for
each candidate in the collection of unique candidates, its coverage efficiency is com-
puted. Based on the coverage efficiency, the best b primers are picked for the next
iteration.

Now, let us look into the number of iterations algorithm DPS will perform to
design 1 primer of degeneracy at most d. As the algorithm identifies unique primer
candidates in each iteration, the candidates generated for the next iteration will always
have a degeneracy strictly greater than the degeneracy of the candidate in the current
iteration. For a degeneracy of d, the number of positions that can be degenerate in any
primer strictly lies in the range, [�log|
|d� : �log2d�]. If we consider the number of
symbols that could be added to a nondegenerate primer to create a degenerate primer
of degeneracy at most d, strictly the range is [�log2d� : (|
| − 1) ∗ �log|
|d�]. Thus,
the number of iterative steps algorithm DPS can perform to identify a single primer
P of the output is O(|
|log|
|d). Thus, the overall time complexity of algorithm DPS
is O(|
|log|
|dbn2mp).

[45] introduced another variant of DPDP called the Minimum Degeneracy Degen-
erate Primer Design with Errors Problem (MD-DPDEP). Here, the goal is to identify
one degenerate primer of minimum degeneracy to cover all the input sequences. A
special case of MD-DPDEP, called Minimum Degeneracy Degenerate Primer Design
Problem (MD-DPDP) is discussed in [46]. Apart from proving its NP-hardness, little
focus has been given to MD-DPDEP in the literature.

Let S = {S1, S2, . . . , Sn} be the set of input DNA sequences and |Si| = m, 1 ≤
i ≤ n. Let l, l � m be the length of the degenerate primer pd designed for the

104 SORTING- AND FFT-BASED TECHNIQUES

input set. Consider any input string Si. Let Si[j, . . . , (j + l− 1)] denote the substring
of length l starting at position j of Si. Let dist(pd, Si[j, . . . , (j + l− 1)]) denote the
hamming distance between pd and Si[j, . . . , (j + l− 1)]. As discussed earlier, we say
that pd covers Si iff for some j of Si, dist(pd, Si[j, . . . , (j + l− 1)]) = 0. Generally,
a small number of mismatches or errors are allowed between Si[j, . . . , (j + l− 1)]
and pd , which will not hinder the proper binding of the primer to the string dur-
ing MP-PCR experiments. Let e, 0 ≤ e ≤ l, be the number of mismatches allowed,
(i.e.) pd covers Si iff for some j of Si, dist(pd, Si[j, . . . , (j + l− 1)]) ≤ e. The MD-
DPDEP is defined as follows. MD-DPDP is a special case of MD-DPDEP where
e = 0.

Given the set S of n input DNA sequences and integers l and e, MD-DPDEP is
to find a single degenerate primer pd of length l and minimum degeneracy, say d,
that covers all the input strings of S such that for some j of Si, dist(pd, Si[j, . . . ,
(j + l− 1)]) ≤ e for each input sequence Si, 1 ≤ i ≤ n.

In [7], algorithm MinDPS is proposed for MD-DPDEP. It designs pd consisting
of two parts, the nondegenerate part α and the degenerate part β, similar to algorithm
CODEHOP. MinDPS consists of two phases, Phase I designing α adopting algorithm
PMS1, and Phase II designing β of pd adopting algorithm DPS. Based on the proba-
bilistic analysis of [12], MinDPS arrives at the expected length of α, such that there
exists a planted (|α|, e)-motif for the input sequences. In Phase I, it finds a set of (|α|,
e)-motifs for the input sequences using algorithm PMS1.

Let M be a (|α|, e)-motif for the input set. Let Si[ji, . . . , (ji + |α| − 1)],
1 ≤ i ≤ n, be the variants of M in the input sequences. Let the hamming dis-
tance dist(α, Si[ji, . . . , (ji + |α| − 1)]) = e′i. If e′′i = e− e′i, then, dist(β, Si[(ji +
|α|), . . . , (ji + |α| + |β| − 1)]) ≤ e′′i . Let Ni denote the set of strings of length |β|,
such that for each element ν ∈ Ni, dist(ν, Si[(ji + |α|), . . . , (ji + |α| + |β| − 1)])
≤ e′′i . If there are more than one variant of M in a given input sequence Si, all
such variants are considered to construct the elements of Ni. Phase II of MinDPS
constructs a degenerate primer β of length (l− |α|) considering the elements of the
sets Ni, 1 ≤ i ≤ n as candidates from each sequence of the input. Algorithm DPS is
employed to design β.

Algorithm MinDPS is reported to perform well in practice, achieving primers with
degeneracy around 200-fold less than the expected degeneracy on real biological
datasets when e = 3.

5.3.4 Discovering Endogenous RNAi Patterns in Genomes

RNA Interference or RNAi ([30]) is a phenomenon that inhibits the expression of
target genes by the introduction of double-stranded RNA (dsRNA) molecules into
the cells of organisms. RNAi has become a widely adopted technique in laboratories
to study pathways and determine gene functions in various species. Recent studies
show that it could be adopted as a therapy to treat diseases like cancers and genetic
disorders in which the mutant gene responsible for the initiation and progression of
such disorders is targeted and suppressed [13]. The dsRNA molecules, either syn-
thetic (in vitro) or those synthesized in vivo as a hairpin loop, are cut into fragments

MOTIF DISCOVERY AND RELATED PROBLEMS 105

21–23 nt long (short-interference RNA or siRNA) by a Dicer enzyme present in the
cell. These siRNAs associate themselves to RNA Induced Silencing Complex (RISC)
and eventually become single stranded. Then, the RISC identifies the substring of the
target mRNA that is antisense to one of the two strands of the siRNA attached to it,
binds to the mRNA and cleaves it into two near the center of the siRNA strand. The
cell identifies the split mRNA as unwanted material and destroys it. Thus, the pro-
tein that would be translated from the mRNA will not be produced and the silencing
of the gene responsible for the production of the protein is achieved. This process is
called RNAi by degradation. RNAi by inhibition is another process where micro RNAs
(miRNA) approximately 22 nt long bind to sites within the 3′ Untranslated Region
(UTR) of the target mRNA and prevent its translation into the corresponding protein
([44]). For a detailed treatment of RNAi please refer to [2]. In RNAi by inhibition,
perfect matching between the miRNA and the mRNA target site is not necessary but
for RNAi by degradation, an exact matching is necessary between the siRNA strand
and the substring of the target mRNA.

In [36], the problem of detecting endogenous dsRNA control elements and their
corresponding mRNA target for RNAi by degradation in genome sequences is dis-
cussed. In this case, the dsRNA control element is a Stem-Loop-Stem (hpRNA)
structure formed in vivo by the occurrence of two substrings 20–25 nt long, com-
plementary to one another within a small distance along the genome sequence and
a third occurrence, which is part of the target gene, that is either one of the above
two occurrences that is anywhere in the genome. The first phase is of detecting all
such triple repeats in a genome sequence and an algorithm based on a suffix tree
data structure is given to detect triplets of at least 20 nt length in [36]. Formally, the
problem is described as follows.

5.3.4.1 The Triple Repeat Identification Problem (TRIP) Input are a sequence
S = s1, s2, . . . , sn from an alphabet
, and integers l and d. For each element of
,
a member of this alphabet is defined to be its complement. If L is an l-mer of S, let
Lrc stand for the reverse complement of L. The goal is to output every l-mer, L, of S

if Lrc occurs within a distance d of L in S, and either L or Lrc occurs one more time
in S.

In [36], the authors report a memory requirement of 12 GB for a genome (C.
elegans) of size 100 Mb and the time required is mentioned as 4 h on a single processor.
Such large memory requirements are due to building a suffix tree for the entire genome
sequence and its reverse complement. Also, paging could become a very serious issue
if the entire suffix tree does not reside in the main memory.

In [6], two algorithms are proposed, CaTScan1 and CaTScan2 (for Control And
Target Scan), that adopt sorting techniques to identify the triplets. Implementation
results of both the algorithms show better performance in practice in space as well as
time when compared to the suffix tree algorithm.

Algorithm CaTScan1 adopts the radix sorting approach as follows. Let C be a col-
lection of elements of the form e = (p, o, v), holding the positional (p), orientational
(o), and value (v) information of l-mers in S. For every l-mer li starting at position

106 SORTING- AND FFT-BASED TECHNIQUES

i, 1 ≤ i ≤ (n− l+ 1), in S, e
f
i = (pf

i , o
f
i , v

f
i), and erc

i = (prc
i , orc

i , vrc
i) are the two

elements representing itself and its reverse complement respectively in C, such that,
p

f
i = prc

i = i, of
i = 0, orc

i = 1, vf
i = 2l-bit number of li, and vrc

i = 2l-bit number of
lrci . Elements of C are sorted with respect to the integer values of their corresponding
l-mers using radix sort. A scan of the sorted collection C will be sufficient to identify
the desired triplets and output them.

For very large genomes, the memory required by CaTScan1 could become a
bottleneck as it involves holding the values of each v

f
i and vrc

i , two 2l-bit integers
in memory in addition to position i and its two orientations 0 and 1. In an effort to
further reduce the memory requirement of CaTScan1, algorithm CaTScan2 employs
a combination of MSBs first and LSBs first integer sorting. Let k be any integer,
1 ≤ k ≤ l. In the first phase, the l-mers and their corresponding reverse comple-
ments of S are partitioned into 4k parts (as |
| = 4), with respect to the value of
the first k symbols. In particular, two l-mers will be in the same part if their first
k symbols are the same. Let A[1 : 4k] be an array of linked lists. For each posi-
tion i in S, let v

f
i be the 2k-bit integer value of si, si+1, . . . , si+k−1 and vrc

i , the

value of the reverse complement. The tuple (i, 0) is added to the list A[vf
i] and

(i, 1) to the list A[vrc
i]. Now, there are at most 4k independent sorting subprob-

lems (one for each list of the array A). Each list of A is processed independently,
sorted w.r.t. the last (l− k) symbols of the corresponding l-mers using LSBs first
sorting.

The advantage of the first phase is very clear. There are nearly 2n l-mers and
their reverse complements in S. Assume that each symbol of S is picked uniformly
randomly from the alphabet
. Also assume that the l-mers are independent (which
is clearly false since the l-mers could be overlapping). An analysis making this
assumption has been proved to hold well in practice (as in [12]). Then, the expected
size of each list of A is 2n/4k. Using Chernoff bounds [17], we can show that the
size of each list is no more than (1+ ε)2n/4k with high probability, for any fixed
ε > 0. If cln is the amount of memory employed by algorithm CaTScan1, then with
CaTScan2, the space occupied by A is no more than 16n (considering that each i

is a 32-bit integer; there are n positions on S, and 2n entries in the linked lists of A;
each entry in the linked list is an i and a reference to the next element in the list, thus,
requiring 4 ∗ 2n ∗ 2 = 16n bytes of space). The space used to process each list of A is
no more than cl(1+ ε)2n/4k with high probability and can be reused for the different
lists of A. As a result, the memory used by the new algorithm is 16n+ cl(1+ ε)2n/4k

with high probability (where the probability is over the space of all possible inputs).
An example value for k is 6. Also, the memory requirement of CaTScan2 is
further reduced (to nearly 8n+ cl(1+ ε)2n/4k) by realizing the lists of A as an
array of 4k arrays whose initial size is calculated by an additional prescan of the
sequence S.

When run on a PowerEdge 2600 Linux server with 4 GB of RAM and dual 2.8
GHz Intel Xeon CPUs, employing only one of these CPUs to process the C. elegans
genome to identify triplets of length 21 nt, CaTScan1 takes about 8 min and no
more than 2.5 GB of memory, while CaTScan2 takes about 11 min and no more than

MOTIF DISCOVERY AND RELATED PROBLEMS 107

1 GB of memory, achieving a speedup of 30 and 23, respectively, while reducing
the memory requirement by a factor of 4.8 and 12, respectively, over the suffix tree
approach.

5.3.5 Specific Selection of siRNA Patterns in Complete mRNA Data

The Specific Selection Problem arises from the need to design siRNA that aims
at gene silencing [27]. These short sequences target specific mRNA and cause the
degradation of such mRNA, inhibiting the synthesis of the protein generated by it.
These sequences are usually of small length, usually consisting of between 20 and
25 nucleotides. However, a length of 21 is used in practice and usually two of the
nucleotides are predetermined, so the problem becomes one of designing sequences
of length 19.

An important criterion in the design of the siRNA is that the sequence should
minimize the risk of off-target gene silencing caused by hybridization with the wrong
mRNA. This hybridization may occur because the number of mismatches between
the sequence and an unrelated sequence may be too small or because they share a
long enough subsequence. Formally, the problem can be described as follows.

5.3.5.1 The Specific Selection Problem Input are a collection of strings S =
{s1, . . . , sn} from an alphabet
, and integers l and d. We are interested in find-
ing a collection of l-mers X = {x1, . . . , xn} where for all i = 1, . . . , n, xi appears in
si and it does not appear in xj for j �= i with less than a distance of d.

It is clear that this problem can be solved in O(N2) time, where N :=∑n
i=1 |si|.

However, such an approach becomes impractical when we are dealing with complete
mRNA data where N could be of the order of 108.

In [66], this problem was studied under the name of unique oligo problem, and in
[61], a more general problem is considered under the name of probe design problem,
imposing more conditions on the designed l-mers, which include homogeneity—
which is measured by the melting temperature of the probe and the CG content—and
sensitivity—which is calculated using the free energy of the probe. Their solution
strategy is based on determining whether for each candidate l-mer it appears with
up to d mistakes in the other sequences by making use of a precalculated index
for small q-mers or seeds, and then extending contigous hits of q-mers with few
mismatches. The running time of these approaches depends critically on the values
of q and the number of mismatches which are used, which in turn depends heavily
on the combination of values of l and d.

In [65], this problem was considered in the context of designing an siRNA that
would target a particular mRNA sequence. It is pointed out that in cases such as
the ones that arise from designing siRNA where N ∼ 108, 19 ≤ l ≤ 23, and d =
3, 4 the previous strategy is computationally very intensive, hence, the occurrences
of an l-mer in a sequence with up to d mistakes is calculated by making use of
overlapping—instead of contiguous—q-mers or seeds allowing a few mismatches,
and it is shown that this approach outperforms the previous methods by orders of
magnitude. In particular it is claimed that for l = 19, d = 3, and N = 5× 107, the

108 SORTING- AND FFT-BASED TECHNIQUES

number of occurrences of an l-mer with up to d mismatches in a database of size N

can be calculated in nearly 10−2 s on a Xeon CPU with a clock rate of 3.2 GHz and
2 GB of main memory. This would imply that if we want to solve the (l, d) specific
selection problem in this case, we would take close to 6 days of calculation.

In [22], the algorithm SOS (for Specific Off-target Selection) is proposed, adopting
sorting techniques to identify specific l-mers. The algorithm is shown to be practical
when processing the complete mRNA of Human and Drosophila, running in less than
4 h and outperforming previous approaches.

The algorithm SOS can be described as follows:

Algorithm SOS {
Let X be a collection of (x, i) such that x is an l-mer of si.
for all (j1, . . . , jd) with 1 ≤ j1 < · · · < jd ≤ l do {
1. Sort the collection of X = {(x, i)} according to the values

of positions {1, . . . , n} \ {j1, . . . , jd} using radix-sort.
2. Scan the sorted collection, marking consecutive l-mers that agree on the

set of positions {1, . . . , n} \ {j1, . . . , jd} and appear at different si.
}
Output the unmarked l-mers.

}

It is clear then that Algorithm SOS can be implemented in O(N(l/w)(
(

l
d

)
) time

and O(N log |
|(l/w)) memory, where w is the word size of the computer. One big
advantage of Algorithm SOS is the fact that for a fixed value of l and d, the algorithm
is linear in N, making it practical for high values of N. However, it is sensitive on the
parameter l and particularly sensitive on parameter d, making it practical for values of
d ≤ 5. Notice furthermore, that we can decrease the memory used by the algorithm
SOS to O(N) by storing the l-mers in collection X by their position numbers.

This algorithm was implemented in C was run on a Power Edge 2600 Linux
Server with 4GB of RAM and dual Xeon 2.8 Ghz CPU’s—only one that was used.
In processing the Human mRNA data, we used close to 1.5 Gb of RAM and in the
case of the Drosophila we used close to 700 Mb of RAM, due to the fact that we store
the l-mers as 64 bit numbers. In the particular case of the Human mRNA with l = 19
and d = 3, SOS took 3 h and 22 min, outperforming the results in [65] by almost two
orders of magnitude.

5.4 FFT-BASED ALGORITHMS FOR SIMILARITY MEASUREMENT

Measuring similarities among biological sequences has numerous applications. For
instance, functionalities of newly sequenced genes can be inferred. Similarities can
be defined in a number of ways. The edit distance can serve as a measure of simi-
larity. (The edit distance refers to the minimum number of deletions, insertions, or
replacements needed to transform one sequence into the other.) Another measure of
similarity employs a matrix M that assigns a score for every pair of bases. Given two

FFT-BASED ALGORITHMS FOR SIMILARITY MEASUREMENT 109

sequences, A and B, for each possible alignment between the two, we compute the
total score and pick the alignment with the maximum score.

Both global and local similarities could be of interest depending on the context.
Global similarity captures the similarity between the two entire sequences. Local
similarity refers to the similarity between a subsequence of one sequence and a
subsequence of the other sequence. Often, local similarities could give biologically
more meaningful information than global similarities.

Given two sequences, BLAST identifies all the maximal segment pairs in them.
BLAST is a widely employed local similarity software [3]. If A and B are any two
sequences, BLAST identifies all the pairs (A′, B′) where A′ is a subsequence of A,
B′ is a subsequence of B, both A′ and B′ are of the same length, the similarity score
between A′ and B′ is at least S (for some specified S), and these two subsequences
are maximal, i.e., they can neither be expanded nor shrunk to increase the similarity
score. Any such pair is called a Maximal Segment Pair (MSP). Any similarity score
matrix such as PAM [23] can be used by BLAST in computing scores between two
subsequences. Other local alignment algorithms can be found, for example, in [54].

5.4.1 A Simple Algorithm

Global similarity between two sequences of length n each can be computed as follows.
We align the two sequences in each possible way and compute a score for each
alignment. For each alignment, the score can be computed in O(n) time. Since there
are �(n) possible alignments, this simple algorithm runs in time O(n2).

Let A = a0, a1, . . . , an−1 and B = b0, b1, . . . , bn−1 be two given sequences.
There are 2n− 1 possible alignments between A and B. In alignment 0, a0 over-
laps with bn−1; In alignment 1, a0 overlaps with bn−2 and a1 aligns with bn−1; and
so on. Let ci =

∑i
k=0 ai−kbn−k−1 for 0 ≤ i ≤ (n− 1) and cn+j =

∑n−1
k=j akbk−j for

1 ≤ j ≤ (n− 1).
Note that cj computes something corresponding to alignment j (for 0 ≤ j ≤

(2n− 1)). In particular, cj computes the sum of products of matching elements in
alignment j. Given A and B, the problem of computing cj for 0 ≤ j ≤ (2n− 1) is
known as the convolution problem. The cj values are known as convolution coeffi-
cients. The convolution problem can be solved in O(n log n) time using FFT algo-
rithms (see, for example, [37]).

Theorem 5.3 The convolution of two given sequences of length n each can be
computed in O(n log n) time.

Global similarities for all possible alignments of two given sequences
a0, a1, . . . , an−1 and b0, b1, . . . , bn−1 from an alphabet
 can be computed by per-
forming |
|2 convolution operations. Since each convolution takes O(n log n) time,
the total time needed is O

(|
|2n log n
)
. More details on this algorithm follow.

Let
 = {σ1, σ2, . . . , σk}. Define the binary sequence Aσ	 = a
σ	

0 , a
σ	

1 , . . . , a
σ	

n−1,
where a

σ	
j = 1 if aj = σ	 and a

σ	
j = 0 otherwise (for 1 ≤ 	 ≤ k and 0 ≤ j ≤ n− 1).

Similarly, define Bσm = b
σm

0 , b
σm

1 , . . . , b
σm

n−1, where b
σm
j = 1 if bj = σm and b

σm
j = 0

110 SORTING- AND FFT-BASED TECHNIQUES

otherwise (for 1 ≤ m ≤ k and 0 ≤ j ≤ n− 1). The basic idea behind the algorithm
is to compute the convolution of Aσ	 and Bσm (for 1 ≤ 	 ≤ k and 1 ≤ m ≤ k) and
from all of these convolution results compute the similarity scores for each possible
alignment of A and B.

If si is the score corresponding to the ith alignment of A and B (for 0 ≤ i ≤
(2n− 1)), then si is given by

∑k
	=1
∑k

m=1 c
σ	,σm

i M(σ	, σm), where M(σ	, σm) is the
score of aligning σ	 with σm. Here, c

σ	,σm

i is the ith convolution coefficient (corres-
ponding to the ith alignment) of Aσ	 and Bσm .

Since k2(= |
|2) convolutions are involved, the total runtime of the above algo-
rithm is O

(|
|2n log n
)
, yielding the following.

Theorem 5.4 If A and B are two given sequences of length n each, we can
compute the global similarity scores between them for each possible alignment in
O
(|
|2n log n

)
time.

Example 1 Let
 = {g, c, t, a}, A = a, t, c, t, g, t, a, a, c, t, g, t, and B = {g, g,

a, t, a, c, g, t, c, c, g, a}. Then, Ac = 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, and Bt = 0, 0,

0, 1, 0, 0, 0, 1, 0, 0, 0, 0. When Ac and Bt are convolved, the convolution coefficients
give us information about the global similarities between Ac and Bt . In particular,
for each possible alignment between Ac and Bt , we get to know the number of
matches such that a c in the sequence A pairs with a t in B corresponding to this
alignment.

Some clever encodings [16] can be used to reduce the number of FFT computations
involved in the above algorithm (though the asymptotic runtime will remain the same).

5.4.2 Faster Algorithms

In this section, we describe two algorithms of Rajasekaran, Jin, and Spouge [53]
whose runtimes are better than that of the previous algorithm (c.f. Theorem 5.4).
Let A = a0, a1, . . . , an−1 and B = b0, b1, . . . , bn−1 be the two given input se-
quences and let
 = {σ1, σ2, . . . , σk}. We perform k different computations, one
for each member of
. The computation corresponding to σq (for 1 ≤ q ≤ k) pro-
ceeds as follows. Form the binary sequence Aσq = a

σq

0 , a
σq

1 , . . . , a
σq

n−1, where a
σq

i = 1

if ai = σq and a
σq

i = 0 otherwise (for 0 ≤ i ≤ (n− 1)). Define a sequence Bσq =
M(σq, b0), M(σq, b1), . . . , M(σq, bn−1), where M(σq, bj) is the score for matching
σq with bj (for 0 ≤ j ≤ (n− 1)).

Now, we compute the global similarity scores between Aσq and Bσq for each
possible alignment between the two. This can be done using a convolution operation
in O(n log n) time (c.f. Theorem 5.3). Let s

σq

i be the similarity score corresponding
to alignment i, for 0 ≤ i ≤ (2n− 1).

We repeat the above computation for each σq in
. Then, the global similarity
score between A and B with respect to alignment i is computed as si =

∑k
q=1 s

σq

i (for
0 ≤ i ≤ (2n− 1)). The total runtime of the above algorithm is O (|
|n log n). Thus,
we get the following.

SUMMARY 111

Theorem 5.5 The global similarities between two given sequences of length n each,
for all possible alignments, can be computed in O (|
|n log n) time.

A slightly different algorithm can also be devised for the similarities problem.
The idea is to perform only one convolution operation that can give us all the results
corresponding to the |
| operations done above. This is done constructing two
sequences of length |
|n each and computing the similarities between them using a
convolution operation.

To be more specific, let A = a0, a1, . . . , an−1 and B = b0, b1, . . . , bn−1 be the
two given input sequences with
 = {σ1, σ2, . . . , σk}.

A′ and B′ are the two sequences we will construct with |A′| = |B′| = |
|n. For
every element of A there will be k binary entries in A′ and for every element of B there
will be k entries in B′. In particular, ai will be represented in A′ as a

σ1
i , a

σ2
i , . . . , a

σk
i

where a
σq

i = 1 if ai = σq and a
σq

i = 0 otherwise (for 1 ≤ q ≤ k).
Consider the example of
 = {g, c, t, a}, A = c, t, a, a, and B = g, g, t, c. In this

case A′ = 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1.
The elements in B′ corresponding to bj are: M(σ1, bj), M(σ2, bj), . . . , M(σk, bj)

(for 0 ≤ j ≤ (n− 1)). Here, M(σq, bj) is the score for matching σq in A with bj in
B (for 1 ≤ q ≤ k and 0 ≤ j ≤ (n− 1)).

In the above example, B′ = M(g, g), M(c, g), M(t, g), M(a, g), M(g, g), M(c, g),
M(t, g), M(a, g), M(g, t), M(c, t), M(t, t), M(a, t), M(g, c), M(c, c), M(t, c),
M(a, c).

We compute the global similarities between A′ and B′ for all possible alignments.
This involves the convolution of two sequences of length kn each. The time needed is
O(kn log(kn)). Clearly, the similarities of interest will be given by these convolution
coefficients (though some of the coefficients are not of interest to us). We obtain the
following.

Theorem 5.6 The global similarities between two sequences of length n each from
an alphabet
 can be computed in time O (|
|n log (|
|n)).

5.5 SUMMARY

In this chapter, we discussed in detail how sorting-based techniques could be applied
to discover motifs in a set of biosequences. We also looked at some problems related
to motif discovery, in which such techniques could be employed to obtain better per-
formance in time and space compared to existing algorithms in the literature. A related
problem of similarity measurement has also been discussed. FFT-based algorithms
for similarity measurement have been explored. We hope that through this discussion,
we could impress upon our readers the power and utility of basic techniques such
as sorting and FFT in solving several challenging problems in computational
biology.

112 SORTING- AND FFT-BASED TECHNIQUES

ACKNOWLEDGMENTS

This work has been supported in part by the NSF Grant ITR-0326155 and a UTC
endowment.

REFERENCES

1. Adebiyi EF, Kaufmann M. Extracting common motifs under the Levenshtein measure:
Theory and experimentation. Proceeding of the Workshop on Algorithms for Bioinfor-
matics (WABI). LNCS Vol. 2452. Springer-Verlag. 2002. pp. 140–156.

2. Agrawal N, Dasaradhi PVN, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee
SK. RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev
2003;657–685.

3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic Local Alignment Search
Tool. J Mol Biol 1990;215:403–410.

4. Bailey TL, Elkan C. Fitting a mixture model by expectation maximization to discover
motifs in biopolymers. Proceedings of the Second International Conference on Intelligent
Systems for Molecular Biology; 1994. pp. 28–36.

5. Balla S, Davila J, Rajasekaran S. Approximation Algorithms for the Primer Selection,
Planted Motif Search, and Related Problems. In: Gonzalez TE, editor. Approximation
Algorithms and Metaheuristics; CRC Press; 2006. pp. 75–1.

6. Balla S, Rajasekaran S. Space and Time Efficient Algorithms for Discovering RNAi
Patterns in Genome Data. 3rd International Symposium on Bioinformatics Research and
Applications (ISBRA 2007), LNBI Vol. 4463; 2007. pp. 260–269.

7. Balla S, Rajasekaran S. An Efficient Algorithm for Minimum Degeneracy Primer Selec-
tion. IEEE Trans Nanobiosci Special Issue Comput Nanobiosci 2007;1(6):12–17.

8. Balla S, Rajasekaran S, Mandoiu II. Efficient algorithms for degenerate primer search.
Int J Foundation Comput Sci (IJFCS), 2007;18(4):899–910.

9. Blanchette M. Algorithms for phylogenetic footprinting. Proceedings of the Fifth Annual
International Conference on Computational Molecular Biology; 2001.

10. Blanchette M, Schwikowski B, Tompa M. An exact algorithm to identify motifs in orthol-
ogous sequences from multiple species. Proceedings of the Eighth International Confer-
ence on Intelligent Systems for Molecular Biology; 2000. pp. 37–45.

11. Brazma A, Jonassen I, Vilo J, Ukkonen E. Predicting gene regulatory elements in silico
on a genomic scale. Genome Res 1998;15:1202–1215.

12. Buhler J, Tompa M. Finding motifs using random projections. Proceedings of the Fifth
Annual International Conference on Computational Molecular Biology (RECOMB);
2001.

13. Caplen NJ, Mousses S. Short Interfering RNA (siRNA)-Mediated RNA Interference
(RNAi) in Human Cells. Ann N Y Acad Sci 2003;1002:56–62.

14. Chalk AM, Wahlestedt C, Sonnhammer ELL. Improved and automated prediction of
effective siRNA. Biochem Biophys Res Commun 2004;319:264–274.

15. Chamberlain JS, Gibbs RA, Rainer JE, Nguyen PN, Casey CT. Deletion screening of the
Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res
1988;16:11141–11156.

REFERENCES 113

16. Cheever EA, Overton GC, Searls D. Fast Fourier Transform-Based Correlation of DNA
Sequences Using Complex Plane Encoding. CABIOS; 1991;7(2):143–154.

17. Chernoff H. A measure of asymptotic efficiency for tests of a hypothesis based on the
sum of observations. Ann Math Statistic 1952;493–507.

18. Chin FYL, Leung HCM. Voting algorithms for discovering long motifs. Proceedings of
the Third Asia Pacific Bioinformatics Conference (APBC); 2005. pp. 261–271.

19. Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to Algorithms; MIT Press;
2001.

20. Davila J, Balla S, Rajasekaran S. Space and time efficient algorithms for planted motif
search. Proceedings of the 6th International Conference on Computational Science (ICCS
2006)/ 2nd International Workshop on Bioinformatics Research and Applications (IWBRA
2006) LNCS Vol. 3992; 2006. pp. 822–829.

21. Davila J, Balla S, Rajasekaran S. Fast and Practical Algorithms for Planted (l, d) Motif
Search. IEEE Trans Comput Biol Bioinformatics (TCBB), 2007. Forthcoming.

22. Davila J, Balla S, Rajasekaran S. Fast Algorithms for Selecting Specific siRNA in Com-
plete mRNA Data. 7th International Workshop on Algorithms in Bioinformatics (WABI);
2007;4645:302–309.

23. Dayhoff MO, Schwartz RM, Orcutt BC. A Model of Evolutionary Change in Proteins.
In: Dayhoff MO, editor. Atlas of Protein Sequence and Structure Vol. 5(3). National
Biomedical Research Foundation; 1978. pp. 345–352.

24. Doi K, Imai H. Greedy algorithms for finding a small set of primers satisfying cover
length resolution conditions in PCR experiments. Proceedings of the 8th Workshop on
Genome Informatics (GIW); 1997. pp. 43–52.

25. Doi K, Imai H. A Greedy algorithm for minimizing the number of primers in Multiple
PCR Experiments. Genome Informatics 1999. pp. 73–82.

26. Doi K, Imai H: Complexity properties of the primer selection problem for PCR Experi-
ments. Proceedings of the 5th Japan-Korea Joint Workshop on Algorithms and Compu-
tation; 2000. pp. 152–159.

27. Elbashir S, Harboth J, Lendeckel W, Yalcin A, Weber K, Tuschtl T. Duplexes of
21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature;
2001;411:494–498.

28. Eskin E, Pevzner PA. Finding composite regulatory patterns in DNA sequences. Bioin-
formatics 2002;S1:354–363.

29. Evans PA, Smith AD, Wareham HT. On the complexity of finding common approximate
substrings. Theor Comput Sci 2003;306:407–430.

30. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and spe-
cific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature;
1998;391:806–811.

31. Fuchs T, Malecova B, Linhart C, Sharan R, Khen M, Herwig R, Shmulevich D, Elkon
R, Steinfath M, O’Brien JK, Radelof U, Lehrach H, Lancet D, Shamir R. DEFOG: A
practical scheme for deciphering families of genes. Genomics; 2002;80(3):1–8.

32. Galas DJ, Eggert M, Waterman MS. Rigorous pattern-recognition methods for
DNA sequences: analysis of promoter sequences from Escherichia coli. J Mol Biol
1985;186(1):117–128.

33. Gramm J, Niedermeier R, Rossmanith P. Fixed-parameter algorithms for Closest String
and Related Problems. Algorithmica 2003;37:25–42.

114 SORTING- AND FFT-BASED TECHNIQUES

34. Gusfield D. Algorithms on Strings, Trees and Sequences. Cambridge University Press;
1997.

35. Hertz G, Stormo G. Identifying DNA and protein patterns with statistically significant
alignments of multiple sequences. Bioinformatics 1999;15:563–577.

36. Horesh Y, Amir A, Michaeli S, Unger R. A rapid method for detection of putative RNAi
target genes in genomic data. Bioinformatics 2003;19(2):ii73–ii80.

37. Horowitz E, Sahni S, Rajasekaran S. Computer Algorithms. W.H. Freeman Press;
1998.

38. Keich U, Pevzner PA. Finding motifs in the Twilight Zone. Bioinformatics 2002;
18:1374–1381.

39. Konwar KM, Mandoiu II, Russell AC, Shvartsman AA. Improved algorithms for multiplex
PCR primer set selection with amplification length constraints. Proceedings of the 3rd
Asia Pacific Bioinformatics Conference (APBC); 2005. pp. 41–50.

40. Kwok S, Chang SY, Sninsky JJ, Wang A. A guide to the design and use of mismatched
and degenerate primers. PCR Meth Appl 1994;3:S39–S47.

41. Lawrence CE, Altschul SF, Boguski MS, Liu JS, Neuwald AF, Wootton JC. Detect-
ing subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science;
1993;262:208–214.

42. Lawrence CE, Reilly AA. An Expectation Maximization (EM) algorithm for the identifi-
cation and characterization of common sites in unaligned bipolymer sequences. Proteins
1990;7:41–51.

43. Li M, Ma B, Wang L. Finding similar regions in many sequences. J Comput Syst Sci
2002;65:73–96.

44. Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, Burge CB, Bartel
DP. The microRNAs of Caenorhabditis elegans. Genes Develop Vol. 17;2003. pp. 991–
1008.

45. Linhart C, Shamir R. The degenerate primer design problem – Theory and Applications.
J Comput Biol 2005;12(4); pp. 431–456.

46. Linhart C, Shamir R. The degenerate primer design problem. Bioinformatics; 2002;18(1);
pp. S172–S180.

47. Pearson WR, Robins G, Wrege DE, Zhang T. On the primer selection problem in
polymerase chain reaction experiments. Discrete Appl Math Vol. 71;1996. pp. 231–
246.

48. Pevzner PA, Sze S-H. Combinatorial approaches to finding subtle signals in DNA se-
quences. Proceedings of the Eighth International Conference on Intelligent Systems in
Molecular Biology; 2000. pp. 269–278.

49. Price A, Ramabhadran S, Pevzner PA. Finding subtle motifs by branching from sample
strings. Bioinformatics 2003. 1(1); pp. 1–7.

50. Rajasekaran S. Algorithms for Motif Search. In Handbook of Computational Molecular
Biology Aluru S, editor. Chapman & Hall/CRC; 2006. pp. 37-1–37-21.

51. Rajasekaran S, Balla S, Huang C-H. Exact Algorithms for Planted Motif Problems.
J Comput Biol 2005. 12(8); pp. 1117–1128.

52. Rajasekaran S, Balla S, Huang C-H, Thapar V, Gryk M, Maciejewski M, Schiller M. High-
performance Exact Algorithms for Motif Search. J Clin Monit Comput 2005. Springer.
19(4-5). pp. 319–328.

REFERENCES 115

53. Rajasekaran S, Jin X, Spouge JL. The Efficient Computation of Position-Specific Match
Scores with the Fast Fourier Transform. J Comput Biol 2002. 9(1); pp. 23–33.

54. Rajasekaran S, Nick H, Pardalos PM, Sahni S, Shaw G. Efficient Algorithms for Local
Alignment Search. J Comb Optim 2001;5(1):117–124.

55. Rocke E, Tompa M. An algorithm for finding novel gapped motifs in DNA sequences.
Proceedings of the 2nd International Conference on Computational Molecular Biology;
1998. pp. 228–233.

56. Rose TM, Schultz ER, Henikoff JG, Pietrokovski S, McCallum CM, Henikoff S.
Consensus-degenerate Hybrid Oligonucleotide Primers for amplification of distantly
related sequences. Nucl Acid Res 1998;26(7):1628–1635.

57. Sagot MF. Spelling approximate repeated or common motifs using a suffix tree. LNCS
Vol. 1380. Springer-Verlag; 1998. pp. 111–127.

58. Sinha S, Tompa M. A statistical method for finding transcription factor binding sites.
Proceedings of the Eighth International Conference on Intelligent Systems for Molecular
Biology; 2000. pp. 344–354.

59. Souvenir R, Buhler J, Stormo G, Zhang W. Selecting Degenerate Multiplex PCR Primers.
Proceedings of the 3rd International Workshop on Algorithms in Bioinformatics (WABI);
2003. pp. 512–526.

60. Staden R. Methods for discovering novel motifs in nucleic acid sequences. Comput Appl
Biosci 1989. 5(4); pp. 293–298.

61. Sung WK, Lee WH. Fast and Accurate Probe Selection Algorithm for Large Genomes.
Proceedings of the 2003 IEEE Bioinformatics Conference (CSB); 2003. pp. 65–74.

62. Tompa M. An exact method for finding short motifs in sequences, with application to
the ribosome binding site problem. Proceedings of the 7th International Conference on
Intelligent Systems for Molecular Biology (ISMB); 1999. pp. 262–271.

63. van Helden J, Andre B, Collado-Vides J. Extracting regulatory sites from the upstream
region of yeast genes by computational analysis of oligonucleotide frequencies. J Mol
Biol 1998;281(5):827–842.

64. Wei X, Kuhn DN, Narasimhan G. Degenerate Primer Design via Clustering. Proceedings
of the 2003 IEEE Bioinformatics Conference (CSB); 2003. pp. 75–83.

65. Yamada T, Morishita S. Accelerated off-target search algorithm for siRNA. Bioinformat-
ics; 2005;21(8):1316–1324.

66. Zheng J, Close TJ, Jiang T, Lonardi S. Efficient selection of unique and popular oligos
for large EST databases. Bioinformatics; 2004;20(13):2101–2112.

6
A SURVEY OF SEEDING
FOR SEQUENCE ALIGNMENT

Daniel G. Brown
Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada

We survey recent work in the seeding of alignments, particularly the follow-ups from
the 2002 work of Ma, Tromp, and Li that brought the concept of spaced seeds into
the bioinformatics literature [25]. Our focus is on the extensions of this work to
increasingly complicated models of alignments, coming up to the most recent efforts
in this area.

6.1 INTRODUCTION

Sequence alignment is one of the basic tasks of bioinformatics. The basic use of
alignment is to attempt to identify regions of sequences that are homologous, that is,
which share a common evolutionary origin. In practice, of course, this is not really
possible; the algorithms used in sequence alignment do not identify sequences with
common origin, but only sequences that have surprisingly strong similarity, according
to a scoring function. This similarity may arise due to chance, due to convergent
evolution, or due to any of a variety of other origins. However, the standard claim
made of sequence alignment algorithms is that if two sequences have an extremely
strong match that is highly improbable for unrelated random sequences, it is probably
the case that those sequences are, in fact homologous.

As such, the process of finding local alignments among a set of long sequences
consists largely of two phases: first, one runs a combinatorial algorithm that creates

Bioinformatics Algorithms: Techniques and Applications, Edited by Ion I. Mǎndoiu
and Alexander Zelikovsky
Copyright © 2008 John Wiley & Sons, Inc.

117

118 A SURVEY OF SEEDING FOR SEQUENCE ALIGNMENT

the alignments and then one performs statistical tests to identify which alignments
are “surprisingly strong,” for a variety of definitions of this threshold. Descriptions
of what makes a homology “surprisingly strong” are beyond the scope of this sur-
vey; here, we will focus instead on the first phase: identifying the alignments them-
selves. In fact, we will focus the majority of our attention on only one part of this
phase, which is the process of finding “seeds” for local alignments. Despite the
seeming smallness of this focus, however, there is a host of beautiful mathemat-
ics and algorithmic ideas hiding inside it. Moreover, this single part of the align-
ment process turns out to control both the runtime of heuristic alignment algorithms
and their usefulness, as it is largely responsible for the algorithms’ sensitivity and
specificity.

This area has had an amazing renaissance since 2000. Spurred on by advances
in the technology of genome sequencing (which were creating enormous corpora
of DNA sequence needing analysis), sequence alignment technology simply had to
become substantially more speedy, or it was going to become a limiting factor in
analysis. Still, one probably would not have expected that the technology devel-
oped would be as mathematically lovely as what has happened, nor that the wealth
of research that would develop in this area would be as large or as deep as it has
been.

We will begin with a formal description of alignments, to get a proper mathe-
matical description of the domain, and a brief review of the standard results in this
area. Then, in Section 6.3, we will describe how to estimate the usefulness of simple
approaches to alignment seeding. In Section 6.4, we will present the first of several
recent advances in this area, due to Ma, Tromp, and Li [25], which gives a quite
novel way of understanding the problem of alignment seeding. We will present the
mathematical algorithms, as well, that allow one to compute sensitivity and specificity
of such approaches. In Section 6.5, we will discuss a variety of extensions to this
idea, due to a host of different authors, all of which build upon the basic ideas. In
Section 6.4.5, we will focus on a particularly useful trick, where one seeds alignments
off of a match to any of a potentially large number of patterns. In Section 6.6, we
will mention some theoretical developments in this domain.

6.2 ALIGNMENTS

A sequence alignment is a way of representing the relationship between two bio-
logical sequences. In a very important sense, a sequence alignment is a hypothesis:
it hypothesizes that specific positions of two biological sequences share a common
ancestry. It can also be seen as a combinatorial object as well, and this perspective
can be exceedingly useful. Here, we will give a formal definition of sequences and
sequence alignments, and briefly discuss how they are produced. As this is largely
standard material, the reader is referred to standard textbooks [12,15] for more detail.

ALIGNMENTS 119

6.2.1 Formal Definitions

A biological sequence S = s1, . . . , sn is a sequence of symbols over a finite al-
phabet
. Common examples of
 include the DNA alphabet {A, C, G, T }, or
the 20-letter alphabet of symbols that represent the amino acids found in proteins.
More esoteric alphabets include the IUPAC alphabet that allows a position in a
sequence to be any nonempty subset of the DNA alphabet. This 15-letter alpha-
bet conveniently allows for uncertainty in a position of a sequence, particularly in
inferred ancestral sequence; we will use it when discussing multiple alignments in
Section 6.4.5.

The length of biological sequences can be extremely large; the human genome, for
example, is approximately 3× 109 letters long. Moreover, the sequence S might not
be a single sequence, but the concatenation of a collection of sequences; for example,
one might use all of the sequences of GenBank as the sequence S, which is in the
order of 1011 in length.

A global alignment A between two sequences S = s1, . . . , sn and T = t1, . . . tm,
over the same alphabet
, is a pair of sequences S′ and T ′, both of the same length,
which result from inserting zero or more special gap characters, indicated by the
symbol − (not found in
), before the first character of either S or T , and after each
symbol of S and symbol of T . The ith column of A consists of the ith symbols of S′
and of T ′. If this consists of two symbols sj and tk, we say that they are aligned to
each other, while if it consists of a character from S, sj , and the special gap character
(−), we say that si is aligned to a gap (and correspondingly if a gap is aligned to
tk). By convention, we will never choose to align a gap character (−) to another gap
character: each column of the alignment will include at least one character from S or
from T .

In addition to global alignments, local alignments are important; these consist of
global alignments (as defined before) of consecutive substrings of S with consecutive
substrings of T . Whether one is computing local or global alignments tends to be
application dependent: if we are aligning short regions that are known to be completely
homologous in S and T , global alignment is appropriate, as it allows us to potentially
identify the exact evolutionary homology between two sequences. Meanwhile, if
two sequences include long stretches of homologous and nonhomologous regions,
a collection of local alignments may be a better representation of the evolutionary
relationship.

Considering global alignments, the length (number of columns) of alignments is
always between max(n, m) and n+m, inclusive. With this in mind, we can easily
count all possible alignments.

Theorem 6.1 The number of distinct alignments of two sequences S and T that
are n and m symbols long, respectively, and where S is at least as long as T , equals:∑

i=n,...,n+m

(
i
n

) · (n
i−m

)
.

Proof. This is easily shown by noting that the number of columns in an alignment
must be between n and n+m, and that for a given number of columns i, we must
pick which i− n columns are the gap symbol in S′, and then which i−m columns

120 A SURVEY OF SEEDING FOR SEQUENCE ALIGNMENT

are the gaps in T ′, noting that they must be among the n columns where we did not
place a gap in S′. �

This number, of course, grows exponentially fast as a function of n and m, so we
cannot simply explore all possible alignments of reasonably long sequences (let alone
those of million-symbol or billion-symbol sequences). Instead, one must develop
algorithms to cleverly find correct alignments.

However, a preliminary step in the process is more philosophical: one must give
a way of preferring one of this large combinatorial set of alignments over another!
Scoring of alignments is itself a rich and beautiful topic, which we discuss in a broader
context in Section 6.5.3.1.

6.2.2 Meanings and Algorithms for Alignment

For now, though, we note that this process derives from an even more important task:
identifying the meaning of an alignment. We will say that if sj is aligned to tk in an
alignment that this represents the hypothesis that these positions of the sequence are
homologous: they derive from a common ancestral symbol (which may or may not
be equal to sj or tk, regardless of whether these symbols are themselves the same
character). If the positions sj to sj′ are aligned to gap positions in T ′, then we say
that these columns of the alignment result from one or more insertion events adding
symbols to the sequence S since the common ancestor that it shared with T , or deletion
events removing characters from T , or both. Again, the ancestral or inserted symbols
need not exactly match the symbols in S; subsequent mutations may have changed
them. And, finally, gaps in S′ aligned to symbols in T correspond in this interpretation
to insertions into T or deletions from S.

With this understanding of the meaning of an alignment A of S and T , there are
still an infinite number of different explanations that can be given for how we get
from a common ancestor to S and T , given an alignment A. Still, with a probabilistic
model of evolution, we can assign a probability to each of these. Satisfyingly, as we
shall see in Section 6.5.3.1, we can easily represent the probability of the highest
likelihood such explanation with the score of an alignment, using a simple scoring
function. We give a scoring matrix M[a, b], for all a and b in
, which gives the
score of aligning the symbol a in S to the symbol b in T , and add these values from
M up for all columns where there are no gaps. Typically, M[a, a] is positive, while
the score for aligning different symbols may be positive or negative. For gaps, we
traditionally use “affine” penalties, where the score of a string of k gap symbols in S′ or
T ′ flanked by symbols from
 on both sides is of the form o+ (k − 1)e, for (typically
negative) constants o and e, called the “gap open” and “gap extension” penalties,
respectively.

Now, with this scoring approach in mind, and with a match scoring matrix M and
the constants o and e known, we can declare one alignment to be the best of all of the
numerous possible alignments of S and T . (It is interesting that over the wide range
of all possible choices of M, o, and e, there are typically only a very small number of
optimal alignments [31].)

TRADITIONAL APPROACHES TO HEURISTIC ALIGNMENT 121

For simple alignment-scoring models, the optimal global alignment of S and T is
easily computed by classical dynamic programming models, in �(nm) time. The key
observation is that if a region of an optimal alignment starts and ends with matching
symbols (not a gap), then the region must be an optimal alignment of the subintervals
of S and T . (This is not quite true for regions that are flanked by gaps, as we need to
keep track of whether a gap is being opened, at cost o, or extended, at cost e; however,
the addition to the accounting is quite small, and results in only a doubling of the
overall runtime [33].)

As such, in �(nm) time, we can compute the optimal global or local align-
ment of S and T , assuming we know the parameters of the alignment process;
additionally, we can even use recent mathematical technology of Pachter and
Sturmfels [31] to find the range of parameter space over which that alignment is
optimal.

However, there is a serious problem: the �(nm) runtime is still unacceptable if
the values of n and m are large, such as if they are both on the order of billions. One
must compromise something: either one must develop a faster algorithm or one must
reduce one’s requirements, and not demand optimal alignments. Typically, for local
alignment, practitioners reduce their requirements and run heuristic algorithms that
are not guaranteed to always find the optimal alignments.

Heuristic sequence alignment has a fairly wide history, but the most important
place in this history probably comes when this area was joined by several people who
were familiar with ideas from string indexing. In particular, the simple idea of hash
tables and other such structures has been extremely useful here.

Consider the idea of local alignment: while one can compute in �(nm) time the
optimal alignment between an interval in S and an interval of T , this may be of
no interest at all! Suppose that S and T are unrelated: then, the best local align-
ment is no better than no alignment! As such, we can easily imagine a slight vari-
ation on the traditional local alignment problem: find the optimal local alignment
of S and T that is above a certain threshold of score, or that satisfies some other
easily tested minimum standard, or fail if no such alignment exists. This problem,
we shall see, can be solved in much less time than the classical algorithms for the
traditional sequence alignment will give. Or, we can solve a much less well-posed
problem: given S and T , efficiently find many or most alignments between them
that satisfy a threshold. This is much more vague of a problem, yet still it is the
underlying problem behind classic sequence alignment programs like BLASTP and
BLASTN [2] .

6.3 TRADITIONAL APPROACHES TO HEURISTIC ALIGNMENT

With the vague problem from the previous section (find many high scoring align-
ments between S and T) in mind, we now will describe the way in which traditional
programs have solved this problem. In particular, we will focus on how BLASTN and
BLASTP, and programs of their ilk, have solved this problem, before moving on to
more contemporary solutions in Sections 6.4 and 6.5.

122 A SURVEY OF SEEDING FOR SEQUENCE ALIGNMENT

6.3.1 Indexing and Heuristic Methods

The trick is quite simple: we find all alignments between S and T that share a highly
conserved “core.” In the case of BLASTN, this is a region of 10 or 11 consecutive
symbols that are identical in both S and T (and that are not highly repetitive). In
the case of BLASTP, this is a Three or Four letter interval of S and of T where the
score of the ungapped alignment between those symbols is above some minimum
threshold score (such as +11 or +13). Focusing solely on BLASTN, such intervals,
or “seeds,” can easily be found by indexing the k-letter subsequences of S: we produce
a trie structure of all k-letter subsequences of S (for k = 11, for example), and then
traverse through the trie, following the links corresponding to the sequence T , thus
finding the places in S where each k-letter subsequence of T is matched (if it is
matched at all).

From each of these initial seeds, then, we can start to build actual local align-
ments: we align the intervals to the left and to the right of each seed. If the inter-
vals on both sides of the seed are not closely aligning, we can quickly assert that
the exact match of k symbols occurred by chance, while if they do form a good
alignment, we can build the local alignment in its totality, by building a global
alignment in both directions until it has a low score (or a region that does not
allign well).

We see, then, that heuristic local alignment seems to consist of three phases: in-
dexing one or more of the sequences, using the index to identify possible alignment
seeds, and then building local alignments from the seeds. How does the timing of
these three phases balance out?

The first phase, typically, requires linear time: most indexing structures allow us
to build an index of a sequence S in O(n) time, or at most O(kn) time, where the
word size in the index is k. Similarly, the second phase requires linear time to traverse
through T , though if there are r seeds found between S and T , we clearly need
�(r) time and space to store them all. So the overall work of the first two phases is
�(n+m+ r). The third phase, however, is much harder to predict: if each of the r

seeds is a good one, it may take extensive time to build the local alignments around
each.

Still, in practice, most seeds turn out to be of low usefulness, and are discarded. If
our procedure consists of attempting to build an ungapped (or nearly ungapped) short
alignment around each alignment seed, and then throwing out the seed as unuseful
if it quickly seems not to be extending to a good alignment, we can assume that
the algorithm is expected to take O(1) time for each bad seed. Assuming that bad
seeds profoundly dominate good seeds, then, the final phase of the algorithm will
take O(r) time overall, giving an overall runtime of O(n+m+ r). Since we need
O(n+m) time just to read in the sequences, this may be a huge improvement over
the O(nm) runtime from the traditional sequence alignment approach. Similarly, if an
index for S already exists, and we read in a new sequence T , the runtime to find seeds
and build alignments will be O(m+ r), again assuming the overall alignment time
is O(r).

TRADITIONAL APPROACHES TO HEURISTIC ALIGNMENT 123

6.3.2 How Many Alignments are Found?

But what of r? How large is it? And how many good alignments that we might want
to be finding are not found with our approach to heuristic alignment search?

In order to answer these questions, we need some models of what related and
unrelated sequences actually look like, to see if truly homologous sequences will
satisfy the seeding requirements, and to see how often unrelated sequences will.

The simplest probabilistic model of unrelated sequences is to imagine S and T

as random noise; for the case of nucleotide sequences, where
 = {A, C, G, T }, this
corresponds to choosing uniformly over all 4n and 4m possible sequences. In two
such random noise sequences, a k-letter sequence of one sequence matches a k-letter
sequence of the other with probability 4−k. As such, if we assume that unrelated seeds
dominate related seeds, then the expected value of r is (n− k + 1)(m− k + 1)4−k,
and thus the overall expected runtime for a heuristic aligner of the type we have been
describing is O(n+m+ nm4−k).

In this very abstracted model, then, the runtime roughly quadruples (because the
number of false hits quadruples) every time we reduce k by 1, thereby reducing the
stringency of the seeding requirement. However, each time we do this, the probability
of finding a seed in a true alignment goes up: more true alignments will thus be
discovered. Can we characterize the tradeoff?

For this, we will need models of true alignments as well. For now, we note that
a seed of the sort we need can only occur in ungapped regions of alignments.
If we model the positions of such ungapped alignments as independent of each
other, and as being matching characters with probability p and mismatching with
probability 1− p, and we fix a length a for the ungapped regions, we can eas-
ily compute the probability that such an alignment includes a k-letter long exact
match.

Theorem 6.2 The probability that an a-letter ungapped alignment, in which posi-
tions have probability p of being matching and 1− p of being mismatched, includes
k consecutive matching symbols can be computed in O(ak) time.

Proof. We will demonstrate this by dynamic programming: let P(i, j) be the prob-
ability that an alignment of length i that is forced to start with j matching symbols,
but for which the i− j subsequent symbols are unfixed, has a region of length k with
matching symbols. We seek P(a, 0).

Clearly, P(i, j) = 0 if i is less than k, as the alignment is too short. And, if i ≥ k

and j = k, then P(i, j) = 1. We need only to consider what happens for i ≥ k and
j < k. In this case, position j + 1 of the alignment is a match with probability p,
and a mismatch with probability 1− p. If it is a mismatch, then any region of k

consecutive symbols must occur after the first j + 1 symbols. As such, P(i, j) =
p · P(i, j + 1)+ (1− p) · P(i− (j + 1), 0). We can easily compute each value of P

in constant time, and the overall value of P(a, 0) can be found in O(ak) time, as
desired. �

124 A SURVEY OF SEEDING FOR SEQUENCE ALIGNMENT

0,1

1 1 1
...

1

0

0

0

FIGURE 6.1 The simplest automaton that accepts all binary strings corresponding to
alignments with k consecutive matches in them. The automaton has a total of k + 1
states.

In the interest of having consistent terminology, we will call the fraction of align-
ments that have a seed, according to our model, the “sensitivity” of that approach,
and the fraction of random, unrelated positions with a seed, we will call the seed
approach’s “false positive rate.”

6.3.2.1 A Different Perspective We can see a remarkably different perspective on
this process if we instead consider the alignment as being represented by a binary
sequence A = a1, . . . , aa, where ai = 1 if position i of the ungapped alignment is
of matching sequences and ai = 0 otherwise. In this formulation, there is a match
to the seeding requirement exactly when A is in the regular language represented
by the regular expression (0+ 1)∗1k(0+ 1)∗. The smallest deterministic finite au-
tomaton for this language is shown in Fig. 6.1. We can compute, for each i in the
range from 0 to a, the probability that after reading in i random characters, the
automaton is in state j of the automaton; then, if we are interested in sensitivity,
the question we are seeking to answer is whether after a symbols are read, the au-
tomaton is in its accept state. The two approaches are equivalent (and give compa-
rable algorithms), but we will often use the automaton representation in what fol-
lows.

It is, for example, very convenient when we consider BLASTP’s seeding approach.
Recall that in BLASTP, we will find a seed between two sequences when they share a
region of length k, where k is 3 or 4, for which the total score of their short ungapped
region crosses a threshold. We can treat the alignment sequence A as a sequence of
scores over a discrete set F of possibilities, each with an attached probability; let
us treat this set F as the alphabet for the sequence A. With this in mind, we then
identify a regular expression that defines all possible score substrings of length k

over the set F that cross the threshold. Then, we can compute a deterministic finite
automaton for the language of all strings over F that include a substring satisfying
the regular expression, and compute the probability of ending a string in the accept
state.

To be more formal, let D be such a finite automaton with q states, d1, . . . , dq,
where dq is the accept state and d1 is the start state; suppose that δj(f) be the label of
the state that the automaton transitions to from state dj upon reading the symbol f .
Let A = a1, . . . , aa be an a-letter-long random string of symbols over the alphabet F ,
where the probability that ai = f is pf , and all positions of A are independent. Let

TRADITIONAL APPROACHES TO HEURISTIC ALIGNMENT 125

P[i, j] be the probability that the automaton is in state dj after reading in i symbols of
A. If we have computed P[i− 1, j] for all states dj , then we can compute the values
of P[i, j] by starting them all at zero and adding P[i− 1, j]pf to P[i, δj(f)] for all
choices of j and f . In this manner, we can work our way to longer and longer strings,
and, in O(|F |qa) time, we can compute the value of P(a, q), which is what we desired.
(For that matter, it is worth noting that if one thinks of the transitions in the automaton
as being akin to traversing the states of a Markov chain, we are simply computing the
a power of the transition matrix of the Markov chain; we can use successive doubling
approaches to reduce the dependency of the runtime of this check to be logarithmic,
not linear, in a.)

6.3.2.2 Which Seeding Approach to Use? With the traditional BLASTN al-
gorithm, then, there is only one parameter that is k, the seed size. Increas-
ing it will reduce runtime, by reducing the number of seeds found, and at the
same time will reduce the number of true alignments found; reducing k will in-
crease both runtime (by increasing the number of false seeds found) and the
sensitivity.

Yet, this turns out to be an unhappy bargain. The traditional approach to nu-
cleotide alignment is to set k = 11, which places a false positive hit roughly ev-
ery 411 cells, if the DNA is totally random noise. Yet if we are assuming that un-
gapped regions of alignments are 64 positions long and 70% conserved (that is, every
position has probability 0.7 of being a match and 0.3 of being a mismatch), the
algorithm described in the previous section finds that the probability of an align-
ment having a hit is just 0.30. Meanwhile, BLASTN has traditionally been very
slow, and certainly would not scale comfortably to large-scale alignments of many
genomes.

One faster way is to change the seeding requirement; instead of requiring one
11-letter exact match, we can require two nine-letter exact matches between S and
T , separated by the same amount in both sequences. This is the approach used in
Version 2 of BLAST [3]. Interestingly, we can estimate the sensitivity of the ap-
proach in a way analogous to that presented in Section 6.3.2.1. If we again look
at the binary sequence A that represents the alignments we can represent the un-
gapped alignments that are hit as the regular language represented by the expression
(0+ 1)∗1k(0+ 1)∗1k(0+ 1)∗. All we need to do is produce a deterministic automa-
ton for this language (the smallest such automaton is in Fig. 6.2), and again ap-
ply the algorithm of Section 6.3.2.1 to it, to ask what the probability is that after
a symbols are read, we are in the accept state of the automaton. We can similarly
compute the probability that two hits are found in a short range of unrelated se-
quences, though there is some awkwardness here, in that we need to estimate this
probability by putting an upper limit on how far the two matches are from each
other.

The two-hit approach to seeding does often give robust improvements in sen-
sitivity and false positive rates. Still, there is substantial overhead in placing
two matching hits together, which may not be properly accounted for in this
estimate.

126 A SURVEY OF SEEDING FOR SEQUENCE ALIGNMENT

0

1 1 1

1 1 1

...

0

0
0

...
1

0

0

0

0,1

1

FIGURE 6.2 A simple automaton that accepts all binary strings that have two nonoverlapping
hits to a k-continuous match pattern. The automaton has 2k + 1 states, and accepts the regular
language (0+ 1)∗1k(0+ 1)∗1k(0+ 1)∗.

6.4 MORE CONTEMPORARY SEEDING APPROACHES

We focused in the previous section on the sensitivity of a seeding approach and the
false positive rate. However, the other great advantage of BLAST-style seeding is the
simple way in which we find the seed matches for alignments. At its simplest, we can
think of this as a hash table of the k-symbol substrings of S being used to find exact
matches to k-symbol substrings of T . The ease of lookup is the key feature here; it is
trivial to find all matches for a position of T in S. But, if all we are doing is building
hash tables, they need not be of consecutive substrings of S, but could be of more
complex patterns, such as of nonconsecutive positions.

This idea seems trivial, but is actually extremely useful. We will characterize such
a nonconsecutive pattern by a sequence Q, of length 	, of zeros and ones: ones will
indicate positions in the seed pattern where there must be a match between S and T

in order to create a hit, and zeros will indicate “don’t care” positions. To be formal,
we will call such a sequence Q = q1, . . . , q	 a “spaced seed pattern”; its number of
ones is its “weight,” w. The alignment sequence A hits the seed pattern Q if and only
if there exists a position i such that in all positions j, where qj = 1, aj+i−1 = 1.

It is a triviality to find all spaced seed hits between S and T for a given Q: we first
produce a hash table of the 	-symbol substrings of S, projected onto the w positions
of Q that have value 1. Then in the second phase, we compare them against the
	-symbol substrings of T , again projected onto the w positions of Q with value 1.
Exact matches will give rise to seed hits. With the hits, we can proceed to the third
phase of extension and alignment building. The overall runtime may go up by a modest
factor, as we can no longer build a trie of k-letter substrings of S, but need a hash
table, but nonetheless, the overall runtime is still only slightly worsened.

But why would anyone make this change? Is there an advantage to be
borne by switching to this approach for seeding? In fact, there is an enormous

MORE CONTEMPORARY SEEDING APPROACHES 127

improvement in sensitivity: for the simple Bernoulli model of alignments
with a = 64 and p = 0.7, the best seed of weight 11 is 50% more sen-
sitive than the BLAST consecutive pattern, which is equivalent to the seed
Q = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

6.4.1 Why are Spaced Seeds Better?

This surprising result arises because of an unexpected advantage: the hits to
spaced seeds are more independent than hits to unspaced seeds. As such, even
though the expected number of hits in an alignment of a given length and
strength is similar for spaced and for unspaced seeds, in the spaced seed, the
expected number of hits, given that there is at least one hit, is substantially
greater.

If X is the random variable that is the number of hits in a random align-
ment, it is sufficient to find at least one hit: then we will find the alignment.
Thus, the sensitivity is Pr[X ≥ 1]. Meanwhile, E[X] is the expected number of
hits, and E[X|X ≥ 1] is the expected number of hits, assuming that the num-
ber of hits is at least 1. A simple identity shows that E[X] = E[X|X ≥ 1] ·
Pr[X ≥ 1], so Pr[X ≥ 1] = E[X]/E[X|X ≥ 1]. If we hold the numerator of the
fraction roughly constant, and drop the denominator, then the sensitivity will
rise.

That does not explain, however, why the expected value of X, given that X is at least
1, is smaller for spaced seeds. (Nor, for that matter, does it explain why E[X] stays
roughly constant.) Let us answer the second question first: for any position i of A, if
there are enough positions that follow position i to allow for a hit to the seed (spaced
or unspaced), then the probability of a hit occurring in the model where all sites in A

are independent and equal to 1 with probability p is pw, where w is the seed weight.
In an alignment of length a, then, the expected number of hits is (a− 	+ 1)pw.
If 	 is small in comparison to a, then, this is roughly constant for all spaced seed
patterns.

Why is E[X|X ≥ 1] smaller for spaced seeds? Consider the unspaced seed of
length w, and suppose there is a hit at site i. Then, the probability of a hit at site i+ 1
is p; the first w− 1 needed matches for the hit already exist. As such, if there is one hit,
there is likely to be more than one hit, and the subsequent hits are wasted. Meanwhile,
if we consider the spaced seed 101001, and move forward one position from a hit,
none of the needed matches for the next match are already included, so the probability
of an immediately neighbouring hit is just p3, which is much smaller. (Of course, if
we move one position further to the right, one of the needed matches is present,
but the overall probabilities give substantially lower conditional expectation to the
spaced seed.)

This, then, is the essential property: a good spaced seed has very little inter-
nal periodicity, and as such, hits to spaced seeds tend to be more independent.
The real benefit, though, is that we can also compute the theoretical sensitivity
of a seeding approach, and use it to pick the best seed pattern for a particular
task.

128 A SURVEY OF SEEDING FOR SEQUENCE ALIGNMENT

6.4.2 Computing the Sensitivity of Spaced Seeds

With the automaton-based approach described in Section 6.3.2.1, computing the sen-
sitivity of a spaced seed Q is no more complicated than for a consecutive seed: we
identify a finite automaton that accepts the language of all strings that include a match
to Q, and then compute the probability that a random string (according to a fixed prob-
ability distribution) of length a is a member of Q using the same algorithm in Section
6.3.2.1. For example, for the seed 10011, there is a hit in any alignment A that is a
member of the language represented by the regular expression (0+ 1)∗1(0+ 1)(0+
1)11(0+ 1)∗. The smallest automaton for this language is found in Fig. 6.3.

In general, for a seed of weight w and length 	, this automaton will have O(2	−w)
states, and then we can simply apply the same algorithm as before, which will give us
the sensitivity of the spaced seed in O(a2	−w) time. A variety of other exponential-
time algorithms exist for this operation, coming from a variety of different perspec-
tives, with the first due to Keich et al. [17]; still, the important feature to note is that
they all require time exponential in the number of “don’t-care” positions in the seed.
Also, recall the important fact that these slow algorithms are computing the theoretical
sensitivity of a spaced seeding approach, not actually being used to align sequences;
there, the runtime is, again, the index-building time plus the seed-finding time plus
the alignment-building time.

There are an exponential number of spaced seeds of a given maximum length 	 that
have 	− w don’t-care positions, so we see a very slow procedure will be necessary
to find the optimal seed pattern for a single probabilistic model of alignment. Still,
this procedure, conceivably, would only be done once, and then the optimal seed
pattern found will be used for a large number of alignments, so the overall cost is still
moderate.

Some complexity results exist that show that computing the optimal spaced seed
for a given probabilistic model of alignments is NP-hard, though for Bernoulli models,
there is a strong connection to combinatorial design problems of finding patterns with

0

1

11

10

111

110

101

100

1?11

1?010

0

0

0

0

0
1

1

1

0

1

1

1

1

1

1
0

1
0

1??11
0,1

FIGURE 6.3 A simple automaton that accepts all binary strings that have a hit to the spaced
seed 10011. This automaton accepts the language (0+ 1)∗1(0+ 1)(0+ 1)11(0+ 1)∗.

MORE CONTEMPORARY SEEDING APPROACHES 129

low autocorrelation. In some very nice work, Buhler et al. [9] give a connection to
spectral graph theory, showing the importance of the eigenvalues of the transition
matrix of the Markov chain that describes transitions in the automaton that we have
described. There are also some theoretical results that document that any spaced seed
will, in fact, have its first hit start at a position whose expected distance from the
start of the alignment is shorter than that for an unspaced seed, which gives some
theoretical justification to the use of them (though, of course, the true test is in the
usefulness of these models). See Section 6.6 for more details on this fascinating
work.

6.4.3 Spaced Seeds in Practice

Spaced seeds were initially described [25] in context of the PatternHunter sequence
alignment package. The idea is similar to a few earlier ideas in the pattern-matching
literature, though the PatternHunter authors were unfamiliar with this work [22]. One
advantage of the spaced-seeds approach is that it is possible to optimize the seed to
a specific domain; most previous work had been theoretical and had not considered
the question of choosing a pattern that maximized sensitivity. For example, Buhler
[8] had used locality-sensitive hashing to find matches between long intervals of two
alignments, but his approach chose a large number of random seed patterns, not a
pattern specifically chosen for its quality.

A program that uses similar approaches to PatternHunter is YASS [29,30], due to
Kucherov and Noé. Their approach also allows for multihit models, as for BLAST
version 2, described above, where there is a mismatch in the lengths of the regions
between the hits; this allows one to model short gaps. YASS also includes several
extensions to spaced seeds, some of which are described in Section 6.5. Spaced seeds
have also been used by Brown and Hudek in their multiple DNA alignment software,
as a way of finding good anchors for multiple alignments [7,16]. There, the seeds are
used to anchor multiple alignments; further detail is in Section 6.4.5

6.4.4 More Complicated Alignment Models

The independent Bernoulli model of DNA sequence alignments in the previous section
is clearly unrealistic; in practice, DNA sequence alignments have internal variation,
positional dependence, and of course, they also have gaps. In this section, we continue
using spaced seeds as our framework for alignment seed generation, but we consider
their sensitivity to more realistic alignment models.

A first observation, made by both Buhler et al. [9] and Brejová et al. [4], concerns
the structure of alignments of coding sequences. Both groups made the observa-
tion that the redundancy of the genetic code makes modeling alignments of coding
sequences with independent Bernoulli variables silly: as is well known, the third po-
sition of codons are subject to substantially less evolutionary pressure than the other
two positions. In fact, this observation had been used by Kent in his program WABA
[19], which had implicitly used the seed model 110110110 . . ., though without the
language or structure of spaced seeds.

130 A SURVEY OF SEEDING FOR SEQUENCE ALIGNMENT

3p p p21

FIGURE 6.4 A hidden Markov model for three-periodic sequences. This HMM emits binary
sequences where the probability that position i in the sequence is a one equals pi mod 3. Each
state is labeled with its probability of emitting a one.

How can we incorporate this dissimilarity into the spaced seed framework we
have developed? The approach of Brejová et al. [4] is to model the binary alignment
sequence A, which represents whether positions are matches or mismatches, as the
emissions from a hidden Markov model. A simple HMM for three-periodic sequences,
where each position of a codon has a specified probability of being a match, but all
positions are independent, is shown in Fig. 6.4; we can also very easily create an HMM
that models sequences with dependencies within codons (which has seven degrees
of freedom, since we emit one of the eight choices of binary sequences of length
three), or even an HMM with various levels of conservation inside an alignment.
Brejová et al. [4] represented coding alignments with a model with four levels of
similarity, using Baum–Welch [12] training to set the parameters of each of the four
submodels.

Joining such an HMM into the automaton-based framework we have described
before to compute seed sensitivity turns out to be quite straightforward. Suppose
that the automaton D, with the q states d1, . . . , dq, accepts the language of binary
strings that correspond to alignments that satisfy a seeding requirement that we wish
to analyze, and suppose that the hidden Markov model H , with η states, describes the
sequences that corresponds to our probabilistic model of a particular type of alignment.
What we are seeking is that if we read in a string from H into the automaton D, of
length 	, we will wind up in the accept state ofD at the end. Before, we were computing
the probability that after reading i symbols, the automaton was in each state; now, we
need to compute the probability of being in a particular state in both the automaton
and the HMM.

Specifically, let P[i, j, k] be the probability that after i symbols of A have been
read, the automaton D is in state dj , and the hidden Markov model is in state hk.
If we know all of the values of P[i− 1, j, k], we can compute them for moving
forward one symbol: if the probability that state hk emits symbol a is Ek(a), and the
probability that from state hk we transition to state hk′ is Tk(k′), then we need to add
p[i− 1, j, k]Ek(a)Tk(k′) to p[i, δj(a), k′] (and do so for all choices of j, k, a, and
k′). The overall runtime to compute the values of P[, . . .] is O(q|
|η2). In fact, if
the HMM includes only t nonzero probability transitions, not η2, then the runtime is
O(q|
|t).

What we find when we use this approach is that seeds that are aware of the three-
periodic structure of alignments, and that optimize the sensitivity for these models,
dramatically outperform seeds that are optimal for nonaware models. Table 6.1, from
Brejová et al. [4], shows that the optimal seed for the Bernouill model, PH-OPT, is in
the middle of the pack among the possible seeds with length at most 18 and weight

MORE CONTEMPORARY SEEDING APPROACHES 131

TABLE 6.1 Ranks of Seeds Under Different Probabilistic Models. The Table Shows
the Rank of Each of the Chosen Seeds in a Testing Set of True Alignments as well as
Under Each of the Considered Probabilistic Models. The Seed DATA-OPT is the One
that Performs Best, but its Sensitivity is very Close to that of HMM-OPT, Which has
the Best Sensitivity According to a Hidden Markov Model of Coding Alignments. The
WABA Seed is Designed to be a Good Spaced Seed, Yet is Reasonably Effective. The Seed
PH-OPT Optimizes the Bernoulli Model of Alignments, but is Quite Poor in this Domain,
While the BLAST Seed is Truly Awful. The Seed WORST is the Worst According to Both
the HMM and the Real Data

Testing Data Rank Under a Model

Seed Rank Sens HMM Bernoulli Name

11011011000011011 1 0.855 2 9746 DATA-OPT
11011000011011011 2 0.851 1 9746 HMM-OPT
11011011011011 22 0.814 17 24187 WABA
111001001001010111 11258 0.585 10427 1 PH-OPT
1111111111 24270 0.451 24285 24310 BLAST
101010101010101011 24310 0.386 24310 24306 WORST

10, while the optimal seeds are very much aware of the three-periodicity of codon
alignments, such as the seed 11011000011011011.

Note again that the switch here has no effect on the overall runtime: the runtime
results largely from false positives, which are comparably frequent for both spaced
seed approaches (and, indeed, for unspaced seeds). The advantage comes in that we
are modeling the difference between homologous sequences and nonhomologous
sequences more accurately.

6.4.5 Multiple Seeds

In our formulation so far, we have not changed the actual algorithm for local alignment
much from the traditional one: we still build an index (albeit of spaced patterns) of
one string, we still search the other string to find matches against the index, and then
we build alignments out of the discovered matches.

A remarkable opportunity of the spaced seeds approach, though, is to change
this theme. Instead of a single seed pattern, we attempt to find matches to a collec-
tion of seed patterns, chosen not to have much overlap in the alignments that they
match. Clever choice of such patterns can allow us to match an increasing fraction of
true alignments, while having minimal effect on the runtime (and the false-positive
rate). The initial suggestion of this multiple-seed approach is to be found in the orig-
inal Ma et al. [25] paper that proposed spaced seeds, yet they offered no sort of
optimization.

In their work on vector seeds, discussed in Section 6.5, Brejová et al. [5] discuss the
use of greedy algorithms for this domain. More interesting optimization algorithms
for this problem were proposed essentially simultaneously and independently by Sun
and Buhler [34], who used hill climbing, and by Xu et al. [36,37], who used integer

132 A SURVEY OF SEEDING FOR SEQUENCE ALIGNMENT

programming techniques. The multiple seed approach is also implemented in the
second version of PatternHunter [23].

To be specific, the idea is to first build a set of g indexes of the string S, each of which
corresponds to a different spaced seed pattern, and then search the string T against
each of the indexes, extending all pairs from S and T that match in any of the indexes.
We note that the runtime now must be seen to increase: it is no longer O(n+m+ f),
where f is the number of hits found, but rather O(gn+ gm+ f): we need to build g

indexes, and we need compare T against each of them. Memory issues may begin to
be significant as well: storing multiple indexes can be quite expensive, and we might
run into paging issues. Still, it is immediately clear that this is potentially useful: if
we have two different seed patterns Q1 and Q2, which have corresponding regular
expressions q1 and q2, the regular language (0+ 1)∗(q1 + q2)(0+ 1)∗ consists of all
alignment patterns that can be detected in this approach. It is thus clear how to extend
our previous algorithms for computing seed sensitivity to this domain. The result of
wisely choosing two seeds is striking: Xu et al. [36,37] show that using three seeds of
the same weight gives sensitivity comparable to that of using one seed with the weight
lowered by one. The difference is that the false positive rate is only three-fourths as
high. Similar results are shown by Brejová et al. [5] for the vector seed model described
in Section 6.5: multiple vector seeds strictly dominate the false-positive performance
of a single seed with comparable sensitivity.

This can be continued in a remarkably effective direction: we can achieve 100%
sensitivity without requiring quadratic runtime! To be specific, suppose that we want
to find all ungapped alignments of length 25 that include at most five mismatches in
them. We can find the smallest set of seeds Q1, . . . , Qχ of a fixed weight such that
the union of the languages corresponding to each of the Qi includes all alignment
strings of length 25 with at least 20 ones: if we use the corresponding set of seed
patterns to build a collection of hash tables, then with those seeds, we can find all
desired alignments. The number of false positives will still not be extremely large, as
there are only a constant number of hash tables. In this manner, we can discover all
alignments of the desired type, in an overall runtime that is vastly smaller than might
be predicted. Some interesting theorems toward this direction are shown by Kucherov
et al. [21], and preliminary results of the use of this idea appear in Xu et al. [37].

To actually find these optimal sets of seeds, however, is not easy: it is NP-hard
[36,37], in fact. However, a good set of seeds can be found either by using the obvious
greedy algorithm (choose the best seed, then add the seed that most increases its
sensitivity, and so on) [34] or by using integer programming [36,37].

We will briefly describe the integer programming approach described by Xu et al.
[36,37]. We collect all of the possible alignment patterns (or a large subset of them)
of a particular length and with fewer than a set bound of mismatches in them; let this
set be A = {A1, . . . , An}. Then let Q = {Q1, . . . , Qm} be a set of seeds, and let Hi

be the set of all of the Aj that are matched by seed Qj . We can now cast the question
of finding the optimal set of seeds as an instance of Maximum-Cover: we want to
choose the set of k seeds such that the union of their corresponding Hi sets is as large
as possible.

MORE COMPLICATED SEED DESCRIPTIONS 133

As an integer program, this is easily cast: let yi = 1 if we choose to include seed
Qi and zero otherwise, and let xj = 1 if one of our chosen seeds matches alignment
pattern Aj . Then we want to maximize

∑
j xj subject to the requirements that xj ≤∑

i:Aj∈Hi
yi and

∑
i yi = k. The first requirement maintains the requirement that we

only count alignments that are actually hit, while the second forces us to use only k

seeds.
While this can easily be shown to be NP-hard, as we can encode any Set-Cover

instance in this manner, in practice, such integer programs easily solve using standard
solvers, and easily identify a good set of relatively nonredundant seeds for homology
search.

6.5 MORE COMPLICATED SEED DESCRIPTIONS

A different generalization of spaced seeds is required in order to make them useful
for protein alignment, as positions do not simply match or not match in such domains.
The broadest generalization of this form is called “vector seeds”, is due to Brejová
et al. [5], and has also been applied to nucleotide alignments as well. However, the
vector seed model is largely theoretical; more practical descriptions of how to make
variations on it practical as a way of aligning sequences have been developed by
Kisman et al. [20], by Brown and Hudek (for multiple DNA alignment) [7,16], and
by Sun and Buhler [35], for DNA alignments that incorporate different penalties for
different sorts of mismatches. Cs̈urös and Ma [10,11] have approximated vector seeds
using multipass filters and what they call “daughter seeds.”

In order to work our way into this domain, we will begin with a presentation of
the simpler results in this domain for DNA alignment, which also gives context for
why this approach arose. Then, we will present the application to protein alignment,
and some extensions.

6.5.1 Why Extend Spaced Seeds?

Contemporaneously with the development of spaced seeds, Jim Kent developed his
extremely widely used alignment program BLAT [18], the BLAST-like Alignment
Tool. BLAT is similar to BLAST, yet it includes an extension to the seeding ideas
that is very helpful. Instead of requiring k consecutive positions that exactly match,
BLAT allows one or two of the k positions to include a mismatch.

In effect, this is equivalent to the union of a collection of spaced seeds. For example,
if we allow one mismatch in k positions, this is equivalent to the k spaced seeds 1k−10,
1k−201, 1k−3011, and so on. And, if we allow two mismatches in k positions, this is
equivalent to the k(k − 1)/2 seeds of length k with weight k − 2. (We note that Kent’s
idea slightly preceded the spaced seed idea of Ma, Tromp, and Li, let alone the idea
of using multiple seeds.)

One can implement BLAT-style seeding in a variety of ways, but perhaps the
simplest is to still build a single hash table structure of all of the k-letter substrings
of S, and then for each k-letter substring of T , look up all 3k + 1 strings that differ

134 A SURVEY OF SEEDING FOR SEQUENCE ALIGNMENT

from that substring in at most one position (or all (9k(k − 1)/2)+ 3k + 1 strings that
differ in at most two positions, if that is the seeding requirement). This will find all
of the desired matches between S and T .

What is the consequence of this strategy? The memory usage is clearly much lower
than for the multiple seeds approach: we only build a single hash table. However, the
hash table is queried many more times for each substring of T ; instead of looking into
the table a couple of times, we look into it potentially dozens or hundreds of times.
The consequence of this is that if the hash table is largely empty, our runtime will now
be dominated by lookups that are largely empty. If, instead, most substrings from T

have enough matches in S that most hash table cells examined are populated, then
the majority of runtime will continue to be dominated by the extension phase applied
after we have a large number of seeds.

To see this in its most extreme form, consider again the question in the last section,
about guaranteeing 100% sensitivity for ungapped alignments with length 25 and at
most five mismatches. Essentially tautologically, we can do this by using the BLAT
approach, where there is a hit exactly when there is a seed of length 25, and we can
allow at most five mismatches. We could build a hash tabel of 25-letter substrings
of S, and search for all nearby strings to substrings of T in it. However, for every
substring of T , there are

∑
i=0...5

(25
i

) · 3i = 14, 000, 116 hash table entries we would
have to examine, which is of course silly, particularly as unless our input data is of
the length approximately 425 ≈ 1015, the vast majority of these would be empty. (Of
course, we would have no false positives, either.)

As such, the BLAT search approach only really works when the number of
possible hash table entries is comparable to the length of the string S or smaller;
otherwise, we are dominated by misses in the table lookup phase. Still, for mod-
est lengths of seeds, there is a huge increase in sensitivity over the BLAST
approach.

Why does this advantage exist? For a different reason than for spaced seeds, actu-
ally. For BLAT-style seeds, the advantage is that at a given expected number of hits
per true alignment, the false positive rate is substantially smaller for seeds that allow
one or two internal mismatches than for BLASTN-style unspaced seeds. For example,
if the true alignments have probability p = 0.7 of a match, and the null model is of
random DNA, so there, p = 1/4, then the probability of a hit to the 11-letter unspaced
seed at a single place is 0.711 ≈ 0.02, while the probability of a false positive in ran-
dom noise is 0.2611 ≈ 2.4× 10−7. For the BLAT seed that requires 13 matches in
14 consecutive positions, the probability of a true hit at a site is approximately 3.4%,
while the probability of a false hit drops to 1.53× 10−7. As such, we will have higher
sensitivity at lower false positive rates. In fact, the overall effect is comparable to that
of a single well-chosen spaced seed.

6.5.2 Vector Seeds

However, as with unspaced seeds, the BLAT hits cluster. Brejová et al. [5] proposed
resolving this by a generalization of all of the seeding approaches we have seen, called
“vector seeds.” Vector seeds are described by a seed pattern vector of integers, v of

MORE COMPLICATED SEED DESCRIPTIONS 135

length 	 and a threshold T ; there is a hit between the vector seed Q = (v, T) and an
alignment sequence A when there exists a position i such that v · (ai, . . . , ai+	−1) ≥

T . For example, the BLASTN approach is equivalent to the vector seed (

k︷ ︸︸ ︷
(1, . . . , 1), k),

while the BLAT approach is equivalent to (

k︷ ︸︸ ︷
(1, . . . , 1), k − 1) or (

k︷ ︸︸ ︷
(1, . . . , 1), k − 1).

A spaced seed v with weight w is equivalent to the vector seed (v, w). And, we
can generalize this: if we are willing to allow two mismatches, then the vector seed
(v, w− 2) allows this many mismatches.

Vector seeds are more general: the vector seed ((1, 2, 0, 1, 2, 0, 1, 2), 8) can be
useful for coding sequence alignments, as it allows a single mismatch, but only in the
first position of a triplet (second positions mutate less often than first positions). They
are not universally general, of course, but they do allow for substantial improvements
over the sensitivity and false positive rates of a single vector seed.

We note that for both BLAT and vector seed approaches, it is still straightforward
to estimate the sensitivity of a seed to a particular alignment model; again, one creates
a DFA that accepts the language of strings that include a hit, and again, one computes
the probability that the DFA accepts a string of a given length.

What is the relative advantage of multiple seeds versus the vector seed approach
for DNA alignment? For simple DNA alignment scoring approaches, where positions
either count as matches or mismatches, the primary advantage is that one need only
build one hash table, rather than many. Aside from that, there is really no advantage;
the vector seed idea is largely a handy generalization, not a useful way of actually dis-
covering alignments. After all, even vector seed hits will cluster more than well-chosen
spaced seed hits, and a single vector seed does represent many different spaced seeds.

Still, the idea has been productive; Csürös and Ma [10] have explored an approach
that approaches the simplicity of the one hash table vector seed through “daughter”
seeds, where they essentially implement a multipass filter as their way of identifying
hits. In subsequent work [11], they extend this to still more complicated models for
seeding that are also extremely efficient.

6.5.3 More Complicated Alignments

Vector seeds, and their analogs, do shine, though, in the case of more complicated
scoring schema. We first explain how they can be made useful for DNA alignment,
and then extend to protein alignment. We first give a quick review of how scoring
schema work for alignment.

6.5.3.1 Alignment Scoring For DNA alignment, it has been traditional to score
all matches with the same positive score, and all mismatches with the same negative
score. This is, however, not appropriate for protein alignments, where sequences that
are very closely related may have had many minor modifications in them that have had
minimal effect on their biochemistry. For example, substitutions of valine, leucine,
and isoleucine for each other tend to be moderate in their effects, while changing
valine to tryptophan might be very important.

136 A SURVEY OF SEEDING FOR SEQUENCE ALIGNMENT

The way this is taken into account is to make the score of aligning two symbols
reflect the extent to which those symbols often occur homologously in real sequences.
In particular, we can imagine a model that creates ungapped alignments of two
sequences, where pij is the probability of seeing symbol i in S aligned with sym-
bol j from T . Our null model will assume that the sequences are unrelated, so qiqj

is the probability of seeing symbol i randomly in S and symbol j in T . The amount
by which pij is bigger than qiqj indicates the strength of the extent to which the p

model of related sequences is preferred over the q model of unrelated sequences; as
such, if log(pij/qiqj) > 0, we have evidence of the sequences being related. In prac-
tice, such log-odds ratio values are the typical form of the scores used in sequence
alignment software, and if we work from the initial scoring matrix, we can compute
the probabilities of the pij and qj values.

Further, we can use these values to estimate the score of an ungapped alignment
of a given length that is presumed to come from a particular model; as such, we
can compute the probability that at a given position in an alignment, the pair of
aligned symbols has a given score, so we can give the distribution of scores in true
and unrelated alignments. This will be essential as we compute the sensitivity of
alignment seeding approaches.

6.5.3.2 Complicated DNA Scoring Many researchers have built DNA alignment
systems that include more complex scoring schemes; perhaps the most significant is
BLASTZ [32]. All of them give less negative scores to transitions, where two aligned
symbols are not the same, but either are both purines (A and G) or both pyrimidines
(C and T), than to transversions, where the matched symbols are one purine and one
pyrimidine. Transition mutations are more common to be retained, and as such, they
are more common in true homologies. However, this gives rise to a question: how to
seed local alignments?

Vector seeds offer an obvious answer: if, for the purpose of the seeding phase,
we see an alignment as being a string over a three-symbol alphabet corresponding to
matches, transitions and transversions, where matches score+2, transitions score+1
and transversions score 0, then we might seek a hit to a vector seed where the vector has
k ones, and the threshold is 2k − 1 or 2k − 2; this would allow at most one transition,
with the threshold 2k − 1, or at most two transitions or one transversion, with the
threshold 2k − 2. (To allow only transitions, we can instead score transversions with
the score −∞.) These approaches are used in the seeding in both BLASTZ and in
the very interesting alignment program YASS [29,30]. Sun and Buhler [35] also give
an approach that picks many such seeds to maximize overall performance, where the
false positive rate is estimated using a hidden Markov model trained on real data.

6.5.3.3 Protein Alignments Vector seeds were originally created for use with
protein alignments [5], but they actually are not immediately useful for this purpose.
The reason is that it is actually rarer that protein alignments cluster as many hits
together: while after a BLASTN hit, another BLASTN hit is very likely, this is less
true for protein alignments, as highly conserved regions of proteins tend to be much
shorter in practice.

MORE COMPLICATED SEED DESCRIPTIONS 137

As such, the expansion in seed length required for a vector seed like ((1, 0,

0, 1, 1), 13), as compared to the traditional BLASTP seeding approach, which is es-
sentially the vector seed ((1, 1, 1), 13), is harmful enough that it is not always better
to switch to using a single vector seed for protein alignment.

However, in follow-up work [6], Brown examined the effect of using multiple
vector seeds for protein alignment, particularly in concert with a system of filtration
that threw out hits with no high scoring region around the hit. This approach has
been quite successful, and resulted in a fivefold reduction in false positive rates at the
same level of sensitivity as for BLASTP. The optimization is slightly different than
the multiple spaced seed optimization of Xu et al. [36,37], because the sensitivity
of protein alignment must be extremely high, almost 100%, due to the constraints
of the field. As such, the optimization done in his paper [6] focuses on computing
the minimum false positive rate needed to ensure 100% sensitivity to a set of test
alignments.

A somewhat similar approach was derived by Kisman et al. [20] in the protein
alignment package tPatternHunter; they allow hits to a collection of possible seed
patterns, with an extra immediate filtration step to throw out bad hits. Again, the
reported speed is substantially improved over BLASTP.

6.5.3.4 Seeding Multiple Alignments Another use for more complicated seeding
models has been in the seeding of global multiple alignments. Brown and Hudek
[7,16] used an extension to vector seeds in finding the anchor points upon which
they hung their heuristic multiple alignments. Their progressive alignment system
works by attempting to find surprisingly strong matches between inferred ancestral
sequences at internal nodes of a guide phylogenetic tree.

What is different between this application and previous uses for vector seeds is that
Brown and Hudek allow uncertainty in the estimation of the positions of the ancestral
sequence: they allow the use of the full 15-letter IUPAC DNA alphabet that includes
ambiguous symbols. As such, they build a theoretical log-odds scoring system for
this more complicated scenario, and then pick, at each internal node of the guide
tree, a seeding pattern and threshold that will minimize the amount of alignment error
induced by the anchoring process.

Their seeding approach is a two-pass filter that slightly extends vector seeds. An
ungapped alignment seed consists of a binary vector and threshold (v, T), where each
position of a seed match, even the ones where vi = 0 must have a nonnegative score,
and the total score of the positions with value vi = 1 is at least T . This approach was
more successful at both avoiding hit clustering and in avoiding false positive rates
than the simpler vector seed approach.

6.5.3.5 Seeding Alignments with Gaps Continuing our tour through alignment
models, we note that none of the alignments we have discussed have allowed for
gaps to be present in seeds, but only mismatches. Generally, this limitation has not
been especially serious: strong alignments of homologous protein or DNA sequences
usually do have reasonably long, highly conserved, ungapped stretches in them.

138 A SURVEY OF SEEDING FOR SEQUENCE ALIGNMENT

However, two different systems have arisen which do not require the seeding of an
alignment to be found in an ungapped region. The first of these is YASS [29,30], which
is a DNA sequence alignment program. It uses spaced seeds and some extensions to
them, but allows one to set a seeding requirement that requires multiple hits, yet still
allows for the region between the gaps to be unequal in length in S and in T . This
implicitly allows for the existence of small gaps in the alignment that includes S and T .
The mathematics used to estimate the sensitivity of YASS is based on a simple model
of evolution where after every position of aligned sequence, there is a possibility of
a position that is a gap from either sequence. As a general rule, this approach has
the potential to increase sensitivity quite a bit, but may also be costly due to false
positives rising; allowing many positions for the two seed matches to occur can be
quite costly. Still, YASS is comparable in speed and effectiveness to PatternHunter
[29,30].

A much more recent paper uses the possibility of gaps in a domain where allowing
for their existence is essential: tandem repeat finding. Tandem repeats are often quite
short, and the matches between them can be interspersed with many small gaps, as
they are highly prone to insertion and deletion mutations. As such, if one is searching
for them, even a spaced seed will not be effective; one would need a very short pattern
to avoid having it be disrupted by a gap. Mak et al. [27] use an approach that allows
the seed pattern to include positions that can represent zero or one symbols from
each of S and T , thus allowing for very short gaps to exist in the seed region. This,
combined with the now straightforward extension of “don’t care” positions, as in
spaced seeds, gives a nice improvement in sensitivity of a seeding approach for such
alignments, again at minimal cost in false positives. This clear advantage is particularly
nice in this case, as the false positive rates tolerated are substantially higher than for
typical DNA alignment, because consumers expect tandem repeat finders to be very
sensitive.

Computing the sensitivity in these models requires small changes to the model
that is generating the alignment, but can still be done using essentially the same
dynamic programming calculation described in Section 6.3.2.1; Mak and her co-
authors describe it by reference to the Aho–Corasick automaton [1] for the set of
patterns their seed models will match, but the technique is equivalent.

6.6 SOME THEORETICAL ISSUES IN ALIGNMENT SEEDING

In Section 6.4.1, we have given somewhat informal arguments for why alignments
are better seeded with spaced seeds and their extensions than with the unspaced seeds
that preceded them. We will conclude this review with some comments about the
theoretical status of such questions.

6.6.1 Algorithmic and Complexity Questions

Early questions in this area consisted mostly of development of reasonably efficient
dynamic programming algorithms to compute the sensitivity of a particular seeding

SOME THEORETICAL ISSUES IN ALIGNMENT SEEDING 139

approach to the Bernoulli model of DNA alignments; Keich et al. [17] gave the first
such algorithm, and then it was expanded and slightly varied to include all of the
various extensions discussed in this chapter. There were still questions that existed
at that time, though, about other complexity issues in spaced seeds, many of which
have been since resolved.

The simplest such question is whether computing the optimal single seed of a
given weight and length for a given alignment model is NP-hard. The answer is yes,
if we are allowed to make the alignment model extremely perverse: we can encode the
clauses of a SAT instance in the set of possible alignments we may need to discover,
and then allow the seed to encode the truth assignment. If the instance is satisfiable,
there exists a seed with 100% sensitivity, while if not, there is no such seed. See Li
et al. [23] for more detail.

The same authors also discussed whether multiple seed selection is NP-hard; here,
they show that the problem of computing the sensitivity of a nonconstant-sized set
of seeds is NP-hard, even for the simple Bernoulli model of alignments, if the set
of possible seeds is given. This is done by showing that if we could compute the
sensitivity of a particular set of seeds, we could solve a 3-Set-Cover instance. They
finally show, by a simple reduction, that computing the optimal seed set for a particular
set of alignments is equivalent to Maximum-Coverage, and is hence also NP-hard.

More recently, Li et al. [24] have extended this by showing that computing the
probability of a single seed having a hit to the uniform Bernoulli model is also NP-hard.
This is done by an exceedingly detailed counting argument, where they again show
that computing the sensitivity of a single seed to the Bernoulli model is equivalent to
solving 3-Set-Cover.

Similar work by Nicolas and Rivals [28] show that identifying whether a seed
misses any ungapped alignments of a given length with a fixed number of mismatches
is also NP-hard. Their work starts from the Exact-3-Set-Cover problem, but again
does very delicate counting to identify which strings are missed. They also prove
some nonapproximability results about estimating the sensitivity of multiple seeds.

Finally, we note that computing the optimal single seed for the Bernoulli model
should not be NP-hard, as the set of optimal seeds for different lengths 	 and a constant
weight w is sparse, and if a sparse set is NP-hard, then P = NP [26].

6.6.2 Combinatorial Questions

But there is another obvious set of questions. Fundamentally, why is a spaced seed
better, past the heuristic observation about seed hits not clumping as much? Much
of the work that seeks to resolve this question has relied on work from the early
1980s of Guibas and Odlyzko [14], who were studying patterns in binary strings. The
connection between this theory and questions about spaced seeds has been extremely
fruitful.

Buhler et al. [9] gave a partial answer to this, by studying the spectral structure of
the transition matrix of the Markov chain that describes the behavior of the automaton
we have been discussing throughout this chapter. Using this approach, they show that
the asymptotic spacing of spaced seed hits is preferable to that of unspaced seed hits.

140 A SURVEY OF SEEDING FOR SEQUENCE ALIGNMENT

This approach was very recently extended by Li et al. [24], giving tighter bounds on
the asymptotic bounds given by the spectral results. In fact, their results also show
that one can estimate the sensitivity of a spaced seed for regions of arbitrary length
very accurately, in time not dependent on the length of the homology region. (The
proofs are not found in the conference version of their paper.)

Analogously, Li et al. [23] used a martingale argument to show that the expected
position of the first hit, in an infinite-length alignment, to a spaced seed comes before
the first hit to an unspaced seed; this suggests that for large alignments, the sensitivity
of the spaced seed will again be higher.

6.7 CONCLUSIONS

Alignment seeding has been an extremely active area of research for the past few years:
dozens of researchers have worked on this problem, largely due to the excitement
caused by the original PatternHunter paper of Ma, Tromp, and Li [25]. In many
ways, the area seems to have achieved a new level of mathematical maturity that was
previously lacking: an extensive amount of combinatorial and probabilistic analysis
has been joined into the field, along with much algorithm and complexity research.

What may be the next focus is research into the other two phases of the alignment
process: the indexing phase at the beginning of the process, which is highly memory
constrained, and the alignment phase at the end, which is of course the current time
bottleneck. Another focus may be on using multiple scoring functions for heuristic
alignment; the recent work of Pachter and Sturmfels [31] on parameter estimation, and
of Fernández-Baca and Venkatachalam on parametric alignment [13], for example,
may point the way in this direction.

Still, looking back at the past 6 years, it is not exaggeration to say that sequence
alignment has had a surprising renaissance. We can hope that subsequent periods are
comparably fruitful for it and for other domains of bioinformatics.

REFERENCES

1. Aho AV, Corasick MJ. Efficient string matching: an aid to bibliographic search. Commun
ACM 1975;18(6):333–340.

2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool.
J Mol Biol 1990;215(3):403–410.

3. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped
BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl
Acid Res 1997;25(17):3389–3392.

4. Brejová B, Brown DG, Vinař T. Optimal spaced seeds for homologous coding regions. J
Bioinformatics Comput Biol 2004;1(4):595–610. Early version appeared in CPM 2003.

5. Brejová B, Brown DG, Vinař T. Vector seeds: an extension to spaced seeds. J Comput
Syst Sci 2005;70(3):364–380. Early version appeared in WABI 2003.

REFERENCES 141

6. Brown DG. Optimizing multiple seed for protein homology search. IEEE/ACM T Comput
Biol Bioinform 2005;2(1):29–38. Early version appeared in WABI 2004.

7. Brown DG, Hudek AK. New algorithms for multiple DNA sequence alignment. Proceed-
ings of WABI 2004; 2004; pp. 314–325.

8. Buhler J. Efficient large-scale sequence comparison by locality-sensitive hashing. Bioin-
formatics 2001;17:419–428.

9. Buhler J, Keich U, Sun Y. Designing seeds for similarity search in genomic DNA. J
Comput Syst Sci 2005;70:342–363. Early version appeared in RECOMB 2003.

10. Csürös M, Ma B. Rapid homology search with two-stage extension and daughter seeds.
Proceedings of COCOON 2005; 2005; pp. 104–114.

11. Csürös M, Ma B. Rapid homology search with neighbor seeds. Algorithmica 2006. Forth-
coming.

12. Durbin R, Eddy S, Krogh A, Mitchison G. Biological Sequence Analysis: Probabilistic
Models of Proteins and Nucleic acids. Cambridge University Press, 1998.

13. Fernández-Baca D, Venkatachalam B. Parametric analysis for ungapped Markov models
of evolution. Proceedings of CPM 2005; 2005; pp. 394–405.

14. Guibas LJ, Odlyzko AM. String overlaps, pattern matching and nontransitive games. J
Comb Theor A 1981;30:183–208.

15. Gusfield D. Algorithms on Strings, Trees, and Sequences: Computer Science and Com-
putational Biology. Cambridge University Press, 1997.

16. Hudek AK, Brown DG. Ancestral sequence alignment under optimal conditions. BMC
Bioinform 2005;6:273.

17. Keich U, Li M, Ma B, Tromp J. On spaced seeds for similarity search. Discrete Appl Math
2004;138(3):253–263.

18. Kent WJ. BLAT–the BLAST-like alignment tool. Genome Res 2002;12(4):656–664.

19. Kent WJ, Zahler AM. Conservation, regulation, synteny, and introns in a large-scale C.
briggsae – C. elegans genomic alignment. Genome Res 2000;10(8):1115–1125.

20. Kisman D, Li M, Ma B, Wang L. tPatternHunter: gapped, fast and sensitive translated
homology search. Bioinformatics 2005;21(4):542–544.

21. Kucherov G, Noé L, Roytberg M. Multiseed lossless filtration. IEEE/ACM T Comput Biol
Bioinformatic 2005;2(1):51–61. Preliminary version appeared in CPM 2004.

22. Li M. Personal communication, 2006.

23. Li M, Ma B, Kisman D, Tromp J. PatternHunter II: Highly sensitive and fast homology
search. J Bioinformatics Comput Biol 2004;2(3):417–439. Early version in GIW 2003.

24. Li M, Ma B, Zhang L. Superiority and complexity of the spaced seeds. Proceedings of
SODA 2006; 2006; pp. 444–453.

25. Ma B, Tromp J, Li M. PatternHunter: faster and more sensitive homology search. Bioin-
formatics 2002;18(3):440–445.

26. Mahaney SR. Sparse complete sets for NP: solution of a conjecture of Berman and Hart-
manis. J Comput Sys Sciences 1982;25:130–143.

27. Mak D, Gelfand Y, Benson G. Indel seeds for homology search. Bioinformatics 2006;
22:e341–e349. Proceedings of ISMB 2006.

28. Nicolas F, Rivals E. Hardness of optimal spaced seed design. Proceedings of CPM 2005
2005; pp. 144–155.

142 A SURVEY OF SEEDING FOR SEQUENCE ALIGNMENT

29. Noé L, Kucherov G. Improved hit criteria for DNA local alignment. BMC Bioinform
2004;5(149).

30. Noé L, Kucherov G. YASS: enhancing the sensitivity of DNA similarity search. Nucl
Acid Res 2005;33 (web-server issue):W540–W543.

31. Pachter L, Sturmfels B. Parametric inference for biological sequence analysis. P Nat Acad
Scie 2004;101:16138–16143.

32. Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W.
Human-mouse alignments with BLASTZ. Genome Res 2003;13:103–107.

33. Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol
1981;147:195–197.

34. Sun Y, Buhler J. Designing multiple simultaneous seeds for DNA similarity search. J
Comput Biol 2005;12:847–861. Preliminary version appeared in RECOMB 2004.

35. Sun Y, Buhler J. Choosing the best heuristic for seeded alignment of DNA sequences.
BMC Bioinform 2006;7:133.

36. Xu J, Brown D, Li M, Ma B. Optimizing multiple spaced seeds for homology search.
Proceedings of CPM 2004; 2004; pp. 47–58.

37. Xu J, Brown D, Li M, Ma B. Optimizing multiple spaced seeds for homology search. J
Comput Biol 2006; Forthcoming.

7
THE COMPARISON
OF PHYLOGENETIC NETWORKS:
ALGORITHMS
AND COMPLEXITY

Paola Bonizzoni
Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi di Milano-
Bicocca, Milano, Italy

Gianluca Della Vedova
Dipartimento di Statistica, Università degli Studi di Milano-Bicocca, Milano, Italy

Riccardo Dondi
Dipartimento di Scienze dei Linguaggi, della Comunicazione e degli Studi Culturali, Università
degli Studi di Bergamo, Bergamo, Italy

Giancarlo Mauri
Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi di Milano-
Bicocca, Milano, Italy

7.1 INTRODUCTION

Studying the evolutionary histories of extant species and their ancestors has been one
of the fundamental tasks of biology since Darwin’s work, where the idea of evolution-
ary tree (or phylogeny) has been introduced. A phylogeny is a rooted tree whose leaves
are labeled by the extant species and where each internal node is a (hypothetical)
common ancestor of its descendent leaves. For the last 150 years, biologists have

Bioinformatics Algorithms: Techniques and Applications, Edited by Ion I. Mǎndoiu
and Alexander Zelikovsky
Copyright © 2008 John Wiley & Sons, Inc.

143

144 THE COMPARISON OF PHYLOGENETIC NETWORKS

struggled to compile phylogenies by using the scarce information available, such as
phenotypes and a few genetic data, with the ultimate goal of building the “tree of
life,” where the evolutionary history of all species on earth is represented.

In the last two decades, terrific advances in both Biotechnology and Bioinfor-
matics have led to a huge increase in the number of phylogenies that are avail-
able for interested scholars. More precisely, biotechnology advances allow to ob-
tain genetic sequences from various species, making feasible to compare separately
different genes of the same set of species to obtain a phylogeny with a stronger
evidence. Moreover the number of efficient computational methods in phylogenet-
ics has tremendously increased, in turn leading to the availability of an even larger
number of phylogenies.

Unfortunately, the underlying problems under the most widely accepted models,
such as maximum parsimony or maximum likelihood, are NP-hard and therefore
unlikely to have an efficient exact algorithmic solution. The main consequence is
that the number of possible solutions taken into account during the execution of
an algorithm, usually increases exponentially with the number of investigated taxa,
hence even the most impressive algorithmic solution can assume unpractical time
requirements for very large instances, even though it is currently tractable dealing
with fairly large datasets (i.e., a few hundreds of taxa).

Evolutionary trees are a suitable mean for representing histories where the only
interesting event is speciation, that is, a genetic mutation appears in some individuals
of a species giving rise to a new subspecies. But the actual biological representation
of evolutionary histories is even more complex, as recent findings have shown that an
evolutionary tree is not always adequate, due to some kinds of biological events such
as gene duplications, where a single gene mutates into two distinct copies afterward
evolving separately, or lateral gene transfer, where some genetic material is inherited
by an unrelated species. In these cases a more involved representation, such as an
evolutionary network, is needed.

These facts result in the broad problem of comparing phylogenies (or evolutionary
networks) to combine them into a single representation (i.e., an evolutionary tree or
network). The main goal of the present review is to give a unified description of some
fundamental computational approaches to face comparison of general phylogenetic
representations, with an emphasis on combinatorial properties, models, and methods.
We analyze how these methods have been implemented by efficient computational
procedures.

The general problem will be classified into three related subproblems, each with
its own motivations and results: (i) computing a common subtree (or subnetwork),
(ii) computing a supertree (or supernetwork), (iii) reconciling trees.

The problem of computing a common subtree (also known as consensus tree) of a
set of trees over the same set of taxa arises from the aforementioned fact according to
which phylogenetic trees are usually constructed by using data obtained from different
sources, such as molecular and morphological data. Therefore, there are strong moti-
vations for extracting from those phylogenetic trees a strongly supported phylogeny.

The problem of computing a supertree finds its main motivation in the daunting
task of computing the “tree of life.” Since the set of known species is too large for any

INTRODUCTION 145

known phylogeny reconstructing algorithm, a sound approach is to construct some
phylogenies on overlapping sets of taxa, and then to combine them into a unique
phylogeny summarizing all information contained in the original phylogenies.

The two problems are easily generalized to networks and share two common
computational issues: (i) finding some suitable criteria to amalgamate or combine the
input phylogenetic networks into a single representation, (ii) designing some efficient
polynomial-time algorithms to compute the desired output data.

A first step in facing these issues has been the introduction of some basic math-
ematical tools to compare the branching structures of the phylogenies of interest.
These tools are efficiently computable functions (mappings) relating nodes of two
compatible trees or networks. As all the interesting instances are those where the in-
put trees are not the same and the goal is to determine a unique phylogeny agreeing on
all input data, edges or taxa must be removed to guarantee the removal of branching
differences among phylogenies; this leads to the introduction of optimization criteria.
The most commonly used criterion is the one of maximizing the number of taxa in-
ducing a common phylogeny, which can be found (by means of the chosen mapping)
in all input data.

The most investigated mapping in phylogenetic comparison is homeomorphism.
A homeomorphism between two trees specifies an isomorphism of trees under con-
traction of degree-2 nodes (each internal node x with only one child is deleted and
the two edges previously incident on x are merged into a new edge). In consensus
tree methods, this notion leads to the maximum agreement subtree (MAST) prob-
lem. It consists of finding a phylogenetic tree with the largest set of taxa for which a
homeomorphic copy is included in all input trees.

The MAST is applied to compare different types of phylogenetic data. Mainly, it
is a first basic approach in finding a consensus among gene trees, when reconciling
different gene trees to a species tree.

More generally, it is practically used to obtain the largest intersection of a set
of phylogenies inferred from different datasets. This largest intersection is used to
measure the similarity of different estimated histories or to identify species that are
implied in horizontal gene transfer.

The refinement mapping has been introduced as a less restrictive mapping to com-
pare general trees. Indeed, while homeomorphic trees are obtained by contracting
nodes with only one child, trees obtained through refinement, that is, comparable
trees, differ only by the contraction of a set of edges (endpoints of an edge are merged
together). This notion is crucial in the recent methods of amalgamating phylogenies
over overlapping sets of taxa, or supertree methods. Indeed, in most cases the input
phylogenies have different sets of taxa, and thus the primary goal is to compute a
supertree T including all input taxa and displaying all input trees, that is, the subtree
of T over the set of taxa of each input tree Ti is a refinement of Ti.

The third and final subproblem examined in this review arises in comparative
phylogenetics and is the reconciliation (or inference) of species tree from gene trees.

A gene tree is obtained by analyzing the evolutionary history of a specific gene,
present in all species under investigation, where different copies of a gene may be
present in the species studied, resulting in two or more leaves in the tree sharing

146 THE COMPARISON OF PHYLOGENETIC NETWORKS

a common label. Instead a species tree is a phylogenetic tree representing the
evolutionary history of a set of species, therefore, each label can be associated to
at most one leaf of a species tree.

Different studies have shown that the species and gene evolutions do not necessarily
agree, and that similarly the evolutionary histories of two different genes for a given
set of species do not necessarily agree. Thus the problem is twofold: a species tree
and a gene tree might not agree, and two gene trees over the same set of species might
be different. This divergence between gene trees is due to biological events that affect
the evolution of a gene. Indeed events such as duplication of a gene, loss of a gene,
and lateral gene transfer (or horizontal gene transfer) are involved in genes evolution.
On the contrary, species trees represent the evolution history of a set of species only
in term of speciation.

Just as for the above mentioned comparison problems, a basic task in reconciliation
of gene trees is to infer a single tree from trees over the same sets of taxa, but in this
case, the single tree must be inferred with respect to mappings that preserve the set of
taxa and minimize the differences between gene trees due to the specific evolutionary
events. Moreover, the comparison of gene trees with a putative species tree is also
relevant to infer a scenario of evolutionary events.

In this review, we present several approaches dealing with the problem of
comparing gene trees in order to infer a species tree. It must be observed that this
framework takes into account events that give rise to nontree structures, such as
lateral gene transfers and hybridizations. Indeed, these events are represented by
edges that connect nodes on different branches of a tree. Phylogenetic networks
appear to be a natural mathematical structure that allows to handle such situations
and are therefore central in our treatment of the subject.

This review is structured as follows: first we will introduce the basic definitions
that will be used throughout the paper, then we will devote one section to each class
of problems studied, beginning with the problem of computing a common subtree,
going on with the problem of computing a supertree, and concluding with the problem
of reconciling a set of gene trees with a species tree.

7.2 BASIC DEFINITIONS

Let � be a finite set of labels, representing the set of extant species (taxa) under
investigation. A rooted network N over � or simply network, is a directed connected
graph N = (V, E) containing a unique vertex with no incoming edges, called root
of N and denoted by r(N) and a labeling function from the set L(N) (or simply
L whenever the network is clear from the context) of all vertices with no outgoing
edges, called leaves of N, to the set of labels � is defined. The root of N represents
the common ancestor of all taxa.

A phylogenetic network N is a network over � in which each internal node, that
is, distinct from the leaves, has outdegree at least 2. Given a phylogenetic network N,
then �(N) denotes the set of all labels associated to leaves of N.

BASIC DEFINITIONS 147

The undirected version Nu of a phylogenetic network N, obtained by removing
the direction of all edges in N, might clearly contain some cycles: in fact Nu contains
a cycle if and only if N is not a phylogenetic tree. Indeed phylogenetic trees are a
special case of phylogenetic networks, more precisely they consist of all phylogenetic
networks N such that Nu is acyclic. Consequently, all properties of networks also
hold for trees. In particular, phylogenetic trees whose leaves are in bijection with the
set of labels, are called uniquely labeled. Moreover, the undirected version Nu of a
phylogenetic network N may be unrooted if no vertex is distinguished as the root
of N.

Given a rooted network N and a node v of N, we denote by N(v) the complete
subgraph of N rooted at v consisting of v and all of its descendants. Then L(v) is the
set of leaves of such a subgraph.

The branching structure of a network represents the evolutionary relationships
among the ancestor species. Notice that two or more leaves may share a common
label. Also when a network is acyclic, it is possible to topologically sort the vertices
so that a vertex always appears after all its ancestors, allowing for the definition of
children and parent of any given vertex, as usual for trees.

Given a phylogenetic network N, its internal nodes can be classified according to
their indegree: the vertices with indegree one are called regular, while vertices with
indegree at least 2 are called hybridization nodes. Clearly a phylogenetic tree does
not contain hybridization nodes.

Given a node x of a network N, the cluster of x, denoted by C(x), is the set of
labels of all the descendants of x in N. An important property of uniquely labeled
phylogenetic trees is that a tree of this type is completely specified by its set of clusters
(or clades).

A collection C of subsets of a set � of labels is a cluster system over � if � and all
of its singletons are elements of C; C is treelike if no two of its sets overlap, that is for
each C1, C2 ∈ C, C1 ∩ C2 ∈ {C1, C2, ∅}. By the above definition, it is immediate to
verify that a uniquely labeled phylogenetic tree over the set � of leaves is equivalent
to a treelike cluster system over �. Let C(T) denote the set of clusters of all nodes of T .

Some classes of phylogenetic trees are of particular interest since they can be
used to represent specific situations. A special type of phylogenetic tree is the gene
tree, which represents the evolutionary histories of different genes and is a rooted
directed binary tree, leaf-labeled by the set �, where an element of � can be used
to label more than one leaf. Indeed, multiple occurrences of the same label in a
gene tree are related to different biological events such as gene duplications. Simi-
larly, a species tree is a rooted binary trees whose leaves are uniquely labeled by the
set �.

When dealing with rooted networks, a fundamental notion is that of least common
ancestor of a set of nodes. Let A be a subset of the nodes of a phylogenetic network
N, then a least common ancestor (or shortly lca) of A in N is a node x of N from
which all nodes in A can be reached and closest to set A (i.e., the sum of the lengths
of every path from x to a node in A is minimum). It is immediate to notice that such a
node always exists, since all nodes of N can be reached from the root of N. Moreover,
the least common ancestor of a set A of nodes is unique in phylogenetic trees.

148 THE COMPARISON OF PHYLOGENETIC NETWORKS

In the following, given a network N, by V (N) we denote the set of vertices of N,
by A(N) the set of directed edges or arcs of N and by E(N) the undirected edges (or
simply edges) underlying the set A(N). Observe that when dealing with phylogenetic
trees there exists a unique orientation of the tree induced by the root, that is, arcs are
directed from the root toward the leaves.

7.2.1 Network Mappings and Display

In this section, we introduce some basic mappings between vertices of two given
networks. These mappings are used in the next sections to compare a collection of
phylogenetic networks by identifying a branching structure representing their com-
mon history. We assume that all mappings map a leaf l1 to another leaf l2 only if l1
and l2 have the same label.

Two networks N1, N2 are isomorphic if there exists a bijection or isomorphism
φ from V (N1) to V (N2) preserving leaf labels such that (φ(v1), φ(v2)) ∈ A(N2) if
and only if (v1, v2) ∈ A(N1). A network N1 is homeomorphic to N2 if there ex-
ists an homeomorphism φ from V (N1) to V (N2), that is, a surjection such that
(φ(v1), φ(v2)) ∈ A(N2) if and only if there exists a path from v1 to v2 in A(N1)
consisting of nodes with both indegree and outdegree 1.

The notion of homeomorphic network can be alternatively defined by means of the
vertex contraction operation that is applied to a node v of indegree and outdegree 1:
it consists of creating an arc connecting the vertex parent of v to the child of v and
removing v and all arcs incident on it. Thus, a network N1 is homeomorphic to N2
whenever N2 is isomorphic to the network obtained from N1 after contracting all
nodes of indegree and outdegree 1. Similarly, the arc contraction operation consists
of removing an arc and merging its incident vertices. This operation is used to define
another mapping between two networks.

A network N1 is a refinement of N2 if there exists a surjection φ from V (N1) to
V (N2), such that (φ(v1), φ(v2)) ∈ A(N2) if and only if v1 is connected to v2 after
a sequence of some arc contractions applied to network N1. Observing the type of
mappings we have defined above, assume that two networks related by the mapping
are all leaf-labeled by the same set �. Whenever networks to be compared are over
different, but overlapping, set of leaves, then the notion of network displaying another
network as defined below, has a crucial role.

Let L be a subset of the leaves of N. Then, the restriction of N to L, denoted by
N|L, consists of the network obtained from N by retaining only nodes along with
their incident arcs that are in a path from a leaf in L to the least common ancestor
of L in N. We also say that N|L is the subgraph induced by L. The topological
restriction of N to L, denoted by N|tL, consists of the network obtained from
N|L by applying all possible vertex contractions. Since in uniquely leaf-labeled
networks the leaves can be identified by the set of their labels, the notion of
restriction and topological restriction are simply given w.r.t. to a set � of leaf
labels.

A network N1 displays N2 if all leaves of N2 are also leaves of N1 and the topo-
logical restriction of N1 to the leaves of N2 is a refinement of N2. Informally, network

BASIC DEFINITIONS 149

N1 displays N2 if all information represented by the branching in N2 is contained
in N1.

Observe that when mappings are applied to trees T1 and T2 over the same set of
leaf labels, they induce fundamental relationships between clusters of the two trees.
Indeed, notice that T1 is homeomorphic to T2 iff C(T1) = C(T2), while T1 displays T2
if and only if C(T1) ⊇ C(T2).

Some mappings defined on pairs of trees are also characterized in terms of triples
of leaves, as a phylogenetic tree can be described by listing the set of triples of leaves
and their induced branchings. More precisely let T be a phylogenetic tree, and let
a, b, c be three of its leaves. Then, the tree T |t{a, b, c} assumes one of four possible
configurations. Three of these configurations are binary trees and are called rooted
triples: they are denoted as (ab|c) if a and b are at distance 2 from the root while c

is at distance 1, (ac|b) if a and c are at distance 2 from the root while b is at distance
1, (bc|a) if b and c are at distance 2 from the root while a is at distance 1. A last
configuration, denoted (a|b|c), occurs if a, b, and c are all at distance 1 from the
root and is called a fan. We will denote by t(T) and f (T), respectively, the set of
rooted triples and the set of fans of the tree T . A well-known characterization of
homeomorphism and refinement states that

Lemma 7.1 A tree T is homeomorphic to T ′ iff all rooted triples and fans of T and
T ′ are isomorphic, that is, f (T) = f (T ′) and t(T) = t(T ′). A tree T is a refinement
of tree T ′ iff rooted triples of T refine fans of T ′, that is, t(T ′) ⊆ t(T) and for each
(a|b|c) ∈ f (T ′)− f (T) one of (ab|c), (ac|b), (bc|a) is in t(T).

A B C D E A B F C D

A B C

D E A B F C D E

FIGURE 7.1 Examples of phylogenetic trees.

150 THE COMPARISON OF PHYLOGENETIC NETWORKS

If tree T is a refinement of tree T ′, then T is called compatible to T ′. Observe that
if there exists a triple a, b, c such that T |t{a, b, c} and T ′|t{a, b, c} induce different
rooted triples, then T and T ′ are not homeomorphic and they are in hard conflict on
the triple a, b, c. Similarly, if given a triple a, b, c, T |t{a, b, c} is a rooted triple while
T ′|t{a, b, c} is a fan, then T cannot be homeomorphic to T ′ (and vice versa) and trees
T and T ′ are in soft conflict on the triple a, b, c.

In Fig. 7.1, some examples of phylogenetic trees are represented (note that the
orientation of edges is not represented as implicitly given by the root). Please no-
tice that T4 displays T1 and T2, while also T3 displays T1, but not T2. In the next
two sections, we will assume that all phylogenetic trees are uniquely labeled, if not
differently specified.

7.3 SUBTREES AND SUBNETWORKS

In this section, we will deal with trees or networks that are uniquely leaf-labeled by
the same set of species or taxa. The methods used to compare such kinds of networks
remove as fewer leaves as possible inducing branching differences in the networks so
that the result is a consensus subnetwork or subtree. A classical criterion used to infer
a consensus subtree consists of finding a largest set of taxa (leaves) that induces an
agreement subtree that can be retrieved in all input trees according to some specific
notions of mappings, as introduced in Section 7.2.1. The choice of different mappings
leads to the definition of different comparison problems on unrooted and rooted phy-
logenetic trees. The foremost example of mapping is homeomorphism, which leads
to the MAST problem, initially proposed by Finden and Gordon [17]. Note that this
criterion is weaker than isomorphism among trees while it is more restrictive of the
refinement mapping. This last notion leads to a variant of the maximum agreement
subtree that is of particular interest in comparing nonbinary input trees: the maximum
compatible tree (MCT) problem, that was initially proposed by Hamel and Steel in
[25] to specifically compare nonbinary trees over a common subset of leaves. Indeed,
in an evolutionary tree, a node with more than two descendants usually represents an
incomplete resolution of the grouping of its descendants. In this situation, the com-
patible subtree of two input trees is able to group sets of taxa with a least common
ancestor that can have many children in one input trees and only a few in the other tree.

Clearly, the maximum compatibility criterion on a set of trees produces a subset
of taxa that is at least as large as the set of taxa of a maximum agreement subtree, as
it is a weaker criterion than homeomorphism. Notice that over binary trees the two
criteria produce the same tree. Recently, those notions on trees have been extended
to obtain phylogenetic subnetworks (Fig. 7.2).

7.3.1 Subtrees

Let us now give more formal definitions of the problems studied. The notions of
homeomorphism and isomorphism applied to a collection T = {T1, . . . , Tn} of phy-
logenetic trees lead to the following notions of consensus subtree. An agreement

SUBTREES AND SUBNETWORKS 151

A B C A B C

D E

FIGURE 7.2 Examples of phylogenetic networks.

homeomorphic subtree (respectively, agreement isomorphic subtree, compatible sub-
tree) of T is a phylogenetic tree T such that each tree Ti|L(T) is homeomorphic
(respectively isomorphic, compatible) to T . Clearly, the above different notions lead
to the general comparison Problem 7.1, where σ-subtree stands for one of agreement
homeomorphic, agreement isomorphic, or compatible subtree.

PROBLEM 7.1 Maximum Consensus σ-Subtree

Input: a set T = {T1, . . . , Tk} of phylogenetic trees.
Output: a σ-subtree of T with the largest set of leaves, or maximum σ-subtree.

The three main variants of Problem 7.1, for σ equal to agreement homeomorphic,
agreement isomorphic, or compatible, are called respectively Maximum Agreement
Homeomorphic Subtree problem (MAST), Maximum Agreement Isomorphic Subtree
(MIT), and Maximum Compatible Subtree (MCT). Observe that the problem MCT
over binary trees is equivalent to the MAST problem.

Variants of the MAST, MIT, and MCT problems are naturally obtained by changing
the parameter used in the objective function. Instead of using the size of the leaf set
to find an agreement subtree, the whole size of the solution tree could be maximized
in an optimal solution.

7.3.2 Computational Complexity and Algorithmic Solutions

The degree of the input trees is a key parameter for determining whether MAST and
MIT are easy or hard to solve; in fact both have polynomial-time algorithms when at
least one of the input trees has bounded degree [2], while both are NP-hard for three
unbounded-degree trees.

Algorithms for computing a MAST over two rooted or unrooted binary trees have
been extensively studied. We list some of the most interesting results that appeared
in the literature for the MAST problem, starting with instances of two trees on n

leaves each. MAST can be solved in O(n log n) time for two (rooted and unrooted)

152 THE COMPARISON OF PHYLOGENETIC NETWORKS

binary trees [9], in O(d0.5n log n(2n/d)) time for two trees of maximum degree d

[30], and O(n1.5) time for two generic trees [29]. For k trees, the most efficient
algorithm is a O(nd + kn3) time algorithm [14] when one tree has maximum degree
d. Given p the smallest number of leaves whose removal leads to the existence of
an agreement subtree, a O(min(3pkn, cp + kn3)) time algorithm for general trees has
been proposed in [5] (where c ≈ 2.311). This result improves over the previously
known O(3pkn log n) time algorithm [13], which established that MAST is fixed-
parameter tractable in p.

The computational complexity of MCT problem is quite different; in fact, it is
NP-hard just on two trees one of which is of unbounded degree [26]. Moreover, it
has a O(22kdnk) time algorithm for trees of maximum degree d [19]. Similarly as
MAST, the problem on general trees can be solved in O(min(3pkn, cp + kn3)) time,
given p is the smallest number of leaves whose removal leads to the existence of an
agreement subtree [5] (where c ≈ 2.311).

7.3.3 Dynamic Programming Algorithms

We will now concentrate on an exact algorithm for solving MAST on two input
trees. A main technique used in several algorithms for the MAST problem as well
as in its restrictions is dynamic programming (DP). An earlier DP algorithm for
two trees has been proposed in [37] and has been later extended to MCT on two
trees and on k rooted trees of bounded degree d to achieve the result in [19] listed
previously.

Let us describe the basic idea of the DP algorithm of [37] on two d-bounded-
degree input trees T, T ′ having the same set L of leaves. Recall that given a node v,
T (v) is the complete subtree of T with root v. Then, let us denote by mast(x, y) the
optimum over the trees T (x) and T ′(y), where x and y are two nodes of T and T ′,
respectively. Clearly, the value of the solution for T, T ′ is given by mast(r(T), r(T ′)).
As usual for a DP algorithm, the main step consists in defining the value of mast(x, y)
recursively. First notice that if x and y are both leaves, then mast(x, y) = 1 if and
only if x and y have the same label, otherwise mast(x, y) = 0. Similarly if x is
a leaf, but y is not, then mast(x, y) = 1 if and only if x has the same label as
one of the leaves of T ′(y). A symmetric property holds for the case that only y is
a leaf.

Let us now assume that neither x nor y is a leaf. As a consequence, two main
distinct cases must be considered. Let L′ be the subset of L that is the leaf set of
a maximum agreement subtree of T (x) and T ′(y). The first case holds when the
least common ancestor of L′ in T (x) and T ′(y) is the root of each tree T (x) and
T ′(y), respectively. Then, observe that L′ = L1 ∪ L2 · · · ∪ Lm, where sets Li, Lj are
pairwise disjoint and each set Li is the leaf set of a maximum agreement subtree of
trees T (xl), T ′(yk), for xl and yk children of x and y, respectively. Notice that the size
of Li is given by mast(xl, yk). Since sets Li, Lj are pairwise disjoint, it follows that
the cardinality of L′ is obtained by summing mast(xih, yjh

), for each pair (xih, yjh
)

in a set {(xi1 , yj1), . . . , (xim, yjm)}, where all xi1 , . . . , xim are distinct children of x,
yj1 , . . . , yjm are distinct children of y and m is the minimum of the numbers of children

SUBTREES AND SUBNETWORKS 153

of x and y. Let us define a pairing of x and y as a set of m disjoint pairs each one
made of a child of x and a child of y. Then mast(x, y) is equal to the maximum cost
of a possible pairing. This value corresponds to the maximum weight matching in a
bipartite undirected graph Gxy where the vertices are the children of x and y, and each
edge (xi, yj) has weight equal to mast(xi, yj). For our purposes, maximal weighted
matching in bipartite graphs can be computed in O(m

√
n log n) time [18].

A different situation holds if only a descendant of node x or of node y is the
least common ancestor in T and T ′ of the leaf set of an optimal solution. In
this case, given xi a child of x and yj a child of y, it holds that mast(x, y) =
maxi,j{mast(xi, y), mast(x, yi), mast(xi, yj)}. Clearly, we are unable to know which
of the two cases discussed above holds, therefore we must choose the maximum over
all possibilities.

The basic implementation of the above equations leads to a quadratic time al-
gorithm [37], which has been subsequently improved to O(n log n) time in [28] by
using sparse dynamic programming based on the proof that the number of interest-
ing pairs of nodes x, y for which mast(x, y) must be computed to get the optimal
solution is at most O(n log n). The further efficiency achieved by the algorithm of
[29] for two trees of bounded degree d is based on an improved technique to com-
pute the maximum weight matchings of bipartite graphs satisfying certain structural
properties.

An O(nd + kn3) time algorithm improving a previous result in [2] has been given
in [14] by cleverly extending the DP algorithm discussed above. In this case, the
coefficient of the recurrence equation has a k-tuple of parameters consisting of one
node from each input tree, and instead of a pairing it is necessary to construct a k-
pairing that is defined as a set of disjoint k-tuples, where each k-tuple contains exactly
one child of each node currently considered.

Let T1, . . . , Tk be a collection of k input trees all with leaf set L and where some
tree has maximum degree d. The basic idea in [14] is to find recursively a k-tuple
v̄ = (v1, . . . , vk), where each vi consists of the root of the subtree Ti|L′ such that L′
is the leaf set of a maximum agreement subtree.

A fast recurrence for computing mast(v̄) is obtained by defining a linear ordering
> among k-tuples representing roots of agreement subtrees of the input trees such
that > is of size O(n3) and can be computed in O(kn3). The linear order obeys the
following properties proved in [14]: (i) v̄ > w̄ iff each element wi is a child of vi in
some agreement tree, (ii) there are O(n) active directions, where an active direction
for (v̄, w̄) is defined as d̄ = {d1, . . . , dk} such that v̄ > w̄ and wi is a di child of vi.

Given a vertex v̄ of the linear ordering, mast(v̄) is computed by finding a k-pairing
for v̄, consisting of a set {d̄1, . . . , d̄l} such that d̄i is an active direction for (v̄, w̄i)
and mast(w̄1)+ . . .+mast(w̄l) is of maximum value. Due to the degree bound,
it must be that l ≤ d. Computing an optimal k-pairing can be done by construct-
ing the vertex-weighted compatibility graph G(v̄) with vertices the active directions
from v̄ and edges the pairs (d̄i, d̄j) where d̄i and d̄j differ in all coordinates. Each
vertex d̄ is weighted by the value max{mast(w̄) : d̄ active direction for the pair (v̄, w̄)}.
Consequently, it can be easily proved that an optimal k-pairing for v̄ corresponds to
a maximum weighted clique of graph G(v̄). The computation of such clique requires

154 THE COMPARISON OF PHYLOGENETIC NETWORKS

O(nd) time. Based on the above steps the optimum for all input trees is computed via
DP as the maximum value mast(v̄) over all k-tuples in the linear ordering.

7.3.4 Fixed-Parameter and Approximation Algorithms

Since in practice the input trees usually agree on the majority of the leaves, it is
relevant to study the approximation of the complementary versions of MAST and
MCT (called, respectively, CMAST and CMCT), where we want to minimize the
number p of leaves that must be removed in order to obtain an homeomorphic (or
compatible) subtree. The parameter p is used to design fixed-parameter algorithms
for CMAST and CMIT [5]. The algorithms rely on two well-known characterizations
of homeomorphism and refinement based on rooted triples stated in Lemma 7.1. By
this result, the homeomorphism or refinement among two trees is simply tested by
verifying that no conflicting triples exist between the two trees. Precisely, given trees
T and T ′, T is homeomorphic to T ′ if the trees are not in hard or soft conflicts on all
triples. However, a soft conflict among two homeomorphic trees T and T ′ does not
forbid the existence of a tree compatible with both trees T, T ′. Indeed, the following
result relates MAST and MCT problems over a collection T of trees to conflicting
triples.

Observation 7.1 Let T be a collection of trees over the same leaf set L and let
L′ ⊆ L. Then T is an agreement (or compatible) subtree of T with leaf set L′ iff no
triple of elements in L′ is a hard or soft conflict (or hard conflict) in T .

Observation 7.1 leads to a reduction from MAST and MCT problems to the
3-Hitting Set problem. More precisely, we consider parametric versions of MAST
and MCT consisting in finding an agreement and compatible subtree of a set T of
trees [5] having at least n− p leaves, for a fixed value p. The instance of 3-Hitting
Set problem is a collection of triples of elements over the universe U and a parameter
p. The problem asks for a hitting set (i.e., a subset H of U intersecting each triple
in the collection) of size at most p, if such set exists. Clearly, in the reduction of
parametric MAST and MCT, the input collection of 3-Hitting Set consists of all
conflicting triples over the leaf set of the input trees. The hitting set H to be computed
is the set of leaves that must be removed to get the agreement and compatible subtree.

The above reduction leads to algorithms solving CMAST and CMCT. Indeed, it
is possible to compute triples in a tree over n leaves in O(n3). Thus, knowing the set
X of triples on which k trees are in conflict requires O(kn3) time. The set X and the
parameter p constitute the instance of the 3-Hitting Set problem, which can be solved
in O(2.27p + kn3) time [13], using the fixed-parameter algorithm in [32].

An alternative algorithm for CMAST and CMCT has been recently given in [5]
based on two linear-time procedures: (P1) a linear-time algorithm to test whether two
rooted trees are isomorphic (or compatible), or otherwise identify a triple of leaves
on which they disagree, or are a conflict and (P2) a linear-time algorithm that on two
input trees returns a tree T minimally refining them if such a tree exists, or otherwise
returns a conflict. The algorithm works in two steps on input, a collection T of trees
and a parameter p:

SUBTREES AND SUBNETWORKS 155

1. it uses the procedure P1 or P2 to test whether the collection T consists of all
isomorphic or comparable trees, otherwise it finds a triple a, b, c on which two
trees in T have a conflict,

2. alternatively, for each label l in {a, b, c}, recursively the algorithm looks for a
subtree without conflicts in the new input consisting of the collection T of trees
topologically restricted to L− {l} and parameter p− 1.

The above algorithm can be implemented to run in O(3pkn) time. By combining the
two strategies in [5] the fixed-parameter O(min{3pkn, 2.27p + kn3}) time complexity
of CMAST and CMCT stated before has been proved.

The reduction to 3-Hitting Set leads also to an interesting approximation algorithm
for CMAST. Starting from [2] several papers propose 3-approximation algorithms;
most recently a linear time (i.e., O(kn) time) 3-approximation algorithm has been
proposed for CMAST on k (rooted and unrooted) trees on n taxa [4]. In the same paper,
an O(kn+ n2) time 3-approximation algorithm has been proposed also for CMCT.

The simplest 3-approximation algorithm basically consists of the reduction to
3-Hitting Set, which can be computed in O(kn3) time as seen before. Successively
given ct(L) the set of all conflicting triples, the algorithm iteratively chooses an
arbitrary triple {a, b, c} ∈ ct(L) and removes from ct(L) all triples intersecting
{a, b, c} while adding a, b, c to the hitting set H (which is initially empty). Let X

be the set of triples chosen by the algorithm, the 3-factor approximation follows
from the fact that |H | = 3|X|, while the optimal solution of CMAST has at least |X|
elements. Indeed, all triples in X are disjoint which implies that at least one element
of each triple in X must be in the hitting set.

The complement versions are hard to approximate, more precisely CMAST is
APX-hard (i.e., it cannot be approximated arbitrarily well by a polynomial-time
algorithm) on three input trees, while CMCT is APX-hard even on two trees [4].
On the other hand, the original problems MAST, MIT, and MCT are even harder to
approximate, as they are as hard as Max Clique, that is, no polynomial-time algo-
rithm can compute an approximate solution within a factor n1−ε unless NP = P [4,7].
Moreover, MAST and MIT cannot be approximated with any constant ratio even on
instances of three trees [7,26].

7.3.5 Subnetworks

The MAST problem can be generalized to phylogenetic networks that are not trees
but such that their leaves are in bijection with the set L of leaf labels. Indeed, given
two networks N1 and N2, an agreement homeomorphic network of N1 and N2 is
a network N such that for a given leaf subset L′ ⊆ L every restriction Ni|L, for
i ∈ {1, 2}, is homeomorphic to N.

The NP-hardness results of the MAST problem clearly extends also to phylogenetic
networks, while some polynomial-time algorithms have been given for the case of
two input networks [8].

156 THE COMPARISON OF PHYLOGENETIC NETWORKS

7.3.6 Open Problems

Variants of the MAST, MIT and MCT problems are naturally obtained by changing
the parameter used in the objective function. Indeed, the whole size of the solution tree
could be maximized in an optimal agreement subtree, instead of the size of the leaf
set. In this case, optimization criteria based either on edges or clusters could be used
to find an optimal consensus subtree. Few papers have investigated this direction and
thus we do not know whether these criteria could produce consensus trees retaining
as many leaves as in the MAST or MCT solutions. In particular, it could be interesting
to define mappings between a pair of trees based on clusters or edges that allow to
find an agreement subtree retaining all leaves. This question is partially addressed in
the next two sections.

Another research direction that has been deeply explored regards the application
of the maximum agreement subtree as a measure of similarity to compare networks or
trees that are not necessarily uniquely leaf-labeled. Examples of such an application
come from gene tree inference and several other areas of computational biology where
it is required to compare unrestricted labeled trees. Algorithms for computing MAST
for unrestricted labeled trees are given in [30].

Restricted versions of the MAST problem obtained by assuming a leaf ordering
of the input trees [12] have been recently investigated. More precisely, in the ordered
maximum homeomorphic (OMAST) problem the input trees are ordered trees, that
is rooted trees where the left to right order of the children of each node is relevant,
while in the uniformly ordered MAST (UOMAST) problem the input trees are leaf
ordered trees, that is, trees having the same leaf label ordering. The leaf-labeled
ordered variants of MAST problem on k trees with n leaves can be solved in O(kn3)
time for UOMAST and O(n3min{nk, n+ n logk−1 n}) for OMAST [12].

7.4 SUPERTREES AND SUPERNETWORKS

The goal of this section is to give an overview of computational methods for com-
paring phylogenetic networks that infer a supernetwork merging the information of a
collection of input networks. We focus on methods for comparing arbitrary and usu-
ally large structures, hence we do not study problems where the input structures have
fixed size, such as quartet-based methods for reconstructing phylogenies (we refer the
interested reader to [16] for a complete description of quartet-based methods), even
though those problems have been deeply investigated in the literature. Moreover, we
deal only with methods that do not use additional information besides the branching
structure of the networks to infer a supernetwork.

We first deal with supertree methods that applied in comparing phylogenetic trees.
As observed in the introduction, in contrast to consensus tree methods introduced in
the previous section, the supertree approaches are specifically designed to merge a
collection of input trees over different sets of leaves, even though sometimes they can
also be used to compare identically leaf-labeled trees.

SUPERTREES AND SUPERNETWORKS 157

By using tree mappings introduced in Section 7.2.1, we can define methods for
supertree inference that are based on the idea of retaining a largest set of taxa obtained
by removing those taxa that induce conflicts among all trees or contradictory rooted
triples. These methods naturally lead to extend to the case of a supertree the notions
of agreement and compatible subtree discussed in the previous section.

A complementary approach to compute a supertree requires that all taxa appearing
in at least one input tree must necessarily appear also in the output supertree, where
all information encoded in the input trees must be present. Also for this approach, the
notion of tree mapping (especially of tree refinement) is central for formally defining
the idea of information preservation.

7.4.1 Models and Problems

The simplest and more general problem that arises in supertree inference is the con-
struction of a compatible supertree.

PROBLEM 7.2 Compatible Supertree

Input: a set T = {T1, . . . , Tk} of phylogenetic trees.
Output: a tree T displaying all trees in T .

This formulation has the drawback that such a supertree is not guaranteed to exist,
even though the problem seems quite easy to solve, as we are looking for a tree T

whose set of clusters contains those of the input trees. Moreover, such a supertree
exists if and only if no two input clusters (possibly in different trees) are overlapping.
Please notice that the problem is much harder on unrooted trees than on rooted trees;
in fact, computing (if it exists) a compatible unrooted supertree displaying all input
trees not only is NP-hard [35] but also cannot be solved by any generic algorithm
(without time constraints!) invariant with respect to permutations of leaves’ labels
[36].

By requiring that clusters of the supertree displaying all trees preserve some strict
relationships between clusters of the input trees, we obtain a variant of the Compatible
supertree problem that is related to the agreement subtree method.

PROBLEM 7.3 Total Agreement Supertree

Input: a set T = {T1, . . . , Tk} of phylogenetic trees, with Ti leaf-labeled over �(Ti).
Output: a phylogenetic tree T leaf-labeled over S = ∪i≤k�(Ti) such that each tree
T |�(Ti) is homeomorphic to Ti.

Observe that in the total agreement supertree problem, the computed tree T is such
that C(T |�(Ti)) = C(Ti) while given the output tree T ′ of the Compatible supertree
problem, it holds that C(Ti) is included in C(T ′|�(Ti)).

158 THE COMPARISON OF PHYLOGENETIC NETWORKS

Again, the total agreement supertree problem might not have a solution, thus we
consider an optimization version of the above mentioned problem obtained by relaxing
the constraint of retaining in the supertree all leaves of the input trees and requiring to
construct an agreement supertree with as many leaves as possible. Such optimization
criterion leads to problems that are strongly related to MAST, MIT and MCT.

Indeed, applying network mappings to an instance consisting of a collection T =
{T1, . . . , Tk} of phylogenetic trees lead to the following notions of supertree of T
over a set S of leaves such that S ⊆ ∪i≤k�(Ti).

An agreement homeomorphic (resp. agreement isomorphic) supertree of T over
S is a phylogenetic tree T such that for each tree Ti, T |�(Ti) is homeomorphic to the
topological restriction of Ti to S (resp. for each Ti, T |�(Ti) is isomorphic to T |S). A
compatible supertree of T over S is a phylogenetic tree T such that for each tree Ti,
T |t�(Ti) is a refinement of the topological restriction of Ti to S. As in Section 7.3, we
use the notion of σ-supertree to denote either agreement homeomorphic, or agreement
isomorphic, or compatible supertree. The following general problem is then defined,
leading to three different variants that we group under the name of consensus supertree
problems (please notice that those problems must not be confused with computing
the strict consensus tree).

PROBLEM 7.4 Maximum Consensus σ-Supertree

Input: a set T = {T1, . . . , Tk} of leaf-labeled phylogenetic trees, where each Ti is
labeled over �(Ti).
Output: a leaf-labeled phylogenetic σ-supertree T of T over a set S ⊆ ∪i≤k�(Ti)
such that T has the largest set of leaves.

Then the Maximum Agreement Homeomorphic Supertree (MASP), the Maximum
Agreement Isomorphic Supertree (MISP), and the Maximum Compatible Supertree
(MCSP) problems are three variants of Problem 7.4 where the σ-supertree is,
respectively, an agreement homeomorphic, an isomorphic, or a compatible supertree.

Since the most common application of supertree methods is to amalgamate the
results of various studies and to construct the tree of life, obtaining a result that
excludes some of the species studied is not acceptable. Therefore, the main application
of Problem 7.4 is to measure the similarity among the input trees. Thus, we need to
find some generalizations of Problem 7.2 guaranteeing that all input species are in the
resulting supertree. The problems introduced in the following of the current section
have only appeared in the literature in their decision version (i.e., construct such a
tree if it exists), while we give the optimization versions in order to overcome the fact
that, among all possible solutions, some are more interesting.

PROBLEM 7.5 Most Compatible Supertree

Input: a set T = {T1, . . . , Tk} of phylogenetic trees, with Ti leaf-labeled over �(Ti).
Output: a tree T displaying the trees {T1, . . . , Tk},

SUPERTREES AND SUPERNETWORKS 159

Goal: to minimize the sum over all Ti of the number of edges where each pair
Ti, T |t�(Ti) differs.

A different formulation with an important biological motivation is called
NestedSupertree [10], where nested taxa are allowed in the input data. The notion
of nested taxon allows to represent the fact that some information is known about
the taxonomy of some species. This results in some internal nodes being labeled
(besides all leaves), and that such labels must be taken into account when computing
the supertree.

PROBLEM 7.6 Most Compatible NestedSupertree

Input: a set T = {T1, . . . , Tk} of phylogenetic trees, where all leaves and possibly
some internal nodes of Ti are labeled over �(Ti).
Output: a tree T displaying the trees {T1, . . . , Tk},
Goal: to minimize the sum over all Ti of the number of edges where each pair
Ti, T |t�(Ti) differs.

In Section 7.2, we have introduced the fact that a tree T1 displays another tree T2
(over the same label set as T1) if and only if the clusters of T1 include those of T2.
Such property can be generalized to a class of networks, called regular networks [3],
therefore, such class is a natural candidate for generalizing the supertree problems.
Notice that the property does not hold for generic networks.

Definition 7.1 A network N is regular if and only if for each pair v1, v2 of vertices
of N the following conditions hold: (i) the sets C(v1) and C(v2) are different, (ii)
C(v1) ⊂ C(v2) implies that there exists a path from v1 to v2, and (iii) if there exist two
distinct (directed) paths from v1 to v2, both contain at least two arcs.

PROBLEM 7.7 Minimum Compatible Regular Supernetwork

Input: a set N = {N1, . . . , Nk} of networks.
Output: a regular network N minimizing the number of nontree arcs and displaying
all networks in N

The most natural problem modeling regular network comparison is that of comput-
ing a minimum-size (i.e., minimum number of arcs) regular network displaying a set
of input networks. The criterion of minimizing the number of arcs in N is due to the
fact that adding hybridization arcs (i.e., arcs inducing a cycle in the undirected version
of N) allows N to display more networks, and at the same time it makes N less likely
to represent an evolutionary history which is usually “treelike.” Two versions of Prob-
lem 7.7 are possible, depending on the fact that introducing new species is allowed or
forbidden. Those two versions, albeit apparently similar, can lead to hugely different
solutions. Given a set N of regular networks, h(N) and h+(N) denote the optima
of Problem 7.7 where the creation of additional species is, respectively, forbidden or

160 THE COMPARISON OF PHYLOGENETIC NETWORKS

allowed. In [3] it is shown that it is possible to construct a set N , consisting of two
phylogenies, for which h+(N) = 1, but h(N) is arbitrarily large.

7.4.2 Algorithms

Among all possible algorithms, we are interested in those satisfying three funda-
mental properties: (i) being polynomial-time computable, (ii) computing a supertree
displaying all (not necessarily proper) subtrees shared by all input trees, (iii) being
invariant w.r.t. instance isomorphisms. The first polynomial-time algorithm for solv-
ing Problem 7.2 with all the above properties appeared in the celebrated paper [1] and
is called the Build algorithm. Such algorithm is guaranteed to compute a supertree
displaying all input trees, provided that such a supertree exists. The drawback of this
approach is that nothing is computed if such a supertree does not exist.

Clearly, we are interested in finding a suitable supertree (or a supernetwork) that
displays all input trees. A brief description of Build will help in gaining some insights
in the problem. At each step Build computes an undirected graph G whose vertices
are the species in the input trees and two species are adjacent if and only if they are
clustered together in some proper cluster of an input tree (i.e., for at least one input
tree the least common ancestor of those two species is not the root). The algorithm
computes the connected components C1, . . . , Cp of G, makes each such Ci one of
the clusters of the supertree, then recurses over the new set of trees obtained by the
topological restriction of each input tree on the sets C1, . . . , Cp, provided that p > 1.
If, at any point, p = 1 and G contains more than two vertices, the algorithm halts
without computing any supertree. In fact, it is immediate to notice that in such case
no supertree can display all input trees, as all edges of G represent a pair of species
that must be included in some proper cluster of the supertree. On the contrary, the
main contribution of [1] is the proof that such procedure successfully computes the
desired supertree, that is, all graphs considered during the execution of the algorithm
G are not connected.

Since failures of Build correspond to graphs G that are connected, a natural
approach for constructing a supertree (or a supernetwork) is therefore to remove some
edges of G whenever G is connected, so that the resulting graph is disconnected
and the idea of Build can be applied: the MinCut approach, introduced by [34],
exploits exactly this idea. In that paper, a nontrivial weighting scheme is em-
ployed and a minimum-weight cut of a closely related graph is computed. Then, the
algorithm recurses on all connected components. The algorithm uses an associated
graph G/Emax, computed from G by first weighting all edges (x, y) with the number
of input trees where x and y are in the same proper cluster, and then merging all nodes
that are connected by an edge whose weight is equal to the number of input trees. The
minimum cut is computed on G/Emax and the recursive steps are on the connected
components of this new graph.

The rationale for dealing with G/Emax is that edges with weight equal to the num-
ber of input trees corresponds to proper clusters that are confirmed by all input trees,
therefore, merging nodes connected by such edges enforces the goal of guaranteeing
that clusters of all input trees must also be in the result.

SUPERTREES AND SUPERNETWORKS 161

There is an important drawback of MinCut pointed out by [33]: a branching
appearing in an input tree and not contradicted by any input trees might not be in
the computed supertree as it can be in a minimum cut. In [33], a modified version of
MinCut is presented for overcoming such difficulty. The algorithm removes from
G/Emax all contradicted edges, hence ensuring that all uncontradicted edges are not
present in a minimum cut. Nonetheless some difficulties are still present; for example,
the removal of all contradicted edges might be too harsh, as it does not allow to
discriminate among all possible cuts that are preserving all uncontradicted edges.

A different extension of Build, due to Daniel and Semple [10] and called
NestedSupertree, has been designed to solve Problem 7.6, that is, when nested
taxa are allowed in the input data (i.e., some internal nodes can be labeled).
NestedSupertree is a polynomial-time algorithm that computes a supertree dis-
playing all input trees (if such a supertree exists), moreover, it removes some (but not
all) conflicts among input trees (from this point of view it is also an improvement
of MinCut). The first kind of unremoved conflict is the pairwise inconsistency that
happens when there are two nodes a and b both appearing in two input trees, and a is
a proper descendant of b in exactly one such tree. If the input trees have no pairwise
inconsistencies, the algorithm creates new labels for all previously unlabeled internal
nodes, then it constructs a mixed (i.e., containing both directed arcs and undirected
edges) graph—called descendancy graph—whose vertices are the labels of the input
trees and all rooted triples (ab|c) that are not contradicted by any input tree. The arcs
of the descendancy graph are the pairs of labels (a, b) where b is an ancestor of a in
some input tree, moreover, for each rooted triple ab|c there are two outgoing arcs
((ab|c), a) and ((ab|c), b). Undirected edges of the descendancy graph are the
(unordered) pairs of labels (a, b) where a and b are not comparable (i.e., the associated
clusters are disjoint) in some input tree. The algorithm looks for a directed cycle in
the descendancy graph D; if such a cycle exists the computation finishes with an
ancestor–descendant contradiction without computing any tree.

If D is acyclic, then NestedSupertree is guaranteed to compute a supertree with
a recursive procedure. Initially, it computes a set S0 containing a set of labels in D that
have neither incoming arcs nor incident edges (this case corresponds to unconflicting
input trees). If no such label exists, then S0 is posed equal to any nonempty set of
labels with no incoming arcs (this case corresponds to some conflicts in the input
trees, the arbitrary choice of S0 represents how the conflicts are resolved). Then S0
is made the root of the computed tree and its elements are removed from D; the
algorithm also removes all rooted triples ab|c where c and ab are not in the same
strongly connected component of D. Finally, all strongly connected components of
D are added to the set of clusters of the output tree and the procedure recurses on all
such strongly connected components.

Now, we can survey some known results related to the MASP and MCSP problems.
Observe that agreement and compatible subtree and supertree problems share the same
optimal solutions whenever the collection of input trees are over the same leaf-labeled
set. Given T1, T2 two trees with n leaves, a simple procedure working in O(n) time, can
be used to extend an optimal solution of MAST and MCT over L(T1) ∩ L(T2) to an op-
timal solution of MASP and MCSP, respectively, over the two trees as proved in [5,27].

162 THE COMPARISON OF PHYLOGENETIC NETWORKS

On the negative side, we notice that increasing the number of input trees quickly
leads to hard problems. In fact some recent results on MASP have been given in
[27], showing that, differently from MAST, the problem is NP-hard on just three
bounded-degree trees or on an unrestricted number of rooted triples. Moreover the
optimization versions of both MASP and MCSP, where we want to minimize the
number of leaves to remove in order to obtain a feasible solution, cannot have a
constant approximation factor unless P = NP, and are W[2]-hard (i.e., no efficient
fixed-parameter algorithm is possible).

7.4.3 Open Problems

The optimization criterion of Problems 7.5 and 7.6 is inspired by parsimony, but
it would be interesting to investigate if a different criterion, such as computing the
supertree with fewest edges, would be more biologically meaningful.

Another research direction is that of improving the algorithms MinCut and its
variant of [33]. In fact, it is reasonable that the difference (or the ratio) between the
number of input trees where an edge e is present and the number of input trees where e

is contradicted should be a key parameter for determining whether e must be retained
in the output solution or not. It would be interesting to design and analyze some
algorithms with a more refined criterion for choosing the edges to cut.

Also, NestedSupertree could be extended with a more refined algorithm for
selecting the set S0, which is currently any set of labels with no incoming arcs
or incident edges. It would be interesting to find an optimization criterion leading
to a more biologically meaningful supertree without making the overall algorithm
unfeasible.

7.5 RECONCILIATION OF GENE TREES AND SPECIES TREES

Until now, we have considered the possibility of representing the evolution of a set
of species by means of a uniquely leaf-labeled phylogenetic tree or network; in this
section we will consider a different scenario, where we are given the information
concerning the evolution of a set of homologous genes in different species. Different
evolutionary trees can be built to represent the evolutionary histories of different genes
in the studied set of species. Each tree representing the evolution of a gene is a gene
tree. Similarly, the evolution of a set of species is usually represented using a species
tree. Many studies have shown that the evolution of the species and the evolution
of the genes might not agree. Thus a species tree and a gene tree can be different,
moreover, gene trees that represent the evolution of different genes can be different.
This divergence between genes evolution is due to some biological events such as
duplication of a gene, the loss of a gene, and lateral (or horizontal) gene transfer (in
Fig. 7.3, the tree TG presents a gene duplication in the topmost node labeled BD). On
the contrary, species trees represent the evolutionary history of a set of species only
in terms of speciation. The inference of a species tree from a collection of divergent
gene trees is a fundamental issue in phylogenetics and strongly motivates the design

RECONCILIATION OF GENE TREES AND SPECIES TREES 163

ABCD

AB CD

A B C D

ABCD

AC BD

BD

A C B

B D

FIGURE 7.3 A species tree TS and a gene tree TG. Each node is associated with a cluster.

of combinatorial models to compare gene trees and to reconcile them into a species
tree.

Preliminary definitions on species and gene trees have been given in Section 7.2,
while we introduce here the basic mappings used to compare a gene tree and a species
tree. First, given a set S of taxa, a species tree TS , and a gene tree TG are two leaf-
labeled rooted binary trees, where each leaf is labeled by a taxon in S. A species tree
has the additional restriction that no two leaves share a common label. An example
of species tree and gene tree is given in Fig. 7.3.

Notice that for a species tree, a cluster identifies unambiguously a node of the tree.
Given a gene tree TG and a species tree TS , the trees TG and TS are called comparable
iff �(TG) ⊆ �(TS), in which case we can define a mapping λTG,TS

: V (TG) → V (TS)
associating each vertex of TG with a vertex of TS . The mapping usually adopted when
comparing a gene tree and a species tree is the least common ancestor mapping, in
short lca. We recall that the lca mapping associates with each node g of TG the node
s of TS such that C(s) is the smallest cluster of TS containing C(g). Observe that a leaf
with label x of TG is mapped by lca mapping in the unique leaf of TS having label x.
In what follows we assume that, unless otherwise stated, λTG,TS

is the lca mapping.
In the following, given two nodes x, y, by x ⊂ y we denote that y is an ancestor of
x. Moreover, given a tree T and a node v of T , let us recall that T (v) denotes the
complete subtree of T rooted in v.

7.5.1 Evolutionary Events

In gene trees and species trees comparison (Fig. 7.4), speciation is by far the most
common evolutionary event and is considered the “normal” event, while other events
can be considered “special.” Indeed, speciation is represented in a species tree as a
node evolving in its two children, modeling the fact that along the evolutionary process
two different species were generated from a single species. Usually, the models we will
introduce follow the parsimonious principle of minimizing the number of “special”
events. The models mainly differ in the set of possible special events. The first of
such “special” events is gene duplication. In this case, the portion of DNA encoding a
given gene appears twice in a certain species, and those two copies of the gene evolve
independently from that point. This fact is modeled by the following definition.

164 THE COMPARISON OF PHYLOGENETIC NETWORKS

ABCD

BCD

CD

A

B

C D

ABCD

BCD

BD

A

C

B D

FIGURE 7.4 A duplication in node BCD of gene tree TG.

Definition 7.2 (Duplication). Let TG be a gene tree and let TS be a species tree
comparable with TG. Let g be an internal node of TG, then a duplication happens in
g if λTG,TS

(f (g)) = λTG,TS
(g) for some children f (g) of g in TG.

Given a gene tree TG and a species tree TS which are comparable, a measure of the
similarity of the two trees is the duplication cost, denoted by dup(TG, TS), and defined
as the number of nodes of TG where a duplication occurs. Furthermore, duplications
can be efficiently computed, as the following property shows a recurrence that can be
easily translated into a DP algorithm.

Proposition 7.1 Let rg be the root of the gene tree TG, let cl(rg), cr(rg) be the children
of rg. If a duplication occurs in rg then dup(TG, TS) = 1+ dup(TG(cl(rg)), TS)+
dup(TG(cr(rg)), TS).

Another event that can occur during the evolution is the loss of a gene in some
species. The number of gene losses can be computed from the lca mapping λTG,TS

.
Assume that T ′S = TS |t�(TG). Given the lca mapping λTG,T ′

S
from TG to T ′S , let g, g′

be two nodes of T ′S such that C(g) ⊆ C(g′), then we denote by d(g, g′) the number of
nodes in TS on the path from λTG,T ′

S
(g′) to λTG,T ′

S
(g). The number of losses associated

with TG is the sum over all nodes g of TG of the value lg associated with node g and
defined as follows:

lg =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if λTG,T ′
S
(g) = λTG,T ′

S
(cr(g)) = λTG,T ′

S
(cl(g))

d(cl(g), g)+ 1 if λTG,T ′
S
(cl(g)) ⊂ λTG,T ′

S
(g) and

λTG,T ′
S
(g) = λTG,T ′

S
(cr(g))

d(cl(g), g)+ d(cr(g), g) if λTG,T ′
S
(cl(g)) ⊂ λTG,T ′

S
(g) and

λTG,T ′
S
(cr(g)) ⊂ λTG,T ′

S
(g);

Given a gene tree TG and a species tree TS , which are comparable, another measure
of the similarity of the two trees is the mutation cost, denoted by l(TG, TS) and defined
as follows: l(TG, TS) = dup(TG, TS)+∑g∈TG

lg.
The last evolutionary event that is considered during gene evolution is lateral gene

transfer or horizontal gene transfer. During a lateral gene transfer event, some genetic

RECONCILIATION OF GENE TREES AND SPECIES TREES 165

C B

A

FIGURE 7.5 A mixed graph corresponding to a scheme violating Condition 1 of
Definition 7.3 (edges are dashed).

material is transferred from a taxon t1 to another taxon t2, which is not a descendant
of t1. When a later transfer occurs during the evolution of a gene along an arc (u, v) of
the gene tree TG, then the evolution occurs not only along an arc (x, y) of the species
tree TS but also along another arc (x′, y′) of TS . This situation is described in TS by
means of the subdivision operation of an arc e = (x, y) in TS consisting of removing
edge e, which is replaced by a path made of two new edges (x, s(e)) and (s(e), y).

A single lateral transfer is modeled by the subdivision of a pair of arcs (a, a′),
called lateral pair and by the addition of a new arc, called transfer arc for the lat-
eral pair, that is either (s(a), s(a′)) or (s(a′), s(a)), depending on the direction of the
transfer.

The occurrence of lateral transfers in a species tree TS implies adding a set of
transfer arcs A′ to a tree T ′S obtained by subdivisions. Mainly, we have two different
representations: the mixed graph and the union graph induced by T ′S and A′, which
are both graphs with vertex set V (T ′S). The union graph induced by T ′S and A′ and
denoted as T ′S ∪ A′ has arcs of T ′S and of A′. The mixed graph induced by T ′S and A′,
denoted by T ′S ∪ E(A′), has arcs of T ′S and edges obtained by removing the direction
of the arcs in A′.

Definition 7.3 Let TG be a gene tree and TS be a species tree, then a lateral transfer
scheme for TS is a pair (T ′S, A′), where T ′S is obtained by subdivisions of lateral pairs
P in TS and A′ is a set of transfer arcs for P such that

1. the mixed graph T ′S ∪ E(A′) does not contain a directed mixed cycle;

2. for each arc (u, v) in A′, vertex u has indegree 1 and outdegree 2 in T ′S ∪ A′,
vertex v in A′ has indegree 2 and outdegree 1 in T ′S ∪ A′.

Observe that condition 1 of Definition 7.3 forbids cycles in the mixed graph T ′S ∪
E(A′). Indeed there is a mixed cycle in Fig. 7.5. The lateral transfer from x to y would
imply that there is a point in time where the two species x and y coexisted. Similarly,
the lateral transfer from u to v would imply that there is a point in time where the

166 THE COMPARISON OF PHYLOGENETIC NETWORKS

two species u and v coexisted. However, since y exists after u, it follows that no such
point in evolution can exist.

Informally, the pair (T ′S, A′) represents the evolutionary histories of the taxa in
L(TS) using speciation and lateral gene transfers that are represented by the set A′
(see Fig. 7.5). In order to model the evolution represented by a gene tree TG, we have
to define a scenario that defines the mapping from TG to the species tree TS showing
at which point of evolution lateral gene transfers occurred. A fundamental parameter
associated with a scenario is the α-activity of a gene. Informally, the activity level of
a gene tree is the number of copies of the gene that exist in the genome of a taxon at
a certain point of evolution.

Definition 7.4 Let TG be a gene tree and TS a species tree, a lateral transfer
scenario [24] for TS and TG is a triple (T ′S, A′, h), where (T ′S, A′) is a lateral transfer
scheme for TS and h : V (T ′S) → 2V (TG) is a function such that

1. r(TG) ∈ h(r(T ′S)) and the subtree of TG induced by h(r(T ′S)) is connected;

2. if v1 and v2 are distinct children of v0 in TG, with v1, v2 /∈ h(r(T ′S)), then there
exists a node x0 of T ′S with children x1 and x2 in T ′S ∪ A′ s.t. (a) vi ∈ h(xi) with
i ∈ {0, 1, 2}, (b) xi is a vertex such that the set {v ∈ h(xi)} is maximal;

3. if v1 and v2 are children of v0 in TG, v1 ∈ h(r(T ′S)) and v2 /∈ h(r(T ′S)), then
there exists a child x of r(T ′S) s.t. v2 ∈ h(x);

4. for each v ∈ V (TG), the inverse image of v through h induces a directed path
in T ′S ;

5. for each x ∈ V (TS) \ {r(T ′S)}, no two members of h(x) are one the ancestor of
the other one;

6. h(l) = {l} for each l ∈ L(TS).

The requirements of Definition 7.4 guarantee that h is leaf-preserving and maps the
root of TS to the root of TG (Fig. 7.6). The combination of conditions 2− 4 ensures
that TG appears in TS and arcs direction in TG and TS is the same. Conditions 2 and
5 forbid both outgoing arcs from a vertex in a gene tree to correspond to lateral gene
transfers. Condition 6 establishes leaf to leaf association between TG and TS .

ABC

BC
A

B C

ABC

BC
C

B A

g(r(S¢))=ABC
g(w)=C

g(C)=C

g(x)=ABC

g(y)=BC

g(B)=B
g(A)=A

FIGURE 7.6 A gene tree TG, a species tree TS , a lateral transfer scheme, and a possible
1-activity scenario (the arc representing a lateral transfer is dashed).

RECONCILIATION OF GENE TREES AND SPECIES TREES 167

A lateral transfer scenario (or scenario) is α-active iff maxx∈T ′
S
{|h(x)|} ≤ α. The

cost of a scenario (T ′S, A′, h) w.r.t. TG is expressed by the formula
∑

(x,y)∈A′ |{(u, v) ∈
E(TG) : u ∈ h(x), v ∈ h(y)}|+|V (TG[h(r(T ′S))]) \ L(TG[h(r(T ′S))])|, where by
TG[V ′] we denote the forest of subtrees that have nodes in V ′, with V ′ ⊆ V (TG).
Hence, the first part of the cost of a α-active lateral transfer scenario is the number of
arcs of TG that are related by the function h to the arcs in A′, while the second part
is the number of internal nodes of TG that are associated by h with the root of T ′S .

The model described above has been extended [24] in order to handle both lateral
transfers and duplications. Such extension is obtained by adding to the scenario a set
D ⊆ V (TG) (representing the set of duplications) and to condition 2 of Definition 7.4
the requirement that x1 = x2 if and only if v0 ∈ D, thus forbidding duplications to
lateral gene transfer.

A different model for comparing a gene tree and a species tree, is called reconciled
tree. More precisely, given a gene tree and species tree, a minimum reconciled tree of
TG and TS is a rooted full binary tree of minimum size that satisfies three fundamental
properties.

Definition 7.5 A minimum reconciled tree [31] R(TG, TS) of a gene tree TG and a
species tree TS , is a smallest tree satisfying the following properties:

1. a subtree of R(TG, TS) is homeomorphic to TG,

2. C(R(TG, TS)) = C(TS),

3. for every internal node x of R(TG, TS) either C(cl(x)) ∩ C(cr(x)) = ∅ or
C(cl(x)) = C(cr(x)) = C(x).

Given a gene tree TG and a species tree TS , a reconciled tree R(TG, TS) is used
to represent and identify evolutionary events (Fig. 7.7). More precisely, a duplication
occurs in a node x of R(TG, TS) if and only if C(cl(x)) = C(cr(x)) = C(x). Let R′ be
subtree of R(TG, TS) homeomorphic to TG . A loss occurs in a node x of R′ if at least
one of cl(x) and cr(x) is not in R′.

7.5.2 Combinatorial Problems

In the previous section, we have introduced the evolutionary events that are commonly
considered in phylogenetic comparison of gene trees and species trees. In what follows
we consider two of the most relevant classes of combinatorial problems that have been
studied in this field.

In the first type of problem, we are given a set of (possibly contradictory) gene
trees and we want to compute a species tree that better represents the evolution-
ary histories of the given gene trees. The assumption behind this approach is that
the correct species tree is the one that minimizes the differences with the given
gene trees. In what follows we will refer to this kind of problems as agreement
problems.

168 THE COMPARISON OF PHYLOGENETIC NETWORKS

ABCD

AC BD

A C B D

ABCD

AB CD

A B C D

ABCD

ABCD ABCD

AB CD AB CD

A B C D A B C D

FIGURE 7.7 A gene tree TG, a species tree TS , and a reconciled tree R(TG, TS). Note that
C(R(TG, TS) = {ABCD, AB, CD, A, B, C, D} the set of clusters ofTS ; the subtree ofR(TG, TS)
homeomorphic to TG consists of the root, both children of the root (each with cluster ABCD),
the left leaves with labels A and C, the right leaves with labels B and D; a duplication occurs
in the root, since the root has cluster ABCD and its two children have both cluster ABCD;
four losses occurred in the two nodes with clusters AB and in the two nodes with clusters CD.

In the second problem, we are given a gene tree and a species tree and we want to
compare the two trees in order to explain the differences between them by identifying
which evolutionary events occurred during the evolution of the gene in that set of
species. The assumption behind this approach is that the gene tree and the species
tree considered are correct. In what follows, we will refer to this kind of problems as
events inference problems.

7.5.2.1 Agreement Problems Informally, the instance of an agreement problem
is a collection of gene trees TG1 , . . . , TGk and the solution is a species tree having
minimum distance from the trees in the collection. Different definitions of an agree-
ment problem can be introduced on the basis of the distinct measures of similarity
between a gene tree and a species tree discussed in Section 7.5.1.

The first problem we introduce regards the reconstruction, based on the duplication
cost, of a species tree from a collection of gene trees.

PROBLEM 7.8 Optimal Species Tree Reconstruction with Duplication Cost

Input: gene trees TG1 , TG2 ,. . ., TGk .

RECONCILIATION OF GENE TREES AND SPECIES TREES 169

Output: a species tree TS such that the duplication cost
∑k

i=1 dup(TGi , TS) is mini-
mum.

The problem is known to be NP-hard [31] and W[1]-hard if parameterized by
the number of trees [15]. However, it is known to have fixed-parameter algorithms.
More precisely, [38] proposed a fixed-parameter O(4dn3k2) time algorithm when the
parameter d is the number of duplications. This algorithm is based on a property of
bipartitions of �(TS). Observe that the set of clusters of a species tree are a treelike
cluster system for �(TS), hence each internal node x of TS produces a bipartition
(�x1 , �x2) of a subset �x of �(TS), where each �xi is the cluster associated to a
children of x.

Given a bipartition (�1, �2) of �TS
, the number of duplications induced by such

a bipartition can be easily computed, hence the algorithm first builds all bipartitions
of �(TS) inducing no more than d duplications. Then, for each bipartition (�1, �2),
it computes recursively the bipartitions of �1 and of �2, so that the clusters obtained
induce at most d duplications. The procedure stops when either we find a treelike
cluster system (the species tree) that induces at most d duplications or there is no
such cluster system. Finally, the algorithm computes such solutions using a search
tree whose height is at most d.

Another main agreement problem is obtained by using the mutation cost that is
computed by combining three such events: speciation, duplication, and loss.

PROBLEM 7.9 Optimal Species Tree Reconstruction with Mutation Cost

Input: gene trees TG1 , TG2 ,. . ., TGk .
Output: a species tree TS minimizing the mutation cost

∑k
i=1 l(TGi , TS).

The problem is known to be NP-hard [31] and admits a dynamic programming
algorithm for a restriction called width-k version [22].

7.5.2.2 Event Inference Problems In this section, we will deal with event inference
problems. Informally, the instance of this kind of problem is a collection of gene trees
(eventually consisting of exactly one gene tree) and a species tree; the solution is a
description (usually given by a tree) of the special evolutionary events that explain
the differences between the gene trees and the species tree. In [31], the problem of
computing all loss events is investigated. Consider a duplication du in a node u of TG.
A node v of TS can be classified as follows:

� mixed in du if C(v) ∩ C(c(u)) �= ∅ for every child c(u) of u;
� speciated in du if (v) ∩ C(cl(u)) �= ∅, but C(v) ∩ C(cr(u)) = ∅ or vice versa, for

cl(u) and cr(u) the two children of u;
� gapped in du if C(v) ∩ C(c(u)) = ∅ for every child c(u) of u.

170 THE COMPARISON OF PHYLOGENETIC NETWORKS

We say that a loss event occurs at a maximal node v ∈ TS so that v is a descendant
of lca(u) in TS and is speciated or gapped in du. Informally, this fact is equivalent
to computing the root rd of the minimal subtree in TS , such that all the loss events
associated with du are contained in the subtree of TS rooted in rd . In particular, a
unique loss event occurs in a node on the path from lca(u) to any leaf in TS . Next we
state formally the problem of computing all loss events.

PROBLEM 7.10 Loss Events Computation Problem

Input: a gene tree TG and a species tree TS , such that �(TG) = �(TS).
Output: for each duplication d that occurs at a node g ∈ TG, the (unique) subtree
TS(lca−1(g)) of TS with all the loss events as its leaves.

Observe that a tree that is a solution of the previous problem, does not necessarily
have leaves with labels in �(TS). Indeed the leaves of such a tree can be labeled by
clusters of TS . In [31], a linear time algorithm to compute all loss events is proposed.
Next, we define formally the problem concerning the construction of reconciled trees.

PROBLEM 7.11 Minimum Reconciliation Gene-Species Tree

Input: a gene trees TG and a species tree TS .
Output: computing a minimum reconciled tree R(TG, TS).

The Minimum Reconciliation Gene-Species Tree problem has a polynomial-time
dynamic programming algorithm relying on the following recursive definition [6].

Two basic operations on trees allow to construct a minimum reconciled tree. Given
two trees T1 and T2, the composition of the trees, denoted by T1 	 T2, is a tree obtained
connecting a new node r to r(T1) and r(T2). The node r is the root of the tree T1 	 T2.
The replacement ofT1 withT2, denoted byT1(t → T2) is the tree obtained by replacing
in T1 the subtree rooted at t with T2.

Definition 7.6 Let TG, TS be, respectively, a gene tree and a species tree. Let Gl and
Gr (Sl and Sr, respectively) the subtrees of TG (of TS) rooted in the children cl(r(TG))
and cr(r(TG)) of r(TG) (respectively, cl(r(TS)) and cr(r(TS)) of r(TS).)

Then R(TG, TS) is equal to TG if TG and TS are both single nodes, in which case
they are simultaneously roots and leaves, otherwise R(TG, TS) is equal to

1. TS(lca(cl(r(TS))) → R(TG, Sl))) if lca(r(TG)) ⊆ cl(r(TS)).

2. R(Gl, Sl)	 R(Gr, Sr), if lca(r(TG)) = r(TS), lca(cl(r(TG))) and lca(cr(r(TG)))
are mapped to s1 ⊆ cl(r(TS)) and s2 ⊆ cr(r(TS)), respectively.

3. R(Gl, TS)	 R(Gr, TS), if lca(r(TG)) = r(TS), and at least one of lca(cl(r(TG)))
and lca(cr(r(TG))) is equal to r(TS).

RECONCILIATION OF GENE TREES AND SPECIES TREES 171

In [6], it is shown that Definition 7.6 computes a tree that satisfies the properties
for the reconciled tree and such a tree has also minimum size. Furthermore, given a
gene tree TG and a species tree TS , there exists a unique minimum reconciled tree for
TG and TS [6], which is also the tree inducing the minimum number of duplications
and losses [21]. Next, we introduce the main problem for the lateral gene transfer
model.

PROBLEM 7.12 α-Active Lateral Gene Transfer Problem

Input: gene tree TG and species tree TS .
Output: find a minimum cost α-active lateral transfer scenario for TS and TG.

The restriction of α-active Lateral Gene Transfer Problem where α = 1 is
APX-hard [11,23], while it has a O(24T |S|2) fixed-parameter algorithm [23],
where the parameter T is the cost of the scenario. For arbitrary α there is an
O(4α (4T (α+ T))T |L|2) time algorithm [23].

The extension of the problem that considers both duplications and lateral gene
transfers is known to be NP-hard [24] and admits a fixed-parameter tractable
algorithm [24] that computes the minimum number of duplications and lateral
transfers.

7.5.3 Open Problems

A deep understanding of the approximation complexity of the agreement problems
is still needed. More precisely, the only known result is the 2-factor approxima-
tion algorithm for the variant of Optimal Species Tree Reconstruction with Dupli-
cation Cost (see Problem 7.8) in which the duplication cost is slightly modified to
obtain a metric d [31]. In this variant, all gene trees are uniquely labeled. More-
over, given a gene tree TG and a species tree TS , the symmetric duplication cost
between TG and TS is defined as d(TG, TS) = 1

2 (dup(TS, TG)+ dup(TG, TS)). The
new version of the problem remains NP-hard while admitting a 2-approximation
algorithm [31].

An interesting open problem on species trees and gene trees is the computational
complexity of reconstructing a species tree from a set of gene trees over instances
consisting of a constant number of gene trees or even of two gene trees only.

An extension of the reconciliation approach (see Definition 7.5 and
Problem 7.11) is proposed in [20] by introducing a notion of extended recon-
ciled tree allowing the identification of lateral gene transfers, in addition to du-
plication and losses. A notion of scenario is also introduced to identify lat-
eral transfers. A dynamic programming algorithm to compute a scenario induc-
ing a minimum reconciliation cost is given [20]. Also notice that no approxi-
mation algorithms are known for the event inference problems presented in this
section.

172 THE COMPARISON OF PHYLOGENETIC NETWORKS

REFERENCES

1. Aho AV, Sagiv Y, Szymanski TG, Ullman JD. Inferring a tree from lowest common
ancestors with an application to the optimization of relational expressions. SIAM J Comput
1981;10(3):405–421.

2. Amir A, Keselman D. Maximum agreement subtree in a set of evolutionary trees: Metrics
and efficient algorithms. SIAM J Comput 1997;26(6):1656–1669.

3. Baroni M, Semple C, Steel M. A framework for representing reticulate evolution. Ann
Comb 2004;8(4):391–408.

4. Berry V, Guillemot S, Nicolas F, Paul C. On the approximation of computing evolution-
ary trees. Proceedings of the 11th Annual International Computing and Combinatorics
Conference (COCOON); 2005. pp.115–125.

5. Berry V, Nicolas F. Improved parameterized complexity of the maximum agreement
subtree and maximum compatible tree problems. IEEE Trans Comput Biol Bioinformatics
2006;3(3):289–302.

6. Bonizzoni P, Della Vedova G, Dondi R. Reconciling a gene tree to a species tree under
the duplication cost model. Theor Comput Sci 2005;347(1–2):36–53.

7. Bonizzoni P, Della Vedova G, Mauri G. Approximating the maximum isomorphic agree-
ment subtree is hard. Int J Found Comput Sci 2000;11(4):579–590.

8. Choy C, Jansson J, Sadakane K, Sung W-K. Computing the maximum agreement of
phylogenetic networks. Theor Comput Sci 2005;335(1):93–107.

9. Cole R, Farach-Colton M, Hariharan R, Przytycka T, Thorup M. An O(n log n) algorithm
for the maximum agreement subtree problem for binary trees. SIAM J Comput 2000;30(5).

10. Daniel P, Semple C. A class of general supertree methods for nested taxa. SIAM J Discrete
Math 2005;19(2):463–480.

11. DasGupta B, Ferrarini S, Gopalakrishnan U, Paryani NR. Inapproximability results
for the lateral gene transfer problem. J Comb Optim 2006;11(4):387–405.

12. Dessmark A, Jansson J, Lingas A, Lundell E-M. Polynomial-time algorithms for the
ordered maximum agreement subtree problem. Proceedings of the 15th Symposium on
Combinatorial Pattern Matching (CPM); 2004. pp. 220–229.

13. Downey R, Fellows M. Parametrized Complexity. Springer Verlag, 1998.

14. Farach-Colton M, Przytycka TM, Thorup M. On the agreement of many trees. Inf Proces
Lett 1995;55(6):297–301.

15. Fellows M, Hallett M, Stege U. Analogs and duals of the MAST problem for sequences
and trees. J Algorithm 2003;49:192–216.

16. Felsenstein J. Inferring Phylogenies. Sinauer Associates, 2003.

17. Finden C, Gordon A. Obtaining common pruned trees. J Classifi 1985;2:255–276.

18. Gabow HN, Tarjan RE. Faster scaling algorithms for network problems. SIAM J Comput
1989;18(5):1013–1036.

19. Ganapathysaravanabavan G, Warnow T. Finding a maximum compatible tree for a
bounded number of trees with bounded degree is solvable in polynomial time. Pro-
ceedings of the 3rd International Workshop Algorithms in Bioinformatics (WABI); 2001.
pp.156–163.

20. Gòrecki P. Reconciliation problems for duplication, loss and horizontal gene transfer.
Proceedings of the of 8th Annual International Conference on Computational Molecular
Biology (RECOMB2004); 2004. pp. 316–325.

REFERENCES 173

21. Gòrecki P, Tiuryn J. On the structure of reconciliations. Proceedings of the RECOMB
Satellite Workshop on Comparative Genomics RG 2004. of LNCS, Vol. 3388. 2004.
pp. 42–54.

22. Hallett M, Lagergren J. New algorithms for the duplication-loss model. Proceedings of 4th
Annual International Conference on Computational Molecular Biology (RECOMB2000);
2000. pp. 138–146.

23. Hallett M, Lagergren J. Efficient algorithms for lateral gene transfer problems. Pro-
ceedings of 5th Annual International Conference on Computational Molecular Biology
(RECOMB2001); 2001. pp. 149–156.

24. Hallett M, Lagergren J, Tofigh A. Simultaneous identification of duplications and lateral
transfers. Proceedings of the 8th Annual International Conference on Computational
Molecular Biology (RECOMB2004); 2004. pp. 347–356.

25. Hamel A, Steel MA. Finding a common compatible tree is NP-hard for sequences and
trees. App Math Lett 1996;9(2):55–60.

26. Hein J, Jiang T, Wang L, Zhang K. On the complexity of comparing evolutionary trees.
Discrete Appl Math 1996;71:153–169.

27. Jansson J, Ng JH-K, Sadakane K, Sung W-K. Rooted maximum agreement supertrees.
Proceedings of the 6th Latin American Theoretical Informatics Symposium (LATIN);
2004. pp. 499–508.

28. Kao -Y, Lam TW, Przytycka TM, SungW-K, Ting H-F. General techniques for comparing
unrooted evolutionary trees. Proceedings of the 29th Symposium Theory of Computing
(STOC); 1997. pp. 54–65.

29. Kao M-Y, Lam TW, Sung W-K, Ting H-F. A decomposition theorem for maximum weight
bipartite matchings with applications to evolutionary trees. Proceedings of the 7th Euro-
pean Symposium on Algorithms (ESA); 1999. pp. 438–449.

30. Kao M-Y, Lam TW, Sung W-K, Ting H-F. An even faster and more unifying algorithm for
comparing trees via unbalanced bipartite matchings. J Algorithm 2001;40(2):212–233.

31. Ma B, Li M, Zhang L. From gene trees to species trees. SIAM J Comput 2000;30(3):
729–752.

32. Niedermeier R, Rossmanith P. An efficient fixed-parameter algorithm for 3-hitting set.
J Discrete Algorithm 2003;1(1):89–102.

33. Page RDM. Modified mincut supertrees. Proceedings of the 2nd International Workshop
Algorithms in Bioinformatics (WABI); 2002. pp. 537–552.

34. Semple C, Steel M. A supertree method for rooted trees. Discrete App Math 2000;
105(1–3):147–158.

35. Steel M. The complexity of reconstructing trees from qualitative characters and subtree.
J Classif 1992;9:91–116.

36. Steel M, Böcker S, Dress A. Simple but fundamental limits for supertree and consensus
tree methods. Syst Biol 2000;49(2):363–368.

37. Steel M, Warnow T. Kaikoura tree theorems: Computing the maximum agreement subtree.
Inf Process Lett 1993;48(2):77–82.

38. Stege U. Gene trees and species trees: The gene-duplication problem in fixed-parameter
tractable. Proceedings of the 6th International Workshop on Algorithms and Data Struc-
tures (WADS99), Vol. 1663 of LNCS; 1999. pp. 288–293.

PART II

GENOME AND SEQUENCE ANALYSIS

8
FORMAL MODELS OF GENE
CLUSTERS

Anne Bergeron
Comparative Genomics Laboratory, Université du Québec à Montréal, Canada

Cedric Chauve
Department of Mathematics, Simon Fraser University, Vancouver, Canada

Yannick Gingras
Comparative Genomics Laboratory, Université du Québec à Montréal, Canada

8.1 INTRODUCTION

Genomes evolve through small-scale events, such as point mutations in the DNA
sequence, and large-scale events, known as rearrangements, that reorganize the
genetic material along chromosomes [23,39,48]. Such rearrangements not only can
involve very few genes, such as the mutation/loss of genes due to the accumulation
of point mutations, and tandem duplications or short reversals, but can also be at
a much higher scale, such as large reversals or even whole-genome duplications. It
results from these evolutionary events that, when comparing two or more genomes
in terms of their gene orders, that is, the order of genetic markers along their chro-
mosomes, it is very unlikely that these gene orders are identical, even for very close
species; see, for example, recent works on primates [43] or on different strains of a
same bacterial organism [35]. However, gene orders are not random, and the compar-
ison of gene orders of related species shows genome segments that exhibit homoge-
neous gene content, with sometimes similar gene order. These groups of segments are

Bioinformatics Algorithms: Techniques and Applications, Edited by Ion I. Mǎndoiu
and Alexander Zelikovsky
Copyright © 2008 John Wiley & Sons, Inc.

177

178 FORMAL MODELS OF GENE CLUSTERS

usually called conserved gene clusters or gene clusters, the notion of conserved being
implicit.

Conserved gene clusters can be the result of several biological mechanisms, but
basically they could be defined as “genomic regions that share a common ances-
tor” [28]. For example, they can result from functional pressure that requires that
a group of genes stays close along the genomes. The most widely studied exam-
ple of such groups of genes are operons in prokaryotic genomes, which are tran-
scribed in a single messenger RNA and need to have their genes located contigu-
ously in the genome [35,36,52]; it has also been suggested that being part of a
given biochemical network [45] or coexpression [42] could be correlated with be-
longing to a same gene cluster. Segments of genomes with homogeneous gene con-
tent can also result very mechanically from the evolutionary proximity between the
genomes: there was not enough time from the speciation event leading to observed
genomes to break such groups of genes. This phenomenon can add noise in the
detection of functional gene clusters, but it is worth noting that the resulting clus-
ters carry an important information for computing evolution scenarios [6,7], recon-
structing ancestral genomes [9], or identifying positional and ancestral homologs
[12,17].

The detection of conserved gene clusters is a challenge for both the biological
and mathematical communities, with applications in comparative genomics, annota-
tion of genomes, and phylogenomics. There are essentially two families of meth-
ods for detecting conserved gene clusters. The first approach attacks this prob-
lem on very pragmatic grounds, primarily based on the detection of short con-
served genomic segments, such as consecutive gene pairs that are easy to de-
tect. This collection of conserved segments is then processed, in general using a
heuristic, to obtain a set of gene clusters. See [37] for a survey on this topic.
However, these methods lack a formal definition of the notion of gene cluster
in terms of genomic segments and sets of genes involved in clusters. This can
produce incoherent results as clustering short conserved segments can form ge-
nomic segments that have very different gene content but are grouped in a same
cluster [47].

In this chapter, we survey a different approach in the detection of gene clus-
ters that has been developed in the last fews years by various groups of researchers
for gene order analysis. This approach relies on (1) formal definitions of what is
a set of genomic segments that defines a conserved gene cluster and (2) algo-
rithms that search and compare genomes of a dataset to detect all the sets of ge-
nomic segments that satisfy a given definition. Starting with conserved adjacen-
cies and common intervals, we will work through several variants that allow for
duplications and missing genes. We will also show that most variants are nec-
essary, in the sense that they try to capture a biological reality that does not
care about formal models. We will also see that the algorithmic challenges in de-
tecting gene clusters are nontrivial. Depending on the model, efficient solutions
can be easy to obtain, can require a lot of ingenuity, or sometimes do not even
exist.

GENOME PLASTICITY 179

8.2 GENOME PLASTICITY

8.2.1 Genome Representations

The genetic information of species is stored in molecules called chromosomes that
consist of two complementary strands of DNA. Each DNA strand is a string of basic
units, the nucleotides, that have two extremities called the 5′ and 3′ extremities.
Consecutive nucleotides are connected by joining the 3′ extremity of one to the 5′
extremity of the other. Figure 8.1 illustrates a small segment of chromosome: note
that the 5′ and 3′ extremities of the two strands of DNA are in opposite directions.
Nucleotides on a strand come in four different types, cytosine, guanine, adenine, and
thymine, abbreviated, by the letters C, G, A, and T respectively. The nucleotides on
the complementary strand are uniquely determined by the Watson–Crick complement
relation in which C is always paired with G, and A is always paired with T.

From an information processing perspective, the knowledge of only one strand
is sufficient to recover the whole molecule. However, the information contained
on a strand is decoded in a sequential way going from the 5′ extremity to the 3′
extremity, allowing both strands to carry biologically meaningful information. It is
thus customary to represent the information present on a chromosome by identifying
a substring of one strand of a chromosome and specifying in which orientation it
must be read, positive or negative. These substrings can correspond to any type of
features found on a chromosome: genes, domains, operons, synteny blocks, banding
patterns, among others. We will refer collectively to such features as “genes,” using
a more detailed terminology when necessary. We will also assume that genes are
nonoverlapping substrings of chromosomes. This is not always the case, especially
for small organisms such as viruses that have to compress their genetic information in
very short chromosomes, but this assumption constitutes a reasonable compromise.
A chromosome, or part of it, can thus be represented by a string such as

(a b − c d − e f),

in which letters stand for genes and a negative sign signals a negative orientation.
The comparison of gene content and order between two species also relies in a

fundamental way on our ability to tell when two genes are the “same” or not. This
is not a trivial task, and numerous approaches have been tried since the discovery of
the first rearranged chromosomes. In [22], Dobzhansky and Sturtevant divided the
genome of fruit flies into 100 arbitrary sections that were called “genes” and that
were recognizable under the microscope by their banding patterns. Two genes from
different genomes were “equal” if they shared the same pattern.

3¢

3¢

5¢

5¢

FIGURE 8.1 The double strand structure of chromosomes.

180 FORMAL MODELS OF GENE CLUSTERS

When the term gene is taken in its modern sense of a sequence of nucleotides
that is transcribed into RNA, most of the techniques of identification of similar genes
rely on sequence alignments [44], either of the nucleotide sequences themselves, or
the corresponding amino acid sequences if the RNA molecules are translated into
proteins. This produces reliable results, especially for slow evolving genes such as
those found in animal mitochondria [14], for example.

In some recent studies, such as [16], based on very large synteny blocks,
equivalent segments of chromosomes are detected using small anchors whose order
and orientation are conserved between species. This approach allows to ignore
rearrangements whose size fall below a fixed threshold.

Whatever the approach used to define equal genes, comparing gene orders ulti-
mately boils down to comparing strings of signed letters. For a fixed set S of genes,
when strings representing two genomes contain exactly one occurrence of each gene
in S, in either orientation, we refer to these strings as permutations. For example, the
following strings

G1 = (a b − c d − e f) and G2 = (−a d − e b − c f)

are permutations of the set of genes {a, b, c, d, e, f }. The strings

G3 = (a b − c a d − e f) and G4 = (−a d − e − c f)

are not permutations since gene a is duplicated in genome G3, and gene b is missing
in genome G4.

The choice of representing genomes by permutations or strings with duplicated
genes has implications on both the biological and computational sides of genome
analysis. Indeed, as we will see later, the computational complexity of handling strings
with duplicated genes is higher than for permutations. At the same time, from a
biological point of view, it is a strong hypothesis to assume that a gene is present
in a single copy in a set of genomes. Thus, aside from a few exceptions, such as
animal mitochondrial genomes that have few duplicated genes, representing a set of
genomes by a set of permutations often implies a nontrivial preliminary analysis that
clears ambiguities due to duplicated genes; examples of such “preprocessing” can be
found in the alignment process used to define synteny blocks [16] or in the process
of ortholog assignments [5,24].

8.2.2 Genome Rearrangements

The goal of this section is to give the reader some intuitions about the nature and
extent of genome rearrangements that happened during evolution.

8.2.2.1 Rearrangements That Preserve Gene Content These type of rear-
rangements can be described as the result of a series of cut and join operations
performed on the chromosomes of a genome. Breaking and repairing chromosomes
into new configurations can affect gene order and gene orientation. While the

GENOME PLASTICITY 181

FIGURE 8.2 An inversion changes the orientation of the genes of the inverted segment.

first modification is easy to understand, the change in gene orientation deserves a
little more attention since it is a consequence of the double strand structure of the
chromosomes.

The upper part of Fig. 8.2 shows a chromosome that is broken at two places.
The segment in the middle can either be correctly repaired or repaired in the wrong
direction, as shown in the lower part of Fig. 8.2. However, since a 3′ extremity can
only be reconnected to a 5′ extremity, this results in the exchange of strands. Genomic
features that are on one of the strands of the inverted segment thus change their
orientation, but are otherwise intact.

In one of the first papers on genome rearrangements [22], Dobzhansky and Sturte-
vant observed inversions of large segments of chromosomes in closely related species
of Drosophila (see Fig. 8.3). When comparing more distant species, hundreds of small
and large inversions can be detected [16].

Closely related to inversions are translocations between chromosomes. This hap-
pens when two different chromosomes exchange parts of their genetic material. Even
in relatively close species, translocations can be extensive. For example, a comparison

FIGURE 8.3 Fragment of the dataset constructed in 1938 by Dobzhansky and Sturtevant to
compare whole genomes.

182 FORMAL MODELS OF GENE CLUSTERS

TABLE 8.1 Number of Occurrences of Four Domains in Two Species
of α-Proteobacteria

Agrobacterium Rhizobium
PFAM family tumefaciens meliloti

ABC tran PF00005 497 262
BPD transp1 PF00528 420 189
HTH 1 PF000126 149 95
LysR substrate PF03466 148 89

between human and concolor gibbon chromosomes reveals that at least 31 transloca-
tions are necessary to explain the observed rearrangements [31]. Fusions and fissions
of chromosomes are the special cases of translocations that modify the total number
of chromosomes of an organism. A striking example of this type of rearrangement
is given by the human chromosome 2, which is the result of a fusion of two smaller
chromosomes found in most great apes [30].

A last rearrangement operation that does not change gene content is the transpo-
sition, in which a genomic segment is displaced within a chromosome but keeps its
original orientation. Animal mitochondrial genomes, for example, provide numerous
examples of transposed elements [49].

8.2.2.2 Rearrangements That Modify Gene Content Gene content is modified by
three main processes: duplications, losses, and exchanges of genetic material with
close or symbiotic species.

Duplications can affect whole genomes: the bread wheat (Triticum aestivum) has
21 pairs of chromosomes that can be grouped into seven groups of triplicated chro-
mosomes. This organization is quite recent, and the triplicated chromosomes retain a
high similarity [41]. More ancient duplications are more difficult to establish, since
many genes are lost or change function. For example, evidence of an ancient whole-
genome duplication was discovered in yeasts [51]. Having access to extra genetic
material meant that the evolving yeasts could “experiment” with part of their genetic
material while retaining vital functions: as a result, modern yeasts with duplicated
genomes are adapted to many different environments, but different species can have
very different gene content.

On a smaller genomic scale, duplications are extensive. Most sequenced genomes
contain segments that are similar at the nucleotide level, but at different places along
the same chromosome or even on different chromosomes. Domains, genes, or even
groups of genes can be present in several hundred copies in a genome. Table 8.1 gives
examples of the number of occurrences of four different domains in two species of
α-proteobacteria, as identified by the Pfam database [3].

8.3 BASIC CONCEPTS

Before introducing formally the notion of gene cluster, we give an intuitive definition.
Basically, a gene cluster is a set of genes that, for biological reasons, has been kept

BASIC CONCEPTS 183

“more or less together,” or in other words, in a same segment in different genomes.
There are several biological reasons that can prevent a set of genes to be dispersed by
the rearrangements that occur during the evolution: co-transcription as operons, for
example [36,52], co-regulation as part of a biochemical network [45], or evolutionary
proximity.

From the combinatorial point of view, it is important to note the very different
nature of the two notions used to define a cluster, that is, sets—with no order between
the genes in a given set—and genome segments that are strings of genes and thus
totally ordered. The key point in a formal definition of a gene cluster is then the
relationship between the set of genes and the genome segments that define the cluster.
We discuss this approach in the next section.

8.3.1 Highlighting Sets of Genes

In order to formalize the notion of sets of genes that are “more or less together” in
different genomes, we must first look at the problem in a more general context: How
do sets of letters behave in strings or permutations? For example, highlighting the set
of letters {e, g, n} in the sentence

“rearrangements of genomes involve genes and chromosomes”

reveals groups that, at least in the case of the substrings “gene” and “gen”, share
a common—semantic—function. On the other hand, highlighting the set of letters
{a, c, v} in the same sentence

“rearrangements of genomes involve genes and chromosomes”

does not seem to produce any interesting result.
These examples illustrate a major pitfall that one has to face in defining clusters

as sets of genes: there is an exponential number of sets of genes. As we will see it
with max-gap clusters in strings, for example, this can result in models that define
an exponential number of gene clusters, ruling out any hope of a polynomial time
detection of all gene clusters in such models. However, depending on both the com-
binatorial nature of the considered data (strings or permutations) and the definition
of genome segments that define clusters, it is possible to define gene cluster models
that are tractable.

A second question is what is an occurrence of a gene cluster. In our example, it
seems reasonable to consider the substrings “nge”, “gene”, and “gen” as occurrences
of the set {e, g, n}, but given the proximity of the substrings “nge” and “en” in the
word “rearrangement”—they are separated by a single letter, it might be interesting
to join them together in a single occurrence by bridging the gap of one letter. This
would reduce the number of occurrences of the cluster defined by the set {e, g, n} to
two “gene” and “ngemen”, and this last occurrence being a nonexact occurrence due
to the letter “m”. Such a decision to accept an outsider in an occurrence of a cluster
may also be wise from a biological point of view since genes can be gained or lost,

184 FORMAL MODELS OF GENE CLUSTERS

or can change function, which translates, in terms of strings, as gaps or as missing
genes.

This example illustrates the importance of the definition of the genome segments
that define a cluster. In this chapter, we take the point of view to consider the intruder
genes in occurrences of clusters under the point of view of the gaps they create,
which has been followed in most recent approaches.1 We thus have the following
definition:

Definition 8.1 Given a set of genes S and a chromosome C represented by the string
g1g2 . . . gk, an occurrence of the set S is a substring gi . . . gj such that

(1) Both gi and gj belong to the set of genes S.

(2) The set of genes S is contained in the multiset {gi . . . gj}.
(3) If a substring of gi . . . gj contains no gene of S, then its length must be smaller

or equal to δ, a fixed integer that represents the maximal allowed gap size.

(4) The flanking substrings gi−1−δ . . . gi−1 and gj+1 . . . gj+1+δ contain no gene
in S. (Extremities of chromosomes are padded with characters not in S as
necessary.)

When δ = 0, we usually refer to occurrences as “without gaps.”
With a gap size δ = 0, the three occurrences of the set {e, g, n} in the sentence

“rearrangements of genomes involve genes and chromosomes” are the substrings
“nge,” “gene,” and “gen”; with a gap size δ = 1, there are again three occurrences,
but the first occurrence is now the substring “ngemen,”

The next basic concept is illustrated by the following example. When the set of
letters {m, o, s} is highlighted in the sentence

“rearrangements of genomes involve genes and chromosomes,”

the two occurrences of the set with gap size δ = 1 are the substrings “omes” and
“omosome.” The presence of the letter “e” in both occurrences suggests that a more
meaningful set of genes to consider could be the set {e, m, o, s}. The relationship
between these two sets is captured by the following definition.

Definition 8.2 Given a set of genes S and genomes represented by a set of strings
G, a set of genes T is an extension of the set S if

(1) S ⊂ T

(2) Each occurrence of S in G is a substring of an occurrence of T .

In the example sentence, with δ = 1, the two occurrences of the set {e, m, o, s} are
“enomes” and “omosomes,” and both of which contain an occurrence of {m, o, s} as
a substring. Since {m, o, s} has only two occurrences, {e, m, o, s} is an extension

1Note however that a different point of view was taken in [19].

BASIC CONCEPTS 185

of {m, o, s}. On the other hand, the set {e, g, n, m} is not an extension of the set
{e, g, n} since there is one occurrence of {e, g, n}, namely the occurrence within the
word “gene” that is not a substring of an occurrence of {e, g, n, m}.

The point of view of this chapter will be purely combinatorial. Once gene clusters
are identified, it is necessary to distinguish clusters whose existence could be merely
due to random factors from those whose existence rests on other causes. These aspects
are studied, for example, in [29].

8.3.2 An Elementary Model: Conserved Segments

Various formal models for gene clusters are obtained by imposing requirements on
the subsets of genes that are allowable, on the types of strings that are considered,
and on the number and nature of the occurrences.

Perhaps the simplest model is when we assume that genomes are permutations of
each other and require occurrences of clusters to be equal. Because strings represent
DNA molecules, the notion of equality must be adapted to capture the fact that an
inverted string is the “same” as the original. Two strings g1g2 . . . gk and h1h2 . . . hk

are equal if either (1) for all i, gi = hi, or (2) for all i, gi = −hk−i+1. We have

Definition 8.3 Let G be a set of signed permutations on the set of genes S. A subset
of S is a conserved segment if it has an occurrence in each permutation of G, without
gaps, and all occurrences are equal.

Conserved segments capture the notion of sets of genes that occur in the same or-
der and same orientation in different genomes. For example, consider the following
permutations:

G1 = (a b − c d − e f) and G2 = (−a d − e f c − b).

Apart from the trivial conserved segments formed by singletons, the sets {b, c}, {d, e},
{e, f }, {d, e, f } are all conserved segments. We are usually interested in maximal
conserved segments, that is, conserved segments without extension. In this example,
these are {a}, {b, c}, and {d, e, f }. In each permutation, the boundaries between two
occurrences of maximal conserved segments are called breakpoints. For example, the
breakpoints of G1 with respect to G2 are

G1 = (a ‖ b − c ‖ d − e f).

Maximal conserved segments form a partition of the set S and appear as consecutive
elements in each permutation of G, which are very desirable properties from a com-
putational point of view. Identifying them can be done in O(Kn) time complexity,
where K is the number of permutations in G, and n the number of genes in S. The
computation involves the following steps:

(1) Choose an arbitrary ordering I of the set of genes S.

186 FORMAL MODELS OF GENE CLUSTERS

(2) For each permutation in G, construct a table indexed by I, which gives the
position and the sign of the corresponding gene.

(3) Choose one permutation G in G and test, for each consecutive pair of genes
gigi+1 of G, whether it is a conserved segment. If it is not, mark a breakpoint
between gi and gi+1.

When using very large datasets, it is a current practice to consider conserved seg-
ments as a single “gene,” since there are no rearrangements within these segments.
This is especially true when comparing close species, which often share very long con-
served segments. For example, in the following three permutations, each integer rep-
resents a large conserved block in the chromosomes X of the human, mouse, and rat;
reverse orientation is indicated by overlined integers. This dataset is adapted from [16].

Human = (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)

Mouse = (6 5 4 13 14 15 16 1 3 9 10 11 12 7 8 2)

Rat = (13 4 5 6 12 8 7 2 1 3 9 10 11 14 15 16)

By construction, this set of permutations does not have any conserved segment. How-
ever, the comparison of these permutations two by two reveals conserved segments
for each pair of species. For example, rat and mouse share the segment {4, 5, 13}, rat
and human share {5, 7}, and mouse and human share {5, 6}.

This type of analysis was used, for example, in phylogenetic studies and for the
reconstruction of ancestral genomes [11]. For larger sets of permutations, it is possible
to relax the definition of conserved segments and ask for occurrences in at least J

permutations in the set G, but not necessarily in all. This is done at the cost of added
algorithmic complexity.

Most properties of conserved segments do not hold anymore when the chromo-
somes contain duplicated genes. Indeed, the definition of conserved segment can be
extended to strings, but they do not form a partition of the set S of genes, neither
do they define clear breakpoint regions (see [13] for an example of using conserved
segments to define breakpoints in a set of strings). We observe a similar phenomenon
with the various gene cluster models in the next section.

8.4 MODELS OF GENE CLUSTERS

8.4.1 Common Intervals in Permutations

The notion of common intervals is a first generalization of conserved segments in
which we relax the conditions that genes appear in the same order or the same
orientation. It was first introduced by Uno and Yagiura [50] in the case of two permuta-
tions, and various efficient algorithms have since been developed for K permutations.
Since orientation is not necessarily conserved, in this section we ignore the signs of
genes.

MODELS OF GENE CLUSTERS 187

Definition 8.4 Let G be a set of permutations on the set of genes S. A subset of S
is a common interval if it has an occurrence in each permutation of G, without gaps.

Intuitively, a common interval is a set whose elements are consecutive in both permu-
tations, thus intervals in both permutations. Note that singletons are always common
intervals and are sometimes referred to as trivial common intervals. Consider the
following two permutations:

G1 = (1 2 3 4 5 6 7 8 9 10 11)

G2 = (4 2 1 3 7 8 6 5 11 9 10).

The common intervals of G1 and G2, except for the singletons, are underlined in the
second permutation. When, as it is the case in this example, one of the permutation is
the identity permutation, all common intervals are sets of consecutive integers since
their occurrence in the identity permutation is an interval.

Underlining the same common intervals in the identity permutation highlights
some of the properties of common intervals of permutations:

G2 = (4 2 1 3 7 8 6 5 11 9 10)

G1 = (1 2 3 4 5 6 7 8 9 10 11).

For example, if two common intervals have a nontrivial intersection, such as
{1, 2, 3, 4, 5, 6, 7, 8} and {5, 6, 7, 8, 9, 10, 11}, then the intersection of these common
intervals is also a common interval, since it is an interval in both permutations. More
formally we have

Definition 8.5 Two sets S and T overlap if

(1) their intersection is nonempty, and

(2) neither S is contained in T , nor T is contained in S.

Proposition 8.1 Let S and T be two overlapping common intervals of a set of
permutations G , then S ∩ T , S ∪ T , S \ T , and T \ S are all common intervals of the
set G.

The number of common intervals of a set of permutations on n elements is O(n2).
This bound is achieved, for example, when one compares two equal permutations:
each interval is then a common interval and there are (n+ 1)(n/2) of them. On the
other hand, from a biological perspective, a huge number of common intervals merely
reflect that parts of genomes under study are very similar. This fact has hindered the
use of common intervals in comparative genomics because most of common intervals
in “real” genomes are very repetitive. For example, the following permutations

188 FORMAL MODELS OF GENE CLUSTERS

G3 = (1 2 3 4 5 6 7 8 9 10 11)

G4 = (4 2 3 1 11 10 9 8 7 6 5)

have 26 nontrivial common intervals, but most of them seems to be related, such as
{5, 6}, {6, 7}, and {5, 6, 7}. A significant advance has been made in recent years to
formally distinguish interesting common intervals from less interesting ones [33]. It
is the identification of strong common intervals.

Definition 8.6 Let G be a set of permutations. A strong common interval is a
common interval of G that does not overlap any other common intervals of G.

For example, permutations G3 and G4 have only four strong common intervals
that are underlined in G4, and these illustrate very nicely the respective structures of
the two permutations:

G3 = (1 2 3 4 5 6 7 8 9 10 11)

G4 = (4 2 3 1 11 10 9 8 7 6 5).

Strong intervals have very rich and deep combinatorial properties [10], as well as
they capture relevant biological relations [7,33]. One of their most attractive features,
from both point of views, is that there are few of them, and these few can be used
to generate all common intervals. The proof of the following proposition is worth
reading, since it introduces a basic construction.

Proposition 8.2 Let G be a set of permutations on n elements. The number of strong
common intervals of G is in O(n).

Proof. Two strong common intervals are either disjoint, or one is contained in the
other. All singletons and the set {1, 2, . . . , n} are strong common intervals. Consider
the tree in which each strong common interval is the child of the smallest strong
common interval that properly contains it. Each node of this tree has thus at least two
children, its root is the set {1, 2, . . . , n} and its leaves are the singletons. Therefore,
the total number of its internal nodes is less than n. �

It is thus possible to report and display the strong common intervals as a tree using
the inclusion relation. For example, the tree in Fig. 8.4 corresponds to the strong
common intervals of G3 and G4.

Such trees are examples of a general structure, known as PQ-trees [15], that was
developed to represent sets of permutations. These are ordered trees whose nodes are
classified as either P-nodes or Q-nodes. In the tree of strong common intervals of a
set of permutations G , if the leaves are ordered according to one of the permutations
in G, then for each node N exactly one of the following is true:

MODELS OF GENE CLUSTERS 189

4, 2, 3, 1, 11, 10, 9, 8, 7, 6, 5

4, 2, 3, 1 11, 10, 9, 8, 7, 6, 5

4 2, 3 1 11 10 9 8 7 6 5

2 3

FIGURE 8.4 The tree of strong common intervals of the permutations G3 and G4. Leaves
are ordered according to G4.

(1) [Q-nodes] Any union of consecutive children of N is a common interval of G.

(2) [P-nodes] No union of consecutive children of N is a common interval of G,
except the union of all its children—in this case the union equals N itself.

In PQ-trees, the P-nodes are traditionally depicted as roundish boxes and the Q-
nodes as rectangular boxes. The tree of Fig. 8.4 has only Q-nodes. A more general
example is given by the tree of Fig. 8.5, which represents the strong common intervals
of the permutations:

G5 = (1 2 3 4 5 6 7 8 9 10 11)

G6 = (1 4 2 5 3 11 10 8 9 7 6).

In Fig. 8.5, the node corresponding to the strong common interval {4, 2, 3, 5} is a
P-node, since no union of consecutive children is a common interval. This represen-
tation of strong common intervals allows them to serve as a basis for generating all
common intervals of a set of permutations. We have

1, 4, 2, 5, 3, 11, 10, 8, 9, 7, 6

1 4, 2, 5, 3 11, 10, 8, 9, 7, 6

4 2 5 3 11 10 8, 9 7 6

8 9

FIGURE 8.5 The tree of strong common intervals of the permutations G5 and G6. Leaves
are ordered according to G6.

190 FORMAL MODELS OF GENE CLUSTERS

Proposition 8.3 [10] Let T be the PQ-tree of the strong common intervals of a set
G of permutations, ordered according to one of the permutations in G. A set S is a
common interval of G if and only if it is the union of consecutive nodes of children of
a Q-node or the union of all children of a P-node.

8.4.1.1 Computing Common Intervals and Strong Intervals The algorithmic
history of efficient computation of common and strong intervals has an interesting
twist. From the start, Uno and Yagiura [50] proposed an algorithm to compute the
common intervals of two permutations whose theoretical running time wasO(n+N),
where n is the number of elements of the permutation, and N is the number of common
intervals of the two permutations. Such an algorithm can be considered as optimal
since it runs in time proportional to the sum of the size of the input and the size
of the output. However, the authors acknowledged that their algorithm was “quite
complicated” and that, in practice, simpler O(n2) algorithms run faster on randomly
generated permutations.

Building on Uno and Yagiura’s work, Heber and Stoye [27] proposed an algorithm
to generate all common intervals of a set of K permutations in time proportional
to Kn+N, based on Uno and Yagiura analysis. They achieved the extension to K

permutations by considering the set of irreducible common intervals that are common
intervals and that are not the union of two overlapping common intervals. As for the
strong intervals, the irreducible common intervals also form a basis of size O(n) that
generates the common intervals by unions of overlapping irreducible intervals.

The drawback of these algorithms is that they use complex data structures that are
difficult to implement. A simpler way to generate the common intervals is to compute
a basis that generates intervals using intersections instead of unions.

Definition 8.7 Let G be a set of K permutations on n elements that contains the
identity permutation. A generator for the common intervals of G is a pair (R, L) of
vectors of size n such that

(1) R[i] ≥ i and L[j] ≤ j for all i, j ∈ {1, 2, . . . , n},
(2) (i, . . . , j) is a common interval of G if and only if (i, . . . , j) = (i, . . . , R[i]) ∩

(L[j], . . . , j).

It is not immediate that such generators even exist, but it turns out that they are far
from unique, and some of them can be computed using elementary data structures such
as stacks and arrays [10]. The algorithms are easy to implement, and the theoretical
complexity is O(Kn+N). The strong common intervals can also be computed in
O(Kn).

8.4.1.2 The Use of Common Intervals in Comparative Genomics Datasets based
on permutations that use real “genes” are not frequent in comparative genomics since
real genes are often found in several copies within the genome of an organism. In
order to obtain permutations, it is possible to eliminate all duplicates, or even better,

MODELS OF GENE CLUSTERS 191

FIGURE 8.6 Comparing the rat and mouse X chromosomes.

to retain only one copy [38]. However, in some small chromosomes, such as animal
mitochondrion genomes, genes are not often duplicated, and it is possible to extract
permutations from the gene order without sacrificing too much information. In [1],
for example, common intervals are used to define a distance between plant chloroplast
genomes.

On the other hand, datasets that are constructed using large synteny blocks, such
as in [16], naturally yield permutations. In this context, common intervals and strong
common intervals have been used, for example, for the evaluation of proposed evo-
lution scenarios between species [6] or for the construction of evolution scenarios
[7]. In these applications, the impact of rearrangement operations on the structure of
common intervals is taken into account to propose a rearrangement scenario between
two genomes.

For example, Fig. 8.6 represents the strong common intervals of two signed
permutations representing conserved block in the chromosomes X of the rat and
the mouse. Each strong interval is marked by either a “+” or a “−” sign, using the
sign of the element of the permutation for the leaves and the fact that the numbers are
increasing or decreasing for the other nodes. Inverting all strong intervals that have a
sign different from their parent yields a scenario that conserves, for each intermediate
scenario, all common intervals of the two permutations.

8.4.2 Max-gap Clusters in Permutations

The first formal model of gene clusters in permutations that allows gaps was intro-
duced in [8] under the name of gene teams. Even if the range of its applications is
limited, it remains the only model whose formal properties can be fully analyzed, as
in [28] where they are called max-gap clusters, whose output size is reasonable, and
for which efficient algorithms exist.

192 FORMAL MODELS OF GENE CLUSTERS

FIGURE 8.7 Gene teams of G1 and G2 with gap size δ = 1.

Definition 8.8 Let G be a set of strings on the set of genes S ∪ {∗} such that each
string is a permutation of S when the symbols {∗} are removed. Let δ ≥ 0 be a fixed
integer. A subset of S is a gene team if it has an occurrence with maximum gap size
δ in each permutation of G and has no extension.

Consider, for example, the two following strings:

G1 = (1 ∗ 2 3 4 ∗ ∗ 5 6 7 ∗ ∗ 8)

G2 = (8 ∗ 4 ∗ 2 1 5 3 6 ∗ 7 ∗ ∗).

The gene teams of G1 and G2 with gap size δ = 1 are {1, 2, 3, 4}, {5, 6, 7}, and
{8}. It is important to note that occurrences of teams can overlap; Fig. 8.7 illustrates
this fact by joining the various members of a team with arcs. Even though occurrences
of gene teams can overlap, they always form a partition of the set of genes S. This is
a consequence of the following proposition.

Proposition 8.4 Let S and T be two gene teams of the set of strings G. If S ∩ T �= ∅,
then S = T .

Proof. Consider a substring gi . . . gj in one of the strings G of G that contains all
genes of S ∪ T , and such that both gi and gj are in S ∪ T . We first show that each
substring of gi . . . gj of length greater than δ contains at least a gene from S ∪ T ,
implying that gi . . . gj is an occurrence of S ∪ T . In order to prove this, suppose that a
substring gk . . . gk+δ contains no gene in S ∪ T , and both flanking genes are in S ∪ T .
Then these genes cannot be both in S, or both in T , since S or T would not have
an occurrence in the string G. Therefore, one is an element of S and the other of T ,
and the occurrences of S and T in this string are on different sides of the substring
gk . . . gk+δ, implying that S ∩ T = ∅. Now, since the string G was arbitrary, we have
shown that S ∪ T is an extension of both S and T , which is ruled out by definition,
thus S = T . �

The first consequence of Proposition 8.4 is that the number of gene teams is
O(n), where n is the number of elements of S. This will be our last model with
such a desirable property. Proposition 8.4 also allows the computation of gene teams
through partition refinement techniques. The best complexity achieved up to now is
O(Kn log2(n)) [4], where K is the number of strings in G.

8.4.3 Common Intervals in Strings

In the previous section, we generalized the notion of common intervals in permutations
by allowing gaps in occurrences of a set of genes defining a cluster. We now describe

MODELS OF GENE CLUSTERS 193

another natural extension of common intervals in permutations, which is the notion
of common intervals in strings.

Definition 8.9 Let G be a set of strings on the set of genes S. A subset of S is a
common interval if it has an occurrence in each string of G, without gaps.

The above definition is identical to the definition of common intervals in permu-
tations (Defination 8.4) except for one word “strings” instead of “permutations,” and
this model is used to analyze genomes with many duplicates. This representation is
particularly adapted to the study of genomes at the level of “genes” and “domains”
under the classical biological definition of these two words.

For example, in

G1 = (f e c e b e d) and G2 = (a b b e c b c d b e c),

the set {b, e} is a common interval that has one occurrence in G1, (e b e) and two
occurrences in G2, (b b e) and (b e). The other common intervals are {b}, {c}, {e},
{c, e}, {b, c, e}, and {b, c, d, e}.

8.4.3.1 Properties of Common Intervals in Strings. A major difference with
common intervals of permutations, due to the possible repetition of genes in strings,
is that a common interval S of the strings G can have two or more occurrences in a
genome that do not overlap due to the point 3 of Definition 8.1. Hence, using common
intervals of sequences allows to detect gene clusters that have been rearranged by du-
plication events, either internal duplications resulting in several copies of a gene of the
cluster, or large-scale duplications resulting in several copies of the whole clusters;
this is an important strength of this model.

The first question raised by the definition of gene clusters as common intervals
in strings is the computational cost of such a higher biological accuracy. It happens
that this model is very tractable and, in fact, only slightly more costly to handle
than common intervals of permutations. Indeed, since every occurrence of a common
interval is without gap, every substring of a genome of G can be occurrence of at most
one gene cluster, which immediately leads to the following proposition.

Proposition 8.5 Let N be the sum of the lengths of the strings in G. The number of
common intervals in G and the number of occurrences of all common intervals in G
are in O(N2).

Hence the maximum number of common intervals is quadratic in the size of the
genomes in both cases, permutations and strings, which is a direct consequence of
considering occurrences without gaps. However, an important difference with per-
mutations relies on the internal structure of the set of common intervals in strings.
In permutations, the existence of linear space basis of the set of common intervals,
irreducible intervals, and strong intervals is central in the linear time and space com-
plexity of algorithms. Currently, no such basis has been found for common intervals
in strings (see [33] for an attempt to use PQ-trees with strings, which is applicable
when very few duplicated genes exist).

194 FORMAL MODELS OF GENE CLUSTERS

8.4.3.2 Detecting Common Intervals in Strings. Because of the lack of internal
structure, the algorithms used to detect the set of common intervals in a set of strings
G and the occurrences of each common interval are very different in nature than the
algorithms used for detecting common intervals in permutations and are much less
elegant. They rely on the enumeration of the fingerprints of G.

Given a substring gi . . . gj of a string of G, its fingerprint is the subset of S,
the gene alphabet, containing the genes appearing in gi . . . gj . For example, the
fingerprint of (b b e c b c) is {b, c, e}. The fingerprint of G is the set of all the
fingerprints of all substrings of G. It follows immediately that a common interval of G
is a fingerprint of G that appears in each string of G, which implies that computing the
common intervals of G reduces to the appropriate filtering of the set of fingerprints
of G.

Detecting the set of fingerprints of a set of strings was first considered by Amir et
al. in [2]. The key of their algorithm is an efficient encoding scheme for fingerprints
that associates, to each fingerprint, a unique name computed from the elements of S
it contains. Their encoding is efficient in the sense that, if two fingerprints differ only
by one element, computing the name of the second one from the first one requires a
limited complexity (O(log(n))), where n is the number of elements ofS. This property
allows to compute the number of different fingerprints by using a sliding window on
the considered string of total length N in timeO(nN log(n) log(N)). Two recent papers
used the same principle but improved the fingerprint naming technique introduced by
Amir et al. to compute the set of fingerprints of G in time O(nN log(n)) (see [21])
and O((occ+N) log(n)) respectively, where occ is the total number of occurrences
of the fingerprints of G (see [32]). Another family of algorithms, initiated by Didier
[20] and improved in [40] and [21], allows to compute the fingerprints of G in time
O(N2), and note that the property to be independent from the number of genes is
important as in most comparative genomics applications, n is in O(N). These two
families of algorithms offer, as far as we know, the only nontrivial ways to compute
the set of common intervals of a set of strings.

8.4.3.3 Using Common Intervals in Strings. Common intervals of strings have
been used in two problems: detection of conserved gene clusters, which was the initial
goal they were designed for, and assignment of positional homologs. We conclude
this section by describing briefly these applications, which will allow us to outline
the advantages and shortcomings of this formal model.

Detection of Conserved Gene Clusters. The algorithm of Schmidt and Stoye, de-
scribed in [40] and adapted to compute intervals that are common to a subset of the
strings in G, is the basis of the algorithm used in the software GECKO [25]. However,
GECKO brings additional important features that address weaknesses of the common
interval model.

A first improvement of the basic common interval model relies on the ability of
GECKO to avoid displaying clusters that have an extension (see Definition 8.2). This
is an important practical feature, as it reduces significantly the size of the output.
A second improvement addresses the main problem of common intervals as models

MODELS OF GENE CLUSTERS 195

of gene clusters: it is very unlikely that a cluster keeps the same gene content in
all the genomes of a dataset, especially if they span a large evolutionary spectrum.
In such a case, these clusters cannot be detected by common intervals. To solve this
problem, GECKO uses a heuristic postprocessing that agglomerates common intervals
in groups such that all common intervals in a given group share at least a minimum
fraction—a user-defined parameter—of their genes with a particular common interval
of this group. This way of grouping common intervals, in order to define less strict
clusters, is inspired from the heuristic methods used to compute gene clusters, and it
adds flexibility. The price to pay is more noisy output, since a given common interval
can belong to several groups.

Inferring Positional Homologs. When genomes contain duplicated genes, a major
question is to elucidate the evolutionary relationships between the several copies of
a given gene that form a family of homologous genes. Several kinds of relationships
have been defined, and the most commonly considered being the notions of orthologs
and paralogs that are defined in terms of the evolutionary history of gene families.
This problem has attracted a lot of attention since such knowledge has been shown
to be helpful in understanding the function of the genes of a gene family. Recently,
several other notions of homology have been defined in terms of gene order, such
as positional homologs [18] and ancestral homologs [38], that are used to propose
interesting putative pairs of orthologs. In the gene order approaches, these homologs
are deduced from a pairing between the genes of two compared genomes that define a
signed permutation and that optimize a given combinatorial criterion, for example, a
genetic distance [24] or the number of common intervals in the resulting permutation
[17].

In [12], it was shown that using directly common intervals in strings as anchors
of a global matching, in a way that is similar to methods for whole-genome align-
ments, offers an interesting alternative to the parsimonious approach to infer positional
homologs from gene orders and performs at least as well as methods based on more
complicated combinatorial objects, such as the breakpoint graph in [24].

8.4.4 Max-Gap Clusters in Strings

Max-gap clusters in strings are the most general formal model of gene clusters: gaps
are allowed, duplications and missing genes are taken care of, and there is no require-
ment that a cluster be present in all species under study. Unfortunately, there is little
hope that the automatic detection of these types of clusters will be computationally
feasible for large datasets.

Definition 8.10 Let G be a set of strings on the set of genes S, and δ ≥ 0 a fixed
integer. A subset of S is a max-gap cluster if it has an occurrence with maximum gap
size δ in at least one string of G and has no extension.

Each type of cluster that we examined in the preceding sections provides examples
of max-gap clusters, but the general notion indeed seems to be truly adapted for certain

196 FORMAL MODELS OF GENE CLUSTERS

type of biological data. For example, in the genome of Nostoc sp. PCC 7120, we have
the following five occurrences with gap size δ = 1 of a set of three domains:

CABC, CA ∗ ABCC, ABCC, A ∗ ABC ∗ CB, A ∗ BCCABC,

where stars “∗” stand in for domains not in the set {A, B, C}. These five patterns
are among the dozens of variations on the associations of these three domains that
are actually found in bacteria. Thus, there is clearly a need to be able to consider
models that allow for gaps and duplicate genes. However, as we will see in the next
paragraphs, known bounds for the size of the output—that is, the number of max-gap
clusters in a given set of strings G—are currently exponential in the number of genes
in S. This implies that the running time of algorithms that detect max-gap clusters
can be unreasonably long.

8.4.4.1 Algorithmic Complexity Clearly, testing for all possible subsets as
candidate max-gap clusters is out of the question for any realistic set of genes. Some
reasonable hypothesis, such as limiting the size of the gap, and considering sets that
have at least one occurrence in the genomes under study are helpful and allow the
computation of max-gap clusters for interesting sets of genomes with thousands of
genes [34]. For the comparison of exactly two genomes, and with the additional hypo-
thesis that a cluster must have an occurrence in both genomes, He and Goldwasser
[26] describe a polynomial algorithm to compute them.

However, even with a gap size equal to 1, there can be an exponential number of
subsets that have at least one occurrence and possibly no extension, as the following
example shows. Consider a genome segment of the form

ag1 . . . gnz

in which all the genes are different. We will compute Tn, the number of subsets
of {a, g1, . . . , gn, z} that contain genes a and z and that have an occurrence with
maximum gap size of 1 in the segment.

For n = 0, the number of such subsets is 1, and for n = 1, there are two of them:
{a, z} and {a, g1, z}. Suppose now that n ≥ 2. A subset that has an occurrence in the
segment, and contains both a and z, either

(1) contains both gn−1 and gn or

(2) contains gn−1 but not gn or

(3) contains gn but not gn−1.

Clearly, the three cases are disjoint. In the first case, removing genes gn−1 and gn

from the subset yields a subset that has an occurrence in the segment ag1 . . . gn−2z.
Conversely, adding genes gn−1 and gn to such a subset yields a subset that has an
occurrence in the segment ag1 . . . gn−1gnz. Thus, the number of subsets covered by
case (1) is Tn−2.

MODELS OF GENE CLUSTERS 197

The two remaining cases are treated together. Consider the Tn−1 subsets that have
an occurrence in ag1 . . . gn−1z. All subsets that contain gene gn−1 also have occur-
rences with gap size 1 in ag1 . . . gn−1gnz by skipping gene gn, and all those that do
not contain gene gn−1 can be extended to occurrences in ag1 . . . gn−1gnz by adding
gene gn, since they must contain gene gn−2. The inverse bijection is obtained by
removing gene gn from all subsets covered by case (3). Thus, the total number of
subsets covered by case (2) and (3) is Tn−1, yielding the recurrence equation

Tn = Tn−1 + Tn−2,

with initial conditions T0 = 1 and T1 = 2.
This equation has, unfortunately, a well-known solution that grows exponentially

with n. Its closed form is

Tn = (1+√5)n+2 − (1−√5)n+2

2n+2
√

5
,

and the sequence {Tn} is known as the Fibonacci sequence. As a measure of its growth,
we have, for example, T10 = 144 and T20 = 17711, and T30 = 2178309.

8.4.4.2 The Combinatorial Beauty of Nature In the preceding section, we proved
that the theoretical number of max-gap clusters could be exponential with respect to
the number of genes. How do real genomes behave? It seems that, at least at certain
levels of complexity, nature does experiment in a combinatorial way.

The STRING database [46] predicts functional associations between genes or
domains in prokaryotic genomes, based on the identification of genomic segments
where they appear close together. Using STRING, we looked at occurrences of
subsets of the following five domains: (A) COG2202—PAS/PAC domain, (B)
COG0642—Signal transduction histidine kinase, (C) COG0784—CheY-like receiver,
(D) COG2203—GAF domain, and (E) COG2200—EAL domain.

The first of these five domains, COG2202, was chosen among the few dozens
that have many duplicates in bacterial genomes. The next four are the best scoring
for functional association with COG2202, as predicted by STRING. This choice is
somewhat arbitrary, and other sets of domains were also shown to exhibit the same
combinatorial behavior.

If we exclude trivial subsets consisting of one element, there are 26 possible subsets
of the set {A, B, C, D, E}. Of these, we found that 19 had at least one occurrence with
δ = 2 among 11 different genomes. Table 8.2 gives examples of occurrences for each
of the 19 subsets. It illustrates in a striking way why the general model of max-gap
clusters must eventually be replaced by heuristics in some applications. With more
and more organisms to compare, it is tempting to predict that all the “not found” lines
in Table 8.2 will eventually be filled up.

198 FORMAL MODELS OF GENE CLUSTERS

TABLE 8.2 Occurrences of Various Subsets of Domains in Prokaryotic Genomes. Stars
“∗” Stand in for Domains Not in the Set {A, B, C, D, E}.
Subset Occurrence Species
{A, B} ABAB Nostoc sp. PCC 7120
{A, C} AC Leptospira interrogans
{A, D} A ∗ ADA Methanosarcina acetivorans
{A, E} AE Escherischia coli
{B, C} BC ∗ ∗C Xanthomonas campestris
{B, D} DB Leptospira interrogans
{B, E} (not found)
{C, D} CC ∗D ∗ ∗C Nostoc sp. PCC 7120
{C, E} E ∗ ∗C Bacillus halodurans
{D, E} E ∗D Xanthomonas axohopodis
{A, B, C} CAB Xanthomonas campestris
{A, B, D} ADADB Methanosarcina acetivorans
{A, B, E} B ∗ A ∗ E Pseudomonas aeruginosa
{A, C, D} ADA ∗ C Sinorhizobium meliloti
{A, C, E} AC ∗ E Agrobacterium tumafaciens
{A, D, E} (not found)
{B, C, D} DBCB Nostoc sp. PCC 7120
{B, D, E} (not found)
{B, C, E} C ∗ EBB ∗ C Xylella fastidiosa
{C, D, E} (not found)
{A, B, C, D} DAD ∗ CAB Nostoc sp. PCC 7120
{A, B, C, E} CE ∗ ABC Pseudomonas aeruginosa
{A, B, D, E} (not found)
{A, C, D, E} (not found)
{B, C, D, E} (not found)
{A, B, C, D, E} ADABCECB Nostoc sp. PCC 7120

8.5 CONCLUSION

We described in this chapter a hierarchy of formal models that have been defined to
detect conserved gene clusters. One of the important points that we can outline is the
strong link between the biological complexity that these models try to capture and
their computational complexity. It appears very clearly that the limiting factors are the
presence of duplicated genes (i.e. strings versus permutations) and the existence of
clusters whose occurrences do not have the same gene content: indeed, the detection of
common intervals in strings and max-gap clusters in permutations is very tractable.
It then remains open to define general models of gene clusters that consider both
nonexact occurrences and strings and that are tractable.

The first way to attack this problem could be to try to extend the notion of common
intervals, that is, the only known tractable model handling strings to define a model
with nonexact occurrences but without using the notion of gap, as it was shown that
even the shortest possible gap of 1 can lead to an exponential number of clusters. The
first attempt was done in [19], with a model of common intervals with errors that adds

REFERENCES 199

flexibility by bounding a number of genes of an occurrence of a cluster that do not
belong to the cluster. However, even in this model the number of generated clusters
can be exponential.

Another possibility would be to rely on combinatorial properties of gene clusters in
order to refine gene cluster models and then reduce the number of produced clusters by
eliminating nonsignificant clusters. For example, one of the reasons for the definition
of common intervals with errors is that it ensures a minimum density [28] of each
occurrence, roughly defined as the ratio between genes belonging to the cluster and
the intruders. Other properties of gene clusters that are worth to be investigated are
also described in [28].

Finally, it would be very natural to include the phylogenetic information, when
available, in the definition of gene cluster models. This approach has been shown to
be very interesting in a heuristic approach and in a probabilistic framework [53], but
it is not obvious how it would fit in the purely combinatorial framework we described
in this chapter.

ACKNOWLEDGMENTS

The different models described in this chapter were developed by a strongly interact-
ing community of researchers. The authors wish to acknowledge that the connected
component of the transitive closure of the collaboration relation, as defined by the
bibliography of this chapter, and that contains the three authors also contains 29 other
persons. This means that formal definitions of gene clusters is a collective endeavor,
and we thank them all.

REFERENCES

1. Adam Z, Turmel M, Lemieux C, Sankoff D. Common intervals and symmetric difference
in a model-free phylogenomics, with an application to streptophyte evolution. J Comput
Biol 2007;14(4):436–45.

2. Amir A, Apostolico A, Landau GM, Satta, G. Efficient text fingerprinting via Parikh
mapping. J Disc Algorithms 2003;1(5–6):409–421.

3. Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall
M, Moxon S, Sonnhammer EL, Studholme DJ, Yeats C, Eddy SR. The Pfam protein
families database. Nucl Acids Res 2004;32:D138–D141.

4. Béal MP, Bergeron A, Corteel S, Raffinot M. An algorithmic view of gene teams. Theoret
Comput Sci 2004;320(2-3): 395-418.

5. Belda E, Moya A, Silva FJ. Genome rearrangement distances and gene order phylogeny
in γ-proteobacteria. Mol Biol Evol 2005;22(6):1456–1467.

6. Bérard S, Bergeron A, Chauve C. Conserved structures in evolution scenarios. Lecture
Notes in Bioinformatics, Vol. 3388. Springer; 2005. pp. 1–15.

7. Bérard S, Bergeron A, Chauve C, Paul C. Perfect sorting by reversals is not always
difficult. IEEE/ACM Trans Comput Biol Bioinform 2007;4(1):4–16.

200 FORMAL MODELS OF GENE CLUSTERS

8. Bergeron A, Corteel S, Raffinot M. The algorithmic of gene teams. Lecture Notes in
Computer Science, Vol. 2452. Springer; 2002. pp. 464–476.

9. Bergeron A, Blanchette M, Chateau A, Chauve C. Reconstructing ancestral gene orders
using conserved intervals. Lecture Notes in Bioinformatics, Vol. 3240. Springer; 2004.
pp. 14–25.

10. Bergeron A, Chauve C, de Montgolfier F, Raffinot M. Computing common intervals of
K permutations, with applications to modular decomposition of graphs. Lecture Notes in
Computer Science, Vol. 3669. Springer. pp. 779–790.

11. Blanchette M, Kunisawa T, Sankoff D. Gene order breakpoint evidence in animal mito-
chondrial phylogeny, J Mol Evol 1999;49:193–203.

12. Blin G, Chateau A, Chauve C, Gingras Y. Inferring positional homologs with com-
mon intervals of sequences. Lecture Notes in Bioinformatics, Vol. 4205. Springer; 2006.
pp. 24–38.

13. Blin G, Chauve C, Fertin G. Gene order and phylogenetic reconstruction: application to
γ-Proteobacteria. Lecture Notes in Bioinformatics, Vol. 3678. Springer; 2005. pp. 11–20.

14. Boore JL. Animal mitochondrial genomes. Nucl Acids Rese 1999;27(8):1767–1780.

15. Booth KS, Lueker GS. Testing for the consecutive ones property, interval graphs, and
graph planarity using PQ-tree algorithms. J Comput System Sci 1976;13(3):335–379.

16. Bourque G, Pevzner PA, Tesler G. Reconstructing the genomic architecture of an-
cestral mammals: Lessons from human, mouse, and rat genomes. Genome Research
2004;14(4):507–516.

17. Bourque G, Yacef Y, El-Mabrouk N. Maximizing synteny blocks to identify ancestral
homologs. Lecture Notes in Bioinformatics, Vol. 3678. Springer; 2005. pp. 21–34.

18. Burgetz IJ, Shariff S, Pang A, Tillier ERM. Positional homology in bacterial genomes.
Evol Bioinformatics Online 2006;2:42–55.

19. Chauve C, Diekmann Y, Heber S, Mixtacki J, Rahmann S, Stoye J. On common intervals
with errors. Report 2006-02, Technische Fakultät der Universität Bielefeld, Abteilung
Informationstechnik, 2006.

20. Didier G. Common intervals of two sequences. Lecture Notes in Bioinformatics, Vol.
2812. Springer; 2003. pp. 17–24.

21. Didier G, Schmidt T, Stoye J, Tsur D. Character sets of strings. J Disc Algorithms
2007;5(2):330–340.

22. Dobzhansky T, Sturtevant AT. Inversions in the Chromosomes of Drosophila pseudoob-
scura. Genetics 1938;23:28–64.

23. Eichler EE, Sankoff D. Structural dynamics of eukaryotic chromosome evolution. Science
2003;301(5634):793–797.

24. Fu Z, Chen X, Vcici V, Nan P, Zhong Y, Jiang T. A parsimony approach to genome-
wide ortholog assignment. Lecture Notes in Bioinformatics, Vol. 3909. Springer; 2006.
pp. 578–594.

25. Gecko. Gene Clusters Identification in Prokaryotes. Software available on the website
http://bibiserv.techfak.uni-bielefeld.de/gecko.

26. He X, Goldwasser MH. Identifying conserved gene clusters in the presence of homology
families. J Comput Biol 2005;12(6):638–656.

27. Heber S, Stoye J. Finding all common intervals of k permutations. Lecture Notes in
Computer Science, Vol. 2089. Springer; 2001. pp. 207–218.

REFERENCES 201

28. Hoberman R, Durand D. The incompatible desiderata of gene cluster properties. Lecture
Notes in Bioinformatics, Vol. 3678. Springer; 2005. pp. 73–87.

29. Hoberman R, Sankoff D, Durand D. The statistical analysis of spatially clustered genes
under the maximum gap criterion. J Comput Biol 2005;12(8):1081–1100.

30. Ijdo JW, Baldini A, Ward DC, Reeders ST, Wells RA. Origin of human chromosome 2:
An ancestral telomere-telomere fusion. Proc Nat Acad Sci USA 1991;88:9051-9055.

31. Koehler U, Bigoni F, Wienberg J, Stanyon R. Genomic reorganization in the con-
color gibbon (Hylobates concolor) revealed by chromosome painting. Genomics
1995;20;30(2):287–92.

32. Kolpakov R, Raffinot M. New algorithms for text fingerprinting. Lecture Notes in Com-
puter Science, Vol. 4009. Springer; 2006. pp. 342–353.

33. Landau GM, Parida L, Weimann O. Gene proximity analysis across whole genomes via
PQ trees. J Comput Biol 2005;12(10):1289–1306.

34. Pasek S, Bergeron A, Risler JL, Louis A, Ollivier E, Raffinot M. Identification of
genomic features using microsyntenies of domains: domain teams. Genome Research
2005; 15(6):867–74.

35. Price MN, Arkin AP, Alm EJ. The life-cycle of operons. PLoS Genetics 2006;2(6):e96.

36. Rogozin IB, et al.: Connected gene neighborhoods in prokaryotic genomes. Nucl Acids
Res 2002; 30(10):2212–2223.

37. Rogozin IB, Makarova KS, Wolf YI, Koonin EV. Computational approaches for the
analysis of gene neighborhoods in prokaryotic genomes. Brief Bioinform 5(2):131–149.

38. Sankoff D. Genome rearrangement with gene families. Bioinformatics 1999;15(11): 909–
917.

39. Sankoff D. Rearrangements and chromosomal evolution. Curr Opin Genet Dev
2003;13(6):583–587.

40. Schmidt T, Stoye J. Quadratic time algorithms for finding common intervals in two
and more sequences. Lecture Notes in Computer Science, Vol. 3109. Springer; 2004.
pp. 347–358.

41. Sears ER. Nullisomic-tetrasomic combinations in wheat. In: Riley R, Lewis KR, edi-
tors Chromosome Manipulation and Plant Genetics. Edinburg: Oliver and Boyd; 1966.
pp. 29–45.

42. Semon M, Duret L. Evolutionary origin and maintenance of coexpressed gene clusters in
mammals. Mol Biol Evol 2006;23(9):1715–1723.

43. She X, et al. A preliminary comparative analysis of primate segmental duplications shows
elevated substitution rates and a great-ape expansion of intrachromosomal duplications.
Genome Research 2006;16(5):576–583.

44. Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol
1981;147:195–197.

45. Snel B, Bork P, Hyunen MA. The identification of functional modules from the genomic
association of genes. Proc Nat Acad Sci USA 2002;99:5890–5895.

46. Snel B, Lehmann G, Bork P, Hyunen MA. STRING: a web-server to retrieve and display
the repeatedly occurring neighbourhood of a gene. Nucl Acids Res 2000;28(18):3442–
3444.

47. St-Onge K, Bergeron A, Chauve C. Fast Identification of gene clusters in prokaryotic
genomes. Texts in Algorithms, Vol 5. College Publications; 2005.

202 FORMAL MODELS OF GENE CLUSTERS

48. Tamames J. Evolution of gene order conservation in prokaryotes. Genome Biol
2001;2(6):RESEARCH0020.

49. Thao ML, Baumann L, Baumann P. Organization of the mitochondrial genomes of white-
flies, aphids, and psyllids (Hemiptera, Sternorrhyncha). BMC Evol Biol 2004;4:25.

50. Uno T, Yagiura M. Fast algorithms to enumerate all common intervals of two permutations.
Algorithmica 2000;26(2):290–309.

51. Wolfe KH, Shields DC. Molecular evidence for an ancient duplication of the entire yeast
genome. Nature 1997;387:708–713.

52. Xie G, Keyhani NO, Bonner CA, Jensen RA. Ancient origin of the tryptophan operon
and the dynamics of evolutionary change. Microbiol Mol Biol Rev 2003;67(3):303–342.

53. Zheng Y, Anton BP, Robert RJ, Kasif S. Phylogenetic detection of conserved gene clusters
in microbial genomes. BMC Bioinformatics 2005;6:243.

9
INTEGER LINEAR PROGRAMMING
TECHNIQUES FOR DISCOVERING
APPROXIMATE GENE CLUSTERS

Sven Rahmann
Bioinformatics for High-Throughput Technologies, Department of Computer Science 11,
Technical University of Dortmund, Dortmund, Germany

Gunnar W. Klau
Mathematics in Life Sciences Group, Department of Mathematics and Computer Science, Free
University Berlin, and DFG Research Center Matheon “Mathematics for Key Technologies,”
Berlin, Germany

9.1 INTRODUCTION

The chapter by Bergeron et al. in this volume introduces the concept of conserved
gene clusters among several related organisms and motivates their study. We do not
repeat the contents here; instead we assume that the reader is familiar with that chap-
ter. It presents four principal combinatorial models for gene clusters, along with their
algorithms: common intervals (“exact” gene clusters) versus max-gap clusters (a par-
ticular kind of “approximate” gene clusters) in permutations (assuming the same
gene content in each genome, disallowing gene duplications) versus sequences (or
strings, where different gene contents and duplicated or removed genes are allowed).
The authors note that defining a general gene cluster model beyond max-gap clus-
ters in strings that captures biological reality well is not an easy task. Even if we

Bioinformatics Algorithms: Techniques and Applications, Edited by Ion I. Mǎndoiu
and Alexander Zelikovsky
Copyright © 2008 John Wiley & Sons, Inc.

203

204 INTEGER LINEAR PROGRAMMING TECHNIQUES

succeeded, discovering all gene clusters according to the model definition might be
a computationally hard problem.

The present chapter takes a practical approach to these fundamental issues. Instead
of arguing for or against one particular model, we present a class of models for
approximate gene clusters that can be written as integer linear programs (ILPs) and
include well-known variations, for example, common intervals, r-windows, and max-
gap clusters or gene teams. While the ILP formulation does not necessarily lead to
efficient algorithms, it provides a general framework to study different models and
is competitive in practice for those cases where efficient algorithms are known. We
show that it allows a nonheuristic study of large approximate clusters across several
prokaryotic genomes.

Different ways to model gene clusters are discussed in the previous chapter; alter-
natives have also been surveyed by [6]. Difficulties in finding a universally accepted
model include the following.

1. The problem has been attacked from two sides. One philosophy is to specify
an algorithm and constructively define the algorithm’s results as conserved
gene clusters. The drawbacks of this approach are that it is unclear how such an
algorithm maps to the biological reality, and that statistical analysis of the results
becomes difficult. The other philosophy is to provide a formal specification of
what constitutes a gene cluster (modeling step), and then design an algorithm
that finds all clusters that satisfy the specification (solving step).

2. It is not easy to formally specify what we are looking for. Should we choose a
narrow definition at the risk of missing biologically interesting gene sets, or a
wide definition and browse through many biologically uninteresting sets?

We believe that it is preferable to use separate modeling and solving steps. This
allows us to first focus on tuning the model for biological relevance, and only then
worry about efficient algorithms. Therefore, we propose a framework for defining the
approximate gene cluster discovery problem (AGCDP), as defined in Section 9.2.5,
as well as many variants, as an integer linear program (ILP; see [11], for a general
introduction). We shall not be concerned with efficiently solving the ILPs that we
define; for computational experiments, we have used the commercial solver CPLEX
[7] that works reasonably well in practice.

Our goal is to make as few restrictions in the model as possible. In particular,
we assume that genes are represented by integers in such a way that paralogous and
orthologous genes receive the same number. Genomes therefore are sequences of
(unsigned) integers, not necessarily permutations. Homology detection is a delicate
procedure, so we must assume that our representation contains errors. As a conse-
quence, we need an error-tolerant formalization of the cluster concept.

For certain special cases of the ILP formulations, special-purpose algorithms exist.
Using them would solve the corresponding problem more efficiently than using a
general ILP solver. However, a general framework has the advantage that the objective
functions and constraints can be easily modified without designing and implementing

BASIC PROBLEM SPECIFICATION 205

a new algorithm. The ILP formulation thus allows to test quickly whether a model
makes sense from a biological point of view. Incidentally, it also performs well in
practice on the known easy formulations. Existing definitions that can be modeled in
our framework include common intervals in permutations [5], common intervals in
arbitrary sequences [10], gene teams or max-gap clusters [1,8], and r-windows [3],
for example.

This chapter is structured as follows. Section 9.2 provides our basic model
of gene clusters; and Section 9.3 shows how to formulate the resulting discov-
ery problem as an ILP. Several variations and extensions of the basic model are
presented together with the necessary ILP modifications in Section 9.4, demon-
strating the flexibility of the approach. We present computational results in Sec-
tion 9.5, and a concluding discussion in Section 9.6. This chapter is based on and
extends our WABI paper [9], where the ILP formulation was first published. Code
and datasets for our computational experiments can be found at http://ls11-
www.cs.unidortmund.de/people/rahmann/research.

9.2 BASIC PROBLEM SPECIFICATION

9.2.1 Genes and Gene Sets

Genes are represented by positive integers. If the same integer occurs more than once
in the same genome, the genes are paralogs of each other. If the same integer occurs in
different genomes, the genes may be orthologs or paralogs. There is also a special gene
denoted by 0 that represents a different gene at every occurrence, and whose purpose
is to model any gene for which no homolog exists in the dataset. The gene universe or
gene pool is denoted by U := {0, 1, . . . , N} for some integer N ≥ 1. We are looking
for a subset of the gene pool without the special gene, that is, X ⊂ U with 0 /∈ X,
called the reference gene set, whose genes occur in close proximity in each genome.

9.2.2 Genomes

A genome is modeled as a sequence of genes; we do not consider intergenic distances.
We emphasize that a genome need not be a permutation of the gene pool; each gene
(family) can occur zero times, once, or more than once in each genome. Restricting
genomes to permutations allows remarkably efficient algorithms (e.g., [1,5]), but
restricts the model too much for most biological applications.

To specify the basic problem, we assume that genomes consist of a single linear
chromosome. The cases of several chromosomes and of a circular chromosome are
discussed in Section 9.4.2. We consider m genomes; the length of the ith genome is ni:
gi = (gi

1, . . . , g
i
ni

), i = 1, . . . , m. In the basic model, we look for an approximate oc-
currence of X in every genome; in Section 9.4, we describe how to relax this objective.

9.2.3 Genomic Intervals and Their Gene Contents

A linear interval in a genome g = (g1, . . . , gn) is an index set J , which is either
the empty interval J = ∅, or J = {j, j + 1, . . . , k}, written as J = [j : k], with

206 INTEGER LINEAR PROGRAMMING TECHNIQUES

1 ≤ j ≤ k ≤ n. The gene content of J = [j : k] in g is the set GJ := {gj, . . . , gk}.
Note that GJ is a set, and neither a sequence nor a multiset (a variant using multisets
is discussed in Section 9.4). The length of J = [j : k] is |J | = k − j + 1. The gene
content of J = ∅ is G∅ = ∅, and its length is |J | = |∅| = 0.

9.2.4 Objective

The goal is to find a gene set X ⊂ U without the special gene (0 /∈ X), and a linear
interval Ji for each genome i ∈ {1, . . . , m}, such that, informally, X is roughly equal
to Gi

Ji
for all i, where Gi

Ji
denotes the gene content of Ji in the ith genome.

The agreement of X and the gene content Gi
Ji

is measured by the number |Gi
Ji
\X|

of genes additionally found in the interval although they are not part of X (“additional
genes”) and by the number |X \Gi

Ji
| of X genes not found in the interval (“missing

genes”).
Since gene clusters of different sizes behave differently, it makes sense to param-

eterize the problem by specifying the size of the reference gene set |X| by enforcing
|X| = D or |X| ≥ D, for a fixed size D, or a range D− ≤ |X| ≤ D+, for a given
interval [D−, D+].

9.2.5 Finding an Optimal Gene Cluster

There are several ways to cast the above criteria into an optimization problem: We
can let them contribute to the objective function, or select thresholds and use them as
hard constraints, or both. We start with a formulation with as few hard constraints as
possible. The first goal is to find an optimal gene cluster (in terms of the cost function
defined below).

Basic Approximate Gene Cluster Discovery Problem (Basic AGCDP)

Given

� the gene pool U = {0, 1, . . . , N},
� m genomes (gi)i=1,...,m, where gi = (gi

1, . . . , g
i
ni

),
� a size range [D−, D+] for the reference gene set (possibly D− = D+ =: D),
� integer weights w− ≥ 0 and w+ ≥ 0 that specify the respective cost for each

missed and additional gene in an interval,

find X ⊂ U with 0 /∈ X and D− ≤ |X| ≤ D+, and a linear interval Ji for each genome
in order to minimize

c := c(X, (Ji)) =
m∑

i=1

[
w− · |X \Gi

Ji
| + w+ · |Gi

Ji
\X|].

In Section 9.3 we show how to write this problem as an ILP; the complexity is
discussed in Section 9.6. In practice, distinct clusters X with the same optimal cost c∗
or cost close to c∗may exist, and it is not sufficient to find a single arbitrary optimal one.

INTEGER LINEAR PROGRAMMING FORMULATION 207

9.2.6 Finding All Interesting Gene Clusters

Once we know the optimal cost c∗, we introduce a constraint

c(X, (Ji)) ≤ (1+ γ) · c∗

with a tolerance parameter γ > 0, and then enumerate the feasible points (X, J, c)
with this additional constraint. The set of feasible points may be redundant in the
sense that several solutions lead to similar X, or to different intervals Ji, with the
same gene content, etc. Therefore, we are mainly interested in sufficiently distinct X.
After finding one reference gene set X∗, we can force a distinct solution by adding a
new constraint |X�X∗| ≥ T for a positive threshold T . Here � denotes symmetric
set difference.

As noted above, the problem is formulated with specific bounds for the reference set
size: |X| ∈ [D−, D+] or |X| = D. This is useful if we already have an idea of the gene
cluster size that we want to discover. Otherwise, we can solve the problem for several
values of D. For technical reasons, further discussed below, it is not recommended to
choose a large range [D−, D+].

9.2.7 Discussion of the Modeling Approach

The formulation of the approximate gene cluster discovery problem as a minimization
problem differs from the existing combinatorial formulations. They state that a gene
set X, together with its locations (Ji), is an approximate gene cluster if certain condi-
tions are satisfied, but do not take into account how close they are to being violated.
This can lead to an exponentially large solution size in terms of the error tolerance
parameter [2], producing many similar solutions. The approach taken here is differ-
ent. We do not give a closed definition of the set of all approximate gene clusters, but
only of the best clusters in terms of the objective function. In this way, we always
obtain a solution unless we constrain the objective function. Also, we have formulated
the problem for each gene set size |X| separately to better cope with relative errors
c(X)/|X|, which otherwise would prohibit a linear programming formulation (see
the next section). Our way to obtain all “interesting” gene clusters is then iterative:
to discover each new X, the constraint that X has to be sufficiently different from
all previously discovered clusters is added to the problem formulation. This may not
be the most elegant solution (especially if ties have to be broken arbitrarily), but in
practice it effectively reduces output size (see Section 9.5.2). We will come back to
this discussion in Section 9.6.

9.3 INTEGER LINEAR PROGRAMMING FORMULATION

To cast the basic AGCDP into an ILP framework, we need to represent the reference
gene set X, the intervals Ji, and the gene contents Gi

Ji
, as well as several auxiliary

variables. Table 9.1 gives an overview.

208 INTEGER LINEAR PROGRAMMING TECHNIQUES

9.3.1 Modeling the Reference Gene Set X

We model X as a binary vector x = (x0, . . . , xN) ∈ {0, 1}N+1, where we set xq = 1
if and only if q ∈ X. We demand

x0 = 0 and D− ≤
∑

q

xq ≤ D+ .

9.3.2 Modeling the Intervals Ji

To model the selected interval Ji in genome i, we use binary indicator vectors zi =
(zi

j)j=1,...,ni . A linear interval in genome i is characterized by the fact that the ones

in zi occur consecutively. We enforce this property by introducing auxiliary binary
vectors +zi = (+zi

1, . . . ,
+zi

ni
) and −zi = (−zi

1, . . . ,
−zi

ni
) that model increments and

decrements, respectively, in zi.
We thus set zi

1 = +zi
1 − −zi

1, and for 2 ≤ j ≤ ni: zi
j = zi

j−1 + +zi
j − −zi

j . We

forbid a simultaneous increment and decrement at each position: +zi
j + −zi

j ≤ 1 for

all j = 1, . . . , ni; and we allow at most one increment and decrement:
∑ni

j=1
+zi

j ≤ 1

and
∑ni

j=1
−zi

j ≤ 1.

Recall that all the three vectors zi, +zi, and −zi are elements of {0, 1}ni . It is easy
to see that each linear interval can be written in a unique way with this parame-
terization: For the empty interval, use zero vectors for +z and −z. For the interval
[j : k] with 1 ≤ j ≤ k < ni, set +zi

j = 1 and −zi
k+1 = 1. If k = ni, then −z is the zero

vector.

TABLE 9.1 Overview of Variables and Expressions Representing Objects and Quantities
in the Basic ILP Formulation. All Variables are Binary

Main Objects ILP Variables (Binary)

Reference gene set X x = (xq)q=0,...,N

Interval Ji in ith genome zi = (zi
j)j=1,...,ni

, i = 1, . . . , m

Gene content Gi
Ji

of Ji in gi χi = (χi
q)q=0,...,N , i = 1, . . . , m

Auxiliary Objects ILP Variables (Binary)

Increments in zi +zi = (+zi
j)j=1,...,ni

, i = 1, . . . , m

Decrements in zi −zi = (−zi
j)j=1,...,ni

, i = 1, . . . , m

Intersection X ∩Gi
Ji

ιi = (ιiq)q=0,...,N , i = 1, . . . , m

Target Quantities ILP Expression

#{Missing genes in gi}: |X \Gi
Ji
| ∑N

q=0 xq − ιiq

#{Additional genes in gi}: |Gi
Ji
\X| ∑N

q=0 χi
q − ιiq

INTEGER LINEAR PROGRAMMING FORMULATION 209

An Alternative We present an alternative way to model the intervals Ji on
each genome i ∈ [1, . . . , m], which has been brought to our attention by Marcus
Oswald (Heidelberg). This formulation works without the auxiliary vectors +zi and
−zi and characterizes feasible interval vectors zi by means of the following class of
inequalities:

zi
j1
−zi

j2
+zi

j3
∓ · · ·−zi

j2k
+zi

j2k+1
≤ 1 (9.1)

for 1 ≤ j1 < j2 < · · · < j2k+1 ≤ ni, where k is any natural number.
It can be shown that this class contains only the nontrivial facet-defining inequali-

ties of the polyhedron Pinterval that correspond to the convex hull of incidence vectors
of feasible intervals in the linear case. Furthermore, violated inequalities of this class
can be separated in linear time. In other words, due to a fundamental result in poly-
hedral theory [4], the following procedure leads to a polynomial time algorithm for
optimizing a linear function over the set of feasible intervals: (i) Start with only the
trivial inequalities and optimize, (ii) check whether the optimal, possibly fractional,
solution violates an inequality 9.1, that is, whether an inequality of this class exists
that cuts off the current solution but no feasible integral solution. This problem is
referred to as the separation problem and can be solved in linear time for this special
case. If the answer is negative, the current solution corresponds to an optimal inter-
val; it must be integral because (9.1) and the trivial inequalities define the facets of
Pinterval. Otherwise, add the violated inequality and repeat step (ii). Of course, the
additional variables and constraints in our formulation for the optimal gene cluster
problem complicate the solution process.

9.3.3 Modeling the Intervals’ Gene Contents Gi
Ji

The gene content Gi
Ji

in genome i is modeled by another indicator vector
χi = (χi

q)q=0,...,N : If some position j is covered by the chosen interval Ji, the cor-
responding gene must be included in the gene content; thus χi

gi
j

≥ zi
j for all j =

1, . . . , ni (recall that gi
j is constant). On the other hand, if some gene q ∈ {1, . . . , N}

is not covered by Ji, it must not be included: χi
q ≤
∑

j:gi
j
=q zi

j for all q ∈ {0, . . . , N}.
For each genome i, the above two families of inequalities map the selected intervals
exactly to the selected gene contents. Note that if gene q never appears in genome i,
the sum inequality yields χi

q = 0, as desired.

9.3.4 Modeling the Target Function

To model the target function, we need the intersection between X and the selected
gene content Gi

Ji
in the ith genome. We define another family of indicator vectors for

i = 1, . . . , m: ιi = (ιiq)q=0,...,N that we force to model the set intersection X ∩Gi
Ji

via the inequalities ιiq ≤ xq, ιiq ≤ χi
q, and ιiq ≥ xq + χi

q − 1. Then the terms of the

210 INTEGER LINEAR PROGRAMMING TECHNIQUES

target function are

|X \Gi
Ji
| =

N∑
q=0

(xq − ιiq); |Gi
Ji
\X| =

N∑
q=0

(χi
q − ιiq).

9.3.5 Basic ILP Formulation: Theorem

Figure 9.1 presents the whole basic formulation at a glance. After the above discus-
sion, we may state: The ILP in Fig. 9.1 correctly represents the basic AGCDP from
Section 9.2.5.

Given integers N ≥ 1, m ≥ 2, (ni)i=1,...,m with ni ≥ 1, (gi
j)i=1,...,m; j=1,...,ni

from {0, 1, . . . , N}, 1 ≤ D− ≤
D+ ≤ N, w ≥ 0 and w ≥ 0,

min

m∑
i=1

[
w− ·

N∑
q=0

(xq − ιiq)+ w+ ·
M∑

q=0

(χi
q − ιiq)

]
subject to

xq ∈ {0, 1} (q = 0, 1, . . . , N)

x0 = 0∑N

q=0 xq ≥ D−∑N

q=0 xq ≤ D+

zi
j, zi

j, zi
j ∈ {0, 1} (i = 1, . . . , m, , j = 1, . . . , ni)

zi
1 = zi

1 − zi
1 (i = 1, . . . , m)

zi
j = zi

j−1 + zi
j − zi

j (i = 1, . . . , m, j = 2, . . . , ni)

zi
j + zi

j ≤ 1 (i = 1, . . . , m, j = 1, . . . , ni)∑ni

j=1 zi
j ≤ 1 (i = 1, . . . , m)∑ni

j=1 zi
j ≤ 1 (i = 1, . . . , m)

χi
q ∈ {0, 1} (i = 1, . . . , m, q = 0, 1, . . . , N)

χi

gi
j

≥ zi
j (i = 1, . . . , m, j = 1, . . . , ni)

χi
q ≤
∑

j:gi
j
=q

zi
j (i = 1, . . . , m, q = 0, 1, . . . , N)

ιiq ∈ {0, 1} (i = 1, . . . , m, q = 0, 1, . . . , N)

ιiq ≤ xq (i = 1, . . . , m, q = 0, 1, . . . , N)

ιiq ≤ χi
q (i = 1, . . . , m, q = 0, 1, . . . , N)

ιiq ≥ xq + χi
q − 1 (i = 1, . . . , m, q = 0, 1, . . . , N)

FIGURE 9.1 ILP formulation for the basic AGCDP; see Table 9.1 for variables.

EXTENSIONS AND VARIATIONS 211

9.4 EXTENSIONS AND VARIATIONS

This section presents extensions and variations of the basic AGCDP, together with
the necessary changes to the ILP formulation, and demonstrates the versatility of the
ILP approach for gene cluster discovery.

9.4.1 Constraining and Varying the Objective Function

The basic ILP in Fig. 9.1 always has a feasible solution; an upper bound of the cost
is easily obtained by taking any set of size D− for X, empty intervals in all genomes,
and paying the cost of m ·D− · w− for missing all genes in X. In many applications,
it makes no sense to consider intervals in which more than a fraction δ− of the
reference genes X are missing or which contain more than a fraction δ+ of additional
genes. Therefore, we could restrict the search space by enforcing

∑N
q=0 (xq − ιiq) ≤

�δ− ·D+� and
∑N

q=0 (χi
q − ιiq) ≤ �δ+ ·D+�. This may, of course, lead to an empty

feasible set.
Instead of paying separately for missed and additional genes, we may argue that

we should view occurrences of both errors as substitutions to the maximum possi-
ble extent. Assuming equal weights w− = w+ = 1 leads to a cost contribution of
max {|X \Gi

Ji
|, |Gi

Ji
\X|} instead of the sum for the ith genome; see also [2]. More

generally, we may replace the original objective function by

min
m∑

i=1

max

⎧⎨
⎩w− ·

N∑
q=0

(xq − ιiq), w+ ·
M∑

q=0

(χi
q − ιiq)

⎫⎬
⎭

by introducing new variables c−i := w− ·∑N
q=0 (xq − ιiq) and c+i :=

w+ ·∑N
q=0 (χi

q − ιiq). We let ci = max {c−i , c+i } by introducing inequalities
ci ≥ c−i and ci ≥ c+i for i = 1, . . . , m and writing the objective function as

min
m∑

i=1

ci,

which fixes ci at the maximum of c−i and c+i , and not at a larger value.

9.4.2 A Single Circular Chromosome or Multiple Linear Chromosomes

Bacterial genomes usually consist of a single circular chromosome, that is, any circular
permutation of g = (g1, . . . , gn) in fact represents the same genome, and the start and
end points are arbitrary. Therefore, we need to allow intervals that “wrap around.”
Extending the definition of a linear interval from Section 9.2, we say that an interval
is either a linear interval or a wrapping interval.

A wrapping interval in g = (g1, . . . , gn) is a nonempty index set J := [j | k] :=
{j, j + 1, . . . , n, 1, . . . , k}, with 1 ≤ j, k ≤ n and j > k + 1.

212 INTEGER LINEAR PROGRAMMING TECHNIQUES

The gene content of a wrapping interval is GJ ≡ G[j|k] := {gj, . . . , gn, g1, . . .,
gk}, and its length is |J | = n− j + 1+ k. We specifically disallow j = k + 1 because
this would induce the whole genome, for which we already have the linear interval
[1 : n].

As an example, in a genome of length 3, there are seven linear intervals: (∅, [1 : 1],
[2 : 2], [3 : 3], [1 : 2], [2 : 3], [1 : 3]), and a single wrapping interval: [3 | 1].

For a wrapping interval in gi, the ones in the indicator vector zi occur in two distinct
blocks with the first block starting at position j = 1, and the second block ending at
position ni. Therefore, there are two points j with +zi

j = 1, but only if j = 1 is one of
them. To allow arbitrary intervals (empty, linear, or wrapping), all we need to do is to
change the sum constraint for +zi from Fig. 9.1 into

∑ni

j=2
+zi

j ≤ 1 (i = 1, . . . , m).
We may also allow multiple linear chromosomes: we extend the gene universe by

another special number−1 and concatenate the chromosomes of the ith genome into
a single vector gi as before, representing chromosome borders by −1. We constrain
the interval selection variables zi

j wherever gi
j = −1 to be zi

j = 0; this ensures that
the interval Ji does not extend over a chromosome border.

9.4.3 Genome Selection (Quorum Parameter)

So far we have requested that X occurs in every input genome, or incurred a possibly
severe cost of at most w− · |X| if no gene of X appears in the genome. When we
look for approximate gene clusters in a large set of genomes, and only require that
the cluster occurs in some of them, it is desirable to relax this penalty.

We extend the formulation with an index set I ⊂ {1, . . . , m}, and refer to the
genomes indexed by I as the selected genomes; these are treated as before, that is,
missing and additional genes in the selected intervals are penalized by w− and w+,
respectively. For nonselected genomes, we force that Ji is the empty interval, but
we only incur a flat penalty ρ ≥ 0 that should be chosen substantially smaller than
w− ·D−. We also specify a quorum, that is, a minimal number μ ≤ m of genomes
to be selected, by demanding |I| ≥ μ. The cost function becomes

c := c(X, I, (Ji)) =
∑
i∈I

[
w− · |X \Gi

Ji
| + w+ · |Gi

Ji
\X|] + (m− |I|) · ρ.

For the ILP, we model I as another binary vector y = (y1, . . . , ym) ∈ {0, 1}m with
yi = 1 if and only if i ∈ I. We have the constraint

∑m
i=1 yi ≥ μ. To enforce Ji = ∅

for i /∈ I, we use the inequalities zi
j ≤ yi for all i = 1, . . . , m, j = 1, . . . , ni.

It remains to properly rewrite the target function. The obvious approach to

min
m∑

i=1

⎡
⎣yi ·

⎛
⎝w− ·

N∑
q=0

(xq − ιiq)+ w+ ·
M∑

q=0

(χi
q − ιiq)

⎞
⎠+ (1− yi) · ρ

⎤
⎦

does not work because this function is nonlinear in the variables because of the
products yi · xq.

EXTENSIONS AND VARIATIONS 213

However, a simple solution is available when X is constrained to be of fixed size
D− = D+ = D: If yi = 0, then zi, χi, and ιi are the zero vector and under the old
cost function, we would pay D · w−. Now we only pay ρ; therefore we can write the
objective function as

min
m∑

i=1

⎡
⎣w− ·

N∑
q=0

(xq − ιiq) + w+ ·
M∑

q=0

(χi
q − ιiq) + (1− yi) · (ρ −Dw−)

⎤
⎦ .

If D− < D+, the above approach does not work, unless we change the flat penalty
from ρ into ρ + |X| −D−, which may put larger X at a disadvantage. In that case we
can use the same formulation as above with D replaced by D−.

For the general case of D− < D+ and a true flat penalty ρ, we can use a so-called
big-M approach: We write the objective function as

c = ρ ·
m∑

i=1

(1− yi) +
m∑

i=1

Li,

where the Li are new auxiliary variables, which we will force to take values

Li =
{∑N

q=0

(
w− · (xq − ιiq)+ w+ · (χi

q − ιiq)
) =: 	i ifyi = 1,

0 ifyi = 0.

We achieve this via inequalities Li ≥ 0 and Li ≥ 	i −M · (1− yi) for all i =
1, . . . , m and a constant M larger than any possible value of 	i. If yi = 1, the inequality
becomes Li ≥ 	i; and since the objective function c is to be minimized, this will lead
to Li = 	i. If yi = 0, it becomes Li ≥ −M ′ for some M ′ ≥ 0 and is dominated by
the nonnegativity constraint Li ≥ 0. Often, however, such a big-M approach causes
problems for the ILP solver, as it easily leads to weak LP relaxations [11].

9.4.4 Gene Multisets

Instead of modeling X and the neighborhoods Gi
j as gene sets, we may model

them as multisets and interpret the objective function for multisets, for example,
|[1, 3, 3] \ [1, 2, 3]| = |[3]| = 1 and |[1, 2, 3] \ [1, 3, 3]| = |[2]| = 1, whereas previ-
ously |{1, 3, 3} \ {1, 2, 3}| = |∅| = 0 and |{1, 2, 3} \ {1, 3, 3}| = |{2}| = 1. Several
changes need to be made as follows.

� All of x, χi, and ιi become nonnegative integer vectors.
� The gene contents χi are defined as multiplicities: χi

q =
∑

j:gi
j
=q zi

j for all

q = 0, . . . , N, i = 1, . . . , m.
� The intersection vectors ιi = (ιiq) are replaced by minima: ιiq := min {xq, χ

i
q}.

This is achieved by inequalities ιiq ≤ xq and ιiq ≤ χi
q for all i and q. The structure

214 INTEGER LINEAR PROGRAMMING TECHNIQUES

of the target function ensures that indeed the minimum of xq and χi
q and not a

smaller value will be taken.

9.4.5 Using a Reference Genome

Even in the basic AGCDP, there is a lot of freedom because the reference gene set X

need not occur exactly in any of the genomes. In some cases, however, a reference
genome may be known and available. This makes the problem much easier, and an
ILP formulation would not be required, and the solver could be easily replaced by
simpler specialized algorithms. It is reassuring, however, that a reference genome
can be easily integrated into the formulation: Without loss of generality, let g1 be the
reference genome. We force xq = χ1

q = ι1q for q = 0, . . . , N, and possibly y1 = 1, if
we are using genome selection.

9.4.6 Modeling Common Intervals, Max-Gap Clusters, and r-Windows

By specifying appropriate target functions and constraints, the ILP approach can be
used to model existing definitions of gene clusters. For those mentioned here, efficient
algorithms exist, and we certainly cannot beat them. It is still convenient that we can
treat them in the ILP framework, too.

To model exact common intervals in the sense of [10], we restrict the cost function
to take the value zero (i.e., we allow no additional and no missing genes), and set w− =
w+ = 1. Additionally, we can apply genome selection with ρ = 0 and a reasonably
large value for μ. From the result, we only use the reference set X and disregard the
intervals.

The specification of max-gap clusters or gene teams [1] is a generalization of
common intervals; and demands that between adjacent genes from the reference set
X, there are at most δ genes not from X. For δ = 0, we obtain again common intervals.
For δ > 0, the max-gap condition states that in each subinterval of Ji of length δ+ 1,
we need at least one X-gene. For each i = 1, . . . , m and each j = 1, . . . , ni − δ we
have that if zi

j + · · · + zi
j+δ = δ+ 1, then ιigj

+ ιigj+1
+ · · · + ιigj+δ

≥ 1 must hold.
Each implication can be written as an inequality

ιigj+1
+ · · ·+ιigj+δ

≥ zi
j+ · · · + zi

j+δ − (δ+ 1)+ 1 (i = 1, . . . , m; j = 1, . . . , ni−δ).

We use w− = 1 and w+ = 0 and constrain the target function to zero. To find
maximal max-gap clusters, that is, those not contained in a larger one, we enumerate
all max-gap clusters of each size D and subsequently filter out those contained in
larger ones.

An r-window cluster for two genomes is defined as a pair of intervals of length
r that share at least D genes [3]. To find them, we demand |X| = D, set w− = 1,
w+ = 0, constrain the target function to zero, and demand that

∑ni

j=1 zi
j = r for each

i = 1, . . . , m.

COMPUTATIONAL RESULTS 215

9.5 COMPUTATIONAL RESULTS

We have implemented a C++ software tool that reads in a set of genomes, solves
one of the integer linear programming formulations presented in Sections 9.3 and 9.4
using the CPLEX optimization library [7], and outputs the list of optimal and close to
optimal gene clusters. All experiments were performed on an AMD 2.2 GHz Opteron
64 bit processor with 8 GB of main memory using CPLEX 9.03.

9.5.1 Hidden Clusters in Artificial Data

We generate artificial problem instances for benchmarking as follows: We randomly
generate six genomes of roughly 1000 genes each (N = 2000) with 5% of 0-genes.
For each D ∈ {5, 10, 15, 20, 25}, we generate a cluster and hide a perturbed permu-
tation of it in five randomly selected genomes, taking care that the different clusters
do not overlap.

Using w− = 2, w+ = 1 and the appropriate value of D, we solve the ILP first
with genome selection, setting ρ = 2D/5. We retrieve all the five clusters in 29 min,
45 min, 8 min, 113 s, and 14 s, respectively.

Without genome selection, running times are much faster, but we can run into
problems because of the high penalty for the genome in which the cluster is missing:
We retrieve the clusters of sizes 5, 10, 15, and 25 in 17 min, 7 min, 163 s, and 4 s,
respectively. For D = 20, we obtain a different cluster than the hidden one that obtains
a better target function value without genome selection.

While the running times vary with each instance, the times shown here are repre-
sentative. This experiment indicates the importance, but also the high complexity of
genome selection.

9.5.2 Comparison of Two Organisms

The genomes of C. glutamicum and M. tuberculosis consist of 3057 and 3991 anno-
tated genes, respectively. The annotated gene set is available at http://ls11-
www.cs.unidortmund.de/people/rahmann/research. We compute
the optimal objective function value c∗(D) for each cluster size D ∈ [5,500] for
the basic formulation with w− = w+ = 1 (total CPU time: almost 25 days, on aver-
age 1:15 h per instance). Figure 9.2 shows the running time per instance as well as the
optimal normalized costs c∗(D)/D. Local minima correspond to large approximate
clusters with comparatively few errors. As Fig. 9.3 illustrates for D = 51, the ILP
formulation discovers clusters that cannot be detected by any method that does not
consider approximate clusters. The largest exact cluster has size 11.

In a next step, we enumerate all fundamentally different close-to-optimal solutions
for the local minima of Fig. 9.2, using the approach described in Section 9.3. We set
the suboptimality parameter γ to 0.2. Interestingly, there are not too many different
clusters with solution values within 20% of the optimum, as shown in Table 9.2. The
solution lists might be an interesting starting point for further biological investigations.
Figure 9.4 shows the output of our software for D = 61.

216 INTEGER LINEAR PROGRAMMING TECHNIQUES

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cluster size D

C
P

U
 ti

m
e

[4
 h

rs
];

N
or

m
al

iz
ed

 o
bj

ec
tiv

e
fu

nc
tio

n
c

* (
D

)
/D

CPU time [units of 4 h]

Normalized objective
function c*(D) /D

FIGURE 9.2 Comparison of C. glutamicum and M. tuberculosis: For each cluster size D ∈
[5,500], the running time in units of 4 h, and the normalized optimal value of the objective
function is shown. Note the local minima in the objective function, for example, at D = 51.
The apparent correlation between objective function and running time indicates that good
approximate clusters are easier to compute than bad clusters.

9.5.3 A 28-Cluster in a 20-Genome Set

We attempt to find a large approximate gene cluster in several genomes. We thank
Thomas Schmidt (Bielefeld) for providing a dataset of the following twenty bacterial
genomes (number of genes given in brackets): B. longum (1727), B. subtilis (4103),
C. diphtheriae (2272), C. efficiens (2942), C. glutamicum (3057), E. coli K12 (4288),
L. lactis (2266), L. xyli (2030), M. avium (4350), M. leprae (1605), M. tuberculosis
(3991), N. farcinica (5683), P. acnes (2297), P. aeruginosa (5566), P. putida (5350),
S. avermitilis (7575), S. coelicolor (7768), S. thermophilum (3337), T. whipplei (808),
and W. succinogenes (2044).

FIGURE 9.3 Visualization of an interesting optimal cluster in C. glutamicum and M. tuber-
culosis (D = 51). Differing genes are marked in gray. Three conserved regions, a, b, and c

occur in the cluster.

DISCUSSION 217

TABLE 9.2 Cluster Sizes D and (Sub-)Optimal Solution Values c of Fundamentally
Different Solutions with c ≤ 1.2 · c∗, where c∗ is the Corresponding Optimal Value
(Marked in Bold Face)

D c

16 2
21 5
28 11, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13
32 13, 13, 13, 15, 15, 15, 15
36 14
41 18, 19, 20, 21, 21, 21
46 19, 21
51 20, 24
55 23
61 27, 29, 32
68 28
72 29
78 34, 39
88 42, 47

107 54, 58

We perform the first analysis step with a fixed reference genome as described in
Section 9.4.5, since we can solve the ILP much faster for this variant of the prob-
lem: it takes less than 5 min to find an optimal solution. The solution contains four
almost empty intervals, namely, of C. diphtheriae, C. efficiens, C. glutamicum, and
N. farcinica, which we remove from the dataset. For the remaining 16 genomes we use
the standard formulation (without reference genome and without genome selection)
using w− = w+ = 1 and |X| ∈ [28,50]. After 11 h of CPU time, we find an optimal
approximate gene cluster visualized in Fig. 9.5.

So far we have not made attempts to interpret the cluster from a biological point
of view, but we note that the cluster occurs exactly in two genomes: B. subtilis and
S. avermitilis.

9.6 DISCUSSION

The modeling framework for approximate gene clusters discussed in this chapter
possesses unique features that are worth discussing in detail.

9.6.1 Objective Function Versus Constraints

In contrast to purely combinatorial definitions, the approach discussed here does not
necessarily characterize the set of desired clusters by hard constraints, but can also
assign a cost value (the objective function) to each cluster candidate. In fact, we
can go to both extremes: in Section 9.4.6, we showed that by using particular weight
choices and hard constraints on the objective function and the other quantities, several

218 INTEGER LINEAR PROGRAMMING TECHNIQUES

FIGURE 9.4 Exemplary output of our freely available software: Solution list for D = 61,
containing all fundamentally different optimal and close-to-optimal solutions.

existing combinatorial models can be reproduced. On the other hand, it is known that
the size of the feasible set (gene sets X and their interval locations Ji) in more general
combinatorial formulations [2] can be exponential in the error tolerance parameter;
yet it can also be empty. Therefore, the value of the objective function (as opposed to

DISCUSSION 219

FIGURE 9.5 Manually produced alignment of optimal approximative cluster found in 16
bacterial genomes. The intervals found in E. coli K12, L. lactis, L. xyli, M. avium, M. tu-
berculosis, P. aeruginosa, P. putida, and T. whipplei have been reversed for the purpose of
visualization.

only the fact that it stays below a certain threshold) holds useful information. In the
formulation of Sections 9.2.5 and 9.2.6, we have therefore taken the approach to first
find the best cluster(s) and then enumerate suboptimal ones that are fundamentally
different from the relatively better ones. This reduces output size without actually
missing interesting gene clusters. The best option in practice may well be to minimize
the objective function under a hard constraint on its value: if the feasible set is empty,
there are no gene clusters of interest.

9.6.2 Complexity Considerations

The complexity of the basic model comes from the fact that we use a reference set X

of genes that need not occur exactly in any genome. While we have not attempted to
formally prove the corresponding decision problem NP-hard, the difficulties encoun-
tered by the ILP solver, and the similarity to the median string problem, provide some
evidence. The problem becomes even harder (empirically in terms of CPU time) if
genome selection is allowed. The situation changes if we require that X occurs in at
least one genome without errors. Then a naive polynomial-time algorithm works as
follows:

Tentatively set X to the gene set of each interval in each genome. For each genome
g, except the one where X is taken from, compare X to the character set of
each interval J in g, compute the cost according to the number of missing

220 INTEGER LINEAR PROGRAMMING TECHNIQUES

and additional genes, and pick the interval J∗g in g with minimum cost c∗g.
Now genome selection can be easily applied: simply remove as many costly
genomes as possible without violating the quorum parameter. The total cost of
X (without genome selection) is c (X) =∑g c∗g. Either report the overall best
set X, or report each X, where c (X) remains below a given threshold (of course,
this “algorithm” can be drastically optimized for efficiency).

This also shows that the hard part of the general model is discovering the gene sets
X; their (optimal) locations within each genome are easy to find.

9.6.3 Perspectives

The ILP formulations open a new perspective to the field of approximate gene cluster
discovery, and are usable in practice. The general ILP framework allows to check
different gene cluster models for biological relevance before designing optimized
algorithms, and to discover optimal medium-sized to large approximate clusters that
contain no smaller exact ones if they exist and if the ILP solver can handle the
problem.

We believe that the formulations and the solver can be fine-tuned to solve the same
instances rather faster, even if the basic AGCDP with or without genome selection
is indeed NP-hard. We are experimenting with alternative methods for genome se-
lection and with the alternative formulation of the consecutive-ones property of the
interval indicators zi

j mentioned in Section 9.3.2. Experiments with a branch-and-cut
approach based on separating these inequalities have shown that it is currently infe-
rior to the implementation that relies on the formulation with the auxiliary variables.
The reasons for this behavior are worth investigating; we hope that we can improve
the running time of the method by incorporating knowledge about the polyhedral
structure.

A desideratum for the future is to avoid solving the problem for each gene set
size D separately. So far this is convenient because it allows simplifications in some
formulations, but it seems to slow down the solver drastically. Yet, a fixed |X| = D

is also necessary because optimal objective function values for different |X| do not
compare well: even “good” clusters of size 30 might have higher cost than “bad”
clusters of size 5. Normalizing the cost function by |X| seems a promising idea,
as this corresponds to a notion of relative error. Fractional programming techniques
could be explored towards this end.

An open problem is statistics (significance computations) for gene clusters
from the ILP formulations with different objective functions in the spirit of
[3] to better judge whether an observed gene cluster is in fact an interesting
discovery.

Naturally, we do not expect a consensus on the “correct” way to model approxi-
mate gene clusters soon; however, the methods presented in this chapter are poten-
tially general enough to cover most of the interesting models and provide a good
basis to start from while developing efficient specialized algorithms for particular
submodels.

REFERENCES 221

ACKNOWLEDGMENTS

We thank Thomas Schmidt for providing datasets, and Jens Stoye, Yoan Diekmann,
Julia Mixtacki, and Marcus Oswald for helpful discussions.

REFERENCES

1. Bergeron A, Corteel S, Raffinot M. The algorithmic of gene teams. Workshop on Algo-
rithms in Bioinformatics (WABI), Vol. 2452 of LNCS; 2002. pp. 464–476.

2. Chauve C, Diekmann Y, Heber S, Mixtacki J, Rahmann S, Stoye J. On common intervals
with errors. Technical Report 2006-02, Universität Bielefeld: Abteilung Informationstech-
nik, Technische Fakultät; 2006. ISSN 0946–7831.

3. Durand D, Sankoff D. Tests for gene clustering. J Comput Biol 2003;10(3-4):453–482.

4. Grötschel M, Lovász L, Schrijver A. The ellipsoid method and its consequences in com-
binatorial optimization. Combinatorica 1981;1:169–197.

5. Heber S, Stoye J. Algorithms for finding gene clusters. In: Gascuel O, Moret B, edi-
tors. Proceedings of the First International Workshop on Algorithms in Bioinformatics,
WABI 01, Vol. 2149 of Lecture Notes in Computer Science. Berlin: Springer Verlag; 2001.
pp. 252–263.

6. Hoberman R, Durand D. The incompatible desiderata of gene cluster properties. In:
McLysaght A, Huson DH, editors. Comparative Genomics: RECOMB 2005 International
Workshop, Vol. 3678 of LNCS; 2005. pp. 73–87.

7. ILOG, Inc. CPLEX. http://www.ilog.com/products/cplex, 1987–2006.

8. Li Q, Lee BTK, Zhang L. Genome-scale analysis of positional clustering of mouse testis-
specific genes. BMC Genomics 2005;6(1):7.

9. Rahmann S, Klau GW. Integer linear programs for discovering approximate gene clus-
ters. In: Bucher P, Moret B, editors. Proceedings of the 6th Workshop on Algorithms in
Bioinformatics (WABI), Vol. 4175 of LNBI; Springer; 2006. pp. 298–309.

10. Schmidt T, Stoye J. Quadratic time algorithms for finding common intervals in two and
more sequences. In: Sahinalp SC, Muthukrishnan S, Dogrusoz U, editors. Proceedings of
the 15th Annual Symposium on Combinatorial Pattern Matching, CPM 2004, Vol. 3109
of LNCS, 2004. pp. 347–358.

11. Wolsey LA. Integer programming. Wiley Interscience Series in Discrete Mathematics and
Optimization. John Wiley & Sons; 1998.

10
EFFICIENT COMBINATORIAL
ALGORITHMS FOR DNA SEQUENCE
PROCESSING

Bhaskar DasGupta
Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA

Ming-Yang Kao
Department of Electrical Engineering and Computer Science, Northwestern University,
Evanston, IL, USA

10.1 INTRODUCTION

The modern era of molecular biology began with the discovery of the double helical
structure of DNA. Today, sequencing nucleic acids, the determination of genetic in-
formation at the most fundamental level, is a major tool of biological research [44].
This revolution in biology has created a huge amount of data at great speed by di-
rectly reading DNA sequences. The growth rate of data volume is exponential. For
instance, the volume of DNA and protein sequence data is currently doubling every
22 months [32]. One important reason for this exceptional growth rate of biological
data is the medical use of such information in the design of diagnostics and therapeu-
tics [22,31]. For example, identification of genetic markers in DNA sequences would
provide important informations regarding which portions of the DNA are significant,
and would allow the researchers to find many disease genes of interest (by recognizing
them from the pattern of inheritance). Naturally, the large amount of available data
poses a serious challenge in storing, retrieving and analyzing biological information.

Bioinformatics Algorithms: Techniques and Applications, Edited by Ion I. Mǎndoiu
and Alexander Zelikovsky
Copyright © 2008 John Wiley & Sons, Inc.

223

224 EFFICIENT COMBINATORIAL ALGORITHMS FOR DNA SEQUENCE PROCESSING

A rapidly developing area, computational biology, is emerging to meet the rapidly
increasing computational need. It consists of many important areas such as infor-
mation storage, sequence analysis, evolutionary tree construction, protein structure
prediction [22,31]. It is playing an important role in some biological research. For ex-
ample, sequence comparison is one of the most important methodological issues and
most active research areas in current biological sequence analysis. Without the help
of computers, it is almost impossible to compare two or more biological sequences
(typically, at least a few hundred character long). Applications of sequence compar-
ison methods can be traced back to the well-known Human Genome Project [43],
whose objective is to decode this entire DNA sequence and to find the location and
ordering of genetic markers along the length of the chromosome. These genetic mark-
ers can be used, for example, to trace the inheritance of chromosomes in families
and thereby to find the location of disease genes. Genetic markers can be found by
finding DNA polymorphisms, that is, locations where two DNA sequences “spell”
differently. A key step in finding DNA polymorphisms is the calculation of the ge-
netic distance, which is a measure of the correlation (or similarity) between two
genomes.

In this chapter, we discuss computational complexities and approximation algo-
rithms for a few DNA sequence analysis problems. We assume that the reader is
familiar with the basic concepts of exact and approximation algorithms [20,42], basic
computational complexity classes such as P and NP [23,26,36] and basic notions of
molecular biology such as DNA sequences [24,45].

10.2 NONOVERLAPPING LOCAL ALIGNMENTS

As we have already seen, a fundamental problem in computational molecular biology
is to elucidate similarities between sequences and a cornerstone result in this area is
that given two strings of length p and q, there are local alignment algorithms that will
score pairs of substrings for “similarity” according to various biologically meaningful
scoring functions and we can pull out all “similar” or high scoring substring pairs in
time O(pq+ n), where n is the output size [45]. Having found the high scoring sub-
string pairs, a global description of the similarity between two sequences is obtained
by choosing the disjoint subset of these pairs of highest total score. This problem
is in general referred to as the “nonoverlapping local alignment” problem. We also
mention a more general “d-dimensional version” of this problem involving d > 2
sequences, where we score d substrings, one from each sequence, with a similarity
score and the goal is to select a collection of disjoint subsets of these d-tuples of
substrings maximizing the total similarity.

A natural geometric interpretation of the problem is via selecting a set of “inde-
pendent” rectangles in the plane in the following manner [3]. Each output substring
pair being represented as a rectangle; Fig. 10.1 shows a pictorial illustration of the re-
lationship of a rectangle to local similarity between two fragments of two sequences.
This gives rise to the following combinatorial optimization problem. We are given a
set S of n positively weighted axis parallel rectangles. Define two rectangles to be

NONOVERLAPPING LOCAL ALIGNMENTS 225

a

b

a

a

c

a

ccbbaa

R

FIGURE 10.1 The rectangle R captures the local similarity (match) between the fragments
aac and bbc of the two sequences; weight of R is the strength of the match.

independent if for each axis, the projection of one rectangle does not overlap that of
another. The goal is to select a subset S′ ⊆ S of independent rectangles from the given
set of rectangles of total maximum weight. The unweighted version of the problem
is the one in which the weights of all rectangles are identical. In the d-dimensional
version, we are given a set of positively weighted axis parallel d-dimensional hyper-
rectangles1 such that, for every axis, the projection of a hyper-rectangle on this axis
does not enclose that of another. Defining two hyper-rectangles to be independent if
for every axis, the projection of one hyper-rectangle does not overlap that of another;
the goal is to select a subset of independent hyper-rectangles of total maximum weight
from the given set of hyper-rectangles.

The nonoverlapping local alignment problem, including its special case as defined
by the IR problem described in Section 10.2.2, is known to be NP-complete. The
best-known algorithm for the general version of the nonoverlapping local alignment
problem is due to [8], who provide a 2d-approximation for the problem involving
d-dimensional hyper-rectangles. In the sequel, we will discuss two important special
cases of this problem that are biologically relevant.

10.2.1 The Chaining Problem

The chaining problem is the following special case [24, page 326]. A subset of rectan-
gles is called a chain if no horizontal or vertical line intersects more than one rectangle
in the subset and if the rectangles in the subset can be ordered such that each rectangle
in this order is below and to the right of its predecessor. The goal is to find a chain of
maximum total similarity. This problem can be posed as finding the longest path in a
directed acyclic graph and thereby admits an optimal solution in O(n2) time, where n

is the number of rectangles. However, using a sparse dynamic programming method,
the running time can be further improved to O(n log n) [27].

1A d-dimensional hyper-rectangle is a Cartesian product of d intervals.

226 EFFICIENT COMBINATORIAL ALGORITHMS FOR DNA SEQUENCE PROCESSING

10

2

3

1.5

10

1.5

Input
An optimal solution
of total weight 11.5

FIGURE 10.2 An illustration of the IR problem.

10.2.2 The Independent Subset of Rectangles (IR) Problem

In this problem, first formulated by [3], for each axis, the projection of a rectangle on
this axis does not enclose that of another; this restriction on the input is biologically
justified by a preprocessing of the input data (fragment pairs) to eliminate violations
of the constraint. See Fig. 10.2 for an pictorial illustration of the problem.

Consider the graph G formed from the given rectangles in which there is a node for
every rectangle with its weight being the same as that of the rectangle and two nodes
are connected by an edge if and only if their rectangles are not independent. It is not
difficult to see that G is a five-claw free graph [3] and the IR problem is tantamount
to finding a maximum-weight independent set in G. Many previous approaches have
used this connection of the IR problem to the five-claw free graphs to provide better
approximation algorithms by giving improved approximation algorithms for d-claw
free graphs. For example, using this approach, Bafna et al. [3] provided a polynomial
time approximation algorithm with a performance ratio2 of 13

4 for the IR problem
and Halldórsson [25] provided a polynomial time approximation algorithm with a
performance ratio of 2+ ε (for any constant ε > 0) for the unweighted version of
the IR problem.3 The current best approximation algorithm for the IR problem is due
to Berman [9] via the same approach that has a performance ratio of 5

2 + ε (for any
constant ε > 0).

Many of the above mentioned algorithms essentially start with an arbitrary solution
and then allows small improvements to enhance the approximation quality of the
solution. In contrast, in this section we review the usage of a simple greedy two-
phase technique to provide an approximation algorithm for the IR problem with
a performance ratio of three that runs in O(n log n) time [10,15]. The two-phase
technique was introduced in its more general version as a multiphase approach in the
context of realtime scheduling of jobs with deadline in [11,12]; we review the generic
nature of this technique in Section 10.2.2.1. Although this approximation algorithm
does not improve the worst-case performance ratios of previously best algorithms, it
is simple to implement (involving standard simple data structures such as stacks and
binary trees), and runs faster than the algorithms in [3,9,25].

2The performance ratio of an approximation algorithm for the IR problem is the ratio of the total weights
of rectangles in an optimal solution to that in the solution provided by the approximation algorithm.

3For this and other previous approximation algorithms with an ε in the performance ratio, the running
time increases with decreasing ε, thereby rendering these algorithms impractical if ε is small. Also, a
straightforward implementation of these algorithms will run in at least �(mn) time.

NONOVERLAPPING LOCAL ALIGNMENTS 227

10.2.2.1 The Local-ratio and Multiphase Techniques The multiphase technique
was introduced formally in the context of realtime scheduling of jobs by the investi-
gators in [11,12]. Informally and very briefly, this technique works as follows.

(a) We maintain a stack S containing objects that are tentatively in the solution. S
is initially empty before the algorithm starts.

(b) We make k ≥ 1 evaluation passes over the objects. In each evaluation pass
� we inspect the objects in a specific order that is easy to compute (e.g.,

rectangles in the plane in the order of their right vertical side),
� depending on the current content of S, the contents of S during the previous

passes as well as the attributes of the current object, we compute a score
for the object,
� we push the object to S if the score is above a certain threshold.

(c) We make one selection pass over the objects in S in a specific order (typically,
by popping the elements of S) and select a subset of the objects in S that satisfy
the feasibility criteria of the optimization problem under consideration.

Closely related to the two-phase version of the multiphase technique, but some-
what of more general nature, is the local-ratio technique. This technique was first
developed by Bar-Yehuda and Even [7] and later extended by Berman et al. [4] and
Bar-Yehuda [6]. The crux of the technique is as follows [5]. Assume that given an
n-dimensional vector "p, our goal is to find a n-dimensional solution vector "x that
maximizes (respectively, minimizes) the inner product "p · "x subject to some set F
of feasibility constraints on "x. Assume that we have decomposed the vector "p to
two vectors "p1 and "p2 with "p1 + "p2 = "p such that, for some r ≥ 1 (respectively,
r ≤ 1), we can find a solution vector "x satisfying F which r-approximates "p1 and "p2,
that is, which satisfies both "p1 · "x ≥ r ·max"y{ "p1 · "y} and "p2 · "x ≥ r ·max"y{ "p2 · "y}
(respectively, "p1 · "x ≤ r ·min"y{ "p1 · "y} and "p2 · "x ≤ r ·min"y{ "p2 · "y}). Then, "x also
r-approximates "p. This allows a given problem to be recursively broken down in
subproblems from which one can recover a solution to the original problem. The
local-ratio approach makes it easier to extend the results to a larger class of problems,
while the multiphase approach allows to obtain better approximation ratios in many
important special cases.

The multiphase technique was used in the context of job scheduling in [11,12]
and in the context of opportunity cost algorithms for combinatorial auctions in [1].
We will discuss the usage of the two-phase version of the multiphase approach in the
context of the IR problem [10,15] in the next section. In some cases, it is also possible
to explain the multiphase or the local-ratio approach using the primal-dual schema;
for example, see [5].

10.2.2.2 Application of the Two-Phase Technique to the IR Problem The fol-
lowing notations and terminologies are used for the rest of this section. An interval
[a, b] is the set [a, b] = {x ∈ R : a ≤ x ≤ b}. A rectangle R is [a, b]× [c, d] for
some two intervals [a, b] and [c, d], where × denotes the Cartesian product. The

228 EFFICIENT COMBINATORIAL ALGORITHMS FOR DNA SEQUENCE PROCESSING

weight of a rectangle R is denoted by w(R). We assume that the reader familiar with
standard techniques and data structures for the design and analysis of algorithms such
as in [20].

Let R1, R2, . . . , Rn be the n input rectangles in our collection, where Ri =
Xi × Yi for some two intervals Xi = [di, ei] and Yi = [fi, gi]. Consider the inter-
vals X1, X2, . . . , Xn formed by projecting the rectangles on one axis and call two
intervals Xi and Xj independent if and only if the corresponding rectangles Ri and
Rj are independent. The notation Xi # Xj (respectively, Xi �# Xj) is used to denote
if two intervals Xi and Xj are independent (respectively, not independent).

To simplify implementation, we first sort the set of numbers {di, ei | 1 ≤ i ≤ n}
(respectively, the set of numbers {fi, gi | 1 ≤ i ≤ n}) and replace each number in the
set by its rank in the sorted list. This does not change any feasible solution to the
given problem; however, after this O(n log n) time preprocessing we can assume that
di, ei, fi, gi ∈ {1, 2, . . . , 2n} for all i. This assumption simplifies the design of data
structures for the IR problem.

Now, we adopt the two-phase technique on the intervals X1, X2, . . . , Xn. The
precise algorithm is shown in Fig. 10.3. The solution to the IR problem consists
of those rectangles whose projections are returned in the solution at the end of the
selection phase.

To show that the algorithm is correct we just need to show that the selected rectan-
gles are mutually independent. This is obviously ensured by the final selection phase.
To implement this algorithm, we need to compute TOTAL(Xi) efficiently. Using the
fact that the intervals are considered in nondecreasing order of their end points, we

FIGURE 10.3 Algorithm TPA-IR: Adoption of the two-phase technique for the IR problem.

NONOVERLAPPING LOCAL ALIGNMENTS 229

can reduce this to the problem of maintaining a data structure D for a set of points
in the plane with coordinates from the set {1, 2, . . . , 2n} such that the following two
operations can be performed.

Insert(v, x, y): Insert the point with coordinates (x, y) (with x, y ∈ {1, 2, . . . , 2n})
and value v in D. Moreover, if Insert(v, x, y) precedes Insert(v′, x′, y′), then
y′ ≥ y.

Query(a, b, c): Given a query range (a, b, c) (with a, b, c ∈ {1, 2, . . . , 2n} ∪
{−∞,∞}), find the sum of the values of all points (x, y) in D with a ≤ x ≤ b

and y ≥ c.

One can solve this problem in O(n log n) time and space preprocessing and
O(log n) per query by using an appropriately augmented binary search tree; see [10,15]
for details. We can therefore implement the entire algorithm in O(n log n) time and
space.

We now sketch the main points of the proof of the performance ratio of Algo-
rithm TPA-IR as detailed in [10,15]. let B be a solution returned by Algorithm TPA-IR
and A be any optimal solution. For a rectangle R ∈ A, let us define the local conflict
number βR to be the number of those rectangles in B that were not independent of R

and were examined no earlier than R by the evaluation phase of Algorithm TPA-IR
and let β = maxR∈A βR. First, we show that Algorithm TPA-IR has a performance
ratio of β. Next, we can show that the performance ratio of Algorithm TPA-IR is
3 by showing that for the IR problem, β = 3. First note that β = 3 is possible; see
Fig. 10.4. Now we show that β > 3 is impossible. Refer to Fig. 10.4. Remember that
rectangles in an optimal solution contributing to β must not be independent of our
rectangle R and must have their right vertical right on or to the right of the vertical
line L. Since rectangles in an optimal solution must be independent of each other,
there can be at most one optimal rectangle crossing L (and, thereby conflicting with
R in its projections on the x axis). Any other optimal rectangle must lie completely
to the right of L and therefore may conflict with R in their projections on the y axis
only; hence there can be at most two such rectangles.

10.2.2.3 Further Discussions Algorithm TPA-IR makes a pass on the projections
of the rectangles on the x axis in a nondecreasing order of the end points of the pro-
jections. Can we improve the performance ratio if we run TPA-IR separately on the
projections on the x axis in left-to-right and in right-to-left order of end points and take
the better of the two solutions? Or, even further, we may try running Algorithm TPA-
IR two more times separately on the projections on the y axis in top-to-bottom and
in bottom-to-top order and take the best of the four solutions. It is easy to draw an
example that shows that even then the worst-case performance ratio will be 3. We
already exploited the planar geometry induced by the rectangles for the IR problem
to show that β ≤ 3. Further research may be necessary to see whether we can exploit
the geometry of rectangles more to design simple approximation algorithms with per-
formance ratios better than 2.5 in the weighted case or better than 2 in the unweighted
case.

230 EFFICIENT COMBINATORIAL ALGORITHMS FOR DNA SEQUENCE PROCESSING

Our rectangle

Three optimal rectangles
L

R

FIGURE 10.4 A tight example for Algorithm TPA-IR showing β = 3 is possible.

For the d-dimensional version, Algorithm TPA-IR can be applied in an obvious way
to this extended version by considering the projections of these hyper-rectangles on a
particular axis. It is not difficult to see that β ≤ 2d − 1 for this case [19], thus giving a
worst-case performance ratio of 2d − 1. Whether one can design an algorithm with a
performance ratio that increases less drastically (e.g., sublinearly) with d is still open.

10.3 GENOME TILING PROBLEMS

There are currently over 800 complete genome sequences available to the scientific
community, representing the three principal domains of life: bacteria, archaea, and
eukaryota [35]. Genome sequences vary widely in size and composition. In addition
to the thousands of sequences that encode functional proteins and genetic regulatory
elements, most eukaryotic genomes also possess a large number of noncoding se-
quences that are replicated in high numbers throughout the genome. These repetitive
elements were introduced over evolutionary time and consists of families of trans-
posable elements that can move from one chromosomal location to another, retroviral
sequences integrated into the genome via an RNA intermediate, and simple repeat
sequences that can originate de novo at any location. Nearly 50% of human genomic
DNA is associated with repetitive elements. The presence of repeat sequences can
be problematic for both computational and experimental biology research. For ex-
ample, BLAST searches [2] with queries containing repeats against large sequence
databases often result in many spurious subsequence matches, obscuring significant
results and wasting computational resources. Although it is now standard practice to
screen query sequences for repetitive elements, doing so subdivides the query into a
number of smaller sequences that often produce a less specific match than the original.
In an experimental context, when genomic sequence is used to investigate the binding
of complementary DNA, repetitive elements can generate false positive signals and
mask true positives by providing highly redundant DNA binding sites that compete
with the meaningful targets of complementary probe sequences.

GENOME TILING PROBLEMS 231

Genomic DNA can be screened for repeat sequences using specialized programs
such as RepeatMasker [39], which performs local subsequence alignments [41]
against a database of known repetitive elements [28]. Repeats are then masked within
the query sequence, whereby a single nonnucleotide character is substituted for the
nucleotides of each repeat instance. This global character replacement preserves the
content and relative orientation of the remaining subsequences, which are then inter-
spersed with character blocks representing the repetitive elements identified during
the screening process.

Although the screening and/or removal of repeats is generally beneficial, additional
problems may arise from the resulting genomic sequence fragmentation. Following
repeat sequence identification, the remaining high complexity component (i.e., non-
repetitive DNA) exists as a population of fragments ranging in size from a few nu-
cleotides to several kilobases. For organisms such as Homo sapiens, where the genome
contains many thousands of repeat elements, the vast majority of these high complex-
ity sequence fragments are below 1 Kb in size. This situation presents a significant im-
pediment to both computational and experimental research. Bioinformatics analyses
often benefit from the availability of larger contiguous sequences, typically 1 Kb and
larger, for homology searches and gene predictions. Similarly, very small sequences
(< 200 bp) are of limited use in many high throughput experimental applications.
These constraints provide the basis of the tiling problems formalized in this section.

DNA Microarray Design A principal motivation for looking at the tiling problems
considered in this paper is their application to the design of DNA microarrays for
efficient genome analysis. The microarrays we consider here are constructed from
amplified genomic DNA. Each element consists of a relatively long (typically 300 bp–
1.2 Kb) sequence of genomic DNA that is acquired via the polymerase chain reaction
(PCR) [33] in which a segment of DNA may be selectively amplified using a chemical
system that recreates DNA replication in vitro. Although the size resolution of these
array elements is not as fine as that of high density oligonucleotide systems, PCR-
based (or amplicon) microarrays provide experimental access to much larger regions
of contiguous genomic DNA. The tiling algorithm described here has recently been
used to design a microarray of this type to represent the complete sequence of human
chromosome 22 [37]. When considering PCR-based microarrays, we are concerned
with finding the maximum number of high complexity subsequence fragments given a
genomic DNA sequence whose repetitive elements have been identified and masked.
A maximal-coverage amplicon array can then be designed by deriving an optimal
tile path through the target genomic sequence such that the best set of fragments is
selected for PCR amplification. Determining this tile set allows one to achieve optimal
coverage of high complexity DNA across the target sequence, while simultaneously
maximizing the number of potential subsequences of sufficient size to facilitate large-
scale biological research.

10.3.1 Problem Statements

On the basis of the applications discussed in Section 10.3, we now formalize a family
of tiling problems. The following notations are used uniformly throughout the rest of

232 EFFICIENT COMBINATORIAL ALGORITHMS FOR DNA SEQUENCE PROCESSING

the paper:

� [i, j) denotes the set of integers {i, i+ 1, . . . , j − 1};
� [i, j] = [i, j + 1);
� f [i, j) and f [i, j] denote the elements of an array f with indices in [i, j) and

[i, j], respectively.

Our tiling problems build upon a basic genome tiling algorithm which we call the
GTile problem and describe as follows. The input consists of an array c[0, n) of real
numbers and two integer size parameters 	 and u. A subarray B = c[i, j) is called a
block of length j − i and weight w(B) =∑j−1

k=i ck, the weight of a set of blocks is the
sum of their weights and a block is called a tile if its length belongs to [, u]. Our goal
is to find a set of pairwise disjoint tiles with the maximum possible weight. The tiling
problems of interest in this paper are variations, restrictions, and generalizations of
the GTile problem specified by a certain combinations of the following items.

10.3.1.1 Compressed Versus Uncompressed Input Data This is motivated by a
simple binary classification of the high complexity regions of the genome sequence
from their low complexity counterparts. Now all entries of c[0, n) is either x or −x

for some fixed x > 0. Hence, the input sequence can be more efficiently represented
by simply specifying beginnings and endings of blocks of identical values.4 In other
words, we can compress the input sequence c[0, n) to a sequence of integers (indices)
S[0, m+ 1) such that

� S0 = 0, Sm = n+ 1, S1 ≥ S0 and Si > Si−1 for all i ∈ [2, m];
� each element of c[S2j, S2j+1) is x for all 0 ≤ j ≤ �m/2�;
� each element of c[S2j−1, S2j) is −x for all 0 < j ≤ �(m+ 1)/2�.

We note that the input size m+ 1 of such a compressed input data is typically
significantly smaller than n. As a result, we can get significantly faster algorithms if
we can design an algorithm for compressed inputs with a running time nearly linear in
m. Furthermore, this also allows one to develop efficient hybrid approach to solving
the tiling problems: first use a crude binary classification of the regions to quickly
obtain an initial set of tiles and then refine the tiles taking into consideration the
relative importances of the high complexity elements.

10.3.1.2 Unbounded Versus Bounded Number of Tiles Another important item
of interest is when the number of tiles that may be used is at most a given value t,
which could be considerably smaller than the number of tiles used by a tiling with no

4Notice that a {0, 1} classification of the high complexity regions from the low complexity ones is not
suitable since then we do not penalize for covering low complexity regions and solving the tiling problem
becomes trivial.

GENOME TILING PROBLEMS 233

restrictions on the number of tiles. This is motivated by the practical consideration
that the capacity of a microarray as obtainable by current technology is bounded.

10.3.1.3 Overlapping Versus Nonoverlapping Tiles To enhance searching se-
quence databases for homology searches to allow for the case when potential matches
can be found at tile boundaries, it may be useful to relax the condition of disjointness
of tiles by allowing two tiles to share at most p elements for some given (usually
small) p > 0. However, to ensure that we do not have too many overlaps, we need
to penalize them by subtracting the weight of each overlapped region from the sum
of weights of all tiles, where the weight of each overlapped region is the sum of the
elements in it. In other words, if T is the set of tiles and R is the set of elements of C
that belong to more than one tile in T , then the weight is

∑
T∈T w(T)−∑ci∈R ci.

10.3.1.4 One-Dimensional Versus d-Dimensional Generalization of the GTile
problem in d-dimensions has applications in database designs and related prob-
lems [16,18,29,30,34].5 In this case, we are given a d-dimensional array C of size
n1 × n2 × · · · × nd with 2d size parameters 	1, 	2, . . . , 	d, u1, u2, . . . , ud , a tile is a
rectangular subarray of C of size p1 × p2 × · · · × pd satisfying 	i ≤ pi ≤ ui for all
i, the weight of a tile is the sum of all the elements in the tile and our goal is again to
find a set of tiles such that the sum of weights of the tiles is maximized.

We examine only those combinations of the above four items that are of impor-
tance in our applications simplify exposition, unless otherwise stated explicitly, the
GTile problem we consider is one dimensional with uncompressed inputs, unbounded
number of tiles and no overlaps. In addition to the previously defined notations, unless
otherwise stated, we use the following notations and variables with their designated
meanings throughout the rest of the paper: n+ 1 is the number of elements of the
(uncompressed) one-dimensional input array c[i, j), n1 ≤ n2 ≤ · · · ≤ nd are the sizes
of the dimensions for the d-dimensional input array, w(T) is the weight for a set of
tiles T , t is the given number of tiles when the number of tiles is bounded and p is
the maximum overlap between two tiles in one-dimension. Finally, all logarithms are
in base 2 unless stated otherwise explicitly.

10.3.2 Related Work

Tiling an array of numbers in one or more dimensions under various constraints
is a very active research area (e.g., see [16–18,29,30,34,40]) and has applications
in several areas including database decision support, two-dimensional histogram
computation and resource scheduling. Several techniques, such as the slice-and-dice
approach [16], the shifting technique [26, Chapter 9] and dynamic programming
methods based on binary space partitions [17,29,34] have proven useful for these
problems. Our problems are different from the tiling problems in [16,17,29,30,34,40];
in particular, we do not require partitioning of the entire array, the array entries may

5For example, in two dimensions with 	1 = 	2 = 0 and u1 = u2 = ∞ this is precisely the ARRAY-RPACK
problem discussed in [29].

234 EFFICIENT COMBINATORIAL ALGORITHMS FOR DNA SEQUENCE PROCESSING

TABLE 10.1 [13,14] A Summary of the Results for the Genome Tiling Problems. All
the Algorithms are Either New or Direct Improvements of any Previously Known. The
Parameter ε > 1 is any Arbitrary Constant. A s-Subset is a Subset of s Elements. For
the d-dimensional Case, M = �d

i=1ni(ui − �i + 1), N =max1≤i≤dni and u
�
= maxi

ui

�i
. For

Our Biology Applications p ≤ 100 < �/2 � n, t � n/u + �, m � n and �/u − � < 6. The
Column Labeled “Approximation Ratio” Indicates Whether the Algorithm Computes
the Optimal Solution Exactly or, for an Approximation Algorithm, the Ratio of the Total
Weight of Our Tiling to that of the Optimum

Version of GTile Time O() Space O() Approximation ratio

Basic n n Exact
Overlap is from sn n Exact
a s-subset of
[0, δ], δ < 	/2
Compressed m 	

u−	
m 	

u−	
Exact

input
Number of min{n log n

	
, nt} n Exact

tiles given

d-dimensional
((

u

	

)
ε
)4(u

)2
ε2

Mε2 M
(

1− 1
ε

)d
d-dimensional, number tM + dM logε M M

(
�d−1

i=1 (�1+ log ni�)
)−1

of tiles given +dN
log N

log log N

M(2ε−1)d−1+1 dt M(2ε−1)d−1+1 dt
(
�d−1

i=1

(�1+ log ni

ε
�))−1

be negative and there are lower and upper bounds on the size of a tile. Other papers
that most closely relate to our work are the references [38] and [46]. The authors
in [38] provide an O(n) time algorithm to find all maximal scoring subsequences of
a sequence of length n. In [46] the authors investigate computing maximal scoring
subsequences that contain no subsequences with weights below a particular threshold.

TABLE 10.2 [13,14] Summary of Target Chromosome Sequences. The Sequences
Increase in Repeat Density with the Complexity of the Genome, Causing a Greater Degree
of Fragmentation and Loss of High Complexity Sequence Coverage in the Unprocessed
Chromosomes. This Situation Is Especially Problematic in the Higher Eukaryotes Such
As Human and Mouse

Repeat Repetitive % High Complexity
Chromosome Nucleotides Elements DNA (bp) Repeats DNA (bp)

C. elegans chrV 20,916,335 16,575 2,414,183 11.5 18,502,152
A. thaliana chrI 30,074,119 14,490 3,557,144 11.8 26,516,975
D. melanogaster chr3 51,243,003 27,259 3,106,633 6 48,136,370
M. musculus chr1 196,842,934 288,551 90,532,869 46 106,310,065
H. sapiens chr1 246,874,334 308,257 132,580,913 53.7 114,293,421

GENOME TILING PROBLEMS 235

10.3.3 Synopsis of Results

Our main theoretical results are summarized in Table 10.1; for more details, see our
publications [13,14]. All of our methods use simple data structures such as a double-
ended queues and are therefore easy to implement. The techniques used for many of
these tiling problems in one dimension use a solution of an Online Interval Maximum
(OLIM) problem via a windowing scheme reminiscent of that in [21]. However, the
primary consideration in the applications in [21] was reduction of space because of the
online nature of their problems, whereas we are more concerned with time-complexity
issues since our tiling problems are off-line in nature (and hence space for storing the
entire input is always used). Moreover, our windowing scheme is somewhat different

TABLE 10.3 [13,14] GTile Results for the 5 Model Eukaryotic Chromosomes. Maximal
Coverage of the High Complexity DNA is Achieved with Minimal Repeat Nucleotide
Inclusion, while the Number of Required Tiles Decreases. Sets of Nonoverlapping Tiles
were Computed for the Size Range of 300 bp–1 Kb

High Complexity % Repetitive %
Target Chromosome Tiles DNA (bp) Coverage DNA (bp) Repeats

Initial sequence coverage

C. elegans chrV 22,842 17,852,822 96.4
A. thaliana chrI 30,075 25,972,994 98
D. melanogaster chr3 57,568 47,366,173 98.3
M. musculus chr1 142,165 90,988,520 85.5
H. sapiens chr1 151,720 97,191,872 85

GTile, repeat penalty 6:1

C. elegans chrV 19,034 18,299,667 99 237,772 1.28
A. thaliana chrI 25,349 26,376,577 99 196,222 0.74
D. melanogaster chr3 46,901 48,056,034 99 453,704 0.93
M. musculus chr1 128,472 96,280,008 90.5 2,314,565 2.34
H. sapiens chr1 137,403 101,866,284 89 2,026,782 1.95

GTile, repeat penalty 5:1

C. elegans chrV 18,975 18,329,464 99 290,152 1.55
A. thaliana chrI 25,344 26,391,095 99.5 213,917 0.8
D. melanogaster chr3 46,878 48,061,534 99.8 465,573 0.96
M. musculus chr1 127,146 97,953,586 92 4,304,560 4.2
H. sapiens chr1 136,457 103,434,234 90.4 3,788,374 3.53

GTile, repeat penalty 4:1

C. elegans chrV 18,891 18,345,048 99 348,086 1.86
A. thaliana chrI 25,342 26,396,637 99.5 226,559 0.85
D. melanogaster chr3 46,867 48,062,909 99.8 471,650 0.97
M. musculus chr1 125,787 98,617,314 92.7 5,765,790 5.52
H. sapiens chr1 135,305 104,138,841 91 5,247,600 4.79

236 EFFICIENT COMBINATORIAL ALGORITHMS FOR DNA SEQUENCE PROCESSING

from that in [21] since we need to maintain multiple windows of different sizes and
data may not arrive at evenly spaced time intervals.

We also summarize the application of the GTile problem to the genomic sequences
of 5 model eukaryotes. The single largest chromosome from each organism was
considered as representative of the characteristics of that particular genome. Table 10.2
lists the target chromosomes and their sequence properties. The chromosomes vary
in the degree of repeat density, where the first few examples contain relatively few
repetitive elements in comparison to the two mammalian sequences. In the cases of
C. elegans, A. thaliana, and D. melanogaster, the low repeat content allows us to tile
the sequences fairly well simply by subdividing the remaining high complexity DNA
into sequence fragments within the appropriate size range. However, as the repeat
density increases in the genomes of higher eukaryotes, so does the fragmentation of
the high complexity sequence containing genes and regulatory elements of biological
significance. It soon becomes impossible to achieve maximal coverage of the high
complexity sequence in the absence of further processing.

The results of applying the tiling algorithm to each chromosome appear in
Table 10.3. GTile improves the sequence coverage in all cases, easily covering nearly
100% of the high complexity DNA in the smaller, less complex genomes with few
incorporated repeats. In practice, the coverage will never reach 100% because there
remains a population of small high complexity sequences whose sizes fall below the
lower bound. In terms of experimental applications, these sequences are too small to
be chemically amplified by PCR and are therefore excluded from consideration.

ACKNOWLEDGMENTS

Bhaskar DasGupta was supported in part by NSF grants IIS-0346973, IIS-0612044
and DBI-0543365. Ming-Yang Kao was supported in part by NSF grant EIA-0112934.
The authors would also like to thank all their collaborators in these research topics.
Figures 10.1–10.4 and the related text is included from [10] with kind permission
of Springer Science and Business Media. Tables 10.1–10.3 and the related text is
included from [13] with kind permission of Mary Ann Liebert, Inc.

REFERENCES

1. Akcoglu K, Aspnes J, DasGupta B, Kao M-Y. Opportunity Cost Algorithms for Com-
binatorial Auctions. In: Kontoghiorghes EJ, Rustem B, Siokos S, editors. Applied Opti-
mization: Computational Methods in Decision-Making, Economics and Finance. Kluwer
Academic Publishers; 2002. pp. 455–479.

2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. A basic local alignment search
tool. J Mol Biol 1990;215:403–410.

3. Bafna V, Narayanan B, Ravi R. Nonoverlapping local alignments (Weighted independent
sets of axis-parallel rectangles. Discrete Appl Math 1996;71:41–53.

REFERENCES 237

4. Bafna V, Berman P, Fujito T. Constant ratio approximation of the weighted feedback
vertex set problem for undirected graphs. International Symporium on Algorithms and
Computation, LNCS 1004; 1995. pp. 142–151.

5. Bar-Noy A, Bar-Yehuda R, Freund A, Naor JS, Schieber B. A unified approach to ap-
proximating resource allocation and scheduling. Proceedings of the 32nd Annual ACM
Symposium on Theory of Computing; 2000. pp. 735–744.

6. Bar-Yehuda R. One for the price of two: a unified approach for approximating covering
problems. Algorithmica, 27 (2); 2000. pp. 131–144.

7. Bar-Yehuda R, Even S. A local-ratio theorem for approximating the weighted vertex cover
problem. Ann Discrete Math 1985;25:27–46.

8. Bar-Yehuda R, Halldörsson MM, Naor J, Shachnai H, Shapira I. Scheduling split intervals.
14th ACM-SIAM Symposium on Discrete Algorithms, 2002. pp. 732–741.

9. Berman P. A d/2 approximation for maximum weight independent set in d-claw free
graphs. Proceedings of the 7th Scandinavian Workshop on Algorithmic Theory, Lecture
Notes in Computer Science, 1851. Springer-Verlag; 2000. pp. 214–219.

10. Berman P, DasGupta B. A Simple Approximation Algorithm for Nonoverlapping Lo-
cal Alignments (Weighted Independent Sets of Axis Parallel Rectangles). In: Biocom-
puting, Vol. 1. Pardalos PM, Principe J, editors. Kluwer Academic Publishers; 2002.
pp. 129–138.

11. Berman P, DasGupta B. Improvements in Throughput Maximization for Real-Time
Scheduling. Proceedings of the 32nd Annual ACM Symposium on Theory of Comput-
ing; 2000. pp. 680–687.

12. Berman P, DasGupta B. Multi-phase Algorithms for Throughput Maximization for Real-
Time Scheduling. J Comb Optim 2000;4(3):307–323.

13. Berman P, Bertone P, DasGupta B, Gerstein M, Kao M-Y, Snyder M. Fast Optimal Genome
Tiling with Applications to Microarray Design and Homology Search. J Comput Biol;
2004;11(4):766–785.

14. Berman P, Bertone P, DasGupta B, Gerstein M, Kao M-Y, Snyder M. Fast Optimal Genome
Tiling with Applications to Microarray Design and Homology Search. 2nd International
Workshop on Algorithms in Bioinformatics (WABI 2002), LNCS 2452, Guigó R, Gusfield
D, editors. Springer Verlag; 2002. 419–433.

15. Berman P, DasGupta B, Muthukrishnan S. Simple Approximation Algorithm for Nonover-
lapping Local Alignments. 13th ACM-SIAM Symposium on Discrete Algorithms; 2002.
pp. 677–678.

16. Berman P, DasGupta B, Muthukrishnan S. Slice and dice: A simple, improved approxi-
mate tiling recipe. Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete
Algorithms; 2002. pp. 455–464.

17. Berman P, DasGupta B, Muthukrishnan S. On the exact size of the binary space
partitioning of sets of isothetic rectangles with applications. SIAM J Discrete Math
2002;15(2):252–267.

18. Berman P, DasGupta B, Muthukrishnan S, Ramaswami S. Improved approximation algo-
rithms for tiling and packing with rectangles. Proceedings of the 12th Annual ACM-SIAM
Symposium on Discrete Algorithms; 2001;427–436.

19. Chlebı́k M, Chlebı́ková J. Approximation Hardness of Optimization Problems in Inter-
section Graphs of d-dimensional Boxes. Proceedings of the 16th Annual ACM-SIAM
Symposium on Discrete Algorithms; 2005. pp. 267–276.

238 EFFICIENT COMBINATORIAL ALGORITHMS FOR DNA SEQUENCE PROCESSING

20. Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to Algorithms. The MIT
Press; 2001.

21. Datar M, Gionis A, Indyk P, Motwani R. Maintaining stream statistics over sliding win-
dows. Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms;
2002. pp. 635–644.

22. Frenkel KA. The human genome project and informatics. Commun ACM 1991;34(11):41–
51.

23. Garey MR, Johnson DS. Computers and Intractability: A Guide to the Theory of NP-
completeness. W. H. Freeman, 1979.

24. Gusfield D. Algorithms on Strings, Trees, and Sequences: Computer Science and Com-
putational Biology. Cambridge University Press; 1997.

25. Halldórsson MM. Approximating discrete collections via local improvements. Proceed-
ings of the 6th ACM-SIAM Symposium on Discrete Algorithms; 1995. pp. 160–169.

26. Hochbaum D. Approximation Algorithms for NP-hard Problems, PWS publishers, 1996.

27. Joseph D, Meidanis J, Tiwari P. Determining DNA sequence similarity using maximum
independent set algorithms for interval graphs. 3rd Scandinavian Workshop on Algorithm
Theory, LNCS 621. 1992. pp. 326–337.

28. Jurka J. Repbase Update: a database and an electronic journal of repetitive elements.
Trends Genet. 2000;9:418–420.

29. Khanna S, Muthukrishnan S, Paterson M. On approximating rectangle tiling and packing.
Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms; 1998.
pp. 384–393.

30. Khanna S, Muthukrishnan S, Skiena S. Efficient array partitioning. In: Goos G, Hartmanis
J, van Leeuwen J, editors. Lecture Notes in Computer Science 1256: Proceedings of the
24th International Colloquium on Automata, Languages, and Programming. Springer-
Verlag, New York, NY; 1997. pp. 616–626.

31. Lander ES, Langridge R, Saccocio DM. Mapping and interpreting biological information.
Commun ACM 1991;34(11):33–39.

32. Miller W, Scbwartz S, Hardison RC. A point of contact between computer science and
molecular biology. IEEE Comput Sci Eng. 1994;1(1)69–78.

33. Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H. Specific enzymatic amplifi-
cation of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Sym. 1986;51:
263–273.

34. Muthukrishnan S, Poosala V, Suel T. On rectangular partitions in two dimensions: Algo-
rithms, complexity and applications. Proceedings of the 7th International Conference on
Database Theory. 1999. pp. 236–256.

35. National Center for Biotechnology Information (NCBI). www.ncbi.nlm.nih.gov, 2002.

36. Papadimitriou CH. Computational Complexity, Addison-Wesley; reading, MA, 1994.

37. Rinn JL, Euskirchen G, Bertone P, Martone R, Luscombe NM, Hartman S, Harrison PM,
Nelson K, Miller P, Gerstein M, Weissman S, Snyder M. The transcriptional activity of
human chromosome 22. Genes and Development, Forthcoming.

38. Ruzzo WL, Tompa M. Linear time algorithm for finding all maximal scoring subse-
quences. Proceedings of the 7th International Conference on Intelligent Systems for
Molecular Biology. 1999. pp. 234–241.

39. Smith AFA. Green P. RepeatMasker, repeatmasker.genome.washington.edu, 2002.

REFERENCES 239

40. Smith A, Suri S. Rectangular tiling in multi-dimensional arrays. Proceedings of the 10th
Annual ACM-SIAM Symposium on Discrete Algorithms. 1999. pp. 786–794.

41. Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol
1981;147:195–197.

42. Vazirani V. Approximation Algorithms. Springer-Verlag, 2001.

43. Venter JC, et al. The sequence of the human genome. Science. 2001; 291: pp. 1304–1351.

44. Waterman MS. Sequence alignments. In: Waterman MS, editor. Mathematical Methods
for DNA Sequences. CRC, Boca Raton, FL; 1989. pp. 53–92.

45. Smith TF, Waterman MS. The identification of common molecular sequences. J Mol Biol.
1981;147:195–197.

46. Zhang Z, Berman P, Miller W. Alignments without low-scoring regions. J Comput Biol
1998;5(2):197–210.

11
ALGORITHMS FOR MULTIPLEX
PCR PRIMER SET SELECTION
WITH AMPLIFICATION LENGTH
CONSTRAINTS

K. M. Konwar, I. I. Măndoiu, A. C. Russell, and A. A. Shvartsman
Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA

11.1 INTRODUCTION

Numerous high throughput genomics assays require rapid and cost-effective
amplification of a large number of genomic loci. Most significantly, Single Nu-
cleotide Polymorphism (SNP) genotyping protocols often require the amplification of
thousands of SNP loci of interest [13]. Effective amplification can be achieved using
the polymerase chain reaction [17] (PCR), which cleverly exploits the DNA replica-
tion machinery in a cyclic reaction that creates an exponential number of copies of
specific DNA fragments.

In its basic form, PCR requires a pair of short single-stranded DNA sequences
called primers for each amplification target. More precisely, the two primers
must be (perfect or near perfect) Watson–Crick complements of the 3′ ends of
the forward and reverse strands of the double-stranded amplification target (see
Fig. 11.1). Typically, there is significant freedom in selecting the exact ends of an
amplification target, that is, in selecting PCR primers. Consequently, primer selection
can be optimized with respect to various criteria affecting reaction efficiency,
such as primer length, melting temperature, secondary structure, and so on. Since

Bioinformatics Algorithms: Techniques and Applications, Edited by Ion I. Mǎndoiu
and Alexander Zelikovsky
Copyright © 2008 John Wiley & Sons, Inc.

241

242 ALGORITHMS FOR MULTIPLEX PCR PRIMER SET SELECTION

f i

r i

3'

3'

5'

5'

t-1 t -1L

Forward primer

Reverse primer

ith amplification locus

L-x- L-x-x

FIGURE 11.1 Strings f i and ri consist of the L− x− 	 DNA bases immediately preceding
in 3′ − 5′ order the ith amplification locus along the forward (respectively, reverse) DNA
genomic sequence, where L is the given threshold on PCR amplification length, 	 is the primer
length, and x is the length of an amplification locus (x = 1 for SNP genotyping). If forward and
reverse PCR primers cover f i and ri at positions t and t′, respectively, then PCR amplification
product length is equal to [2(L− x−)+ x]− [(t − 1)+ (t′ − 1)]. This is no larger than L if
and only t + t′ ≥ L′ + 1, where L′ = (L− x−)− (− 1).

the efficiency of PCR amplification falls off exponentially as the length of the
amplification product increases, an important practical requirement is that the
distance between the binding sites of the two primers should not exceed a certain
threshold (typically around 1000 base pairs).

Multiplex PCR (MP-PCR) is a variant of PCR in which multiple DNA fragments
are amplified simultaneously. While MP-PCR is still making use of two oligonu-
cleotide primers to define the boundaries of each amplification fragment, a primer
may now participate in the amplification of multiple targets. A primer set is feasible
as long as it contains a pair of primers that amplify each target. Note that MP-PCR
amplification products are available only as a mixture and may include unintended
products. Nevertheless, this is not limiting the use of MP-PCR in applications such as
SNP genotyping, since allelic discrimination methods (typically hybridization based)
can be applied directly to complex mixtures of and are not significantly affected by
the presence of a small number of undesired amplification products [13].

Much of the previous work on PCR primer selection has focused on single primer
pair optimization with respect to the above biochemical criteria. This line of work has
resulted in the release of several robust software tools for primer pair selection, the
best known of which is the Primer3 package [21]. In the context of multiplex PCR, an
important optimization objective is to minimize the total number of primers [4,18],
since reducing the number of primers reduces assay cost, increases amplification
efficiency by enabling higher effective concentration of the primers, and minimizes
primer cross-hybridization and unintended amplification. Pearson et al. [19] were
the first to consider minimizing the number of primers in their optimal primer cover

INTRODUCTION 243

problem: given a set of n DNA sequences and an integer 	, select a minimum number
of 	-mers such that each sequence contains at least one selected 	-mer. Pearson
et al. proved that the primer cover problem is as hard to approximate as set cover
(i.e., not approximable within a factor better than (1− o(1))O(log n) unless NP ⊆
TIME(nO(log log n)) [5]), and that the classical greedy set cover algorithm achieves an
approximation factor of O(log n).

The problem formulation in Pearson et al. [19] decouples the selection of forward
and reverse primers, and in particular, cannot explicitly enforce bounds on PCR am-
plification length. A similar remark applies to problem formulations in recent works
on degenerate PCR primer selection [15,23]. Such bounds can be enforced only by
conservatively defining the allowable primer binding regions. For example, in order
to guarantee a distance of L between the binding sites of the forward and reverse
primers amplifying a SNP, one could confine the search to primers binding within
L/2 nucleotides on each side of the SNP locus. However, since this approach reduces
the number of feasible candidate primer pairs by a factor of almost 2,1 it may lead to
significant suboptimality in the total number of primers needed to amplify all given
SNP loci.

Motivated by the requirement of unique PCR amplification in synthesis of spotted
microarrays, Fernandes and Skiena [6] introduced an elegant minimum multicolored
subgraph formulation for the primer selection problem, in which each candidate
primer is represented as a graph node and each two primers that feasibly amplify a
desired locus define an edge “colored” by the locus number. Minimizing the number of
PCR primers reduces to finding a minimum subset of the nodes inducing edges of all
possible colors. Unfortunately, approximating the minimum multicolored subgraph
appears to be difficult — the best approximation factor derived via this reduction is
currently O(L log n), where n is the number of amplification loci and L is the upper
bound on the PCR amplification length [7].

In this chapter we make the following contributions.

� First, we introduce a new string covering formulation for the MP-PCR primer
set selection problem with amplification length constraints that translates into
integer programs that are much more compact than those resulting from the
minimum multicolored subgraph formulation of Fernandes and Skiena [6].
Our compact integer programs enable computing exact solutions for moderate
problem instances using general-purpose integer programming solvers such as
CPLEX [3].

� Second, we show that a modification of the classical greedy algorithm for the set
cover problem achieves an approximation factor of 1+ ln(�), where � is the
maximum “coverage gain” of a primer. The value of � is never more than nL,
and in practice it is up to orders of magnitude smaller. The approximation factor

1For example, assuming that all DNA 	-mers can be used as primers, out of the (L− 	+ 1)(L− 	+ 2)/2
pairs of forward and reverse 	-mers that can feasibly amplify a SNP locus, only (L− 	+ 1)2/4 have
both 	-mers within L/2 bases of this locus.

244 ALGORITHMS FOR MULTIPLEX PCR PRIMER SET SELECTION

is established using a novel framework for analyzing greedy algorithms based
on monotonic potential functions. Our potential function technique generalizes
several results for the classical set cover problem and its variants [1,2,10,16,22],
and is of interest in its own right.

� Finally, we give the results of a comprehensive experimental study comparing
our integer programming and greedy algorithms with other heuristics proposed
in the literature. Experiments on both synthetic and human genome test cases
show that the new potential function greedy algorithm obtains significant
reductions in the number of primers with highly scalable running time.

The rest of the chapter is organized as follows. In next section, we introduce
notations and give a formal problem definition of MP-PCR primer selection with
amplification length constraints. In Section 11.3, we introduce the string covering
formulation of the problem and give a compact integer program formulation. In Sec-
tion 11.4, we describe the greedy algorithm, give its performance analysis, and discuss
practical implementation issues. Finally, we present experimental results in Section
11.5 and conclude in Section 11.6.

11.2 NOTATIONS AND PROBLEM FORMULATION

Let
 = {A, C, G, T } be the four nucleotide DNA alphabet. We denote by
∗ the set
of strings over
, and by |s| the length of string s ∈
∗. For a string s and an integer
1 ≤ t ≤ |s|, we denote by s[1, .., t] the prefix of length t of s. We use 	 to denote
the required primer length, L to denote the given threshold on PCR amplification
length, and n to denote the number of amplification loci. We say that primer p =
p1, p2, . . . , p	 hybridizes (or covers) string s = s1, s2, . . . , sm at position t ≤ m−
	+ 1 if st, st+1, . . . , st+	−1 is the Watson–Crick complement of p, that is, if st+j is
the Watson–Crick complementary base of p	−j for every 0 ≤ j ≤ 	− 1.

For each i ∈ {1, . . . , n}, we denote by f i (respectively, ri) the string preceding the
amplification locus in 3′ − 5′ order in the forward (respectively, reverse) DNA ge-
nomic sequence where potentially useful primer binding may occur. More precisely,
if the length of the amplification locus is denoted by x (x = 1 for SNP genotyping),
then f i and ri consist of the L− x− 	 DNA bases immediately preceding in 3′ − 5′
order the ith amplification locus along the forward (respectively, reverse) DNA ge-
nomic sequence. Note that a primer can hybridize f i (respectively, ri) only at positions
t between 1 and L′, where L′ = (L− x−)− (− 1). Simple arithmetic shows that
two primers that hybridize to f i and ri at positions t and t′ lead to an amplification
product of length at most L if and only if t + t′ ≥ L′ + 1 (see Fig. 11.1, and note
that f i and ri, and hence hybridization positions, are indexed in the respective 3′ − 5′
orders, that is, they increase when moving toward the amplification locus).

Primers p and p′ (not necessarily distinct) are said to feasibly amplify SNP locus
i if there exist integers t, t′ ∈ {1, . . . , L− 	+ 1} such that the following conditions
are simultaneously satisfied:

INTEGER PROGRAM FORMULATIONS FOR MPSS-L 245

1. p hybridizes at position t of f i,

2. p′ hybridizes at position t′ of ri, and

3. t + t′ ≥ L′ + 1.

A set of primers P is said to be an L-restricted primer cover for n SNPs defining
sequences (f i, ri), if, for every i = 1, . . . , n, there exist primers p, p′ ∈ P feasibly
amplifying SNP locus i. The minimum primer set selection problem with amplifi-
cation length constraints (MPSS-L) is defined as follows: Given primer length 	,
amplification length upper bound L, and n pairs of sequences (f i, ri), i = 1, . . . , n,
find a minimum size L-restricted primer cover consisting of primers of length 	.

11.3 INTEGER PROGRAM FORMULATIONS FOR MPSS-L

Fernandes and Skiena [6] proposed an elegant minimum multicolored subgraph
formulation for primer set selection. In this formulation, each candidate primer is
viewed as a graph node, and each two primers that feasibly amplify a desired locus
define an edge “colored” by the locus number. The objective is to find a minimum
number of nodes inducing edges of all possible colors. The minimum multicolored
subgraph formulation can be cast as an integer linear program by introducing a 0/1
variable xp for every candidate primer p, and a 0/1 variable yp,p′ for every two (not
necessarily distinct) primers p and p′ feasibly amplifying at least one of the SNP loci,
as follows [7]:

minimize
∑
p∈P

xp, (11.1)

subject to ∑
yp,p′ ≥ 1, i = 1, . . . , n, (11.2)

yp,p′ ≤ xp, p ∈ P, (11.3)

xp, yp,p′ ∈ {0, 1}, (11.4)

where P is the set of O(nL) candidate primers. The sum in Equation 11.2 is over
all pairs (p, p′) feasibly amplifying SNP locus i; this set of constraints ensures that
each SNP locus is feasibly amplified by two of the selected primers. Constraints 11.3
ensure that only selected primers can be used to amplify SNP loci.

Unfortunately, the integer programs 11.1–11.4 cannot be used to solve practical
MPSS-L problem instances due to its large size. In particular, the number of vari-
ables yp,p′ can be as large as �(nL2), which reaches into the millions for typical
values of L.

Below we give a much more compact integer program formulation based on a
novel string covering formulation of MPSS-L. The key idea is to view MPSS-L
as a generalization of the partial set cover problem [22], in which the objective is

246 ALGORITHMS FOR MULTIPLEX PCR PRIMER SET SELECTION

to cover a certain fraction of the total number of elements of a ground set using
the minimum number of given subsets. In the case of MPSS-L the elements to be
covered are the nonempty prefixes in {f i[1, .., j], ri[1, .., j] |1 ≤ i ≤ n, 1 ≤ j ≤ L′},
where, as in Section 11.2, L′ = (L− x−)− (− 1). Each primer p covers the set
of prefixes f i[1, ..., j] and ri[1, .., j] for which p hybridizes to f i, respectively, ri, at
a position t ≥ j. The objective is to choose the minimum number of primers that cover
at least L′ + 1 of the 2L′ elements of each set {f i[1, .., j], ri[1, .., j] | 1 ≤ j ≤ L′}
for i ∈ {1, . . . , n}.

To formulate this as an integer program, we again introduce a 0/1 variable xp

for every candidate primer p, which is set to 1 if and only if primer p is selected.
We also introduce 0/1 variables z(f i, j) (respectively, z(ri, j)) for every i = 1, . . . , n,
1 ≤ j ≤ L′; such a variable is set to 1 if and only if the prefix f i[1, .., j] (respectively,
ri[1, .., j]) is covered by at least one of the selected primers. Using these variables,
MPSS-L can be formulated as follows:

minimize
∑
p∈P

xp, (11.5)

subject to

L′∑
j=1

z(f i, j)+
L′∑

j=1

z(ri, j) ≥ L′ + 1 i = 1, . . . , n, (11.6)

z(f i, j) ≤
∑

p hybridizes

to f i at t ≥ j

xp, i = 1, . . . , n, 1 ≤ j ≤ L′, (11.7)

z(ri, j) ≤
∑

p hybridizes

to ri at t ≥ j

xp, i = 1, . . . , n, 1 ≤ j ≤ L′, (11.8)

xp, z(f i, j), z(ri, j) ∈ {0, 1}. (11.9)

Integer programs 11.5–11.9 has O(nL) variables and O(nL) constraints. However,
its solution via general-purpose solvers such as CPLEX still requires prohibitively
long runtime, mostly due to the fact that each constraint has O(L) variables, and
therefore the underlying integer program matrix is relatively dense. An equivalent
formulation leading to a much sparser matrix, and in practice, to greatly reduced
runtime is obtained as follows. Let p(f i, j) (respectively, p(ri, j)) be the unique
primer hybridizing at position j of f i (respectively, ri). Constraints 11.7 ensure that
z(f i, j) is set to 1 only when at least one of the primers hybridizing to f i at a position
t ≥ j is selected. This happens if either p(f i, j) or a primer hybridizing to f i at a
position t > j is selected, and in the latter case z(f i, j + 1) will be set to 1 as well.

A GREEDY ALGORITHM 247

Thus, constraints 11.7 can be replaced by

z(f i, L′) ≤ xp(f i,L′), i = 1, . . . , n, (11.10)

z(f i, j) ≤ xp(f i,j) + z(f i, j + 1), i = 1, . . . , n, 1 ≤ j < L′,

(11.11)

and Equation 11.8 can be similarly replaced by the nL′ constraints obtained from
Equations 11.10 and 11.11 after substituting ri for f i.

11.4 A GREEDY ALGORITHM

In this section, we describe an efficient greedy algorithm for MPSS-L and then
establish its approximation guarantee. The algorithm, which can be seen as a
generalization of the greedy algorithm for the set cover problem, critically exploits
the string covering formulation introduced in Section 11.3 . To enable future appli-
cation of our techniques to other covering problems, we describe the algorithm and
its analysis using an axiomatic framework based on monotonic potential functions.

For a set of primers P , let �i(P) denote the minimum between L′ + 1 and the
number of prefixes of {f i[1, .., j], ri[1, .., j] | 1 ≤ j ≤ L′} covered by at least one
primer in P . Also, let �(P) =∑n

i=1 �i(P). The following properties of the integer
valued set function � are immediate

(A1) �(∅) = 0.

(A2) There exists a constant �max such that �(P) = �max if and only if P is
a feasible solution (�max = n(L′ + 1) for MPSS-L).

(A3) � is a nondecreasing set function, that is, �(P) ≥ �(P ′) whenever
P ⊇ P ′, and furthermore, for every P such that �(P) < �max, there exists
p �∈ P such that �(P ∪ {p}) > �(P).

Properties (A1)–(A3) suggest using �(·) as a measure of progress toward feasibil-
ity, and employing the generic greedy algorithm in Fig. 11.2 to solve MPSS-L. The
greedy algorithm starts with an empty set of primers and then iteratively adds the
primer that gives the largest increase in �, until reaching feasibility. By (A1)–(A3),

(1) P ← ∅
(2) While Φ (P) < Fmax do

(a) Find a primer p P maximizing Δ(p,P) := Φ(P U {p})−Φ (P)

(b) P ← P U {p}

(3) Return P

FIGURE 11.2 The generic greedy algorithm.

248 ALGORITHMS FOR MULTIPLEX PCR PRIMER SET SELECTION

this algorithm will end in a finite number of steps and will return a feasible MPSS-L
solution.

Let us denote by �(p, P) the increase in � (also referred to as the “gain”) obtained
by adding primer p to set P , that is, �(p, P) = �(P ∪ {p})−�(P). By (A3), it
follows that the gain function � is nonnegative. It is easy to verify that � is also
monotonically nonincreasing in the second argument, that is,

(A4) �(p, P) ≥ �(p, P ′) for every p and P ⊆ P ′.

Theorem 11.1 For every set function � satisfying (A1)–(A4), the greedy algorithm
in Fig. 11.2 returns a feasible solution of size at most 1+ ln � times larger than the
optimum, where � = maxp,P �(p, P).

Proof. We begin with some additional notations. Let P∗ = {p∗1, p∗2, . . . , p∗k} be
an optimum solution, that is, a feasible set of primers of minimum size. Let
also P = {p1, p2, . . . , pg} denote the solution returned by the greedy algorithm,
with primers indexed in the order in which they are selected by the algorithm.
Let �

j
i = �({p∗1, . . . , p∗i } ∪ {p1, . . . , pj}), �j

i = �
j
i −�

j−1
i , and δ

j
i = �

j
i −�

j
i−1.

Note that, by (A4) and (A2), �
j
0 ≥ �

j
1 ≥ · · · ≥ �

j
k = 0 for every 0 ≤ j ≤ g, and

δ0
i ≥ δ1

i ≥ · · · ≥ δ
g
i = 0 for every 0 ≤ i ≤ k. Furthermore, note that �

j
0 ≥ δ

j−1
i for

every 1 ≤ i ≤ k and 1 ≤ j ≤ g. Indeed, �
j
0 is the gain achieved by the greedy al-

gorithm when selecting primer pj . This gain must be at least �(p∗i , {p1, ..., pj−1})
since the greedy algorithm selects the primer with maximum gain in each iteration.
Finally, by (A4), �(p∗i , {p1, ..., pj−1}) ≥ �(p∗i , {p1, ..., pj−1} ∪ {p∗1, . . . , p∗i−1}) =
�

j−1
i −�

j−1
i−1 = δ

j−1
i .

To analyze the size of the solution produced by the greedy algorithm, we use
a charging scheme in which a certain cost is assigned to each primer in the optimal
solution for every greedy primer. More precisely, the cost charged to p∗i by the greedy
primer pj is

c
j
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ln(δj−1
i)− ln(δj

i), if δ
j−1
i ≥ δ

j
i > 0

ln(δj−1
i)+ 1, if δ

j−1
i > δ

j
i = 0

0, if δ
j−1
i = δ

j
i = 0.

Notice that the total cost charged to primer p∗i ,
∑g

j=1 c
j
i , is a telescopic sum equal

to 1+ ln(δ0
i) ≤ 1+ ln �. Hence, the overall cost is at most k(1+ ln �). To prove

the approximation factor of 1+ ln �, it suffices to prove that we charge at least one
unit of cost for each greedy primer. Indeed, consider a fixed j ∈ {1, . . . , g}. Since
�

j
0 ≥ δ

j−1
i , it follows that

c
j
i ≥

δ
j−1
i − δ

j
i

�
j
0

A GREEDY ALGORITHM 249

FIGURE 11.3 A graphical illustration of the cost lower bound used in the proof of Theorem
11.1 for δ

j−1
i ≥ δ

j

i > 0 (a), and for δ
j−1
i > δ

j

i = 0 (b). In each case, c
j

i is equal to the area
shaded under the curve min{1, 1/x}. Since �

j

0 ≥ δ
j−1
i , the shaded area is larger than the area

of a rectangle with width δ
j−1
i − δ

j

i and height 1/�
j

0.

for every 1 ≤ i ≤ k (see Fig. 11.3). Using that δ
j−1
i − δ

j
i = �i−1

j −�i
j and �k

j = 0
gives

k∑
i=1

c
j
i ≥

k∑
i=1

�i−1
j −�i

j

�
j
0

= 1

which completes the proof. �
Note that the maximum gain � is at most nL, and therefore Theorem 11.1 implies

a worst case approximation factor of 1+ ln(nL) for MPSS-L. For practical MPSS-L
instances, � is much smaller than nL, implying a significantly better approximation
factor on these instances.

11.4.1 Implementation Details

In this section, we discuss the details of an efficient implementation of the generic
greedy algorithm in Fig. 11.2. First, we note that although there are 4	 DNA sequences
of length 	, no more than 2nL of these sequences (substrings of length 	 of the input
genomic sequences S = {f i, ri | 1 ≤ i ≤ n}) can be used as primers. Our implemen-
tation starts by creating a list with all feasible primers by removing substrings that
do not meet user-specified constraints on GC content and melting temperature Tm

(computed as in the Primer3 package [21]). Masking of repetitive elements and more
stringent candidate filtering based, for example, on sophisticated statistical scoring
models [24] can also be easily incorporated in this preprocessing step. For each sur-
viving candidate primer, we precompute all hybridization positions within the strings
of S, which allows to compute the coverage gain of a primer candidate p in time
O(np), where np is the number of hybridization positions for p. The primer with
maximum gain is then found in step 2(a) of the algorithm by sequentially computing
the gain of each remaining primer.

In order to speed up the implementation, we further use two optimizations. A
feasible primer is called unique if it hybridizes only one of the sequences in S. The first
optimization is to retain only the unique feasible primer closest to the amplification
locus for each f i and ri. The exact number of eliminated unique candidate primers

250 ALGORITHMS FOR MULTIPLEX PCR PRIMER SET SELECTION

depends on primer length 	 and number of amplification loci, but is often a significant
fraction of the number of feasible candidate primers. Clearly, removing these primers
does not worsen the quality of the returned solution.

The second optimization is to adopt a lazy strategy for recomputing primer gains
in step 2(a). In first execution of step 2(a), we compute and store the gain for all
feasible primers. In subsequent iterations, the gain of a primer is only recomputed
if the saved gain is higher than the best gain seen in current iteration. Since gains
are monotonically nonincreasing, this optimization is not affecting the set of primers
returned by the algorithm.

11.5 EXPERIMENTAL RESULTS

We performed experiments on test cases extracted from the human genome databases
as well as simulated test cases. The human genome test cases are regions surrounding
known SNPs collected from National Center for Biotechnology Information’s
genomic databases. Random test cases were generated from the uniform distribu-
tion induced by assigning equal probabilities to each nucleotide. All experiments
were run on a PowerEdge 2600 Linux server with 4 Gb of RAM and dual 2.8 GHz
Intel Xeon CPUs—only one of which is used by our sequential implementations—
using the same compiler optimization options. Integer programs were solved using
the CPLEX solver version 9.1 with default parameters.

For all experiments we used a bound L = 1000 on the PCR amplification length,
and a bound 	 between 8 and 12 on primer length. Although it has been suggested
that such short primers may not be specific enough [9], we note that hybridization
outside the target region will not result in significant amplification unless two primers
hybridize sufficiently closely to each other, a much less likely event [6]. Indeed, the
feasibility of using primers with only 8–12 target specific nucleotides for simultaneous
amplification of thousands of loci has been experimentally validated by Jordan et
al. [11].2 The potential function greedy algorithm in Fig. 11.2, referred to as G-POT,
was implemented as described in Section 11.4.1, except that, in order to facilitate
comparison with other algorithms we did not use any constraints on the GC content
or melting temperature of candidate probes.

We ran experiments modeling two different scenarios. In the first scenario, the
amplification target is a set of SNP loci where no two loci are within a distance of
L of each other; under this scenario, the number of primers can only be reduced by
primer reuse between different amplification reactions. In the second scenario, the
amplification target is the set of all confirmed SNP loci within a gene, which results
in much closer SNP loci. In this case, primer minimization is achieved by both primer
reuse and inclusion of multiple SNP loci in a single amplification product.

2In addition to 8–12 specific nucleotides at the 3′ end, primers used in Jordan et al. contain a 5′ end sequence
(CTCGAGNNNNNN) consisting of a fixed G/C rich 5′ anchor and 6 fully degenerate nucleotides.

EXPERIMENTAL RESULTS 251

11.5.1 Amplification of Sparse Sets of SNP Loci

In the first set of experiments, we compared G-POT with the following algorithms.

� The iterative beam-search heuristic of Souvenir et al. [23]. We used the primer-
threshold version of this heuristic, MIPS-PT, with degeneracy bound set to 1
and the default values for the remaining parameters (in particular, beam size
was set to 100).

� The greedy primer cover algorithm of Pearson et al. [19] (G-FIX). In this
algorithm, the candidate primers are collected from the reverse and forward
sequences within a distance of L/2 around the SNP. This ensures that the
resulting set of primers meets the product length constraints. The algorithm
repeatedly selects the candidate primer that covers the maximum number of
not yet covered forward and reverse sequences.

� The optimum primer cover of the reverse and forward sequences within L/2
bases of each SNP (OPT-FIX), computed by running CPLEX on a natural
integer program formulation of the problem.

� A naı̈ve modification of G-FIX, referred to as G-VAR, in which the candidate
primers are initially collected from the reverse and forward sequences within
a distance of L around the SNP. The algorithm proceeds by greedily selecting
primers like G-FIX, except that when a primer p covers for the first time one of
the forward or reverse sequences corresponding to a SNP, say at position t, the
algorithm truncates the opposite sequence to a length of L− t to ensure that
the final primer cover is L-restricted.

� The optimum MPSS-L solution (OPT) computed by running CPLEX on the
compact integer linear program formulation described in Section 11.3.

Table 11.1 gives the number of primers selected and the running time (in CPU seconds)
for the compared methods on instances consisting of up to 100 SNP loci extracted from
the NCBI repository. The optimum primer cover of the reverse and forward sequences
within L/2 bases of each SNP can be found by CPLEX for all instances, often in time
comparable to that required by G-FIX. In contrast, the integer linear program in
Section 11.3 can be solved to optimality only for instances with up to 20 SNP loci.
For instances with 100 SNPs, even finding good feasible solutions to this ILP seems
difficult for general-purpose solvers like CPLEX. Among greedy algorithms, G-POT
has the best performance on all test cases, reducing the number of primers by up to
24% compared to G-FIX and up to 30% compared to G-VAR. In most cases, G-POT
gives fewer primers than OPT-FIX, and always comes very close to the optimum
MPSS-L solutions computed using CPLEX whenever the latter are available. The
MIPS-PT heuristic has the poorest performance in both runtime and solution quality,
possibly because it is fine-tuned to perform well with high degeneracy primers.

To further characterize the performance of the three greedy algorithms, in Fig. 11.4
we plot their average solution quality versus the number of target SNPs (on a

252 ALGORITHMS FOR MULTIPLEX PCR PRIMER SET SELECTION

TABLE 11.1 Number of Primers (#P) and Runtime in Seconds (CPU) on NCBI Test
Cases for Primer Length � = 8, 10, 12 and Amplification Length Constraint L = 1000.
Entries Marked with a Dagger Represent the Best Feasible Solutions Found by CPLEX
in 24 h

# 	 MIPS-PT G-FIX OPT-FIX G-VAR G-POT OPT
SNPs #P CPU #P CPU #P CPU #P CPU #P CPU #P CPU

8 5 3 4 0.01 4 0.01 4 0.02 4 0.02 3 372
10 10 6 4 5 0.00 5 0.01 7 0.03 6 0.03 5 979

12 10 6 8 0.00 8 0.01 9 0.03 7 0.03 6 518
8 8 10 7 0.04 6 0.04 7 0.08 6 0.10 5 112,407

20 10 13 15 9 0.03 8 0.01 10 0.08 9 0.08 7 13,494
12 18 26 14 0.04 14 0.01 13 0.08 13 0.11 11† 24h
8 12 24 9 0.11 8 0.07 9 0.18 7 0.12 8† 24h

30 10 18 37 14 0.07 12 0.03 13 0.14 12 0.17 11† 24h
12 26 84 20 0.12 19 0.03 19 0.19 21 0.15 15† 24h
8 17 35 10 0.09 9 0.84 15 0.27 10 0.25 10† 24h

40 10 24 49 19 0.16 15 0.05 21 0.22 14 0.20 15† 24h
12 32 183 24 0.10 24 0.03 25 0.23 22 0.28 21† 24h
8 21 48 13 0.13 11 5.87 15 0.30 10 0.32 12† 24h

50 10 30 150 23 0.22 19 0.06 24 0.36 18 0.33 19† 24h
12 41 246 31 0.14 29 0.03 32 0.30 29 0.28 25† 24h
8 32 226 17 0.49 16 180.42 20 0.89 14 0.58 121† 24h

100 10 50 844 37 0.37 30 0.23 37 0.72 31 0.75 35† 24h
12 75 2601 53 0.59 45 0.09 48 0.84 42 0.61 46† 24h

logarithmic scale) for randomly generated test cases. MIPS and the integer program-
ming methods are not included in this comparison due to their nonscalable running
time. In order to facilitate comparisons across instance sizes, the size of the primer
cover is normalized by the double of the number of SNPs, which is the size of the
trivial cover obtained by using two distinct primers to amplify each SNP. Although
the improvement is highly dependent on primer length and number of SNPs, G-POT
is still consistently outperforming the G-FIX algorithm and, with few exceptions, its
G-VAR modification.

Fig. 11.5 gives a log–log plot of the average CPU running time (in seconds) versus
the number of pairs of sequences for primers of size 10 and randomly generated pairs
of sequences. The runtime of all three greedy algorithms grows linearly with the
number of SNPs, with G-VAR and G-POT incurring only a small factor penalty in
runtime compared to G-FIX. This suggests that a robust practical metaheuristic is to
run all three algorithms and return the best of the three solutions found.

11.5.2 Amplification of Dense Sets of SNP Loci

In a second set of experiments, we used as amplification targets the SNP loci
identified and verified within 14 genes at the Program for Genomic Applications

EXPERIMENTAL RESULTS 253

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 100 1000

#p
rim

er
s/

(2
x#

S
N

P
s)

 (
%

)

#SNPs

G-FIX
G-VAR
G-POT

 10

 20

 30

 40

 50

 60

 70

 10 100 1000

#p
rim

er
s/

(2
x#

S
N

P
s)

 (
%

)

#SNPs

G-FIX
G-VAR
G-POT

= 10

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000

#p
rim

er
s/

(2
x#

S
N

P
s)

 (
%

)

#SNPs

G-FIX
G-VAR
G-POT

= 12

= 8

FIGURE 11.4 Performance of the compared algorithms, measured as relative improvement
over the trivial solution of using two primers per SNP, for 	 = 8, 10, 12, L = 1000, and up to
5000 SNPs. Each number represents the average over 10 test cases of the respective size.

254 ALGORITHMS FOR MULTIPLEX PCR PRIMER SET SELECTION

TABLE 11.2 Results for Dense Sets of SNPs, with Primer Length � = 8, 10, 12 and
Amplification Length constraint L = 1000. The Minimum Number of Selected Primers
for Each Testcase is Shown in Boldface. All Runtimes are Less Than 3 s.

Number of Selected Primers

HUGO # Length
Gene Name SNPs (bp) 	 G-INT G-FIX G-VAR G-POT

8 30 13 12 10
AQP1 92 17649 10 30 27 19 19

12 32 39 26 24

8 16 9 9 7
CCR2 42 10073 10 16 16 14 11

12 16 22 13 14

8 34 18 19 14
CXCL12 122 18818 10 34 36 24 23

12 34 56 38 35

8 34 18 19 14
EPHB6 115 19655 10 34 37 30 25

12 34 53 37 38

8 40 16 18 11
F2R 114 24771 10 40 34 26 21

12 42 46 30 28

8 36 16 14 11
GATA3 131 22376 10 36 30 24 18

12 36 45 31 26

8 14 11 8 7
IFNG6 35 7665 10 14 15 12 12

12 14 21 15 16

8 10 7 7 5
IGF2 23 9013 10 10 9 11 7

12 10 14 10 9

8 12 10 8 6
IL8 37 7156 10 12 16 10 10

12 12 20 16 14

8 56 19 20 12
IRAK4 174 33033 10 56 42 36 28

12 56 67 53 44

8 42 15 14 10
NOS3 119 25106 10 42 31 25 20

12 42 48 38 35

8 28 14 13 11
STAT6 61 18891 10 28 24 23 20

12 28 34 27 25

8 40 18 18 14

EXPERIMENTAL RESULTS 255

TABLE 11.2 (Continued)

Number of Selected Primers

HUGO # Length
Gene Name SNPs (bp) 	 G-INT G-FIX G-VAR G-POT

TGFB3 94 23990 10 40 32 24 25
12 40 48 34 35

8 54 16 16 9
TYK2 187 32167 10 54 27 25 19

12 54 41 27 23

of the University of Washington [20]. For each gene, we consider SNP loci within all
exons and introns, within the first 2000 bp upstream of first exon, and within the first
1500 bp downstream of the poly-A signal.

In addition to G-FIX, G-VAR, and G-POT, on these test cases we also ran a
natural greedy primer selection algorithm, referred to as greedy intervals (G-INT),
which works as follows. First, G-INT selects a forward primer immediately upstream
of the leftmost SNP locus, and pairs it up with a reverse primer placed as far as
possible downstream subject to the product length constraint. All SNP loci covered
by the selected pair of primers are removed, and the above step is repeated until
all loci are covered. It is easy to see that this algorithm minimizes the number of
amplification products required to cover the given SNP loci. As shown in Table 11.2,
G-POT continues to consistently outperform the other algorithms, with G-INT and
G-VAR producing fewer primers for a few test cases.

 0.1

 1

 10

 100

 10 100 1000

C
P

U
 s

ec
on

ds

#SNPs

G-FIX
G-VAR
G-POT

FIGURE 11.5 Average runtime of the compared algorithms for 	 = 10, L = 1000, and up
to 5000 SNPs.

256 ALGORITHMS FOR MULTIPLEX PCR PRIMER SET SELECTION

11.6 CONCLUSIONS

In this chapter, we have proposed exact algorithms based on integer programming
and a more scalable potential function greedy approximation algorithm for MP-PCR
primer set selection with amplification length constraints, and have presented experi-
mental results showing that our methods lead to significant reductions in the number
of primers compared to previous algorithms. Open source C implementations of both
algorithms are available at http://dna.engr.uconn.edu/˜software/G-POT/.

A promising approach to further increase the MP-PCR efficiency is the use of
degenerate PCR primers [14,15,23], see also Section 5.3.3. A degenerate primer is
essentially a mixture consisting of multiple nondegenerate primers sharing a common
pattern. Remarkably, degenerate primer cost is nearly identical to that of a nondegen-
erate primer, since the synthesis requires the same number of steps (the only difference
is that one must add multiple nucleotides in some of the synthesis steps). Since de-
generate primers may lead to excessive unintended amplification, a bound on the
degeneracy of a primer (i.e., the number of distinct nondegenerate primers in the
mixture) is typically imposed [15,23].

Our greedy algorithm extends directly to the problem of selecting, for a given
set of genomic loci, a minimum size L-restricted primer cover consisting of degene-
rate primers with bounded degeneracy. However, even for moderate degeneracy
constraints, it becomes impractical to explicitly evaluate the gain function for all
candidate primers. Indeed, as remarked by Linhart and Shamir [15], the number
of candidate degenerate primers may be as large as 2nL

(
k
δ

)
15δ, where n is the

number of loci, L is the PCR amplification length upper bound, and δ is the number
of “degenerate nucleotides” allowed in a primer. To maintain a practical runtime, one
may sacrifice optimality of the greedy choice in step 2(a) of the greedy algorithm,
using instead approximation algorithms similar to those of Linhart and Shamir
[15] for finding degenerate primers guaranteed to have near optimal gain. The
analysis in Section 11.4 extends to this modification of the greedy algorithm as
follows.

Theorem 11.2 Assume that the greedy algorithm in Fig. 11.2 is modified to select
in step 2(a) a primer whose gain is within a factor of α of the maximum possible
gain, for some fixed 0 < α ≤ 1. Then, the modified algorithm returns an L-restricted
primer cover of size at most (1+ ln �)α times larger than the optimum, where � =
maxp,P �(p, P).

Another interesting direction for future research is extending primer selection algo-
rithms to ensure that there is no cross hybridization between selected primers, which
is one of the main causes of amplification failure in MP-PCR [8]. Cross hybridiza-
tion constraints can be directly enforced in the integer program in Section 11.3 by
the addition of inequalities of the form xp + xp′ ≤ 1 for every two primers p and p′
predicted to cross hybridize. The potential function greedy algorithm can also ensure
lack of primer cross hybridization via a simple modification: after selecting a primer

REFERENCES 257

p, discard all candidates predicted to cross hybridize with p. Although this modi-
fication does no longer guarantee that the resulting set of primers is near minimal,
preliminary experiments show that in practice it leads to only minor increases in the
number of primers.

ACKNOWLEDGMENTS

The work of KMK and AAS was supported in part by NSF ITR grant 0121277. The
work of IIM was supported in part by NSF CAREER award IIS-0546457, NSF DBI
grant 0543365, and a Large Grant from the University of Connecticut’s Research
Foundation. A preliminary version of this work has appeared in [12].

REFERENCES

1. Berman P, DasGupta B, Kao M-Y. Tight approximability results for test set problems
in bioinformatics. Proceedings of the 9th Scandinavian Workshop on Algorithm Theory
(SWAT); 2004. pp. 39–50.

2. Chvátal V. A greedy heuristic for the set covering problem. Math Oper Res 1979; 4:233–
235.

3. ILOG Corp. Cplex optimization suite, http://www.ilog.com/products/cplex.

4. Doi K, Imai H. A greedy algorithm for minimizing the number of primers in multiple
PCR experiments. Genome Inform 1999; 10:73–82.

5. Feige U. A threshold of ln n for approximating set cover. J ACM 1998; 45:634–652.

6. Fernandes RJ, Skiena SS. Microarray synthesis through multiple-use PCR primer design.
Bioinformatics 2002; 18:S128–S135.

7. Hajiaghayi MT, Jain K, Lau LC, Măndoiu II, Russell AC, Vazirani VV. The minimum mul-
ticolored subgraph problem in haplotyping and PCR primer set selection. In Alexandrov
VN, et al., editors. Proceedings of the 6th International Conference on Computational
Science (ICCS 2006), Part II, Vol. 3992 of Lecture Notes in Computer Science, Berlin:
Springer-Verlag; 2006. pp. 758–766.

8. Henegariu O, Heerema NA, Dlouhy SR, Vance GH, Vogt PH. Multiplex PCR: critical
parameters and step-by-step protocol. Biotechniques 1997; 23:504–511.

9. Hsieh M-H, Hsu W-C, -Kay S, Tzeng CM. An efficient algorithm for minimal primer set
selection. Bioinformatics 2003; 19:285–286.

10. Johnson DS. Approximation algorithms for combinatorial problems. J Comput Syst Sci
1974; 9:256–278.

11. Jordan B, Charest A, Dowd JF, Blumenstiel JP, Yeh Rf, Osman A, Housman DE, Landers
JE. Genome complexity reduction for SNP genotyping analysis. Proc Natl Acad Sci USA
2002; 99:2942–2947.

12. Konwar KM, Măndoiu II, Russell AC, Shvartsman AA. Improved algorithms for multiplex
PCR primer set selection with amplification length constraints. In Phoebe Chen Y-P,
Wong L, editors. Proceedings of the 3rd Asia-Pacific Bioinformatics Conference (APBC),
London: Imperial College Press; 2005. pp. 41–50.

258 ALGORITHMS FOR MULTIPLEX PCR PRIMER SET SELECTION

13. Kwok PY. Methods for genotyping single nucleotide polymorphisms. Ann Rev Genomic
Hum Genet 2001; 2:235–258.

14. Kwok S, Chang SY, Sninsky JJ, Wong A. A guide to the design and use of mismatched
and degenerate primers. PCR Meth Appl 1994; 3:S539–S547.

15. Linhart C, Shamir R. The degenerate primer design problem. Bioinformatics 2002;
18:S172–S181.

16. Lovász L. On the ratio of optimal integral and fractional covers. Discrete Math 1975;
13:383–390.

17. Mullis K. Process for amplifying nucleic acid sequences. U.S.Patent 4,683,202, 1987.

18. Nicodème P, Steyaert J-M. Selecting optimal oligonucleotide primers for multiplex PCR.
Proceedings of the 5th International Conference on Intelligent Systems for Molecular
Biology; 1997. pp. 210–213.

19. Pearson WR, Robins G, Wrege DE, Zhang T. On the primer selection problem for poly-
merase chain reaction experiments. Discrete Appl Math 1996; 71:231–246.

20. Program for Genomic Applications, University of Washington. Genes sequenced for snps,
http://pga.gs.washington.edu/finished genes.html

21. Rozen S, Skaletsky HJ. Primer3 on the WWW for general users and for biologist program-
mers. In Krawetz S, Misener S, editors. Bioinformatics Methods and Protocols: Methods
in Molecular Biology. Totowa, NJ: Humana Press; 2000. pp. 365–386. Code available at
http://www-genome.wi.mit.edu/genome software/other/primer3.html

22. Slavik P. Improved performance of the greedy algorithm for partial cover. Inform Process
Lett 1997; 64:251–254.

23. Souvenir R, Buhler J, Stormo G, Zhang W. Selecting degenerate multiplex PCR primers.
Proceedings of the 3rd International Workshop on Algorithms in Bioinformatics (WABI);
2003; pp.512–526.

24. Yuryev A, Huang J, Scott KE, Kuebler J, Donaldson M, Phillipes MS, Pohl M, Boyce-
Jacino MT. Primer design and marker clustering for multiplex SNP-IT primer extension
genotyping assay using statistical modeling. Bioinformatics 2004; 20(18):3526–3532.

12
RECENT DEVELOPMENTS IN
ALIGNMENT AND MOTIF FINDING
FOR SEQUENCES AND NETWORKS

Sing-Hoi Sze
Departments of Computer Science and of Biochemistry & Biophysics, Texas A&M University,
College Station, Texas, USA

12.1 INTRODUCTION

Since Needleman and Wunsch [64] introduced the notion of sequence alignment in
1970, developing and improving sequence analysis algorithms has become one of
the most important goals in computational biology. In 1981, Smith and Waterman
[88] introduced a variant of pairwise alignment that can be used to analyze local
similarities and showed that it can be solved efficiently in quadratic time using a
dynamic programming technique that is similar to the one used in global alignment.
On the contrary, the general problem of aligning multiple sequences has remained a
very challenging problem, and it has been shown that the problem is NP-hard under
many reasonable objective functions [38]. The best-known algorithm that always
produces an optimal multiple alignment has time complexity O(nk) [16], where n is
the maximum sequence length and k is the number of sequences, and thus is practical
only when n and k are small.

Early heuristics to address the multiple alignment problem include a greedy strat-
egy in [94] that constructs a multiple alignment from the results of conventional
pairwise alignments. Most later approaches follow the progressive alignment strat-
egy [25] that treats each input sequence as an alignment and iteratively chooses

Bioinformatics Algorithms: Techniques and Applications, Edited by Ion I. Mǎndoiu
and Alexander Zelikovsky
Copyright © 2008 John Wiley & Sons, Inc.

259

260 RECENT DEVELOPMENTS IN ALIGNMENT AND MOTIF FINDING

and combines two smaller alignments into a larger one to obtain a final alignment.
While CLUSTAL [96] is among one of the most well-known algorithms that em-
ploy this strategy, there are many recent ideas that lead to further improvement in
biological accuracy of alignment algorithms, including a very effective consistency-
based strategy that is employed in algorithms such as TCoffee [65]. In this chapter,
we will investigate some of these developments that lead either to improved formu-
lations of the multiple alignment problem or to more accurate multiple alignment
algorithms.

While the alignment formulation is useful for finding similarities that span a
large portion of the input sequences, it is not suitable for finding motifs when
they do not occur at similar positions within each sequence or when most other
nonmotif positions are random. In 1970, Kelly and Smith [47] developed one of
the first motif finding algorithms to find restriction sites in a given sample. Later
applications usually involve more complicated motifs, such as finding transcrip-
tion factor binding sites in upstream regions given a set of potentially coregulated
genes.

Early approaches usually assume that the motif is a string in the four-letter DNA
alphabet and search over all 4l candidate motifs of length l to look for their approximate
occurrences [78,105]. Later approaches consider a more accurate representation of
motifs as a collection of potentially different number of occurrences in some of
the input sequences. Among one of the most popular approaches that employ this
strategy is MEME [3], which uses statistical optimization techniques to ensure that
high scoring motifs are identified. In 2000, Marsan and Sagot [59] and Pevzner and
Sze [74] started a series of combinatorial approaches that lead to new ideas and many
later improvements. We will describe many of these developments in this chapter.

To evaluate the effectiveness of alignment or motif finding algorithms, there have
been many recent developments in the construction of benchmark datasets. These
efforts have resulted in large-scale datasets that allow more accurate assessment of new
algorithms. While it has been confirmed that the performance of multiple alignment
algorithms is steadily increasing over the years, none of the motif finding algorithms
are shown to have good performance when applied to finding transcription factor
binding sites in higher organisms [100]. Thus, it is important to use these benchmark
sets to understand the weaknesses of current algorithms and develop new strategies
to improve them.

Although the alignment and motif finding problems were originally used for com-
paring sequences, as the amount of data that describe biological interactions increases
rapidly at the genome scale, there is a need to consider generalized versions of these
problems on biological networks. By defining a similarity measure for enzymes, Dan-
dekar et al. [18] and Tohsato et al. [99] were among the few efforts that use pathway
alignments to study the evolution of metabolic pathways. We will describe many
recent approaches that further generalize the notion of alignments and motifs to non-
linear network alignments or network motifs in an attempt to find functional modules
or other important substructures within one or more interaction networks. Since these
problems are much more difficult than their linear counterparts, many new techniques
have been proposed to address them.

MULTIPLE SEQUENCE ALIGNMENT 261

12.2 MULTIPLE SEQUENCE ALIGNMENT

12.2.1 Recent Approaches

Although early datasets are small enough so that an exact dynamic programming
algorithm such as MSA [16] can be used to produce optimal multiple alignments, it
has been recognized that such an approach will not scale to larger datasets. By defining
one of the input sequences as the center and aligning all the other sequences to it,
Gusfield [34] developed approximation algorithms for multiple alignment that has a
guaranteed performance bound of two under popular objective functions. However,
this theoretical bound is too weak for practical purposes and such a star alignment
strategy may not work well when large similarity variations among the sequences
exist. Stoye [91] addressed this problem by proposing the DCA algorithm that uses
a divide-and-conquer heuristic to cut the sequences into shorter segments until they
become sufficiently short, at which time the exact algorithm MSA [16] is used to
align the segments.

Since the above heuristic is still too slow for large-scale applications, most practical
approaches follow a progressive alignment strategy that makes use of a guide tree [96]
in which sequences that are more similar are grouped closer together on the tree to
combine two smaller alignments along the tree. In many of these algorithms, an
iterative refinement procedure [32] is also employed, usually by randomly breaking
the alignment into two or more groups and realigning, or by estimating a new guide
tree based on the current multiple alignment and repeating the process. Recently,
Kececioglu and Starrett [43] showed that even the problem of aligning two alignments
exactly is hard when the affine gap penalty scheme is used during the progressive step,
although it can be solved in polynomial time when a constant gap penalty is used.

One of the most significant recent developments that leads to much improvement
in alignment accuracy is the use of consistency-based approaches, in which the goal is
to maximize the amount of consistently aligned pairs between the resulting multiple
alignment and a given set of pairwise alignments [42]. TCoffee [65] is among the
many successful approaches that utilize consistency-based pairwise alignments by
aligning two sequences through each choice of a third sequence so that the initial
pairwise alignments have better agreement with the final multiple alignment. Instead
of finding the most probable alignment, ProbCons [21] significantly improved the
accuracy of such approaches by finding an alignment with the maximum expected
accuracy using a pair-HMM model. Probalign [82] further improved the accuracy by
estimating posterior probabilities from the partition function of suboptimal alignments
instead of using a pair-HMM model, while CONTRAlign [20] used a generalized
conditional random field model to avoid making strong independence assumptions.
MUMMALS [71] employed local structural information in addition to a pair-HMM
model to improve alignment accuracy.

Since many of the above approaches are still computationally intensive, there were
several attempts to seek appropriate trade-offs between computational time and ac-
curacy for large-scale applications. MAFFT [41] constructed an alignment via fast
Fourier transform by converting the sequences to an appropriate numerical format and

262 RECENT DEVELOPMENTS IN ALIGNMENT AND MOTIF FINDING

using a simplified scoring function. MUSCLE [22] used k-mer counting to obtain
quick distance estimates between two sequences, thus reducing the computational
time of the pairwise alignment phase. Kalign [50] used a fast approximate string
matching algorithm that allows for mismatches to similarly reduce the time for com-
puting pairwise distance estimates. While most of the above approaches are designed
to find global similarities, DIALIGN [63] used a different segment-to-segment ap-
proach to construct a multiple alignment from sets of locally aligned blocks, thus
obtaining a better performance when there are extensive local similarities. Align-m
[103] used a nonprogressive local heuristic approach while focusing on obtaining
better performance for highly divergent sequences, whereas 3DCoffee [67] utilized
structural pairwise alignments when they are available to improve alignment accuracy.

Since none of the above algorithms definitely outperform all the other algorithms
in all situations, another line of research focuses on developing strategies to combine
results of existing multiple alignment algorithms into a single improved alignment.
ComAlign [13] extracted good quality subalignments from a given set of multiple
alignments by investigating good subpaths via dynamic programming and showed
that it is possible to obtain performance close to the exact algorithm MSA [16].
MCoffee [104] is an extension of TCoffee [65] that uses a consistency-based approach
to construct such a combined alignment from multiple alignments given by a carefully
selected set of algorithms.

While most algorithms view an alignment as placing sequences one on top of the
other and adding gaps, POA [52] used a partial ordered graph to represent a mul-
tiple alignment that does not require that each letter be put into a definite column
and showed that it is a better biological model in many situations. Sze et al. [93]
developed an alternative formulation of multiple alignment by assuming that an addi-
tional tree that specifies a subset of pairwise alignments to be preserved is given and
showed that the problem is solvable in polynomial time by constructing an alignment
from a directed acyclic graph that is similar in structure to the graph produced by
POA [52].

12.2.2 Using Additional Sequences from Database Search

Despite significant efforts, it remains very challenging to align highly divergent se-
quences. With the rapidly increasing size of biological databases, it is likely that some
of the input sequences have similar hits in the databases. The use of these additional
hits from database search can potentially help to improve alignment accuracy. This is
especially useful when a hit from database search is intermediate between two input
sequences, thus providing a missing link between them [31,69]. The effectiveness of
such an approach is demonstrated by the inclusion of high scoring hits from database
search in PREFAB [22], which, when used together with the original input sequences,
produce more accurate alignments than using the input sequences alone. Similar ideas
are also used in related areas such as finding distant homologies by utilizing multiple
intermediate sequences from database search [55,83], clustering sequences via tran-
sitive homology [9], and using intermediate sequences to estimate reliable regions in
alignments [58].

MULTIPLE SEQUENCE ALIGNMENT 263

There are a few recent efforts that use this idea to improve multiple alignment
accuracy. Heger et al. [35] used a graph-theoretic approach to link input sequences to-
gether along paths of neighboring intermediate sequences found from database search
to identify sparse common motifs. Marti-Renom et al. [60], Simossis et al. [86], and
Zhou and Zhou [111] constructed a profile from the hits produced by database search
for each input sequence and showed that aligning these profiles instead of the original
sequences gives much better performance. SPEM [111] also utilized structural align-
ments in the scoring of the newly constructed profiles to further improve alignment
accuracy.

12.2.3 Benchmark Alignments

One very significant recent development in multiple alignment is the largely expanded
availability of benchmark alignments on sets of protein sequences that can be used to
evaluate algorithm performance. BAliBASE [97] is among one of the most popular
benchmark datasets based on manually edited structural alignments that were origi-
nally subdivided into five categories, including alignments containing a small number
of similar sequences that are further organized into four subclasses, that is, inclusion
of orphan sequences, clusters of sequences from different families, sequences with
large terminal extensions, and sequences with internal insertions, in which core blocks
are defined to be regions that can be reliably aligned. The most recent version includes
three more categories and a significant increase in the number of sequences and their
lengths. Another popular benchmark database is HOMSTRAD [62], which is a collec-
tion of manually edited structure-based alignments with varying amount of sequence
identity levels in different alignments.

In addition to the above databases, there are also two large benchmark sets that are
based on pairwise alignments: PREFAB [22] contains automatically generated align-
ments, with each of them starting from a structural alignment of two sequences and
then adding high scoring hits of the two sequences from database search to form the
input sequence set. Accuracy assessment is based on the original two sequences with
the datasets organized into many categories representing different levels of sequence
identities. SABmark [103] contains an easier Superfamily set, a more difficult Twi-
light set, and variants of the two sets by adding false positive sequences, with each
reference alignment represented by a collection of potentially conflicting pairwise
alignments instead of a single alignment. Other recent benchmarks include OXBench
[79] that contains automatically generated alignments constructed from clusters of
structural domains, and IRMBASE [92] that contains alignments of sequences re-
lated by local instead of global similarities, which is designed to test the ability of an
algorithm to align local motifs.

Usually, two score measures are used to evaluate the accuracy of a multiple
alignment against a reference alignment [98]: the sum-of-pairs score (SPS) measures
the percentage of letter pairs that are correctly aligned, while the column score (CS)
measures the percentage of entire columns that are correctly aligned. To evaluate
whether the overall accuracy of one algorithm is better than another algorithm,
a statistical test such as the Wilcoxon matched-pairs signed-ranks test [106] is

264 RECENT DEVELOPMENTS IN ALIGNMENT AND MOTIF FINDING

often used to check if there are significant performance differences. The use of the
benchmark sets with these scoring measures confirms that the accuracy of multiple
alignment algorithms has been improving steadily as new algorithms are introduced.

12.3 MOTIF FINDING

12.3.1 Recent Approaches

Although the assumption that a motif can be represented as a string in the four-letter
DNA alphabet is inaccurate biologically, the corresponding motif finding problems
are not extremely difficult to solve when the length of motifs l is short. By assuming
that the number of substitutions between a motif and its occurrences is at most d,
it is sufficient to consider only candidate motifs that are within d substitutions of a
string that appears in the input sample [29,105], thus significantly improving the time
complexity over early exhaustive approaches [78,105] when d is small compared to
l. However, an important drawback of these approaches is that they cannot be used to
find protein motifs, since the much larger alphabet size makes them impractical.

After these early efforts, the positional weight matrix (or profile) representation
has become the most popular motif representation, in which a probability distribution
over the DNA or the protein alphabet is used to model each motif position. This is a
biologically more accurate representation, which facilities the development of many
approaches that try to locate the motif occurrences directly within the input sample.
CONSENSUS [90] used a greedy strategy to iteratively add occurrences to a growing
motif while keeping only a certain amount of top motifs in each iteration and using an
entropy score to evaluate motifs. Many later approaches use statistical optimization
techniques to find high scoring motifs, although there is no guarantee that the motif
with the highest score must be found.

Among the most popular algorithms that use this strategy is MEME [3], which
uses the expectation-maximization technique to iteratively improve an initial motif by
computing the probability of finding the current motif at each position within the input
sample and using these probabilities to update the current motif. Another popular
strategy is Gibbs sampling [51], which starts with a random motif and iteratively
chooses an occurrence to delete and replace in order to improve the motif. Many
variations of this technique have also been employed, including AlignACE [37],
which uses Gibbs sampling and an iterative masking procedure to find multiple motifs,
MotifSampler [95], which utilizes a higher order background model in an extended
Gibbs sampling strategy, and ANN-Spec [107], which uses Gibbs sampling to train
a perceptron network that is used to predict the locations of motif occurrences.

In 2000, Pevzner and Sze [74] proposed the (l, d)-motif model, which defines a
motif of length l by implanting occurrences in the input sample that have at most d

substitutions from the motif. The motif finding problem is then formulated as a graph-
theoretic problem in which each vertex represents a string of length l that appears in
the input sample and each edge connects two vertices that are at most 2d substitutions
apart so that a motif is represented by a large clique in the graph. In another direction,

MOTIF FINDING 265

Marsan and Sagot [59] used a suffix tree coupled with tree-based pruning to develop
an exact algorithm to find the motif pattern directly.

These efforts are followed by many later combinatorial approaches that further
improve the computational and biological performance. Pavesi et al. [70] developed
the WEEDER algorithm that reduces the search space in the suffix tree by imposing
an additional condition that limits the percentage of mismatches that occur in every
prefix of the motif. Eskin and Pevzner [24] developed the MITRA algorithm based
on combining some of the advantages of the suffix tree in [59] and the WINNOWER
algorithm in [74] to obtain a faster algorithm. Buhler and Tompa [15] proposed a
random projection strategy that guesses a subset of positions in which the motif
agrees on to pinpoint the motif. Keich and Pevzner [44] developed the MultiProfiler
algorithm that uses a multipositional profile to eliminate improbable motif candidates.
Price et al. [77] proposed a pattern branching strategy that starts with an arbitrary motif
pattern and greedily changes the pattern one position at a time to improve the motif.
Instead of addressing the NP-hard problem of finding large cliques, Matsuda [61] and
Fratkin et al. [27] proposed to find a maximum density subgraph, which is defined
to be the subgraph that has the highest ratio of the number of edges to the number
of vertices so that the problem can be solved in polynomial time via a reduction to
a series of maximum flow problems [30]. They showed that it is a reasonable model
that can accurately represent biological motifs.

In addition to algorithms that make better use of the (l, d)-motif model, there is
also much progress in the use of the profile representation for motifs. Price et al. [77]
generalized their pattern branching strategy to give a profile branching technique that
returns motifs represented as profiles. Kel et al. [45] employed a kernel-based method
in which each local maximum of a probability density function corresponds to a motif
profile so that a randomized iterative procedure can be used repeatedly to find them.
Eskin [23] subdivided the profile space into many categories and used an upper bound
on the scores to eliminate those categories that do not contain high scoring profiles.
Leung and Chin [53] generalized the approach in [23] to guarantee that the highest
scoring profile that corresponds to the optimal motif can always be found when the
motif length is short. Since the profile representation ignores correlations among
different motif positions, Barash et al. [4] used a more general model of Bayesian
networks to represent dependencies between positions, while Zhou and Liu [110]
extended the profile model to include pairs of correlated positions. Reddy et al. [80]
developed a neighborhood profile search technique that avoids some of the problems
associated with local maxima.

In addition to the above strategies, there are many other attempts to approach the
motif finding problem from different directions. Rigoutsos and Floratos [81] devel-
oped the TEIRESIAS algorithm that uses a branch-and-bound technique to find all
motifs that appear in at least a certain number of sequences while allowing don’t care
positions within motifs by starting with short motifs and iteratively combining them
to produce longer ones. Sinha and Tompa [87] developed the YMF algorithm that
exhaustively enumerates all motif patterns of a given length and evaluates them sta-
tistically using z-scores. Blanchette et al. [8] assumed that a phylogenetic tree is also
given and used a dynamic programming technique to find strong motifs with respect

266 RECENT DEVELOPMENTS IN ALIGNMENT AND MOTIF FINDING

to the tree. Apostolico and Parida [2] allowed don’t care positions within motifs and
imposed maximality and irredundancy constraints so that the problem can be solved
in polynomial time when no mismatches are allowed. Leung et al. [54] proposed a bio-
logically more accurate model by considering binding strengths of motifs to transcrip-
tion factors. Kaplan et al. [39] used protein-DNA recognition preferences to predict
binding sites for specific structural families by using the expectation-maximization
technique. Zaslavsky and Singh [109] developed a general combinatorial optimization
framework for motif finding by reducing to integer linear programming problems.

Since biological motifs usually do not occur in isolation, there are many attempts
to discover motifs that work together in close proximity. Marsan and Sagot [59]
generalized their suffix tree technique to handle multiple motifs that are separated by
a range of distances. van Helden et al. [102] counted the number of occurrences of
trinucleotide pairs separated by a fixed distance over a range of possible distances in an
exhaustive manner while assessing their statistical significances. GuhaThakurta and
Stormo [33] developed the Co-Bind algorithm that utilizes perceptrons coupled with
profile-based probability estimates to find cooperative motifs that are close to each
other. Liu et al. [56] developed the BioProspector algorithm that uses a modified Gibbs
sampling strategy to identify multiple motifs within given distance constraints. Eskin
and Pevzner [24] generalized their MITRA algorithm to handle sets of composite
motifs.

12.3.2 Motif Finding by Alignment

Since the reliability of motif finding algorithms depends a lot on the quality of the input
sample, it is often very difficult to obtain positive results when it is uncertain whether
all the included genes are related or not. One important strategy to alleviate this
problem is to consider sequences from orthologous genes in closely related species and
align them so that highly conserved blocks within the alignment represent biological
motifs that are separated by less conserved regions, a technique commonly known as
phylogenetic footprinting. While these genes should be evolutionarily close enough
to each other so that the order of the motifs is conserved, they should not be so close
that the entire sequences become almost identical. Cliften et al. [17] used this strategy
to align upstream regions of genes in several yeast species and showed that highly
conserved blocks within the alignments correspond to functional elements.

An obvious way to perform phylogenetic footprinting is to use standard multiple
alignment algorithms or algorithms that focus on aligning local similarities with
multiple sequences [63,103]. Alternatively, a two-stage algorithm such as MUSCA
[68] can be used to first search for motifs and then assemble compatible motifs
together to form an alignment. Many other algorithms that are designed specifically
for aligning DNA sequences can also be used, such as Multi-LAGAN [11], which
is based on the progressive alignment strategy in which shorter local alignments are
chained together to produce longer alignments during the pairwise stage, MAVID
[10], which computes a maximum-likelihood ancestral sequence during progressive
merging of two sequences to reduce computational time when aligning large genomic
regions, and TBA [7], which produces a set of aligned blocks instead of conventional

BIOLOGICAL NETWORK ANALYSIS 267

multiple alignments so that each position of the input sequences appears exactly once
among the blocks.

12.3.3 Algorithm Assessment

To evaluate motif finding algorithms, it is important to develop benchmark datasets
so that the relative performance of different algorithms can be compared. Tompa et al.
[100] constructed a large-scale benchmark dataset for the identification of transcrip-
tion factor binding sites that contain samples of upstream regions of genes from a few
species, including yeast, drosophila, mouse, and human, with each sample containing
sequences from one particular species. To allow fair comparisons of motif finding al-
gorithms, three different types of background sequences are considered: real, which
includes the original upstream sequences; generic, which includes random upstream
sequences from the same species; and Markov, which includes sequences generated
by a Markov process. Many statistics were also used in [100] for performance eval-
uations, both at the nucleotide and site levels, by computing overlaps between the
predicted motifs and the reference motifs in each sample.

Tompa et al. [100] found that WEEDER [70] has the best overall performance and is
much better than all the other assessed algorithms. Among the other top performing
algorithms are AlignACE [37], ANN-Spec [107], MEME [3], MotifSampler [95],
Oligo/Dyad [101,102], and YMF [87]. One very important observation in [100] is
that the maximum overall correlation coefficient for all the algorithms is less than 0.2,
and thus none of the algorithms perform sufficiently well to reliably identify motifs
in these samples. This is especially true when higher organisms such as drosophila
are involved, indicating that new strategies may be needed to find motifs in these
organisms.

12.4 BIOLOGICAL NETWORK ANALYSIS

As the amount of data describing biological interactions increases, many algorithms
have been proposed to analyze these interaction networks, which are often repre-
sented as graphs in which each vertex represents a gene, a protein, or an enzyme,
and each edge represents interactions between them. One important problem is to
find conserved linear paths given two graphs, which can be defined as the problem
of finding high scoring alignments of two paths, one from each graph, so that vertex
pairs with high enough similarity are considered to be matches, vertex pairs that are
farther apart are mismatches, and vertices in one path that are not aligned to a vertex
in the other path are indels.

A popular strategy to address this problem is to first construct a combined graph
in which each vertex corresponds to a pair of matched vertices, one from each of
the original graphs, and each edge represents that the corresponding vertices are in
close proximity within the original graphs. The problem is then reduced to finding
high scoring simple paths in the combined graph, in which the paths are required to
be simple to avoid the dominance of highly repeating nonsimple paths. These high

268 RECENT DEVELOPMENTS IN ALIGNMENT AND MOTIF FINDING

scoring paths can then be combined together to form a subnetwork structure that
represents conserved pathways that are not necessarily linear. Note that a similar
technique can be used to handle more than two graphs, and the above technique
of combining high scoring simple paths can be applied to find functional modules
within one or more networks by scoring edges within a path in terms of functional
similarity.

Steffen et al. [89] used an exhaustive search strategy to find high scoring simple
paths within one network over different lengths l but was only able to handle small l

since the problem is NP-hard. They further combined these short simple paths to form
functional modules within the network. Kelley et al. [46] found conserved pathways
in two networks by randomly assigning a direction to each edge in the combined
graph and deleting some of the conflicting edges to obtain a directed acyclic graph
before finding the highest scoring path in polynomial time. By repeating the procedure
an exponential number of times, they guaranteed that the probability of finding the
highest scoring simple path of length l in the original graph is high. Scott et al. [84]
used the color-coding technique [1] to randomly assign a color to each vertex. By
finding a path in which each vertex has a distinct color and repeating the procedure a
sufficient number of times, this technique increases the value of l that can be handled.
They further showed that the technique can be extended to find more general sub-
structures such as trees and series-parallel graphs in a network.

A common characteristic of the above approaches is that they first find high
scoring paths before combining them into subnetworks or functional modules. Many
approaches have also been proposed to obtain such subnetworks directly or to find
functional modules that are not directly based on paths. Ogata et al. [66] formed
clusters containing similar vertices in two graphs by starting from small vertex
correspondences and iteratively combining them into larger clusters that represent
functional modules. Berg and Lässig [6] defined the notion of graph alignment as
a set of mutually disjoint subgraphs within a graph so that each vertex within a
subgraph is associated with one vertex in each of the other subgraphs to form an
alignment. They proposed a heuristic algorithm to extract such alignments and regard
each subgraph as a network motif. Koyutürk et al. [48] used a depth-first enumeration
to find small subgraphs that appear frequently in a large number of networks that
act as important network motifs. Kashtan et al. [40] used a sampling technique to
estimate the concentration of a given small subgraph within a large graph in an
attempt to identify network motifs. Hu et al. [36] utilized a few graph reductions
to extract potentially overlapping dense subgraphs that act as network modules.
Sharan et al. [85] and Koyutürk et al. [49] developed greedy heuristics to find high
scoring local network alignments that have a nonlinear structure from two or more
networks.

In addition to finding functional modules directly, another strategy is to subdivide
the given graph into clusters so that each cluster represents a functional module.
Gagneur et al. [28] decomposed a given graph into modules so that each vertex
within a module has the same set of neighbors as outside the module. Pereira-Leal
et al. [73] constructed a line graph from the original graph, in which each vertex
in the line graph represents an edge in the original graph and each edge represents

DISCUSSION 269

an interaction pair with a shared protein, and used a clustering procedure to define
functional modules. Luo and Scheuermann [57] generalized the notion of vertex
indegree and outdegree to subgraphs and subdivided a given graph into modules so
that the degree within a module is high while the degree between modules is small.
Yamada et al. [108] grouped together enzymes that are close together on the graph and
that have similar phylogenetic profiles [72], which are strings that indicate whether an
enzyme has a homolog or not in a set of genomes, to form a hierarchical structure of
modules.

12.5 DISCUSSION

Despite extensive efforts, more progress is needed to obtain reliable performance from
multiple alignment and motif finding algorithms. When applied to analyze biological
networks, the corresponding nonlinear problems become even harder to solve and it
is important to develop better techniques to address them. In this concluding section,
we will discuss a few directions that may lead to further advancements in these
areas.

In multiple alignment, one obvious area of deficiency is the lack of statistical eval-
uation of alignments. Prakash and Tompa [76] addressed this problem by providing
a significance score for local segments of a multiple alignment under the assumption
that an additional phylogenetic tree is given that restricts how subsets of the input
sequences can be related to each other. Similar statistics that can be used for evalu-
ating global multiple alignments are high desirable. Another problematic area is the
lack of algorithms that can produce local or incomplete multiple alignments directly,
although a few existing methods [63,103] can already pinpoint subregions that are
not aligned well by focusing on local similarities. In another direction, current ap-
proaches that take into account rearrangements during the computation of multiple
alignments, such as SLAGAN [12], Mauve [19], and ProDA [75], usually employ a
two-step approach that first identifies local collinear blocks before assembling them
into a multiple alignment without requiring that the blocks are in linear order. A
general formulation that allows such alignments to be defined directly in one step is
desirable.

The successful incorporation of additional intermediate sequences in multiple
alignment has led to the question of whether a similar strategy can be used in mo-
tif finding. Since motif finding performance is greatly affected by noise, much care
has to be taken to develop a strategy to choose appropriate sequences from database
search to exclude hits that are not related to any of the input sequences. Similarly,
the successful use of a phylogenetic tree in motif finding in [8] has led to the ques-
tion of whether such information can be better utilized in other areas. In progressive
multiple alignment, it may be possible to incorporate such information directly rather
than using a guide tree that is only loosely based on phylogenies. In a related di-
rection, Buhler and Nordgren [14] have successfully developed an algorithm to find
a local alignment between a query sequence and a multiple alignment by explicitly
using a phylogenetic tree. In analyzing multiple biological networks, the use of a

270 RECENT DEVELOPMENTS IN ALIGNMENT AND MOTIF FINDING

phylogenetic tree can be very helpful to restrict computations to pairwise compar-
isons within each internal node of the tree, while is much easier than performing
simultaneous multiple comparisons [26]. This can also be helpful when develop-
ing algorithms for globally aligning multiple biological networks that are relatively
small.

The rapid increase in the size of biological databases has created many oppor-
tunities to study less well-defined problems that can potentially lead to completely
new types of information. Bejerano et al. [5] utilized large-scale data in noncoding
regions by systematically clustering them and showed that this procedure can find
unexpected clusters. In a different direction, it may be possible to develop formula-
tions that allow study of evolutionary relationships among all known sequences in
databases.

REFERENCES

1. Alon N, Yuster R, Zwick U. Color-coding. J ACM 1995;42:844–856.

2. Apostolico A, Parida L. Incremental paradigms of motif discovery. J Comput Biol
2004;11:15–25.

3. Bailey TL, Elkan CP. Fitting a mixture model by expectation maximization to discover
motifs in biopolymers. Proceedings of the 2nd International Conference on Intelligent
Systems for Molecular Biology. 1994. pp. 28–36.

4. Barash Y, Elidan G, Friedman N, Kaplan T. Modeling dependencies in protein-DNA
binding sites. Proceedings of the 7th Annual International Conference on Research in
Computational Molecular Biology. 2003. pp. 28–37.

5. Bejerano G, Haussler D, Blanchette M. Into the heart of darkness: large-scale clustering
of human non-coding DNA. Bioinformatics 2004;20:SI40–SI48.

6. Berg J, Lässig M. Local graph alignment and motif search in biological networks. Proc.
Natl. Acad. Sci. USA 2004;101:14689–14694.

7. Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AF, Roskin KM, Baertsch R, Rosen-
bloom K, Clawson H, Green ED, Haussler D, Miller W. Aligning multiple genomic
sequences with the threaded blockset aligner. Genome Res 2004;14:708–715.

8. Blanchette M, Schwikowski B, Tompa M. Algorithms for phylogenetic footprinting.
J Comput Biol 2002;9:211–223.

9. Bolten E, Schliep A, Schneckener S, Schomburg D, Schrader R. Clustering protein
sequences — structure prediction by transitive homology. Bioinformatics 2001;17:935–
941.

10. Bray N, Pachter L. MAVID: constrained ancestral alignment of multiple sequences.
Genome Res 2004;14:693–699.

11. Brudno M, Do CB, Cooper GM, Kim MF, Davydov E, NISC Comparative Sequencing
Program, Green ED, Sidow A, Batzoglou S. LAGAN and Multi-LAGAN: efficient tools
for large-scale multiple alignment of genomic DNA. Genome Res 2003;13:721–731.

12. Brudno M, Malde S, Poliakov A, Do CB, Couronne O, Dubchak I Batzoglou S. Glo-
cal alignment: finding rearrangements during alignment. Bioinformatics 2003;19:SI54–
SI62.

REFERENCES 271

13. Bucka-Lassen K, Caprani O, Hein J. Combining many multiple alignments in one im-
proved alignment. Bioinformatics 1999;15:122–130.

14. Buhler J, Nordgren R. Toward a phylogenetically aware algorithm for fast DNA similarity
search. Lecture Notes in Bioinformatics, Vol. 3388. 2005. pp. 15–29.

15. Buhler J, Tompa M. Finding motifs using random projections. J Comput Biol 2002;9:225–
242.

16. Carillo H, Lipman D. The multiple sequence alignment problem in biology. SIAM J Appl
Math 1988;48:1073–1082.

17. Cliften PF, Hillier LW, Fulton L, Graves T, Miner T, Gish WR, Waterston RH, Johnston
M. Surveying Saccharomyces genomes to identify functional elements by comparative
DNA sequence analysis. Genome Res 2001;11:1175–1186.

18. Dandekar T, Schuster S, Snel B, Huynen M, Bork P. Pathway alignment: applica-
tion to the comparative analysis of glycolytic enzymes. Biochem J 1999;343:115–
124.

19. Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved
genomic sequence with rearrangements. Genome Res 2004;14:1394–1403.

20. Do CB, Gross SS, Batzoglou S. CONTRAlign: discriminative training for protein se-
quence alignment. Lecture Notes in Bioinformatics Vol. 3909. 2006. pp. 160–174.

21. Do CB, Mahabhashyam MS, Brudno M, Batzoglou S. ProbCons: probabilistic
consistency-based multiple sequence alignment. Genome Res 2005;15:330–340.

22. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high through-
put. Nucleic Acids Res 2004;32:1792–1797.

23. Eskin E. From profiles to patterns and back again: a branch and bound algorithm for finding
near optimal motif profiles. Proceedings of the 8th Annual International Conference on
Research in Computational Molecular Biology. 2004. pp. 115–124.

24. Eskin E, Pevzner PA. Finding composite regulatory patterns in DNA sequences. Bioin-
formatics 2002;18:S354–S363.

25. Feng D, Doolittle R. Progressive sequence alignment as a prerequisite to correct phylo-
genetic trees. J Mol Evol 1987;25:351–360.

26. Flannick J, Novak A, Srinivasan BS, McAdams HH, Batzoglou S. Græmlin: general and
robust alignment of multiple large interaction networks. Genome Res 2006;16:1169–1181.

27. Fratkin E, Naughton BT, Brutlag DL, Batzoglou S. MotifCut: regulatory motifs finding
with maximum density subgraphs. Bioinformatics 2006;22:E150–E157.

28. Gagneur J, Krause R, Bouwmeester T, Casari G. Modular decomposition of protein-
protein interaction networks. Genome Biol 2004;5:R57.

29. Galas DJ, Eggert M, Waterman MS. Rigorous pattern-recognition methods for DNA
sequences. Analysis of promoter sequences from Escherichia coli. J Mol Biol
1985;186:117–128.

30. Gallo G, Grigoriadis MD, Tarjan RE. A fast parametric maximum flow algorithm and
applications. SIAM J Comput 1989;18:30–55.

31. Gerstein M. Measurement of the effectiveness of transitive sequence comparison, through
a third ‘intermediate’ sequence. Bioinformatics 1998;14:707–714.

32. Gotoh O. Significant improvement in accuracy of multiple protein sequence alignments
by iterative refinement as assessed by reference to structural alignments. J Mol Biol
1996;264:823–838.

272 RECENT DEVELOPMENTS IN ALIGNMENT AND MOTIF FINDING

33. GuhaThakurta D, Stormo GD. Identifying target sites for cooperatively binding factors.
Bioinformatics 2001;17;608–621.

34. Gusfield D. Efficient methods for multiple sequence alignment with guaranteed error
bounds. Bull Math Biol 1993;55:141–154.

35. Heger A, Lappe M, Holm L. Accurate detection of very sparse sequence motifs. J Comput
Biol 2004;11:843–857.

36. Hu H, Yan X, Huang Y, Han J, Zhou XJ. Mining coherent dense subgraphs across massive
biological networks for functional discovery. Bioinformatics 2005;21:SI213–SI221.

37. Hughes JD, Estep PW, Tavazoie S, Church GM. Computational identification of cis-
regulatory elements associated with groups of functionally related genes in Saccha-
romyces cerevisiae. J Mol Biol 2000;296:1205–1214.

38. Just W. Computational complexity of multiple sequence alignment with SP-score. J
Comput Biol 2001;8:615–623.

39. Kaplan T, Friedman N, Margalit H. Ab initio prediction of transcription factor binding
sites using structural knowledge. PLoS Comput Biol 2005;1:E1.

40. Kashtan N, Itzkovitz S, Milo R, Alon U. Efficient sampling algorithm for estimating
subgraph concentrations and detecting network motifs. Bioinformatics 2004;20:1746–
1758.

41. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple
sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002;30:3059–
3066.

42. Kececioglu JD. The maximum weight trace problem in multiple sequence alignment.
Lecture Notes in Computer Science Vol. 684. 1993. pp. 106–119.

43. Kececioglu J, Starrett D. Aligning alignments exactly. Proceedings of the 8th An-
nual International Conference on Research in Computational Molecular Biology. 2004.
pp. 85–96.

44. Keich U, Pevzner PA. Finding motifs in the twilight zone. Bioinformatics 2002;18:1374–
1381.

45. Kel A, Tikunov Y, Voss N, Wingender E. Recognition of multiple patterns in unaligned sets
of sequences: comparison of kernel clustering method with other methods. Bioinformatics
2004;20:1512–1516.

46. Kelley BP, Sharan R, Karp RM, Sittler T, Root DE, Stockwell BR, Ideker T. Conserved
pathways within bacteria and yeast as revealed by global protein network alignment. Proc.
Natl. Acad. Sci. USA 2003;100:11394–11399.

47. Kelly TJ, Smith HO. A restriction enzyme from Hemophilus influenzae. II. J Mol Biol
1970;51:393–409.

48. Koyutürk M, Grama A, Szpankowski W. An efficient algorithm for detecting frequent
subgraphs in biological networks. Bioinformatics 2004;20:SI200–SI207.

49. Koyutürk M, Kim Y, Topkara U, Subramaniam S, Szpankowski W, Grama A. Pairwise
alignment of protein interaction networks. J Comput Biol 2006;13:182–199.

50. Lassmann T, Sonnhammer ELL. Kalign — an accurate and fast multiple sequence align-
ment algorithm. BMC Bioinformatics 2005;6:298.

51. Lawrence CE, Altschul SF, Boguski MS, Liu JS, Neuwald AF, Wootton JC. Detect-
ing subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science
1993;262:208–214.

REFERENCES 273

52. Lee C, Grasso C, Sharlow MF. Multiple sequence alignment using partial order graphs.
Bioinformatics 2002;18:452–464.

53. Leung HC, Chin FY. Finding exact optimal motifs in matrix representation by partitioning.
Bioinformatics 2005;21:SII86–SII92.

54. Leung HC, Chin FY, Yiu SM, Rosenfeld R, Tsang WW. Finding motifs with insufficient
number of strong binding sites. J Comput Biol 2005;12:686–701.

55. Li W, Pio F, Pawlowski K, Godzik A. Saturated BLAST: an automated multiple intermedi-
ate sequence search used to detect distant homology. Bioinformatics 2000;16:1105–1110.

56. Liu X, Brutlag DL, Liu JS. BioProspector: discovering conserved DNA motifs in upstream
regulatory regions of co-expressed genes. Pac Sym Biocomput 2001;127–138.

57. Luo F, Scheuermann RH. Detecting functional modules from protein interaction networks.
Proceedings of the 1st International Multi-Symposiums on Computer and Computational
Sciences 2006. pp. 123–130.

58. Margelevičius M, Venclovas Č. PSI-BLAST-ISS: an intermediate sequence search
tool for estimation of the position-specific alignment reliability. BMC Bioinformatics
2005;6:185.

59. Marsan L, Sagot M-F. Algorithms for extracting structured motifs using a suffix tree with
an application to promoter and regulatory site consensus identification. J Comput Biol
2000;7:345–362.

60. Marti-Renom MA, Madhusudhan MS, Sali A. Alignment of protein sequences by their
profiles. Protein Sci 2004;13:1071–1087.

61. Matsuda H. Detection of conserved domains in protein sequences using a maximum-
density subgraph algorithm. IEICE Trans. Fund. Elec. Comm. Comp. Sci. 2000;E83-
A:713–721.

62. Mizuguchi K, Deane CM, Blundell TL, Overington JP. HOMSTRAD: a database of
protein structure alignments for homologous families. Protein Sci 1998;7:2469–2471.

63. Morgenstern B, Dress A, Werner T. Multiple DNA and protein sequence alignment based
on segment-to-segment comparison. Proc. Natl. Acad. Sci. USA 1996;93:12098–12103.

64. Needleman SB, Wunsch CD. A general method applicable to the search for similarities
in the amino acid sequence of two proteins. J Mol Biol 1970;48:443–453.

65. Notredame C, Higgins DG, Heringa J. T-Coffee: a novel method for fast and accurate
multiple sequence alignment. J Mol Biol 2000;302:205–217.

66. Ogata H, Fujibuchi W, Goto S, Kanehisa M. A heuristic graph comparison algorithm
and its application to detect functionally related enzyme clusters. Nucleic Acids Res
2000;28:4021–4028.

67. O’Sullivan O, Suhre K, Abergel C, Higgins DG, Notredame C. 3DCoffee: combin-
ing protein sequences and structures within multiple sequence alignments. J Mol Biol
2004;340:385–395.

68. Parida L, Floratos A, Rigoutsos I. MUSCA: an algorithm for constrained alignment of
multiple data sequences. Proceedings of the 9th Workshop on Genome Informatics. 1998.
pp. 112–119.

69. Park J, Teichmann SA, Hubbard T, Chothia C. Intermediate sequences increase the
detection of homology between sequences. J Mol Biol 1997;273:349–354.

70. Pavesi G, Mauri G, Pesole G. An algorithm for finding signals of unknown length in DNA
sequences. Bioinformatics 2001;17:S207–S214.

274 RECENT DEVELOPMENTS IN ALIGNMENT AND MOTIF FINDING

71. Pei J, Grishin NV. MUMMALS: multiple sequence alignment improved by using hidden
Markov models with local structural information. Nucleic Acids Res 2006;34:4364–4374.

72. Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO. Assigning protein
functions by comparative genome analysis: protein phylogenetic profiles. Proc. Natl.
Acad. Sci. USA 1999;96:4285–4288.

73. Pereira-Leal JB, Enright AJ, Ouzounis CA. Detection of functional modules from protein
interaction networks. Proteins 2004;54:49–57.

74. Pevzner PA, Sze S-H. Combinatorial approaches to finding subtle signals in DNA se-
quences. Proceedings of the 8th International Conference on Intelligent Systems for
Molecular Biology. 2000. pp. 269–278.

75. Phuong TM, Do CB, Edgar RC, Batzoglou S. Multiple alignment of protein sequences
with repeats and rearrangements. Nucleic Acids Res 2006;34:5932–5942.

76. Prakash A, Tompa M. Statistics of local multiple alignments. Bioinformatics
2005;21:SI344–SI350.

77. Price A, Ramabhadran S, Pevzner PA. Finding subtle motifs by branching from sample
strings. Bioinformatics 2003;19:SII149–SII155.

78. Queen C, Wegman MN, Korn LJ. Improvements to a program for DNA analysis: a pro-
cedure to find homologies among many sequences. Nucleic Acids Res 1982;10:449–
456.

79. Raghava GPS, Searle SMJ, Audley PC, Barber JD, Barton GJ. OXBench: a benchmark
for evaluation of protein multiple sequence alignment accuracy. BMC Bioinformatics
2003;4:47.

80. Reddy CK, Weng Y-C, Chiang H-D. Refining motifs by improving information content
scores using neighborhood profile search. Algorithms Mol Biol 2006;1:23.

81. Rigoutsos I, Floratos A. Combinatorial pattern discovery in biological sequences: the
TEIRESIAS algorithm. Bioinformatics 1998;14:55–67.

82. Roshan U, Livesay DR. Probalign: multiple sequence alignment using partition function
posterior probabilities. Bioinformatics 2006;22:2715–2721.

83. Salamov AA, Suwa M, Orengo CA, Swindells MB. Combining sensitive data-
base searches with multiple intermediates to detect distant homologues. Protein Eng
1999;12:95–100.

84. Scott J, Ideker T, Karp RM, Sharan R. Efficient algorithms for detecting signaling path-
ways in protein interaction networks. J Comput Biol 2006;13:133–144.

85. Sharan R, Suthram S, Kelley RM, Kuhn T, McCuine S, Uetz P, Sittler T, Karp RM, Ideker
T. Conserved patterns of protein interaction in multiple species. Proc. Natl. Acad. Sci.
USA 2005;102:1974–1979.

86. Simossis VA, Kleinjung J, Heringa J. Homology-extended sequence alignment. Nucleic
Acids Res 2005;33:816–824.

87. Sinha S, Tompa M. A statistical method for finding transcription factor binding sites.
Proceedings of the 8th International Conference on Intelligent Systems for Molecular
Biology. 2000. pp. 344–354.

88. Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol
1981;147:195–197.

89. Steffen M, Petti A, Aach J, D’haeseleer P, Church G. Automated modelling of signal
transduction networks. BMC Bioinformatics 2002;3:34.

REFERENCES 275

90. Stormo GD, Hartzell GW. Identifying protein-binding sites from unaligned DNA frag-
ments. Proc. Natl. Acad. Sci. USA 1989;86:1183–1187.

91. Stoye J. Multiple sequence alignment with the divide-and-conquer method. Gene
1998;211:GC45–GC56.

92. Subramanian AR, Weyer-Menkhoff J, Kaufmann M, Morgenstern B. DIALIGN-T: an
improved algorithm for segment-based multiple sequence alignment. BMC Bioinformatics
2005;6:66.

93. Sze S-H, Lu Y, Yang Q. A polynomial time solvable formulation of multiple sequence
alignment. J Comput Biol 2006;13:309–319.

94. Taylor WR. Multiple sequence alignment by a pairwise algorithm. Comput Appl Biosci
1987;3:81–87.

95. Thijs G, Lescot M, Marchal K, Rombauts S, De Moor B, Rouzé P, Moreau Y. A higher-
order background model improves the detection of promoter regulatory elements by Gibbs
sampling. Bioinformatics 2001;17:1113–1122.

96. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of pro-
gressive multiple sequence alignment through sequence weighting, position specific gap
penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–4680.

97. Thompson JD, Koehl P, Ripp R, Poch O. BAliBASE 3.0: latest developments of the
multiple sequence alignment benchmark. Proteins 2005;61:127–136.

98. Thompson JD, Plewniak F, Poch O. A comprehensive comparison of multiple sequence
alignment programs. Nucleic Acids Res 1999;27:2682–2690.

99. Tohsato Y, Matsuda H, Hashimoto A. A multiple alignment algorithm for metabolic path-
way analysis using enzyme hierarchy. Proceedings of the 8th International Conference
on Intelligent Systems for Molecular Biology. 2000. pp. 376–383.

100. Tompa M, Li N, Bailey TL, Church GM, De Moor B, Eskin E, Favorov AV, Frith MC,
Fu Y, Kent WJ, Makeev VJ, Mironov AA, Noble WS, Pavesi G, Pesole G, Régnier M,
Simonis N, Sinha S, Thijs G, van Helden J, Vandenbogaert M, Weng Z, Workman C, Ye
C, Zhu Z. Assessing computational tools for the discovery of transcription factor binding
sites. Nature Biotechnol 2005;23:137–144.

101. van Helden J, André B, Collado-Vides J. Extracting regulatory sites from the upstream
region of yeast genes by computational analysis of oligonucleotide frequencies. J Mol
Biol 1998;281:827–842.

102. van Helden J, Rios AF, Collado-Vides J. Discovering regulatory elements in non-coding
sequences by analysis of spaced dyads. Nucleic Acids Res 2000;28:1808–1818.

103. Van Walle I, Lasters I, Wyns L. Align-m — a new algorithm for multiple alignment of
highly divergent sequences. Bioinformatics 2004;20:1428–1435.

104. Wallace IM, O’Sullivan O, Higgins DG, Notredame C. M-Coffee: combining mul-
tiple sequence alignment methods with T-Coffee. Nucleic Acids Res 2006;34:1692–
1699.

105. Waterman MS, Arratia R, Galas DJ. Pattern recognition in several sequences: consensus
and alignment. Bull Math Biol 1984;46:515–527.

106. Wilcoxon F. Probability tables for individual comparisons by ranking methods. Biometrics
1947;3:119–122.

107. Workman CT, Stormo GD. ANN-Spec: a method for discovering transcription factor
binding sites with improved specificity. Pac Sym Biocomput 2000;467–478.

276 RECENT DEVELOPMENTS IN ALIGNMENT AND MOTIF FINDING

108. Yamada T, Kanehisa M, Goto S. Extraction of phylogenetic network modules from the
metabolic network. BMC Bioinformatics 2006;7:130.

109. Zaslavsky E, Singh M. A combinatorial optimization approach for diverse motif finding
applications. Algorithms Mol Biol 2006;1:13.

110. Zhou Q, Liu JS. Modeling within-motif dependence for transcription factor binding site
predictions. Bioinformatics 2004;20:909–916.

111. Zhou H, Zhou Y. SPEM: improving multiple sequence alignment with sequence profiles
and predicted secondary structures. Bioinformatics 2005;21:3615–3621.

PART III

MICROARRAY DESIGN AND DATA
ANALYSIS

13
ALGORITHMS FOR
OLIGONUCLEOTIDE MICROARRAY
LAYOUT

Sérgio A. De Carvalho Jr.
Technische Fakultät, Bielefeld University, Bielefeld, Germany

Sven Rahmann
Bioinformatics for High-Throughput Technologies, Computer Science Department 11,
Technical University of Dortmund, Germany

Microarrays are a ubiquitous tool in molecular biology with a wide range of applica-
tions on a whole-genome scale, including high-throughput gene expression analysis,
genotyping, and resequencing. The advantage of oligonucleotide arrays is that their
higher densities allow, for instance, the simultaneous measurement of the expres-
sion of several thousands of genes at once. High-density microarrays are usually
produced by light-directed combinatorial chemistry that builds the probe sequences
base-by-base. Because of the natural properties of light, the quality of a microar-
ray can be improved by carefully designing the physical arrangement, or layout, of
its probes. In this chapter, we review models for evaluating the layout of oligonu-
cleotide microarrays and survey algorithmic approaches that can be used in their
design.

Bioinformatics Algorithms: Techniques and Applications, Edited by Ion I. Mǎndoiu
and Alexander Zelikovsky
Copyright © 2008 John Wiley & Sons, Inc.

279

280 ALGORITHMS FOR OLIGONUCLEOTIDE MICROARRAY LAYOUT

13.1 INTRODUCTION

Oligonucleotide microarrays consist of short DNA fragments, called probes, affixed
or synthesized at specific locations, called features or spots, on a solid surface. Mi-
croarrays are based on the principle of Watson–Crick base pairing. Each probe is a
single-stranded DNA molecule of 10 to 70 nucleotides that perfectly matches with a
specific part of a target molecule. The probes are used to verify whether (or in which
quantity) the targets are present in a given biological sample.

The first step of a microarray experiment consists of collecting mRNAs or genomic
DNA from the cells or tissue under investigation. The mixture to be analyzed is
prepared with fluorescent tags and loaded on the array, allowing the targets to hybridize
with the probes. Any unbound molecule is washed away, leaving on the array only
those molecules that have found a complementary probe. Finally, the array is exposed
to a light source that induces fluorescence, and an optical scanner reads the intensity
of light emitted at each spot.

Under ideal conditions, each probe will hybridize only to its target. Thus, it is
possible to infer whether a given molecule is present in the sample by checking
whether there is light coming from the corresponding spot of the array. The expression
level of a gene in a cell can also be inferred because each spot contains several million
identical probes, and the strength of the fluorescent signal on a spot is expected to be
proportional to the concentration of the target in the sample. In practice, each target
is queried by several probes (its probe set), and complex statistical calculations are
performed to infer the concentration from the observed signals.

High-density microarrays, also called DNA chips, can have more than a million
spots, and are thus able to query tens of thousands of genes, covering the entire genome
of an organism. The pioneering Affymetrix GeneChip r© arrays, for instance, have
up to 1.3 million spots on a coated quartz substrate, measuring a little over 1 cm2.
The spots are as narrow as 5 μm (0.005 mm), and are arranged in a regularly-spaced
rectangular grid.

13.1.1 Microarray Production

GeneChip arrays are produced by combinatorial chemistry and techniques derived
from microelectronics and integrated circuits fabrication. Probes are typically 25
bases long and are synthesized on the chip, in parallel, in a series of repetitive steps.
Each step appends the same kind of nucleotide to the probes of selected regions of the
chip. The selection of which probes receive the nucleotide is achieved by a process
called photolithography [6].

Figure 13.1 illustrates this process: the quartz wafer of a GeneChip array is initially
coated with a chemical compound topped with a light-sensitive protecting group that
is removed when exposed to ultraviolet light, activating the compound for chemical
coupling. A lithographic mask is used to direct light and remove the protecting groups
of only those positions that should receive the nucleotide of a particular synthesis step.
A solution containing adenine (A), thymine (T), cytosine (C) or guanine (G) is then
flushed over the chip surface, but the chemical coupling occurs only in those positions

INTRODUCTION 281

FIGURE 13.1 Affymetrix’s probe synthesis via photolithographic masks. The chip is coated
with a chemical compound and a light-sensitive protecting group; masks are used to direct light
and activate selected probes for chemical coupling; nucleotides are appended to deprotected
probes; the process is repeated until all probes have been fully synthesized.

that have been previously deprotected. Each coupled nucleotide also bears another
protecting group so that the process can be repeated until all probes have been fully
synthesized.

Photolithographic masks are notoriously expensive and cannot be changed once
they have been manufactured. Thus, any change in the chip layout requires the
production of a new set of masks. A similar method of in situ synthesis known as Mask-
less Array Synthesizer (MAS) was later developed to eliminate the need of such masks
[13]. Probes are still built by repeating cycles of deprotection and chemical coupling
of nucleotides. The illumination, however, relies on an array of miniature mirrors that
can be independently controlled to direct or deflect the incidence of light on the chip.

NimbleGen Systems, Inc. uses its own Digital Micromirror Device (DMD) that
can control up to 786, 000 individual mirrors to produce microarrays with spots as
small as 16 �m× 16 �m. The Geniom r© system of febit biotech GmbH, a platform
for customized microarray production, also uses a micromirror array to direct the
synthesis process.

13.1.2 The Problem of Unintended Illumination

Regardless of the method used to direct light (masks or micromirror arrays), it is
possible that some probes are accidentally activated for chemical coupling because

282 ALGORITHMS FOR OLIGONUCLEOTIDE MICROARRAY LAYOUT

of light diffraction, scattering, or internal reflection on the chip surface. This un-
wanted illumination of regions introduces unexpected nucleotides that change probe
sequences, significantly reducing their chances of successful hybridization with their
targets. Moreover, these faulty probes may also introduce cross-hybridizations, which
can interfere in the experiments performed with the chip.

This problem is more likely to occur near the borders between a masked and an
unmasked spot (in the case of maskless synthesis between a spot that is receiving light
and a spot that is not). This observation has given rise to the term border conflict.

It turns out that by carefully designing the arrangement of the probes on the
chip and their embeddings (the sequences of masked and unmasked steps used to
synthesize each probe), it is possible to reduce the risk of unintended illumination.
This issue becomes even more important as there is a need to accommodate more
probes on a single chip, which requires the production of spots at higher densities
and, consequently, with reduced distances between probes.

In this chapter, we address the problem of designing the layout of a microarray with
the goal of reducing the chances of unintended illumination, which we call Microarray
Layout Problem (MLP). We use the term layout to refer to where and how the probes
are synthesized on the chip (their arrangement and their embeddings).

13.2 THE MICROARRAY LAYOUT PROBLEM

In this section, we give a more precise definition of the MLP and define criteria
for evaluating a given layout. The description that follows assumes that synthesis is
done by photolithographic masks, but the concepts apply to the maskless production
as well. Two evaluation criteria are presented: border length and conflict index. As
shown later, the conflict index model can be seen as a generalization of the border
length model.

Formally, we have a set of probes P = {p1, p2, . . . , pn} (frequently, but not nec-
essarily, all probes have the same length), where each pk ∈ {A, C, G, T}∗ is produced
by a series of T synthesis steps. Each step t uses a mask Mt to induce the addition
of a particular nucleotide Nt ∈ {A, C, G, T} to a subset of P (Fig. 13.2). The nu-
cleotide deposition sequence N = N1, N2, . . . , NT corresponding to the sequence
of nucleotides added at each synthesis step is therefore a supersequence of all p ∈ P .

ε1 = 1101000000
ε2 = 0101001000
ε3 = 0010100100
ε4 = 0001010001
ε5 = 0010100001
ε6 = 0010010001
ε7 = 0001001010
ε8 = 0000011100
ε9 = 1000100100

N = ACGTACGTAC A

ACT CTG GAT

TCC GAC GCC

TGA CGT AAT

C

A

G

M1 M2

M3

p1 p2 p3

p4 p5 p6

p7 p8 p9

M4

GG

C

T
T
T

T

FIGURE 13.2 Synthesis of a hypothetical 3× 3 chip with photolithographic masks. Left:
chip layout and the 3-mer probe sequences. Center: deposition sequence and probe embeddings.
Right: first four masks.

THE MICROARRAY LAYOUT PROBLEM 283

A microarray chip consists of a set of spots, or sites, S = {s1, s2, . . . , sm}, where
each spot s is specified by its coordinates on the chip surface and accommodates a
unique probe pk ∈ P . Note that we usually refer to s as containing a single probe pk

although, in practice, it contains several million copies of it. Each probe is synthesized
at a unique spot, hence there is a one-to-one assignment between probes and spots
(provided we assume that there are as many spots as probes, i.e., m = n).

In general, a probe can be embedded within N in several ways. An embedding
of pk is a T -tuple εk = (εk,1, εk,2, . . . , εk,T) in which εk,t = 1, if probe pk receives
nucleotide Nt (at step t), and 0 otherwise. In particular, a left-most embedding is an
embedding in which the bases are added as early as possible (as in ε1 in Fig. 13.2).
We say that a spot or an embedding εk is productive (unmasked) at step t if εk,t = 1,
or unproductive (masked) otherwise.

The deposition sequence is often a repeated permutation of the alphabet, mainly
because of its regular structure and because such sequences maximize the number of
distinct subsequences [2]. The deposition sequence shown in Fig. 13.2 is a 2.5-time
repetition of ACGT, and we thus say that it has two and a half cycles.

For cyclic deposition sequences, it is possible to distinguish between two types
of embeddings: synchronous and asynchronous. In the first case, each probe has
exactly one nucleotide synthesized in every cycle of the deposition sequence; hence,
25 cycles or 100 steps are needed to synthesize probes of length 25. In the case of
asynchronous embeddings, probes can have any number of nucleotides synthesized in
any given cycle, allowing shorter deposition sequences. For this reason, asynchronous
embeddings are usually the choice for commercial microarrays. For instance, all
GeneChip arrays are asynchronously synthesized in 74 steps (18.5 cycles of TGCA),
so only subsequences of this particular deposition sequence can be selected as probes
on Affymetrix chips. [12] shows that this covers about 98.45% of all 25-mers.

Ideally, the deposition sequence should be as short as possible in order to
reduce manufacturing time, cost, and probability of errors [11]. Finding the shortest
deposition sequence to synthesize a set of probes is an instance of a classical
computer science problem known as the Shortest Common Supersequence problem.
Here, however, we assume that N is a fixed sequence given as input.

13.2.1 Problem Statement

Given a set of probes P , a geometry of spots S, and a deposition sequence N, as
specified above, the MLP asks to specify a chip layout (k, ε) that consists of

1. a bijective assignment k : S → {1, . . . , n} that specifies a probe index k (s) for
each spot s (meaning that pk(s) will be synthesized at s),

2. an assignment ε : {1, . . . , n} → {0, 1}T specifying an embedding εk =
(εk,1, . . . , εk,T) for each probe index k, such that N[εk] :≡ (Nt)t:εk,t=1 = pk,

such that a given penalty function is minimized. We introduce two such penalty
functions: total border length and total conflict index.

284 ALGORITHMS FOR OLIGONUCLEOTIDE MICROARRAY LAYOUT

13.2.2 Border Length

A precursor of the MLP (that did not consider different embeddings) was formally
stated by Hannenhalli and coworkers [7], who defined the border length Bt of a
mask Mt as the number of borders separating masked and unmasked spots at synthesis
step t, that is, the number of border conflicts in Mt . The total border length of a given
layout is the sum of border lengths over all masks. For example, the four masks shown
in Fig. 13.2 have B1 = 4, B2 = 3, B3 = 5, and B4 = 4. The total border length of
that layout is 52 (masks 5 to 10 not shown).

The total border length is a possible penalty function to evaluate a proposed layout,
and the Border Length Minimization Problem (BLP) is then defined as the problem
of finding a layout minimizing total border length.

13.2.3 Conflict Index

The border length measures the quality of an individual mask or set of masks. With this
model, however, it is not possible to know how the border conflicts are distributed
among the probes. Ideally, all probes should have roughly the same risk of being
damaged by unintended illumination, so that all signals are affected by the resulting
imperfections in approximately the same way.

The conflict index is a quality measure defined with the aim of estimating the risk of
damaging probes at a particular spot [4]—it is a per-spot or per-probe measure instead
of a per-mask measure. Additionally, it takes into account two practical considerations
observed in [8]:

(a) stray light might activate not only adjacent neighbors but also spots that lie as
far as three cells away from the targeted spot;

(b) imperfections produced in the middle of a probe are more harmful than in its
extremities.

For a proposed layout (k, ε), the conflict index C(s) of a spot s whose probe pk(s)
is synthesized in T masking steps according to its embedding vector εk(s) is

C(s) :=
T∑

t=1

⎛
⎜⎝1{εk(s),t=0} · ω(εk(s), t) ·

∑
s′: neighbor

of s

1{εk(s′),t=1} · γ(s, s′)

⎞
⎟⎠, (13.1)

where 1{cond} is the indicator function that equals 1 if condition cond is true, and 0 oth-
erwise. The indicator functions ensure the following conflict condition: during step t,
there is a conflict at spot s if and only if s is masked (εk(s),t = 0) and a close neighbor
s′ is unmasked (εk(s′),t = 1), since light directed at s′ may somehow reach s. When s is
productive, it does not matter if it accidentally receives light targeted at a neighbor; and
when s′ is unproductive, there is no risk that it damages probes of s. Function γ(s, s′) is

THE MICROARRAY LAYOUT PROBLEM 285

a “closeness” measure between s and s′ (to account for observation (a)). It is defined as

γ(s, s′) := (d(s, s′))−2, (13.2)

where d(s, s′) is the Euclidean distance between the spots s and s′. Note that in
Equation (13.1), s′ ranges over all neighboring spots that are at most three cells
away (horizontally and vertically) from s (see Fig. 13.3 left), which is in accordance
with observation (a). The position-dependent weighting function ω(ε, t) accounts for
the significance of the location inside the probe, where the undesired nucleotide is
introduced in case of accidental illumination (observation (b)). It is defined as

ω(ε, t) := c · exp (θ · λ(ε, t)) , (13.3)

where c > 0 and θ > 0 are constants, and for 1 ≤ t ≤ T ,

λ(ε, t) := 1+min(bε,t, 	ε − bε,t), (13.4)

bε,t :=
t∑

t′=1

εt′ , 	ε :=
T∑

t=1

εt = bε,T . (13.5)

In other words, 	ε is the length of the final probe specified by ε (equal to the number
of ones in the embedding), and bε,t denotes the number of nucleotides synthesized up
to and including step t.

Note that ω(ε, t) grows exponentially from the extremities of the probe to its center
(see Fig. 13.3 right). The motivation behind this definition is that the probability of a
successful stable hybridization of a probe with its target should increase exponentially
with the absolute value of its Gibbs free energy, which increases linearly with the
length of the longest perfect match between probe and target. The parameter θ controls

0

2

4

6

8

10

12

0 5 10 15 20 25

FIGURE 13.3 Ranges of values for both γ and ω on a typical Affymetrix chip where probes
of length 25 are synthesized in 74 masking steps. Left: approximate values of the distance-
dependent weighting function γ(s, s′) for a spot s in the center and close neighbors s′. Right:
position-dependent weights ω(ε, t) on the y axis for each value of bε,t ∈ {0, . . . , 25} on the
x axis, assuming 	ε = 25.

286 ALGORITHMS FOR OLIGONUCLEOTIDE MICROARRAY LAYOUT

how steeply the exponential weighting function rises towards the middle of the probe.
In Fig. 13.3 and our experiments, we use probes of length 	 = 25, and parameters
θ = 5/	 and c = 1/ exp (θ).

The conflict index C(s) can be interpreted as the fraction of probes in s damaged
because of unwanted illumination.

13.2.4 Conflict Index and Border Length as Chip Quality Measures

The relation between conflict index and border length becomes clear if γ(s, s′) and
ω(ε, t) are redefined as follows: Set γ(s, s′) := 1 if s′ is a direct neighbor of s, and
:= 0 otherwise. Also, set ω(ε, t) := 1/2, so that conflicts always have the same weight,
independently of where they occur. Now

∑
s C(s) =∑T

t=1 Bt , that is, total border
length is equivalent to the sum of conflict indices for a particular choice of γ and ω.
For the choices (13.2) and (13.3), they are not equivalent but still correlated, since a
good layout has low border lengths as well as low conflict indices.

To better compare border lengths for chips of different sizes, we divide by the
number of probes and call 1/|P| ·∑T

t=1 Bt the normalized border length; this can
be further divided by the number of synthesis steps to give the normalized border
length per mask 1/(|P| · |T |) ·∑T

t=1 Bt . Reasonable values encountered in practice
are between 30 and 40 per probe, or around 0.5 per probe and mask.

Similarly, we define the average conflict index as 1/|P| ·∑s C(s). The scale de-
pends on our choice of γ and ω. In our experiments, reasonable values range from
300 to 600 per probe (or 4 to 8 per probe and mask).

13.2.5 How Hard is the Microarray Layout Problem?

The MLP appears to be hard because of the superexponential number of possible
arrangements, although no NP-hardness proof is yet known. A formulation of the
MLP as a Quadratic Assignment Problem (QAP) was given by [4]. The QAP is a
classical combinatorial optimization problem that is, in general, NP-hard, and partic-
ularly hard to solve in practice [1]. Optimal solutions are thus unlikely to be found
even for small chips and even if we assume that all probes have a single predefined
embedding.

If we consider all possible embeddings (up to several million for a typical
Affymetrix probe), the MLP is even harder. For this reason, the problem has been tra-
ditionally tackled in two phases. First, an initial embedding of the probes is fixed and
an arrangement of these embeddings on the chip with minimum conflicts is sought.
This is usually referred to as the placement phase. Second, a postplacement opti-
mization phase re-embeds the probes considering their location on the chip, in such
a way that the conflicts with neighboring spots are further reduced. Often, the chip
is partitioned into smaller subregions before the placement phase in order to reduce
running times, especially on larger chips.

The next section surveys the most important placement algorithms. Re-embedding
algorithms are then discussed in Section 13.4, and partitioning algorithms are the
focus of Section 13.5. Finally, we present recent developments that simultaneously

PLACEMENT 287

place and embed probes (Section 13.6). A summary in Section 13.7 concludes the
chapter.

13.3 PLACEMENT

The input for a placement algorithm consists of the deposition sequence N, a set
of probes P (each probe is assumed to have at least one embedding in N), and a
geometry of spots S. In practice, microarrays may have complex physical structures,
but we assume that the spots are arranged in a rectangular grid with nr rows and nc

columns. We also assume that probes can be assigned to any spot.
The output of a placement algorithm is a one-to-one assignment of probes to spots.

If there are more spots than probes to place, we can add enough “empty” probes that
do not introduce any conflicts with the other probes (since light is never directed to
such spots).

All algorithms discussed in this section assume that an initial embedding of the
probes is given, which can be a left-most, right-most, synchronous, or otherwise pre-
computed embedding—a placement algorithm typically does not change the given
embeddings.

13.3.1 Early Approaches

Feldman and Pevzner [5] were the first to formally address the unintended illumination
problem. They showed how an optimal placement can be constructed based on a two-
dimensional Gray code. Their work, however, is restricted to uniform arrays (arrays
containing all 4	 probes of a given length) and synchronous embeddings, being thus
of limited practical importance for current microarrays.

The border length problem on arrays of arbitrary probes was first discussed by [7].
The article reports that the first Affymetrix chips were designed using a heuristic for
the traveling salesman problem (TSP). The idea is to build a weighted graph with
nodes representing probes, and edges containing the Hamming distances between
their embeddings, that is, the number of times their embeddings differ at a particular
synthesis step. A TSP tour on this graph is heuristically constructed, resulting in
consecutive probes in the tour being likely similar. The TSP tour is then threaded on
the array in a row-by-row fashion (Fig. 13.4a).

(a) (b) (c)

FIGURE 13.4 Different ways of threading probes on a chip. (a) Standard row-by-row
(0-threading); (b) 1-threading; (c) 2-threading.

288 ALGORITHMS FOR OLIGONUCLEOTIDE MICROARRAY LAYOUT

Hannenhalli and coworkers studied several threading alternatives, which they col-
lectively called k-threading (Fig. 13.4b and c). A k-threading is a variation of the
standard row-by-row threading, in which the right-to-left and left-to-right paths are
interspaced with alternating upward and downward movements over k sites. (The
row-by-row threading can be seen as a k-threading with k = 0.) Hannenhalli and
coworkers experimentally observed that 1-threading may reduce border length in up
to 20% for large chips when compared to row-by-row threading.

A different strategy, called Epitaxial placement, was proposed by [9]. It was orig-
inally designed for chips with synchronous embeddings, but it can be trivially im-
plemented for asynchronous embeddings as well. The algorithm starts by placing a
random probe in the center of the array and continues to insert probes in spots ad-
jacent to already-filled spots. Priority is given to spots with four filled neighbors, in
which case a probe with the minimum number of border conflicts with the neighbors
is placed. Otherwise, all spots s with i ≥ 1 filled neighbors are examined. For each
spot, the algorithm finds an unassigned probe p whose number of conflicts with the
filled neighbors, c(s, p), is minimal, and assigns a cost C(s, p) = ki · c(s, p)/i for this
assignment, where 0 < ki ≤ 1 are scaling coefficients (the authors propose k1 = 1,
k2 = 0.8, and k3 = 0.6). The assignment with minimum C(s, p) is made and the pro-
cedure is repeated until all probes have been placed. With this algorithm, Kahng and
coworkers claim a further 10% reduction in border conflicts over TSP+ 1-threading.

Both the Epitaxial algorithm and the TSP approach have at least quadratic time
complexity and hence do not scale well to large chips. This observation motivated
the design of two new placement algorithms: Sliding-Window Matching (SWM) and
Row-Epitaxial [8].

13.3.2 Sliding-Window Matching

The SWM algorithm is not exactly a placement algorithm as it iteratively improves
an existing placement that can be constructed, for instance, by TSP+ 1-threading,
or much simpler, by lexicographically sorting the binary embedding vectors with a
linear-time radix sort. The sorting is several times faster, but it is also likely to produce
a worse initial placement than the TSP, with consecutive embeddings being similar
only in their first synthesis steps. This, however, should be of little importance given
that this placement is only used as a starting point for the SWM algorithm.

SWM works inside a window that starts at the top left of the chip and slides from
left to right, top to bottom, while maintaining a certain amount of overlap between
each iteration. When the window reaches the right-end of the chip, it is restarted
at the left-end of the next set of rows, also retaining an overlap with the preceding
rows. At each iteration, the algorithm attempts to reduce the total border length inside
the window by relocating some probes (Fig. 13.5a). First, a random maximal inde-
pendent set of spots is selected, and the probes assigned to these spots are removed.
The term independent refers to the fact that selected spots can be reassigned to probes
without affecting the border length of other selected spots. The algorithm creates
a bipartite graph with nodes representing the removed probes and the now vacant
spots (Fig. 13.5b). The edges of this graph are weighted with the number of border

PLACEMENT 289

(a) (b) (c)

FIGURE 13.5 Sliding-Window Matching algorithm. (a) Initial arrangement of probes
p1, . . . , p16 inside a 4× 4 window and the selected independent set of spots (shaded).
(b) Bipartite graph and a minimum weight perfect matching (dark edges). (c) New arrangement
inside the window.

conflicts that are generated by the corresponding assignment. Finally, a minimum
weight perfect matching on this graph is computed, and the indicated assignments
are made (Fig. 13.5c).

Selecting an independent set of spots ensures that the cost of each new assignment
can be computed independently of the other assignments. SWM was designed
for border length minimization and it takes advantage of the fact that, in this
model, an independent set of spots can be constructed by selecting sites that are
not immediate neighbors (spots that do not share a common border). SWM can
be adapted for conflict index minimization (to our knowledge, this has not been
implemented) by using larger windows containing relatively sparse independent sets.
Therefore, several random independent sets should be constructed before moving the
window.

13.3.3 Row-Epitaxial

The Row-Epitaxial algorithm is a variant of the Epitaxial algorithm with two main
differences introduced to improve scalability: (i) spots are filled in a predefined order,
namely, from top to bottom, left to right and (ii) only a limited number Q of probes
are considered for filling each spot.

Like SWM, Row-Epitaxial improves an initial placement that is constructed by
TSP+ 1-threading or Radix-sort+ 1-threading. For each spot s of the chip, it looks
at the next Q probes that lie in close proximity (to the right or below s), and swaps
the current probe of s with the probe that generates the minimum number of border
conflicts with the top and left neighbors of s. Row-Epitaxial can be adapted to conflict
index minimization by restricting the computation of the conflict index of s to those
neighboring probes that are to the left or above s (those which have already found
their final positions).

Figure 13.6 shows computational results for normalized border length and average
conflict index for various chip dimensions and different values of Q. The running time
of Row-Epitaxial is O(Qn), that is, linear in the chip size, where Q is a user-defined
constant. In this way, solution quality can be traded for running time: more candidates

290 ALGORITHMS FOR OLIGONUCLEOTIDE MICROARRAY LAYOUT

44

44.5

45

45.5

46

46.5

47

47.5

48

8 16 32 64 128 256
Time (min)

Normalized border length

535
540
545
550
555
560
565
570
575
580
585
590

16 32 64 128 256
Time (min)

Average conflict index

FIGURE 13.6 Trade-off between solution quality and running time with the Row-Epitaxial
algorithm, on random chips of dimensions 200× 200 (�), 300× 300 (×) and 500× 500 (·).
The number Q of candidates per spot are 10 000; 20 000; and 30 000 from left to right. Layouts
are measured by normalized border length (left) and average conflict index (right).

yield better layouts but also demand more time. For border length minimization,
increasing Q above 10 000 has little positive effect.

According to experiments conducted by [8], Row-Epitaxial is the best known
large-scale placement algorithm, achieving up to 9% reduction in border length over
the TSP+ 1-threading, whereas SWM achieves slightly worse results but requires
significantly less time.

13.4 RE-EMBEDDING

Once the probes have been placed, conflicts can be further reduced by re-embedding
the probes without changing their locations. All re-embedding algorithms presented
in this section are based on the Optimum Single Probe Embedding (OSPE) algorithm
introduced by [9]. OSPE is a dynamic programming for computing an optimum
embedding of a single probe with respect to its neighbors, whose embeddings
are considered as fixed. The algorithm was originally developed for border length
minimization, but here we present a more general form designed for the conflict index
model [3].

13.4.1 Optimum Single Probe Embedding

The OSPE algorithm can be seen as a special case of a global alignment between a
probe sequence p of length 	 and the deposition sequence N of length T , disallowing
mismatches and gaps in N. We assume that p is placed at spot s, and that we know
the embeddings of all probes placed at spots near s.

The optimal embedding of p into N is built by determining the minimum cost
of embedding a prefix of p into a prefix of N: We use an (+ 1)× (T + 1) matrix

RE-EMBEDDING 291

D, where D[i, t] is defined as the minimum cost of an embedding of p[1 . . . i] into
N[1 . . . t]. The cost is the sum of conflicts induced by the embedding of p[1 . . . i]
on its neighbors, plus the conflicts suffered by p[1 . . . i] because of the embeddings
of its neighbors.

We can compute the value for D[i, t] by looking at two previous entries in the
matrix: D[i, t − 1] and D[i− 1, t − 1]. The reason is that D[i, t] is the minimum
cost of embedding p[1, . . . , i] up to the t-th synthesis step, which can only be
obtained from the previous step (t − 1) by either masking or unmasking spot s at
step t.

If s is productive at step t, base Nt is appended to p[1 . . . i− 1]; this is only
possible if p[i] = N[t]. In this case a cost Ut is added for the risk of damaging
probes at neighboring spots s′. We know that p[1 . . . i− 1] can be embedded in
N[1 . . . t − 1] with optimal cost D[i− 1, t − 1]. Hence, the minimum cost at step t,
if s is productive, is D[i− 1, t − 1]+ Ut . According to the conflict index model,

Ut :=
∑

s′: neighbor

of s

1{ε
k(s′),t=0} · ω(εk(s′), t) · γ(s′, s).

If s is masked at step t, no base is appended to p[1 . . . i], but a cost Mi,t must be
added for the risk of damaging p (by light directed at neighboring spots s′). Since
D[i, t − 1] is the minimum cost of embedding p[1 . . . i] in N[1 . . . t − 1], the min-
imum cost up to step t, if s is unmasked, is D[i, t − 1]+Mi,t .

Note that Mi,t depends on the number of bases p already contains (that is, on i):
each unmasked neighboring spot s′ generates a conflict on p with cost γ(s, s′) · c ·
exp[θ · (1+min{i, 	− i})], in accordance with (13.3) – (13.5). Thus,

Mi,t := c · exp[θ · (1+min{i, 	− i})] ·
∑

s′: neighbor

of s

1{ε
k(s′),t=1} · γ(s, s′).

Finally, D[i, t] is computed as the minimum cost of the possible actions,

D[i, t] :=
{

min{D[i, t − 1]+Mi,t, D[i− 1, t − 1]+ Ut }, if p[i] = N[t]

D[i, t − 1]+Mi,t, if p[i] �= N[t].

The first column of D is initialized as follows: D[0, 0] = 0 and D[i, 0] = ∞ for
0 < i ≤ 	, since no probe of length 	 > 0 can be embedded into an empty depo-
sition sequence. The first row is initialized by setting D[0, t] = D[0, t − 1]+M0,t

for 0 < t ≤ T .
If we assume that costs Ut and Mi,t can be computed in constant time, the time

complexity of the OSPE algorithm is O(T) since there are O(T) entries in D to
compute. The algorithm can be rather time-consuming in the general form presented
here, since we have to look at the embeddings of up to 48 neighbors around s. Naturally,

292 ALGORITHMS FOR OLIGONUCLEOTIDE MICROARRAY LAYOUT

it runs much faster for border length minimization, since there are only four neighbors,
and there are neither position-dependent (ω) nor distance-dependent (γ) weights to
compute. In any case, a few optimizations significantly reduce the running time. For
instance, in each row, only the columns between the left-most and the right-most
embedding of p in N need to be computed.

Once D is computed, the minimum cost is D[, T], and an optimal embedding
of p into N can be constructed by tracing a path from D[, T] back to D[0, 0]
similarly to the procedure used to build an optimal global alignment. This takes O(T)
time.

13.4.2 Re-embedding Algorithms

The OSPE algorithm is the basic operation of several postplacement optimization
algorithms: Greedy, Batched Greedy, and Chessboard [9]; and Sequential [10]. Their
main difference lies in the order in which the probes are re-embedded.

Since OSPE never increases the amount of conflicts in the region around the
re-embedded probe, optimization algorithms can execute several re-embedding
operations without risk of worsening the current solution. Moreover, probes can
be re-embedded several times since new improvements may be possible once
neighbors are changed. In fact, the following algorithms work in repeating cycles of
optimization until no more improvements are possible (when a local optimal solution
is found), or until improvements drop below a given threshold.

The Greedy algorithm uses OSPE to compute, for each spot of the chip, the max-
imum reduction of border conflicts achievable by optimally re-embedding its probe.
It then selects a spot s with the highest gain (reduction of conflicts) and re-embeds its
probe optimally, updating the gains of affected neighboring spots.

A faster version of this algorithm, called Batched Greedy, preselects several spots
for re-embedding and thus sacrifices its greedy nature by postponing the update of
gains.

The Chessboard optimization is based on the fact that a chip can be bicolored like
a chessboard, in such a way that the embeddings of probes located on white spots
are independent of those placed on black spots (with respect to border length), and
vice versa. The Chessboard uses this coloring to alternate the optimal re-embedding
of probes located on black and white spots.

The sequential optimization is the simplest algorithm among the four. It proceeds
spot by spot, from top to bottom, from left to right, re-embedding each probe op-
timally. Once the end of the array is reached, it restarts at the top left for the next
iteration.

Surprisingly, the Sequential algorithm achieves the greatest reduction of border
conflicts with a running time comparable to Batched Greedy, the fastest among
the four. All re-embedding algorithms mentioned here were initially developed
for border length minimization, but they can all be applied to the conflict index
model as well. For the Chessboard optimization, 4× 4 = 16 colors must be used
instead of 2.

PARTITIONING 293

13.5 PARTITIONING

We mentioned earlier that the MLP is usually approached in two phases: place-
ment and re-embedding. The placement, however, is sometimes preceded by a
partitioning phase, which breaks the problem into smaller subproblems that are
easier to manage. This is especially helpful for placement algorithms with non-
linear time or space complexities that are otherwise unable to handle very large
chips.

A partitioning algorithm divides the set of probes P into smaller subsets, and
assigns them to defined regions of the chip. Each region can then be treated as
an independent chip (and processed by a placement algorithm) or recursively par-
titioned. Linear-time placement algorithms may also benefit from a partitioning
since probes with similar embeddings are typically assigned to the same region
(Row-Epitaxial, for instance, is more likely to find good candidates for filling a
spot).

We describe four partitioning algorithms: one-dimensional partitioning (1D), two-
dimensional partitioning, centroid-based quadrisection (CQ), and pivot partitioning
(PP). Like placement algorithms, they assume that an initial (left-most, right-most,
synchronous or otherwise precomputed) embedding of the probes is given. Pivot
partitioning is the only algorithm that modifies these embeddings. As we shall see,
1D and 2D partitioning generate a few masks with extremely few conflicts, leaving
the remaining masks with high levels of conflicts that are difficult to handle. CQ and
PP offer a more uniform optimization over all masks. Results of [3] indicate that PP
produces better layouts than CQ on large chips.

Partitioning is a compromise in solution quality, since it restricts the space of
solutions and may lead to conflicts at partition borders. However, it can improve
solution quality in practice when the placement algorithm cannot handle large regions
well. It is not advisable to perform too many levels of partitioning because smaller
subregions mean less freedom for optimization during placement. The right balance
depends on both the placement algorithm and the partitioning algorithm.

13.5.1 One-Dimensional Partitioning

One-dimensional partitioning divides the set of probes based on the state of their
embeddings at a particular synthesis step. It starts by creating two subsets of P:

P0 = {pk ∈ P|εk,1 = 0}, P1 = {pk ∈ P|εk,1 = 1}.

In other words, P0 contains all probes whose embeddings are unproductive during
the first synthesis step, whereas P1 contains the probes with productive embeddings.
The chip is then divided into two horizontal bands, proportionally to the number of
probes in P0 and P1, so that each band accommodates one subset of P .

This procedure is recursively applied to each band, using the next synthesis steps
to further divide each subset of probes. For instance, the following subsets of P0 and

294 ALGORITHMS FOR OLIGONUCLEOTIDE MICROARRAY LAYOUT

P1 are created during step t = 2:

P00 = {pk ∈ P0|εk,2 = 0}, P01 = {pk ∈ P0|εk,2 = 1},

P10 = {pk ∈ P1|εk,2 = 0}, P11 = {pk ∈ P1|εk,2 = 1}.

The next assignments of subsets to the upper or lower band of their regions are
made in such a way that regions with the same “state”—productive (unmasked) or
unproductive (masked)—are joined as far as possible, resulting in masks that consist
of alternating layers of masked and unmasked spots. This process is illustrated in
Fig. 13.7, where at each step t, a band is labeled “0” when its embeddings are unpro-
ductive, and “1” when its embeddings are productive. The resulting binary numbers
from top to bottom form a Gray code, that is, two successive numbers differ in only
one bit.

The Gray code highlights an interesting property of 1D partitioning. After d levels
of partitioning (based on steps 1 to d), the embeddings of any two immediate neighbors
differ among the first d steps in at most one step. As a result, masks M1, . . . , Md

exhibit a layered structure that effectively reduces border conflicts.
Unfortunately, the Gray code is disrupted as soon as a region cannot be divided

(because all probes of that region are, for instance, masked at a particular step).
This will certainly happen as several binary numbers are unlikely to be substrings of
embeddings (think of, for example, a long run of zeros).

Moreover, 1D partitioning can optimize only a limited number of masks because
the subregions soon become too narrow to be further divided. The maximum parti-
tioning depth dmax is primarily limited by the number of rows in the chip. In practice,
since regions are likely to be unevenly divided, dmax varies between regions. The
algorithm can also be configured to stop partitioning a region, once its dimensions
drop below a given threshold.

1D partitioning is easier to implement if the partitionings always produce rectan-
gular regions (i.e., splitting a row between two regions is not allowed). In order to
force an exact division of a region, however, it might be necessary to move a few
probes from one subset of probes to the other.

FIGURE 13.7 First four levels of one-dimensional partitioning. Dashed lines show the di-
visions performed in each step; solid lines indicate regions delimited in previous steps (there
are no border conflicts between spots separated by solid lines). Masked (shaded) regions are
labeled “0,” unmasked (white) regions are labeled “1.” This labeling forms a Gray code (shown
in the first three steps only).

PARTITIONING 295

13.5.2 Two-Dimensional Partitioning

The 2D partitioning algorithm extends the idea of 1D partitioning to two dimen-
sions, with the potential of optimizing twice as many masks. The algorithm is similar:
P is divided into subsets based on the state of the embeddings at a particular synthesis
step. The difference is that 2D partitioning alternates horizontal and vertical divisions
of regions and that the assignments of probes to regions obey a two-dimensional Gray
code (Fig. 13.8).

In a 2D Gray code, two neighboring numbers differ in at most one bit. Thus, regions
whose embeddings are at the same state (productive or unproductive) are joined as
far as possible.

If regions were always equally divided, 2D partitioning would have the same
property as 1D partitioning: After d levels of partitionings (based on steps 1 to d), the
embeddings of any two immediate neighbors would differ among the first d steps in
at most one step. However, this is not always the case since 2D partitioning is likely
to create regions with different dimensions, forcing some regions to share a border
with more than its four natural neighbors (e.g., region “1100” in Fig. 13.8 borders
with “0101” and “1111”).

So far we have described both 1D and 2D partitionings using the state of the first
d synthesis steps to divide the set of probes. The result of this approach is that, while
the first masks are optimized, the remaining masks are left with high levels of border
conflicts; we call this a left-most mask optimization.

However, a defect in the middle of the probe is more harmful than in its extremities,
so it is more important to optimize the central masks, which synthesize the middle
bases. Thus, we partition the chip based on the following sequence of synthesis steps,
assuming that T is even and d is odd: T/2, (T/2)± 1, (T/2)± 2, . . . , (T/2)± �d/2�;
we call this a centered mask optimization.

For left-most optimization, it makes sense to embed the probes in a left-most
fashion in order to reduce conflicts in the last masks (which are not optimized by the
partitioning); the left-most embeddings reduce the number of unmasked spots in the
last steps, resulting in masks that largely consist of masked spots. Similarly, centered
mask optimization produces better results with centered embeddings. A centered
embedding is constructed by shifting a left-most embedding to the right, so that the

FIGURE 13.8 First four levels of two-dimensional partitioning. Dashed lines show the divi-
sions performed in each step; solid lines indicate regions delimited in previous steps. Masked
regions are labeled with “0,” unmasked regions with “1;” this labeling forms an approximation
to a two-dimensional Gray code.

296 ALGORITHMS FOR OLIGONUCLEOTIDE MICROARRAY LAYOUT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50 60 70

FIGURE 13.9 Normalized border length (on the y axis) per masking step (on the x axis) of
a layout produced by 2D partitioning for a 1000× 1000 chip with random probe sequences
(embedded in the standard 74-step Affymetrix deposition sequence). Partitioning stops when
a region becomes smaller than 64× 64; Row-Epitaxial is used for the placement; (×) left-most
mask optimization with left-most embeddings; (�) centered mask optimization with centered
embeddings.

number of masked steps to the left of the first productive step approximately equals
the number of masked steps to the right of the last productive step.

Figure 13.9 shows the results of 2D partitioning on a 1000× 1000 chip with
both optimizations. For left-most mask optimization, we obtain a normalized border
length of 33.89 (up to approximately 0.6 per step). For centered mask optimization,
the normalized border length improves slightly to 33.59. The average conflict index
(not shown in the figure) for left-most mask optimization is 571.8; for centered mask
optimization, it improves considerably to 383.5 because of the higher weight of the
middle bases.

13.5.3 Centroid-based Quadrisection

Centroid-based quadrisection (CQ) [10] employs a different criterion for dividing the
set of probes, and a different approach for partitioning. At each iteration, a region R

is quadrisectioned into R1, R2, R3, and R4. Each subregion Ri is associated with a
selected probe pci ∈ P , called centroid, that is used to guide the assignment of the
remaining probes to the subregions.

A centroid is a representative of its region; it should symbolize the “average embed-
ding” in that region. The remaining probespk ∈ P \ {pc1 , pc2 , pc3 , pc4} are compared
to each centroid and assigned to the subregion Ri whose centroid’s embedding εci has
minimum H(k, ci), where H(k, k′) is the Hamming distance between the embeddings
εk of pk and εk′ of pk′ (i.e., the number of steps in which εk and εk′ differ).

In order to improve the clustering of similar probes, the four centroids should be
very different from each other. The following heuristic is used: First, a probe index
c1 is randomly selected from {1, . . . , |P|}. Then, a probe index c2 �= c1 maximizing

PARTITIONING 297

H(c2, c1) is selected. Similarly, c3 maximizing H(c3, c1)+H(c3, c2), and c4 maxi-
mizing H(c4, c1)+H(c4, c2)+H(c4, c3) are selected. The assignment of centroids
to the quadrisections of the chip is arbitrary.

In order to recover from a possibly bad choice of centroids, one can use a “multi-
start heuristic,” running the centroid selection procedure several times (using different
“seeds” for c1), and keeping those that lead to the best partitioning (partitioning
quality is measured by the sum of Hamming distances of probe embeddings to their
corresponding centroid embeddings).

The partitioning continues recursively until a predefined depth has been reached.
CQ was developed for border length minimization, but can be adapted for con-

flict index minimization by using the conflict index distance C(k, k′) instead of the
Hamming distance H(k, k′) between the embeddings εk and εk′ ,

C(k, k′) : =
T∑

t=1

(
1{εk,t= 0 and εk′,t=1} · ω(εk, t)

+1{εk′,t= 0 and εk,t=1} · ω(εk′ , t)
)
. (13.6)

It can be interpreted as the sum of the conflict indices resulting from placing
probes pk and pk′ at hypothetical neighboring spots, ignoring the distance between
these spots and the conflicts generated by other neighbors.

13.5.4 Pivot Partitioning: Merging Partitioning and Re-embedding

Pivot Partitioning (PP) [3] is, to a certain extent, similar to CQ: subregions are re-
cursively associated with special probes pci , here called pivots instead of centroids,
that are used to guide the assignment of the other probes to the subregions. The main
differences between PP and CQ are as follows.

Instead of quadrisectioning the chip, PP creates subregions by alternating hori-
zontal and vertical divisions (like 2D partitioning). The advantage is that regions are
divided proportionally to the size of each subset of probes, so they are not required
to have the same size. Furthermore, for each partitioning level, only two pivots need
to be selected.

Another distinction is motivated by the fact that different probes have different
numbers of embeddings, ranging from a single one to several millions. Probes with
more embeddings can more easily adapt to the other probes, that is, they are more
likely to have an embedding with fewer conflicts to fill a particular spot than a probe
that has only a limited number of embeddings. For this reason, PP uses probes with
a single embedding (or few embeddings) as pivots, and chooses the other probes’
embeddings and region assignments accordingly.

Indeed, the most important feature of PP is the simultaneous embedding and as-
signment of probes to subregions. Let M(k, ci) denote the minimum conflict index
distance C(k, ci), as defined in Equation (13.6), over all embeddings of pk; we call it
the minimum conflict index distance between probes pk and pci . It can be efficiently

298 ALGORITHMS FOR OLIGONUCLEOTIDE MICROARRAY LAYOUT

computed with a variant of the OSPE algorithm that ignores the location of the probes
and the distance-dependent weights γ . Now, a nonpivot probe pk is assigned to the
region Ri, whose pivot pci has minimum M(k, qi) over i = 1, 2. Pivot partitioning
continues recursively up to a predefined depth. Finally, each probe is embedded to
minimize conflicts with its assigned pivot.

13.6 MERGING PLACEMENT AND RE-EMBEDDING

The problem with the traditional “place and re-embed” approach is that the arrange-
ment of probes on the chip is decided on the basis of embeddings that are likely to
change during the re-embedding phase. Intuitively, better results should be obtained
when the placement and embedding phases are considered simultaneously, instead of
separately. However, because of the generally high number of embeddings of each
single probe, it is not easy to design algorithms that efficiently use the additional
freedom and run reasonably fast in practice.

We describe Greedy+, the first placement algorithm that simultaneously places and
re-embeds the probes, and compare it with Row-Epitaxial, the best known large-scale
placement algorithm.

13.6.1 Greedy+

The goal is to design an algorithm that is similar to Row-Epitaxial, so that we can
make a better assessment of the gains resulting from merging the placement and
re-embedding phases.

Greedy+ fills the spots row-by-row, from left to right, in a greedy fashion, similar
to Row-Epitaxial. Also, for each spot s, it looks at Q probe candidates and chooses the
one that can be placed at s with minimum cost. The difference is that we now consider
all possible embeddings of a candidate p instead of only p’s initial embedding. This is
done by temporarily placing p at s and computing its optimal embedding with respect
to the already-filled neighbors of s (using OSPE from Section 13.4).

Compared to Row-Epitaxial, Greedy+ spends more time on evaluating each probe
candidate p for a spot s. While Row-Epitaxial takes O(T) time to compute the conflict
index, or the border length resulting from placing p at s; Greedy+ requires O(T)
time, since it uses OSPE (recall that 	 is the probe length and T is the length of the
deposition sequence). To achieve a running time comparable to Row-Epitaxial, we
must, therefore, consider lower candidate numbers Q.

There are a few optimizations that reduce the time spent with OSPE computations
when several probe candidates are examined in succession for the same spot. First,
we note that if two probe candidates p and p′ share a common prefix of length l,
the first l+ 1 rows of the OSPE dynamic programming matrix D will be identical.
In other words, if we have calculated the minimum cost of p, we can speed up the
calculation of the minimum cost of p′ by skipping the first l+ 1 rows of D.

In order to fully exploit this fact, we examine the probes in lexicographical order,
so that we can maximize the length of the common prefix between two consecutive

MERGING PLACEMENT AND RE-EMBEDDING 299

candidates. We keep a doubly-linked list of probes and remove a probe p from the list
when it is placed. For the next spot to be filled, we look at Q probes in the list around
p’s former position, for example, at Q/2 probes to the left and to the right of p.

Second, the Ut costs of OSPE need to be computed only once for a given spot s

since Ut does not depend on the probe placed at s. Thus, in order to examine another
candidate, we only need to recompute the Mi,t costs.

Finally, once we know that a probe candidate p can be placed at s with minimum
cost C, we can stop the OSPE computation for another candidate p′ as soon as all
values in a row of D are greater than or equal to C.

13.6.2 Results

We compare the results of Greedy+ with Row-Epitaxial. To be fair, since Row-
Epitaxial is a traditional placement algorithm that does not change the embeddings,
we need to compare the layouts obtained by both algorithms after a re-embedding
phase. For this task we use the Sequential algorithm (Section 13.4) with thresholds
of W = 0.1% for border length minimization, and W = 0.5% for conflict index min-
imization, so that the algorithm stops as soon as the improvement in one iteration
drops below W .

TABLE 13.1 Normalized Border Length (NBL) and Average Conflict Index (ACI) of
Layouts Produced by Row-Epitaxial and Greedy+ Placement (Pl), Followed by Sequential
Re-embedding (Re-emb) with Thresholds W= 0.1% for Border Length Minimization,
and W= 0.5% for Conflict Index Minimization. Q is the Number of Probe Candidates
Considered for Each Spot During Placement. Running Times are Given in Seconds

Border Length Min. 335× 335 (E.Coli) 515× 515 (Maize)

Row-Epitaxial Q 10 K 20 K 10 K 20 K
Time (Pl. + Re-emb.) 629+ 9 1211+ 9 3333+ 38 6806+ 38
NBL (Pl.) 34.11 33.81 33.11 32.87
NBL (Pl. + Re-emb.) 33.93 33.66 32.95 32.73
Greedy+ Q 350 700 350 700
Time (Pl. + Re-emb.) 596+ 12 1158+ 12 2633+ 53 4974+ 53
NBL (Pl.) 33.79 33.22 33.07 32.38
NBL (Pl. + Re-emb.) 33.53 32.98 32.82 32.16

Conflict index min. 335× 335 (E.Coli) 515× 515 (Maize)

Row-Epitaxial Q 5 K 10 K 5 K 10 K
Time (Pl. + Re-emb.) 930+ 1169 1732+ 1167 4082+ 4424 7856+ 4415
ACI (Pl.) 584.92 544.93 604.04 574.68
ACI (Pl. + Re-emb.) 544.23 514.10 554.87 532.74
Greedy+ Q 200 300 200 300
Time (Pl. + Re-emb.) 522+ 788 685+ 788 2131+ 2926 2757+ 2930
ACI (Pl.) 462.52 450.15 459.38 446.76
ACI (Pl. + Re-emb.) 458.02 445.98 454.84 442.55

300 ALGORITHMS FOR OLIGONUCLEOTIDE MICROARRAY LAYOUT

Table 13.1 shows the total border length and the average conflict index of layouts,
produced by both algorithms on two chips with dimensions 335× 335 and 515× 515,
filled with probes randomly selected from existing GeneChip arrays (E.Coli Genome
2.0 and Maize Genome, respectively). Probes are initially left-most embedded into
the standard 74-step Affymetrix deposition sequence {TGCA}18TG. The parame-
ter Q is chosen differently for both algorithms, so that the running time is approx-
imately comparable (e.g., for border length minimization, Q = 350 for Greedy+
corresponds to Q = 10, 000 for Row-Epitaxial). We make the following observa-
tions.

First, increasing Q linearly increases placement time, while only marginally im-
proving chip quality for border length minimization.

Second, re-embedding runs very quickly for border length minimization, even on
the larger chip. For conflict index minimization, the time for the re-embedding
phase exceeds the time for the placement phase for both algorithms.

Finally, Greedy+ always produces better layouts in the same amount of time (or
less) while looking at fewer probe candidates. In particular, for conflict index
minimization on the 515× 515 chip with Q = 5000 resp. 200, Greedy+ and
Sequential improve the average conflict index by 18% (from 554.87 to 454.84),
and need only 60% of the time, compared to Row-Epitaxial and Sequential.

13.7 SUMMARY

We have surveyed algorithms for the microarray layout problem (MLP), divided
into placement, (re-) embedding, and partitioning algorithms. Because of the super-
exponential number of possible layouts and the relation to the quadratic assignment
problem (QAP), we cannot expect to find optimal solutions. Indeed, the algorithms
we present are heuristics with an emphasis on good scalability, and ideally a user-
controllable trade-off between running time and solution quality, albeit without any
known provable guarantees.

Among the presented approaches, two recent ones (pivot partitioning and Greedy+)
indicate that the traditional “place first and then re-embed” approach can be improved
upon by merging the partitioning/placement and (re-) embedding phases. Ongoing
work will show the full potential of such combined approaches.

REFERENCES

1. Çela E. The Quadratic Assignment Problem: Theory and Algorithms. Kluwer Academic
Publishers; 1997.

2. Chase PJ. Subsequence numbers and logarithmic concavity. Discrete Math 1976;
16:123–140.

SUMMARY 301

3. de Carvalho SA Jr., Rahmann S. Improving the layout of oligonucleotide microarrays:
pivot partitioning. Algorithms in Bioinformatics (Proceedings of WABI), Vol. 4175 of
Lecture Notes in Computer Science, Springer; 2006. pp. 321–332.

4. de Carvalho SA Jr., Rahmann S. Microarray layout as quadratic assignment problem.
In: Huson D, Kohlbacher O, Lupas A, Nieselt K, Zell A, editors. Proceedings of the
German Conference on Bioinformatics, Vol. P-83 of Lecture Notes in Informatics (LNI).
Gesellschaft für Informatik; 2006. pp. 11–20.

5. Feldman W, Pevzner P. Gray code masks for sequencing by hybridization. Genomics
1994; 23(1):233–235.

6. Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D. Light-directed, spatially
addressable parallel chemical synthesis. Science 1991; 251(4995):767–773.

7. Hannenhalli S, Hubell E, Lipshutz R, Pevzner PA. Combinatorial algorithms for design
of DNA arrays. Adv Biochem Eng Biotechnol 2002; 77:1–19.

8. Kahng AB, Mandoiu I, Pevzner P, Reda S, Zelikovsky A. Engineering a scalable place-
ment heuristic for DNA probe arrays. Proceedings of the Seventh Annual International
Conference on Research in Computational Molecular Biology (RECOMB), ACM Press;
2003. pp. 148–156.

9. Kahng AB, Mandoiu I, Pevzner PA, Reda S, Zelikovsky AZ. Border length minimiza-
tion in DNA array design. Guigó R, Gusfield D, editors. Algorithms in Bioinformatics
(Proceedings of WABI), Vol. 2452 of Lecture Notes in Computer Science. Springer; 2002.
pp. 435–448.

10. Kahng AB, Mandoiu I, Reda S, Xu X, Zelikovsky AZ. Evaluation of placement tech-
niques for DNA probe array layout. Proceedings of the 2003 IEEE/ACM Interna-
tional Conference on Computer-aided Design (ICCAD). IEEE Computer Society; 2003.
pp. 262–269.

11. Rahmann S. The shortest common supersequence problem in a microarray production
setting. Bioinformatics 2003; 19(Suppl 2):ii156–ii161.

12. Rahmann S. Subsequence combinatorics and applications to microarray production, DNA
sequencing and chaining algorithms. In: Lewenstein M, Valiente G, editors. Combinato-
rial Pattern Matching (CPM), Vol. 4009 of LNCS. 2006; pp.153–164.

13. Singh-Gasson S, Green RD, Yue Y, Nelson C, Blattner F, Sussman MR, Cerrina F. Mask-
less fabrication of light-directed oligonucleotide microarrays using a digital micromirror
array. Nat Biotechnol 1999; 17(10):974–978.

14
CLASSIFICATION ACCURACY
BASED MICROARRAY MISSING
VALUE IMPUTATION

Yi Shi, Zhipeng Cai, and Guohui Lin†

Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada

Gene expression microarray has been widely employed in biological and medical
studies. In general, these studies involve the data analyses that require complete gene
expression values, which, however, are not always possible due to various experimen-
tal factors. In the past several years, more than a dozen of missing value imputation
methods have been proposed, and most of them adopt the (normalized) root mean
squared errors to measure the imputation quality. Considering the fact that the pur-
pose of missing value imputation is for downstream data analyses, and among which
one of the most important applications is the genetic profiling, we propose to use the
microarray sample classification accuracy based on the imputed expression values
to measure the missing value imputation quality. Our extensive study on five im-
putation methods, from the most known ROWimpute and KNNimpute, to the most
complexed BPCAimpute and SKNNimpute, to the most recent ILLSimpute, shows
that BPCAimpute and ILLSimpute can fill in the missing values to achieve the sam-
ple classification accuracy as high as that can be achieved on the original complete
expression data.

†Corresponding author.

Bioinformatics Algorithms: Techniques and Applications, Edited by Ion I. Mǎndoiu
and Alexander Zelikovsky
Copyright © 2008 John Wiley & Sons, Inc.

303

304 CLASSIFICATION ACCURACY BASED MICROARRAY MISSING VALUE IMPUTATION

14.1 INTRODUCTION

Microarrays, typically the high density oligonucleotide arrays such as Affymetrix
GeneChip oligonucleotide (Affy) arrays, can monitor the expression levels of
thousands to tens of thousands of genes simultaneously. Such a technology provides
a unique tool for systems biology, and has become indispensable in numerous
biological and medical studies. One of the most common and important applications
of gene expression microarray is to compare the gene expression levels in tissues un-
der different conditions, such as wild-type versus mutant, or healthy versus diseased,
for genetic profiling. In general, a subset of a small number of biomarkers, which are
discriminatory genes whose expression levels either increase or decrease under certain
conditions, can be identified and used to build a classifier that predicts the microarray
sample class membership, such as disease subtype and treatment effectiveness.

Genetic profiling, as well as many other applications, involves microarray data
analysis that requires complete and accurate gene expression values. However, in
practice, such a requirement is often not satisfied due to a number of defects in
microarray experiments. These defects include systemic factors such as insufficient
resolution and uneven distribution of fluids, and stochastic factors such as image
corruption, dust and scratches on the slides, and glass flaws. All these could create
the artifacts on the microarray chips that result in a certain percentage of expression
data corruption [17,18]. Even with the high density oligonucleotide arrays such as
Affymetrix GeneChip oligonucleotide (Affy) arrays, as high as 20% of expression
spots on the arrays could be blemished that may cover hundreds of probes and affect
the reading of a considerable percent of gene expression values [17]. Most microarray
data analyses, such as gene clustering, biomarker identification, sample classification,
and genetic and regulatory network prediction, which seek to address biological or
medical issues, only accept complete expression values. Therefore, before the data
analysis, the gene expression levels have to be preprocessed in order to impute the
missing values, as well as correct some portion of the blemished data. In the past sev-
eral years, more than a dozen of methods have been proposed for microarray missing
value imputation including ZEROimpute, ROWimpute and COLimpute [1,18], KN-
Nimpute and SVDimpute [18], BPCAimpute [13], GMCimpute [14], SKNNimpute
[11], LSimpute [4], CMVE [16], LinCmb [8], LinImp [15], LLSimpute [10], and
ILLSimpute [5].

When applying ZEROimpute, those logarithmic missing gene expression values
are replaced by 0’s [1,18]. By arranging the microarray samples in the way that a
row represents a gene and a column represents a sample, a microarray dataset (which
contains a number of samples, each of which contains a common set of genes) can
be effectively represented as an expression matrix. In ROWimpute, a missing entry is
filled with the average expression level of the corresponding gene across all samples;
In COLimpute, a missing entry is filled with the average expression level of all the
genes in the corresponding sample.

With the advance of the microarray technology and its increasing number of appli-
cations, missing value imputation attracts more attention and several more complexed
imputation methods have been proposed, differing in pivotal ideas. Singular Value

INTRODUCTION 305

Decomposition (SVDimpute) and the weighted K-Nearest Neighbor (KNNimpute)
missing imputation methods are proposed by Troyanskaya et al. [18]. In SVDimpute,
a set of mutually orthogonal expression patterns are obtained and linearly combined
to approximate the expressions of all genes, through the singular value decomposition
of the expression matrix. By selecting the K most significant eigengenes, a missing
value in the target gene is estimated by first regressing the target gene against these K

eigengenes and then using the coefficients of the regression to estimate the missing
value from the linear combination of the K eigengenes. In KNNimpute method, for
a target gene, its K nearest neighbor genes (or rows) which do not contain missing
values in the same columns as the target gene, are selected. Then the missing values
in the target gene are estimated by a weighted linear combination of the K nearest
neighbor genes, where the weights are calculated as the inverse of the distances be-
tween the target gene expression vector and the neighbor gene expression vectors.
Similar to KNNimpute, the Least Square imputation (LSimpute) method is proposed
by Bø et al. [4]. It utilizes the least square principle to determine the weights in the
linear combination of the K nearest neighbors, from which the missing values in the
target gene are estimated. Different from LSimpute where nearest neighboring genes
are used, the Local Least Square missing value imputation (LLSimpute), proposed
by H. Kim et al. [10], estimates the missing values using the coherent genes under
the Pearson correlation coefficients. Oba et al. [13] proposed a microarray missing
value imputation method based on Bayesian Principal Component Analysis (BP-
CAimpute). BPCAimpute essentially employs three elementary processes, principal
component regression, Bayesian estimation, and an expectation-maximization-like
repetitive algorithm. It estimates the latent parameters for a probabilistic model un-
der the framework of Bayesian inference and estimates the missing values using the
model. Ouyang et al. [14] proposed GMCimpute method, which applies the idea
of Gaussian Mixture Clustering and model averaging. CMVE, a Collateral Missing
Value Estimation, is proposed by Sehgal et al. [16], in which for a missing value
entry, it first calculates several missing value estimates according to different scoring
functions and then the overall estimate is distilled from these estimates.

There are several extensions or variants to the above imputation methods. For
example, SKNNimpute, or Sequential K-Nearest Neighbor imputation, is proposed
by K.-Y. Kim et al. [11]. SKNNimpute sequentially imputes missing values from
genes with the least number of missing entries to genes with the most number of
missing entries. Within each iteration of SKNNimpute, the KNNimpute method is
executed to impute the missing values in the target gene, where only those genes
who have no missing value or whose missing values have already been imputed are
the candidates of being neighbors. LinImp, which fits a gene expression value into
a linear model concerning four factors, is proposed by Scheel et al. [15]. LinCmb,
which is a convex combination of several imputation methods, is proposed by Jörnsten
et al. [8]. Most recently, Cai et al. [5] proposed an iterated version of LLSimpute, the
ILLSimpute method, for missing value imputation.

Among the above mentioned more than a dozen imputation methods, some have
been compared with each other. In fact, most of the complexed methods have been
compared with ROWimpute and KNNimpute. These comparative studies all adopt a

306 CLASSIFICATION ACCURACY BASED MICROARRAY MISSING VALUE IMPUTATION

measurement called the Root Mean Square Error (RMSE), or its normalized variant
NRMSE. Let E = {E1, E2, . . . , Et} denote the missing entries in the microarray
expression matrix. For each missing entry Ei, i = 1, 2, . . . , t, let e∗i and ei denote the
corresponding true expression value and the imputed expression value, respectively.
The root mean of the squared errors is calculated as

μ =
√√√√1

t

t∑
i=1

(ei − e∗i)2.

The mean of these t true expression values is

ē = 1

t

t∑
i=1

e∗i ,

and the standard deviation is

σ =
√√√√1

t

t∑
i=1

(e∗i − ē)2.

The NRMSE of the involved imputation method on this expression matrix is defined
as the ratio of μ over σ, for example, NRMSE = μ/σ.

Note that when the expression matrix is given, σ is given as a constant. Therefore,
according to the definition of NRMSE, it is obvious that a smaller NRMSE value
indicates a better imputation quality. The existing comparison studies show that,
under the RMSE or the NRMSE measurement, some of the above imputation methods
consistently performed better than the others [4,5,8,10,11,13–16]. Typically, in the
most recent study in [5], it is shown that BPCAimpute and ILLSimpute are both
efficient and effective, regardless of the microarray dataset type (nontime series, time
series dataset with low noise level, noisy time series) or missing value rate.

The NRMSE measurement presumes that all the observed gene expression levels
accurately measure the hybridization intensities of the genes or probes on the mi-
croarray chips. Unfortunately, however, this is not always the case. Gene expression
microarray is considered as a useful technology to provide expression profiles or pat-
terns correlated to the conditions, but the expression levels of individual genes might
not be all accurate. As we mentioned earlier, even on the high density oligonucleotide
arrays such as Affymetrix GeneChip oligonucleotide (Affy) arrays, a significant per-
centage of probs could be blemished, and therefore in the gene expression values, a
high percentage of them may be noisy or even should be treated as missing. Neverthe-
less, the boundary between noisy data or missing data is often difficult to determine,
which red flags the use of only the RMSE or the NRMSE to measure the imputation
quality. It has been suggested that, with known gene cluster information, one may
use the percentage of misclustered genes as a measurement of imputation quality, in
addition to NRMSE [14].

METHODS 307

Note that in most of the existing missing value imputation methods, either implic-
itly or explicitly, the missing values in the target gene are estimated using the similarly
expressed genes, the neighbors or the coherent genes. In this sense, it seems that using
gene cluster information in final imputation quality measurement does not really tell
much more than RMSE and NRMSE. Since one of the most important applications
of gene expression microarray is for genetic profiling of the distinct experimental
conditions, for example, for disease subtype recognition and disease treatment clas-
sification, we propose to adopt one downstream microarray data analysis, microarray
sample classification, and to use the classification accuracy to measure the quality
of imputed expression values. The main impact of using classification accuracy as
a new measurement is that in general the imputed expression values themselves are
not interesting, while whether or not the imputed expression matrix can be used in
downstream applications is the major concern. To demonstrate that using classifica-
tion accuracy is indeed a good measurement, we include two most known imputation
methods ROWimpute and KNNimpute, two most complexed methods SKNNimpute
and BPCAimpute, and the most recently proposed method ILLSimpute in our com-
parative study. The computational results on two real cancer microarray datasets with
various simulated missing rates show that both BPCAimpute and ILLSimpute can
impute the missing values such that the classification accuracy achieved on the im-
puted expression matrix is as high as that can be achieved on the original complete
expression matrix, while the other methods do not seem to perform well. Some of
these results are consistent with the previous experiments based solely on NRMSE
measurement. One tentative conclusion we may draw from this study is that, for the
purpose of microarray sample classification, both BPCAimpute and ILLSimpute have
already achieved perfect performance and probably there is nothing left to do in terms
of missing value imputation.

The rest of this chapter is organized as follows: In the next section, those five repre-
sentative missing value imputation methods included in this study, ROWimpute, KN-
Nimpute, SKNNimpute, BPCAimpute, and ILLSimpute, will be briefly introduced.
The task of microarray sample classification, and its associated gene selection, is
also introduced, where we present four representative gene selection methods, F-test,
T-test, CGS-Ftest, and CGS-Ttest. We also briefly describe two classifiers built on
the selected genes, the K Nearest Neighbor (KNN) classifier and the Support Vector
Machine (SVM) classifier, along with the definition of classification accuracy. The
descriptions of the two real cancer microarray datasets and all the computational re-
sults are presented in Section 3. We discuss our results in Section 4. Specifically, we
examine the impacts of the adopted gene selection methods. Section 5 summarizes
our conclusions.

14.2 METHODS

We assume there are p genes in the microarray dataset under investigation, and there
are in total n samples/chips/arrays. Let aij denote the expression level of the ith
gene in the jth sample, which takes U if it is a missing entry. The expression matrix

308 CLASSIFICATION ACCURACY BASED MICROARRAY MISSING VALUE IMPUTATION

representing this microarray dataset is

Ap×n = (aij)p×n.

Let E = {E1, E2, E3, . . . , Et} be the set of all missing value entries in the expression
matrix, where t records the number of missing entries. The missing rate of the dataset
is calculated as r = t/p× n. In real microarray datasets, r ranges from 0% to as high
as 20%.

14.2.1 The Imputation Methods

There are more than a dozen of microarray missing value imputation methods pro-
posed in the past several years, adopting different mathematical models. For example,
ZEROimpute, ROWimpute, and COLimpute are quite similar in the sense that they are
simple and do not assume any correlations among the genes, neither the samples. The
SVDimpute and KNNimpute are probably the first nontrivial ones, where SVDim-
pute looks for dependencies while KNNimpute seeks the help from neighbors. With
various possible extensions, generalizations, or modifications, LSimpute, LLSimpute
and LinImp are similar to KNNimpute in the essence; BPCAimpute, GMCimpute,
and CMVE are similar to SVDimpute. SKNNimpute applies sequential imputation,
trying to use the data in decreasing reliability, and ILLSimpute implements iterated
imputation intending to improve the quality stepwise. For this reason, we only include
ROWimpute, KNNimpute, SKNNimpute, BPCAimpute, and ILLSimpute as repre-
sentatives in this study. Note that most of these imputation methods need the notion
of expression similarity between two genes, which is defined in the following. Given
a target gene that contains missing value entries to be estimated and a candidate gene
(which should have known expression values corresponding to these missing value
entries in the target gene), all of the missing value entries in the candidate gene are
temporarily filled with the average expression value (row average). Then, by ignoring
the same columns in both the target gene and the candidate gene, corresponding to the
missing value entries in the target gene, we obtain two expression (sub-) vectors with
no missing entries. The Euclidean distance between these two vectors is computed
and it is taken as the distance between the target gene and the candidate gene. For
example, if the target gene is (U, 1.5, U, 2.0, −1.2, U, 2.8) and the candidate gene is
(1.6, U, U,−0.4, 2.2, 3.8, U), where U denotes a missing value, then the row average
for the candidate gene is 1

4 (1.6-0.4+ 2.2+ 3.8) = 1.8; and the two vectors we obtain
are (1.5, 2.0,−1.2, 2.8) and (1.8,−0.4, 2.2, 1.8); and the distance between these two
genes is

√
18.41=4.29 [5]. In KNNimpute, the K closest candidate genes to the target

gene are selected as the neighbors, or coherent genes, of the target gene, where K is
prespecified and it is set at 10 in most of its implementations [11,18]. Suppose the
target gene is i and its neighbors are i1, i2, . . . , iK. Let dk denote the distance between
gene i and gene ik for 1 ≤ k ≤ K. Then the missing value ai,j in the target gene i is

METHODS 309

estimated as

ai,j =
K∑

k=1

1

dk

aik,j.

Note that in the above version of KNNimpute, coherent genes are determined with
respect to the target gene. Another version of KNNimpute is to determine coherent
genes to the target gene with respect to one missing value entry. In this study, we
examine the former version. In SKNNimpute, the missing value imputation is done
sequentially and at every iteration, the gene containing the least number of missing
value entries is chosen as the target gene, and KNNimpute is applied to estimate the
missing values in this target gene where only those genes who have no missing values
or whose missing values have already been imputed are considered as candidate genes.
The K value in this internal KNNimpute is also set to 10 [11].

In LLSimpute [10], the coherent genes to a target genes are similarly determined
but using the Pearson correlation coefficients rather than the Euclidean distance (in
LSimpute), and its number is also prespecified. Afterwards, the target gene is also
represented as a linear combination of its coherent genes, where the linear combination
is done through a local least square. Essentially, coefficients in this linear combination
are set in the way that the sum of the square differences between the known expression
values in the target gene and the linear combination of coherent genes is minimized.
Though LLSimpute has a process to learn what the best number of coherent genes
would be, this number remains the same for all target genes. Cai et al. [5] realized that
for distinct target genes, the distances between it and its coherent genes vary a lot, and
consequently it is not wise to set a uniform number of coherent genes for all target
genes. Instead, they proposed to learn a dataset dependent distance ratio threshold δ

such that only candidate genes whose distances to the target genes within the threshold
are considered as coherent genes. In addition, they proposed to iteratively reimpute the
missing values using the imputation results from the last iteration, where LLSimpute
is called, for a number of iterations or till the imputed values converge.

The missing value estimation method based on Bayesian Principle Component
Analysis (BPCAimpute) consists of three primary progresses. They are (1) principle
component regression, (2) Bayesian estimation, and (3) an expectation-maximization-
like repetitive algorithm [13]. Given the gene expression matrix, the principle com-
ponent regression seeks to represent every n-dimensional gene expression vector of
gene i ai = 〈ai1, ai2, . . . , ain〉 as a linear combination of K principal axis vectors alk ,
1 ≤ k ≤ K:

ai =
K∑

k=1

xlkalk + εi,

where K is a relatively small number (K < n), xlk (1 ≤ k ≤ K) are the coefficients,
or the so called factor scores, and εi denotes the residual error associated with gene
i. By using a prespecified value of K, the principle component regression obtains xlk

310 CLASSIFICATION ACCURACY BASED MICROARRAY MISSING VALUE IMPUTATION

and alk such that the sum of squared error ‖ε‖2 over the whole dataset is minimized
[13]. In Bayesian estimation process, the residual errors εi(1 ≤ i ≤ p) and the factor
scores xlk (1 ≤ k ≤ K) are assumed to obey normal distributions at first. Then, the
Bayesian estimation is used to obtain the posterior distribution parameters according
to the Bayes theorem. In the last process, an expectation-maximization-like repetitive
algorithm is applied to estimate or reestimate the missing values until the imputed
results converge or the repetitive process attains the prespecified iteration numbers.

14.2.2 The Gene Selection Methods

For microarray sample classification purpose, normally an expression matrix is pro-
vided with every sample labeled by its class. Such a dataset is used as the training
dataset to learn the genetic profiles associated with each class, and subsequently
whenever a new sample comes, its class membership can be predicted. One can use
all the genes to compose the genetic profiles, but as there are usually thousands of
genes involved in the study while only tens of samples in a class, a process called
gene selection is conducted to select a subset of discriminatory genes that are either
over expressed or under expressed. Such a subset of genes are then fed to construct a
classifier that can predict the class membership of a new sample.

There is a rich literature on general feature selection. Microarray gene selection
only attracts attention since the technology becomes high throughput. Nevertheless,
gene selection has its unique characteristics, which make itself distinct from the
general feature selection. Many gene selection methods have been proposed in the
past decade, though they all center at how to measure the class discrimination strength
for a gene. F-test method [2,3] tries to identify those genes that have the greatest inter
class variances and the smallest intra class variances. It scores a gene by the ratio
of its inter class variance over its intra class variance — a greater score indicates a
higher discrimination power the gene has. F-test method sorts all the genes in the
nonincreasing score order and returns a prespecified number of top ranked genes. In
T-test method [19], each gene has a score that is the classification accuracy of the
classifier built on the single gene, and it returns also a prespecified number of top
scored genes. Within our group, several gene selection methods have been proposed,
among which one of the key ideas is to select only those genes that do not have
overlapping class discrimination strength. The intention is that using genes having
similar class discrimination strength in building classifiers would be redundant. To this
purpose, we proposed to firstly cluster the genes under some measurements of class
discrimination strength, and then limit the number of genes per cluster to be selected.
Combining this gene clustering idea with F-test and T-test, we have CGS-Ftest and
CGS-Ttest gene selection methods. We use these four gene selection methods, F-test,
T-test, CGS-Ftest, and CGS-Ttest, in this study.

14.2.3 The Classifiers

Two classifiers are adopted in this study. One is the K-Nearest Neighbor (KNN)
classifier [6] and the other is a linear kernel Support Vector Machine (SVM) classifier

METHODS 311

[7]. The KNN-classifier predicts the class membership of a testing sample by using
the expression values of (only) the selected genes. It identifies the K closest samples
in the training dataset and then uses the class memberships of these K similar samples
through a majority vote. In our experiments, we set the default value of K to be 5,
after testing K from 1 to 10. The SVM-classifier, which contains multiple SVMs,
finds decision planes to best separate (soft margin) the labeled samples based on the
expression values of the selected genes. It uses this set of decision planes to predict
the class membership of a testing sample. One may refer to Guyon et al. [7] for more
details of how the decision planes are constructed based on the selected genes.

14.2.4 The Performance Measurements

At the end of experimental results, we will plot the NRMSE values for all imputation
methods on the respective datasets. In this study, our main purpose is to demonstrate
that microarray sample classification accuracy is another very effective measurement.
Given a complete gene expression matrix with all samples being labeled with their
classes, we adopt the 	-fold cross validation to avoid possible data overfitting. To
this purpose, the complete dataset is randomly partitioned into 	 equal parts, and
(− 1) parts of them are used to form the training dataset, while the other part forms
the testing dataset in which the class labels of the samples are removed. The pre-
dicted class memberships for the testing samples are then compared with the true
ones to determine whether or not the prediction is correct. The process is repeated
for each part. The percentage of the correctly predicted samples is the classification
accuracy of the classifier. In this study, we report the experimental results on the
5-fold cross validation, where the partition process is repeated for 10 times. Conse-
quently, the final classification accuracy is the average over 50 testing datasets. We
remark that 	-fold cross validations for 	 = 3, 7, 9, 11 present similar results (data
not shown).

14.2.5 The Complete Work Flow

To demonstrate that microarray sample classification accuracy is a very effective
measurement for the imputation methods, we simulated missing values in the orig-
inal complete gene expression matrix. On both the original and the imputed gene
expression matrices, the sample classification was done by a classifier, whose classi-
fication accuracies were recorded and compared. In more details, given a complete
microarray gene expression matrix containing p genes and n samples in L classes, we
adopted 5-fold cross validation scheme to collect the sample classification accuracies
for each of the four gene selection methods, F-test, T-test, CGS-Ftest, and CGS-Ttest,
combined with the KNN-classifier and the SVM-classifier. The number of selected
genes, x, ranges from 1 to 80. These accuracies are on the original dataset.

Next, for each of the missing rates r = 1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%,
we picked randomly r × p× n entries from the original gene expression matrix and
erased them to form a dataset containing missing values. The ROWimpute, KNNim-
pute, SKNNimpute, BPCAimpute, and ILLSimpute were called separately on the

312 CLASSIFICATION ACCURACY BASED MICROARRAY MISSING VALUE IMPUTATION

 0
 10

 20
 30

 40
 50

 60
 70

 20% 80
 15%

 10%

 5% 4% 3% 2%1%

 0.75

 0.8

 0.85

 0.9

 0.95

 1

ROWimpute-SVM
KNNimpute-KNN
KNNimpute-SVM

SKNNimpute-KNN
SKNNimpute-SVM
BPCAimpute-KNN
BPCAimpute-SVM

ILLSimpute-KNN
ILLSimpute-SVM

Original-KNN
Original-SVM

Number of
selected genes Missing rate

Classification accuracy

ROWimpute-KNN

FIGURE 14.1 The 5-fold classification accuracies of the SVM-classifier and the KNN-
classifier built on the genes selected by the F-test method, on the original and simulated SRBCT
dataset. The x-axis labels the number of selected genes, the y-axis labels the missing rate, and
the z-axis labels the 5-fold classification accuracy. The simulated datasets with missing values
were imputed by each of the ROWimpute, KNNimpute, SKNNimpute, BPCAimpute, and
ILLSimpute. The Original-SVM/KNN plot the classification accuracies of the classifiers on
the original SRBCT dataset, for example, r = 0%.

simulated dataset to estimate the missing values. After imputing the missing values in
the simulated gene expression matrix, the subsequent procedure was the same as that
for the original complete gene expression matrix in the above to collect the sample
classification accuracies. For each missing rate, the missing value simulation was re-
peated for 10 times, and consequently the associated accuracies are the average over
500 entities.

To summarize, by regarding the original complete dataset as a dataset of 0% miss-
ing values, we have nine missing rates, each associated with 10 simulated datasets
(except 0%), five imputation methods, four gene selection methods, and two classi-
fiers, under the 5-fold cross validation scheme, which is repeated for 10 times.

14.3 EXPERIMENTAL RESULTS

Given a complete microarray gene expression dataset (regarded as a dataset of 0%
missing values), we simulated 10 datasets for each of the missing rates r = 1%,
2%, 3%, 4%, 5%, 10%, 15%, 20%. On each simulated dataset, all five missing data

EXPERIMENTAL RESULTS 313

 0
 10

 20
 30

 40
 50

 60
 70

 20% 80
 15%

 10%
 5% 4% 3% 2%1%

 0.75

 0.8

 0.85

 0.9

 0.95

 1

ROWimpute-SVM
KNNimpute-KNN
KNNimpute-SVM

SKNNimpute-KNN
SKNNimpute-SVM
BPCAimpute-KNN
BPCAimpute-SVM

ILLSimpute-KNN
ILLSimpute-SVM

Original-KNN
Original-SVM

Number of
selected genes Missing rate

Classification accuracy

ROWimpute-KNN

FIGURE 14.2 The 5-fold classification accuracies of the SVM-classifier and the KNN-
classifier built on the genes selected by the T-test method, on the original and simulated SRBCT
dataset. The x-axis labels the number of selected genes, the y-axis labels the missing rate, and
the z-axis labels the 5-fold classification accuracy. The simulated datasets with missing values
were imputed by each of the ROWimpute, KNNimpute, SKNNimpute, BPCAimpute, and
ILLSimpute. The Original-SVM/KNN plot the classification accuracies of the classifiers on
the original SRBCT dataset, for example, r = 0%.

imputation methods, ROWimpute, KNNimpute, SKNNimpute, BPCAimpute, and
ILLSimpute, were run separately to estimate the missing values. Afterwards, on ei-
ther the original complete dataset or the imputed complete dataset, each gene selection
method (F-test, T-test, CGS-Ftest, and CGS-Ttest) was called on randomly picked
80% samples to output x genes, for x = 1, 2, . . . , 80. Each of the KNN-classifier and
the SVM-classifier was then built on these x selected genes to predict the class mem-
berships for the other 20% samples. The final classification accuracy was collected
for further statistics.

We include two real cancer microarray gene expression datasets, SRBCT dataset
[9] and GLIOMA dataset [12], in this study.

14.3.1 Dataset Descriptions

The SRBCT dataset [9] contains 83 samples in total, in four classes, the Ew-
ing family of tumors, Burkitt lymphoma, neuroblastoma, and rhabdomyosarcoma.

314 CLASSIFICATION ACCURACY BASED MICROARRAY MISSING VALUE IMPUTATION

 0
 10

 20
 30

 40
 50

 60
 70

 20% 80
 15%

 10%
 5% 4% 3% 2%1%

 0.75

 0.8

 0.85

 0.9

 0.95

 1

Classification accuracy

Number of
selected genes Missing rate

ROWimpute-KNN
ROWimpute-SVM
KNNimpute-KNN
KNNimpute-SVM

SKNNimpute-KNN
SKNNimpute-SVM
BPCAimpute-KNN
BPCAimpute-SVM

ILLSimpute-KNN
ILLSimpute-SVM

Original-KNN
Original-SVM

FIGURE 14.3 The 5-fold classification accuracies of the SVM-classifier and the KNN-
classifier built on the genes selected by the CGS-Ftest method, on the original and sim-
ulated SRBCT dataset. The x-axis labels the number of selected genes, the y-axis la-
bels the missing rate, and the z-axis labels the 5-fold classification accuracy. The sim-
ulated datasets with missing values were imputed by each of the ROWimpute, KN-
Nimpute, SKNNimpute, BPCAimpute, and ILLSimpute. The Original-SVM/KNN plot
the classification accuracies of the classifiers on the original SRBCT dataset, that is,
r = 0%.

Every sample in this dataset contains 2308 gene expression values after data pre-
processing. Among the 83 samples, 29, 11, 18, and 25 samples belong to the
four classes, respectively. The GLIOMA dataset [12] contains in total 50 sam-
ples in four classes, cancer glioblastomas, noncancer glioblastomas, cancer oligo-
dendrogliomas, and noncancer oligodendrogliomas, which have 14, 14, 7, and 15
samples, respectively. This dataset is known to have a lower quality for sample
classification [12,20]. In the preprocessing, for each gene, we calculated its expres-
sion standard deviation over all samples, and those genes with standard deviation
lower than a threshold were filtered. Such a gene filtering is based on the intu-
ition that if the expression standard deviation of a gene is too small, it may not
have too much discrimination strength and thus is less likely to be selected by any
gene selection method. After the preprocessing, we obtained a dataset with 4434
genes.

EXPERIMENTAL RESULTS 315

 0
 10

 20
 30

 40
 50

 60
 70

 80 20%

 15%

 10%
 5% 4% 3% 2%1%

 0.75

 0.8

 0.85

 0.9

 0.95

 1

Classification accuracy

Number of
selected genes Missing rate

ROWimpute-KNN
ROWimpute-SVM
KNNimpute-KNN
KNNimpute-SVM

SKNNimpute-KNN
SKNNimpute-SVM
BPCAimpute-KNN
BPCAimpute-SVM

ILLSimpute-KNN
ILLSimpute-SVM

Original-KNN
Original-SVM

FIGURE 14.4 The 5-fold classification accuracies of the SVM-classifier and the KNN-
classifier built on the genes selected by the CGS-Ttest method, on the original and simulated
SRBCT dataset. The x-axis labels the number of selected genes, the y-axis labels the missing
rate, and the z-axis labels the 5-fold classification accuracy. The simulated datasets with missing
values were imputed by each of the ROWimpute, KNNimpute, SKNNimpute, BPCAimpute,
and ILLSimpute. The original-SVM/KNN plot the classification accuracies of the classifiers
on the original SRBCT dataset, that is, r = 0%.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50 60 70 80

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

Number of selected genes

Original-SVM
Original-KNN

ILLSimpute-SVM
ILLSimpute-KNN

BPCAimpute-SVM
BPCAimpute-KNN
ROWimpute-SVM
ROWimpute-KNN
KNNimpute-SVM
KNNimpute-KNN

Original-SVM
Original-KNN

ILLSimpute-SVM
ILLSimpute-KNN

BPCAimpute-SVM
BPCAimpute-KNN
ROWimpute-SVM
ROWimpute-KNN
KNNimpute-SVM
KNNimpute-KNN

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50 60 70 80

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

Number of selected genes

FIGURE 14.5 F-test (left) and T-test (right) performance on the SRBCT dataset simulated
with missing rate r = 20%.

316 CLASSIFICATION ACCURACY BASED MICROARRAY MISSING VALUE IMPUTATION

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50 60 70 80

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

Number of selected genes

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50 60 70 80

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

Number of selected genes

Original-SVM
Original-KNN

ILLSimpute-SVM
ILLSimpute-KNN

BPCAimpute-SVM
BPCAimpute-KNN
ROWimpute-SVM
ROWimpute-KNN
KNNimpute-SVM
KNNimpute-KNN

Original-SVM
Original-KNN

ILLSimpute-SVM
ILLSimpute-KNN

BPCAimpute-SVM
BPCAimpute-KNN
ROWimpute-SVM
ROWimpute-KNN
KNNimpute-SVM
KNNimpute-KNN

FIGURE 14.6 CGS-Ftest (left) and CGS-Ttest (right) performance on the SRBCT dataset
simulated with missing rate r = 20%.

0
 10

 20
 30

 40
 50

 60
 70

 80 20%

 15%

 10%

 5% 4% 3% 2%1%

 0.75

 0.8

 0.85

 0.9

 0.95

 1

Classification accuracy

ROWimpute
KNNimpute

SKNNimpute
BPCAimpute

ILLSimpute
Original

Number of
selected genes Missing rate

FIGURE 14.7 The 5-fold classification accuracies, averaged over eight combinations of a
gene selection method and a classifier, on the SRBCT dataset. The x-axis labels the num-
ber of selected genes, the y-axis labels the missing rate, and the z-axis labels the average
classification accuracy. The simulated datasets with missing values were imputed by each of
the ROWimpute, KNNimpute, SKNNimpute, BPCAimpute, and ILLSimpute. The Original
plots the average classification accuracies achieved on the original SRBCT dataset, that is,
r = 0%.

EXPERIMENTAL RESULTS 317

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50 60 70 80

C
la

ss
ifi

ca
tio

n
ac

cu
ra

ci
es

 o
f S

R
B

C
T

w

ith
 m

is
si

ng
 r

at
e

0.
2

Number of selected genes

Original
ILLSimpute

BPCAimpute
SKNNimpute

KNNimpute
ROWimpute

FIGURE 14.8 Average performances of ROWimpute, KNNimpute, BPCAimpute, and ILL-
Simpute methods, in terms of classification accuracies, on the SRBCT dataset with missing
rate r = 20%. The average classification accuracies on the original SRBCT dataset are also
plotted for comparison purpose.

14.3.2 5-fold Cross Validation Classification Accuracies

For each combination of a gene selection method and a classifier, its sample classifi-
cation accuracy is the average over 50 testing datasets on the original gene expression
dataset, and over 500 testing datasets on each of the missing rates r = 1%, 2%, 3%,
4%, 5%, 10%, 15%, 20%, under the 5-fold cross validation scheme. For ease of
presentation, we concatenate the sequentially applied method names to denote the
associated 5-fold cross validation classification accuracy. For example, ILLSimpute-
CGS-Ftest-SVM denotes the accuracy that is achieved by applying the ILLSimpute
method, followed by the CGS-Ftest to select a certain number of genes for building
an SVM-classifier for testing sample membership prediction. Our further statistics
include the sample classification accuracies with respect to a missing value imputa-
tion method, a gene selection method, the gene clustering based gene selection or the
other, and a classifier, to be detailed in the following. For example, ILLSimpute-SVM
denotes the average accuracy over all four gene selection methods, that is achieved by
applying the ILLSimpute method, followed by a gene selection method to select a cer-
tain number of genes for building an SVM-classifier for testing sample membership
prediction.

14.3.2.1 The SRBCT Dataset For each of the four gene selection methods, F-test,
T-test, CGS-Ftest, and CGS-Ttest, we plotted separately the 5-fold cross validation

318 CLASSIFICATION ACCURACY BASED MICROARRAY MISSING VALUE IMPUTATION

0
 10

 20
 30

 40
 50

 60
 70

 80 20%

 15%

 10%

 5% 4% 3% 2%1%

 0.3
 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

Classification accuracy

ROWimpute-KNN
ROWimpute-SVM
KNNimpute-KNN
KNNimpute-SVM

SKNNimpute-KNN
SKNNimpute-SVM
BPCAimpute-KNN
BPCAimpute-SVM

ILLSimpute-KNN
ILLSimpute-SVM

Original-KNN
Original-SVM

Number of
selected genes

 Missing rate

FIGURE 14.9 The 5-fold classification accuracies of the SVM-classifier and the KNN-
classifier built on the genes selected by the F-test method, on the original and simulated
GLIOMA dataset. The x axis labels the number of selected genes, the y axis labels the missing
rate, and the z axis labels the 5-fold classification accuracy. The simulated datasets with missing
values were imputed by each of the ROWimpute, KNNimpute, SKNNimpute, BPCAimpute,
and ILLSimpute. The Original-SVM/KNN plot the classification accuracies of the classifiers
on the original GLIOMA dataset, that is, r = 0%.

classification accuracies for all combinations of a missing value imputation method
and a classifier, on the original SRBCT dataset (r = 0%, in which the missing value
imputation methods were skipped) and simulated datasets with missing rates 1%, 2%,
3%, 4%, 5%, 10%, 15% and 20%, respectively. We chose to plot these classification
accuracies in three dimensional where the x-axis is the number of selected genes, the
y-axis is the missing rate, and the z-axis is the 5-fold cross validation classification
accuracy. Figures 14.1–14.4 plot these classification accuracies for the F-test, T-test
CGS-Ftest, and CGS-Ttest methods, respectively.

From Figs. 14.1–14.4, we can see that when the missing rate is less than or equal
to 5% (the five groups of plots to the left), all five imputation methods worked almost
equally well, combined with either of the two classifiers, compared to the baseline
classification accuracies on the original SRBCT dataset. However, the plots started to
diverge when the missing rate increases to 10%, 15% and 20%. For example, besides
the observation that the classification accuracies of the SVM-classifier were a little
higher than that of the KNN-classifier (this is more clear with the T-test method, in

EXPERIMENTAL RESULTS 319

0
 10

 20
 30

 40
 50

 60
 70

 80 20%

 15%

 10%

 5% 4% 3% 2%1%

 0.3
 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

Classification accuracy

ROWimpute-KNN
ROWimpute-SVM
KNNimpute-KNN
KNNimpute-SVM

SKNNimpute-KNN
SKNNimpute-SVM
BPCAimpute-KNN
BPCAimpute-SVM

ILLSimpute-KNN
ILLSimpute-SVM

Original-KNN
Original-SVM

Number of
selected genes Missing rate

FIGURE 14.10 The 5-fold classification accuracies of the SVM-classifier and the KNN-
classifier built on the genes selected by the T-test method, on the original and simulated
GLIOMA dataset. The x-axis labels the number of selected genes, the y-axis labels the missing
rate, and the z-axis labels the 5-fold classification accuracy. The simulated datasets with missing
values were imputed by each of the ROWimpute, KNNimpute, SKNNimpute, BPCAimpute,
and ILLSimpute. The Original-SVM/KNN plot the classification accuracies of the classifiers
on the original GLIOMA dataset, that is, r = 0%.

Fig. 14.2 and the right plot in Fig. 14.5), combined with the same imputation method.
Overall, the general tendencies are that (1) ROWimpute and KNNimpute performed
equally well, and worse than the other three, (2) ILLSimpute and BPCAimpute per-
formed equally well, and the best among the five methods, (3) SKNNimpute per-
formed in the middle, and (4) the gaps between the performances became larger with
increased missing rate r. For missing rate r = 20%, the classification accuracies are
separately plotted in Fig. 14.5 and Fig. 14.6, in each of which the left plot is for the
F-test/CGS-Ftest method and the right plot is for the T-test/CGS-Ttest method. It is
clearly seen that, the BPCAimpute and ILLSimpute methods performed consistently
the best, the ROWimpute and KNNimpute methods performed the worst, and the im-
puted datasets by BPCAimpute and ILLSimpute had almost the same quality as the
original SRBCT dataset, in terms of the final sample classification accuracy. Further-
more, the last observation holds true across all missing rates, a strong demonstration
that BPCAimpute and ILLSimpute are the methods of choices for microarray missing
value imputation.

All of the above plots show that in general the KNN-classifier performed a little
worse than the SVM-classifier on the SRBCT dataset. However, we remark that it

320 CLASSIFICATION ACCURACY BASED MICROARRAY MISSING VALUE IMPUTATION

 0
 10

 20
 30

 40
 50

 60
 70

 80 20%

 15%

 10%

 5% 4% 3% 2%1%

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55

 0.6
 0.65

 0.7
 0.75

 0.8

Classification accuracy

ROWimpute-KNN
ROWimpute-SVM
KNNimpute-KNN
KNNimpute-SVM

SKNNimpute-KNN
SKNNimpute-SVM
BPCAimpute-KNN
BPCAimpute-SVM

ILLSimpute-KNN
ILLSimpute-SVM

Original-KNN
Original-SVM

Number of
selected genes Missing rate

FIGURE 14.11 The 5-fold classification accuracies of the SVM-classifier and the KNN-
classifier built on the genes selected by the CGS-Ftest method, on the original and simulated
GLIOMA dataset. The x-axis labels the number of selected genes, the y-axis labels the missing
rate, and the z-axis labels the 5-fold classification accuracy. The simulated datasets with missing
values were imputed by each of the ROWimpute, KNNimpute, SKNNimpute, BPCAimpute,
and ILLSimpute. The Original-SVM/KNN plot the classification accuracies of the classifiers
on the original GLIOMA dataset, that is, r = 0%.

is not necessarily the case that the KNN-classifier is always inferior (cf. [5]). By
ignoring the detailed gene selection method and the classifier to calculate the clas-
sification accuracy of a missing value imputation method as the average over eight
values, corresponding to in total eight combinations of a gene selection method and a
classifier. We associated this classification accuracy with each of the five imputation
methods. Fig. 14.7 plots these classification accuracies on the SRBCT dataset, with
missing rate r = 0% (the original dataset), 1%, 2%, 3%, 4%, 5%, 10%, 15% and
20%, respectively. From this 3D plot, one can see again that essentially there was
not much performance difference between the five missing value imputation meth-
ods when the missing rate r was less than or equal to 5% (the five groups of plots
to the left); But their performances started to diverge when r ≥ 10%, and again the
general tendencies are that (1) ROWimpute and KNNimpute performed equally well,
and worse than the other three, (2) ILLSimpute and BPCAimpute performed equally
well, and the best among the five methods, (3) SKNNimpute performed in the mid-
dle, and (4) the gaps between the performances became larger with increased missing

EXPERIMENTAL RESULTS 321

 0
 10

 20
 30

 40
 50

 60
 70

 80 20%

 15%

 10%

 5% 4% 3% 2%1%

 0.3
 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

ROWimpute-KNN
ROWimpute-SVM
KNNimpute-KNN
KNNimpute-SVM

SKNNimpute-KNN
SKNNimpute-SVM
BPCAimpute-KNN
BPCAimpute-SVM

ILLSimpute-KNN
ILLSimpute-SVM

Original-KNN
Original-SVM

Number of
selected genes

 Missing rate

Classification accuracy

FIGURE 14.12 The 5-fold classification accuracies of the SVM-classifier and the KNN-
classifier built on the genes selected by the CGS-Ttest method, on the original and simulated
GLIOMA dataset. The x-axis labels the number of selected genes, the y-axis labels the missing
rate, and the z-axis labels the 5-fold classification accuracy. The simulated datasets with missing
values were imputed by each of the ROWimpute, KNNimpute, SKNNimpute, BPCAimpute,
and ILLSimpute. The Original-SVM/KNN plot the classification accuracies of the classifiers
on the original GLIOMA dataset, that is, r = 0%.

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 10 20 30 40 50 60 70 80

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

Number of selected genes

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 10 20 30 40 50 60 70 80

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

Number of selected genes

ILLSimpute-SVM
ILLSimpute-KNN

BPCAimpute-KNN
BPCAimpute-SVM

ROWimpute-KNN
ROWimpute-SVM

KNNimpute-KNN
KNNimpute-SVM

Original-KNN
Original-SVM

ILLSimpute-SVM
ILLSimpute-KNN

BPCAimpute-KNN
BPCAimpute-SVM

ROWimpute-KNN
ROWimpute-SVM

KNNimpute-KNN
KNNimpute-SVM

Original-KNN
Original-SVM

FIGURE 14.13 F-test (left) and T-test (right) performance on the GLIOMA dataset simulated
with missing rate r = 20%.

322 CLASSIFICATION ACCURACY BASED MICROARRAY MISSING VALUE IMPUTATION

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 10 20 30 40 50 60 70 80

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

Number of selected genes

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 10 20 30 40 50 60 70 80

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

Number of selected genes

ILLSimpute-SVM
ILLSimpute-KNN

BPCAimpute-KNN
BPCAimpute-SVM

ROWimpute-KNN
ROWimpute-SVM

KNNimpute-KNN
KNNimpute-SVM

Original-KNN
Original-SVM

ILLSimpute-SVM
ILLSimpute-KNN

BPCAimpute-KNN
BPCAimpute-SVM

ROWimpute-KNN
ROWimpute-SVM

KNNimpute-KNN
KNNimpute-SVM

Original-KNN
Original-SVM

FIGURE 14.14 CGS-Ftest (left) and CGS-Ttest (right) performance on the GLIOMA dataset
simulated with missing rate r = 20%.

rate r. Similarly, for missing rate r = 20%, the average classification accuracies are
separately plotted in Fig. 14.8, where once again one can see that ROWimpute and
KNNimpute performed the worst, and BPCAimpute and ILLSimpute performed the
best. Furthermore, in terms of classification accuracy, the imputed expression matrices

 0
 10

 20
 30

 40
 50

 60
 70

 80 20%
 15%

 10%
 5% 4% 3% 2%1%

 0.75

 0.8

 0.85

 0.9

 0.95

 1

Classification accuracy

CGS T-test
F-test
T-test

CGS F-test

Number of
selected genes

 Missing rate

FIGURE 14.15 The 5-fold classification accuracies of four gene selection methods,
F-test, T-test, CGS-Ftest, and CGS-Ttest, averaged over eight combinations of a missing value
imputation method and a classifier, on the SRBCT dataset. The x-axis labels the number of
selected genes, the y-axis labels the missing rate, and the z-axis labels the average classification
accuracy.

EXPERIMENTAL RESULTS 323

 0.75

 0.8

 0.85

 0.9

 0.95

1

 0 10 20 30 40 50 60 70 80

C
la

ss
ifi

ca
tio

n
ac

cu
ra

ci
es

 o
f S

R
B

C
T

w

ith
 m

is
si

ng
 r

at
e

0.
2

Number of selected genes

CGS F-test
T-test
F-test

CGS T-test

FIGURE 14.16 The 5-fold classification accuracies of four gene selection methods, F-test,
T-test, CGS-Ftest, and CGS-Ttest, averaged over eight combinations of a missing value impu-
tation method and a classifier, on the simulated SRBCT dataset with missing rate r = 20%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

20%15%10%5%4%3%2%1%

N
R

M
S

E

Missing rate

ROWimpute
KNNimpute

SKNNimpute
BPCAimpute

ILLSimpute

FIGURE 14.17 The NRMSE values of the five missing value imputation methods, ROWim-
pute, KNNimpute, SKNNimpute, BPCAimpute, and ILLSimpute, with respect to the missing
rate.

324 CLASSIFICATION ACCURACY BASED MICROARRAY MISSING VALUE IMPUTATION

by BPCAimpute and ILLSimpute had the same quality as the original expression
matrix.

14.3.2.2 The GLIOMA Dataset It has been recognized that the quality of the
GLIOMA dataset is lower than that of the SRBCT dataset [12,20]. Similarly, for each
of the four gene selection methods, F-test, T-test, CGS-Ftest, and CGS-Ttest, we
plotted separately the 5-fold cross validation classification accuracies for all combi-
nations of a missing value imputation method and a classifier, on the original dataset
(r = 0%) and simulated datasets with missing rates 1%, 2%, 3%, 4%, 5%, 10%, 15%
and 20%, respectively. Figures 14.9–14.12 plot these classification accuracies for the
F-test, T-test CGS-Ftest, and CGS-Ttest methods, respectively. From these plots, we
can see that the performances of all the five imputation methods differed a bit more
than those on the SRBCT dataset, at every missing rate, and more significantly with
increasing missing rates. Nonetheless, overall, the general tendencies are still that
(1) ROWimpute and KNNimpute performed equally well, and worse than the other
three, (2) ILLSimpute and BPCAimpute performed equally well, and the best among
the five methods, (3) SKNNimpute performed in the middle, and (4) the gaps between
the performances became larger with increased missing rate r. Moreover, the imputed
datasets by BPCAimpute and ILLSimpute have the same quality as the original one,
in terms of the sample classification accuracy.

For missing rate r = 20%, the classification accuracies are separately plotted in
Figs. 14.13–14.14, in each of which the left plot is for the F-test/CGS-Ftest method
and the right plot is for the T-test/CGS-Ttest method. It is clearly seen that, the BP-
CAimpute and ILLSimpute methods performed consistently the best, the ROWimpute
and KNNimpute methods performed the worst, the SKNNimpute performed in the
middle, and the imputed datasets by BPCAimpute and ILLSimpute had almost the
same quality as the original GLIOMA dataset, in terms of the final sample classifica-
tion accuracy. Furthermore, the last observation holds true across all missing rates, a
strong demonstration that BPCAimpute and ILLSimpute are the methods of choices
for microarray missing value imputation.

14.4 DISCUSSION

14.4.1 Gene Selection Methods

Clearly, the detailed gene selection method adopted in the study will result in different
final sample classification accuracy. The collected average classification accuracies
were taken over all the four gene selection methods, F-test, T-test, CGS-Ftest, and
CGS-Ttest, and thus it is more convincing to conclude that BPCAimpute and ILL-
Simpute performed the best. We also compared the performances of the these four
adopted gene selection methods by calculating their average classification accura-
cies over all the four missing value imputation methods ROWimpute, KNNimpute,
SKNNimpute, BPCAimpute, and ILLSimpute. These classification accuracies and
the classification accuracies obtained on the original SRBCT dataset are plotted in
Figs. 14.15–14.16.

REFERENCES 325

From these two plots, we can say that on the SRBCT dataset, all these four gene
selection methods performed close to each other, though F-test/CGS-Ftest performed
slightly better than T-test/CGS-Ttest.

14.4.2 NRMSE Values

We have also collected the NRMSE values for the five imputation methods on the
simulated SRBCT datasets with all missing rates, which are plotted in Fig. 14.17
They again indicate that ILLSimpute and BPCAimpute performed the best among
the five methods, and significantly better than the other three methods SKNNimpute,
KNNimpute, and ROWimpute.

14.5 CONCLUSIONS

The performances of missing value imputation methods, BPCAimpute and ILLSim-
pute, have previously been shown to be better than most recent similar developments,
using the NRMSE measurement [5]. The performance difference becomes signifi-
cant when the missing rate is large. We realized that microarray gene expression data
though is able to provide a global picture on the genetic profile, yet some portion
of it is not reliable due to various experimental factors. Consequently, using solely
the NRMSE measurement could sometimes be misleading. Considering the fact that
missing value imputation is for the downstream data analysis, among which one of
them is the sample classification, we proposed to adopt the classification accuracy as
another measurement of imputation quality. Our simulation study on two real cancer
microarray datasets, to include five imputation methods, four gene selection meth-
ods, and two classifiers, demonstrated that classification accuracy is a very effective
measurement, and further confirmed that BPCAimpute and ILLSimpute are the best
imputation methods. Furthermore, the imputed gene expression datasets by BPCAim-
pute and ILLSimpute can reach the same sample classification accuracy as that can
be achieved on the original dataset.

ACKNOWLEDGMENTS

This research is supported in part by CFI, iCore, and NSERC.

REFERENCES

1. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet
H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T, Hudson Jr J, Lu L, Lewis DB,
Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD, Armitage JO, Warnke
R, Levy R, Wilson W, Grever MR, Byrd JC, Botstein D, Brown PO, and Staudt LM.
Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling.
Nature 2000;403:503–511.

326 CLASSIFICATION ACCURACY BASED MICROARRAY MISSING VALUE IMPUTATION

2. Baldi P, Long AD. A Bayesian framework for the analysis of microarray expression data:
Regularized t-test and statistical inferences of gene changes. Bioinformatics 2001;17:
509–519.

3. Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, Ladd C, Beheshti
J, Bueno R, Gillette M, Loda M, Weber G, Mark EJ, Lander ES, Wong W, Johnson
BE, Golub TR, Sugarbaker DJ, Meyerso M. Classification of human lung carcinomas by
mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Nat Acad
Sci USA 2001;98:13790–13795.

4. Bø TH, Dysvik B, Jonassen I. LSimpute: accurate estimation of missing values in
microarray data with least squares methods. Nucl Acid Res 2004;32:e34.

5. Cai Z, Heydari M, Lin G-H. Iterated local least squares microarray missing value impu-
tation. J Bioinformatics Comput Biol 2006;4(5):935–957.

6. Dudoit S, Fridlyand J, Speed TP. Comparison of discrimination methods for the classifi-
cation of tumors using gene expression data. J Am Stat Assoc 2002;97:77–87.

7. Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using
support vector machines. Mach Learn 2002;46:389–422.

8. Jörnsten R, Wang H-Y, Welsh WJ, Ouyang M. DNA microarray data imputation
and significance analysis of differential expression. Bioinformatics 2005;21:4155–
4161.

9. Khan J, Wei JS, Ringner M, Saal LH, Ladanyi M, Westermann F, Berthold F, Schwab M,
Antonescu CR, Peterson C, Meltzer PS. Classification and diagnostic prediction of cancers
using gene expression profiling and artificial neural networks. Nat Med 2001;7:673–679.

10. Kim H, Golub GH, Park H. Missing value estimation for DNA microarray gene expression
data: Local least squares imputation. Bioinformatics 2005;21:187–198.

11. Kim K-Y, Kim B-J, Yi G-S. Reuse of imputed data in microarray analysis increases
imputation efficiency. BMC Bioinformatics 2004;5:160.

12. Nutt CL, Mani DR, Betensky RA, Tamayo P, Cairncross JG, Ladd C, Pohl U, Hart-
mann C, McLaughlin ME, Batchelor TT, Black PM, Deimling AV, Pomeroy SL,
Golub TR, Louis DN. Gene expression-based classification of malignant gliomas cor-
relates better with survival than histological classification. Cancer Res 2003;63:1602–
1607.

13. Oba S, Sato M, Takemasa I, Monden M, Matsubara K, Ishii S. A Bayesian missing
value estimation method for gene expression profile data. Bioinformatics 2003;19:2088–
2096.

14. Ouyang M, Welsh WJ, Georgopoulos P. Gaussian mixture clustering and imputation of
microarray data. Bioinformatics 2004;20:917–923.

15. Scheel I, Aldrin M, Glad IK, Sørum R, Lyng H, Frigessi A. The influence of missing
value imputation on detection of differentially expressed genes from microarray data.
Bioinformatics 2005;21:4272–4279.

16. Sehgal MSB, Gondal L, Dooley LS. Collateral missing value imputation: a new robust
missing value estimation algorithm for microarray data. Bioinformatics 2005;21:2417–
2423.

17. Suárez-Fariñas M, Haider A, Wittkowski KM. “Harshlighting” small blemishes on
microarrays. BMC Bioinformatics 2005;6:65.

REFERENCES 327

18. Troyanskaya OG, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, Botstein D,
Altman RB. Missing value estimation methods for DNA microarrays. Bioinformatics
2001;17:520–525.

19. Xiong M, Fang X, Zhao J. Biomarker identification by feature wrappers. Genome Res
2001;11:1878–1887.

20. Yang K, Cai Z, Li J, Lin G-H. A stable gene selection in microarray data analysis. BMC
Bioinformatics 2006;7:228.

15
META-ANALYSIS OF
MICROARRAY DATA

Saumyadipta Pyne
The Broad Institute of MIT and Harvard, Cambridge, MA, USA

Steve Skiena
Department of Computer Science, Stony Brook University, Stony Brook, NY, USA

Bruce Futcher
Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook,
NY, USA

15.1 INTRODUCTION

High throughput microarray technology has revolutionized the way gene expression
studies are done and has greatly influenced fields such as genomics, medicine, and
bioinformatics. Microarrays examine samples from two experimental conditions, for
example, treatment and control, disease and normal, or wildtype and mutant, and
compare the ratio of mRNA expression under each condition. As large number of
genome-wide datasets from similar or related microarray experiments accumulate in
the databases, integrative analysis of data becomes increasingly essential and useful
for identifying features of potential biological interest [35].

A major concern in microarray meta-analysis is the lack of a single standard tech-
nological framework for data generation and analysis. It poses great challenge to
comparison or combination of low level data across independent microarray stud-
ies. This is precisely where meta-analysis could prove to be immensely useful.

Bioinformatics Algorithms: Techniques and Applications, Edited by Ion I. Mǎndoiu
and Alexander Zelikovsky
Copyright © 2008 John Wiley & Sons, Inc.

329

330 META-ANALYSIS OF MICROARRAY DATA

Meta-analysis is a classical statistical methodology for combining results in the form
of high level data from different independent studies addressing similar scientific
questions. Recently, meta-analysis has been successfully applied to various microar-
ray datasets, in particular from cancer studies. Such application can help in identifi-
cation of gene modules and pathways related to diseases like cancer, which might get
ignored in individual studies. Meta-analysis identified candidate markers for prostate
cancer by considering data from multiple labs despite the heterogeneity that existed
with respect to their underlying platforms [44].

The present chapter shall focus on statistical combination of mRNA expression data
in the form of effect sizes and probabilities from multiple comparable and independent
microarray experiments. Often the number of such experiments addressing identical
or related questions is small. Yet given the large number of tested features and the
noise and heterogeneity in microarray data, it is worthwhile to combine multiple
studies if available. We shall not discuss here various methods that compare but do
not combine different datasets or platforms, for example, [8]. Also, we shall not cover
the systems biology approaches to combine high throughput data across different omic
measurements, for example, [60], nor the methods for pooling raw or low level data
from different microarray experiments, for example, [62].

We proceed with a review of the small but steadily growing literature on integra-
tive analysis of microarray studies. Then, the classical as well as new approaches of
meta-analysis are described, in particular those that are well suited for microarray
expression data. Methods to combine effect sizes and probabilities for a gene’s ex-
pression estimates from multiple independent studies are covered in detail along with
the new and promising approach of Bayesian meta-analysis. The scenario is compli-
cated for microarray datasets because of multiple testing, which is briefly discussed
as well. Integration-driven discovery rate, which is a measure of information gain due
to integrative analysis, is also discussed. Finally, we take a tour of Oncomine, which
is a compendium for cancer microarray data that can be used for meta-analysis.

� In the first microarray meta-analysis paper [45], results from four prostate can-
cer studies were integrated by combining the p-values for each gene from each
study. The sum of logs method was used followed by permutation testing to
compute the gene-specific combined p-value. Thus, a list of genes from the four
studies was identified to be abnormally expressed in prostate cancer. Since each
individual p-value provides a high level significance measure, the strategy can
avoid the need to compare direct gene expression measurements that are tied
to the underlying platforms and to issues such as cross-platform normalization
and data transformation for the sake of compatibility.

� A large-scale meta-analysis was done in [46] to identify common transcriptional
programs of neoplastic transformation and progression across diverse cancer
types. The idea of vote counting was utilized to discover meta-signatures from
genes that are differentially expressed in at least a particular number of selected
studies. Later in the chapter, Oncomine, which is based on this work, is used
to demonstrate the technique.

INTRODUCTION 331

� Owing to intrinsic distinctions, combination of raw expression data can fail
to yield useful integration. Overlap of gene expression measurements from
Affymetrix and spotted cDNA data based on sixty cell lines was low enough
in [30] to doubt that data from these platforms could be transformed into a
common standardized index. Similarly, [27] found low agreement between mi-
croarray platforms by analyzing data from breast cancer cell lines. However,
by comparing microarray data from 10 labs, it was shown by [25] that de-
spite considerable differences, the studies agreed well for the best performing
labs.

� Comparative analysis of data from multiple microarray platforms based on
an integrative correlation technique was developed by [40] and was ap-
plied to lung cancer studies to identify genes with reproducible expres-
sion patterns across experiments. “Probability of expression” or poe was
introduced in [41] as a platform-independent scale to measure expression,
which can facilitate data integration across microarray experiments. Based
on poe, [49] developed a two-stage mixture modeling of four breast can-
cer datasets to obtain meta-signature associated with breast cancer progno-
sis.

� Instead of p-values, [4] combined gene expression measures as effect sizes
from the same cancer datasets as [45] into an average effect size. The ef-
fect sizes for each study was given by a standardized difference of the
sample means between the two compared conditions. The standardiza-
tion allowed the data to be integrated across platforms. Within-and cross-
study errors were accounted for using the random-effects model. With ef-
fect sizes, small yet consistent expression changes were detected with in-
creased sensitivity and reliability. A quality measure for weighted com-
bination of effect sizes based on Affymetrix expression data were de-
signed by [24] to model interstudy variation of gene expression pro-
files.

� Akin to the method in [4,61] combined effects based on the unstandardized
difference of mean log of fold change in gene expression between chronic
lymphocytic leukemia and normal B-cells across three studies from differ-
ent platforms and identified genes that were consistently differentially ex-
pressed between the compared conditions. Both [5] and [19] combined effect
sizes under random-effects model from four independent datasets each of liver
and pancreatic cancer, respectively. Focussing on Affymetrix data, [54] com-
bined signal log ratios for gene expression using the random-effects model
and applied the method to mouse model data for multiple sclerosis from three
labs.

The low comparability of independent datasets from diverse platforms can be
attributed to various sources of uncertainty. Being capable of accounting for het-
erogeneity and uncertainty, Bayesian models for meta-analysis are particularly well
suited to tackle the challenge. Also, prior distributions are useful for capturing

332 META-ANALYSIS OF MICROARRAY DATA

information that is external to microarray experiments such as specific biolog-
ical studies appearing in published literature (like PubMed) or annotated data
(like GenBank). However, proper elicitation of prior distributions is often difficult.
Complex modeling can help at the cost of tractability in evaluating the posterior
estimates.

Bayesian meta-analysis for microarray has also been performed in [4]. In their
Bayesian model, uninformative prior distributions were assigned to the overall mean
effect and the cross-study variation parameters, whereas within-study gene effects
were modeled as t distributions. The posterior estimate of the overall mean effect
for each gene was produced by smoothing the effects across studies. In contrast,
[6] used their hierarchical model to compute the posterior probability of differen-
tial expression based on two independent experiments with the bacterium Bacillus
subtilis, and then used this probability to directly rank the differentially expressed
genes.

Among other microarray meta-analysis approaches, [43] introduced a thresholded
version of Fisher product to combine three budding yeast chIP-chip datasets. A certain
minimum number of p-values for each gene that are less than or equal to experiment-
specific false discovery restrictive thresholds formed the combined product, which
ensured high power and controlled FDR. Using a distribution transformation method,
[28] combined two lung cancer studies and used gene shaving to classify lung cancer
patients from normal and reported differentially expressed genes. The classical sum
of Zs method was employed by [37] to combine three genome-wide cell cycle ex-
periments in fission yeast. A comparative analysis of 10 microarray studies of fission
cell cycle by [34] revealed consistency in the phases of peak expression among the
top periodically expressed genes.

In the following three sections, the general mechanisms of meta-analysis will be
presented. The features studied by microarrays could be various such as genes, probes,
loci, and so on; the commonly applied term “gene” shall be used here. Let the number
of experiments to be combined be denoted by L. The words “study” and “experiment”
have been used interchangeably in this chapter.

15.2 COMBINING EFFECT SIZES

Various effect sizes are used in meta-analysis: odds ratio, correlation, standardized
mean difference, and so on [7]. They are combined across studies using either the
fixed-effects model or the random-effects model [7]. The assumption in fixed-effect
models that effect sizes are homogeneous is unrealistic for the massively high through-
put and parallel microarray data. Indeed precisely, the capability to account for the
heterogeneity that exists in the different assays done with microarrays makes the
choice of random-effects modeling more natural than fixed-effects modeling. Not
surprisingly, all published results on microarray meta-analysis with effect sizes are
based on random-effect models. Therefore, below we shall devote more attention to
random-effect modeling, and point the interested reader to detailed discussions on
fixed-effect models in [21,22].

COMBINING EFFECT SIZES 333

15.2.1 Fixed-Effects Modeling

For a particular gene, let Yj for j = 1, 2, . . . , L be the observed effect size based on
the gene’s expression in experiment j and be modeled by normal distribution

Yj ∼ N(μ, σ2
j) ,

where σ2
j is the within-study variance for the gene. It is generally assumed that the

variance σ2
j is known, and therefore the mean μ can be estimated as

μ̂ =
∑L

j=1 wjYj∑L
j=1 wj

∼ N(μ, 1/

L∑
j=1

wj),

where the weights wj = 1/σ2
j are chosen to minimize the variance (1/

∑L
j=1 wj) of

the estimate μ̂. This estimate of μ leads to a well-known test of homogeneity

Q =
L∑

j=1

(Yj − μ̂)2

σ2
j

∼ χ2
L−1.

The null hypothesis (Q = 0) states that the L studies are homogeneous from the
perspective of measuring a gene’s expression and all the differences in their effects
can be explained by sampling error alone. It may be noted that failure to reject the
null hypothesis at a chosen level of significance does not imply that the hypothesis is
true [14].

15.2.2 Random-Effects Modeling

In random-effects model, we discard the homogeneity assumption of the fixed-effects
model by allowing a gene’s true experimentwise effect to be random. The existing
differences could be attributed to inexplicable and uncontrollable consequences of a
variety of factors that are distinct across studies, for example, time, location, techni-
cians, equipment, and so on. This is modeled using the normal distribution as follows:

Yj ∼ N(θj, σ
2
j),

where Yj is the observed gene expression effect and σ2
j is the within-study sampling

error. The individual study effects are considered exchangeable, and these too follow
normal distribution

θj ∼ N(μ, τ2),

where μ represents the overall mean expression for the gene, and τ2 the cross-study
variation.

334 META-ANALYSIS OF MICROARRAY DATA

If a point estimate for τ2 is known, then μ and its variance are estimated as follows:

μ̂ =
∑L

j=1 wjYj∑L
j=1 wj

and Var(μ̂) = 1∑L
j=1 wj

,

where wj = 1/(σ2
j + τ2).

However, if τ2 is unknown and the null hypothesis τ = 0 is rejected, a method of
moments estimator for τ2 was developed by [10]

τ̂2 = max

{
0,

Q− (L− 1)∑L
j=1(1/σj)− (

∑L
j=1(1/σ2

j)/
∑L

j=1(1/σj))

}
.

To summarize, the random-effects model allows distinct underlying effects θj for
each experiment j such that

θj = μ+ δj and thus Yj = μ+ δj + εj,

where εj ∼ N(0, σ2
j) and δj ∼ N(0, τ2) are attributed, respectively, to within-study

sampling error and cross-study variation for the particular gene in experiment j. By
incorporating the uncertainties within the (random-effects) model, we can understand
the expression effects for a gene as if these were random draws from a population of
all possible effect sizes.

For a given gene, [4] combined effect sizes in the form of standardized mean
difference using Cohen’s d

dj =
X̄Tj − X̄Cj

sPj

,

where X̄Tj and X̄Cj are the sample means for the compared groups (say, treatment
and control, respectively) in experiment j, while sPj is the pooled standard deviation
given by

sPj =

√√√√ (nTj − 1)σ2
Tj
+ (nCj − 1)σ2

Cj

nTj + nCj − 2
,

where nTj , nCj and σTj , σCj are the sizes and standard deviations of the samples
from either group, respectively. However, dj is a biased estimator of the population
effect size and needs to be corrected. If n = nTj + nCj is the number of samples in
experiment j, an unbiased approximate estimator [22] is given by

d̃j =
(

1− 3

4n− 9

)
dj,

COMBINING EFFECT SIZES 335

with the estimated variance [7]

Var(d̃j) = 1

nTj

+ 1

nCj

+ d̃2
j

2n
.

In meta-analysis of gene expression studies with Affymetrix data, the expression
levels across two different conditions are compared and reported as a signal log ratio,
which is the signed log base 2 of the signed fold change between the compared
conditions. The Affymetrix estimate of d̃j as effect Yj and its within-study variance
Var(d̃j) as σ2

j are used by [54] to combine effects for a given gene across experiments
j = 1, 2, . . . , L.

The estimated signal log ratio, when divided by variance, yields a t or Z

score, which under the null hypothesis of no differential expression would lead
to a p-value for every gene in every experiment. These p-values could be com-
bined as such using techniques described in a later section. However, since the
effect sizes for a gene’s expression Yj in each experiment j is directly avail-
able here, it is straightforward to combine the effects, and thus their magni-
tudes and directions, using the random-effects model described above. Thus,
[54] tested the combined significance of gene expression with the help of
a Z score (Z = μ̂/

√
Var(μ̂)) based on the above estimates. A similar com-

bined Z based on unstandardized difference of sample means (i.e., X̄Tj −
X̄Cj) of log fold change in a gene’s expression in experiment j was used in
[61].

For every gene in a given experiment using Affymetrix arrays, [24] observed the
variability within the corresponding probe set to compute a quality-assessing measure
that could be used for weighted combination of the gene’s expression effects over
multiple experiments. Under the assumption that negative log of the detection p-value1

of a sample for a particular gene that belongs to group g ∈ {1, 2, . . . , G} (based on
one of the G compared conditions, e.g., cancer, normal or treatment) follows a single
parameter (λg) exponential distribution if the gene is not expressed, [24] suggests the
following maximum likelihood estimate λ̂g = 1/X̄j , where X̄j is the sample mean
for group g. Then, the quality measure q for a particular gene in a given study j is
computed as follows:

qj = max
g∈{1,2,...,G}

exp(λ̂g log s),

where s is a global cutoff chosen such that the p-values for those genes that yield poor
measurements across different experimental conditions are greater than or equal to s.
Then the quality measure qj for each experiment j can be incorporated in the test of

1low p-value implies valid gene expression, Affymetrix Microarray Suite User Guide, version 5 (2001),
http://www.affymetrix.com/support/technical/manuals.affx

336 META-ANALYSIS OF MICROARRAY DATA

homogeneity as follows:

Q =
L∑

j=1

qjwj(Yj − μ̂)2,

and similarly in the other statistics described above

μ̂ =
∑L

j=1 qjwjYj∑L
j=1 qjwj

and Z = μ̂

Var(μ̂)
, where Var(μ̂) =

√√√√ ∑L
j=1 q2

jwj

(
∑L

j=1 q2
jwj)2

,

such that wj = 1/σ2
j for fixed-effect model and wj = 1/(σ2

j + τ2) for random-effect

model where the cross-study variance τ2 is estimated exactly as earlier but using the
new weighted value of Q.

15.3 BAYESIAN META-ANALYSIS

The Bayesian paradigm is most naturally suited for meta-analysis. Both meta-analysis
and Bayesian analysis try to include all available sources of information. They also
try to account for the uncertainty associated with experimental results in order to yield
meaningful integrative results. Moreover, the Bayesian hierarchical models resolve
the fixed-effects versus random-effects modeling issue by offering a more flexible and
robust framework for meta-analysis [13]. For its capability to modeling sources of
uncertainty in a high throughput experiment, Bayesian approach is now extensively
used for analysis of gene expression data [9]. Similarly, Bayesian meta-analysis has
also found widespread use in several areas such as medicine [53]. Yet Bayesian meta-
analysis of microarray data is still a new research area with only a couple of published
papers, for example, [4,6].

In non-Bayesian meta-analysis, the combined results are validated by statistical
comparisons, such as rank correlation or enrichment analysis, with published or an-
notated data. Such knowledge might be available to the researcher through published
or unpublished results, from ontologies and annotations such as GO and MIPS, or
simply by text mining the literature. In the Bayesian case, the meta-analyst has a
choice of taking advantage of such existing information either for validation at the
end of meta-analysis (as in the non-Bayesian case) or to use the information to specify
informative prior distributions.

Of course, once the information is incorporated as prior probabilities, it can no
longer be reused as validation criterion. The decision by the user about how to use the
available information may be determined by a variety of factors such as how recently
the information was generated, technological considerations, beliefs about reliability
of the lab, the scale, relevance, and quality of the datasets, the precise hypotheses
that are tested, the biological and epistemological relations between past and present
evidence, and so on.

BAYESIAN META-ANALYSIS 337

To illustrate such data diversity with an example, datasets that inform us about the
protein–DNA binding in yeast (S. cerevisiae) could be in the form of a comparatively
small 0/1 matrix of 185 intergenic regions × 70 transcription factors from TRANS-
FAC database [33] or as genome-wide (approximately 5000 features) chIP-chip lists
for more than hundred transcription factors that are reported as p-values [20,31].
However, if one wants to focus on yeast cell cycle regulation, then there exists further
chIP-chip data about specific genes and transcription factors [26], similar data on all
genes but for relevant transcription factors [51], and finally as cell cycle regulated
mRNA expression data [52] both in the form of time courses for all 5000-odd tran-
scripts as well as a subset of the most significant 800 genes. Likewise, the combination
strategies could vary: whereas the lists due to [20,31,51] were meta-analyzed by [43]
in a non-Bayesian manner and the combined list was validated by correlating with
[26], Bayesian analysis by [39] was based only on the data of [51] and incorporating
the information about the top 800 genes from [52] into the prior distribution.

Let the quantity of interest be θ and let prior beliefs about it be specified in the form
of a probability density function P(θ). If data Y represent the values of θ observed
in the experiments, then P(Y |θ) is the likelihood function. In the light of the data Y ,
Bayes’ theorem helps us to update the prior beliefs about θ as follows:

P(θ |Y) ∝ P(Y | θ)P(θ).

By dividing by the constant of proportionality
∫

P(Y | θ)P(θ) dθ (this is summa-
tion in the discrete case), we get the posterior density function P(θ |Y). The posterior
distribution can then be used to estimate various statistics like mean and variance of
the parameter of interest θ as well as to make probability statements about θ (based on
experimental evidence Y) in a direct way that a p-value cannot be. Indeed, the posterior
distribution not only helps in updating the existing knowledge from the prior distribu-
tion, it can be used subsequently as prior information for the next round of analysis:
P(θ|y1, . . . , yk) ∝ P(yk|θ)P(θ|y1, . . . , yk−1). Such updating approach of Bayesian
analysis may be interpreted as essentially meta-analytical. Thus, one can determine
a predictive distribution for future observations or impute missing ones by averaging
over the current parameters: P(yk+1|y1, . . . , yk) = ∫ P(yk+1|θ)P(θ|y1, . . . , yk)dθ.

From the perspective of meta-analysis, the most important characteristic of the
Bayesian approach is the explicit and formal inclusion of external information or
experimental uncertainties within a hierarchical model. The underlying effects θj for
a gene in experiment j are assumed to be randomly sampled from a common prior
distribution which is, say, normal with mean μ and variance τ2. Conditional on θj ,
the observed effect Yj in experiment j is considered to be normal with mean θj and
sampling error σ2

j . This normal/normal assumption presents one of the best-studied
models in the Bayesian meta-analysis

Yj | θj ∼ N(θj, σ
2
j),

θj | μ ∼ N(μ, τ2),

j = 1, 2, . . . , L.

338 META-ANALYSIS OF MICROARRAY DATA

In meta-analysis, we are primarily interested to estimate the overall expression μ

and the measure of heterogeneity τ. The modeling begins with elicitation of priors
π(μ) and π(τ). Mixtures of distributions are also used. Many models use vague or
noninformative priors such as constant or Jeffrey’s priors to indicate lack of informa-
tion but these assume all genes to be on equal footing, which is unrealistic in general.
Empirical Bayes methods use prior distributions that are estimated from data. Finally,
Bayesian methods extend the hierarchical models with an extra level in the hierar-
chy wherein the hyperparameters can capture either knowledge or ignorance of the
analyst.

If the number of studies (L) to be combined is small, as is typical in microar-
ray meta-analysis, the prior distributions can greatly influence the conclusions. For
instance, the prior for τ can affect shrinkage (see below). If inclusion of external
information is an advantage of Bayesian approach, then its proper specification in the
form of prior distributions is a challenge. Sensitivity of the model’s conclusions to a
particular choice of prior should be analyzed, although this perhaps has not yet been
attempted in microarray meta-analysis.

Depending on the complexity of the model, estimation of the parameters of in-
terest could involve evaluation of complicated integrals. Until the recent advances
in MCMC computational techniques like Gibbs sampling and the development of
software packages like BUGS2 and WinBUGS3 or the open source software JAGS,4

this was not feasible. Even in conjugate models, where the prior and posterior dis-
tributions belong to the same family, estimation is not always analytically tractable.
Therefore, one had to do with basic models for which approximating the posterior
quantities were easy, for instance, if all within-study variances were equal, that is, if
every σj is σ, then direct estimates are obtained from sample mean and variance [32]

μ̂ = 1

L

L∑
j=1

Yj and τ̂2 = max

⎧⎨
⎩0,

1

L− 1

L∑
j=1

(Yj − μ̂)2 − σ2

⎫⎬
⎭ .

In general, after obtaining the joint posterior density function of all unknown
parameters, full conditional posterior distribution is derived for each. The integrals
are evaluated by sampling the latter distributions (say, by Gibbs sampling with BUGS)
and the posterior moments like mean and variance and the posterior marginal densities
to compute probabilities are evaluated. With the classical normal/normal model, the
posterior mean and variance are evaluated [14] as follows:

E(μ|Y , τ) =
∑L

j=1 wjYj∑L
j=1 wj

and Var(μ|Y , τ) = 1∑L
j=1 wj

,

2http://www.mrc-bsu.cam.ac.uk/bugs/
3http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml
4http://www-fi s.iarc.fr/∼martyn/software/jags/

COMBINING PROBABILITIES 339

where Y = Y1, Y2, . . . , YL and wj = 1/(σ2
j + τ2).

E(θj|Y , τ) = Bj(τ)E(μ|Y , τ)+ (1− Bj(τ))Yj,

Var(θj|Y , τ) = Bj(τ)τ2 + B2
j (τ)Var(μ|Y , τ),

where Bj(τ) = σ2
j /(σ2

j + τ2) is the shrinkage factor that determines the “borrowing
strength” among the studies, which is a major advantage of meta-analysis [13]. The
shrinkage corresponds to the closeness of the posterior mean to the population mean
relative to the data mean. For large τ, Bj(τ) is close to 0 and meta-analysis can be
meaningless due to large cross-study variation. Conversely, Bj(τ) being close to 1,
that is τ close to 0, would suggest the use of fixed-effects model for meta-analysis.
Finally, the unconditional posterior mean, variance, and probability are evaluated as
follows:

E(μ|Y) =
∫

E(μ|Y , τ)π(τ|Y)dτ,

Var(μ|Y) =
∫

(Var(μ|Y , τ)+ (E(μ|Y , τ)− E(μ|Y))2)π(τ|Y)dτ,

P(μ > 0|Y) =
∫

�(
E(μ|Y , τ)

(Var(μ|Y , τ))1/2)π(τ|Y)dτ,

where � denotes the standard Normal cumulative distribution function. For the inter-
ested reader, a good example of meta-analysis using Bayesian hierarchical model is
presented in [17].

15.4 COMBINING PROBABILITIES

In microarray literature, genewise significance is often reported as p-values.
Sometimes, it is just the list of p-values that is available, for example [31,51]. This
leaves the meta-analyst with no choice other than to combine p-values.Fortunately,
the techniques for combining p-values, originally suggested by Fisher, are well
established.

Moreover, combination of such high level significance measures as p-values allows
the meta-analysis to avoid the platform-specific issues like normalization and data
transformation.

If the p-values are not available, they can be generated by bootstrapping or per-
mutation testing. For the sake of uniformity, the meta-analyst might try to recompute
the p-values from raw data of all the experiments. This might be avoided only if
the raw data are not available or if the studies are from the same laboratory and
involves identical hypotheses and testing methods. However, if the measured phe-
nomena are related but different (say, if ChIP-chip data [51] for cell-cycle regulation

340 META-ANALYSIS OF MICROARRAY DATA

by transcription factors in yeast were to be combined with time course expression
data for such regulation of its genes [52]) then it is necessary to understand that given
the distinctions inherent in the p-value distribution of each study, careful validation,
and multiple testing might be necessary upon meta-analysis.

Let the independent p-values be denoted as {pj : j = 1, 2, . . . , L}. The most pop-
ular technique for combining the ps is Fisher’s inverse chi-square or sum of logs
method [16]

ln P =
L∑

j=1

(−2)× ln pj ∼ χ2
2L.

The above statistic P , often called the Fisher product, gives a simple yet elegant
test of combined significance based on the fact that the sum of L independent χ2

2
variates is a χ2

2L variate. Thus, it has been extensively used in meta-analysis, and its
behavior is well-understood [47]. For instance, the test performs well for combining
a small number of experiments, which makes it well suited for microarray meta-
analysis. Fisher product was found by [15] to be asymptotically optimal for combining
independent tests among the standard meta-analysis methods. A randomized version
of Fisher product was used by [45] to combine four microarray studies on prostrate
cancer. A large population of products (P-s as defined above) was simulated by
randomly picking p-values from each of experiment, and then the distribution was
used to generate the combined probabilities.

Another classical method of combining significance is by addition of Z scores.
Many experiments report Zs as, for example, the number of standard deviations
between the present observation and the mean of the samples or their permutations,
that is, as a standard normal deviate. Alternatively, one can generate Z scores from
the p-values (say, due to t statistics) using the tails of the normal distribution. Under
the assumption that each of the L experiments is represented by a standard normal
variate, their sum is normal with mean 0 and standard deviation

√
L. Thus, the test

statistic is as follows:

Z =
∑L

j=1 Zj√
L

∼ N(0, 1).

Unlike Fisher product, the performance of the above test, commonly known as the
Stouffer’s method [56], is not affected by the number of studies [47]. This makes it
an ideal choice for extending a combination of p-values when the number of studies
is initially small (less than 5), but is likely to increase later. For instance, while [37]
used Stouffer’s method to combine three microarray experiments for fission yeast cell
cycle, seven more experiments from two different labs testing identical hypotheses
were also published. Such scenario is even more likely for microarray studies of
cancer.

Besides p-values, t scores can also be converted to Zs, even when the t distributions
have large degrees of freedom [48]. However, if the number of experiments is 10 or

COMBINING PROBABILITIES 341

more, then Winer’s test that directly combines ts to produce a Z score is perhaps
more readily applicable to microarray data than Stouffer’s sum of Zs as well as it
gives better performance than Fisher’s sum of logs (which performs well when L

is small). Given that the standard deviation of a t variate tj in experiment j with dj

degrees of freedom is
√

dj/(dj − 2), the statistic for Winer’s test is defined as

Z =
∑L

j=1 tj√∑L
j=1 dj/(dj − 2)

∼ N(0, 1).

Several methods for combining significance values, although not all of equal pop-
ularity, are listed in [1,47], and the user must select the one that best suits the charac-
teristics of her data. For instance, if the significance values may be easy to transform
to logits, one can use the Logit method due to [36]. It approximates the sum of logits
with a t distribution as follows:

−
L∑

j=1

ln
pj

1− pj

√
3(5L+ 4)/Lπ2(5L+ 2) ∼ t5L+4.

For a prespecified value τ∗, Tippett’s Minimum p method [58] rejects the joint
null hypothesis if the minimum of all ps, that is, p[1] < τ = 1− (1− τ∗)1/L. Along
this direction, a more general testing scheme due to [11] uses Beta distribution to
numerically compute the combined significance for the product of the k smallest of L

p-values for a prespecified integer k between 1 and L. For k = 1, this test corresponds
to Sidak’s correction [50], whereas for k = L, it reduces to Fisher product.

In spite of widespread use, there could be disadvantages with the standard Fisher
product, and different techniques have been suggested to avoid these. In case there
are a substantial number of experiments, we have already discussed other methods of
combining significance values. Discriminative meta-analysis using weighted Fisher
product is difficult to handle, although approximations and computational techniques
have been proposed [3,64]. A computationally much simpler (and perhaps better [63])
alternative is the weighted sum of Zs defined as follows:

Z =
∑L

j=1 wjZj√∑L
j=1 w2

j

∼ N(0, 1).

A major problem with microarray data is noise. In particular, randomly occurring
spikes of noise are not rare. However, such random noise in unlikely to repeat for
the same feature over multiple independent experiments and thus the effect can be
neutralized by meta-analysis. Although the sum of logs method of Fisher product
is generally recommended for its power [1], it has been observed by [47] that the
test can lose power in cases where genuinely significant features have some poor
scores. To fix this, [64] proposed the following thresholded version of Fisher product

342 META-ANALYSIS OF MICROARRAY DATA

that helps to increase the power of the test by letting the poor p-values of a gene be
ignored

W =
L∏

j=1

pj
I(pj≤τ),

where τ is a prespecified p-value threshold and the function I(True) =1 and
I(False) = 0. Thus, only those p-values that are less than or equal to some speci-
fied cutoff value τ form the product. The combined significance of the statistic W

is computed with the help of an analytical distribution in [64]. Further, in standard
Fisher product, a combination of marginally significant probabilities could suggest
unreasonably high significance. The statistic W guards against such false positives
by requiring the presence of at least one p-value significant enough to be less than or
equal to τ.

Large microarray datasets are often in need of cutoff values that allow control of
FDR while being used as thresholds for reporting significant features [55]. However,
a common cutoff τ is not useful to apply for a collection of independent and diverse
experiments. Toward this, [43] suggested an experiment-specific cutoff τj,α guided by
the important additional objective of controlling the false discovery proportion (FDP)
in experiment j at level α. The thresholded Fisher product was extended to combine
only those p-values of a particular gene that are less or equal to their respective
experiment-specific cutoffs τj,α to form the generalized product

Wα =
L∏

j=1

pj
I(pj≤τj,α).

Thus, the occasional poor p-values of otherwise truly significant genes are ignored,
which increases the robustness and power of the product. Several approximations for
the distribution of thresholded Fisher product are studied in [38]. Although the above
threshold τj,α has been defined for the purpose of restricting false positives, the general
idea of experiment-specific thresholding can enable discriminative meta-analysis.
Figure 15.1 illustrates this argument with fission yeast cell cycle studies. Moreover,
thresholding can lead to binary (accept/reject) votes about a gene’s significance in
different experiments, which may be useful for a vote-counting strategy if the number
of experiments L is large (see vote-counting methods in [7]).

Although experiments are conducted independently, dependence can still be
present in the significance values and effect sizes for a variety of reasons. Owing
to high degree of automation in microarray technology, subtle sources of dependence
like replicated patterns of error may be present. Even nonexperimental factors may be
responsible. For instance, the score used in [34] to identify a cell cycle regulated tran-
script in fission yeast combined the p-value of regulation with that of periodicity—both
based on the same time course of a gene. Discussions about dependence and methods
to tackle that appear in [42,57,64].

FDR AND IDR 343

FIGURE 15.1 The q-value for a particular feature is defined [55] as the minimum expected
proportion of false positives occurring up through that feature on the list. The divergence among
q-values within the range of even the most significant 500 genes in the 10 datasets justifies the
use of experiment-specific p-value cutoffs in thresholded Fisher product combination [43].

15.5 FDR AND IDR

Multiple hypotheses testing for thousands of genes are of special concern in the
analysis of microarray data. Following [2], estimation of false discovery rate or FDR
has become a standard practice in microarray studies. Naturally, most meta-analysis
approaches adapt known methods of controlling FDR in a single study to assess
the statistical significance of the combined results. Permutation tests derived from
algorithms due to [59] and [55] were used upon meta-analysis of effect sizes and
p-values by [4] and [44], respectively. For Bayesian meta-analysis, [6] employed
the posterior expected FDR control of [18]. In a different approach, [43] pooled
experiment-wise gene subsets each of which has controlled proportion (FDP) or count
of false positives, as achieved by [29], to control the combined FDP. See [12] for a
review of techniques for multiple hypotheses testing in microarray experiments.

Integration-driven discovery rate or IDR has been proposed in [4] to evaluate the
number of genes that are identified as significant by meta-analysis but not by any of
the individual studies. Therefore, it is a measure of information gain solely due to
integrative analysis. Typically, such gain would be in terms of small effects, which are
consistent (i.e., in the same direction) and hence add up during meta-analysis. Given

344 META-ANALYSIS OF MICROARRAY DATA

a threshold, IDR is computed as the ratio of the counts of genes that are differentially
expressed above the threshold in either direction (i.e., both up- and downregulated)
in terms of the combined statistic but not at the corresponding level in any of the
individual studies.

15.6 ONCOMINE: A RESOURCE FOR META-ANALYSIS

This section will describe Oncomine, a compendium for cancer microarray data,
and demonstrate how one can perform meta-analysis using this resource. “Meta-
analysis of microarrays” was originally developed and applied to four independent
prostate cancer profiling studies [45] as well as to 40 cancer profiling datasets [46]
using Oncomine. This cancer profiling platform currently includes 209 independent
datasets, totaling more than 14,000 microarray experiments, which span 36 cancer
types (www.oncomine.com).

Meta-analysis can be used to identify genes that share a common expression sig-
nature across multiple independent studies and thus, may have an inferred biological
role. Many independent laboratories perform gene expression profiling on analogous
tissue samples. An example might be seven datasets that include normal prostate
samples and localized prostate carcinoma samples run in different laboratories on
different array platforms. When defining candidate biomarkers and therapeutic tar-
gets, it is important to evaluate gene expression data across all available data, utilizing
independent datasets to intervalidate each other.

Data are collected and stored in Oncomine by monitoring the literature and reposi-
tories such as GEO, SMD, and ArrayExpress. Cancer profiling studies are prioritized
and available data is downloaded from repositories, author websites, and supplemen-
tal materials including sample facts from manuscripts. In addition, correspondence
with authors is performed when data or sample facts are missing or incomplete. Stan-
dard normalization is performed (RMA for Affymetrix data, Lowess for cDNA arrays)
when raw data files are provided. The data matrix and sample facts are standardized by
expanding abbreviations, mapping to common synonyms, and NCI Thesaurus terms.
An automated pipeline then maps reporters identified by Affymetrix Probeset IDs or
Image Clone IDs to gene annotation.

Within Oncomine, a meta-analysis function allows a user to select any number of
cancer profiles and identify genes that are commonly activated or repressed across
the set. First, the user selects a set of cancer profiles and then sets the number of
selected profiles in which a gene should be measured and significant. For example,
one might select four lung andenocarcinoma profiles and require that a gene be present
and overexpressed in three of four profiles. This setting is flexible so that users can
explore various options ensuring that optimal markers and targets are not missed.

Meta-analysis begins from the point of selecting a cancer profile of interest. From
the main Oncomine interface, the cancer profile of interest is entered as a search
term (gene symbols, aliases, or keywords). The results for the search term “prostate”
yield a list of studies that have been analyzed in Oncomine. These are ranked by
the highest percentage of differentially expressed genes (Fig. 15.2). Each analysis

ONCOMINE: A RESOURCE FOR META-ANALYSIS 345

FIGURE 15.2 A profile search for “prostate” yields analyses ranked by the percentage of
most significantly dysregulated genes. Each analysis listed contains direct links to heat maps
and lists of genes that are up, down, or differentially regulated.

listed contains study information and the classes of samples that are being compared.
In order to identify potential biomarkers specific for metastatic prostate cancer, we
can filter our list to display cancer versus cancer comparisons. The question we pose
is, which genes are activated in metastatic prostate carcinoma? The analysis begins
with the selection of independent studies where the appropriate sample comparisons
were made to identify genes significantly dysregulated in metastatic prostate cancer
as compared to nonmetastatic prostate cancer.

Within individual profiles listed, the differentially expressed genes are represented
in a heat map (Fig. 15.3). Here, higher level of expression can be noted in the 25
metastatic prostate carcinoma samples relative to the 64 prostate carcinoma samples
in the Yu Study. The most significantly overexpressed gene EIF1X, a eukaryotic tran-
scription factor, is listed at the top of the heat map reflecting specific over expression
in metastatic prostate adenocarcinoma in this study. This finding alone often drives
additional investigation of genes observed to be overexpressed based on a chosen
significance level. The approach of meta-analysis within Oncomine, takes advantage
of the large population of studies where genes are measured by multiple, heteroge-
neous reporters, and microarray platforms within different research organizations to
provide robust validation and focus efforts on the most promising targets.

The next step in meta-analysis is to select the studies to include those genes where
significant differential expression is observed. The top five analyses having the most
differentially expressed genes are selected for inclusion in meta-analysis. Additional
filters can be applied to limit the analysis to a particular functional category such as
“cell cycle” (Fig. 15.4).

346 META-ANALYSIS OF MICROARRAY DATA

FIGURE 15.3 Genes that are significantly overexpressed in metastatic prostate carcinomas
in the Yu study are represented in heat map as red cells in the website. Genes are ranked
according to significance of over expression.

FIGURE 15.4 Meta-analysis parameters include selected profiles, over- or underexpressed
genes, and can include the application of filters such as “cell cycle” to limit the genes that are
returned in the metamap.

ONCOMINE: A RESOURCE FOR META-ANALYSIS 347

FIGURE 15.5 A metamap displays the most significantly overexpressed genes ranked and
colored by p-value across five independent studies based on p-value for four out of the five
studies. This option reduces the effect of genes that are not well measured or not present on
the specific array used in the study such as the second gene, FOXM1, which was not measured
in Study 1 as indicated by a white cell.

The resulting metamap displays each of the four profiles as columns and genes as
rows. Cells are colored by significance of over expression (Fig. 15.5). Rows in the map
correspond to the genes that are significantly overexpressed in four out of the five
analyses. By default, one study is left out to remove bias from studies where the
gene was not well measured or not present on the particular array used. Genes are
ranked by the highest p-value of the studies included in the analysis. The number of
studies included in the comparison can be adjusted to update the map and the resulting
gene rank on the fly. Thus, we see different gene sets ranked by the most significant
p-values, computed by Oncomine using the t-statistic, in four out of the five studies
shown (Fig. 15.5) and in five out of five studies. Inclusion of all five studies in the
meta-analysis generates a new gene ranking. CDKN3 remains the highest ranked
while genes such as FOXM1 drop out of the list because it was not measured in
study 1. This allows us to explore the genes that might be significantly overexpressed
in metastatic prostate carcinoma but perhaps not represented or well measured on a
particular array in one of the five studies chosen.

Including either four or five analysis across independent studies reveals CDKN3 as
the consistently highest ranked, overexpressed gene in metastatic prostate carcinoma
as compared to prostate carcinoma. Exploring further, this finding is confirmed by
viewing the box plots for CDKN3 across all five studies and by noting over expression

348 META-ANALYSIS OF MICROARRAY DATA

2.0

1.5

1.0

0.5

0.0

Class
Analysis

N
or

m
al

iz
ed

 e
xp

re
ss

io
n

un
its

Box Plot - Description

CDKN3

Width

1 2 3 4 5

−0.5

−1.0

−1.5

−2.0

FIGURE 15.6 Distribution of gene expression of CDKN3 across five independent studies
comparing prostate carcinoma (dark gray) and metastatic prostate carcinoma (light gray).

in metastatic prostate carcinoma shown in light gray versus prostate carcinoma in
dark gray (Fig. 15.6). The box plot view provides a snapshot of the distribution of
this biological change and the difference in array platforms between studies, while
representing the consistent over expression of CDKN3.

15.6.1 Discussion

Thus, meta-analysis can be applied to a resource like Oncomine to identify common
transcriptional programs. This was demonstrated in the identification of transcrip-
tional profiles from a diverse collection of 40 published cancer datasets [46]. These
profiles were found to be activated in most cancer types relative to corresponding
normal tissue. It was expected that many of these universal cancer genes would be
involved in cell proliferation and invasion. For example, TOP2A was found to be
overexpressed in 18 of the cancer versus normal signatures that represented 10 cancer
types. This gene encodes toposisomerase II that is involved in DNA replication and
is the target of several cancer drugs.

Meta-analysis was also used to identify signatures characterizing cancer pro-
gression defined by classical histopathogical and clinical parameters. Analysis of
undifferentiated versus differentiated cancer was used in meta-analysis to identify
69 genes present in at least four of seven signatures. Most of these genes were
associated with proliferation and thus having overlapped with those found in can-
cers relative to normal tissue. Genes overexpressed in undifferentiated cancers were
found to be broad transcription factors that play a role in maintaining undiffer-
entiated state. Other genes found in this metasignature are known to be involved

REFERENCES 349

in embryogenesis and inhibition of apoptosis, thus contributing to the state of
undifferentiation.

As an example of such an application, [23] used meta-analysis within Oncomine
to investigate the expression of Metastasis-Associated Gene 1 (MTA1) in human neo-
plastic tissue. They found MTA1 was significantly dysregulated in 22 of 85 expression
array studies representing a variety of tumors relative to healthy tissue. Furthermore,
they were able to determine that MTA1 expression may be involved in tissue invasion
but was not sufficient alone to drive metastasis.

Meta-analysis provides a powerful method for identification of a collection of
genes that are differentially expressed in either a large panel of cancers or specific
cancer subtypes and classifications. Using meta-analysis on collections of microarray
data such as Oncomine, the underlying biological mechanisms can be explored and
validated across a heterogeneous population of tissues and experiments providing
broader and more robust validation while enabling new hypothesis generation in a
variety of biological problems.

ACKNOWLEDGMENTS

The authors would like to thank Matt Anstett and Dan Rhodes of Compendia
Bioscience (www.compendiabio.com) for their contribution on Oncomine.

REFERENCES

1. Becker BJ. Combining significance levels. In: Cooper H, Hedges LV, editors. The Hand-
book of Research Synthesis. New York: Russell Sage Foundation 1994.

2. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful
approach to multiple testing. J Roy Stat Soc B 1995;57:289–300.

3. Bhoj DS. On the distribution of the weighted combination of independent probabilities.
Stat Probab Let 1992;15:37–40.

4. Choi JK, Yu U, Kim S, Yoo OJ. Combining multiple microarray studies and modeling
interstudy variation. Bioinformatics19:Suppl. 1, i84–i90, 2003.

5. Choi JK, Choi JY. Integrative analysis of multiple gene expression profiles applied to liver
cancer study. FEBS Let 2004;565:93–100.

6. Conlon EM, Song JJ, Liu JS. Bayesian models for pooling microarray studies with
multiple sources of replications. BMC Bioinformatics 2006;7:247.

7. Cooper H, Hedges LV. The Handbook of Research Synthesis. New York: Russell Sage
Foundation Publications; 1994.

8. Culhane AC, Perriere G, Higgins DG. Cross-platform comparison and visualisation of
gene expression data using co-inertia analysis. BMC Bioinformatics 2003;4:59.

9. Do K-A, Müller P, Vannucci M. Bayesian Inference for Gene Expression and Proteomics.
New York: Cambridge University Press; 2006.

10. DerSimonian R, Laird NM. Meta-analysis in clinical trials. Controll Clini Trials.
1986;7:177–188.

350 META-ANALYSIS OF MICROARRAY DATA

11. Dudbridge F, Koeleman BPC. Rank truncated product of P-values, with application to
genomewide association scans. Genet Epidemiol 2003;25:360–366.

12. Dudoit S, Shaffer JP, Boldrick JC. Multiple hypothesis testing in microarray experiments.
Stat Sci 2003;18:71–103.

13. DuMouchel WH, Harris JE. Bayes methods for combining the results of cancer studies
in humans and other species. J Am Stat Assoc 1983;78:293–315.

14. DuMouchel W, Normand S-L. Computer-modeling and Graphical Strategies for Meta-
analysis. In: Meta-Analysis in Medicine and Health Policy. Stangl D, Berry DA, editors.
New York: Marcel Dekker; 2000.

15. Elston RC. On Fisher’s method of combining p-values. Biometrical J 1991;33:339–
345.

16. Fisher RA. Statistical Methods For Research Workers. London: Oliver and Boyd; 1932.

17. Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian Data Analysis. Boca Raton: Chap-
man & Hall/CRC; 2003. Chapter 5.

18. Genovese CR, Wasserman L. Operating characteristics and extensions of the false
discovery rate procedure. J Roy Stat Soc B 2002;64:499–518.

19. Grützmann R, Boriss H, Ammerpohl O, Lüttges J, Kalthoff H, Schackert HK, Klöppel
G, Saeger HD, Pilarsky C. Meta-analysis of microarray data on pancreatic cancer defines
a set of commonly dysregulated genes. Oncogene 2005;24:5079–88.

20. Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford TW, Hannett NM,
Tagne JB, Reynolds DB, Yoo J, Jennings EG, Zeitlinger J, Pokholok DK, Kellis M, Rolfe
PA, Takusagawa KT, Lander ES, Gifford DK, Fraenkel E, Young RA. Transcriptional
regulatory code of a eukaryotic genome. Nature 2004;431:99–104.

21. Hedges LV. Fixed Effects Models. In: Cooper H, Hedges LH, editors. The Handbook of
Research Synthesis. New York: Russell Sage Foundation; 1994.

22. Hedges LV, Olkin I. Statistical Methods for Meta-Analysis. San Diego: Academic Press;
1985.

23. Hofer MD, Tapia C, Browne TJ, Mirlacher M, Sauter G, Rubin MA. Comprehensive
analysis of the expression of the metastasis-associated gene 1 in human neoplastic tissue.
Arch Pathol Lab Med 2006;130:989–996.

24. Hu P, Greenwood CMT, Beyene J. Integrative analysis of multiple gene expression profiles
with quality-adjusted effect size models. BMC Bioinformatics 2005;6:128.

25. Irizarry RA, Warren D, Spencer F, Kim IF, Biswal S, Frank BC, Gabrielson E, Garcia JG,
Geoghegan J, Germino G, Griffin C, Hilmer SC, Hoffman E, Jedlicka AE, Kawasaki E,
Martínez-Murillo F, Morsberger L, Lee H, Petersen D, Quackenbush J, Scott A, Wilson
M, Yang Y, Ye SQ, Yu W. Multiple-laboratory comparison of microarray platforms. Nat
Method 2005;2:345–350.

26. Iyer VR, Horak CE, Scafe CS, Botstein D, Snyder M, Brown PO. Genomic binding sites
of the yeast cell-cycle transcription factors sbf and mbf. Nature 2001;409:533–538.

27. Järvinen AK, Hautaniemi S, Edgren H, Auvinen P, Saarela J, Kallioniemi OP, Monni
O. Are data from different gene expression microarray platforms comparable? Genomics
2004;83:1164–1168.

28. Jiang H, Deng Y, Chen HS, Tao L, Sha Q, Chen J, Tsai CJ, Zhang S. Joint analysis of two
microarray gene-expression datasets to select lung adenocarcinoma marker genes. BMC
Bioinformatics 2004;5:81.

REFERENCES 351

29. Korn EL, Troendle JF, McShane LM, Simon R. Controlling the number of false discover-
ies: application to high dimensional genomic data. J Stat Plann Infer 2004;124:379–398.

30. Kuo WP, Jenssen TK, Butte AJ, Ohno-Machado L, Kohane IS. Analysis of matched
mRNA measurements from two different microarray technologies. Bioinformatics
2002;18:405–412.

31. Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison
CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren
B, Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK, Young RA. Transcriptional
Regulatory Networks in Saccharomyces cerevisiae. Science 2002;298:799–804.

32. Louis TA, Zelterman D. Bayesian Approaches to Research Synthesis. In: Cooper H,
Hedges LV, editors. The Handbook of Research Synthesis. New York: Russell Sage Foun-
dation; 1994.

33. Manke T, Bringas R, Vingron M. Correlating protein-DNA and protein-protein interaction
networks. J Mol Biol 2003;333:75–85.

34. Marguerat S, Jensen TS, de Lichtenberg U, Wilhelm BT, Jensen LJ, Bähler J. The more
the merrier: comparative analysis of microarray studies on cell cycle regulated genes in
fission yeast. Yeast 2006;23:261–277.

35. Moreau Y, Aerts S, De Moor B, De Strooper B, Dabrowski M. Comparison and
meta-analysis of microarray data: from the bench to the computer desk. Trend Genet
2003;19:570–577.

36. Mudholkar GS, George EO. The logit statistic for combining probabilities - an overview.
In: Rustagi JS, editor. Optimizing Methods in Statistics. New York: Academic Press;
1979.

37. Oliva A, Rosebrock A, Ferrezuelo F, Pyne S, Chen H, Skiena S, Futcher B, Leather-
wood J. The cell cycle-regulated genes of Schizosaccharomyces pombe. Pub Lib Sci Biol
2005;3:123960.

38. Olkin I, Saner H. Approximations for trimmed Fisher procedures in research synthesis.
Stat Method Med Res 2001;10:267–276.

39. Pan W. Incorporating biological information as a prior in an empirical bayes approach to
analyzing microarray data. Stat Appl Genet Mol Biol 2005;4:12.

40. Parmigiani G, Garrett ES, Anbazhagan R, Gabrielson E. A cross-study comparison of
gene expression studies for the molecular classification of lung cancer. Clin Cancer Res
2004;10:2922–2927.

41. Parmigiani G, Garrett ES, Anbazhagan R, Gabrielson E. A statistical framework for
expressionbased molecular classification in cancer. J Roy Stat Soc B 2002;64:717–
736.

42. Pesarin F. Multivariate Permutation Tests: With Applications in Biostatistics. Chichester:
John Wiley & Sons, 2001.

43. Pyne S, Futcher B, Skiena S. Meta-analysis based on control of false discovery rate:
combining yeast ChIP-chip datasets. Bioinformatics. 2006;22(20):2516–22.

44. Rhodes DR, Barrette TR, Rubin MA, Ghosh D, Chinnaiyan AM. Integrative analysis of
the cancer transcriptome. Nat Genet 2005;37:S31–S37.

45. Rhodes DR, Barrette TR, Rubin MA, Ghosh D, Chinnaiyan AM. Meta-analysis of mi-
croarrays: interstudy validation of gene expression profiles reveals pathway dysregulation
in prostate cancer. Cancer Res 2002;62:4427–4433.

352 META-ANALYSIS OF MICROARRAY DATA

46. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey
A, Chinnaiyan AM. Large-scale meta-analysis of cancer microarray data identifies com-
mon transcriptional profiles of neoplastic transformation and progression. PNAS USA
2004;101:9309–9314.

47. Rosenthal R. Meta-Analytic Procedures for Social Research. Newbury Park: SAGE
Publications; 1991.

48. Rosenthal R, Rubin DB. Comparing significance levels of independent studies. Psychol
Bull 1979;86:1165–1168.

49. Shen R, Ghosh D, Chinnaiyan AM. Prognostic meta-signature of breast cancer developed
by two-stage mixture modeling of microarray data. BMC Genomics 2004;5:94.

50. Sidak Z. Rectangular confidence regions for the means of the multivariate normal distri-
butions. J Am Stat Ass 1967;62:626–33.

51. Simon I, Barnett J, Hannett N, Harbison CT, Rinaldi NJ, Volkert TL, Wyrick JJ, Zeitlinger
J, Gifford DK, Jaakkola TS, Young RA. Serial regulation of transcriptional regulators in
the yeast cell cycle. Cell 2001;106:697–708.

52. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein
D, Futcher B. Comprehensive identification of cell cycle-regulated genes of the yeast
saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 1998;9:3273–3297.

53. Stangl D, Berry DA. Meta-Analysis in Medicine and Health Policy. New York: Marcel
Dekker; 2000.

54. Stevens JR, Doerge RW. Combining Affymetrix microarray results. BMC Bioinformatics
2005;6:57.

55. Storey JD, Tibshirani R. Statistical significance for genome-wide studies. PNAS USA
2003;100:9440–9445.

56. Stouffer SA, Suchman EA, Devinney LC, Star SA, Williams Jr. RM. The American
Soldier: Adjustments during army life, Vol. 1. Princeton: Princeton University Press;
1949.

57. Strube MJ. Combining and comparing significance levels from nonindependent
hypothesis tests. Psychol Bull 1985;97:334–341.

58. LHC Tippett. The Methods of Statistics. London: Williams and Norgate; 1931.

59. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the
ionizing radiation response. PNAS USA 2001;98:5116–5121.

60. Varambally S, Yu J, Laxman B, Rhodes DR, Mehra R, Tomlins SA, Shah RB, Chan-
dran U, Monzon FA, Becich MJ, Wei JT, Pienta KJ, Ghosh D, Rubin MA, Chinnaiyan
AM. Integrative genomic and proteomic analysis of prostate cancer reveals signatures of
metastatic progression. Cancer Cell 2005;8:393–406.

61. Wang J, Coombes KR, Highsmith WE, Keating MJ, Abruzzo LV. Differences in gene
expression between B-cell chronic lymphocytic leukemia and normal B cells: a meta-
analysis of three microarray studies. Bioinformatics 2004;20:3166–3178.

62. Warnat P, Eils R, Brors B. Cross-platform analysis of cancer microarray data improves
gene expression based classification of phenotypes. BMC Bioinformatics 2005;6:265.

63. Whitlock MC. Combining probability from independent tests: the weighted Z-method is
superior to Fisher’s approach J Evol Biol 2005;18:1368.

64. Zaykin DV, Zhivotovsky LA, Westfall PH, Weir BS. Truncated product method for com-
bining P-values. Genet Epidemiol 2002;22:170–185.

PART IV

GENETIC VARIATION ANALYSIS

16
PHASING GENOTYPES USING A
HIDDEN MARKOV MODEL

P. Rastas, M. Koivisto, H. Mannila, and E. Ukkonen
Department of Computer Science and HIIT Basic Research Unit, University of Helsinki, Finland

16.1 INTRODUCTION

Much of the genetic variation between individuals of the same species is due to single
nucleotide polymorphisms (SNPs), sites of the DNA where two or more of the four
nucleotides A, C, G, T, called alleles, occur in the population. In the human genome,
common SNPs (minor allele frequency at least 1%) occur relatively frequently (every
100 to 300 bases) and make up about 90% of all genetic variations (see, e.g., [28] and
references therein). Thus, SNPs are of unique importance for studying genomic vari-
ations, especially in association analysis that aims at the location of causal variants
responsible for complex genetic traits. To enhance the understanding of genetic vari-
ability in human populations, large genotyping efforts have recently been conducted
to collect high quality, genome-wise SNP data from diverse ethnic groups [11,12].

Although lab techniques for measuring (typing) SNPs have evolved rapidly, they
still produce incomplete data. First, it is not feasible to type all existing SNPs, but
only a small fraction of them. This implies that causal variants will rarely be typed.
Fortunately, an unobserved causal variant is typically strongly correlated with its
neighboring SNPs. This is because a haplotype, a sequence of alleles over multiple
SNPs in a single chromosome, is inherited as it is, as long as no recombination occurs
in the region spanned by the SNPs. In this light, it is another major shortcoming of
the current SNP typing methods that they do not provide the two haplotypes of a

Bioinformatics Algorithms: Techniques and Applications, Edited by Ion I. Mǎndoiu
and Alexander Zelikovsky
Copyright © 2008 John Wiley & Sons, Inc.

355

356 PHASING GENOTYPES USING A HIDDEN MARKOV MODEL

diploid organism, but only an unordered allele pair for each SNP, called the unphased
genotypes. For example, suppose the measured genotype of an individual is {A, C}
at one SNP and {G, T} at another SNP. Then the underlying haplotype pair is either
{AG, CT} or {AT, CG}. The haplotyping problem arises due to heterozygous sites
in the genotypes; a site of a genotype is called heterozygous if the two alleles at the
site are different; otherwise, the site is called homozygous. If a genotype contains s

heterozygous sites, then it is compatible with 2s−1 distinct haplotype pairs.
The phasing problem, also called the haplotyping problem, is about reconstructing

the unobserved haplotypes for a given set of unphased genotypes. Existing haplotyp-
ing methods can be classified into (a) those that make use of the physical order of
the SNPs and (b) those that ignore this information. The latter methods include early
combinatorial approaches, which aim at resolving the genotypes with as few distinct
haplotypes as possible [2,9]. Related probabilistic approaches shared the same idea
of parsimony but were able to tolerate “noise” (genotyping errors and recent muta-
tions), while showing that maximum likelihood inference automatically yields a small
number of haplotypes [5,18,20]. However, improved reconstruction accuracy is often
achieved when likelihood is combined with a biologically motivated prior, namely a
phylogenetic model of the evolution of the haplotypes [8,27].

Methods of type (a) take advantage of the physical location of the SNPs, and are
necessary when larger genomic regions are considered. First attempts to extend meth-
ods of type (b) to larger regions were based on the partition ligation (PL) technique
introduced by Niu et al. [20]. PL first infers haplotypes at disjoint short blocks of con-
secutive SNPs, then at blocks of doubled size, and so on until the haplotypes for the
entire region of interest have been inferred. The usefulness (as well as potential weak-
ness) of this approach relies on the greedy construction of candidate haplotypes when
merging blocks: the candidate haplotypes for a block are obtained as the crossprod-
uct of the haplotypes inferred at its two subblocks. Remarkably, the most accurate
haplotyping method currently available, PHASE, uses the PL scheme for handling
large genomic regions [26,27]. Another approach to haplotyping makes use of the so
called haplotype block structure. Haplotype blocks are regions of the genome where
the haplotype diversity is relatively low compared to the physical length of the region;
the relatively short gaps between low diversity blocks are called recombination hot
spots. Haplotyping methods by Greenspan and Geiger [6] and by Kimmel and Shamir
[14] are based on partitioning the region of interest into several haplotype blocks and
modeling the haplotypes over successive blocks with a first-order Markov chain, that
is, a haplotype depends only on the haplotype in the preceding block.

Recently, block-free hidden Markov models (HMMs) of haplotypes have been pro-
posed in three independent works, by us [23], Kimmel and Shamir [15], and Scheet
and Stephens [24]. Under these models, the haplotypes in the present population
are viewed as a result of iterated recombinations applied on a few founder haplo-
types (i.e., ancestral sequences). Compared to other proposed approaches, HMMs
provide a flexible model for historical recombination structure, at the expense of
paying less attention to phylogenetic, treelike relationships. Given that biologically
more faithful models, the ancestral recombination graph [7] in particular, are com-
putationally just impractical, the HMM approach seems to provide a good trade off

A HIDDEN MARKOV MODEL FOR RECOMBINANT HAPLOTYPES 357

between performance quality and computational feasibility. A major advantage of
HMMs compared to Markovian haplotype models [4] is that HMMs can more easily
handle missing values, recent mutations, and genotyping errors.

In this paper we describe our HMM technique for the phasing problem, slightly
extending our earlier method [23]. The methods are implemented in the program
HIT (Haplotype Inference Technique) that is now publicly available.1 We compare
the haplotyping accuracy of HIT to that of state-of-the-art methods, PHASE [26,27],
fastPHASE [24], HAP [10], and GERBIL [14], using several real datasets. Our results
suggest that HMM based methods, HIT and fastPHASE, are the current best methods
for large scale haplotype reconstruction.

The rest of this paper is structured as follows. In Section 16.2 we describe our
HMM for recombinant haplotypes. In Section 16.3 we present an EM algorithm for
estimating the HMM from a set of unphased genotypes. In Section 16.4 we describe
our method for reconstructing haplotypes given an estimated HMM; some alterna-
tive approaches are also discussed. In Section 16.5 we report experimental results on
several real genotype datasets, mostly obtained from the HapMap data [12]. In Sec-
tion 16.6 we provide a summary and discuss potential directions for future research.

With kind permission of Springer Science and Business media we, in Sections 16.2
and 16.3, reproduce textual material that only slightly deviates from the original text
in [23] (Section 2, 3.1–3.3 on pp. 142–146).

16.2 A HIDDEN MARKOV MODEL FOR RECOMBINANT HAPLOTYPES

We consider m SNPs, indexed by the numbers 1, 2, . . . , m in their physical order along
the chromosome (in arbitrary direction). We assume that each SNP has two alleles;
we label the most frequent allele by 1 and the other allele by 2. A haplotype over the
m SNPs is a sequence h = h1, h2, . . . , hm with hj ∈ {1, 2}, while a genotype over
the m SNPs is a sequence g = g1, g2, . . . , gm with gj ∈ {1, 2} × {1, 2}. A genotype
g with gj = (x, y) is heterozygous at j if x �= y, and homozygous otherwise. In the
observed data the genotypes are unphased: the order of the alleles x and y in the pair
(x, y) is arbitrary and does not fix the haplotype memberships of the alleles.

Our hidden Markov model (HMM) for SNP haplotypes is a pair M = (S, θ), where
S is the set of states and θ = (τ, ε) consists of the state transition probabilities τ, and
the allele emission probabilities ε. The set of states S = S0 ∪ S1 ∪ . . . ∪ Sm consists
of disjoint state sets Sj for each SNP j, and a special initial state in S0 = {s0}. The
transition probabilities τ(sj−1, sj) are defined for all sj−1 ∈ Sj−1 and sj ∈ Sj , that is,
only transitions from states in Sj−1 to states in Sj are allowed, for all j = 1, 2, . . . , m.
The transition probabilities from each fixed state sj form a probability distribution,
that is, their sum equals 1. Each state sj ∈ Sj is assigned an emission probability
distribution, that is, the probabilities ε(sj, a) of emitting a ∈ {1, 2}. We restrict our
consideration to the case where each Sj contain a fixed number K of states. The pa-
rameter K, called the number of founders in M, and the number of SNPs m determine

1HIT is available at http://www.cs.helsinki.fi/u/prastas/hit/.

358 PHASING GENOTYPES USING A HIDDEN MARKOV MODEL

the topology of the HMM. The initial state s0 is a dummy state from which the HMM
does not emit any allele. Any path from the dummy state to a state in Sm generates
a haplotype over the m SNPs, with a probability determined as the product of the
transition and emission probabilities along the path.

The model embodies the idea of founder haplotypes as follows. Haplotypes in the
present population are viewed as recombinants of a few ancestral haplotypes. A large
transition probability τ(sj−1, sj) suggests that states sj−1 and sj belong to the same
founder haplotype and only rarely have recombinations broken the corresponding
haplotypes in between the SNPs j − 1 and j. Likewise, a small transition probability
suggests recombinations have rarely combined the corresponding fragments of
ancestral haplotypes. An illustration of the model is shown in Fig. 16.1. We note
that related combinatorial and probabilistic models have been proposed earlier by
Ukkonen [29], Schwartz et al. [25], and Jojic et al. [13].

We extend the haplotype model to unphased genotypes as follows. We assume
that the two haplotypes that form a genotype are independent given the haplotype
model (i.e., random mating). We also assume that the two haplotypes are perfectly
compatible with the genotype, that is, there is no additional noise beyond what is
modeled by the emission probabilities in the haplotype model.

Our HMM can also handle missing data in a principled manner. If a datum is
missing, the corresponding emission probability is considered to be 1 (any other
constant could be used as well). This corresponds to the assumption that the data are
missing at random.

1 2 3 4 5 6 7 8 9 10 11

0

0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1

1

FIGURE 16.1 An example HMM for m = 11 markers and K = 4 founders. The states are
represented as circles, the jth column of four states corresponding to the jth marker. A gray
scale is used to indicate the emission probability of the allele “1,” black corresponding to
the probability 1. The thickness of each transition line indicates the corresponding transition
probability.

LEARNING THE HMM FROM UNPHASED GENOTYPE DATA 359

16.3 LEARNING THE HMM FROM UNPHASED GENOTYPE DATA

We use the maximum likelihood principle to fit our hidden Markov model to the
observed genotype data G we want to phase. That is, for a fixed number of founders,
we search for the parameters θ = (τ, ε) so as to maximize the likelihood P(G|θ). This
estimation problem is known to be hard in general HMMs, and this seems to be the
case also in our application. Therefore we resort to the commonly adopted family of
expectation-maximization (EM) algorithms, which are guaranteed to converge to a
local optimum [19].

The generic EM algorithm approaches an intractable optimization problem by com-
pleting the original data with auxiliary hidden data. Then the expected log-likelihood
of the complete data—where the expectation is with respect to the distribution of the
hidden data given the current parameter values—is maximized in an iterative fashion.
Usually the choice of the hidden data is natural and direct from the problem. For the
standard HMMs the hidden data contains the unobserved hidden states.

In our case it is natural to treat the hidden state sequences, two per genotype,
as the hidden data. This is, in essence, the choice that has been made in a number
of related applications of EM to the haplotype reconstruction problem; for example,
[6,14]. While this approach works nicely when a state is deterministically related to an
allele, computational problems will arise as soon as emission parameters are included
in the model [14]. In such a case, Kimmel and Shamir [14,15] use a (multivariate)
numerical maximization routine within each EM iteration.

We propose an alternative instantiation of the EM algorithm that yields efficient
closed-form expressions for maximizing parameter values within each EM iteration.
The idea is simple; in the hidden data we include not only the hidden states but also
indicators that for any pair of states and the corresponding observed pair of alleles
determine which one of the two states emitted the first allele in the pair, the second
allele being emitted by the other state. We next provide some technical details.

16.3.1 Our EM Algorithm

Let G = {g1, g2, . . . , gn} be a set of n genotypes over m markers. We suppose the
topology (the state space S) of our HMM M = (S, θ) is fixed and we wish to find pa-
rameter values θ = (τ, ε) that maximize the probability of the genotype data, P(G|θ).

In this setting, the EM algorithm is as follows. Starting from some initial
values θ(0) the algorithm iteratively improves the current values θ(r) by setting

θ(r+1) := arg max
θ

∑
Z

P(Z|G, θ(r)) ln P(G, Z|θ) , (16.1)

where Z runs through a chosen set of additional (hidden) data. In words, the new
parameter values are obtained by maximizing the expected log-likelihood of the com-
plete data. For a large enough r the increment in the likelihood becomes negligible
and the algorithm terminates.

360 PHASING GENOTYPES USING A HIDDEN MARKOV MODEL

We choose the hidden dataZ such that the complete likelihoodP(G, Z|θ) factorizes
into a product of individual transition and emission probabilities, as described below.
This is the key to obtain a computationally efficient evaluation of Equation 16.1. Recall
that our HMM M = (S, θ) defines a probability distribution over singleton haplotypes.
A genotype is obtained as a pair of two independent haplotypes, each generated by
M along a path through some m states of M. From this generative model we extract
the hidden data Z as the the combination of (a) the two state sequences per observed
genotype and (b) the alleles emitted from the states.

The paths are given by an n×m× 2 matrix T = (tijk) of states of M. The entry
tijk ∈ Sj gives the state from which the jth allele for the first (k = 1) or the second
(k = 2) haplotype for building gi is to be emitted. The emitted allele from the possible
alternatives that are consistent with gi is indicated by an n×m× 2 matrix U = (uijk).
The entries of U are selector variables that take values in {1, 2}. Recall that gi consists
of observed genotypes gi1, . . . , gim over the m markers, each genotype being a pair
gij = (gij1, gij2) of alleles; note that we do not know which of the two alleles comes
from which of the two underlying haplotypes. Here we only have arbitrarily fixed the
order of the two observations. Element uijk of U specifies the jth allele of the first
(k = 1) or of the second (k = 2) haplotype for building gi: if uijk = 1 then the allele
is gij1 and if uijk = 2 then the allele is gij2. Both alleles must always be used, so we
require that {uij1, uij2} = {1, 2}.

The point in introducing the hidden data Z = (T, U) is that the complete likelihood
factorizes into

P(G, T, U|θ) =
(1

2

)n
n∏

i=1

m∏
j=1

∏
k=1,2

τ(ti(j−1)k, tijk)ε(tijk, gijuijk
) .

Here the coefficient (1/2)n appears, since all the 2n values for U are a priori equally
likely (independently of θ). Thus, the expected log-likelihood is

∑
T,U

P(T, U|G, θ(r)) ln P(G, T, U|θ) =
m∑

j=1

Aj(τ)+
m∑

j=1

Bj(ε)− n ln 2 ,

where

Aj(τ) =
n∑

i=1

∑
k=1,2

∑
T,U

P(T, U|G, θ(r)) ln τ(ti(j−1)k, tijk) ,

Bj(ε) =
n∑

i=1

∑
k=1,2

∑
T,U

P(T, U|G, θ(r)) ln ε(tij, gijuijk
) .

Furthermore, each Aj only depends on the transition probability parameters for tran-
sitions from a state in Sj−1 to a state in Sj . Similarly Bj only depends on the emission

LEARNING THE HMM FROM UNPHASED GENOTYPE DATA 361

probability parameters for states in Sj . Thus, the maximizing parameter values can
be found separately for each Aj and Bj .

Standard techniques of constrained optimization (e.g., the general Lagrange mul-
tiplier method [1] or the more special Kullback—Leibler divergence minimization
approach [19]) now apply. For the transition probabilities τ(a, b), with a ∈ Sj−1,

b ∈ Sj , we obtain the update equation

τ(r+1)(a, b) = c

n∑
i=1

∑
k=1,2

P(ti(j−1)k = a, tijk = b|G, θ(r)) , (16.2)

where c is the normalization constant of the distribution τ(r+1)(a, ·). That is,
τ(r+1)(a, b) is proportional to the expected number of transitions from a to b. Note
that the hidden data U plays no role in this expression. Similarly, for the emission
probabilities ε(b, y), with b ∈ Sj, y ∈ Aj , we obtain

ε(r+1)(b, y) = c

n∑
i=1

∑
k=1,2

P(tijk = b, gijuijk
= y|G, θ(r)) , (16.3)

where c is the normalization constant of the distribution ε(r+1)(b, ·). That is,
ε(r+1)(b, y) is proportional to the expected number of emissions from b to y. Note that
the variable uijk is free meaning that the expectation is over both its possible values.

16.3.2 Computation of the Maximization Step

We next show how the well-known forward–backward algorithm of hidden Markov
Models [22] can be adapted to evaluation of the update formulas (16.2) and (16.3).

Let aj and bj be states in Sj . For a genotype gi ∈ G, let L(aj, bj) denote the (left or
backward) probability of emitting the initial segment gi1, gi2, . . . , gi(j−1) and ending
at (aj, bj) along the pairs of paths of M that start from s0. It can be shown that

L(a0, b0) = 1

and

L(aj+1, bj+1) =
∑
aj,bj

P(gij|aj, bj, ε)L(aj, bj)τ(aj, aj+1)τ(bj, bj+1) , (16.4)

where

P(gij|aj, bj, ε) = 1

2
ε(aj, gij1)ε(bj, gij2)+ 1

2
ε(aj, gij2)ε(bj, gij1) .

362 PHASING GENOTYPES USING A HIDDEN MARKOV MODEL

(Recall that here we treat gi as an ordered pair, though the ordering of the alleles is
arbitrary.) Then the probability of the genotype gi is obtained as

P(gi|θ) =
∑

am,bm

L(am, bm)P(gim|am, bm, ε) , (16.5)

and the probability of the entire dataset is P(G|θ) =∏gi∈G P(gi|θ). Note that for
each gi we have its own L(·, ·).

Direct evaluation of Equation 16.4 would use O(|G|∑j |Sj|4) = O(nmK4) time
in total. By noting that

L(aj+1, bj+1) =
∑
aj

τ(aj, aj+1)
∑
bj

L(aj, bj)P(gij|aj, bj, ε)τ(bj, bj+1)

and by storing the sum
∑

bj
L(aj, bj)P(gij|aj, bj, ε)τ(bj, bj+1) for each aj and bj+1

the running time reduces to O(nmK3). The space requirement is O(mK2).
We call L(·, ·) the forward (or left) table. Similarly, we define the backward (or

right) table R(·, ·). For a genotype gi ∈ G, let L(aj, bj) denote the probability of
emitting the end segment gi(j+1), gi(j+2), . . . , gim along the pairs of paths of M that
visit (aj, bj).

We are now ready to show how formulas (16.2) and (16.3) can be evaluated. We
consider the latter formula; the former is handled similarly. First notice that it is
sufficient to consider the evaluation of the conditional probabilities

P(tijk = b, gijuijk
= y|G, θ(r)) = P(tijk = b, gijuijk

= y, gi|θ(r))
/

P(gi | θ(r)) .

We already described a way to compute the denominator, in Equation 16.5. The
numerator can be written as

∑
aj

∑
uijk=1,2

I(gijuijk
= y)

1

2
L(aj, b)ε(aj, gijuijk

)ε(b, gij(3−uijk))R(aj, b) ,

where I(·) is the indicator function that evaluates to 1 when its argument is true,
and to 0 otherwise. Note that both uijk and 3− uijk take values in {1, 2}. For update
(Eq. 16.3), a similar forward–backward expression is found. Thus, the total time
complexity of an EM iteration is the above given O(nmK3).

16.3.3 Initialization and Model Training

As the EM algorithm is guaranteed to find only a local optimum, it is important to
find a good initial configuration of the model parameters. Our initialization routine
greedily finds a promising region in the parameter space. It consists of three steps.

First, we fix the transition probabilities and emission probabilities without looking
at the data, as follows. Let ρ and ν be small constants specified by the user (in our

LEARNING THE HMM FROM UNPHASED GENOTYPE DATA 363

experiments reported in Section 16.5 we used the values ρ = 0.1 and ν = 0.01). Let
sj1, sj2, . . . , sjK be the states in Sj . For the first transition we set τ(s0, s1l) = 1/K for
l = 1, 2, . . . , K. Then for each SNP j = 1, 2, . . . , m, we set the transition probability
τ(s(j−1)l, sjl′) to 1− ρ, if l = l′ (along the same founder), and to ρ/(K − 1) otherwise
(jump from one founder to another). The emission probabilities for the states sj ∈ Sj

are initialized by setting ε(sj, b) = 1− ν for a selected major allele b that is specific
to the state sj , and ε(sj, a) = ν for the other allele a.

Second, we select the major alleles in a greedy manner based on the observed data.
We traverse the sets Sj from left to right and assign to the states in Sj the major alleles
that locally maximize the likelihood of the initial segments of the genotype data G up
to SNP j. This is done by simply trying all 2K possible choices for the K founder states
of the SNP. Using dynamic programming in a manner described in Section 16.3.2,
the running time would be O(nmK32K). However, we can improve the running time
by a factor of K by exploiting the special structure in the transition distributions; this
speedup is very useful, as the initialization procedure dominates the running time of
the method. The key idea is to express the recursive step (16.4) for computing the
forward probabilities L(aj+1, bj+1) in terms of four simpler summations; we omit
the details here.

In the third step, we make another pass from left to right and again choose the
locally optimal major alleles but now in the context of the current solution on both
sides of Sj . This second pass takes also O(nmK22K) time.

We use the above initialization procedure only for small numbers K. When K is
greater than 10 we use a faster algorithm that does not exhaustively try all 2K possible
choices for the major alleles of the founder states at each SNP. Instead, we start from a
random configuration of the major alleles (at a SNP) and improve the configuration by
local search (changing one major allele at time) until a local optimum is found. During
the second pass of the initialization procedure, we improve emission probabilities in
a similar manner, but starting from the current configuration instead of a random one.
This algorithm runs in O(nmK4) time.

After initialization, we apply the EM algorithm to find a maximum likelihood
HMM for the genotype data G. We run EM algorithm until the difference in consec-
utive log likelihoods is less than a tolerance t. In most cases we used t = 0.1, but in
cross-validation step we used t = 0.5.

16.3.4 Selecting the Number of Founders by Maximizing Data Reconstruction
Accuracy

Selecting a good number of founders, K, is a puzzling issue. We have experimen-
tally found that, as long as K is sufficiently large, the phasing accuracy has a fairly
robust behavior. Specifically, it seems that overfitting is not a serious problem in this
application. However, it seems to depend on the dataset whether, say, 5, 7, or 9 is
a sufficient number of founders. Also, as described above, the running time of the
method depends crucially on the number of founders. It would be therefore be useful
to have an automatic method for selecting the number of founders.

364 PHASING GENOTYPES USING A HIDDEN MARKOV MODEL

We have observed that the traditional model selection criteria, AIC, MDL, and
BIC favor consistently too small numbers of founders; Scheet and Stephens [24]
make the same observation concerning their related model that, however, has much
fewer parameters. To find a reasonable number of founders, Scheet and Stephens
[24] evaluate the genotype prediction accuracy of different number of founders in a
cross-validation fashion. The insight is that a model that accurately predicts missing
data, should also perform well in haplotype reconstruction. We have implemented a
modified version of this technique.

Instead of selecting a single number of founders for the entire dataset, we let the
number of founders depend on the genotype to be phased. More precisely, we generate
N (we used N = 20 in our experiments) incomplete copies of the original dataset by
hiding a fraction (10% in our experiments) of heterozygous single-SNP genotypes
selected at random. For each multilocus input genotype g we select a number of
founders Kg such that the average prediction accuracy of the hidden data of g over
the N incomplete datasets is maximized. Finally, for each value of Kg we estimate a
final Kg-founder HMM using the original genotype dataset. Each input genotype g

is then phased using the corresponding Kg-founder HMM.

16.4 HAPLOTYPE RECONSTRUCTION

Given a trained HMM M = (S, θ) we reconstruct a haplotype pair (h, h′), called here
the Viterbi haplotypes, for each input genotype g as follows. First we find a pair
(p, p′) of paths through the model M such that the probability of (p, p′) given g is
maximized. This can be done efficiently by a Viterbi algorithm that is a variant of the
algorithm described in Section 16.3.2. Then we generate from p a haplotype h and
from p′ a haplotype h′ such that (h, h′) is compatible with g and the joint probability
of the haplotype pair, P(h, h′|g, p, p′, θ), is maximized. This can be done efficiently,
since the allele pairs at different SNPs are independent, given the paths and the model
parameters. The total running time of this algorithm is O(nmK3).

We note that this two-stage algorithm does not necessarily yield a haplotype pair
that has the highest possible probability, given the genotype g and the model M.
This is because the reconstruction relies on a single optimal pair of paths through the
HMM, instead of averaging over all pairs of paths. Unfortunately, it seems that opti-
mal haplotype reconstruction, with averaging over all pairs of paths, is not possible in
polynomial time. Here we extend the method described above (see also [23]) as fol-
lows. First we generate a random sample of pairs of paths (p, p′) from the conditional
distribution P(p, p|g, θ). This can be done efficiently using a forward–backward al-
gorithm. Then, from each sampled pair (p, p′) we generate a corresponding haplotype
pair (h, h′) as described earlier. Next we compute the probability P(h, h′|g, θ) of each
(h, h′) in the sample, now averaging over all pairs of paths through the HMM. Fi-
nally, we pick a haplotype pair that has the highest possible probability among the
pairs included in the sample. (We also include the Viterbi haplotypes in the sample.)
Scheet and Stephens [24] use essentially the same method, so we omit the details
here.

EXPERIMENTAL RESULTS 365

It is also worth noting that maximizing the probability of the reconstructed haplo-
type pair is not always the most reasonable goal. Maximizing the probability makes
sense if one wants to minimize the 0–1 error (i.e., whether the two haplotypes are
correct or not) but less so when one wants to minimize some other error measure, for
example, the commonly used switch distance (the proportion of heterozygous sites
that are phased incorrectly relative to the previous heterozygous site). In general, it
makes sense to minimize the expected error. The sampling approach applies also in
this more general case. The idea is then to find the center-of-weight haplotype pair in
the generated sample, that is, a pair that minimizes the expected error. In our prelimi-
nary experiments, this technique did not yield significant improvement for the switch
distance; this is possibly because the weights, that is, the haplotype probabilities, are
not always “well calibrated” due to the relatively large number of model parameters
fitted to a limited dataset. Scheet and Stephens [24], however, report promising results
using this technique.

16.5 EXPERIMENTAL RESULTS

16.5.1 Datasets

We report phasing results for 136 real datasets. Of these datasets, 132 were obtained
from the HapMap data [12], which consist of over one million SNPs typed in sam-
ples from four ethnic groups. We selected data from two groups: Yoruba in Ibadan,
Nigeria (abbreviation: YRI) and CEPH (Utah residents with ancestry from northern
and western Europe) (abbreviation: CEU). For both these groups unphased geno-
types are available for 30 trios (of mother, father, and child), resulting in the total
of 120 known haplotypes. From each of the 22 chromosomes, we chose one data
fragment covering the first 200 SNPs (datasets referred to as CEU-200 and YRI-200)
and another fragment covering 1000 consecutive SNPs starting from the 5001th SNP
(datasets referred to as CEU-1000 and YRI-1000). From the 1000-SNP datasets, we
also analyzed sparser variants obtained by keeping every 10th SNP and discarding
the rest (CEU-100 and YRI-100).

The dataset studied by Daly et al. [3] (referred to as Daly et al.) is a sample from
a European-derived population and spans a 500-kb region on human chromosome
5q31 that contains a genetic risk factor for Crohn disease. From that area there are
genotypes for 103 SNP markers, collected from 129 trios. The trios were used to infer
the true haplotypes for the 129 genotypes of the children.

The three other datasets are genotype samples over 68 SNPs from three datasets
from Finland [16,21]. We call these datasets Population1 (32 haplotypes), Population2
(108 haplotypes), and Population3 (108 haplotypes).

16.5.2 Switch Distance

We measure the accuracy of haplotype reconstruction using the commonly adopted
switch distance (1 minus the switch accuracy of Lin et al. [17]). The switch distance

366 PHASING GENOTYPES USING A HIDDEN MARKOV MODEL

is the proportion of heterozygous sites that are phased incorrectly relative to the
previous heterozygous site. For example, the number of phase switches needed to
turn the haplotype pair {111111, 222222} into {111222, 222111} is 1, whereas the
maximum number of 5 switches is needed between the pairs {111111, 222222}
and {121212, 212121}. Thus, the switch distance is 1

5 in the former case and 5
5 = 1

in the latter case. When multiple haplotype reconstructions are compared, we
define the switch distance as the total number of needed phase switches divided
by the corresponding maximum. For example, if the two reconstruction errors
given above are made, then the corresponding combined (total) switch distance is
(1+ 5)/(5+ 5) = 6/10. Note that this is generally not the same as the average of
the individual switch distances.

16.5.3 Tested Methods

We tested two versions of the phasing technique described in this paper. In the basic
variant the number of founders, K, is fixed by the user; we report results for the
values K = 5, 6, . . . , 11, and refer to the corresponding methods as HIT5, HIT6, . . .,
HIT11, respectively. The other variant, here denoted as HIT*, automatically selects
the number of founders as described in Section 16.3.4. For comparison, we have also
run the publicly available versions of the programs PHASE [26,27] (version 2.1.1),
fastPHASE [24], GERBIL [14], and HAP [10].

Unfortunately, we were able to run only HIT (all variants) and fastPHASE for all
the 136 datasets. PHASE cannot handle dataset with 200 or more SNPs in reasonable
time, and GERBIL is prohibitely slow for 1000-SNP datasets. While HAP is very
fast, using the server implementation (as we did) requires some amount of human
interaction for each dataset—therefore, we did not run HAP for the 132 HapMap
datasets.

16.5.4 Comparison of Haplotyping Accuracy

Table 16.1 summarizes the phasing accuracy results for different variants of HIT. We
observe that the switch distance behaves fairly robustly across different number of
founders. For the HapMap datasets HIT5 is consistently the least accurate, while the
best performance is achieved by HIT10 and HIT11. This trend is less clear for the four
other datasets. HIT* achieves almost the same accuracy as the best of HIT5, HIT6,
. . ., HIT11.

From Table 16.2 we see that PHASE and fastPHASE are the most accurate of the
methods compared. The performance of HIT* is only slightly behind, and in many
cases it is clearly better than of GERBIL and HAP. We also see how the number of
SNPs affects the average phasing accuracy: First, the results are more accurate with
1000 SNPs than with 200 SNPs. Second, as expected, the results with a dense set of
1000 SNPs are substantially better than with its 100-SNP subset—yet less than ten
times more accurate.

A pairwise comparison of HIT* against fastPHASE and GERBIL on the
132 HapMap datasets is shown in Figs. 16.2 and 16.3, respectively. We see

DISCUSSION 367

TABLE 16.1 Phasing Accuracy of HIT Measured by the Switch Distancea

Dataset HIT5 HIT6 HIT7 HIT8 HIT9 HIT10 HIT11 HIT∗

CEU-100 0.21 0.21 0.21 0.22 0.21 0.21 0.21 0.21
YRI-100 0.29 0.28 0.28 0.28 0.28 0.29 0.29 0.28
CEU-200 0.078 0.076 0.073 0.072 0.072 0.071 0.071 0.072
YRI-200 0.13 0.12 0.12 0.11 0.11 0.11 0.11 0.11
CEU-1000 0.042 0.038 0.037 0.036 0.035 0.035 0.035 0.035
YRI-1000 0.076 0.069 0.063 0.060 0.057 0.055 0.055 0.057
Pop1 0.21 0.23 0.24 0.19 0.22 0.21 0.23 0.21
Pop2 0.17 0.17 0.17 0.17 0.17 0.16 0.16 0.18
Pop3 0.20 0.21 0.17 0.20 0.21 0.20 0.17 0.19
Daly et al. 0.029 0.028 0.034 0.030 0.031 0.034 0.034 0.030
a For CEU-200, YRI-200, CEU-1000, and YRI-1000 the switch distance is averaged over the 22 included

datasets.

TABLE 16.2 Phasing Accuracy of Some Methods Measured by the Switch Distancea

Dataset HIT∗ fastPHASE GERBIL PHASE HAP

CEU-100 0.21 0.20 0.22 0.20 —
YRI-100 0.28 0.27 0.30 0.26 —
CEU-200 0.072 0.068 0.085 — —
YRI-200 0.11 0.11 0.14 — —
CEU-1000 0.035 0.033 — — —
YRI-1000 0.057 0.051 — — —
Pop1 0.21 0.21 0.25 0.21 0.26
Pop2 0.18 0.16 0.19 0.15 0.18
Pop3 0.19 0.19 0.21 0.17 0.19
Daly et al. 0.030 0.027 0.031 0.037 0.039
a For CEU-200, YRI-200, CEU-1000, and YRI-1000 the switch distance is averaged over the 22 included

datasets.

that the performance differences of the methods are consistent across different
datasets:GERBIL is seldom more accurate than HIT*, and HIT*, in turn, is just
occasionally more accurate than fastPHASE.

Figure 16.3 also shows a comparison of HIT* against PHASE on the 100-SNP
datasets. On the CEU-100 datasets HIT* is consistently slightly behind PHASE.
Interestingly, on the YRI-100 datasets HIT* is more accurate than PHASE on the
hard cases, whereas PHASE is more accurate on the easier cases.

16.6 DISCUSSION

We have described a hidden Markov model for SNP haplotypes. In the HMM each
haplotype in the present generation is viewed as a mosaic of a limited number of
common “founder” haplotypes. The founder haplotypes should be understood as a
sort of minimal haplotype “basis” or “effective ancestral material” rather than any

368 PHASING GENOTYPES USING A HIDDEN MARKOV MODEL

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2
CEU−200

HIT*

fa
st

P
H

A
S

E

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
YRI−200

HIT*

fa
st

P
H

A
S

E

0 0.02 0.04 0.06 0.08
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
CEU−1000

HIT*

fa
st

P
H

A
S

E

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2
YRI−1000

HIT*

fa
st

P
H

A
S

E

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2
CEU−200

HIT*

G
E

R
B

IL

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
YRI−200

HIT*

G
E

R
B

IL

FIGURE 16.2 Comparison of phasing accuracy on 200-SNP and 1000-SNP HapMap
datasets. For each dataset (from chromosomes 1, 2, . . . , 22) and method (HIT*, fastPHASE,
and GERBIL) the switch distance between the true and the reconstructed haplotype pairs is
shown.

DISCUSSION 369

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
CEU−100

HIT*

G
E

R
B

IL

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5
YRI−100

HIT*

G
E

R
B

IL

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
CEU−100

HIT*

P
H

A
S

E

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5
YRI−100

HIT*

P
H

A
S

E

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
CEU−100

HIT*

fa
st

P
H

A
S

E

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5
YRI−100

HIT*

fa
st

P
H

A
S

E

FIGURE 16.3 Comparison of phasing accuracy on 100-SNP HapMap datasets. For each
dataset (from chromosomes 1, 2, . . . , 22) and method (HIT*, fastPHASE, GERBIL, and
PHASE) the switch distance between the true and the reconstructed haplotype pairs is shown.

370 PHASING GENOTYPES USING A HIDDEN MARKOV MODEL

real ancestral haplotypes. That said, we think that the number of founders should,
in general, grow with the size of the data sample. The model is not new. Schwartz
et al. [25] and Ukkonen [29] proposed essentially the same model but applied it to
phase-known haplotype data. After a series of other models and methods developed
for haplotype analysis [6,9,14,26], especially for the phasing problem, the HMM
approach has attracted a renowned interest very recently by Scheet and Stephens
[24], Kimmel and Shamir [15], and us [23].

There are some differences in these three methods. First, our EM algorithm is
designed to yield an efficient maximization step, whereas the EM algorithm of
Kimmel and Shamir [15] relies on numeric optimization routines. Second, our HMM
is different from that of Scheet and Stephens [24] in that we use fully parameterized
transition distributions between adjacent SNPs, whereas Scheet and Stephens [24]
use fewer parameters, letting the transition probabilities at each SNP be independent
of the founder state at the previous SNP. Furthermore, we (like Kimmel and Shamir)
estimate a single maximum likelihood HMM, whereas Scheet and Stephens use an
ensemble of high likelihood HMMs.

Our experimental results on the haplotype reconstruction problem suggest that the
HMM-based methods represent the current state-of-the-art for phasing large-scale
genotype datasets. Namely, the programs HIT and fastPHASE are as accurate as the
popular PHASE program (a sophisticated MCMC method), but much faster. Scheet
and Stephens [24], based on another set of experiments, have arrived at the same
conclusion. Of the two HMM-based methods, fastPHASE seems to be slightly more
accurate than HIT. Indeed, there are only a few datasets where HIT achieves a smaller
switch distance. We do not know why this is the case. We believe that the advantage
of fastPHASE can be attributed to the way it exploits multiple HMMs estimated by
quick EM runs from random initial models. This explanation is supported by our
observation [23], agreeing with Scheet and Stephens [24], that the phasing accuracy
only loosely depends on the likelihood. A natural direction for future research is to
investigate whether the performance of HIT can be significantly enhanced by using
an ensemble approach. This would also shed light to the question whether the full
parameterized transitions implemented in HIT have any advantages over the simple
model of fastPHASE.

Can we find still better phasing methods? We do not know if the accuracy of
the current best methods—PHASE, fastPHASE, and HIT—can be improved. These
methods are about equally accurate, which might suggest that the optimum has been
practically achieved. Knowing reasonable upper bounds for phasing accuracy (lower
bounds for phasing error) would be very useful. Unfortunately, deriving tight and
general upper bounds seems difficult, if not impossible. However, it might be possible
to obtain useful bounds relative to some specific data generating models; the HMM
studied in this paper is a good candidate for such analyses.

But haplotype reconstruction is just one application of haplotype models. In fact,
while haplotype reconstruction is often executed as an intermediate step of many
association analysis methods, direct analysis of unphased genotype data may become
more popular in the future. In principle, direct analysis has the advantage of taking
the uncertainty in the haplotype reconstruction into account. It is important to note,

REFERENCES 371

however, that direct genotype analysis also needs good haplotype models. That
said, the phasing problem, although not necessarily of direct interest, serves as an
interesting and well-defined benchmark problem on which new haplotype models
can be tested.

ACKNOWLEDGMENTS

This research was supported in part by the Academy of Finland, grant 211496 (From
Data to Knowledge).

REFERENCES

1. Bertsekas DP. Constrained Optimization and Lagrange Multiplier Methods. New York:
Academic Press; 1982.

2. Clark AG. Inference of haplotypes from PCR-amplified samples of diploid populations.
Mol Biol Evol 1990;7:111–122.

3. Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES. High-resolution haplotype
structure in the human genome. Nat Genet 2001;29:229–232.

4. Eronen L, Geerts F, Toivonen HTT. A Markov chain approach to reconstruction of
long haplotypes. Pacific Symposium on Biocomputing (PSB ’04). World Scientific; 2004.
pp. 104–115.

5. Excoffier L, Slatkin M. Maximum-likelihood estimation of molecular haplotype frequen-
cies in a diploid population. Mol Biol Evolut 1995;12:921–927.

6. Greenspan G, Geiger D. Model-based inference of haplotype block variation. Research
in Computational Molecular Biology (RECOMB ’03). ACM Press; 2003. pp. 131–137.

7. Griffiths RC, Marjoram P. Ancestral inference from samples of DNA sequences with
recombination. J Comput Biol 1996;3:479–502.

8. Gusfield D. Haplotyping as perfect phylogeny: conceptual framework and efficient solu-
tions. Research in Computational Molecular Biology (RECOMB ’02). ACM Press; 2002.
pp. 166-175.

9. Gusfield D. Haplotype inference by pure parsimony. Technical Report CSE-2003-2,
Department of Computer Science, University of California, 2003.

10. Halperin E, Eskin E. Haplotype reconstruction from genotype data using imperfect
phylogeny. Bioinformatics 2004;20:1842–1849.

11. Hinds DA, Stuve LL, Nilsen GB, et al. Whole-genome patterns of common DNA variation
in three human populations. Science 2005;307:1072–1079.

12. The International HapMap Consortium. A haplotype map of the human genome. Nature
2005;437:1299–1320.

13. Jojic N, Jojic V, Heckerman D. Joint discovery of haplotype blocks and complex trait
associations from SNP sequences. Proceedings of the 20th conference on Uncertainty in
Artificial Intelligence (UAI ’04). AUAI Press; 2004. pp. 286–292.

14. Kimmel G, Shamir R. GERBIL: Genotype resolution and block identification using like-
lihood. P Nat Acad Sci USA (PNAS) 2005;102:158–162.

372 PHASING GENOTYPES USING A HIDDEN MARKOV MODEL

15. Kimmel G, Shamir R. A block-free hidden Markov model for genotypes and its application
to disease association. J Comput Biol 2005;12:1243–1260.

16. Koivisto M, Perola M, Varilo T, Hennah W, Ekelund J, Lukk M, Peltonen L, Ukkonen E,
Mannila H. An MDL method for finding haplotype blocks and for estimating the strength
of haplotype block boundaries. Pacific Symposium on Biocomputing (PSB ’03) . World
Scientific; 2002. pp. 502–513.

17. Lin S, Cutler DJ, Zwick ME, Chakravarti A. Haplotype inference in random population
samples. Am J Hum Genet 2002;71:1129–1137.

18. Long JC, Williams RC, Urbanek M. An E-M algorithm and testing strategy for multiple-
locus haplotypes. Am J Hum genet 1995;56:799–810.

19. McLachlan GJ, Krishnan T. The EM Algorithm and Extensions. John Wiley and Sons;
1996.

20. Niu T, Qin ZS, Xu X, Liu JS. Bayesian haplotype inference for multiple linked single
nucleotide polymorphisms. Am J Hum Genet 2002;70:157–169.

21. Paunio T, Ekelund J, Varilo T, Parker A, Hovatta I, Turunen J, Rinard K, Foti A, Terwilliger
J, Juvonen H, Suvisaari J, Arajarvi R, Suokas J, Partonen I, Lönnqvist J, Meyer J, Peltonen
L. Genome-wide scan in a nationwide study sample of schizophrenia families in Finland
reveals susceptibility loci on chromosomes 2q and 5q. Hum Mol Genet 2001;10:3037–
3048.

22. Rabiner LR. A tutorial on hidden Markov models and selected applications in speech
recognition. P IEEE 1989;77:257–285.

23. Rastas P, Koivisto M, Mannila H, Ukkonen E. A hidden Markov technique for haplotype
reconstruction. Algorithms in Bioinformatics (WABI ’05), Lecture Notes in Computer
Science 3692. Berlin, Heidelberg: Springer Verlag; 2005. pp. 140–151.

24. Scheet P, Stephens M. A fast and flexible statistical model for large-scale population
genotype data: Applications to inferring missing genotypes and haplotype phase. Am J
Hum Genet 2006;78:629–644.

25. Schwartz R, Clark AG, Istrail S. Methods for inferring block-wise ancestral history from
haploid sequences. Workshop on Algorithms in Bioinformatics (WABI ’02), Lecture Notes
in Computer Science 2452. Springer; 2002. pp. 44–59.

26. Stephens M, Scheet P. Accounting for decay of linkage disequilibrium in haplotype
inference and missing-data imputation. Am J Hum Genet 2005;76:449–462.

27. Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction
from population data. Am J Hum Genet 2001;68:978–989.

28. Thorisson GA, Stein LD. The SNP Consortium website: past, present and future. Nucl
Acid Res 2003;31:124–127.

29. Ukkonen E. Finding founder sequences from a set of recombinants. Algorithms in
Bioinformatics (WABI ’02), Lecture Notes in Computer Science 2452. Springer; 2002.
pp. 277–286.

17
ANALYTICAL AND ALGORITHMIC
METHODS FOR HAPLOTYPE
FREQUENCY INFERENCE: WHAT
DO THEY TELL US?

Steven Hecht Orzack
Fresh Pond Research Institute, Cambridge, MA, USA

Daniel Gusfield
Department of Computer Science, University of California, Davis, CA, USA

Lakshman Subrahmanyan
University of Massachusetts Medical School, Worcester, MA, USA

Laurent Essioux
Hoffmann-La Roche Ltd, Basel, Switzerland

Sebastien Lissarrague
Genset SA, Paris, France

In this chapter, we compare an analytical likelihood method and various algorithmic
methods for inferring haplotype frequency from phase-unknown two-site genotypic
data. We show that the analytical method is preferable to the EM algorithm when esti-
mating haplotype frequency via maximum likelihood since it allows one to readily de-
tect multiple likelihood maxima, it is quicker (especially when many pairs of sites are
analyzed), and it is easy to implement. We also show that substantial differences exist

Bioinformatics Algorithms: Techniques and Applications, Edited by Ion I. Mǎndoiu
and Alexander Zelikovsky
Copyright © 2008 John Wiley & Sons, Inc.

373

374 ANALYTICAL AND ALGORITHMIC METHODS

among the algorithms with respect to the frequency estimate they generate. In addition,
the frequency estimate derived from stochastic methods can differ among sample paths
even when there is a single maximum of the likelihood function. We conclude that an
investigator should compare the results of several inference algorithms before decid-
ing upon an estimate of haplotype frequency and that multiple sample paths should
be assessed for any stochastic algorithm. If different sample paths result in different
frequency estimates, one possibility for generating a single estimate is the use of a
consensus method; further research is needed to assess the usefulness of this approach.

17.1 INTRODUCTION

Most empirical studies of genetic polymorphism lack information on the association
between variants segregating at different sites, as the scoring of polymorphism at any
given site is usually independent of the scoring at other sites. In such a circumstance,
the identities of the two haplotypes in any diploid individual heterozygous at two or
more autosomal sites are unknown and such an individual is said to have an “ambigu-
ous” genotype. If a sample contains such individuals, even the standard measure of
association for variants at two sites, the coefficient of linkage disequilibrium, cannot
be directly calculated (see [18] for further discussion).

Both molecular and algorithmic methods have been developed for inferring hap-
lotypes from samples of unrelated individuals. The algorithms include expectation-
maximization (EM) ([6,7,15,20,38]), partial ligation using the Gibbs sampler [24]
or EM [30], the coalescent-based approach [36] (see also [19,35]), the rule-based
approach ([3,9,25]), and the perfect phylogeny-based approach ([5,10]). These algo-
rithms generate estimates of haplotype frequencies as well as infer pairs of haplotypes
for each ambiguous genotype.

These algorithms and others reflect significant progress in the development of tools
for analyzing the veritable flood of data on genetic variation, especially data on DNA
sequence variation. However, there are gaps in the assessment of the performance of
these tools.

One gap is the scarcity of comparisons involving datasets containing “real” hap-
lotype pairs (those inferred from molecular analyses, e.g., cloning, strand-specific
PCR, or somatic cell hybridization; their error rate is likely very low as compared to
the error rate for algorithmic inference.) Instead of using such data, most studies of
inference accuracy have used either simulated data (generated by a neutral model)
or randomly paired real haplotypes (e.g., [1,7,21,23,24,45–47]; several of these stud-
ies contain other kinds of comparisons as well). These important studies generally
have favorable assessments of the performance of inference algorithms. However,
such samples are affected by some processes (e.g., random mating or random pairing
of haplotypes) that may not influence real populations (even if they are in Hardy–
Weinberg equilibrium) and they are not affected by other processes that may influence
real populations (natural selection). To this extent, these studies do not by themselves
allow us to conclude that these algorithms generally provide accurate results—that
is, that they generally infer correctly a high proportion of haplotype pairs.

INTRODUCTION 375

The use of real haplotype pairs is essential if we are to adequately assess the accu-
racy of haplotyping algorithms. A few studies have used such pairs (or those inferred
from pedigrees) to assess the accuracy of haplotype-frequency inference [33,39]. A
few other studies have assessed the accuracy of haplotype-pair inference by using real
haplotype pairs. Two involve datasets with only two sites [44] or small numbers of
individuals [37] and two of the others do not completely implement one of the algo-
rithms being analyzed (see [25] for further details). Only a few studies involve many
sites (in one locus or several), a reasonably large sample size, and completely imple-
ment the algorithms being studied. Of these studies, [25,29,31] assessed algorithmic
and experimental inferences and [12] compared algorithmic and pedigree inferences.
While these studies are encouraging in that high proportions of haplotype pairs are
shown to be inferred by some algorithms, the paucity of such studies speaks to the
fact that it is premature to conclude that present algorithms generally provide accurate
results when applied to datasets containing real haplotype pairs. This is the canonical
type of application many investigators have in mind, especially those whose research
focus is on a relatively short DNA sequence such as a single locus.

The second gap in our assessment of inference methods is the lack of comparisons
between analytical and algorithmic results, a likely reason being the lack of analytical
results for genotypes with an arbitrary number of sites. Such comparisons are essential
given the complexity of the inference problem and the fact that many of the algorithms
are stochastic, which implies that the results may be sample-path-dependent.

Here, we present a comparison of analytical and algorithmic results for the two-
site case when each site has two variants. This case is of particular importance
given its connection with the estimation of linkage disequilibrium and also be-
cause many analyses assess association between two sites, one being, say, a pos-
sible disease-causing mutation and the other being a molecular marker (see [28] for
a review).

When each of the two sites has two variants, all four haplotype frequencies are
completely determined by an estimate of any one haplotype frequency and the (unam-
biguous) estimates of the frequency of variants at each of the sites. Given the observed
allele frequencies and the assumption that the population is at Hardy–Weinberg equi-
librium, Hill [16] derived a cubic equation that can be solved to provide a maximum
likelihood estimate of the unknown haplotype frequency. He suggested finding so-
lutions of this equation by using what is now known as the EM algorithm. Weir
and Cockerham [40] noted problems with this approach for finding solutions and
suggested noniterative numerical solution; they also provided analytical solutions for
degenerate cases in which one or more of the four haplotypes is missing. As discussed
below, one can use standard formulae to generate analytical solutions of the cubic
equation and then compare their likelihoods in order to find the maximum likelihood
estimate of the haplotype frequency. We denote this sequence of two steps as the
“analytical method.” Given the maximum likelihood estimate, one can also generate
the most probable haplotype pair for each ambiguous genotype. Here, we focus only
on the estimation of haplotype frequency.

Despite the existence of these results, we know of only two uses of this analytical
approach [4,43]; both stem from our unpublished analyses. Instead, most analyses

376 ANALYTICAL AND ALGORITHMIC METHODS

of the two-site case employ the EM algorithm (e.g., [34]) While this algorithm is an
important inference tool, its use can be problematic. It can converge to a local max-
imum of the likelihood surface, but convergence to the maximum can be time con-
suming as compared to the analytical method, and two maxima can have identical
likelihoods. We provide below illustrations of some of these problems. In addition,
as noted by Weir and Cockerham [40], there can be nonconvergence of the algorithm
for certain initial haplotype frequencies. All of these problems are avoided with the
analytical method. More generally, this approach along with visualization of the like-
lihood surface allows one to gain a much more complete picture of the inference
problem than that provided by the EM algorithm.

The algorithms whose results we compare with those of the analytical method
are EM and those described in [1,2,12,24–26,30,36]. We chose these as being
representative of the present variety of algorithms. Choice or omission does not
denote any judgment on our part in regard to algorithmic importance and perfor-
mance.

17.2 METHODS

We first describe the analytical method. Although we discovered it independently
of Hill [16], he has priority in regard to the discovery that the two-site case can be
solved analytically; Weir and Cockerham [40] provided further development of Hill’s
approach.

17.2.1 Notation

In what follows, “site” can refer to a genetic locus as classically defined or to a
particular site within such a locus, while “variant” can refer to an allele as clas-
sically defined or to, say, a nucleotide segregating at a particular site within a
locus.

We assume that the first site has variants A and a with frequencies p and 1− p and
that the second site has variants B and b with frequencies q and 1− q. Nij denotes
the observed number of genotype ij (as shown in Table 17.1), f11, f12, f21, and
f22 denote the frequencies of haplotypes AB, Ab, aB, and ab, respectively, and X11,
X12, X21, and X22 denote the counts of haplotypes from unambiguous genotypes as

TABLE 17.1 Notation for Observed Genotype Numbers. Nij Denotes the Number of
Individuals of Genotype ij

Site 2
BB Bb bb

AA N11 N12 N13

Site 1 Aa N21 N22 N23

aa N31 N32 N33

METHODS 377

follows:

X11 = 2N11 +N12 +N21

X21 = 2N31 +N21 +N32

X12 = 2N13 +N12 +N23

X22 = 2N33 +N23 +N32.

By definition, the observed number of double heterozygotes N22 does not contribute
to the counts of haplotypes from unambiguous genotypes.

If the population is in Hardy–Weinberg equilibrium, it is straightforward to show
[16] that the maximum likelihood estimate of the unknown haplotype frequency, say,
f̂ 11, is a real root of

4Nf̂ 3
11 + (2N(1− 2p̂− 2q̂)− 2X11 −N22)f̂ 2

11

+ (2Np̂q̂+X11(2p̂+ 2q̂− 1)−N22(1− p̂− q̂))f̂ 11 −X11p̂q̂ = 0.

(17.1)

Here, N is the total number of individuals in the sample, and p̂ and q̂ are the maximum
likelihood estimates of the population frequencies of variants A and B, respectively.
These estimates are given by

p̂ = X11 +X12 +N22

2N

q̂ = X11 +X21 +N22

2N
.

One can show that the cubic equation (17.1) can have (1) one real root and a pair of
complex roots, (2) two real roots (one real and a pair of roots having identical real
parts and zero imaginary parts), or (3) three distinct real roots. This variety makes it
imperative that special care be taken when calculating these roots. We recommend
an algorithm designed for use on a digital computer (e.g., [27], pp. 179–180); an
algorithm not so designed can readily give incorrect results. If there is more than one
real root, one must compare their likelihoods in order to find the maximum likelihood
estimate of the haplotype frequency.

17.2.2 Model Genotypic Cases

In order to compare analytical and algorithmic results, we used the genotypic config-
urations shown in Table 17.2. Several of the cases are based upon real data sets. For
each case we show the haplotype numbers and Ln(likelihood) values associated with
valid solutions of Equation 17.1.

Case 1 has two maxima with identical likelihoods that are end points of a
U-shaped likelihood surface (see Fig. 17.1). This case is particularly interesting

378 ANALYTICAL AND ALGORITHMIC METHODS

TABLE 17.2 The Genotype Numbers for Cases 1–5 and Haplotype Numbers
Associated with Valid Solutions of Equation 17.1. Haplotype Numbers are Rounded to
the Nearest Integer. GM and LM Denote the Global and Local Maximum Likelihood
Estimates. I is the Inflection Point Between the Two Maxima. Likelihood Values are
Calculated Without the Constant

Case Genotypes Haplotypes

BB Bb bb AB Ab aB ab AB Frequency Ln(Likelihood)

AA 7 13 7 27 29 2 0 0.46551725 GM −47.480226
1 Aa 0 2 0 28 28 1 1 0.48275861 I −47.515948

aa 0 0 0 29 27 0 2 0.50000000 GM −47.480226

AA 31 1 0 101 63 227 39 0.23544239 GM −464.800460
2 Aa 21 79 0 141 23 186 80 0.32807544 I −467.402927

aa 72 0 11 158 6 170 96 0.36787754 LM −466.885080

AA 20 5 61 105 215 116 166 0.17484833 LM −714.089840
3 Aa 2 141 5 115 205 106 176 0.19149581 I −714.095945

aa 15 1 51 137 183 84 198 0.22750969 GM −714.046978

AA 2 2 2 62 21 386 151 0.09993113 GM −601.073664
4 Aa 49 13 9

aa 106 119 8

AA 10 0 30 38 128 80 70 0.11870803 LM −369.716729
5 Aa 1 82 3 62 104 56 94 0.19580439 I −370.588124

aa 7 0 25 89 77 29 121 0.28042430 GM −369.431641

because the known haplotype numbers provide equal support for two haplotype fre-
quency estimates; these result from the two ways of assigning the same haplotype pair
to the two ambiguous genotypes. In addition, assigning each of the two genotypes a
different haplotype pair results in a frequency estimate with a lower likelihood than
assigning the same pair to both.

Case 2 has two maxima; this case reveals whether an algorithm finds the global
maximum if there is also a local maximum. We note that it is often suggested that
one obtain results from multiple sample paths of, say, the EM algorithm, each starting
with a different initial estimate of the unknown haplotype frequency so that one might
detect multiple maxima. While straightforward in conception, this approach can be
cumbersome and one can miss a maximum unless the choice of initial estimates is
exhaustive.

Case 3 has a very flat likelihood surface across a broad range of haplotype frequen-
cies; it also has two maxima that have very similar likelihood values. Such a surface
indicates a slow convergence of the EM algorithm to the maximum likelihood hap-
lotype frequency estimate. In addition, the single point estimate it generates does not
reveal the substantial uncertainty as to the best haplotype frequency estimate.

Case 4 has only one maximum on the likelihood surface (see Fig. 17.2). This
case is a positive control for the EM-based methods. One expects that each should

METHODS 379

FIGURE 17.1 The likelihood surfaces for cases 1–3. “*” denotes the maxima and the in-
flection point on each surface. These values are solutions to Equation 17.1. Each likelihood
surface is plotted from the minimum to the maximum possible frequency of haplotype AB.

find this maximum, either via a single sample path or via an ensemble of paths. For
non-EM-based methods, this case provides a way of judging how distinct their results
are from those of the likelihood approach.

Case 5 has two maxima that have very similar likelihood values, but the intervening
haplotype frequencies have distinctly lower likelihood values in contrast to the surface
for Case 3.

380 ANALYTICAL AND ALGORITHMIC METHODS

FIGURE 17.2 The likelihood surfaces for cases 4 and 5. “*” denotes the maxima and the
inflection point on each surface. These values are solutions to Equation 17.1. Each likelihood
surface is plotted from the minimum to the maximum possible frequency of haplotype AB.

For all five cases, the genotype frequencies at each of the two sites are statistically
consistent with Hardy–Weinberg genotype frequencies (see Table 17.3). This is espe-
cially important to note, given that all of the algorithms we used, except RB, have the
assumption that the individuals analyzed are a random sample from a population in
Hardy-Weinberg equilibrium and also given the focus of Weir and Cockerham [40] on
cases in which one or both of the sites are not in Hardy–Weinberg equilibrium. Their
focus along with their statement (page 107) that “problems with multiple roots, and
convergence to the wrong root, seem to arise when [single-locus genotype frequencies]
depart from [Hardy-Weinberg] frequencies,” might lead one to mistakenly believe that
such problems are found only when such departures occur. Our results show that such
problems can occur when both sites are in Hardy–Weinberg equilibrium.

17.2.3 Algorithms and Programs Used

It is important in this context to distinguish between an algorithm and instantiations
of an algorithm (i.e., “program”). We regard the results concerning the performance

METHODS 381

TABLE 17.3 Tests for Hardy–Weinberg Proportions for Cases 1–5. χ2 Tests have
1 Degree of Freedom

Case Site χ2 test value χ2 p value Exact test p-value

1 1 0.047 0.828 0.806
2 1.895 0.169 0.203

2 1 0.044 0.834 0.885
2 0.171 0.679 0.850

3 1 0.048 0.826 0.817
2 0.782 0.376 0.456

4 1 0.037 0.847 1.0
2 0.034 0.853 1.0

5 1 1.320 0.251 0.338
2 1.879 0.170 0.233

of any given program implementing a particular algorithm as having no necessary
implication as to the performance of other programs implementing the same algo-
rithm. The term “sample path” refers to a single run of an algorithm as initiated by a
random number either to generate an initial frequency estimate or to shuffle the list
of input genotypes. As described in what follows, we used six stochastic algorithms,
which involve the use of such a random number, and four deterministic algorithms,
which do not.

We first implemented the EM algorithm using a program that we wrote. This
program started the algorithm from a random initial haplotype frequency chosen
from a uniform distribution having lower and upper bounds corresponding to the
minimum and maximum possible frequency estimates, respectively. We used a “min-
imal standard” multiplicative congruential random number generator with shuffled
output to create the initial frequency estimate (see [27], pp. 269–271 for further
details.)

The output of each sample path of our program is a “direct” estimate of the four
haplotype frequencies and an “indirect” estimate found by counting haplotypes among
the inferred pairs. When applied to the results of an EM algorithm, the latter kind of
estimate will tend to overestimate frequencies of common haplotypes and underesti-
mate rare ones since the inferred pair is taken to be the most probable pair among the
possible pairs.

The second stochastic algorithm we used combines the Gibbs sampler along with
a “divide, conquer, and combine” technique known as partial ligation so as to al-
low one to make haplotype inferences for datasets involving more sites than can be
accomodated by the standard EM algorithm. The program that implements this algo-
rithm is Haplotyper version 2 [24]. In this Bayesian approach, the prior distribution
of haplotype frequencies is sampled from a uniform Dirichlet distribution. The ran-
dom number generator used to create the initial frequency estimate is “Unran” from
the Ranlib package (Qin, personal communication); this routine sums several random

382 ANALYTICAL AND ALGORITHMIC METHODS

numbers generated by a multiplicative congruential generator in order to produce each
random uniform number. Haplotyper provides only an indirect estimate of the hap-
lotype frequencies found by counting the haplotypes in the most probable haplotype
pair for each individual.

The third stochastic algorithm we used combines EM with partial ligation (see
above). The program that does this is PL–EM [30]. This program starts the algorithm
from a random initial haplotype frequency chosen from a uniform distribution having
lower and upper bounds of 0.0 and 1.0, respectively. The random number generator
used to create the initial frequency estimate is the Unran routine (Qin, personal com-
munication). This program provides a direct estimate of haplotype frequency and
an indirect estimate found by counting haplotypes in the most probable haplotype
pair.

The fourth stochastic algorithm we used is variation 1, as described by [25] and
implemented by a program that we wrote. This rule-based (RB) algorithm uses the
unambiguous haplotypes in a sample as the initial basis for resolving ambiguous
genotypes. Each such genotype receives a single inference. To this extent, a given
sample path provides identical direct and indirect estimates of haplotype frequencies.
At the start of any given sample path, the list of genotypes is randomized. Before
attempting to solve each ambiguous genotype, the order of the “reference” list of real
and inferred haplotypes is randomized. If there is more than one haplotype that could
resolve a given genotype, one is randomly chosen. The random number generator used
to shuffle the genotype and haplotype lists is a multiplicative congruential generator
as implemented in a standard C library function (details available upon request). As
shown by [25], variation 1 may produce different results for a given dataset than does
the rule-based method described by [3].

The fifth stochastic algorithm we used is a Bayesian method in which the prior
distribution of initial haplotype frequencies is approximately the neutral coalescent
distribution; it also uses partial ligation. The program we used is version 2.0.2 of
Phase [35,36]. This program calculates the posterior mean in order to provide a di-
rect estimate of haplotype frequencies; this mean is proportional to the sum (over
all individuals) of the probability that a haplotype occurs in a given individual. This
program also provides an indirect estimate based on the most probable haplotype pair.
We note in this regard that previous versions of Phase produced only this kind of in-
direct estimate of haplotype frequency, although the estimates published by Stephens
et al. were direct and were based on the posterior mean (Stephens, personal commu-
nication). To this extent, one could have used previous versions of Phase with the
mistaken expectation that they produced direct estimates, while, in fact, they pro-
duced indirect estimates, which will generally be less accurate. We ran simulations
that assumed there was no recombination (MS). We used the default settings for
each sample path (100 iterations, 100 steps in the burn-in, and a thinning interval of
1.) The random number generator we used to create the initial frequency estimate
is the Wichmann–Hill algorithm as implemented in Python (see [41,42]); this algo-
rithm generates a random integer seed for the random number generator contained in
Phase.

METHODS 383

The sixth stochastic algorithm we used is a method based on an entropy mini-
mization principle put forth by [13]. In essence, this approach is a generalization of
the parsimony approach in that haplotype frequencies and haplotype number con-
tribute to the objective function that is minimized. The program we used is ENT,
as described in [26]. This program provides only an indirect estimate of the haplo-
type frequencies. The random number generator we used is the Python generator (see
above).

For each stochastic algorithm, we analyzed the results of two different simula-
tions for each case. For the EM, Haplotyper, PL-EM, RB, and ENT programs, each
simulation consisted of 10,000 independent sample paths (each providing a set of in-
ferences); for Phase, each simulation consisted of 2000 sample paths. Further details
of our implementation of the programs are available upon request.

The first deterministic algorithm we used determines whether a given set of geno-
types is consistent with a perfect phylogeny (that is, whether it is consistent with the
infinite-sites model without recombination) and outputs the haplotype pairs inferred
by this phylogeny. The program we used is DPPH (see [2,11] for further details). This
program produces inferences for all perfect phylogenies for a given dataset. It always
produces the same results for a given dataset.

The second deterministic algorithm we used combines inference from a perfect
phylogeny, likelihood analysis, and dynamic programming so as to make haplotype
inferences for a dataset that may not fit a perfect phylogeny because of recombination
between sites or multiple mutations at a given site. The program we used is HAP
[12]. This always produces the same inferences for a given order of data input, but
if a dataset is consistent with two or more perfect phylogenies with identical like-
lihoods, the inferred haplotypes can be dependent upon the order of input (Eskin,
personal communication). To this extent, HAP should be used as a stochastic algo-
rithm (requiring multiple sample paths). However, since Halperin and Eskin presented
their method as requiring one sample path, we have implemented it as such.

The third deterministic algorithm we used is based on a graph-theoretic method for
inferring haplotype pairs consistent with a infinite-sites model with recombination.
The program we used is 2SNP [1]. It always produces the same results for a given
dataset.

The fourth deterministic algorithm we used is based upon an analysis in which
the likelihood function (e.g., as described above for the two-site case) is “relaxed,”
that is, each haplotype frequency is treated as an n-dimensional vector instead of
as a single real number. This assumption along with the assumption of Hardy–
Weinberg equilibrium (and that there are no missing data) is sufficient to guarantee
that the maximum of the relaxed likelihood function converges to the maximum of
the standard likelihood function as the sample size increases. The use of the relaxed
likelihood function allows the solution to be attained in polynomial time. The pro-
gram we used is HaploFreq [14]. It always produces the same results for a given
dataset.

DPPH, HAP, 2SNP each generates only an indirect estimate of haplotype frequen-
cies, whereas HaploFreq generates only a direct estimate.

384 ANALYTICAL AND ALGORITHMIC METHODS

17.3 RESULTS

The estimates of haplotype frequency are shown in Tables 17.4–17.6. For Cases 2–5,
many of the distributions produced by RB and Phase have been consolidated for ease
of presentation. Full distributions are available upon request. For any given method,
we used a two-tailed exact test to compare the distributions resulting from the two
simulations. Each such test involved a 2× n contingency table, where n is the number
of outcomes. For example, the Haplotyper analyses of Case 4 produced two different
indirect estimates of haplotype number (see Table 17.6), 55 and 68, thereby producing
a 2× 2 table. The exact test p-value was calculated using the network algorithm of
[22] as implemented in SAS. Statistical significance was assessed at the 0.05 level.

17.3.1 Direct Estimates

As shown in Table 17.4, the EM program produced distributions of direct estimates
in the two simulations that were not significantly different (case 1: p= 0.072; case 2:
p= 0.071; case 3: p= 0.368; case 5: p= 0.095). For all cases, the simulation results
are consistent with those predicted by the likelihood surface; for example, the results
reveal that the global maximum for case 2 has a larger domain of attraction than the
local maximum does. However, the virtue of the analytical approach we describe is
made clear by the fact that for cases 1 and 5, random sampling of initial haplotype
frequencies resulted in the two simulations having different majority outcomes. For
any one simulation with more than one outcome, one might be tempted to choose
the majority (plurality) outcome as the best estimate of haplotype frequency. The
difficulty of this naive approach is underscored by the fact that depending on which
simulation was in hand, one might make a different conclusion about the best estimate
of haplotype frequency. Of course, with all of these results in hand, an investigator
would know not to take the results of any simulation as definitive. However, the
extensive computation this entails underscores the usefulness of the analytical method
we describe.

The PL-EM program produces direct estimates of haplotype frequencies that are
generally similar to those produced by our EM program. However, for three cases,
the distributions produced in the two simulations were significantly different (case 1:
p= 0.084; case 2: p < 10−7; case 3: p < 10−7; case 5: p < 10−11). For cases 1 and
3, there are unexpectedly large numbers of sample paths that resulted in the solution
to Equation 17.1 that is the inflection point between the maxima. The reason for these
large numbers is unknown.

The RB program produced distributions of direct estimates that are generally dis-
tinct from those we’ve just discussed. For example, for case 4, there were estimates
from 55 to 65 AB haplotypes, whereas the analytical method and the EM algorithm
produced only an estimate of 62 haplotypes. The reason for the distinctiveness of the
RB results is straightforward. The presence of the randomized haplotype reference list
in the inference process has the consequence that the probability of assigning either
of the two haplotype pairs is binomially distributed, with the underlying probabilities
being determined by the possibly changing frequencies of the different haplotypes

RESULTS 385

TABLE 17.4 The Distribution of Direct Estimates of Haplotype Numbers for Cases
1–5 (Number of Sample Paths). Estimates for EM, PL-EM, and Phase are Rounded to
the Nearest Integer. GM and LM Denote the Global and Local Maximum Likelihood
Estimates. I is the Inflection Point Between the Two Maxima. These Values are the
Solutions to Equation 17.1. For Each Case, the Lower and Upper Bounds of AB
Haplotypes are the Lowest and the Highest Possible Number, Respectively. Bold
Numbers Denote p < 0.05; Each p Value is the Result of an Exact Test Comparing the
Distributions of the Outcomes from the Two Simulations (see text for the Exact Value)

Method

EM PL-EM RB Phase MS
Number
of AB Simulation

Case Haplotypes 1 2 1 2 1 2 1 2

27 GM 4917 5044 4358 4474 2474 2550 0 0
1 28 I 0 1 589 530 4971 4835 2000 2000

29 GM 5083 4955 5053 4996 2555 2615 0 0

84 – 100 0 0 0 0 16 10 0 0
101 GM 7197 7312 7180 7528 15 18 0 0

102 – 140 0 0 0 0 9969 9972 1991 1988
2 141 I 0 0 0 0 0 0 1 7

142 – 157 0 0 0 0 0 0 8 5
158 LM 2803 2688 2820 2472 0 0 0 0

159 – 163 0 0 0 0 0 0 0 0

47 – 104 0 0 0 0 624 633 0 0
105 LM 4791 4892 4834 5053 189 204 0 0

106 – 114 0 0 0 0 3722 3708 195 181
3 115 I 2 1 168 86 540 529 61 63

116 – 136 0 0 0 0 4909 4908 1744 1756
137 GM 5207 5107 4998 4861 7 7 0 0

138 – 188 0 0 0 0 9 11 0 0

55 0 0 0 0 49 62 0 0
56 – 61 0 0 0 0 8855 8899 875 878

4 62 GM 10000 10000 10000 10000 709 668 1125 1122
63 – 67 0 0 0 0 387 371 0 0

68 0 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0 0
22 – 37 0 0 0 0 0 0 0 0
38 LM 4906 5025 5276 4783 0 0 0 0
39 – 61 0 0 0 0 5414 5417 439 420

5 62 I 0 0 0 0 708 690 96 109
63 – 88 0 0 0 0 3878 3893 1465 1471
89 GM 5094 4975 4724 5217 0 0 0 0

90 – 102 0 0 0 0 0 0 0 0
103 0 0 0 0 0 0 0 0

386 ANALYTICAL AND ALGORITHMIC METHODS

TABLE 17.5 The Haplotype Numbers for Cases 1–5 Produced by Deterministic
Algorithms. Haplotype Numbers are Rounded to the Nearest Integer for HaploFreq.
GM and LM Denote the Global and Local Maximum Likelihood Estimates. NA Denotes
not Applicable Because Cases 2–5 Do Not Have an Associated Perfect Phylogeny, as
Required for DPPH

Haplotype Found by

Case AB Ab aB ab DPPH HAP 2SNP HaploFreq

1 GM 27 29 2 0 Yes No Yes Yes
GM 29 27 0 2 Yes Yes No No

84 80 244 22 NA Yes No No
2 GM 101 63 227 39 NA No No Yes

LM 158 6 170 96 NA No No No
163 1 165 101 NA No Yes No

47 273 174 108 NA Yes No No
3 LM 105 215 116 166 NA No No Yes

GM 137 183 84 198 NA No No No
188 132 33 249 NA No Yes No

55 28 393 144 NA Yes No No
4 GM 62 21 386 151 NA No No Yes

68 15 380 157 NA No Yes No

21 145 97 53 NA Yes No No
5 LM 38 128 80 70 NA No No Yes

GM 89 77 29 121 NA No No No
103 15 63 135 NA No Yes No

on the current reference list. Thus, for example, one can see that the approximately
1:2:1 distribution of haplotype numbers for case 1 occurred because the underlying
probability of assigning either haplotype pair to the first ambiguous genotype is 0.5
(= 27/54), and consequently the probability of assigning the same haplotype pair to
the second genotype was either 0.482 (= 27/56) or 0.518 (= 29/56). The two RB sim-
ulations produced distributions of direct estimates that were not significantly different
(case 1: P = 0.155; case 2: P = 0.424; case 3: P = 1.0; case 4: P = 0.364; case 5:
P = 0.876).

Phase produced distributions of direct estimates that share some features with all of
the results discussed previously. For example, for case 4 Phase MS produced estimates
of 61 and 62 AB haplotypes. In contrast, the other Phase MS results were similar to
the RB results in having relatively wide distributions of frequency estimates. For
example, for case 3, there were 195 haplotype number estimates ranging from 106 to
114 in the first simulation and 181 in the second simulation. The Phase output revealed
that the posterior probability of either haplotype pair for each ambiguous genotype
was very close to 0.5. This reflects the more or less flat likelihood surface across
most of the range of valid haplotype frequencies. The two Phase MS simulations
produced distributions of direct estimates that were not significantly different (case 2:
P = 0.080; case 3: P = 0.742; case 4: P = 0.949; case 5: P = 0.529).

RESULTS 387

TABLE 17.6 The Distribution of Indirect Estimates of Haplotype Numbers for Cases
1–5 (Number of Sample Paths). For Each Case, the Lower and Upper Bounds of AB
Haplotypes are the Lowest and the Highest Possible Number, Respectively. Indirect
Estimates Generated by RB are Identical to the Direct Estimates Shown in Table 17.4.
Bold Numbers Denote P < 0.05; Each P Value is the Result of an Exact Test Comparing
the Distributions of Outcomes from the two Simulations (see text for the Exact
Value)

Method
EM PL-EM Haplotyper Phase MS ENT

Number
of AB Simulation

Case Haplotypes 1 2 1 2 1 2 1 2 1 2

27 4917 5044 4458 4739 5065 4832 904 894 4958 5050
1 28 0 1 0 0 0 0 176 173 0 0

29 5083 4955 5542 5261 4935 5168 920 933 5042 4950

84 7197 7312 7180 7528 7729 7783 1663 1638 6785 6829
2 85 – 162 0 0 0 0 0 0 12 17 0 0

163 2803 2688 2820 2472 2271 2217 325 345 3215 3171

47 4793 4893 5002 5139 4432 4599 459 427 5235 5139
3 48 – 187 0 0 0 0 0 0 101 92 0 0

188 5207 5107 4998 4861 5568 5401 1440 1481 4765 4861

55 0 0 0 0 1666 1846 0 0 1370 1398
4 56 – 67 0 0 0 0 0 0 0 0 0 0

68 10000 10000 10000 10000 8334 8154 2000 2000 8630 8602

21 4906 5025 5276 4783 4333 4501 455 438 4552 4514
5 22 – 102 0 0 0 0 0 0 29 38 0 0

103 5094 4975 4724 5217 5667 5499 1516 1524 5448 5486

The direct estimates generated by HaploFreq are shown in Table 17.5. HaploFreq
found one of the global maxima for case 1. It found the local maximum for cases 3
and 5 and the global maximum for cases 2 and 4.

17.3.2 Indirect Estimates

The indirect estimates shown in Table 17.6 were generally quite different from direct
estimates. The reason is that in any given sample path of the EM-based methods,
all individuals with an ambiguous genotype are assigned the same most probable
haplotype pair. However, the identity of this pair may differ across sample paths if
there is more than one maximum on the likelihood surface. The result is the binary
outcome of indirect frequency estimates observed for the cases that have two maxima
(1, 2, 3, and 5). In contrast, case 4 has a single outcome because there is only one
maximum. The EM algorithm produced distributions of indirect estimates that were
not significantly different (case 1: p = 0.072; case 2: p = 0.071; case 3: p = 0.161;
case 5: p = 0.095).

388 ANALYTICAL AND ALGORITHMIC METHODS

The PL–EM algorithm produced indirect estimates that were generally similar to
those produced by our EM algorithm. However, for three of five cases, the distributions
produced by the two simulations were significantly different (case 1: p < 10−4; case
2: p < 10−7; case 3: p = 0.054; case 5: p < 10−11).

Haplotyper also produced indirect estimates that are generally similar to those
produced by the EM algorithm. The exception is case 4, which has a mix of the two
extreme haplotype numbers (55: all Ab/aB and 68: all AB/ab). The reason for this
binary outcome is unknown. For four of the five cases, the distributions produced by
the two simulations were significantly different (case 1: p= 0.001; case 2: p= 0.369;
case 3: p = 0.018; case 4: p < 10−3; case 5: p = 0.017).

Phase produced indirect estimates that were generally quite different from all of the
results discussed previously. The reason for this was that individuals with ambiguous
genotypes can differ in which of the two possible haplotype pairs is most probable,
even though in the cases studied all such individuals have identical genotypes. So,
for example, the three outcomes for case 1 are AB frequencies of 27 (two ambiguous
genotypes resolved as Ab/aB), 28 (one as Ab/aB and one as AB/ab), and 29 (two
as AB/ab). This occurs despite the fact that all sample paths in the first simulation
and almost all paths in the second simulation produced a direct estimate of 28; this
difference reflects the distinction between the direct estimate, which is based on the
posterior mean and the indirect estimate, which is based on the posterior probability.

We note that the reason that identical ambiguous genotypes may be inferred dif-
ferently in a given sample path is that the posterior probability for an individual
is based upon an ensemble of inferences, one for each step in the sample path.
These ensembles differ due to random sampling, and consequently the most prob-
able haplotype pair may differ for individuals with identical genotypes. The prob-
ability of this happening should decrease as the number of iterations increases.
So, for example, as shown in Table 17.6, there were 101 “mixed” sample paths
(those with identical ambiguous individuals inferred differently) in the first sim-
ulation for case 3; each inference was based upon a sample path with 100 itera-
tions. Additional simulations with 2000 sample paths (not shown) resulted in 92
mixed sample paths when there were 1000 iterations for each inference and 28 sam-
ple paths when there were 5000 iterations for each inference. The two Phase MS
simulations produced distributions of indirect estimates that did not differ signif-
icantly (case 1: p = 0.919; case 2: p = 0.468; case 3: p = 0.342; case 5: p =
0.461).

The indirect estimates generated by DPPH, HAP, and 2SNP are shown in
Table 17.5. DPPH produced results only for case 1, since the other four cases are not
consistent with a perfect phylogeny (each has four unambiguous haplotypes present).
The program found the two solutions that have identical likelihoods as shown in
Table 17.2. HAP produced results for all five cases. The solution for case 1 was
AB = 29, Ab = 27, aB = 0, and ab = 2; the two ambiguous genotypes were phased
as AB/ab. The other solution for this case, which is consistent with a different perfect
phylogeny and has the same likelihood as the observed solution, was not found. For
the other cases, the observed solution is that generated by phasing all ambiguous
genotypes as Ab/aB.

DISCUSSION 389

2SNP also produced results in which all of the ambiguous genotypes were iden-
tically resolved. However, the solution produced for case 1 was AB = 27, Ab = 29,
aB = 2, and ab = 0; the two ambiguous genotypes were phased as Ab/aB. For the
other cases, the observed solution is that generated by phasing all ambiguous geno-
types as AB/ab. As a result, all of the resolutions produced by 2SNP were opposite
to those produced by HAP. The reason for this difference between the two programs
is unknown.

17.4 DISCUSSION

There are four issues that we would like to discuss: (1) how to relate the analytical
likelihood approach to the EM approach, (2) how to understand the similarities and
the differences among the approaches, (3) the heterogeneity of results within some
approaches, and (4) the relevance of our results to the general problem of haplotype
inference. We discuss these issues in turn.

Our results indicate that the analytical approach is clearly preferable as compared
to the EM algorithm if one is using the likelihood approach to analyze two-site data.
Results are obtained quickly and one can readily determine whether there is a com-
plexity to the inference problem that a partial or even comprehensive implementation
of the EM algorithm might not reveal. For example, as noted above, if the EM al-
gorithm is used as a “black box,” that is, it is used just to generate a point estimate
of the haplotype frequency, one can miss the fact that many frequencies have very
similar likelihoods or the fact that there are multiple maxima, possibly with equal
likelihoods. Visual inspection of the surface and analytical calculations of the max-
ima provides much more complete information about the meaning of the inferences
based on likelihood.

We next discuss the similarities and the differences among the approaches. The
likelihood approach and most of the others share some assumptions, for example, that
the population is in Hardy–Weinberg equilibrium. However, most of their differences
are substantive; for example, some of the approaches are Bayesian and some are not.
But even when comparing, say, Bayesian, approaches with one another, we believe
it is essential to remember the possible model dependency of the results (see also
[35]). The Phase program incorporates population-genetic assumptions that clearly
apply to some loci and possibly to many. However, it is easy to identify loci whose
biology is not consistent with these assumptions. Of course, since the assumptions
underlying any inference approach will rarely be met exactly, what we need are tests
of the accuracy of inference that use real haplotype pairs. At present, there are still
few such tests (as described above) and we caution against regarding present evidence
as implying that any one program is to be preferred. We note in this context that our
five cases were not generated by a simulation of a neutral coalescent process.

Our third issue is the heterogeneity of results within each approach. We do not know
why there are differences between simulations for PL–EM and also for Haplotyper.
We suggest that Haplotyper program be used with caution when estimating haplotype
frequencies. One reason is that it generates only indirect frequency estimates. Second,

390 ANALYTICAL AND ALGORITHMIC METHODS

it is capable of generating results like those observed for case 4, in which a substantial
fraction of sample paths result in an indirect frequency estimate that appears to be
highly deviant (see Table 17.6).

We also suggest that the HAP and 2SNP programs be used with caution (at least
for two-site data) as they are also capable of producing a frequency estimate that
appears to be highly deviant (see Table 17.5).

The results generated by HaploFreq suggest that this program does not necessarily
produce maximum likelihood estimates for sample sizes that are typically found in
many real applications. The comparison of the results for cases 3 and 4 are revealing in
this regard (see Table 17.5). Their sample sizes are approximately equal but HaploFreq
finds the global maximum only for case 4. This suggests that genotypic configuration
influences the attainment of global maxima by the program. This dependency is not
just a matter of there being two maxima since HaploFreq finds the global maximum
for case 2, which has two maxima (and a smaller sample size). Of course, such a
dependency does not rule out an influence of sample size; a smaller sample size may
explain why HaploFreq does not find the global maximum for case 5. We regard
this program as important and hope that it can be elaborated so as to perform better.
We believe that the present version of HaploFreq should be used with caution; we
recommend the analytical approach for two-site data.

Finally, we address the relevance of our results to the larger problem of haplotype
inference. A central issue in this regard is whether the reduced dimensionality that
allows one to make analytical predictions (two sites) introduces an artificial simplicity
that reduces the relevance of our findings to the problem of inferring haplotypes for
many sites. In fact, it is possible to argue that it is more difficult to infer haplotype
frequencies or haplotype pairs in the two-site case than in the multisite (>2) case. In
the former case, each ambiguous individual is heterozygous at every site, while in the
latter case, this is possible but unlikely. To this extent, there is no partial information
in the two-site case about the haplotypes in ambiguous individuals. In contrast, in the
multisite case, one ambiguous individual may be, say, homozygous for several sites
that are multiply heterozygous in other ambiguous individuals; in such an instance, one
gains some partial information about the possible haplotypes in the latter individuals.
However, the fact that all ambiguous individuals in the two-variant, two-site case have
identical genotypes would seem to simplify the inference problem. At present, we are
unaware of a satisfactory means of reconciling these conflicting inferences about the
general relevance of our two-site analyses. Of course, multiple simulations involving
many different multisite (>2) datasets would provide some insight into how likely
it is that, say, the EM algorithm results in different frequency estimates for a given
set of genotypes. Such a general investigation is a daunting task, at least in lieu of
some meaningful constraints on the number of individuals, genotype frequencies, and
number of sites involved. At the very least, we believe that our results should generate
caution in users’ minds about the algorithmic inference of haplotype frequencies for
multisite data.

A related issue concerns the context of application of haplotype inference algo-
rithms. One current (but not universal) piece of “folk wisdom” in the biological com-
munity is that common haplotypes are reliably inferred by present algorithms (if such

ACKNOWLEDGMENTS 391

haplotypes need algorithmic inference at all); this is said to contrast with the situation
for rare haplotypes, for which inference is regarded as more error prone at best. To
this extent, one could believe that much of the recent work concerning the testing and
refinement of haplotyping algorithms as unnecessary or of secondary importance at
most, especially if traits of, say, clinical importance are most often associated with
common haplotypes (see [17] for a discussion of this and related issues). Our results
clearly show that such a belief would be mistaken. For almost all of the cases we ana-
lyzed, all four haplotypes are common in the set of unambiguous genotypes (the only
exception is the Ab haplotype in case 2), and there are more unambiguous genotypes
than ambiguous ones (the only exception is case 5). Nonetheless, a single algorith-
mic inference of haplotype frequencies for these datasets is obviously not reliable
since most programs do not generate a “fixed” answer. The only arguable exception
is case 4. Our overall conclusion is that meaningful algorithmic inference of even
common haplotype frequencies requires careful interpretation of the results gener-
ated by multiple sample paths. It is also important to compare the results generated by
several programs. It is blind faith to think there are meaningful alternatives at present,
save for experimental inference. Of course, particular knowledge of the evolutionary
processes underlying the evolution of the sequences being analyzed might allow one
to prefer one algorithm and rule out others; such knowledge is invaluable for guiding
the investigator.

In lieu of such knowledge, the investigator potentially faces the challenge of rec-
onciling sets of inferences (even if just one program is used). In such a circumstance,
one possibility is some kind of consensus method, as suggested by [25] (see also [8]),
in which, say, the most common set of inferences is used. As discussed in [25], addi-
tional genetic criteria can be used to determine the inference sets queried in order to
determine the consensus inferences. This general approach is promising, especially
in as much as it provides a clear way to determine an answer and they show that
it performs well for the locus studied. Nonetheless, additional research is needed to
assess how generally useful it will be (see [32]).

We end with a general point about our simulations. They involved particular pro-
grams run on a particular platform in a way that was not necessarily expected by the
creators of each program (all of whom deserve substantial thanks for their work).
We have tried to make our analyses as unbiased as possible. Nonetheless, it is al-
ways possible that results would differ if the simulations were designed differently
and/or run on a different platform. We welcome such simulations although we regard
a qualitatively different outcome to be unlikely. No matter what their outcome is, such
simulations would provide much needed further investigation of the present state of
the art of haplotype inference.

ACKNOWLEDGMENTS

This work has been partially supported by NSF awards SES-9906997, EIA-0220154,
SEI 0513910, NIH R01 DA015789-01A2, NIA P01-AG0225000-01, and Variagen-
ics, Inc. We thank S. Qin and M. Stephens for technical assistance, K. Norberg

392 ANALYTICAL AND ALGORITHMIC METHODS

for statistical computations, R. Hudson, D. Posada, M. Stephens, M. Uyenoyama,
C. Wiuf for comments, and I. Măndoiu and A. Zelikovsky for the opportunity to
contribute this chapter. Source code to implement the analytical method is available
upon request.

REFERENCES

1. Brinza D, Zelikovsky A. 2SNP: scalable phasing based on 2-SNP haplotypes. Bioinfor-
matics 2006; 22:371–374.

2. Chung RA, Gusfield D. Perfect phylogeny haplotyper: haplotype inferral using a tree
model. Bioinformatics 2003; 19:780–781.

3. Clark AG. Inference of haplotypes from PCR-amplified samples of diploid populations.
Mol Biol Evol 1990; 7:111–122.

4. De Vivo I, Huggins GS, Hankinson SE, Lescault PJ, Boezen M, Colditz GA, Hunter DJ.
A functional polymorphism in the promoter of the progesterone receptor gene associated
with endometrial cancer risk. Proc Nat Acad Sci USA 2002; 99:12263–12268.

5. Eskin E, Halperin E, Karp RM. Efficient reconstruction of haplotype structure via perfect
phylogeny. J Bioinform Comput Biol 2003; 1:1–20.

6. Excoffier L, Slatkin M. Maximum-Likelihood estimation of molecular haplotype frequen-
cies in a diploid population. Mol Biol Evol 1995; 12:921–927.

7. Fallin D, Schork NJ. Accuracy of haplotype frequency estimation for biallelic loci, via
the expectation-maximization algorithm for unphased diploid genotype data. Am J Hum
Genet 2000; 67:947–959.

8. Fullerton SM, Buchanan AV, Sonpar VA, Taylor SL, Smith JD, Carlson CS, Salomaa V,
Stengard JH, Boerwinkle E, Clark AG, Nickerson DA, Weiss KM. The effects of scale:
variation in the APOA1/C3/A4/A5 gene cluster. Human Genetics 2004; 115:36–56.

9. Gusfield D. Inference of haplotypes from samples of diploid populations: complexity and
algorithms. J Comput Biol 2001; 8:305–323.

10. Gusfield D. Haplotyping as perfect phylogeny: conceptual framework and efficient solu-
tions. In Myers G, Hannenhalli S, Istrail S, Pevzner P, Waterman M. editors. Proceedings
of RECOMB 2002: The Sixth annual International Conference on Computational Biology.
ACM Press; 2002. pp. 166–175.

11. Gusfield D, Orzack SH. Haplotype inference. In Aluru S, editor. Handbook of Compu-
tational Molecular Biology, Chapman & Hall/CRC, Computer and Information Science
Series. 2005. pp. 18-1 – 18-28.

12. Halperin E, Eskin E. Haplotype reconstruction from genotype data using imperfect phy-
logeny. Bioinformatics 2004; 20:1842–1849.

13. Halperin E, Karp RM. The minimum-entropy set cover problem. In Dı́az J, Karhumäki
J, Lepistö A, Sannella D, editors. Proceedings of the 31st International Colloquium on
Automata, Languages and Programming. Lecture Notes in Computer Science. Springer;
2004. pp. 733–744.

14. Halperin E, Hazan E. HAPLOFREQ—Estimating Haplotype Frequencies Efficiently. J
Comput Biol 2006; 13:481–500.

15. Hawley ME, Kidd KK. HAPLO: a program using the EM algorithm to estimate the
frequencies of multi-site haplotypes. J Hered 1995, 86:409–411.

REFERENCES 393

16. Hill WG. Estimation of linkage disequilibrium in randomly mating populations. Heredity
1974; 33:229–239.

17. Hoehe MR. Haplotypes and the systematic analysis of genetic variation in genes and
genomes. Pharmacogenomics 2003; 4:547–570.

18. Hudson RR. Linkage disequilibrium and recombination. In Balding DJ, Bishop M,
Canning C, editors. Handbook of Statistical Genetics 2nd ed. Wiley, 2003. pp. 662–678.

19. Lin S, Cutler DJ, Zwick ME, Chakravarti A. Haplotype inference in random population
samples. Am J Hum Genet 2002; 71:1129–1137.

20. Long JC, William RC, Urbanek M. An E-M algorithm and testing strategy for multiple-
locus haplotypes. Am J Hum Genet 1995; 56:799–810.

21. Marchini J, Cutler D, Patterson N, Stephens M, Eskin E, Halperin E, Lin S, Qin ZS,
Munro HM, Abecasis GR, Donnelly P. A Comparison of Phasing Algorithms for Trios
and Unrelated Individuals. Am J Hum Genet 2006; 78:437–450.

22. Mehta CR, Patel NR. A network algorithm for performing Fisher’s exact test in r × c

contingency tables. J Am Stat Assoc 1983; 78:427–434.

23. Niu T. Algorithms for inferring haplotypes. Genet Epidemiol 2004; 27:334–337.

24. Niu T, Qin ZS , Xu X, Liu JS. Bayesian haplotype inference for multiple linked single-
nucleotide polymorphisms. Am J Hum Genet 2002; 70:157–169.

25. Orzack SH, Gusfield D, Olson J, Nesbitt S, Subrahmanyan L, Stanton VP, Jr. Analysis and
exploration of the use of rule-based algorithms and consensus methods for the inferral of
haplotypes. Genetics 2003; 165:915–928.

26. Pasaniuc B, Mandoiu II. Highly Scalable Genotype Phasing by Entropy Minimization.
Proceedings of the 28th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society. IEEE Press; 2006; pp. 3482–3486.

27. Press WP, Flannery BP, Teukolsky SA, Vetterling WT. Numerical Recipes in Fortran 77:
The Art of Scientific Computing. Cambridge: Cambridge University Press; 1992.

28. Pritchard JK, Przeworski M. Linkage disequilibrium in humans: models and data. Am J
Hum Genet 2001; 69:1–14.

29. Proudnikov D, LaForge KS, Hofflich H, Levenstien M, Gordon D, Barral S, Ott J, Kreek
MJ. Association analysis of polymorphisms in serotonin 1B receptor (HTR1B) gene
with heroin addiction: a comparison of molecular and statistically estimated haplotypes.
Pharmacogenetics and Genomics 2006; 16:25–36.

30. Qin ZS, Niu T, Liu JS. Partition-ligation–expectation-maximization algorithm for haplo-
type inference with single-nucleotide polymorphisms. Am J Hum Genet 2002; 71:1242–
1247.

31. Sabbagh A, Darlu P. Inferring haplotypes at the NAT2 locus: the computational approach.
BMC Genetics 2005; 6:30 doi:10.1186/1471-2156-6-30.

32. Saeed Q. An efficient parallel algorithm for haplotype inference based on rule-based ap-
proach and consensus methods. Masters Thesis. University of Windsor. Windsor, Ontario,
Canada, 2007.

33. Schipper RF, D’Amaro J, de Lange P, Th.Schreuder GM, van Rood JJ, Oudshoorn M.
Validation of haplotype frequency estimation methods. Hum Immunol 1998; 59:518–
523.

34. Slatkin M, Excoffier L. Testing for linkage disequilibrium in genotypic data using the
Expectation-Maximization algorithm. Heredity 1996; 76:377–383.

394 ANALYTICAL AND ALGORITHMIC METHODS

35. Stephens M, Donnelly P. A comparison of Bayesian methods for haplotype reconstruction
from population genotype data. Am J Hum Genet 2003; 73:1162–1169.

36. Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction
from population data. Am J Hum Genet 2001; 68:978–989.

37. Stephens M, Smith NJ, Donnelly P. Reply to Zhang et al. Am J Hum Genet 2001; 69:912–
914.

38. Templeton AR, Sing CF, Kessling A, Humphries S. A cladistic-analysis of phenotype
associations with haplotypes inferred from restriction endonuclease mapping. 2. The
analysis of natural-populations. Genetics 1988; 120:1145-1154.

39. Tishkoff SA, Pakstis AJ, Ruano G, Kidd KK. The accuracy of statistical methods for
estimation of haplotype frequencies: an example from the CD4 locus. Am J Hum Genet
2000; 67:518-522.

40. Weir BS, Cockerham CC. Estimation of linkage disequilibrium in randomly mating pop-
ulations. Heredity 1979; 42:105-111.

41. Wichmann BA, Hill ID. Algorithm AS 183: An efficient and portable pseudo-random
number generator. Appl Statist 1982; 31:188-190.

42. Wichmann BA, Hill ID. Correction: Algorithm AS 183: An efficient and portable pseudo-
random number generator. Appl Statist 1984; 33:123.

43. Zee RYL, Hegener HH, Cook NR, Ridker PM. C-reactive protein gene polymorphisms
and the risk of venous thromboembolism: a haplotype-based analysis. J Thromb Haemost
2004; 2:1240-1243.

44. Zhang S, Pakstis AJ, Kidd KK, Zhao H. Comparisons of two methods for haplotype
reconstruction and haplotype frequency estimation from population data. Am J Hum Genet
2001; 69:906-912.

45. Zhang J, Vingron M, Hoehe MR, 2005 Haplotype reconstruction for diploid populations.
Hum Hered 2005; 59:144–156.

46. Zhang Y, Niu T, Liu JS. A coalescence-guided hierarchical bayesian method for haplotype
inference. Am J Hum Genet 2006; 79:313–322.

47. Zhang K, Zhao H. A comparison of several methods for haplotype frequency estimation
and haplotype reconstruction for tightly linked markers from general pedigrees. Genet
Epidemiol 2006; 30:423–437.

18
OPTIMIZATION METHODS FOR
GENOTYPE DATA ANALYSIS IN
EPIDEMIOLOGICAL STUDIES

Dumitru Brinza, Jingwu He, and Alexander Zelikovsky
Department of Computer Science, Georgia State University, Atlanta, GA, USA

18.1 INTRODUCTION

Recent improvement in accessibility of high throughput DNA sequencing brought
a great deal of attention to disease association and susceptibility studies. Successful
genome-wide searches for disease-associated gene variations have been recently re-
ported [18,26]. However, complex diseases can be caused by combinations of several
unlinked gene variations. This chapter addresses computational challenges of geno-
type data analysis in epidemiological studies including selecting of informative SNPs,
searching for diseases associated SNPs, and predicting of genotype susceptibility.

Disease association studies analyze genetic variation across exposed to a disease
(diseased) and healthy (non diseased) individuals. The difference between individual
DNA sequences occurs at a single base sites, in which more than one allele is ob-
served across population. Such variations are called single nucleotide polymorphisms
(SNPs). The number of simultaneously typed SNPs for association and linkage stud-
ies is reaching 106 for SNP Mapping Arrays [1]. High density maps of SNPs as
well as massive DNA data with large number of individuals and number of SNPs
become publicly available [12]. Diploid organisms, like human, have two near iden-
tical copies of each chromosome. Most genotyping techniques (e.g., SNP Mapping
Arrays [1]) do not provide separate SNP sequences (haplotypes) for each of the two

Bioinformatics Algorithms: Techniques and Applications, Edited by Ion I. Mǎndoiu
and Alexander Zelikovsky
Copyright © 2008 John Wiley & Sons, Inc.

395

396 OPTIMIZATION METHODS FOR GENOTYPE DATA ANALYSIS

chromosomes. Instead, they provide SNP sequences (genotypes) representing mix-
tures of two haplotypes—each site is defined by an unordered pair of allele readings,
one from each haplotype—while haplotypes are computationally inferred from geno-
types [5]. To genotype data we refer as unphased data and to haplotype data we refer
as phased data. The disease association study analyze data given as genotypes or
haplotypes with disease status.

Several challenges in genome-wide association studies of complex diseases have
not yet been adequately addressed [10]: interaction between nonlinked genes, multiple
independent causes, multiple testing adjustment, and so on. Since complex common
diseases can be caused by multiloci interactions, two-loci analysis can be more pow-
erful than traditional one-by-one SNP association analysis [24]. Multiloci analysis is
expected to find even deeper disease-associated interactions. The computational chal-
lenge (as pointed in [10]) is caused by the dimension catastrophe. Indeed, two-SNP
interaction analysis (which can be more powerful than traditional one-by-one SNP
association analysis [24]) for a genome-wide scan with 1 million SNPs (3 kb cover-
age) will afford 1012 possible pairwise tests. Multi-SNP interaction analysis reveals
even deeper disease-associated interactions but is usually computationally infeasible
and its statistical significance drastically decreases after multiple testing adjustment
[25,29].

Disease-association analysis searches for a SNP with frequency among diseased
individuals (cases) considerably higher than among nondiseased individuals (con-
trols). Only statistically significant SNPs (whose frequency distribution has p-value
less than 0.05) are reported. Successful as well as unsuccessful searches for SNPs with
statistically significant association have been recently reported for different diseases
and different suspected human genome regions (see e.g., [9]). Unfortunately, reported
findings are frequently not reproducible on different populations. It is believed that
this happens because the p-values are unadjusted to multiple testing—indeed, if the
reported SNP is found among 100 SNPs then the probability that the SNP is associated
with a disease by mere chance becomes roughly 100 times larger.

This chapter discusses optimization approach to resolve these issues instead of tra-
ditionally used statistical and computational intelligence methods. In order to handle
data with huge number of SNPs, one can extract informative (indexing) SNPs that can
be used for (almost) lossless reconstructing of all other SNPs [34]. To avoid informa-
tion loss, index SNPs are chosen based on how well the other nonindex SNPs can be
reconstructed. The corresponding informative SNP selection problem (ISSP) can be
formulated as follows (See Fig. 18.1). Given a sample S of a population P of individ-
uals (either haplotypes or genotypes) on m SNPs, select positions of k (k < m) SNPs
such that for any individual, one can predict non selected SNPs from these k selected
SNPs. The em Multiple Linear Regression based MLR-tagging algorithm [16] solves
the optimization version of ISSP that asks for k informative SNPs minimizing the
prediction error measured by the number of incorrectly predicted SNPs. The number
of tags (informative SNPs) k depends on the desirable data size. More tags will keep
more genotype information while less tags allows deeper analysis and search.

In the reduced set of SNPs one can search for deeper disease association. In this
chapter, we discuss the optimization problem of finding the most disease-associated

INTRODUCTION 397

1 0 1 0 1 1 0 0 0 1
0 0 1 0 1 1 0 0 1 1
1 1 0 1 0 0 1 0 1 1

… … … … … … … … … …

1 0 0 1 0 0 1 1 0 0

1 0 1 0 1 1 0 0 0 1Tag-restricted haplotype

m-k unknown nontag SNPs

k tag SNPs

n Complete haplotypes

Sample population

=

FIGURE 18.1 Informative SNP selection problem (ISSP). The shaded columns correspond
to k tag SNPs and the clear columns correspond to nontag SNPs. The unknown m-k nontag
SNP values in tag-restricted individual (top) are predicted based on the known k tag values and
complete sample population.

multi-SNP combination for given case-control data. Since it is plausible that common
diseases can have also genetic resistance factors, one can also search for the most
disease-resistant multi-SNP combination. Association of risk or resistance factors
with the disease can be measured in terms of p-value of the skew in case and control
frequencies, risk rates or odds rates. Here we concentrate on two association mea-
surements: p-value of the skew in case and control frequencies and positive predictive
value (PPV), which is the frequency of case individuals among all individuals with
a given multi-SNP combination. This optimization problem is NP-hard and can be
viewed as a generalization of the maximum independent set problem. A fast compli-
mentary greedy search proposed in [6] is compared with the exhaustive search and
combinatorial search that has been discussed in [7]. Although complimentary greedy
search cannot guarantee finding of close to optimum MSCs, in the experiments with
real data, it finds MSCs with nontrivially high PPV. For example, for Crohn’s disease
data [11], complimentary greedy search finds in less than second a case-free MSC
containing 24 controls, while exhaustive and combinatorial searches need more than
1 day to find case-free MSCs with at most 17 controls.

We next address the disease susceptibility prediction problem (see
[19,21,23,30,32]) exploiting the developed methods for searching associated
risk and resistance factors. A novel optimum clustering problem formulation has
been proposed in [6]. There has also been suggested a model-fitting method trans-
forming a clustering algorithm into the corresponding model-fitting susceptibility
prediction algorithm. Since common diseases can be caused by multiple independent
and coexisting factors, an association-based clustering of case/control population
has been proposed in [6]. The resulted association-based combinatorial prediction
algorithm significantly outperforms existing prediction methods. For all three real
datasets that were available to us (Crohn’s disease [11], autoimmune disorder [31],
and tick-borne encephalitis [4]) the accuracy of the prediction based on combinatorial
search is respectively, 76%, 74%, and 80%, which is higher by 7% compared to the
accuracy of all previously known methods implemented in [22,23]. The accuracy

398 OPTIMIZATION METHODS FOR GENOTYPE DATA ANALYSIS

of the prediction based on complimentary greedy search almost matches the best
accuracy but is much more scalable.

The next section formulates the Informative SNP Selection Problem and discusses
MLR-tagging method for informative SNPs extraction. In Section 18.3 the disease
association search problem is formulated, the searching algorithms and their quality
measures are described, the optimization version of disease association search is re-
formulated as an independent set problem and the fast complimentary greedy search
algorithm is given. Section 18.4 is devoted to the disease susceptibility prediction
problem. The prediction and relevant clustering optimization problem formulations
are given, the model-fitting approach of transforming clustering into prediction and
corresponding two prediction algorithms are described. Section 18.5 compares the
MLR tag selection [16] with STAMPA [15] and discusses the application of associa-
tion search and susceptibility prediction methods [6] to three real datasets.

18.2 INFORMATIVE SNP SELECTION

In this section we first briefly overview several tagging algorithms and then give
detailed overview of the MLR-tagging algorithm [16].

Originally, haplotype tags have been selected based on the squared correlation R2

between true and predicted SNPs in [8] and true and predicted halotype dosage in
[28]. Since linkage disequilibrium is usually higher for closer SNPs, the entire SNP
sequence is partitioned into blocks ([2,33]) based on limited haplotype variability and
then select tags in each block separately thus ensuring high correlation between tags
and predicted SNPs.

Reconstructing an individual from its typed tag SNPs has received much less at-
tention. Zhang et al. [33] presents a method for selecting tag SNPs based on haplotype
data, then reconstructing haplotypes with the partition-ligation-expectation-
maximization algorithm. Halldorsson et al. [14] describes a block-free approach for
tag selection. Their method considers a graph with vertices representing SNPs and
edges if one SNP can be used to predict the other. The vertices (SNPs) with high
degree are chosen as tags. To predict a nontag SNP, that SNP’s neighbor’s values are
inspected and a majority vote is taken. The method is tested with leave-one-out cross
validation and can recover 90% of the haplotype data using only 20% of SNPs as tags.

Halperin et al. [15] describes a new method STAMPA for SNP prediction and tag
selection. A SNP is predicted by inspecting the two closest tag SNPs from both sides;
the value of the unknown SNP is given by a majority vote over the two tag SNPs. They
use dynamic programming to select tags to reach best prediction score. Their methods
are compared with ldSelect and HapBlock on a variety of datasets, and could predict
with 80% accuracy the SNPs in the Daly dataset [11] using only 2 SNPs as tags.

Lee et al. [20] introduce BNTagger, a new method for tagging SNP selection, based
on conditional independence among SNPs. Using the formalism of Bayesian networks
(BNs), their system aims to select a subset of independent and highly predictive SNPs.
For example, BNTagger uses 10% tags to reach 90% prediction accuracy. However,
BNTagger comes at the cost of compromised running time. Its running time varies

INFORMATIVE SNP SELECTION 399

from several minutes (when the number of SNPs is 52) to 2–4 h (when the number
is 103).

18.2.1 MLR-Tagging Algorithm

The MLR-tagging algorithm [16] for solving the ISSP on genotypes is based on
multiple linear regression analysis. This method directly predicts genotypes without
the explicit requirement of haplotypes.

Usually, a genotype is represented by a vector with coordinates 0, 1, or 2, where
0 represents the homozygous site with major allele, 1 represents the homozygous
site with minor allele, and 2 represents the heterozygous site. Respectively, each
haplotype’s coordinate is 0 or 1, where 0 represents the major allele and 1 represents
the minor allele. The sample population S together with the tag-restricted individual
x are represented as a matrix M. The matrix M has n+ 1 rows corresponding to n

sample individuals and the individual x and k + 1 columns corresponding to k tag
SNPs and a single nontag SNP s. All values in M are known except the value of s in x.
In case of haplotypes, there are only two possible resolutions of s, namely, s0 and s1
with the unknown SNP value equal to 0 or 1, respectively. For genotypes, there are 3
possible resolutions s0, s1, and s2 corresponding to SNP values 0, 1, or 2, respectively.
The SNP prediction method should chose correct resolution of s.

Given the values of k tags of an unknown individual x and the known full sample
S, a SNP prediction algorithm Ak predicts the value of a single nontag SNP s in x (if
there is more than one nontag SNP to predict, then each one is handled separately).
Therefore, without loss of generality, each individual is assumed to have exactly
k + 1 SNPs.

18.2.1.1 Multiple Linear Regression Method The general purpose of multiple
linear regression is to learn the relationship between several independent variables
and a response variable. The multiple linear regression model is given by

y = β0 + β1x1 + β2x2 + · · · + βkxk + ε = Xβ + ε, (18.1)

where y is the response variable (represented by a column with n coordinates
(k ≤ n− 1)), xi, i = 1, . . . , k are independent variables (columns), βi, i = 1, . . . , k

are regression coefficients, and ε (a column) is the model error. The regression coeffi-
cient βi represents the independent contribution of the independent variable xi to the
prediction of y. The MLR method computes bi, i = 1, . . . , k to estimate unknown true
coefficients βi, i = 1, . . . , k to minimize the error ||ε|| using the least squares method.
Geometrically speaking, in the estimation space span(X), which is the linear closure
of vectors xi, i = 1, . . . , k, we find the vector ŷ = b0 + b1x1 + b2x2 + · · · + bkxk =
Xb estimating y. The vector ŷ minimizing distance (error) ||ε|| = ||ŷ − y|| is the
projection of y on span(X) and equals ŷ = X(XtX)−1Xty. Given the values of in-
dependent variables x∗ = (x∗1, . . . , x

∗
k), the MLR method can predict (estimate) the

corresponding response variable y∗ with ŷ∗ = x∗(XtX)−1Xty.

400 OPTIMIZATION METHODS FOR GENOTYPE DATA ANALYSIS

18.2.1.2 SNP Prediction In SNP prediction, y is a nontag SNP and xi, i = 1, . . . , k

are tags. Given the known tag values x∗ in an individual, the nontag SNP value y∗
should be predicted. There are three possible values for each SNP (-1, 0, 1) corre-
sponding to homozygous major allele, heterozygous allele, and homozygous minor
allele. Note that rather than encode SNP with more common notations (0, 2, 1), we
use (−1, 0, 1)-notation, called sigma-encoding. An obvious way to predict y∗ is to
round expression (3) for ŷ∗. Instead MLR SNP prediction algorithm finds the value of
(−1, 0, or 1) that better fits the MLR model (1), that is, minimizes the error ||ε||. The
MLR SNP prediction method proposed in [16] considers all possible resolutions of s

together with the set of tag SNPs T as the vectors in (n+ 1)-dimensional Euclidean
space. It assumes that the most probable resolution of s should be the “closest” to T .
The distance between resolution of s and T is measured between s and its projection
on the vector space span(T), the span of the set of tag SNPs T (see Fig. 18.2).

Formally, let T be the (n+ 1)× k matrix consisting of n+ 1 rows corresponding to
a tag-restricted genotype x = (x∗1, . . . , x

∗
k) and n sample genotypes xi, i = 1, n, from

X, gi = {xi,1, . . . , xi,k}, whose k coordinates correspond to k tag SNPs. The SNP s, a
nontag SNP, is represented by a (n+ 1)-column with known values yi, i = 1, n, for
genotypes from X and the unknown value y∗ for the genotype g which should be
predicted.

T =

⎡
⎢⎢⎢⎢⎢⎣

x∗1 . . . x∗k
x1,1 . . . x1,k

...
. . .

...

xn,1 . . . xn,k

⎤
⎥⎥⎥⎥⎥⎦ s =

⎡
⎢⎢⎢⎢⎢⎣

y∗

y1,k+1

...

yn,k+1

⎤
⎥⎥⎥⎥⎥⎦

Let d = ||ε|| be the least square distance between s and T , that is, d = |T · (T t ·
T)−1 · T t · s− s|. The algorithm finds the value (−1, 0 or 1) for y∗ and selects one
minimizing d.

Tag t1

Tag t2

0

s0 =

s1=
d0

d1

s2 =

d2

0
.
.
.

1
.
.
.

2
.
.
.

Span(T)

Possible
resolutions

Projections

1
Ts

0
Ts 2

Ts

FIGURE 18.2 MLR SNP Prediction algorithm. Three possible resolutions s0,s1, and s2 of s

are projected on the span of tag SNPs (a dark plane). The unknown SNP value is predicted 1
since the distance between s1 and its projection sT

1 is the shorter than for s0 and s2.

DISEASE ASSOCIATION SEARCH 401

18.2.1.3 Tag Selection Algorithm starts with the best tag t0, that is, the SNP
minimizing the error when predicting all other SNPs. Then it finds tag t1 which
minimizes the prediction error of the tag set (t0, t1) as follows. Each nontag SNP is
added to the original tag set, then other SNPs are predicted from the extended set
using MLR SNP prediction. The SNP that achieves the highest prediction accuracy
will be t1. Best tags are added until reaching the specified size k.

18.2.1.4 Running Time Computing of T t · T is O(nk2) since T is a n× k matrix
and T t is a k × n matrix. For inverting the k × k matrix T t · T , O(k3) steps are needed.
Let k < n, then the running time for computing T ′ = T · (T t · T)−1 · T t is O(n2k).
The matrix of T ′ is the same for all these (m-k) nontag SNPs, thus, the total running
time for predicting a complete individual is O(kn2 + n2(m− k)) = O(n2m). If k ≥ n,
then only (n− 1)/2 closest tags to the right and to the left of the predicted SNP are
used. There are only k − n+ 1 different matrices T ′ to compute and the total running
time is O(n3m). The MLR SNP prediction need knm steps for prediction, thus, the
total runtime of MLR-tagging is O(knmT) = O(kn3m2) when k < n and O(kn4m2)
when k ≥ n.

18.3 DISEASE ASSOCIATION SEARCH

In this section, the search of statistically significant disease-associated multi-SNP
combinations is formally described. Then the corresponding optimization problem is
formulated and its complexity is discussed. The combinatorial search introduced in
[7] and the fast complementary greedy search introduced in [6] are described.

The typical case/control or cohort study results in a sample population S consisting
of n individuals represented by values of m SNPs and the disease status. Since it is
expensive to obtain individual chromosomes, each SNP value attains one of three
values 0, 1, or 2, where 0s and 1s denote homozygous sites with major allele and
minor allele, respectively, and 2s stand for heterozygous sites. SNPs with more than 2
alleles are rare and can be conventionally represented as biallelic. Thus the sample S is
an (0, 1, 2)-valued n× (m+ 1)-matrix, where each row corresponds to an individual,
each column corresponds to a SNP except last column corresponding to the disease
status (0 stands for disease and 1 stands for nondisease). Let S0 and S1 be the subsets
of rows with nondisease and disease status, respectively. For simplicity, it is assumed
that there are no two rows identical in all SNP columns.

Risk and resistance factors representing gene variation interaction can be defined
in terms of SNPs as follows. A multi-SNP combination (MSC) C is a subset of SNP-
columns of S (denoted snp(C)) and the values of these SNPs, 0, 1, or 21. The subset
of individuals-rows of S whose restriction on columns of snp(C) coincide with values
of C is denoted cluster(C). A subset of individuals is called a cluster if it coincides
with cluster(C) for a certain MSC C. For example, if S is represented by an identity

1In this chapter we restrict ourselves to 0,1, or 2, while in general, the values of MSC can also be negations
0̄, 1̄ or 2̄, where ī means that MSC is required to have value unequal to i.

402 OPTIMIZATION METHODS FOR GENOTYPE DATA ANALYSIS

matrix I5, then rows 3, 4, and 5 form a cluster for MSC C with snp(C) = {1, 2} and
both values equal to 0. Obviously, a subset X of rows of S may not form a cluster,
but it always can be represented as a union of clusters, for example, as a union of
trivial clusters containing its individual rows. Let h(C) = cluster(C) ∩ S0 be the set
of control individuals and d(C) = cluster(C) ∩ S1 be the set of diseased individuals
in cluster(C).

The association of an MSC C with the disease status can be measured with the
following parameters (h = |h(C)|, d = |d(C)|, H = |S0|, D = |S1|):

� odds ratio OR = d·(H−h)
h·(D−d) (for case-control studies)

� relative risk RR = d·(H+D−h−d)
(D−d)(h+d) (for cohort studies)

� positive predictive value PPV = d
h+d

(for susceptibility prediction)
� p-value of the partition of the cluster into cases and controls:

p =
d∑

k=0

(
h+ d

k

)(
D

H +D

)k (
H

H +D

)h+d−k

.

Since MSCs are searched among all SNPs, the computed p-value requires ad-
justment for multiple testing which can be done with simple but overly pessimistic
Bonferroni correction or computationally extensive but more accurate randomization
method.

18.3.1 Accurate Searches for Associated MSCs

General disease association searches for all MSCs with one of the parameters above
(or below) a certain threshold. The common formulation is to find all MSCs with
adjusted p-value below 0.05.

18.3.1.1 Exhaustive Search (ES) The search for disease-associated MSCs among
all possible combinations can be done by the following exhaustive search. In or-
der to find a MSC with the p-value of the frequency distribution below 0.05, one
should check all one-SNP, two-SNP, . . ., m-SNP combinations. The checking pro-
cedure takes O(n

∑m
k=1

(
m
k

)
3k) runtime for unphased combinations since there are

three possible SNP values {0, 1, 2}. Similarly, for phased combination, the runtime is
O(n

∑m
k=1

(
m
k

)
2k) since there only two possible SNP values. The exhaustive search is

infeasible even for small number of SNPs, therefore the search is limited to the small
number of SNPs, that is, instead of searching all MSCs, one can search only contain-
ing at most k = 1, 2, 3 SNPs. We refer to k as search level of exhaustive search. Also
one can reduce the depth (number of simultaneously interacting SNPs) or reduce m

by extracting informative SNPs from which one can reconstruct all other SNPs. The
MLR-tagging is used to choose maximum number of index SNPs that can be handled
by ES in a reasonable computational time.

DISEASE ASSOCIATION SEARCH 403

18.3.1.2 Combinatorial Search (CS) Here we discuss as suggested in [7] search
method for disease-associated MSCs that avoids insignificant MSCs or clusters
without loosing significant ones. CS searches only for closed MSCs, where clo-
sure is defined as follows. The closure C̄ of MSC C is an MSC with minimum
control elements h(C̄) and the same case elements d(C̄) = d(C). C̄ can be easily
found by incorporating into snp(C) all SNP with common values among all case
individuals in C.

The combinatorial search proposed [7] finds the best p-value of frequency
distribution of the closure of each single SNP, after that it searches for the best
frequency distribution p-value among closure of all 2-SNP combinations and so on.
The procedure stops after all closure of all k-SNP combinations (k < m) are checked.
The corresponding search level is the number of SNPs selected for closuring, for
example, on the level 2 of searching combinatorial search will test closure of all
2-SNP combinations for association with a disease. Because of the closure, for the
same level of searching combinatorial search finds better association than exhaustive
search. However, the above combinatorial search is as slow as exhaustive search.

A faster implementation of this method avoids checking MSCs, which are not
(and cannot lead to) statistically significant ones. Formally, a MSC C is called an
intersection of MSC C1 and C2 if d(C) = d(C1) ∩ d(C2) and |h(C)| is minimized.
A MSC C is called trivial if its unadjusted p-value is larger than 0.05 even if the set
h(C) would be empty. Note that intersection of a trivial MSC with another is trivial.

A faster implementation of the combinatorial search is as follows:

1. Compute a set G1 of all 1-SNP closed MSCs, exclude trivial combinations.

2. Compute sets Gk of all pairwise intersections of the MSCs from Gk−1, ex-
clude trivial combinations and already existing in G1 ∪G2 ∪ . . . ∪Gk−1,
k = 2 . . . N.

3. For each Gk output MSCs whose unadjusted p < 0.05.

Still, in order to find all MSCs associated with a disease one has to check all possible
SNP combinations with all possible SNP values. This searching approach is also
computationally intensive and step 2 from the algorithm can generate an exponential
number of MSCs. However, closure avoids generation and checking of nonsignificant
MSCs. Additionally, removing of trivial MSCs at each iteration of step 2 considerably
reduces the number of newly generated MSCs. CS has been shown much faster than
ES and capable of finding more significant MSCs than ES for equivalent search level.

18.3.2 Approximate Search for Maximum Control-Free Cluster

Following [6], we next consider another optimization formulation corresponding to
the general association search problem, for example, find MSC with the minimum
adjusted p-value. In particular, we focus on maximization of PPV. Obviously, the
MSC with maximum PPV should not contain control individuals in its cluster and the
problem can be formulated as follows.

404 OPTIMIZATION METHODS FOR GENOTYPE DATA ANALYSIS

Maximum Control-Free Cluster Problem (MCFCP) Find a cluster C which
does not contain control individuals and has the maximum number of case
individuals.

It is not difficult to see that this problem includes the maximum independent
set problem. Indeed, given a graph G = (V, E), for each vertex v we put into
correspondence a case individual v′ and for each edge e = (u, v) we put into cor-
respondence a control individual e′ such that any cluster containing u′ and v′ should
also contain e′ (e.g., u′, v′, and e′ are identical except one SNP where they have
three different values 0,1, and 2). Obviously, the maximum independent set of G

corresponds to the maximum control-free cluster and vice versa. Thus, one cannot
reasonably approximate MCFCP in polynomial time for an arbitrary sample S.

On the contrary, the sample S is not “arbitrary”—it comes from a certain disease
association study. Therefore, one may have hope that simple heuristics (particularly
greedy algorithms) can perform much better than in the worst arbitrary case.

18.3.2.1 Complimentary Greedy Search (CGS) In graphs, instead of the maxi-
mum independent set one can search for its complement, the minimum vertex cover-
repeat picking, and removing vertices of maximum degree until no edges left. In this
case one can minimize the relative cost of covering (or removal) of control individ-
uals, which is the number of removed case individuals. The corresponding heuristic
for MCFCP is the following.

Complimentary Greedy Search
C ← S

Repeat until h(C) > 0
For each 1-SNP combination X = (s, i), where s is a SNP and i ∈ {0, 1, 2}

find d̄ = d(C)− d(C ∩X)) and h̄ = h(C)− h(C ∩X)
Find 1-SNP combination X minimizing d̄/h̄

C ← C ∩X

Similarly to the maximum control-free cluster corresponding to the most expressed
risk factor, one can also search for the maximum diseased-free cluster corresponding
to the most expressed resistance factor.

The experiments with three real datasets (see Section 18.6) show that the
complimentary greedy search can find nontrivially large control-free and case-free
clusters.

18.4 DISEASE SUSCEPTIBILITY PREDICTION

This section shows how to apply association search methods to disease suscepti-
bility prediction following [6]. First the problem and cross-validation schemes are
discussed. Then the relevant formulation of the optimum clustering problem is given
and the general method how any clustering algorithm can be transformed into a
prediction algorithm is described. We conclude with description of two association
search-based prediction algorithms.

DISEASE SUSCEPTIBILITY PREDICTION 405

Below is the formal description of the problem from [6].

Disease Susceptibility Prediction Problem Given a sample population S (a train-
ing set) and one more individual t /∈ S with the known SNPs but unknown disease
status (testing individual), find (predict) the unknown disease status.

The main drawback of such problem formulation that it cannot be considered
as a standard optimization formulation. One cannot directly measure the quality of
a prediction algorithm from the given input since it does not contain the predicted
status.

A standard way to measure the quality of prediction algorithms is to apply a
cross-validation scheme. In the leave-one-out cross validation, the disease status of
each genotype in the population sample is predicted while the rest of the data is
regarded as the training set. There are many types of leave-many-out cross validations
where the testing set contains much larger subset of the original sample. Any cross-
validation scheme produces a confusion table (see Table 18.1). The main objective is
to maximize prediction accuracy, while all other parameters also reflect the quality of
the algorithm.

18.4.1 Optimization Formulation

Paper [6] proposes to avoid cross validation and instead suggests a different objective
by restricting the ways how prediction can be made. It is reasonable to require that
every prediction algorithm should be able to predict the status inside the sample.

Therefore, such algorithms is supposed to be able to partition the sample into sub-
sets based only on the values of SNPs, that is, partition of S into clusters defined by
MSCs. Of course, a trivial clustering where each individual forms its own cluster can
always perfectly distinguish between case and control individuals. On the contrary
such clustering carries minimum information. Ideally, there should be two clusters
perfectly distinguishing diseased from control individuals. There is a trade-off be-
tween number of clusters and the information carried by clustering which results in
trade-off between number of errors (i.e., incorrectly clustered individuals) and infor-
mativeness which was proposed to measure by information entropy instead of number
of clusters [6].

TABLE 18.1 Confusion Table

True Disease Status

Cases Controls
Predicted case True positive False positive Positive prediction value

TP FP PPV= TP/(TP+FP)
Predicted False negative True negative Negative prediction value
control FN TN NPV= TN/(FN+TN)

Sensitivity Specificity Accuracy
TP/(TP+FN) TN/(FP+ TN) (TP+TN)/(TP+FP+FN+TN)

406 OPTIMIZATION METHODS FOR GENOTYPE DATA ANALYSIS

Optimum Disease Clustering Problem Given a population sample S, find a partition
P of S into clusters S = S1 ∪ · · · ∪ Sk, with disease status 0 or 1 assigned to each
cluster Si, minimizing

entropy(P) = −
k∑

i=1

|Si|
|S| ln

|Si|
|S|

for a given bound on the number of individuals who are assigned incorrect status in
clusters of the partition P , error(P) < α · |P|.

The above optimization formulation is obviously NP-hard but has a huge advantage
over the prediction formulation that it does not rely on cross-validation and can be
studied with combinatorial optimization techniques. Still, in order to make the resulted
clustering algorithm useful, one needs to find a way how to apply it to the original
prediction problem.

18.4.2 Model-Fitting Prediction

The following general approach has been proposed in [6]. Assuming that the clustering
algorithm indeed distinguishes real causes of the disease, one may expect that the
major reason for erroneous status assignment is in biases and lack of sampling. Then
a plausible assumption is that a larger sample would lead to a lesser proportion of
clustering errors. This implies the following transformation of clustering algorithm
into prediction algorithm:

Clustering-based Model-Fitting Prediction Algorithm

Set disease status 0 for the testing individual t and
Find the optimum (or approximate) clustering P0 of S ∪ {t}

Set disease status 1 for the testing individual t and
Find the optimum (or approximate) clustering P1 of S ∪ {t}

Find which of two clusterings P0 or P1 better fits model, and
accordingly predict status of t,

status(t) = arg min
i=0,1

error(Pi).

Two clustering algorithms based on combinatorial and complementary greedy
association searches has been proposed in [6]. These clustering methods find for each
individual an MSC or its cluster that contains it and is the most associated according to
a certain characteristic (e.g., RR, PPV, or lowest p-value) with disease susceptibility
and disease resistance. Then to each individual is attributed the ratio between these
two characteristic values—maximum disease susceptibility and disease resistance.
Although the resulted partition of the training set S is easy to find, it is still necessary

RESULTS AND DISCUSSION 407

to decide which threshold between case and control clusters should be used. The
threshold can be chosen to minimize the clustering error.

The combinatorial search-based prediction algorithm (CSP) exploits combinato-
rial search to find the most-associated cluster for each individual. Empirically, the
best association characteristic is found to be the relative risk rate RR. The compli-
mentary greedy search-based prediction algorithm (CGSP) exploits complimentary
greedy search to find the most-associated cluster for each individual. Empirically,
the best association characteristic is found to be the positive predictive value PPV.
The leave-one-out cross validation (see Section 18.5) shows significant advantage of
CSP and GCSP over previously known prediction algorithms for all considered real
datasets.

18.5 RESULTS AND DISCUSSION

In this section, we discuss the results of methods for searching disease associated
multi-SNP combinations and susceptibility prediction on real datasets. We first de-
scribe four real datasets, then overview search and prediction methods and conclude
with description and discussion of their performance. All experiments were ran on
Processor Pentium 4 3.2Ghz, RAM 2Gb, OS Linux.

18.5.1 Datasets

Crohn’s disease (5q31): The dataset Daly et al.[11] is derived from the 616 kilobase
region of human Chromosome 5q31 that may contain a genetic variant responsible
for Crohn’s disease by genotyping 103 SNPs for 129 trios. All offspring belong to
the case population, while almost all parents belong to the control population. In the
entire data, there are 144 case and 243 control individuals.
Autoimmune disorder: The dataset of Ueda et al.[31] are sequenced from 330 kb of
human DNA containing gene CD28, CTLA4, and ICONS that are proved related to
autoimmune disorder. A total of 108 SNPs were genotyped in 384 cases of autoim-
mune disorder and 652 controls.
Tick-borne encephalitis: The tick-borne encephalitis virus-induced dataset of Barkash
et al. [4] consists of 41 SNPs genotyped from DNA of 21 patients with severe tick-
borne encephalitis virus-induced disease and 54 patients with mild disease.
HapMap datasets: Regions ENr123 and ENm010 from two population: 45 Han
Chinese from Beijing (HCB) and 44 Japanese from Tokyo (JPT) for three regions
(ENm013, ENr112, ENr113) from 30 CEPH family trios obtained from HapMap
ENCODE Project [12]. Two gene regions STEAP and TRPM8 from 30 CEPH family
trios were obtained from HapMap.

The datasets have been phased using 2SNP software [5]. The missing data (16% in
[11] and 10% in [31]) have been imputed in genotypes from the resulted haplotypes.
We have also created corresponding haplotype datasets in which each individual is
represented by a haplotype with the disease status inherited from the corresponding
individual genotype.

408 OPTIMIZATION METHODS FOR GENOTYPE DATA ANALYSIS

TABLE 18.2 Number of Tags Used by MLR-Tagging, STAMPA and LR to Achieve 80%
and 90% Prediction Accuracy in Leave-One-Out Tests

ENm013 Enr112 ENr113 STEAP TRPM8 5q31
Acc. Algorithm (360) (411) (514) (22) (101) (103)

80% MLR 2 6 4 1 1 1
STAMPA 5 9 11 2 3 2

90% MLR 6 14 10 1 4 5
STAMPA 12 17 18 2 6 6

18.5.2 Informative SNP Selection

Two datasets from above have been used to measure the quality of the SNP prediction
and informative SNP selection algorithms as well as comparison with the results of
[15]. We use 2SNP algorithms [5] for resolving missing data. The SNPs with only
one allele are removed from the original data.

We have applied leave-one-out cross validation to evaluate the quality of the MLR-
tagging solution for the Genotype Tagging Problem as follows: (1) one by one, each
genotype vector is removed from the sample, (2) tag SNPs are selected using only
the remaining genotypes, and (3) the “left out” genotype is reconstructed based on
its tag SNPs and the values of tag and nontag SNPs in the remaining genotypes. In
Table 18.2, we compare MLR with STAMPA. Note that if one predicts each SNP
as 0 (i.e., homozygous with major allele), then the prediction accuracy on STEAP,
TRPM8, and 5q31 data will be 79.36%, 72.53%, and 63.57%, respectively. MLR first
predicts each SNP as 0 and then gets even higher prediction accuracy when it uses
a single tag while STAMPA requires at least two tags for prediction. STAMPA is
asymptotically faster but MLR is more accurate compared on four HapMap datasets.

18.5.3 Search for Disease-Associated MSCs

Here we discuss the results of four methods for searching disease associated MSCs
on real phased and unphased datasets. The p-values of the frequency distribution of
the found MSCs are used as a quality measurement.

18.5.3.1 Search Methods We have compared the following five methods for search
disease-associated MSCs.

� Exhaustive search (ES).
� Indexed exhaustive search (IES(30)): exhaustive search on the indexed datasets

obtained by extracting 30 indexed SNPs with MLR based tagging method [17].
� Combinatorial search (CS).
� Indexed combinatorial search (ICS(30)): combinatorial search on the indexed

datasets obtained by extracting 30 indexed SNPs with MLR based tagging
method [17].

RESULTS AND DISCUSSION 409

� Complimentary greedy search (CGS): approximate search for the maximum
control-free cluster.

Significant MSCs have been found only on levels 1 and 2 because adjusted p-value
grows with the level. The size of the datasets is large enough to make exhaustive search
impossible even for a combination of 6 SNPs.

18.5.3.2 Comparison of Accurate Searches The quality of searching methods is
compared by the number of found statistically significant MSCs (see the seventh col-
umn) in genotypes (see Table 18.3) and haplotypes (see Table 18.4). Since statistical
significance should be adjusted to multiple testing, we report for each method and
dataset the 0.05 threshold adjusted for multiple testing (this threshold is computed by
randomization and given in the third column of Tables 18.3 and 18.4). In the third,
fourth, and fifth columns, we give the frequencies of the best MSC among case and
control population and the unadjusted p-value, respectively.

TABLE 18.3 Comparison of Four Methods for Searching Disease-Associated Multi-
SNPs Combinations for Unphased Genotype Datasets

SNP Combination with Minimum p-value p-value # of MSCs
Search Search Case Control Unadjusted Corresp. to MT- with MT- Runtime
Level Method Frequency Frequency p-value Adjusted p=0.05 Adjusted p<0.05 s

Crohn’s disease [11]
1 ES 0.31 0.16 1.8× 10−3 1.6× 10−3 0 0.9

IES(30) 0.30 0.16 4.7× 10−3 3.9× 10−3 0 0.5
CS 0.30 0.11 2.0× 10−5 5.1× 10−5 2 1.0

ICS(30) 0.30 0.14 4.6× 10−3 2.2× 10−4 1 0.6
2 ES 0.30 0.13 3.1× 10−4 1.9× 10−5 0 15.0

IES(30) 0.31 0.14 4.4× 10−4 1.0× 10−4 0 1.0
CS 0.17 0.02 6.5× 10−7 1.5× 10−6 2 7.0

ICS(30) 0.17 0.04 3.7× 10−5 5.0× 10−5 1 0.4

Autoimmune disorder[31]

1 ES 0.43 0.28 1.1× 10−4 1.3× 10−3 2 1.0
IES(30) 0.43 0.28 1.1× 10−4 3.1× 10−3 4 0.6

CS 0.43 0.28 9.2× 10−5 1.8× 10−4 2 1.1
ICS(30) 0.43 0.28 1.1× 10−4 1.6× 10−3 4 0.6

2 ES 0.25 0.12 1.5× 10−6 2.7× 10−6 2 30.0
IES(30) 0.25 0.12 1.5× 10−6 8.0× 10−5 9 3.0

CS 0.16 0.06 8.5× 10−7 1.1× 10−6 3 20.0
ICS(30) 0.25 0.12 1.1× 10−6 4.7× 10−5 10 1.0

Tick-borne encephalitis virus-induced disease [4]

1 ES 0.33 0.07 1.5× 10−2 6.1× 10−3 0 0.08
IES(30) 0.33 0.07 1.5× 10−2 9.4× 10−3 0 0.03

CS 0.33 0.00 1.3× 10−4 4.8× 10−4 1 0.08
ICS(30) 0.33 0.02 8.1× 10−4 8.1× 10−4 1 0.03

2 ES 0.29 0.00 4.8× 10−4 2.5× 10−4 0 0.82
IES(30) 0.29 0.00 4.8× 10−4 1.3× 10−4 0 0.10

CS 0.33 0.00 1.3× 10−4 4.3× 10−5 0 0.60
ICS(30) 0.29 0.00 4.8× 10−4 1.3× 10−4 0 0.08

410 OPTIMIZATION METHODS FOR GENOTYPE DATA ANALYSIS

TABLE 18.4 Comparison of Four Methods for Searching Disease-Associated Multi-
SNPs Combinations for Phased Genotype Datasets

SNP Combination with Minimum p-value p-value # of MSCs

Search Search Case Control Unadjusted corresp. to MT- with MT- Runtime
Level Method Frequency Frequency p-value Adjusted p=0.05 Adjusted p<0.05 s

Crohn’s disease [11]
1 ES 0.52 0.40 9.7× 10−3 2.4× 10−3 0 1.0

IES(30) 0.52 0.41 1.6× 10−2 7.2× 10−3 0 0.6
CS 0.52 0.36 4.3× 10−4 1.3× 10−4 0 1.1

ICS(30) 0.52 0.40 1.0× 10−2 1.6× 10−2 1 0.7
2 ES 0.05 0.01 1.4× 10−3 3.0× 10−5 0 23.0

IES(30) 0.55 0.42 5.5× 10−3 1.7× 10−4 0 3.0
CS 0.48 0.30 5.9× 10−5 7.0× 10−7 0 17.0

ICS(30) 0.48 0.35 3.1× 10−3 5.8× 10−5 0 1.0

Autoimmune disorder [31]

1 ES 0.65 0.53 3.2× 10−4 9.2× 10−4 2 6.0
IES(30) 0.66 0.55 1.4× 10−3 5.3× 10−3 2 2.0

CS 0.37 0.28 2.9× 10−4 8.3× 10−4 5 6.2
ICS(30) 0.66 0.55 1.4× 10−3 7.4× 10−2 10 2.1

2 ES 0.17 0.09 6.8× 10−7 2.1× 10−6 2 173.0
IES(30) 0.19 0.12 3.7× 10−5 1.7× 10−4 2 16.0

CS 0.02 0.00 1.6× 10−8 5.0× 10−7 8 75.0
ICS(30) 0.19 0.12 3.0× 10−5 9.5× 10−5 2 5.7

Tick-borne encephalitis virus-induced disease [4]

1 ES 0.33 0.16 4.1× 10−2 2.3× 10−3 0 0.13
IES(30) 0.33 0.16 4.1× 10−2 4.1× 10−3 0 0.06

CS 0.24 0.05 4.1× 10−3 1.3× 10−4 0 0.14
ICS(30) 0.24 0.05 4.1× 10−3 2.7× 10−4 0 0.06

2 ES 0.24 0.05 4.1× 10−3 1.7× 10−4 0 2.40
IES(30) 0.29 0.00 4.8× 10−4 2.8× 10−4 0 1.10

CS 0.30 0.06 6.2× 10−4 1.5× 10−4 0 2.03
ICS(30) 0.29 0.00 4.8× 10−4 1.7× 10−4 0 0.80

18.5.3.3 Comparison of Approximate and Accurate Searches We have compared
IES(30) and ICS(30) with CGS (see Section 18.3) for search disease associated multi-
SNP combinations with the largest PPV.

The quality of searching methods is compared by the PPV of found clusters as
well as their statistical significance Table 18.5.

18.5.4 Disease Susceptibility Prediction Methods

We compare the prediction algorithms based on combinatorial and complimentary
greedy searches (see Section 18.4) proposed [6] with the following three prediction
methods. We have chosen these three methods out of six compared in [23] and two
other methods from [22] since they have best prediction results for two real datasets
[11] and [31].

RESULTS AND DISCUSSION 411

TABLE 18.5 Comparison of Three Methods for Searching the Disease-Associated and
Disease-Resistant Multi-SNPs Combinations with the Largest PPV. The Starred Values
Refer to Results of the Runtime-Constrained Exhaustive Search

Max PPV Risk Factor Max PPV Resistance Factor

Search Case Control Unadjusted Run Case Control Unadjusted Run
Dataset of Method Freq. Freq. p-value time s Freq. Freq. p-value time s

Crohn’s IES(30) 0.09∗ 0.00 8.7× 10−7 21530 0.00 0.07∗ 3.7× 10−4 869
disease ICS(30) 0.11 0.00 3.1× 10−9 7360 0.00 0.09 5.7× 10−5 708
[11] CGS 0.06 0.00 1.4× 10−4 0.1 0.00 0.10 2.2× 10−5 0.1

Autoimmune IES(30) 0.04∗ 0.00 2.5× 10−8 7633 0.00 0.04∗ 4.0× 10−6 39
disorder ICS(30) 0.04 0.00 2.5× 10−8 5422 0.00 0.04 4.0× 10−6 36
[31] CGS 0.02 0.00 3.4× 10−4 0.1 0.00 0.04 2.5× 10−5 0.1

Tick-borne ES 0.29∗ 0.00 4.8× 10−4 820 0.00 0.39 1.0× 10−3 567
encephalitis CS 0.33 0.00 1.3× 10−4 780 0.00 0.39 1.0× 10−3 1
[4] CGS 0.19 0.00 6.1× 10−3 0.1 0.00 0.32 3.8× 10−3 0.1

Support Vector Machine (SVM) SVM is a generation learning system based on recent
advances in statistical learning theory. SVMs deliver state-of-the-art performance in
real world applications and have been used in case/control studies [21,32]. We use
SVM-light [13] with the radial basis function with γ = 0.5.

Random Forest (RF) A random forest is a collection of CART-like trees following
specific rules for tree growing, tree combination, self-testing, and postprocessing. We
use Leo Breiman and Adele Cutler’s original implementation of RF version 5.1 [3].
RF tries to perform regression to generate the suitable model and using bootstrapping
produces random trees.

LP-based Prediction Algorithm (LP) This method is based on a graph X = {H, G},
where the vertices H correspond to distinct haplotypes and the edges G correspond to
genotypes connecting its two haplotypes. The density of X is increased by dropping
SNPs which do not collapse edges with opposite status. Solving a linear program it
assigns weights to haplotypes such that for any control genotype the sum of weights
of its haploptypes is less than 0.5 and greater than 0.5 otherwise. We maximize the
sum of absolute values of weights over all genotypes. The status of testing genotype
is predicted as sum of its end points [22].

Table 18.6 reports comparison of all considered prediction methods. Their quality
is measured by sensitivity, specificity, accuracy, and runtime. Since prediction accu-
racy is the most important quality measure, it is given in bold.2 Figure 18.3 shows the
receiver operating characteristics (ROC) representing the trade off between specificity
and sensitivity. ROC is computed for all five prediction methods applied to the
tick-borne encephalitis data [4].

2The prediction accuracy of methods CGSP and CSP has been erroneously reported [6], in this chapter,
we report corrected values in Table 18.6.

412 OPTIMIZATION METHODS FOR GENOTYPE DATA ANALYSIS

TABLE 18.6 Leave-One-Out Cross Validation Results of Four Prediction Methods
for Three Real Datasets. Results of Combinatorial Search-Based Prediction (CSP) and
Complimentary Greedy Search-Based Prediction (CGSP) are Given When 20, 30, or all
SNPs are Chosen as Informative SNPs

Prediction Methods

Quality CGSP CSP
Dataset Measure SVM LP RF 20 30 all 20 30 all
Crohn’s Sensitivity 20.8 37.5 34.0 28.5 72.1 53.1 63.9 72.0 —
disease Specificity 88.8 88.5 85.2 90.9 69.1 90.0 74.2 81.7 —
[11] Accuracy 63.6 69.5 66.1 68.2 70.5 76.3 70.2 76.1 —

Runtime (h) 3.0 4.0 0.08 0.01 0.17 9.0 611 1189 ∞
Autoimmune Sensitivity 14.3 7.1 18.0 29.4 32.3 46.3 60.9 71.0 —
disorder Specificity 88.2 91.2 92.8 90.7 84.0 85.7 75.0 80.1 —
[31] Accuracy 60.9 61.3 65.1 68.0 68.2 73.5 69.3 74.2 —

Runtime (h) 7.0 10.0 0.20 0.01 0.32 25.6 9175 17400 ∞
Tick-borne Sensitivity 11.4 16.8 12.7 51.9 42.4 56.7 77.5 70.2 67.2
encephalitis Specificity 93.2 92.0 95.0 90.2 93.1 89.4 86.2 87.4 89.4
[4] Accuracy 72.2 75.5 74.2 75.3 75.7 76.0 79.1 79.5 80.3

Runtime (h) 0.2 0.08 0.01 0.01 0.01 0.02 1.8 6.3 8.5

18.5.5 Discussion

Comparing indexed counterparts with exhaustive and combinatorial searches shows
that indexing is quite successful. Indeed, indexed search finds the same MSCs as

FIGURE 18.3 The receiver operating characteristics (ROC) for the five prediction meth-
ods applied to the tick-borne encephalitis data [4]. All SNPs are considered tags for CGSP
and CSP.

RESULTS AND DISCUSSION 413

nonindexed search but it is much faster and its multiple testing adjusted 0.05-threshold
is higher and easier to meet.

Comparing combinatorial searches with the exhaustive counterparts is
advantageous to the former. Indeed, for unphased data [11] the exhaustive
search on the first and second search levels is unsuccessful while the combinatorial
search finds several statistically significant MSCs for the same searching level.
Similarly, for unphased and phased data of [31], the combinatorial search found much
more statistically significant MSCs than the exhaustive search for the same searching
level.

Results show (see Tables 18.3 and 18.4) that the indexing approach and the
combinatorial search method are very promising techniques for searching statistically
significant diseases-associated MSCs that can lead to discovery disease causes. The
next step is biological validation of statistically significant MSCs discovered by
proposed searching methods.

The comparison of three association searches (see Table 18.5) shows that combi-
natorial search always finds the same or larger cluster than exhaustive search and is
significantly faster. The usage of search method runtime is critical in deciding whether
it can be used in the clustering and susceptibility prediction. Note that both the exhaus-
tive and combinatorial searches are prohibitively slow on the first two datasets and,
therefore, we reduce these datasets to 30 index SNPs while complementary greedy
search is fast enough to handle the complete datasets. This resulted in improvement of
the complementary greedy over combinatorial search for the first dataset when search
for the largest case-free cluster—after compression to 30 tags the best cluster simply
disappears.

The comparison of the proposed association search-based and previously known
susceptibility prediction algorithms (see Table 18.6) shows a considerable advantage
of new methods. Indeed, for the first dataset the best proposed method (CGSP) beats
the previously best method (LP) in prediction accuracy 76.3–69.5%. For the second
dataset, the respective numbers are 74.2% (CSP(30)) to 65.1% (RF), and for the
third dataset that are 80.3% (CSP) to 75.5% (LP). It is important that this lead is the
result of much higher sensitivity of new methods—the specificity is almost always
very high since all prediction methods tend to be biased toward nondiseased status.
The ROC curve also illustrates advantage of CSP and GCSP over previous methods.
Indeed the area under ROC curve for CSP is 0.81, for SVM is 0.52 compared with
random guessing area of 0.5. Another important issue is how proposed prediction
algorithms tolerate data compression. The prediction accuracy (especially sensitivity)
increases for CGSP when more SNPs are made available, for example, for the second
dataset, the sensitivity grows from 29.4% (20 SNPs) to 32.3% (30 SNPs) to 46.3%
(all 108 SNPs).

We conclude that the indexing approach, the combinatorial and complementary
greedy search methods, and association search-based susceptibility prediction al-
gorithms are very promising techniques that can possibly help (i) to discover gene
interactions causing common diseases and (ii) to create diagnostic tools for genetic
epidemiology of common diseases.

414 OPTIMIZATION METHODS FOR GENOTYPE DATA ANALYSIS

REFERENCES

1. Affymetrix (2005). http://www.affymetrix.com/products/arrays/

2. Avi-Itzhak HI, Su X, de la Vega FM. Selection of minimum subsets of single nucleotide
polymorphism to capture haplotype block diversity. Proc Pac Symp Biocomput 2003;
8:466–477.

3. Breiman L, Cutler A. http://www.stat.berkeley.edu/users/breiman/RF

4. Brinza D, Perelygin A, Brinton M, Zelikovsky A. Search for multi-SNP disease associ-
ation. Proceedings of the Fifth International Conference on Bioinformatics of Genome
Regulation and Structure (BGRS’06) 2006; pp. 122–125.

5. Brinza D, Zelikovsky A. 2SNP: Scalable phasing based on 2-SNP haplotypes. Bioinfor-
matics 2006;22(3):371–373.

6. Brinza D, Zelikovsky A. Combinatorial Methods for Disease Association Search and Sus-
ceptibility Prediction. Proceedings of the Sixth Workshop on Algorithms in BioInformatics
(WABI 2006) 2006; pp. 286–297.

7. Brinza D, He J, Zelikovsky A. Combinatorial search methods for multi-SNP disease as-
sociation. Proceedings of International Conference of the IEEE Engineering in Medicine
and Biology (EMBC’06) 2006; pp. 5802–5805.

8. Chapman JM, Cooper JD, Todd JA, Clayton DG. Detecting disease associations due
to linkage disequilibrium using haplotype tags: a class of tests and the determinants of
statistical power. Hum Hered 2003;56:18–31.

9. Clark AG. Finding genes underlying risk of complex disease by linkage disequilibrium
mapping. Curr Opin Genet Dev. 2003;13(3):296–302.

10. Clark AG, Boerwinkle E, Hixson J, Sing CF. Determinants of the success of whole-genome
association testing. Genome Res 2005;15:1463–1467.

11. Daly M, Rioux J, Schaffner S, Hudson T, Lander E. High resolution haplotype structure
in the human genome. Nat Genet 2001;29:229–232.

12. International HapMap Consortium. The international HapMap project. Nature
2003;426:789–796. http://www.hapmap.org

13. Joachims T. http://svmlight.joachims.org/

14. Halldorsson BV, Bafna V, Lippert R, Schwartz R, de la Vega, FM, Clark AG, Istrail
S. Optimal haplotype block-free selection of tagging SNPs for genome-wide association
studies. Genome Res 2004;14:1633–1640.

15. Halperin E, Kimmel G, Shamir R. ‘Tag SNP Selection in Genotype Data for Maximizing
SNP Prediciton Accuracy.’ Bioinformatics 2005;21:195–203.

16. He J, Zelikovsky A. MLR-Tagging: Informative SNP selection for unphased genotypes
based on multiple linear regression. Bioinformatics 2006;22(20):2558–2561.

17. He J, Zelikovsky A. Tag SNP selection based on multivariate linear regression, Proceed-
ings of International Conference on Computational Science (ICCS 2006). LNCS 3992
2006; pp. 750–757.

18. Herbert A, Gerry NP, McQueen MB. A common genetic variant is associated with adult
and childhood obesity. Science 2006;312:279–284.

19. Kimmel G, Shamir R. A block-free hidden markov model for genotypes and its application
to disease association. J Comput Biol 2005;12(10):1243–1260.

REFERENCES 415

20. Lee PH, Shatkay H. BNTagger: Improved tagging SNP selection using Bayesian Net-
works. Proceedingss of ISMB2006 in 2006. Preparation.

21. Listgarten J, Damaraju S, Poulin B, Cook L, Dufour J, Driga A, Mackey J, Wishart D,
Greiner R, Zanke B. Predictive models for breast cancer susceptibility from multiple
single nucleotide polymorphisms Clin Cancer Res 2004;10:2725–2737.

22. Mao W, He J, Brinza D, Zelikovsky A. A combinatorial method for predict-
ing genetic susceptibility to complex diseases. Proceedings International Confer-
ence of the IEEE Engineering in Medicine and Biology Society (EMBC’05) 2005;
pp. 224–227.

23. Mao W, Brinza D, Hundewale N, Gremalschi S, Zelikovsky A. Genotype susceptibil-
ity and integrated risk factors for complex diseases. Proceedingss IEEE International
Conference on Granular Computing (GRC 2006) 2006; pp. 754–757.

24. Marchini J, Donnelley P, Cardon LR. Genome-wide strategies for detecting multiple loci
that influence complex diseases. Nat Genet 2005;37:413–417.

25. Nelson MR, Kardia SL, Ferrell RE, Sing CF. A combinatorial partitioning method to
identify multilocus genotypic partitions that predict quantitative trait variation. Genome
Res 2001;11:458–470.

26. Spinola M, Meyer P, Kammerer S, Falvella F, Stefania, Boettger MB, Hoyal CR, Pig-
natiello C, Fischer R, Roth RB, Pastorino U, Haeussinger K, Nelson MR, Dierkesmann
R, Dragani TA, Braun A. Association of the PDCD5 locus with lung cancer risk and
prognosis in smokers. Am J Clin Oncol 2006;24:11.

27. Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction
from population data. Am J Hum Genet 2001;68:978–998.

28. Stram D, Haiman C, Hirschhorn J, Altshuler D, Kolonel L, Henderson B, Pike M. Choos-
ing haplotype-tagging SNPs based on unphased genotype data using as preliminary sam-
ple of unrelated subjects with an example from the multiethnic cohort study, Hum Hered
2003;55:27–36.

29. Tahri-Daizadeh N, Tregouet DA, Nicaud V, Manuel N, Cambien F, Tiret L. Automated
detection of informative combined effects in genetic association studies of complex traits.
Genome Res 2003;13:1952–1960.

30. Tomita Y, Yokota M, Honda H. Classification method for prediction of multifactorial
disease development using interaction between genetic and environmental factors. IEEE
CS Bioinformatics Conference, 2005. abstract.

31. Ueda H, Howson JMM, Esposito L, Heward J, Snook H, Chamberlain G, Rainbow DB,
Hunter KMD, Smith AN, Di Genova G. Association of the T cell regulatory gene CTLA4
with susceptibility to autoimmune disease. Nature 2003;423:506–511.

32. Waddell M, Page D, Zhan F, Barlogie B, Shaughnessy J. Predicting cancer sus-
ceptibility from single nucleotide polymorphism data: A case study in multiple
myeloma,Proceedingss of BIOKDD 2005.

33. Zhang K, Qin Z, Liu J, Chen T, Waterman M, Sun F. Haplotype block partitioning and tag
SNP selection using genotype data and their applications to association studies. Genome
Res 2004;14:908–916.

34. Zhang P, Sheng H, Uehara R. A double classification tree search algorithm for index SNP
selection. BMC Bioinformatics 2004;5:89–95.

PART V

STRUCTURAL AND SYSTEMS
BIOLOGY

19
TOPOLOGICAL INDICES IN
COMBINATORIAL CHEMISTRY

Sergey Bereg
Department of Computer Science, University of Texas at Dallas, Dallas, TX, USA

19.1 INTRODUCTION

There are several approaches to making correlations between chemical structure and
some desired property or bioactivity (either of which is here spoken of simply as
the “activity”). Quantitative-structure-activity-relationships (QSAR) have achieved
widespread use, perhaps most especially in evaluating bioactivities, for example, in
drug development. A general approach is to correlate a desired activity with various
topological indices, which are usually referred to as graph invariants in graph theory.

This paper outlines some topological indices and recent results in the study of com-
binatorial properties of topological indices. We also address computational problems
involving topological indices. Apart from the mathematical properties of topological
indices, the main question is the correlation of descriptors and physical, chemical
and biological properties of molecular compounds. Modern QSARs use not only
topological features. They incorporate local vertex invariants with real numbers and
geometric features.

19.2 TOPOLOGICAL INDICES

Molecules and molecular compounds are often modeled by molecular graphs. Topo-
logical indices of molecular graphs are one of the oldest and most widely used

Bioinformatics Algorithms: Techniques and Applications, Edited by Ion I. Mǎndoiu
and Alexander Zelikovsky
Copyright © 2008 John Wiley & Sons, Inc.

419

420 TOPOLOGICAL INDICES IN COMBINATORIAL CHEMISTRY

descriptors in quantitative structure activity relationships. Quantitative structure
activity relationships (QSAR) is a popular computational biology paradigm in modern
drug design [9,42].

Graphs are finite, undirected, connected, without loops and multiple edges. Let
G = (V, E) be a graph. The distance dG(u, v) between vertices u and v in a graph G

is the number of edges in a shortest path from u to v in G [3]. The distance of a vertex
v ∈ V , denoted by dG(v) is the sum of distances between v and all other vertices of
G. One of the most widely known topological descriptor [22,31] is the Wiener index
named after chemist Harold Wiener [55] who devised it and studied it in 1947.

Definition 19.1 The Wiener index of a graph G(V, E) is defined as the sum of the
distances between all pairs of vertices in G

W(G) =
∑

{u,v}∈V

dG(u, v) = 1

2

∑
v∈V

dG(v). (19.1)

Wiener [55] studied acyclic graphs representing paraffins and defined W(G) as the
path number. “The path number w is defined as the sum of the distances between any
two carbon atoms in the molecule.”

In the mathematical literature, the Wiener index studied under different names
such as distance of a graph [18]. A related graph invariant is the average distance of
a graph [10], defined as W(G)/

(
n
2

)
.

For acyclic molecular graphs Wiener [55] discovered a remarkably simple method
for the calculation of the Wiener index. Let T = (V, E) be a tree and let e be an edge
of T . Let n1(e) and n2(e) be the number of vertices of two trees of T − e. Then,

W(T) =
∑
e∈E

n1(e)n2(e). (19.2)

The proof follows from the fact that there are exactly n1(e)n2(e) shortest paths con-
taining an edge e, see Fig. 19.1 for an example.

9

9

9

9

99

21
24

16

(a) (b)

u

v

FIGURE 19.1 Carbon skeleton of 3-ethyl-2,2,4-trimethylpentane. Its Wiener index is equal
to 115, which is (a) the sum of the distances d() (e.g., d(u, v) = 4) and (b) the sum of the edge
costs by Equation 19.2.

TOPOLOGICAL INDICES 421

The quantities n1(e) and n2(e) can be defined for general graphs as follows. Let
e = (x, y) be an edge of a graph G = (V, E). Let n1(e) be the number of vertices of
G closer to x than to y and let n2(e) be the number of vertices of G closer to y than
to x. This allows to define the Szeged index.

Definition 19.2 The Szeged index of a graph G = (V, E) is defined as the sum of
the distances between all pairs of vertices in G

Sz(G) =
∑
e∈E

n1(e)n2(e). (19.3)

A generalization of the Wiener index has been studied recently [28].

Definition 19.3 The multiplicative Wiener index of a graph G = (V, E) is defined
as the sum of the distances between all pairs of vertices in G

Wλ(G) =
∑

{u,v}⊆V

(dG(u, v))λ. (19.4)

Definition 19.4 The σ-index σ(G) of a graph G is the number of independent vertex
subsets of G (including the empty set), where a set of vertices is said to be independent
if there is no pair of connected vertices in it.

Definition 19.5 The c-index c(G) of a graph G is the number of cliques of G

(including the empty clique), that is, the number of complete subgraphs.

Definition 19.6 The Z-index Z(G) of a graph G is the number of independent edge
subsets of G (including the empty set), where a set of edges is said to be independent
if there is no pair of edges sharing a common vertex in it.

We denote the degree of a vertex v of a graph G by δv. Schultz [51] considered a
graph invariant whose essential part is the Schultz index,

S(G) =
∑

{u,v}∈V

(δu + δv)dG(u, v). (19.5)

Gutman [23] examined the modified Schultz index,

S∗(G) =
∑

{u,v}∈V

δuδvdG(u, v). (19.6)

422 TOPOLOGICAL INDICES IN COMBINATORIAL CHEMISTRY

19.3 WIENER INDICES OF TREES

A vertex of degree one is called a pendent vertex. Let Pn be the path, the n-vertex tree
with two pendent vertices. Let Sn be the star, the n-vertex tree with n− 1 pendent
vertices. Their Wiener indices [18] are

W(Pn) =
(

n+ 1

3

)
and W(Sn) = (n− 1)2. (19.7)

If T is an n-vertex graph different from Pn and Sn, then [27]

W(Sn) < W(T) < W(Pn). (19.8)

The expected value of W(T) over all ordered/rooted, labeled/rooted binary trees if
size n is asymptotic to cn5/2, where the constant c depends on the class of trees [19].

19.4 COMPUTING THE WIENER INDEX

Most of the algorithms for computing the Wiener index of a graph use its definition
and compute all pairwise distances [49]. Let G = (V, E) be a connected graph with
n vertices and m edges. The total running time is dominated by computing all pairs
shortest paths. They can be computed in O(n3) time by Dijkstra algorithm. For sparse
graphs, the running time can be reduced to O(n2 log n+mn) using Fibonacci heaps
[20]. Alternatively, Johnson’s algorithm [33] can be used. The main open problem is
to design an efficient algorithm for computing the Wiener index avoiding computation
of all pairwise distances [49].

Several algorithms are known for computing the Wiener index of a tree [13].
Equation 19.9 can be used for computing the Wiener index of a tree T . The values
n1(e) and n2(e) for all edges e can be computed in total linear time as follows. First,
make a rooted tree from T by assigning a vertex of T as the root. Then, compute the
size of the subtree rooted at v, for all vertices v in bottom-to-top fashion. Note that
n1(e)+ n2(e) = n for every edge e in T .

Equation 19.1 provides another way of computing the Wiener index using the
distances dT (v). The values of dT (v) can be computed in O(n) time by the following
theorem (which holds for graphs with cycles as well!).

Theorem 19.1 [18] For any edge e = (x, y) of a connected graph G,

dG(x)− dG(y) = n2(e)− n1(e). (19.9)

Equation 19.1 is not a unique expression of the Wiener index through the distances
dT (v). The following formula shows how irregularity of the distances of adjacent
vertices influences the Wiener index [14].

COMPUTING THE WIENER INDEX 423

Theorem 19.2 Let T = (V, E) be a tree with n vertices. Then

W(T) = 1

4

[
n2(n− 1)−

∑
(u,v)∈E

(
dT (v)− dT (v)

)2
]
. (19.10)

Equation 19.1 expresses the Wiener index as a linear combination of the distances
dT (v) with coefficients equal to 1/2. The next formula demonstrates another linear
combination with coefficients equal to the vertex degrees.

Theorem 19.3 Let T = (V, E) be a tree with n vertices. Then

W(T) = 1

4

[
n(n− 1)+

∑
v∈V

degT (v)dT (v)
]
, (19.11)

where degT (v) is the degree of a vertex v of T .

Three different proofs of Equation 19.11 are known [14,23,38].
Canfield et al. [6] applied a recursive approach for calculating the Wiener index of a
tree. For a rooted tree T , we denote by l(T) the sum of the distances from the root
vroot of T to all its vertices, l(T) =∑v∈T d(vroot, v). Note that l(T) = dT (vroot).

Theorem 19.4 Canfield et al. [6] Let T be a tree of size n with the root vroot and let
vi, 1 ≤ i ≤ k be the vertices adjacent to vroot . Let Ti, 1 ≤ i ≤ k be the subtree of T

rooted at vi. Let ni be the size of Ti, 1 ≤ i ≤ k, see Fig. 19.2. Then

W(T) = n(n− 1)+
k∑

i=1

[W(Ti)+ (n− ni) l(Ti)− n2
i] , (19.12)

l(T) = n− 1+
k∑

i=1

l(Ti). (19.13)

The computation of W(T) and l(T) by Equations 19.12 and 19.13 takes O(k) time.
The total running time is O(n).

vroot

v1

T1

. . .

v2
vk

T2 Tk

FIGURE 19.2 Recursive computation of the Wiener index.

424 TOPOLOGICAL INDICES IN COMBINATORIAL CHEMISTRY

19.5 COMPUTING THE WIENER INDEX USING BRANCHINGS

A branching vertex of a tree is a vertex of degree at least three. A segment of a tree T

is a path such that its vertex has degree two in T if and only if it is an internal vertex of
the path. The edges of T are partitioned into segments. If T has no vertices of degree
two then all segments of T are single edges. The length of a segment S (the number
of edges in S) is denoted by lS .

Doyle and Graver [17] discovered a formula for the calculation of the Wiener index
of trees with few branching vertices. Consider a tree T whose structure is described
in connection with Theorem 19.4 (see Fig. 19.2).

Theorem 19.2 [17] Let T be a tree of size n. Then

W(T) =
(

n+ 1

3

)
−
∑

u

∑
1≤i<j<k≤degT (u)

ninjnk, (19.14)

where the first summation goes over branching vertices u ∈ T and ni, 1 ≤ i ≤
degT (u) is the size of ith tree in T − u (as in Theorem 19.1).

Note that
degT (u)∑

i=1

ni = n− 1 in Equation 19.14.

Dobrynin [12] discovered a formula similar to Wiener’s Equation 19.2. Let S be a
segment of a tree T and let T1 and T2 be two trees obtained by removing edges of S

and internal vertices of S from T . Let ni(S), i = 1, 2 be the size of the tree Ti.

Theorem 19.3 [12] Let T be a tree of size n. Then

W(T) =
∑
S

n1(S)n2(S)lS + 1

6

∑
S

lS(lS − 1)(3n− 2lS + 1), (19.15)

where the summations go over all segments S of T .

19.6 LAPLACIAN EIGENVALUES AND THE WIENER INDEX

Let G = (V, E) be a graph with n vertices v1, v2, . . . , vn. The diagonal matrix � is
defined as

�ij =
{

degG(vi), if i = j

0 , otherwise.
(19.16)

The adjacency matrix A is defined as

Aij =
{

1, if (vi, vj) ∈ E

0, otherwise.
(19.17)

HOSOYA POLYNOMIAL 425

The Laplacian matrix of G is defined as L = �− A. The Laplacian graph spectrum
is the set of eigenvalues of L, denoted by λ1, λ2, . . . , λn. It is known that the smallest
eigenvalue of L is zero and the other eigenvalues are positive. The theory of Laplacian
spectra of graphs has been extensively studied (for a review see [46,48]).
The following result was communicated independently in [44,45,47,48].

Theorem 19.4 Let T be a tree of size n. If λ1 ≥ λ2 ≥ . . . ≥ λn are the Laplacian
eigenvalues of T , then

W(T) = n

n−1∑
i=1

1

λi

. (19.18)

Theorem 19.4 is an unexpected result since it connects the Wiener index (a quantity
defined on the basis of graph distances) and matrix eigenvalues. Hopefully, powerful
tools of linear algebra will be used for more interesting results in the theory of the
Wiener index.

19.7 HOSOYA POLYNOMIAL

Hosoya [30] introduced a distance-based polynomial whose first derivative
gives the Wiener index. Due to this property, Hosoya called it the Wiener
polynomial. Recently, the polynomial is also called the Hosoya polynomial
[26,53]. Let G = (V, E) be a graph with n vertices and m edges. Let d(G, k)
be the number of pairs of vertices of the graph G at distance k. In par-
ticular, d(G, 0) = n, d(G, 1) = m, and

∑
k≥0 d(G, k) = (n2)+ n = n(n+ 1)/2. The

Hosoya polynomial is defined as

H(G, x) =
∑
k≥0

d(G, k) xk. (19.19)

Using distances d(G, k), the Wiener index can be written as

W(G) =
∑
k≥0

k d(G, k). (19.20)

Equations 19.19 and 19.20 imply that the first derivative of the Hosoya polynomial
at x = 1 is equal to the Wiener index. Equivalently, the Hosoya polynomial can be
written as

H(G, x) =
∑

{u,v}⊆V

xd(u,v). (19.21)

426 TOPOLOGICAL INDICES IN COMBINATORIAL CHEMISTRY

Similar to the distance of a vertex dG(v), we define the vertex Hosoya polynomial for
a vertex v:

Hv(G, x) =
∑
u∈V

xd(u,v).

Then,

H(G, x) = 1

2

∑
v∈V

Hv(G, x).

Stevancović [53] found formulas for calculating the Hosoya polynomial of a graph
composed from two graphs using the graph operations: the sum, join, composition,
corona, and cluster. Ivanciuc and Klein [32] provided a formula for the Hosoya
polynomial of a graph with a cut edge. Let (a, b) be a cut edge between two sub-
graphs A and B of a graph G, that is, V (G) = V (A) ∪ V (B), V (A) ∩ V (B) = ∅
and E(G) = E(A) ∪ E(B) ∪ {(a, b)}, a ∈ V (A), b ∈ V (B) as in Fig. 19.3. Then the
Hosoya polynomial of G is

H(G, x) =
∑

{u,v}⊆V (A)

xd(u,v) +
∑

u∈V (A)

∑
v∈V (B)

xd(u,v) +
∑

{u,v}⊆V (B)

xd(u,v)

= H(A, x)+
∑

u∈V (A)

∑
v∈V (B)

xd(u,a)+1+d(b,v) +H(B, x)

= H(A, x)+ x Ha(A, x) Hb(B, x)+H(B, x).

The Schultz index related to the Wiener index as

S(G) = 4W(G)− n(n− 1). (19.22)

This relation follows from Equation 19.11.
Recently, Gutman [24] studied graph polynomials related to the Schultz and mod-

ified Schultz indices (19.5,19.6). These polynomials are

H1(G, x) =
∑

{u,v}⊆V

(δu + δv)xd(u,v) ,

a b
A B

FIGURE 19.3 The graph G is composed of two graphs A and B and an edge (a, b).

INVERSE WIENER PROBLEM 427

H2(G, x) =
∑

{u,v}⊆V

(δuδv)xd(u,v).

If G is a tree on n vertices then the polynomials H1(G, x) and H2(G, x) are related
to the Hosoya polynomial as

H1(G, x) = 2

(
1+ 1

x

)
H(G, x)− 2

(
1+ n

x

)
,

H2(G, x) =
(

1+ 1

x

)2

H(G, x)−
(

1+ 1

x

)(
2+ 1

x

)
n

+
(

1+ 1

x

)
+ 1

2

∑
v∈V

(δv)2.

19.8 INVERSE WIENER PROBLEM

The natural question arising in the study of topological indices is: What integers can
be Wiener indices of graphs?

Bytautas and Klein [4] used combinatorial techniques to enumerate isomers for
up to 40 carbons. Later, they [5] found average Wiener numbers for alkanes with at
most 90 carbons. Dobrynin and Gutman [15] found the average value of the Wiener
index of hexagonal chains (unbranched catacondensed benzenoid systems) with a
fixed number of hexagons.

For the class of all graphs, the question about integers that are Wiener indices
has been solved [21,29]. Specifically, for any positive integer w �= 2, 5, there exists
a graph G such that W(G) = w. Gutman and Yeh [29] proved that every positive
integer different from 2, 3, 5, 6, 7, 11, 12, 13, 15, 17, 19, 33, 37, and 39 is the Wiener
index of a bipartite graph. They also conjectured the following.

Conjecture 19.1 There is only a finite number of positive integers that are not
Wiener indices of some trees.

Lepović and Gutman [40] presented an exhaustive search algorithm that verifies
Conjecture 19.1 up to 1206. They enumerated all unlabeled nonisomorphic trees of
up to 20 vertices and found 49 positive integers that are not Wiener indices of trees:
2, 3, 5, 6, 7, 8, 11, 12, 13, 14, 15, 17, 19, 21, 22, 23, 24, 26, 27, 30, 33, 34, 37, 38,
39, 41, 43, 45, 47, 51, 53, 55, 60, 61, 69, 73, 77, 78, 83, 85, 87, 89, 91, 99, 101, 106,
113, 147 and 159. This result justifies a somewhat stronger hypothesis [40].

Conjecture 19.2 There are exactly 49 positive integers that are not Wiener indices
of some trees. These are just the above listed numbers.

The enumeration of trees requires an exponential time. Goldman et al. [21] applied
a dynamic programming approach based on Theorem 19.1 avoiding the enumeration

428 TOPOLOGICAL INDICES IN COMBINATORIAL CHEMISTRY

s1 s2 s3 s4

t1
1 t1

2 t1
3 t2

1 t2
2 t4

1 t4
2t3

1

FIGURE 19.4 The tree T (3, 2, 1, 2).

of trees. Their algorithm stores only triples (n, l, w) for rooted trees. The algorithm
is more efficient and verified that all numbers between 159 (exclusively) and 10 ,000
are the Wiener indices of trees.

Ban et al. [2] found an interesting class of trees that is promising for solving
the conjecture. Let (r1, r2, . . . , rk) be a sequence of integers such that ri ≥ 1, i =
1, . . . , k. A tree T (r1, r2, . . . , rk) is defined using the set of vertices

V = {s1, . . . , sk} ∪ {t1
1, . . . , t1

r1
, . . . , tk1, . . . , tkrk }

and the set of edges

E = {(si, si+1), 1 ≤ i ≤ (k − 1)} ∪ {(tjl , sj), 1 ≤ j ≤ k, 1 ≤ l ≤ rj},

see Fig. 19.4 for an example. If k is fixed, then the set of trees is denoted by Tk. They
designed a fast algorithm for enumerating the Wiener indices of these trees. They
found 56 positive integers smaller than 108 that are not Wiener indices of these trees:
2, 3, 5, 6, 7, 8, 11, 12, 13, 14, 15, 17, 19, 21, 22, 23, 24, 26, 27, 30, 33, 34, 37, 38, 39,
41, 43, 45, 47, 51, 53, 55, 60, 61, 69, 72, 73, 77, 78, 83, 85, 87, 89, 91, 99, 101, 106,
113, 117, 129, 133, 147, 157, 159, 173, and 193. This leads to a new conjecture [2].

Conjecture 19.3 Except the above 56 numbers, all positive integers are the Wiener
indices of trees in Tk, k ≥ 1.

Ban et al. [2] explored the question whether all sets Tk are needed to solve Conjec-
ture 19.1. It turns out that the set T5 produces many Wiener indices. Specifically, the
Wiener indices of Tk, k ≤ 5 cover all integers in the range 557 < W ≤ 108. Actually,
this range is covered using just the set of trees T5 and they [2] conjectured:

Conjecture 19.4 Except a set of 102 numbers (the largest number is 557), all
positive integers are the Wiener indices of trees in T5.

19.9 HEXAGONAL SYSTEMS

There are many molecules of interest in chemistry whose graphs are cyclic. One
class of cyclic molecules is the benzenoid hydrocarbons. The carbon-atom skeleton
of these hydrocarbons consists of mutually fused hexagons. They can be modeled by

HEXAGONAL SYSTEMS 429

hexagonal systems [16], see Fig. 19.5 for an example. A vertex v of a graph G is said
to be a cut-vertex if the subgraph obtained by deleting v from G has more connected
components than G.

Definition 19.7 A hexagonal system is a connected plane graph without cut-vertices
in which all inner faces are hexagons (and all hexagons are faces), such that two
hexagons are either disjoint or have exactly one common edge, and no three hexagons
share a common edge.

19.9.1 Hexagonal Systems with Extreme Wiener Indices

Definition 19.8 A hexagonal system is said to be simple if it can be embedded into the
regular hexagonal lattice in the plane without overlapping of its vertices. Hexagonal
systems that are not simple are called jammed, see Fig. 19.6 for an example.

Definition 19.9 A vertex of a hexagonal system is internal if it is shared by three
hexagons. The number of internal vertices is denoted by ni. A hexagonal system is
said to be catacondensed if it does not have internal vertices (ni = 0). A hexagonal
system is said to be pericondensed if it has at least one internal vertex (ni > 0).

Hexagons sharing a common edge are said to be adjacent. The characteristic graph
(or dual graph) of a hexagonal system consists of vertices corresponding to hexagons
of the system; two vertices are adjacent if and only if the corresponding hexagons are
adjacent. A hexagonal system is catacondensed if and only if its characteristic graph
is a tree, see Fig. 19.6.
Simple Hexagonal Chains. Dobrynin [11] determined hexagonal chains minimizing
and maximizing the Wiener index. The maximum and minimum Wiener index is
realized on the serpent and the linear chain, see Fig. 19.7. The minimum Wiener

H

C

H

H

H

H
H

HH

H

H

H
H

C

C
C

C

C
C

C

C
C

C
C

C

C
C

C

C
C

FIGURE 19.5 Benzenoid hydrocarbon Chrysene and its hexagonal system.

430 TOPOLOGICAL INDICES IN COMBINATORIAL CHEMISTRY

G1 G2

G3

FIGURE 19.6 Simple hexagonal system G1, jammed hexagonal system G2, pericondensed
hexagonal system G3, and their characteristic graphs.

index is equal to

W(G1) = 1

9
(32h3 + 168h2 + φ(h)),

where h is the number of hexagons and

φ(h) =
⎧⎨
⎩

−6h+ 81, if h = 3m

−6h+ 49, if h = 3m+ 1
−6h+ 161, if h = 3m+ 2.

(19.23)

G1

. . .

G2
. . .

FIGURE 19.7 The serpent G1. The linear chain G2.

HEXAGONAL SYSTEMS 431

C2
C3

FIGURE 19.8 The coronene C2 and the circumcoronene C3.

The maximum Wiener index is equal to

W(G2) = 1

3
(16h3 + 36h2 + 26h+ 3).

Pericondensed Hexagonal Systems. The hexagonal system C2 shown in Fig. 19.8
is called the coronene (the name borrowed from chemistry). The circumcoronene
Ck, k ≥ 3 is constructed by circumscribing Ck−1 with hexagons, see C3 in Fig. 19.8.
The basic properties of circumcoronenes see [52].

Pericondensed hexagonal systems minimizing the Wiener index are similar to the
circumcoronenes. These systems can be obtained from circumcoronenes by deleting
their peripheral hexagons. The number of hexagons of Ck is h = 3k2 − 3k + 1 and
its Wiener index [25,52] is equal to

W(Ck) = 1

5
(164k5 − 30k3 + k).

The Wiener index W(Ck) depends on h as �(h2.5).

19.9.2 Isometric Embeddings of Hexagonal Systems

Let G = (V, E) be a connected graph. Its subgraph H is said to be isometric, if for any
pair of vertices u, v of H , we have dG(u, v) = dH (u, v). For instance, any hexagon
of a hexagonal system is its isometric subgraph.

The hypercube graph Qn is a special regular graph with 2n vertices, which cor-
respond to the subsets of a set with n elements. Two vertices labeled by subsets S1
and S2 are joined by an edge if and only if S1 can be obtained from S2 by adding or
removing a single element. Each vertex of Qn is incident to exactly n edges. Klavžar
et al. [37] proved the following theorem.

Theorem 19.4 Any hexagonal system is an isometric subgraph of a hypercube.

Every hexagon has three pairs of opposite edges. Using these pairs we can partition
the edges into three sets E = E1 ∪ E2 ∪ E3. Let Gi = (V, E − Ei), i = 1, 2, 3 and
let Ti be the graph whose vertices are connected components of Gi, two vertices of Ti

being adjacent if there is an edge in G between the corresponding components of Gi.
It turns out that Ti, i = 1, 2, 3 is a tree. This construction is illustrated in Fig. 19.9.

432 TOPOLOGICAL INDICES IN COMBINATORIAL CHEMISTRY

G

G1

T1

G2

G2

T2

T3

3 3

5

5
6

4
3

3
4

6
5

7

FIGURE 19.9 Benzenoid hydrocarbon chrysene and its hexagonal system.

Define a mapping α : G→ T1 � T2 � T3 as follows. For a vertex v of G, set α(v) =
(v1, v2, v3), where vi is the vertex of Ti corresponding to v. Chepoi [7] proved an
isometric property of the mapping α.

Theorem 19.5 Let G be a hexagonal system. Then α(G) is an isometric subgraph
of T1 � T2 � T3.

Theorem 19.5 is the starting point for a fast method of computing the Winer index
of a hexagonal system. A weighted graph (G, w) is a graph G = (V, E) together with
a weight function w : V → N+. The Wiener index of a weighted graph (G, w) is
defined as [36]

W(G, w) =
∑

{u,v}⊆V

w(u)w(v)dG(u, v).

Note that if all the weights are 1, then W(G, w) = W(G).
Let G be a hexagonal system, and T1, T2, T3 be the trees as in Theorem 19.5. For

a vertex u of a tree Ti, let the weight wi(u) be the number of vertices x of G, whose
ith position in the label α(x) is equal to u, see Fig. 19.9 for an example. Chepoi and
Klavžar [8] found a formula for the Wiener index of G.

THE WIENER INDEX OF PEPTOIDS 433

Theorem 19.6 Let G be a hexagonal system, and (T1, w1), (T2, w2), and (T3, w3)
be the corresponding weighted trees. Then

W(G) = W(T1, w1)+W(T2, w2)+W(T3, w3).

The Wiener index of a hexagonal system on n vertices can be computed in O(n) time.

19.10 THE WIENER INDEX OF PEPTOIDS

In drug design, new compounds are constructed using compounds from a combinato-
rial library. The central problem is the construction of a molecular graph with given
chemical or physical properties. A chemical or physical property can be quantita-
tively represented by some topological index. Goldman et al. [21] studied the Wiener
indices of peptoids, graphs constructed from given molecular graphs by joining them
in a linear scaffold way.

Definition 19.10 ([21]) A (chemical) fragment is a graph G with a special vertex v

denoted as its anchor, or hooking point. A peptoid is a graph obtained by joining in a
linear fashion from left to right, k fragments G1, G2, . . . , Gk via a path through their
hooking points, see Fig. 19.10 for an example. Note that, when k = 1, a fragment is
a special case of a peptoid. For a peptoid D = (V, E), by l(D) =∑v∈V dG(v, vk) we
denote the total distance of all vertices from the rightmost hooking point vk. If k = 1,
l() is the total distance from all nodes of a fragment to its anchor.

A flower-compressed peptoid, or flower is constructed from fragments by iden-
tifying their anchors. For example, in Fig. 19.10 the flower can be constructed by
compress the vertices v1, v2 and v3 to one vertex.

v1

v2
v3

FIGURE 19.10 A 3-peptoid. The three fragments are anchored on a linear scaffold at posi-
tions v1, v2, and v3.

434 TOPOLOGICAL INDICES IN COMBINATORIAL CHEMISTRY

Theorem 19.7 ([21]) The Wiener index of a linear scaffold peptoid constructed
from k fragments f1, f2, . . . , fk is

W(G) =
k∑

i=1

k∑
j=i+1

[nilj + (j − i)ninj + njli]+
k∑

i=1

wi, (19.24)

where ni is the number of nodes in the fragment fi, wi is the Wiener index of the
fragment fi and li = l(fi).

Let F be the flower constructed from the k fragments f1, f2, . . . , fk. The Wiener
index of F is

W(F) =
k∑

i=1

k∑
j=i+1

[nilj + njli]+
k∑

i=1

wi. (19.25)

The difference of the Wiener indices of two peptoids is

D = W(G)−W(F) =
k∑

i=1

k∑
j=i+1

(j − i)ninj.

If we use a permutation π of the fragments in the linear scaffold peptoid, then the
difference is

D(π) =
k∑

i=1

k∑
j=i+1

(j − i)nπ(i)nπ(j).

Goldman et al. [21] studied the minimum and maximum Wiener indices of peptoids
and conjectured the following.

Conjecture 19.5 (Minimum Wiener index peptoid [21]) Given n1 ≤ n2 ≤ . . . ≤ nk,
the permutation π minimizing D(π) is

π(i) =
{

2i−1, if i ≤ k/2
2(k−i+1), if i > k/2.

Conjecture 19.6 (Maximum Wiener index peptoid [21]) Given n1 ≤ n2 ≤ . . . ≤ nk,
the permutation π maximizing D(π) can be computed as follows:

Lp = 0; L = 0;
Rp = 0; R = 0;
for i = k down to 1 do

THE σ-INDEX AND RELATED INDICES 435

if R ≥ L, then
π(Lp) = i; Lp = Lp + 1; L = L+ ni;

else
π(Rp) = i; Rp = Rp + 1; R = R+ ni;

Both conjectured have been extensively tested [21]. Recently, Conjecture 19.5 has
been proved by Li and Wang [41] using Hardy, Littlewood, and Polya’s inequality.
They found counterexamples to Conjecture 19.6 and posed an open problem of finding
a polynomial-time algorithm for computing a permutation π maximizing D(π) for
given k fragments of size n1 ≤ n2 ≤ . . . ≤ nk.

19.11 THE σ-INDEX AND RELATED INDICES

The σ-index is also known as the Merrifield–Simmons index due to the original work
by Merrifield and Simmons [43] where they showed the correlation between this
index and boiling points.

In mathematics, the σ-index has been introduced in 1982 as the Fibonacci number
of a graph by Prodinger and Tichy [50]. In this and two subsequent papers [34,35],
the σ-index for trees, especially t-ary trees, was investigated. They proved that (i) the
tree of maximal σ-index is the star Sn, and (ii) the tree of minimal σ-index is the path
Pn. If G is a graph G with n vertices then

Fn+2 = σ(Pn) ≤ σ(G) ≤ σ(Sn) = 2n−1 + 1,

where F0 = 0, F1 = 1, and Fk+1 = Fk + Fk−1 is the sequence of Fibonacci numbers.
Alameddine [1] proved bounds for the σ-index of a maximal outerplanar graph.

Knopfmacher et al. [39] studied trees with large σ-index and determined all trees T

with n vertices satisfying

2n−2 + 5 < σ(T) ≤ σ(Sn) = 2n−1 + 1.

The c-index can be viewed as the complement of the σ-index since c(G) = σ(G),
where G is the complement graph. This follows from the fact that an independent
subset in G is a clique in G and vice versa. Graphs with extreme c-index are studied
in [54].

The Z-index is related to the σ-index in the following way: for a graph G, define
the line graph G′ to be the graph that results from replacing the edges by vertices and
connecting vertices whose corresponding edges in G have a common vertex. Then,
it is easy to verify that σ(G′) = Z(G).

The removal of an edge increases the σ-index and decreases the Z-index. The
complete graph Kn has the largest Z-index among all graphs with n vertices. Unlike
the σ-index, it is a nontrivial problem to determine the exact value for the Z-index of

436 TOPOLOGICAL INDICES IN COMBINATORIAL CHEMISTRY

the complete graph Kn. It can be calculated using the following sum:

Z(Kn) =
�n/2�∑
k=0

n!

2kk!(n− 2k)!
.

For small n, the exact values are 1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496.

REFERENCES

1. Alameddine AF Bounds on the Fibonacci number of a maximal outerplanar graph.
Fibonacci Quart 1998; 36:206–210.

2. Ban A, Bereg S, Mustafa N. On a conjecture of Wiener indices in computational chem-
istry. Algorithmica 2004; 40(2):99–118.

3. Buckley F, Harary F. Distance in Graphs. Addison-Wesley, Erdwood, 1990.

4. Bytautas L, Klein DJ. Chemical combinatorics for alkane-isomer enumeration and more.
J Chem Inf Comput Sci 1998; 38:1063–1078.

5. Bytautas L, Klein DJ. Mean Wiener numbers and other mean extensions for alkane trees.
J Chem Inf Comput Sci 2000; 40:471–481.

6. Canfield ER, Robinson RW, Rouvray DH. Determination of the Wiener molecular branch-
ing index for the general tree. J. Comput Chem 1985; 6:598–609.

7. Chepoi V. On distances in benzenoid systems. J Chem Inf Comput Sci 1996; 36:1169–
1172.

8. Chepoi V, Klavžar S. The Wiener index and the Szeged index of benzenoid systems in
linear time. J Chem Inf Comput Sci 1997; 37:752–755.

9. Corwin H, Kurup A, Garg R, Gao H. Chem-bioinfomatics and QSAR: a review of QSAR
lacking positive hydrophobic terms. Chem Rev 2001; 101:619–672.

10. Dankelmann P. Average distance and independence numbers. Discrete Appl Math 1994;
51:75–83.

11. Dobrynin AA. Graph distance numbers of nonbranched hexagonal systems. Siberian Adv
Math 1992; 2:121–134.

12. Dobrynin AA. Branchings in trees and the calculation of the Wiener index of a tree. Comm
Math Chem (MATCH) 2000; 41:119–134.

13. Dobrynin AA, Entringer R, Gutman I. Wiener index of trees: Theory and applications.
Acta Appl Math 2001; 66:211–249.

14. Dobrynin AA, Gutman I. On a graph invariant related to the sum of all distances in a
graph. Publ Inst (Beograd) 1994; 56:18–22.

15. Dobrynin AA, Gutman I. The average Wiener index of trees and chemical trees. J Chem
Inf Comput Sci 1999; 39:679–683.

16. Dobrynin AA, Gutman I, Klavžar S, Žigert P. Wiener index of hexagonal systems. Acta
Appl Math 2002; 72:247–294.

17. Doyle JK, Graver JE Mean distance in a graph. Discrete Math 1977; 7:147–154.

18. Entringer RC, Jackson DE, Snyder DA. Distance in graphs. Czech Math J 1976; 26:283–
296.

REFERENCES 437

19. Entringer RC, Meir A, Moon JW, Székely LA. On the Wiener index of trees from some
families. Australa J Combin 1994; 10:211–224.

20. Fredman ML, Tarjan RE. Fibonacci heaps and their uses in improved network optimization
algorithms. J ACM 1987; 34:596–615

21. Goldman D, Istrail S, Lancia G, Piccolboni A, Walenz B. Algorithmic strategies in com-
binatorial chemistry. Proceedings of 11th ACM-SIAM Symposium. Discrete Algorithms
2000; pp. 275–284.

22. Gozalbes R, Doucet J, Derouin F. Application of topological descriptors in QSAR and
drug design: history and new trends. Curr Drug Target Infect Disord 2002; 2:93–102.

23. Gutman I. Selected properties of the Schultz molecular topological index. J Chem Inf
Comput Sci 1994; 34:1087–1089.

24. Gutman I. Some relations between distance–based polynomials of trees. Bulletin de
l’Académie Serbe des Sciences et des Arts (Cl Math Natur) 2005; 131:1–7.

25. Gutman I, Klavžar S. A method for calculating Wiener numbers of benzenoid hydrocar-
bons. ACH Models Chem 1996; 133:389–399.

26. Gutman I, Klavžar S, Petkovšek M, Žigert P. On Hosoya polynomials of benzenoid graphs.
Commun Math Chem (MATCH) 2001; 43:49–66.

27. Gutman I, Linert W, Lukovits I, Dobrynin AA. Trees with extremal hyper-Wiener index:
Mathematical basis and chemical applications. J Chem Inf Comput Sci 1997; 37:349–
354.

28. Gutman I, Linert W, Lukovits I, Tomović Ž. The multiplicative version of the Wiener
index. J Chem Inf Comput Sci 2000; 40:113–116.

29. Gutman I, Yeh YN. The sum of all distances in bipartite graphs. Math Slovaca 1995;
45:327–334.

30. Hosoya H. On some counting polynomials in chemistry. Discrete Appl Math 1988;
19:239–257.

31. Ivanciuc O. QSAR comparative study of Wiener descriptor for weighted molecular graphs.
J Chem Inf Comput Sci 2000; 40:1412–1422.

32. Ivanciuc O, Klein D. Building-block computation of Wiener-type indices for the virtual
screening of combinatorial libraries. Croat Chem Acta 2002; 75(2):577–601.

33. Johnson DB. Efficient algorithms for shortest path in sparse networks. J ACM 1977;
24:1–13.

34. Kirschenhofer P, Prodinger H, Tichy RF. Fibonacci numbers of graphs. II. Fibonacci
Quart 1983; 21:219–229.

35. Kirschenhofer P, Prodinger H, Tichy RF. Fibonacci numbers of graphs. III. Planted plane
trees. Fibonacci Numbers and Their Applications Vol. 28, Reidel, Dordrecht; 1986. pp.
105–120.

36. Klavžar S, Gutman I. Wiener number of vertex-weighted graphs and a chemical applica-
tion. Discrete Appl Math 1997; 80:73–81.

37. Klavžar S, Gutman I, Mohar B. Labeling of benzenoid systems which reflects the vertex
distance relations. J Chem Inf Comput Sci 1995; 35:590–593.

38. Klein DJ, Mihalić Z, Plavšić D, Trinajstić N. Molecular topological index: a relation with
the Wiener index. J Chem Inf Comput Sci 1992; 32:304–305.

39. Knopfmacher A, Tichy RF, Wagner S, Ziegler V. Graphs, partitions and Fibonacci num-
bers. Discrete Appl Math 2004. Forthcoming.

438 TOPOLOGICAL INDICES IN COMBINATORIAL CHEMISTRY

40. Lepović M, Gutman I. A collective property of trees and chemical trees. J Chem Inf
Comput Sci 1998; 38:823–826.

41. Li X, Wang L. Solutions for two conjectures on the inverse problem of the Wiener index
of peptoids. SIAM J Discrete Math 2003; 17(2):210–218.

42. Martin YC. 3D QSAR. Current state, scope, and limitations. Perspect Drug Discov 1998
12:3–32.

43. Merrifield RE, Simmons HE. Topological Methods in Chemistry. Wiley, New York, 1989.

44. Merris R. An edge version of the matrix-tree theorem and the Wiener index. Linear and
Multilinear Algebra 1989; 25:291–296.

45. Merris R. The distance spectrum of a tree. J Graph Theory 1990; 14:365–369.

46. Merris R. Laplacian matrices of graphs: a survey. Linear Algebr Appl 1994; 197/198:143–
176.

47. Mohar B. Eigenvalues, diameter, and mean distance in graphs. Graphs Combin 1991;
7:53–64.

48. Mohar B. The laplacian spectrum of graphs. In: Alavi Y, Chartrand G, Ollermann OR,
Schwenk AJ, editors. Graph Theory, Combinatorics, and Applications Wiley, New York;
1991. pp. 871–898.

49. Mohar B, Pisanski T. How to compute the Wiener index of graph. J Math Chem 1988;
2:267–277.

50. Prodinger H, Tichy RF. Fibonacci numbers of graphs. Fibonacci Quart 1982; 20:16–21.

51. Schultz HP. Topological organic chemistry. 1. graph theory and topological indices of
alkanes. J Chem Inf Comput Sci 1989; 29:227–228.

52. Shiu WC, Lam PCB. The Wiener number of the hexagonal net. Discrete Appl Math 1997;
73:101–111.

53. Stevanović D. Hosoya polynomial of composite graphs. Discrete Math 2001; 235(1):237–
244.

54. Tichy RF, Wagner S. Extremal problems for topological indices in combinatorial chem-
istry. J Comput Biol 2005; 12(7):1004–1013.

55. Wiener H. Structural determination of paraffin boiling points. J Amer Chem Soc 1947;
69:17–20.

20
EFFICIENT ALGORITHMS
FOR STRUCTURAL RECALL
IN DATABASES

Hao Wang
Department of Computer Science, Georgia State University, Atlanta, GA, USA

Patra Volarath
Department of Chemistry, Georgia State University, Atlanta, GA, USA

Robert W. Harrison*

Department of Computer Science, Georgia State University, Atlanta, GA, USA

20.1 INTRODUCTION

Chemoinformatics is the study of the use of databases in handling chemical knowl-
edge. Chemoinformatics, unlike bioinformatics focuses more on small molecules
and a wider range of molecules rather than genes and gene products. It serves a
critical role in the development of new materials and new pharmaceuticals, by aiding
in the selection of starting points for experimental development. As in bioinformatics
many new structures along with their chemical properties are published annually
resulting in a huge mass of data that have to be organized into a database for efficient
search and recall. Traditional relational database engines like Oracle are required for
performance because of the volume of data. However, the properties of the data do

*Dr. Harrison is Georgia Cancer Coalition Distinguished Scholar.

Bioinformatics Algorithms: Techniques and Applications, Edited by Ion I. Mǎndoiu
and Alexander Zelikovsky
Copyright © 2008 John Wiley & Sons, Inc.

439

440 EFFICIENT ALGORITHMS FOR STRUCTURAL RECALL IN DATABASES

not map in an immediate sense into the purely numerical and string-based data types
the relational database engines are designed to handle. Therefore, one important
problem in chemoinformatics is the development of efficient representations of the
chemical and physical properties as well as the structures of molecules. Intimately
related to the development of the representation of molecular properties is the ability
to compare molecules and extract which ones are most similar in some sense. The
ideal representation of chemical and structural data would allow for the rapid and
highly specific recall of molecules that are similar in structure and properties. Current
approaches tend to be either rapid and imprecise or precise and relatively slow. There-
fore, the more accurately the chemical information can be represented in the native
representation for the database engine, the more the overall system meets this ideal.

Typically, there are three kinds of queries that are applied in chemoinformatics:
shared substructure, similar subset, and molecular property. In a shared substructure
query, molecules are selected that share a chemical group or structural framework
but differ in other features. For example, aspirin and benzoic acid share a benzene
ring and carboxylic acid group but do not share the phenol oxygen and acetyl group
of aspirin. In a similar subset query, features that are in common among a set of
molecules are extracted and then used to find similar molecules. Superimposing HIV
protease inhibitors, for example, would reveal that they share many structural features
that would not be readily apparent on casual inspection [1–3]. Finally, with molec-
ular property queries, molecules are selected based on a desired chemical feature or
property. An example of this would be the selection of hydrophobic monomers for
the design of a novel water-repelling polymer.

20.2 COMPOUND REPRESENTATION

In most databases, molecules are represented in one of two representations: (1) graphs
or trees, and (2) strings or line notation. While these representations may seem disjoint,
they are intimately related in the sense that the graph or tree could be generated from
the string notation by a parsing process.

Molecular graphs/trees represent the chemical bonds and covalent structure of the
molecule. For example, benzoic acid is shown in Fig. 20.1. The two-dimensional
graphical representation (Fig. 20.1) is useful because it is familiar to the chemists.
However, this form of representation is incomplete and highly simplified. For example,
the lines show single chemical bonds between carbon atoms, the double lines for
double bonds, and only relatively heavy atoms like oxygen are shown explicitly.
Most of the hydrogen atoms are omitted. Additionally, the pattern of double and
single bonds in the ring structure is defined by convention and does not represent the
true electronic structure of the molecule.

The three-dimensional representation of the molecule, also shown for benzoic
acid in Fig. 20.1b and c, is more complete and in many senses more useful than
the two-dimensional representation. Many molecular properties including size, charge
distribution, heats of formation, vibrational spectra, and relative solubility can be
estimated directly from the three-dimensional representation [3–9]. Additionally,

COMPOUND REPRESENTATION 441

FIGURE 20.1 Two-dimensional (a) and three-dimensional (b and c) representations of ben-
zoic acid.

steric factors that affect molecular stability and ease of synthesis are often more
readily visible in the three-dimensional representation in the two-dimensional
representation. Finally, it is necessary to have a three-dimensional model of a
molecule in applications like pharmaceutical development where the small molecule
will be docked into a large molecule that is a drug target such as HIV protease
[10–20]. Therefore, parsing the two-dimensional representation and generating a
three-dimensional structure is an important task.

One common and effective approach to convert a two-dimensional chemical repre-
sentation to its three-dimensional structure is to use a molecular mechanics program.
Molecular mechanics programs numerically find a minimum in a model of the molec-
ular internal energy defined by a potential or “force field” as a function of the atomic
coordinates. The first step in setting up this model of the energy is to first arrange the
atoms and bonds in a form of a graph or a tree representation. This allows the covalent
atomic geometry of each of the atoms to be determined. It is important that the atomic
geometry (or atomtypes) is determined accurately because if they are missassigned
then the three-dimensional model will be incorrect. Molecular modeling programs use
a force field method [21–31], which relies solely on the parameters that are specifically
designed for each of the atomtypes, for the structural simulation. In most cases, the
process of determining the atomtypes is straightforward. For instance, AMMP (Ad-
vanced Molecular Modeling Program) [32–34] defines a carbonyl functional group
as a combination of a sp2 carbon (or a C3 atomtype) and a sp2 oxygen (or an O2 atom
type), and an alkene as a combination of two C3 atomtypes. However, when an atom
participates in a larger system (such as in a chemical ring), assigning an atomtype to the
atom may be complicated. One of the reasons is due to the ambiguous representation
of aromatic ring, the number, and the types of atoms that are involved in the ring, and
the presence of fused rings. Algorithmic approaches have been developed for inter-
pretation and analyze of ring representations [35–38]. These approaches can be highly
effective, for example, as a test with AMMP, the entire NCI-Openmol database was
converted from two-dimensional to three-dimensional form with no detected errors.

20.2.1 Molecular Graphs and Trees

Molecules can be expressed in a form of a graph or a tree, which consists of a series of
nodes (representing the atoms) that are connected by edges (representing the bonds).

442 EFFICIENT ALGORITHMS FOR STRUCTURAL RECALL IN DATABASES

FIGURE 20.2 Common representations of chemical rings.

This is one of the preferred methods of representing the molecules because, first of
all, it mimics the way atoms are bond in the real molecules, and second of all, the
structural information and properties can be derived using operations of graph theory
[39,40].

Graph representation is the most preferred representation of molecules. In practice,
several issues must be considered when converting the molecule into a graph. An
example is the representations of the ring system. Aspirin, for instance, can have
three different graphs that are chemically equivalent. One way of representing an
aromaticity within a ring is to define the bond value of aromatic system to be a
specially fixed value. AMMP defined this value as 1.5. This rule is enforced in all
the inputs and data in the chemical database to ensure structural compatibility during
structure comparison.

The difference between the graph and the tree representations is that cyclic struc-
tures are not allowed in the tree, Fig. 20.2. Instead, a cyclic structure is indicated by a
duplication of a joined atom (Fig. 20.3). The advantage of using the tree representation
is that the tree comparison can be completed within polynomial time; this makes the
tree more favorable than the graph, whose problems are usually NP-problems. The

6

5 7

8

3

2

1

6

5
7

8
O

OH
9

4

9

6

1

2

3 3 8 9

7

5

44

Graph Tree

3

2

1

FIGURE 20.3 A graph and a tree representation of benzoic acid. In the tree, the cyclic
structure is indicated by the duplication of the atom number 3.

COMPOUND REPRESENTATION 443

breakage of the cyclic structure in the tree is determined by a set of subjective rules.
The mapping of a molecule to tree is not unique. In substructure comparison, the
tree representation may need to be rebuilt to compensate for the possible loss of the
connectivity information caused by the cycle breakage. However, the tree represen-
tation greatly reduces the computation complexity imposed on the graph problems.
The choice of which of the representations to use depends on the program users.

20.2.2 Matrix Representation

Molecular graphs can also be represented as matrices, Fig. 20.4. An advantage is that
the calculation of paths and cycles (for ring structures) can be performed quickly
by matrix operations. A typical molecular matrix consists of n rows and n columns
(n× n matrix) for a molecule with n atoms. The matrix elements can be any data
(a bond order, a physical distance, etc.) that represents a relationship between a given
pair of atoms [36]. This depends on the type of information that is being emphasized.
Some of the matrices that have been used in chemoinformatics are adjacency, distance,
incidence, bond, and bond-electron matrices [41].

20.2.3 Connection Table

A connection table for a molecule consists of two sections: a list of atoms that are in
a molecule, and a list of their bond connectivity [42,43]. In the first section, the atoms
of a compound are listed, according to the order they were entered into a molecule
drawing program, in a tabular form (Fig. 20.5).

FIGURE 20.4 A matrix representation of benzoic acid. The numbers 1–9 in the first column
and the first row represent the atoms in the molecule. Inside each of the cells, 1 indicates
bonding between the atom pair, and 0 indicates otherwise.

444 EFFICIENT ALGORITHMS FOR STRUCTURAL RECALL IN DATABASES

FIGURE 20.5 Atom list of aspirin.

Similarly, a connection between a pair of atoms (represented by their indices) in
the bond connectivity list is indicated by a numerical value corresponding to the bond
order (1 = single bond, 2 = double bond, etc.), Table 20.1.

A MDL.mol file is a well-known file format that uses the connection table to repre-
sent the molecules, and a typical MDL.mol file is shown in Fig. 20.6. The first section
contains description of the atoms, and these include the Cartesian coordinates, the
atomic symbol, followed by columns of property descriptions (e.g., atomic charges,
hybridization state). The chemistry of molecule is more completed in the connectiv-
ity table than in the graph/tree form because the properties (usually represented via
numerical values) can be expressed in the columns. In MDL.mol file, hydrogen atoms
are usually omitted in the 2D.mol file, but are included in the 3D version.

20.2.4 Bond Partition

Another way of representing a molecule, which is being currently developed in our
lab, through a method called bond partition (Fig. 20.7). In this method, instead of
representing atoms via their atomic symbols, the atoms are represented by their atomic
numbers. The goal here is to classify the chemical bonds in a molecule into different
bond types. The significance of this design is that these atomic values can be further

COMPOUND REPRESENTATION 445

TABLE 20.1 Bond List of Aspirin

Bond List

1st Atom 2nd Atom Bond Order

1 2 2
1 6 1
1 11 1
2 3 1
2 7 1
3 4 2
4 5 1
5 6 2
7 8 1
8 9 2
8 10 1
11 12 1
12 13 2

aspirin.mol
ChemDraw08140618222D

13 13 0 0 0 0 0 0 0 0999 V2000
-1.1953 0.2062 0.0000 C 0 0 0 0 0 0 0 0 0
-0.4809 -0.2062 0.0000 C 0 0 0 0 0 0 0 0 0
-0.4809 -1.0313 0.0000 C 0 0 0 0 0 0 0 0 0
-1.1953 -1.4438 0.0000 C 0 0 0 0 0 0 0 0 0
-1.9098 -1.0313 0.0000 C 0 0 0 0 0 0 0 0 0
-1.9098 -0.2062 0.0000 C 0 0 0 0 0 0 0 0 0
0.3160 0.0073 0.0000 O 0 0 0 0 0 0 0 0 0
1.1129 -0.2062 0.0000 C 0 0 0 0 0 0 0 0 0
1.1129 -1.0313 0.0000 O 0 0 0 0 0 0 0 0 0
1.9098 0.0073 0.0000 C 0 0 0 0 0 0 0 0 0
-1.1953 1.0313 0.0000 C 0 0 0 0 0 0 0 0 0
-0.4809 1.4438 0.0000 O 0 0 0 0 0 0 0 0 0
-1.9098 1.4438 0.0000 O 0 0 0 0 0 0 0 0 0
1 2 2 0
2 3 1 0
3 4 2 0
4 5 1 0
5 6 2 0
6 1 1 0
2 7 1 0
7 8 1 0
8 9 2 0
8 10 1 0
1 11 1 0
11 12 1 0
11 13 2 0
M END

FIGURE 20.6 Connectivity table of aspirin (see Fig. 20.5) generated by ChemDraw
Ultra 6.0.

446 EFFICIENT ALGORITHMS FOR STRUCTURAL RECALL IN DATABASES

7 6 5 4 3 2 1

From atom 1 From atom 2 From bond value

FIGURE 20.7 Numeric representation of bond type.

used in calculations that are specific for each atom. In this design, a pair of atoms and
its bond order (collectively referred to as a bond type) is represented by seven digits
(figure reffig:numeric). The first and the second three digits are determined based
on the atomic numbers of the first and the second atoms, respectively. The last digit
represents the bond order between the two atoms.

This design is based on the fact that each of the atoms has a unique atomic number.
The largest atom in the periodic table is 118; thus, it is more than enough to have a
3-digit to present that numeric value. In this descriptor, two atoms are arranged in
an ascend order of their atom numbers. For example, a bond type of a double bond
between a carbon and an oxygen can be defined as 0060082. In this representation, the
numerical value 6 is the atomic number of the carbon, 7 is the atomic number of the
oxygen, and the last digit 2 represents the double bond between the atoms. In a given
molecule, a bond type is determined for each of the bonds in the molecule. The bond
types are then collected into a bond group, based on the identities of the atoms that
are involved in the bonding and the bond order. Each bond group,therefore, consists
of bonds with identical pairwise atoms and connection value. The atoms in the group
are represented by their positions (x, y). x represents the position of the atom with a
lower atom number, and y represents the position of the atom with a higher atomic
number. A bond partition of the aspirin graph is shown in Fig. 20.8.

6-6-1

(1,6) (1,11) (2,3) (4,5) (8,10)

6-6-2

(1,2) (3,4) (5,6)

6-8-1

(2,7)

6-8-2

(8,9)

FIGURE 20.8 Revised graph representation of aspirin.

COMPOUND REPRESENTATION 447

20.2.5 Line Notations

Another way of expressing molecules is through the use of a linear or string notation.
A linear notation uses characters and digits to encode the molecular structure. Lin-
ear notations are more compact than the graph/tree and the connection table forms.
Therefore, linear notations are very useful for storing and transmitting large num-
bers of molecules, particularly, when used in conjunction with relational databases
that support only characters and digits. Linear notations can be rapidly searched for
approximate similarities using string search algorithms similar to those used for se-
quence alignment such as BLAST [44–46], but the results can be relatively inaccurate.

An early line notation that became widely used was the Wiswesser Line Notation
(WLN) [47]. WLN uses a complex set of rules to represent different functional groups
and their connectivity in molecules. A more recent linear notation that has been
developed and became widely accepted is the SMILES notation [48,49].

In SMILES, the atoms are represented by the atomic symbols. The elements with
the number of attached hydrogens conform to the lowest normal valence consistent
with explicit bonds can be written without brackets [50]. For example, water molecule
can be expressed as O, while hydronium cation is express as [OH3+]. No information
on three-dimensional arrangement of atoms is represented, and hydrogen atoms can
be omitted or included. Single, double, triple, and aromatic bonds are represented
by the symbols, respectively, and branches are specified by parentheses. Atoms in
aromatic rings are represented by lower case letters, and the aromatic bonds are usually
omitted. Cyclic structures are represented by breaking one single (or aromatic) bond
in each ring. The bonds are numbered in any order, designating ring-opening (or
ring-closure) bonds by a digit immediately following the atomic symbol at each ring
closure. Pyridine, for instance, can be expressed in SMILES as n1ccccc1. Table 20.2
shows SMILES for some of the organic compounds.

Since the publication of its original version, SMILES has been improved and made
into different versions. Canonical SMILES is a version of the SMILES that was de-
signed to ensure a single unique SMILES representation for a chemical compound.
Another version of SMILES called Isomeric SMILES extends the string representa-
tion to support the chemical properties such as isotopes, chirality, and configuration
about double bonds [50]. Other descendents of SMILES include SMARTS [51] that

TABLE 20.2 SMILES Notations for Nine Compounds [50]

Compound Names SMILES Notations

Butane CCCC
Isobutene C(C)(CCI)C
Anthracene C(c(ccc1)ccc2)(c1)c2
Benzene c1ccccc1
Naphthalene c1ccc2ccccc2c1
Methylcyclohexane CC1CCCCC1
Trichloromethane C(CL)(CL)CL
Nitromethane CN(=O)=O
1,3-cyclohexadiene C1=CC=CCC1

448 EFFICIENT ALGORITHMS FOR STRUCTURAL RECALL IN DATABASES

describes molecular patterns, which is useful for structure comparison, and SMIRKS
[52] that contains rules for molecular transformations, which is useful for chemical
reactions.

20.2.6 Canonical Representation and Canonical Structure
Determination Algorithms

A major task that is performed on chemical databases is a search for compounds whose
structures or characteristics fit the target molecules. When a search for particular
compounds is performed, it is important that each of the returned results represents
specifically one structure. Otherwise, redundant results, lengthy computational time,
and unpredictable computational behaviors may occur. The compound representations
mentioned thus far represent only the topology of compounds. This means, in the table
form, the atoms can be numbered in different orders that represent the same molecule.
Likewise, the atoms in SMILES can be combined in a number of ways that yield the
same molecule. The term canonical representation refers to methods of ordering atoms
such that the resulting order is a unique representation for a given compound. Morgan
algorithm [53,54] and CANGEN [49] method are two of the well-known approaches
that have been used to determine a canonical order of the atoms in the connectivity
table and in SMILES, respectively.

The basic operation of the Morgan algorithm is a calculation of “connectivity
values.” In the initial step, each of the atoms is assigned a numerical value (a class
value) equivalent to the sum of its immediate neighbors (a node degree). In the second
and the subsequent steps, the algorithm readjusts the class value of each of the atoms by
summing the class values of its adjacent neighbors. The readjusted value is referred to
as an extended connectivity (EC) value. One way to understand the assignment of EC
value is to imagine an atom and its immediate neighbors within a sphere (Fig. 20.9).
Each of the EC values (3, 4, and 5) represents the total number of bonds covered in a
sphere. After each iteration, the sphere expands outward one level at a time. During
this step, the algorithm calculates the number of equivalent classes based on the EC
values, and this number is used to determine when to terminate the iteration.

The Morgan algorithm involves two steps. The first step is to assign EC values for
the atoms, and the algorithm operates as follows:

1. In the initial step (the formation of the first sphere), the EC value for each atom
is calculated based on its node degree.The number of equivalent class for each
of the atoms is then calculated.

2. For the second and subsequence steps (higher sphere levels), the EC value for
each atom is recalculated by summing the EC values, which were assigned
from the previous step, of the immediate neighboring atoms. A new equivalent
class number is calculated.

3. If the new equivalent class number is greater than that of the previous iteration,
continue iteration as described previously.

4. The last iteration with the highest equivalent class number is taken for the next
step.

COMPOUND REPRESENTATION 449

3

Initial class value
for node A

A

After first iteration,
new class value for

node A

4
A

The 3 dashed circles in above figures denote the sphere
coverage for different stages

5
A

After second iteration,
new class value for

node A

FIGURE 20.9 Sphere coverage and EC value.

The second step in the Morgan algorithm involves an assignment of a unique
sequence number to the atoms. The algorithm of this step is as follows:

1. The atom with the highest EC value assigned by the first part of the algorithm
is chosen as the first atom (a current target) in the connection table. Its direct
neighbors are listed in a descending order of their EC values. If there is a tie
in the EC values, additional rules (such as atomic identity, bond, charges) are
introduced.

2. Next, the EC values of all the assigned sequence-number atoms, except the
current target, are compared. The highest EC numbered atom becomes a new
current target. All unassigned sequence-number atoms attached to the current
target are numbered as in the previous step. This process continues until all the
atoms are enumerated.

The Stereochemically Extended Morgan Algorithm (SEMA) is an extended ver-
sion of the Morgan algorithm to include the stereochemistry information into the
selection process [55].

An algorithm called CANGEN has also been developed based on a similar principal
to the Morgan algorithm, to generate a unique SMILES string for each compound.
CANGEN combines the molecular labeling of CANON algorithm and the string
generation method of GENES algorithm [49].

450 EFFICIENT ALGORITHMS FOR STRUCTURAL RECALL IN DATABASES

20.3 CHEMICAL COMPOUND DATABASE

Chemical databases store chemical structures and their information. The sizes of the
structures stored in databases can range from those of small molecules, as in the
Cambridge Structural Database and Inorganic Crystal Structure Database, to those of
macromolecules such as proteins and nucleic acids stored in the Protein Data Bank
(PDB) database, Table 20.3. Other databases, such as Quantum Chemical Literature
Database, store information from the literature regarding chemical properties that can
be used in the analysis. Other useful chemical databases include PubChem, KEGG
LIGAND Database, ChemIDplus, Indiana University Molecular Structure Center,
NCI-3D Database, and Chmoogle.

20.3.1 Indexing of Database

Relational databases are the prevailing type of databases used to store chemical in-
formation. They are powerful tools for organizing information; however, they are de-
signed to handle numeric and string data rather than chemical structures. Therefore,
the characteristics of the chemical structure must first be converted into a represen-
tation using strings and digits that is, in turn, stored inside the database. Clearly, the
choice of this transformation will affect the flexibility and accuracy of the recall pro-
cess. The characteristics can be any of the properties and features of the molecule.
This method of labeling, or indexing, of the characteristics allows the information
to be stored efficiently in the relational database. Another purpose of indexing the
database is to predetermine the solutions to some of the expected queries to shorten
the response time. For instance, the result returned by popular search engines (such
as Google, Yahoo, and MSN) is an indexed portion of presearch pages. This allows
the viewers to access the pages without having to wait for tedious calculations.

TABLE 20.3 A List of Some of the Common Chemical Databases Used
in Chemoinformatics

Data Source Web Sites

Cambridge Structural Database http://www.ccdc.cam.ac.uk
Databases on STN International http://www.stn-

international.de/stndatabases/c datab.html
Protein Database http://www.rcsb.org
NCBI PubChem http://pubchem.ncbi.nlm.nih.gov
KEGG LIGAND Database http://www.genome.jp/ligand
National Library Medicine

Specialized
http://chem.sis.nlm.nih.gov/chemidplus/

Information Service
Indiana University Molecular

Structure Center
http://www.iumsc.indiana.edu/database/index.html

TOXNET(Toxicology Data
Network)

http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?Multi

eMolecules Chemcial Searching http://www.chmoogle.com/

CHEMICAL COMPOUND DATABASE 451

In chemical databases, indexing can be used to label chemical features. Two meth-
ods that have been used to index the chemical databases are a fragment code and a
fingerprint.

The fragment code method [56,57] is sometimes referred to as a structural key
method. In this method, the molecule is broken down into fragments with predefined
patterns. Each of the patterns represents a characteristic (such as atomic content,
functional groups, ring systems) of a molecule. Depending on the molecules, different
types of fragment codes can be defined. String representations, like SMILES, are
well suited to this decomposition. Unlike the canonical structures, fragment codes
can be ambiguous, and different structures could possess identical fragment codes.
This is because the code does not specify the connection orientation. The key in
designing a fragment code dictionary is to first determine the type of search that will be
performed on the databases. This is to optimize the search performance by eliminating
the irrelevant molecules, which, in turn, reduces the searching time. It is also necessary
to design the dictionary according to the compounds stored in the database and the
queries that might be submitted. Although any type of chemical features and queries
maybe used, there are certain types that are frequently encountered.

A fingerprint method [54,57] describes properties and characteristics of a molecule
using a string of binary digits 1 and 0: 1 represents a positive response and 0 represents
a negative response. The string can be of any size, which allows as many chemical
features and properties of a molecule to be expressed. A fingerprint of a benzoic acid,
for example, can be 111 for the presence of a benzene ring, a carbonyl, and a hydroxyl
group, respectively. If a second molecule with a fingerprint of 011 is compared with
the acid’s fingerprint, the difference between the two fingerprints indicates that the
second molecule contains a carbonyl and a hydroxyl, but no benzene ring. Because
of its flexibility, the fingerprint method is often used as a similarity measurement tool
between structures and/or in a substructure searching routine during the screening of
the molecule databases.

20.3.2 Database Searching Algorithm

The search routine that is often performed on the chemical database can be divided
into two categories: structure searching and similarity searching.

20.3.2.1 Structure Search Structure searching [58–61] depends on the target
structure of whether it is partially (substructure searching) or fully known (exact-
structure searching). Analyzing molecular structure using a computer is a challenge
because the computer is not designed to understand structures. An approach to deal
with this challenge is to encode this capability into the computer. Two algorithmic
methods that have been developed for this purpose are a hash key and a backtracking
mechanism.

A hash key method is an extension of the fragment code [62–64]. The input struc-
ture, regardless of its representation, is first translated to an input source consisting
of alphabetical and numerical codes. These codes are then transformed by the hash
algorithm into a preset and fixed number of characters. These characters are hash

452 EFFICIENT ALGORITHMS FOR STRUCTURAL RECALL IN DATABASES

codes, or “keys,” which represent the storage, where the corresponded data are stored
in the hash table. This technique allows information to be retrieved instantaneously
by a direct access to the location specified by the key, instead of performing a one-
by-one comparison. Theoretically, each canonical structure is expected to produce a
different hash key. This makes the method suitable for the exact-structure searching.
However, in practice, there is no guarantee that a clash between the keys (address
collision) will not occur [65]. There are algorithms for hash key generation with an
emphasis on avoiding potential key clashes led by two different structures. However,
it is still necessary to integrate a mechanism that can resolve the problem if it happens.
The hash key method has been used in a generation of SMILES string, as well as in
a design of the Augmented Connectivity Molecular Formula (ACMF) to describe
chemical structures in the Chemical Abstracts Service Registry System [65].

Another method that has been used to compare two structures during the search-
ing routine is a backtracking mechanism [66]. This method uses an atom mapping
approach in which the nodes (or atoms) of the target molecular graph/tree are super-
imposed onto the nodes of the graph/tree of the molecules in the databases (database
molecules). The mapping is performed atom by atom until it is impossible to find
a match. When this occurs, the algorithm returns (backtrack) to the last successful
match and attempts another route for mapping. This process continues until all the
nodes in both the target molecule and the database molecule have been successfully
matched (for an exact-structure matching), or all the nodes in the target molecule
are matched (for a substructure matching). When all possible mappings of the initial
node have been attempted, the algorithm terminates. Ullmann algorithm, one of the
well-known algorithms for substructure searches, efficiently uses the backtracking
mechanism for generalized isomorphism. Ullman algorithm has been applied to both
substructure and maximum substructure problems. It has been demonstrated that the
average running time of this algorithm falls into an acceptable polynomial time com-
plexity range. For this reason, although it has been developed in the 70s, the Ullman
algorithm remains one of the best graph isomorphism algorithms.

The Ullmann algorithm involves three matrices: two adjacency matrices that rep-
resent the desired substructure and the database structure, and one matching matrix
that represents the mapping result [67]. Each of the adjacency matrices is a square
matrix, whose size is determined by the contained atoms. The numerical number 1
in each of the matrix cells indicates a bonding between atomsij, while 0 indicates a
bond absence between the two. For the matching matrix, the number of rows is equal
to number of atoms in the substructure, and the number of the columns is equal to
the number of atoms in the database structure. As the elements in the two adjacency
matrices are compared, the matching results are initially recorded in the matching
matrix. A value 1 in each of the matching matrix elements indicates an atom match-
ing possibility between the substructure and the database structure, and the values 0s
indicate otherwise.

The goal is to refine the matching matrix such that in the final matching matrix,
each row contains just one element equal to 1 and each column contains no more
than one element equal to 1. This final matching matrix represents a unique mapping
for every atom of the substructure. The initial mapping matrix can be constructed by

CHEMICAL COMPOUND DATABASE 453

taking neighboring connectivity into consideration. The Ullmann algorithm allows
the atoms to match only if their neighboring atoms also match. The backtracking
mechanism is repeated until either a complete match for the substructure is discovered
on until all options have been attempted.

Another popular method for substructure searching is to use fragment coding. This
method is based on a rationale that a substructure mapping of two molecules is possible
if and only if all the fragments in the smaller molecule have a match in the larger
molecule. Most of the current chemical databases have a fragment dictionary. Each
molecule is fragment coded, and the resulting codes are saved in the database. With a
sensitive choice of fragment dictionary, substructure searching can be carried out by
matching the fragment codes of the molecules. This process can be performed quickly
because fragment codes are in a binary format. However, the method may generate a
false positive result, in which the returning structures, although meet all the fragment
requirements in the query structure, do not contain query structure as a whole. The
reason for this is that the connectivity among the fragments is usually not indicated
along with the fragments. Another challenge for this method is the effectiveness
of the fragment dictionary used, which may yield varied results depending on their
definitions and application cases.

20.3.2.2 Similarity Search It is not always possible to have a complete structure,
or even substructure, of the target molecule available prior to the search. During a drug
screening process, for example, it is often that only some desirable properties of the
target molecule are known. In such cases, it is more sensible to be able to search the
chemical databases for structures that have similar properties to the desired structures.
Similarity searching is operated based on the rational that molecules that are similar in
structures are likely to have similar behaviors under the same condition [68–76]. The
effectiveness of the search, therefore, relies on the similarity measure that is used to
perform the comparison. An example of this similarity measure problem is a maximum
common subgraph (MCS). The result returned by MCS indicates a largest subgraph
that is common to a pair of graphs. In the chemical context, this is equivalent to the
largest common substructure existed in a pair of molecules. Although the conceptual
approach used in MCS similarity measurement is straightforward, the calculations
can become complicated when the sizes of the comparing molecules become large.
It has been shown that the complexity in the MCS calculation can reach the NP-
complete level, as in the Maximum clique problem. Thus, using the MCS method as
a similarity measure may not be feasible when dealing with large compounds.

A method that has been used extensively in structure similarity search is similarity
coefficients. The coefficients are often used in a similarity metric [77–82] that de-
termines similarity based on the similarity “distance” between two fingerprints. An
example of such coefficient is the Tanimoto Coefficient, TC, which is defined as

TC =
(

BC

B1 + B2 − BC

)
. (20.1)

454 EFFICIENT ALGORITHMS FOR STRUCTURAL RECALL IN DATABASES

In this equation, BC is the number of 1s common to both fingerprints, B1 is the num-
ber of 1s in the first fingerprint, and B2 is the number of 1s in the second fingerprint. If
two structures are identical, their Tanamoto Coefficient will be 1.0, and it will decrease
to 0.0 as they become more dissimilar [83]. A number of similarity coefficients are
available [84,85]. A challenge in working with the coefficients is an assigning appro-
priate threshold values. This is significant because the effectiveness of these values
depend on the chosen fingerprints and also on the studied compound classes.

Candidate Ligand Identification Program (CLIP) is an example virtual screen pro-
gram that utilizes the coefficients for structure comparison [86]. The two coefficients
that are used in this program are the Tanimoto and a modified form of Simpson’s
coefficients. The Simpson’s coefficient is an association coefficient that has been
used in information retrieval. In this program, a structure is represented by a set of
pharmacophore points that corresponds to the geometric arrangement. The similarity
comparison between two given structures is performed by comparing the results of
the two coefficients calculated from MSC. The Simpson’s coefficient is defined as

a

min(b, c)
, (20.2)

where a is the number of the pharmacophore points in the MCS; while, b and c are
the numbers of the points in the target and the database structures. These terms are
also used to construct the formula for Tanimoto coefficient as in Equation 20.1,

a

b+ c− a
. (20.3)

CLIP uses the Bron–Kerbosch clique detection algorithm to identify structures in
a given file that have large substructures in common with a target structure. The
coefficients incorporate the distance tolerance factor to ensure that the interatomic
distances are appropriate for the clique-construction stage of the matching algorithm.

Each of the coefficients has been designed specifically for different characteristics
of molecules. Some of these coefficients can be combined to optimize the similarity
search performance [87]. For instances, it has been shown that a combination that
contains Forbes and Simple Match coefficients seems to have an increased perfor-
mance when dealing with small molecules. On the contrary, for larger compounds, the
combinations that contain Russell–Rao coefficient seem to have a better coefficient
combination performance than others. A similar study has also been conducted on
the coefficients for searching of the natural product molecules in the Dictionary of
Natural Products (DNP) database [88]. Here, it has also been shown that Russell–Rao
coefficient has a better performance in retrieving large molecules, and Forbes coef-
ficient results in a better retrieving of small molecules from the database. However,
there has been no computational evidence showing any one combination demon-
strating a consistently high performance across all types of activity. The Tanimoto
coefficient remains a good single measure as no other combinations gave consistent
improvement over its use.

CHEMICAL COMPOUND DATABASE 455

Other approaches have also been developed to improve the similarity measure of
two structures. One of these approaches is a reduced graph method [43]. In a typical
molecular graph, the nodes represent the atoms and the edges represent the bonds.
However, in a reduced graph, the nodes represent groups of atoms and the edges repre-
sent the physical bonds between the groups. In the reduced graph approach, groups of
atoms are clustered into a node. This can be done based on definitions in a dictionary
of fragments or by sending the atoms through a node labeling scheme. The labeling
of a group of atoms based on the fragment dictionary can be performed straightfor-
wardly. However, with the node labeling scheme, the atoms must go, in a descending
order, through layers of differentiation until the final result is achieved. This results
in a hierarchy of reduced graphs, whose top layer being the least discriminated and
the last bottom layer being the most discriminated. The resulting reduced graph is
then converted to a pseudo-SMILES representation, where the comparison between
structures can be performed by node and edge mappings. The results show that the
reduced graph method not only has a potential to improve the similarity search, but
also is capable of retrieving more diverse active compounds than those found using
Daylight fingerprints.

Machine learning has also been recently used to improve the similarity search.
A method called a turbo similarity searching(TSS) has been developed to improve
the performance of a similarity searching engine by using the reference structure’s
nearest neighbors(NNs) [89]. NNs are those structures that have been determined to
be the most similar to the reference structure. Substructure analysis(SSA) [90,91] and
binary kernel discrimination(BKD) [92] are two machine learning procedures that
have been applied to TSS. SSA is a weight-assigning scheme that assigns a weight to
each bit (or substructure) in a fingerprint. This weight represents the bit’s differential
occurrence in the active and inactive molecules that are used in a training set. BKD
is a training-set ranking procedure that is based on the calculated score for each of
the members in the training set. The results have indicated that an application of an
appropriate machine learning approach enhances the performance of the similarity
search.

20.3.3 Screening

Although efficient algorithms for identifying subgraph isomorphism [67,93] are well
established, they are usually too slow to be used with large chemical databases. For
this reason, most chemical database systems use a two-stage mechanism to perform
substructure search [94]. The first step is to perform a rapid screening on the data
to eliminate the compounds that do not match the query. This step is to reduce the
sample size, which, in turn, decreases the processing time. The remaining structures
are to be further determined if they truly match the query substructure.

Most of the screening methods use the fragment code and/or the fingerprint rep-
resentations for the chemical features. The features are expressed in a bitstring that
consists of a sequence of 0 and 1, where 1 indicates a presence of a particular feature,
and 0 indicates an absence of the feature. For example, two bitstrings A and B are
compared. String A represent the target substructure, and string B represent a database

456 EFFICIENT ALGORITHMS FOR STRUCTURAL RECALL IN DATABASES

structure. A positive result would be returned only if all the bits in A have a match
in B. This logic operation can be performed quickly in the computers; therefore, the
screening process can be completed within a short time. A number of the screen-
ing methods have been developed for the searching of the chemical and biological
databases [95–103].

Some of the screening methods require the data in the database to be constructed
correspondingly to chemical features. An example is the compound data that are
stored in different tables based on the contained atom number. In the substructure
searching routine, a minimum atom number required by the query structure is first
calculated. This allows those compound data with an atom number lower than the
calculated value to be eliminated immediately. This screening process is, in other
words, boosted by the internal data model organization in the database. In practice,
data model can be constructed to allow complicated logic. In the hierarchical tree
substructure search (HTSS) system [104], the entire database is stored in a treelike
structure based on the encoded atoms. A substructure search on the entire database is
then reduced to a set of simple tree searches. One potential drawback of these systems
is that it can be difficult to update the database with new structures. This may not be
a problem for database that does not need to be updated very often. Another problem
is that, data models with highly complicated logic may not be constructed easily in
the relational database.

20.4 PRACTICAL CONCERNS FOR COMPOUND DATABASES

There are two challenges in working with the chemical databases: keeping the data
up to date, and controlling the data size. New data is continually being deposited in
the data repositories, and it is important for a local source to keep an accurate mirror
of this data. It is preferred that information enriched chemical databases are available
to public. However, many of the information are private and only available to those
with licenses. For those open-to-public databases, the formats of their compound
representations are often different; it makes the exporting and merging of the data
challenging. Hence, establishing a standard data format for compounds may alleviate
this problem. However, this work is not a straightforward task, mainly due to different
research focuses and interests.

Similarly, the data size is already large and continually growing. Though many
efficient algorithms have been developed, their accuracy and speed are often impaired
by the large amount of data that need to be processed. The use of the fragment
code and the fingerprint methods, for example, simplifies the computational process.
However, they can impair the accuracy of routines like similarity search. In these cases,
the effectiveness of the search depends on the similarity measurement used, whose
effectiveness varies from case to case. If the database contains millions of chemical
compounds, even with efficient screening methods that can discard over 99cannot
afford to apply a one-to-one isomorphism operation on the remaining structures.
There is often a trade-off between processing speed and accuracy. However, it must
be remembered that the experimental use of these compounds in a real chemistry

REFERENCES 457

lab may take months or even years so it is important not to be overly aggressive at
trimming processing speed at the cost of missing critical leads. It is more important
to find good lead compounds than it is to reduce the time of the query from a month
to a second.

Methods dealing with pairwise calculations may provide a solution to these prob-
lems because they are independent of each other. Methods like parallel computing
and database arrangement can, therefore, be fully explored in the comparison appli-
cations. Cluster analysis methods, for example, can be applied to obtain structural
clusters for organization in the chemical database. The clustered data can be orga-
nized in the database in a distributed cluster way, a function which is provided by
most of the-state-of-art database systems. A cluster data arrangement can organize
the size of each of the participating databases in a manageable manner. For exam-
ple, all clusters can be logically connected, in a tree-structure fashion, based on their
structure features. This, in turn, allows the search routine to be performed quickly
via comparing the features. In a case of compound database searching, the features
of the query structure are first extracted. These features are then used as criteria for
searching through the cluster tree to find the cluster nodes that match the features.
Only those cluster data that meet the requirements are chosen for next step processing.

ACKNOWLEDGMENTS

This work was partially supported by NIH P20 GM065762-01A1, the Georgia
Research Alliance, and the Georgia Cancer Coalition. Dr. Harrison is Georgia Cancer
Coalition Distinguished Scholar.

REFERENCES

1. Jenwitheesuk E, Samudrala R. Virtual screening of HIV-1 protease inhibitors against
human cytomegalovirus protease using docking and molecular dynamics. Aids
2005;19(5):529–531.

2. Zhu Z, Schuster, Samudrala, Tuckerman ME. Molecular dynamics study of the connec-
tion between flap closing and binding of fullerene-based inhibitors of the HIV-1 protease.
Biochemistry 2003;42(5):1326–1333.

3. Reddy MR, Viswanadhan VN, Weinstein, V. Relative differences in the binding free en-
ergies of human immunodeficiency virus 1 protease inhibitors: a thermodynamic cycle-
perturbation approach. Proc Natl Acad Sci USA 1991;88(22):10287–10291.

4. Hu H, Elstner M, Hermans J. Comparison of a QM/MM force field and molecular
mechanics force fields in simulations of alanine and glycine “dipeptides” (Ace-Ala-
Nme and Ace-Gly-Nme) in water in relation to the problem of modeling the unfolded
peptide backbone in solution. Proteins 2003;451–463.

5. Zheng L, Thompson DL. VOn the accuracy of force fields for predicting the physical
properties of dimethylnitramine. J Phys Chem B Condens Matter Mater. Surf Interface
Biophys 2006;110(32):16082–16088.

458 EFFICIENT ALGORITHMS FOR STRUCTURAL RECALL IN DATABASES

6. Fernandez LE, Varetti EL. Vibrational spectra of the trifluoromethylsulfinate anion and
scaled quantum mechanical force fields for CF(3)SO(2)(-) and CF(3)SeO(2)(-). Spec-
trochim Acta A Mol Biomol Spectrosc 2006.

7. McKean DC, Craig NC, Panchenko YN. s-trans-1,3-butadiene and isotopomers: vibra-
tional spectra, scaled quantum-chemical force fields, fermi resonances, and C-H bond
properties. J Phys Chem A Mol Spectrosc Kinet Environ Gen Theory 2006;110(26):
8044–8059.

8. Tu Y, Laaksonen A. Atomic charges in molecular mechanical force fields: a theoretical
insight. Phys Rev E Stat Nonlin Soft Matter Phys 2001;64(2 Pt 2):26703.

9. Zhan L, Chen JZ, Liu WK. Conformational study of Met-enkephalin based on the ECEPP
force fields. Biophys J 2006.

10. Jenwitheesuk E, Samudrala R. Prediction of HIV-1 protease inhibitor resistance using a
protein-inhibitor flexible docking approach. Antivir Ther 2005;10(1):157–166.

11. Vieth M, Cummins DJ. DoMCoSAR: a novel approach for establishing the docking
mode that is consistent with the structure-activity relationship. Application to HIV-1 pro-
tease inhibitors and VEGF receptor tyrosine kinase inhibitors J Med Chem 2000;43(16):
3020–3032.

12. Schaffer L, Verkhivker GM. Predicting structural effects in HIV-1 protease mutant
complexes with flexible ligand docking and protein side-chain optimization. Proteins
1998;33(2): 295–310.

13. Olson AJ, Goodsell DS. Automated docking and the search for HIV protease inhibitors.
SAR QSAR Environ Res 1998;8(3-4):273–285.

14. Verkhivker GM, Rejto PA, Gehlhaar DK, Freer ST. Exploring the energy landscapes
of molecular recognition by a genetic algorithm: analysis of the requirements for
robust docking of HIV-1 protease and FKBP-12 complexes. Proteins 1996;25(3):
342–353.

15. King BL, Vajda S, DeLisi C. Empirical free energy as a target function in dock-
ing and design: application to HIV-1 protease inhibitors FEBS Lett 1996;384(1):
87–91.

16. DesJarlais RL, Dixon JS. A shape- and chemistry-based docking method and its use in
the design of HIV-1 protease inhibitors J Comput Aided Mol Des 1994;8(3)231–242.

17. Liu F, Boross PI, Wang YF, Tozser J, Louis JM, Harrison RW, Weber IT. Kinetic,
stability, and structural changes in high-resolution crystal structures of HIV-1 protease
with drug-resistant mutations L24I, I50V, and G73S, J Mol Biol 2005;354(4):789–800.

18. Tie Y, Boross PI, Wang YF, Gaddis L, Liu F, Chen X, Tozser J, Harrison RW, Weber IT.
Molecular basis for substrate recognition and drug resistance from 1.1 to 1.6 angstroms
resolution crystal structures of HIV-1 protease mutants with substrate analogs. FEBS
2005;272(20):5265–5277.

19. Chen X, Weber IT, Harrison RW. Molecular dynamics simulations of 14 HIV protease
mutants in complexes with indinavir. J Mol Model (online) 2004;10:373–381.

20. Mahalingam B, Wang YF, Boross PI, Tozser J, Louis JM, Harrison RW, Weber IT. Crystal
structures of HIV protease V82A and L90M mutants reveal changes in the indinavir-
binding site. Eur J Biochem 2004;271(8):1516–1524.

21. Kini RM, Evans HJ. Molecular modeling of proteins: a strategy for energy minimiza-
tion by molecular mechanics in the AMBER force field J Biomol Struct Dyn 1991;
9(3):475–488.

REFERENCES 459

22. Curco D, Rodriguez-Ropero F, Aleman C. Force-field parametrization of retro-inverso
modified residues: development of torsional and electrostatic parameters. J Comput
Aided Mol Des 2006;20(1):13–25.

23. Arnautova YA, Jagielska A, Scheraga HA. A new force field (ECEPP-05) for peptides,
proteins, and organic molecules. J Phys Chem B Condens Matter Mater Surf Interfaces
Biophys 2006;110(10):5025–5044.

24. Oda A, Yamaotsu N, Hirono S. New AMBER force field parameters of heme iron for
cytochrome P450s determined by quantum chemical calculations of simplified models.
J Comput Chem 2005;26(8):818–826.

25. Kosinsky YA, Volynsky PE, Lagant P, Vergoten G, Suzuki E, Arseniev AS, Efremov RG.
Development of the force field parameters for phosphoimidazole and phosphohistidine.
J Comput Chem 2004;25(11):1313–1321.

26. Chessari, G, Hunter CA, Low CM, Packer MJ, Vinter JG, Zonta C. An evaluation of
force-field treatments of aromatic interactions. Chemistry 2002;8(13):2860–2867.

27. Hancock RD, Reichert DE, Welch MJ. Molecular mechanics force field for modeling
technetium(V) complexes. Inorg Chem 1996;35(8):2165–2166.

28. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M.
CHARMM: A program for macromolecular energy, minmimization, and dynamics cal-
culations. J Comp Chem 1983;4:187–217.

29. Allinger NL. Conformational Analysis 130. MM2. A hydrocarbon force field utilizing
V1 and V2 torsional terms. J Am Chem Soc 1977;99:8127–8134.

30. Allinger NL, Yuh YH, Lii J-H. Molecular Mechanics. The MM3 force field for hydro-
carbons. J Am Chem Soc 1989;111:8551–8565.

31. Rappe AK, Casewit CJ, Colwell KS, Goddard. UFF a full periodic table force
field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc
1992;114:10024–10035.

32. Weber IT, Harrison RW. Molecular mechanics analysis of drug-resistant mutants of HIV
protease. Protein Eng 1999;12(6):469–474.

33. Weber IT, Harrison RW. Molecular mechanics calculations on Rous sarcoma virus pro-
tease with peptide substrates. Protein Sci 1997;6(11):2365–2374.

34. Weber IT, Harrison RW. Molecular mechanics calculations on HIV-1 protease
with peptide substrates correlate with experimental data. Protein Eng 1996;9(8):
679–690.

35. Cyranski M, Krygowski TM. Separation of the energetic and geometric contributions
to aromaticity. 3. Analysis of the aromatic character of benzene rings in their various
topological and chemical environments in the substituted benzene derivatives. J Chem
Inf Comput Sci 1996;36:1142–1145.

36. Volarath P, Wang H, Fu H, Harrison RW. Knowledge-Based algorithms for chemical
structure and property analysis. EMBS 26th IEEE EMBS Annual International Confer-
ence, California, USA; 2004.

37. Krygowski TM, Szatylowicz H, Zachara JE. How H-Bonding affects aromaticity of the
ring in variously substituted phenol complexes with bases. 4. Molecular geometry as a
source of chemical information. J Chem Inf Comput Sci 2004;44:2077–2082.

38. Lipkus AH. Exploring chemical rings in a simple topological-descriptor space. J Chem
Inf Comput Sci 2001;41:430–438.

460 EFFICIENT ALGORITHMS FOR STRUCTURAL RECALL IN DATABASES

39. Trinajstic N, editor. Chemical Graph Theory. Boca Raton: CRC Press; 1983.

40. Beck A, Bleicher M, Crowe D. Excursion into Mathematics. Wroth; 1969.

41. Engel T. Chemoinformatics, A Textbook. Germany: John Wiley & Sons; 2003.

42. Dalby A, Nourse JG, Hounshell WD, Gushurst AKI, Grier DL, Leland BA, Laufer
J. Description of several chemical structure file formats used by computer programs
developed at Molecular Design Limited. J Chem Inf Comput Sci 1992;32:244–255.

43. Leach AR, Gillet VJ. An Introduction to Chemoinformatics. Netherlands; Springer: 2003.

44. Ganesan N, Bennett NF, Velauthapillai M, Pattabiraman N, Squier R, Kalyanasundaram,
B. Web-based interface facilitating sequence-to-structure analysis of BLAST alignment
reports. Biotechniques 2005;39(2):186–188.

45. Margelevicius M, Venclovas C. PSI-BLAST-ISS: an intermediate sequence search
tool for estimation of the position-specific alignment reliability. BMC Bioinformatics
2005;6:185.

46. Labesse G. MulBlast 1.0: a multiple alignment of BLAST output to boost protein se-
quence similarity analysis. Comput Appl Biosci 1996;12(6):463–467.

47. Wiswesser WJ. A Chemical Line-Formula Notation. New York: Crowell Co; 1954.

48. Weininger D. SMILES, a chemical language and information system. 1. Introduction to
methodology and encoding rules. J Chem Inf Comput Sci 1988;28:31–36.

49. http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html

50. http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html

51. http://www.daylight.com/meetings/summerschool01/course/basics/smirks.html

52. Morgan HL. The Generation of a unique machine description for chemical structures, a
technique developed at chemical abstracts service. J Chem Doc 1965;5:107–113.

53. Xu Y, Johnson M. Algorithm for naming molecular equivalence classes represented by
labeled pseudographs. J Chem Inf Comput Sci 2001;41:181–185.

54. Weininger D, Weininger A, Weininger JL. SMILES. 2. Algorithm for generation of
unique SMILES notation. J Chem Inf Comput Sci 1989;29: pp. 97–101.

55. Wipke WT, Dyott TM. Stereochemically unique naming algorithm. J Am Chem Soc
1974;96:4834–4842.

56. Bayada DM, Hamersma H, van Geerestein VJ. Molecular diversity and representativity
in chemical databases. J Chem Inf Comput Sci 1999;39:1–10.

57. Wild DJ, Blankley CJ. Comparison of 2D fingerprint types and hierarchy level selec-
tion methods for structural grouping using ward’s clustering. J Chem Inf Comput Sci
2000;40:155–162.

58. Xue L, Godden JW, Stahura FL, Bajorath J. Design and evaluation of a molecular
fingerprint involving the transformation of property descriptor values into a binary clas-
sification scheme. J Chem Inf Comput Sci 2003;43:1151–1157.

59. Yang JM, Tung CH. Protein structure database search and evolutionary classification.
Nucleic Acids Res 2006;34(13):3646–3659.

60. Iwata Y, Arisawa M, Hamada R, Kita Y, Mizutani MY, Tomioka N, Itai A,
Miyamoto S. Discovery of novel aldose reductase inhibitors using a protein structure-
based approach3D-database search followed by design and synthesis. J Med Chem
2001;44(11):1718–1728.

REFERENCES 461

61. An J, Nakama T, Kubota Y, Sarai A. 3DinSightan integrated relational database and
search tool for the structure, function and properties of biomolecules. Bioinformatics
1998;14(2):188–195.

62. Fidelis K, Stern PS, Bacon D, Moult J. Comparison of systematic search and database
methods for constructing segments of protein structure. Protein Eng 1994;7(8):953–960.

63. Willett P, Winterman V, Bawden D. Implementation of nearest-neighbor searching in an
online chemical structure search system. J Chem Inf Comput Sci 1986;26:36–41.

64. Wipke WT, Krishnan S, Ouchi GI. Hash Functions for Rapid Storage and Retrieval of
Chemical Structures J Chem Inf Comput Sci 1978;18:32–37.

65. Zupan J. Algorithms for chemists. New York: John Wiley & Sons; 1989.

66. Freeland RG, Funk SA, O’Korn LJ, Wilson GA. The chemical abstracts service chemical
registry system. II. Augmented connectivity molecular formula J Chem Inf Comput Sci
1979;19:94–98.

67. Ray LC, Kirsch RA. Finding chemical records by digital computers. Science
1957;126:814–819.

68. Ullman JR. An algorithm for subgraph isomorphism. J Asso Comput Mach 1976;23:
31–42.

69. Karakoc E, Cherkasov A, Sahinalp SC. Distance based algorithms for small biomolecule
classification and structural similarity search. Bioinformatics 2006;22(14):e243–e251.

70. Merkeev IV, Mironov AA. PHOG-BLAST–a new generation tool for fast similarity
search of protein families. BMC Evol Biol 2006;6:51.

71. Seno S, Takenaka Y, Kai C, Kawai J, Carninci P, Hayashizaki Y, Matsuda H. A
method for similarity search of genomic positional expression using CAGE. PLoS Genet
2006;2(4):e44.

72. Camoglu O, Kahveci T, Singh AK. Towards index-based similarity search for protein
structure databases. Proc IEEE Comput Soc Bioinform Conf 2003;2:148–158.

73. Park SH, Ryu KH, Gilbert D. Fast similarity search for protein 3D structures using
topological pattern matching based on spatial relations. Int J Neural Syst 2005;15(4):
287–296.

74. Sun Y, Buhler J. Designing multiple simultaneous seeds for DNA similarity search.
J Comput Biol 2005;12(6):847–861.

75. Cantalloube H, Chomilier J, Chiusa S, Lonquety M, Spadoni JL, Zagury JF. Fil-
tering redundancies for sequence similarity search programs. J Biomol Struct Dyn
2005;22(4):487–492.

76. Can T, Wang YF. Protein structure alignment and fast similarity search using local shape
signatures. J Bioinform Comput Biol 2004;2(1):215–239.

77. Weskamp N, Kuhn D, Hullermeier E, Klebe G. Efficient similarity search in protein
structure databases by k-clique hashing. Bioinformatics 2004;20(10):1522–1526.

78. Krasnogor N, Pelta DA. Measuring the similarity of protein structures by means of the
universal similarity metric. Bioinformatics 2004;20(7):1015–1021.

79. Ming Li XC, Xin Li, Bin Ma, Paul MBV. The Similarity Metric. IEEE Trans Inform
Theor 2004;50(12):3250–3264.

80. Schuffenhauer A, Floersheim P, Acklin P, Jacoby E. Similarity metrics for ligands re-
flecting the similarity of the target proteins J Chem Inf Comput Sci 2003;43:391–405.

462 EFFICIENT ALGORITHMS FOR STRUCTURAL RECALL IN DATABASES

81. Chagoyen M, Carmona-Saez P, Gil C, Carazo JM, Pascual-Montano A. A literature-
based similarity metric for biological processes. BMC Bioinformatics 2006;7(1):363.

82. Cherepinsky V, Feng J, Rejali M, Mishra B. Shrinkage-based similarity metric for cluster
analysis of microarray data. Proc Natl Acad Sci USA 2003;100(17):9668–9673.

83. Hunter L, Taylor RC, Leach SM, Simon R. GESTa gene expression search tool based
on a novel Bayesian similarity metric. Bioinformatics 2001;17 Suppl 1:S115–S122.

84. Everitt B. Cluster Analysis, London; Halsted-Heinemann: 1980.

85. Monev V. Introduction to Similarity Searching in Chemistry. Match-Communi Math Co
2004;51:7–38.

86. Corruccini RS. Size and shape in similarity coefficients based on metric characters. Am
J Phys Anthropol 1973;38(3):743–753.

87. Rhodes N, Willet P, Calvet A, Dunbar JB. CLIPSimilarity searching of 3D databases
using clique detection. J Chem Inf Comput Sci 2003;43:443–448.

88. Salim N, Holliday J, Willett P. Combination of fingerprint-based similarity coefficients
using data fusion. J Chem Inf Comput Sci 2003;43:435–442.

89. Whittle M, Willet P, Klaffke W, van Noort P. Evaluation of similarity measures for
searching the dictionary of natural products database. J Chem Inf Comput Sci 2003;43:
449–457.

90. Hert J, Willet P, Wilton DJ, Acklin P, Azzaoui K, Jacoby E, Schuffenhauer A. New
methods for ligand-based virtual screeninguse of data fusion and machine learning to
enhance the effectiveness of similarity searching. J Chem Inf Model 2006;46:462–470.

91. Cramer RD, Redl G, Berkoff CE. Substructural analysis. Novel approach to the problem
of drug design. J Med Chem 1974;17:533–535.

92. Wilton D, Willett P, Lawson K, Mullier G. Comparison of ranking methods for virtual
screening in lead-discovery programs. J Chem Inf Comput Sci 2003;43:469–474.

93. Harper G, Bradshaw J, Gittins JC, Green DVS. Prediction of biological activity for
high-throughput screening using binary kernel discrimination. J Chem Inf Comput Sci
2001;41:1295–1300.

94. Read RC, Coreneil DG. The Graph isomorphism disease. J Graph Theor 1977;1:
339–363.

95. Barnard JM. Substructure searching methods: Old and new. J Chem Inf Comput Sci
1993;33:532–538.

96. Barreca ML, Rao A, De Luca L, Zappala M, Gurnari C, Monforte P, DeClercq E,
Van Maele B, Debyser Z, Witvrouw M, Briggs JM, Chimirri A. Efficient 3D database
screening for novel HIV-1 IN inhibitors. J Chem Inf Comput Sci 2004;44:1450–1455.

97. Schnecke V, Swanson CA, Getzoff ED, Tainer JA, Kuhn LA. Screening a peptidyl
database for potential ligands to proteins with side-chain flexibility. Proteins 1998;33(1):
74–87.

98. Wildner G, Thurau SR. Database screening for molecular mimicry. Immunol. Today
1997;18(5):252.

99. Faranda S, Frattini A, Zucchi I, Patrosso C, Milanesi L, Montagna C, Vezzoni P.
Characterization and fine localization of two new genes in Xq28 using the genomic
sequence/EST database screening approach. Genomics 1996;34(3):323–327.

100. Good AC, Ewing TJ, Gschwend DA, Kuntz ID. New molecular shape descriptorsappli-
cation in database screening. J Comput Aided Mol Des 1995;9(1):1–12.

REFERENCES 463

101. Shen J. HAD An automated database tool for analyzing screening hits in drug discovery.
J Chem Inf Comput Sci 2003;43:1668–1672.

102. Dury L, Latour T, Leherte L, Barberis F, Vercauteren DP. A new graph descriptor for
molecules containing cycles. Application as screening criterion for searching molec-
ular structures within large databases of organic compounds. J Chem Inf Comput Sci
2001;41:1437–1445.

103. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL.
GlideA new approach for rapid, accurate docking and scoring. 2. Enrichment factors in
database screening. J Med Chem 2004;47:1750–1759.

104. Jorissen RN, Gilson MK. Virtual screening of molecular databases using a support vector
machine. J Chem Inf Model 2005;45:549–561.

105. Nagy M, Kozics S, Veszpremi T, Bruck P. Substructure search on very large files using
tree-structured databases. In: Warr WA, editor. Chemical Structures: The International
Language of Chemistry. Berlin: Springer-Verlag; 1988. pp. 127–130.

21
COMPUTATIONAL APPROACHES TO
PREDICT PROTEIN–PROTEIN AND
DOMAIN–DOMAIN INTERACTIONS

Raja Jothi and Teresa M. Przytycka
National Center for Biotechnology Information, National Library of Medicine, National
Institutes of Health, Bethesda, MD, USA

21.1 INTRODUCTION

Knowledge of protein and domain interactions provides crucial insights into their
functions within a cell. Various high-throughput experimental techniques such as
mass spectrometry, yeast two hybrid, and tandem affinity purification have gen-
erated a considerable amount of large-scale high-throughput protein interaction
data [9,19,21,28,29,35,36,58]. Advances in experimental techniques are paralleled by
a rapid development of computational approaches designed to detect protein–protein
interactions [11,15,24,37,45,46,48,50]. These approaches complement experimental
techniques and, if proven to be successful in predicting interactions, provide insights
into principles governing protein interactions.

A variety of biological information (such as amino acid sequences, coding DNA
sequences, three-dimensional structures, gene expression, codon usage, etc.) is used
by computational methods to arrive at interaction predictions. Most methods rely
on statistically significant biological properties observed among interacting pro-
teins/domains. Some of the widely used properties include co-occurence, coevolution,
co-expression, and co-localization of interacting proteins/domains.

Bioinformatics Algorithms: Techniques and Applications, Edited by Ion I. Mǎndoiu
and Alexander Zelikovsky
Copyright © 2008 John Wiley & Sons, Inc.

465

466 COMPUTATIONAL APPROACHES TO PREDICT PROTEIN–PROTEIN

This chapter is, by no account, a complete survey of all available computational
approaches for predicting protein and domain interactions but rather a presentation
of a bird’s-eye view of the landscape of a large spectrum of available methods. For
detailed descriptions, performances, and technical aspects of the methods, we refer
the reader to the respective articles.

21.2 PROTEIN–PROTEIN INTERACTIONS

21.2.1 Phylogenetic Profiles

The patterns of presence or absence of proteins across multiple genomes (phylogenetic
or phyletic profiles) can be used to infer interactions between proteins [18,50]. A
phylogenetic profile for each protein i is a vector of length n that contains the presence
or absence information of that protein in a reference set of n organisms. The presence
or absence of protein i in organism j is recorded as Pij = 1 or Pij = 0, respectively,
which is usually determined by performing a BLAST search [4] with an E-value
threshold t. If the BLAST search results in a hit with E-value < t, then it is construed
as an evidence for the presence of protein p in G. Otherwise, it is assumed that p is
absent in G.

Proteins with identical or similar profiles are inferred to be functionally interact-
ing under the assumption that proteins involved in the same pathway or functional
system are likely to have been co-inherited during evolution [18,50] (Fig. 21.1a). Sim-
ilarities between profiles can be measured using matrics such as Hamming distance,
Jaccard coefficient, or mutual information. It has been shown that measuring profile
similarity using mutual information rather than matrics such as Hamming distance
results in a better prediction accuracy [22]. By clustering proteins based on their pro-
file similarity scores, one can construct functional pathways and interaction network
modules [12,22]. One of the main limitations of the profile comparison approach is the
lineage-specific gains and losses of genes, thought to be more pervasive in microbial
evolution [39], which could artificially decrease the similarity between functionally
interacting genes.

Instead of using an ad hoc E-value threshold and binary values as originally
proposed [50], recent studies have been using Pij = −1/ log Eij to record the
presence/absence information, where Eij is the BLAST E-value of the top-scoring
sequence alignment of protein i in organism j. To avoid algorithm-induced artifacts,
Pij > 1 are truncated to 1. Notice that a zero (or a one) entry in the profile now
indicates the presence (absence, respectively) of a protein. It is being argued that using
real values for Pij , instead of binary values, captures varying degrees of sequence
divergence, providing more information than the simple presence or absence of
genes [12,33,37]. For a more comprehensive assessment of the phylogenetic profile
comparison approach, we refer the reader to [33].

21.2.2 Gene Fusion Events

There are instances where a pair of interacting proteins in one genome is fused together
into a single protein (referred to as the Rosetta Stone protein [37]) in another genome.

PROTEIN–PROTEIN INTERACTIONS 467

Genome 1

Genome 2

Genome 3

Genome 4

A

A

A

A

B

B

B

B

C

C

C

C

Genome 3

Genome 1

Genome 2

AB

A

B

Proteins A and B are
predicted to interact

(a) Phylogenetic profiles

(b) Gene fusion (Rosetta stone) (c) Gene order conservation

Predicted interactions

A

B

G
en

om
e

1

G
en

om
e

2

G
en

om
e

3

G
en

om
e

4

G
en

om
e

5

1 0 1 0 1
1 0 0 1 1
0 0 1 1 0
1 0 1 0 1
1 0 0 1 1
1 0 0 1 1

A BD E

F

A
B
C
D
E
F

FIGURE 21.1 Computational approaches for predicting protein–protein interactions from
genomic information. (a) Phylogenetic profiles [18,50]. A profile for a protein is a vector of
1s and 0s recording presence or absence, respectively, of that protein in a set of genomes.
Two proteins are predicted to interact if their phylogenetic profiles are identical (or similar).
(b) Gene fusion (Rosetta stone) [15,37]. Proteins A and B in a genome are predicted to interact
if they are fused together into a single protein (Rosetta protein) in another genome. (c) Gene
order conservation [11,45]. If the genes encoding proteins A and B occupy close chromosomal
positions in various genomes, then they are inferred to interact. Figure adapted from [59].

For example, interacting proteins Gyr A and Gyr B in Escherichia coli are fused
together into a single protein (topoisomerase II) in Saccharomyces cerevisiae [7].
Amino acid sequences of Gyr A and Gyr B align to different segments of the topoiso-
merase II. On the basis of such observations, methods have been developed [15,37]
to predict interaction between two proteins in an organism based on the evidence that
they form a part of a single protein in other organisms. A schematic illustration of
this approach is shown in Fig. 21.1b.

21.2.3 Gene Order Conservation

Interactions between proteins can be predicted based on the observation that proteins
encoded by conserved neighboring gene pairs interact (Fig. 21.1c). This idea is based
on the notion that physical interaction between encoded proteins could be one of the
reasons for evolutionary conservation of gene order [11]. Gene order conservation
between proteins in bacterial genomes has been used to predict functional interac-
tions [11,45]. This approach’s applicability only to bacterial genomes, in which the
genome order is a relevant property, is one of its main limitations [59]. Even within
the bacteria, caution must be exercised while interpreting conservation of gene order

468 COMPUTATIONAL APPROACHES TO PREDICT PROTEIN–PROTEIN

between evolutionarily closely related organisms (for example, Mycoplasma genital-
ium and Mycoplasma pneumoniae), as lack of time for genome rearrangements after
divergence of the two organisms from their last common ancestor could be a reason
for the observed gene order conservation. Hence, only organisms with relatively long
evolutionary distances should be considered for such type of analysis. However, the
evolutionary distances should be small enough in order to ensure that a significant
number of orthologous genes are still shared by the organisms [11].

21.2.4 Similarity of Phylogenetic Trees

It is postulated that the sequence changes accumulated during the evolution of one
of the interacting proteins must be compensated by changes in its interaction part-
ner. Such correlated mutations have been subject of several studies [3,23,41,55].
Pazos et al. [46] demonstrated that the information about correlated sequence changes
can distinguish right interdocking sites from incorrect alternatives. In recent years,
a new method has emerged, which, rather than looking at coevolution of individ-
ual residues in protein sequences, measures the degree of coevolution of entire pro-
tein sequences by assessing the similarity between the corresponding phylogenetic
trees [24,25,31,32,34,46–48,51,54]. Under the assumption that interacting protein
sequences and their partners must coevolve (so that any divergent changes in one
partner’s binding surface are complemented at the interface by their interaction part-
ner) [6,30,40,46], pairs of protein sequences exhibiting high degree of coevolution
are inferred to be interacting.

In this section, we first describe the basic “mirror-tree” approach for predicting
interaction between proteins by measuring the degree of coevolution between the
corresponding amino acid sequences. Next, we describe an important modification to
the basic mirror-tree approach that helps in improving its prediction accuracy. Finally,
we discuss a related problem of predicting interaction specificity between two families
of proteins (say, ligands and receptors) that are known to interact.

21.2.4.1 The Basic Mirror-Tree Approach This approach is based on the assump-
tion that phylogenetic trees of interacting proteins are highly likely to be similar due
to the inherent need for coordinated evolution [24,49]. The degree of similarity be-
tween two phylogenetic trees is measured by computing the correlation between the
corresponding distance matrices that implicitly contain the evolutionary histories of
the two proteins.

A schematic illustration of the mirror-tree method is shown in Fig. 21.2. The multi-
ple sequence alignments (MSA) of the two proteins, from a common set of species, are
constructed using one of the many available MSA algorithms such as ClustalW [57],
MUSCLE [14], or T-Coffee [43]. The set of orthologous proteins for a MSA is usu-
ally obtained by one of the two following ways: (i) a stringent BLAST search with a
certain E-value threshold, sequence identity threshold, alignment overlap percentage
threshold or a combination thereof, or (ii) reciprocal (bidirectional) BLAST best-
hits. In both approaches, orthologous sequences of a query protein q in organism Q is
searched by performing a BLAST search of q against sequences in other organisms.

PROTEIN–PROTEIN INTERACTIONS 469

Organism 1
Organism 2
Organism 3
Organism 4
Organism 5

Organism n

MSA of
Protein A

MSA of
Protein B

O
rt

h
o

lo
g

s
P

h
yl

o
g

en
et

ic
tr

ee
s

C
o

rr
el

at
io

n
S

im
ila

ri
ty

m
at

ri
ce

s

FIGURE 21.2 Schema of the mirror-tree method. Multiple sequence alignments of proteins
A and B, constructed from orthologs of A and B, respectively, from a common set of species,
are used to generate the corresponding phylogenetic trees and distance matrices. The degree of
coevolution between A and B is assessed by comparing the corresponding distance matrices
using a linear correlation criteria. Proteins A and B are predicted to interact if the degree of
coevolution, measured by the correlation score, is high (or above a certain threshold).

In the former, q’s best-hit h in organism H , with E-value < t, is considered to be
orthologous to Q. In the latter, q’s best-hit h in organism H (with no specific E-value
threshold) is considered to be orthologous to q if and only if h’s best-hit in organism
Q is q. Using reciprocal best-hits approach to search for orthologous sequences is
considered to be much more stringent than just using unidirectional BLAST searches
with an E-value threshold t.

In order to be able to compare the evolutionary histories to two proteins, it
is required that the two proteins have orthologs in at least a common set of n

organisms. It is advised that n be large enough for the trees and the corresponding

470 COMPUTATIONAL APPROACHES TO PREDICT PROTEIN–PROTEIN

distance matrices contain sufficient evolutionary information. It is suggested that
n ≥ 10 [31,47,48]. Phylogenetic trees from MSA are constructed using standard
tree construction algorithms (such as neighbor joining [53]), which are then used
to construct the distance matrices (algorithms to construct trees and matrices from
MSAs are available in the ClustalW suite).

The extent of agreement between the evolutionary histories of two proteins is as-
sessed by computing the degree of similarity between the two corresponding distance
matrices. The extent of agreement between matrices A and B can be measured using
Pearson’s correlation coefficient, given by

rAB =
∑n−1

i=1
∑n

j=i+1(Aij − A)(Bij − B)√∑n−1
i=1
∑n

j=i+1(Aij − A)2
∑n−1

i=1
∑n

j=i+1(Bij − B)2
, (21.1)

where n is the number of organisms (number of rows or columns) in the matrices,
Aij and Bij are the evolutionary distances between organisms i and j in the tree of
proteins A and B, respectively, and A and B are the mean values of all Aij and Bij ,
respectively. The value of rAB ranges from -1 to +1. The higher the value of r, the
higher the agreement between the two matrices and thus the higher the degree of
coevolution between A and B.

Pairs of proteins with correlation scores above a certain threshold are predicted to
interact. A correlation score of 0.8 is considered to be a good threshold for predicting
protein interactions [24,49]. Pazos et al. [49] estimated that about one third of the
predictions by the mirror-tree method are false positives. A false positive in this
context refers to a non-interacting pair that was predicted to interact due to their
high correlation score. It is quite possible that the evolutionary histories of two non-
interacting proteins are highly correlated due to their common speciation history.
Thus, in order to truly assess the correlation of evolutionary histories of two proteins,
one should first subtract the background correlation due to their common speciation
history. Recently, it has been observed that subtracting the underlying speciation
component greatly improves the predictive power of the mirror-tree approach by
reducing the number of false positives. Refined mirror-tree methods that subtract the
underlying speciation signal are discussed in the following subsection.

21.2.4.2 Accounting for Background Speciation As pointed at the end of the pre-
vious section, to improve the performance of the mirror-tree approach, the coevolution
due to common speciation events should be subtracted from the overall coevolution
signal. Recently, two approaches, very similar in technique, have been proposed to
address this problem [47,54].

For an easier understanding of the speciation subtraction process, let us think of
the distance matrices used in the mirror-tree method as vectors (i.e., the upper right
triangle of the distance matrices is linearized and represented as a vector), which will
be referred to as evolutionary vectors hereafter. Let −→VA and −→VB denote the evolution-
ary vector computed from a multiple sequence alignment of orthologs of proteins
A and B, respectively, for a common set of species. Let

−→
S denote the canonical

PROTEIN–PROTEIN INTERACTIONS 471

evolutionary vector, also referred to as the speciation vector, computed in the same
way but based on a multiple sequence alignment of 16S rRNA sequences for the
same set of species. Speciation vector

−→
S approximates the interspecies evolutionary

distance based on the set of species under consideration. The differences in the scale
of protein and RNA distance matrices are overcome by rescaling the speciation vector
values by a factor computed based on “molecular clock” proteins [47].

A pictorial illustration of the speciation subtraction procedure is shown in
Fig. 21.3. The main idea is to decompose evolutionary vectors −→VA and −→VB into
two components: one representing the contribution due to speciation, and the other
representing the contribution due to evolutionary pressure related to preserving
the protein function (denoted by

−→
CA and

−→
CB, respectively). To obtain

−→
CA and

−→
CB,

the speciation component
−→
S is subtracted from −→

VA and −→VB, respectively. Vectors−→
CA and

−→
CB are expected to contain only the distances between orthologs that are

not due to speciation but to other reasons related to function [47]. The degree
of coevolution between A and B is then measured by computing the correlation
between

−→
CA and

−→
CB, rather than between −→VA and −→VB as in the basic mirror-tree

approach.
The two speciation subtraction methods, by Pazos et al. [47] and Sato et al. [54],

differ in how speciation subtraction is performed (see Fig. 21.3). An in-depth analy-
sis of the pros and cons of two methods is provided in [34]. In a nutshell, Sato et al.
attribute all changes in the direction of the speciation vector to the speciation process
and thus assume that vector

−→
CA is perpendicular to the speciation vector

−→
S , whereas

Pazos et al. assume that the speciation component in −→VA is constant and independent
on the protein family. As a result, Pazos et al. compute

−→
CA to be the difference between−→

VA and
−→
S , which explains the need to rescale RNA distances to protein distances in

the vector
−→
S . Interestingly, despite this difference, both speciation correction meth-

ods produce similar results [34]. In particular, Pazos et al. report that the speciation
subtraction step reduces the number of false positives by about 8.5%.

The above-mentioned methods for subtracting the background speciation have
recently been complemented by the work of Kann et al. [34]. Under the assumption
that in conserved regions of the sequence alignment functional coevolution may be
less concealed by speciation divergence, they demonstrated that the performance of
the mirror-tree method can be improved further by restricting the coevolution analysis
to the relatively highly conserved regions in the protein sequence [34].

21.2.4.3 Predicting Protein Interaction Specificity In this section, we address the
problem of predicting interaction partners between members of two proteins families
that are known to interact [20,32,51]. Given two families of proteins that are known
to interact, the objective is to establish a mapping between the members of one family
with the members of the other family.

To better understand the protein interaction specificity (PRINS) problem, let us
consider an analogous problem, which we shall refer to as the matching problem.
Imagine a social gathering attended by n married couples. Let H = {h1, h2, . . . , hn}
and W = {w1, w2, . . . , wn} be the sets of husbands and wives attending the gathering.
Given that husbands in set H are married to the wives in set W and that the marital

472 COMPUTATIONAL APPROACHES TO PREDICT PROTEIN–PROTEIN

MSA of
Protein A

MSA of
Protein B

O
rt

h
o

lo
g

s
P

h
yl

o
g

en
et

ic
tr

ee
s

S
im

ila
ri

ty
m

at
ri

ce
s

C
o

rr
el

at
io

n

MSA of
16SrRna

Organism 1
Organism 2
Organism 3
Organism 4
Organism 5

Organism n

Sato et al. Pazos et al.
S

u
b

tr
ac

t
sp

ec
ia

ti
o

n

VA VBS

CA

S S S S

VA VB VA VB

CBCA
CB

CA

CB

FIGURE 21.3 Schema of the mirror-tree method with a correction for the background spe-
ciation. Correlation between the evolutionary histories of two proteins could be due to (i) a
need to coevolve in order to preserve the interaction and/or (ii) common speciation events.
To estimate the coevolution due to the common speciation, a canonical tree-of-life is con-
structed by aligning the 16 S rRNA sequences. The rRNA alignment is used to compute
the distance matrix representing the species tree. −→VA,

−→
VB, and

−→
S are the vector notations

for the corresponding distance matrices. Vector
−→
CX is obtained from −→

VX by subtracting it by
the speciation component

−→
S . The speciation component

−→
S is calculated differently based on

the method being used. The degree of coevolution between A and B is then assessed by com-
puting the linear correlation between

−→
CA with

−→
CB. Proteins A and B are predicted to interact if

the correlation between
−→
CA and

−→
CB is sufficiently high.

PROTEIN–PROTEIN INTERACTIONS 473

relationship is monogamous, the matching problem asks for a one-to-one mapping of
the members in H to those in W such that each mapping (hi, wj) holds the meaning
“hi is married to wj .” In other words, the objective is to pair husbands and wives
such that all n pairings are correct. The matching problem has a total of n! possible
mappings out of which only one is correct. The matching problem becomes much
more complex if one were to remove the constraint that requires that the marital
relationship is monogamous. Such a relaxation would allow the sizes of sets H and
W to be different. Without knowing the number of wives (or husbands) each husband
(wife, respectively) has, the problem becomes intractable.

The PRINS problem is essentially the same as the matching problem with the two
sets containing proteins instead of husbands and wives. Let A and B be the two sets of
proteins. Given that the proteins in A interact with those in B, the objective is to map
proteins in A to their interaction partners in B. To fully appreciate the complexity of
this problem, let us first consider a simpler version of the problem that assumes that
the number of proteins in A is the same as that in B and the interaction between the
members of A and B is one to one.

Protein interaction specificity (a protein binding to a specific partner) is vital to
cell function. To maintain the interaction specificity, it is required that it persists
through the course of strong evolutionary events, such as gene duplication and gene
divergence. As genes are duplicated, the binding specificities of duplicated genes (par-
alogs) often diverge, resulting in new binding specificities. Existence of numerous
paralogs for both interaction partners can make the problem of predicting interac-
tion specificity difficult as the number of potential interactions grow combinatorially
[51].

Discovering interaction specificity between the two interacting families of proteins,
such as matching ligands to specific receptors, is an important problem in molecular
biology, which remains largely unsolved. A naive approach to solve this problem
would be to try out all possible mappings (assuming that there is an oracle to verify
whether a given mapping is correct). If A and B contain n proteins each, then there
are a total of n! possible mappings between matrices A and B. For a fairly large n, it
is computationally unrealistic to try out all possible mappings.

Under the assumption that interacting proteins undergo coevolution, Ramani and
Marcotte [51] and Gertz et al. [20], in independent and parallel works, proposed the
“column-swapping” method for the PRINS problem. A schematic illustration of the
column-swapping approach is shown in Fig. 21.4. Matrices A and B in Fig. 21.4
correspond to distance matrices of families A and B, respectively. In this approach,
a Monte Carlo algorithm [38] with simulated annealing is used to navigate through
the search space in an effort to maximize the correlation between the two matrices.
The Monte Carlo search process, instead of searching through the entire landscape of
all possible mappings, allows for a random sampling of the search space in a hope to
find the optimal mapping. Each iteration of the Monte Carlo search process, referred
to as a “move,” constitutes the following two steps.

1. Choose two columns uniformly at random and swap their positions (the
corresponding rows are also swapped).

474 COMPUTATIONAL APPROACHES TO PREDICT PROTEIN–PROTEIN

BA EDC GF cH feghabd

A c

dB

bC

aD

hE

gF

eG

fH

c fabd heg

c

d

b

a

f

g

e

h

A B EDC GF H cba fed hg

A a

bB

cC

dD

eE

fF

gG

hH

Step 1

Calculate initial

agreement

between distance

matrices

Step 2

Swap two randomly chosen rows

(and corresponding columns)

in the distance matrix

Step 3

Iterate until the agreement

with matrix A is maximum

Step 4

Calculate final

agreement

between distance

matrices

Step 5

Predictions: Proteins heading equivalent

columns in matrices A and B interact

Matrix A Matrix B

FIGURE 21.4 Schema of the column-swapping algorithm. Image reproduced from [51] with
permission.

2. If, after the swap, the correlation between the two matrices has improved,
the swap is kept. Else, the swap is kept with the probability p = exp(−δ/T),
where δ is the decrease in the correlation due to the swap, and T is the tempera-
ture control variable governing the simulation process.

Initially, T is set to a value such that p = 0.8 to begin with, and after each iteration
the value of T is decreased by 5%. After the search process converges to a particular
mapping, proteins heading equivalent columns in the two matrices are predicted to
interact. As with any local search algorithm, it is difficult to say whether the final
mapping is an optimal mapping or a local optima.

PROTEIN–PROTEIN INTERACTIONS 475

The main downside of the column-swapping algorithm is the size of search space
(n!), which it has to navigate in order to find the optimal mapping. Since the size
of the search space is directly proportional to search (computational) time, column-
swapping algorithm becomes impractical even for families of size 30.

In 2005, Jothi et al. [32] introduced a new algorithm, called MORPH, to solve the
PRINS problem. The main motivation behind MORPH is to reduce the search space
of the column-swapping algorithm. In addition to using the evolutionary distance
information, MORPH uses topological information encoded in the evolutionary trees
of the protein families. A schematic illustration of the MORPH algorithm is shown
in Fig. 21.5. While MORPH is similar to the column-swapping algorithm at the top
level, the major (and important) difference is the use of phylogenetic tree topology
to guide the search process. Each move in the column-swapping algorithm involves
swapping two random columns (and the corresponding rows), whereas each move in
MORPH involves swapping two isomorphic1 subtrees rooted at a common node (and
the corresponding sets of rows and columns in the distance matrix).

Under the assumption that the phylogenetic trees of protein families A and B are
topologically identical, MORPH essentially performs a topology-preserving embed-
ding (superimposition) of one tree onto the other. The complexity of the topology
of the trees plays a key role in the number of possible ways that one could superim-
pose one tree onto another. Figure 21.6 shows three sets of trees, each of which has
different number of possible mappings based on the tree complexity. For the set of
trees in Fig. 21.6a, the search space (number of mappings) for the column-swapping
algorithm is 4! = 24, whereas it is only eight for MOPRH.

To apply MORPH, the phylogenetic trees corresponding to the two families of
proteins must be isomorphic. To ensure that the trees are isomorphic, MORPH starts
by contracting/shrinking those internal tree edges in both trees with bootstrap score
less than a certain threshold. It is made sure that equal number of edges are contracted
on both trees. If, after the initial edge contraction procedure, the two trees are not
isomorophic, additional internal edges are contracted on both trees (in increasing
order of the edge bootstrap scores) until the trees are isomorphic. The benefits of edge
contraction procedure is twofold: (i) ensure that the two trees are isomorphic to begin
with and (ii) decrease the chances of less reliable edges (with low bootstrap scores)
wrongly influencing the algorithm. Since MORPH relies heavily on the topology of
the trees, it is essential that the tree edges are trustworthy. In the worst case, contracting
all the internal edges on both trees will leave two star-topology trees (like those in
Fig. 21.6c), in which case the number of possible mappings considered by MORPH
will be the same as that considered by the column-swapping algorithm. Thus, in the
worst case, MORPH’s search space will be as big as that of the column-swapping
algorithm.

After the edge contraction procedure, a Monte Carlo search process similar
to that used in the column-swapping algorithm is used to find the best possible

1Two trees T1 and T2 are isomorphic if there is a one-to-one mapping between their vertices (nodes)
such that there is an edge between two vertices in T1 if and only if there is an edge between the two
corresponding vertices in T2.

476 COMPUTATIONAL APPROACHES TO PREDICT PROTEIN–PROTEIN

A B C D E F G H c d b a h g e f
A c
B d
C b
D a
E h
F g
G e
H f

b a c d h g e f
b
a
c
d
h
g
e
f

A B C D E F G H a b c d e f g h
A a
B b
C c
D d
E e
F f
G g
H h

cb a d

A B C
D

G

E F

Step 2
Calculate initial

agreement
between distance

matrices

Step 3
a) Pick two isomorphic subtrees rooted at a
common parent, and swap their positions
b) Swap the corresponding rows/columns

in the distance matrix

Step 1
a) Contract/shrink one edge at a time on both trees until there

are no more edges with bootstrap value < 80%.
b) If the resulting trees are not isomorphic, shrink/contract more

edges (but one at a time on both trees), in the increasing
order of bootstrap values, until the trees are isomorphic. abc

d

E F

G

H

ab
d

c

A B C D

e

f

gh

A B C
D

E F

G

H

abc
d

Step 4
Iterate until the agreement
with matrix A is maximum

H

a b c
d

e f

g

h

e

f

gh

e
f

gh

e

f

gh

Step 5
Calculate final

agreement
between distance

matrices

Step 6
Predictions: Proteins heading equivalent

columns in matrices A and B interact

Protein Family A Protein Family B

Matrix A Matrix B

FIGURE 21.5 Schema of the MORPH algorithm. Image reprinted from [32] with permission.

superimposition of the two trees. As in the column-swapping algorithm, the distance
matrix and the tree corresponding to one of the two families are fixed, and transfor-
mations are made to the tree and the matrix corresponding to the second family. Each
iteration of the Monte Carlo search process constitutes the following two steps:

1. Choose two isomorphic subtrees, rooted at a common node, uniformly at ran-
dom and swap their positions (and the corresponding sets of rows/columns)

DOMAIN–DOMAIN INTERACTIONS 477

A

a

D

B C
b

c

d
(a)

A

a

B
E

D

C

d

e

c

b(b)

A

a

D C

b

B

c

d

(c)

FIGURE 21.6 Three sets of topologically identical (isomorphic) trees. The number of topol-
ogy preserving mappings of one tree onto another is (a) 8, (b) 8, and (c) 24. Despite the same
number of leaves in (a) and (c), the number of possible mappings is different. This difference
is due to the increased complexity of the tree topology in (a) when compared to that in (c).
Image reprinted from [32] with permission.

2. If, after the swap, the correlation between the two matrices has improved, the
swap is kept. Else, the swap is kept with the probability p = exp(−δ/T).

Parameters δ and T are the same as those in the column-swapping algorithm. After the
search process converges to a certain mapping, proteins heading equivalent columns
in the two matrices are predicted to interact.

The sophisticated search process used in MORPH reduces the search space by
multiple orders of magnitude in comparison to the column-swapping algorithm. As
a result, MORPH can help solve larger instances of the PRINS problem. For more
details on the column-swapping algorithm and MORPH, we refer the reader to [20,51]
and [32], respectively.

21.3 DOMAIN–DOMAIN INTERACTIONS

Recent advances in molecular biology combined with large-scale high-throughput
experiments have generated huge volumes of protein interaction data. The knowledge
gained from protein interaction networks has definitely helped to gain a better under-
standing of protein functionalities and inner workings of the cell. However, protein
interaction networks by themselves do not provide insights into interaction specificity
at the domain level. Most of the proteins are composed of multiple domains. It
has been estimated that about two thirds of proteins in prokaryotes and about four
fifths of proteins in eukaryotes are multidomain proteins [5,10]. Most often, the
interaction between two proteins involves binding of a pair(s) of domains. Thus,
understanding the interaction at the domain level is a critical step toward a thorough
understanding of the protein–protein interaction networks and their evolution.
In this section, we will discuss computational approaches for predicting protein
domain interactions. We restrict our discussion to sequence- and network-based
approaches.

478 COMPUTATIONAL APPROACHES TO PREDICT PROTEIN–PROTEIN

21.3.1 Relative Coevolution of Domain Pairs Approach

Given a protein–protein interaction, predicting the domain pair(s) that is most likely
mediating the interaction is of great interest. Formally, let protein P contain domains
{P1, P2, . . . , Pm} and protein Q contain domains {Q1, Q2, . . . , Qn}. Given that
P and Q interact, the objective is to find the domain pair PiQj that is most likely
to mediate the interaction between P and Q. Recall that under the coevolution
hypothesis, interacting proteins exhibit higher level of coevolution. On the basis of
this hypothesis, it is only natural and logical to assume that interacting domain pairs
for a given protein–protein interaction exhibit higher degree of coevolution than the
non-interacting domain pairs. Jothi et al. [31] showed that this is indeed the case and,
based on this, proposed the relative coevolution of domain pairs (RCDP) method
to predict domain pair(s) that is most likely mediating a given protein–protein
interaction.

Predicting domain interactions using RCDP involves two major steps: (i) make
domain assignment to proteins and (ii) use mirror-tree approach to assess the degree
of coevolution of all possible domain pairs. A schematic illustration of the RCDP
method is shown in Fig. 21.7. Interacting proteins P and Q are first assigned with
domains (HMM profiles) using HMMer [1], RPS-BLAST [2], or other similar tools.
Next, MSAs for the two proteins are constructed using orthologous proteins from a
common set of organisms (as described in Section 21.2.4.1). The MSA of domain Pi in
protein P is constructed by extracting those regions in P’s alignment that correspond

FIGURE 21.7 Relative coevolution of domain pairs in interacting proteins. (a) Domain
assignments for interacting proteins P and Q. Interaction sites in P and Q are indicated by thick
light-colored bands. (b) Correlation scores for all possible domain pairs between interacting
proteins P and Q are computed using the mirror-tree method. The domain pair with the highest
correlation score is predicted to be the one that is most likely to mediate the interaction between
proteins P and Q. Figure adapted from [31].

DOMAIN–DOMAIN INTERACTIONS 479

ATP2
(YJR121w)

ATP1
(YBL099w)

YBL099w YJR121w Correlation iPfam
PF00006 PF00006 0.95957039 Y
PF02874 PF00006 0.92390131 Y
PF00306 PF00306 0.89734590 Y
PF00006 PF02874 0.89692159 Y
PF02874 PF02874 0.88768393 Y
PF00006 PF00306 0.87369242 Y
PF00306 PF00006 0.86507957 Y
PF02874 PF00306 0.85735773
PF00306 PF02874 0.84890155

Beta-barrel
domain

Nucleotide-binding
domain

C-terminal
domain

PF02874 PF00006 PF00306

PF02874 PF00006 PF00306

FIGURE 21.8 Protein–protein interaction between alpha (ATP1) and beta (ATP2) chains
of F1-ATPase in Saccharomyces cerevisiae. Protein sequences YBL099w and YJR121w (en-
coded by genes ATP1 and ATP2, respectively) are annotated with three Pfam [17] domains
each: beta-barrel domain (PF02874), nucleotide-binding domain (PF00006), and C-terminal
domain (PF00306). The correlation scores of all possible domain pairs between the two proteins
are listed (table on the right) in decreasing order. Interchain domain–domain interactions
that are known to be true from PDB [8] crystal structures (as inferred in iPfam [16]) are
shown using double arrows in the diagram and “Y” in the table. Interacting domain pairs
between the two proteins have higher correlation than the non-interacting domain pairs.
RCDP will correctly predict the top-scoring domain pair to be interacting. Figure adapted
from [31].

to domain Pi. Then, using the mirror-tree method, the correlation (similarity) scores of
all possible domain pairs between the two proteins are computed. Finally, the domain
pair PiQj with the highest correlation score (or domain pairs, in case of a tie for the
highest correlation score), exhibiting the highest degree of coevolution, is inferred to
be the one that is most likely to mediate the interaction between proteins P and Q.

Figure 21.8 shows the domain-level interactions between alpha (YBL099w) and
beta (YJR121w) chains of F1-ATPase in Saccharomyces cerevisiae. RCDP will
correctly predict the top-scoring domain pair (PF00006 in YBL099w and PF00006 in
YJR121w) to be interacting. In this case, there is more than one domain pair mediating
a given protein–protein interaction. Since RCDP is designed to find only the domain
pair(s) that exhibits highest degree of coevolution, it may not be able to identify all
the domain level interactions between the two interacting proteins. It is possible that
the highest scoring domain pair may not necessarily be an interacting domain pair.
This could be due to what Jothi et al. refer to as the “uncorrelated set of correlated
mutations” phenomenon, which may disrupt coevolution of proteins/domains. Since
the underlying similarity of phylogenetic trees approach solely relies on coevolution
principle, such disruptions can cause false predictions. RCDP’s prediction accuracy
was estimated to be about 64%. A naive random method that picks an arbitrary
domain pair out of all possible domain pairs between the two interacting proteins is
expected to have a prediction accuracy of 55% [31,44]. RCDP’s prediction accuracy
of 64% is significant considering the fact that Nye et al. [44] showed, using a different
dataset, that the naive random method performs as well as Sprinzak and Margalit’s
association method [56], Deng et al.’s maximum likelihood estimation approach [13],
and their own lowest p-value method, all of which are discussed in the following
section. For a detailed analysis of RCDP and its limitations, we refer the reader
to [31].

480 COMPUTATIONAL APPROACHES TO PREDICT PROTEIN–PROTEIN

21.3.2 Predicting Domain Interactions from Protein–Protein
Interaction Network

In this section, we describe computational methods to predict interacting domain pairs
from an underlying protein–protein interaction network. To begin with, all proteins in
the protein–protein interaction network are first assigned with domains using HMM
profiles. Interaction between two proteins typically (albeit not always) involves bind-
ing of pair(s) of domains. Recently, several computational methods have been pro-
posed that, based on the assumption that each protein–protein interaction is mediated
by one or more domain–domain interactions, attempt to recover interacting domains.

We start by introducing the notations that will be used in this section. Let
{P1, . . . , PN} be the set of proteins in the protein–protein interaction network and
{D1, . . . , DM} be the set of all domains that are present in these interacting proteins.
Let I = {(Pmn)|m, n = 1, . . . , N} be the set of protein pairs observed experimentally
to interact. We say that the domain pair Dij belongs to protein pair Pmn (denoted by
Dij ∈ Pmn) if Di belongs to Pm and Dj belongs to Pn or vice versa. Throughout this
section, we will assume that all domain pairs and protein pairs are unordered, that
is, Xab is the same as Xba. Let Nij denote the number of occurrences of domain pair
Dij in all possible protein pairs and let N̂ij be the number of occurrences of Dij in
interacting protein pairs only.2

21.3.2.1 Association Method Sprinzak and Margalit [56] made the first attempt
to predict domain–domain interactions from a protein–protein interaction network.
They proposed a simple statistical approach, referred to as the Association Method
(AM), to identify those domain pairs that are observed to occur in interacting protein
pairs more frequently than expected by chance. Statistical significance of the observed
domain pair is usually measured by the standard log-odds value A or probability α,
given by

Aij = log2
N̂ij

Nij −N̂ij

; αij = N̂ij

Nij

. (21.2)

The AM method is illustrated using a toy protein–protein interaction network in
Fig. 21.9. It was shown that among high scoring pairs are pairs of domains that are
know to interact, and a high α value can be used as a predictor of domain–domain
interaction.

21.3.2.2 Maximum Likelihood Estimation Approach Following the work of
Sprinzak and Margalit, several related methods have been proposed [13,42]. In
particular, Deng et al. [13] extended the idea behind the association method and

2Not all methods described in this section use unordered pairings. Some of them use ordered pairings, that
is, Xab is not the same as Xba. Depending on whether one uses ordered or unordered pairing, the number
of occurrences of a domain pair in a given protein pair is different. For example, let protein Pm contain
domains Dx and Dy and let protein Pn contain domains Dx, Dy , and Dz. The number of occurrences of
domain pair Dxy in protein pair Pmn is four if ordered pairing is used and two if unordered pairing is used.

DOMAIN–DOMAIN INTERACTIONS 481

0

01

000

2120

22400

347000

2240000

1

12

244

1221

24424

4884816

2442484

NN

FIGURE 21.9 Schematic illustration of the association method. The toy protein–protein in-
teraction network is given in the upper panel. The constituent domains of all the proteins
in the network are represented using polygons of varying shapes. The lower panel shows
domain pair occurrence tablesN̂ and N. Each entryN̂i,j represents the number of times the
domain pair (i, j) occurs in interacting protein pairs, and each entry Ni,j represents the num-
ber of times (i, j) occurs in all protein pairs. A domain pair is counted only once even if it
occurs more than once between a protein pair. Three domain pairs with maximum scores are
encircled.

proposed a maximum likelihood approach to estimate the probability of domain–
domain interactions. Their expectation maximization algorithm (EM) computes
domain interaction probabilities that maximize the expectation of observing a given
protein–protein interaction network N et. An important feature of this approach
is that it allows for an explicit treatment of missing and incorrect information
(in this case, false negatives and false positives in the protein–protein interaction
network).

In the EM method, protein–protein and domain–domain interactions are treated as
random variables denoted by Pmn and Dij , respectively. In particular, we let Pmn = 1
if proteins Pm and Pn interact with each other, and Pmn = 0 otherwise. Similarly,
Dij = 1 if domains Di and Dj interact with each other, and Dij = 0 otherwise. The
probability that domains Di and Dj interact is denoted by Pr(Dij) = Pr(Dij = 1).

482 COMPUTATIONAL APPROACHES TO PREDICT PROTEIN–PROTEIN

The probability that proteins Pm and Pn interact is given by

Pr(Pmn = 1) = 1−
∏

Dij∈Pmn

(1− Pr(Dij)). (21.3)

Random variable Omn is used to describe the experimental observation of protein–
protein interaction network. Here, Omn = 1 if proteins Pm and Pn were observed to
interact (that is Pmn ∈ I), and Omn = 0 otherwise. False negative rate is given by
fn = Pr(Omn = 0 | Pmn = 1), and false positive rate is given by fp = Pr(Omn =
1 | Pmn = 0). Estimations of false positive rate and false negative rate vary signifi-
cantly from paper to paper. Deng et al. estimated fn and fp to be 0.8 and 2.5E − 4,
respectively.

Recall that the goal is to estimate Pr(Dij), ∀ij such that the probability of the
observed network N et is maximum. The probability of observing N et is given by

Pr(N et) =
∏

Pmn|Omn=1

Pr(Omn = 1)
∏

Pmn|Omn=0

Pr(Omn = 0), (21.4)

where

Pr(Omn = 1) = Pr(Pmn = 1)(1− fn)+ (1− Pr(Pmn = 1))fp (21.5)

Pr(Omn = 0) = 1− Pr(Omn = 1). (21.6)

The estimates of Pr(Dij) are computed iteratively in an effort to maximize
Pr(N et). Let Pr(Dt

ij) be the estimation of Pr(Dij) in the tth iteration and let Dt

denote the vector of Pr(Dt
ij), ∀ij estimated in the tth iteration. Initially, values in D0

can all be set the same, or to the estimated values obtained using the AM method.
Note that each estimation of Dt−1 defines Pr(Pmn = 1) and Pr(Omn = 1) using
Equations 21.3 and 21.4. These values are, in turn, used to compute Dt in the current
iteration as follows. First, for each domain pair Dij and each protein pair Pmn the
expectation that domain pair Dij physically interacts in protein pair Pmn is estimated
as

E(Dijinteracts in Pmn) =

⎧⎪⎨
⎪⎩

Pr(Dt−1
ij

)(1−fn)

Pr(Omn=1) if Pmn ∈ I
Pr(Dt−1

ij
)fn

Pr(Omn=0) otherwise.
(21.7)

The values of Pr(Dt
ij) for the next iteration are then computed as

Pr(Dt
ij) = 1

Nij

∑
Pmn|Dij∈Pmn

E(Dijinteracts inPmn). (21.8)

DOMAIN–DOMAIN INTERACTIONS 483

Thus, similar to the AM method, the EM method provides a scoring scheme that
measures the likelihood of interaction of a given domain pair.

Since our knowledge of interacting domain pairs is limited (only a small fraction
of interacting domains pairs have been inferred from crystal structures), it is not clear
as to how any two methods predicting domain interactions can be compared. Deng
et al. [13] compared the performance of their EM method to that of Sprinzak and
Margalit’s AM method [56] by assessing how well the domain–domain interaction
predictions by the two methods can, in turn, be used to predict protein–protein inter-
actions. For the AM method, Pr(Dij) in Equation 21.3 is replaced by αij . Thus, rather
than performing a direct comparison of predicted interacting domain pairs, they tested
the method that leads to a more accurate prediction of protein–protein interactions.
It was shown that the EM method outperforms the AM method significantly [13].
This result is not surprising considering the fact that the values of Pr(Dij) in the EM
method are computed so as to maximize the probability of observed interactions.
Comparison of domain interaction prediction methods based on how well they predict
protein–protein interaction is, however, not very satisfying. The correct prediction of
protein interactions does not imply that the interacting domains have been correctly
identified.

21.3.2.3 Domain Pair Exclusion Analysis (DPEA) An important problem in
inferring domain interactions from protein interaction data using the AM and EM
methods is that the highest scoring domain interactions tend to be nonspecific. The
difference between specific and nonspecific interactions is illustrated in Fig. 21.10.
Each of the interacting domains can have several paralogs within a given organism—
several instances of the same domain. In a highly specific (nonpromiscuous) inter-
action, each such instance of domain Di interacts with a unique instance of domain
Dj (see Fig. 21.10a). Such specific interactions are likely to receive a low score
by methods (AM and EM) that detect domain interactions by measuring the prob-
ability of interaction of corresponding domains. To deal with this issue, Riley et
al. [52] introduced a new method called domain pair exclusion analysis (DPEA).
The idea behind this method is to measure, for each domain pair, the reduction
in the likelihood of the protein–protein interaction network if the interaction be-
tween this domain pair were to be disallowed. This is assessed by comparing the
results of executing an expectation maximization protocol under the assumption
that all pairs of domains can interact and that a given pair of domains cannot in-
teract. The E-value is defined to be the ratio of the corresponding likelihood esti-
mators. Figure 21.10b and c shows real-life examples with low θ scores and a high
E-values.

The expectation maximization protocol used in DPEA is similar to that used in
the EM method but performed under the assumption that the network is reliable (no
false positives). The DPEA method has been compared to the EM and AM methods
by measuring the frequency of retrieved (predicted) domain pairs that are known to
interact (based on crystal structure evidence as inferred in iPFAM [16]). Riley et
al. [52] showed that the DPEA method outperforms the AM and EM methods by a
significant margin.

484 COMPUTATIONAL APPROACHES TO PREDICT PROTEIN–PROTEIN

FIGURE 21.10 (a) Promiscuous and (b) specific.

21.3.2.4 Lowest p-Value Method The lowest p-value method, proposed by Nye
et al. [44], is an alternate statistical approach to predict domain–domain interactions.
The idea behind this approach is to test, for every domain pair Dij ∈ Pmn, the null
hypothesis Hij that the interaction between proteins Pm and Pn is independent of the
presence of domain pair Dij . They also consider a global null hypothesis H∞ that
the interaction between proteins Pm and Pn is entirely unrelated to the domain archi-
tectures of proteins. There are two specific assumptions made by this method, which
were not made by other network-based approaches. First, every protein interaction
is assumed to be mediated by exactly one domain–domain interaction. Second, each
occurrence of a domain in a protein sequence is counted separately.

To test the hypothesis Hij , for each domain pair Dij , consider the following two-
by-two matrix Xij:

Dij Domain Pairs Other Than Dij

Interacting domain pairs Xij(1, 1) Xij(1, 2)
Noninteracting domain pairs Xij(2, 1) Xij(2, 2)

In particular, Xij(1, 1) denotes the number of times domain pair Dij is in phys-
ical interaction, and Xij(1, 2) denotes the number of times domain pairs other than
Dij interact. The method for estimating the values of table Xij is given later in
this subsection. Given the matrix Xij , the log-odds score sij for domain Dij is
defined as

sij = log
Xij(1, 1)/Xij(2, 1)

Xij(1, 2)/Xij(2, 2)
(21.9)

The score sij is then converted into a p-value measuring the probability that hy-
pothesis Hij is true. This is done by estimating how likely a score at least this
high can be obtained by chance (under hypothesis H∞). To compute the p-
value, the domain composition within the proteins is randomized. During the ran-
domization procedure, the degree of each node in the protein–protein interaction
network remains the same. The details of the randomization procedure exceeds

DOMAIN–DOMAIN INTERACTIONS 485

the scope of this chapter and for the complete description we refer the reader to
[44].

Finally, we show how to estimate the values in table Xij . Value Xij(1, 1) is
computed as the expected number of times domain pair Dij mediates a protein–protein
interaction under the null hypothesis H∞ given the experimental data O:

E(Dij) =
∑
Pmn

Pr(Pmn = 1|O)Pr(Dij = 1|Pmn = 1), (21.10)

where Pr(Pmn = 1|O) is computed from the approximations of false positive and
false negative rates in a way similar to that described in the previous subsec-
tion. The computation of Pr(Dij = 1|Pmn = 1) takes into account multiple oc-
currences of the same domain in a protein chain. Namely, let Nmn

ij be the num-
ber of possible interactions between domains Di and Dj in protein pair Pnm.
Then

Pr(Dij = 1|Pmn = 1) = Nmn
ij∑

Dkt
Nmn

kt

, (21.11)

and the value Nij is, in this case, computed as

Nij =
∑
Pkt

Nkt
ij .

Consequently, the values of the table are estimated as follows:

Xij(1, 1) = E(Dij)

Xij(2, 1) = Nij − E(Dij)

Xij(1, 2) =
∑

Dkt �=Dij

E(Dkt)

Xij(2, 2) =
∑

Dkt �=Dij

(Nkt − E(Dkt)).

Nye et al. [44] evaluated their method using a general approach introduced by
them, which is described in Section 21.3.1. Namely, they predict that within the set
of domain pairs belonging to a given interacting protein pair, the domain pair with
the lowest p-value is likely to form a contact. To confirm this, they used protein
complexes in the PQS database [27] (a database of quaternary states for structures
contained in the Brookhaven Protein Data Bank (PDB) that were determined by X-ray
crystallography) restricted to protein pairs that are meaningful in this context (e.g., at
least one protein must be multidomain, both proteins contain only domain present in
the yeast protein–protein interaction network used in their study, etc.). It is striking
from this comparison that the improvement these methods achieve over a random

486 COMPUTATIONAL APPROACHES TO PREDICT PROTEIN–PROTEIN

Comparison of Sensitivity in Mediating Domain Pair Prediction Experiment

0

10

20

30

40

50

60

70

80

90

100

242 321 148 50 232 34 84 67 84 20 60 8 37 59 34 7 33 6 11 243 1780

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21+ ANY

Number of Potential Domain Interactions in Protein Pairs (Number of Protein Pairs in the Corresponding Class)

A
va

ra
g

e
E

st
im

at
ed

 S
en

si
ti

vi
ty

 (
T

P
/(

T
P

+
F

N
))

Association

EM

DPEA

PE

FIGURE 21.11 Domain–domain contact prediction results. The results are broken down
according to the potential number of domain–domain contacts between protein pairs in the
given interacting pair of proteins. Pairs of interacting proteins are selected so that each pair
contains an iPFAM domain pair which is assumed to be in contant. Figure adapted from [26].

selection is small, although the improvement increases with the number of possible
domain pair contacts.

21.3.2.5 Most Parsimonious Explanation (PE) Recently, Guimaraes et al. [26]
introduced a new domain interaction prediction method called the most parsimonious
explanation [26]. Their method relies on the hypothesis that interactions between
proteins evolved in a parsimonious way and that the set of correct domain–domain
interactions is well approximated by the minimal set of domain interactions necessary
to justify a given protein–protein interaction network. The EM problem is formulated
as a linear programming optimization problem, where each potential domain–domain
contact is a variable that can receive a value ranging between 0 and 1 (called the
LP-score), and each edge of the protein–protein interaction network corresponds to
one linear constraint. That is, for each (unordered) domain pair Dij that belongs to
some interacting protein pair, there is a variable xij . The values of xij are computed
using the linear program (LP):

minimize
∑
Dij

xij (21.12)

ACKNOWLEDGMENTS 487

subject to
∑

Dij∈Pmn

xij ≥ 1, where Pmn ∈ I.

To account for the noise in the experimental data, a set of linear programs is
constructed in a probabilistic fashion, where the probability of including an LP con-
straint in Equation 21.12 equals the probability with which the corresponding protein–
protein interaction is assumed to be correct. The LP-score for a domain pair Dij is
then averaged over all LP programs. An additional randomization experiment is used
to compute p-values and prevent overprediction of interactions between frequently
occurring domain pairs. Guimaraes at al. [26] demonstrated that the PE method out-
performs the EM and DPEA methods (Fig. 21.11).

GLOSSARY

Coevolution Coordinated evolution. It is generally agreed that proteins that interact
with each other or have similar function undergo coordinated evolution.

Gene fusion A pair of genes in one genome is fused together into a single gene in
another genome.

HMMer HMMer is a freely distributable implementation of profile HMM (hidden
Markov model) software for protein sequence analysis. It uses profile HMMs to do
sensitive database searching using statistical descriptions of a sequence family’s
consensus.

iPfam iPfam is a resource that describes domain–domain interactions that are ob-
served in PDB crystal structures.

Ortholog Two genes from two different species are said to be orthologs if they
evolved directly from a single gene in the last common ancestor.

PDB The protein data bank (PDB) is a central repository for 3D structural data of
proteins and nucleic acids. The data, typically obtained by X-ray crystallography
or NMR spectroscopy, are submitted by biologists and biochemists from around
the world, released into the public domain, and can be accessed for free.

Pfam Pfam is a large collection of multiple sequence alignments and hidden Markov
models covering many common protein domains and families.

Phylogenetic profile A phylogenetic profile for a protein is a vector of 1s and 0s
representing the presence or absence of that protein in a reference set organisms.

Distance matrix A matrix containing the evolutionary distances of organisms or
proteins in a family.

ACKNOWLEDGMENTS

This work was funded by the intramural research program of the National Library of
Medicine, National Institutes of Health.

488 COMPUTATIONAL APPROACHES TO PREDICT PROTEIN–PROTEIN

REFERENCES

1. HMMer. http://hmmer.wustl.edu

2. RPS-BLAST. http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi

3. Altschuh D, Lesk AM, Bloomer AC, Klug A. Correlation of coordinated amino acid
substitutions with function in viruses related to tobacco mosaic virus. J Mol Biol
1987;193(4):683–707.

4. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool.
J Mol Biol 1990;215(3):403–410.

5. Apic G, Gough J, Teichmann SA. Domain combinations in archaeal, eubacterial and
eukaryotic proteomes. J Mol Biol 2001;310(2):311–325.

6. Atwell S, Ultsch M, De Vos AM, Wells JA. Structural plasticity in a remodeled protein–
protein interface. Science 1997;278(5340):1125–1128.

7. Berger JM, Gamblin SJ, Harrison SC, Wang JC. Structure and mechanism of DNA topoi-
somerase II. Nature 1996;379(6562):225–232.

8. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN,
Bourne PE. The Protein Data Bank. Nucl Acid Res 2000;28(1):235–242.

9. Butland G, Peregrin-Alvarez JM, Li J, Yang W, Yang X, Canadien V, Starostine A,
Richards D, Beattie B, Krogan N, Davey M, Parkinson J, Greenblatt J, Emili A.
Interaction network containing conserved and essential protein complexes in escherichia
coli. Nature 2005;433(7025):531–537.

10. Chothia C, Gough J, Vogel C, Teichmann SA. Evolution of the protein repertoire. Science
2003;300(5626):1701–1703.

11. Dandekar T, Snel B, Huynen M, Bork P. Conservation of gene order: a fingerprint of
proteins that physically interact. Trends Biochem Sci 1998;23(9):324–328.

12. Date SV, Marcotte EM. Discovery of uncharacterized cellular systems by genome-wide
analysis of functional linkages. Nat Biotechnol 2003;21(9):1055–1062.

13. Deng M, Mehta S, Sun F, Chen T. Inferring domain–domain interactions from protein–
protein interactions. Genome Res 2002;12(10):1540–1548.

14. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high through-
put. Nucl Acid Res 2004;32(5):1792–1797.

15. Enright AJ, Iliopoulos I, Kyrpides NC, Ouzounis CA. Protein interaction maps for com-
plete genomes based on gene fusion events. Nature 1999;402(6757):86–90.

16. Finn RD, Marshall M, Bateman A. iPfam: visualization of protein–protein inter-
actions in PDB at domain and amino acid resolutions. Bioinformatics 2005;21(3):
410–412.

17. Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hallich V, Lassmann T,
Moxon S, Marshal M, Khanna A, Durbin R, Eddy SR, Sonnhammer EL, Bateman A.
Pfam: clans, web tools and services. Nucleic Acids Res 2006,34(Database issue):D247–
D251.

18. Gaasterland T, Ragan MA. Microbial genescapes: phyletic and functional patterns of ORF
distribution among prokaryotes. Microb Comp Genomics 1998;3(4):199–217.

19. Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM,
Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner
H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S,

REFERENCES 489

Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V,
Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-
Furga G. Functional organization of the yeast proteome by systematic analysis of protein
complexes. Nature 2002;415(6868):141–147.

20. Gertz J, Elfond G, Shustrova A, Weisinger M, Pellegrini M, Cokus S, Rothschild
B. Inferring protein interactions from phylogenetic distance matrices. Bioinformatics
2003;19(16):2039–2045.

21. Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, Hao YL, Ooi CE, Godwin
B, Vitals E, Vijayadamodar G, Pochart P, Machineni H, Welsch M, Kong Y, Zerhusen
B, Malcalm R, Varrone Z, Callis A, Minto M, Burgess S, McDaniel L, Stimpson E,
Spriggs E, Williams J, Neurath K, Ioime N, Agee M, Voss E, Furtak K, Renzulli R,
Aanensen N, Carrolla S, Bickelhaupt E, Lazovatsky Y, DaSilva A, Zhong J, Stanyon CA,
Knight Jr J, Shimkets RA, McKenna MP, Chant J, Rothberg JM. A protein interaction
map of drosophila melanogaster. Science 2003;302(5651):1727–1736.

22. Glazko GV, Mushegian AR. Detection of evolutionarily stable fragments of cellular path-
ways by hierarchical clustering of phyletic patterns. Genome Biol 2004;5(5):R32.

23. Gobel U, Sander C, Schneider R, Valencia A. Correlated mutations and residue contacts
in proteins. Proteins 1994;18(4):309–317.

24. Goh CS, Bogan AA, Joachimiak M, Walther D, Cohen FE. Co-evolution of proteins with
their interaction partners. J Mol Biol 2000;299(2):283–293.

25. Goh CS, Cohen FE. Co-evolutionary analysis reveals insights into protein–protein inter-
actions. J Mol Biol 2002;324(1):177–192.

26. Guimaraes K, Jothi R, Zotenko E, Przytycka TM. Predicting domain–domain interactions
using a parsimony approach. Genome Biol 2006;7(11):R104.

27. Henrick K, Thornton JM. PQS: a protein quarternary structure file server. Trends Biochem
Sci 1998;23(9):358–361.

28. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A,
Taylor P, Bennett K, Boutilier K, Yang L, Walting C, Donaldson I, Schandorff S,
Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z,
Michalickova, Willims AR, Sassi H, Nielson PA, Rasmussen KJ, Andersen JR,
Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsep E, Crawford J,
Poulsen V, Sorensen BD, Mathhiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran
MF, Durocher D, Mann M, Hogue CW, Figeys D, Tyers M. Systematic identifica-
tion of protein complexes in saccharomyces cerevisiae by mass spectrometry. Nature
2002;415(6868):180–183.

29. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y. A comprehensive two-
hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA
2001;98(8):4569–4574.

30. Jespers L, Lijnen HR, Vanwetswinkel S, Van Hoef B, Brepoels K, Collen D, De Maeyer
M. Guiding a docking mode by phage display: selection of correlated mutations at the
staphylokinase-plasmin interface. J Mol Biol 1999;290(2):471–479.

31. Jothi R, Cherukuri PF, Tasneem A, Przytycka TM. Co-evolutionary analysis of domains in
interacting proteins reveals insights into domain–domain interactions mediating protein–
protein interactions. J Mol Biol 2006;362(4):861–875.

32. Jothi R, Kann MG, Przytycka TM. Predicting protein–protein interaction by searching
evolutionary tree automorphism space. Bioinformatics 2005;21(Suppl 1):i241–i250.

490 COMPUTATIONAL APPROACHES TO PREDICT PROTEIN–PROTEIN

33. Jothi R, Przytycka TM, Aravind L. Discovering functional linkages and cellular pathways
using phylogenetic profile comparisons: a comprehensive assessment. BMC Bioinformat-
ics 2007;8:173.

34. Kann MG, Jothi R, Cherukuri PF, Przytycka TM. Predicting protein domain interactions
from co-evolution of conserved regions. Proteins 2007;67(4)811–820.

35. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N,
Tikuisis P, Punna T, Peregrin-Alvaraz JM, Shales M, Zhang X, Davey M, Robinson MD,
Paccanaro A, Bray JE, Sheung A, Beattie B, Richards DP, Canadien V, Lalev A, Mena F,
Wong P, Starostine A, Canete MM, Vlasblom J, Wu S, Orsi C, Collins SR, Chandran S,
Haw R, Rilstone JJ, Gandi K, Thompson NJ, Musso G, St-Onge P, Ghanny S, Lam MH,
Butland G, Altaf-Ul AM, Kanaya S, Shilatifard A, O’Shea E, Weissman JS, Ingles CJ,
Hughes TR, Parkinson J, Gerstein M, Wodak SJ, Emili A, Greenblatt JF. Global landscape
of protein complexes in the yeast saccharomyces cerevisiae. Nature 2006;440(7084):637–
643.

36. Li S, Armstrong CM, Bertin N, Ge H, Milstein S, Boxem M, Vidalain PO, Han JD,
Chesneau A, Hao T, Goldberg DS, Li N, Martinez M, Rual JF, Lamesch P, Xu L, Tewari
M, Wong SL, Zhang LV, Berriz GF, Jacotot L, Vaglio P, Reboul J, Hirozane-Kishikawa T,
Li Q, Gabel HW, Elewa A, Baumgartner B, Rose DJ, Yu H, Bosak S, Sequerra R, Fraser
A, Mango SE, Saxton WM, Strome S, Van Den Heuvel S, Piano F, Vandenhaute J, Sardet
C, Gerstein M, Doucette-Stamm L, Gunsalus KC, Harper JW, Cusick ME, Roth FP, Hill
DE, Vidal M. A map of the interactome network of the metazoan c. elegans. Science
2004;303(5657):540–543.

37. Marcotte EM, Pellegrini M, Ng HL, Rice DW, Yeates TO, Eisenberg D. Detect-
ing protein function and protein–protein interactions from genome sequences. Science
1999;285(5428):751–753.

38. Metropolis N, Rosenbluth AW, Teller A, Teller EJ. Simulated annealing. J Chem Phys
1955;21:1087–1092.

39. Mirkin BG, Fenner TI, Galperin MY, Koonin EV. Algorithms for computing parsimonious
evolutionary scenarios for genome evolution, the last universal common ancestor and
dominance of horizontal gene transfer in the evolution of prokaryotes. BMC Evol Biol
2003;3:2.

40. Moyle WR, Campbell RK, Myers RV, Bernard MP, Han Y, Wang X. Co-evolution of
ligand-receptor pairs. Nature 1994;368(6468):251–255.

41. Neher E. How frequent are correlated changes in families of protein sequences? Proc Natl
Acad Sci USA 1994;91(1):98–102.

42. Ng SK, Zhang Z, Tan SH. Integrative approach for computationally inferring protein
domain interactions. Bioinformatics 2003;19(8):923–929.

43. Notredame C, Higgins DG, Heringa J. T-Coffee: A novel method for fast and accurate
multiple sequence alignment. J Mol Biol 2000;302(1):205–217.

44. Nye TM, Berzuini C, Gilks WR, Babu MM, Teichmann SA. Statistical analysis of domains
in interacting protein pairs. Bioinformatics 2005;21(7):993–1001.

45. Overbeek R, Fonstein M, D’Souza M, Pusch GD, Maltsev N. Use of contiguity on the
chromosome to predict functional coupling. In Silico Biol 1999;1(2):93–108.

46. Pazos F, Helmer-Citterich M, Ausiello G, Valencia A. Correlated mutations con-
tain information about protein–protein interaction. J Mol Biol 1997;271(4):511–
523.

REFERENCES 491

47. Pazos F, Ranea JA, Juan D, Sternberg MJ. Assessing protein co-evolution in the context
of the tree of life assists in the prediction of the interactome. J Mol Biol 2005;352(4):
1002–1015.

48. Pazos F, Valencia A. Similarity of phylogenetic trees as indicator of protein–protein
interaction. Protein Eng 2001;14(9):609–614.

49. Pazos F, Valencia A. In silico two-hybrid system for the selection of physically interacting
protein pairs. Proteins 2002;47(2):219–227.

50. Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO. Assigning protein
functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad
Sci USA 1999;96(8):4285–4288.

51. Ramani AK, Marcotte EM. Exploiting the co-evolution of interacting proteins to discover
interaction specificity. J Mol Biol 2003;327(1):273–284.

52. Riley R, Lee C, Sabatti C, Eisenberg D. Inferring protein domain interactions from
databases of interacting proteins. Genome Biol 2005;6(10):R89.

53. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylo-
genetic trees. Mol Biol Evol 1987;4(4):406–425.

54. Sato T, Yamanishi Y, Kanehisa M, Toh H. The inference of protein–protein interactions by
co-evolutionary analysis is improved by excluding the information about the phylogenetic
relationships. Bioinformatics 2005;21(17):3482–3489.

55. Shindyalov IN, Kolchanov NA, Sander C. Can three-dimensional contacts in protein
structures be predicted by analysis of correlated mutations? Protein Eng 1994;7(3):
349–358.

56. Sprinzak E, Margalit H. Correlated sequence-signatures as markers of protein–protein
interaction. J Mol Biol 2001;311(4):681–692.

57. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of pro-
gressive multiple sequence alignment through sequence weighting, position-specific gap
penalties and weight matrix choice. Nucl Acid Res 1994;22(22):4673–4680.

58. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan
V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T,
Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM. A comprehensive analysis
of protein–protein interactions in saccharomyces cerevisiae. Nature 2000;403(6770):623–
627.

59. Valencia A, Pazos F. Computational methods for the prediction of protein interactions.
Curr Opin Struct Biol 2002;12(3):368–373.

INDEX

2SNP computer program 383, 386,
390

5-fold cross validation 311

active direction 153
adenocarcinoma 345
adjacency 443
Affymetrix 331, 335
agreement homeomorphic subtree 151
agreement homeomorphic

supertree 158
agreement isomorphic subtree 151
agreement isomorphic supertree 158
aligned fragment pair (AFP) 24
alignment graph 12
alignment sensitivity 123–125
allele 355
ambiguous genotype 374
AMMP 441
analytical solution of maximum

likelihood estimate of haplotype

Bioinformatics Algorithms: Techniques and Applications, Edited by Ion I. Mǎndoiu
and Alexander Zelikovsky
Copyright © 2008 John Wiley & Sons, Inc.

frequency 375–377, 389
ancestor 143
ancestral sequences 356
anchor 13
approximate gene cluster discovery

problem (AGCDP) 204, 206
arc contraction 148
ArrayExpress repository 344
ARRAY-RPACK problem 233
association method 480–481
atomic descriptor 446
augmented connectivity molecular

formula (ACMF) 452
average conflict index (ACI) 286

Batched Greedy re-embedding 292
Baum-Welch algorithm 82–83
Bayesian 336–339
Bayesian inference 382, 389
Bayesian meta-analysis, see

Meta-analysis

493

494 INDEX

Bayesian network 74
best-hit 469
beta distribution 341
biological network 260, 267–270
biopatterns 93, 94, 95
BLAST computer program 3–5, 13, 15,

109, 121–122, 466, 468–469
BLASTZ computer program 136
bond-electron matrix 443
bond partition 444
border conflict 282
border length 282–300
BPCAimpute 303, 307, 308
breakpoint 185
Bron-Kerbosch clique detection 454
BUGS 338
BUILD algorithm 160–161

candidate ligand identification program
(CLIP) 454

CANGEN 448
canonical order 448
case/control study 401
CaTScan1 105, 106
CaTScan2 105, 106
CDKN3 347–348
cell cycle 345–346
cell signaling 46–50
centroid-based quadrisection 293,

296–297
CGS-Ftest 307, 310
CGS-Ttest 307, 310
chaining problem 225
character compatibility 39–43
character stability 42–44
chemical abstracts service registry

system 452
chemical databases 439, 450
chemoinformatics 439
chessboard re-embedding 292
chIP-chip 332, 337
chordal graph 31–36, 40–44, 48–49
chromosomes 179
clade 147
classification accuracy 303

clustalW 468, 470
cluster 147, 149, 163, 169
cluster system 147, 169
CMVE 304
coalescent 382
CODEHOP computer program 102,

104
coevolution 464, 468–473, 478–479
cograph 32–37,44, 48
Cohen’s d 334
COLimpute 304, 308
column-swapping algorithm 474–477
combinatorial search 403
combining effect sizes 333
combining probabilities 339–343
common ancestor 146
common interval 187, 203, 205, 214
compatibility graph 153
compatible subtree 151
compatible supertree 157
compatible tree 145, 150
complimentary greedy search 404
composition 170
conditional maximum likelihood 84
conflict index 282, 284–300
confusion table 405
connectivity table 445
CONSENSUS computer program 96
consensus method 391
consensus subtree 150, 156
consensus supertree 158
consensus tree 144
consensus tree methods 145, 156
conserved gene clusters 178
conserved pathway 267–268
conserved segment 185
consistency-based pairwise

alignment 261
convolution coefficient 109, 110, 111
convolution problem 109
coverage efficiency 103
cross-validation 364, 405

database search 262–263, 269–270
DEFOG computer program 102

INDEX 495

degeneracy 101–104, 112
degenerate PCR primers 101–104, 112,

114–115, 243, 256
deposition sequence 282
descendancy graph 161
difference of means 332
diploid genotype 374
directory of natural products 454
disease-association 39
disease susceptibility prediction

problem 405
distance matrix 472, 474–477, 488
divide and conquer 13
DMS computer program 100
DNA polymorphism 224
DNA sequence variation 374
domain interaction 465, 477–488
domain pair exclusion analysis 483
double dynamic programming 23
double-stranded RNA (dsRNA) 104,

105
DPDP computer program 101–103
DPPH computer program 383, 386
DPS 103
duplication 146, 162, 164, 168
duplication cost 164, 168, 171
duplications 182
dynamic programming 9–28, 290, 298

edit distance 95, 100, 108
edit distance-based motifs 100
EM (expectation-maximization)

computer program 381, 384, 385,
387

empirical Bayes 338
ENT (entropy minimization) computer

program 383, 387
Epitaxial placement 288
estimator, biased 334
estimator, method of moments 334
estimator, unbiased approximate 334
e-value 466, 468–469, 483–484,
evidence combination 77–80
exhaustive search 402
exon chaining 16

expectation-maximization
algorithm 359, 374, 381, 389–390

extended connectivity 448
extension 184

facet-defining inequality 209
false discovery rate (FDR) 332, 343
fan 149
FASTA file format 13
fast Fourier transform (FFT) 93, 94,

108, 109, 110, 111
fingerprint 194
fingerprint methods 451
Fisher inverse chi-square 340
Fisher product 340
fissions 182
fixed effects modeling 333, 339
flexible structure alignment 24
Forbes coefficient 454
force field 441
founder haplotypes 356
FOXM1 347
F-test 307, 310
functional interaction 466–467
functional module 268–269
fusions 182

GenBank 332
gene cluster 203
gene content 205, 211
gene duplication 144, 147, 163
Gene expression microarray 303
gene fusion 466–467, 487
gene loss 146, 164
gene pool 205
generalized HMM 67–72
generator 190
gene selection 310
gene silencing 93, 107
gene team 192, 205, 214
genetic polymorphism 374
gene transfer 144
gene tree 146, 147, 162–171
gene universe 205
genome tiling 230

496 INDEX

genotype 356, 396
GEO repository 344
geometric tail 69–71
Gibbs sampling 338, 374, 381
global sequence alignment 11–14
global similarity 109, 110
GMCimpute 305
GO ontology 336
graph alignment 268
Gray code 287
Greedy+ algorithm 298–299
greedy re-embedding 292
GTile problem 232

Hamming distance 95, 96, 98, 99, 100,
104

HAP computer program 383, 386, 390
HaploFreq computer program 383, 386,

390
haplotype 355, 374–375, 396
haplotype frequency direct estimate 384
haplotype frequency indirect

estimate 387
haplotype inference 62, 364, 373, 390
Haplotyper computer program 381,

387, 389
haplotyping problem 356
HapMap 365
Hardy-Weinberg equilibrium 377,

380–381, 389
hash function 452
heatmap 346–347
heuristic local alignment 122
hidden Markov model (HMM) 357
hierarchical model 336–337
HIT computer program 357
hitting set 154
HIV 440
HMM decoding 58–59, 63–67
HMMer computer program 478, 488
HMM topology 57
HMM training 82–85
homeomorphism 148
homogeneity, test of 333, 335
horizontal gene transfer 146, 162, 164

Hosoya polynomial 425
hybridization node 147
HYDEN computer program 102

ILLSimpute 303, 307, 308
imputation 303, 308
incidence 443
indexing 396
infinite-sites model 383
informative SNP 398
integer linear program 203–221,

243–247, 250–252, 256
integration-driven discovery rate

(IDR) 343–344
intersection graph 31–41,
interval graph 30–32, 34–36, 45–46,
inversions 181
iPfam 479, 483, 488
IR problem 226
irreducible common interval 190
isomorphism 148
iterative refinement 261

JAGS 338

KNN classifier 307, 310
KNNimpute 303, 305, 308

lateral gene transfer 144, 146, 164–166
(l,d)-motif 264–265
least common ancestor 143, 147, 163
Levenshtein distance 100
likelihood 376, 378–379, 383,
likelihood function 337
LinCmb 304
linear interval 205
line notation 447
linkage disequilibrium 374–375
local alignment 14–15
local ratio and multi-phase

techniques 227
local structure segments 18
longest increasing subsequence

problem 14
LOWESS normalization 344

INDEX 497

lowest p-value method 484–486

max-gap cluster 195, 203, 205, 214
maximal exact matches (MEMs) 13
maximal segment pair (MSP) 109
maximal unique matches (MUMs) 14
maximum agreement homeomorphic

network 155, 156
maximum agreement homeomorphic

subtree (MAST) 150–153
maximum agreement homeomorphic

supertree (MASP) 158, 161
maximum agreement isomorphic

subtree (MIT) 151
maximum agreement isomorphic

supertree (MISP) 158
maximum clique 453
maximum common subgraph 453
maximum compatible subtree

(MCT) 150–151
maximum compatible supertree

(MCSP) 158, 161
maximum consensus subtree 150–156
maximum consensus supertree 158
maximum control-free cluster

problem 403
Maximum Coverage Degenerate Primer

Design Problem (MC-DPDP) 102
maximum likelihood 335, 377, 379, 380
maximum likelihood

estimation 479–482
maximum likelihood principle 359
MC-DPDP 102
MCMC 338
MD-DPDP 103, 104
MDL 444
melting temperature 241, 249–250
MEME computer program 96
meta-analysis 329–349
microarray 329–332, 344–349
microarray layout 279–301
microarray layout problem

(MLP) 282–300
microarray production 280–281
MINCUT algorithm 160–162

MinDPS computer program 104
minimum compatible regular

supernetwork 159
Minimum Degeneracy Degenerate

Primer Design with Errors Problem
(MD-DPDEP) 103, 104

minimum multicolored subgraph 243,
245, 257

MIPS computer program 102, 103
MIPS ontology 336
mirror-tree 468–472, 478–479
missing rate 307
MITRA computer program 97, 99
mixed graph 165
model-Fitting 406
modular decomposition 36–37
molecular graphs 441–443
molecular tree 442
Monte Carlo search 473, 475–476
Morgan Algorithm 448
MORPH algorithm 475, 477
most compatible NestedSupertree

problem 159, 162
most compatible supertree

problem 158, 162
most parsimonious explanation

method 486–487
motif discovery 94, 95, 111
motif finding 260, 264–267, 269
MTA1 349
multiple sequence alignment 15,

259–264, 269, 468–472, 478, 488
multiple spaced seeds 131–133
multiplex PCR (MP-PCR) 101, 242
multiplex PCR primer set

selection 241–257
multiplicative Wiener index 421
MULTIPROFILER computer

program 96
MUSCLE computer program 468
mutation cost 164, 169
mutual information content 21

neighbor-joining algorithm 470,
491

498 INDEX

NESTEDSUPERTREE algorithm 159,
161–162

network matching 18
network motif 268
nonoverlapping local alignments 224
normalized border length (NBL) 286
NRMSE 306

off-target gene silencing 93, 107
Oncomine 330, 344–349
one-dimensional partitioning 293–294
online interval maximum problem 235
optimal primer cover problem 242–243
optimum single probe embedding

(OSPE) 290–292, 298–299
ordered maximum homeomorphic

subtree 156
orthologs 468–472, 478, 488
overlap 187

pair HMM 80–82
partial order alignment 19,24
partial order graph 19
partitioning algorithm 286, 293–300
PatternHunter 129
Pearson’s correlation coefficient 470
peptoid 433
perfect phylogeny 39–40, 383
performance coefficient 96, 97
permutation 180, 203
permutation testing 339
Phase computer program 382, 385–387,

389
phasing problem 356
pheromone signaling pathway 46–50
photolithographic mask 280–281
phylogenetic footprinting 266–267, 269
phylogenetic HMM 75–77
phylogenetic network 146, 147
phylogenetic profile 466–467, 488
phylogenetic tree 38–40, 468–470, 475,

479
physical interaction 44, 468, 482, 485
pivot partitioning 293, 297–298
placement algorithm 286–290, 298–300

planted (l,d)-motif Problem 95
planted motif 96, 97, 99, 100, 112, 113,

114
PL-EM (partial-ligation EM) computer

program 382, 384, 385, 387, 389
PMS1 computer program 98, 99
PMS2 computer program 99
PMS computer program 97, 98, 100
PMSi computer program 100
PMSP computer program 100
PMSprune computer program 100
polymerase chain reaction (PCR) 231,

241–242, 374
pooled standard deviation 334
positional homologs 195
posterior distribution 337–339
posterior decoding 63–64
potential function 244, 247
potential-greedy primer selection

algorithm 243–244, 247–257
PQ-trees 188
Primer3 computer program 242, 249,

258
primer selection 95, 101, 113, 114,

241–258
prior distribution 336–338
probe design problem 107
probe embedding 282–300
probe embedding, asynchronous 283
probe embedding, left-most 283
probe embedding, synchronous 283
profile 263–265
profile HMM 62
progressive alignment 15
progressive alignment 261
PROJECTION computer program 96
prostate cancer 345–348
protein alignments 136–137
protein complex 43–50
protein data bank (PDB) 479, 486, 488
protein interaction 29–30, 44–50
protein interaction 465–488
protein interaction network 477–488
protein interaction specificity

(PRINS) 471, 473, 475, 477

INDEX 499

pseudoknots 20
p-value 339–343, 347

quadratic assignment problem
(QAP) 286

quantitative-structure-activity-
relationship
(QSAR) 419

quorum 212

radix sort 94, 101, 105–106, 108
random effects modeling 333–336
RB (rule-based) algorithm 374, 382
RB (rule-based) computer

program 382, 384, 385
rearrangements 177
recombination 62
reconciled tree 167, 170, 171
re-embedding algorithm 286, 290–292,

298–300
refinement 145,148, 149, 157, 158
RepeatMasker computer program 231
ribosomal complex assembly 44–45
ring structure 442
RMA normalization 344
RNA interference (RNAi) 95, 104, 112,

113
RNA secondary structure 11,19
RNA secondary structure prediction 20
rooted network 146
rooted triple 149
root mean squared distance (RMSD) 22
row-epitaxial placement 289
RPS-BLAST computer program 478
Russel-Rao coefficient 454
r-window 205, 214

scenario 166, 167, 171
Schultz index 421
segment alignment (SEA) 18
segment chaining 13, 24
separation problem 209
sequence alignment 3, 117–140, 466
sequence-structure motifs 18
sequential re-embedding 292

shared substructure 440
shortest path 10
short-interference RNA (siRNA) 93,

95, 105, 107, 112, 113, 115
shrinkage 339
Sidak’s correction 341
similarity coding 453
similarity measurement 94, 108, 111
similar subset 440
Simpson coefficient 454
single nucleotide polymorphism

(SNP) 241–257, 355–372, 395–415
siRNA patterns 107
sliding-window matching

algorithm 288
SMARTS 447
SMD repository 344
SMILES 447
SMIRKS 448
soft conflict 150
SOS algorithm 108
spaced seeds 126–133
speciation 163, 166
species tree 145, 146, 147, 162–171
specific selection problem 107, 108
spliced alignment 16
SP-STAR algorithm 96
standardized mean difference 334
Stereochemically Extended Morgan

algorithm (SEMA) 449
Stouffer’s sum of Z’s 340
strong common interval 188
structural flexibility 24
structure-based sequence alignment 23
structure search 451
subdivision operation 165
suboptimal structures 21
suffix array 94
suffix tree 94, 100, 101, 105, 107, 115
sum of logits 341
sum of logs 340
supernetwork 144, 156, 157, 159, 160,

161
switch distance 365
Szeged index 421

500 INDEX

tagging 396
Tanimoto coefficient 453
t-Coffee computer program 468
threading 287, 288
three-dimensional molecular

representation 441
thresholded Fisher product 341–342
Tippett’s Minimum p 341
TOP2A, 348
topological index 419
topological restriction 148
toposisomerase II 348
total agreement supertree problem 157
TRANSFAC database 336
transfer arc 165
translocations 181
transmembrane proteins 61
traveling salesman problem (TSP) 287
tree isomorphism 475–477
treelike cluster system 147, 159, 169
tree topology 475, 477
triple repeat identification problem

(TRIP) 106
t-statistic 347

two-dimensional molecular
representation 441

two-dimensional partitioning 293,
295–296

Ullman algorithm 452
uniformly ordered maximum

homeomorphic subtree 156
union graph 165
unphased genotype 356

variance 339
vector seeds 134–135
vertex contraction 148
Viterbi algorithm 58–59

Watson-Crick complement 241, 244
weighted sum of Z’s 341
Wiener index 420
WinBUGS computer program 338
Winer’s sum of t’s 341
WINNOWER algorithm 96
Wiswesser line notation (WLN) 447
wrapping interval 211

Wiley Series on

Bioinformatics: Computational Techniques and Engineering

Bioinformatics and computational biology involve the comprehensive application of
mathematics, statistics, science, and computer science to the understanding of living
systems. Research and development in these areas require cooperation among specialists
from the fields of biology, computer science, mathematics, statistics, physics, and related
sciences. The objective of this book series is to provide timely treatments of the different
aspects of bioinformatics spanning theory, new and established techniques, technologies
and tools, and application domains. This series emphasizes algorithmic, mathematical,
statistical, and computational methods that are central in bioinformatics and computational
biology.

Series Editors: Professor Yi Pan and Professor Albert Y. Zomaya
pan@cs.gsu.edu zomaya@it.usyd.edu.au

Knowledge Discovery in Bioinformatics: Techniques, Methods, and Applications
Xiaohua Hu and Yi Pan

Grid Computing for Bioinformatics and Computational Biology
Edited by El-Ghazali Talbi and Albert Y. Zomaya

Bioinformatics Algorithms: Techniques and Applications
Ion Mandiou and Alexander Zelikovsky

Analysis of Biological Networks
Edited by Björn H. Junker and Falk Schreiber

bioinformatics-cp.qxd 11/29/2007 8:44 AM Page 1

