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Preface

Finding the Code for This Book
This book is about algorithms. But it’s not a book about the theory of algorithms. It’s a
short tutorial introduction to algorithms that’s targetted at people who like to learn about
new ideas by experimenting with them in practice.

Because we want you to experiment, this book is meant to be read while you’re near an
interpreter for your favorite programming language. In the text, we illustrate every al‐
gorithm we describe using Python. As part of the accompanying online materials, there
is similar code available that implements all of the same algorithms in Julia, a new
programming language that is ideally suited for implementing bandit algorithms.
Alongside the Python and Julia code, there are also links to similar implementations in
other languages like JavaScript.

We’ve chosen to use Python for this book because it seems like a reasonable lingua franca
for programmers. If Python isn’t your style, you should be able to translate our Python
code into your favorite programming language fairly easily.

Assuming you are happy using Python or Julia, you can find the code for the book on
GitHub at https://github.com/johnmyleswhite/BanditsBook. If you find mistakes or
would like to submit an implementation in another language, please make a pull request.

Dealing with Jargon: A Glossary
While this book isn’t meant to introduce you to the theoretical study of the Multiarmed
Bandit Problem or to prepare you to develop novel algorithms for solving the problem,
we want you to leave this book with enough understanding of existing work to be able
to follow the literature on the Multiarmed Bandit Problem. In order to do that, we have
to introduce quite a large number of jargon words. These jargon words can be a little
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odd at a first, but they’re universally used in the academic literature on Multiarmed
Bandit Problems. As you read this book, you will want to return to the list of jargon
words below to remind yourself what they mean. For now, you can glance through them,
but we don’t expect you to understand these words yet. Just know that this material is
here for you to refer back to if you’re ever confused about a term we use.
Reward

A quantitative measure of success. In business, the ultimate rewards are profits, but
we can often treat simpler metrics like click-through rates for ads or sign-up rates
for new users as rewards. What matters is that (A) there is a clear quantitative scale
and (B) it’s better to have more reward than less reward.

Arm
What options are available to us? What actions can we take? In this book, we’ll refer
to the options available to us as arms. The reasons for this naming convention will
be easier to understand after we’ve discuss a little bit of the history of the Multiarmed
Bandit Problem.

Bandit
A bandit is a collection of arms. When you have many options available to you, we
call that collection of options a Multiarmed Bandit. A Multiarmed Bandit is a
mathematical model you can use to reason about how to make decisions when you
have many actions you can take and imperfect information about the rewards you
would receive after taking those actions. The algorithms presented in this book are
ways of trying to solve the problem of deciding which arms to pull when. We refer
to the problem of choosing arms to pull as the Multiarmed Bandit Problem.

Play/Trial
When you deal with a bandit, it’s assumed that you get to pull on each arm multiple
times. Each chance you have to pull on an arm will be called a play or, more often,
a trial. The term “play” helps to invoke the notion of gambling that inspires the term
“arm”, but the term trial is quite commonly used.

Horizon
How many trials will you have before the game is finished? The number of trials
left is called the horizon. If the horizon is short, you will often use a different strategy
than you would use if the horizon were long, because having many chances to play
each arm means that you can take greater risks while still having time to recover if
anything goes wrong.

Exploitation
An algorithm for solving the Multiarmed Bandit Problem exploits if it plays the arm
with the highest estimated value based on previous plays.
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Exploration
An algorithm for solving the Multiarmed Bandit Problem explores if it plays any
arm that does not have the highest estimated value based on previous plays. In other
words, exploration occurs whenever exploitation does not.

Explore/Exploit Dilemma
The observation that any learning system must strike a compromise between its
impulse to explore and its impulse to exploit. The dilemma has no exact solution,
but the algorithms described in this book provide useful strategies for resolving the
conflicting goals of exploration and exploitation.

Annealing
An algorithm for solving the Multiarmed Bandit Problem anneals if it explores less
over time.

Temperature
A parameter that can be adjusted to increase the amount of exploration in the
Softmax algorithm for solving the Multiarmed Bandit Problem. If you decrease the
temperature parameter over time, this causes the algorithm to anneal.

Streaming Algorithms
An algorithm is a streaming algorithm if it can process data one piece at a time.
This is the opposite of batch processing algorithms that need access to all of the data
in order to do anything with it.

Online Learning
An algorithm is an online learning algorithm if it can not only process data one
piece at a time, but can also provide provisional results of its analysis after each piece
of data is seen.

Active Learning
An algorithm is an active learning algorithm if it can decide which pieces of data it
wants to see next in order to learn most effectively. Most traditional machine learn‐
ing algorithm are not active: they passively accept the data we feed them and do not
tell us what data we should collect next.

Bernoulli
A Bernoulli system outputs a 1 with probability p and a 0 with probability 1 – p.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.
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Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in this book in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant portion
of the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples from
O'™Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount
of example code from this book into your product'™s documentation does require per‐
mission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: "Bandit Algorithms for Website Optimiza‐
tion by John Myles White. Copyright 2013 John Myles White, 978-1-449-34133-6.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.
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CHAPTER 1

Two Characters: Exploration and
Exploitation

To set the stage for this book, I’m going to tell you a short story about a web developer,
Deborah Knull, who ran a small web business that provided most of her income. Deb
Knull’s story will introduce the core concepts that come up when studying bandit algo‐
rithms, which are called exploration and exploitation. To make those ideas concrete, I’m
going to associate them with two types of people: a scientist who explores and a busi‐
nessman who exploits. My hope is that these two characters will help you understand
why you need to find a way to balance the desires of both of these types of people in
order to build a better website.

The Scientist and the Businessman
One Sunday morning, a young web enterpreneur, Deb Knull, came to suspect that
changing the primary color of her site’s logo would make her site’s users feel more com‐
fortable. Perhaps more importantly, she thought that making her customers feel more
comfortable would make them buy more of the products her site was selling.

But Deb Knull worried that a new color could potentially disorient users and make them
feel less comfortable. If that were true, her clever idea to increase sales might actually
make her users buy fewer products instead. Unsure which of her instincts to trust, she
asked for advice from two of her friends: Cynthia, a scientist, and Bob, a businessman.

Cynthia the Scientist
Cynthia, the scientist, loved Deb’s proposed logo change. Excited by the opportunity to
try out someting new, Cynthia started to lecture Deb about how to test her change
carefully: “You can’t just switch your logo to a new color and then assume that the change
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in the logo’s color is responsible for whatever happens next. You’ll need to run a con‐
trolled experiment. If you don’t test your idea with a controlled experiment, you’ll never
know whether the color change actually helped or hurt your sales. After all, it’s going to
be Christmas season soon. If you change the logo now, I’m sure you’ll see a huge increase
in sales relative to the last two months. But that’s not informative about the merits of
the new logo: for all you know, the new color for your logo might actually be hurting
sales.”

“Christmas is such a lucrative time of year that you’ll see increased profits despite having
made a bad decision by switching to a new color logo. If you want to know what the real
merit of your idea is, you need to make a proper apples-to-apples comparison. And the
only way I know how to do that is to run a traditional randomized experiment: whenever
a new visitor comes to your site, you should flip a coin. If it comes up heads, you’ll put
that new visitor into Group A and show them the old logo. If it comes up tails, you’ll
put the visitor into Group B and show them the new logo. Because the logo you show
each user is selected completely randomly, any factors that might distort the comparison
between the old logo and new logo should balance out over time. If you use a coinflip
to decide which logo to show each user, the effect of the logo won’t be distorted by the
effects of other things like the Christmas season.”

Deb agreed that she shouldn’t just switch the color of her logo over; as Cynthia the
scientist was suggesting, Deb saw that she needed to run a controlled experiment to
assess the business value of changing her site’s logo.

In Cynthia’s proposed A/B testing setup, Groups A and B of users would see slightly
different versions of the same website. After enough users had been exposed to both
designs, comparisons between the two groups would allow Deb to decide whether the
proposed change would help or hurt her site.

Once she was convinced of the merits of A/B testing, Deb started to contemplate much
larger scale experiments: instead of running an A/B test, she started to consider com‐
paring her old black logo with six other colors, including some fairly quirky colors like
purple and chartreuse. She’d gone from A/B testing to A/B/C/D/E/F/G testing in a matter
of minutes.

Running careful experiments about each of these ideas excited Cynthia as a scientist,
but Deb worried that some of the colors that Cynthia had proposed testing seemed likely
to be much worse than her current logo. Unsure what to do, Deb raised her concerns
with Bob, who worked at a large multinational bank.

Bob the Businessman
Bob heard Deb’s idea of testing out several new logo colors on her site and agreed that
experimentation could be profitable. But Bob was also very skeptical about the value of
trying out some of the quirkier of Cynthia’s ideas.
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“Cynthia’s a scientist. Of course she thinks that you should run lots of experiments. She
wants to have knowledge for knowledge’s sake and never thinks about the costs of her
experiments. But you’re a businesswoman, Deb. You have a livelihood to make. You
should try to maximize your site’s profits. To keep your checkbook safe, you should only
run experiments that could be profitable. Knowledge is only valuable for profit’s sake in
business. Unless you really believe a change has the potential to be valuable, don’t try it
at all. And if you don’t have any new ideas that you have faith in, going with your
traditional logo is the best strategy.”

Bob’s skepticism of the value of large-scale experimentation rekindled Deb’s concerns
earlier: the threat of losing customers was greater than Deb had felt when energized by
Cynthia’s passion for designing experiments. But Deb also wasn’t clear how to decide
which changes would be profitable without trying them out, which seemed to lead her
back to Cynthia’s original proposal and away from Bob’s preference for tradition.

After spending some time weighing Cynthia and Bob’s arguments, Deb decided that
there was always going to be a fundamental trade-off between the goals that motivated
Cynthia and Bob: a small business couldn’t afford to behave like a scientist and spend
money gaining knowledge for knowledge’s sake, but it also couldn’t afford to focus short-
sightedly on current profits and to never try out any new ideas. As far as she could see,
Deb felt that there was never going to be a simple way to balance the need to (1) learn
new things and (2) profit from old things that she’d already learned.

Oscar the Operations Researcher
Luckily, Deb had one more friend she knew she could turn to for advice: Oscar, a pro‐
fessor who worked in the local Department of Operations Research. Deb knew that
Oscar was an established expert in business decision-making, so she suspected the Oscar
would have something intelligent to say about her newfound questions about balancing
experimentation with profit-maximization.

And Oscar was indeed interested in Deb’s idea:

“I entirely agree that you have to find a way to balance Cynthia’s interest in experimen‐
tation and Bob’s interest in profits. My colleagues and I call that the Explore-Exploit
trade-off.”

“Which is?”

“It’s the way Operations Researchers talk about your need to balance experimentation
with profit-maximization. We call experimentation exploration and we call profit-
maximization exploitation. They’re the fundamental values that any profit-seeking sys‐
tem, whether it’s a person, a company or a robot, has to find a way to balance. If you do
too much exploration, you lose money. And if you do too much exploitation, you stag‐
nate and miss out on new opportunities.”

The Scientist and the Businessman | 3

V413HAV
Typewritten Text
V413HAV



“So how do I balance exploration and exploitation?”

“Unfortunately, I don’t have a simple answer for you. Like you suspected, there is no
universal solution to balancing your two goals: to learn which ideas are good or bad,
you have to explore — at the risk of losing money and bringing in fewer profits. The
right way to choose between exploring new ideas and exploiting the best of your old
ideas depends on the details of your situation. What I can tell you is that your plan to
run A/B testing, which both Cynthia and Bob seem to be taking for granted as the only
possible way you could learn which color logo is best, is not always the best option.”

“For example, a trial period of A/B testing followed by sticking strictly to the best design
afterwards only makes sense if there is a definite best design that consistently works
across the Christmas season and the rest of the year. But imagine that the best color
scheme is black/orange near Halloween and red/green near Christmas. If you run an A/
B experiment during only one of those two periods of time, you’ll come to think there’s
a huge difference — and then your profits will suddenly come crashing down during
the other time of year.”

“And there are other potential problems as well with naive A/B testing: if you run an
experiment that streches across both times of year, you’ll see no average effect for your
two color schemes — even though there’s a huge effect in each of the seasons if you had
examined them separately. You need context to design meaningful experiments. And
you need to experiment intelligently. Thankfully, there are lots of algorithms you can
use to help you design better experiments.”

The Explore-Exploit Dilemma
Hopefully the short story I’ve just told you has made it clear to you that you have two
completely different goals you need to address when you try to optimize a website: you
need to (A) learn about new ideas (which we’ll always call exploring from now on), while
you also need to (B) take advantage of the best of your old ideas (which we’ll always call
exploiting from now on). Cynthia the scientist was meant to embody exploration: she
was open to every new idea, including the terrible ideas of using a purple or chartreuse
logo. Bob was meant to embody exploitation, because he closes his mind to new ideas
prematurely and is overly willing to stick with tradition.

To help you build better websites, we’ll do exactly what Oscar would have done to help
Deborah: we’ll give you a crash course in methods for solving the Explore-Exploit di‐
lemma. We’ll discuss two classic algorithms, one state-of-the-art algorithm and then
refer you to standard textbooks with much more information about the huge field that’s
arisen around the Exploration-Exploitation trade-off.
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But, before we start working with algorithms for solving the Exploration-Exploitation
trade-off, we’re going to focus on the differences between the bandit algorithms we’ll
present in this book and the tradition A/B testing methods that most web developers
would use to explore new ideas.
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CHAPTER 2

Why Use Multiarmed Bandit Algorithms?

What Are We Trying to Do?
In the previous chapter, we introduced the two core concepts of exploration and ex‐
ploitation. In this chapter, we want to make those concepts more concrete by explaining
how they would arise in the specific context of website optimization. When we talk about
“optimizing a website”, we’re referring to a step-by-step process in which a web developer
makes a series of changes to a website, each of which is meant to increase the success of
that site. For many web developers, the most famous type of website optimization is
called Search Engine Optimization (or SEO for short), a process that involves modifying
a website to increase that site’s rank in search engine results. We won’t discuss SEO at
all in this book, but the algorithms that we will describe can be easily applied as part of
an SEO campaign in order to decide which SEO techniques work best.

Instead of focusing on SEO, or on any other sort of specific modification you could make
to a website to increase its success, we’ll be describing a series of algorithms that allow
you to measure the real-world value of any modifications you might make to your site(s).

But, before we can describe those algorithms, we need to make sure that we all mean
the same thing when we use the word “success.” From now on, we are only going to use
the word “success” to describe measurable achievements like:
Traffic

Did a change increase the amount of traffic to a site’s landing page?

Conversions
Did a change increase the number of one-time vistors who were successfully con‐
verted into repeat customers?
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Sales
Did a change increase the number of purchases being made on a site by either new
or existing customers?

CTR’s
Did a change increase the number of times that visitors clicked on an ad?

In addition to an unambiguous, quantitative measurement of success, we’re going to
also need to have a list of potential changes you believe might increase the success of
your site(s). From now on, we’re going to start calling our measure of success a reward
and our list of potential changes arms. The historical reasons for those terms will be
described shortly. We don’t personally think they’re very well-chosen terms, but they’re
absolutely standard in the academic literature on this topic and will help us make our
discussion of algorithms precise.

For now, we want to focus on a different issue: why should we even bother using bandit
algorithms to test out new ideas when optimizing websites? Isn’t A/B testing already
sufficient?

To answer those questions, let’s describe the typical A/B testing setup in some detail and
then articulate a list of reasons why it may not be ideal.

The Business Scientist: Web-Scale A/B Testing
Most large websites already know a great deal about how to test out new ideas: as de‐
scribed in our short story about Deb Knull, they understand that you can only determine
whether a new idea works by performing a controlled experiment.

This style of controlled experimentation is called A/B testing because it typically involves
randomly assigning an incoming web user to one of two groups: Group A or Group B.
This random assignment of users to groups continues on for a while until the web
developer becomes convinced that either Option A is more successful than Option B
or, vice versa, that Option B is more successful than Option A. After that, the web
developer assigns all future users to the more successful version of the website and closes
out the inferior version of the website.

This experimental approach to trying out new ideas has been extremely successful in
the past and will continue to be successful in many contexts. So why should we believe
that the bandit algorithms described in the rest of this book have anything to offer us?

Answering this question properly requires that we return to the concepts of exploration
and exploitation. Standard A/B testing consists of:

• A short period of pure exploration, in which you assign equal numbers of users to
Groups A and B.
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• A long period of pure exploitation, in which you send all of your users to the more
successful version of your site and never come back to the option that seemed to be
inferior.

Why might this be a bad strategy?

• It jumps discretely from exploration into exploitation, when you might be able to
smoothly transition between the two.

• During the purely exploratory phase, it wastes resources exploring inferior options
in order to gather as much data as possible. But you shouldn’t want to gather data
about strikingly inferior options.

Bandit algorithms provide solutions to both of these problems: (1) they smoothly de‐
crease the amount of exploring they do over time instead of requiring you to make a
sudden jump and (2) they focus your resources during exploration on the better options
instead of wasting time on the inferior options that are over-explored during typical A/
B testing. In fact, bandit algorithms address both of those concerns is the same way
because they gradually fixate on the best available options over time. In the academic
literature, this process of settling down on the best available option is called convergence.
All good bandit algorithms will eventually converge.

In practice, how important those two types of improvements will be to your business
depends a lot on the details of how your business works. But the general framework for
thinking about exploration and exploitation provided by bandit algorithms will be useful
to you no matter what you end up doing because bandit algorithms subsume A/B testing
as a special case. Standard A/B testing describes one extreme case in which you jump
from pure exploration to pure exploitation. Bandit algorithms let you operate in the
much larger and more interesting space between those two extreme states.

In order to see how bandit algorithms achieve that balance, let’s start working with our
first algorithm: the epsilon-Greedy algorithm.
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CHAPTER 3

The epsilon-Greedy Algorithm

Introducing the epsilon-Greedy Algorithm
To get you started thinking algorithmically about the Explore-Exploit dilemma, we’re
going to teach you how to code up one of the simplest possible algorithms for trading
off exploration and exploitation. This algorithm is called the epsilon-Greedy algorithm.
In computer science, a greedy algorithm is an algorithm that always takes whatever
action seems best at the present moment, even when that decision might lead to bad
long term consequences. The epsilon-Greedy algorithm is almost a greedy algorithm
because it generally exploits the best available option, but every once in a while the
epsilon-Greedy algorithm explores the other available options. As we’ll see, the term
epsilon in the algorithm’s name refers to the odds that the algorithm explores instead of
exploiting.

Let’s be more specific. The epsilon-Greedy algorithm works by randomly oscillating
between Cynthia’s vision of purely randomized experimentation and Bob’s instinct to
maximize profits. The epsilon-Greedy algorithm is one of the easiest bandit algorithms
to understand because it tries to be fair to the two opposite goals of exploration and
exploitation by using a mechanism that even a little kid could understand: it just flips a
coin. While there are a few details we’ll have to iron out to make that statement precise,
the big idea behind the epsilon-Greedy algorithm really is that simple: if you flip a coin
and it comes up heads, you should explore for a moment. But if the coin comes up tails,
you should exploit.

Let’s flesh that idea out by continuing on with our example of changing the color of a
website’s logo to increase revenue. We’ll assume that Deb is debating between two colors,
green and red, and that she wants to find the one color that maximizes the odds that a
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new visitor to her site will be converted into a registered user. The epsilon-Greedy al‐
gorithm attempts to find the best color logo using the following procedure (shown di‐
agrammatically in Figure 3-1), which is applied to each new potential customer se‐
quentially:

• When a new visitor comes to the site, the algorithm flips a coin that comes up tails
with probability epsilon. (If you’re not used to thinking in terms of probabilities,
the phrase “with probability X” means that something happens 100 * X percent of
the time. So saying that a coin comes up tails with probability 0.01 means that it
comes up tails 1% of the time.)

• If the coin comes up heads, the algorithm is going to exploit. To exploit, the algo‐
rithm looks up the historical conversion rates for both the green and red logos in
whatever data source it uses to keep track of things. After determining which color
had the highest success rate in the past, the algorithm decides to show the new
visitor the color that’s been most successful historically.

• If, instead of coming up heads, the coin comes up tails, the algorithm is going to
explore. Since exploration involves randomly experimenting with the two colors
being considered, the algorithm needs to flip a second coin to choose between them.
Unlike the first coin, we’ll assume that this second coin comes up head 50% of the
time. Once the second coin is flipped, the algorithm can move on with the last step
of the procedure:
— If the second coin comes up heads, show the new visitor the green logo.
— If the second coin comes up tails, show the new visitor the red logo.

Figure 3-1. The epsilon-Greedy arm selection process
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After letting this algorithm loose on the visitors to a site for a long time, you’ll see that
it works by oscillating between (A) exploiting the best option that it currently knows
about and (B) exploring at random among all of the options available to it. In fact, you
know from the definition of the algorithm that:

• With probability 1 – epsilon, the epsilon-Greedy algorithm exploits the best
known option.

• With probability epsilon / 2, the epsilon-Greedy algorithm explores the best
known option.

• With probability epsilon / 2, the epsilon-Greedy algorithm explores the worst
known option.

That’s it. You now know the entire epsilon-Greedy algorithm. We’ll implement the al‐
gorithm in Python soon to clarify how’d you deploy this algorithm on a live site, but
there’s no big ideas missing from the description we just gave. In the next chapter we’ll
construct a unit-testing framework for the epsilon-Greedy algorithm that will help you
start to develop an intuition for how the algorithm would behave in different scenarios.

Describing Our Logo-Choosing Problem Abstractly
What’s an Arm?
Before we write code for the epsilon-Greedy algorithm, we need to abstract away from
our example in which we wanted to compare a green logo with a red logo. We’ll do this
in a couple of simple steps that also serve to introduce some of the jargon terms we’ll be
using throughout the rest of the book.

First, we want to consider the possibility that we have hundreds or thousands of colors
to choose from, rather than just two. In general, we’re going to assume that we have a
fixed set of N different options and that we can enumerate them, so that we can call our
green logo Option 1 and our red logo Option 2 and any other logo Option N. For historical
reasons, these options are typically referred to as arms, so we’ll talk about Arm 1 and
Arm 2 and Arm N rather than Option 1, Option 2 or Option N. But the main idea is the
same regardless of the words we choose to employ.

That said, it will help you keep track of these sorts of jargon terms if we explain why the
options are typically called arms. This name makes more sense given the original mo‐
tivations behind the design of the algorithms we’re describing in this book: these algo‐
rithms were originally invented to explain how an idealized gambler would try to make
as much money as possible in a hypothetical casino. In this hypothetical casino, there’s
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only one type of game: a slot machine, which is also sometimes called a one-armed
bandit because of its propensity to take your money. While this casino only features slot
machines, it could still be an interesting place to visit because there are many different
slot machines, each of which has a different payout schedule.

For example, some of the slot machines in this hypothetical casino might pay out $5 on
1 out of 100 pulls, while other machines would pay out $25 on 1 out of 1,000 pulls. For
whatever reason, the original mathematicians decided to treat the different slot ma‐
chines in their thought experiment as if they were one giant slot machine that had many
arms. This led them to refer to the options in their problem as arms. It also led them to
call this thought experiment the Multiarmed Bandit Problem. To this day, we still call
these algorithms bandit algorithms, so knowing the historical names helps to explain
why we refer to the options as arms.

What’s a Reward?
Now that we’ve explained what an arm is, we’ve described one half of the abstract setup
of the epsilon-Greedy algorithm. Next, we need to define a reward. A reward is simply
a measure of success: it might tell us whether a customer clicked on an ad or signed up
as a user. What matters is simply that (A) a reward is something quantitative that we
can keep of track of mathematically and that (B) larger amounts of reward are better
than smaller amounts.

What’s a Bandit Problem?
Now that we’ve defined both arms and rewards, we can describe the abstract idea of a
bandit problem that motivates all of the algorithms we’ll implement in this book:

• We’re facing a complicated slot machine, called a bandit, that has a set of N arms
that we can pull on.

• When pulled, any given arm will output a reward. But these rewards aren’t reliable,
which is why we’re gambling: Arm 1 might give us 1 unit of reward only 1% of the
time, while Arm 2 might give us 1 unit of reward only 3% of the time. Any specific
pull of any specific arm is risky.

• Not only is each pull of an arm risky, we also don’t start off knowing what the reward
rates are for any of the arms. We have to figure this out experimentally by actually
pulling on the unknown arms.

So far the problem we’ve described in just a problem in statistics: you need to cope with
risk by figuring out which arm has the highest average reward. You can calculate the
average reward by pulling on each arm a lot of times and computing the mean of the
rewards you get back. But a real bandit problem is more complicated and also more
realistic.
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What makes a bandit problem special is that we only receive a small amount of the
information about the rewards from each arm. Specifically:

• We only find out about the reward that was given out by the arm we actually pulled.
Whichever arm we pull, we miss out on information about the other arms that we
didn’t pull. Just like in real life, you only learn about the path you took and not the
paths you could have taken.

In fact, the situation is worse than that. Not only do we get only partial feedback about
the wisdom of our past decisions, we’re literally falling behind every time we don’t make
a good decision:

• Every time we experiment with an arm that isn’t the best arm, we lose reward be‐
cause we could, at least in principle, have pulled on a better arm.

The full Multiarmed Bandit Problem is defined by the five features above. Any algorithm
that offers you a proposed solution to the Multiarmed Bandit Problem must give you a
rule for selecting arms in some sequence. And this rule has to balance out your com‐
peting desires to (A) learn about new arms and (B) earn as much reward as possible by
pulling on arms you already know are good choices.

Implementing the epsilon-Greedy Algorithm
Now that we’ve defined a Multiarmed Bandit Problem abstractly, we can give you a clear
description of the general epsilon-Greedy algorithm that’s easy to implement in Python.
We’ll do this in a few steps because that will let us define a very general interface for
bandit algorithms that we’ll be using throughout this book.

First, we define a class of objects that represents an epsilon-Greedy algorithm as it’s going
to be deployed in the wild. This class will encapsulate the following pieces of informa‐
tion:
epsilon

This will be a floating point number that tells us the frequency with which we should
explore one of the available arms. If we set epsilon = 0.1, then we’ll explore the
available arms on 10% of our pulls.

counts

A vector of integers of length N that tells us how many times we’ve played each of
the N arms available to us in the current bandit problem. If there are two arms, Arm
1 and Arm 2, which have both been played twice, then we’ll set counts = [2, 2].
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values

A vector of floating point numbers that defines the average amount of reward we’ve
gotten when playing each of the N arms available to us. If Arm 1 gave us 1 unit of
reward on one play and 0 on another play, while Arm 2 gave us 0 units of reward
on both plays, then we’ll set values = [0.5, 0.0].

Putting these pieces together into a proper class definition, we end up with the following
snippet of code:

class EpsilonGreedy():
  def __init__(self, epsilon, counts, values):
    self.epsilon = epsilon
    self.counts = counts
    self.values = values
    return

Because the epsilon-Greedy algorithm’s behavior is very strongly controlled by the set‐
tings of both counts and values, we also provide explicit initialization methods that let
you reset these variables to their proper blank slate states before letting the algorithms
loose:

  def initialize(self, n_arms):
    self.counts = [0 for col in range(n_arms)]
    self.values = [0.0 for col in range(n_arms)]
    return

Now that we have a class that represents all of the information that the epsilon-Greedy
algorithm needs to keep track of about each of the arms, we need to define two types of
behaviors that any algorithm for solving the Multiarmed Bandit Problem should pro‐
vide:
select_arm

Every time we have to make a choice about which arm to pull, we want to be able
to simply make a call to our favorite algorithm and have it tell us the numeric name
of the arm we should pull. Throughout this book, all of the bandit algorithms will
implement a select_arm method that is called without any arguments and which
returns the index of the next arm to pull.

update

After we pull an arm, we get a reward signal back from our system. (In the next
chapter, we’ll describe a testing framework we’ve built that simulates these rewards
so that we can debug our bandit algorithms.) We want to update our algorithm’s
beliefs about the quality of the arm we just chose by providing this reward infor‐
mation. Throughout this book, all of the bandit algorithms handle this by providing
an update function that takes as arguments (1) an algorithm object, (2) the numeric
index of the most recently chosen arm and (3) the reward received from choosing
that arm. The update method will take this information and make the relevant
changes to the algorithm’s evaluation of all of the arms.
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Keeping in mind that general framework for behaviors that we expect a bandit algorithm
to provide, let’s walk through the specific definition of these two functions for the
epsilon-Greedy algorithm. First, we’ll implement select_arm:

  def ind_max(x):
    m = max(x)
    return x.index(m)

  def select_arm(self):
    if random.random() > self.epsilon:
      return ind_max(self.values)
    else:
      return random.randrange(len(self.values))

As you can see, the epsilon-Greedy algorithm handles selecting an arm in two parts: (1)
we flip a coin to see if we’ll choose the best arm we know about and then (2) if the coin
comes up tails, we’ll select an arm completely at random. In Python, we’ve implemented
this by checking if a randomly generated number is greater than epsilon. If so, our
algorithm selects the arm whose cached value according to the values field is highest;
otherwise, it selects an arm at random.

These few lines of code completely describe the epsilon-Greedy algorithm’s solution to
the Bandit problem: it explores some percentage of the time and otherwise chooses the
arm it thinks is best. But, to understand which arm our epsilon-Greedy algorithm con‐
siders best, we need to define the update function. Let’s do that now, then explain why
the procedure we’ve chosen is reasonable:

  def update(self, chosen_arm, reward):
    self.counts[chosen_arm] = self.counts[chosen_arm] + 1
    n = self.counts[chosen_arm]

    value = self.values[chosen_arm]
    new_value = ((n - 1) / float(n)) * value + (1 / float(n)) * reward
    self.values[chosen_arm] = new_value
    return

Looking at this code, we see that the update function first increments the counts field
that records the number of times we’ve played each of the arms for this bandit problem
to reflect the chosen arm. Then it finds the current estimated value of the chosen arm.
If this is our first experience ever with the chosen arm, we set the estimated value directly
to the reward we just received from playing that arm. If we had played the arm in the
past, we update the estimated value of the chosen arm to be a weighted average of the
previously estimated value and the reward we just received. This weighting is important,
because it means that single observations mean less and less to the algorithm when we
already have a lot of experience with any specific option. The specific weighting we’ve
chosen is designed to insure that the estimated value is exactly equal to the average of
the rewards we’ve gotten from each arm.
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We suspect that it will not be obvious to many readers why this update rule computes
a running average. To convince you why this works, consider the standard definition of
an average:

def average(values):
  result = 0.0
  for value in values:
    result = result + value

  return result / len(values)

Instead of doing the division at the end, we could do it earlier on:

def average(values):
  result = 0.0
  n = float(len(values))
  for value in values:
    result = result + value / n

  return result

This alternative implementation looks much more like the update rule we’re using for
the epsilon-Greedy algorithm. The core insight you need to have to fully see the rela‐
tionship between our update rule and this method for computing averages is this: the
average of the first n – 1 values is just their sum divided by n – 1. So multiplying that
average by (n – 1) / n will give you exactly the value that result has in the code above
when you’ve processed the first n – 1 entries in values. If that explanation is not clear
to you, we suggest that you print out the value of result at each step in the loop until
you see the pattern we’re noting.

We’re making a point now about how to compute averages online be‐
cause much of the behavior of bandit algorithms in practice is driven
by this rule for calculating averages. Near the end of the book we’ll talk
about alternative weighting schemes that you might use instead of com‐
puting averages. Those alternative weighting schemes are very impor‐
tant when the arms you’re playing can shift their rewards over time.

But for now, let’s focus on what we’ve done so far. Taken all together, the class definition
we gave for the EpsilonGreedy class and the definitions of the select_arm and up
date methods for that class fully define our implementation of the epsilon-Greedy al‐
gorithm. In order to let you try out the algorithm before deploying it, we’re going to
spend time in the next chapter setting up a type of unit-testing framework for bandit
algorithms.
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But first let’s think critically about the strengths and weaknesses of the algorithm we’ve
defined by thinking in our armchairs about the behavior of the functions we’ve just
defined. By thinking about where we’ve made judgment calls in defining our algorithm,
we can come up with a set of principles that we’ll eventually be able to use to design
other algorithms for solving the Multiarmed Bandit Problem.

Thinking Critically about the epsilon-Greedy Algorithm
Before we do anything else, let’s demonstrate that the epsilon-Greedy algorithm can be
configured to behave exactly in the way that Cynthia suggested, which involved com‐
pletely random experimentation like you’d do during traditional A/B testing. After we
show that you can configure the epsilon-Greedy algorithm to behave like A/B testing,
we’ll show you that the epsilon-Greedy algorithm can also be configured to behave
exactly like the profit-maximization rule that Bob hoped Deb would settle upon after
her experimental phase was over.

Setting up the epsilon-Greedy algorithm to achieve either of these goals is surprisingly
easy: Cynthia’s original experimental design involves assigning each visitor to Deb’s
website to one of two colors completely at random, which is exactly how the epsilon-
Greedy algorithm behaves if it knows about 2 arms and has set epsilon = 1.0. We can
do that by simplying instantiating our EpsilonGreedy class with the right parameters:

algo = EpsilonGreedy(1.0, [])
initialize(algo, 2)

Bob’s rule for profit-maximization is also a single line:

algo.epsilon = 0.0

Those three lines fully describe Cynthia and Bob’s approaches, which are literally the
two most extreme ways that you can configure the epsilon-Greedy algorithm. Cynthia
wanted to do nothing but exploration, while Bob wanted to do nothing but exploitation.
We can often do better by choosing a middle ground position. To see why, let’s think
carefully about the implications of the decision to set epsilon to either of the specific
values proposed by Cynthia and Bob.

If we set epsilon = 1.0, the algorithm will always choose among the different arms
completely at random. This will provide you with a lot of data about both color logos
and will produce very clean data, because all of the arms will have equal amounts of
data and there won’t be any lurking confounds that make it hard to understand why you
got the results you got. If you’re a traditionally trained scientist, this type of random
experimentation will seem like a great approach. But it can lose a lot of money when
you’re a business, because it means you’re as likely to try a bad idea as you are to try a
good idea.
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Or, to put the point another way: if you run a business, you should not want to accumulate
a lot of data about bad options. You should want to only gather data about options that
could plausibly be worth implementing. This was Bob’s criticism of Cynthia’s plan: set‐
ting epsilon = 1.0 wastes resources acquiring data about bad options. Returning to
our example of logos, if you select between the two colors completely at random, you’ve
decided that you’ll show your customers your worst logo exactly as often as your best
logo.

But Bob’s main response to this concern wasn’t ideal. If you eventually set epsilon =
0.0, it’s true that you’ll stop wasting time on bad options. But you’ll never be able to
learn about new options ever again. If the world changes and you don’t provide your
company with any mechanism for learning about the changes in the world, your com‐
pany will be left behind. Cynthia’s scientific approach explored the options available to
her willy-nilly, but Bob’s short-sighted proposal would leave the company ossified, un‐
able to adapt to a changing world and incapable of trying out new ideas.

Thankfully, there’s no reason you need to operate at either of these two extremes. Instead
of moving from one period of completely random experimentation to another period
of absolutely greedy selection of the so-called best option, the epsilon-Greedy algorithm
lets you be more gradual. You could, for example, set epsilon = 0.1 and leave the
algorithm running forever. In many situations, this might be a better option that either
Cynthia or Bob’s plans.

But there are weaknesses with this approach as well. The first weakness is that, as you
get more certain which of your two logo designs is best, this tendency to explore the
worse design a full 5% of the time will become more wasteful. In the jargon of bandit
algorithms, you’ll be over-exploring. And there’s another problem with a fixed 10%
exploration rule: at the start of your experimentation, you’ll choose options that you
don’t know much about far more rarely than you’d like to because you only try new
options 10% of the time.

So there are many ways that the epsilon-Greedy algorithm could be better. In the rest
of this book, we’ll describe other algorithms that can improve on the epsilon-Greedy
algorithm. But for now we’d like to help you set up a testbed for trying out the epsilon-
Greedy algorithm so that you can see how it really works in action.

To do this, we’ll provide a sort of unit-testing framework for bandit algorithms that
exploits an idea developed during World War II called Monte Carlo simulation. The
main idea is that we can use a random number generator to simulate what might happen
if you deployed an algorithm in the wild under lots of different circumstances. We’ll
work through a specific example while building up our general framework in the next
chapter.
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CHAPTER 4

Debugging Bandit Algorithms

Monte Carlo Simulations Are Like Unit Tests for Bandit
Algorithms
Even though the last chapter contained a full implementation of the epsilon-Greedy
algorithm, it was still a very abstract discussion because the algorithm was never run.
The reason for that is simple: unlike standard machine learning tools, bandit algorithms
aren’t simply black-box functions you can call to process the data you have lying
around — bandit algorithms have to actively select which data you should acquire and
analyze that data in real-time. Indeed, bandit algorithms exemplify two types of learning
that are not present in standard ML examples: active learning, which refers to algorithms
that actively select which data they should receive; and online learning, which refers to
algorithms that analyze data in real-time and provide results on the fly.

This means that there is a complicated feedback cycle in every bandit algorithm: as
shown in Figure 4-1, the behavior of the algorithm depends on the data it sees, but the
data the algorithm sees depends on the behavior of the algorithm. Debugging a bandit
algorithm is therefore substantially more complicated than debugging a straight ma‐
chine learning algorithm that isn’t doing active learning. You can’t just feed a bandit
algorithm data: you have to turn it loose somewhere to see how it might behave in
production. Of course, doing this on your own site could be very risky: you don’t want
to unleash untested code on a live site.
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Figure 4-1. Bandit data and bandit analysis are inseparable

In order to solve both of these problems, we’re going to use an alternative to standard
unit-testing that’s appropriate for testing bandit algorithms. This alternative is called
Monte Carlo simulations. The name comes from World War II, when scientists tested
how weaponry and other systems might behave by using simple computers equipped
with a random number generator.

For our purposes, a Monte Carlo simulation will let our implementation of a bandit
algorithm actively make decisions about which data it will receive, because our simu‐
lations will be able to provide simulated data in real-time to the algorithm for analysis.
In short, we’re going to deal with the feedback cycle shown earlier by coding up both
our bandit algorithm and a simulation of the bandit’s arms that the algorithm has to
select between. The two pieces of code then work together to generate an example of
how the algorithm might really function in production.

Because each simulation is powered by random numbers, the results are noisy. For that
reason, you’ll want to run lots of simulations. Thankfully, modern computers, unlike
those used in World War II, are well up to the task. As you’ll see in a moment, we can
easily simulate 100,000’s of runs of a bandit algorithm to develop an intuition for its
behavior in different settings. This is arguably far more important than understanding
any specific bandit algorithm, so please don’t skip this section of the book.

Simulating the Arms of a Bandit Problem
In order to reasonably simulate what might happen if you were to deploy an epsilon-
Greedy algorithm in production, we need to set up some hypothetical arms. For this
book, we’re going to focus on a very simple type of simulated arm that’s easy to imple‐
ment correctly. This hypothetical arm will let us simulate settings like:

• Optimizing click-through rates for ads: Every time we show someone an ad, we’ll
imagine that there’s a fixed probability that they’ll click on the ad. The bandit al‐
gorithm will then estimate this probability and try to decide on a strategy for show‐
ing ads that maximizes the click-through rate.
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• Conversion rates for new users: Every time a new visitor comes to our site who isn’t
already a registered user, we’ll imagine that there’s a fixed probability that they’ll
register as a user after seeing the landing page. We’ll then estimate this probability
and try to decide on a strategy for maximizing our conversion rate.

Our simulated arm is going to be called a Bernoulli arm. Calling this type of an arm a
Bernoulli arm is just a jargony way of saying that we’re dealing with an arm that rewards
you with a value of 1 some percentage of the time and rewards you with a value of 0 the
rest of the time. This 0/1 framework is a very simple way to simulate situations like click-
throughs or user signups: the potential user arrives at your site; you select an arm for
them in which you, for example, show them one specific color logo; finally, they either
do sign up for the site (and give you reward 1) or they don’t (and give you reward 0). If
2% of people who see a red logo sign up and 5% of people who see a green logo sign up,
then you can abstract away the details and talk about two arms: one arm outputs 1 unit
of reward 2% of the time, the other arm outputs 1 unit of reward 5% of the time. This
situation is what we call a Bernoulli arm. We implement it in Python as follows:

class BernoulliArm():
  def __init__(self, p):
    self.p = p

  def draw(self):
    if random.random() > self.p:
      return 0.0
    else:
      return 1.0

First, there’s a class called BernoulliArm that has a single field, p, which tells us the
probability of getting a reward of 1 from that arm. Second, there’s a method, draw, that,
when called, produces 1 unit of reward with probability p. That’s the entirety of our
abstract way of thinking about click-throughs and so on. Amazingly enough, this pro‐
vides enough material for a very powerful simulation framework.

The only big thing that’s missing from this approach is that we typically have to work
with many arms, so we’ll need to set up an array of Arm objects. For example, we could
do the following:

means = [0.1, 0.1, 0.1, 0.1, 0.9]
n_arms = len(means)
random.shuffle(means)
arms = map(lambda (mu): BernoulliArm(mu), means)

This will set up an array that contains 5 arms. 4 of them output reward 10% of the time,
while the best of them outputs a reward 90% of the time. This is a very black-and-white
situation that you won’t see in the real world, but that means that it’s a nice starting point
for testing our algorithms. We’ll be using it throughout the rest of this book.
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To try out our Bernoulli arms, you might call draw a few times on some of the elements
of our array as follows:

arms[0].draw()
arms[1].draw()
arms[2].draw()
arms[2].draw()
arms[3].draw()
arms[2].draw()
arms[4].draw()

A typical output from this might look like:

>>> arms[0].draw()
1.0
>>> arms[1].draw()
0.0
>>> arms[2].draw()
0.0
>>> arms[2].draw()
0.0
>>> arms[3].draw()
0.0
>>> arms[2].draw()
0.0
>>> arms[4].draw()
0.0

That should give you some sense of how this setup works. Our Multiarmed Bandit
problem gets represented as an array of arm objects, each of which implements a draw
method that simulates playing that specific arm.

With that in place, we’re almost ready to start experimenting with the epsilon-Greedy
algorithm. But before we do that, we’re going to set up a very generic framework for
testing an algorithm. This framework is described entirely by the test_algorithm
function shown below and will be the only testing tool needed for the rest of this book.
Let’s go through it now:

def test_algorithm(algo, arms, num_sims, horizon):
  chosen_arms = [0.0 for i in range(num_sims * horizon)]
  rewards = [0.0 for i in range(num_sims * horizon)]
  cumulative_rewards = [0.0 for i in range(num_sims * horizon)]
  sim_nums = [0.0 for i in range(num_sims * horizon)]
  times = [0.0 for i in range(num_sims * horizon)]

  for sim in range(num_sims):
    sim = sim + 1
    algo.initialize(len(arms))

    for t in range(horizon):
      t = t + 1
      index = (sim - 1) * horizon + t - 1
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      sim_nums[index] = sim
      times[index] = t

      chosen_arm = algo.select_arm()
      chosen_arms[index] = chosen_arm

      reward = arms[chosen_arms[index]].draw()
      rewards[index] = reward

      if t == 1:
        cumulative_rewards[index] = reward
      else:
        cumulative_rewards[index] = cumulative_rewards[index - 1] + reward

      algo.update(chosen_arm, reward)

  return [sim_nums, times, chosen_arms, rewards, cumulative_rewards]

How does this framework work?

• We pass in a few objects:
— A bandit algorithm that we want to test.
— An array of arms we want to simulate draws from.
— A fixed number of simultations to run to average over the noise in each simu‐

lation.
— The number of times each algorithm is allowed to pull on arms during each

simulation. Any algorithm that’s not terrible will eventually learn which arm is
best; the interesting thing to study in a simulation is whether an algorithm does
well when it only has 100 (or 100,000) tries to find the best arm.

• The framework then uses these objects to run many independent simulations. For
each of these, it:
— Initializes the bandit algorithm’s settings from scratch so that it has no prior

knowledge about which arm is best.
— Loops over opportunities to pull an arm. On each step of this loop, it:

— Calls select_arm to see which arm the algorithm chooses.
— Calls draw on that arm to simulate the result of pulling that arm.
— Records the amount of reward received by the algorithm and then calls

update to let the algorithm process that new piece of information.
• Finally, the testing framework returns a data set that tells us for each simulation

which arm was chosen and how well the algorithm did at each point in time. In the
code directory associated with this book, there are R scripts that plot out the per‐
formance to give you a feel for how these algorithms perform. We won’t step through
that code in detail in this book, but it is available online in the same GitHub repos‐
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itory as you’re using for all of the other code for this book. Instead of walking through
our graphics code, we’ll show you plots that describe what happens during our
simulations and try to make sure you understand the main qualitative properties
you should be looking for in the data you’ll get from your own simulations.

To show you how to use this testing framework, we need to pass in a specific algorithm
and a specific set of arms. In the code below, we show you what happens when applying
the epsilon-Greedy algorithm we implemented earlier against the five Bernoulli arms
we defined just a moment ago. For simplicity, we’ve reproduced all of the necessary code
below, including redefining the five Bernoulli arms:

execfile("core.py")

import random

random.seed(1)
means = [0.1, 0.1, 0.1, 0.1, 0.9]
n_arms = len(means)
random.shuffle(means)
arms = map(lambda (mu): BernoulliArm(mu), means)
print("Best arm is " + str(ind_max(means)))

f = open("algorithms/epsilon_greedy/standard_results.tsv", "w")

for epsilon in [0.1, 0.2, 0.3, 0.4, 0.5]:
  algo = EpsilonGreedy(epsilon, [], [])
  algo.initialize(n_arms)
  results = test_algorithm(algo, arms, 5000, 250)
  for i in range(len(results[0])):
      f.write(str(epsilon) + "\t")
      f.write("\t".join([str(results[j][i]) for j in range(len(results))]) + "\n")

f.close()

Analyzing Results from a Monte Carlo Study
With the results from our simulation study in hand, we can analyze our data in several
different ways to assess the performance of our algorithms.

Approach 1: Track the Probability of Choosing the Best Arm
The first analytic approach, and certainly the simplest, is to keep track of the odds that
our algorithm selects the best arm at any given point in time. We need to work with
odds for two different reasons: (1) the algorithm uses randomization when choosing
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which arm to pull and may therefore not select the best arm even after it’s learned which
arm is best and (2) the rewards that the algorithm receives are random as well. For those
reasons, there is always a chance that the algorithm will not make the best decision on
any specific trial.

As such, we’ll explicitly calculate the probability of selecting the best arm by estimating
the percentage of times in our simulations when the algorithm chose the best arm. If
the probability that the algorithm picks the best arm doesn’t go up over time, then we
don’t really have any evidence that our algorithm is learning anything about the values
of the arms. Thankfully, the results shown in Figure 4-2, which split up the data by the
value of epsilon, show that our algorithm does indeed learn no matter how we set
epsilon.

Figure 4-2. How often does the algorithm select the best arm?
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Let’s step through this graph carefully to understand its message. Before we say anything
else, let’s be possibly pedantically clear about the axes:

• The x-axis shows the number of times the algorithm has been able to pull on any
of the five arms that are available.

• The y-axis shows the probability that the algorithm, when we called se
lect_arm(), chose the best of the five arms at each point in time.

• The actual values of the curves are the averages across the 5,000 simulations we ran
to estimate the algorithm’s performance. We needed to run 5,000 simulations to get
around the amount of noise in each simulation caused by using a random number
generator in our simulations.

The first thing you should notice is that each setting of epsilon produces a separate
curve. The curves with high values of epsilon go up very quickly, but then peak out.
That’s a given, because the epsilon-Greedy algorithms choose randomly with probability
epsilon. If epsilon is high, we explore a lot and find the best arm quickly, but then we
keep exploring even after it’s not worth doing anymore. When epsilon is high, our
system’s peak performance is fairly low.

In contrast to the high values of epsilon, the lowest value of epsilon, which was 0.1,
causes the algorithm to explore much more slowly, but eventually the algorithm reaches
a much higher peak performance level. In many ways, the different settings of epsi
lon embody the Explore-Exploit trade-off as a whole: the settings that lead to lots of
exploration learn quickly, but don’t exploit often enough at the end; whereas the settings
that lead to little exploration learn slowly, but do well at the end.

As you can see, which approach is best depends on which point in time you’re looking
at. This is why we need to always be concerned about the length of time we intend to
leave a bandit algorithm running. The number of pulls that the bandit algorithm has
left to it is typically called the horizon. Which algorithm is best depends strongly on the
length of the horizon. That will become more clear as we look at other ways of measuring
our algorithm’s performance.

Approach 2: Track the Average Reward at Each Point in Time
Instead of looking at the probability of picking the best arm, another simple approach
to measuring our algorithm’s performance is to use the average reward that our algo‐
rithm receives on each trial. When there are many arms similar to the best, each of which
is just a little worse than the best, this average reward approach is a much better method
of analysis than our approach using probabilities of selecting the best arm. You can see
the results for this alternative analysis in Figure 4-3.
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Figure 4-3. How much reward does the algorithm earn on average?

In this specific case, the results are quite similar because (A) the rewards are so far apart
and because (B) the rewards are all 0’s or 1’s. But these types of metrics can differ much
more in other settings. Your mileage may vary.

Approach 3: Track the Cumulative Reward at Each Point in Time
Ultimately, there’s something lacking in both of the approaches we’ve taken: they’re too
narrowly focused on the performance of the algorithm at each fixed point in time and
don’t give us a gestalt picture of the lifetime performance of our algorithm. This myopic
focus on each point in time in isolation is unfair to versions of the epsilon-Greedy
algorithm in which epsilon is large, because these algorithms, by definition, explore
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worse options more frequently than algorithms for which epsilon is low. This is a sac‐
rifice they intentionally make in order to explore faster. To decide whether that increased
exploration is worth the trouble, we shouldn’t focus on the performance of the algorithm
at any specific point in time, but rather on its cumulative performance over time.

To do that, we can analyze the cumulative reward of our algorithms, which is simply the
total amount of reward that an algorithm has won for us up until some fixed point in
time. This cumulative reward is important, because it treats algorithms that do a lot of
exploration at the start as a means of finding the best available arm more fairly. As you
can see in Figure 4-4, an analysis based on cumulative rewards leads to a much cleaner
assessment of the performance of the different values of epsilon that we tested.

Figure 4-4. How much reward has the algorithm earned by trial t?
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In fact, looking at the cumulative results, you can see that curves for the low value of
epsilon = 0.1 and the high value of epsilon = 0.5 intersect after about 130 rounds:
before then, it was good to have explored a lot, but after then it was better to have been
able to exploit more consistently once the algorithm had found the best arm.

That said, all of our figures convey the same basic message: the epsilon-Greedy algorithm
does eventually figure out which arm is best no matter how epsilon is set. But the length
of time required to figure our which arm is best depends a lot on the value of epsilon.
What’s appropriate for you depends on how long you intend to run your algorithm and
how different the arms you’re testing will be. To see how the epsilon-Greedy algorithm
might behave for your website, you should use our testing framework to simulate the
types of click-through rates you’re used to seeing. We suggest some of these in a list of
exercises below.

Exercises
In order to really build a feel for the epsilon-Greedy algorithm, you need to see how it
behaves under a variety of circumstances. To do that, you should try out the following
exercises:

• Use a different number of arms than the five arms we’ve been working with. See
how epsilon-Greedy behaves if there are 2 arms and then see how it behaves if there
are 200 arms.

• Change the probabilities of reward from the Bernoulli arms. How does epsilon-
Greedy behave if all of the probabilities are close to 0.0? How does it behave it all
of the probabilities are close to 1.0? How does it behave when the probabilities for
different arms are similar? How does it behave when they’re far apart?

After seeing how the standard epsilon-Greedy algorithm behaves, we’d also encourage
you to experiment with trying to modify the epsilon-Greedy to be a little better. There
are two specific tricks you will find are worth exploring:

• Change the initialization rules for the values fields. Instead of assuming that every
arm has value 0.0 (which amounts to extreme pessimism about unfamiliar arms),
try assuming instead that every arm has value 1.0 at the start. How does this change
the behavior of the algorithm on different problems?

• Build a modified version of the epsilon-Greedy algorithm that can change the value
of epsilon over time, so that epsilon is high at the start and low at the end of a
simulation. This change from lots of exploration to little exploration is called an‐
nealing and will come up again in the next chapter. Implementing annealing for the
epsilon-Greedy algorithm is particularly informative about the weaknesses of the
standard epsilon-Greedy algorithm.
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• A more involved problem you can work on is to devise an alternative test for eval‐
uting the performance of the epsilon-Greedy algorithm. In this alternative setup,
you should keep track of the peformance of the algorithm only on trials when it is
trying to exploit. This requires that you store more information during each sim‐
ulation than we are currently storing, but it can help you to build up an intuition
for how the epsilon-Greedy algorithm behaves.
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CHAPTER 5

The Softmax Algorithm

Introducing the Softmax Algorithm
If you’ve completed the exercises for Chapter 2, you should have discovered that there’s
an obvious problem with the epsilon-Greedy algorithm: it explores options completely
at random without any concern about their merits. For example, in one scenario (call
it Scenario A), you might have two arms, one of which rewards you 10% of the time and
the other rewards you 13% of the time. In Scenario B, the two arms might reward you
10% of the time and 99% of the time. In both of these scenarios, the probability that the
epsilon-Greedy algorithm explores the worse arm is exactly the same (it’s epsilon /
2), despite the inferior arm in Scenario B being, in relative terms, much worse than the
inferior arm in Scenario A.

This is a problem for several reasons:

• If the difference in reward rates between two arms is small, you’ll need to explore
a lot more often than 10% of the time to correctly determine which of the two options
is actually better.

• In contrast, if the difference is large, you need to explore a lot less than 10% of the
time to correctly estimate the better of the two options. For that reason, you’ll end
up losing a lot of reward by exploring an unambiguously inferior option in this case.
When we first described the epsilon-Greedy algorithm, we said that we wouldn’t
set epsilon = 1.0 precisely so that we wouldn’t waste time on inferior options, but,
if the difference between two arms is large enough, we end up wasting time on
inferior options simply because the epsilon-Greedy algorithm always explores com‐
pletely at random.
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Putting these two points together, it seems clear that there’s a qualitative property miss‐
ing from the epsilon-Greedy algorithm. We need to make our bandit algorithm care
about the known differences between the estimated values of the arms when our algo‐
rithm decides which arm to explore. We need structured exploration rather than the
haphazard exploration that the epsilon-Greedy algorithm provides.

The first algorithm we’ll describe that takes this structural information into account is
called the Softmax algorithm. The Softmax algorithm tries to cope with arms differing
in estimated value by explicitly incorporating information about the reward rates of the
available arms into its method for choosing which arm to select when it explores.

You can get an initial intuition for how the Softmax algorithm handles this problem by
imagining that you choose each arm in proportion to its estimated value. Suppose that
you have two arms, A and B. Now imagine that, based on your past experiences, these
two arms have had two different rates of success: rA and rB. With those assumptions,
the most naive possible implementation of a Softmax-like algorithm would have you
choose Arm A with probability rA / (rA + rB) and Arm B with probability rB / (rA
+ rB). In code, this proportional approach would look like:

def categorical_draw(probs):
  z = random.random()
  cum_prob = 0.0
  for i in range(len(probs)):
    prob = probs[i]
    cum_prob += prob
    if cum_prob > z:
      return i

  return len(probs) - 1

def select_arm(self):
  z = sum(self.values)
  probs = [v / z for v in self.values]
  return categorical_draw(probs)

In practice, this very naive algorithm isn’t something people actually use. To reconstruct
the algorithm people actually use, we need to make two changes to it.

First, we will calculate a different scale for reward rates by exponentiating our estimates
of rA and rB. Using this new scale, we will choose Arm A with probability exp(rA) /
(exp(rA) + exp(rB)) and Arm B with probability exp(rB) / (exp(rA) +

exp(rB)). This naive exponential rescaling has the virtue of not behaving strangely if
you someone used negative numbers as rates of success, since the call to exp will turn
any negative numbers into positive numbers and insure that the negative numbers in
the denominator of these fractions can’t cancel out any positive numbers that may be
found in the denominator.
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More importantly, this exponentiation trick brings us very close to the full Softmax
algorithm. In fact, plain exponential rescaling gives us the Softmax algorithm if you
hardcoded one of the configurable parameters that the standard Softmax algorithm
possesses. This additional parameter is a different sort of scaling factor than the expo‐
nentiation we just introduced.

This new type of scaling factor is typically called a temperature parameter based on an
analogy with physics in which systems at high temperatures tend to behave randomly,
while they take on more structure at low temperatures. In fact, the full Softmax algorithm
is closely related to a concept called the Boltzmann distribution in physics, which is used
to describe how groups of particles behave.

We’ll call this new temperature parameter tau. We introduce tau to produce the fol‐
lowing new algorithm:

• At time T, select one of the two arms with probabilities computed as follows:
— exp(rA / tau) / (exp(rA / tau) + exp(rB / tau))

— exp(rB / tau) / (exp(rA / tau) + exp(rB / tau))

• For whichever arm you picked, update your estimate of the mean using the same
update rule we used for the epsilon-Greedy algorithm.

Implementing the Softmax Algorithm
Putting these new ideas together, we get the following code for the full Softmax algo‐
rithm:

import math
import random

def categorical_draw(probs):
  z = random.random()
  cum_prob = 0.0
  for i in range(len(probs)):
    prob = probs[i]
    cum_prob += prob
    if cum_prob > z:
      return i

  return len(probs) - 1

class Softmax:
  def __init__(self, temperature, counts, values):
    self.temperature = temperature
    self.counts = counts
    self.values = values
    return
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  def initialize(self, n_arms):
    self.counts = [0 for col in range(n_arms)]
    self.values = [0.0 for col in range(n_arms)]
    return

  def select_arm(self):
    z = sum([math.exp(v / self.temperature) for v in self.values])
    probs = [math.exp(v / self.temperature) / z for v in self.values]
    return categorical_draw(probs)

  def update(self, chosen_arm, reward):
    self.counts[chosen_arm] = self.counts[chosen_arm] + 1
    n = self.counts[chosen_arm]

    value = self.values[chosen_arm]
    new_value = ((n - 1) / float(n)) * value + (1 / float(n)) * reward
    self.values[chosen_arm] = new_value
    return

Now that we have the Softmax algorithm fully described and implemented, we should
spend some time discussing what the temperature parameter tau does. It’s easiest to
think of tau as letting us shift the behavior of the Softmax algorithm along a continuum
defined by two extreme ways to select arms. At one extreme, we set tau = 0.0. This
will give us a fully deterministic choice of the arm that has the highest estimated value.
At the other extreme, we set tau = Inf, which gives us purely random exploration like
we got out of the epsilon-Greedy algorithm. The reason this tau parameter is called a
temperature parameter is that its effect on the selection of arms is like the effect of
temperatures on atoms in traditional physics: at low temperatures, atoms will behave
orderly and produce solids, but at high temperatures, they behavior randomly and will
produce gases. Like atoms, the Softmax algorithm at low temperatures behaves orderly,
while it behaves essentially randomly at high temperatures.

Now that you understand the basic idea of the Softmax algorithm, let’s try it out in the
same simulated deployment scenarios in which we tested the epsilon-greedy algorithm
before.

execfile("core.py")

import random

random.seed(1)
means = [0.1, 0.1, 0.1, 0.1, 0.9]
n_arms = len(means)
random.shuffle(means)
arms = map(lambda (mu): BernoulliArm(mu), means)
print("Best arm is " + str(ind_max(means)))

f = open("algorithms/softmax/standard_softmax_results.tsv", "w")

36 | Chapter 5: The Softmax Algorithm



for temperature in [0.1, 0.2, 0.3, 0.4, 0.5]:
  algo = Softmax(temperature, [], [])
  algo.initialize(n_arms)
  results = test_algorithm(algo, arms, 5000, 250)
  for i in range(len(results[0])):
      f.write(str(temperature) + "\t")
      f.write("\t".join([str(results[j][i]) for j in range(len(results))]) + "\n")

f.close()

Measuring the Performance of the Softmax Algorithm
How does the Softmax algorithm do? Again we’re going to use our simulation tools. We
reproduce all of the code for our new simulations below:

execfile("core.py")

import random

random.seed(1)
means = [0.1, 0.1, 0.1, 0.1, 0.9]
n_arms = len(means)
random.shuffle(means)
arms = map(lambda (mu): BernoulliArm(mu), means)
print("Best arm is " + str(ind_max(means)))

f = open("algorithms/softmax/standard_softmax_results.tsv", "w")

for temperature in [0.1, 0.2, 0.3, 0.4, 0.5]:
  algo = Softmax(temperature, [], [])
  algo.initialize(n_arms)
  results = test_algorithm(algo, arms, 5000, 250)
  for i in range(len(results[0])):
      f.write(str(temperature) + "\t")
      f.write("\t".join([str(results[j][i]) for j in range(len(results))]) + "\n")

f.close()

As before, we’ll walk through some analyses of the results using simple graphics. While
we’re interested in comparing the Softmax algorithm with the epsilon-Greedy algorithm,
we’re going to hold off on making full comparisons between algorithms until the next
chapter.

For now we can just eyeball results from our Softmax simulations to get a sense of how
it performs relative to the expectations set by the epsilon-Greedy algorithm. As we did
with the epsilon-Greedy algorithm, we’ll start by plotting the probability that the Soft‐
max algorithm selects the best arm. The results are shown in Figure 5-1.
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Figure 5-1. How often does the Softmax algorithm select the best arm?

Looking at the probability that the softmax algorithm selects the right arm, we see that
it starts to select the right arm 100% of the time if we wait long enough. This is a big
improvement over the epsilon-Greedy algorithm, which never got past the intrinsic
errors caused by the purely random exploration strategy it used. In our standard test
case, there is one standout arm and the softmax algorithm is able to find it and exploit
it far more effectively than the epsilon-Greedy algorithm.

We see the same results looking at the average reward rates plotted in Figure 5-2, except
that the rewards are capped at 0.9 instead of 1.0 because 0.9 is the expected rate of reward
associated with the best arm in our test suite.
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Figure 5-2. How much reward does the Softmax algorithm earn on average?

Finally, we can get more insight into the different temperature settings we can use by
looking at the cumulative rewards earned as shown in Figure 5-3. In this figure, we can
see that the lowest temperature setting we used, 0.1, gives us the best results nearly right
from the start. This is typical in settings in which there are clear differences between
arms. It’s much less likely that the low level of exploration we’re seeing from the 0.1
temperature Softmax will be ideal if the arms are closer together.
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Figure 5-3. How much reward has the Softmax algorithm earned as of trial T?

The Annealing Softmax Algorithm
As we mentioned in the exercises at the end of the chapter on testing the epsilon-Greedy
algorithm, it’s often a good idea to encourage an algorithm to explore less over time. In
the Softmax algorithm, we can achieve that by slowly decreasing the temperature, which
we call annealing. The name annealing is based on a metaphor about blacksmithing. For
a blacksmith, annealing is a process in which the blacksmith slowly decreases the tem‐
perature at which he works with molten melt so that it becomes more solid and less
flexible. This is helpful for building stronger materials as the metal gets closer to its final,
desired shape.
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For bandit algorithms, we can metaphorically decrease the temperature by changing the
temperature parameter. This will make our algorithm exploit the best arm more often
and settle into its final deterministic strategy for choosing an arm. We’ll set up a system
to do that automatically in this last part of this chapter.

But, before we go any further, let’s give two equivalent definitions of the term annealing:

• Annealing is the process of decreasing the temperature in a Softmax algorithm over
time.

• Annealing is a process of modifying a bandit algorithm’s behavior so that it will
explore less over time.

Why are these definitions the same thing? The first definition is really a special case of
the second definition, because the Softmax algorithm will explore less over time if we
decrease the temperature parameter tau. So our annealing algorithm will really be a
strategy for slowly lowering the temperature over time. Below, we implement a full
annealing strategy, based on two simple lines of code:

t = sum(self.counts) + 1
temperature = 1 / math.log(t + 0.0000001)

What’s going on here? It’s easiest to understand this line by imagining what happens
when t = 1. In that case, we set temperature = 1 / math.log(1.0000001), which is
very close to being infinite. So the temperature is extremely high and the system will
explore almost completely randomly.

But, as t goes up, the temperature will get lower and lower. Because we use logarithms,
this decrease isn’t extremely rapid: rather, it’s just rapid enough to be effective. This
division by a logarithmically scaled version of t isn’t always the best approach to an‐
nealing. In the exercises for this chapter, we encourage you to play with other annealing
rules that decrease the temperature faster or that decrease the temperature over discrete
blocks of time, rather than on every single iteration.

Before we run those experiments, though, we need to implement the full annealing
Softmax algorithm. We do that below:

import math
import random

def categorical_draw(probs):
  z = random.random()
  cum_prob = 0.0
  for i in range(len(probs)):
    prob = probs[i]
    cum_prob += prob
    if cum_prob > z:
      return i
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  return len(probs) - 1

class AnnealingSoftmax:
  def __init__(self, counts, values):
    self.counts = counts
    self.values = values
    return

  def initialize(self, n_arms):
    self.counts = [0 for col in range(n_arms)]
    self.values = [0.0 for col in range(n_arms)]
    return

  def select_arm(self):
    t = sum(self.counts) + 1
    temperature = 1 / math.log(t + 0.0000001)

    z = sum([math.exp(v / temperature) for v in self.values])
    probs = [math.exp(v / temperature) / z for v in self.values]
    return categorical_draw(probs)

  def update(self, chosen_arm, reward):
    self.counts[chosen_arm] = self.counts[chosen_arm] + 1
    n = self.counts[chosen_arm]

    value = self.values[chosen_arm]
    new_value = ((n - 1) / float(n)) * value + (1 / float(n)) * reward
    self.values[chosen_arm] = new_value
    return

How useful is this change to the Softmax algorithm to make it anneal? We can judge
that by running simulations of the annealing Softmax algorithm and comparing the
results with our standard Softmax algorithm that used a constant temperature setting.
The results are shown in Figure 5-4, Figure 5-5, and Figure 5-6.
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Figure 5-4. How accurate is the Annealing Softmax algorithm on average?
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Figure 5-5. How much reward does the Annealing Softmax algorithm earn on average?
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Figure 5-6. How much reward has the Annealing Softmax algorithm earned as of trial T?

As you can see by looking at these graphs, the system doesn’t reach perfect performance
as quickly as the best of our hard-coded temperature settings in the previous set of
graphs. But the algorithm reaches its peak performance much faster than the worse of
our settings and reaches a higher peaker. In many ways, it’s the fact that we’re doing not
much worse than our best case that really matters, because we only knew which tem‐
perature setting was best after the fact: in practice, we’d have to experiment with different
temperature settings to find one that would work well. That’s a non-trivial task for a
system that needs to be deployed in the real world to be fully tested, so the use of an‐
nealing can be a real improvement. You should always try to avoid being forced to use
your intuition to set any parameters that can affect a bandit algorithm when it’s deployed
in the wild.
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Of course, as always, your mileage may vary. To drive that home, we suggest some
exercises below that will improve your intuitions about how softmax works and also
suggest some ways in which it isn’t ideal.

Exercises
In order to refine your understanding of the Softmax algorithm and its annealing var‐
iant, we suggest you try the following:

• See what happens to the Softmax algorithm if it has to explore from a set of arms
that are all very similar to each and none of which stands very far out from the pack.
Instead of our use of means = [0.1, 0.1, 0.1, 0.1, 0.9], try using means =
[0.1, 0.1, 0.1, 0.1, 0.12]. Does the striking difference between Softmax and
epsilon-Greedy go away as you change the parameters of the two algorithms?

• Can you find settings of epsilon for the epsilon-Greedy algorithm and the temper‐
ature for the Softmax algorithm that come closest to imitating one another on a
fixed set of arms? What makes it difficult for these two algorithms to behave sim‐
ilarly?

• We used one specific annealing rule when we made the Softmax algorithm decrease
its temperature setting over time. What happens when using a different rule like
temperature = 1.0 / t? What happens when you change this parameter over
blocks of plays so that temperature = 0.5 for the first 100 rounds and then tem
perature = 0.1 for the next 100 rounds? Are there general strategies for setting
these parameters that seem to work well?
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CHAPTER 6

UCB – The Upper Confidence Bound
Algorithm

Introducing the UCB Algorithm
The algorithms we’ve presented so far have one systematic weakness: they don’t keep
track of how much they know about any of the arms available to them. They pay attention
only to how much reward they’ve gotten from the arms. This means that they’ll under‐
explore options whose initial experiences were not rewarding, even though they don’t
have enough data to be confident about those arms. We can do better by using an al‐
gorithm that pays attention to not only what it knows, but also how much it knows.

The algorithm, UCB, that we’ll present in this chapter does exactly this. Before we de‐
scribe how the UCB algorithm keeps track of how much it knows, let’s look back at the
epsilon-Greedy and Softmax algorithms and take a more abstract perspective on them.
Both the epsilon-Greedy algorithm and the Softmax algorithm share the following broad
properties:

• The algorithm’s default choice is to select the arm that currently has the highest
estimated value.

• The algorithm sometimes decides to explore and chooses an option that isn’t the
one that currently seems best:
— The epsilon-Greedy algorithm explores by selecting from all of the arms com‐

pletely at random. It makes one of these random exploratory decisions with
probability epsilon.
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— The Softmax algorithm explores by randomly selecting from all of the available
arms with probabilities that are more-or-less proportional to the estimated value
of each of the arms. If the other arms are noticeably worse than the best arm,
they’re chosen with very low probability. If the arms all have similar values,
they’re each chosen nearly equally often.

• In order to achieve better performance by making an effort to have these two al‐
gorithms explore less over time, both algorithms can be set up to modify their basic
parameters dynamically over time. We called this modification annealing.

Looking at this list, we can see how UCB can improve upon the epsilon-Greedy and
Softmax algorithms: it can make decisions to explore that are driven by our confidence
in the estimated value of the arms we’ve selected.

Why is it important to keep track of our confidence in the values of the arms? The reason
has to do with the nature of the rewards we receive from the arms: they’re noisy. If we
use our past experiences with an arm, then the estimated value of any arm is always a
noisy estimate of the true return on investment we can expect from it. Because of this
noise, it might just be a coincidence that Arm A seems better than Arm B; if we had
more experience with both arms, we’d eventually realize that Arm B is actually better.
The epsilon-Greedy and Softmax algorithms aren’t robust to this noise during their first
experiences with things.

Or, to put things in more human terms, the epsilon-Greedy and Softmax algorithms are
gullible. They are easily misled by a few negative experiences. Because of their use of
randomness, they can make up for this later. UCB takes a very different approach. As
you’ll see, UCB does not use randomness at all.

Instead, UCB avoids being gullible by requiring us to keep track of our confidence in
our assessments of the estimated values of all of the arms. To do that, we need to have
some metric of how much we know about each arm.

Thankfully, we already have information on hand that will give us that metric: we’ve
been explicitly keeping track of the number of times we’ve pulled each arm for both of
the algorithms we’ve used so far. Inside of the counts field in our epsilon-Greedy and
Softmax classes, we have enough information to calculate a simple metric of our con‐
fidence in the estimated values of the various arms. We just need to find a way to take
advantage of that information.

The UCB family of algorithms does just that. In fact, their focus on confidence is the
source of the name UCB, which is an acronym for Upper Confidence Bounds. For this
book, we’re going to focus on only one of the algorithms in the UCB family. This special
case is called the UCB1 algorithm. We’ll generally refer to the UCB1 algorithm as the
UCB algorithm, since it will be the only version of UCB that we’ll implement.
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While we won’t focus on other UCB variants, we need to note that the
UCB1 algorithm, unlike its siblings, makes a couple of assumptions that
you may need to be cautious about. Foremost of these is the assumption
that the maximum possible reward has value 1. If that’s not true in your
setting, you need to rescale all of your rewards to lie between 0 and 1
before using the UCB1 algorithm we present below.

In addition to explicitly keeping track of our confidence in the estimated values of each
arm, the UCB algorithm is special for two other reasons:

• UCB doesn’t use randomness at all. Unlike epsilon-Greedy or Softmax, it’s possible
to know exactly how UCB will behave in any given situation. This can make it easier
to reason about at times.

• UCB doesn’t have any free parameters that you need to configure before you can
deploy it. This is a major improvement if you’re interested in running it in the wild,
because it means that you can start to use UCB without having a clear sense of what
you expect the world to behave like.

Taken together, the use of an explicit measure of confidence, the absence of unnecessary
randomness and the absence of configurable parameters makes UCB very compelling.
UCB is also very easy to understand, so let’s just present the algorithm and then we can
continue to discuss it in more detail.

Implementing UCB
As we did with the epsilon-Greedy and Softmax algorithms, we’ll start off by imple‐
menting a class to store all of the information that our algorithm needs to keep track of:

class UCB1():
  def __init__(self, counts, values):
    self.counts = counts
    self.values = values
    return

  def initialize(self, n_arms):
    self.counts = [0 for col in range(n_arms)]
    self.values = [0.0 for col in range(n_arms)]
    return

As you can see from this chunk of code, UCB doesn’t have any parameters beyond the
absolute minimum counts and values fields that both the epsilon-Greedy and Softmax
algorithms had. The reason UCB gets away without this is how it exploits the counts
field. To see UCB’s for using the counts field, let’s implement the select_arm and update
methods:
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  def select_arm(self):
    n_arms = len(self.counts)
    for arm in range(n_arms):
      if self.counts[arm] == 0:
        return arm

    ucb_values = [0.0 for arm in range(n_arms)]
    total_counts = sum(self.counts)
    for arm in range(n_arms):
      bonus = math.sqrt((2 * math.log(total_counts)) / float(self.counts[arm]))
      ucb_values[arm] = self.values[arm] + bonus
    return ind_max(ucb_values)

  def update(self, chosen_arm, reward):
    self.counts[chosen_arm] = self.counts[chosen_arm] + 1
    n = self.counts[chosen_arm]

    value = self.values[chosen_arm]
    new_value = ((n - 1) / float(n)) * value + (1 / float(n)) * reward
    self.values[chosen_arm] = new_value
    return

What stands out about these methods?

Let’s start by focusing our attention on the if self.counts[arm] == 0 line. What’s
going on here? The UCB algorithm is using this line to insure that it has played every
single arm available to it at least once. This is UCB’s clever trick for insuring that it
doesn’t have a total cold start before it starts to apply its confidence-based decision rule.
It’s important to keep this initialization step in mind when you consider deploying
UCB1: if you will only let the algorithm run for a small number of plays (say M) and
you have many arms to explore (say N), it’s possible that UCB1 will just try every single
arm in succession and not even make it to the end. If M < N, this is definitely going to
occur. If M is close to N, you’ll still spend a lot of time just doing this initial walkthrough.
Whether that is a good or bad thing is something you need to consider before using
UCB.

But, if you have a lot of plays ahead of you, this initial pass through all of the arms is a
very good thing. It insures that the UCB algorithm knows a little bit about all available
options, which makes it very effective when there are clearly inferior arms that can be
essentially ignored right from start.

Once we’ve gotten past the initial cycling through all of the available arms, UCB1’s real
virtues kick in. As you can see, the select_arm method for UCB1 uses a special type of
value that we’ve called a ucb_value in this code. The ucb_value combines the simple
estimated value of each arm with a special bonus quantity, which is math.sqrt((2 *
math.log(total_counts)) / float(self.counts[arm])). The meaning of this bonus
is worth pondering for a bit. The most basic statement that can be made about it is that
it augments the estimated value of any arm with a measure of how much less we know
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about that arm than we know about the other arms. That claim can be confirmed by
considering what happens if you ignore everything except for math.log(to

tal_counts) / float(self.counts[arm]). If counts[arm] is small relative to to
tal_counts for a certain arm, this term will be larger than when counts[arm] is large
relative to total_counts. The effect of that is that UCB is a explicitly curious algorithm
that tries to seek out the unknown.

The other factors around this core unit of curiosity are essentially rescaling terms that
make UCB work properly. For those interested in more formal details, these rescaling
terms allow the algorithm to define a confidence interval that has a reasonable chance
of containing the true value of the arm inside of it. UCB creates its ucb_values by
replacing every arm’s estimated value with the upper bound on the confidence interval
for its value. This is why the algorithm is the Upper Confidence Bound algorithm.

But, setting aside issues of confidence bounds, the big idea that drives UCB is present
in just dividing math.log(total_counts)) by float(self.counts[arm]). As we said
above, this quantity becomes a big boost in the effective value of the arm for arms that
we know little about. That means that we try hard to learn about arms if we don’t know
enough about them, even if they seem a little worse than the best arm. In fact, this
curiosity bonus means we’ll even occasionally visit the worst of the arms we have avail‐
able.

In fact, this curiosity bonus means that UCB can behave in very surprising ways. For
example, consider the plot shown in Figure 6-1 of UCB’s chances of selecting the right
arm at any given point in time.

This graph looks very noisy compared with the graphs we’ve shown for the epsilon-
Greedy and Softmax algorithm. As we noted earlier, UCB doesn’t use any randomness
when selecting arms. So where is the noise coming from? And why is it so striking
compared with the randomized algorithms we described earlier?

The answer is surprising and reveals why the curiosity bonus that UCB has can behave
in an non-intuitive way: the little dips you see in this graph come from UCB backped‐
aling and experimenting with inferior arms because it comes to the conclusion that it
knows too little about those arms. This backpedaling matters less and less over time,
but it’s always present in UCB’s behavior, which means that UCB doesn’t become a
strictly greedy algorithm even if you have a huge amount of data.
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Figure 6-1. How often does the UCB1 algorithm select the best arm?

At first this backpedaling may seem troubling. To convince you that UCB is often very
effective despite this counter-intuitive tendency to oscillate back into exploring inferior
arms, we need to explicitly compare UCB with the other algorithms we’ve studied so
far. This is quite easy to do, because we can simply pool all of the simulation results we’ve
gathered so far and treat them like a single unit for analysis. In the next section, we walk
through the results.
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Comparing Bandit Algorithms Side-by-Side
Now that we’ve implemented three different algorithms for solving the Multiarmed
Bandit, it’s worth comparing them on a single task. As before, we’ve tested the algorithms
using the testbed of 5 arms we’ve used in all of our examples so far.

For this set of comparisons, we’ve decided to focus on annealing versions of epsilon-
Greedy and Softmax alongside UCB1. The code for both of those algorithms is available
on the website for this book. Using annealing versions of the epsilon-Greedy and Soft‐
max algorithms helps to make the comparisons with UCB1 simpler by removing pa‐
rameters that have to be tuned for the epsilon-Greedy and Softmax algorithms to do
their best.

In Figures Figure 6-2 through Figure 6-4, you can see the results of our three standard
types of analyses for this comparison test set. In Figure 6-2, we’ve plotted the probability
of selecting the best arm on each play by three of the algorithms we’ve used so far.
Looking at this image, there are a few things that are striking:

• We can very clearly see how much noisier UCB1’s behavior looks than the epsilon-
Greedy or Softmax algorithm’s.

• We see that the epsilon-Greedy algorithm doesn’t converge as quickly as the Softmax
algorithm. This might suggest that we need to use another annealing schedule or
that this testbed is one in which the Softmax algorithm is simply superior to the
epsilon-Greedy algorithm.

• We see that UCB1 takes a while to catch up with the annealing Softmax algorithm,
but that it does start to catch up right near the end of the plays we’ve simulated. In
the exercises we encourage you to try other enviroments in which UCB1 might
outperform Softmax unambigiously.

• UCB1 finds the best arm very quickly, but the backpedaling it does causes it to
underperform the Softmax algorithm along most metrics.
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Figure 6-2. How often do our bandit algorithms select the best arm?

Looking at Figure 6-3 and Figure 6-4, we see a similar story being told by the average
reward and cumulative reward.
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Figure 6-3. How much reward do our bandit algorithms earn on average?
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Figure 6-4. How much reward have our algorithms earned by trial T?

Exercises
UCB1 is a very powerful algorithm. In the comparisons we’ve just shown you, it did not
outperform the epsilon-Greedy and Softmax algorithms. We’d like you to try some other
simulations that will give you more insight into cases in which UCB1 will do better.

• We’ve already noted that the epsilon-Greedy and Softmax algorithms behave more
differently in the arms in your bandit problem are very different from one another.
How does the similarity between arms affect the behavior of UCB1?
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• Our graphs in this chapter suggested that UCB1 would overtake the Softmax algo‐
rithm if the algorithm had run for 500 trials instead of 250. Investigate this possi‐
bility.

• Would the UCB1 algorithm perform better or worse if there were more arms? As‐
suming a horizon of 250 trials, how does it fare against the other algorithms when
there are 20 arms? When there are 100 arms? When there are 500 arms? How does
this interact with the horizon?
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CHAPTER 7

Bandits in the Real World: Complexity and
Complications

So far we’ve just given you a taste of how bandit algorithms work by showing you three
standard algorithms that you can try deploying on your website. In this chapter, we want
to give you some tips about ways in which the real world is likely to be more complex
than the simplified examples we’ve used to test the algorithms we’ve implemented. We
think that bandit algorithms are a very powerful set of tools for building better websites.
But they are not a panacea. Bandit algorithms can break if the world you’re exploring is
more complicated than the world we’ve used in testing algorithms. Let’s list some ques‐
tions you should ask yourself when deploying bandit algorithms in the wild:

• How sure are you that you won’t subtly corrupt your deployment code?
• How many different tests are you planning to run simultaneously? Will these tests

interfere with each other? Will starting a new test while another one is already
running corrupt its results?

• How long do you plan to run your tests?
• How many users are you willing to expose to non-preferred versions of your site?
• How well-chosen is your metric of success?
• How are the arms you’re measuring related to one another?
• What additional information about context do you have when choosing arms? Do

you have demographics based on browser information? Does your site have access
to external information about people’s tastes in products you might advertise to
them?
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• How much traffic does your site receive? Is the system you’re building going to scale
up? How much traffic can your algorithm handle before it starts to slow your site
down?

• How much will you have to distort the setup we’ve introduced when you admit that
visitors to real websites are concurrent and aren’t arriving sequentially as in our
simulations?

A/A Testing
Banal though it sounds, the real world is a very complicated place. The idealized sce‐
narios we’ve been using in our Monte Carlo tests for evaluating the performance of
different bandit algorithms are much simpler than real deployment scenarios. In the
real world, both the observations you collect and the code you write to collect those
observations are likely to be more complex than you realize.

The result of this complexity is that you may observe differences between two arms that
are totally illusory at the same time that the data you collect will insist that those dif‐
ferences are significant. Researchers at Microsoft published a paper on “Trustworthy
Online Controlled Experiments: Five Puzzling Outcomes Explained” that does a good
job of describing some problems you are likely to run into if you deploy a bandit algo‐
rithm on your site.

One of their solutions to the problems that will come up is particularly counter-intuitive,
but worth considering before we address other concerns. They want you to run A/A
testing. In other words, you should use the code you develop for assigning users to arms,
but then define two different arms that are actually both the same user experience. If
you find differences between these two identical arms, you need to substantially temper
your claims about differences between other arms. This illusory difference between two
A arms may indicate that there’s a bug in your code or a mistake in the way you’re
analyzing your data. But it may also indicate that your test is running in a context that
is subtly different from the assumptions we’ve been implicitly making when setting up
our algorithms and simulations.

Even if you try A/A testing and don’t find any worring issues, this approach provides a
useful way to estimate the actual variability in your data before trying to decide whether
the differences found by a bandit algorithm are real. And that matters a lot if your plan
is to use a bandit algorithm not as a permanent feature of your site, but as a one-off
experiment.

Running Concurrent Experiments
While we’ve discussed algorithms that can cope with a few arms that are well-separated,
many real-world websites will end up running many different experiments simultane‐
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ously. These experiments will end up overlapping: a site may use A/B testing to compare
two different logo colors while also using A/B testing to compare two different fonts.
Even the existence of one extra test that’s not relating to the arms you’re comparing can
add a lot of uncertainty into your results. Things may still work out well. But your
experiments may also turn out very badly if the concurrent changes you’re making to
your site don’t play well together and have strange interactions.

In an ideal world, concurrency issues raised by running multiple experiments at once
won’t come up. You’ll be aware that you have lots of different questions and so you would
plan all of your tests in one giant group. Then you would define your arms in terms of
the combinations of all the factors you want to test: if you were testing both colors and
fonts, you’d have one arm for every color/font pair.

This ideal world fails not only because people get sparks of inspiration that make them
change course over time. It also fails because the number of arms you would need to
test can quickly blow up if you start combining the different factors you want to test into
separate pairs. Of course, if you don’t keep track of other tests, you may end up with a
large number of puzzling results that are all artifacts of running so many experiments
simultaneously.

The best solution to this is simple: try your best to keep track of all of the experiments
each user is a part of and include this information in your analyses of any single experiment.

Continuous Experimentation vs. Periodic Testing
Are you planning to run tests for a while to decide which approaches are best? Are you
then going to stop running new experiments after you’ve made that decision? In that
case, A/B testing may often be wise if you have a similar set of proposed changes that
would become arms in your Multiarmed Bandit setup. If you’re doing short-term ex‐
periments, it’s often not so important to avoid testing inferior strategies because the
consequences aren’t so bad.

But if you’re willing to let your experiments run much longer, turning things over to a
bandit algorithm can be a huge gain because the algorithm will automatically start to
filter out inferior designs over time without requiring you to make a judgment call.
Whether this is a good thing or not really depends on the details of your situation. But
the general point stands: bandit algorithms look much better than A/B testing when you
are willing to let them run for a very long time. If you’re willing to have your site perpet‐
ually be in a state of experimentation, bandit algorithms will be many times better than
A/B testing.

A related issue to the contrast between continuous experimentation versus short periods
of experimentation is the question of how many users should be in your experiments.
You’ll get the most data if you put more users into your test group, but you risk alienating
more of them if you test something that’s really unpopular. The answers to this question
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don’t depend on whether you’re using bandit algorithm or A/B testing, but the answers
will affect how well a bandit algorithm can work in your setting. If you run a bandit
algorithm on a very small number of users, you may end up with too little data about
the arms that the algorithm decided were inferior to make very strong conclusions about
them in the future. A/B testing’s preference for balancing people across arms can be
advantageous if you aren’t going to gather a lot of data.

Bad Metrics of Success
The core premise of using a bandit algorithm is that you have a well-defined measure
of reward that you want to maximize. A real business is much more complicated than
this simple setup might suggest. One potentially fatal source of increased complexity is
that optimizing short-term click-through rates may destroy the long-term retainability
of your users. Greg Linden, one of the earlier developers of A/B testing tools at Amazon,
says that this kind of thing actually happened to Amazon in the 1990’s when they first
started doing automatic A/B testing. The tools that were ostensibly optimizing their
chosen metric were actually harming Amazon’s long-term business. Amazon was able
to resolve the situation, but the problem of optimizing the wrong metric of success is so
ubiquitous that it’s likely other businesses have lost a great deal more than Amazon did
because of poorly chosen metrics.

Unfortunately, there’s no algorithmic solution to this problem. Once you decide to start
working with automated metrics, you need to supplement those systems by exercising
human judgment and making sure that you keep an eye on what happens as the system
makes changes to your site.

Monitoring many different metrics you think are important to your business is probably
the best thing you can hope do. For example, creating an aggregate site well-being score
that simply averages together a lot of different metrics you want to optimize may often
be a better measure of success than any single metric you would try in isolation.

Scaling Problems with Good Metrics of Success
Even if you have a good metric of success, like the total amount of purchases made by
a client over a period of a year, the algorithms described in this book may not work well
unless you rescale those metrics into the 0-1 space we’ve used in our examples. The
reasons for this are quite boring: some of the algorithms are numerically unstable, es‐
pecially the softmax algorithm, which will break down if you start trying to calculate
things like exp(10000.0). You need to make sure that you’ve scaled the rewards in your
problem into a range in which the algorithms will be numerically stable. If you can, try
to use the 0-1 scale we’ve used, which is, as we briefly noted earlier, an absolute require‐
ment if you plan on using the UCB1 algorithm.
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Intelligent Initialization of Values
In the section on the epsilon-Greedy algorithm, we mentioned how important it is to
consider how you initialize the values of arms you’ve never explored. In the real world,
you can often do this using information you have before ever deploying a bandit algo‐
rithm. This smart initialization can happen in two ways.

First, you can use the historical metrics for the control arm in your bandit algorithm.
Whatever arm corresponds to how your site traditionally behaved can be given an initial
value based on data from before you let the bandit algorithm loose. In addition, you can
initialize all of the unfamiliar arms using this same approach.

Second, you can use the amount of historical data you have to calibrate how much the
algorithm thinks you know about the historical options. For an algorithm like UCB1,
that will strongly encourage the algorithm to explore new options until the algorithm
has some confidence about their worth relative to tradition. This can be a very good
thing, although it needs to be done with caution.

Running Better Simulations
In addition to initializing your algorithm using prior information you have before de‐
ploying a Bandit algorithm, you can often run much better simulations if you use his‐
torical information to build appropriate simulations. In this book we’ve used a toy Monte
Carlo simulation with click-through rates that varied from 0.1 to 0.9. Real world click-
through rates are typically much lower than this. Because low success rates may mean
that your algorithm must run for a very long time before it is able to reach any strong
conclusions, you should conduct simulations that are informed by real data about your
business if you have access to it.

Moving Worlds
In the real world, the value of different arms in a bandit problem can easily change over
time. As we said in the introduction, an orange and black site design might be perfect
during Halloween, but terrible during Christmas. Because the true value of an arm might
actually shift over time, you want your estimates to be able to do this as well.

Arms with changing values can be a very serious problem if you’re not careful when you
deploy a bandit algorithm. The algorithms we’ve presented will not handle most sorts of
change in the underlying values of arms well. The problem has to do with the way that
we estimate the value of an arm. We typically updated our estimates using the following
snippet of code:

new_value = ((n - 1) / float(n)) * value + (1 / float(n)) * reward
self.values[chosen_arm] = new_value
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The problem with this update rule is that 1 / float(n) goes to 0 as n gets large. When
you’re dealing with millions or billions of plays, this means that recent rewards will have
almost zero effect on your estimates of the value of different arms. If those values shifted
only a small amount, the algorithm will take a huge number of plays to update its esti‐
mated values.

There is a simple trick for working around this that can be used if you’re careful: instead
of estimating the values of the arms using strict averages, you can overweight recent
events by using a slightly different update rule based on a different snippet of code:

new_value = (1 - alpha) * value + (alpha) * reward
self.values[chosen_arm] = new_value

In the traditional rule, alpha changed from trial to trial. In this alternative, alpha is a
fixed value between 0.0 and 1.0. This alternative updating rule will allow your estimates
to shift much more with recent experiences. When the world can change radically, that
flexibility is very important.

Unfortunately, the price you pay for that flexibility is the introduction of a new parameter
that you’ll have to tune to your specific business. We encourage you to experiment with
this modified updating rule using simulations to develop an intuition for how it behaves
in environments like yours. If used appropriately in a changing world, setting alpha to
a constant value can make a big difference relative to allowing alpha to go to 0 too
quickly. But, if used carelessly, this same change will make your algorithm behave er‐
ratically. If you set alpha = 1.0, you can expect to unleash a nightmare for yourself.

Correlated Bandits
In many situations, you want to solve a Multiarmed Bandit Problem with a large number
of arms. This will be hopeless unless there is some way you can generalize your expe‐
riences with some arms to other arms. When you can make generalizations safely, we
say that the arms are correlated. To be extremely precise, what matters is that the ex‐
pected rewards of different arms are correlated.

To illustrate this idea, let’s go back to our earlier idea about experimenting with different
color logos. It’s reasonable to assume that similar colors are likely to elicit similar reac‐
tions. So you might try to propagate information about rewards from one color to other
colors based on their degree of similarity.

If you’re working with thousands of colors, simple algorithms like UCB1 may not be
appropriate because they can’t exploit the correlations across colors. You’ll need to find
ways to relate arms and update your estimates based on this information. In this short
book we don’t have time to get into issues much, but we encourage you to look into
classical smoothing techniques in statistics to get a sense for how you might deal with
correlated arms.
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Contextual Bandits
In addition to correlations between arms in a bandit task, it’s often the case that we have
background information about the context in which we’re trying out different options.
For example, we may find that certain fonts are more appealing to male users than to
female users. We refer to this side information as context. There are a variety of algo‐
rithms like LinUCB and GLMUCB for working with contextual information: you can
read about them in two academic papers called “A Contextual-Bandit Approach to Per‐
sonalized News Article Recommendation” and “Parametric Bandits: The Generalized
Linear Case”.

Both of these algorithms are more complicated than the algorithms we’ve covered in
this book, but the spirit of these models is easy to describe: you want to develop a
predictive model of the value of arms that depends upon context. You can use any of
the techniques available in conventional machine learning for doing this. If those tech‐
niques allow you to update your model using online learning, you can build a contextual
bandit algorithm out of them.

LinUCB does this by updating a linear regression model for the arms’ values after each
play. GLMUCB does this by updating a General Linear Model for the arms’ values after
each play. Many other algorithms exist and you could create your own with some re‐
search into online versions of your favorite machine learning algorithm.

Implementing Bandit Algorithms at Scale
Many of the topics we’ve discussed make bandit algorithms more complex in order to
cope with the complexity of the real world. But that complexity may make deploying a
bandit algorithm prohibitively difficult at scale. Why is that?

Even in the simplest real-world settings, the bandit algorithms we’ve described in this
book may not work as well as they do in simulations because you often may not know
what happened on your N-th play in the real world until a while after you’ve been forced
to serve a new page for (and therefore select a new arm for) many other users. This
destroys the clean sequential structure we’ve assumed throughout the book. If you’re a
website that serves hundreds of thousands of hits in a second, this can be a very sub‐
stantial break from the scenarios we’ve been envisoning.

This is only one example of how the algorithms we’ve described are non-trivial when
you want to get them to scale up, but we’ll focus on it for the sake of brevity. Our proposed
solution seems to be the solution chosen by Google for Google Analytics based on
information in their help documents, although we don’t know the details of how their
system is configured.
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In short, our approach to dealing with imperfect sequential assignments is to embrace
this failure and develop a system that is easier to scale up. We propose doing this in two
parts:
Blocked assignments

Assign incoming users to new arms in advance and draw this information from a
fast cache when users actually arrive. Store their responses for batch processing later
in another fast cache.

Blocked updates
Update your estimates of arm values in batches on a regular interval and regenerate
your blocked assignments. Because you work in batches, it will be easier to perform
the kind of complex calculations you’ll need to deal with correlated arms or con‐
textual information.

Changes like this can go a long way in making bandit algorithms scale up for large
websites. But, once you start to make changes to bandit algorithms to deal with these
sorts of scale problems, you’ll find that the theoretical literature on bandits often be‐
comes less informative about what you can expect will happen. There are a few papers
that have recently come out: if you’re interested, this problem is referred to as the problem
of delayed feedback in the academic literature.

Thankfully, even though the academic literature is a little sparser on the topic of delayed
feedback, you can still run Monte Carlo simulations to test your approach before de‐
ploying a bandit system that has to cope with delayed feedback. Of course, you’ll have
to make simulations that are more complex than those we’ve described already, but those
more complex simulations are still possible to design. And they may convince you that
your proposed algorithms works even though you’re working in uncharted waters be‐
yond what theoreticians have studied. That’s the reason we’ve focused on using simu‐
lations through the book. We want you to feel comfortable exploring this topic for
yourself, even when doing so will take you into areas that science hasn’t fully reached
yet.

While you’re exploring, you’ll come up with lots of other interesting questions about
scaling up bandit algorithms like:

• What sort of database should you store information in? Is something like MySQL
usable or do you need to work with something like Memcached? If you need to pull
out assignments to arms quickly, it’s probably wise to move this information into
the lowest latency data storage tool you have available to you.
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• Where in your production code should you be running the equivalent of our se
lect_arm and update functions? In the blocked assignments model we described
earlier, this happens far removed from the tools that directly generate served pages.
But in the obvious strategy for deploying bandit algorithms, this happens in the
page generation mechanism itself.

We hope you enjoy the challenges that making bandit algorithms work in large pro‐
duction environments can pose. We think this is one of the most interesting questions
in engineering today.
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CHAPTER 8

Conclusion

Learning Life Lessons from Bandit Algorithms
In this book, we’ve presented three algorithms for solving the Multiarmed Bandit
Problem:

• The epsilon-Greedy Algorithm
• The Softmax Algorithm
• The UCB Algorithm

In order to really take advantage of these three algorithms, you’ll need to develop a good
intuition for how they’ll behave when you deploy them on a live website. Having an
intuition about which algorithms will work in practice is important because there is no
universal bandit algorithm that will always do the best job of optimizing a website:
domain expertise and good judgment will always be necessary.

To help you develop the intuition and judgment you’ll need, we’ve advocated a Monte
Carlo simulation framework that lets you see how these algorithms and others will
behave in hypothetical worlds. By testing an algorithm in many different hypothetical
worlds, you can build an appreciation for the qualitative dynamics that cause a bandit
algorithm to succeed in one scenario and to fail in another.

In this last section, we’d like to help you further down that path by highlighting these
qualitative patterns explicitly.

We’ll start off with some general life lessons that we think are exemplified by bandit
algorithms, but actually apply to any situation you might ever find yourself in. Here are
the most salient lessons:

69



Trade-offs, trade-offs, trade-offs
In the real world, you always have to trade off between gathering data and acting
on that data. Pure experimentation in the form of exploration is always a short-
term loss, but pure profit-making in the form of exploitation is always blind to the
long-term benefits of curiosity and openmindedness. You can be clever about the
compromises you make, but you will have to make some compromises.

God does play dice
Randomization is the key to the good life. Controlled experiments online won’t
work without randomization. If you want to learn from your experiences, you need
to be in complete control of those experiences. While the UCB algorithms we’ve
used in this book aren’t truly randomized, they behave at least partially like random‐
ized algorithms from the perspective of your users. Ultimately what matters most
is that you make sure that end-users can’t self-select into the arms you want to
experiment with.

Defaults matter a lot
The way in which you initialize an algorithm can have a powerful effect on its long-
term success. You need to figure out whether your biases are helping you or hurting
you. No matter what you do, you will be biased in some way or another. What
matters is that you spend some time learning whether your biases help or hurt. Part
of the genius of the UCB family of algorithms is that they make a point to do this
initialization in a very systematic way right at the start.

Take a chance
You should try everything at the start of your explorations to insure that you know
a little bit about the potential value of every option. Don’t close your mind without
giving something a fair shot. At the same time, just one experience should be enough
to convince you that some mistakes aren’t worth repeating.

Everybody’s gotta grow up sometime
You should make sure that you explore less over time. No matter what you’re doing,
it’s important that you don’t spend your whole life trying out every crazy idea that
comes into your head. In the bandit algorithms we’ve tried, we’ve seen this lesson
play out when we’ve implemented annealing. The UCB algorithms achieve similar
effects to annealing by explicitly counting their experiences with different arms.
Either strategy is better than not taking any steps to become more conservative over
time.

Leave your mistakes behind
You should direct your exploration to focus on the second-best option, the third-
best option and a few other options that are just a little bit further away from the
best. Don’t waste much or any of your time on options that are clearly losing bets.
Naive experimentation of the sort that occurs in A/B testing is often a deadweight
loss if some of the ideas you’re experimenting with are disasters waiting to happen.
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Don’t be cocky
You should keep track of how confident you are about your evaluations of each of
the options available to you. Don’t be close-minded when you don’t have evidence
to support your beliefs. At the same time, don’t be so unsure of yourself that you
forget how much you already know. Measuring one’s confidence explicitly is what
makes UCB so much more effective than either the epsilon-Greedy algorithm or
the Softmax algorithm in some settings.

Context matters
You should use any and every piece of information you have available to you about
the context of your experiments. Don’t simplify the world too much and pretend
you’ve got things figured out: there’s more to optimizing your business that com‐
paring A with B. If you can figure out a way to exploit context using strategies like
those seen in the contextual bandit algorithms we briefly discussed, use them. And
if there are ways to generalize your experiences across arms, take advantage of them.

A Taxonomy of Bandit Algorithms
To help your remember how these lessons relate to the algorithms we’ve described, here
are six dimensions along which you can measure most bandit algorithms you’ll come
across, including all of the algorithms presented in this book: .

1. Curiosity: Does the algorithm keep track of how much it knows about each arm?
Does the algorithm try to gain knowledge explicitly, rather than incidentally? In
other words, is the algorithm curious?

2. Increased Exploitation over Time: Does the algorithm explicitly try to explore less
over time? In other words, does the algorithm use annealing?

3. Strategic Exploration: What factors determine the algorithm’s decision at each time
point? Does it maximize reward, knowledge, or a combination of the two?

4. Number of Tunable Parameters: How many parameters does the algorithm have?
Since you have to tune these parameters, it’s generally better to use algorithms that
have fewer parameters.

5. Initialization Strategy: What assumptions does the algorithm make about the value
of arms it has not yet explored?

6. Context-Aware: Is the algorithm able to use background context about the value of
the arms?
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Learning More and Other Topics
Hopefully this book has gotten you interested in bandit algorithms. While you could
easily spend the rest your life tinkering with the simulation framework we’ve given you
to find the best possible settings of different parameters for the algorithms we’ve de‐
scribed, it’s probably better for you to read about how other people are using bandit
algorithms. Here’s a very partial reading list we’d suggest for those interested:

• If you’re interested in digging into the academic literature on the Multiarmed Bandit
Problem, the best introduction is probably in the classic textbook on Reinforcement
Learning, which is a broader topic than the Multiarmed Bandit Problem:
— Reinforcement Learning: An Introduction by Richard S. Sutton and Andrew G.

Barto, (1998).
• A good starting point for going beyond Sutton and Barto’s introduction is to read

about some of the other bandit algorithms out there that we didn’t have time to
discuss in this book. As time goes on, we will implement more of those algorithms
and place them on the website for this book. In addition to exploring the supple‐
mental code that is already available on the website, you might be interested in going
to the primary sources and reading about the following other algorithms for dealing
with the Multiarmed Bandit Problem:
— Exp3: You can read about Exp3 in “The Nonstochastic Multiarmed Bandit Prob‐

lem” by Auer et al., (2001).
— Exp4: You can also read about Exp4 in “The Nonstochastic Multiarmed Bandit

Problem” by Auer et al. (2001).
— The Knowledge Gradient: You can read about the Knowledge Gradient in “A

knowledge-gradient policy for sequential information collection” by Frazier et
al. (2008).

— Randomized Probability Matching: You can read about Randomized Probability
Matching in “A modern Bayesian look at the multiarmed bandit” by Steven L.
Scott. (2010).

— Thompson Sampling: You can read about Thompson Sampling in “An Empirical
Evaluation of Thompson Sampling” by Olivier Chapelle and Lihong Li. (2011).

• If you’re interested in contextual bandit algorithms like LinUCB and GLMUCB,
you might look at:
— LinUCB: “A Contextual-Bandit Approach to Personalized News Article Recom‐

mendation” by Li et al. (2010).
— GLMUCB: “Parametric Bandits: The Generalized Linear Case” by Filippi et al.

(2010).
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• If you’re ready to do some much heavier reading on this subject, you might benefit
from some of the best recent review papers discussing bandit algorithms:
— “Sequential Decision Making in Non-stochastic Environments” by Jacob Aber‐

nethy (2012).
— “Online Learning and Online Convex Optimization” by Shai Shalev-Shwartz

(2012).
• If you’re interested in reading about how Yahoo! used bandit algorithms in its busi‐

ness, John Langford and colleagues have written many interesting papers and pre‐
sentations including:
— “Learning for Contextual Bandits” by Alina Beygelzimer and John Langford

(2011).
— “Contextual-Bandit Approach to Personalized News Article Recommendation”

by Lihong Li et al. (2010).
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