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Preface

Automatic modulation classification detects themodulation type of received signals to
guarantee that the signals can be correctly demodulated and that the transmitted
message can be accurately recovered. It has found significant roles in military, civil,
intelligence, and security applications.
Analogue Modulations (e.g., AM and FM) and Digital Modulations (e.g., PSK and

QAM) transform baseband message signals (of lower frequency) into modulated
bandpass signals (of higher frequency) using a carrier signal for the purpose of
enhancing the signal’s immunity against noise and extending the transmission range.
Different modulations require different hardware configurations and bandwidth
allocations. Meanwhile, they provide different levels of noise immunity, data rate,
and robustness in various transmission channels. In order to demodulate the modu-
lated signals and to recover the transmitted message, the receiving end of the system
must be equipped with the knowledge of the modulation type.
In military applications, modulations can serve as another level of encryption,

preventing receivers from recovering the message without knowledge of the modula-
tion type. On the other hand, if one hopes to recover the message from a piece of
intercepted and possibly adversary communication signal, a modulation classifier
is needed to determine the modulation type used by the transmitter. Apart from
retrieving the transmitted message, modulation classification is also useful for
identifying the transmitting unit and to generate jamming signals with matching
modulations. The process is initially implemented manually with experienced signal
engineers and later automated with automatic modulation classification systems to
extend the range of operable modulations and to improve the overall classification
performance.
In modern civilian applications, unlike in much earlier communication systems,

multiple modulation types can be employed by a signal transmitter to control the data
rate, to control the bandwidth usage, and to guarantee the integrity of the message.
Though the pool of modulation types is known both to transmitting and receiving
ends, the selection of the modulation type is adaptive and may not be known at
the receiving end. Therefore, an automatic modulation classification mechanism is



required for the receiving end to select the correct demodulation approach in order to
guarantee that the message can be successfully recovered.

This research monograph covers different algorithms developed for the automatic
classification of communications signal modulation types. The theoretical signal
models are explained in the first two chapters to provide the principles on which
the analyses are based. An important step is to unify various signal models proposed
in different studies and to provide a common framework for analysis of different
automatic modulation classification algorithms.

This book includes the majority of the methods developed over the last
two decades. The algorithms are systematically classified to five major categories:
likelihood-based classifiers, distribution test-based classifiers, feature-based classi-
fiers, machine learning-assisted classifiers, and blind modulation classifiers. For
each type of automatic modulation classifier, the assumptions and system require-
ments are listed, and the design and implementation are explained through math-
ematical expressions, graphical illustrations and programming pseudo codes.
Performance comparisons among several automatic modulation classifiers from
each category are presented with both theoretical analysis and simulated numeri-
cal experiments. MATLAB® source code of selected methods will be available on
https://code.google.com/p/amc-toolbox/.

The accumulated knowledge on the principle of automaticmodulation classification
and the characteristics of different automatic modulation classification algorithms is
used to suggest the detailed implementation of modulation classifiers in specific
civilian and military applications.

As the field is still developing, such a book cannot be definitive or complete.
Nonetheless it is hoped that graduate students should be able to learn enough basics
before studying journal papers; researchers in related fields should be able to get a
broad perspective on what has been achieved; and current researchers as well as
engineers in this field should be able to use it as a reference.

A work of this magnitude will unfortunately contain errors and omissions. We
would like to take this opportunity to apologise unreservedly for all such indiscretions
in advance. We welcome any comments or corrections; please send them by email to
a.k.nandi@ieee.org or by any other means.

Zhechen Zhu and Asoke K. Nandi
London, UK
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1
Introduction

1.1 Background

Automatic modulation classification (AMC) was first motivated by its application in
military scenarios where electronic warfare, surveillance and threat analysis requires
the recognition of signal modulations in order to identify adversary transmitting units,
to prepare jamming signals, and to recover the intercepted signal. The term ‘automatic’
is used as opposed to the initial implementation of manual modulation classification
where signals are processed by engineers with the aid of signal observation and
processing equipment. Most modulation classifiers developed in the past 20 years
are implemented through electronic processors. During the 1980s and 1990s therewere
considerable numbers of researchers in the field of signal processing and communica-
tions who dedicated their work to the problem of automatic modulation classification.
This led to the publication of the first well received book on the subject by Azzouz and
Nandi (1996). The interest in AMC for military purposes is sustained to this very day.
The beginning of twenty-first century saw a large number of innovations in commu-

nications technology. Among them are few that made essential contributions to the
staggering increase of transmission throughput in various communication systems.
Link adaptation (LA), also known as adaptive modulation and coding (AM&C),
creates an adaptive modulation scheme where a pool of multiple modulations are
employed by the same system (Goldsmith andChua, 1998). It enables the optimization
of the transmission reliability and data rate through the adaptive selection of modu-
lation schemes according to channel conditions. While the transmitter has the freedom
to choose how the signals are modulated, the receiver must have the knowledge of the
modulation type to demodulation the signal so that the transmission can be successful.
An easy way to achieve that is to include the modulation information in each signal
frame so that the receivers would be notified about the change in modulation scheme,
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and react accordingly. However, this strategy affects the spectrum efficiency due to the
extra modulation information in each signal frame. In the current situation where the
wireless spectrum is extremely limited and valuable, the aforementioned strategy is
simply not efficient enough. For this reason, AMC becomes an attractive solution to
the problem. Thanks to the development in microprocessors, receivers nowadays
are much enabled in terms of their computational power. Thus, the signal processing
required by AMC algorithms becomes feasible. By automatically identifying the
modulation type of the received signal, the receiver does not need to be notified about
the modulation type and the demodulation can still be successfully achieved. In the
end, spectrum efficiency is improved as no modulation information is needed in
the transmitted signal frame. AMC has become an integral part of intelligent radio
systems, including cognitive radio and software-defined radio.

Over the years, there have been many terms used to describe the same problem:
modulation recognition, automatic modulation recognition, modulation identifi-
cation, modulation classification, and automatic modulation classification. There are
other names for the problem, such as PSK (phase-shift keying modulation) classifica-
tion and M-QAM (M-ary quadrature amplitude modulation) classification that have a
more specific target but which still operate under the same principle of automatic
modulation classification. In this book, we have decided to use automatic modulation
classification and AMC as a consistent reference to the same problem.

1.2 Applications of AMC

Having discussed the possible use of AMC in both military and civilian scenarios, in
this section we take a close look at how AMC is incorporated in different military and
civilian systems.

1.2.1 Military Applications

AMChas an essential role inmanymilitary strategies.Modern electronic warfare (EW)
consists of three major components: electronic support (ES), electronic attack (EA) and
electronic protect (EP) (Poisel, 2008). In ES, the goal is to gather information from radio
frequency emissions. This is often where AMC is employed after the signal detection
is successfully achieved. The resulting modulation information could have several
uses extending into all the components in EW. An illustration of how a modulation
classifier is incorporated in the military EW systems is given in Figure 1.1.

To further the process of ES, the modulation information can be used for demodu-
lating the intercepted signal in order to recover the transmitted message among
adversary units. This is of course completed with the aid of signal decryption and
translation. Meanwhile, the modulation information alone can also provide vital
information to the electronic mapping system where it could be used to identify the
adversary units and their possible locations.
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In EA, jamming is the primary measure to prevent the communication between
adversary units. There are many jamming techniques available. However, the most
common one relies on deploying jammers in the communication channel between
adversary units and also transmitting noise signals or made-up signals using the
matching modulation type. To override the adversary communication, the jamming
signal must occupy the same frequency band as the adversary signal. This information
is available from the signal detector. The power of the jamming signal must be
significantly high, which is achieved by using an amplifier before transmitting the
jamming signal. More importantly, the jamming signal must be modulated using
the modulation scheme detected by the modulation classifier.
In EP, the objective is to protect friendly communications from adversary EA

measures. As mentioned above, jammers transmit higher power signals to override
adversary communication in the same frequency band. The key is to have the same
signal modulation. An effective strategy to prevent friendly communication being
jammed is to have awareness of the EA effort from adversary jammers and to dodge
the jamming effort. More specifically, the friendly transmitter could monitor the
jamming signal’s modulation and switch the friendly unit to a different modulation
scheme to avoid jamming.

1.2.2 Civilian Applications

In the civilian scene, AMC is most important for the application of LA. As demon-
strated in Figure 1.2, the signal modulator in the LA transmitter is replaced by an
adaptive modulation unit. The role of the adaptive modulator is to select the modu-
lation from a predefined candidate pool and to complete the modulation process.
The selection of modulation from the candidate pool is determined by the system
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Figure 1.1 Military signal intelligence system.
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specification and channel conditions. The lower-order and more robust modulations
such as BPSK (binary phase-shift keying modulation) and QPSK (quadrature phase-
shift keying modulation) are often selected when the channel is noisy and complex,
given that the system requires high link reliability. The higher-order andmore efficient
modulations such as 16-QAM (16-quadrature amplitude modulation) and 64-QAM
(64-quadrature amplitude modulation) are often selected to satisfy the demand for
high-speed transmission in clear channels. The only communication between adaptive
modulation module and the receiver is completed at system initialization where the
information of the modulation candidate pool is notified to the receiver. During
normal transmission the adaptive modulator embeds no extra information in the
communication stream. At the receiving end of the LA system, channel estimation
is performed prior to other tasks. If the channel is static, the estimation is only
performed at the initial stage. If the channel is time variant, the channel state informa-
tion (CSI) could be estimated regularly throughout the transmission. The estimated
CSI and other information would then be fed back to the transmitter where the CSI
will be used for the selection of modulation schemes. More importantly, the CSI is
required to assist the modulation classifier. Depending on the AMC algorithm,
different channel parameters are needed to complete the modulation classification.
Normally, the accuracy of channel estimation has a significant impact on the
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performance of the modulation classifier. The resulting modulation classification
decision is then fed to the reconfigurable signal demodulator for appropriate
demodulation. If the modulation classification is accurate, the correct demodulation
method would capture the message and complete the successful transmission. If
the modulation classification is incorrect, the entire transmission fails as the message
cannot be recovered from the demodulator. It is not difficult to see the importance
of AMC in LA systems.

1.3 Field Overview and Book Scope

Given the importance of AMC in various military and civilian communication
applications, there has been a large amount of research work dedicated to the problem
of AMC in a wide variety of settings. The nature of the problem creates multiple
dimensions in its solutions and inspires continuous contribution from generations
of researchers.
First, themodulation classifier needs to be accurate. The accuracy ismeasured by the

percentage of errors made in a number of signal frames being transmitted. The lower
the error the better the classifier is perceived to be. The likelihood-based classifiers first
introduced by Polydoros and Kim (1990) provides optimal classification accuracy
givenmatching signal model and perfect CSI knowledge. The approach has since been
indulged bymany researchers and led tomany likelihood classifierswith various traits
(Wei and Mendel, 2000; Hameed, Dobre and Popescu, 2009; Chavali and Da Silva,
2011; Xu, Su and Zhou, 2011; Shi and Karasawa, 2012).
Second, the modulation classifier needs to be robust. Since the communication

channel can be unpredictable, especially in wireless channels, the classifier needs to
have consistent classification accuracy in various channel conditions. In reality,
conditions like multi-path fading, shadowing, Doppler effect, and additive noise have
significant impact on the classification accuracy. Most of the works on AMC consider
additive white Gaussian noise (AWGN) as a standard channel condition when evalu-
ating their algorithms (Gardner and Spooner, 1988; Nandi and Azzouz, 1998; Swami
and Sadler, 2000; Wei and Mendel, 2000). However, the consideration of fading
channel and impulsive noises has become necessary for practically application of an
AMC algorithm and has since been featured in many recent publications (Headley
and Da Silva, 2011; Chavali and Da Silva, 2013).
Third, the classifier needs to be computationally efficient. The computational cost is

reflected in two aspects of system performance. A complex AMC algorithm requires
more powerful hardware to support it. In addition, a complex algorithm requires a
longer time to complete the classification process, which may render certain applica-
tions unsuited if real-time decisions are needed. With some of the most fundamental
AMC algorithms established, we are seeing more and more works which contribute
to improve the computational complexity of some state-of-the-art algorithms
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(Wong and Nandi, 2008; Wang and Wang, 2010; Xu, Su and Zhou, 2011). With the
popularity of mobile communication, computational efficiency will remain a major
consideration in the development of AMC algorithms.

Fourth, the classifier needs to be versatile. The versatility of an AMC classifier
consists of many aspects. The classifier needs to handle as many modulation types
as possible. The classifier needs to be operable in scenarios where limited knowledge
of the channel or the communication system is available. The classifier needs to
provide information other than the modulation type as by-product in real time. The
classifier needs to be applicable in various communication systems such as single-
input and single-output systems (SISO) and multiple-input and multiple-output
systems (MIMO). The classification of both analogue and digital modulation can be
effectively achieved by multiple signal features suggested by Azzouz and Nandi
(1996). The current focus of versatility of an AMC algorithm lies in the classification
of multi-ordered digital modulations in MIMO systems (Choqueuse et al., 2009;
Hassan et al., 2012; Mühlhaus et al., 2013).

In this book, we focus on the more related issues in the current AMC development
environment. We will revisit most of the existing AMC algorithms and sketch their
implementations under a unified signal model (Chapter 2). The classifiers will be
classified into five categories and presented in five chapters (from Chapters 3 to 7).
As these classifiers all have their strengths and weaknesses, we will exam some of
the key algorithms from each category and assess their performance in simulated
environments (Chapter 8). The simulation focuses on digital modulations that are
most relevant to the current communication systems. As we develop a comprehensive
understanding of all the algorithms and their characteristics, in Chapters 9 and 10,
we attempt to suggest designs of AMC algorithms that are tailored to some of the
specific applications in civilian and military scenarios.

1.4 Modulation and Communication System Basics

To familiarize the readers with the technical concepts that are used in this book, we
dedicate this section to the basics of communications theory.

1.4.1 Analogue Systems and Modulations

We assume the source signal x(t) is analogue, non-negative and continuous at time t.
In analogue systems, the signal is modulated before transmission using analogue
modulations. Depending on the modulation type, the modulator is preconfigured
and not subject to future change. Here we consider three types of analogue modula-
tion, namely amplitude modulation (AM), frequency modulation (FM), and phase
modulation (PM). An illustration of the analogue radio communication system is
given in Figure 1.3.
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For AMmodulation, the signal is modulated with a carrier signal c(t) =A � cos(2πfct)
with a carrier frequency fc. The source signal is multiplied by the carrier signal to
create the transmitted modulation signal s(t) given by equation (1.1).

s tð Þ= x tð Þ�A�cos 2πfctð Þ ð1:1Þ

The resulting transmitted signal is called the bandpass signal where the source
signal is embedded in the signal amplitude envelope. Figure 1.4 gives examples of
signal waveform of the carrier signal, the source signal, and the modulation signal
using AM.
For FM modulations, the same carrier can be used. However, the source signal is

added to modify the frequency component of the carrier signal. The time series FM
modulation signal is given by equation (1.2),

s tð Þ=A�cos 2πfct+ 2πΔf
ðt

0

x τð Þdτ
0
@

1
A ð1:2Þ

whereΔf is the frequency deviation that controls the variation of themodulated signal
frequency. The waveform of the FM signal is given in Figure 1.5.
For PM modulation, the source signal is added to the carrier signal by modifying

the signal phase. The expression of the PM modulation signal is found as shown in
equation (1.3).

s tð Þ=A�cos 2πfct+ x tð Þð Þ ð1:3Þ

The waveform of a PM signal is given in Figure 1.6.
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Figure 1.3 Analogue communication system.
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1.4.2 Digital Systems and Modulations

Modern communication systems make less use of analogue modulations. Instead,
digital modulations are well favoured thanks to a better match with digital data
and stronger immunity against interference. Notable digital modulation types include
amplitude-shift keying (ASK), frequency-shift keying (FSK), phase-shift keying (PSK),
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Figure 1.4 (a) Carrier signal, (b) source signal and (c) AM signal.
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pulse amplitude modulation (PAM), and quadrature amplitude modulation (QAM).
To meet the demand for higher transmission throughput, digital modulations of
higher orders including M-ary ASK (M-ASK), M-ary FSK (M-FSK), M-ary PSK
(M-PSK), M-ary PAM (M-PAM), and M-ary QAM (M-QAM) are often used. The label
“M” indicates the number of samples in the modulation alphabet set.
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Figure 1.5 (a) Carrier signal, (b) source signal and (c) FM signal.
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Like the analogue systems,we have a source signal x(t). The source signal is digitized
by sampling and quantization, the resulting digital signal is then coded by various
means for the purpose of data security and limiting transmission errors. In the context
of AMC, the digitization process and coding theorymakes little impact on the classifier
design and classification performance. Therefore, we neglect the details of these
processes and assume the end product to be u[n]� x(t), (n − 1)T < t < nT, where u[n]
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Figure 1.6 (a) Carrier signal, (b) source signal and (c) PM signal.
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is the nth source signal symbol and T is the symbol timing for the digitized source
signal. Depending on the modulation type, the modulated signal is generated in
different ways. An illustration of the digital radio communication system is given
in Figure 1.7.
ForASKmodulations, the expression for themodulated signal given in equation (1.4)

is very similar to that for AM, the only difference being that the source signal is digital
instead of analogue.

s tð Þ= u tð Þ�A�cos 2πfctð Þ ð1:4Þ

The waveform of an ASK signal is given in Figure 1.8.
For FSK modulations, the expression also matches the one from FM modulation,

as shown in equation (1.5).

s tð Þ=A�cos 2πfct+ 2πΔf
ðt

0

u τð Þdτ
0
@

1
A ð1:5Þ

The waveform of an FSK signal is given in Figure 1.9.
For PSK modulation, the expression is similar to the one for the PM modulation,

as shown in equation (1.6).

s tð Þ=A�cos 2πfct+ πu tð Þð Þ ð1:6Þ

The waveform of FSK signal is given in Figure 1.10.
PAM modulation shares a similar principle of embedding the source signal in the

amplitude of the carrier signal. However, the expression of the modulated signal,
as shown in equation (1.7), differs due to the added pulse-shaping factor g(t).

s tð Þ= u tð Þ�g tð Þ�A�cos 2πfctð Þ ð1:7Þ
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Figure 1.7 Digital communication system.
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The factor g(t) defines the shape of the pulse. A common example is the raised cosine
frequency shaping filter, which is defined by equation (1.8), where α is the roll-off
factor between 0 and 1.

g tð Þ= sinc
t
T

� �
cos παt=Tð Þ
1−4α2t2=T2 ð1:8Þ
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Figure 1.8 (a) Carrier signal, (b) source signal and (c) ASK signal.
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QAM modulations are similar to PAM modulations and are often considered as a
combination of PSK and ASK modulations. Instead of a real-valued source signal,
the source signal is mapped to a complex baseband waveform, equation (1.9).

u tð Þ=ℜ u tð Þf g+ jℑ u tð Þð Þ ð1:9Þ
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Figure 1.9 (a) Carrier signal, (b) source signal and (c) FSK signal.
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The QAMmodulated signal is composed as shown in equation (1.10), where |u(t)|
is the magnitude of the complex baseband signal and arg{u(t)} is the phase of the
complex baseband signal.

s tð Þ= u tð Þj jcos arg u tð Þf g� �
cos 2πfctð Þ− u tð Þj jsin arg u tð Þf g� �

sin 2πfctð Þ ð1:10Þ

For digital modulations, the signal is often visualized using a constellation plot
where the in-phase and quadrature (I-Q) components of a signal are used to provide

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10−5

−15

−10

−5

0

5

10

15
(a)

Time (s)

A
m

p
lit

u
d
e

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10−5Time (s)

−3

−2

−1

0

1

2

3

A
m

p
lit

u
d
e

(c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10−5Time (s)

−15

−10

−5

0

5

10

15

A
m

p
lit

u
d
e

Figure 1.10 (a) Carrier signal (b) source signal and (c) PSK signal.
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coordinates. Constellation plots of 2-PAM, QPSK, 8-PSK, and 16-QAM modulations
are given in Figure 1.11 as examples.

1.4.3 Received Signal with Channel Effects

Regardless of the transmitter setting andmodulation selection, the transmitted signals
are subject to the same channel conditions. Here we give a signal model that includes
a majority of the channel effect a single wireless radio frequency may encounter. The
received signal is given by equation (1.11), where α is the channel gain, fo and θo are
carrier frequency and phase offsets, s(τ) is the transmitted signal sample at time τ,
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Figure 1.11 Constellation plots of 2-PAM, QPSK, 8-PSK and 16-QAM.

15Introduction



p(�) is the pulse shaping, h(�) is the channel response, ϵT is the symbol timing error,
and ω(�) is the additive noise. The noise level associated with ω(�) is often measured
in signal-to-noise ratio (SNR). SNR is the ratio between the power of the transmitted
symbols and the additive noises.

r tð Þ= αej 2πfot+ θoð Þ
ðτ = ∞

τ = −∞

s τð Þp τ− tð Þh t−τ + ϵTð Þdτ +ω tð Þ ð1:11Þ

The nth discrete signal sample at time t = nT is given by equation (1.12),

r n½ �= αej 2πfot+ θoð Þ X∞
l= −∞

s n½ �p lT−nTð Þh nT− lT + ϵTð Þ+ω n½ � ð1:12Þ

where s[n] is the nth transmitted signal sample and ω[n] is the additive noise
component at t = nT.

Under common circumstances, assumptions are made that the pulse shaping and
channel response is known to the receiver. Therefore, the signal model after matching
the filter could be simplified as equation (1.13).

r n½ �= αej 2πfot+ θoð Þs n½ �+ω n½ � ð1:13Þ

The majority of our analysis will be based on the sampled discrete signal using the
above equation. More details on signal models in different channels are given in
Chapter 2.

1.5 Conclusion

In this chapter, we introduce the historical background of AMC where it originated
from military electronic warfare as an alternative to manual modulation classification.
It is also highlighted that AMC holds an important position in modern civilian
communications systems. A brief showcase of the implementation of AMC in military
applications and civilian applications is given. An overview of the field of AMC study
is given which leads to the scope of this book. The chapter is finished with some basic
knowledge of communication systems that are considered in the remainder of the book.
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2
Signal Models for
Modulation Classification

2.1 Introduction

Signal models are the starting point of every meaningful modulation classification
strategy. Algorithms such as likelihood-based (Huang and Polydoros, 1995; Wei
and Mendel, 2000; Shi and Karasawa 2012), distribution test-based (Wang and Wang,
2010; Urriza et al., 2011; Zhu, Aslam and Nandi, 2014) and feature-based classifiers
(Azzouz and Nandi, 1996; Spooner, 1996; Swami and Sadler, 2000) all require an
established signal model to derive the corresponding rules for classification decision
making. While some unsupervised machine learning algorithms could function with-
out a reference signal model, the optimization of such algorithms still relies on the
knowledge of a known signal model. Meanwhile, as the validation of modulation
classifiers are often realized by computer-aided simulation, accurate signal modelling
provides meaningful scenarios for evaluating the performance of various modulation
classifiers.
The objective of this chapter is to establish some unified signal models for the

development of all modulation classifiers from Chapters 3 to 7, and to provide a level
ground for the validation of each modulation classifier in Chapter 8. Through the
process, the accuracy of the models will be the first priority as it provides credible
evidence to aid the design of specific modulation classification strategies for real world
applications in Chapters 9 and 10. That, however, is with a fine balance of simplicity in
the models to enable theoretical analysis and to provide computationally efficient
implementations.

Automatic Modulation Classification: Principles, Algorithms and Applications, First Edition. Zhechen Zhu and Asoke K. Nandi.
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In this chapter, mathematical models of communication signals are instituted
for three popular communication channels, namely additive white Gaussian noise
channel, fading channel, and non-Gaussian noise channel.

Additive white Gaussian noise is one of the most widely used noise models in many
signal processing problems. It is of much relevance to the transmission of signals in
both wired and wireless communication media where wideband Gaussian noises
are produced by thermal vibration in conductors and radiation from various sources.
The popularity of additive white Gaussian noise is evidential in most literature on
modulation classification where the noise model is considered the fundamental
limitation to accurate modulation classification.

Fading channel is largely concerned with wireless communication, where signals
are received as delayed and attenuated copies after being absorbed, reflected and
diffracted by different objects. Fading, especially deep fading, drastically changes
the property of the transmitted signal and imposes a tough challenge on the robustness
of a modulation classifier. Though early literature on modulation classifier focused on
the validation of algorithms in AWGN channel, the current standard requires the
robustness in fading channel as an important trait. In this chapter, a unified model
of a fading channel is presented with flexible representation of different fading scenar-
ios. It is worth noting that AWGN noise will also be considered in the fading channel
as to approach a more realistic real world channel condition.

Non-Gaussian noises are often used to model impulsive noises which are a step
further to model the noises in a real radio communication channel. Impulsive noise,
unlike Gaussian noise, has a heavy-tailed probability density function, meaning
higher probability for high power noise components. Such noises are often the result
of incidental electromagnetic radiation from man-made sources. While not featured
in most modulation classification literature, impulsive noises have received an
increasing amount of attention in recent years. Despite the complexity in themodelling
of impulsive noise, it is worth the effort to try and accommodate the signal model for a
more practical approximation of the real world radio channels. In this chapter, three
non-Gaussian noise models will be presented for modelling the impulsive noise.
However, such noises will be considered solely without extra AWGN noise or fading
effects.

2.2 Signal Model in AWGNChannel

Additive white Gaussian noise is characterized with constant spectral density and a
Gaussian amplitude distribution of zero mean. Giving the additive noise a complex
representation ω = I(ω) + jQ(ω), the complex probability density function (PDF) of
the complex noise can be found as equation (2.1), where Σ is the covariance matrix
of the complex noise, |Σ| is the determinant of Σ, |x| is the Euclidean norm of the
complex noise and the noise mean is zero.
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fω xð Þ= 1

2π
ffiffiffiffiffiffi
Σj jp e

− xj j2
2
ffiffiffi
Σj j

p ð2:1Þ

Since many algorithms are interested in the in-phase and quadrature segments
of the signal, it is important to derive the corresponding PDF of the in-phase and
quadrature segments of the additive noise. Fortunately, when AWGN noises are
projected onto any orthonormal segments the resulting projection has independent
and identical Gaussian distributions. The resulting covariance matrix can be found
as equation (2.2),

Σ=
σ2I ρσIσQ

ρσIσQ σ2Q

" #
=

σ2 0

0 σ2

" #
ð2:2Þ

where variance for the in-phase segment σ2I and the quadrature segment σ2Q and are
replaced with a shared identical variance σ2, and the correlation between two
segments is zero. Thus, the desired PDFs of each segment can be easily derived as
shown in equation (2.3).

fI ωð Þ xð Þ= fQ ωð Þ xð Þ= 1

σ
ffiffiffiffiffi
2π

p e−
xj j2
2σ2 ð2:3Þ

As suggested by the term “additive”, the AWGN noise is added to the transmitted
signal to give the signal model in AWGN channel, as shown in equation (2.4).

r tð Þ= s tð Þ+ω tð Þ ð2:4Þ

An illustration of the received 4-QAM signal in an AWGN channel with SNR of
10 dB is given in Figure 2.1.
In the following subsections, the PDFs of received signals in their I-Q segments,

phase and magnitude distributions are derived.

2.2.1 Signal Distribution of I-Q Segments

Assuming the signal modulation M has an alphabet A of M symbols and the symbol
Am having the equal probability to be transmitted, with overall distribution being
considered as M number of AWGN noise distributions shifted to different modulation
symbols, the complex PDF of the received signal is given by equation (2.5), where 1/M
is the probability of Am being transmitted. Figure 2.2 provides an illustration of the
distribution of 4-QAM signals in an AWGN channel with SNR of 10 dB on the
I-Q plane.
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2π
ffiffiffiffiffiffi
Σj jp e
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Following the same logic of the derivation of the complex PDF, the distribution of
received signals on their in-phase and quadrature segments can be found by replacing
the variance by half of the noise variance and the mean of the noise distribution with
in-phase and quadrature segments of the modulation symbols [equation (2.6)].

fI rð Þ xð Þ=
XM
m=1

1
M

fI ωð Þ xjAm,σð Þ=
XM
m=1

1
M

1

σ
ffiffiffiffiffi
2π

p e−
x− I Amð Þj j2

2σ2 ð2:6Þ

An illustration of the PDF is given in Figure 2.3.
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Figure 2.1 Constellation of 4-QAM signal in AWGN with SNR = 10 dB.
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2.2.2 Signal Distribution of Signal Phase

Signal phase is easily recognized as an intuitive object for analysis when the classifi-
cation of PSK modulations is concerned. That is without mentioning the robustness of
signal phase in channel with attenuation. According to Bennett (1956), with added
noise, received signal samples from the same modulation symbol Am have a phase
PDF given by equation (2.7),

fθ rð Þ xjAmð Þ= e− Amj j2=2σ2

2π
+

Amj jcos xð Þ
2σ

ffiffiffiffiffi
2π

p 1 + erf
Amj jcos xð Þffiffiffiffiffi

2σ
p

� �� �
e−

Amj j2
2σ2

sin2 θ Amð Þð Þ ð2:7Þ

where |Am| is themagnitude of the symbolAm, θ(Am) is its phase, and erf(�) is the error
function. Given the complex form of the PDF, the von Mises distribution is often
considered as a close approximation [equation (2.8)], where I0(�) denotes the modi-
fied Bessel function of order zero. The vonMises distribution is used primarily in this
book for analytical content. However, it is worth noting that the von Mises distribu-
tion deviates from the accurate phase PDF at low SNR. Therefore, validations are
provided in cases where the von Mises approximation is used.
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Figure 2.2 PDF of 4-QAM signals in AWGN channel with SNR = 10 dB.
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fθ rð Þ xjAmð Þ= e Amj j2=2σ2ð Þcos x−θ Amð Þð Þ

2πI0 Amj j2=σ2
� � ð2:8Þ

For any modulation, the overall distribution of a received signal in AWGN
channel can be found as a combination of distributions from each modulation symbol
[equation (2.9)].

fθ rð Þ xð Þ=
XM
m=1

1
M

e Amj j2=2σ2ð Þcos x−θ Amð Þð Þ

2πI0 Amj j2=σ2
� � ð2:9Þ

With an identical symbol magnitude |A| and the phase for symbol Am expressed
as θ(Am) = 2mπ/M, the PDF of a M-PSK modulation can be found as shown in
equation (2.10).
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Figure 2.3 PDF of 4-QAM signals I-Q segments in AWGN channel with SNR = 10 dB.
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fθ rð Þ xð Þ=
XM
m=1

1
M

e Aj j2=2σ2ð Þcos x−2mπ=Mð Þ

2πI0 Aj j2=σ2
� � ð2:10Þ

2.2.3 Signal Distribution of Signal Magnitude

The signal magnitude has a unique feature of being robust against phase offset,
frequency offset or any kind of rotational change to the transmitted signal. In this book,
we approximate the PDF of the signal magnitude distribution to a Rice distribution.
Given a single modulation symbol Am and AWGN noise of variance σ2, the PDF of
the received signal from this single symbol can be found as shown in equation
(2.11), which leads to the overall signal magnitude distribution as a sum of Rice
distributions from each modulation symbol, equation (2.12).

f rj j xjAm,σð Þ= Amj j
σ2

e− x2 + Amj j2ð Þ=2σ2 I0 x Amj j
σ2

� �
ð2:11Þ
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1
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f rj j xjAm,σð Þ=
XM
m=1

1
M

Amj j
σ2

e− x2 + Amj j2ð Þ=2σ2 I0 x Amj j
σ2

� �
ð2:12Þ

2.3 Signal Models in Fading Channel

Instead of modelling each fading type, we characterize the joint effect of them into
three categories: attenuation, phase offset and frequency offset. Depending on the
nature of the fading channel, two types of fading scenarios are generally considered
for signal phase offset: slow fading and fast fading. Slow fading is normally caused
by shadowing (or shadow fading) when the signal is obscured by a large object
from a line-of-sight communication (Goldsmith, 2005). As the coherent time of the
shadow fading channel is significantly longer than the signal period, the effect of
attenuation and phase offset remains constant. Therefore, a constant channel gain α
and phase offset θ0 can be used to model the received signal after slow fading
[equation (2.13)].

r tð Þ= αejθo s tð Þ+ω tð Þ ð2:13Þ

The resulting effect can be observed from a simulated 4-QAM signal in slow fading
channel with channel gain at 0.5, phase offset at 10� and AWGN noise of 10 dB in
Figure 2.4.
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For the development of likelihood-based classifiers, it is useful to derive the updated
signal PDFs in the slow fading channel to compensate the effect of attenuation and
phase offset. As the fading channel does not modify the additive noise, only the terms
related to transmitted symbols need to be changed. Given that the constant channel
gain α and phase offset θ0, the transmitted symbol Am is shifted to the new position
given by αe− jθoAm. The updated PDF of the complex signal after a slow fading channel
can then be found by substituting the shifted symbols into equation (2.5), whence
equation (2.14) is derived.
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Figure 2.4 Constellation of 4-QAM signal in slow fading channel.

26 Automatic Modulation Classification



Similarly, the PDFs for signal I-Q segments, phase and magnitude can be derived
accordingly as equations (2.15)–(2.17).
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2σ2 ð2:15Þ
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ð2:17Þ

It is worth noting that while the PDF of the signal phase is much less sensitive to
channel attenuation, it is much more vulnerable to phase offset. Meanwhile, the signal
magnitude PDF is not affected by the phase offset at all as the PDF can be rewritten as
equation (2.18).

f rj j xð Þ=
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m=1

1
M
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=
XM
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1
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αAmj j
σ2

e− x2 + αAmj j2ð Þ=2σ2 I0 x αAmj j
σ2

� �
ð2:18Þ

Fast fading, caused by multipath fading where signals are reflected by objects of
different properties in the radio channel, imposes a much different effect on the
transmitted signal, as the coherent channel time in a fast fading channel is considered
small. The effects of attenuation and phase offset vary with time. In this book, we
assume that both the attenuation and phase offset are randomprocesseswithGaussian
distributions. The attenuation is given by equation (2.19),

α tð Þ�N α,σαð Þ ð2:19Þ

where α(t) is the channel gain at time t, α is the mean attenuation and σ2α is the variance
of the channel gain. The phase offset is given by equation (2.20), where

θo tð Þ�N θo,σθoð Þ ð2:20Þ

θo(t) is the channel gain at time t, θo is themean attenuation and σ2θo is the variance of the
channel gain. Both expressions give a combined effect of slow and fast fading. When
α and θo are both zero, the fading consists of only fast attenuation and fast phase offset.
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When σ2α and σ2θo are both zero, the model reverts back to the case of slow fading.
The resulting channel model becomes as shown in equation (2.21).

r tð Þ= α tð Þejθo tð Þs tð Þ+ω tð Þ ð2:21Þ

Apart from the channel attenuation and phase offset, frequency offset is another
important effect in a fading channel that is worth investigating. The shift in frequency
of a received signal is mostly caused by moving antennas in mobile communication
devices. Given the carrier frequency of a modulated signal as f, when the antenna is
moving at a speed v the resulting frequency offset caused by Doppler shift can be
found as fv/c where c is the speed of travelling light in the channel medium
(Gallager, 2008). As we are only interested in the amount of frequency offset, the
expression is simplified by denoting the frequency offset set as fo and the resulting
signal model with frequency offset set given by equation (2.22).

r tð Þ= ej2πtfo s tð Þ+ω tð Þ ð2:22Þ

The effect of frequency offset is illustrated in Figure 2.5 with a set of 4-QAM signals.
Combining the attenuation, phase offset and frequency offset, we can derive a signal
model of fading channel of all the previously mentioned effects [equation (2.23)].

r tð Þ= α tð Þej 2πtfo + θo tð Þð Þs tð Þ+ω tð Þ ð2:23Þ

2.4 Signal Models in Non-Gaussian Channel

In this section, we start with Middleton’s class A non-Gaussian noise model as a com-
plex but accurate modelling of impulsive noises. The symmetric alpha stable model is
suggested as a simplified alternative to Middleton’s class A model. In addition, the
Gaussian mixture model is also established for analytical convenience in some of
the complex modulation-classification algorithms. The subject of non-Gaussian noise
in AMC has been studied by Chavali and Da Silva extensively (2011, 2013).

2.4.1 Middleton’s Class A Model

Middleton proposed a series of noise models (Middleton, 1999) to approximate the
impulsive noises generated by different natural and man-made electromagnetic
activities in physical environments. The models have become popular in many fields,
including wireless communication, thanks to the canonical nature of the model which
is invariant of the noise source, noise waveform and propagation environments. The
versatility of the model is enhanced by the model parameters which provide us with
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the possibility to specify the source distribution, propagation properties and beam
patterns.
The class A model is defined for the non-Gaussian noises with bandwidth narrower

than the receiver bandwidth, while the class B model is defined for the non-Gaussian
noises with a wider spectrum than the receiver. In the meantime, the class C model
provides a combination of the class A and class B models. In this book, the class
A model is adopted. According to Middleton (1999), the PDF of the class A noise is
derived as shown in equation (2.24),

fω xð Þ= e−AA
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Figure 2.5 Constellation of 4-QAM signal with frequency offset.
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whereAA is the overlap index,which defines the number of noise emissions per second
multiplied by the mean duration of the typical emission. The variance of the kth emis-
sion element is given by equation (2.25),

2σ2kA =

k
AA

+ΓA

1 +ΓA
ð2:25Þ

where ΓA is the Gaussian factor defined by the ratio of the average power of the
Gaussian component to the average power of the non-Gaussian components. To
approximate the desired impulsive nature in this section, the small overlap index
and Gaussian factor are suggested to provide a heavy-tailed distribution for the
noise simulation.

2.4.2 Symmetric Alpha Stable Model

Middleton’s models are derived from details like the structure of the noise waveform
and source distribution. In contrast, the Symmetric Alpha Stable (SαS) model assumes
the beam patterns of the receiver antenna and noise sources to be non-directional
and the noise source to be isotropically distributed in space (Nikias and Shao,
1995). Therefore, SαS has a simpler and more tractable model. The characteristic
function of the SαS model is given by equation (2.26),

ϕ tð Þ= ejδt−γ tj j
α ð2:26Þ

where 0 < α ≤ 2 is the characteristic exponent, δ is the location parameter, and γ is the
scale parameter, also known as the dispersion. The PDF of the SαS can be expressed
using the characteristic function as equation (2.27).

f xð Þ= 1
2π

ð∞

−∞

ϕ tð Þe− jxt ð2:27Þ

2.4.3 Gaussian Mixture Model

In the meantime, Vastola proposed to approximate the Middleton’s class A model
through a mixture of Gaussian noises (Vastola, 1984). The conclusion was drawn that
the Gaussian mixture model (GMM) provides a close approximation to Millerton’s
class A model while being computationally much more efficient. The PDF of the
GMM mode is given by equation (2.28),

fω xð Þ=
XK
k =1

λk
2πσ2k

e
− xj j2
2σ2

k ð2:28Þ
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where 0 < α ≤ 2 is the characteristic exponent, δ is the total number of Gaussian
components, λk is the probability of the noise ω being chosen from the kth component,
and σ2k is the variance of the kth component.

As the GMM will be used as the primary model for impulsive noise, therefore we
derive the PDFs of received signals in the non-Gaussian channel with a GMM noise
model. Assume the GMM uses K components where the probability λk and variance
σ2k for each component are either known or estimated. The PDF of the complex signal
in the non-Gaussian channel can be derived as equation (2.29),
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m=1
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k =1

fr xjAm,λk,σkð Þ=
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m=1

1
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k =1

λk
2πσ2k

e−
x−Amj j2
2σ2 ð2:29Þ

with the corresponding variation for signal I-Q segments, signal phase and signalmag-
nitude given in equations (2.30), (2.31) and (2.32), respectively.
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2.5 Conclusion

In this chapter, we establish the signal models required for constructing modulation
classifiers in the following chapters. The signal models are also needed in the
computer-aided simulations for the generation of signals for classification.
Three common communication channels, namely AWGN channel, fading channel,

and non-Gaussian channel, are considered. The PDFs of received signals in the AWGN
channel are derived for the complex signal, in-phase and quadrature segments, signal
phase and signal magnitude in equations (2.5), (2.6), (2.7) and (2.12). The approxima-
tion of the PDF of signal phase in equation (2.7) is introduced into equation (2.9) as an
alternative for easier theoretical analysis. An example of the approximate for M-PSK
modulations is given in equation (2.10).
The fading channel has been divided into two scenarios of slow fading channel and

fast fading channel. In the slow fading channel the PDF of received signal-experienced
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constant attenuation and phase offset are given in equation (2.14), while its variation
for signal I-Q segments, signal phase and signal magnitude are listed in equations
(2.15), (2.16) and (2.17). The signal model in fast fading channel is defined in equation
(2.21) with attenuation and phase offset as normally distributed random processes.
The additional signal model with frequency offset is given in equation (2.22).

Three non-Gaussian models are presented for modelling the impulsive noise. The
PDF of Middleton’s Class A noise is given in equation (2.24), while the characteristic
function of the alpha stable noise is given in equation (2.26). The Gaussian mixture
model is suggested to approximate the Middleton’s Class A model and the alpha
stable model. Its manageable PDF in equation (2.27) makes the derivation of the
complex signal, signal I-Q segments, signal phase and signal magnitude distribution
PDFs in equations (2.28), (2.29), (2.30) and (2.31) much more intuitive and any further
analysis relatively effortless.
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3
Likelihood-based Classifiers

3.1 Introduction

Likelihood-based (LB) modulation classifiers are by far the most popular modulation
classification approaches. The interest in LB classifiers is motivated by the optimality
of its classification accuracy when perfect channel model and channel parameters are
known to the classifiers (Huang and Polydoros, 1995; Sills, 1999; Wei and Mendel,
2000; Hameed, Dobre and Popescu, 2009; Ramezani-Kebrya et al., 2013).
The common approach of an LB modulation classifier consists of two steps. In the

first step, the likelihood is evaluated for each modulation hypothesis with observed
signal samples. The likelihood functions are derived from the selected signal model
and can be modified to fulfil the need of reduced computational complexity or to
be applicable in non-cooperative environments. In the second step, the likelihood of
different modulation hypothesizes are compared to conclude the classification
decision. Earlier methods of decision making are enabled with a ratio test between
two hypothesizes. The requirement of a threshold provides another level of optimiza-
tion which may provide improved classification performance but also requires more
tentative effort to select thresholds. The more intuitive approach of decision making
would be to find the maximum likelihood among all candidates. It is much easier
to implement and does not require carefully designed thresholds.
In reality, much effort has been made to modify the likelihood approach for lower

computational complexity and versatility in non-cooperative environments. In this
chapter, we will first present the maximum likelihood (ML) classifier. The alternatives
of average likelihood ratio test (ALRT), generalized likelihood ratio test (GLRT) and
hybrid likelihood ratio test (HLRT) will be discussed. The last sectionwill be dedicated
to the complexity reduction of the likelihood-based classifiers.
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3.2 Maximum Likelihood Classifiers

Likelihood evaluation is equivalent to the calculation of probabilities of observed
signal samples belonging to the models with given parameters. In a maximum
likelihood classifier, with perfect channel knowledge, all parameters are known except
the signal modulation. Therefore, the classification process can also be perceived as a
maximum likelihood estimation of the modulation type where the modulation type is
found in a finite set of candidates.

We will focus on deriving the likelihood function in the AWGN channel while
modification of the likelihood function in fading channels and non-Gaussian channels
will also be mentioned briefly.

3.2.1 Likelihood Function in AWGNChannels

Given that the likelihood of the observed signal sample r[n] belonging to the
modulation M is equal to the probability of the signal sample r being observed in
the AWGN channel modulated with M, then equation (3.1) holds.

L r n½ � M,σj Þ= p r n½ � M,σj Þðð ð3:1Þ

As we recall the complex form PDF of received signal in AWGN channel, the
likelihood function can be found as shown in equation (3.2).

L r n½ �jM,σð Þ=
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m=1
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1
2πσ2

e−
r n½ �−Amj j2

2σ2 ð3:2Þ

Without knowing which modulation symbol the signal sample r[n] belongs to, the
likelihood is calculated using the average of the likelihood value between the observed
signal sample and each modulation symbol Am. The joint likelihood given multiple
observed samples is calculated with the multiplication of all likelihoods of individual
samples, as given in equation (3.3).
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e−
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For analytical convenience in many cases, the natural logarithm of the likelihood L
is used as the likelihood value to be compared in a maximum likelihood classifier
[equation (3.4)].
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36 Automatic Modulation Classification



The likelihood, in the meantime, can be derived from probabilities of different
aspects of sampled signals. As we have derived the PDF for in-phase segments of
the received signal in AWGN channel, the corresponding likelihood function of the
in-phase segments of a signal can be found as given in equation (3.5).

LI rð Þ rjM,σð Þ=
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n=1
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m=1

1
M

1
σ
ffiffiffi
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I r n½ �ð Þ− I Amð Þj j2

σ2 ð3:5Þ

The signal phase is another natural subject of study when applying maximum
likelihood classification on M-PSK modulations while M-QAM modulations can also
be classified (Shi and Karasawa, 2011). The advantage of using the signal phase solely
for likelihood evaluation is highlighted by its robustness in channels where amplitude
distortions are exhibited. However, the method is overshadowed by its vulnerability
against phase and frequency offsets. Using the PDF of the signal phase in AWGN
channel from equation (2.7), the phase likelihood function can be derived as given
in equation (3.6).
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Owing to the complex form of the likelihood function, different alternative
PDFs have been proposed to simplify the phase likelihood function. The von Mises
distribution PDF is a much lighter alternative to the PDF given in equation (2.7).
The phase likelihood function based on the von Mises PDF is given by equation (3.7).

Lθ rð Þ rjM,σð Þ=
YN
n=1

XM
m= 1

1
M

e Amj j2=2σ2ð Þcos θ r n½ �ð Þ−θ Amð Þð Þ

2πI0 Amj j2=σ2
	 
 ð3:7Þ

As mentioned in Chapter 2, the von Mises distribution requires a certain SNR level
to be valid. At low SNR level the approximation will deviate from the accurate PDF
and a systematic error in likelihood evaluation will lead to inaccurate classification.
For this reason, Shi and Karasawa (2012) proposed an approximation to the accurate
PDF in equation (2.7) using Gaussian Legendre quadrature rules to replace the error
function in equation (3.6) with a finite-range integral (Abramowitz and Stegun, 1964),
as shown in equation (3.8),
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37Likelihood-based Classifiers



where L is the number of points, wlf gLl=1 are the weights, and xlf gLl= 1 are the abscissas
of the semi-infinite Gauss–Hermite quadrature rule (Steen, Byrne and Gelbard, 1969).
Therefore, the corresponding phase likelihood function using the approximation can
be derived by substituting equation (3.8) into equation (3.6) to give equation (3.9).
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ð3:9Þ

The magnitude likelihood function can be implemented for the classification of
M-QAM modulations and M-PAM modulations. The unique advantage of the
magnitude likelihood appears when a phase or frequency offset is observed in the
transmission channel. As the PDF of signal magnitude in AWGN or fading channel
only consists of the magnitude of the transmitted symbols, any rotational shift would
not alter the resulting probability evaluation. Using the PDF of signal magnitude in
AWGN channel given in equation (2.12), the magnitude likelihood can be found as
shown in equation (3.10).
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3.2.2 Likelihood Function in Fading Channels

Though the likelihood functions in AWGN channels are the primary subject of
research, it would be interesting to derive their variant in fading channels. In this
section, channel attenuation and phase shift in both slow and fast fading scenarios
are introduced to the ML classifier. The information is used to modify the likelihood
function derived for AWGN channels to compensate the added effect from fading
channels.

In slow fading channel where amplitude attenuation and phase shift are both
considered constant, the modification to the likelihood function is restricted to the
transmitted signal symbols. Assume the known or estimated attenuation is α and
θo, the symbol Am would endure a shift and result in a new position for αe− jθoAm.
Substitute the new symbol positions into the likelihood function in equation (3.3),
and the likelihood function in slow fading channel with constant amplitude attenua-
tion and phase shift can be found as given in equation (3.11).
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The likelihood function in fast fading channel is negated here as the collection of
parameters needed for the accurate likelihood evaluation is unlikely to be all known
to the classifier. The estimation of all the parameters also seems ambitious, which
renders the exact likelihood function for the fast fading channel impractical.

3.2.3 Likelihood Function in Non-Gaussian Noise Channels

As impulsive noises are common in communication channels, it is important to derive
the likelihood function for signals in non-Gaussian noise channels with impulsive
noises. Middleton’s Class A model and the SαS model, though being relatively
accurate, have many parameters in their PDFs and characteristic functions. Consider-
ing the extra mismatch which may be introduced in the process of estimation these
parameters, the GMM model is adopted as the bases for the likelihood function in
non-Gaussian noise channels. From equation (2.28), assuming the probability λk and
variance σ2k for total number of K Gaussian components are known or estimated,
the likelihood function can be found as given in equation (3.12).

L rð Þ=
YN
n=1

XM
m=1

1
M

XK
k =1

λk
2πσ2k

e−
r n½ �−Amj j2

2σ2 ð3:12Þ

3.2.4 Maximum Likelihood Classification Decision Making

Having established the likelihood functions in different channel scenarios from
different signal segments, the decision making in an ML classifier becomes rather
straightforward. Assuming a pool with finite number I modulation candidates �,
among which hypothesisHM(i) of each modulationM(i) is evaluated using estimated
channel parameters Θ̂M ið Þ and a suitable likelihood function to obtain its likelihood
evaluation L(r|HM(i)). With the all the likelihood values collected the decision is made
simply by finding the hypothesis with the highest likelihood [equation (3.13)].

M̂= argmaxL r jH
M ið Þ

	 

M ið Þ2�

ð3:13Þ

The entire process of the ML classification is illustrated in Figure 3.1.
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3.3 Likelihood Ratio Test for Unknown Channel Parameters

3.3.1 Average Likelihood Ratio Test

The issue of an unknown parameter in an ML classifier is pivotal as the likelihood
function is unable to handle any missing parameter. The average likelihood ratio test
(ALRT) is one way to overcome such limitation of anML classifier. Polydoros and Kim
were the first to apply ALRT to modulation classification (Polydoros and Kim, 1990),
which was later adopted by Huang and Polydoros (1995), Beidas and Weber (1995),
Sills (1999), Hong and Ho (2000). Different from the ML likelihood function, the ALRT
likelihood function replaces unknown parameters with the integral of all their possible
values and their corresponding probabilities. An example of ALRT likelihood function
with unknown constant carrier phase offset is given by equation (3.14),

LALRT rð Þ=
ð
θo

L rjθoð Þf θojHð Þdθ =
ð
θo

YN
n=1

XM
m=1

1
M

1
2πσ2

e−
r n½ �−αe− jθo Amj j2

2σ2 f θo Hj Þdθoð ð3:14Þ

where LALRT(r) is the updated ALRT likelihood, L(r|θo) is the likelihood given phase
offset of θo, and f(θo|H) is the probability of constant phase offset θo under modulation
hypothesisH. Other channel parameters such as noise variance σ2 and channel gain α
can also be treated individually as unknown parameters with their PDF or as a group
of unknown parameters with their joint probability, as shown in equation (3.15),

LALRT rð Þ=
ð
Θ

L rjΘð Þ f ΘjHð Þdθ =
ð
Θ

YN
n=1

XM
m=1

1
M

1
2πσ2

e−
r n½ �−αe− jθo Amj j2

2σ2 f α,σ,θo Hj ÞdΘð ð3:15Þ

where Θ is the collection of unknown parameters. While L(r|θo) is known to the clas-
sifier, f(Θ|H) depends on the definition of prior probability of unknown parameters.
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Figure 3.1 Maximum likelihood classifier in fading channel with AWGN noise.
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The common assumption of prior PDFs of different parameters is shown in equations
(3.16)–(3.18),

f α Hj Þ�N α μα,σαj Þðð ð3:16Þ
f σ2 Hj Þ�Gamma σ2 aσ ,bσj Þ�� ð3:17Þ
f θo Hj Þ�N θo μθo ,σθo

�� ��� ð3:18Þ

where channel gain α is given a normal distribution with mean μα, variance σ2α, noise
variance is given a Gamma distribution with shape parameter aσ and scale parameter
bσ, and phase offset is given a normal distribution with mean μθo and variance σ2θo . All
the additional parameters associated with PDF of channel parameters are often called
hyperparameters. The estimation of hyperparameters is not discussed in this book.
Suitable schemes have been proposed by Roberts and Penny using a variational Bayes
estimator (Roberts and Penny, 2002).
The likelihood ratio test required for the classification decision making is conducted

with the assistance of a threshold γA. The actual likelihood ratio is calculated as given in
equation(3.19),where theclassificationresult isgivenusingtheconditionalequation(3.20).

ΛA i, jð Þ=

ð
Θ

L rjθð Þf θjHið Þdθ
ð
Θ

L r θj Þf θ Hj
�� �

dθ
�� ð3:19Þ

M̂=
Mi ifΛA i, jð Þ ≥ γA
Mj ifΛA i, jð Þ< γA

(
ð3:20Þ

An easy assignment of the ratio test threshold is to define all thresholds to be one.
The decision making becomes a simple process of comparing the average likelihood of
two hypotheses [equations (3.21)].

M̂=
Mi ifLALRT rjHið Þ ≥LALRT rjHj

� �
Mj ifLALRT r Hij Þ<LALRT r Hj

�� ���
(

ð3:21Þ

Using the same assignment, the maximum likelihood decision making can also be
applied using equation (3.13) with the likelihood function with average likelihood.

3.3.2 Generalized Likelihood Ratio Test

It is not difficult to see that the ALRT likelihood function has a much more complex
form when unknown parameters are introduced. The requirement of underlining
models for unknown parameters confirms that successful classification depends on
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the accuracy of the models. Consequently, if an accurate model is not available, the
method becomes suboptimal and only an approximation to the optimal ALRT classi-
fier. The additional requirement of estimation hyperparameters adds another level of
complexity and inaccuracy to the overall performance of the ALRT classifier. It is
also the fact that the likelihood function is more complex with added integration
operations.

For the above reasons, Panagiotou, Anastasopoulos and Polydoros proposed the
generalized likelihood ratio test (GLRT) as an alternative (Panagiotou, Anastasopou-
los and Polydoros, 2000). The GLRT in essence is a combination of a maximum
likelihood estimator and a maximum likelihood classifier. The likelihood function,
unlike the ALRT, replaces the integration of unknown parameters with a maximiza-
tion of the likelihood over a possible range for the unknown parameters. The likeli-
hood function of the GLRT method is given by equation (3.22).

LGLRT rð Þ= max
Θ

L rjα,σ,θoð Þ= max
Θ

YN
n=1

XM
m= 1

1
M

1
2πσ2

e−
r n½ �−αe− jθo Amj j2

2σ2 ð3:22Þ

When multiple unknown channel parameters are presented, the maximum become
a process over multiple parameters. There is a favourable order of maximization when
channel gain, noise variance and phase offset are all unknown. As recommended in
our previous research (Zhu, Nandi and Aslam, 2013), it is easier to obtain an unbiased
ML estimation of the phase offset before channel gain and noise variance. Noise
variance is normally best to be estimated when all the rest of channel parameters
are accurately estimated.

Panagiotou et al. (2000) also included another maximization step to eliminate the
effect of averaging the likelihood of the signal samples belonging to different modu-
lation symbols, as shown in equation (3.23).

LGLRT rð Þ= max
Θ

L rjα,σ,θoð Þ= max
Θ

YN
n=1

max
Am2A

1
M

1
2πσ2

e−
r n½ �−αe− jθo Amj j2

2σ2 ð3:23Þ

The complexity is notably further reduced. However, the classifier based on the
modified GLRT likelihood function now becomes biased in both low SNR and high
SNR scenarios. Assume the modified GLRT likelihood function is used to classify
among 4-QAM and 16-QAM signals. At low SNR, when signals are well spread, a
4-QAMmodulated signal is always more likely to produce a higher likelihood if using
16-QAM as hypothesis, because the 16-QAM has more symbols and they are more
densely populated under the assumption of unit power. At high SNR, when signals
are tight around the transmitted symbol, the maximization of the likelihood through
channel gain is likely to scale the 16-QAM alphabet such that four central symbols
in the alphabet will be overlapping with the alphabet of the 4-QAM modulation.
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Such a phenomenon observed in nested modulations produces an equal likelihood
between low-order modulations and high-order modulations when low-order
modulations are being classified. Therefore, themethod is clearly biased for high-order
modulations in most scenarios.
The actual likelihood ratio is calculated as follows [equation (3.24)],

ΛG i, jð Þ=
max
Θi,Zi

L rjΘi,Zið Þ
max
Θj,Zj

L r Θj,Zj
�� �� ð3:24Þ

where Zi and Zj define the membership of each observed sample with respect to
modulation symbols.

3.3.3 Hybrid Likelihood Ratio Test

While the GLRT likelihood function provides alternative to ALRT, the fact that it is a
biased classifier, as discussed in the previous section, makes it unsuitable for modu-
lationwith nestedmodulations (e.g. QPSK, 8-PSK; 16-QAM, 64-QAM). For this reason,
Panagiotou et al. (2000) proposed another likelihood ratio test named hybrid likelihood
ratio test (HLRT). In the original publication, the HLRT was suggested as an LB
classifier for unknown carrier phase offset. The likelihood in HLRT is calculated by
averaging over the transmitted symbols and then maximizing the resulting likelihood
function (LF) with respect to the carrier phase. The likelihood function is thus derived
as shown in equation (3.25).

LHLRT rð Þ= max
θo2 0,2π½ �

L rjθoð Þ= max
θo2 0,2π½ �

YN
n=1

XM
m= 1

1
M

1
2πσ2

e−
r n½ �−αe− jθo Amj j2

2σ2 ð3:25Þ

It is clear that the HLRT LF calculates the likelihood of each signal sample belonging
to each alphabet symbol. Therefore, the case where a nested constellation creates
biased classification does not existence. In addition, the maximization process replaces
the integral of the unknown parameters and their PDFs for much lower analytical and
computational complexity.
The decision making of the HLRT approach follows the same rules as the ALRT and

GLRT approach where a threshold γH is required for the ratio test to optimize the
classification accuracy. The ratio test becomes themaximum likelihood classifier when
the threshold is set to one.
The actual likelihood ratio is calculated as follows [equation (3.26)].

ΛH i, jð Þ=
max
Θi

L rjΘið Þ
max

Θj

L r Θj
�� �� ð3:26Þ
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3.4 Complexity Reduction

It is known that the ML classifier has the drawback of high computational complexity.
This is mostly due to the need for calculation of natural logarithms in the likelihood
function and the increased demand for additional signal samples. Many researchers
have recognized the challenge and provided different approaches to reduce the
complexity of the ML classifier.

3.4.1 Discrete Likelihood Ratio Test and Lookup Table

Xu, Su and Zhou proposed a fast likelihood function through offline computation
(Xu, Su and Zhou, 2011). As pointed out in their work, most of the complexity in
an ALRT classifier is contributed by the massive integration, multiplication and
exponent arithmetic. Aiming to not degrade the performance of the ALRT classifier,
they developed the discrete likelihood ratio test (DLRT) with the addition of a lookup
table (LUT). The first step of the classification framework is to build a storage table
containing the likelihood of each modulation quantized to a finite set. The quantiza-
tion of the storage table is done by dividing the continuous complex plane into a P ×Q
grid with a uniform partition strategy. The other dimension of quantization is done
for the noise variance σ2 with U intervals. When a signal sample r[n] is sampled,
the complex sample is first mapped to its in-phase component xp and quadrature
component yq indexed by p and q. The log-likelihood of this sampling belonging to the
hypothesis modulation is found from a cell Ti(p, q, u) from the LUT for modulation i.
The table cell itself is calculated using the following equation (3.27),

Ti p,q,uð Þ=
ðxp+ 1

xp

ðyp+ 1

yp

ln
ð2π

0

1
2π

1
Mi

XMi

m= 1

e
−

x+ jy−e− jθo Amj j2
2σ2u dθo

8<
:

9=
;dxdy ð3:27Þ

whereMi is the size of the alphabet set of modulation i, and θo is the unknown carrier
phase. The subsequent steps of the DLRT and LUT classifier are the same as those in an
ALRT classifier.

The complexity and accuracy analysis provided suggests that the classification
performance is largely associated with the level of quantization. With higher levels
of quantization resolution, the error introduced by mismatching between received
signal sample and mapped signal sample along with estimated noise variance and
mapped noise variance can be minimized. The price for the increased quantization
resolution is solely inflicted as the demand for much larger memory to store the recal-
culated storage tables.
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3.4.2 Minimum Distance Likelihood Function

Wong and Nandi proposed to remove the exponential arithmetic in ML likelihood
function with a simple Euclidean distance between a received signal sample and its
nearest modulation symbol (Wong and Nandi, 2008). The minimum distance like-
lihood function (MDLF) is easily given by equation (3.28).

DMDLF rð Þ=
XN
n=1

min
Am2A

r n½ �−αe− jθoAm
�� �� ð3:28Þ

Unlike the LB methods, the decision making is based on finding the modulation
hypothesis with the minimum distance.
The obvious advantage of the minimum distance classifier is its low complexity.

However, the main drawback is likewise easy to spot. Given a group of well spread
signal samples, it is always easier to find a smaller distance when there is a greater
number of densely populated centroids. Therefore higher-order modulations are
always favoured by the classifier.

3.4.3 Non-Parametric Likelihood Function

Zhu and Nandi recently proposed a non-parametric likelihood function (NPLF)
(Zhu andNandi, 2014). The initial goal was to obtain the likelihood evaluationwithout
a specific signal distribution as well as without the knowledge of the noise variance.
In addition, the NPLF also achieves a very low computation complexity. The NPLF
function is defined as shown in equation (3.29),

LNPLF rð Þ=
XN
n=1

XM
m=1

I r n½ �−αe− jθoAm
�� ��<RM ið Þ
� 
 ð3:29Þ

which evaluates the cumulative distribution in a set of regions defined by the modu-
lation symbol and a radius factor RM ið Þ. The calculation of the likelihood is enabled
with an indicator function I �ð Þ which outputs a value of 1 if the input is true and 0
if the input is false. More details of the NPLF function are given in Chapter 7, where
it is employed for blind modulation classification.

3.5 Conclusion

In this chapter, we have examined different likelihood-based modulation classifiers.
The maximum likelihood method is first presented as the optimum classifier with
the requirement of known channel state information. Its likelihood function is given
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in equation (3.3) and the decisionmaking is established in equation (3.13). The assump-
tion of perfect channel knowledge is relaxed by the subsequent ALRT, GLRT and
HLRT classifiers. They all consider one or two channel parameters as being unknown.
Among these classifiers, the likelihood function of ALRT classifier [equation (3.14)] is
the most complex one where multiple integral and exponential operations are need.
The GLRT likelihood function has a much simpler form but a biased classification
performance. The HLRT presents an option where the complexity and classification
performance has a better balance. Other approaches to reduce the complexity of a
maximum likelihood classifier are presented in the last part of the chapter.
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4
Distribution Test-based
Classifier

4.1 Introduction

When the observed signal is of sufficient length, the empirical distribution of the
modulated signal becomes an interesting subject to study for modulation classifi-
cation. In Chapter 2, the signal distributions in various channels are given. It is clear
that the signal distributions are mostly determined by two factors, namelymodulation
symbol mapping and channel parameters. Assuming that the channel parameters are
pre-estimated and available, the only variable in the signal distribution becomes
the symbol mapping, which is directly associated with the modulation scheme.
In Figure 4.1, signal cumulative distributions of 4-QAM, 16-QAM and 64-QAM are
given in the same AWGN channel.
By reconstructing the signal distribution using the empirical distribution, the

observed signals can be analyzed through their signal distributions. If the theoretical
distribution of differentmodulation candidates is available, there exists onewhich best
matches the underlying distribution of the signal to be classified. The evaluation of
equality between difference distributions is also known as goodness of fit (GoF),
which indicates how the sampled data fit the reference distribution. Ultimately, the
classification is completed by finding the hypothesized signal distribution that has
the best goodness of fit.
There exist many different distribution tests which have been designed to evaluate

the goodness of fit. Among them, we have selected three state-of-the-art distribution
tests that have been adopted for modulation classification, and one customized
distribution test created by the authors.
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4.2 Kolmogorov–Smirnov Test Classifier

The Kolmogorov-Smirnov test (KS test) is a goodness-of-fit test which evaluates the
equality of two probability distributions (Conover, 1980). The probability distributions
can be either sampled empirical cumulative distribution functions (ECDF) or theoret-
ical cumulative distribution functions (CDF). Massey first introduced the KS test
(Massey, 1951) building on theories developed by Kolmogorov (1933) and Smirnov
(1939). The KS test has since been applied in many signal processing problems.

Wang and Wang (2010) first adopted the KS test for modulation classification
highlighting its low complexity against likelihood-based classifiers (Wei and Mendel,
2000) and high robustness versus cumulant-based classifiers (Swami and Sadler, 2000).
Urriza et al. modified F. Wang and X. Wang’s method for improved computational
efficiency (Urriza et al., 2011).
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Figure 4.1 Cumulative distribution probability of 4-QAM, 16-QAM and 64-QAM
modulation signals in AWGN channel.
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In this section, we first explain the basic theories of the KS test. The implementation
of the KS test for modulation classification is presented subsequently.

4.2.1 The KS Test for Goodness of Fit

The KS test can be applied in two scenarios which are often referred to as the
one-sample test and the two-sample test. In the one-sample test, a set of observed
independent variables x1, x2, …, xn with an underlying cumulative distribution
F1(x) and a hypothesized cumulative distribution function F0(x) is considered. The null
hypothesis of the KS test is shown in equation (4.1),

H0 : F1 = F0 ð4:1Þ

where F1(x) is replace by the empirical cumulative distribution function F̂1 xð Þ from the
observed data, as defined in equation (4.2).

F̂1 xð Þ= 1
n

Xn
i=1

I xi ≤ xð Þ ð4:2Þ

Given the definition of the goodness of fit, statistics is used to find the maximum
difference between the underlying cumulative distribution function and the
hypothesized cumulative distribution function, as shown in equation (4.3), where

D= sup
−∞ < x< ∞

F1 xð Þ−F0 xð Þj j ð4:3Þ

the numerical calculation of the statistics is replaced by the maximum difference
between the empirical cumulative distribution and the hypothesized cumulative
distribution function, as given in equation (4.4).

D= max
1 ≤ i ≤ n

F̂1 xið Þ−F0 xið Þ�� �� ð4:4Þ

According to the Glivenko–Cantelli lemma, the value of D is smaller if the null
hypothesis is true, and the value is bigger if the underlying distribution and the
hypothesized distribution are different (DeGroot and Schervish, 2010). Therefore, it
is reasonable to reject the null hypothesis when the decision statistics

ffiffiffi
n

p
D is higher

than a constant C [equation (4.5)].
ffiffiffi
n

p
D>C ð4:5Þ

The above distribution testing method is called the one-sample Kolmogorov–
Smirnov test and the selection of the decision threshold constant is not presented as
it is not needed in the application of modulation classification.
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In the second scenario, there are two sets of observed independent variables x1,
x2,…, xm and y1, y2,…, yn. Each of these data sets has an underlying distribution
F(x) and G(x), respectively. To test if these two sets of data come from the same
underlying cumulative distribution, the following Kolmogorov–Smirnov test null
hypothesis H0 can be constructed [equation (4.6)].

H0 : F xð Þ=G xð Þ ð4:6Þ

Following the same rule as in equation (4.1), the Kolmogorov–Smirnov test statistics
in this scenario can be derived as the supremum of the distance between the two
underlying cumulative distributions [equation (4.7)].

D= sup
−∞ < x< ∞

F xð Þ−G xð Þj j ð4:7Þ

Practically, the underlying cumulative distribution function is replaced by the
empirical cumulative distribution function sampled from the observations. The sam-
pling of the empirical cumulative distribution function follows the same rule as in
equation (4.2).

F̂ xð Þ= 1
m

Xm
i=1

I xi ≤ xð Þ ð4:8Þ

Ĝ xð Þ= 1
n

Xn
i=1

I yi ≤ xð Þ ð4:9Þ

Equations (4.8) and (4.9) then lead to the updated test statistics representing the
maximum distance between the empirical cumulative distribution functions from
the two data sets [equation (4.10)].

D= max
−∞ < x< ∞

F̂ xð Þ−Ĝ xð Þ
��� ��� ð4:10Þ

The null hypothesis is then rejected if the test statistic
ffiffiffiffiffiffiffi
mn

p
D is larger than a constant

C, equation (4.11).
ffiffiffiffiffiffiffi
mn

p
D>C ð4:11Þ

The aforementioned method is named the two-sample Kolmogorov–Smirnov test.
Both of the two applications of the Kolmogorov–Smirnov test can be used for
modulation classification problems with different settings, and they achieve different
performance characters. The implementation is presented in the following subsections.
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4.2.2 One-sample KS Test Classifier

In the context of modulation classification, we assume there are a number N of
received signal samples r[1], r[2],…,r[N] in the AWGN channel. The signal samples
are first normalized to zero mean and unit power. The normalization is implemented
on the in-phase and quadrature segments of the signal samples separately, as
shown by

rI n½ �= ℜ r n½ �ð Þ−ℜ rð Þ
σ ℜ rð Þð Þ ð4:12Þ

rQ n½ �= ℑ r n½ �ð Þ−ℑ rð Þ
σ ℑ rð Þð Þ ð4:13Þ

equations (4.12) and (4.13), where ℜ rð Þ and ℑ rð Þ are the mean of the real and
imaginary part of the complex signal, with σ(ℜ(r)) and σ(ℑ(r)) being the standard
deviation of the real and imaginary part of the complex signal. In the case of non-
blind modulation classification, the effective channel gain and noise variance after
normalization is assumed to be known. The assumption is demanding, while alterna-
tives can be found where these parameters are estimated as part of a blind modulation
classification. More discussion on blind modulation classification will be given in
Chapter 7.
For the hypothesis modulation M(i) (with alphabet Am 2A,m = 1,…,M) in

the AWGN channel with effective gain α and noise variance σ2, the hypothesis
cumulative distribution function can be derived from the PDF of signal I-Q segments
in equation (2.6), as given in equations (4.14) and (4.15).

FI
i xð Þ=

ðx

−∞

XM
m= 1

1
M

1

σ
ffiffiffiffiffi
2π

p e−
x−ℜ αAmð Þj j2

2σ2 dx ð4:14Þ

FQ
i xð Þ=

ðx

−∞

XM
m=1

1
M

1

σ
ffiffiffiffiffi
2π

p e−
x−ℑ αAmð Þj j2

2σ2 dx ð4:15Þ

As only the cumulative distributions at the signal samples are need, the cumu-
lative distribution values are calculated for FI

i ℜ r 1½ �ð Þð Þ,FI
i ℜ r 2½ �ð Þð Þ,…,FI

i ℜ r N½ �ð Þð Þ
and FQ

i ℑ r 1½ �ð Þð Þ,FQ
i ℑ r 2½ �ð Þð Þ,…,FQ

i ℑ r N½ �ð Þð Þ. These values are calculated during the
classification process and therefore the computational complexity should be included
as part of the classifier. The empirical cumulative distribution function is calculated
following equation (4.2), as is shown in equations (4.16) and (4.17).
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F̂I xð Þ= 1
N

XN
n=1

I ℜ r n½ �ð Þ ≤ xð Þ ð4:16Þ

F̂Q xð Þ= 1
N

XN
n=1

I ℑ r n½ �ð Þ ≤ xð Þ ð4:17Þ

It is worth noting that the empirical cumulative distribution is independent of the
test hypothesis. Therefore the collected values can be reused for all modulation
hypotheses.

With both the hypothesized cumulative distribution function and empirical cumu-
lative distribution function ready, the test statistics of the one-sample Kolmogorov–
Smirnov test can be found for each signal I-Q segments, as set out in equations
(4.18) and (4.19).

DI
i = max

1 ≤ n ≤N
F̂I ℜ r n½ �ð Þð Þ−FI

i ℜ r n½ �ð Þð Þ
��� ��� ð4:18Þ

DQ
i = max

1 ≤ n ≤N
F̂Q ℑ r n½ �ð Þð Þ−FQ

i ℑ r n½ �ð Þð Þ
��� ��� ð4:19Þ

To accommodation the multiple test statistics calculated from multiple signal seg-
ments, they are simply averaged to create a single test statistics for the modulation
decision making [equation (4.20)].

Di =
1
2

max
1 ≤ n ≤N

F̂I ℜ r n½ �ð Þð Þ−FI
i ℜ r n½ �ð Þð Þ

��� ���+ max
1 ≤ n ≤N

F̂Q ℑ r n½ �ð Þð Þ−FQ
i ℑ r n½ �ð Þð Þ

��� ���
� �

ð4:20Þ

In some cases when the modulation candidates have identical distribution (e.g.,
M-PSK, M-QAM) on their in-phase and quadrature segments their empirical cumu-
lative distribution can be combined to form an empirical cumulative distribution
function with larger statistics [equation (4.21)].

F̂ xð Þ= 1
2N

XN
n=1

I ℜ r n½ �ð Þ ≤ xð Þ+ I ℑ r n½ �ð Þ ≤ xð Þ ð4:21Þ

Since the signal samples are complex, the multidimensional version of the KS test
has been discussed in Peacock (1983) and Fasano and Franceschini (1987). We suggest
that the corresponding test statistics can be modified to give equation (4.22),

Di = max
1 ≤ n ≤ 2N

F̂ z n½ �ð Þ−FI
i z n½ �ð Þ�� �� ð4:22Þ
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where the test sampling locations are a collection of the in-phase and quadrature
segments of the signal samples, as given in equation (4.23).

z2n−1 =ℜ r n½ �ð Þ, z2n =ℑ r n½ �ð Þ ð4:23Þ

Regardless of the format of test statistics the classification decision is based on
the comparison of the test statistics from all modulation hypotheses. The modulation
decision is assigned to the hypothesis with the smallest test statistics [equation (4.24)].

M̂= argmin
Mi2�

Di ð4:24Þ

4.2.3 Two-sample KS Test Classifier

When the channel is relatively complex and the hypothesis cumulative distribution
function is difficult to be modelled accurately, the two sample Kolmogorov–Smirnov
test may bemuch easier to implement. However, training/pilot samples are needed to
construct the reference empirical cumulative distribution functions. Without any prior
assumption on the channel state, K training samples x[1], x[2],…, x[K] are transmitted
using modulationM(i). The empirical cumulative distribution functions can be found
following equations (4.16) and (4.17), and are given in equations (4.25) and (4.26).

F̂Ii xð Þ= 1
N

XN
n=1

I ℜ x n½ �ð Þ ≤ xð Þ ð4:25Þ

F̂Qi xð Þ= 1
N

XN
n=1

I ℑ x n½ �ð Þ ≤ xð Þ ð4:26Þ

The empirical cumulative distribution function of the N testing signal samples r[1],
r[2],… r[N] are formulated in the same way as in equations (4.16) and (4.17). Using the
two-sample test statistic in equations (4.10) and (4.19), the two-sample test statistics
for modulation classification can be found as shown in equation (4.27).

Di =
1
2

max
−∞ < x< ∞

F̂I xð Þ− F̂Ii xð Þ
��� ���+ max

−∞ < x< ∞
F̂Q xð Þ− F̂Qi xð Þ
��� ���

� �
ð4:27Þ

In practical implementations, it is easier to quantize the testing range of x into a set
of evenly distributed sampling locations.
The classification rule is the same as for the one-sample Kolmogorov–Smirnov test

where the modulation hypothesis with the smallest test statistics is assigned as the
classification decision.

55Distribution Test-based Classifier



4.2.4 Phase Difference Classifier

So far we have only used the signal in-phase and quadrature segments for the
implementation of distribution test. However, there is an interesting signal feature
that could be incorporated in the distribution test for exploiting the distinction of mod-
ulation signal in channels with phase or frequency offset. As discussed in Chapter 2,
a fading channel, especially one with frequency offset, introduces severe distortion in
the received signal in the form of a progressive rotational shift in its constellations. By
measuring the phase difference between the adjacent signal samples, the phase
difference error is reduced to a small constant. Thus, it has much less impact on the
robustness of the modulation classifier.

In the AWGN channel where additive noises have Gaussian distribution, the
theoretical CDF of the phase difference between adjacent signal sample vectors is
derived by Pawula, Rice and Roberts (1982) as given in equation (4.28),

FΔθ xð Þ= sin μΔθ−xð Þ
4π

ðπ=2

−π=2

e
α2 1−cos μΔθ −xð Þcos t½ �

σ2

1−cos μΔθ−xð Þcos tdt ð4:28Þ

where μΔθ is the mean of the phase difference. The corresponding CDF for an M-ary
PSK modulation can be found as shown in equation (4.29).

FΔθ xð Þ= 1
M

XM
m=1

sin
2 m−1ð Þ

M
π−x

� �

4π

ðπ=2

−π=2

e
α2 1−cos

2 m−1ð Þ
M π−xð Þcos t½ �
σ2

1−cos
2 m−1ð Þ

M
π−x

� �
cos t

dt ð4:29Þ

To implement the phase difference classifier, the only remaining task is to evaluate
the empirical phase distribution by using equation (4.30).

F̂IΔθ xð Þ= 1
N

XN
n= 1

I arg r n½ �ð Þ ≤ x� � ð4:30Þ

Using the one-sample KS test, the test statistics of the phase difference test can be
calculated by using equation (4.31).

Di = max
1 ≤ n ≤N

F̂Δθ r n½ �ð Þ−FΔθ r n½ �ð Þ�� �� ð4:31Þ

The classification decision making is the same as the KS test in which the hypothesis
with the smallest test statistics is selected as the classification decision.

M̂= argmin
Mi2�

Di ð4:32Þ
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4.3 Cramer–Von Mises Test Classifier

The Cramer–vonMises test (CvM test), also known as the Cramer–vonMises criterion,
is an alternative to the KS test for goodness of fit evaluation (Honda, Oka and Ata,
2012). It is named after Harald Cramer and Richard Elder von Mises, who first
introduced the method. Using the same one-sample test scenario as for the KS test,
the test statistics is defined as the integral of the squared difference between the
empirical CDF and the hypothesized CDF (Anderson, 1962), equation (4.33).

D=
ð∞

−∞

F1 xð Þ−F0 xð Þ½ �2dF0 xð Þ ð4:33Þ

Anderson generalized the two-sample variety of the Cramer–von Mises test that
evaluates the goodness of fit between two sets of observed data. The two-sample test
statistics is given by equation (4.34),

D=
MN
M+N

ð∞

−∞

F xð Þ−G xð Þ½ �2dHM+N xð Þ ð4:34Þ

where HM +N(x) is the empirical CDF of the combination of two sets of samples
[equation (4.35)].

M+Nð ÞHM+N =MF xð Þ+NG xð Þ ð4:35Þ

In practice the test statistic is evaluated in the form of summation instead
[equation (4.36)].

D=
MN

M+Nð Þ2
XM
m=1

F xnð Þ−G xnð Þ½ �2 +
XN
n=1

F ynð Þ−G ynð Þ½ �2
( )

ð4:36Þ

Like the KS test classifier, the modulation classification decision using the Cramer–
von Mises test is also assigned by the hypothesis with the smallest test statistics.

M̂= argmin
Mi2�

Di ð4:37Þ

4.4 Anderson–Darling Test Classifier

Both the KS test and Cramer–von Mises tests are relatively less sensitive when the
difference between distributions is at the tails of the distributions. This is because
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the cumulative distribution converges to zero and one at the tails of the distribution. To
overcome this problem, Anderson and Darling proposed a weighted version of the
Cramer–von Mises test called the Anderson–Darling (AD) test which gives more
weight to tails of the distribution (Anderson and Darling, 1954). The test statistics is
the Cramer–von Mises test with an added weight function w(x), equation (4.38).

D=
ð∞

−∞

F1 xð Þ−F0 xð Þ½ �2w xð ÞdF0 xð Þ ð4:38Þ

The weight function is defined by equation (4.39),

w xð Þ= 1
F xð Þ 1−F xð Þð Þ ð4:39Þ

which accentuates the distribution mismatch at the tails of the distribution when the
CDF is close to zero or one. The classification is achieved by comparing the test
statistics where the modulation candidate associated with the smallest test statistics
is assigned as the modulation classification decision. The decision making is the same
as in the KS test classifier and the Cramer–von Mises test classifier, equation (4.40).

M̂= argmin
Mi2�

Di ð4:40Þ

4.5 Optimized Distribution Sampling Test Classifier

After the Kolmogorov–Smirnov test was proposed for modulation classification,
Urriza et al. recognized the possibility to reduce its complexity further and potentially
improve its classification performance (Urriza et al., 2011). The modification is enabled
by establishing the sampling point prior to the distribution test using the theoretical
cumulative distribution functions of modulation hypotheses. Assuming that there
are two modulation candidates M(i) and M(j), the cumulative distribution functions
of both modulations in a channel with known channel state information Fi(x) and Fj(x)
are established prior to the distribution test. The sampling point lij in the test is found
where the maximum distance between Fi(x) and Fj(x) is observed [equation (4.41)].

lij = argmax
x

Fi xð Þ−Fj xð Þ�� �� ð4:41Þ

The motivation for the optimized sampling location is first for the complexity
reduction in calculating the empirical cumulative distribution function using the test
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data. Instead of calculatingN values for the empirical cumulative distribution function
using the optimized sampling location, the number is reduced to one. Additionally,
assuming that the channel model is accurate, the optimized sampling location is a
better utilization of the prior channel knowledge where the potential location for
the maximum distance between the empirical cumulative distribution function
and the theoretical cumulative distribution function is selected prior to the distribution
test. It is especially effective when the number of samples available for constructing
the empirical cumulative distribution function is limited and the ECDF may be
misrepresenting the underlying CDF of the transmitted signal. In such cases, the
maximum distance could occur where outliners are observed and the test results
may be inaccurate for the classification decision making.
The test statistic is collected differently without the complexity of reconstructing the

complete empirical cumulative distribution function andmaximizing its differencewith
the hypothesized cumulative distribution. Instead the test statistic is only calculated by
sampling the single location defined by equation (4.27), as shown in equation (4.42),

Di = F̂ lij
� �

−Fi lij
� ��� �� ð4:42Þ

where F̂0 lij
� �

is the empirical cumulative distribution probability at location lij,
equation (4.43).

F̂0 lij
� �

=
1
N

XN
n=1

I ℜ x n½ �ð Þ ≤ lij
� � ð4:43Þ

The classification decision making is the same as in the Kolmogorov–Smirnov test
classifier in the case of two-class classification.
Being an improvement of the Kolmogorov–Smirnov test classifier, the aforemen-

tioned modification was further improved and formalized by Zhu, Aslam and Nandi
(2014). The rest of this section will be dedicated to their proposed version of the
optimized distribution sampling test (ODST) classification.

4.5.1 Sampling Location Optimization

To further enhance the robustness of the Kolmogorov–Smirnov test-based classifier,
Zhu et al. (2014) suggested using multiple pre-optimized sampling locations instead
of a signal location suggested by Urriza et al. (2011). When using multiple sampling
locations, there are two factors that need to be considered: the number of
sampling locations and how they are found or optimized. Though usingmore sampling
locations always provides more information when the distribution test is con-
ducted, some locations may contribute much more than others. For example, two
adjacent sampling locations would provide similar information of the ECDF/CDF,
while having just one of them would be enough.
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After analysis of the signal distribution and investigation of these distributions in
various channel conditions, we have concluded that the local maximum of the
difference between two CDFs is a good option. Here we define Lij as a set of sampling

locations with K individual sampling locations lij1, l
ij
2,…, lijK. Following the rule for

sampling location optimization, the sample locations should enable the distance
between the CDFs Fi(x) and Fj(x) of modulation M(i) and M( j) to be a local
maximum. A similar idea has been proposed by Wang and Chan (2012). The rule
could then easily be converted to give the gradient of the function Fi(x) – Fj(x), which
should be zero at the locations defined by L [equation (4.44)].

d
dx

Fi Lij
� �

−Fj Lij
� �� �

= 0 ð4:44Þ

For the convenience of optimization of the sampling location using the theoretical
distribution function, the CDFs in equation (4.28) can be replaced with their corre-
sponding PDFs, resulting in the following updated rule given by equation (4.45).

Fi Lij
� �

= Fj Lij
� � ð4:45Þ

It is worth noting that the sampling location is only optimized for the discrimi-
nation between modulation M(i) and M(j). If other modulation sets are con-
sidered, a different set of sampling locations should be optimized for the new
modulation set.

4.5.2 Distribution Sampling

Having found the optimized sampling locations, the distributions are sampled to
collect the necessary test statistics. Following the scenario in the previous section,
we assume there is a piece of signal r[1], r[2],…, r[N] withN samples. The test statistics

tij1, t
ij
2,…, tijK are sampled empirical cumulative distribution functions at the optimized

sampling locations [equation (4.46)].

tijk =
1
2N

XN
n=1

I ℜ r n½ �ð Þ< lijk
� 	

+
XN
n=1

I ℑ r n½ �ð Þ< lijk
� 	" #

ð4:46Þ

It is worth noting that these sampled values have also been suggested as distribution
features by Zhu, Nandi and Aslam (2013).

Before classification decision making can proceed, the reference CDF for each
hypothesized models has to be calculated as well. Among the two candidate modula-
tions, the reference CDF values need to be sampled separately from each of them. For
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modulation M(i), the reference CDF values Tij
1 ,T

ij
2 ,…,Tij

K are calculated using their
theoretical CDF and the optimized sampling locations [equation (4.47)].

Tij
k = Fi lijk

� 	
ð4:47Þ

The reference CDF values for modulationM(j) are denoted with a slight difference.
The order of i and j in the superscript is inverted so that the letter in front could
represent where the reference value is gathered from. The actual computation follows
the same method with only the CDF values being replaced by the those from
modulation M(j) [equation (4.48)].

Tji
k = Fj lijk

� 	
ð4:48Þ

4.5.3 Classification Decision Metrics

Having calculated the sampled CDF values and the reference CDF values from
modulation hypotheses, the next step would be to evaluate the GoF between observed
signals and hypothesized models. Unlike the KS test and other aforementioned
distribution test classifiers, there are multiple sampling locations in this method.
Therefore, the test statistics need be formulated as a combination of the sampled
and reference CDF values. Before we present the test statistics formula, we first
introduce the difference statistics that marks the difference between sampled values
and reference values at individual sampling locations. The different statistics for
hypothesizedmodulationM(i) at the kth sampling location is defined as the difference
between the sampled CDF at kth sampling location and the reference CDF value of
modulation M(i) at the same sampling location [equation (4.49)].

Δtijk = tijk −T
ij
k

��� ��� ð4:49Þ

The corresponding expression for the alternative hypothesis of modulation M(j) is
given by equation (4.50).

Δtjik = tijk −T
ji
k

��� ��� ð4:50Þ

The above calculation results in k difference statistics for each modulation
hypothesis. To combine these difference statistics into a signal test statistics, we have
proposed two approaches. First, the test statistics Dij for hypothesized modulation
M(i) is formulated as a non-negative uniform linear combination of the difference
statistics, as shown in equation (4.51).
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Dij =
XK
k =1

Δtijk ð4:51Þ

The corresponding expression for the alternative hypothesized modulation M(j) is
given by equation (4.52).

Dji =
XK
k =1

Δtjik ð4:52Þ

Second, the test statistics Dij for hypothesized modulation M(i) is formulated as a
non-negative weighted linear combination of the difference statistics [equation (4.53)],

Dij =
XK
k =1

wij
kΔt

ij
k ð4:53Þ

where wij
k is the weight for the difference statistics Δtijk . The corresponding expression

for the alternative hypothesized modulation M(j) is given by equation (4.54).

Dji =
XK
k =1

wij
kΔt

ji
k ð4:54Þ

There are different ways of optimizing the weights. Among which, Zhu et al. used
a genetic algorithm to train the weights with training signals (Zhu, Aslam and
Nandi, 2014).

4.5.4 Modulation Classification Decision Making

The decision making in the optimized distribution sample test is different from that in
the other distribution test-based classifiers. As the distribution sampling location is
optimized between two modulation candidates, it could be easily implemented for
a two-class classification problem. The decision is given by the modulation hypothesis
which returns the smallest tests statistics [equations (4.55)].

M̂=
M ið Þ, ifDij ≤Dji

M jð Þ, ifDij >Dji

(
ð4:55Þ

If multi-class classification is required, the distribution test needs to be performed
for every pair of two candidate modulations. The modulation candidate assigned
the most time among all the paired distribution tests will be returned as the final
classification decision.
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4.6 Conclusion

In this chapter we have listed some of the distribution test-based classifiers. The
distribution test-based classifiers are selected mostly for their computational complex-
ity and suboptimal performance. Given that the channel parameters are known to the
classifier, a one-sample KS test classifier or a two-sample KS test classifier achieves
modulation classification by comparing the empirical distribution of the observed
signal and the theoretical distribution of each modulation hypothesis. The Cramer–
von Mises test classifier provides a better evaluation of the mismatch between the
empirical distribution and hypothesis distribution, while the Anderson–Darling
test classifier suggests a weighted evaluation of the goodness of it over the entirety
of the signal distribution. The optimized distribution sample test is presented as an
improved version of the KS test classifier with enhanced classification accuracy and
robustness.
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5
Modulation Classification
Features

5.1 Introduction

In Chapters 3 and 4, two decision theoretic-based approaches to AMC are presented.
For certainmodulations such asAMand FM, it is obvious that signal distribution is not
the only way to differentiate the two modulations. By analyzing the nature of the
modulation technique, one can easily identify the key features of a signal modulated
using a specific modulation scheme. While decision theoretic-based classifiers provide
excellent classification accuracy, their high computational complexity motivates the
development of feature-based classifiers which yield sub-optimal performance for
much lower computational requirements.
In this chapter we list some of the well-recognized features designed for modulation

classification. While the book focuses on digital modulations, features historically
used for the classification of analogue modulations will also be included in this
chapter. In the remainder of the chapter we first investigate the spectral-based features
which exploits the spectral properties of different signal components. The wavelet-
based features are given as another approach to feature-based modulation classifi-
cation using the signal waveform. The high-order statistic features are examined as
optioned to classifier digital modulations of different type and orders. The cyclic
features based on cyclostationary analysis are presented at the end. More advanced
feature-based (FB) classifiers which could utilize the features listed in this chapter
are presented in Chapter 6.
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5.2 Signal Spectral-based Features

Nandi and Azzouz proposed some key signal spectral-based features in the 1990s for
the classification of basic analogue and digital modulations (Azzouz and Nandi, 1995,
1996b; Nandi and Azzouz, 1995). These key features generalized and advanced the
works of Fabrizi, Lopes and Lockhart (1986), Chan andGadbois (1989), and Jovanovic,
Doroslovacki and Dragosevic (1990), which suggested different feature-extraction
methods. The features exploit the unique spectral characters of different signal
modulations in three key signal aspects, namely the amplitude, phase and frequency.
Since different signal modulations exhibit different properties in their amplitude,
phase and frequency, a complete pool of modulation candidates is broken down to
sets and subsets which can be discriminated with the most effective features.
A decision tree, consisting of nodes of sequential tests dedicated by different features,
is often employed to give a clear guideline for the classification procedure.

In the following subsection, we first list these key features. Second, the features are
analyzed for their capability in distinguishing different modulation sets. The section is
concluded with some proposed classification decision trees suggested by Nandi and
Azzouz for the classification of analogue and digital modulation.

5.2.1 Signal Spectral-based Features

The first feature, γmax, is the maximum value of the spectral power density of the
normalized and centred instantaneous amplitude of the received signal (Azzouz
and Nandi, 1996a), equation (5.1),

γmax = max DFT Acnð Þj j2=N ð5:1Þ

where DFT(-) is the discrete Fourier transform (DFT), Acn is the normalized and
centred instantaneous amplitude of the received signal r, and N is the total number
signal samples. The normalization is achieved by adopting equation (5.2),

Acn n½ �=An n½ �−1, where An n½ �= A n½ �
μA

ð5:2Þ

where μA is the mean of the instantaneous amplitude of one signal segment,
equation (5.3).

μA =
1
N

XN
n=1

a n½ � ð5:3Þ

The normalization of the signal amplitude is designed to compensate the unknown
channel attenuation.
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The second feature, σap, is the standard deviation of the absolute value of the
non-linear component of the instantaneous phase, equation (5.4).

σap =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nc

X
An n½ �>At

ϕ2
NL n½ �

0
@

1
A−

1
Nc

X
An n½ �>At

ϕNL n½ ��� ��
0
@

1
A
2

vuuut ð5:4Þ

where Nc is the number of samples that meet the condition:An[n] >At. The variable At

is a threshold value which filters out the low-amplitude signal samples because of
their high sensitivity to noise. Term ϕNL[n] denotes the non-linear component of the
instantaneous phase of the nth signal sample.
The third feature, σdp, is the standard deviation of the non-linear component of the

direct instantaneous phase, given by equation (5.5),

σdp =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nc

X
An n½ �>At

ϕ2
NL n½ �

0
@

1
A−

1
Nc

X
An n½ �>At

ϕNL n½ �
0
@

1
A
2

vuuut ð5:5Þ

where all parameters remain the same as in the expression for σap. However, it is
noticeable that the absolute operation on the non-linear component of the instantane-
ous phase is removed.
The fourth feature, P, is an evaluation of the spectrum symmetry around the carrier

frequency, evaluated by equation (5.6),

P=
PL−PU

PL +PU
ð5:6Þ

where equations (5.7) and (5.8) hold, such that when

PL =
Xfcn
n=1

Xc n½ ��� ��2 ð5:7Þ

PU =
Xfcn
n=1

Xc n+ fcn + 1½ ��� ��2 ð5:8Þ

Xc[n] is the Fourier transform of the signal xc[n], (fcn + 1) is the sample number corre-
sponding to the carrier frequency fc, and fs is the sampling rate, the equation (5.9) holds.

fcn =
fcN
fs

−1 ð5:9Þ
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The fifth feature, σaa, is the standard deviation of the absolute value of the
normalized and centred instantaneous amplitude of the signal samples, given by
equation (5.10).

σaa =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
n=1

A2
cn n½ �

 !
−

1
N

XN
n=1

Acn n½ ��� ��
 !2

vuut ð5:10Þ

The sixth feature, σaf, is the standard deviation of the absolute value of the normal-
ized and centred instantaneous frequency, given by equation (5.11),

σaf =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nc

X
An n½ �>At

f 2N n½ �
0
@

1
A−

1
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X
An n½ �>At

fN n½ ��� ��
0
@

1
A

2
vuuut ð5:11Þ

where the centred instantaneous frequency fm is normalized by the sampling
frequency fs such that equation (5.12) applies.

fN n½ �= fm n½ �=fs ð5:12Þ

The instantaneous frequency is centred using the frequency mean μf as shown in
equations (5.13) and (5.14).

fm n½ �= f n½ �−μf ð5:13Þ

μf =
1
N

XN
n=1

f n½ � ð5:14Þ

The seventh feature, σa, is the standard deviation of the normalized and centred
instantaneous amplitude [equation (5.15)].

σa =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
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X
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a2cn n½ �
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1
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1
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An n½ �>At

acn n½ �
0
@

1
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2
vuuut ð5:15Þ

The eighth feature, μa42, is the kurtosis of the normalized and centred instantaneous
amplitude, given by equation (5.16).

μa42 =
E A4

cn n½ �� �
E A2

cn n½ �� �� �2 ð5:16Þ
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The ninth feature, μ f
42, is the kurtosis of the normalized and centred instantaneous

amplitude [equation (5.17)].

μ f
42 =

E f 4N n½ �� �
E f 2N n½ �� �� �2 ð5:17Þ

5.2.2 Spectral-based Features Specialities

Having defined all of Nandi and Azzouz’s signal spectral-based features, next we
will analyze every key feature and suggest their usage in modulation classification.
Building on Nandi and Azzouz’s work, we have added PAM and QAM modulation
to enrich the analysis of the features in a more up-to-date context.
The quantity γmax measures the variance in signal instantaneous amplitude. For

modulations, where information is conveyed in the signal amplitude, the value of γmax

should be non-zero. One the other hand, for modulations with constant amplitude, the
value of γmax should be zero. Thus, we have two sets of modulations which can be clas-
sified by γmax and a corresponding threshold tγmax

. The first set of modulations includes
AM single-sideband modulation (SSB), M-ASK, M-PAM, M-PSK and M-QAM. The
second set of modulations includes FM and M-FSK.
Quantity σap measures the variance in the absolute instantaneous phase. The first

set of modulations includes FM, SSB, M-FSK, M-PSK (M ≥ 2), M-QAM. The second
set of modulations includes AM, M-ASK, BPSK. BPSK does not have information in
its absolute instantaneous phase (centred), because there are only two states for the
instantaneous phase. When the instantaneous phase is centred at zero, their absolute
values are the same.
Quantity σdp measures the variance in the absolute instantaneous phase. The first

set of modulations includes FM, SSB, M-FSK, M-PSK, M-QAM. The second set of
modulations includes AM, M-ASK. Being similar to σap, σdp provides the ability to
distinguish BPSK from other modulations without phase information.
Quantity P provides the criterion to classify different amplitude-based modulations

with different properties in the frequency domain. One set of the modulations has a
symmetrical spectrum arrangement about the carrier frequency. They include AM
and double-sideband modulation (DSB). The other, obviously with asymmetrical
spectrum density about the carrier frequency, includes vestigial sideband (VSB),
lower sidebandmodulation (LSB) and upper sidebandmodulation (USB).
Quantity σaa measures the amount of information in the signal’s instantaneous

amplitude. This feature is similar to γmax. However, it is gifted with the extra ability
to differentiate 2-ASK from other M-ASK modulations. This is because the absolute
values of 2-ASK signal’s instantaneous amplitude become identical when they are
centred at zero.
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Quantity σaf is primarily designed for the classification of 2-FSK and 4-FSK modula-
tions. The theoory that it can enable discrimination is same as that for σap and σaa,
where the frequency information of the binary-state modulation is removed by taking
the absolute value of the centred instantaneous frequency.

Quantity μa42 measures the compactness of the instantaneous amplitude distribution.
AM modulation, being an analogue modulation with varying instantaneous ampli-
tude, has a less compact distribution compared with digital modulations such as
M-ASK modulations.

Quantity μ
f
42 measures the compactness of the instantaneous frequency distribution.

Like AM modulation, FM has less compact frequency distribution compared with
digital modulations such as M-FSK, because of its analogue instantaneous frequency.

5.2.3 Spectral-based Features Decision Making

Azzouz and Nandi (1995, 1996a, 1996b) designed decision trees for the classification
of analogue and digital modulations. The trees consist of an input node where all the
features are extracted and imported. The input node is followed by a sequence of
conditional or decision steps facilitated with selected individual features. In this
section, we have reorganized these decision trees and created a decision tree in
Figure 5.1 for the classification of the aforementioned modulations.

The diamond block in Figure 5.1 represents a conditional sub-stage classification,
with t(-) being the suitable threshold for different features.

5.2.4 Decision Threshold Optimization

To establish the decision threshold for each spectral-based feature, pilot samples could
be used to achieve that.AssumewehaveL signal realizations fromgroupAandL signal
realizations from group B, where the two groups of modulations can be classified
using feature F. The optimal threshold can be calculated as shown in equation (5.18),

t Fð Þ= σ FAð Þμ FBð Þ+ σ FBð Þμ FAð Þ
σ FAð Þ+ σ FBð Þ ð5:18Þ

where σ FAð Þ and σ FAð Þ are the standard deviations of the feature values calculated
using signals fromgroupAandgroupB, respectively, using equations (5.19) and (5.20),

σ FAð Þ= 1
L

XL
l=1

FA lð Þ−μ FAð Þð Þ2
" #1

2

ð5:19Þ

σ FBð Þ= 1
L

XL
l=1

FB lð Þ−μ FBð Þð Þ2
" #1

2

ð5:20Þ
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and μ FAð Þ and μ FBð Þ are the means of the features values from each group, equations
(5.21) and (5.22).

μ FAð Þ= 1
L

XL
l=1

FA lð Þ ð5:21Þ

μ FBð Þ= 1
L

XL
l=1

FB lð Þ ð5:22Þ

5.3 Wavelet Transform-based Features

The continuous wavelet transform of received signal r is defined as the integral
of r(t) times the conjugate transpose of the wavelet function ψa,τ(t) over time,
equation (5.23).

Modulation 

signals

σdp> t(σdp)

σaf> t(σaf)
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FM, M-FSK, DSB, 

SSB, MPSK, M-QAM

AM, M-ASK, 

VSB

P > t(P)

FM, M-FSK, DSB,
M-PSK, M-QAM

σap> t(σap)

σa > t(σa)

FM, M-FSK, M-
PSK, M-QAM

γmax>t(γmax) FM, M-FSK

M-PSK,
M-QAM

FM

M-FSK

2-FSK M-FSK

( )P t P>AM, M-ASK

VSB

M-ASK

M-ASK

AM

2-ASK

LSB, USB

0P >

LSB

USB

DSB,  2-PSK

σa> t(σa)

2-PSK

DSB

M-QAM

M-PSK

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

μ42
a> t(μ42

a)

μ42
f > t(μ42

f )

1

1

1

Figure 5.1 Decision tree for modulations classification using spectral-based features.
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CWT a,τð Þ=
ð∞
−∞

r tð Þψ∗
a,τ tð Þdt ð5:23Þ

Among different mother wavelet functions, namely Morlet, Haar and Shannon,
most researchers selected the Haar wavelet function because of its simple form and
computational convenience. The Haar wavelet is given by equation (5.24),

ψ tð Þ=
1, if 0 ≤ t<

T
2

−1, if
T
2
≤ t<T

0, otherwise

8>>>><
>>>>:

ð5:24Þ

which can be scaled and translated to create a series of babywavelets [equation (5.25)].

ψ a,τ tð Þ= 1ffiffiffi
a

p ψ
t−τ
a

� �
ð5:25Þ

To enable the analysis of the continuous wavelet transform (CWT) for different
modulation signals, we first established individual expressions of the transmitted
signal from each modulation. For M-ASK the representation of its transmitted signal
is given by equation (5.26),

sASK tð Þ=
XN
n=1

Anj jgTs t−nTsð Þ ð5:26Þ

where |An|2 {|A1|, |A2|… |AM|} is the nth symbol being transmitted, with
M being the total number of states, and gTs is the pulse-shaping function of duration
Ts. The expression for the M-FSK is given by equation (5.27),

sFSK tð Þ=
ffiffiffi
S

p XN
n=1

ej ωnt+ϕ0ð ÞgTs t−nTsð Þ ð5:27Þ

where S is average signal power, ωn2 {ω1,ω2…ωM} is the signal frequency at the
nth symbol, and ϕ0 is the initial carrier phase. For PSK, the expression is given by
equation (5.28),

sPSK tð Þ=
ffiffiffi
S

p XN
n=1

ejϕngTs t−nTsð Þ ð5:28Þ

where ϕn 2 {ϕ1, ϕ2… ϕM} is the phase of the nth symbol. Lastly, the expression for the
QAM modulation signal is defined by equation (5.29),

sQAM tð Þ=
XN
n=1

AngTs t−nTsð Þ ð5:29Þ
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where An2 {A1,A2…AM} is the complex envelope of the nth symbol being
transmitted.
The derivation for ASK modulations in a noise-free environment is produced by

Hassan et al. (2010) in the form of equation (5.30).

CWTASK a,τð Þj j= 4 Anj j
ωc

ffiffiffi
a

p sin2 ωc
aTs

4

� 	
ð5:30Þ

The corresponding CWT for FSK, PSK and QAM is derived by Hong and Ho (2000),
as equations (5.31)–(5.33), respectively.

CWTFSK a,τð Þj j= 4
ffiffiffi
S

p

ωc +ωnð Þ ffiffiffi
a

p sin2 ωc +ωnð ÞaTs

4

� 	
ð5:31Þ

CWTPSK a,τð Þj j= 4
ffiffiffi
S

p

ωc
ffiffiffi
a

p sin2 ωc
aTs

4

� 	
ð5:32Þ

CWTQAM a,τð Þ�� ��= 4 Anj j
ωc

ffiffiffi
a

p sin2 ωc
aTs

4

� 	
ð5:33Þ

It is obvious that the CWT of PSK is a constant, while others modulations all
have multi-step functions as their CWT. Thus PSK can be distinguished from other
modulations using the CWT. To classify FSK modulation, we examine the CWT of
these modulations when they are normalized by amplitude [equation (5.34)].

�s tð Þ= s tð Þ
s tð Þj j ð5:34Þ

The updated expressions for the transmitted symbols are given below in equations
(5.35)–(5.38).

sASK tð Þ=
XN
n=1

sign Anj jð ÞgTs t−nTsð Þ ð5:35Þ

sFSK tð Þ=
XN
n=1

ej ωnt+ϕ0ð ÞgTs t−nTsð Þ ð5:36Þ

sPSK tð Þ=
XN
n= 1

ejϕngTs t−nTsð Þ ð5:37Þ

sQAM tð Þ=
XN
n=1

ejang Anð ÞgTs t−nTsð Þ ð5:38Þ
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It is not difficult to see that, for normalized signals, the variance in CWT is only seen
for FSK modulations. Therefore, the CWT for normalized signals can be used as a
feature for the classification of FSK modulations. Having achieved the classification
of PSK and FSK, the only task left is to differentiate between ASK and QAM modula-
tions. As there is no obvious distinction between the CWTs of these two modulation
types, Hassan et al. (2010) suggested using the high-order moments and cumulants to
exploit the small differences between these two modulation types. In addition, the
application of the high-order moments and cumulants also enables the intra-class
classification when modulation of a different order is involved. Because there is a sep-
arate section dedicated to high-order statistical features in this chapter, the high-order
moments and cumulants will be presented in the corresponding section.

5.4 High-order Statistics-based Features

In this section, we focus on the high-order statistics (HoS)-based features, more
specifically moment-based and cumulant-based features.

5.4.1 High-order Moment-based Features

Hipp was the first to adopt the third-order moment of the demodulated signal
amplitude as a modulation-classification feature (Hipp, 1986). Since we consider the
demodulated signal as a luxury for any modulation classifier, this moment-based
feature is not investigated in this book.

The usage of moments in modulation classification was later extended by Soliman
and Hsue, who investigated the high-order moments of the signal phase for
the classification of M-PSK modulations (Soliman and Hsue, 1992). They derived the
theoretical kth moment of signal phase in Gaussian channel which leads to the
conclusion that the moments are a monotonically increasing function with respect to
the order of theM-PSKmodulation. Thus, high-orderM-PSKmodulations have higher
moment values, which provide the condition for the classification of M-PSK modula-
tions of different orders.Meanwhile, Soliman andHsue alsomade the observation that
the difference in moment value between higher-order modulations is not distinct for
lower-order moments. Therefore, they concluded that the effective classification of
M-PSKmodulationwith higher order requires themoments of higher order. The calcu-
lationof the kth ordermoment of the signal phase is defined as shown in equation (5.39),

μk rð Þ= 1
N

XN
n=1

ϕk nð Þ ð5:39Þ

where ϕ(n) is the phase of the nth signal sample. Azzouz and Nandi (1996a) proposed
the kurtosis of the normalized-centred instantaneous amplitude μa42 and the kurtosis of
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the normalized-centred instantaneous frequency μ
f
42 for the classification of M-ASK

andM-FSKmodulations. The expressions for these two features are given in equations
(5.16) and (5.17). Hero and Hadinejad-Mahram generalized the moment-based fea-
tures to include the high-order moment of signal phase and frequency magnitude
(Hero and Hadinejad-Mahram, 1998). Spooner employed high-order cyclic moments
as features (along with cyclic moments) for the classification of modulation with iden-
tical cyclic autocorrelation functions (Spooner, 1996).
In this book we use the following expression to calculated different kth moment of

the complex-valued signal r = r[1], r[2],…, r[N] [equation (5.40)],

μxy rð Þ= 1
N

XN
n=1

rx n½ ��r∗y n½ � ð5:40Þ

where x + y = k and r∗[n] is the complex conjugate of r[n].

5.4.2 High-order Cumulant-based Features

Swami and Sadler (2000) suggested the fourth-order cumulant of the complex-valued
signal as features for the classification of M-PAM, M-PSK and M-QAM modulations.
For signal r[n] the second-order moments can be defined in either of two different
ways [equations (5.41) and (5.42)].

C20 =E r2 n½ �� � ð5:41Þ

C21 =E r n½ �j j2
n o

ð5:42Þ

Likewise, the fourth-order moments and cumulants can be expressed in three
different ways using different placements of conjugation [equations (5.43)–(5.45)],

C40 = cum r n½ �,r n½ �,r n½ �,r n½ �ð Þ ð5:43Þ

C41 = cum r n½ �,r n½ �,r n½ �,r∗ n½ �ð Þ ð5:44Þ

C42 = cum r n½ �,r n½ �,r∗ n½ �,r∗ n½ �ð Þ ð5:45Þ

where cum(�) is joint cumulant function defined by equation (5.46).

cum w,x,y,zð Þ=E wxyzð Þ−E wxð ÞE yzð Þ−E wyð ÞE xzð Þ−E wzð ÞE xyð Þ ð5:46Þ

Meanwhile, the estimation of the second and fourth cumulants is achieved by using
the following processes as shown in equations (5.47)–(5.51).
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Ĉ20 =
1
N

XN
n=1

r2 n½ � ð5:47Þ

Ĉ21 =
1
N

XN
n= 1

r n½ ��� ��2 ð5:48Þ

Ĉ40 =
1
N

XN
n=1

r4 n½ �−3Ĉ20 ð5:49Þ

Ĉ41 =
1
N

XN
n= 1

r3 n½ �r∗ n½ �−3Ĉ20Ĉ21 ð5:50Þ

Ĉ42 =
1
N

XN
n=1

r n½ ��� ��4− Ĉ20

��� ���2−2Ĉ2
21 ð5:51Þ

Cumulant values for some noise-free modulation signals are listed in Table 5.1. It is
clear from Table 5.1 that different modulations have different cumulant values
between each other. Thus the classification of these modulations can be realized.
The classification decision making could be achieved with a decision where modula-
tions are divided into subgroups for each cumulant. The decision threshold can be
defined using the process suggested in Section 5.2.4.

5.5 Cyclostationary Analysis-based Features

Gardner pioneered the area of signal cyclostationary analysis, which exploits the
periodic properties of a cyclostationary process (Gardner, 1994). Gardner and Spooner
first implemented cyclostationary analysis for modulation classification problems
(Gardner and Spooner, 1988), exploiting the distinct differences between the cyclic

Table 5.1 Decision tree for modulations classification using spectral-based features

C20 C21 C40 C41 C42

2-PAM 1.0000 1.0000 −2.0000 −2.0000 −2.0000
4-PAM 1.0000 1.0000 −1.3600 −1.3600 −1.3600
8-PAM 1.0000 1.0000 −1.2381 −1.2381 −1.2381
BPSK 1.0000 1.0000 −2.0000 −2.0000 −2.0000
QPSK 0.0000 1.0000 1.0000 0.0000 −1.0000
8-PSK 0.0000 1.0000 0.0000 0.0000 −1.0000
4-QAM 0.0000 1.0000 1.0000 0.0000 −1.0000
16-QAM 0.0000 1.0000 −0.6800 0.0000 −0.6800
64-QAM 0.0000 1.0000 −0.6191 0.0000 −0.6191
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spectrum patterns of different modulations. The implementation is well summarized
in Ramkumar’s tutorial on cyclic features detection (Ramkumar, 2009).
Give a sinusoidal signal x(t), it exhibits cyclostationary properties or contains second-

order periodicity if the cyclic autocorrelation shown in equation (5.52) exists with

Rα
x τð Þ= lim

T!∞

1
T

ðT=2

−T=2

x t+
τ

2


 �
x t−

τ

2


 �
e− i2παt ð5:52Þ

frequency α 6¼ 0 and is not identically zero as a function of τ. The Fourier transform of
the cyclic autocorrelation is given by equation (5.53),

Sα
x fð Þ≜

ð∞

−∞

Rα
x τð Þe− i2πftdτ ð5:53Þ

known as the cyclic spectrum. The cyclic spectrum can be interpreted as a spectral
correlation function (SCF) as defined in equation (5.54),

Sα
x fð Þ≜ lim

T!∞
lim

Δt!∞

1
TΔt

ðΔt=2

−Δt=2

XT t, f + α=2ð ÞX∗
T t, f −α=2ð Þdt ð5:54Þ

where equation (5.55) holds.

XT t,vð Þ≜
ðt+T=2

t−T=2

x uð Þe− j2πvudu ð5:55Þ

Gardner demonstrated that the theoretical SCF plane of different modulation sig-
nals over a domain of α and f has distinctive differences and can be used for the clas-
sification of signal modulations (Gardner, 1994). The correlation coefficient, known as
spectral coherence (SC), of the SCF is defined as shown in equation (5.56).

Cα
x fð Þ≜ Sα

x fð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sα
x f + α=2ð ÞSα

x f −α=2ð Þp ð5:56Þ

To reduce the dimension of the cyclic spectrum, it is possible to construct a cyclic
domain profile (CDP) by finding the maximum of SC over frequency f [equation
(5.57)] (Kim et al., 2007).

I αð Þ= max
f

Cα
x fð Þ� 
 ð5:57Þ

The CDP preserves the distinction of cyclic properties between different modulation
signals. It can be used for modulation classification.

77Modulation Classification Features



While the SCF and CDP can be used for the classification of some lower-order
modulations, they are not suitable for higher-order modulations. For this reason,
Spooner proposed the use of cyclic cumulants for the classification of high-order
modulations (Spooner, 1996). The cyclic cumulants of higher order were suggested
by Dobre, Bar-Ness and Su (2003).

The nth moments of x(t) are defined as shown in equation (5.58),

Rx t,τ;n,mð Þ≜E
Yn
j=1

x ∗ð Þj t+ τj
� 
 ð5:58Þ

where n is the order,τ = [τ1… τn] is the delay vector, (∗)j is an optional conjugate, andm
is the number of conjugate factors. The nth-order cumulants are defined as shown in
equation (5.59),

Cx t,τ;n,mð Þ≜
X
Pn

k pð Þ
Yp
j=1

Rx t,τvj ;nj,mj


 �2
4

3
5 ð5:59Þ

where Pn is the set of partitions of {1,2,…,n}, nj is the size of the set vj,mj is the number of
conjugated terms in the term x ∗ð Þk t+ τkð Þ� �

k2vj , and k(p) is the number (−1)p − 1(p − 1) !.

The cumulant function is also representable by a generalized Fourier series as given in
equation (5.60),

Cx t,τ;n,mð Þ=
X
β

Cβ
x τ;n,mð Þei2πβt ð5:60Þ

where β is called a pure nth-order cycle frequency, and Cβ
x τ;n,mð Þ is the nth-order

temporal cumulant function or cyclic cumulant.
For digital modulations such as QAM modulations, the cyclic cumulants can be

defined as shown in equation (5.61),

Cβ
s τn;k,mð Þ= Ca k,mð Þ

T0

ð∞
−∞

Yk
i=1

p ∗ð Þi t+ τið Þe− j2πβtdt× ej2πβt0ej k−2mð Þϕ0
Yk
i=1

ej2πfcτn
� � ∗ð Þn ð5:61Þ

where Ca(k, m) is the kth-order cumulant with m conjugates. The final feature used for
modulation classification is the maximum value of the function Cβ

x τ;n,mð Þ, given a set
of different n, m, and β [equation (5.62)].

Fs = max Cβ
s τn;n,mð Þ�� ��� �

n,m,βf g ð5:62Þ
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5.6 Conclusion

In this chapter, we list a collection of signal features that can be used for modulation
classifiers. The spectral features are well established and suitable for the classification
of both analogue and digital modulations. The high-order statistics features including
moments, cumulants and cyclic cumulants focus on the classifier of high-order digital
modulations. The actual classification process of a feature-based classifier requires the
construction of a decision treewhere themodulationsmust be divided into several tiers
of subgroups until each modulation could be differentiated from the rest. The easiest
decision-making process for a feature-based classifier requires the threshold to be set
at each decision-making point on the decision tree. The threshold could be calculated
using a theoretical noise-free signal or optimized with given channel conditions.
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6
Machine Learning for
Modulation Classification

6.1 Introduction

In Chapter 5 we list a collection of signal features for modulation classification. Some
of the classification decision making is based on multi-stage decision trees where each
stage utilizes a different feature. However, the need for designing the decision tree and
optimization of multiple decision thresholds is not most convenient.
To overcome these problems, various machine learning techniques have been

employed to accomplish two major tasks in feature-based modulation classification.
First, the machine learning techniques can provide a classification decision making
process that is much easier to implement. Second, the machine learning techniques
can reduce the dimension of the feature set. This is achieved by feature selection
and feature generation, which enables the consideration of a more versatile feature
set while maintaining the computational efficiency of the classifier.
In this chapter we first introduce two machine learning-based classifiers, namely

k-nearest neighbour classifier and support vector machine classifier, for modulation
classification in combination with the features listed in Chapter 5. Next, the issue of
feature space dimension reduction is explored through different algorithms including
linear regression, artificial neural network, genetic algorithm and genetic programming.

6.2 K-Nearest Neighbour Classifier

The k-nearest neighbour (KNN) classifier is a non-parametric algorithmwhich assigns
the class to a testing signal by analyzing the number k of nearest reference signals in the
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feature space. It has been used to solve many different classification problems (Guo
and Nandi, 2006; Guo, Zhang and Nandi, 2007; Espejo, Ventura and Herrera, 2010).
There are three main steps in a KNN classifier.

6.2.1 Reference Feature Space

To enable KNN classification, a reference feature space must be established first. The
feature space should includeM reference values of each feature from each modulation
class. The selection of M depends on the problem and is normally optimized heuris-
tically. The motivation for a larger value for M is that the reference feature space
provides a more accurate representation of the likely distribution of the testing
signal features. On the other hand, a larger M-value is likely to impose a higher com-
putational complexity in the later steps of the KNN classifier.

For modulation classification, Zhu et al. suggested the use of training data from the
same signal source for the generation of reference feature values (Zhu, Aslam and
Nandi, 2010). The advantage of this approach is that the training signal shares the
same source as the testing signal. Thus the reference feature space is an accurate rep-
resentation of the feature distribution of the testing signal. Meanwhile, the construc-
tion of the reference feature space is really easy as the only step required is to calculate
the feature values for the training signals. However, because of the random nature
of the training signal, one cannot guarantee the accuracy of the feature space to be
high enough.

Synthesized reference values are more controlled over the construction of the refer-
ence feature space. Nevertheless, there needs to be a hypothesized feature distribution
which is often not reliable.

6.2.2 Distance Definition

Since the classifier requires the evaluation of distances between the testing signal and
the reference signals, a distance metric must be defined before a search of neighbour-
ing reference signals can be achieved. There are many different metric systems that
can be used for distance measurement in a KNN classifier. Euclidean distance is
one of the most common distance metrics for KNN classifiers. Given a feature set
F= F1,F2…FLf gwith L number of features, the Euclidean distance between the feature
sets of signals A and B is calculated as given in equation (6.1).

D F Að Þ,F Bð Þð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL
l=1

Fl Að Þ−Fl Bð Þ½ �2
vuut ð6:1Þ

Having established the distancemeasurement, the classification decision is achieved
by finding the k nearest number of reference samples and analyzing the demography
with these k number of samples.
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6.2.3 K-Nearest Neighbour Decision

When the distances between the test signal and all reference signals are evaluated,
a number of k reference signals are recorded as the k nearest neighbours. The
selection of the value of k should follow these rules.

1. The value should ideally be a prime number, to avoid the case where the k neigh-
bours consist of equal numbers of reference signals from different classes.

2. The value should be less than the total number of reference signals froma signal class.
3. The value of k should be big enough to avoid false classification caused by outliers.

The actual optimization of the value k can be heuristic because it has been shown
that the classification does not vary much if the k value is in a reasonable range.
The end classification result is achieved by finding the majority of the k nearest neigh-
bours that share the same class. This class will be assigned to the testing signal as
the classification result. A pseudo code for the KNN classifier implementation is
given below.

The KNN is non-parametric and capable of multi-class classification. However
it suffers with an increasing number of features, which raises the dimension of the
feature space and the complexity of the distance calculation. Therefore, some sort of
dimension reduction is needed to make this method viable. Another disadvantage
of the KNN classifier is that the features contribution to the classification decisionmak-
ing is not weighted. Therefore, one feature with relatively sparse distribution between
different modulations may come to dominate the distance evaluation. The classifica-
tion of some modulations relying on other features may be affected.

Algorithm 6.1 A KNN classifier pseudo code

Input M reference signals from every candidate modulation M(i), i = 1, 2,…, I, each with a
set of extracted feature sets Fi mð Þ , an observed unknown signal with extracted features set F,
and a pre-defined k value.

Step 1: The distance between F and every reference feature set Fi mð Þ is calculated using
equation (6.1)

Step 2: The resulting distances D F,Fi mð Þ� �
are sorted in descending order

Step 3: The first k distances are selected
Step 4: The modulation label i for each distance D F,Fi mð Þ� �

is extracted
Step 5: The mode of the set extracted label set i0 is used to identify the modulation
Step 6: Modulation M(i0) is returned as the classification decision M̂

Output M̂
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6.3 Support Vector Machine Classifier

Support vector machine (SVM) provides another way to achieve classification in the
existing multi-dimensional feature space. It has been adopted for the classification of
many different data sets (Mustafa and Doroslovacki, 2004; Polat and Güneş, 2007;
Akay, 2009). SVM achieves classification by finding the hyperplane that separates data
from different classes. The hyperplane, meanwhile, is optimized by maximizing its
distance to the signal samples on each side of the hyperplane. Depending on the nature
of the signal being classified, the SVM classifiers can be divided into linear and non-
linear versions.

The linear SVM classifiers have linear kernels. The kernel is defined by equation (6.2),

K x,wð Þ= xTw ð6:2Þ

where x = [x1… xK] is the input feature vector F= F1,F2…FKf g and w = [w1…wK] is
the weight vector to be optimized. The kernel defines a linear separation hyperplane
(Theodoridis, 2008), as given in equation (6.3),

g xð Þ= xTw+w0 ð6:3Þ

wherew0 is a constant. The classification of a two-class (betweenmodulation candidates
M(a) and M(b)) problem is achieved by simply using the sign of g(x), as shown in
equation (6.4).

M̂=
M að Þ, g xð Þ= xTw+w0 ≥ 0

M bð Þ, g xð Þ= xTw+w0 < 0

(
ð6:4Þ

To obtain the weight through training, the following optimization process [equation
(6.5)] is exercised:

maximize J w,w0ð Þ= 2

wk k2 ð6:5Þ

subject to yi wTxi +w0
� �

≥ 1, i= 1,2,…,N ð6:6Þ

where yi is the class indicator for the ith feature vector (+1 forM(a) and −1 forM(b)).
An illustration of an SVM for a two-class problem is given in Figure 6.1.

The non-linear version of SVM classifier shares the same training and classification
process, except that the kernel used for the hyperplane is replaced by a non-linear
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kernel. We have tested in the past that a polynomial kernel is enough to provide effec-
tive classification. The polynomial kernel is given by equation (6.7),

K x,wð Þ= xTw
� �d ð6:7Þ

where d is the degree of the polynomials.
A general procedure of the SVM classifier for AMC is given below.

x2

Hyperplane

g(x)

Class A

Class B

Margin
J(w, w0)

x1

Figure 6.1 Two-class feature space with linear support vector machine.

Algorithm 6.2 An SVM classifier pseudo code

Input M reference signals from two candidate modulations M(i), i = 1, 2 each with a set of
extracted feature sets Fi mð Þ, an observed unknown signal with extracted feature set F, and a
pre-defined value d if using a non-linear SVM classifier.

Step 1: initialization weights w and w0

Step 2: repeat
Step 3: update the weights through (6.5) and (6.6) using Fi mð Þ
Step 4: end if maximum number iteration reached
Step 5: K F,wð Þ+w0 is calculated
Step 6: if K F,wð Þ+w0 ≥ 0, M(1) is given as classification decision M̂

Step 7: if K F,wð Þ+w0 < 0, M(2) is given as classification decision M̂

Output M̂
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Compared with the KNN classifier, the SVM classifier only needs to use the training
signal when establishing the separating hyperplane. Once the hyperplane is opti-
mized, there is no need to involve the training signal in any sort of further calculation.
The benefit is that the computation needed at the testing stage is relatively inexpensive
compared with KNN. However, the SVM classifier is most natural for two-class
classification. There are implementations of a multi-class classification using SVM;
however, the implementation is much less intuitive than in the two-class case.

6.4 Logistic Regression for Feature Combination

For both KNN and SVM classifiers, it is always preferable to have as many features as
possible for improving the classification accuracy. However, both classifiers suffer
when the number of features increases. That is why reducing the feature space dimen-
sion is necessary. Using machine learning algorithms, there are two ways to do so.
First, feature space dimension can be reduced by eliminating some of the features
which make less or no contribution to the classification task. Second, feature space
dimension can be reduced by combining the existing feature into fewer new features.

While feature selection is an effective way to reduce the complexity for a feature-
based modulation classifier, the elimination of a feature can sometimes be destructive.
That is without mentioning that sometimes the features are all useful in some degree
and the elimination of any feature can be destructive for the classification performance.
In this case, a more conservative approach is needed for dimension reduction. That is
why feature combination has been considered for not just the reduction of feature
dimension but also for enhancing the performance of these features.

Tobeginwith, a linear combinationof the features is the simplest but often avery effec-
tivewayof the combining the features.Assumingweare combining knumber of existing
features into a single new feature; the linear combination is given by equation (6.8),

Fnew =w0 +
XK
k =1

wkFk ð6:8Þ

where wk is the weight of the kth feature Fk, w0 is a constant, and K is the total number
of features available for combination. The process to optimize these weights is called
logistic regression and it aims to maximize the difference of the new feature value
between different classes. It has been adopted by Zhu et al. in the dimension reduction
for distribution-based features (Zhu, Nandi and Aslam, 2013).

There are two common logistic regression tools in the family of generalized linear
regression algorithms, namely binomial logistic regression and multinomial logistic
regression. The binominal logistic regression is designed to project the signal using
a logistic function p(�) such that p(�) equals 1 when the signal is modulated using
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M(i) and 0 if the signal modulation is using M( j). The logistic function is given in
equation (6.9),

p Fð Þ= 1
1+ e−g Fð Þ ð6:9Þ

where F is the collection of existing features and g(�) is the logit function, the inverse
of the logistic function p(�), given by equation (6.10).

g Fð Þ=B0 +
XK
k =1

BkFk ð6:10Þ

The estimation of each of the parameters B0 and Bk is often achieved using iterative
processes such as the Newton–Raphson method (Hosmer and Lemeshow, 2000). The
resulting estimation can be used to substitute the weights in equation (6.8).
Logistic regression provides a basic tool for feature selection and combination.

However, multi-class classification is not always suited for linear regression-assisted
feature selection and combination. It is sometimes better to divide the classification
into multiple steps.

6.5 Artificial Neural Network for Feature Combination

Nandi and Azzouz pioneered in the field of machine learning for modulation classi-
fication by introducing the artificial neural network (ANN) for improved decision
making (Nandi and Azzouz, 1997). They first proposed to use the ANN algorithm
in conjunction with signal spectral-based features for the classification of analogue
and digital modulations. It was afterwards adopted by many other researchers as a
tool for feature selection and combination.
Unlike the decision tree given in Section 5.2, an ANN classifier does not separate the

decision making into multiple stages. Instead, it can be used to consolidate the existing
features and create a non-linear mapping of these features to afford new features of
reduced dimensionality and enhanced performance.
For a single-layer perceptron network, the trained network is similar to a linear com-

bination of the input features. The same representation can be given as equation (6.11).

Fout =w0 +
XK
k =1

wkFin kð Þ ð6:11Þ

Multi-layer perceptron (MLP) is one of the most popular mapping schemes because of
its simplicity and efficient hardware implementation. MLP is a feed-forward structure

87Machine Learning for Modulation Classification



of interconnection of individual non-linear parallel computing units called neurons.
Inputs are propagated through the network layer by layer andMLP gives a non-linear
mapping of the inputs at the output layers. Use for feature combination the MLP can
be expressed as equation (6.12),

yk =ϕ
Xq
i= 1

wkiϕ
Xp
j=1

wijxj

0
@

1
A

0
@

1
A ð6:12Þ

Where yk is the output of the MPL network and the feature combination Fout kð Þ being
optimized at the kth output node, ϕ is the activation function, wij is the weight value
from neuron j to neuron i, and xj is the jth input feature Fin jð Þ from the feature set.
A visual illustration of theMPL network for feature combination is given in Figure 6.2.

Azzouz and Nandi (1995) adopted the back propagation (BP) to training the
weights. The BP algorithm trains the weight through an iterative process by calculat-
ing the change of each weight with respect to the error function E. As an example, the
mean squared error (MSE) function gives equation (6.13),

δE
δwij

=
δE
δyi

δyi
δui

δui
δwij

ð6:13Þ

where yi is the output and ui is the weighted sum of the inputs of neuron i. The
weight value can then be updated using a gradient descent approach as shown in
equation (6.14),

wij t+ 1ð Þ=wij tð Þ−ε δE
δwij

ð6:14Þ

… … …

x1=   in (1) 

w

y =  out

xK=   in (K) 

x2=   in (2) 

Figure 6.2 Multilayer perceptron neural network for AMC feature combination.
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where ε is the learning rate which dictates the speed of convergence. With a high
learning rate, the convergence is faster. However, it is done with the risk of oscillation.
With a low learning rate, many more iterations will be needed to reach convergence.

6.6 Genetic Algorithm for Feature Selection

To overcome the issue of high dimensionality in the feature space, Wong and Nandi
suggested the use of a genetic algorithm (GA) as a tool for reducing the number of fea-
tures (Wong and Nandi, 2004). They used binary strings to represent the selection of
different features. If there are five existing features, a binary string example could be
11000, whichmeans that the first two features are selected for classification and the last
three features are neglected.
The training of such binary strings beginswith a randomly generated string. Accord-

ing to the initial binary string, features are selected for modulation classification with
some training data. The resulting classification performance achieved by these selected
features is then used as a criterion for evaluating the performance of the binary string.
Based on their performance, better binary strings are selected for the evolutionary
process of producing new binary strings that migrate toward the optimal solution
or optimal selection of features. The two genetic operators used are crossover and
mutation.
For crossover, we assume there are two parent binary strings, 11011 and 01000. The

crossover would randomly choose equal numbers of bits in both parents and swap
their values. In the given case, if the first four digits are selected then the ‘children’ of
the crossover operation would be 01001 and 11010, and these represent two new sets
of selected features (Figure 6.3).
Meanwhile, mutation utilizes only one parent, for example, 11011. The operation is

the process of selecting random digits in the parent string and generating a random
value for that digit. Using the example, if the mutation operation selects the first, third,
and fourth digits of the binary string, the resulting child string would become 01111.
Since the new value is randomly generated it could be the same as the parent value as
seen in the fourth digit or different as seen in the first and third digit (Figure 6.4).

1 1 0 1 1 0 1 0 0 0

1 1 0 1 00 1 0 0 1

Figure 6.3 Crossover in genetic algorithm.
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The processes of fitness evaluation, parent selection, and reproduction are repeated
for a predefined number of generations, after which the GA is terminated. Termination
can also be triggered if the average or best fitness in the current generation reaches a
predefined threshold or the improvement over the last few generations becomes lower
than a predefined threshold.

In the end, the binary strings in all generations are ranked by their fitness. The string
with the highest fitness is selected as the final product of the GA process. According to
the nature of the binary string, the features can be selected subsequently. It is worth
mentioning that the GA process can be highly random because of the random initial-
ization andmutation operation. It is sometimes recommended to repeat theGAprocess
several times and to produce a few sets of different feature selections from which the
best feature selection can a determined by another test.

6.7 Genetic Programming for Feature Selection
and Combination

Koza popularized the genetic programming (GP) as another evolutionary machine
learning algorithm (Koza, 1992). It has since been used for classification of many
different types of data and signal (Espejo, Ventura and Herrera, 2010). Zhu et al. first
employed GP for modulation classification feature selection and combination (Zhu,
Aslam and Nandi, 2010). Zhu et al. also extended the application of GP in modulation
classification by combining GP with other machine learning algorithms to achieve
improved classification performance (Zhu, Aslam and Nandi, 2011; Aslam, Zhu
and Nandi, 2012).

GP belongs to the class of evolutionary algorithms which attempt to emulate a
Darwinian model of natural evolution. It is a machine learning methodology that is
used to optimize a population of individuals (computer programs) with the help of
fitness values. GP develops the solution of a problem in the form of a mathematical
formula. Each solution is a computer program and can be represented in the form
of a tree. Each tree has terminal nodes (data nodes) and internal nodes (function
nodes). Each individual is given a fitness value which quantifies its ability to solve
the given problem. The fitness value is computed using a user-defined fitness function.

1 1 0 1 1

0 1 1 1 1

Figure 6.4 Mutation in genetic algorithm.
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The fitness function used depends upon the nature of the problem. The advantages
GP has on other machine learning methods are listed below. (i) No prior knowledge
about the statistical distribution of data is needed. (ii) Preprocessing of data is not
required and data can be used directly by GP in its original form. (iii) GP returns a
mathematical function as outputwhich can be used directly in the application environ-
ment. (iv) GP has the inherent capability to select useful features and to ignore others.
Typically, GP implementation follows the following steps: (i) GP starts with a ran-
domly generated population of user-defined size. (ii) Each individual is assigned a fit-
ness value which represents the strength of the individual to solve the given problem.
(iii) A genetic operator is applied on the current generation to give birth to individuals
of the next generation. Genetic operators are explained in the next section. (iv) All the
individuals are given fitness values and those individuals having better fitness values
get transferred to the next generation. (v) Steps (iii) and (iv) are repeated till a desired
solution is achieved. Otherwise GP is terminated after a certain number of generations
set by the user.

6.7.1 Tree-structured Solution

There are different ways to represent the individuals (computer programs) in GP. One
of the common representations is a tree representation and the same representation
has been used here as well. A tree has terminal nodes, internal nodes and output node.
Terminal nodes represent the inputs, and internal nodes represent the functions
operating on inputs, while the output node gives the output of the tree. An example
of a tree-structured mathematical formula (A + B) × C is given in Figure 6.5. In the case
of modulation classification feature selection and combination, the input nodes are the
selected raw feature. The output node represents the desired new feature combination.

6.7.2 Genetic Operators

Genetic operators are used for reproducing new individuals from older individuals.
The operationmimics the genetic processes observed in genetic science. The traditional
operators included in a standard GP are crossover and mutation. Semantically, cross-
over is intended for the sharing of fitter parts of two different individuals in order

A B

+ C

×

Figure 6.5 Tree-structured individual of genetic programming.
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to create a new individual which is fitter than both parents. Meanwhile, mutation
generates new individuals by replacing a random branch of a parent with a randomly
generated new branch in the hope that the child will have better fitness than the
parent. Practically, the sematic motive of crossover and mutation is implemented
with random symbolic processes. We shall use a simple example to illustrated how
crossover and mutation is achieved in standard GP.

Let us assume that there are two parent trees, each representing a mathematical
formula as shown in Figure 6.6.

The first step of crossover randomly selects a branch in each parent tree. The selected
branch is highlighted in Figure 6.6 with dashed lines. In the second step, the selected
branches are swapped between the two parents, thereby creating two new individuals
as shown in Figure 6.7.

For mutation, we need select only one tree, as shown in Figure 6.8.

A B

+ C

× ÷

C D

–A

Figure 6.6 Parent trees selected for crossover operation.

C D

– C

× ÷

A B

+A

Figure 6.7 Child trees produced by crossover from trees in Figure 6.6.

A B

+ C

×

C D

–

Figure 6.8 Parent tree selected for mutation and a randomly generated branch.
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The first step of the mutation selects a random branch from the parent tree. In the
second step, a new branch is randomly generated. Finally, the mutation is completed
by attaching the randomly generated new branch to the same position where the old
branch was removed from. The resulting tree is the child tree of a mutation operation.

6.7.3 Fitness Evaluation

Fitness evaluation is the most important design component because it is directly
related to the evaluation of how well an individual in the evolution solves the given
problem. If a flawed fitness criterion is used, regardless of how efficient the GP is, the
end solution will deviate from the goal of the entire system.
For modulation classification, as we dedicated GP as a feature selector and gener-

ator, the goal is to generate a combination of selected features which provides fast
and accurate modulation classification. Because of the nature of the task, there have
been two different approaches to define the fitness function. The first approach was
to evaluate the quality of the new feature by measuring the inter-class tightness
and intra-class separation given some training signals. To achieve such evaluation,
Aslam et al. proposed to use Fisher’s criterion as the fitness function for GP (Aslam,
Zhu and Nandi, 2011). Assuming there are L number of signal realizations from
two different modulations A and B, a new feature acquired through GP can be calcu-
lated for each signal realization. Therefore, we have two sets of feature values,
FA 1ð Þ,FA 2ð Þ…FA Lð Þ and FB 1ð Þ,FB 2ð Þ…FB Lð Þ. To calculate the fitness of this new fea-
ture, the following fitness function [equation (6.15) is employed based on Fisher’s
criterion (Fisher, 1936),

F Fð Þ= μA−μBj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2A + σ2B

q ð6:15Þ

where μA and μB are the means of the two sets of the feature values, and σ2A and σ2B are
the corresponding variances, as defined in equations (6.16) and (6.17).

μA =
1
L

XL
l= 1

FA lð Þ and μB =
1
L

XL
l= 1

FB lð Þ ð6:16Þ

σ2A =
1
L

XL
l=1

FA lð Þ−μA½ �2 and σ2B =
1
L

XL
l=1

FB lð Þ−μB½ �2 ð6:17Þ

It is obvious in equation (6.15) that the numerator measures the separation of the
features from different modulation signals and the denominator measure the tightness
of the features from the same modulation signals. Therefore, the fitness function
matches the desired property of an effective feature for modulation classification.

93Machine Learning for Modulation Classification



However, there are two drawbacks to Fisher’s criterion for fitness evaluation. First,
the criterion was developed with the assumption of the statistic being normally dis-
tributed. In the case of GP-generated features, it is very difficult to establish the distri-
bution of a new feature because the features can be a very complicated combination of
many existing features. That is without mentioning the need of normality for the new
feature distribution which varies dramatically because of the random nature of GP.
The genetic operators constantly maintain the diversity in the populations, resulting
in new features of diverse distributions. Secondly, in practice, there are cases where
the trained new features may converge to have a minimum amount of difference in
their mean difference while having very small variance. In other cases the new features
can have very big mean differences with the variance also being infinitely big.

Meanwhile, there is a second approachwhich does not share the flaws of the Fisher’s
criterion-based fitness evaluation. As the ultimate goal for the new feature is to
enhance classification performance, Zhu et al. used a small set of training signals in
the GP evaluation and incorporated a computationally efficient classifier in the fitness
evaluation (Zhu, Aslam and Nandi, 2010). The fitness, in this case, was evaluated by
directly classifying the training signals with a classifier from which the average clas-
sification accuracy was used as the fitness value.

6.8 Conclusion

In this chapter, several machine learning algorithms are presented which accomplish
modulation classification and their feature-enhancement approaches are described.
KNN and SVM are two supervised learning algorithms which enable classification
of modulations by using multiple input features. The KNN classifier is easier to imple-
ment for multi-class problems, while the SVM classifier provides a separation hyper-
plane that is optimized using training data to easily achieve two-class classification.
ANN provides the possibility to combine different features into a smaller figure set.
GA using binary coding is considered as a feature selector. GP has both the ability
to select features as well as the possibility of creating flexible feature combinations.
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7
Blind Modulation
Classification

7.1 Introduction

FromChapters 3–6, we listedmodulation classifiers of different types. These classifiers
mostly require the prior knowledge of channel state information (Wei and Mendel,
2000; Wang and Wang, 2010). There are few classifiers which have the certain ability
to treat one or two channel parameters as unknown (Panagiotou, Anastasopoulos and
Polydoros, 2000). Many classifiers may appear to be able to recognize the modulation
type without the need for CSI (Azzouz and Nandi, 1996; Spooner, 1996; Swami and
Sadler, 2000). In fact, the classification accuracy is often far inferior if the CSI is not
utilized for the preparation of reference values or decision thresholds. Dobre et al.
reviewed some of the semi-blind classifiers and suggested the necessity of a blind
modulation classifier (Dobre, Abdi and Bar-Ness, 2005).
The classification of modulation types in a channel with unknown CSI is normally

divided into two steps. In the first step, channel estimation is performed. The estima-
tion can either acquire all of the needed channel parameters or partial CSI. When the
entire CSI is estimated, any classifier that we have mentioned in the previous chapters
can be employed to complete the second step. If the CSI is partially estimated, a clas-
sifier which requires the prior knowledge of all channel parameters will not be able to
complete the classification. Instead, a semi-blind classification that can complement
the partial channel estimation is required to complete the second step of the blindmod-
ulation classification (BMC).
In this chapter, we present a few recently published blind modulation classification

approaches which operate with unknown CSI. The first relies on maximum likelihood
estimation realized in an unsupervised way through expectation maximization.
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The modulation classification is completed using a likelihood-based classifier which
utilizes the estimated CSI. The second is a combination of minimum distance centroid
estimation and likelihood-based classifier using non-parametric likelihood function.

7.2 Expectation Maximization with Likelihood-based Classifier

As stated in Chapter 3, to achieve optimal classification performance, the likelihood-
based classifiers such as the ML classifier require perfect knowledge of the CSI. In
normal systems where modulations are known to the receiver, the estimation is rela-
tively easy, especially with pilot samples. In the system with AMC, the modulation is
unknown to the receiver and thus cannot be used in the estimator. While an estimator
for signals with unknown modulation is available (Gao and Tepedelenlioglu, 2005),
the estimation accuracy is not high enough to guarantee high classification accuracy.
In addition, such estimators are normally limited to modulations of the same type but
different orders. When there are more than two types of modulation in the candidate
pool such estimators are not applicable for the CSI estimation for likelihood-based
classifiers. It is worth noting that the ALRT, GLRT, and HLRT classifiers could be
constructed to achieve maximum likelihood estimation of a channel parameter. The
estimation is achieved through an exhaustive manner which requires the evaluation
of likelihood for each value of channel parameter in a predefined range, which is
highly expensive computationally. The matter is made worse when multiple channel
parameters need to be estimated jointly. For this reason, iterative processes such as
expectationmaximization (EM) (Geoffrey and Peel, 2000) have become amore realistic
option for channel estimation (Moon, 1996; Tzikas, Likas and Galatsanos, 2008).

7.2.1 Expectation Maximization Estimator

For modulation classification, Chavali and Da Silva first proposed to use EM for
CSI estimation (Chavali and Da Silva, 2011) and considered the case of non-Gaussian
noises (Chavali and Da Silva, 2013). Here, we present the algorithm in a more
recognizable AWGN channel. In EM, we assume there are a set of channel parameters
Θ = {γm, μm, σm}. A Gaussianmixture model is often considered as an integral part of an
EM estimator for modulation classification. A GMM is a linear mixture of Gaussian
distributed components. The PDF of a GMM model is given by equation (7.1),

fGMM xð Þ=
XM
m=1

γmN μm,σmð Þ ð7:1Þ

where γm is the mixture proportion of the mth component, and μm and σm are the
corresponding mean and variance.
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The initial step of EM is to provide initial values for the channel parameters. There
are two most popular ways to do this. The first method generates random values for
the channel parameters Θ = {γm, μm, σm}. It is easy to implement and adds a minimum
amount of extra computation. The disadvantage of this random initialization method
is that the time for convergencemay be longer and the converged final estimatemay be
a local optimum instead of a global optimal estimate. The other, more advanced,
approach to initialization is to use a fast algorithm to provide a rough estimation
for some of the parameters. Soltanmohammadi and Naraghi-Pour used K-means
clustering for the initialization step (Soltanmohammadi and Naraghi-Pour, 2013).
By clustering all the samples into M number of partitions, the proportion of the
Gaussian component canbe calculatedusing the size of thepartition, that is, thenumber
of samples assigned to the partition. The mean of the component can be calculated
using the mean of all the signal samples in each partition. The variance of each
component can be calculated in the same way using the partitioned signal samples.
The expectation step, also known as the E step, evaluates the likelihood of each sam-

pling belongs to each of the Gaussian components. A membership is often assigned
using the resulting likelihood values. The membership could be a hard membership
which assigns the signal sample to an individual Gaussian component exclusively.
Meanwhile, the sample can be given soft memberships for all the Gaussian compo-
nents, where components with higher likelihood are assigned higher membership
values. The membership is often called a latent variable z. For the signal samples
r[1], r[2]… r[N] the likelihood of the nth sampling belonging to the mth component
of the GMM model is calculated as shown in equation (7.2).

L r n½ �,mð Þ= 1
2πσ2m

e
− r n½ �−μmð Þ2

2σ2m ð7:2Þ

And the corresponding soft membership is calculated as shown in equation (7.3)

z n,mð Þ= L r n½ �,mð ÞXM
m=1

L r n½ �,mð Þ
ð7:3Þ

with the hard membership assigned as shown in equations (7.4).

z n,mð Þ=
1, L r n½ �,mð Þ= max

1 ≤ k ≤M
L r n½ �,kð Þð Þ

0, L r n½ �,mð Þ 6¼ max
1 ≤ k ≤M

L r n½ �,kð Þð Þ

8><>: ð7:4Þ

The membership of each signal sample having been evaluated, the maximization
step aims to maximize the evaluated log-likelihood function of the current iteration,
equation (7.5).
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logL r,kð Þ= −N logM−
XM
m=1

XN
n= 1

z r n½ �,mð Þγm log 2πσ2m
� �

+
r n½ �−μmð Þ2

2σ2m

" #
ð7:5Þ

For modulation classification, there is underlying structure of the component means
which can be expressed as a combination of channel gain and transmitted symbols, as
given in equation (7.6),

μm = hsm ð7:6Þ

where h is the channel coefficient and sm is themth symbol in the modulation alphabet
set. In the meantime, the noise variances of each Gaussian component are often
considered identical [equation (7.7)].

σm = σ ð7:7Þ

The maximization step is achieved by the close form update function of the current
likelihood evaluation. Combining equations (7.5)–(7.7), the derivative with respect to
channel coefficient and noise variance can be calculated as shown in equations (7.8)
and (7.9).

∂ logL r,kð Þ
∂h

=
XM
m=1

XN
n=1

z r n½ �,mð Þγm
−2r n½ �sm + 2hs2m

σ
ð7:8Þ

∂ logL r,kð Þ
∂σ2

=
XM
m= 1

XN
n= 1

z r n½ �,mð Þγm −
1
σ2

+
r n½ �−hsmð Þ2

σ4

 !
ð7:9Þ

When equations (7.8) and (7.9) are set to zero, the update function for the channel
gain and the variance are given by equations (7.10) and (7.11),

hi+1 =

XM
m=1

XN
n=1

z r n½ �,mð Þγmr n½ �sm
XM
m= 1

XN
n= 1

z r n½ �,mð Þγms2m
ð7:10Þ

σi+ 1 =

XM
m=1

XN
n=1

z r n½ �,mð Þγm r n½ �−hismð Þ

XM
m=1

XN
n=1

z r n½ �,mð Þγm
ð7:11Þ

where hi + 1 and σi + 1 are the updated estimation of the parameters for iteration i + 1. In
equation (7.11), the channel coefficient estimated in the previous iteration is used,
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which makes this the update function of the expectation/condition maximization
(ECM) algorithm. It is often adopted to deal with coupling parameters such as the
channel coefficient and the noise variance in this case. ECM shares the convergence
property of EM (Meng and Rubin, 1993) and can be constructed to converge at a
similar rate as the EM algorithm (Sexton, 2000).
The iterative process is terminated under two conditions. The first condition

terminates the process when the estimation reaches convergence. The condition is
represented numerically with the difference between the expected likelihoods of the
current iteration and the previous iteration along with a pre-defined threshold.
In the second condition, termination is triggered when the pre-defined number of
iterations has been reached.

7.2.2 Maximum Likelihood Classifier

For modulation classification, given the modulation candidate pool �= M 1ð Þ,f
M 2ð Þ,…,M Ið Þg, the EM estimation is performed for each modulation hypothesis
HM(i)(i = 1, 2,… I). As demonstrated in Figure 7.1, the channel parameter set

Θ̂M ið Þ = ĥM ið Þ, σ̂M ið Þ
n o

is estimated for each modulation hypothesis, with ĥM ið Þ being

the EM estimated complex channel gain and σ̂2Mi
being the estimated signal variance

for modulation candidate M(i). Subsequently the likelihood for each modulation
hypothesis is evaluated using the corresponding channel estimation. Here we use
the likelihood function from equation (3.3); however, we replace the known channel
parameters with EM estimates, to arrive at equation (7.12).

L rjHMð Þ=L rjĥM, σ̂2M
� �

=
YN
n=1

XM
m=1

1
M

1
2πσ̂2M

e
−

r n½ �− ĥMsmj j2
2σ̂2

M ð7:12Þ

It is worth noting that the complex channel gain consists of carrier phase offset estima-
tion. When it is applied to the transmitted symbol sm the effect of constant phase offset
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(2) ={ĥΘ̂ (2) σ̂ (2)
, {
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Figure 7.1 EM estimation and ML classifier.
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is effectively compensated. The resulting likelihood values from all modulation
hypotheses are then compared in order to conclude the classification decision. Using
the maximum likelihood criteria equation (3.13), the modulation hypothesis with the
highest likelihood is assigned as the classification decision.

7.2.3 Minimum Likelihood Distance Classifier

While the combination of EM estimation and ML classifier seems a perfect match, the
combination has some fundamental flaws. The flaw is, in fact, sharedwith anymethod
that combines a maximum likelihood estimator and a maximum likelihood classifier.
As the channel estimation is performed under each modulation hypothesis, the
channel estimation maximizes the likelihood evaluation of the modulation hypothesis
regardless of whether the hypothesis is true or false. Compared with an ML classifier
with given channel knowledge, the likelihood evaluation for the true hypothesis may
be accurately achieved. However, because of the ML estimation the likelihood
evaluation for false hypothesis is certainly increased, which leads to a reduced sepa-
ration between the likelihood of the true hypothesis and the false hypotheses. In
extreme cases it is even possible for the false modulation hypothesis to provide a
higher likelihood value as compared with the true modulation hypothesis.

The above phenomenon is discussed by Soltanmohammadi andNaraghi-Pour, who
also suggested a minimum distance likelihood classifier to overcome the issue
(Soltanmohammadi and Naraghi-Pour, 2013). Instead of comparing the likelihood
value from each modulation hypothesis directly, the distance between the observed
likelihood is compared with the empirical likelihood of each modulation with the
given channel estimation. The empirical likelihood values can be either computed
beforehand and stored in memory or calculated using the channel estimation during
the modulation classification processing. For the observed signal, there exist I likeli-
hood values evaluated from different hypotheses denoted as {L(r|HM(1),ΘM(1)),
L(r|HM(2),ΘM(2)),…, L(r|HM(I),ΘM(I))}. Meanwhile, for each hypothesisHM(i), there
exists a set of empirical likelihood values denoted as {eL HM ið Þ HM 1ð Þ,ΘM 1ð Þ

�� ��
,eL HM ið Þ HM 2ð Þ,ΘM 2ð Þ

�� ��
,…, eL HM ið Þ HM Ið Þ,ΘM Ið Þ

�� ��
}. The distance between the observed

likelihood value set and empirical likelihood set from HM(i) is calculated as shown in
equation (7.13).

D r,HM ið Þ
� �

=
XI
k =1

eL HM ið ÞjHM kð Þ,ΘM kð Þ
� �

−L rjHM kð Þ,ΘM kð Þ
� ���� ��� ð7:13Þ

The subsequent classification decision is then acquired by finding the modulation
hypothesis that provides the minimum likelihood distance, equation (7.14).

M̂= argmin
M ið Þ

D r,HM ið Þ
� � ð7:14Þ
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7.3 Minimum Distance Centroid Estimation and
Non-parametric Likelihood Classifier

While EM estimation provides accurate joint estimation of the channel parameters, the
estimation is still based on a known noise model. If unknown noise type with mis-
matching model is observed, the estimation accuracy is not guaranteed. In addition,
being more efficient than an exhaustive estimator, the EM estimator is still relatively
complex where multiple instances of likelihood evaluation are required to obtain the
estimation. Seeking for alternative blind modulation classification solutions, Zhu and
Nandi proposed a scheme to combine joint estimation of channel gain and phase offset
with non-parametric likelihood function for BMC (Zhu and Nandi, 2014).

7.3.1 Minimum Distance Centroid Estimation

The minimum distance centroid estimator is an iterative process for the joint estima-
tion of channel gain and phase offset. A signal-to-centroids distancemetric is proposed
to evaluate the mismatch between the estimation being updated and the observed
signal. The method is based on the iterative update of a signal centroid collection com-
posed of the original transmitted alphabet, the channel gain and phase shift. We
assume the estimated centroids AM to possess the original rigid structure after trans-
mission and pre-processing. The mean of centroids μ AMð Þ should remain at 0, the
magnitude of two different centroid elements Ap

M and Aq
M should follow the original

proportions Ap
M

�� ��= Aq
M

�� ��= spM
�� ��= sqM

�� ��, and the phase difference between centroids
should remain the same, ϕ Ap

M

� �
−ϕ Aq

M

� �
=ϕ spM
� �

−ϕ sqM
� �

. For BPSK, QPSK and
8-PSK the centroid collection is given by equations (7.15)–(7.17), respectively,

ABPSK = −A A½ � ð7:15Þ

AQPSK =A4−QAM =
jA A
−A − jA

� 	
ð7:16Þ

A8−PSK =

− jA jA∗

−A∗ A
A A∗

− jA∗ jA

2664
3775 ð7:17Þ

where A is defined as the centroid parameter, given by equation (7.18),

A= αeiθo s0M ð7:18Þ

where s0M is defined as the transmitted symbol which is nearest to the signal mean.
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The signal-to-centroid distance is defined as the sum of the Euclidean distance
between each signal sample and its nearest centroid, as defined in equation (7.19).

DM r,AMð Þ=
XN
n=1

min
m2 1,..,M½ �

r nð Þ−Am
M

�� ��� � ð7:19Þ

It is worth noting that the above distance is an equivalent to the evaluation function
of minimum distance classifier presented in Chapter 3 (Wong and Nandi, 2008).

With the complex representation of the centroid parameter, A = x + jy, the signal-
to-centroid distance can be expressed with x and y. To find the values of x and ywhich
minimize the signal-to-centroid distance, we use an iterative sub-gradient method
based on the sub-gradient calculation shown in equation (7.20).

∇D x,yð Þ= D x+Δx,yð Þ
Δx

+ j
D x,y+Δyð Þ

Δy
ð7:20Þ

Meanwhile, theupdate function forAn = xn + jyn is expressedasgiven in equation (7.21),

xn+1 + jyn+1 = xn + jyn−a∇D xn,ynð Þ ð7:21Þ

where a is the update step size. A smaller update step size slows down convergence
but provides a more accurate estimation. A bigger update step size helps the estimator
converge faster but with the risk of lower estimation accuracy.

The process is repeated for a number of iterations unless the exit condition is
triggered by convergence with a given threshold, equation (7.22),

∇D x,yð Þ< ηD ð7:22Þ

where ηD is a pre-defined threshold.
Given the estimated centroid parameter Â, the effective estimation of the channel

gain and phase offset can be calculated as shown in equations (7.23) and (7.24),
respectively.

α̂=
Aj j
s0m
�� �� ð7:23Þ

θo = arg Að Þ−arg s0m
� � ð7:24Þ

It is worth noting that the effective estimation of the phase offset is not accuracy.
The estimation itself could be offered by a factor of mΔθ, where Δθ is the phase
difference between adjacent modulation symbols. However, the offset should not
affect the modulation classification performance since the likelihood evaluation takes
the average of the likelihood from all modulation symbols.
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7.3.2 Non-parametric Likelihood Function

Asdemonstrated, theMDestimator is able to find the centroid after transmission; how-
ever, the estimation of noise variance is absent. For this reason, the state-of-the-art
likelihood classifier is not applicable in this case. Toovercome this issue,ZhuandNandi
proposed a non-parametric likelihood function for the evaluation of likelihoodwithout
noise variance (Zhu and Nandi, 2014). The NPLF has been suggested in Chapter 3 as
an LB approach with reduced complexity. In addition, the NPLF does not impose a
hypothesized noise model. The NPLF is defined as given in equation (7.25),

LNPLF rjHMð Þ=
XN
n=1

XM
m=1

I r nð Þ−Â mð Þ
M

��� ���<RM

n o
ð7:25Þ

where I{�} is an indicator function which returns 1 if the input is true and 0 if input is
false, and the test radius RM is given by equation (7.26),

RM =R0=
ffiffiffiffiffi
M

p
ð7:26Þ

with R0 being the reference radius. The non-parametric likelihood function is
effectively the empirical estimation of the cumulative probability of the given signal
in a set of defined local regions. The expectation of the likelihood can be expressed
in the following manner [equation (7.27)],

E LNPLF rjHMð Þ½ �=
ð
SM

f x,yð ÞdS ð7:27Þ

where SM is a limit associated with both estimated centroids ÂM and the test radius
RM, and f(x, y) is the probability density function of the testing signal.
It is easy to see that, with the given testing radius, the area of SM =M�πR2

0=M= πR2
0 is

designed togive eachhypothesisanequal area for the cumulativeprobabilitycalculation.
Thedecision is basedon theassumption thatmatchingmodels shouldprovidemaximum
cumulative probability in defined regions of the same total area [equation (7.28)].

M̂= argmax
M2�

ð
SM

f x,yð ÞdS ð7:28Þ

Without examining the centroid estimation for false hypothesis modulations, we
evaluate the maximum non-parametric likelihood of different hypotheses in the
scenario where each set of estimated centroids has the maximum number of overlaps
with the true signal centroids. Such a scenario has been previously examined for the
GLRT classifier with unknown channel gain and carrier phase, which results in equal
likelihood for nested modulations at high SNR (Panagiotou, Anastasopoulos and
Polydoros, 2000).
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In the following analysis we will use signals in slow-fading channel with constant
phase offset andAWGNnoise as an example. The signal PDF is given by equation (7.29).

f x,yð Þ= 1
M

XM
m= 1

1
2πσ2

e−
x−ℜ αe jθsm

Mð Þð Þ2 + y−ℑ αejθ sm
Mð Þð Þ2

2σ2 ð7:29Þ

Approximating the signal distribution at each transmitted signal symbol to a
Rayleigh distribution, we arrive at equation (7.30),

f Rð Þ= R
σ2

e−R2=2σ2 ð7:30Þ

when the likelihood function estimation becomes a function of the testing radius
[equation (7.31)],

E LNPLF rjHMð Þ½ �=NM

ðRM

0

x
σ2

e− x2=2σ2dx ð7:31Þ

where NM is the maximum number of matching centroids for the hypothesis M.
For example, given a piece of QPSK signal, the value of NM for different hypotheses
would be:NBPSK = 2,NQPSK = 4 andN8 − PSK = 4. To simplify the analysis, we generalize
the analysis to three general scenarios: hypothesis of lower order M−, hypothesis
of matching model and order M0, and hypothesis of higher order M+. In order to
satisfy the conditions E LNPLF r HM0

�� �� �
>E LNPLF r HM−j Þð �½�

, and E LNPLF r HM0

�� �� �
>

�
E LNPLF r HM+j Þð �½ , the reference radius R0 should satisfy the condition given in
equation (7.32),

R0 = αR max
i

αið Þ ð7:32Þ

where αR is the radius factor and αi is the channel gain estimated for modulationM(i) .
The determination of the radius factor depends on the range of SNR the classifier
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Figure 7.2 Centroid estimation and NPLF classifier.
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operates in, and a detailed analysis is given in Zhu andNandi (2014). An illustration of
the classifier is given in Figure 7.2.

7.4 Conclusion

In this chapter we present a few blind modulation classification approaches. The first
approach combines EM estimation with likelihood-based classifiers. The ML classifier
provides an easy implementation of AMC following the EM channel estimation.
The minimum likelihood distance classifier is listed as an alternative approach to
the ML classifier, which is able to overcome the performance issues associated with
the combination of ML-based estimator and ML-based classifier. The minimum dis-
tance centroid estimation provides a quickway to estimate channel gain. It is well com-
plemented by the non-parametric likelihood classifier where knowledge of the noise
variance is not required during the classification. The classifier also has the advantage
that performance degradation in non-Gaussian noise channel is relatively small.
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8
Comparison of
Modulation Classifiers

8.1 Introduction

In Chapters 3–7we listed an array ofmodulation classifiers.While their mechanisms are
distinctly different and intriguing, we are more interested in their actual modulation-
classification performance. Modulation classification may be applied in many different
scenarios; the traits of a good modulation classifier are shared in most cases.
First, a modulation classifier should be able to classify as many modulation types

as possible. Such a trait makes a modulation classifier easily applicable in different
applications without needing any modification to accommodate extra modulations.
Second, a modulation classifier should provide high classification accuracy. The high
classification accuracy is relative to the different noise levels. Third, the modulation
classifier should be robust in many different channel conditions. The robustness can
be provided by either the built-in channel estimation and correction mechanism or
the natural resilience of the modulation classifier against channel conditions. Fourth,
the modulation classifier should be computationally efficient. In many applications,
there is a strict limitation of computation power which may be unsuitable for over-
complicated modulation classifiers. Meanwhile, some applications may require fast
decision making, which requires the classification to be evaluated swiftly. Only a
modulation classifier with high computational efficiency could meet this requirement.
After all, a simple and fast modulation classifier algorithm is always appreciated.
In this chapter, we have tried to benchmark some of the aforementionedmodulation

classifiers in a simulated testing environment. The goal is to acquire the evaluation of
the different traits for different classifiers and to provide a guideline for classifier
selection when a specific application arises.

Automatic Modulation Classification: Principles, Algorithms and Applications, First Edition. Zhechen Zhu and Asoke K. Nandi.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.



8.2 System Requirements and Applicable Modulations

In this section we examine the system requirements of AMC classifiers and the
modulations they are able to classify. The system requirement consists of pilot sample
and channel parameters the classifiers needed in order to reach a classification
decision. Among them, channel gain, noise variance, carrier phase offset and carrier
frequency offset have been picked as the key channel parameters that may be needed
by different classifiers.

As the system requirements and applicablemodulations have beenmentioned in each
chapter already, they are only listed again in Tables 8.1–8.5 to provide easy comparison.
If the classifier requires a pilot sample for training purposes, it will be labelled “Yes”
for “Pilot Samples”, otherwise “No” if not. For the channel parameters, there are three
possible scenarios: “Known”, “Unknown” and “Compensated”. When the classifier
requires the channel parameter to be known, it means the parameter must be estimated
beforehand to complete the classification. When the channel parameter is labelled
unknown, it means that the classifier can complete classificationwithout the knowledge
of the specific channel parameter. If the channel parameter is labelled compensated,
it means that the classifier has the inherent ability to estimate the parameter and use it
to improve the classification accuracy. For the applicable modulations, we consider a
pool of the most common digital modulations including ASK, PSK, FSK, PAM and
QAM. In addition, if the classifier is able to classify the same modulation with different
orders, they are instead labelled as M-ASK, M-PSK, M-FSK, M-PAM or M-QAM.

8.3 Classification Accuracy with Additive Noise

In this section we examine the classification accuracy of different classifiers against
additive noise. In this scenario we assume that we have perfect channel knowledge
and that any channel effect has been compensated prior to modulation classification.
The signal model used is derived from equation (1.13), such that the only additive
noise is considered to be given by equation (8.1),

r n½ �= αs n½ �+ω n½ � ð8:1Þ
where the noise model for ω[�] used is the additive white Gaussian noise. Nine of the
most popular modulations are selected to form a candidate pool. They are 2-PAM,
4-PAM, 8-PAM, BPSK, QPSK, 8-PSK, 4-QAM, 16-QAM and 64-QAM. The symbol
mappings for all modulations are demonstrated in Figure 8.1.

The alphabet set from the symbol mapping for each modulation is normalized
to zero mean and unit power. When simulating the transmitted signal symbols,
each symbol was assigned from the alphabet set with equal probability. For eachmod-
ulation, L = 1000 realizations of transmitted signals are first generated. In each signal
realization,N = 1024 signal samples are sampled at the correct symbol timing without
timing mismatch and timing error.
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8.3.1 Benchmarking Classifiers

Among all the classifiers, we have selected a small set of classifiers to represent each
category of classifier.
For likelihood-based classifiers, themaximum-likelihood classifier (Wei andMendel,

2000) is used to investigate the performance characteristic of likelihood-based
classifiers. In addition, when given perfect channel knowledge, theML classifier is also
used to establish the upper bound of classification accuracy. The likelihood function
used is given by equation (3.3). The channel gain and noise variance are assumed to
be known to the classifier.
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Figure 8.1 Symbol mapping for different modulations on I-Q plane.
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For distribution test-based classifiers, the one-sample KS test classifier (Wang and
Wang, 2010) is adopted to represent the distribution test-based classifiers. The channel
gain and noise variance are assumed to be known to the classifier.

For feature-based classifiers, we have selected both moments and cumulants
(Swami and Sadler, 2000) due to their high classification accuracy for digital modula-
tions of different orders. The classification for both sets of features is accomplished
using a KNN classifier. For each signal modulation, 30 signal realizations are gener-
ated to construct the reference feature space. No channel knowledge is used for the
classification. The list of moments used includes μ20, μ21, μ40, μ41, μ43, μ60, μ61, μ62,
and μ63. The list of cumulants used includes C40, C41, C43, C60, C61, C62, and C63.

For machine learning classifiers, the combination of GP and KNN is employed to
utilize both the moments and cumulants feature sets. In the training state, the same
training signals for the KNN classifier is used for the evaluation of feature combina-
tions. The GP process is performed before the signal classification in the training
stage in order to achieve the optimized feature selection and combination of the
available features. No channel knowledge is used in the classifier.

For blind modulation classifiers, the EM-ML classifier is implemented with an EM
stage that provides the joint estimation of complex channel coefficient and noise
variance for each modulation hypothesis. The resulting estimates are used for the
evaluation of likelihood in each hypothesis for the ML classifier.

8.3.2 Performance Comparison in AWGN Channel

In the first set of experiments we examine the robustness of different classifiers when
mismatch in noise level is presented. The noise level is measured by the signal-to-noise
ratio, which is defined as given in equation (8.2),

SNR= 10log10
P sð Þ
P ωð Þ dB ð8:2Þ

where P(s) is the power of the power of the transmitted signal, and P(ω) is the power
of the AWGN noise.

From −20 to 20 dB with a step of 1 dB, the AWGN noises are generated for each
signal realization according the signal power. For the remainder of this subsection,
classification accuracy for all the modulations is detailed for each benchmarking
classifier. An overview of the performance comparison between all the classifiers is
presented at the end.

In Figure 8.2, the classification accuracy of the ML classifier is listed for each testing
signal modulation. The classification accuracy Pcc is computed with the aid of
equation (8.3),

Pcc =
LS
L

%ð Þ ð8:3Þ
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where Ls is the number of signal realizations that have been successfully classified.
It is clear that with lower SNR (higher noise level) there is significant performance
degradation for all modulations. Among all themodulations, 2-PAM, BPSK andQPSK
have relatively higher classification accuracy at all noise levels. The 8-PSK and 4-QAM
are also easier to classify with perfect classification (classification accuracy of 100%)
achieved below 5 dB. Meanwhile, 4-PAM, 8-PAM, 16-QAM and 64-QAM require
high signal power to achieve perfect classification. It is clear that higher-order
modulations are more difficult to classify. Under the same noise level, the modulation
symbols of a high-order digital modulation are more densely populated and make the
symbol states much less distinctive. It is worth noting that the order of the modulation
on a single signal dimension has closer correlation to the classification difficulty.
Both having four symbol states, 4-PAM has four states on one dimension while
QPSK and 4-QAM have fewer states on each dimension. Therefore, the classification
of 4-PAM is more difficult than those for QPSK and 4-QAM. The perfect classification
of all modulations by the ML classifier is achieved when the SNR level is higher
than 9 dB.
In Figure 8.3, the classification accuracy of the one-sample KS test classifier is listed

for each testing signal modulation. Similar behaviour is observed for the one-sample
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Figure 8.2 Classification accuracy of theML classifier in AWGNchannel. (See insert for
color representation of the figure.)
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KS test classifier where high-order modulations have lower classification accuracy
under the same noise level. Compared with the ML classifier, the performance of
the one-sample KS test classifier is inferior but with a small margin. The biggest differ-
ence is observed for 8-PSK modulation, where an SNR of 9 dB is required to achieve
perfect classificationwhile only 2 dB is need for theML classifier. The same observation
applies to QPSK modulation. The reason for the classification difference for higher-
order PSK modulation could be that the one-sample KS test classifier processes the
decomposed signal I andQ segments. Therefore, the separation ofmodulation symbols
in their phase is not exploited enough. The perfect classification of all modulations by
the one-sample KS test classifier is achieved when the SNR level is higher than 12 dB.

In Figure 8.4, the classification accuracy of the KNN classifier using moments is
listed for each testing signal modulation. That for the cumulant-based classifier is
shown in Figure 8.5. One significant performance difference between the high-order
statistics-based classifiers is that their classification accuracy for certain high-order
modulations has an upper bound which cannot be exceeded regardless of the noise
level. The reason for the upper bound will be explained in the next section when we
investigate the effort of signal length on classification accuracy for different classifiers.
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Figure 8.3 Classification accuracy of the KS test classifier in AWGN channel.
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Apart from that, the moment-based and cumulant-based KNN classifiers share
the same degraded performance for high-order PSK modulation for the same reason
as the one-sample KS test classifier. In fact the effect is even more obvious for the high-
order statistics feature-based classifiers. The performance profiles of the moment-
based and cumulant-based classifiers are very similar, although the cumulant-based
KNN classifiers have slightly better accuracy in general.
In Figure 8.6, the classification accuracy of the GP-KNN classifier usingmoment and

cumulant features is listed for each testing signal modulation. Compared with the
KNN classifier using the same features but without feature selection and feature
combination, the performance profile for the GP-KNN classifier shows that the classi-
fication accuracy for some of the higher-order modulations is similar. The reason for
the change of performance characteristic is the result of the KNN classification fitness
evaluation in the GP process. The fitness evaluation calculates the average classifica-
tion accuracy of a group of training signals from all modulations. Effectively, it
encourages the improvement of average classification accuracy. Therefore, the result-
ing performance pattern is likely to be restructured.
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Figure 8.4 Classification accuracy of the moment-based KNN classifier in AWGN
channel.
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Figure 8.6 Classification accuracy of the GP-KNN classifier in AWGN channel.
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Figure 8.5 Classification accuracy of the cumulant-based KNN classifier in AWGN
channel.



In Figure 8.7, the classification accuracy of the EM-ML classifier for different
modulations in AWGN channel with varying noise levels is shown. The EM-ML
classifier shares some of the performance characteristics of the ML classifier. The
optimal classification accuracy in the given noise level range is not limited by the
number of samples available for analysis, unlike the moment- and cumulant-based
classifiers. However, the high-order modulations have significantly lower classifi-
cation accuracy as compared with the ML classifier. The difference between the
EM-ML classifier and the ML classifier is that, for the ML classifier, a single set of
channel parameters is used for the evaluation of likelihood for different hypotheses.
Meanwhile, the EM-ML classifier estimates a different set of channel parameters for
each modulation hypothesis by using the criteria of maximum likelihood. For false
modulation hypotheses, the effect of the EM-ML combination is that the mismatch
between the observed signal and the false hypothesis is minimized by the EM
estimator. Therefore, classification accuracies for some modulations are reduced.
Taking the average of the classification accuracies of all modulations for each

classifier, Figure 8.8 provides an overview of the performance comparison between
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Figure 8.7 Classification accuracy of the EM-ML classifier in AWGN channel.
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different classifiers in the AWGN channel. It can be seen that the ML classifier has
superior classification accuracy at all noise levels. Despite using the same ML
classification decision-making method, the EM-ML classifier has significantly lower
classification accuracy. However, it is still superior to most of the other classifiers.
The KS test classifier is another classifier that is highly accurate in most noise levels.
While being superior to the KS test classifier in some noise levels, the moment- and
cumulant-based classifiers suffer at high SNR due their limited ability to process
signals of small sample size. The GP-KNN classifier shows a small improvement over
the basic KNN classifier using either moment or cumulant features.

8.4 Classification Accuracy with Limited Signal Length

One aspect of the robustness of a classifier is how it performs with a limited number
of signal samples available for analysis. Performance of a classifier is affected by
the number of samples. An example would be the distribution test-based classifier.
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Figure 8.8 Average classification accuracy of all classifiers in AWGN channel. (See
insert for color representation of the figure.)
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To construct the empirical distribution, there must be a high enough number of
signal samples to calculate the distribution. The more samples there are the more
accurately would the empirical distribution resemble the true underlying distribution.
When a limited number of signal samples is available, outliners in the signal distribu-
tion could create distortion to the modelling of signal distribution. Therefore the
classification performance can be affected. In this set of experiments we repeat
the experiments in Section 8.3. However, the noise level is fixed at SNR = 10 dB
while signals of varying lengths are tested. The signal lengths tested vary from
50 to 1000 with a step of 50.
In Figure 8.9, the classification accuracy of the ML classifier is listed for each testing

signal modulation given different signal lengths. Most modulations can be classified
with accuracies of over 90% with as few as 50 samples available for analysis. The only
exception is 16-QAM and 64-QAMmodulations. To guarantee perfect classification of
the two modulations over 350 samples are needed. Meanwhile, for the other modula-
tion, 150 samples are enough to achieve the same goal. The reason why 16-QAM and
64-QAM modulation are more difficult to classify given a smaller sample size is that
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Figure 8.9 Classification accuracy of the ML classifier with different signal length.
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they both have higher number symbol states. Given 50 samples, it is not even enough
to cover all the symbol states in the 64-QAMmodulation. To ensure high classification
accuracy, there need to be enough signal samples from each symbol state. Thus this
property of a receiver can be fully represented. When the same number of signal
samples is distributed to different symbol states, it is obvious that the higher-order
modulations will have few samples for each symbol states.

In Figure 8.10, the classification accuracy of the KS test classifier is listed for each
testing signal modulation given different signal lengths. It is clear that the effect of
increased modulation order has a more significant impact on the classification accu-
racy. Lower-order modulations such 2-PAM, BPSK and QPSK are easily classified
with as few as 50 samples. Also, 4-PAM, 8-PAM and 8-PSK have similar performances
where a perfect classification is achieved with more than 450 signal samples. Again,
the higher-order modulations, that is, 16-QAM and 64-QAM, require a significant
number of samples to achieve high classification accuracy. With as few as 1000
samples, neither of the modulations can be perfectly classified.
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Figure 8.10 Classification accuracy of the KS test classifier with different signal length.
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In Figure 8.11, the classification accuracy of the moment-based KNN classifier is
listed for each testing signal modulation given different signal lengths. The results
for the cumulant-based classifier are given in Figure 8.12. In both cases there are clear-
performance differences among all the modulations. The lower-order modulations,
such as 2-PAM, BPSK and 4-QAM modulations, reach perfect classification when
more than 250 samples are available for analysis. Apart from these, QPSK is the
only other modulation which can be classified with 100% accuracy when fewer
than 1000 samples are given. Among the rest of the modulations, it is interesting that
high-order PAM modulations have higher classification accuracy, when fewer than
400 samples are available for analysis. However, the performance improvement with
increased sample size is inferior to that found for high-order QAM modulations.
In Figure 8.13, the classification accuracy of the moment- and cumulant-based

GP-KNN classifier is listed for each testing signal modulation given different signal
lengths. Again, lower-order modulations show better classification accuracy. For
2-PAM, BPSK and 4-QAM, perfect classification is achieved given 150 samples for
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Figure 8.11 Classification accuracy of the moment-based classifier with different
signal length.
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analysis. The same condition is met when 300 and 550 samples are available for QPSK
and 8-PSK respectively. Different from the moment-based and cumulant-based clas-
sifiers, the GP-KNN classifier shows a much more similar performance profile for
both higher-order PAM and QAM modulations. Yet none of these modulations can
be classified perfectly with fewer than 1000 signal samples.

In Figure 8.14, the results from the EM-ML classifier are given. Like theML classifier,
the classifier is robust given a reduced number of samples for most modulations.
However, the 64-QAM is more difficult to classify and shows a noticeable degradation
with fewer signal samples for analysis.

Given the average classification accuracy of different classifiers in the fading channel
with frequency offset in Figure 8.15, the ML classifier is obviously superior to all the
other classifiers. The moment- and cumulant-based classifiers are much limited by the
sample size. The limitation is improved when feature selection and combination is
performed using GP. The KS test classifier and the EM-ML classifier have similar
performance patterns. The EM-ML classifier has higher classification accuracy with
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Figure 8.12 Classification accuracy of the cumulant-based classifier with different
signal length. (See insert for color representation of the figure.)
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a small number of signal samples. On the other end, when more signal samples are
available for analysis, the KS test classifier shows better performance.

8.5 Classification Robustness against Phase Offset

While additive noises are the most commonly considered channel conditions, fading
effects are inevitable for systems inwireless channels. Tomodel the fading channel, we
use the signal model defined by equation (1.13). In this section we consider only the
carrier phase offset. Thus the signal model is given by equation (8.4),

r n½ �= αejθo s n½ �+ω n½ � ð8:4Þ

where θo is the phase offset. In this set of experiments, we fix both the noise level
and signal length at SNR = 10 dB and 1024, respectively. Phase offsets, ranging
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Figure 8.15 Average classification accuracy of all classifiers with different signal
length. (See insert for color representation of the figure.)
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from −10� to 10� with a step of 1�, are considered. For each phase offset, 1000 pieces of
signal are generated using equation (8.4).
In Figure 8.16, the classification accuracy of theML classifier is listed for each testing

signal modulation against different levels of phase offset. It can be seen that all
modulations have 100% classification accuracy when no phase offset is added.
Analytically, it is expected that the performance would degrade when an increasing
amount of phase offset is introduced. However, this phenomenon is not observed
for the majority of the modulations. It could be concluded that this is a result of the
robustness of the ML classifier when moderate amounts of the phase offset are
introduced. The only modulation affected by the channel condition significantly
is the 16-QAM modulation. Performance degradation is experienced when more
than 4� of phase offset is simulated. A dramatic decrease in classification is seen when
over 7� of phase offset is considered. In a channel with a phase offset of 10�, the
corresponding classification accuracy is reduced to 10%.
In Figure 8.17, the classification accuracy of the KS test classifier is listed for each

testing signal modulation against different levels of phase offset. For lower-order
modulations, including 2-PAM, 4-PAM, 8-PAM, BPSK, QPSK, 8-PSK and 4-QAM,
the KS test classifier is robust enough to provide 100% classification accuracy in the
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Figure 8.16 Classification accuracy of the ML classifier with phase offset.
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given setup when a phase offset of less than 10� is considered. Similar to the ML
classifier, the 16-QAM modulation is significantly affected by the phase offset.
Interestingly, the 64-QAM classification accuracy increases with more phase offset.
As the KS test measured the mismatch between the empirical distribution and the
reference distribution, phase offset increases the mismatch when the accurate modu-
lation is used for reference. In the meantime, the mismatch between the distorted
empirical distribution and a reference distribution from a false modulation hypothesis
is also enlarged. Since the mismatch against the false hypothesis increases at a faster
rate with increasing level of phase offset, it could be understood that the classification
accuracy can increase with more phase offset. However, in these experiments, such a
phenomenon is only observed for 64-QAM modulation.

In Figure 8.18, the classification accuracy of the moment-based KNN classifier is
listed for each testing signal modulation against different levels of phase offset. The
results for the cumulant-based classifier are displayed in Figure 8.19. Between the
moment and cumulant features, it is obvious that the cumulant features have higher
robustness in the fading channel with phase offset. The biggest difference can be seen
for 64-QAM modulation; using cumulants the classifier is able to achieve a constant
level of classification accuracy within −10� to 10� of phase offset. Meanwhile, the
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Figure 8.17 Classification accuracy of the KS test classifier with phase offset.
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Figure 8.18 Classification accuracy of the moment-based KNN classifier with phase
offset. (See insert for color representation of the figure.)

0

10

20

30

40

50

60

70

80

90

100

–10 –8 –6 –4 –2 0 2 4 6 8 10

C
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y
 (

%
)

Phase offset (°)

2-PAM

4-PAM

8-PAM

BPSK

QPSK

8-PSK

4-QAM

16-QAM

64-QAM

Figure 8.19 Classification accuracy of the cumulant-based KNN classifier with phase
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classification accuracy for 64-QAM sees dramatic degradation when more than 5� of
phase offset is introduced. In addition, the robustness of cumulant-based KNN
classifier when classifying QPSK is also higher, where severe degradation is only
observed when phase offset exceeds 8�.

In Figure 8.20, the classification accuracy of the moment- and cumulant-based
GP-KNN classifier is listed for each testing signal modulation against different levels
of phase offset. Only 2-PAM, 4-QAM and BPSK enjoy consistent classification
accuracy. All other modulations experience different degrees of performance degrada-
tion when phase offset is introduced. The reason why feature selection and combina-
tion does not improve the performance is that the training of the feature selection and
feature combination is conducted in a channel without any phase offset. The resulting
feature set is inevitably over-trained for the channel without phase offset. When phase
offset is introduced, the mismatch between the feature value of a fading signal and the
reference signal space is increased.

In Figure 8.21, the classification accuracy of the EM-ML classifier is listed for each
testing signal modulation against different levels of phase offset. The EM-ML classifier
shows excellent performance in the fading channel with phase offset. For all modula-
tions, there is no obvious performance degradation. Since the estimation of channel
coefficient consists of the estimation of carrier phase offset, the phase offset is
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Figure 8.20 Classification accuracy of the GP-KNN classifier with phase offset.
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Figure 8.21 Classification accuracy of the EM-ML classifier with phase offset.
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Figure 8.22 Average classification accuracy of all classifiers with phase offset.
(See insert for color representation of the figure.)



effectively compensated in the ML classification stage. Thus, the EM-ML classifier has
very robust performance in the fading channel with some phase offset.

To conclude this section, we give the average classification accuracy over all mod-
ulations for each classifier in the case of a fading channel with carrier phase offset
in Figure 8.22. Between −8� and 8� of phase offset, the ML classifier is still the best
classifier in terms of its classification accuracy. However, beyond 8�, the EM-ML
classifier has higher classification accuracy thanks to its inherent ability to compensate
the phase offset estimated in the EM stage. The weakest classifier in the fading channel
is the moment-based KNN classifier. Its performance degradation with an increasing
amount of phase offset is most severe among all the classifiers.

8.6 Classification Robustness against Frequency Offset

Another practical channel effect to be considered in common fading channels is carrier
frequency offset. To model the received signal in a fading channel with frequency
offset, we derive the following equation (8.5) from equation (1.13). Here,

r n½ �= αej2π�n�fo=f s n½ �+ω n½ � ð8:5Þ

fo is the frequency offset. It is worth noting that, in the simulation, a relative frequency
fo/f, which is calculated from the ratio between the actual frequency offset and the
symbol sampling frequency, is used to indicate different levels of frequency offset.
The experiment setup in this section is the same as in the previous section, the only
difference being that phase offset is neglected and frequency offset is considered.
The range of frequency offset used in the simulation is from 1 × 10−5 to 2 × 10−4.

In Figure 8.23, the classification accuracy of the ML classifier for different modula-
tions with varying levels of frequency offset is given. Different from the other channel
conditions we have investigated, the effect of frequency offset is more impulsive in
terms of the classification accuracies for different modulations. Most modulations
see a dramatic decrease in classification accuracy when a small amount of frequency
is added. Surprisingly, high-order modulations, namely 8-PSK and 64-QAM, have
much superior classification accuracy when considering frequency offset. This signif-
icantly biased performance profile is caused by the unique effect of frequency offset on
lower-order modulations. Unlike the phase shift in fading channel, frequency offset
introduces a phase shift which is time variant and incremental over time. Therefore,
the resulting effect is no longer a shift of the entire signal constellation. Instead,
it produces a rotational dispersion of the signal samples. For modulations of lower
order, the effective result of frequency offset is the increase in symbols numbers when
perceived by the receiver. Therefore, the classification is biased for higher-order
modulations. It is not unique to 8-PSK or 64-QAM. If other higher-order modulations
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Figure 8.23 Classification accuracy of the ML classifier with frequency offset.
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Figure 8.24 Classification accuracy of the KS test classifier with frequency offset.



are included in the modulation pool, it is likely that they will be correctly classified
more often than are 8-PSK or 64-QAM.

In Figure 8.24, the classification accuracy of the KS test classifier for different mod-
ulations with varying level of frequency offset is shown. The observation of the results
coincides with what has been discussed previously for the ML classifier. In fact, this
could be said for the remainder of the benchmarking classifiers. The results for the
moment-based KNN classifier, the cumulant-based KNN classifier, the moment-
and cumulant-based GP-KNN classier and the EM-ML classifier are shown in
Figures 8.25–8.28, respectively.

Figure 8.29 shows the average classification accuracy of each classifier in the
simulated fading channel with carrier frequency offset. Owing to the severe distortions
caused by frequency offsets, most classifiers have a rather distorted performance
profile. However, the trends of the performance changes are shared among most
classifiers. The only exception is the EM-ML classifier, while being less accurate when
a small amount of frequency offset is added, it is noticeablymore robust when a higher
level of frequency offset is considered. When most classifiers start to degrade with
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Figure 8.25 Classification accuracy of the moment-based KNN classifier with
frequency offset.

134 Automatic Modulation Classification



0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19

C
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y
 (

%
)

Frequency offset (×10–5)

2-PAM

4-PAM

8-PAM

BPSK

QPSK

8-PSK

4-QAM

16-QAM

64-QAM

Figure 8.26 Classification accuracy of the cumulant-based KNN classifier with
frequency offset.
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Figure 8.27 Classification accuracy of the GP-KNN classifier with frequency offset.
(See insert for color representation of the figure.)
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Figure 8.28 Classification accuracy of the EM-ML classifier with frequency offset.
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a frequency offset of 3 × 10−5, the EM-ML is able to sustain a consistent level of
classification accuracy until more than 1.4 × 10−4 frequency offset is considered.

8.7 Computational Complexity

The computational complexity of a modulation classifier affects the overall perfor-
mance of a system in three different ways. First, a complex classifier requires a more
powerful processing unit in order to obtain an AMC decision. It imposes a string of
limitations on the hardware design. Power supply, cooling system, device form factor,
cost, compatibility of other units will all be affected. Secondly, a complex classifier
requires more time to process each signal frame. For some applications, classification
accuracy is the priority and the processing time could be compromised. However, for
some time-critical applications, classifiers with low computational complexity are
favoured. Thirdly, a complex classifier requires more power to complete an AMC task.
This is especially so formobile communication units where batteries are used to power
the processing units. Clearly, a classifier with lower computational complexity with
good accuracy is much desired.
From Chapters 3–7 we presented the implementation of many modulation classi-

fiers. It should give an impression of the complexity of each classifier based on these
materials. To provide a clear overview of how these classifiers compare with each
other in terms of computational complexity we produced Table 8.6, detailing the
number of mathematical operations needed to complete the classification of one piece
of signal. To enable the calculation of the operation numbers, we make the following
assumptions: (i) the modulation candidate pool has I number of modulation candi-
dates, (ii) the number of symbols of the ith candidate modulation is given by Mi,
(iii) for each signal realization there areN number of signal samples available for anal-
ysis, (iv) the number of reference samples for KNN and GP-KNN classifier is given by

Table 8.6 Number of different operations needed for each classifier

Addition Multiplication Exponentiation Logarithm

ML
6NI

XI
i=1

Mi 5NI
XI
i= 1

Mi NI
XI
i= 1

Mi

NI

KS test 2N(log2N + 2I) 0 0 0
Moments 10LN + 10N 37LN + 37N 0 0
Cumulants 10LN + 10N + 20L 37LN + 37N + 44L 0 0
GP-KNN 10LN + 10N + 20L +

LG +G
37LN + 37N + 44L +
LG +G

LG +G LG +G

EM-ML
6KNI

XI
i= 1

Mi 5KNI
XI
i=1

Mi KNI
XI
i=1

Mi

KNI
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L, (v) the GP-evolved feature combination contains G numbers of each operator under
a general assumption, and (vi) the EM estimation stage is repeated for K iterations for
the EM-ML classifier.

For the ML classifier, the evaluation of the likelihood for each modulation hypoth-
esis is the most costly process in terms of computation. All the operations are involved
in the likelihood. Moreover, they are repeated for each modulation hypothesis, each
modulation state and each signal sample. For the EM-ML classifier, the process is then
again repeated for a certain number of iterations. Consequently, the computational
complexity of the EM-ML classifier is the highest. For the moment- and cumulant-
based features, the calculations involve only multiplication and addition. Therefore
they are relatively simple. When employing GP for feature selection and combination,
the initial investment in the training stage is rather expensive. However, it should be
pointed out that once the features are selected and combined, the training step does not
need to be repeated for each testing signal realization. In the testing stage, the GP-KNN
classifier has a slightly higher computational complexity than does the basic KNN clas-
sifier using the same features. The one-sample KS test classifier is known to have lower
computational complexity. The construction of the empirical distribution requires only
multiplication. However, the requirement of reference theoretical CDF values requires
additional calculation. If the reference values are prepared, extra space are needed
from the system memory to store all these values.

8.8 Conclusion

In this chapter, we analyzed all the classifiers from Chapters 3–7 in terms of their ver-
satility in different system configurations. It is clear that the requirement for channel
parameters varies among most classifiers. The best classifier that is able to classify
most digital modulations while not needing much prior knowledge of the communi-
cation system is the EM-ML classifier. The more important factor of classification
accuracy is investigated in Sections 8.3–8.6. Channel conditions including AWGN
noise, phase offset, and frequency offset, as well as the limitation of reduced signal
sample size, are simulated to test the performance of the ML classifier, the KS test
classifier, the moment- and cumulant-based classifiers, the GP-KNN classifier and
the EM-ML classifier. Given a matching model, the ML classifier significantly
outperforms the rest of the classifiers, when AWGN noise is considered. It also shows
higher robustness given a limited number of samples for analysis. However, in
complex channels with phase offset and frequency offset, all classifiers experience
significant degradation in their classification performance, with the exception of the
EM-ML classifier. Thanks to its estimation stage, the phase offset can be completely
compensated by the estimation channel coefficient. While not being estimated and
compensated, frequency offset also has less impact for the EM-ML classifier. While
being versatile and robust, the disadvantage of the ML and EM-ML classifiers is
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exposed in Section 8.7, where the computation complexity is evaluated for each clas-
sifier. The likelihood-based classifiers all require a high number of exponentiation and
logarithms, while these operations are not need by the other classifiers. The classifiers
with the least amount of computation requirement are the distribution test-based
classifiers, which require no exponentiation or logarithm operations and need a lower
number of additions or multiplications.
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9
Modulation Classification
for Civilian Applications

9.1 Introduction

In previous chapters we have taken a theoretical view of modulation classification.
The listed classifiers have mostly been developed based on general assumptions.
The performance comparison in Chapter 8 gives a general impression of how each
classifier performs in different scenarios.
In this chapter we visit some of the civilian communication systems with special

AMC requirements that have not been covered previously. First, we investigate
systems where higher-order modulations are deployed. Secondly, the application of
modulation classifiers in link adaptation is revised with specific classifiers designed
to exploit some of the properties of the system. Lastly, the case of blind modulation
classification in MIMO systems is discussed.

9.2 Modulation Classification for High-order Modulations

In real world communication systems there are many instances where high-order
modulations are employed for high data rate transmission. These systems mostly rely
on wired transmission links to achieve ultrahigh spectrum efficiency. Among them,
64-QAM and 256-QAM are used for digital terrestrial television and its high-definition
version. Broadband over power line (BPL) uses 1024-QAM and 4096-QAM modula-
tions. To design a classifier for high-order modulation over wired channel, we need
to understand the following characteristics of these systems.

Automatic Modulation Classification: Principles, Algorithms and Applications, First Edition. Zhechen Zhu and Asoke K. Nandi.
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First, the wired channel is relatively stable compared with wireless channels.
Therefore, the classifier does not need to adapt to the change of channel conditions.
In other words, the channel estimation can be implemented at the initialization of
the system. The estimated channel parameters can be used in the remainder of the
transmission. Secondly, the high-order modulations are normally more difficult to
classify, as concluded in Chapter 8. Therefore, to guarantee successful classification,
a classifier of high classification accuracy is needed. Among all the modulation classi-
fiers, the ML classifier, distribution test classifier and the higher-order cumulant
features are reported to have superior performance for high-order modulations.
Thirdly, because of the large number of symbol states, in a single piece of signal frame,
it cannot be guaranteed that the symbol assignment will be equally probable. In certain
cases some of the symbol states will not be used in the transmission. This condition has
a significant impact on the distribution test-based classifiers. For a KS test classifier,
when some of themodulation symbol is not observed in the received signal, the empir-
ical distribution function will exhibit big differences at the missing symbols, since in
the theoretical CDF these symbol positions normally possess higher probability
values. For higher-order cumulant-based classifiers, it is obvious that the signal length
is of great importance. From Figure 8.17 we can see that among three of the QAM
modulations considered in the simulation, the higher-order QAM modulations make
a higher impact when limited signal length is available for analysis. When the
modulation is increased to 1024-QAM or 4096-QAM, it is clear that the higher-order
cumulants will not be able to provide the demanded classification accuracy. On the
other hand, the ML classifier has suggested superior performance for both high-order
modulation as well as limited signal length. Therefore, the ML classifier is the ideal
option for the classification of high-order modulations in wired communication
systems.

With the above analysis, we construct the AMC solution in a wired communication
system using high-order modulations. The overall process is illustrated in Figure 9.1.
The heaver dashed line indicates the transmission of pilot samples to the channel
estimator in system initialization. Thanks to the pilot samples, many state-of-the-art
channel estimators can be used to acquire the CSI rather easily. The thinner dashed
line indicates the exchange of CSI and modulation candidate pool from the channel
estimator to the ML classifier. The CSI and information of the modulation candidate
pool are then saved in theML classifier to assist modulation classification. They are not
updated until the system is reconfigured. During normal transmission, the signals
will be transmitted through the wired channel indicated by the heavy solid line.
TheMLclassifierwill analyze each signal and evaluate the corresponding likelihood for
eachmodulation candidate in the pool using equation (3.3).When the likelihood values
for each modulation hypothesis are obtained, the classification decision can be easily
reached using the maximum likelihood criteria given in equation (3.13). The demodu-
lator is then informed of the modulation type of the received signal from the ML
classifier. If the classification is correction, the transmission is successfully completed.
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9.3 Modulation Classification for Link-adaptation Systems

Link adaptation, also known as adaptive modulation and coding, adaptively selects
the modulation method depending on the channel conditions. The mechanism
of the LA system with AMC has been briefly discussed in Chapter 1. The system
configuration is illustrated in Figure 9.2.
Since the selection of themodulation scheme depends on the channel conditions, the

completed posteriori probability of the signal being received with a modulation type
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Figure 9.1 AMC in wired system with high-order modulation.
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M can be expressed as a combination of the prior probability of symbol sm being trans-
mitted and the likelihood of the received signals belonging to the transmitted symbol,
as shown in equation (9.1).

q r,sjΘð Þ=
ð
s

p sm,r Θj Þ log p sm Θj Þð Þds� ð9:1Þ

The prior probability can be automatically achieved before the next batch of signals
is transmitted. The incorporation of the prior probability in a modulation classifier is
most natural for a likelihood-based classifier. Depending on the implementation, the
link adaptation could depend on the estimated channel or the acknowledgement and
negative acknowledgement protocol. However, this is outside the scope of this book.
We assume that the prior probability with regard to the channel information is known
to the classifier. Instead of the maximum likelihood criterion one can adopt the
maximum a posteriori (MAP) criterion to accommodate the added information of
modulation selection prior probability. The application of MAP in modulation
classification was first suggested by Haring, Chen and Czylwik (2010). The log
MAP likelihood could be calculated using equation (9.2).

logLMAP RjSM,Θð Þ=
XN
n=1

log
XM
m=1

1
M

1
2πσ2

e−
r n½ �−hsmj j2

2σ2

 !
+ log p SM Θj Þð ð9:2Þ

The classification decision can be given by finding the modulation candidate with
the highest a posteriori likelihood, as determined by equation (9.3).

M̂= argmax
M2�

logLMAP R SM,ΘMj Þð Þ� ð9:3Þ

9.4 Modulation Classification for MIMO Systems

Multiple-input and multiple-output (MIMO) systems have been the key technology
in many recent communications innovations. A MIMO system employs spatially
differing transmission and receiving antenna arrays. MIMO systems enable the trans-
mission of multiple signal streams through spatially different signal paths, which is
known as spatial multiplexing (SM). The diversity of the signal paths also provides
the possibility of improved link reliability. When space-time coding (STC) is used,
multiple versions of the signal symbol are transmitted simultaneously. With accurate
channel knowledge, the received signals can be recovered more accurately.

MIMO systems differ from most modulation classifiers due to the multiple paths
between the transmission antenna arrays and the receiving antenna arrays. Since each
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receiver provides a mixture of single symbols from all transmitters, the modulation
classification approach in single-input and single-out system cannot be used anymore.
The existing modulation classifiers must be modified to meet the new requirements as
shown in Figure 9.3.
The MIMO systems are composed of Ni transmitting antennas and Nr receiving

antennas. A Rayleigh fading channel with time-invariant path gains is considered.
The resulting channel matrixH is given by anNr ×Ni complex matrix with the element
hj,i representing the path gain between ith transmitting antenna and jth receiving
antenna. Assuming perfect synchronization, the nth receivedMIMO-SM signal sample
vector rn = [rn(1), rn(2),…, rn(Nr)]

T in a total observation of N samples is expressed as
given by equation (9.4),

rn =Hsn +ωn ð9:4Þ

where sn = [sn(1), sn(2),…, sn(Nt)]
T is the nth transmitted signal symbol vector and

ωn = [ωn(1),ωn(2),…,ωn(Nr)]
T is the additive noise observed at the nth signal sample.

The transmitted symbol vector is assumed to be independent and identically
distributedwith each symbol assigned from themodulation alphabet with equal prob-
ability. The additive noise is assumed to be white Gaussian with zero mean and
varianceσ2,whichgivesωn 2N 0,σ2INr

� �
, where INr is the identity matrix of sizeNr ×Nr.

From an ML classifier, Choqueuse et al. developed the MIMO version of the like-
lihood-based classifier (Choqueuse et al., 2009), with an updated version of the
likelihood function, given in equation (9.5),

L RjΘð Þ=
YN
n=1

1
M

XM
m=1

1

πσ2ð ÞNr
exp −

rn−Hsmk k2F
2σ2

 !
ð9:5Þ

where �k k2F is the Frobenius norm. The possible transmitted symbol set S = [S1, S2…
SM] gathers all the combinations of transmitted symbols from Ni number of antennas.
Given amodulationwith L number of states, there existM= LNt number of transmitted

…
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Figure 9.3 MIMO channel.
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symbol vectors and a transmitted symbol set of size Nt × LNt . The channel matrix and
noise variance are assumed to be known. The corresponding log-likelihood function
can be derived as equation (9.6).

logL RjΘð Þ=
XN
n=1

log
1
M

XM
m=1

1

πσ2ð ÞNr
exp −

rn−Hsmk k2F
2σ2

 !( )
ð9:6Þ

L RjΘð Þ=
YN
n=1

1
M

XM
m=1

1

πσ2ð ÞNr
exp −

rn−Hsmk k2F
2σ2

 !

The subsequent classification decision can be made by finding the modulation
candidate which provides the highest likelihood, as calculated using equation (9.7).

cM= argmax
M2�

logL R SM,ΘMj Þð Þ� ð9:7Þ

The method provides high classification accuracy, but with a rather high computa-
tional complexity. Alternative classifiers with reduced complexity have been proposed
in several publications (Kanterakis and Su, 2013; Mühlhaus et al., 2013). Kanterakis
and Su suggested treating independent component analysis (ICA) recovered signal
components as independent processes. The recovered source signal components
ssn = ssn 1ð Þ,ssn 2ð Þ,…,ssn Ntð Þ� �

are acquired by using equation (9.8),

ssn = Ĥ
−1
rn = Ĥ

−1
Hsn + Ĥ

−1
ωn ð9:8Þ

where Ĥ
−1

is the inverse of the estimated channel matrix. For each independent
transmitted signal stream, the updated likelihood function is given by equation (9.9).

L ss ið ÞjΘð Þ=
YN
n=1

1
M

XM
m= 1

1
πσ2

exp −
ssn ið Þ−w ið ÞHsn
�� ��

2σ2

� �
ð9:9Þ

In addition to the likelihood-based classifier, Choqueuse et al. also suggested the use
of independent component analysis for the estimation of the channel matrix when it is
not readily known. Cardoso and Souloumiac’s JADE algorithm was suggested
(Cardoso and Souloumiac, 1993). The resulting estimation of channel matrix has a
phase shift and needs phase correction. The ICA estimation provides channel matrix
estimation but the estimation for noise variance is still lacking. In addition, there are
limits to the MIMO arrangement that can be considered. When the number of trans-
mitting antennas exceeds the number of receiving antennas, the ICA estimation
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cannot be implemented. To overcome these issues related to an ICA-aided
modulation classifier for the MIMO system, we suggest an expectation maximization
estimator for more practical implementation of the likelihood-based classifier for
MIMO systems.
To evaluate likelihood for theML classifier, the complex channel matrixH and noise

variance σ2 must be estimated beforehand. Since the modulation is unknown to the
receiver, many data-aided approaches using pilot symbols are not suitable. Expecta-
tionmaximization has been employed for joint channel estimation through an iterative
implementation ofmaximum likelihood estimation (Wautelet et al., 2007; Das and Rao,
2012). In MIMO systems, we consider the received signal R = [r1, r2… rN] as the
observed data. Meanwhile, the membership Z of the observed samples is considered
as the latent variable. Z is an M ×N matrix with the (m,n)th element being the
membership of the nth signal sample rn , given the transmitted symbol vector Sm.
The possible transmitted symbol set S = [S1, S2… SM] gathers all the combinations
of transmitted symbols from Nt number of antennas. Given a modulation with
L number of states, there exist M= LNt number of transmitted symbol vectors and a
transmitted symbol set of size Nt × LNt . With Θ = {H, σ2} representing the channel
parameters, the complete likelihood is given by equation (9.10),

q R,SjΘð Þ=
ð
S

p S R,Θj Þ log p R S,Θj Þp S Θj Þð ÞdSðð� ð9:10Þ

where p(R|S,Θ) is the probability of the received signal being observed given
transmitted symbols vector S and channel parameter Θ. Since the additive noise is
assumed to have a complex Gaussian distribution, p(R|S,Θ) can be calculated as given
in equation (9.11).

p RjS,Θð Þ=
YN
n= 1

1

πσ2ð ÞNr
exp −

rn−Hsnk k2F
2σ2

 !
ð9:11Þ

Meanwhile, p(S|R,Θ) represents the probability of S being transmitted given the
observed signalR and the channel parameterΘ. InWautelet et al. (2007), this probability
is acquired by an a posteriori probability computation which is not presented. In this
book, we replace the a posteriori probability with a soft membership znm representing
the likelihood of the nth transmitted symbol vector being Sm, with

PM
m= 1zmn = 1. Since

assignment of the transmitted symbol is independent of the channel parameter, p(S|Θ)
is a constant, 1/M, when equal probability is assumed. The estimation ofΘ is achieved
by iterative steps of expectation evaluation and maximization.
The evaluation step (E-step) provides the expected log-likelihood under the current

estimate of Θt at the tth iteration. The expectation is then subsequently maximized for
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the updated estimation of Θ. From equation (9.11) the expected value of the complete
log-likelihood is derived as shown in equation (9.12),

Q R,SjΘtð Þ= log
YN
n=1

YM
m=1

p rn,SmjHt,σ2t
� �zmn = −

XN
n=1

XM
m=1

zmn Nr log πσ2t
� �

+
rn−HtSmk k2F

σ2

" #

ð9:12Þ

where p rn,Sm Ht ,σtj Þð is the probability of the nth received signal vector being observed
given the current estimation of channel matrixHt and noise variance σ2t . The soft mem-
bership znm is evaluated equation (9.13).

znm =
p rnjSm,Θtð Þ
XM
m=1

p rnjSm,Θtð Þ
=

exp −
rn−HSmk k2

F
σ2

� �

XM
m= 1

exp −
rn−HSmk k2F

σ2

 ! ð9:13Þ

The update of the parameter estimation is achieved through themaximization of the
current expected log-likelihood (M-step). To derive the close form update function
for the channel matrix and noise variance, we first find the derivatives of Q(R,S|Θt)
with respect to H and σ2 separately. Given that equation (9.14) holds, then

rn−HSmk k2F =
XNr

j=1

rn jð Þ−
XNt

i=1

hj, iSm ið Þ
�����

�����
2

ð9:14Þ

the derivative of Q(R,S|Θt) with respect to the individual element hj,i of the channel
matrix is given by equation (9.15).

∂Q R,SjΘtð Þ
∂hj, i

= −
XN
n=1

XM
m=1

zmn

XNt

i=1

hj, i
∗ Sm ið Þj j2−rn jð Þ∗Sm ið Þ

σ2
ð9:15Þ

In the same way, the derivative of Q(R,S|Θt) with respect to the noise variance σ2

is found as shown in equation (9.16).

∂Q R,SjΘtð Þ
∂σ2

= −
XN
n= 1

XM
m=1

zmn −
Nr

σ2
+

rn−HSmk k2F
σ4

 !
ð9:16Þ
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When the derivatives are set to zero, the update functions of hj,i and σ2 can be
derived from equations (9.15) and (9.16). However, it is obvious that different channel
parameters are coupled. To simplify the maximization process, the coupled channel
parameters are estimated in turn. The path gain hj,i is estimated with the rest of the
channel matrix known and is represented with the latest estimate for each path gain.
The path gains are updated in ascending order with respect to j and i. The resulting
update function for hj,i is given by equation (9.17),

ht+1
j, i =

XN
n= 1

XM
m=1

zmn rn jð ÞSm ið Þ∗−Sm ið Þ∗
XNt

k =1,k 6¼i

hk, iSm kð Þ
" #

XN
n=1

XM
m=1

zmn Sm ið Þj j2
ð9:17Þ

where hk,i is the latest estimate of path gain. At the tth iteration, hk, i = htk, i if it has

not been updated, or hk, i = ht+1
k, i if it has been updated. After the channel matrix is

completely updated, Hi+1 is used to acquire the noise variance estimation, given in
equation (9.18).

σ2t+1 =

XN
n=1

XM
m= 1

zmn

XNr

j=1

rn jð Þ−
XNt

i=1

ht+1
j, i Sm ið Þ

�����
�����
2

Nr

XN
n=1

XM
m=1

zmn

ð9:18Þ

The EM algorithm with such a maximization process is known as expectation
condition maximization. ECM shares the convergence property of EM (Meng and
Rubin, 1993) and can be constructed to converge at a similar rate as the EM algorithm
(Sexton, 2000). The ECM joint estimation of channel parameters has previously been
successfully applied in BMC for SISO systems (Chavali and Da Silva, 2011, 2013;
Soltanmohammadi and Naraghi-Pour, 2013).
The final estimation of channel matrixH and noise variance σ2 is achieved when the

iterative process is terminated by one of two conditions. The first condition terminates
the process when the estimation reaches convergence. The condition is represented
numerically with the difference between the expected likelihoods of the current
iteration and the previous iteration along with a predefined threshold. In the second
condition, termination is triggered when the predefined number of iterations has been
reached. The estimate at termination is used to replace the known channel matrix
and noise variance in equation (9.6) and classification decision to be made using
equation (9.7). An illustration of the system is given in Figure 9.4.
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9.5 Conclusion

In this chapter, three civilian communication systems, which pose their unique
requirement on modulation classification, are considered for the practical design of
some modulation classifiers. The high-order modulation classification challenge is
addressed for wired communication systems with associated channel effect. The
knowledge of system configuration in a link adaptation system is exploited for
improved modulation classification performance through a maximum a posteriori
classifier. The update issue of modulation classification for MIMO systems is solved
by an EM-ML classifier. Updated likelihood evaluation and channel estimation are
both presented for MIMO systems.
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10
Modulation Classifier
Design for Military
Applications

10.1 Introduction

The primary purpose of modulation classification in military scenarios is to ascertain
information about an adversary by intercepting radiated energy. The detection and
subsequent identification of the signal modulation have three possible uses. First,
the knowledge of the modulation scheme can be directly used for the identification
of the unit transmitting the signal. Secondly, if decryption and translation is added
to the rear end of the modulation classifier and the demodulator, the transmitted
message can be recovered if the modulation scheme can be classified. Thirdly, when
jammers are deployed to disrupt transmission between adversary units, modulation
classification is required to match the modulation of jamming signals and adversary
signals.
Jamming is an important part of the electronic attack strategy (Poisel, 2008). The

purpose is to override the adversary’s communication by introducing a man-made
signal in the same communication channel. As the adversary receivers are matched
with the transmitter, only the signal of the matching property will be picked up by
the adversary receiver. In practice, a jamming signal must be transmitted using the
same modulation technique and have the same carrier frequency. In addition, to over-
ride the adversary communication, the jamming signal must have higher power to
hide the intended transmission. For a modulation classifier, the presence of a jamming
signal has no negative effect on the classification performance. In contrast, given that
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the jamming signal has higher power, regardless of the signal being analyzed, the SNR
is increased compared with the scenario without the presence of a jamming signal. As
demonstrated in Chapter 8, this often improves the classification accuracy. Since there
is no new challenge posed by a jamming signal, it is not necessary to develop any
specific modulation classification strategy for jammed signals. Most classifiers should
suffice in this case.

In the remainder of this chapter we first establish a modulation classifier that
narrows down the possible modulation types to be considered in the candidate pool.
Next, we focus on classification of the signals transmitted using two different
low-probability-of-detection techniques.

10.2 Modulation Classifier with Unknown Modulation Pool

Surveillance and threat analysis in electronic warfare monitors the radio transmission
channels for communication between an adversary’s units. Once communication is
detected at a certain frequency band, modulation classification is one of the initial
processes required for the retrieval of the transmitted message. Different from civilian
communication systems, in military scenarios there is no known modulation
candidate pool to assist the classifier. In fact, modulation can be considered as a layer
of decryption which prevents the message from being recovered by the adversary
unless successful modulation classification is performed. In other words, the adver-
sary is inclined to use any modulation scheme to increase the difficulty of modulation
classification.

Historically, modulation classifiers are mostly defined for a finite set of modulation
schemes. While it does not provide a direct solution to our problem, it is possible to
study the properties of these modulation classifiers and to exploit the true capability
of these classifiers. It is unlikely that one classifier will be able to classify all modulation
types. However, it is possible to use a few classifiers to perform multi-stage classifica-
tion. The idea is to classify the signal into general modulation types. The subsequent
stage will be accomplished by a different classifier which is more suitable for separa-
tion within the specific modulation category.

In this case, we consider seven major types of modulation; namely AM, FM, PAM,
ASK, FSK, PSK, and QAM. For digital modulations, that is PAM, ASK, FSK, PSK, and
QAM, the modulations of different order are not considered in this section. The
classifier aims to narrow down the modulation scheme to an individual type of mod-
ulation. If the aforementioned digital modulations are detected, the information of the
modulation type can be further processed by another classifier which specialized in
the classification of modulations of different order and the same type.

When a piece of unknown single is intercepted, the first step of the proposed scheme
is to measure if the phase of the signal has a high variance. Signals such as AM and
ASK have constant phase. Therefore, the variance of their signal phase should be very
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low. On the other hand, other modulations all have relatively high variance in their
signal phase. To achieve the classification, we adopt the standard deviation of the
absolute value of the instantaneous signal phase as the feature in the first stage to
differentiate AM and ASK from FM, PAM, FSK, PSK, and QAM. The feature σdp
is covered in Chapter 5 and the threshold t(σdp) can be selected heuristically and
optimized according to the channel conditions.
In the first group, to differentiate AM and ASK, the probability density function of

their amplitude envelope can be exploited. For AM, being an analogue modulation,
the possible state of the amplitude envelope has no prior restriction. Therefore, its
PDF ismuch flatter. In contrast, ASKmodulation, depending on themodulation order,
have several states in its amplitude envelope representing transmitted symbols in
digital communication. Regardless of the noise model, the underlying PDF of ASK
signal should have spikes at the mapped amplitude values. The differences between
their PDF can be presented numerically with kurtosis andmore specifically the fourth-
order moment of the signal. This feature has also been listed in Chapter 5. If the
fourth-order cumulant μa42 of the intercepted signal is higher than the pre-defined
threshold t μa42

� �
, the signal is classified as AM. Accordingly, if the feature value is

below the threshold, the signal is classified as ASK modulation.
In the second group, we can also investigate the amplitude envelope for further

classification. It is obvious that FM or FSK modulations have no information in their
signal amplitude. Given that the signal amplitude is constant, then, as discussed in
Chapter 5, the feature γmax should be zero for FM and FSK. The other modulations
in the second group, however, have information in either their signal amplitude or
their signal phase. Consequently, the feature value γmax for these modulations would
be non-zero. A pre-defined decision threshold t(γmax) would enable a simple classifi-
cation of these two subgroups.
The solutions for the separation of FM and FSK modulations are similar to that for

the separation of AM and ASK modulations. The only difference is that instead of
studying their amplitude envelope, the signal feature being evaluated is the signal
frequency. While both modulations use signal frequency to convey information to
be transmitted, being an analogue modulation the possible value of signal frequency
is not limited to a few states in FM modulation. The resulting flat PDF of its signal
frequency also suggests a lower kurtosis and fourth-order moment of the signal fre-

quency. On the other hand the same feature, μ f
42, as covered in Chapter 5, should have

higher values among all the FSK modulations. It is not difficult to see that the
identification of each of the modulation types can be achieved with a pre-defined

threshold t μ
f
42

� �
.

In the second subgroup of PAM, PSK and QAM, the discrimination is not as easily
achievable as for the other cases. The properties of different signal features have no
distinctive difference between them. Some of the aforementioned features may display
different values among thesemodulations. However, when added noise is considered,
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these features do not provide an optimal solution. In this case, we employ the
signal vector analyzer for extracting the in-phase and quadrature segments of
the received signals. Given the reconstructed signal constellation using their in-phase
and quadrature segments, it is easy to see some characteristic features of their
symbol mappings. For PAM modulations, there are clear states of magnitude in their
symbols mapping. However, there is only one phase for these symbols. For PSK
modulations, there are different states in the symbol phases while the magnitude is
constant for all symbols. For QAM modulations, both the phase and magnitude have
multiple states. The classification of these three types of modulation draws inspiration

from the two fourth-order moment features μa42 and μ f
42. In this case, we propose

fourth-order moments of the reconstructed signal phase μ
p
42 and magnitude μm42. The

expressions for the two new features are given by equations (10.1) and (10.2),
respectively,

μ
p
42 =

E arg r n½ �ð Þ� �
E arg2 r n½ �ð Þ� �� �2 ð10:1Þ

and

μm42 =
E r n½ �j jf Þg
E r n½ �j j2
n on o2 ð10:2Þ

where r[n] is the complex representation of the nth signal sample with arg(r[n]) and
|r[n]| being its phase and magnitude. Based on the analysis of each modulation type,
PAM should have a low μ

p
42 value and a high μm42 value. PSK should have a high μp42
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value and a low μm42 value. QAM should have both a high μp42 value and a high μm42
value. Given some pre-optimized threshold, the classification decision can be found
using the conditions shown in Figure 10.1.

10.3 Modulation Classifier against Low Probability of Detection

In the field of EP, it is often required to reduce the chance of the transmitted signal
being detected by the adversary. There are two common techniques to achieve that.
First, the detection probability can be reduced if the signal power is below the noise
power. This is called direct sequence spread spectrum (DSSS). Secondly, the detection
can be made difficult if the signal is transmitted with one or more alternating frequen-
cies. This is called frequency-hopping spread spectrum (FHSS). Together with other
techniques they form the strategy of low probability of detection (LPD) in military
communication systems.

10.3.1 Classification of DSSS Signals

It is easy to see that LPD poses specific challenges to the task of AMC. First, if the DSSS
is employed by the transmitter, the SNR is likely to be below 0 dB. Therefore, only the
classifiers with robust performance against high noise level can meet the requirement
of AMC for DSSS. Therefore, we revisit Figure 8.8 in Chapter 8 to choose the candi-
dates for this scenario. It is clear that when accurate channel state information is avail-
able the likelihood-based classifiers have superior classification accuracy and
robustness. The drawback of high computational complexity may not be much of a
concern given that the detection hardware employed normally does not have much
limitation on computational power.
In this context, we limit the discussion to digital modulations, namely PAM, PSK,

and QAM. If a wider range of modulations is considered the identification scheme
proposed in Section 10.2 can be employed as a prior step of the following process.
In the first step, we used the features μ

p
42 and μm42 to achieve the classification of

modulation type. It is necessary that there be a reduction of computational complexity
for the following likelihood classifiers. In addition, performance enhancement may be
attained since amore specific approach could be applied to eachmodulation type. One
classification of modulation type is achieved through the process given in Section 10.2;
the remaining challenge is the classification of modulations of the same type but
different orders.
For PAM modulations, as the signal distribution is unique among different orders

thanks to different symbol mappings in their magnitude, the likelihood analysis can be
limited to the magnitude of the signal. To make the matter more convenient, it is of
interest to convert the signal to a zero-phase one, so that all the symbols have only
in-phase segments. According to Section 2.2.2, the distribution of the signal on their
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in-phase segments is Gaussian when the added noise has a Gaussian distribution.
Therefore we could easily adopt the likelihood function given in equation (3.5) and
construct a magnitude-based likelihood classifier (ML-M).

For PSK modulations, it is clear that the phase of the signal complex representation
has clear states. By employing phase-based likelihood functions, there are two benefits.
First, the channel estimationerror canbenegated, as the signalmagnitudeplays a trivial
role in the evaluation. Secondly, as much of the distinction between different PSK
modulations is displayed in their signal phase, the phase-based likelihood function
[equation (3.9)] should provide optimal classification performance on only the dimen-
sion of signal phase as part of a phase-based maximum likelihood classifier (ML-P).

For QAMmodulations, there are more variations in the symbol mapping in terms of
signal in-phase and quadrature segments. It is obvious that the bi-variant likelihood
function equation (3.3) for the signal’s complex representation is most suitable to
exploitation of the different characteristics of different QAM modulation symbols
mapping (Figure 10.2).

10.3.2 Classification of FHSS Signals

In the case of FHSS, the carrier frequency of the transmitted signal is changing all the
time. The first difficulty is the detection of the signal. While it is not within the scope of
this book, the difficulty in signal detection has profound implications in modulation
classification. As the frequency detection may be delayed or inaccurate, it is obvious
that the performance of the modulation classifier may be affected. In Chapter 8 we
benchmarked some state-of-the-art classifiers in the case of frequency offset. There
is a common behaviour of significant performance degradation with even the slightest
amount of frequency offset. Knowing that the frequency offset is prone in the channel
estimator, the selection of modulation classifier is extremely difficult.

Fortunately, there are classifiers with natural robustness against frequency offset.
While not being featured as the best option in most cases, these classifiers could be
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suitable candidates for the task of classifying FHSS signals. In Chapter 3 the
magnitude-based ML classifier is mentioned and its potential robustness is noted.
Owing to the fact that signal magnitude is not affected by rotatory distortion of the
signal, the performance of a magnitude-based classifier is an obvious candidate for
FHSS classification. However, it is also noted that the magnitude-based ML classifier
cannot classify PSK modulations since all PSK modulations have the same signal
magnitude.
To enable the classification of PSK modulations while keeping the frequency offset

in mind, the phase difference classifier is a possible option to combat frequency offset
in PSKmodulation classification. The phase difference classifiers extract the phase dif-
ference between adjacent signal symbols. As the rotatory shift of the signal symbols is
progressive, the mismatch between the measured phase difference and the real phase
difference can be minimized. Wang and Wang (2010) suggested the phase difference-
based classifier using the distribution of phase difference derived by Pawula, Rice and
Roberts (1982) for a KS classifier (see Chapter 4).
The classification begins with the fourth-order moment of the signal magnitude μm42.

Though under heavy rotary dispersion, the signal magnitudes of the M-PSK signal are
not affected, which maintains the low value of μm42. Clearly, the M-PAM and M-QAM
modulations have higher μm42 values. To further classify PSK or different orders, the
phase difference (PD) classifier can be employed to accomplish the task. To differen-
tiate PAM and QAM modulations, the PD classifier is also a good option. For PAM
modulations, despite the frequency offset, the adjacent signal samples maintain a
relatively consistent phase difference. In contrast, QAM modulations have a more
complex phase difference profile and are easily distinguishable from PAM modula-
tions. The classification of M-QAM and M-PAM can both employ the magnitude-
based ML classifier. An illustration of the AMC implementation for classifying
FHSS signals is given in Figure 10.3.
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10.4 Conclusion

In this chapter we considered several modulation classification tasks that are unique to
the military scenarios. The detection of modulation type provides threat analysis and
surveillance, as well as the ability to handle a wide range of common modulation
types. The task of digital modulation classification is put in the challenge of low-
probability-of-detection signals. Two different cases of LPD signal are considered,
namely DSSS and FHSS. For DSSS, different types of likelihood-based classifiers are
selected for their high performance when the SNR is lower than 0 dB. In the case of
FHSS, given the inevitable frequency offset, magnitude-based and phase difference-
based classifiers are suggested for a robust classification of the FHSS signal, due to
their inherent robustness against frequency offset.

References

Pawula, R.F., Rice, S.O., and Roberts, J.H. (1982) Distribution of the phase angle between two
vectors perturbed by gaussian noise. IEEE Transactions on Communications, 30 (8), 1828–1841.

Poisel, A.R. (2008) Introduction to Communication Electronic Warfare Systems, Artech House,
Norwood, MA.

Wang, F., and Wang, X. (2010) Fast and robust modulation classification via Kolmogorov-
Smirnov test. IEEE Transactions on Communications, 58 (8), 2324–2332.

160 Automatic Modulation Classification



Index

adaptive modulation and coding (AM&C), 1
additive noise, 16
additive white Gaussian noise (AWGN)

channel, 5, 20
analogue communication system, 7
analogue modulation, 6

AM, 6
FM, 6, 7
PM, 6, 7

automatic modulation recognition, 2
AWGN channel, 20

back propagation, 88
blind modulation classifier, 97
broadband over power line (BPL), 141

centroid parameter, 103
channel effect, 15–16
channel estimation, 4

expectation maximization, 97–102, 147
expectation maximization estimation, 97
minimum centroid estimation, 98

channel gain, 15
channel state information (CSI), 4
classification accuracy, 5
computational complexity, 35
constellation, 14
continuous wavelet transform (CWT), 71
covariance matrix, 20

cumulant based feature, 74
cumulative distribution function (CDF),

50, 56–8
AWGN channel, 5, 20

cyclic cumulant based feature, 78
cyclic moment based feature, 75
cyclostationary process, 76
cyclic autocorrelation, 75
cyclic domain profile, 77
spectral coherence, 77
spectral correlation function, 77

digital communication system, 11
digital modulation, 6, 8–15
ASK, 8–9, 11
FSK, 8–9, 11
PAM, 11, 13
PSK, 11, 13
QAM, 13, 14

dimension reduction, 81
feature selection, 81

direct sequence spread sectrum (DSSS), 157
discrete signal, 16
distribution based classifier, 63
CvM test classifier, 57

distribution test
Anderson–Darling test, 57–8
Cramer–von Mises test, 57
Kolmogorov–Smirnov test, 50–56

Automatic Modulation Classification: Principles, Algorithms and Applications, First Edition. Zhechen Zhu and Asoke K. Nandi.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.



distribution test based classifier
AD test classifier, 58
KS test classifier, 50–58, 63
ODST classifier, 59
phase difference classifier, 56

electronic support
electronic attack, 2

electronic warfare, 1, 2
electronic attack, 2
electronic protect, 2
electronic support, 2

empirical cumulative distribution function
(ECDF), 50, 51

expectation maximization (EM), 97
expectation step, 99
maximization step, 99
update function, 100

expectation/condition maximization
(ECM), 101

fading channel, 5, 20
attenuation, 20
fast fading, 25
frequency offset, 25, 28
offset, 25
phase offset, 15–16, 25, 26
slow fading, 25

feature based classifier, 19
cumulant based classifier, 50
cumulant based feature, 50, 74, 116–20, 123,

124, 128–30
moment based feature, 74, 75, 117, 123, 124,

128, 129, 132, 134
feature combination

artificial neural network, 81
genetic programming, 81, 90–94

feature selection
genetic algorithm, 62
genetic programming, 81, 90–94
logistic regression, 86–7

feature space, 81
Fisher’s criterion, 93
fitness, 90

evaluation, 90
function, 90

frequency-hopping spread spectrum
(FHSS), 157

Gaussian Mixture Model, 28
Gaussian mixture model (GMM), 28
genetic algorithm, 62
genetic operator

crossover, 89, 91
mutation, 89, 90

goodness of fit, 49

high order modulation, 43

I-Q, 14–15
in-phase component, 14–15
quadrature component, 14–15

impulsive noise, 5, 20

jamming, 1, 3

K-means clustering, 99
k-nearest neighbour (KNN), 81

likelihood based classifier, 5, 26
likelihood ratio test, 40–43
maximum a posteriori, 144
maximum likelihood, 35–43,
45, 46

minimum distance likelihood, 45
minimum likelihood distance, 102
non-parametric likelihood, 45

likelihood function (LF), 35, 36
AWGN channel, 20
fading channel, 5
non-Gaussian channel, 20

likelihood ratio test
average likelihood ratio test, 35
generalized likelihood ratio test, 35
hybrid likelihood ratio test, 35

linear kernel, 84
link adaptation (LA), 1, 4
log likelihood function, 99
logistic function, 86–7
logit function, 87
low probability of detection, 154

DSSS, 157
FHSS, 157

162 Index



machine learning, 19
artificial neural network, 81
genetic algorithm, 81, 89–90
KNN classifier, 81–3
logistic regression, 86–7
support vector machine, 81

machine learning based classifier, 81
KNN classifier, 81
KNN classifier, 81–3, 86, 94
SVM classifier, 84

membership
hard membership, 99
soft membership, 99

modulation accuracy, 5, 20
modulation candidate pool, 4
modulation classification, 1, 2
modulation hypothesis, 35
modulation identification, 2
modulation recognition, 2
moment based feature, 74
multi-layer perceptron (MLP), 87–8
multiple-input andmultiple output (MIMO), 6

non-Gaussian channel, 28–31
Gaussian mixture model, 28
Middleton’s Class A, 28
symmetric alpha stable, 28

non-linear kernel, 84–5
polynomial kernel, 85

non-parametric likelihood function (NPLF), 45

pilot sample, 55
prior probability, 40
probability density function (PDF), 20
pulse shaping, 15–16

Rayleigh distribution, 106
Rayleigh fading channel, 145
Rice distribution, 25

semi-blind classifiers, 97
signal distribution
AWGN channel, 5, 21–5
fading channel, 20, 25–7
non-Gaussian channel, 28–31

signal-to-centroid distance, 103
signal-to-noise ratio (SNR), 16
space-time coding (STC), 144
spatial multiplexing (SM), 144
spectral based feature, 65
surveillance, 1
symbol mapping, 49
Symmetric Alpha Stable (SαS)

model, 28

threat analysis, 1
timing error, 16

von Mises distribution, 23

wavelet transform feature, 71–4

163Index



0

10

20

30

40

50

60

70

80

90

100

–20 –15 –10 –5 0 5 10 15 20

C
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y
 (

%
)

SNR (dB)

2-PAM

4-PAM

8-PAM

BPSK

QPSK

8-PSK

4-QAM

16-QAM

64-QAM

Figure 8.2 Classification accuracy of the ML classifier in AWGN channel.

Automatic Modulation Classification: Principles, Algorithms and Applications, First Edition. Zhechen Zhu and Asoke K. Nandi.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.



0

10

20

30

40

50

60

70

80

90

100

–20 –15 –10 –5 0 5 10 15 20

C
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y
 (

%
)

SNR (dB)

ML

KS

Moment

Cumulant

GP-KNN

EM-ML

Figure 8.8 Average classification accuracy of all classifiers in AWGN channel.



0

10

20

30

40

50

60

70

80

90

100

50 150 250 350 450 550 650 750 850 950

C
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y
 (

%
)

Signal length

2-PAM

4-PAM

8-PAM

BPSK

QPSK

8-PSK

4-QAM

16-QAM

64-QAM

Figure 8.12 Classification accuracy of the cumulant-based classifier with different
signal length.



0

10

20

30

40

50

60

70

80

90

100

50 150 250 350 450 550 650 750 850 950

C
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y
 (

%
)

Signal length

ML

KS

Moment

Cumulant

GP-KNN

EM-ML

Figure 8.15 Average classification accuracy of all classifiers with different signal
length.



0

10

20

30

40

50

60

70

80

90

100

–10 –8 –6 –4 –2 0 2 4 6 8 10

C
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y
 (

%
)

Phase offset (°)

2-PAM

4-PAM

8-PAM

BPSK

QPSK

8-PSK

4-QAM

16-QAM

64-QAM

Figure 8.18 Classification accuracy of the moment-based KNN classifier with phase
offset.



0

10

20

30

40

50

60

70

80

90

100

–10 –8 –6 –4 –2 0 2 4 6 8 10

C
la

s
s
if
ic

a
ti
o
n
 a

c
c
u
ra

c
y
 (

%
)

Phase offset (°)

ML

KS

Moment

Cumulant

GP-KNN

EM-ML

Figure 8.22 Average classification accuracy of all classifiers with phase offset.
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Figure 8.27 Classification accuracy of the GP-KNN classifier with frequency offset.
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Figure 8.29 Average classification accuracy of each classifier with frequency offset.
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