

Advances in Pattern Recognition

For other titles published in this series, go to
www.springer.com/series/4205

Stefano Ferilli

Automatic
Digital Document
Processing and
Management

Problems,
Algorithms and
Techniques

Stefano Ferilli
Dipartimento di Informatica
Università di Bari
Via E. Orabona 4
70126 Bari
Italy
ferilli@di.uniba.it

Series Editor
Professor Sameer Singh, PhD
Research School of Informatics
Loughborough University
Loughborough
UK

ISSN 1617-7916
ISBN 978-0-85729-197-4 e-ISBN 978-0-85729-198-1
DOI 10.1007/978-0-85729-198-1
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

© Springer-Verlag London Limited 2011
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as per-
mitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publish-
ers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Cover design: VTEX, Vilnius

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Verba volant, scripta manent

Foreword

Imagine a world without documents! No books, magazines, email, laws, and recipes.
For better or worse, in our world documents outnumber every other kind of artifact.
The Library of Congress contains over 20 million books plus another 100 million
items in the special collections. Google indexes about 20 billion web pages (July
2010). Both of these are growing like topsy. There are far more documents than
houses, cars, electronic gadgets, socks, and even rubber bands.

Since the dawn of antiquity, documents have played an essential role in fostering
civilizations. One could make a plausible argument that material and social progress
are proportional to document density. It helps, of course, if the documents are widely
available rather than kept under lock and key in a monastery or the royal library. The
first chapter of this book highlights the rapid transition of juridical and commercial
records from paper to electronic form. The rest of the book traces the contemporane-
ous evolution of digital document processing from esoteric research into a pervasive
technology.

The variety of physical embodiments of paper documents (multivolume encyclo-
pedias, pocket books, newspapers, magazines, passports, driver’s licenses) is eas-
ily matched by the number of file types, generally known by acronyms like DOC,
PDF, HTM, XML, TIF, GIF. The suffix indicates the type of processing appropri-
ate for each file type. Differences between file types include how they are created,
compressed, decompressed, and rendered in a human-readable format. Equally im-
portant is the balance between ease of modification of textual content (linguistic
or logical components) and appearance (physical or layout components). Professor
Ferilli offers an up-to-date tour of the architecture of common document file types,
lists their areas of applicability, and provides detailed explanations of the notions
underlying classical compression algorithms.

Important paper documents like deeds and stock certificates are written or printed
in indelible ink on watermarked stock, and then locked into a vault. Digital files
stored on personal computers or transmitted over the internet must be similarly pro-
tected against malware launched by curious or malicious hackers. Perhaps surpris-
ingly, many of the elaborate and recondite measures used to ensure the authenticity,
secrecy, and traceability of digital documents are rooted in Number Theory. This is

vii

viii Foreword

one of the oldest branches of pure mathematics, with many counterintuitive theo-
rems related to the factorization of integers into prime numbers. The difficulty of
factorizing large numbers is of fundamental importance in modern cryptography.
Nevertheless, some current systems also incorporate symbol substitutions and shuf-
fles borrowed from ancient ciphers.

Because of its applications to computer security, cryptography has advanced
more in the last 40 years than in the previous three thousand. Among widely used
systems based on the secret (symmetric) key and public (asymmetric) key paradigms
are the Data Encryption Standard (DES), Rivest Ciphers (RCn), the Rivest, Shamir,
Adleman (RSA) algorithm, and the Digital Signature Algorithm (DSA). One-way
encryption is often used to encrypt passwords and to generate a digital fingerprint
that provides proof that a file has not been altered. Other methods can provide ir-
refutable evidence of the transmission of a document from one party to another.
Professor Ferilli expertly guides the reader along the often tortuous paths from the
basic mathematical theorems to the resulting security software.

There is a piquant contrast between the role of national governments in promot-
ing the use of secure software to facilitate commerce and to grease the wheels of
democracy, and its duty to restrict the propagation of secure software in order to
protect its military value and to maintain the ability of law enforcement agents to
access potentially criminal communications. This books reviews recent legislation
with emphasis on relevant Italian, British and European Community laws.

While we are not yet ready to declare all written material that exists only on pa-
per as legacy documents, that moment cannot be very far. Professor Ferilli is a key
member of a research team that has made steady progress for upwards of 30 years
on the conversion of scanned paper documents to digital formats. He presents a use-
ful overview of the necessary techniques, ranging from the low-level preprocessing
functions of binarization and skew correction to complex methods based on first-
order logic for document classification and layout analysis. Many of the algorithms
that he considers best-in-class have been incorporated, after further tuning, into his
group’s prototype document analysis systems.

For scanned documents, the transition from document image analysis to content
analysis requires optical character recognition (OCR). Even born-digital documents
may require OCR in the absence of software for reading intermediate file formats.
OCR is discussed mainly from the perspective of open source developments be-
cause little public information is available on commercial products. Handwritten
and hand-printed documents are outside the scope of this work.

Some documents such as musical scores, maps and engineering drawings are
based primarily on long-established and specialized graphic conventions. They
make use of application-specific file types and compression methods. Others, like
postal envelopes, bank checks and invoice forms, are based on letters and digits but
don’t contain a succession of sentences. Except for some sections on general im-
age processing techniques and color spaces, the focus of this book is on documents
comprising mainly natural language.

The value of digital documents transcends ease of storage, transmission and re-
production. Digital representation also offers the potential of the use of computer

Foreword ix

programs to find documents relevant to a query from a corpus and to answer ques-
tions based on facts contained therein. The corpus may contain all the documents
accessible on the World Wide Web, in a digital library, or in a domain-specific col-
lection (e.g., of journals and conference reports related to digital document process-
ing). For text-based documents, both information retrieval (IR) and query-answer
(QA) systems require natural language processing (NLP). Procedures range from
establishing the relative frequency, morphology and syntactic role of words to de-
termining the sense, in a particular context, of words, phrases and sentences. Of-
ten simple relationships with arcane names, like synonymy, antinomy, hyperonymy,
hyponymy, meronymy and holonymy, are sought between terms and concepts. For-
tunately, the necessary linguistic resources like lexicons, dictionaries, thesauri, and
grammars are readily available in digital form.

To avoid having to search through the entire collection for each query, docu-
ments in large collections—even the World Wide Web—are indexed according to
their putative content. Metadata (data about the data, like catalog information) is
extracted and stored separately. The relevant NLP, IR and IE techniques (based on
both statistical methods and formal logic) and the management of large collection
of documents are reviewed in the last two chapters.

The study of documents from the perspective of computer science is so enjoy-
able partly because it provides, as is evident from this volume, many opportunities to
bridge culture and technology. The material presented in the following pages will be
most valuable to the many researchers and students who already have a deep under-
standing of some aspect of document processing. It is such scholars who are likely to
feel the need, and to harvest the benefits, of learning more about the growing gamut
of techniques necessary to cope with the entire subject of digital document process-
ing. Extensive references facilitate further exploration of this fascinating topic.

Prof. George NagyRensselaer Polytechnic Institute

Preface

Automatic document processing plays a crucial role in the present society, due to
the progressive spread of computer-readable documents in everyday life, from in-
formal uses to more official exploitations. This holds not only for new documents,
typically born digital, but also for legacy ones that undergo a digitization process in
order to be exploited in computer-based environments. In turn, the increased avail-
ability of digital documents has caused a corresponding increase in users’ needs
and expectations. It is a very hot topic in these years, for both academy and in-
dustry, as witnessed by several flourishing research areas related to it and by the
ever-increasing number and variety of applications available on the market. Indeed,
the broad range of document kinds and formats existing today makes this subject
a many-faceted and intrinsically multi-disciplinary one that joins the most diverse
branches of knowledge, covering the whole spectrum of humanities, science and
technology. It turns out to be a fairly complex domain even focusing on the Com-
puter Science perspective alone, since almost all of its branches come into play in
document processing, management, storage and retrieval, in order to support the
several concerns involved in, and to solve the many problems raised from, applica-
tion to real-world tasks. The resulting landscape calls for a reference text where all
involved aspects are collected, described and related to each other.

This book concerns Automatic Digital Document Processing and Management,
where the adjective ‘digital’ is interpreted as being associated to ‘processing and
management’ rather than to ‘document’, thus including also digitized documents in
the focus of interest, in addition to born-digital ones. It is conceived as a survey
on the different issues involved in the principal stages of a digital document’s life,
aimed at providing a sufficiently complete and technically valid idea of the whole
range of steps occurring in digital document handling and processing, instead of
focusing particularly on any specific one of them. For many of such steps, funda-
mentals and established technology (or current proposals for questions still under in-
vestigation) are presented. Being the matter too wide and scattered, a complete cov-
erage of the significant literature is infeasible. More important is making the reader
acquainted of the main problems involved, of the Computer Science branches suit-
able for tackling them, and of some research milestones and interesting approaches

xi

xii Preface

available. Thus, after introducing each area of concern, a more detailed descrip-
tion is given of selected algorithms and techniques proposed in this field along the
past decades. The choice was not made with the aim of indicating the best solu-
tions available in the state-of-the-art (indeed, no experimental validation result is
reported), but rather for the purpose of comparing different perspectives on how the
various problems can be faced, and possibly complementary enough to give good
chance of fruitful integration.

The organization of the book reflects the natural flow of phases in digital docu-
ment processing: acquisition, representation, security, pre-processing, layout anal-
ysis, understanding, analysis of single components, information extraction, filing,
indexing and retrieval. Specifically, three main parts are distinguished:

Part I deals with digital documents, their role and exploitation. Chapter 1 provides
an introduction to documents, their history and their features, and to the specific
digital perspective on them. Chapter 2 then overviews the current widespread for-
mats for digital document representation, divided by category according to the
degree of structure they express. Chapter 3 discusses technological solutions to en-
sure that digital documents can fulfill suitable security requirements allowing their
exploitation in formal environments in which legal issues come into play.

Part II introduces important notions and tools concerning the geometrical and pic-
torial perspective on documents. Chapter 4 proposes a selection of the wide lit-
erature on image processing, with specific reference to techniques useful for han-
dling images that represent a whole digitized document or just specific components
thereof. Chapter 5 is devoted to the core of processing and representation issues re-
lated to the various steps a document goes through from its submission up to the
identification of its class and relevant components.

Part III analyzes the ways in which useful information can be extracted from the
documents in order to improve their subsequent exploitation, and is particularly
focused on textual information (although a quick glance to the emerging field of
image retrieval is also given). Chapter 6 surveys the landscape of Natural Lan-
guage Processing resources and techniques developed to carry out linguistic anal-
ysis steps that are preliminary to further processing aimed at content handling.
Chapter 7 closes the book dealing with the ultimate objective of document pro-
cessing: being able to extract, retrieve and represent, possibly at a semantic level,
the subject with which a document is concerned and the information it conveys.

Appendices A and B briefly recall fundamental Machine Learning notions, and de-
scribe as a case-study a prototypical framework for building an intelligent system
aimed at merging in a tight cooperation and interaction most of the presented solu-
tions, to provide a global approach to digital documents and libraries management.

The book aims at being self-contained as much as possible. Only basic computer
science and high-school mathematical background is needed to be able to read and
understand its content. General presentation of the various topics and more specific
aspects thereof are neatly separated, in order to facilitate exploitation by readers
interested in either of the two. The technical level is, when needed, sufficiently de-
tailed to give a precise account of the matter presented, but not so deep and per-
vasive as to discourage non-professionals from usefully exploiting it. In particular,

Preface xiii

most very technical parts are limited to sub-subsections, so that they can be skipped
without losing the general view and unity of the contents. To better support readers,
particular care was put in the aids to consultation: the index reports both acronyms
and their version in full, and in case of phrases includes entries for all component
terms; the glossary collects notions that are referred to in different places of the
book, so that a single reference is provided, avoiding redundancy; the acronym list
is very detailed, including even items that are used only once in the text but can be
needed in everyday practice on document processing; the final Reference section
collects all the bibliography cited in the text.

The main novelty of this book lies in its bridging the gaps left by the current lit-
erature, where all works focus on specific sub-fields of digital document processing
but do not frame them in a panoramic perspective of the whole subject nor provide
links to related areas of interest. It is conceived as a monograph for practitioners
that need a single and wide-spectrum vade-mecum to the many different aspects in-
volved in digital document processing, along with the problems they pose, notewor-
thy solutions and practices proposed in the last decades, possible applications and
open questions. It aims at acquainting the reader with the general field and at being
complemented by other publications reported in the References for further in-depth
and specific treatment of the various aspects it introduces. The possible uses, and
connected benefits, are manifold. In an academic environment, it can be exploited
as a textbook for undergraduate/graduate courses interested in a broad coverage of
the topic.1 Researchers may consider it as a bridge between their specific area of
interest and the other disciplines, steps and issues involved in Digital Document
Processing. Document-based organizations and final users can find it useful as well,
as a repertoire of possible technological solutions to their needs.

Although care has been put on thorough proof-reading of the drafts, the size of
this work makes it likely that some typos or other kinds of imprecisions are present
in the final version. I apologize in advance for this, and will be grateful to anyone
who will notify me about them.

Stefano FerilliBari, Italy

1The included material is too much for a semester, but the teacher can select which parts to stress
more and which ones to just introduce.

Acknowledgments

There are many persons that deserve my acknowledgments after finishing the writ-
ing of this book. First of all, I am grateful to Prof. Floriana Esposito for introducing
me to the charming and challenging application field of Digital Document Process-
ing as an interesting target of my research in Machine Learning. Also, I thank all the
colleagues (and friends) in the Machine Learning research group at the University of
Bari, with which I shared my adventure in Computer Science research along the last
15 years or so. Through stimulating discussions, useful suggestions and interesting
ideas, they have been fundamental for deepening my understanding of document
processing, and for defining the perspective, on it [i.e., on document processing],
that [i.e. the perspective] underlies this work. Thanks to Professor George Nagy for
the precious and insightful comments on parts of the book, to Wayne Wheeler at
Springer, who believed in this project, and to Simon Rees for his continuous edito-
rial support. Last but not least, a special mention goes to my family, and in particular
to my wife and my parents, that I partly neglected in these years while attending to
my professional interests, but that nevertheless always supported and encouraged
me.

A credit is to be given to the whole community working on Open Source projects.
Their products help me in everyday practice and have been fundamental for accom-
plishing this work. In particular, I would like to mention:

• the kubuntu Linux distribution (www.kubuntu.org)
• the OpenOffice.org suite (www.openoffice.org)
• LATEX (http://www.latex-project.org/)
• the GIMP (www.gimp.org)
• Mozilla (www.mozilla.org)

The WIKIpedia project (www.wikipedia.org) has been often useful in providing
introductory overviews of specific subjects and in suggesting interesting initial ref-
erences for a more thorough treatment. Some figures in the text appear courtesy of
the Institute for Electrical and Electronic Engineering (IEEE) and of Springer.

xv

Contents

Part I Digital Documents

1 Documents . 3
1.1 A Juridic Perspective . 3
1.2 History and Trends . 4
1.3 Current Landscape . 5
1.4 Types of Documents . 7
1.5 Document-Based Environments 10
1.6 Document Processing Needs . 11

References . 12

2 Digital Formats . 15
2.1 Compression Techniques . 16

RLE (Run Length Encoding) 16
Huffman Encoding 16
LZ77 and LZ78 (Lempel–Ziv) 18
LZW (Lempel–Ziv–Welch) 19
DEFLATE . 21

2.2 Non-structured Formats . 21
2.2.1 Plain Text . 22

ASCII . 23
ISO Latin . 23
UNICODE . 24

UTF 24
2.2.2 Images . 28

Color Spaces . 28
RGB . 29
YUV/YCbCr . 29
CMY(K) . 30
HSV/HSB and HLS 30
Comparison among Color Spaces 30

xvii

xviii Contents

Raster Graphics . 31
BMP (BitMaP) 32
GIF (Graphics Interchange Format) 34
TIFF (Tagged Image File Format) 36
JPEG (Joint Photographic Experts Group) 37
PNG (Portable Network Graphics) 39
DjVu (DejaVu) 41

Vector Graphic . 43
SVG (Scalable Vector Graphic) 43

2.3 Layout-Based Formats . 45
PS (PostScript) 45
PDF (Portable Document Format) 56

2.4 Content-Oriented Formats . 59
2.4.1 Tag-Based Formats . 60

HTML (HyperText Markup Language) 61
XML (eXtensible Markup Language) 66

2.4.2 Office Formats . 69
ODF (OpenDocument Format) 69

References . 70

3 Legal and Security Aspects . 73
3.1 Cryptography . 74

3.1.1 Basics . 74
3.1.2 Short History . 76
3.1.3 Digital Cryptography . 77

DES (Data Encryption Standard) 79
IDEA (International Data Encryption Algorithm) 80
Key Exchange Method 81
RSA (Rivest, Shamir, Adleman) 82
DSA (Digital Signature Algorithm) 85

3.2 Message Fingerprint . 85
SHA (Secure Hash Algorithm) 86

3.3 Digital Signature . 88
3.3.1 Management . 90

DSS (Digital Signature Standard) 92
OpenPGP Standard 93

3.3.2 Trusting and Certificates 94
3.4 Legal Aspects . 97

3.4.1 A Law Approach . 98
3.4.2 Public Administration Initiatives 101

Digital Signature 101
Certified e-mail 103
Electronic Identity Card & National Services Card 104
Telematic Civil Proceedings 104

References . 108

Contents xix

Part II Document Analysis

4 Image Processing . 113
4.1 Basics . 114

Convolution and Correlation 114
4.2 Color Representation . 116

4.2.1 Color Space Conversions 117
RGB–YUV . 117
RGB–YCbCr 117
RGB–CMY(K) 118
RGB–HSV . 118
RGB–HLS . 119

4.2.2 Colorimetric Color Spaces 120
XYZ . 120
L*a*b* . 121

4.3 Color Depth Reduction . 122
4.3.1 Desaturation . 122
4.3.2 Grayscale (Luminance) 123
4.3.3 Black&White (Binarization) 123

Otsu Thresholding 123
4.4 Content Processing . 124

4.4.1 Geometrical Transformations 125
4.4.2 Edge Enhancement . 126

Derivative Filters 127
4.4.3 Connectivity . 129

Flood Filling . 130
Border Following 131
Dilation and Erosion 132
Opening and Closing 133

4.5 Edge Detection . 134
Canny . 135
Hough Transform 137
Polygonal Approximation 139
Snakes . 141

References . 143

5 Document Image Analysis . 145
5.1 Document Structures . 145

5.1.1 Spatial Description . 147
4-Intersection Model 148
Minimum Bounding Rectangles 150

5.1.2 Logical Structure Description 151
DOM (Document Object Model) 151

5.2 Pre-processing for Digitized Documents 154
Document Image Defect Models 155

xx Contents

5.2.1 Deskewing . 156
5.2.2 Dewarping . 157

Segmentation-Based Dewarping 158
5.2.3 Content Identification . 160
5.2.4 Optical Character Recognition 161

Tesseract . 163
JTOCR . 165

5.3 Segmentation . 166
5.3.1 Classification of Segmentation Techniques 167
5.3.2 Pixel-Based Segmentation 169

RLSA (Run Length Smoothing Algorithm) 169
RLSO (Run-Length Smoothing with OR) 171
X–Y Trees . 173

5.3.3 Block-Based Segmentation 175
The DOCSTRUM 175
The CLiDE (Chemical Literature Data

Extraction) Approach 177
Background Analysis 179
RLSO on Born-Digital Documents 183

5.4 Document Image Understanding 184
5.4.1 Relational Approach . 186

INTHELEX (INcremental THEory Learner from
EXamples) 188

5.4.2 Description . 190
DCMI (Dublin Core Metadata Initiative) 191

References . 193

Part III Content Processing

6 Natural Language Processing . 199
6.1 Resources—Lexical Taxonomies 200

WordNet . 201
WordNet Domains 202
Senso Comune 205

6.2 Tools . 206
6.2.1 Tokenization . 207
6.2.2 Language Recognition . 208
6.2.3 Stopword Removal . 209
6.2.4 Stemming . 210

Suffix Stripping 211
6.2.5 Part-of-Speech Tagging 213

Rule-Based Approach 213
6.2.6 Word Sense Disambiguation 215

Lesk’s Algorithm 217
Yarowsky’s Algorithm 217

Contents xxi

6.2.7 Parsing . 218
Link Grammar 219

References . 221

7 Information Management . 223
7.1 Information Retrieval . 223

7.1.1 Performance Evaluation 224
7.1.2 Indexing Techniques . 226

Vector Space Model 226
7.1.3 Query Evaluation . 229

Relevance Feedback 230
7.1.4 Dimensionality Reduction 231

Latent Semantic Analysis and Indexing 232
Concept Indexing 235

7.1.5 Image Retrieval . 237
7.2 Keyword Extraction . 239

TF-ITP . 241
Naive Bayes . 241
Co-occurrence 242

7.3 Text Categorization . 244
A Semantic Approach Based on

WordNet Domains 246
7.4 Information Extraction . 247

WHISK . 249
A Multistrategy Approach 251

7.5 The Semantic Web . 253
References . 254

Appendix A A Case Study: DOMINUS 257
A.1 General Framework . 257

A.1.1 Actors and Workflow . 257
A.1.2 Architecture . 259

A.2 Functionality . 261
A.2.1 Input Document Normalization 261
A.2.2 Layout Analysis . 262

Kernel-Based Basic Blocks Grouping 263
A.2.3 Document Image Understanding 264
A.2.4 Categorization, Filing and Indexing 264

A.3 Prototype Implementation . 265
A.4 Exploitation for Scientific Conference Management 268

GRAPE . 269

Appendix B Machine Learning Notions 271
B.1 Categorization of Techniques . 271
B.2 Noteworthy Techniques . 272

Artificial Neural Networks 272

xxii Contents

Decision Trees 273
k-Nearest Neighbor 273
Inductive Logic Programming 273
Naive Bayes . 274
Hidden Markov Models 274
Clustering . 274

B.3 Experimental Strategies . 275
k-Fold Cross-Validation 275
Leave-One-Out 276
Random Split 276

Glossary . 277
Bounding box 277
Byte ordering 277
Ceiling function 277
Chunk . 277
Connected component 277
Heaviside unit function 277
Heterarchy . 278
KL-divergence 278
Linear regression 278
Run . 278
Scanline . 278

References . 279

Index . 289

Acronyms

Many people are persuaded that the Computer Science community, in addition to
the Military one, have a sort of maniacal inclination towards the use of acronyms.
To enforce this, in the following a (short) list of most important acronyms of
technologies and organizations referred to in this book is provided.

2D 2-Dimensional
3D 3-Dimensional
ANN Artificial Neural Network, a Machine Learning technique
API Application Programming Interface
ASCII American Standard Code for Information Interchange
BMP Basic Multilingual Plane, a portion of Unicode
BMP BitMaP, an image representation format
BoW Bag Of Words, a simplified representation of natural language texts
BoS Bag Of Senses, a conceptual representation of natural language texts
CA Certificate Authority
CBIR Content-Based Image Retrieval
CIE Commission Internationale d’Èclairage (www.cie.co.at)
CI Concept Indexing
CMYK Cyan Magenta Yellow Key, a color space
CPS Certificate Practice Statement
CRC Cyclic Redundancy Check, an error control system for data transmission
CRL Certificate Revocation List
CRT Cathode Ray Tube
CSL Certificate Suspension List
CSS Cascading Style Sheets, files containing formatting instructions for the

presentation of a document written in a markup language, such as
HTML or XML

CTM Current Transformation Matrix, a PostScript component
DAG Directed Acyclic Graph
DCT Discrete Cosine Transform

xxiii

xxiv Acronyms

DDC Dewey Decimal Classification, an encoding scheme for document
subjects

DES Data Encryption Standard
DMCI Dublin Core Metadata Initiative
DOI Digital Object Identifier
DOM Document Object Model, an XML document representation standard
DPCM Differential Pulse Code Modulation
DPI Dots Per Inch, a measure of printing/scanning quality
DPR Decree of the President of the Republic (Decreto del Presidente della

Repubblica), a kind of act in the Italian law system
DSA Digital Signature Algorithm
DSS Digital Signature Standard
DTD Document Type Definition, a specification of biases on XML syntax
EBCDIC Extended Binary Coded Decimal Interchange Code
FIPS Federal Information Processing Standard
FN False Negative
FOL First-Order Logic
FP False Positive
FTP File Transfer Protocol, an Internet service
gcd Greatest Common Divisor, the largest integer that divides given integers
GIF Graphics Interchange Format, an image representation format
GPG GNU Privacy Guard, a non-commercial implementation of PGP
GUI Graphical User Interface
HMM Hidden Markov Model, a Machine Learning technique
HSV Hue Saturation Value, a color space
HSB Hue Saturation Brightness, a color space
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
HTTPS HyperText Transfer Protocol Secure
IANA Internet Assigned Numbers Authority (http://www.iana.org)
ICC International Color Consortium
ICT Information and Communication Technologies
IDEA International Data Encryption Algorithm
IE Information Extraction
IEEE Institute of Electrical and Electronics Engineers (http://www.ieee.org)
IEC International Electrotechnical Commission (http://www.iec.ch)
IETF Internet Engineering Task Force
IFD Image File Directory, a data block in TIFF files
ILP Inductive Logic Programming, a Machine Learning paradigm
IP Internet Protocol
IR Information Retrieval
ISBN International Standard Book Number
ISO International Organization for Standardization (http://www.iso.org)
JPEG Joint Photographic Experts Group, an image representation format
k-NN k-Nearest Neighbor, a Machine Learning technique

Acronyms xxv

KE Keyword Extraction, an Information Extraction task
LCD Liquid Crystal Display
LED Light-Emitting Diode
LIFO Last In First Out, a stack-based data organization
LSA Latent Semantic Analysis
LSI Latent Semantic Indexing
LZW Lempel–Ziv–Welch, a compression algorithm
MIME Multipurpose Internet Mail Extensions, a standard to identify the

representation format of various types of information
MIPS Millions Instructions Per Second, a measure of computer processing

speed
ML Machine Learning
MNG Multiple-image Network Graphics, an image representation format
NISO National Information Standards Organization
NIST National Institute of Standards and Technology
NLP Natural Language Processing
NSA National Security Agency
OASIS Organization for the Advancement of Structured Information Standards
OCLC On-line Computer Library Center
OCR Optical Character Recognition
ODF Open Document Format, a suite of formats for office documents
OOXML Office Open XML, a suite of formats for office documents
PA Public Administration
PCA Principal Component Analysis
PCKS Public Key Cryptography Standard
PCT Processo Civile Telematico (Telematic Civil Proceedings)
PDF Portable Document Format
PDL Page Description Language
PES Proposed Encryption Standard
PGP Pretty Good Privacy, a digital signature standard

(http://www.pgpi.com)
PKI Public Key Infrastructure, a digital certificate scheme
PNG Portable Network Graphics, an image representation format
PoS Part of Speech
PS PostScript, a digital document format
PUA Private Use Area, a portion of Unicode
RA Registration Authority
RFC Request For Comment, a stage of the standardization process
RGB Red Green Blue, a color space
RLE Run Length Encoding, a compression algorithm
RLSA Run Length Smoothing Algorithm, a document image segmentation

algorithm
RSA Rivest–Shamir–Adleman, a cryptographic system
RTF Rich Text Format, a format for word processing documents
SAX Simple API for XML

xxvi Acronyms

SGML Structured Generalized Markup Language, standard ISO 8879:1986
SHA Secure Hash Algorithm
SIP Supplementary Ideographic Plane, a portion of Unicode
SMP Supplementary Multilingual Plane, a portion of Unicode
SSL Secure Socket Layer, a secure protocol for TCP/IP Transport Level
SSP Supplementary Special-purpose Plane, a portion of Unicode
SVD Singular Value Decomposition
SVG Scalable Vector Graphics, an image representation format
TC Text Categorization
TCP Transfer Control Protocol
TIFF Tagged Image File Format
TLS Transport Layer Security, a secure protocol for TCP/IP Transport Level
TN True Negative
TP True Positive
TTP Trusted Third Party
UCS Universal Character Set
URI Uniform Resource Identifier
URL Uniform Resource Locator, a standard address for objects on the Internet
UTF Unicode/UCS Transformation Format
XML eXtensible Markup Language, a format for Web document and

information representation
XSL eXtensible Stylesheet Language, a language to specify styles for XML

documents
XSLT XSL Transformations, a language to specify transformations for XML

documents
YUV A color space
W3C (World Wide Web Consortium) A no-profit international organization

that develops and fosters standards for the WWW (www.w3.org)
WSD Word Sense Disambiguation
WWW World Wide Web, the hypertextual section of the Internet

Part I
Digital Documents

This part of the book introduces digital documents, providing a running definition
for what is going to be intended as a document throughout the rest of the book,
discussing a number of widespread formats for representing documents, each with
its pros and cons with respect to the different needs for which they are produced and
processed, and summarizing the most important problems and solutions involved in
using digital documents in official environments.

Documents are fundamental in our lives because they are the means to convey in-
formation and/or the formal evidence of something. Although they date back to the
first times of human civilization, the current technological development has turned
upside-down many classical aspects of document creation, management, processing
and exploitation. In particular, the advent of computer systems has made much eas-
ier document production and transmission, which is an opportunity but also a source
of problems, due to the many different kinds of documents at hand, and to the differ-
ent perspectives and needs of the institutions interested in document management
and of their users. In Chap. 1, after reviewing various perspectives on documents and
providing a historical survey of their evolution, various categories of documents are
identified, and a particular focus on digital ones is given.

A problem to be faced very early when dealing with digital documents is how to
represent them in a suitable machine-readable format. Thus, the current widespread
formats for digital documents representation are presented in Chap. 2, divided by
category according to the degree of structure they express. Formats that do not ex-
hibit any high-level structure for their content are dealt with first: plain text and
image formats. Then, the formats containing information on spatial placement of
the document elements are introduced. Lastly, a selection of formats organized ac-
cording to the content and function of the document components are presented,
including Web formats and the official standard for text processing.

The characteristics of digital documents that are desirable for normal tasks pose
severe security problems in official documents, which must be tackled and solved in
order to foster digital document adoption in formal environments. Chapter 3 deals
with security and legal aspects concerning digital documents and their production,
exchange and exploitation. This is a hot topic as long as digital documents are pro-

2

gressively taking the place of classical paper ones also in the administration context,
where issues such as property, non-withdrawal, certification, protection of content
cannot be ignored. Hence, the current trends in cryptography and digital signature
technologies to solve these issues are proposed, along with the legal initiatives in
various countries to enforce digital document exploitation.

Chapter 1
Documents

The word document comes from the Latin word ‘documentum’, which has the same
stem as the verb ‘doceo’ (meaning ‘to teach’), plus the suffix ‘-umentum’ (indicating
a means for doing something). Hence, it is intended to denote ‘a means for teaching’
(in the same way as ‘instrument’ denotes a means to build, ‘monument’ denotes a
means to warn, etc.). Dictionary definitions of a document are the following [2]:

1. Proof, Evidence
2. An original or official paper relied on as basis, proof or support of something
3. Something (as a photograph or a recording) that serves as evidence or proof
4. A writing conveying information
5. A material substance (as a coin or stone) having on it a representation of thoughts

by means of some conventional mark or symbol.

The first definition is more general. The second one catches the most intuitive
association of a document to a paper support, while the third one extends the def-
inition to all other kinds of support that may have the same function. While all
these definitions mainly focus on the bureaucratic, administrative or juridic aspects
of documents, the fourth and fifth ones are more interested in its role of informa-
tion bearer that can be exploited for study, research, information. Again, the former
covers the classical meaning of documents as written papers, while the latter ex-
tends it to any kind of support and representation. Summing up, three aspects can be
considered as relevant in identifying a document: its original meaning is captured
by definitions 4 and 5, while definition 1 extends it to underline its importance as
a proof of something, and definitions 2 and 3 in some way formally recognize this
role in the social establishment.

1.1 A Juridic Perspective

A juridic definition of document is usually not provided by the regulations of the
various countries, that assume it to be a quite natural and intuitive concept and hence
take it for granted. Thus, there is no specific definition that identifies a particular

S. Ferilli, Automatic Digital Document Processing and Management,
Advances in Pattern Recognition,
DOI 10.1007/978-0-85729-198-1_1, © Springer-Verlag London Limited 2011

3

4 1 Documents

object as a document. However, much literature has been produced about the subject
in the past decades, and very interesting considerations can be found in the Italian
landscape. Carnelutti1 defines a document as “something that allows to know some
fact” [8], in opposition to a witness, that is a person who reports a fact. On the
other hand, Irti analyzes the problem putting more emphasis on the activity aimed
at producing the document [9]. Under this perspective, the document becomes a res
signata (a ‘marked object’), an opus (an ‘artifact’) resulting from human work. The
marks are the outcome of an artificial process accomplished or regulated by the man
itself, and intended to confer representativeness to the res portata (‘what is brought’,
the content). As a consequence, the document is not the object in itself nor the mark
in itself, but rather the object on which the man has acted.

Three main components must be taken into account when dealing with a docu-
ment [3]:

• The object, or in any case “the physical or material element” to which such a
meaning is given [7].

• The fact represented, that must be juridically relevant. From this perspective, doc-
uments can be distinguished between direct and indirect ones: the former place
the interpreter before the actual fact (e.g., photographic or cinematographic doc-
uments), while the latter show a representation thereof derived from a mental
processing [8].

• The representation provided. This perspective highlights the essentially intellec-
tual aspect of the document domain: a res (an ‘object’) takes on the status of a
document only because the person, who aims at exploiting it in that meaning, is
provided with an intellectual code for understanding it [9].

As a consequence, it seems straightforward to conclude that the document, juridi-
cally intended, does not exist in nature, but exists only if the suitable circumstances
hold to ascribe this particular meaning to an object [3].

1.2 History and Trends

A short historical survey may be useful to properly cast documents and their role.
The most fundamental intellectual conquer of human beings of all times is probably
the invention of language, which allowed them to ‘dump’ their thoughts on a physi-
cal support and to communicate to each other for sharing experience and coordinat-
ing their actions. On the one hand, improved communication allowed them to more
effectively face the problems of everyday survival; on the other hand, the possibility
of sharing experiences allowed them to boost their evolution, since every individual
could get ‘for free’ previous knowledge without having to personally experience it
(and everybody knows that knowledge is power, as the saying goes), and could just

1Francesco Carnelutti (1879–1965), a famous lawyer and jurist, main inspirer for the 1942 version
of the Italian Civil Law.

1.3 Current Landscape 5

focus on improving it. Originally, communication was just oral, which implied a
strong bias due to the limited amount and effectiveness of human memory capabil-
ity. Thus, the real turning point was reached when someone decided to concretely
fix knowledge on a permanent physical means, which allowed its exploitation as a
formal and objective proof independent on owner, place and time. This first hap-
pened in a pictorial fashion by explicitly representing the information as perceived
by the senses, e.g., in the form of graffiti on cave walls. Then, by progressive levels
of abstraction, symbols were introduced, first to represent concepts, as in the case of
ideograms, and then by selecting and transforming some of them to represent basic
vocal sounds to be variously combined in order to express all possible words and
concepts without the need of continuously extending the set of symbols.

This new combination, made up of data/information/knowledge2 plus a perma-
nent physical means on which it is stored, is what we call a ‘document’, and has
characterized the last millennia of our evolution. In this general perspective, docu-
ments are multi-faceted objects, that can adopt and mix several different media (text,
picture, sound, etc.), formalisms and supports (stone, clay, paper, etc.) to convey
the desired information according to different needs and objectives. Hence, dealing
with documents involves the ability to handle many kinds of different items, each
with its peculiarities. From what is said above, it is clear (and everyone can realize
it everyday) that documents are pervasive and essential elements in our existence.
They are the foundations on which all social, administrative and scientific aspects of
our civilization are built. As a consequence, the ability to produce, manage, handle,
exchange and interpret them takes on a crucial importance in our society.

In the past, the accomplishment of all such tasks was affected by practical and
logistic biases, because of the tangible (mainly paper) nature of the documents them-
selves, and thus typical problems were the cost for producing them, the consequent
lack of copies thereof and the difficulty in transferring and obtaining them when
needed. The introduction and spread of computer systems, of Computer Science
and of telecommunications have led to overcoming large part of such barriers, and
particularly of those related to the creation and distribution of documents.

1.3 Current Landscape

While up to recently documents were produced in paper format, and their digi-
tal counterpart was just a possible consequence carried out for specific purposes,
nowadays we face the opposite situation: nearly all documents are produced and
exchanged in digital format, and their transposition on a tangible, human-readable
support has become a successive, in many cases optional, step. Additionally, sig-
nificant efforts have been spent in the digitization of previously existing documents

2Usually, the three terms denote different but strictly related concepts: data are just values; they
become information when an interpretation is given to them, while knowledge refers to pieces of
information that are inter-related both among themselves and with other experience.

6 1 Documents

(i.e., their transposition into digital format), aimed at preservation and widespread
fruition. Such a new approach, called dematerialization, is currently the general
trend, even at governance levels, as proved by several laws issued in many coun-
tries to enforce the official exploitation of digital documents in the administration.
A consequence has been the birth and spread of Digital Libraries, repositories that
collect many different kinds of documents in digital format.

In this changed landscape, many document- and information-centered activities
have found new opportunities to significantly improve both the quality and speed
of work of their practitioners, and the effectiveness and accuracy of their outcomes,
increasing as a consequence the productivity levels. An outstanding example is pro-
vided by the case of scientific research, for which the exchange, the continuous up-
dating of, and the easiness of access to, data and theories are vital requirements that
are indeed supported by the availability of documents in digital format and of effi-
cient technologies to transmit them. However, as a tradeoff, this has also determined
the obsolescence of classical work-flow practices and made more complex than ever
the retrieval of useful information. Indeed, it gave rise to a dramatic proliferation of
available documents, often of questionable quality and significance, which poses
difficulties that are exactly opposite to those previously experienced for classical
documents (a problem known as information overloading). In a nutshell, in the past
the main difficulty consisted in gathering useful documents, but then it was easy to
identify the desired information therein; now it is extremely easy to retrieve huge
(and often overwhelming) quantities of documents, but then identifying useful in-
formation is in many cases almost impossible. In addition, documents are extremely
varied (in format, type, language, etc.), with little or no structure, which gives lit-
tle leverage for understanding the role and importance of their single components.
Even more, potential users interested in accessing them belong to many different
categories and are themselves extremely different as to aims and needs. All these
issues make it significantly hard recognizing which information is to be considered
as relevant, and extracting it in order to make it available to other applications or for
specific tasks.

On the other hand, the information society in which we live bases almost all of
its fundamental activities on documents content, so that easy and quick access to
proper information, and its management and usability, become unavoidable factors
for the economic, business-related, professional, social and cultural development
and success. The World Bank, in the 1998 report [1], recognized that, for econom-
ically developed countries, knowledge, more than resources, has become the most
important factor in defining the life standard, and that nowadays the majority of
technologically advanced economies are in fact based on knowledge (again, knowl-
edge is power).

Of course, putting human experts to analyze and annotate each and every single
document in order to allow potential users to understand whether it is of interest to
them or not is absolutely infeasible: the life-cycle of many documents is so short
that they would become obsolete far sooner than they would get annotated. Hence,
a strong motivation for the research in the field of automatic processing that is able
to support or replace human intervention in all these knowledge-intensive activities

1.4 Types of Documents 7

by means of Artificial Intelligence techniques and systems. The automatic process-
ing approach is obviously supported by the fact that the availability of digital doc-
uments makes it simple and allows to completely automatize, differently from their
paper counterparts, the search for information in the document itself, at least at the
syntactic level. Unfortunately, it is not immediate nor trivial bridging the gap from
syntax to the semantic level, where content understanding comes into play. The in-
creased computational power available nowadays, and the results of several years of
research, have nevertheless allowed to start developing methodologies, techniques
and systems that try to tackle automatically, at least partially, even these more com-
plex aspects.

1.4 Types of Documents

The wide coverage of the definition of ‘document’ makes it impossible to provide an
exhaustive systematization of the various kinds thereof. Nevertheless, some intuitive
and useful categorizations of documents, based on different (although sometimes
overlapping) perspectives, can be identified. In the following, a short list will be
provided, according to which the matter of this book will be often organized:

Support A first distinction can be made between tangible or intangible supports.3

The latter category includes digital documents, while the former can, in turn, be
sensibly split into written documents (such as those on paper, papyrus or parch-
ment) and documents whose content must be impressed on their supports (e.g.,
stone, clay, etc.) using other techniques.

Time of production A rough distinction can also be made between legacy
documents (i.e., documents that were produced using classical, non-computerized
techniques, for which an original digital source/counterpart is not available) and
‘current’ ones. The former typically correspond to tangible ones, and the latter to
digital ones, but the overlapping is not so sharp. Indeed, tangible documents are
still produced nowadays, although they have lost predominance, and the recent
years have seen the widespread use of both kinds at the same time.

Historical interest Similar to the previous one, but in some sense more neat and
born from a specific perspective, is the distinction between historical documents
and ‘normal’ ones. Here, the focus is on the value of a document not just based on
its content, but on its physical support as well. The document as an object, in this
case, cannot be distinguished by its essence because even a scanned copy would
not replace the original. Hence, this perspective is strictly related to the problems
of preservation, restoration and wide access.

3Another term sometimes exploited to convey the same meaning is physical. However, it is a bit
odd because even intangible supports require a physical implementation to be perceived, e.g., air is
the physical support of the intangible ‘sound’ documents, and magnetic polarization or electrical
signals are the physical support of the intangible ‘digital’ documents.

8 1 Documents

Table 1.1 Some types of documents and their categorization

Support Production Interest Medium Structure Formalism

Speech intangible any normal sound no natural
language

Greek roll tangible legacy historical text,
graphic

spatial natural
language

Book tangible legacy any text,
graphic

spatial natural
language

Picture tangible legacy any graphic no light

Music intangible any normal sound no temperament

Program code intangible current normal text content programming
language

Web page intangible current normal text,
graphic,
sound

content tagged text

Medium Another obvious distinction is based on the kind of medium that is used
to convey the information. In the case of paper documents, the choice is limited
between text and graphics, while in digital documents other kinds of media, such
as sound, might be included.

Structure Moving towards the document content, different categories can be de-
fined according to the degree of structure they exhibit. The concept of structure is
typically referred to the meaningful arrangement of document components to form
the document as a whole, but can sometimes be referred to the inner structure of
the single components as well.

Representation formalism Also related to the content is the categorization by rep-
resentation formalism. There are different formalisms for both the paper docu-
ments, whose interpretation is intended for humans, and for digital documents,
whose interpretation is intended for computer and telecommunication systems.
However, often the digital documents are intended for humans as well, in which
cases both levels of representation are involved.

As can be easily noted, these kinds of categorizations show some degree of or-
thogonality, and thus allow several possible combinations thereof (Table 1.1 reports
a few sample cases). Of course, not all combinations will bear the same importance
or interest, but some are more typical or outstanding and deserve particular atten-
tion. Specifically, this book focuses on documents (and document components) from
a visual and understanding perspective. Thus, a selection on the support and media
types is immediately obtained: as to the former, we are interested in digital and pa-
per documents only, while as to the latter only text and graphics will be considered.
In other words, only ‘printable’ documents and components will be dealt with, not
(e.g.) music.

An interesting essay on what is a document in general, and a digital document in
particular, can be found in [5, 6], and will be summarized and discussed hereafter.
A historical survey of the literature reveals that a ‘document’ is, traditionally, often

1.4 Types of Documents 9

intended as a ‘textual record’. Such a quite restrictive definition is extended by some
authors to include any kind of artifact that fulfills the ‘object as a sign’ perspec-
tive. Underlying is the assumption that a document must be a physical item that is
generally intended and perceived as a document, and, although less convincing for
generic documents—but not, as we will see shortly, for digital documents—must
also be the product of some (human) processing [4]. As a further requirement, it has
to be cast into an organized system of knowledge. Indeed, the question concerning
the distinction between medium, message and meaning is a very old one.

This question becomes again topical with digital technology that represents ev-
erything as a sequence of bits. In fact, once one accepts that a word processor output
(probably the digital artifact most similar to what is classically intended as a doc-
ument) is to be considered a document, it must also be accepted that everything
having the same representation is a document as well. It is only a matter of in-
terpretation, just like one alphabet (say, the Latin one) can express many different
natural languages. This sets the question of ‘what a document is’ free from any de-
pendence on specific supports because multi-media all reduce, at the very end, to
a single medium that is a sequence of (possibly electronically stored) bits. Indeed,
some define a digital document as anything that can be represented as a computer
file. This is the very least definition one can think of, and at the same time the most
general. At a deeper analysis, the point is that there is no medium at all: the bits
exist by themselves, without the need for the support of physical means for mak-
ing them concrete, although this is obviously needed to actually store and exploit
them.

Moreover, accepting the thesis that what characterizes a document is its being a
‘proof’ of something, two consequences immediately spring out. First, it must carry
information, and information is expressed and measured in bits [10]. Thus, any-
thing that can (at least in principle, and even with some degree of approximation) be
expressed in terms of sequences of bits is a document. Second, it must be fixed in
some shape that can be distributed and permanently preserved. Hence, the document
needs a support, and thus any support capable of, and actually carrying, significant
bits in a stable way is a document from a physical perspective. Thus, digital docu-
ments can settle the controversy on whether the physical support is discriminant in
determining if an object is a document or not.

The problem of digital documents, with respect to all other kinds of documents
preceding the digital era, is that they are the first human artifact that is outside the
human control. Indeed, all previous kinds of documents (principally text and pic-
ture ones, but others as well) could be, at least in principle, directly examined by
humans without the need for external supporting devices, at least from the syn-
tactic perspective. Although allowing an extremely more efficient processing, this
imposes a noteworthy bias to their final users, and introduces the risk of not being
able to access the document information content because of technology obsoles-
cence factors, which after all spoils the object of the very feature that makes it a
document.

10 1 Documents

1.5 Document-Based Environments

As already pointed out, almost all aspects of the social establishment in which we
live, and for sure all formal aspects thereof, are based on documents, and represent
sources of needs and problems for their management and processing. Again, pro-
viding a complete survey of the several kinds of document-based environments is
not easy, due both to their variety and also to their many inter-relationships, but a
rough discussion of this specific issue can be nevertheless useful to further increase
awareness of the importance and complexity of the overall subject.

Two typical environments to which one thinks when considering documents are
archives and libraries. Indeed, they are the traditional institutions in which humans
have tried ever-since to store large amounts of documents for easy retrieval and con-
sultation. Ancient civilizations used archives for official documents (just think of the
repository of linear A and B clay tablets found in Knossos, Crete, and related to the
Mycenaean age—circa 2000 BC), and had the dream of collecting as much as pos-
sible of the corpus of knowledge available at that time in designated places (famous
projects of libraries date back to circa 1000 BC, and flourished throughout the an-
cient times; particularly noteworthy are the libraries of Pergamum, Greece—today
Turkey—and Alexandria, Egypt). Archives are more oriented to private documents,
while libraries are devoted to publications. In times when documents were tangible,
and consulting a document involved its physical possession, the easiest solution to
allow people have access to large amounts of information was to collect huge quan-
tities of documents in a few places, and require the users to move to those places.
Nowadays, on the other hand, the digital facility allows people to have access to the
documents at any moment and in any place, and to be physically separated from
them because they are easily duplicated and transmitted. Thus, although their aims
are the same as those of classical libraries, digital libraries are very different as to
organization and management.

Other places where documents play a central role are the offices of administra-
tions, professionals and secretariats. The documents involved in such environments
are usually bureaucratic ones, such as forms, letters and administration communi-
cations. Differently from archives, documents in this environment are of current
use and interest, and hence require easy and immediate retrieval whenever needed.
They must typically fulfill strict format specifications, as in the case of forms, bills
and commercial letters, and their management involves taking into account aspects
related to time and to compliance with laws and practices of other institutions.

The academic and research environments are another significant example of
document-based environment. For some respects, they sum up the features of li-
braries, archives and offices: indeed, they have to store lots of documents for both
consultation and administration purposes. However, some activities require further
peculiar functionality that is not present in those settings. A typical example is con-
ference management, where the basic functionality for document management and
processing must be extended with support for publication of logistic and scientific
information, submission and reviewing of papers, production of abstracts and pro-
ceedings, author and participant management, etc.

1.6 Document Processing Needs 11

1.6 Document Processing Needs

Depending on various combinations of document types, environments and user ob-
jectives, lots of different document processing tasks can be identified, in order to
satisfy the several needs of many document-based activities and institutions. In new
documents, the needs are mainly related to semantics and interpretation of the con-
tent, and hence on information retrieval and extraction. Conversely, going back to
legacy documents, additional problems, that tend towards syntax and representation
subjects, arise and become stratified on top of those.

On legacy documents, the problem is how to turn them into a digital format that
is suitable for their management using computer systems. The most straightforward
way to obtain this is scanning, which usually introduces as a side-effect various
kinds of noise, that must be removed. For instance, typical problems to be dealt
with are bad illumination, page image distortions (such as skew angles and warped
papers) and introduction of undesired layout elements, such as specks and border
lines due to shadows. Additional problems are intrinsic to the original item:

• Presence of undesired layout elements, as in the case of bleedthrough;
• Overlapping components, such as stamps and background texture;
• Lack of layout standard, in the document organization or in its content, as for

handwritten or non-standard alphabets and letters.

Moreover, often the digitization process must include extraction of the document
content as well, in order to store each component thereof in a way that is suitable
for its specific kind of content. In this case, simple scanning or photographing the
document is not sufficient. Indeed, for being properly stored and processed, the tex-
tual part of the document should be identified and represented as text, while images
should be cropped and stored separately. In turn, this might impose additional re-
quirements on how scanning is performed.

A serious problem related to preservation of legacy documents is the durability of
the copy and its actual exploitability in the future. Indeed, in spite of the appearance,
paper is more durable than many other supports (e.g., magnetic disks and tapes are
easily damaged, but also the actual endurance of current optical disks is not known).
An example may clarify the matter: a few decades ago some Public Administrations
decided to transpose many of their archived papers, often important official docu-
ments, onto microfilms. Microfilms have a limited quality, they are delicate and can
be read only by specific instruments. Such instruments, and the making of micro-
films itself, were very costly, and for this reason microfilm technology was soon
abandoned in favor of scanning by means of computer systems. Those instruments
are no longer produced, and the existing ones are progressively disappearing, so the
preservation problem strikes back. Even worse, in some cases the administrations,
after transposing on microfilms their legacy documents, have destroyed the originals
to make room in their archives. Thus they now are not able to read the microfilms
and do not have the original either: there is a real danger of having lost those doc-
uments. The lesson gained from this negative experience is that the adoption of a
new technology must ensure that the documents will be accessible in the future, in-
dependently of the availability of the same instruments by which they were created.

12 1 Documents

For printable documents (probably the most widespread and important ones—like
administrative records, deeds and certificates) the best solution might be to provide,
in addition to the digital version (to be exploited in current uses) a few ‘official’
paper copies, to be stored and exploited in case, for some reason (e.g., technological
obsolescence or failure, black-outs, etc.) the digital counterpart is not accessible.

On historical documents, the main interest relies in their restoration and preser-
vation for cultural heritage purposes. Restricting to written documents, the source
format is typically paper, papyrus or parchment, and hence digitization can be gener-
ally obtained by means of a scanning process in order to maintain the original aspect
of the artifact, in addition to its content. All the problems of legacy documents are
still present, but additional ones arise, due to the low quality and standardization of
the original, such as in the case of missing pieces (particularly in ancient fragments).

On digital documents (both born-digital ones and legacy ones that have been
digitized according to the above criteria), a first issue is to develop suitable rep-
resentation formalisms and formats that can express different kinds of content
in an effective, compact and machinable way (three requirements that are of-
ten opposite to each other, thus imposing some kind of trade-off). More gen-
erally, the interest lies in properly indexing them for improving retrieval per-
formance, and in extracting from them relevant information that can be ex-
ploited for many purposes, such as indexing itself, categorization, understand-
ing, etc.

Lastly, when switching from single documents to homogeneous collections, or-
ganizational aspects come also into play, and must be properly tackled. These as-
pects obviously include (or at least involve) the indexing and information extraction
issues described in the previous paragraph, but also raise additional needs strictly re-
lated to the overall purposes of the collection, and not only to the document content
itself. Categorization and clustering of documents is often a fundamental require-
ment in all contexts, but distribution and delivery of the proper documents to the
various users of the system might play a crucial role as well. For instance, a digi-
tal library is interested in associating documents to categories of interest; an e-mail
system can derive its success from the ability to precisely discriminate spam mes-
sages; an on-line bookshop aims at suggesting effective recommendations according
to users’ desires; in an office typical needs are interoperability, compliance with ex-
ternal specifications and security aspects; and so on.

References

1. Knowledge for development: Tech. rep. The World Bank (1998/1999)
2. Merriam-Webster’s Collegiate Dictionary, 10th edn. Merriam-Webster Inc. (1999)
3. Angelici, C.: Documentazione e documento (diritto civile). In: Enciclopedia Giuridica Trec-

cani, vol. XI (1989) (in Italian)
4. Briet, S.: Qu’est-ce que la Documentation. EDIT, Paris (1951)
5. Buckland, M.K.: What is a ‘document’? Journal of the American Society for Information

Science 48(9), 804–809 (1997)
6. Buckland, M.K.: What is a ‘digital document’? Document Numérique 2(2), 221–230 (1998)

References 13

7. Candian, A.: Documentazione e documento (teoria generale). In: Enciclopedia Giuridica Trec-
cani (1964) (in Italian)

8. Carnelutti, F.: Documento—teoria moderna. In: Novissimo Digesto Italiano (1957) (in Italian)
9. Irti, N.: Sul concetto giuridico di documento. In: Riv. Trim. Dir. e Proc. Civ. (1969) (in Italian)

10. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illi-
nois Press, Champaign (1949)

Chapter 2
Digital Formats

Recent developments in computer science disciplines have caused an ever-increasing
spread of digital technologies, which has consequently turned upside down nearly
all human activities in many of their aspects. At the same time, the fragmenta-
tion of the computer science landscape and the tough competition among software
producers have led to a proliferation of different, and unfortunately often incompat-
ible, ways of representing documents in digital format. Only very recently, initial
efforts have been started aimed at rationalization and standardization of such for-
mats, although it must be said that some (limited) range of variability is needed
and desirable to be able to properly represent documents having very different
characteristics (for instance, it is hardly conceivable that different kinds of con-
tent as, say, text, images and music will be ever represented using the same ‘lan-
guage’).

In the following, some of the most widespread formats will be introduced,
grouped according to the kind and degree of structure they allow expressing in a
document content representation. Raster image formats will be dealt with more in-
depth, for showing and comparing different perspectives on how visual informa-
tion can be encoded. Also PS and PDF will be given somewhat larger room be-
cause they are famous from an end-usage perspective, but are not very well-known
as to internal representation. Also for comparison purposes to the raster formats,
a particular attention will be given to their image representation techniques. Mark-
up languages will be discussed with reference to HTML and XML. However, the
aim here will not be providing an HTML/XML programmer’s manual (many valid
books on this specific subject are available); rather, their representational rationale
and approach will be stressed. HTML will be discussed with just the aim of con-
sidering a tag-based format and the possibilities it provides, while XML will be
presented to give an idea of how flexible information representation can be ob-
tained by a general tag definition mechanism supported by external processing tech-
niques.

S. Ferilli, Automatic Digital Document Processing and Management,
Advances in Pattern Recognition,
DOI 10.1007/978-0-85729-198-1_2, © Springer-Verlag London Limited 2011

15

16 2 Digital Formats

2.1 Compression Techniques

The availability of digital documents and the consequent need to store huge quan-
tities thereof and to transmit them over computer networks have raised the need
for reducing the amount of memory required to represent a document. In the for-
mer case, this would allow keeping together on one support large repositories of
related documents; in the latter, this would enable quick delivery of documents to
their final users. Such problems relate particularly, but not exclusively, to digital
image representation, due to the large amount of data to be stored. Thus, a pri-
mary interest in this field has always been the development of effective and efficient
techniques for data compression. Lossless compression techniques ensure that the
original uncompressed data can be exactly restored, at the cost of a lower com-
pression ratio. Conversely, lossy techniques allow exchanging a reasonable amount
of quality in image reconstruction for significant improvement in compression per-
formance. With this subject being pervasive in digital document representation, it
will be discussed preliminarily in the presentation of the specific digital formats, by
considering outstanding solutions that have been proposed and widely adopted so
far.

RLE (Run Length Encoding) The RLE algorithm performs a lossless compres-
sion of input data based on sequences of identical values (called runs). It is a his-
torical technique, originally exploited by fax machines and later adopted in image
processing. Indeed, since in black&white images only two symbols are present, the
chances to have long runs for a value, and hence the possibility of high compression
rates, are significantly increased. The algorithm is quite easy: each run, instead of
being represented explicitly, is translated by the encoding algorithm in a pair (l, v)

where l is the length of the run and v is the value of the run elements. Of course, the
longer the runs in the sequence to be compressed, the better the compression ratio.

Example 2.1 (RLE compression of a sample sequence) The sequence

xyzzxyyzxywxy

would be represented by RLE as

(1, x) (1, y) (2, z) (1, x) (2, y) (1, z) (1, x) (1, y) (1, w) (1, x) (1, y).

Assuming that an integer takes a byte just as a character, here the ‘compressed’
version of the original 13-byte sequence takes 22 bytes. This is due to the large
cardinality of the alphabet with respect to the length of the sequence, and to the
high variability of the symbols therein.

Huffman Encoding The compression strategy devised by Huffman [20] relies on
a greedy algorithm to generate a dictionary, i.e., a symbol–code table, that allows
obtaining a nearly optimal data compression from an information-theoretic view-

2.1 Compression Techniques 17

point.1 First of all, the alphabet is identified as the set of symbols appearing in the
string to be encoded. Then, the frequency in such a string of each symbol of the
alphabet is determined. Subsequently, a binary tree, whose nodes are associated to
frequencies, is built as follows:

1. Set the symbols of the alphabet, with the corresponding frequencies, as leaf
nodes

2. while the structure is not a tree (i.e., there is no single root yet)
(a) Among the nodes that do not still have a parent, select two whose associated

frequency is minimum
(b) Insert a new node that becomes the parent of the two selected nodes and gets

as associated frequency the sum of the frequencies of such nodes
3. In the resulting tree, mark each left branch as ‘1’ and each right branch as ‘0’

Lastly, the binary code of each symbol is obtained as the sequence of branch la-
bels in the path from the root to the corresponding leaf. Now, each symbol in the
source sequence is replaced by the corresponding binary code. A consequence of
this frequency-based procedure is that shorter codes are assigned to frequent sym-
bols, and longer ones to rare symbols.

Decompression is performed using the symbol–code table, scanning the encoded
binary string and emitting a symbol as soon as its code is recognized:

1. while the encoded sequence has not finished
(a) Set the current code to be empty
(b) while the current code does not correspond to any code in the table

(i) Add the next binary digit in the encoded sequence to the current code
(c) Output to the decompressed sequence the symbol corresponding to the code

just recognized

Note that the code generation procedure is such that no code in the table is a pre-
fix of another code, which ensures that as soon as a code is recognized left-to-right
it is the correct one: neither a longer code can be recognized, nor recognition can
stop before recognizing a code or having recognized a wrong code. Hence, the com-
pressed sequence can be transmitted as a single and continuous binary sequence,
without the need for explicit separators among codes.

Example 2.2 (Huffman compression of a sample sequence) Assume the message to
be encoded is xyzzxyyzxywxy. A node is created for each different symbol in the
sequence: x, y, z and w. The symbol frequencies are 4

13 for x, 5
13 for y, 3

13 for z

and 1
13 for w. The two nodes with minimum frequencies (z and w) are connected to

a new parent node (let us call it I), that gets the sum of their frequencies (4
13). Now

the two nodes without a parent and with minimum frequencies are x and I , that are
connected to a new parent II, whose overall frequency is 8

13 . Lastly, the only two
nodes without a parent, II and y, are connected to a new parent R that completes
the tree and becomes its root. From the resulting tree (depicted in Fig. 2.1) the

1As proved by Shannon [23], the number of bits required to specify sequences of length N , for
large N , is equal to N · H (where H is the source entropy).

18 2 Digital Formats

Fig. 2.1 Binary tree that
defines the Huffman codes for
the symbols in string
xyzzxyyzxywxy

following table is obtained:

Symbol x y z w

Code 11 0 101 100

that is used to encode the initial string:

x y z z x y y z x y w x y
11 0 101 101 11 0 0 101 11 0 100 11 0

Given the compressed string, and scanning it from left to right: 1 is not a code, 11 is
recognized as the code of x; 0 is immediately recognized as the code of y; 1 is not
a code, nor is 10, while 101 is the code of z; and so on.

LZ77 and LZ78 (Lempel–Ziv) A series of compression techniques was devel-
oped by Lempel and Ziv, and hence denoted by the acronym LZ followed by the
year of release: LZ77 [28] dates back to 1977, while LZ78 [29] dates to 1978. Both
are dictionary-based encoders, and represent a basis for several other techniques
(among which LZW, to be presented next). The former looks backward to find du-
plicated data, and must start processing the input from its beginning. The latter scans
forward the buffer, and allows random access to the input but requires the entire dic-
tionary to be available. They have been proved to be equivalent to each other when
the entire data is decompressed. In the following, we will focus on the former.

LZ77 adopts a representation based on the following elements:

Literal a single character in the source stream;
Length–Distance pair to be interpreted as “the next length characters are equal to
the sequence of characters that precedes them of distance positions in the source
stream”.

2.1 Compression Techniques 19

The repetitions are searched in a limited buffer consisting of the last N kB (where
N ∈ {2,4,32}), whence it is called a sliding window technique. Implementations
may adopt different strategies to distinguish length–distance pairs from literals and
to output the encoded data. The original version exploits triples

(length, distance, literal),

where

• length–distance refers to the longest match found in the buffer, and
• literal is the character following the match

(length = 0 if two consecutive characters can only be encoded as literals).

LZW (Lempel–Ziv–Welch) The information lossless compression technique by
Lempel–Ziv–Welch (whence the acronym LZW) [26] leverages the redundancy of
characters in a message and increases compression rate with the decreasing of the
number of symbols used (e.g., colors in raster images). It uses fixed-length codes
to encode symbol sequences of variable length that appear frequently, and inserts
them in a symbol–code conversion dictionary D (that is not stored, since it can be
reconstructed during the decoding phase). If implemented as an array, the index of
elements in D corresponds to their code. In the following, T will denote the source
stream, composed on an alphabet A made up of n symbols, and C the compressed
one.

To start compression, one needs to know how many bits are available to represent
each code (m bits denote 2m available codes, ranging in [0,2m −1]). The symbols of
A are initially inserted in the first n positions (from 0 to n − 1) of D. The compres-
sion algorithm continues exploiting an output string C and two variables (a prefix
string P , initially empty, and a symbol s):

1. P is initially empty
2. while T is not finished

(a) s ← next symbol in T

(b) if string Ps is already present in D

(i) P becomes Ps

(c) else
(i) Insert string Ps in the first available position of D

(ii) Append to C the code of P found in D

(iii) P becomes s

3. Append to C the code of P found in D

After compression, D can be forgotten, since it is not needed for decompression.
Due to the many accesses to D, it is usefully implemented using a hashing tech-
nique, based on the string as a key. Of course, there is the risk that all available
codes in the table are exploited, and special steps have to be taken to handle the case
in which an additional one is needed.

The only information needed during the decoding phase is the alphabet A, whose
symbols are initially placed in the first n positions of dictionary D. Encoding is such

20 2 Digital Formats

that all codes in the coded stream can be translated into a string. Decoding continues
as follows, using two temporary variables c and o for the current and old codes,
respectively:

1. c ← first code from C

2. Append to T the string for c found in D

3. while C is not finished
(a) o ← c

(b) c ← next code in C

(c) if c is already present in D

(i) Append to T the string found in D for c

(ii) P ← translation for o

(iii) s ← first symbol of translation for c

(iv) Add Ps to D

(d) else
(i) P ← translation for o

(ii) s ← first character of P

(iii) Append Ps to T and add it to D

Note that both coding and decoding generate the same character–code table. More
space can be saved as follows. Notice that all insertions in D are in the form Ps,
where P is already in D. Thus, instead of explicitly reporting Ps in the new entry,
it is possible to insert (c, s), where c is the code for P (that usually has a shorter bit
representation than P itself).

Example 2.3 (LZW compression of a sample sequence) Consider the following
string to be compressed:

x y z z x y y z x y w x y
⇓

String w x y z xy yz zz zx xyy yzx xyw wx

Compact w x y z 1+y 2+z 3+z 3+x 4+y 5+x 4+w 0+x

Code10 0 1 2 3 4 5 6 7 8 9 10 11

Code2 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011
⇑

1 2 3 3 4 5 4 0 4

0001 0010 0011 0011 0100 0101 0100 0000 0100

In this case, the string to be compressed is 26 bits long (13 symbols × 2 bits needed
to encode each symbol in an alphabet of 4) and the compressed string is 36 bits long
(9 codes × 4 bits needed to represent each). This happens because the message is too
short and varied, which generates many codes but does not provide the opportunity
to reuse them.

For very long data streams and with a large alphabet (e.g., 256 symbols) the
compression estimate is about 40% if applied to text.

2.2 Non-structured Formats 21

DEFLATE DEFLATE [16] is a compression algorithm that joins LZ77 and Huff-
man. Compressed streams consist of sequences of blocks, each preceded by a 3-bit
header, where the first bit is a flag saying whether that is the last block (0 = false,
1 = true) and the other two express the encoding method for the block (the most
used is 10, corresponding to dynamic Huffman encoding, while 11 is reserved).

It consists of two steps:

1. Apply matching to find duplicate strings and replace them with backward refer-
ences, obtaining the pairs

(length, distance)

where length ∈ [3,258] and distance ∈ [1,32768].
2. Replace the original symbols with new symbols having length inversely pro-

portional to their frequency of use, according to Huffman encoding. Specifically,
literal and length alphabets are merged into a single alphabet 0–285, and encoded
in a tree that provides room for 288 symbols, as follows:

• 0–255 represent the possible literals;
• 256 denotes the end of the block;
• 257–285, combined with extra bits, express a match length of 3 to 258 bytes,

where codes in each group from 256 + 4i + 1 to 256 + 5i, for i = 0, . . . ,5,
denote 2i lengths using i extra bits, and code 285 denotes length 258 (an ex-
tensional representation is provided in Table 2.1);

• 286–287 are reserved (not used).

Distance values between 1 and 32768 are encoded using 32 symbols as follows:

• Symbols 0 to 3 directly represent distances 1 to 4.
• Symbols (2 · i + 4) and (2 · i + 5), for i = 0, . . . ,12, denote distances from

(2i+2 + 1) to (2i+3) as follows:

(2 · i + 4) denotes the base value 2i+2 + 1 (and distances up to 3 · 2i+1),
(2 · i + 5) denotes the base value 3 · 2i+1 + 1 (and distances up to 2i+3),

and the actual distance is obtained by adding to the base value a displacement
d ∈ [0,2i+1 − 1], expressed by (i + 1) extra bits.

• Symbols 30 and 31 are reserved (not used).

These symbols are arranged in a distance tree, as well.

2.2 Non-structured Formats

By the attribute “non-structured”, in this section, we will refer to documents that do
not explicitly organize the information they contain into structures that are signifi-
cant from a geometrical and/or conceptual point of view.

22 2 Digital Formats

Table 2.1 Correspondence
between codes and lengths
in the DEFLATE
compression technique

Code Extra bits Length Lengths per code

257

0

3

1.
.
.

.

.

.

264 10

265

1

11–12

2.
.
.

.

.

.

268 17–18

269

2

19–22

4.
.
.

.

.

.

272 31–34

273

3

35–42

8.
.
.

.

.

.

276 59–66

277

4

67–82

16.
.
.

.

.

.

280 115–130

281

5

131–162

32.
.
.

.

.

.

284 227–257

285 0 258 1

2.2.1 Plain Text

Plain text, usually denoted by the TXT extension, refers to a stream of characters rep-
resented according to some standard coding agreement. In particular, each character
is represented as an integer (typically in binary or hexadecimal format2), to which
the users assign a specific meaning (that can be identified with the symbol denoting
that character). Usually, the characters to be represented are the letters of a partic-
ular writing system or script (the alphabet of a language, possibly extended with
diacritic marks) plus punctuation marks and other useful symbols. In this format,
the only semblance of a structure is given by the line separator, roughly indicating a
kind of ‘break’ in the character flow.

This format is mainly intended for information exchange, not typography. Thus,
each character represents the ‘essence’ of a symbol, abstracted from the many par-

2In the rest of this section, both notations will be used interchangeably, as needed.

2.2 Non-structured Formats 23

Fig. 2.2 Ranges of hexadecimal codes exploited by various standards for character encoding

ticular shapes by which that symbol can be graphically denoted. Rather, it should
ensure complete accessibility, independent of the particular platform (software, op-
erating system and hardware architecture) in use, as long as there is an agreement on
the coding standard to be used. As a consequence, there is a need to define shared
conventions on which basis a given value is uniformly interpreted by all users as
the same character. Figure 2.2 depicts the ranges of hexadecimal codes exploited by
various standards that will be discussed in the following.

ASCII Historically, the coding agreement that has established in the computer
community, becoming a de facto standard, is the ASCII (American Standard Code
for Information Interchange).3 It is based on the exploitation of 1 byte per character,
leading to a total of 256 possible configurations (i.e., symbols that can be repre-
sented). In its original version, devised to support American texts (US-ASCII), it
actually exploited only 7 bits, reserving the last bit for error checking purposes in
data transmission, or leaving it unused. This allowed 27 = 128 different configu-
rations, to represent 95 printable characters plus some control codes. However, the
worldwide spread of computer systems has subsequently called for an extension of
this range to include further useful symbols as well. In particular, several kinds of
codes were developed with the advent of the Internet, and for this reason their defini-
tion and assignment are ruled by the IANA (Internet Assigned Numbers Authority).

ISO Latin Many languages other than English often rely on scripts containing
characters (accented letters, quotation marks, etc.) that are not provided for in
ASCII. A first, straightforward solution was found in exploiting for coding pur-
poses also the last bit of a character byte, which allowed 128 additional config-
urations/characters available. However, even the 256 total configurations obtained
in this way were soon recognized to be insufficient to cover all Western writing
systems. To accommodate this, several alternative exploitations of the new config-
urations coming from the use of the eighth bit were developed, leading to a family
of standards known as ISO/IEC 8859. Specifically, 16 different extensions were de-
fined, and labeled as the ISO/IEC 8859-n standards (with n = 1, . . . ,16 denoting

3Another coding standard in use during the ancient times of computing machinery, abandoned
later on, was the EBCDIC (Extended Binary Coded Decimal Interchange Code), which started
from the BCD (Binary Coded Decimal) binary representation of decimal digits, from 00002 = 0
to 10012 = 9, used by early computers for performing arithmetical operations, and extended it
by putting before four additional bits. The decimal digits are characterized by an initial 11112
sequence, while the other configurations available allow defining various kinds of characters (al-
phabetic ones, punctuation marks, etc.).

24 2 Digital Formats

the specific extension). Among them, the most used are the sets of Latin characters
(ISO Latin), and specifically the ISO-8859-1 code. Obviously, the alternative sets
of codes are incompatible with each other: the same (extended) configuration corre-
sponds to different characters in different standards of the family. It should be noted
that only printable characters are specified by such codes, leaving the remaining
configurations unspecified and free for use as control characters.

UNICODE Although the one-byte-per-character setting is desirable for many rea-
sons (efficiency in terms of memory, easy mapping, computer architecture compli-
ance, etc.), it is not sufficient to effectively cover the whole set of languages and
writing systems in the world. In order to collect in a unified set the different codes
in the ISO/IEC 8859 family, and to allow the inclusion of still more scripts, avoiding
incompatibility problems when switching from one to another, the Unicode [24] and
UCS (Universal Character Set, also known as ISO/IEC 10646) [6] standards were
developed, and later converged towards joint development. Here, each character is
given a unique name and is represented as an abstract integer (called code point),
usually referenced as ‘U+’ followed by its hexadecimal value.

Unicode defines a codespace of 1,114,112 potential code points in the range
00000016–10FFFF16, logically divided into 17 planes (0016–1016), made up of
216 = 65,536 (000016–FFFF16) code points each:

Plane 0 (0000–FFFF) Basic Multilingual Plane (BMP)
Plane 1 (10000–1FFFF) Supplementary Multilingual Plane (SMP)
Plane 2 (20000–2FFFF) Supplementary Ideographic Plane (SIP)
Planes 3 to 13 (30000–DFFFF) unassigned
Plane 14 (E0000–EFFFF) Supplementary Special-purpose Plane (SSP)
Planes 15 (F0000–FFFFF) and 16 (100000–10FFFF) Private Use Area (PUA) –
reserved

Only 100,713 code points are currently exploited (as of Version 5.1, April 2008,
covering 75 scripts). Ranges of code points have been reserved for every current
and ancient writing systems, already known or still to be discovered. The BMP,
in particular, is devoted to support the unification of prior character sets as well
as characters for writing systems in current use, and contains most of the charac-
ter assignments so far. Code points in the BMP are denoted using just four digits
(‘U+nnnn’); for code points outside the BMP, five or six digits are used, as required.
ISO/IEC 8859 characters all belong to the BMP, and hence are mapped on their
Unicode/UCS counterparts via a U+nnnn notation.

UTF Code points are implemented using a technique called UTF. Actually, differ-
ent kinds of UTF exist, some using configurations of bits of fixed length and others
using variable-length encoding:

UTF-8 sequences of one to six 8-bit code values
UTF-16 sequences of one or two 16-bit code values
UTF-32 or UTF-4 fixed-length 4-byte code values
UTF-2 fixed-length 2-byte code values (now replaced by UTF-8)

2.2 Non-structured Formats 25

UTF-8 is the only platform-independent UTF. Conversely, UTF-16 and UTF-32
are platform-dependent concerning byte ordering, and are also incompatible with
ASCII, which means that Unicode-aware programs are needed to handle them, even
in cases when the file contains only ASCII characters.4 For these reasons, 8-bit
encodings (ASCII, ISO-8859-1, or UTF-8) are usually exploited for representing
text even on platforms that are natively based on other formats.

Table 2.2 shows the 4-byte fixed-length and UTF-8 variable length representa-
tions of remarkable code points, while Table 2.3 reports a comparison of UTF-8 and
UTF-16 for interesting ranges of code points.

UTF-8 adopts a segment-based management: a subset of frequent characters is
represented using fewer bits, while special bit sequences in shorter configurations
are used to indicate that the character representation takes more bits. Although this
adds redundancy to the coded text, advantages outperform disadvantages (and, in
any case, compression is not an aim of Unicode). For instance, such a variable-
length solution allows saving memory in all the many cases in which the basic Latin
script, without accented letters and typographic punctuation, is sufficient for the
user’s purposes (e.g., programming). It exploits up to four bytes to encode Unicode
values, ranging 0–10FFFF; for the ISO/IEC 10646 standard, it can exploit even five
or six bytes, to allow encoding values up to U+7FFFFFFF. The rules for obtaining
UTF-8 codes are as follows:

1. Single-byte codes start with 0 as the most significant bit. This leaves 7 bits avail-
able for representing the actual character.

2. In multi-byte codes, the number of consecutive 1’s in the most significant bits of
the first byte, before a 0 bit is met, denotes the number of bytes that make-up
the multi-byte code; subsequent bytes of the multi-byte code start with 10 in the
two most significant bits. For a multi-byte code made up of n bytes, this leaves
(7 − n) + 6 · (n − 1) bits available for representing the actual character.

This ensures that no sequence of bytes corresponding to a character is ever contained
in a longer sequence representing another character, and allows performing string
matching in a text file using a byte-wise comparison (which is a significant help
and allows for less complex algorithms). Additionally, if one or more bytes are lost
because of transmission errors, decoding can still be synchronized again on the next
character, this way limiting data loss.

UTF-8 is compliant to ISO/IEC 8859-1 and fully backward compatible to ASCII
(and, additionally, non-ASCII UTF-8 characters are just ignored by legacy ASCII-
based programs). Indeed, due to rule 1, UTF-8 represents values 0–127 (0016–7F16)
using a single byte with the leftmost bit at 0, which is exactly the same representa-
tion as in ASCII (and hence an ASCII file and its UTF-8 counterpart are identical).
As to ISO/IEC 8859-1, since it fully exploits 8 bits, it goes from 0 to 255 (0016–
FF16). Its lower 128 characters are just as ASCII, and fall, as said, in the 1-byte

4As a trivial example of how tricky UTF-16 can be: usual C string handling cannot be applied
because it would consider as string terminators the many 00000000 byte configurations in UTF-16
codes.

26 2 Digital Formats

Table 2.2 Comparison between a fixed-length (UTF-4) and a variable-length (UTF-8) encoding
for noteworthy values of UCS

Encoding Value representation Standards
boundaries

UTF-8
length

UCS 0 0 0 0 0 0 0 1 1-byte

UTF-4 00000000 00000000 00000000 00000001

UTF-8 00000001

UCS 0 0 0 0 0 0 7 F

ASCII

UTF-4 00000000 00000000 00000000 01111111

UTF-8 01111111

UCS 0 0 0 0 0 0 8 0 2-byte

UTF-4 00000000 00000000 00000000 10000000

UTF-8 11000010 10000000

UCS 0 0 0 0 0 7 F F

UTF-4 00000000 00000000 00000111 11111111

UTF-8 11011111 10111111

UCS 0 0 0 0 0 8 0 0 3-byte

UTF-4 00000000 00000000 00001000 00000000

UTF-8 11100000 10100000 10000000

UCS 0 0 0 0 F F F F

BMP

UTF-4 00000000 00000000 11111111 11111111

UTF-8 11101111 10111111 10111111

UCS 0 0 0 1 0 0 0 0 4-byte

UTF-4 00000000 00000001 00000000 00000000

UTF-8 11110000 10010000 10000000 10000000

UCS 0 0 1 0 F F F F Unicode

UCS 0 0 1 F F F F F

UTF-4 00000000 00011111 11111111 11111111

UTF-8 11110111 10111111 10111111 10111111

UCS 0 0 2 0 0 0 0 0 5-byte

UTF-4 00000000 00100000 00000000 00000000

UTF-8 11111000 10001000 10000000 10000000 10000000

UCS 0 3 F F F F F F

UTF-4 00000011 11111111 11111111 11111111

UTF-8 11111011 10111111 10111111 10111111 10111111

UCS 0 4 0 0 0 0 0 0 6-byte

UTF-4 00000100 00000000 00000000 00000000

UTF-8 11111100 10000100 10000000 10000000 10000000 10000000

UCS 7 F F F F F F F

UCS

UTF-4 01111111 11111111 11111111 11111111

UTF-8 11111101 10111111 10111111 10111111 10111111 10111111

2.2 Non-structured Formats 27

Table 2.3 UTF-8 and UTF-16 encodings for noteworthy ranges of code points. 0/1s denote fixed
bit values, while x’s denote bit positions available for the actual value representation. For short, in
UTF-8, the notation (B) × N stands for N bytes of the kind B

Range (hex) UTF-16 UTF-8

000000–00007F 00000000 0xxxxxxx 0xxxxxxx

000080–0007FF 00000xxx xxxxxxxx 110xxxxx + 10xxxxxx

000800–00FFFF xxxxxxxx xxxxxxxx 1110xxxx + (10xxxxxx) × 2

010000–10FFFF 110110xx xxxxxxxx 110111xx xxxxxxxx 11110xxx + (10xxxxxx) × 3

00110000–001FFFFF 11110xxx + (10xxxxxx) × 3

00200000–003FFFFF 111110xx + (10xxxxxx) × 4

04000000–7FFFFFFF 1111110x + (10xxxxxx) × 5

representation, while its upper 128 characters (those extending ASCII, going from
128 to 255, i.e., 8016–FF16) fall in the 2-byte representation (08016–7FF16, or 128–
2047), thus they will be represented as 110000xx 10xxxxxx.

The rules for obtaining UTF-16 codes are as follows:

• For code points in the BMP (000016–FFFF16), 16 bits (i.e., 2 bytes) are sufficient.
• To represent code-points over the BMP (01000016–10FFFF16), surrogate pairs

(pairs of 16-bit words, each called a surrogate, to be considered as a single entity)
are exploited. The first and second surrogate are denoted, respectively, by the bit
sequences 110110 and 110111 in the first six positions, which avoids ambiguities
between them and leaves 16 − 6 = 10 available bits each for the actual value
representation. First 1000016 is subtracted from the code point value, in order to
obtain a value ranging in 0000016–FFFFF16, that can be represented by 20 bits.
Such resulting 20 bits are split into two subsequences made up of 10 bits each,
assigned to the trailing 10 bits of the first and second surrogate, respectively.

This means that the first surrogate will take on values in the range D80016–DBFF16,
and the second surrogate will take on values in the range DC0016–DFFF16.

Example 2.4 (UTF-16 representation of a sample code point) The character at code
point U+10FF3A is transformed by the subtraction into

FFFA16 = 111111111111001110102

The first ten bits (1111111111) are placed in the first surrogate, that becomes
11011011111111112 = DBFF16, and the second ten bits 1100111010 are placed
in the second surrogate, that becomes 11011111001110102 = DF3A16; overall, the
original code point is represented as the sequence (DBFF DF3A)16.

Of course, not to confuse a surrogate with a single 16-bit character, Unicode (and
thus ISO/IEC 10646) are bound not to assign characters to any of the code points in
the U+D800–U+DFFF range.

28 2 Digital Formats

2.2.2 Images

Image components play a very important role in many kinds of documents because
they leverage on the human perception capabilities to compactly and immediately
represent large amounts of information that even long textual descriptions could not
satisfactorily express. While text is a type of linear and discrete information, visual
information, however, is inherently multi-dimensional (2D still images, that will be
the area of interest of this book, are characterized along three dimensions: two refer
to space and one to color) and continuous. Thus, while the transposition of the for-
mer into a computer representation is straightforward, being both characterized by
the same features, the translation of the latter posed severe problems, and raised the
need for formats that could find a good trade-off among the amount of information
to be preserved, the memory space demand and the manipulation processes to be
supported. To make the whole thing even more difficult, all these requirements may
have different relevance depending on the aims for which the image is produced.

Color Spaces

A color space is a combination of a color model, i.e., a mathematical abstract model
that allows representing colors in numeric form, and of a suitable mapping function
of this model onto perceived colors. Such a model determines the colors that can be
represented, as a combination of a set of basic parameters called channels.5 Each
channel takes on values in a range, that in the following we will assume to be [0,1]
unless otherwise stated. Of course, practical storing and transmission of these val-
ues in computer systems may suggest more comfortable byte-based representations,
usually as discrete (integer) values in the [0,N − 1] interval (where N = 2k with
k the number of bits reserved for the representation of a channel). In such a case,
a value x ∈ [0,1] can be suitably scaled to an n ∈ [0,N − 1] by the following for-
mula:

n = min
(
round(N · x),N − 1

)

and back from n to x with a trivial proportion. A typical value adopted for N , that is
considered a good trade-off between space requirements, ease of manipulation and
quality of the representation, is 28 = 256, which yields a channel range [0,255].
Indeed, k = 8 bits, or a byte, per channel ensures straightforward compliance to
traditional computer science memory organization and measurement. It is also usual
that a color is compactly identified as a single integer obtained by juxtaposing the
corresponding channel values as consecutive bits, and hence adding or subtracting
given amounts to such a compound value provides results that cannot be foreseen
from a human perception viewpoint.

5An indication that one of the main interests towards images is their transmission.

2.2 Non-structured Formats 29

Table 2.4 The main colors as represented in coordinates of the different color spaces

Color R G B C M Y Y U V H S V L

K 0 0 0 1 1 1 0 0.5 0.5 – 0 0 0

R 1 0 0 0 1 1 0.3 0.33 1 0 1 1 0.5

G 0 1 0 1 0 1 0.58 0.17 0.08 1/3 1 1 0.5

B 0 0 1 1 1 0 0.11 1 0.42 2/3 1 1 0.5

C 0 1 1 1 0 0 0.7 0.67 0 1/2 1 1 0.5

M 1 0 1 0 1 0 0.41 0.83 0.92 5/6 1 1 0.5

Y 1 1 0 0 0 1 1 0 0.58 1/6 1 1 0.5

W 1 1 1 0 0 0 1 0.5 0.5 – 0 1 1

Gray x x x x x x x 0.5 0.5 – 0 x x

RGB The most widespread color space is RGB (or three-color), acronym of the
colors on which it is based (Red, Green and Blue). It is an additive color system,
meaning that any color is obtained by adding to black a mix of lights carrying dif-
ferent amounts of the base colors. The intensity of each color represents its shade
and brightness. The three primary colors represent the dimensions along which any
visible color is defined, and hence the whole space consists of a cube of unitary side.
Each color is identified as a triple (R,G,B) that locates a point in such a space (and
vice-versa). In particular, the triples that represent the base colors correspond to the
eight corners of the cube (see Table 2.4), while gray levels (corresponding to triples
in which R = G = B) are in the main diagonal of such a cube, going from Black
(usually denoted by K) to White (W). Note that this color space is non-linear, in
the sense that its dimensions have no direct mapping to the typical dimensions un-
derlying human perception. As a consequence, it is not foreseeable what will be
the result of acting in a given way on each channel value because changing a single
component changes at once many different parameters such as color tone, saturation
and brightness.

The success of RGB is due to the fact that it underlies most analog and digital
representation and transmission technologies, and is supported by many devices,
from old CRT (Cathode Ray Tube) monitors to current LCD (Liquid Crystal Dis-
play) and LED (Light-Emitting Diode) screens, from scanners to cameras.

YUV/YCbCr The YUV color space has its main feature in the Y component that
denotes the luminance channel (i.e., the sum of primary colors), and corresponds
to the overall intensity of light carried by a color. In practical terms, the luminance
information alone yields grayscale colors, and hence is sufficient to display images
on black&white screens. The values of the colors can be derived as the difference
between the chrominance channels U (difference from blue) and V (difference from
red). Green is obtained by subtracting from the luminance signal the signals trans-
mitted for red and blue. YCbCr is the international standardization of YUV.

YUV was originally developed to switch from a color RGB signal to a black
and white one because the same signal could be straightforwardly exploited both by

30 2 Digital Formats

color receivers (using all three channels) and by black&white receivers (using only
the Y channel).

CMY(K) CMY is a color model named after the acronym of the basic colors that
it exploits: Cyan, Magenta, and Yellow. It is a subtractive system, because starting
from white (such as a sheet to be printed), light is progressively subtracted along
the basic components to determine each color, up to the total subtraction that yields
black.

Hence, in theory a separate black component is not necessary in CMY, because
black can be obtained as the result of mixing the maximum level of the three basic
colors. However, in practice the result obtained in this way is not exactly perceived
as black by the human eye. For this reason, often an additional K channel (where K

stands for blacK, also called Key color) is specifically exploited for the gray-level
component of the colors, this way obtaining the CMYK (or four-color) color space.

CMY(K) is suitable for use in typography, and indeed its basic colors correspond
to the colors of the inks used in color printers.

HSV/HSB and HLS The HSV (acronym of Hue Saturation Value) color space
(sometimes referred to as HSB, where B stands for Brightness) is a three-
dimensional space where the vertical axis represents the brightness, the distance
from such an axis denotes saturation, and the angle from the horizontal is the hue.
This yields a cylinder having black on the whole lower base (but conventionally
placed in its center, which is the origin of the axes), and a regular hexagon inscribed
in the upper base circle, whose corners correspond to the R, Y , G, C, B , M basic
colors. White stands in the center of the upper base, and gray levels lie along the
vertical. With black being in the whole base, the space is again non-linear.

HLS (short for Hue Luminance Saturation) is very similar to HSV: the vertical
axis is still brightness (here called Luminance), the angle is still Hue and the distance
(radius) is again Saturation, but the latter are defined here in a different way. In
particular, black is again on the whole lower base (although conventionally placed
in its center, which is the origin of the axes), but white now takes the whole upper
base (although conventionally placed in its center), and the regular hexagon whose
corners are the basic colors cuts the cylinder in the middle of its height. It is again
non-linear, because black takes the whole lower base, and white takes the whole
upper base.

Comparison among Color Spaces Table 2.4 compares the representations of
main colors in different spaces. The color distribution is uniform in the RGB cube,
while in HSV it is more dense towards the upper base and goes becoming more rare
towards the lower base (for which reason it is often represented as an upside-down
pyramid), and is more dense in the middle of the HLS cylinder, becoming more rare
towards both its bases (hence the representation as a double pyramid, linked by their
bases).

2.2 Non-structured Formats 31

Raster Graphics

The term raster refers to an image representation made up of dots, called pixels
(a contraction of the words ‘picture elements’), stored in a matrix called bitmap. It
is the result of a spatial discretization of the image, as if a regular grid, called sam-
pling grid, were superimposed to an analog image: then, the portion of image that
falls in each of the grid cells is mapped onto a pixel that approximately represents
it as just one value. If also the values a pixel can take on are discrete, the original
image is completely discretized. The number of possible values a pixel can take on
is called the density (or depth) of the image. Each value represents a color, and can
range from a binary distinction between black and white, to a scale of gray levels,
to a given number of colors. The resolution corresponds to the number of (hori-
zontal/vertical) grid meshes (pixels) that fit in a given linear distance (usually an
inch, i.e., 2.54 cm); clearly, narrower meshes provide a closer approximation of the
original image. In addition to using a given color space, some computer formats for
image representation provide an additional (optional) alpha channel that expresses
the degree of transparency/opacity of a pixel with respect to the background on
which the image is to be displayed. Such a degree is denoted by means of a numeric
value (whose range depends on the format in use, but is often the same as the other
color space channels).

The amount of memory space needed to store the information concerning an im-
age thus depends on both resolution and density, as reported in Table 2.5 along with
other representation-related parameters. Indeed, a single bit per pixel is enough to
distinguish among black and white; 4 bits (16 levels) can be used for low-quality
gray-level or very-low-quality color images; 8 bits (and hence one byte) per pixel
are fine for good-quality gray-level (using a single luminance channel) or for low-
quality color images; three 8-bit channels (e.g., RGB), for a total of 3 bytes, allow
expressing more than 16 million colors that are considered a sufficient approxi-
mation of what can be perceived by the eye (whence the term true color for this
density).

There are many formats to save an image on file; the choice depends on several
factors, among which the allowed density, the use of compression or not, and, if

Table 2.5 Indicative space needed to store a non-compressed raster image having width W and
height H for different density values, plus other parameters

Density 2 16 256 16 mil.

Usual exploitation (black&white) gray-level or color true color

Bits/pixel 1 4 8 24

Image size (in bytes) W · H/8 W · H/2 W · H W · H · 3

Usual number of channels 1 1 1 3

32 2 Digital Formats

Table 2.6 Bitmap file header

Byte Name stdval Description

1–2 bfType 19778 The characters ‘BM’ to indicate it is a BMP file

3–6 bfSize File size in bytes

7–8 bfReserved1 0 Always 0

9–10 bfReserved2 0 Always 0

11–14 bfOffBits 1078 Offset from the file start to the first data byte (the beginning of
the pixel map)

used, its being information lossy or lossless,6 the algorithm and the compression
ratio.

BMP (BitMaP) Introduced in 1990 by Microsoft for Windows 3.0, not patented,
the BMP format soon gained wide acceptance by graphic programs. It allows depths
of 1, 4, 8, 16, 24 or 32 bits/pixel. Although provided for the cases of 16 and 256 col-
ors, compression is usually not exploited due to the inefficiency of the RLE (loss-
less) algorithm. Thus, the most used (uncompressed) version has a representation
on disk similar to its RAM counterpart. Even if this improves read and write speed,
because the processor is not in charge of thoroughly processing the data contained
in the file, the drawback is that the space needed to represent an image is quite
large, which prevents the use of this format on the Web. Another shortcoming is the
fact that, in version 3 (the most commonly used), differently from versions 4 and 5,
the alpha channel is not provided and personalized color spaces cannot be defined.
The latest version allows exploiting a color profile taken from an external file, and
embedding JPEG and PNG images (to be introduced later in this section).

An image in BMP format is made up as follows:

Bitmap file header Identifies the file as a BMP-encoded one (see Table 2.6).
Bitmap information header Reports the size in pixels of the image, the number
of colors used (referred to the device on which the bitmap was created), and the
horizontal and vertical resolution of the output device that, together with the width
and height in pixels, determine the print size of the image in true size; see Table 2.7.

Color palette An array (used only for depth 1, 4 or 8) with as many elements as the
number of colors used in the image, each represented by a RGBQUAD, a 4-byte
structure organized as follows:

Byte 1 2 3 4
Name rgbBlue rgbGreen rgbRed rgbReserved
Description Amount of blue Amount of green Amount of red 0 (unused)

6An image compressed lossily, if repeatedly saved, will tend to lose quality, up to not being able
to recognize its content anymore.

2.2 Non-structured Formats 33

Table 2.7 Bitmap information header

Byte Name stdval Description

15–18 biSize 40 Size of the Bitmap information header (in bytes)

19–22 biWidth 100 Image width (in pixels)

23–26 biHeight 100 Absolute value = image height (in pixels);
sign = scan direction of the lines in the pixel map:

+ bottom-up (most common variant)
− top-down

27–28 biPlanes 1 Number of planes of the device

29–30 biBitCount 8 Number of bits per pixel

31–34 biCompression 0 Pixel map compression:

0 (BI_RGB) not compressed
1 (BI_RLE8) compressed using RLE. Valid only for

biBitCount = 8 and biHeight > 0
2 (BI_RLE4) compressed using RLE. Valid only for

biBitCount = 4 and biHeight > 0
3 (BI_BITFIELDS) not compressed and encoded

according to personalized color masks. Valid only for
biBitCount ∈ {16,32}; unusual

4 (BI_JPEG) the bitmap embeds a JPEG image
(in version 5)

5 (BI_PNG) the bitmap embeds a PNG image
(in version 5)

35–38 biSizeImage 0 Size of the pixel map buffer (in bytes). Can be 0 when
biCompression = BI_RGB

39–42 biXPelsPerMeter 0 Horizontal resolution of the output device (in
pixels/meter); 0 if unspecified.

43–46 biYPelsPerMeter 0 Vertical resolution of the output device (in pixels/meter);
0 if unspecified

47–50 biClrUsed 0 Number of colors used in the bitmap

if biBitCount = 1: 0
if biBitCount ∈ {4,8}: number of entries actually used in

the color palette; 0 indicates the maximum (16 or 256)
else: number of entries in the color palette (0 meaning no

palette). For depths greater than 8 bits/pixel, the palette
is not needed, but it can optimize the image
representation

51–54 biClrImportant 0

if biBitCount ∈ {1,4,8}: number of colors used in the
image; 0 indicates all colors in the palette

else if a palette exists and contains all colors used in the
image: number of colors

else: 0

34 2 Digital Formats

Image pixels An array of bytes containing the data that make up the actual image.
It is organized by image rows (called scanlines), usually stored in the file bottom-
up, each with the corresponding pixels from left to right (thus the first pixel is the
bottom-left one in the image, and the last is the top-right one). Each pixel consists
of a color, expressed as an index in the palette (for depth 1, 4 or 8) or directly
as its RGB chromatic components, one after the other (for larger depth values).
For instance, in two-color (usually, but not necessarily, black&white) images the
palette contains two RGBQUADs, and each bit in the array represents a pixel:
0 indicates the former color in the palette, while 1 indicates the latter. The length
in bytes of each scanline thus depends on the number of colors, format and size of
the bitmap; in any case, it must be a multiple of 4 (groups of 32 bits), otherwise
NUL bytes are added until such a requirement is fulfilled. In version 5 this structure
can also embed JPG or PNG images.

The overall size in bytes of an image will be:

54 + 4 ·
(

u(15 − b) · 2b + h ·
⌈

w · b
32

⌉)
,

where 54 is the size of the first two structures, b is the depth in bits/pixel, and h

and w denote, respectively, the height and width of the image in pixels. 2b yields
the size in bytes of the palette, and u(x) denotes the Heaviside unit function: for
depth values between 1 and 8 it yields 1; for depth values greater or equal to 16 it
yields 0, and hence no space is allocated for the palette. Value 32 as a denominator
of the ceiling function is exploited to obtain multiples of 4 bytes, as required by the
specifications.

GIF (Graphics Interchange Format) Released in 1987 by Compuserve for im-
age transmission on the Internet, GIF [1] is today supported by all browsers, and
widely exploited in Web pages thanks to its useful features, among which fast dis-
playing, efficiency, the availability of transparency, the possibility to create short
animations that include several images and to have a progressive rendering. It al-
lows using at most 256 colors in each image, chosen from a palette called Color Ta-
ble, which makes it not suitable for photographic (halftone) images. A binary alpha
channel is supported. It exploits the LZW compression algorithm, that until 2003
in America (and until 2004 in the rest of the world) was patented, for which reason
whoever wrote software that generated GIF images had to pay a fee to CompuServe
and Unisys.

GIF is organized into blocks and extensions, possibly made up of sub-blocks and
belonging to three categories:

Control blocks Image-processing information and hardware-setting parameters.

Header Takes the first 6 bytes: the first three are characters that denote the format
(‘GIF’), the other three specify the version (‘87a’ or ‘89a’).

Logical Screen Descriptor Always present next to the header, contains global in-
formation on image rendering according to the structure reported in Table 2.8.
The logical screen denotes the area (the monitor, a window, etc.) where the im-
age is to be displayed.

2.2 Non-structured Formats 35

Table 2.8 Organization of a GIF logical screen descriptor

Byte Name Type Description

0–1 LogicalScreenWidth Unsigned Horizontal coordinate in the logical screen where
the top-left corner of the image is to be displayed

2–3 LogicalScreenHeight Unsigned Vertical coordinate in the logical screen where the
top-left corner of the image is to be displayed

4 Packed field Specifies:

g a flag (usually true) that indicates the presence
of a global palette (Global Color Table), used by
default for all images that do not have a local one

k the color resolution, a 3-bit integer meaning that
the palette colors are chosen from an RGB space
defined on k + 1 bits per channel

s a flag that indicates whether colors in the palette
are ordered by decreasing importance

i the palette size, a 3-bit integer meaning that i + 1
bits are used for the index (and hence at most
2i+1 entries are allowed)

5 BackgroundColorIndex Byte The alpha channel, denoted as the index of the
palette color that, during visualization, is replaced
by the background

6 PixelAspectRatio Byte The width/height ratio for pixels, ranging from 4:1
to 1:4, approximated in 1/64th increments

0 no aspect ratio information
[1..255] (PixelAspectRatio + 15)/64

Color Table A color palette that can be local (valid only for the image immedi-
ately following it) or global (valid for all images that do not have a local one).
Both kinds have the same structure that consists of a sequence of 3 · 2i+1 bytes
representing RGB color triplets.

Graphic Control Extension Controls the visualization of the immediately subse-
quent image, such as what to do after the image has been displayed (e.g., freezing
the image, or going back to the background or to what was in place before),
whether user input is needed to continue processing, the visualization delay (in
1/100th of second) before continuing processing (important for animations), lo-
cal color table and transparency settings (as in the Logical Screen Descriptor).
Animations include one such block for each frame that makes up the animation.

Trailer Indicates the end of the GIF file.

Graphic-Rendering blocks Information needed to render an image.

Image Descriptor Contains the actual compressed image (in the Table Based Im-
age Data sub-block), plus information concerning its size and position in the
logical screen (in pixels), the local color table (as in the Logical Screen Descrip-

36 2 Digital Formats

Table 2.9 Header block of a TIFF file

Byte Description

0–1 Two characters denoting the byte ordering used in the file:

II little-endian (from the least to the most significant bit), used by Microsoft
MM big-endian (from the most to the least significant bit), used by the Macintosh

2–3 The number 42 (denoting the format TIFF)

4–7 The offset in byte of the first IFD

tor) and the presence of interlacing (i.e., the possibility to display it in stages by
progressively refining the representation).

Plain Text Extension Allows rendering text, encoded as 7-bit ASCII, as images on
the screen. Defines the features of grids in which each character is rendered as a
raster image. Not all interpreters support this extension.

Special Purpose blocks Information not affecting image processing.

Comment Extension Contains comments that are not going to be displayed.
Application Extension Contains data that can be exploited by specific programs to
add special effects or particular image manipulations.

The image is compressed using the LZW algorithm, where the alphabet is known:
it is the number of possible pixel values, reported in the header. Actually, GIF ap-
plies a modification to the LZW algorithm to handle cases in which the initially
defined size of the compression codes (N bits per pixel) turns out to be insufficient
and must be extended dynamically. This is obtained by adding to A two additional
meta-symbols: C (clear, used to tell to the encoder to re-initialize the string table
and to reset the compression size to N + 1 for having more codes available) and
E (end of data).

TIFF (Tagged Image File Format) Developed by Microsoft and Aldus (that sub-
sequently joined Adobe, which to date holds the patent), TIFF [2] is currently the
most used, flexible and reliable technique for storing bitmap images in black&white,
gray-scale, color scale, in RGB, CMYK, YCbCr representation. As a drawback, the
file size is quite large. There are no limits to the size in pixel that an image can reach,
nor to the depth in bits. A TIFF file can be saved with or without compression, using
the LZW or the Huffman method. It can embed meta-information (the most com-
mon concerns resolution, compression, contour trace, color model, ICC profile) in
memory locations called tags. Extensions of the format can be created by registering
new tags with Adobe, but the possibility of adding new functionality causes incom-
patibility between graphic programs and lack of support on the browsers’ side. It is
supported by the most common operating systems, and two versions of it exist, one
for Windows and one for Macintosh, that differ because of the byte ordering.

The file structure includes a data block (header) organized as in Table 2.9, plus
one or more blocks called Image File Directories (IFD), each of which (supposing
it starts at byte I) is structured as follows:

2.2 Non-structured Formats 37

Table 2.10 Structure of a
TIFF Image File Directory
entry. Note that each field
is a one-dimensional array,
containing the specified
number of values

Byte Description

0–1 Tag that identifies the field

2–3 Type:

1. BYTE, 8-bit unsigned integer
2. ASCII, 7-bit value
3. SHORT, 2-byte unsigned integer
4. LONG, 4-byte unsigned integer
5. RATIONAL, made up of 2 LONGs

(numerator and denominator)
6. SBYTE, 8-bit integer in two’s complement
7. UNDEFINED, byte that may contain everything
8. SSHORT, 2-byte integer in two’s complement
9. SLONG, 4-byte integer in two’s complement
10. SRATIONAL, made up of 2 SLONGs

(numerator and denominator)
11. FLOAT, in single precision (4 bytes)
12. DOUBLE, in double precision (8 bytes)

4–7 Number of values of the indicated type

8–11 Offset to which the value is placed
(or the value itself if it can be represented in 4 bytes)

• Bytes I , I + 1: the number of directory entries in the IFD (say N)
• Bytes from I + 2 + 12 · (k − 1) to I + 2 + 12 · k − 1: the k-th directory entry

(made up of 12 bytes and organized as in Table 2.10), for 1 ≤ k ≤ N

• Bytes from I + 2 + 12 · N to I + 2 + 12 · N + 3: the address of the next IFD (0 if
it does not exist).

Each TIFF file must have at least one IFD that, in turn, must contain at least one
entry. The Tag field in the entry expresses as a numeric value which parameter is
being defined (e.g., 256 = ImageWidth, 257 = ImageLength, 258 = BitsPerSample,
259 = Compression, etc.). Different kinds of images require different parameters,
and a parameter may take on different values in different kinds of images.

Images can also be stored in frames, which allows for a quick access to images
having a large size, and can be split into several ‘pages’ (e.g., all pages that make
up a single document can be collected into a single file).

JPEG (Joint Photographic Experts Group) JPEG [15, 19], named after the
acronym of the group that in 1992 defined its standard, aims at significantly re-
ducing the size of raster images, mainly of halftone pictures such as photographs,
at the cost of a lower quality in enlargements. Indeed, it provides lossy compres-
sion and true color. It is ideal for efficient transmission and exploitation of images
on the Web, even in the case of photographs including many details, which makes
it the most widely known and spread raster format. However, it is not suitable for
images that are to be modified because each time the image is saved an additional
compression is applied, and thus increasingly more information will be lost. In such

38 2 Digital Formats

a case, it is wise to save intermediate stages of the artifact in a lossless format.
Meta-information cannot be embedded in the file.

The dramatic file size reduction with reasonable loss in terms of quality is ob-
tained at the expenses of information that, in any case, the eye cannot perceive, or
perceives negligibly, according to studies in human physiology. JPEG encoding of
an image is very complex, and its thorough discussion is out of the scope of this
book. However, a high-level, rough survey of its most important phases can be use-
ful to give the reader an idea of the involved techniques.

1. Switch from the RGB color space channels to the YUV ones. This singles out
luminance, to which the eye is more sensible than it is to colors. Thus, luminance
(Y) can be preserved in the next step, while losing in chrominance.

2. Reduce chrominance (U , V) components by subsampling7 (available factors are
4:4:4, 4:2:2, 4:2:0). This replaces 2 × 1, 2 × 2 or larger pixel blocks by a single
value equal to the average of their components, and already reduces by 50–60%
the image size.

3. Split each channel in blocks of 8 × 8 pixels, and transpose each value to an
interval centered around the zero.

4. Apply to each such block the Discrete Cosine Transform (DCT) that transposes
the image into a frequency-domain representation. The forward formula is:

F(u, v) = 1

4
C(u)C(v)

[
7∑

x=0

7∑

y=0

f (x, y) cos
(2x + 1)uπ

16
cos

(2y + 1)uπ

16

]

while the inverse formula, to go back to the original image, is:

f (x, y) = 1

4

[
7∑

u=0

7∑

v=0

F(u, v)C(u)C(v) cos
(2x + 1)uπ

16
cos

(2y + 1)uπ

16

]

,

where f (x, y) is the original pixel, F(u, v) is the DCT coefficient and C(u),V (u)

are normalization factors. The resulting 8 × 8 matrix, whose values are rounded
to the closest integer, aggregates most of the signal in the top-left corner, called
DC coefficient (that is the average of the image luminance), while the other cells
are called AC coefficients, as represented in Fig. 2.3 on the left.

5. Divide each DCT coefficient by the corresponding value (between 0 and 1) in
an 8 × 8 quantization table. This amplifies the effect of the previous step. Since
the eye can note small differences in brightness over a broad area, but cannot
distinguish in detail high frequency brightness variations, high frequencies can
be cut off (using lower values in the quantization table, while higher values are

7The subsampling scheme is commonly expressed as an R : f : s code that refers to a conceptual
region having height of 2 rows (pixels), where:

R width of the conceptual region (horizontal sampling reference), usually 4;
f number of chrominance samples in the first row of R pixels;
s number of (additional) chrominance samples in the second row of R pixels.

2.2 Non-structured Formats 39

Fig. 2.3 Schema of a JPEG DCT coefficients (on the left), and sequence of the corresponding
zigzag traversal (on the right)

used for exalting low frequencies). This is the most information-lossy step. Each
transformed block represents a frequency spectrum.

6. Rearrange AC cells in a 64-elements vector following a zigzag route (as in the
schema on the right in Fig. 2.3), which increases the chance that similar cells
become adjacent.

7. Perform final lossless entropy encoding, exploiting several algorithms:

• RLE compression on the AC components, creating pairs (skip, value) where
skip is the number of values equal to 0 and value is the next value different
than zero. Since the array resulting from the zigzag reading contains many
consecutive 0 values, this method saves significant space.

• Differential Pulse Code Modulation (DPCM) compression on the DC com-
ponent: the DC component of the ith block is encoded as the difference with
respect to the preceding block (DCi −DCi−1); indeed, it turned out that there
exists a statistical relationship between DC components of consecutive blocks.

Example 2.5 (Compression in JPEG) The sequence 150, 147, 153, 145, 152,
160 is stored by DPCM as the value 150 followed by the differences with the
remaining values: −3, 6, −8, 7, 8.

• Huffman encoding for the final data. In this way, a further compression of the
initial data is obtained, and, as a consequence, a further reduction of the JPEG
image size.

A JPEG file is made up of segments, each started by a 2-byte marker where the
first byte is always FF16 and the second denotes the type of segment. If any, the
third and fourth bytes indicate the length of the data. In entropy-coded data (only),
immediately following any FF16 byte, a 0016 byte is inserted by the encoder, to
distinguish it from a marker. Decoders just skip this 0016 byte (a technique called
byte stuffing).

PNG (Portable Network Graphics) PNG is an open and free format [7], created
by some independent developers as an alternative to the GIF for compressed im-
ages, and approved by W3C in 1996. It has been accepted as ISO/IEC 15948:2003
standard. A motivation for it came from GIF being patented, and from the purpose

40 2 Digital Formats

(announced in 1995) of its owners (CompuServe and Unisys) to impose a fee to
third parties that included GIF encoders in their software. Thus, many of its features
are similar to GIF, as reported in the following list:

Compression Mandatory in PNG, exploits the information lossless Zlib algo-
rithm8 [17], that yields results in general 20% better than GIF, and can be sig-
nificantly improved by using filters that suitably rearrange the data that make up
the image.

Error check The CRC-32 (32-bits Cyclic Redundancy Check) system associates
check values to each data block, and is able to immediately identify any corruption
in the information saved or transmitted through the Internet.

Color Full 24-bit RGB (true color) mode is supported as a range of colors for im-
ages.

Alpha channel A transparency degree ranging over 254 levels of opacity is al-
lowed.

Interlacing 1/64th of the data is sufficient to obtain the first, rough visualization of
the image.

Gamma correction Allows, although approximately, to balance the differences in
visualization of images on different devices.

Thus, compared to GIF, PNG improves performance (interlacing is much faster,
compression rates are much higher) and effectiveness (the number of colors that
can be represented is not limited to a maximum of 256, the alpha channel is not
limited to a binary choice between fully transparent and completely opaque), but
does not provide support for animated images (although a new format, Multiple-
image Network Graphics or MNG, has been defined to overcome this lack).

Encoding an image in PNG format is obtained through the following steps:

1. Pass extraction: in order to obtain a progressive visualization, the pixels in a
PNG image can be grouped in a series of small images, called reduced images or
passes.

2. Serialization by scanline, top-down among scanlines and left-to-right within
scanlines.

3. Filtering of each scanline, using one of the available filters.
4. Compression of each filtered scanline.
5. Chunking: the compressed image is split into packets of conventional size called

chunks, to which an error checking code is attached.
6. Creation of the Datastream in which chunks are inserted.

Textual descriptions and other auxiliary information, that is not to be exploited dur-
ing decompression, can be embedded in the file: a short description of the image,
the background color, the chromatic range, the ICC profile of the color space, the
image histograms, the date of last modification and the transparency (if not found in
the file). The file size is larger than JPEG, but compression is lossless.

8A variant of the LZ77, developed by J.-L. Gailly for the compression part (used in zip and gzip)
and by M. Adler for the decompression part (used in gzip and unzip), and almost always exploited
nowadays in ZIP compression. It can be optimized for specific types of data.

2.2 Non-structured Formats 41

DjVu (DejaVu) DjVu (“déjà vu”) [8] was being developed since 1996 at AT&T
Labs, and first released in 1999. It is intended to tackle the main problems related
to document digitization, preservation and transmission. Its main motivation is that
the huge number of legacy paper documents to be preserved cannot be cheaply
and quickly re-written in a natively digital format, and sometimes it is not desir-
able either because (part of) their intrinsic value comes from their original visual
aspect. Thus, the only technology that can be sensibly applied is scanning, whose
drawback is that the image representation of color documents requires significant
amounts of space. Usual ways to deal with this problem are lossy compression, as
in JPEG, or color depth reduction to gray-level or black&white. However, some-
times the lower definition due to compression is unacceptable, and color cannot
be stripped off without making the document meaningless. In these cases, the file
size seriously affects its transmittability which, in turn, prevents its embedding into
Web pages and hence severely limits access to it. DjVu solves all these problems
at once by preserving the original aspect of the document, without losing in quality
on sensible components (such as text), and keeping the size of the outcome within
limits that significantly outperform JPEG, GIF and PDF. To give an idea, a 300
dpi scanned full color A4 page would take 25 MB that can be represented in less
than 100 kB.

The key for this optimal solution lies in the selective application of different types
and rates of compression to different kinds of components: text and drawings, usu-
ally being more important to the human reader, are saved in high quality (to appear
sharp and well-defined), while stronger compression can be applied to halftone pic-
tures in order to preserve their overall appearance at a sufficient tradeoff between
quality and space. It is also a progressive format: most important components (text
ones) are displayed first and quickly, and the others (pictures and then background)
are added afterwards as long as the corresponding data is gained. A DjVu docu-
ment may contain multiple (images of) pages, placed in a single file or in multiple
sources: the former solution is more comfortable for handling, but involves a serial-
ization for their exploitation (a page cannot be displayed until all the previous ones
have been loaded), while the latter allows for quicker response and selective trans-
mission. Additional useful features that a DjVu file can contain is meta-data (e.g.,
hyperlinks) in the form of annotations, a hidden text layer that allows reading plain
text corresponding to what is displayed, and pre-computed thumbnails of the pages
that can be immediately available to the interpreter.

Several types of compression are provided by DjVu. The JB2 data compression
model is exploited for binary (black&white) images, where white can be considered
as being the background and black as the significant content (usually text and draw-
ings). It is a bitonal technique that leverages the repetition of nearly identical shapes
to obtain high compression rates, and essentially stores a dictionary of prototypical
shapes and represents each actual shape as its difference from one of the prototypes.
IW44 wavelet representation is exploited for pictures. Other compression methods
are available as well.

According to its content type, a DjVu page consists of an image in one of the
following formats:

42 2 Digital Formats

Table 2.11 Structure of a DjVu chunk

Field Type Description

ID Byte [4] An ID describing the use of the chunk as a string, e.g.,

FORM container chunk
FORM:DJVM multi-page document
FORM:DJVU single-page document
FORM:DJVI shared data (e.g., the shape dictionary)
FORM:THUM embedded thumbnails chunks
Djbz shared shape table
Sjbz mask data (BZZ-compressed JB2 bi-tonal)
FG44 foreground data (IW44-encoded)
BG44 background data (IW44-encoded)
TH44 thumbnails data (IW44-encoded)
FGbz color data for the shapes (JB2)
BGjp background image (JPEG-encoded)
FGjp foreground image (JPEG-encoded)

Length 32-bit integer The length of the chunk data (in Big Endian byte ordering)

Data Byte [Length] The chunk data

Photo used for color or gray-level photographic images, compressed using IW44.
Bi-level used for black&white images, handled using JB2.
Compound used for pages that mix text and pictures. The background and fore-
ground are identified, separated and represented in two different layers. A third
layer (called mask layer) is used to distinguish between background and fore-
ground. The background contains paper texture (to preserve the original look-and-
feel of the document) and pictures, while the foreground contains text and draw-
ings. The foreground is represented as a bi-level image, called foreground mask,
encoded in JB2 where black denotes the foreground pixels and white the back-
ground ones. Foreground colors can be represented by specifying the color of each
foreground shape separately, or as a small image, sub-sampled with a factor rang-
ing from 1 to 12 (usually 12: smaller values do not significantly increase quality),
that is scaled up to the original size of the document and drawn on the background
image. The background image is obtained through progressive IW44 refinements,
scaled down with a sub-sampling factor between 1 and 12 (usually 3, smaller if
high-quality pictures are to be represented, higher if no pictures are present).

DjVu files are represented in UTF-8 encoded Unicode, and identified by a header
having hexadecimal values 41 54 26 54 in the first four bytes. They are structured in
a variable number of chunks, that contain different types of information according to
the field structure described in Table 2.11. An external FORM chunk contains all the
others, with no further nesting. Each chunk must begin on an even byte boundary,
including an initial 00 padding byte to ensure this in case it does not hold (as in the
beginning of the file). Chunks of unknown type are simply ignored.

2.2 Non-structured Formats 43

Fig. 2.4 Comparison between enlargements in a raster format (on the left) and in a vector one (on
the right)

Vector Graphic

Vector Graphic is a technique to describe images exploiting mathematical/geo-
metrical primitives, such as points, lines, curves and polygons. Further information
can be attached to each element as well (e.g., color). Compared to raster formats,
in which images are described as a grid of syntactically unrelated colored points,
the advantages of vectorial images are: better quality (in particular, when zooming
or up-scaling them—see Fig. 2.4), limited memory requirements, easy modification
(each component can be managed separately and independently of the others by act-
ing on its descriptive primitives), progressive rendering facility, and easier analysis
(the description language might allow applying logical deduction and other kinds
of inference to identify desired shapes). On the other hand, it is very hard to de-
scribe photographs (because the details to be translated into mathematical primitives
would be a huge number). Moreover, very detailed images, such as architecture and
engineering projects, might require the processor to perform significantly heavier
calculations to display them.

SVG (Scalable Vector Graphic) Produced by W3C, SVG [25] dates back to
1999. In addition to vectorial shapes, it allows embedding raster graphics and text,
and attaching information to any component (e.g., name, available colors, relation-
ships to other objects). It is suitable for high-complexity images, such as architec-
ture and engineering projects (it allows scaling up or down an image at any ratio),
or 3D animations. The main disadvantage that can, however, be tackled by means
of suitable tools is given by the grammar complexity. All Internet browsers, except
Internet Explorer, support SVG. Although conceived as a vector graphics markup
language, it may also act as a page description language (PDL), like PDF, since all
the functionality required to place each element in a precise location on the page is
provided.

Everything in SVG is a graphic element (a list is provided in Table 2.12) that can
be a generic shape, a text or a reference to another graphic element. The features
include nested transformations, clipping paths, alpha masks, filter effects, template
objects and extensibility. Among the most relevant are:

Shapes Basic Shapes (straight-lines, polylines, closed polygons, circles and el-
lipses, rectangles possibly with rounded corners) and Paths (simple or compound
shape outlines drawn with curved or straight lines) can be drawn. Ends of lines or

44 2 Digital Formats

Table 2.12 Graphical elements available in SVG

Element Attributes Description

SVG x, y, width, height,
allowZoomAndPan

The most external graphical element that contains all other
elements and has the specified width, height and (x, y)

position (useful for displaying the image inside a Web page).
The allowZoomAndPan flag concerns the possibility to zoom
and pan the image

Rect x, y, width, height Rectangle having the specified width and height. Optionally,
the horizontal and vertical radii (rx, ry) of ellipses used to
smooth the angles can be specified

Circle cx, cy, r Circle centered at (cx, cy) and having radius r

Ellipse cx, cy, rx, ry Ellipse centered at (cx, cy) and having horizontal and
vertical radii rx and ry, respectively

Line x1, y1, x2, y2 Straight line having extremes at (x1, y1) and (x2, y2)

Polyline List of points The sequence of points—pairs of (x, y) coordinates—that
make up the curve, separated by commas

Polygon List of points A polyline automatically closed, whose points are separated
by commas or blanks

Text string, x, y A string to be displayed

Image x, y, width, height,
xlink:href

Allows embedding a PNG or JPEG raster image, and also
textual descriptions (useful to classify a document containing
also images)

vertices of polygons can be represented by symbols called markers (e.g., arrow-
heads).

Text Characters are represented in Unicode expressed as in XML. Text can flow
bidirectionally (left-to-right and right-to-left), vertically or along curved paths.
Fonts can reference either external font files, such as system fonts, or SVG fonts,
whose glyphs are defined in SVG. The latter avoid problems in case of missing
font files on the machine where the image is displayed.

Colors Painting allows filling and/or outlining shapes using a color, a gradient or a
pattern. Fills can have various degrees of transparency. Colors are specified using
symbolic names, hexadecimal values preceded by #, decimal or percentage RGB
triples like rgb(·, ·, ·). (Color or transparency) gradients can be linear or radial, and
may involve any number of colors as well as repeats. Patterns are based on prede-
fined raster or vector graphic objects, possibly repeated in any direction. Gradients
and patterns can be animated. Clipping, Masking and Composition allow using
graphic elements for defining inside/outside regions that can be painted indepen-
dently. Different levels of opacity in clipping paths and masks are blended to obtain
the color and opacity of every image pixel.

2.3 Layout-Based Formats 45

Effects Animations can be continuous, loop and repeat. Interactivity is ensured
through hyperlinks or association of image elements (including animations) to
(mouse-, keyboard- or image-related) events that, if caught and handled by script-
ing languages, may trigger various kinds of actions.

Metadata According to the W3C’s Semantic Web initiative, the Dublin Core (e.g.,
title, creator/author, subject, description, etc.—see Sect. 5.4.2) or other metadata
schemes can be used, plus elements where authors can provide further plain-text
descriptions to help indexing, search and retrieval.

SVG sources are pure XML and support DOM [27] (see Sect. 5.1.2). Thus, their
content is suitable for other kinds of processing than just visualization: using XSL
transformations, uninteresting components can be filtered out, and embedded meta-
data can be displayed or textually described or reproduced by means of a speech
synthesizer. The use of CSSs makes graphical formatting and page layout simple
and efficient: their modification is obtained by simply changing the style sheet,
without accessing the source code of the document. The files contain many re-
peated text strings, which makes the use of compression techniques particularly
effective. Specifically, using the gzip technique on SVG images yields the SVGZ
format, whose space reduction reaches up to 20% of the original size.

2.3 Layout-Based Formats

This section deals with those formats, often referred to as Page Description Lan-
guages (PDLs) that are structured in the perspective of document displaying. They
focus on the visual/geometrical aspect of documents, by specifying the position in
the page of each component thereof. The most widespread formats in this category,
thanks to their portability and universality (independence on platform and on the
software exploited to create and handle the documents), are the PostScript and the
PDF, which will be introduced in the next sections.

PS (PostScript) PostScript (PS) [22] is a real programming language (it even al-
lows writing structured programs) for the description and interpretation of pages,
developed in 1982 by Adobe Systems. Originally intended for controlling printer
devices, and indeed widely exploited in typography, it has been subsequently used
for the description of pages and images. It allows providing a detailed description
of the printing process of a document, and is characterized by a representation that
is independent from the devices on which the pages are to be displayed. Also text
characters are considered as graphic elements in PS, which prevents text in a docu-
ment from being read as such, and hence copied and pasted. Documents generated
in this format can be virtually ‘printed’ on file using suitable drivers; when such
files are later interpreted, the original document is perfectly reproduced on different
kinds of devices. It has the advantage of not bearing viruses. One of the most fa-

46 2 Digital Formats

mous PS interpreters is GhostScript9 that provides a prompt to enter commands and
a ‘device’ on which graphic elements are drawn.

PS exploits postfix notation and is based on an operator stack, which makes easier
command interpretation although seriously affecting code readability. Many kinds
of objects can be represented: characters, geometrical shapes, and (color, grayscale
or black&white) raster images. They are built using 2D graphic operators, and
placed in a specified position in the page. Objects handled by PS are divided into
two categories:

simple Boolean, fontID, Integer, Mark, Name, Null, Operator, Real, Save
compound Array, Condition, Dictionary, File, Gstate, Lock, packedarray, String,
Procedure.

Any object in PS can be ‘executed’: execution of some types of objects (e.g., In-
tegers) pushes them on the stack, while execution of other types of objects (e.g.,
Operators) triggers actions that, usually, consume objects in the stack.

Example 2.6 Sample computation of 5 + 3 = 8 in GhostScript:

GS> GhostScript interpreter ready
GS>5 3 Integer objects 5 and 3 are ‘executed’, i.e., pushed on the stack
GS<2> The prompt indicates that two objects are present in the stack
GS<2>add The Operator object add extracts two elements from the operators

stack (in case of a stack containing fewer than two objects, the exe-
cution would terminate issuing an error), sums them and inserts the
result on the stack

GS<1> The prompt says that only one object is present in the stack
GS<1>pstack The pstack Operator displays the stack content
8 (in this case, 8)
GS<1> Still one object in the stack, interpreter ready

PS allows defining procedures, to be called/run subsequently, by enclosing a se-
quence of commands in curly brackets and assigning them an identifier (of type
Name) through the def operator.10 When it is called, the interpreter runs in se-
quence the objects in curly brackets.

Example 2.7 Sample definition of a single printSum procedure in GhostScript,
that includes the sum and print operations:

9An open-source project (http://pages.cs.wisc.edu/~ghost/) that does not directly handle PS and
PDF formats, this way being able to handle some differences in the various versions or slangs of
such formats. An associated viewer for PS files, called GSview, is also maintained in the project.
10In this section, PostScript code and operators will be denoted using a teletype font. Operators
that can be used with several numbers of parameters are disambiguated by appending the number
n of parameters in the form operator/n.

2.3 Layout-Based Formats 47

GS>/printSum {add pstack} def procedure definition
GS>5 3 push of two Integers on the stack
GS<2>printSum two objects in the stack; procedure call
8 result
GS<1> one object (the result) in the stack

The interpreter reads commands that define objects (such as characters, lines
and images). Each command runs an associated parametric graphic procedure that,
based on its parameters, suitably places marks on a virtual page. The virtual page
is distinct from (it is just a representation in temporary storage of) the physical
device (printer or display). The interpretation of a PS document is based on a so-
called painting model that exploits a ‘current page’ in which it progressively adds
the marks (a mark could overshadow the previous ones). When all information for
the current page has been read (and hence the page is complete), showpage causes
the interpreter to call the page printing procedure: all marks in the virtual page are
rendered on the output, i.e., transformed into actual drawings on the device, and the
current page becomes again empty, ready for another description.

Dictionaries are objects in which a key-value list can be defined. They can be
used as a kind of variables or to store procedures. All pre-defined PS operators
correspond to procedures defined in the read-only dictionary systemdict. The inter-
preter maintains a separate stack of dictionaries, whose top element is called current
dictionary. At runtime, whenever a name that does not correspond to a simple type
is referenced, a look-up for it is started from the current dictionary down through
the dictionary stack. For instance, groups of at most 256 text characters (character
sets) are represented by programs that define a dictionary (Font Dictionary). Such a
dictionary contains an Encoding vector whose 256 elements are names, each cor-
responding to a drawing procedure for a character. Each character is denoted by an
integer between 0 and 255, used as an index to access the Encoding vector of the
character set currently in use. When referenced, the name is extracted and the cor-
responding drawing procedure is run. Each character set defines different names for
its characters. ASCII characters are defined in the StandardEncoding vector.

A path is a sequence of points, lines and curves, possibly connected to each other,
that describe geometrical shapes, trajectories or areas of any kind. A path is made up
of one or more sub-paths (straight and curved segments connected to one another).
A new path is started by calling newpath, always followed by moveto, that adds
a new non-consecutive sub-path to a previous sub-path (if any). The path can be
open or closed (the latter obtained using closepath).

The reference system to locate any point in the page consists by default of an ide-
ally infinite Cartesian plane whose origin is placed in the bottom-left corner of the
page, and whose horizontal (x) and vertical (y) axes grow, respectively, towards the
right and up-wise. Points are denoted by real-valued coordinates measured in dots
(corresponding to 1/72th of inch, as defined in the print industry). Independence
on the particular device in use is obtained by considering two coordinate systems:
one referring to the user (user space) and one referring to the output device (device
space) on which the page will be subsequently displayed. The former is indepen-
dent of the latter, whose origin can be placed at any point in the page to fit different

48 2 Digital Formats

printing modes and resolutions and several kinds of supports that can be exploited
for visualization. To define the device space, it suffices to indicate the axes origin (by
default in the bottom-left with respect to the support on which it will be displayed),
their orientation and the unit of measure. The interpreter automatically, and often
implicitly, converts the user space coordinates into device space ones. The default
settings of the user space can be changed by applying operators that can, e.g., rotate
the page or translate the coordinates. Switching from a pair of coordinates (x, y) in
the current user space to a new pair (x ′, y ′) in the device space is obtained through
the following linear equations:

x ′ = ax + cy + tx, y′ = bx + dy + ty .

The coefficients for the transformations are defined by a 3 × 3 matrix,11 called
Current Transformation Matrix (CTM), always present and equal to

⎡

⎣
a b 0
c d 0
tx ty 1

⎤

⎦ ,

and represented as an array of 6 elements [a b c d tx ty] (where the last column,
being fixed, is omitted). The possibility of modifying the matrix to distort and move
the user system is often exploited also to efficiently manage recurring objects in the
document: each object is defined just once using a separate reference system (whose
origin is usually placed in the bottom-left corner of the element to be drawn), and
then it is drawn multiple times in different places of the page by simply moving
the reference system each time it appears. Printing drivers that thoroughly use this
technique will produce more compact documents.

The Graphic State is the framework in which the operators (implicitly or explic-
itly) act. It consists of a structure that contains various graphic parameter settings
(see Table 2.13), including color, font type, line thickness, the current path and the
CTM. It is organized LIFO, which complies with the structure in which objects are
typically stored (generally independent on each other and nested at various level of
depth). It contains objects, but it is not an object itself, and hence it cannot be di-
rectly accessed by programs. It can be handled only using two operators that allow
changing the internal graphic state without modifying those around it:

• gstate pushes in a stack the whole graphic state
• grestore pops from the stack the values of a graphic state

Operators are grouped into 7 main categories:

Graphic state operators handle the graphic state.
Coordinate system and matrix operators handle the CTM by combining transla-
tions, rotations, reflections, inclinations and scale reductions/enlargements.

11The most common operations that modify the matrix are translation of the axes origin, rotation
of the system of Cartesian axes by a given angle, scaling that independently changes the unit
of measure of the axes, and concatenation that applies a linear transformation to the coordinate
system.

2.3 Layout-Based Formats 49

Table 2.13 PostScript graphic state parameters

Parameter Type Description

Device-independent

CTM array Current transformation matrix

Position 2 numbers Coordinates of the current point in the user space (initially
undefined)

Path (internal) Current path, that is, the implicit parameter of some path
operators (initially empty)

Clipping path (internal) Defines the borders of the area in which the output can be
cut (initially the entire page)

Clipping path stack (internal) Stores the clipping paths saved through clipsave and
not yet returned by cliprestore (Type 3)

Color space array Color space in which the values are to be interpreted
(initially DeviceGray)

Color (several) Varies according to the specified color space (initially
black)

Font dictionary Contains the set of graphical shapes to represent the
characters in a font style

Line width number Thickness exploited by lines (initially 1.0)

Line cap integer Shape of lines end (initially square)

Line join integer Shape of conjunctions of segments

Miter limit number Maximum length of a miter line for stroke

Dash pattern array and
numbers

Style for drawing lines by stroke

Stroke adjustment boolean Defines whether resolution is to be compensated in case of
too thin a thickness (Type 2)

Device-dependent

Color rendering dictionary Collection of parameters to transform CIE-based colors
into values suitable for the device color (Type 2)

Overprint boolean Specifies whether the underlying area is to be overwritten
during printing (Type 2)

Black generation procedure Computes the amount of black to be used when converting
from RGB to CMYK (Type 2)

Undercolor removal procedure Based on the quantity of black used by the black
generation procedure computes the amount of the
other colors to be used (Type 2)

Transfer procedure Correction in case of transfer of pages on particular devices

halftone (several) Defines a screen for rendering gray levels and colors

Flatness numbers Precision for curve rendering on output devices

Smoothness numbers Precision for gradient rendering on output devices (Type 3)

Device (internal) Internal structure that represents the current state of the
output device

50 2 Digital Formats

Table 2.14 PostScript graphic procedures

erasepage paints the page in white

showpage prints the page on the physical device

fill fills the current path with the current color (if it denotes a closed line)

eofill fills with the current color the internal part (as defined by the ‘even–odd rule’)
of the ‘current path’

stroke draws a line along the points in the current path

ufill fills with the current color a path given in input (called userpath)

ueofill fills with the current color the internal part (as defined by the ‘even–odd rule’)
of a ‘userpath’ given in input

ustroke draws a line along the points in a userpath given in input

rectfill fills with the current color a rectangle defined in input

rectstroke draws the contour of a rectangle defined in input

image draws a raster image

colorimage draws a color raster image

imagemask uses a raster image as a mask to locate zones to be filled with the current color

show prints on the page the characters in a string

ashow prints on the page the characters in a string by spacing them of the number of
points given in input

kshow runs the procedure defined in input while printing on the page the characters of
a string

widthshow as show, but modifies character width and height (and spacing accordingly)

awidthshow combines the effects of ashow and widthshow

xshow prints the characters in a string on the page using as width of each the values
defined in a vector in input

yshow prints the characters in a string on the page using as height of each the values
defined in a vector in input

xyshow combines the effects of xshow and yshow

glyphshow prints a character identified by a name (associated to a draw procedure)

cshow prints the characters in a string using a drawing procedure defined in input

Path construction operators are the only way to modify the current path to be
added to the graphic state that describes the shapes using the parameters reported
in the CTM. They do not place marks on the page (a job of the painting operators).

Painting operators draw on output, by referring to the information contained in the
graphic state, graphic elements (shapes, lines and raster images) that have been
placed in the current path and handle the sampled images. The clipping path con-
tained in the graphic state limits the region of the page that is affected by the
painting operators, the only that will be displayed in output. Everything that can
be drawn in PS on a device goes through a graphic procedure (a list is provided in
Table 2.14).

Glyph and Font operators draw glyph characters, also using path and painting op-
erators.

2.3 Layout-Based Formats 51

Fig. 2.5 Ordering of
samples’ scanning in PS
images

Device setup operators define an association between raster memory and physical
output on which the image is to be displayed.

Output operators, having completed the image description, transmit the page to the
output.

Operators exploit both implicit (among which the current path, color, line width
and font) and explicit parameters. Parameters are always read-only to avoid errors
of inconsistency due to modifications not updated. Some have biases on the type or
range their values must belong to. Numeric values are always stored as real numbers,
and are forced to fall in the required ranges, independently of the initial specifica-
tions. Lastly, the current path, clipping path and the device parameters are objects
internal to the graphic state, and for this reason cannot be accessed by programs.

Raster images are regarded as rectangles of h × w units in a Cartesian reference
system having its origin in the bottom-left vertex. They are represented as sam-
pled images, i.e., as sequences of sampled arrays, where the samples contain color-
related information and the arrays are obtained by linewise scanning the image from
the origin until the top-right point, as represented in Fig. 2.5.

To represent an image, some (inter-related) parameters must be specified, that
will be implicitly or explicitly used by the operators:

• The format of the source image: width (number of columns) and height (number
of rows), number of components per sample and number of bits per component.

• The capacity in bits of the source image, given by the product

height × width × components × bits/component.

• The correspondence between user space coordinates and external coordinate sys-
tem, to define the region in which the image will be inserted.

• A mapping between the values of the source image components and the respective
values in the current color space.

• The stream of data that make up the image samples.

Thanks to the independence from the output devices on which the documents will
be displayed, properties such as resolution, scan ordering of samples, orientation
of image and others are to be intended as referred to the images and not to the

52 2 Digital Formats

devices, although the actual resolution that can be obtained obviously depends on
the properties of the latter.

Three levels of PS exist, having increasing expressive power. As to image han-
dling, the difference can be summarized as follows:

1. Supports almost only images defined in a DeviceGray color space (graylevel).
It is rendered on output using image/5 that processes the image data coming
only from specific procedures and not directly from files or strings. The number
of bits per component ranges only between 1 and 8. Some level 1 interpreters
handle images with three or four components per value, by using colorimage.

2. Adds to the features of level 1 image/1 (whose parameter is an image dictio-
nary in which much more information can be inserted to define more precisely
the image features) the possibility of using 12 bits per component and using files
and strings as image data sources.

3. Adds to imagemask of previous levels two more operators for color masking.

The number of components per color varies according to the Device Space in use
(1 component for DeviceGray, 3 for DeviceRGB, etc.) that, in turn, depends on the
operator used:

• image/5 exploits only DeviceGray;
• colorimage refers to the value taken by the ncomp parameter: DeviceGray if

it is 1, DeviceRGB if it is 3, and DeviceCMYK if it is 4;
• image/1 refers the current color space.

In turn, each component is made up of n ∈ {1,2,4,8,12} bits that can represent 2n

(i.e., from 2 to 4096) values interpreted as integers in the range [0,2n − 1]. Image
data (samples) are stored as byte streams that are split in units, starting from the most
significant bit, based on the number of bits/component, so that each unit encodes a
value for a color component. The encoded values are interpreted in two ways to
obtain the corresponding color:

• colorimage and image/5 map the integer range [0,2n − 1] onto [0.0,1.0];
• image/1 uses the Decode parameter of the corresponding dictionary.

Halftoning techniques are used to approximate color values of components. The
stream length must be a multiple of 8 bits (if it is not, padding bits are introduced,
that will be ignored by the interpreter during the decoding phase). The bytes can be
interpreted as 8-bit integers, starting from the high order bit:

high low

. . . 0010 1001 0001 0010 01 . . .

byte

The byte stream is passed to the interpreter by means of files, strings or proce-
dures (depending on the level). Its organization may vary when many components
per sample are provided: for a single data source, the component values (e.g.,
red/green/blue for the DeviceRGB color space) are adjacent for each sample; in

2.3 Layout-Based Formats 53

a multiple data source, conversely, there are first all values for the red component,
followed by all values of the green one and lastly by the blue ones, and components
can be distributed over different sources.

The CTM to modify the coordinate system is provided as a separate operator in
the case of image/5, or, in the case of image/1, as a dictionary that contains
the parameters needed to render the image on the page. It allows using any color
space, defining an encoding for the sample values different from the standard one,
inserting an interpolation among samples and making explicit particular values to
mask a color.

Different kinds of dictionaries can be chosen by specifying the ImageType pa-
rameter inside the dictionary itself. If the value is 1, an image will be represented
in an opaque rectangle; if it is 3 or 4 (valid in level 3 language), different levels of
color masking can be used, so that new marks added to the page do not to com-
pletely overwrite those previously placed in the same area of the page. The Decode
parameter defines a linear mapping of the integer values of color components in or-
der to exploit them as parameters of setcolor in the color space. It is an array of
pairs that represent the minimum and maximum value for such a mapping, as shown
in Table 2.15. The output value is

c = Dmin +
(

i · Dmax − Dmin

2n − 1

)
,

where n = BitsPerComponent, i is the input value and Dmin, Dmax are the values
in the array. It yields c = Dmin for i = 0, c = Dmax for i = 2n − 1 and intermediate
values among these extremes for the other values of i.

Example 2.8 An excerpt of code referred to an image using type 1 dictionary:

/DeviceRGB setcolorspace color space identification
45 140 translate place the image in the bottom-left

corner
132 132 scale scale the image to a 132 × 132 unit

square
<< beginning of the dictionary
/ImageType 1 dictionary identification
/Width 256 width
/Height 256 height
/BitsPerComponent 8 bits per component
/Decode [0 1 0 1 0 1] array for color coding
/ImageMatrix [256 0 0 -256 0 256] CTM array
/DataSource /ASCIIHexDecode filter source data obtained by a filter in

hexadecimal values
>> end of dictionary
image
... stream of hexadecimal values rep-

resenting the 256 × 256 = 65536
image samples

> mark for the end of source data

54 2 Digital Formats

Table 2.15 Configuration of
the decode array according to
the most frequent color
spaces to be mapped

Color space Decode array

DeviceGray [0 1]

DeviceRGB [0 1 0 1 0 1]

DeviceCMYK [0 1 0 1 0 1 0 1]

CIEBasedABC [0 1 0 1 0 1]

DeviceN [0 1 0 1 . . . 0 1] with N pairs of [0 1]

Table 2.16 Type 1 dictionary parameters for PostScript

Parameter Type Optional Value

ImageType integer No 1 (the dictionary, and hence image, type)

Width integer No Width in samples

Height integer No Height in samples

ImageMatrix array No Six numbers that define the transformation from user
space to image space

MultipleDataSources boolean Yes If true the samples are provided through different
sources, otherwise (default) are packed in the same
data stream

DataSource (various) No The source from which the data stream is to be
drawn. If MultipleDataSources is true, it is an array
of as many components as in the color space,
otherwise it is a single file, procedure or string

BitsPerComponent integer No Number of bits used to represent each color
component (1, 2, 4, 8 or 12)

Decode array No Values describe how the image sample is to be
mapped in the range of values of the proper color
space

Interpolate boolean Yes Denotes the presence of interpolation in the image
visualization

Type 3 dictionaries allow exploiting an explicit mask, i.e., specifying an area
of the image to be masked (in such a case, it is not required that the image and
the mask have the same resolution, but they must have the same position in the
page). It uses two more sub-dictionaries, the image data dictionary (DataDict) and
the mask dictionary (MaskDict), that are similar to a Type 1 dictionary, except for
some restrictions applied to the parameters. The parameters for Type 1 dictionar-
ies are reported in Table 2.16, while those for Type 3 dictionaries can be found in
Table 2.17.

A Type 4 dictionary, instead of an area to be masked, identifies a range of colors
to be used as a mask (a technique called color key masking) that are not displayed. It
does not use sub-dictionaries, and differs from Type 1 because of the presence of pa-

2.3 Layout-Based Formats 55

Table 2.17 Type 3 dictionary parameters for PostScript

Parameter Type OptionalValue

ImageType integer No 3 (code that identifies the dictionary type)

DataDict dictionary No Reference to a type 1 dictionary modified to
contain information on the image

MaskDict dictionary No Reference to a type 1 dictionary modified to
contain masking information

InterleaveType integer No Code that identifies the kind of organization of the
image and of the mask. Possible values:

1. Image and mask samples interleaved by sample
and contained in the same data source

2. Image and mask samples interleaved by row
and contained in the same data source

3. Image and mask contained in different data
sources

Table 2.18 Type 4 dictionary parameters for PostScript

Parameter Type Optional Value

ImageType Integer No 4 (code identifying the dictionary type)

MaskColor array No Integers that specify the colors to be masked; its size
varies from n to 2n values, where n is the number of
components per color

Width integer No Width of the image in samples

Height integer No Height of the image in samples

ImageMatrix array No 6 numbers that define the transformation from user
space to image space

MultipleDataSources boolean Yes Specifies whether the source is single or multiple

DataSource (various) No The source from which the data stream is to be drawn.
If MultipleDataSources is true, it is an array with as
many components as in the color space, otherwise it is
a single file, procedure or string

BitsPerComponent integer No Number of bits used to represent each color
component. Allowed values are 1, 2, 4, 8 and 12

Decode array No Values that describe how the sample image is to be
mapped in the range of values of the proper color space

Interpolate boolean Yes Presence of interpolation in the image visualization

rameter MaskColor that denotes the range of colors to be masked. The parameters
for Type 4 dictionaries are reported in Table 2.18.

56 2 Digital Formats

PDF (Portable Document Format) PDF [14] is an evolution of PS developed by
Adobe, and in some respects represents a slang thereof. However, differently from
PS, it is a document presentation format rather than a programming language. This
means that there is no need for an interpreter to be able to write and display docu-
ments, but it is sufficient to read the descriptions included in the PDF file itself. Its
specifications are public domain; it is compatible to any printer, flexible (it allows
character replacement and the insertion of links, bookmarks and notes) and readable
in third-party applications through suitable plug-ins. Differently from PS, text dis-
played on screen is internally represented using character codes, and hence can be
copied and pasted in other applications. Thanks also to this, the size of a PDF doc-
ument is much smaller than the corresponding PS counterpart (often about 1/10th
of it).

PDF provides for color space components that use 1, 2, 4, 8 or 16 bits (i.e.,
2, 4, 16, 256 or 65536 values, respectively), which is another difference with re-
spect to PS. To represent a sampled image, it is necessary to provide in the dic-
tionary of operator Xobject the parameters height, width, number of bits per
component and color space (from which the number of components needed is in-
ferred). Color components are interleaved by sample (e.g., in the case of the De-
viceRGB color space, the three components—red, green and blue—of a sample
are followed by the three components of the next sample in the same order, and
so on).

Each image has its own coordinate system, called image space, similar to that
of PS (the image is split in a grid of h × w samples, whose Cartesian system has
the x axis oriented towards the right and the y axis up), but with the origin in the
top-left corner. The scan of samples in the grid starts from the origin and goes on
horizontally, linewise. The correspondence between user space and image space is
fixed and can be described by the matrix

[
1

w
0 0 − 1

h
0 1

]
,

where the user space coordinate (0,0) corresponds to the image space coordinate
(0, h). The code to modify the transformation matrix is enclosed between the q and
Q commands, that save and restore the image graphic state, respectively; command
cm modifies the matrix; command Do draws the image on the device.

Example 2.9 Sample code to draw an image ‘sampleimage’:

q saves the graphic state
1 0 0 1 100 200 cm translation
0.707 0.707 -0.707 0.707 0 0 cm rotation
150 0 0 80 0 0 cm scaling
/sampleimage Do image drawing

Q graphic state restoration

PDF provides two methods of different expressive power to describe and handle
images:

2.3 Layout-Based Formats 57

XObject is used for any kind of image. In Xobject images, the data stream is
made up of two parts: a dictionary (Image Dictionary) containing image-related
information and a data container that encloses the image source data. The dictio-
nary contains approximately 20 parameters, by which all the features needed to
display the image on a device can be handled. Many parameters are inter-related,
and their values must be consistent not to raise an error. Different operators could
handle it in different ways: Table 2.19 reports some of the main parameters, in the
form suitable for use by the Do operator.

Example 2.10 Sample code for an Xobject image:

...
22 0 obj
<< /Type /XObject
/SubType /Image
/Width 256
/Height 256
/ColorSpace /DeviceGray
/BitPerComponent 8
/Length 83183

>>
stream
aclkjlkj5kjlcilÃ ixinxosaxjhaf ... source data stream (65536 samples)
endstream
endobj
...

Inline allows handling only small-sized images, and applies restrictions to their
properties. In an Inline object, all information needed to describe the image is
embedded in a single data stream. It allows including, before the image source data
stream, a short definition of the way in which the stream is to be interpreted (rather
than creating an object, such as a dictionary, that embeds it). The object structure
is defined by delimitation operators in the following form:

BI beginning of the Inline object
... parameters definition
ID beginning of the source data stream
... image source data stream
EI end of the Inline object

Nested BIs and EIs are allowed, while ID must appear only between BI and EI,
with at most a blank after it so that the first following character is the first character
of the stream. The parameters that can be used between BI and EI are almost all
the same as for XObject, and show different abbreviations and syntax, as reported
in Table 2.20.

58 2 Digital Formats

Table 2.19 Some PDF image dictionary parameters, in the form required by Do

Parameter Type Optional Value

Type name Yes Type of object this dictionary refers to (in this case,
XObject)

Subtype name No Type of XObject described by this dictionary (in this
case, Image)

Width integer No Width in samples

Height integer No Height in samples

ColorSpace name or
array

No Type of color space used

BitsPerComponent integer No Number of bits used per color component

Intent name Yes A color name to be used for the image rendering intent

ImageMask boolean Yes Indicates whether the image is a mask. If it is true,
BitsPerComponent must be equal to 1 and Mask and
Colorspace must not appear

Mask stream or
array

Yes If it is a stream, the mask to be applied to the image;
if it is an array, the range of colors to be masked

Decode array Yes Numbers that describe (using the same formula
as in PS) how to map the image samples in the range
of values suitable for the defined color space

Interpolate boolean Yes Presence of interpolation

Alternates array Yes Alternate dictionaries that can be used for the image

Name name No Name by which the image to which the dictionary
refers is referenced in the subdictionary XObject

Metadata stream Yes A data stream that can be used to include further
textual information

OC dictionary Yes A further group of dictionaries in case additional
information is needed to describe the image

Example 2.11 Sample code for an Inline image:

q save graphic state
BI beginning of Inline object
/W 256 width in samples
/H 256 height in samples
/CS /RGB color space
/BPC 8 bits per component
/F [/A85 /LZW] filters

ID beginning of data stream
... slckiu7jncso8nlssjo98ciks ... data stream
EI end of Inline object
Q restore graphic state

2.4 Content-Oriented Formats 59

Table 2.20 PDF abbreviations synopsis

BI–EI operators parameters Color spaces

Internal name Abbreviation Internal name Abbreviation

BitPerComponent BPC DeviceGray G

ColorSpace CS DeviceRGB RGB

Decode D DeviceCMYK CMYK

DecodeParms DP Indexed I

Filter F ASCIIHexDecode AHx

Height H ASCII85Decode A85

ImageMask IM LZWDecode LZW

Intent none FlateDecode Fl

Interpolate I RunLengthDecode RL

Width W CCITTFaxDecode CCF

DCTDecode DCT

A further way for describing an image in PDF is the XObject form. It is a stream
that contains a sequence of graphic objects (such as paths, text and images) and can
be considered as a model to be exploited several times in different pages of the same
document. In addition to document description optimization, it helps in:

• Modeling pages (e.g., forms for bureaucratic documents);
• Describing logos to be displayed on each page background by using a mask to

make them semi-transparent;
• Creating a kind of form called group XObject, useful to group different graphic

elements and handle them as a single object;
• Creating a kind of form called reference XObject that can be used to transfer

content from a PDF document to another.

2.4 Content-Oriented Formats

By the attribute ‘content-oriented’ we refer to formats that, when defining the doc-
ument components, specify a set of conceptual properties thereof, instead of deter-
mining their position in the document. Thus, the visual aspect that the document
gets after displaying is, in some sense, a consequence of its components’ properties.
Such formats are usually described using declarative languages that allow specifying
‘what’ is to be obtained, rather than ‘how’ to obtain it (differently from procedural
languages).

Several well-known formats belong to this category. Some that will not be thor-
oughly discussed in this book are:

LATEX is used to specify the properties of the elements that make up a docu-
ment from a typographic perspective [21], and is based on the TEX language by

60 2 Digital Formats

D. Knuth. This format requires a compiler to produce the actual document (typi-
cally, final output formats of the compiled version are PS and PDF), but ensures
that the rendering is perfectly the same on any hardware/software platform. Differ-
ent typographic styles can be defined, and the compiler acts as a typographer that,
given a plain text manuscript annotated with indications on the role and desired
appearance of the various passages, typesets it in order to obtain the most balanced
layout possible according to the indicated style.

DOC is a binary, proprietary format developed by Microsoft for files produced by
the Word word processing program of the Office suite [11]. Latest versions of such
a suite exploit a new XML-based, open but patented format called OOXML (Office
Open XML) that since August 15, 2008 has become an ISO standard (ISO/IEC DIS
29500), notwithstanding an open and free ISO standard for the same purposes (the
OpenDocument Format, discussed below) already existed since May 1, 2006. In
particular, for what concerns word processing, DOC has been replaced by DOCX.

RTF (Rich Text Format) was born for allowing document interchange between dif-
ferent word processors. It was introduced by Microsoft with the aim of creating
a standard for formatted text. It provides the same potential as the DOC format,
but its specification is—at least in its original version—public domain. Most word
processing programs can read and write in this format, but many of them add pro-
prietary extensions, which results in limited portability.

2.4.1 Tag-Based Formats

A comfortable way to specify the properties of a document’s components is us-
ing tags spread along the document itself, that express information concerning the
document structure and content within the document itself by means of particular at-
tributes of the components to which they are associated. In general, a very important
distinction is made between two kinds of tags:

Logical tags that express the role played by the indicated component in the docu-
ment;

Physical tags that directly specify the way in which the component is to be dis-
played.

Tags of the former kind do not specify any particular visual attribute for the compo-
nent they denote: it is in charge of the interpreter properly and consistently display-
ing it, and different interpreters, or even the same interpreter at different times, could
adopt different display attributes for a given logical tag. On the other hand, physical
tags do not carry any information about the component role. Usually, the former are
to be preferred to the latter, at least for a systematic identification of components
because this would allow transposing the same document through different styles
by just changing the interpreter and/or the attributes underlying the tag. Conversely,
the latter can be used occasionally for describing how specific components are to be
rendered, independently of the particular style in use.

2.4 Content-Oriented Formats 61

The category of tag-based formats essentially includes two well-known Web-
oriented languages: HTML and XML. Thousands of pages and many professional
works have been written about these formats, and hence it would be pretentious (and
out of our scope) to give here a complete presentation thereof. Nevertheless, a quick
overview is useful to introduce their approach and compare it to those of the other
formats presented in this book.

HTML (HyperText Markup Language) A hypertext is a set of texts intercon-
nected by links that allow jumping from a given place in a document to (a specific
place of) another document. The World Wide Web (WWW) is the most widespread
and famous example of hypertext nowadays. HTML [3] is a tag-based language de-
veloped to support the creation and presentation of hypertextual information (such
as Web documents) in a universal and hardware-independent way, and to allow the
definition of a simple and straightforward interface for ‘browsing’ among hyper-
media documents, with the only help of a pointing device (e.g., a mouse). It is an
application of the SGML (Structured Generalized Markup Language, used in the
editorial field), and represents the current standard for Web page description, whose
definition is fixed by the W3C.12

HTML allows defining the format of a document (size, type and style of the char-
acters, kind of text justification, etc.) and including hyperlinks to other documents
or to multimedia objects (such as images, icons, videos, sounds) or even to other
Internet services (FTP, Gopher, etc.), still keeping the (sometimes complex) com-
mands underlying those links transparent to the user. Its main strengths lie in the
possibility of including images in the documents and in its universality, flexibility,
richness and compactness.

An HTML file is encoded in standard ASCII, that can be easily handled by
any text editor (although dedicated editors improve readability). Special charac-
ters, reserved to HTML (<, >, &) or not provided by the ASCII, are expressed
as escape sequences (sequences of characters that are displayed in the document
as a single symbol), starting with an ampersand & and ending with an (optional)
semi-colon ;. Their conversion is the task of the interpreter. A sample of escape
sequences is reported in Table 2.21.

The visual presentation of the document is driven by structural and stylistic in-
dications provided by specifying content- and formatting-related directives to an
interpreter. Directives are interleaved with the text that represents the actual con-
tent, delimited by brackets (< and >) to be distinguished from it, and are made up
of a code (called tag, a term sometimes improperly used to denote the whole di-
rective), possibly followed by the specification of attributes (some are mandatory,
some optional, depending on the particular tag) that modify their effect:

<TAG attribute="value" ... attribute="value">

12Some software applications that produce HTML documents exploit extensions not included in
the official format definition, and hence part of their output represents semi-proprietary code that
might not be properly displayed on some platforms.

62 2 Digital Formats

Table 2.21 Some special characters and their escape sequences in HTML

Symbol Escape Note Symbol Escape Symbol Escape

< < less than À À à à

> > greater than É É é é

& & ampersand È È è è

© © copyright Ì Ì ì ì

. . . Ò Ò ò ò

Ù Ù ù ù

Not all tags are supported by all browsers, but unknown ones are simply ignored
instead of raising an error. Commands are not case-sensitive (although, to improve
human readability, a widespread and useful agreement is to write tags in upper-case
and attributes in lower-case). Some tags denote the presence of a single element
(e.g., a line break or an image); more often they apply to a piece of content, and
hence require a corresponding directive that indicates the end of their scope. In the
following, we will call the former single tags, and the latter paired tags. The closing
directive of a paired tag (that can be sometimes omitted, being implicitly assumed
by the interpreter when certain other directives are found) is denoted by a slash /
before the tag:

... <TAG attribute="value" ... > content affected by the tag </TAG> ...

Attributes, if any, must be specified in the opening directive only. Comments, ig-
nored by the interpreter, can be included as follows:

<!- text of the comment ->

The high-level structure of an HTML document is as follows:

<HTML> beginning of the document
<HEAD> beginning of the heading
... meta-information
</HEAD> end of the heading
<BODY> beginning of the actual content
... actual content
</BODY> end of the actual content

</HTML> end of the document

where the tag HTML delimits the document specification, the tag HEAD delimits a
heading (that expresses general information on the document that is not to be dis-
played), and the tag BODY delimits the actual hypertextual content of the document
(that is to be displayed). Some possible attributes for the BODY tag are: back-
ground (to specify a background image for the page), bgcolor (to specify a
background color for the page), etc.

The heading typically contains a document title (paired tag TITLE, in which
spacings are significant), useful for identifying it in other contexts, that is usually

2.4 Content-Oriented Formats 63

displayed in the window title bar. Additional meta-information on the document can
be specified using the single tag META, in the form:

<META name="..." content="...">

where the name attribute denotes the kind of meta-information (typical values are:
generator, the software used to produce the HTML code; author, the author of
the document; keywords, a list of keywords related to the document content; de-
scription, a textual description of the content) and content specifies the actual
meta-information.

The main elements that can be included in the body are: titles, lists (possibly
nested at will), images, sounds, videos and Java programs (applets), hyperlinks,
character-formatting styles. It should be noted that the interpreter generally ignores
carriage returns, and considers tabbings or multiple spaces as a single blank. Thus,
new lines and spacings in the source file are exploited just for improving human
readability of the code. To prevent the document from appearing as a single para-
graph, suitable tags that cause layout formatting must be used, such as text splitting
ones:

• Line breaks (Break Rule), BR;
• Horizontal line separators (Hard Rule), HR;
• Paragraph boundaries (using the paired tag P or also the single directive <P> that

displays a vertical space between the content before and after it).

The only exception is the preformatted text, delimited by the paired tag PRE, that
is displayed with fixed size characters, in which spaces, new lines an tabbings are
significant (it is useful for displaying program listings). However, HTML tags, hy-
pertextual references and links to other documents can still be used in its scope.

Images are enclosed using the directive

where the attribute src specifies the name and path of the image file. Supported
formats are XBM (X BitMap), GIF, JPEG. Vertical alignment of the image with re-
spect to the surrounding text can be specified using the valign attribute (allowed
values are top = upper border, middle = centered, bottom = lower border, that
is the default). Using the optional height and width attributes, one or both dis-
play dimensions of the image can be independently resized (if just one is specified,
the other is consequently set so to preserve the original ratio), in pixels or as a per-
centage of the browser window (by specifying the % symbol after the value). The
(optional) attribute alt allows specifying an alternate textual description of the
image, to be displayed when the mouse passes over it or by textual browsers that
cannot display images.

HTML allows applying special character-formatting styles to pieces of text. The
‘physical style’ is defined by the user and shown by the browser, while ‘logical
styles’ are configured by the interpreter. Both exploit paired tags. A scheme of the
available tags for physical styles, along with the typical corresponding logical styles
(and tags), available in HTML is provided in Table 2.22.

64 2 Digital Formats

Table 2.22 Logical and physical character-formatting style tags in HTML

Physical style Italics Bold Underlined TeleType-like

Tag I B U TT (fixed-size font characters)

Corresponding
Logical styles

EM emphasize STRONG note CODE for program code

CITE citation SAMP sample (for examples)

VAR variable KBD keyboard (for names of keys)

DFN definition

Section headings are identified by the family of tags Hn, where n specifies the
depth level (and hence the character size) in a 1 to 6 scale. Level 1 headings are the
most important, usually displayed with larger characters in bold face. In complete
documents, they usually express the document title, while in documents that repre-
sent sections of wider works (e.g., chapters of a book), they should be referred to
the content of that particular section, using the TITLE tag in the heading to provide
the structural reference (e.g., the title of the whole book plus that of the chapter).

As to lists, the following kinds are supported (each followed by the associated
paired tag):

Unordered List UL
Ordered List OL
Description List DL

Elements of ordered or unordered lists are identified by the paired LI tag (list item),
while in description lists the title of the item is identified by the paired tag DT (De-
scription Title) and its description by the paired tag DD (Description Description).
All item tags are allowed also as single tags. A paragraph separator between list el-
ements is not needed, but each item may contain multiple paragraphs, lists or other
descriptive information. Hence, an arbitrary nesting can be specified. Unordered
lists are displayed differently by different browsers, as regards indentation and sym-
bols for each level (typically a dot for the first level and a square for the second).

Tables are specified row-wise, according to the following structure:

<TABLE>
<TR> ... </TR>
...
<TR> ... </TR>

</TABLE>

where possible attributes of the TABLE tag are border (thickness of the line to
draw the table grid), cellspacing (internal margin for the cell content), cell-
padding (spacing among cells), width. Each table row tag TR delimits the single
cells in a row, specified using the paired tags TH (for heading ones, to be high-
lighted) or TD (for content, or description, ones). TR, TH and TD can specify the
horizontal or vertical alignment of the cell content using the attributes align (val-
ues left, right, center) and valign (top, middle, bottom), respectively. TH and
TD additionally provide attributes nowrap (automatic wrapping of the contained

2.4 Content-Oriented Formats 65

text), rowspan and colspan (to span a cell over several rows or columns, re-
spectively). The paired tag CAPTION allows specifing an explanation, with attribute
align (possible values are top, bottom, left, right).

Hypertextual links are regions of a document that, when selected, take the user
to another document that can be on the same computer or on a different one. They
typically appear highlighted (usually colored and underlined, but this setting can be
changed), and are specified by delimiting the region with an anchor paired tag

 ...

where the href attribute represents the (relative or absolute) URL of the linked
document. It is also possible to specify anchors to specific document sections, useful
for moving directly to intermediate passages. The target place (named anchor) must
be labeled using the (paired or single) directive

that defines an identifier for it, to be exploited as a suffix for the URL in the links,
as follows:

 ...

(the file name being optional if the target document is the same as the starting one).
The paired tag ADDRESS specifies the author of a document and a way to contact

him (usually an e-mail address). It is typically the last directive in the file, whose
content is placed on a new line, left-justified.

Colors are expressed in RGB format, as a sequence #RRGGBB of pairs of hex-
adecimal digits for each basic color (RR = red, GG = green, BB = blue), or using
symbolic names for some predefined colors: black (#000000), silver (#C0C0C0),
gray (#808080), white (#FFFFFF), maroon (#800000), green (#008000), lime
(#00FF00), olive (#808000), yellow (#FFFF00), navy (#000080).

An interesting feature is the possibility of splitting a single window into frames,
a sort of tables each of whose cells can contain a separate document. This is ob-
tained by the paired tag FRAMESET, with attributes rows and cols to specify the
window splitting as a comma-separated list of values (in pixels or, if followed by %,
in percentage of the window size; a * denotes all the available space). Other allowed
attributes are: src (the document to be displayed in the cell), name (an identifier
for referencing the frame), scrolling (with values yes, no and auto, to allow
scrolling of the content of a cell), noresize (to prevent window resizing from the
user), marginwidth and marginheight (to define the spacing among cells).
A NOFRAME tag can be used to specify what to display in case the browser does not
support frames.

Example 2.12 A sample specification of frames in an HTML document.

<FRAMESET rows="25%, 75%">
<FRAME noresize name="top" src="t.html" scrolling="no">
<FRAMESET cols="150,*,150">

<FRAME name="left" src="l.html">

66 2 Digital Formats

<FRAME name="center" src="c.html" scrolling="yes">
<FRAME name="right" src="r.html" scrolling="auto">

</FRAMESET>
</FRAMESET>

The window is vertically divided in two rows, taking 1/4 (25%) and 3/4 (75%)
of the whole allowed height, respectively. The first row contains a frame named
‘top’, in which the source HTML is loaded from file ‘t.html’, and displayed so
that scrolling is not permitted (scrolling widgets are not shown), even in the case
the source is too large to fit the available frame space. The second row, in turn,
is horizontally split into three frames (columns), named ‘left’, ‘center’ and ‘right’,
respectively, of which the first and the last one take exactly 150 pixels, while the
middle one takes all the remaining space (depending on the overall window width).
These columns contain the hypertexts whose sources are to be loaded from files
‘l.html’. ‘c.html’ and ‘r.html’, respectively, of which the second one always shows
scrolling widgets, while the last one shows them only if the source content exceeds
the available frame space.

XML (eXtensible Markup Language) Developed by W3C for use in the Inter-
net, in order to make more flexible and personalizable HTML, XML subsequently
established also as the main language for information representation. It was de-
signed for ease of implementation and for interoperability with both SGML and
HTML [9, 13]. Indeed, it provides a shared syntax that can be understood by ma-
chines, allows homogeneous processing and enforces information storing, handling
and interchange. It is acceptable by human users as well, since it provides the
generic blocks for building a language, according to a comfortable tag-based syn-
tax (just like HTML). It is a subset of SGML,13 focused on documents and data,
in which no keyword is pre-defined (as in HTML), but a set of rules is provided
according to which other languages (e.g., HTML) can be written. Of course, this
leaves the user with the problem of choosing the tags and, if needed, with defining
their intended meaning and behavior.

The structure of an XML document requires, in the first row of the file, a declara-
tion concerning the language version (mandatory) and the character encoding used
(UTF-8 by default):

<?xml version="..." encoding="..."?>

followed by the actual content.
The content is made up of elements, each delimited by directives in the same

formalism as in HTML, but denoted using user-defined tags. Elements (and hence
directives) can be nested, but a root element that contains all the others and defines
the type of XML document is mandatory. The nesting order is relevant, and repre-
sents a good indicator for the choice of elements or attributes. Directives can even
be empty (<tag></tag>, often abbreviated in <tag />).

13Note that HTML is an application, not a subset, of SGML.

2.4 Content-Oriented Formats 67

As in HTML, tag effects can be modified by using attributes whose values are
delimited by single or double quotes. Attribute values cannot be empty, and only
text is allowed therein. They are often exploited for specifying metadata that express
properties of the elements, and their ordering is not significant to XML (although it
can be relevant to the applications that will process the file).

An entity is any unit of content, started by & and ended by ; (like escape se-
quences in HTML). Some entities are pre-defined (escape sequences):

• lt (<),
• gt (>),
• apos (′),
• quot (′′),
• amp (&);

others are used as shortcuts for human convenience. References to characters are
represented by UNICODE code points n, expressed in decimal (&#n;) or hexadec-
imal (&#xn;) notation.

Comments are as in HTML:

<!-- text of the comment -->

and cannot contain the -- sequence of characters. They are exclusively for human
use (differently from HTML, where instructions for applications can be enclosed),
because other specific tools are provided to contain information intended for ma-
chines. For this reason, the use of comments must be avoided in machine-intended
documents.

As to syntax, tag and attribute names are case sensitive, must start with a letter
or an underscore and may continue with any mix of letters, digits, underscores, dots
(not colons, that are reserved for namespaces, to be discussed below). Some names
(those starting with xml) are reserved. Well-formed documents require that ele-
ments are correctly nested and that all open tags are closed. Checking the validity of
an XML document consists in a check for admissibility of well-formed expressions,
and is useful for machine-readability purposes.

Namespaces are used for disambiguation of identical names used in different
contexts, according to the concept of URI (Uniform Resource Identifier). A names-
pace is denoted by a name, and defines a vocabulary whose elements are referred
to a specific context and are independent from those in other namespaces. An
XML document can specify which namespaces are going to be exploited: then, el-
ements and attributes having the same name but coming from different contexts
can be used together in that document by prefixing each of them with the in-
tended namespace, separated by a colon: namespace:element and names-
pace:attribute, respectively. Namespaces are themselves URIs of the vocab-
ulary xmlns:namespace.

Example 2.13 A short XML document:

<?xml version="1.0" encoding="us-ascii"?>
<countries>

68 2 Digital Formats

Fig. 2.6 XSL transformation of an XML document

<country id="c01">
<name>Italy</name>
<abbr>ITA</abbr>

</country>
<country id="c02">

<name>United States of America</name>
<abbr>USA</abbr>

</country>
<country id="boh"/>

</countries>

In addition to the abstract syntactic correctness, some kind of semantic correct-
ness may be required to the used tags and attributes and to their nesting. The types of
elements and attributes allowed in an XML document can be expressed by means of
DTD (Document Type Definition) files. An XML document that must fulfill a DTD
can reference it by means of a <!DOCTYPE ...> declaration placed in the second
line of the file. It indicates which is the root element of the XML document (that can
even be different from the root of the DTD). If a DTD is specified, the elements in
the XML document must be instances of the types expressed in the DTD. Specific
procedures are in charge of processing the document with respect to its declared
DTD, and of rejecting invalid documents.

XSL (eXtensible Stylesheet Language) is a language that allows specifying styles
for displaying XML documents [10]. In this way, the same XML file can be pre-
sented in different ways: as a Web page, a printable page, speech, etc. The transfor-
mation takes place in two steps, as depicted in Fig. 2.6:

1. Tree transformation, carried out on an XML document (that represents the
source tree) and an XSL document by an XSL Stylesheet processor that produces
a result tree;

2. Formatting, carried out on the result tree by a formatter that produces the final
presentation.

The XSL exploits an XSLT (XSL Transformations, defined by the W3C [5]) lan-
guage for transforming XML documents and an XML vocabulary for specifying
formatting semantics. The former describes how the document is transformed into
another XML document that uses the latter. The result tree is a new representation

2.4 Content-Oriented Formats 69

of the XML source that can be used by the formatter for producing the final presen-
tation.

XML processing tools are parsers that take an XML file as input and return in-
formation related to them. They fall in two categories: event-based and the DOM
(Document Object Model—see Sect. 5.1.2). The former act by means of calls to
APIs (program functions) any time a parsing is involved, or by means of a standard
API library called SAX (available in Java, Python, Perl). The latter, whose stan-
dard is defined by the W3C, load the XML document content into main memory in
the form of a tree. Three levels of DOM exist, each including several specifications
for different aspects thereof. XSLT processors define transformations of an XML
document into another XML or HTML document. For instance, Xpath [4] is a very
flexible query language for addressing parts of an XML document, designed to be
used by XSLT but used also to run processing functions.

2.4.2 Office Formats

The most straightforward and classical way for producing a natively digital docu-
ment is using a Word Processor, usually included in a suite of office-related pro-
grams. Several software packages of this kind have been developed over the years
by various software houses. Up to recently, each of them used to save the docu-
ments in a different proprietary format, often binary. This might not be a problem
while the very same version of the application is used, but becomes a strong limi-
tation as soon as one needs to manipulate the document content, directly or using
another program, in order to carry out operations that are not provided by the origi-
nal application used for producing them. The only way out in these cases is to pass
through intermediate, neutral or ‘universal’ formats, such as RTF or CSV (Comma-
Separated Values). However, just because of them being neutral, they are often not
able to preserve all the original settings of the document. For this reason, many Pub-
lic Administrations have recently required their applications to adopt open formats
and save the documents as pure text (typically XML), so that the content can be
accessed independently of the visualization application.

Today only two office application suites are widely exploited and compete on
the market: the Microsoft Office and OpenOffice.org suites. While the former has
a long tradition, the latter is much more recent, but has gained large consensus in
the community thanks to its being free, open-source, portable, rapidly improving its
features and performance, and based on an open, free and ISO-standardized format.
Conversely, the former is commercial and based on proprietary formats that only
recently have been accepted as an ISO standard. For these reasons, here we will
focus on the latter.

ODF (OpenDocument Format) The OpenDocument format (ODF) [12, 18] was
developed for the office applications suite OpenOffice.org whose aim is to provide
users with the same applications on any hardware and software platform, and to

70 2 Digital Formats

make them able to access any data and functionality by means of open formats and
components that are based on the XML language and on API technology, respec-
tively. The OASIS (Organization for the Advancement of Structured Information
Standards) decided to adopt this format and to further develop and standardize it,
resulting in the definition as an ISO standard (ISO 26300) since 2006.

The OpenDocument format is an idealized representation of a document struc-
ture, which makes it easily exploitable, adaptable and extensible. An OpenDocu-
ment consists of a set of files and directories that contain information on the settings
and content of the document itself, saved altogether in a compressed file in ZIP
format.14 A document generated by the OpenOffice.org word processor (Writer),
identified by the ODT acronym (for OpenDocument Text) is made up of the follow-
ing elements:

• mimetype a file containing a single row that reports the MIME content type of
the document;

• content.xml the actual document content;
• styles.xml information on the styles used by the document content (that have

been separated for enhanced flexibility);
• meta.xml meta-information on the content (such as author, modification date,

etc.);
• settings.html setting information that is specific to the application (window

size, zoom rate, etc.);
• META-INF/manifest.xml list of all other files contained in the ZIP archive,

needed by the application to be able to identify (and read) the document;
• Configurations2 a folder;
• Pictures a folder that contains all the images that are present in the document

(it can be empty or even missing).

It should be noted that the XML code is often placed on a single row to save space
by avoiding line break characters. The only mandatory files are ‘content.xml’ and
‘manifest.xml’. In principle, it is possible to create them manually and to properly
insert them in a ZIP file, and the resulting document could be read as an OpenDoc-
ument (although, of course, it would be seen as pure text and would not report any
further style, setting or other kind of information).

References

1. Graphics Interchange Format (sm) specification—version 89a. Tech. rep., Compuserve Inc.
(1990)

2. TIFF specification—revision 6.0. Tech. rep., Adobe Systems Incorporated (1992)
3. HTML 4.01 specification—W3C recommendation. Tech. rep., W3C (1999)
4. XML Path Language (XPath) 1.0—W3C recommendation. Tech. rep., W3C (1999)

14This representation is inspired by JAR files (Java ARchives), used by the Java programming
language to save applications.

References 71

5. Transformations, X.S.L.: (XSLT) 1.0—W3C recommendation. Tech. rep., W3C (1999)
6. International standard ISO/IEC 10646: Information technology—Universal Multiple-octet

coded Character Set (UCS). Tech. rep., ISO/IEC (2003)
7. Portable Network Graphics (PNG) specification, 2nd edn.—W3C recommendation. Tech.

rep., W3C (2003)
8. Lizardtech djvu reference—version 3. Tech. rep., Lizardtech, A Celartem Company (2005)
9. Extensible Markup Language (XML) 1.1, 2nd edn.—W3C recommendation. Tech. rep., W3C

(2006)
10. Extensible Stylesheet Language (XSL) 1.1—W3C recommendation. Tech. rep., W3C (2006)
11. Microsoft Office Word 97–2007 binary file format specification [*.doc]. Tech. rep., Microsoft

Corporation (2007)
12. Open Document Format for office applications (OpenDocument) v1.1—OASIS standard.

Tech. rep., OASIS (2007)
13. Extensible Markup Language (XML) 1.0, 5th edn.—W3C recommendation. Tech. rep., W3C

(2008)
14. Adobe Systems Incorporated: PDF Reference—Adobe Portable Document Format Ver-

sion 1.3, 2nd edn. Addison-Wesley, Reading (2000)
15. International Telegraph and Telephone Consultative Committee (CCITT): Recommendation

t.81. Tech. rep., International Telecommunication Union (ITU) (92)
16. Deutsch, P.: Deflate compressed data format specification 1.3. Tech. rep. RFC1951 (1996)
17. Deutsch, P., Gailly, J.L.: Zlib compressed data format specification 3.3. Tech. rep. RFC1950

(1996)
18. Eisenberg, J.: OASIS OpenDocument Essentials—Using OASIS OpenDocument XML.

Friends of OpenDocument (2005)
19. Hamilton, E.: JPEG file interchange format—version 1.2. Tech. rep. (1992)
20. Huffman, D.: A method for the construction of minimum-redundancy codes. In: Proceedings

of the I.R.E, pp. 1098–1102 (1952)
21. Lamport, L.: LATEX, A Document Preparation System—User’s Guide and Reference Manual,

2nd edn. Addison-Wesley, Reading (1994)
22. Reid, G.: Thinking in PostScript. Addison-Wesley, Reading (1990)
23. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illi-

nois Press, Champaign (1949)
24. The Unicode Consortium: The Unicode Standard, Version 5.0, 5th edn. Addison-Wesley,

Reading (2006)
25. W3C SVG Working Group: Scalable Vector Graphics (SVG) 1.1 specification. Tech. rep.,

W3C (2003)
26. Welch, T.: A technique for high-performance data compression. IEEE Computer 17(6), 8–19

(1984)
27. Wood, L.: Programming the Web: The W3C DOM specification. IEEE Internet Computing

3(1), 48–54 (1999)
28. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Transactions

on Information Theory 23(3), 337–343 (1977)
29. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding. IEEE

Transactions on Information Theory 24(5), 530–536 (1978)

Chapter 3
Legal and Security Aspects

A digital document is a kind of electronic document in which information is de-
scribed as a sequence of binary values obtained by exploiting electronic devices
and processing techniques of various kind. Examples are digitization by means of
an acquisition device (scanner) or direct creation by means of an office-automation
application program. The binary values can express just the appearance of the doc-
ument (as in the case of scanned documents), or its content (as in the case of a
word-processor output). In any case, the document can be seen as a whole sequence
of bits, independently of their specific meaning in the document representation (that
depends on the format and standard used), and hence, in some sense, as a (very
large) integer value.

Digital documents, by their nature, have different characteristics than classical
paper ones, among which the most relevant and well-known are flexibility, easy
cloning and easy transmission (intended as ease of sending a document from a
source to a target, through some kind of channel). These features, although in gen-
eral can be deemed as desirable, pose severe security problems as soon as personal
privacy or public validity are taken into account. Indeed, a document might be re-
served to selected and authorized readers only, or its content could be required to be
sufficiently guaranteed from manipulations in order to act as a proof from a juridic
viewpoint or in the Public Administration. In these cases, the possibility of easily
creating, modifying and cloning digital documents has ever since seriously affected
their validity and relevance for exploitation in formal environments. Even the easy
transmission raises the problem of possible interception of confidential documents
and their fraudulent modification by malicious persons. Actually, both issues are not
specific to digital documents, but have been ever-since a problem (just think of mil-
itary communications during a war) and, because of this, several methods for secure
data transmission (and corresponding techniques to break them) have been devel-
oped since ancient times. Thus, a choice must be made between abandoning digital
documents (and their advantages) in formal environments or undertaking an effort to
find a solution for their weaknesses. Since the presence and spread of digital docu-
ments nowadays cannot be ignored or limited, the latter option is nearly mandatory,
and hence the study of how to secure digital content and its transmission has become
a hot topic in the last years [27, 32].

S. Ferilli, Automatic Digital Document Processing and Management,
Advances in Pattern Recognition,
DOI 10.1007/978-0-85729-198-1_3, © Springer-Verlag London Limited 2011

73

74 3 Legal and Security Aspects

3.1 Cryptography

The need for hiding the content of a message to other persons has ever since been
felt by people, for military reasons but also just for privacy. In a nutshell, the prob-
lem involves three individuals A, B and E (often represented by the names Alice,
Bob and Eve by practitioners), and can be expressed as follows: Alice wants to send
a secret message M to Bob, with Eve being an enemy that wants to read the mes-
sage. Thus, a study of methodologies for obtaining such a result has been carried
out through the centuries [30]. Due to their straightforward exploitation, and to the
undeniable advantage they can bring, in war environments (an event considered by
many historians as determinant for the Allies to win World War II was the break of
the German secret communication system called Enigma), in the US these method-
ologies are considered in all respects as war weapons, and hence their exploitation,
circulation and export are strictly ruled by law and strongly limited.

3.1.1 Basics

Before proceeding any further and going into technical details, a vocabulary of fun-
damental terms must be provided. The usual term to denote the science of inventing
systems that can make a message understandable to its legitimate addressee only,
and incomprehensible to whoever else comes into possession of it, is cryptography
(from the Greek ‘kryptós’ = to hide and ‘gráphein’ = to write), defined as “the en-
ciphering and deciphering of messages in secret code or cipher” (1658). Conversely,
cryptanalysis denotes “the theory of solving cryptograms or cryptographic systems;
the art of devising methods for this” (1923), i.e., the art of breaking such systems.
Lastly, cryptology is “the scientific study of cryptography and cryptanalysis” (1935),
and hence encompasses both [5].

The original message, i.e., the sequence of letters (or, more generally, symbols)
that are to be securely transmitted, is called plaintext. The operation of ‘obscuring’
the plaintext, i.e., transforming it in such a way that only selected persons can read
and understand its content, is named encoding or encryption. It is based on some
kind of code, and is performed using an algorithm (or method), that is the set of
operations that allow performing encryption, and back. The key is the specific word,
or sentence, “that allows us, through the application of the algorithm, to perform
encryption”, i.e., the code that allows activating the algorithm. Thus, if the algo-
rithm is the computation procedure, the key is the way the algorithm operates in a
particular situation. The ‘obscured’ message, i.e., the sequence of symbols/letters
that are output by the algorithm and will be actually transmitted, is called ciphertext
or cryptogram. The algorithm also allows performing the opposite transformation,
from the ciphertext to the plaintext; such an inverse process is called decoding if it is
carried out by the legitimate addressee, or decryption if it is carried out by another
person (the enemy) that “tries to violate the secrecy of someone else’s message”.
More precisely, this term indicates “someone who does not own the key of a cipher,

3.1 Cryptography 75

but fraudulently tries to know the content of a ciphertext using indirect systems”.
A cipher (or cipher system or cryptographic system) is a system made up of a set of
plaintexts, the corresponding ciphertexts, the algorithm and the keys.

Two perspectives can be taken on cryptography. The former (often adopted in the
military environment) requires, for enhanced security, to keep secret the algorithm.
The latter is based on the assumption that the security of a cipher must not depend
on the secrecy of the algorithm used, but just on the secrecy of the key (also known
as the Kerkhoffs principle [24, 25]), which allows the algorithm to be known even to
the enemy, and requires just the key to be kept secret. Modern cryptographic systems
are based on the latter assumption. In this setting, the system is said to be strong or
robust if it “is based on a large size of the key and on a significant difficulty to invert
the encoding key”, where the size of the key is given by the number of symbols
(i.e., in the case of binary-encoded information, by the number of bits) by which it
is made up.

Transposition ciphers are cipher systems in which the symbols in the plaintext
are the same as in the ciphertext, but re-arranged according to some strategy. Con-
versely, substitution ciphers are those in which each symbol of the plaintext alpha-
bet is replaced by a corresponding symbol of the ciphertext alphabet, according to
a regular rule (referred to as the substitution). They can be further divided into two
categories:

mono-alphabetic use a single secret alphabet to encrypt a plaintext, so that each
symbol in the plaintext is always transformed into the same symbol of the secret
alphabet;

multi-alphabetic exploit several secret alphabets to encrypt a single plaintext, so
that different occurrences of the same letter in the plaintext are transformed into
possibly different symbols.

A fundamental distinction of cryptographic systems is based on the way they
operate on the key for performing encryption and decoding. Classical algorithms
are symmetric, meaning that they carry out both processes using the very same key,
which raises the problem of the distribution of keys among the intended users. In-
deed, needless to say, whoever comes into possession of the key would be able to
decrypt the messages, and hence the key itself turns out to be a secret message to
be transmitted. This obviously represents a flaw of the approach, that significantly
tampers its reliability, for a two-fold reason: first, spreading several copies of the
key implies the risk that it can be stolen from one of the owners; second, personal
delivery of the key to those who are to use it could be infeasible (or in any case
represent an undesirable overload), and sending the key by means of third-party
vectors involves the chance that it is intercepted while being transmitted. Delega-
tion of manual delivery to selected and reliable persons would imply huge costs for
personnel (as experienced in past decades by the Departments of Defense of the
various countries), even in the case that the meetings for key delivery are made pe-
riodically, giving the receiver each time a list of keys, to be used one for each of the
messages he will receive in the following period.

Conversely, in asymmetric cryptography the encryption and decoding steps ex-
ploit different keys when applying the cryptographic algorithm: a public key, by

76 3 Legal and Security Aspects

which the plaintext is encrypted, and a private key, used to go back to the plaintext
starting from the ciphertext (for this reason, it is also called ‘public key cryptogra-
phy’). Stealing, intercepting or even legally owning the former is useless to decrypt
the message. An idea to obtain such an effect could be the following:

• A sends to B the message M encrypted using a key kA (let us call it MA);
• B cannot read the message, but encrypts MA using another key kB and sends the

outcome MAB back to A;
• Now, A decodes MAB using again kA, and sends the outcome MB (the original

message M now encrypted only by kB) to B;
• Finally, B can decode MB using kB and obtain M .

But the cheat would not work since encryption algorithms are typically composed
serially, and not in parallel, i.e., applying one on top of the other requires appling the
opposite sequence in decoding (Last In First Out technique, or LIFO). However, the
fundamental idea of using two keys, one for the sender and the other for the receiver,
is not infeasible. In particular, a feature of bi-directional functions, which makes
them useless in solving the above problem, is that it is easy to apply their inverse
and obtain the input from the output. Conversely, in uni-directional functions, given
the output, it is still very hard to go back to the original input that generated it. Thus,
the solution to the problem is to be searched in the domain of the latter.

3.1.2 Short History

The Greek historian Polybius (ca. 203–120 B.C.) designed a 5 × 5 checkboard
(called Polybius square) in which the alphabet is arranged so that each symbol cor-
responds to (and is encrypted as) a pair of integers between 1 and 5, corresponding
to the row and column, respectively, of the cell in which the symbol is found. For
instance, θ is encoded as (2,3):

1 2 3 4 5
1 α β γ δ ε

2 ζ η θ ι κ

3 λ μ ν ξ o

4 π ρ σ τ υ

5 φ χ ψ ω

The Roman leader Julius Caesar (100–44 B.C.) developed the so-called Caesar’s
cipher where the algorithm consists in a linear shift of letters, while the key corre-
sponds to the amount of translation. For instance, a key 6 means a translation of 6
positions to the right: A encoded becomes G, and so on:

Plain A B C D E F G H I J K L M N O P Q R S T U V X Y Z

Cipher G H I J K L M N O P Q R S T U V X Y Z A B C D E F

3.1 Cryptography 77

One of the main techniques for breaking a cipher consists in reasoning about the
frequency of the symbols in the ciphertext, and mapping them onto symbols having
a similar frequency in the language to obtain the plaintext (some letters, such as vow-
els, usually have significantly higher frequency than the others; some others, such as
the ‘q’, have significantly lower frequency; etc.). After identifying a few prominent
symbols, the others can be obtained by sensibly completing the partial words dis-
covered thus far (e.g., a ‘q’ is almost invariably followed by a ‘u’; ‘aqua_iu_’ might
sensibly be ‘aquarium’ or ‘Aquarius’; etc.). Since the beginning of the fourteenth
century, in order to mislead the attempts to apply a statistical analysis of symbol
frequencies, some tricks were introduced, such as the use of several symbols in the
ciphertext to encrypt the same plaintext symbol (particularly the vowels) and the
so-called nulls (symbols spread through the ciphertext that do not correspond to any
symbol in the plaintext).

In 1883, Kerkhoffs stated six requirements for encryption systems [24, 25]:

1. Being practically, if not mathematically, indecipherable;
2. Being not secret and allowed to even fall in the hands of the enemy without harm;
3. Using keys that do not require written notes to be communicated and retained,

and that can be changed and modified at will by the users;
4. Being applicable to telegraphic communications;
5. Being portable, and needing just one person for maintenance or functioning;
6. Being easy to use and not straining the user (e.g., with a long series of rules to

be remembered and observed).

Even the Enigma, the famous encoding machine exploited by the Germans during
World War II to encrypt and decode secret messages, whose cipher was broken
thanks to the contributions of Alan Turing among others, was ‘just’ an (extremely
complicated) version of the approach that consists in associating each symbol in the
plaintext to one of the cipher alphabet according to a key.

Computer cryptography gained attention in the 1960s when computers were suf-
ficiently spread in the commercial environment to be exploited for encryption and
decoding of reserved business messages and for data transmission. If information
was to be exchanged among different organizations, a common agreement was re-
quired, whence the motivation for the definition of encryption standards. As to the
Kerkhoffs’ requirements: 1, 2 and 4 still hold; 3 holds only in part (the key is not
written but actually cannot be communicated verbally either); 5 and 6 become mean-
ingless, due to the algorithm being executed by a computer rather than a human.

3.1.3 Digital Cryptography

In digital documents, two levels of representation are present: the original (human-
understandable) message and its (computer-readable) encoding as a sequence of bi-
nary digits. Because encryption and decoding are to be carried out by computer sys-
tems, the latter is more suitable, and hence is considered for automatic application

78 3 Legal and Security Aspects

of cryptographic algorithms. Thus, the source and target alphabets are made up of
just two symbols (0 and 1), which leaves no room for complex encryption (the only
possible transformation would be turning each binary digit in its complement). The
solution consists in applying the algorithm on sequences of binary symbols, rather
than single ones. Since the whole binary representation of the plaintext would be too
long to be processed at once, it is usually split into pieces (blocks) having a fixed
bit-length, each of which can be considered as a number and is encrypted into a cor-
responding piece of the ciphertext (that can be considered again as a number), and
vice versa. Except for this, the principles and methods are the same as for normal
symbols. The ciphertext consists in the concatenation of the encrypted counterpart
of the single blocks (and vice versa), that can be seen as a very large binary number.
In digital cryptography, keys are numbers as well. The larger the space in which a
key can be chosen (i.e., the number of bits that can be used to express it), the harder
breaking the system.

In other words, encryption and decoding can be seen as integer functions that
transform a number (the plaintext) into another (the ciphertext, or vice versa) ac-
cording to a third number (the key). Specifically, two mathematical concepts turned
out to be fundamental for building these techniques:

modulus function consisting of the remainder of a division: x ≡ y mod b (to be
read as “x is congruent y modulus b”) means that the remainder of the integer
division between x and b is the same as for y and b.

prime numbers integers that can be divided only by themselves and by 1.
In particular, two numbers are said to be relatively prime, or coprime, if their great-
est common divisor1 (gcd) is equal to 1.

The modulus is an example of uni-directional function: given the remainder of an
integer division, one cannot know (univocally) the original number that generated
it. Thus, an opportunity can be working in modular arithmetic, where the results of
operations are reduced to their remainder with respect to a given integer, and hence
the enemy has no hint from the remainder to guess which number gave it as a result.
For instance, exponential functions in modular arithmetics are unidirectional.

The principles underlying asymmetric cryptography have evolved from an at-
tempt to attack two of the most prominent weaknesses in symmetric cryptogra-
phy: the distribution of the key and the suitability for creating digital signatures
(see Sect. 3.3). In this respect, a turning-point in the history of cryptography was
marked by the findings of the research team made up by W. Diffie, M. Hellman and

1The greatest common divisor (gcd) of a set of integers is the largest positive integer that divides
all of them without yielding a remainder. In the case of two integers a and b, denoted gcd(a, b),
a famous algorithm for its computation was invented by Euclid [28]. Since the greatest common
divisor of two numbers does not change if the smaller is subtracted from the larger one, the Eu-
clidean algorithm carries out such a subtraction a first time, and then repeats the process on the
result and the subtrahend of the last previous operation, until the result is zero. When that occurs,
the gcd is the last minuend/subtrahend. By reversing the steps, a property known as Bézout’s iden-
tity states that the gcd of two numbers can be expressed as a linear combination thereof with two
other integers x and y (where typically either of the two is negative): gcd(a, b) = ax + by.

3.1 Cryptography 79

R. Merkle. Specifically, Diffie was the inventor of the asymmetric key cipher, pub-
lished in 1975 and based on two keys instead of just one [15, 16, 18]. The former,
used to decode messages, is called private key, and is known only to the receiver;
the latter, used for encryption, is called a public key, and can be known to anyone.
Thus, anybody can encrypt messages and send them to the receiver who is the only
one able to decode and read them. Differently from the symmetric approach, no pre-
liminary explicit information exchange is needed. The sender himself is not able to
decode his own encrypted message. The problem of finding such a special function
that is unidirectional, but can be reversed only using another key, was solved thanks
to the research carried out by R. Rivest, A. Shamir and L. Adleman.2 For ensuring
interoperability, a series of Public Key Cryptography Standards has been developed
and published under the acronym PKCS #n (where n = 1, . . . ,15). A very famous
one, used for digital signatures, is PKCS #7, defined by RFC 2315 [23].

DES (Data Encryption Standard) The DES [1] is a composite cipher directly
derived from a previous very powerful algorithm developed by H. Feistel, called
Lucifer [31], available at those times. It is a symmetric system (both the sender
of the message and its receiver exploit the same secret key). Presented in 1975 at
IBM, this technique was adopted as a standard, in its form with 64-bit blocks and
a 56-bit key3 (that allowed expressing numbers up to 100 million billions) with the
name of DES on 23 November 1976, and has become the official cipher system of
the US Government yet since 1977. It has been certified for reliability by the NIST
(National Institute of Standards and Technology) every five years until 1993, and it
is still currently the American official standard for information encryption and the
secret key cipher most used in computer science environments. If exploited by a
single user, the DES can be a very good system for saving files on a hard disk in an
encrypted form.

It requires splitting the binary plaintext into (8n)-bit blocks (corresponding to
n bytes) and applying to each successive encryptions (consisting of transpositions
and substitutions of bits) based on an (8m)-bit key k, according to the following
steps:

1. Split the block into two halves of 4n bits each, called Left0 and Right0.
2. For i = 1 . . .16, carry out a round as follows:

(a) Righti+1 ← F(Righti , ki) ⊕ Lefti

(b) Lefti+1 ← Righti .
3. Return the concatenation of Left16 and Right16.

2It should be mentioned, however, that, as later ascertained, the most important results in this field
were independently invented also by J. Ellis, C. Cocks and M. Williamson during their work at the
GCHQ (Government Communications HeadQuarters) of the British Government [12, 19], but they
had to keep their findings secret because of military reasons.
3The American National Security Agency (NSA) thought that such length was sufficiently easy to
break for their powerful computers, but not for those of other organizations. Indeed, for security
reasons they wanted to keep the chance of intercepting and decrypting messages exchanged in the
US, and wanted to be the only one to have such a privilege.

80 3 Legal and Security Aspects

While decoding is carried out by just inverting the steps:

1. Split the block into two halves of 4n bits each, Left16 and Right16.
2. For i = 16 . . .1, carry out a round as follows:

(a) Lefti−1 ← F(Lefti , ki) ⊕ Righti

(b) Righti−1 ← Lefti .
3. Return the concatenation of Left0 and Right0.

Here

• ⊕ is the XOR bit operation;
• ki is a subkey for the ith round computed starting from the key k;
• F is a complex deformation function (whose definition is outside the scope of

this presentation) that scrambles the bits.

The problem of the DES is, as for all symmetric systems, the distribution of keys.

IDEA (International Data Encryption Algorithm) IDEA [26] was developed
between 1990 and 1992 and first published in 1991 as a potential replacement for
the DES (whence its former name PES, or Proposed Encryption Standard). It is
patented in several countries until 2010–2011, and it has never been broken yet,
for which reason various standard-enforcing organizations recommend it, and the
PGP standard (see Sect. 3.1.3) adopted it for message encryption. The IDEA is a
symmetric block cipher that applies on 64-bit data blocks eight rounds of a complex
permutation–substitution network scheme in which 52 16-bit subkeys obtained from
a 128-bit key K are exploited, as follows:

For each 64-bit plaintext block B ,

1. Split B into four 16-bit blocks B0,1, . . . ,B0,4

2. For i = 0, . . . ,7,
(a) Split K into eight 16-bit blocks and consider only the first six thereof:

K(i·6)+1, . . . ,K(i·6)+6

(b) Pi,1 = Bi,1 ×16 K(i·6)+1

(c) Pi,2 = Bi,2 +16 K(i·6)+2

(d) Pi,3 = Bi,3 +16 K(i·6)+3

(e) Pi,4 = Bi,4 ×16 K(i·6)+4

(f) Pi,13 = Pi,1 ⊕ Pi,3

(g) Pi,24 = Pi,2 ⊕ Pi,4

(h) Pi,5 = Pi,13 ×16 K(i·6)+5

(i) P6 = (Pi,24 +16 Pi,5) ×16 K(i·6)+6

(j) Bi+1,1 = Pi,1 ⊕ Pi,6

(k) Bi+1,2 = Pi,3 ⊕ Pi,6

(l) Pi,56 = Pi,5 +16 Pi,6

(m) Bi+1,3 = Pi,2 ⊕ Pi,56

(n) Bi+1,4 = Pi,4 ⊕ Pi,56

(o) RL
25(K)

3.1 Cryptography 81

Table 3.1 Subkeys for decoding in the IDEA cipher

Operation 1/Kn −Kn −Kn 1/Kn Kn Kn

Round
i = 0, . . . ,7

Decoding subkey K ′
(i·6)+j

, j = 1 2 3 4 5 6

Corresponding Kn = K6·(7−i)+k , k = 7 9 8 10 5 6

Final
transformation

Decoding subkey K ′
49 K ′

50 K ′
51 K ′

52

Corresponding Kn K1 K2 K3 K4

3. Perform a final transformation by combining the resulting sub-blocks with the
first four 16-bit subkeys K49,K50,K51,K52 of the current K as follows:
(a) B9,1 = B8,1 ×16 K49

(b) B9,2 = B8,2 +16 K50

(c) B9,3 = B8,3 +16 K51

(d) B9,4 = B8,4 ×16 K52.

Here

• ⊕ is the logical bit-wise XOR operation;
• +16 denotes summation modulus 216 = 65536;
• ×16 stands for multiplication modulus 216 + 1 = 65537;
• RL

n (x) is the left-rotation of x by n bits.

Decoding takes place applying the very same steps as above, but using 52 dif-
ferent subkeys {K ′

j }j=1,...,52, each obtained as the reciprocal (modulus 216 + 1) or

opposite (modulus 216) of one of the encryption keys according to the schema re-
ported in Table 3.1.

The algorithm was designed to resist attacks based on differential cryptanalysis,
and at the time of writing only 6 steps of it have been broken using linear cryptanal-
ysis. For a brute force attack to be successful against a 128-bit key, it is estimated
that a million billions years are needed in the best case.

Key Exchange Method As already pointed out, in symmetric cryptography, be-
fore sending a secret message to B, A must first provide him with the key that is
another secret message itself and must be preserved from the risk of stealing or in-
terception. The solution to this problem was found by Hellman [17], and presented at
the National Computer Conference in June 1976. It is called a key exchange method,
and takes place as follows:

1. A and B agree about two integers Y and P , where P must be prime and Y < P .
2. A and B choose a number each (say a and b, respectively), and keep it secret,

but transmit to the other the value resulting from applying to this number the
function YX mod P :

• A transmits α = Ya mod P to B
• B transmits β = Yb mod P to A.

82 3 Legal and Security Aspects

3. Now, each of them obtains exactly the same key as follows:

• A computes the key as βa mod P

• B computes the key as αb mod P .

It is important to point out that the values exchanged by the two actors (Y , P , α

and β) can even be publicly known, without resulting in the risk of an unsafe com-
munication. Indeed, even intercepting these values, E would not be able in any case
to get the key because he misses both a and b to apply the last functions.

Example 3.1 (Use of the Key Exchange Method) Suppose that A and B agree
on Y = 4 and P = 5. Then A chooses a = 3 and transmits to B the value α =
43 mod 5 = 4, while B chooses b = 2 and transmits to A the value β = 42 mod 5 = 1.
Lastly, A computes the key as 13 mod 5 = 1 and B obtains just the same value as
42 mod 5 = 1.

RSA (Rivest, Shamir, Adleman) Developed in 1977, the RSA cipher (named after
the acronym of its creators: Rivest, Shamir, Adleman) represented a milestone in the
history of cryptology. It was the first public key cryptographic system. Nowadays,
almost all secure transactions on the Web (i.e., those performed using the HTTPS—
HyperText Transfer Protocol Secure) are based on the RSA.

The system relies on a few mathematical results:

Euler’s totient function ϕ(n) of a positive integer n, defined to be the number of
positive integers less than or equal to n that are coprime to n.
If n is a prime number, it is not divided by any of its preceding integers, except 1,
and hence ϕ(n) = n − 1.
If n = pq with p and q prime numbers, n is factorized only by p and q , and hence
also all combinations of their preceding integers will be coprime to their product:
ϕ(n) = (p − 1)(q − 1).

Fermat’s little theorem Given a prime number p, for any integer a it holds that
ap ≡ a mod p, i.e., ap − a ≡ 0 mod p.
Given a prime number p and an integer a coprime to p (i.e., not evenly divisible
by p), it holds that ap−1 ≡ 1 mod p, i.e., ap−1 − 1 ≡ 0 mod p.

Euler–Fermat theorem Given a positive integer n and an integer a coprime to n,
it holds aϕ(n) ≡ 1 mod n.

The former is used in different ways by the RSA algorithm to generate the public
and private keys, through the following steps:

1. Choose two prime numbers p and q , with p �= q (such numbers must be kept
secret and, for better security, should be chosen uniformly at random, and have
similar bit-length)

2. Take n = p · q
3. Compute b = ϕ(n) = ϕ(pq) = (p − 1) · (q − 1)

4. Choose an integer e between 1 and b that is relatively prime to b (it should
preferably have a short addition chain for improving efficiency, and not be small
for improving security)

3.1 Cryptography 83

5. Compute d such that e · d ≡ 1 mod b (an extension of Euclid’s algorithm for the
gcd can be useful to speed up computation)

6. Thus, one gets:

Public key used for encryption: (e, n)

Private key used for decoding: (d,n)

where e can be used by different persons, but each must have a different n.

Given M , the binary-encoded message, the encryption function is:4

C = Me mod n.

Then, to decode the message the formula is

M = Cd mod n.

Due to the modulus in these formulæ, the output is always an integer between
0 and n − 1, which thus represents the maximum allowed value for a plaintext (re-
spectively, ciphertext) block to be encrypted (respectively, decoded). In other words,
a block must have a bit-length k ≤ log2(n), where 2k < n ≤ 2k+1.

Example 3.2 (Application of the RSA algorithm)
B chooses p = 5 and q = 11. This yields n = 55, and b = 40.
The first integer relatively prime to 40 is e = 3, from which d · 3 = 1 mod 40 ⇒
d = 27.
Hence, the public key is (3,55) and the private key is (27,55).
Since n = 55, the maximum bit-length of each block is k = 5 (because 25 = 32 <

55 ≤ 26 = 64).
Suppose that A wants to send a message consisting of a single character M =“Y”
(say, for ‘yes’) to B. She first transforms it into binary form (e.g., using the ASCII
code the ‘Y’ becomes 10001001) and then splits it into two 4-bits blocks (to have
equal-length blocks, indeed splitting into 5-bit blocks would have required the ad-
dition of padding bits): M1 = 1000 and M2 = 1001, i.e., 8 and 9 in decimal. Then,
she applies to each block the encoding formula:
C1 = 83 mod 55 = 512 mod 55 = 17 and C2 = 93 mod 55 = 729 mod 55 = 14,
and sends C1 and C2 to B. On the other side, B recovers the original message
as M1 = 1727 mod 55 = 178·3+2+1 mod 55 = ((178 mod 55)3 · (172 mod 55) ·
(171 mod 55)) mod 55 = (263 · 14 · 17) mod 55 = 4183088 mod 55 = 8, and
M2 = 1427 mod 55 = 148·3+2+1 mod 55 = ((148 mod 55)3 · (142 mod 55) ·
(141 mod 55)) mod 55 = (163 · 31 · 14) mod 55 = 1777664 mod 55 = 9.

Just to give an idea of how secure the RSA cipher is, let us sketch a brief dis-
cussion on whether it is possible, and by which effort, to go back to the private key,
knowing the public one. The following approaches are available:

4Any integer y can be decomposed as a sum of different powers of 2: y = p1 + · · ·+pn. Thus, the
following simplification can be applied when computing the modulus of high powers:

xy mod b = xp1+···+pn mod b = (
xp1 · · ·xpn

)
mod b = ((

xp1 mod b
) · · · (xpn mod b

))
mod b.

84 3 Legal and Security Aspects

Brute force involves the tentative application of all possible private keys.
Mathematical attacks aim at discovering the private key by means of several

mathematical techniques, all of which can be reduced, in terms of complexity,
to the factorization of the product of two prime numbers:

• Factorize n into its two prime factors p and q . This is equivalent to determining
ϕ(n) that, in turn, allows finding out the private key d .

• Directly determine ϕ(n), without first determining p and q .
• Directly determine the private key d without first determining ϕ(n).

Time attacks are based on the runtime of the decryption algorithm.
Selected ciphertext attacks leverage the features of the RSA algorithm.

The system security is founded on the difficulty in splitting its core element n,
that represents the flexible component of the unidirectional function, into its two
prime factors. Most techniques for cryptographic analysis of RSA try this way but,
using the algorithms currently known, it seems to be too costly in terms of time.
It is possible that in the future a quick factorization algorithm will be invented,
thus making the system useless, but unproductive research in the last two millennia
suggests this event to be very unlikely, and that probably this cannot be done in
principle.

The defense techniques against a brute force approach are the same as those
used for other encryption systems: exploiting a key chosen in a large space of keys.
The larger the number of bits for the private key, the more resistant the algorithm.
Unfortunately, given the computations needed to generate the key and for the en-
cryption/decoding, the larger the size of the key, the slower the system. Thus, the
security of the RSA algorithm improves as long as the length of the key increases
(although its performance decays). For large values of n, with sufficiently large
prime factors p and q (several hundreds of decimal digits, to stand the current com-
putational power of computers), finding them from n is quite difficult. Theoretically,
it is always possible to use such a long key that all the computers in the world joined
together could not find the solution within millions of years.

However, factorization is nowadays not as difficult as in the past. In 1977, an
article about the RSA, written by M. Gardner and published in the Mathematical
Games section of the Scientific American journal, challenged the readers to decrypt
a message given n (consisting of 129 decimal digits, i.e., approximately 428 bits),
offering a reward to whoever would provide the plaintext sequence. Indeed, it was
expected not to happen before 40 quadrillions years, but in April 1994 a group
claimed the prize after just eight months working on the Internet. In the meantime,
new challenges have been published, the last of which involved a key 200 decimal
digits long (i.e., 663 bits). The effort to factorize a key made up of 155 decimal
digits, using a quite fast algorithm, is of 8000 MIPS per year (Millions Instructions
Per Second per year). A personal computer endowed with a single-core processor
running at 2 GHz speed provides nearly 500 MIPS. One must consider, however,
that in the last years very efficient factorization algorithms have been developed,
which requires the length of the key to be increased. It seems reasonable to foresee
that, in the near future, it will be necessary to exploit keys having length equal to
1024–2048 bits.

3.2 Message Fingerprint 85

DSA (Digital Signature Algorithm) DSA is an asymmetric encryption algorithm,
dating back to 1991 and later adopted for the DSS standard (see Sect. 3.1.3) that
bases its security on the difficulty of computing discrete logarithms. It applies to a
group of users whose members adopt three shared public parameters that underlie
the cipher and based on them compute their public and private keys. Preliminarily,
a pair of integers (L,N) must be chosen, that defines the security level of the final
keys: the larger the values of L and N , the more security is provided. Then, the
shared parameters are defined as follows:

1. Choose a prime number p having bit-length L (or, in other words, such that
2L−1 < p < 2L);

2. Choose a prime number q having bit-length N (i.e., such that 2N−1 < q < 2N)
that is a divisor of (p − 1);

3. Choose an integer h such that 1 < h < (p − 1), and compute g = h(p−1)/q until
it holds that h(p−1)/q mod p > 1 (usually h = 2 fulfills the requirement).

Given the shared (public) parameters p, q and g, each user in the group selects a
private key and generates a corresponding public key as follows:

1. The private key x must be an integer chosen (preferably at random) between 1
and (q − 1) (i.e., 0 < x < q).

2. Once the private key x has been generated, the public key y is obtained by the
formula

y = gx mod p.

Computation of the public key y based on the private key x is relatively easy.
Nevertheless, given y, it is computationally impossible (for large prime numbers),
even for the most efficient algorithm currently known, to identify x, that is the dis-
crete logarithm of y in base g modulus p. Hence, the DSA encryption algorithm
can be considered as reliable.

3.2 Message Fingerprint

The digital fingerprint of a message consists of a code, computed on the basis of the
message content, that can be exploited for integrity check and assurance. Just as a
physical fingerprint ensures that its owner is univocally identified, in the same way
a digital fingerprint can guarantee that the message from which it was computed has
not changed. Indeed, two pieces of digital content that differ for even one symbol
or bit would yield different codes, and hence changes to the document after the
code has been generated would be easily discovered by computing the new code
and comparing it to the original one. Fingerprints are often exploited to point out
transmission errors when sending or downloading files through the Internet, but
their use for proving that an official document has not been maliciously modified is
straightforwardly apparent.

The digital fingerprint of a document is generally obtained exploiting a hashing
algorithm that (based on the document content) generates a secure and fixed-length

86 3 Legal and Security Aspects

numeric code, called digest, that in turn allows univocally identifying the digital
document (where, obviously, univocity must be intended in a probabilistic way).
The larger the bit-length allowed for the digest, the less the chance of collisions
(i.e., different documents having the same hash value). Just to give an idea, a secu-
rity threshold for an algorithm using a 160-bit digest is a collision every 280 differ-
ent messages. A desirable property of such hash functions is the avalanche effect,
according to which even slight changes in the input yield large changes in the out-
put [20]. A famous algorithm is MD5 [29], but it was recently proved to be quite
unreliable [33] (collisions can be found at an unacceptable rate), so that many orga-
nizations and frameworks based on it are compelled to switch to other techniques.

SHA (Secure Hash Algorithm) The SHA, accepted as FIPS 180 standard, is ac-
tually a family of methods for computing the digital fingerprint of a document,
denoted as SHA-0, SHA-1 and SHA-2 and, recently, SHA-3 [2, 3, 6, 7]. Specific
algorithms in the family differ as to level of security and digest length. The current
version is SHA-2, further split into several subversions SHA-n where n represents
the bit-length of the digest they produce (SHA-224, SHA-256, SHA-384, and SHA-
512). Older versions (SHA-0 and SHA-1) work on 32-bit words, apply to messages
at most (264 − 1)-bits long that are split into 512-bit chunks, and produce 160-bit
digests using a technique based on an 80-step loop. They became obsolete because
of security flaws (hash collisions were actually found for SHA-0, while for SHA-1,
although no collision has been found yet, algorithms have been designed that should
produce collisions every 252 cases). The SHA-2 series added bit-shift to the opera-
tions exploited for computing the digest. Moreover, SHA-224 and SHA-256 reduced
the number of loop steps to 64, while SHA-384 and SHA-512 restored the number
of loop steps to 80 and extended the block size to 1024 bits, the maximum length
of messages to 2128 − 1 bits, and the word size to 64 bits. In all cases, the digest is
the result of progressively updating an initial value according to partial hash values
computed for each chunk of the message and stored in a temporary buffer. Both the
(partial) digest and the buffer are seen as the concatenation of several word-sized
registers that are handled separately during the various steps of the algorithm. All
numbers are handled as b-bit unsigned integers in big-endian byte ordering, and all
operations are performed modulus 2b , where b is the register bit-length.

Here we will focus on the SHA-512 standard that splits both the digest and the
buffer (both 512-bit long) into eight registers (Hi and Bi , for i = 0, . . . ,7, respec-
tively). The computation on a binary message M proceeds as follows:

1. For i = 1, . . . ,8,
Hi−1 ← first 64 bits of the fractional part of the ith prime number’s square root

2. For i = 1, . . . ,80,
Ki−1 ← first 64 bits of the fractional part of the ith prime number’s cube root

3. Append to M a 1 bit followed by 1 to 1024 0 bits, as needed to make the final
bit-length L congruent 896 modulus 1024 (L ≡ 896 mod 1024)

4. Append to the previous result the original message length as a 128-bit unsigned
integer

5. Split the message into 1024-bit chunks

3.2 Message Fingerprint 87

6. For each chunk,
(a) Compute 80 64-bit words Wi

W0 . . .W15 are obtained breaking the chunks in 64-bit words
For i = 16 . . .79,

Wi = Wi−16 +64 RR
1 (Wi−15) ⊕ RR

8 (Wi−15) ⊕ S R
7 (Wi−15)

+64 Wi−7 +64 RR
19(Wi−2) ⊕ RR

61(Wi−2) ⊕ S R
6 (Wi−2)

(b) For i = 0, . . . ,7, Bi ← Hi (initializes buffer for this chunk)
(c) For t = 0, . . . ,79,

(i) T = B7 +64 (RR
14(B4) ⊕ RR

18(B4) ⊕ RR
41(B4))

+64 ch(B4,B5,B6) +64 Kt +64 Wt

(ii) For i = 7, . . . ,1, Bi ← Bi−1
(iii) B4 ← B4 +64 T

(iv) B0 ← T +64 ((RR
28(B0) ⊕ RR

34(B0) ⊕ RR
39(B0)) +64 maj(B0,B1,B2))

(d) For i = 0, . . . ,7, Hi ← Hi + Bi (adds this chunk’s hash to result so far).
Here the following notation is exploited:

RR
n (x) right round rotation of n bits of the 64-bit argument x;

S R
n (x) right shift of n bits of the 64-bit argument x, filling by 0’s on the left;

⊕ XOR bit-wise operation;
⊗ AND bit-wise operation;

 NOT bit-wise operation;
ch(X,Y,Z) = (X ⊗ Y) ⊕ ((
X) ⊗ Z) conditional function
equivalent to IF X THEN Y ELSE Z;

maj(X,Y,Z) = (X ⊗ Y) ⊕ (X ⊗ Z) ⊕ (Y ⊗ Z) majority function
true if and only if the majority of its arguments is true;

+64 sum modulus 264.

7. Output as digest the final 512-bit hash value (concatenation of the registers):

H0H1H2H3H4H5H6H7.

The first two steps, respectively, initialize the hash value and produce 80 additive
constants to be exploited during the 80 rounds. These values can be considered as
random 64-bit configurations that should scramble any regularity in the input data.5

The next three steps yield a message of length equal to N · 1024 bits. Hence, it can
be processed in 1024-bit blocks Mi (i = 1, . . . ,N). The initial hash value is updated
after processing each block by adding to each of its components a new value derived
from that block. In short,

1. Hash0 = IV
2. Hashj

i = Hashj

i−1 +64 Bufferj
i (for j = 0, . . . ,7)

3. MD = HashN

where

5The first eight prime numbers range between 2 and 19, while the first 80 prime numbers range
between 2 and 311.

88 3 Legal and Security Aspects

• IV is the initial value of the hash code;6

• Hashi is the partial hash value computed on the ith block of the message output
after its last (i.e., the 80th) processing step;

• Hashj
i and Bufferj

i denote the j th word/register of the hash code and of the buffer,
respectively;

• MD is the final value of the hash code (Message Digest).

The core of a block processing consists of an 80-step loop that yields a 512-bit
value to be added to the overall hash digest. Such a value is stored in a buffer that
initially gets the same value as the current partial digest after the last processed
block (Hashi−1), and is updated in each step t of the loop according to its previous
content and a 64-bit value Wt derived from the 1024-bit block under processing
(Mi). In the first 16 processing steps, the value Wt is equal to the corresponding
word in the message block. For the remaining 64 steps, it is obtained by a mix
of rotation, shift, XOR, AND, NOT and sum operations carried out on the values
of some of the previous words. The output of the 80th step is added to the partial
digest up to the previous block (Hashi−1) to yield Hashi . The sum (modulus 264) is
computed independently for each of the eight word/register pairs of the buffer with
each of the corresponding words in Hashi−1.

3.3 Digital Signature

The authors of legacy documents confirm the content and undertake all conse-
quences thereof by means of autographic signatures that consist of the “modification
of a paper document by affixing a mark that can be traced back to its author, forgery
actions excepted”. According to jurists [11], a signature must be:

named it must make explicit the name of its producer;
readable its handwriting must be comprehensible to whoever reads it;
recognizable it must allow identifying its author;
non-reusable it must establish a unique relationship to the signed document;

and perform the following functions:

Indication of who has produced the document;
Declaration the signer undertakes paternity of the document;
Proof it must be possible to produce it as a juridically valid proof.

6In hexadecimal, the initial hash value (split by register) is:

– H0 = 6A09E667F3BCC908
– H1 = BB67AE8584CAA73B

– H2 = 3C6EF372FE94F82B

– H3 = A54FF53A5F1D36F1
– H4 = 510E527FADE682D1
– H5 = 9B05688C2B3E6C1F

– H6 = 1F83D9ABFB41BD6B

– H7 = 5BE0CD19137E2179.

3.3 Digital Signature 89

The ever-increasing use of electronic messages and documents, and their adop-
tion in formal environments such as the Public Administration or the business, raises
the need for the development of an equivalent counterpart, for digital information,
of what classical autographic signatures are for paper documents. Indeed, simple
message encryption protects the subjects involved in a communication from ma-
licious third parties, but does not protect them from each other in cases in which
there is no complete trust between them. For instance, the receiver could produce
a message and pretend it comes from the sender, or the sender could deny hav-
ing sent a message: digital information, differently from handwritten text, cannot
be analyzed from a graphological viewpoint in order to assess its paternity. Digital
signature techniques were developed purposely to play such a role. Obviously, a
digital signature cannot consist of a mark that modifies a document (e.g., a scanned
image of an autographic signature), but rather it must be an authentication mech-
anism that allows univocally identifying the author of a digital message or docu-
ment, based on a code that he adds to the message itself and that acts as a signature
for it.

In order to be considered reliable and to avoid possible controversies (or to allow
the resolution thereof, in case they arise), a digital signature must guarantee security
from the following perspectives:

Integrity the document cannot be modified after the signature was affixed (a guar-
antee for the signee);

Authentication the author of the document (and possibly the date and time of issue)
must be univocally determined (a guarantee for third parties);

Non-repudiation the author must not be allowed to deny having signed the docu-
ment (a guarantee for the receiver).

Operationally, compliance to the aforementioned properties and additional desirable
ones can be carried into effect by enforcing the following main requirements [32]:
it must

• Consist of a bit configuration that depends on the signed message, to prevent
anybody from modifying the message;

• Exploit sender-specific information, to prevent him from denying to be the author
of the message;

• Be easily produced, verified and acknowledged;
• Be computationally impossible to be forged (by making a counterfeited message

for an existing digital signature, or making a fake digital signature starting from
a given message);

• Allow retaining a copy of it.

Several techniques must concur to make up a digital signature procedure that
fulfills the above requirements. Integrity can be ensured with the adoption of a
method for producing the digital fingerprint of the document to be signed, in or-
der to prevent it from being changed. As regards authentication, a straightforward
solution consists in applying an encryption technique to secure the document. More

90 3 Legal and Security Aspects

specifically, an asymmetric technique is needed, but inverting the normal procedure,
i.e., using the private key for encryption and the public one for the corresponding
decoding. Indeed, the use of a private key that is known only to the author and
nobody else implies that, if his public key works in decoding the message, he is
the only person that can have produced the encryption, and hence as a side-effect
ensures non-repudiation as well. Summing up, the digital signature of a digital doc-
ument consists of an additional file to be provided attached to that document, ob-
tained by computing a digital fingerprint of the message (that links the signature
to the single, specific document) signed with a private key (that links the signa-
ture to a unique author, whose identity can be checked using the corresponding
public key). Actually, the private key could be applied for encrypting directly the
whole document, but it is usually avoided, and the document fingerprint is pre-
ferred instead, both because it would be a computationally heavy task and require
a long time, and because in some cases it is not desirable that the digital signa-
ture check unveils the document content to the verifier. Both objects (the docu-
ment and the signature) must be enclosed in a digital envelope and sent to the re-
ceiver.

3.3.1 Management

In practice, different approaches have been proposed for creating and managing
digital signatures. They can be partitioned into direct and arbitrated ones, according
to whether the sender and receiver deal directly with each other, or pass through a
mediator called the arbiter. In the former approach, only the parties that carry out the
communication, i.e., the sender and the receiver, are involved, and hence they must
fully trust each other. In the latter approach, the sender transmits the message and
signature to the arbiter, that checks their origin and integrity and forwards them to
the receiver, along with a timestamp witnessing the date and time of issue. To show
the procedure in the two cases, let us assume that a sender S wants to transmit a
message M to a receiver R, possibly through an arbiter A, and exploit the following
notation:

• [O1, . . . ,On] denotes a bundle made up of the items O1, . . . ,On.
• OK means encrypting the item O with key K that can be one of the following:

– Pr(X) private key of X

– Pu(X) public key of X

– K(X,Y) encryption key between X and Y (it can be a shared secret key if a
symmetric encryption is used, or a public/private key, as required, in case of
asymmetric cipher).

• H(·) hash (fingerprint) function.
• I identifier of the sender.
• T timestamp.

The direct scheme works as follows:

3.3 Digital Signature 91

1. S computes H = H(M).
2. S sends [M,HPr(S)]K(S,R) to R.
3. R decodes the bundle using K(S,R), obtaining M and HPr(S).
4. R decodes HPr(S) using Pu(S) and compares H to the value H(M) he directly

computes on M .

The sender creates a digital signature by using his private key to encrypt the whole
message, or just a hash code thereof. Hence, to decode it, the receiver is assumed
to know the public key of the sender. The receiver needs just to store the plaintext
with its associated signature as a proof to be used subsequently for settling possible
controversies. Secrecy from third parties can be guaranteed by further encrypting
the whole message plus the signature.7 The shortcoming of this approach is that its
validity clearly depends on the security of the sender’s private key. If a sender wants
subsequently to deny having sent a message, he could maintain that the private key
got lost or was stolen, and that someone else forged the signature. To prevent this,
one might require that each message includes also a timestamp T , and that in case
the private key is stolen its owner immediately declares such an event.

The arbitrated scheme proceeds as follows:

1. S computes H = H(M).
2. S sends [M, [I,H]K(S,A)] to A.
3. A decodes the inner bundle using K(S,A) to check I and compare H to the hash

H(M) that he computes directly on M .
4. If the tests are passed, A sends to R the bundle [M,I, [I,H]K(S,A), T]K(A,R).

Here, the keys used for communication between the sender and the arbiter are dif-
ferent than those used between the arbiter and the receiver. The arbiter checks the
message and its signature using suitable tests to verify their origin and content. If
the tests are passed, he adds a timestamp and an acknowledgment of validity, and
forwards to the receiver an encrypted bundle containing the message plus all check
information. Thus, the sender cannot deny having sent the message. If confidential-
ity is an issue the original message may be encrypted, so that the arbiter can only
certify the signature and hash value, but cannot actually read the message. In such a
case, the message M is to be replaced by its encrypted version MK(S,R) throughout
all the steps of the above procedure. The arbiter plays a delicate and crucial role in
this kind of schema and both parties must significantly trust the fact that the arbitra-
tion mechanism works correctly and fairly. Moreover, the sender must trust that the
arbiter will not reveal their key nor forge a signature, and the receiver must trust that
the arbiter will not certify messages not coming from the sender or having wrong
hashcodes.

7In such a case, it is important that the signature is inside the latter cryptogram. Indeed, in case
of quarrel, a third party summoned to observe the message and its signature could just exploit
the sender’s public key on the inner cryptogram. Conversely, if the signature were computed on
the encrypted message, yielding [[M,H]K(S,R)]Pr(S), he should know the secret decryption key
K(S,R) to access the message and corresponding hash value to be checked.

92 3 Legal and Security Aspects

To be widely accepted, the management of a digital signature must be carried
out based on standards that ensure a high level of security by specifying suitable
methods for the generation of private and public keys and algorithms for encoding
and decoding messages.

DSS (Digital Signature Standard) One of the most important digital signature
techniques available nowadays has been established in the FIPS 186 standard, also
known as DSS, proposed and published by the NIST (National Institute of Standards
and Technology) in 1993 and subsequently updated as an answer to inquiries on
the security of the standard or for minor revisions [4, 8]. In its original version,
it exploits the SHA for generating the digital fingerprint of a document and the
DSA for generating the digital signature, but an extended version, known as FIPS
186-2, has been defined that introduces the support for digital signature algorithms
exploiting RSA encryption.

The way the DSA-based DSS works is quite simple. Informally, the hash code of
the document to be signed is generated, and input to a signature function along with
a randomly generated number for that particular signature. The signature function
depends also on the private key of the sender and on the set of public parameters
(p, q and g) shared by the group of persons that are responsible for the transmission
(see Sect. 3.1.3). This set globally represents a kind of public key for the group. The
resulting signature is made up of two components: s and r . The receiver, having
obtained the document, generates its hash code and inputs it to a checking function,
along with the sender’s public key. If the signature is valid, the checking function
outputs a value corresponding to the r component of the signature.

The original DSS specification requires that the pair (L,N) is set to (l · 64,160),
where 8 ≤ l ≤ 16 (put another way, the length of p must be between 512 and 1024
bits, inclusive, with increments of 64 bits), but more recent updates of the stan-
dard suggest that acceptable security levels today require values of (2048,224) or
(2048,256) and that soon values of (3072,256) will be needed [8]. In any case, an
important requirement is that N must be less than or equal to the hash output length
(determined by the d parameter in the case of SHA-d).

Given a message M , the procedure to obtain its digital signature consists in re-
peating the following steps:

1. Take a random integer k such that 0 < k < q .
2. Compute

r = (
gk mod p

)
mod q.

3. Compute

s = [
k−1(H(M) + x · r)] mod q,

where H(M) is the digital fingerprint of the message M computed as a hash
function according to the SHA-d algorithm

until s �= 0 and r �= 0.

The message signature is represented by the pair (r, s).
Verification of the signature takes place as follows:

3.3 Digital Signature 93

1. If the conditions 0 < r < q and 0 < s < q are not satisfied, the signature is
rejected

2. Otherwise, the signature is considered valid if v = r , where8

• v = [(gu1yu2) mod p] mod q

• u1 = [H(M)w] mod q

• u2 = (rw) mod q

• w = r−1 mod q .

In the more recent RSA-based approach, the message to be signed is sent to a
hash function that produces a secure hash code of fixed length. Such a code is then
encrypted using the sender’s private key, in order to make up the signature. Then,
the message and its associated signature are sent. The receiver, upon reception of the
signed message, autonomously computes the hash code of the document and, using
the public key, decodes the digital signature. If the two hash codes (the one generated
by the receiver and the one sent by the message author) agree, the document can be
deemed as valid.

OpenPGP Standard OpenPGP is an Internet standard for secure message trans-
mission, born as an evolution of a previous human rights project started by P. Zim-
mermann for ensuring privacy and secure communication to everybody. Indeed,
in 1991 Zimmermann published for free on the Internet PGP (Pretty Good Pri-
vacy) [21, 35], an email asymmetric encryption software tool aimed at providing
encryption facilities that are not too much computationally demanding, so that they
can be run on widespread computer systems, and are user-friendly, so as to hide
all technical and complex aspects of encryption and decoding (e.g., the private and
public key are automatically generated at random based on the movement of the
mouse). After coming out from a criminal investigation, promoted by the US Gov-
ernment for violation of export restrictions on cryptographic software (considered
in the US as a war weapon), but later abandoned because of the success obtained by
PGP, Zimmermann founded a company whose subsequent purchaser made PGP a
commercial product whose development is still ongoing.

The basic mechanism underlying PGP consists in encrypting the message
through a common, quick symmetric algorithm run on a key randomly generated
for that session, but then encrypting the symmetric key itself (which is much shorter
than the message) through asymmetric encryption, and sending both to the receiver.
More precisely, the IDEA method performs the former encryption, while the RSA
algorithm is exploited for the latter. Both are patented technologies which caused
a number of troubles to the straightforward spread of PGP throughout the world.
Another facility provided by PGP is digital signature. Summing up, IDEA is used to

8Correctness of the procedure can be proved as follows. First, by definition of g and due to Fermat’s
little theorem, gq ≡ hp−1 ≡ 1(mod p). Since g > 1 and q is prime, g must have order q .
Due to the definition of s, k ≡ H(m)s−1 + xrs−1 ≡ H(m)w + xrw mod q .
Since g has order q it follows that gk ≡ gH(m)wgxrw ≡ gH(m)wyrw ≡ gu1yu2 mod p.
Finally, the DSA is correct because r = (gk mod p) mod q = (gu1yu2 mod p) mod q = v.

94 3 Legal and Security Aspects

encrypt the plaintext, the RSA encrypts the IDEA key, and an additional step applies
the signature.

OpenPGP was developed as an evolution of the original PGP, with the aim of
providing a non-proprietary protocol to encode and sign messages, certify and ex-
change keys. It is currently established by the RFC 4880 standard [10], fulfilled by
PGP and GPG (GNU Privacy Guard, a non-commercial implementation), that de-
scribes a number of methods for the management of digital signature systems, for
the computation of a document’s digital fingerprint, and for symmetric and asym-
metric key encoding. Some of the algorithms supported by OpenPGP for the various
steps are:

asymmetric encoding DSA, RSA, RSA-E, RSA-S, ELG-E (Elgamal);
symmetric encoding IDEA, TripleDES, CAST5, BlowFish, AES at 128/192/256

bit, TwoFish;
digital fingerprint MD5, SHA-1, RIPE-MD/160, SHA-224/256/384/512.

For the management of the digital signature, the focus is on encryption algorithms
based on asymmetric key and on algorithms for digital fingerprint computation. The
most widespread algorithms for asymmetric encoding are the DSA and the RSA,
used also in other digital signature standards, such as the DSS. For computing the
digital fingerprint the most widespread algorithms are the MD5 and the SHA.

In the OpenPGP standard, a direct signature scheme is exploited, i.e., the sender
generates the pair of keys and provides his public key for the verification. To pro-
vide some trust for the actual users’ identity, OpenPGP relies on a Web of Trust
scheme [9] (see Sect. 3.3.2). Thus, the GPG users themselves are in charge of as-
sessing their confidence in a certificate being genuine, according to their trust in
those who supported that certificate by signing it.

3.3.2 Trusting and Certificates

A shortcoming of the direct signature scheme lies in the impossibility to guarantee
that the association key-user is genuine, i.e., that a public key actually comes from
the person or organization to which it is claimed to belong, so that malicious users
could exploit false identities or pretend to be someone else. To make up for this lack,
a widespread solution is represented by the introduction of digital certificates, i.e.,
electronic documents (files) that unambiguously identify signees. They are obtained
by means of someone who guarantees the real association of a public key to a spe-
cific user, unambiguously identified. In such a case, the digital envelope to be sent
to the receiver must include three items (files): the document/message, its digital
signature and the associated certificate.

A digital certificate typically reports the following information:

ID A serial number that uniquely identifies the certificate.
Authority The entity that verified the information and issued the certificate.
Validity The starting and expiration dates of the certification.

3.3 Digital Signature 95

User The data identifying the entity to be certified (e.g., name, address, etc.).
Key The public key to be certified and its intended use (e.g., encryption, signature,
certificate signing, etc.).

Signature Algorithm The algorithm used to create the signature.
Fingerprint The hash of the certificate, to ensure that it has not been forged, and
the algorithm used to produce such a fingerprint.

Translated into natural language, a certificate means approximately “I hereby
certify, under my responsibility, that its owner is actually who he claims to be”,
and hence that the information it contains (and specifically the association between
the reported identity data and public key) is valid. This claim is technically imple-
mented in the issuer digitally signing the certificate, and consequently undertak-
ing the responsibility of the certificate itself. A certificate is self-signed when it is
signed/issued by the same entity that it certifies. Of course, the trust a certificate
deserves is strictly related to the reliability of its issuer, which can be assessed ac-
cording to two different strategies, that give rise to the following schemes:

Public Key Infrastructure (PKI) in which the signature belongs to a Trusted
Third Party (TTP), often called a Certificate Authority (CA);

Web of Trust in which the certificate is either self-signed by the user or it is signed
by other users that endorse its validity.

A PKI must declare the security policy it conforms to, the procedure it follows for
emission, registration, suspension and revocation of certificates (Certificate Practice
Statement, or CPS), its system of CAs, its system of Registration Authorities (RAs)
for user registration and authentication, and its certificate server. A CA, in particular,
is required to bring up all proper actions aimed at verifying the certified entities’
identity, in order to justify the trust that the users of their certificates place on them.
In case of problems, a CA can suspend or even completely withdraw a certificate,
inserting it into a Certificate Suspension List (CSL) or into a Certificate Revocation
List (CRL) accordingly. Then, the question of who guarantees for the issuer arises.
A possible solution is requiring the CA to exhibit a certificate issued by a higher-
level CA in a hierarchy of increasingly important CAs. Users, typically exploiting
suitable software, check that the private key used to sign a certificate matches the
public key in the CA’s certificate. This does not completely solve the problem, but
limits it to the highest CA only (root), which provides the ultimate assurance in
each particular PKI organization. Obviously, there being nobody that guarantees
for the root, its certificate (also called root certificate) can only be self-signed. It
goes without saying that, if the root certificate is fake, the whole tree of CAs and
certificates in the PKI becomes untrustable, and hence the procedure for issuing root
certificates must be accomplished with extreme care in order to avoid any kind of
bug or flaw.

In a Web of Trust scheme, the responsibility of guaranteeing a certificate is not
charged on a single, formally trusted, entity, but it is shared among several entities
that claim that certificate to be reliable. More specifically, each user produces a self-
signed certificate that is subsequently additionally signed by other users that confirm
its being reliable (i.e., that the identity and public key contained therein are genuine

96 3 Legal and Security Aspects

and actually correspond). In this case, other users base their trust about that certifi-
cate being correct on these additional signatures, qualitatively (they might trust—or
untrust—specific users that signed that certificate, and as a consequence trust—or
untrust—that certificate), or quantitatively (their confidence in the reliability of the
certificate might increase with the number of additional signatures supporting it).
Also in this case the problem arises of who guarantees for the actual identity of
the additional supporters. Some of them could be personally known to the user, and
hence their public keys might have been passed directly to him. Otherwise, the user
must take into account some degree of hazard in ‘propagating’ the trust from known
persons to the persons they guarantee for. Some CAs also maintain a Web of Trust,
counting and managing the endorsements to the subscribing certificates.

To ensure automatic processing by security-aware software applications, and in-
teroperability between different CAs, certificates must be produced according to
pre-defined standards. In particular, the current official standard, called X.509, is
established by RFC 5280 [13], that also specifies regulations for CRLs, a useful
means for identifying certificates that for some reason must not be trusted anymore.

Certificates are thoroughly exploited in the HTTPS (HTTP Secure) Internet en-
vironment for Web sites, that enforces secure communication and data integrity on
TCP/IP networks by underlying HTTP with encrypted source-destination commu-
nication at the transport level using the Secure Socket Layer (SSL) protocol or, more
recently, the Transport Layer Security (TLS) protocol. In this setting, each Web op-
erator must obtain a certificate by applying to a CA, indicating the site name, con-
tact email address, and company information. The usual check performed by the
CA consists in verifying that the contact email address for the Web site specified
in the certificate request corresponds to that supplied in the public domain name
registrar. If the application is successful, the public certificate is issued by the CA.
It will be provided by the Web server hosting the site to the Web browsers of the
users connecting to it, in order to prove that the site identification is reliable. The
root certificates of some CAs that fulfill given management standards can be na-
tively embedded in the Web browsers: in case they are, the browser will consider
as trusted all the sites having certificates depending on those CAs; in case they are
not, the root certificates will be considered as self-signed certificates. If the browser
successfully checks the certificate, the connection can be established and the trans-
action performed, while in the opposite case a warning message is displayed to the
user, asking him to abort or confirm the connection under his own responsibility.
The system might not be completely safe due to the fact that three strictly related
roles come into play, whose underlying actors could be different, and hence the rela-
tionship among them could be deceived: the purchaser of the certificate, the Web site
operator, and the author of the Web site content. Thus, strictly speaking, an HTTPS
Web site is not ‘secure’ at all: the end user can only be sure that the registered email
address corresponds to the certified one and that the site address itself is the original
one, but it could be operated by someone different than the person that registered
the domain name, or its content could have been hacked.

3.4 Legal Aspects 97

3.4 Legal Aspects

As long as computers progressively become the main means for the organization
and management of economic and administrative activities, the classical document
management settings turn out to be a more and more dramatic bottleneck. Indeed,
the emphasis on paper documents endowed with autographic signatures and vari-
ous kinds of seals and stamps as a guarantee of originality and validity, in addition
to the problems already discussed, also imposes a (useless) double transformation
from digital to printed format and back: first, paper documents must be produced
from the digital source data that are available to one party, and then the information
must be extracted from paper, transformed and stored again in digital format by the
other party. For this reason, all governments are progressively switching towards
acceptance of natively digital documents as legally valid proofs. Of course, the pe-
culiarities inborn in digital information make security a fundamental issue, and as a
consequence the digital signature system is gaining wider and wider application in
the legal and institutional domain. For this reason, it may be interesting to draw a
picture of the past and current situation in the law in force about this subject.

Let us recall a few prominent events:

• On 3 December 1998, 33 countries from all-over the world signed in Austria the
Wassenaar Arrangement on ‘Export Controls for Conventional Arms and Dual-
Use Goods and Technologies’, in which the importance of encryption products is
recognized, and limits are imposed on their export.

• In Great Britain, the historical promoter of computer technology in Europe, a ‘UK
Draft Legislation on Electronic Commerce’, that formally acknowledges encryp-
tion and digital signatures, was presented to Parliament in July 1999. It preceded
the ‘UK Electronic Communication Bill’, later ‘UK Electronic Communication
Act’, presented to the House of Commons on 18 November 1999, that acknowl-
edges legal validity of electronic signatures. Commenting upon such an event,
an article titled “D-day for e-commerce—now it’s time to tackle phone charges”
published in ‘The Guardian’ on 20 November 1999 notices that the UK is 2 years
behind the US in that subject. Further related documents are the Electronic Com-
merce Bill/Act issued in 2006 and the Digital Britain White Paper [14]. More
recently, a Queen’s Speech held on 18 November 2009 announces: “My Govern-
ment will introduce a Bill to ensure communications infrastructure that is fit for
the digital age, supports future economic growth, delivers competitive communi-
cations and enhances public service broadcasting”.

• The first regulation of this subject in Europe dates back to the 1999/93/CE Direc-
tive (13 Dec.), envisaging a shared framework for digital signatures in the Com-
munity. Then, in 2006, as a result of an overview of the status of accomplishment
of the regulation, the European Union expressed the intention to update and adapt
the 1999 directive, in order to further boost this technological tool.

• However, Italy has since 1997 adopted a positive attitude towards full reception
of digital technologies as a legally valid means for the support of formal transac-
tions. Indeed, at that time, in Italy there were already regulations concerning the
introduction and acknowledgment of digital documents and digital signatures.

98 3 Legal and Security Aspects

Given the above timeline, it turns out that a crucial period has been the biennium
1998–1999, but that Italy has played a pioneering role, so that the late start of a
shared European model has required some of the Italian regulations to be changed.
For this reason, and given the impossibility to deal with all the different situations
that are present on this subject in the various countries, the rest of this section will
describe in more depth the Italian experience as a prototypical case study [34] that
can be considered representative of the evolution of regulations on this subject and
of the perspectives adopted by law on these technical matters. Of course, a complete
treatment of the whole corpus of acts on the subject would be out of the scope of
this section, and only a few most significant items will be presented.

In the following, the various acts will be identified by their category (using the
Italian acronym where applicable9) plus their progressive number and/or date of
issue, further specifying the relevant (sub)sections only when needed. They will be
cited directly within the text, instead of providing separate pointers to them in the
Reference section.

3.4.1 A Law Approach

Although, as already noticed, no juridic definition of ‘document’ is available, the
Italian law does provide a definition of what a digital document is: according to
L 59/1997 (15 Mar.), that represents a milestone for the official adoption of digital
technologies in formal transactions, a digital document is to be intended as the “dig-
ital representation of juridically relevant deeds, facts or data” (art. 1, par. 1). Hence,
it can be identified in any sequence of bits or, more practically, in any computer file.
Moreover, “The deeds, data and documents produced by the Public Administration
or by privates using computer or telematic systems, the agreements contracted using
the same means, as well as their filing and transmission using computer systems, are
valid and relevant to all intents and purposes of law” (art. 15, par. 2). As a side-effect,
this introduces the need for a secure way of signing them. Criteria and modalities for
applying such a principle are stated in the DPR 513/1997 (10 Nov.), where several
fundamental concepts are introduced and defined (art. 1), among which Certification
and CAs:

9Talking of legal matters in different languages is not easy, due to the extremely different concepts,
practices and procedures that have been developed and are currently in use in each country, and
to the lack of a correspondence among them. A list and a short explanation of relevant law act
categories in Italy is:

L (Legge) Act approved by the Parliament.
DL (Decreto Legge) Law by decree: an act provisionally issued by the Government, that needs

formal approval by the Parliament.
DPR (Decreto del Presidente della Repubblica) Decree of the President of the Republic.
DPCM (Decreto del Presidente del Consiglio dei Ministri) Decree of the President of the Council
of Ministers.

DM (Decreto Ministeriale) Decree of a Minister.

3.4 Legal Aspects 99

Validation system The computer and cryptography system that is able to generate
and affix a digital signature or to check its validity.

Asymmetric keys The pair of (private and public) encryption keys, mutually re-
lated, to be exploited in the context of systems for validation or encryption of
digital documents.

Private key The element of the pair of asymmetric keys, intended to be known only
to its regular holder, by which the digital signature is affixed on a digital document
or a digital document previously encrypted using the corresponding public key can
be decoded.

Public key The element of the pair of asymmetric keys, intended to be made public,
by which the digital signature affixed on the document by the regular holder of the
asymmetric keys can be checked or digital documents to be transmitted to the
regular holder of such keys can be encrypted.

Certification The outcome of the computer process that is applied to the public
key and that can be checked by validation systems by which the one-to-one cor-
respondence between a public key and the regular holder to which it belongs is
guaranteed; the regular holder is identified and the period of validity of the key
itself and the deadline of expiration of its related certificate are stated (in any case
not more than three years).

Temporal validation The outcome of the computer process by which are assigned,
to one or more digital documents, a date and a time that can be objected to third
parties.

Electronic address The identifier of a physical or logical resource that is able to
receive and record digital documents.

Certifier Public or private subject that carries out the certification, issues the public
key certificate, publishes it along with the public key itself, publishes and updates
the lists of suspended and revoked certificates.

The same act assigns to a digital document endowed with a digital signature the
same legal validity according to the Civil Law (art. 2702) as a traditional paper
document endowed with an autographic signature. These notions pave the way for
the adoption of the digital signature as “an authentication mechanism that allows the
author of a message to add a code that acts as a signature. The signature is created
using the hash code of the message (that can be considered as its digital fingerprint)
and encrypting it by means of the author’s private key. The signature guarantees the
origin and integrity of the message”. In particular, mutual authentication protocols
“allow the communicating entities to guarantee to each other their own identity and
to exchange session keys”; one-way authentication, in contrast, just “guarantees to
the receiver that the message actually comes from the indicated sender”.

“Technical rules for the generation, transmission, preservation, duplication, re-
production and validation, also temporal, of digital documents” according to art. 3,
par. 1 of this first regulation on digital signature were provided in the DPCM is-
sued 8 Feb. 1999, where a signature device is defined as “an electronic device pro-
grammable only in its origin, capable of at least storing in a protected way the pri-
vate key and generating inside of it digital signatures”. DPR 445/2000 (28 Dec.)
collected in a single text all regulations concerning administrative documentation,

100 3 Legal and Security Aspects

and to the juridic acknowledgment of the relevance and validity of digital documents
and signatures added the requirements a digital document must fulfill.

After all these regulations, the European directive 1999/93/CE came with 15 ar-
ticles and 4 attachments in which the requirements for qualified certificates, for the
CAs that issue such certificates and for the secure signature devices are defined, and
recommendations are given for the secure signature. Such a new framework required
some changes to the Italian law, that were carried out by DL 10/2002 (23 Jan.), and
implemented by DPR 137/2003 (7 Apr.) that assigns to digital documents the same
validity as a legal proof as all other means recognized by the Civil Law (art. 2712).
The DPCM issued 8 Feb. 1999 was updated by the DPCM issued 13 Jan. 2004, spec-
ifying the regulations for setting up public lists of certificates (art. 29, par. 1), while
the DPCM issued 2 July 2004 defines the “Competence concerning electronic signa-
ture certifiers”. Also related, although not specifically concerning digital signature,
is the DPR 68/2004 (11 Feb.), concerning “Regulations including requirements for
the exploitation of certified electronic mail”, according to L 3/2003 (16 Jan.), art. 27.

The most recent significant contribution is represented by the DL 82/2005
(7 Mar.), titled “Digital Administration Act” (Codice dell’Amministrazione Digi-
tale), as modified by the DL 159/2006 (4 Apr.), where the various concepts, already
introduced, of digital signature, validation system, certification and asymmetric keys
are explained, and the following kinds of signatures are defined, in order of increas-
ing reliability (art. 1, par. 1):

Electronic signature The set of data in electronic form, attached or connected by
means of a logic association to other electronic data, used as a means for digital
identification according to the CE regulations.

Qualified electronic signature The electronic signature obtained by means of a
computer procedure that guarantees its unambiguous association to the signee, cre-
ated using means on which the signee can have an exclusive control and associated
to the data to which it refers in such a way to allow pointing out whether the data
themselves have been subsequently modified, that is based on a qualified certificate
and carried out exploiting a secure device for the creation of the signature.

Digital signature A particular kind of qualified electronic signature based on a sys-
tem of encryption keys, one public and one private, related to each other, that al-
lows the legal owner using the private key and the addressee using the public key,
respectively, to reveal and to check the provenance and the integrity of a digital
document or of a set of digital documents.

The European regulation (art. 2) defines only the electronic signature and an-
other kind, called Advanced electronic signature, that can be ranked between the
electronic signature and the qualified one in the above list. The latter adds to the
features of the former the integrity of the document and the exclusiveness of the
signee. The qualified signature, although not formally defined in the CE Directive,
is suggested by art. 3 (par. 4) and art. 5 thereof, and adds to the advanced one the
use of a secure device and a certificate released by a qualified certifier. Finally, the
digital signature adds to the qualified one the fact that the certifier is accredited:
thus, the kind of signature required in Italy in 1997 (by DPR 513/1997, art. 10) was

3.4 Legal Aspects 101

already stronger than what required by the European regulations issued two years
later. Indeed, the digital signature derives from a digital document perspective on the
subject, and hence has the strictest requirements and the largest validity; conversely,
the other three kinds of signature derive from an electronic commerce perspective:
they can be issued by any certifier (even not accredited, in which case their validity
is limited to the organization in which they are exploited, but does not extend to
the legal level). According to DL 82/2005, the former two kinds of signature can be
only discretionally accepted as a proof, while the latter two kinds have full proving
power: “A digital document, signed using a digital signature or other kind of qual-
ified electronic signature, has the effect provided for by art. 2702 of the Civil Law.
The use of the signature device is assumed to be traceable back to its owner, except
if he gives proof of the contrary” (art. 21, par. 2).

According to the European regulations (art. 3) the certification services must not
be authorized, but for application in the PA the single governments may add further
requirements. In any case, the procedure of qualification is provided for, and the
certifiers that are qualified in a country are automatically qualified in all other UE
countries. A committee must be set up to check the fulfillment of security require-
ments by the signature devices and software (art. 9, 10). Qualified certificates issued
by non-EU countries are valid if they fulfill the Directive requirements and there are
agreements with the EU (art. 7), while DPR 513/1997 in Italy acknowledges them
if they are operated under license or authorization of an EU country (art. 8, par. 4).

A very recent update in the field is represented by DPCM issued 30 Mar. 2009,
reporting “Technical rules concerning digital signatures”.

3.4.2 Public Administration Initiatives

The responsibility for enforcing and supporting the widespread use of technologies
in the Italian Public Administration and professional environment is in charge of
the DigitPA Authority, recently established as a replacement of the former authority
CNIPA (and still formerly AIPA) by DL 177/2009 (1 Dec.), concerning “Reorganiza-
tion of the National Center for Computer Science in the Public Administration”, in
fulfillment of L 69/2009 (18 Jun.), art. 24. Its activities include Accessibility, Con-
tinuing Operation, Dematerialization, e-Government, internal efficiency of the PA,
Digital Signature, Open Standards (encompassing Open Formats and Open Source
software), Certified Electronic Mail, Digital Registry, Security, Territorial Informa-
tion Systems, and others. Many important and successful activities have been carried
out by the AIPA/CNIPA/DigitPA during the years.

Digital Signature First and most important, the Digital Signature initiative is one
of the foundations for an e-Government framework. In the PA, its objectives proceed
along three lines of intervention:

• Spreading of the digital signature in the Administration, by assigning one to all
executives and officials and training them for its usage;

102 3 Legal and Security Aspects

• Making secure remote applications and services;
• Stimulating the use of digital signature by groups of external users such as pro-

fessionals, enterprises, etc.

DigitPA has issued various regulations on how to obtain and use digital signature,
among which:10

• Circular 22/1999 (22 Jul.): enrollment modalities for the certifiers.
• Circular 24/2000 (19 Jun.): guidelines for certifiers interoperability (specifying

regulations for digital certificates).
• Resolution 51/2000 (23 Nov.): preservation of digital documents.
• Circular 27/2001 (16 Feb.): enrollment procedures for the PA roll of CAs.
• Resolution 42/2001: preservation of digital documents, also on optical support.
• Circular 48/2005 (6 Sep.): procedure to submit an application for the public list

of certifiers (envisaged in the DPR 445/2000 art. 28, par. 1).
• Resolution 4/2005 (17 Feb.): rules for the acknowledgment and verification of

digital documents.
• Resolution 34/2006 (18 May): technical rules for the definition of the profile of

encryption envelope for digital signatures in XML language.
• Resolution 45/2009 (21 May): rules for acknowledgment and verification of dig-

ital documents.

It acts as a root in a PKI, where private CAs can be accepted, provided they give
assurance about their verifying the applicants’ identity, their fulfilling the technical
regulations of law, their not storing the users’ private keys, and their being ISO-
9002 certified. Thus, it signs the accepted CAs’ certificates, while its certificate is
self-signed. As of 2009, it has accredited 17 private CAs, the first of which were In-
focamere (registered on 6 April 2000) and Postecom (registered on 20 April 2000).
The number of authorized certifiers, and of existing projects and products suitable
for document certification by means of digital signature, has requested a significant
effort to reach a complete interoperability in the exploitation and the applications
of digital signature. Nevertheless, the success obtained in Italy (nearly 4 millions
of digital signatures assigned, the largest amount all over Europe) proves that it is
possible to obtain a free and secure exchange of digital documents even in official
environments.

Specifically, three different kinds of keys for digital signatures are provided for
normal subscription of documents, certification (subscription of certificates) and
timestamping. As to the last one, the DPCM 52/1999 (8 Feb.) defines the follow-
ing procedure: first, the digital document fingerprint is generated and sent to the
CA, that generates the timestamp according to an international standard (art. 53)
and subsequently signs the resulting file. The signed timestamp must be produced
within one minute from the request, and stays valid for one month. Different keys
must be exploited to produce different timestamps, even for the same fingerprint.

10A circular is a document reporting clarifications and directions on how a new act is to be inter-
preted and applied.

3.4 Legal Aspects 103

Computers or other removable storage supports provide too little security to be
of use for storing digital signature data. For this reason, the traditional means used
for this purpose is a Smart Card, a plastic card similar to a Credit Card, that can
be easily carried in a pocket, and that can be activated only using a secret Personal
Identity Number (PIN) known exclusively to its owner. It contains a microchip ca-
pable of generating the keys and applying the digital signature, by performing a
cryptographic algorithm that, starting from the (currently 160-bit long) digest of a
document, produces a (currently 160-bit long) string signed with the private key.
Smart cards are built in such a way that export or copy of the private key from their
storage to the outside is precluded. The smart card is provided with a “signature kit”
that includes all the needed hardware and software, i.e.,

• A smart card (or other secure device, such as a USB key) containing the signature
certificate and the secret key, to be activated using a PIN;

• A smart card reader, generally acting on a USB, COM or even WiFi port, that
allows a computer to exchange information with the smart-card chip;

• The digital signature management software that supports the user in digitally
signing documents and in verifying digitally signed ones;

• The software that allows importing the certificates of digital signature and authen-
tication (i.e., the non-secret part of the digital signature system) in the browser’s
cache to be used during the Internet browsing or by the e-mail client.

The user must preliminarily install the smart-card reader (by loading on the PC the
needed drivers), connect the reader to a computer port, install the signature and
the import software. Then, he must actually read from the smart-card, import and
store the certificates in the Internet or e-mail client. Recently cryptographic tokens
became available, USB keys that work without the need for all such preparation
steps, by directly providing the needed software (instead of installing it on the PC).

The formal procedure users must carry out for obtaining a digital signature and
related certificate is as follows: after sending to a CA proper documentation aimed
at assessing his identity, the applicant obtains a signature kit by which he generates
the keys using the included devices, according to a procedure defined by the CA.
Then, he requests a certificate for the public key generated this way; the CA checks
that such a public key is not already certified by other CAs and asks the user to prove
possession of the corresponding private key, by subscribing some test documents;
if the test succeeds, the certificate is generated (according to DPCM 8 Feb. 1999,
art. 42), published in the register of certificates, sent to the applicant along with a
timestamp and a reserved code for revoking the certificate, and finally recorded in
the control journal.

Certified e-mail A complementary initiative is the Certified Electronic Mail
(Posta Elettronica Certificata, PEC), an e-mail system in which the sender obtains
electronic documents that prove, with full legal validity, the outcome of two fun-
damental moments in the transmission of digital documents, i.e., their posting and
delivery. As to the former, the provider of the certified e-mail service will provide
the sender with a receipt that confirms (and is a valid legal proof of) the success-
ful mailing of a message, also specifying possible related attachments. In the same

104 3 Legal and Security Aspects

way, when the message reaches the addressee, the provider will give the sender a
receipt confirming the success (or failure) in its delivery, with a precise temporal
information. In case the sender loses the receipts, a digital track of the operations
performed, stored by law for a period of 30 months, allows the reproduction, with
the same juridic value as the originals, of the receipts themselves. Related regula-
tions are:

• DPR 68/2005 (11 Feb.): regulations for the exploitation of certified electronic
mail (according to L 3/2003 16 Jan., art. 27);

• DM 2 Nov. 2005: technical rules for the production, transmission and validation,
also temporal, of certified electronic mail;

• DPCM 6 May 2009: provision concerning release and exploitation of certified
electronic mailbox assigned to citizens.

Starting 2010, all professionals registered in National rolls are obliged by law to
own a certified electronic mailbox.

Electronic Identity Card & National Services Card The Electronic Identity
Card (Carta d’Identità Elettronica, CIE) is an initiative that aims at providing all
Italian citizens with a plastic card endowed with a magnetic stripe and a micropro-
cessor. The former is devoted to store the identity data (also graphically reported
on the card), such as personal data and Fiscal Code,11 blood group, health options,
but also predisposed to store information needed to generate biometric keys, digital
signature, electoral certification, etc. The microchip is aimed at acting as a Service
Card for the identification of the owner on the Internet and the fruition of telematic
services, such as electronic payments between privates and the PA, etc. Relevant
regulations are:

• L 127/1997 (15 May) art. 2, par. 10;
• L 191/1998 (16 Jun.) art. 2, par. 4;
• DPCM 437/1999 (22 Oct.);
• DM (Interior) 19 Jul. 2000 (technical and security rules).

The National Services Card (Carta Nazionale dei Servizi, CNS) initiative also
consists of a plastic card released to citizens in order to electronically identify them
on the Internet by means of data stored on an embedded microprocessor. Differently
from the CIE, however, it has no writings on it, so it cannot be used for direct
personal identification. Since the format in which information is stored on CNSs is
compatible to that of CIEs, CIEs are going to completely replace them.

Telematic Civil Proceedings An example of demanding on-field application of
the above regulations, and of the strong commitment of the Italian PA towards the
pervasive exploitation of digital technologies, is the Telematic Civil Proceedings
(Processo Civile Telematico, PCT) initiative. It represents one of the most relevant

11An alphanumeric code assigned from the Italian PA to all resident people, initially for taxpaying
purposes, but then for unique identification, in general.

3.4 Legal Aspects 105

e-Government projects started in Italy, aimed at improving communication between
the people involved in the Civil Proceedings by introducing the Information and
Communication Technologies (ICT). Two categories of persons involved in the pro-
cess can be distinguished: the public parties (e.g., chancellors, judges, bailiffs, State
and Public Administration advocacies), usually acting in the Judicial Office, and
the private ones (lawyers, Court and Party Technical Advisors, notaries, etc.) that
need to interact with the Judicial Office from the outside to exploit its services or
to accomplish their tasks. The PCT establishes, defines, regulates and organizes the
modality by which judicial documents in electronic format are produced, recorded,
notified, consulted and exploited by both the public and the private parties using
telematic and computer systems. Advantages of the new setting include delocal-
ization, extension of offices availability up to 24 hours a day, complete and timely
checks, automatic export of the data for the management software and electronic
agenda of the lawyers’ offices, no need for intermediate personnel, cost reduction.

The PCT12 [22] is based on the following regulations:

• DPR 123/2001 (13 Feb.) concerning “Regulation of the use of computer and
telematic instruments in the civil and administrative proceedings, and in the pro-
ceedings before the jurisdictional sections of the Accounting Law-court”.

• DM (Justice) 14 Oct. 2004 and DM 17 Jul. 2008 reporting “Technical and oper-
ating rules for the exploitation of computer and telematic instruments in the civil
proceedings”.

• DM 27 Apr. 2009 specifying “New procedural rules concerning the keeping of
digital registers in the Justice Administration”.

• DM 10 Jul. 2009 defining the “Adoption of specifications for structuring digital
models” as required by art. 62, par. 2, of the DM 17 Jul. 2008.

According to the DPR 123/2001, it is “permitted the making, communication and
notification of deeds in the Civil Proceedings by means of digital documents, in the
ways provided by the present regulation. The activity of transmission, communica-
tion or notification of the digital documents is carried out through telematic technol-
ogy using the Civil Information System”. The whole project structure of the PCT is
centered on the transformation of the traditional paper deed in its equivalent (as re-
gards juridical reliability and validity) electronic counterpart. The latter is not just a
word processor-made file, but a file digitally signed using an asymmetric key cipher
according to the rules provided by the DPR 445/2000. Indeed, a digitally signed
document is in every respect considered juridically equivalent to an autographically
signed paper document, since the counterpart can be sure of the authorship and in-
tegrity of the file by using the public key of its creator. For this reason, involved
people must be acknowledged according to an authentication procedure that once
again exploits an asymmetric key cryptographic system.

The communication between a private party and the involved Judicial Office
takes place as depicted in Fig. 3.1. The private party connects to the public Internet,
and hence is totally free of any temporal and spatial bias for carrying out the desired

12Website http://www.processotelematico.giustizia.it/pdapublic/.

106 3 Legal and Security Aspects

Fig. 3.1 Organization of the data-transmission-based civil proceedings and structure of a deed

procedure. The gate towards the protected area is represented by an authorized Ac-
cess Point that is acknowledged by a Central Manager and deals with it through a
Private Network. The data generated by an Authorized External Person (the private
party) are passed by the Access Point to the Central Manager that, in turn, forwards
them through the Public Administration (private) Network to the Local Manager
of the Judicial Office in question. Such a Local Manager deals with the Document
Repository and the Civil Information System of the office, and can deliver the in-
formation to the proper Authorized Internal Person of the office (the public party),
if needed.

A fundamental step in the implementation of the PCT is the certification process
that underlies the delivery of the telematic services such as the Access Points. Also
private organizations can be authorized by the DGSIA (Direzione Generale SIA
Ministero Giustizia) to act as Access Points. Indeed, each private party must be reg-
istered to one (and only one) Access Point, either that instituted by its Order Coun-
cil or by delegating to the National Forensic Council (CNF), if certified as Access
Point, or by delegating a private organization certified by the Department of Justice
for fulfilling the needed ‘moral’ and technical requirements, or choosing directly a
certificated Access Point. The Access Points, whose homepages are available on the
Internet, provide any indication to properly configure the Certified Electronic Mail
of the PCT (PECPCT), and the other software to perform the telematic connections
of the PCT. They also provide the software released by the Department of Justice,
and publish all the lists, data and information needed or useful for the proceedings.

3.4 Legal Aspects 107

All connections (both for consultation and for transmission and recording of deeds)
pass through the Access Point.

Before being able to exploit the services of the PCT through the Internet, a private
party must be registered to the system, own a Certified e-mail Box and a digital sig-
nature issued by a CA acknowledged by DigitPA. The digital signature smart-card
contains both a signature certificate and an authentication certificate. The private
party uses the former to digitally sign the proceedings (digital) deeds, and the latter
when, connecting to the telematic proceedings services to consult the record-office
records and the proceedings dossiers or to deposit acts, needs to be identified in a
secure way. The latter is similar to the former, but its role is different: it allows the
identification of who is connected to the Internet. Indeed, because of the way the
Internet was designed, one cannot be sure about the physical person that in a given
moment is connected from a computer to another to exchange information or use
services. Using the authentication certificate and the corresponding smart-card it is
possible to identify the subjects that are carrying out a telematic transaction. On its
side, the CA publishes the certificate on the Internet, guarantees that it actually cor-
responds to the identifying data of its owner, and ensures its validity in time (indeed,
it could be suspended or revoked before its normal expiration).

From its homepage, the private party logs in and allows the system to recognize
him by activating the authentication certificate contained in his smart-card. He puts
his smart-card in the reader connected to the computer and unlocks it by entering
his PIN. The system identifies the private party, checks that he is entitled to proceed
(e.g., if he is a lawyer he must not be suspended, canceled or struck off from the
Law List roll), and allows him to accomplish his task. For simple consultation, he
can access all the data (records, documents and deeds), deadlines, events happened
and everything else concerning the proceedings he is involved in (a service called
PolisWeb). He can also get a copy of the documents wherever he is.

Asynchronous services, such as recording of a deed, have a more complex man-
agement. The process from the creation of the document to its transmission involves
several steps, as depicted in the lower part of Fig. 3.1:

1. Creation The private party produces a document (say deed.xxx) using a writer
software that either exploits a third-party Word Processor (such as Microsoft
Word or OpenOffice Writer) or provides one by itself (in both cases predefined
deed templates are available). It can also connect to the database of a software
for the management of the lawyer’s office.

2. Export in the required format If the deed was not produced in one of the re-
quired formats (XML or, more recently, PDF) the document is exported into one
of them (e.g., deed.pdf).

3. Digital signature The deed is digitally signed through a procedure activated by
the writer program (obtaining a file deed.pdf.p7m): from that moment on,
it cannot be modified any further (in case, modifications are to be made on the
original document and a new version must be produced and signed).

4. Attachment of documents and Folding The deed is inserted into an ‘envelope’
along with the attachments, if any (attachment_n.xxx[.p7m]). The enve-
lope must be encrypted using the public key of the Judicial Office to which the

108 3 Legal and Security Aspects

deed is sent for recording (deed.enc). Such a key must be manually down-
loaded from the Website of the Department of Justice; it is foreseen that forth-
coming versions of the writer program will take care of getting it from lists pub-
lished by the Access Points or other official sites, and of the download and up-
dating (they usually expire after 2–3 years) of the certificates.

5. Fold encoding The bundle of the deed and its attachments, after being encrypted,
becomes a single attachment to the e-mail message that contains also any useful
routing information (in XML format).

6. Fold sending The e-mail message prepared this way by the software can be
simply sent through the Access Point.

Some of these steps are carried out, automatically and transparently to the lawyer,
by the writer software.

The Access Point, after identifying the lawyer (using the identification certifi-
cate), verifies that no obstacles exist for his action and forwards the message,
through the Central Manager, to the Local Manager of the Judicial Office where
it is to be recorded. As soon as the Central Manager server undertakes the mes-
sage, an e-mail message of confirmation is automatically generated and sent to the
sender through the Access Point. This will be a proof of deposit during the proceed-
ings. In the meantime, the message containing the deed is forwarded to the Local
Manager that, after decoding it, checks that it is free of viruses or malware, veri-
fies its completeness, its formal correctness, the availability of suitable references
for associating it to the proper proceeding (if already existing) and, in the end, in
case of positive outcome sends a message that definitively validates the automatic
procedure, or otherwise notifies the failure along with possible causes. Clearly, the
successful completion of the procedure is proved by the two messages sent, respec-
tively, by the Central and Local Manager.

References

1. Data Encryption Standard. Tech. rep. FIPS Pub. 46-1, National Bureau of Standards, Wash-
ington, DC, USA (1987)

2. Secure Hash Standard (SHS). Tech. rep. FIPS PUB 180, National Institute of Standards and
Technology (1993)

3. Secure Hash Standard (SHS). Tech. rep. FIPS PUB 180-1, National Institute of Standards and
Technology (1995)

4. Digital Signature Standard (DSS). Tech. rep. FIPS PUB 186-1, National Institute of Standards
and Technology (1998)

5. Merriam-Webster’s Collegiate Dictionary, 10th edn. Merriam-Webster Inc. (1999)
6. Secure Hash Standard (SHS)—amended 25 February 2004. Tech. rep. FIPS PUB 180-2, Na-

tional Institute of Standards and Technology (2002)
7. Secure Hash Standard (SHS). Tech. rep. FIPS PUB 180-3, National Institute of Standards and

Technology (2008)
8. Digital Signature Standard (DSS). Tech. rep. FIPS PUB 186-3, National Institute of Standards

and Technology (2009)
9. Abdul-Rahman, A.: The PGP trust model. EDI-Forum (1997)

References 109

10. Callas, J., Donnerhacke, L., Finney, H., Shaw, D., Thayer, R.: OpenPGP message format.
Tech. rep. RFC 4880, IETF (2007)

11. Carnelutti, F.: Studi sulla sottoscrizione. Rivista di Diritto Commerciale, p. 509 ss. (1929) (in
Italian)

12. Cocks, C.C.: A note on ‘non-secret encryption’. Tech. rep., GCHQ (1973)
13. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, T.: Internet X.509 Public

Key Infrastructure certificate and Certificate Revocation List (CRL) profile. Tech. rep. RFC
5280, Internet Engineering Task Force (IETF) (2008)

14. Department for Culture, Media and Sport, Department for Business, Innovation and Skills:
Digital Britain—final report. Tech. rep., UK Government (2009)

15. Diffie, W.: An overview of public key cryptography. IEEE Communications Society Magazine
16, 24–32 (1978)

16. Diffie, W.: The first ten years of public-key cryptography. Proceedings of the IEEE 76(5),
560–577 (1988)

17. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on Information
Theory IT-22, 644–654 (1976)

18. Diffie, W., Hellman, M.: Privacy and authentication: an introduction to cryptography. Proceed-
ings of the IEEE 67, 397–427 (1979)

19. Ellis, J.H.: The possibility of secure non-secret digital encryption. Tech. rep., GCHQ (1970)
20. Feistel, H.: Cryptography and computer privacy. Scientific American 128(5) (1973)
21. Garfinkel, S.: PGP: Pretty Good Privacy. O’Reilly (1994)
22. Gattuso, A.: Processo telematico. Mondo Professionisti I(13), III–VI (2007) (in Italian)
23. Kaliski, B.: Pkcs #7: Cryptographic message syntax. Tech. rep. RFC 2315, IETF (1998)
24. Kerckhoffs, A.: La cryptographie militaire. Journal des Sciences Militaires IX, 5–38 (1883)
25. Kerckhoffs, A.: La cryptographie militaire. Journal des Sciences Militaires IX, 161–191

(1883)
26. Lai, X.: On the Design and Security of Block Ciphers. ETH Series in Information Processing,

vol. 1. Hartung-Gorre (1992)
27. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC

Press, Boca Raton (1996)
28. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of

Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (2007)
29. Rivest, R.: The MD5 message-digest algorithm. Tech. rep. RFC 1321, Network Working

Group (1992)
30. Singh, S.: The Code Book. Doubleday, New York (1999)
31. Sorkin, A.: Lucifer a cryptographic algorithm. Cryptologia 8(1), 22–24 (1984)
32. Stallings, W.: Cryptography and Network Security. Principles and Practice, 3rd edn. Prentice

Hall, New York (2002)
33. Stevens, M., Sotirov, A., Appelbaum, J., Lenstra, A., Molnar, D., Osvik, D.A., Weger, B.D.:

Short chosen-prefix collisions for MD5 and the creation of a rogue CA certificate. In: Pro-
ceedings of the 29th Annual International Cryptology Conference on Advances in Cryptology.
Lecture Notes in Computer Science, vol. 5677, pp. 55–69. Springer, Berlin (2009)

34. Tosi, E.: Il codice del Diritto dell’Informatica e di Internet, VI edn. (2007) I codici vigenti.
La Tribuna (in Italian)

35. Zimmermann, P.R.: The Official PGP User’s Guide. MIT Press, New York (1995)

Part II
Document Analysis

A critical phase towards the extraction and fruitful exploitation of the information
contained in digital documents is the analysis of their structure. According to the
intrinsic properties and spatial arrangement of the various layout components, it
aims at determining the type of document as a whole and, then, which parts of it
deserve further specific attention. This activity involves both low-level tasks, dealing
with perceptual aspects, and higher-level ones, closely related to the semantics and
roles played by the objects of interest.

While the semantics of text is explicit, in images concepts are implicit and the
perception aspect is totally predominant. The image processing issue, that repre-
sents a whole branch of Computer Science in its own, is of great interest in doc-
ument processing both because digitized documents are images by themselves, in
which relevant components are to be identified, and because some document com-
ponents are in fact images, from which interesting information is to be extracted.
Chapter 4 introduces a set of techniques that can be profitably exploited in the
specific area of interest of document processing. First color-related tools are pre-
sented, that allow to switch to a more comfortable representation depending on
the task at hand or to progressively decrease the color and luminance information
up to black&white. Then, general methods for manipulating the image content are
proposed, ranging from geometrical transformation, to edge enhancement, to con-
nected components processing. Finally, some techniques to find refined edges in
an image, as a step towards the identification of the represented object, are dealt
with.

One of the main distinguishing features of a document is its layout, as determined
by the organization of, and reciprocal relationships among, the single components
that make it up. For many tasks, one can afford to work at the level of single pages,
since the various pages in multi-page documents are usually sufficiently unrelated to
be processed separately. Chapter 5 discusses the processing steps that lead from the
original document to the identification of its class and of the role played by its single
components according to their geometrical aspect: digitization (if any), low-level
pre-processing for documents in the form of images or expressed in term of very
elementary layout components, optical character recognition, layout analysis and

112

document image understanding. This results in two distinct but related structures
for a document (the layout and the logical one), for which suitable representation
techniques are introduced as well.

Chapter 4
Image Processing

Text has an important advantage from an information communication perspec-
tive: if it represents a significant expression in a known language, its semantics
is (at least in most cases) explicit. On the other hand, in images concepts are im-
plicit and the perception aspect is totally predominant. Just for this reason, from
a computer processing perspective objects of the latter kind are very complex to
be dealt with. Indeed, focusing on their basic components (points or geometrical
shapes), compared to those of text (symbols or words), the gap separating syn-
tax from the corresponding semantic interpretation is very wide (as supported by
considerations in [5, pp. 25 ff.]) because words have been purposely defined by
humans to carry a high-level meaning, whereas shapes are by themselves unla-
beled and much more variable. As an additional problem, the visual perception
and understanding procedures that take place in humans are not fully understood,
yet.

The image processing issue is of great interest in the wider landscape of doc-
ument processing, from a twofold perspective. On the one hand, it is needed as a
preliminary phase that supports the layout analysis of digitized documents, in order
to step from the raw pixel-level representation to the level of more significant aggre-
gates as basic components. On the other hand, after document image analysis and
understanding have been performed, it is to be applied to interesting components
that are images in order to index them or extract from them useful information re-
lated to the document content. Although the specific image processing techniques
typically exploited in these two steps are in large part different, nevertheless some
significant overlap exists (e.g., color handling and edge finding algorithms can find
thorough application in both). This suggested providing an introduction to this sub-
ject separate from its particular applications, resulting in the present chapter that can
be useful as a single common reference for concepts that come into play in either
aspect of document processing. However, the subject of Image Processing repre-
sents a whole branch of Computer Science in its own, and hence might deserve a
much deeper treatment, as can be provided by specific literature references such
as [1, 3, 11].

S. Ferilli, Automatic Digital Document Processing and Management,
Advances in Pattern Recognition,
DOI 10.1007/978-0-85729-198-1_4, © Springer-Verlag London Limited 2011

113

114 4 Image Processing

4.1 Basics

An image can be formally represented as a mathematical function I that maps each
pair of coordinates (x, y) in a (finite) 2D space of size m × n to a unique value
I (x, y). Informally, the coordinates represent a spot in the image, while the function
value represents the associated color. In the discrete perspective of raster images, the
coordinates are integers ranging in [0, n− 1]× [0,m− 1]. Working on images (e.g.,
for extracting information from them) often requires that they are properly treated
in order to turn them into a representation that is more useful for the intended pro-
cessing aims. In such a context, vector graphics are based on operators that describe
lines, curves, characters or other geometrically expressible shapes, and hence ex-
plicitly denote noteworthy subsets of related points in the image. This higher level
of abstraction, in turn, surely makes easier the interpretation of the image content.
Conversely, in the case of raster graphics, each single point that makes up the image
is syntactically unrelated to all the others, although semantically it clearly is not.
This adds significant complexity to image interpretation, and requires additional ef-
forts to identify the implicit relationships among points in an image, but represents
the most frequent situation to be handled in document processing.

Image representations, and particularly those coming from real-world production
procedures and devices, can be affected by unwanted noise that overlaps the orig-
inal signal and distorts it, changing as a consequence the correct function values.
In this event, the image must be cleaned up of such a noise. In other cases, some
features of the image are to be enhanced. This can be obtained by exploiting proper
operators. Image transformation operators are functions that, applied to an image
I[m×n], transform it into another one I ′, usually having the same size. They can be
grouped into three categories, according to whether the output value at the point
(x, y) (called in the following the ‘reference’) depends on:

• The input value at the (x, y) point alone (point operators);
• The input values in a neighborhood of the (x, y) point alone (local operators);
• All the values in the input image (global operators).

Any task that is carried out on an image can be expressed in terms of such operators.

Convolution and Correlation Given two functions I and M having the same
dimensionality (the two-dimensional, discrete case is of interest for image process-
ing), the mathematical operation of linear convolution (often denoted by I � M) is
defined as:

I ′(u, v) =
+∞∑

i=−∞

+∞∑

j=−∞
I (u − j, v − j) · M(i, j).

Working on raster images, a particular case of it is exploited, in which I is associ-
ated to an m × n image matrix (containing the values of the pixels that make up the
image), and M is associated to another (usually smaller) m′ × n′ matrix (called the
mask, or filter, or kernel). I and M take on the values of the corresponding matrix
for all coordinate pairs inside its boundaries, and zero for all the others. Usually, the

4.1 Basics 115

filter sides have odd length (m′ = 2m′′ + 1, n′ = 2n′′ + 1) and the origin of its co-
ordinates is assumed to be in the centroid position (RM = [−m′′,m′′] × [−n′′, n′′]),
called the hot spot. This yields the linear correlation operation (technically, a con-
volution with a reflected filter matrix [1]):

I ′(u, v) =
∑

(i,j)∈RM

I (u + j, v + j) · M(i, j).

Intuitively, M is overlap to I in all possible ways1 and, for each overlapping po-
sition, a value is generated as a linear combination of the pairs of values in cells
that are associated by the current overlapping. Each such value is assigned to the
element in the resulting matrix/image I ′ corresponding to the hot spot position.

The actual values in the kernel to be exploited depend on the effect one aims at
obtaining. A typical shape of the kernel is a square of size 3 × 3 (M3×3), as follows:

w1 w2 w3

w4 w5 w6

w7 w8 w9

Given a generic portion of the image I that happens to overlap the kernel for one of
its possible displacements, consisting of the neighborhood of the reference I (x, y):

I (x − 1, y − 1) I (x, y − 1) I (x + 1, y + 1)

I (x − 1, y) I (x, y) I (x + 1, y)

I (x − 1, y + 1) I (x, y + 1) I (x + 1, y + 1)

application of the operator returns the following value that is assigned, in the trans-
formed image I ′, to the position of the reference:

I ′(x, y) = w1 · I (x − 1, y − 1) + w2 · I (x − 1, y) + w3 · I (x − 1, y + 1)

+ w4 · I (x, y − 1) + w5 · I (x, y) + w6 · I (x, y + 1)

+ w7 · I (x + 1, y − 1) + w8 · I (x + 1, y) + w9 · I (x + 1, y + 1).

Note that in practice the kernel output must be saved on a separate image, not to
affect the next applications of the kernel after having changed a pixel value. Note
also that when the pixels on the border of I play the role of references, the border
of the mask would fall out of the image, and hence the mask would not be fully
exploited on them; for this reason, often they are reported in I ′ as they are in I ,
without any transformation.

1Operationally, this can be obtained, e.g., by starting from the top-left position of the latter and
sequentially moving it to all next positions top-down, left-to-right.

116 4 Image Processing

Example 4.1 (Linear correlation of an image) Consider a 5 × 5 matrix I represent-
ing a gray-level image, whose elements correspond to the pixel values, a 3 × 3 filter
M and the resulting matrix/image I ′, as follows:

I =

0 0 0 0 0

0 1 3 0 0

0 3 4 0 0

0 0 0 0 0

0 0 0 0 0

M =
2 0 0

0 0 0

0 0 0

I ′ =

0 0 0 0 0

0 0 0 0 0

0 0 2 6 0

0 0 6 8 0

0 0 0 0 0

The effect of the filter consists in moving each pixel one position below and to the
right from the original image, and doubling its intensity. Indeed, the value taken
by the reference pixel when applying the kernel corresponds to twice the value of
the pixel in the image associated to the top-left corner of the mask, while all other
pixels are ignored being multiplied by 0. For instance, applying the mask over the
emphasized positions in I returns the value to be set in the position of I ′ reported
in bold, as follows:

(1 · 2) + (3 · 0) + (0 · 0) + (3 · 0) + (4 · 0) + (0 · 0) + (0 · 0) + (0 · 0) + (0 · 0) = 2.

The mask is applied 9 times, to the emphasized positions in I .

4.2 Color Representation

As already pointed out, there are several agreements and standards, called color
spaces, according to which colors can be represented. Each one emphasizes differ-
ent perspectives on the colors, and hence turns out to be more suitable to support
some kinds of processing and less suitable to other applications. Throughout this
section, the color components will be assumed (unless otherwise stated) to range
in [0,1], but a transposition to other intervals [0 . . .Mc] (e.g., the more standard
8-bit representation [0 . . .255] traditionally adopted in Computer Science) is clearly
straightforward:

c ∈ [0,1] → c′ = c · Mc ∈ [0,Mc]

(possibly rounded if integer values are to be considered).
An example of a point operator is the negative of a pixel value expressed through

nc color components ci ∈ [0,1] that yields a new color whose components are c′
i =

1 − ci (where i = 1, . . . , nc).

4.2 Color Representation 117

4.2.1 Color Space Conversions

Being able to switch from a representation to another is often a key factor towards
effective solutions of image-related problems. In the following, the most important
conversions between relevant color spaces will be presented.

RGB–YUV The amount of luminance in an RGB color corresponds to the average
of the three channel values:

Y = R + G + B

3
.

However, since the human eye perceives red and green as being brighter than blue,
a properly weighted average turns out to be more effective. The usual weights are
as follows:

Y = 0.299 · R + 0.587 · G + 0.114 · B ∈ [0,1].
To convert from RGB to YUV, two more values must be computed:

U = B − Y + 0.886

1.772
∈ [0,1],

V = R − Y + 0.771

1.542
∈ [0,1],

or, as reported in [1],

U = −0.147 · R − 0.289 · G + 0.436 · B = 0.492 · (B − Y),

V = 0.615 · R − 0.515 · G − 0.1 · B = 0.877 · (R − Y).

The inverse conversion is obtained as:

R = Y + 1.14 · V,

G = Y − 0.395 · U − 0.581 · V,

B = Y + 2.032 · U.

RGB–YCbCr YCbCr is obtained from an (R,G,B) color triple by computing Y

as above and the other components as follows:

Cb = −0.169 · R − 0.331 · G + 0.5 · B,

Cr = 0.5 · R − 0.419 · G − 0.081 · B,

while the inverse is:

R = Y + 1.403 · Cr,

G = Y − 0.344 · Cb − 0.714 · Cr,

B = Y + 1.773 · Cb.

118 4 Image Processing

RGB–CMY(K) In CMY, since the three subtractive basic colors are the comple-
ments of the additive ones, one gets:

C = 1 − R

M = 1 − G

Y = 1 − B

⎫
⎬

⎭
⇒

⎧
⎨

⎩

R = 1 − C

G = 1 − M

B = 1 − Y.

In the CMYK color space, the additional K black component is defined as:

K = min(C,M,Y).

Once black is available, it may contribute in defining not only gray level colors, but
other colors as well, this way allowing to reduce the intensity of the other C, M , Y

components accordingly:

CK = C − K,

MK = M − K,

YK = Y − K.

RGB–HSV To switch from an RGB triple (R,G,B) to the corresponding HSV
representation, some calculations are needed that depend on its maximum M =
max(R,G,B) and minimum m = min(R,G,B) values, and on their difference
r = M − m representing the range of variability for the component values of that
color. Particular cases are those of gray levels, where R = G = B ⇔ r = 0, and
specifically that of black, where R = G = B = 0 ⇔ M = m = r = 0.

Concerning Saturation S and Value (i.e., luminance) V , the computation is
straightforward:

S =
{

r/M if M > 0,

0 otherwise,

V = M.

As to Hue, the conversion is more complicated, depending on the value of r . First
of all, the hue is undefined for gray levels, where r = 0 ⇒ S = 0. In all other cases,
when r > 0, a normalization step with respect to such a distance is performed:

R′ = M − R

r
, G′ = M − G

r
, B ′ = M − B

r

from which a provisional hue value is obtained:

H ′ =
⎧
⎨

⎩

B ′ − G′ if R = M

R′ − B ′ + 2 if G = M

G′ − R′ + 4 if B = M

⎫
⎬

⎭
∈ [−1,5]

4.2 Color Representation 119

to be normalized as follows:

H = 1/6 ·
{

H ′ + 6 if H ′ < 0,

H ′ otherwise.

Expressed as an angle, measured in degrees, it simply amounts to H · 360°.
Back from HSV to RGB, first the appropriate color sector is to be determined as

H ′ = (6 · H) mod 6 ∈ [0,6[

according to which some intermediate values must be computed:

c1 = �H ′	, c2 = H ′ − c1,

x = (1 − S) · V, y = (
1 − (S · c2)

) · V, z = (
1 − (

S · (1 − c2)
)) · V,

to finally obtain:

(R,G,B) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(V , z, x) if c1 = 0,

(y,V , x) if c1 = 1,

(x,V , z) if c1 = 2,

(x, y,V) if c1 = 3,

(z, x,V) if c1 = 4,

(V , x, y) if c1 = 5.

RGB–HLS From RGB to HLS, considering M , m and r as for the RGB-to-HSV
conversion:

H is as for the RGB-to-HSV conversion,

L = M + m

2
,

S =
⎧
⎨

⎩

0 if L = 0 ∨ L = 1,

0.5 · r
L

if L ∈]0,0.5],
0.5 · r

1−L
if L ∈]0.5,1[.

Back from HLS to RGB, the computation is straightforward for the two extremes

• black (L = 0): (R,G,B) = (0,0,0),
• white (L = 1): (R,G,B) = (1,1,1),

while in all other cases the values H ′, c1 and c2 are to be first determined as for the
RGB-to-HSV conversion, and additionally:

d =
{

S · L if L ≤ 0.5,

S · (L − 1) if L > 0.5,

120 4 Image Processing

in order to compute:

(R,G,B) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(w, z, x) if c1 = 0,

(y,w,x) if c1 = 1,

(x,w, z) if c1 = 2,

(x, y,w) if c1 = 3,

(z, x,w) if c1 = 4,

(w,x, y) if c1 = 5,

where w = L + d , x = L − d , y = w − (w − x) · c2, z = x + (w − x) · c2.

4.2.2 Colorimetric Color Spaces

In addition to the classical spaces purposely developed for compliance with existing
image acquisition or rendering hardware (such as scanners, displays or printers), the
pure processing perspective on images has called for the definition of abstract color
spaces whose features are device-independent and, possibly, more closely resemble
human perception. Definition of a standard for such a theoretical representation,
independent of physical devices, is in charge of the CIE.

XYZ The XYZ color space is named after the three abstract parameters X, Y and Z

(where Y is the luminance, as usual) that it uses as a base such that any color can
be obtained as a summation of their components. It turns out to be a cone-shaped
space that has the black B in its origin and that does not include the primary colors.
It is non-linear with respect to human visual perception.

Color hues in this space are defined as follows:

x = X

X + Y + Z
,

y = Y

X + Y + Z
,

z = Z

X + Y + Z
.

Since x + y + z = 1, only two coordinates (usually x and y) are sufficient to denote
a color, while the third one (z) can be just derived by differencing.

Usually, a special focus is given on the plane X+Y +Z = 1 that corresponds to a
triangle in the XYZ space. Consider any conceivable color point C = (XC,YC,ZC),
and the BC segment joining it with the origin (representing black). Then, the point
of intersection between the aforementioned segment and plane/triangle determines
the chromatic coordinates c = (xc, yc, zc) associated to C that overall represent its
hue and saturation. Now, the Z coordinate zc can be just dropped, thus obtaining the
projection of such a point on the X–Y plane.

4.2 Color Representation 121

Since infinitely many colors correspond to such coordinates, depending on all
possible luminance values, in order to go back to the original color, additional in-
formation about its luminance Y must be provided. Starting from such a (Y, x, y)

triple, for y > 0, the remaining values are obtained as:

X = x · Y/y, Z = z · Y/y = (1 − x − y) · Y/y.

The gray levels lie at the neutral point X = Y = Z = 1, i.e., x = y = 1/3, and
zero saturation. XYZ can be turned to RGB as a simple linear transformation.

L*a*b* Another abstract color space for image processing is L∗a∗b∗, where L∗
denotes the luminance, while the color components a∗ and b∗ specify the hue and
saturation features referred to the green–red axis and to the blue–yellow axis, re-
spectively. It is particularly interesting because, differently from all spaces seen so
far, it is linear and hence its behavior is closer to human intuition (changing two col-
ors by the same amount will produce a similar amount of perceived changes). It is
based on the choice of a white reference point W = (XW ,YW ,ZW), and is obtained
by the XYZ format as follows:

L∗ = 116 · Y ′ − 16 ∈ [0,100],
a∗ = 500 · (X′ − Y ′) ∈ [−127,+127],
b∗ = 200 · (Y ′ − Z′) ∈ [−127,+127],

where X′ = f (X
XW

), Y ′ = f (Y
YW

), Z′ = f (Z
ZW

), and

f (c) =
{

c
1
3 if c > 0.008856,

7.787 · c + 16
116 if c ≤ 0.008856.

Since such a space is linear, the distance between two colors C1 = (L∗
1, a

∗
1 , b∗

1)

and C2 = (L∗
2, a

∗
2 , b∗

2) is simply the Euclidean distance (i.e., the norm) between the
corresponding vectors:

d(C1,C2) = ‖C1 − C2‖ =
√(

L∗
1 − L∗

2

)2 + (
a∗

1 − a∗
2

)2 + (
b∗

1 − b∗
2

)2
.

The conversions from XYZ to RGB and back are obtained as:
⎛

⎝
R

G

B

⎞

⎠= MRGB ·
⎛

⎝
X

Y

Z

⎞

⎠

and
⎛

⎝
X

Y

Z

⎞

⎠= M−1
RGB ·

⎛

⎝
R

G

B

⎞

⎠ ,

122 4 Image Processing

where

MRGB =
⎛

⎝
3.240479 −1.537150 −0.498535

−0.969256 1.875992 0.041556
0.055648 −0.204043 1.057311

⎞

⎠

and

M−1
RGB =

⎛

⎝
0.412453 0.357580 0.180423
0.212671 0.715160 0.072169
0.019334 0.119193 0.950227

⎞

⎠ .

The three column vectors in M−1
RGB are, respectively, the coordinates of R, G

and B in the XYZ space, and hence can be straightforwardly exploited for conver-
sion purposes.

4.3 Color Depth Reduction

Color depth reduction refers to the possibility of reducing the amount of chromi-
nance information in a color image, up to complete removal of colors or, yet more
radically, to a neat distinction between black&white.

4.3.1 Desaturation

Desaturating a color means reducing the amount of color in a continuous manner,
according to a parameter s ∈ [0,1] that represents the amount of saturation to be
left in the color (i.e., 0 removes all saturation while 1 leaves the color unchanged).
Using the RGB space, a color is represented as a triple of components (R,G,B),
all of which must be reduced equally to preserve the relative proportions. Thus, the
formula for obtaining the desaturated color (Rd,Gd,Bd) applies a linear interpo-
lation between the original color and the corresponding Y gray level in the RGB
space:

Rd = Y + s · (R − Y),

Gd = Y + s · (G − Y),

Bd = Y + s · (B − Y),

where Y is computed as in the transformation from RGB to YUV space (see
Sect. 4.2.1).

4.3 Color Depth Reduction 123

4.3.2 Grayscale (Luminance)

The conversion of a color image into a gray-level one is obtained by computing for
each pixel, starting from its original (R,G,B) values, the corresponding gray value
according to the luminance formula in Sect. 4.2.1 (rounded to the closest integer in
case the value has to be discrete):

l = round(Y).

If the gray-level image is still to be represented in the RGB color space, the com-
puted value must be set for all RGB components: (l, l, l).

4.3.3 Black&White (Binarization)

A gray-level image I (x, y) can be binarized—i.e., transformed into a black&white
one I ′(x, y)—by applying to each of its pixels a thresholding that, based on its
gray level being smaller or larger than a luminance threshold t , changes the pixel to
full black or to full white, respectively. Thus, the choice of t induces a partition of
the set of gray levels into two groups: the one below the threshold (denoted in the
following by L for ‘left’) corresponds to the abstraction of the foreground (i.e., the
objects in the scene), while the one above the threshold (denoted by R for ‘right’)
abstracts the background. More formally, the black&white image resulting from
binarization can be considered as a matrix I ′, having the same size as the original
image, each of whose elements I ′(x, y) contains a boolean (True/False or 1/0) value
expressing the outcome of the comparison between the original luminance value of
the corresponding pixel I (x, y) and the threshold, as follows:

I ′(x, y) =
{

0 if I (x, y) < t,

1 otherwise,

where 0/False denotes black (i.e., the pixel belonging to L) and 1/True denotes
white (i.e., the pixel belonging to R). The higher the threshold, the fewer levels
of gray are filtered out to R, and hence the darker the image. Thus, identifying a
proper threshold that preserves the interesting details without resulting in meaning-
less black blobs is an issue that deserves attention.

Otsu Thresholding A method to automatically identify an optimal threshold to
be used for binarizing an image, based on the information contained in its gray-
levels histogram, was proposed by Otsu [9]. For it to be effective, the intended
background must be made up of gray levels sufficiently different than those of the
foreground objects. The threshold is computed as the luminance level t that mini-
mizes the weighted intra-group (or within) variance between L and R:

σ 2
w(t) = ωL(t)σ 2

L(t) + ωR(t)σ 2
R(t)

124 4 Image Processing

or, equivalently, maximizes the corresponding inter-group (or between) variance:

σ 2
b (t) = σ 2 − σ 2

w(t)

that is, the weighted variance of the cluster means around the overall mean

= ωL(t)
[
μL(t) − μ

]2 + ωR(t)
[
μR(t) − μ

]2

since μ = ωL(t)μL(t) + ωR(t)μR(t), by substitution

= ωL(t)ωR(t)
[
μL(t) − μR(t)

]2
,

where σ 2 is the combined variance, μL(t) and μR(t) are the means of groups L and
R determined by t , and μ is the combined mean.

The weights are specific for each threshold, and are taken to be the class proba-
bility of L and R over the whole set of pixels. Consider, for each gray level t , the
ratio p(t) of pixels in the image having that gray level over the total number of pix-
els in the image (i.e., the probability of a pixel in the image having that gray level).2

Then, the probability distributions are:

ωL(t) =
∑

i∈L

p(i), ωR(t) =
∑

i∈R

p(i) = 1 − ωL(t).

In practice, the statistics are not computed from scratch for each candidate threshold,
but an iterative procedure can be exploited to quickly derive the statistics for a level
by just updating those of the immediately previous level: After computing the initial
values ωL(0), ωR(0), μL(0) and μR(0), the next values can be obtained as:

ωL(t + 1) = ωL(t) + p(t), ωR(t + 1) = ωR(t + 1) − p(t) = 1 − ωL(t + 1),

μL(t + 1) = μL(t)ωL(t) + p(t) · t
ωL(t + 1)

, μR(t + 1) = μR(t)ωR(t) + p(t) · t
ωR(t + 1)

.

Summing up, the variance is computed in turn for each candidate split, remem-
bering the maximum computed so far and the threshold by which it was reached.

4.4 Content Processing

Although an image as a whole conveys an overall meaning, a prominent role in its
proper interpretation is often played by specific subparts thereof. This section pro-
poses some techniques for identifying, describing and processing such noteworthy
subparts. A component of an image I is a subset of its pixels, usually determined
according to some underlying property. Consider a boolean property P that applies

2Given the histogram H(t) reporting the number of pixels in the image for each gray level t , and
the total number n of pixels in the image, p(t) = H(t)/n.

4.4 Content Processing 125

to each pixel p ∈ I , so that p can be labeled as ‘true’ or as ‘false’ according to its
fulfilling P or not. Then, the component induced by P is

CP(I) = {
p ∈ I | P(p) = true

}
.

This general definition allows identifying components of any complexity, which
is useful because the image subpart of interest does not necessarily correspond to
simple geometrical shapes, and often represents an irregular set of pixels.

4.4.1 Geometrical Transformations

A basic set of tools to act on images consists of operations that allow moving their
pixels from some place in the image to some other. Although they are often applied
to the whole image, it is not infrequent that just a part of it is to be moved. A com-
fortable way to extract the interesting part, starting from the set CP(I) of pixels of
interest in I , is to consider it as a sub-image on its own, and hence to represent it as
a new rectangle which is the smallest rectangle in the original image that includes
all interesting pixels. This is called the bounding box of CP(I), defined as:

I ′
P =

{(
x′, y′) ∈ I | arg min

x

(
(x, y) ∈ CP(I)

)≤ x ′ ≤ arg max
x

(
(x, y) ∈ CP(I)

)

∧ arg min
y

(
(x, y) ∈ CP(I)

)≤ y′ ≤ arg max
y

(
(x, y) ∈ CP(I)

)}
.

The transformations of a pair of coordinates (x, y) onto a new pair (x′, y ′), we
are going to take into account, are the following:

Translation by a displacement (dx, dy), where any value of the displacement can
be positive or negative, yields

(
x ′, y ′)= (x + dx, y + dy).

Mirroring of an image sized n × m can take place horizontally, yielding

(
x ′, y ′)= (m − x − 1, y),

or vertically, yielding
(
x′, y′)= (x,n − y − 1).

Rotation by an angle θ with respect to a point (x0, y0) yields

(
x ′, y ′)= (

(x − x0) cos θ + x′
0, (y − y0) sin θ + y′

0

)

where (x′
0, y

′
0) is the point in I ′ corresponding to (x0, y0) in I .

126 4 Image Processing

After computing the transformed coordinates, the resulting values can be copied
into the same image or, more frequently, into a new image I ′. While for mirroring
the image size stays invariant, and every pixel in the result has a corresponding value
in the original image I , for translation and rotation some transformed coordinates
might fall outside the original image boundaries, and new pixels might come into
play for areas not considered in I . Thus, for the sake of generality, it is wiser to
assume that the new image has size I ′

[n′×m′], and that a default value D (e.g., D = 0)
is considered for all positions in I ′ that have no counterpart in I[n×m]. Then, the
transformation may look, for each pixel in the target image, to the corresponding
pixel into the original one, as follows:

I ′(x′, y ′)=
{

I (x, y) if 0 ≤ x ≤ m − 1 ∧ 0 ≤ y ≤ n − 1,

D otherwise,

where the pixel I (x, y) to be copied is found, for translation, at

x = x′ − dx,

y = y′ − dy,

and, for rotation, at

x = (
x′ − x ′

0

) · cos θ − (
y′ − y′

0

) · sin θ + x0,

y = (
x′ − x ′

0

) · sin θ + (
y′ − y ′

0

) · cos θ + y0.

As for rotation, the latter approach is mandatory because, since the transformation
formulæ include trigonometric (real-valued) functions, the resulting coordinates are
not integer, and must be consequently rounded. Unfortunately, this may result in
different original coordinates collapsing onto the same transformed coordinate, and
hence in some target coordinates being not considered in the transformation (the
larger the distance from a multiple of the right angle, the more missing pixels, as
shown in Fig. 4.1).

4.4.2 Edge Enhancement

Much of the perceptual capability of humans (and other animals as well) is heavily
based on the recognition of edges that usually denote the limit between two objects
in the scene or between objects and the background [8]. Since contours and ver-
tices in images are typically perceived by the eye as sudden changes in luminance,
due to the shadow projected by the objects when hit by a directional light, in the
following only the graylevel component of the image will be taken into account.
For the very same reason, many of the techniques for edge detection based on varia-
tions in luminance exploit linear correlation with derivative filters. Such filters are to
be considered as local operators because they provide the output value I ′(x, y) for

4.4 Content Processing 127

Fig. 4.1 Noise due to collapsing coordinates in forward rotation of the top-left image (from left to
right: top row 0°, 90°; bottom row 5°, 15°, 45° clockwise rotation)

each pixel in the transformed image as a function of the values of a suitable neigh-
borhood of the corresponding pixel I (x, y) in the original image. This ensures that
the outcome is less affected by noise in the image around the pixel under processing.

Derivative Filters It has been just pointed out that object edges are characterized,
from a perceptual viewpoint, by more or less sudden changes in luminance. If im-
ages are seen as mathematical functions, the suitable tool in charge of determining
the amount of change is represented by derivative functions. Indeed, being able to
locate the image regions where variations in luminance take place most prominently
allows emphasizing them while smoothing the remaining regions, obtaining in this
way a new version of the image where the edges are more evident. Such an enhanced
image can then be exploited as a more comfortable basis than the original one for
applying further techniques aimed at the final edge detection. More precisely, due
to images being two-dimensional functions, gradients come into play, i.e., the ex-
tension to n-dimensional spaces of the concept of the derivative. Application of the
gradient to a continuous function yields at each point a vector characterized by:

Direction and Sense the direction along which the maximum possible function
variation for that point is obtained;

Magnitude the maximum value associated to the function variation.

A measure/estimation of the amount of change in a two-dimensional space (such
as an image) can be obtained by computing the modulus of the gradient at every
point, and can be represented by producing a map (another image) in which the re-
gions having large gradient values are emphasized. In particular, the partial deriva-
tives of the image with respect to the horizontal and vertical directions must be

128 4 Image Processing

computed, by means of the corresponding gradient components:

∇I = ∂I

∂x
i + ∂I

∂y
j,

where i and j are the unit vectors in directions x and y, respectively. It is a deriva-
tive filter because the gradient is a first derivative of the image. If the gradient is
computed on the luminance feature of an image, the outcome corresponds to the ob-
ject edges. An approximation of the strength of the retrieved edge can be computed
as the sum of the magnitude of the horizontal and vertical gradient components:

|G| = |Gx | + |Gy |,
where Gx is the filter for direction x, and Gy is the filter for direction y.

A first, simple computation of the gradient in a point I (x, y) takes into account
only the strictly horizontal and vertical directions:

Gx = I (x + 1, y) − I (x − 1, y)

2
,

Gy = I (x, y + 1) − I (x, y − 1)

2
.

However, also the diagonal directions usually yield a significant contribution to
the variation, in which case a correlation exploiting a filter based on a 3×3 mask that
covers the whole neighborhood of a pixel is more indicated. These ideas underlie
the technique proposed by Prewitt, that equally weights all directions:

Gx =
⎡

⎣
−1 0 +1
−1 0 +1
−1 0 +1

⎤

⎦ , Gy =
⎡

⎣
−1 −1 −1

0 0 0
+1 +1 +1

⎤

⎦ .

A similar filter that takes into account both the horizontal/vertical directions and
the diagonal ones, but stresses the former components more than the latter, was
proposed by Sobel [2], and is currently the most widely known and exploited:

Gx =
⎡

⎣
−1 0 +1
−2 0 +2
−1 0 +1

⎤

⎦ , Gy =
⎡

⎣
−1 −2 −1

0 0 0
+1 +2 +1

⎤

⎦ .

The operations to be carried out are:

1. Correlation of the original image with the filter for direction x that yields the
values Ix(x, y);

2. Correlation of the original image with the filter for direction y that yields the
values Iy(x, y);

3. Creation of an image I ′(x, y), each of whose pixels represents the absolute mag-
nitude of the gradient in that point, obtained as a modulus (Euclidean distance)

4.4 Content Processing 129

of the values of components Ix(x, y) and Iy(x, y) produced by the directional
filters in the corresponding position of the image:

I ′(x, y) =
√

Ix(x, y)2 + Iy(x, y)2.

Another famous filter is the Laplacian, based on second derivatives and defined
as [10]:

∇2I (x, y) = ∂2I

∂x2 (x, y) + ∂2I

∂y2 (x, y)

= [(
I (x, y) − I (x − 1, y)

)− (
I (x + 1, y) − I (x, y)

)]

+ [(
I (x, y) − I (x, y − 1)

)− (
I (x, y + 1) − I (x, y)

)]

= 4 · I (x, y) − (
I (x − 1, y) + I (x + 1, y) + I (x, y − 1) + I (x, y + 1)

)

that can be represented by the following mask:

L =
⎡

⎣
0 −1 0

−1 4 −1
0 −1 0

⎤

⎦ ,

further variants of which are [1]:

L8 =
⎡

⎣
−1 −1 −1
−1 8 −1
−1 −1 −1

⎤

⎦ and L12 =
⎡

⎣
−1 −2 −1
−2 12 −2
−1 −2 −1

⎤

⎦ .

4.4.3 Connectivity

Adjacency between pixels of an image I can be defined according to two different
neighborhood strategies, one stricter and one looser, as follows:

4-neighborhood referred to the horizontal or vertical directions only;
8-neighborhood including the diagonal directions as well.

Thus, a pixel can have at most 4 possible neighbors in the former case, and at most 8
possible neighbors in the latter, as graphically depicted in Fig. 4.2. In the following,
Nk(p) will denote the set of k-neighbors (k ∈ {4,8}) of a pixel p.

Fig. 4.2 Neighborhood definitions for a reference pixel (denoted by ·). +’s denote the positions
adjacent to · that are taken into account by each connection strategy

130 4 Image Processing

Having fixed a k-neighborhood approach and a boolean property P , a connected
component of I with respect to P is a subset C of its pixels such that

• C ⊆ CP(I) (P is true for all pixels in C), AND
• For any two pixels in C there exists a chain of pairwise k-neighbor pixels in C

that starts from the former and ends in the latter, AND
• There is no pixel p ∈ I such that P(p) = true, p is k-neighbor to a pixel in C

and p �∈ C.

In particular, a pixel p ∈ C is said to be [10]:

• Isolated if Nk(p) ⊆ C;
• Interior if Nk(p) ⊆ C;
• A border pixel otherwise (Nk(p) ∩ C �= ∅ ∧ Nk(p) ∩ C �= ∅); in particular, it is

– An arc pixel if it has exactly two opposite neighbors in C (while all the other
neighbors are in C);

– An arc end if it has exactly one neighbor in C (while all the others are in C),

where C = I \ C is the complement of C.
Of course, several connected components can be found in a given image. How-

ever, the overall set of connected components in an image is uniquely identified, and
represents a partition of the pixels in the image for which P is true. A subset of I

that has only one connected component is called connected.
The very same considerations that are made on the subset S ⊆ I of pixels for

which P is true, and in particular the analysis of connected components, can
be made on its complement S using ‘false’ instead of ‘true’. When working on
k-connectivity in S, the opposite connectivity (let us denote this by k in the follow-
ing: k = 8 if k = 4, and vice versa) is exploited for S. Consider I as surrounded by
a border of pixels labeled ‘false’. The component of S consisting of the elements
connected to any of these pixels is called the outside of S. Every other component
of S, if any, is called a hole in S; pixels in a hole are said to be inside S. If S is
connected and has no holes, it is called simply connected; if it has holes, it is called
multiply connected.

Connected components are often useful because each of them can be extracted
from the image and processed separately from the others. Connection is typically
exploited in binary (i.e., black&white) images, where P(p) = ‘pixel p is black’:
in such a case, each connected component is usually interpreted as an object repre-
sented in the image.

Flood Filling A way for finding connected components of pixels sharing a given
boolean property P is inspired by similarity to pouring a liquid into a container, so
that it spreads along the bottom of the container until all of it has been covered up
to the borders. Starting from a pixel fulfilling P , the set of pixels that belong to the
associated connected component is found by progressive propagation of one of the
notions of connection between adjacent pixels. Both recursive and iterative versions
of such an algorithm can be defined, but here the latter option is proposed for the
sake of efficiency. As for all iterative implementations of recursive algorithms, it is

4.4 Content Processing 131

necessary to explicitly handle a data structure that contains the information implic-
itly handled by the system stack in the recursive version: in this case, a set B of
pixels.

1. P ← {set of pixels in I that fulfill property P}
2. Select s ∈ P as a starting pixel
3. B ← {s}
4. C ← ∅
5. while B �= ∅

(a) Select a b ∈ B

(b) B ← B \ {b}
(c) C ← C ∪ {b}
(d) for each p ∈ Pk(b):

(i) if p �∈ C: B ← B ∪ {p}
B represents the current ‘boundary’ of the connected component under construction,
from which the ‘flood’ can be expanded; implementing it as a queue (which deter-
mines a FIFO behavior for the choice in step 5(a)) has the effect of progressively
spreading the flood in all directions. C is the connected component under construc-
tion, represented as a set of pixels as well. Each connected pixel in the k-neighbors
of the boundary, considered in turn, is a candidate for flood expansion unless it has
already been considered (i.e., it is already in C).

If the image includes several connected components, the pixels in C can be re-
moved from P and the algorithm can be restarted, in order to obtain the next com-
ponent. It might be desirable to produce a map of the connected components in the
image I , where each pixel is labeled with a number expressing the connected com-
ponent it belongs to. To this purpose, a matrix L having the same size as I is defined,
whose elements are initially set at 0. Then, a top-down, left-to-right scanning of I is
started, until a pixel for which P is ‘true’ is found. The above algorithm is started
on that pixel, setting at 1 the elements in L corresponding to pixels that are included
in C. After termination of the algorithm, the scanning of I is carried on until a pixel
is found for which P is ‘true’ and the corresponding element of L is still at 0. The
above algorithm is restarted on such a pixel, using the next available integer as a
label, and this procedure is repeated until the bottom-right corner of I is reached, at
which moment the current integer represents the number of connected components
found, and L is the map.

Border Following Given a connected component C, it might be interesting to
extract its border B , which completely identifies it but is lighter to store and repre-
sent. Let B be the set of border elements of C having neighbors in some particular
component of C. B is obviously connected. Moreover, starting at any element of B

and successively moving to neighboring elements according to some strategy, it is
possible to ‘follow around’ B and return to the starting point. The algorithm is as
follows:

1. Arbitrarily choose p0 ∈ B as the initial element
2. if N4(p0) ∩ C = ∅ then

(a) C = {p0} = B , and hence p0 represents the whole border

132 4 Image Processing

3. else
(a) Take y

(0)
1 ∈ N4(p0) ∩ C (at least one such element exists, since B is the

border)
(b) i ← 0
(c) repeat

(i) Let N8(pi) = {y(i)
1 , . . . , y

(i)
8 }

(ii) Let y
(i)
j+1 ∈ N8(pi) ∩ N4(pi) ∩ C be the first in counterclockwise order

starting from y
(i)
1

(iii) if y
(i)
j ∈ C then

(A) y
(i+1)
1 ← y

(i)
j

(B) pi+1 ← y
(i)
j+1 ∈ B

else (y
(i)
j ∈ C)

(A) y
(i+1)
1 ← y

(i)
j−1 ∈ C

(B) pi+1 ← y
(i)
j ∈ B (because y

(i)
j−1 ∈ C)

(iv) i ← i + 1
until pi = p0 (back to the starting point)

The sequence 〈p0,p1, . . . 〉 includes all the pixels in the border of C, ordered coun-
terclockwise. In addition to the explicit representation of each pixel as a pair of
coordinates, the border can be compactly represented as a chaincode, i.e., as the
(coordinates of the) starting point followed by the sequence of directions that are
to be taken to locate each next pixel in the border with respect to the immediately
previous one, with reference to a pre-defined schema, e.g.,

3 2 1

4 · 0

5 6 7

Some applications require a map of the borders that delimit the connected com-
ponents in an image I , where each border is labeled with a different integer. This
can be obtained by defining a matrix L having the same size as I , whose elements
are all initially set at 0. Then, I is scanned top-down, left-to-right until a transition
from pixels for which P is false to pixels for which it is true or vice-versa is found
(representing the beginning of a connected component or of a hole in the image,
respectively). On the ‘true’ pixel of such a transition, the above algorithm is started,
setting at 1 the elements of L that correspond to pixels included in the border se-
quence. Once the algorithm terminates, the image scanning is continued, and the
algorithm is restarted on the next transition (unless the corresponding ‘true’ pixel is
already labeled in L) using the next available integer as a label. The same proce-
dure is repeated until the bottom-right corner of I is reached, at which moment the
current integer represents the number of borders found, and L is the map.

Dilation and Erosion Some image processing tasks require to shrink and/or grow
connected components in a given image, which can be thought of as removing or

4.4 Content Processing 133

adding, respectively, border layers from/to the connected component. Considering
an image I as a set of pixels, both tasks can be resolved by means of set operations
involving elements of the connected component C ⊆ I and a structuring element S

centered on an element (called the hot spot) that specifies how its shape must grow
or, conversely, which shapes should be shrunk to single points. The image operators
in charge of obtaining such effects, each of which is the converse of the other, are,
respectively:

dilation that extends a connected component C by adding a layer along each border
of C (both those on the outside and those of the holes), producing a new compo-
nent:

C ⊕ S = C ∪ {
p ∈ I ∩ S(c) | c ∈ C

};
erosion that reduces a connected component C by removing a layer from each
border of C (both those on the outside and those of the holes), producing a new
component that preserves all the inner pixels of C (those for which all pixels in the
structuring element are still in C):

C � S = {
p ∈ C | S(p) ⊆ C

}⊆ C.

Here, S(h) denotes the set of pixels identified by centering a structuring element S

on pixel h. Interestingly enough, eroding a component is the same as dilating the
corresponding complement. In the classical definitions, S = Nk(p) is the set of k-
neighbors of the hot spot. As usual, both k = 4 and k = 8 can be exploited: they
result in addition or removal of a layer one pixel thick along each border of C (both
those on the outside and those of the holes). However, any other kind of structuring
element can be exploited, to obtain fancier dilation and erosion effects.

One exploitation of dilation and erosion is for removing from an image noise in
the form of small specks: by a few iterated erosions, such specks are completely
deleted, after which applying an equivalent number of dilations the survivor com-
ponents are restored in their original shape. Other applications are for reducing a
connected components to a single point that represents it, or to a set of lines that
represent its skeleton (by progressive erosion), or for making thicker or thinner a
shape (e.g., to compensate for digitization defects).

Opening and Closing Based on dilation and erosion, two extremely useful oper-
ations can be defined, open:

C ◦ S = (C � S) ⊕ S

and close:

C • S = (C ⊕ S) � S.

The former is useful to eliminate from an image specks whose shape is smaller
than S; the latter can be exploited to fill holes and fissures in the image whose
shape is smaller than S. They are idempotent (i.e., after the first application, further

134 4 Image Processing

application using the same structuring element does not change the result) and dual
of each other (i.e., applying one on C or the other on C yields the same result):

C ◦ S = C • S, C • S = C ◦ S.

4.5 Edge Detection

Edge detection is an image processing activity aimed at finding the boundaries of
the elements represented in images. In fact, this is often a preliminary step to the
identification and recognition of interesting image details, such as objects or peculiar
patterns. The possible approaches can be divided into two categories, each of which
in turn includes several techniques:

Fixed methods detect shapes in the image by comparison to a set of stored tem-
plates, which significantly limits the number of shapes that can be actually recog-
nized. Indeed, being infeasible to store all possible shape templates, it may happen
that the shape of interest is not present in the database. These include, among oth-
ers, Pixel luminance (e.g., Image thresholding); Template matching; the Hough
Transform.

Flexible methods repeatedly modify a tentative shape until it overlaps the target
shape that is present in the image. They can be distinguished according to the
function exploited to determine the degree of correspondence between the data
in the image and the tentative shape, and also according to the kind of tentative
shape exploited. Examples of this category are Deformable Templates and Active
Contour Models.

A naive Image Thresholding technique consists in identifying the set of pixels
that delimit an object by enhancing the changes in luminance through proper fil-
ters (such as those introduced in previous sections), then binarizing the image (the
previous step should have improved the starting situation for the threshold determi-
nation). Each connected component obtained in this way can be considered an object
shape, possibly to be refined (e.g., using erosion or contour following) and matched
against available templates. Figure 4.3 shows an application of this procedure.

The Deformable Template technique consists in modifying a reference model
(the template) made up of one or more shapes, in order to match them as much as
possible with the shape to be recognized in the image at hand. One of the earlier ap-
proaches aimed at extracting facial features for identification purposes (by matching
eyes to circles enclosed in opposite parabolæ) [13]. Each point (x, y) of the template
shapes ‘has’ (i.e., is associated to) an energy E(x,y), and the energy of a shape is
given by the sum of the energies of all its points. Modifications to the template
are made by changing the shapes’ position and orientation, but keeping unvaried
the spatial relationship among them. Such changes take place by searching for the
shape-defining parameter values that maximize their energy. Energy is normalized
for each shape (e.g., based on its perimeter) to avoid maximization tending towards
the shape having the largest size. If available, more information about the shape to

4.5 Edge Detection 135

Fig. 4.3 Naive technique for identifying objects in a raster image. From left to right: original
image, gray level representation, Sobel horizontal and vertical components, merge of such compo-
nents with associated, Otsu thresholding, connected component separation

be extracted can be exploited by the procedure. In order to maximize E, however,
many parameter values come into play. Since iterating over all combinations of pos-
sible values for each parameter is infeasible, optimization techniques are exploited,
or fewer parameters are taken into account,3 as in the snakes approach presented
afterward.

Canny A state-of-the-art algorithm for edge detection, although improvements
thereof are available, is considered the one proposed by Canny [2]. It can find step-
and ramp-shaped edges (even in images affected by white noise), and turns out to
be optimal with respect to several parameters: precision and recall of the retrieved
edges (detection), tolerance in the retrieved edge compared to the actual one (lo-
calization), and avoidance of multiple outcomes for a single edge (one response:
a single edge should be returned for each point of the actual edge). The first and
last criteria are strictly related, in that worst edges are eliminated from competing
candidates.

The algorithm applies repeatedly the following basic steps:

1. Convolve I with a Gaussian of standard deviation σ , G(x,y) = e
− x2+y2

2σ2 ;
2. Estimate for each pixel in the image the local direction d normal to the edge;
3. Find the location of the edges using non-maximal suppression;
4. Compute the magnitude of the edge;
5. Threshold edges in the image to eliminate spurious responses,

3A way to obtain a ‘useful’ smaller set of parameters is using Principal Component Analysis
(PCA), a mathematical procedure that transforms a number of possibly correlated variables into
a smaller number of uncorrelated variables (the principal components), each of which accounts for
a portion of variability in the data (and can be ranked according to how much variability it catches).

136 4 Image Processing

for ascending values of the scale σ , and the final information about edges at multiple
scale is aggregated using the ‘feature synthesis’ approach. However, since it is quite
time-consuming, often these additional steps are omitted, if thorough robustness of
the outcome is not strictly needed.

Step 1 blurs the image, using for convolution a Gaussian mask of size n × n,
where the value of n must be defined. Some authors suggest taking it as the smallest
odd integer n ≥ 6σ to provide ‘full’ power to the Gaussian filter (smaller filters
would result in less smoothing).

Then, as to step 2, for each point (x, y) in the image, the magnitude and an-
gle/direction of the gradient are, respectively,

M(x,y) =
√(

∂fs

∂x

)2

+
(

∂fs

∂y

)2

and α(x, y) = tan−1
[
∂fs

∂y

/∂fs

∂x

]
.

Since M is obtained using the gradient, it contains crests around the local maxima,
and thus such values must be thinned using non-maxima suppression. For this, a fi-
nite number of directions to be considered must be specified. In an 8-neighborhood
approach, since pairs of opposite directions both denote the same edge, just four
(the horizontal, the vertical and the two diagonals) can be considered, placed at 45°
from each other. The edge direction is orthogonal to that of the gradient expressed
by α(x, y). Thus, the non-maxima suppression schema might be as follows:

1. Find the direction d (among the above four) closest to α(x, y)

2. if the value M(x,y) is smaller than at least two of its neighbors along d

(a) then set gN(x, y) = 0 (suppression)
(b) else set gN(x, y) = M(x,y),

where gN(x, y) is the final image.
Lastly, gN(x, y) must be thresholded to reduce false edge points. Too low thresh-

olds yield false positives, while too high ones yield false negatives (i.e., eliminate
correct edges). Canny uses thresholding based on hysteresis, and hence two thresh-
olds: a lower one TL and a higher one TH , suggesting the latter to be twice or three
times as large as the former. Thus, two additional images are obtained, respectively:

gNH(x, y) =
{

gN(x, y) if gN(x, y) ≥ TH ,

0 otherwise,

gNL(x, y) =
{

gN(x, y) if TL ≤ gN(x, y) < TH ,

0 otherwise.

The gN(x, y) < TH condition in the definition of gNL(x, y) ensures that the two
images have disjoint non-null values. Indeed, otherwise if TL < TH , the set of non-
null pixels in the former (strong edges) would be a subset of those in the latter (weak
edges).

All strong edges are directly considered as edges. Obviously, they are typically
affected by significant fragmentation (the higher the TH , the more empty regions).
Longer edges are obtained as follows:

4.5 Edge Detection 137

1. for all edge (i.e., non-zero) pixels p in gNH(x, y)

(a) Label as valid edge pixels all weak pixels in gNL(x, y) that are connected to
p (e.g., by 8-connectivity)

2. Set to zero all pixels in gNL(x, y) that have not been labeled as valid edge pixels
3. Add to gNH(x, y) all non-zero pixels in gNL(x, y)

In practice, there is no real need for two additional images, since everything can be
done directly during non-maxima suppression.

Hough Transform The Hough Transform [6] is a parametric method to identify
a shape within a distribution of points. Of course, drawing on the image all possible
instances of the shape and counting the number of overlapping points for each is
infeasible (although finite, due to the image being finite). Hough proposed switch-
ing on the opposite perspective, and counting for each point in the original image
the possible shapes that pass through that point. The shape must be parametrically
defined, which makes such a technique very suitable for regular geometrical shapes.
This is less limiting than it might seem because regular geometrical shapes indeed
pervasively occur as sub-components of real-world images. The basic idea consists
in searching for the shapes in the space defined by the shape parameters (parameter
space).

The algorithm is based on an accumulator, a multi-dimensional array that counts
how many foreground points in the image are intersected by each possible shape,
and in short works as follows:

1. for all non-background points (x, y) in the image I

(a) for all values (v1, . . . , vn) of the set of n parameters, each sampled in the
suitable range with a discrete step �i

(i) Increase the accumulator cell addressed by the coordinates (v1, . . . , vn)

(b) Select as significant instances of the shape in the image the points in the
parameter space having larger accumulator values associated.

A number of issues must be dealt with in order to practically apply this algo-
rithm. First of all, the selection of ‘high’ accumulator points is not trivial: taking
the absolute maximum would return only a few prominent instances of the shape
(and in general smaller instances are underestimated because they are made up of
fewer points so that some kind of normalization would be desirable). To tackle this,
a threshold is often used, or all local maxima (points in the accumulator whose
neighbors are smaller) are selected. In both cases, however, the approximations ap-
plied during the algorithm execution cause a shape to be actually represented by a set
of neighbor points rather than by a single point in the parameter space: hence, proper
techniques are needed to identify such regions, and their centroid is usually taken
as the single shape representative. Another issue concerns efficiency: smaller � in-
crements cause more refined shape identification, but increase runtime and memory
requirements for storing and filling the accumulator. In the following, the case of
straight lines will be discussed in more depth, to provide an understanding of the
method. Application to other shapes will be just sketched.

138 4 Image Processing

It is well-known that the equation of a line in the X–Y plane is

y = ax + b,

where a denotes the slope (0 for horizontal, negative for descending towards the
right-hand-side, positive for ascending towards the right-hand-side, infinite for the
vertical) and b is the height on the Y axis for x = 0. Having fixed an image point
p = (x, y), all possible lines passing through p satisfy the equation

b = −ax + y,

where now the constants are x and y and the variables a and b (or, equivalently, b is
a function of a). Thus, in the new plane A–B that represents the parameter space
for lines, the set of all lines passing through p is itself a line (a point in the image
is represented by a line in the parameter space, and vice versa). Now, finding the
segment that connects two points means finding the a and b parameters such that
both instances of the above equation applied to the coordinates of the two points
are satisfied. Put it another way, the intersection of two lines in the parameter space
denotes (the parameters of) a line in the image that passes through the two points
to which the lines in the parameter space are associated. More generally, the set
of lines in the parameter space that meet each other in a given point represents all
points in the image that belong to the same line: the larger the cardinality of such
a set, the more significant such a line in the image. For identifying segments in the
image, the accumulator can be extended to store, in addition to the number of points
intersected by the lines, the segment extremes as well, that are checked and updated
each time a new point is added.

Actually, the linear equation for lines is a bit odd because vertical lines, corre-
sponding to infinite slope, cannot be represented. A more suitable representation is
the polar one that expresses them in terms of angle θ over the X axis and radius r :

r = x cos θ + y sin θ,

where r is a function of θ . The angle can range in [0,π[only (the other angles
will denote just the same lines, considered in the opposite direction). The maximum
segment length to be considered corresponds to the image diagonal, and hence, if
the representation places the origin in the center of the image, the maximum radius
is just one half of it:

r = 1

2

√
width(I)2 + height(I)2 = 1

2

√
n2 + m2.

The same principle can be applied to more complex shapes, but the number of
parameters, and hence the problems of efficiency, may grow significantly. As to
circles, the equation of a circle having center (xc, yc) and radius r is

r2 = (x − xc)
2 + (y − yc)

2,

where, having fixed a point p = (x, y) in the image, there are three degrees of free-
dom (and hence parameters, and hence dimensions of the accumulator): xc, yc and r .

4.5 Edge Detection 139

For each given radius r , the set of all circles passing through point p in the image
corresponds to a circle of radius r in the parameter space (a symmetry with the case
of lines), and hence all circles of any radius for p correspond to cones in the whole
space. For ellipses, the matter is yet more complex, since there are five parameters
(xc and yc , coordinates of the center, rM and rm, the radii, and θ , the slope of the
major diameter over the X axis), which makes memory requirements quite stringent
even for large �’s.

Polygonal Approximation Polygonal approximation of contours is concerned
with describing complex shapes as polygons each of whose sides represents a piece
of contour which is actually more complex than a straight segment, while preserving
the overall ‘flavor’ of the original shape. This allows a more compact representation,
and can be deemed as a feature extraction technique (e.g., for supporting compar-
ison between shapes). Two strategies can be applied: a sequential one that follows
the shape contour, deciding at each point if a vertex of the polygon should be placed
there or not, and an iterative one where starting from a triangle the side that less fits
the curve is repeatedly identified and properly split, until a termination condition is
met.

A fast sequential algorithm (at partial expenses of precision) for performing such
a task was proposed in [12], where each point in the shape is examined only once
to decide whether it may represent a vertex of the target polygon. Differently from
other techniques, each polygon side starts and ends on points actually belonging to
the shape. The original shape, made up of n points, can be described explicitly as
a sequence of points 〈p0, . . . , pn〉 (which allows expressing non-uniformly spaced
points) or by delineating its contour (e.g., using a border following technique) and
representing it, for the sake of compactness, as a chaincode 〈p0, d1, . . . , dn〉 where
p0 is the starting point and d1, . . . , dn are the directions that identify each of the
next points p1, . . . , pn in the shape, with pn = p0.

The algorithm exploits a threshold T that represents the maximum allowed area
deviation per length unit of the polygon side (and hence, the larger the T , the longer
the segments and the looser the approximation of the original shape), expressed in
pixels:

1. Initialize v1 ← p0 = (x0, y0), i ← 0, j ← 1
2. repeat

(a) Assume vj = (0,0), by translating the coordinate system if necessary
(b) Initialize fi = 0
(c) repeat

(i) i ← i + 1

(ii) Li =
√

x2
i + y2

i , the length of the current line segment from vj to pi =
(xi, yi)

(iii) Update the deviation accumulator fi = fi−1 + �fi , where �fi = xi ·
�yi − yi · �xi with �xi,�yi the increments4

until (|fi | > T · Li) ∨ (pi = p0)

4If each point pi is a neighbor of pi−1 (i.e., points are equally spaced), �xi,�yi ∈ {0,1}.

140 4 Image Processing

(d) j ← j + 1 (found a new vertex in the polygon)
(e) i ← i − 1 (the previous point was the last acceptable one)
(f) vj = pi is the next vertex in the polygon, because the longest acceptable

segment vj−1vj has been found
until pi = p0 (back to the starting point)

In the end, the sequence of {vj }j=1,...,m denotes the set of vertices of the polygon
approximating the original shape, and m is the number of sides of such a polygon.

The authors report that the increment caused by extending the end of a segment
starting in vj from a pixel pi−1 to the next pixel pi can be expressed as

�fi = Li · Di,

where Di is the (signed) distance between pi−1 and the new segment vjpi , which
(by straightforward geometrical considerations) turns out to be the doubled area of
the triangle pi−1vjpi . This yields a total area deviation for a segment reaching the
kth point after vj equal to fk/2 =∑k

i=1 �fi/2 =∑k
i=1 LiDi/2.

A weakness of the method is that very narrow peaks in the shape to be ap-
proximated could be lost in the polygon, since the area deviation accumulated by
skipping them in the current segment is very low. In case they are to be preserved
as significant, a slight modification of the algorithm is needed. While building a
segment starting in vj , the farthest point p from vj is stored (candidates can be
noticed because the length L of the current segment decreases in the next point);
if L keeps decreasing for several points, the point pi whose distance D from p

reaches the value of T is considered as well. Then, the next vertex vj+1 is taken as
p for having a better approximation (with the disadvantage of additional calcula-
tions to restart again from p and follow again the partial contour from p to pi), or
as pi .

A lossless way to improve speed is to avoid computing the square root in the
inner loop by testing the squared condition f 2

i > T 2 · L2
i , where L2

i can be obtained
by just updating the previous value:5

L2
i = Li−1 + 2 · (xi�xi + yi�yi) + (�xi)

2 + (�yi)
2.

Further, but lossy, speed-up can be obtained by approximating Li as |xi | +
|yi | ≥ Li (which overestimates the value and hence yields rougher shape ap-
proximations) or as max(|xi |, |yi |) ≤ Li (which underestimates the value and
hence yields finer shape approximations), with the advice that the orientation of
the line segments affects the closeness of such an approximation to the actual
value.

The authors also suggest that, having fixed an even number k of consecutive
pixels in the shape, the likelihood that a point pi+k/2 is a corner is proportional to

5Note once again that, for uniformly spaced points, �xi,�yi ∈ {0,1} ⇒ (�xi)
2, (�yi)

2 ∈ {0,1}
as well, which clearly makes this computation trivial.

4.5 Edge Detection 141

the area deviation for the line segment pipi+j divided by the length of the current
segment.

Snakes Snakes [7] are an active contour technique aimed at identifying the outline
of the main object (the salient contour) represented in an image. Instead of finding
separate pieces (e.g., segments) of the contour, this strategy works on a closed shape
having vertices v = {v0, . . . ,vn} (where vn = v0), and progressively moves and de-
forms its sides and corners according to several energy factors. Since the approach
performs an energy minimization based on local optima rather than global ones,
different alternative solutions are possible, and the desired one can be returned if
the snake is initialized close to it by someone or by some preceding technique.
Then, it carries out the rest of the task autonomously. The model is active in that
it dynamically minimizes its energy functional. It is named after the behavior of
the contours while being deformed because of energy minimization, resembling a
snake.

A snake can be represented parametrically as v(s) = (x(s), y(s)), where
s ∈ [0,1] are the points of the snake normalized into [0,1]. In a discrete refer-
ence system with step h, such as an image, vi = (xi, yi) = (x(ih), y(ih)). The basic
model is a controlled continuity spline influenced by image forces and external con-
straints forces generated to minimize the overall energy functional of the snake,
defined as

Esnake =
∫ 1

0
Eintv(s) + Eimgv(s) + Econv(s)ds

or, in its discrete form,

Esnake =
n−1∑

i=1

Eint(i) + Eimg(i) + Econ(i),

where Eint is the internal energy of the spline due to bending, used to impose a
piecewise smoothness constraint; Eimg represents the energy related to some image
feature (typically, the image brightness) for attracting the snake towards edges, lines
and salient contours; and Econ gives rise to the external constraint forces in charge
of placing the snake near the desired local minimum.

The internal energy

Eint = 1

2

(
α(s)

∥∥∥∥
∂v
∂s

(s)

∥∥∥∥

2

+ β(s)

∥∥∥∥
∂2v
∂s2

(s)

∥∥∥∥

2)

with discrete formulation

Eint(i) = 1

2

(
αi

|vi − vi−1|2
h2

+ βi

|vi−1 − 2vi + vi+1|2
h4

)

controls the behavior of the snake both as a membrane and as a thin plate, weight-
ing their relative importance by means of parameters α(s) and β(s), respectively

142 4 Image Processing

(setting β(s) = 0 causes a second-order discontinuity, i.e., generates an angle, at s).
The use of an iterative technique based on sparse matrix methods allows processing
the whole set of points in the snake in a linear number of steps.

The total image energy is a combination of three elements (energy functionals)
that attract the snake towards lines, edges and terminations in the image, respec-
tively, weighted differently to obtain snakes with different behavior:

Eimg = wline · Eline + wedge · Eedge + wterm · Eterm.

The line component can just work on image intensity: Eline = I (x, y) (the sign of
wline determines whether the snake is attracted by light or dark contours). Another
option consists in following the scale space approach, taking the snake to equilib-
rium on a blurry image and then fine-tuning the details by progressively reducing
the level of blur. The component in this case becomes Eline = −(Gσ �∇2I)2, where
Gσ is a Gaussian having standard deviation σ . Minima of this functional lie on
zero-crossings of Gσ � ∇2I , that attract the snake but do not affect its smoothness.
The edge component pulls towards large image gradients: Eedge = −|∇I (x, y)|2.
Finally, terminations of line segments and corners are identified by the curvature of
level lines in a slightly smoothed image C = Gσ � I as follows: given the gradi-
ent angle θ = tan−1(∂C

∂y
/ ∂C

∂x
), n = (cos θ, sin θ) the unit vector along the gradient

direction and n⊥ = (− sin θ, cos θ) the unit vector perpendicular thereof,

Eterm = ∂θ

∂n⊥
= ∂2C/∂n2⊥

∂C/∂n
=

∂2C

∂y2

(
∂C
∂x

)2 − 2 ∂2C
∂x∂y

∂C
∂x

∂C
∂y

+ ∂2C

∂x2

(
∂C
∂y

)2

((
∂C
∂x

)2 + (
∂C
∂y

)2)3/2
.

External constraints can be represented as ‘springs’ anchored to pairs of points
(x1, x2), which results in adding −k(x1 −x2)

2 to Econ, or repulsion forces 1/r2 (the
1/r energy functional is clipped near r = 0 to prevent numerical instability).

To improve the final outcome of the snake, preventing it from being misled by
local energy optima, it has been proposed to work using two interrelated snakes
(each point in either has a correspondent in the other), one initialized outside the
shape to be found, and the other initialized inside of it [4]. The former progressively
shrinks, while the latter progressively expands, towards the target. When both reach
their equilibrium but still do not match each other, an additional driving force g(t) is
activated on the snake with higher energy to make it evolve by moving towards the
other, until its energy starts decreasing. Incidentally, the energies of the two snakes
must be rotation, translation and scale invariant to be comparable to each other.

The complete contour energy considered in [4] is

Esnake = 1

N

N−1∑

i=0

λEint(vi) + (1 − λ)Eext(vi),

where Eext = Eimg + Econ = Eedge and λ weights the relative importance of the in-
ternal and external energy in determining the snake evolution (λ = 1 ignores image
forces, while λ = 0 causes the snake shape to depend on image forces only).

References 143

The evolution of each vertex vt
i at time t to vt+1

i at time t + 1, tailored for not
exceeding one pixel, is

vt+1
i = vt

i + 1

2

(
λ

ei

h
+ (1 − λ)Fi

)
+ g(t)

ui − vt
i

|ui − vt
i |

,

carried out until maxi |vt+1
i − vt

i | < δ (for a fixed δ), where

• u = {u1, . . . ,un} is the other snake,

• Fi = −k
(∂Eext

∂x
|vi

∂Eext
∂y

|vi

)
are the external forces, normalized by a constant k to the inter-

val [−1,1],
• ei = 1

2 (vi−1 − vi+1)− vi + θi
1
2 R(vi−1 − vi+1) are the internal forces, that pull vi

towards its estimated target position according to the desired shape (R is a +90°
rotation matrix and θ is related to the local tangent angle).

The points can be forced to be evenly spaced (|vi−1 − vi | = |vi+1 − vi |). If the
internal forces aim at promoting a circular shape, the internal angle at vi must be
ϕi = (N−2)π

N
, and θ = cot(ϕ

2) = cot((N−2)π
2N

) = tan(π
N

). A negative θ may cause the
contour to become concave. To ensure that the contour does not expand or contract
indefinitely, it must hold that

∑N−1
i=0 ϕi = (N − 2)π and 0 < ϕi < 2π .

References

1. Burger, W., Burge, M.J.: Digital Image Processing. Texts in Computer Science. Springer,
Berlin (2008)

2. Canny, J.F.: A computational approach to edge detection. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 8(6), 679–698 (1986)

3. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice Hall, New York
(2008)

4. Gunn, S.R., Nixon, M.S.: A robust snake implementation; a dual active contour. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 19(1), 63–68 (1997)

5. Hanson, N.R.: Patterns of Discovery—An Inquiry into the Conceptual Foundations of Science.
Cambridge University Press, Cambridge (1958)

6. Hough, P.V.: Method and means for recognizing complex patterns. Tech. rep. 3069654, US
Patent (1962)

7. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. International Journal
of Computer Vision 1(4), 321–331 (1988)

8. Lindsay, P.H., Norman, D.A.: Human Information Processing: Introduction to Psychology.
Academic Press, San Deigo (1977)

9. Otsu, N.: A threshold selection method from gray-level histogram. IEEE Transactions on Sys-
tems, Man, and Cybernetics 9(1), 62–66 (1979)

10. Rosenfeld, A.: Picture Processing by Computer. Academic Press, San Diego (1969)
11. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision, 3rd (in-

ternational) edn. Thomson, Washington (2008)
12. Wall, K., Danielsson, P.E.: A fast sequential method for polygonal approximation of digital

curves. Computer Vision, Graphics, and Image Processing 28, 220–227 (1984)
13. Yuille, A.L.: Deformable templates for face recognition. Journal of Cognitive Neuroscience

3(1), 59–70 (1991)

Chapter 5
Document Image Analysis

One of the main distinguishing features of a document is its outward appearance (its
layout), as determined by the organization of, and reciprocal relationships among,
the single components that make it up (e.g., title, authors and abstract of a sci-
entific paper; addressee, sender logo, subject, date and signature of a commercial
letter; etc.). It is so important that very different component organizations have been
designed and established for different kinds of documents (e.g., scientific papers,
newspapers, commercial letters, bills, etc.), while documents of the same kind typi-
cally show very similar appearance (e.g., all scientific papers have a prominent title
followed by authors, affiliations and abstract; all commercial letters have the sender
logo and addressee on the top and the signature at the bottom), although subtle dif-
ferences in organization are often exploited for characterizing their specific sources
(e.g., scientific papers by different publishers). The importance of such a feature
is due to its immediately hitting the visual perception level, so that a quick glance
is sufficient to humans for identifying the document kind and its relevant compo-
nents, even without actually reading their content. As a consequence, great effort
has been spent in the computer science research to work on this level and reproduce
the human abilities in understanding a document layout. Document Image Analysis
is concerned with the automatic interpretation of images of documents [39].

5.1 Document Structures

Any document is characterized by a geometrical/perceptual structure in which its
components are visually organized, referred to as its layout structure. It is a fun-
damental element for human recognition and understanding of the document, and
defines a hierarchy of abstract representations of the document spatial organization.
If such a hierarchy is graphically represented as a tree, its root corresponds to the
entire document (usually a sequence of pages), while the leaves (corresponding to
the bottom of the abstraction hierarchy) are the basic blocks that can be found in the
document, and internal nodes represent different levels of compound components
(typically words, lines, groups of lines, frames, pages). Since multi-page documents

S. Ferilli, Automatic Digital Document Processing and Management,
Advances in Pattern Recognition,
DOI 10.1007/978-0-85729-198-1_5, © Springer-Verlag London Limited 2011

145

146 5 Document Image Analysis

can be processed at the level of separate pages, in the following sections each single
page will be considered as a document by itself. While not representing a limitation,
this is important because in this way, whenever only some pages in a document are
significant to the aims for which it is processed, irrelevant ones can be simply ig-
nored. At the page level, several groups of strictly related visual components can be
distinguished, called frames, that are conventionally identified as rectangular areas
of interest each of which should ideally play a specific logical role in the document
itself (e.g., the title or the author in an article). The process of identifying the basic
components in a document and then reconstructing their hierarchical organization
is called layout analysis.

After detecting the geometrical structure of a document, its components can be
associated to a logical function expressing the role they play in the document (e.g.,
title, authors and sections in a scientific paper; sender, addressee, subject and date in
a commercial letter; etc.). Indeed, the role played by a layout component represents
meta-information that could be exploited to label the document in order to help its
filing, handling and retrieval in a collection or library. The logical components can,
in turn, be organized in a hierarchical structure, called logical structure, resulting
from the progressive split of the document content in smaller and smaller parts on
the grounds of the human-perceptible meaning of their content. The leaves of such
a structure are the basic logical components, such as authors and title of a journal
paper or the date and place of a commercial letter. Internal nodes of the structure
represent compound elements, such as the heading of a paper, that encompasses
title and authors. The root of the logical structure is the document class, such as
‘scientific paper of the Springer-Verlag Lecture Notes series’ or ‘commercial letter’.

Figure 5.1 shows a document along with its layout and logical structures. An
ideal layout analysis process should result in the identification of a set of frames,
such that a non-ambiguous correspondence could be established between each of
them and a possible logical component. In practice, however, an approximation in
which, although the retrieved frames do not exactly match the theoretical ones, it
is nevertheless possible to distinguish their logical meaning, can be considered a
satisfactory output of a layout analyzer. Moreover, often only some of the document
components are useful for accomplishing a task and need to be correctly identified.
In any case, layout analysis is a fundamental step towards the interpretation of a
document. Once the logical components of interest have been found, they must be
processed according to the type of their content in order to extract the information
they carry. In some sense, each component undergoes a sequence of steps that (al-
though specific for each component) is analogous to that formerly applied to the
whole document: pre-processing, classification, understanding.

The recognition of these structures in a digital document starts from their descrip-
tion available in the source file. The information aggregates expressed by the source
file formats are typically of very low level: pixels in the case of images, (fragments
of) words and graphical items in semi-structured formats, or organizational blocks
in the case of structured formats. The first two provide spatial information about
the components, but lack in organizational information, while the converse holds
for the last kind. Thus, independently of the source representation, the processing

5.1 Document Structures 147

Fig. 5.1 Overlapped layout and logical structures in the first page of a scientific paper. The former
includes the nodes in the tree surrounded by vertical stripes and arrows, the latter includes the
labeled nodes

steps aimed at extracting high-level structures from its layout need suitable repre-
sentation formalisms to describe the document component organization they take
as input or produce as output. There are several perspectives for these higher level
representations. The layout structure description requires the ability of representing
the geometrical organization of components, while the logical structure poses to the
need for expressing the role of components.

5.1.1 Spatial Description

Dealing with a document layout, the spatial representation of components becomes
of crucial importance, and hence deserves a deeper treatment. Here we will focus
on the perceptual aspects, although much research has been also devoted to the
development of computer structures for storing spatial data [40]. In this perspective,
given a set of regions in the space, several kinds of spatial relations come into play,
among which [17]:

Topological (corresponding to the mathematical concept of topology) deal with
neighborhood and overlap. Ordinal relations are an (often sufficient) simplifica-

148 5 Document Image Analysis

tion thereof that considers only containment (which is indeed an ordering relation-
ship1) [27].

Direction (corresponding to the mathematical concept of order) consider order in
space.

Metric (corresponding to the mathematical concept of algebra) refer to the possi-
bility of making measurements, such as distances.

Here we are interested in the first two kinds.

4-Intersection Model According to the 4-Intersection model [17], so called be-
cause all possible cases can be represented in a 2 × 2 matrix,2 topological relations
can be expressed mathematically by considering each region R as a set of points in
the plane, and distinguishing its interior Ri and its boundary Rb. Given two regions
R′ and R′′, each of the following situations or its negation must occur:

1. ∃x : x ∈ R′
b ∧ x ∈ R′′

b (boundaries touch each other)
2. ∃y : y ∈ R′

i ∧ y ∈ R′′
b (a boundary crosses an interior)

3. ∃w : w ∈ R′
b ∧ w ∈ R′′

i (a boundary crosses an interior)
4. ∃z : z ∈ R′

i ∧ z ∈ R′′
i (common interiors)

for a total of 24 = 16 combinations, of which only eight are valid:

disjoint(R′,R′′) ⇔ ¬(1) ∧ ¬(2) ∧ ¬(3) ∧ ¬(4);
meet(R′,R′′) ⇔ (1) ∧ ¬(2) ∧ ¬(3) ∧ ¬(4);
overlap(R′,R′′) ⇔ (1) ∧ (2) ∧ (3) ∧ (4);
covers(R′,R′′) ⇔ (1) ∧ ¬(2) ∧ (3) ∧ (4) and its converse:
covered_by(R′,R′′) ⇔ (1) ∧ ¬(2) ∧ (3) ∧ (4);
inside(R′,R′′) ⇔ ¬(1) ∧ ¬(2) ∧ (3) ∧ (4) and its converse:
contains(R′,R′′) ⇔ ¬(1) ∧ (2) ∧ ¬(3) ∧ (4);
equal(R′,R′′) ⇔ (1) ∧ ¬(2) ∧ ¬(3) ∧ (4).

All of them stay invariant under several transformations (e.g., scaling and rotation).
Ordinal relations can be defined in terms of the above concepts as:

is_part_of(R′,R′′) ⇔ inside(R′,R′′) ∨ covered(R′,R′′);
consists_of(R′,R′′) ⇔ contains(R′,R′′) ∨ covers(R′,R′′).

As to direction relations, the cardinal directions provide a good idea of the con-
cept and of the various possibilities. Unlike the previous cases, the direction of
an observed object is always expressed relative to another object, called the ref-
erence (and denoted in the following by overlined symbols). Let us denote North
as N , South as S, West as W and East as E, and the position of the reference
as I . A 4-direction model D4 = {N,S,W,E} or, more often, the more flexible
8-direction model D8 = {N,NE,E,SE, S,SW,W,NW} can be exploited to locate

1A binary relationship is an ordering relationship if it is reflexive, antisymmetric and transitive.
2An evolution of this model that considers also the complement of the region (and hence a 3 × 3
matrix), called 9-Intersection model, was successively developed [16, 18].

5.1 Document Structures 149

observed objects with respect to the reference [24]. All relationships are transitive;
I is obviously symmetric as well, while all the others are pairwise mutually oppo-
site: N–S, W–E, NW–SE, NE–SW . Differently from topological relations, there is
no complete agreement in the literature on their definition; here we will refer to the
projection-based approach of [40].

Let us start from single points. Considering the reference point placed in the
origin of a Cartesian axes system, N consists of the positive y axis, S of the negative
y axis, W of the negative x axis and E of the positive x axis; the rest are associated
to the four quadrants. More generally, given a reference point (x, y), the directions
of an observed point (x, y) with respect to it are defined by the following areas:

W Y E

N NW Nr NE
x < x ∧ y > y x = x ∧ y > y x > x ∧ y > y

X Wr I Er

x < x ∧ y = y x = x ∧ y = y x > x ∧ y = y

S SW Sr SE
x < x ∧ y < y x = x ∧ y < y x > x ∧ y < y

where the relations denoted by a r subscript are restricted to half-lines; more re-
laxed versions thereof, that involve whole rows or columns of the above schema,
are shown as headings and are defined as follows:

N = NW ∨ Nr ∨ NE, S = SW ∨ Sr ∨ SE,

W = NW ∨ Wr ∨ SW, E = NE ∨ Er ∨ SE,

X = Wr ∨ I ∨ Er, Y = Nr ∨ I ∨ Sr .

One can step from single points to regions by working on the sets of points that
make up the regions, and combining them by means of universally and existentially
quantified formulæ. For any relation R ∈ D8,

• Its strong version is defined as

Rs(R,R) ⇔ ∀p ∈ R,∀p ∈ R : R(p,p);
• Its weak version Rw is a relaxed version that admits some overlapping of the two

bounding boxes, provided that the opposite does not hold for some pair of points;
• Its bounded versions Rsb and Rwb are as above, but requiring that the bounding

box of the observed region falls within the projection of the reference;
• Its just version Rj relaxes the strong version allowing and requiring that at most

the bounding box boundaries touch each other;
• Its corresponding general version is defined as:

R
(
R′,R′′) ⇔ Rs

(
R′,R′′) ∨ Rw

(
R′,R′′) ∨ Rj

(
R′,R′′).

It can be immediately noticed that, some of these relations being defined in terms of
others, the former imply the latter.

150 5 Document Image Analysis

Fig. 5.2 Partition of the
plane into 25 zones with
respect to a reference
rectangle

Example 5.1 (Some direction relations for regions)

weak N : Nw(R,R) ⇔ ∃p∀p : N(p,p) ∧ ∀p∃p : N(p,p) ∧ ∃p,p : S(p,p);
strong bounded N : Nsb(R,R) ⇔ Ns(R,R) ∧ ∀p∃p : NW(p,p) ∧ ∀p∃p : NE(p,p);
weak bounded N : Nwb(R,R) ⇔ Nw(R,R) ∧ ∀p∃p : NW(p,p) ∧ ∀p∃p : NE(p,p);
just N : Nj (R,R) ⇔ (∀p,p : N(p,p) ∨ X(p,p)) ∧ ∃p,p

: X(p,p) ∧ ∃p,p : N(p,p);
weak NE : NEw(R,R) ⇔ ∃p∀p : NE(p,p) ∧ ∃p,p : S(p,p) ∧ ∀p∃p : NE(p,p),

where points denoted p belong to region R and points denoted p belong to the
reference R.

Minimum Bounding Rectangles An interesting discussion about spatial relation-
ships between two rectangles in the space is provided in [40]. Indeed, the document
components are often represented in terms of their minimum bounding box, and thus
those relationships can be usefully exploited as spatial descriptors for the document
components organization. Given a reference rectangle R, the straight lines passing
from its four sides partition the plane into 25 possible zones such that any observed
point must fall within one of them, as depicted in Fig. 5.2:

• 1 rectangle (zone 13);
• 4 points (zones 7, 9, 17, 19);
• 4 segments (zones 8, 12, 14, 18);
• 8 half-lines (zones 2, 4, 6, 10, 16, 20, 22, 24);
• 8 unlimited areas (zones 1, 3, 5, 11, 15, 21, 23, 25).

This allows the maximum flexibility in representing the position of a single point
with respect to R. In particular, R occupies exactly the limited elements of the par-
tition: zone 13 for its inner part and zones 7, 8, 9, 12, 14, 17, 18, 19 for its boundary.

More often, the (bounding box of the) observed object is another rectangle as well
(excluding the case of perfectly horizontal or vertical segments), not just a point. In
this case, a quick analysis of the schema in Fig. 5.2 reveals that 169 combinations
of mutual positions of the reference rectangle with respect to the observed one are
possible. Each specific situation is represented by just enumerating the zones of the
schema that overlap the compared rectangle. All topological and direction relations
between the two rectangles can be described in this way. If a whole page layout is to
be described, clearly there is no specific reference frame to be considered, but each

5.1 Document Structures 151

frame in turn becomes the reference. This would introduce redundancy because the
relation between any pair of frames would be described twice depending on which
is the reference in turn. This problem can be overcome by defining an ordering
on the frames (e.g., top-down, left-to-right based on the frame top-left corner) and
comparing each of them only to those following it in the ordering. When the frames
do not overlap each other, this also results in a simplification of the representation,
since the symmetric elements of the partition become useless (in the above example,
zones 1, 2, 3, 8, 11, 12 and 13 wouldn’t be ever exploited).

Example 5.2 (Spatial relations expressed using the 25-partitioned plane)
Topological relations:

inside ⇔ zone13 ∧ ¬ zone8 ∧ ¬ zone12 ∧ ¬ zone14 ∧ ¬ zone18;
equal ⇔ zone8 ∧ zone12 ∧ zone14 ∧ zone18 ∧ ¬ zone3 ∧
¬ zone11 ∧ ¬ zone15 ∧ ¬ zone23;

covered_by ⇔ zone13 ∧
¬ zone3 ∧¬ zone11 ∧¬ zone15 ∧ ¬ zone23 ∧
(zone8 ∨ zone12 ∨ zone14 ∨ zone18) ∧
(¬ zone8 ∨¬ zone12 ∨ ¬ zone14 ∨¬ zone18)

Direction relations:

Ns ⇔ (zone1 ∨ zone2 ∨ zone3 ∨ zone4 ∨ zone5) ∧
¬ zone6 ∧ ¬ zone8 ∧ ¬ zone10;

Nsb ⇔ zone3 ∧ ¬ zone2 ∧ ¬ zone4 ∧ ¬ zone8;
Nwb ⇔ zone3 ∧ zone8 ∧ zone13 ∧ ¬ zone2 ∧
¬ zone4 ∧ ¬ zone12 ∧ ¬ zone14 ∧ ¬ zone18.

5.1.2 Logical Structure Description

Parallel to the visual structure of a document, although strictly related to it for the
foregoing reasons, is its logical structure. Since the document may include several
kinds of components at different levels of complexity, playing different roles and
possibly interrelated in many different ways to each other, a sufficiently expressive
representation must be available to processing systems intended to handle them as
true documents and not just as computer files. XML is often exploited for this pur-
pose, as a powerful and flexible language.

DOM (Document Object Model) The DOM is a platform-independent represen-
tation to model the logical structure, content and style of documents, and the way
in which they can be built, accessed, navigated and manipulated by adding, deleting
or modifying elements and/or content. The DOM does not express the relevance or
structure of information in a document. It is a logical model that just specifies rep-
resentational and behavioral requirements, leaving each specific implementation in

152 5 Document Image Analysis

Fig. 5.3 DOM interface hierarchy

any language free to support them in any convenient way, as long as structural iso-
morphism is preserved: any two DOM implementations will produce the same struc-
ture model representation of any given document. Being object oriented, it models
documents using objects (each endowed with identity, structure and behavior) by
specifying:

• Classes (interfaces), an abstract specification of how to access and manipulate
documents and components thereof in an application’s internal representation;

• Their semantics, including properties (attributes) and behavior (methods);
• Their relationships and collaborations among each other and with objects.

It is particularly suited to represent and handle XML/HTML documents in object
oriented environments. Indeed, the DOM representation of a document (called its
structure model) has a forest-shaped structure which may consist of many trees
whose nodes are objects (rather than data structures). Some types of nodes may
have child nodes, others are leaves. Figure 5.3 shows the DOM interface hierarchy.

DOMImplementation provides methods for performing operations that are in-
dependent of any particular DOM instance. DOMException instances are raised
when attempting invalid operations. Node is the primary interface, representing a
single node in the document tree (for which several sub-types, or specializations,
are available). It exposes methods for dealing with children, inherited also by its
sub-classes that cannot have children. It includes a nodeName attribute inherited by
all its descendants to declare the name of their instances. NodeList handles ordered
lists of Nodes (e.g., the children of a Node); NamedNodeMap handles unordered
sets of nodes referenced by their name attribute.

Document is the (mandatory and sole) root of the tree, representing the whole
document and providing access to all of its data. Element represents an element in
an HTML/XML document, possibly associated with attributes represented by Attr
instances, whose allowed values are typically defined in a DTD. Attr objects are not
considered part of the document tree, but just properties of the elements they are

5.1 Document Structures 153

associated with. Thus, in fact they are not children of the element they describe, and
do not have a separate identity from them. CharacterData is an abstract interface
(it has no actual objects) to access character data, inherited by Text, Comment, and
CDATASection. Comment refers to the characters between <!-- and -->. Text
nodes can only be leaves, each representing a continuous (i.e., not interleaved with
any Element or Comment) piece of textual content of an Element or Attr.

DocumentType allows dealing with the list of entities that are defined for the
document. Each Document has at most one such object whose value is stored in
the doctype attribute. Notation nodes have no parent, and represent notations in the
DTD that declare either the format of an unparsed entity (by name) or processing
instruction targets. Entity represents a (parsed or unparsed) entity in an XML docu-
ment. EntityReference objects represent references to entities whose corresponding
Entity node might not exist. If it exists, then the subtree of the EntityReference node
is in general a copy of its subtree. Entity and EntityReference nodes, and all their
descendants, are read-only. ProcessingInstruction represents processor-specific in-
formation in the text of an XML document. CDATASection objects contain (in the
DOMString attribute inherited by Text) text whose characters would be regarded as
markup. They cannot be nested and are terminated by the]]> delimiter.

DocumentFragment is a ‘lightweight’ version of a Document object, useful for
extracting (e.g., copying/cutting) or creating a portion of document tree that can be
inserted as a sub-tree of another Node (e.g., for moving around document pieces),
by adding its children to the children list of that node.

Example 5.3 (DOM node types for XML and HTML) Internal nodes, along with
possible types of their children nodes:

Document
Element (at most one), ProcessingInstruction, Comment, DocumentType (at most
one)

DocumentFragment
Element, ProcessingInstruction, Comment, Text, CDATASection, EntityReference

EntityReference
Element, ProcessingInstruction, Comment, Text, CDATASection, EntityReference

Element
Element, Text, Comment, ProcessingInstruction, CDATASection, EntityReference

Attr
Text, EntityReference

Entity
Element, ProcessingInstruction, Comment, Text, CDATASection, EntityReference

Leaf nodes:
DocumentType, ProcessingInstruction, Comment, Text, CDATASection, Nota-
tion.

The DOM standard was defined by the W3C to establish a multi-environment
framework and avoid incompatibility among browsers. Different levels of specifi-
cations are available, each requiring additional features with respect to the previous

154 5 Document Image Analysis

levels. The current level is 2, although pieces of level 3 are progressively becoming
W3C recommendations. Level 1 [1] consists of two modules:

Core (mandatory) provides a low-level set of fundamental interfaces that can rep-
resent any structured document; it also defines (optional) extended interfaces for
representing XML documents.

HTML provides additional, higher-level interfaces that are used with those defined
in the Core to provide a more convenient view of HTML documents.

An implementation including the extended XML interfaces does not require the
HTML module, and XML interfaces are not required for implementations that only
deal with HTML documents. Level 2 [2] is made up of 14 modules: Core, XML,
HTML, Views, Style Sheets, CSS, CSS2, Events, User interface Events, Mouse
Events, Mutation Events, HTML Events, Range, Traversal. An implementation is
‘Level 2 compliant’ if it supports the Core; it can be compliant to single modules as
well (if it supports all the interfaces for those modules and the associated semantics).

Several APIs for the various programming languages have been developed to
handle DOM representations. This provides programmers with an interface to their
proprietary representations and functionalities (they may even access pre-DOM
software), and authors with a means to increase interoperability on the Web. DOM
APIs keep the whole document structure in memory, which allows random access
to any part thereof, but is quite space demanding.3

5.2 Pre-processing for Digitized Documents

Albeit new documents are nowadays produced directly in digital formats, where the
type of components (e.g., text, graphic, picture, formula, etc.) is explicit in the repre-
sentation, the huge number of legacy (paper) documents produced in past centuries
cannot be ignored. The typical way in which they are transformed into a computer-
readable form is by means of a digitization process (e.g., scanning), both because
it is cheaper and because it preserves the original characteristics of the document.
In such cases, they come in the form of raster images,4 and hence represented in
non-structured digital formats, although their content is not actually perceived by
a human user as a single graphical item. Thus, the distance between the document
representation and the information it contains is longer than in the case of natively
digital documents, and additional work must be carried out by a pre-processing
phase to bridge the gap from the pixel-level grain size to the component-level one.

3Another model, called SAX (Simple API for XML), processes the documents linewise. This avoids
the need to completely load them into memory, but bounds processing to proceed forward only
(once an item is passed over, it can be accessed again only by restarting processing from the
beginning).
4A minimum resolution for allowing significant processing is 300 dpi, but thanks to the recently
improved performance of computers the current digitization standards are becoming 400 dpi, with
a trend towards 600 dpi.

5.2 Pre-processing for Digitized Documents 155

Usually, such a phase acts on a simplified representation of the document image,
that allows reducing computational (time and space) requirements while still pre-
serving sufficient detail to provide effective results. The original details, of course,
are not lost, and can still be exploited when needed by tracing back the simplified
image (or portions thereof) to the source one.

One possible kind of simplification consists in decreasing the image color depth.
Often just a black&white representation of the image is considered, that is sufficient
for global processing purposes. Ideally, black should denote pixels that are relevant
to the processing objectives, independently of their specific meaning, while white
should express their irrelevance.5 A way for doing this is using thresholding tech-
niques that turn each pixel into either black or white depending on its passing a
significance value based on the distribution of colors or gray levels in the original
image (see Sect. 4.3.3). Later processing phases can (even selectively) switch back
to the gray-level or color representation, if needed or useful for their aims.

As another way for simplification, the image size can be reduced by scaling it
down. A pixel in the reduced image will take on a color that depends on the pixels
in the original image that collapsed onto it (e.g., the most frequent or the average).
If not excessive, while still preserving the significant components in the documents,
scaling has a number of desirable side-effects, such as the reduction of computa-
tional requirements for processing the document, and the removal of small (unde-
sired) specks introduced by the use, age or photocopying/digitization process of the
document. For A4-sized images at 300 dpi, reducing the resolution to 75 dpi (i.e.,
scaling down each dimension to 1/4th, and hence the whole image to 1/16th, where
each 4×4 region collapses onto a single pixel) has proven to be a good trade-off [4].
Again, whenever needed one can restore the original size by scaling up the entire
image or just parts thereof and reading the corresponding area from the original
image.

The document image often suffers from undesired noise introduced by the digi-
tization process itself. This makes the distance from the available representation to
the intended one even longer, and requires the processing techniques to be aware of
the possible kinds of noise and of the ways for reducing it, when present.

Document Image Defect Models A study on document image defects was carried
out in [7], focusing on symbols (possibly combined into more complex shapes) as
the fundamental elements to be recognized in a document image. Symbols can be
affected both by geometrical deformations and by additional imaging defects due
to the processing technologies and techniques. It may happen that a (combination
of) transformation(s) turns an original symbol to a shape that is closer to another,
different symbol. An attempt to model such defects resulted in the following cate-
gorization:

Resolution of the image quantization, depending on both the size of the symbol
and the acquisition resolution, and affecting the symbol shape smoothness;

5Switching from the color space to a logic one, they can be interpreted as denoting a pixel being
important, in terms of True or False.

156 5 Document Image Analysis

Blur affecting the symbol shape sharpness;
Threshold for binarization that can result in considering noise as actual content (if
too low) or in missing content (if too high);

Sensitivity of the digitization receptors, also depending on the symbol intensity;
Jitter image pixels are not digitized as a perfect grid, but may be displaced and
overlap to other cells of the theoretical grid;

Skew rotation of a symbol;
Width and Height horizontal and vertical stretching of the symbol, respectively;
Baseline a symbol being placed above or below the conventional baseline;
Kerning horizontal displacement of the symbol.

A model of defects as a support to image processing should ensure completeness
(being able to express all perceived defects), calibration (adaptivity of the underly-
ing distribution to any image population), simulation (being able to generate likely
defected images), enumeration (supporting the automatic computation of all possi-
ble symbolic prototypes implied by a given feature extraction system).

5.2.1 Deskewing

A common source of handicaps for a successful layout analysis comes from the
process and means by which the document image has been obtained. Indeed, photo-
copying or scanning a document page might introduce an undesired rotation of the
image due to imperfect document alignment during digitization. Such an odd orien-
tation is called the skew angle of a document image [5]: according to trigonometric
conventions, it is negative when the image is rotated clock-wise, or positive in the
opposite case. When this happens, identifying and evaluating the angle by which
the rotation took place, in order to restore the original orientation by applying an
inverse rotation, turns out to be fundamental for an effective application of the fur-
ther processing steps (e.g., segmentation), and in some cases might even preclude
the very feasibility of the document processing task.

The skew angle typically affects the orientation of the text lines or rectangular
pictures in the document, that are horizontal in the original image but not in the dig-
itized one, which thus provides a valid indicator of the problem [15]. An estimation
θ̂ of the actual angle θ can be obtained by building Hθ , the horizontal projection
profile (i.e., the histogram of the black pixels for each row) of the document im-
age I , for different possible rotations θ [21]. For the sake of efficiency, it can be
useful to apply such an estimate only on a previously selected sample region R ⊆ I

instead of the whole document image. As shown in Fig. 5.4, at the correct rota-
tion, when lines are horizontal (no skew), the histogram shape is characterized by
neat peaks having approximately the same width as the characters’ height, while the
profile shows smoother and lower peaks when the skew angle is large (the larger
the angle, the smoother and lower the peaks, suggesting a uniform distribution). As
a drawback, this might introduce errors when there is no single orientation in the
document. Indeed, when several local orientations are available, one could come up

5.2 Pre-processing for Digitized Documents 157

Fig. 5.4 Different skew angles (positive on the left, negative on the right) for a fragment of
scanned document and corresponding horizontal black pixel histograms. From top to bottom: 0°
(no skew), ±2.5°, ±5°and ±10°

with an angle that does not represent the most frequent (or dominant) orientation in
the document. Mathematically, this concept is captured by the variance; thus, locat-
ing the best rotation, and hence the correct skew angle, corresponds to identifying
the global maximum of the real-valued energy alignment measure function [5]

A(θ) =
∑

i∈R

H 2
θ (i)

within a suitable neighborhood of the horizontal. Another way for determining the
skew of a document image comes as a side-effect of the docstrum [38] technique, to
be described later in this chapter, that also allows handling different orientations in
the same document.

Once the skew angle has been identified, its effect can be compensated by inverse
rotation. Rather than considering each pixel in the original image and transposing it
into a corresponding position of the deskewed one, a better solution is considering
each pixel of the deskewed image and assigning it the value of the corresponding
pixel of the original one located by inverse rotation. Indeed, for rotations that are
not a multiple of the right angle, an approximation of the pixel coordinates to the
closest integers is needed, which in the former approach would produce pixels in
the original image that collapse on the same pixel of the deskewed one, leaving as a
consequence some deskewed pixels blank (see Sect. 4.4.1).

5.2.2 Dewarping

Dewarping is the term usually exploited to denote a recent area of interest for digi-
tized document pre-processing, aimed at compensating the noise introduced by the
flat (2D) representation of spatially spread (3D) documents. In fact, when scanning

158 5 Document Image Analysis

an open book the pages often cannot be completely flattened on the scanner bed,
and in the spine region the page shape appears deformed so that document compo-
nents, e.g., text lines, become curved rather than straight. The problem is even worse
if documents are photographed rather than scanned because this effect is amplified
and additional perspective distortions are introduced. In fact, this latter option is be-
ing given more and more attention, due both to the availability of cheap and compact
high-resolution cameras and to its causing a reduced stress on the document under
digitization (an extremely important requirement in the case of historical and fragile
items).

Dewarping is particularly crucial for ensuring a sufficiently good outcome from
application of OCR to the digitized document. Indeed, although an option could be
developing OCR systems that can directly deal with the problem and fix it, a more
straightforward approach consists in specific pre-processing of the page to remove
this kind of noise before applying standard OCR technologies. The approaches pro-
posed so far as potential solutions to restore the original flat version of a warped
document have focused either on the hardware side (by exploiting dedicated acqui-
sition devices that can better capture the 3D nature of the digitized object) or on
the software one (by working on a standard picture of the item obtained using a
traditional means). The latter option is cheaper and ensures wider applicability, for
which reason it is being given much attention. In particular, two kinds of approaches
exist for identifying the deformations to be corrected, one based on the geometrical
features of the overall document image, and one based on the distortions detected on
specific document components, such as text lines (a quite significant and straight-
forward indicator of the problem). Techniques attempted to carry out the image
dewarping task include splines, snakes, linear regression, grid modeling and even
fuzzy sets.

Segmentation-Based Dewarping A dewarping technique that exploits segmen-
tation of the document image and linear regression was proposed in [25]. Starting
from a black&white image, it consists of two macro-steps whose algorithms are
sketched below. In the following, elements having the same superscript, subscript
or bars are to be interpreted as associated to the same object. The former step pre-
liminarily identifies words and text lines:

1. Find the most frequent height h among the connected components of black pixels
in the page (since most of them will correspond to single characters, it is likely
to represent the average character height);

2. Remove the non-text and noise components (in [25], all components having
height or width less than h/4, or height greater than 3h);

3. Apply horizontal smoothing (see Sect. 5.3.2) with threshold h (the resulting con-
nected components should correspond to words);

4. Consider the set P of smoothed connected components (words) in the page (as-
sume a word w has bounding box coordinates (xl, yt , xr , yb), such that xl < xr

and yt < yb) and set a threshold T (=5h in [25]) for linking adjacent words in a
line;

5.2 Pre-processing for Digitized Documents 159

5. while P
= ∅:
(a) Initialize a new line L ← {w}, where w is the uppermost word in the page;
(b) Set the current pivot word wp ← w;
(c) O = {wo ∈ P |[yp

t , y
p
b] ∩ [yo

t , yo
b]
= ∅} (words whose horizontal projection

overlaps wp);
(d) while ∃w′ ∈ O whose distance from the right bound of wp is x′

l − x
p
r < T :

(i) L ← L ∪ {wr}, where wr is the closest such word;
(ii) wp ← wr ;

(e) wp ← w;
(f) while ∃w′ ∈ O whose distance from the left bound of wp is x

p
l − x ′

r < T :
(i) L ← L ∪ {wr}, where wr is the closest such word;
(ii) wp ← wr ;

(g) P ← P \ L;
(h) L ← L \ {w ∈ L|xr − xl < 2h} (too small a word width is insufficient to

provide a significant estimate of the word’s actual slope);
(i) Merge the two leftmost words in L if the first one has width less than T .

The latter step estimates the slope of single words, where the deformation is
likely to be quite limited (a simple rotation), and based on that restores the straight
page image by translating each pixel of each word therein to its correct position:

1. Initialize an empty (white) upright page image I

2. for each smoothed connected component (word) w, determine its upper and
lower baselines y� = a�x + b� and y⊥ = a⊥x + b⊥, respectively, with cor-
responding slopes θ� = arctana� and θ⊥ = arctana⊥, by linear regression of
the set of top and bottom pixels in each of its columns

3. for each line,
(a) Assign to its leftmost word w the slope θ = min(|θ�|, |θ⊥|) (supposed to be

the most representative), and to each of the remaining words wc the slope θc�
or θc⊥, whichever is closer to θ

(b) Straighten each word wc in turn according to w and to the immediately pre-
vious word wp by moving each of its pixels (x, y) to I (x, r + d), such that

r = (x − xl) · sin(−θ) + y · cos θ applies rotation, and

d = y∗ − yc∗ applies a vertical translation that restores the lines straight,

where

y∗ =
{

(a�xl + b�) · cos θ if |θ� − θp| < |θ⊥ − θp|,
(a⊥xl + b⊥) · cos θ otherwise.

That is, each word is rotated according to the closest slope to that of the previous
word and moved so that it becomes aligned to either the upper or the lower baseline
of the first word in the line.

If the original image I is not in black&white,

1. Compute a binarization B of I

2. M ← ∅ (initialization of a model to be used for dewarping)

160 5 Document Image Analysis

3. for each black pixel B(x, y) in B , M ← M ∪ {〈(x, y′), (d, θ, xl)〉},
where (x, y′) are the straightened coordinates computed as before for pixel
(x, y), and (d, θ, xl) are the parameters used for such a roto-translation, asso-
ciated to the word to which B(x, y) belongs

4. for each pixel I (x, y) of the dewarped page, I (x, y) = I (x,
y−d−(x−xl) sin(−θ)

cos(θ)
)

where 〈(x, y), (d, θ, xl)〉 = arg min〈(x′,y ′),(d ′,θ ′,x′
l)〉∈M(|x − x ′| + 2 · |y − y ′|).

That is, an inverse roto-translation is computed to find in the original image the
value to be assigned to each dewarped pixel, according to the parameters associated
to its closest black pixel in B .

5.2.3 Content Identification

The blocks singled out by segmentation may contain graphical or textual informa-
tion. To properly submit them to further processing (e.g., text should be acquired in
the form of encoded alphanumeric characters, while graphical components could be
input to an image processing subsystem), their kind of content must be identified.
Rough content categories that can be sensibly distinguished are: text, horizontal or
vertical line, raster image and vector graphic. Interesting results for this task, on A4
document images whose resolution was scaled down from 300 dpi to 75 dpi, were
obtained by applying supervised Machine Learning techniques, and specifically de-
cision tree learning [31] based on the following numeric features [4]:

• Block height (h);
• Block width (w);
• Block area (a = w × h);
• Block eccentricity (w/h);
• Total number of black pixels in the block (b);
• Total number of black-white transitions in the block rows (t);
• Percentage of black pixels in the block (b/a);
• Average number of black pixels per black-white transition (b/t);
• Short run emphasis (F1);
• Long run emphasis (F2);
• Extra long run emphasis (F3).

Measures F1, F2 and F3, in particular, are to be interpreted as follows [54]: F1 gets
large values for blocks containing many short runs, which happens when the text is
made up of small-sized characters (e.g., in newspaper articles); F2 gets large values
for blocks containing many runs having medium length, which happens when quite
large characters (say, 24 pt) are used (e.g., newspaper subtitles); finally, F3 gets large
values for blocks containing few runs, all of which very long, which means that the
characters used for writing the text have a very large size (this is typical in the main
titles of newspaper pages).

5.2 Pre-processing for Digitized Documents 161

5.2.4 Optical Character Recognition

The textual content of documents is of outstanding importance for a number of
reasons: it explicitly provides high-level information on the document content, it
is the main medium considered for document indexing and retrieval, and last but
not least, it allows referencing to several kinds of useful background knowledge.
Unfortunately, so long as the document is represented as an image, the characters
are considered aggregates of pixels, just as any other pictorial image therein. To
have access to the above opportunities, it is necessary to switch from the image level
to the explicit representation of text as such, expressed by means of text encoding
standards (e.g., ASCII or UNICODE) that allow its proper processing. In this way,
what is written on paper becomes a set of pixels, whose shape is analyzed in order
to identify characters, then words, then sentences, and so on.

The branch of Pattern Recognition aimed at the automatic identification of image
components corresponding to known shapes of text symbols and at their translation
into a sequence of encoded characters is known as Optical Character Recognition
(OCR). It is a member of a wider family of approaches aimed at Character Recog-
nition that can be organized in the following taxonomy [14]

On-line act while the user writes on special input devices.
Off-line start only after the whole set of characters to be recognized is available.

Magnetic (MCR) recognize characters written with magnetic ink (e.g., those used
in bank environments for card authentication).

Optical (OCR) retrieve characters in scanned or photographed documents.
Handwritten concerned with calligraphic texts written by persons.
Printed referred to the typographic fonts used in the printing industry.

Thus, for the purpose of this book, OCR is the focus of attention, and specifically
the Printed branch of OCR systems, which is more tractable than the corresponding
Handwritten counterpart, due to the many calligraphic styles that are to be faced in
the latter with respect to the more standardized fonts available in the former.

Being able to automatically read printed text has been long since an interest of
technologists. The first, mechanical attempts to design one such a system date back
to the end of the 1920s and the beginning of the 1930s. Since then, several improve-
ments were reached, particularly in the 1950s, that made this technology sufficiently
reliable for mass application, at least in controlled environments. Since 1965 in the
US, and later in other countries all over the world, mail services exploit OCR sys-
tems to recognize mail addresses by reading the ZIP code of the destination written
on letters and printing it on the letters themselves as a barcode used by sorting
out machines to forward the mail to the corresponding postal office. The first sys-
tem able to read any normal kind of printed font was developed in the 1970s by
R. Kurzweil, that a few years later sold his activity to Xerox. OCR of text written
in languages based on the Latin alphabet, or derivations thereof, reaches nowadays
success percentages around 99%, leaving little room for improvement (because the
residual errors are due to many different causes). Thus, human intervention is still

162 5 Document Image Analysis

required for proof-checking and/or ensuring that the OCR result is error-free. Con-
versely, research is still very active on recognition of languages based on non-Latin
scripts and characterized by a large number of symbols (e.g., Arabic, ideograms,
Indian), and of handwritten documents, particularly those including cursive callig-
raphy. This is a wide research area by itself, whose thorough discussion goes beyond
the scope of this book. Specialized literature can be referenced for a more specific
landscape of the field [13, 26, 32].

Recognition of a character starting from its image representation relies on low-
level graphical features, such as its blobs (connected components of pixels) or their
outlines (i.e., their contours). However, working on the original pixel-level descrip-
tion of such features would be unpleasant for several reasons: it would be memory-
and time-consuming, due to the number of details to be taken into account, and it
would be error-prone, due to the high specificity of each single item compared to
the others (even similar ones). Thus, the character images are usually reduced to
black&white or gray-level and described by an abstract representation that focuses
on the most relevant and promising characteristics, singled out by a feature extrac-
tion technique. Roughly, two main kinds of such features exist. Statistical ones focus
on quantitative aspects, and are typically expressed as attribute-value arrays. These
include, among others:

zoning the character image is partitioned into an equally spaced grid, considering
the total number of black pixels for each resulting cell;

projection histograms reporting the number of black pixels on each row and col-
umn of the image.

Structural ones are more centered on a qualitative perspective, and typically repre-
sented using graph-like structures. These specifically focus on discontinuity points
in which the curves abruptly change, and describe them in ways that range from
single pixels neighborhood to spatial relationships between noteworthy subparts of
the character shapes, such as loops, curls, end points, junction points and the way in
which they are spatially combined to form the character.

Several algorithms have been proposed to accomplish this task, some of which
purposely developed to act on images that do not specifically represent text (pic-
tures, 2D or 3D graphic drawings, etc.). For the actual recognition, Machine Learn-
ing techniques have been often attempted. In particular, a traditional sub-symbolic
approach used for recognizing known shapes in images are Artificial Neural Net-
works (ANNs) [31]: in the OCR case, these networks are provided with manuscripts
to be processed, and their intended output consists of the recognized characters, ob-
tained after a variable number of steps (depending on the degree of learning of the
network). Low accuracy in pure recognition is sometimes tackled with the use of
support dictionaries of the target languages. After a first ‘perceptual’ interpretation
of the results, and a preliminary grouping of characters in words, the dictionaries are
checked for verification of such words: if the recognized word is not present, and the
word in the dictionary that is closest to it lies within a given range of modifications
required to make them equal, then the latter is returned instead of the former.

5.2 Pre-processing for Digitized Documents 163

Tesseract Tesseract [49, 50] is a multi-platform OCR engine which recently
gained attention. It was born as a proprietary project, developed in C language by
Hewlett-Packard (HP) laboratories between 1984 and 1994 as a potential supple-
mentary software to be provided with HP flatbed scanners in place of other com-
mercial software. In 1995, it was submitted to the UNLV (University of Nevada,
Las Vegas) Accuracy test, and ranked in the top three OCR engines [43]. Nonethe-
less, it never became a final product, and always remained at the prototype stage.
Subsequently, it underwent significant changes, among which a porting to C++. In
its base version, Tesseract does not provide layout analysis features, it can process
only single-column TIFF (and some versions of BMP) images, and returns the ex-
tracted characters in a plain text (TXT) file. In 2005, Google obtained that it were
released as open source,6 and undertook an effort for updating and improving it.

Although many solutions embedded in Tesseract are different from mainstream
OCR techniques, it is interesting to have a look into it to see how an OCR engine
works. Given the input image, it applies the following processing steps:

1. The contours (outlines) of the connected components (blobs) in the image are
found (output is the same for both black-on-white and white-on-black charac-
ters); groups of nested components are considered separately.

2. Blobs whose bounding box is significantly larger or smaller than the median
character height are temporarily removed. Then, proceeding from left to right,
the sequence of adjacent blobs that draw a reasonably smooth curve is clustered
to make up a line, whose baseline, meanline, descender and ascender lines are
recorded meanwhile. Thus, even without explicit preprocessing, skewed or even
warped lines (which are frequent in scanned or photocopied volumes) are iden-
tified and described by a (least square fitted) spline interpolation. Finally, the
removed blobs are put back in place, and those that represent overlapping char-
acters from different lines are split according to the identified baselines.

3. Lines are split into words based on character spacing; first fixed pitch text is
identified and split into single characters, then proportional text spacing is han-
dled by a fuzzy evaluation of blank pixels between the baseline and meanline
(postponing critical cases after word recognition).

4. Each word undergoes the recognition process, after which, in case of success, it
is passed to an adaptive classifier to improve performance on subsequent recog-
nitions. First fixed pitch text is split according to the identified pitch; then pro-
portional text is processed as follows:
(a) Blob outlines are approximated polygonally. For those that include several

characters, chop points (concave vertices opposite to other concave vertices
or line segments) are located, and different combinations of chops are at-
tempted according to a backtracking technique, trying the most promising
chop points first, until a satisfactory split is obtained.

(b) It often happens that single characters are broken into several blobs due to
either excessive chopping, or the original character marks being very thin

6Code available at http://code.google.com/p/tesseract-ocr/.

164 5 Document Image Analysis

(e.g., because of low printing or scanning quality). For instance, the round
component of letters in Times font (o, d, b, etc.) might be split in two curves
(a left and a right one) due to the thinner thickness on the top and bottom.
For these cases an association step exploits the A* algorithm on an optimized
representation to search pieces to be joint together.

Each character is classified by extracting a set of features (horizontal/vertical po-
sition, angle) from its normalized outline and approximately matching each such
feature against a table that provides the corresponding set of possible classes.
After matching the whole set of features, a selected list of best candidate classes
(those most frequently found) is returned by a class pruner. Each such class is
associated to some character prototypes, expressed by a mathematical combina-
tion of configurations, whose distance from the current character is evaluated:
the closest prototype for overall and configuration-specific distances determines
the final class for the character.

5. Light linguistic analysis is carried out. The best words available for the given
segmentation are chosen among various categories (each having a different prior-
ity/weight in determining the final preference): top frequent word, top dictionary
word, top numeric word, top upper case word, top lower case (with optional ini-
tial upper) word, top classifier choice word. When different segmentations yield
different number of characters, two measures for comparing a pair of words are
used: confidence (based on the normalized distance from the prototype) and rat-
ing (additionally based on the total outline length of the unknown character, that
should not change depending on the number of components).

6. A new pass is performed through the page to try and solve unrecognized words
using the adaptive classifier trained with the words recognized later during the
previous step. To deal with many different fonts, the strictness of the static clas-
sifier is relaxed, and a font-sensitive classifier is trained on the single documents,
assuming they include a limited number of fonts.

7. Fuzzy spaces and small-cap text are handled.

The character prototypes are learnt by clustering the segments (described by hori-
zontal/vertical position, angle, and length) that make up the polygonal approxima-
tions of training characters. Since this classification technique can natively deal with
damaged characters, only undamaged ones are needed in the training phase, which
allows significantly reducing the number of training instances (tens of thousands
instead of more than a million) with respect to other techniques. Both the static and
the adaptive classification exploit the same classifier features, although the normal-
ization is different in the latter to improve distinction between upper and lower case
letters and tolerance to noise specks.

Advantages of Tesseract include high portability, the open source approach and
full Unicode (UTF-8) compliance. Several languages are supported (although not
comparable to commercial products), among which English (the first to be in-
cluded), French, Italian, German, Spanish, Dutch. Good recognition results are ob-
tained for resolutions between 200 and 400 dpi (larger resolutions do not necessarily
improve performance). Its fundamental disadvantage consists in its having never had

5.2 Pre-processing for Digitized Documents 165

a complete end-user oriented development: it can handle only single-page, single-
column input (it has no page layout analysis features, although recent development
included an algorithm for page segmentation [45, 51]), it does not provide output
formatting, no native User Interface is available, diacritical marks are not perfectly
handled, only left-to-right scripts are supported and, last but not least, no complete
and organized documentation is available for its potential developers.7

JTOCR JTOCR is an open source8 wrapper for Tesseract written in Java lan-
guage, that provides a multi-platform GUI front-end and overcomes several lim-
itations of that OCR engine. The additional facilities include file drag-and-drop,
pasting of images from the clipboard, localized user interface, integrated scanning
support (on Windows only), watch folder monitor to support batch processing, cus-
tom text replacement in post-processing. JTOCR also extends the set of accepted
formats for input images to other widely used and lighter formats: PDF, TIFF, JPEG,
GIF, PNG, and BMP. JPEG, due to the use of lossy compression, might cause prob-
lems in character recognition. Conversely, GIF saves space at the expenses of color
depth. In this respect, PNG represents a good tradeoff between image file size and
recognition quality. Another interesting feature is that JTOCR can process multi-
page TIFF images at once by separately calling Tesseract for each page transpar-
ently to the user.

Although originally intended for Vietnamese (its former name was VietOCR), it
works also with other languages if proper resources are provided in the tessdata
directory, and a corresponding tag is added in the ISO639-3.xml configuration
file. For instance, English can be added including the following tag:

<entry key="eng">English</entry>

according to which the tool looks in the aforementioned directory for a file whose
name starts with the same characters as specified in the key attribute (in the above
example, eng[...]). After doing this, the new dictionary can be exploited.

7The source code of Tesseract is structured in several directories:

ccmain main program
training training functionalities
display a utility to view and operate on the internal structures
testing test scripts (also contains execution results and errors)
wordrec lexical recognition
textord organization of text in words and lines
classify character recognition
ccstruct structures for representing page information
viewer client-side interface for viewing the system (no server side is yet available)
image images and image processing functionalities
dict language models (including extension by addition of new models)
cutil management of file I/O and data structures in C
ccutil C++ code for dynamic memory allocation and data structures.

8Code available at http://vietocr.sourceforge.net/.

166 5 Document Image Analysis

Example 5.4 (Sample ISO639-3.xml configuration file for JTOCR)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM

"http://java.sun.com/dtd/properties.dtd">
<properties>

<comment>ISO 639-3 Standard</comment>
<entry key="eng">English</entry>
<entry key="vie">Vietnamese</entry>
<entry key="fra">French</entry>
<entry key="spa">Spanish</entry>
<entry key="deu">German</entry>
<entry key="ita">Italian</entry>
<entry key="nld">Dutch</entry>
<entry key="por">Portuguese</entry>

</properties>

The Graphical User Interface includes an area to display the input image, and
another area to show the processing output. It allows zooming in and out the image
(each step applies an enlargement/reduction factor of 1.5), to select, using a mouse,
the excerpt from which the text is to be read, and to crop and send it to Tesseract.9

The actual recognition is started by calling the tesseract.exe executable and
passing it as parameters the image to be processed (converted to TIFF), the text
file that will receive the output and the desired language. Then, the output file pro-
duced by Tesseract is read and displayed on screen. Note that calling the Tesseract
executable (.exe) instead of its Dynamic Link Library (.dll) version allows for
smooth future updating because it will suffice to replace the old with the new engine,
without any side-effect on the wrapper itself.

5.3 Segmentation

After pre-processing has reduced the document to standard conditions, further anal-
ysis steps can start. A fundamental task in layout analysis is segmentation that, given
the source (raster or vector) document representation, returns a partition of its area
into portions of content representing significant pieces of the layout. Segmentation
consists of three steps [44]: simplification (that removes from the image informa-
tion that is superfluous or irrelevant for the specific task, e.g., using various kinds

9Version 0.9.2 of JTOCR, the latest available at the time of writing, has a bug in the crop operation
(method jMenuItemOCRActionPerformed of class gui.java). Let us represent a rectan-
gle having top-left corner at coordinates (x, y), width w and height h as a 4-tuple (x, y,w,h).
Given a selection (xS, yS,wS,hS) of the original image at zoom ratio p, the excerpt is identi-
fied as (xS

p
,

yS

p
, wS

p
, hS

p
). Clearly, no displacement is taken into account. To fix the problem, the

offset (xo, yo) = (xP −xI

2 ,
yP −yI

2) between the container panel (xP , yP ,wP ,hP) and the image

(xI , yI ,wI ,hI) has to be considered, and hence the correct formula is (
xS−xo

p
,

yS−yo

p
,

wS

p
,

hS

p
).

5.3 Segmentation 167

Fig. 5.5 A PDF document, its basic blocks and the target frames

of image filters), feature extraction (that gathers the data needed for the actual par-
titioning) and decision (that actually partitions the image). The result of such a pro-
cess is a set of content blocks that should be consistent and significant (and possibly
meaningful enough to deserve further and specialized processing). Thus, the quality
of the segmentation outcome can determine the quality and even the feasibility of
the whole document processing activity. In the low-level representation available in
the source file, the elements that play the role of basic blocks are characterized by a
single type of content (text or graphics). Conversely, the identified aggregates might
include basic elements having homogeneous content type, or might mix text and
graphic elements conceptually related to each other.

For easy handling, blocks and frames are usually represented by their minimum
bounding box, i.e., the smallest rectangle in which they can be enclosed. Since the
number of aggregates is usually less than the number of basic blocks, the segmented
page can be handled more efficiently than the original one. Figure 5.5 shows a doc-
ument, along with its basic components and the top-level aggregates, that can be
identified. An interesting indicator for a document image is its spread factor [4],
defined as the ratio between the average distance among regions in the document
and the average height of the regions themselves. In documents having a simple
structure, with a few, sparse content regions, this ratio is greater than 1.0, while in
complex documents, made up of many, crowded regions of content, it is less than
1.0. Thus, this measure can be useful in assessing the complexity of the document,
estimating the computational effort needed to process it, and in some cases properly
setting accordingly the processing parameters of the subsequent steps (if any).

5.3.1 Classification of Segmentation Techniques

Several methods have been proposed in the literature to identify the layout structure
of documents. They can be categorized according to various dimensions, depend-

168 5 Document Image Analysis

Table 5.1 A classification of
some layout analysis
algorithms according to
processing direction and
granularity level

Direction Representation Layout

RLSA Top-down Pixel Manhattan

RLSO Bottom-up Pixel, Block Non-Manhattan

X–Y trees Top-down Pixel Manhattan

CLiDE Bottom-up Block Manhattan

docstrum Bottom-up Block Non-Manhattan

Background
analysis

Top-Down Block Manhattan

ing on the particular perspective of interest. Table 5.1 summarizes some relevant
techniques that will be discussed in the following paragraphs.

One distinction concerns the grain-size of the matter on which the algorithms are
run. It clearly depends on the (representation of the) source document that can be
provided either in the form of a digitized document, where the pixels in the bitmap
can be considered as the basic blocks, or in the form of a born-digital document
(such as a word processing file, a PostScript or PDF file, etc.), where the basic blocks
are explicit. The two cases are very different as regards the abstraction level of the
input, and hence are typically faced by different algorithms, although the former
can be reported to the latter by considering connected components in the bitmap as
basic blocks. A limitation of many classical methods is their being designed to deal
only with digitized documents and hence their being inapplicable to born-digital
documents which are nowadays pervasive.

As to the behavior that determines the direction in which the layout tree is built,
two broad categories can be distinguished:

Bottom-up techniques start from elementary items (the smallest elements) in the
document description (e.g., the pixels in case of digitized documents) and progres-
sively group them into higher-level components [29, 38, 53];

Top-down ones start from the entire document page and progressively split it into
high-level components [8, 35, 42] and downward until basic blocks are found.

The latter are typically more efficient, but less effective in handling documents with
fancy layout. Of course, one might consider hybrid techniques that partly proceed
by grouping components and partly proceed by splitting components. For instance,

• Intermediate groupings can be identified bottom-up based on perceptual criteria
such as overlapping, adjacency or (type and/or size) similarity;

• Compound objects, such as paragraphs, columns, figures, tables and formulæ, can
be identified top-down.

In fact, many algorithms assume that the document under processing has a so-
called Manhattan (or taxicab) layout in which significant content blocks are sur-
rounded by perpendicular background areas [6]. This assumption holds for many
typeset documents, and significantly simplifies the processing activity, but cannot
be assumed in general. Top-down and most bottom-up methods are able to process

5.3 Segmentation 169

Manhattan layout documents only; conversely, bottom-up techniques are generally
considered better candidates for handling the non-Manhattan case, since basic com-
ponents grouping can identify significant aggregates ignoring high level regularities.
However, usually documents do show a Manhattan layout, and non-Manhattan be-
havior is limited to particular document areas/components. For this reason, in order
to improve efficiency, a hybrid approach can be exploited: first, Manhattan zones
in the page are identified top-down, and then a bottom-up technique is applied sep-
arately to each of them (or just to those in which suitable heuristics indicate non-
Manhattan behavior) to refine the outcome.

Another feature according to which classifying the various techniques is the
amount of explicit knowledge used during the layout analysis process. In this per-
spective, three levels of knowledge about the layout structure of a document can be
distinguished [34]:

• Generic (e.g., the baselines of the characters in a word are co-linear);
• Class-specific (e.g., text never appears aside images);
• Publication-specific (e.g., characters are at most 22 dpi).

Knowledge used in bottom-up approaches is usually less specific to the single docu-
ment than that used in top-down processing which, on the contrary, typically derives
from the relationships between the geometrical and the logical structure of particular
document classes.

The overall layout analysis outcome can be improved by leveraging peculiar fea-
tures of some documents, such as the presence of horizontal or vertical lines, or the
co-existence of different text sizes (and hence spacings) within the same document.
In born-digital documents, these features are explicitly represented, and hence can
be straightforwardly exploited; in digitized documents, they are implicit and require
proper pre-processing to be derived.

5.3.2 Pixel-Based Segmentation

Some algorithms work on digitized images directly at the pixel-level, ignoring any
possible structure of pixel aggregates. These strategies aim at obtaining directly
high-level components, without first identifying intermediate pixel aggregates that
can play a role in the document (e.g., single characters or straight lines).

RLSA (Run Length Smoothing Algorithm) A classical and efficient segmen-
tation technique is the Run Length Smoothing (sometimes called Smearing) Algo-
rithm (RLSA) [55]. Given a sequence of black and white pixels, a run is defined as
a sequence of adjacent pixels of the same kind, delimited by pixels of the opposite
color. The run length is the number of pixels in a run, and ‘smoothing’ a run means
changing the color of its pixels so that they become of the same color as the pix-
els delimiting the run. RLSA identifies runs of white pixels in the document image
and fills them with black pixels whenever they are shorter than a given threshold. In
particular, the RLSA works in four steps, each of which applies an operator:

170 5 Document Image Analysis

Fig. 5.6 Application of the
first three steps of RLSA to a
sample document. Top-left:
Original paper; Top-right:
Horizontal smoothing;
Bottom-left: Vertical
smoothing; Bottom-right:
Logical AND. Note the
presence of a false block in
the ANDed image

1. Horizontal smoothing, carried out by rows on the image with threshold th;
2. Vertical smoothing, carried out by columns on the image with threshold tv ;
3. Logical AND of the images obtained in steps 1 and 2 (the outcome has a black

pixel in positions where both input images have one, or a white pixel otherwise);
4. New horizontal smoothing with threshold ta on the image obtained in step 3, to

fill white runs inside the discovered blocks.

A top-down strategy based on RLSA consists of repeatedly applying it, working at
each round with progressively smaller thresholds on the zones identified as blocks
in the previous round. Much work in the literature is based on RLSA, exploiting it
or trying to improve its performance by modifying it [11, 46, 52].

The result of the first three steps of RLSA on a sample document is shown in
Fig. 5.6, where two shortcomings of the technique are evident. First, due to the
presence of thin black lines produced on the right border of the image by scanning or
photocopying, the horizontal smoothing covers most of the right margin of the page.
Although in many cases this is fixed by step 3, spurious blocks not corresponding to
any actual content in the original document, as in this case in the first column to the
right of the ‘Abstract’ heading, can be returned nevertheless. A further shortcoming
of this technique lays in its inability to handle documents having non-Manhattan
layout, as shown in Fig. 5.7.

The assessment of suitable thresholds is a hot problem, directly affecting the
overall effectiveness of the technique. Manually setting such thresholds is not triv-
ial, both because it is not a typical activity that (even expert) humans are used to
carry out on documents, and because there is no unique threshold that can equally
fit all documents. Studies on RLSA suggest to set large thresholds, in order to keep
the number of black pixels in the smoothed images sufficiently large to prevent the

5.3 Segmentation 171

AND operator from dropping again most of them (indeed, this is why an additional
horizontal smoothing is provided for). The original paper uses th = 300, tv = 500
and ta = 30 for document images scanned at 240 dpi, based on the assumption that
th and tv should be set to the length in pixels of long words, while ta should be so
wide as to cover a few characters. However, the generic claim that large thresholds
are better is not so helpful in practice. Hence, a strong motivation for the develop-
ment of methods that can automatically assess proper values for the th, tv and ta
parameters, possibly based on the specific document at hand; e.g., [41] proposes to
set

th = 2 · mcl, tv = mtld,

where

• mcl ∈ [�M · 3.24�, �M · 6.3�] is the mean character length of the document, com-
puted according to the maximum M = maxi H

b
h (i) of the histogram of horizontal

black runs Hb
h (i), with suitable tolerance;

• mtld = arg maxi∈[�0.8·mcl�,80] Hw
v (i) is the mean text line distance of the docu-

ment, located as the position of the global maximum of the vertical white runs
histogram Hw

v (i) in the specified range;

using a mix of statistical considerations on the histograms of horizontal/vertical
black/white run lengths and empirical definitions of multiplicative constants.

RLSO (Run-Length Smoothing with OR) RLSO [23] is a variant of the RLSA
that performs:

1. Horizontal smoothing of the image, carried out by rows with threshold th;
2. Vertical smoothing of the image, carried out by columns with threshold tv ;
3. Logical OR of the images obtained in steps 1 and 2 (the outcome has a black

pixel in positions where at least one of the input images has one, or a white pixel
otherwise).

Each connected component in the resulting image is considered a frame, and ex-
ploited as a mask to filter the original image through a logical AND operation in
order to obtain the frame content. The result on a sample document having non-
Manhattan layout, along with the corresponding frames extracted by ANDing the
original image with the smoothed one, is shown in Fig. 5.7.

Compared to RLSA, RLSO has one step less (no final horizontal smoothing is
performed, since the OR operation, unlike the AND, preserves everything from the
two smoothed images), and requires shorter thresholds (and hence fills fewer runs)
to merge original connected components (e.g., characters) into larger ones (e.g.,
frames). Thus, it is more efficient than RLSA, and can be further sped up by avoiding
the third step and applying vertical smoothing directly on the horizontally smoothed
image obtained from the first step. This does not significantly affect, and may even
improve, the quality of the result (e.g., adjacent rows having inter-word spacings
vertically aligned would not be captured by the original version). However, the OR
causes every merge of components to be irreversible, which can be a problem when

172 5 Document Image Analysis

Fig. 5.7 Application of RLSA (on the left) and of RLSO (on the right) to the non-Manhattan
digitized document in the middle. Below, the three text frames identified by RLSO

Fig. 5.8 Iterated RLSO on a
document with different
spacings. Each step shows the
segmentation outcome and
the horizontal and vertical
cumulative histograms
(scaled down to 10% of the
original values) according to
which the thresholds are
automatically assessed

logically different components are very close to each other and might be erroneously
merged if the threshold is too high. Conversely, too low thresholds might result in
an excessively fragmented layout. Thus, as for RLSA, the choice of proper horizon-
tal/vertical thresholds is a very important issue for effectiveness.

A technique to automatically assess document-specific thresholds on pages using
a single font size was proposed in [22] and is illustrated in Fig. 5.8. It is based on the
distribution of white run lengths in the image, represented by cumulative histograms
where each bar reports the number of runs having length larger or equal than the

5.3 Segmentation 173

Fig. 5.9 X–Y-tree partitions derived from the horizontal and vertical splits of a document

associated value. To introduce some tolerance, the histogram bars are scaled down
to 10%. The slope in a bar b of a histogram H(·) can be computed with respect to
the next bar b + 1 as:

H(b + 1) − H(b)

(b + 1) − (b)
= H(b + 1) − H(b)

(excluding the last bar that would be a meaningless threshold). The shape of the
graphic is monotonically decreasing, and its derivative (that is either negative or
null) is proportional to the number of runs introduced by a given length (the larger
the absolute value, the more runs). Larger and prolonged slopes correspond, re-
spectively, to frequent and homogeneous spacings that are likely to separate differ-
ent components; by contrast, flat regions (except leading and trailing ones) denote
candidate thresholds. A cautious approach requires a 0-slope flatness and takes as
threshold the initial run length of the first candidate region. Depending on the spe-
cific task, a larger (negative) slope value can be adopted.

Iterated application of RLSO to the smoothed image resulting from the previous
round, each time computing the thresholds, allows identifying progressively larger
aggregates of components in documents including different spacings, where a single
threshold that is suitable for all components cannot be found. In Fig. 5.8, application
to (0) yields (1), and application to (1) yields (2). Then, the horizontal histogram has
only the (useless) leading and trailing 0-slope regions, while vertically there is one
more flat zone that would merge the two frames together.

X–Y Trees A well-known top-down strategy for Manhattan layouts, proposed
in [36], repeatedly applies interleaved horizontal and vertical splits between disjoint
components, as shown in Fig. 5.9. It is extremely sensitive to skew. The resulting
partition of the page is represented in an X–Y tree [36], a spatial data structure where
nodes correspond to rectangular blocks, and node children represent the locations
of the horizontal or vertical subdivisions of the parent.

174 5 Document Image Analysis

The horizontal (respectively, vertical) split of a block is based on its vertical
(respectively, horizontal) projection profile, represented as a binary string reporting
0 for scanlines that contain only white pixels or 1 otherwise. The two-dimensional
page-segmentation problem is turned into a series of one-dimensional string-parsing
problems performed applying block grammars, whose rules define three kinds of
syntactic attributes:

atoms strings of 1s or 0s. A black atom is a maximal all-one substring. It is the
smallest indivisible partition of the current block profile. A white atom is an all-
zero substring. Classes of atoms are defined according to their length.

molecules strings of alternating black and white atoms. A black molecule is a se-
quence of black and white atoms followed by a black atom. A white molecule is
a white atom separating two black molecules. Classes of molecules are defined
according to their black/white pattern.

entities molecules to which a class label (e.g., title, authors, figure caption) has
been assigned, possibly depending on an ordering relationship. Classes of entities
are defined in terms of classes of molecules or of other entities.

The grammar productions derive from publication-dependent typographic specifi-
cations for the layout organization, defining the size and number of atoms within an
entity, or the number and order of allowed occurrences of entities on a page. They
are automatically coded starting from a purposely developed tabular representation.

Example 5.5 (Sample rules of a block grammar for an X–Y tree)

c ::= {0}2−5

A sequence of two to five 0s defines an atom of class c.

C ::= {cac}0−1b

At most one sequence of atoms cac, followed by an atom b, defines a molecule of
class C.

TITLE ::= C
HEADING ::= TITLE S AUTHORS

A molecule of class C defines an entity TITLE. Two entities TITLE and AUTHORS
separated by an entity of class S define an entity HEADING.

Grammars as well are organized in a tree structure whose levels correspond to
levels of the X–Y tree. Since several alternative grammars may be available for
application at a given level, this is actually an AND/OR tree.10 If the grammars at
a given level cannot assign a unique label to a block, the lower-level grammars are
exploited to identify labels for its sub-blocks.

A modification of this technique has been proposed in [12]. Two splitting clues
based on the average character width/height are defined: cutting spaces are hori-
zontal (vertical) white rectangles having the same height (width) as the region to

10A tree where the offspring of a node can be partitioned into groups such that the elements in the
same group are considered in AND and groups are considered in OR.

5.3 Segmentation 175

be split, and a width (height) larger than a threshold that avoids too fine-grained
splits; cutting lines are sufficiently thin horizontal (vertical) lines that have a width
(height) representing a sufficient portion of the overall width (height) of the region
to be split, and a sufficiently wide surrounding space. The split outcome is repre-
sented in a Modified X–Y tree (or M-X–Y tree), that includes cutting lines as leaves
and is extended with node attributes (expressing the cut direction for internal nodes,
or the kind of region content for leaf nodes) and arc attributes (that express the
nearest blocks to a given node by means of Below and Right_ of relations, this way
defining an adjacency graph associated to the tree).

5.3.3 Block-Based Segmentation

Other algorithms work on basic components that are blocks, rather than simple pix-
els. Such blocks often correspond to single characters or (fragments of) words, de-
pending on the source format of the document. They can be derived from a pixel-
level representation as the connected components therein, or can be readily avail-
able in the case of born-digital documents. In both cases, an abstract representation
of each basic block as the least rectangle that encloses it (minimum bounding box)
is usually exploited as a surrogate of the block itself.

The DOCSTRUM The docstrum (acronym of ‘document spectrum’) [38] is a
document page representation based on global structural features, useful for carry-
ing out various kinds of layout analysis tasks. It is obtained by means of a bottom-up
technique in which connected components in the page (described by attributes re-
lated to their bounding box and pixel features, and represented by their centroid)
are clustered according to a k-Nearest Neighbor approach. For any component ci ,
its k closest components cj , 0 < j ≤ k are selected, and the segment Dij that con-
nects the corresponding centroids is considered, in terms of the Euclidean distance
d and angle φ between those centroids. In the case of textual components, typical
neighbors of a letter will be its adjacent letters, belonging to the same or adjacent
words in the same line, and the letters in the adjacent lines above and below that are
closest to the vertical of its centroid. Thus, the use of k = 5 (as in Fig. 5.10) can be
interpreted as the search for the closest neighbors in the four cardinal points, plus
an additional ‘safety’ neighbor, which suffices for typical text analysis. This causes
the docstrum to draw long horizontal lines, each made up of several segments, in
correspondence to lines of textual content, in turn connected to each other by other
almost perpendicular segments. Different values could be set for k, with consequent
different computational demand, for specific purposes (e.g., smaller values focus on
single lines more than on line blocks, while larger values are needed to deal with
documents where between-line distances are wider than within-line ones).

The plot of all points (d,φ), representing such segments as polar coordinates
in the distance × angle plane, is the docstrum. It is worth noting that, since the
nearest-neighboring relation is not symmetric (if component c′ is in the k nearest
neighbors of component c′′, the opposite does not necessarily hold), the angle ori-
entation should be expressed in the whole [0°,360°] range to distinguish, based on

176 5 Document Image Analysis

Fig. 5.10 DOCSTRUM
segments between
components using 5 nearest
neighbors (reprint from [38]
©1993 IEEE). From top to
bottom: (a) the original
document fragment;
(b) the fragment with the
segments superimposed;
(c) the segments alone. The
emerging horizontal lines are
evident

the directionality of the segment, which is the reference component and which is the
neighbor. However, segments are usually considered undirected, and hence angles
range in the [0°,180°[interval only. This simplification clearly causes loss of poten-
tially significant or useful information. Although (being distances always positive)
the plot would in theory take just half the plane, for readability it is made symmetric
by replicating each point by its 180° mirrored counterpart.

The docstrum is typically cross-shaped (see Fig. 5.11): in case of no skew angle,
four clusters (sometimes collapsing into just two), pairwise symmetric with respect
to the origin, are placed along the x axis, and two clusters, again symmetric with
respect to the origin, are placed along the y axis. On the x axis, the inner clus-
ters (having larger cardinality) indicate between-character spacing, while the outer
ones (having much smaller cardinality) represent between-word spacing. The peak
distance in these two clusters represents the most frequent inter-character spacing,
which is likely to correspond to the within-line spacing. Conversely, the y axis clus-
ters denote between-line spacing. Statistics on the plot can support further analysis:

Spacing and Rough Orientation Estimation This is carried out by plotting the
histograms of the docstrum points’ distances and angles, respectively.

Identification of text lines and Precise Orientation Estimation Based on their
centroids rather than baselines, a transitive closure is carried out on the segments
and they are fit to lines that minimize the squared errors.

5.3 Segmentation 177

Fig. 5.11 Graphics for a document spectrum. From left to right: the docstrum, the histograms for
angles and distances, and the histogram for the size of components (reprint from [38] ©1993 IEEE)

Structural Block Determination Text lines are grouped by progressively merging
two partial groupings whenever two members, one from each, fulfill some require-
ments on parallelism, perpendicular and parallel proximity, and overlap.

Filtering Segments connecting components whose distance, angle or size are out-
side given ranges can be filtered out, and possibly processed separately.

Global and Local Layout Analysis Each group of components representing a
connected component of the nearest neighbor segments graph can be analyzed
separately, determining its own orientation and processing it independently.

The docstrum is preferably applied after removing salt-and-pepper noise (in or-
der to filter out insignificant components) and graphical components from the page
image. It should also be selectively applied on component subsets having homoge-
neous size, not to affect subsequent analysis based on average and variance statistics.

The CLiDE (Chemical Literature Data Extraction) Approach CLiDE [47] is
a project purposely oriented towards chemistry documents processing, in order to
extract information from both the text and the graphic. Here, we will focus on its lay-
out analysis strategy, that is general and based on the definition of a novel distance
among elements and on the exploitation of well-known greedy algorithms for the
bottom-up detection and representation of the layout hierarchy. It works assuming
that the page skew is inside a ±5° tolerance range.

The layout components of a document are arranged in an n-ary tree where each
level denotes a kind of component and the depth of a level is directly proportional
to the granularity degree of the kind of component it represents. The sequence of
levels (with an indication of the reading order for the corresponding components,
top-down ↓ or left-to-right →), from the root to the leaves, is:

page - strip (↓) - column (→) - block (↓) - line (↓) - word (→) - char (→)

178 5 Document Image Analysis

Such a tree is built bottom-up as a minimal-cost spanning tree11 for an undirected
graph (called the page graph) whose nodes are the connected components of the
page image and whose edges are weighted with the distance between the compo-
nents they link. In particular, the definition of distance between two components c′
and c′′ is peculiar to the approach:

D
(
c′, c′′) = max

(
dx

(
c′, c′′), dy

(
c′, c′′)),

where

dx

(
c′, c′′) =

{
0 if L(c′, c′′) < R(c′, c′′),
L(c′, c′′) − R(c′, c′′) otherwise,

dy

(
c′, c′′) =

{
0 if B(c′, c′′) > T (c′, c′′),
T (c′, c′′) − B(c′, c′′) otherwise,

with

L
(
c′, c′′) = max

(
c′.xl, c

′′.xl

)
, R

(
c′, c′′) = min

(
c′.xr , c

′′.xr

)
,

B
(
c′, c′′) = max

(
c′.yb, c

′′.yb

)
, T

(
c′, c′′) = min

(
c′.yt , c

′′.yt

)

and (c.xl, c.yt), (c.xr , c.yb) denote, respectively, the coordinates of the top-left and
bottom-right corners of the bounding box of a component c.

The tree is computed according to the algorithm by Kruskal because it ensures
that exactly the closest connections between components are chosen, and that there
is a one-to-one correspondence between the layout components of the page and the
subtrees of the outcoming tree. Actually, such a tree is in some sense ‘flattened’ as
follows. The algorithm is run until the next smallest distance to be considered ex-
ceeds a given threshold (the authors suggest the double or triple of the last included
distance). At that point a forest is available, in which each tree can be considered
as a single component in the next level, denoted by a new compound node. Then
the algorithm is restarted on the compound nodes (that are much fewer than before,
which improves efficiency). Figure 5.12 shows the first three levels of aggregation
on a sample text.

Several heuristics are exploited to improve the algorithm efficiency (a problem
mainly present in the initial stages of the process, due to the very large number of
graph nodes), and allow reaching linear time with respect to the number of compo-
nents:

• Using a path compression technique [48] that directly links each node to its root
when building the sub-trees, in order to speed up the retrieval of the root for each
node in subsequent steps;

• Representation in the graph of probably necessary distances (i.e., edges) only,
excluding for instance characters/words having vertical intersection less than a

11A tree built from a graph using all of its nodes and just a subset of its edges (spanning tree) such
that the sum of weights of the subset of edges chosen to make up the tree is minimum with respect
to all possible such trees. In Kruskal’s algorithm [48], it is built by progressively adding the next
unused edge with minimum weight, skipping those that yield cycles, until a tree is obtained.

5.3 Segmentation 179

Fig. 5.12 The first three
levels of aggregation of the
tree built by CLiDE:
character (at the bottom),
word (in the middle) and line
(at the top). Each bounding
box in higher levels
represents a compound node
associated to the subtree of
corresponding elements in the
immediately lower level

threshold (or no intersection at all) or horizontal distance larger than a threshold
(typically the width of a character), and blocks that are separated by a graphic
line;

• Sorting of the components by increasing horizontal or vertical distance (that
makes easier the selection of probably necessary distances).

Other heuristics are adopted for dealing with particular cases. For instance, two
word blocks are considered as belonging to the same line if their vertical intersection
is at least 70%, to tackle cases in which the bounding boxes of adjacent lines overlap
because the between-line spacing is minimum. Another problem is the presence, in
the same document, of several font sizes (and hence different spacings), for which
specific heuristics are needed.

Background Analysis An algorithm to identify the layout structure of a document
page, proposed in [10], is based on the analysis of the page background, and identi-
fies the white rectangles that are present in the page by decreasing area, reducing to
the ‘Maximal White Rectangle problem’:

Given

• A set of rectangles in the plane C = {r0, . . . , rn}, all placed inside a contour
rectangle rb

• A function defined on rectangles q : R4 → R such that if r is contained in r ′
then q(r) ≤ q(r ′) (e.g., the rectangle area)

Find a rectangle r contained in rb that maximizes q and does not overlap any rect-
angle in C.

The algorithm exploits a representation in terms of rectangular bounds and con-
tained obstacles (with the respective position inside the bound), based on the fol-
lowing data structures:

Rectangle a 4-tuple (xL, yT , xR, yB) representing the coordinates of its top-left and
bottom-right corners in the plane, (xL, yT) and (xR, yB), respectively;

Bound a pair (r,O) made up of a Rectangle r and a Set of obstacles O , each of
which is, in turn, a Rectangle overlapping r ;

Priority Queue a Set structure providing a direct access operator (dequeue) for
extraction of the element having the maximum value for a scoring function q .

180 5 Document Image Analysis

In particular, the following temporary structure is needed:

• Q: PriorityQueue of Bound
whose elements are of the form (r,O), organized according to a quality function
q consisting of the area of r :

q : R4 → R, q(r) = q(xL, yT , xR, yB) = |xL − xR| · |yT − yB |.
Starting from an initial bound (r,O), where rectangle r delimits the whole page
under processing and O is the set of basic blocks of content that are present in the
page, the problem is solved as follows:

1. Enqueue (r,O) in Q based on q(r)

2. while Q
= ∅ do
(a) (r,O) ← dequeue(Q)
(b) if O = ∅ then

(i) return r

(c) else
(i) p ← pivot(O)

(ii) Enqueue (rA,OA) in Q based on q(rA)

where rA = (r.xL, r.yT , r.xR,p.yT); OA = {b ∈ O|b ∩ rA
= ∅}
(iii) Enqueue (rB,OB) in Q based on q(rB)

where rB = (r.xL,p.yB, r.xR, r.yB); OB = {b ∈ O|b ∩ rB
= ∅}
(iv) Enqueue (rL,OL) in Q based on q(rL)

where rL = (r.xL, r.yT ,p.xL, r.yB); OL = {b ∈ O|b ∩ rL
= ∅}
(v) Enqueue (rR,OR) in Q based on q(rR)

where rR = (p.xR, r.yT , r.xR, r.yB); OR = {b ∈ O|b ∩ rR
= ∅}
The underlying idea resembles a branch-and-bound method and consists in itera-
tively extracting from the queue the element having the largest area: if the corre-
sponding set of obstacles is empty, then it represents the maximum white rectangle
still to be discovered, otherwise one of its obstacles is chosen as a pivot (the original
proposal suggests to choose the central one with respect to the current bound) and
the contour is consequently split into four regions (those resting above, below, to the
right and to the left of the pivot, i.e., rA, rB , rL, rR , respectively), some of which
partially overlap, as shown in Fig. 5.13. For each such region, the quality function
Q is evaluated, and the obstacles that fall in it are identified, this way creating a new
structure to be inserted in the priority queue. The procedure has a linear complexity
in the number of obstacles in the bound, that must be scanned to obtain the obstacle
sets OA, OB , OL and OR . This technique ensures that white areas are never split
into smaller parts, and hence the first empty bound that comes out of the queue is
actually the largest.

Example 5.6 (Definition of a sub-area in the Background Analysis algorithm) Con-
sider the case represented in the top-left frame of Fig. 5.13, and assume the pivot is
block R represented in solid black. Applying the required split to such a pivot, the
upper region includes obstacles R1 and R2, the right-hand-side region only R2, the
lower one only R3, and the left-hand-side one R1 and R3.

5.3 Segmentation 181

Fig. 5.13 Bound splitting according to a pivot in the maximal white rectangle algorithm

In the original algorithm, after a maximal background rectangle m is found, the
authors suggest saving such a white space into a supporting structure

• Background: Set of Rectangle (output),

adding it as a new obstacle to the set of obstacles O and restarting the whole pro-
cedure from the beginning until a satisfactory background is retrieved. However,
in this way all previously performed splits would get lost, and the new computa-
tion would not take advantage of them. To improve performance, [19] proposes just
adding m as an additional obstacle to all bounds in the current queue to which it
overlaps, and continuing the loop until the stop criterion is met. This yields the fol-
lowing algorithm:

1. Background ← ∅
2. Enqueue (r,O) in Q based on q(r)

3. while Q
= ∅ do
(a) (r,O) ← dequeue(Q)
(b) if O = ∅ then

(i) Background ← Background ∪{r}
(ii) Add r as a new obstacle to all elements in Q overlapping it

(c) else
(i) p ← pivot(O)

(ii) Enqueue (rA,OA) in Q based on q(rA)

where rA = (r.xL, r.yT , r.xR,p.yT); OA = {b ∈ O|b ∩ rA
= ∅}
(iii) Enqueue (rB,OB) in Q based on q(rB)

where rB = (r.xL,p.yB, r.xR, r.yB); OB = {b ∈ O|b ∩ rB
= ∅}
(iv) Enqueue (rL,OL) in Q based on q(rL)

where rL = (r.xL, r.yT ,p.xL, r.yB); OL = {b ∈ O|b ∩ rL
= ∅}
(v) Enqueue (rR,OR) in Q based on q(rR)

where rR = (p.xR, r.yT , r.xR, r.yB); OR = {b ∈ O|b ∩ rR
= ∅}
4. return Background

The authors of [19] also suggest that choosing as a pivot a ‘side’ block (i.e., the top
or bottom or leftmost or rightmost block), or even better a ‘corner’ one (one which is

182 5 Document Image Analysis

Fig. 5.14 Typical curves of
evolution in the background
analysis algorithm, useful for
defining a stop criterion
(reprint from [19] ©2008
Springer)

at the same time both top or bottom and leftmost or rightmost), results in a quicker
retrieval of the background areas with respect to choosing it at random or in the
middle of the bound. Indeed, in this way at least one white area can be immediately
separated from the margin of the current bound.

The algorithm works top-down since it progressively splits page fragments with
the aim of identifying the background. If the white rectangles are stored in the Back-
ground structure as they are retrieved, when the queue becomes empty their union
represents the page background, i.e., the ‘negative’ of the layout structure. Once the
background has been found, the geometrical structure of the page can be obtained
by opposition. However, it is clear that taking the whole procedure to its natural end
(retrieval of all the background) would just return the original blocks. If somehow
larger aggregates (frames) are to be found, the procedure must be stopped before
retrieving useless background pieces, such as inter-word or inter-line ones. A fixed
minimum threshold on the size of the white rectangles to be retrieved can be set (as
soon as a smaller white rectangle is retrieved, the whole procedure can be stopped),
but it is still too rigid for dealing with several different kinds of documents.

A further contribution of [19] consisted in an empirical study of the algorithm
behavior to help in defining such a stop criterion depending on the specific docu-
ment. The values of three variables were traced in each step of the algorithm until
its natural conclusion, as shown in Fig. 5.14 for a sample document:

1. Size of the queue (black line), normalized between 0 and 1;
2. Ratio of the last white area retrieved over the total white area of the current page

under processing (bold line);
3. Ratio of the white area retrieved so far over the total white area of the current

page under processing (dashed line).

Parameter 3 is never equal to 1 (due to the minimum size threshold), but becomes
stable before reaching 1/4 of the total steps of the algorithm. This generally holds
for all documents except those having a scattered appearance (the Spread Factor
introduced in Sect. 5.3 can be a useful indicator for this). Correspondingly, the trend
of parameter 2 decreases up to 0 in such a point, marked in the figure with a black
diamond. This suggests that the best moment to stop executing the algorithm is just

5.3 Segmentation 183

Fig. 5.15 Adjacency
between blocks for RLSO on
born-digital documents. The
central block is the reference,
and black blocks are the
adjacent blocks considered by
the algorithm. Gray blocks
are not considered adjacent

there, since before the layout is not sufficiently detailed, while after useless white
spaces are found (e.g., those inside columns and sections), as shown by the black
line in the graphic. Specifically, parameter 2 is more easily implemented, due to the
fixed limit 0 (whereas the limit of parameter 3 depends on the specific document). It
is worth noting that this value is reached very early, and before the size of the struc-
ture that contains the blocks waiting to be processed starts growing dramatically,
thus saving lots of time and space resources.

RLSO on Born-Digital Documents The principles underlying RLSO can be
transposed to the case of born-digital documents [23], where basic blocks (often
characters, fragments of words, images or geometrical elements such as rectangles
and lines) play the role of black runs in digitized documents, and the distance be-
tween adjacent components that of white runs. However, while each black pixel has
at most one white run and one next black pixel in each horizontal/vertical direction,
a block may have many adjacent blocks on the same side, according to their projec-
tions. Thus, the notions of adjacency and distance between blocks deserve further
attention. The latter is computed as in CLiDE. As to the former, the principle is that,
if the projection of a block in one direction meets several blocks whose projections
mutually overlap, only the closest of them is taken as adjacent, while the farther
ones are discarded. This is shown in Fig. 5.15, where the black blocks are consid-
ered adjacent to the block in the middle, and the arrows denote their distance. Note
that the two top blocks are not considered adjacent to the reference block, although
they could be joined to it by a straight arrow that would not overlap any other block.

Basic blocks are progressively merged into higher-level components as follows:

1. For each basic block, build a corresponding frame containing only that block;
2. H ← list of all possible triples (dh, b1, b2) where b1 and b2 are horizontally

adjacent basic blocks of the document and dh is their horizontal distance;
3. Sort H by increasing distance;
4. While H is not empty and the first element of the list, (d ′, b′

1, b
′
2), has distance

below a given horizontal threshold th (d ′ < th)
(a) Merge in a single frame the frames to which b′

1 and b′
2 belong

(b) Remove the first element from H ;
5. V ← list of all possible triples (dv, b1, b2) where b1 and b2 are vertically adja-

cent basic blocks of the document and dv is their vertical distance;
6. Sort V by increasing distance;

184 5 Document Image Analysis

7. While V is not empty and the first element of the list, (d ′′, b′′
1 , b′′

2), has distance
below a given vertical threshold tv (d ′′ < tv)
(a) Merge in a single frame the frames to which b′′

1 and b′′
2 belong

(b) Remove the first element from V .

Steps 2–4 correspond to horizontal smoothing in RLSO, and steps 5–7 to vertical
smoothing. Each frame obtained can be handled separately.

Efficiency of the procedure can be improved by preliminarily organizing the ba-
sic blocks into a structure where they are stored top-down in ‘rows’ and left-to-right
inside ‘rows’, so that considering in turn each of them top-down and left-to-right is
sufficient to identify all pairs of adjacent blocks while limiting the number of use-
less comparisons. Given a block, its horizontal adjacent is the nearest subsequent
block on the same row whose initial coordinate is greater than the final coordinate
of the block being considered, while its vertical adjacents are those in the nearest
subsequent row whose vertical projections overlap to it (as soon as the first non-
overlapping block having initial coordinate greater than the final coordinate of the
block being considered is encountered, the rest of the row can be ignored).

Although similar to that proposed in CLiDE, this method does not build any
graph, and improves efficiency by considering adjacent components only. The
“nearest first” grouping is mid-way between the minimum spanning tree technique
of CLiDE and a single-link clustering technique [9], where the number of clusters
is not fixed in advance, but automatically derives from the number of components
whose distance falls below the given thresholds. Compared to the ideas in DOC-
STRUM, here the distance between component borders, rather than centers, is ex-
ploited. Indeed, the latter option would not work in this case since the basic blocks
can range from single characters to (fragments of) words, and this lack in regularity
would affect the proper nearest neighbor identification. For the same reason, there
is no fixed number of neighbors to be considered, but all neighbors closer than the
thresholds are taken into account.

5.4 Document Image Understanding

Document Image Understanding (or interpretation) is “the formal representation of
the abstract relationships indicated by the two-dimensional arrangement of the sym-
bols” [33] in a document. The identification of the logical structure of a document
can be cast as the association of a logical component to (some of) the geometrical
components that make up the document layout. The outcome of such a process is
fundamental for distinguishing which components are most significant and hence
deserve further processing. For instance, the title, authors, abstract and keywords
in a scientific paper could be directly exploited to file the document and fill the
corresponding record fields. First of all, the whole document can be associated to
a document class, which is such a fundamental and common task to deserve be-
ing considered a separate step by itself (known as document image classification).
Indeed, a single collection usually includes several types of documents, having dif-
ferent geometrical structures that are to be handled differently from each other. In

5.4 Document Image Understanding 185

practice, the type of a document is often indicated by the geometrical structure of
its first page. Humans are able to immediately distinguish, e.g., a bill from an adver-
tisement, or a letter from a (newspaper or scientific) article, without actually reading
their content, but based exclusively on their visual appearance.

After assessing a document class, the document image understanding activity can
be completed by locating and labeling the logical components which appear in the
various pages, that often correspond to frames identified during the layout analysis
step. If different levels of logical components are present, it can be useful to pro-
ceed top-down, by looking for the larger aggregates first and then for the simpler
structures therein. Assuming that it is possible to identify logical components based
on the visual appearance only, just as humans do, the objective can be attained by
comparing the geometrical structure of each page against models of logical com-
ponents, that represent the invariant features of such components in the layout of
documents belonging to the same class. This task must necessarily be carried out
after the classification step because the kind of logical components that one can ex-
pect to find in a document strongly depends on the document class. For instance, in
a commercial letter one might expect to find a sender, possibly a logo, an address,
a subject, a body, a date and a signature; many of these components make no sense
in a scientific paper, where, in contrast, one might look for the title, authors and their
affiliations, abstract, possibly keywords and bibliographic references.

Form-based documents are characterized by neatly defined areas of the page in
which the various information items are to be placed, which significantly reduces
the effort needed to identify and separate them. Conversely, many other kinds of
documents (such as scientific papers) show an extreme variability in the geometrical
structure of the pages and in the arrangement of the components therein (e.g., the
title and headings may take just one or several lines, the number of authors and
their affiliations can range from one to many items, and the paragraph length can
vary significantly). Figure 5.16 presents an outstanding example of this variability:
although belonging to the same class of documents (scientific papers taken from
the same series), the front page of the paper on the left contains a part of the first
section, while that of the document on the right is not even able to include the whole
abstract. Because of this, while geometrical models that search for a certain kind of
information in a well defined area of the page can be of use in the case of forms,
rigid algorithms based on fixed rules are of little help to identify the logical structure
in the latter kind of documents, where the purely spatial approach to recognition
of components shows its limits. A deep analysis of human behavior easily reveals
that in those cases people support spatial considerations by a more complex kind
of knowledge concerning the relationships among components. Indeed, what helps
them in defining the proper role of a given component, and the type of document as
well, is the way it is related to the other components around the page and to the page
itself, more pregnantly than its intrinsic properties and attributes. For instance, it is
more useful to know, say, that the keywords are a left-aligned small text block placed
between the authors and the abstract, than trying to capture general regularities in
its size and/or placement in the page. For this reason, a number of systems based
on Artificial Intelligence techniques have been developed to carry out this task with
suitable flexibility.

186 5 Document Image Analysis

Fig. 5.16 Two very different layouts from the same class of documents (reprint from [19] ©2008
Springer)

5.4.1 Relational Approach

Looking back at the aforementioned definition of Document Image Understand-
ing, one immediately notes the explicit reference to a ‘formal representation of ab-
stract relationships’. A typical framework that allows expressing and handling rela-
tions in Computer Science refers to formal logic, and specifically to the First-Order
Logic (FOL for short) setting, where predicate expressions, rather than arrays of nu-
meric values, are the main representation tool. This allows describing observations
of any complexity, once a proper language has been defined, because the number
and structure of description components is not fixed in advance as in attribute-value
formalisms, but may vary according to the needs of each specific observation. In
addition to such an improved expressive power, FOL provides several other advan-
tages. It is human-understandable and human-writable because its formulæ exploit
abstract symbols directly referred to human concepts. It is able to exploit back-
ground knowledge (if available) and to carry out different inference strategies, such
as induction, deduction, abduction and abstraction, that allow tackling several as-
pects of complexity in the domain (although at the cost of heavier computational
requirements).

In FOL, unary predicates are typically exploited for representing boolean ob-
ject properties (e.g., ‘red(X)’), while n-ary predicates can express values of non-
boolean object properties (e.g., ‘length(X, Y)’) and/or relationships among objects
(e.g., ‘above(X, Y)’). Works that successfully adopted such an approach to the prob-
lem of Document Image Understanding have focused on descriptors that allow ex-
pressing the kind of document components (block, frame, page), their properties

5.4 Document Image Understanding 187

Table 5.2 First-Order Logic descriptors for a document layout structure

Descriptor Interpretation

page(C) component C is a page

block(C) component C is a block

frame(C) component C is a frame

type_T (C) the content type of component C is
T ∈ {text, image, hor_line, ver_line, graphic, mixed}

page_no(P , N) P is the N th page in the document

width(C, W) W is the width of component C

height(C, H) H is the height of component C

hor_pos(C, X) X is the horizontal position of the centroid of component C

ver_pos(C, Y) Y is the vertical position of the centroid of component C

part_of(C′, C′′) component C′ contains component C ′′

on_top(C′, C′′) component C′ is above component C′′

to_right(C′, C′′) component C′′ is to the right of component C ′

A_aligned(C′, C′′) C ′ and C′′ have an alignment of type
A ∈ {left, right, center, top, bottom, middle}

(position, size, type) and spatial relationships (mutual direction and alignment). Ta-
ble 5.2 reports a possible selection of predicates to describe the layout structure of a
generic document, that includes nine boolean properties (type_T is indeed a repre-
sentative of six predicates, expressing different kinds of content), five non-boolean
(in this case, numeric) properties, and nine relationships (six of which collapsed
in the A_aligned predicate). Numeric properties can be expressed either as abso-
lute values in some unit of measure (e.g., pixels or dots), or in relative values with
respect to the page (e.g., percentage of the page size).

A FOL classifier consists of a logical theory made up of definitions in the form
of logical implications, whose premise defines the requirements for an object to
be assigned to the class specified in the consequence. It may include at the same
time several class definitions, and can exploit also definitions of other sub-concepts
useful to describe those classes, plus possible inter-relationships between them, that
can be combined at classification time by automatic reasoners in charge of carrying
out the classification. Given a set of facts expressing the layout of a document by
means of the same descriptors, the reasoner applies the rules in the theory to produce
a decision.

Example 5.7 (Sample FOL definitions for Document Image Understanding) A def-
inition for class Springer-Verlag Lecture Notes paper is:

188 5 Document Image Analysis

part_of(D,P1) ∧ page(P1) ∧ page_no(P1,1)∧
part_of(P1,F1) ∧ frame(F1)∧
hor_pos(F1,X1) ∧ X1 ∈ [0.333,0.666] ∧ ver_pos(F1, Y1) ∧ Y1 ∈]0.666,1]∧
width(F1,W1) ∧ W1 ∈]0.625,1] ∧ height(F1,H1) ∧ H1
∈]0.006,0.017]∧
part_of(P,F2) ∧ frame(F2)∧
hor_pos(F2,X2) ∧ X2 ∈ [0.333,0.666] ∧ ver_pos(F2, Y2) ∧ Y2 ∈ [0,0.333]∧
to_right(F1,F2) ∧ on_top(F2,F1)

⇒ sv_ln(D)

To be read as:

“A document D belongs to class ‘Springer-Verlag Lecture Notes paper’ if its first page P1
contains two components F1 and F2, both of which are frames, where: both have horizontal
position placed in the middle third of the page; F1 has vertical position in the lower third
of the page and F2 has vertical position in the upper third of the page; F1 has width within
62.5% and 100% of the page width (i.e., very large) and height not comprised between 0.6%
and 1.7% of the page width (i.e., not very very small); F2 is to right of F1 and F2 is on top
of F1”.

A definition for the title logical component in the previous class is:

part_of(D,P1) ∧ page(P1) ∧ page_no(P1,1)∧
part_of(P1,C) ∧ frame(C) ∧ type_text(C)∧
hor_pos(C,X) ∧ X ∈ [0.333,0.666] ∧ ver_pos(C,Y) ∧ Y ∈ [0,0.333]∧
part_of(P1,F2) ∧ frame(F2) ∧ type_text(F2) ∧ ver_pos(F2, Y2) ∧ Y2 ∈ [0.333,0.666]∧
part_of(P1,F3) ∧ frame(F3) ∧ height(F3,H3) ∧ H3 ∈]0.057,0.103]∧
hor_pos(F3,X3) ∧ X3 ∈ [0.333,0.666] ∧ ver_pos(F3, Y3) ∧ Y3 ∈ [0,0.333]∧
on_top(F3,F2) ∧ on_top(C,F2) ∧ on_top(C,F3)

⇒ title(C)

“A component C is a ‘title’ if it is of type text, placed in the top-center region of the first
page P1 of a document D, on top of two other frames F2 and F3, such that F3 is also on top
of F2, where F2 is also of type text and placed vertically in the middle of the page, while F3
is also placed in the top-center region of the page and has height between 5.7% and 10.3%
of the page height”.

It is easy to recognize F3 as representing the authors frame, and F2 the abstract
heading.

Although FOL techniques allow a domain expert to write by hand suitable clas-
sifiers for documents and their components, actually writing such things is not easy,
due to the subtleties that often characterize the application domain to be described
and to the inability of non-trained people to formalize their knowledge. For this
reason, automatic learning of such classifiers has been attempted, with positive re-
sults. The branch of Machine Learning that deals with FOL descriptions is known
as Inductive Logic Programming (ILP for short) [31, 37].

INTHELEX (INcremental THEory Learner from EXamples) INTHELEX [20]
is an ILP system that learns hierarchical logic theories from positive and negative
examples. It is fully incremental (it can both refine an existing theory and learn one
from scratch), and able to learn simultaneously multiple concepts/classes, possibly
related to each other. It can remember all the processed examples, so to guarantee
validity of the learned theories on all of them, and is able to exploit additional infer-
ence strategies (deduction, abduction, abstraction) with respect to pure induction.

5.4 Document Image Understanding 189

Fig. 5.17 Architecture and data flow in INTHELEX

Its architecture is depicted in Fig. 5.17. It is a general-purpose system, but has been
successfully applied to several tasks related to document processing, and in partic-
ular to document image understanding. Indeed, the foregoing features allow it to
tackle various kinds of domain complexity, many of which are present in the docu-
ment case: incrementality, in particular, is a key option when the set of documents to
be handled is continuously updated and extended. The definitions shown in Exam-
ple 5.7 were actually learned by INTHELEX from real-world examples of different
types of scientific papers, although the representation formalism used by the system
is slightly different (theories are expressed as Prolog programs that can be readily
exploited by any Prolog interpreter as classifiers for the learned concepts).

An initial theory can be provided by an expert, by another system, or even be
empty. Such a starting theory can be refined whenever a new set of examples (ob-
servations whose class is known) of the concepts to be learned, possibly selected by
an expert, becomes available from the environment, so that it is able to explain them
(dashed arrows in the schema). Otherwise, when new observations of unknown class
are available, the set of inductive hypotheses in the theory is applied to produce cor-
responding decisions (class assignments). If an oracle points out an incorrectness
in such a decision, the cause is identified and the proper kind of correction cho-
sen, starting the theory revision process according to a data-driven strategy (dashed
arrows in the schema).

As for induction, two refinement operators are provided to revise the theory:

Generalization for definitions that reject positive examples. The system first tries
to generalize one of the available definitions of the concept the example refers to,
so that the resulting revised theory covers the new example and is consistent with
all the past negative examples. If such a generalization is found, then it replaces the
chosen definition in the theory, or else a new definition is chosen to compute gener-
alization. If no definition can be generalized in a consistent way, the system checks
whether the example itself can represent a new alternative (consistent) definition
of the concept. If so, such a definition is added to the theory.

Specialization for definitions that explain negative examples. The theory defini-
tions that concur in the wrong explanation are identified, and an attempt is made to

190 5 Document Image Analysis

specialize one of them by adding to it one or more conditions which characterize
all the past positive examples and can discriminate them from the current negative
one. In case of failure, the system tries to add the negation of a condition, that is
able to discriminate the negative example from all the past positive ones.

If all refinement attempts fail, the example is added to the theory as a (positive or
negative, as appropriate) exception. New incoming observations are always checked
against the exceptions before applying the rules that define the concept they refer to.

Multistrategy operators are integrated in INTHELEX according to the Inferential
Theory of Learning framework [30]:

Deduction allows recognizing known concepts that are implicit in the descriptions
in order to explicitly add and use them. Such concepts are those specified in the
learned theory or in a Background Knowledge provided by some expert. Differently
from the learned theory, the background knowledge is assumed to be correct and
hence cannot be modified.

Abduction aims at completing the description of partial observations by hypothe-
sizing facts that, together with the given theory and background knowledge, could
explain them (as defined by Peirce). According to the framework proposed in [28],
the concepts about which assumptions can be made are specified as a set of ab-
ducibles, while a set of integrity constraints (each corresponding to a complex
condition that must be fulfilled) biases what can be abduced.

Abstraction is a pervasive activity in human perception and reasoning, aimed at
removing superfluous details by shifting the description language to a higher level
one. According to the framework proposed in [56], it is implemented by various
operators, each in charge of a particular kind of abstraction: replacing several com-
ponents by a compound object, decreasing the granularity of a set of values, ignor-
ing whole objects or just part of their features, neglecting the number of occur-
rences of some kind of object.

Some examples of how multistrategy can help in the document image analysis do-
main are the following: deduction can identify in a purely geometrical description
known logical components, or derived spatial relationships starting from just basic
ones; abduction can hypothesize the presence of layout components that are miss-
ing in the description because of an error of the author or due to bad digitization;
abstraction can eliminate insignificant components such as small specks, or denote
frequent combinations of components by a single predicate, or simplify numeric
attributes translating them into discrete intervals.

5.4.2 Description

The class of a document, and the role played by its components, represent pre-
cious knowledge to be exploited in later document management. Information about
a document, as opposed to that expressed by the document content, is referred to
as metadata (etymologically, “data about data”). Since metadata define a context

5.4 Document Image Understanding 191

and provide semantics for the objects they describe, they are a fundamental means
for allowing a shared interpretation of a resource by different users. Although their
importance is traditionally acknowledged in the context of archives and library cata-
logs, they are extremely relevant for automatic document processing as well, which
is why they are often explicitly embedded into the documents, or attached to them.
Indeed, semantic interoperability between different applications requires to estab-
lish a shared network of data whose meaning and value is universally agreed upon.
Of course, the involved applications must agree on how to represent and interpret the
metadata, for which reason the availability of standardized conventions is a critical
requirement.

DCMI (Dublin Core Metadata Initiative) The DCMI, or simply Dublin Core,
draws its name from the American town where it was first conceived in 1995,
and from its purpose: providing authors and publishers of information objects with
(1) a core of fundamental elements to describe any digital material they produce,
and (2) a set of shared tools for accessing those resources through a computer net-
work. The project, developed under the auspices of the American On-line Computer
Library Center (OCLC), involved librarians, archivists, publishers, researchers, soft-
ware developers, and members of the IETF (Internet Engineering Task Force) work-
ing groups. Supported by the NISO (National Information Standards Organiza-
tion), it was acknowledged as ISO 15836 standard in 2003, and recently revised
in 2009 [3].

The original Core defines 15 basic description Elements to be included in or
referenced by the digital objects they describe. Being very general, such a set is
undergoing an extension, by means of so-called Qualifiers. Two kinds of qualifiers
exist: Element Refinements express more specific interpretations of Elements; En-
coding Schemes specify shared conventions for expressing the Element values (e.g.,
controlled vocabularies or formal identification systems). Not to spoil the general
schema, Refinements should be ignored by applications that do not recognize them.
Below is a list of the basic Elements along with the current recommendations for
Refinements (preceded by →) and Schemes, where applicable:

Title → Alternative
A name given to the resource (typically, the one by which it is formally known).

Creator An entity primarily responsible for making the resource.
Subject The topic of the resource (typically keywords, key phrases, or classification
codes expressing the matter of the resource). Schemes: LCSH, MeSH, DDC, LCC,
UDC.

Description → Table of Contents, Abstract
An account of the resource (may include, among others, a graphical representation
or a free-text account of the resource).

Publisher An entity responsible for making the resource available.
Contributor An entity responsible for making contributions to the resource.
Date → Created, Valid, Available, Issued, Modified, Date Accepted, Date Copy-

righted, Date Submitted
A point or period of time associated with an event in the life cycle of the resource.

192 5 Document Image Analysis

May be used to express temporal information at any level of granularity. Schemes:
DCMI Period, W3C-DTF.12

Type The nature or genre of the resource. Scheme: DCMI Type Vocabulary.
Includes terms that describe general categories, functions, genres or level of aggre-
gation by content.

Format → Extent, Medium
The file format, physical medium, or dimensions of the resource.
Examples of dimensions include size and duration. It can be used to specify the
software or hardware needed to display or process the resource. Scheme: IMT13

(not used for Refinements).
Identifier → Bibliographic Citation

An unambiguous reference to the resource within a given context. Scheme: URI
(not used for Refinements).

Source A related resource from which the described resource is derived in whole
or in part. Scheme: URI.

Language A language of the resource. Schemes: ISO 639-2, RFC 3066 (superseded
by RFC 4646).14

Relation → Is Version Of, Has Version, Is Replaced By, Replaces, Is Required By,
Requires, Is Part Of, Has Part, Is Referenced By, References, Is Format Of, Has
Format, Conforms To
A related resource. Scheme: URI.

Coverage → Spatial, Temporal
The spatial or temporal topic of the resource, the spatial applicability of the re-
source, or the jurisdiction under which the resource is relevant.
Spatial information may be a named place or a location specified by its geographic
coordinates (schemes: DCMI Point, ISO 3166, DCMI Box, TGN15). Temporal
topic may be a named period, date, or date range (schemes: DCMI Period, W3C-
DTF). A jurisdiction may be a named administrative entity or a geographic place
to which the resource applies. Where appropriate, named places or time periods
are preferred to numeric identifiers such as sets of coordinates or date ranges.

Rights → Access Rights, Licence (scheme: URI)
Information about rights held in and over the resource or a reference to the service
that provides such an information.
Typically includes a statement about various property rights associated with the
resource, including Intellectual Property Rights (IPR) (e.g., the copyright). If miss-
ing, no assumption can be made about the rights of the resource.

The ‘entities’ referred to in the definitions of Creator, Publisher and Contributor can
be, e.g., persons, organizations, or services, and are usually indicated by their names.

12A simplified profile of the ISO 8601 standard, that combines in different patterns groups of digits
YYYY , MM, DD, HH, MM, SS expressing year, month, day, hour, minute and second, respectively.
13Internet Media Type, formerly MIME types.
14The typical two-character language codes, optionally followed by a two-character country code
(e.g., it for Italian, en-uk for English used in the United Kingdom).
15Thesaurus of Geographic Names.

References 193

For Identifier, Source and Relation, the use of a Digital Object Identifier (DOI), or
an International Standard Book Number (ISBN) can be a suitable alternative to a
URI or URL.

Qualifiers have the following properties:

Name The unique token assigned to it;
Label The human-readable label assigned to it;
Definition A statement that represents its concept and essential nature;
Comment Additional information associated with it (if available);
See Also A link to more information about it (if available).

Originally conceived for the description of Web resources, the Core has been
subsequently adopted by several communities, among which museums, commer-
cial agencies and organizations all over the world, which made it a de facto stan-
dard, in addition to a de jure one. Indeed, its strengths include the fostering of an
integrated approach to information, easy comprehension and exploitation of its ele-
ments, and straightforward application to different languages by simply translating
the elements’ names (which has been done already for more than 20 languages). Its
generality permits the description of a wide variety of resources in different formats,
which is a key issue for supporting semantic interoperability. As a drawback, it can
turn out to be too vague for suitably describing specific application domains; in such
cases the schema can be personalized and extended by integrating and evolving the
data structure with different and more appropriate meanings. This provides a lot of
flexibility to the indexer when recording the features of a resource, allowing him to
create detailed specifications when needed, at the expenses of interoperability (al-
though exploiting the same schema, different personalizations would not share its
interpretation).

References

1. Document Object Model (DOM) Level 1 Specification—version 1.0. Tech. rep. REC-DOM-
Level-1-19981001, W3C (1998)

2. Document Object Model (DOM) Level 2 Core Specification. Tech. rep. 1.0, W3C (2000)
3. Dublin Core metadata element set version 1.1. Tech. rep. 15836, International Standards Or-

ganization (2009)
4. Altamura, O., Esposito, F., Malerba, D.: Transforming paper documents into XML format with

WISDOM++. International Journal on Document Analysis and Recognition 4, 2–17 (2001)
5. Baird, H.S.: The skew angle of printed documents. In: Proceedings of the Conference of the

Society of Photographic Scientists and Engineers, pp. 14–21 (1987)
6. Baird, H.S.: Background structure in document images. In: Advances in Structural and Syn-

tactic Pattern Recognition, pp. 17–34. World Scientific, Singapore (1992)
7. Baird, H.S.: Document image defect models. In: Baird, H.S., Bunke, H., Yamamoto, K. (eds.)

Structured Document Image Analysis, pp. 546–556. Springer, Berlin (1992)
8. Baird, H.S., Jones, S., Fortune, S.: Image segmentation by shape-directed covers. In: Proceed-

ings of the 10th International Conference on Pattern Recognition (ICPR), pp. 820–825 (1990)
9. Berkhin, P.: Survey of clustering Data Mining techniques. Tech. rep., Accrue Software, San

Jose, CA (2002)

194 5 Document Image Analysis

10. Breuel, T.M.: Two geometric algorithms for layout analysis. In: Proceedings of the 5th Interna-
tional Workshop on Document Analysis Systems (DAS). Lecture Notes in Computer Science,
vol. 2423, pp. 188–199. Springer, Berlin (2002)

11. Cao, H., Prasad, R., Natarajan, P., MacRostie, E.: Robust page segmentation based on smear-
ing and error correction unifying top-down and bottom-up approaches. In: Proceedings of the
9th International Conference on Document Analysis and Recognition (ICDAR), vol. 1, pp.
392–396. IEEE Computer Society, Los Alamitos (2007)

12. Cesarini, F., Marinai, S., Soda, G., Gori, M.: Structured document segmentation and repre-
sentation by the Modified X–Y tree. In: Proceedings of the 5th International Conference on
Document Analysis and Recognition (ICDAR), pp. 563–566. IEEE Computer Society, Los
Alamitos (1999)

13. Chaudhuri, B.: Digital Document Processing—Major Directions and Recent Advances.
Springer, Berlin (2007)

14. Chen, Q.: Evaluation of OCR algorithms for images with different spatial resolution and noise.
Ph.D. thesis, University of Ottawa, Canada (2003)

15. Ciardiello, G., Scafuro, G., Degrandi, M., Spada, M., Roccotelli, M.: An experimental system
for office document handling and text recognition. In: Proceedings of the 9th International
Conference on Pattern Recognition (ICPR), pp. 739–743 (1988)

16. Egenhofer, M.J.: Reasoning about binary topological relations. In: Gunther, O., Schek, H.J.
(eds.) 2nd Symposium on Large Spatial Databases. Lecture Notes in Computer Science,
vol. 525, pp. 143–160. Springer, Berlin (1991)

17. Egenhofer, M.J., Herring, J.R.: A mathematical framework for the definition of topological
relationships. In: Proceedings of the 4th International Symposium on Spatial Data Handling,
pp. 803–813 (1990)

18. Egenhofer, M.J., Sharma, J., Mark, D.M.: A critical comparison of the 4-intersection and
9-intersection models for spatial relations: Formal analysis. In: Proceedings of the 11th Inter-
national Symposium on Computer-Assisted Cartography (Auto-Carto) (1993)

19. Esposito, F., Ferilli, S., Basile, T.M.A., Di Mauro, N.: Machine Learning for digital document
processing: from layout analysis to metadata extraction. In: Marinai, S., Fujisawa, H. (eds.)
Machine learning in Document Analysis and Recognition. Studies in Computational Intelli-
gence, vol. 90, pp. 105–138. Springer, Berlin (2008)

20. Esposito, F., Ferilli, S., Fanizzi, N., Basile, T.M., Di Mauro, N.: Incremental multistrategy
learning for document processing. Applied Artificial Intelligence: An International Journal
17(8/9), 859–883 (2003)

21. Fateman, R.J., Tokuyasu, T.: A suite of lisp programs for document image analysis and struc-
turing. Tech. rep., Computer Science Division, EECS Department—University of California
at Berkeley (1994)

22. Ferilli, S., Basile, T.M.A., Esposito, F.: A histogram-based technique for automatic threshold
assessment in a Run Length Smoothing-based algorithm. In: Proceedings of the 9th Inter-
national Workshop on Document Analysis Systems (DAS). ACM International Conference
Proceedings, pp. 349–356 (2010)

23. Ferilli, S., Biba, M., Esposito, F., Basile, T.M.A.: A distance-based technique for non-
Manhattan layout analysis. In: Proceedings of the 10th International Conference on Document
Analysis Recognition (ICDAR), pp. 231–235 (2009)

24. Frank, A.U.: Qualitative spatial reasoning: Cardinal directions as an example. International
Journal of Geographical Information Systems 10(3), 269–290 (1996)

25. Gatos, B., Pratikakis, I., Ntirogiannis, K.: Segmentation based recovery of arbitrarily warped
document images. In: Proceedings of the 9th International Conference on Document Analysis
and Recognition (ICDAR), pp. 989–993 (2007)

26. Impedovo, S., Ottaviano, L., Occhinegro, S.: Optical character recognition—a survey. Inter-
national Journal on Pattern Recognition and Artificial Intelligence 5(1–2), 1–24 (1991)

27. Kainz, W., Egenhofer, M.J., Greasley, I.: Modeling spatial relations and operations with par-
tially ordered sets. International Journal of Geographical Information Systems 7(3), 215–229
(1993)

References 195

28. Kakas, A.C., Mancarella, P.: On the relation of truth maintenance and abduction. In: Proceed-
ings of the 1st Pacific Rim International Conference on Artificial Intelligence (PRICAI), pp.
438–443 (1990)

29. Kise, K., Sato, A., Iwata, M.: Segmentation of page images using the area Voronoi diagram.
Computer Vision Image Understanding 70(3), 370–382 (1998)

30. Michalski, R.S.: Inferential theory of learning. Developing foundations for multistrategy
learning. In: Michalski, R., Tecuci, G. (eds.) Machine Learning. A Multistrategy Approach,
vol. IV, pp. 3–61. Morgan Kaufmann, San Mateo (1994)

31. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
32. Mori, S., Suen, C.Y., Yamamoto, K.: Historical review of OCR research and development.

Proceedings of the IEEE 80(7), 1029–1058 (1992)
33. Nagy, G.: Twenty years of document image analysis in PAMI. IEEE Transactions on Pattern

Analysis and Machine Intelligence 22(1), 38–62 (2000)
34. Nagy, G., Kanai, J., Krishnamoorthy, M.: Two complementary techniques for digitized docu-

ment analysis. In: ACM Conference on Document Processing Systems (1988)
35. Nagy, G., Seth, S., Viswanathan, M.: A prototype document image analysis system for tech-

nical journals. Computer 25(7), 10–22 (1992)
36. Nagy, G., Seth, S.C.: Hierarchical representation of optically scanned documents. In: Proceed-

ings of the 7th International Conference on Pattern Recognition (ICPR), pp. 347–349. IEEE
Computer Society Press, Los Alamitos (1984)

37. Nienhuys-Cheng, S.H., de Wolf, R. (eds.): Foundations of Inductive Logic Programming. Lec-
ture Notes in Computer Science, vol. 1228. Springer, Berlin (1997)

38. O’Gorman, L.: The document spectrum for page layout analysis. IEEE Transactions on Pattern
Analysis and Machine Intelligence 15(11), 1162–1173 (1993)

39. O’Gorman, L., Kasturi, R.: Document Image Analysis. IEEE Computer Society, Los Alamitos
(1995)

40. Papadias, D., Theodoridis, Y.: Spatial relations, minimum bounding rectangles, and spatial
data structures. International Journal of Geographical Information Science 11(2), 111–138
(1997)

41. Papamarkos, N., Tzortzakis, J., Gatos, B.: Determination of run-length smoothing values for
document segmentation. In: Proceedings of the International Conference on Electronic Cir-
cuits and Systems (ICECS), vol. 2, pp. 684–687 (1996)

42. Pavlidis, T., Zhou, J.: Page segmentation by white streams. In: Proceedings of the 1st Interna-
tional Conference on Document Analysis and Recognition (ICDAR), pp. 945–953 (1991)

43. Rice, S.V., Jenkins, F.R., Nartker, T.A.: The fourth annual test of OCR accuracy. Tech. rep.
95-03, Information Science Research Institute, University of Nevada, Las Vegas (1995)

44. Salembier, P., Marques, F.: Region-based representations of image and video: Segmentation
tools for multimedia services. IEEE Transactions on Circuits and Systems for Video Technol-
ogy 9(8), 1147–1169 (1999)

45. Shafait, F., Smith, R.: Table detection in heterogeneous documents. In: Proceedings of the
9th IAPR International Workshop on Document Analysis Systems (DAS). ACM International
Conference Proceedings, pp. 65–72 (2010)

46. Shih, F., Chen, S.S.: Adaptive document block segmentation and classification. IEEE Trans-
actions on Systems, Man, and Cybernetics—Part B 26(5), 797–802 (1996)

47. Simon, A., Pret, J.C., Johnson, A.P.: A fast algorithm for bottom-up document layout analysis.
IEEE Transactions on Pattern Analysis and Machine Intelligence 19(3), 273–277 (1997)

48. Skiena, S.S.: The Algorithm Design Manual, 2nd edn. Springer, Berlin (2008)
49. Smith, R.: A simple and efficient skew detection algorithm via text row accumulation. In:

Proceedings of the 3rd International Conference on Document Analysis and Recognition (IC-
DAR), pp. 1145–1148, IEEE Computer Society, Los Alamitos (1995)

50. Smith, R.: An overview of the Tesseract OCR engine. In: Proceedings of the 9th International
Conference on Document Analysis and Recognition (ICDAR), pp. 629–633. IEEE Computer
Society, Los Alamitos (2007)

196 5 Document Image Analysis

51. Smith, R.: Hybrid page layout analysis via tab-stop detection. In: Proceedings of the 10th In-
ternational Conference on Document Analysis and Recognition (ICDAR), pp. 241–245. IEEE
Computer Society, Los Alamitos (2009)

52. Sun, H.M.: Page segmentation for Manhattan and non-Manhattan layout documents via selec-
tive CRLA. In: Proceedings of the 8th International Conference on Document Analysis and
Recognition (ICDAR), pp. 116–120. IEEE Computer Society, Los Alamitos (2005)

53. Wahl, F., Wong, K., Casey, R.: Block segmentation and text extraction in mixed text/image
documents. Graphical Models and Image Processing 20, 375–390 (1982)

54. Wang, D., Srihari, S.N.: Classification of newspaper image blocks using texture analysis.
Computer Vision, Graphics, and Image Processing 47, 327–352 (1989)

55. Wong, K.Y., Casey, R., Wahl, F.M.: Document analysis system. IBM Journal of Research and
Development 26, 647–656 (1982)

56. Zucker, J.D.: Semantic abstraction for concept representation and learning. In: Proceedings of
the 4th International Workshop on Multistrategy Learning (MSL), pp. 157–164 (1998)

Part III
Content Processing

Once the significant logical components in a document have been found, they must
be processed according to the type of their content in order to extract the informa-
tion they carry. In some sense, each component undergoes a sequence of steps that
(although specific for each component type) is analogous to that formerly applied to
the whole document from an organizational viewpoint. In particular, the main form
of knowledge communication among humans is natural language, that represents
a challenge for automatic processing because of its inherent ambiguity and strict
connection to semantics. Text, as the written representation of language, is the key
towards accessing information in many documents, which in turn would enforce
global knowledge sharing.

Text processing represents a preliminary phase to many document content han-
dling tasks aimed at extracting and organizing information therein. The computer
science disciplines devoted to understanding language, and hence useful for such
objectives, are Computational Linguistics and Natural Language Processing. They
rely on the availability of suitable linguistic resources (corpora, computational lex-
ica, etc.) and of standard representation models of linguistic information to build
tools that are able to analyze sentences at various levels of complexity: morpho-
logic, lexical, syntactic, semantic. Chapter 6 provides a survey of the main Natu-
ral Language Processing tasks (tokenization, language recognition, stemming, stop-
word removal, Part of Speech tagging, Word Sense Disambiguation, Parsing) and
presents some related techniques, along with lexical resources of interest to the re-
search community.

The initial motivation and, at the same time, the final objective for creating doc-
uments is information preservation and transmission. In this perspective, the avail-
ability of huge quantities of documents, far from being beneficial, carries the risk
of scattering and hiding information in loads of noise. As a consequence, the de-
velopment of effective and efficient automatic techniques for the identification of
interesting documents in a collection, and of relevant information items in a docu-
ment, becomes a fundamental factor for the practical exploitation of digital docu-
ment repositories. Chapter 7 is concerned with the management of document con-
tents. Several Information Retrieval approaches are presented first, ranging from

198

term-based indexing to concept-based organization strategies, for supporting docu-
ment search. Then, tasks more related to the information conveyed by documents
are presented: Text Categorization (aimed at identifying the subject of interest of
a document), Keyword Extraction (to single out prominent terms in the document
text) and Information Extraction (that produces a structured representation of the
features of noteworthy events described in a text).

Chapter 6
Natural Language Processing

The main and most ancient form of knowledge communication among human be-
ings is natural language. Despite being included in the list of earliest objectives of
Artificial Intelligence [21], computer applications nowadays are still far from able to
handle it as humans do. Some reasons why it so hard a matter to work on automati-
cally are to be found in its high and inherent ambiguity (due to historical evolution),
and in its strict connection to semantics, whereas computer systems work at the
syntactic level and require formal representations. Since text is the written represen-
tation of language, and hence its permanent counterpart, it is clear that the ability to
properly process text is the key towards accessing information in many documents,
which in turn would enforce global knowledge sharing. The term ‘text’ usually de-
notes a single information unit that can be a complete logical unit (e.g., an article,
a book) or just a part thereof (e.g., a chapter, a paragraph). From the perspective of
computer science representation, on the other hand, each physical unit (e.g., a file,
an e-mail message, a Web page) can be considered as a document. In this chapter,
however, ‘document’ and ‘text’ are to be intended as synonyms, and as consisting
of sequences of characters.

One research field in charge of exploring this matter from a theoretical perspec-
tive is computational linguistics whose task is to “give computer systems the ability
of generate and interpret natural language” [12] by developing a computational the-
ory of language, using “tools [. . .] of artificial intelligence: algorithms, data struc-
tures, formal models for representing knowledge, models of reasoning processes,
and so on” [1]. Being placed half-way between humanistic and computer sciences,
it must find a tradeoff among very different conceptions of the language and of its
processing. Here the language understanding perspective is of interest, involving the
extraction of information implicitly contained in texts and its transformation into ex-
plicit knowledge resources, structured and accessible both by human users and by
other computational agents.

The operational support to such an objective comes from the field of Natural
Language Processing (NLP) [20] based on three kinds of elements [8]:

Representation models and standards that ensure interoperability among different
language processing systems and consistency in its processing;

S. Ferilli, Automatic Digital Document Processing and Management,
Advances in Pattern Recognition,
DOI 10.1007/978-0-85729-198-1_6, © Springer-Verlag London Limited 2011

199

200 6 Natural Language Processing

Resources consisting of large databases that represent and encode morphologic,
lexical, syntactic and semantic information;

Tools for text analysis at various levels (morphologic, lexical, syntactic, semantic)
and, based on the outcome of such an analysis, for subsequent knowledge extrac-
tion, acquisition and structuring.

Tools heavily rely on the availability of suitable resources to carry out their tasks,
and can cooperate with each other to perform a global attack to the problem by
referring to common models and exploiting shared standards. Several industrial ini-
tiatives in this field witness that some techniques are now mature, although the con-
vergence of a number of factors have caused that, against a large amount of work
made for English, much less exists for other languages.

6.1 Resources—Lexical Taxonomies

The availability of linguistic resources is crucial to support significant advances in
NLP research and to ensure applicability of the results to real world. The main, and
probably the most important need is for large corpora (a corpus is a collection of
documents, usually—but not necessarily—consistent and domain-related). Indeed,
they serve both as a support for automatically building/learning NLP tools, and as
testbeds on which the different tools can be applied and evaluated. Recently, the
Web as an enormous corpus of readily available documents has partly solved this
problem, but has also imposed the need to face real texts, much more varied and
complex than the controlled laboratory ones.

Another important kind of resources are dictionaries and thesauri,1 to provide
different kinds of lexical information (which is the base for most techniques aimed at
extracting and organizing information in textual documents). A word in a language
is a form (a string on a finite alphabet of symbols) endowed with a sense (an element
belonging to a given set of meanings) in that language. The vocabulary of a language
is the set of such pairs (form, sense), while a dictionary is a list that contains such
pairs ordered alphabetically.

Since words in a text are used to explicitly encode concepts, the need for associ-
ating them to machine-processable definitions of concepts and relations has become
more and more urgent. Ontologies,2 the state-of-the-art Computer Science solution
to formal representation of knowledge in a given domain, might be too complex to
be of practical use. Computational lexica that arrange words and their underlying
concepts in suitable taxonomies are a surrogate of ontologies (some say they are a
form of ontology) representing a tradeoff between expressiveness and efficiency.

1A thesaurus is a dictionary based on semantic models of organization, that reports for each word,
in addition to its meaning, also a list of related words (e.g., its synonyms and antonyms).
2A “formal, explicit specification of a shared conceptualization” [13], i.e., a vocabulary to model
the type of objects, concepts, and their properties and relations, in a domain. In philosophy, a sys-
tematic account of Existence.

6.1 Resources—Lexical Taxonomies 201

WordNet WordNet3 was defined by its author, the famous psychologist
G.A. Miller, as “an on-line lexical reference system whose design is inspired by
current psycholinguistic theories of human lexical memory. English nouns, verbs,
and adjectives are organized into synonym sets, each representing one underlying
concept. Different relations link the synonym sets” [22]. Each set of synonyms
is called a synset. Hence, WordNet can be a precious support to several activities
involved in the automatic processing of text. Its organization model of terms is dif-
ferent than that traditionally used to compile dictionaries: instead of having a list
of words ordered by morphologic and syntactic features, forms and senses are the
vertices of graphs whose edges represent (i.e., are labeled with) several kinds of
semantic and lexical relations. Overall, it can be seen as a semantic network that
reproduces the mental representation of the lexicon and determines the meaning of
single terms.

Relations allow inferring indirect relationships among terms and concepts that
are not directly linked to each other. The most important are the following:

Synonymy and antinomy are both symmetric. Two words are considered as syn-
onyms not just because they have a meaning in common: it is required that re-
placing each other in a sentence does not change the sentence meaning. Thus,
synonymy is bound to link terms belonging to the same syntactic category (e.g., re-
placing a name with a verb, even when syntactically correct, would change the sen-
tence semantics). Since two terms can be synonyms in some contexts (e.g., ‘board’
and ‘plank’ in carpentry) but not in others, synonymy is a real-valued (rather than
boolean) property, continuously ranging in [0,1]. Antinomy links pairs of opposite
terms and is exploited to organize attributes and adverbs.

Hyperonymy and hyponymy (inverses of each other) are both transitive. They rep-
resent, respectively, generalization and specialization, i.e., the two directions of an
is_a relationship that links a more general synset (the hypernym) to a subclass
thereof (the hyponym). They induce a heterarchy on the set of synsets. Many met-
rics for the evaluation of similarity among synsets are based on the (length of
the) is_a paths that connect them (e.g., ‘man’–‘male’–‘person’–‘organism’–‘living
thing’–‘object’–‘entity’).

Meronymy and holonymy (inverses of each other) are both transitive and anti-
symmetric. They link synsets based on the concept of part–whole composition
(e.g., ‘finger’–‘hand’), as in the part_of relationship, but also of member (e.g.,
‘student’–‘class’) and substance (e.g., ‘oxygen’–‘water’) composition.

Additionally, morphologic relationships between terms having different declension,
gender and number, but that can be associated to the same concept, allow grouping
terms in normal forms having the same root.

The syntactic category of a word expresses the set of linguistic contexts in which
it can be exploited (e.g., the term ‘run’ can be a noun or a verb, depending on
where/how it is used). Specifically, four categories are used to express concepts,
and are taken into account by WordNet:

3Website http://wordnet.princeton.edu.

202 6 Natural Language Processing

Nouns (N) both common nouns and widely used proper (geographic or person)
names are included, organized in a heterarchy, that represents a semantic network
inside of which inferential activities can be carried out. Starting from the leaves that
correspond to purely concrete terms the abstraction level of the terms progressively
increases as one approaches the root (‘entity’) whose immediate offspring consists
of 25 primitive terms that denote abstract concepts.

Verbs (V) are important because they express semantic relationships between the
concepts underlying their subjects and objects. They are very flexible, but also very
prone to polysemy, because they can take on different meanings according to the
terms to which they are associated (e.g., ‘to get’ + preposition). Like nouns, they
are organized in a heterarchy rooted in 15 conceptual categories, each expressing a
different set of semantically similar actions. In addition to specialization and syn-
onymy, verbs also participate in the logical entailment relationship that specifies
the existence of semantic connections such as temporal sequence (to carry out an
action, another one must have been previously carried out), strict inclusion (an ac-
tion can be carried out only if another is being carried out), cause–effect relation (if
an action is carried out, as its effect another one must take place as well); e.g., ‘to
move’ is a logical consequence of ‘to fall’ because if something is falling it must
also be moving (but not vice versa).

Adjectives (Aj) (including also nouns and phrases frequently used as modifiers) are
divided into two classes. Ascriptive ones, expressing intrinsic properties of objects
(e.g., ‘good’, ‘rich’), are organized in a network of dipoles, i.e., antinomous pairs,
whose poles are connected to other adjectives or dipoles by synonymy (some might
have an intermediate or graduated meaning between the two poles of a dipole).
Semantically similar attributes tend to cluster around a central item (a pole in a
dipole). Ascriptive adjectives that do not have antonyms can assume as indirect
antonyms those of similar adjectives. Nonascriptive adjectives (or pertainyms),
derived from nouns and expressing external properties of objects (e.g., ‘polar’,
‘lateral’), are connected to the corresponding nouns. With antinomy being inappli-
cable, they are organized like nouns, according to composition and generalization.
Color adjectives are a special case. Highly polysemous adjectives whose meaning
depends on the noun to which they are associated are handled by doubling the
poles and associating to them different meanings.

Adverbs (Av) (also called open-class words) are organized in dipoles as well.

Thus, WordNet is more than a digital mix of a dictionary and a thesaurus, oriented
to classical term-based search methods. It is a data structure that supports conceptual
information search. In its database (whose structure is reported in Table 6.1) each
concept has an identifier (to reduce redundancy compared to classical thesauri), each
lemma is associated to the identifiers of the meanings that it can take on (this way
defining synsets), and the relationships connect concepts and/or terms to each other.
The success of WordNet is such that several initiatives have produced versions of it
for many other languages and for specific domains as well.

WordNet Domains WordNet Domains is an extension of WordNet that classifies
each synset on the grounds of the semantic area(s) (or domains) to which it be-

6.1 Resources—Lexical Taxonomies 203

Table 6.1 WordNet database tables in Prolog format. A pair w = (#, i) denotes a word sense, i.e.,
a term with its associated synset

s(#, i,w, ss_type, sense_number, tag_count) w is the ith word defining synset #, also reporting
information on the grammatical type and frequency.

sk(#, i, s) s is the sense key for word (#, i) (present for every word sense).

g(#, d) d is a textual description/definition (gloss) of synset #.

syntax(#, i,m) m is the syntactic marker for word (#, i) if one is specified.

hyp(#1,#2) (only for nouns and verbs) #2 is a hypernym of #1 (and #1 is a hyponym of #2).

ins(#1,#2) noun #1 is an instance of noun #2 (and #2 has_instance #1).

ent(#1,#2) verb #2 is an entailment of verb #1.

sim(#1,#2) (only for adjectives contained in adjective clusters) adjective #2 has similar meaning
to (and hence is a satellite of) adjective #1 (which is the cluster head).

mm(#1,#2) noun #2 is a member meronym of noun #1 (and #1 is a member holonym of #2).

ms(#1,#2) noun #2 is a substance meronym of noun #1 (and #1 is a substance holonym of #2).

mp(#1,#2) noun #2 is a part meronym of noun #1 (and #1 is a part holonym of #2).

der(#1,#2) there exists a reflexive lexical morphosemantic relation between terms #1 and #2
representing derivational morphology.

cls(#1, i1,#2, i2, class_type) #1 is a member of the class represented by #2. If either i is 0, the
pointer is semantic.

cs(#1,#2) verb #2 is a cause of verb #1.

vgp(#1, i1,#2, i2) verb synsets that are similar in meaning and should be grouped together.

at(#1,#2) the adjective is a value of the noun (attribute relation). For each pair, both relations are
listed (i.e., each # is both a source and target).

ant(#1, i1,#2, i2) the two words are antonyms. For each pair, both relations are listed (i.e., each
(#, i) pair is both a source and target word).

sa(#1, i1,#2, i2) (only for verbs and adjectives) Additional information about (#1, i1) can be
obtained by seeing (#2, i2) (but not necessarily vice versa).

ppl(#1, i1,#2, i2) adjective (#1, i1) is a participle of verb (#2, i2), and vice versa.

per(#1, i1,#2, i2) adjective (#1, i1) pertains to the noun or adjective (#2, i2), or adverb (#1, i1) is
derived from adjective (#2, i2).

fr(#, f _num,w_num) specifies a generic sentence frame for one or all words in verb #.

longs [19]. At the time of writing, it is in its 3.2 version, based on WordNet 2.0.4 It
is organized as a hierarchical structure, called WordNet Domains Hierarchy (WDH),
in which 168 semantic categories are grouped into 45 basic domains that, in turn,
refer to 5 top-level classes that lastly depend on a Factotum class that includes all
terms that cannot be classified in other categories. Table 6.2 reports the first levels of
the hierarchy. Each basic category is also considered as a child of itself, which en-
sures that the union of terms belonging to child nodes corresponds to the set of terms

4Since backward compatibility is not guaranteed in WordNet versioning, and hence the synset IDs
may change, WordNet Domains might not be aligned with the latest WordNet version. This can be
a problem when both are to be used, since either one gives up in using the latest WordNet version,
or one has to install two different WordNet versions on the same system.

204 6 Natural Language Processing

Table 6.2 Top-level classes and corresponding basic domains in WordNet domains

Top-level class Basic domains

Humanities History, Linguistics, Literature, Philosophy, Psychology, Art, Paranormal,
Religion

Free Time Radio–TV, Play, Sport

Applied Science Agriculture, Food, Home, Architecture, Computer Science, Engineering,
Telecommunication, Medicine

Pure Science Astronomy, Biology, Animals, Plants, Environment, Chemistry, Earth,
Mathematics, Physics

Social Science Anthropology, Health, Military, Pedagogy, Publishing, Sociology,
Artisanship, Commerce, Industry, Transport, Economy, Administration,
Law, Politics, Tourism, Fashion, Sexuality

belonging to the parent node. Thus, for instance, Telecommunication has children
Post, Telegraphy, Telephony (in addition to Telecommunication itself).

Clearly, a term that is associated to different synsets might have different domains
for each synset. For instance, the word ‘mouse’ has two meanings (i.e., belongs
to two synsets) in WordNet: The rodent (synset 02244530, associated to domain
Animals) and the pointing device (synset 03651364, associated to domain Com-
puter Science). However, even a single synset can be associated to several domains
(e.g., synset 00028764, ‘communication’, is associated to domains Linguistics and
Telecommunication).

Example 6.1 (Complete WordNet Domains sub-tree for Applied_ Science)

• Agriculture
– Animal_Husbandry

– Veterinary
• Food

– Gastronomy
• Home

• Architecture
– Town_Planning
– Buildings
– Furniture

• Computer_Science
• Engineering

– Mechanics
– Astronautics
– Electrotechnology
– Hydraulics

• Telecommunication
– Post
– Telegraphy
– Telephony

• Medicine
– Dentistry
– Pharmacy
– Psychiatry
– Radiology
– Surgery

To go beyond categories that are just syntactic labels, they were mapped onto
the Dewey Decimal Classification (DDC) system [10], a taxonomy originally de-
veloped for the classification of items in a library environment, but then adopted
for cataloging Internet resources as well. The characteristic of DDC is that each
subject in the hierarchy is bound to have at most ten sub-categories (whence the
attribute ‘decimal’). If children are denoted by digits 0 . . .9, each path in the taxon-
omy, uniquely identifying a subject starting from the root, can be expressed in the
form of a decimal number, called a subject code. The core DDC consists of the first
three levels of specialization (whose top-level subjects are reported in Table 6.3),
and hence can be expressed by just three digits, where the hundreds identify ten

6.1 Resources—Lexical Taxonomies 205

Table 6.3 Dewey decimal
classification system main
categories

000 Computer science, Information, General works

100 Philosophy, Psychology

200 Religion

300 Social sciences

400 Language

500 Science

600 Technology

700 Arts, Recreation

800 Literature

900 History, Geography, Biography

broad areas of interest in human knowledge, each of which is divided in sub-areas
denoted by the tens that, in turn, can be divided into sub-sub-categories indicated
by the units. This yields 1000 possible subjects in the core, not all of which are
currently exploited. In case more specialized factorization is required, any level of
sub-categories can be defined by appending more digits (i.e., adding levels to the
taxonomy). To distinguish the core from the extended part, subject codes are rep-
resented as decimal numbers xxx.xxxx . . . where the integer part refers to the core
and is mandatory, while the decimal part (after the decimal point) is optional. This
allows accommodating any future expansion and evolution of the body of human
knowledge, and represents one of the success factors for DDC with respect to other
systems that allow any number of sub-categories, but must rely on more complex
codes. Each subject code is associated to a lexical description that, along with its
position in the hierarchy, fully determines its semantics. Specific publications are
available to guide librarians in assigning to any given text the proper subject code.

There is no one-to-one correspondence between a DDC category and a WDH
domain because the latter was defined to fulfill the following requirements:

Disjunction the interpretation of all WDH labels should not overlap;
Basic coverage all human knowledge should be covered by the Basic Domains;
Basic balancing most Basic Domains should have a comparable degree of granu-
larity.

However, each WDH domain is associated to precise DDC categories, in order to
provide it with an explicit semantics and an unambiguous identification [2].

Senso Comune A recent project, aimed at providing a collaborative platform to
build and maintain an open “machine-readable dictionary that provides semantic
information in a formal way” of Italian language, is Senso Comune [23]. It joins,
but neatly distinguishes, the lexical taxonomy and linguistic ontology aspects. The
linguistic source is a cutting-edge Italian dictionary specifically oriented towards
term usage [9]. The association between the senses and the reference ontology is
based on the intuition that objects are usually represented by nouns, qualities by
adjectives and events by verbs (although this heavily depends on the language at
hand).

206 6 Natural Language Processing

While WordNet starts from an analysis of the language lexicon, Senso Comune
adopts an opposite approach, starting from the following ontological structure:

Entity maximum generality concept;

Concrete entities spatially and temporally determined;
Object spatially determined concrete entities with autonomous existence, having

no temporal parts but properties that may change in time;
Event concrete entities spreading in time, associated with actors and having tem-
poral parts;

Abstract entities not determined spatially and temporally;
Meaning the association of a word form to a corresponding meaning in an ontol-
ogy (and, in some cases, to contexts in which it occurs);

MeaningDescription a set of glosses, phraseology and notes describing a mean-
ing, provided by users (UserMeaningDescription) or by a dictionary (Dictio-
naryMeaningDescription);

UsageInstance phraseology that concurs to make up meaning descriptions, pro-
vided by users (UserUsageInstance) or dictionary (DictionaryUsageInstance);

MeaningRelation an association between pairs of meanings: Synonymy, Tro-
ponymy (different modes in which an action may occur), Hyponymy, Antinomy,
Meronymy;

Quality features, attributes of entities (whose existence depends on the entities,
although they are not parts thereof),

where sublists denote sub-classes, boldface items are the general part, and italics
ones refer to the lexical part.

Concepts in the ontology are expressed in a syntactic restriction of the DL-Lite
description logics5 [7], considered a good tradeoff between effectiveness (it allows
expressing inclusion dependencies, existential quantification on roles, negation) and
efficiency (comparable to that of relational DBMSs due to limitations imposed on
the use of universal quantification, disjunction, and enumeration).

6.2 Tools

Natural language is based on several kinds of linguistic structures of increasing com-
plexity, layered on top of each other to make up sentences. Dealing with written text,
at the bottom there is the morphologic level,6 then comes the lexical one, followed
by the syntactic one and, lastly, by the semantic one. Since each level is charac-
terized by its own kinds of possible ambiguities, a divide and conquer approach
suggests tackling them separately by different specialized tools, each exploiting the

5Description Logics are fragments of First-Order Logic, having a formal semantics, and typically
exploited to define concepts (i.e., classes) and roles (i.e., binary relations) in ontologies.
6Considering spoken text, a further preliminary level is the phonetic one.

6.2 Tools 207

results of the lower level(s) and providing support to the higher one(s), as shown
in next subsections. Each phase extracts some kinds of components or structure,
and represents them in a format that is suitable to the application of other process-
ing tools and techniques. They can work according to statistical–mathematical ap-
proaches or to symbolic ones. The latter are closer to the way in which humans
process linguistic information, but are sometimes too rigid compared to the typical
difficulty of fixing used language into strict rules. The former are more robust in this
respect, but can be applied only provided that large quantities of linguistic resources
are available.

This stratified perspective allows carrying out only the steps that are sufficient
for a given objective, saving resources whenever further elements are not needed.
For instance, considering the syntactic-logical structure of sentences would require
handling an extremely large number of details on, and of complex inter-relationships
among, the elements that make up the text. In many applications (e.g., search by key
terms), by restricting to the most significant terms only, and by considering them in
isolation, a good trade-off can be reached between effectiveness and computational
requirements, this way allowing the algorithms to work on a less complex problem.
A Bag of Words (BoW) is a classical compact representation of a text, consisting
of the set of terms appearing in it (or of a suitable subset thereof). Despite being
a significant simplification, BoWs are not free from the tricks of natural language,
in this case due to the well-known ambiguity of some terms outside of a specific
context, such as synonymy (different words having the same meaning—e.g., ‘com-
mittee’ and ‘board’) and polysemy (words having different meanings—e.g., ‘board’
as a plank or as a committee).

6.2.1 Tokenization

The first step to be carried out is splitting the text into basic elements, known as
tokenization. Based only on structural considerations with respect to the symbols of
the alphabet in which it is written, any text can be preliminarily split into elemen-
tary components, called tokens, each of which can be associated to a category that
is significant for the aims of subsequent processing (on different kinds of tokens
further specific processing steps can be applied). Typical categories are words (se-
quences made up of letters only), numbers and other types of values, punctuation
marks and various kinds of symbols. The level of detail by which this step is carried
out depends both on the kind of processing that is to be subsequently applied to
the text and on the amount of computational resources that one is willing to spend:
sometimes it is useful to store particular features of the tokens (e.g., the presence
of capital letters, or the adjacency to other kinds of tokens such as punctuation); in
other cases a simpler approach can be adopted, that consists in just ignoring punctua-
tion and numbers, and in taking into account only contiguous strings of alphabetical
characters (many search engines on the Internet work in this way).

208 6 Natural Language Processing

A formalism for expressing patterns that denote some kind of token is that of
regular expressions. They specify how to build valid sequences of symbols taken
from an alphabet A according to the following definition:

• Any symbol of A is a regular expression; then,
• Given two regular expressions R and S, the following constructions are regular

expressions as well:

RS or R · S denoting concatenation of (sequences of) symbols (all the symbols
in R followed by all symbols in S);

(R|S) alternative (sequences of) symbols (either R or S is to be included in the
sequence);

[R] optionality (possibility of not including R in the sequence);
{R}mn iteration (concatenation of R with itself k times, n ≤ k ≤ m).

In iteration, a ∗ superscript indicates any number of repetitions, while subscript
0 can be omitted. Moreover, to express composition of several alternative regular
expressions R1, . . . ,Rl , the simpler notation (R1|R2| . . . |Rl) is exploited instead of
((. . . (R1|R2)| . . .)|Rl).

Example 6.2 Regular expression defining real numbers in decimal notation:

[(+|−)]{(0|1|2|3|4|5|6|7|8|9)}∗1.{(0|1|2|3|4|5|6|7|8|9)}∗1,
where A = {+,−,0,1,2,3,4,5,6,7,8,9, .}.

Further constraints can be set on the outcome of the pattern (e.g., if the pattern
represents a date, the number of days must be consistent with the month, and in the
case of February with the year as well, to handle leap years7).

6.2.2 Language Recognition

Tokens that can be classified as ‘words’ follow the morphologic rules of the lan-
guage used, and hence they must be analyzed in detail from a linguistic viewpoint.
Because the inflection rules are different among languages, the complexity of mor-
phologic analysis can significantly vary according to the language (e.g., the variety
of inflection suffixes available in Italian makes handling this language much more
difficult than English). Thus, if the application is intended to work in multi-lingual
environments, and the specific language in which each single text is written is not
known in advance, an intermediate step of language recognition is required, that
indicates the proper linguistic tools to be exploited in the next steps.

7To improve approximation between the conventional year and the actual movement of the Earth,
a year is leap, i.e., includes February 29th, if it can be divided by 4, unless it can also be divided
by 100 (in which case it is not), unless it can be divided by 400 as well (in which case it is).

6.2 Tools 209

A first way for recognizing the language in which a text is written is counting
the number of typical words that appear in the text from each language, and tak-
ing the language for which such a number is maximum. These typical words are
usually identified as those most frequently exploited in the language, such as arti-
cles, prepositions, pronouns, and some adverbs. Attention must be paid to words
that are typical for several languages, and hence are not discriminant between them
(e.g., ‘a’ which is an article in English, a preposition in Italian and Spanish, etc.).
This approach is straightforward (because these lists of words are generally avail-
able as lexical resources, being useful also for successive processing phases such as
stopword removal—see Sect. 6.2.3) and safer (since actual words of each language
are identified), but might turn out to be inapplicable or might be misled in cases of
short texts written in telegraphic style, where just those peculiar words are usually
omitted.

Another, more sophisticated approach, is based on the analysis of the frequency
of typical sequences of letters. A sequence of n consecutive letters in a text is
called an n-gram8 (n = 1 yields monograms, n = 2 digrams, n = 3 trigrams, etc.).
Theoretical studies and practical experiments reported in [24] have shown that the
frequency distribution of n-grams is typical for each language, so that it can be ex-
ploited for language recognition. Obviously, the larger the n, the finer the approxi-
mation of the language: it turned out that, using trigrams, a very close approximation
to the sound of a language is obtained.9 Thus, a text can be assigned to the language
whose n-gram distribution best matches the n-gram frequency found in the text.

6.2.3 Stopword Removal

A first way to reduce the (size of the) BoW for a given text, while limiting the con-
sequences on effectiveness, is the so-called stopword removal step, consisting in

8This term is often used also to denote a sequence of n consecutive words in a text, but here the
letter-based interpretation is assumed.
9The cited experiment adopted a generative perspective on this subject. First, casual sequences of
equiprobable letters and spaces were generated, showing that no particular language was suggested
by the outcome. Then a first-order approximation of English was produced by generating sequences
where the probability of adding a character to the sequence was the same as the frequency com-
puted for that character on actual English texts. Again, this was of little help for hypothesizing
from the sequence the language from whose frequency distribution it was generated. Switching to
a second order approximation, where each character was extracted according to a different distri-
bution depending on the previous extracted character, started showing some hints of English here
and there. Indeed, it was able to represent phenomena such as the ‘qu’ pair, where the ‘u’ must
necessarily follow the ‘q’, that the single-letter approximation could not express. Finally, a third-
order approximation, in which the probability distribution for extracting the next symbol depended
on the previous two characters, showed a significant improvement in the outcome, where English
was quite evident in the overall flavor of the sound, and several monosyllable words were actually
caught. Comparable results were obtained for other languages as well, e.g., Latin.

210 6 Natural Language Processing

the elimination of the common-use terms appearing with high frequency in a lan-
guage, or of terms that are in any case not considered fundamental to distinguish
the text from others, or to identify its subject, or to understand its content. Most
such terms correspond to function words, i.e., words in a language that have little
meaning by themselves (e.g., articles, adverbs, conjunctions, pronouns and preposi-
tions, auxiliary verbs), as opposed to content words to which a specific independent
meaning can be assigned (e.g., nouns, verbs and adjectives). Thus, the latter are to be
preserved, being considered as potentially significant (often independently of their
spread in the collection and of the number of occurrences).

Stopwords can be determined explicitly, by listing the terms to be removed,
or implicitly, by specifying which grammatical functions are considered mean-
ingless. The latter option is more compact because all words having the specified
functions will be automatically removed, and more general because it is language-
independent, but requires the system to know the category of each word in the text.
The former, conversely, requires each single word to be evaluated for inclusion in,
or exclusion from, the list of terms to be removed, which implies more effort and is
prone to errors, but ensures more flexibility and allows extending or modifying the
stopword list at need. Moreover, if a-priori knowledge on the documents is avail-
able, supplementary domain-dependent stopword lists could be provided. Indeed, if
all the texts considered concern the same area of knowledge, even specific terms that
in general would be characteristic and/or discriminant might become quite meaning-
less. Of course, a mixed approach is possible, that removes all words belonging to
some grammatical categories or appearing in given lists.

6.2.4 Stemming

Morphologic normalization of terms is another way for further reducing the BoW
size for a text. It is aimed at replacing each term with a corresponding standardized
form that is independent on variations due to inflection (conjugation of verbs or de-
clension of nouns and adjectives), and that will be used in subsequent processing
steps as a representative of the terms that derive from it (which can be thought of as
introducing some degree of generalization in the text representation). In addition to
the dimensional reduction in text representation obtained by including in the BoW
just one representative for several variations of each term, some consider this nor-
malization process as introducing a rough kind of semantics in the description as
a desirable side-effect. The underlying rationale is that words have been defined to
denote concepts, and that they carry such concepts independently of the inflection
needed to properly include them in meaningful sentences. Thus, ignoring morpho-
logic variations of the same words in some sense corresponds to going back to the
underlying concepts.

There are two approaches to obtain such a result: Terms that can be associated
to the same morphologic root (called their stem) can be represented by the root

6.2 Tools 211

itself (stemming) or by the corresponding lemma (lemmatization); e.g., ‘comput-
er’, ‘comput-ational’, ‘comput-ation’ are represented by the root ‘comput’ for stem-
ming, or by the basic form ‘compute’ for lemmatization. Stemming is often pre-
ferred because it does not require the ability to retrieve the basic form of words, but
in its simpler forms just consists in suffix removal.

Suffix Stripping Suffix stripping is a famous stemming algorithm, devised by
M.F. Porter for English [25], that iteratively identifies and removes known prefixes
and suffixes without exploiting any dictionary. Its advantage of being very simple
has three drawbacks: it might generate terms that are not valid words in the lan-
guage (e.g., computer, computational, computation → comput), it might reduce to
the same representative words having different meaning (e.g., organization, organ
→ organ) and it cannot recognize morphologic deviations (e.g., go, went).

The algorithm exploits rewriting rules that progressively transform words into
new forms. Any word satisfies the regular expression schema [C]{V C}m[V], where
C and V denote non-empty sequences of consonants only and of vowels only, re-
spectively (in addition to a, e, i, o, u, also y preceded by a consonant is considered a
vowel). As for regular expressions, square brackets denote optional pieces and curly
brackets denote iterations, whose number is indicated by the subscript (called the
measure of the word). Rules are of the form

(C) S -> R

meaning that suffix S is replaced by R if the word meets the condition C. Rules are
grouped in lists according to the step in which they are to be applied (as reported in
Table 6.4); at most one rule per list/step is applied, and precisely the one whose S
has longest match on the word (if any). The condition is a logical expression based
on m or on patterns to be checked on the word, where:

• ∗ denotes any sequence of characters;
• An uppercase letter denotes the presence (in uppercase or lowercase) of that letter

in the word;
• v denotes a vowel;
• d denotes a double consonant;
• o denotes a sequence consonant–vowel–consonant where the latter consonant is

not w, x nor y.

When the condition is the same for all elements in a list, it is reported once and for
all at the top of the list.

Informally, each of the five steps that make up the Porter stemmer is in charge of
performing a particular reduction of the term, and precisely:

1. Reduces final ‘-s’ in nouns and verbs inflection (e.g., books → book); reduces
past participles and ing-forms (e.g., disabled → disable, meeting → meet); nor-
malizes final ‘-i’ in terms ending by ‘-y’ and containing a vowel (e.g., happy →
happi; sky → sky) and removes final ‘-e’ (to provide a homogeneous input to
step 4 as from step 2).

212 6 Natural Language Processing

Table 6.4 Synopsis of the rules underlying Porter’s Suffix Stripping algorithm

Step 1 Step 2 Step 3 Step 4 Step 5

Step 1(a)

• SSES → SS
• IES → I
• SS → SS
• S →
Step 1(b)

• (m > 0) EED → EE
• (∗v∗) ED →
• (∗v∗) ING →
If rule 2 or 3 in Step
1(b) is successful:

• AT → ATE
• BL → BLE
• IZ → IZE
• (∗d ∧ ¬(∗L ∨ ∗S ∨ ∗Z))

→ single letter
• (m = 1 ∧ ∗o) → E

Step 1(c)

• (*v*) Y → I

(m > 0)

• ATIONAL → ATE
• TIONAL → TION
• ENCI → ENCE
• ANCI → ANCE
• IZER → IZE
• ABLI → ABLE
• ALLI → AL
• ENTLI → ENT
• ELI → E
• OUSLI → OUS
• IZATION → IZE
• ATION → ATE
• ATOR → ATE
• ALISM → AL
• IVENESS → IVE
• FULNESS → FUL
• OUSNESS → OUS
• ALITI → AL
• IVITI → IVE
• BILITI → BLE

(m > 0)

• ICATE
→ IC

• ATIVE
→

• ALIZE
→ AL

• ICITI →
IC

• ICAL →
IC

• FUL →
• NESS

→

(m > 1)

• AL →
• ANCE →
• ENCE →
• ER →
• IC →
• ABLE →
• IBLE →
• ANT →
• EMENT →
• MENT →
• ENT →
• (∗S ∨ ∗T)

ION →
• OU →
• ISM →
• ATE →
• ITI →
• OUS →
• IVE →
• IZE →

Step 5(a)

• (m > 1) E →
• (m = 1∧¬∗o)

E →
Step 5(b)

• (m > 1 ∧∗d ∧∗L)

→ single letter

2. Reduces ‘double’ suffixes to single ones (e.g., organization → organize; orga-
nizer → organize);

3. Somewhere in between steps 2 and 4: eliminates some simple suffixes (e.g.,
‘-ful’, ‘-ness’: hopeful → hope; goodness → good) and reduces some ‘double’
ones (e.g., ‘-ic-’ into ‘-ic’: electriciti → electric; electrical → electric);

4. Eliminates simple suffixes (‘-ant’, ‘-ence’, etc.);
5. Performs final stem adjustment (e.g., ‘-e’: probate → probat; cease → ceas).

Suffixes are not removed when the length of the stem (i.e., its measure, m) is be-
low a given threshold, empirically derived. The rules reporting ‘single letter’ as a
substitution (in Steps 1(b) and 5(b)) reduce the final double letter to a single one.

Example 6.3 (Application of the Porter stemmer to two sample words)

Step 1 Step 2 Step 3 Step 4 Step 5

Generalizations Generalization Generalize General Gener
Oscillators Oscillator Oscillate Oscill Oscil

Tests carried out by its author have shown that this algorithm reduces by about
one third the size of a vocabulary of 10000 words. Its transposition to languages
having a more complex morphology and/or characterized by many more suffixes,
however, may not be as straightforward and efficient as for English.

6.2 Tools 213

6.2.5 Part-of-Speech Tagging

Lexical normalization is usually accompanied by a Part-of-Speech (PoS) tagging
step that labels the words according to their grammatical function (which is typ-
ically hinted by the suffixes lost in normalization). This is a preliminary step for
many activities. For instance, a syntactic analysis of sentences cannot be carried
out without knowing the grammatical role of their components, and identifying the
meaning of a component often cannot be carried out if grammatical role ambigui-
ties are not solved. Indeed, just because some words can play different grammatical
roles, PoS tagging usually cannot be performed by focusing on single items (e.g.,
‘run’ as a verb means walking quickly while as a noun means a sequence of similar
objects), but a sequence of neighbor terms that are present in the text (including
those that have a low significance for interpretation purposes, and that are usually
considered as stopwords) must be taken into account.

PoS taggers are obtained according to two approaches, statistical or rule-based.
The latter has the advantage of being human-readable (and hence errors can be easily
fixed), easily extensible, and compact, but is usually considered less reliable than
the former. Conversely, statistical approaches have proven to be very performant,
yielding high accuracy rates, but at the cost of a large amount of data to be stored for
obtaining meaningful statistics, and of not being easily modified by human experts.
A successful technique for automatically building statistical PoS taggers are Hidden
Markov Models (HMMs) that can work either on labeled or on unlabeled data. In
the following, a widely-known rule-based approach that has proven to reach similar
accuracy as statistical approaches will be described.

Rule-Based Approach Brill’s algorithm [4] builds a rule-based PoS tagger by
first obtaining a rough set of rules from a corpus of texts, then applying it and using
its errors to refine the rules and improve their performance using two techniques.
The former (which alone turned out to reduce error rate below 8%) consists in tag-
ging unknown words as proper nouns if they are capitalized, or as the most common
tag among known words ending with the same three letters otherwise. Moreover,
the tagger learns patch templates that change the initial tag t of a word to a new tag
t ′ if a given condition is met, where conditions can be as follows:

• The word is in context C;
• The word has property P ;
• Another word in a neighboring region R of the word has property P ,

and the property is one of the following: article, ‘had’, preposition, modal, singu-
lar noun, proper noun, 3rd singular nominal pronoun, objective personal pronoun,
infinitive ‘to’, verb, past participle verb, past verb. Although these templates might
not be fully correct, if any of them is useless, no instantiations of it will pass the
conditions to be included in the final patch list.

The tagger is trained on 90% of the given corpus and applied to a further 5%, an-
notating the frequency of tagging errors as triples (wrong, correct,amount). Then,
for each such triple the specific error occurrences are located, and the patch template

214 6 Natural Language Processing

that maximizes error reduction (computed as the amount of initial of errors that are
now correctly recognized, minus the new errors introduced by application of the
patch) is instantiated. As soon as a new patch is found, it is applied to improve the
corpus tagging, before continuing the process. In operation, first the basic tagger is
applied, then each patch in turn is tried for changing a word tag from t to t ′ if that
word was tagged t ′ at least once in the training corpus.

This takes linear time in the number of words to be tagged, and has shown to be
ten times faster than the fastest stochastic tagger. However, one strength of stochastic
taggers is the possibility of automatically building them using Machine Learning.
Thus, Brill proposed several techniques for learning rules for his tagger as well [6],
called Transformation-Based Error-Driven Learning.

In the supervised learning version, an initial annotator is built (using a previously
available set of rules, or even at random), whose outcome is compared to the correct
one on a manually annotated corpus. Then, from such a comparison, patches to
be subsequently applied to the initial annotator output are learned according to the
following space of allowed transformations [5]:

• The tag given to the word in a specific position (one or two places) before or after
the current word;

• The tag given to any word within two or three positions before or after the current
word;

• The tags of both the previous and the following words;
• The tags of the two words immediately before or after the current one;
• The current or the previous word being capitalized;

using error reduction as the evaluation function (in contrast to HMM learning that
tries to maximize probability). In each learning iteration, the transformations that
show the best error reduction are added. Since the algorithm is data-driven, only
actually observed patterns are attempted, which reduces time requirements.

In the unsupervised version, neither likelihood information nor any other kind
of knowledge is provided. The initial state annotator associates each word with the
logical OR of all possible tags for it, as can be obtained by analyzing a dictionary.
Instead of changing word tags, here the transformation templates reduce uncertainty,
and hence are based on a context that specifies a tag or a specific word in the posi-
tion immediately before or after the current word. As to the scoring function, error
reduction cannot be considered since in this case the correct tags are not known.
Instead, the previous tagging is used as a training set, leveraging the distribution of
unambiguous words therein. The score of transforming a set of tags A to one of its
elements b ∈ A in context C is computed according to how frequently a candidate
tag appears as measured by unambiguously tagged words with respect to all others
in the context:

in(b,C) − f (b)

f (R)
in(R,C),

6.2 Tools 215

where f (t) is the number of words unambiguously tagged as t in the previous iter-
ation; in(t,C) denotes how many times a word tagged as t appears in context C in
the tagging obtained from the previous iteration; and

R = arg max
c∈A,c 	=b

f (b)

f (c)
in(c,C).

Learning stops when no positive scoring for this function is found.
Lastly, a weakly supervised strategy is proposed, where a limited supervisor in-

tervention is permitted, to mix benefits coming from the exploitation of large unan-
notated resources with a limited human effort. Since a transformation-based system
is a processor rather than a classifier, it can be applied to any initial state annotator.
In particular, the initial state can be obtained by unsupervised learning: the initial
state annotator and an unannotated text are provided to the unsupervised learner,
and the result is input to the supervised learner, that provides ordered adjustment
patches for that. Now, applying the result to the annotated corpus, a second ordered
set of patches is learned. On new texts, first the unsupervised transformation, and
then the supervised patches are applied.

6.2.6 Word Sense Disambiguation

Starting from the lexical level, the issue of semantic assessment of sentences comes
into play. For instance, the BoW of a text could be further reduced by replacing
synonymous terms by a single standard representative of the underlying concept.
Unfortunately, as already pointed out, many words are polysemous, which means
that they can be synonyms of different words in different contexts. Identifying their
correct semantics is the objective of Word Sense Disambiguation (WSD), defined as
the “association of a given word in a text or discourse with a definition or meaning
(sense) which is distinguishable from other meanings potentially attributable to that
word” [15]. More specifically, assuming that a previous PoS tagging step has re-
solved ambiguities about different possible syntactic categories for that word, WSD
is concerned only with distinguishing its correct sense. An effective WSD step is
clearly fundamental for all processing tasks involving text understanding, but can
be profitably exploited in several other applications as well.

WSD works on an entire text or on selected words (called a context), for each
of which the set of possible senses is known. A dictionary or thesaurus can easily
provide such an initial set, to be possibly restricted based on the domain, text or
discourse under consideration. A variety of techniques has been developed to as-
sign one such sense to each word occurrence, working under two main approaches:
knowledge-driven, exploiting information from external knowledge sources (such
as lexica, encyclopedias, or special-purpose resources developed to support WSD),
or data-driven (also known as corpus-based), leveraging information coming from
previously disambiguated instances of the word in given collections of texts (based
on the text, context or discourse in which the word appears, on the domain or situa-
tion to which the text refers, etc.). The two approaches are not incompatible, since

216 6 Natural Language Processing

the available resources can suggest a proper context, and knowledge about the con-
text can point out the proper resources to be exploited.

The WSD task can take advantage by the consistency that can be generally ap-
preciated (at least locally) in well-written texts, so that words belonging to the same
piece of text are likely to refer to the same concept, or to strictly related ones. This
feeling can be captured by different assumptions:

One Sense per Collocation the meaning in which a word is used is constant in
all occurrences of a given collocation. A collocation, intended by J.R. Firth
(in ‘Modes of Meaning’, 1951) as a ‘habitual’ or ‘usual’ co-occurrence, can be
operationally identified as the probability that an item co-occurs, within a given
distance, with other specific items [14] being greater than chance [3], or as the
co-occurrence of two words in some defined relation [27].

One Sense per Discourse all occurrences of a word in a text refer to the same
sense. Although the sense of a polysemous word depends on the context of use,
it seems extremely likely (98%) that all of its occurrences in a discourse share the
same sense [11]. This would allow disambiguating just one occurrence and then as-
signing that sense to all the others. Unfortunately, other studies found many more
cases (33–45%) of multiple-senses per discourse, arguing that this hypothesis is
likely (although not guaranteed) to hold for homonymy (unrelated meanings of a
word), but not for polysemy (different but related meanings of a word) [16]. Thus,
systematic polysemy of a word in a discourse can represent at best a hint to guide
the tagging of occurrences of that word.

More formally, WSD aims at assigning a sense s, chosen from a set of candi-
dates S, to a word w, based on a set of features (boolean conditions) f = {fi}. The
performance of a WSD classifier, called a disambiguator, is evaluated by compar-
ison to the baseline accuracy obtained by always choosing for each word its most
common sense. A classical tool to perform WSD are decision list classifiers, con-
sisting of ordered lists each of whose items, of the form f → s predicts a specific
sense s for word w if the feature f , based on collocations of w, is true (e.g., “word
w′ occurs in a window of size k around w”, or “word w′ immediately precedes
w”, or “word w′ immediately follows w”, etc.). It is clear that the One Sense per
Collocation assumption is implicitly made by this model.

Since manually writing disambiguators is a complex task, there is a strong mo-
tivation to automatically induce them, which is usually performed according to the
following approaches:

Supervised learning exploiting a (large) corpus annotated with word senses;
Dictionary/Thesaurus based exploiting a dictionary of word senses as a surrogate
of the supervisor in supervised learning;

Semi-supervised learning (bootstrapping) exploiting a small set of labeled data
and a large unlabeled corpus.

Supervised methods require the set of features to be preliminarily known. One
technique is Decision lists learning, aimed at distinguishing between two possible
senses (S = {s′, s ′′}). It works as follows:

6.2 Tools 217

1. For each feature fi compute its score: score(fi) = log p(s ′|fi)
p(s′′|fi)

;
2. Sort features by score.

Another approach consists in building Naive Bayes classifiers. It performs the as-
signment based on conditional probability, as follows:

s = arg max
s∈S

p(s|f,w) = arg max
s∈S

p(s|w)p(f|s,w)

p(f|w)

the denominator being independent of s

= arg max
s∈S

p(s|w)p(f|s,w)

assuming features fi are conditionally independent given the word sense s

= arg max
s∈S

p(s|w)
∏

i

p(fi |s),

where probabilities can be estimated by frequency counts | · |:

p(s|w) = |s,w|
|w| and p(fi |s) = |fi, s|

|s| .

The assumption of conditional independence is not always true (features usually
take context into account, which is ignored in the above equation). Moreover, unseen
words require some kind of smoothing to be handled.

Lesk’s Algorithm A dictionary-based approach was proposed by Lesk [18]. It
assigns the sense to a word by counting overlaps between terms that appear in the
definitions of the various word senses. Given a dictionary D, and a word w in a
sentence made up of a set of content words C (the context), its best sense s is found
as follows:

1. s ← most frequent sense for w in D

2. max ← 0
3. for all si ∈ S do

(a) overlapi ← |signature(si) ∩ C|
(b) if overlapi > max then

(i) s ← si
(ii) max ← overlapi

4. return s

where S is the set of all senses for w as specified by D. In the original algorithm
signature(·) is the signature of content words in the definition, but this often yields a
zero overlap. Alternatively, signature(·) can be taken as the set of all content words
in the definition of the sense in D.

Yarowsky’s Algorithm Yarowsky [29] proposed a semi-supervised technique to
learn a decision list for each ambiguous word in the training corpus, based on micro-
contexts:

218 6 Natural Language Processing

1. Choose a few seed collocations for each sense and label those words;
2. while coverage of the corpus is not sufficient do

(a) Train a supervised classifier on the labeled examples;
(b) Label all examples with the current classifier, and store into a new labeled

data set the labels about which the current classifier is confident above a
threshold;

(c) Optionally, propagate labels throughout the discourse to fix mistakes and
obtain additional examples.

After collecting contexts for the word to be disambiguated, a few representative
occurrences for each sense of that word in those contexts are manually labeled as
training examples. Then, they are used to learn a classifier to be applied on the
remaining contexts (called the residual), leveraging the uneven distribution of col-
locations with respect to the ambiguous occurrences to be classified. At each round,
new collocations might be discovered: if they take the reliability of some previ-
ous assignments under the threshold, this causes such assignments to be withdrawn.
One-sense-per-collocation is implicitly assumed in the decision list classifier,10 and
One-sense-per-discourse is exploited in the optional propagation step.

The suggested learning algorithm [28] uses as contexts windows (sets of neigh-
bor words) of different size ±k (k ∈ [2,10]), and words pairs at offsets {−1,−2},
{−1,+1}, or {+1,+2} with respect to the word to be disambiguated. It is argued
that the optimal value for k depends on the kind of ambiguity (for local ambiguities
k ∈ [3,4] is enough, while semantic or topic-based ambiguities require k ∈ [20,50]),
and that, for different ambiguous words, different distance relations are more effi-
cient. Furthermore, the use of additional (e.g., PoS) information is also considered
(e.g., ‘first noun to the left’).

The final decision list classifier is ordered by decreasing predictive features based
on log-likelihood ratio to find the most reliable evidence for disambiguation: item
fi → s′ precedes item fj → s′′ in the list if

log
p(s ′|fi)

p(s′′|fi)
≥ log

p(s′′|fj)

p(s′|fj)
.

In ambiguous cases, the first matching feature is used.
As to the initial labeling, it can start from a very limited number of words, even

two (depending on how much burden one wants to put on the automatic procedure).
The actual labeling can be carried out manually, by focusing on the most frequent
collocations, or by relying on dictionary definitions (e.g., WordNet provides indica-
tions on the frequency of sense usage for each word).

6.2.7 Parsing

Syntactic or logical parsing of sentences allows obtaining their structure. This is a
quite difficult task, due to the intrinsic complexity of natural language, and also the

10In cases of binary ambiguity, the estimation is that in a given collocation a word is used with
only one sense with a 90–99% probability [27].

6.2 Tools 219

resulting information turns out to be in many cases very complex to be represented
effectively and handled efficiently. Nevertheless, this level of text description is fun-
damental to carry out enhanced NLP tasks, such as text understanding or some kinds
of information extraction. As a trivial example, the sentences “The dog bit the man”
and “The man bit the dog” contain exactly the same words, and hence would be
considered just equivalent by a BoW-based approach, although reporters know very
well that the former is not news, while the latter is. To gain this level of understand-
ing, one must be able to distinguish the subject and the object of the sentence.

The grammars exploited in NLP are usually aimed at identifying suitable com-
binations of (some variation of) the following kinds of relevant aggregates (called
constituents):

Noun Phrase a (meaningful) combination of articles, pronouns, nouns and adjec-
tives;

Verb Phrase a (meaningful) combination of verbs and adverbs;
Prepositional Phrase usually a (series of) Noun Phrase(s) introduced by preposi-

tion(s);
Clause a sub-component of a sentence having a complete meaning by itself, such
as a subordinate or incidental;

Sentence a complete period in the text, involving some combination of the previous
structures and of other grammatical items such as conjunctions and exclamations;

at the syntactic level, and, within a sentence, its logical components such as Subject,
Predicate, Direct and (different types of) Indirect Objects, plus information on the
associations of clauses with these items.

Link Grammar Link Grammar [26] is a formal context-free grammatical sys-
tem based on the analysis of different kinds of links connecting pairs of words in a
sentence. It is purely lexical (i.e., it does not make explicit use of constituents and
syntactic categories, as phrase structure grammars do); anyway, constituents emerge
as particular types of links that join some subsets of words to each other. The gram-
mar definition being distributed and split as information associated to each single
word, it can be easily extended, and allows knowing exactly which words can be
connected directly to which others. A probabilistic version of the model, based on
an algorithm for determining the maximum-likelihood estimates of the parameters,
was proposed in [17].

Words in the allowed vocabulary represent terminal symbols of the grammar.
They are associated to linking requirements, expressing how they can be correctly
exploited to build sentences, and are grouped by similar requirements. Each require-
ment is an expression that composes a number of connectors (link types to be satis-
fied by linking them to matching connectors in other words), using logic operators
AND and XOR, plus parentheses as needed for specifying the desired evaluation
priority. Sometimes the empty formula (), implicitly satisfied, can be useful. This
formalism is easy to read by humans and allows compactly expressing many com-
binations of possible exploitations of a word.

A connector begins with one or more capital letters, possibly followed by low-
ercase letters (called subscripts) or ∗’s, and terminated by − (imposing a link to a

220 6 Natural Language Processing

word on the left) or + (imposing a link to a word on the right). It matches another
connector having opposite sign (placed in the proper direction according to the +/−
specification) if, after lining them up on the first character and considering them as
followed by infinite ∗’s, the two strings match (with a ∗ matching any lowercase
letter). A multiconnector, denoted by a @ prefix, is allowed to connect to one or
more links (e.g., sequences of adjectives).

A linkage is a set of links that successfully recognize a sentence belonging to the
language. A sequence of words is a valid sentence if the following constraints are
fulfilled:

Satisfaction the local linking requirements of each word are satisfied;
Planarity the links do not cross (i.e., the corresponding graph is planar);
Connectivity the words and links form a connected graph;
Ordering scanning the requirements formula of a word, the linked words have

monotonically increasing distance from that word, i.e., the more ‘external’ con-
nectors in the scanning direction are satisfied by closer words (in that direction)
than more ‘internal’ ones (hence, the AND is not commutative);

Exclusion at most one link is specified for each pair of words.

Example 6.4 (Sample link grammar outcome) Parsing the sentence “This is a test
of the link grammar approach” produces:

+------------------------Xp-----------------------+
| +-----------Js----------+ |
| | +---------Ds---------+ |
| +-Ost--+ | | +------AN------+ |
+--Wd--+Ss*b+ +-Ds-+Mp+ | | +---AN---+ |
| | | | | | | | | | |

LEFT-WALL this is a test of the link grammar approach .
p v n n n n

where the following connectors appear:

AN noun-modifiers to following nouns;
D determiners to nouns;
J prepositions to their objects;
M nouns to various kinds of post-noun modifiers;
O transitive verbs to their objects, direct or indirect;
S subject nouns to finite verbs;
W subjects of main clauses to the wall;
X punctuation symbols either to words or to each other,

with constituent tree:

(S (NP This)
(VP is

(NP (NP a test)
(PP of

(NP the link grammar approach))))
.)

References 221

where S denotes Sentences, NP Noun Phrases, VP Verb Phrases and PP Preposi-
tional Phrases.

The first application of the model to English consisted of a vocabulary of
about 25000 words specifying 800 requirement definitions. In its latest version,
maintained in cooperation with the Abiword project,11 it was extended to 60000
word forms, featuring enhanced handling of capitalization, numeric expressions and
punctuation, and improved for coverage (of syntactic constructions), robustness (to
portions of the sentence that it cannot understand) and flexibility (guessing the cat-
egory of unknown words based on context and spelling). Its implementation, in C
language, carries out an exhaustive search using dynamic programming techniques,
look-up in a dictionary of links for each word, and exploits suitable data structures
and heuristics to ensure a performance that is cubic (O(n3)) in the number n of
words that make up the sentence to be parsed.

References

1. Allen, J.F.: Natural Language Understanding. Benjamin-Cummings, Redwood City (1994)
2. Bentivogli, L., Forner, P., Magnini, B., Pianta, E.: Revising WordNet domains hierarchy: Se-

mantics, coverage, and balancing. In: Proceedings of COLING 2004 Workshop on Multilin-
gual Linguistic Resources, pp. 101–108 (2004)

3. Berry-Rogghe, G.: The computation of collocations and their relevance to lexical studies. In:
Aitken, A.J., Bailey, R.W., Hamilton-Smith, N. (eds.) The Computer and Literary Studies, pp.
103–112. Edinburgh University Press, Edinburgh (1973)

4. Brill, E.: A simple rule-based part of speech tagger. In: HLT ’91: Proceedings of the Workshop
on Speech and Natural Language, pp. 112–116 (1992)

5. Brill, E.: Some advances in transformation-based part of speech tagging. In: Proceedings of
the 12th National Conference on Artificial Intelligence (AAAI), vol. 1, pp. 722–727 (1994)

6. Brill, E.: Unsupervised learning of disambiguation rules for part of speech tagging. In: Natural
Language Processing Using Very Large Corpora Workshop, pp. 1–13. Kluwer, Amsterdam
(1995)

7. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-lite family. Journal of Automated
Reasoning 39(3), 385–429 (2007)

8. Calzolari, N., Lenci, A.: Linguistica computazionale—strumenti e risorse per il trattamento
automatico della lingua. Mondo Digitale 2, 56–69 (2004) (in Italian)

9. De Mauro, T.: Grande Dizionario Italiano dell’Uso. UTET, Turin (1999) (in Italian)
10. Dewey, M., et al.: Dewey Decimal Classification and Relative Index. Edition 22. OCLC On-

line Computer Library Center (2003)
11. Gale, W., Church, K., Yarowsky, D.: One sense per discourse. In: Proceedings of the ARPA

Workshop on Speech and Natural Language Processing, pp. 233–237 (1992)
12. Grishman, R.: Computational Linguistic—An Introduction. Studies in Natural Language Pro-

cessing. Cambridge University Press, Cambridge (1986)
13. Gruber, T.R.: A translation approach to portable ontology specifications. Knowledge Acquisi-

tion 5(2), 199–220 (1993)
14. Halliday, M.: Categories of the theory of grammar. Word 17, 241–292 (1961)

11http://www.abisource.com/projects/link-grammar.

222 6 Natural Language Processing

15. Ide, N., Véronis, J.: Introduction to the special issue on Word Sense Disambiguation: The state
of the art. Compuational Linguistics 24(1), 1–40 (1998)

16. Krovetz, R.: More than one sense per discourse. In: Proceedings of SENSEVAL Workshop,
pp. 1–10 (1998)

17. Lafferty, J., Sleator, D.D., Temperley, D.: Grammatical trigrams: A probabilistic model of
link grammar. In: Proceedings of the AAAI Fall Symposium on Probabilistic Approaches to
Natural Language (1992)

18. Lesk, M.: Automatic sense disambiguation using machine-readable dictionaries: How to tell
a pine cone from an ice cream cone. In: Proceedings of the 5th International Conference on
Systems Documentation (SIGDOC), pp. 24–26 (1986)

19. Magnini, B., Cavaglià, G.: Integrating subject field codes into WordNet. In: Proceedings of the
2nd International Conference on Language Resources and Evaluation (LREC), pp. 1413–1418
(2000)

20. Manning, C.D., Schutze, H.: Foundations of Statistical Natural Language Processing. MIT
Press, New York (1999)

21. McCarthy, J., Minsky, M.L., Rochester, N., Shannon, C.E.: A proposal for the Dartmouth
Summer research project on Artificial Intelligence. Tech. rep., Dartmouth College (1955)

22. Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.J.: Introduction to WordNet:
An on-line lexical database. International Journal of Lexicography 3(4), 235–244 (1990)

23. Oltramari, A., Vetere, G.: Lexicon and ontology interplay in Senso Comune. In: Proceedings
of OntoLex 2008 Workshop, 6th International Conference on Language Resources and Eval-
uation (LREC) (2008)

24. Pierce, J.R.: Symbols, Signals and Noise—The Nature and Process of Communication. Harper
Modern Science Series. Harper & Brothers (1961)

25. Porter, M.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)
26. Sleator, D.D., Temperley, D.: Parsing English text with a link grammar. In: Proceedings of the

3rd International Workshop on Parsing Technologies (1993)
27. Yarowsky, D.: One sense per collocation. In: Proceeding of ARPA Human Language Tech-

nology Workshop, pp. 266–271 (1993)
28. Yarowsky, D.: Decision lists for lexical ambiguity resolution: Application to accent restoration

in Spanish and French. In: Proceedings of the 32nd Annual Meeting of the Association for
Computational Linguistics, pp. 88–95 (1994)

29. Yarowsky, D.: Unsupervised Word Sense Disambiguation rivaling supervised methods. In:
Proceedings of the 33rd Annual Meeting of the Association for Computational Linguistics,
pp. 189–196 (1995)

Chapter 7
Information Management

The ultimate objective of automatic document processing is capturing the various
aspects of the information conveyed by documents, so that they can be semanti-
cally interpreted and exploited for satisfying the user needs. Clearly, a fundamental
requirement is that users must be able to search large repositories of documents
and obtain as a result a list of items that closely fit their purposes, in spite of the
many levels of complexity and ambiguity that are inborn in their representation.
More advanced applications aim at the explicit extraction and exploitation of infor-
mation, such as automatic summarization or categorization of documents. The two
perspectives are closely related because the extraction of suitable information can
obviously enable or improve a focused information retrieval, and effective informa-
tion retrieval can filter relevant documents in which searching the information to be
extracted. Additionally, both can take advantage from a deep understanding of the
document semantics that resembles as closely as possible their human interpreta-
tion. A further related concern is how to represent the document-related knowledge
in a formal and standard way that allows different applications to share their infor-
mation and to consistently process it. The mainstream research has so far devoted
most effort to develop techniques concerned with text, as the easiest way to approach
explicit semantics. Accordingly, this chapter will deal mostly with the textual per-
spective, although a few hints to the emerging field of image-based information
retrieval will be provided.

7.1 Information Retrieval

The spread of electronic documents in the last years has significantly increased the
number and size of the repositories in which they are stored. As a consequence, fi-
nal users experience dramatic troubles in retrieving those that are actually relevant
to satisfy their information needs. An outstanding example is the search for inter-
esting documents on the Web using traditional query-based search engines. On the
other hand, the aim of making up document collections is to enforce the control and

S. Ferilli, Automatic Digital Document Processing and Management,
Advances in Pattern Recognition,
DOI 10.1007/978-0-85729-198-1_7, © Springer-Verlag London Limited 2011

223

224 7 Information Management

management of the information they contain, and in order to pursue such an objec-
tive the ability to retrieve the desired information in an easy way is essential. Manual
search in this context is often infeasible, especially when information is available in
non-structured form (e.g., texts in natural language or images). Hence, the need to
develop automatic and clever systems for document indexing and for the effective
and efficient retrieval of interesting information from them, which is the fundamen-
tal motivation for the research in the field of Information Retrieval (IR). IR, that is
specifically concerned with problems related to the organization and representation
of information, as a key to properly accessing it, is aimed at improving the activities
of management, organization and search of documents.1

Currently, users search documents and information using almost exclusively tex-
tual queries in (some simplified form of) natural language. Unfortunately, the ambi-
guity and imprecisions that are typical of natural language represent by themselves
an obstacle, which is made still more difficult by the fact that, currently, both the
documents in the repository and the textual queries that express the information
needs of the user are often reduced to simple sets of terms, possibly weighted, used
as a surrogate of the related semantic content (a trend that is going to be overcome
by more recent methods that try to interpret the document collection on which the
search is to be performed and to capture the underlying semantics). For instance,
this chapter, although clearly not providing any useful information on winter sports,
would be retrieved as a result of a “winter sports” query just because of the presence
of these words in the text.

7.1.1 Performance Evaluation

The outcomes of search sessions have a direct impact on the activities of those
who are going to use them, boosting their productivity if good, or possibly even
preventing them from reaching their objectives if bad. Thus, information retrieval is
a ticklish activity in which the relevance of the results takes on a crucial importance.
Ideally, what the automatic IR systems consider as relevant or irrelevant should
match as much as possible what is actually such for the user. In other words, the
objective is avoiding that a document that is relevant to the user is not retrieved
by the system or, conversely, that a document proposed as relevant by the system
is not significant to the user. In this perspective, useful parameters to evaluate the
effectiveness of the results are the following:

TP (True Positives) relevant documents recognized as such by the system;
FN (False Negatives) relevant documents not considered as such by the system;
FP (False Positives) documents erroneously considered relevant by the system;
TN (True Negatives) documents that the system correctly considers as irrelevant.

1A possible specification/refinement/evolution of these objectives involves the possibility of query-
ing a document base by issuing the request as a question in natural language (a field known as
Question Answering).

7.1 Information Retrieval 225

More precisely, the number of documents for each such category in a search result
is of interest.

The classical measures used in IR and based on these parameters2 are Recall (R)
that expresses how good is the system in retrieving relevant documents:

R = number of relevant documents retrieved

total number of relevant documents in the collection
= TP

TP + FN
∈ [0,1]

and Precision (P) that represents the degree of relevance of the retrieved documents
with respect to the overall result of the query:

P = number of relevant documents retrieved

total number of documents retrieved
= TP

TP + FP
∈ [0,1].

These measures catch two different, and often opposite, desirable features of the
retrieval effectiveness. Thus, improving performance of either of the two usually
results in a worse performance of the other. To have a single value that characterizes
the overall performance of a system (which is also more comfortable for evaluation),
a tradeoff between them must be taken into account. With this objective, the Fallout
measure, or F-measure (also called F-score), was defined as:

F = (1 + β2) · P · R
(β2 · P + R)

= (1 + β2) · TP

(1 + β2) · TP + β2 · FN + FP
,

where β is a non-negative real number expressing the relative weight given to re-
call with respect to precision (e.g., β = 2 assigns recall twice the importance of
precision, while β = 0.5 does the opposite). The traditional setting uses β = 1 to
assign to both parameters the same importance, thus yielding the harmonic mean of
precision and recall, often denoted as F1-measure:

F = 2 · P · R
P + R

.

2Another measure typically used to evaluate performance of Machine Learning systems is Accu-
racy (Acc), representing the overall ratio of correct choices made by the system:

Acc = TP + TN

TP + FN + FP + FN
∈ [0,1]

or its complement, Error Rate (ER):

ER = 1 − Acc ∈ [0,1].
This measure, that is intuitive and sufficiently significant when the number of positive and negative
instances is balanced, becomes tricky when these quantities are very different from each other.
Indeed, when negative instances are an overwhelming majority (say 99%), as is the case for IR
(where the number of documents in the collection that are not significant to the query are almost the
totality), a trivial system saying that everything is irrelevant would reach 99% accuracy, although
it is clear that its performance is absolutely insignificant.

226 7 Information Management

Fig. 7.1 Term–document
matrix in the vector space
model

7.1.2 Indexing Techniques

Effective IR is heavily founded on clever strategies to index documents so that those
that are relevant to a given query can be quickly and precisely identified. In turn,
two peculiarities distinguish the different indexing techniques and determine their
strengths and weaknesses: the parameters according to which they organize a given
collection of documents in order to make easy the subsequent retrieval of some of
them, and the representation adopted to compactly store the collection itself. The
landscape of solutions proposed in the literature to tackle these two issues is very
wide. Some of the most interesting will be introduced in the following. Most of
them are based, directly or indirectly, on the vector space model representation.

Vector Space Model The Vector Space Model [24] is a mathematical model for
the compact representation of a set of texts. A collection of n documents, in which m

different terms appear overall, is represented by means of a Term–Document Matrix
Am×n in which each column represents a document, and each row is associated to
a term, describing its distribution across documents. Thus, each matrix element wij

expresses the ‘relevance’ of the ith term in the j th document (see Fig. 7.1). Such a
relevance, in the form of a numerical weight, is typically assigned as a function of
the frequency by which the former appears in the context of the latter, and depends
on both the importance of the word in the considered text (the column of the matrix),
and the degree by which the word carries information on the general domain of
discourse. This representation defines a high-dimensional geometrical space, whose
dimensions are the terms, in which a text dj is represented as an m-dimensional
column-vector:

dj = (w1j ,w2j , . . . ,wmj),

where each component acts as a coordinate whose value is the weight wij for the
term/dimension ti . If the ith term is not present in the j th document, wij is usually
null. In this case, since typically only a very small portion of all indexed terms ap-
pears in each single document, the Term–Document matrix A is very sparse, which
allows for optimizations in its storage and handling that try to compensate for its
huge size. In order to deal fairly with documents having different length, where the
weights might be biased, a possible solution is to normalize the document vectors
so that all have unit length. That is, the norm of the document d must be equal to 1:

‖d‖ = 1.

The values in A are computed according to suitable weighting functions that are
usually based on the number of occurrences of the terms in single documents and/or

7.1 Information Retrieval 227

in the whole collection. In order to have a more realistic estimation of the impor-
tance of a term in a document, it is wise to consider the term not only in the local
context (i.e., in the document under consideration), but also in the general context
of the entire document collection. Indeed, although it is sensible to consider a term
as presumably relevant when it is very frequent, it is nevertheless true that, if it is
equally frequent in most documents of the collection, it is not actually very discrim-
inative (think, e.g., of articles and prepositions). Hence, to improve the quality of
the results, a good weighting scheme should try and balance a local factor L(i, j)

(sometimes called tf factor, from Term Frequency) that provides a measure of how
relevant term ti is to document dj (i.e., how well it could represent its content) and
a global factor G(i) (sometimes referred to as idf factor, from Inverse Document
Frequency) that provides a measure of the spread of term ti among all documents
in the collection. A weighting function that takes into account both parameters is
obtained by their product:

wij = L(i, j) · G(i).

Several functions have been proposed, both for local and for global weighting.
They variously combine the following parameters:

• tf ij number of occurrences of term ti in document dj ;
• maxi tf ij maximum number of occurrences among all terms in document dj ;
• gf i total number of occurrences of term ti in the whole document collection;
• n number of documents that make up the collection;
• df i number of documents in the collection in which term ti appears.

Typical functions used for local weighting are the following:

Binary

L(i, j) =
{

1 if term ti is present in document dj ;
0 otherwise;

Normal

L(i, j) = tf ij ;
Normalized

L(i, j) = 0.5 + 0.5
tf ij

maxi tf ij

.

Binary weighting ignores the number of occurrences, and takes into account just the
presence or absence of terms. Normalized weighting is based on the assumption that
longer texts are likely to include more occurrences of a term, which would penalize
shorter ones, and hence reports absolute occurrence values to a standard range that
affects only half of the total weight.

For the global weighting one can use:

Fixed

G(i) = 1;

228 7 Information Management

Logarithmic

G(i) = log
n

df i

;

Probabilistic

G(i) = log
n − df i

df i

.

Fixed weighting just ignores the spread of the term along the entire collection. Log-
arithms are used in the other two cases to obtain a more comfortable mathematical
behavior of the function.

The most widely-known weighting scheme is called TF-IDF, and is based on the
following considerations:

• The more frequently a term occurs in a document, the more it can be presumed to
be important:

L(i, j) = tf ij .

The term frequency can be normalized considering the whole corpus of docu-
ments:

L(i, j) = tf ij

max{tf ij }
.

• Terms that appear in many documents are less significant:

G(i) = idf i = log2
n

df i

,

i.e., the inverse average frequency of term ti across the collection.

The overall TF-IDF weight associated to a term is thus computed as

wij = tf ij · idf i = tf ij · log2
n

df i

or

wij = tf ij

max{tf ij }
· idf i = tf ij

max{tf ij }
· log2

n

df i

.

The log-entropy weighting scheme is named after being obtained as the product
between a local factor with logarithmic trend and a global one of entropic kind:

L(i, j) = log(tf ij + 1), G(i) = 1 −
∑

j

pij · log(pij)

logn
,

where pij = tf ij

gfi
. The local factor is the logarithm of the number of occurrences of

term ti in document dj , in order to smooth the effects of large differences in fre-
quencies. The global factor is the entropy (representing the ‘noise’ in the collection)
that takes into account the distribution of terms in all documents.

After years in which most effort on NLP was devoted to increasing performance
in terms of efficiency, the need to improve effectiveness to tackle real-world cases
led more recent research towards the extension and enrichment of the purely lexical

7.1 Information Retrieval 229

representation, based on term occurrences, with conceptual or semantic information,
so that documents are described (also or only) according to the concepts expressed
therein. For instance, replacing terms in a BoW by the corresponding concept (if
identified with sufficient accuracy, which could require a preliminary disambigua-
tion step), or by a hypernym thereof (in the attempt to trade generality for pol-
ysemy), yields the so-called Bag of Senses (BoS) on which the same techniques
presented in this section for BoWs can be applied. The new representation would
also allow identifying and removing (prune) concepts that have little significance to
the collection (e.g., because too frequent or too infrequent), this way enhancing the
document representation and further reducing its size.

7.1.3 Query Evaluation

The simplest term-based query evaluation technique is Text Matching that returns
the list of documents that contain all words in the query, ordered by decreasing
cumulative number of occurrences of such terms. If q1, . . . , qk are the query terms,
the score for the j th document is computed as follows:

k∑

i=1

o(i, j),

where the o(i, j) function returns the number of occurrences of term qi in the j th
document. Thus, documents containing more occurrences of the query terms are
returned first in the final ranking. Although very simple, this technique requires long
computational times, especially on large document collections. A more complex
technique is clustering that groups similar documents (meaning that they tend to
be relevant for the same kind of search), this way improving the retrieval speed
because only a representative of each group of documents is considered, and all
corresponding documents are handled by means of their representative.

A vector space defines a multi-dimensional space whose dimensions are the
terms, and where each document can be associated to a point in the space by consid-
ering its weights as coordinates for the corresponding axes. This allows translating
the vague notion of ‘similarity’ between any two documents, according to the terms
they contain, in more formal geometrical notions of closeness. Given two docu-
ments d ′ and d ′′, a straightforward way to carry out a comparison is using the Eu-
clidean distance between the points/vectors representing them, d′ and d′′. Another
strategy is computing a linear combination of the values in d′ with those in d′′. How-
ever, these solutions would depend on the exact position of the two documents, and
hence on the specific weights that describe them, which could be unfair for docu-
ments having very different lengths and number of distinct terms. Thus, the measure
most widely used in the literature for this purpose is cosine similarity, based on the
cosine of the angle between the two vectors:

CosSim
(
d′,d′′) = d′ · d′′

‖d′‖ · ‖d′′‖ =
∑m

i=1(w
′
i · w′′

i)
√∑m

i=1(w
′
i)

2
√∑m

i=1(w
′′
i)2

,

230 7 Information Management

where

• m is the number of terms;
• d = (w1,w2, . . . ,wm) denotes a document vector and wi is the value associated

to its ith element;
• ‖d‖ is the norm of d.

Note that, assuming that all document vectors are normalized to unit length, the
cosine similarity formula is simplified to CosSim(d′,d′′) = d′ · d′′.

The problem of document comparison becomes especially relevant when either
of the two is a query string q , and the aim is retrieving the documents in a collection
that are most ‘similar’ to it. To be able to apply the foregoing techniques, q must
be represented as a pseudo-document, i.e., as a vector of weights q using the same
schema, and the same global statistics, exploited to build the vector space in which
the search is to be carried out. In particular, if documents in the Term–Document
matrix are represented as vectors of m elements, q must be m-dimensional as well
have a one-to-one correspondence between its elements and those of the document
vectors (so that corresponding elements in both refer to the same term). Each ele-
ment value is a function of the corresponding term occurrences, with the positions
of terms that do not appear in the query set at 0 and ignoring query terms that are not
indexed in the Term–Document matrix. Moreover, for a fair comparison, the same
weighting function used for the indexing process must be applied. This allows lo-
cating q as a point in the same space just as any other document dj in the collection,
and hence comparing them for similarity. After computing the value CosSim(dj ,q)

for all documents dj (j = 1, . . . , n) in the collection, suitable operations can be
carried out on the resulting list of values. Documents can be ranked by decreasing
similarity to the query, returning the top items (e.g., those whose value is above a
given threshold) as the query result, and/or only documents that contain all query
terms can be selected.

Relevance Feedback Knowing which documents in a collection are relevant, and
which ones are irrelevant, to a given query may help in better focusing the search
results. Of course, if such documents were completely known, the search problem
would become void, but this is clearly not the case. The principle underlying the
relevance feedback approach is that just sample subsets of these items can be suf-
ficient to improve the retrieval task, and that such sample subsets can be provided,
implicitly or explicitly, by the very user that issued the query. In particular, given a
user query (represented as a term vector) q and an indication of a set of documents
P that the user considers relevant and a set of documents N that he considers irrel-
evant for that query, a famous formula to obtain a modified query q′ that takes into
account all this information was proposed by Rocchio [23]:

q′ = α · q + β ·
∑

p∈P p

|P | − γ ·
∑

n∈N n
|N | ,

where the value of each coordinate (i.e., term) in the original query is changed by
adding the average of the corresponding values in the positive samples and sub-
tracting the average of the corresponding values in the negative samples. In other

7.1 Information Retrieval 231

words, the vector defined by the terms in the original query is moved towards (as if
it were attracted by) the centroid of the positive samples, and far from (as if it were
repelled by) the centroid of the negative samples. Parameters α, β and γ weight the
importance given, respectively, to the original query terms, to the positive samples
and to the negative samples. It is usual to weight the positive samples more than
the negative ones, assuming that the user’s indications tend to be biased towards
interesting items (typical weights might be α = 1, β = 0.75, γ = 0.15 [18]). At the
extreme, γ = 0 totally ignores negative samples and completely attracts the query
towards the centroid of the positive ones, which is a very common setting in recent
practice. The technique can be iterated, gaining feedback each time from the last
query results, and has been shown to improve mainly recall (but also precision).

7.1.4 Dimensionality Reduction

Since the size of a typical Term–Document matrix is very large, a compelling need
is to reduce its dimensionality. While some traditional ways for reducing the di-
mensionality of attribute–value representations focused on the identification and re-
moval of less significant features (feature selection) or on the computation of ag-
gregate features that express the same information as the original ones, here the
aim is to develop brand new features based on the conceptual content of the doc-
uments. Instead of representing documents as points in a space whose dimensions
are words, advanced dimensionality reduction techniques represent documents (and
related queries) as points in a space whose dimensions are the underlying concepts
automatically identified. Thus, the parameters of interest become:

• n the number of documents;
• m the number of terms;
• k the number of concepts according to which restructuring the space.

These techniques are purposely designed to overcome the main problem of retrieval
approaches that compute the relevance of a document with respect to a query based
on the strict presence or absence, in the former, of the terms contained in the lat-
ter. Indeed, while words (especially if considered independent of each other, as in
BoWs) are not reliable indicators for a document’s content and semantics, due to
their intrinsic ambiguity and to the author’s taste in choosing them,3 concepts repre-
sent a more stable reference. They allow retrieving the indexed documents not based
on their literal correspondence with a query, but on analogous meanings, this way
returning even documents that do not contain the same words as the query. More-
over, while words (at least, function words) cannot be deliberately ignored without
affecting the correctness of the statistical analysis, less important concepts can be
stripped out, this way restructuring the space so that more significant similarities
can emerge.

3Because of synonymy, a person issuing a query might use different words than those that appear in
an interesting document to denote the same concepts, so the document would not be retrieved; be-
cause of polysemy, uninteresting documents concerning the alternate meanings might be retrieved.

232 7 Information Management

Latent Semantic Analysis and Indexing The phrase Latent Semantic denotes a
framework aimed at capturing the concepts expressed in a given document collec-
tion by relying on deep, and thus hidden (whence the term latent), relations among
words. Rather than generalizations of terms (e.g., dog → mammal), concepts are
abstract representations of sets of interrelated terms, called semantic domains (e.g.,
{dog, pet, mammal, . . . }). Such relations cannot emerge by simple considerations
about frequency, co-occurrence or correlation in term usage because the seman-
tic structure that characterizes each sentence is not just a many-to-many association
among terms and concepts (it is hidden to the words chosen to express it and depends
on the whole set of documents). They can be evaluated using statistical techniques
that remove noisy elements and focus on the underlying concepts. Latent Semantic
represents both words and documents in the same space of concepts, which allows
assessing (semantic) similarity not only among texts, but also among words, and
between words and texts as well, opening a number of possible applications.

Latent Semantic Analysis (LSA) is a mathematical technique to automatically ex-
tract and infer, from a document collection, relationships concerning the contextual
exploitation of words (defined as unique and separated character strings that make
up significant aggregates such as sentences or paragraphs) in some passages of the
discourse [17]. The basic idea is that the contexts in which a word appears, or does
not appear, act as constraints to determine the similarity among the meanings of
groups of words. Interestingly, the semantics that emerges from the LSA is based
only on the terms and their distribution in the document collection, without exploit-
ing any external resource, such as dictionaries, human intervention (which would be
inefficient and costly) or perception of the real world outside. Although LSA adopts
a simple BoW representation of texts, several comparisons of its outcomes to the
cognitive behavior of human mind revealed a close resemblance, improving as long
as their semantic spaces become closer [16]. For this reason, LSA has application
to several cognitive tasks, such as classification of texts according to a subject, in-
formation retrieval, evaluation of text consistency, evaluation of human cognitive
behavior in various contexts (e.g., answers to questions of psychiatrists, learning
degree of students on educational texts, etc.). Of course, such an apparent resem-
blance is not a guarantee that statistics is a suitable technique underlying human
psychology: thus, there is still no agreement about the LSA being a simulation or an
emulation of the human knowledge.

LSA takes the Vector Space representation of the corpus (it was observed that
the log-entropy weighting scheme, or the TF-IDF scheme based on a normalized
local and a logarithmic global factor, are more suitable for LSA), and computes the
Singular Value Decomposition (SVD) of the Term–Document matrix4 A (a kind of

4In the rest of this section, not to distract the reader from the main matter, most subsidiary informa-
tion, such as recalls of mathematical concepts, comments and implementation hints, are provided
as footnotes. First of all, it may be useful to recall some notations that will be used in the following:

• AT , transpose of matrix A;
• diag(a1, . . . , an), diagonal matrix n × n;

7.1 Information Retrieval 233

factorial analysis typically exploited for estimating the rank of a matrix and in the
canonical analysis of correlation). Given a matrix Am×n in which (without loss of
generality) m > n and rank(A) = r , SVD(A) yields three matrices U , W and V such
that:

A = U × W × V T ,

where:5

• Wr×r = diag(σ1, . . . , σr) such that6 σ1 ≥ σ2 ≥ · · · ≥ σr > 0; scalars σi are the
singular values, λi = σ 2

i are the non-negative eigenvalues of matrix A × AT ;
• Um×r and Vn×r are orthogonal (U × UT = V × V T = I); the r columns of U

(respectively, V) are the eigenvectors associated to the r eigenvalues of A × AT

(respectively, AT × A), and refer to the left (respectively, right) singular values.

Another form to express the SVD of A is the so-called dyadic decomposition:

A =
r∑

i=1

ui · σi · vT
i ,

where the triples (ui, σi, vi) are called singular triples and:

• ui is the ith column vector of U ;
• vT

i is the ith row vector of V .

SVD is defined for any matrix and is unique, excluding degeneracies due to equal
singular values.

In the case of the Term–Document matrix A:

• r represents the number of concepts found in the collection;
• U expresses the degree of similarity between terms and concepts;
• W is the matrix of concepts;
• V expresses the degree of similarity between documents and concepts.

• In, identity matrix of order n;
• rank(A), rank of matrix A;
• A−1, inverse matrix of A.

Moreover, given a square matrix Mn×n (having the same number of rows and columns):

• A number λ is an eigenvalue of M if there exists a non-null vector v such that Mv = λv;
• Such a vector v is an eigenvector of M with respect to λ;
• σ(M) denotes the set of eigenvalues of M .

Singular values are a generalization of the concept of eigenvalues to rectangular matrices.
5U describes the entities associated to the rows as vectors of values of derived orthogonal coeffi-
cients; V describes the entities associated to the columns as vectors of values of derived orthogonal
coefficients, and W contains scale values that allow going back to the original matrix.
6Some methods to carry out the SVD do not return the diagonal of W ordered decreasingly. In such
a case it must be sorted, and the columns of U and the rows of V T must be permuted consequently.

234 7 Information Management

The vector of a document corresponds to a weighted average of the vectors of the
terms it contains, and vice versa the vector of a term consists of a weighted average
of the vectors of the documents that contain that term. In some sense, the meaning of
a word is the average meaning of all passages in which it appears, and, conversely,
the meaning of a passage is the average meaning of the words it contains. Thus,
a dimensional reduction of these components is carried out, selecting the largest
(i.e., the first) k < r diagonal elements of W , and setting the others at 0. This results
in the elimination of the (r − k) less significant columns of U and V (and in lighter
memory requirements). A crucial issue is how to determine a number of concepts k

that removes just the insignificant semantic domains. Indeed, it has a direct impact
on performance: small values of k (compared to n), making LSA operate in a small-
sized space of concepts, enhance the similarity among documents; on the contrary,
for large values of k, the documents tend to be less similar to each other, which may
mislead LSA in identifying the proper relationships among them.

Now, the truncation of the original matrix A with parameter k is the (m × n)

matrix Ak , having rank k, defined as:

Ak = Uk × Wk × V T
k ,

where

• Uk is the m × k matrix made up of the first k columns from U ;
• Vk is the n × k matrix made up of the first k columns from V (and hence V T

k is
made up of the first k rows from V T);

• Wk = diag(σ1, . . . , σk).

Thus, applying SVD to A allows deriving the semantic structure of the document
collection by using matrices U , V and W . Then, the original Term–Document ma-
trix A is approximated by Ak , using matrices Uk , Vk and Wk obtained by extracting
the first k < r singular triples.7

Latent Semantic Indexing (LSI) [10] is an application of LSA to automatic doc-
ument indexing and retrieval. First of all, the query must be transformed into an
m-dimensional pseudo-document as discussed in Sect. 7.1.3. Then, the query and
all document vectors must undergo a dimensional reduction from m (number of
terms) to k (number of concepts). For a vector d ,

dk = dT × Uk × W−1
k ,

where

• dT is the (1 × m) transpose of the (m × 1) vector d ;
• Uk is the (m × k) matrix, obtained during document indexing;
• W−1

k is the inverse matrix of Wk(k × k), obtained during the indexing step;8

• dk is the (1 × k) vector corresponding to d .

7This allows the conversion of m-dimensional vectors into k-dimensional ones, that is needed
during the document retrieval phase (and by some index updating techniques for the LSI).
8Wk being a diagonal matrix, its inverse consists just of the inverse of each element thereof. That

is, for i = 1, . . . , k : W−1
k (i, i) = 1

Wk(i,i)
.

7.1 Information Retrieval 235

Now, both the query and all documents being represented in a k-dimensional space,
the comparison techniques presented in Sect. 7.1.3 can be applied to assess their
similarity, replacing the number of terms by the number of concepts (m = k) in the
corresponding formulæ. The higher the resulting degree, the more relevant the corre-
sponding document. In particular, Cosine Similarity can be used. Thus, a document
can be returned even if it matches only a subset of the query terms.

The LSI proved to be much more effective than traditional techniques that ex-
ploit vector spaces, and even more after dimensionality reduction. Albeit reduced
with respect to the original, its dimensional space preserves and enhances the se-
mantic relations. Another advantage of the LSI is the availability of incremental
methodologies to update it (i.e., add new terms and/or documents to an existing
LSI index) without recomputing the whole index from scratch. Indeed, applying
from scratch LSI at each update, taking into account both the old (already analyzed)
and the new documents, would be computationally inefficient. Two techniques have
been developed: Folding-In [4] is a much simpler alternative that uses the existing
SVD to represent new information but yields poor-quality updated matrices, since
the semantic correlation information contained in the new documents/terms is not
exploited by the updated semantic space; SVD-Updating [22] represents a trade-off
between the former and the recomputation from scratch.

Concept Indexing Concept Indexing (CI) [14, 15] is a dimensionality reduction
technique developed to support document categorization and information retrieval.9

It is computationally more efficient than LSI, for both time and space requirements.
The new dimensionality k refers to a set of concepts underlying the document col-
lection. Each concept is determined as a group Si (i = 1, . . . , k) of similar docu-

9Concept Indexing is not to be mistaken for Conceptual Indexing [28], proposed in the same period,
and aimed at tackling, in addition to the well-known problem of classical indexing techniques due
to synonymy and polysemy spoiling the search results, the shortcoming due to the typical attitude
to define hierarchical topic/concept categories, so that a document placed across two topics must
be cast under either of the two, and is not found when searching under the other. Based on a
generality relation that allows assessing whether a concept is subsumed by another, expressed
by a set of basic facts (called subsumption axioms) and reported in a—possibly hand-made—
dictionary or thesaurus (such as WordNet), it can determine whether a text is more general than
another according to the generality relationships among their constituents. Thus, new texts can be
mapped onto such a taxonomy, and the taxonomy itself can be progressively built and extended.
Conceptual Indexing recognizes the conceptual structure of each passage in the corpus (i.e., the
way in which its constituent elements are interlinked to produce its meaning). Four components
are needed for this technique: A concept extractor that identifies terms and sentences to be indexed
(and documents where they appear); a concept assimilator that analyzes the structure and meaning
of a passage to determine where it should be placed in the conceptual taxonomy (and to which other
concepts it should be linked); a conceptual retrieval system that exploits the conceptual taxonomy
to associate the query to the indexed information; a conceptual navigator that allows the user to
explore the conceptual taxonomy and to browse the concepts and their occurrences in the indexed
material.

236 7 Information Management

ments, and represented by its centroid (called a concept vector, of which Si is said
to be the supporting set):

ci = 1

|Si |
∑

d∈Si

d,

i.e., a group centroid is a single pseudo-document that summarizes the content of
the actual documents belonging to that group, having as coordinates the averages
of their corresponding coordinates. The larger the value of a coordinate, the more
important that term to that concept (thus, those with largest value can be considered
as keywords for that group/concept). The closeness between a document d and the
centroid of the ith group can be used to categorize a document with respect to the
concepts; e.g., using cosine similarity:

CosSim(d, ci) = d · ci

‖ci‖ =
1

|Si |
∑

x∈Si
CosSim(d,x)

√
1

|Si |2
∑

y,z∈Si
CosSim(y, z)

.

In CI, document vectors are normalized to unit length (‖d‖ = 1). This clearly does
not imply that centroids have unit length as well, but ensures that ‖ci‖ ≤ 1.

CI identifies the groups of similar documents according to two approaches:10

Unsupervised automatically determines such classes when no prior knowledge
other than the document collection to be indexed is available (as in LSI, but faster),
and can point out small subsets of homogeneous documents;

Supervised exploits, if available, a set of documents whose class is known as a
guidance to improve computation of the reduced space (and has been shown to be
more effective than other traditional classification algorithms, such as k-NN).

The unsupervised approach was proposed first, and exploits a clustering tech-
nique having linear complexity in both time and space with respect to the size of the
input information. Given the number k of desired concepts, a variant of the k-means
clustering technique is exploited to directly partition the set of documents (i.e., the
columns in the Term–Document matrix) into k groups. A different, progressive com-
putation of the clusters (that allows controlling some interesting features such as a
balanced cardinality among them) is obtained using recursive bisection, starting
from two clusters and repeatedly splitting one cluster until k are obtained. Specifi-
cally, the decision on which cluster to split is carried out according to the maximum
aggregate dissimilarity:

|Si |2
(
1 − ‖ci‖2)

among the current clusters (the squared length of a cluster centroid measures the
average pairwise similarity between the documents in the cluster, so its complement
expresses the pairwise dissimilarity).

10A quick reference to Machine Learning techniques, including k-NN, clustering and k-means, is
provided in Appendix B; a more extensive treatise can be found in [20].

7.1 Information Retrieval 237

As an extension of the unsupervised approach, the supervised version exploits
available knowledge about the class membership of sample documents to guide
document clustering. Each cluster is biased to contain only samples from the same
class. If l different classes are indicated for the samples, the following possibilities
are available with respect to the rank k of the reduced dimensional space (i.e., the
number of target concepts):

if k = l after clustering, nothing needs to be done;
else (k �= l) the l classes provided by the user are exploited to cluster the whole set

of documents into l clusters, and then the clusters are taken to k by

if k > l repeatedly splitting some clusters according to a partitional clustering al-
gorithm (this ensures that each final cluster will contain only samples from the
same class);

if k < l repeatedly merging some clusters according to an agglomerative cluster-
ing algorithm (in this case samples from different classes will be joined in the
same cluster, which is likely to spoil the classification performance).

Then, in both cases, the centroid vectors of the clusters are scaled (normalized) to
unit length (‖ci‖ = 1) to become the axes of the reduced space, and each docu-
ment is expressed as a function thereof. Given the matrix Ck×m whose rows are the
centroid vectors, an m-dimensional document vector d becomes k-dimensional by
projection onto this space: dk = d · C. Accordingly, the whole collection A is re-
duced to Ak = A × C, and a query q is reduced to qk = q · C. The ith coordinate
of a reduced document vector indicates how close that document is to the concept
represented by the ith cluster. On such reduced representations, the cosine similarity
can be applied as usual.

7.1.5 Image Retrieval

The possibility of digitally creating, manipulating and handling not only documents,
but images as well, has made much easier their integration. This caused that, year
after year, documents, even those produced in a non-professional way, were progres-
sively enriched with graphic elements (not to mention the fact that, when coming
from a digitization process, the document itself is an image). Thus, while infor-
mative content was initially concentrated in the document text, nowadays ignoring
graphic elements brings the risk of neglecting very important information. Although
managing them is quite computationally demanding, the current availability of more
powerful hardware makes it possible to search even in pictures and graphics useful
information for classification and indexing. Indeed, lots of subjects of interest and
disciplines can get enormous advantage from the ability to manage image content:
from medicine to security, to art, etc. Unfortunately, the state-of-the-art in such a
field is still much behind that in text processing. CBIR (acronym for Content-Based
Image [Indexing and] Retrieval) [7, 9] is the research area aimed at automatically

238 7 Information Management

extracting from images significant semantic and content-related information, pos-
sibly to be expressed in linguistic form in order to be retrieved also by text-based
search engines.

Two main categories of approaches to image retrieval exist. Text-based ones
transpose the search in a corresponding term-based search on keywords or textual
descriptions of the image taken, e.g., from the file names, captions, surrounding text
or explicitly provided by human experts (some search engines work in this way).
This solution allows efficient retrieval thanks to the performance of current DBMSs,
but indexing is difficult and unreliable. In particular, manual annotation of images
by human experts is a disadvantageous approach because costly, time-consuming
and very subjective (much more than text because the gap between the syntactic as-
pects and their interpretation is much wider). Hence, the motivation for research on
automatic linguistic indexing of images, aimed at automatically producing textual
descriptions of the concepts expressed by images. Although fundamental for CBIR
and for Image Understanding in general, however, it is an extremely complex task
if not limited to restricted domains.

This has strongly oriented the research towards image-based solutions, directly
working on ‘characteristic’ information (also known as signatures) automatically
extracted from the pixel level. Images are described by proper sets of (primitive
or derived) features, and are compared based on suitable distances on such sets.
Thus, given a repository of images and a query image, elements of the former can
be ranked by decreasing similarity with respect to the latter. The features to be ex-
tracted from an image depend on the specific objectives and kind of data involved
in the current task, but in general can be divided into low-level and high-level ones
(the former often help to improve accuracy in the extraction of the latter). Some
examples are:

Color (low-level) Expresses the distribution of colors in the image. A possible rep-
resentation is the color histogram that, statistically, denotes the combined proba-
bility of intensities of the channels provided for by the adopted color space. RGB
is the most widespread color space, but other color spaces, such as colorimetric
ones, can be more suitable, because more uniform to human perception.

Texture (low-level) In general, texture can be defined as a part of an image showing
sufficient perceptual regularity (some kind of pattern) to be considered as a single
area, although made up of elements that are not chromatically uniform. Strate-
gies for texture characterization can be divided into three categories: statistical
ones exploit statistics concerning the gray levels of the pixels (typically based on a
histogram or matrix of occurrences), but usually ignore their spatial organization;
structural ones consider the texture as consisting of tiles organized on a surface ac-
cording to rules defined by a grammar, but are difficult to be implemented; spectral
ones are based on the properties of the Fourier spectrum, considering the periodic-
ity of gray levels and identifying peaks of energy in it.

Shape (high-level) In many applications, image analysis can be guided quite effec-
tively based only on the identification of shapes (often corresponding to notewor-
thy objects) and their positions. This happens, for instance, in domains (such as

7.2 Keyword Extraction 239

medical images) in which color and texture may appear similar but in fact char-
acterize different objects. The main problems are due to noisy images and to the
possible presence of several overlapping shapes in the image, that might be hard to
distinguish.

As already pointed out (see Sect. 5.3), the feature extraction problem is strictly
related to that of segmentation [5], intended as the partitioning of an image into
significant areas.

7.2 Keyword Extraction

Keywords are words (or phrases) in a text that, due to their particular significance
therein, can be deemed as ‘keys’ to access (i.e., to understand) the information it
conveys (just like keys in cryptography allow decoding messages). The possibil-
ity of assigning keywords to a text relies on the assumption that its content can
be characterized by a restricted set of terms expressing the relevant concepts. Key-
word Extraction (KE) is the branch of Document Processing aimed at identifying
such terms, based on a formal analysis of texts [13]. It has many practical applica-
tions: the content of a large corpus can be compactly expressed by just its keywords;
a text can be automatically summarized by selecting only the passages containing
keywords (likely to be more important), or classified into categories corresponding
to the keywords; in IR, the relevance of a document can be associated to the density
of some keywords, or documents containing the query terms as keywords can be
ranked best. Analysis of keywords also allows studying intra- and inter-text consis-
tency, and assessing the information density of a text or component according to the
number of keywords it contains.

KE techniques usually rank the terms in the available texts according to an es-
timation (a weight) of their being keywords, and then select as keywords the first
k items in such a ranking. The number of items to be selected can be fixed (usu-
ally k = 10), or based on considerations on the specific values (e.g., all items hav-
ing weight above a given threshold), or on their distribution in the ranking (e.g.,
a given percentage of items from the top, or the top items until an item is found
whose weight difference from the previous item in the rank is above a given thresh-
old). KE can take advantage from other text processing techniques. For instance,
the set of candidate terms can be reduced using stopword removal and stemming.
A further profitable restriction can be obtained by removing the content words that,
although potentially expressing some meaning, uniformly occur in the given cor-
pus, and hence are not useful to characterize the content of a single document with
respect to the others (a typical problem in specialized collections that deal with
a particular subject). However, such a reduction cannot be carried out a priori as
the other ones. Also the logical structure of documents, if known (being explicit,
as in HTML pages, or detected by Document Image Understanding techniques),
can be leveraged. In a basic structure-based approach, considering n types of logi-
cal blocks, each associated to a weight Ij (j = 1, . . . , n) expressing its importance

240 7 Information Management

(e.g., in scientific papers, terms in the title, abstract or bibliographic references can
be weighted more, and yet more those in an explicit keyword list provided by the
authors, if any), the evaluation of a term t being a keyword can be computed as

w(t) =
n∑

j=1

tf j · Ij ,

where tf j is the frequency of t in blocks of type j . If a term appears in several
blocks, the weights coming from the different blocks are added to obtain an overall
evaluation [21].

KE is clearly placed half-way between the lexical level (keywords are terms ac-
tually appearing in a document) and the semantic level (keywords should express
the content of the document), and encompasses both perspectives. Although a text
can be considered as a description of the underlying information content, it goes
without saying that the meanings of its single constituent words cannot be ‘summed
up’ or ‘averaged’ to obtain the overall meaning. They just represent clues, whose
relevance depends on their mutual relationships as well; e.g., concordance (as the
grammatical agreement between different but related parts of a sentence, that affects
their form) is important to point out such relationships. Thus, a complete linguistic
analysis of the text is desirable. Several KE techniques exist, suitable to different
application domains that, according to their focusing just on the surface clues or on
the underlying concepts, can be grouped into syntactic and semantic approaches.

Although each subject requires the use of specialized words, the setting based
on purely terminological aspects might be too superficial. Being more strongly and
straightforwardly related to the semantic domain, or context, discussed in the docu-
ment, the concepts expressed in a text are a more reliable and faithful representation
of its content. Hence, semantic approaches are very interesting candidates to a more
effective solution of the KE task. Unfortunately, many terms, being polysemous,
denote several concepts, which calls for some kind of word sense disambiguation
(a certainly non-trivial task) before being able to identify the most relevant con-
cepts underlying the given text(s). After assigning a weight to each concept in the
document under processing, those with highest ranking can be selected, and the
corresponding terms in the document (up to k) can be extracted as keywords.

However, most work in KE so far has focused on approaches based only on
morphologic and, sometimes, syntactic (that, resolving ambiguity in the sentence
structure, allow in principle more effective outcomes) aspects of texts. Consider-
ing the lexical level, they can exploit statistics on the (co-)occurrence of terms in
the available set of documents as expressed by a vector space representation. For
instance, the k terms in a document having larger weight in the corresponding col-
umn vector of the weighted Term–Document matrix can be selected as keywords.
Straightforward approaches to assess such weights are:

Basic Consists in simply counting the occurrences of the words in the document,
according to the intuition that more important concepts are usually repeated more
frequently than secondary ones.

7.2 Keyword Extraction 241

TF-IDF Suggests choosing as keywords for a document the terms appearing more
frequently in that document but not in the others, based on the same considerations
as in Sect. 7.1.2 (the discriminative power of a term is diminished by its being
uniformly spread through the collection). This represents a good tradeoff between
complexity and effectiveness. For such an approach to be profitable, the document
collection should preferably cover different subjects, in order to avoid that the IDF
value (and hence the TF-IDF as well) of a potential keyword is close to 0, prevent-
ing it from being considered a key.

More complex approaches exist, some of which are recalled below.

TF-ITP Differently from the TF-IDF approach, the TF-ITP (Term Frequency-
Inverse Term Probability) technique [2] disregards the frequency of terms in the
whole specific collection. Instead, it considers, more in general, their inverse prob-
ability, i.e., the probability that a term appears in a document in the given language.
If term t appears tf times in a document and its probability is tp, its TF-ITP weight
is defined as

w(t) = tf

tp
.

The term probability estimates are reported in a dictionary, built from a large docu-
ment corpus (possibly on a reduced set of terms, after stopword removal, stemming
and elimination of words appearing just once in the corpus). If a term that is not
present in the dictionary is found in a document, it is assigned a default probability
value (the smallest probability found in the dictionary is suggested in the original
proposal).

Naive Bayes The Naive Bayes approach proposed in [27] casts KE as a classifi-
cation problem: given a document, find what terms belong to class ‘keywords’ and
what belong to class ‘ordinary words’. A probabilistic setting is adopted, and the
parameters for applying such a distinction to forthcoming texts are automatically
learned from a set of training documents. For the model that decides whether a term
is a key to be effective, significant features of the previously identified keywords
must be exploited. Due to psychological attitudes reflected in the way in which hu-
mans construct natural language utterances, keywords are usually placed towards
the beginning or the end of a text, sentence or paragraph. Thus, taking into account
the word positions in the document in addition to their TF-IDF weights, the sta-
tistical evaluation function to identify key terms is more accurate and its outcome
is more reliable. The probability that a term is a key given its TF-IDF value (T),
its distance from the previous occurrence of the same word (D), and its position
with respect to the entire text (PT) and to the sentence (PS) in which it occurs, is
computed according to Bayes’ Theorem, as:

p(key|T ,D,PT,PS) = p(T ,D,PT,PS|key) · p(key)

p(T ,D,PT,PS)

assuming that all feature values are independent

= p(T |key) · p(D|key) · p(PT|key) · p(PS|key) · p(key)

p(T ,D,PT,PS)
,

242 7 Information Management

where

• p(key) is the prior probability of that term being a key;
• p(T |key) is the probability of the term having TF-IDF value T when it is a key;
• p(D|key) is the probability of the term having distance D from its previous oc-

currence when it is a key;
• p(PT|key) is the probability of the term having relative position PT from the

beginning of the text when it is a key;
• p(PS|key) is the probability of the term having relative position PS from the be-

ginning of the sentence when it is a key; and
• p(T ,D,PT,PS) is the probability of the term having TF-IDF value T , distance

D from its previous occurrence and distance PT from the beginning of the text
and PS from the beginning of the sentence.

Assuming that p(key) is equal for all terms, it can be ignored in the above formula,
and the conditional probabilities on the right-hand-side become:

p(X|key) = p(X, key)

p(key)
∼ p(X, key)

that can be estimated by the corresponding relative frequency on the training set,
thus yielding:

p(key|T ,D,PT,PS) = p(T , key) · p(D, key) · p(PT, key) · p(PS, key)

p(T ,D,PT,PS)
.

The independence assumption trivially does not hold because the position of a term
in a sentence affects its position in the paragraph and, in turn, this affects its position
in the whole text; nevertheless, the Bayesian approach seems to work well even in
these cases.

The list of weights computed as above for all candidate terms t (intended as the
probability that t is a keyword)11 is finally sorted by decreasing probability, and ties
are resolved by considering the TF-IDF weight alone or, as a last resort, the word
position in the text.

Co-occurrence When the set of documents is huge and a quick response is
needed, or a training corpus on the subject under consideration is not available,
techniques based on an analysis of the overall collection are inapplicable. A tech-
nique for KE from a single document containing n terms, without additional knowl-
edge, was proposed in [19], leveraging frequent co-occurrence of words (where co-
occurrence is limited to terms in the same sentence). Specifically, the normalized
relative frequency (i.e., the frequency of words in the document divided by the text
length, so that their sum is 1) is used, as an approximation of term probability.

Preliminarily, a set G of k < n frequent words on which to focus in computing
co-occurrence is selected (empirically, 30% of the initial words: |G| ≤ n ·0.3). Low-
frequency terms (and hence their co-occurrences) are ignored because their precise

11Attention must be paid if p(D|key), p(PT|key) or p(PS|key) is zero, in which case the probability
would be 0 as well, or if p(T ,D,PT,PS) = 0, in which case a division by zero would occur.

7.2 Keyword Extraction 243

probability of occurrence would be hard to estimate. Since G acts as a kind of base
according to which expressing the importance of co-occurrences, it should be or-
thogonal. In practice, terms in G are hardly orthogonal because if two terms in G

often occur together, a term frequently co-occurring with any of them would con-
sequently often co-occur with the other as well. To fix this, instead of just selecting
orthogonal terms (which would yield a sparse matrix), terms in G can be clustered,
and clusters can be used instead of single terms (balanced clusters yield better re-
sults). Two techniques have shown to perform sensible term grouping according to
their use, role and meaning:

Similarity-based clustering based on similar distribution of co-occurrence among
terms, evaluated statistically by the Jensen–Shannon divergence measure:

J
(
t ′, t ′′

) = 1

2

[
D

(
t ′
∥∥∥
t ′ + t ′′

2

)
+ D

(
t ′′

∥∥∥
t ′ + t ′′

2

)]
,

where D(p ‖ q) denotes the KL divergence.
Pairwise clustering based on frequent co-occurrence, using mutual information to
measure the degree of relevance:

I
(
t ′, t ′′

) = log2
p(t ′, t ′′)

p(t ′) · p(t ′′)
.

A pair of terms (t ′, t ′′) in G is clustered if J (t ′, t ′′) > 0.95 · log 2 or I (t ′, t ′′) > log 2
(again, thresholds are determined empirically). Let C be the resulting set of clusters
(if clustering is not applied, C consists of just the singletons of terms in G).

While pure term frequency alone can be misleading and insufficient to properly
point out significant keywords, the distribution of co-occurrence between terms in
G and the other terms is a better clue to assess the degree of relevance of terms.12

Indeed, terms that appear independently of those in G should have a co-occurrence
distribution that is similar to the unconditional one. Conversely, those that are ac-
tually (lexically, semantically or otherwise) related to terms in G should exhibit a
larger co-occurrence value, and a biased distribution, and hence might be relevant.
The typical statistical test used for evaluating the significance of biases between
observed and expected frequencies is χ2:

χ2(t) =
∑

C∈C

(f (t,C) − n{t}pC)2

n{t}pC

,

where

• f (t,X) is the number of co-occurrences of t with any term in X;
• nX is the total number of terms in sentences in which any term in X appears (i.e.,

the number of terms co-occurring with any term in X)—to take into account that

12A matrix Mn×k in which mtg reports in how many sentences term t in the text co-occurs with
term g ∈ G is useful to represent such information. Having k < n, M is not square, and no diagonal
can be considered.

244 7 Information Management

terms appearing in long sentences are more likely to co-occur with many terms
than those appearing in short ones; in a simplified version, n{t} = f (t,G);

• pC = nC/n is the unconditional (expected) probability of a C ∈ C ;

and hence n{t}pC is the expected co-occurrence frequency of a term t with terms in
cluster C and the actual frequency f (t,C) is considered as a sample value. Thus,
if χ2(t) > χ2

α , the null hypothesis H0 = “occurrence of terms in G is independent
from occurrence of t” is rejected (indicating a bias) with significance level α. The
weight of each term as a keyword is then measured as the robustness of the bias
values:

w(t) = χ2(t) − max
C∈C

(
(f (t,C) − n{t}pC)2

n{t}pC

)

=
∑

C∈C

(f (t,C) − n{t}pC)2

n{t}pC

− max
C∈C

(
(f (t,C) − n{t}pC)2

n{t}pC

)

subtracting the maximum to avoid that adjuncts of a g ∈ G (e.g., ‘modern’ for g =
‘art’) get large χ2 values just because of their co-occurrence, although they are not
important by themselves.

7.3 Text Categorization

Text Categorization (TC) is the task of assigning a given document the subject (or
subjects) it refers to. In some sense, it can be considered the content analysis coun-
terpart of document image classification in layout analysis (indeed, it is also known
as Text Classification). The subjects, called categories, are represented as simple un-
interpreted labels to which no additional form of knowledge or meaning is attached,
and are usually pre-defined. As a classification task, it can be formally represented
by a function Φ (called the oracle) that, given a document and a category, says
whether their association is correct (i.e., whether that document belongs to that cat-
egory), and hence represents the way in which documents would be classified by an
expert. More precisely,

Φ : D × C → {T ,F },
where D is the set of documents, C = {c1, . . . , cn} is the set of categories, and the
codomain consists of the truth values True (T) and False (F). Two strategies can
be adopted:

Single-label each document is assigned to exactly one category;
Multi-label each document can be assigned to zero or many known categories.

The latter often results in a ranking that expresses, for each category, to what degree
of confidence it can be associated to the given document. The former applies only if
the given categories are mutually independent. For instance, in the binary case, any
document must be assigned either to a category c or to its complement c, and the

7.3 Text Categorization 245

oracle becomes Φ : D → {T ,F }. Applying a binary classification to each class ci ,
a multi-label approach can be reduced to a set of single-label ones. Thus, single-
label methods have received more attention.

Applications of TC range from automatic indexing (for retrieving documents
according to their category) to document organization (based on the category of
membership), information filtering (to determine if a document is more or less in-
teresting with respect to the user’s needs), Word Sense Disambiguation (to find and
point out the presence in a document of an ambiguous term because of synonymy or
polysemy) and spam filtering (to automatically classify incoming e-mail messages,
sort them in folders and eliminate undesired ones).

Since the oracle is usually not available, and manual categorization is often in-
feasible due to the huge number of documents and to the typically subjective evalu-
ations of humans,13 a significant amount of research has been spent in automatically
learning an approximation of the oracle on the grounds of a (possibly very large) set
of documents whose categories are known. One such document d is called a posi-
tive example for c if Φ(d, c) = T , or a negative example for c if Φ(d, c) = F . The
problem can be formally expressed as follows:

• Given a pre-defined set of categories C, a set of documents D, and the truth values
True (T) and False (F),

• Find a function Φ ′ : D × C → {T ,F }, called a classifier, that approximates the
target function Φ : D × C → {T ,F }.

A binary classifier for ci is, thus, a function Φ ′
i : D → {T ,F } that approximates the

target function Φi : D → {T ,F }.
Any of the several Machine Learning approaches proposed in the literature [20]

can be applied, some of which are briefly recalled in Appendix B. An extensive
survey of Machine Learning approaches to TC can be found in [25]. Documents and
sentences can be represented according to their syntactic structure, or as simple sets
of terms associated with weights that denote their relevance to the document itself
(usually based on their presence or frequency in the document). In the latter case,
the same representation techniques (e.g., stopword removal, stemming and BoW)
and weighting schemes (e.g., TF-IDF) as those used for document indexing can be
borrowed from IR, but when the number of terms is very large a dimensionality
reduction that focuses on a reduced set of terms is crucial for efficiency (usually
selecting terms with high frequency in the collection). Thus, terms act as features to
describe the observations (texts) to be used for learning or classification.

Outside of the ML area, an adaptation of the Rocchio approach, borrowed from
IR, can be applied. It models each class ci (for i = 1, . . . , n) as a set of weights
(wi

1, . . . ,w
i
m), with

wi
k = β ·

∑

dj ∈Ni

wkj

|Ni | − γ ·
∑

dj ∈Pi

wkj

|Pi |

13Some studies revealed that the overlapping ratio between classifications provided by different
experts with the same skills and experience is just around 30%.

246 7 Information Management

for k = 1, . . . ,m, where Pi is the set of positive examples, Ni is the set of negative
examples (i.e., the closeness to Pi is rewarded, while the closeness to Ni is penal-
ized), and factors β and γ weight their relative importance (setting γ = 0 would
just result in the centroid of P). This technique is very efficient, but its effective-
ness needs to be improved by different kinds of refinements (e.g., restricting Ni to
near-positive examples only, that are more informative to guide the learning step).

A Semantic Approach Based on WordNet Domains A well-founded and ready-
to-use reference taxonomy of subject categories is provided by WordNet Domains
(see Sect. 6.1). This consideration led to the semantic-based Text Categorization
technique proposed in [1]. Indeed, in order to exploit WordNet Domains, a prelimi-
nary, explicit mapping of the terms appearing in the text to the underlying concepts
as expressed in WordNet is necessary. A very important aspect of this approach is
its working on just the document to be categorized, without any need for a train-
ing set because all the background knowledge to perform the task comes from the
WordNet and WordNet Domains resources. In fact, it can be exploited also in more
specific contexts, as long as a thesaurus corresponding to WordNet and a taxon-
omy corresponding to WordNet Domains are available. In any case, an integration
of such specialized resources with WordNet and WordNet Domains is advisable, in
order to reuse the knowledge conveyed by the latter and to keep a connection with
the general context.

A first problem is that a term typically corresponds to several possible concepts
in WordNet, due to polysemy. A preliminary parsing of the sentences in the text
may help in reducing this ambiguity, allowing to select for each term a limited sub-
set of possible syntactic categories to focus on, which in turn allows the overall
procedure to be more focused. However, this does not completely solve the problem
since the resulting set seldom reduces to a singleton. Instead of performing explicit
word sense disambiguation, the relevance and likelihood for the various senses (i.e.,
synsets) of each term exploited in the document is determined using a peculiar den-
sity function defined levelwise, bottom-up by linguistic aggregates, as follows:

• Given a term t , and the set s(t) of the corresponding synsets in WordNet, the
weight of a synset s with respect to t is

w(s, t) = 1

|s(t)|
if s ∈ s(t) (i.e., the relevance of synsets is uniformly distributed), or 0 otherwise.
To manage cases of words, or concepts, or both, that are not included in WordNet,
the term itself is always added as an extra concept identifier to s(t), which also
avoids a possible division by zero (albeit introducing some noise).

• Given a sentence S made up of terms {t1, . . . , tn}, with s(S) = ⋃n
j=1 s(tj) the set

of synsets related to terms appearing in S, the weight of a synset s with respect
to S is defined as

w(s,S) =
n∑

i=1

w(s, ti)

|S| =
n∑

i=1

w(s, ti)

n

7.4 Information Extraction 247

if s ∈ s(S), or 0 otherwise. That is, it consists of the weight of all synsets included
in the sentence (normalized by the number of terms in the sentence).

• Given a document D made up of sentences {S1, . . . , Sn}, with s(D) = ⋃n
j=1 s(Sj)

the set of synsets related to terms appearing in D, the weight of a synset s with
respect to D is defined as

w(s,D) =
n∑

j=1

w(s,Sj) · w(Sj ,D),

where coefficients w(Sj ,D), for j = 1, . . . , n, allow weighting differently each
sentence in the document. Such factors can be determined starting from a set of
values wj > 0, each expressing the importance of sentence Sj , normalized so that
their sum on all sentences in D is 1, obtaining:

w(Sj ,D) = wj∑n
k=1 wk

.

A strategy to assign the basic importance values is considering the document
structure, if available (e.g., a title might get a larger weight than that of a sentence
in a paragraph), but any other rationale that reflects the user needs or the domain
peculiarities can be exploited.

The weight of a category is computed by summing the weights of all synsets referred
to that category, which is expected to be more significant than the pure number of
their occurrences. Then, after ranking these cumulative weights, the proper cate-
gories for the document can be determined as those exceeding a given threshold. In
fact, an apparent difference in value usually occurs between the first few items in
the ranking and the subsequent ones.

7.4 Information Extraction

In some sense, Information Extraction (IE) is to Document Image Understanding as
TC is to Document Image Classification. In its typical setting, IE aims at identify-
ing occurrences of a particular class of events or relationships in a free text, and at
extracting their relevant features in a pre-defined structured representation (the tem-
plate). The template fields are called slots, and the information items extracted from
the text to fill such slots are called their instances. Regarding the text as a sequence
of tokens, slot instances usually consist of sub-sequences thereof, called fragments.
Two approaches can be considered:

Single-slot is the easiest. Slots are considered as independent of each other, so that
no global considerations are needed to fill them;

Multi-slot assumes that different slots are interrelated, and hence requires the abil-
ity to find and interpret suitable relationships among (sometimes very distant) text
components (e.g., in price listings, the ‘price’ slot instance must refer exactly to
the ‘item’ slot one).

248 7 Information Management

Text Mining is a subtask of IE, aimed at the acquisition of new knowledge elements
on a given domain. Due to the complexity of the task, IE systems are usually dedi-
cated to very specialized domains (e.g., particular kinds of news or advertisements
in newspapers).

Although IE is a neatly different task than IR (the latter aiming at the identi-
fication of interesting documents in a collection, the former at the identification
of relevant information items in a document), it exploits the same evaluation mea-
sures (precision, recall and fallout), computed on a slot-basis. Differently from IR,
however, a slot can be wrong because spurious (when filled although the correct
information is not actually in the text) or incorrect (when the correct information is
elsewhere in the text). Moreover, several (combinations of) situations in slot filling
make the outcome of these measures sometimes unreliable.

Any IE system must include some form of the following functionality (listed in
a typical, although not mandatory, order) [8]:

Pre-processing Portions of the document that are likely to contain the desired in-
formation are extracted (referred to as text zoning) and split into sentences (identi-
fication of sentence boundaries might not be trivial), possibly filtering out the less
promising ones in order to improve efficiency of the next steps.

NLP Morphologic and lexical analysis is useful to normalize and categorize
terms/tokens. In particular, the ability to identify proper names (a complex task
that cannot be reduced to just selecting capitalized words) is crucial in IE be-
cause they often correspond to slot instances. However, syntactic information is
needed to capture the textual relationships that underlie slot instances identifica-
tion. IE usually focuses on small or medium-size grammatical aggregates (e.g.,
noun phrases and verb phrases) that can be reliably identified by current parsers.
Further aggregation in higher-level ones is carried out only when a significant de-
gree of confidence is guaranteed because wrong outcomes would introduce addi-
tional misleading noise.

Semantic functionality WSD (obtained using a lexical disambiguator) and co-
reference resolution (including anaphora and different forms referring to the same
sense) allow denoting each entity with a single identifier and avoiding the recogni-
tion of only apparently different objects in different templates. Discourse analysis
and inferences on the text content might be required for this [12].

Template Generation Produces the expected result in the desired form (filling
template slots).

Candidate slot instances are located in the text using domain-specific patterns or
rules, often manually provided by experts. Since this manual approach is difficult,
costly and imprecise, the application of Machine Learning techniques is desirable.
In the simplest approach, rote learning [11], a dictionary of specific sequences of to-
kens to be exactly (case insensitive) searched for is associated to each slot. Although
trivial, this approach can deal with several real cases. If a slot-filling rule selects n

fragments in the training text(s), of which c are correct, the probability that it pro-
vides a correct (respectively, wrong) answer is c

n
(respectively, 1− c

n
), but is usually

estimated using (some variation of) the Laplacian, as discussed in the following.

7.4 Information Extraction 249

If, given a large number of trials n, an event e occurred ne times, its theoreti-
cal probability p can be approximated by the relative frequency p̂ = ne/n. Since
this formula might yield odd results when either ne or n are zero (the latter case
raising a division by zero), safer ways for estimating p are based on the Laplacian
law of succession that proved to have a good correlation to the actual probabil-
ity [6]:

ne + 1

n + 2
,

or on m-estimates [20],

ne + mp

n + m
,

where p is a prior estimate of p (assumed, when lacking further information, to
be uniform for all possible k outcomes of event e: p = 1/k) and m is a constant
(called the equivalent sample size because it can be interpreted as augmenting the
n actual observations by an additional m virtual samples distributed according to
p) that combines p̂ and p determining how much influence the observed data have
with respect to p. If m = 0, the m-estimate is equivalent to the simple relative fre-
quency.

WHISK WHISK [26] is a system that automatically induces rules for multi-slot
IE in any kind of text. In structured text it exploits the available structure (e.g.,
tags in HTML documents). Free text (e.g., newspaper articles) is pre-processed and
annotated with grammatical (e.g., SUBJ{. . . } delimits the subject of a sentence,
@Passive . . . denotes a verb in passive form, @stem denotes the stem of a verb,
etc.) and possibly semantic (e.g., @PN[. . .]PN delimits a person name, etc.) infor-
mation. Semi-structured text, intended as an intermediate form between these two
extremes, typically characterized by ungrammatical and/or telegraphic style (e.g.,
readers’ advertisements on newspapers, or technical logs and records), is annotated
with features such as @start (to denote the beginning of the text), @blankline,
@newline.

Rules learned by WHISK exploit regular expressions that capture relationships
between different facts in the text, based on the following formalism:

* skips all elements in the text until the first occurrence of the next element in the
pattern is found (to limit its applicability);

‘. . . ’ a specific string (a literal) to be found (case insensitive) in the text (might
include syntactic or semantic annotations);

(. . .) a sequence to be extracted as a slot instance (called an extractor);
*F similar to * but requires the next piece of the regular expression to be in the

same grammatical field as the previous one.

Since patterns including only literals would be too rigid for handling natural lan-
guage, more flexibility is obtained by using semantic classes, placeholders that rep-
resent several specific literals, each pre-defined (e.g., Digit and Number) or defined
separately as a disjunction of literals in the form C = (l1| . . . |ln).

250 7 Information Management

Rules are made up of three components:

ID:: a numeric unique identifier of the rule;
Pattern:: a regular expression to be matched on the given text, that defines the

context of relevant fragments and exactly delimits their extraction boundaries, this
way avoiding the need for any kind of post-processing;

Output:: N {S1 $V1} . . . {Sn $Vn} the structure of a template N, where Vi is the
instance of slot Si , and there is a one-to-one correspondence between the ith slot
in Output and the ith extractor in Pattern.

After a rule succeeds, the template instance is stored and text scanning is continued
from the next character. When it fails, the slot instances found thus far are retained
and scanning restarts after that point on the remaining input.

WHISK adopts a supervised setting. Given a new tagged instance (the seed)
and a training set T , rules are induced top-down, starting from the empty rule
()*. . . *(*)* having as many extractors as the template slots. It is the most gen-
eral rule that covers everything but is always wrong (because the * in the first slot
matches everything), and is progressively specialized by anchoring slots to text ele-
ments (which increases the set of correctly covered instances) one by one from left
to right. An ‘element’ can be a specific literal (any word, number, punctuation or
structure tag) taken by the seed or a semantic class including it, and the addition of
several elements might be needed to cover the seed. For each slot, two alternative
anchorings are tried, one adding elements inside the slot extraction boundaries (. . .)
and the other adding elements both before and after it, and the one with greatest
coverage of the partially anchored slots on T is carried on. Since the anchored rule,
although correct on the seed, might be wrong on previous training instances, further
elements are added to specialize it until it makes no errors on T or no improvement
is obtained in the Laplacian estimate of the rule error, L = ne+1

n+1 (a slight variation
of the original one). The same estimate is used to select rule specializations, both
when anchoring a slot and during consistency enforcement with respect to T . If the
Laplacian error of the rule before specialization exceeds a pre-defined tolerance it
is discarded, otherwise all elements in the seed are tried in turn, and the one that
yields the rule with minimum Laplacian error is retained (ties are resolved heuris-
tically, preferring semantic classes to words, and syntactic tags to literals, to have
more general rules). For domains with no tags, terms near extraction boundaries are
preferred (possibly within a window of given size). Using this strategy, a better rule
that might be obtained by two sub-optimal specializations instead of the single best
one cannot be reached.

To reduce human intervention, WHISK adopts an interactive approach that asks
for the expert assessment only on sample cases deemed as more informative to guide
the rule learning activity. Given a set of untagged instances U , it repeatedly selects
a set of still untagged instances and asks the user to completely tag them. The ini-
tial set is chosen at random, while instances to be included in each next set are
drawn from the following categories (with user-defined relative proportions): in-
stances covered by an existing rule (for checking purposes, and hence to increase
precision), probable near-misses that would be covered by a minimal generaliza-
tion of an existing rule (to increase recall), and instances not covered by any rule

7.4 Information Extraction 251

(to explore new portions of the solution space). After tagging, these instances are
removed from U , added to the set of training instances T and exploited to test the
current rules (those contradicted by a new tagged instance are removed as incon-
sistent) and to learn new ones (when an instance–tag pair is found for which the
tag is not extracted by any rule, it becomes a seed to grow a new rule according to
the above strategy). To avoid overfitting, pre-pruning (stopping as soon as the per-
centage of errors on the training set falls below a given threshold) and post-pruning
(dropping rules with Laplacian expected error greater than a threshold) strategies
are applied.

A Multistrategy Approach The approach to single-slot IE proposed in [11] aims
at “finding the best unbroken fragment of text to fill a given slot in the answer tem-
plate”, assuming that each text includes a single instance for the slot. The problem
is cast as a classification task in which, given a fragment of text (and possibly its
context), the objective is saying (or estimating) whether it properly fits the slot or
not. It aims at improving flexibility and effectiveness by exploiting different strate-
gies and representations to capture different aspects of the problem, and combining
several learning components.

To compute the probability that a sequence Hi,k of k consecutive tokens starting
at token i is a suitable filler for a slot s, given training data D, the probabilities of the
instance having a given length and position, containing specific terms and having a
certain structure are considered:

p(Hi,k|D) = p(position)p(length)p(terms)p(structure).

For estimating p(position = i), a histogram is computed by considering bins hav-
ing a fixed width; then, bin midpoint positions are associated to the corresponding
histogram value, and other positions to the linear interpolation of the two closest
histogram values. p(length = k) is estimated as the ratio of slot instances having
length k over all slot instances. Assuming that position and length are independent,
the first two factors yield prior expectations for Hi,k:

p(position = i)p(length = k) = p(Hi,k).

p(terms) is evaluated using evidence in the training data D that specific tokens
occur before (B), in (I) and after (A) a slot instance, limited to a pre-specified
context window of size w:

p(D|Hi,k) = p(B|Hi,k) · p(I |Hi,k) · p(A|Hi,k),

where single probabilities are computed using m-estimates, and exploiting as a de-
nominator the number of training documents in which a term appears (as in IDF),
rather than the number of training instances (as probability theory would require).
Altogether, these factors correspond to Bayes’ formula:

p(Hi,k|D) = p(D|Hi,k)p(Hi,k)

p(D)

and associate an estimate to any fragment; to allow rejection of all fragments in
a document when a field is not instantiated in it, a minimum confidence thresh-
old γ · μ is set, where γ is defined by the user and μ is the log-probability of

252 7 Information Management

the smallest field instance confidence. In addition to suffering from low-frequency
tokens, this formula ignores the contribution of syntax. To fix this, the additional
factor p(structure) is included, expressing the probability that the fragment has the
proper structure. A probabilistic grammar of the slot instances is learned,14 and the
probability that the fragment under consideration belongs to such a grammar is con-
sidered.

The grammar alphabet, instead of characters, consists of high-level symbols,
that can be specific tokens (e.g., ‘Prof’, ‘.’, etc.), or abstractions thereof accord-
ing to some feature (e.g., ‘capitalized’, ‘upper_case’, ‘lower_case’, ‘n_digit_long’,
‘n_character_long’, ‘punctuation’, etc.). The original text can be turned into a se-
quence of such symbols using alphabet transducers in the form of decision lists (i.e.,
sequences of pattern/emission rules). To better fit the training data, such transducers
can be learned as well for each field, assuming that each token can be generalized
independently of its context, using a greedy covering approach: iteratively, the set
of features to be taken into account is compared against the training instance, and a
rule corresponding to the most promising symbol according to some strategy (even
spread, information gain, m-estimates) is appended to the list, removing the train-
ing instances that it covers, until few training instances remain uncovered or a fixed
decision list length is reached.

Relations among tokens or symbols, very important in IE, can be taken into ac-
count using a symbolic relational inductive learner. SRV is a special-purpose (for
IE) rule learner that exploits instances of the target field as positive examples, while
negative examples are limited to fragments having length between the smallest and
the largest positive example of the target field (to reduce the candidates). Examples
are described according to token features, propositional—such as length, type (e.g.,
‘numeric’), typography (e.g., ‘capitalized’), PoS (e.g., ‘noun’), and lexical content
(e.g., person_name’)—or relational ones—such as adjacent tokens (e.g., ‘previous’
and ‘next’) or grammatical links (e.g., as provided by the link grammars described
in Sect. 6.2.7). Rules learned by SRV may include five predicates:

length(R,N) where R is a relational operator and N is an integer;
some(X,P,F,V) the token linked by a path P of relational constraints to a token
X in the fragment must have value V for feature F (if P is empty, the test applies
to X);

every(F,V) all tokens in the fragment must have value V for feature F ;
position(X,F,R,N) feature F of a token X bound by a some literal in the same
rule must fulfill relation R for value N ;

relpos(V1,V2,R,N) token V1 precedes token V2 at a distance that fulfills relation
R for value N .

Paths are initially empty or contain only one element, and can be progressively
extended (if useful) adding further relational features.

14In the case of regular grammars, the corresponding Finite State Automata are learned by starting
from the maximally specific case (called the canonical acceptor) and progressively merging states
according to considerations that depend on the specific algorithm.

7.5 The Semantic Web 253

SRV adopts a top-down, greedy strategy: starting from an empty rule that covers
everything, antecedent literals are added until no negative example is covered. The
choice of the literal to be added is guided by the information gain metric: given a set
of examples S, its information depends on the balance of positive examples P(S)

and negative ones N(S) in it:

I (S) = − log2 P(S)

P (S) + N(S)

and hence the gain obtained by adding a literal to a rule that covers a set S of
examples, resulting in a new rule covering S ′ ⊆ S, is given by G(A) = P(S ′)(I (S)−
I (S ′)). To reduce the computational effort, literals can be preliminarily associated
to the number of positive and negative examples they cover. A rule is committed
as soon as it does not cover any negative example (to avoid wasting time in cases
when this cannot be obtained, literals covering few examples are discarded a priori).
The final classifier is obtained performing a k-fold cross-validation, and merging
the rules learned in each fold. Rules in such a classifier are treated as independent
predictors, each having a confidence given as usual by p = c/n (see the introductory
paragraphs to this section). Then, given a fragment and the set P of confidence
values for all matching rules, the combined confidence score is computed as P =
1 − ∏

p∈P (1 − P).

7.5 The Semantic Web

The techniques presented in previous sections provide precious information to be
added to the documents as metadata (literally, from ancient Greek, ‘data about the
data’ contained in the document). Keyword Extraction provides core terms in the
document, Text Categorization indicates its subject and area of interest, Information
Extraction highlights features of important events expressed therein. With respect
to metadata associated to document image understanding, concerning extraction of
relevant text from the document, here an added value is represented by the relation-
ships to the underlying informative content. In addition to the potential improvement
of Information Retrieval effectiveness, since documents can be searched at the se-
mantic level rather than just at the syntactic or lexical one, this kind of knowledge
is becoming more and more important in the context of the Semantic Web, a new
perspective on the WWW in which computer machines and programs are supposed
to understand each other when cooperating and exchanging data and services. An
excerpt of the original paper can better explain these concepts [3]:

[. . .] Most of the Web’s content today is designed for humans to read, not for computer
programs to manipulate meaningfully. [. . .] The Semantic Web will bring structure to the
meaningful content of Web pages, creating an environment where software agents roaming
from page to page can readily carry out sophisticated tasks for users. [. . .] The Semantic
Web is not a separate Web but an extension of the current one, in which information is given
well-defined meaning, better enabling computers and people to work in cooperation. [. . .]
The essential property of the World Wide Web is its universality. [. . .] Information varies
along many axes. One of these is the difference between information produced primarily

254 7 Information Management

for human consumption and that produced mainly for machines. [. . .] The Semantic Web
aims to make up for this. [. . .]

After all, this is the ultimate objective at which the whole field of automatic docu-
ment processing is aimed. Obviously, true autonomous semantic capabilities are still
to come for the present computers, and the performance of human experts in pro-
viding this kind of high-level information is still out of reach. Nevertheless, proper
exploitation of suitable tools and background knowledge can ensure satisfactory re-
sults for many purposes, at least in restricted environments, and intense research in
all fields of Digital Document Processing allows good expectations for the future.

References

1. Addis, A., Angioni, M., Armano, G., Demontis, R., Tuveri, F., Vargiu, E.: A novel seman-
tic approach to create document collections. In: Proceedings of the IADIS International
Conference—Intelligent Systems and Agents (2008)

2. Begeja, L., Renger, B., Saraclar, M.: A system for searching and browsing spoken communi-
cations. In: HLT/NAACL Workshop on Interdisciplinary Approaches to Speech Indexing and
Retrieval, pp. 1–8 (2004)

3. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American (2001)
4. Berry, M.W., Dumais, S.T., O’Brien, G.W.: Using linear algebra for intelligent information

retrieval. SIAM Review 37(4), 573–595 (1995)
5. Boulgouris, N.V., Kompatsiaris, I., Mezaris, V., Simitopoulos, D., Strintzis, M.G.: Segmenta-

tion and content-based watermarking for color image and image region indexing and retrieval.
EURASIP Journal on Applied Signal Processing 1, 418–431 (2002)

6. Cestnik, B.: Estimating probabilities: A crucial task in machine learning. In: Proceedings of
the 9th European Conference on Machine Learning (ECAI), pp. 147–149 (1990)

7. Chen, Y., Li, J., Wang, J.Z.: Machine Learning and Statistical Modeling Approaches to Image
Retrieval. Kluwer, Amsterdam (2004)

8. Cowie, J., Wilks, Y.: Information Extraction. In: Dale, R., Moisl, H., Somers, H. (eds.) Hand-
book of Natural Language Processing, pp. 241–260. Marcel Dekker, New York (2000)

9. Deb, S.: Multimedia Systems and Content-Based Image Retrieval. IGI Publishing (2003)
10. Deerwester, S., Dumais, S.T., Landauer, T.K., Furnas, G., Harshman, R.: Indexing by latent

semantic analysis. Journal of the American Society of Information Science 41(6), 391–407
(1990)

11. Freitag, D.: Machine learning for information extraction in informal domains. Machine Learn-
ing 39, 169–202 (2000)

12. Grishman, R.: Information extraction: Techniques and challenges. In: International Summer
School on Information Extraction: A Multidisciplinary Approach to an Emerging Informa-
tion Technology. Lecture Notes in Computer Science, vol. 1299, pp. 10–27. Springer, Berlin
(1997)

13. Hunyadi, L.: Keyword extraction: Aims and ways today and tomorrow. In: Proceedings of the
Keyword Project: Unlocking Content through Computational Linguistics (2001)

14. Karypis, G., Han, E.H.S.: Concept indexing: A fast dimensionality reduction algorithm with
applications to document retrieval & categorization. Tech. rep. TR 00-016, University of
Minnesota—Department of Computer Science and Engineering (2000)

15. Karypis, G., Han, E.H.S.: Fast supervised dimensionality reduction algorithm with applica-
tions to document categorization & retrieval. In: Proceedings of the 9th International Confer-
ence on Information and Knowledge Management (CIKM), pp. 12–19 (2000)

16. Landauer, T.K., Dumais, S.T.: A solution to Plato’s problem: The latent semantic analysis
theory of the acquisition, induction, and representation of knowledge. Psychological Review
104, 111–140 (1997)

References 255

17. Landauer, T.K., Foltz, P.W., Laham, D.: An introduction to latent semantic analysis. Discourse
Processes 25, 259–284 (1998)

18. Manning, C.D., Raghavan, P., Schutze, H.: Introduction to Information Retrieval. Cambridge
University Press, Cambridge (2008)

19. Matsuo, Y., Ishizuka, M.: Keyword extraction from a single document using word co-
occurrence statistical information. International Journal on Artificial Intelligence Tools 13(1),
157–169 (2004)

20. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
21. O Kit Hong, F., Bink-Aghai, R.P.: A Web prefetching model based on content analysis (2000)
22. O’Brien, G.W.: Information management tools for updating an SVD-encoded indexing

scheme. Tech. rep. CS-94-258, University of Tennessee, Knoxville (1994)
23. Rocchio, J.: Relevance feedback in information retrieval. In: Salton, G. (ed.) The SMART

Retrieval System, pp. 313–323. Prentice-Hall, New York (1971)
24. Salton, G., Wong, A., Yang, C.: A vector space model for automatic indexing. Communica-

tions of the ACM 18(11), 613–620 (1975)
25. Sebastiani, F.: Machine learning in automated text categorization. ACM Computing Surveys

34(1), 1–47 (2002)
26. Soderland, S.: Learning information extraction rules for semi-structured and free text. Ma-

chine Learning 34, 233–272 (1999)
27. Uzun, Y.: Keyword extraction using Naive Bayes (2005)
28. Woods, W.A.: Conceptual indexing: A better way to organize knowledge. SML Technical

Report Series. Sun Microsystems (1997)

Appendix A
A Case Study: DOMINUS

Quo vadis, Domine?

DOMINUS (DOcument Management INtelligent Universal System) [87] is a proto-
type framework for digital library management that pervasively embeds document-
related Artificial Intelligence solutions, and in particular Machine Learning and
knowledge-based approaches, throughout the whole spectrum of activities. It is of
interest here because most techniques and algorithms presented in this book have
found their place and position in it. Hence, it shows how several different methods,
technologies and tools can be brought to cooperation in order to cover the whole
workflow, roles and functionality that are involved in managing and exploiting doc-
uments throughout their life cycle. It represents a basic platform providing general-
purpose functionality, to be tailored and extended in order to satisfy specific needs
related to the particular context and environment in which it is to be used.

A.1 General Framework

DOMINUS allows managing a set of digital libraries that can cooperate and/or be
delivered in a unique, consistent and co-ordinate fashion. Each library may be public
or private, this way defining biases for the users regarding the access to the docu-
ments they contain. In private libraries, security and privacy of document storage
and transmission is supported.

A.1.1 Actors and Workflow

DOMINUS provides different kinds of roles for the users that can be involved in its
framework. Each role, in turn, implies a set of prerogatives regarding document pro-
cessing, management and access. A single user can take on several roles in several

S. Ferilli, Automatic Digital Document Processing and Management,
Advances in Pattern Recognition,
DOI 10.1007/978-0-85729-198-1, © Springer-Verlag London Limited 2011

257

258 A A Case Study: DOMINUS

Fig. A.1 DOMINUS document processing flow

digital libraries enclosed in the system, and the same role in a given library can be
played by several users. All kinds of users are required to register to the system in
order to exploit its functionality because user traceability is deemed as fundamental
to ensure a correct and controlled workflow. Administrators control the general sys-
tem and have the power to accept, include, suspend or expel digital libraries. Users
that are in charge of managing a single library are called librarians. They must be
enabled to play this role by an administrator or by another librarian of the same li-
brary, and have the power to accept, include, suspend or expel documents and users
of the library. Each librarian can also enable other users to act as authors and/or
maintainers of their library, and plays himself such roles. Authors can submit doc-
uments to a library. Maintainers are technicians that supervise the document flow
inside the library, check that the automatic processing is correctly carried out, and,
in case it is, validate the intermediate or final results, or, in case it is not, make the
proper corrections and then restart it from the last safe accomplishment. The basic
role, end-user, has just consultation purposes. A query panel is available to end-
users, in which they can combine different search techniques, mix search results,
get help and suggestions for their search, bookmark and organize the documents of
interest. Any newly registered user starts as an end-user, having access to public
libraries only; private libraries may provide them access by enabling specific rights.

A typical document workflow in DOMINUS (whose main steps are depicted in
Fig. A.1) starts with the document submission by an author, which causes basic

A.1 General Framework 259

Fig. A.2 Architecture of the
DOMINUS document
processing system

entries to be inserted in the database and a new folder to be created in the ‘under
processing’ section of the library, where all the intermediate files produced by the
workflow will be stored. The document itself is saved in such a folder, and then un-
dergoes a preliminary step in which a standard internal representation is produced,
independent of its actual source format. On such a normalized representation the
layout analysis algorithms are applied, to identify the geometrical components and
their inter-relationships, that are saved in another file. The resulting description is
input to a classifier that assigns the document to one of the classes of interest to
that library and, based on this, tags the document components according to the se-
mantic role they play in that class. This allows extracting the content from the most
significant ones only (which should improve the performance and quality of infor-
mation extraction), in order to further process it. Pictures and graphics are cropped
and saved in a sub-folder, while text is stored in the database for filing purposes.
Subsequently, the document indexing and information extraction phases are started.
Interesting objects are identified in images, while several kinds of Natural Language
Processing techniques are applied to text (text categorization, keyword extraction,
lexical and semantic indexing).

A.1.2 Architecture

The overall architecture of DOMINUS is reported in Fig. A.2. Four main compo-
nents can be identified, each of which could, in principle, be installed on a different
computer in case the system has to be deployed in a distributed environment. Actu-
ally, several (logic or database) modules inside these components can be detached
to work on separate computers, as well.

The Document Processing Engine is in charge of carrying out the various tasks
that are needed to extract useful information from an input document and to make it
available to final users for search and consultation purposes. It is activated whenever
a new digital document is submitted to the system. A first step is carried out by a

260 A A Case Study: DOMINUS

pre-processing module, called WINE (Wrapper for the Interpretation of Non-uniform
Electronic document formats), that produces a standard internal XML representation
of the document, independent of the source format in which it was provided. Such
a representation initially describes the document as a set of pages made up of basic
blocks directly extracted from the document source, and is extended with further
(meta-)information as long as it is gathered by the system during the subsequent
processing steps. For some sources, an intermediate vectorial format is produced.

Once the document’s basic representation is obtained, the layout analysis step
can be started. It is carried out by a module called DOC (Document Organization
Composer) that is in charge of producing the frame-level representation of the doc-
ument pages. Due to the possibly large number of basic blocks returned by WINE
(e.g., in PS/PDF documents they consist of just word fragments), a preliminary ag-
gregation is needed to enhance performance of the layout analysis process. Com-
posite blocks corresponding to whole words are identified first, and then (since even
after this step the number of word blocks can still be quite large) a further aggre-
gation of words into lines is carried out. Based on such a line-block representation,
DOC groups the semantically related blocks into the surrounding frames, each cor-
responding to a homogeneous and significant logical component in the document,
and updates accordingly the XML representation of the document.

The next step is carried out by the DOCG (Document Objects Content Gatherer)
module. To determine which frames are significant and should be further processed,
Document Image Classification and Understanding are performed on the document
description, and the resulting outcome is saved as meta-information in the XML rep-
resentation of the document, that now contains the original document information,
enriched with layout aggregations, class information and components annotation.
From selected frames, textual and graphical information is automatically extracted,
stored and passed on for further processing. After the information is extracted from
the significant components, a final document categorization and indexing step, based
on several and complementary techniques, is carried out by the IGT (Indexer of
Graphics and Text) module in order to pave the way for an effective content-based
information retrieval by the end users.

Many of the tasks carried out by the processing modules just described involve
the production and exploitation of intermediate information that is to be perma-
nently stored in the system for future reference. This is done through various in-
terrelated Data Repositories. All information concerning the users, the collections
and the documents’ features and text is stored into the DOMINUS Database (D2),
a classical relational database. The source document, along with its internal rep-
resentations and the extracted components (e.g., the cropped figures) are stored as
separate files, each in the suitable format, according to a hierarchical folder orga-
nization, based on the different collections managed by the system, that is globally
identified as the File Folders (F2). Since different indexing techniques can be ap-
plied on a given collection, each on different, and possibly overlapping, subsets of
documents, several separate Information Indexing (I2) databases are generated, one
for each index, that can be related to the main database because they use the same
keys and ID’s for the items they describe.

A.2 Functionality 261

A fundamental role in the overall document processing architecture is played by
the Learning & Classification Server, a suite of Machine Learning tools that come
into play in different moments and with different objectives to support several tasks
and modules of the Document Processing Engine (e.g., document classification,
component labeling, layout correction, block aggregation, etc.), based on a num-
ber of automatically Learned Models. More specifically, these tools are exploited
in two modalities. The ‘learning’ mode is used to continuously adapt the domain
knowledge whenever new experimental evidence reveals inadequacies of the learned
models or changes in the context. Indeed, in typical digital libraries new documents
continuously become available over time and are to be integrated in the collection.
For this reason, a predominant role is played by incremental learning techniques.
The ‘classification’ mode is exploited to apply the learned models to specific cases
in order to obtain useful information. The learning steps are carried out off-line,
so that the system is in continuous operation even during the learning phase (albeit
with the old models). Only after termination of the learning task the old models are
replaced by the new ones, transparently to the users. The inborn complexity of the
document domain, and the need to express relations among components, suggest the
exploitation of symbolic first-order logic as a powerful representation language for
some learning tasks.

A.2 Functionality

The following list of functionality currently provided by DOMINUS reflects the
sequence of processing steps that are applied on input documents from their sub-
mission up to indexing and information extraction. Each step is associated to the
ratio of past documents on which the system automatically identified the proper so-
lution, and to a threshold, such that, when processing a new document in that step, it
is immediately carried on to the next step if the ratio is above the threshold (unless
any problem arises), or it is suspended until an explicit confirmation by the main-
tainer is obtained if the ratio falls below the threshold (a final confirmation might be
in any case required before committing the overall result).

A.2.1 Input Document Normalization

Normalization of an input document obviously depends on the source format. The
preprocessing step performed by WINE takes as input a generic digital document
and produces a corresponding vectorial description. At the moment, it deals with
documents in TXT, PS/PDF and raster formats, that represent the current de facto
standards for document interchange. For TXT sources, sequences of characters de-
limited by spaces are considered as basic blocks. For PS or PDF documents, a pro-

262 A A Case Study: DOMINUS

prietary PostScript program1 is run that rewrites basic PostScript operators so that,
when accessing the source, drawing instructions are redirected to strings in a text
file, producing logical atoms that describe basic blocks (raster images are cropped
and saved as autonomous objects). For raster sources nothing is done, and process-
ing starts directly with the layout analysis step.

A.2.2 Layout Analysis

Different techniques concur to identify the frames in a page, defined in DOMINUS
as groups of objects completely surrounded by white space. Preliminarily, two steps
are carried out to reduce the number of blocks that are input to the layout analy-
sis algorithms, in order to improve their efficiency and effectiveness. If the basic
blocks extracted from the document correspond just to fragments of words, they
are grouped into word-level aggregates based on overlapping or adjacency. Then,
a further aggregation of words into lines is performed (simple techniques based on
the mean distance between blocks work on single-column documents, but are some-
times unable to correctly handle multi-column ones). Then, the Manhattan-shaped
components are extracted first, using the RLSA on raster documents or (an improve-
ment of) the Background Structure analysis algorithm on documents described by
basic blocks. Lastly, on each Manhattan frame obtained this way, the RLSO (in
its two versions for raster and block-based documents, respectively) is applied to
retrieve non-Manhattan sub-parts (if any). After identifying the background struc-
ture of the document, the foreground is obtained by computing its complement. Two
kinds of aggregates are identified: blocks filled with a homogeneous kind of content,
and rectangular frames made up of blocks of the former type.

The modifications to the Background Structure analysis algorithm deserve some
attention. First of all, horizontal/vertical lines are deemed as explicit separators,
and hence their surrounding white spaces are a priori considered as background.
Second, to avoid retrieving inter-word or inter-line background, white blocks whose
height or width is below a given size are ignored. Third, extraction of background
pieces is stopped as soon as the area of the new white rectangle retrieved, W(R),
represents a ratio of the total white area in the document page, W(D), less than a
given threshold δ, i.e.,

W(R)

W(D)
= W(R)

A(D) − ∑
i=1,...,n A(Ri)

< δ,

where A(D) is the area of the document page under consideration and A(Ri), for
i = 1, . . . , n, are the areas of the blocks identified thus far in the page.

Due to the fixed stop threshold, the automatically recognized layout structure
might not be fully satisfactory: important background pieces might be missing (so

1Existing tools for performing this task, such as PSTOEDIT (www.pstoedit.net) or JPedal
(www.jpedal.org), were discarded due to not being fully compliant with the requirements.

A.2 Functionality 263

that different frames are merged) or superfluous ones might have been included
(resulting in single frames having been split). In other words, background areas
are sometimes considered as content ones and/or vice versa. DOMINUS allows the
maintainer to manually fix the problems by forcing some algorithm steps forward
or backward with respect to the stop condition. This is possible since the system
maintains three structures that keep track of: all white rectangles found (W), all
black rectangles found (B) and all rectangles that it has not analyzed yet (N—if
no threshold is given all the rectangles are analyzed and N will be empty at the
end of processing). When the user asks to go forward, the system extracts and pro-
cesses further rectangles from N ; conversely, if the user asks to go back, the system
correspondingly moves blocks between W , B and N .

However, many forward steps (during which the system would probably restore
insignificant white rectangles) might be needed before retrieving very small missing
background rectangles (e.g., the gap between two frames), and rectangles whose
size is below the minimum threshold would not be retrieved at all. For this reason,
DOMINUS allows the maintainer to directly point and remove superfluous pieces
of retrieved background, or to explicitly add missing ones. Such manual corrections
are logged and used by the incremental learning component INTHELEX to learn
and refine layout correction models to improve performance on future documents
by identifying and fixing such wrong background choices. Each example describes
the added or removed block and all the blocks around it, along with their size and
position in the document and the spatial relationships among them, both before and
after the manual correction is made.

Kernel-Based Basic Blocks Grouping To automatically infer rewriting rules that
suggest suitable parameter settings to group basic/word blocks into lines, RARE
(Rule Aggregation REwriter) uses a kernel-based method. Each block is described
as a feature vector of the form:

[i,p, xi, xf , yi, yf , cx, cy, h,w]
whose parameters are to be interpreted as follows:

• i is the identifier of the considered block;
• p is the number of page in which the block is placed;
• (xi, yi) and (xf , yf) are the coordinates of the top-left and bottom-right corners

of the block, respectively;
• (cx, cy) are the coordinates for the centroid of the block;
• h,w are the block height and width, respectively.

Based on this description, given a block O and its top-left, top, top-right, right,
bottom-right, bottom, bottom-left and left Close Neighbor blocks {Ck}k∈{1,2,...,8}
(thus, O has at least one close neighbor and at most eight), an instance from which
learning rewriting rules is represented using a template [O,Ck]:

[n,p,xi, xf , yi, yf , cx, cy, xki, xkf , yki, ykf , ckx, cky, dx, dy]
for each close neighbor, where n is an identifier for the new block, dx and dy express
the distances between the two blocks, and the other parameters are those of the

264 A A Case Study: DOMINUS

original blocks. An example is a set of instances, and is labeled as positive for the
target concept “the two blocks can be merged” if and only if at least one Ck is
adjacent to O and belongs to the same line in the original document, or as negative
otherwise. It is worth noting that not every pair of adjacent blocks is necessarily
a positive example, since they could belong to different frames in the document.
As a consequence of the adopted representation, the problem is cast as a Multiple
Instance Problem and solved by applying the Iterated-Discrim algorithm [77] in
order to discover the relevant features and their values to be encoded in the rewriting
rules.

A.2.3 Document Image Understanding

On the final layout structure, Document Image Understanding is carried out, based
on first-order logic models available in the Learning and Classification Server, and
previously learned by INTHELEX from sample documents manually annotated by
the maintainers. New incoming documents are first classified according to their first-
page layout, to determine how to file them in the digital repository and what kind of
processing they should undergo next. This step is crucial in digital libraries, where
many different layout structures for the documents, either belonging to different
classes or even to the same class, can be encountered. Then, each frame identified
therein is associated to a tag expressing its role. While rules defining classes are in-
dependent on each other, rules to identify logical components might be interrelated,
since it is typical that one component is defined and identified in relation to another
one (e.g., the ‘authors’ frame might be defined as the frame placed just under the
‘title’ and above the ‘abstract’), which is a much more complex problem.

In case of failure or wrong classification, the maintainer can point out the correct
outcome, which causes the theories to be suitably updated. It could be even the case
that not only single definitions turn out to be faulty and need revision, but whole new
document classes are to be included in the collection as soon as the first document
for them becomes available. This represents a problem for most other systems that
require not only all the information on the application domain, but also the set of
classes for which they must learn definitions, to be completely determined when the
learning process starts. Lastly, if documents of new, unknown classes are submitted,
the system can autonomously extend the set of classes that are taken into account.

A.2.4 Categorization, Filing and Indexing

After Document Image Understanding, DOMINUS focuses on a subset of logical
components deemed as particularly significant. Graphical components are processed
in order to identify known objects that can contribute to the understanding of the
document content. Textual components are ‘read’, using the Tesseract OCR engine

A.3 Prototype Implementation 265

in the case of digitized documents, or extracting the text in the case of natively
digital sources, and the extracted text is exploited for filing a record of the doc-
ument. A full set of NLP techniques is also applied, including both standard (to-
kenization, language recognition, stopword removal, PoS tagging, stemming) and
advanced ones (syntactic and semantic analysis), preliminary to further processing:
while the former are often sufficient for document indexing purposes, the latter may
support more precise and focused information extraction. Various kinds of linguistic
resources, among which WordNet and WordNet Domains, are exploited as well.

As to Information Retrieval, DOMINUS includes both classical term-based and
advanced concept-based indexing techniques (using word stems for enhanced flex-
ibility): a Vector Space Model based on TF-IDF, Latent Semantic Indexing (LSI)
based on the log-entropy weighting scheme and Concept Indexing. In LSI, the min-
imum number of top-ranked documents needed to cover the whole set of terms is
used as the reduction parameter k, and incremental updating methods are exploited,
applying the most efficient techniques first to ensure a prompt response. Folding-In
is applied each time a new document is submitted, while SVD-Updating is run after
a number of new submissions to improve the overall index quality. Indexing from
scratch is performed only occasionally, when the current index quality is tampered
by several partial updatings. Cosine similarity is exploited to rank the outcome.

Keyword Extraction is included both for extracting key terms to be used as meta-
data for the document, and to perform keyword-based information retrieval. Two
approaches are currently implemented, both taking into account the document logi-
cal structure to weight differently the terms: a global one based on term occurrence
statistics that works on the whole collection, and a conceptual one based on Word-
Net and WordNet Domains that works on single documents. Text Categorization,
either supervised (using a co-occurrence based technique) or unsupervised (using
Concept Indexing), is exploited for a better organization of documents and their
subject-based retrieval.

A GUI is provided that allows managing and mixing these techniques, their pa-
rameters and their results, in order to better fit the user needs. A module to suggest
refined queries according to user relevance feedback is also supported, suggesting a
different set of terms that turned out to be more characteristic of the documents that
he singled out as interesting.

A.3 Prototype Implementation

The variety of tasks needed to carry out the several processing steps provided by
DOMINUS have required the exploitation of different technologies in its prototype
implementation. Java is used as the main programming language, allowing max-
imum portability among platforms and easy connection to other technologies; in
particular, the Java Server Faces have been chosen as a framework for the Web Ap-
plication component that allows remote control of the system functionality. C++ is
exploited for low-level tasks, such as communication with external modules. Pro-
log supports the implementation of most learning systems, and particularly of those

266 A A Case Study: DOMINUS

Fig. A.3 Internal representations in DOMINUS: Vector format (top), XML (middle), Horn clause
(bottom)

based on relational representations. CLIPS (C-Language Integrated Production Sys-
tem) was used to implement the expert system components that are in charge of
performing knowledge-intensive tasks. MySQL is used as a DataBase Management
System. A PostScript program is exploited to extract information from PS and PDF
files. XML serves as a standard representation formalism for the information to be
passed through the system. GnuPG is in charge of the security-related aspects of
document management. Moreover, DOMINUS exploits different internal represen-
tations for the documents, an excerpt of which is shown in Fig. A.3.

The vector format describing the original digital document as a set of pages, each
of which is composed of basic blocks, is based on the following descriptors:

A.3 Prototype Implementation 267

box(i, xl , yt , xr , yb, f, d, c, r, s) a piece of text, represented by its bounding box;
stroke(i, xl , yt , xr , yb, c, t) a graphical (horizontal/vertical) line;
fill(i, xl , yt , xr , yb, c) a closed area filled with one color;
image(i, xl , yt , xr , yb) a raster image;
page(n,w,h) page information,

where i is the block identifier; (xl, yt) and (xr , yb) are, respectively, the top-left and
bottom-right coordinates of the block (xl = xr for vertical lines and yt = yb for
horizontal lines); f is the text font and d its size; c is the color of the text, line or
area in RGB (#rrggbb) format; r denotes the row in which the text appears; s is the
portion of document text contained in the block; t is the thickness of the line; n is
the page number; w and h are the page width and height, respectively.

The XML representation initially contains the same information as the vector
representation and is extended as long as the document is processed, to include the
information gained by the various steps. It is organized in a hierarchical structure:

document the whole document (attributes include its name, number of pages and class)
obstacles the basic layout blocks found in the document source
page a page in the document (attributes: page number, bounding box coordinates)

line a text line in the document (attributes: ID, bounding box coordinates)
word a word in the document (attributes: ID, bounding box coordinates)
box corresponding to a box item in the vector representation

stroke corresponding to a stroke item in the vector representation
image corresponding to an image item in the vector representation

layout the result of document image analysis (attributes include the document class)
page a page in the document (attributes include the layout analysis threshold)

frame a frame in the document page (attributes include its logical role)
block a content block in the document page (attributes include its content type)

A third representation, exploited by the First-Order Logic learning and classifica-
tion systems, expresses the document layout as a Horn clause made up of predicates
applied to terms. Once the layout components of a document have been discovered,
the description of their features and spatial/topological relationships (plus page in-
formation in multi-page documents) is built using the following page descriptors:

page_n(d,p) p is the nth page in document d ;
first_page(p) true if p is the first page of the document;
last_page(p) true if p is the last page of the document;
in_first_pages(p) true if page p belongs to the first 1/3 pages of the document;
in_middle_pages(p) true if page p is in the middle 1/3 pages of the document;
in_last_pages(p) true if page p belongs to the last 1/3 pages of the document;
number_of_pages(d,n) document d has n pages;
page_width(p,w) page p has width w (expressed in dots);
page_height(p,h) p has height h (expressed in dots);

frame descriptors:

frame(p,f) f is a frame of page p;
type_t (f) t is the type of content of frame f

(t ∈ {text, graphic, mixed, vertical_line, horizontal_line});
width(f,w) frame f has width w (expressed as a ratio of the page width);
height(f,h) frame f has height h (expressed as a ratio of the page height);

268 A A Case Study: DOMINUS

x_coordinate(f,x) the centroid of frame f has horizontal coordinate x;
y_coordinate(f,y) the centroid of frame f has vertical coordinate y;

and topological relation descriptors:

on_top(f1, f2) frame f1 is placed above frame f2;
to_right(f1, f2) frame f1 is placed on the right of frame f2;
left_aligned(f1, f2) frames f1 and f2 are left-aligned;
center_aligned(f1, f2) frames f1 and f2 are center-aligned horizontally;
right_aligned(f1, f2) frames f1 and f2 are right-aligned;
top_aligned(f1, f2) frames f1 and f2 are top-aligned;
middle_aligned(f1, f2) frames f1 and f2 are center-aligned vertically;
bottom_aligned(f1, f2) frames f1 and f2 are bottom-aligned.

To improve efficiency, horizontal and vertical frame size and position are automat-
ically discretized by the learning system, using abstraction operators, into a set of
intervals denoted by symbolic descriptors, according to the ratio of the whole page
size they represent:

pos_upper(f), pos_middle(f), pos_lower(f) vertical position of the frame in the page;
pos_left(f), pos_center(f), pos_right(f) horizontal position of the frame in the page;
width_X(f) horizontal size of the frame (7 intervals);
height_X(f) vertical size of the frame (11 intervals).

A.4 Exploitation for Scientific Conference Management

The DOMINUS framework can be exploited in several different domain-specific
applications. This section focuses on the case of Scientific Conference organization,
a complex and multi-faceted activity where the Chairs play the role of Librarians.
DOMINUS, as a Conference Management System, can support some of the more
critical and knowledge-intensive tasks, among which are submission of abstracts
and papers and review assignment and management.

Let us present a possible scenario. A candidate Author opens the submission
page on the Internet, where (after registering, or after logging in if already regis-
tered) he can browse his hard disk and submit a file in one of the accepted formats.
After uploading, the paper undergoes the processing steps provided by DOMINUS.
Layout analysis and document classification allow automatically checking that the
submission fulfills the acceptable style standards (a single conference might allow
different styles for the submitted papers, e.g., full paper, poster, demo), otherwise
the Author can be immediately warned. The layout components of interest are then
identified (e.g., title, author, abstract and references in a full paper) and their text
is read, stored and used to automatically file the submission record (e.g., by filling
its title, authors and abstract fields), asking the Author just for a confirmation. If
the system is unable to carry out any of these steps, such an event is notified to the
conference Chairs that can manually fix the problem and let the system proceed.

After the submission deadline, the papers are automatically categorized based on
their content, which paves the way for a suitable reviewer assignment that matches

A.4 Exploitation for Scientific Conference Management 269

the paper topic against the reviewers’ expertise, in order to find the best associations.
The actual assignment is carried out by an expert system, exploiting a mix of sources
expressing the similarity between papers and reviewers from different perspectives.

GRAPE GRAPE (Global Review Assignment Processing Engine) [76] is an ex-
pert system for review assignment that can take advantage of both the papers’ con-
tent and the reviewers’ expertise and preferences (as expressed in the bidding phase,
if provided for). Let {pi}i=1,...,n denote the set of papers submitted to the conference
and {rj }j=1,...,m the set of reviewers. Let T (·) denote the number of topics associ-
ated to an entity, among t conference topics. The assignment must fulfill at least the
following constraints:

1. Each paper is assigned to exactly k reviewers (usually, k ∈ {2,3,4});
2. Each reviewer has roughly the same number of papers to review (the mean num-

ber of reviews per reviewer is nk/m), except for specific reviewers rj that must
review at most hj papers;

3. Papers should be reviewed by domain experts;
4. Reviewers should be assigned to papers based on their expertise and preferences.

Two measures are to be maximized in order to fulfill constraints 3 and 4: reviewer
gratification and article coverage. Both are based on the confidence degree between
a paper and a reviewer. Additionally, the former also depends on the number of
assigned papers that were actually bid by the reviewer, and the latter on the expertise
degree of the reviewers the paper was assigned to (related, for a reviewer rj , to the
number of topics in which he is expert, and computed as T (rj)/t).

As to the confidence assessment between a paper pi and a reviewer rj , one pa-
rameter is the number of topics in common |T (pi)∩T (rj)| declared by the Authors
as the subject of their paper and by the Reviewers as their area of expertise (if any of
the two is empty, the corresponding coverage degree will be always zero). However,
practical experience proved that such a self-assessment is not always trustworthy,
for which reason additional parameters have been added, among them the subject
category and keywords automatically identified by the system, and a similarity com-
puted for each paper-reviewer pair according to Latent Semantic Analysis. For a
paper, this information is extracted using the text in the title, abstract and biblio-
graphic references,2 as the most significant indicators of the subject and research
field the paper is concerned with. For a reviewer, it is extracted from its curriculum
(including the list of his previous publications).

In a first phase, the system progressively assigns reviewers to papers with the
fewest candidate reviewers. At the same time, it ‘prefers’ assigning papers to re-
viewers with few assignments, to avoid having reviewers with few or no assigned
papers. This can be viewed as a search for review assignments that keep low the
average number of reviews per reviewer and maximize the coverage degree of the
papers. In a second phase, the system tries to assign a paper pi which has not yet

2A small expert system is exploited to identify the various components of bibliographic references,
independently of the particular style exploited for listing them.

270 A A Case Study: DOMINUS

been assigned k reviewers to a reviewer rj with a high confidence level between
rj and pi or, if it is not possible, to a reviewer with a high level of expertise. Each
reviewer is then presented with the list of all papers by decreasing similarity, where
the first h, provisionally assigned to him, are highlighted. Now he can bid them
based on this suggestion, instead of having an unordered list of papers as usual in
the current practice. After collecting all the reviewers’ bids, GRAPE is restarted to
search for a new solution that tries to change previous assignments by taking into
account these bids as well. Then, the final solution is presented to the reviewers.

GRAPE being a rule-based system, it is easy to add new rules in order to
change/improve its behavior, and to describe background knowledge, such as fur-
ther constraints or conflicts, in a natural way (e.g., a reviewer could be preferably
assigned to papers in which he is cited, but must not review papers submitted by
people from his Institution).

Appendix B
Machine Learning Notions

Many approaches developed for the various steps of document processing rest on
Machine Learning techniques. Indeed, the complexity of the tasks they involve re-
quires a great deal of flexibility and adaptation, that standard algorithms based on
static parameters cannot provide. Obviously, Machine Learning is a widespread re-
search area by itself, for which many valid books are available (e.g., [139]) and
new publications improve everyday the state-of-the-art. Thus, this appendix can-
not be anything else than a brief recall of the main types of possible approaches
to Machine Learning and, therein, a quick description of some techniques that are
referenced in the book chapters, in order to provide the reader with an immediate
support and pointers to more thorough publications.

B.1 Categorization of Techniques

Machine Learning aims at obtaining some representation (a model) of interesting
concepts (often called classes) in a given domain, starting from data and knowledge
coming from that domain, in order to exploit them for future applications, most
often prediction of the correct class for new observations (classification). Given
such a general objective, there are several dimensions along which Machine Learn-
ing approaches and techniques can be categorized. Some of them are orthogonal,
and hence give rise to a number of possible combinations. Others are organized in
a general-to-specific taxonomy, with respect to the degree of expressive power or
other parameters.

A first neat distinction is to be made between supervised and unsupervised learn-
ing techniques. The former work on a set of training examples, i.e., descriptions of
observations taken from the domain of interest labeled with the proper classes, and
produce (implicit or explicit) descriptions for those classes. The latter take unlabeled
observations, and search for regularities that can be considered as relevant for future
applications. For instance, clustering aims at grouping the available observations so
that each group contains similar and homogeneous observations, while observations
belonging to different groups are quite different.

S. Ferilli, Automatic Digital Document Processing and Management,
Advances in Pattern Recognition,
DOI 10.1007/978-0-85729-198-1, © Springer-Verlag London Limited 2011

271

272 B Machine Learning Notions

From another perspective, symbolic and numerical (or sub-symbolic) approaches
can be distinguished according to the representation of observations, and the pro-
cessing thereof, being based on logic and abstract (human-understandable) concepts
rather than values to be processed by mathematical or statistical operations (more
problematic for human interpretation). The latter usually exploit attribute-value de-
scriptions, where a fixed number of descriptors is defined, for each of which a single
value can be filled; the former typically allow descriptions of variable length, in the
form of logic formulæ. Symbolic approaches, in particular, can work at the level
of propositional logic, or can adopt first-order logic as a representation language,
which introduces the ability to express relationships among objects, at the cost of
higher computational complexity.

Conceptual learning aims at obtaining intensional descriptions of concepts, while
lazy techniques just store interesting data and perform predictions simply by com-
paring the new observations to them.

B.2 Noteworthy Techniques

In the following, some Machine Learning techniques referenced in the book are
briefly introduced.

Artificial Neural Networks Artificial Neural Networks (ANNs) [139] are a tradi-
tional sub-symbolic approach inspired from the behavior of biological neural net-
works in the human brain. Just like a network of interlinked neurons is present in
the brain, where each neuron receives chemical inputs from its predecessors and
sends accordingly a chemical output to other successor neurons, in an artificial neu-
ral network each element is interconnected to other elements of the same kind, and
can output a signal whose intensity is mathematically computed as a function of the
intensity of the signals coming from its input neurons. A subset of neurons directly
receive their input stimuli from the outside world, as the values of features or at-
tributes that describe an observation to be classified; another subset of neurons, each
corresponding to a class, provide their output to the external world; the rest are in-
ternal neurons, organized in a (possibly multi-layered) set of connections. ANNs are
built by defining their structure and assigning a standard weight to all connections
thereof. Then, for each learning example provided, made up of an input description
and the corresponding correct class, first the description is used for classification,
and then a backpropagation mechanism traces back the connections that were ac-
tivated to produce the classification and reinforces or smooths them, according to
the predicted class being correct or wrong, respectively. Such a change represents
a learning of new information by the network. Thus, the single artificial neurons
do not change the operations they embed, but the overall network behavior changes
because of modifications of the weights on the relationships among them. ANNs
are very interesting because, once learned, they can be directly implemented onto
electronic chips and plugged into devices that exploit them. Unfortunately, human
interpretation of a learned ANN is a still unsolved problem.

B.2 Noteworthy Techniques 273

Decision Trees A decision tree is a branching structure in which the root is the
starting point, each internal node corresponds to a test over an attribute, each branch
represents a possible outcome (or set of outcomes) for the test, and the leaves bear
class information. Given an observation (in the form of a feature vector) described
according to the same attributes as the tree, starting from the root and routing the tree
by repeatedly carrying out the tests in the nodes and following the branch labeled
with the corresponding results, one gets the class to be assigned to the observa-
tion at hand. Machine Learning techniques for automatically building decision trees
starting from a set of observations already tagged with the correct classes (called
the training set) usually place in the nodes that are closer to the root the attributes
that turn out to be more discriminative for partitioning the training set instances into
different classes, according to the outcome of class-driven information measures
applied to the training set.

k-Nearest Neighbor k-Nearest Neighbor (k-NN) is a lazy supervised technique
that reduces the learning step to just storing the available examples. When a new
observation is to be classified, it is compared to all the examples by means of some
kind of distance (or similarity) measure suitable for the adopted representation (e.g.,
multi-dimensional Euclidean distance for vectors of numeric values). The examples
are then sorted by increasing distance (or decreasing similarity), and the first k of
the ranking (the ‘nearest neighbors’ of the observation, according to the distance
perspective) are considered. The majority class thereof is thus assigned to the obser-
vation in question. One issue is the choice of k, usually taken as (an approximation
of) the square root of the number of training examples. Another question is how to
handle ties between classes in the first k neighbors: if only two possible classes are
considered, it suffices taking k to be an odd integer to ensure a single winner class.

Inductive Logic Programming Inductive Logic Programming (ILP) [145] is the
intersection between Inductive Learning (that defines the task) and Logic Program-
ming (that provides the representation) aiming at the identification of logic theories
that explain the given examples. Theories contain hypotheses, one for each concept
to be learned, that in turn are made up of clauses, i.e., first-order logic formulæ in
the form of implications:

p1 ∧ · · · ∧ pn ⇒ c1 ∨ · · · ∨ cm

to be interpreted as “if all the premises pi are true, then at least one of the conclu-
sions cj is true”. Both the premises and the conclusions are literals, i.e., possibly
negated atoms, where an atom is a logic predicate applied to arguments that are
terms (variables, constants or functions applied to other terms as arguments). Terms
usually denote objects: constants stand for specific objects, variables for generic
ones, and functions represent objects by reference to other objects. Predicates with
only one argument represent properties of that object, while predicates with many
arguments express relationships among those objects. Particularly interesting are
Horn clauses in which exactly one literal is present in the conclusion, and hence
there is no uncertainty about what is true once the premises have been verified.

274 B Machine Learning Notions

Naive Bayes Given a set of possible classes {ci}i=1,...,n for objects described by
a set of m features {fj }j=1,...,m, it might be interesting to assess the probability
that an object o having feature values {vj }j=1,...,m belongs to each class. Math-
ematically, this is expressed by the conditional probability p(c(o) = ci |f1(o) =
v1 ∧ · · · ∧ fm(o) = vm). Although these values are generally unknown, the Bayes
theorem1 allows expressing them according to the inverse conditional probability,
which yields the Naive Bayes classifier formula (omitting the functions for the sake
of readability):

p(ci |v1 ∧ · · · ∧ vm) = p(v1 ∧ · · · ∧ vm|ci) · p(ci)

p(v1 ∧ · · · ∧ vm)

assuming statistical independence among features

= p(v1|ci) · · ·p(vm|ci) · p(ci)

p(v1) · · ·p(vm)
,

where the elements to the right of the equality can be estimated from a training
set, if available, by simply counting the corresponding frequencies. Of course, the
statistical independence assumption is rarely fulfilled, but this turns out to be in
practice a satisfactory tradeoff between complexity and effectiveness.

Hidden Markov Models Hidden Markov Models (HMM) are a statistical model
where a finite number of states are taken into account, and each state is associated
to a probability distribution that determines the transition to next states (called the
transition probabilities) and the corresponding output of symbols. It is a Markov
model in that the probability of outputting a symbol depends on the past history
of the states that were traversed before emitting that symbol. It is hidden because,
given a sequence of output symbols, even if the probability of transitions is known,
one cannot say exactly which states have been activated, although the sequence
provides a hint about that. In addition to the set of states and the set of symbols
in the output alphabet, an HMM is defined by the probability distributions of the
transitions/outputs and of the initial states. In a graphical representation, states are
nodes, and transitions are edges, each weighted with a corresponding probability
and labeled with an output symbol. Obviously, the sum of weights for all outcoming
edges from a node must be 1. From a learning viewpoint, the problem is how to
infer the structure and/or the weights of the graph representing an HMM starting
from instances of output sequences generated by the target model.

Clustering Clustering is an unsupervised learning task aimed at finding subsets of
a given set of objects such that elements in the same subset are very similar to each
other, while elements in different subsets are quite different [113]. Often, but not

1

p(A ∧ B) = p(B|A) · p(A) = p(A|B) · p(B) ⇒ p(B|A) = p(A|B) · p(B)

p(A)
.

B.3 Experimental Strategies 275

mandatorily, the subsets represent a partition of the original set. Clustering is heav-
ily based on the availability of a distance function that, applied to the descriptions
of two elements, returns the degree of similarity between them. The hierarchical ap-
proach to clustering requires that, given the similarity between all pairs of elements
in the starting set, the groups are found by progressive aggregation of subsets, start-
ing from singleton subsets containing an element each (agglomerative techniques),
or by progressive split of subsets, starting from the whole initial set (partitional
techniques), and produces a tree of subsets called a dendrogram, in which choosing
the desired level of refinement. Noteworthy techniques include single link (where
the closest subsets, according to their closest elements, are progressively merged)
and complete link (where the subsets whose farthest elements are closer are merged
first). Conversely, in the k-means technique an initial random split of the elements
in the desired number of subsets is performed, and then the centroid of each subset
is computed and the elements are re-assigned to the subset of the closest centroid,
repeating the procedure until a convergence is found (which might not always hap-
pen). A typical problem for clustering is the decision as to how many subsets are to
be obtained.

B.3 Experimental Strategies

Given a learning technique and a dataset of n instances on which it is to be applied,
a typical task consists in assessing the performance of the former on the latter, ac-
cording to some evaluation metric. After learning a model from a set of training
instances, it is applied to new test instances to obtain a performance value. To reach
a sufficient degree of confidence in the outcome, several such values are needed,
to act as samples for applying a statistical test. Hence, the problem of how to ob-
tain a sample population that ensures reliability of the test outcomes arises. Indeed,
a single dataset is usually available for the problem at hand, while the statistical
tests may require several dozens samples for being successfully applied. The obvi-
ous solution consists in partitioning the dataset many times into different pairs of
subsets, a training set from which learning a model, and a corresponding test set
on which evaluating performance. Several techniques are available for this, to be
applied depending on the particular experimental conditions.

k-Fold Cross-Validation k-Fold Cross-validation consists in partitioning the
dataset into k subsets (the folds) each containing n/k instances (usually evenly dis-
tributed among the various classes to be learned). Each subset becomes in turn a
test set, on which evaluating the performance of the model learned on the remaining
k−1 subsets appended to each other to form the training set. So, k runs of the system
on different portions of the original dataset are performed, each yielding a sample to
be fed to the statistical test for significance assessment. This strategy can be applied
when n is such that the number n/k of instances in each fold is satisfactory even for
k large enough to ensure fulfillment of the test applicability requirements.

276 B Machine Learning Notions

Leave-One-Out Leave-One-Out is, in some sense, k-fold Cross-Validation taken
to its extreme: The dataset is partitioned in as many subsets as the number of in-
stances it contains. Thus, each run of the learning system takes all but one instances
as a training set, and applies the learned model on the single example left out. This
strategy is typically used for small datasets, where applying k-fold Cross-Validation
for a sufficiently large k would yield subsets containing very few instances for each
class to be learned.

Random Split The Random Split strategy takes as input the number k of desired
runs of the learning technique, and the percentage t of instances to be used for
training purposes (a typical value is t = 70). Then, the dataset is divided for k times
into a training set containing a randomly selected t% of the instances, and a test
set containing the remaining (100 − t)% ones (again, even distribution of instances
from all classes in the training and test set should be ensured in each split). Even
for datasets having medium-small size, this strategy allows obtaining a sufficient
number k of samples because the available combinations when randomly drawing
single examples is much larger than the maximum number of partition elements in
k-fold Cross-Validation. Additionally, this strategy provides training sets with much
more variability in the order of the instances, which makes a significant difference
in learning systems whose outcome depends on the order in which instances are
considered.

Glossary

For the sake of comfortable reading, the various concepts used in this book are
usually defined and explained directly under the sections where they are exploited.
As an exception, a few of them that are needed in different and distant parts of the
book are recalled here, so that this can serve as a quick reference to them, avoiding
the need for the reader to go through the book searching for the place where they
were first introduced.

Bounding box The minimum rectangle delimiting a given component of a raster
image.

Byte ordering The technique used to store in memory the bytes of an information
word. Two standards exist: little endian (going from the least to the most significant
byte) and big endian (from the most to the least significant byte).

Ceiling function Denoted by �x�, returns the smallest integer not less than a real
number x.

Chunk A portion of information, usually having fixed size in a given context.

Connected component In a raster image, a set of pixels that fulfill a given prop-
erty, such that each pixel in the set is adjacent to at least another pixel in the set,
and no pixel outside the set fulfills that property and is adjacent to any pixel in
the set (if only the horizontal and vertical positions are considered, this is called
a 4-connection; if the diagonal positions are considered as well, this is called an
8-connection). In a graph, a set of nodes such that any pair of nodes in the set is
linked by a sequence of edges, and no node outside the set is linked by an edge to
any node in the set.

Heaviside unit function A discontinuous function, usually denoted u(·), that eval-
uates to 0 for negative arguments and 1 for positive arguments.

S. Ferilli, Automatic Digital Document Processing and Management,
Advances in Pattern Recognition,
DOI 10.1007/978-0-85729-198-1, © Springer-Verlag London Limited 2011

277

278 Glossary

Heterarchy A taxonomic organization in which an element can have many an-
cestors. Formally, it can be represented as a Directed Acyclic Graph (DAG), and
the resulting organization is that of a forest. The relationship can be many-to-many,
i.e., an element can represent the end of arcs that start from many nodes, possibly
even belonging to different trees in the forest or placed at different distances from
the root. A tree is a particular case that represents the classical hierarchy in which
a node may have many children but has one and only one parent, and there exists a
single element (the root) that is ancestor of all the others and that does not have a
parent.

KL-divergence Allows comparing a reference probability distribution p(X) to
another one q(X) (e.g., an expected distribution with one drawn from empirical
data). It is defined as

D
(
p(X) ‖ q(X)

) =
∑

x∈X

−p(x) logq(x) − (−p(x) logp(x)
) =

∑

x∈X

p(x) log
p(x)

q(x)

and is strictly connected to Information Theory, expressing information gain and
relative entropy. Indeed, the mutual information between two distributions can be
written as

I (X;Y) =
∑

x∈X,y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
= D

(
p(X,Y) ‖ p(X)p(Y)

)
.

Linear regression A mathematical technique that, given a set of points in the
plane, searches for a straight line in that plane that best ‘fits’ those points according
to a given quality function (usually, minimization of the sum of squared distances
between each point and the line).

Run A sequence of consecutive symbols fulfilling a given property (usually their
being equal to each other), embedded in a longer sequence.

Scanline A row of pixels in a raster image.

References

Although each chapter reports its own bibliographic references,
a complete list of cited items, covering the whole landscape of
document processing phases and approaches presented in this
book, might be interesting, and is reported below.

1. Data Encryption Standard. Tech. rep FIPS Pub. 46-1, National Bureau of Standards, Wash-
ington, DC, USA (1987)

2. Graphics Interchange Format (sm) specification—version 89a. Tech. rep., Compuserve Inc.
(1990)

3. TIFF specification—revision 6.0. Tech. rep., Adobe Systems Incorporated (1992)
4. Secure Hash Standard (SHS). Tech. rep. FIPS PUB 180, National Institute of Standards and

Technology (1993)
5. Secure Hash Standard (SHS). Tech. rep. FIPS PUB 180-1, National Institute of Standards

and Technology (1995)
6. Digital Signature Standard (DSS). Tech. rep. FIPS PUB 186-1, National Institute of Stan-

dards and Technology (1998)
7. Document Object Model (DOM) Level 1 Specification—version 1.0. Tech. rep. REC-DOM-

Level-1-19981001, W3C (1998)
8. Knowledge for development. Tech. rep., The World Bank (1998/1999)
9. HTML 4.01 specification—W3C recommendation. Tech. rep., W3C (1999)

10. Merriam-Webster’s Collegiate Dictionary, 10th edn. Merriam-Webster Inc. (1999)
11. XML Path Language (XPath) 1.0—W3C recommendation. Tech. rep., W3C (1999)
12. XSL Transformations: (XSLT) 1.0—W3C recommendation. Tech. rep., W3C (1999)
13. Document Object Model (DOM) Level 2 Core Specification. Tech. rep. 1.0, W3C (2000)
14. Secure Hash Standard (SHS)—amended 25 February 2004. Tech. rep. FIPS PUB 180-2,

National Institute of Standards and Technology (2002)
15. International standard ISO/IEC 10646: Information technology—Universal Multiple-octet

coded Character Set (UCS). Tech. rep., ISO/IEC (2003)
16. Portable Network Graphics (PNG) specification—W3C recommendation, 2nd edn. Tech.

rep., W3C (2003)
17. Lizardtech djvu reference—version 3, Tech. rep., Lizardtech, A Celartem Company (2005)
18. Extensible Markup Language (XML) 1.1—W3C recommendation, 2nd edn. Tech. rep., W3C

(2006)
19. Extensible Stylesheet Language (XSL) 1.1—W3C recommendation. Tech. rep., W3C (2006)
20. Microsoft Office Word 1997–2007 binary file format specification [*.doc]. Tech. rep., Mi-

crosoft Corporation (2007)

S. Ferilli, Automatic Digital Document Processing and Management,
Advances in Pattern Recognition,
DOI 10.1007/978-0-85729-198-1, © Springer-Verlag London Limited 2011

279

280 References

21. Open Document Format for office applications (OpenDocument) v1.1—OASIS standard.
Tech. rep., OASIS (2007)

22. Extensible Markup Language (XML) 1.0—W3C recommendation, 5th edn. Tech. rep., W3C
(2008)

23. Secure Hash Standard (SHS). Tech. rep. FIPS PUB 180-3, National Institute of Standards
and Technology (2008)

24. Digital Signature Standard (DSS). Tech. rep. FIPS PUB 186-3, National Institute of Stan-
dards and Technology (2009)

25. Dublin Core metadata element set version 1.1. Tech. rep. 15836, International Standards
Organization (2009)

26. Abdul-Rahman, A.: The PGP trust model. EDI-Forum (1997)
27. Addis, A., Angioni, M., Armano, G., Demontis, R., Tuveri, F., Vargiu, E.: A novel seman-

tic approach to create document collections. In: Proceedings of the IADIS International
Conference—Intelligent Systems and Agents (2008)

28. Adobe Systems Incorporated: PDF Reference—Adobe Portable Document Format Version
1.3, 2nd edn. Addison-Wesley, Reading (2000)

29. Allen, J.F.: Natural Language Understanding. Benjamin Cummings, Redwood City (1994)
30. Altamura, O., Esposito, F., Malerba, D.: Transforming paper documents into XML format

with WISDOM++. International Journal on Document Analysis and Recognition 4, 2–17
(2001)

31. Angelici, C.: Documentazione e documento (diritto civile). Enciclopedia Giuridica Treccani
XI (1989) (in Italian)

32. Baird, H.S.: The skew angle of printed documents. In: Proceedings of the Conference of the
Society of Photographic Scientists and Engineers, pp. 14–21 (1987)

33. Baird, H.S.: Background structure in document images. In: Advances in Structural and Syn-
tactic Pattern Recognition, pp. 17–34. World Scientific, Singapore (1992)

34. Baird, H.S.: Document image defect models. In: Baird, H.S., Bunke, H., Yamamoto, K. (eds.)
Structured Document Image Analysis, pp. 546–556. Springer, Berlin (1992)

35. Baird, H.S., Jones, S., Fortune, S.: Image segmentation by shape-directed covers. In: Pro-
ceedings of the 10th International Conference on Pattern Recognition (ICPR), pp. 820–825
(1990)

36. Begeja, L., Renger, B., Saraclar, M.: A system for searching and browsing spoken commu-
nications. In: HLT/NAACL Workshop on Interdisciplinary Approaches to Speech Indexing
and Retrieval, pp. 1–8 (2004)

37. Bentivogli, L., Forner, P., Magnini, B., Pianta, E.: Revising WordNet Domains hierarchy:
Semantics, coverage, and balancing. In: Proceedings of COLING 2004 Workshop on Multi-
lingual Linguistic Resources, pp. 101–108 (2004)

38. Berkhin, P.: Survey of clustering Data Mining techniques. Tech. rep., Accrue Software, San
Jose (2002)

39. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American, New York
(2001)

40. Berry, M.W., Dumais, S.T., O’Brien, G.W.: Using linear algebra for intelligent information
retrieval. SIAM Review 37(4), 573–595 (1995)

41. Berry-Rogghe, G.: The computation of collocations and their relevance to lexical studies. In:
Aitken, A.J., Bailey, R.W., Hamilton-Smith, N. (eds.) The Computer and Literary Studies,
pp. 103–112. Edinburgh University Press, Edinburgh (1973)

42. Boulgouris, N.V., Kompatsiaris, I., Mezaris, V., Simitopoulos, D., Strintzis, M.G.: Segmen-
tation and content-based watermarking for color image and image region indexing and re-
trieval. EURASIP Journal on Applied Signal Processing 1, 418–431 (2002)

43. Breuel, T.M.: Two geometric algorithms for layout analysis. In: Proceedings of the 5th In-
ternational Workshop on Document Analysis Systems (DAS). Lecture Notes in Computer
Science, vol. 2423, pp. 188–199. Springer, Berlin (2002)

44. Briet, S.: Qu’est-ce que la Documentation. EDIT, Paris (1951)
45. Brill, E.: A simple rule-based part of speech tagger. In: HLT ’91: Proceedings of the Work-

shop on Speech and Natural Language, pp. 112–116 (1992)

References 281

46. Brill, E.: Some advances in transformation-based part of speech tagging. In: Proceedings of
the 12th National Conference on Artificial Intelligence (AAAI), vol. 1, pp. 722–727 (1994)

47. Brill, E.: Unsupervised learning of disambiguation rules for part of speech tagging. In: Nat-
ural Language Processing Using Very Large Corpora Workshop, pp. 1–13. Kluwer, Amster-
dam (1995)

48. Buckland, M.K.: What is a ‘document’? Journal of the American Society for Information
Science 48(9), 804–809 (1997)

49. Buckland, M.K.: What is a ‘digital document’? Document Numérique 2(2), 221–230 (1998)
50. Burger, W., Burge, M.J.: Digital Image Processing. Texts in Computer Science. Springer,

Berlin (2008)
51. Callas, J., Donnerhacke, L., Finney, H., Shaw, D., Thayer, R.: OpenPGP message format.

Tech. rep RFC 4880, IETF (2007)
52. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning

and efficient query answering in description logics: The DL-lite family. Journal of Automated
Reasoning 39(3), 385–429 (2007)

53. Calzolari, N., Lenci, A.: Linguistica computazionale—strumenti e risorse per il trattamento
automatico della lingua. Mondo Digitale 2, 56–69 (2004) (in Italian)

54. Candian, A.: Documentazione e documento (teoria generale). Enciclopedia Giuridica Trec-
cani (1964) (in Italian)

55. Canny, J.F.: A computational approach to edge detection. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 8(6), 679–698 (1986)

56. Cao, H., Prasad, R., Natarajan, P., MacRostie, E.: Robust page segmentation based on smear-
ing and error correction unifying top-down and bottom-up approaches. In: Proceedings of the
9th International Conference on Document Analysis and Recognition (ICDAR), vol. 1, pp.
392–396. IEEE Computer Society, New York (2007)

57. Carnelutti, F.: Studi sulla sottoscrizione. Rivista di Diritto Commerciale, p. 509 ss. (1929)
(in Italian)

58. Carnelutti, F.: Documento—teoria moderna. Novissimo Digesto Italiano (1957) (in Italian)
59. International Telegraph and Telephone Consultative Committee (CCITT): Recommendation

t.81. Tech. rep., International Telecommunication Union (ITU) (1992)
60. Cesarini, F., Marinai, S., Soda, G., Gori, M.: Structured document segmentation and repre-

sentation by the modified X–Y tree. In: Proceedings of the 5th International Conference on
Document Analysis and Recognition (ICDAR), pp. 563–566. IEEE Computer Society, New
York (1999)

61. Cestnik, B.: Estimating probabilities: A crucial task in machine learning. In: Proceedings of
the 9th European Conference on Machine Learning (ECAI), pp. 147–149 (1990)

62. Chaudhuri, B.: Digital Document Processing—Major Directions and Recent Advances.
Springer, Berlin (2007)

63. Chen, Q.: Evaluation of OCR algorithms for images with different spatial resolution and
noise. Ph.D. thesis, University of Ottawa, Canada (2003)

64. Chen, Y., Li, J., Wang, J.Z.: Machine Learning and Statistical Modeling Approaches to Image
Retrieval. Kluwer, Amsterdam (2004)

65. Ciardiello, G., Scafuro, G., Degrandi, M., Spada, M., Roccotelli, M.: An experimental system
for office document handling and text recognition. In: Proceedings of the 9th International
Conference on Pattern Recognition (ICPR), pp. 739–743 (1988)

66. Cocks, C.C.: A note on ‘non-secret encryption’. Tech. rep., GCHQ (1973)
67. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, T.: Internet X.509 Public

Key Infrastructure certificate and Certificate Revocation List (CRL) profile. Tech. rep RFC
5280, Internet Engineering Task Force (IETF) (2008)

68. Cowie, J., Wilks, Y.: Information extraction. In: Dale, R., Moisl, H., Somers, H. (eds.) Hand-
book of Natural Language Processing, pp. 241–260. Marcel Dekker, New York (2000)

69. De Mauro, T.: Grande Dizionario Italiano dell’Uso. UTET, Turin (1999) (in Italian)
70. Deb, S.: Multimedia Systems and Content-Based Image Retrieval. IGI Publishing (2003)

282 References

71. Deerwester, S., Dumais, S.T., Landauer, T.K., Furnas, G., Harshman, R.: Indexing by latent
semantic analysis. Journal of the American Society of Information Science 41(6), 391–407
(1990)

72. Department for Culture, Media and Sport, Department for Business, Innovation and Skills:
Digital Britain—final report. Tech. rep., UK Government (2009)

73. Deutsch, P.: Deflate compressed data format specification 1.3. Tech. rep. RFC1951 (1996)
74. Deutsch, P., Gailly, J.L.: Zlib compressed data format specification 3.3. Tech. rep. RFC1950

(1996)
75. Dewey, M., et al.: Dewey Decimal Classification and Relative Index, 22nd edn. OCLC On-

line Computer Library Center (2003)
76. Di Mauro, N., Basile, T.M., Ferilli, S.: GRAPE: An expert review assignment component for

scientific conference management systems. In: Innovations in Applied Artificial Intelligence.
Lecture Notes in Artificial Intelligence, vol. 3533, pp. 789–798. Springer, Berlin (2005)

77. Dietterich, T.G., Lathrop, R.H., Lozano-Perez, T.: Solving the multiple instance problem
with axis-parallel rectangles. Artificial Intelligence 89(1–2), 31–71 (1997)

78. Diffie, W.: An overview of public key cryptography. IEEE Communications Society Maga-
zine 16, 24–32 (1978)

79. Diffie, W.: The first ten years of public-key cryptography. Proceedings of the IEEE 76(5),
560–577 (1988)

80. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on Information
Theory IT-22, 644–654 (1976)

81. Diffie, W., Hellman, M.: Privacy and authentication: An introduction to cryptography. Pro-
ceedings of the IEEE, 67, 397–427 (1979)

82. Egenhofer, M.J.: Reasoning about binary topological relations. In: Gunther, O., Schek, H.J.
(eds.) 2nd Symposium on Large Spatial Databases. Lecture Notes in Computer Science, vol.
525, pp. 143–160. Springer, Berlin (1991)

83. Egenhofer, M.J., Herring, J.R.: A mathematical framework for the definition of topological
relationships. In: Proceedings of the 4th International Symposium on Spatial Data Handling,
pp. 803–813 (1990)

84. Egenhofer, M.J., Sharma, J., Mark, D.M.: A critical comparison of the 4-intersection and
9-intersection models for spatial relations: Formal analysis. In: Proceedings of the 11th In-
ternational Symposium on Computer-Assisted Cartography (Auto-Carto) (1993)

85. Eisenberg, J.: OASIS OpenDocument Essentials—using OASIS OpenDocument XML.
Friends of OpenDocument (2005)

86. Ellis, J.H.: The possibility of secure non-secret digital encryption. Tech. rep., GCHQ (1970)
87. Esposito, F., Ferilli, S., Basile, T.M.A., Di Mauro, N.: Machine Learning for digital docu-

ment processing: From layout analysis to metadata extraction. In: Marinai, S., Fujisawa, H.
(eds.) Machine Learning in Document Analysis and Recognition. Studies in Computational
Intelligence, vol. 90, pp. 105–138. Springer, Berlin (2008)

88. Esposito, F., Ferilli, S., Fanizzi, N., Basile, T.M., Di Mauro, N.: Incremental multistrategy
learning for document processing. Applied Artificial Intelligence: An International Journal
17(8/9), 859–883 (2003)

89. Fateman, R.J., Tokuyasu, T.: A suite of lisp programs for document image analysis and struc-
turing. Tech. rep., Computer Science Division, EECS Department—University of California
at Berkeley (1994)

90. Feistel, H.: Cryptography and computer privacy. Scientific American 128(5) (1973)
91. Ferilli, S., Basile, T.M.A., Esposito, F.: A histogram-based technique for automatic threshold

assessment in a Run Length Smoothing-based algorithm. In: Proceedings of the 9th Inter-
national Workshop on Document Analysis Systems (DAS). ACM International Conference
Proceedings, pp. 349–356 (2010)

92. Ferilli, S., Biba, M., Esposito, F., Basile, T.M.A.: A distance-based technique for non-
Manhattan layout analysis. In: Proceedings of the 10th International Conference on Doc-
ument Analysis Recognition (ICDAR), pp. 231–235 (2009)

93. Frank, A.U.: Qualitative spatial reasoning: Cardinal directions as an example. International
Journal of Geographical Information Systems 10(3), 269–290 (1996)

References 283

94. Freitag, D.: Machine learning for information extraction in informal domains. Machine
Learning 39, 169–202 (2000)

95. Gale, W., Church, K., Yarowsky, D.: One sense per discourse. In: Proceedings of the ARPA
Workshop on Speech and Natural Language Processing, pp. 233–237 (1992)

96. Garfinkel, S.: PGP: Pretty Good Privacy. O’Reilly (1994)
97. Gatos, B., Pratikakis, I., Ntirogiannis, K.: Segmentation based recovery of arbitrarily warped

document images. In: Proceedings of the 9th International Conference on Document Analy-
sis and Recognition (ICDAR), pp. 989–993 (2007)

98. Gattuso, A.: Processo telematico. Mondo Professionisti I(13), III–VI (2007) (in Italian)
99. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice Hall, New York

(2008)
100. Grishman, R.: Computational Linguistic—An Introduction. Studies in Natural Language

Processing. Cambridge University Press, Cambridge (1986)
101. Grishman, R.: Information extraction: Techniques and challenges. In: International Summer

School on Information Extraction: A Multidisciplinary Approach to an Emerging Informa-
tion Technology. Lecture Notes in Computer Science, vol. 1299, pp. 10–27. Springer, Berlin
(1997)

102. Gruber, T.R.: A translation approach to portable ontology specifications. Knowledge Acqui-
sition 5(2), 199–220 (1993)

103. Gunn, S.R., Nixon, M.S.: A robust snake implementation; a dual active contour. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 19(1), 63–68 (1997)

104. Halliday, M.: Categories of the theory of grammar. Word 17, 241–292 (1961)
105. Hamilton, E.: JPEG file interchange format—version 1.2. Tech. rep. (1992)
106. Hanson, N.R.: Patterns of Discovery—An Inquiry into the Conceptual Foundations of Sci-

ence. Cambridge University Press, Cambridge (1958)
107. Hough, P.V.: Method and means for recognizing complex patterns. Tech. rep. 3069654, US

Patent (1962)
108. Huffman, D.: A method for the construction of minimum-redundancy codes. In: Proceedings

of the I.R.E., pp. 1098–1102 (1952)
109. Hunyadi, L.: Keyword extraction: Aims and ways today and tomorrow. In: Proceedings of

the Keyword Project: Unlocking Content through Computational Linguistics (2001)
110. Ide, N., Véronis, J.: Introduction to the special issue on word sense disambiguation: The state

of the art. Compuational Linguistics 24(1), 1–40 (1998)
111. Impedovo, S., Ottaviano, L., Occhinegro, S.: Optical character recognition—a survey. Inter-

national Journal on Pattern Recognition and Artificial Intelligence 5(1–2), 1–24 (1991)
112. Irti, N.: Sul concetto giuridico di documento. Riv. Trim. Dir. e Proc. Civ. (1969) (in Italian)
113. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM Computing Surveys

31(3), 164–323 (1999)
114. Kainz, W., Egenhofer, M.J., Greasley, I.: Modeling spatial relations and operations with par-

tially ordered sets. International Journal of Geographical Information Systems 7(3), 215–229
(1993)

115. Kakas, A.C., Mancarella, P.: On the relation of truth maintenance and abduction. In: Pro-
ceedings of the 1st Pacific Rim International Conference on Artificial Intelligence (PRICAI),
pp. 438–443 (1990)

116. Kaliski, B.: Pkcs #7: Cryptographic message syntax. Tech. rep. RFC 2315, IETF (1998)
117. Karypis, G., Han, E.H.S.: Concept indexing: A fast dimensionality reduction algorithm with

applications to document retrieval & categorization. Tech. rep. TR 00-016, University of
Minnesota—Department of Computer Science and Engineering (2000)

118. Karypis, G., Han, E.H.S.: Fast supervised dimensionality reduction algorithm with applica-
tions to document categorization & retrieval. In: Proceedings of the 9th International Con-
ference on Information and Knowledge Management (CIKM), pp. 12–19 (2000)

119. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal
of Computer Vision 1(4), 321–331 (1988)

120. Kerckhoffs, A.: La cryptographie militaire. Journal des Sciences Militaires IX, 5–38 (1883)

284 References

121. Kerckhoffs, A.: La cryptographie militaire. Journal des Sciences Militaires IX, 161–191
(1883)

122. Kise, K., Sato, A., Iwata, M.: Segmentation of page images using the area Voronoi diagram.
Computer Vision Image Understanding 70(3), 370–382 (1998)

123. Krovetz, R.: More than one sense per discourse. In: Proceedings of SENSEVAL Workshop,
pp. 1–10 (1998)

124. Lafferty, J., Sleator, D.D., Temperley, D.: Grammatical trigrams: A probabilistic model of
link grammar. In: Proceedings of the AAAI Fall Symposium on Probabilistic Approaches to
Natural Language (1992)

125. Lai, X.: On the Design and Security of Block Ciphers. ETH Series in Information Processing,
vol. 1. Hartung-Gorre (1992)

126. Lamport, L.: LATEX, A Document Preparation System—User’s Guide and Reference Manual,
2nd edn. Addison-Wesley, Reading (1994)

127. Landauer, T.K., Dumais, S.T.: A solution to Plato’s problem: The latent semantic analysis
theory of the acquisition, induction, and representation of knowledge. Psychological Review
104, 111–140 (1997)

128. Landauer, T.K., Foltz, P.W., Laham, D.: An introduction to latent semantic analysis. Dis-
course Processes 25, 259–284 (1998)

129. Lesk, M.: Automatic sense disambiguation using machine-readable dictionaries: How to tell
a pine cone from an ice cream cone. In: Proceedings of the 5th International Conference on
Systems Documentation (SIGDOC), pp. 24–26 (1986)

130. Lindsay, P.H., Norman, D.A.: Human Information Processing: Introduction to Psychology.
Academic Press, San Diego (1977)

131. Magnini, B., Cavaglià, G.: Integrating subject field codes into WordNet. In: Proceedings of
the 2nd International Conference on Language Resources and Evaluation (LREC), pp. 1413–
1418 (2000)

132. Manning, C.D., Raghavan, P., Schutze, H.: Introduction to Information Retrieval. Cambridge
University Press, Cambridge (2008)

133. Manning, C.D., Schutze, H.: Foundations of Statistical Natural Language Processing. MIT
Press, New York (1999)

134. Matsuo, Y., Ishizuka, M.: Keyword extraction from a single document using word co-
occurrence statistical information. International Journal on Artificial Intelligence Tools
13(1), 157–169 (2004)

135. McCarthy, J., Minsky, M.L., Rochester, N., Shannon, C.E.: A proposal for the Dartmouth
Summer research project on artificial intelligence. Tech. rep., Dartmouth College (1955)

136. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography.
CRC Press, Boca Raton (1996)

137. Michalski, R.S.: Inferential theory of learning. developing foundations for multistrategy
learning. In: Michalski, R., Tecuci, G. (eds.) Machine Learning. A Multistrategy Approach,
vol. IV, pp. 3–61. Morgan Kaufmann, San Mateo (1994)

138. Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.J.: Introduction to WordNet:
An on-line lexical database. International Journal of Lexicography 3(4), 235–244 (1990)

139. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
140. Mori, S., Suen, C.Y., Yamamoto, K.: Historical review of OCR research and development.

Proceedings of the IEEE 80(7), 1029–1058 (1992)
141. Nagy, G.: Twenty years of document image analysis in PAMI. IEEE Transactions on Pattern

Analysis and Machine Intelligence 22(1), 38–62 (2000)
142. Nagy, G., Kanai, J., Krishnamoorthy, M.: Two complementary techniques for digitized doc-

ument analysis. In: ACM Conference on Document Processing Systems (1988)
143. Nagy, G., Seth, S., Viswanathan, M.: A prototype document image analysis system for tech-

nical journals. Computer 25(7), 10–22 (1992)
144. Nagy, G., Seth, S.C.: Hierarchical representation of optically scanned documents. In: Pro-

ceedings of the 7th International Conference on Pattern Recognition (ICPR), pp. 347–349.
IEEE Computer Society, New York (1984)

References 285

145. Nienhuys-Cheng, S.H., de Wolf, R. (eds.): Foundations of Inductive Logic Programming.
Lecture Notes in Computer Science, vol. 1228. Springer, Berlin (1997)

146. O Kit Hong, F., Bink-Aghai, R.P.: A Web prefetching model based on content analysis
(2000)

147. O’Brien, G.W.: Information management tools for updating an SVD-encoded indexing
scheme. Tech. rep. CS-94-258, University of Tennessee, Knoxville (1994)

148. O’Gorman, L.: The document spectrum for page layout analysis. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 15(11), 1162–1173 (1993)

149. O’Gorman, L., Kasturi, R.: Document Image Analysis. IEEE Computer Society, New York
(1995)

150. Oltramari, A., Vetere, G.: Lexicon and ontology interplay in Senso Comune. In: Proceed-
ings of OntoLex 2008 Workshop, 6th International Conference on Language Resources and
Evaluation (LREC) (2008)

151. Otsu, N.: A threshold selection method from gray-level histogram. IEEE Transactions on
Systems, Man, and Cybernetics 9(1), 62–66 (1979)

152. Papadias, D., Theodoridis, Y.: Spatial relations minimum bounding rectangles, and spatial
data structures. International Journal of Geographical Information Science 11(2), 111–138
(1997)

153. Papamarkos, N., Tzortzakis, J., Gatos, B.: Determination of run-length smoothing values
for document segmentation. In: Proceedings of the International Conference on Electronic
Circuits and Systems (ICECS), vol. 2, pp. 684–687 (1996)

154. Pavlidis, T., Zhou, J.: Page segmentation by white streams. In: Proceedings of the 1st Inter-
national Conference on Document Analysis and Recognition (ICDAR), pp. 945–953 (1991)

155. Pierce, J.R.: Symbols, Signals and Noise—The Nature and Process of Communication.
Harper Modern Science Series. Harper & Brothers (1961)

156. Porter, M.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)
157. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art

of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (2007)
158. Reid, G.: Thinking in PostScript. Addison-Wesley, Reading (1990)
159. Rice, S.V., Jenkins, F.R., Nartker, T.A.: The fourth annual test of OCR accuracy. Tech. rep.

95-03, Information Science Research Institute, University of Nevada, Las Vegas (1995)
160. Rivest, R.: The MD5 Message-Digest algorithm. Tech. rep. RFC 1321, Network Working

Group (1992)
161. Rocchio, J.: Relevance feedback in information retrieval. In: Salton, G. (ed.) The SMART

Retrieval System, pp. 313–323. Prentice-Hall, New York (1971)
162. Rosenfeld, A.: Picture Processing by Computer. Academic Press, San Diego (1969)
163. Salembier, P., Marques, F.: Region-based representations of image and video: Segmentation

tools for multimedia services. IEEE Transactions on Circuits and Systems for Video Tech-
nology 9(8), 1147–1169 (1999)

164. Salton, G., Wong, A., Yang, C.: A vector space model for automatic indexing. Communica-
tions of the ACM 18(11), 613–620 (1975)

165. Sebastiani, F.: Machine learning in automated text categorization. ACM Computing Surveys
34(1), 1–47 (2002)

166. Shafait, F., Smith, R.: Table detection in heterogeneous documents. In: Proceedings of the 9th
IAPR International Workshop on Document Analysis Systems (DAS). ACM International
Conference Proceedings, pp. 65–72 (2010)

167. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of
Illinois Press, Champaign (1949)

168. Shih, F., Chen, S.S.: Adaptive document block segmentation and classification. IEEE Trans-
actions on Systems, Man, and Cybernetics—Part B 26(5), 797–802 (1996)

169. Simon, A., Pret, J.C., Johnson, A.P.: A fast algorithm for bottom-up document layout analy-
sis. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(3), 273–277 (1997)

170. Singh, S.: The Code Book. Doubleday, New York (1999)
171. Skiena, S.S.: The Algorithm Design Manual, 2nd edn. Springer, Berlin (2008)

286 References

172. Sleator, D.D., Temperley, D.: Parsing English text with a link grammar. In: Proceedings of
the 3rd International Workshop on Parsing Technologies (1993)

173. Smith, R.: A simple and efficient skew detection algorithm via text row accumulation. In:
Proceedings of the 3rd International Conference on Document Analysis and Recognition
(ICDAR), pp. 1145–1148. IEEE Computer Society, New York (1995)

174. Smith, R.: An overview of the Tesseract OCR engine. In: Proceedings of the 9th International
Conference on Document Analysis and Recognition (ICDAR), pp. 629–633. IEEE Computer
Society, New York (2007)

175. Smith, R.: Hybrid page layout analysis via tab-stop detection. In: Proceedings of the 10th
International Conference on Document Analysis and Recognition (ICDAR), pp. 241–245.
IEEE Computer Society, New York (2009)

176. Soderland, S.: Learning information extraction rules for semi-structured and free text. Ma-
chine Learning 34, 233–272 (1999)

177. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision, 3rd
(international) edn. Thomson (2008)

178. Sorkin, A.: Lucifer a cryptographic algorithm. Cryptologia 8(1), 22–24 (1984)
179. Stallings, W.: Cryptography and Network Security. Principles and Practice, 3rd edn. Prentice

Hall, New York (2002)
180. Stevens, M., Sotirov, A., Appelbaum, J., Lenstra, A., Molnar, D., Osvik, D.A., Weger, B.D.:

Short chosen-prefix collisions for MD5 and the creation of a rogue CA certificate. In: Pro-
ceedings of the 29th Annual International Cryptology Conference on Advances in Cryptol-
ogy. Lecture Notes in Computer Science, vol. 5677, pp. 55–69. Springer, Berlin (2009)

181. Sun, H.M.: Page segmentation for Manhattan and non-Manhattan layout documents via se-
lective CRLA. In: Proceedings of the 8th International Conference on Document Analysis
and Recognition (ICDAR), pp. 116–120. IEEE Computer Society, New York (2005)

182. The Unicode Consortium: The Unicode Standard, Version 5.0, 5th edn. Addison-Wesley,
Reading (2006)

183. Tosi, E.: Il codice del Diritto dell’Informatica e di Internet, 6th edn. (2007). I codici vigenti.
La Tribuna (in Italian)

184. Uzun, Y.: Keyword Extraction using Naive Bayes (2005)
185. W3C SVG Working Group: Scalable Vector Graphics (SVG) 1.1 specification. Tech. rep.,

W3C (2003)
186. Wahl, F., Wong, K., Casey, R.: Block segmentation and text extraction in mixed text/image

documents. Graphical Models and Image Processing 20, 375–390 (1982)
187. Wall, K., Danielsson, P.E.: A fast sequential method for polygonal approximation of digital

curves. Computer Vision, Graphics, and Image Processing 28, 220–227 (1984)
188. Wang, D., Srihari, S.N.: Classification of newspaper image blocks using texture analysis.

Computer Vision, Graphics, and Image Processing 47, 327–352 (1989)
189. Welch, T.: A technique for high-performance data compression. IEEE Computer 17(6), 8–19

(1984)
190. Wong, K.Y., Casey, R., Wahl, F.M.: Document analysis system. IBM Journal of Research

and Development 26, 647–656 (1982)
191. Wood, L.: Programming the Web: The W3C DOM specification. IEEE Internet Computing

3(1), 48–54 (1999)
192. Woods, W.A.: Conceptual Indexing: A Better Way to Organize Knowledge. SML Technical

Report Series. Sun Microsystems (1997)
193. Yarowsky, D.: One sense per collocation. In: Proceeding of ARPA Human Language Tech-

nology Workshop, pp. 266–271 (1993)
194. Yarowsky, D.: Decision lists for lexical ambiguity resolution: Application to accent restora-

tion in Spanish and French. In: Proceedings of the 32nd Annual Meeting of the Association
for Computational Linguistics, pp. 88–95 (1994)

195. Yarowsky, D.: Unsupervised Word Sense Disambiguation rivaling supervised methods. In:
Proceedings of the 33rd Annual Meeting of the Association for Computational Linguistics,
pp. 189–196 (1995)

References 287

196. Yuille, A.L.: Deformable templates for face recognition. Journal of Cognitive Neuroscience
3(1), 59–70 (1991)

197. Zimmermann, P.R.: The Official PGP User’s Guide. MIT Press, New York (1995)
198. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Transac-

tions on Information Theory 23(3), 337–343 (1977)
199. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding. IEEE

Transactions on Information Theory 24(5), 530–536 (1978)
200. Zucker, J.D.: Semantic abstraction for concept representation and learning. In: Proceedings

of the 4th International Workshop on Multistrategy Learning (MSL), pp. 157–164 (1998)

Index

4-Intersection model, 148
9-Intersection model, 148

A
Abduction, 190
Abstraction, 190
Accuracy, 225
Active contour, 141
Adjacency, 183
Adjective, 202
Adleman, 79, 82
Adverb, 202
Aggregate dissimilarity, 236
AIPA, 101
Algorithm, in cryptography, 74
Alphabet transducer, 252
Anaphora, 248
AND/OR tree, 174
ANN, 162, 272
Antinomy, 201, 206
Applet, 63
Arbiter, 90
Arc, 130
Archive, 10
Artificial Neural Network, see ANN
ASCII, 23
Attribute

in HTML, 61
in XML, 67

Attribute-value, 272
Avalanche effect, 86

B
Bag of Senses, see BoS
Bag of Words, see BoW
Basic block, 167
Basic Multilingual Plane, 24

Bayes, 274
BCD, 23
Big endian, 36, 277
Binarization, 123
BitMaP, see BMP format
Bitmap, 31
Blob, 162, 163
Block, 78

grammar, 174
BMP

format, 32
X bitmap, 63

in Unicode, 24
Bootstrapping, 216
Border, 130
BoS, 229
Bound, 179
Bounding box, 125, 277

minimum, 167, 175
BoW, 207
Brill, 213
Byte

ordering, 277
stuffing, 39

C
CA, 95
Canny, 135
Canonical acceptor, 252
Carnelutti, 4
Categorization, 236
Category, 244
CBIR, 237
Ceiling function, 277
Centroid, 236, 275
Certificate, digital, 94
Certification, 99

S. Ferilli, Automatic Digital Document Processing and Management,
Advances in Pattern Recognition,
DOI 10.1007/978-0-85729-198-1, © Springer-Verlag London Limited 2011

289

290 Index

Certifier, 99
Chaincode, 132, 139
Channel, 28

alpha, 31
Character Recognition, 161
Chop, 163
Chunk, 277

in DjVu, 42
in PNG, 40

CI, 235
CIE, 120
Cipher, 75

Caesar’s, 76
robust, 75
strong, 75

Ciphertext, 74
Class, 271
Classification, 271

of text, 244
Classifier, 245
Clause, 273

in natural language, 219
CLiDE, 177
Close, 133
Close Neighbor, 263
Clustering, 229, 271, 274
CMY, 30

conversion to RGB, 118
CMYK, 30, 118
CNIPA, 101
Co-reference, 248
Cocks, 79
Code

in cryptography, 74
point, 24

Collocation, 216
Color

conversion to gray, 123
depth reduction, 122
key masking, 54
model, 28
space, 28, 116

non-linear, 29
table, 34
true, 31

Component, of an image, 124
Compression, 31

DPCM, 39
Huffman, 39
of data, 16
optimal, 16

Computational
lexicon, 200
linguistics, 199

Concept Indexing, see CI
Concept vector, 236
Conceptual Indexing, 235
Conceptual learning, 272
Concordance, 240
Conditional function, 87
Connected component, 130, 277
Constituent, 219
Content word, 210
Content-Based Image Retrieval, see CBIR
Context, 215
Contour, active, 141
Convolution, 114
Corpus, 200
Correlation

linear, 115
Cosine similarity, 229, 236
CPS, 95
CRC, 40
CRL, 95
CRT, 29
Cryptanalysis, 74
Cryptographic system, see Cipher
Cryptography, 74

asymmetric, 75
public key, 76
symmetric, 75

Cryptology, 74
CSL, 95
CSV, 69
Current Transformation Matrix, 48

D
Data, 5
Data compression, 16
Data Encryption Standard, see DES
DCMI, 45, 191
DCT, 38
DDC, 204
Decision

list, 216, 252
learning for WSD, 216

tree, 273
Decoding, 74
Decryption, 74
Deduction, 190
DEFLATE, compression algorithm, 21
Deformable Template, 134
Dematerialization, 6
Dendrogram, 275
Density

function, 246
in raster images, 31

Index 291

Depth, in raster images, 31
DES, 79
Desaturation, 122
Description logics, 206
Dewarping, 157
Dewey Decimal Classification, see DDC
Dictionary, 200

in PS, 47
Diffie, 78
Digest, 86
Digital

certificate, 94
document, see Document, digital
envelope, 90
fingerprint, 85
signature, 89, 99

approaches, 90
Digital Library, 6
Digital Object Identifier, see DOI
Digital Signature Algorithm, see DSA
Digitization, 5, 11

quality standard, 154
DigitPA, 101
Digram, 209
Dilation, 133
Dimensionality reduction, 231, 235
Dipole, 202
Direction relation, 148
Directive, in HTML, 61
Disambiguator, 216
Distance, 183
Divergence measure, 243
DjVu, 41
DL-Lite, 206
DOC, format, 60
Docstrum, 157, 175
Document, 3, 5, 8, 146

digital, 8, 9, 73, 98
historical, see Historical document
image

classification, 184
defect, 155
interpretation, 184
understanding, 184, 239

legacy, see Legacy document
structure, 8
support, 7

Document Image Analysis, 145
Document Object Model, see DOM
DOCX, format, 60
DOI, 193
DOM, 69, 151
Domain, 202
DOMINUS, 257

Dot, 47
DPCM, 39
DSA, 85, 92
DSS, 92
DTD, 68
Dublin Core Metadata Initiative, see DCMI
Dyadic decomposition, 233

E
EBCDIC, 23
Edge detection, 134

Canny, 135
parameters, 135

Eigenvalue, 233
Eigenvector, 233
Electronic address, 99
Element

in DCMI, 191
in XML, 66

Ellis, 79
Encoding, 74

scheme, 191
Encryption, 74

asymmetric, 78
Enemy, 74
Energy alignment measure, 157
Entailment, 202
Entity, in XML, 67
Entropy

encoding, 39
relative, 278

Equivalent sample size, 249
Erosion, 133
Error rate, 225
Escape sequence, 61

in HTML, 61
in XML, 67

Euclidean distance, 121, 128, 229
Euler-Fermat theorem, 82
Euler’s totient, 82
Example

in ML, 271
in TC, 245

EXtensible Markup Language, see XML
Extractor, in IE, 249

F
F-measure, 225
F-score, 225
Fallout, 225, 248
False Negative, see FN
False Positive, see FP

292 Index

Feature
extraction, 162, 167
in WSD, 216
selection, 231

Federal Information Processing Standard, see
FIPS

Feistel, 79
Fermat’s little theorem, 82
Filter, 114
Fingerprint, digital, 85
FIPS-180, 86
FIPS-186, 92
Flood filling, 130
FN, 224
FOL, 186
Fold, 275
Font, SVG, 44
Font Dictionary, 47
Form, 200
Format

content-oriented, 59
non-structured, 21
tag-based, 61

Four-color, 30
FP, 224
Fragment, 247
Frame, 146
Frequency, relative, 249
Function

derivative, 127
word, 210

G
GIF, 34
Global

factor, 227
operator, 114

Gloss, 203
Glyph, 50
GPG, 94
Gradient, 127
GRAPE, 269
Graphics Interchange Format, see GIF
Greatest common divisor, 78
Gzip, 45

H
Hashing, 85
Heaviside unit function, 277
Hellman, 78, 81
Heterarchy, 278
Hidden Markov Model, see HMM, 274
Historical document, 7, 12
HLS, 30

conversion to RGB, 119
HMM, 213
Hole, 130
Holonymy, 201
Homonymy, 216
Horn clause, 273
Hot spot, 115, 133
Hough transform, 137
HSB, 30
HSV, 30

conversion to RGB, 119
HTML, 61, 152
HTTPS, 82, 96
Hue, 118
Huffman encoding, 16, 21

dynamic, 21
Hyperonymy, 201
Hypertext, 61
HyperText Markup Language, see HTML
Hyponymy, 201, 206

I
IANA, xxii, 23
IDEA, 80, 93
IE, 247
IFD, 36
ILP, 188, 273
Image, 114

density, 31
depth, 31
in PDF, 56–59
in PS, 51–55
processing, 113
resolution, 31
retrieval, 238
sampled, 51
space, in PDF, 56
Thresholding, 134
transformation operator, 114

Indexing technique, 226
Induction, 189
Inductive Logic Programming, see ILP
Inferential Theory of Learning, 190
Inflection, 210
Information, 5

gain, 253, 278
mutual, 278
need, 223
overloading, 6

Information Extraction, see IE
Information Retrieval, see IR
Inside, 130
Instance, 247

Index 293

Interior, 130
International Standard Book Number, see

ISBN
Interoperability, semantic, 191
INTHELEX, 188
Inverse document frequency, 227
IR, 224, 239
Irti, 4
ISBN, 193
ISO Latin, 24
ISO-15836, 191
ISO-26300, 70
ISO/IEC DIS-29500, 60
ISO/IEC-10646, 24
ISO/IEC-8859, 23

and Unicode, 24
Isolated pixel, 130
Iterated-Discrim algorithm, 264
IW44, 41

J
JB2, 41
Joint Photographic Experts Group, see JPEG
JPEG, 37
JTOCR, 165

K
k-fold Cross-validation, 275
k-Nearest Neighbor, 273
KE, 239
Kerkhoffs principle, 75
Kernel, 114
Key

asymmetric, 99
color, 30
exchange, method, 81
in cryptography, 74
private, 76, 99
public, 75, 99

Keyword, 236, 239
Keyword Extraction, see KE
KL-divergence, 278
Knowledge, 5
Knuth, 60
Kruskal, 178
Kullback–Leibler divergence, 278

L
L*a*b*, 121
Language recognition, 208
Laplacian

estimate, 249, 250
filter, 129

Latent semantic, 232

Latent Semantic Analysis, see LSA
Latent Semantic Indexing, see LSI
Layout, 145

analysis, 146
Manhattan, 168
structure, 145
taxicab, 168

Lazy learning, 272
LCD, 29
Learning

rote, in IE, 248
Leave-One-Out, 276
LED, 29
Legacy document, 7, 11
Lemmatization, 211
Lempel, 18, 19
Library, 10
Linear regression, 278
Link Grammar, 219
Literal, 249

in logic, 273
Little endian, 36, 277
Local

factor, 227
operator, 114

Log-entropy, 228
Logical structure, 146
Lossless/lossy data compression, 16
LSA, 232
LSI, 234
Lucifer algorithm, 79
Luminance, 29, 118
LZ77, 18, 21
LZ78, 18
LZW, 19, 34

in GIF, 36

M
m-estimate, 249
Machine Learning, see ML
Majority function, 87
Marker, 44
Mask, 114
Matrix, 232, 233

square, 233
Maximal White Rectangle problem, 179
Measure, of word, 211
Medium, 8
Merkle, 79
Meronymy, 201, 206
Metadata, 190, 253
Method, in cryptography, 74
Metric relation, 148

294 Index

Miller, 201
Minimum bounding box, 150
Mirroring, 125
ML, 271

for TC, 245
MNG, 40
Model, 271
Modulus, 128

function, 78
Monogram, 209
Multiple Instance Problem, 264
Mutual information, 243, 278

N
N-gram, 209
Naive Bayes, 274

for KE, 241
for WSD, 217

Namespace, in XML, 67
Natural language, 199
Natural Language Processing, see NLP
Negative, 116
Neighborhood, 129
NLP, 199
Noise, in images, 114
Non-maxima suppression, 136
Norm, 121
Normalization, of terms, 210
Noun, 202

phrase, 219
Null symbol, 77
Numerical ML, 272

O
OASIS, 70
Observation, 271
OCR, 161
ODF, 69
ODT, 70
One Sense

per Collocation, 216
per Discourse, 216

Ontology, 200
OOXML, format, 60
Open, 133
OpenDocument, 69
OpenDocument Format, see ODF
OpenOffice.org, 69
OpenPGP, 93
Optical Character Recognition, see OCR
Oracle, 244
Ordering relationship, 148
Otsu, 123
Outline, 162, 163

P
Page graph, 178
Painting model, in PostScript, 47
Palette, 32
Parameter space, 137
Part of Speech, see PoS
Pass, 40
Path compression, 178
PCA, 135
PCKS, 79
PDF, 56
PDL, 43, 45
Peirce, 190
Pertainym, 202
PES, 80
PGP, 80, 93
Pivot, 180
Pixel, 31
PKI, 95
Plain text, 22
Plaintext, 74
Plane, Unicode, 24
PNG, 39
Point operator, 114
Polybius square, 76
Polygonal approximation, 139
Polysemy, 207, 216, 231
Portable Document Format, see PDF
Portable Network Graphics, see PNG
Porter, 211
PoS (tagging), 213

rule-based, 213
PostScript, see PS, 45
Pre-processing of documents, 154
Precision, 225, 248
Prepositional phrase, 219
Prewitt, 128
Prime number, 78
Principal Component Analysis, 135
Priority queue, 179
Private Use Area, 24
Processo Civile Telematico, see PCT
Projection

histogram, 162
profile, 156

PS, 45
levels, 52

Pseudo-document, 230, 236
PUA, 24

Index 295

Q
Qualifier, 191
Quantization table, 38
Query, 224

evaluation, 229
Question Answering, 224

R
RA, 95
Random split, 276
Raster, 31, 114
Recall, 225, 248
Recursive bisection, 236
Reference object, 148
Register, in SHA, 86
Regular expression, 208
Relationship, ordering, 148
Relative

entropy, 278
frequency, 249

Relevance, 224
feedback, 230

Representation, formalism, 8
RFC-2315, 79
RFC-4880, 94
RFC-5280, 96
RGB, 29

conversion to CMY, 118
conversion to HLS, 119
conversion to HSV, 118
conversion to YCbCr , 117
conversion to YUV, 117

RGBQUAD, 32
Rivest, 79, 82
RLE, 16

in JPEG, 39
RLSA, 169
RLSO, 171

for natively digital documents, 183
Rocchio, 230, 245
Rotation, 125
RSA, 82, 92, 93
RTF, format, 60
Run, 16, 169, 278
Run Length Smoothing Algorithm, see RLSA

S
Sample, 52
Sampling grid, 31
Saturation, 118
SAX, 69, 154
Scalable Vector Graphics, see SVG
Scanline, 34, 278
Script, 22

Secure Hash Algorithm, see SHA
Seed, 250
Segment, 39
Segmentation, 166
Semantic

class, 249
domain, 232
interoperability, 191

Semantic Web, 45, 253
Sense, 200, 215
Sentence, 219
SGML, 61
SHA, 86, 92
Shamir, 79, 82
Signature, 238
Singular

triple, 233
value, 233

Singular Value Decomposition, see SVD
SIP, 24
Skew angle, 156
Sliding window, 19
Slot, 247
Smart card, 103
SMP, 24
Snake, 141
Sobel, 128
Spanning tree, 178
Spatial relations, 147
Spread factor, 167, 182
SRV, 252
SSL, 96
SSP, 24
Stemming, 211
Stopword removal, 209
Structure

model, 152
of document, see Document structure

Structuring element, 133
Stuffing, of byte, 39
Sub-symbolic ML, 272
Subject, 244
Subsampling, 38
Substitution cipher, 75
Subsumption axiom, 235
Suffix stripping, 211
Supervised ML, 271
Supplementary Ideographic Plane, 24
Supplementary Multilingual Plane, 24
Supplementary Special-purpose Plane, 24
Support, of document, see Document support
Supporting set, 236
Surrogate, 27

296 Index

SVD, 232
SVGZ, 45
Symbol, null, 77
Symbolic ML, 272
Synonymy, 201, 206, 207, 231
Synset, 201
System, cryptographic, see Cipher

T
Tag, 60

in HTML, 61
in TIFF, 36
in XML, 66

Tagged Image File Format, see TIFF
TC, 244
Template, 134, 247
Temporal validation, 99
Term

frequency, 227
in logic, 273

Term–Document Matrix, 226
Tesseract, 163, 165
Test set, 275
Text, 199

matching, 229
plain, 22
zoning, 248

Text Categorization, see TC
Text Classification, 244
Text Mining, 248
Texture, 238
Tf factor, 227
TF-IDF, 228, 241
TF-ITP, 241
Thesaurus, 200
Three-color, 29
Thresholding, 123

Otsu, 123
TIFF, 36
TLS, 96
TN, 224
Token, 247
Tokenization, 207
Topological relation, 147
Topology, 147
Totient, function, 82
TP, 224
Training set, 273, 275
Transform, Hough, 137
Translation, 125
Transposition cipher, 75
Tree

AND/OR, 174
spanning, 178

Trigram, 209
Troponymy, 206
True color, 31
True Negative, see TN
True Positive, see TP
TTP, 95
Turing, 77
TXT, 22

U
UCS, 24
Unicode, 24
Universal Character Set, see UCS
Unsupervised ML, 271
URI, 67
US-ASCII, 23
UTF, 24

V
Validation system, 99
Value, 118
Vector

Graphic, 43
Space, Model, 226

Verb, 202
phrase, 219

VietOCR, 165
Virtual page, 47
Vocabulary, 200

W
Web, see WWW

Semantic, 45, 253
Weighting

function, 226
scheme, 228

Welch, 19
WHISK, 249
Williamson, 79
Window, sliding, 19
Word, 200

in LSA, 232
Word Sense Disambiguation, see WSD
WordNet, 201

Domains, 202, 246
World Wide Web, see WWW
Writer, 70
Writing system, 22
WSD, 215
WWW, 61, 200

Index 297

X
X bitmap, 63
X–Y tree, 173
X.509, 96
XBM, 63
XML, 152
XSL, 68
XSLT, 68
XYZ, 120

conversion to RGB, 121

Y
YCbCr , 29

conversion to RGB, 117
YUV, 29

conversion to RGB, 117

Z
Zimmermann, 93
Ziv, 18, 19
Zlib, 40
Zoning, 162

	Cover
	Advances in Pattern Recognition
	Automatic Digital Document Processing and Management
	ISBN 9780857291974
	Foreword
	Preface
	Acknowledgments
	Contents
	Acronyms

	Part I
Digital Documents
	Chapter 1
Documents
	A Juridic Perspective
	History and Trends
	Current Landscape
	Types of Documents
	Document-Based Environments
	Document Processing Needs
	References

	Chapter 2
Digital Formats
	Compression Techniques
	RLE (Run Length Encoding)
	Huffman Encoding
	LZ77 and LZ78 (Lempel-Ziv)
	LZW (Lempel-Ziv-Welch)
	DEFLATE

	Non-structured Formats
	Plain Text
	ASCII
	ISO Latin
	UNICODE
	UTF

	Images
	Color Spaces
	RGB
	YUV/YCbCr
	CMY(K)
	HSV/HSB and HLS
	Comparison among Color Spaces

	Raster Graphics
	BMP (BitMaP)
	GIF (Graphics Interchange Format)
	TIFF (Tagged Image File Format)
	JPEG (Joint Photographic Experts Group)
	PNG (Portable Network Graphics)
	DjVu (DejaVu)

	Vector Graphic
	SVG (Scalable Vector Graphic)

	Layout-Based Formats
	PS (PostScript)
	PDF (Portable Document Format)

	Content-Oriented Formats
	Tag-Based Formats
	HTML (HyperText Markup Language)
	XML (eXtensible Markup Language)

	Office Formats
	ODF (OpenDocument Format)

	References

	Chapter 3
Legal and Security Aspects
	Cryptography
	Basics
	Short History
	Digital Cryptography
	DES (Data Encryption Standard)
	IDEA (International Data Encryption Algorithm)
	Key Exchange Method
	RSA (Rivest, Shamir, Adleman)
	DSA (Digital Signature Algorithm)

	Message Fingerprint
	SHA (Secure Hash Algorithm)

	Digital Signature
	Management
	DSS (Digital Signature Standard)
	OpenPGP Standard

	Trusting and Certificates

	Legal Aspects
	A Law Approach
	Public Administration Initiatives
	Digital Signature
	Certified e-mail
	Electronic Identity Card & National Services Card
	Telematic Civil Proceedings

	References

	Part II
Document Analysis
	Chapter 4
Image Processing
	Basics
	Convolution and Correlation

	Color Representation
	Color Space Conversions
	RGB-YUV
	RGB-YCbCr
	RGB-CMY(K)
	RGB-HSV
	RGB-HLS

	Colorimetric Color Spaces
	XYZ
	L*a*b*

	Color Depth Reduction
	Desaturation
	Grayscale (Luminance)
	Black&White (Binarization)
	Otsu Thresholding

	Content Processing
	Geometrical Transformations
	Edge Enhancement
	Derivative Filters

	Connectivity
	Flood Filling
	Border Following
	Dilation and Erosion
	Opening and Closing

	Edge Detection
	Canny
	Hough Transform
	Polygonal Approximation
	Snakes

	References

	Chapter 5
Document Image Analysis
	Document Structures
	Spatial Description
	4-Intersection Model
	Minimum Bounding Rectangles

	Logical Structure Description
	DOM (Document Object Model)

	Pre-processing for Digitized Documents
	Document Image Defect Models
	Deskewing
	Dewarping
	Segmentation-Based Dewarping

	Content Identification
	Optical Character Recognition
	Tesseract
	JTOCR

	Segmentation
	Classification of Segmentation Techniques
	Pixel-Based Segmentation
	RLSA (Run Length Smoothing Algorithm)
	RLSO (Run-Length Smoothing with OR)
	X-Y Trees

	Block-Based Segmentation
	The DOCSTRUM
	The CLiDE (Chemical Literature Data Extraction) Approach
	Background Analysis
	RLSO on Born-Digital Documents

	Document Image Understanding
	Relational Approach
	INTHELEX (INcremental THEory Learner from EXamples)

	Description
	DCMI (Dublin Core Metadata Initiative)

	References

	Part III
Content Processing
	Chapter 6
Natural Language Processing
	Resources-Lexical Taxonomies
	WordNet
	WordNet Domains
	Senso Comune

	Tools
	Tokenization
	Language Recognition
	Stopword Removal
	Stemming
	Suffix Stripping

	Part-of-Speech Tagging
	Rule-Based Approach

	Word Sense Disambiguation
	Lesk's Algorithm
	Yarowsky's Algorithm

	Parsing
	Link Grammar

	References

	Chapter 7
Information Management
	Information Retrieval
	Performance Evaluation
	Indexing Techniques
	Vector Space Model

	Query Evaluation
	Relevance Feedback

	Dimensionality Reduction
	Latent Semantic Analysis and Indexing
	Concept Indexing

	Image Retrieval

	Keyword Extraction
	TF-ITP
	Naive Bayes
	Co-occurrence

	Text Categorization
	A Semantic Approach Based on WordNet Domains

	Information Extraction
	WHISK
	A Multistrategy Approach

	The Semantic Web
	References

	Appendix A A Case Study: DOMINUS
	General Framework
	Actors and Workflow
	Architecture

	Functionality
	Input Document Normalization
	Layout Analysis
	Kernel-Based Basic Blocks Grouping

	Document Image Understanding
	Categorization, Filing and Indexing

	Prototype Implementation
	Exploitation for Scientific Conference Management
	GRAPE

	Appendix B Machine Learning Notions
	Categorization of Techniques
	Noteworthy Techniques
	Artificial Neural Networks
	Decision Trees
	k-Nearest Neighbor
	Inductive Logic Programming
	Naive Bayes
	Hidden Markov Models
	Clustering

	Experimental Strategies
	k-Fold Cross-Validation
	Leave-One-Out
	Random Split

	Glossary
	Bounding box
	Byte ordering
	Ceiling function
	Chunk
	Connected component
	Heaviside unit function
	Heterarchy
	KL-divergence
	Linear regression
	Run
	Scanline

	References
	Index

