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Notations

T A decision tree
X A set of instances
Nx The number of instances in X, i.e., jXj
x j An instance—n-dimensional attribute vector ½x j1; x j2; . . .; x jn�—from X,

j ¼ 1; 2; . . .;Nx

Xt A set of instances that reach node t
A The set of n predictive (independent) attributes fa1; a2; . . .; ang
y The target (class) attribute
Y The set of k class labels fy1; . . .; ykg (or k distinct values if y is

continuous)
yðxÞ Returns the class label (or target value) of instance x 2 X
aiðxÞ Returns the value of attribute ai from instance x 2 X
domðaiÞ The set of values attribute ai can take
jaij The number of partitions resulting from splitting attribute ai
Xai¼vj The set of instances in which attribute ai takes a value contemplated by

partition vj. Edge vj can refer to a nominal value, to a set of nominal
values, or even to a numeric interval

Nvj;� The number of instances in which attribute ai takes a value contemplated
by partition vj, i.e., jXai¼vj j

Xy¼yl The set of instances in which the class attribute takes the label (value) yl
N�;yl The number of instances in which the class attribute takes the label

(value) yl, i.e., jXy¼yl j
Nvj\yl The number of instances in which attribute ai takes a value contemplated

by partition vj and in which the target attribute takes the label (value) yl
vX The target (class) vector ½N�;y1 ; . . .;N�;yk � associated to X

py The target (class) probability vector ½p�;y1 ; . . .; p�;yk �
p�;yl The estimated probability of a given instance belonging to class yl, i.e.,
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Chapter 1
Introduction

Classification, which is the data mining task of assigning objects to predefined
categories, is widely used in the process of intelligent decision making. Many classi-
fication techniques have been proposed by researchers inmachine learning, statistics,
and pattern recognition. Such techniques can be roughly divided according to the
their level of comprehensibility. For instance, techniques that produce interpretable
classification models are known as white-box approaches, whereas those that do
not are known as black-box approaches. There are several advantages in employing
white-box techniques for classification, such as increasing the user confidence in the
prediction, providing new insight about the classification problem, and allowing the
detection of errors either in the model or in the data [12]. Examples of white-box
classification techniques are classification rules and decision trees. The latter is the
main focus of this book.

A decision tree is a classifier represented by a flowchart-like tree structure that has
been widely used to represent classification models, specially due to its comprehen-
sible nature that resembles the human reasoning. In a recent poll from the kdnuggets
website [13], decision trees figured as the most used data mining/analytic method by
researchers and practitioners, reaffirming its importance in machine learning tasks.
Decision-tree induction algorithms present several advantages over other learning
algorithms, such as robustness to noise, low computational cost for generating the
model, and ability to deal with redundant attributes [22].

Several attempts on optimising decision-tree algorithms have been made by
researchers within the last decades, even though the most successful algorithms
date back to the mid-80s [4] and early 90s [21]. Many strategies were employed
for deriving accurate decision trees, such as bottom-up induction [1, 17], linear pro-
gramming [3], hybrid induction [15], and ensemble of trees [5], just to name a few.
Nevertheless, no strategy has been more successful in generating accurate and com-
prehensible decision trees with low computational effort than the greedy top-down
induction strategy.

A greedy top-down decision-tree induction algorithm recursively analyses if a
sample of data should be partitioned into subsets according to a given rule, or if no
further partitioning is needed.This analysis takes into account a stopping criterion, for

© The Author(s) 2015
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deciding when tree growth should halt, and a splitting criterion, which is responsible
for choosing the “best” rule for partitioning a subset. Further improvements over
this basic strategy include pruning tree nodes for enhancing the tree’s capability of
dealing with noisy data, and strategies for dealing with missing values, imbalanced
classes, oblique splits, among others.

A very large number of approaches were proposed in the literature for each one
of these design components of decision-tree induction algorithms. For instance, new
measures for node-splitting tailored to a vast number of application domains were
proposed, as well as many different strategies for selecting multiple attributes for
composing the node rule (multivariate split). There are even studies in the literature
that survey the numerous approaches for pruning a decision tree [6, 9]. It is clear
that by improving these design components, more effective decision-tree induction
algorithms can be obtained.

An approach that has been increasingly used in academia is the induction of deci-
sion trees through evolutionary algorithms (EAs). They are essentially algorithms
inspired by the principle of natural selection and genetics. In nature, individuals
are continuously evolving, adapting to their living environment. In EAs, each “indi-
vidual” represents a candidate solution to the target problem. Each individual is
evaluated by a fitness function, which measures the quality of its corresponding
candidate solution. At each generation, the best individuals have a higher probabil-
ity of being selected for reproduction. The selected individuals undergo operations
inspired by genetics, such as crossover andmutation, producing new offspring which
will replace the parents, creating a new generation of individuals. This process is iter-
atively repeated until a stopping criterion is satisfied [8, 11]. Instead of local search,
EAs perform a robust global search in the space of candidate solutions. As a result,
EAs tend to cope better with attribute interactions than greedy methods [10].

The number of EAs for decision-tree induction has grown in the past few years,
mainly because they report good predictive performance whilst keeping the com-
prehensibility of decision trees [2]. In this approach, each individual of the EA is
a decision tree, and the evolutionary process is responsible for searching the solu-
tion space for the “near-optimal” tree regarding a given data set. A disadvantage of
this approach is that it generates a decision tree tailored to a single data set. In other
words, an EA has to be executed every time we want to induce a tree for a giving data
set. Since the computational effort of executing an EA is much higher than executing
the traditional greedy approach, it may not be the best strategy for inducing decision
trees in time-constrained scenarios.

Whether we choose to induce decision trees through the greedy strategy (top-
down, bottom-up, hybrid induction), linear programming, EAs, ensembles, or any
other available method, we are susceptible to the method’s inductive bias. Since we
know that certain inductive biases are more suitable to certain problems, and that no
method is best for every single problem (i.e., the no free lunch theorem [26]), there
is a growing interest in developing automatic methods for deciding which learner to
use in each situation. A whole new research area named meta-learning has emerged
for solving this problem [23]. Meta-learning is an attempt to understand data a priori
of executing a learning algorithm. In a particular branch of meta-learning, algorithm
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recommendation, data that describe the characteristics of data sets and learning algo-
rithms (i.e.,meta-data) are collected, and a learning algorithm is employed to interpret
these meta-data and suggest a particular learner (or ranking a few learners) in order
to better solve the problem at hand. Meta-learning has a few limitations, though.
For instance, it provides a limited number of algorithms to be selected from a list.
In addition, it is not an easy task to define the set of meta-data that will hopefully
contain useful information for identifying the best algorithm to be employed.

For avoiding the limitations of traditional meta-learning approaches, a promising
idea is to automatically develop algorithms tailored to a given domain or to a specific
set of data sets. This approach can be seen as a particular type of meta-learning, since
we are learning the “optimal learner” for specific scenarios. One possible technique
for implementing this idea is genetic programming (GP). It is a branch of EAs that
arose as a paradigm for evolving computer programs in the beginning of the 90s [16].
The idea is that each individual in GP is a computer program that evolves during
the evolutionary process of the EA. Hopefully, at the end of evolution, GP will have
found the appropriate algorithm (best individual) for the problem we want to solve.
Pappa and Freitas [20] cite two examples of EA applications in which the evolved
individual outperformed the best human-designed solution for the problem. In the
first application [14], the authors designed a simple satellite dish holder boom (con-
nection between the satellite’s body and the communication dish) using an EA. This
automatically designed dish holder boom, albeit its bizarre appearance, was shown
to be 20,000% better than the human-designed shape. The second application [18]
was concerning the automatic discovery of a new form of boron (chemical element).
There are only four known forms of borons, and the last onewas discovered by anEA.

A recent research area within the combinatorial optimisation field named “hyper-
heuristics” (HHs) has emerged with a similar goal: searching in the heuristics space,
or in other words, heuristics to choose heuristics [7]. HHs are related to metaheuris-
tics, though with the difference that they operate on a search space of heuristics
whereas metaheuristics operate on a search space of solutions to a given problem.
Nevertheless, HHs usually employ metaheuristics (e.g., evolutionary algorithms) as
the search methodology to look for suitable heuristics to a given problem [19]. Con-
sidering that an algorithm or its components can be seen as heuristics, one may
say that HHs are also suitable tools to automatically design custom (tailor-made)
algorithms.

Whether we name it “an EA for automatically designing algorithms” or “hyper-
heuristics”, in both cases there is a set of human designed components or heuristics,
surveyed from the literature, which are chosen to be the starting point for the evolu-
tionary process. The expected result is the automatic generation of new procedural
components and heuristics during evolution, depending of course on which com-
ponents are provided to the EA and the respective “freedom” it has for evolving
the solutions.

The automatic design of complex algorithms is amuch desired task by researchers.
Itwas envisioned in the early days of artificial intelligence research, andmore recently
has been addressed by machine learning and evolutionary computation research
groups [20, 24, 25]. Automatically designing machine learning algorithms can be
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seen as the task of teaching the computer how to create programs that learn fromexpe-
rience. By providing an EA with initial human-designed programs, the evolutionary
process will be in charge of generating new (and possibly better) algorithms for the
problem at hand. Having said that, we believe an EA for automatically discovering
new decision-tree induction algorithms may be the solution to avoid the drawbacks
of the current decision-tree approaches, and this is going to be the main topic of
this book.

1.1 Book Outline

This book is structured in 7 chapters, as follows.

Chapter 2 [Decision-Tree Induction]. This chapter presents the origins, basic con-
cepts, detailed components of top-down induction, and also other decision-tree induc-
tion strategies.

Chapter 3 [Evolutionary Algorithms and Hyper-Heuristics]. This chapter covers
the origins, basic concepts, and techniques for both Evolutionary Algorithms and
Hyper-Heuristics.

Chapter 4 [HEAD-DT: Automatic Design of Decision-Tree Induction Algo-
rithms]. This chapter introduces and discusses the hyper-heuristic evolutionary algo-
rithm that is capable of automatically designing decision-tree algorithms. Details
such as the evolutionary scheme, building blocks, fitness evaluation, selection,
genetic operators, and search space are covered in depth.

Chapter 5 [HEAD-DT: Experimental Analysis]. This chapter presents a thorough
empirical analysis on the distinct scenarios in which HEAD-DT may be applied to.
In addition, a discussion on the cost effectiveness of automatic design, as well as
examples of automatically-designed algorithms and a baseline comparison between
genetic and random search are also presented.

Chapter 6 [HEAD-DT: Fitness Function Analysis]. This chapter conducts an
investigation of 15 distinct versions for HEAD-DT by varying its fitness function,
and a new set of experiments with the best-performing strategies in balanced and
imbalanced data sets is described.

Chapter 7 [Conclusions]. We finish this book by presenting the current limitations
of the automatic design, as well as our view of several exciting opportunities for
future work.

http://dx.doi.org/10.1007/978-3-319-14231-9_2
http://dx.doi.org/10.1007/978-3-319-14231-9_3
http://dx.doi.org/10.1007/978-3-319-14231-9_4
http://dx.doi.org/10.1007/978-3-319-14231-9_5
http://dx.doi.org/10.1007/978-3-319-14231-9_6
http://dx.doi.org/10.1007/978-3-319-14231-9_7
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Chapter 2
Decision-Tree Induction

Abstract Decision-tree induction algorithms are highly used in a variety of domains
for knowledge discovery and pattern recognition. They have the advantage of pro-
ducing a comprehensible classification/regression model and satisfactory accuracy
levels in several application domains, such asmedical diagnosis and credit risk assess-
ment. In this chapter,wepresent in detail themost commonapproach for decision-tree
induction: top-down induction (Sect. 2.3). Furthermore, we briefly comment on some
alternative strategies for induction of decision trees (Sect. 2.4). Our goal is to summa-
rize the main design options one has to face when building decision-tree induction
algorithms. These design choices will be specially interesting when designing an
evolutionary algorithm for evolving decision-tree induction algorithms.

Keywords Decision trees · Hunt’s algorithm · Top-down induction · Design
components

2.1 Origins

Automatically generating rules in the form of decision trees has been object of study
of most research fields in which data exploration techniques have been developed
[78]. Disciplines like engineering (pattern recognition), statistics, decision theory,
and more recently artificial intelligence (machine learning) have a large number of
studies dedicated to the generation and application of decision trees.

In statistics, we can trace the origins of decision trees to research that proposed
building binary segmentation trees for understanding the relationship between target
and input attributes. Some examples are AID [107], MAID [40], THAID [76], and
CHAID [55]. The application that motivated these studies is survey data analysis. In
engineering (pattern recognition), research on decision trees was motivated by the
need to interpret images from remote sensing satellites in the 70s [46]. Decision trees,
and induction methods in general, arose in machine learning to avoid the knowledge
acquisition bottleneck for expert systems [78].

Specifically regarding top-down induction of decision trees (by far the most pop-
ular approach of decision-tree induction), Hunt’s Concept Learning System (CLS)

© The Author(s) 2015
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8 2 Decision-Tree Induction

[49] can be regarded as the pioneering work for inducing decision trees. Systems
that directly descend from Hunt’s CLS are ID3 [91], ACLS [87], and Assistant [57].

2.2 Basic Concepts

Decision trees are an efficient nonparametric method that can be applied either to
classification or to regression tasks. They are hierarchical data structures for super-
vised learning whereby the input space is split into local regions in order to predict
the dependent variable [2].

A decision tree can be seen as a graph G = (V, E) consisting of a finite, non-
empty set of nodes (vertices) V and a set of edges E . Such a graph has to satisfy the
following properties [101]:

• The edges must be ordered pairs (v,w) of vertices, i.e., the graphmust be directed;
• There can be no cycles within the graph, i.e., the graph must be acyclic;
• There is exactly one node, called the root, which no edges enter;
• Every node, except for the root, has exactly one entering edge;
• There is a unique path—a sequence of edges of the form (v1, v2), (v2, v3), . . . ,

(vn−1, vn)—from the root to each node;
• When there is a path from node v to w, v �= w, v is a proper ancestor of w and w

is a proper descendant of v. A node with no proper descendant is called a leaf (or
a terminal). All others are called internal nodes (except for the root).

Root and internal nodes hold a test over a given data set attribute (or a set of
attributes), and the edges correspond to the possible outcomes of the test. Leaf
nodes can either hold class labels (classification), continuous values (regression),
(non-) linear models (regression), or even models produced by other machine learn-
ing algorithms. For predicting the dependent variable value of a certain instance, one
has to navigate through the decision tree. Starting from the root, one has to follow
the edges according to the results of the tests over the attributes. When reaching a
leaf node, the information it contains is responsible for the prediction outcome. For
instance, a traditional decision tree for classification holds class labels in its leaves.

Decision trees can be regarded as a disjunction of conjunctions of constraints on
the attribute values of instances [74]. Each path from the root to a leaf is actually a
conjunction of attribute tests, and the tree itself allows the choice of different paths,
that is, a disjunction of these conjunctions.

Other important definitions regarding decision trees are the concepts of depth and
breadth. The average number of layers (levels) from the root node to the terminal
nodes is referred to as the average depth of the tree. The average number of internal
nodes in each level of the tree is referred to as the average breadth of the tree. Both
depth and breadth are indicators of tree complexity, that is, the higher their values
are, the more complex the corresponding decision tree is.

In Fig. 2.1, an example of a general decision tree for classification is presented.
Circles denote the root and internal nodes whilst squares denote the leaf nodes. In
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Fig. 2.1 Example of a general decision tree for classification

this particular example, the decision tree is designed for classification and thus the
leaf nodes hold class labels.

There are many decision trees that can be grown from the same data. Induction
of an optimal decision tree from data is considered to be a hard task. For instance,
Hyafil and Rivest [50] have shown that constructing a minimal binary tree with
regard to the expected number of tests required for classifying an unseen object is
an NP-complete problem. Hancock et al. [43] have proved that finding a minimal
decision tree consistent with the training set is NP-Hard, which is also the case of
finding the minimal equivalent decision tree for a given decision tree [129], and
building the optimal decision tree from decision tables [81]. These papers indicate
that growing optimal decision trees (a brute-force approach) is only feasible in very
small problems.

Hence, it was necessary the development of heuristics for solving the problem of
growing decision trees. In that sense, several approaches which were developed in
the last three decades are capable of providing reasonably accurate, if suboptimal,
decision trees in a reduced amount of time. Among these approaches, there is a clear
preference in the literature for algorithms that rely on a greedy, top-down, recursive
partitioning strategy for the growth of the tree (top-down induction).

2.3 Top-Down Induction

Hunt’s Concept Learning System framework (CLS) [49] is said to be the pioneer
work in top-down induction of decision trees. CLS attempts to minimize the cost of
classifying an object. Cost, in this context, is referred to two different concepts: the
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measurement cost of determining the value of a certain property (attribute) exhibited
by the object, and the cost of classifying the object as belonging to class j when it
actually belongs to class k. At each stage, CLS exploits the space of possible decision
trees to a fixed depth, chooses an action to minimize cost in this limited space, then
moves one level down in the tree.

In a higher level of abstraction, Hunt’s algorithm can be recursively defined in
only two steps. Let Xt be the set of training instances associated with node t and
y = {y1, y2, . . . , yk} be the class labels in a k-class problem [110]:

1. If all the instances in Xt belong to the same class yt then t is a leaf node labeled
as yt

2. If Xt contains instances that belong to more than one class, an attribute test
condition is selected to partition the instances into smaller subsets. A child node
is created for each outcome of the test condition and the instances in Xt are
distributed to the children based on the outcomes. Recursively apply the algorithm
to each child node.

Hunt’s simplified algorithm is the basis for all current top-down decision-tree
induction algorithms.Nevertheless, its assumptions are too stringent for practical use.
For instance, it would only work if every combination of attribute values is present
in the training data, and if the training data is inconsistency-free (each combination
has a unique class label).

Hunt’s algorithmwas improved in many ways. Its stopping criterion, for example,
as expressed in step 1, requires all leaf nodes to be pure (i.e., belonging to the same
class). Inmost practical cases, this constraint leads to enormous decision trees, which
tend to suffer from overfitting (an issue discussed later in this chapter). Possible
solutions to overcome this problem include prematurely stopping the tree growth
when a minimum level of impurity is reached, or performing a pruning step after
the tree has been fully grown (more details on other stopping criteria and on pruning
in Sects. 2.3.2 and 2.3.3). Another design issue is how to select the attribute test
condition to partition the instances into smaller subsets. InHunt’s original approach, a
cost-driven function was responsible for partitioning the tree. Subsequent algorithms
such as ID3 [91, 92] and C4.5 [89] make use of information theory based functions
for partitioning nodes in purer subsets (more details on Sect. 2.3.1).

An up-to-date algorithmic framework for top-down induction of decision trees is
presented in [98], and we reproduce it in Algorithm 1. It contains three procedures:
one for growing the tree (treeGrowing), one for pruning the tree (treePruning) and
one to combine those two procedures (inducer). The first issue to be discussed is
how to select the test condition f (A), i.e., how to select the best combination of
attribute(s) and value(s) for splitting nodes.
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Algorithm 1 Generic algorithmic framework for top-down induction of decision
trees. Inputs are the training setX, the predictive attribute set A and the target attribute
y.
1: procedure inducer(X, A, y)
2: T = treeGrowing(X, A, y)

3: return treePruning(X, T )

4: end procedure
5: procedure treeGrowing(X, A, y)
6: Create a tree T
7: if one of the stopping criteria is fulfilled then
8: Mark the root node in T as a leaf with the most common value of y in X
9: else
10: Find an attribute test condition f (A) such that splitting X according to f (A)’s outcomes (v1, . . . , vl ) yields

the best splitting measure value
11: if best splitting measure value > threshold then
12: Label the root node in T as f (A)

13: for each outcome vi of f (A) do
14: Xf(A)=vi

= {x ∈ X | f (A) = vi }
15: Subtreei = treeGrowing(Xf(A=vi)

, A, y)

16: Connect the root node of T to Subtreei and label the corresponding edge as vi
17: end for
18: else
19: Mark the root node of T as a leaf and label it as the most common value of y in X
20: end if
21: end ifreturn T
22: end procedure
23: procedure treePruning(X, T )
24: repeat
25: Select a node t in T such that pruning it maximally improves some evaluation criterion
26: if T �= ∅ then
27: T = pruned(T, t)
28: end if
29: until T = ∅ return T
30: end procedure

2.3.1 Selecting Splits

Amajor issue in top-down induction of decision trees is which attribute(s) to choose
for splitting a node in subsets. For the case of axis-parallel decision trees (also
known as univariate), the problem is to choose the attribute that better discriminates
the input data. A decision rule based on such an attribute is thus generated, and the
input data is filtered according to the outcomes of this rule. For oblique decision
trees (also known as multivariate), the goal is to find a combination of attributes with
good discriminatory power. Either way, both strategies are concerned with ranking
attributes quantitatively.

We have divided the work in univariate criteria in the following categories: (i)
information theory-based criteria; (ii) distance-based criteria; (iii) other classification
criteria; and (iv) regression criteria. These categories are sometimes fuzzy and do
not constitute a taxonomy by any means. Many of the criteria presented in a given
category can be shown to be approximations of criteria in other categories.
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2.3.1.1 Information Theory-Based Criteria

Examples of this category are criteria based, directly or indirectly, on Shannon’s
entropy [104]. Entropy is known to be a unique function which satisfies the four
axioms of uncertainty. It represents the average amount of information when coding
each class into a codeword with ideal length according to its probability. Some
interesting facts regarding entropy are:

• For a fixed number of classes, entropy increases as the probability distribution of
classes becomes more uniform;

• If the probability distribution of classes is uniform, entropy increases logarithmi-
cally as the number of classes in a sample increases;

• If a partition induced on a set X by an attribute a j is a refinement of a partition
induced by ai , then the entropy of the partition induced by a j is never higher than
the entropyof the partition inducedbyai (and it is only equal if the class distribution
is kept identical after partitioning). This means that progressively refining a set in
sub-partitions will continuously decrease the entropy value, regardless of the class
distribution achieved after partitioning a set.

The first splitting criterion that arose based on entropy is the global mutual infor-
mation (GMI) [41, 102, 108], given by:

GMI(ai , X, y) = 1

Nx

k∑

l=1

|ai |∑

j=1

Nv j ∩yl loge

Nv j ∩yl Nx

Nv j ,•N•,yl

(2.1)

Ching et al. [22] propose the use of GMI as a tool for supervised discretization.
They name it class-attribute mutual information, though the criterion is exactly the
same. GMI is bounded by zero (when ai and y are completely independent) and
its maximum value is max(log2 |ai |, log2 k) (when there is a maximum correlation
between ai and y). Ching et al. [22] reckon this measure is biased towards attributes
withmany distinct values, and thus propose the following normalization called class-
attribute interdependence redundancy (CAIR):

CAIR(ai , X, y) = GMI

−∑|ai |
j=1

∑k
l=1 pv j ∩yl log2 pv j ∩yl

(2.2)

which is actually dividing GMI by the joint entropy of ai and y. Clearly CAIR
(ai , X, y) ≥ 0, since both GMI and the joint entropy are greater (or equal) than
zero. In fact, 0 ≤ CAIR(ai , X, y) ≤ 1, with CAIR(ai , X, y) = 0 when ai and y are
totally independent and CAIR(ai , X, y) = 1 when they are totally dependent. The
term redundancy in CAIR comes from the fact that one may discretize a continuous
attribute in intervals in such a way that the class-attribute interdependence is kept
intact (i.e., redundant values are combined in an interval). In the decision tree par-
titioning context, we must look for an attribute that maximizes CAIR (or similarly,
that maximizes GMI).
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Information gain [18, 44, 92, 122] is another example of measure based on
Shannon’s entropy. It belongs to the class of the so-called impurity-based criteria.
The term impurity refers to the level of class separability among the subsets derived
from a split. A pure subset is the one whose instances belong all to the same class.
Impurity-based criteria are usuallymeasureswith values in [0, 1]where 0 refers to the
purest subset possible and 1 the impurest (class values are equally distributed among
the subset instances). More formally, an impurity-based criterion φ(.) presents the
following properties:

• φ(.) is minimum if ∃i such that p•,yi = 1;
• φ(.) is maximum if ∀i, 1 ≤ i ≤ k, p•,yi = 1/k;
• φ(.) is symmetric with respect to components of py;
• φ(.) is smooth (differentiable everywhere) in its range.

Note that impurity-based criteria tend to favor a particular split for which, on aver-
age, the class distribution in each subset is most uneven. The impurity is measured
before and after splitting a node according to each possible attribute. The attribute
which presents the greater gain in purity, i.e., that maximizes the difference of impu-
rity taken before and after splitting the node, is chosen. The gain in purity (ΔΦ) can
be defined as:

ΔΦ(ai , X, y) = φ(y, X) −
|ai |∑

j=1

pv j ,• × φ(y, Xai=vj) (2.3)

The goal of information gain is to maximize the reduction in entropy due to
splitting each individual node. Entropy can be defined as:

φentropy(X, y) = −
k∑

l=1

p•,yl × log2 p•,yl . (2.4)

If entropy is calculated in (2.3), then ΔΦ(ai , X) is the information gain measure,
which calculates the goodness of splitting the instance space X according to the
values of attribute ai .

Wilks [126] has proved that as N → ∞, 2 × Nx × GMI(ai , X, y) (or similarly
replacing GMI by information gain) approximate the χ2 distribution. This measure
is often regarded as the G statistics [72, 73]. White and Liu [125] point out that
the G statistics should be adjusted since the work of Mingers [72] uses logarithms
to base e, instead of logarithms to base 2. The adjusted G statistics is given by
2 × Nx × ΔΦ I G × loge 2. Instead of using the value of this measure as calculated,
we can compute the probability of such a value occurring from the χ2 distribution on
the assumption that there is no association between the attribute and the classes. The
higher the calculated value, the less likely it is to have occurred given the assumption.
The advantage of using such a measure is making use of the levels of significance it
provides for deciding whether to include an attribute at all.



14 2 Decision-Tree Induction

Quinlan [92] acknowledges the fact that the information gain is biased towards
attributes with many values. This is a consequence of the previously mentioned
particularity regarding entropy, in which further refinement leads to a decrease in its
value. Quinlan proposes a solution for this matter called gain ratio [89]. It basically
consists of normalizing the information gain by the entropy of the attribute being
tested, that is,

ΔΦgainRatio(ai , X, y) = ΔΦ I G

φentropy(ai , X)
. (2.5)

The gain ratio compensates the decrease in entropy inmultiple partitions by divid-
ing the information gain by the attribute self-entropy φentropy(ai , X). The value of
φentropy(ai , X) increases logarithmically as the number of partitions over ai increases,
decreasing the value of gain ratio. Nevertheless, the gain ratio has two deficiencies:
(i) it may be undefined (i.e., the value of self-entropy may be zero); and (ii) it may
choose attributes with very low self-entropy but not with high gain. For solving these
issues, Quinlan suggests first calculating the information gain for all attributes, and
then calculating the gain ratio only for those cases in which the information gain
value is above the average value of all attributes.

Several variations of the gain ratio have been proposed. For instance, the nor-
malized gain [52] replaces the denominator of gain ratio by log2 |ai |. The authors
demonstrate two theorems with cases in which the normalized gain works better
than or at least equally as either information gain or gain ratio does. In the first the-
orem, they prove that if two attributes ai and a j partition the instance space in pure
sub-partitions, and that if |ai | > |a j |, normalized gain will always prefer a j over
ai , whereas gain ratio is dependent of the self-entropy values of ai and a j (which
means gain ratio may choose the attribute that partitions the space in more values).
The second theorem states that given two attributes ai and a j , |ai | = |a j |, |ai | ≥ 2,
if ai partitions the instance space in pure subsets and a j has at least one subset with
more than one class, normalized gain will always prefer ai over a j , whereas gain
ratio will prefer a j if the following condition is met:

E(a j , X, y)

φentropy(y, X)
≤ 1 − φentropy(a j , X)

φentropy(ai , X)

where:

E(a j , X, y) = −
|a j |∑

l=1

pvl ,• × φentropy(y, Xaj=vl) (2.6)

For details on the proof of each theorem, please refer to Jun et al. [52].
Other variation is the average gain [123], that replaces the denominator of gain

ratio by |dom(ai )| (it only works for nominal attributes). The authors do not demon-
strate theoretically any situations in which this measure is a better option than gain
ratio. Their work is supported by empirical experiments in which the average gain
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outperforms gain ratio in terms of runtime and tree size, though with no significant
differences regarding accuracy. Note that most decision-tree induction algorithms
provide one branch for each nominal value an attribute can take. Hence, the average
gain [123] is practically identical to the normalized gain [52], though without scaling
the number of values with log2.

Sá et al. [100] propose a somewhat different splitting measure based on the min-
imum entropy of error principle (MEE) [106]. It does not directly depend on the
class distribution of a node pv j ,yl and the prevalences pv j ,•, but instead it depends
on the errors produced by the decision rule on the form of a Stoller split [28]: if
ai (x) ≤ Δ, y(x) = yω; ŷ otherwise. In a Stoller split, each node split is binary and
has an associated class yω for the case ai (x) ≤ Δ, while the remaining classes are
denoted by ŷ and associated to the complementary branch. Each class is assigned a
code t ∈ {−1, 1}, in such a way that for y(x) = yω, t = 1 and for y(x) = ŷ, t = −1.
The splitting measure is thus given by:

MEE(ai , X, y) = −(P−1loge P−1 + P0loge P0 + P1loge P1)

where:

P−1 = N•,yl

n
× e1,−1

Nx

P1 =
(
1− N•,yl

n

)
× e−1,1

Nx

P0 = 1 − P−1 − P1 (2.7)

where et,t ′ is the number of instances t classified as t ′. Note that unlike othermeasures
such as information gain and gain ratio, there is no need of computing the impurity of
sub-partitions and their subsequent average, as MEE does all the calculation needed
at the current node to be split. MEE is bounded by the interval [0, loge 3], and needs
to be minimized. The meaning of minimizing MEE is constraining the probability
mass function of the errors to be as narrow as possible (around zero). The authors
argue that by using MEE, there is no need of applying the pruning operation, saving
execution time of decision-tree induction algorithms.

2.3.1.2 Distance-Based Criteria

Criteria in this category evaluate separability, divergency or discrimination between
classes. They measure the distance between class probability distributions.

A popular distance criterionwhich is also from the class of impurity-based criteria
is the Gini index [12, 39, 88]. It is given by:

φGini(y, X) = 1 −
k∑

l=1

p•,yl
2 (2.8)
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Breiman et al. [12] also acknowledge Gini’s bias towards attributes with many
values. They propose the twoing binary criterion for solving this matter. It belongs to
the class of binary criteria, which requires attributes to have their domain split into
two mutually exclusive subdomains, allowing binary splits only. For every binary
criteria, the process of dividing attribute ai values into two subdomains, d1 and d2,
is exhaustive1 and the division that maximizes its value is selected for attribute ai .
In other words, a binary criterion β is tested over all possible subdomains in order
to provide the optimal binary split, β∗:

β∗ = max
d1,d2

β(ai , d1, d2, X, y)

s.t.

d1 ∪ d2 = dom(ai )

d1 ∩ d2 = ∅ (2.9)

Now that we have defined binary criteria, the twoing binary criterion is given by:

βtwoing(ai , d1, d2, X, y) = 0.25 × pd1,• × pd2,• ×
( k∑

l=1

abs(pyl |d1 − pyl |d2)
)2

(2.10)

where abs(.) returns the absolute value.
Friedman [38] and Rounds [99] propose a binary criterion based on the

Kolmogorov-Smirnoff (KS) distance for handling binary-class problems:

βK S(ai , d1, d2, X, y) = abs(pd1|y1 − pd1|y2) (2.11)

Haskell and Noui-Mehidi [45] propose extending βKS for handling multi-class
problems. Utgoff and Clouse [120] also propose a multi-class extension to βKS , as
well as missing data treatment, and they present empirical results which show their
criterion is similar in accuracy to Quinlan’s gain ratio, but produces smaller-sized
trees.

The χ2 statistic [72, 125, 130] has been employed as a splitting criterion in
decision trees. It compares the observed values with those that one would expect
if there were no association between attribute and class. The resulting statistic is
distributed approximately as the chi-square distribution, with larger values indicating
greater association. Since we are looking for the predictive attribute with the highest
degree of association to the class attribute, this measure must be maximized. It can
be calculated as:

1 Coppersmith et al. [25] present an interesting heuristic procedure for finding subdomains d1 and
d2 when the partition is based on a nominal attribute. Shih [105] also investigates the problem of
efficiency on finding the best binary split for nominal attributes.
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χ2(ai , X, y) =
|ai |∑

j=1

k∑

l=1

(
Nv j ∩yl − Nv j ,•×N•,yl

Nx

)2

Nv j ,•×N•,yl
Nx

(2.12)

It should be noticed that the χ2 statistic (and similarly the G statistic) become poor
approximations with small expected frequencies. Small frequencies make χ2 over-
optimistic in detecting informative attributes, i.e., the probability derived from the
distribution will be smaller than the true probability of getting a value of χ2 as large
as that obtained.

De Mántaras [26] proposes a distance criterion that “provides a clearer and more
formal framework for attribute selection and solves the problem of bias in favor of
multivalued attributes without having the limitations of Quinlan’s Gain Ratio”. It is
actually the same normalization to information gain as CAIR is to GMI, i.e.,

1 − ΔΦdistance(ai , X, y) = ΔΦ I G

−∑|ai |
j=1

∑k
l=1 pv j ∩yl log2 pv j ∩yl

. (2.13)

Notice that in (2.13), we are actually presenting the complement ofMántaras distance
measure, i.e., 1 − ΔΦdistance(ai , X, y), but with no implications in the final result
(apart from the fact that (2.13) needs to be maximized, whereas the original distance
measure should be minimized).

Fayyad and Irani [35] propose a new family ofmeasures called C-SEP (fromClass
SEParation). They claim that splittingmeasures such as information gain (and similar
impurity-based criteria) suffer from a series of deficiencies (e.g., they are insensitive
to within-class fragmentation), and they present new requirements a “good” splitting
measure Γ (.) (in particular, binary criteria) should fulfill:

• Γ (.) is maximum when classes in d1 and d2 are disjoint (inter-class separability);
• Γ (.) is minimum when the class distributions in d1 and d2 are identical;
• Γ (.) favors partitions which keep instances from the same class in the same sub-
domain di (intra-class cohesiveness);

• Γ (.) is sensitive to permutations in the class distribution;
• Γ (.) is non-negative, smooth (differentiable), and symmetric with respect to the
classes.

Binary criteria that fulfill the above requirements are based on the premise that
a good split is the one that separates as many different classes from each other as
possible, while keeping examples of the same class together. Γ must be maximized,
unlike the previously presented impurity-based criteria.

Fayyad and Irani [35] propose a new binary criterion from this family of C-SEP
measures called ORT , defined as:

Γ ORT (ai , d1, d2, X, y) = 1 − θ(vd1, vd2)

θ(vd1, vd2) = vd1 · vd2

||vd1 || × ||vd2 ||
(2.14)
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where vdi is the class vector of the set of instances Xi = {x ∈ X | Xai∈di}, “·”
represents the inner product between two vectors and ||.|| the magnitude (norm)
of a vector. Note that ORT is basically the complement of the well-known cosine
distance, which measures the orthogonality between two vectors. When the angle
between two vectors is 90, it means the non-zero components of each vector do not
overlap. The ORT criterion is maximum when the cosine distance is minimum, i.e.,
the vectors are orthogonal, and it is minimum when they are parallel. The higher
the values of ORT, the greater the distance between components of the class vectors
(maximum ORT means disjoint classes).

Taylor and Silverman [111] propose a splitting criterion called mean posterior
improvement (MPI), which is given by:

βM P I (ai , d1, d2, X, y) = pd1,• pd2,• −
k∑

l=1

[p•,yl pd1∩yl pd2∩yl ] (2.15)

TheMPI criterion providesmaximumvaluewhen individuals of the same class are
all placed in the same partition, and thus, (2.15) should be maximized. Classes over-
represented in the father node will have a greater emphasis in the MPI calculation
(such an emphasis is given by the p•,yl in the summation). The term pd1∩yl pd2∩yl is
desired to be small since the goal ofMPI is to keep instances of the same class together
and to separate them from those of other classes. Hence, pd1,• pd2,• − pd1∩yl pd2∩yl is
the improvement that the split is making for class yl , and therefore the MPI criterion
is the mean improvement over all the classes.

Mola and Siciliano [75] propose using the predictability index τ originally pro-
posed in [42] as a splitting measure. The τ index can be used first to evaluate each
attribute individually (2.16), and then to evaluate each possible binary split provided
by grouping the values of a given attribute in d1 and d2 (2.17).

βτ (ai , X, y) =
∑|ai |

j=1

∑k
l=1(pv j ∩yl )

2 × pv j ,• − ∑k
l=1 p2•,yl

1 − ∑k
l=1 p2•,yl

(2.16)

βτ (ai , d1, d2, X, y) =
∑k

l=1(pd1∩yl )
2 pd1,• + ∑k

l=1(pd2∩yl )
2 pd2,• − ∑k

l=1 p2•,yl

1 − ∑k
j=1 p2y j

(2.17)

Now, consider that βτ∗(ai ) = maxd1,d2 βτ (ai , d1, d2, X, y). Mola and Siciliano
[75] prove a theorem saying that
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βτ (ai , X, y) ≥ βτ (ai , d1, d2, X, y) (2.18)

and also that

βτ (ai , X, y) ≥ βτ∗(ai ). (2.19)

This theoretical evidence is of great importance for providing a means to select the
best attribute and its corresponding binary partitions without the need of exhaustively
trying all possibilities. More specifically, one has to calculate (2.16) for all attributes,
and to sort them according to the highest values of βτ (∗, X, y), in such a way that a1
is the attribute that yields the highest value of βτ (∗, X, y), a2 is the second highest
value, and so on. Then, one has to test all possible splitting options in (2.17) in order
to find βτ∗(a1). If the value of βτ∗(a1) is greater than the value of βτ (a2, X, y), we do
not need to try any other split possibilities, since we know that βτ∗(a2) is necessarily
lesser than βτ (a2, X, y). For a simple but efficient algorithm implementing this idea,
please refer to the appendix in [75].

2.3.1.3 Other Classification Criteria

In this category, we include all criteria that did not fit in the previously-mentioned
categories.

Li and Dubes [62] propose a binary criterion for binary-class problems called
permutation statistic. It evaluates the degree of similarity between two vectors,
Vai and y, and the larger this statistic, the more alike the vectors. Vector Vai

is calculated as follows. Let ai be a given numeric attribute with the values
[8.20, 7.3, 9.35, 4.8, 7.65, 4.33] and Nx = 6. Vector y = [0, 0, 1, 1, 0, 1] holds
the corresponding class labels. Now consider a given threshold Δ = 5.0. Vec-
tor Vai is calculated in two steps: first, attribute ai values are sorted, i.e., ai =
[4.33, 4.8, 7.3, 7.65, 8.20, 9.35], consequently rearranging y = [1, 1, 0, 0, 0, 1];
then, Vai (n) takes 0 when ai (n) ≤ Δ, and 1 otherwise. Thus, Vai = [0, 0, 1, 1, 1, 1].
The permutation statistic first analyses how many 1−1 matches (d) vectors Vai and
y have. In this particular example, d = 1. Next, it counts how many 1’s there are in
Vai (na) and in y (ny). Finally, the permutation statistic can be computed as:

βpermutation(Vai , y) =
d∑

j=0

(na
j

)(Nx −na
ny− j

)

(Nx
ny

) −
(na

d

)(Nx −na
ny−d

)

(Nx
ny

) U

(
n

m

)
= 0 if n < 0 or m < 0 or n < m

= n!
m!(n − m)!otherwise (2.20)

where U is a (continuous) random variable distributed uniformly over [0, 1].
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The permutation statistic presents an advantage over the information gain and
other criteria: it is not sensitive to the data fragmentation problem.2 It automatically
adjusts for variations in the number of instances from node to node because its
distribution does not change with the number of instances at each node.

Quinlan and Rivest [96] propose using the minimum description length principle
(MDL) as a splitting measure for decision-tree induction. MDL states that, given a
set of competing hypotheses (in this case, decision trees), one should choose as the
preferred hypothesis the one that minimizes the sum of two terms: (i) the description
length of the hypothesis (dl ); and (ii) length of the data given the hypothesis (lh). In
the context of decision trees, the second term can be regarded as the length of the
exceptions, i.e., the length of certain objects of a given subset whose class value is
different from the most frequent one. Both terms are measured in bits, and thus one
needs to encode the decision tree and exceptions accordingly.

It can be noticed that by maximizing dl , we minimize lh , and vice-versa. For
instance, when we grow a decision tree until each node has objects that belong to the
same class, we usually end up with a large tree (maximum dl ) prone to overfitting,
but with no exceptions (minimum lh). Conversely, if we allow a large number of
exceptions, we will not need to partition subsets any further, and in the extreme case
(maximum lh), the decision tree will hold a single leaf node labeled as the most
frequent class value (minimum dl ). Hence the need of minimizing the sum dl + lh .

MDL provides a way of comparing decision trees once the encoding techniques
are chosen. Finding a suitable encoding scheme is usually a very difficult task, and
the values of dl and lh are quite dependent on the encoding technique used [37].
Nevertheless, Quinlan and Rivest [96] propose selecting the attribute that minimizes
dl + lh at each node, and then pruning back the tree whenever replacing an internal
node by a leaf decreases dl + lh .

A criterion derived from classical statistics is the multiple hypergeometric dis-
tribution (P0) [1, 70], which is an extension of Fischer’s exact test for two binary
variables. It can be regarded as the probability of obtaining the observed data given
that the null hypothesis (of variable independence) is true. P0 is given by:

P0(ai , X, y) =
(∏k

l=1 N•,yl !
Nx !

) |ai |∏

j=1

(
Nv j ,•!∏k

m=1 Nv j ∩ym !
)

(2.21)

The lower the values of P0, the lower the probability of accepting the null hypoth-
esis. Hence, the attribute that presents the lowest value of P0 is chosen for splitting
the current node in a decision tree.

Chandra andVarghese [21] propose a new splitting criterion for partitioning nodes
in decision trees. The proposed measure is designed to reduce the number of dis-
tinct classes resulting in each sub-tree after a split. Since the authors do not name

2 Data fragmentation is a well-known problem in top-down decision trees. Nodes with few instances
usually lack statistical support for further partitioning. This phenomenon happens for most of the
split criteria available, since their distributions depend on the number of instances in each particular
node.
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their proposed measure, we call it CV (from Chandra-Varseghe) from now on. It is
given by:

CV (ai , X, y) =
|ai |∑

j=1

[
pv j ,• × Dv j

Dx

( Dv j∑

l=1

pv j |yl

)]
(2.22)

where Dx counts the number of distinct class values among the set of instances in
X, and Dv j the number of distinct class values in partition v j . The CV criterion
must be minimized. The authors prove that CV is strictly convex (i.e., it achieves its
minimum value at a boundary point) and cumulative (and thus, well-behaved). The
authors argue that the experiments, which were performed on 19 data sets from the
UCI repository [36], indicate that the proposed measure results in decision trees that
are more compact (in terms of tree height), without compromising on accuracy when
compared to the gain ratio and Gini index.

Chandra et al. [20] propose the use of a distinct class based splitting measure
(DCSM). It is given by:

DCSM(ai , X, y) =
|ai |∑

j=1

[
pv j ,• Dv j exp(Dv j )

×
k∑

l=1

[
pyl |v j exp

( Dv j

Dx

(
1 − (

pyl |v j

)2))]
]

(2.23)

Note that the term Dv j exp Dv j deals with the number of distinct classes in a given
partition v j . As the number of distinct classes in a given partition increases, this term
also increases. It means that purer partitions are preferred, and they are weighted
according to the proportion of training instances that lie in the given partition. Also,

note that
Dv j
Dx

decreases when the number of distinct classes decreases while (1 −
(

pyl |v j

)2
) decreases when there are more instances of a class compared to the total

number of instances in a partition. These terms also favor partitions with a small
number of distinct classes.

It can be noticed that the value of DCSM increases exponentially as the number of
distinct classes in the partition increases, invalidating such splits. Chandra et al. [20]
argue that “this makes the measure more sensitive to the impurities present in the
partition as compared to the existingmeasures.” The authors demonstrate that DCSM
satisfies two properties: convexity and well-behavedness. Finally, through empirical
data, the authors affirm that DCSM provides more compact and more accurate trees
than those provided by measures such as gain ratio and Gini index.

Many other split criteria for classification can be found in the literature, including
relevance [3], misclassification error with confidence intervals [53], RELIEF split
criterion [58], QUEST split criterion [65], just to name a few.



22 2 Decision-Tree Induction

2.3.1.4 Regression Criteria

All criteria presented so far are dedicated to classification problems. For regres-
sion problems, where the target variable y is continuous, a common approach is to
calculate the mean squared error (MSE) as a splitting criterion:

MSE(ai , X, y) = N−1
x

|ai |∑

j=1

∑

xl∈v j

(y(xl) − ¯yv j )
2 (2.24)

where ¯yv j = N−1
v j ,•

∑
xl∈v j

y(xl). Just as with clustering, we are trying to minimize
the within-partition variance. Usually, the sum of squared errors is weighted over
each partition according to the estimated probability of an instance belonging to the
given partition [12]. Thus, we should rewrite MSE to:

wMSE(ai , X, y) =
|ai |∑

j=1

pv j ,•
∑

xl∈v j

(y(xl) − ¯yv j )
2 (2.25)

Another common criterion for regression is the sum of absolute deviations (SAD)
[12], or similarly its weighted version given by:

wSAD(ai , X, y) =
|ai |∑

j=1

pv j,•
∑

xl∈v j

abs(y(xl) − median(yv j )) (2.26)

where median(yv j ) is the target attribute’s median of instances belonging to Xai=vj .
Quinlan [93] proposes the use of the standard deviation reduction (SDR) for his

pioneering system of model trees induction, M5. Wang and Witten [124] extend the
work of Quinlan in their proposed systemM5’, also employing the SDR criterion. It
is given by:

SDR(ai , X, y) = σX −
|ai |∑

j=1

pv j ,•σv j (2.27)

where σX is the standard deviation of instances in X and σv j the standard deviation
of instances in Xai=vj . SDR should be maximized, i.e., the weighted sum of stan-
dard deviations of each partition should be as small as possible. Thus, partitioning
the instance space according to a particular attribute ai should provide partitions
whose target attribute variance is small (once again we are interested in minimizing
the within-partition variance). Observe that minimizing the second term in SDR is
equivalent to minimizing wMSE, but in SDR we are using the partition standard
deviation (σ) as a similarity criterion whereas in wMSE we are using the partition
variance (σ2).
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Buja and Lee [15] propose two alternative regression criteria for binary trees:
one-sided purity (OSP) and one-sided extremes (OSE). OSP is defined as:

OSP(ai , d1, d2, X, y) = min
d1,d2

(σ2
d1,σ

2
d2) (2.28)

where σ2
di
is the variance of partition di . The authors argue that by minimizing this

criterion for all possible splits, we find a split whose partition (either d1 or d2) presents
the smallest variance. Typically, this partition is less likely to be split again. Buja and
Lee [15] also propose the OSE criterion:

OSE(ai , d1, d2, X, y) = min
d1,d2

( ¯yd1, ¯yd2)

or, conservely:

OSE(ai , d1, d2, X, y) = max
d1,d2

( ¯yd1, ¯yd2) (2.29)

The authors argue that whereas the mean values have not been thought of as splitting
criteria, “in real data, the dependence of the mean response on the predictor variables
is oftenmonotone; hence extreme response values are often found on the periphery of
variable ranges (…), the kind of situations to each the OSE criteria would respond”.

Alpaydin [2] mentions the use of the worst possible error (WPE) as a valid
criterion for splitting nodes:

WPE(ai , X, y) = max
j

max
l

[abs(y(xl) − ¯yv j )] (2.30)

Alpaydin [2] states that by usingWPEwe can guarantee that the error for any instance
is never larger than a given thresholdΔ. This analysis is useful because the threshold
Δ can be seen as a complexity parameter that defines the fitting level provided by the
tree, given that we use it for deciding when interrupting its growth. Larger values of
Δ lead to smaller trees that could underfit the data whereas smaller values of Δ lead
to larger trees that risk overfitting. A deeper appreciation of underfitting, overfitting
and tree complexity is presented later, when pruning is discussed.

Other regression criteria that can be found in the literature are MPI for regression
[112], Lee’s criteria [61], GUIDE’s criterion [66], and SMOTI’s criterion [67], just
to name a few. Tables2.1 and 2.2 show all univariate splitting criteria cited in this
section, as well as their corresponding references, listed in chronological order.

2.3.1.5 Multivariate Splits

All criteria presented so far are intended for building univariate splits. Decision trees
with multivariate splits (known as oblique, linear or multivariate decision trees) are
not so popular as the univariate ones, mainly because they are harder to interpret.
Nevertheless, researchers reckon thatmultivariate splits can improve the performance
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Table 2.1 Univariate
splitting criteria for
classification

Category Criterion References

Info theory GMI [22, 41, 102, 108]

Information gain [18, 44, 92, 122]

G statistic [72, 73]

Gain ratio [89, 92]

CAIR [22]

Normalized gain [52]

Average gain [123]

MEE [100]

Distance-based KS distance [38, 99]

Gini index [12]

Twoing [12]

χ2 [72, 125, 130]

Distance [26]

Multi-class KS [45, 120]

ORT [35]

MPI [111]

τ Index [75]

Other Permutation [62]

Relevance [3]

MDL criterion [96]

Mis. Error with CI [53]

RELIEF [58]

QUEST criterion [65]

P0 [1, 70]

CV [21]

DCSM [20]

Table 2.2 Univariate
splitting criteria for regression

Criterion References

(w)MSE [12]

(w)SAD [12]

SDR [93, 124]

MPI-R [112]

OSP [15]

OSE [15]

Lee’s [61]

GUIDE’s [66]

SMOTI’s [67]

WPE [2]
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of the tree in several data sets, while generating smaller trees [47, 77, 98]. Clearly,
there is a tradeoff to consider in allowing multivariate tests: simple tests may result
in large trees that are hard to understand, yet multivariate tests may result in small
trees with tests hard to understand [121].

A decision tree with multivariate splits is able to produce polygonal (polyhedral)
partitions of the attribute space (hyperplanes at an oblique orientation to the attribute
axes) whereas univariate trees can only produce hyper-rectangles parallel to the
attribute axes. The tests at each node have the form:

w0 +
n∑

i=1

wi ai (x) ≤ 0 (2.31)

where wi is a real-valued coefficient associated to the i th attribute and w0 the dis-
turbance coefficient of the test.

CART (Classification and Regression Trees) [12] is one of the first systems that
allowed multivariate splits. It employs a hill-climbing strategy with a backward
attribute elimination for finding good (albeit suboptimal) linear combinations of
attributes in non-terminal nodes. It is a fully-deterministic algorithm with no built-in
mechanisms to escape local-optima. Breiman et al. [12] point out that the proposed
algorithm has much room for improvement.

Another approach for building oblique decision trees is LMDT (Linear Machine
Decision Trees) [14, 119], which is an evolution of the perceptron tree method [117].
Each non-terminal node holds a linear machine [83], which is a set of k linear dis-
criminant functions that are used collectively to assign an instance to one of the
k existing classes. LMDT uses heuristics to determine when a linear machine has
stabilized (since convergence cannot be guaranteed). More specifically, for handling
non-linearly separable problems, a method similar to simulated annealing (SA) is
used (called thermal training). Draper and Brodley [30] show how LMDT can be
altered to induce decision trees that minimize arbitrary misclassification cost func-
tions.

SADT (Simulated Annealing of Decision Trees) [47] is a system that employs SA
for finding good coefficient values for attributes in non-terminal nodes of decision
trees. First, it places a hyperplane in a canonical location, and then iteratively perturbs
the coefficients in small random amounts. At the beginning, when the temperature
parameter of theSA is high, practically any perturbation of the coefficients is accepted
regardless of the goodness-of-split value (the value of the utilised splitting criterion).
As the SA cools down, only perturbations that improve the goodness-of-split are
likely to be allowed. Although SADT can eventually escape from local-optima, its
efficiency is compromised since it may consider tens of thousands of hyperplanes in
a single node during annealing.

OC1 (Oblique Classifier 1) [77, 80] is yet another oblique decision tree system.
It is a thorough extension of CART’s oblique decision tree strategy. OC1 presents
the advantage of being more efficient than the previously described systems. For
instance, in the worst case scenario, OC1’s running time is O(logn) times greater
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than the worst case scenario of univariate decision trees, i.e., O(nN 2 logN ) versus
O(nN 2). OC1 searches for the best univariate split as well as the best oblique split,
and it only employs the oblique split when it improves over the univariate split.3 It
uses both a deterministic heuristic search (as employed in CART) for finding local-
optima and a non-deterministic search (as employed in SADT—though not SA) for
escaping local-optima.

During the deterministic search, OC1 perturbs the hyperplane coefficients sequen-
tially (much in the same way CART does) until no significant gain is achieved
according to an impurity measure. More specifically, consider hyperplane H =
w0 + ∑n

i=1 wi ai (x) = 0, and that we substitute an instance x j in H , i.e., H =
w0 + ∑n

i=1 wi ai (x j ) = Z j . The sign of Z j indicates whether an instance x j is
above or below the hyperplane H . If H splits X perfectly, then all instances belong-
ing to the same class will have the same sign of Z . For finding the local-optimal
set of coefficients, OC1 employs a sequential procedure that works as follows: treat
coefficient wi as a variable and all other coefficients as constants. The condition that
instance x j is above hyperplane H can be written as:

Z j > 0

wi >

[
wi ai (x j ) − Z j

ai (x j )
≡ U j

]
(2.32)

assuming ai (x j ) > 0, which is ensured through normalization. With the definition
in (2.32), an instance is above the hyperplane if wi > U j and below otherwise.
By plugging each instance x ∈ X in (2.32), we obtain Nx constraints on the value
of wi . Hence, the problem is reduced on finding the value of wi that satisfies the
greatest possible number of constraints. This problem is easy to solve optimally:
simply sort all the values U j , and consider setting wi to the midpoint between each
pair of different class values. For each distinct placement of the coefficient wi , OC1
computes the impurity of the resulting split, and replaces original coefficient wi by
the recently discovered value if there is reduction on impurity. The pseudocode of
this deterministic perturbation method is presented in Algorithm 2.

The parameter Pstag (stagnation probability) is the probability that a hyperplane
is perturbed to a location that does not change the impurity measure. To prevent the
stagnation of impurity, Pstag decreases by a constant amount each time OC1 makes a
“stagnant” perturbation, which means only a constant number of such perturbations
will occur at each node. Pstag is reset to 1 every time the global impurity measure is
improved. It is a user-defined parameter.

After a local-optimal hyperplane H is found, it is further perturbed by a ran-
domized vector, as follows: it computes the optimal amount by which H should
be perturbed along the random direction dictated by a random vector. To be more
precise, when a hyperplane H = w0 + ∑n

i=1 wi ai (x) cannot be improved by

3 OC1 only allows the option of employing oblique splits when N > 2n, though this threshold can
be user-defined.
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Algorithm 2Deterministic OC1’s procedure for perturbing a given coefficient. Para-
meters are the current hyperplane H and the coefficient index i .
1: procedure perturb(H, i)
2: for j = 1 to Nx do
3: Compute U j (32)
4: end for
5: Sort U1..UNx in non-decreasing order
6: w′

i = best split of the sorted U j s
7: H1 = resulting of replacing wi by w′

i in H

8: if (impurity(H1) < impurity(H)) then
9: wi = w′

i
10: Pmove = Pstag
11: else if (impurity(H1) = impurity(H)) then
12: wi = w′

i with probability Pmove

13: Pmove = Pmove − 0.1Pstag
14: end ifreturn wi
15: end procedure

deterministic perturbation (Algorithm 2), OC1 repeats the following loop J times
(where J is a user-specified parameter, set to 5 by default):

• Choose a random vector R = [r0, r1, . . . , rn];
• Let α be the amount by which we want to perturb H in the direction R. More
specifically, let H1 = (w0 + αr0) + ∑n

i=1(wi + αri )ai (x);
• Find the optimal value for α;
• If the hyperplane H1 decreases the overall impurity, replace H with H1, exit
this loop and begin the deterministic perturbation algorithm for the individual
coefficients.

Note that we can treat α as the only variable in the equation for H1. Therefore
each of the N examples, if plugged into the equation for H1, imposes a constraint on
the value of α. OC1 can use its own deterministic coefficient perturbation method
(Algorithm 2) to compute the best value of α. If J random jumps fail to improve the
impuritymeasure, OC1 halts and uses H as the split for the current tree node. Regard-
ing the impurity measure, OC1 allows the user to choose among a set of splitting
criteria, such as information gain, Gini index, twoing criterion, among others.

Ittner [51] proposes usingOC1over an augmented attribute space, generating non-
linear decision trees. The key idea involved is to “build” newattributes by considering
all possible pairwise products and squares of the original set of n attributes. As a
result, a new attribute space with (n2 + 3n)/2 is formed, i.e., the sum of n original
attributes,n squared ones and (n(n−1))/2pairwise products of the original attributes.
To illustrate, consider a binary attribute space {a1, a2}. The augmented attribute space
would contain 5 attributes, i.e., b1 = a1, b2 = a2, b3 = a1a2, b4 = a2

1, b5 = a2
2 .

A similar approach of transforming the original attributes is taken in [64], inwhich
the authors propose the BMDT system. In BMDT, a 2-layer feedforward neural net-
work is employed to transform the original attribute space in a space inwhich the new
attributes are linear combinations of the original ones. This transformation is per-
formed through a hyperbolic tangent function at the hidden units. After transforming
the attributes, a univariate decision-tree induction algorithm is employed over this
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new attribute space. Finally, a procedure replaces the transformed attributes by the
original ones, which means that the univariate tests in the recently built decision tree
become multivariate tests, and thus the univariate tree becomes an oblique tree.

Shah and Sastry [103] propose the APDT (Alopex Perceptron Decision Tree)
system. It is an oblique decision tree inducer that makes use of a new splitting
criterion, based on the level of non-separability of the input instances. They argue
that because oblique decision trees can realize arbitrary piecewise linear separating
surfaces, it seems better to base the evaluation function on the degree of separability
of the partitions rather than on the degree of purity of them.APDT runs the Perceptron
algorithm for estimating the number of non-separable instances belonging to each one
of the binary partitions provided by an initial hyperplane. Then, a correlation-based
optimization algorithm called Unnikrishnan et al. [116] is employed for tuning the
hyperplaneweights taking into account the need ofminimizing the new split criterion
based on the degree of separability of partitions. Shah and Sastry [103] also propose
a pruning algorithm based on genetic algorithms.

Several other oblique decision-tree systems were proposed employing different
strategies for defining the weights of hyperplanes and for evaluating the generated
split. Some examples include: the system proposed by Bobrowski and Kretowski
[11],which employs heuristic sequential search (combination of sequential backward
elimination and sequential forward selection) for defining hyperplanes and a dipolar
criterion for evaluating splits; the omnivariate decision tree inducer proposed by
Yildiz and Alpaydin [128], where the non-terminal nodes may be univariate, linear,
or nonlinear depending on the outcome of comparative statistical tests on accuracy,
allowing the split to match automatically the complexity of the node according to
the subproblem defined by the data reaching that node; Li et al. [63] propose using
tabu search and a variation of linear discriminant analysis for generating multivariate
splits, arguing that their algorithm runs faster than most oblique tree inducers, since
its computing time increases linearly with the number of instances; Tan and Dowe
[109] proposes inducing oblique trees through a MDL-based splitting criterion and
the evolution strategy as a meta-heuristic to search for the optimal hyperplane within
a node. For regression oblique trees please refer to [27, 48, 60].

For the interested reader, it is worth mentioning that there are methods that induce
oblique decision trees with optimal hyperplanes, discovered through linear program-
ming [9, 10, 68]. Though these methods can find the optimal hyperplanes for specific
splitting measures, the size of the linear program grows very fast with the number of
instances and attributes.

For a discussion on several papers that employ evolutionary algorithms for induc-
tion of oblique decision trees (to evolve either the hyperplanes or the whole tree), the
reader is referred to [Barros2012]. Table2.3 presents a summary of some systems
proposed for induction of oblique decision trees.
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Table 2.3 Multivariate splits

System Criterion Hyperplane strategy

CART [12] Gini index/twoing Hill-climbing with SBE

LMDT [14] Misclassification error Linear machine with thermal
training

SADT [47] Sum-minority Simulated annealing

OC1 [77, 80] Info gain, gini index, twoing,
etc

Hill-climbing with
randomization

BMDT [64] Gain ratio 2-Layer feedforward neural
network

APDT [103] Separabilitya Alopex

Bobrowski and Kretowski [11]b Dipolar criterion Heuristic sequential search

Omni [128] Misclassification error MLP neural network

LDTS [63] Info gain LDA with tabu search

MML [63] MDL-based Evolution strategy

Geometric DT [69] Gini-index Multisurface proximal SVM
aThe authors of the criterion do not explicitly name it, so we call it “Separability”, since the criterion
is based on the degree of linear separability
bThe authors call their system “our method”, so we do not explicitly name it

2.3.2 Stopping Criteria

The top-down induction of a decision tree is recursive and it continues until a stopping
criterion (or some stopping criteria) is satisfied. Some popular stopping criteria are
[32, 98]:

1. Reaching class homogeneity: when all instances that reach a given node belong
to the same class, there is no reason to split this node any further;

2. Reaching attribute homogeneity: when all instances that reach a given node have
the same attribute values (though not necessarily the same class value);

3. Reaching the maximum tree depth: a parameter tree depth can be specified to
avoid deep trees;

4. Reaching the minimum number of instances for a non-terminal node: a parameter
minimum number of instances for a non-terminal node can be specified to avoid
(or at least alleviate) the data fragmentation problem;

5. Failing to exceed a threshold when calculating the splitting criterion: a parameter
splitting criterion threshold can be specified for avoiding weak splits.

Criterion 1 is universally accepted and it is implemented in most top-down
decision-tree induction algorithms to date. Criterion 2 deals with the case of contra-
dictory instances, i.e., identical instances regarding A, but with different class val-
ues. Criterion 3 is usually a constraint regarding tree complexity, specially for those
cases in which comprehensibility is an important requirement, though it may affect
complex classification problems which require deeper trees. Criterion 4 implies that
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small disjuncts (i.e., tree leaves covering a small number of objects) can be ignored
since they are error-prone. Note that eliminating small disjuncts can be harmful to
exceptions—particularly in a scenario of imbalanced classes. Criterion 5 is heavily
dependent on the splitting measure used. An example presented in [32] clearly indi-
cates a scenario in which using criterion 5 prevents the growth of a 100% accurate
decision tree (a problem usually referred to as the horizon effect [12, 89]).

The five criteria presented above can be seen as pre-pruning strategies, since they
“prematurely” interrupt the growth of the tree. Note thatmost of the criteria discussed
here may harm the growth of an accurate decision tree. Indeed there is practically a
consensus in the literature that decision trees should be overgrown instead. For that,
the stopping criterion used should be as loose as possible (e.g., until a single instance
is contemplated by the node or until criterion 1 is satisfied). Then, a post-pruning
technique should be employed in order to prevent data overfitting—a phenomenon
that happens when the classifier over-learns the data, that is, when it learns all data
peculiarities—including potential noise and spurious patterns—that are specific to
the training set and do not generalise well to the test set. Post-pruning techniques are
covered in the next section.

2.3.3 Pruning

This section reviews strategies of pruning, normally referred to as post-pruning tech-
niques. Pruning is usually performed in decision trees for enhancing tree compre-
hensibility (by reducing its size) while maintaining (or even improving) accuracy. It
was originally conceived as a strategy for tolerating noisy data, though it was found
that it could improve decision tree accuracy in many noisy data sets [12, 92, 94].

A pruning method receives as input an unpruned tree T and outputs a decision
tree T ′ formed by removing one or more subtrees from T . It replaces non-terminal
nodes by leaf nodes according to a given heuristic. Next, we present the six most
well-known pruning methods for decision trees [13, 32]: (1) reduced-error pruning;
(2) pessimistic error pruning; (3) minimum error pruning; (4) critical-value pruning;
(5) cost-complexity pruning; and (6) error-based pruning.

2.3.3.1 Reduced-Error Pruning

Reduced-error pruning is a conceptually simple strategy proposed by Quinlan [94].
It uses a pruning set (a part of the training set) to evaluate the goodness of a given
subtree from T . The idea is to evaluate each non-terminal node t ∈ ζT with regard to
the classification error in the pruning set. If such an error decreases when we replace
the subtree T (t) by a leaf node, than T (t) must be pruned.

Quinlan imposes a constraint: a node t cannot be pruned if it contains a subtree that
yields a lower classification error in the pruning set. The practical consequence of this
constraint is that REP should be performed in a bottom-up fashion. The REP pruned
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tree T ′ presents an interesting optimality property: it is the smallest most accurate
tree resulting from pruning original tree T [94]. Besides this optimality property,
another advantage of REP is its linear complexity, since each node is visited only
once in T . An obvious disadvantage is the need of using a pruning set, which means
one has to divide the original training set, resulting in less instances to grow the tree.
This disadvantage is particularly serious for small data sets.

2.3.3.2 Pessimistic Error Pruning

Also proposed by Quinlan [94], the pessimistic error pruning uses the training set
for both growing and pruning the tree. The apparent error rate, i.e., the error rate
calculated over the training set, is optimistically biased and cannot be used to decide
whether pruning should be performed or not. Quinlan thus proposes adjusting the
apparent error according to the continuity correction for the binomial distribution
(cc) in order to provide a more realistic error rate. Consider the apparent error of a
pruned node t , and the error of its entire subtree T (t) before pruning is performed,
respectively:

r (t) = E (t)

N (t)
x

(2.33)

r T (t) =
∑

s∈λT (t)
E (s)

∑
s∈λT (t)

N (s)
x

. (2.34)

Modifying (2.33) and (2.34) according to cc results in:

r (t)
cc = E (t) + 1/2

N (t)
x

(2.35)

r T (t)

cc =
∑

s∈λT (t)
E (s) + 1/2

∑
s∈λT (t)

N (s)
x

=
|λT (t) |

2

∑
s∈λT (t)

E (s)

∑
s∈λT (t)

N (s)
x

. (2.36)

For the sake of simplicity, wewill refer to the adjusted number of errors rather than
the adjusted error rate, i.e., E (t)

cc = E (t) +1/2 and ET (t)

cc = (|λT (t) |/2)∑
s∈λT (t)

E (s).

Ideally, pruning should occur if E (t)
cc ≤ ET (t)

cc , but note that this condition seldom
holds, since the decision tree is usually grown up to the homogeneity stopping cri-
terion (criterion 1 in Sect. 2.3.2), and thus ET (t)

cc = |λT (t) |/2 whereas E (t)
cc will very

probably be a higher value. In fact, due to the homogeneity stopping criterion, ET (t)

cc
becomes simply a measure of complexity which associates each leaf node with a
cost of 1/2. Quinlan, aware of this situation, weakens the original condition
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E (t)
cc ≤ ET (t)

cc (2.37)

to

E (t)
cc ≤ ET (t)

cc + SE(ET (t)

cc ) (2.38)

where

SE(ET (t)

cc ) =
√√√√ ET (t)

cc ∗ (N (t)
x − ET (t)

cc )

N (t)
x

is the standard error for the subtree T (t), computed as if the distribution of errors
were binomial.

PEP is computed in a top-down fashion, and if a given node t is pruned, its
descendants are not examined, which makes this pruning strategy quite efficient in
terms of computational effort. As a point of criticism, Esposito et al. [32] point out
that the introduction of the continuity correction in the estimation of the error rate
has no theoretical justification, since it was never applied to correct over-optimistic
estimates of error rates in statistics.

2.3.3.3 Minimum Error Pruning

Originally proposed by Niblett and Bratko [82] and further extended by Cestnik and
Bartko [19], minimum error pruning is a bottom-up approach that seeks to minimize
the expected error rate for unseen cases. It estimates the expected error rate in node
t (E E (t)) as follows:

E E (t) = min
yl

[
N (t)

x − N (t)•,yl + (1 − p(t)•,yl ) × m

N (t)
x + m

]
. (2.39)

where m is a parameter that determines the importance of the a priori probability
on the estimation of the error. Eq. (2.39), presented in [19], is a generalisation of
the expected error rate presented in [82] if we assume that m = k and that p(t)•,yl =
1/k,∀yl ∈ Y .

MEP is performed by comparing E E (t) with the weighted sum of the expected
error rate of all children nodes from t . Each weight is given by pv j ,•, assuming v j

is the partition corresponding to the j th child of t . A disadvantage of MEP is the
need of setting the ad-hoc parameter m. Usually, the higher the value of m, the more
severe the pruning. Cestnik and Bratko [19] suggest that a domain expert should set
m according to the level of noise in the data. Alternatively, a set of trees pruned with
different values of m could be offered to the domain expert, so he/she can choose the
best one according to his/her experience.
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2.3.3.4 Critical-Value Pruning

The critical-value pruning, proposed by Mingers [73], is quite similar to the pre-
pruning strategy criterion 5 in Sect. 2.3.2. It is a bottom-up procedure that prunes a
given non-terminal node t in case the value of its splitting measure is below a pre-
determined threshold cv. Mingers [73] proposes the following two-step procedure
for performing CVP:

1. Prune T for increasing values of cv, generating a set of pruned trees;
2. Choose the best tree among the set of trees (that includes T ) by measuring each

tree’s accuracy (based on a pruning set) and significance (through the previously
presented G statistic).

The disadvantage of CVP is the same of REP—the need of a pruning set. In
addition, CVP does not present the optimality property that REP does, so there is no
guarantee that the best tree found in step 2 is the smallest optimally pruned subtree
of T , since the pruning step was performed based on the training set.

2.3.3.5 Cost-Complexity Pruning

Cost-complexity pruning is the post-pruning strategy of the CART system, detailed
in [12]. It consists of two steps:

1. Generate a sequence of increasingly smaller trees, beginning with T and ending
with the root node of T , by successively pruning the subtree yielding the lowest
cost complexity, in a bottom-up fashion;

2. Choose the best tree among the sequence based on its relative size and accuracy
(either on a pruning set, or provided by a cross-validation procedure in the training
set).

The idea within step 1 is that pruned tree Ti+1 is obtained by pruning the subtrees
that show the lowest increase in the apparent error (error in the training set) per
pruned leaf. Since the apparent error of pruned node t increases by the amount
r (t) −r T (t)

, whereas its number of leaves decreases by |λT (t) |−1 units, the following
ratio measures the increase in apparent error rate per pruned leaf:

α = r (t) − r T (t)

|λT (t) | − 1
(2.40)

Therefore, Ti+1 is obtained by pruning all nodes in Ti with the lowest value of α.
T0 is obtained by pruning all nodes in T whose α value is 0. It is possible to show
that each tree Ti is associated to a distinct value αi , such that αi < αi+1. Building
the sequence of trees in step 1 takes quadratic time with respect to the number of
internal nodes.

Regarding step 2, CCP chooses the smallest treewhose error (either on the pruning
set or on cross-validation) is not more than one standard error (SE) greater than the
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Fig. 2.2 Grafting of subtree
rooted in 4 onto the place of
parent 2. In a the original tree
T and in b the pruned tree T ′

lowest error observed in the sequence of trees. This strategy is known as “1-SE”
variant since the work of Esposito et al. [33], which proposes ignoring the standard
error constraint, calling the strategy of selecting trees based only on accuracy of
“0-SE”. It is argued that 1-SE has a tendency of overpruning trees, since its selection
is based on a conservative constraint [32, 33].

2.3.3.6 Error-Based Pruning

This strategy was proposed by Quinlan and it is implemented as the default pruning
strategy of C4.5 [89]. It is an improvement over PEP, based on a far more pessimistic
estimate of the expected error. Unlike PEP, EBP performs a bottom-up search, and
it performs not only the replacement of non-terminal nodes by leaves but also the
grafting4 of subtree T (t) onto the place of parent t . Grafting is exemplified in Fig. 2.2.

Since grafting is potentially a time-consuming task, only the child subtree T (t ′) of
t with the greatest number of instances is considered to be grafted onto the place of t .

4 Grafting is a term introduced by Esposito et al. [34]. It is also known as subtree raising [127].
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For deciding whether to replace a non-terminal node by a leaf (subtree replace-
ment), to graft a subtree onto the place of its parent (subtree raising) or not to prune
at all, a pessimistic estimate of the expected error is calculated by using an upper
confidence bound. Assuming that errors in the training set are binomially distributed
with a given probability p in N (t)

x trials, it is possible to compute the exact value
of the upper confidence bound as the value of p for which a binomially distributed
random variable P shows E (t) successes in N (t)

x trials with probability CF. In other
words, given a particular confidence CF (C4.5 default value is CF = 25%), we can
find the upper bound of the expected error (E EU B) as follows:

E EU B =
f + z2

2Nx
+ z

√
f

Nx
− f 2

Nx
+ z2

4N2
x

1 + z2
Nx

(2.41)

where f = E (t)/Nx and z is the number of standard deviations corresponding to the
confidence CF (e.g., for CF = 25%, z = 0.69).

In order to calculate the expected error of node t (E E (t)), onemust simply compute
N (t)

x ×EEUB. For evaluating a subtree T (t), one must sum the expected error of every
leaf of that subtree, i.e.,

∑
s∈λT (t)

E E (s). Hence, given a non-terminal node t , it is
possible to decide whether one should perform subtree replacement (when condition
E E (t) ≤ E ET (t)

holds), subtree raising (when conditions ∃ j ∈ ζt , E E ( j) < E E (t)∧
∀i ∈ ζt , N (i)

x < N ( j)
x hold), or not to prune t otherwise.

An advantage of EBP is the new grafting operation that allows pruning useless
branches without ignoring interesting lower branches (an elegant solution to the
horizon effect problem). A drawback of the method is the parameterCF, even though
it represents a confidence level. Smaller values of CF result in more pruning.

2.3.3.7 Empirical Evaluations

Some studies in the literature performed empirical analyses for evaluating pruning
strategies. For instance, Quinlan [94] compared four methods of tree pruning (three
of them presented in the previous sections—REP, PEP and CCP 1-SE). He argued
that those methods in which a pruning set is needed (REP and CCP) did not perform
noticeably better than the other methods, and thus their requirement for additional
data is a weakness.

Mingers [71] comparedfive pruningmethods, all of thempresented in the previous
sections (CCP, CVP, MEP, REP and PEP), and related them to different splitting
measures. He states that pruning can improve the accuracy of induced decision trees
by up to 25% in domains with noise and residual variation. In addition, he highlights
the following findings: (i) MEP (the original version by Niblett and Bratko [82]) is
the least accurate method due to its sensitivity to the number of classes in the data; (ii)
PEP is the most “crude” strategy, though the fastest one—due to some bad results,
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it should be used with caution; (iii) CVP, CCP and REP performed well, providing
consistently low error-rates for all data sets used; and (iv) there is no evidence of an
interaction between the splitting measure and the pruning method used for inducing
a decision tree.

Buntine [16], in his PhD thesis, also reports experiments on pruning methods
(PEP, MEP, CCP 0-SE and 1-SE for both pruning set and cross-validation). Some
of his findings were: (i) CCP 0-SE versions were marginally superior than the 1-SE
versions; (ii) CCP 1-SE versions were superior in data sets with little apparent struc-
ture, where more severe pruning was inherently better; (iii) CCP 0-SE with cross-
validation was marginally better than the other methods, though not in all data sets;
and (iv) PEP performed reasonablywell in all data sets, andwas significantly superior
in well-structured data sets (mushroom, glass and LED, all from UCI [36]);

Esposito et al. [32] compare the six post-pruningmethods presented in the previous
sections within an extended C4.5 system. Their findings were the following: (i)MEP,
CVP, and EBP tend to underprune, whereas 1-SE (both cross-validation and pruning
set versions) andREPhave a propensity for overpruning; (ii) using a pruning-set is not
usually a good option; (iii) PEP and EBP behave similarly, despite the difference in
their formulation; (iv) pruning does not generally decrease the accuracy of a decision
tree (only one of the domains tested was deemed as “pruning-averse”); and (v) data
sets not prone to pruning are usually the ones with the highest base error whereas
data sets with a low base error tend to benefit of any pruning strategy.

For a comprehensive survey of strategies for simplifying decision trees, please
refer to [13]. For more details on post-pruning techniques in decision trees for regres-
sion, we recommend [12, 54, 85, 97, 113–115].

2.3.4 Missing Values

Handling missing values (denoted in this section by “?”) is an important task not
only in machine learning itself, but also in decision-tree induction. Missing values
can be an issue during tree induction and also during classification. During tree
induction, there are two moments in which we need to deal with missing values:
splitting criterion evaluation and instances splitting.

During the split criterion evaluation in node t based on attribute ai , some common
strategies are:

• Ignore all instances belonging to the set M = {x j |ai (x j ) =?} [12, 38];
• Imputation of missing values with the mode (nominal attributes) or the mean/
median (numeric attributes) of all instances in t [24];

• Weight the splitting criterion value (calculated in node t with regard to ai ) by the
proportion of missing values, i.e., |M |/N (t)

x [95].
• Imputation of missing values with the mode (nominal attributes) or the mean/
median (numeric attributes) of all instances in t whose class attribute is the same
of the instance whose ai value is being imputed [65].
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For deciding which child node training instance x j should go to, considering a
split in node t over ai , and that ai (x j ) =?, some possibilities are:

• Ignore instance x j [92];
• Treat instance x j as if it has the most common value of ai (mode or mean/median)
[95];

• Weight instance x j by the proportion of caseswith knownvalue in a given partition,

i.e., N (vl )
x /(N (t)

x −|M |) (assuming t is the parent node andvl is its lth partition) [57];
• Assign instance x j to all partitions [38];
• Build an exclusive partition for missing values [95].
• Assign instance x j to the partition with the greatest number of instances that
belong to the same class that x j . Formally, if x j is labeled as yl , we assign x j to
arg maxvm

[Nvm ,yl ] [65].
• Create a surrogate split for each split in the original tree based on a different
attribute [12]. For instance, a split over attribute ai will have a surrogate split over
attribute a j , given that a j is the attribute which most resembles the original split.
Resemblance between two attributes in a binary tree is given by:

res(ai , a j , X) = |Xai∈d1(ai)∧aj∈d1(aj)|
Nx

+ |Xai∈d2(ai)∧aj∈d2(aj)|
Nx

(2.42)

where the original split over attribute ai is divided in two partitions, d1(ai ) and
d2(ai ), and the alternative split over a j is divided in d1(a j ) and d2(a j ). Hence,
for creating a surrogate split, one must find attribute a j that, after divided by two
partitions d1(a j ) and d2(a j ), maximizes res(ai , a j , X).

Finally, for classifying an unseen test instance x j , considering a split in node t
over ai , and that ai (x j ) =?, some alternatives are:

• Explore all branches of t combining the results.More specifically, navigate through
all ambiguous branches of the tree until reaching different leaves and choose class
k with the highest probability, i.e., arg maxy[

∑
s∈λt

[N (s)•,yl ]/N (t)
x ] [90];

• Treat instance x j as if it has the most common value of ai (mode or mean/median);
• Halt the classification process and assign instance x j to the majority class of node

t [95].

2.4 Other Induction Strategies

We presented a thorough review of the greedy top-down strategy for induction of
decision trees in the previous section. In this section, we briefly present alternative
strategies for inducing decision trees.

Bottom-up induction of decision trees was first mentioned in [59]. The authors
propose a strategy that resembles agglomerative hierarchical clustering. The algo-
rithm starts with each leaf having objects of the same class. In that way, a k-class
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problem will generate a decision tree with k leaves. The key idea is to merge, recur-
sively, the two most similar classes in a non-terminal node. Then, a hyperplane is
associated to the newnon-terminal node,much in the sameway as in top-down induc-
tion of oblique trees (in [59], a linear discriminant analysis procedure generates the
hyperplanes). Next, all objects in the new non-terminal node are considered to be
members of the same class (an artificial class that embodies the two clustered classes),
and the procedure evaluates once again which are the two most similar classes. By
recursively repeating this strategy, we end up with a decision tree in which the more
obvious discriminations are done first, and themore subtle distinctions are postponed
to lower levels. Landeweerd et al. [59] propose using the Mahalanobis distance to
evaluate similarity among classes:

distM (i, j)2 = (μyi − μyj)
T �−1(μyi − μyj) (2.43)

where μyi is the mean attribute vector of class yi and � is the covariance matrix
pooled over all classes.

Some obvious drawbacks of this strategy of bottom-up induction are: (i) binary-
class problems provide a 1-level decision tree (root node and two children); such
a simple tree cannot model complex problems; (ii) instances from the same class
may be located in very distinct regions of the attribute space, harming the initial
assumption that instances from the same class should be located in the same leaf
node; (iii) hierarchical clustering and hyperplane generation are costly operations;
in fact, a procedure for inverting the covariance matrix in the Mahalanobis distance
is usually of time complexity proportional to O(n3).5 We believe these issues are
among the main reasons why bottom-up induction has not become as popular as top-
down induction. For alleviating these problems, Barros et al. [4] propose a bottom-up
induction algorithm named BUTIA that combines EM clustering with SVM clas-
sifiers. The authors later generalize BUTIA to a framework for generating oblique
decision trees, namelyBUTIF [5],which allows the application of different clustering
and classification strategies.

Hybrid induction was investigated in [56]. The ideia is to combine both bottom-up
and top-down approaches for building the final decision tree. The algorithm starts
by executing the bottom-up approach as described above until two subgroups are
achieved. Then, two centers (mean attribute vectors) and covariance information
are extracted from these subgroups and used for dividing the training data in a top-
down fashion according to a normalized sum-of-squared-error criterion. If the two
new partitions induced account for separated classes, then the hybrid induction is
finished; otherwise, for each subgroup that does not account for a class, recursively
executes the hybrid induction by once again starting with the bottom-up procedure.
Kim and Landgrebe [56] argue that in hybrid induction “It is more likely to converge
to classes of informational value, because the clustering initialization provides early

5 For inverting a matrix, the Gauss-Jordan procedure takes time proportional to O(n3). The fastest
algorithm for inverting matrices to date is O(n2.376) (the Coppersmith-Winograd algorithm).
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guidance in that direction, while the straightforward top-down approach does not
guarantee such convergence”.

Several studies attempted on avoiding the greedy strategy usually employed for
inducing trees. For instance, lookahead was employed for trying to improve greedy
induction [17, 23, 29, 79, 84]. Murthy and Salzberg [79] show that one-level looka-
head does not help building significantly better trees and can actually worsen the
quality of trees induced. A more recent strategy for avoiding greedy decision-tree
induction is to generate decision trees through evolutionary algorithms. The idea
involved is to consider each decision tree as an individual in a population, which
is evolved through a certain number of generations. Decision trees are modified by
genetic operators,which are performed stochastically.A thorough reviewof decision-
tree induction through evolutionary algorithms is presented in [6].

In a recent work, Basgalupp et al. [7] propose a decision-tree induction algorithm
(called Beam Classifier) that seeks to avoid being trapped in local-optima by doing
a beam search during the decision tree growth. A beam search algorithm keeps track
of w states rather than just one. It begins withw randomly generated states (decision
trees). At each step, all the successors of the w states are generated. If any successor
is a goal state, the algorithm halts. Otherwise, it selects the w best successors from
the complete list, discards the other states in the list, and repeats this loop until the
quality of the best current tree cannot be improved. An interesting fact regarding the
beam search algorithm is that if we set w = 1 we are actually employing the greedy
strategy for inducing decision trees.

Beam Classifier starts with n empty decision trees (root nodes), where n is the
number of data set attributes, and each root node represents an attribute. Then, the
algorithm selects the best w trees according to a given criterion, and each one is
expanded. For each expansion, the algorithm performs an adapted pre-order tree
search method, expanding recursively (for each attribute) the leaf nodes from left to
right. Thus, this expansion results in t new trees,

t =
w∑

i=1

|λi |∑

j=1

mi j (2.44)

where w is the beam-width and mi j is the number of available attributes6 at the j th
leaf node of the i th tree. Then, the algorithm selects once again the best w trees
considering a pool of p trees, p = w + t . This process is repeated until a stop
criterion is satisfied.

Other examples of non-greedy strategies for inducing decision trees include: (i)
using linear programming to complement greedy-induced decision trees [8]; (ii)
incremental and non-incremental restructuring of decision trees [118]; (iii) skewing
the data to simulate an alternative distribution in order to deal with problematic cases
for decision trees (e.g., the parity-like function) [86]; and (iv) anytime learning of
decision trees [31].

6 Nominal attributes are not used more than once in a given subtree.
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Even though a lot of effort has been employed in the design of a non-greedy
decision-tree induction algorithm, it is still debatable whether the proposed attempts
can consistently obtain better results than the greedy top-down framework. Most
of the times, the gain in performance obtained with a non-greedy approach is not
sufficient to compensate for the extra computational effort.

2.5 Chapter Remarks

In this chapter, we presented the main design choices one has to face when program-
ming a decision-tree induction algorithm. We gave special emphasis to the greedy
top-down induction strategy, since it is by far the most researched technique for
decision-tree induction.

Regarding top-down induction, we presented the most well-known splitting mea-
sures for univariate decision trees, as well as some new criteria found in the literature,
in an unified notation. Furthermore, we introduced some strategies for building deci-
sion trees withmultivariate tests, the so-called oblique trees. In particular, we showed
that efficient oblique decision-tree induction has to make use of heuristics in order
to derive “good” hyperplanes within non-terminal nodes. We detailed the strategy
employed in the OC1 algorithm [77, 80] for deriving hyperplanes with the help of
a randomized perturbation process. Following, we depicted the most common stop-
ping criteria and post-pruning techniques employed in classic algorithms such as
CART [12] and C4.5 [89], and we ended the discussion on top-down induction with
an enumeration of possible strategies for dealing with missing values, either in the
growing phase or during classification of a new instance.

We ended our analysis on decision trees with some alternative induction strate-
gies, such as bottom-up induction and hybrid-induction. In addition, we briefly
discussed work that attempt to avoid the greedy strategy, by either implementing
lookahead techniques, evolutionary algorithms, beam-search, linear programming,
(non-) incremental restructuring, skewing, or anytime learning. In the next chapters,
we present an overview of evolutionary algorithms and hyper-heuristics, and review
how they can be applied to decision-tree induction.
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Chapter 3
Evolutionary Algorithms and Hyper-Heuristics

Abstract This chapter presents the basic concepts of evolutionary algorithms (EAs)
and hyper-heuristics (HHs), which are computational techniques directly explored
in this book. EAs are well-known population-based metaheuristics. They have been
employed in artificial intelligence over several years with the goal of providing the
near-optimal solution for a problem that comprises a very large search space. A
general overview of EAs is presented in Sect. 3.1. HHs, in turn, are a recently new
field in the optimisation research area, in which a metaheuristic—often an EA, and
this is why these related concepts are reviewed together in this chapter—is used for
searching in the space of heuristics (algorithms), and not in the space of solutions,
like conventional metaheuristics. The near-optimal heuristic (algorithm) provided
by a HHs approach can be further employed in several distinct problems, instead of
relying on a new search process for each new problem to be solved. An overview of
HHs is given in Sect. 3.2.

Keywords Evolutionary algorithms · Evolutionary computation ·Metaheuristics ·
Hyper-heuristics

3.1 Evolutionary Algorithms

Evolutionary algorithms (EAs) are a collection of optimisation techniques whose
design is based on metaphors of biological processes. Fretias [20] defines EAs as
“stochastic search algorithms inspired by the process of neo-Darwinian evolution”,
and Weise [44] states that “EAs are population-based metaheuristic optimisation
algorithms that use biology-inspired mechanisms (…) in order to refine a set of
solution candidates iteratively”.

The idea surrounding EAs is the following. There is a population of individuals,
where each individual is a possible solution to a given problem. This population
evolves towards increasingly better solutions through stochastic operators. After the
evolution is completed, the fittest individual represents a “near-optimal” solution for
the problem at hand.
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For evolving individuals, an EA evaluates each individual through a fitness
function that measures the quality of the solutions that are being evolved. After
the evaluation of all individuals that are part of the initial population, the algorithm’s
iterative process starts. At each iteration, hereby called generation, the fittest indi-
viduals have a higher probability of being selected for reproduction to increase the
chances of producing good solutions. The selected individuals undergo stochastic
genetic operators, such as crossover and mutation, producing new offspring. These
new individuals will replace the current population of individuals and the evolution-
ary process continues until a stopping criterion is satisfied (e.g., until a fixed number
of generations is achieved, or until a satisfactory solution has been found).

There are several kinds of EAs, such as genetic algorithms (GAs), genetic
programming (GP), classifier systems (CS), evolution strategies (ES), evolutionary
programming (EP), estimation of distribution algorithms (EDA), etc. This chapter
will focus on GA and GP, the most commonly used EAs for data mining [19]. At
a high level of abstraction, GAs and GP can be described by the pseudocode in
Algorithm 1.

Algorithm 1 Pseudo-code for GP and GAs.
1: Create initial population
2: Calculate fitness of each individual
3: repeat
4: Select individuals based on fitness
5: Apply genetic operators to selected individuals, creating new individuals
6: Compute fitness of each new individual
7: Update the current population
8: until (stopping criteria) return Best individual

GAs, which were initially presented by Holland in his pioneering monograph
[25], are defined as:

(…) search algorithms based on the mechanics of natural selection and natural genetics.
They combine survival of the fittest among string structures [our italics] with a structured
yet randomized information exchange to form a search algorithmwith some of the innovative
flair of human search (p. 1).

Representation is a key issue in GAs, and while they are capable of solving a
great many problems, the use of fixed-length character strings may not work on a
variety of cases. John Koza, the researcher responsible for spreading the GP con-
cepts to the research community, argues in his text book on GP [26] that the initial
selection of string length limits the number of internal states of the system and also
limits what the system can learn. Moreover, he states that representation schemes
based on fixed-length character strings do not provide a convenient way of represent-
ing computational procedures or of incorporating iteration or recursion when these
capabilities are desirable or necessary to solve a given problem. Hence, he defines
GP as:
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(…) a paradigm that deals with the problem of representation in genetic algorithms by
increasing the complexity of the structures undergoing adaptation. In particular, the structures
undergoing adaptation in genetic programming are general, hierarchical computer programs
of dynamically varying size and shape (p. 73).

After analysing the definitions of GAs and GP, it is not hard to see why the type
of solution encoding in an EA is usually argued to determine the type of EA used. If
solutions are encoded in a fixed-length linear string, researchers claim a GA is being
used. Conversely, tree-encoding schemes usually imply the use of GP. Although
solution encoding can differentiate between GAs and GP, the main question perhaps
is not what the representation is (e.g. a linear string or a tree) but rather how the
representation is interpreted [4].

In this sense, Woodward [45] recommends defining GAs and GP according to the
genotype-phenotypemapping: if there is a one-to-onemapping, the EA in question is
a GA; if there is a many-to-one mapping, the EA is a GP. Nevertheless, this definition
is tricky. For instance, assume a feature selection problem in data mining, where an
individual (chromosome) consists of n genes, one for each attribute. Now assume
that each gene contains a real value in the range [0, 1], representing the probability
of the corresponding attribute being selected. Assume also that, for decoding a chro-
mosome, a threshold is predefined, and an attribute is selected only if the value of
its gene is larger than that threshold. In this case, we have a many-to-one mapping,
because there are many different genotypes (different arrays of probabilities) that
may be decoded into the same phenotype (the same set of selected features). This
particular many-to-one mapping does not indicate we are dealing with GP. Actually,
we can use the same set of genetic operators and remaining parameters of a typical
GA for this scenario. One may say that a good distinction between GAs and GP is
whether a solution encodes data only (GAs) or data and functions (GP).

We present in Chap.4 an EA that automatically designs decision-tree algorithms.
It encodes its individuals as integer vectors and employs the same set of genetic
operators and remaining parameters of a typical GA. However, it encodes both data
(values of parameters) and functions (design components of decision-tree algorithms
such as pruning methods). Given the difficulty in clearly defining whether the pro-
posed approach is a GA or a GP algorithm, we henceforth adopt the generic term
“evolutionary algorithm” when referring to our method. In the next few sections, we
review the basic concepts involved when designing an EA: (i) individual represen-
tation and population initialization; (ii) fitness function; and (iii) selection methods
and genetic operators.

3.1.1 Individual Representation and Population Initialization

The first step for designing an EA is to define how its individuals are going to be
represented (encoded). Since each individual is a target solution to the problem at

http://dx.doi.org/10.1007/978-3-319-14231-9_4
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hand, so if we want to discover the best decision-tree induction algorithm for a
given set of data sets, each individual should be a candidate decision-tree induction
algorithm.

It is during the step of deciding the individual encoding scheme that a link must
be created between the “real world” and the “evolutionary world” [16]. Thus, the
encoding scheme creates the bridge between the original optimisation problem and
the search space to be explored by the EA.

The objects that represent possible solutions within the context of the original
problem are referred to as phenotypes, whereas their encoding (the EA’s individuals)
are referred to as genotypes. Note that the phenotype search space may differ signifi-
cantly from the genotype search space. A genotype must be decoded so we can have
a clear notion of its performance as a candidate solution to the original problem.

Defining a suitable individual encoding scheme is not an easy task, and it may
be decisive for the success of the EA. As we will see in the next few sections, there
is a direct relation between individual representation and the genetic operators that
guide the evolutionary process. Finding suitable encoding schemes for the problem
at hand is a task that usually comes with practical experience and solid knowledge
on the application domain [31].

GA individuals, as previously seen, are encoded as fixed-length character strings
such as binary or integer vectors. GP individuals, on the other hand, are usually
represented in a tree-based scheme (a consequence of the GP definition by Koza).
Notwithstanding, there are also studies that encode GP individuals as linear struc-
tures, and even graphs [3]. In Fig. 3.1, we have a GP individual that comprises four
terminals (a,b,c,d) and three functions (OR, −, ×).

The initialization of individuals in a GA is usually completely random, i.e., a
random valuewithin the range of accepted values is generated for each gene (position
of the vector) of the individual’s genome. Nevertheless, domain knowledge may
be inserted in order to guarantee some robustness to the individuals of the initial
population.

The initialization of individuals in GP offers more possibilities due to its usually-
adopted tree structure. Koza [26] proposes two distinct methods (both in the context
of tree representation): full and grow. The full method works as follows: until the
maximum initial depth of the tree is reached, randomly choose non-terminals nodes;
when the maximum depth is reached, randomly choose terminal nodes. This method
leads to trees whose branches are of equal size. Alternatively, the grow method
allows the choice of either non-terminals and terminals (except for the root node
which is always a non-terminal). Hence, the trees generated may have irregular
shapes, because terminal nodes end the growth of the branch even if the maximum
depth has not yet been reached. The grow method is said to have serious weakness,
such as [27]: (i) the method picks all functions with equal likelihood; there is no
way to fine tune the preference of certain functions over others; (ii) the method does
not give the user much control over the tree structures generated; and (iii) while the
maximum depth parameter (or, alternatively, the maximum number of nodes) is used
as an upper bound on maximal tree depth, there is no appropriate way to create trees
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Fig. 3.1 A GP individual represented as: a a tree; b a linear structure and c a graph

with either a fixed or average tree size or depth. The full method, in turn, is criticized
for producing a very narrow range of tree structures.

A third option to generate trees is the ramped half-and-half method (RHH). It
is intended to enhance the diversity of individuals by generating, for each depth
level, half of the trees through the grow method and half of the trees through the full
method. Burke et al. [7] draw some considerations on the bias of the RHH method,
though most of their analysis is inconclusive. The only known fact is that RHH tends
to generate more trees through the full method. This occurs because duplicates are
typically not allowed, and the grow method tends to generate smaller trees (hence it
is more susceptible to generate duplicates).

Other tree-generation algorithms for genetic programming include probabilistic
tree-creation 1 and 2 (PTC 1 and PTC 2) [27],RandomBranch [12] and exact uniform
initialization [6], just to name a few.

3.1.2 Fitness Function

After initializing the population, an EA evaluates the goodness of each individual. A
fitness function is responsible for evaluating how well an individual solves the target
problem. It is mainly problem-dependent, i.e., different problems tend to demand
different fitness functions. For instance, in a problem where each individual is a
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decision tree, an interesting fitness function could be the accuracy of the given tree
in a training/validation data set. Similarly, if the individual is a decision-tree induc-
tion algorithm, an interesting fitness function could take into account both the time
complexity of the individual and the performance of the trees it generates for a set
of data sets. Good individuals have a higher probability of being selected for repro-
duction, crossover and mutation (detailed in Sect. 3.1.3), and thus have their genetic
material perpetuated through the evolutionary process.

One of the advantages EAs is that their “black-box” character makes only few
assumptions about the underlying fitness functions. In other words, the definition of
fitness functions usually requires lesser insight to the structure of the problem space
than the manual construction of an admissible heuristic. This advantage enables EAs
to perform consistently well in many different problem domains [44]. Regarding
the machine learning context, many algorithms are only capable of evaluating partial
solutions [20]. For instance, a conventional greedy decision-tree induction algorithm
incrementally builds a decision tree by partitioning one node at a time. When the
algorithm is evaluating several candidate divisions, the tree is still incomplete, being
just a partial solution, so the decision tree evaluation function is somewhat short-
sighted. A GP can evaluate the candidate solution as a whole, in a global fashion,
through its fitness function.

The fitness evaluation can be carried out by searching for individuals that optimise
a single measure (i.e., single-objective evaluation), or by optimising multiple objec-
tives (i.e., multi-objective evaluation). Multi-objective evaluation is quite useful in
the context of machine learning. For instance, it is often desirable to obtain decision
trees that are both accurate and comprehensible, in the shortest space of time. Several
approaches for handling multi-objective problems were proposed in the literature,
such as the weighted-formula, Pareto dominance, and the lexicographic analysis
[13, 14].

3.1.3 Selection Methods and Genetic Operators

After evaluating each individual, a selection method is employed for deciding which
individuals will undergo reproduction, crossover and mutation. Some well-known
selectionmethods are fitness-proportional selection, tournament selection, and linear
ranking selection [2, 5].

In fitness-proportional selection, each individual i has probability pi of being
selected, which is proportional to its relative fitness, i.e., pi = f (i)/

∑I
j=1 f ( j),

where f (.) is the fitness function and I is the total number of individuals in the GP
population. In tournament selection, t individuals are selected at random from the
population and the best individual from this t-group is selected. A common value for
tournament size t is 2 [24]. In linear ranking selection, individuals are first ranked
according to their fitness and then selected based on the value of their rank positions.
Thismethodovercomes the scaling problemsof fitness-proportional assignment, e.g.,
premature convergence when few individuals with very high fitness values dominate
the rest of the population.
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Once the individuals have been selected, they undergo genetic operators such as
reproduction (individual is cloned into the next generation), crossover (swapping of
genetic material from two individuals, generating offspring) and mutation (modifi-
cation of the genetic material of an individual).

There are many different ways to implement the crossover and mutation opera-
tors, and they also vary according to the individual encoding scheme. The standard
EA crossover works by recombining the genetic material of two parent individuals,
resulting in the generation of two children. For GAs, the most widely-used crossover
strategies are one-point crossover, two-point crossover, and uniform crossover. In
one-point crossover, the parents’ linear strings are divided into two parts (according
to the selected “point”), and the offspring is generated by using alternate parts of the
parents. In two-point crossover, the rationale is the same but this time the string is
divided into three, according to two distinct “points”. Finally, uniform crossover is
performed by swapping the parents genes in a per-gene fashion, given a swap prob-
ability. Figure3.2 depicts these three crossover strategies usually adopted by GAs.

Mutation in linear genomes is usually performed in a per-gene basis, though there
are exceptions such as the flip bit mutation, in which a binary vector is inverted (1
is changed to 0, and 0 is changed to 1). Usually, either a particular gene is selected
to undergo mutation, or the entire genome is traversed and each gene has a proba-
bility of undergoing mutation. In integer and float genomes, operators such as non-
uniform, uniform, and Gaussian mutation may be employed. Non-uniform mutation
is employed with higher probability in the initial steps of evolution, to avoid the
population from stagnating, and with lower probability in the later stages, only to

(a)

(b)

(c)

Fig. 3.2 Crossover strategies for linear strings: a one-point crossover; b two-point crossover; and
c uniform crossover
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fine-tune the individuals. Uniform mutation replaces the value of each gene with a
random uniform value selected within the gene’s range. Finally, Gaussian mutation
adds a unit Gaussian-distributed random value to the chosen gene, and values outside
the gene’s boundaries are clipped.

In tree-based encoding schemes (GP), crossover occurs by swapping randomly
chosen subtrees from the twoparents. Regardingmutation, the standard approach is to
replace a randomly selected individual’s subtree by a randomly generated one. Even
though crossover is the predominant operator in GP systems [3], there is a large
controversy whether GP crossover is a constructive operator or a disruptive one.
A constructive operator propagates good genetic material (good building blocks),
increasing the quality of individuals across generations. A disruptive operator is
a search strategy that mostly harms good solutions instead of improving them. In
short, since GP crossover swaps subtrees from random positions in the tree, the
larger the “good” building block contained in a tree, the higher the probability of it
being disrupted after future crossover operations. This is the main reason for some
researchers to claim that standard GP crossover is in fact a macromutation operator.1

As a result of this controversy, new intelligent (context-aware, semantically-based,
etc.) crossover operators are suggested for avoiding the negative effect of standard
GP crossover (see, for instance, [28, 29, 41]).

3.2 Hyper-Heuristics

Metaheuristics such as tabu search, simulated annealing, and EAs, are well-known
for their capability of providing effective solutions for optimisation problems. Nev-
ertheless, they require expertise to be properly adopted for solving problems from
a particular application domain. Moreover, there are drawbacks that prevent meta-
heuristics to be easily applied to newly encountered problems, or even new instances
of known problems. These drawbacks arise mainly from the large range of parameter
or choices involved when using this type of approaches, and the lack of guidance as
to how to proceed for selecting them [11].

Hyper-heuristics (HHs) operate on a different level of generality frommetaheuris-
tics. Instead of guiding the search towards near-optimal solutions for a given prob-
lem, a HHs approach operates on the heuristic (algorithmic) level, guiding the search
towards the near-optimal heuristic (algorithm) that can be further applied to differ-
ent application domains. HHs are therefore assumed to be problem independent and
can be easily utilised by experts and non-experts as well [35]. A hyper-heuristic can
be seen as a high-level methodology which, when faced with a particular problem
instance or class of instances, and a number of low-level heuristics (or algorithm’s

1 For instance, Angeline [1] argues that the lack of performance of standard GP crossover (in com-
parison to some types of macromutations) indicates that it is, in effect, more accurately described as
a population-limited macromutation operation rather than an operation consistent with the building
block hypothesis.
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Fig. 3.3 Metaheuristics versus hyper-heuristics

design components), automatically designs a suitable combination of the provided
components to effectively solve the respective problem(s) [11].

Figure3.3 illustrates the different generality levels in which metaheuristics and
hyper-heuristics work in. Note that whereas metaheuristics perform the search in
the space of candidate solutions, hyper-heuristics perform the search in the space
of candidate heuristics (algorithms), which in turn generate solutions for the prob-
lem at hand. To illustrate this rationale, let us compare two different evolutionary
approaches in decision-tree induction. In the first approach, an EA is used to evolve
the best decision tree for the postoperative-patient UCI data set [18]. In the second
approach, an EA is used to evolve the best decision-tree algorithm to be further
applied to medical data sets. Observe that, in the first approach, the EA works as
a metaheuristic, because it searches for the best decision-tree to the postoperative-
patient data. Therefore, the ultimate goal is to achieve an accurate decision tree for
this particular problem. In the second approach, the EA works as a hyper-heuristic,
because it searches for the best decision-tree algorithm, which in turn generates deci-
sion trees that can be applied to several different instances of medical applications.
Note that the second approach is problem independent—instead of generating a deci-
sion tree that is only useful for classifying patients from the postoperative-patient
data set, it generates a decision-tree algorithm that can be applied to several medical
data sets, including the postoperative patient one.

The term hyper-heuristic is reasonably new, as it first appeared in a conference
paper in 2000 [15], and in a journal paper in 2003 [8]. However, the methodology
surrounding HHs are not new. It can be traced back to as early as the 1960s, when
Fisher andThompson [17] proposed the combination of scheduling rules (also known
as priority or dispatching rules) for production scheduling, claiming that it would
outperform any of the rules taken separately. This pioneering work was developed in
a time when metaheuristics were not a mature research area. Even so, the proposed
learning approach based on probabilistic learning resembles a stochastic local-search
algorithm that operates in the space of scheduling rules sequences.
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Most of the hyper-heuristic research aims at solving typical optimisation prob-
lems, such as the previously-mentioned production scheduling problem [17, 32, 39,
42], and also educational timetabling [9, 10, 33, 37], 1D packing [30], 2D cutting
and packing [22], constraint satisfaction [40], and vehicle routing [21, 23].

Applications of hyper-heuristics in machine learning are not that frequent and
much more recent than optimisation applications. Examples of HHs approach in
machine learning include thework of Stanley andMiikkulainen [38], which proposes
an evolutionary system for optimising the neural network topology; the work of
Oltean [34], which proposes the evolution of evolutionary algorithms through a
steady-state linear genetic programming approach; the work of Pappa and Freitas
[36], covering the evolution of complete rule induction algorithms through grammar-
based genetic programming; and the work of Vella et al. [43], which proposes the
evolution of heuristic rules in order to select distinct split criteria in a decision-tree
induction algorithm. In Chap.4, we present a hyper-heuristic approach for evolving
complete decision-tree induction algorithms.

3.3 Chapter Remarks

In this chapter, we presented the basic concepts regarding EAs and HHs. First,
we showed the basic concepts of evolutionary computation from the perspective
of genetic algorithms and genetic programming, the two most employed EAs in
data mining and knowledge discovery [19]. In particular, we briefly described the
main individual representations (encoding schemes) for the design of an EA, and
also briefly discussed on the importance of fitness evaluation during the evolutionary
cycle. Furthermore, we detailed the most common selection methods and genetic
operators employed by researchers from this area.

In the second part of this chapter, we introduced the reader to hyper-heuristics.
More specifically, we defined the differences between a metaheuristic approach and
a hyper-heuristic approach, by providing an example that relates evolutionary algo-
rithms and decision-tree induction. In addition, we presented the origins of hyper-
heuristic research, and cited its main applications in the areas of optimisation and
machine learning.

In Chap.4, we present an approach for evolving full decision-tree induction algo-
rithms through a hyper-heuristic evolutionary algorithm.
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Chapter 4
HEAD-DT: Automatic Design
of Decision-Tree Algorithms

Abstract As presented in Chap.2, for the past 40 years researchers have attempted
to improve decision-tree induction algorithms, either by proposing new splitting cri-
teria for internal nodes, by investigating pruning strategies for avoiding overfitting,
by testing new approaches for dealing with missing values, or even by searching
for alternatives to the top-down greedy induction. Each new decision-tree induction
algorithm presents some (or many) of these strategies, which are chosen in order to
maximize performance in empirical analyses. Nevertheless, the number of different
strategies for the several components of a decision-tree algorithm is so vast after
these 40 years of research that it would be impracticable for a human being to test all
possibilities with the purpose of achieving the best performance in a given data set
(or in a set of data sets). Hence, we pose two questions for researchers in the area:
“is it possible to automate the design of decision-tree induction algorithms?”, and, if
so, “how can we automate the design of a decision-tree induction algorithm?” The
answer for these questions arose with the pioneering work of Pappa and Freitas [30],
which proposed the automatic design of rule induction algorithms through an evolu-
tionary algorithm.The authors proposed the use of a grammar-basedGPalgorithm for
building and evolving individuals which are, in fact, rule induction algorithms. That
approach successfully employs EAs to evolve a generic rule induction algorithm,
which can then be applied to solve many different classification problems, instead of
evolving a specific set of rules tailored to a particular data set. As presented inChap. 3,
in the area of optimisation this type of approach is named hyper-heuristics (HHs)
[5, 6]. HHs are search methods for automatically selecting and combining simpler
heuristics, resulting in a generic heuristic that is used to solve any instance of a given
optimisation problem. For instance, a HH can generate a generic heuristic for solving
any instance of the timetabling problem (i.e., allocation of any number of resources
subject to any set of constraints in any schedule configuration) whilst a conventional
EAwould just evolve a solution to one particular instance of the timetabling problem
(i.e., a predefined set of resources and constraints in a given schedule configuration).
In this chapter, we present a hyper-heuristic strategy for automatically designing
decision-tree induction algorithms, namely HEAD-DT (Hyper-Heuristic Evolution-
ary Algorithm for Automatically Designing Decision-Tree Algorithms). Section4.1
introduces HEAD-DT and its evolutionary scheme. Section4.2 presents the indi-
vidual representation adopted by HEAD-DT to evolve decision-tree algorithms, as
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well as information regarding each individual’s gene. Section4.3 shows the evolu-
tionary cycle of HEAD-DT, detailing its genetic operators. Section4.4 depicts the
fitness evaluation process in HEAD-DT, and introduces two possible frameworks
for executing HEAD-DT. Section4.5 computes the total size of the search space that
HEAD-DT is capable of traversing, whereas Sect. 4.6 discusses related work.

Keywords Automatic design ·Hyper-heuristic decision-tree induction ·HEAD-DT

4.1 Introduction

According to the definition by Burke et al. [7], “a hyper-heuristic is an automated
methodology for selecting or generating heuristics to solve hard computational
search problems”. Hyper-heuristics can automatically generate new heuristics suited
to a given problem or class of problems. This is carried out by combining com-
ponents or building-blocks of human-designed heuristics. The motivation behind
hyper-heuristics is to raise the level of generality at which search methodologies can
operate. In the context of decision trees, instead of searching through an EA for the
best decision tree to a given problem (regularmetaheuristic approach, e.g., [1, 2]), the
generality level is raised by searching for the best decision-tree induction algorithm
that may be applied to several different problems (hyper-heuristic approach).

HEAD-DT (Hyper-Heuristic Evolutionary Algorithm for Automatically Design-
ing Decision-Tree Algorithms) can be seen as a regular generational EA in which
individuals are collections of building blocks of top-down decision-tree induction
algorithms. Typical operators from EAs are employed, such as tournament selection,
mutually-exclusive genetic operators (reproduction, crossover, and mutation) and a
typical stopping criterion that halts evolution after a predefined number of genera-
tions. The evolution of individuals in HEAD-DT follows the scheme presented in
Fig. 4.1.

Fig. 4.1 HEAD-DT’s evolutionary scheme
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4.2 Individual Representation

Each individual in HEAD-DT is encoded as an integer vector, as depicted in Fig. 4.2,
and each gene has a different range of supported values. We divided the genes into
four categories, representing the major building blocks (design components) of a
decision-tree induction algorithm:

• split genes;
• stopping criteria genes;
• missing values genes;
• pruning genes.

4.2.1 Split Genes

The linear genome that encodes individuals in HEAD-DT holds two genes for the
split component of decision trees. These genes represent the design component that
is responsible for selecting the attribute to split the data in the current node of the
decision tree. Based on the selected attribute, a decision rule is generated for filtering
the input data in subsets, and the process continues recursively.

To model this design component, we make use of two different genes. The first
one, criterion, is an integer that indexes one of the 15 splitting criteria that are
implemented in HEAD-DT (see Table4.1). The most successful criteria are based
on Shannon’s entropy [36], a concept well-known in information theory. Entropy is a
unique function that satisfies the four axioms of uncertainty. It represents the average
amount of information when coding each class into a codeword with ideal length
according to its probability. Examples of splitting criteria based on entropy are global
mutual information (GMI) [18] and information gain [31]. The latter is employed by
Quinlan in his ID3 system [31]. However, Quinlan points out that information gain

Fig. 4.2 Linear-genome for
evolving decision-tree
algorithms
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Table 4.1 Split criteria
implemented in HEAD-DT

Criterion References

Information gain [31]

Gini index [4]

Global mutual information [18]

G statistic [26]

Mantáras criterion [24]

Hypergeometric distribution [25]

Chandra-Varghese criterion [9]

DCSM [10]

χ2 [27]

Mean posterior improvement [37]

Normalized gain [21]

Orthogonal criterion [15]

Twoing [4]

CAIR [11]

Gain ratio [35]

is biased towards attributes with many values, and thus proposes a solution named
gain ratio [35]. Gain ratio normalizes the information gain by the entropy of the
attribute being tested. Several variations of the gain ratio have been proposed, such
as the normalized gain [21].

Alternatives to entropy-based criteria are the class of distance-based measures.
These criteria evaluate separability, divergency, or discrimination between classes.
Examples are the Gini index [4], the twoing criterion [4], the orthogonality criterion
[15], among several others. We also implemented as options for HEAD-DT lesser-
known criteria such as CAIR [11] and mean posterior improvement [37], as well as
the more recent Chandra-Varghese [9] and DCSM [10], to enhance the diversity of
options for generating splits in a decision tree.

The second gene that controls the split component of a decision-tree algorithm
is binary split. It is a binary gene that indicates whether the splits of a decision
tree are going to be binary or multi-way. In a binary tree, every split has only two
outcomes, which means that nominal attributes with many categories are aggregated
into two subsets. In amulti-way tree, nominal attributes are divided according to their
number of categories—one edge (outcome) for each category. In both cases, numeric
attributes always partition the tree in two subsets, represented by tests att ≤ Δ and
att > Δ.
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4.2.2 Stopping Criteria Genes

The top-down induction of decision trees is recursive and it continues until a stopping
criterion (also known as pre-pruning) is satisfied. The linear genome in HEAD-DT
holds two genes for representing this design component: criterion and parameter.

The first gene, criterion, selects among the following five different strategies for
stopping the tree growth:

1. Reaching class homogeneity: when every instance that reaches a given node
belong to the same class, there is no reason to split this node any further. This
strategy can be the only single stopping criterion, or it can be combined with the
next four strategies;

2. Reaching the maximum tree depth: a parameter tree depth can be specified to
avoid deep trees. Range: [2, 10] levels;

3. Reaching the minimum number of instances for a non-terminal node: a parame-
ter minimum number of instances for a non-terminal node can be specified to
avoid/alleviate the data fragmentation problem in decision trees. Range: [1, 20]
instances;

4. Reaching the minimum percentage of instances for a non-terminal node: same as
above, but instead of the actual number of instances, a percentage of instances
is defined. The parameter is thus relative to the total number of instances in the
training set. Range: [1%, 10%] the total number of instances;

5. Reaching an accuracy threshold within a node: a parameter accuracy reached can
be specified for halting the growth of the tree when the accuracy within a node
(majority of instances) has reached a given threshold. Range: {70%, 75%, 80%,

85%, 90%, 95%, 99%} accuracy.
Gene parameter dynamically adjusts a value in the range [0, 100] to the corre-

sponding strategy. For example, if the strategy selected by gene criterion is reaching
the maximum tree depth, the following mapping function is executed:

param = (valuemod 9) + 2 (4.1)

This function maps from [0, 100] (variable value) to [2, 10] (variable param),
which is the desired range of values for the parameter of strategy reaching the max-
imum tree depth. Similar mapping functions are executed dynamically to adjust the
ranges of gene parameter.

4.2.3 Missing Values Genes

The next design component of decision trees that is represented in the linear genome
of HEAD-DT is the missing value treatment. Missing values may be an issue dur-
ing tree induction and also during classification. We make use of three genes to
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represent missing values strategies in different moments of the induction/deduction
process. During tree induction, there are two moments in which we need to deal with
missing values: splitting criterion evaluation (split gene), and instances distribution
(distribution gene). During tree deduction (classification), we may also have to deal
with missing values in the test set (classification gene).

During the split criterion evaluation in node t based on attribute ai , we imple-
mented the following strategies:

• Ignore all instances whose value of ai is missing [4, 17];
• Imputation of missing values with either the mode (nominal attributes) or the
mean/median (numeric attributes) of all instances in t [12];

• Weight the splitting criterion value (calculated in node t with regard to ai ) by the
proportion of missing values [34];

• Imputation of missing values with either the mode (nominal attributes) or the
mean/median (numeric attributes) of all instances in t whose class attribute is the
same of the instance whose ai value is being imputed.

For deciding which child node training instance x j should go to, considering a
split in node t over ai , we adopted the options:

• Ignore instance x j [31];
• Treat instance x j as if it has the most common value of ai (mode or mean),
regardless of the class [34];

• Treat instance x j as if it has the most common value of ai (mode or mean) con-
sidering the instances that belong to the same class than x j ;

• Assign instance x j to all partitions [17];
• Assign instance x j to the partition with largest number of instances [34];
• Weight instance x j according to the partition probability [22, 35];
• Assign instance x j to the most probable partition, considering the class of x j [23].

Finally, for classifying an unseen test instance x j , considering a split in node t
over ai , we used the strategies:

• Explore all branches of t combining the results [32];
• Take the route to the most probable partition (largest subset);
• Halt the classification process and assign instance x j to the majority class of node

t [34].

4.2.4 Pruning Genes

Pruning was originally conceived as a strategy for tolerating noisy data, though it
was found to improve decision tree accuracy in many noisy data sets [4, 31, 33].
It has now become an important part of greedy top-down decision-tree induction
algorithms. HEAD-DT holds two genes for this design component. The first gene,
method, indexes one of the five well-known approaches for pruning a decision tree



4.2 Individual Representation 65

Table 4.2 Pruning methods
implemented in HEAD-DT

Method References

Reduced-error pruning [33]

Pessimistic error pruning [33]

Minimum error pruning [8, 28]

Cost-complexity pruning [4]

Error-based pruning [35]

presented in Table4.2, and also the option of not pruning at all. The second gene,
parameter, is in the range [0, 100] and its value is again dynamically mapped by a
function according to the selected pruning method.

(1) Reduced-error pruning (REP) is a conceptually simple strategy proposed by
Quinlan [33]. It uses a pruning set (a part of the training set) to evaluate the goodness
of a given subtree from T . The idea is to evaluate each non-terminal node t with
regard to the classification error in the pruning set. If such an error decreases when
we replace the subtree T (t) rooted on t by a leaf node, then T (t) must be pruned.
Quinlan imposes a constraint: a node t cannot be pruned if it contains a subtree that
yields a lower classification error in the pruning set. The practical consequence of this
constraint is that REP should be performed in a bottom-up fashion. The REP pruned
tree T ′ presents an interesting optimality property: it is the smallest most accurate
tree resulting from pruning original tree T [33]. Besides this optimality property,
another advantage of REP is its linear complexity, since each node is visited only
once in T . A clear disadvantage is the need of using a pruning set, which means one
has to divide the original training set, resulting in less instances to grow the tree. This
disadvantage is particularly serious for small data sets. For REP, the parameter gene
is regarding the percentage of training data to be used in the pruning set (varying
within the interval [10%, 50%]).

(2) Also proposed by Quinlan [33], the pessimistic error pruning (PEP) uses the
training set for both growing and pruning the tree. The apparent error rate, i.e., the
error rate calculated over the training set, is optimistically biased and cannot be
used to decide whether pruning should be performed or not. Quinlan thus proposes
adjusting the apparent error according to the continuity correction for the binomial
distribution in order to provide a more realistic error rate. PEP is computed in a
top-down fashion, and if a given node t is pruned, its descendants are not examined,
which makes this pruning strategy quite efficient in terms of computational effort.
Esposito et al. [14] point out that the introduction of the continuity correction in the
estimation of the error rate has no theoretical justification, since it was never applied
to correct over-optimistic estimates of error rates in statistics. For PEP, the parameter
gene is the number of standard errors (SEs) to adjust the apparent error, in the set
{0.5, 1, 1.5, 2}.

(3) Originally proposed by Niblett and Bratko [28] and further extended in [8],
minimum error pruning (MEP) is a bottom-up approach that seeks to minimize the
expected error rate for unseen cases. It uses an ad-hoc parameter m for controlling
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the level of pruning. Usually, the higher the value of m, the more severe the pruning.
Cestnik and Bratko [8] suggest that a domain expert should set m according to the
level of noise in the data. Alternatively, a set of trees pruned with different values of
m could be offered to the domain expert, so he/she can choose the best one according
to his/her experience. ForMEP, the parameter gene comprises variablem, whichmay
range within [0, 100].

(4) Cost-complexity pruning (CCP) is the post-pruning strategy adopted by the
CART system [4]. It consists of two steps: (i) generate a sequence of increasingly
smaller trees, beginning with T and ending with the root node of T , by successively
pruning the subtree yielding the lowest cost complexity, in a bottom-up fashion; (ii)
choose the best tree among the sequence based on its relative size and accuracy
(either on a pruning set, or provided by a cross-validation procedure in the training
set). The idea within step 1 is that pruned tree Ti+1 is obtained by pruning the
subtrees that show the lowest increase in the apparent error (error in the training set)
per pruned leaf. Regarding step 2, CCP chooses the smallest tree whose error (either
on the pruning set or on cross-validation) is not more than one standard error (SE)
greater than the lowest error observed in the sequence of trees. For CCP, there are
two parameters that need to be set: the number of SEs (in the same range than PEP)
and the pruning set size (in the same range than REP).

(5) Error-based pruning (EBP) was proposed by Quinlan and it is implemented as
the default pruning strategy ofC4.5 [35]. It is an improvement over PEP, based on a far
more pessimistic estimate of the expected error. Unlike PEP, EBP performs a bottom-
up search, and it carries out not only the replacement of non-terminal nodes by leaves
but also grafting of subtree T (t) onto the place of parent t . For deciding whether to
replace a non-terminal node by a leaf (subtree replacement), to graft a subtree onto
the place of its parent (subtree raising) or not to prune at all, a pessimistic estimate of
the expected error is calculated by using an upper confidence bound. An advantage
of EBP is the new grafting operation that allows pruning useless branches without
ignoring interesting lower branches. A drawback of the method is the presence of
an ad-hoc parameter, CF. Smaller values of CF result in more pruning. For EBP, the
parameter gene comprises variable CF, which may vary within [1%, 50%].

4.2.5 Example of Algorithm Evolved by HEAD-DT

The linear genome of an individual in HEAD-DT is formed by the building blocks
described in the earlier sections: (split criterion, split type, stopping criterion,
stopping parameter, pruning strategy, pruning parameter, mv split, mv distribu-
tion, mv classification.) One possible individual encoded by that linear string is
[4, 1, 2, 77, 3, 91, 2, 5, 1], which accounts for Algorithm 1.
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Algorithm 1 Example of a decision-tree algorithm automatically designed by
HEAD-DT.
1: Recursively split nodes with the G statistics criterion;
2: Create one edge for each category in a nominal split;
3: Perform step 1 until class-homogeneity or the maximum tree depth of 7 levels ((77mod 9) + 2) is reached;
4: Perform MEP pruning with m = 91;

When dealing with missing values:
5: Distribute missing-valued instances to the partition with the largest number of instances;
6: Distribute missing values by assigning the instance to all partitions;
7: For classifying an instance with missing values, explore all branches and combine the results.

4.3 Evolution

The first step of HEAD-DT is the generation of the initial population, in which a
population of 100 individuals (default value) is randomly generated (generation of
random numbers within the genes’ acceptable range of values). Next, the popula-
tion’s fitness is evaluated based on the data sets that belong to the meta-training set.
The individuals then participate of a pairwise tournament selection procedure (t = 2
is the default parameter) for defining those that will undergo the genetic operators.
Individuals may participate in either uniform crossover, random uniform gene muta-
tion, or reproduction, the three mutually-exclusive genetic operators employed in
HEAD-DT (see Fig. 4.3).

Fig. 4.3 HEAD-DT’s genetic operators
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The uniform crossover is guided by a swap probability ps (default value = 0.5)
that ultimately indicates whether a child’s gene should come from parent A or from
parent B. Algorithm 2 depicts the pseudocode of the uniform crossover operator
implemented in HEAD-DT.

Algorithm 2 Uniform crossover employed by HEAD-DT.
1: Let A and B be two parents chosen by tournament selection;
2: Let C and D be the two resulting offspring;
3: for each gene g in genome do
4: Choose a uniform random real number u from [0,1];
5: if u ≤ ps then
6: //swap genes
7: C[g] = B[g];
8: D[g] = A[g];
9: else
10: //do not swap
11: C[g] = A[g];
12: D[g] = B[g];
13: end if
14: end for

The mutation operator implemented in HEAD-DT is the random uniform gene
mutation. It is guided by a replacement probability prep (default value= 0.5), which
dictates whether or not a gene’s value should be replaced by a randomly generated
value within the accepted range of the respective gene. Algorithm 3 depicts the
pseudocode of the random uniform gene mutation operator implemented in HEAD-
DT.

Algorithm 3 Random uniform gene mutation employed by HEAD-DT.
1: Let A be a single individual chosen by tournament selection;
2: Let B be the individual resulting from mutating A;
3: for each gene g in genome do
4: Choose a uniform random real number u from [0,1];
5: if u ≤ prep then
6: //mutate gene
7: Randomly generate a value v within the range accepted by g;
8: B[g] = v;
9: else
10: //do not mutate gene
11: B[g] = A[g]
12: end if
13: end for

Finally, reproduction is the operation that copies (clones) a given individual to
be part of the EA’s next generation in a straightforward fashion. A single parameter
p controls the mutually-exclusive genetic operators: crossover probability is given
by p, whereas mutation probability is given by (1 − p) − 0.05, and reproduction
probability is fixed in 0.05. For instance, if p = 0.9, then HEAD-DT is executed
with a crossover probability of 90%, mutation probability of 5% and reproduction
probability of 5%. HEAD-DT employs an elitist strategy, in which the best e%
individuals are kept from one generation to the next (e = 5% of the population is
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5.2. Distribute missing-valued instances to the partition
with the largest number of instances;

5.3. For classifying an instance, explore all branches and
combine the results;

Fig. 4.4 Evolution of individuals encoded as integer vectors

the default parameter). Evolution ends after a predefined number of generations is
achieved (100 generations is the default value), and the best individual returned by
HEAD-DT is then executed over the meta-test set, so its performance in unseen data
can be properly assessed.

Figure4.4 presents an example of how linear genomes are decoded into algo-
rithms, and how they participate of the evolutionary cycle. For decoding the individ-
uals, the building blocks (indexed components and their respective parameters) are
identified, and this information is passed to a skeleton decision-tree induction class,
filling the gaps with the selected building blocks.

4.4 Fitness Evaluation

During the fitness evaluation, HEAD-DT employs a meta-training set for assessing
the quality of each individual throughout evolution. Ameta-test set is used for assess-
ing the quality of the evolved decision-tree induction algorithm (the best individual
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in Fig. 4.1). There are two distinct frameworks for dealing with the meta-training and
test sets:

1. Evolving a decision-tree induction algorithm tailored to one specific data set.
2. Evolving a decision-tree induction algorithm from multiple data sets.

In the first case, named the specific framework, we have a specific data set for
which we want to design a decision-tree algorithm. The meta-training set comprises
the available training data from the data set at hand. The meta-test set comprises test
data (belonging to the samedata set)we have available for evaluating the performance
of the algorithm (see Fig. 4.5a). For example, suppose HEAD-DT is employed to
evolve the near-optimal decision-tree induction algorithm for the iris data set. In
such a scenario, both meta-training and meta-test sets comprise distinct data folds
from the iris data set.

In the second case, named the general framework, there are multiple data sets
composing the meta-training set, and possibly multiple (albeit different) data sets
comprising the meta-test set (see Fig. 4.5b). For example, suppose HEAD-DT is
employed to evolve the near-optimal algorithm for the problem of credit risk assess-
ment. In this scenario, the meta-training set may comprise public UCI data sets [16]
such as german credit and credit approval, whereas the meta-test set may comprise
particular credit risk assessment data sets the user desires to classify.

The general framework can be employed with two different objectives, broadly
speaking:

1. Designing a decision-tree algorithmwhose predictive performance is consistently
good in a wide variety of data sets. For such, the evolved algorithm is applied to
data sets with very different structural characteristics and/or from very distinct
application domains. In this scenario, the user chooses distinct data sets to be part
of the meta-training set, in the hope that evolution will be capable of generating
an algorithm that performs well in a wide range of data sets. Pappa [29] calls this
strategy “evolving robust algorithms”;

2. Designing a decision-tree algorithm that is tailored to a particular application
domain or to a specific statistical profile. In this scenario, the meta-training set
comprises data sets that share similarities, and so the evolved decision-tree algo-
rithm is specialized in solving a specific type of problem. Unlike the previous

(a) (b)

Fig. 4.5 Fitness evaluation schemes. a Fitness evaluation from one data set in the meta-training
set. b Fitness evaluation from multiple data sets in the meta-training set
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strategy, in this case we have to define a similarity criterion for creating spe-
cialized algorithms. We highlight the following similarity criteria: (i) choosing
data sets that share the same application domain (e.g., gene expression data); (ii)
choosing data sets with provenance resemblance (e.g., data sets generated from
data collected by a specific sensor); and (iii) choosing data sets with structural
resemblance (e.g., data sets with statistically-similar features and/or with similar
geometrical complexity [19, 20]).

In Fig. 4.5b, we can observe how the fitness evaluation of a decision-tree induction
algorithm evolved frommultiple data sets occurs. First, a given individual is mapped
into its corresponding decision-tree algorithm. Afterwards, each data set that belongs
to the meta-training set is divided into training and validation—typical values are
70% for training and 30% for validation [39]. The term “validation set” is used in
here instead of “test set” to avoid confusion with the meta-test set, and also due to the
fact that we are using the “knowledge” within these sets to reach for a better solution
(the same cannot be done with test sets, which are exclusively used for assessing the
performance of an algorithm).

After dividing each data set from the meta-training set into “training” and “vali-
dation”, a decision tree is induced for each training set available. For evaluating the
performance of these decision trees, we use the corresponding validation sets. Sta-
tistics regarding the performance of each decision tree are recorded (e.g., accuracy,
F-Measure, precision, recall, total number of nodes/leaves, etc.), and can be used
individually or combined as the fitness function of HEAD-DT. The simple average is
probably the most intuitive way of combining the values per data set, but other pos-
sible solutions are the median of the values, or their harmonic mean. Depending on
the data sets used in the meta-training set, the user may decide to give greater weight
of importance to a more difficult-to-solve data set than to an easier one, and hence a
weighted scheme may be a good solution when combining the data set values. Some
of these possibilities are discussed in Chap. 6.

A typical fitness function would be the average F-Measure of the decision trees
generated by a given individual for each data set from the meta-training set. F-
Measure (also known as F-score or F1 score) is the harmonic mean of precision and
recall:

precision = tp

tp + fp
(4.2)

recall = tp

tp + fn
(4.3)

fmeasure = 2 × precision × recall

precision + recall
(4.4)

Fitness = 1

n

n∑

i=1

fmeasurei (4.5)

http://dx.doi.org/10.1007/978-3-319-14231-9_6
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where tp (tn) is the number of true positives (negatives), fp (fn) is the number of false
positives (negatives), fmeasurei is the F-Measure obtained in data set i and n is the
total number of data sets in the meta-training set.

This formulation assumes that the classification problem at hand is binary,
i.e., composed by two classes: positive and negative. Nevertheless, it can be triv-
ially extended to multi-class problems. For instance, we can compute the mea-
sure for each class—assuming each class to be the “positive” class in turn—and
(weight-)average the per-class measures. Having in mind that we would like HEAD-
DT to perform well in both balanced and imbalanced data sets, we believe that the
average F-Measure is a more suitable fitness function than the average accuracy.

4.5 Search Space

To compute the search space reached by HEAD-DT, consider the linear genome pre-
sented in Sect. 4.2: (split criterion, split type, stopping criterion, stopping parameter,
pruning strategy, pruning parameter, mv split, mv distribution, mv classification).
There are 15 types of split criteria, 2 possible split types, 4 types of missing-value
strategies during split computation, 7 types of missing-value strategies during train-
ing data distribution, and 3 types of missing-value strategies during classification.
Hence, there are 15 × 2 × 4 × 7 × 3 = 2,520 possible different algorithms.

Now, let us analyse the combination of stopping criteria and their parameters.
There is the possibility of splitting until class homogeneity is achieved, and no para-
meter is needed (thus, 1 possible algorithm). There are 9 possible parameters when
the tree is grown until a maximum depth, and 20 when reaching a minimum number
of instances. Furthermore, there are 10 possible parameter values when reaching a
minimumpercentage of instances and 7when reaching an accuracy threshold. Hence,
there are 1+ 9+ 20+ 10+ 7 = 47 possible algorithms just by varying the stopping
criteria component.

Next, let us analyse the combination of pruning methods and their parameters.
REP pruning parameter may take up to 5 different values, whereas PEP pruning may
take up to 4. MEP can take up to 101 values, and EBP up to 50. Finally, CCP takes
up to 4 values for its first parameter and up to 5 values for its second. Therefore,
there are 5+ 4+ 101+ (4× 5) + 50 = 180 possible algorithms by just varying the
pruning component.

If we combine all the previously mentioned values, HEAD-DT currently searches
in the space of 2,520 × 47 × 180 = 21,319,200 algorithms. Now, just for the
sake of argument, suppose a single decision-tree induction algorithm takes about
10 s to produce a decision tree for a given (small) data set for which we want the
best possible algorithm. If we were to try all possible algorithms in a brute-force
approach, we would take 59,220h to find out the best possible configuration for that
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data set. That means ≈2,467 days or 6.75 years just to find out the best decision-tree
algorithm for a single (small) data set. HEAD-DT would take, in the worst case,
100,000s—10,000 individuals (100 individuals per generation, 100 generations)
times 10s. Thus HEAD-DT would take about 1,666min (27.7h) to compute the
(near-)optimal algorithm for that same data set, i.e., it is≈2,138 times faster than the
brute-force approach. In practice, this number is much smaller considering that indi-
viduals are not re-evaluated if not changed, and HEAD-DT implements reproduction
and elitism.

Of course there are no theoretic guarantees that the (near-)optimal algorithm found
by HEAD-DT within these 27.7h is going to be the same global optimal algorithm
provided by the brute-force approach after practically 7 years of computation, but
its use is justified by the time saved during the process.

4.6 Related Work

The literature in EAs for decision-tree induction is very rich (see, for instance, [3]).
However, the research community is still concerned with the evolution of deci-
sion trees for particular data sets instead of evolving full decision-tree induction
algorithms.

To the best of our knowledge, nowork to date attempts to automatically design full
decision-tree induction algorithms. The most related approach to the one presented
in this book is HHDT (Hyper-Heuristic Decision Tree) [38]. It proposes an EA for
evolving heuristic rules in order to determine the best splitting criterion to be used
in non-terminal nodes. It is based on the degree of entropy of the data set attributes.
For instance, it evolves rules such as IF (x % ≥ high) and (y % < low) THEN use
heuristic A, where x and y are percentages ranging within [0, 100], and high and
low are threshold entropy values. This rule has the following interpretation: if x %
of the attributes have entropy values greater or equal than threshold high, and if y %
of the attributes have entropy values below threshold low, then make use of heuristic
A for choosing the attribute that splits the current node. Whilst HHDT is a first
step to automate the design of decision-tree induction algorithms, it evolves a single
component of the algorithm (the choice of splitting criterion), and thus should be
further extended for being able to generate full decision-tree induction algorithms,
which is the case of HEAD-DT.

Another slightly related approach is the one presented by Delibasic et al. [13].
The authors propose a framework for combining decision-tree components, and test
80 different combination of design components on 15 benchmark data sets. This
approach is not a hyper-heuristic, since it does not present an heuristic to choose
among different heuristics. It simply selects a fixed number of component combina-
tions and test them all against traditional decision-tree algorithms (C4.5, CART, ID3
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and CHAID). We believe that employing EAs to evolve decision-tree algorithms is a
more robust strategy, since we can search for solutions in a much larger search space
(21 million possible algorithms in HEAD-DT, against 80 different algorithms in the
work of Delibasic et al. [13]).

Finally, the work of Pappa and Freitas [30] proposes a grammar-based genetic
programming approach (GGP) for evolving full rule induction algorithms. The results
showed that GGP could generate rule induction algorithms different from those
already proposed in the literature, and with competitive predictive performance.

4.7 Chapter Remarks

In this chapter, we presented HEAD-DT, a hyper-heuristic evolutionary algorithm
that automatically designs top-down decision-tree induction algorithms. The latter
have been manually improved for the last 40 years, resulting in a large number of
approaches for each of their design components. Since the human manual approach
for testing all possible modifications in the design components of decision-tree algo-
rithms would be unfeasible, we believe the evolutionary search of HEAD-DT con-
stitutes a robust and efficient solution for the problem.

HEAD-DT evolves individuals encoded as integer vectors (linear genome). Each
gene in the vector is an index to a design component or the value of its corresponding
parameter. Individuals are decoded by associating each integer to a design compo-
nent, and by mapping values ranging within [0, 100] to values in the correct range
according to the specified component. The initial populationof 100 individuals evolve
for 100 generations, in which individuals are chosen by a pairwise tournament selec-
tion strategy to participate of mutually-exclusive genetic operators such as uniform
crossover, random uniform gene mutation, and reproduction.

HEAD-DT may operate under two distinct frameworks: (i) evolving a decision-
tree induction algorithm tailored to one specific data set; and (ii) evolving a decision-
tree induction algorithm frommultiple data sets. In the first framework, the goal is to
generate a decision-tree algorithm that excels at a single data set (both meta-training
and meta-test sets comprise data from the same data set). In the second framework,
there are several distinct objectives that can be achieved, like generating a decision-
tree algorithm tailored to a particular application domain (say gene expression data
sets or financial data sets), or generating a decision-tree algorithm that is robust
across several different data sets (a good “all-around” algorithm).

Regardless of the framework being employed, HEAD-DT is capable of searching
in a space of more than 21 million algorithms. In the next chapter, we present sev-
eral experiments for evaluating HEAD-DT’s performance under the two proposed
frameworks. Moreover, we comment on the cost-effectiveness of automated algo-
rithm design in contrast to the manual design, and we show that the genetic search
performed by HEAD-DT is significantly better than a random search in the space of
21 million decision-tree induction algorithms.
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Chapter 5
HEAD-DT: Experimental Analysis

Abstract In this chapter, we present several empirical analyses that assess the
performance of HEAD-DT in different scenarios. We divide these analyses into
two sets of experiments, according to the meta-training strategy employed for auto-
matically designing the decision-tree algorithms. As mentioned in Chap.4, HEAD-
DT can operate in two distinct frameworks: (i) evolving a decision-tree induction
algorithm tailored to one specific data set (specific framework); or (ii) evolving a
decision-tree induction algorithm from multiple data sets (general framework). The
specific framework provides data from a single data set to HEAD-DT for both algo-
rithm design (evolution) and performance assessment. The experiments conducted
for this scenario (see Sect. 5.1) make use of public data sets that do not share a
common application domain. In the general framework, distinct data sets are used
for algorithm design and performance assessment. In this scenario (see Sect. 5.2),
we conduct two types of experiments, namely the homogeneous approach and the
heterogeneous approach. In the homogeneous approach, we analyse whether auto-
matically designing a decision-tree algorithm for a particular domain provides good
results.More specifically, the data sets that feedHEAD-DTduring evolution, and also
those employed for performance assessment, share a common application domain.
In the heterogeneous approach, we investigate whether HEAD-DT is capable of
generating an algorithm that performs well across a variety of different data sets,
regardless of their particular characteristics or application domain. We also discuss
about the theoretic and empirical time complexity of HEAD-DT in Sect. 5.3, and
we make a brief discussion on the cost-effectiveness of automated algorithm design
in Sect. 5.4. We present examples of algorithms which were automatically designed
by HEAD-DT in Sect. 5.5. We conclude the experimental analysis by empirically
verifying in Sect. 5.6 whether the genetic search is worthwhile.

Keywords Experimental analysis ·Specific framework ·General framework ·Cost-
effectiveness of automatically-designed algorithms
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Table 5.1 Summary of the data sets used in the experiments

Data # Instances # Attributes # Numeric # Nominal % Missing # Classes

set attributes attributes

Abalone 4,177 8 7 1 0.00 30

Anneal 898 38 6 32 0.00 6

Arrhythmia 452 279 206 73 0.32 16

Audiology 226 69 0 69 2.03 24

Bridges_version1 107 12 3 9 5.53 6

Car 1,728 6 0 6 0.00 4

Cylinder_bands 540 39 18 21 4.74 2

Glass 214 9 9 0 0.00 7

Hepatitis 155 19 6 13 5.67 2

Iris 150 4 4 0 0.00 3

kdd_synthetic 600 61 60 1 0.00 6

Segment 2,310 19 19 0 0.00 7

Semeion 1,593 265 265 0 0.00 2

Shuttle_landing 15 6 0 6 28.89 2

Sick 3,772 30 6 22 5.54 2

Tempdiag 120 7 1 6 0.00 2

Tep.fea 3,572 7 7 0 0.00 3

Vowel 990 13 10 3 0.00 11

Winequality_red 1,599 11 11 0 0.00 10

Winequality_white 4,898 11 11 0 0.00 10

5.1 Evolving Algorithms Tailored to One Specific Data Set

In this first set of experiments, we investigate the performance of HEAD-DT with
regard to the specific framework. For that, we employed 20 public data sets (see
Table5.1) that were collected from the UCI machine-learning repository1 [8]. We
compare the resulting decision-tree algorithms with the two most well-known and
widely-used decision-tree induction algorithms: C4.5 [11] and CART [4]. We report
the classification accuracy of the decision trees generated for each data set, as well
as the F-Measure, and the size of the decision tree (total number of nodes). All
results are based on the average of 10-fold cross-validation runs. Additionally, since
HEAD-DT is a non-deterministic method, we averaged the results of 5 different runs
(varying the random seed).

The baseline algorithms are configured with default parameters. We did not per-
form a parameter optimisation procedure in this set of experiments, given that we
are designing one algorithm per data set, and optimising a set of parameters for each

1 http://archive.ics.uci.edu/ml/.

http://archive.ics.uci.edu/ml/
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data set is not feasible. Thus, we employed typical values found in the literature of
evolutionary algorithms for decision-tree induction:

• Fitness-function: F-Measure;
• Population size: 100;
• Maximum number of generations: 100;
• Selection: tournament selection with size t = 2;
• Elitism rate: 5 individuals;
• Crossover: uniform crossover with 90% probability;
• Mutation: random uniform gene mutation with 5% probability;
• Reproduction: cloning individuals with 5% probability.

In order to provide some reassurance about the validity and non-randomness
of the obtained results, we present the results of statistical tests by following the
approach proposed by Demšar [7]. In brief, this approach seeks to compare multiple
algorithms on multiple data sets, and it is based on the use of the Friedman test with
a corresponding post-hoc test. The Friedman test is a non-parametric counterpart of
the well-known ANOVA, as follows. Let Rj

i be the rank of the jth of k algorithms on
the ith of N data sets. The Friedman test compares the average ranks of algorithms,
Rj = 1

N

∑
i Rj

i . The Friedman statistic is given by:

χ2
F = 12N

k(k + 1)

⎡

⎣
∑

j

R2
j − k(k + 1)2

4

⎤

⎦ , (5.1)

and it is distributed according to χ2
F with k − 1 degrees of freedom, when N and k

are big enough.
Iman and Davenport [9] showed that Friedman’s χ2

F is undesirably conservative
and derived an adjusted statistic:

Ff = (N − 1) × χ2
F

N × (k − 1) − χ2
F

(5.2)

which is distributed according to the F-distribution with k − 1 and (k − 1)(N − 1)
degrees of freedom.

If the null hypothesis of similar performances is rejected, thenwe proceedwith the
Nemenyi post-hoc test for pairwise comparisons. The performance of two classifiers
is significantly different if their corresponding average ranks differ by at least the
critical difference

CD = qα

√
k(k + 1)

6N
(5.3)

where critical values qα are based on the Studentized range statistic divided by
√
2.
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Table 5.2 Classification accuracy of CART, C4.5 and HEAD-DT

CART C4.5 HEAD-DT

Abalone 0.26 ± 0.02 0.22 ± 0.02 0.20 ± 0.02

Anneal 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.01

Arrhythmia 0.71 ± 0.05 0.65 ± 0.04 0.65 ± 0.04

Audiology 0.74 ± 0.05 0.78 ± 0.07 0.80 ± 0.06

bridges_version1 0.41 ± 0.07 0.57 ± 0.10 0.60 ± 0.12

Car 0.97 ± 0.02 0.93 ± 0.02 0.98 ± 0.01

Cylinder_bands 0.60 ± 0.05 0.58 ± 0.01 0.72 ± 0.04

Glass 0.70 ± 0.11 0.69 ± 0.04 0.73 ± 0.10

Hepatitis 0.79 ± 0.05 0.79 ± 0.06 0.81 ± 0.08

Iris 0.93 ± 0.05 0.94 ± 0.07 0.95 ± 0.04

kdd_synthetic 0.88 ± 0.00 0.91 ± 0.04 0.97 ± 0.03

Segment 0.96 ± 0.01 0.97 ± 0.01 0.97 ± 0.01

Semeion 0.94 ± 0.01 0.95 ± 0.02 1.00 ± 0.00

Shuttle_landing 0.95 ± 0.16 0.95 ± 0.16 0.95 ± 0.15

Sick 0.99 ± 0.01 0.99 ± 0.00 0.99 ± 0.00

Tempdiag 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Tep.fea 0.65 ± 0.02 0.65 ± 0.02 0.65 ± 0.02

Vowel 0.82 ± 0.04 0.83 ± 0.03 0.89 ± 0.04

Winequality_red 0.63 ± 0.02 0.61 ± 0.03 0.64 ± 0.03

Winequality_white 0.58 ± 0.02 0.61 ± 0.03 0.63 ± 0.03

Table5.2 shows the classification accuracy of C4.5, CART, and HEAD-DT. It
illustrates the average accuracy over the 10-fold cross-validation runs± the standard
deviation of the accuracy obtained in those runs (best absolute values in bold). It is
possible to see that HEAD-DT generates more accurate trees in 13 out of the 20 data
sets. CART provides more accurate trees in two data sets, and C4.5 in none. In the
remaining 5 data sets, no method was superior to the others.

To evaluate the statistical significance of the accuracy results, we calculated the
average rank for CART, C4.5 and HEAD-DT: 2.375, 2.2 and 1.425, respectively.
The average rank suggests that HEAD-DT is the best performing method regarding
accuracy. The calculation of Friedman’s χ2

F is given by:

χ2
F = 12 × 20

3 × 4

[
2.3752 + 2.22 + 1.4252 − 3 × 42

4

]
= 10.225 (5.4)

Iman’s F statistic is given by:

Ff = (20 − 1) × 10.225

20 × (3 − 1) − 10.225
= 6.52 (5.5)
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Critical value of F(k − 1, (k − 1)(n − 1)) = F(2, 38) for α = 0.05 is 3.25. Since
Ff > F0.05(2, 38) (6.52 > 3.25), the null-hypothesis is rejected. We proceed with
a post-hoc Nemenyi test to find which method provides better results. The critical
difference CD is given by:

CD = 2.343 ×
√

3 × 4

6 × 20
= 0.74 (5.6)

The difference between the average rank of HEAD-DT and C4.5 is 0.775, and
between HEAD-DT and CART is 0.95. Since both the differences are greater than
CD, the performance of HEAD-DT is significantly better than both C4.5 and CART
regarding accuracy.

Table5.3 shows the classification F-Measure of C4.5, CART and HEAD-DT. The
experimental results show that HEAD-DT generates better trees (regardless of the
class imbalance problem) in 16 out of the 20 data sets. CART generates the best tree
in two data sets, while C4.5 does not provide the best tree for any data set.

We calculated the average rank for CART, C4.5 and HEAD-DT: 2.5, 2.225 and
1.275, respectively. The average rank suggest that HEAD-DT is the best performing
method regarding F-Measure. The calculation of Friedman’s χ2

F is given by:

Table 5.3 Classification F-Measure of CART, C4.5 and HEAD-DT

CART C4.5 HEAD-DT

Abalone 0.22 ± 0.02 0.21 ± 0.02 0.20 ± 0.02

Anneal 0.98 ± 0.01 0.98 ± 0.01 0.99 ± 0.01

Arrhythmia 0.67 ± 0.05 0.64 ± 0.05 0.63 ± 0.06

Audiology 0.70 ± 0.04 0.75 ± 0.08 0.79 ± 0.07

Bridges_version1 0.44 ± 0.06 0.52 ± 0.10 0.56 ± 0.12

Car 0.93 ± 0.97 0.93 ± 0.02 0.98 ± 0.01

Cylinder_bands 0.54 ± 0.07 0.42 ± 0.00 0.72 ± 0.04

Glass 0.67 ± 0.10 0.67 ± 0.05 0.72 ± 0.09

Hepatitis 0.74 ± 0.07 0.77 ± 0.06 0.80 ± 0.08

Iris 0.93 ± 0.05 0.93 ± 0.06 0.95 ± 0.05

kdd_synthetic 0.88 ± 0.03 0.90 ± 0.04 0.97 ± 0.03

Segment 0.95 ± 0.01 0.96 ± 0.09 0.97 ± 0.01

Semeion 0.93 ± 0.01 0.95 ± 0.02 1.00 ± 0.00

Shuttle_landing 0.56 ± 0.03 0.56 ± 0.38 0.93 ± 0.20

Sick 0.98 ± 0.00 0.98 ± 0.00 0.99 ± 0.00

Tempdiag 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Tep.fea 0.60 ± 0.02 0.61 ± 0.02 0.61 ± 0.02

Vowel 0.81 ± 0.03 0.82 ± 0.03 0.89 ± 0.03

Winequality_red 0.61 ± 0.02 0.60 ± 0.03 0.63 ± 0.03

Winequality_white 0.57 ± 0.02 0.60 ± 0.02 0.63 ± 0.03
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χ2
F = 12 × 20

3 × 4

[
2.52 + 2.2252 + 1.2752 − 3 × 42

4

]
= 16.525 (5.7)

Iman’s F statistic is given by:

Ff = (20 − 1) × 16.525

20 × (3 − 1) − 16.525
= 13.375 (5.8)

Since Ff > F0.05(2, 38) (13.375 > 3.25), the null-hypothesis is rejected. The
difference between the average rank of HEAD-DT and C4.5 is 0.95 and that between
HEAD-DT andCART is 1.225. Since both the differences are greater thanCD (0.74),
the performance of HEAD-DT is significantly better than both C4.5 and CART
regarding F-Measure.

Table5.4 shows the size of trees generated byC4.5, CARTandHEAD-DT.Results
show that CART generates smaller trees in 15 out of the 20 data sets. C4.5 generates
smaller trees in 2 data sets, andHEAD-DT in only one data set. The statistical analysis
is given as follows:

Table 5.4 Tree size of CART, C4.5 and HEAD-DT trees

CART C4.5 HEAD-DT

Abalone 44.40 ± 16.00 2088.90 ± 37.63 4068.12 ± 13.90

Anneal 21.00 ± 3.13 48.30 ± 6.48 55.72 ± 3.66

Arrhythmia 23.20 ± 2.90 82.60 ± 5.80 171.84 ± 5.18

Audiology 35.80 ± 11.75 50.40 ± 4.01 118.60 ± 3.81

Bridges_version1 1.00 ± 0.00 24.90 ± 20.72 156.88 ± 14.34

Car 108.20 ± 16.09 173.10 ± 6.51 171.92 ± 4.45

Cylinder_bands 4.20 ± 1.03 1.00 ± 0.00 211.44 ± 9.39

Glass 23.20 ± 10.56 44.80 ± 5.20 86.44 ± 3.14

Hepatitis 6.60 ± 8.58 15.40 ± 4.40 71.80 ± 4.77

Iris 6.20 ± 1.69 8.00 ± 1.41 20.36 ± 1.81

kdd_synthetic 1.00 ± 0.00 37.80 ± 4.34 26.16 ± 2.45

Segment 78.00 ± 8.18 80.60 ± 4.97 132.76 ± 3.48

Semeion 34.00 ± 12.30 55.00 ± 8.27 19.00 ± 0.00

Shuttle_landing 1.00 ± 0.00 1.00 ± 0.00 5.64 ± 1.69

Sick 45.20 ± 11.33 46.90 ± 9.41 153.70 ± 8.89

Tempdiag 5.00 ± 0.00 5.00 ± 0.00 5.32 ± 1.04

Tep.fea 13.00 ± 2.83 8.20 ± 1.69 18.84 ± 1.97

Vowel 175.80 ± 23.72 220.70 ± 20.73 361.42 ± 5.54

Winequality_red 151.80 ± 54.58 387.00 ± 26.55 796.00 ± 11.22

Winequality_white 843.80 ± 309.01 1367.20 ± 58.44 2525.88 ± 13.17
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χ2
F = 12 × 20

3 × 4

[
1.22 + 22 + 2.82 − 3 × 42

4

]
= 25.6 (5.9)

Ff = (20 − 1) × 33.78

20 × (3 − 1) − 25.6
= 33.78 (5.10)

Since Ff > F0.05(2, 38) (33.78 > 3.25), the null-hypothesis is rejected. The
difference between the average rank of HEAD-DT and C4.5 is 0.8 and that between
HEAD-DT and CART is 1.6. Since both the differences are greater than CD (0.74),
HEAD-DT generates trees which are significantly larger than both C4.5 and CART.
This should not be a concern, since smaller trees are only preferable in scenarios
where the predictive performance of the algorithms is similar.

The statistical analysis previously presented clearly indicates that HEAD-DT gen-
erates algorithms whose trees outperform C4.5 and CART regarding predictive per-
formance. The Occam’s razor assumption that among competitive hypotheses, the
simpler is preferred, does not apply to this case.

5.2 Evolving Algorithms from Multiple Data Sets

In this section, we evaluate the performance of HEAD-DT when evolving a single
algorithm from multiple data sets (the general framework). More specifically, we
divide this experiment into two scenarios: (i) evolving a single decision-tree algorithm
for data sets from a particular application domain (homogeneous approach); and (ii)
evolving a single decision-tree algorithm for a variety of data sets (heterogeneous
approach).

In both cases, we need to establish the methodology to select the data sets that will
compose the meta-training and meta-test sets. Hence, we developed the following
selectionmethodology: randomly choose 1 data set from the available set to be part of
the meta-training set; then, execute HEAD-DTwith the selected data set in the meta-
training set and the remaining data sets in the meta-test set; for the next experiment,
select two additional data sets that were previously part of the meta-test set, and
move them to the meta-training set, that now comprises 3 data sets. This procedure
is repeated until we have 9 data sets being part of the meta-training set.

Considering that HEAD-DT is a regular generational EA (as depicted in Fig. 4.1),
the following parameters have to be chosen prior to evolution: (i) population size;
(ii) maximum number of generations; (iii) tournament selection size; (iv) elitism
rate; (v) reproduction probability; (vi) crossover probability; and (vii) mutation
probability.

For parameters (i)–(iv), we defined values commonly used in the literature of
evolutionary algorithms for decision-tree induction [2], namely: 100 individuals,
100 generations, tournament between 2 individuals, 5% of elitism. For the remaining
parameters, since the selected individualswill undergo either reproduction, crossover
or mutation (mutually exclusive operators), we employ the single parameter p that
was previously presented in Chap.4, Sect. 4.3.

http://dx.doi.org/10.1007/978-3-319-14231-9_4
http://dx.doi.org/10.1007/978-3-319-14231-9_4
http://dx.doi.org/10.1007/978-3-319-14231-9_4
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For both homogeneous and heterogeneous approaches, we performed a tuning
procedure varying p within {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. In this tuning
procedure, we employed a particular set of data sets to be part of the parameter
optimisation group in order to evaluate the “optimal” value of p. Note that the aim of
the parameter optimisation procedure is not to optimise the parameters for a particular
data set, but to find robust values that work well across the tuning data sets. We then
use the robust value of p found in the procedure in another set of data sets that were
selected to be part of the experiments. This evaluates the generalisation ability of p
across new data sets, unused for parameter tuning, as usual in supervised machine
learning.

Also for both approaches, the fitness function employed byHEAD-DT is the aver-
age F-Measure of the data sets belonging to the meta-training set. To evaluate the
performance of the best algorithm evolved by HEAD-DT, we performed a 10-fold
cross-validation procedure for each data set belonging to the meta-test set, record-
ing the accuracy and F-Measure achieved by each of the corresponding decision
trees. Additionally, to mitigate the randomness effect of evolutionary algorithms, we
average the results of 5 different runs of HEAD-DT.

In this framework, we once again make use of CART and C4.5 as the baseline
algorithms in the experimental analysis. We employ their java versions available
from the Weka machine learning toolkit [14] under the names of SimpleCART and
J48. Moreover, we also compare HEAD-DT with the REPTree algorithm, which is a
variation of C4.5 that employs reduced-error pruning, also available from the Weka
toolkit.

For all baseline algorithms, we employ their default parameters, since they were
carefully optimised by their respective authors throughout several years. Note that, in
the supervised machine learning literature, the common approach is to find the opti-
mal parameters for being used in a variety of distinct data sets, instead of optimising
the algorithm for each specific data set.

5.2.1 The Homogeneous Approach

In this set of experiments, we assess the relative performance of the algorithm auto-
matically designed by HEAD-DT for data sets from a particular application domain.
More specifically, we make use of 35 publicly-available data sets from microarray
gene expression data, described in [12]. In brief, microarray technology enables
expression level measurement for thousands of genes in parallel, given a biological
tissue of interest. Once combined, results from a set of microarray experiments pro-
duce a gene expression data set. The data sets employed here are related to different
types or subtypes of cancer, e.g., patients with prostate, lung, skin, and other types
of cancer. The classification task refers to labeling different examples (instances)
according to their gene (attribute) expression levels. The main structural character-
istics of the 35 datasets are summarized in Table5.5.
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Table 5.5 Summary of the 35 Gene Expression data sets

Data set Chip # Instances # Attributes IR # Classes

Parameter
optimisation

Armstrong-v2 Affy 72 2193 1.40 3

Bredel cDNA 50 1,738 6.20 3

Dyrskjot Affy 40 1,202 2.22 3

Garber cDNA 66 4,552 10.00 4

Golub-v2 Affy 72 1,867 4.22 3

Gordon Affy 181 1,625 4.84 2

Khan cDNA 83 1,068 2.64 4

Laiho Affy 37 2,201 3.63 2

Pomeroy-v2 Affy 42 1,378 2.50 5

Ramaswamy Affy 190 1,362 3.00 14

Su Affy 174 1,570 4.67 10

Tomlins-v2 cDNA 92 1,287 2.46 4

Yeoh-v1 Affy 248 2,525 4.77 2

Yeoh-v2 Affy 248 2,525 5.27 6

Experiments Alizadeh-v1 cDNA 42 1,094 1.00 2

Alizadeh-v2 cDNA 62 2,092 4.67 3

Alizadeh-v3 cDNA 62 2,092 2.33 4

Armstrong-v1 Affy 72 1,080 2.00 2

Bhattacharjee Affy 203 1,542 23.17 5

Bittner cDNA 38 2,200 1.00 2

Chen cDNA 179 84 1.39 2

Chowdary Affy 104 181 1.48 2

Golub-v1 Affy 72 1,867 1.88 2

Lapointe-v1 cDNA 69 1,624 3.55 3

Lapointe-v2 cDNA 110 2,495 3.73 4

Liang cDNA 37 1,410 9.34 3

Nutt-v1 Affy 50 1,376 2.14 4

Nutt-v2 Affy 28 1,069 1.00 2

Nutt-v3 Affy 22 1,151 2.14 2

Shipp-v1 Affy 77 797 3.05 2

Pomeroy-v1 Affy 34 856 2.78 2

Risinger cDNA 42 1,770 6.33 4

Singh Affy 102 338 1.04 2

Tomlins-v1 cDNA 104 2,314 2.67 5

West Affy 49 1,197 1.04 2

For each data set, we present type of microarray chip, the total number of instances, total number
of attributes, imbalanced ratio (rate between over- and under-represented class), and total number
of classes
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It is important to point out that microarray technology is generally available in
two different types of platforms: single-channel microarrays (e.g., Affymetrix) or
double-channel microarrays (e.g., cDNA). The type of microarray chip from each
data set is in the second column of Table5.5. Measurements of Affymetrix arrays
are estimates on the number of RNA copies found in the cell sample, whereas cDNA
microarrays values are ratios of the number of copies in relation to a control cell
sample. As in [12], all genes with expression level below 10 are set to a minimum
threshold of 10 in the Affymetrix data. The maximum threshold is set to 16,000. This
is because values below or above these thresholds are often said to be unreliable
[10]. Thus, the experimental analysis is performed on the scaled data to which the
ceiling and threshold values have been applied. Still for the case of Affymetrix data,
the following procedure is applied in order to remove uninformative genes: for each
gene j (attribute), compute themeanmj among the samples (instances). In order to get
rid of extreme values, the first 10% largest and smallest values are discarded. Based
on such a mean, every value xij of gene i and sample j is transformed as follows:
yij = log2(xij/mj). We then selected genes with expression levels differing by at
least l-fold in at least c samples from their mean expression level across the samples.
With few exceptions, the parameters l and c were selected in order to produce a
filtered data set with at least 10% of the original number of genes.2 It should be
noticed that the transformed data is only used in the filtering step. A similar filtering
procedure was applied for the cDNA data, but without the log transformation. In the
case of cDNA microarray data sets, genes with more than 10% of missing values
were discarded. The remaining genes that still presented missing values had them
replaced by its respective mean value.

Note that we randomly divided the 35 data sets into two groups: parameter opti-
misation and experiments. The 14 data sets in the parameter optimisation group
are used for tuning the evolutionary parameters of HEAD-DT. The remaining 21
data sets from the experiments group are used for evaluating the performance of the
algorithms automatically designed by HEAD-DT.

Following the selectionmethodology previously presented, the 14 parameter opti-
misation data sets are arranged in 5 different experimental configurations {#training
sets, #test sets}: {1× 13}, {3× 11}, {5× 9}, {7× 7}, and {9× 5}. Similarly, the
21 data sets in the experiments group are arranged in also 5 different experimental
configurations {#training sets, #test sets}: {1× 20}, {3× 18}, {5× 16}, {7× 14},
and {9× 12}. Table5.6 presents the randomly selected data sets according to the
configurations detailed.

5.2.1.1 Parameter Optimisation

Table5.7 presents the results of the tuning experiments. We present the average
ranking of each version of HEAD-DT (H-p) in the corresponding experimental

2 The values of l and c for each data set can be found at http://algorithmics.molgen.mpg.de/Static/
Supplements/CompCancer/datasets.htm.

http://algorithmics.molgen.mpg.de/Static/Supplements/CompCancer/datasets.htm
http://algorithmics.molgen.mpg.de/Static/Supplements/CompCancer/datasets.htm
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Table 5.7 Results of the tuning experiments for the homogeneous

Configuration Rank H-0.1 H-0.2 H-0.3 H-0.4 H-0.5 H-0.6 H-0.7 H-0.8 H-0.9

{1× 13} Accuracy 5.73 4.23 4.54 4.92 5.19 4.42 5.31 5.62 5.04

F-measure 6.15 4.85 4.31 5.00 5.12 4.12 4.75 5.62 5.08

{3× 11} Accuracy 4.91 4.41 4.59 4.45 4.68 5.27 5.64 5.64 5.41

F-measure 4.68 4.45 4.09 4.59 5.05 5.95 5.27 6.14 4.77

{5× 9} Accuracy 5.11 6.17 5.22 6.28 4.28 5.11 4.61 3.44 4.77

F-measure 4.72 6.06 4.72 6.06 4.00 5.67 4.89 3.89 5.00

{7× 7} Accuracy 6.07 7.43 4.71 6.50 4.86 3.36 3.79 3.50 4.79

F-measure 6.21 6.71 5.14 3.21 5.14 3.71 4.00 3.21 4.50

{9× 5} Accuracy 8.30 5.70 5.50 5.20 7.90 2.70 4.00 2.80 2.9

F-measure 7.10 5.60 5.60 4.90 6.70 3.50 4.50 4.20 2.90

Average 5.90 5.56 4.84 5.11 5.29 4.38 4.68 4.41 4.52

HEAD-DT is executed with different values of parameter p(H-p). Values are the average perfor-
mance (rank) of each HEAD-DT version in the corresponding meta-test set of tuning data sets,
according to either accuracy or F-Measure

configuration. For example, when H-0.1 makes use of a single data set for evolving
the optimal algorithm ({1× 13}), its performance in the remaining 13 data sets gives
H-0.1 the average rank position of 5.73 regarding the accuracy of its corresponding
decision trees, and 6.15 regarding F-Measure.

The Friedman and Nemenyi tests did not indicate any statistically significant
differences among the 9 distinct versions of HEAD-DT, either considering accuracy
or F-Measure, for any of the experimental configurations. This lack of significant
differences indicates that HEAD-DT is robust to different values of p. For selecting
the ideal value of p to employ in the experimental analysis, we averaged the results
across the different configurations, and also between the two different evaluation
measures, accuracy and F-Measure. Hence, we calculated the average of the average
ranks for eachH-p version across the distinct configurations and evaluationmeasures,
and the results are presented in the bottom of Table5.7. It is possible to see how
marginal are the differences among values of p ≥ 0.6. H-0.6 was then selected as
the optimised version of HEAD-DT, bearing in mind it presented the lowest average
of the average ranks (4.38).

In the next section, we present the results for the experimental analysis performed
over the 21 data sets in the experiments group, in which we compare H-0.6 (hereafter
called simply HEAD-DT) to the baseline algorithms.

5.2.1.2 Experimental Results

Tables5.8, 5.9, 5.10, 5.11 and 5.12 show the average values of accuracy and F-
Measure achieved by HEAD-DT, CART, C4.5, and REPTree in configurations
{1× 20}, {3× 18}, {5× 16}, {7× 14}, and {9× 12}. At the bottom of each table,
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Table 5.8 Results for the {1× 20} configuration

(a) Accuracy results

Data set HEAD-DT CART C4.5 REP

Alizadeh-2000-v1 0.77 ± 0.11 0.71 ± 0.16 0.68 ± 0.20 0.72 ± 0.19

Alizadeh-2000-v2 0.88 ± 0.06 0.92 ± 0.11 0.86 ± 0.15 0.84 ± 0.17

Alizadeh-2000-v3 0.71 ± 0.05 0.69 ± 0.15 0.71 ± 0.15 0.66 ± 0.13

Armstrong-2002-v1 0.90 ± 0.04 0.90 ± 0.07 0.89 ± 0.06 0.91 ± 0.07

Bhattacharjee-2001 0.90 ± 0.03 0.89 ± 0.10 0.89 ± 0.08 0.86 ± 0.06

Bittner-2000 0.61 ± 0.09 0.53 ± 0.18 0.49 ± 0.16 0.71 ± 0.22

Chen-2002 0.85 ± 0.04 0.85 ± 0.07 0.81 ± 0.07 0.79 ± 0.12

Chowdary-2006 0.95 ± 0.03 0.97 ± 0.05 0.95 ± 0.05 0.94 ± 0.06

Golub-1999-v1 0.88 ± 0.03 0.86 ± 0.07 0.88 ± 0.08 0.90 ± 0.10

Lapointe-2004-v1 0.66 ± 0.08 0.78 ± 0.18 0.71 ± 0.14 0.63 ± 0.09

Lapointe-2004-v2 0.62 ± 0.05 0.68 ± 0.19 0.57 ± 0.11 0.61 ± 0.15

Liang-2005 0.89 ± 0.09 0.71 ± 0.14 0.76 ± 0.19 0.78 ± 0.18

Nutt-2003-v1 0.53 ± 0.08 0.54 ± 0.19 0.50 ± 0.17 0.40 ± 0.21

Nutt-2003-v2 0.84 ± 0.08 0.77 ± 0.21 0.87 ± 0.17 0.45 ± 0.27

Pomeroy-2002-v1 0.88 ± 0.08 0.84 ± 0.17 0.88 ± 0.16 0.73 ± 0.10

Risinger-2003 0.58 ± 0.15 0.52 ± 0.15 0.53 ± 0.19 0.59 ± 0.21

Shipp-2002-v1 0.91 ± 0.05 0.77 ± 0.12 0.84 ± 0.16 0.77 ± 0.05

Singh-2002 0.78 ± 0.04 0.74 ± 0.14 0.78 ± 0.12 0.69 ± 0.15

Tomlins-2006 0.59 ± 0.07 0.58 ± 0.20 0.58 ± 0.18 0.58 ± 0.10

West-2001 0.89 ± 0.08 0.89 ± 0.11 0.84 ± 0.13 0.74 ± 0.19

Average rank 1.75 2.45 2.70 3.10

(b) F-Measure results

Data set HEAD-DT CART C4.5 REP

Alizadeh-2000-v1 0.77 ± 0.11 0.67 ± 0.21 0.63 ± 0.26 0.72 ± 0.19

Alizadeh-2000-v2 0.89 ± 0.06 0.92 ± 0.10 0.84 ± 0.17 0.80 ± 0.19

Alizadeh-2000-v3 0.71 ± 0.05 0.65 ± 0.18 0.68 ± 0.17 0.63 ± 0.12

Armstrong-2002-v1 0.90 ± 0.04 0.90 ± 0.07 0.88 ± 0.06 0.91 ± 0.08

Bhattacharjee-2001 0.89 ± 0.02 0.87 ± 0.12 0.89 ± 0.08 0.85 ± 0.07

Bittner-2000 0.61 ± 0.09 0.49 ± 0.21 0.45 ± 0.19 0.66 ± 0.28

Chen-2002 0.85 ± 0.04 0.85 ± 0.07 0.81 ± 0.07 0.78 ± 0.13

Chowdary-2006 0.95 ± 0.03 0.97 ± 0.05 0.95 ± 0.05 0.94 ± 0.07

Golub-1999-v1 0.88 ± 0.03 0.86 ± 0.07 0.87 ± 0.08 0.90 ± 0.10

Lapointe-2004-v1 0.64 ± 0.10 0.73 ± 0.20 0.68 ± 0.15 0.50 ± 0.13

Lapointe-2004-v2 0.62 ± 0.05 0.66 ± 0.20 0.58 ± 0.10 0.57 ± 0.15

Liang-2005 0.87 ± 0.10 0.67 ± 0.21 0.77 ± 0.22 0.71 ± 0.23

Nutt-2003-v1 0.53 ± 0.08 0.48 ± 0.19 0.46 ± 0.16 0.31 ± 0.22

Nutt-2003-v2 0.84 ± 0.08 0.73 ± 0.26 0.87 ± 0.17 0.34 ± 0.31

Pomeroy-2002-v1 0.87 ± 0.10 0.79 ± 0.22 0.85 ± 0.20 0.62 ± 0.14

(continued)
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Table 5.8 (continued)

(b) F-Measure results

Data set HEAD-DT CART C4.5 REP

Risinger-2003 0.56 ± 0.15 0.48 ± 0.19 0.53 ± 0.21 0.52 ± 0.25

Shipp-2002-v1 0.90 ± 0.05 0.75 ± 0.13 0.83 ± 0.17 0.70 ± 0.10

Singh-2002 0.78 ± 0.04 0.72 ± 0.18 0.77 ± 0.13 0.67 ± 0.18

Tomlins-2006 0.58 ± 0.08 0.56 ± 0.20 0.56 ± 0.20 0.53 ± 0.11

West-2001 0.89 ± 0.08 0.89 ± 0.12 0.81 ± 0.17 0.71 ± 0.23

Average rank 1.55 2.50 2.60 3.35

we present the average rank position (the average of the rank position in each data
set) of each method. The lower the ranking, the better the method. A method capable
of outperforming any other method in every data set would have an average rank
position of 1.00 (first place).

The first experiment was performed for configuration {1× 20}. Table5.8 shows
the results for this configuration considering accuracy (Table5.8a) and F-Measure
(Table5.8b). Note that HEAD-DT is the best performingmethod with respect to both
accuracy and F-Measure, reaching an average rank of 1.75 and 1.55, respectively.
HEAD-DT is followed by CART (2.45 and 2.50) and C4.5 (2.70 and 2.65), whose
performances are quite evenly matched. REPTree is the worst-ranked method for
both accuracy (3.10) and F-Measure (3.35).

The next experiment concerns configuration {3× 18},whose results are presented
in Table5.9. In this experiment, HEAD-DT’s average rank is again the lowest of the
experiment: 1.61 for both accuracy and F-Measure. That means HEAD-DT is often
the best performing method (1st place) in the group of 18 test data sets. CART and
C4.5 once again present very similar average rank values, which is not surprising
bearing in mind they are both considered the state-of-the-art top-down decision-tree
induction algorithms. REPTree is again the worst-performing method among the
four algorithms.

Table5.10 presents the results for configuration {5× 16}. The scenario is quite
similar to the previous configurations, with HEAD-DT leading the ranking, with
average rank values of 1.44 (accuracy) and 1.31 (F-Measure). These are the lowest
rank values obtained by a method in any experimental configuration conducted in
this analysis. HEAD-DT is followed by CART (2.69 and 2.69) and C4.5 (2.69 and
2.63), which once again present very similar performances. REPTree is at the bottom
of the ranking, with 3.19 (accuracy) and 3.38 (F-Measure).

The experimental results for configuration {7× 14} show a different picture.
Table5.11a, which depicts the accuracy values of eachmethod, indicates that HEAD-
DT is outperformed by both CART and C4.5, though their average rank values are
very similar: 2.14, 2.21, versus 2.36 for HEAD-DT. REPTree keeps its position as
worst-performing method, with an average rank value of 3.29. However, Table5.11b
returns to the same scenario presented in configurations {1× 20}, {3× 18}, and
{5× 16}: HEAD-DT outperforming the baseline methods, with CART and C4.5 tied
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Table 5.9 Results for the {3× 18} configuration

(a) Accuracy results

Data set HEAD-DT CART C4.5 REP

Alizadeh-2000-v1 0.74 ± 0.07 0.71 ± 0.16 0.68 ± 0.20 0.72 ± 0.19

Alizadeh-2000-v2 0.90 ± 0.07 0.92 ± 0.11 0.86 ± 0.15 0.84 ± 0.17

Armstrong-2002-v1 0.88 ± 0.01 0.90 ± 0.07 0.89 ± 0.06 0.91 ± 0.07

Bhattacharjee-2001 0.92 ± 0.03 0.89 ± 0.10 0.89 ± 0.08 0.86 ± 0.06

Bittner-2000 0.55 ± 0.09 0.53 ± 0.18 0.49 ± 0.16 0.71 ± 0.22

Chen-2002 0.87 ± 0.03 0.85 ± 0.07 0.81 ± 0.07 0.79 ± 0.12

Chowdary-2006 0.97 ± 0.01 0.97 ± 0.05 0.95 ± 0.05 0.94 ± 0.06

Golub-1999-v1 0.89 ± 0.02 0.86 ± 0.07 0.88 ± 0.08 0.90 ± 0.10

Lapointe-2004-v1 0.70 ± 0.06 0.78 ± 0.18 0.71 ± 0.14 0.63 ± 0.09

Liang-2005 0.89 ± 0.08 0.71 ± 0.14 0.76 ± 0.19 0.78 ± 0.18

Nutt-2003-v1 0.67 ± 0.10 0.54 ± 0.19 0.50 ± 0.17 0.40 ± 0.21

Nutt-2003-v2 0.77 ± 0.08 0.77 ± 0.21 0.87 ± 0.17 0.45 ± 0.27

Pomeroy-2002-v1 0.92 ± 0.05 0.84 ± 0.17 0.88 ± 0.16 0.73 ± 0.10

Risinger-2003 0.53 ± 0.11 0.52 ± 0.15 0.53 ± 0.19 0.59 ± 0.21

Shipp-2002-v1 0.85 ± 0.05 0.77 ± 0.12 0.84 ± 0.16 0.77 ± 0.05

Singh-2002 0.80 ± 0.04 0.74 ± 0.14 0.78 ± 0.12 0.69 ± 0.15

Tomlins-2006 0.64 ± 0.03 0.58 ± 0.20 0.58 ± 0.18 0.58 ± 0.10

West-2001 0.92 ± 0.04 0.90 ± 0.11 0.84 ± 0.13 0.74 ± 0.19

Average rank 1.61 2.61 2.72 3.05

(b) F-Measure results

Data set HEAD-DT CART C4.5 REP

Alizadeh-2000-v1 0.73 ± 0.07 0.67 ± 0.21 0.63 ± 0.26 0.72 ± 0.19

Alizadeh-2000-v2 0.91 ± 0.06 0.92 ± 0.10 0.84 ± 0.17 0.80 ± 0.19

Armstrong-2002-v1 0.88 ± 0.02 0.90 ± 0.07 0.88 ± 0.06 0.91 ± 0.08

Bhattacharjee-2001 0.91 ± 0.03 0.87 ± 0.12 0.89 ± 0.08 0.85 ± 0.07

Bittner-2000 0.53 ± 0.10 0.49 ± 0.21 0.45 ± 0.19 0.66 ± 0.28

Chen-2002 0.87 ± 0.03 0.85 ± 0.07 0.81 ± 0.07 0.78 ± 0.13

Chowdary-2006 0.97 ± 0.01 0.97 ± 0.05 0.95 ± 0.05 0.94 ± 0.07

Golub-1999-v1 0.89 ± 0.02 0.86 ± 0.07 0.87 ± 0.08 0.90 ± 0.10

Lapointe-2004-v1 0.68 ± 0.08 0.73 ± 0.20 0.68 ± 0.15 0.50 ± 0.13

Liang-2005 0.87 ± 0.10 0.67 ± 0.21 0.77 ± 0.22 0.71 ± 0.23

Nutt-2003-v1 0.65 ± 0.10 0.48 ± 0.19 0.46 ± 0.16 0.31 ± 0.22

Nutt-2003-v2 0.77 ± 0.08 0.73 ± 0.26 0.87 ± 0.17 0.34 ± 0.31

Pomeroy-2002-v1 0.92 ± 0.05 0.79 ± 0.22 0.85 ± 0.20 0.62 ± 0.14

Risinger-2003 0.52 ± 0.11 0.48 ± 0.19 0.53 ± 0.21 0.52 ± 0.25

Shipp-2002-v1 0.84 ± 0.05 0.75 ± 0.13 0.83 ± 0.17 0.70 ± 0.10

Singh-2002 0.80 ± 0.04 0.72 ± 0.18 0.77 ± 0.13 0.67 ± 0.18

Tomlins-2006 0.63 ± 0.03 0.56 ± 0.20 0.56 ± 0.20 0.53 ± 0.11

West-2001 0.92 ± 0.04 0.89 ± 0.12 0.81 ± 0.17 0.71 ± 0.23

Average rank 1.61 2.61 2.56 3.22
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Table 5.10 Results for the {5× 16} configuration

(a) Accuracy results

Data set HEAD-DT CART C4.5 REP

Alizadeh-2000-v1 0.75 ± 0.05 0.71 ± 0.16 0.68 ± 0.20 0.72 ± 0.19

Alizadeh-2000-v2 0.91 ± 0.07 0.92 ± 0.11 0.86 ± 0.15 0.84 ± 0.17

Bhattacharjee-2001 0.94 ± 0.02 0.89 ± 0.10 0.89 ± 0.08 0.86 ± 0.06

Bittner-2000 0.54 ± 0.08 0.53 ± 0.18 0.49 ± 0.16 0.71 ± 0.22

Chen-2002 0.91 ± 0.02 0.85 ± 0.07 0.81 ± 0.07 0.79 ± 0.12

Chowdary-2006 0.97 ± 0.01 0.97 ± 0.05 0.95 ± 0.05 0.94 ± 0.06

Golub-1999-v1 0.88 ± 0.02 0.86 ± 0.07 0.88 ± 0.08 0.90 ± 0.10

Lapointe-2004-v1 0.71 ± 0.06 0.78 ± 0.18 0.71 ± 0.14 0.63 ± 0.09

Liang-2005 0.89 ± 0.08 0.71 ± 0.14 0.76 ± 0.19 0.78 ± 0.18

Nutt-2003-v1 0.61 ± 0.10 0.54 ± 0.19 0.50 ± 0.17 0.40 ± 0.21

Nutt-2003-v2 0.78 ± 0.08 0.77 ± 0.21 0.87 ± 0.17 0.45 ± 0.27

Pomeroy-2002-v1 0.92 ± 0.05 0.84 ± 0.17 0.88 ± 0.16 0.73 ± 0.10

Risinger-2003 0.55 ± 0.08 0.52 ± 0.15 0.53 ± 0.19 0.59 ± 0.21

Shipp-2002-v1 0.87 ± 0.03 0.77 ± 0.12 0.84 ± 0.16 0.77 ± 0.05

Singh-2002 0.78 ± 0.03 0.74 ± 0.14 0.78 ± 0.12 0.69 ± 0.15

West-2001 0.92 ± 0.03 0.90 ± 0.11 0.84 ± 0.13 0.74 ± 0.19

Average rank 1.44 2.69 2.69 3.19

(b) F-Measure results

Data set HEAD-DT CART C4.5 REP

Alizadeh-2000-v1 0.75 ± 0.05 0.67 ± 0.21 0.63 ± 0.26 0.72 ± 0.19

Alizadeh-2000-v2 0.91 ± 0.06 0.92 ± 0.10 0.84 ± 0.17 0.80 ± 0.19

Bhattacharjee-2001 0.94 ± 0.02 0.87 ± 0.12 0.89 ± 0.08 0.85 ± 0.07

Bittner-2000 0.53 ± 0.09 0.49 ± 0.21 0.45 ± 0.19 0.66 ± 0.28

Chen-2002 0.91 ± 0.02 0.85 ± 0.07 0.81 ± 0.07 0.78 ± 0.13

Chowdary-2006 0.97 ± 0.01 0.97 ± 0.05 0.95 ± 0.05 0.94 ± 0.07

Golub-1999-v1 0.88 ± 0.02 0.86 ± 0.07 0.87 ± 0.08 0.90 ± 0.10

Lapointe-2004-v1 0.69 ± 0.08 0.73 ± 0.20 0.68 ± 0.15 0.50 ± 0.13

Liang-2005 0.87 ± 0.10 0.67 ± 0.21 0.77 ± 0.22 0.71 ± 0.23

Nutt-2003-v1 0.60 ± 0.09 0.48 ± 0.19 0.46 ± 0.16 0.31 ± 0.22

Nutt-2003-v2 0.78 ± 0.08 0.73 ± 0.26 0.87 ± 0.17 0.34 ± 0.31

Pomeroy-2002-v1 0.92 ± 0.05 0.79 ± 0.22 0.85 ± 0.20 0.62 ± 0.14

Risinger-2003 0.53 ± 0.08 0.48 ± 0.19 0.53 ± 0.21 0.52 ± 0.25

Shipp-2002-v1 0.86 ± 0.03 0.75 ± 0.13 0.83 ± 0.17 0.70 ± 0.10

Singh-2002 0.78 ± 0.03 0.72 ± 0.18 0.77 ± 0.13 0.67 ± 0.18

West-2001 0.92 ± 0.03 0.89 ± 0.12 0.81 ± 0.17 0.71 ± 0.23

Average rank 1.31 2.69 2.63 3.38
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Table 5.11 Results for the {7× 14} configuration

(a) Accuracy results

Data set HEAD-DT CART C4.5 REP

Alizadeh-2000-v1 0.79 ± 0.09 0.71 ± 0.16 0.68 ± 0.20 0.72 ± 0.19

Alizadeh-2000-v2 0.89 ± 0.05 0.92 ± 0.11 0.86 ± 0.15 0.84 ± 0.17

Bhattacharjee-2001 0.89 ± 0.03 0.89 ± 0.10 0.89 ± 0.08 0.86 ± 0.06

Chen-2002 0.84 ± 0.02 0.85 ± 0.07 0.81 ± 0.07 0.79 ± 0.12

Chowdary-2006 0.91 ± 0.04 0.97 ± 0.05 0.95 ± 0.05 0.94 ± 0.06

Golub-1999-v1 0.84 ± 0.03 0.86 ± 0.07 0.88 ± 0.08 0.90 ± 0.10

Lapointe-2004-v1 0.61 ± 0.09 0.78 ± 0.18 0.71 ± 0.14 0.63 ± 0.09

Liang-2005 0.87 ± 0.08 0.71 ± 0.14 0.76 ± 0.19 0.78 ± 0.18

Nutt-2003-v1 0.68 ± 0.07 0.54 ± 0.19 0.50 ± 0.17 0.40 ± 0.21

Nutt-2003-v2 0.76 ± 0.07 0.77 ± 0.21 0.87 ± 0.17 0.45 ± 0.27

Pomeroy-2002-v1 0.70 ± 0.12 0.84 ± 0.17 0.88 ± 0.16 0.73 ± 0.10

Shipp-2002-v1 0.86 ± 0.03 0.77 ± 0.12 0.84 ± 0.16 0.77 ± 0.05

Singh-2002 0.79 ± 0.02 0.74 ± 0.14 0.78 ± 0.12 0.69 ± 0.15

West-2001 0.80 ± 0.07 0.90 ± 0.11 0.84 ± 0.13 0.74 ± 0.19

Average rank 2.36 2.14 2.21 3.29

(b) F-Measure results

Data set HEAD-DT CART C4.5 REP

Alizadeh-2000-v1 0.79 ± 0.09 0.67 ± 0.21 0.63 ± 0.26 0.72 ± 0.19

Alizadeh-2000-v2 0.91 ± 0.03 0.92 ± 0.10 0.84 ± 0.17 0.80 ± 0.19

Bhattacharjee-2001 0.89 ± 0.03 0.87 ± 0.12 0.89 ± 0.08 0.85 ± 0.07

Chen-2002 0.84 ± 0.02 0.85 ± 0.07 0.81 ± 0.07 0.78 ± 0.13

Chowdary-2006 0.91 ± 0.04 0.97 ± 0.05 0.95 ± 0.05 0.94 ± 0.07

Golub-1999-v1 0.83 ± 0.04 0.86 ± 0.07 0.87 ± 0.08 0.90 ± 0.10

Lapointe-2004-v1 0.60 ± 0.11 0.73 ± 0.20 0.68 ± 0.15 0.50 ± 0.13

Liang-2005 0.87 ± 0.08 0.67 ± 0.21 0.77 ± 0.22 0.71 ± 0.23

Nutt-2003-v1 0.65 ± 0.08 0.48 ± 0.19 0.46 ± 0.16 0.31 ± 0.22

Nutt-2003-v2 0.76 ± 0.07 0.73 ± 0.26 0.87 ± 0.17 0.34 ± 0.31

Pomeroy-2002-v1 0.69 ± 0.13 0.79 ± 0.22 0.85 ± 0.20 0.62 ± 0.14

Shipp-2002-v1 0.86 ± 0.03 0.75 ± 0.13 0.83 ± 0.17 0.70 ± 0.10

Singh-2002 0.79 ± 0.02 0.72 ± 0.18 0.77 ± 0.13 0.67 ± 0.18

West-2001 0.80 ± 0.07 0.89 ± 0.12 0.81 ± 0.17 0.71 ± 0.23

Average rank 2.07 2.21 2.21 3.50

in the second place and REPTree in the last position. The effect seen in Table5.11a,
in which HEAD-DT did not outperform the baseline methods, has a straightfor-
ward explanation: HEAD-DT optimises its generated algorithms according to the
F-Measure evaluation measure. Since accuracy may be a misleading measure (it is
not suitable for data sets with imbalanced class distributions), and several of the
gene-expression data sets are imbalanced (i.e., they have a large difference in the
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Table 5.12 Results for the {9× 12} configuration

(a) Accuracy results

Data set HEAD-DT CART C4.5 REP

Alizadeh-2000-v1 0.79 ± 0.09 0.71 ± 0.16 0.68 ± 0.20 0.72 ± 0.19

Alizadeh-2000-v2 0.89 ± 0.05 0.92 ± 0.11 0.86 ± 0.15 0.84 ± 0.17

Bhattacharjee-2001 0.90 ± 0.02 0.89 ± 0.10 0.89 ± 0.08 0.86 ± 0.06

Chen-2002 0.88 ± 0.03 0.85 ± 0.07 0.81 ± 0.07 0.79 ± 0.12

Golub-1999-v1 0.87 ± 0.02 0.86 ± 0.07 0.88 ± 0.08 0.90 ± 0.10

Lapointe-2004-v1 0.70 ± 0.05 0.78 ± 0.18 0.71 ± 0.14 0.63 ± 0.09

Liang-2005 0.88 ± 0.08 0.71 ± 0.14 0.76 ± 0.19 0.78 ± 0.18

Nutt-2003-v1 0.67 ± 0.09 0.54 ± 0.19 0.50 ± 0.17 0.40 ± 0.21

Nutt-2003-v2 0.77 ± 0.07 0.77 ± 0.21 0.87 ± 0.17 0.45 ± 0.27

Shipp-2002-v1 0.86 ± 0.03 0.84 ± 0.17 0.88 ± 0.16 0.73 ± 0.10

Pomeroy-2002-v1 0.92 ± 0.05 0.77 ± 0.12 0.84 ± 0.16 0.77 ± 0.05

Singh-2002 0.82 ± 0.04 0.74 ± 0.14 0.78 ± 0.12 0.69 ± 0.15

Average rank 1.58 2.67 2.33 3.42

(b) F-Measure results

Data set HEAD-DT CART C4.5 REP

Alizadeh-2000-v1 0.78 ± 0.09 0.67 ± 0.21 0.63 ± 0.26 0.72 ± 0.19

Alizadeh-2000-v2 0.91 ± 0.03 0.92 ± 0.10 0.84 ± 0.17 0.80 ± 0.19

Bhattacharjee-2001 0.89 ± 0.02 0.87 ± 0.12 0.89 ± 0.08 0.85 ± 0.07

Chen-2002 0.88 ± 0.03 0.85 ± 0.07 0.81 ± 0.07 0.78 ± 0.13

Golub-1999-v1 0.87 ± 0.02 0.86 ± 0.07 0.87 ± 0.08 0.90 ± 0.10

Lapointe-2004-v1 0.68 ± 0.07 0.73 ± 0.20 0.68 ± 0.15 0.50 ± 0.13

Liang-2005 0.87 ± 0.09 0.67 ± 0.21 0.77 ± 0.22 0.71 ± 0.23

Nutt-2003-v1 0.66 ± 0.09 0.48 ± 0.19 0.46 ± 0.16 0.31 ± 0.22

Nutt-2003-v2 0.77 ± 0.07 0.73 ± 0.26 0.87 ± 0.17 0.34 ± 0.31

Shipp-2002-v1 0.86 ± 0.03 0.79 ± 0.22 0.85 ± 0.20 0.62 ± 0.14

Pomeroy-2002-v1 0.92 ± 0.05 0.75 ± 0.13 0.83 ± 0.17 0.70 ± 0.10

Singh-2002 0.82 ± 0.04 0.72 ± 0.18 0.77 ± 0.13 0.67 ± 0.18

Average rank 1.42 2.67 2.42 3.50

relative frequency of the most frequent and the least frequent classes in the data
set), it seems fair to say that HEAD-DT also outperformed the baseline methods in
configuration {7× 14}, given that it generated algorithms whose F-Measure values
are better than the values achieved by CART, C4.5, and REPTree.

Table5.12 shows the results for configuration {9× 12}. They are consistent to the
previous configurations, in whichHEAD-DT has the edge over the baselinemethods,
presenting the lowest average rank for both accuracy and F-Measure (1.58 and 1.42).
C4.5 and CART presented similar ranks, whereas REPTree occupied the last position
in the ranking.
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Fig. 5.1 Fitness evolution in HEAD-DT

Finally, Fig. 5.1 presents the fitness evolution in HEAD-DT across a full evo-
lutionary cycle of 100 generations. We present both mean and best fitness of the
population in a given generation, for all experimental configurations. Some inter-
esting observations can be extracted from Fig. 5.1. First, when the meta-training
set comprises a single data set (Fig. 5.1a), HEAD-DT is capable of continuously
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increase the fitness function value, and at the same time the population is reasonably
heterogeneous (mean fitness value oscillates considerably). In the other extreme,
when the meta-training set comprises 9 data sets (Fig. 5.1e), HEAD-DT has a harder
time in optimising the fitness values, and the population is reasonably homogeneous
(mean fitness value does not oscillate so much). The explanation for this behavior is
that by increasing the number of data sets in the meta-training set, HEAD-DT has
to find algorithms with a good performance trade-off within the meta-training set. In
practice, modifications in the design of the algorithm that favor a given data set may
very well harm another, and, hence, it is intuitively harder to design an algorithm that
improves the performance of the generated decision trees in several data sets than
in a single one. Conversely, it is also intuitive that a larger meta-training set leads to
the design of a better “all-around” algorithm, i.e., an algorithm that is robust to the
peculiarities of the data sets from the application domain.

5.2.1.3 Discussion

The experimental analysis conducted in the previous section aimed at comparing
HEAD-DT to three baseline algorithms: CART, C4.5, and REPTree. We measured
the performance of each algorithm according to accuracy and F-Measure, which are
the most well-known criteria for evaluating classification algorithms. For verifying
whether the number of data sets used in the meta-training set had an impact in the
evolution of algorithms, we employed a consistent methodology that incrementally
added random data sets from the set of available data, generating five different exper-
imental configurations {#meta-training sets, #meta-test sets}: {1× 20}, {3× 18},
{5× 16}, {7× 14}, and {9× 12}. By analysing the average rank obtained by each
method in the previously mentioned configurations, we conclude that:

• HEAD-DT is consistently the best-performingmethod, presenting the lowest aver-
age rank values among the four algorithms employed in the experimental analysis;

• C4.5 and CART’s predictive performances are quite similar, which is consistent
to the fact that both algorithms are still the state-of-the-art top-down decision-tree
induction algorithms;

• REPTree,which is a variation ofC4.5 that employs the reduced-error pruning strat-
egy for simplifying the generated decision trees, is the worst-performing method
in the group. Its disappointing results seem to indicate that the reduced-error prun-
ing strategy is not particularly suited to the gene-expression data sets, probably
because it requires an additional validation set. As previously observed, the gene-
expression data sets have very few instances when compared to the currently giant
databases from distinct application domains, and reducing their size for producing
a validation set has certainly harmed REPTree’s overall predictive performance.

For summarizing the average rank values obtained by eachmethod in every exper-
imental configuration, we gathered the rank values from Tables5.8, 5.9, 5.10, 5.11
and 5.12 in Table5.13. Values in bold indicate the best performing method according
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Table 5.13 Summary of the experimental analysis regarding the homogeneous approach

Configuration Rank HEAD-DT CART C4.5 REPTree

{1× 20} Accuracy 1.75 2.45 2.70 3.10

F-measure 1.55 2.50 2.60 3.35

{3× 18} Accuracy 1.61 2.61 2.72 3.05

F-measure 1.61 2.61 2.56 3.22

{5× 16} Accuracy 1.44 2.69 2.69 3.19

F-measure 1.31 2.69 2.63 3.38

{7× 14} Accuracy 2.36 2.14 2.21 3.29

F-measure 2.07 2.21 2.21 3.50

{9× 12} Accuracy 1.58 2.67 2.33 3.42

F-measure 1.42 2.67 2.42 3.50

Average 1.67 2.52 2.51 3.30

to the corresponding evaluation measure. These results show that HEAD-DT con-
sistently presents the lowest average rank.

The last step of this empirical analysis is to verify whether the differences in
rank values are statistically significant. For this particular analysis, we employ the
graphical representation suggested by Demšar [7], the so-called critical diagrams.
In this diagram, a horizontal line represents the axis on which we plot the average
rank values of the methods. The axis is turned so that the lowest (best) ranks are to
the right, since we perceive the methods on the right side as better. When comparing
all the algorithms against each other, we connect the groups of algorithms that are
not significantly different through a bold horizontal line. We also show the critical
difference given by the Nemenyi test in the top of the graph.

Figure5.2 shows the critical diagrams for all experimental configurations. Note
that HEAD-DT outperforms C4.5, CART, and REPTree with statistical significance
in configuration {5× 16} for both accuracy (Fig. 5.2e) andF-Measure (Fig. 5.2f). The
only scenarios in which there were no statistically significant differences between all
methods are related to the accuracy measure in configuration {7× 14} (Fig. 5.2g).
The straightforward explanation for this case is thatHEAD-DToptimises its solutions
according to the F-Measure, even at the expense of accuracy. In the remaining scenar-
ios, HEAD-DT always outperforms REPTree with statistical significance, which is
not the case of CART and C4.5. In fact, CART and C4.5 are only able to outperform
REPTree with statistical significance in the F-Measure evaluation in configuration
{7× 14} (Fig. 5.2h), suggesting once again that HEAD-DT should be preferred over
any of the baseline methods.

As a final remark, considering the results of the four algorithms for all the 10
combinations of experimental configurations and performance measures as a whole,
as summarized in Table5.13, the decision-tree algorithm automatically designed by
HEAD-DT obtained the best rank among the four algorithms in 9 out of the 10 rows
of Table5.13. Clearly, if the four algorithms had the same predictive performance
(so that each algorithm would have a 25% probability of being the winner), the
probability that the algorithm designed by HEAD-DT would be the winner in 9 out
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(a)
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Fig. 5.2 Critical diagrams for the gene expression data. a Accuracy rank for {1×20}. b F-Measure
rank for {1× 20}. c Accuracy rank for {3× 18}. d F-Measure rank for {3× 18}. e Accuracy rank
for {5× 16}. f F-Measure rank for {5× 16}. g Accuracy rank for {7× 14}. h F-Measure rank for
{7 × 14}. i Accuracy rank for {9 × 12}. j F-Measure rank for {9 × 12}

of 10 cases would be very small, so there is a high confidence that the results obtained
by HEAD-DT are statistically valid as a whole.

5.2.2 The Heterogeneous Approach

In this set of experiments,we investigate the predictive performance of an automatica-
lly-designed decision-tree induction algorithm tailored to a variety of distinct data
sets. The goal is to evolve an algorithm capable of being robust across different
data sets. For such, we make use of 67 publicly-available data sets from the UCI
machine-learning repository3 [8] (see Table5.14). As in the homogeneous approach,
we also randomly divided the 67 data sets into two groups: parameter optimisation
and experiments. The 27 data sets in the parameter optimisation group are used
for tuning the evolution parameters of HEAD-DT. The remaining 40 data sets from

3 http://archive.ics.uci.edu/ml/.

http://archive.ics.uci.edu/ml/
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the experiments group are used for evaluating the performance of the algorithm
automatically designed by HEAD-DT.

Following the selection methodology previously presented, the 27 parameter
optimisation data sets are arranged in 5 different experimental configurations {#train-
ing sets, #test sets}: {1× 26}, {3× 24}, {5× 22}, {7× 20}, and {9× 18}. Similarly,
the 40 data sets in the experiments group are arranged in also 5 different experimental
configurations {#training sets, #test sets}: {1× 39}, {3× 37}, {5× 35}, {7× 33},
and {9× 31}. Table5.15 presents the randomly selected data sets according to the
configurations detailed above.

5.2.2.1 Parameter Optimisation

Table5.16 presents the results of the tuning experiments. We present the average
ranking of each version of HEAD-DT (H-p) in the corresponding experimental con-
figuration. For instance, when H-0.1 makes use of a single data set for evolving the
optimal algorithm ({1× 26}), its predictive performance in the remaining 26 data sets
gives H-0.1 the average rank position of 5.88 for the accuracy of its corresponding
decision trees, and 5.96 for the F-Measure.

The Friedman and Nemenyi tests indicated statistically significant differences
between the 9 distinct versions of HEAD-DT within each configuration. Depending
on the configuration, different versions of HEAD-DT are outperformed by others
with statistical significance. The only version of HEAD-DT that is not outperformed
by any other version with statistical significance across all configurations is HEAD-
0.3. Indeed, when we calculate the average of the average ranks for each H-p version
across the distinct configurations and evaluation measures, HEAD-0.3 provides the
lowest average of average ranks (3.99). Hence, HEAD-0.3 is the selected version
to be executed over the 40 data sets in the experiments group, and it is henceforth
referred simply as HEAD-DT.

5.2.2.2 Results

Tables5.17, 5.18, 5.19, 5.20 and 5.21 showaverage values of accuracy andF-Measure
obtained by HEAD-DT, CART, C4.5, and REPTree in configurations {1× 39},
{3× 37}, {5× 35}, {7× 33}, and {9× 31}. At the bottom of each table, we present
the average rank position of each method. The lower the ranking, the better the
method.

The first experiment is regarding configuration {1× 39}. Table5.17 shows the
result for this configuration considering accuracy (Table5.17a) and F-Measure
(Table5.17b). Note that HEAD-DT and C4.5 are both the best performing method
with respect to accuracy, with an average rank of 2.24, followed by CART (2.36) and
REPTree (3.15). Considering the F-Measure, C4.5 has a slight edge over HEAD-DT
(2.15 to 2.18), followed once again by CART (2.46) and REPTree (3.21).
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Table 5.16 Results of the tuning experiments for the heterogeneous approach

Configuration Rank H-0.1 H-0.2 H-0.3 H-0.4 H-0.5 H-0.6 H-0.7 H-0.8 H-0.9

{1× 26} Accuracy 5.88 5.13 3.31 3.25 7.02 5.17 5.11 3.08 7.04

F-measure 5.96 5.15 3.17 3.21 6.94 5.15 5.23 3.17 7.00

{3× 24} Accuracy 8.25 6.56 3.35 5.58 2.94 6.92 5.40 3.38 2.63

F-measure 8.29 6.65 3.21 5.46 2.90 7.00 5.60 3.35 2.54

{5× 22} Accuracy 3.95 4.89 5.52 6.75 6.20 5.73 3.41 5.02 3.52

F-measure 3.91 4.80 5.32 6.89 6.11 5.77 3.64 5.00 3.57

{7× 20} Accuracy 5.63 3.48 4.98 7.65 3.00 4.30 4.75 7.45 3.78

F-measure 5.75 3.53 4.63 7.65 3.05 4.30 5.10 7.35 3.65

{9× 18} Accuracy 6.67 5.31 3.22 5.50 2.36 3.06 8.03 7.31 3.56

F-measure 6.61 5.33 3.17 5.50 2.39 3.00 8.06 7.44 3.50

Average 6.09 5.08 3.99 5.74 4.29 5.04 5.43 5.26 4.08

The next experiment concerns configuration {3× 37},whose results are presented
in Table5.18. In the accuracy analysis, C4.5 and CART are the first and second best-
ranked algorithms, respectively, followed byHEAD-DT and REPTree. By looking at
the F-Measure values, HEAD-DT replaces CART as the second best-ranked method.
Note that this is not unusual, since HEAD-DT employs the average F-Measure as
its fitness function, and thus optimises its algorithms in order for them to score the
best possible F-Measure values. C4.5 keeps its place as the best-performing method,
whereas REPTree is again the worst-performing method among the four algorithms,
regardless of the evaluation measure.

Table5.19 presents the experimental results for configuration {5× 35}. The sce-
nario is similar to the previous configuration, with C4.5 leading the ranking (average
rank values of 2.13 for accuracy and 2.04 for F-Measure). C4.5 is followed by CART
(2.19 and 2.27) and HEAD-DT (2.56 and 2.44). Finally, REPTree is in the bottom
of the ranking, with average rank of 3.13 (accuracy) and 3.24 (F-Measure).

The experimental results for configuration {7× 33} show a scenario in which
HEAD-DT was capable of generating better algorithms than the remaining baseline
methods. Table5.20a, which depicts the accuracy values of each method, indicates
that HEAD-DT leads the rankingwith an average ranking position of 1.77—meaning
its often the best-performing method in the 33 meta-test data sets. HEAD-DT is
followed by C4.5 (2.35), CART (2.50), and REPTree (3.38). Table5.20b shows that
the F-Measure values provide the same ranking positions for all methods, with a
clear edge to HEAD-DT (1.71), followed by C4.5 (2.29), CART (2.53), and REPTree
(3.47).

Finally, Table5.21 shows the results for configuration {9× 31}. C4.5 returns to
the top of the rank for both accuracy (2.03) and F-Measure (1.96) values. C4.5 is
followed by CART (2.26 and 2.32), HEAD-DT (2.55 and 2.48), and REPTree (3.16
and 3.23).
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Table 5.17 Results for the {1× 39} configuration

(a) Accuracy results

Data set HEAD CART C4.5 REP

Abalone 0.36 ± 0.10 0.26 ± 0.02 0.22 ± 0.02 0.26 ± 0.02

Anneal 0.92 ± 0.05 0.98 ± 0.01 0.99 ± 0.01 0.98 ± 0.02

Arrhythmia 0.66 ± 0.08 0.71 ± 0.05 0.66 ± 0.05 0.67 ± 0.06

Audiology 0.70 ± 0.06 0.74 ± 0.05 0.78 ± 0.07 0.74 ± 0.08

Autos 0.80 ± 0.01 0.78 ± 0.10 0.86 ± 0.06 0.65 ± 0.08

Breast-cancer 0.73 ± 0.02 0.69 ± 0.04 0.75 ± 0.08 0.69 ± 0.05

Bridges1 0.70 ± 0.03 0.53 ± 0.09 0.58 ± 0.11 0.40 ± 0.15

Bridges2 0.64 ± 0.07 0.54 ± 0.08 0.58 ± 0.13 0.40 ± 0.15

Car 0.86 ± 0.07 0.97 ± 0.02 0.93 ± 0.02 0.89 ± 0.02

Heart-c 0.83 ± 0.02 0.81 ± 0.04 0.77 ± 0.09 0.77 ± 0.08

Flags 0.71 ± 0.04 0.61 ± 0.10 0.63 ± 0.05 0.62 ± 0.10

Credit-g 0.78 ± 0.03 0.73 ± 0.04 0.71 ± 0.03 0.72 ± 0.06

Colic 0.74 ± 0.07 0.85 ± 0.08 0.86 ± 0.06 0.83 ± 0.06

Haberman 0.77 ± 0.01 0.75 ± 0.04 0.73 ± 0.09 0.73 ± 0.07

Heart-h 0.83 ± 0.02 0.77 ± 0.06 0.80 ± 0.08 0.80 ± 0.09

Ionosphere 0.90 ± 0.03 0.89 ± 0.03 0.89 ± 0.05 0.91 ± 0.02

Iris 0.96 ± 0.01 0.93 ± 0.05 0.94 ± 0.07 0.94 ± 0.05

kdd-synthetic 0.93 ± 0.03 0.88 ± 0.04 0.91 ± 0.04 0.88 ± 0.03

kr-vs-kp 0.91 ± 0.06 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01

Labor 0.79 ± 0.06 0.81 ± 0.17 0.79 ± 0.13 0.82 ± 0.21

Liver-disorders 0.77 ± 0.04 0.67 ± 0.09 0.67 ± 0.05 0.65 ± 0.05

Lung-cancer 0.66 ± 0.03 0.51 ± 0.33 0.45 ± 0.27 0.54 ± 0.17

Meta.data 0.11 ± 0.02 0.05 ± 0.03 0.04 ± 0.03 0.04 ± 0.00

Morphological 0.73 ± 0.03 0.72 ± 0.04 0.72 ± 0.02 0.72 ± 0.03

mb-promoters 0.78 ± 0.07 0.72 ± 0.14 0.80 ± 0.13 0.77 ± 0.15

Postoperative-patient 0.69 ± 0.01 0.71 ± 0.06 0.70 ± 0.05 0.69 ± 0.09

Shuttle-control 0.57 ± 0.04 0.65 ± 0.34 0.65 ± 0.34 0.65 ± 0.34

Soybean 0.69 ± 0.20 0.92 ± 0.04 0.92 ± 0.03 0.84 ± 0.05

Tae 0.64 ± 0.03 0.51 ± 0.12 0.60 ± 0.11 0.47 ± 0.12

Tempdiag 0.97 ± 0.04 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Tep.fea 0.65 ± 0.00 0.65 ± 0.02 0.65 ± 0.02 0.65 ± 0.02

Tic-tac-toe 0.83 ± 0.08 0.94 ± 0.02 0.86 ± 0.03 0.86 ± 0.03

Transfusion 0.80 ± 0.01 0.79 ± 0.03 0.78 ± 0.02 0.78 ± 0.02

Vehicle 0.78 ± 0.04 0.72 ± 0.04 0.74 ± 0.04 0.71 ± 0.04

Vote 0.95 ± 0.00 0.97 ± 0.02 0.97 ± 0.02 0.95 ± 0.03

Vowel 0.72 ± 0.16 0.82 ± 0.04 0.83 ± 0.03 0.70 ± 0.04

Wine-red 0.67 ± 0.06 0.63 ± 0.02 0.61 ± 0.03 0.60 ± 0.03

(continued)
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Table 5.17 (continued)

(a) Accuracy results

Data set HEAD CART C4.5 REP

Wine-white 0.62 ± 0.10 0.58 ± 0.02 0.61 ± 0.03 0.56 ± 0.02

Breast-w 0.94 ± 0.02 0.95 ± 0.02 0.95 ± 0.02 0.94 ± 0.03

Average rank 2.24 2.36 2.24 3.15

(b) F-Measure results

Data set HEAD-DT CART C4.5 REP

Aabalone 0.34 ± 0.11 0.23 ± 0.02 0.21 ± 0.02 0.24 ± 0.02

Anneal 0.90 ± 0.08 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.02

Arrhythmia 0.60 ± 0.11 0.67 ± 0.06 0.65 ± 0.06 0.63 ± 0.07

Audiology 0.66 ± 0.06 0.71 ± 0.05 0.75 ± 0.08 0.70 ± 0.09

Autos 0.80 ± 0.01 0.77 ± 0.10 0.85 ± 0.07 0.62 ± 0.07

Breast-cancer 0.71 ± 0.03 0.63 ± 0.05 0.70 ± 0.11 0.62 ± 0.06

Breast-w 0.94 ± 0.02 0.95 ± 0.02 0.95 ± 0.02 0.94 ± 0.03

Bridges1 0.68 ± 0.04 0.45 ± 0.06 0.52 ± 0.11 0.29 ± 0.11

Bridges2 0.62 ± 0.08 0.43 ± 0.05 0.51 ± 0.11 0.29 ± 0.11

Car 0.85 ± 0.08 0.97 ± 0.02 0.93 ± 0.02 0.89 ± 0.02

Heart-c 0.83 ± 0.02 0.80 ± 0.04 0.76 ± 0.09 0.77 ± 0.08

Flags 0.70 ± 0.05 0.57 ± 0.10 0.61 ± 0.05 0.58 ± 0.10

Credit-g 0.77 ± 0.04 0.71 ± 0.04 0.70 ± 0.02 0.70 ± 0.05

Colic 0.72 ± 0.09 0.84 ± 0.08 0.85 ± 0.07 0.83 ± 0.07

Haberman 0.75 ± 0.01 0.66 ± 0.06 0.69 ± 0.10 0.68 ± 0.08

Heart-h 0.83 ± 0.02 0.76 ± 0.06 0.80 ± 0.07 0.79 ± 0.09

Ionosphere 0.90 ± 0.04 0.89 ± 0.03 0.88 ± 0.05 0.91 ± 0.02

Iris 0.96 ± 0.01 0.93 ± 0.06 0.94 ± 0.07 0.94 ± 0.05

kdd-synthetic 0.93 ± 0.03 0.88 ± 0.04 0.91 ± 0.04 0.87 ± 0.04

kr-vs-kp 0.91 ± 0.06 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01

Labor 0.76 ± 0.09 0.80 ± 0.17 0.78 ± 0.12 0.82 ± 0.21

Liver-disorders 0.77 ± 0.04 0.66 ± 0.09 0.66 ± 0.05 0.63 ± 0.05

Lung-cancer 0.65 ± 0.04 0.42 ± 0.32 0.35 ± 0.29 0.42 ± 0.19

Meta.data 0.10 ± 0.03 0.02 ± 0.01 0.02 ± 0.02 0.00 ± 0.00

Morphological 0.71 ± 0.04 0.70 ± 0.04 0.70 ± 0.02 0.70 ± 0.03

mb-promoters 0.78 ± 0.07 0.71 ± 0.14 0.79 ± 0.14 0.76 ± 0.15

Postoperative-patient 0.64 ± 0.02 0.59 ± 0.08 0.59 ± 0.07 0.58 ± 0.09

Shuttle-control 0.55 ± 0.06 0.57 ± 0.39 0.57 ± 0.39 0.57 ± 0.39

Soybean 0.66 ± 0.21 0.91 ± 0.04 0.92 ± 0.04 0.82 ± 0.06

Tae 0.64 ± 0.03 0.49 ± 0.15 0.59 ± 0.12 0.45 ± 0.12

Tempdiag 0.97 ± 0.04 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Tep.fea 0.61 ± 0.00 0.61 ± 0.02 0.61 ± 0.02 0.61 ± 0.02

(continued)
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Table 5.17 (continued)

(b) F-Measure results

Data set HEAD-DT CART C4.5 REP

Tic-tac-toe 0.83 ± 0.09 0.94 ± 0.02 0.86 ± 0.03 0.86 ± 0.03

Transfusion 0.78 ± 0.01 0.76 ± 0.03 0.77 ± 0.03 0.76 ± 0.02

Vehicle 0.77 ± 0.04 0.71 ± 0.05 0.73 ± 0.04 0.70 ± 0.04

Vote 0.95 ± 0.00 0.97 ± 0.02 0.97 ± 0.02 0.95 ± 0.03

Vowel 0.71 ± 0.17 0.82 ± 0.04 0.83 ± 0.03 0.70 ± 0.04

Wine-red 0.66 ± 0.07 0.61 ± 0.02 0.61 ± 0.03 0.58 ± 0.03

Wine-white 0.60 ± 0.12 0.58 ± 0.03 0.60 ± 0.02 0.55 ± 0.02

Average rank 2.18 2.46 2.15 3.21

5.2.2.3 Discussion

The experimental analysis conducted in the previous section aimed at comparing the
performance of HEAD-DTwhen it is employed to generate an “all-around” decision-
tree algorithm—i.e., an algorithm capable of performing reasonably well in a variety
of distinct data sets. We once again measured the performance of each algorithm
according to accuracy and F-Measure, which are the most well-known criteria for
evaluating classification algorithms. In order to verify whether the number of data
sets used in the meta-training set had an impact in the evolution of algorithms,
we employed the same methodology as in the homogeneous approach, resulting
in five different experimental configurations {#meta-training sets, #meta-test sets}:
{1× 39}, {3× 37}, {5× 35}, {7× 33}, and {9× 31}. By analysing the average rank
obtained by each method in the previously mentioned configurations, we conclude
that:

• C4.5 is the best-performing method, consistently presenting the lowest average
rank values among the four algorithms employed in the experimental analysis;

• HEAD-DT is capable of generating competitive algorithms, and eventually the
best-performing algorithm (e.g., configuration {7× 33}). Since its performance is
heavily dependent on the data sets that comprise the meta-training set, it is to be
expected that HEAD-DT eventually generates algorithms that are too-specific for
the meta-training set (it suffers from a kind of “meta-overfitting”). Unfortunately,
there is no easy solution to avoid this type of overfitting (see Sect. 5.2.3 for more
details on this matter);

• REPTree is the worst-performing method in the group. This is expected given that
its reduced-error pruning strategy is said to be effective only for very large data
sets, considering that it requires a validation set.

For summarizing the average rank values obtained by eachmethod in every exper-
imental configuration, we gathered the rank values from Tables5.17, 5.18, 5.19, 5.20
and 5.21 in Table5.22. Values in bold indicate the best performing method according
to the corresponding evaluation measure.
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Table 5.18 Results for the {3× 37} configuration

(a) Accuracy results

Data set HEAD CART C4.5 REP

Abalone 0.27 ± 0.00 0.26 ± 0.02 0.22 ± 0.02 0.26 ± 0.02

Anneal 0.98 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.98 ± 0.02

Arrhythmia 0.66 ± 0.10 0.71 ± 0.05 0.66 ± 0.05 0.67 ± 0.06

Audiology 0.73 ± 0.02 0.74 ± 0.05 0.78 ± 0.07 0.74 ± 0.08

Autos 0.73 ± 0.08 0.78 ± 0.10 0.86 ± 0.06 0.65 ± 0.08

Breast-cancer 0.74 ± 0.01 0.69 ± 0.04 0.75 ± 0.08 0.69 ± 0.05

Breast-w 0.94 ± 0.01 0.95 ± 0.02 0.95 ± 0.02 0.94 ± 0.03

Bridges1 0.70 ± 0.06 0.53 ± 0.09 0.58 ± 0.11 0.40 ± 0.15

Bridges2 0.69 ± 0.05 0.54 ± 0.08 0.58 ± 0.13 0.40 ± 0.15

Car 0.84 ± 0.02 0.97 ± 0.02 0.93 ± 0.02 0.89 ± 0.02

Heart-c 0.81 ± 0.00 0.81 ± 0.04 0.77 ± 0.09 0.77 ± 0.08

Flags 0.69 ± 0.01 0.61 ± 0.10 0.63 ± 0.05 0.62 ± 0.10

Credit-g 0.74 ± 0.00 0.73 ± 0.04 0.71 ± 0.03 0.72 ± 0.06

Colic 0.78 ± 0.12 0.85 ± 0.08 0.86 ± 0.06 0.83 ± 0.06

Haberman 0.77 ± 0.00 0.75 ± 0.04 0.73 ± 0.09 0.73 ± 0.07

Heart-h 0.80 ± 0.01 0.77 ± 0.06 0.80 ± 0.08 0.80 ± 0.09

Ionosphere 0.92 ± 0.03 0.89 ± 0.03 0.89 ± 0.05 0.91 ± 0.02

Iris 0.96 ± 0.00 0.93 ± 0.05 0.94 ± 0.07 0.94 ± 0.05

kdd-synthetic 0.95 ± 0.01 0.88 ± 0.04 0.91 ± 0.04 0.88 ± 0.03

kr-vs-kp 0.91 ± 0.03 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01

Liver-disorders 0.73 ± 0.01 0.67 ± 0.09 0.67 ± 0.05 0.65 ± 0.05

Lung-cancer 0.69 ± 0.00 0.51 ± 0.33 0.45 ± 0.27 0.54 ± 0.17

Meta.data 0.08 ± 0.04 0.05 ± 0.03 0.04 ± 0.03 0.04 ± 0.00

Morphological 0.71 ± 0.00 0.72 ± 0.04 0.72 ± 0.02 0.72 ± 0.03

mb-promoters 0.88 ± 0.02 0.72 ± 0.14 0.80 ± 0.13 0.77 ± 0.15

Postoperative-patient 0.70 ± 0.02 0.71 ± 0.06 0.70 ± 0.05 0.69 ± 0.09

Shuttle-control 0.60 ± 0.02 0.65 ± 0.34 0.65 ± 0.34 0.65 ± 0.34

Soybean 0.79 ± 0.06 0.92 ± 0.04 0.92 ± 0.03 0.84 ± 0.05

Tempdiag 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Tep.fea 0.65 ± 0.00 0.65 ± 0.02 0.65 ± 0.02 0.65 ± 0.02

Tic-tac-toe 0.76 ± 0.04 0.94 ± 0.02 0.86 ± 0.03 0.86 ± 0.03

Transfusion 0.79 ± 0.01 0.79 ± 0.03 0.78 ± 0.02 0.78 ± 0.02

Vehicle 0.74 ± 0.00 0.72 ± 0.04 0.74 ± 0.04 0.71 ± 0.04

Vote 0.95 ± 0.01 0.97 ± 0.02 0.97 ± 0.02 0.95 ± 0.03

Vowel 0.59 ± 0.08 0.82 ± 0.04 0.83 ± 0.03 0.70 ± 0.04

Wine-red 0.59 ± 0.01 0.63 ± 0.02 0.61 ± 0.03 0.60 ± 0.03

Wine-white 0.52 ± 0.01 0.58 ± 0.02 0.61 ± 0.03 0.56 ± 0.02

Average rank 2.45 2.26 2.19 3.11

(continued)
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Table 5.18 (continued)

(b) F-Measure results

Data set HEAD CART C4.5 REP

Abalone 0.23 ± 0.00 0.23 ± 0.02 0.21 ± 0.02 0.24 ± 0.02

Anneal 0.97 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.02

Arrhythmia 0.58 ± 0.17 0.67 ± 0.06 0.65 ± 0.06 0.63 ± 0.07

Audiology 0.70 ± 0.02 0.71 ± 0.05 0.75 ± 0.08 0.70 ± 0.09

Autos 0.73 ± 0.08 0.77 ± 0.10 0.85 ± 0.07 0.62 ± 0.07

Breast-cancer 0.72 ± 0.00 0.63 ± 0.05 0.70 ± 0.11 0.62 ± 0.06

Breast-w 0.94 ± 0.01 0.95 ± 0.02 0.95 ± 0.02 0.94 ± 0.03

Bridges1 0.68 ± 0.06 0.45 ± 0.06 0.52 ± 0.11 0.29 ± 0.11

Bridges2 0.68 ± 0.06 0.43 ± 0.05 0.51 ± 0.11 0.29 ± 0.11

Car 0.83 ± 0.02 0.97 ± 0.02 0.93 ± 0.02 0.89 ± 0.02

Heart-c 0.81 ± 0.00 0.80 ± 0.04 0.76 ± 0.09 0.77 ± 0.08

Flags 0.68 ± 0.01 0.57 ± 0.10 0.61 ± 0.05 0.58 ± 0.10

Credit-g 0.73 ± 0.00 0.71 ± 0.04 0.70 ± 0.02 0.70 ± 0.05

Colic 0.72 ± 0.18 0.84 ± 0.08 0.85 ± 0.07 0.83 ± 0.07

Haberman 0.75 ± 0.01 0.66 ± 0.06 0.69 ± 0.10 0.68 ± 0.08

Heart-h 0.80 ± 0.01 0.76 ± 0.06 0.80 ± 0.07 0.79 ± 0.09

Ionosphere 0.92 ± 0.03 0.89 ± 0.03 0.88 ± 0.05 0.91 ± 0.02

Iris 0.96 ± 0.00 0.93 ± 0.06 0.94 ± 0.07 0.94 ± 0.05

kdd-synthetic 0.95 ± 0.01 0.88 ± 0.04 0.91 ± 0.04 0.87 ± 0.04

kr-vs-kp 0.91 ± 0.03 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01

Liver-disorders 0.72 ± 0.02 0.66 ± 0.09 0.66 ± 0.05 0.63 ± 0.05

Lung-cancer 0.69 ± 0.00 0.42 ± 0.32 0.35 ± 0.29 0.42 ± 0.19

Meta.data 0.06 ± 0.03 0.02 ± 0.01 0.02 ± 0.02 0.00 ± 0.00

Morphological 0.70 ± 0.00 0.70 ± 0.04 0.70 ± 0.02 0.70 ± 0.03

mb-promoters 0.88 ± 0.02 0.71 ± 0.14 0.79 ± 0.14 0.76 ± 0.15

Postoperative-patient 0.67 ± 0.02 0.59 ± 0.08 0.59 ± 0.07 0.58 ± 0.09

Shuttle-control 0.58 ± 0.02 0.57 ± 0.39 0.57 ± 0.39 0.57 ± 0.39

Soybean 0.76 ± 0.07 0.91 ± 0.04 0.92 ± 0.04 0.82 ± 0.06

Tempdiag 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Tep.fea 0.61 ± 0.00 0.61 ± 0.02 0.61 ± 0.02 0.61 ± 0.02

Tic-tac-toe 0.76 ± 0.04 0.94 ± 0.02 0.86 ± 0.03 0.86 ± 0.03

Transfusion 0.77 ± 0.00 0.76 ± 0.03 0.77 ± 0.03 0.76 ± 0.02

Vehicle 0.74 ± 0.00 0.71 ± 0.05 0.73 ± 0.04 0.70 ± 0.04

Vote 0.95 ± 0.01 0.97 ± 0.02 0.97 ± 0.02 0.95 ± 0.03

Vowel 0.58 ± 0.09 0.82 ± 0.04 0.83 ± 0.03 0.70 ± 0.04

Wine-red 0.57 ± 0.01 0.61 ± 0.02 0.61 ± 0.03 0.58 ± 0.03

Wine-white 0.48 ± 0.02 0.58 ± 0.03 0.60 ± 0.02 0.55 ± 0.02

Average rank 2.23 2.42 2.15 3.20
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Table 5.19 Results for the {5× 35} configuration

(a) Accuracy results

Data set HEAD CART C4.5 REP

Abalone 0.27 ± 0.00 0.26 ± 0.02 0.22 ± 0.02 0.26 ± 0.02

Anneal 0.97 ± 0.00 0.98 ± 0.01 0.99 ± 0.01 0.98 ± 0.02

Arrhythmia 0.58 ± 0.08 0.71 ± 0.05 0.66 ± 0.05 0.67 ± 0.06

Audiology 0.76 ± 0.00 0.74 ± 0.05 0.78 ± 0.07 0.74 ± 0.08

Autos 0.67 ± 0.06 0.78 ± 0.10 0.86 ± 0.06 0.65 ± 0.08

Breast-cancer 0.75 ± 0.00 0.69 ± 0.04 0.75 ± 0.08 0.69 ± 0.05

Breast-w 0.93 ± 0.00 0.95 ± 0.02 0.95 ± 0.02 0.94 ± 0.03

Bridges1 0.64 ± 0.03 0.53 ± 0.09 0.58 ± 0.11 0.40 ± 0.15

Bridges2 0.64 ± 0.03 0.54 ± 0.08 0.58 ± 0.13 0.40 ± 0.15

Car 0.82 ± 0.02 0.97 ± 0.02 0.93 ± 0.02 0.89 ± 0.02

Heart-c 0.81 ± 0.01 0.81 ± 0.04 0.77 ± 0.09 0.77 ± 0.08

Flags 0.68 ± 0.01 0.61 ± 0.10 0.63 ± 0.05 0.62 ± 0.10

Credit-g 0.75 ± 0.00 0.73 ± 0.04 0.71 ± 0.03 0.72 ± 0.06

Colic 0.68 ± 0.09 0.85 ± 0.08 0.86 ± 0.06 0.83 ± 0.06

Heart-h 0.77 ± 0.05 0.77 ± 0.06 0.80 ± 0.08 0.80 ± 0.09

Ionosphere 0.89 ± 0.00 0.89 ± 0.03 0.89 ± 0.05 0.91 ± 0.02

kdd-synthetic 0.96 ± 0.00 0.88 ± 0.04 0.91 ± 0.04 0.88 ± 0.03

kr-vs-kp 0.95 ± 0.00 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01

Liver-disorders 0.74 ± 0.01 0.67 ± 0.09 0.67 ± 0.05 0.65 ± 0.05

Lung-cancer 0.69 ± 0.00 0.51 ± 0.33 0.45 ± 0.27 0.54 ± 0.17

Meta.data 0.04 ± 0.02 0.05 ± 0.03 0.04 ± 0.03 0.04 ± 0.00

Morphological 0.70 ± 0.00 0.72 ± 0.04 0.72 ± 0.02 0.72 ± 0.03

mb-promoters 0.86 ± 0.01 0.72 ± 0.14 0.80 ± 0.13 0.77 ± 0.15

Postoperative-patient 0.72 ± 0.02 0.71 ± 0.06 0.70 ± 0.05 0.69 ± 0.09

Shuttle-control 0.61 ± 0.01 0.65 ± 0.34 0.65 ± 0.34 0.65 ± 0.34

Soybean 0.72 ± 0.02 0.92 ± 0.04 0.92 ± 0.03 0.84 ± 0.05

Tempdiag 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Tep.fea 0.65 ± 0.00 0.65 ± 0.02 0.65 ± 0.02 0.65 ± 0.02

Tic-tac-toe 0.73 ± 0.03 0.94 ± 0.02 0.86 ± 0.03 0.86 ± 0.03

Transfusion 0.79 ± 0.00 0.79 ± 0.03 0.78 ± 0.02 0.78 ± 0.02

Vehicle 0.74 ± 0.00 0.72 ± 0.04 0.74 ± 0.04 0.71 ± 0.04

Vote 0.96 ± 0.00 0.97 ± 0.02 0.97 ± 0.02 0.95 ± 0.03

Vowel 0.50 ± 0.01 0.82 ± 0.04 0.83 ± 0.03 0.70 ± 0.04

Wine-red 0.60 ± 0.00 0.63 ± 0.02 0.61 ± 0.03 0.60 ± 0.03

Wine-white 0.54 ± 0.00 0.58 ± 0.02 0.61 ± 0.03 0.56 ± 0.02

Average rank 2.56 2.19 2.13 3.13

(continued)



5.2 Evolving Algorithms from Multiple Data Sets 115

Table 5.19 (continued)

(b) F-Measure results

Data set HEAD CART C4.5 REP

Abalone 0.24 ± 0.00 0.23 ± 0.02 0.21 ± 0.02 0.24 ± 0.02

Anneal 0.97 ± 0.00 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.02

Arrhythmia 0.45 ± 0.13 0.67 ± 0.06 0.65 ± 0.06 0.63 ± 0.07

Audiology 0.73 ± 0.00 0.71 ± 0.05 0.75 ± 0.08 0.70 ± 0.09

Autos 0.67 ± 0.06 0.77 ± 0.10 0.85 ± 0.07 0.62 ± 0.07

Breast-cancer 0.73 ± 0.00 0.63 ± 0.05 0.70 ± 0.11 0.62 ± 0.06

Breast-w 0.93 ± 0.00 0.95 ± 0.02 0.95 ± 0.02 0.94 ± 0.03

Bridges1 0.63 ± 0.03 0.45 ± 0.06 0.52 ± 0.11 0.29 ± 0.11

Bridges2 0.63 ± 0.04 0.43 ± 0.05 0.51 ± 0.11 0.29 ± 0.11

Car 0.81 ± 0.02 0.97 ± 0.02 0.93 ± 0.02 0.89 ± 0.02

Heart-c 0.80 ± 0.01 0.80 ± 0.04 0.76 ± 0.09 0.77 ± 0.08

Flags 0.67 ± 0.01 0.57 ± 0.10 0.61 ± 0.05 0.58 ± 0.10

Credit-g 0.73 ± 0.00 0.71 ± 0.04 0.70 ± 0.02 0.70 ± 0.05

Colic 0.57 ± 0.14 0.84 ± 0.08 0.85 ± 0.07 0.83 ± 0.07

Heart-h 0.74 ± 0.07 0.76 ± 0.06 0.80 ± 0.07 0.79 ± 0.09

Ionosphere 0.89 ± 0.01 0.89 ± 0.03 0.88 ± 0.05 0.91 ± 0.02

kdd-synthetic 0.96 ± 0.00 0.88 ± 0.04 0.91 ± 0.04 0.87 ± 0.04

kr-vs-kp 0.95 ± 0.00 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01

Liver-disorders 0.73 ± 0.01 0.66 ± 0.09 0.66 ± 0.05 0.63 ± 0.05

Lung-cancer 0.69 ± 0.00 0.42 ± 0.32 0.35 ± 0.29 0.42 ± 0.19

Meta.data 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.02 0.00 ± 0.00

Morphological 0.69 ± 0.01 0.70 ± 0.04 0.70 ± 0.02 0.70 ± 0.03

mb-promoters 0.86 ± 0.01 0.71 ± 0.14 0.79 ± 0.14 0.76 ± 0.15

Postoperative-patient 0.69 ± 0.03 0.59 ± 0.08 0.59 ± 0.07 0.58 ± 0.09

Shuttle-control 0.57 ± 0.02 0.57 ± 0.39 0.57 ± 0.39 0.57 ± 0.39

Soybean 0.68 ± 0.01 0.91 ± 0.04 0.92 ± 0.04 0.82 ± 0.06

Tempdiag 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Tep.fea 0.61 ± 0.00 0.61 ± 0.02 0.61 ± 0.02 0.61 ± 0.02

Tic-tac-toe 0.72 ± 0.04 0.94 ± 0.02 0.86 ± 0.03 0.86 ± 0.03

Transfusion 0.77 ± 0.00 0.76 ± 0.03 0.77 ± 0.03 0.76 ± 0.02

Vehicle 0.74 ± 0.00 0.71 ± 0.05 0.73 ± 0.04 0.70 ± 0.04

Vote 0.96 ± 0.00 0.97 ± 0.02 0.97 ± 0.02 0.95 ± 0.03

Vowel 0.48 ± 0.02 0.82 ± 0.04 0.83 ± 0.03 0.70 ± 0.04

Wine-red 0.59 ± 0.00 0.61 ± 0.02 0.61 ± 0.03 0.58 ± 0.03

Wine-white 0.51 ± 0.00 0.58 ± 0.03 0.60 ± 0.02 0.55 ± 0.02

Average rank 2.44 2.27 2.04 3.24
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Table 5.20 Results for the {7× 33} configuration

(a) Accuracy results

Data set HEAD CART C4.5 REP

Abalone 0.29 ± 0.01 0.26 ± 0.02 0.22 ± 0.02 0.26 ± 0.02

Anneal 0.98 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.98 ± 0.02

Arrhythmia 0.78 ± 0.02 0.71 ± 0.05 0.66 ± 0.05 0.67 ± 0.06

Audiology 0.79 ± 0.00 0.74 ± 0.05 0.78 ± 0.07 0.74 ± 0.08

Autos 0.84 ± 0.04 0.78 ± 0.10 0.86 ± 0.06 0.65 ± 0.08

Breast-cancer 0.75 ± 0.00 0.69 ± 0.04 0.75 ± 0.08 0.69 ± 0.05

Breast-w 0.96 ± 0.01 0.95 ± 0.02 0.95 ± 0.02 0.94 ± 0.03

Bridges2 0.71 ± 0.01 0.54 ± 0.08 0.58 ± 0.13 0.40 ± 0.15

Car 0.92 ± 0.02 0.97 ± 0.02 0.93 ± 0.02 0.89 ± 0.02

Heart-c 0.83 ± 0.01 0.81 ± 0.04 0.77 ± 0.09 0.77 ± 0.08

Flags 0.73 ± 0.01 0.61 ± 0.10 0.63 ± 0.05 0.62 ± 0.10

Credit-g 0.76 ± 0.00 0.73 ± 0.04 0.71 ± 0.03 0.72 ± 0.06

Colic 0.88 ± 0.01 0.85 ± 0.08 0.86 ± 0.06 0.83 ± 0.06

Heart-h 0.83 ± 0.01 0.77 ± 0.06 0.80 ± 0.08 0.80 ± 0.09

Ionosphere 0.94 ± 0.01 0.89 ± 0.03 0.89 ± 0.05 0.91 ± 0.02

kdd-synthetic 0.95 ± 0.00 0.88 ± 0.04 0.91 ± 0.04 0.88 ± 0.03

kr-vs-kp 0.96 ± 0.00 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01

Liver-disorders 0.75 ± 0.00 0.67 ± 0.09 0.67 ± 0.05 0.65 ± 0.05

Lung-cancer 0.71 ± 0.02 0.51 ± 0.33 0.45 ± 0.27 0.54 ± 0.17

Meta.data 0.14 ± 0.02 0.05 ± 0.03 0.04 ± 0.03 0.04 ± 0.00

Morphological 0.74 ± 0.01 0.72 ± 0.04 0.72 ± 0.02 0.72 ± 0.03

mb-promoters 0.89 ± 0.01 0.72 ± 0.14 0.80 ± 0.13 0.77 ± 0.15

Shuttle-control 0.59 ± 0.02 0.65 ± 0.34 0.65 ± 0.34 0.65 ± 0.34

Soybean 0.82 ± 0.08 0.92 ± 0.04 0.92 ± 0.03 0.84 ± 0.05

Tempdiag 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Tep.fea 0.65 ± 0.00 0.65 ± 0.02 0.65 ± 0.02 0.65 ± 0.02

Tic-tac-toe 0.94 ± 0.02 0.94 ± 0.02 0.86 ± 0.03 0.86 ± 0.03

Transfusion 0.79 ± 0.00 0.79 ± 0.03 0.78 ± 0.02 0.78 ± 0.02

Vehicle 0.77 ± 0.01 0.72 ± 0.04 0.74 ± 0.04 0.71 ± 0.04

Vote 0.96 ± 0.00 0.97 ± 0.02 0.97 ± 0.02 0.95 ± 0.03

Vowel 0.76 ± 0.07 0.82 ± 0.04 0.83 ± 0.03 0.70 ± 0.04

Wine-red 0.64 ± 0.01 0.63 ± 0.02 0.61 ± 0.03 0.60 ± 0.03

Wine-white 0.55 ± 0.01 0.58 ± 0.02 0.61 ± 0.03 0.56 ± 0.02

Average rank 1.77 2.50 2.35 3.38

(continued)
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Table 5.20 (continued)

(b) F-Measure results

Data set HEAD CART C4.5 REP

Abalone 0.27 ± 0.01 0.23 ± 0.02 0.21 ± 0.02 0.24 ± 0.02

Anneal 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.02

Arrhythmia 0.76 ± 0.02 0.67 ± 0.06 0.65 ± 0.06 0.63 ± 0.07

Audiology 0.77 ± 0.01 0.71 ± 0.05 0.75 ± 0.08 0.70 ± 0.09

Autos 0.85 ± 0.04 0.77 ± 0.10 0.85 ± 0.07 0.62 ± 0.07

Breast-cancer 0.73 ± 0.00 0.63 ± 0.05 0.70 ± 0.11 0.62 ± 0.06

Breast-w 0.96 ± 0.01 0.95 ± 0.02 0.95 ± 0.02 0.94 ± 0.03

Bridges2 0.70 ± 0.02 0.43 ± 0.05 0.51 ± 0.11 0.29 ± 0.11

Car 0.92 ± 0.03 0.97 ± 0.02 0.93 ± 0.02 0.89 ± 0.02

Heart-c 0.83 ± 0.01 0.80 ± 0.04 0.76 ± 0.09 0.77 ± 0.08

Flags 0.72 ± 0.01 0.57 ± 0.10 0.61 ± 0.05 0.58 ± 0.10

Credit-g 0.76 ± 0.01 0.71 ± 0.04 0.70 ± 0.02 0.70 ± 0.05

Colic 0.88 ± 0.01 0.84 ± 0.08 0.85 ± 0.07 0.83 ± 0.07

Heart-h 0.83 ± 0.01 0.76 ± 0.06 0.80 ± 0.07 0.79 ± 0.09

Ionosphere 0.94 ± 0.01 0.89 ± 0.03 0.88 ± 0.05 0.91 ± 0.02

kdd-synthetic 0.95 ± 0.00 0.88 ± 0.04 0.91 ± 0.04 0.87 ± 0.04

kr-vs-kp 0.96 ± 0.00 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01

Liver-disorders 0.75 ± 0.00 0.66 ± 0.09 0.66 ± 0.05 0.63 ± 0.05

Lung-cancer 0.71 ± 0.02 0.42 ± 0.32 0.35 ± 0.29 0.42 ± 0.19

Meta.data 0.13 ± 0.02 0.02 ± 0.01 0.02 ± 0.02 0.00 ± 0.00

Morphological 0.72 ± 0.00 0.70 ± 0.04 0.70 ± 0.02 0.70 ± 0.03

mb-promoters 0.89 ± 0.01 0.71 ± 0.14 0.79 ± 0.14 0.76 ± 0.15

Shuttle-control 0.55 ± 0.02 0.57 ± 0.39 0.57 ± 0.39 0.57 ± 0.39

Soybean 0.80 ± 0.09 0.91 ± 0.04 0.92 ± 0.04 0.82 ± 0.06

Tempdiag 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Tep.fea 0.61 ± 0.00 0.61 ± 0.02 0.61 ± 0.02 0.61 ± 0.02

Tic-tac-toe 0.94 ± 0.02 0.94 ± 0.02 0.86 ± 0.03 0.86 ± 0.03

Transfusion 0.77 ± 0.00 0.76 ± 0.03 0.77 ± 0.03 0.76 ± 0.02

Vehicle 0.77 ± 0.01 0.71 ± 0.05 0.73 ± 0.04 0.70 ± 0.04

Vote 0.96 ± 0.00 0.97 ± 0.02 0.97 ± 0.02 0.95 ± 0.03

Vowel 0.76 ± 0.07 0.82 ± 0.04 0.83 ± 0.03 0.70 ± 0.04

Wine-red 0.63 ± 0.01 0.61 ± 0.02 0.61 ± 0.03 0.58 ± 0.03

Wine-white 0.53 ± 0.01 0.58 ± 0.03 0.60 ± 0.02 0.55 ± 0.02

Average rank 1.71 2.53 2.29 3.47
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Table 5.21 Results for the {9× 31} configuration

(a) Accuracy results

Data set HEAD CART C4.5 REP

Abalone 0.28 ± 0.00 0.26 ± 0.02 0.22 ± 0.02 0.26 ± 0.02

Anneal 0.92 ± 0.00 0.98 ± 0.01 0.99 ± 0.01 0.98 ± 0.02

Arrhythmia 0.76 ± 0.00 0.71 ± 0.05 0.66 ± 0.05 0.67 ± 0.06

Audiology 0.67 ± 0.01 0.74 ± 0.05 0.78 ± 0.07 0.74 ± 0.08

Autos 0.78 ± 0.01 0.78 ± 0.10 0.86 ± 0.06 0.65 ± 0.08

Breast-cancer 0.73 ± 0.00 0.69 ± 0.04 0.75 ± 0.08 0.69 ± 0.05

Breast-w 0.94 ± 0.00 0.95 ± 0.02 0.95 ± 0.02 0.94 ± 0.03

Bridges2 0.62 ± 0.01 0.54 ± 0.08 0.58 ± 0.13 0.40 ± 0.15

Car 0.88 ± 0.01 0.97 ± 0.02 0.93 ± 0.02 0.89 ± 0.02

Heart-c 0.82 ± 0.00 0.81 ± 0.04 0.77 ± 0.09 0.77 ± 0.08

Flags 0.71 ± 0.01 0.61 ± 0.10 0.63 ± 0.05 0.62 ± 0.10

Credit-g 0.75 ± 0.00 0.73 ± 0.04 0.71 ± 0.03 0.72 ± 0.06

Colic 0.83 ± 0.01 0.85 ± 0.08 0.86 ± 0.06 0.83 ± 0.06

Heart-h 0.80 ± 0.00 0.77 ± 0.06 0.80 ± 0.08 0.80 ± 0.09

Ionosphere 0.92 ± 0.00 0.89 ± 0.03 0.89 ± 0.05 0.91 ± 0.02

kdd-synthetic 0.95 ± 0.00 0.88 ± 0.04 0.91 ± 0.04 0.88 ± 0.03

kr-vs-kp 0.91 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01

Liver-disorders 0.74 ± 0.00 0.67 ± 0.09 0.67 ± 0.05 0.65 ± 0.05

Meta.data 0.11 ± 0.00 0.05 ± 0.03 0.04 ± 0.03 0.04 ± 0.00

Morphological 0.71 ± 0.00 0.72 ± 0.04 0.72 ± 0.02 0.72 ± 0.03

mb-promoters 0.73 ± 0.00 0.72 ± 0.14 0.80 ± 0.13 0.77 ± 0.15

Shuttle-control 0.63 ± 0.00 0.65 ± 0.34 0.65 ± 0.34 0.65 ± 0.34

Soybean 0.64 ± 0.01 0.92 ± 0.04 0.92 ± 0.03 0.84 ± 0.05

Tep.fea 0.65 ± 0.00 0.65 ± 0.02 0.65 ± 0.02 0.65 ± 0.02

Tic-tac-toe 0.83 ± 0.01 0.94 ± 0.02 0.86 ± 0.03 0.86 ± 0.03

Transfusion 0.79 ± 0.00 0.79 ± 0.03 0.78 ± 0.02 0.78 ± 0.02

Vehicle 0.75 ± 0.00 0.72 ± 0.04 0.74 ± 0.04 0.71 ± 0.04

Vote 0.96 ± 0.00 0.97 ± 0.02 0.97 ± 0.02 0.95 ± 0.03

Vowel 0.61 ± 0.01 0.82 ± 0.04 0.83 ± 0.03 0.70 ± 0.04

Wine-red 0.61 ± 0.00 0.63 ± 0.02 0.61 ± 0.03 0.60 ± 0.03

Wine-white 0.53 ± 0.00 0.58 ± 0.02 0.61 ± 0.03 0.56 ± 0.02

Average rank 2.55 2.26 2.03 3.16

(b) F-Measure results

Data set HEAD CART C4.5 REP

Abalone 0.24 ± 0.00 0.23 ± 0.02 0.21 ± 0.02 0.24 ± 0.02

Anneal 0.92 ± 0.00 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.02

Arrhythmia 0.73 ± 0.00 0.67 ± 0.06 0.65 ± 0.06 0.63 ± 0.07

Audiology 0.62 ± 0.01 0.71 ± 0.05 0.75 ± 0.08 0.70 ± 0.09

(continued)



5.2 Evolving Algorithms from Multiple Data Sets 119

Table 5.21 (continued)

(b) F-Measure results

Data set HEAD CART C4.5 REP

Autos 0.78 ± 0.01 0.77 ± 0.10 0.85 ± 0.07 0.62 ± 0.07

Breast-cancer 0.71 ± 0.00 0.63 ± 0.05 0.70 ± 0.11 0.62 ± 0.06

Breast-w 0.94 ± 0.00 0.95 ± 0.02 0.95 ± 0.02 0.94 ± 0.03

Bridges2 0.60 ± 0.01 0.43 ± 0.05 0.51 ± 0.11 0.29 ± 0.11

Car 0.88 ± 0.01 0.97 ± 0.02 0.93 ± 0.02 0.89 ± 0.02

Heart-c 0.82 ± 0.00 0.80 ± 0.04 0.76 ± 0.09 0.77 ± 0.08

Flags 0.70 ± 0.00 0.57 ± 0.10 0.61 ± 0.05 0.58 ± 0.10

Credit-g 0.73 ± 0.00 0.71 ± 0.04 0.70 ± 0.02 0.70 ± 0.05

Colic 0.83 ± 0.01 0.84 ± 0.08 0.85 ± 0.07 0.83 ± 0.07

Heart-h 0.79 ± 0.00 0.76 ± 0.06 0.80 ± 0.07 0.79 ± 0.09

Ionosphere 0.92 ± 0.00 0.89 ± 0.03 0.88 ± 0.05 0.91 ± 0.02

kdd-synthetic 0.95 ± 0.00 0.88 ± 0.04 0.91 ± 0.04 0.87 ± 0.04

kr-vs-kp 0.91 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01

Liver-disorders 0.73 ± 0.00 0.66 ± 0.09 0.66 ± 0.05 0.63 ± 0.05

Meta.data 0.09 ± 0.00 0.02 ± 0.01 0.02 ± 0.02 0.00 ± 0.00

Morphological 0.69 ± 0.00 0.70 ± 0.04 0.70 ± 0.02 0.70 ± 0.03

mb-promoters 0.73 ± 0.00 0.71 ± 0.14 0.79 ± 0.14 0.76 ± 0.15

Shuttle-control 0.56 ± 0.00 0.57 ± 0.39 0.57 ± 0.39 0.57 ± 0.39

Soybean 0.60 ± 0.02 0.91 ± 0.04 0.92 ± 0.04 0.82 ± 0.06

Tep.fea 0.61 ± 0.00 0.61 ± 0.02 0.61 ± 0.02 0.61 ± 0.02

Tic-tac-toe 0.83 ± 0.02 0.94 ± 0.02 0.86 ± 0.03 0.86 ± 0.03

Transfusion 0.77 ± 0.00 0.76 ± 0.03 0.77 ± 0.03 0.76 ± 0.02

Vehicle 0.74 ± 0.00 0.71 ± 0.05 0.73 ± 0.04 0.70 ± 0.04

Vote 0.96 ± 0.00 0.97 ± 0.02 0.97 ± 0.02 0.95 ± 0.03

Vowel 0.60 ± 0.01 0.82 ± 0.04 0.83 ± 0.03 0.70 ± 0.04

Wine-red 0.59 ± 0.00 0.61 ± 0.02 0.61 ± 0.03 0.58 ± 0.03

Wine-white 0.49 ± 0.00 0.58 ± 0.03 0.60 ± 0.02 0.55 ± 0.02

Average rank 2.48 2.32 1.96 3.23

The last step of this empirical analysis is to verify whether the differences in rank
values are statistically significant.We employ once again the graphical representation
suggested by Demšar [7], the critical diagrams. Algorithms that are not significantly
different from each other are connected. The critical difference given by the Nemenyi
test is presented in the top of the graph.

Figure5.3 shows the critical diagrams for all experimental configurations. It is
interesting to see that there are no statistically significant differences among HEAD-
DT, C4.5, and CART in neither configuration, except for {7× 33}, in which HEAD-
DT outperforms CART with statistical significance (see Fig. 5.3h). Indeed, this is
the only case in which one of the three algorithms outperform another in all five
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Table 5.22 Summary of the experimental analysis regarding the heterogeneous approach

Configuration Rank HEAD-DT CART C4.5 REPTree

{1× 39} Accuracy 2.24 2.36 2.24 3.15

F-measure 2.18 2.46 2.15 3.21

{3× 37} Accuracy 2.45 2.26 2.19 3.11

F-measure 2.23 2.42 2.15 3.20

{5× 35} Accuracy 2.56 2.19 2.13 3.13

F-measure 2.44 2.27 2.04 3.24

{7× 33} Accuracy 1.77 2.50 2.35 3.38

F-measure 1.71 2.53 2.29 3.47

{9× 31} Accuracy 2.55 2.26 2.03 3.16

F-measure 2.48 2.32 1.96 3.23

Average 2.26 2.36 2.15 3.23

(a)

(c)

(e)

(g)

(i)

(b)

(d)

(f)

(h)

(j)

Fig. 5.3 Critical diagrams for the UCI data sets. a Accuracy rank for {1× 39}. b F-Measure rank
for {1 × 39}. c Accuracy rank for {3 × 37}. d F-Measure rank for {3 × 37}. e Accuracy rank for
{5 × 35}. f F-Measure rank for {5 × 35}. g Accuracy rank for {7 × 33}. h F-Measure rank for
{7 × 33}. i Accuracy rank for {9 × 31}. j F-Measure rank for {9 × 31}
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configurations. REPTree is often outperformed with statistical significance by the
three othermethods, which is expected considering it is consistently theworst-ranked
algorithm among the four.

Note thatHEAD-DTdid not achieve the same performance as in the homogeneous
approach. That seems to show that generating an “all-around” algorithm is more
difficult than generating a tailor-made algorithm for a particular domain. This is
due to the own nature of the optimisation strategy employed by HEAD-DT. By
optimising the building blocks of a decision-tree induction algorithm based on a few
data sets in the meta-training set, HEAD-DT eventually finds a good compromise
regarding the average F-Measure of these data sets. Nevertheless, we believe this
automatically-designed algorithm to be too-specific to the meta-training data sets,
leading to a specific case of overfitting. Our hypothesis is that HEAD-DT’s generated
algorithm is overfitting (at some extent) the meta-training set, causing some damage
to its performance over the meta-test set. We further investigate this hypothesis in
the next section, backing it up with data.

5.2.3 The Case of Meta-Overfitting

When evolving an algorithm from multiple data sets, HEAD-DT optimises its algo-
rithms based on their predictive performance on a few data sets in the meta-training
set. We saw in the previous section that generating an “all-around” algorithm that is
capable of outperforming traditional algorithms, such as C4.5 and CART, is not an
easy task. Our hypothesis for this apparent “lack of performance” is that HEAD-DT
is finding a good (perhaps excellent) algorithm for the meta-training set, but that
this algorithm is not really a good “all-around” algorithm. We call this phenomenon
meta-overfitting.4

For supporting this hypothesis with data, let us analyse the performance of
HEAD-DT in the meta-training set considering the previously-detailed configura-
tions. Table5.23 shows the F-Measure obtained by HEAD-DT in each data set in
the meta-training set, as well as their average (fitness value). For a perspective view,
we also present the same results for C4.5, considering the exact same data partition.
Recall that, during the fitness evaluation process, we employ a random training-test
partition for each data set, instead of typical 10-fold cross-validation procedure, in
order to speed up evolution.

Table5.23 shows that HEAD-DT is indeed designing algorithms that excel in
the meta-training set. The average F-Measure achieved by HEAD-DT in the meta-
training set is always greater than the one provided by C4.5. Whereas it is expected
that HEAD-DT generates algorithms that perform well in the meta-training set (it
is explicitly optimising these algorithms for that goal), the difference in perfor-

4 The term overfitting is not used because it refers to a model that overfits the data, whereas we are
talking about the case of an algorithm that “overfits” the data, in the sense that it is excellent when
dealing with those data sets it was designed to, but it underperforms in previously unseen data sets.
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Table 5.23 F-Measure achieved by HEAD-DT and C4.5 in the meta-training set

Configuration Data sets HEAD-DT C4.5 Average HEAD-DT Average C4.5

{1 × 39} Hayes-roth 0.9242 0.7708 0.9242 0.7708

{3× 37} Hayes-roth 0.9242 0.7708 0.8438 0.7352

Labor 1.0000 0.8667

Tae 0.6073 0.5682

{5× 35} Hayes-roth 0.9242 0.7708 0.8494 0.7565

Labor 1.0000 0.8667

Tae 0.6073 0.5682

Iris 0.9471 0.9471

Haberman 0.7683 0.6298

{7× 33} Hayes-roth 0.9242 0.7708 0.7808 0.6940

Labor 0.8667 0.8667

Tae 0.6017 0.5682

Iris 0.9736 0.9471

Haberman 0.7697 0.6298

Postoperative-patient 0.6293 0.5708

Bridges1 0.7003 0.5049

{9× 31} Hayes-roth 0.8750 0.7708 0.7687 0.6628

Labor 0.8038 0.8667
Tae 0.6223 0.5682

Iris 0.9471 0.9471

haberman 0.7342 0.6298

Postoperative-patient 0.5708 0.5708

Bridges1 0.6190 0.5049

Tempdiag 1.0000 1.0000

Lung-cancer 0.7464 0.1071

mance betweenHEAD-DTandC4.5 is overwhelming. For instance, in configurations
{3× 37}, {5× 35}, {7× 33}, and {9× 31}, HEAD-DT provides F-Measure values
that are around 10% higher than those provided by C4.5. In configuration {1× 39},
in which HEAD-DT has to optimise a decision-tree induction algorithm based on
the sole predictive performance of data set hayes-roth, the difference in F-Measure
is even higher: 15%!

These very good results achieved by HEAD-DT in the meta-training set and, at
the same time, its disappointing results in the corresponding meta-test sets (except
for configuration {7× 33}) seem to indicate that HEAD-DT is suffering from meta-
overfitting. Unfortunately, the problem does not have a trivial solution. We comment
on possible solutions to this problem in the book’s future work possibilities, Sect. 7.2.

http://dx.doi.org/10.1007/978-3-319-14231-9_7
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5.3 HEAD-DT’s Time Complexity

Regarding execution time, it is clear that HEAD-DT is slower than C4.5, CART, or
REPTree. Considering that there are 100 individuals executed for 100 generations,
there is a maximum (worst case) of 10,000 fitness evaluations of decision trees.

We recorded the execution time of both breeding operations and fitness evaluation
(one thread was used for breeding and other for evaluation). Total time of breeding is
negligible (a fewmilliseconds in a full evolutionary cycle), regardless of the data sets
being used in the meta-training set (breeding does not consider any domain-specific
information). Indeed, breeding individuals in the form of an integer string is known
to be quite efficient in evolutionary computation.

Fitness evaluation, on the other hand, is the bottleneck of HEAD-DT. In the exper-
iments of the specific framework, the largest data set (winequality_white) takes 2.5h
to be fully executed (one full evolutionary cycle of 100 generations). The small-
est data set (shuttle_landing) takes only 0.72 s to be fully executed. In the homo-
geneous approach of the general framework, the most time-consuming configura-
tion, {9× 12}, takes 11.62h to be fully executed, whereas the fastest configuration,
{1× 20}, takes only 5.60min. Hence, we can see that the fitness evaluation time can
vary quite a lot based on the number and type of data sets in the meta-training set.

The computational complexity of top-down decision-tree induction algorithms
like C4.5 and CART is O(m × n log n) (m is the number of attributes and n the
data set size), plus a term regarding the specific pruning method. Considering that
breeding takes negligible time, we can say that in the worst case scenario, HEAD-DT
time complexity is O(i×g×m×n log n), where i is the number of individuals and g
is the number of generations. In practice, the number of evaluations is much smaller
than i × g, due to the fact that repeated individuals are not re-evaluated. In addition,
individuals selected by elitism and by reproduction (instead of crossover) are also
not re-evaluated, saving computational time.

5.4 Cost-Effectiveness of Automated Versus Manual
Algorithm Design

The aforementioned conventional perspective for analysing HEAD-DT’s time com-
plexity is misleading in one way: it assumes that HEAD-DT is a “conventional”
search algorithm, searching for an optimal solution to a single data set (as usual
when running a classification algorithm), which is not the case. In reality, as dis-
cussed earlier, HEAD-DT is a hyper-heuristic that outputs a complete decision-tree
induction algorithm. The algorithm automatically designed by HEAD-DT, as well
as the manually-designed algorithms C4.5, CART and REPTree, are all complete
decision-tree induction algorithms that can be re-used over and over again to extract
knowledge from different data sets. In the machine learning literature, the time taken
by human researchers to manually design an algorithm is usually not reported, but
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it is safe to assume that the time taken by a single human researcher to design and
implement a new decision-tree induction algorithm is on the order of at least several
months. In this context, noting that what HEAD-DT is doing is effectively replacing
the manual design of decision-tree algorithms with an automated approach for such
a design, even if HEAD-DT took a couple of days to produce a decision-tree algo-
rithm, that time would still be much smaller than the corresponding manual design
time. Hence, when evaluated as an algorithm-design method (which is really the role
of HEAD-DT), it is fair to say it is a very fast method, at least much faster than a
manual approach for the design of decision-tree induction algorithms.

At this point in our discussion, trying to play the role of devil’s lawyer, one could
perhaps present the following counter-argument: the aforementioned discussion is
ignoring the fact that HEAD-DT was itself designed by human researchers, a design
process that also took several months! This is of course true, but even taking this into
account, it can be argued that HEAD-DT is still much more cost-effective than the
human design of decision-tree algorithms, as follows. First, now that HEAD-DT has
beenmanually designed, it can be re-used over and over again to automatically create
decision-tree algorithms tailored to any particular type of data set (or application
domain) in which a given user is interested. In the general framework, we focused
on gene expression data sets, but HEAD-DT can be re-used to create decision-tree
algorithms tailored to, say, a specific type of financial data sets or a specific type
of medical data sets, to mention just two out of a very large number of possible
application domains. Once HEAD-DT has been created, the “cost” associated with
using HEAD-DT in any other application domain is very small—it is essentially the
cost associated with the time to run HEAD-DT in a new application domain (say a
couple of days of a desktop computer’s processing time).

In contrast, what would be the cost of manually creating a new decision-tree
algorithm tailored to a particular type of data set or application domain? First, note
that this kind of manual design of a decision-tree algorithm tailored to a specific
type of data set is hardly found in the literature. This is presumably because, for
the new algorithm to be effective and really tailored to the target type of data set,
a human researcher would need to be an expert in both decision-tree algorithms
and the application domain (or more specifically the type of data set to be mined),
and not many researchers would satisfy both criteria in practice. Just for the sake
of argument, though, let us make the (probably unrealistic) assumption that there
are many application domains for which there is a researcher who is an expert in
both that application domain and decision-tree induction algorithms. For each such
application domain, it seems safe to assume again that the human expert in question
would need on the order of several months to design a new decision-tree algorithm
that is effective and really tailored to that application domain; whilst, as mentioned
earlier, HEAD-DT could automatically design this algorithm in a couple of days.

In summary, given the very large diversity of application domains to which
decision-tree algorithms have been and will probably continue to be applied for
a long time, one can see that HEAD-DT’s automated approach offers a much more
cost-effective approach for designing decision-tree algorithms than the conventional
manual design approach that is nearly always used in machine learning research. In
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this sense, HEAD-DT paves the way for the large-scale and cost-effective production
of decision-tree induction algorithms that are tailored to any specific application
domain or type of classification data set of interest.

5.5 Examples of Automatically-Designed Algorithms

For illustrating a novel algorithm designed by HEAD-DT, let us first consider the
specific framework, more specifically the algorithm designed to the Semeion data
set, in which HEAD-DT managed to achieve maximum accuracy and F-Measure
(which was not the case of CART and C4.5). The algorithm designed by HEAD-DT
is presented in Algorithm 1. It is indeed novel, since no algorithm in the literature
combines components such as the Chandra-Varghese criterion with a pruning-free
strategy.

Algorithm 1 Algorithm designed by HEAD-DT for the Semeion data set.
1: Recursively split nodes with the Chandra-Varghese criterion;
2: Aggregate nominal splits in binary subsets;
3: Perform step 1 until class-homogeneity or the minimum number of 5 instances is reached;
4: Do not perform any pruning;

When dealing with missing values:
5: Calculate the split of missing values by performing unsupervised imputation;
6: Distribute missing values by assigning the instance to all partitions;
7: For classifying an instance with missing values, explore all branches and combine the results.

Themain advantage of HEAD-DT is that it automatically searches for the suitable
components (with their own biases) according to the data set (or set of data sets) being
investigated. It is difficult to believe that a researcher would combine such a distinct
set of components like those in Algorithm 1 to achieve 100% accuracy in a particular
data set.

Now let us consider the general framework, more specifically the homogeneous
approach, in which HEAD-DT managed to outperform C4.5, CART, and REPTree
for both accuracy and F-Measure. The typical algorithm designed by HEAD-DT for
the domain of gene expression classification is presented in Algorithm 2. It is indeed
novel, since no algorithm in the literature combines components such as the DCSM
criterion with PEP pruning.

The algorithm presented in Algorithm 2 is one of the twenty-five algorithms
automatically designed by HEAD-DT in the experimental analysis (5 configurations
executed 5 times each). Nevertheless, by close inspection of the 25 automatically-
generated algorithms, we observed that Algorithm 2 comprises building blocks that
were consistently favored regarding the gene expression application domain. For
instance, the DCSM and Chandra-Varghese criteria—both created recently by the
same authors [5, 6]—were selected as the best split criterion in ≈50% of the algo-
rithms designed by HEAD-DT. Similarly, the minimum number of instances stop
criterion was selected in ≈70% of the algorithms, with either 6 or 7 instances as its
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Algorithm 2 Algorithm designed by HEAD-DT for the homogeneous approach
(gene expression data), configuration {5 × 16}.
1: Recursively split nodes using the DCSM criterion;
2: Aggregate nominal splits in binary subsets;
3: Perform step 1 until class-homogeneity or the minimum number of 6 instances is reached;
4: Perform PEP pruning with 2 standard errors (SEs) to adjust the training error;

When dealing with missing values:
5: Calculate the split of missing values by performing unsupervised imputation;
6: Distribute missing values by assigning the instance to the largest partition;
7: For classifying an instance with missing values, explore all branches and combine the results.

parameter value. Finally, the PEP pruning was the favored pruning strategy in≈60%
of the algorithms, with a very large advantage over the strategies used by C4.5 (EBP
pruning, selected in 8% of the algorithms) and CART (CCP pruning, not selected
by any of the automatically-designed algorithms).

5.6 Is the Genetic Search Worthwhile?

Finally, the last task to be performed in this chapter is to verify whether the genetic
search employed by HEAD-DT provides solutions statistically better than a random
walk through the search space. For that,we implemented the randomsearch algorithm
depicted in Algorithm 3.

The random search algorithm searches in the space of 10,000 individuals in order
tomake a fair comparisonwith an evolutionary algorithm that evolves 100 individuals
in 100 generations. These 10,000 individuals are randomly created by generating
random values from a uniform distribution to each of the individual’s genes, within
its valid boundaries (Algorithm 3, line 5).

After the genome is decoded in the form of a decision-tree induction algorithm
(Algorithm 3, line 7), the randomly-generated algorithm is executed over the meta-
training set (Algorithm 3, lines 9–11), and its fitness is computed as the average F-
Measure achieved in each data set from the meta-training set (Algorithm 3, line 12).
The best individual is stored in the variable bestAlgorithm (Algorithm 9, lines 13–
16), and returned as the resulting decision-tree algorithm from the random search
procedure.

In order to compare the algorithms generated by HEAD-DTwith those created by
the random search algorithm, we employed the same experimental setup presented
in Sect. 5.2.2: UCI data sets divided in 5 configurations: {#meta-training sets, #meta-
test sets}: {1× 39}, {3× 37}, {5× 35}, {7× 33}, and {9× 31}. For evaluating the
statistical significance of the results, we applied theWilcoxon signed-ranks test [13],
which is the recommended statistical test to evaluate two classifiers in multiple data
sets [7]. In a nutshell, the Wilcoxon signed-ranks test is a non-parametric alternative
to the well-known paired t-test, which ranks the differences in performances of two
classifiers for each data set (ignoring their signs) and compares the ranks for the
positive and negative differences. The sum of the positive and negative ranks are
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Algorithm 3 Random search algorithm.
1: bestFitness ← 0
2: bestAlgorithm ← ∅
3: for i = 1 to 10000 do
4: for gene in genome do
5: gene ← U(mingene, maxgene)
6: end for
7: algorithm ← decode(genome)
8: for dataset in meta-training do
9: DT ← execute(algorithm, dataset.training)

10: fmeasure[dataset] ← classify(DT , dataset.test)
11: end for
12: fitness[i] ← average( fmeasure)
13: if (fitness[i] > bestFitness) then
14: bestFitness ← fitness[i]
15: bestAlgorithm ← algorithm
16: end if
17: end for
18: return bestAlgorithm

performed, and the smaller of them is compared to a table of exact critical values
(for up to 25 data sets), and for larger values a z statistic is computed and assumed
to be normally distributed.

Tables5.24, 5.25, 5.26, 5.27 and 5.28 present the comparison results from the 5
configurations, for both accuracy and F-Measure. At the bottom of each table, we
present the number of victories for each method (ties are omitted), and also the p-
value returned by theWilcoxon test. For rejecting the null hypothesis of performance
equivalency between the two algorithms, the p-values should be smaller than the
desired significance level α. Note that, regardless of the configuration, the p-values
are really small, showing that HEAD-DT is significantly better than the random
search algorithm considering α = 0.05 and also α = 0.01. These results support the
hypothesis that the genetic search employed by HEAD-DT is indeed worthwhile,
allowing an effective search in the space of decision-tree induction algorithms.

5.7 Chapter Remarks

In this chapter, we presented two distinct sets of experiments for assessing the effec-
tiveness of HEAD-DT, according to the fitness evaluation frameworks presented in
Chap.4. In the first set of experiments, which concerned the specific framework,
both the meta-training and meta-test sets comprise data belonging to a single data
set. We evaluated the performance of algorithms automatically designed by HEAD-
DT in 20 public UCI data sets, and we compared their performance with C4.5 and
CART. Results showed that HEAD-DT is capable of generating specialized algo-
rithms whose performance is significantly better than that of the baseline algorithms.

In the second set of experiments,which concerned the general framework,we eval-
uated HEAD-DT in two different scenarios: (i) the homogeneous approach, in which
HEAD-DT evolved a single algorithm to be applied in data sets from a particular

http://dx.doi.org/10.1007/978-3-319-14231-9_4
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Table 5.24 HEAD-DT versus random search: {1× 39} configuration

(a) Accuracy results

Data set HEAD-DT Random search

Abalone 0.36 ± 0.10 0.25 ± 0.01

Anneal 0.92 ± 0.05 0.93 ± 0.10

Arrhythmia 0.66 ± 0.08 0.58 ± 0.04

Audiology 0.70 ± 0.06 0.56 ± 0.19

Autos 0.80 ± 0.01 0.64 ± 0.16

Breast-cancer 0.73 ± 0.02 0.68 ± 0.04

Breast-w 0.94 ± 0.02 0.94 ± 0.01

Bridges1 0.70 ± 0.03 0.56 ± 0.11

Bridges2 0.64 ± 0.07 0.56 ± 0.11

Car 0.86 ± 0.07 0.88 ± 0.04

Heart-c 0.83 ± 0.02 0.76 ± 0.03

Flags 0.71 ± 0.04 0.56 ± 0.15

Credit-g 0.78 ± 0.03 0.72 ± 0.01

Colic 0.74 ± 0.07 0.70 ± 0.10

Haberman 0.77 ± 0.01 0.72 ± 0.02

Heart-h 0.83 ± 0.02 0.76 ± 0.07

Ionosphere 0.90 ± 0.03 0.89 ± 0.02

Iris 0.96 ± 0.01 0.95 ± 0.01

kdd-synthetic 0.93 ± 0.03 0.88 ± 0.03

kr-vs-kp 0.91 ± 0.06 0.87 ± 0.20

Labor 0.79 ± 0.06 0.69 ± 0.04

Liver-disorders 0.77 ± 0.04 0.67 ± 0.02

Lung-cancer 0.66 ± 0.03 0.45 ± 0.06

Meta.data 0.11 ± 0.02 0.03 ± 0.01

Morphological 0.73 ± 0.03 0.70 ± 0.02

mb-promoters 0.78 ± 0.07 0.76 ± 0.03

Postoperative-patient 0.69 ± 0.01 0.67 ± 0.05

Shuttle-control 0.57 ± 0.04 0.51 ± 0.10

Soybean 0.69 ± 0.20 0.66 ± 0.30

Tae 0.64 ± 0.03 0.51 ± 0.06

Tempdiag 0.97 ± 0.04 0.97 ± 0.05

Tep.fea 0.65 ± 0.00 0.65 ± 0.00

Tic-tac-toe 0.83 ± 0.08 0.83 ± 0.05

Transfusion 0.80 ± 0.01 0.77 ± 0.02

Vehicle 0.78 ± 0.04 0.70 ± 0.03

Vote 0.95 ± 0.00 0.95 ± 0.01

Vowel 0.72 ± 0.16 0.63 ± 0.09

(continued)
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Table 5.24 (continued)

(a) Accuracy results

Data set HEAD-DT Random search

Wine-red 0.67 ± 0.06 0.57 ± 0.01

Wine-white 0.62 ± 0.10 0.53 ± 0.02

Number of victories 34 4

Wilcoxon p-value 1.62 × 10−9

(b) F-Measure results

Data set HEAD-DT Random search

Abalone 0.34 ± 0.11 0.77 ± 0.01

Anneal 0.90 ± 0.08 0.09 ± 0.14

Arrhythmia 0.60 ± 0.11 0.53 ± 0.10

Audiology 0.66 ± 0.06 0.50 ± 0.22

Autos 0.80 ± 0.01 0.39 ± 0.19

Breast-cancer 0.71 ± 0.03 0.36 ± 0.05

Breast-w 0.94 ± 0.02 0.06 ± 0.01

Bridges1 0.68 ± 0.04 0.50 ± 0.13

Bridges2 0.62 ± 0.08 0.51 ± 0.12

Car 0.85 ± 0.08 0.12 ± 0.04

Heart-c 0.83 ± 0.02 0.24 ± 0.04

Flags 0.70 ± 0.05 0.48 ± 0.21

Credit-g 0.77 ± 0.04 0.32 ± 0.06

Colic 0.72 ± 0.09 0.37 ± 0.15

Haberman 0.75 ± 0.01 0.31 ± 0.02

Heart-h 0.83 ± 0.02 0.27 ± 0.11

Ionosphere 0.90 ± 0.04 0.12 ± 0.02

Iris 0.96 ± 0.01 0.05 ± 0.01

kdd-synthetic 0.93 ± 0.03 0.12 ± 0.03

kr-vs-kp 0.91 ± 0.06 0.16 ± 0.27

Labor 0.76 ± 0.09 0.38 ± 0.05

Liver-disorders 0.77 ± 0.04 0.33 ± 0.02

Lung-cancer 0.65 ± 0.04 0.64 ± 0.10

Meta.data 0.10 ± 0.03 0.98 ± 0.01

Morphological 0.71 ± 0.04 0.31 ± 0.01

mb-promoters 0.78 ± 0.07 0.24 ± 0.03

Postoperative-patient 0.64 ± 0.02 0.42 ± 0.02

Shuttle-control 0.55 ± 0.06 0.60 ± 0.05

Soybean 0.66 ± 0.21 0.37 ± 0.33

Tae 0.64 ± 0.03 0.49 ± 0.06

Tempdiag 0.97 ± 0.04 0.03 ± 0.05

Tep.fea 0.61 ± 0.00 0.39 ± 0.00

(continued)
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Table 5.24 (continued)

(b) F-Measure results

Data set HEAD-DT Random search

Tic-tac-toe 0.83 ± 0.09 0.18 ± 0.05

Transfusion 0.78 ± 0.01 0.25 ± 0.01

Vehicle 0.77 ± 0.04 0.30 ± 0.03

Vote 0.95 ± 0.00 0.05 ± 0.01

Vowel 0.71 ± 0.17 0.37 ± 0.09

Wine-red 0.66 ± 0.07 0.44 ± 0.02

Wine-white 0.60 ± 0.12 0.49 ± 0.03

Number of victories 36 3

Wilcoxon p-value 2.91 × 10−7

application domain, namely microarray gene expression data classification; and (ii)
the heterogeneous approach, in which HEAD-DT evolved a single algorithm to be
applied in a variety of data sets, aiming at generating an effective “all-around” algo-
rithm.

In the homogeneous approach, HEAD-DTwas the best-ranked method in all con-
figurations, supporting the hypothesis thatHEAD-DT is indeed capable of generating
an algorithm tailor-made to a particular application domain. In the heterogeneous
approach, HEAD-DT presented predictive performance similar to C4.5 and CART—
no statistically-significant difference was found, except for a particular configuration
in which HEAD-DT outperformed CART. By further analysing the data collected
from the meta-training set, we concluded that HEAD-DT may be suffering from
meta-overfitting, generating algorithms that excel in the meta-training set, but that
underperform at previously-unseen data sets. Considering that CART and C4.5 algo-
rithms are effective and efficient “all-around” algorithms, we recommend their use
in those scenarios in which the user needs fast results in a broad and unrelated set of
data.

We believe the sets of experiments presented in this chapter were comprehensive
enough to conclude that HEAD-DT is an effective approach for building specialized
decision-tree induction algorithms tailored to particular domains or individual data
sets. We refer the interested reader to two successful domain-based applications of
HEAD-DT: flexible-receptor molecular docking data [1] and software maintenance
effort prediction [3].

We also presented in this chapter the time complexity of HEAD-DT, as well as
two examples of automatically-designed decision-tree algorithms. Finally, we inves-
tigated whether the genetic search employed by HEAD-DT was really worthwhile
by comparing it to a random-search strategy. Results clearly indicated that the evo-
lutionary process effectively guides the search for robust decision-tree algorithms.
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Table 5.25 HEAD-DT versus random search: {3× 37} configuration

(a) Accuracy results

Data set HEAD-DT Random search

Abalone 0.27 ± 0.00 0.25 ± 0.01

Anneal 0.98 ± 0.01 0.93 ± 0.10

Arrhythmia 0.66 ± 0.10 0.58 ± 0.04

Audiology 0.73 ± 0.02 0.56 ± 0.19

Autos 0.73 ± 0.08 0.64 ± 0.16

Breast-cancer 0.74 ± 0.01 0.68 ± 0.04

Breast-w 0.94 ± 0.01 0.94 ± 0.01

Bridges1 0.70 ± 0.06 0.56 ± 0.11

Bridges2 0.69 ± 0.05 0.56 ± 0.11

Car 0.84 ± 0.02 0.88 ± 0.04

Heart-c 0.81 ± 0.00 0.76 ± 0.03

Flags 0.69 ± 0.01 0.56 ± 0.15

Credit-g 0.74 ± 0.00 0.72 ± 0.01

Colic 0.78 ± 0.12 0.70 ± 0.10

Haberman 0.77 ± 0.00 0.72 ± 0.02

Heart-h 0.80 ± 0.01 0.76 ± 0.07

Ionosphere 0.92 ± 0.03 0.89 ± 0.02

Iris 0.96 ± 0.00 0.95 ± 0.01

kdd-synthetic 0.95 ± 0.01 0.88 ± 0.03

kr-vs-kp 0.91 ± 0.03 0.87 ± 0.20

Liver-disorders 0.73 ± 0.01 0.67 ± 0.02

Lung-cancer 0.69 ± 0.00 0.45 ± 0.06

Meta.data 0.08 ± 0.04 0.03 ± 0.01

Morphological 0.71 ± 0.00 0.70 ± 0.02

mb-promoters 0.88 ± 0.02 0.76 ± 0.03

Postoperative-patient 0.70 ± 0.02 0.67 ± 0.05

Shuttle-control 0.60 ± 0.02 0.51 ± 0.10

Soybean 0.79 ± 0.06 0.66 ± 0.30

Tempdiag 1.00 ± 0.00 0.97 ± 0.05

Tep.fea 0.65 ± 0.00 0.65 ± 0.00

Tic-tac-toe 0.76 ± 0.04 0.83 ± 0.05

Transfusion 0.79 ± 0.01 0.77 ± 0.02

Vehicle 0.74 ± 0.00 0.70 ± 0.03

Vote 0.95 ± 0.01 0.95 ± 0.01

Vowel 0.59 ± 0.08 0.63 ± 0.09

Wine-red 0.59 ± 0.01 0.57 ± 0.01

Wine-white 0.52 ± 0.01 0.53 ± 0.02

Number of victories 30 4

Wilcoxon p-value 3.04 × 10−6

(continued)
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Table 5.25 (continued)

(b) F-Measure results

Data set HEAD-DT Random search

Abalone 0.23 ± 0.00 0.77 ± 0.01

Anneal 0.97 ± 0.01 0.09 ± 0.14

Arrhythmia 0.58 ± 0.17 0.53 ± 0.10

Audiology 0.70 ± 0.02 0.50 ± 0.22

Autos 0.73 ± 0.08 0.39 ± 0.19

Breast-cancer 0.72 ± 0.00 0.36 ± 0.05

Breast-w 0.94 ± 0.01 0.06 ± 0.01

Bridges1 0.68 ± 0.06 0.50 ± 0.13

Bridges2 0.68 ± 0.06 0.51 ± 0.12

Car 0.83 ± 0.02 0.12 ± 0.04

Heart-c 0.81 ± 0.00 0.24 ± 0.04

Flags 0.68 ± 0.01 0.48 ± 0.21

Credit-g 0.73 ± 0.00 0.32 ± 0.06

Colic 0.72 ± 0.18 0.37 ± 0.15

Haberman 0.75 ± 0.01 0.31 ± 0.02

Heart-h 0.80 ± 0.01 0.27 ± 0.11

Ionosphere 0.92 ± 0.03 0.12 ± 0.02

Iris 0.96 ± 0.00 0.05 ± 0.01

kdd-synthetic 0.95 ± 0.01 0.12 ± 0.03

kr-vs-kp 0.91 ± 0.03 0.16 ± 0.27

Liver-disorders 0.72 ± 0.02 0.33 ± 0.02

Lung-cancer 0.69 ± 0.00 0.64 ± 0.10

Meta.data 0.06 ± 0.03 0.98 ± 0.01

Morphological 0.70 ± 0.00 0.31 ± 0.01

mb-promoters 0.88 ± 0.02 0.24 ± 0.03

Postoperative-patient 0.67 ± 0.02 0.42 ± 0.02

Shuttle-control 0.58 ± 0.02 0.60 ± 0.05

Soybean 0.76 ± 0.07 0.37 ± 0.33

Tempdiag 1.00 ± 0.00 0.03 ± 0.05

Tep.fea 0.61 ± 0.00 0.39 ± 0.00

Tic-tac-toe 0.76 ± 0.04 0.18 ± 0.05

Transfusion 0.77 ± 0.00 0.25 ± 0.01

Vehicle 0.74 ± 0.00 0.30 ± 0.03

Vote 0.95 ± 0.01 0.05 ± 0.01

Vowel 0.58 ± 0.09 0.37 ± 0.09

Wine-red 0.57 ± 0.01 0.44 ± 0.02

Wine-white 0.48 ± 0.02 0.49 ± 0.03

Number of victories 33 4

Wilcoxon p-value 8.27 × 10−4
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Table 5.26 HEAD-DT versus random search: {5× 35} configuration

(a) Accuracy results

Data set HEAD-DT Random search

Abalone 0.27 ± 0.00 0.25 ± 0.01

Anneal 0.97 ± 0.00 0.93 ± 0.10

Arrhythmia 0.58 ± 0.08 0.58 ± 0.04

Audiology 0.76 ± 0.00 0.56 ± 0.19

Autos 0.67 ± 0.06 0.64 ± 0.16

Breast-cancer 0.75 ± 0.00 0.68 ± 0.04

Breast-w 0.93 ± 0.00 0.94 ± 0.01

Bridges1 0.64 ± 0.03 0.56 ± 0.11

Bridges2 0.64 ± 0.03 0.56 ± 0.11

Car 0.82 ± 0.02 0.88 ± 0.04

Heart-c 0.81 ± 0.01 0.76 ± 0.03

Flags 0.68 ± 0.01 0.56 ± 0.15

Credit-g 0.75 ± 0.00 0.72 ± 0.01

Colic 0.68 ± 0.09 0.70 ± 0.10

Heart-h 0.77 ± 0.05 0.76 ± 0.07

Ionosphere 0.89 ± 0.00 0.89 ± 0.02

kdd-synthetic 0.96 ± 0.00 0.88 ± 0.03

kr-vs-kp 0.95 ± 0.00 0.87 ± 0.20

Liver-disorders 0.74 ± 0.01 0.67 ± 0.02

Lung-cancer 0.69 ± 0.00 0.45 ± 0.06

Meta.data 0.04 ± 0.02 0.03 ± 0.01

Morphological 0.70 ± 0.00 0.70 ± 0.02

mb-promoters 0.86 ± 0.01 0.76 ± 0.03

Postoperative-patient 0.72 ± 0.02 0.67 ± 0.05

Shuttle-control 0.61 ± 0.01 0.51 ± 0.10

Soybean 0.72 ± 0.02 0.66 ± 0.30

Tempdiag 1.00 ± 0.00 0.97 ± 0.05

Tep.fea 0.65 ± 0.00 0.65 ± 0.00

Tic-tac-toe 0.73 ± 0.03 0.83 ± 0.05

Transfusion 0.79 ± 0.00 0.77 ± 0.02

Vehicle 0.74 ± 0.00 0.70 ± 0.03

Vote 0.96 ± 0.00 0.95 ± 0.01

Vowel 0.50 ± 0.01 0.63 ± 0.09

Wine-red 0.60 ± 0.00 0.57 ± 0.01

Wine-white 0.54 ± 0.00 0.53 ± 0.02

Number of victories 28 6

Wilcoxon p-value 2.25 × 10−4

(continued)
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Table 5.26 (continued)

(b) F-Measure results

Data set HEAD-DT Random search

Abalone 0.24 ± 0.00 0.77 ± 0.01

Anneal 0.97 ± 0.00 0.09 ± 0.14

Arrhythmia 0.45 ± 0.13 0.53 ± 0.10

Audiology 0.73 ± 0.00 0.50 ± 0.22

Autos 0.67 ± 0.06 0.39 ± 0.19

Breast-cancer 0.73 ± 0.00 0.36 ± 0.05

Breast-w 0.93 ± 0.00 0.06 ± 0.01

Bridges1 0.63 ± 0.03 0.50 ± 0.13

Bridges2 0.63 ± 0.04 0.51 ± 0.12

Car 0.81 ± 0.02 0.12 ± 0.04

Heart-c 0.80 ± 0.01 0.24 ± 0.04

Flags 0.67 ± 0.01 0.48 ± 0.21

Credit-g 0.73 ± 0.00 0.32 ± 0.06

Colic 0.57 ± 0.14 0.37 ± 0.15

Heart-h 0.74 ± 0.07 0.27 ± 0.11

Ionosphere 0.89 ± 0.01 0.12 ± 0.02

kdd-synthetic 0.96 ± 0.00 0.12 ± 0.03

kr-vs-kp 0.95 ± 0.00 0.16 ± 0.27

Liver-disorders 0.73 ± 0.01 0.33 ± 0.02

Lung-cancer 0.69 ± 0.00 0.64 ± 0.10

Meta.data 0.02 ± 0.01 0.98 ± 0.01

Morphological 0.69 ± 0.01 0.31 ± 0.01

mb-promoters 0.86 ± 0.01 0.24 ± 0.03

Postoperative-patient 0.69 ± 0.03 0.42 ± 0.02

Shuttle-control 0.57 ± 0.02 0.60 ± 0.05

Soybean 0.68 ± 0.01 0.37 ± 0.33

Tempdiag 1.00 ± 0.00 0.03 ± 0.05

Tep.fea 0.61 ± 0.00 0.39 ± 0.00

Tic-tac-toe 0.72 ± 0.04 0.18 ± 0.05

Transfusion 0.77 ± 0.00 0.25 ± 0.01

Vehicle 0.74 ± 0.00 0.30 ± 0.03

Vote 0.96 ± 0.00 0.05 ± 0.01

Vowel 0.48 ± 0.02 0.37 ± 0.09

Wine-red 0.59 ± 0.00 0.44 ± 0.02

Wine-white 0.51 ± 0.00 0.49 ± 0.03

Number of victories 31 4

Wilcoxon p-value 7.84 × 10−6
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Table 5.27 HEAD-DT versus random search: {7× 33} configuration

(a) Accuracy results

Data set HEAD-DT Random search

Abalone 0.29 ± 0.01 0.25 ± 0.01

Anneal 0.98 ± 0.01 0.93 ± 0.10

Arrhythmia 0.78 ± 0.02 0.58 ± 0.04

Audiology 0.79 ± 0.00 0.56 ± 0.19

Autos 0.84 ± 0.04 0.64 ± 0.16

Breast-cancer 0.75 ± 0.00 0.68 ± 0.04

Breast-w 0.96 ± 0.01 0.94 ± 0.01

Bridges2 0.71 ± 0.01 0.56 ± 0.11

Car 0.92 ± 0.02 0.88 ± 0.04

Heart-c 0.83 ± 0.01 0.76 ± 0.03

Flags 0.73 ± 0.01 0.56 ± 0.15

Credit-g 0.76 ± 0.00 0.72 ± 0.01

Colic 0.88 ± 0.01 0.70 ± 0.10

Heart-h 0.83 ± 0.01 0.76 ± 0.07

Ionosphere 0.94 ± 0.01 0.89 ± 0.02

kdd-synthetic 0.95 ± 0.00 0.88 ± 0.03

kr-vs-kp 0.96 ± 0.00 0.87 ± 0.20

Liver-disorders 0.75 ± 0.00 0.67 ± 0.02

Lung-cancer 0.71 ± 0.02 0.45 ± 0.06

Meta.data 0.14 ± 0.02 0.03 ± 0.01

Morphological 0.74 ± 0.01 0.70 ± 0.02

mb-promoters 0.89 ± 0.01 0.76 ± 0.03

Shuttle-control 0.59 ± 0.02 0.51 ± 0.10

Soybean 0.82 ± 0.08 0.66 ± 0.30

Tempdiag 1.00 ± 0.00 0.97 ± 0.05

Tep.fea 0.65 ± 0.00 0.65 ± 0.00

Tic-tac-toe 0.94 ± 0.02 0.83 ± 0.05

Transfusion 0.79 ± 0.00 0.77 ± 0.02

Vehicle 0.77 ± 0.01 0.70 ± 0.03

Vote 0.96 ± 0.00 0.95 ± 0.01

Vowel 0.76 ± 0.07 0.63 ± 0.09

Wine-red 0.64 ± 0.01 0.57 ± 0.01

Wine-white 0.55 ± 0.01 0.53 ± 0.02

Number of victories 32 0

Wilcoxon p-value 5.64 × 10−7

(continued)
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Table 5.27 (continued)

(b) F-Measure results

Data set HEAD-DT Random search

Abalone 0.27 ± 0.01 0.77 ± 0.01

Anneal 0.98 ± 0.01 0.09 ± 0.14

Arrhythmia 0.76 ± 0.02 0.53 ± 0.10

Audiology 0.77 ± 0.01 0.50 ± 0.22

Autos 0.85 ± 0.04 0.39 ± 0.19

Breast-cancer 0.73 ± 0.00 0.36 ± 0.05

Breast-w 0.96 ± 0.01 0.06 ± 0.01

Bridges2 0.70 ± 0.02 0.51 ± 0.12

Car 0.92 ± 0.03 0.12 ± 0.04

Heart-c 0.83 ± 0.01 0.24 ± 0.04

Flags 0.72 ± 0.01 0.48 ± 0.21

Credit-g 0.76 ± 0.01 0.32 ± 0.06

Colic 0.88 ± 0.01 0.37 ± 0.15

Heart-h 0.83 ± 0.01 0.27 ± 0.11

Ionosphere 0.94 ± 0.01 0.12 ± 0.02

kdd-synthetic 0.95 ± 0.00 0.12 ± 0.03

kr-vs-kp 0.96 ± 0.00 0.16 ± 0.27

Liver-disorders 0.75 ± 0.00 0.33 ± 0.02

Lung-cancer 0.71 ± 0.02 0.64 ± 0.10

Meta.data 0.13 ± 0.02 0.98 ± 0.01

Morphological 0.72 ± 0.00 0.31 ± 0.01

mb-promoters 0.89 ± 0.01 0.24 ± 0.03

Shuttle-control 0.55 ± 0.02 0.60 ± 0.05

Soybean 0.80 ± 0.09 0.37 ± 0.33

Tempdiag 1.00 ± 0.00 0.03 ± 0.05

Tep.fea 0.61 ± 0.00 0.39 ± 0.00

Tic-tac-toe 0.94 ± 0.02 0.18 ± 0.05

Transfusion 0.77 ± 0.00 0.25 ± 0.01

Vehicle 0.77 ± 0.01 0.30 ± 0.03

Vote 0.96 ± 0.00 0.05 ± 0.01

Vowel 0.76 ± 0.07 0.37 ± 0.09

Wine-red 0.63 ± 0.01 0.44 ± 0.02

Wine-white 0.53 ± 0.01 0.49 ± 0.03

Number of victories 30 3

Wilcoxon p-value 6.36 × 10−6
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Table 5.28 HEAD-DT vs random search: {9× 31} configuration

(a) Accuracy results

Data set HEAD-DT Random search

Abalone 0.28 ± 0.00 0.25 ± 0.01

Anneal 0.92 ± 0.00 0.93 ± 0.10

Arrhythmia 0.76 ± 0.00 0.58 ± 0.04

Audiology 0.67 ± 0.01 0.56 ± 0.19

Autos 0.78 ± 0.01 0.64 ± 0.16

Breast-cancer 0.73 ± 0.00 0.68 ± 0.04

Breast-w 0.94 ± 0.00 0.94 ± 0.01

Bridges2 0.62 ± 0.01 0.56 ± 0.11

Car 0.88 ± 0.01 0.88 ± 0.04

Heart-c 0.82 ± 0.00 0.76 ± 0.03

Flags 0.71 ± 0.01 0.56 ± 0.15

Credit-g 0.75 ± 0.00 0.72 ± 0.01

Colic 0.83 ± 0.01 0.70 ± 0.10

Heart-h 0.80 ± 0.00 0.76 ± 0.07

Ionosphere 0.92 ± 0.00 0.89 ± 0.02

kdd-synthetic 0.95 ± 0.00 0.88 ± 0.03

kr-vs-kp 0.91 ± 0.01 0.87 ± 0.20

Liver-disorders 0.74 ± 0.00 0.67 ± 0.02

Meta.data 0.11 ± 0.00 0.03 ± 0.01

Morphological 0.71 ± 0.00 0.70 ± 0.02

mb-promoters 0.73 ± 0.00 0.76 ± 0.03

Shuttle-control 0.63 ± 0.00 0.51 ± 0.10

Soybean 0.64 ± 0.01 0.66 ± 0.30

Tep.fea 0.65 ± 0.00 0.65 ± 0.00

Tic-tac-toe 0.83 ± 0.01 0.83 ± 0.05

Transfusion 0.79 ± 0.00 0.77 ± 0.02

Vehicle 0.75 ± 0.00 0.70 ± 0.03

Vote 0.96 ± 0.00 0.95 ± 0.01

Vowel 0.61 ± 0.01 0.63 ± 0.09

Wine-red 0.61 ± 0.00 0.57 ± 0.01

Wine-white 0.53 ± 0.00 0.53 ± 0.02

Number of victories 26 4

Wilcoxon p-value 2.51 × 10−5

(b) F-Measure results

Data set HEAD-DT Random search

Abalone 0.24 ± 0.00 0.77 ± 0.01

Anneal 0.92 ± 0.00 0.09 ± 0.14

Arrhythmia 0.73 ± 0.00 0.53 ± 0.10

(continued)
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Table 5.28 (continued)

(b) F-Measure results

Data set HEAD-DT Random search

Audiology 0.62 ± 0.01 0.50 ± 0.22

Autos 0.78 ± 0.01 0.39 ± 0.19

Breast-cancer 0.71 ± 0.00 0.36 ± 0.05

Breast-w 0.94 ± 0.00 0.06 ± 0.01

Bridges2 0.60 ± 0.01 0.51 ± 0.12

Car 0.88 ± 0.01 0.12 ± 0.04

Heart-c 0.82 ± 0.00 0.24 ± 0.04

Flags 0.70 ± 0.00 0.48 ± 0.21

Credit-g 0.73 ± 0.00 0.32 ± 0.06

Colic 0.83 ± 0.01 0.37 ± 0.15

Heart-h 0.79 ± 0.00 0.27 ± 0.11

Ionosphere 0.92 ± 0.00 0.12 ± 0.02

kdd-synthetic 0.95 ± 0.00 0.12 ± 0.03

kr-vs-kp 0.91 ± 0.01 0.16 ± 0.27

Liver-disorders 0.73 ± 0.00 0.33 ± 0.02

Meta.data 0.09 ± 0.00 0.98 ± 0.01

Morphological 0.69 ± 0.00 0.31 ± 0.01

mb-promoters 0.73 ± 0.00 0.24 ± 0.03

Shuttle-control 0.56 ± 0.00 0.60 ± 0.05

Soybean 0.60 ± 0.02 0.37 ± 0.33

Tep.fea 0.61 ± 0.00 0.39 ± 0.00

Tic-tac-toe 0.83 ± 0.02 0.18 ± 0.05

Transfusion 0.77 ± 0.00 0.25 ± 0.01

Vehicle 0.74 ± 0.00 0.30 ± 0.03

Vote 0.96 ± 0.00 0.05 ± 0.01

Vowel 0.60 ± 0.01 0.37 ± 0.09

Wine-red 0.59 ± 0.00 0.44 ± 0.02

Wine-white 0.49 ± 0.00 0.49 ± 0.03

Number of victories 28 3

Wilcoxon p-value 4.01 × 10−5

Even thoughHEAD-DT has already presented quite satisfactory results, we inves-
tigate in Chap.6 several different strategies for using as HEAD-DT’s fitness function
in the general framework. We test both balanced and imbalanced data in the meta-
training set used in the evolutionary process.

http://dx.doi.org/10.1007/978-3-319-14231-9_6
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Chapter 6
HEAD-DT: Fitness Function Analysis

Abstract In Chap.4, more specifically in Sect. 4.4, we saw that the definition of a fit-
ness function for the scenario in which HEAD-DT evolves a decision-tree algorithm
from multiple data sets is an interesting and relevant problem. In the experiments
presented in Chap.5, Sect. 5.2, we employed a simple average over the F-Measure
obtained in the data sets that belong to the meta-training set. As previously observed,
when evolving an algorithm from multiple data sets, each individual of HEAD-DT
has to be executed over each data set in the meta-training set. Hence, instead of
obtaining a single value of predictive performance, each individual scores a set of
values that have to be eventually combined into a single measure. In this chapter,
we analyse in more detail the impact of different strategies to be used as fitness
function during the evolutionary cycle of HEAD-DT. We divide the experimental
scheme into two distinct scenarios: (i) evolving a decision-tree induction algorithm
from multiple balanced data sets; and (ii) evolving a decision-tree induction algo-
rithm from multiple imbalanced data sets. In each of these scenarios, we analyse the
difference in performance of well-known performance measures such as accuracy,
F-Measure, AUC, recall, and also a lesser-known criterion, namely the relative accu-
racy improvement. In addition, we analyse different schemes of aggregation, such
as simple average, median, and harmonic mean.

Keywords Fitness functions · Performance measures · Evaluation schemes

6.1 Performance Measures

Performance measures are key tools to assess the quality of machine learning
approaches and models. Therefore, several different measures have been proposed
in the specialized literature with the goal of providing better choices in general or
for a specific application domain [2].

In the context of HEAD-DT’s fitness function, and given that it evaluates
algorithms (individuals) over data sets, it is reasonable to assume that different

Assuming we are not interested in dealing with a multi-objective optimisation problem.

© The Author(s) 2015
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classification performance measures could be employed to provide a quantitative
assessment of algorithmic performance. In the next few sections, we present five dif-
ferent performance measures that were selected for further investigation as HEAD-
DT’s fitness function.

6.1.1 Accuracy

Probably the most well-known performance evaluation measure for classification
problems, the accuracy of a model is the rate of correctly classified instances:

accuracy = tp + tn

tp + tn + f p + f n
(6.1)

where tp(tn) stands for the true positives (true negatives)—instances correctly
classified,—and f p( f n) stands for the false positives (false negatives)—instances
incorrectly classified.

Even though most classification algorithms are assessed regarding the accuracy
they obtain in a data set, we must point out that accuracy may be a misleading per-
formance measure. For instance, suppose we have a data set whose class distribution
is very skewed: 90% of the instances belong to class A and 10% to class B. An algo-
rithm that always classifies instances as belonging to class A would achieve 90%
of accuracy, even though it never predicts a class-B instance. In this case, assuming
that class B is equally important (or even more so) than class A, we would prefer an
algorithm with lower accuracy, but which could eventually correctly predict some
instances as belonging to the rare class B.

6.1.2 F-Measure

As it was presented in Sect. 4.4, F-Measure (also F-score or F1 score) is the harmonic
mean of precision and recall:

precision = tp

tp + f p
(6.2)

recall = tp

tp + f n
(6.3)

f 1 = 2× precision × recall

precision + recall
(6.4)

http://dx.doi.org/10.1007/978-3-319-14231-9_4
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Note that though F-Measure is advocated in the machine learning literature as a
single measure capable of capturing the effectiveness of a system, it still completely
ignores the tn, which can vary freely without affecting the statistic [8].

6.1.3 Area Under the ROC Curve

The area under the ROC (receiver operating characteristic) curve (AUC) has been
increasingly used as a performance evaluation measure in classification problems.
The ROC curve graphically displays the trade-off between the true positive rate
(tpr = tp/(tp + f n)) and the false positive rate ( f pr = f p/( f p + tn)) of a
classifier. ROC graphs have properties that make them especially useful for domains
with skewed class distribution and unequal classification error costs [1].

To create the ROC curve, one needs to build a graph in which the tpr is plotted
along the y axis and the f pr is shown on the x axis. Each point along the curve
corresponds to one of the models induced by a given algorithm, and different models
are built by varying a probabilistic threshold that determines whether an instance
should be classified as positive or negative.

AROCcurve is a two-dimensional depiction of a classifier. To compare classifiers,
we may want to reduce ROC performance to a single scalar value representing the
expected performance, which is precisely the AUC. Since the AUC is a portion of the
area of the unit square, its value will always be between 0 and 1. However, because
random guessing produces a diagonal line between (0,0) and (1,1), which has an
area of 0.5, no realistic classifier should have an AUC value of less than 0.5. The
AUC has an important statistical property: it is equivalent to the probability that
the classifier will rank a randomly chosen positive instance higher than a randomly
chosen negative instance, which makes of the AUC equivalent to the Wilcoxon test
of ranks [6].

The machine learning community often uses the AUC statistic for model compar-
ison, even though this practice has recently been questioned based upon new research
that shows that AUC is quite noisy as a performance measure for classification [3]
and has some other significant problems in model comparison [4, 5].

6.1.4 Relative Accuracy Improvement

Originally proposed by Pappa [7], the relative accuracy improvement criterion mea-
sures the normalized improvement in accuracy of a given model over the data set’s
default accuracy (i.e., the accuracy achieved when using the majority class of the
training data to classify the unseen data):
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R AIi =
⎧
⎨

⎩

Acci −DefAcci
1−DefAcci

, if Acci > DefAcci

Acci −DefAcci
De f Acci

, otherwise
(6.5)

In Eq. (6.5), Acci is the accuracy achieved by a given classifier in data set i ,
whereas DefAcci is the default accuracy of data set i . Note that if the improvement in
accuracy is positive, i.e., the classifier accuracy is greater than the default accuracy,
the improvement is normalized by the maximum possible improvement over the
default accuracy (1 − DefAcci ). Otherwise, the drop in the accuracy is normalized
by the maximum possible drop, which is the value of the default accuracy itself.
Hence, the relative accuracy improvement RAIi regarding data set i returns a value
between −1 (when Acci = 0) and 1 (when Acci = 1). Any improvement regarding
the default accuracy results in a positive value, whereas any drop results in a negative
value. In caseAcci = DefAcci (i.e., no improvement or drop in accuracy is achieved),
RAIi = 0, as expected.

The disadvantage of the relative accuracy improvement criterion is that it is not
suitable for very imbalanced problems—data sets in which the default accuracy is
really close to 1,—since high accuracy does not properly translate into high perfor-
mance for these kinds of problems, as we have previously seen.

6.1.5 Recall

Also known as sensitivity (usually in the medical field) or true positive rate, recall
measures the proportion of actual positives that are correctly identified as such. For
instance, it may refer to the percentage of sick patients who are correctly classified
as having the particular disease. In terms of the confusion matrix terms, recall is
computed as follows:

recall = tp

tp + f n
(6.6)

Recall is useful for the case of imbalanced data, in which the positive class is the
rare class. However, note that a classifier that always predicts the positive class will
achieve a perfect recall, since recall does not take into consideration the f p values.
This problem is alleviated in multi-class problems, in which each class is used in
turn as the positive class, and the average of the per-class recall is taken.

6.2 Aggregation Schemes

All classification measures presented in the previous section refer to the predictive
performance of a given classifier in a given data set. When evolving an algorithm
from multiple data sets, HEAD-DT’s fitness function is measured as the aggregated
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performance of the individual in each data set that belongs to the meta-training
set. We propose employing three simple strategies for combining the per-data-set
performance into a single quantitative value: (i) simple average; (ii) median; and (iii)
harmonic mean.

The simple average (or alternatively the arithmetic average) is computed by simply
taking the average of the per-data-set values, i.e., (1/N ) × ∑N

i=1 pi , for a meta-
training set with N data sets and a performance measure p. It gives equal importance
to the performance achieved in each data set. Moreover, it is best used in situations
where there are no extreme outliers and the values are independent of each other.

The median is computed by ordering the performance values from smallest to
greatest, and then taking the middle value of the ordered list. If there is an even
number of data sets, since there is no single middle value, either N/2 or (N/2) + 1
can be used as middle value, or alternatively their average. The median is robust to
outliers in the data (extremely large or extremely low values that may influence the
simple average).

Finally, the harmonic mean is given by
(
(1/N ) × ∑N

i=1 pi

)−1
. Unlike the simple

average, the harmonic mean gives less significance to high-value outliers, providing
sometimes a better picture of the average.

6.3 Experimental Evaluation

In this section, we perform an empirical evaluation of the five classification perfor-
mance measures presented in Sect. 6.1 and the three aggregation schemes presented
in Sect. 6.2 as fitness functions of HEAD-DT. There are a total of 15 distinct fitness
functions resulting from this analysis:

1. Accuracy + Simple Average (ACC-A);
2. Accuracy + Median (ACC-M);
3. Accuracy + Harmonic Mean (ACC-H);
4. AUC + Simple Average (AUC-A);
5. AUC + Median (AUC-M);
6. AUC + Harmonic Mean (AUC-H);
7. F-Measure + Simple Average (FM-A);
8. F-Measure + Median (FM-M);
9. F-Measure + Harmonic Mean (FM-H);
10. Relative Accuracy Improvement + Simple Average (RAI-A);
11. Relative Accuracy Improvement + Median (RAI-M);
12. Relative Accuracy Improvement + Harmonic Mean (RAI-H);
13. Recall + Simple Average (TPR-A);
14. Recall + Median (TPR-M);
15. Recall + Harmonic Mean (TPR-H).
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For this experiment, we employed the 67 UCI data sets described in Table5.14
organized into two scenarios: (i) 5 balanced data sets in the meta-training set; and
(ii) 5 imbalanced data sets in the training set. These scenarios were created to assess
the performance of the 15 distinct fitness functions in balanced and imbalanced
data, considering that some of the performance measures are explicitly designed to
deal with imbalanced data whereas others are not. The term “(im)balanced” was
quantitatively measured according to the imbalance ratio (IR):

IR = F(ADS)

F(BDS)
(6.7)

where F(.) returns the frequency of a given class, ADS is the highest-frequency
class in data set DS and BDS the lowest-frequency class in data set DS.

Given the size and complexity of this experiment, we did not optimise HEAD-
DT’s parameters as in Chap.5, Sect. 5.2. Instead, we employed typical values found
in the literature of evolutionary algorithms for decision-tree induction (the same
parameters as in Chap.5, Sect. 5.1):

• Population size: 100;
• Maximum number of generations: 100;
• Selection: tournament selection with size t = 2;
• Elitism rate: 5 individuals;
• Crossover: uniform crossover with 90% probability;
• Mutation: random uniform gene mutation with 5% probability.
• Reproduction: cloning individuals with 5% probability.

In the next sections, we present the results for both scenarios of meta-training set.
Moreover, in the end of this chapter, we perform a whole new set of experiments
with the best-performing fitness functions.

6.3.1 Results for the Balanced Meta-Training Set

We randomly selected 5 balanced data sets (IR < 1.1) from the 67 UCI data
sets described in Table5.14 to be part of the meta-training set in this experiment:
iris (IR = 1.0), segment (IR = 1.0), vowel (IR = 1.0), mushroom (IR = 1.07), and
kr-vs-kp (IR = 1.09).

Tables6.1 and 6.2 show the results for the 62 data sets in themeta-test set regarding
accuracy and F-Measure, respectively. At the bottomof each table, the average rank is
presented for the 15 versions of HEAD-DT created by varying the fitness functions.
We did not present standard deviation values due to space limitations within the
tables.

By careful inspection of both tables, we can see that their rankings are prac-
tically the same, with the median of the relative accuracy improvement being the

http://dx.doi.org/10.1007/978-3-319-14231-9_5
http://dx.doi.org/10.1007/978-3-319-14231-9_5
http://dx.doi.org/10.1007/978-3-319-14231-9_5
http://dx.doi.org/10.1007/978-3-319-14231-9_5
http://dx.doi.org/10.1007/978-3-319-14231-9_5
http://dx.doi.org/10.1007/978-3-319-14231-9_5
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Table 6.3 Values are the
average performance (rank)
of each version of HEAD-DT
according to either accuracy
or F-Measure

Version Accuracy rank F-Measure rank Average

ACC-A 8.00 7.94 7.97

ACC-M 8.93 9.22 9.08

ACC-H 8.35 8.45 8.40

AUC-A 11.68 11.30 11.49

AUC-M 10.76 10.56 10.66

AUC-H 12.57 12.35 12.46

FM-A 8.25 8.17 8.21

FM-M 4.75 4.61 4.68

FM-H 9.10 9.16 9.13

RAI-A 6.41 6.27 6.34

RAI-M 3.72 3.60 3.66

RAI-H 6.64 6.64 6.64

TPR-A 4.93 5.25 5.09

TPR-M 6.88 7.17 7.03

TPR-H 9.04 9.31 9.18

best-ranked method for either evaluation measure. Only a small position-switching
occurs between the accuracy and F-Measure rankings, with respect to the positions
of ACC-M, TPR-H, and FM-H.

Table6.3 summarizes the average rank values obtained by each version of HEAD-
DTwith respect to accuracy and F-Measure. Values in bold indicate the best perform-
ing version according to the corresponding evaluation measure. It can be seen that
version RAI-M is the best-performing method regardless of the evaluation measure.
The average of the average ranks (average across evaluation measures) indicates
the following final ranking positions (from best to worst): (1) RAI-M; (2) FM-M;
(3) TPR-A; (4) RAI-A; (5) RAI-H; (6) TPR-M; (7) ACC-A; (8) FM-A; (9) ACC-H;
(10) ACC-M; (11) FM-H; (12) TPR-H; (13) AUC-M; (14) AUC-A; (15) AUC-H.

For evaluating whether the differences between versions are statistically signif-
icant, we present the critical diagrams of the accuracy and F-Measure values in
Fig. 6.1. It is possible to observe that there are no significant differences among the
top-4 versions (RAI-M, FM-M, TPR-A, and RAI-A). Nevertheless, RAI-M is the
only version that outperforms TPR-M and RAI-Hwith statistical significance in both
evaluation measures, which is not the case of FM-M, TPR-A, and RAI-A.

Some interesting conclusions can be drawn from this first set of experiments with
a balanced meta-training set:

• The AUC measure was not particularly effective for evolving decision-tree algo-
rithms in this scenario, regardless of the aggregation scheme being used. Note that
versions of HEAD-DT that employ AUC in their fitness function perform quite
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(a)

(b)

Fig. 6.1 Critical diagrams for the balanced meta-training set experiment. a Accuracy rank.
b F-measure rank

poorly when compared to the remaining versions—AUC-M, AUC-A, and AUC-H
are in the bottom of the ranking: 13th, 14th, and 15th position, respectively;

• The use of the harmonic mean as an aggregation scheme was not successful over-
all. The harmonic mean was often worst aggregation scheme for the evaluation
measures, occupying the lower positions of the ranking (except when combined
to RAI).

• The use of the median, on the other hand, was shown to be very effective in most
cases. For 3 evaluation measures the median was the best aggregation scheme
(relative accuracy improvement, F-Measure, and AUC). In addition, the two best-
ranked versions made use of the median as their aggregation scheme;

• The relative accuracy improvement was overall the best evaluation measure, occu-
pying the top part of the ranking (1st, 4th, and 5th best-ranked versions);

• Finally, both F-Measure and recall were consistently among the best versions (2nd,
3rd, 6th, and 8th best-ranked versions), except once again when associated to the
harmonic mean (11th and 12th).

Figure6.2 depicts a picture of the fitness evolution throughout the evolutionary
cycle. It presents both the best fitness from the population at a given generation and
the average fitness from the corresponding generation.

Note that version AUC-M (Fig. 6.2e) achieves the perfect fitness from the very
first generation (AUC = 1). We further analysed this particular case and verified that
the decision-tree algorithm designed in this version does not perform any kind of
pruning. Even though prune-free algorithms usually overfit the training data (if no
pre-pruning is performed as well, they achieve 100% of accuracy in the training data)
and thus underperform in the test data, it seems that this was not the case for the 5
data sets in the meta-training set. In the particular validation sets of the meta-training
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Fig. 6.2 Fitness evolution in HEAD-DT for the balanced meta-training set
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set, a prune-free algorithm with the stop criterion minimum number of 3 instances
was capable of achieving perfect AUC. Nevertheless, this automatically-designed
algorithm certainly suffered from overfitting in the meta-test set, since AUC-M was
only the 13th-best out of 15 versions.

Versions FM-H (Fig. 6.2i) and TPR-H (Fig. 6.2o) also achieved their best fitness
value in the first generation. The harmonic mean, due to its own nature (ignore
higher values), seems to make the search for better individuals harder than the other
aggregation schemes.

6.3.2 Results for the Imbalanced Meta-Training Set

We randomly selected 5 imbalanced data sets (IR > 10) from the 67 UCI data sets
described in Table5.14 to be part of themeta-training set in this experiment: primary-
tumor (IR = 84), anneal (IR = 85.5), arrhythmia (IR = 122.5), winequality-
white (IR = 439.6), and abalone (IR = 689).

Tables6.4 and 6.5 show the results for the 62 data sets in themeta-test set regarding
accuracy and F-Measure, respectively. At the bottomof each table, the average rank is
presented for the 15 versions of HEAD-DT created by varying the fitness functions.
We once again did not present standard deviation values due to space limitations
within the tables.

By careful inspection of both tables, we can see that the rankings in them are
practically the same, with the average F-Measure being the best-ranked method
for either evaluation measure. Only a small position-switching occurs between the
accuracy and F-Measure rankings, with respect to the positions of ACC-H and
RAI-M.

Table6.6 summarizes the average rank values obtained by each version of
HEAD-DT with respect to accuracy and F-Measure. Values in bold indicate the best
performing version according to the corresponding evaluation measure. Note that
version FM-A is the best-performing method regardless of the evaluation measure.
The average of the average ranks (average across evaluation measures) indicates
the following final ranking positions (from best to worst): (1) FM-A; (2) TPR-A;
(3) TPR-H; (4) AUC-A; (5) AUC-H; (6) FM-H; (7) ACC-A; (8) ACC-M; (9) ACC-
H; (10) RAI-M; (11) RAI-H; (12) FM-M; (13) TPR-M; (14) RAI-A; (15) AUC-M.

For evaluating whether the differences among the versions are statistically sig-
nificant, we present the critical diagrams of the accuracy and F-Measure values in
Fig. 6.3. We can see that there are no statistically significant differences among the
7 (5) best-ranked versions regarding accuracy (F-Measure). In addition, note that the
6 best-ranked versions involve performance measures that are suitable for evaluat-
ing imbalanced problems (F-Measure, recall, and AUC), which is actually expected
given the composition of the meta-training set.

The following conclusions can be drawn from this second set of experiments
concerning imbalanced data sets:

http://dx.doi.org/10.1007/978-3-319-14231-9_5
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Table 6.6 Values are the average performance (rank) of each version of HEAD-DT according to
either accuracy or F-Measure

Version Accuracy rank F-Measure rank Average

ACC-A 6.70 6.92 6.81

ACC-M 7.94 8.23 8.09

ACC-H 8.40 8.74 8.57

AUC-A 5.87 5.44 5.66

AUC-M 13.43 13.23 13.33

AUC-H 6.70 6.25 6.48

FM-A 4.02 3.83 3.93

FM-M 9.71 9.97 9.84

FM-H 6.70 6.79 6.75

RAI-A 13.40 12.94 13.17

RAI-M 8.58 8.65 8.62

RAI-H 8.72 8.95 8.84

TPR-A 4.19 4.27 4.23

TPR-M 10.53 10.56 10.55

TPR-H 5.10 5.25 5.18

(a)

(b)

Fig. 6.3 Critical diagrams for the imbalanced meta-training set experiment. a Accuracy rank.
b F-measure rank
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• The relative accuracy improvement is not suitable for dealingwith imbalanced data
sets and hence occupies the bottom positions of the ranking (10th, 11th, and 14th
positions). This behavior is expected given that RAI measures the improvement
over the majority-class accuracy, and such an improvement is often damaging
for imbalanced problems, in which the goal is to improve the accuracy of the
less-frequent class(es);

• The median was the worst aggregation scheme overall, figuring in the bottom
positions of the ranking (8th, 10th, 12th, 13th, and 15th). It is interesting to notice
that the median was very successful in the balanced meta-training experiment, and
quite the opposite in the imbalanced one;

• The simple average, on the other hand, presented itself as the best aggregation
scheme for the imbalanced data, figuring in the top of the ranking (1st, 2nd, 4th,
7th), except when associated to RAI (14th), which was the worst performance
measure overall;

• The 6 best-ranked versions were those employing performance measures known
to be suitable for imbalanced data (F-Measure, recall, and AUC);

• Finally, the harmonic mean had a solid performance throughout this experiment,
differently from its performance in the balanced meta-training experiment.

Figure6.4 depicts a picture of the fitness evolution throughout the evolutionary
cycle. Note that whereas some versions find their best individual at the very end of
evolution (e.g., FM-H, Fig. 6.4i), others converge quite early (e.g., TPR-H, Fig. 6.4o),
though there seems to exist no direct relation between early (or late) convergence
and predictive performance.

6.3.3 Experiments with the Best-Performing Strategy

Considering that the median of the relative accuracy improvement (RAI-M) was the
best-ranked fitness function for the balanced meta-training set, and that the average
F-Measure (FM-A) was the best-ranked fitness function for the imbalanced meta-
training set, we perform a comparison of these HEAD-DT versions with the baseline
decision-tree induction algorithms C4.5, CART, and REPTree.

For version RAI-M, we use the same meta-training set as before: iris (IR = 1),
segment (IR = 1), vowel (IR = 1),mushroom(IR = 1.07), andkr-vs-kp (IR = 1.09).
The resulting algorithm is tested over the 10most-balanced data sets fromTable5.14:

1. meta-data (IR = 1);
2. mfeat (IR = 1);
3. mb-promoters (IR = 1);
4. kdd-synthetic (IR = 1);
5. trains (IR = 1);
6. tae (IR = 1.06);
7. vehicle (IR = 1.10);

http://dx.doi.org/10.1007/978-3-319-14231-9_5
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Fig. 6.4 Fitness evolution in HEAD-DT for the imbalanced meta-training set
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8. sonar (IR = 1.14);
9. heart-c (IR = 1.20);
10. credit-a (IR = 1.25).

For version FM-A, we also use the same meta-training set as before: primary-
tumor (IR = 84), anneal (IR = 85.5), arrhythmia (IR = 122.5), winequality-
white (IR = 439.6), and abalone (IR = 689). The resulting algorithm is tested
over the 10 most-imbalanced data sets from Table5.14:

• flags (IR = 15);
• sick (IR = 15.33);
• car (IR = 18.62);
• autos (IR = 22.33);
• sponge (IR = 23.33);
• postoperative (IR = 32);
• lymph (IR = 40.50);
• audiology (IR = 57);
• winequality-red (IR = 68.10);
• ecoli (IR = 71.50).

In Chap.5, we saw that HEAD-DT is capable of generating effective algorithms
tailored to a particular application domain (gene expression data). Now, with this
new experiment, our goal is to verify whether HEAD-DT is capable of generating
effective algorithms tailored to a particular statistical profile—in this case, tailored
to balanced/imbalanced data.

Table6.7 shows the accuracy and F-Measure values for HEAD-DT, C4.5, CART,
and REPTree, in the 20 UCI data sets (10 most-balanced and 10 most-imbalanced).
The version of HEAD-DT executed over the first 10 data sets is RAI-M, whereas
the version executed over the remaining 10 is FM-A. In both versions, HEAD-DT is
executed 5 times as usual, and the results are averaged.

Observe in Table6.7 that HEAD-DT (RAI-M) outperforms C4.5, CART, and
REPTree in 8 out of 10 data sets (in both accuracy and F-Measure), whereas C4.5
is the best algorithm in the remaining two data sets. The same can be said about
HEAD-DT (FM-A), which also outperforms C4.5, CART, and REPTree in 8 out of
10 data sets, being outperformed once by C4.5 and once by CART.

We proceed by presenting the critical diagrams of accuracy and F-Measure
(Fig. 6.5) in order to evaluate whether the differences among the algorithms are
statistically significant. Note that HEAD-DT is the best-ranked method, often in the
1st position (rank = 1.30). HEAD-DT (versions RAI-M and FM-A) outperforms both
CART and REPTree with statistical significance for α = 0.05. With respect to C4.5,
it is outperformed by HEAD-DT with statistical significance for α = 0.10, though
not for α = 0.05. Nevertheless, we are confident that being the best method in 16
out of 20 data sets is enough to conclude that HEAD-DT automatically generates
decision-tree algorithms tailored to balanced/imbalanced data that are consistently
more effective than C4.5, CART, and REPTree.

http://dx.doi.org/10.1007/978-3-319-14231-9_5
http://dx.doi.org/10.1007/978-3-319-14231-9_5
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(a) (b)

Fig. 6.5 Critical diagrams for accuracy and F-Measure. Values are regarding the 20 UCI data sets
in Table6.7. a Accuracy rank for the balanced data sets. b F-measure rank for the balanced data
sets

Since HEAD-DT is run 5 times for alleviating the randomness effect of evolu-
tionary algorithms, we further analyse the 5 algorithms generated by HEAD-DT for
the balanced meta-training set and the 5 algorithms generated for the imbalanced
meta-training set.

Regarding the balanced meta-training set, we noticed that the favored split crite-
rion was the G statistic (present in 40% of the algorithms). The favored stop criterion
was stopping the tree-splitting process only when there is a single instance in the
node (present in 80% of the algorithms). The homogeneous stop was present in the
remaining 20% of the algorithms, but since a single instance is always homogeneous
(only 1 class represented in the node), we can say that HEAD-DT stop criterion was
actually stop splitting nodes when they are homogeneous. Surprisingly, the favored
pruning strategy was not to use any pruning strategy (80% of the algorithms). It
seems that this particular combination of design components did not lead to over-
fitting, even though the trees were not pruned at any point. Algorithm 1 shows this
custom algorithm designed for balanced data sets.

Algorithm 1 Custom algorithm designed by HEAD-DT (RAI-M) for balanced data
sets.
1: Recursively split nodes using the G statistic;
2: Perform nominal splits in multiple subsets;
3: Perform step 1 until class-homogeneity;
4: Do not perform any pruning strategy;

When dealing with missing values:
5: Calculate the split of missing values by weighting the split criterion value;
6: Distribute missing values by weighting them according to partition probability;
7: For classifying an instance with missing values, halt in the current node.

Regarding the imbalanced meta-training set, we noticed that two split criteria
stand out: DCSM (present in 40% of the algorithms) and Normalized Gain (also
present in 40%of the algorithms). In 100%of the algorithms, the nominal splits were
aggregated into binary splits. The favored stop criterion was either the homogeneous
stop (60% of the algorithms) of the algorithms or tree stop when a maximum depth
of around 10 levels is reached (40% of the algorithms). Finally, the pruning strategy
was also divided between PEP pruning with 1 SE (40% of the algorithms) and
no pruning at all (40% of the algorithms). We noticed that whenever the algorithm
employedDCSM,PEPpruningwas the favored pruning strategy. Similarly,whenever
the Normalized Gain was selected, no pruning was the favored pruning strategy. It



6.3 Experimental Evaluation 169

seems that HEAD-DT was capable of detecting a correlation between different split
criteria and pruning strategies. Algorithm 2 shows the custom algorithm that was
tailored to imbalanced data (we actually present the choices of different components
when it was the case).

Algorithm 2Custom algorithm designed byHEAD-DT (FM-A) for imbalanced data
sets.
1: Recursively split nodes using either DCSM or the Normalized Gain;
2: Aggregate nominal splits into binary subsets;
3: Perform step 1 until class-homogeneity or a maximum depth of 9 (10) levels;
4: Either do not perform pruning and remove nodes that do not reduce training error, or perform PEP pruning with 1 SE;

When dealing with missing values:
5: Ignore missing values or perform unsupervised imputation when calculating the split criterion;
6: Perform unsupervised imputation before distributing missing values;
7: For classifying an instance with missing values, halt in the current node or explore all branches and combine the

classification.

Regarding the missing value strategies, we did not notice any particular pattern in
either the balanced or the imbalanced scenarios. Hence, the missing-value strategies
presented in Algorithms 1 and 2 are only examples of selected components, though
they did not stand out in terms of appearance frequency.

6.4 Chapter Remarks

In this chapter, we performed a series of experiments to analyse in more detail the
impact of different fitness functions during the evolutionary cycle of HEAD-DT.
In the first part of the chapter, we presented 5 classification performance measures
and three aggregation schemes to combine these measures during fitness evaluation
of multiple data sets. The combination of performance measures and aggregation
schemes resulted in 15 different versions of HEAD-DT.

Wedesigned two experimental scenarios to evaluate the 15 versions ofHEAD-DT.
In the first scenario, HEAD-DT is executed on a meta-training set with 5 balanced
data sets, and on a meta-test set with the remaining 62 available UCI data sets. In the
second scenario, HEAD-DT is executed on a meta-training set with 5 imbalanced
data sets, and the meta-test set with the remaining 62 available UCI data sets. For
measuring the level of data set balance, we make use of the imbalance ratio (IR),
which is the ratio between the most-frequent and the less-frequent classes of the data.

Results of the experiments indicated that the median of the relative accuracy
improvement was the most suitable fitness function for the balanced scenario,
whereas the average of the F-Measure was the most suitable fitness function for
the imbalanced scenario. The next step of the empirical analysis was to compare
these versions of HEAD-DT with the baseline decision-tree induction algorithms
C4.5, CART, and REPTree. For such, we employed the same meta-training sets than
before, though the meta-test sets exclusively comprised balanced (imbalanced) data
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sets. The experimental results confirmed that HEAD-DT can generate algorithms
tailored to a particular statistical profile (data set balance) that are more effective
than C4.5, CART, and REPTree, outperforming them in 16 out of 20 data sets.
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Chapter 7
Conclusions

We presented in this book an approach for the automatic design of decision-
tree induction algorithms, namely HEAD-DT (Hyper-Heuristic Evolutionary Algo-
rithm forAutomaticallyDesigningDecision-Tree InductionAlgorithms).HEAD-DT
makes use of an evolutionary algorithm to perform a search in the space of more than
21 million decision-tree induction algorithms. The search is guided by the perfor-
mance of the candidate algorithms in a meta-training set, and it may follow two
distinct frameworks:

• Evolution of a decision-tree induction algorithm tailored to one specific data set
at a time (specific framework);

• Evolution of a decision-tree induction algorithm from multiple data sets (general
framework).

We carried out extensive experimentation with both specific and general frame-
works. In the first, HEAD-DT uses data from a single data set in both meta-training
and meta-test sets. The goal is to design a given decision-tree induction algorithm so
it excels at that specific data set, and no requirements are made regarding its perfor-
mance in other data sets. Experiments with 20 UCI data sets showed that HEAD-DT
significantly outperforms algorithms like CART [5] and C4.5 [11] with respect to
performance measures such as accuracy and F-Measure.

In the second framework, HEAD-DT was further tested with three distinct
objectives:

1. To evolve a single decision-tree algorithm tailor-made to data sets fromaparticular
application domain (homogeneous approach).

2. To evolve a single decision-tree algorithm robust across a variety of different data
sets (heterogeneous approach).

3. To evolve a single decision-tree algorithm tailored to data sets that share a par-
ticular statistical profile.

In order to evaluate objective 1, we performed a thorough empirical analysis on 35
microarray gene expression data sets [12]. The experimental results indicated that
automatically-designed decision-tree induction algorithms tailored to a particular
domain (in this case, microarray data) usually outperform traditional decision-tree
algorithms like C4.5 and CART.

© The Author(s) 2015
R.C. Barros et al., Automatic Design of Decision-Tree Induction Algorithms,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-14231-9_7
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For evaluating objective 2, we conducted a thorough empirical analysis on 67
UCI public data sets [7]. According to the experimental results, the automatically-
designed “all-around” decision-tree induction algorithms, which are meant to be
robust across very different data sets, presented a performance similar to traditional
decision-tree algorithms like C4.5 and CART, even though they seemed to be suf-
fering from meta-overfitting.

With respect to objective 3, we first performed an extensive analysis with 15
distinct fitness functions for HEAD-DT. We concluded that the best versions of
HEAD-DT were able to automatically design decision-tree induction algorithms
tailored to balanced (and imbalanced) data sets which consistently outperformed
traditional algorithms like C4.5 and CART.

Overall, HEAD-DT presented a good performance in the four different investi-
gated scenarios (one scenario regarding the specific framework and three scenarios
regarding the general framework). Next, we present the limitations (Sect. 7.1) and
future work possibilities (Sect. 7.2) we envision for continuing the study presented
in this book.

7.1 Limitations

HEAD-DT has the intrinsic disadvantage of evolutionary algorithms, which is a
high execution time. Furthermore, it inherits the disadvantages of a hyper-heuristic
approach, which is the need of evaluating several data sets in the meta-training set
(at least in the general framework), also translating into additional execution time.
However, we recall from Chap.5, Sect. 5.4, that HEAD-DT may be seen as a fast
method for automatically designing decision-tree algorithms. Even though it may
take up to several hours to generate a tailor-made algorithm for a given application
domain, its further application in data sets from the domain of interest is just as fast as
most traditional top-down decision-tree induction algorithms. The cost of developing
a new decision-tree algorithm from scratch to a particular domain, on the other hand,
would be in the order of several months.

We believe that the main limitation in the current implementation of HEAD-
DT is the meta-training set setup. Currently, we employed a random methodology
to select data sets to be part of the meta-training set in the general framework.
Even though randomly-generated meta-training sets still provided good results for
the homogeneous approach in the general framework, we believe that automatic,
intelligent construction of meta-training sets can significantly improve HEAD-DT’s
predictive performance. Some suggestions regarding this matter are discussed in the
next section.

Finally, the meta-overfitting problem identified in Chap.5, Sect. 5.2.3, is also a
current limitation of the HEAD-DT implementation. Probably the easiest way of
solving this problem would be to feed the meta-training set with a large variety
of data sets. However, this solution would slow down evolution significantly, taking
HEAD-DT’s average execution time from a few hours to days orweeks.We comment
in the next section some other alternatives to the meta-overfitting problem.

http://dx.doi.org/10.1007/978-3-319-14231-9_5
http://dx.doi.org/10.1007/978-3-319-14231-9_5
http://dx.doi.org/10.1007/978-3-319-14231-9_5
http://dx.doi.org/10.1007/978-3-319-14231-9_5
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7.2 Opportunities for Future Work

In this section, we discuss seven new research opportunities resulting from this study,
namely: (i) proposing an extended HEAD-DT’s genome that takes into account new
induction strategies, oblique splits, and the ability to deal with regression prob-
lems; (ii) proposing a new multi-objective fitness function; (iii) proposing a new
method for automatically selecting proper data sets to be part of the meta-training
set; (iv) proposing a parameter-free evolutionary search; (v) proposing solutions to
the meta-overfitting problem; (vi) proposing the evolution of decision-tree induction
algorithms to compose an ensemble; and (vii) proposing a new genetic search that
makes use of grammar-based techniques. These new research directions are discussed
next in detail.

7.2.1 Extending HEAD-DT’s Genome: New Induction
Strategies, Oblique Splits, Regression Problems

HEAD-DT can be naturally extended so its genome accounts for induction strate-
gies other than the top-down induction. For instance, an induction gene could be
responsible for choosing among the following approaches for tree induction: top-
down induction (currently implemented), bottom-up induction (following the work
of Barros et al. [1, 2] and Landeweerd et al. [10]), beam-search induction (following
the work of Basgalupp et al. [3]), and possibly a hybrid approach that combines the
three previous strategies.

Furthermore, one can think of a new gene to be included among the split genes,
in which an integer would index the following split options: univariate splits (cur-
rently implemented), oblique splits (along with several parameter values that would
determine the strategy for generating the oblique split), and omni splits (real-time
decision for each split as whether it should be univariate or oblique, following the
work of Yildiz and Alpaydin [13]).

Finally, HEAD-DT could be adapted to regression problems. For such, split mea-
sures specially designed to regression have to be implemented—see, for instance,
Chap. 2, Sect. 2.3.1.

7.2.2 Multi-objective Fitness Function

In Chap.6, we tested 15 different single-objective fitness functions for HEAD-DT.
A natural extension regarding fitness evaluation would be to employ multi-objective
strategies to account for multiple objectives being simultaneously optimised. For
instance, instead of searching only for the largest average F-Measure achieved by
a candidate algorithm in the meta-training set, HEAD-DT could look for an algo-
rithm that induces trees with reduced size. Considering that, for similar predictive

http://dx.doi.org/10.1007/978-3-319-14231-9_2
http://dx.doi.org/10.1007/978-3-319-14231-9_2
http://dx.doi.org/10.1007/978-3-319-14231-9_6
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performance, a simpler model is always preferred (as stated by the well-known
Occam’s razor principle), it makes sense to optimise both a measure of predictive
performance (such as F-Measure) and a measure of model complexity (such as tree
size).

Possible solutions for dealingwithmulti-objective optimisation include the Pareto
dominance approach and the lexicographic analysis [8]. The first assumes the set of
non-dominated solutions is provided to the user (instead of a single best solution).
Hence, the evolutionary algorithm must be modified as to properly handle the selec-
tion operation, as well as elitism and the return of the final solution. A lexicographic
approach, in turn, assumes that each objective has a different priority order, and thus
it decides which individual is best by traversing the objectives from the highest to
the lowest priority. Each multi-objective strategy has advantages and disadvantages,
and an interesting research effort would be to compare a number of strategies, so one
could see how they cope with different optimisation goals.

7.2.3 Automatic Selection of the Meta-Training Set

We employed a methodology that randomly selected data sets to be part of the meta-
training set. Since the performance of the evolved decision-tree algorithm is directly
related to the data sets that belong to the meta-training set, we believe an intelligent
and automatic strategy to select a proper meta-training set would be beneficial to the
final user. For instance, the user could provide HEAD-DTwith a list of available data
sets, and HEAD-DT would automatically select from this list those data sets which
are more similar to the available meta-test set.

Some possibilities for performing this intelligent automatic selection include clus-
tering or selecting the k-nearest-neighbors based onmeta-features that describe these
data sets, i.e., selecting those data sets from the list that have largest similarity accord-
ing to a given similarity measure (e.g., Euclidean distance, Mahalanobis distance,
etc.). In such an approach, the difficulty lies in choosing a set of meta-features that
characterize the data sets in such a way that data sets with similar meta-features
require similar design components of a decision-tree algorithm. This is, of course,
not trivial, and an open problem in the meta-learning research field [4].

7.2.4 Parameter-Free Evolutionary Search

One of the main challenges when dealing with evolutionary algorithms is the large
amount of parameters one needs to set prior to its execution. We “avoided” this
problem by consistently employing typical parameter values found in the literature
of evolutionary algorithms for decision-tree induction. Nevertheless, we still tried to
optimise the parameter p in HEAD-DT,which controls the probabilities of crossover,
mutation, and reproduction during evolution.
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A challenging research effort would be the design of self-adaptive evolutionary
parameters, which dynamically detect when their values need to change for the sake
of improving the EA’s performance. Research in that direction includes the work of
Kramer [9], which proposes self-adaptive crossover points, or the several studies on
EAs for tuning EAs [6].

7.2.5 Solving the Meta-Overfitting Problem

The meta-overfitting problem presented in Sect. 5.2.3 offers a good opportunity for
future work. Recall that meta-overfitting occurs when we want to generate a good
“all around” algorithm, i.e., an algorithm that is robust across a set of different data
sets. Some alternatives we envision for solving (or alleviating) this problem are:

• Increase the number of data sets in the meta-training set. Since the goal is to
generate an “all-around” algorithm that performs well regardless of any particular
data set characteristic, it is expected that feeding HEAD-DT with a larger meta-
training set would increase the chances of achieving this goal. The disadvantage
of this approach is that HEAD-DT becomes increasingly slower with each new
data set that is added to the meta-training set.

• Build a replacing mechanism during the evolutionary process that dynami-
cally updates the data sets in the meta-training set. By feeding HEAD-DTwith
different data sets per generation, we could guide the evolution towards robust
“all-around” algorithms, avoiding the extra computational time spent in the previ-
ous solution. The problem with this strategy is that HEAD-DT would most likely
provide an algorithm that performs well in the meta-training set used in the last
generation of the evolution. This could be fixed by storing the best algorithm in
each generation and then executing a single generation with these algorithms in the
population, and with a full meta-training set (all data sets used in all generations).

• Build a meta-training set with diversity. A good “all-around” algorithm should
perform reasonably well in all kinds of scenarios, and thus a possible solution is to
feed HEAD-DT with data sets that cover a minimum level of diversity in terms of
structural characteristics, that in turn represent a particular scenario. In practice,
the problemwith this approach is to identify the characteristics that really influence
in predictive performance. As previously discussed, this is an open problem and a
research area by itself, known as meta-learning.

7.2.6 Ensemble of Automatically-Designed Algorithms

The strategy for automatically designing decision-tree induction algorithms pre-
sented in this book aimed at the generation of effective algorithms, which were capa-
ble of outperforming other traditional manually-designed decision-tree algorithms.

http://dx.doi.org/10.1007/978-3-319-14231-9_5
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Another promising research direction would be to automatically design decision-tree
algorithms to be used in an ensemble of classifiers. In this case, each individual would
be an ensemble of automatically-designed algorithms, and a multi-objective fitness
function could be employed to account for both the ensemble’s predictive perfor-
mance in a meta-training set and its diversity regarding each automatically-designed
algorithm. For measuring diversity, one could think of a measure that would take into
account the number of distinct correctly-classified instances between two different
algorithms.

7.2.7 Grammar-Based Genetic Programming

Finally, a natural extension of HEAD-DT would be regarding its search mechanism:
instead of relying on a GA-like evolutionary algorithm, more sophisticated EAs such
as standard grammar-based genetic programming (GGP) or grammatical evolution
(GE) could be employed to evolve candidate decision trees. The latter seems to be
an interesting research direction, since it is nowadays one of the most widely applied
genetic programming methods.
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