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Foreword

Simulation, an experiment performed with a model, belongs to the daily work of
most scientists and practitioners in industry alike. Aimed at supporting the under-
standing, the analysis, and/or the design of complex dynamic systems, simulation
belongs to the methodological toolbox of natural sciences, engineering, but also
medicine, sociology, economy, and demography. The diversity of application areas
and intentions of simulation studies is reflected in a plethora of available methods.

“No silver bullet does exist” — this observation of Brooks, referring to software
engineering in general, fits also well to simulation methods. Different models,
infrastructures, and user preferences ask for different kinds of simulators. The
performance of one method, e.g., in terms of execution speed, storage consump-
tion, or accuracy of the results, might vary significantly from one situation to the
next. Thus, users interested in performing simulation studies with their model are
faced with the problem of how to select among existing methods the most suit-
able one, and developers of simulation methods are faced with the problem of how
to evaluate the performance of their newly developed method in comparison to
others. Those are daunting tasks, as most simulation methods are also highly con-
figurable. However, solving these tasks is also important, as it will determine the
quality of simulation studies and their results to a large degree.

Roland Ewald’s book on simulation algorithm selection contributes to this quest.
It shows how methods from machine learning, portfolio theory, experiment de-
sign, adaptive software, and simulation algorithms can be combined to develop
new approaches for simulation algorithm selection. One approach exploits prior
knowledge in terms of a performance database, in which problem characteristics
and performance characteristics are stored, so that performance patterns can be
inductively learned and applied. The other approach does not depend on prior
knowledge, but learns online by reinforcement, thereby exploiting the fact that
multiple replications are required for stochastic simulation. To be effective, both
depend on gathering performance data, and on efficiently restricting the search
space of mapping solutions to problems. Two case studies, in the area of parallel
distributed simulation and computational systems biology, respectively, demon-
strate the potential of the developed solutions.

The book reveals insights into several areas of research and shows how results
can be fruitfully combined across disciplinary boundaries. The concepts developed
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are realized and put to test in a plug-in based modeling and simulation framework,
to tackle problems in concrete simulation studies. Thus, the book nicely leads
from theory to practice, and illuminates possible pitfalls along the way. It is of
relevance to all who are concerned with the quality of simulation studies, and who
are interested in executing them in a more efficient and effective manner. The
book is also relevant for the community of researchers who develop simulation
algorithms, as it provides support for more systematic performance evaluations
and thus more valid performance results.

Rostock, June 2011 Prof. Dr. Adelinde M. Uhrmacher
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1 Introduction

Computers are useless. They can only give you answers.

Pablo Picasso

1.1 Motivation

Modeling & Simulation

How can computers help us? This question, at the very foundation of (applied)
computer science, is not yet answered conclusively. There are many fields where
computer systems are widely accepted, e.g., administration or education, even
though their positive impact is debatable [33, 261, 326]. If there is any aspect
of human activity for which the surplus of using computers is not questionable,
this is the scientific endeavor. Computers have profoundly changed and enhanced
research methodology: peta-bytes of measurement data are stored and processed
to interpret experiments with the Large Hadron Collider [285], efficient algorithms
help analyzing DNA sequences [2], and whole experimentation processes are au-
tomated by computers and robots [178]. Apart from merely processing symbolic
data faster and less error-prone than humans, computers are also valuable tools for
testing our hypotheses regarding a system under investigation. This can be done
by abstracting away all aspects of the system that are not essential to testing the
hypothesis, thereby forming a formal, abstract specification of the system: a com-
puter model. Computer models may be analyzed in various ways, e.g., by calcu-
lating the model’s behavior via computer simulation (more precise definitions are
given in sec. 1.2). The given hypothesis could now be falsified by the simulation
outcome. From this perspective, the field of modeling and simulation is concerned
with the computerized support of the scientific method in general, ideally serving
as a catalyst for scientific progress (see sec. 1.4).

Simulation as a Scientific Discipline

Modeling and simulation is a scientific discipline in itself, concerned with pro-
viding valid and efficient techniques for model construction and execution. Sim-
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ulation relies on many sub-domains of computer science. Basically, it can be di-
vided into three aspects: the conceptual development of simulation algorithms,
their efficient and valid implementation, and the creation of environments in which
these implementations can be used productively by others, not necessarily com-
puter scientists. For example, there are many methods for numerical integration,
a technique that is used for simulating continuous systems [34, p. 57 et sqq.].
Besides their mathematical properties, which can be enhanced by conceptual de-
velopments, their efficient implementation on modern computers poses several ad-
ditional challenges (e.g., due to rounding [34, p. 28 et sqq.]). Eventually, these
efficient implementations have to be made available to non-expert users, e.g., via
simulation environments like Simulink [224].

Devising simulation algorithms usually incorporates ideas from numerical and
discrete mathematics, algorithmic complexity theory, and parallel algorithms. Im-
plementing efficient simulation algorithms requires knowledge on software engi-
neering, programming languages, operating systems, computer architectures, and
networks. Environments for using the implemented algorithms often have graph-
ical user interfaces and rely on many other fields of applied computer science,
particularly databases and visualization.

From a scientific point of view, a proposed simulation algorithm comes along
with the hypothesis that it works correctly, i.e., it yields valid results, and effi-
ciently, i.e., it does so with parsimonious use of resources like memory or CPU
time. A new simulation algorithm should also compare favorably to existing ap-
proaches in these regards, to justify its usage. Implementing and running the algo-
rithm can be regarded as an experiment to test this hypothesis [142, p. 203]. The
scientific method demands that a hypothesis can be falsified, i.e., it must be pos-
sible to disprove the hypothesis on factual grounds. For example, the hypothesis
associated with a newly proposed simulation algorithm can be falsified by show-
ing that it is less accurate and efficient than an algorithm that is already known —
however, the unbiased comparison of simulation algorithms is not easy. Algorith-
mic complexity theory allows to theoretically compare algorithms regarding their
resource consumption. Unfortunately, there are many pitfalls and limitations when
these results shall be transferred to reality (see sec. 2.2).

Empirical comparison of algorithms is not easy either. Implementations are
given in various programming languages. Compilers, operating systems, hard-
ware components, and network devices usually interfere strongly with the effi-
ciency of the implementation. Furthermore, benchmarking is not standardized, so
often poorly documented benchmark models are used to ’proof’ a point (see ch. 7).
This hampers falsification and therefore also the progress of the field itself: How
can I know that I will achieve roughly the same speed-up as stated in the article,
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when the authors implemented the algorithm in language X on machine Y to simu-
late model Z, whereas I need to simulate model A on machine B and would prefer
language C? Apart from some general insights into common bottlenecks, the sim-
ulation community leaves practitioners rather helpless when they have to choose a
suitable simulation algorithm for a given problem.

This situation casts doubt on computer simulation as a science: If it is not pos-
sible to falsify the hypothesis associated with a new simulation algorithm, i.e., it
is essentially incomparable to existing methods, how can its scientific contribution
be evaluated? Although the simulation community is aware of this issue [291], it
seems as if there is no simple solution. The stakes are high: complaints about lack-
ing scientific rigor in computer science are anything but new [59], but simulation
risks to become a pathological science [332] if these problems are not solved, i.e.,
a science that lacks reproducibility and therefore fails to yield valuable insights.
Automating the overall research process seems to be an interesting possibility to
overcome some of these difficulties [320].

Towards Simulation Algorithm Comparability: Modeling & Simulation

Environments

The aforementioned problem can be partly solved by standardization: if re-
searchers rely on the same algorithm environment and programming language,
they facilitate a fair evaluation of their contributions. This is one of the moti-
vations that drive the development of general-purpose modeling and simulation
frameworks. Such frameworks allow a fair comparison in principle, but general
statements about an algorithm’s performance are still hard to come by: most sim-
ulation algorithms strongly depend on model characteristics, and the underlying
hardware and operating system might still bias the results. This leaves us in a
situation where it is easy to compare two simulation algorithms for one specific
model, executed on one specific computer — but it is still unclear how this re-
lates to another situation. General-purpose modeling and simulation environments
make simulation algorithm comparisons reproducible and fair, but using them does
not suffice to get the big picture. How can we know which algorithms are indeed
promising for a broad class of models, and which only work on a small set of care-
fully crafted benchmarks? Which model properties influence the performance of
an algorithm the most? When is algorithm A preferable over algorithm B?
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A Case for Simulation Algorithm Selection

Without general, comparative insights into existing algorithms, it is almost im-
possible to take the right design decisions when devising and implementing new
ones — only intuition can guide the developer, often accompanied by trial and er-
ror. A similar problem arises on the side of the user: when a simulation system
provides many ways to solve the problem at hand, which one is the most appropri-
ate? Are all of them valid and stable? At the core of both problems is the so-called
Algorithm Selection Problem, i.e., the problem of selecting a suitable algorithm for
processing a given input with given resources (hardware, operating system, etc.).
Solving this problem may allow simulation systems to configure themselves auto-
matically. This will help users, and also implies obtaining general knowledge on
the relative merits of simulation algorithms. Researchers will benefit from such
knowledge as well, as it may reveal the weaknesses of current methods and could
point to promising research directions.

This thesis addresses the Algorithm Selection Problem in a simulation con-
text. The presented methods are implemented within the modeling and simulation
framework JAMES II, which was constructed to serve as a productive environ-
ment for comparing simulation algorithms [131] and has been growing steadily
over the past years (see fig. 1.1 and 1.2). The abundance of competing algorithmic
solutions for certain simulation tasks in JAMES II is one of the more practical
motivations to investigate their automated selection. Nevertheless, the developed
methods are not restricted to JAMES II; they are applicable to simulation systems
in general.

The next section defines some important terms and concepts. Section 1.3 intro-
duces two real-world challenges for simulation algorithm selection, which serve as
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example domains in the following. Finally, section 1.4 briefly overviews the philo-
sophical grounds on which the objectives of this thesis can be evaluated, while sec-
tion 1.5 concludes the introduction by outlining the structure of the next chapters.

1.2 Terminology

The notion of an algorithm is central to computer science. The most prominent
definition is given by Turing, who proposed a Turing Machine (TM) in analogy to
a person that is computing a number [307, p. 231–233]. The person only has a
finite memory, but may use (infinitely many) segments of a tape to keep notes. One
can now think of a machine that shall automate this process: it has a finite number
of states (representing its memory), it is able to read from or write to the tape (one
symbol at a time), and it may also move left or right along the tape (segment-
by-segment). Turing regards a machine as automatic if its next action is always
completely determined by its current position on the tape, its state, and the content
of the tape. This notion is contrasted by the definition of a ’choice-machine’; a
machine that sometimes requires intervention by an ’external operator’, i.e., which
relies on elements that are not necessarily computable.

However, the automatic version of Turing’s machine model does not rely on
such interventions. It is this machine model that can be used to define what an
algorithm is: everything that can be described by an (automatic) Turing machine.
Algorithms might be given in verbal form or as code in some programming lan-
guage; they all have in common that they can be mimicked by a Turing Machine.
Nevertheless, the argument that this kind of machine does indeed cover all possible
processes of calculation remains unproven: “All arguments which can be given are
bound to be, fundamentally, appeals to intuition, and for this reason rather unsat-
isfactory mathematically” [307, p. 249]. Similar to Turing, Davis et al. conclude
that “[...] the word algorithm has no general definition separated from a partic-
ular language [...]” [54, p. 69], and the languages they refer to are programming
languages with formally defined semantics. The claim that Turing machines (and
their equivalents) indeed characterize all functions that are ’effectively calculable’
is referred to as Church-Turing-Thesis [315] and is widely accepted. It can also
be generalized and grounded on general physical laws [58]. Apart from the no-
tion of algorithms, Turing defined the term automatic as the absence of external
(human) intervention. Consequently, the automatic selection of algorithms means
that one out of several algorithms is chosen without human intervention. A formal
definition of the problem is given in section 2.1.
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The second part of the title restricts the topic to complex simulation problems.
The definition of simulation depends on the notions of system and model. The
term ’system’ originates from the Greek sustēma, which combines sun (together)
and histanai (to set up): things that are put together, i.e., “a group of interacting
elements” [258, p. 832]. There are many meanings of ’model’ in everyday life;
in a simulation context, models are regarded as descriptions of systems [24, p.
1]. Simulation models, i.e., models that can be simulated by a computer, usually
take the form of “mathematical, logical, and symbolic relationships between the
entities” [14, p. 3], i.e., their semantics are formally defined.1

Simulation is the process of “driving the model with certain [...] inputs and
observing the corresponding outputs” [24, p. 2], i.e., it can be regarded as an
experiment on a given model [34, p. 8]. This thesis deals with (digital) computer
simulation, i.e., the simulation of formal models by an algorithm that runs on a dig-
ital computer — in contrast to purely analog simulation, e.g., of an airplane model
in a wind tunnel, or simulation by an analog computer. A simulation imitates the
modeled system to some extent [14, p. 3], resembling the popular meaning of ’sim-
ulation’. What makes simulation problems complex is more formally discussed in
section 2.4. For now, a simulation problem is deemed complex if it is difficult
to decide beforehand which simulation algorithm will be the most appropriate to
solve it.

1.3 Examples

This section presents two domains of simulation research that could benefit from
an automatic simulation algorithm selection. The first domain is application-
specific and belongs to computational systems biology [180, 242], an emerging
field that aims at further integrating methodology for systems analysis, e.g., mod-
eling and simulation, into biological research. The second domain, parallel and
distributed discrete-event simulation (PDES), is a fundamental area of simulation
research and is rooted in research on distributed computer systems [36, 233]. Its
approaches are application-independent and can thus be transferred to various do-
mains, including the problems from systems biology presented in the first example.
Due to the advent of multi-core CPUs in ordinary personal computers [130], the
field still holds many promises for speeding up simulation execution [92].

Both domains have in common that a bevy of simulation methods and enhance-
ments exists, most of which highly depend on the concrete problem at hand. Many

1On a more abstract level, models can also be understood as composite hypotheses regarding a system,
i.e., a hypothesis that incorporates parameters to be set [84, p. 408].
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are poorly evaluated and not thoroughly compared to competing techniques. At
the same time, ever more complex simulation systems are demanded to guarantee
a valid, fast, and stable execution [247]. This leads to a ’simulation gap’ between
the development and maintenance of large, general-purpose simulation systems
on the one hand, and the development of highly application-specific simulation
algorithms on the other hand: a general-purpose system cannot incorporate highly
tuned algorithms for special cases without providing a convenient algorithm selec-
tion mechanism. Solutions for the algorithm selection problem in both example
domains, realized by the methods introduced in this thesis, are evaluated in chap-
ters 9 and 10.

1.3.1 Simulation of Chemical Reaction Networks

Systems biology employs various modeling and simulation methods for analyzing
the organizational levels of an organism, ranging from molecular dynamics on the
level of atoms [314], over the simulation of chemical reaction networks, to the
simulation of whole cells, organs, and organisms [312]. Each level of abstraction
poses several challenges to modelers and simulation developers alike, and can be
specified by various modeling formalisms [73]. An abstraction level that is widely
popular among systems biologists is that of chemical reactions, i.e., considering
dynamics on the level of molecules. It can be used to describe many cell-biological
phenomena, such as protein-DNA interactions [56], metabolic reactions [156], or
signaling pathways [197].

There are several ways to describe a system on the level of molecules.
Individual-based approaches, such as biologically inspired extensions of the
DEVS [340] formalism [309, 310], have some advantages. They avoid a state-
space explosion that occurs when considering molecules that could be modeled
with the notion of a state, e.g., proteins with several phosphorylation sites [306].
Furthermore, some of them allow to take additional aspects into account, e.g., the
spatial distribution of reactants [162] and the size of molecules [161]. This allows
to model effects like molecular crowding, i.e., the clustering of certain molecules,
which may greatly impact system behavior [179]. Likewise, simulation algorithms
are adapted to the new requirements, e.g., to run on multiple resources or to support
spatial models (e.g., [159, 161]). However, most of these approaches are based on
the so-called Gillespie algorithm [105, 106].

Gillespie argued that the continuous simulation approaches for chemical reac-
tion networks, which are based on ordinary differential equations (ODEs), do not
allow to assess the true behavior of the system if small quantities of particles are
involved — which is the case in many biological systems, e.g., when considering
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viral kinetics [295]. Instead, he reformulated the problem as a continuous-time
Markov chain (CTMC), i.e., as a system undergoing random discrete state transi-
tions on a continuous time scale, with probabilities that only rely on the current
state [106]. Although these can be analyzed numerically in certain cases (e.g.,
see [28]), larger models usually require a stochastic simulation of the possible tra-
jectories along which the model may evolve. This requires to repeat a simulation
multiple times with different random numbers, to get statistically sound results.
The repetitions are also called replications. They are necessary to obtain general
insights into the behavior of stochastic models.

Gillespie introduces two stochastic simulation algorithms (SSAs), the First Re-
action Method and the Direct Method. Both are equivalent in terms of the results
they produce, but not with respect to their runtime performance (see ch. 9). Other
SSAs that incorporate advanced data structures and new algorithmic ideas have
been proposed over the years, e.g., [31, 104], although their merits are still up for
debate [281]. Additionally, approximation techniques like τ-leaping have been in-
troduced to speed up execution [108]. They approximate a solution by executing
more than one chemical reaction per step, thereby abstracting away changes of
the reaction propensities in-between these steps. This can speed up simulation by
several orders of magnitude. On the other hand, such approximation might not be
accurate enough to answer certain questions about the system. For example, the
τ-leaping approach from [30] may introduce a statistically significant error when
observing the number of particles over time [158]. It is therefore important to
know when to use the approximation, and when to better stick to the ’exact’ SSA
variants.

Accounting for both aspects of SSA simulator performance, i.e., execution time
and accuracy, is still a task that has to be done manually; which algorithm per-
forms best in which situation has not been settled yet. Nevertheless, SSAs are
widely used today: some approaches have been built on top of them, e.g., the Next
Subvolume Method for simulating diffusion processes in a discretized space [62].
There are also other simulation algorithms that rely on SSAs, e.g., for the stochas-
tic π-calculus [264]. Finding out which SSA variant is best for which model will
therefore allow the optimization of several related methods.

Even with the most sophisticated tools and methods, systems biology remains an
extremely challenging field where researches are still just beginning to get some in-
sights [32] — but today’s simulation tools even struggle with comparatively small
models. One way to enhance the capabilities of current simulation systems is to
support parallel and distributed simulation. This would enable researchers to sim-
ulate larger models and may also speed up simulation execution. For example, the
spatial structures introduced by the Next Subvolume Method can be exploited by
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a parallel simulation scheme on top of SSAs [159, 160]. Bringing complex algo-
rithms with not yet thoroughly investigated performance characteristics to parallel
computing is a daunting challenge — even more so, as the Algorithm Selection
Problem manifests itself in the field of parallel and distributed simulation as well.

1.3.2 Parallel and Distributed Discrete-Event Simulation

The need for parallel and distributed simulation arises with very large and compu-
tationally challenging models that can only be simulated conveniently by combin-
ing existing resources. The parallel simulation of discrete-event models goes back
to the late 1970s [91]. Discrete-event models have a continuous time basis, but
are restricted to a finite number of state transitions per time interval [14, p. 12].
They are used in many important application areas. For example, the SSA variants
introduced in section 1.3.1 compute a discrete-event model of a chemical reaction
network, and hence are discrete-event simulators. Other domains of discrete-event
simulation are computer networks [241] or manufacturing [14, 251].

Parallel and distributed discrete-event simulation is also applied to analyze
multi-agent systems (MAS) [304], which are capable of adaptive behavior and can
be used to implement automatic algorithm selection, as discussed in section 2.4.
A multi-agent system consists of several agents, i.e., potentially complex entities
that act (to some extent) autonomously [279, p. 4] within a certain environment.
Agents may communicate with each other, either directly or via the environment,
e.g., to solve some task. Modeling and simulation of MAS allows to assess the per-
formance of artificial MAS under controlled circumstances, before an expensive
and potentially dangerous prototype has to be implemented, e.g., for large-scale
automated vehicle routing [328]. Furthermore, MAS simulation is used to investi-
gate natural systems that suit this metaphor, e.g., everyday traffic phenomena [297]
or crowd behavior [13] (see sec. 2.4.2).

Basic Execution Scheme

A parallel simulation allows to compute certain aspects of the model behavior
in parallel, while a distributed simulation makes use of spatially distributed re-
sources, i.e., computers connected over some kind of network. It is possible to
conduct a parallel simulation that is not distributed, e.g., by employing compo-
nents for parallel computing on a single machine, such as GPUs [253, 280, 297].
Likewise, it is also possible to run a sequential simulation in a distributed man-
ner — but usually, discrete-event models are distributed over several computers
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Figure 1.3: Sequential vs. parallel discrete-event simulation: While the sequential process-
ing of events merely requires a global event queue to ensure a correct computation order
(left), the parallel execution has to synchronize the local event queues (right). Otherwise,
if LP1 processes event e1 for too long, the newly generated event e3 might not reach LP2
before e2 has already been processed and e4 is executed instead. This violates the local
causality constraint, which states that each LP has to execute its local events in the correct
order. It ensures the equivalence to results from sequential simulation.

to allow a parallel computation, hence the term parallel and distributed discrete-
event simulation (PDES) [90].

Stemming from research on distributed systems in general, PDES algorithms
are usually defined on the concept of a logical process (LP) [233, 321]. Each
model entity can be regarded as such a process, and the processes that belong to a
model exchange time-stamped events, usually via messages, to interact with each
other. This is easy to implement as a sequential simulation, where the events are
stored in time-stamp order by a central event queue. The event with the smallest
time stamp is de-queued and propagated to its destination LP, where its effect will
be calculated and newly generated events (with later or equal time stamps) might
be created. These are added to the queue and the algorithm starts over, until the
queue is empty or a termination condition is met. Several complications arise
when executing this algorithm in parallel, on a distributed set of machines. Most
importantly, the logical processes now run in the absence of a central event queue,
which makes it necessary that they synchronize themselves. A synchronization
protocol for PDES ensures that the local causality constraint holds [90, p. 52],
i.e., it preserves the order with which events are processed at each LP. Figure 1.3
illustrates this fundamental difference between sequential and parallel discrete-
event simulation.
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Synchronization

Synchronization protocols can be divided into two large groups: conservative and
optimistic ones. With a conservative protocol, each LP blocks the execution of
an event until it can be sure that no event with a smaller time stamp will arrive
in the future. This may lead to a deadlock, i.e., a situation where no LP is sure
that it can proceed and hence all LPs block each other, so that the simulation halts.
Deadlocks can be avoided or detected by several methods [90, p. 60 et sqq.]. With
an optimistic protocol, LPs just execute the event with the smallest time stamp in
their local queue, optimistically assuming that there will be no event with a smaller
time stamp on its way. If this assumption is wrong, the execution violates the local
causality constraint. Hence, the arrival of an event with a time stamp smaller than
the local virtual time (LVT), i.e., the time stamp of the last event that has been
executed locally, will cause a roll-back to a state where the local causality con-
straint has not been violated yet. Events that cause roll-backs are called straggler
events. A straggler event induces a roll-back, which might in turn induce roll-
backs at other LPs. These need to be notified in case they received invalid events
from the given LP while it was violating the local causality constraint. Such cas-
cades of roll-backs are a major problem of the classic optimistic protocol, Time
Warp [157] (see sec. 10.1, p. 306), and again there are several techniques and pro-
tocol enhancements to alleviate it (e.g., lazy cancellation [90, p. 129–132]). The
behavior of synchronization protocols is hard to evaluate and forecast. Entire sim-
ulation systems have been dedicated to their investigation, e.g., WARPED [221]
was originally developed to be “freely available to the research community for
analysis of the Time Warp design space” [220, p. 1].

Further Aspects: Partitioning, Load Balancing, Message Passing, Interest

Management

Before executing a PDES with some synchronization protocol, model and simula-
tor entities have to be distributed over the set of available machines. This is done
by a so-called partitioning algorithm, which aims at assigning a fair share of com-
putational load to each machine, and also at minimizing the inter-machine commu-
nication that occurs during the simulation. The latter is relevant because network
latency slows down event propagation and may therefore hamper the overall exe-
cution speed. Network latency would be minimal if all entities were mapped to a
single processor, but this would also result in a maximal imbalance, as only one
processor would have to do all the work. On the other hand, perfectly balancing the
load between all processors could lead to excessive network traffic. Partitioning
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Figure 1.4: Partitioning and load balancing: partitioning (left) occurs before the simulation
starts. It aims at minimizing the communication of events between the local event queues
that are executed in parallel (see fig. 1.3) and at fairly distributing the computational work-
load. Load balancing (right) is invoked at run-time to re-balance the workload if the initial
partition turns out to be sub-optimal. In the given example, a load balancing algorithm
might decide to relocate LP3 if it turns to communicate much more with LP1 and LP4 than
with LP2 and LP5.

has to find a good trade-off between both aspects. It is related to the graph parti-
tioning problem from theoretical computer science, which makes a broad range of
algorithms applicable to its solution [83].

Additional challenges arise in the context of model partitioning, where the main
task is to find a mapping between the model graph and the graph that represents the
(potentially heterogeneous) infrastructure [69]. Another problem is that a model’s
behavior is not fully known before runtime — otherwise, there would be no need
to simulate it. This, in turn, implies that the original partitioning is not necessarily
a good one. Even worse, the quality of the partitioning may deteriorate over time
if the model exhibits certain kinds of dynamic behavior or structure, i.e., if the
computational load changes during simulation. This problem is addressed by load
balancing algorithms, which shall detect imbalance in a distributed simulation and
then reduce it by migrating LPs from overloaded to underloaded machines.

Further algorithms are needed for tasks that are specific to the distributed simu-
lation application at hand. The simulation of multi-agent systems, for example,
might be enhanced by domain-specific synchronization algorithms [249] or by
maintaining a shared state to which all LPs in the simulation have access [211].
Such novel approaches to distributed simulation may require adjusted schemes
for load balancing [244], synchronization [198, 199], or even message rout-
ing [38, 66]. Most of these algorithms strongly rely on the characteristics of the
multi-agent system at hand, and may also influence each other. For example, the
performance of the routing algorithm may strongly depend on the algorithm that
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balances the load [38]. In other applications of distributed simulation, e.g., dis-
tributed multi-player games [219], related techniques like interest management
are of central importance and need to be adjusted to the problem at hand [232].
Again, the specifics of the application are reflected in alternative algorithms for
basic tasks such as synchronization (e.g., see [48]).

All in all, parallel and distributed discrete-event simulation is realized by a
whole ensemble of algorithms that interact with each other, and also depend on
the characteristics of the model and the hardware infrastructure. Moreover, specific
simulation requirements, e.g., real-time capabilities for the emulation of computer
networks [241], call for the development of ever more solutions. Since it is “very
difficult to analytically prove anything about performance executing large models
on large machines”[238, p. 4], empirical PDES performance prediction has been
established over the past years (see sec. 3.3.2, p. 112). The automatic selection of
PDES algorithms could be regarded as the next step toward user-friendly PDES
tools, since it is hard to find a suitable combination of algorithms for the applica-
tion at hand [70].

1.4 Epistemological Viewpoint

The main objective of this thesis, i.e., to develop methods for the automatic se-
lection of suitable simulation algorithms, implicitly coincides with streamlining
research on simulation algorithms itself. A successful selection mechanism re-
quires knowledge on the performance merits of the available algorithms. Such
knowledge is also useful in other contexts, such as the development of new sim-
ulation algorithms — pursuing and obtaining it is an everyday task in simulation
research.

From a philosophical perspective, this thesis is mainly concerned with inductive
prediction. Induction is understood as inferring general laws from a sequence of
observations. Here, observations relate algorithm implementations to performance
measurements. Induction can be implemented by certain algorithms, which take
the observations as input and return a hypothesis regarding the process that gen-
erated them. However, induction does not ensure that the laws derived from those
observations are true. This is known as the problem of inductive knowledge, and
has been pointed out by many philosophers of science, e.g., David Hume, Karl
Popper, and Bertrand Russell [282, 300]. A classic anecdotal example for wrong
induction is Russell’s Inductivist Chicken: imagine a chicken that is always fed at 9
a.m. Being an inductivist, it collects observations from various weekdays and un-
der various circumstances, e.g., hot and cold weather. Inevitably, it will conclude



14 1 Introduction

the general law “I will always be fed at 9 a.m.” from the observations — but this
law fails to predict that the chicken gets slaughtered the day before Christmas [300,
p. 40].

The hypothetico-deductive method aims at circumventing this problem. It lim-
its the role of induction to the confirmation of hypotheses after they have been
formulated. Popper’s falsification paradigm, i.e., to abandon confirmation in fa-
vor of theory falsification, goes along the same lines and can be interpreted as an
“anti-inductivist version of the hypothetico-deductive method” [282, p. 253]. The
method leaves theory formation to the scientist with domain knowledge, i.e., Pop-
per distinguishes “[...] sharply between the process of conceiving a new idea, and
the methods and results of examining it logically” [260]. This distinction makes
the hypothetico-deductive method hard to automate, as it would require to incor-
porate some kind of artificial creativeness. Similarly, results from theoretical com-
puter science suggest that a purely deductive automatic mechanism is infeasible
for algorithm selection (see sec. 2.1.3).

Hence, automated induction remains — despite its pitfalls and shortcomings —
the most suitable approach to be pursued here. Besides the inductive skepticism
due to the problem of inductive knowledge, one might also ask how the perfor-
mance of different inductive methods could ever be assessed, given that induction
itself is fundamentally flawed from an epistemological perspective. Thomas Kuhn
identified accuracy, consistency, simplicity, breadth, and fertility of a hypothesis
as quality criteria [282]. On a more practical level, experimental soundness, con-
trol over sources of error and bias, and reproducibility are named as important
methodological aspects of observing algorithm performance [163].

By taking all these requirements into account, one may take the view of an epis-
temological naturalist [282]: clearly, inductive methods are not sufficient to prove
a hypothesis to be true — but maybe this degree of justification is simply unre-
alistic? While in principle not being able to identify the induction method that
provides the best hypotheses, it is still possible to asses the quality of induction
results by the aforementioned general criteria, and also by testing them in practice.
In other words, the core argumentation line of this thesis retreats to a position of
scientific pragmatism. The pragmatic principle finds it justified to accept a propo-
sition P about the world if and only if one of the following conditions holds [5, p.
91]:

• P is inferred directly from other known or justified beliefs.

• It is likely that accepting P is more productive with respect to explanations
and predictions than denying or ignoring P.



1.5 Structure 15

This definition is remarkable in that it is not related to the truthfulness of P, but
rather to its productivity when it comes to predictions. In fact, “[...] pragmatists
generally agree that the truth or justification of a belief is less a function of how
the belief originates than it is of whether the belief, however it originates, leads
to successful predictions”[5, p. 92]. Following the pragmatic principle, an in-
ductively derived algorithm selection mechanism will be preferred over another if
(and only if) its predictions are more accurate than those of the other. Likewise, an
inductive method to generate selection mechanisms will be preferred over another
if (and only if) its generated selection mechanisms are preferable to those of the
other.

Radical pragmatists dismiss the notion of truth as not meaningful at all. Non-
radical pragmatists do not deny the concept of truth, but maintain that although we
cannot proof any of our beliefs about the real world, some of them might actually
be true (at least partly), which explains scientific progress [5]. This thesis follows
the pragmatic principle in a non-radical manner: although there certainly is a true
algorithm selection mechanism that maximizes algorithm performance for all fu-
ture problems, it is merely approximated by generating selection mechanisms and
comparing them by their predictive power on some instances. The pragmatic prin-
ciple motivates an empirical evaluation of different mechanisms, even though their
theoretical comparison might be intractable — an approach that is also endorsed by
other researchers facing similar problems (e.g., see [172, p. 10]).

1.5 Structure

This thesis consists of three main parts. The first part introduces all relevant con-
cepts and previous work. It outlines relations to other important research questions
and surveys existing algorithm selection approaches for applicable solutions. Part
two contains the main contribution of this work: it shows how a system for au-
tomatic simulation algorithm selection can be built from the theoretical concepts
presented in the first part. The resulting methodological framework for simulation
algorithm selection has been implemented for the simulation system JAMES II,
as a proof of concept. Finally, the third part illustrates how the methods described
in part two can be applied to the examples from section 1.3, and investigates the
potential benefits of doing so.

Relevant terminology is written in italics when being introduced; it can be
looked up in the index (p. 376).2

2Besides terminology, italics are also used to emphasize a word, and to demarcate direct quotes.
���������	 
��� refers to software entities, e.g., class names.
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All exact science is dominated by the idea of approximation.

Bertrand Russell

The research domains that are concerned with forms of algorithm selection are
diverse and highly differentiated. A reason for this might be the fundamental im-
portance of the problem in many fields of computer science, another one the diver-
gence between theoretical research and practical implementations in the various
application areas: “Many algorithm selection, or parameter tuning, techniques,
are tailored to a specific algorithm, and often present similar interesting solutions
across different fields of research” [96, p. 297].

Lacking a coherent terminology, this diversity leads to some confusion and
unclarity, which hampers the transfer of algorithm selection solutions among the
various domains. As Smith-Miles concludes, “[...] many related attempts have
been made in other disciplines [...], introducing different terminology and over-
looking the similarity of approaches” [292, p. 1], although “all of these com-
munities would benefit from a greater awareness of the achievements in various
cross-disciplinary approaches to algorithm selection” [292, p. 21].

Therefore, this chapter starts out with the introduction of several fundamental
theoretical notions and concepts. The most relevant research areas are outlined, as
well as their specific perspectives on the problem. This leads to a catalog of prop-
erties to categorize algorithm selection approaches, and hence to reason about their
relative advantages and disadvantages in a specific context. Finally, applications
of algorithm selection techniques are surveyed and broadly categorized.

2.1 The Algorithm Selection Problem

The algorithm selection problem (ASP) has been formally defined by John Rice in
1976 [272]. In its most detailed form, it sheds light on some intricate aspects of the
overall problem and also allows to precisely specify some relevant sub-problems.
Its formulation, which will be detailed in the following, has been slightly modified
and extended to account for concepts from later chapters.

R. Ewald, Automatic Algorithm Selection for Complex Simulation Problems, 
DOI 10.1007/978-3-8348-8151-9_2, 
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2012
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Consider a problem space P containing all possible problems, i.e., input data,
on which a set of algorithms operates. The set of algorithms can be regarded as the
algorithm space A from which a good algorithm shall be selected. Each problem
x ∈ P has certain features, f ∈ F, which are retrieved from a problem x via a
feature extraction mapping F : P→ F. The extracted features of x ∈ P will also be
written as fx (∈ F). For simplicity, we can imagine each feature to be encoded as a
real number, so that F= Rm for m features. It is this feature space F on which the
actual selection mapping is defined later on, which shall select the best-performing
element from the algorithm space A.

Algorithm performance is expressed by a performance mapping p :A×P→Rn,
which maps an algorithm a ∈ A and a problem x ∈ P to an element of the perfor-
mance measure space Rn. Note that the performance measure space has n dimen-
sions, i.e., the performance of an algorithm is multi-faceted. This aspect is quite
important, as it accounts for the various metrics of an algorithm’s performance:
its speed, its memory consumption, its accuracy, and so on. Which algorithm is
better — a faster yet less precise one, or a slower yet more accurate one? The
definition of ’best’ depends on the context in which the algorithm shall be used,
in other words the criteria of its user. As Knuth nicely puts it when discussing
the selection of sorting algorithms, “[...] there is no best possible way to sort;
we must define precisely what is meant by ’best’, and there is no best possible
way to define ’best’ ” [181, p. 181]. User criteria can be expressed as a vector
w ∈ Rn of weights from the criteria space and are used to normalize the perfor-
mance p(a,x) ∈ Rn by a norm: ||p(a,x)|| = g(p(a,x),w) ∈ R≥0. If, for example,
the performance measure space has n = 2 dimensions, the first being speed and
the second being memory consumption, the user might express with a criterion
vector w = (1, 1

2 )
T ∈ R2 that speed is twice as important as memory-efficiency in

the specific situation.
Consequently, the selection mapping S : F×Rn → A considers the features fx

of a problem x ∈ P and the user criteria w ∈ Rn to select an algorithm a ∈ A. This
completes the overall structure of Rice’s formulation of the algorithm selection
problem, which is depicted in figure 2.1. Following Rice’s notations, one can now
formulate the algorithm selection problem as follows:1

Definition 2.1.1 (Algorithm Selection Problem (ASP))

Let there be a problem space P, a feature space F, an algorithm space A, a criteria space Rn,
a performance measure space Rn, a feature extraction mapping F : P→ F, a performance
mapping p : A×P→Rn, and a norm ||p(a,x)||= g(p(a,x),w) with algorithm a ∈A, prob-
lem x ∈ P, and user criterion w ∈ Rn. Determine a selection mapping S : F×Rn → A.

1This reflects Rice’s basic definition (definition A, [272, p. 68]) but extends it by user criteria and
feature extraction, which Rice only used in later definitions of ASP sub-problems.
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x ∈ P

Problem Space
f (x) ∈ F = Rm

Feature Space
F

Feature Ex-
traction

w ∈ Rn

Criteria Space

a ∈ A

Algorithm Space
S( f (x),w)

p ∈ Rn

Performance
Measure Space

p(a,x)

Algorithm Performance

‖p‖= g(p,w)

Figure 2.1: The algorithm selection problem as defined by Rice [272, p. 75].

Note that this problem definition does not specify the properties of the selection
mapping to be chosen. It merely gives the context of the problem, i.e., all available
structures, as well as the basic task, i.e., choosing a selection mapping. What kind
of selection mapping to be determined is specified by additional criteria. Further-
more, Rice compiled several related problems that arise in this context. The most
relevant will be discussed as ASP sub-problems in the following.

2.1.1 Important Sub-Problems

The most intuitive and general criterion for choosing a selection mapping S would
be to choose one that always performs best, so that given all elements from defini-
tion 2.1.1 it holds that

∀a ∈ A,x ∈ P,w ∈ Rn : ||p(S( fx,w),x)|| ≥ ||p(a,x)|| (2.1)

Is it realistic to search for an all-encompassing selection mapping? Usually, the
set of algorithms is already constrained, e.g., by pre-selection from the user. Rele-
vant real-world problems also often lie in a particular region, i.e., they are usually
not uniformly distributed over the whole problem space P. Due to the poten-
tially high-dimensional spaces of algorithms, criteria, and features, the search for
a selection mapping S that complies with equation 2.1 is almost hopeless without
reducing the selection mapping search space S, e.g., by predetermining a specific
structure for all mappings. For example, searching for the best selection mapping
with a given polynomial form restricts the search to the most appropriate coeffi-
cients for the prescribed function.

All these points lead to a reformulation of equation 2.1 in that it will be restricted
to subsets of problems (P0 ⊆ P), algorithms (A0 ⊆ A), and selection mappings
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(S0 ⊆ S). Indeed, Rice considered this to be “perhaps the most realistic situa-
tion” [272, p. 76]. Based on definition 2.1.1, the ASP can now be reformulated as
given in definition 2.1.2.

Definition 2.1.2 (Best Selection Mapping Problem (BSMP))

Given the elements from definition 2.1.1 as well as a sub-space of eligible algorithms, A0 ⊆
A, a sub-space of relevant problems, P0 ⊆ P, and a sub-space S0 ⊆ S of selector mappings
to choose from (all of them being defined as mappings F×Rn → A0). Choose a selection
mapping S∗ ∈ S0 so that

∀w ∈ Rn,S ∈ S0 : ∑
x∈P0

||p(S∗( fx,w),x)|| ≥ ∑
x∈P0

||p(S( fx,w),x)|| (2.2)

This problem will be called the best selection mapping problem (BSMP) in the
following. Solving it means to find a selection mapping that is best in the sense of
definition 2.1.2. The summation of performance over all problems in equation 2.2
relaxes equation 2.1: it is not necessary that the best selection mapping picks the
most suitable algorithm for all problems, rather it has to deliver best overall per-
formance.2

Additionally, it might also be necessary to select certain problem features that
facilitate algorithm selection. These features should allow to predict the perfor-
mance of the considered algorithms as close as possible, i.e., they should convey
most information on the algorithm performances. To express this, the set F of
feature extraction mappings F : P → F is introduced. Its elements, the feature
extraction mappings F ∈ F , can be used to segment the problem space P by an
equivalence relation =F :

x =F y ⇐⇒ F(x) = F(y) (2.3)

Let an equivalence class εF( f ) be defined for the relation =F , a feature extrac-
tion mapping F ∈ F , and features f ∈ F, i.e.,

εF( f ) = {x ∈ P|F(x) = f} (2.4)

The basic idea is now to search for a feature extraction mapping F that assigns
equivalent features to problems on which an algorithm (or a set of algorithms)
exhibits rather similar performance. If such a feature extraction mapping could be
identified, it helps to predict the algorithm performance by identifying all problem
features that influence it. From an information theory point of view, we look for a

2This formulation guarantees that such a selection mapping indeed exists in S0.
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mapping F that extracts as much information as possible from all problems, i.e.,
which reduces the ’noise’ of the performance mapping within each equivalence
class εF( f ). For now, the remaining noise is defined as the maximal difference dm

F
for a mapping F , an m-dimensional feature space F, and a set of algorithms A:

dm
F (A) = max

f∈F;a∈A;x,y∈εF ( f )
||p(a,x)− p(a,y)|| (2.5)

This allows to define the best features for algorithms problem (BFAP) as fol-
lows:
Definition 2.1.3 (Best Features for Algorithms Problem (BFAP))

Given the structures of definition 2.1.1, a subspace of eligible algorithms A0 ⊆ A, and an
m-dimensional feature space F=Rm. Choose a feature extraction mapping F∗ ∈F so that:

∀F ∈ F : dm
F∗(A0)≤ dm

F (A0)

The definition of dm
F in equation 2.5 is somewhat arbitrary. It minimizes the

maximum performance difference of the algorithm given different problems with
equal features — but minimizing the average difference would also be a reasonable
choice. The situation is the same for BSMP (def. 2.1.2): here, the overall perfor-
mance sum ∑x∈P0

||p(S( fx,w),x)|| is used to characterize the performance of the
selection mapping S. Another suitable metric would be, for example, to minimize
a mapping’s worst case performance, maxx∈P0 ||p(S( fx,w),x)− p(S∗( fx,w),x)||,
with S∗ being the best selection mapping.

Generally, such performance metrics can be defined by a norm [102, p. 70 et
sqq.]: just like the multi-faceted performance p(a,x) ∈ Rn is mapped to a single
real number by a norm g(p(a,x),w) = ||p(a,x)||, a norm can be used to map a
vector of performance differences di = ||p(S( fxi ,w),xi)− p(S∗( fxi ,w),xi)|| (for all
xi ∈ P0) to a single real number. This number then reflects the performance of
the selection mapping S, and can serve as the figure of merit to be minimized. A
common form for norms is the so-called Lp-norm [102, p. 71], where the di are
the elements of a vector d:

||d||p = (∑
i
|di|p)

1
p (2.6)

Three kinds of the Lp-norm are most commonly used in practice:

• L1-norm (or Manhattan norm): The performance differences are simply
summed up. For example, the standard deviation σ is related to the L1-
norm, as it is also calculated by summing up the differences.
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• L2-norm (or Euclidean norm): This norm represents the Euclidean distance
between a selection mapping and an optimal selection, which would be rep-
resented by a zero vector: the difference to the optimal performance is zero
for all problems. For example, the variance σ2 is related to the L2-norm in
that the differences between expected and observed values are also squared.

• L∞-norm (or Maximum-norm): The maximum norm maps a vector to its
maximal element. It can be regarded as a very conservative approach to
maximize a selection mapping’s performance, since it is only concerned
with the worst case, i.e., the maximal difference to the optimal performance.
For any vector x it holds that L1(x)≥ L2(x)≥ L∞(x) [102, p. 71].

Interestingly, the choice of the specific norm is usually not too important (see
discussion in [272, p. 73–75], which also extends the definition of dm

F to infinite
sets). Instead, Rice highlights that “[...] the crucial ingredients for success are
proper choices of the subclasses P0, A0, and S0” [272, p. 75]. The selection
of these three sets are therefore important sub-problems of the ASP. The choice
of P0 is usually motivated by the application context and one merely needs to
follow some rough guidelines that take into account the different aspects of the
ASP (as described in sec. 7.3.1). Likewise, A0 is usually predetermined by the set
of implemented algorithms in a given system. Hence, the choice of S0 remains,
and it is indeed one of the central challenges: “[...] the single most important
part of the solution of a selection problem is the appropriate choice of the form for
the selection mapping” [272, p. 115]. More light will be shed on this aspect in
section 2.1.3. Many of the ideas presented in [272] have been realized in so-called
problem solving environments (see sec. 2.7). The next sections further develop
some of the concepts that stem from this fundamental formulation of the ASP and
relate it to other fields.

2.1.2 Effectiveness and Efficiency

As will be seen later, even finding a reasonably good selection mapping for a spe-
cific BSMP (see def. 2.1.2) requires some efforts. This section introduces some
new concepts that quantify the performance gains of a selection mapping and
therefore allow to characterize situations in which algorithm selection pays off.
The concepts are based on the basic notions by Rice [272].
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At first, it could be asked if there are situations where it is not advisable to solve
the ASP at all? Clearly, this is the case when an algorithm a∗ ∈ A0 is known to be
dominant within the relevant sub-spaces P0 ⊆ P and A0 ⊆ A:

∀x ∈ P0,a ∈ A0,w ∈ Rn : ||p(a∗,x)|| ≥ ||p(a,x)|| (2.7)

In other words, an algorithm is dominant if and only if it outperforms (or equals)
any other algorithm in A0 with respect to any user criteria w ∈Rn, and this for any
problem in P0. The best selection mapping is easily defined for such situations:
S( f ∈ F,w ∈ Rn) = a∗. While discovering the dominance of a single algorithm
is usually discouraging for experimental research [163, p. 219], it completely
solves the problem of algorithm selection in the given context. Unfortunately,
many problem spaces are not dominated by a single (known) algorithm, let alone
for all user criteria. Some criteria may even contradict each other, e.g., accuracy
and speed.

Now assume that there is no dominating algorithm in A0. Is solving the best
selection mapping problem (def. 2.1.2) always beneficial? Not necessarily. This
depends on the context, in particular on the set S0 of selection mappings that is
considered. Let Sa′ : F×Rn →{a′} be a constant selection mapping with a′ ∈A0,
i.e., a selection mapping that always selects the same algorithm a′, regardless of
any problem features or user criteria. Imagine a BSMP with S0 = {Sa−} and a−
being the algorithm with the worst overall performance for given user criteria w ∈
F:

a− = argmin
a∈A0

∑
x∈P0

||p(a,x)|| (2.8)

Using the best selection mapping from S0, which is Sa− , would not be beneficial
at all. In fact, its overall performance for P0 is even worse3 than randomly selecting
algorithms from A0. To identify selection mappings that indeed outperform the
average performance of a random selection, the concept of average-effectiveness
is introduced. It is based on the notion of selection mapping performance that was
already used in equation 2.8 and definition 2.1.2:
Definition 2.1.4 (Overall and Average Performance)

The overall performance per f (S,P) of a selection mapping S on a problem set P ⊆ P is de-
fined on the structures provided by the BSMP (see def. 2.1.2), including a feature extraction
mapping F ∈ F and user criteria w ∈ Rn:

per f (S,P) = ∑
x∈P

||p(S(F(x),w),x)||

3Unless all algorithms exhibit the same overall performance.
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Figure 2.2: Average-effectiveness versus adaptive-effectiveness of a selection mapping. A
list of sample selection mappings is ordered by their overall performance, with S∗ being the
optimal mapping.

The average performance per f (S,P) of a selection mapping S on a problem set P ⊆ P is
defined as:

per f (S,P) =
per f (S,P)

|P|

Definition 2.1.5 (Average-Effectiveness)

A selection mapping S∗ is average-effective on a problem set P ⊆ P and an algorithm set
A ⊆ A if (and only if):

per f (S∗,P)> ∑a∈A per f (Sa,P)
|A| =

∑a∈A ∑x∈P ||p(a,x)||
|A| · |P|

Definition 2.1.5 basically ensures that an average-effective selection mapping
outperforms the average algorithm performance, i.e., the expected performance
when choosing algorithms randomly. Nevertheless, this still does not mean that
such mappings yield any benefits from exploiting the provided features. Con-
sider the following example, sketched in figure 2.2. Given A = {a1,a2} and
P= {x1, . . . ,x200}, with a1 outperforming a2 by a rather large margin when applied
to x1, . . . ,x100, say ||p(a1,xi)||= 10 versus ||p(a2,xi)||= 1 for i∈ [1,100]. Further-
more, let a2 perform only slightly better than a1 when applied to x101, . . . ,x200, say
||p(a1,xi)|| = 10 and ||p(a2,xi)|| = 11 for i ∈ [101,200]. Now assume that solv-
ing the BSMP led to a selection mapping S′ that chooses a1 for x1, . . . ,x70, and a2
otherwise. S′ is average-effective since (see def. 2.1.5):
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per f (S′,P) =
70 ·10+(30 ·1+100 ·11)

200
=

1830
200

= 9.15

per f (Sa1 ,P) =
200 ·10

200
=

2000
200

= 10

per f (Sa2 ,P) =
100 ·1+100 ·11

200
=

1200
200

= 6

and

per f (S′,P) = 9.15 >
per f (Sa1 ,P)+ per f (Sa2 ,P)

|A| =
10+6

2
= 8

However, the constant selection mapping Sa1 outperforms S′, as the overall per-
formance of a1 is superior to that of a2, so that the average performance of Sa1

for P exceeds that of S′: 10 > 9.15. This means that S′ is performing worse than
a constant selection mapping that does not adapt its decision by considering any
problem features. From this it follows that the performance of S′ does not justify
the prior efforts for feature extraction. To account for this aspect, the notion of
adaptive-effectiveness is introduced:

Definition 2.1.6 (Adaptive-Effectiveness)

Let SC(A) be the set of constant selection mappings for all algorithms in A ⊆ A, i.e.,
SC(A) = {Sa|a ∈ A}. A selection mapping S∗ is adaptive-effective on a problem set P ⊆ P

if (and only if):4

∀S ∈ SC : per f (S∗,P)> per f (S,P)

If a selection mapping is adaptive-effective, it outperforms any constant selec-
tion mapping in SC, which is only possible by adapting the algorithm choice over
the problem set P. For example, a selection mapping S′′ that selects a1 for some
more problems than S′, namely all xi ∈ P with i ∈ [1,90], exhibits better overall
performance than Sa1 and is hence adaptive-effective (cf. fig. 2.2).

All in all, the average-effectiveness of a selection mapping ensures that it out-
performs plain guessing, while adaptive-effectiveness means that there is no trivial
solution to the problem, i.e., a constant selection mapping, that works better on a
given problem set. Consequently, a comparison with a random selection mapping

4For simplicity, SC(A) is often written as SC; it is usually clear (from the context) to which algorithm
set A it refers.
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as well as the best constant selection mapping is useful to asses the effectiveness
of a BSMP solution. It is easy to show that all adaptive-effective selection map-
pings are also average-effective, but not vice versa (see previous example and proof
on p. 336).

The two levels of effectiveness can be used to test the benefits that stem from
algorithm selection in a particular context, but they do not give any idea about
the overall efficiency of a selection mapping. This requires to put the average
performance of a selection mapping into relation with the (hypothetical) maximum
performance that can be achieved on a predefined set of problems P ⊆ P:

Definition 2.1.7 (Selection Efficiency)

The efficiency e(S,P) of a selection mapping S on a problem set P ⊆ P is defined as:

e(S,P) =
per f (S,P)
per f ∗(P)

with per f ∗(P) being the maximum overall performance:

per f ∗(P) = ∑
x∈P

max
a∈A0

||p(a,x)||

Since || · || is a norm and by definition per f ∗(P) ≥ per f (S,P) for any S ∈ S, it
holds that e(S,P) ∈ [0,1]. The larger e(S,P), the better does the mapping S suit
the algorithm selection problem. This allows to express the potential savings of
solving a BSMP by calculating the maximal adaptation gain, based on the best
constant selection mapping S∗C:

Definition 2.1.8 (Maximal Adaptation Gain, Best Constant Selection Mapping)

The maximal adaptation gain for a given BSMP is defined as 1− e(S∗C,P), with S∗C being
the best constant selection mapping, i.e.,

S∗C = argmax
S∈SC

per f (S,P)

This gain quantifies the performance difference between the optimal selection
mapping and the best constant selection mapping. The larger the maximal adap-
tation gain, the larger the potential performance benefits of selecting a suitable
simulation algorithm by considering problem features. Similarly, definition 2.1.9
defines the maximal gain to be expected when using the best constant selection
mapping. It is the ratio of the best constant selection mapping’s performance and
the average performance of all algorithms (see definition 2.1.5):
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Definition 2.1.9 (Maximal Constant Gain)

The maximal constant gain for a given BSMP is defined as

|A0| · per f (S∗C,P)
∑a∈A0 per f (Sa,P)

where S∗C is again the best constant selection mapping (see def. 2.1.8).

The larger the maximal constant gain, the more performance is gained by iden-
tifying the best-suited algorithm and simply selecting it for all problems. Maximal
adaptation gain and maximal constant gain therefore help characterizing the bene-
fits of automated algorithm selection under the given circumstances.

2.1.3 Further ASP Properties

Hardness

Guo [116, p. 42–45] illustrates the hardness of the ASP by translating it to a
language problem. Given two candidate algorithms a1,a2 ∈A, described as Turing
machines, and a description X of a problem instance x ∈ P, it is asked if one can
construct a Turing machine that decides which of the two algorithms should be
selected for solving x. Depending on the user criteria, this could, for example, be
the algorithm that returns the correct result with the smallest number of steps. To
this purpose, Guo defines a language of the algorithm selection problem as

AT M = {(M,X ,S,T )|M is a T M and accepts X in T steps, returning S} (2.9)

It can be easily shown that AT M is recursively enumerable: the Turing machine
to decide the language of the algorithm selection problem just emulates the given
Turing machine M on instance X and checks whether it returned the solution S
after T steps. Guo argues that the language AT M has a non-trivial property, which
corresponds to a non-trivial property of partially computable functions. Here, non-
trivial means that at least one partially computable function has this property, but
not all of them do. Guo concludes the proof by applying Rice’s theorem5, which
states that any non-trivial property of a partially computable function is undecid-
able. Presuming that the Church-Turing-Thesis holds, this would mean that there
is no algorithm that can tell for two given algorithms and a desired solution which
of the algorithms will perform better.

5Which is named after Henry Gordon Rice, who conjectured it, not to be confused with John R. Rice,
who formulated the ASP. A proof can be found in [54, p. 96].
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However, the ramifications of Guo’s argumentation are limited in case of simu-
lation algorithms, as these usually should halt on any input model. It is quite easy
to simulate the operation of two Turing Machines for a finite number of n steps by
dovetailing (see [54, p. 70–85]), i.e., their alternating execution. The upper limit of
n required computation steps can be derived by employing complexity theory (see
sec. 2.2). This allows a comparison of simulation algorithms in terms of speed and
solution quality in theory — but in practice, this technique is hardly effective: de-
ciding which algorithm is better for a given input by simply trying out all of them
will typically result in a large overhead; and since the solution is obtained during
the process, there is no need to apply the selected best-performing algorithm to the
same input again (unless stochasticity is involved, see sec. 1.3.1).

Relation to Optimization

The principal ASP sub-problem, the BSMP, requires searching for a best element
within a given space of selection mappings S0 (see def. 2.1.2, p. 22). It can there-
fore be translated into an optimization problem, e.g., in case of a finite6 set of user
criteria W ⊂ Rn and a finite set of problems P ⊆ P: Given the entities from def-
inition 2.1.2 and a feature extraction mapping F ∈ F , find a selection mapping
S ∈ S0 for which the following objective function f : S→ R≥0 is maximal:

f (S) = ∑
x∈P

∑
w∈W

||p(S(F(x),w),x)|| (2.10)

Such a reformulation allows to apply the broad spectrum of techniques that have
been developed in the context of optimization theory. Especially algorithms for
black-box optimization, also called meta-heuristics, can be of use in this context,
as they do not rely on specific properties of the objective function f , such as differ-
entiability. This is important because the definition of f in equation 2.10 relies on
the performance mapping p. Its analytical form is generally unknown (see sec. 2.2,
p. 33).

Relation to Approximation Theory

Approximation theory is concerned with the approximation of potentially unknown
functions by alternative — and usually simpler — functions. An early formulation
of the problem was presented by Chebyshev [296, p. viii]: Given a real-valued

6These assumptions merely serve simplicity, as they avoid the use of integrals within the objective
function and reflect a more realistic setup.
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function F(x, p1, . . . , pn), determine the parameters �p = (p1, . . . , pn)
T ∈ Rn so that

the maximum error within an interval [a,b] is minimized:

argmin
�p∈Rn

max
x∈[a,b]

|F(x, p1, . . . , pn)| (2.11)

Here, the function to be approximated is f (x) = 0, so that the maximum error
can be regarded as the absolute maximum value of F for a given x and parameters
�p. F represents a prescribed approximation form, e.g., F(x, p1, p2) = p1 · x+ p2
lets all approximations be straight lines in the two-dimensional Cartesian coordi-
nate system. The parameters, or coefficients, p1 and p2 are the values that shall
be determined. The selection of the coefficients depends on the available infor-
mation on the function to be approximated, and can in turn be formulated as an
optimization problem. The mathematical theory characterizes various classes of
approximation forms, e.g., in terms of approximation error. For the ASP, findings
from approximation theory can be used to asses the choice of approximation form
for the truly best selection mapping, i.e., which S0 ⊆ S is best for a given problem.
As explained in section 2.1.1, the proper choice of S0 is an important sub-problem
of the ASP. Rice elaborated on several aspects of approximation theory that might
be relevant in the ASP context [272, p. 91 et sqq.], among them:

• Norms and approximation forms

• Convergence and robustness

• Existence and uniqueness

The choice of a norm || · || may have a considerable effect on solving the BSMP,
as it is used in the definition of what ’best’ is. Nevertheless, Rice concludes from
an approximation theoretical point of view that “[...] the choice of norm is nor-
mally a secondary effect compared to the choice of approximation form” [272,
p. 92]. This finding allows to simplify the discussion by defining the norm
g(p(a,x),w), with algorithm a ∈ A, problem x ∈ P, and user criterion w ∈ Rn,
as a weighted L1-norm (see eq. 2.6, p. 23) in the following:

||p(a,x)||= g(y,w) =
n

∑
i=1

wi · yi (2.12)

The question of suitable approximation forms is much more complicated. It
will be reconsidered in section 2.3. Convergence, complexity, and robustness are
properties that can be evaluated for any kind of approximation form. In the ASP
context, convergence refers to a sequence of approximation forms to which the
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selection mapping sub-spaces S1,S2, . . .⊆ S correspond. The question is whether
this sequence will eventually lead to an approximation form for which the corre-
sponding subset of S contains the best selection mapping — and if so, how fast this
can be expected to happen. For example, such a sequence could be the set of poly-
nomial functions with degree n = 1,2, . . . and therefore S1 ⊂ S2 ⊂ . . . ⊂ S. The
robustness of a selection mapping is a statistical concept that quantifies how much
its performance deteriorates when it is applied to unusual selection problems, or
when it has been constructed by considering those [121]. Rice illustrates this by
comparing arithmetic mean and median, the latter being much more robust than
the former when outliers are included [272, p. 100].

Finally, the existence and uniqueness of a best selection mapping can be inves-
tigated. The uniqueness is not too relevant from a practical point of view, but the
non-existence of effective mappings within a certain sub-space S0 (in the sense
of definitions 2.1.5 and 2.1.6) may lead to deeper insights into the nature of the
selection problem at hand.

2.1.4 ASP in a Simulation Context

To make use of the theoretical framework described in this section, it is necessary
to map it onto the actual problem to be solved here, which is the selection of
algorithms for simulation. Hence, A is a set of simulation algorithms that take a
model as input and compute the model’s behavior. The problem space P consists
of all possible models that can be simulated with the algorithms from A— but
this is not sufficient: as the algorithms can be executed on various computational
resources that may strongly influence their performance, resource information is
also relevant for algorithm selection and is therefore part of the problem space as
well.

Various performance aspects can serve as user criteria. They mainly fall into
two categories: On the one hand, there are measurements of resource consumption,
e.g., of CPU time, network bandwidth, or memory. These shall be minimized. On
the other hand, there are measurements of solution quality, e.g., accuracy. These
shall be maximized. Usually, these two kinds of performance aspects are weighed
against each other by the user: either there is a certain degree of solution quality to
be reached by employing as little resources as possible, or there is a certain amount
of resources that shall be used to calculate a solution that is as good as possible.

Figure 2.3 presents a visual summary. Concrete examples for all the afore-
mentioned entities will be given in section 5.1.1. The following approaches for
algorithm selection will be related to the theoretical framework of the ASP, which
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Figure 2.3: ASP entities and exemplary correspondents from modeling and simulation.

allows to compare their virtues and shortcomings on a rather abstract yet precise
level.

2.2 Analytical Algorithm Selection

A fundamental approach to assess problem hardness and thereby analytically com-
pare the algorithms to solve them is provided by (computational) complexity the-
ory. Here, the algorithms a ∈ A are compared on a conceptual level, i.e., they are
represented by Turing Machines. Depending on the size n of an input problem,
complexity theory aims at calculating how much steps and how much memory a
specific Turing Machine requires to solve a problem. This is usually expressed
asymptotically for different cases by the Landau Notation, which uses the follow-
ing sets of functions [182]:

• O( f (n)) = {g(n)|∃c ∈ R,n0 ∈ N : ∀n ≥ n0 : |g(n)| ≤ c · f (n)}

• Ω( f (n)) = {g(n)|∃c ∈ R,n0 ∈ N : ∀n ≥ n0 : g(n)≥ c · f (n)}

• Θ( f (n)) = {g(n)|∃c,c′ ∈ R,n0 ∈ N : ∀n ≥ n0 : c · f (n)≤ g(n)≤ c′ · f (n)}

These sets reflect the worst, best, and average case performance, respectively.
For example, by saying that the memory consumption of an algorithm is in O(n2),
it means that it may grow quadratically with problem size. It does not mean that
the memory consumption is always quadratic to the problem size — the worst case
notation only gives an upper bound. If the memory consumption has the same
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upper and lower bound, e.g., it is in O(n2) and in Ω(n2), this can be expressed by
the average case notation, Θ(n2).

This approach has several very important advantages. It allows to abstract away
implementation details; these are subsumed by the constants c,c′ ∈ R. All algo-
rithms for one kind of problem are comparable in the most general manner. Using
this approach for algorithm selection would mean to choose the algorithm with
smallest best-, worst-, or average-case f (n) for a given input size n. Whether to
consider memory or time consumption would depend on the user criteria. Addi-
tionally, one might derive some estimates of the constants c and c′ for each algo-
rithm. This would enable the selection mechanism to use the size nx of a problem
x ∈ P as a single feature (i.e., F = N ⊂ R1) for selecting the most suitable algo-
rithm.

The example illustrates how the greatest strengths of complexity theory —
abstractness and generality — also lead to several problems in the ASP context:
Firstly, two algorithms may have similar asymptotic behavior but still perform
very different, depending on the problem at hand and their specific implementa-
tion [146]. This holds for sorting algorithms [181, p. 379–382] and, more impor-
tant for discrete-event simulation, also for event queues [135]. Another example is
matrix multiplication, where the asymptotically best-performing algorithm is not
in O(n3), but in O(n2.8): while this is much better in theory, the implementation
of the theoretically superior algorithm is non-trivial and merely outperforms the
classical algorithm for rather large n [173]. It depends on the implementation and
the hardware how large the n has to be.

This points at the second problem of using complexity theory for algorithm
selection: it is very important to consider the environment the selected algo-
rithm shall be executed in. Some hardware or operating system scales bet-
ter with certain memory-intensive operations or multi-threading than others,
not to mention all specialized hardware that might come into play, e.g., as
in [173, 209, 213, 253, 287]. Nowadays, classical complexity theory even fails to
predict the fastest algorithm for well-researched problems, such as sorting [191].
This is, for example, because today’s hardware architectures incorporate a multi-
layered memory hierarchy, which is managed by elaborate caching mechanisms.
Such hierarchies typically consist of registers, several cache levels, random access
memory, and swap space on the hard disk. The time required by each of these
components for read/write access varies by several orders of magnitude. There-
fore, algorithms that avoid cache misses, i.e., the situation when a cache does not
contain the required data any more and a lower (thus, slower) level of the memory
hierarchy has to be queried, are preferable over those that deliver best performance
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in theory [191]. Caching is itself a hard problem for which various heuristics might
be applied, as discussed in [255].

A third problem with using complexity theory for algorithm selection is its in-
ability to consider more problem features, and not just the feature extraction map-
ping F(x) = |x| that yields the input size. As Fellows points out, “[...] real inputs
are not random, but rather have lots of hidden structure, that may not have a famil-
iar name, even if you knew what it was” [78, p. 298]. It is this hidden structure that
gets (at least partly) unveiled by more suitable feature extraction mappings from
F in the ASP (see def. 2.1.3), but is generally not accounted for in complexity
theory. In [117], this problem is described as moving from problem complexity to
problem instance complexity.

Finally, complexity theory is a challenging discipline, i.e., it may require con-
siderable effort to prove any bounds on time or memory consumption. For exam-
ple, problems occur when analyzing the performance of self-organizing sequential
search algorithms, so that McGeoch concludes: “ [...] any single analytical model
will give an incomplete picture of an algorithm’s performance” [227, p. 199].
The analytical efforts for algorithm comparison cannot be automated, and devel-
opers of new simulation algorithms do not necessarily have a strong background
in complexity theory.

However, it has to be said that theoretical computer scientists are quite aware
of the shortcomings that hamper the wide application of classical complexity the-
ory in practice [325], and therefore complement their work more and more with
empirical studies [163, 235]. Such studies on empirical hardness (e.g., [205]) are
promising because of the so-called phase transitions [37] that some problem do-
mains exhibit (see sec. 2.7, p. 86).

Furthermore, the model of the Turing Machine can be extended to include some
of the aspects that the classical theory abstracts away. Abstract machine models
have been proposed that resemble modern computers in that they have RAM, are
networked with other machines to exchange messages, and are interacting with a
user [315]. Other approaches even extend the original definitions toward quan-
tum computers [58] or biologically inspired computing [266]. Besides worst and
average case analysis, Guo mentions the analysis of algorithm performance on cer-
tain sub-classes P0 ⊂ P [116, p. 20]. Rice hints at some problems regarding the
characterization of selection mappings that could be investigated by complexity
theory [272, p. 95]. Complexity theory can also be enhanced by a more sophisti-
cated consideration of problem features. This is done in the field of parameterized
complexity theory, where a parameter k ∈ N is given in addition to the problem
size n, i.e., F = N2. This allows, for example, to specify more precise worst case
bounds for some well-known theoretical problems [78].
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Still, it seems to be clear that complexity theory is not suitable for automatically
solving any algorithm selection problem in practice. Its fundamental contribution
to the understanding of problem hardness and the limits of algorithm performance
are nevertheless very valuable, and allow developers to select the most promising
algorithms for implementation. In this sense, complexity theory forms the implicit
basis of all automated algorithm selection methods, as it is often used for manual
algorithm pre-selection.

2.3 Algorithm Selection as Learning

Complexity theory bases its analysis on the abstract definition of the algorithms
in A. Another possibility is to restrict the analysis on a finite set of empirical
performance data

( fx1 ,a1, p1), . . . ,( fxi ,a j, pk), . . . ,( fxl ,am, pn)

with fxi ∈ Rm being the extracted features of a problem xi ∈ P, and pk ∈ Rn

being the observed performance of algorithm a j ∈ A when applied to problem xi.
These tuples will be called performance tuples:

Definition 2.3.1 (Performance Tuple, Performance Tuple Set)

A tuple φ = ( f ,a,p) ∈ F×A×Rn is called a performance tuple (for a problem x ∈ P,
with F(x) = f ). Its elements may be denoted as f φ , aφ , and pφ , respectively. A set Φ =

{φ1, . . . ,φn} is called performance tuple set.

The empirical data contained in a performance tuple set Φ allows to investigate
several important aspects of the ASP, e.g., the magnitude of noise caused by a
poor feature extraction mapping or a poor experimental setup. It can be regarded
as an empirical estimation of dm

F (see eq. 2.5, p. 23), this time on the grounds of a
performance tuple set Φ:

max
φ1,φ2∈Φ∧( f φ1 ,aφ1 )=( f φ2 ,aφ2 )

||pφ1 − pφ2 ||

Moreover, approximation theory can be applied to the given data in Φ: Is it
possible to construct a good approximation function F(x, p1, . . . , pn) �→ A (see
eq. 2.11, p. 31)? How large will be the error, i.e., the deviation from the best
possible algorithm selection? How to find the best parameters pi, and which ap-
proximation forms are suitable?

Approximation theory strives for general answers to these questions and is of-
ten focused on certain classes of functions — but it can also be regarded as the
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foundation of two more practical disciplines [49]: statistical learning [122] and
machine learning [333]. Statistical learning, also referred to as learning theory,
forms the theoretical base of machine learning. Machine learning also covers the
computational aspects of learning, i.e., algorithms that allow an efficient genera-
tion and evaluation of the approximation forms motivated by statistical learning
theory. Other practical aspects, such as the preprocessing of data, are also part of
machine learning methodology [333, p. 247 et sqq.] but typically not considered
by learning theory. In conjunction, both fields offer a wide range of sound prac-
tical methods to generate, parameterize, and evaluate approximation functions for
data observed in the real world. For the ASP, such data could have the form of
performance tuple sets.

Learning theory allows to find a suitable approximation function for the per-
formance of a, i.e., a function that predicts the algorithm’s performance for new
problems that exhibit similar features. Having such performance approximation
functions p̂er f a : F → Rn for all algorithms in A0 allows to define a selection
mapping

S( f ,w) = argmax
a∈A0

|| p̂er f a( f )|| (2.13)

The search for such a selection mapping can be regarded as an approximation
problem, similar to that described in equation 2.11 (p. 31). We search for some
parameters �p ∈ Rk, with which S can be adjusted so that it exhibits a minimal
maximum error when compared to the maximal performance (see def. 2.1.7, p. 28):

argmin
�p∈Rk

max
x∈P

||per f ∗({x})− p(S(F(x),w,�p),x)|| (2.14)

Equation 2.14 basically gives an alternative formulation of the best selection
mapping problem from definition 2.1.2 (p. 22)7, whereas equation 2.13 suggests
a possible form for S, i.e., to construct it from individual performance approxi-
mation functions p̂er f a for all a ∈ A0. If this form is chosen, the approximation
problem from equation 2.14 is not concerned with the specific parameters of S
anymore, but with the parameters �p = (�pT

1 , . . . ,�p
T
k )

T , with k = |A0| and �pi ∈ Rki .
The ki-dimensional parameters �pi are used to parameterize the corresponding per-
formance approximation function for algorithm ai, i.e., p̂er f ai

: F×Rki → Rn:

∀ai ∈ A0 : argmin
�pi∈Rki

max
x∈P

||p(ai,x)− p̂er f ai
(F(x),�pi)|| (2.15)

7Instead of maximizing the overall performance (def. 2.1.2, p. 22), equation 2.14 minimizes the max-
imal error — see discussion of norms in section 2.1.1 (p. 23).
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The approximation problems defined in equations 2.14 and 2.15 are fundamen-
tally different from a learning theory perspective: the approximation function S
in equation 2.14 has to choose an element from A0, a set that can be assumed
to be finite in practice, whereas the performance approximation functions p̂er f ai
from 2.15 have a range of Rn. In learning theory, the approximation of a function
with a finite range is called classification, while regression denotes the approxima-
tion of functions with a continuous range. In both cases, the most important step
is to actually relate the problem features fxi to algorithm performance — either
by predicting the performance of each algorithm and choosing the one with best
predicted performance (regression, see eq. 2.15, p. 37), or by classifying which
algorithm will be the best for the problem at hand (eq. 2.14).

From a human perspective, the generation of good approximation functions by
a program would appear to a user as if the program would be learning, since it
finds the approximation functions by considering the empirically generated per-
formance tuple set. The performance tuple set can be regarded as past experience
in executing the algorithms on certain problems. This is why the theory of (statisti-
cal) learning is so intimately connected to approximation theory [49], and therefore
provides a multitude of techniques that can be exploited to solve the ASP.

2.3.1 Error Sources, Error Types, and the Bias-Variance

Trade-Off

A central aspect of learning theory is to estimate and analyze the error of using a
learned, i.e., approximated, function S instead of the best selection mapping S∗. As
already discussed for definition 2.1.3 and dm

F (eq. 2.5, p. 23), various reasonable
measures can be used to assess the performance of a selection mapping. In learning
theory, such a typical loss function l is the squared error loss, which can be defined
for F(x) and S as follows:

l(y,(x,w)) = ||(y− p(S(F(x),w),x))||2

where y = per f ∗({x}) is the optimal performance (see def. 2.1.7, p. 28) and
the tuple (x,w) ∈ P×Rm contains the input for the selection mapping S, i.e., the
problem x ∈ P for which the algorithm shall be selected and some user criterion
w∈Rm. Based on such a loss function, statistical learning theory allows to analyze
the expected prediction error (EPE), i.e., the overall error to be expected when
applying S to all problems in P, as a function of S (see discussion in [122, p. 18–
22]). If the expected prediction error for any given selection mapping S can be
calculated, this would make the search for a good selection mapping considerably
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easier, since its future performance could be estimated. Unfortunately, such an
error analysis is non-trivial and hampered by several aspects.

Firstly, the set S of all possible selection mappings is limited to a subset
S0 ⊂ S in practice, similar to the definition of the best selection mapping prob-
lem (def. 2.1.2, p. 22). This is usually done implicitly by defining the structure of
S, for which the best parameters are then searched (e.g., eq. 2.14, p. 37). In learn-
ing, S0 is often referred to as the hypothesis space and the approximation form
(see sec. 2.1.3, p. 30) is called a model. Following this nomenclature, the approxi-
mation form f (x) = α ·x+β would be a model of all linear functions, with α and
β being its parameters. To avoid confusion with simulation models, such models
will explicitly called approximation models in the following. Each S ∈ S0 can be
regarded as a hypothesis with respect to the suitability of the available algorithms
for given features f ∈ F and user criteria w ∈Rm. The restriction of the hypothesis
space to S0 introduces the so-called approximation error, or bias, since the overall
best selection mapping S∗ is not necessarily in S0. In other words, the bias stems
from the selection of an approximation form.

Secondly, the performance tuple set Φ is finite and does not contain data on all
elements of P×A. This introduces the sample error, or variance, which causes the
choice of sub-optimal parameters for the selection mapping S, since they are cho-
sen to approximate the sample data only. This error type reflects the fundamental
problem of inductive knowledge, as discussed in section 1.4.

Finally, the performance of an algorithm for a problem with given features f is
usually not deterministic. It has to be regarded as a random variable that under-
lies an unknown probability distribution. Hence, there is an irreducible error that
cannot be avoided, even if S∗ is used. The stochasticity of algorithm performance
measurements is caused by three error sources:

• Variation on lower abstraction levels: The algorithms to be tested are work-
ing on top of several abstraction levels of hard- and software. They are
executed within a specific runtime environment, which in turn runs on a spe-
cific operating system. Eventually, all instructions of the algorithms have to
be processed by the hardware, which again exhibits several abstraction lev-
els with complex interactions, e.g., between the CPU and its caches [191].
All these influences could be explicitly resolved in theory, but in practice
it is much easier to regard the effects that let execution time vary for the
same sequence of instructions as random [123]. Due to the central limit
theorem [277, p. 70–71], this noise can be approximated by a normal distri-
bution. All performance measurements regarding the consumption of com-



40 2 Algorithm Selection

putational resources, e.g., CPU time, memory, or network bandwidth, are
susceptible to this kind of error.

• Variation in P: As motivated for the BFAP sub-problem (def. 2.1.3, p. 23), it
is important to select suitable problem features for extraction. The maximal
difference of two algorithm performance measurements for problems with
identical features f should be minimal, which is reflected in the definition of
dm

F (A0) in equation 2.5. If dm
F (A0)> 0, there are still some problem aspects

that are not expressed by any feature, although they influence algorithm per-
formance. The variation of algorithm performance due to these problem
aspects can be treated as additional noise with an unknown probability dis-
tribution [114]. All kinds of performance measurements are influenced by
this source of stochasticity, which highlights the importance of selecting the
most suitable features for problem discrimination.

• Problem-inherent variation: if simulation models contain stochastic ele-
ments, their execution may lead to different trajectories. The performance
measurements of the algorithm simulating any of these trajectories may be
strongly influenced by the properties of the specific trajectory. For example,
consider the model of a biochemical system that evolves with a probabil-
ity of 0.9 to an oscillating system, or else it remains in equilibrium. An
algorithm that performs well on oscillating models would succeed in 90%
of the simulation replications, but its performance could be much worse for
the other 10% of possible trajectories. This issue pertains all performance
measurements of stochastic simulations.

Not even the best selection mapping can overcome these three sources of algo-
rithm performance variation. To overcome the first cause of variation, it would
require to consider the whole state of all hard- and software that is involved, which
is unrealistic. The second and the third causes cannot be distinguished by the
procedure for learning a selection mapping: since problems are reduced to their
features, it is obscured whether performance varies per problem or per class of
problems with identical features.

Note that the stochastic noise introduced by the three aforementioned sources of
variation is only irreducible from a learning perspective. To reduce it in practice,
it might be necessary to minimize the influence of uncontrolled variables on per-
formance measurements while experimenting (e.g., by locking out other users or
shutting down background jobs like virus scanners), to identify new problem fea-
tures, or to reduce the randomness of the model behavior (see sec. 3.2.1, p. 101).
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The overall expected prediction error EPE consists of the three kinds of error
discussed above — bias, variance, and the irreducible error. Formally, the expected
prediction error EPE(x) for a selection mapping S, a problem x ∈ P and user cri-
teria w ∈ Rm can be written as [122, p. 197]:

EPE(x) = Bias2(S(x,w))+Var(S(x,w))+σε (2.16)

where the mathematical expressions for Bias and Var depend on the form of
S [122, p. 196 et sqq.]. Since σε is irreducible, the only way of reducing the
EPE is to reduce the error due to bias and variance. Unfortunately, it turns out
that there is a trade-off between both error types, called the bias-variance trade-
off. Reducing the error from predefining the model structure, i.e., the bias, usually
makes a learning method more susceptible to errors in the sample, i.e., it increases
its variance: if the hypothesis space is enlarged, it is likely that a hypothesis can
be found that better fits the sample data. Hence, a bias reduction can be regarded
as allowing a prediction function to fit the sample data better and better. This
might lead to overfitting, when the function is geared so much to the sample data
that prediction suffers because it wrongly relies on irrelevant aspects. Here, the
sample variance dominates the error due to bias. On the other hand, restricting the
hypothesis space too much will lead to functions that cannot be fitted well to the
sample data, and therefore fail to make good predictions because of a too simplistic
structure that is not able to capture the essential associations between input and
predicted output. This phenomenon is known as underfitting, and applies in cases
where the bias dominates the variance.

Two simple examples for the different bias and variance characteristics of learn-
ing schemes are depicted in figure 2.4. In both cases (upper and lower row), a
value shall be predicted by considering a one-dimensional input. In the first row
(case A and B), the input and the values exhibit a relationship that is almost linear.
With linear regression, one now chooses the coefficients α and β for the function
f (x) = α · x+ β so that the error on the sample data (black dots) is minimized,
thereby constructing an approximation function as shown in case A. Since linear
regression has a low variance, using other data as sample data would have resulted
in very similar choices of α and β , i.e., very similar functions. The one-nearest
neighbor (1-NN) approach basically memorizes all points from the sample data,
and then predicts the value of a new input by looking up the value from the sample
data with the most similar attributes, i.e., its single closest neighbor in the input
space8. In the first example, the predictions of the one-nearest-neighbor approach

8In practice, nearest-neighbor approaches usually take more than just one neighbor into account. This
is just a special case of the so-called k-nearest-neighbor methods (k-NN).
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Figure 2.4: Prediction of linear regression (case A and C) and the one-nearest-neighbor
approach (case B and D), compared on two data sets (cases A/B and C/D). Black dots de-
note sampled elements from which the prediction functions would have been constructed,
whereas white dots show additional points of the underlying data distributions. The predic-
tions of the two methods are sketched by dotted lines.

(case B, dotted lines) are much worse than that of linear regression (A). Note that
the prediction quality of 1-NN could be strongly improved by adding more points
to the sample data — in contrast to linear regression, where these additions would
not have such a strong impact on the coefficients. This illustrates the higher vari-
ance of 1-NN when compared to linear regression, i.e., its prediction quality is
more dependent on the sample data. In the second example, the strong bias of lin-
ear regression has a negative impact on its prediction quality; a linear relationship
between input and prediction is now presumed wrongly (case C). Here, the pre-
dictions of 1-NN are better (case D), since it has a low bias and can thus be fitted
to data of various shapes. Note, however, that the high variance of 1-NN still may
lead to bad predictions, e.g., when only relying on the three sample points in the
very middle of the parabola.

To minimize the overall expected prediction error (EPE), it is necessary to find
a good balance between bias and variance. This is highly problem-specific and
also depends on the method for generating the selection mapping S. Moreover, it
requires additional techniques for estimating the expected prediction error — just
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Figure 2.5: An illustration of the bias-variance trade-off, inspired by [122, p. 194].

considering the resubstitution error, i.e., the error of the prediction function when
confronted with the sample data that were used to construct it in the first place,
is much too optimistic (e.g., see [122, p. 200 et sqq.] or [333, p. 121]). By
steadily increasing the complexity of the approximation form, i.e., enlarging the
hypothesis space, one will eventually find a hypothesis that just memorizes the
value to be predicted for each sample data. Its resubstitution error therefore equals
the irreducible error σε . Clearly, such a prediction function would perform very
badly on any new data — so the key idea for EPE estimation is to divide the sample
data into test and training data sets, to fit the prediction function to the training data,
and to then observe the error of the prediction function on the formerly unseen
test data9. Such an EPE estimate would not be overly optimistic, as it is now
evaluated how the prediction function reacts to ’new’ data. Figure 2.5 illustrates
why a training sample should not be used for estimating the EPE, and how the bias-
variance trade-off makes finding a good approximation form essentially a search
problem.

2.3.2 Reinforcement Learning

The learning problem discussed so far relies on abundant sample data, e.g., in
form of performance tuples (see def. 2.3.1, p. 36), which is used to find an ap-
proximation function. This kind of learning could be regarded as “learning with a
teacher” [172, p. 6], as the prediction function is only confronted with problems

9The unseen data can be further split into a test set and a validation set. The latter is used to finally
validate the performance of the prediction function that performed best on the test set [122, p. 196].
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for which the outcome is already known. This way of learning is therefore known
as supervised learning. However, there are many natural learning processes that do
not work this way. Instead of predicting function values and comparing the predic-
tion with the actual outcomes provided by a supervisor, animals and humans often
learn by trial-and-error: they choose to perform some action and receive some kind
of feedback, or reward, that reflects the appropriateness of their choice. Positive
rewards reinforce an agent, i.e., an entity that is acting in an environment, in its
choice of action, whereas negative rewards bear the incentive to choose differently
next time. The goal of the agent is to maximize its overall reward.

This form of unsupervised learning is called reinforcement learning [279, p.
763 et sqq.] and can be regarded as “learning with a critic” [172, p. 6]. Instead
of using some algorithm to find the best-fitting approximation form parameters for
some sample data, an agent uses reinforcement learning to predict which action to
take, given the perceived state of its environment. The accuracy of this prediction
cannot be observed directly, only by considering the returned reward. Hence, re-
inforcement learning basically classifies the states of the given environment with
respect to the action that is currently most beneficial in terms of overall reward,
without necessarily knowing anything about the given environment from the on-
set.

Reinforcement learning is inherently incremental in that it discovers step by step
which rewards the actions yield in which situation. Consequently, it is particularly
suitable for environments that are prone to stochastic effects. Even if this is not the
case, many other difficult situations, e.g., faulty sensors to perceive the environ-
ment or faulty effectors to conduct actions, can be effectively modeled by assum-
ing that the environment behaves randomly to some extent (see discussion in [172,
p. 17–22]). Stochasticity requires the agent to find a good balance between the
exploration of its environment, e.g., by trying out new actions to take, and the ex-
ploitation of the knowledge that was already acquired by former trials. If too much
sub-optimal actions are wasted on re-assuring that they are indeed sub-optimal in
a given situation, i.e., the agent was not just ’unlucky’ in receiving a low reward
for choosing them, the overall reward of the agent will deteriorate [96, 171]. Sim-
ilarly, overly exploitative strategies will not yield optimal reward, as they may be
ignorant of better actions that have not been explored thoroughly. In principle, this
well-known exploration vs. exploitation trade-off is about balancing the optimistic
view that a better-performing action can be found against the pessimistic view that
no such better action exists. A compromise between both extremes is strongly
problem-dependent and should also change with time, as the agent’s knowledge of
its environment increases.
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Markov Decision Processes

The underlying theory of reinforcement learning is based on Markov decision pro-
cesses (MDPs), which in this context are usually restricted to be finite [298].10 A
finite Markov process is a stochastic process with a state space Z = {z1, . . . ,zn}
for which the Markov property holds, i.e., it is memoryless in that the transition
probabilities to future states only depend on the current state z ∈ Z. A Markov
decision process extends this concept by a finite set of actions C = {c1, . . . ,cm}.
Before each state transition, it now has to be decided which action from C shall
be carried out. The selected action shall influence the process in some desirable
manner, i.e., steer it towards desirable states. The desirability of a state zi ∈ Z is
expressed by associating it with a certain reward, which can be defined as a func-
tion of the states [279, p. 615] or as a reward distribution, so that the reward of
deciding for action c ∈ C in state z ∈ Z and thereby reaching state z′ ∈ Z can be
expressed as an expected value [298, p. 66]:

Rc
z,z′ = E{rt+1|zt = z∧ zt+1 = z′ ∧ ct = c}

where rt+1 denotes the reward received after the (t + 1)-th state transition and
ct is the action chosen before. Likewise, zt and zt+1 are the states after the t-th
and (t + 1)-th state transitions. To completely determine the reward structure of
the MDP, the actual reward distributions Rc

z,z′ (with Rc
z,z′ as their expected value)

have to be defined for all c ∈ C and z,z′ ∈ Z. Additionally, the state transition
probabilities Pc

z,z′ have to be defined for all combinations of c ∈ C and z,z′ ∈
Z [298, p. 66]:

Pc
z,z′ = Pr{zt+1 = z′|zt = z∧ ct = c}

The transition probabilities may depend on the current state z and also on the
action c that was chosen, but not on past states or actions. The notion of time
is expressed by the index t, so that the process evolves over time in a discrete-
stepwise manner. If all Rc

z,z′ and Pc
z,z′ are constant over time, i.e., independent

of t, the MDP is said to be stationary. In contrast, non-stationary MDPs express
circumstances that are changing while decisions are made. Research on Markov
decision processes dates back to the 1950s [18], since they are a suitable model
for many domains that involve some form of decision making, particularly for
resource allocation and consumption problems [330].

The role of a decision-maker for an MDP is carried out by a so-called policy. It
can be regarded as the strategy with which an agent chooses actions and interprets

10A more formal definition of continuous MDPs can be found in [109, p. 13 et sqq.].
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rewards, i.e., its method of reinforcement learning. Strategies can be formulated
mathematically or as algorithms. They have the same objective like the agents in
reinforcement learning, namely to maximize their overall reward.11 The definition
of the overall reward depends on the horizon, i.e., the number of action-reward
rounds that shall be considered. If a strategy’s overall reward for an MDP is mea-
sured over a finite horizon, the received rewards can just be summed up. In case
the MDP has an infinite horizon, summing up sub-optimal rewards will still result
in infinite sums, which are hard to compare. Here, the overall reward is usually
discounted, e.g., geometrically: each received reward is multiplied by γn, where
γ ∈ (0,1) is the discount factor [109, p. 14] and n is the number of the round that
is currently played; γn approaches zero when n approaches ∞. This allows to limit
the reward sums to finite amounts and hence makes them comparable. Although
sometimes only used because of tractability considerations [16], introducing a dis-
count factor also makes sense in some real world settings, e.g., to express interest
rates. When sufficient information on a given MDP is available, an optimal MDP
policy can be computed, e.g., by dynamic programming [44, p. 323 et sqq.]. Gen-
erally, the complexity of algorithms which ’solve’ an MDP problem, i.e., decide
whether there is a policy that achieves a certain amount of reward, depends on the
stochasticity and the observability of the state space [248]. Anyhow, in many real-
world settings the information required by these algorithms, i.e., Pc

z,z′ and Rc
z,z′ ,

is not available. These are the settings in which reinforcement learning can be
applied to incrementally approximate an optimal policy by empirically estimating
the nature of the environment (i.e., Pc

z,z′ ) and also the most rewarding course of
action (i.e., Rc

z,z′ ).

Algorithm Selection as a Markov Decision Process

To model the algorithm selection problem with a Markov decision process, the
set C of actions to choose from could be regarded as the set of algorithms A.
Since a selection mechanism will be continuously invoked to decide on a good
algorithm for a particular simulation problem and user criteria w∈Rn, the problem
space P and the criteria space Rn would be a good starting point to construct the
state space Z of the process. However, a selection mapping S ∈ S, which would
be in the role of a policy as it selects the action (algorithm) for the current state
(simulation problem), is defined on the features fx = F(x) of a problem x ∈ P.
Hence, only the features fx are observable for the policy S — although the MDP’s
state space Z comprises P. The state space can be reformulated as Z =Rn×P×F,

11Although in the context of optimization, the equivalent problem of minimizing the cost, instead of
maximizing the reward, is discussed as well [248].
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Figure 2.6: The entities of the algorithm selection problem in the context of a Markov
decision process (cf. fig. 2.3). The dotted arrow denotes the lacking influence of the policy’s
choice on the MDP state, i.e., the simulation problem and the user criteria.

but now the policy may only observe the state’s features, i.e., the state is only
partially observable.12 Partially observable states make an MDP problem hard to
solve [248].

Figure 2.6 summarizes the construction of a Markov decision process from ASP
entities graphically. The reward distributions can be related to the performance
of the selected algorithm a = S( fx,w), with user criteria w,w′ ∈ Rn, simulation
problems x,x′ ∈ P, and features fx, fx′ ∈ F:

Ra
(w,x, fx),(w′,x′, fx′ )

= ||p(a,x)||= g(p(a,x),w) (2.17)

As discussed in section 2.3.1, several important performance metrics, such as
execution time or memory consumption, are influenced by factors that are hard or
impossible to control. They should therefore be represented by random variables
that are drawn from specific probability distributions, i.e., the Ra

(w,x, fx),(w′,x′, fx′ )
.

However, equation 2.17 suggests that the performance of a on problem x does
not depend on the next state (w′,x′, fx′) that is reached. Clearly, this is determined
either by the user submitting a new problem, or by an algorithm that generates
new simulation problems on the fly (e.g., for optimization, see sec. 3.2.2, p. 104).
Here, Markov decision processes — and hence, reinforcement learning — address
a harder problem setting, in which an agent is able to influence its environment with

12The inclusion of features does not add any information, but makes the state space dependent of a
feature extraction mapping F ∈ F , so that (w,xi, fxi ) ∈ Z ⇐⇒ xi ∈ P∧ fxi = F(xi).



48 2 Algorithm Selection

its actions, whereas it merely has to react to it in a sensible manner for solving the
ASP (see fig. 2.6).

The reward distributions of an MDP for algorithm selection are there-
fore reduced to Ra

w,x, fx , and the estimation of any state transition probability
Pa

(w,x, fx),(w′,x′, fx′ )
is futile, as selecting an algorithm should not have any impact

on the next simulation problem or user criteria. This shows that the general re-
inforcement problem is harder to solve than an algorithm selection problem in
the sense of section 2.1.13 It is therefore beneficial to consider simplifications of
reinforcement learning, such as the multi-armed bandit problem.

The Multi-Armed Bandit Problem

A widely known reinforcement learning problem refers to the special case where
the underlying MDP has just one state: Z = {z0}. Here, the agent is not able to
perceive any distinct states of its environment, so that the MDP’s transition model
is trivial, i.e., Pc

z0,z0
= 1 for all actions in C. The agent merely needs to learn about

the unknown reward distributions Rc
z0

associated with its choice of action c ∈C, so
that the notation of reward distributions can be abbreviated to Rc, with expected
values Rc. All problem features are neglected, and it is further assumed that the
user criteria w ∈ Rn are constant and already included in the reward calculation.

Interestingly, this problem is closely related to the (statistical) field of sequential
experiment design [274] (see sec. 3.2), where it is known as the multi-armed bandit
problem (MABP) and is investigated since the early 1930s [305]. Even at that
time, when the problem had not yet been generalized to reinforcement learning or
connected to MDPs, it was still regarded as related to “[...] the general question
of how we learn — or should learn — from past experience.” [274, p. 530].

The term multi-armed bandit problem stems from an illustrative real-world ex-
ample, in which a gambler plays against a generalization of the ’one-armed bandit’
known from casinos, which now has k arms instead of just one. Each arm has an
associated probability distribution for reward, but this distribution is unknown to
the player. The player shall now maximize the reward over a number of iterations,
repeatedly choosing one of the k arms and examining the returned reward. Policies
to play this game therefore aim at approximating the underlying reward distribu-
tions Rc

z0
empirically. Due to its simplicity, the MABP “[...] provides the natural

setting for studying the trade-off between exploitation and exploration [...]” [170,
p. 517] — which is a central issue in reinforcement learning.

13While the above derivation of an MDP for algorithm selection is straightforward, other formulations
have been proposed, e.g., [188, 256], that do take into account state transitions. They focus on a
repeated algorithm selection during the execution of a single problem (see sec. 2.5.3).
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Even in this simplified setting, finding an optimal policy is non-trivial. In [109],
Gittins shows how to construct optimal policies for discounted MABPs. The ba-
sic idea is to associate each arm with an allocation index, which can be deduced
from prior information. However, there are some practical limitations to Gittins’
approach: the indices may be hard to calculate and optimality only holds for ge-
ometrically discounted problems [16, p. 5–6]. Furthermore, the method assumes
that “[...] the player can compute ahead of time exactly what payoffs will be re-
ceived from each arm, and their problem is thus one of optimization, rather than
exploration and exploitation” [10, p. 323]. Such information is not available in
many practical scenarios, which call for heuristic policies instead [11, 316]. While
heuristic policies are not guaranteed to always choose the optimal action, some
can be shown to converge to an optimal behavior when infinitely many rounds are
played, i.e., in case of an infinite horizon. This is done by analyzing the regret
of a policy, which denotes the expected reward difference between using a given
policy and an optimal choice. Auer et al. formally define the regret of a policy on
a k-armed bandit after n rounds as [11, p. 236]:

R∗ ·n−
k

∑
i=1

Rci ·E[Ti(n)]

where Rci , i = 1, . . . ,k is the expected reward of distribution Rci associated with
arm i, R∗ = maxi Rci is the expected reward of the best arm, and E[Ti(n)] is the
expected number of times the policy chooses arm i during the n rounds. Note that
the reward distributions, i.e., the Rci , are implicitly assumed to be stationary (i.e.,
they do not depend on n), since the underlying MDP would have to have more than
one state otherwise. However, many policies can be adjusted to non-stationarity
reward distributions by weighting recent and past rewards differently [298, p. 38].

Policies whose regret approaches zero for n → ∞ are called zero-regret policies.
Intuitively, a zero-regret policy is able to recover from any lock-in due to unfavor-
able random reward outcomes, i.e., a situation in which the unlikely high rewards
of choosing a sub-optimal arm lead to a neglect of exploring better alternatives
(see [170, p. 517]). Theoretical analysis of the MABP provides a general lower
bound on a policy’s regret [190], and some upper regret bounds could be found for
specific policies (e.g., [11]).

In an algorithm selection context, each arm of the bandit could again represent
an eligible algorithm, i.e., k = m = |A| = |C|, as already discussed for MDPs in
general (see sec. 2.3.2, p. 46). Likewise, the underlying probability distributions
would correspond to the stochastic reward in terms of delivered performance (see
fig. 2.7). Generally, policies for MDPs can be regarded as search algorithms for
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Figure 2.7: The multi-armed bandit problem as an algorithm selection problem.

an optimal selection mapping S∗. As a special case, policies for the multi-armed
bandit problem conduct this search without considering any features: F= R1 and
F(x)= 0 (or some other arbitrary number). They do not distinguish between differ-
ent simulation problems, i.e., states of the MDP. While it therefore seems overly
optimistic to apply MABP policies to the ASP in general, they are still suitable
to handle specific situations, e.g., when A contains a dominating algorithm (see
eq. 2.7, p. 25).14

The notion of regret is closely related to the selection efficiency of the found
mappings S (see def. 2.1.7, p. 28); zero-regret policies will eventually identify S∗
and use it often enough to let the policy’s regret approach zero for n → ∞. From
this perspective, it is not only important that S∗ is eventually identified, but also
how fast a policy is able to do so. The convergence speed of policies is therefore
an important aspect, which is typically investigated by empirical studies [11, 316].

The multi-armed bandit problem can be extended in several ways. Instead of
just being confronted with the partial information of the chosen arm’s reward,
some settings may provide full information, i.e., the rewards of all k arms for
each round [10]. Other scenarios abandon the assumption of constant distributions
and even consider an adversary player, which considers a policy’s behavior and
distributes the reward in a way that the policy’s overall reward gets minimized [10].
The plain and simple MABP as discussed above is important in many application
domains, e.g., for constructing clinical trials [170].

2.3.3 Further Aspects of Learning

Machine learning subsumes a large interdisciplinary body of methods, with many
dimensions that may serve for categorization. From an agent perspective [279,
p. 37], a central distinction is that of online versus offline learning, i.e., whether

14Here, ∀ f ∈ F,w ∈ Rn : S∗( f ,w) = {a}, with a ∈ A being the dominating algorithm.
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an approximation form is found before runtime (offline) or during runtime (on-
line). Particularly the latter scenario motivates the use of incremental learning, i.e.,
methods that allow incremental changes to the approximation form (e.g., version
spaces [279, p. 683]). They do not require to store the complete training set of past
data, as this is already encoded in the approximation form to be adjusted. Many
reinforcement learning techniques work this way, as the current reward will merely
be used to update the estimated value of the performed action and can therefore
be dismissed afterwards. The distinctions between classification and regression
(see sec. 2.3) or supervised and unsupervised learning (see sec. 2.3.2) are some-
what orthogonal to the above notions, although some combinations prevail: for
example, the unsupervised techniques from reinforcement learning usually work
online. Such fundamental properties help to categorize ASP solution approaches,
as discussed in section 2.6.

The field of learning seems to provide the most promising techniques to solve
the ASP. One form of algorithm selection mapping already suggested by Rice
in [272] strongly resembles decision trees, the base for a nowadays popular family
of approximation forms [269, 333]. Anyhow, the learnability of a selection map-
ping that is effective (see sec. 2.1.2, p. 24) is not guaranteed and depends on the
computational complexity of the learning algorithm [313] as well as the amount
of training data. The computational complexity of learning relates to the so-called
metareasoning-partition problem (e.g., [116, p. 39]): it is usually hard to balance
between the effort for learning how to solve a problem and the effort to actually
solve it. For the ASP, metareasoning subsumes the effort to generate a suitable se-
lection mapping, including the collection of training data, error estimation, and so
forth. This effort needs to be amortized by the savings that the continued applica-
tion of the generated mapping brings about. The problem is related to the measures
of effectiveness defined in section 2.1.2 (p. 27): only adaptive-effective selection
mappings warrant the effort of metareasoning via problem feature extraction at all.

The bias-variance trade-off discussed in section 2.3.1 shows that there is no sil-
ver bullet to learning. It therefore seems unlikely to identify a learning method
that works best for all kinds of algorithm selection problems — instead the exten-
sive literature on the relative merits of different approaches should be considered
for case-by-case guidance (e.g., [20, 122, 172, 279]). The literature also links
learning techniques to other related fields, e.g., meta-heuristics for black-box op-
timization. As outlined in section 2.1.3, the ASP can be solved by optimizing a
partly unknown objective function f (S). The black box in this case is the perfor-
mance mapping p (see eq. 2.10, p. 30), i.e., our ignorance of the exact relation
between algorithm, input problem, and algorithm performance. From a learning
perspective, an meta-heuristic optimizer therefore learns which selection mapping



52 2 Algorithm Selection

S is likely to perform best if the given training data is representative for future
problems. Wolpert and Macready proved no-free-lunch theorems for optimization
algorithms [334], which essentially state that all optimization algorithms perform
equally well when the whole range of optimization problems is considered. This
motivates a careful selection and adaptation of different methods to solve specific
ASPs.

2.4 Algorithm Selection as Adaptation to Complexity

From an outside perspective, one could say that a simulation system which auto-
matically selects algorithms to solve simulation problems adapts itself to its envi-
ronment. While this view is similar to reinforcement learning (see sec. 2.3.2), it is
not restricted to it — focusing on adaptation as such reveals additional challenges,
aspects, and approaches to a solution.

2.4.1 Complex Simulation Problems

Adaptation is strongly related to the notion of complexity. Regardless of algorith-
mic complexity theory, which merely characterizes the execution time and memory
requirements of a given algorithm (as discussed in sec. 2.2), a general definition of
complexity is quite hard to come by and often depends on the entities to be con-
sidered. One fundamental approach to formally define and quantify complexity
has been put forward by Kolmogorov and others in the context of information the-
ory [46, p. 463 et sqq.]. The Kolmogorov complexity KU (x) of a string x denotes its
descriptive complexity, by defining it as the minimal size of a program that prints
x and then halts when executed on a universal computer15 U [46, p. 466]:

KU (x) = min
p|U(p)=x

l(p)

where p is a program for U and l(p) is its length. Kolmogorov complexity is
noncomputable [46, p. 483], i.e., no Turing Machine can calculate it for an ar-
bitrary x in finite time, and is therefore only of limited use in practice. Still, it
reveals many interesting connections between the notion of complexity in philos-
ophy, physics, and computer science. For example, it underpins the validity of Oc-
cam’s razor [46, p. 488], a fundamental principle of induction (see sec. 1.4, p. 13)
that demands to choose the simplest possible explanation for a phenomenon. Sim-
ilarly, Kolmogorov complexity is strongly related to the notion of entropy, which

15A computer that has the same computational abilities as a Turing Machine (see sec. 1.2).



2.4 Algorithm Selection as Adaptation to Complexity 53

connects thermodynamics and information theory [80, p. 137 et sqq.], in that a
truly random sequence xr has maximal entropy, which means it cannot be com-
pressed by any algorithm, and hence KU (xr) ≥ l(xr): put simply, no program p
describing xr can be more elegant than saying ������ xr� [46].

While associating complexity with completely random sequences is sometimes
desirable, Edmonds [61] points out that this notion is somewhat counter-intuitive:
adding interrelations between the elements of a sequence reduces the amount of
information it contains, i.e., its entropy, but should not make it less complex. In-
stead, he proposes to define complexity as “that property of a language expression
which makes it difficult to formulate its overall behaviour, even when given almost
complete information about its atomic components and their inter-relations” [61,
p. 6]. This definition shifts the focus from descriptive to behavioral complex-
ity, and is therefore quite relevant for discussing the complexity of models to be
simulated. In the sense of this definition, a model (which can be regarded as the
description of a system in a formal modeling language, see sec. 1.2) is complex
if its overall behavior cannot be formulated easily, so that simulation is required
in the first place. The unknown model behavior, in conjunction with the complex
hardware it shall be simulated on,16 also makes it unclear which simulation algo-
rithm to use. Hence, the environment to which a simulation system has to adapt
consists of complex simulation problems.

Note that a solving a single simulation problem may require multiple replica-
tions, in case stochasticity plays a role (see sec. 2.3.1, p. 38). To avoid any con-
fusion regarding terminology, the problem solved by a single simulation run is
referred to as a simulation problem instance whenever necessary. In the following,
it is generally assumed (without loss of generality) that all instances of a simulation
problem x ∈ P have the same problem features fx ∈ F.

2.4.2 Complex Adaptive Systems

The relation of adaptive behavior and complexity is twofold: one the one hand,
successful operation in complex environments often requires adaptive behavior,
e.g., by means of reinforcement learning (see sec. 2.3.2). On the other hand, adap-
tivity is often realized by complex mechanisms. This interconnectedness of com-
plexity and adaptation becomes apparent when considering complex adaptive sys-
tems (CAS), i.e., systems that are both complex and adaptive. Such systems often
exhibit similar properties, e.g., in terms of their internal network structure [15].

16Today’s hardware is complex in the same sense as the model: it is hard to formulate overall behavior
(e.g., how long does a cache miss take?) although every detail of the system is known.
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They can be found in various domains, e.g., in biology (human brain, ant colonies)
or socio-economics (cities, companies).

Holland regards adaptation as the driving force behind ever more complex bi-
ological organisms [141], and models CAS as multi-agent systems (see [141, p.
41 et sqq.] and sec. 1.3.2, p. 9). Each agent’s behavior is governed by a set of
rules that are strengthened whenever the agent receives a reward at the time a rule
was active and hence influenced the agent’s behavior. A rule is activated when its
context matches the current situation of the agent and it succeeded in a bidding
process that depends on its current strength. This procedure can be regarded as
reinforcement learning on a set of rules, and hence yet another example of im-
plicit inductive reasoning (see sec. 1.4): if a rule contributes to gaining rewards, it
gets strengthened. Holland sees the rules as hypotheses with respect to the agent’s
best course of action. New rules are discovered by using a genetic algorithm: the
best-performing rules are selected and recombined to create a new generation of
rules. The new rules get mutated randomly, which helps to discover unprecedented
variants.

With these two techniques — multi-agent systems in combination with genetic
algorithms — Holland attempts to built a simple model that shows phenomena sim-
ilar to those found in CAS, including the emergence of new behavior caused by
adaptation. As the term genetic algorithm suggests, he draws his inspiration from
evolutionary processes in biology (e.g., [55]), as biological organisms are the most
prominent example of CAS in nature. In [140, p. 28], Holland formally defines an
adaptive system as a tuple (A,Ω, I,τ), with A being the set of all possible system
structures, Ω being the set of (probabilistic) operators defined upon A, and I being
the set of possible inputs to the system. The adaptive plan τ : I ×A→ Ω selects
an operator for adaptation, based on current input and system structure. As the
selected operator ω ∈ Ω is then used to determine a new system structure from A,
the adaptive plan basically steers the structural evolution of the system over dis-
crete time steps. This adaptation is governed by system input and the randomness
of the operators in Ω. To solve the best selection mapping problem (def. 2.1.2,
p. 22), for example, one could define an adaptive simulation system as the tuple
(S0,Ω,P0,τ). It would react on the input in form of simulation problems (from
P0) by adapting its current selection mapping, i.e., choosing another element from
S0. An adaptive plan τ can now be used to learn the best selection mapping incre-
mentally. Holland bases his formulation of genetic algorithms17 on these entities.
However, it is uncertain if such a general and incremental mechanism is the right

17Interestingly, he shows the effectiveness of genetic algorithms by relating them to the multi-armed
bandit problem discussed in section 2.3.2 (p. 48) [140, p. 125 et sqq.].



2.4 Algorithm Selection as Adaptation to Complexity 55

choice to tackle the ASP: both S0 and P0 are usually quite large, and users may
fail to issue the amount of simulation problems that is necessary for convergence.

Biological CAS have also been studied from a mathematical (e.g., [276]) and
a physical perspective, where their existence can be related to the same laws of
thermodynamics that are also linked to information theory’s notion of complex-
ity [284]. Apart from understanding how CAS originated, investigating them
might yield important insights when it comes to designing artificial CAS with simi-
lar properties, such as adaptiveness. For example, genetic algorithms are nowadays
a widely applied meta-heuristic, also used in many settings that are not related to
biology (e.g., in parallel simulation [323]). Therefore, it is worthwhile to discuss
which CAS principles have already been applied in software systems, and might
hence enable simulation software to adapt itself to its current environment, char-
acterized by the (usually complex) simulation problems it is confronted with.

2.4.3 Self-Adaptive Software and Autonomous Computing

In the domain of software architectures, self-adaptivity has mainly been discussed
in the context of middleware [230], which refers to the software layer that man-
ages the interaction between applications and the operating system they run on. A
middleware typically offers functionality that is shared by a broad class of applica-
tions, e.g., network communication, resource management, or service discovery.
An adaptive middleware could therefore reconfigure itself to best serve the needs
of the current applications, or to react to changes in its environment, e.g., CPU
load or network connectivity. Although the implementation of suitable decision
making mechanisms is regarded as a key challenge in itself [230], middleware re-
search focuses on designing software architectures in which it is easy to make such
informed decisions and to apply them.

McKinley et al. distinguish between compositional adaptation and parameter
adaptation, the former term referring to changes in the structure of the software,
whereas the latter means to merely alter parameter values. They classify adaptive
software approaches by three aspects: how composition is done, when it is done,
and where it is done [230]. The first aspect subsumes various software patterns and
programming language features that allow composition, e.g., wrappers or function
pointers. The second aspect relates to the time at which composition is possible,
e.g., compile time or run time, while the last aspect specifies the software layer
affected by the composition, e.g., operating system or middleware. Furthermore,
they highlight the importance of approaches that provide compositional adapta-
tion, and name separation of concerns, reflection, and component-based design as
essential techniques for implementing them.
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Separating concerns and making software components re-usable are common-
place design principles for many kinds of (non-adaptive) software. Component
frameworks have been used for over a decade to construct problem solving en-
vironments [99], which is a central application domain for algorithm selection
methods (see sec. 2.7). Reflection, i.e., the access of a software system to its own
structure, ensures that the system becomes self-aware to some extent [22]. This
self-awareness provides the information on which the decisions for re-composition
are made.18 Reflection may either be structural or behavioral [22, 230]: the for-
mer allows to inspect the internal (sub-)structures of a given component, while the
latter allows to inspect its runtime behavior, i.e., its performance. Since algorithm
selection often relies on empirical performance data, this makes behavioral reflec-
tion an essential part of a software system supporting algorithm selection, while
structural reflection might not always be required.

Very similar to self-adaptive software systems are so-called autonomous com-
puting systems (ACS), a term coined by a corresponding IBM research pro-
gram [153]. Such systems are defined to have the following features:

• Reflection, i.e., ACS are self-aware.

• Perception, i.e., ACS are aware of their context.

• Continuous Optimization, i.e., ACS incrementally improve their opera-
tion.

• Robustness, i.e., ACS are self-healing in case of malfunction.

• Self-Adaptivity, i.e., ACS are able to reconfigure themselves.

• Usability, i.e., ACS hide complexity from the user.

• Security, i.e., ACS perform self-protection.

• Open Interfaces, i.e., ACS comply with open, heterogeneous environments.

The boldly printed characteristics are all in some way related to the ASP. Re-
flection and perception are required to reason on the algorithms in A and to extract
the features fx ∈ F from the current simulation problem x ∈ P. Continuous opti-
mization is a desirable feature; it can be implemented by any incremental learning
scheme, e.g., reinforcement learning (see sec. 2.3.2). Increasing the robustness,

18The components for decision-making could in turn be subject to reflection and compositional adap-
tation themselves, etc., which results in an infinite regress — the term usually indicates that one part
of the system is aware of another part.
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self-adaptivity, and usability of a simulation system is what any solution to the
ASP should deliver: robustness is enhanced if the re-selection of algorithms is trig-
gered by failures, the system adapts itself to simulation problems, and the overall
automation should increase usability. Hiding the complexity from the user is re-
garded as “[...] the ultimate goal of autonomic computing [...]” [153, p. 28] — the
ultimate goal of algorithm selection is to hide the complexity of deciding upon the
most suitable simulation algorithm.

In this sense, algorithm selection supports the development of autonomous sim-
ulation systems that comply to all of the above requirements. While the security
of simulations is usually handled by the infrastructure, e.g., operating systems and
network equipment, open interfaces are also a desirable feature and a prerequisite
for joint research. Nevertheless, algorithm selection as such does neither require
nor improve the openness of a system.

Software engineering is struggling with the realization of ACS features for many
years. For instance, self-adaptive software can be implemented by communicat-
ing software agents [187, 177]. Laws et al. follow this direction by proposing
agent models for such systems [194] and highlighting links to cybernetics, com-
plex adaptive systems, and biologically inspired algorithms [141, 193]. Cybernetic
research provides some fundamental insights into adaptive systems. For example,
Laws et al. argue with Ashby’s Law of requisite variety [193] that any system
that controls another system has to be at least as complex — in terms of its num-
ber of states — as the system on which it exerts control. From this, one could
deduct that any optimal algorithm selection approach has to be at least as complex
as the minimal description of performance differences between all the algorithms
from which it shall select. Although this strong interpretation of Ashby’s law is
rejected in [128] by an intuitive counterexample, a cybernetic perspective suggests
that hiding more complexity from the user requires more complex ACS. Likewise,
the laws of requisite and incomplete knowledge [128] highlight the importance of
knowledge on the system in order to control it, and the fact that this knowledge is
necessarily incomplete. Apart from incomplete knowledge, all adaptation mech-
anisms also face the metareasoning-partition problem (see sec. 2.3.3, p. 50). In
simulation, this trade-off becomes apparent with adaptive methods for speeding
up parallel and distributed simulation, such as load balancing (see sec. 1.3.2). Ig-
noring this trade-off may lead to worse performance, especially if the adaptation
scheme is unsuitable for the problem at hand and is computationally expensive
itself [71].

To tackle these issues, it could be helpful to consider complex adaptive sys-
tems from nature, e.g., Blair et al. mention them as future research directions for
their adaptive middleware OPENORB [22], which supports component-based de-
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sign and reflection. Karsai et al. argue for a control engineering perspective and
propose an additional supervisor component on top of the normal system: “On
the ground-level one can create components that are highly optimized for specific
situations, while the supervisory-level will have to recognize what situation the
system is in, and select the most optimal component” [176, p. 28]. A single soft-
ware agent is also used in [60] to realize self-adaptive numerical software (SANS),
which adapts to problems from scientific computing. Armstrong et al. propose
a component architecture specifically designed for high-performance computing,
motivated by the various algorithms and mechanisms involved in the large-scale
distributed simulation and visualization of a combustion engine [8]. Some simu-
lation systems claim component-based design and adaptivity as key features, but
often this merely means that earlier design decisions do not prohibit such mech-
anisms. One example for this is DEVS/RMI, a tool for distributed simulation of
DEVS models [340], which “[...] is also built to support auto-adaptive [sic] and
reconfiguration of simulations during run-time” [341, p. 1]. This is done by im-
plementing the migration of model and simulation entities over a network, and by
providing a central simulation controller along with monitoring services. While
these features are necessary for some kinds of adaptation and reconfiguration, they
still only enable those mechanisms — they do not realize them.

2.5 Algorithm Portfolios

Another area concerned with an informed selection from a set of available options
is portfolio theory in economics, where securities (e.g., stocks) are aggregated
into a portfolio with certain desirable properties. A portfolio can be regarded as a
weighted set of securities, where the weights sum up to 1 and denote the relative
amount of capital invested in each one. In other words, a portfolio is a specific
linear combination of securities. The assessment of portfolios has a long history in
financial analysis. In [215], Markowitz investigates the hypothesis that an investor
should always strive for the portfolio with the maximal expected return. He argues
that this maxim does not consider the value of diversification, i.e., the reduction
of risk by distributing the capital over several securities with risks that do not
correlate. The values (and hence the risk) of securities can correlate heavily, e.g.,
stocks of two companies in the same market may both loose their value if the
market shrinks.
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Figure 2.8: The efficient frontier.

Consequently, portfolio selection should consider both, the expected return E
and its statistical variance V , which Markowitz calls the E-V rule.19 He identifies
a set of efficient portfolios, i.e., portfolios for which no alternative portfolio with
at least the same expected return and less variance exists, or with at most the same
variance and more expected return. Such a set of efficient portfolios is depicted in
figure 2.8. Since it is always at the border of the overall portfolio set when plotting
it to an E-V diagram, it is also called the efficient frontier [114]. Portfolios that
are elements of the efficient set are also called efficient portfolios. It is left to the
investor to decide upon the most suitable portfolio from the efficient frontier, i.e.,
the best trade-off between expected return and the investment risk, the latter being
represented by the variance.

Finally, it should be noted that Markowitz’ theory aims at explaining why in-
vestors were already building diversified portfolios that did not yield a maximum
expected return, i.e., portfolio theory is essentially concerned with “[...] the anal-
ysis of the real world phenomenon of diversification” [43, p. 26]. Diversification
is also known to be an important aspect of adaptation [141], and hence of complex
adaptive systems as discussed in section 2.4. In this sense, portfolio theory pro-
vides decision guidelines for dealing with the complexity of economic systems. In
fact, the notion of portfolio optimality can also be discussed from an information
theoretical point of view (see sec. 2.4), where continuous re-investment of the cap-
ital in considered. This leads to the notion of log-optimal portfolios [46, p. 613 et
sqq.], i.e., portfolios that are optimal when their successive returns are multiplied.

19His approach is also called mean-variance portfolio selection, as it focuses on these aspects of the
overall portfolio performance.



60 2 Algorithm Selection

2.5.1 Identifying Efficient Portfolios

The basic idea of constructing financial portfolios, as put forward in [215], is to
estimate expected return and variance for a single portfolio from past stock data.
Markowitz also suggests to let experts provide corrections and adjustments for the
data. The returns of stocks x1, . . . ,xn are regarded as a set of random variables
R1, . . . ,Rn. Returns are paid out at a regular frequency, e.g., yearly. Let the past
returns previously earned by stock xi be rxi

1 , . . . ,r
xi
k , i.e., these are samples from the

random variable Ri.
A portfolio is defined as �α ∈ [0,1]n with ∑n

i=1 αi = 1, where αi denotes the
share of the capital that is assigned to asset xi, and therefore has to be in [0,1]. The
expected value of portfolio �α’s return R�α can be calculated easily:

E[R�α ] =
n

∑
i=1

αi ·E[Ri] (2.18)

Since stock prices are influenced by general economic developments and their
corresponding companies also compete with each other, the random variables
R1, . . .Rn cannot be assumed independent. Therefore, calculating the variance of
R�α needs to take into account the covariance σi, j between returns Ri and R j:

σi, j = ρi, j ·σi ·σ j (2.19)

where σi and σ j are the standard deviations of Ri and R j, respectively, and ρi, j
is the correlation coefficient for Ri and R j.

Then, the variance of portfolio �α can be written as:

V [R�α ] =
n

∑
i=1

n

∑
j=1

αi ·α j ·σi, j (2.20)

Using equations 2.18 and 2.20 allows to estimate the variance and the expected
return of any portfolio �α by estimating the expected values (R̂i) and standard de-
viations (σ̂i) for all Ri, as well as the correlation coefficients for all pairs of Ri and
R j.20 These estimations are based on the sample data rx1

1 , . . . ,rxn
k .

While the above formulas estimate the merits of a specific portfolio, the problem
of finding the set of all efficient portfolios is solved by Markowitz only for the case
of three securities, via analytic geometry [215]. More generally, the problem can
be defined as a quadratic programming problem, i.e., an optimization problem
with an objective function in which the parameters to be optimized (the αi) are

20In case i = j, σi, j represents the variance of Ri. This is required for equation 2.20 to hold.



2.5 Algorithm Portfolios 61

multiplied with each other. Markowitz’ basic approach can therefore be formulated
as maximizing f (�α) [234]:

f (�α) = λ
n

∑
i=1

αi · R̂i − (1−λ ) ·
n

∑
i=1

n

∑
j=1

αi ·α j · σ̂i, j (2.21)

where R̂i are the estimations of the expected returns, σ̂i, j are the estimations of
the covariances (see eq. 2.19, p. 60), and λ ∈ [0,1] determines the desired trade-off
between risk and return (as decided by the investor).

Adding cardinality constraints, i.e., limiting the size of the portfolio (the num-
ber of αi > 0) to a certain interval, makes this a quadratic mixed-integer problem,
which is hard to solve [234]. Meta-heuristics for optimization like genetic algo-
rithms can be successfully applied in such cases, to find almost optimal portfo-
lios [331].

There are some objections to following such portfolio selection approaches. It
has been shown by resampling experiments that the efficient portfolio selected by
this method might still turn out to be sub-optimal, as it is fitted against (potentially
insufficient) past data [165]. This is yet another manifestation of the problem of
inductive knowledge, as discussed in section 1.4 (p. 13). Furthermore, it could be
argued that the economy is governed by power laws, which render the focus on
mean and standard deviations troublesome, as low-probability events have a major
impact on the overall outcome but are not sufficiently included in risk analyses
[300, p. 277 et sqq.]. Alternative formulations that do not consider the return’s
variance as a measure of risk, but instead focus on the absolute deviation from
the mean (i.e., the L1 norm, see sec. 2.1.1, p. 21), are even more susceptible to
this problem as they facilitate the solution by assuming normally distributed re-
turns [234, p. 10–11]. How this problem affects the application of portfolio theory
to the ASP is discussed in section 2.5.4. The next sections highlight important dif-
ferences between financial and algorithmic portfolios and briefly survey existing
approaches to algorithm portfolio construction.

2.5.2 From Financial to Algorithmic Portfolios

As Constantinides and Malliaris put it, “Portfolio selection involves making a deci-
sion under uncertainty”[43, p. 1]. Just as financial portfolios consist of carefully
chosen assets that shall maximize the overall future performance with minimal
risk, it is possible to create simulation algorithm portfolios with similar proper-
ties. Instead of coping with the uncertainty of future economic developments, they
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{x1, . . . ,xm} ⊆ P

Problem Space
{a1, . . . ,an} ⊆ A

Algorithm Space

(1,1, p(a1,x1)), . . . ,(m,n, p(an,xm))
∈ [1,m] × [1,n] × Rn
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w ∈ Rn
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(for elements from A)

Portfolio Selection

(see sec. 2.5.4, p. 70)

Figure 2.9: The selection of algorithm portfolios for n performance aspects, i.e., an n-
dimensional performance space Rn. It relies on observed performance data that merely
points to the indices (m, n) of the corresponding problem and algorithm. No problem fea-
tures or algorithm properties are considered any further. section 2.5.4 (p. 70) discusses how
user criteria can be incorporated into the selection process.

cope with the uncertainty regarding the kind of simulation problems that are en-
countered in the future, thereby minimizing the risk of performing badly on them.

However, choosing an algorithm portfolio does not solve the ASP as defined in
section 2.1: instead of constructing a selection mapping S, portfolio theory merely
allows to choose a (weighted) subset A ⊆ A of algorithms that are likely to per-
form well in the future. Financial portfolio selection therefore allows to simplify
the ASP by applying statistical methods, rather than to solve it. Additionally, clas-
sical portfolio selection as outlined in section 2.5.1 does not rely on any problem
features, it is restricted to the analysis of past performance. This is an important
advantage, as performance can be recorded automatically while the definition and
extraction of problem features is likely to require additional programming efforts.
Hence, portfolio selection should be easy to automate. Figure 2.9 sketches the
main idea of algorithm portfolio selection, and how it relates to the ASP.

Several variants of the portfolio selection problem have been analyzed over the
last decades [43]. Many allow short-selling, i.e., associating assets with negative
weights so that the constraints αi ∈ [0,1] can be relaxed. However, this relaxation is
not meaningful for algorithm portfolios: an algorithm cannot be selected less than
never. Another common assumption is the existence of a risk-less asset [286], such
as government obligations. Again, this may be sensible in the financial domain,
but cannot be transferred to algorithms easily: for example, a risk-less simulation
algorithm with respect to execution speed would always take the same amount
of time to solve a simulation problem, regardless of the problem’s structure. Such
algorithms are rare at best. Finally, stock performance can also be viewed as a time
series (e.g., [210]). This might not be a valid assumption for algorithms either, e.g.,
in case the performance data for portfolio construction is gathered from a sequence
of benchmark models that were executed in arbitrary order. Note that the selection
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problem defined in section 2.5.1 does not make this assumption, i.e., temporal
trends in the sequence sampled from the Ri are not considered. Instead, the method
considers the correlation of samples at equal points in time. All these aspects make
it hard to directly translate findings and methods from financial theory to algorithm
portfolios, which may explain why little research on algorithm portfolios is based
on financial theory.

Since financial portfolios are inherently applied in parallel, i.e., the capital is
allocated to assets which then yield return concurrently, first approaches to algo-
rithm portfolios have followed a similar approach. In [149], Huberman et al. in-
vestigate a portfolio approach for graph-coloring with two independently running
instances of a Las Vegas algorithm, i.e., an algorithm that always solves the prob-
lem correctly but contains some stochastic element. Each instance receives a share
αi ∈ [0,1] of CPU time, so that α1+α2 = 1. Given the random variables T1 and T2
that represent the time both instances need to solve the problem, respectively, the
overall portfolio runtime can be written as a random variable Tp with [149, p. 51]:

Tp = min
(

T1

α1
,

T2

α2

)
(2.22)

Given that the discrete probability distributions of T1 and T2 are characterized
by the probability mass functions ρT1(t) and ρT2(t), the probability mass function
ρTp(t) of the portfolio can be written as [149, p. 51]:

ρTp(t) =

(
∑

t ′≥α1·t
ρT1(t

′)

)
·
(

∑
t ′≥α2·t

ρT2(t
′)

)
−
(

∑
t ′>α1·t

ρT1(t
′)

)
·
(

∑
t ′>α2·t

ρT2(t
′)

)

(2.23)
The first term on the right side denotes the probability that both instances are

finished at some time greater or equal to t, while the second term denotes the prob-
ability that both instances are finished at some time greater and unequal to t. In
other words, the subtraction removes all outcomes except those where at least one
of the instances solves the problem at time t and the other instance has not already
solved the problem before time t. Note that all times in equation 2.23 are scaled
by α1 and α2 respectively, as the instances have to share the CPU. By changing
α1 (and thereby α2, since α2 = 1−α1) the probability mass function ρTp of the
portfolio runtime can now be adapted. Since the probability mass functions ρT1

and ρT2 are identical in this case, i.e., they both refer to the same algorithm, it suf-
fices to vary α1 from 1 to 1

2 . Plotting mean and variance of the portfolio runtime
yields results similar to figure 2.8 [149], i.e., the efficient frontier of the portfolio
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set can be determined. This approach differs from the classical portfolio selec-
tion technique (see sec. 2.5.1) in that it does not consider any correlations between
algorithms on differing problem instances, but instead approximates the probabil-
ity distributions of a performance measurement on a single problem instance. A
similar approach that constructs algorithmic portfolios via empirically estimated
probability distributions is presented in [113, 114]. It is also applied to computa-
tionally hard constraint satisfaction problems (see sec. 2.7, p. 86).

2.5.3 Algorithm Portfolio Variants

The approach described in section 2.5.2 assigns a fixed share of CPU power to each
algorithm, and both of them have to be executed in parallel. These restrictions have
been relaxed in more recent approaches.

Parallel and Interleaved Portfolios

In [114], Gomes and Selman consider three types of portfolio execution: run all
algorithms in parallel, let the algorithms run interleaved on a single resource, or
use a restart strategy, i.e., determine when to stop and re-start an algorithm. This
only makes sense when working with stochastic algorithms and is rather loosely
related to the other two modes of operation. Restarting is predominantly used in
the context of heuristic search methods.

The difference between parallel and interleaved algorithm portfolio execution is
more on a technical level: while the theoretical formulation of the problem allows
to assign any real value αi ∈ [0,1] to weight the importance of an algorithm, it is not
trivial to realize a truly parallel execution with corresponding shares of computing
power assigned to each algorithm. Furthermore, the management of the parallel
threads may also introduce some overhead, which is usually not considered in
portfolio construction approaches. This overhead can be limited by constraining
portfolio size, as discussed in section 2.5.1. The results in [114] suggest that the
size of a portfolio and the way in which the algorithms are actually executed, i.e.,
truly parallel or interleaved, may influence the shape of the efficient frontier and
the overall portfolio performance. However, it is not yet clear to what extent these
results are dependent on the specific application domain, i.e., combinatorial search.

Dynamic Portfolios

Other kinds of algorithm portfolios do not rely on fixed weights, but attempt to
learn them during execution. Gagliolo and Schmidhuber call such algorithm port-
folios dynamic, in contrast to static ones with fixed weights [96]. They motivate



2.5 Algorithm Portfolios 65

their approach by highlighting the implicit assumptions of a prior decision on al-
gorithm weights: the training set of past problems needs to be representative of
future problems (see problem of inductive knowledge, sec. 1.4, p. 13), and an ac-
curate prediction of algorithm run time needs to be possible for a given problem
instance — i.e., the task needs to be learnable (in the sense of sec. 2.3.3). Further-
more, they claim that the training cost of executing all algorithms on the training
set as well as generating and evaluating prediction functions is often neglected and
can be considerable [96, p. 296].21 In [93, 94, 95, 97], Gagliolo et al. develop the
AOTA framework, which stands for Adaptive Online Time Allocation, to overcome
these problems with dynamic parallel algorithm portfolios.

Given a sequence of problems p1, . . . , pm ∈ P and a set A= {a1, . . . ,an} of ap-
plicable algorithms, an AOTA mechanism repeatedly decides upon the algorithmic
weight αi ∈ [0,1] for each algorithm, so that ∑n

i=1 αi = 1. Similar to the approach
described in section 2.5.2, the algorithm weights represent the share of CPU time
to be invested in each algorithmic asset. Consequently, an algorithm ai is executed
for αi ·ΔT CPU time, where ΔT is called time slice and denotes the amount of
time that passes until the next invocation of the mechanism. The AOTA frame-
work therefore considers parallel portfolios as defined above.

The weights α1, . . . ,αn are calculated by two functions, fτ and fx:22 fτ predicts
the time τi that algorithm ai still needs to solve the current problem, and fx updates
the currently selected portfolio, i.e., the current algorithm weights, depending on
the predicted τi. The prediction is based on a history H:

H = {H1, . . .Hn},Hi = {(dr
i , t

r
i )|r = 0, . . . ,hi}

with r being the index for past rounds of reallocation, tr
i is the time allocated

to algorithm ai at round r, and dr
i is a vector containing features of the current

problem, algorithm features (e.g., its parameters), and also some information on
the current state of the algorithm ai. Galgliolo and Schmidhuber illustrate the
approach by applying it to genetic algorithms [97]. Here, dr

i could contain the
mutation rate as an algorithm’s parameter, and the current state of the algorithm
could be reflected by the average fitness of the current population.

Gagliolo et al. distinguish between intra-problem and inter-problem AOTA.
Intra-problem AOTA considers only results from the current problem instance,
so that the execution times of the algorithms do not need to be fed back for im-
proving fτ , which is fixed. This behavior is called oblivious by the authors, as it
discards the knowledge gained during execution when faced with the next prob-

21This is the metareasoning-partition problem, as described in sec. 2.3.3, p. 50.
22Not to be confused with problem features in the context of the ASP, sec. 2.1, p. 19.
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lem instance. In [97], fτ is derived by linear regression for intra-problem AOTA.
In contrast, inter-problem AOTA provides ’life-long learning’ [94] in that fτ it-
self is improved after finishing problem pi, so that solving pi+1 is done with a
prediction function fτ that was built by considering all prior performances of the
algorithms on instances p1, . . . , pi. Inter-problem AOTA was evaluated with neural
networks [93] and Bayesian approaches [95] for fτ .

In any case, the τi predicted by fτ are finally passed over to fx, which now trans-
lates them to algorithm weights αi. The function fx can also take many forms, e.g.,
it may rank the algorithms with respect to the predicted solution time and assign
shares of the form 2−ri , ri being the rank of algorithm ai: the fastest algorithm
receives half of the processor time, the second best a quarter, and so on. For inter-
problem AOTA, this form of fx might lead to problems, because early prediction
mistakes could lead to misinterpretations: for example, the algorithm wrongly as-
sumed to be the best could receive twice the CPU time of a potentially superior
algorithm, which would go unnoticed as the portfolio stops when the first algo-
rithm finds a solution. This problem can be alleviated by gradually moving from
αi =

1
n , i.e., a uniform parallel portfolio, to αi = 2−ri [96, p. 5]. The underly-

ing problem here is again the trade-off between exploration and exploitation (see
sec. 2.3.2, p. 43).

This similarity to reinforcement learning is exploited in [96], where Gagliolo
and Schmidhuber extend the inter-problem AOTA mechanism by replacing fτ and
fx with a set of time allocators TA1, . . . ,TAk. Each time allocator operates as a
combination of fτ and fx in the inter-problem AOTA framework, i.e., it selects
a portfolio based on the history H, and may incrementally improve its internal
model. Employing a whole set of time allocators to solve the ASP requires an
additional decision-making procedure on top, as sketched in figure 2.10. This
procedure then has to solve another selection problem, i.e., it has to select the best
time allocation algorithm from the set. In this context, the ASP is also known as
meta-learning: each of the time allocators is learning to select the best algorithm,
while the procedure on top learns which of the learning allocators performs best —
and therefore performs meta-learning (see sec. 2.7, p. 84).

In [96], the meta-learning is done by a policy from [10] which plays the full-
information multi-armed bandit problem: each TAi proposes a certain portfolio
Xi, which can be regarded as the advice by an expert. As depicted in figure 2.10,
the advice is then joined to a single portfolio via a ’voting’ scheme that weights
experts by the trust θi that the meta-learner puts in them. After a problem instance
has been solved, the policy distributes the received reward over the trust values θi,
depending on how much each TAi favored the winning algorithm in its portfolio
proposal Xi. By this, the policy learns which experts are likely to select the winning
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Figure 2.10: The AOTA framework for parallel algorithm portfolios. The left side shows the
framework as described in [93, 94, 95, 97]. The brown arrows and labels denote the default
feedback loop when running on a single instance, whereas the dashed blue line illustrates
the knowledge transfer to fτ in the non-oblivious case, i.e., inter-problem AOTA. The right
side shows its structurally similar extension presented in [96], which builds upon a multi-
armed-bandit policy from [10] to add a second level of algorithm selection (blue): apart
from adjusting the time allocation during the processing of a problem instance (brown), the
method continuously adjusts the trust it has in the time allocation schemes, i.e., algorithm
selectors, that are applied to the problem.

algorithm. To avoid bad overall performance in case none of the TAi is able to learn
portfolio selection properly, a uniform time allocator that allocates the same share
of CPU time to each algorithm is included. This allows the meta-learner to detect
when the custom time allocators learned enough to outperform a static uniform
portfolio selection.

The time allocators use nearest-neighbor learning, i.e., prediction by consider-
ing the most similar past problem instances, in combination with findings from
algorithmic survival analysis. The latter is based on statistical survival analysis
methods from the social sciences, where researchers struggle with sample popula-
tions from which individuals might be censored for unknown reasons, i.e., they are
not considered any longer and it is unknown when the critical event (e.g., death)
occurred. Handling such censored samples wrongly may introduce bias, so statis-
tical methods are required that take censoring into account. The same holds for
algorithms in parallel portfolios: portfolio execution is stopped when the first al-
gorithm stops, so all other algorithms are censored. It is unknown if and when the
critical event, i.e., finding a solution, would have occurred for them. In algorithmic
survival analysis, the critical event of finding a solution does not necessarily have
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to occur at all, e.g., for semi-decidable problems, whereas classical survival analy-
sis assumes that the critical event, e.g., death, eventually occurs with a probability
of 1. Statistical methods to account for censored data in a meaningful way may
drastically reduce the training cost by not letting all algorithms finish, and are es-
pecially useful in challenging setups like the AOTA framework, with incremental
learning on two distinct levels.

The selection of parallel dynamic algorithm portfolios can also be formulated as
a Markov decision process (see sec. 2.3.2), so that an optimal policy for the MDP
is also optimal for dynamic selection of a parallel portfolio [256]. In [188, 189],
Lagoudakis et al. present another kind of dynamic algorithm portfolio, which is
also based on the notion of MDPs but selects a single-asset portfolio sequentially:
it considers recursive algorithms and selects the algorithm to solve the current
sub-problem each time a recursion occurs. It is a dynamic portfolio in that the
algorithm choice varies during the execution, but unlike the other presented ap-
proaches it lets all selected algorithms work together. Reinforcement learning is
used to decide which algorithm to choose in which situation.

2.5.4 Portfolios for Simulation Algorithm Selection

While the algorithm selection problem and machine learning are interconnected
by approximation theory (see sec. 2.1.3, p. 30, and sec. 2.3, p. 36), the relation be-
tween algorithm portfolios and simulation algorithm selection is not that evident.
As depicted in figure 2.9, common approaches to algorithm portfolios do not nec-
essarily take into account the same entities as the ASP prescribes, nor do they yield
the same results. Furthermore, algorithm portfolios have mostly been applied to
a very specific class of problems so far, which has little overlap with simulation
problems (see sec. 2.7, p. 86).

Disambiguation: Portfolio Selection vs. Algorithm Selection

The variety of portfolio approaches presented in section 2.5.3, ranging from static
to dynamic portfolios and from parallel to sequential ones, brings up the question
of what distinguishes a portfolio approach from other algorithm selection meth-
ods. It is even suggested that there is no such difference, e.g., in [205, p. 34]:
“In contrast, the empirical-hardness-model-based portfolios discussed above are
1-of-n portfolios. (Since only one algorithm is selected, the sequential/parallel
distinction is moot in this case.)”. This would make the ASP as defined in sec-
tion 2.1 a special case of algorithm portfolios, i.e., 1-of-n portfolios. Such a redef-
inition seems misleading, as algorithm portfolios are usually regarded as a subset
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of algorithm selection methods [205, p. 34]: “The term has since also been used
to describe any strategy that combines multiple, independent algorithms to solve a
single problem instance”. It seems natural to follow the latter variant and define an
algorithm portfolio approach as any algorithm selection method that selects mul-
tiple algorithms to solve a single problem instance. Nevertheless, portfolio tech-
niques could be used to simplify the selection of a single algorithm by reducing the
choice and thereby potentially alleviate the metareasoning-partition problem (see
sec. 2.4).

Portfolios of Simulation Algorithms

Algorithm portfolio construction is an interesting technique to select subsets of
algorithms. It is usually independent of problem features and is often based on
purely statistical considerations. However, it is still unclear how well these ap-
proaches can be applied to simulation algorithms that are usually not implemented
recursively, as required in [188, 189], and are also not solving hard problems in the
sense of theoretical computer science, as presumed in [114, 149, 205, 243, 256].
Simulation algorithms are far less complex, and their efficiency requirements usu-
ally stem from large problem sizes. Considerable benefits may stem from com-
parably small optimizations. Besides that, portfolio methods might not cope well
with really large sets of algorithms; typically only portfolios with less then 10
distinct algorithms are considered, e.g., in [96, 114, 149, 205, 256]. A notable ex-
ception is the inter-problem AOTA framework, which was tested with 76 different
setups of a genetic algorithm [95].

Two further issues arise when trying to construct simulation algorithm portfo-
lios. Firstly, some of the selection methods from finance make assumptions regard-
ing the probability distributions of the returns (see sec. 2.5.1), in order to speed up
the identification of the efficient frontier. This makes it necessary to investigate
the runtime distributions of simulation algorithms, as execution time is an impor-
tant performance metric. Secondly, portfolio theory inherently regards a single
one-dimensional performance metric, i.e., the return of an asset. This has to be
reconciled with the ASP’s notion of user criteria for multiple performance facets.

Performance Distributions Simulation algorithms typically iterate many times
over a loop that lets them proceed in simulation time. The runtime of each loop
cycle is influenced by many factors, e.g., the current state of the model, but also
the current state of the hardware resources as well as external load from other pro-
grams. Many of these factors can assumed to be independent of each other, e.g.,
model state and external load, so one might be tempted to retreat to the central
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Figure 2.11: Two sample histograms of simulation algorithm runtime distributions in
JAMES II. They are not necessarily heavy-tailed, as those considered in [114], but also
not necessarily normally distributed either. Left: Execution times of 1000 flat-sequential
PDEVS simulator runs on a 100×100 FORESTFIRE benchmark model (see [134]). Right:
Execution times of 1000 NRM-B simulator runs on a CCS benchmark model (see [158] or
p. 231).

limit theorem [277, p. 70–71] and assume simulation algorithm run times to be
always normally distributed. As figure 2.11 illustrates, this is not necessarily the
case: the runtime distribution on the right is clearly skewed, with a much shorter
head than tail. The reason for this is that some unobserved random variables which
impact the runtime are neither identically distributed nor independent, as the cen-
tral limit theorem presumes. For example, the model’s computational load within
a loop cycle depends on former model states, and hence the model’s former load.
Therefore, the shape of the runtime distributions cannot be generalized over all
simulation algorithms. The left plot in figure 2.11 shows another empirical dis-
tribution, with very different properties: it is very narrow, i.e., there are so few
outliers that the runtime can be predicted easily. Just as in economics, the shape
of the runtime distribution can be an important measure of predictability [300],
and hence needs to be considered carefully. Similar investigations are also nec-
essary for any other performance criteria before a portfolio selection technique
with strong implicit assumptions on return distributions can be applied. This prob-
lem appears in many application domains of algorithm selection and does also
depend on the hardware, not only the model — even when considering relatively
straightforward algorithms. For example, Vuduc et al. observe a “relatively long
tail” [319, p. 77] of runtime distributions for different implementations of matrix
multiplication, depending on the hardware architecture.
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Portfolios for Multiple User Criteria The most straightforward way to extend
portfolio selection to multiple user criteria, i.e., different aspects of algorithm per-
formance, would be to consider k · n -dimensional performance vectors for the k
algorithms and n performance facets, i.e., vectors of the form

(p1,1, . . . , p1,n, p2,1, . . . , pk,n)

so that all performance measures pi,1, . . . , pi,n that describe algorithm ai’s perfor-
mance on a problem are grouped together. The user criteria w ∈ Rn could then be
used to construct k-dimensional vectors that represent the weighted performance
||g(p(ai,xi),w)|| for all algorithms ai ∈ A and problems xi ∈ P (see sec. 2.1). The
performance weighting by the user criteria, however, merely allows to construct
portfolios for specific w ∈ Rn. Thus, selection cannot be conducted in advance,
i.e., before the user has entered the criteria. It may take considerable time, so that
usability is hampered.

Several simple strategies may help to overcome this issue, but they add com-
plexity and do not guarantee a portfolio that is truly efficient. For example, a small
number of user criteria can be tackled by filling a look-up table with different
weights distributions, and then use the efficient frontier that belongs to the most
similar weights from the table when confronted with new user criteria. Finally,
one could calculate the efficient frontier for every single metric in isolation, and
then combine the resulting portfolios in some manner.

Note that the number of user criteria for portfolios is always even, as not only the
importance of the performance aspect, but also the user’s risk-aversion regarding
that aspect, can be taken into account. The risk aversion λ is used to select the
actual portfolio from the efficient frontier (see sec. 2.5, eq. 2.21, p. 61). This
would, for example, allow users to take high risks for good execution speed while
being very conservative when it comes to accuracy. The explicit consideration of
risk as a first-class metric that can be controlled (to some extent) is one of the most
appealing features of algorithm portfolios.

2.6 Categorization of Algorithm Selection Methods

The past sections have formally introduced the algorithm selection problem and
described several potential approaches to solve it (or at least some of its aspects).
These approaches originate from various disciplines: theoretical computer science
(sec. 2.2), artificial intelligence (sec. 2.3), software development (sec. 2.4.3), and
economics (sec. 2.5). An overview of the relations among the most relevant ar-
eas is sketched in figure 2.12; however it should not be considered complete. As



72 2 Algorithm Selection

Theory PracticePractice Mathematics Computer Science
Fundamentals(Applied) 

Statistics
Optimization

Theory
Approximation

Theory
Computability

Theory Algorithms Software
Engineering Experimentation

Basic FieldsFinancial
Theory

Learning
Theory

(Computational) 
Complexity Theory

Experimental 
Algorithmics

FieldsPortfolios Meta-
Heuristics

Machine 
Learning

Data 
Mining

Interdisciplinary
Connections

Meta-
Modeling

Natural 
Phenomena

Economics Physics Biology Neuro-Psychology

Complexity AdaptivityComplex Adaptive Systems

Figure 2.12: Relevant scientific interconnections among the various disciplines that can
be used to solve the algorithm selection problem. Bold type highlights the most relevant
disciplines, additional boxes mark those that gave rise to specific solutions. Related fields
are placed near to each other, and fields that contribute more theoretically than practically
to solving the ASP are placed more centered.

Smith-Miles points out, “It is surprising how little intersection there has been in
the relevant developments in these different communities, and how the vocabulary
has evolved in different directions, making searching for relevant papers in other
disciplines more difficult” [292, p. 21].

Since good overviews and categorizations, such as [96, 292], are rare and survey
the field from the perspective of their specific community, it is useful to develop
a more general categorization of algorithm selection methods, based on the same
vocabulary that describes the ASP itself. This helps to discuss related work, to
identify similar methods, and to appreciate the virtues of differing viewpoints.

2.6.1 Categorization Aspects

Most approaches to algorithm selection do not consider feature selection or treat it
as a separate problem, so that the following categorization focuses on approaches
that explicitly or implicitly aim at solving the best selection mapping problem
(def. 2.1.2, p. 22). The categorization is based on four basic aspects of algorithm
selection methods, which can be phrased as questions and may comprise several
sub-aspects:

• Problem: Which specific ASP is solved?

• Data: What kind of data is analyzed to do so?

• Algorithms: Which algorithms are eligible for selection?

• Solution: How is the ASP solved?
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Problem

Problem-Type Firstly, one can distinguish between decision and optimization
problems [96, 205]. The close relationship between optimization and the ASP has
already been discussed in section 2.1.3 (p. 30). Phrased as a decision problem,
one could ask whether an algorithm a ∈ A reaches a certain performance level
pl = ||p(a,x)|| for a problem x ∈ P. Decision problems are often considered in
theory, e.g., Guo bases its undecidability proof for the ASP on a similar reformu-
lation (see sec. 2.1.3). Another example are algorithm portfolios, e.g., when they
are constructed by investigating the probability that a certain algorithm reaches a
certain level of performance [114]. Note that the above discussion relates to the
ASP problem as such, not to the kind of problems for which algorithms shall be
selected (this distinction is made as well, e.g., in [96, 205]). Most of the aforemen-
tioned methods are based on the optimization viewpoint, e.g., the MABP policies
described in section 2.3.2 (p. 43), so this perspective seems more natural.

Problem- and Selection-Granularity Another distinction endorsed in [96] is
that between solving the ASP per-set or per-instance.23 In case of simulation
problems, a per-instance solution is applicable even if only one simulation problem
instance shall be solved (see sec. 2.4.1, p. 52), i.e., a single simulation run shall
be executed. This can be realized, for example, by letting a previously learned
selection mapping decide on a suitable algorithm. In contrast, MABP policies (see
sec. 2.3.2, p. 48) need to consider several problem instances (i.e., replications)
before they become effective: they solve the ASP per-set.

The same distinction can be made for approaches that find a selection mapping
as defined in section 2.1, and those that select a (sub-)set of suitable algorithms
for a given problem. In contrast to single-selection methods, these set-selection
approaches reduce the ASP hardness rather than solving the ASP. Many algorithm
portfolio approaches (see sec. 2.5, p. 58) fall into this category, e.g., [95, 114].

Data

Theoretical vs. Empirical If the best selection mapping S ∈ S is solely chosen
on theoretical grounds, e.g., by analyzing the time and space complexity of all al-
gorithms in A (see sec. 2.2), this selection process is called theoretical. It subsumes
rigorous mathematical deductions of the best algorithm for some problem features
and user criteria, but also intuitive decisions, e.g., as mentioned in [81, 257], as

23A similar distinction between single- and multiple-instance problems is made in [145].
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long as these are not based on any experimental data that has been recorded be-
forehand. Intuitive algorithm selection often implicitly steers algorithm design,
e.g., when a developer decides to implement a specific synchronization scheme
for a parallel and distributed simulation engine.24 Thereby, theoretical algorithm
selection reduces the set A of all algorithms that could solve the problems in P to
a usually rather small subset A0 ⊂ A of algorithms that are actually implemented.
Besides P itself, such an analysis may also consider the feature space F, as well
as some concrete sample problems x1, . . . ,xn ∈ P and user criteria. However, it
must not consider any performance data, i.e., evaluations of p(a,x) (see def. 2.1.1,
p. 21). If a method does rely on evaluations of p(a,x), it is called empirical. Note
that this definition of empirical algorithm selection does not imply that empirical
methods forgo theoretical considerations; they just also incorporate experimental
data in the form of p(a,x) evaluations. Since it is not very promising to automate
theoretical algorithm selection (see sec. 2.2), the focus of the categorization is on
empirical methods that may or may not rely on additional theory (see discussion
in [142, 235]). In [117, p. 62] a similar distinction between ’experimental ap-
proaches’ and ’analytical approaches’ is made, the latter being restricted to “use
purely mathematical methods”.

Data Collection If the ASP is solved empirically, it is also important to dis-
tinguish between different sources of empirical data. For example, the approach
in [25] collects data from profiling the algorithms with a calibration toolkit on the
target platform. This process is done during the installation of the system and is
not repeated. Such collected data are therefore platform-dependent, i.e., the data
stems from the same kind of machine on which the selection shall take place. A
similar mechanism that also relies on platform-dependent data is presented by Yu
et al. in [338]. The collected data are often also synthetic, i.e., they are recorded
by examining artificial workloads. Finally, the data can be regarded as a snapshot
in this case, i.e., data collection is only done once, to construct a good selection
mapping.

In contrast, platform-independent experimental data does not depend on the exe-
cution platform. For example, data on the accuracy of simulation algorithms does
usually not depend on the underlying hardware.25 It could therefore be shared
among all users. On the other hand, some data are not only platform- but rather
machine-dependent — e.g., when GPU-based simulation algorithms are used, the

24Though experienced developers will make this decision by considering their past experience, i.e.,
some kind of experimental data, in which case their selection is empirical.

25That is, if a high-level language is used and the code has been developed carefully (i.e., the same
truncation errors occur on all platforms, and so on).



2.6 Categorization of Algorithm Selection Methods 75

specific GPU model may have a strong impact on overall performance (e.g., [280]).
The difference between machine- and platform-dependent data hence lies in their
general applicability, i.e., the extent to which specific hardware features are ex-
ploited.

In [338], synthetic experiments are conducted to fit the parameters of a selection
mapping. If some data is extracted from real-world problems instead of synthetic
ones, this data is called realistic. Considering synthetic problems instead of real
ones is often advantageous for performance experiments (see sec. 7.3.1, p. 226),
but using real problems ensures that the collected data is (to some extent) rep-
resentative. Instead of only considering data from a single snapshot, i.e., which
was recorded once, some methods also allow to reconstruct the selection mapping
based on new empirical results. In this case, data collection is said to be contin-
uous. For example, approaches from reinforcement learning rely on continuous
data collection in the form of reward (see sec. 2.3.2). Another possibility would
be to let the user trigger collection manually. Obviously, many kinds of data, e.g.,
synthetic and realistic data, can be combined to form a sufficiently large data base.
Practical implementations may therefore rely on data that fall into several of the
above categories.

Algorithms

Another important aspect is the structure and the size of the algorithm set A, which
is the co-domain of the selection mapping to be found. For any implementation
on a physical machine, A clearly has to be finite. However, some methods are
prohibitive for very large sets of algorithms, e.g., MABP policies may converge
quite slowly when faced with a high number of options. Large algorithm sets may
not even be enumerated, but rather defined implicitly by the specific techniques to
explore A. For example, a selection method could rely on techniques from genetic
programming [279, p. 133] to generate a huge variety of eligible algorithms. If
such techniques are used to explore A automatically, the algorithm set is said to be
generated, e.g., as discussed in [319].

On the other hand, if A is simply a set of distinct algorithms a1, . . . ,an, each of
which represents an alternative implementation to solve a problem, the algorithm
set is called monolithic, i.e., it consists of monolithic algorithms. Such algorithm
sets are often considered for algorithm portfolios, e.g., in [149, 203]. Two other
kinds of algorithm sets fall in-between these two extremes.

Firstly, many algorithms may be monolithic but can still be parameterized. This
often makes the algorithm space A rather large in theory, but the situation is still
quite different from the case of generated algorithms in A: here, it often seems
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reasonable to assume that algorithms ai, . . . ,a j, which all rely on the same imple-
mentation and only vary by parameterization, will still have rather similar overall
behavior. This allows to consider these parameters in a joint performance predic-
tion function p̂er f ai,..., j

(see eq. 2.13), and thus makes the problem considerably
easier than an equally large set of truly distinct algorithms. An example for such
monolithic-parametric algorithm sets is presented in [25].

Secondly, the algorithms in A might not be monolithic black boxes, but rather
combinations of exchangeable algorithms that solve certain sub-tasks, e.g., as
in [146]. Such viewpoint is also likely in component-based systems with a fo-
cus on reusability and flexibility, such as JAMES II. Both the actual algorithms
and their sub-algorithms may be parameterizable. Due to a combinatorial explo-
sion, the algorithm set A might become very large, even though all included algo-
rithms have been implemented manually. Nevertheless, the structural information
inherent to the algorithm combinations might be useful to steer algorithm selec-
tion and could therefore simplify the problem. Such algorithm sets are called
combinatorial-parametric.

Solution

Solution and Application Time Two major aspects of any ASP solution are at
which point in the life cycle of a software system the ASP is solved, and at which
point the selection mapping S, which represents the solution, is actually applied to
select an algorithm. Four main times should be distinguished:

1. Design Time: The time span in which a software is developed.
→For example, when a new simulation algorithm X is implemented.

2. Compile Time: The time span in which executable files are generated for a
release.
→For example, when the implementation of X is compiled.

3. Run Time: The time span in which the software as such is executed.
→For example, when the simulation system that uses the implementation of
X is started.

4. Processing Time: The time span in which a concrete problem is solved by
the software.
→For example, when the implementation of X is applied to a simulation
problem.
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Both solution and application time of an ASP can be any of these times, with the
obvious restriction that the solution time has to precede (or equal) the application
time. The basic ASP definition from section 2.1 makes no assumption on the solu-
tion time, i.e., the time at which a suitable selection mapping is found. However,
the resulting selection mapping S depends on the features of the specific problem,
so that the application of a ’true’ ASP solution has to happen at processing time —
the only time at which all problem features can be known. Contrarily, theoretical
algorithm selection usually implies that both solution and application happen at de-
sign time, since theoretical analysis of algorithms is hard to automate (see sec. 2.2,
p. 33). Similar differentiations by time can be found in related categorizations,
e.g., in the taxonomy for self-adaptive software systems presented in [230]. As
another example, Vuduc et al. distinguish between algorithm selection at compile
time and run time [318] (and combinations thereof [319]). However, what they
regard as the run time is referred to as processing time in the above enumeration,
since their algorithm selection rules rely on the features of the specific problem in-
stance. The run time in the above sense would be solution and application time of
an ASP method if, for example, this method is executed by users (i.e., after com-
pilation) and the results are used to determine a fixed algorithm that is selected in
the following. This selection is then made before any specific problem instance is
processed. Many simulation users are implicitly conducting this kind of algorithm
selection, e.g., when they work with simulation software like MATLAB [223] and
change their default settings to the numerical integrator they deem best because of
past results.

Solution and Application Frequency Apart from the time at which the ASP
is solved and its solution is applied, it can also be interesting to consider the fre-
quency with which this is done for solving a single problem. Most ASPs are solved
once and the selection mapping is then applied frequently — otherwise the efforts
of searching for a good selection mapping could not be amortized. Neverthe-
less, the selection mapping is usually considered only one time per problem. Such
methods have a solution and application frequency of once. Other approaches, like
the dynamic algorithm portfolios introduced by Gagliolo and Schmidhuber [96]
(see sec. 2.5), continuously update and apply the selection mapping at processing
time; their frequencies are therefore called continuous. Alternatively, both the ASP
solution and its application could be triggered from time to time, e.g., by the users
of the system. This kind of frequency will therefore be called triggered, whereas a
continuous frequency implies automation.
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Solution Procedure Methods to find suitable selection mappings have some
general properties that help categorization. Since most techniques are in some
sense related to the field of machine learning, or have even been developed in this
context [292], it seems suitable to apply some of its rich terminology to the given
problem; similar reasonings can be found in [96, 319].

At first, one should distinguish between selection mappings that classify a prob-
lem with respect to the most suitable algorithm and those that predict the per-
formance of all algorithms for the problem and then choose the algorithm that is
predicted to be best (see sec. 2.3, p. 36). A similar distinction is put forward by
Leyton-Brown et al., who argue in favor of prediction approaches [205, p. 36–37].

Moreover, some methods operate in batch mode, i.e., they consider all available
data at once for searching a good selection mapping, whereas others are incre-
mental, i.e., they can improve an existing selection mapping on the basis of new
data. A selection technique may also be oblivious, i.e., it may entirely dismiss
data gathered from old problems. This term has been taken from [96], where
oblivious methods are used to implement dynamic algorithm portfolios. A non-
oblivious batch method would therefore consider both past and current data at
once to search a new selection mapping from scratch, whereas a non-oblivious
incremental method would also take into account the current selection mapping,
usually as a substitute for raw past data. Their oblivious counterparts would be
restricted to data on the current problem.

In this sense, non-oblivious incremental methods seem most suitable to achieve
the ultimate goal of ’life-long learning’ [94], i.e., to have a mechanism that con-
tinuously solves the ASP and in some sense considers all data from the past. Un-
fortunately, such methods are hard to come by.

2.6.2 Summary

A visual summary of the categorization is given in figure 2.13. Several other pa-
pers, e.g., [60, 96, 292], provide simpler yet less comprehensive categorizations,
mostly focusing on the principal solution techniques. These can, however, be
mapped easily to this categorization. For example, Dongarra and Eijkhout [60,
p. 126–127] discriminate between four operation modes of self-adaptive numeri-
cal software:

1. Off-line optimization: Solution and application happen once at compile
time.

2. Hybrid off-line/run-time optimization: A solution is still found at compile
time, but its application is done once at processing time.
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Figure 2.13: General properties of algorithm selection methods as discussed in sec-
tion 2.6.1. Some approaches apply to multiple categories.

3. Completely run-time optimization: Both solution and application happen
once at run time.

4. Feedback directed optimization: This category represents methods that
include “running the program, collecting profile and other information [...]
and recompiling with this information, or saving it for future reference when
similar problems are to be solved” [60, p. 127]. In terms of the proposed
categorization, this category therefore contains all methods that rely on em-
pirical data and solve the ASP at either compile or processing time. The
authors concede that this scenario is not disjoint to ’completely run-time
optimization’; in fact it overlaps with any of the other three categories.

The categorization from [60] does neither regard different sub-problems (e.g.,
set-selection vs. single-selection) nor the structure of the algorithm set — which
might be only natural for the specific application area the authors work in, i.e.,
empirical tuning (see sec. 2.7, p. 83). As another example, the distinction between
static and dynamic algorithm portfolios made in [96] (see sec. 2.5.3, p. 64) can
now be described as applying the ASP solution once at the beginning of process-
ing time on the one hand, and applying it continuously at processing time on the
other hand. Similarly, the categorization of algorithm portfolios into sequential,
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partly-sequential, and parallel — as proposed by Leyton-Brown et al. in [205, p.
34] — merely refers to selection granularity: the definition of a sequential portfolio
equals an algorithm selection method with single-selection granularity, i.e., only
one element from A is selected. Partly-sequential portfolios, in contrast, solve
the ASP with set-selection granularity by selecting a subset A ⊂ A, and parallel
portfolios execute all algorithms in parallel, i.e., A = A. Consequently, parallel
portfolios can only be regarded as algorithm selection if some form of selection
takes place at processing time, since all algorithms are ’selected’ at the beginning.
For example, this approach is pursued in [96], and is therefore also categorized as
dynamic by its creators.

These examples illustrate that there is no common nomenclature throughout the
domains in which algorithm selection techniques are used. This strongly ham-
pers the discussion and evaluation of new contributions, as well as their transfer
to other problem domains [292]. The presented categorization aims at overcom-
ing these problems. For example, the distinctive feature of portfolio approaches,
i.e., that more than one algorithm is applied to the same problem (see sec. 2.5.4,
p. 68), can now be more rigorously defined by demanding either a set-selection or
a continuous application of the ASP method at processing time.

All in all, the categorization suggests that an algorithm selection method should
always be discussed in the context of four main ASP aspects (see fig. 2.13): the
actual problem type it solves, the set of algorithms it selects from, the data that is
considered, and the solution mechanism that is employed. Additionally, one could
also consider and compare the size and the dimensions of the sets A0,P0,F etc.
from the formal ASP definition. This approach has been followed in [292] and
allows quantitative comparisons across the fields. However, such categorizations
still lack information on the nature of the data, the times at which the ASP is
solved, and so on.

2.7 Applications of Algorithm Selection

This section briefly overviews the most important application domains of algo-
rithm selection and tries to clarify the commonalities and differences between the
fields, by referring to the categorization introduced in the last section. A tabular
overview of the most relevant approaches and some of their properties is given in
the appendix (p. 337).
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Fundamental Algorithms

In his work on sorting, Knuth complains that “It was fun to learn all the tech-
niques, but now we must face the horrible prospect of actually deciding which
method ought to be used in a given situation.” [181, p. 379]. This assessment
seems to be shared by many other computer scientists, as there are relatively many
approaches to optimize sorting performance by algorithm selection. The depen-
dence of such a selection on the given hardware architecture is illustrated in [191].
Empirical tuning of sorting algorithms, combined with a simple algorithm selec-
tion at processing time, has been presented in [206]. Sorting as such can even be
learned by genetic algorithms, as [193] shows in the context of autonomous com-
puting. This can be regarded as a very simple example of algorithm selection on
generated algorithms, where the selection of the best one is due to evolutionary
mechanisms.

Lagoudakis et al. [188, 189] interpret the recursive calls for sorting sub-lists
as a Markov decision process and consequently employ reinforcement learning
(sec. 2.3.2, p. 43) for their dynamic portfolio approach (see sec. 2.5.3, p. 64).
They achieve 43% speed-up with respect to the fastest single algorithm in their
portfolio [188]. This is QUICKSORT, which can itself be adapted by configuring
its strategy for selecting a pivot element, and which is not even trivial to analyze in
isolation [227]. Algorithm selection can also be performed for other fundamental
algorithms, e.g., matrix multiplication [173, 207].26

Problem Solving Environments

Problem solving environments (PSEs) are all software systems that solve a specific
class of computational problems. More concretely, they offer several solution al-
ternatives and provide a “language natural for the problem class” [148, p. 2] to
let users abstract from any concrete solution algorithm. This is still a very broad
definition, e.g., it subsumes simulation software and scientific computing environ-
ments like MATLAB [223].

Since PSEs usually provide more than one method for solving a problem, they
have to select among these when the user has entered a problem, and hence they
have to solve the ASP. This issue is addressed by systems like PYTHIA [324]
or its successor, PYTHIA II [146]. PYTHIA II selects a single algorithm per
problem instance, based on prior knowledge that is induced by machine learning.
It provides a layered architecture (see sec. 4.4.1) and a database for the manage-

26In addition, matrix multiplication is a popular test case for empirical tuning (p. 83), e.g., used in [25,
319, 329].
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ment of experimental setups, problem features, and performance data. It operates
’on top’ of software components that are regarded as black boxes, i.e., they do
not have to convey any internal information to the system. This makes it neces-
sary to provide additional integration code, e.g., for executing the software with a
given problem or for obtaining the desired performance measurements. Similarly,
the introduction of new problem domains requires to add additional, customized
database structures. The system is able to weigh multiple performance aspects,
e.g., execution speed and accuracy of partial differential equation solvers [146].
The selection mapping is generated in two steps. First, a statistical method is used
to rank algorithm performance for all problems and performance metrics. A hu-
man knowledge engineer then selects which results to use for inferring rules from
the given ranks and problem features. PYTHIA II does so with an inductive logic
programming technique: algorithm ranks and problem features are represented by
logical expressions, from which rules like

hasFeatureA(x)∧hasFeatureB(x)⇒ bestMethod(a)

with problem x ∈ P and algorithm a ∈ A can be inferred. End users query
PYTHIA II’s recommender system to manually select a suitable software pack-
age for a given task. The actual selection in PYTHIA II considers the given
problem features and orders all matching rules by their relevance and the amount
of empirical data that support them. After applying the rules and thereby selecting
an algorithm, the algorithm parameters can be selected by linear regression. The
overall approach requires a “dense population of similar types of problems” [146,
p. 228–229]. MYPYTHIA extends PYTHIA II by providing web-based access
to its features [147].

While PYTHIA II is flexible enough to allow the addition of new machine
learning methods, software packages, or problem domains, it is mainly focused
on guiding users in their manual selection of numerical software. Incremental
learning is not supported and many important aspects of simulation algorithms,
e.g., the impact of stochastic effects (see sec. 2.3.1), are not addressed explicitly.

PSEs can be implemented by component-based systems, e.g., as discussed
in [99], where the large design space of linear algebra solvers is discussed and
combinations of algorithms are considered. Algorithm selection in PSEs is usually
invoked at the beginning of processing time, chooses once from a set of monolithic-
parametric algorithms (or their combinations), and takes into account the features
of the current problem instance.
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Empirical Tuning

Empirical tuning is a method for hardware-dependent compiler optimization, in
which the most suitable way of executing statements from a high-level program-
ming language shall be selected. This is usually done by some kind of combina-
torial search through the (potentially large) space of possible code optimizations,
e.g., via ’unrolling’ loops so that CPU registers are used more efficiently [342].
Many empirical tuning methods can be regarded as algorithm selection from a set
of generated algorithms, which is done once at compile time.

Empirical tuning is realized by automatic tuning systems such as PHIPAC [317,
318, 319], which generate possible realizations of a task given in a high-level pro-
gramming language, and then search for the best realization by evaluating their
performance. They predominantly aim at avoiding time-consuming manual adap-
tations to existing scientific programs, which strive for peak performance on spe-
cific hardware architectures. Vuduc et al. distinguish empirical tuning systems
by the time at which the ASP is solved (compile time, processing time, or both),
by the solution method (e.g., searching), and by the unit of optimization [319]:
kernel-centric methods tune the given code as such, whereas compiler-centric sys-
tems tune the compiler so that it applies the right combination of optimizations.

The dependency on hardware is particularly eminent in this domain of algo-
rithm selection, so that systems like PHIPAC are tested across various platforms
(e.g., Sun Ultra, MIPS, Pentium-II, PowerPC, Cray) [318]. PHIPAC was shown
to deliver performance comparable to vendor-specific (i.e., manually optimized)
implementations for matrix multiplication, and could even outperform those on
several problem instances. Although Vuduc et al. conceded that “[...] perfor-
mance can be surprisingly difficult to model on modern cache-based superscalar
architectures”[319, p. 65], they successfully applied machine learning methods
for algorithm selection at processing time [318].

Empirical tuning can be regarded as a complementary technique to selecting
simulation algorithms:27 overall performance is improved by transforming all al-
gorithms to machine code that runs optimally on the given architecture. How-
ever, this does not alleviate the task of high-level algorithm selection. Vuduc et
al. conclude that they “[...] could not reasonably expect a general purpose com-
piler to know about all of the possible mathematical transformations or alterna-
tive algorithms and data structures for a given kernel; it is precisely these kinds
of transformations that have yielded the highest performance for other important
computational kernels [...]” [319, p. 83–84].

27In fact, empirical tuning techniques are often tested with code for scientific simulations, e.g., in [342].
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In [338], empirical tuning is applied to parallelized variable reduction. An ex-
ample for automatically tuned matrix multiplication is the linear algebra software
ATLAS [329], which is optimized with respect to caching, instruction ordering,
and loop overhead. It even exploits instruction-level parallelism by hiding the la-
tency of slow operations. Similarly, collective inter-processor communication via
the message passing interface (MPI) can be tuned automatically [311]. Here, ex-
ecution time is affected by network latencies and platform specifics, the message
size, and the number of processors involved. Apart from the algorithm as such, the
segmentation size (i.e., the number of segments a larger message is split into) as
well as buffer sizes play an important role. An automatically tuned variant could
outperform a native MPI implementation by up to one order of magnitude. An
adaptive variant could improve the performance by another 25% [311]. Brewer
applies compile-time algorithm selection to sorting and stencil computation (a
method to solve partial differential equations) [25]. Frigo and Johnson use an
empirical-tuning approach that relies on dynamic programming to speed up Fast
Fourier Transformation [87]. Their approach outperforms many specifically tuned
libraries, and they point out that “computer architectures have become so complex
that manually optimizing software is difficult to the point of impracticality” [87, p.
1384].

Recent work by Ansel et al. [7] shows how algorithm selection can be explic-
itly addressed by a programming language: their PETABRICKS language allows to
define multiple algorithms (named rules) for computing a single function (named
transform). Rules may be restricted to work only for some inputs and may include
recursive calls. The PETABRICKS compiler determines a suitable strategy of ex-
ecuting the rules of a transform in parallel (if possible) and selects the rules and
their parameters with the help of an automatic tuning system.

Meta-Learning

The field of meta-learning constitutes an interesting application domain of algo-
rithm selection. It aims at learning which machine learning algorithm to select
for which kind of problem. Since the application domain is learning, researchers
predominantly apply learning methods to solve the ASP, hence the term meta-
learning. As a specific form of the algorithm selection problem, meta-learning
is particularly relevant for guiding non-expert users of machine learning and data
mining applications. Consequently, it is considered in standard use cases [167,
p. 11] and also motivates flexible software frameworks in this area [216, p. 5].
The problem is also known as the selective superiority problem [174, p. 275]. An
overview on meta-learning from an algorithm selection viewpoint is given in [292],
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which also discusses applications to sorting (fundamental algorithms, p. 81), con-
straint satisfaction (computationally hard problems, p. 86), and other domains.

Research on meta-learning is often dissociated from work in other algorithm se-
lection domains, so it comes at no surprise that rather similar concepts have been
developed under different names. For example, algorithm portfolio techniques are
strongly related to ensemble learning, i.e., methods that apply multiple learning
algorithms in order to improve prediction accuracy [333, p. 250 et sqq.]. Popular
ensemble learning schemes are bagging and boosting, where several instances of
a simple learning scheme are used to jointly solve the actual learning problem.
Thereby, each instance is focused on a specific part of the problem, e.g., those
cases that were mis-classified most often so far. All approximation forms gener-
ated by the instances are then combined to a single form, usually by some kind of
voting scheme. While bagging considers all learners to be equal, boosting allows
to weigh the votes of the learners, e.g., corresponding to their overall success on
the training set. From an algorithm selection perspective, bagging and boosting
can be regarded as applying portfolios that contain multiple instances of an algo-
rithm [202, 205]. A related method, stacking, employs an explicit meta-learner to
learn which instance within the ensemble, i.e., the portfolio of learners, performs
best under which circumstances. The dynamic algorithm portfolio selection imple-
mented by the extended AOTA framework (see fig. 2.10, p. 67) could be regarded
as such an approach [96], since the AOTA framework incrementally learns to trust
one time allocator more than others.

Apart from such parallel developments, there are also some rather unique view-
points on the problem that stem from the meta-learning community. These de-
serve special attention, as they could also be useful in other algorithm selection
domains. In [257], Pfahringer et al. introduce landmarking, a method to improve
meta-learning: instead of using common problem features like the number of at-
tributes, the performance metrics of simple and fast learners are used as problem
features, i.e., to decide which of the complex learning schemes to prefer. Such
an approach exploits the duality between an algorithm and the problem to be
solved [174]: while classical approaches to algorithm selection try to character-
ize algorithms with respect to the problems on which they perform well, it might
also be insightful to characterize problems by the algorithms that perform well on
them. Ipek et al. use a similar line of thought for characterizing the hardness of
an approximation problem, i.e., to show that the function they try to approximate
is non-linear [155, p. 13]. In a simulation context, one would necessarily have to
reduce the problem size in order to obtain any solution fast enough, otherwise the
determination of problem features would take longer than any good algorithm se-
lection could amortize (the metareasoning-partition problem, see sec. 2.3.3, p. 50).
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Landmarking could therefore be realized by some form of pre-simulation, i.e., a
test-wise simulation over a comparably small timespan before setting up the actual
simulation. Such techniques have already been used to improve PDES partitioning
(see sec. 1.3.2, p. 9), where the communication frequencies among model entities
are often unknown [35].

Finally, meta-learning is focused on an application domain where algorithms are
often grounded on reasoning via information theory, hence there are also analytical
approaches to select suitable learning algorithms (see discussion in [174, p. 276–
278]).

Computationally Hard Problems

There are exceptionally hard problems for which no efficient algorithm is known
yet (e.g., [54, p. 439 et sqq.]). Nevertheless, some of these problems are quite rel-
evant in practice, e.g., for planning [273] or graph partitioning [100]. The latter is
required for model partitioning and hence is also relevant for distributed simulation
(see fig. 1.4, p. 12).

Although such problems are known to be hard to solve in general, they have ad-
ditional properties of practical importance. For example, the corresponding prob-
lem spaces are known to exhibit phase transitions, i.e., systematic shifts in problem
hardness — only problems near a phase transition are hard to solve [37]. For hard
decision problems, e.g., to decide whether a given logical formula is satisfiable
by some variable assignment, a phase transition is also known as the easy-hard-
easy pattern [273]. Rather unconstrained problems are often easy to solve, and it
is equally easy to show that no solution can exist for very constrained problems.
The problem instances that make the overall problem hard (in terms of worst-case
performance, see sec. 2.2, p. 33) can be found in the middle of the phase transition
(see fig. 2.14).
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Figure 2.14: Sketch of a phase transition.
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In [139], Hogg et al. relate algorithmic phase transitions to phase transitions
from statistical physics, where a small change of a single parameter (e.g., temper-
ature) can invoke the phase transition of the whole system into a new state with
completely different properties, such as water that freezes to ice. They suggest
that “[...] the location of the phase transition point might provide a systematic
basis for selecting the type of algorithm to use on a given problem” [139, p. 10].
Machine-learning is proposed to discover the parameters that determine the perfor-
mance of the investigated search algorithms. Likewise, Guo envisages algorithm
selection to distinguish between the hard and the easy problems [116, p. 19]. This
would, for example, allow to select an exact algorithm whenever problem features
indicate that this problem is far away from the phase transition, and to select an
approximative algorithm otherwise.

Nevertheless, algorithm selection for hard problems has almost exclusively been
tackled by algorithm portfolios, except for the approaches presented in [117, 145].
SATzilla [243, 336] is a very successful solver for the aforementioned satisfiability
(SAT) problem. It is based on a portfolio of commonly used SAT-solvers. Satisfi-
ability belongs to the general class of constraint satisfaction problems (CSP), i.e.,
problems in which a variable assignment that satisfies some constraints has to be
found. Other forms of CSPs are addressed in [114, 145, 149].

Simulation

The distinction between simulation environments and problem solving environ-
ments gets blurred when considering approaches that help with the selection of
suitable numerical integrators. Numerical integrators are used for continuous sim-
ulation [34] and are usually selected so that they integrate a given set of differen-
tial equations as fast as possible, while keeping the error below a given threshold
and maintaining numerical stability. At the same time, solving differential equa-
tions is considered as a task for scientific computing in general and is therefore
addressed by PSEs like PYTHIA II [146] (see p. 81). Rice already discussed nu-
merical integrator selection as a potential application domain when he introduced
the algorithm selection problem [272, p. 77–82]. A more recent approach to se-
lect numerical integrators for simulation studies is briefly presented in [42] for the
continuous simulation system TORNADO [40]. It relies on reinforcement learning
to identify desirable actions (i.e., algorithm selections) for certain model set-ups,
characterized by the features of the simulation problem. However, neither specifics
on the reinforcement learning technique as such are given, nor any performance
results regarding its effectiveness.
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Many adaptive synchronization protocols have been devised in the field of par-
allel and distributed discrete-event simulation (PDES) [52]. Some adaptation tech-
niques are more sophisticated than simple heuristic rules that may or may not work
for all kinds of models. For example, Wang and Tropper use reinforcement learn-
ing to find a suitable Time Window size, in order to optimally throttle down opti-
mistic synchronization [322]. A similar approach is used to select and configure
load balancing mechanisms during simulation execution [231].

Quaglia [267, 268] realized a simple form of continuous algorithm selection for
speeding up single PDES runs: two replications are executed by different configu-
rations in parallel, and the results of the fastest replicated LP are sent to both repli-
cations of the recipient. In other words, this approach employs a parallel portfolio
approach in which the two algorithms of the portfolio interact with each other, i.e.,
they work together to solve the simulation problem. Ferscha et al. use a simple
data mining strategy to analyze the sensitivity of different PDES synchronization
protocols on problem features [79].

In [337], Xu and Tropper use machine learning to select between sequential and
parallel discrete-event simulation. They employ 1-nearest neighbor search, i.e.,
they look up which algorithm to choose by considering the most similar scenario
with respect to three problem features. Furthermore, they use the same technique
to decide how much resources a parallel simulation should use to achieve an opti-
mal execution time.

None the aforementioned approaches from the simulation community has been
put into the general context of the algorithm selection problem. This also holds
for the techniques to predict simulation algorithm performance, which are briefly
surveyed in section 3.3 (p. 108).

Summary: Algorithm Selection Approaches

Even though the above sections span various fields of computing, algorithm se-
lection is done in many other fields as well — be it implicitly or explicitly. Rice
already proposed algorithm selection for operation system task schedulers [272].
It is also relevant for adaptive middleware [22, 230], planning [81], hardware de-
sign [262], and generally all application domains in which:

• a variety of algorithms exists

• the features of the problems to be solved vary strongly

• the interdependence between algorithm performance and problem features
is non-trivial
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Apart from rather ad-hoc and need-driven applications of algorithm selection,
as described in the above subsections on fundamental algorithms and simulation,
application domains often motivate certain families of approaches that are tailored
to their specific requirements. Problem solving environments try to be adaptive via
implementing single-algorithm selection for each problem instance. This requires
a well-understood problem domain that motivates many features which indeed de-
termine algorithm performance. Instances of hard problems, on the other hand, are
also hard to analyze — here, portfolio approaches that exploit the properties of the
algorithms’ runtime distributions prevail. Since portfolio selection is also possible
on purely statistical grounds, there is often no need to reason on the specifics of a
concrete problem instance. Problem features are also neglected for many empir-
ical tuning techniques. These shall select the most suitable machine code for the
given hardware platform, so that they also often retreat to feature-less algorithm
selection. The selection is focused on a single performance metric — execution
speed — and is often done for a single problem instance only, i.e., these methods
are oblivious. On the other hand, empirical tuning techniques usually generate the
algorithms from which they select, which again increases the complexity of the
task: they have to choose from a large amount of possible codes. Meta-learning
relies on techniques similar to those applied to computationally hard problems, i.e.,
for selecting algorithm sets, but is able to include the existing domain knowledge to
a much greater extent. In contrast to portfolios for hard problems, meta-learning
allows the selected algorithms to work together. This often results in rather so-
phisticated approaches, e.g., the extended AOTA framework (sec. 2.5.3, p. 64). As
figure 2.15 illustrates, both meta-learning and empirical tuning techniques can be
used in conjunction with simulation algorithm selection: different selection map-
pings may be managed and chosen by a meta-learning scheme, while the use of
an empirical tuning technique within the compiler would be completely transpar-
ent to the overall system28. Approaches from problem-solving environments and
from the domain of hard computational problems are both important for simula-
tion algorithm selection, depending on the available knowledge and data regarding
a specific simulation problem domain.

2.8 Summary

This chapter introduced the algorithm selection problem (sec. 2.1) and described
four basic approaches to its solution:

28In fact, the just-in-time compilation techniques used in some Java runtime environments can be
regarded as empirical tuning as well [319, p. 89].
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Figure 2.15: Complementary methods for simulation algorithm selection. Meta-learners
operate on selection mappings SM1, . . . ,SMn, i.e., they learn which of the ASP solutions
performs best. This allows to identify the most promising ASP solution technique for a
given simulation domain. Empirical tuning optimizes the execution of each single simula-
tion algorithm SA1, . . . ,SAm, i.e., it learns how to make the most efficient use of the available
hardware.

• Analytical selection by algorithmic complexity theory (sec. 2.2)

• Empirical selection,

– by machine learning (sec. 2.3)

– by adaptive software (sec. 2.4)

– by algorithm portfolios (sec. 2.5)

Machine learning and algorithm portfolio selection are based on the same fun-
damental techniques for data analysis, but differ in the selection granularity with
which they solve an ASP: approaches from machine learning usually perform
single-selection, whereas classic portfolio theory only allows to select a set of
promising algorithms (sec. 2.6.1, p. 73). On the other hand, such portfolio ap-
proaches do not rely on any problem features. This eliminates the considerable
effort required to identify the most suitable features for an ASP, which is indeed
a challenging problem in itself (def. 2.1.3, p. 23). Recently, several approaches
have been presented that blur the line between portfolio approaches and machine
learning, e.g., [96, 205].

Adaptive software does not prescribe a selection or problem granularity, but
focuses on approaches that solve the ASP continuously, and also apply solutions
in that manner: autonomous software shall optimize itself automatically. Meta-
heuristics (p. 30) are suggested for this task [193]. Some of them can be realized by
some form of (decentralized) multi-agent system.29 On the other hand, the specific
29For example, one could implement a genetic algorithm as a MAS by suitably defining the agents’

environment and their interactions, similar to the Echo system described in [141].
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algorithm selection technique is often neglected by adaptive software research,
which is more focused on providing the features any adaptive software mechanism
needs, e.g., component discovery or reflection (see sec. 2.4.3).

Only these empirical approaches are likely to be automatable. None of them
offers a fundamental theoretical model of algorithm performance, from which a
good selection mapping might be deducible — the mappings are derived from em-
pirical data only, i.e., all three empirical approaches are prone to inductive fallacies
(see sec. 1.4, p. 13). Consequently, the next chapter deals with the difficulties and
pitfalls in collecting empirical data on simulation algorithm performance and dis-
cusses how this data can be analyzed, e.g., for predicting simulator performance
(see sec. 2.3, p. 36).

Unsurprisingly, there is no silver bullet to algorithm selection — section 2.7 il-
lustrates that there is not even a coherent research community dedicated to this
issue. Following the approach of Sutton [298], who defined the field of reinforce-
ment learning by the problem to be solved, instead of characterizing the techniques
that solve it, all the above approaches belong to the field of algorithm selection be-
cause they solve some aspect of the ASP. The various dimensions discussed in
section 2.6 should help to compare approaches from any of these communities,
and to decide which are the most promising in a simulation context.
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Analysis

There are two ways of acquiring knowledge, one through reason,
the other by experiment. Argument reaches a conclusion and com-
pels us to admit it, but it neither makes us certain nor so annihi-
lates doubt that the mind rests calm in the intuition of truth, unless
it finds this certitude by way of experience.

Roger Bacon, On Experimental Science, 1268

Chapter 2 illustrates that the search for a good selection mapping depends on
reliable performance data. To collect such data efficiently and to ensure that it
is indeed trustworthy involves a whole range of additional techniques, which will
be briefly discussed in the following: “Unfortunately, as many researchers have
already discovered, the field of experimental analysis is fraught with pitfalls” [163,
p. 216].

The chapter closes with a survey of performance analysis methods that are used
in the domain of simulation, focused on performance prediction techniques for
parallel and distributed simulation algorithms (some of which have already been
detailed in [65]). As discussed in section 2.3, performance prediction is closely
related to algorithm selection: an accurate prediction of simulator performance
allows to select the most suitable algorithm beforehand, and hence solves the ASP.

3.1 Challenges in Experimental Algorithmics

Methodological guidance for the collection and analysis of algorithmic perfor-
mance data comes from the field of experimental algorithmics [229]. The view
that computer science is empirical, however, is much older than the notion
of experimental algorithmics. For example, Newell and Simon maintain that
many fundamental advances in artificial intelligence, a field subsuming several
of the methods discussed in chapter 2, have been mainly driven by empirical re-
sults [237]. Moret [235] distinguishes experimental algorithmics from the experi-
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mental branches of other (natural) sciences, insofar as the former employ experi-
ments because algorithm performance is often too hard to analyze in theory only,
whereas latter resort to experimentation without alternative sources of knowledge.
He motivates a focus on implemented algorithms and their empirical performance
by giving various examples, e.g., for misleading results from computational com-
plexity theory.

The importance of experiments has already been discussed in section 2.2: the-
oretical analysis is usually unable to fully characterize all relevant performance
aspects, so that an empirical approach is mandatory. Apart from some impera-
tives concerned with scientific rigor in general, Johnson [163] advises algorithm
experimenters to:

• Use reasonably efficient implementations.

• Ensure reproducibility.

• Ensure comparability.

• Use efficient and effective experimental designs.

Section 3.2 discusses the last advice in more detail. The other three advices
seem quite straightforward, but are in fact hard to fulfill. However, the problems
of lacking comparability and reproducibility are not unique to the field of modeling
and simulation; similar issues arise in other domains of computer science as well,
e.g., in research on computer systems — where the authors of a survey were “[...]
dismayed at the lack of rigor and comparability of the published work” [290, p.
14].

3.1.1 Efficient Implementations and Comparability

Using ’reasonably efficient’ algorithm implementations seems self-evident, but it
also means that all algorithms under consideration have to be realized with the
same care and effort. For typical horse race publications in simulation, i.e., con-
tributions that introduce a new algorithm and show where it outperforms existing
methods [163, p. 216], this ideal is hard to achieve. Oftentimes, researchers have
to re-implement existing methods based on descriptions from the literature, due to
a lack of compatibility between programming languages, operating systems, and
hardware platforms. As figure 3.1 illustrates, any performance measurements on
a re-implementation may be biased and are unlikely to exhibit exactly the same
characteristics as their original counterparts. Furthermore, algorithms are usually
described verbally or with pseudo-code in the literature, instead of providing the
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Figure 3.1: Potential sources of re-implementation bias: all lower abstraction layers may
affect the performance of an implementation (gray vertical arrows), both on the side of
the initial developer and anyone who re-implements the algorithms. Publishing the source
code allows others to exclude the implementation bias (dotted horizontal arrow), but not
necessarily the bias due to operating system and hardware. In case of Java programs (and
other interpreted languages), the Java runtime environment also plays a significant role
(white layer).

lengthy source code. The more abstract and general an algorithm’s description,
the more error-prone is the process of re-implementing it. This problem might
be alleviated by demanding that the algorithms in question have to be accessible
alongside the scholarly publication, e.g., in the form of supplementary material.
Hafer and Kirkpatrick put it bluntly: “Only the original code provides enough
detail for replication. Pseudocode of an algorithm is insufficient” [120, p. 127].

There is also a subjective bias involved, since researchers may be inclined to
spend much time profiling and fine-tuning their own algorithms, whereas com-
peting algorithms are re-implemented in a plain and straightforward manner. Re-
searchers may also tend to focus their performance analysis on those regions of
the problem space where the newly developed algorithm performs best. This is
only natural, considering that new algorithms are often designed to achieve better
performance for a specific class of problems — but it may still distort the overall
picture. All these factors may exaggerate the performance advantage that a new al-
gorithm has over established methods, which in turn may lead to numerous (costly)
re-implementations of the new method, although it is in fact unremarkable.

Some algorithms may exploit specific hardware features that are not available on
other architectures, or can only be emulated at great performance cost. For exam-
ple, GeorgiaTech TimeWarp (GTW) 2.0, a well-known simulation system based on
the Time Warp synchronization protocol, exploits the features of shared-memory
multiprocessors [53]. Porting it to another architecture requires to introduce new
algorithms, i.e., it would eventually result in a new version of GTW, which is hard
to compare to the former. More recent approaches face similar issues (e.g., [209]).

All these problems explain the focus on machine- or platform-dependent per-
formance data, a viewpoint taken by almost all algorithm selection approaches
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(see app. A.3, p. 337). Nevertheless, it is sometimes possible to come up with
hardware-independent performance measures, e.g., for search algorithms one can
count the number of steps until a good solution is found [114, 145]. Similar metrics
exist for some simulation algorithms, e.g., one could observe the relative number
of straggler events that occur during an optimistic simulation. Such rather abstract
measures can be very useful, but the experimenter has to take care of two aspects:

1. Degree of hardware independence.

2. Correlation with real-world performance.

For example, the number of rollbacks might be independent of the hardware ar-
chitecture as such, but it may vary when the relative speeds of network connection
and CPUs are altered. If messages are delivered faster but processed at the same
speed, this may reduce the number of roll-backs. Moreover, it has to be ensured
that such indirect metrics correlate strongly with the performance metric that ac-
tually matters. For example, new synchronization protocols shall ultimately speed
up the overall parallel and distributed simulation; if roll-back reduction is achieved
by an algorithm that hurts overall performance, e.g., by blocking LP execution for
too long or by being too expensive, just counting roll-backs will not uncover the
algorithm’s shortcomings.

All this speaks for the collection of performance data from the machine on
which the algorithm selection shall ultimately be conducted. Good experimen-
tal setups may allow to transfer these findings to rather similar machines, but any
other knowledge transfer based on empirical results will at least require some form
of calibration, i.e., to conduct experiments on the target machine in order to cor-
rectly interpret and scale the performance data collected on other machines in the
past.

3.1.2 Reproducibility

Reproducibility is necessary for falsification, and is hence an essential property
of any scientific experiment (see sec. 1.1). The more complex the algorithms,
the more error-prone is the process of evaluating and comparing them. Johnson
proposes a “broader notion of reproducibility” [163, p. 229] for experimental al-
gorithmics: a result is regarded reproducible if the performance evaluation of a
re-implemented algorithm under similar circumstances (hardware, operating sys-
tem, etc.) supports the former results and does not contradict them. This definition
ensures that results are not rejected on the grounds of minor deviations — as fig-
ure 3.1 shows, it is hardly possible to achieve exactly the same results, and this
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even holds for experiments on the same machine (see below). To estimate and, if
necessary, to document such external factors and their impact is the responsibility
of the experimenter.

Hardware, Operating System, and Execution Environment

The exact reproduction of a single simulation run is practically impossible, as it
depends on the state of the operating system and all involved hardware components
like caches, which are also used by other programs running on the same computer.
Software updates or hardware failures may further impact the machine’s perfor-
mance at any time. Eliminating all these factors is therefore considered infeasi-
ble [235]. The situation is even worse in parallel and distributed simulation, where
hardware is either quite complex (e.g., in supercomputing) or includes additional
devices for network communication, such as routers or switches.

A common way to characterize the hardware used in experiments is to provide
the CPU model, the amount of available random-access memory (RAM), and addi-
tional benchmark scores, i.e., aggregated performance results for some widely used
and standardized tasks that are designed to compare hardware platforms, operating
systems, and so on. The experimenter has to carefully choose the benchmark that
is most similar to the workload imposed by the algorithms under consideration.
For example, there are several SPEC benchmarks for Java [293], some of which
aim at rather general performance characterizations while others focus on features
of particular importance in specific domains, e.g., business applications. For CPU-
intensive operations, which are usually more relevant in scientific computing and
simulation, Java SciMark [263] is a viable alternative. The description of operating
system and execution environment is usually limited to product name and version
number.

Problem Instances

Besides describing the infrastructure under which an experiment has been con-
ducted, it is equally important to characterize the concrete problems to which the
algorithms were applied. As already discussed in section 2.6.1 (p. 72), a major
distinction is that between realistic and synthetic performance data, generated by
experimenting with realistic and synthetic problem instances respectively. Realis-
tic problem instances are advantageous because they are by definition representa-
tive of real-world problems and their practical relevance is therefore undisputed.
On the other hand, algorithm evaluations for new problem domains can usually
not rely on existing problems, e.g., if the aim is to explore a region of the problem
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space that is deemed important in the future. Such situations call for the gener-
ation of synthetic problems, which also has some additional advantages when it
comes to the automated performance analysis of algorithms. For example, syn-
thetic problems can be constructed to have some known solution, so that they can
be used to detect implementation faults. A more detailed discussion on the merits
and drawbacks of either kind of problem instance is given in section 7.3.1. In any
case, the experimenter has to ensure that the problem instances are reproducible,
either by specifying them explicitly or by describing the generation mechanism
that creates them.

Stochasticity

Stochastic elements may be used on many levels, e.g., to create synthetic problem
instances. They play an important role in discrete-event simulation, where they
are used to calculate, for example, inter-arrival times or reactions occurrences (see
sec. 1.3.1, p. 7). Reproducibility makes it necessary to detail the method with
which these stochastic elements have been realized (e.g., [101]).

True randomness is hard to achieve on a deterministic machine like a com-
puter. Although there are sources of ’true’ random numbers occurring in nature
(e.g., [119]), most problems are solved by relying on (pseudo-) random number
generators (RNGs), i.e., deterministic algorithms that generate streams of seem-
ingly random numbers. RNGs are an important class of algorithms and have there-
fore received much attention over the past decades (e.g., [183, 192, 195]).

An RNG can be regarded as a very simple finite state machine, i.e., it has a
finite number of states and an iteration function that defines the successor of each
state. Typically, no input is considered: a new random number is generated by
interpreting a part of the current state as a random number, usually normalized to
the unit interval [0,1) by an output function. Such uniformly distributed numbers
in [0,1) can then be transformed to various probability distributions, as required
by the model or the simulator. Finally, the iteration function is applied to reach the
successor state.

As an illustrative example, consider the popular family of linear congruential
generators (LCGs) with an iteration function of the form:

xi+1 = a · xi +b mod c (3.1)

where xi is the current state, xi+1 is the next state, and xi
c could be an output func-

tion.1 The parameters a, b, and c are chosen to maximize the apparent randomness
1Actual output functions are less naïve and only use specific parts of an LCG’s state, in order to avoid

non-random patterns in their output (i.e., correlations).
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of the output, since correlated random numbers may invalidate simulation results
(e.g., as shown in [115]). The initial state x0 of an RNG is called its seed. Set-
ting it determines the exact sequence of numbers that is generated, and is therefore
needed to reproduce the simulation results.

An important figure of merit is the period of an RNG. It denotes the amount
of iterations until the RNG reaches a prior state. Being a deterministic state ma-
chine, it repeats the generated sequence of numbers from then on. Each state
transition within an RNG’s period can be regarded as drawing a state randomly
without replacement, which may introduce a bias even though the period itself is
not exceeded. For example, the rule of thumb for LCGs with period n is to limit
the generation to

√
n random numbers [125, p. 492]. Still, periods of modern

RNGs are very large, e.g., the well-known Mersenne Twister [225] has a period of
219937−1, so that this restriction is rarely a problem in practice. More severe prob-
lems arise in parallel and distributed simulation, where random number generation
is decentralized and parallel streams of random numbers need to be generated, for
which several techniques exist (e.g., [222]). Testing the qualities of such parallel
RNGs is often done by using them in distributed simulations of models for which
an exact analytical behavior is known [294].

A related aspect is the seed size of an RNG, which defines the size of its state
space and hence determines the maximum number of distinct number sequences
that can be produced. The larger the seed size, the more distinct trajectories can oc-
cur in a stochastic simulation. For example, if x in equation 3.1 is represented by a
32-bit integer, this means that at most 232 different number sequences can be used
by a stochastic simulation, to simulate at most 232 different trajectories. As dis-
cussed in [218], such limitations may bias the results of stochastic computations. A
fundamental bias also stems from the mathematical form of the iteration function
as such, e.g., Marsaglia could prove a relation between the modulo-parameter c of
LCGs (see eq. 3.1) and the number of hyperplanes onto which most random tuples
of LCG-generated numbers fall [217]. Such bias is hard to avoid in practice, as
all RNGs have certain structural properties that lead to correlations of some kind.
These correlations are often elusive and hard to derive analytically, so that RNG
developers rely on empirical (i.e., statistical) tests [196, 278, 294]. Since there
is no dominating (i.e., best) RNG and it is hard to tell how a given RNG affects
results [125], the selection of RNG algorithms can be regarded as a domain where
automation is unlikely to succeed. Situations in which RNG correlations affect the
validity of simulation outcomes are very likely un-learnable (in the sense of [313],
see sec. 2.3.3, p. 50); the recommended course of action is simply to reproduce re-
sults with distinct RNGs [125, p. 502]. Johnson puts it more boldly and advises us
to “never trust a random number generator” [163, p. 247]. As illustrated in [226],
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even today’s RNGs may produce strongly correlated output if they are initialized
carelessly, so that the fast generation of high-quality pseudo-random numbers is
still an area of research.

To ensure reproducibility in the broad sense, it is sufficient to define the algo-
rithm that is used to generate the pseudo-random numbers. However, there are
practical situations in which the exact course of a stochastic simulation run needs
to be reproduced, e.g., when a more detailed observation of a concrete trajectory
is desired. This requires to specify the exact implementation of the RNG as well
as the seed with which it was initialized. Additional challenges arise in case of
parallel and distributed simulation, where multiple RNG seeds are needed for ini-
tialization and have to be stored.

3.1.3 Simulation Experiment Descriptions

While section 3.1.1 illustrated that a trustworthy comparison of algorithms is quite
challenging, section 3.1.2 named the most important aspects that have to be de-
tailed in any experimental study on algorithm performance:

• hardware, operating system, language, and compiler

• algorithms (including random number generators)

• problems (and their generation method)

The large scale of the experiments required to gather sufficient data for em-
pirical simulation algorithm selection makes it desirable to automate the descrip-
tion of these aspects. This can be done by creating experiment descriptions
which are tailored to an existing simulation system (e.g., as it is currently done in
JAMES II [68]), by general description languages (e.g., as proposed in [21]), or by
application-specific approaches (e.g., for computational systems biology [185]).

However, to date there is no universally accepted standard way of describing
simulation experiments. There are presumably several reasons for that. Firstly,
the notion of an experiment can be regarded on different levels, e.g., one could
regard a single simulation run as an experiment on a model, or instead regard an
experiment as one or more simulation runs that aim at answering a given question.
For example, single stochastic simulation runs rarely answer a question, as they
require replications to account for stochasticity. In the following, a simulation
experiment (or just experiment) is considered to subsume one or more simulation
runs.

Secondly, experiment descriptions are created for very different reasons. Ap-
proaches like SED-ML [185] aim at a very broad kind of reproducibility, i.e., to
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reconstruct similar simulation outcomes across different simulation environments.
While this level of detail may be sufficient for exchanging general simulation ex-
periment set-ups more easily, it is unsuitable for experimental algorithmics, since
it does not explicitly specify all relevant performance factors, such as the hardware
or the specific implementations that have been used.

3.2 Experiment Design

Apart from making sure that performance experiments can be reproduced by one-
self and others and give trustworthy results, there are also various techniques to
design experiments for efficiency. Efficient experiments consume as few resources
as possible to answer the questions associated with them. The importance of good
experiment designs in order to yield sufficient performance data, which can then
be used to address the algorithm selection problem, has already been highlighted
by others (e.g., in [311]). Since even statistically significant results are likely to
be wrong when deduced from very small samples, biased set-ups, or a large set
of hypotheses [154], sound experimental set-ups are a necessary condition for any
kind of empirical study.

This section briefly surveys some design techniques that are applicable to ex-
perimental algorithmics. Policies for the multi-armed bandit problem have already
been discussed in section 2.3.2; they can also be regarded as experiment design
methods in that they steer sequential experiments toward the most promising op-
tions (e.g., simulation algorithms).

3.2.1 Variance Reduction

Results from stochastic simulations have to be regarded as samples from random
variables, which are associated with probability distributions that are usually un-
known. The goal of stochastic simulation experiments is often to investigate the
properties of such distributions, e.g., to estimate the mean of a certain model vari-
able or its standard deviation. Similarly, many algorithm performance measures —
e.g., execution speed — are influenced by hardly controllable factors and are there-
fore often considered as samples from a random variable as well (see discussion in
sec. 2.3.1, p. 38, and the empirical runtime distributions shown in fig. 2.11, p. 70).
In the same sense that simulation runs need to be replicated for estimating the
probability distribution of a random model variable, they need to be replicated for
estimating the probability distribution of a performance measurement that is con-
sidered random to some extent, e.g., the execution time of a simulation algorithm.
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The process of estimating a performance distribution with sufficient accuracy may
require numerous samples, each of them requiring an additional simulation run.
This is particularly true if the random variable under investigation exhibits a high
variance, i.e., its values deviate strongly from each other. Techniques for variance
reduction aim at reducing the variance of an observed variable, so that the estima-
tion of distribution properties, e.g., the mean, takes less samples, and therefore less
simulation runs and less CPU time. Variance reduction is well-established [192,
p. 577 et sqq.] and increases the statistical efficiency of a simulation experiment,
i.e., to consume less resources while still attaining the desired statistical signifi-
cance (e.g., in terms of confidence intervals). Two concrete examples of viable
variance reduction techniques are given in the following, the first one being easily
automated, while the second one requires further (manual) investigation.

Common Random Numbers

The most straightforward variance reduction method for experimental algorith-
mics is to let two independent simulation runs rely on common random numbers
(CRN). One merely needs to initialize the simulation runs with the same RNG and
equal seeds. When the same stochastic simulation algorithm is used — or even
another one that makes equal use of random numbers — this lets both executions
compute the same trajectory, i.e., it ensures that the computational load imposed
by the simulation problem is the same for both. In case of non-stochastic simula-
tion algorithms that execute a stochastic model, this method can be safely applied
to compare any two algorithms with each other, thereby only (re-)initializing the
model with equal RNGs and seeds. McGeoch suggests to use CRN “[...] when-
ever algorithms are being compared, and there is reason to believe that their per-
formance might be positively correlated with respect to input instances” [227, p.
201–202].

While CRN is a straightforward concept and often facilitates a fair comparison
of algorithms, it may be challenging to implement and only works if the simulators
make equal use of random numbers, otherwise it may even increase the variance
(see discussion in [192, p. 580 et sqq.]). Furthermore, it should be clear that
comparing the performance of two simulation algorithms on a single trajectory is
usually not sufficient: if the model trajectories themselves have some impact on
simulator performance, a comparison based on a single trajectory will not capture
the full picture. The relative performance of both algorithms might be quite dif-
ferent when they are evaluated on other trajectories. This pitfall can be avoided by
comparing simulation algorithm performance on a set of RNG seeds.
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Control Variates

Another interesting technique is the use of a so-called control variate. For example,
let Rx

a be the random variable that denotes the run time measured for algorithm a ∈
A on a simulation problem x ∈ P. The variance when sampling Rx

a, i.e., repeatedly
executing simulation algorithm a on a problem instance of x and measuring its
execution time, can be reduced with the help of another random variable Sx

a, which
is known to be correlated with Rx

a and of which the expected value E[Sx
a] = sx

a is
also known. The basic idea is to adjust, for each simulation run, the sampled value
from Rx

a with respect to the sampled value from Sx
a. As Sx

a now exerts some form
of control on Rx

a, it is said to be the control variate. Formally, one constructs a new
random variable T x

a that has a lower variance than Rx
a and takes into account Sx

a:

T x
a = Rx

a −α(Sx
a − sx

a) (3.2)

where α is the factor that determines how much control is given to Sx
a for ad-

justing the sampled values of Rx
a. The sign of α is positive if Rx

a and Sx
a are pos-

itively correlated, and negative otherwise. Hence, in case of positive correlation,
equation 3.2 decreases the value of T x

a if the sampled value from Sx
a exceeds the

expected value sx
a. If the sampled value from Sx

a is smaller than the expected value,
equation 3.2 increases the value of T x

a instead. Intuitively, the scaling factor α
should be larger the more Rx

a is correlated with Sx
a — the optimal value for α can

be derived [192, p. 601] to be:

Cov[Rx
a,S

x
a]

Var[Sx
a]

(3.3)

where Cov and Var denote co-variance and variance, respectively. However,
these values are usually unknown, so that they have to be replaced by estimates
in practice (see [192, p. 602–603] for a more detailed discussion). Furthermore,
the method requires prior knowledge on the control variate Sx

a, i.e., its expected
value sx

a (or at least a very close estimate) — which makes it hard to automate. For
algorithm performance analysis, McGeoch suggests to consider the performance
of simpler algorithms as potential control variates [227, p. 202]. This would relate
the performance of simple algorithms on the same problem instance to the perfor-
mance of more sophisticated ones, an idea that is rather similar to landmarking in
meta-learning (see sec. 2.7, p. 84).
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Further Techniques

There are several other variance reduction techniques that are similar to the con-
trol variate approach in that they allow to construct new unbiased estimators by
integrating additional information. For example, one may consider the conditional
expectation of the original estimator, i.e., restrict the sampling to certain situa-
tions [227]. Alternatively, one may try to construct pairs of problem instances on
which the sampled values are negatively correlated, i.e., make use of antithetic
variates. All these techniques help to reduce the number of samples required to
arrive at good estimates for the expected value of the random variable in question.
In case of experimental algorithmics, they allow a much faster performance analy-
sis: less simulation runs are required to arrive at a good estimate for a performance
measurement, e.g., the average run time of an algorithm. A survey on the topic
can be found in [192, p. 577 et sqq.], the application to experimental algorith-
mics is detailed in [227]. Finally, it should be noted that variance reduction is not
always beneficial. Some meta-modeling approaches (see sec. 3.2.2), e.g., stochas-
tic kriging [6], consider the observed variance in their calculations, and are hence
mistaken when the variance is reduced artificially. Furthermore, performance vari-
ance might be an interesting aspect in itself, e.g., when constructing algorithm
portfolios (see sec. 2.5.2, p. 61).

3.2.2 Optimization, Sensitivity Analysis, and Meta-Modeling

While variance reduction helps to minimize the amount of samples that are re-
quired for a good estimate of one algorithm’s performance on a single simulation
problem, other techniques are required that select the simulation problems xi ∈ P

to be considered. The most simple technique, parameter scanning, is to let the
user specify manually which problems are of interest.

The suitability of a technique depends on the question to be answered by the
performance experiment. For example, algorithms for black-box optimization (see
sec. 2.1.3, p. 30) could be used to find a parameter combination for an algorithm
under which it performs best, with respect to a set of simulation problems P ⊂ P.

Techniques for sensitivity analysis can be used to select simulation problems
{x1, . . . ,xn} ⊂ P for a good quantification of the performance impact that some
problem features { fx1 , . . . , fxn} ⊂ F = Rm impose on an algorithm a ∈ A (cf.
fig. 2.1, p. 21). Thereby, special attention is paid to interacting problem features.
For example, the size of a simulation model and a certain structural property, e.g.,
the connectedness of the model entities, may strongly affect an algorithm’s perfor-
mance if both are increased simultaneously. Such interactions may occur between
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arbitrary numbers of feature space dimensions, and they may differ from algorithm
to algorithm. Knowing all feature interactions and their performance impact for
all algorithms would essentially solve the best features for algorithms problem (cf.
def. 2.1.3, p. 23), as it allows to identify those features that are most relevant for
the given set of algorithms A0 ⊆ A. However, sensitivity analysis is a challeng-
ing discipline that requires some computational efforts. Consider a performance
analysis experiment to identify the interactions between three simulation problem
features, i.e., ( f 1

x , f 2
x , f 3

x ) ∈ F= R3 for any simulation problem x ∈ P. To find out
about the interactions among all three feature dimensions, we have to consider at
least two values for each of them, so that the set F of all feature combinations can
be defined as

F = { f 1
low, f 1

high}×{ f 2
low, f 2

high}×{ f 3
low, f 3

high} (3.4)

F contains 23 = 8 elements and grows exponentially with the number of fea-
tures. Each feature combination stands for at least one simulation problem from
P that exhibits these features.2 Hence, the number of simulation problems to be
considered grows exponentially as well. Each of the simulation problems has to
be solved sufficiently often by each of the algorithms under comparison, so that
reliable estimates on their average performance can be made (see sec. 3.2.1). Fur-
thermore, equation 3.4 is still a rather naïve approach, as it implicitly presumes
that feature interactions will be the same over the whole feature space, i.e., that it
is sufficient to consider just two values for each dimension. While this problem
can be alleviated by choosing representative values, the exponential growth of the
data required by the full-factorial setup (eq. 3.4) can only be diminished by more
sophisticated constructs, such as Plackett-Burman designs [259] or fractional fac-
torials [192, p. 636 et sqq.]. These methods allow a trade-off between the number
and the kind of detected interactions on one side, and the number of simulation
problems to be analyzed on the other.

Finally, so-called meta-modeling techniques often require specific experiment
designs for the efficient creation of meta-models. A meta-model relates the in-
put parameters of a given simulation model to certain outcomes of its simulation.
Meta-models are usually synthesized automatically and have a predetermined (but
parameterizable) mathematical form, e.g., a polynomial function with variable co-
efficients. After conducting an experiment with the original simulation model, the
coefficients of the meta-model are fitted to the simulation results of the original
model. The meta-model can then be used to predict the outcomes of simulating

2Such a relation between problem features and simulation problems needs to be constructed carefully,
and is usually implemented by specific benchmark models (see sec. 7.3.1, p. 226).



106 3 Simulation Algorithm Performance Analysis

the original model on formerly untested input parameters. Hence, meta-modeling
can be regarded as constructing approximation models for simulation output (see
sec. 2.3, p. 36). As a consequence, methods to design good experiments for meta-
modeling, e.g., presented in [192, p. 643 et sqq.], may also be applicable to the
algorithm selection problem: having accurate meta-models for algorithm perfor-
mance allows to select the most suitable algorithm for a given problem.

So far, however, meta-modeling is predominantly used in the context of
simulation-based optimization (e.g., [88]). Here, meta-models are used as replace-
ments for original simulation models, in order to speed up the overall optimization
process. Current methods, such as stochastic kriging [6], also allow to steer an ex-
periment towards the most ’interesting’ regions of the simulation problem space P.
On the other hand, the application of meta-modeling may be hampered because the
underlying assumptions are hard to assert. For example, a kriging interpolation for
algorithm performance would presuppose a specific relation between the distance
of simulation problems (i.e., feature difference) and the metric to be interpolated
(e.g., [47, p. 105 et sqq.]).

Besides designing experiments for algorithm performance analysis, many of
the aforementioned techniques can also be used to test the simulation algorithms
in question, i.e., to check if their implementation is erroneous. For example, an
algorithm could exhibit a strong dependency on problem features that are deemed
irrelevant by the developer. This may hint at a software bug. An introduction to
simulation experiment design is presented in [192, p. 619 et sqq.]; more advanced
techniques can be found in [127].

3.2.3 Further Aspects of Performance Experiments

Apart from decreasing the number of required simulation replications (sec. 3.2.1)
and selecting the most interesting simulation problems (sec. 3.2.2), there is a wide
range of additional techniques to increase the efficiency of simulation experiments.
However, not all of them can be easily applied to experiments that are concerned
with the performance of the simulation algorithms instead of the simulation out-
comes as such.

For example, so-called stopping rules are used to quit the simulation when a
certain condition is true. The most common and simple stopping rule makes a
simulation stop when a certain amount of simulation time has gone by, which is
the time span considered within the model (see fig. 3.2). Other rules may be more
complex, e.g., to simulate until the output of a variable has reached an equilibrium,
or to stop after some amount of wall-clock time (see fig. 3.2) has passed. Stopping
a simulation run after some wall-clock time is similar to the notion of censoring
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Figure 3.2: Time scales in simulation: the physical time is the time of the original system
(left), the simulation time is the time within the simulation model (middle), and the wall-
clock time is the time at which the simulation is running (right); see [90, p. 27].

that has been employed by the AOTA framework for parallel algorithm portfolios
(see sec. 2.5.3, p. 64): all other algorithms are stopped when the first one finds a
solution. Nevertheless, most stopping rules are defined upon simulation variables,
and hence cannot be transferred easily from ordinary simulation experiments to
performance analysis. Furthermore, stopping rules interact with other aspects of
experiment design, so that the effect of a certain rule on overall efficiency may
have to be determined by prior analysis. For example, it is non-trivial to find a
good compromise between executing a few long simulation runs that are sped up
by parallel and distributed simulation on the one hand, and executing many short
simulation runs as independent replications on the other hand [124].

Another way to speed up simulation experiments is to re-engineer the model
under scrutiny. Sophisticated data sampling can achieve speed-ups of more than
100 for hardware simulations [26]. This is done by identifying the most relevant
operations for which the hardware model shall be simulated. The basic trade-off
is between the simulation speed and the accuracy of the input data, i.e., the rep-
resentativeness of the selected operations. For simulation algorithm performance
analysis, one could adopt similar methods to construct problems that are executed
as fast as possible. The creation of benchmark models is further discussed in sec-
tion 7.3.1.

All in all, experiment design can be a powerful tool to analyze simulation algo-
rithm performance. However, the creation of good designs with known statistical
properties is still complicated, due to the many interacting aspects. It still “[...]
requires the involvement of both experienced applied statisticians and experienced
computer performance analysts”[123, p. 1202], just as in former decades. For ex-
ample, if simulation replications are deemed independent but produce correlated
output, e.g., due to correlated pseudo-random numbers, this leads to a systematic
underestimation of variance [123, p. 1215]. While an intentional variance reduc-
tion is often useful (sec. 3.2.1), an unintentional reduction leads to biased results.
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3.3 Simulator Performance Analysis and Prediction

While sections 3.1 and 3.2 discuss the basic requirements and techniques for set-
ting up meaningful and viable experiments for algorithm performance analysis,
this section briefly surveys some of the existing performance analysis approaches,
with a focus on methods that have already been applied to simulation. Performance
prediction and analysis has been particularly popular in the domain of parallel and
distributed discrete-event simulation (PDES): the performance improvement that
often motivates the application of PDES is quite sensitive to problem features,
hardware, and the (manually) selected algorithms that are used (see sec. 1.3.2,
p. 9).

Similar to the PDES-centric overview of analysis methods presented in [65, p.
33–41] and to the categorization of algorithm selection methods in section 2.6.1
(p. 73), the methods applicable to simulator performance analysis are divided into
two groups, depending on the extent to which they rely on empirical data:

• Analytical: Methods that do not take into account any empirical data when
constructing the performance model. They may rely on empirical data only
insofar as they feed it into their separate analytical model of the system, e.g.,
in form of parameter values.

• Empirical: Methods that fundamentally rely on empirical data, i.e., they
use it to construct a performance model for a simulator (see discussion on
meta-modeling, sec. 3.2.2, p. 104).

It should be noted that the general idea of predicting the performance of al-
gorithms is anything but new, e.g., McGeoch refers to work from the 1980s that
aims at predicting the solution quality of bin packing algorithms [227, p. 207].
Similarly, the importance of performance prediction in the context of scientifically
approaching algorithm development has already been acknowledged more than a
decade ago [142].

3.3.1 Analytical Methods

In [238], Nicol constructs a mathematical model of a parallel and distributed
discrete-event simulation in order to analyze its scalability. In this context, scal-
ability refers to the efficiency of the simulation when either some aspect of the
problem (e.g., size) or the amount of used hardware is increased.

Efficiency, in turn, is characterized by processor utilization, i.e., the share of
operations that would have also been necessary to carry out in case of a sequential
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simulation. After introducing several parameters, e.g., costs for event queue oper-
ations and communication rates among processors, the analysis yields a complex
expression for a lower bound on processor utilization.

Scalability can now be defined more concretely by demanding that the lower
bound on processor utilization has to remain constant (or to rise) if model size
and number of processors are increased simultaneously, as defined by a growth
function. This formalized notion of scalability is then used to prove that a certain
synchronization protocol is scalable if all processors are connected by a hyper-
cube3, which nicely illustrates the strength of analytical performance prediction:
if applied successfully, it allows very broad insights into the nature of an algorithm
as such, i.e., analysis results are general and implementation-independent.

On the other hand, this analysis relies on many strong assumptions, e.g., a ho-
mogeneous set of processors and non-zero delays between events. It also focuses
on average costs, making it hard to estimate the impact of dynamic aspects. Fur-
thermore, Nicol concedes that such proofs might not be attainable for all kinds
of algorithms: “[...] synchonization behavior is frequently complicated, which
makes it very difficult to analytically prove anything about performance executing
large models on large machines” [238, p. 4]. From this perspective, even the
improvement of existing data structures, such as event queues, can be regarded
“[...] as sort of good news and bad news deal [...]” [238, p. 11], since it may
entail a revision of all proofs and derivations due to altered basic assumptions. All
in all, analytical performance prediction basically has the same advantages and
disadvantages as analytical approaches to algorithm selection (see discussion in
sec. 2.2, p. 33).

In [118], Gupta et al. model processors interacting via the Time Warp synchro-
nization protocol (see sec. 1.3.2, p. 9) as a continuous-time Markov chain (see
sec. 2.3.2, p. 43). Formally deriving the transition rates between the states al-
lows them to predict the runtime of simulating a synthetic benchmark model fairly
accurately, i.e., within 10 percent of the actual execution time. However, some
strong assumptions again hamper the broad applicability of the results: processors
are homogeneous, time stamps are exponentially distributed, and communication
between processors does not cost any time.

Cortellessa and Quaglia derive an upper bound on the execution time of an opti-
mistic parallel and distributed simulation [45]. They assume that each local event
queue holds a single event, that the processing of each event results in the gen-
eration of exactly one new event, and that idling times and message delay can
be neglected. Similar to the approach presented in [118], they also prescribe the

3The assumption of having a hypercube is required for bounding the communication delay.
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Figure 3.3: Performance prediction via event precedence graphs [168]. The event prece-
dence graph (on the right) is directed and acyclic. It combines event scheduling information
(solid arrows: e1 schedules e3 and e5) and causality constraints per logical process (dashed
arrows: e.g., LP2 has to execute e3 before e4). This information can be extracted from a
sequential simulation (left) to predict the runtime of a parallel and distributed simulation
(middle).

shape of the time increment distributions. They point out that the “[...] efficiency
of an optimistically synchronized parallel simulation is, in general, highly unpre-
dictable, depending on features of the simulation model and of the hardware/soft-
ware architecture” [45, p. 1].

Other approaches make fewer general assumptions, but rely strongly on the
specifics of the synchronization protocol that is used, e.g., [240]. A prediction
method that is mathematically straightforward but instead relies heavily on real-
istic cost measurements for the main operations (e.g., event management, thread
switching) is presented in [208]. Although the authors carefully measure the cost
of each operation, the resulting prediction error still varies between 5 and 30 per-
cent.

Similarly, the prediction approach of Juhasz et al. [168, 169] relies on extensive
measurements of a prior sequential simulation run. In order to predict the perfor-
mance gain of a parallel and distributed simulation approach on the same trajec-
tory, the authors record the event precedence graph of the sequential execution,
which is depicted in figure 3.3. For example, this allows to identify the critical
path, which is the sequence of causally related events that takes the longest time to
be computed. Intuitively, it is impossible to speed up any sequential execution be-
yond the time it takes to sequentially compute the critical path, as its computation
cannot be parallelized any further — it is a natural upper bound on speed-up due
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to parallel execution.4 The overall execution time of a parallel simulation can now
be predicted by considering the event precedence graph and assuming that some
events of the graph are computed on different processors. An additional math-
ematical model for communication cost complements the approach, with which
Juhasz et al. now can predict the performance for different synchronization proto-
cols, different communication costs, and different numbers of involved processors.
In [302], the approach is extended to work for optimistic synchronization proto-
cols as well. This strong reliance on the (empirically observed) event precedence
graph, which is analyzed to come up with a prediction, makes this approach just
as empirical as it is analytical — it could even be automated. However, such kinds
of performance prediction require a prior sequential execution and an exhaustive
analysis of the recorded results, so that the scalability to real-world problems might
be an issue.

Instead of predicting the runtime of a parallel and distributed simulation method,
and thus being able to identify the situations in which it is preferable over a se-
quential approach, other analyses focus on more abstract metrics of performance.
For example, Heidelberger examines how the statistical efficiency of stochastic
simulation experiments is influenced by various factors, including the number of
processors, the available time, and the runtime performance of the available al-
gorithms for parallel and distributed simulation [124]. Similarly, Nicol proposes
to consider the utility function of a simulation user, i.e., how much the utility of
the simulation increases with the size of the model to be simulated [239]. This
links analytical performance analysis of parallel and distributed simulation with
economic decision theory: is it more useful (i.e., efficient, inexpensive, etc.) to
sequentially simulate a small model on each processor, or is it better to simulate
one large model that is distributed over all processors? Nicol’s analysis shows how
this decision depends on the utility function of the user. Such utility functions are
also used in financial portfolio theory (see sec. 2.5, p. 58), where the form of an
investor’s utility function has to be considered for a mathematical analysis. Similar
approaches could be used to solve the ASP, considering a user’s overall utility for
each eligible simulation algorithm.

4As pointed out in [168, p. 11], it is theoretically possible that optimistic synchronization outperforms
the critical path, due to speculative execution. Given that event A causes event B, B can usually only
be computed after the execution of A is finished — following the critical path. However, if B is likely
to be caused by A, it might already be executed before the execution of A is finished, so that the
critical path is outperformed.
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3.3.2 Empirical Methods

In contrast to analytical performance prediction methods, which mainly focus on
parallel and distributed discrete-event simulation, empirical methods to predict
simulator performance are often applicable to a much broader range of problems.
If one is not constrained by the assumptions that are required for an analytical
prediction, it seems natural to regard simulation software as just some arbitrary
program for which performance shall be predicted.

For example, Sherwood et al. predict the execution speed of a program by
identifying its so-called basic blocks, which are small sequences of instructions
with single entry and exit points [288]. The frequency with which each block
is executed during a time window is recorded in a so-called basic block vector.
Different operation modes of the program are identified by clustering the recorded
vectors to groups, which now represent similar program loads. Finally, the overall
performance is predicted by simulating the execution of a typical representative
from each cluster and aggregating the results. This technique is rather elaborate
and time-consuming, but was shown to predict the number of required instructions
with an average error of only 3 percent. Its execution time can be improved by
meta-modeling (e.g., [155]).

The PROPHESY system approaches performance prediction in a similar man-
ner, although it is specifically focused on parallel programs [301]. Each program
is decomposed into a hierarchy of building blocks: modules, functions and block
units, which are “of finer granularity than a function but coarser granularity than
a basic block” [301, p. 14], e.g., some nested loops. A sub-system of PROPHESY

parses and instruments the source code of the application, so that detailed perfor-
mance data can be recorded. Performance data and structural information are then
submitted to a database. PROPHESY supports both automatic and manual perfor-
mance modeling for each block, and it allows to analyze performance interaction
between adjacent code blocks, i.e., code blocks that are executed one after another.
For example, some code blocks may rely on the same data being in the cache and
are hence executed faster in sequence than in isolation. Others may hamper each
other’s performance due to similar effects. PROPHESY allows to aggregate the
performance models of all these code blocks and to take these interactions into
account. This reduces the average prediction error, e.g., from 35 to 14 percent in
one test case.

A similar tool to ease performance analysis and prediction for parallel programs
is PERFEXPLORER [150], which provides several data mining methods5 to ana-
lyze and predict runtime performance. Similar to PROPHESY, PERFEXPLORER

5For example, clustering methods similar to those used by Sherwood et al. in [288].
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allows a fine-grained collection of performance data by ’events’, which may refer
to the execution of anything from a single line of code to a whole library. The
performance data is stored in a database [151] and can be analyzed by other tools
as well, e.g., the WEKA [327] data mining toolkit.

The ZENTURIO system [265] allows to set up various kinds of algorithm exper-
iments for cluster and grid environments, and even features a custom experiment
definition language, ZEN. ZEN directives can be distributed over several text files
of arbitrary format. ZENTURIO analyzes them, changes them according to the di-
rectives, and then executes each set-up. The tool also supports storage and plotting
of performance data. However, it is not simulation-specific, but instead dedicated
to the functioning in specific environments for parallel computing (GLOBUS [85]
and PBS [126]). Furthermore, its experiment definitions are intertwined with var-
ious files, e.g., for building the code or scheduling the jobs. This makes it hard to
archive experiment definitions, and also makes it difficult to define distinct exper-
iments on the same code base. All in all, it is complicated to enforce the specifica-
tion of the experiment aspects outlined in section 3.1.3 (p. 100).

The POEMS system [3] goes one step further and combines analytical mod-
els with simulation models and raw empirical data to predict the performance of
parallel programs.6 It relies on a custom specification language to combine those
components, which, for example, may be processed by hardware or network simu-
lators. Its authors claim that the “[...] key innovation in POEMS is a methodology
that makes it possible to compose multidomain, multiparadigm, and multiresolu-
tion component models into a coherent system model” [3, p. 1027]. This results
in rather accurate performance prediction with an error between 4 and 10 percent
(for the sample application). On the other hand, the detailed modeling of a com-
plex software cannot be automated easily and may require considerable additional
effort. Nevertheless, the importance of simulation for predicting program perfor-
mance has motivated new simulation tools that allow performance analysis in even
more complex settings, e.g., GRIDSIM [29].

There are many other generally applicable methods to analyze the performance
of programs, e.g., to estimate the constants of their asymptotic performance (see
sec. 2.2, p. 33) by relying on sophisticated experimental setups [82], or to express
statistically significant differences between algorithm performances with logical
expressions [270].

6Similar to the approach of Juhasz et al. [168, 169, 302], POEMS is a borderline case with respect
to the analytical-vs.-empirical categorization. It is assigned to the section on empirical methods
because is does not presuppose any mathematical structure that is analyzed afterwards, as the ap-
proach of Juhasz et al. does (by relying on event precedence graphs, see fig. 3.3).
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To experimentally analyze the performance of simulation algorithms, Balakrish-
nan et al. introduce the Workload Specification Language (WSL) [12], which al-
lows to easily specify synthetic benchmark models for experimenting with parallel
and distributed simulation algorithms. It allows to translate simulator-independent
benchmark model specifications into simulator-specific code, which enables a fair
comparison of parallel and distributed simulation systems even if their interfaces
are incompatible.

In [79], Ferscha et al. conduct a full factorial experiment on various PDES exe-
cution schemes to investigate their sensitivity to certain model properties. In [17],
Bauer Jr. et al. investigate the scalability of Time Warp on very large numbers of
processors (more than 100.000). Following the same line of thought as in [3, 288],
namely to predict program performance by simulating it,7 one may either model
and simulate the simulation algorithms themselves by additional tools [71, 103],
or virtualize their execution for easier analysis, as proposed in [254].

In the application domains of simulation — such as computational biology —
performance studies are mostly done ad-hoc, e.g., when a new simulation algo-
rithm is presented. Performance results for the stochastic simulation algorithms
(SSAs) introduced in section 1.3.1 (p. 7) are discussed in chapter 9.

3.4 Summary

Section 2 introduced the formal problem to be solved and then proceeded to out-
line possible solution techniques and related work, thereby following a top-down
approach from the abstract problem definition to concrete examples for solutions.
This chapter completes the background part by illustrating the challenges of col-
lecting the valid empirical performance data that is necessary for automated al-
gorithm selection, thereby following a bottom-up approach from practical prob-
lems in experimental algorithmics (sec. 3.1) over experiment design techniques
(sec. 3.2) up to advanced analytical methods (sec. 3.3.1) and empirical methods
(sec. 3.3.2) for performance analysis and prediction.

The issues discussed in section 3.1 (p. 93) are still topical. In 2002, Pawlikowski
et al. surveyed more than 2.000 scientific papers that applied stochastic simulation
in the domain of communication networks [250]. Over 75% of them do not deal
properly with output analysis (e.g., averaging over multiple replications, calculat-
ing confidence intervals, etc.) or ignore common pitfalls, e.g., regarding random
number generation. The authors also point out that “[...] the real problem is that

7This has already been suggested by Rice in his 1976 paper on algorithm selection [272].
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the vast majority of simulation experiments reported in telecommunication net-
work literature are not repeatable” [250, p. 137].

None of the methods discussed in section 3.3 has found widespread accep-
tance in the simulation research community so far; most developments have been
ephemeral. In case of analytical methods, this might be due to the strong underly-
ing assumptions that just do not seem realistic enough to support accurate predic-
tions. The empirical methods, on the other hand, are often implemented in separate
tools that are so general and sophisticated that simulation researchers may be de-
terred from applying them to their own problems. For example, POEMS brings
along its own component-based modeling and simulation approach [3]. PROPH-
ESY and PERFEXPLORER are designed to analyze program performance on a fine-
grained level, which may be unnecessary for many simulation algorithm develop-
ers. Similarly, a language for defining platform-independent benchmark models
(as proposed in [12]) is all nice and well, but apparently requires too much effort
to implement for each single simulation system.

A promising way to overcome the reluctance of using sophisticated performance
analysis is to automate the whole process as much as possible. It requires a tight
integration of performance analysis tools and simulation system, but might make
performance analysis much more attractive in the future. Hence, the next chap-
ters also discuss how automatic mechanisms for performance analysis can be inte-
grated into the simulation system JAMES II. Their ultimate goal is to support au-
tomatic algorithm selection by efficiently delivering trustworthy performance data.
Nevertheless, such mechanisms could also be useful in many other situations.



Part II

Methods and Implementation



4 A Framework for Simulation Algorithm

Selection

What I cannot create, I do not understand.

Richard P. Feynman

The background part surveyed methods for automated algorithm selection
(ch. 2) and detailed the major challenges and techniques of empirically analyz-
ing the performance of simulation algorithms (ch. 3). This part tackles the cen-
tral issue of the thesis, namely the automatic selection of simulation algorithms.
It mainly treats the construction of a prototypical simulation algorithm selection
framework for the modeling and simulation framework JAMES II. The term host
system helps to distinguish between both software systems: the host system of an
algorithm selection mechanism is the software that contains the algorithms to be
selected. In this sense, JAMES II can be regarded as the host (simulation) system
of the framework to be developed.

This first chapter of part two starts out with analyzing the general requirements
that arise from different use cases (sec. 4.1). It briefly sketches the core principles
of JAMES II (sec. 4.2) and identifies the technical requirements for a simulation
algorithm selection mechanism that is integrated into JAMES II (sec. 4.3). Sec-
tion 4.4 first discusses the structure of some software systems that serve similar
purposes (sec. 4.4.1), and then outlines the major components of the simulation
algorithm selection framework. The latter draws upon the aspects previously pre-
sented in this chapter: use cases, JAMES II specifics, technical requirements, and
related systems.

4.1 Requirements Analysis: Use Cases

At first, let us consider the use cases in which simulation algorithm selection may
play a role. Figure 4.1 summarizes them in a UML1 use case diagram.

1UML stands for Unified Modeling Language, which is widely used to model (object-oriented) soft-
ware. See [86] for a brief introduction to the original standard. As UML will be solely used here to
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The ultimate goal of the selection mechanism is to deliver an automatic con-
figuration feature for the end users of a simulation system, i.e., anyone who aims
at analyzing a model via simulation experiments. Here, the selection mechanism
could be regarded as a black box or an oracle, which gives expert advice on a
subject matter that the user is unsure about. Hence, the user interface to the mech-
anism should be easy to understand, and the mechanism’s configuration shall be
as simple as possible.

The second major target audience of such a tool are developers who work on
simulation. As the selection mechanism basically considers empirical performance
data to select the most suitable option for a given simulation problem, algorithm
developers could use it to validate their latest enhancements, i.e., to check if these
really have a positive impact on the overall performance. Consider the enhance-
ment of a simulation algorithm a1 ∈A that makes the algorithm much faster for an
important class of simulation problems P1 ⊂ P, while degrading its performance
on a rather obscure class of problems P2 ⊂ P. While this enhancement is clearly
beneficial if a1 is the only available option in the system, the presence of an-
other algorithm a2 ∈ A that still outperforms a1 on all problems in P1 completely
changes this picture, provided that a functioning algorithm selection mechanism
is in place. Now, the overall performance of the simulation system decreases if
a1 is still selected for problems in P2 (where it now performs worse) but not for
problems in P1 (where a2 is still faster). Such trade-offs may be strongly depen-
dent on implementation details; to identify them is non-trivial and requires careful
experimentation.

In [235], Moret describes a software development process that reiterates algo-
rithmic changes and subsequent experimentation to achieve good performance,
leading to the new discipline of algorithm engineering. For developers engineering
their algorithms, an algorithm selection mechanism could provide valuable feed-
back regarding the relevance of the algorithm they work on, and also regarding
the problem domain in which it excels. In the context of a flexible plug-in based
system like JAMES II, such algorithms are not necessarily monolithic simulation
algorithms, but could be random number generators, event queues, partitioning al-
gorithms, and so on (see sec. 4.2, p. 122). The more available options there are,
the harder is it to assess the overall impact of changing an implementation, since
many algorithm combinations now need to be evaluated.

On a more general level, not only algorithm developers may profit from the feed-
back by an algorithm selection mechanism, but also researchers that are concerned
with comparative performance analyses. As knowledge on the performance dif-

communicate design aspects, I follow Fowler’s advice [86, p. 6–7] and ’bend’ the standard notation
occasionally, in order to clarify the presented ideas (e.g., by the use of color or line styles).
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Figure 4.1: General use cases related to simulation algorithm selection. In the end, the
selection mechanism shall deliver automatic configuration of the host simulation system
as requested by the system’s end users, who conduct simulation experiments (experimenter
role, upper right corner). In turn, empirical selection needs access to the host simulation sys-
tem in a way that allows to reason about different algorithms and to evaluate them (semi-)
automatically; a requirement that is also relevant for performance studies (performance ana-
lyst role, lower left corner) and iterative simulator development (developer role, lower right
corner). However, the selection mechanism also introduces a new responsibility: before the
deployment of a simulation tool, the automatic selection mechanism has to be configured
accordingly (deployer role, upper left corner). The dashed uses-arrow at the top shall high-
light the fact that the selection task does require solving the ASP, but that this is not required
to happen at the same time (see sec. 2.6, p. 71).

ferences between algorithms is essential for any prior selection, performance ana-
lysts require the same experimentation features from a simulation system that are
also necessary for algorithm selection. In other words, both algorithm developer
and performance analyst are interested in simulator performance, but on differ-
ent levels: the developer is focused on a single (sub-)algorithm (e.g., in order to
optimize it), whereas the performance analyst is interested in comparing multiple
algorithms.

The automatic selection mechanism as such also introduces a new role. The
selection mechanism has to be configured regarding the techniques to be used, the
data to be analyzed, and so on. Since the mechanism’s main goal is to facilitate
the usage of the overall simulation system, this responsibility is likely to be in
the hands of the deployer, i.e., a developer that aims to roll out a version of the
simulation system that is easy to use. Instead of using the selection mechanism
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as some kind of high-level feedback, as in case of development or performance
analysis, the deployer is not interested which algorithm gets selected, as long as it
is a suitable one. Hence, the deployer has to configure the selection mechanisms
to be supported by the deployed version of the simulation system. Making this
decision may involve the application of meta-learning algorithms on top of the
simulation algorithm selectors. Furthermore, the overall deployment gets more
complex, as it now includes the generated selection mappings. This is an aspect
none of the other roles has to deal with.

Finally, note that the discussed use cases refer to different roles, not necessarily
carried out by different persons. For example, after iteratively developing a better
simulation algorithm for a specific class of problems (developer role), a researcher
may compare the performance of the new algorithm to many other setups (perfor-
mance analyst), and finally deploy an updated version of the system, containing
the new algorithm and and a selection mechanism that is adapted accordingly (de-
ployer).

4.2 Brief Introduction to JAMES II

JAMES II [303] is a general-purpose open-source framework for modeling and
simulation, developed in Java 1.6. It aims at providing a solid foundation that in-
tegrates various methods for modeling and simulation, as well as some adjacent
techniques, e.g., simulation-based optimization.2 Most of JAMES II’s architec-
tural groundwork has been conceptualized and implemented by Himmelspach; it
is further detailed in [131, 136]. This introduction focuses on those aspects of
JAMES II that are relevant for algorithm selection. It discusses its properties
from the viewpoint of section 2.4.3, namely as a (potentially) adaptive software
system, and illustrates the limitations of the current version with respect to the
algorithm selection problem.

4.2.1 Fundamentals

The Abstract Factory Pattern

One of the central goals of JAMES II is enabling the re-use and re-combination
of functionality via a plug-in system called Plug’n Simulate [136]. It is based on
the well-known Abstract Factory pattern [98, p. 87], which in turn is based on

2JAMES II is still under development. Its code base changes on a daily basis, so a discussion of
concrete software entities may become outdated (e.g., w.r.t. package names). The version discussed
here is revision 17.000 (April 14, 2010).
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� �

1 i n t e r f a c e M y I n t e r f a c e {
void doSomething ( ) ;

3 }
c l a s s MyClass implements M y I n t e r f a c e {

5 void doSomething ( ) { . . . }
}

7 c l a s s MyOtherClass implements M y I n t e r f a c e {
void doSomething ( ) { . . . }

9 }
c l a s s MyFactory {

11 M y I n t e r f a c e c r e a t e ( i n t p a r a m e t e r ) {
/ / Create either MyClass instance or MyOtherClass instance

13 re turn p a r a m e t e r > 100 ? new MyClass ( ) : new

MyOtherClass ( ) ;
}

15 }
/ / ..

17 p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) {
MyFactory myFactory = new MyFactory ( ) ;

19 M y I n t e r f a c e myObject =
myFactory . c r e a t e ( s o m e C a l c u l a t i o n ( ) ) ;

myObject . doSomething ( ) ;
21 }
� �

Listing 4.1: Using a factory class: when ���������	��
��
��� �� is called, the user
code in the main method does not predetermine which implementation of ����
����
 is
used — this is done in ��������� instead.

the notion of Factory classes. The pattern is used to hide the intricacies of object
creation in object-oriented languages.

A factory class makes object creation dependent on the parameters handed over,
i.e., it encapsulates the (potentially complicated) creation process of an object;
upon completion, the newly created object is passed back to the caller. For exam-
ple, consider the code in listing 4.1 on page 123 (l. 11): the method ����������

	���
����� returns an instance of ������ if 	���
���� is greater than 100,
otherwise it returns an instance of �����������. This selection between dif-
ferent implementations (or configurations of the same class) is done within the
factory, and is hence invisible to the caller. By doing so, three different concerns
can be separated from each other in a concise manner: the desired functionality
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MyClass MyOtherClass
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MyInterface

MyFactory
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Using a Factory Class The Abstract Factory Pattern in James II

Figure 4.2: A UML diagram to outline the use of factories (left) and the Abstract
Factory pattern (right). The abstract factory pattern as realized in JAMES II lets
��������	�
�	���� only rely on a base factory. The base factory has to define all opera-
tions that the abstract factory may need to decide on a conrete factory. This avoids to know
the concrete factories ������
�	���� and �����������
�	���� at compile time, as
sketched gray and dashed on the lower right. The notions of base and abstract factory (bold,
underlined) are essential for the flexibility of JAMES II.

(implemented by ������� and ����	
������), the creation of objects that are
capable of executing the desired functionality (implemented in ��������), and
finally the usage of the functionality, as shown in the ���� method of listing 4.1
(l. 17). A corresponding UML class diagram is shown in figure 4.2.

From an algorithm selection viewpoint, factories can be regarded as a stan-
dard method to implement an explicit, hard-coded selection mapping in an object-
oriented programming language. The separation of the aforementioned concerns
(implementation, instantiation, and usage), be it via a dedicated factory class or
not, is also regarded as a hallmark of component-based software systems (see
sec. 2.4.3, p. 55).

While a factory class succeeds in separating these concerns, it fails to scale
with the amount and diversity of possible implementations. Imagine there are
many implementations of �����
���
 (see listing 4.1), each with its own
implementation-specific creation mechanism. Integrating all these mechanisms
into a single factory would not only violate good coding practice (data hiding, sep-
aration of concerns), it would also require to change the factory every time a new
implementation is added to the system.

This problem is alleviated by the Abstract Factory pattern. The pattern basically
consists of factories that are nested twice, to separate the concern of selecting the
implementation from the concern of instantiating the selected implementation. A
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so-called concrete factory is provided for each implementation. It encapsulates the
code to instantiate a certain class. All concrete factories have a common superclass
that declares the method for instantiation (see fig. 4.2). Such a super class is called
base factory in JAMES II.

On top of this, an abstract factory3 manages the concrete factories and is respon-
sible for their selection, i.e., it chooses one of the concrete factories and passes it
back. The returned concrete factory is a sub-class of the base factory, and can
hence be called to create some instance that implements the desired interface. An
exemplary implementation of the Abstract Factory pattern is shown in listing 4.2
(p. 126). Here, both ������� and ����	
������ have their own (concrete)
factory, ������������� and ����	
������������, respectively. Both are
subclasses of �����
������ and only concerned with instantiating their ’own’
implementation of �����
���
, i.e., both factories are independent from each
other. The selection code that chooses between both implementations has moved
from the single factory in the Factory pattern (cf. listing 4.1) to the abstract factory
���������������. While this separates the selection from the instantiation
code, it also makes object creation a little more complicated, as exemplified in the
���� method of listing 4.2 (l. 21): object creation now involves the creation of an
abstract factory, letting it create a concrete factory, and to finally let the concrete
factory create an object implementing the desired functionality.

What has been won by separating instantiation and selection with the Abstract
Factory pattern? The algorithm selection is still hard-coded, it just has been moved
to a new dedicated class — the abstract factory, which now seems to depend on
all concrete factories. However, this impression is deceptive: it is possible to let
the abstract factory only depend on the base factory, given that the base factory
declares all methods that are required by the abstract factory to make a proper
selection (see fig. 4.2). Each concrete factory has to implement those methods.
Furthermore, one could now find a way to dynamically detect all available con-
crete factories at runtime, and make them visible to the abstract factory. If these
preconditions are fulfilled, the abstract factory is able to make a selection without
relying on any concrete factories, in contrast to the simple implementation shown
in listing 4.2. Since the Abstract Factory pattern allows to make a suitable choice
from an unknown number of concrete factories, which might even be discovered
at runtime, it can serve as a building block for a plug-in system.

3An abstract factory is not abstract in the sense of Java, i.e., it does not contain abstract methods and
can thus be instantiated.
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� �

1 c l a s s MyBaseFactory {
a b s t r a c t M y I n t e r f a c e c r e a t e ( i n t p a r a m e t e r ) ;

3 }
c l a s s MyClassFac to ry ex tends MyBaseFactory {

5 M y I n t e r f a c e c r e a t e ( i n t p a r a m e t e r ) {
/ / Create MyClass instance, depending on passed parameter:

7 re turn p a r a m e t e r > 100 ? new MyClass ( true , 1 , 3 . 1 4 1 5 )
: new MyClass ( f a l s e ) ;

}
9 }

c l a s s M y O t h e r C l a s s F a c t o r y ex tends MyBaseFactory {
11 M y I n t e r f a c e c r e a t e ( i n t p a r a m e t e r ) {

/ / Create MyOtherClass instance
13 re turn MyOtherClass ( true , p a r a m e t e r ) ;

}
15 }

c l a s s M y A b s t r a c t F a c t o r y {
17 MyBaseFactory c r e a t e ( i n t p a r a m e t e r ) {

re turn p a r a m e t e r > 100 ? new MyClassFac to ry ( ) : new

M y O t h e r C l a s s F a c t o r y ( ) ;
19 }

}
21 / / ..

p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) {
23 M y A b s t r a c t F a c t o r y m y A b s t r a c t F a c t o r y = new

M y A b s t r a c t F a c t o r y ( ) ;
MyBaseFactory myFactory =

m y A b s t r a c t F a c t o r y . c r e a t e ( s o m e C a l c u l a t i o n ( ) ) ;
25 M y I n t e r f a c e myObject =

myFactory . c r e a t e ( s o m e C a l c u l a t i o n ( ) ) ;
myObject . doSomething ( ) ;

27 }
� �

Listing 4.2: Using the Abstract Factory pattern. ��������	
�, ����	, and
���������	 are defined as in listing 4.1. When ������	
��	
�����
��	�������

is called, it creates the concrete factory to be used, which is used to instantiate an
implementation of ��������	
�. Note that the code in �	�� is independent of the
implementation, as it merely calls a method from the common super class of all concrete
factories, i.e., from the base factory ���	��	
����.
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Plug-ins and Plug-in Types

JAMES II is designed as a framework for modeling and simulation. A framework
can be regarded as a collection of reusable functions that is complemented by pre-
defined ’flows of control’ [51, p. 948]. Frameworks should ease the development
of more specialized applications on top of them and hence need to be extensible.
JAMES II is extensible with respect to the entities used in the control flow and
also by the kinds of entities it works with. Each type of entity corresponds to a
so-called plug-in type. A plug-in type is represented by a specific implementa-
tion of the Abstract Factory pattern, which is based on some principal JAMES II
classes. Since all dependencies on concrete factories shall be avoided, a plug-in
type definition basically consists of an abstract factory and a base factory.

A concrete factory and the functionality it provides are regarded as a plug-
in [131, p. 59–63]. The concrete factory is responsible for instantiating a certain
implementation of an interface or an abstract class, corresponding to the factory’s
plug-in type.4 A plug-in can be regarded as a software component in the sense
of section 2.4.3 (p. 55), as it is separated from the rest of the system (by its con-
crete factory) and can be developed and deployed independently — two properties
that are regarded as the main characteristics of software components (e.g., [230,
p. 58]). Plug-in components are the fundamental element of reuse and compo-
sition in JAMES II [131, 136]. Each offers a specific functionality, so that they
can serve as building blocks for the simulation algorithms that shall be selected
automatically. In other words, the algorithm set A of the ASP (def. 2.1.1, p. 21) is
constructed by considering combinations of plug-in components. Definitions for
both plug-in types and plug-ins are stored in XML (eXtensible Markup Language)
files named ���������	
��� and ������
���,5 respectively. Sample definition
files for plug-ins and plug-in types can be found in listings A.1 and A.2 (p. 345).

The JAMES II Registry

All abstract and concrete factories are assumed to have empty constructors, so
that they can be instantiated dynamically at runtime. This is implemented by the
JAMES II registry during start-up. The registry scans a specific directory for

4More specifically, a factory implements the ����������������	
��� ������ method of the
plug-in type’s base factory.

5The name 
�������
 is somewhat ambiguous, as each file may contain more than one concrete
factory of the same plug-in type. In fact, a JAMES II plug-in may consist of multiple factories
according to [136, p. 2], while the term seems to refer to a single factory (and its parameters) in
[131, p. 63]. In the following, the term plug-in will only be used to refer to a single concrete factory
and the implementation it provides.
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all plug-in (type) declaration files. Then, it instantiates the factories, stores the
instances, and assigns all concrete factory instances of one plug-in type to the
corresponding abstract factory instance.

The registry itself is implemented as a singleton [98, p. 127], i.e., there is only
one instance of it per Java Virtual Machine (JVM). It can be retrieved by calling
����������	��
�	������. In order to use a JAMES II plug-in for a certain
task, the registry is called by

����������	��
�	�������	���������������������������������� �����������

where the first argument specifies the plug-in type of interest (by passing the
class of the corresponding abstract factory), and the second argument is an instance
of ��������������. �������������� is an auxiliary class that represents a
tree structure containing arbitrary objects at each node. It is used to pass along
structured and complex parameters system-wide in a standardized manner.

Factory Filtering

When the 	������������� method of the JAMES II registry is called, the
registry propagates the call to the corresponding abstract factory, which returns a
list of all eligible concrete factories, i.e., all factories that are able to fulfill the
task specified by the passed parameters. The eligible factories are identified by
applying a sequence of filter criteria, as shown in figure 4.3. Then, the registry
checks if the list is empty, in which case there is no entity that can solve the current
problem and an error is reported. If the list is non-empty, the first element from
the list of concrete factories is passed back to the caller.

This straightforward mechanism makes it possible to integrate simple algorithm
selection schemes by adding a filter criterion that does not actually filter out any
factory, but rather sorts them. Such criteria had already been implemented for
simulation algorithms and event queues, to solve the ASP in an ad-hoc manner.
The base factory is extended by an additional function, 	������������������,
which returns a floating-point number that describes how efficient the developer
deems an implementation to be in general.6 The factory list is then re-sorted in
descending order of the efficiency indices given by the concrete factories.

Alternatively, one may also implement an application-specific algorithm se-
lection within the user code, by calling the registry’s 	�����������������

method. It returns the whole list of eligible factories, from which the applica-

6Note that 	������������������ does not rely on any parameters, so it is independent of any
problem features.
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Simulator SPartitioner P

Event Queue E ...

A B C D

Filter Criterion 1

Filter Criterion 2

B C D

B D

(Sorting by Efficiency Index)

D DecisionB

Filter Criterion 3RNG

Figure 4.3: Outline of the factory filtering process in JAMES II. The tree structure on
the left sketches the dependencies between all plug-ins used in the given example, whereas
the right side shows the factory filtering process to select an RNG. Here, a partitioning
algorithm P has already been selected, as well as a simulation algorithm S and an event
queue implementation E. The selection of a suitable RNG plug-in from the options A, . . . ,D
(upper right corner) involves the subsequent application of filtering criteria. For some plug-
in types, an additional criterion re-orders the options that are left (e.g., sorting by a so-called
efficiency index). Since the first factory from the list (here D, dashed bold box) is finally
selected by the registry, this enables simple algorithm selection mechanisms.

tion programmer’s code can then select one arbitrarily. This is particularly useful
for orchestrating the interplay between different components, e.g., if one com-
ponent relies on a data structure produced by another one and the type of the
data structure is not known at compile time. This is the case for the partition-
ing sub-system of JAMES II, which combines three types of components: one
for constructing a model graph from the current model’s structure, one for con-
structing an infrastructure graph of available processors and their network topol-
ogy, and one for mapping the model graph onto the infrastructure graph, i.e., the
actual partitioning step [69, p. 849]. Each of the three tasks corresponds to a
single plug-in type. All three interfaces provided by the plug-in types are de-
fined on graphs, but these graphs can be annotated by additional information —
on which a partitioning algorithm may or may not rely. This makes it necessary
to find a suitable combination of components at runtime, which is implemented
most conveniently by querying the registry for all eligible factories per plug-in
type, and then applying a customized selection procedure. The need for searching
such combinations does not occur very often, because most interfaces in JAMES
II are defined in a way that allows their free combination: subsequent calls to
����������	��
�	�������	������������� suffice to find a suitable set-
up. However, even if such a customized selection procedure has to be imple-
mented, it can still be kept consistent with the semantics of the factory lists re-
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turned by the registry, just by favoring factories that appear at the beginning of the
lists retrieved from the registry.

Note that the JAMES II registry can be called from anywhere in the system,
so after selecting a concrete factory to create a desired component, the selected
factory may itself call the registry to retrieve other factories for the instantiation of
auxiliary components. For example, the partitioning system mentioned above also
contains multi-level partitioning partitioning schemes as described in [1], which
rely on additional algorithms to coarsen and refine the model graph.

Further Design Aspects

As the previous sub-sections already suggest, one of the major goals of JAMES II
is to provide maximal flexibility to anyone who develops modeling and simulation
applications on top of it. This goal is also reflected in other aspects of the overall
architecture:

• Independence from external code: the integration of other software, e.g.,
external libraries, can be very challenging (e.g., see discussion in [40]) and
makes software deployment, installation, and maintenance more difficult.
Therefore, the core of JAMES II is independent of any external software.7

This does not mean that external libraries should not be used at all — their
use is just restricted to plug-ins that are separated from the core functionali-
ties, and they should be accessed through a wrapper (see listing A.3, p. 346).

• Interfaces to avoid forced inheritance: All essential classes in JAMES II
are complemented by interface definitions. While one may still inherit from
the standard implementation to alter the functionality in a simple manner,
it is also possible to develop a new implementation of the interface from
scratch, e.g., an implementation that relies on external code and therefore
has to inherit from a specific super class. Most general methods in JAMES
II only operate on interfaces. The interfaces form a hierarchy much similar
to that of the default classes that implement them.

• Parameter block nesting: The aforementioned �����������	
� instances
are used to pass all required information to both abstract and concrete fac-
tories. In order to create auxiliary components, any concrete factory may
call the registry by itself. Hence, it may require additional parameters for
its sub-components. Parameter blocks can therefore be nested arbitrarily, so
that they are able to set up a whole hierarchy of components. Each factory

7Except for the Java Virtual Machine it is executed on, obviously.
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receives parameters for their sub-components via their own parameters, and
has to propagate the sub-parameters accordingly (without having to consider
their specific content). This mechanism plays a key role for implementing
automatic algorithm selection in JAMES II (see ch. 8).

• Patterns: Besides the omnipresent Abstract Factory pattern, several other
design patterns have been used to cope with specific issues. Most JAMES
II simulators are based upon the Template pattern [98, p. 325], to avoid
redundancy and make their code re-usable. For example, the hierarchy of
sequential and parallel simulation algorithms presented in [133] relies on
this pattern. Similarly, the Observer pattern [98, p. 293] is employed for
data collection. Advanced architectural patterns make the distribution of
simulation runs more flexible [201].

4.2.2 Relation to Self-Adaptive Software

Software-centric approaches that deal with the algorithm selection problem are fo-
cused on constructing adaptive software systems (see sec. 2.4.3, p. 55). Features
of such systems are therefore of particular interest, as they could hint at elements
that are still missing in JAMES II but that are necessary for adaptivity in terms
of algorithm selection. McKinley et al. regard component-based design, the sep-
aration of concerns, and reflection as “enabling technologies” [230, p. 57] for
(compositional) adaption:

• Component-based design is implemented by the plug-in system of JAMES
II. Each plug-in can be considered as a single component (sec. 4.2.1, p. 127).
The way that components interact is predetermined by other entities within
the framework. New components can be constructed from existing ones,
and the actual selection of the components is already done automatically at
runtime, albeit in a simplistic manner (see fig. 4.3, p. 129).

• Separation of concerns is required by McKinley at al. to separate “busi-
ness logic” from “crosscutting concerns” like robustness or security [230,
p. 58]. This is only partly achieved in JAMES II: while there are separate
sub-systems for many cross-cutting concerns of modeling and simulation —
e.g., distributed execution, data collection, or random number generation —
more general concerns have been tackled in many different ways. A few
issues are managed by dedicated entities (e.g., error reporting), some are
partially supported but also intertwined with application code (e.g., robust-
ness), and some have been neglected altogether so far (e.g., security). Since
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the automated selection of simulation algorithms can be regarded as another
concern, it should be separated from the rest of the system.

• Reflection can be considered with respect to behavior or structure of a soft-
ware system. Structural reflection in JAMES II is possible to some extent,
e.g., via querying the registry about the plug-ins that are loaded or by using
the reflection API of Java [245]. However, as discussed in section 2.4.3,
behavioral reflection is more relevant for algorithm selection, as the system
shall select algorithms by considering their past performance, i.e., their be-
havior. This is not inherently supported by JAMES II. McKinley et al. fur-
ther subdivide reflection into two distinct activities: introspection, i.e., the
observation of own behavior, and intercession, i.e., the modification of the
system’s state in order to reflect those observations. To support the degree
of behavioral reflection that is required for algorithm selection, JAMES II
has to allow the observation of algorithm performance (i.e., introspection)
and the accordant adjustment of the selection mapping it implements (i.e.,
intercession).

4.2.3 Limitations of Algorithm Selection in JAMES II

Apart from the missing capabilities for behavioral reflection (see sec. 4.2.2), the
basic plug-in system of JAMES II also imposes some other limitations on imple-
menting an algorithm selection mechanism.

Clearly, the current workaround to avoid the algorithm selection problem — i.e.,
sorting the factories by a hard-coded efficiency index8 as described on page 128 —
is not flexible enough to express arbitrary selection mappings. As already elabo-
rated in section 2.1.2 (p. 24), such total orders of algorithms (where one algorithm
dominates all others, and so on), are rather unlikely, because the performance of
most algorithms depends on the properties of the problem instance they are ap-
plied to. Another problem is that a comparison by efficiency index implies that
all indices have the same scale and refer to the same metric. This also means that
all indices depend on each other, which violates their strict separation and inde-
pendence (see sec. 4.2.1). Apart from the difficulties of comparing algorithms in
general (see sec. 3.1, p. 93), the goal of finding a single number that expresses all
performance aspects of a plug-in component for all relevant problem instances and

8A generalized form of this scheme, which allows to also consider the passed parameter
block, was implemented for prototyping potential ASP solutions. It works on the interface
��������	��
����	������	�����	�����	�����	� and is used by many plug-in types in
JAMES II. However, similar limitations as for the original efficiency index solution apply.
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Figure 4.4: Missing context for ad-hoc algorithm selection. In the above figure, the ASP
has to be partially solved (at least) three times, denoted by the three black horizontal bars.
Each bar represents the invocation of the registry, which in turn triggers the factory filtering
process (cf. fig. 4.3, p. 129) for the given plug-in type, in order to select a suitable imple-
mentation. Each time, the context to be considered by the selection procedure gets more
complex: the simulation algorithm A is chosen by only considering the simulation problem
P ∈ P, while the event queue E is chosen by considering the simulation problem P and the
kind of simulator that was already selected (A, see step 2), and so on.

that is consistent with the indices of all other plug-ins is unrealistic. Hard-coded
efficiency indices also hamper the robustness of the plug-in system, i.e., its abil-
ity to cope with malfunctioning or even malicious plug-ins. The factory shown
in listing A.4 (p. 347) exploits the sorting by efficiency index: it always returns
the maximal index that is possible (i.e., ��������	
��	��). If such a plug-in
would be deployed, it would prevent the automatic selection of any other simula-
tion algorithm. For the same reasons, sorting efficiency indices does not cope well
with malfunctioning plug-ins. These will be selected again and again, until the
user manually intervenes by either re-compiling the buggy plug-in with a lower
efficiency index, removing its plug-in file, or explicitly specifying an alternative
plug-in.9

Furthermore, factories are selected by the registry in an ad-hoc manner, without
a simple way to access the overall problem context. For example, consider the
concrete factory of a simulation algorithm A, which calls the registry to provide
it with a suitable event queue, as shown in figure 4.4. The abstract event queue
factory is not able to consider its context, i.e., it is not informed that the selected
event queue shall be used within A (instead of simulator B, for example) — unless
this context information is explicitly stored in the parameter block that is passed to
the abstract event queue factory. Clearly, the required context could be much more

9A simple technique to alleviate this problem is presented in section 8.1.2 (p. 251).
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complex and would potentially include the whole simulation problem! This would
have to be propagated to all abstract factories that are involved in the creation pro-
cess. Thereby the context gets larger and larger, since it also has to specify which
algorithms have already been selected (and with which parameters), i.e., a partial
solution of the current ASP. In figure 4.4, the simulation algorithm and its set-up
would be the partial ASP solution that needs to be considered by the abstract event
queue factory. Hence, even if there is a suitable mechanism for propagating the
current context, the selection of the whole simulation algorithm — i.e., a specific
combination of plug-in components — would be distributed over all abstract fac-
tories that are involved. Developing filter criteria for such a distributed algorithm
selection is quite challenging: at least one filter criterion of each abstract factory
has to be aware of all relevant contexts in which the corresponding abstract factory
has to make a choice. If, for example, a new simulation algorithm is introduced
and it requires an event queue, the factory criterion for event queue selection would
have to be updated. It has to account for the new potential context. All this intro-
duces additional complexity, as the ’global’ selection mapping to be determined in
definition 2.1.1 (p. 21) is now replaced by a conjunction of many ’local’ selection
mappings, each having a different domain (depending on the context).

4.3 Technical Requirements for Algorithm Selection

in JAMES II

Some of the major technical requirements for a simulation algorithm selection
mechanism have already been discussed in section 4.2.2 (p. 131): algorithm selec-
tion can be regarded as a cross-cutting concern, because it relates to many plug-in
types in JAMES II. It should therefore be implemented separately from the cur-
rent registry’s factory selection mechanism. Otherwise, it would also have to over-
come the practical limitations of JAMES II’s current plug-in system, as discussed
in section 4.2.3. Furthermore, any sophisticated automated algorithm selection
method relies on behavioral reflection, i.e., JAMES II has to provide techniques
for introspection (i.e., observing performance) and intercession (i.e., updating the
selection mapping accordingly). The specific requirements arising from all these
aspects are detailed in the following.

Scalability

Before specifying concrete functional requirements, it should be clear under which
circumstances the ASP has to be tackled for JAMES II. Clearly, all techniques
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need to scale with the amount of empirical performance observations from which
to inductively derive selection mappings, and also with the number of eligible al-
gorithms in A. While the amount of available data grows linearly with the number
of simulation runs executed for performance analysis, the set of algorithms may
grow exponentially with the number of new implementations. This is due to the
plug-in system of JAMES II, which allows additional extensions in form of plug-
in types, as well as a flexible combination of existing algorithms to solve a given
simulation problem. These factors may lead to a combinatorial explosion.

More formally, let P be the set of all JAMES II plug-ins, partitioned by n
plug-in types into pairwise disjunct sets P1, . . . ,Pn, i.e.,

⋃n
i=1 Pi = P and ∀Pi,Pj :

Pi ∩Pj = /0 ⇐⇒ i �= j. Defining a new plug-in type means to add another set
Pn+1 that is initially empty, whereas defining a new plug-in of type i means to
add an element to the set Pi. In the ideal case of freely exchangeable plug-ins,
a simulation algorithm relying on two auxiliary plug-ins of type x and y can be
configured in |Px| · |Py| ways. Adding a new plug-in of type x or y will hence result
in a polynomial growth of potential algorithm combinations.

However, a developer may also add a new plug-in type z, e.g., for separating a
part of the simulator’s implementation that might be useful in other contexts, has
a clear interface, and could be solved in several ways that are non-trivial to com-
pare. Even if merely two alternatives are implemented for the new plug-in type
z, i.e., |Pz| = 2, this doubles the number of possible combinations, which is now
|Px| · |Py| · |Pz|. The definition of new plug-in types could hence result in a com-
binatorial explosion. The increasing numbers of both plug-in types and plug-ins
in JAMES II have already been illustrated in the introduction (see fig. 1.2, p. 4).
For some classes of simulation problems, e.g., chemical reaction networks (see
sec. 1.3.1, p. 7), JAMES II already offers hundreds of feasible algorithm combi-
nations. Each new event queue or simulator implementation further complicates
the creation of selection mappings by increasing the number of possibilities. It
is therefore important that the algorithm selection mechanism is able to deal with
large numbers of algorithms. This might be done by considering the particular
structure of the algorithm set A in JAMES II. In other words, an algorithm selec-
tion mechanism for JAMES II has to cope with algorithms that are neither mono-
lithic nor just parameterizable, but rather combinations of plug-ins interacting with
each other (see sec. 2.6.1, p. 75).
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Introspection

Supporting introspection means that it has to be possible from within JAMES II
to observe the performance of plug-ins or plug-in combinations. This feature can
be decomposed into three functions that have to be implemented:

1. Recording the performance of a single simulation run.

2. Storing the performance data.

3. Retrieving the performance data associated with a certain algorithm and sim-
ulation problem.

Recording the performance of a simulation run should involve minimal user in-
teraction. The impact of confounding factors needs to be minimized, in order to
avoid the introduction of a systematic bias to the results. In other words, perfor-
mance measuring needs to be as little intrusive as possible. Then, the recorded
performance data needs to be stored for latter retrieval. Given the aforementioned
scalability issues, the storage system should be able to cope with large amounts
of data, considering that each eligible algorithm combination might be applied to
multiple simulation problems. The performance data has to be retrievable by vari-
ous characteristics, e.g., by simulation problem and by the specific algorithm (i.e.,
plug-in combination). Furthermore, the data storage has to take into account the
hardware that was used to collect the performance data, to ensure its reproducibil-
ity.

Finally, introspection should be enhanced by some of the experiment design
techniques mentioned in section 3.2, which improve experiments regarding their
statistical efficiency and the insights that can be gained from their results. This
could lead the way to automated approaches of algorithm performance evalua-
tion — another important requirement, as one cannot expect all algorithm devel-
opers to be familiar with experiment design.

Intercession

Algorithm selection can be regarded as a technique to enable the intercession of an
adaptive software system. A simulation system may adapt its behavior by altering
the selection mapping (see sec. 2.1, p. 19) that decides on the algorithm to use.

As chapter 2 illustrates, there are many fundamentally different ways to come
up with a selection mapping, e.g., machine learning (sec. 2.3, p. 36) or general
adaptation schemes like genetic algorithms (sec. 2.4.2, p. 53). Furthermore, each
field gave rise to various techniques, all with their advantages and disadvantages.
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The inevitable compromise that comes with the choice of a specific selection map-
ping generation method is most evident in machine learning, where the optimal
trade-off between bias and variance (see sec. 2.3.1, p. 38) depends on the given
data: there is no silver-bullet learning algorithm. Instead, the best one needs to
be chosen by considering the features of the problem at hand. Clearly, selecting a
machine-learning algorithm to automatically generate selection mappings requires
to solve the ASP on yet another level of abstraction. This level of abstraction is
addressed by meta-learning (see sec. 2.7, p. 84 and fig. 2.15, p. 90). Although
meta-learning as such is not in the focus of this discussion, the algorithm selection
mechanism should enable future meta-learning schemes by providing means to
generate, evaluate, and manage selection mappings with different methods. New
selection mapping generation methods may be implemented at later times, so that
there should be a mechanism to plug them into an existing setup of JAMES II.

While the implementation of automatic algorithm selection should also be as
transparent to users as possible, i.e., all automatable parts of the process should be
hidden, users still need to exert full control over the system. More specifically, they
should be able to decide whether or not to use the automated algorithm selection
mechanism at all. Several reasons may prevent a user from relying on automatic
algorithm selection, depending on the given situation:

• No automatic selection is necessary, because the user knows the best algo-
rithm (or there is only one).

• The performance of a specific algorithm shall be observed.

• The automatic selection mechanism does not yet consider the performance
measure of interest.

• The automatic selection mechanism is known to be ineffective for the given
problem.

Therefore, automatic algorithm selection should be easy to switch on or off.
This could even be done automatically in some cases, e.g., if the evaluation of
selection mappings for a certain problem class already showed their ineffectiveness
(see sec. 2.1.2, p. 24).

Finally, there are situations in which even a sub-optimal selection is much
preferable over having no automated selection at all: in case of a failure, e.g.,
if an algorithm is not able to correctly process a model with certain specifics, an
automatic selection mechanism could offer a graceful way to cope with the situa-
tion. It should select a fall-back component to replace the faulty plug-in and repeat
the computation. All this, however, is only applicable if failures are detected, i.e.,
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in Java such a mechanism would have to react on exceptions thrown at runtime.
Clearly, algorithm selection cannot prevent all implementation errors in simulation
algorithms.

Interaction with the Host Simulation System

In principle, a simulation algorithm selection mechanism could be implemented
independent of any concrete simulation system, e.g., by simply defining a generic
input format for all required data. Yet, only a certain level of integration with a
host system allows to automate the selection process for users of the host system:
the host system has to query the selection mechanism in case of a simulation exe-
cution. To still retain the generality of a system-independent selection mechanism,
host system and selection mechanism should be separated as much as possible
and only interact via clearly defined interfaces. It allows to re-use the selection
mechanism across several simulation systems. This could be useful to compare al-
gorithms across different systems, or to even transfer some high-level knowledge
(e.g., on the accuracy of a shared library) from one system to the other.

To some extent, using JAMES II as a host system can be considered a ’worst
case scenario’ for simulation algorithm selection, due to the wealth of available
algorithms that result from its flexibility. Hence, it seems reasonable to imple-
ment and evaluate prototypical selection mechanisms on top of it. This also makes
it possible to assess the scalability of the implemented algorithm selection ap-
proaches, depending on the number of available algorithms and so on. Apart from
providing numerous test cases, JAMES II also offers many useful solutions to
tackle other requirements mentioned above, e.g., its general plug-in system. By
restricting interaction between JAMES II and the selection mechanism to specific
interfaces, it is still possible to use the JAMES II-based prototype to select algo-
rithms for other simulation systems, as long as they implement the same JAMES
II interfaces. The loss of generality that stems from focusing on the development
of an algorithm selection mechanism for JAMES II can thus be considered negli-
gible.

Summary

Table 4.1 summarizes the major technical requirements for the simulation algo-
rithm selection framework (SASF) to be developed for the host system JAMES
II. Clearly, keeping them separated applies to both systems (first line), as well
as their scalability with respect to the number of available algorithms. This task,
however, is much easier to accomplish for the simulation system: while the host
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Requirement SASF or Simulation System? JAMES II

Separation of Concerns both �

Scalability w.r.t. #Algo-
rithms

both �

(Automated) Behavioral In-
trospection

any/SASF �

Scalability w.r.t. #Perfor-
mance Data

SASF -

Behavioral Intercession SASF -
Meta-Learning / Perfor-
mance Evaluation

SASF -

Table 4.1: Summary of the identified requirements. Checkmarks denote the features that
are already available in JAMES II, crosses denote missing features, and hyphens denote
cases that are of no concern for JAMES II.

simulation system merely has to manage the algorithms and to specify how they
can be combined with each other, the algorithm selection problem to be solved by
the SASF is likely to get harder the larger A is.

Behavioral introspection, i.e., the ability to automatically evaluate and compare
existing parts of the simulation system, could be implemented either by the se-
lection mechanism or by the host system (or by both). It is an important aspect
of any empirical approach to algorithm selection. The empirical performance data
provided by behavioral introspection are then processed to generate selection map-
pings. Generation, management, and evaluation of selection mappings is clearly
in the responsibility of the selection mechanism, so it has to scale with the amount
of available performance data. The generated selection mappings should steer the
behavioral intercession triggered by the selection mechanism. Finally, those se-
lection mappings have to be evaluated and selected as well (meta-learning, last
line).

4.4 A Simulation Algorithm Selection Framework

Given the analysis in the preceding sections, it seems reasonable to investigate
the benefits and limitations of automated simulation algorithm selection by im-
plementing a prototype for the modeling and simulation framework JAMES II.
Since the prototype needs to include several realizations for certain tasks, such as
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the generation of selection mappings (see sec. 4.3, p. 134), the general and flexi-
ble plug-in system of JAMES II can be re-used here to ease implementation. It
provides a solid and well-tested foundation for implementing any task related to
modeling and simulation.

Although most concrete implementations of functionality shall be exchange-
able, the prototype should not just provide a set of loosely coupled helper functions
for realizing selection mechanisms. Instead, it should prescribe how the different
techniques interact with the host system, thereby hiding the internal complexity
of the overall task as much as possible. In other words, the major constituents of
the selection mechanism need to be realized as a software framework: a simula-
tion algorithm selection framework (SASF). The idea of a general framework for
simulation algorithm selection blends in nicely with the overall idea of JAMES
II, namely to provide a general framework for any task related to modeling and
simulation. This includes simulation algorithm selection.

Note that developing on top of JAMES II does not reduce the general applica-
bility of the resulting simulation algorithm selection framework for other simula-
tion systems, as long as they are able to interact with the SASF via its predefined
interfaces. Nevertheless, the focus on JAMES II motivates its usage as an exem-
plary host system, e.g., to explore potential benefits that stem from integrating host
system and selection mechanism.

While this section introduces the general architecture of the framework and dis-
cusses which elements are responsible for fulfilling which requirement, their spe-
cific design and functionality is detailed over the next chapters (ch. 5 to ch. 8).
Before, the overall architecture of related projects will be briefly reviewed, which
allows to identify major modules already identified by others, and hence puts the
approach pursued here into an more general perspective.

4.4.1 Related Software Systems

There are several tools that aim at features similar to those the SASF shall even-
tually provide. They are aimed at different (or more general) application domains
(see sec. 2.7, p. 80), but may still help to come up with a feasible overall layout.
Since the SASF is a framework, both its overall structure and the way its compo-
nents work together, i.e., their interaction pattern, need to be identified.

Structure and Major Components

A rather elaborate software structure was realized for PYTHIA II [146], a prob-
lem solving environment that is focused on numerical solvers (see sec. 2.7, p. 81):
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the whole system is divided into different layers — user interface, data genera-
tion/analysis, and data storage — each of which consists of multiple components.
The user interface layer is divided into two modules, one for the ’knowledge en-
gineer’ (similar to the deployer role, see fig. 4.1, p. 121) and one interface to use
the system for algorithm selection. Users of the latter would have the role of ex-
perimenters (see fig. 4.1, p. 121). The second layer contains a single “problem
execution environment” — in the SASF context, this would be an interface to the
host simulation system. This layer also contains several modules for data analy-
sis. The third layer is accessed via a single interface (of the database management
system), but there are different kinds of data managed in different databases: input
problems, performance data, problem features, and statistical data. PYTHIA II’s
overall layout is based on the principal ASP components already identified by Rice
in [272] (cf. fig. 2.1, p. 21).10 Its structure is summarized in the upper-left sketch
of figure 4.5 (p. 142).

Dongarra and Eijkhout follow another direction in [60], where they introduce
a self-adaptive numerical software (SANS) system whose central component is
an ’intelligent agent’ (see fig. 4.5, upper right sketch): it consists of a ’history
database’ to store information on past problems and past performance measure-
ments, a ’system component’ that allows to schedule tasks and interfaces the host
system (e.g., a grid), and an ’intelligent component’. The intelligent component
analyzes the data from the history database and is responsible for algorithm selec-
tion. The system is aimed at scientific computing in general, i.e., it includes the
problem domains PYTHIA II was designed for. Instead of a graphical or web-
based user interface like PYTHIA II, the SANS is accessed via some scripting
language. Their approach is targeted towards programmers.

In [25], Brewer presents the structure of a high-level library as well as addi-
tional components to configure it (see fig. 4.5, lower left sketch). The high-level
library consists of several algorithms for the same task (e.g., sorting). Each al-
gorithm in the library is associated with a set of models, one for each platform
that is supported. These are statistical models for performance prediction (in the
sense of sec. 2.3.1, p. 38), not to be confused with simulation models. The mod-
els are created by an (external) ’auto-calibration toolkit’. A ’parameter optimizer’
component searches for the best parameter setup per algorithm and platform, by
considering an algorithm’s models. The algorithm selection as such is done by the
’algorithm selector’ component of the high level library, which queries the appro-
priate model for each algorithm and then selects the algorithm with best predicted

10This comes at no surprise, as Rice was involved in the construction of PYTHIA II and co-
authored [146].



142 4 A Framework for Simulation Algorithm Selection

performance. As with SANS, the high-level library is accessed by other programs
only and does not require additional user interfaces.

Figure 4.5: Software architectures for algorithm selection. Note that some components
have several functions and are merely colored by their most important functionality, e.g.,
the intelligent agent component in the SANS layout (upper right) does also analyze the data
stored in the history database. The sketches have been adapted from [146, p. 234], [60, p.
126], [176, p. 30–32], and [25, p. 81] (clock-wise, starting with upper left).

On a more conceptual level, Karsai et al. [176] propose a structure motivated
by adaptive control theory (see fig. 4.5, lower right sketch): to make a system
adaptive, it can be extended by a ’supervisory layer’ that contains a ’supervisory
component’. The supervisory component is able to reconfigure the given system,
which in this case would be the host simulation system. It is also able to monitor
the performance of the components on the lower level. The observed data deter-
mines how the system gets adapted, e.g., this could be performance data from sim-
ulation algorithms. Observation is facilitated by an ’event monitor’ that diagnoses
the occurrence of certain events on the ground level and then triggers adaptation.
Adaptation is implemented as a finite state machine that reacts on the generated
events by initiating a reconfiguration.

To facilitate an overview, figure 4.5 compares the discussed architectures.
PYTHIA II (upper left sketch) stands out in several ways: its architecture is
organized in layers, it contains the most distinct modules, and instead of being
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invoked by other software it is accessed via user interfaces. Brewer’s architecture
for a high-level library (lower left sketch), in contrast, does not contain a module
to store past performance data — only the results of analyzing the performance
data, i.e., the statistical models associated with the algorithms, are stored. Both
PYTHIA II and the high-level library approach have in common that they feature
a dedicated component for experimentation (the problem execution module and
the auto-calibration toolkit, respectively) — this is missing in the self-adaptive ar-
chitectures on the right side of figure 4.5. The reason for this is simple: as these
systems are supposed to adapt at runtime, they do not distinguish clearly between
exploring the system’s performance and selecting an algorithm — this function-
ality is included in their components for algorithm selection. An aspect all ap-
proaches have in common is the definition of a distinct component for algorithm
selection that has a clear interface to the rest of the system.

In spite of that, Karsai et al. claim that “adaptive control makes (at least) two
important contributions to self-adaptive software: (1) the adaptation mechanism
should be explicit and independent from the ’main’ processing taking place in the
system, and (2) the overall system dynamics should be different for the adaptation
mechanism and the main processing mechanism.” [176, p. 26]. Nevertheless, both
aspects can also be found in the other approaches that do not rely on adaptive con-
trol theory. Finally, note that — as already discussed in chapter 2 — the presented
approaches originated in different research communities, and hence rely on differ-
ing terminology. The algorithm selection component, for instance, is implemented
by a ’rule inference’ module (upper left), an ’intelligent agent’ (upper right), a
’finite state machine’ (lower right), or an ’algorithm selector’ (lower left). Partly,
this divergence stems from the level of detail (e.g., code of single algorithms on
the lower left, whole libraries on the upper right side) under consideration, but
also from a lack of transfer between the different fields, as discussed in section 2.6
(p. 71).

Interaction Patterns

Besides architectures as such, it is also of interest which activities have been iden-
tified by other developers of algorithm selection systems, and how these activities
are related to each other. How to map them onto the roles identified in section 4.1?

PYTHIA II offers a dedicated user interface for algorithm experts (see fig. 4.5,
upper left sketch), which can be used to build a recommender system. In [146, p.
231], Houstis et al. name the following tasks to be done:
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1. Data Preparation: This task involves the selection of suitable benchmarks
(problem space P), problem features (features space F), performance met-
rics, and the execution of experiments with all relevant algorithms.

2. Data Mining: This task subsumes all automated analysis mechanisms ap-
plied to the data gathered in the preceding step. Houstis et al. consider it to
be “[...] the heart of the process” [146, p. 231].

3. Results Analysis: This step relates to the manual interpretation of the data
mining results, and should be carried out by ’knowledge engineers’.

4. Knowledge Assimilation: After approval and adjustment by the knowledge
engineers, an inference engine (see fig. 4.5, upper left sketch) is used to gen-
erate recommendation rules. This has already been detailed in section 2.7
(p. 81).

PYTHIA II then allows end-users to specify a problem via a web front-end and
recommends the algorithm and parameters it deems most appropriate, together
with an estimate for execution time and accuracy (i.e., the performance to be ex-
pected for the relevant metrics). The roles defined in section 4.1 are slightly differ-
ent from those in PYTHIA II, reflecting PYTHIA II’s differing purposes. Instead
of deployers, PYTHIA II considers ’knowledge engineers’: its recommendation
mechanism is not directly coupled with any host system, i.e., end-users (experi-
menter role) have to trigger recommendation manually. The roles of developers
and performance analysts are not considered specifically.

For the self-adaptive numerical software (SANS) approach presented in [60],
Dongarra and Eijkhout distinguish between users with different levels of expertise:
non-expert users benefit from a fully-automated selection, more advanced users
may supply additional information to allow for a better selection quality, and expert
users may pre-select the algorithm they wish to use. The latter still benefit from
using the system, because it will select the most appropriate hardware for executing
the desired algorithm [60, p. 4]. The role of developers is not discussed.

In [338], Yu et al. propose an ’Adaptive Algorithm Selection Framework’ — not
in the sense of a software architecture but rather as a description of a generic algo-
rithm selection process for empirical tuning (see sec. 2.7, p. 80). They distinguish
between a ’setup’ phase and a ’dynamic selection’ phase. The setup phase, as the
name suggests, is carried out each time the system is installed on a new machine.
It executes a factorial experiment (see sec. 3.2.2, p. 104) with an artificial bench-
mark problem. The selection mapping is then created from the generated data, i.e.,
this subsumes the steps for data preparation and mining in PYTHIA II, automates
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them, and restricts them to the implemented methods. The setup phase would be
carried out by a deployer. The dynamic selection phase occurs at processing time,
when an algorithm shall be used — all this is transparent for the end user.

A similarly automated process is implemented for the simulation system TOR-
NADO [42], where algorithm selection is automatically triggered before execution,
but prior to this exploitation of knowledge there has to be an exploration phase
(i.e., the system adopts a reinforcement learning strategy, see sec. 2.3.2, p. 43).
During exploration, users can give manual feedback on the quality of the obtained
simulation results.

In [117], Guo puts forward an algorithm selection workflow consisting of
seven steps and states that each one “has some important research problems to
solve” [117, p. 63].

The steps can be easily mapped to those used in PYTHIA II:

1. Data Preparation: Guo divides this task into two steps — generating prob-
lem instances and collecting performance data.

2. Data Mining: this task is split into two steps for preprocessing and two
steps for machine learning. Preprocessing first identifies the most relevant
problem features (see sec. 2.1.1, p. 21) and then discretizes the data, since
the ASP is solved via classification here (see sec. 2.3, p. 36, and sec. 2.6.1,
p. 77). Learning consists of a learning step and a meta-learning step (see
sec. 2.7, p. 80).

3. Results Analysis: this is the final step in Guo’s scheme, i.e., PYTHIA II’s
final step of ’knowledge assimilation’ is left out. Guo calls this step ’eval-
uation’: the best selection mapping gets selected and its performance is as-
sessed on test data.

All the above approaches are a little naïve in that they presume the construc-
tion of a suitable selection mechanism to be either fully automated or sequential.
A notable exception is provided by Smith-Miles in [292, p. 20]. Her conceptual
framework distinguishes three phases: the first phase subsumes data preparation
and data mining, the second phase relates to knowledge assimilation, and the third
phase is concerned with results analysis. Here, however, the results analysis may
provide feedback to the first phase. If the data mining in phase one yields new
insights regarding algorithm properties (e.g., sensitivity for certain problem fea-
tures), the overall ASP solution process may start over. Phase one (data prepara-
tion/mining) and phase three (results analysis) contain activities of the developer
and the performance analyst role (see sec. 4.1, p. 119). If, for example, an al-
gorithm is found to exhibit very bad performance on problems where it was not
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expected, this might hint at a software bug that should be fixed. These fixes then
trigger a new reiteration of the ASP solution workflow.

All in all, the discussed solutions have several aspects in common: either they
are fully automated, or they distinguish users by expertise (e.g., SANS) or role
(e.g., PYTHIA II). All frameworks also distinguish the process of gathering
the performance data from the process of analyzing it. In Smith-Miles’ frame-
work [292], the analysis is again divided into a manual interpretation of the re-
sults — what developers and performance analysts do — and the deployment of a
suitable selection mapping, which can be automated. The other approaches regard
the ASP solution process as a sequential chain of tasks. While these tasks would be
carried out sequentially in an ideal world, it seems more realistic to assume feed-
back loops after each major step: data preparation may hint at some new features
to be considered (and thus, new benchmark problems), data mining and results
analysis may identify implementation errors, and even deployment may result in a
reiteration, e.g., if the deployed selection mapping turns out to perform worse than
expected. This could happen, for instance, if unrealistic benchmark problems and
problem features have been used for performance evaluation.

4.4.2 General Architecture

While other systems to solve the algorithm selection problem are a valuable source
of inspiration, each of their elements needs to be reconsidered critically: it has to
be checked whether it helps to fulfill the technical requirements of the selection
mechanism as discussed in section 4.3 (see table 4.1, p. 139).

For example, in [176] it is suggested that the supervisory layer be coupled to the
application layer tightly enough to allow the recoding of all interactions between
components on the application layer (see fig. 4.5, p. 142, lower right sketch). In
case of JAMES II, where components interact to simulate a given model, this
would strongly hamper the overall performance: a single simulation run may
require billions of interactions, e.g., en- or dequeueing an event from a queue.
Recording these events just to enable algorithm selection would incur a huge over-
head, hence this suggestion violates the scalability requirement. Likewise, the
methods related to empirical tuning — the high-level library shown in figure 4.5
(lower left sketch) and the conceptual framework by Yu et al. [338] — both have
a strong focus on complete automation and neglect different usage scenarios that
are relevant in a simulation context (performance analyst, developer). On the other
hand, PYTHIA II is only loosely coupled with its host systems, so that its mech-
anisms for user interaction cannot be easily adopted for the simulation algorithm
selection framework.
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Still, there are some relevant commonalities shared by most related approaches,
both on a structural and on an interaction level. These should be considered for the
development of the framework:

• A separation between the algorithm selection mechanism and the host sys-
tem (the benefits of which are discussed in [176]).

• A storage for performance data and corresponding meta-information.

• A generic mechanism to add algorithm performance to the storage module,
i.e., to support behavioral introspection.

• A module to analyze stored data and draw ’intelligent’ conclusions which,
are then used for algorithm selection. Selection and data analysis may be
realized by separate modules, as in PYTHIA II (upper left sketch, fig. 4.5,
p. 142), or by a single entity, as in the SANS layout (upper right sketch,
fig. 4.5, p. 142).

• Support for different kinds of users with different goals and responsibilities
(in case the tool is not fully automated). The common distinction is between
the end-user (experimenter role) and the person solving the ASP with the
tool (performance analyst and deployer roles).

Naturally, the aforementioned commonalities are rather general and are not al-
ways strictly adhered to. The high-level library (lower left sketch, fig. 4.5, p. 142),
for example, maintains performance data only implicitly: it just stores the gener-
ated statistical models. Such specifics may or may not comply with the require-
ments discussed in section 4.3, and will hence be discussed in the following — in
this case, dismissing performance data prevents a latter analysis with alternative
methods for analysis.

Figure 4.6 shows the overall structure of the simulation algorithm selection
framework and its general interfaces with JAMES II. It consists of six essential
components, divided into three layers that roughly indicate the degree of interde-
pendence from the host system JAMES II: the topmost layer contains components
to explore the performance of JAMES II simulators and to exploit any knowledge
gained by latter analysis. Considering the categorization of algorithm selection
methods presented in section 2.6 (see fig. 2.13, p. 79), the exploration modules
deals with the data aspect of the ASP, whereas the exploitation module implements
the application of ASP solutions.

The storages for performance data and analysis results at the bottom layer are
rather independent of the host system, although their content is not. Upper and
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Figure 4.6: Overall architecture of the simulation algorithm selection framework. Two
modules implement the interaction with the host system (Exploration and Exploitation, top
layer), one implements data recording (Monitoring, middle layer), one the data analysis,
and the two most general modules implement the storage of performance data and analysis
results respectively (blue, bottom layer). Colors have the same semantics as in figure 4.5.

lower layer are connected by an intermediate layer that is responsible for data col-
lection and analysis. Data collection requires a monitoring module that observes
the performance of specific JAMES II components and stores it to the perfor-
mance database. Finally, the module for data analysis implements methods for
actually solving the ASP, e.g., those presented in sections 2.3 and 2.5.

Another issue figure 4.6 hints at is the necessity of user interfaces. The user
interfaces should be role-specific, to make them simpler and thus easier to use.
The level of details on which each interface is likely to focus is indicated by the
corresponding role’s position in figure 4.6. Note that these user interfaces are not
necessarily graphical, i.e., some of them may come in the form of an application
programming interface (API). Others should be integrated with existing interfaces,
e.g., an experimenter should be able to trigger the application of an ASP solution
from within the general JAMES II user interface. In the following, the discussion
on suitable user interfaces — as important as they are — will be restricted to pro-
gram interfaces. The next paragraphs detail the general responsibilities for each
part of the framework. Their specific structure and implementation are described
in the following chapters.

Performance Data Storage & Monitoring

The performance data storage manages all data to be considered for solving the
simulation algorithm selection problem. The theoretical framework of Rice [272],
as discussed in section 2.1 (p. 19), already defines the most important entities;
these need to be mapped onto more concrete concepts from modeling and simu-
lation. Additionally, it is important to discuss different ways of defining and ob-
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taining these entities for JAMES II — the goal is, again, to automate as much of
the process as possible. Afterwards, the recorded data is added to the database. As
the arrows in figure 4.6 suggest, the monitoring device will be specific to the host
system JAMES II, whereas the performance data storage will be more compatible
with other systems. Chapter 5 details both modules.

Data Analysis

The main responsibility of the data analysis module is to generate selection map-
pings from the empirical data provided by the performance data storage. In other
words, it has to solve the simulation algorithm selection problem (see def. 2.1.2,
p. 22). Several research communities focus on the analysis of empirical data from
different points of view, most importantly statistics and machine learning (see
sec. 2.3, p. 36). Consequently, there are many potentially suitable methods and
tools available to solve the ASP — which makes the integration of them the most
important requirement of the data analysis module. All integrated methods should
be accessible via a unified interface that is tailored to the creation of selection
mappings. Besides the generation of selection mappings, these also need to be
evaluated and compared by different performance metrics, e.g., how often a map-
ping selects the best algorithm. All these features need to be realized by the data
analysis module. Its main components are described in chapter 6.

Extended Experimentation Layer

The JAMES II experimentation layer as such does not rely on algorithm selec-
tion. However, solving the ASP requires considerable amounts of empirical data
that should be obtained via automated experimentation. The experimentation layer
should therefore support the large-scale exploration of algorithm performance on
various models. As the enhancements to the experimentation layer cannot be ex-
plained without understanding its basic structure, chapter 7 will first give some
details on its general workings, before describing the extensions that were specif-
ically added to better support the collection of empirical performance data. One
technique presumes a specific property of benchmark models; their construction is
thus covered as well. As it turns out, it is already on this level that simple solutions
for the ASP can be realized.

Extended Registry

Finally, chapter 8 discusses how the JAMES II registry can be extended to make
use of the selection mappings generated by the data analysis module. This is in
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some sense the most crucial element, as it allows a JAMES II user to apply the
ASP solutions that are available. However, it is also the most system- and role-
specific element — both other JAMES II-specific modules, monitoring and ex-
tended support for performance experiments, are also used by developers and per-
formance analysts to carry out their tasks. An extended registry, on the other hand,
needs to be configured by a deployer. Interestingly, the knowledge on plug-in per-
formance — implicitly contained in the selection mappings — is not the only kind
of meta-data that the registry may rely on. By making the life-cycle of a plug-in
explicit and generalizing storage and usage of meta-data in the registry, the robust-
ness of flexible simulation systems can be enhanced as well (see sec. 2.4.3, p. 55).
This resolves the vulnerability of the current selection process with respect to ma-
licious plug-ins, as discussed in section 4.2.3 (p. 132). The registry’s management
modules for meta-data should be regarded as a part of the data analysis module
(see fig. 4.6, p. 148), as they also manage the deployed selection mappings, i.e.,
they interface the storage of analysis results.

4.5 Summary

This chapter first discussed some relevant use cases for simulation algorithm se-
lection (sec. 4.1, p. 119). Then, the modeling and simulation framework JAMES
II and its most important characteristics regarding algorithm selection have been
introduced (sec. 4.2, p. 122). Section 4.3 (p. 134) described the technical require-
ments a simulation algorithm selection mechanism for JAMES II has to fulfill.
Finally, some systems with related goals have been surveyed briefly (sec. 4.4.1,
p. 140), to get an idea of their overall design. The major commonalities among
these approaches served as a starting point for a blueprint of the simulation al-
gorithm selection framework (SASF). Its structure was motivated and outlined in
section 4.4.2.

To give a brief visual summary of the most important aspects discussed in this
chapter, table 4.2 associates the requirements from table 4.1 with user roles and
SASF modules. Most requirements are particularly important for performance an-
alysts (PA) and developers (Dev), because large-scale data collection is a prerequi-
site for the generation of good selection mappings (as already discussed in ch. 2,
p. 19). Deployers need tools to assess the effectiveness of the generated map-
pings and also benefit the most from a clear separation of concerns, as this allows
them to easily replace parts of the overall system (or to deactivate them altogether,
in case of malfunctioning). The ultimate goal of the system, however, is to pro-
vide experimenters with a simulation system that supports automatic behavioral
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Requirement Relevant for PDS Analysis E-Exp E-Reg

Separation of Con-
cerns

Deployer + + + ++

Scalability w.r.t.
#Algorithms

PA / Dev ++ + + ++

(Automated) Behav-
ioral Introspection

PA / Dev + + ++ ◦

Scalability w.r.t.
#Performance Data

PA ++ ++ ◦ ◦

Behavioral Interces-
sion

Experimenter ◦ ++ + ++

Meta-Learning / Per-
formance Evaluation

Deployer ◦ ++ ◦ +

Table 4.2: This table indicates the most important relations between the identified require-
ments, user roles, and modules.

intercession. The columns on the right of table 4.2 indicate the importance of the
requirements for the basic modules introduced in section 4.4.2: performance data
storage & monitoring (PDS), data analysis & analysis results storage (Analysis),
extended experimentation layer (E-Exp), and extended registry (E-Reg). The de-
gree of importance varies between low (◦) and high (++). Scalability with respect
to algorithms and the separation of concerns are clearly cross-cutting concerns, i.e.,
they need to be considered in the development of all sub-systems. Others, such as
behavioral intercession, are only relevant for some of them. The next chapters will
cover each sub-system in more detail, and discuss how these requirements can be
fulfilled.
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This step is simple to explain, but nontrivial to actually perform.
In the case studies that we have performed, we have found the col-
lection of data to be very time-consuming both for our computer
cluster and for ourselves.

Leyton-Brown et al. [205, p. 9]

This chapter describes how the ASP entities discussed in section 2.1.4 (p. 32)
can be recorded and stored, i.e., it covers the parts of the simulation algorithm
selection framework that are highlighted in figure 5.1. Storing performance data
in some common, readily accessible format is one of the major premises for re-
producible and comparable performance results. Gent et al., for example, advise
researchers to store all their published data for later re-evaluation [101]. The ad-
vantages of this approach become apparent in the work of Gagliolo and Schmid-
huber [96], who re-use publicly available performance data published by Leyton-
Brown et. al. [204] to test a new method for algorithm selection. In a similar vein,
Adve et al. state that their performance modeling and prediction tool POEMS
(see sec. 3.3.2, p. 112) “[...] could not be built without a database as a searchable
repository for a wide spectrum of model and performance data” [3, p. 1035].

Figure 5.1: SASF overview (see fig. 4.6, p. 148), red borders denote elements discussed in
this chapter.
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Consequently, there are some general attempts to provide storage solutions for
performance data on software (or pieces thereof), particularly in the field of perfor-
mance analysis tools briefly surveyed in section 3.3.2 (p. 112). In [19], Berry et al.
present a performance database server (PDS) that allows to manage benchmark
scores for various machines and to associate them with corresponding publica-
tions. The motivation for PDS, however, stems more from comparing different
kinds of machines and not from comparing different kinds of algorithms on the
same machine. For each type of benchmark, there is a dedicated database table
whose structure reflects the scoring system of the benchmark. While this makes
the PDS flexible enough to store any kind of benchmark data and does not hin-
der manual interpretation, it makes an automated result analysis — as required for
algorithm selection — quite hard.

A more algorithm-centric viewpoint is, for example, taken by the performance
data management framework PERFDMF [151]. It stores detailed performance
data that can be analyzed with PERFEXPLORER [150] (see sec. 3.3.2, p. 112). The
PROPHESY [301] tool also features a performance database and allows to record
performance data in a detailed manner, i.e., up to the level of functions and code
segments. Then again, this level of detail is not required for the performance
evaluation of simulation algorithms, which typically consist of many functions
and code segments.

Storing large amounts of additional data without any surplus could hamper the
applicability of the system, even for performance experiments of a moderate size.
This violates the requirement of scaling well with the amount of available perfor-
mance data (see tab. 4.2, p. 151). Maximal scalability is only achieved if there is an
efficient way to store just the data that is necessary to solve the algorithm selection
problem. The collection of relevant performance data from sound experiments is
a prerequisite task (see sec. 3.1, p. 93). A suitable performance storage should
allow to reproduce former performance experiments and to retrieve the recorded
algorithm performances easily. To combine these features with low-level data on
sub-routines is possible in principle, but not particularly necessary from a practical
point of view. Developers and performance analysts should use the SASF to find
out which algorithm works best on which problems — for finding out why this is
the case, they may still resort to profiling tools or systems like PERFDMF.

Hence, existing systems for algorithm selection — e.g., PYTHIA II — rely on
custom databases that are tailored to their needs and only store the entities they
work with. Similarly, Dongarra and Eijkhout propose a ’history database’ for
their concept of a self-adaptive numerical software (see sec. 4.4.1, p. 140) and
state that “[c]ategorization of performance and problem ’metadata’ into rela-
tional databases should be based on the application domain [...]” [60, p. 128].



5.1 The SASF Performance Database 155

x ∈ P

Problem Space
f (x) ∈ F = Rm

Feature Space
F

Feature Ex-
traction

w ∈ Rn
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S( f (x),w)
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Algorithm Performance
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models, problems, prob-
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feature_values

runtime_configurations

performance_types,
performances

Figure 5.2: The algorithm selection problem as defined by Rice [272], and its mapping to
concrete database entities (dashed boxes). The criteria space needs no representation within
the database, as these preferences need to be given by the user (cf. fig. 2.3, p. 33).

It therefore seems advisable to implement a dedicated performance data storage,
targeted at simulation algorithm selection. This also allows to offer extended sup-
port for a rather simulation-specific experimentation challenge discussed in chap-
ter 3, namely observing the performance of algorithms for stochastic simulation
(see sec. 3.2.1, p. 101). An earlier version of the work described in this chapter
has been presented in [70].

5.1 The SASF Performance Database

The overall database structure can be derived from the theoretical formulation of
the algorithm selection problem (sec. 2.1, p. 19) and its mapping to the simulation
domain (fig. 2.3, p. 33). The database entities that will be detailed in the following
are depicted in figure 5.2.

Most effort is needed to define the problem space P in a coherent and general
manner. This is because the problem definition does not only subsume the input
of a simulation algorithm (e.g., models), but also the available infrastructure that
shall be used for its execution (e.g., setups, machines). The storage schemes for
performance and feature space are rather similar. Both are designed to be extensi-
ble in the future, i.e., they allow the definition of arbitrarily many types of features
and performance measures (i.e., additional dimensions of feature space and perfor-
mance space). Performance measurements are associated with the application of
a specific simulation algorithm to a specific simulation problem instance, i.e., the
execution of a single simulation run. The run is represented by an additional appli-
cation entity, which does not correspond to the formal entities shown in figure 5.2
and is hence described separately in section 5.1.1 (p. 161). The algorithm space
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is represented by simply enumerating all kinds of available plug-in combinations,
which are called ’runtime configurations’. Section 5.1.1 details the definition of
the database entities. Section 5.1.2 briefly discusses the generality of this layout,
i.e., to which degree it can be used by other simulation systems.

The challenge of efficiently storing large amounts of performance data should
not be underestimated. Besides identifying and implementing suitable entities, the
data sink should be easy to handle, as independent of external software as possible,
and also efficient. The actual implementation is covered in section 5.1.3.

5.1.1 Entities

Problem Space (P)

The problem space P of the algorithm selection problem (see fig. 5.2) simply con-
tains all simulation problems that can be solved by the available simulation algo-
rithms in A. It consists of two large sub-spaces: one is the space of all potential
input models, the other is the space of all potential hardware setups that might be
available, i.e., the sets of machines to be used and the network equipment by which
they communicate.

Model Description Storing models directly into a database would mean to cre-
ate (and curate) a model database instead of a performance database, which is a
challenging research topic on its own. Developing a proper model database has to
fulfill many additional requirements (e.g., with respect to searchability).

To circumvent these difficulties and also to allow referencing models from var-
ious (external) sources, a model is merely defined by a uniform (or universal)
resource identifier (URI), a common standard for specifying the location of a re-
source on the Internet. This does not only comply to the input that is expected by
the experimentation layer of JAMES II [132], but also ensures that a model can
be stored on arbitrary resources — including the file system and model databases.
As long as the corresponding URI can be resolved, the model is accessible. Addi-
tionally, a model entity in the performance database has a name, a description, and
a certain type. Different types of benchmark models are discussed in section 7.3.1
(p. 226); the categorization is only used for documentation so far.

Most models have several parameters that can be adjusted by the experimenter.
A model defining chemical reactions, for example, may allow to specify the vol-
ume, the temperature, and the pressure. Furthermore, models are usually simu-
lated for a predetermined time span (given in simulation time, see fig. 3.2, p. 107)
or until a termination condition is true. For example, a reaction network might be



5.1 The SASF Performance Database 157

simulated until it arrives at a chemical equilibrium. Whatever this rule for stopping
the simulation is, it clearly belongs to the overall problem description, along with
the model parameters. These informations are bundled together to a problem en-
tity. It covers all aspects of a single simulation run that an experimenter typically
has to define: which model is simulated, with which parameters, and for what time
span (or until which condition holds true). Note that a simulation problem, i.e., an
element of the problem space P, also contains a description of the hardware setup
that shall be used.

Infrastructure Many publications have already shown the considerable impact
of hardware architecture and operating system on algorithm performance, particu-
larly when it comes to execution speed. In [188], Lagoudakis and Littman observe
that the optimal decision strategies for sorting algorithms — based on the input
size only — differ between Solaris (on a SPARC platform) and Linux (on a Pen-
tium platform). LaMarca and Ladner show in [191] that caching hierarchies have
a strong impact on the performance of sorting algorithms, and that the reduction
of (time-consuming) cache misses leads to theoretically inferior algorithms that
outperform theoretically superior ones by a large margin. For example, multi-
mergesort, a memory-optimized version of the original algorithm, was up to 70%
faster than the original mergesort, despite executing 75% more instructions. Sim-
ilar effects can be observed for other memory access mechanisms as well, e.g.,
paging [175]. In [318], Vuduc et al. investigate the performance of algorithms for
matrix multiplication. They find that cache sizes and the number of CPU registers
correlate heavily with the optimal matrix size for each multiplication algorithm.
Apart from the impact that hardware has even on rather simple algorithms, new
simulation approaches may also exploit specialized hardware that is not always
available [253, 280, 287].

All these points suggest that there is no easy way out; hardware specifics do
matter and have to be considered as an independent variable when it comes to ana-
lyzing algorithm performance. Furthermore, McGeoch concludes that “[t]here is
no known general method for making accurate predictions of performance in one
programming environment based on observations of running times in another”
[228, p. 305] — the reasons for this have already been detailed in section 3.1.1
(p. 94). Hence, many practical algorithm selection approaches either rely entirely
on performance tests executed on the target platform, or they introduce an addi-
tional calibration at installation time (see [25, 338] as well as the discussions in
sec. 2.6.1, p. 73, and sec. 4.4.1, p. 143). Whether or not data from other machines
or platforms is considered depends on the nature of the measurements and should
not be restricted by the performance database (e.g., see tab. 5.2, p. 167).
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None of the surveyed algorithm selection approaches associates formal hard-
ware definitions with performance data in order to transfer the results automati-
cally to the target platform. The definition of infrastructure will therefore follow
a very simple pattern that consists of only two entities: a machine has a name, a
MAC address (for easier identification in a network), a description, and a bench-
mark score. Currently, only a single benchmark score (for Java SciMark [263])
is stored; of course this could be easily extended to whole lists of benchmark
scores, similar to the PDS system discussed before. Machines are aggregated to
setups. Besides a number of machines, a setup contains information on the net-
work infrastructure, given as textual information on topology or equipment (e.g.,
“hyper-cube” or “Netgear switch”). Furthermore, a rough indicator of the net-
work speed can be given as an integer value. For example, this could denote the
average round-trip time of a packet in milliseconds. Such figures, of course, give
nothing but a rough idea about the network connection quality. Hence, the data
stored on the network setup and the available machines is intended for manual
interpretation, not for any kind of automated performance analysis.

Problem Instance Some performance metrics — like execution time — vary
from execution to execution (see sec. 2.3.1, p. 38, and sec. 3.2.1, p. 101). This
is due to the unobserved state of the hardware when execution started, and also
due to stochastic models or simulation algorithms. To deal more efficiently with
the latter source of stochastic noise within the recorded performance data, an in-
termediate entity named problem instance is introduced.

Problem instances are very simple entities: they are defined upon a certain prob-
lem entity and only contain additional data to specify the sequence of random num-
bers that is generated by the host system, i.e., which RNG is used and with which
seed it is initialized (see sec. 3.2.1, p. 101). In JAMES II this is controlled by
defining the corresponding RNG factory and the parameter block with which it is
initialized [74]. This allows to use common random numbers, i.e., the simple yet
commonly used variance reduction technique already discussed in section 3.2.1
(p. 102). If two runtime configurations are to be compared, for example, initial-
izing the host system to use common random numbers will make the comparison
more precise. However, this technique is not always useful — e.g., in case of deter-
ministic approaches — in which case there will only be a single problem instance
per problem entity.
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Algorithm Space (A)

Algorithms are not necessarily monolithic entities: in JAMES II, a simulation al-
gorithm may rely on numerous auxiliary algorithms and data structures to fulfill
the task at hand. Hence, it does not suffice to store the name of an algorithm or the
name of its class file — there is additional structural information that must not be
neglected. This is most relevant for performance analysts and developers who want
to examine the impact of a certain sub-algorithm on overall performance. How can
the structure of such a combinatorial perspective on algorithms1 be made explicit,
so that it can be stored? In the SASF, this is done by introducing the notion of
selection trees. They define the hierarchical relationship between the algorithms
involved in a simulation run (see fig. 4.3, p. 129), and also with which parameters
these algorithms have been instantiated. This makes different setups distinguish-
able for later analysis and also ensures the reproducibility of the experiments:

Definition 5.1.1 (Selection Tree)

A selection tree is a directed tree s = (Va ∪{r},E) with:

• Va ⊆ N×A×P is a vertex set, excluding the root r. The numbers from N specify
an order of the sub-algorithms from A, i.e., A denotes the set of algorithms eligible
for combination (e.g., JAMES II plug-ins). P is the set of all parameter maps
p̃ : String → R, which define the parameters to initialize the algorithm with.

• E ⊂Va ∪{r}×Va is the set of edges.

Furthermore let suba(v) = {v′|(v,v′) ∈ E} with v ∈ Va ∪{r} be a set of sub-algorithm
vertices, i.e., the child nodes of vertex v. The numbering among the child nodes must not
have any gaps, i.e., ∀v ∈Va ∪{r}:

∀v′ = (n′,a′, p′) ∈ suba(v) : n′ = 1∨ (∃v′′ = (n′′,a′′, p′′) ∈ suba(v) : n′′ = n′ −1)

In other words, a child vertex numbering is either 1 or there is a sibling numbered with a
direct predecessor n−1. Furthermore, numbers must be unique among siblings:

∀v ∈Va∪{r} : (∀v′ = (n′,a′, p′)∈ suba(v) : (� ∃v′′ = (n′′,a′′, p′′)∈ suba(v)−{v′} : n′′ = n′))

Selection trees can now be used to give a concrete definition of the algorithm
sub-space Ax ⊆A that is applicable to a given simulation problem x ∈ P, provided
that there is a predicate

1See categorization of ASP approaches w.r.t. their consideration of algorithms in sec. 2.6.1, p. 75.
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1. SampleSimulatorFactory

1. SampleRNGFactory 2. SampleEventQueueFactory

r
SimParamA = 4
SimParamB = 2

3. SampleEventQueueFactory

Seed: 838349623

Threshold = 10 Threshold = 1000

Figure 5.3: A sample selection tree. Parameter maps are denoted by dashed boxes, al-
gorithms and their numbering is denoted by solid boxes. The numbering is necessary to
provide unambiguous parameterization if two components of the same type are used by the
same component. In the above example, the ���������	
�������
��� is used twice to
create event queues with different threshold parameters, i.e., for different tasks.

Applicable(s,x) ⇐⇒ selection tree s is applicable to problem x ∈ P

so that

Ax = {s|s = (Va ∪{r},E)∧Applicable(s,x)} (5.1)

Usually, such a predicate is implicitly defined by the host system, e.g., in case
of JAMES II it is implemented by the factory filtering mechanism (see sec. 4.2.1,
p. 128). The union of selection tree sets for all simulation problems in P thus
represents the algorithm space A for JAMES II (cf. fig. 4.4, p. 133). The name
’selection tree’ stems from the fact that each vertex (except the root r) represents
an algorithm (i.e., plug-in) that has been selected from the set of combinable algo-
rithms (A). A sample tree is given in figure 5.3.

Selection trees are the only central database entities that are based upon other
JAMES II entities, namely the abstract factory and the concrete factory corre-
sponding to a plug-in and its type. However, as selection trees are simply stored in
binary format, i.e., the properties of the object are irrelevant to the database itself,
they can be easily adjusted to store configuration information for another host sys-
tem. A selection tree just defines the specific configuration of the host system that
was used to solve a simulation problem. Making this configuration explicit and
mapping it onto the formal structure given in definition 5.1.1 should be unprob-
lematic for any other simulation system. In case algorithms are merely regarded
as monolithic or monolithic-parameterizable, their selection trees will just consist
of the root and a single additional vertex, i.e., |Va|= 1. While the above notion of
a selection tree is unique to the SASF, others kinds of tree structures have already
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been used to illustrate a nested selection of algorithms, e.g., by Lagoudakis and
Littman [188].

Runtime Configuration Selection trees are not managed as such; they are part
of a runtime configuration entity and stored in a single field that may hold any
binary large object (BLOB). Besides a selection tree, a runtime configuration con-
tains a version field that is automatically incremented when a developer re-issues
a new version of an algorithm for automated performance re-evaluation (a feature
introduced in section 7.3.4). For the same reason, each runtime configuration also
contains a flag that determines if this particular entity relates to the most current
version of the selection tree. The rationale for this is that algorithm implementa-
tions may change so much — e.g., due to optimization or bug fixing — that all past
performance results become outdated. To keep both old and new performance data
in the same database, distinguished by the different runtime configurations they
are associated with, may have some advantages (see sec. 7.3.4, p. 242). Therefore,
multiple runtime configurations with different version numbers but the same se-
lection tree may exist. Only one of them is flagged to be the current version. To
better keep track of the version history, each runtime configuration also contains
the date at which it was added to the data storage.

Applications (−)

Although not being part of any fundamental ASP entity (fig. 5.2, p. 155), it is im-
portant to explicitly store the execution of single simulation runs. A simulation run
is viewed as the application of a runtime configuration to solve a simulation prob-
lem instance. Applications are in some sense the most central entities of the per-
formance database, as each one represents an association between problem space
P and algorithm space A. An application refers to a problem instance entity and a
hardware setup entity to specify the element from P, and also to a runtime config-
uration entity to specify the element from A. Another field stores the date and time
at which the application was inserted into the database, i.e., at which time the exe-
cution finished. This helps to manage large amounts of performance data: for ex-
ample, if performance experiments within a certain time period were executed on a
busy machine and are hence considered biased, these should be easy to query (and
delete) from the database. Finally, application entities need to link the execution
they represent with the data that it generates, i.e., observed simulation outcomes.
While observing simulation data (and the performance impediment of doing so)
are often neglected in simulation algorithm comparisons, some performance met-
rics are defined on the simulation output. For example, measuring the accuracy
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of an approximative simulation algorithm may require to compare its results to an
exact solution. When it comes to simulation results data bases, basically the same
arguments as with model databases apply: these tools have their own requirements
and challenges, which should not be emulated by a storage system that serves a
different purpose. In fact, it is even possible to apply the same kind of solution in
this context: instead of directly storing the data observed from a simulation run,
only a pointer to the data is stored. This is implemented by defining an additional
binary field that may contain a Java object implementing the ���������	
���	
interface defined by the SASF. While this interface relies on other interfaces de-
fined by JAMES II, the performance data storage makes no assumptions about
the implementation of the simulation data provider. The default implementation
allows to retrieve simulation output from any JAMES II data storage (see [132]).

Feature Space (F)

A proper definition of simulation problems in the data storage is important for later
reproducibility, yet algorithm selection as such depends on the problem features
that are observed [272, 292]. Although one may intuitively link features to model
entities, these need to be associated with application entities: features may also
describe certain aspects of the infrastructure that is used, or structures that are
randomly created at model initialization and hence require knowledge of the seed
and the RNG implementation that are used.2

In contrast to the ASP entities described before — problems (P), algorithms (A),
and also specific simulation run executions — the structure of the feature space F

is highly domain-dependent (e.g., see survey in [292]) and hence cannot be prede-
fined. In [205], Leyton-Brown et al. point out two generally important criteria for
a feature:

• It should be computable for every problem instance (i.e., no reliance on prior
information).

• It should be easy to compute, i.e., much faster than the pay-off for selecting
a good algorithm.

Both criteria simply ensure that the given features can be actually used in a prac-
tical setting: if a feature cannot be easily computed for all simulation problems of

2As mentioned in section 2.4.1 (p. 52), it is generally assumed that all instances of a simulation
problem have the same features, i.e., stochasticity during model initialization does not play a role.
However, the structure of the database is able to cope with instance-specific problem features as
well.
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interest, algorithm selection may not yield any performance gain. For example,
Dongarra and Eijkhout note that for matrix multiplication, both the symmetry of
a matrix as well as its positive definitiveness might be relevant features for algo-
rithm selection [60] — however, while the symmetry of a matrix is easy to test, its
positive definitiveness is not. Table 5.1 summarizes this and other features from
various problem domains, including parallel and distributed discrete-event simu-
lation (PDES). Features that can be considered for chemical reaction networks are
discussed in chapter 9.

Domain Features Described in,

e.g.,

Matrix Multiplica-
tion

Matrix symmetry, positive definite-
ness

[60]

Meta-Learning Attribute and class entropy, land-
marking (see sec. 2.7, p. 84)

[257]

Sorting Entropy and standard deviation of
keys

[206]

Combinatorial
Search

Graph properties, solution of re-
laxed problem

[205]

Network Communi-
cation

Message size, call type, number of
processors

[311]

Partial Differential
Equations

Kind of equation, domain, bound-
ary equations

[146]

PDES LP connections and communication
rate, time-stamp increment, mes-
sage delay in network

[45]

Table 5.1: This table gives some examples of domain-specific features that have been pro-
posed or considered for algorithm selection. The given references are not complete; others
have proposed similar features for most of the above domains. For example, very similar
features of partial differential equations have also been discussed in [270] — the given ref-
erences are hence to be understood as pointers to exemplary studies. Furthermore, most
of the features named above refer to whole groups of more concrete — i.e., quantitative —
features. For example, Leyton-Brown et al. consider more than 30 distinct problem features
in [205].

Many of the above domains — e.g., sorting, matrix multiplication, and network
communication — have a certain overlap with simulation algorithms: a simulation
algorithm may have to multiply matrices, sort events, and propagate those over
the network. It is unclear how many (and which) of the above features need to be
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included for which kind of simulation-related algorithm selection problem. More-
over, specific models like chemical reaction networks may give rise to entirely new
features, and it is usually unclear which of them are relevant for algorithm selec-
tion (see def. 2.1.3, p. 23). It is therefore important to store all features in a generic
way, and also to allow a later addition of new features. This is done by defining
feature types, features, and feature values as distinct database entities.

Feature Type A feature type defines a specific dimension of the feature space
F and consists of a name, a verbal description , and additional data on how the
feature can be calculated for a given simulation problem. The latter is done by
internally relying on a free-form string. The interface of the performance data
storage, however, assures that this field is used for the fully qualified class name3

of a class that is able to extract the feature. The process of extracting features from
a simulation problem is handled by a new feature extraction plug-in type, with
������������	�
���	�
�� as a base factory. Concrete feature extraction fac-
tories create implementations of �������������	�
�, an interface that receives
a ����������
	� containing all simulation problem specifics and then returns
a set of (feature name,value) tuples, where the feature name is unique. This al-
lows to define a multi-dimensional feature space by implementing a single feature
extractor. Furthermore, features are regarded as binary objects and may hence
contain structured data. This allows to store features that belong together within
a single feature object, which goes well along with object-oriented programming.
How and when feature extraction is executed for a given simulation problem is
described in section 5.1.3.

Feature & Feature Value A feature entity results from applying a feature ex-
tractor to a simulation problem. It merely subsumes all feature values, i.e., name-
value pairs, that have been extracted by from a simulation problem. As with sim-
ulation data providers or model parameters, all feature values are stored as binary
objects and may hence contain data in arbitrary format.

Performance Space (Rn)

At first sight, storing performance data seems almost trivial when compared to
the other entities of the ASP, particularly algorithms and features. After all, most
simulation developers are focused on improving the execution time, which can

3Put simply, a fully qualified class name combines package name and class name, e.g.,
���������	�
����.
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be easily stored as a floating point number. However, mere execution speed may
not be the most important aspect for users, and neither the most significant one
when it comes to analyzing algorithm performance (i.e., for the developer and
performance analyst role). As Moret puts it:“If there is one universal piece of
advice in this area, it is always look beyond the obvious measures!” [235, p. 11]

Execution time itself belongs to a whole family of performance metrics that are
all concerned with the consumption of computational resources (see sec. 2.1.4,
p. 32): memory, network bandwidth, CPU cycles, GPU cycles, or accesses to a
disk storage (to name a few). Such measures are also referred to as consumption
performance measures. From this more detailed perspective, the overall execution
time is nothing but an aggregated measure of all operations on the critical path (see
sec. 3.3.1, p. 108). For example, it neglects how many additional work could be
done on the same machine in parallel, or the overall amount of electrical energy
that is consumed. While alternative metrics to characterize resource consumption
have been proposed, e.g., Knuth suggested to count memory references (mems,
see [235]), none of them is as widely used as measuring the overall run time.

Besides resource consumption — which should be minimized — there are sev-
eral other aspects of an algorithm implementation that are of practical relevance.
Not all of them are normally considered as its performance:

• (Numerical) Stability: Some algorithms only work for certain sub-classes of
input and otherwise produce wrong output. In simulation, this is the case
for numerical integration schemes, which can be broadly divided into im-
plicit and explicit schemes, all having distinct regions of numerical stability
(see [34, p. 34 et sqq.]).

• Accuracy: An algorithms’ accuracy is of interest in case it only approxi-
mates the true solution. In simulation, this again applies to numerical in-
tegration algorithms (e.g., [272, p. 82]), but also to some simulation algo-
rithms for chemical reaction networks (see sec. 1.3.1, p. 7). In contrast to
stability, which determines to which problems an algorithm is applicable, its
accuracy measures how close its calculations approach the true solution.

• Robustness: It is sometimes important to not only consider average algo-
rithm performance, but also the extent with which the performance deviates
from problem to problem. Large deviations may make an algorithm less use-
ful in circumstances where user interaction or some other time constraints
are relevant.

• Non-Quantifiable Aspects: Weihe claims that “[...] non-quantifiable char-
acteristics are often more important [...]” [325, p. 5] than quantifiable
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ones. As examples he names flexibility (i.e., how easily an algorithm can
be adapted to solve other problems), error diagnostics (i.e., which infor-
mation the algorithm provides in case it cannot find a solution), and user
interaction (i.e., how it copes with additional constraints and data available
at runtime). The latter point also touches upon the robustness issue, i.e., it
may be important in practice to guarantee a certain solution quality within
a certain time span. Similarly, Houstis et al. highlight the importance of an
algorithm’s reliability, its portability, and its documentation [146].

In the above list, the aspects are ordered by their importance to an algorithm’s
applicability. If it is unknown in which region an algorithm is numerically stable,
it is of very limited use as all results could be completely wrong. If it is unknown
how accurate the algorithm is, results may not be extremely wrong but still devi-
ate strongly from the true result. Yet, both aspects are only of interest for certain
problem domains. The other issues — robustness, flexibility, error diagnostics, in-
teraction, reliability, portability, and documentation — are very difficult to quantify
and require a careful problem-dependent reconsideration.

Apart from these rather general facets of performance, there are also many
domain-specific performance measures. Table 5.2 lists some of them. Some mea-
sures are concerned with solution quality, i.e., features of the generated output (size
of generated code, randomness), while others are concerned with the usefulness
from a user perspective (utility), the amount of unnecessary resource consumption
(e.g., rollback frequency, statistical efficiency), or merely reflect overall execution
time (CPU cycles per key).

One can also observe that the meaning of a performance facet is not always co-
herent across literature. This may occur when concepts are inherently hard to de-
scribe (even mathematically), as for the randomness of RNGs [125]. In other cases,
e.g., in case of ’efficiency’, the ambiguity just stems from different perspectives:
for example, Cortellessa and Quaglia [45] define the efficiency as E = 1−Fr ·Lr,
with Fr being the roll-back frequency and Lr being the average roll-back length
(see sec. 1.3.2, p. 9). Thus E denotes the (averaged) share of committed (i.e.,
non-rolled-back) events in relation to all simulated events. In [124], however,
Heidelberger defines efficiency as ep =

αp
p with αp = t1

tp
being the speed-up of

using p processors (execution time tp) instead of just one (execution time t1). Al-
though both notions of efficiency seem intuitive and are defined for a parallel and
distributed discrete-event simulation, they strongly differ in terms of what they
take into account and what they measure. For example, the efficiency of a con-
servatively synchronized PDES execution would always be 1 following Cortel-
lessa and Quaglia (which use this measure to assess optimistic synchronization
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Domain Performance Metric Described in,

e.g.,

Sorting CPU cycles per key [206]
Compilers Code size [319]
Artificial Intelligence Number of backtracks [114]
Random Number
Generators

Randomness (super-uniformity,
LIL-uniformity)

[125]

Reinforcement
Learning

Regret [11]

Parallel Algorithm
Portfolios

Overhead [97]

Hardware Area, power consumption, critical
path

[262]

Simulation Experi-
ments

Statistical efficiency, user utility [124, 239]

PDES Scalability, efficiency, speed-up,
processor utilization, rollback fre-
quency, rollback length

[45, 124, 238]

Table 5.2: This table gives some examples for performance measures that have been con-
sidered in algorithm selection or performance analysis. As in table 5.1, the given references
are to be understood as pointers to exemplary studies.

schemes), but not necessarily with Heidelberger’s. Similarly ambiguous notions
of PDES performance are scalability, speed-up, or processor utilization. It is there-
fore mandatory to not only name the type of a performance measurement stored in
the database, but also to accurately define how it was measured.

Moreover, one should note that adding new performance measures does not al-
ways add more information: e.g., if Heidelberger’s notions of efficiency and speed-
up are adopted, it is unnecessary to store both speed-up and efficiency, given that
the number of used processors is already defined by the chosen setup: both mea-
surements are proportional to each other with a constant factor 1

p , i.e., they are
linearly dependent. In [138], Hockney even claims that speed-up, the performance
per processor in floating point operations per second, or the efficiency are all mis-
leading as performance metrics — what would ultimately count is the number of
problems solved per second. Speed-up is only a relative measurement between
the performances of sequential and parallel execution and thus, he argues, not al-
ways transferable to other architectures. Similarly, performance per processor and
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efficiency may hide runtime increases due to too much parallelization — the po-
tential bias of all measures is exemplified by a particle simulation that serves as a
supercomputer benchmark.

Performance Type & Performance All these issues — lack of common defini-
tions, problem-dependent metrics, difficulties in measuring and results interpre-
tation — make it necessary to make performance measuring as flexible as feature
extraction, and also as reproducible. This is supported by allowing the definition
of arbitrary performance types and associating each observed performance with
one. To do so, a new performance measurer plug-in type is introduced, which pro-
vides components that implement the ���������	
�������� interface. A text
field is used to simply store the fully-qualified class name of the concrete mea-
surer factory. As with feature types, each performance type also has a name and a
description.

The ���������	
�������� interface itself is defined upon ��������	�

�	�����	��������	 instances and returns a floating point number. This is
in accordance to Rice’s definition of a performance space as Rn. ��������	�

�	�����	��������	 is a JAMES II-specific class that contains a description
of the simulation run’s setup, its unique ID, and additional measurements like the
execution times required for model initialization and simulation. Section 5.2 de-
scribes when and how performance measuring is triggered.

Finally, it should be noted that the above components allow to associate algo-
rithm performance with the application of a runtime configuration to solve a single
simulation problem instance. Under specific circumstances, however, it is more
reasonable to associate performance with problem or problem instance entities.4

An association with problem instance entities is sufficient in case the performance
metric is hardware-independent, e.g., the accuracy of a deterministic yet approxi-
mative simulation algorithm (like a numerical integrator) should be stored on that
level. An association with problems instead of problem instances is sufficient in
case the performance metric is hardware-independent and considers an algorithm’s
performance over multiple multiple applications. A concrete example for such a
performance measure is the accuracy of SSAs (see sec. 1.3.1, p. 7, and discussion
in ch. 9, p. 273). While these more abstract kinds of performance types are not
supported by default, an extension of the scheme in a similar manner is straight-
forward.

4The same reasoning also applies to features. Some features may be the same for all applications of a
problem instance, or for all problem instances associated with a problem entity.
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Figure 5.4: An entity-relationship diagram of the performance database. All attributes
except the selection tree stored with the runtime configuration have been left out for clarity.

5.1.2 Generality

The entity descriptions of section 5.1.1 show that some database entities are based
on JAMES II concepts. However, the overall structure of the database, i.e., the
fundamental entities and their relationships, is likely to be the same for any other
modeling and simulation system. Figure 5.4 displays the entity-relationship (ER)
diagram [271, 124 et sqq.]5 of the performance database. To transfer this layout
to another simulation system, one needs to replace the following (sub-)entities,
which should be straightforward:

• Selection trees define the concrete configuration of the simulation system
that is used. While both monolithic as well as monolithic-parametric algo-
rithms can be easily mapped onto this structure, other simulation systems
may implement simpler structures that better reflect their abilities.

• Feature extractors are defined on JAMES II types (�����������	
� and
its specific content); they have to be adapted to the corresponding entities of
the host system.

• Performance measurers are defined on ������	����������	����

�	�, a JAMES II-specific type, and hence need to be adapted as well.

Finally, note that the terminology introduced in the preceding paragraphs is spe-
cific to the SASF and not generally established — there is no widely accepted com-
mon terminology. For example, the application of a runtime configuration to a
problem instance is called a trial in [227].

5Instead of the “crow’s foot” notation described in [271], the relationship degree is represented con-
ventionally, i.e., by edge labels: 1 – n stands for a one-to-many relationship, and so on.
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5.1.3 Implementation Details

To ensure scalability with the amount of recorded performance data (see tab. 4.2,
p. 151), the performance data storage should be realized by established methods
for managing large amounts of highly structured data, i.e., a database manage-
ment system (DBMS). Yet, user preferences regarding the specific kind of DBMS
may differ strongly, e.g., depending on the operating system, the amount of per-
formance data to be collected, or financial constraints. It might be a good choice,
for instance, to use a simple file format in case of a small experiment with little
data to be recorded. The exploration of algorithm performance on larger sets of
simulation problems and algorithms, on the other hand, may even require to set up
a dedicated server for a centralized performance database, which can be accessed
by many users.6

The performance data storage of the SASF should therefore be accessed via an
interface only, i.e., it should be independent of a concrete implementation. This
ensures a separation between the concerns of working with the data and managing
it. In contrast, other performance storage modules of algorithm selection systems
are DBMS-specific, e.g., PYTHIA II relies on the POSTGRES95 DBMS [146, p.
235].

For the SASF, introducing a new plug-in type performance database allows to
support alternative implementations. Its base factory ��������	
��� provides
users with implementations of the ���������	���
����� interface. Besides
an (incomplete) implementation that relies upon the official Java Database Con-
nectivity (JDBC) [246] interface, an implementation based on the Hibernate [129]
persistence system has been implemented.

JDBC offers a common interface to various DBMS that provide suitable
drivers, but its applicability suffers from the limited compatibility between dif-
ferent DBMS, even though they are all accessed by the structured query language
(SQL) [271, p. 23–24]. Hibernate, in contrast, provides much more than just a
common interface for sending SQL statements to a DBMS and retrieving the re-
sults [63]: it automatically maps objects to database structures and provides an in-
termediate language, the Hibernate Query Language (HQL), to manage them. The
actual structure of the database — which could be relational or object-oriented, for
example — is hidden from the programmer. HQL statements will be translated to
the specific SQL dialect of the DBMS at hand. Hence, using Hibernate results in
full compatibility with all DBMS that provide Hibernate drivers, without having
to change any code. The Hibernate-based implementation has so far been used

6A realization of such a web-based performance database requires additional data structures, e.g., for
user management.
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in combination with the relational open-source DBMS MySQL [236, 271]. The
MySQL tables for the performance database are depicted in figure A.1 (p. 338).

The structure shown in figure 5.4 (p. 169) is complemented by additional
database views that aggregate performance summaries, e.g., regarding best- and
worst-performing runtime configurations per model, and so on. A dedicated user
interface for the performance database has not been developed yet, the database is
accessed either by its API or by generic DBMS front-ends.

Several simple enhancements have been introduced to the abstract structure
shown in figure 5.4, all of which aim at improving database performance. Most
importantly, problem entities and runtime configuration entities have an extra at-
tribute that represents a hash value for model parameters and selection tree, re-
spectively. This allows to speed up the retrieval of equivalent entities.

5.2 Performance Recording & Feature Extraction

This section details how the entities defined in section 5.1.1 are recorded within
JAMES II, and which components are responsible for their creation and storage.
These form the monitoring component depicted in figure 5.1 (p. 153).

Feature Extraction

The actual extraction of features, i.e., the application of feature extractors to
all applications stored in the performance database, is handled by a generic
������������	�
�� class. Feature extraction does not have to be triggered dur-
ing the execution of an experiment, since all data on the simulation problem is
stored within the performance database. The model can be instantiated with ex-
actly the same structure, i.e., by using the same parameters and also the same
random number generator with the same seed. This allows to add new feature val-
ues at any later time, given that the models are still located at the URIs stored in
the database (see sec. 5.1.1, p. 156). The application of feature extractors is often
restricted to specific model formalisms, so that feature extractor factories rely on
the ����������
������	���� interface to control for what kind of application
entity they are used (see sec. 4.2.3, p. 132). The database ensures that no appli-
cation is associated with two features of the same type, so that this procedure can
be repeated whenever new applications or feature types are introduced, without
storing any redundant information.
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Performance Recorder

In contrast to features, which can be extracted from re-instantiated simula-
tion problems at a later time, many important performance metrics, e.g., ex-
ecution time or memory consumption, have to be measured during a perfor-
mance experiment and need to be stored afterwards. The performance mea-
surers introduced in section 5.1.1 (p. 164) are hence invoked by an additional
component, the ���������	�
��. It applies the measurers in the same way
������������	� handles feature extractors: each measurer factory has to
decide whether or not the measurer can be used for the given application entity,
again by implementing the �����������������	�� interface. All suitable
measurers are called by ���������	�
��. Their results are stored in the perfor-
mance database.

However, before associating performance measures with an application, the ap-
plication entity itself has to be created and stored — and with it all entities on
which it relies, i.e., model, problem instance, runtime configuration, setup, and so
on. This procedure is largely automated and managed by the ���������	�
�� as
well.

At first, model and problem entities are generated and stored to the database,
which only adds them in case they are unique — otherwise the entity already
present in the database is returned to the recorder. The information they con-
tain can be easily retrieved from the simulation job descriptions used within the
experimentation layer of JAMES II, to which the ���������	�
�� is attached
(see sec. 7.1). To support the use of common random numbers (see sec. 3.2.1,
p. 102 ), the ���������	�
�� is equipped with a ��	�����������������	�
that either re-uses existing problem instances already stored within the database or
creates a new one. The number of problem instance entities can be configured by
the user.

Application entities link the problem instance at hand with a given hardware
setup and a runtime configuration. The description of the hardware setup is rather
informal, mostly containing free-format text fields to convey information. This is
hard to automate, so entering the setups is currently left to the user. If no setup is
specified, a default one will be created — this should be unproblematic, as long as
all collected data come from the same hardware setup.

The most challenging entity to record, however, is the runtime configuration. It
contains a selection tree for JAMES II, which might be quite large. Entering it
manually would be cumbersome. Furthermore, the default semi-automatic selec-
tion process implemented in the JAMES II registry (see sec. 4.2.1, p. 128) does
not ensure that a predefined setup is actually used: if one algorithm is not available
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or its factory declines its suitability for the given problem, the registry will replace
it by an alternative implementation. While this behavior increases the robustness
of JAMES II, it also makes it harder to determine which algorithms (and which
parameters) have actually been used. Selection trees are therefore constructed au-
tomatically by a ���������	��
, which is passed to the JAMES II registry by
the �������������. The JAMES II registry notifies this hook whenever the
��������������� method of the registry is called (see sec. 4.2.1, p. 127). The
selection hook then analyzes the current thread’s stack trace and adds a node that
defines which factory has been selected with which parameters. If the perfor-
mance of an executed simulation run shall be stored, i.e., the execution is finished,
the ������������� queries the selection hook to retrieve the complete selection
tree for the given thread.

Current Limitations

The current approach of recording performance data is limited in some important
ways. It presumes that:

• All factories are chosen with the ��������������� method.

• All factories are chosen within a single thread.

Note that these limitations do not restrict the general applicability of the overall
system. The first limitation is controlled by the developer, who has to refrain from
hard-coded factory selection. The second limitation refers to factory selection,
not execution: after all factories have been selected via ���������������, they
still may create arbitrary new threads, even on remote machines. The only thing
these other threads should not do is to call ��������������� from their local
registry, which will not have the same selection hook installed.7 Of course, one
can easily think of more elaborate alternatives to record selection trees, potentially
allowing to control remote selection processes or even ensuring that all managed
algorithms are captured. These mechanisms could be realized, for example, by us-
ing Java’s reflection API [245] or applying advanced programming paradigms like
aspect-oriented programming, which has already been proven useful to implement
other cross-cutting concerns in simulation software [50]. However, implement-
ing a more sophisticated recording mechanism requires major structural changes
to the registry and will implant performance recording in a much more intrusive

7Or, in case multiple threads run within the same JVM, this will cause the selection hook to presume
that this is a new simulation run, with a new selection tree.
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manner — currently, no selection information will be gathered unless the perfor-
mance shall indeed be recorded.

Finally, the possibilities of performance measurers are limited as well: not by
the current implementation of the performance recording, but rather by the host
system itself. In case of JAMES II, performance measurers have access to simula-
tion output (via implementations of ���������	
���	 contained in application
entities, see sec. 5.1.1, p. 161) and all information delivered to them by the exper-
imentation layer. Measures defined upon observations during execution, e.g., the
number of roll-backs in an optimistic PDES execution, currently require additional
efforts to integrate. The simplest way to realize such measures is to record them
together with ordinary simulation output, and then to retrieve the measurements
by the application’s ���������	
���	 instance.

5.3 Summary

This chapter introduced the part of the simulation algorithm selection framework
that is responsible for managing and collecting performance data. It is largely
built upon the conceptual entities proposed by Rice (see sec. 2.1, p. 19), but now
decomposed into concrete entities that are specific to modeling and simulation.

The overall structure of the database — the entities, their relation, and the con-
tent to be stored in each of them — is generic and can be adopted by any other sim-
ulation system. Specifics of the host system have to be reflected, nevertheless: the
description of algorithms, mechanisms to extract features from simulation prob-
lems, and mechanisms to measure performance (sec. 5.1.2, p. 169). Furthermore,
the recording components themselves (sec. 5.2, p. 171) are highly system-specific
and have only been developed as prototypes.

Figure 5.5 summarizes the most important software entities discussed in this
chapter. All the data that can now be stored is yet to be analyzed, so that it can
be eventually used to the create selection mappings that solve the ASP. The next
chapter describes how this can be done.
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Figure 5.5: UML diagram of the most relevant components for data recording and storage
in the SASF. For full flexibility, all concrete implementations of performance data entities
are hidden by interface definitions. The colors again denote different parts of the SASF:
data storage (blue) and monitoring elements (orange), see figure 4.6 (p. 148).
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[...] as the complexity of a system increases, our ability to make
precise and yet significant statements about its behavior dimin-
ishes until a threshold is reached beyond which precision and sig-
nificance (or relevance) become almost mutually exclusive char-
acteristics.

Lotfi Zadeh, from [339, p. 28]

Chapter 2 already illustrated why only an empirical approach to algorithm se-
lection is likely to succeed in the foreseeable future. Now that monitoring mecha-
nisms are in place to feed observations into a dedicated performance database, as
described in chapter 5, it has to be discussed how this data can be analyzed so that
suitable selection mappings are generated (see fig. 6.1).

Figure 6.1: SASF overview (see fig. 4.6, p. 148), red borders denote elements discussed in
this chapter.

Many concrete techniques for constructing selection mappings stem from the
field of machine learning, which has already been related to the ASP in section 2.3
(p. 36). These techniques employ inductive reasoning, i.e., they extrapolate past
algorithm performance to future problems by constructing approximation forms —
the selection mappings to solve the ASP (see def. 2.1.2, p. 22). In other words, the
methods are susceptible to the pitfalls and problems detailed in section 1.4 (p. 13)
and hence have to be evaluated carefully.
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The form of selection mapping has been identified to be an important ASP as-
pect right from the beginning; Rice considers it to be essential and envisions a
variant that strongly resembles a decision tree [272, p. 94]. Since machine learn-
ing aims at generating selection mappings, it can be regarded as a solution tech-
nique for the ASP, and is discussed as such in section 2.6.1 (p. 76). Section 6.1
gives a more detailed overview on concrete machine learning techniques that have
been applied to the algorithm selection problem and derives some more specific re-
quirements from their commonalities and differences. Then, section 6.2 details the
parts of the simulation algorithm selection framework that realize a similar func-
tionality. The main ideas described in this chapter have been presented in [76].
Note that this chapter is focused on supervised learning: learning from past per-
formance data that is stored in the performance database, observed on problems
that have been fully explored, i.e., it is clear which algorithm actually performed
best. The application of unsupervised methods is discussed in section 7.2.

6.1 Learning Algorithm Selection Mappings

Machine learning — or its more data-intensive and application-focused sibling sci-
ence, data mining — consists of various sub-fields. The documentation of the Java
data mining standard JDM speaks of classification, regression, attribute impor-
tance, clustering, and association as the main functions of data mining [167, p. 6].
While all of them may be important for an algorithm performance analyst, sec-
tion 2.3 (p. 36) shows that the ASP can be best mapped to a learning problem.1 A
problem classification approach to solve the ASP chooses the best algorithm from
a finite set by considering the problem features, whereas a prediction approach
predicts each algorithm’s performance (from the infinite set R) and then chooses
the algorithm with the best performance (see sec. 2.6.1, p. 77). Both approaches
are outlined in figure 6.2.

While there is a multitude of methods described in introductory literature
(e.g., [122, 144, 333]), a closer look at the methods used by other ASP solution
approaches may hint at the most promising directions to investigate.

The first question is whether to follow a performance prediction or a prob-
lem classification approach. This decision is also discussed in the literature (see
sec. 2.6.1, p. 77). One issue raised in [205], for example, concerns the adaptation
of a selection mapping when a new algorithm is introduced: while prediction just
requires to learn a new prediction model for the new algorithm (e.g., see eq. 2.13,

1The feature selection problem (def. 2.1.3, p. 23), in turn, is concerned with estimating the attribute
importance with respect to the ASP.
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Figure 6.2: Performance prediction vs. problem classification. On the left, a predictor is
confronted with the features of the simulation problem x ∈ P, and also with the configura-
tion to be used (A, . . . ,D). It is called with each algorithm to predict its performance when
applied to x. The algorithm with the best predicted performance is chosen (B). A classi-
fication approach (right) decides in which region of the problem space a given simulation
problem lies, i.e., which algorithm is deemed best for the specific region (again, B).

p. 37), classifying problems by the most suitable algorithm requires to reconfigure
the whole classifier, i.e., all past performance data have to be reconsidered in some
form.

Note that, as Leyton-Brown et al. point out in [205, p. 36–37], it is also possible
to use a classifier2 for the performance prediction approach, by classifying an al-
gorithm’s performance on a given problem as ����, ������, or �	�. While such
kinds of classifications do not necessarily need overall adaptation to cope with new
algorithms, it might be that the qualitative notion of what is considered to be ����
performance still changes and hence results in additional efforts. The confronta-
tion with newly developed algorithms is likely to be quite common when relying
on on a host system as open and flexible as JAMES II — each newly developed
sub-algorithm will result in one or more ’new’ runtime configurations and hence
elements in A. This suggests to use regression methods for prediction.

Many other approaches to solve the ASP by classification instead of predic-
tion. Table 6.1 gives a brief summary of some concrete techniques that have been
used. Apparently there is no generally accepted machine learning method to be
used. The reasons for this are the differing problem domains and the bias-variance
trade-off described in section 2.3.1 (p. 38): the performance of machine learn-

2Here, the term classifier refers to classification in the sense of machine learning (sec. 2.3, p. 36), not
to the problem classification approach depicted in fig. 6.2.
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Domain Prediction

vs.

Classification

Technique Used

in,

e.g.,

Sorting P Linear regression [25]
Combinatorial Search
(Winner Determina-
tion)

P Ridge-Regression, Sup-
port Vector Machines,
Multivariate Regression

[205]

Combinatorial Opti-
mization
(Most Probable
Explanation)

C Decision Trees, Naïve
Bayes, etc.

[117]

Constraint Satisfac-
tion

C Bayesian Networks, De-
cision Trees

[145]

Meta-Learning C Decision Trees, Naïve
Bayes, Nearest-
Neighbor, etc.

[257]

PYTHIA II C Decision Trees, Rule In-
duction

[146]

Matrix Multiplication P&C Linear Regression, Sup-
port Vector Machines,
etc.

[319]

Scientific Kernels P&C Linear Regression, Deci-
sion Trees

[338]

Table 6.1: Machine learning techniques for solving the ASP. Most approaches used sev-
eral learning methods, some even mix performance prediction and problem classification
approaches.

ing methods is highly problem-dependent, hence a careful application of multiple
methods seems mandatory. Both decision trees (for classification) and linear re-
gression (for prediction) have been used quite often. This is because they are rather
simple to implement and use, and also because their structure can be interpreted
easily by humans — which makes them suitable not only for generating selection
mappings, but also to analyze performance. Finally, it is interesting that problem
classification and performance prediction can also be used in combination — they
are not mutually exclusive.

In their formal framework for algorithm selection [319], for example, Vuduc et
al. distinguish between data modeling and geometric modeling. Data modeling
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means to predict the performance of a single implementation, whereas geometric
modeling aims at partitioning the feature space into regions that are dominated by
a single algorithm. These concepts are equivalent to the notions of prediction and
classification, as depicted in figure 6.2 (p. 179).

After considering related efforts, it seems evident that any general architecture
to generate selection mappings for simulation algorithms should allow the inte-
gration of various methods, both for prediction and for classification. Since dif-
ferent methods are to be supported, it is likely that the methods required for their
evaluation are differing as well. All these aspects again suggest the design of a
framework into which several techniques can be plugged. It can be based upon the
mechanisms already provided by JAMES II. Flexible support of learning meth-
ods is already featured by several other approaches and systems, e.g., this is also
claimed in [97, 146, 205].

So far, machine learning has only been applied seldom to simulation perfor-
mance analysis. Notable exceptions are the work of Ferscha et al., who mine
performance data from parallel and distributed discrete-event simulations (see
sec. 3.3.2, p. 112), as well as Xu and Tropper [337], who use nearest-neighbor
classification to determine whether a sequential or a parallel simulator shall be
used. Finally, note that the machine learning methods given in table 6.1 are not
necessarily the end of the rope. Requirements may change with the desired char-
acteristics of an ASP solution, e.g., when solving the problem at processing time
(see sec. 2.6.1, p. 76). The above techniques have all been used to analyze past
performance data, e.g., imported from a performance database, before processing
time. ASP solution approaches at runtime may introduce different supervised ma-
chine learning methods, e.g., in [93] Gagliolo and Schmidhuber use an artificial
neural network to train their adaptive mechanism (see sec. 2.5.3, p. 64) in-between
the processing of problems. Recent work even showed how methods like sym-
bolic regression allow to identify invariants, i.e., natural laws, in large sets of input
data [283]. Such methods could be applied to find ’natural laws’ in a given set of
algorithms and — if such exist — use them to generate a good selection mapping.

6.2 A Framework for Simulator Performance Data

Mining

As section 6.1 motivates, it is necessary to offer various methods to generate and
evaluate selection mappings. A selection mapping is merely a formal notion so far
(see def. 2.1.2, p. 22); it can come in various implicit or explicit forms. For ex-
ample, the current JAMES II setup as described in section 4.2.1 (p. 4.2.1) already
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offers a form of (static) algorithm selection, i.e., it already implements a selec-
tion mapping that is implicitly defined by the efficiency indices, which in turn are
maintained by the available factories.

Performance
Database

Performance Data

SPDM

Mining

Selectors

S1

S2

S3... Evaluation

S*

Figure 6.3: Overall SPDM workflow. Performance data can be imported from files or the
performance database. Selectors are generated, evaluated, and eventually the best one (S∗)
should be used.

To distinguish the theoretical notion of a selection mapping from a software
component that implements it, the latter will be called (algorithm) selector in the
following. The next section describes how selectors for JAMES II can be gener-
ated, and how they can be constructed to support both prediction and classification.
Then, section 6.2.2 discusses how selectors can be evaluated and section 6.2.3
details how this newly developed simulator performance data mining framework
(SPDM) is integrated into the overall layout of the SASF. The general procedure
implemented by the SPDM is sketched in figure 6.3.

6.2.1 Selector Generation

The generation of selectors by considering past performance data is assigned to
components of a new selector generator plug-in type. The performance data is
passed to a selector generator in the form of a ���������	�
������, which
is defined along the lines of definition 2.3.1 (p. 36). It contains the perfor-
mance data and some meta-data. The performance data is represented by a list of
���������	����� instances (def. 2.3.1, p. 36). A ���������	����� contains
two main sub-structures: an instance of �������� that stores all (name,value)
pairs of features that could be extracted from a simulation problem instance (see
sec. 5.1.1, p. 162), as well as an instance of ������������� that represents the
runtime configuration (see sec. 5.1.1, p. 159). Besides these elements from F and
A, a performance tuple contains a floating-point number p ∈ R denoting the per-
formance of the configuration on a problem with the given features. Finally, it
stores a reference to the class of the performance measurer factory (see sec. 5.1.1,
p. 164), so that it is clear what kind of performance it refers to.
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The meta-data is given by an instance of ���������	�
���
�, which keeps
information on numerical and nominal attributes for easier reference. It facilitates
the integration of external methods.

Selection Tree Flattening

As described in section 5.1.1 (p. 159), simulation algorithms in JAMES II can be
represented by selection trees, which are part of the runtime configuration entities
(sec. 5.1.1, p. 161) and specify all sub-components used for execution (includ-
ing their parameters). Yet, methods for machine learning usually consider the
attributes of an instance as a set of (name,value)-tuples.

Therefore, it is necessary to transform the selection tree of a runtime configura-
tion to a unique set of (name,value)-tuples, in order to ensure that all setups can be
distinguished by the learning method. This is done by flattening the selection tree
with an additional component, the ����
����������

����. The result of this
flattening procedure, i.e., the set of (name,value)-tuples that specifies a runtime
configuration of JAMES II, is simply called configuration in the following.

The flattener traverses a selection tree and stores all selection information to a
mapping String → Ob ject, i.e., a structure similar to the simulation problem fea-
tures (sec. 5.1.1, p. 162). Only by combining problem features and configuration
features it can be assured that the learner learns the relation between problem fea-
tures and performance for the right algorithm. The flattening procedure as such
has to ensure that its results are unique for any selection tree. This is done by us-
ing the path from the selection tree root r (def. 5.1.1, p. 159) to each node as key,
and setting the factory represented by this node as the attribute value. Parameters
are handled similarly. The general idea is illustrated in figure 6.4.

The numbering scheme introduced in definition 5.1.1 (p. 159) ensures the unam-
biguity of the resulting tuples in case multiple sub-components of the same type —
e.g., event queues — are used by the same component (see fig. 6.4). This ensures
that the corresponding selection tree can be recreated, based on the flattened con-
figuration attributes. Such reversion, however, is only of theoretical interest: in
practice it seems best to create the (name,value) tuples required for machine learn-
ing while keeping the corresponding selection tree. In case a given configuration is
deemed best, its selection tree can later be used to generate the parameter block that
configures JAMES II correspondingly. The relation between ������
�������,
����
�������, and ���������
��� is sketched in figure 6.5.
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1. SampleSimulatorFactory

1. SampleRNGFactory

2. SampleEventQueueFactory

SimParamA = 4
SimParamB = 2

3. SampleEventQueueFactory

Seed: 838349623

Threshold = 10

Threshold = 1000

r

Selection Tree Configuration

(/1:ProcessorFactory, SampleSimulatorFactory)
(/1:ProcessorFactory/SimParamA, 4)
(/1:ProcessorFactory/SimParamB, 2)

...

(/1:ProcessorFactory/1:RNGFactory, SampleRNGFactory)
(/1:ProcessorFactory/1:RNGFactory/Seed, 838349623)
(/1:ProcessorFactory/2:EventQueueFactory, ...)
(/1:ProcessorFactory/2:EventQueueFactory/Threshold, ...)

Figure 6.4: Selection tree flattening. This figure shows how the sample selection tree from
figure 5.3 (p. 160) is translated into a unique set of (name,value) tuples. For example, the
value for ��������� (bold, underlined) is associated with a name that corresponds to the
path from the root, each vertex represented by its numbering and its plug-in type (i.e., base
factory; here: ���	
������	���). Parameter names are appended at the end. All other
configuration choices are stored similarly. Configuration aspects that are deemed negligible
(e.g., the seed of the RNG) can be filtered out before selector generation.

James II Registry Performance Database SPDM

...

A
A

B

C

...

B C
... ...

(/1:A, ...)
(/1:A/1:B, ...)
(/1:A/2:C, ...)
...

ParameterBlock SelectionTree Configuration

Figure 6.5: The relation between �����

����	�, �
�
	�����

, and
������������ instances and their usage domains. �����

����	� instances
are used to query the registry; they do not distinguish between selected factories and their
parameters. ������������ instances are used for machine learning and hence provide
the same data in a flat structure (cf. fig. 6.4).

Selectors & Performance Predictors

The formal definition of a selection mapping suggests a very simple selector inter-
face: given some features extracted from the simulation problem at hand, it should
simply return the most suitable configuration. Yet, in case of JAMES II and any
other flexible host system,it cannot be assured that the configuration picked by the
selector is available to the user. This additional uncertainty can be encountered by
redefining the role of a selector. One may regard it as a sorting mechanism for
runtime configurations.

It works in analogy to the implicit algorithm selection mechanism that is already
integrated in the factory filtering process of the JAMES II registry (see sec. 4.2.1,
p. 128). This means a selector does not simply pick the best configuration, but
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instead it sorts all configurations it knows by their predicted performance: the
algorithm that is deemed best is the first element in the list, the second one is on
position two, and so on. This allows to select the best available setup, and not just
fail if the user did not install a certain plug-in.

«interface»
ISelector

-performance
PerformanceTuple

Features Configuration

«interface»
IPerfComparisonPredictor

java.util.Comparator
considers sorts

Figure 6.6: Basic SPDM entities for selector generation.

The Java Collections API provides a generic sorting mechanism that can be used
by implementing the ���������� interface. A comparator just has to provide a
single ������	
� o1� � o2 method that takes two objects o1, o2 of type T
as parameters and returns an integer lesser than, equal to, or greater than 0 to
distinguish between o1 < o2, o1 = o2, and o1 > o2. This makes it possible to
implement a generic selector class that merely takes alternative implementations of
���������� to adapt its behavior. Figure 6.6 outlines the actual implementation:
the ��	�	���� interface is responsible for sorting configurations by considering
the features of the simulation problem at hand. It does so by using an instance of
��	��������������	������, which in turn extends the generic Java interface
����������. As the ��	��������������	������ controls the overall sorting
of the configurations, it is the only interface that needs to be implemented when
adding a new kind of selector. Due to the use of ����������, the sorting task
is transformed into a sequence of decisions between only two algorithms. Either
one of them is predicted to be faster than the other (o1 < o2, o1 > o2), or the
mapping does not distinguish between the performance of both algorithms on the
given problem (o1 = o2).

Classification and prediction methods may still approach the problem in very
different ways, although their selectors ultimately implement the same interface.
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For example, a problem classification approach could aim to classify tuples of the
form

( f ,a1,a2) ∈ F×A2 (6.1)

into the categories �����������, ���	
�������, or ����. This means that
for each comparison a single prediction has to be made, namely how the perfor-
mances of the two algorithms relate to each other. A drawback of this approach is
that the number of tuples as given in 6.1 grows quadratically with the number of
algorithms — which may result in scalability problems that should be avoided (see
tab. 4.2, p. 151).

In contrast, a prediction approach would predict the performance of each algo-
rithm a1,a2 ∈ A in isolation, with a predictor ppred : F×A → R, and then just
compare the predicted performances ppred( f ,a1) and ppred( f ,a2). As discussed
in section 6.1, this could be realized with classification3 as well as with regression.
The former requires some additional efforts in case new algorithms are added, as
the qualitative assessment of an algorithm’s performance (e.g., ���� and ���, see
sec. 6.1, p. 178) is relative to the performance of the others. Since the performance
space defined in the ASP is real-valued (see def. 2.1.2, p. 22), using regression for
the performance prediction approach seems like a natural fit. Note that predicting
the performance of each algorithm and then comparing the outcomes requires two
(instead of one) predictions per comparison. This may hamper the scalability of
the approach in case the prediction procedure requires some calculation, but can
be easily circumvented by caching the predicted performance per algorithm and
re-using it for all comparisons it is involved in.

To avoid the scalability problems that come with the problem classification
mechanism, all currently implemented selector generation schemes follow the pre-
diction approach outlined in figure 6.2 (p. 179). Still, problem classification ap-
proaches can be easily realized within SPDM as well.

Integration of External Tools

The SPDM is designed as a framework. It is advisable to rely on external libraries
for selector generation, instead of re-inventing the wheel by re-implementing all
(potentially complex) machine learning methods that could prove beneficial. The
following paragraphs briefly describe which tools have been integrated so far, and
which approximation models are used (i.e., which form of selection mapping is
supported, see sec. 2.3.1, p. 38).

3Again, this refers to classification in the sense of machine learning (sec. 2.3, p. 36), not the algorithm
selection approach of problem classification (fig. 6.2, p. 179).
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WEKA WEKA [327, 333] is a powerful open-source software that is written in
Java and provides various algorithms for machine learning. They are accessible
either by a graphical user interface or via an API. Since decision trees have al-
ready been used to solve the ASP (see tab. 6.1, p. 180), a selector generator based
on WEKA’s version of the C4.5 decision tree algorithm, ���, has been imple-
mented [333, p. 159 et sqq.].

Decision trees are trees that have attribute names as nodes, potential attribute
values (or ranges, in case of numerical attributes) as edges, and the prediction out-
come as leaf nodes. As outlined in figure 6.7 (p. 188), they are evaluated top-down:
for each node, the corresponding attribute of the problem instance in question is
considered. The edge that matches the instance’s attribute value is followed to the
next node. If a leaf is reached, the decision is returned. Decision trees can be
constructed by considering the Shannon entropy [333, p. 93–94] of past data with
respect to each attribute (also see sec. 2.4.1, p. 52). Thereby, the attribute with
most information gain, i.e., the knowledge of which most strongly determines the
class of an instance, is chosen first (and so on).4 This simple structure — more
important attributes higher in the tree than less important ones — does not only
help manual interpretation by a performance analyst, but also reduces the number
of features that have to be calculated for classification. In the example given in
figure 6.7, only the features ����� and 	��
�� have to be measured, while the
value of ��
� can be neglected — it is not necessary to know the value of ��
�
for classification, as long as the attribute ����� has the value ’No’. Since extract-
ing problem features (such as ��
�) could be a time-consuming task as well,
requiring only those attribute values that truly matter in the given situation is an
advantage of decision trees.

To create a decision tree that realizes the prediction approach as outlined in
figure 6.2 (p. 179), the past performances are assigned to n distinct performance
classes, where n is a parameter: class 1 is considered best and class n is considered
worst. Given the features of a new simulation problem, the decision tree predicts
the performance class for each configuration. This class is then used to sort the
configuration entries. The process is depicted in figure 6.8 (p. 188).

Furthermore, WEKA offers the construction of so-called model trees, which ex-
tend decision trees towards regression by storing a linear regression model at each
leaf node [333, p. 201 et sqq.]. In other words, the decision tree structure is not
used for predicting a value anymore, but for predicting which linear regression
model provides the best (numeric) prediction. Model trees have been integrated
by using WEKA’s M5P learner, which is based on the M5 algorithm from [269].

4By doing so, the learning scheme implicitly attempts to solve the best features for algorithm problem
(def. 2.1.3, p. 23), i.e., it identifies the most relevant problem features.
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No
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Figure 6.7: A decision tree example. First,
the attribute ����� is checked (no, bold),
then the attribute ������ (yes). Afterwards
a leaf is reached: the tree decides for ’go
sailing’.

Algorithm?

FeatureB?
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No
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Figure 6.8: Using a decision tree to solve
the ASP. Attributes that relate to features
(	
���
��, 	
���
��) are not distin-
guished from those that relate to the con-
figuration (���������). The latter are de-
rived from the flattened slection trees (see
fig. 6.4, p. 184).

Here, no preprocessing of performance tuples, i.e., assigning them to n perfor-
mance classes, is necessary.

MLJ MLJ stands for Machine Learning in Java [214]. The library is basically
a Java-port of MLC++ [184], a framework that aims at comparability and repeata-
bility of machine learning experiments, in a similar way that JAMES II aims at
comparability and repeatability of simulation experiments. A wrapper for its ID3
implementation, another algorithm to construct decision trees (see fig. 6.7), was
added to SPDM, as well as a Naïve Bayes classifier (e.g., [333, p. 82]).

It is based on Bayes’ rule of conditional probability:

Pr(A|B) = Pr(B|A) ·Pr(A)
Pr(B)

(6.2)

Pr(A|B) denotes the probability of event A given that event B occurred. It can
be calculated by the probability of event B occurring under the condition that A oc-
curred (Pr(B|A)) and the occurrence probabilities of A and B (Pr(A) and Pr(B), re-
spectively). For classification, B represents the attributes of the problem instance to
be classified and A represents the class to be predicted. The probabilities Pr(B|A),
Pr(A), and Pr(B) are then estimated from past performance data by counting: how
often have the attributes in B occurred if an instance belongs to class A (Pr(B|A)),
how often did class A occur in general (Pr(A)), and how often did the attributes in
B occur in general (Pr(B)). The calculation of equation 6.2 is repeated for each
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class; the class with maximal probability is chosen as classification result.5 Note
that the above procedure is called naïve because Pr(B|A) is estimated by merely
multiplying the occurrence probabilities of each attribute given A, hence assuming
the attributes to be independent of each other. This assumption is often wrong. For
example, a simulator and its event queue would be considered independent, even
though the efficiency of the event queue could strongly depend on the usage pattern
of the simulator. In contrast to decision trees, this classifier also treats all attributes
as being equally important — this would be another reason to call it naïve. Never-
theless this simple scheme has proven to be quite useful in many scenarios [333,
p. 88], e.g., to filter spam mail.

JOONE JOONE is an engine for (artificial) neural networks, written in Java [216].
Neural networks are restricted to real-valued input, so that all nominal attributes
(e.g., the algorithm being used) need to be encoded into real-valued input within
the wrapper for SPDM. The functioning of neural networks as a method for regres-
sion has been inspired by processes observed in neurobiology. A neural network
can be regarded as a weighted directed graph that is divided into different layers
L1, . . . ,Ln. All edges go from layer Li to layer Li+1.

At first, the real-valued attributes of a problem instance are fed into the nodes
of the input layer (L1). A transfer function is defined for each node (usually the
same); it transforms input values to output values. The output of a neuron’s trans-
fer function gets propagated along all outgoing edges to the neurons of the next
layer. This is done for all neurons in the layer. Then, each neuron in the next
layer aggregates the input it received from all incoming edges and interprets it as
its input, i.e., stimulus. It applies its transfer function to generate output that is
propagated to the next layer, and so on.

All this reflects the basic functioning of their biological counterparts, where
neurons propagate signals via axons, synapses, and dendrites. The main idea is
that biological neural networks are able to learn by adjusting the degree of signal
propagation from one neuron to another. Artificial neural networks can imitate
this by changing the edge weights by some specific learning scheme, e.g., back-
propagation [275, p. 151 et sqq.]. Figure 6.9 illustrates their basic structure.

JOONE is highly configurable, and so is its SPDM wrapper. Besides the size of
the model, it is possible to switch between different transfer functions and learning
algorithms.

5Additional considerations help to avoid situations where Pr(A) or Pr(B) are zero [333, p. 82 et sqq.].



190 6 Selection Mapping Generation
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Figure 6.9: Basic outline of a neural network. Input is propagated from the input layer over
the hidden layers to the output layer. Edge weights have been omitted for clarity, except for
the single neuron of the output layer.

JDM Finally, first steps towards the integration of the Java data mining standard
JDM [167] have been undertaken. Though being a standard and hence the only
interface SPDM would have to support in an ideal world, there is little support
for it, particularly in terms of open-source implementations. The current imple-
mentation of a JDM interface for SPDM was briefly tested with a commercial
toolkit developed by KXEN, INC. [186], but was eventually dismissed due to lack
of open-source alternatives. The lack of momentum behind JDM also becomes
apparent when considering the efforts towards a new JDM version [166], which
date back to 2006.

6.2.2 Selector Evaluation

The selector generators described in section 6.2.1 have several options to adjust
them to the given problem. Anyhow, it is usually not clear a priori which machine
learning configuration is best;6 one reason for this is the bias-variance trade-off
discussed in section 2.3.1 (p. 38).

It thus seems reasonable to let the SPDM automatically evaluate the perfor-
mance of multiple selector generators, on the same set of input data, to see which
generated selector works best. It usually takes considerable time to collect the re-
quired performance data. Since constructing new selection mappings is usually
much faster than performance data collection, restricting the data analysis efforts

6This is the problem meta-learning tries to solve; as discussed in section 2.7 (p. 88) it can be used to
manage generated selection mappings, or to decide which learning algorithm to use.
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of the SPDM would not save significant amounts of computation time — but it
could impair the ASP solution quality.

To provide a fair evaluation of the generated selectors, these have to be com-
pared with the same methods. The evaluation components have been realized
within the SPDM itself. This ensures comparability and also allows to further
structure the problem. The quality of a selector can be expressed by its expected
prediction error, which can be estimated by applying it to formerly unseen test
instances (see sec. 2.3.1, p. 38). Hence, two distinct components are required
for a performance evaluation: firstly, a selector performance measurement7 that
quantifies the error of a selector on a test set. Secondly, an evaluation strategy
to divide the overall data into test and training set. Both tasks are implemented
by JAMES II plug-in types; their rationale and current implementations will be
briefly described in the following.

Evaluation Strategies

Hastie et al. recommend the usage of three distinct tuple sets [122, p. 196] if
enough data is available: one for training, one for testing, and one for eventually
validating the selector that performed best on the test set. While they maintain that
set sizes depend on the approximation model that shall be learned (see sec. 2.3.1,
p. 38), they describe a typical approach to use 50% of the data for training, splitting
the remaining instances equally for testing (all potential solutions) and validating
(the best one).

For solving the ASP, this would mean that only half of the data is actually used
for selector generation — even though performance data is hard to come by and
obtaining it may be computationally costly (see ch. 3, p. 93). Fortunately, there
are strategies that allow a proper evaluation of selectors without the presence of an
additional validation set, so that more data can be used for selector generation. Two
of these widely used strategies have been been implemented for SPDM: 0.632
bootstrapping and cross-validation. They are realized as plug-ins and can hence
be exchanged. Instead of splitting the performance data into three sets, they only
divide it into training and test set. These are denoted by Φtrain and Φtest in the
following (def. 2.3.1, p. 36). Both sets have to be disjunct: Φtrain ∩Φtest = /0.

Since the basic idea behind having a test set is to confront the learned selector
with formerly unseen data, it seems reasonable to split the performance tuple set Φ
on the level of features, not on the level of single performance tuples. This ensures

7These measures relate to the performance of a selection mapping, they should not be confused with
the performance measures for algorithms in A, which have been described in section 5.1.1 (p. 164).
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that the evaluation tests selector quality with ’new’ problems, not just with new
combinations of algorithm and problem.

More formally, let FΦ = { f |( f ,a, p) ∈ Φ} be the set of all distinct problem
features stored in the performance tuple set Φ, and let Φ f = {φi|φi = ( fi,ai, pi) ∈
Φ∧ fi = f} be the set of all performance tuples in the performance tuple set that
contain the same features f . Then, an SPDM evaluation strategy needs to split FΦ
into two distinct sets Ftrain and Ftest , to construct Φtrain and Φtest correspondingly:

Φtrain =
⋃

f∈Ftrain

Φ f

Φtest =
⋃

f∈Ftest

Φ f

Bootstrapping In statistics, the term bootstrapping refers to resampling tech-
niques that allow to estimate some properties of a selection mapping, e.g., its pre-
diction error. Resampling means to draw new samples from a larger data sample.
For the given problem, it implies to select those performance tuples from Φ that
make a good training set, while still being able to evaluate the generated selectors
with sufficient test data. A common method is the so-called 0.632 bootstrap [333,
p. 128], which has been implemented as an SPDM plug-in.

The idea behind it is straightforward: at first, an empty multi-set for training
data is defined, Ftrain. Ftrain is now filled by randomly drawing features from FΦ.
Note that features are drawn randomly with replacement, i.e., they are not removed
from FΦ and may therefore be added to Ftrain more than once (hence Ftrain needs
to be a multi-set). This process continues until Ftrain has the size of the original
set: |Ftrain|= |FΦ|.

Assuming |FΦ| = n, each element of FΦ is randomly drawn with a probability
of 1

n per round, i.e., it is not drawn with a probability of 1− 1
n . Since there are n

iterations, the overall probability that a certain element of FΦ has not been chosen
at all — and may therefore be used for testing — is (1− 1

n )
n. Since limn→∞(1−

1
n )

n = e−1 ≈ 0.368, the test set contains about 36.8% of the overall data, hence
the method is called 1−0.368 = 0.632 bootstrapping. The 0.632 bootstrap draws
random samples for testing and training, so the overall process has to be repeated
several times. Figure 6.10 summarizes the overall procedure.

Cross-Validation There are several variations of cross-validation [333, p. 125],
but the basic principle is very simple: the set FΦ is split into x pairwise disjunct
sub-sets FΦ,1, . . . ,FΦ,x of equal (or almost equal) size. One of these sub-sets is now
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Figure 6.10: Bootstrapping: instances are
drawn randomly, the rest is used as test set.
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Figure 6.11: Cross-validation: instances
are split into equally sized groups (denoted
by shade). One is used as test set.

used for testing; the others are used for training the selector, as shown in fig. 6.11.
As there are x sub-sets, this procedure can be applied x times, each time with a
different sub-set for testing (and using the rest for training). How many sub-sets to
be used is a parameter that can be adjusted; setting x to 10 is suggested by practical
experience [333, p. 126] and has hence been set as default. Since splitting FΦ into
x sub-sets also involves randomness (regarding the order of the elements in FΦ),
the whole process needs to be repeated several times.

The most extreme case of cross-validation is where x = |FΦ|, i.e., each el-
ement of FΦ is put into a single sub-set. This is called leave-one-out cross-
validation [333, p. 127] and is also supported by the SPDM plug-in. While this
is computationally expensive — x selectors need to be generated, each learning
from x− 1 instances — it also has some interesting advantages. The splitting of
FΦ is not random anymore, hence repeating the whole procedure is unnecessary.
Leave-one-out cross-validation can also be regarded as a general epistemological
approach to test a hypothesis, as Forster argues in [84].

Selector Performance Measures

The importance of a suitable performance metric for selectors is undisputed, yet
it may spur controversy even when it comes to the choice of machine learning
method: while Leyton-Brown et al. dismiss classification methods because their
error metrics do not distinguish between different kinds of misclassification [205,
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p. 36–37], Guo and Hsu maintain that classifiers “also penalize misclassifications
differently if being used properly” [117, p. 66].

Anyhow, all authors agree that errors should not be treated as booleans: a selec-
tion mapping that always picks the second-best algorithm is to be preferred over
one that always picks the worst one, even though both never pick the ’right’ algo-
rithm. The kind of penalization is to some extent domain-dependent: while one
metric may test whether the selected algorithm is always within a certain distance
to the optimum, e.g., 10%, another one may simply sum up all errors, i.e., the
overall overhead. Yu et al. [338] evaluate their selectors by comparing them to
an optimal selector, a random selector, and a constant selector that always picks a
given algorithm (i.e., an element of SC, see def. 2.1.6, p. 27). In [96], Gagliolo and
Schmidhuber measure the cumulative overhead. It represents the relative overhead
of their AOTA framework (see sec. 2.5.3, p. 64) with respect to an optimal exe-
cution, over a number of trials. Vuduc et al. [317, 318] report the percentage of
missed optimal configurations, Δmiss, and the average slow-down of the selected
configurations, Δerr. They also consider how often a selector chooses a configu-
ration from the best or worst X% of the available options. Such metrics presume
detailed information on the performance space, which is not always available.

In the SPDM, a performance measure is defined on a test set of performance
tuples, Φtest , i.e., tuples that have not been used to generate the selector. Since an
SPDM selector — as discussed in section 6.2.1 (p. 184) — merely compares the
(predicted) performance of two algorithms a1,a2 ∈ A when applied to a problem
with features f ∈ F, it can be formally defined as a function Sel : F×A×A →
{−1,0,1}. This does not restrict the selector, internally is still may predict each
algorithm’s performance individually (see eq. 6.1, p. 186, and eq. 2.13, p. 37).

The performance measure returns a tuple (eΣ,en) ∈ R×N that gives the error
sum and the number of conducted predictions, which may differ among selector
performance measures. The expected error can then be estimated by eΣ

en
. The

following paragraphs describe the selector performance measures that have been
implemented so far.

Boolean Measure of Mispredictions This error measure implements an overly
simplistic metric, against which Leyton-Brown et al. argue in [205]: it just counts
all wrong comparisons between two performance tuples that have the same fea-
tures. It is hence mainly interesting for basic error analysis, but also serves as a
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foundation for more complicated measures. The boolean error measure of a selec-
tor Sel is calculated by:

∑
f∈FΦtest

⎛
⎝ ∑

φ1,φ2∈Φ f
test∧φ1 �=φ2

c(φ1,φ2)

⎞
⎠ (6.3)

with c : Φtest ×Φtest →{1,0} being defined as

c(( f ,a1, p1),( f ,a2, p2)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 Sel( f ,a1,a2)< 0∧ p1 ≥ p2

1 Sel( f ,a1,a2)> 0∧ p1 ≤ p2

1 Sel( f ,a1,a2) �= 0∧ p1 �= p2

0 otherwise.

(6.4)

Note that the features f refer to both performance tuples given to c, which is
ensured by the definition of Φ f

test . The function c returns 1 for every misclassi-
fication that occurs. In its given form, it is only applicable in case the selection
mapping aims at minimizing the given metric, e.g., because it is a consumptive
algorithm performance measure like execution time (see sec. 5.1.1, p. 164). This
can be seen, for example, in the first line on the right-hand side of equation 6.4:
if a1 is preferred over a2 — i.e., Sel( f ,a1,a2) returns a negative value — but the
performance p1 of a1 is greater than that of a2, this is considered as a misclassifi-
cation. As with the following measures, it is straightforward to adapt equation 6.4
to selectors that shall maximize performance instead.

Numeric Measure of Mispredictions In case the selector Sel predicts the per-
formance of algorithms in isolation, i.e., it follows the approach given in equa-
tion 2.13 (p. 37), the simple boolean measure can be extended to quantify the
extent to which algorithm performance is mispredicted. Formally, this can be cal-
culated by

∑
φ∈Φtest

c′(φ)

with c′ : Φtest → R+
0 being defined as

c′(( f ,a1, p1)) =
|p1 − p̂er f

Sel
a1
( f )|

max(p̂er f
Sel
a1
( f ), p1)



196 6 Selection Mapping Generation

where p̂er f
Sel
a1
( f ) is the performance predictor used by selector Sel for algorithm

a1 ∈ A (cf. eq. 2.13, p. 37). Note the normalization by max( p̂er f
Sel
a1
( f ), p1), i.e.,

this measure gives the relative error, summed up over all test tuples.

Misprediction Regret While a quantitative evaluation of mispredictions already
gives a good picture of overall selector performance, this might still be the wrong
metric to be optimized. What matters in the end is the performance difference
between the automatically selected algorithm and the best one, a notion similar to
the regret of reinforcement policies discussed in section 2.3.2 (p. 48).

Formally, this performance measure sums up the relative performance loss due
to using the selected instead of the overall best algorithm for every feature f ∈
FΦtest :

∑
f∈FΦtest

(
Selper f ( f )

min{p|( f ,a, p) ∈ Φ f
test}

−1

)
(6.5)

where Selper f ( f ) denotes the performance of the algorithm selected by Sel when
confronted with features f . Note that, again, the best performance is defined here
to be the minimal performance. Subtracting 1 just leaves the relative overhead,
i.e., the speed-up of using the (unknown) best selection mapping S∗ (see def. 2.1.2,
p. 22) instead of the learned selection mapping represented by Sel.

Furthermore, it is important to notice that the above definition implicitly as-
sumes that the performance data only contains problems with unique features.
Otherwise, the regret calculation in 6.5 becomes ambiguous: imagine two prob-
lems x1,x2 ∈ P with the same features f ∈ F have been used to generate Φ.
For any algorithm a ∈ A that Sel selects, there will be two performance tuples
( f ,a, p1),( f ,a, p2) ∈ Φtest — which of them is Selper f ( f ) in the nominator of
equation 6.5? This constraint is automatically checked when the misprediction
regret shall be computed.

6.2.3 Additional Components and Overview

The realization of the two main purposes of SPDM, selector generation and eval-
uation, does not suffice to provide a fully automated data analysis. It is equally im-
portant to link all the exchangeable components — selector generators, evaluation
strategies, and selector performance measures — in a meaningful way that allows



6.2 A Framework for Simulator Performance Data Mining 197

Figure 6.12: UML class diagram of central SPDM components: data import (orange),
representation of performance tuple sets (green), selector generation (red), selector per-
formance measurement and evaluation (blue), and finally a central entity for executing
the whole process (purple). The product to be ultimately delivered, i.e., instances of
���������, is shown grey. Interfaces marked with bold borders denote custom plug-in
types.

their easy application to the data stored in the performance database. This is im-
plemented by another central component, ����������	��
�����
�
���	, a
simple class that provides a lean interface to the underlying functionality. It allows
to configure which selectors should be generated from which performance data,
and how these should be evaluated. Then, it carries out all necessary operations
and returns the best selector, i.e., it implements a pragmatic approach to induction
as described in section 1.4 (p. 13). Figure 6.12 shows the overall structure of the
SPDM. The following sub-sections briefly discuss some other relevant compo-
nents shown in figure 6.12, e.g., for creating a performance data set Φ from some
source of performance data.

Data Import

To keep the SPDM framework independent of the source from which performance
data is collected, an additional JAMES II plug-in type for data import is defined.
Currently, only two alternative plug-ins are provided: an XML import plug-in
allows to read formerly generated performance tuple sets that have been persisted
with Java’s ����	����� utility, and an additional plug-in that allows to import
data from the performance database (see ch. 5, p. 153).

The database import plug-in encodes all relevant entities from the data base into
a performance tuple set Φ, which is complemented by additional meta-data (see
sec. 6.2.1, p. 182). It is configured to only extract performance tuples for models
with a URI that matches a user-defined string. This allows to restrict the analysis
to certain modeling formalisms or specific models. Similarly, only a single type
of performance measure (see sec. 5.1.1, p. 164) is considered, which is also set by
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the user. All simulation problems that have not been processed sufficiently often
by all runtime configurations are filtered out, to ensure that learning is done on a
basis of well-explored problems only. Users can configure how many applications
are required to make the performance data on a simulation problem eligible for
import.

Preprocessing

An additional step for preprocessing performance tuples has been laid out, as this
might be an important step before selector generation. Furthermore, such mecha-
nisms could realize methods for feature selection, an important adjacent problem
already discussed in section 2.1.1 (p. 21). Since the effectiveness of preprocessing
components is likely to depend on the selector generation method, a preproces-
sor is defined by the selector generator factory at hand. The factory returns an
instance of ������������	
���	�, which is then applied to Φ. Preprocessors
may be represented by an additional plug-in type later on, in case their are widely
applied.

Further Selector Generators

There are additional selector generators that have not been discussed in sec-
tion 6.2.1 (p. 182), e.g., the ���	�����
�	�������	� (see fig. 6.12). It is
necessary for performance evaluation to construct ’baseline’ selection mappings
that realize a random selection, i.e., selectors that exhibit average-case perfor-
mance in the long run. Only selectors that outperform random selection can be
regarded as average-effective in the sense of definition 2.1.5 (p. 26): the average
performance of their selections has to be higher than the average algorithm per-
formance in general, which is approximated by the random selector. Any selector
that fails to outperform random selection hence needs to be discarded.

Following the argumentation in section 2.1.2 (p. 24), average-effectiveness does
not imply superiority over a very simple scheme that always sticks with the gen-
erally ’best’ algorithm. Hence, there also is a selector generator that adopts a
winner-takes-all philosophy: it generates a selector that always picks the config-
uration with best average performance, regardless of the problem features. In the
nomenclature of section 2.1.2, the generator hence creates a selector that imple-
ments a constant selection mapping (from SC) that performs best on the considered
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problem set: only a selector that performs better than the winner-takes-all (WTA)
selector can be regarded as adaptive-efficient (see def. 2.1.6, p. 27).8

Finally, a generic ������������	
�������
�� has been developed. It uses
another selector generator to create an individual selector for every single algo-
rithm — i.e., configuration — encountered in Φ. Decisions are made by query-
ing each individual predictor and then comparing their predictions. Since the
performance classes distinguished by individually trained classifiers do usually
not match, i.e.,’good’ means something different to each of them, the ensemble
method is currently restricted to regression methods, i.e., methods that deliver
quantitative performance predictions. Such a scheme is further restricted to situa-
tions where the size of A is sufficiently small, yet it may reduce the complexity of
distinguishing between different algorithms in a single mapping. Similar schemes
would also allow the application of meta-learning (see sec. 2.7, p. 84).

6.2.4 Current Limitations

While the current solution allows to derive selection mappings from performance
data in a simple manner, it should also be clear what SPDM does not deliver (yet):
it does neither offer techniques for feature selection (see def. 2.1.3, p. 23), nor does
it support any kind of interactive performance analysis.

Feature selection may improve the quality of the selectors produced by SPDM,
e.g., the size of a decision tree, and may also speed up selector generation (because
many features might be dismissed). A thorough evaluation of the potential impact
of feature selection has been carried out by Leyton-Brown et al. in [205]: they
were able to reduce the number of features from 30 to just 5–8 while preserving the
quality of the selection mappings. Moreover, they show how to consider the trade-
off between features that are expensive to compute and the potential performance
gains from using them for better algorithm selection. A simple algorithm that
builds additional statistical models to predict the precision and performance gains
is introduced to do so [205, p. 39]. Besides exploiting the correlations between
features to identify the most useful ones, the same knowledge can be applied by
performance analysts to construct particularly hard benchmark instances [205, p.
39–42].

While interactive performance analysis is an important tool for analysts and de-
velopers alike, it is — unlike feature selection — nothing that is required to fulfill
the main SPDM task, i.e., automated selector generation and evaluation; rather, a
dedicated tool that employs the SPDM for performance data mining tasks should

8Note that this only applies to the problem set that is considered for training: a WTA selector does
not necessarily implement the best-performing constant selection mapping for other problem sets.
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be developed. Nevertheless, a graphical representation of selection mappings
and performance data facilitates comprehension [184]. Vuduc et al. use truth
maps [318], i.e., two-dimensional plots with a point cloud where each item says
which algorithm performed best on this particular problem instance.9 Clearly, this
technique does not scale with the number of problem features of interest and it
does not show the performance difference to the runner-up. Other visualizations
show prediction error (e.g., [319]), compare the regions where the performance re-
lation between algorithms changes (or is predicted to do so, e.g., [25]), or provide
approximated cumulative distribution functions of execution time (e.g., [114]).

6.3 Summary

This chapter described the layout and implementation of the SPDM framework
for simulator performance data mining. The SPDM allows to integrate external
data mining tools; wrappers for WEKA, JOONE, and MLJ have already been real-
ized (see sec. 6.2.1, p. 186). All tools are accessed through a common interface.
Their results are evaluated by re-implementations of established methods from
data mining, in combination with custom performance measures (see sec. 6.2.2,
p. 190). Data import from a custom XML format and also from the performance
database (ch. 5, p. 153) is supported. Additional components have been added to
account for the theoretical considerations of section 2.1.2 (p. 24), so that average-
effectiveness and adaptive-effectiveness of a selector can be checked and the best
selector can be identified automatically.

While users of all roles may access the SPDM similarly — i.e., via selector
generator evaluation — their role is likely to affect the choice of performance mea-
surement: while deployers are interested in the difference to an optimal selection
and need to compare selectors to the winner-takes-all and random selection strate-
gies, performance analysts might be more interested in the predictability of the al-
gorithm performance as such, e.g., the numerical measures for misprediction (see
sec. 6.2.2, p. 193). The SPDM does not yet cover feature selection techniques —
but this could be added to the overall process later on, without having to change
the interface with which deployers and performance analysts operate.

It is now clear how performance data is measured and stored (ch. 5), and also
how the SPDM generates selectors from this data that represent selection map-
pings. Another important step of the overall performance analysis process is still
missing: how to set up experiments that allow to collect such large amounts of per-
formance data? As it turns out, this takes several precautions and additional com-

9Similar diagrams are used in [25].
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ponents. These are discussed in the next chapter, which focuses on performance
experiments with JAMES II. Interestingly, another ASP solution mechanism can
be integrated within this process, which does not necessarily require the analysis
of past performance data.
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You are invited to come to see the Earth turn, tomorrow, from three
to five, at Meridian Hall of the Paris Observatory.

Invitation card by Jean Foucault, 1851

The general challenges of experimenting with simulation algorithms have al-
ready been discussed in chapter 3 (p. 93). This chapter builds up on that by briefly
outlining how these challenges are currently met by the experimentation layer of
JAMES II (sec. 7.1). Section 7.2 introduces a simple yet powerful algorithm
selection technique that can be plugged into the experimentation layer. It both
explores and exploits algorithm performance at the processing time of a simula-
tion problem, but without relying on the performance database or the data analysis
methods presented in chapter 5 (p. 153) and chapter 6 (p. 177). Then, section 7.3
shows how combining this technique with additional components facilitates the ex-
ecution of large-scale experiments to investigate the runtime performance of sim-
ulation algorithms. A calibration method that yields significant speed-up for such
experiments is also introduced (sec. 7.3.2). Finally, it is illustrated how all these
techniques can be used in conjunction with the performance database, to automat-
ically set up meaningful performance experiments for developers (sec. 7.3.4). All
in all, three elements of the SASF are covered in the following (see fig. 7.1, p. 204).
Many related algorithm selection approaches also rely on sophisticated setups for
performance experiments; these are discussed as related work in the corresponding
sections.

7.1 The Experimentation Layer of JAMES II

The development of an experimentation layer for JAMES II has been a group
effort right from the beginning [68, 74, 132, 201]. It is a complex and feature-rich
part of JAMES II that cannot (and need not) be described here in full detail; the
following discussion is restricted to a brief overview of the main concepts and then
centers on those entities that are exploited or extended later on.

R. Ewald, Automatic Algorithm Selection for Complex Simulation Problems, 
DOI 10.1007/978-3-8348-8151-9_7, 
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2012
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Figure 7.1: SASF overview (see fig. 4.6, p. 148), red borders denote elements discussed in
this chapter.

The major design goals of the experimentation layer have already been moti-
vated in section 3.1 (p. 93): reproducibility and comparability (e.g., [101, 163]).
Some issues — e.g., random number generation [74] — are resolved by dedicated
sub-systems, while others — e.g., flexibility regarding experiment design tech-
niques (see sec. 3.2, p. 101) — require structural precautions.

Providing users with such a layer on top of the JAMES II plug-in system (see
sec. 4.2, p. 122) allows to leverage the strengths of a plug-in based approach for
conducting scientifically sound simulation studies. The desire of users to have
a flexible and thorough support for experimentation is not new (e.g., [137]) and
has been implemented in many other simulation systems as well, e.g., Tornado,
where a-priori experiments are used for (manual) algorithm selection [41, p. 145
et sqq.]. Few simulation systems, however, are able to integrate a comparable
range of techniques from different fields, let alone allowing users to combine them
flexibly.

The JAMES II experimentation layer relies on distinct components for defining
experiments and for controlling their execution. Figure 7.2 shows an overview of
the layer and its relation to other JAMES II components.

Experiment Definition

JAMES II experiments are defined by instances of the ���������	
��� class.
It contains all information required to execute an experiment, e.g., from where
to load the model, what data to observe, where to store the observed data,
and so on. Since all these tasks are carried out by JAMES II plug-ins, a
���������	
��� merely stores the factories (and their parameters). Most impor-
tantly, a ���������	
��� also contains an instance of �����	
�����	�����,
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Figure 7.2: The experimentation layer of JAMES II (from [68]): After modeling (step 1),
setting up simulation experiments (step 2) is necessary before any output can be analyzed
(step 3). Arrows denote either data or control flow. While the experimentation layer (red
box, right) comprises various components, the discussion here will be restricted to experi-
ment design and control, i.e., some elements from the upper two layers of the red box.

a hierarchical structure that defines the model parameterizations to be evalu-
ated. To conduct a simple parameter scan, it is sufficient to add so-called ex-
periment variables, i.e., instances of the class ���������	
������, to an
���������	
������� instance. The latter contains a list of experiment vari-
ables and a reference to another instance of ���������	
�������, which rep-
resents a lower level of the hierarchy.

The default implementation of ���������	
������� changes the values of
all experiment variables on its own level simultaneously. However, this is only
done if its sub-list — i.e.,, the ���������	
������� instance representing the
hierarchy below — signals that all parameter combinations defined by the lower
lists have already been processed. Otherwise, the variable values stay the same on
the given level. In case the values of the variables cannot be changed any further,
this is signaled to the parent list. These simple rules allow to easily define different
factorial experiments, ranging from a full factorial, i.e., each variable is in its own
list, to setups where all variable values shall be changed at once, i.e., all variables
are defined in a single list. This is illustrated in figure 7.3 (p. 206).

Subclasses of ���������	
������� allow the integration of experiment de-
sign techniques (see sec. 3.2, p. 101) or optimization algorithms, i.e., any non-
trivial method to choose the model parameter values of interest. Since these meth-
ods steer the experiment into certain parameter regions, they are subsumed under
the term experiment steerers.

Techniques like optimization also require that observed data is fed back to them,
in order to calculate the objective value attained by a specific parameterization
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r1 = 1, 2, …, 10
r2 = 5, 6, …, 15

...

a) r1 = 1, 2, …, 10
r2 = 5, 6, …, 15

...

b)

Figure 7.3: The default implementation of experi-
ment variables (from [68]): the hierarchy defined in
setup a) consists of two ���������	
������� in-
stances, each defining a single experiment variable
(r1 and r2) so that all value combinations are gen-
erated (i.e., full factorial): (1,5),(1,6), . . .(10,15).
In contrast, setup b) merely defines 10 setups:
(1,5),(2,6), . . . ,(10,15).

...

r1 (Opt)
r2 (Opt)

Opt (SimAnneal., …)

Objective: Curve Fitting
Constraints: r1:[1,10], r2:[5,15] 
Parameters: Temperature, etc.

Figure 7.4: Extending JAMES II
experiment variables for optimiza-
tion: no additional sub-lists are al-
lowed. The optimization algorithm
(here, simulated annealing) assigns
new values to r1 and r2 that are not
known before runtime.

(see sec. 2.1.3, p. 30). The feedback propagation is realized by the experimen-
tation layer as well. Note that instances of ���������	
������� subclasses
may still be combined with instances of the original class; this allows, for exam-
ple, to evaluate the performance of various optimization algorithms when applied
to to the same simulation-based optimization problem. However, not all kinds of
nesting are meaningful. For example, adding additional levels containing experi-
ment variables below an optimization algorithm will make it consider whole sets
of model setups for each parameter combination under its control. Such setups are
therefore not supported. The integration of experiment steerers, exemplified by an
optimization algorithm, is depicted in figure 7.4 (p. 206).

To accommodate methods discussed later in this chapter, experiment variables
need to control not only model parameters, but also execution specifics, e.g., which
algorithms to use, when to stop the simulation, and so on. This is realized by a
����������������	���������	��, which collects changes to the current con-
figuration from all experiment steerers defined for the given experiment. Since a
runtime configuration is expressed in form of nested parameter blocks (see fig. 6.5,
p. 184), additional components have been developed to facilitate their manipu-
lation (package ��������������������	����������). They allow to define
rules that apply to certain subsets of nested parameter blocks. This mechanism
can be used, for example, to set event queue parameters in all relevant parameter
blocks — the queue might be chosen more than once — or to more easily update a
certain algorithm parameter that is nested deeply within the parameter blocks.
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Figure 7.5: Interplay between ���������	
���, experiment execution controller, and sim-
ulation runner.

Experiment Control

Upon execution, the ���������	
��� instance generates a certain number of so-
called simulation configurations. A simulation configuration can be regarded as a
job description that contains all information to execute a certain model setup with
a certain configuration of the simulation system. A simulation configuration also
contains replication criteria: plug-ins that decide how often a simulation problem
should be replicated, e.g., until a certain level of statistical significance has been
reached.

As the sequence diagram in figure 7.5 shows, the ���������	
��� instance
sends the configurations to a so-called simulation runner, which is responsible for
executing it. The execution as such is transparent to the experiment that generates
the simulation configurations, which makes it easy to support different execution
strategies for different kinds of infrastructure, as discussed in [201]. Again, the
flexibility of choosing different simulation runners is realized by defining a corre-
sponding plug-in type and plug-ins.

An additional component, the experiment execution controller, mediates status
updates between ���������	
���, simulation runner, and user interface. The lat-
ter may require to withhold the execution of a certain simulation run, e.g., because
the user first needs to configure an online visualization. Hence, the simulation
runner notifies the controller when a simulation run is ready to be executed, i.e., it
has been properly initialized. In turn, the controller triggers the simulation runner
to execute (or cancel) the job. In case the execution finished, a notification is sent
from the simulation runner to the execution controller, from where it is propagated
to the ���������	
���. After the scheduled set of simulation configurations has
been processed, the ���������	
��� may either schedule another set of jobs or
stop the execution because it is finished.
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Figure 7.6: Adaptive replication:
mapping the multi-armed bandit
problem onto algorithm selection
during simulation replication (cf.
fig. 2.7, p. 50).

Figure 7.7: Asynchrony of reward reception: the
policy has to select algorithms (black, white, and
grey box) without knowing all past rewards.

7.2 An Adaptive Simulation Runner

Simulation runners have a simple interface and separate the concerns of
simulation execution and experiment execution, the latter being realized by
���������	
���. While the execution of a simulation run as such is clearly the
responsibility of the simulators and their sub-components (see [131] for details),
the scheduling of the simulation runs to the available resources, i.e., processors, is
what the simulation runner has to implement.

As it directly controls the execution, a simulation runner can easily observe
(or be informed on) any consumptive performance measure of the current run
(e.g., execution time or memory requirements; see sec. 5.1.1, p. 164). In case
multiple replications have to be conducted, i.e., the same simulation problem has
to be solved multiple times, this feedback can be used to select algorithms: the
whole situation is very similar to the multi-armed bandit problem discussed in
section 2.3.2 (p. 48). Multiple replications are almost always required for stochas-
tic simulation — and stochastic simulation approaches and models are abundant,
e.g., to simulate chemical reaction networks (see sec. 1.3.1, p. 7). A suitable algo-
rithm selection approach on this level may already alleviate the algorithm selection
problem in many cases.

Figure 7.6 illustrates the basic idea of adaptive replication: the set A of eligible
algorithms is now represented by the arms of the bandit, as already discussed in
section 2.3.2 (p. 48). Each simulation run to be executed, i.e., each replication,
requires to select an element from A, i.e., to choose an arm. The performance of
the selected algorithm when applied to execute a single replication can be inter-
preted as reward. In contrast to the original multi-armed bandit problem, several
restrictions and requirements arise in the context of simulation replication:
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• Minimization: Since the policies typically select algorithms based on con-
sumptive algorithm performance measures (see sec. 5.1.1, p. 164), they have
to minimize the overall reward instead of maximizing it. This is reflected
by some straightforward adjustments to the policies, as discussed in sec-
tion 7.2.1.

• Manual restriction of options: The restriction to consumptive performance
measures — or, more technically, all performance measures that can be ob-
served from a single replication — makes it necessary to allow the specifi-
cation of the algorithm subset A ⊂ A that shall be explored. This enables
users (or external mechanisms) to pre-select those methods that fulfill all re-
quirements regarding more elaborate performance metrics, e.g., concerning
the accuracy (see sec. 5.1.1, p. 164).

• Asynchrony: Simulation runners may exploit multiple resources and sched-
ule simulation executions to run concurrently, i.e., they may conduct parallel
independent replications [201]. Hence, a policy may have to decide which
arm to pick before it received all — or, in fact, any — reward, as illustrated in
figure 7.7. In contrast, the multi-armed bandit problem assumes that policies
have access to all rewards their prior decisions brought about.

• Faulty configurations: Apart from being more or less suitable to solve a
given simulation problem, a runtime configuration may also fail to work at
all, i.e., it stops with an error message.1 The error message is detected by
JAMES II and gets propagated to the simulation runner. A policy should
differentiate between a bad reward and a faulty configuration: while the
configuration yielding little reward might eventually be reevaluated, a faulty
configuration should not be chosen anymore. In other words, the policy
should quarantine the configuration for the given simulation problem.

The implementation of an adaptive simulation runner has to take into account
all of the above issues. An adaptive simulation runner should also be flexible with
respect to the specific policy that is employed, since it is unclear which one will
perform best. The convergence speed of a policy, i.e., how many replications it
takes until the best algorithm is identified, is problem-dependent. It relies on the
shape of the reward distributions (e.g., see the runtime distributions of simulation

1Clearly, only certain kinds of errors result in an error message and can hence be detected by JAMES
II, or, for that matter, any software system at all. A well-known counterexample is the halting
problem, which is undecidable (see sec. 2.1.3, p. 29).
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algorithms, fig. 2.11, p. 70). Section 7.2.1 details the implementation of the adap-
tive simulation runner [72] and some policies, while section 7.2.2 introduces an
approach to improve policy convergence speed [75].

Related Work

An alternative approach to speed up the execution of multiple replications has been
developed for parallel and distributed discrete-event simulation. The basic idea of
cloning [152, 39] a parallel simulation is to compute multiple trajectories of a
model in a single execution, so that replications can share common calculations.
The simulation starts out with a single trajectory and proceeds as usual, until a
certain decision point is reached. Then, for each potential outcome at the decision
point, the LPs that depend on the outcomes are cloned, i.e., they are recreated with
the same state and now compute the model trajectory based on this outcome, while
their counterparts compute trajectories for other outcomes. This is particularly
useful if only small and isolated parts of the model are affected by the outcomes
of a decision point, so that much computation can be shared among all replica-
tions. Unfortunately, this is not always the case; e.g., stochastic models in systems
biology usually do not exhibit this behavior.

Another approach from the domain of PDES, active replication, improves the
speed of a single execution by letting several algorithms run in parallel per pro-
cessor, each time using the result of the fastest one while dismissing those of the
others [267, 268]. Multiple replications of PDES runs may also be executed on the
same resources in parallel, which achieves additional speedups [23].

7.2.1 Implementation

General Structure

The adaptive simulation runner reuses the functionality of the parallel simulation
runner presented in [201]. A new plug-in type for multi-armed bandit policies
that minimize reward is introduced, it subsumes implementations of the interface
����������	
���. The interface defines a method to initialize the policy with
the number of available arms and the horizon (see sec. 2.3.2, p. 48), i.e., the number
of replications to be expected. The actual horizon is hard to determine, as repli-
cation criteria may base their decision on simulation outcomes, i.e., the horizon
gets recalculated at runtime. The interface also comprises methods to quarantine
algorithms, to request the next decision, and to pass received rewards to the pol-
icy. An algorithm is quarantined for a given problem after its execution failed.
The next decision is requested by the adaptive simulation runner in case a new
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simulation run execution shall be scheduled, e.g., because a resource is idle. Sim-
ilarly, rewards are propagated to the policy when the runner gets notified upon the
completion of a run.

Figure 7.8: UML class diagram of the adaptive simulation runner and auxiliary components
(from [72]): existing components (grey), the simulation runner implementation (green),
the policy interface (blue), and the policy implementations (red). JAMES II plug-ins are
denoted by dashed borders.

Figure 7.8 summarizes the basic class structure of the adaptive simulation run-
ner. An additional component, ���������	
�����, is used to automatically gen-
erate all suitable plug-in combinations for a given simulation problem x ∈ P, i.e.,
the whole set Ax of eligible selection trees (see eq. 5.1, p. 160). To construct
Ax, ���������	
����� considers the given simulation problem and analyzes
the plug-in data from the JAMES II registry (see sec. 4.2.1, p. 127). Plug-in
descriptions specify on which components (of which plug-in type) a plug-in re-
lies. This information can be used to create all eligible selection trees. Note that
���������	
����� does not distinguish between variations in algorithm param-
eters, i.e., an automatically generated set Ax only contains plug-in combinations
with default parameters. Anyhow, this allows to use the adaptive simulation runner
without any user interference. Alternatively, a set of pre-selected runtime configu-
rations can be defined, represented by corresponding parameter blocks.

AbstractMinBanditPolicy

RandomSelection UCB

SoftMax UCB1 UCB2

UCB1Tuned

«interface»
IMinBanditPolicy

AdaptiveSimulationRunner

ParallelSimulationRunner
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...
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Multi-Armed Bandit Policies for Replication

As all multi-armed bandit policies have to manage quarantined arms and other
common parameters (e.g., horizon, number of arms), they are implemented as sub-
classes of the class ���������	
��
�	���	�� (see fig. 7.8), which implements
their commonalities. The following paragraphs explain some of the policies that
have been implemented so far, and how they had to be changed to suit the context.
For example, the asynchrony with which rewards are received (see fig. 7.7) makes
selection difficult for policies that simply do not cover this case, e.g., because they
can only make a decision after trying out each arm once.

Fortunately, such problems can often be resolved by relatively small adjust-
ments. If not stated otherwise, the problem of asynchronous rewards is solved by
applying a simple heuristic: in case no reward has been received yet, a policy ei-
ther draws arms randomly or round-robin (depending on whether it is a stochastic
policy or not). After the first reward has been received, the corresponding arm is
regarded to have the minimal reward so far, i.e., it is deemed the best one; all arms
without known reward are excluded from exploitation. The rule of choosing the
best arm from those where reward has already been received lends itself particu-
larly well to the execution time performance measure: it is likely that the execution
of faster algorithms finishes earlier than the execution of slower algorithms, given
equal external load. Hence, the algorithms that are selected before the required
number of rewards have been received are likely to be good choices anyway. Many
basic approaches to solve the multi-armed bandit problem are realized by various
slightly different policies. The following paragraphs are organized around such
’families’ of policies. Since rewards shall be minimized and not maximized, the
existing policies had to be adapted and will be described accordingly.

ε Policies This family of policies is controlled by a single parameter, ε , that
governs the trade-off between exploration and exploitation (see sec. 2.3.2, p. 43).
The most simple policy, ε -FIRST [316], plays the first �ε ·n� rounds by selecting
arms randomly, n being the horizon. Then, the arm with minimal average reward
R̂i is used for the rest of the rounds. ε -GREEDY [316] does not stop the explo-
ration after a predefined number of rounds, as ε -FIRST does. Instead, it randomly
chooses each round either to explore a random arm (probability ε) or to play the
best arm (probability 1− ε). While the exploration phase of ε -FIRST may simply
be too short and too undirected, ε -GREEDY carries out an undirected exploration
over the whole horizon. This, in turn, may lead to too much exploration, since the
probability ε is constant. Even after much knowledge has been gained, the policy
still explores alternatives with the same effort.
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To avoid this, the ε -DECREASING [316] policy explores a random arm with a
probability of ε

r , where r is the number of rounds that have been played so far.2

An alternative variant is called ε -GREEDYMIX in [316] and calculates the ex-
ploration probability as ε·log10 r+1

r .3 Yet another variant of ε -DECREASING — εn-
DECREASING — is proposed by Auer et al. and defines the exploration probability
as follows [11, p. 239]:

εn = min
(

1,
c · k
d2 · r

)

where r is again the number of rounds that have been played, k is the number of
arms, and c > 0 as well as d ∈ (0,1) are parameters. The parameters control the
policy’s propensity for exploitation and exploration: if c is increased, the proba-
bility of choosing a random arm is increased, while d increases the probability of
exploitation by choosing the best arm so far. εn-DECREASING is particularly inter-
esting because Auer et al. could derive an upper bound on its regret (see sec. 2.3.2,
p. 48), i.e., the performance loss due to exploration. However, their proof requires
some additional assumptions on the reward distributions [11, p. 240].

Finally, ε -LEASTTAKEN [316] is very similar to ε -DECREASING in that it also
lets the probability of exploration decrease over time, depending on ε , but now the
exploration is directed: the exploration probability is defined as 4·ε

4+m2 , where m is
the number of times that the arm that has been selected the least was tried. If the
ε -LEASTTAKEN policy decides for exploration, it will consequently explore this
least selected arm, i.e., the arm for which the reward distribution is approximated
from the smallest sample of observed rewards.

UCB Policies The policies in this family are deterministic; they do not involve
any random choice. The basic idea behind them is to calculate an upper confidence
bound (UCB) for each arm’s reward. This confidence bound is very optimistic at
first, due to the lack of data. As a policy receives more and more rewards from
choosing a certain arm, its confidence bound will be adjusted and eventually gives
a realistic picture of the reward to be expected. One could regard all UCB policies
as greedy heuristics, as they always play the arm with the maximal index, i.e.,
the arm with the maximal upper confidence bound. Overall reward should be
minimized here, so the actual UCB implementations choose the arm with the least

2Note that in the beginning, as mentioned earlier, a random arm is chosen: r ≥ 1.
3The original formula given in [316] is ε·log10 r

r — however, this would mean that the exploration
probability during the first 10 rounds is less than ε . The addition of 1 in the dividend overcomes
this problem and does not affect policy performance in the long run, as 1

r approaches zero for
r → ∞.



214 7 Experimentation Methodology

index instead, and subtract estimates on the confidence bounds accordingly. In
other words, they consider a lower confidence bound on rewards. UCB policies
mainly differ in their calculation of arm indices. All policies discussed here have
shown to be zero-regret strategies, i.e., they are guaranteed to eventually identify
the best arm and play it exponentially more often than any other [11].

UCB1 [11] calculates the index of arm i as

R̂i −
√

2 · lnr
ri

(7.1)

where R̂i is the average reward received from pulling arm i, ri is the number of
times arm i has been selected so far, and r is again the number of rounds played.
For UCB1-TUNED [11], this formula is changed to

R̂i −
√

lnr
ri

min
(

1
4
,Vi(ri)

)
(7.2)

where Vi(ri) estimates the variance (bounded by 1
4 , see [11, p. 245]) of the arm’s

rewards:

Vi(ri) =

(
1
ri

ri

∑
j=1

R2
i, j

)
− R̂2

i +

√
2 · lnr

ri
(7.3)

where Ri, j is the reward received by selecting the i-th arm for the j-th time.
Finally, UCB2 [11] calculates the index of arm i as

R̂i −
√

(1+α) · ln e·r
τ(ei)

2 · τ(ei)
(7.4)

where τ(x) = �(1+α)x�, α ∈ (0,1) being a parameter, and ei being the number
of epochs for which arm i was chosen. An epoch represents a number of rounds
during which the policy is committed to play the selected arm. Each epoch has
τ(ei+1)−τ(ei) rounds, i.e., its length depends on the number of epochs arm i has
already been played, and also on the parameter α . If α is increased, the length of
the epochs will grow faster.

As all UCB policies require a first estimate R̂i for the average reward, they first
choose each of the available arms once. This initialization sets a natural upper limit
for the number of arms that is supported: if it exceeds the number of replications,
no performance gain by automated algorithm selection is possible. UCB policies
also assume reward distributions with support in [0,1]. This is currently handled
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by a normalization (and index recalculation) whenever a new maximal reward is
received, which makes it necessary to keep book of past rewards.

IntEstim The interval estimation policy INTESTIM [172, p. 51 et sqq.], as ad-
justed by Vermorel and Mohri [316, p. 5] to cope with rewards from R, follows
a strategy similar to the UCB policies: after initially selecting each arm once,
mean and standard deviation are estimated to calculate an arm’s index. A parame-
ter α ∈ (0,1) allows to adjust the confidence bounds, to make the policy more or
less aggressive. A variant of INTESTIM — INTESTIMDEC — gradually decreases
the impact of an arm’s performance variance on the decision by adjusting the pa-
rameter α , similar to ε -DECREASING for the ε policies. Again, it discourages
exploration if there is sufficient knowledge to focus on exploitation.

Pursuit The PURSUIT policy [298, p. 43] is similar to ε -DECREASING in that it
chooses arms randomly. At first all arms 1, . . . ,k are selected with the same prob-
ability pri =

1
k . The selection probabilities are adjusted after receiving a reward.

The probability of the arm with the lowest R̂i — i.e., the best arm — is increased:
prbest = prbest + β · (1− prbest). At the same time, the probabilities of all other
arms are decreased: pri�=best = pri −β · pri. These manipulations do not change
the sum of the probabilities. If arm 1 performed best so far (w.l.o.g.), its probability
increment of β · (1− pr1) is compensated by decreasing all other probabilities:

β · (1− pr1)−β · pr2 . . .−β · prk =

β −β · pr1 −β · pr2 . . .−β · prk =

β −β (pr1 + . . .+ prk) = 0

since the probabilities sum to 1, i.e., ∑k
i=1 pri = 1. The parameter β ∈ (0,1)

controls the convergence speed of the policy, i.e., how fast it gives up exploration
for exploitation. The order of the R̂i may change during execution, so arms with
non-minimal R̂i can be thought of pursuing the arm that is currently deemed best
(hence the name).
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SoftMax Similar to PURSUIT, SOFTMAX [316, p. 4] also selects arms ran-
domly while adjusting the selection probabilities based on the received rewards.4

SOFTMAX calculates the probability of selecting arm i as:

pri =
exp( R̂−1

i
τ )

∑k
j=1 exp(

R̂−1
j
τ )

(7.5)

where the temperature parameter τ ∈R+ controls the degree of exploration (the
higher the more). The reciprocals R̂−1

j = 1
R̂ j

are used to adapt SOFTMAX to the
minimization requirement.

As with the ε policies (e.g., εn-DECREASING), it seems natural to let τ decrease
over time, i.e., to reduce exploration when sufficient observations have been made.
A τ-decreasing SOFTMAX policy — SOFTMAXDECR — uses a parameterizable
initial temperature τ0 that is set to τ0

r at round r (see [316]). The implementation
for the adaptive simulation runner divides τ0 by the number of rounds for which
the rewards has already been received. Another variant — SOFTMIX — is similar
to SOFTMAXDECR but sets the temperature to τ = τ0·log(r)+1

r (e.g., [316]),5 where
the implementation again only counts the number of rounds for which rewards
have already been received.

Reward Comparison REWARDCOMPARISON [298, p. 41] is rather similar to
SOFTMAX. It employs a SOFTMAX-like function to calculate the selection prob-

abilities pri (cf. eq. 7.5), but replaces the expressions R̂−1
i
τ and

R̂−1
j
τ with preference

values p fi and p f j, respectively. When a reward R is received for an arm i, its
preference value p fi is set to p fi + β · (R̄−R), where R̄ is the reference reward
level used for comparison. If the reward received for the chosen arm compares
favorably to R̄, i.e., it is smaller, the preference value of arm i is increased; oth-
erwise it is decreased. The parameter β ∈ R+ controls the step size with which
the preference for an algorithm is increased. The received reward R is also used
to update the reference reward level R̄ to R̄+α(R− R̄), again with a parameter
α ∈ (0,1] governing the adaptation speed.

Random Selection To check the effectiveness of multi-armed bandit policies,
they should be compared to a policy that does not converge. Such a simple scenario

4Such strategies are called probability matching policies, since they aim to approximate the probabil-
ity of being optimal for each arm.

5For the same reasons as given in the description of ε -GREEDYMIX (p. 212), a 1 is added to the
dividend. This differs from the formulation in [316].
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is implemented by a random selection policy — RANDOMSELECTION — that just
picks a random arm for each round. In the long run, its overall average reward

R̂ =
∑k

i=1 R̂i
k will therefore converge to the average algorithm performance on the

problem; the same holds for the variance. This situation corresponds to a manual
algorithm selection by a user without prior knowledge on the algorithms in A.

The policies construct their selection mappings from the rewards they re-
ceive (see sec. 2.3.2, p. 48). The mappings are encoded by preference val-
ues (REWARDCOMPARISON), selection probabilities (SOFTMAX), or arm indices
(UCB). A policy that outperforms RANDOMSELECTION after a certain number of
rounds has constructed a selection mapping S ∈ S that is average-effective in the
sense of definition 2.1.5 (p. 26). Here, the problem set P only contains a single
element: the simulation problem to be replicated. Since |P| = 1, no policy can
be adaptive-effective (see def. 2.1.6, p. 27). The best constant selection mapping
S∗C (see def. 2.1.8, p. 28) selects the algorithm with the truly best average reward
right from the beginning; it does not waste any resources on performance explo-
ration. Hence, it outperforms any adaptive policy. By comparing the performance
of a policy with such an optimal strategy and RANDOMSELECTION, the potential
performance impact of the adaptive simulation runner can be assessed.

Potential Enhancements for Large-Scale Experimentation

Currently, a policy is reset for each new simulation problem that is encountered,
i.e., it starts out without any prior knowledge. If an experiment comprises many
rather similar simulation problems, e.g., generated by an optimization algorithm, it
might be beneficial to transfer the previously gathered knowledge to new problems.
While an off-line mechanism that supports such knowledge transfer is discussed in
section 7.2.2, there are specific policies for such nonstationary multi-armed bandit
problems (see discussion in [298, p. 38–39]).

Furthermore, the adaptive simulation runner is currently implemented on top
of the parallel simulation runner presented in [201], which replicates one simu-
lation problem after another. While this execution order is fine in most cases, it
may hamper the performance of the adaptive simulation runner when applied to
experiments that use many computational resources in parallel and comprise of
several simulation problems, e.g., simulation-based optimization or validation ex-
periments carried out on a cluster. This is because too much parallelism during the
replication of a simulation problem will hamper the effectiveness of the adaptation
policies. A good decision requires knowledge on prior rewards, whereas increas-
ing the number of available processors forces the policy to make more decisions
based on less knowledge. The problem is illustrated in figure 7.9. Instead of pro-
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Figure 7.9: Execution order matters: repli-
cating a single simulation problem on many
processors in parallel (light gray, left) forces
a policy to make many uninformed deci-
sions. It would be advisable to sequentially
replicate several problems in parallel (dif-
ferent gray shades, right).
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Figure 7.10: Portfolio selection for the
adaptive simulation runner.

cessing simulation problems sequentially, each being replicated with all available
resources (fig. 7.9, left), it is now much more beneficial to parallelize the execu-
tion on the problem level (fig. 7.9, right), i.e., to execute the first replication of
all simulation problems in parallel, then the second one, and so on. While such a
scheme ensures ideal conditions for the adaptive replication policies, it may ham-
per the efficient execution of experiment steering methods on top. For example, a
simulation-based optimization method may require some problems to be processed
before it is able to generate new ones. Future work on the adaptive simulation run-
ner should account for this issue and develop more advanced schemes to control
execution order.

7.2.2 Simulation Algorithm Portfolios

Apart from issues in the presence of many computational resources (see fig. 7.9),
there is another (more serious) obstacle for using the adaptive simulation runner.
It is directly related to the characteristics of JAMES II: since its principal design
goals are flexibility and extensibility, the number of available runtime configura-
tions to solve a single setup — i.e., the size of A— may become quite large (see
sec. 4.3, p. 134). For many simulation problems, the number of available algo-
rithms may thus exceed (or be comparable to) the number of required replications.
An obvious solution is to restrict the number of options from which the policy
may choose, i.e., the number of algorithms to be considered. As discussed in
section 2.5.2 (p. 61), the task of identifying algorithms that are likely to perform
well can be regarded as selecting an algorithm portfolio (see fig. 2.9, p. 62). The
portfolio should consist of algorithms that have proven to be useful before, while
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algorithms that performed badly so far should be dismissed. In other words, port-
folio selection mechanisms consider past performance data to restrict the number
of arms a policy may choose from. This section discusses the portfolio selection
mechanism that has been implemented to augment the adaptive simulation runner.
Its aim is to broaden the applicability of the adaptive simulation runner to prob-
lems where the multitude of eligible runtime configurations otherwise hampers
convergence within the given number of replications.

Applications and Requirements of Simulation Algorithm Portfolios

Besides the reduction of options to be considered by multi-armed bandit poli-
cies, there are several other potential application domains for simulation algorithm
portfolios. As discussed in section 2.5.2 (p. 61), they simplify the ASP; hence,
they could be used as a preprocessing step for selector generation (see sec. 6.2.3,
p. 198). Narrowing down the choice would be particularly helpful for problem
classification (see fig. 6.2, p. 179), which then has much less categories to choose
from and thus a much simpler problem to solve.

Moreover, simulation algorithm portfolios can be used to rank algorithms. This
could be interesting for performance analysts and developers alike. If an algorithm
is selected for many kinds of portfolios, e.g., portfolios for different modeling for-
malisms, this underlines its importance for overall system performance and may
motivate further code improvements. By comparing selected portfolios of differ-
ent sizes s = 1, . . . ,k, one may also examine how many relevant runtime configu-
rations need to be considered for a problem domain, i.e., this hints at the number
of distinguishable problem classes.

Another application of simulation algorithm portfolios could be the paralleliza-
tion of simulation runs in case peak performance is crucial. If runs are parallelized
in a brute-force manner, i.e., the results of the first one are used while the others
are dismissed, it is important to narrow down the algorithms that are most likely to
come in first. The size of such portfolios would hence be limited by the number of
threads that can be executed in parallel, e.g., the number of cores on a CPU.

Two potential application domains of simulation algorithm portfolios —
algorithm ranking and brute-force parallelization — require to specify the desired
portfolio size manually. The same holds when portfolio selection is used as a pre-
selection mechanism for replication policies: the most suitable size of a portfolio
is likely to depend on the number of replications that are to be executed. In case
only a few replications are required, using a large portfolio may still hamper the
convergence of the policy. On the other hand, a large number of desired replica-
tions may warrant the selection of a larger portfolio — to increase the chance that
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it contains the algorithm that is truly the most suitable one. As Gomes and Selman
show in [114], changing the desired portfolio size may strongly affect the compo-
sition of efficient portfolios, i.e., the shape of the efficient frontier (see sec. 2.5,
p. 58). A simple illustration of this effect is depicted in figure 7.11.

Another factor that influences portfolio structure is the objective function to
characterize the desired properties of a portfolio. Many methods for financial port-
folio selection are based on Markowitz’ formulation of the problem (see eq. 2.21,
p. 61). In contrast, the selection of simulation algorithm portfolios may employ
custom objective functions that are tailored to the specific application domain. For
example, portfolios for brute-force parallelization should contain one very fast al-
gorithm for each problem class to be encountered — it does not matter how well
the other algorithms perform, as long as one algorithm performs well.
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Figure 7.11: Portfolio size matters: a single-element portfolio would contain simulator 2,
whereas a two-element portfolio may contain simulators 1 and 3 instead.

Similarly, the portfolio vector �α ∈ [0,1]k (|A| = k, see sec. 2.5.1, p. 60) that
denotes the investments per asset is not always meaningful. This way of defining
a portfolio is, for example, rather pointless in case of adaptive replication. Most
multi-armed bandit policies do not consider any weights, e.g., the UCB policies
try out every single arm at first. As a policy shall identify the most suitable option
on its own, portfolio selection just has to decide which arms to choose from —
which algorithm belongs to the portfolio and which does not. In other words, the
search space for the optimization is reduced to {0, 1

s }k, where s is the again the
portfolio size, i.e., s(�α) = |{αi|αi �= 0}|. Instead of dealing with an uncountable
set [0,1]k, the search space now only has 2k elements.

Other requirements may complicate the search for a good simulation algorithm
portfolio. For example, users may want to consider multiple criteria, e.g., algo-
rithms that are fast and do not require too much memory. As discussed in sec-



7.2 An Adaptive Simulation Runner 221

tion 2.5.4 (p. 70), this leads to further difficulties. Finally, portfolio selection
techniques should not require too much computational resources. As discussed
above, user criteria, objective function, and size constraints may all vary — hence
portfolio selection should be done on demand, e.g., right before the experiment
starts and the adaptation policies are applied. This places portfolio selection onto
the critical path, i.e., the longest sequence of computations that has to be executed
sequentially, no matter how many resources are available (see sec. 3.3.1, p. 108).
Portfolio selection is executed just before the replications can be computed in par-
allel, thus it should not take too much time.

Implementation Details

A new plug-in type for algorithm portfolio selection is defined for JAMES II, so
that different selection mechanisms can be exchanged and compared with each
other. Plug-ins implement the ����������	
�
���� interface, which supports
the general definition of portfolios (i.e., αi ∈ [0,1]) in order to be applicable in dif-
ferent scenarios. The problem description handed over to the portfolio selector is
represented by objects of type ��������������
�
���������. A description
contains the past performance data to be used, specifies minimum and maximum
portfolio size, and also the risk aversion factor λ (see sec. 2.5.1, p. 60). The prob-
lem description may contain data for more than one performance metric. Since
some performance metrics shall be maximized while others shall be minimized,
the description also contains flags to distinguish both cases for each metric. For
example, one may want to maximize the accuracy while minimizing the execution
time. Any portfolio selector is able to search for both maximizing and minimiz-
ing portfolios; a simple inversion of the performance data (multiplying the past
performances by −1) is carried out automatically.

Additional constraints like limiting the portfolio size make this problem hard to
solve (see sec. 2.5.1, p. 60). As a simple and general benchmark algorithm, a plug-
in that randomly searches the constrained portfolio space and uses equation 2.21
(p. 61) for optimization has been implemented. The development and evaluation
of techniques that are actually able to consider multiple metrics are subject to
future work. Since more advanced meta-heuristics like genetic algorithms have
been successfully applied to constrained portfolio selection in finance [234, 331],
a similar portfolio selection mechanism is implemented for the adaptive simulation
runner.
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A Genetic Algorithm to Select Simulation Algorithm Portfolios

Genetic algorithms (GAs) — already briefly discussed in section 2.4.2 (p. 53) —
are usually straightforward to implement. They basically require to define:

• An encoding for all potential solutions, e.g., as a tuple of some type like
�������. GAs regard solutions as individuals; the encoding represents their
genome.

• A fitness function φ(�α) to assess a potential solution. This function can be
regarded as an objective function (see sec. 2.1.3, p. 30).

Additionally, some termination conditions can be given, e.g., the maximum
amount of wall-clock time the execution may take. The algorithm as such is quite
simple: at first, an initial generation g0 is created, e.g., by randomly drawing po-
tential solutions. Then, the fitness of all individuals in g0 is assessed by the fitness
function φ . An individual’s relative fitness (compared to the fitness of other indi-
viduals) determines the probability with which it will be selected for reproduction.
The genomes of reproducing individuals are combined to create offspring, thereby
imitating genetic processes. The offspring forms a new generation, g1, of the same
size as g0. The fitness of the individuals in the new generation can now be as-
sessed by φ , which again leads to subsequent selection and reproduction, resulting
in generation g2, and so on.

Encoding and Genetic Operations The reproduction mechanism of the imple-
mented GA combines the genomes of two individuals to produce two new indi-
viduals as offspring. This is done by recombining the parent genomes and apply-
ing a mutation operation afterwards. Since portfolio selection is so far focused
on enhancing the adaptive simulation runner, the encoding does not include any
weights. A portfolio of algorithms can therefore be represented as an array of
booleans. However, this may hamper the scalability with respect to k = |A|, be-
cause for large sets of algorithms and small portfolio sizes these arrays are sparse
and large. Portfolios are thus encoded as lists of fixed length instead, where the
length corresponds to the maximal portfolio size. Each field contains the index
of an algorithm that belongs to the portfolio, i.e., all algorithms are enumerated
with 1, . . . ,k. The numbering is arbitrary but fixed during the portfolio selection
process. If the portfolio size is less than maximal, the last ’slots’ in the list remain
empty.

The recombination procedure selects a random point at which two lists contain-
ing algorithm indices are split and recombined, i.e., the tail of one is added to the
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Figure 7.13: GA-based portfolio selection and
adaptive replication.

head of the other. This approach is sketched in figure 7.12 (p. 223). Algorithms
contained in both portfolios have to be left out in this operation, to avoid dupli-
cates (e.g., algorithm 4 in fig. 7.12). Otherwise, the results of a recombination
may violate the constraints regarding minimal portfolio size: a portfolio is a set
of algorithms, so if its genome contains duplicate algorithm indices, the actual
portfolio size is smaller than the list size.

Mutation is important to explore formerly unknown solutions, e.g., to include
algorithms that have not been included in a portfolio before. It randomly selects an
algorithm from the portfolio and replaces it with another one that has not been in-
cluded yet (see fig. 7.12). The overall functioning of GA-based portfolio selection
for adaptive replication is sketched in figure 7.13 (p. 223).

Fitness Function The fitness function used by the GA can be exchanged arbi-
trarily, to account for the different application domains of simulation algorithm
portfolios. Currently, it is tailored to adaptive replication: the fitness φ(�α) of a
portfolio �α sums over all considered simulation problems from the problem space
P (def. 2.1.1, p. 21), P1, . . . ,Pn ∈ P, each time focusing on the best-performing
algorithm of the portfolio.



224 7 Experimentation Methodology

This notion of portfolio quality assumes that the adaptive simulation runner is
able to find the best algorithm of the portfolio during replication. However, a con-
vergence in time — i.e., within the number of desired replications — can usually
not be guaranteed6 and might be prolonged or prevented by too many options or a
lock-in (see sec. 2.3.2, p. 46). The user’s risk preference λ (see sec. 2.5.1, p. 60)
is therefore used to define the trade-off between the expected performance in case
of a successful convergence (left-hand side, risky) and the best average portfolio
performance ( p̄(�α), secure):

φ(�α) = λ ∑n
i=1 min{pi, j|α j �= 0}

n
+(1−λ ) p̄(�α) (7.6)

where

p̄(�α) =
∑n

i=1 ∑α j �=0 pi, j

n · s (7.7)

and pi, j ∈ R+ is the performance observed for algorithm a j on problem Pi. The
pi, j are currently not normalized to the hardness of the given problem, e.g., via
p′i, j =

pi, j
mink(pi,k)

, so that the selection is biased towards problems that require more
wall-clock time for their solution. The expression for p̄(�α) averages the perfor-
mances of all algorithms in the portfolio. It represents the expected performance
of randomly selecting algorithms from the portfolio, instead of converging to the
best one. Optimizing it can be regarded as a risk-averse, since its performance is
relatively independent from the performance of the replication policy.

Current Limitations While the current implementation of the GA-based port-
folio selector yields promising results (see ch. 9, p. 273), there are several limita-
tions that should be addressed in future work. First of all, only single performance
metrics are considered so far, although equations 7.6 and 7.7 are straightforward
to generalize towards multiple metrics. Additionally, the GA is currently imple-
mented as a purely sequential algorithm. Current portfolio selection problems in
JAMES II are small enough to be solved in little time (less than 1 s on a desk-
top computer). However, larger portfolio selection problems — i.e., problems with
more algorithms to choose from or larger amounts of performance data to con-
sider — may motivate the implementation of parallel variants. The issues with
problem size also hint at another, more serious problem: as already outlined in
figure 7.10 (p. 218), portfolio selection requires performance data. The amount of

6While zero-regret policies do guarantee to eventually converge to the optimum, it is uncertain how
many rounds this takes.
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data required for a good selection can be considerable, as it grows with the number
of available algorithms. The data is also challenging and time-consuming to obtain
(see ch. 3, p. 93). While it is an interesting direction of future work to investigate
how much performance data is really necessary to obtain portfolios of a certain
quality, one may also improve the situation by speeding up and automating the
performance evaluation of simulation algorithms as such. Developers and perfor-
mance analysts would also profit from such a mechanism, which is introduced in
the next section.

7.3 Automated Runtime Performance Exploration

Both performance data mining (ch. 6, p. 177) and portfolio selection (sec. 7.2.2,
p. 218) require large amounts of performance data. This data should be collected
automatically — otherwise, the considerable effort of conducting experiments will
hinder the application of algorithm selection methods in practice.

An experiment to collect performance data can be regarded as searching through
the performance space of simulation algorithm(s): the unknown performance func-
tion p : A× P → Rn (see def. 2.1.1, p. 21) needs to be evaluated for some al-
gorithms and some problems, in order to infer more general findings (e.g., with
the help of machine learning). This requires to carefully select which algorithms
A⊆A to apply to which problems P⊆ P. Vuduc et al. recognize this “[...] process
of searching itself as an interesting and challenging problem” [318, p. 125].

Both the set of algorithms, A, and the set of simulation problems, P, may be
quite large. However, in contrast to empirical tuning (see sec. 2.7, p. 83), where
the algorithm space might be too large to handle [319], the number of simula-
tion algorithms is typically much smaller than P. Consequently, most methods
described here focus on the selection of suitable elements from P and regard the
set of algorithms as given. Section 7.3.1 discusses the role of benchmark models
in this context. It turns out that a careful construction and configuration of such
models is a prerequisite for any meaningful performance analysis. Section 7.3.2
builds up on these findings and introduces a mechanism to automatically calibrate
the simulation end time.

This enables the implementation of several components that interact with each
other to automatically explore the performance space of simulation algorithms.
This simulation (performance) space P×A×Rn is characterized by the perfor-
mance function p : A×P → Rn, defined for the ASP (cf. fig. 2.1, p. 21). The
exploration system is described in section 7.3.3; a sample application to support
simulator development is outlined in section 7.3.4.
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7.3.1 Benchmark Modeling

The importance of selecting suitable problem instances for algorithm performance
analysis and comparison is well-established [101, 325]. Yet, there are still many
pitfalls to benchmarking [163], also in the field of modeling and simulation. After
discussing some related work, e.g., regarding benchmarks considered in other al-
gorithm selection studies, this section argues for the use of dedicated benchmark
models to solve the ASP. It concludes with outlining the most important properties
any benchmark model should have and discusses two sample benchmark models,
one for SSAs and one for parallel and distributed discrete-event simulation.

Related Work

Well-established models to benchmark simulation algorithm performance are
rather rare. While there have been approaches to introduce general bench-
marks — e.g., for specific modeling formalisms [110], specific simulation algo-
rithms [12, 89], or specific application domains [31] — only few of them have
been widely adopted (a notable exception is the PHOLD model, see p. 232).

As using common input instances is a prerequisite for reproducibility (see
sec. 3.1.2, p. 96), the lack of established benchmark models complicates the
execution of sound performance studies. A lack of reproducibility also pre-
vents others to uncover software bugs or faulty setups — which may easily
arise [115, 226, 294] — so that the scientific significance of obtained results is
diminished. Other computer science communities resolved these problems by es-
tablishing a common representation of problem instances and curating databases of
sample problems, e.g., the UCI machine learning repository [9] or SATLIB [143].
The latter includes particularly hard problem instances that were chosen by con-
sidering a phase transition (see sec. 2.7, p. 86).

Besides realistic and synthetic (i.e., artificial) benchmarks, the perfor-
mance evaluation community mainly distinguishes between macro- and micro-
benchmarks. Micro-benchmarks are small and relatively simple programs to ana-
lyze a particular aspect of the system under study [290]. They usually are synthetic,
i.e., specified for the purposes of the performance analysis. Macro-benchmarks,
in contrast, subsume real-world applications or application kernels (i.e., the most
characteristic parts of applications), but also recorded application execution traces
and synthetic benchmarks of a certain size [4, 290]. Synthetic macro-benchmarks
are constructed to mimic relevant aspects of real-world applications, i.e., they shall
“[...] strike a balance between reproducibility and relevance” [290, p. 6]. They
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can be derived from micro-benchmarks [4] and are useful for exploring realistic
scenarios by changing parameters [289].

This broad categorization of benchmark types can be roughly translated to
simulator performance evaluation: real-world models can be regarded as macro-
benchmarks (i.e., applications), whereas simple benchmark models — e.g., devel-
oped to determine the cost of a certain operation — can be regarded as micro-
benchmarks. The latter are useful to study the performance impact of certain
phenomena, e.g., roll-backs in an optimistically synchronized parallel discrete-
event simulation (see sec. 1.3.2, p. 9). Other kinds of benchmark input — such
as traces — are seldom used in evaluating simulators, even though traces of paral-
lel and distributed discrete-event simulation can also be analyzed (see trace-based
analysis, discussed in sec. 3.3.2, p. 112). While traces of distributed simulations
may become quite large, there are additional techniques to extract their most im-
portant properties via sampling and data analysis [26]. Even the construction
of benchmarks can be automated to some extent, e.g., by dedicated tools like
CODEMRI [4] (for measuring file system performance).

There are entire journals (e.g., [252]) devoted to performance evaluation — yet
there seems to be no particular benchmarking methodology for simulation al-
gorithms, i.e., no specific methodology to construct suitable benchmark models.
General advice, on the other hand, is abundant: Small et al. propose to limit the
impact of random elements, to focus benchmark construction on the aspects of
interest, and to make the benchmark representative of many problem classes by
introducing additional parameters [290]. The last suggestion is also maintained
by Hooker, who states: “Rather than agonize over whether a problem set is rep-
resentative of practice, one picks problems that vary along one or more parame-
ters” [142, p. 202].

However, there is some — justified — skepticism when it comes to performance
evaluation with synthetic benchmark problems, e.g., regarding their representa-
tiveness [78, p. 298]. Similarly, Weihe argues in [325] that the benefits from using
randomly generated problem instances are often unclear.

These issues give rise to the question of whether it is beneficial to rely on syn-
thetic problem instances at all — why not restrict analysis to real-world problems?

Advantages of Synthetic Benchmark Models

Relying on synthetic benchmarks with some random elements is often the only
way to carry out a thorough performance evaluation. This is particularly true for
simulation algorithms that process models of a new formalism, i.e., when there are
only few sample models available.
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Furthermore, the usage of real models brings some problems in its own. While
such models are clearly representative of the problem domain now, this does not
mean that the simulation algorithm under scrutiny will also have to cope with the
same kind of model in the future. Future models might be, for example, consider-
ably larger. This is one reason why performance analyses of simulation algorithms
often consider their scalability; a property which is of particular interest in parallel
and distributed simulation, since it is often motivated by the simulation of ever
more complex models. Conducting a scalability study with real models would re-
quire several models with similar properties but different size. These may not be
easy to find — and similar problems in finding suitable models may occur for all
other kinds of performance experiments as well.

Another problem of using real models for performance evaluation is their com-
plexity. Such models can hardly be described in the publication that presents the
performance results, nor can they be easily recreated by others for reproducing the
experiments. In contrast, synthetic benchmark models that are defined carefully
exhibit the following desirable properties:

• Parameterizability: Many real-world models have parameters to adjust
them to the scenarios of interest. These parameters usually affect a model’s
behavior and therefore also the performance of the simulation algorithm —
but only indirectly. In contrast, the parameters of synthetic benchmark mod-
els should be specifically designed to explore all performance-relevant be-
haviors that models of the given type may exhibit. Although this often re-
sults in large parameter spaces, it allows to directly investigate the impact
of particular performance-relevant model properties on algorithm perfor-
mance. This simplifies data analysis and increases the expressiveness of
performance experiments. Well-chosen benchmark model parameters may
hence allow to identify the features of all models a simulation algorithm
works well on, e.g., for the later application of algorithm selection tech-
niques.

• Scalability: Real-world application models are often not scalable enough
for thorough performance studies — a problem that is closely related to the
issues with parameterization. This is of particular importance when study-
ing new algorithms for parallel and distributed simulation, as these may only
show advantageous performance for models that are large enough. More-
over, some interesting phenomena, e.g., the effects of caches [191], do not
occur when models are too small. Automated performance analysis could
address scalability studies in various ways, e.g., by providing simple means
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for setting up the experiments, or for statistically analyzing the growth of
the measurements under scrutiny.

• Simplicity and Comparability: Real-world application models tend to be
rather complex and intricate. In contrast, a synthetic benchmark model
should be as simple as possible. This reduces the error potential when im-
plementing or specifying the model for the setup at hand. A simple model
may also enable performance analysts to gain some theoretical insights into
its behavior. It facilitates debugging, simulator validation, and interpretation
of performance results. However, the major benefit of simplicity is compa-
rability (see fig. 3.1, p. 95), which also motivates the re-use of established
benchmark models. It allows to compare performance across different sim-
ulation systems, hardware platforms, and algorithms. To ensure that perfor-
mance results are indeed comparable, it is therefore best to keep benchmark
models simple.

• Quasi-Steady State: The above properties of benchmark models are rather
obvious and often followed implicitly — in fact, they are not specific to
modeling and simulation, but apply to experimental algorithmics in gen-
eral (e.g., [163]). However, there is another important property that is
simulation-specific and less obvious: in case execution time performance
is measured, a benchmark model should be in a quasi-steady state. This
means it shall exhibit a steady behavior regarding the computational load it
imposes on the simulator in a given simulation time interval.

Real-world models often have warm-up phases and therefore do not comply
to this property, so that simulation time does not grow linearly with wall-
clock time — there even might be different phases in model execution that
are advantageous for different simulators. The arising uncertainty about the
current state of the model, and hence the workload a simulation algorithm is
confronted with, may be a strong source of bias in experiments focused on
execution time. A real-world example of this effect is shown in figure 7.14.

The cause for this is sketched in figure 7.15: the time at which the sim-
ulation is stopped affects which algorithm is deemed to be the fastest. If,
for example, two discrete-event simulators are compared, one might work
best when encountering relatively few but complex events, e.g., until t1 is
reached. Afterwards, the load characteristics of the model change and at
time t2 the second algorithm might be faster. In such situations, execution
time comparisons are essentially futile. Since workload characteristics and
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their impact on simulator performance are of particular interest in many per-
formance studies, such changes in load should be made explicit.

Therefore, it is advantageous to construct models that remain in very simi-
lar states throughout the execution, a property that can often be achieved by
introducing additional parameters. While larger parameter spaces require
more efforts to explore, a model’s quasi-steady-state behavior also facil-
itates the usage of automatic mechanisms for simulation time calibration
(see sec. 7.3.2, p. 233), which in turn may speed up performance analysis.
Note that the state only needs to be relatively steady with respect to the
computational load characteristics, as depicted in figure 7.15.

Nevertheless, it should be noted that all performance studies, however interest-
ing their results may be, are worth nothing unless at least some of the benchmark
models are chosen so that they represent real-world problems. In other words,
the parameter space of the benchmark models has at least to include model size,
structure, and behavior that can also be found in comparable real-world models.
This is hard to achieve and usually involves application-specific surveys, as well
as conjectures regarding future model properties. Representativeness is crucial for
the interpretation of the results. Consequently, lack of representativeness is an
often-raised criticism of performance analyses [96, 163, 290]. Ideally, one would
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address this problem by additionally evaluating real-world models for the valida-
tion of the general findings.

Example Models

Two benchmark models — one for each exemplary problem domain, SSA and
PDES (see sec. 1.3, p. 6) — shall exemplify the realization of the aforementioned
properties.

CCS The cyclic chain system (CCS) model was developed for a JAMES II per-
formance study on the performance of SSA algorithms [158]. The main structure
is rather straightforward. All reactions are defined as:

Ri :
k

∑
j=0

S(i+ j) (mod N)+1
c→

2k+1

∑
j=k+1

S(i+ j) (mod N)+1, i ∈ [1,N],k ≤ N (7.8)

where N is the overall number of species S1, . . . ,SN , and k defines how many
species are involved in a reaction. The rate constant c is equal for all reactions
Ri. The system is cyclic (note the modulo operator in eq. 7.8) and there are as
many reactions as there are species.7 The overall number of particles in the sys-
tem always stays constant, because each reaction produces as many elements as
it consumes. A CCS model starting with all species having the same amount of
particles is always forced back into this equilibrium state — it hence exhibits the
quasi-steady-state property.

The model is also parameterizable with respect to the interdependency of re-
actions (k) and the model size (N). The degree of interdependence among reac-
tions is of interest because some algorithms follow the approach by Gibson and
Bruck [104] and exploit the independence of reactions: they first construct a de-
pendency graph and then restrict updates to dependent reactions, in order to speed
up the simulation. By controlling the parameter k, one may now study at which
point — i.e., which k — such a strategy becomes beneficial. Clearly, the construc-
tion of a dependency graph in case all reactions are interrelated (k ≥ �N/3�) does
not yield any performance gain, it just induces additional overhead. This example
shows how the construction of benchmark models may account for the optimiza-
tions carried out by the simulation algorithms to be evaluated. Since N and k

7In fact, there is yet another parameter that defines how many identical reactions Ri there are per
species (to investigate scalability w.r.t. reactions, see fig. 9.1, p. 280), but this does not interfere
with the properties of the model.
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(depending on N) can be chosen arbitrarily, the CCS model is clearly scalable. Its
homogeneous structure, specified by equation 7.8, also makes it fairly simple to
implement. The CCS thus fulfills all desirable benchmark model properties; it is
applied in the case study on SSAs presented in chapter 9.

PHOLD The PHOLD model [89] is an established synthetic benchmark model
for parallel and distributed discrete-event simulation. It is widely used to eval-
uate new PDES implementations (e.g., [17]). Its compliance with the four de-
sign principles (parameterizability, scalability, simplicity and comparability, and a
quasi-steady state) may explain its widespread use. It is derived from the HOLD
benchmark for event queues [164] and very simple to implement: a set of model
entities, i.e., logical processes (LPs, see sec. 1.3.2, p. 9), exchange time-stamped
events at random. The total number of events in the system is fixed. If a model
entity receives an event, it creates a new event with a future time stamp and sends
it to a randomly chosen neighbor. Since each event generates one new event and
message destinations are random, the communication pattern as well as the num-
ber of events to be managed stays roughly the same over time. PHOLD is therefore
in a quasi-steady state. It is also scalable in at least two dimensions: increasing
the number of events will increase the amount of model-inherent parallelism, so
that model parallelism can be set into direct relation to the performance of paral-
lel and distributed simulators. Increasing the number of model entities increases
the memory footprint of the model. PHOLD is parameterizable in many other as-
pects. For example, the topology of the model can be adjusted, i.e., which LP has
which neighbor LPs. The same goes for the probability distribution to create future
event time stamps, or the synthetic computational load each event imposes on the
simulator. PHOLD is applied in the case study on PDES presented in chapter 10.

Very much like realistic models, synthetic benchmark models have to be used
with some care. Before conducting any serious study, it has to be analyzed if the
parameters of the model actually allow to investigate the aspects of interest. For
example, PHOLD as such does not lend itself to studies on dynamic load balanc-
ing algorithms (see sec. 1.3.2, p. 11), caused by its quasi-steady state property:
the computational load of the model does not change over time, and there are no
preferential communication patterns that can be exploited by LP migration. It is
always the same number of events that is propagated through the same neighbor-
hood. Consequently, PHOLD needs to be adjusted when algorithms that rely on
exactly this kind of model dynamics — such as load balancers — shall be studied.
For example, a subset of nodes with additional behavior could be added, as done
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in [212]. Note that the benchmark model may still retain the quasi-steady state be-
havior for larger intervals of simulation time, e.g., by controlling model dynamism
with fixed parameters for frequency and amplitude of load changes.

7.3.2 Simulation End Time Calibration

After having constructed a suitable benchmark model (sec. 7.3.1), the next step to
enable automated experiments on runtime performance is to pick the right configu-
rations of the benchmark model, in terms of parameterization. While a systematic
automated exploration of a benchmark model’s parameter space (e.g., by using
meta-modeling, see sec. 3.2.2, p. 104) is still work in progress, experimentation
is even challenging when drawing random elements from a parameter space, or
evaluating parameterizations given by a performance analyst. This is because the
hardness of the benchmark model configuration, i.e., the computational load that
is required to solve it, varies strongly among model configurations. This makes it
necessary to control the interval of simulation time for which a benchmark model
shall be simulated.

Imagine a performance analyst who wants to compare two simulation algo-
rithms on a range of different problems, all represented by differently parame-
terized instances of a benchmark model. The analysts sets the simulation time
interval for which all setups shall be executed to a duration of 10 seconds (simu-
lation time, see fig. 3.2, p. 107). Now consider a benchmark model configuration
which is very small and simple to compute. The execution time of both algorithms
will be rather short, maybe in the region of milliseconds only (wall-clock time). If
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run times are that short, bias introduced by hardly controllable factors (operating
system or user operations, prior state of the hardware) is likely to have a consid-
erable impact, rendering most performance comparisons meaningless. A better
option would have been to increase the size of the simulation time interval, e.g., to
100 or 1000 seconds (simulation time).

On the other hand, the next benchmark model setup to be explored might be
very hard to simulate, i.e., both algorithms require much time to solve it — even
for just 10 seconds of simulation time. While long execution times are safer to use
for comparison, they also require large amounts of resources. Instead of observing
that algorithm A is twice as fast as algorithm B on the given problem by letting
them run 2 and 4 hours, respectively, the same information could perhaps also be
inferred by letting them run 2 and 4 minutes? In such cases, a better option would
be to decrease the size of the simulation time interval, e.g., to 1 or 0.1 seconds
(simulation time).

These examples illustrate that the simulation time interval for which a set of
benchmark model configurations shall be simulated needs to be adapted to each
individual model configuration, otherwise the performance analyst is likely to end
up with either meaningless results or a very time-consuming experiment (or both).
This is particularly true if no good prediction regarding the general hardness of a
benchmark model configuration is available.

An adaptive scheme may vary the size of the simulation time interval by keeping
the start of the interval fixed and selecting a suitable simulation end time, tend , for
each benchmark model configuration. Figure 7.16 (p. 233) shows the basic prob-
lem that simulation end time calibration aims to solve: given a set of simulation
algorithms, how to set the simulation end time tend in a manner that the average
execution time of the algorithms is approximately twct

opt ? The time twct
opt would be the

optimal wall-clock time a simulation algorithm requires to solve the simulation
problem, i.e., to simulate the given benchmark model configuration for the given
simulation time interval. It should be set to the least time for which the impact of
noise, e.g., by the operating system, is deemed negligible (see sec. 3.2.1, p. 101).
Since this depends on the execution environment, it should be decided by the per-
formance analyst. The analyst also has to decide upon the interval [tmin, tmax] in
which the simulation end time tend should lie. The lower border, tmin, needs to be
large enough to assume a quasi-steady state. For example, a PHOLD model ex-
tended by oscillating elements (e.g., to account for load heterogeneity, as discussed
in sec. 7.3.1, p. 232) should be configured with a tmin that ensures the execution of
several oscillations.

Another simple approach to limit algorithm execution time is to simply stop
it when it exceeds the maximum wall-clock time one is willing to invest. This
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technique can be combined easily with simulation end time calibration, and is also
used by others who aim at solving the ASP (e.g., [205, p. 38]). Gagliolo and
Schmidhuber link this method to the notion of censoring in demography [96, p.
302]: depending on the analysis, the fact that an algorithm is not able to finish in
time may also be considered as a performance result.

A Simple Calibration Algorithm

The simple calibration algorithm introduced in the following only considers a sam-
ple set of algorithms A ⊆ A for searching a suitable simulation end time. The
sample can be manually defined by the user, e.g., based on some general findings
on algorithm performance, or by using portfolio selection (see sec. 7.2.2, p. 218).
Otherwise, the user may specify the plug-in types which are deemed to have most
performance impact. For example, the choice of event queue may be more impor-
tant than the choice of a random number generator, performance-wise. A random
sample is then constructed by preferring algorithms comprising different plug-ins
of the predefined types.

Each algorithm is then applied once to the current benchmark model setup. If
the algorithms are sufficiently representative for A, averaging over their execution
times should result in a rather good estimate of the overall average execution time.
The sample size is yet another parameter a performance analyst may set. Some
pseudo-code that represents the core of the calibration algorithm is outlined in
listing 7.1 (p. 236).

The basic idea is that, since the benchmark model should have the quasi-steady
state property for all simulation times ≥ tmin, a linear extrapolation can be used
for searching a simulation end time with the desired characteristic (line 18). The
success of the search is checked in line 14, where the average execution time
of all algorithms in the sample is checked to be in an interval surrounding twct

opt .
The size of that interval can be controlled by another user-defined parameter θ
(∈ [0,1]). Finally, a user can also configure the maximal number of search steps,
so that an overly long calibration phase is avoided. To underestimate tend is much
less costly than to overestimate it, since execution is faster for smaller time inter-
vals. Therefore, the algorithm is initialized with tmin as the best simulation end
time found so far. Line 18 ensures that the simulation end time candidates are
always in [tmin, tmax]. If a simulator exhibits an execution time twct > twct

max for a
���������	
����	� > tmin, a watchdog procedure outside the main calibration
algorithm stops testing the suitability of ���������	
����	� and resets the al-
gorithm to try
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� �

1 p u b l i c vo id c a l i b r a t e ( double [ ] durat ionsWCT ) {
/ / Initialization [...]

3
/ / Calculate average WCT over all algorithms in the sample

5 runtimewct = avg ( durat ionsWCT ) ;

7 / / Check if current simulation end time is better then the best end time found so far
i f ( |bestAvgWCTime − twct

opt |> |runtimewct − twct
opt | ) {

9 bes tEndTime = cur ren tS imEndTime ;
bestAvgWCTime = runtimewct ;

11 }

13 / / Check if calibration is finished since achieved WCT is close enough to optimum
i f ( runtimewct ∈ [twct

opt · (1−θ), twct
opt · (1+θ)] )

15 done = t rue ;

17 / / Search by linear extrapolation;
/ / works because of quasi-steady state property of benchmark model

19 cur ren tS imEndTime =
max

(
min

(
currentSimEndTime · twct

opt /runtimewct , tmax
)
, tmin

)
;

}
� �

Listing 7.1: A simple algorithm for simulation end time calibration

max
(

tmin,
currentSimEndTime · twct

max

(1+θ) · twct

)

as a new candidate. Again relying on a simple linear interpolation, the new
simulation end time should result in a wall-clock execution time for this simulator
that is just below twct

max by the given tolerance θ (and not smaller than tmin). If tmin is
initialized correctly, i.e., not too small for the benchmark model configurations at
hand, so that their quasi-steady-state property holds, the algorithm ensures an end
time tend that allows a valid performance analysis (tend ≥ tmin), while the average
wall clock time performance of the algorithms should be close to twct

opt .

Enhancements The simple algorithm can be enhanced in many ways. For ex-
ample, it should be straightforward to integrate simple prediction methods, e.g.,
nearest neighbor (see sec. 2.3.1, p. 38), that generate ’good guesses’ for an initial
tend by considering the solutions for rather similar configurations of the bench-
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mark model. When discrete-event simulators are to be evaluated, one could also
alter the algorithm to calibrate the overall number of events to be simulated, in-
stead of the simulation end time. While this would be a more ’natural’ metric for
such algorithms, it does not work when approximative methods are included, such
as τ-leaping (see sec. 1.3.1, p. 7).

7.3.3 Automated Performance Exploration with JAMES II

This section introduces the basic components that, by relying on the adaptive simu-
lation runner (sec. 7.2) and the simulation end time calibration (sec. 7.3.2), enable
efficient automated performance experiments. Related attempts to automate the
collection of performance data to solve the algorithm selection problem are briefly
discussed in the next section (general methods to speed up such experiments have
already been discussed in ch. 3, p. 93). Then, different kinds of performance
studies are identified, and it is discussed how the presented components can be
combined to support such studies.

Related Work

In [317, 318], Vuduc et al. introduce a stopping criterion for searches within the
algorithm space A; a necessity in their case, since they consider empirical tuning
(see sec. 2.7, p. 83). The algorithms are generated, i.e., A is prohibitively large.
All performances are normalized to (0,1]. Their stopping rule aborts the search in
case Pr[pm ≤ 1− ε] < α , where pm denotes the maximal performance observed
so far and ε and α are user-defined parameters. In other words, their stopping rule
makes the search for a better implementation go on until the probability that the
currently best observed performance (pm) does not belong to the ε percent best
performances overall is less than α . Vuduc et al. advise to not check the stop-
ping criterion immediately after the search started — the data might be too much
distorted — and it was found to overestimate the quality of the taken samples, al-
though it still worked well in practice [319].

Vadhiyar et al. [311] make use of optimization methods that speed up their ex-
periment setups by a factor of 10 to 300 when compared to normal parameter
scanning (see sec. 3.2.2, p. 104).

Types of Experimentation Studies

Even if there is a suitable benchmark model that exhibits all properties described in
section 7.3.1 (p. 227), it is still unclear how to automate the actual experimentation.
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What issues arise in practice, when exploring the performance of an algorithm set
A? To better support performance analysts in these tasks — which are a prereq-
uisite for data-driven algorithm selection — three different kinds of performance
experiments have been identified. They mainly differ in their objectives, i.e., the
questions to be answered:

• Algorithm-centric (AC): Experiments that thoroughly explore the behavior
of a single algorithm, usually carried out by developers.
Main questions: Where are the bottlenecks of the algorithm? In which di-
mensions does it scale? How does it compare to alternative approaches?

• Trade-Off-centric (TC): Experiments that identify regions in a benchmark
model’s parameter space where the algorithm ranking regarding a perfor-
mance measure is changing, e.g., the execution speed of algorithms a1,a2 ∈
A. They are usually carried out by performance analysts.
Main question: For which parameters is algorithm a1 outperforming algo-
rithm a2?

• Exploration-centric (EC): Experiments that compare a set A ⊆ A of algo-
rithms. They are usually carried carried out by performance analysts and
deployers.
Main question: How do the available algorithms perform for certain bench-
mark model configurations?

Following the categorization of empirical research on algorithms from [163,
p. 216–217], algorithm-centric studies are typically conducted to support “horse
race papers”, i.e., publications of new algorithms. Such studies shall evaluate the
benefits of a new algorithm in comparison to others. In contrast, trade-off- and
exploration-centric studies are performed for “experimental analysis papers”, i.e.,
comparative analyses for larger sets of algorithms. The distinction between TC
and EC studies is their focus on either the specific trade-off points of algorithms,
which might suffice in some cases, or on a thorough algorithm performance explo-
ration, even in regions where changes in algorithm performance ranking are un-
likely. While EC studies are generally the most exhaustive ones and also contribute
to the validation of the involved algorithms, TC experiments might be executed
much faster by relying on extrapolation methods for finding ’interesting’ regions
of the overall simulation performance space P×A×Rn (see sec. 7.3, p. 225).
These regions are not only of particular importance for algorithm selection (as
they outline the approximation form to be learned) but could also be investigated
by subsequent EC experiments.
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A system that aims at automating the runtime performance analysis of simu-
lation algorithms should support all three kinds of studies. All of them can be
enhanced by sophisticated methods from statistics or experimental design (see
sec. 3.2, p. 101). Making the integration of such methods as easy as possible will
help performance analysts and developers in setting up effective and meaningful
experiments. Finally, the system should allow for a calibration of the simulation
end time as discussed in section 7.3.2 (p. 233), and should be able to exploit all
available resources.

Components for Automated Simulation Space Exploration

This section presents a simple yet flexible mechanism to automate simulator run-
time performance evaluation in the context of JAMES II. Its major components
are outlined in figure 7.17. The central entity is ���������	
����, an interface
that extends the typical interface of an experiment steerer (see sec. 7.1, p. 204).

The interface is implemented by the ���������������	
���� class,
which is based on the Strategy pattern [98, p. 315] and shall support all ex-
plorations of P and A. It handles the interplay between the (optional) calibra-
tion of the simulation end time by an implementation of ��������������

on one hand, and an algorithm to pick benchmark model configurations on
the other hand. ���������������	
���� distinguishes three phases:
�����������������, �����������, and 	����������:

1. The first phase is needed to initialize the calibrator and to select the bench-
mark model configuration of interest. The element is selected by an explo-
ration algorithm to be implemented by a sub-class, so the abstract method
����������� �!" is called.

2. In the ����������� phase, the simulation explorer queries the calibra-
tor and then propagates the potential simulation end time t ′end , as well
as the sample algorithm, to the experimentation layer of JAMES II
(sec. 7.1, p. 203). It continues to work as a proxy for the calibrator, until
��������������#����!" is true. Then, the best t ′end is retrieved from
the calibrator and the 	���������� phase begins. If no calibrator is set, the
default simulation end time will be used and this phase of the algorithm is
skipped.

3. In the last phase, the explorer selects the elements of A, i.e., the algorithms
to be tested on the current benchmark model configuration. This is done by
continuously calling the abstract method �
����!" until it returns � ��.
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Figure 7.17: The main components for simulation space exploration in JAMES II: the
simulation space explorer (blue), the calibrator (red), and the parameter block management
(green). Most are linked with fundamental JAMES II entities (grey). Plug-in types are
marked by bold dotted borders.

The abstract ��������	�
�� method is called to decide whether the explo-
ration has finished or the whole process starts over again.

Plug-in Types & Auxiliary Components Both calibration and exploration algo-
rithms, i.e., implementations of ����	��	������� and ��
��������	����,
are likely to incorporate methods from experiment design or additional heuristics.
They are hence defined as plug-in types. Again, the ��	������������� already
discussed in section 7.2.1 (p. 210) can be used to automatically construct the set
Ax of eligible selection trees. Alternatively, the runtime configurations to con-
sider can also be set manually. The model’s parameter space is defined by a set of
����������	� instances, another basic JAMES II class (see fig. 7.17). Finally,
the ��������������� implements the automatic generation of updates for key
simulation parameters within the (deeply nested) parameter blocks. It is required
for the automatic calibration of the simulation end time.

Integration of the Adaptive Simulation Runner It is possible to harness the
adaptive simulation runner (sec. 7.2, p. 208) for trade-off- and algorithm-centric
experiments. This may reduce the computational efforts when testing a single
benchmark model configuration. The better an algorithm performs, the more often
it is chosen for execution. This reduces the number of required replications. For
example, when investigating a set of 30 algorithms, instead of replicating the exe-
cution of each algorithm 20 times (30 ·20 = 600) in order to rule out any stochastic
effects of the hardware and so on (see sec. 3.2.1, p. 101), the adaptive simulation
runner could choose the most promising algorithms on its own and just executes,
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Figure 7.18: Different setups for automatic simulation space exploration. The adaptive sim-
ulation runner (ASR) and the calibrator are not always necessary. For example, exploration-
centric experiments should use another simulation runner (SR) instead of the adaptive one.

for example, 300 replications. The number of required replications would be cut
by 50% and there will still be more than 20 replications, i.e., more experimental
data, for all algorithms that perform relatively well — on the expense of the algo-
rithms that perform worse. This way of speeding up performance experiments is
further detailed in section 7.3.4 (p. 243).

Performance Database and Analysis The experimental data that is generated
by the performance exploration system needs to be stored for later analysis. This is
done by the performance recorder described in section 5.2 (p. 172). The recorded
data can then be analyzed with the SPDM (ch. 6, p. 177).

Configuring the Simulation Space Explorer for AC/TC/EC studies Fig-
ure 7.18 (p. 241) shows how to combine the components for the different kinds of
algorithm performance studies (see sec. 7.3.3, p. 237). When evaluating the per-
formance of a new algorithm (left schema), an algorithm-centric study can sim-
ply re-use suitable benchmark model configurations from the database (PerfDB,
fig. 7.18). By taking advantage of the adaptive simulation runner, the number of
required replications can be greatly reduced by letting it decide between the new
algorithm and the fastest known algorithm for this problem instance, identified
by the performance database. Having only two options will make a multi-armed
bandit policy converge quickly. This idea is further pursued in section 7.3.

If only the trade-off points between two algorithms shall be found (center
schema), the exploration algorithm should take algorithm performance directly
into account. This helps to find regions where tipping points are likely. Since
these regions are usually unknown before, the calibration mechanism should be
applied to new benchmark model configurations. Again, the adaptive simulation
runner can be used to reduce the number of required replications.
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A thorough exploration of all available algorithms (right schema) also includes
to explore the variance of each algorithm throughout the benchmark model pa-
rameter space. Therefore, using the adaptive simulation runner is not advisable
for this setup; it may execute badly performing algorithms less often per problem
instance, and hence might not be able to attain reliable estimates for their perfor-
mance variance. Similar to the setup for trade-off-centric studies, obtained results
are fed back to the exploration algorithm, so that it can decide upon new problem
instances to be investigated. Exploration algorithms for TC and EC studies could
be inspired by similar problems in experiment design (see sec. 3.2.2, p. 104).

7.3.4 Automatic Experimentation for Standard Tasks

A successful implementation of automatic algorithm selection can simplify many
issues in algorithm development. As Brewer points out, “[a]n important benefit
of automatic selection is the tremendous simplification of the implementations that
arose from the ability to ignore painful parts of the input range” [25, p. 90].

On the other hand, algorithm selection also complicates matters for simula-
tion developers, as already discussed for the different use cases of the SASF (see
sec. 4.1, p. 119). This is because it is not sufficient anymore to enhance a sin-
gle algorithm’s performance on a single problem: a range of problems has to be
considered, and it has to be checked if experimenters actually benefit from a code
change. Only peak performance is of interest, i.e., the performance of the best-
performing algorithm in A, whenever simulation algorithm selection is applied
successfully.

Hence, a successful algorithm selection mechanism changes the objectives of
algorithm development to some extent, as Leyton-Brown et al. notice: “Once we
have decided to solve the algorithm selection problem by selecting among existing
algorithms using a portfolio approach, it makes sense to reexamine the way we
design and evaluate algorithms. Since the purpose of designing a new algorithm
is to reduce the time that it will take to solve problems, designers should aim to
produce new algorithms that complement an existing portfolio rather than seeking
to make it obsolete” [205, p. 40].

Apart from a shift in the mindset of developers, this changing perspective on al-
gorithm performance also motivates new tools; tools that are specifically designed
to support the development of simulation algorithms for flexible and extensible
simulation systems like JAMES II. One important issue such tools should tackle
is the evaluation of simulation algorithms. As described above, testing the algo-
rithm in isolation does not suffice anymore — its performance has to be set into
relation to the other algorithms. Such evaluations help to focus on the impor-
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tant regions in the problem space, an advantage also mentioned by Pfahringer et
al. [257]. Leyton-Brown et al. ask a similar question: “[...] if we reject the no-
tion of winner-take-all algorithm evaluation, how ought novel algorithms to be
evaluated?” [205, p. 33]

The simulation space explorer presented in section 7.3.3 can be extended to
facilitate this task by automatically configuring and executing meaningful perfor-
mance experiments. The experimental results shall give developers a quick feed-
back on the impact of the code change they wish to explore. This may help to
avoid unnecessary or bad optimizations. As William Wulf puts it: “More comput-
ing sins are committed in the name of efficiency (without necessarily achieving it)
than for any other single reason — including blind stupidity” [335, p. 796].

Related Work

Similar support for automated experiments is required whenever a selection map-
ping needs to be adapted to the experimenter’s hardware. This has already been
implemented by several ASP solutions, e.g., an automated calibration to the hard-
ware is realized in [318, 338]. There are also several libraries that already make use
of such mechanisms and hence provide portable performance, e.g., the MPI [318].
Brewer [25] illustrates this requirement by comparing performance across differ-
ent platforms. He notices several differences due to the differing relations between
computational cost and communication overhead. In contrast, the following mech-
anism shall automatically check on the impact of code changes, not on hardware
changes.

Implementation

Realizing an evaluation mechanism for algorithm changes — an algorithmic
change evaluator (ACE) — just requires to recombine some of the mechanisms
introduced in this chapter. The adaptive simulation runner outlined in section 7.2
(p. 208), with its ability to learn at runtime which algorithm performs best, can
be easily exploited for speeding up algorithm comparisons. Here, the basic idea
is that it is much more interesting to know which algorithm is the best choice
for a given simulation problem, than it is to know which one is the worst choice.
Consequently, simulation replication for performance comparison should be bi-
ased towards faster algorithms, thereby accepting that the performance ranking of
algorithms that perform worse is not investigated as thoroughly. An example for
this kind of enhanced algorithm comparison is given in figure 7.19, where several
SSA variants have been compared on a CCS benchmark model configuration (see
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selection trees for certain problems in
the performance database. It relies
on the simulation space explorer (Sim-
SpEx) and the adaptive simulation run-
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sec. 7.3.1, p. 231). The execution is replicated 1500 times, i.e., with ≈ 50 repli-
cations per algorithm. This results in many replications for the faster algorithms
(> 150 for the fastest), and very few for slow algorithms (just one for the slowest).
In other words, we get more substantial data on the performance of interesting al-
gorithms in less time. The approach works best when the performance variance
due to stochastic effects (see sec. 3.2.1, p. 101) is relatively small in relation to the
overall performance.

However, it is important to notice that an efficient algorithm comparison de-
mands for replication policies that differ from those for a good algorithm selection
in two aspects: Firstly, a policy has now to ensure that each arm is played at least
once, which is not necessarily the case (e.g., when using policies like ε -GREEDY,
see sec. 7.2.1, p. 212). Secondly, overall regret is not the single figure of merit
anymore — instead of exploiting a single arm, it might now be advisable to throt-
tle the exploitation and also replicate the second-best or third-best algorithm more
often. The overall goal now includes to maximize the statistical efficiency, i.e., the
degree of certainty with which the performance ranking of the best x algorithms
can be established. In future, such comparisons could be enhanced even further
by including policies that also contain stopping rules, so that the algorithm com-
parison stops if a predefined degree of certainty is reached for the performance
ranking.
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The algorithmic change evaluator builds upon the versioning feature for run-
time configurations, as implemented by the performance database (see sec. 5.1.1,
p. 159). The workings of the mechanism are illustrated in figure 7.20 (p. 244).
Whenever a developer makes a significant change to the code base, the affected
algorithm can be submitted to the ACE as a new version. The ACE queries the per-
formance database to find all benchmark model configurations whose model URI
matches a given string (e.g., to restrict analysis to certain formalisms or even a sin-
gle model). For each found problem, the ACE generates and executes a JAMES
II experiment that compares the performance of several configurations by using
the adaptive simulation runner. Which configurations to compare is up to the de-
veloper. Per default, all configurations that rely on the modified algorithm (e.g., an
event queue) are reevaluated, together with the best-performing configuration that
does not rely on this algorithm. This allows to assess the overall impact of the code
change on peak performance, without wasting too much time on experimentation.

7.4 Summary

After outlining the experimentation layer of JAMES II (sec. 7.1, p. 203), this
chapter introduced two important components: an adaptive simulation runner
(sec. 7.2, p. 208) that allows to identify good selection mappings at runtime, and
the simulation space explorer, a component that combines the adaptive simulation
runner with simulation end time calibration (sec. 7.3.2, p. 233), in order to speed
up and automate the experiments to collect performance data. The applicability of
the adaptive simulation runner can be enhanced by restricting its choice to simu-
lation algorithm portfolios (sec. 7.2.2, p. 218). Finally, a simple component to set
up automatic performance experiments that support simulation algorithm develop-
ment was described (sec. 7.3.4, p. 242).

Most of the components introduced in this chapter have already been used for
performance studies; they will be evaluated in the case studies (ch. 9 and ch. 10).
Their usage will hopefully support efforts on high-quality simulation algorithms,
which — in case of stochastic simulation — will have an immediate effect on over-
all system performance when using the adaptive simulation runner [67].

This chapter presented many new methods — however, they should be consid-
ered the tip of the iceberg. While the application of multi-armed bandit policies
for simulation replication is quite straightforward, the interrelation of portfolio
construction techniques, their parameters (e.g., regarding portfolio size), and the
performance of multi-armed bandit policies motivates additional investigations (as
becomes apparent in the results of ch. 9, p. 273). Similarly, the simulation explo-
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ration mechanisms currently either solve problems that would otherwise prohibit
any automated large-scale performance experiments, e.g., by simulation end time
calibration, or they are still quite preliminary, e.g., the algorithmic change evalua-
tor would greatly benefit from a dedicated user interface or the integration into an
integrated development environment. This would make it much more accessible to
developers — so far it is just a prototype. Furthermore, many more techniques dis-
cussed in chapter 3 (p. 93) could be included, e.g., from the field of meta-modeling.
All this should be regarded as future work.

A crucial element to close the feedback loop is still missing. Semi-automated
large-scale performance experiments can be conducted, their results can be stored
(ch. 5, p. 153) and used to generate selection mappings (sec. 10, p. 303) — but
these results also need to be deployed to the simulation system, so that it can
actually perform an automatic selection of simulation algorithms. A prototypical
extension of the JAMES II registry that allows to do so is presented in the next
chapter, which also includes a basic evaluation of the overall effectiveness of the
framework (see fig. 4.6, p. 148).
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Selection in JAMES II

On two occasions I have been asked,—“Pray, Mr. Babbage, if you
put into the machine wrong figures, will the right answers come
out?” ... I am not able rightly to apprehend the kind of confusion
of ideas that could provoke such a question.

Charles Babbage, Passages from the Life of a Philosopher, 1864

This final chapter of the thesis’ methodological part covers concrete steps to-
wards automated simulation algorithm selection. The chapter describes a proto-
typical extension of the JAMES II registry, so that automated algorithm selection
is supported in a way that does not affect the existing code base. It describes
the management and exploitation of the performance data analyses, as depicted in
figure 8.1.

Figure 8.1: SASF overview (see fig. 4.6, p. 148), red borders denote elements discussed in
this chapter.

Apart from the adaptive simulation runner presented in section 7.2 (p. 208),
which is part of the experimentation layer of JAMES II (see sec. 7.1, p. 203), it
is not yet clear how automated algorithm selection can be integrated into JAMES
II. The main process to be supported has already been motivated (sec. 4.1, p. 119)
and outlined (sec. 4.4.2, p. 146): data collected from performance experiments
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(sec. 7.3, p. 225) are stored (ch. 5, p. 153) and subsequently analyzed by the
SPDM, which generates selectors to solve the ASP (see ch. 6, p. 177).

The first part of this chapter describes how these selectors can be deployed to
JAMES II. It introduces a prototypical extension of the JAMES II registry (see
sec. 4.2.1, p. 127), which accommodates selectors and uses them if necessary. The
second part of this chapter evaluates the overall effectiveness of the simulation
algorithm selection framework (SASF) in generating and using selectors of ac-
ceptable quality. This is done via a fully implemented synthetic setup — i.e., by
dedicated plug-ins for a model formalism and simulation algorithms — which al-
lows to assess the potential performance benefits of using the SASF. More realistic
examples are studied in the last part of the thesis (ch. 9 and ch. 10).

8.1 An Algorithm Selection Registry for JAMES II

As already described in section 4.2.1 (p. 122), the JAMES II registry is respon-
sible for selecting the most appropriate plug-in for a given task at runtime. Ap-
plication code simply calls the registry’s ���������	
���� method. Given an
abstract factory class and parameters that specify the actual task, it returns a fac-
tory to create a suitable component that complies to the requirements implied by
the parameters (see p. 127).

This design allows the extension of JAMES II for automated algorithm selec-
tion in a rather straightforward manner: the registry can be replaced by a subclass
that overrides ���������	
���� to integrate automated algorithm selection. As
the method is already in broad use to request a suitable plug-in from the JAMES
II registry, this is the least-intrusive way of integrating a more sophisticated algo-
rithm selection mechanism — no further program code needs to be changed.

The problems that arise when applying algorithm selection recursively without
context — as discussed in section 4.2.3 (p. 132) — are circumvented by not intro-
ducing the algorithm selection mechanisms as filter criteria (as originally planned,
see [70]) but rather complementing the existing filtering mechanisms with sugges-
tions from algorithm selectors. Filter criteria operate on a single kind of plug-in,
e.g., event queues, whereas the selectors described in chapter 6 (p. 177) select the
whole runtime configuration that is predicted to perform best. Furthermore, fil-
ter criteria are always applied, whereas selectors are typically confined to certain
sub-spaces of the problem space P, e.g., to certain modeling formalisms. This
makes it necessary to first pick a suitable selector, which then selects the whole
runtime configuration — a procedure that may allow the addition of meta-learning
approaches in the future (see fig. 2.15, p. 90).
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In case this new, more complex behavior of the registry is not desired, it can
be switched off easily by setting a corresponding flag. If this is done, calls to
���������	
���� merely return the original registry’s choice — no automatic
selection based on problem features takes place. Figure 8.2 summarizes the basic
scheme of extending JAMES II towards automatic algorithm selection.

+getFactory(ein ...)
Registry

SimSystem ...

+getFactory(ein ...)
AlgoSelectionRegistry

...

SimSystem.getRegistry()
.getFactory(...)

Get singleton

if(!active)
return super.getFactory(...)

...

Call original method

Figure 8.2: Integration of the ����������	�
���	��� into JAMES II. Application code
stills retrieves the registry singleton from �	������� and thus remains unchanged. If the
registry is an instance of ����������	�
���	���, it can still be used as if it was the
original JAMES II registry, by setting the ���	�� flag to �����.

Although the new registry class — �������������������	 — only needs to
override one method of its super class, the deployment of SPDM selectors re-
quires additional mechanisms. Selectors are intended to be generated by the
SPDM before processing time (see sec. 2.6.1, p. 76) — usually even before run
time, as not all users will have large enough performance databases at their dis-
posal. Hence, the selectors need to be stored somewhere, and they need to be
associated with the plug-in type they apply to (e.g., simulation algorithms). To
dynamically associate additional meta-data with plug-ins and plug-in types is
not supported by the JAMES II registry, it therefore has to be provided by the
�������������������	. Section 8.1.1 describes a mechanism that implements
this, and also introduces the notion of a plug-in life cycle. Then, section 8.1.2 de-
scribes how the meta-data can be used to automate algorithm selection with respect
to another fundamental requirement, namely the robustness of a system in terms
of failure handling (see sec. 5.1.1, p. 164, and sec. 2.4.3, p. 55). This is possible
by considering the faulty runtime configurations that have been quarantined by the
adaptive simulation runner (see sec. 7.2, p. 208). Finally, section 8.1.3 details the
deployment of SPDM selectors to the �������������������	, and how they
are used.
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Figure 8.3: The plug-in life cycle considered by the ����������	�
���	���, de-
picted as a UML state chart (e.g., [86, p. 121 et sqq.]). It is implemented in the class
�����
�
������. The colored transition guards of each kind all go to the same state:
all fixed plug-ins are regarded as �
������ (underlined, italics), all plug-ins that fail
are regarded as ����
 (bold), and all withdrawn plug-ins are regarded as being �
��

���������
� (gray).

8.1.1 The Plug-in Life Cycle and the Plug-in Data Storage

Before discussing how the meta-data is stored, it has to be clear what kind of data
needs to be stored. Besides SPDM selectors, this is currently the status of a plug-
in. The plug-in status is a phase in the plug-in life cycle. Such a (prototypical)
life cycle for JAMES II plug-ins is depicted as a UML state chart in figure 8.3
(p. 250).

According to the proposed life cycle, all plug-ins start out as being under devel-
opment (see initial state in fig. 8.3). If its developer regards it as finished, it may
be submitted, i.e., released for general usage. Then, some standard tests — e.g.,
unit tests — are carried out. If the new plug-in passes these tests, it is regarded as
tested and can now be applied to real-world problems. After being in use for some
time without failures or problems, a plug-in might eventually be considered sta-
ble. Only tested or stable plug-ins (demarcated by bold borders in fig. 8.3) should
be used by experimenters for productive simulation studies, i.e., studies where the
specific simulation outcome matters.

Performance analysts may also want to use untested plug-ins; developers
even need to execute plug-ins that are broken or under development (e.g., for
debugging). Hence, the ����������	�
���	��� can be configured with
a role-dependent failure tolerance of a user. The tolerance may be set to
����������, ���������������, �������������, or �������������. The
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given order of tolerance levels refers to their strictness: if the tolerance level is
set to �������������, this also includes stable plug-ins, but not untested ones.

The state of a plug-in is associated with its concrete factory, which is already
managed by the JAMES II registry. SPDM selectors, on the other hand, should
be associated with plug-in types, as they shall serve as tie-breakers in case more
than one plug-in is eligible (see sec. 4.2.1, p. 128). Two additional classes are in-
troduced, 	
������������
�
 and �����
��	
������������
�
, to store
these data for factories and abstract factories, respectively. 	
������������
�

contains the current state of a plug-in (see fig. 8.3), as well as a variable to
count how often the given plug-in was used successfully, i.e., without a fail-
ure. This additional information may help to decide at which point a plug-in
can be regarded as stable. The counter is reset in case the plug-in is reported
broken. So far, the decision to regard a plug-in as stable has to be made manu-
ally. �����
��	
������������
�
 merely contains a ����������������,
a class that is detailed in section 8.1.3.

A new interface, �	
������������
�
���
��, is defined for compo-
nents that manage the registry’s meta-data. It allows to associate instances
of 	
������������
�
 and �����
��	
������������
�
 with factories.
While this would be a typical situation to introduce a new plug-in type for the
storage of registry meta-data, the ������������������� is just a prototype —
only a simple file-based implementation of �	
������������
�
���
�� cur-
rently exists. Alternative storage schemes, e.g., for synchronizing with a central
repository to get meta-data updates from other users, can still be implemented eas-
ily (and should then be included as plug-ins of a new plug-in type). Furthermore,
the meta-data storage may be enhanced so that plug-ins can store custom data as
well, such as usage statistics or configuration details.

8.1.2 Automated Failure Detection

If a runtime configuration of JAMES II fails, it is often hard to tell which compo-
nent caused the problem. Imagine a runtime configuration that contains a simula-
tion algorithm and an event queue as subordinate component: if the configuration
crashes, which of the components caused it? Did the event queue mix up events,
or did the simulator access the queue in a wrong manner? While the adaptive
simulation runner is able to detect such problems (given they lead to a Java excep-
tion), it only quarantines the runtime configuration in question until the simulation
problem has been solved, i.e., its multi-armed bandit policy finished replicating.
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This crucial information on algorithm performance should not be wasted:1 if
JAMES II is configured to use the ����������	�
���	���, the adaptive sim-
ulation runner calls an additional method, ������	��������, which passes
an instance of the class ��	�������	��	�
 to the registry. In case au-
tomatic failure detection is enabled, the registry propagates this report to the
��	����������, which returns a ��	��������.

The ��	�������	��	�
 contains the exception that describes the failure, a
description of the simulation problem, and the set of factories that were involved
in the simulation. The ��	��������, returned by the ��	���������� after
it has processed a ��	�������	��	�
, is either empty2 or points to the fac-
tory representing the plug-in that has been detected broken. If a plug-in has been
detected broken, the ����������	�
������ will change its life cycle status to
����
 (see fig. 8.3, p. 250). The plug-in will not be selected again for any simu-
lation task, unless the user’s fault tolerance is set to ����������. The descriptions
of all failures caused by the broken plug-in is also included in the ��	��������.
Such kind of ’evidence’ may come in handy for debugging the faulty component.

A component like ��	���������� is nothing unusual in adaptive software
systems; e.g., Karsai et al. propose a rather similar component named ’fault diag-
nostics system’ [176, p. 34–35]. The difficulty of detecting failures in JAMES II
plug-ins is that of limited data: given a combination of components that failed —
i.e., a selection tree (see def. 5.1.1, p. 159) — it is not clear which of the in-
volved plug-ins is actually broken. Declaring them all broken, just to be be on
the safe side, is no option here: if there is one plug-in that cannot be replaced by
an alternative plug-in, the simulation problem cannot be processed anymore —
even though the irreplaceable plug-in is fine and the error is somewhere else.
It is hence necessary to carefully interpret the failure descriptions issued to the
����������	�
���	���, and to only declare a plug-in broken after some more
evidence suggests it. A simple algorithm to do so is presented in the following.

Identifying Single-Factory Failures

The failure detection algorithm is focused on detecting single plug-ins that fail. If
a ��	�������	��	�
 arrives, each involved plug-in will be added to the list
of suspects, if it is not already contained in this list. Along with each suspect, the
failure detector stores a list of that suspect’s ’co-defendants’, i.e., plug-ins that so

1This could be regarded as a first step toward a more robust software system, as discussed in the
context of autonomous computing (sec. 2.4.3, p. 55).

2This may happen in case results are inconclusive, as in the above example with event queue and
simulator.
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far have always been involved in failures that also involved the suspect plug-in. If
a plug-in is contained in a ���������	
������, its list of co-defendants will be
checked: if a co-defendant is not involved in the current failure, it will be removed
from the list.

The rationale behind this rule is Occam’s razor [333, p. 151]: if the co-defendant
plug-in has been involved in some failures, but not in others, while the suspect
plug-in was involved in all of these failures, the simpler hypothesis would suggest
that the suspect — and not the co-defendant — is broken. Hence, the co-defendant
is removed from the co-defendant list of the suspect plug-in. If a suspect plug-
in has no co-defendants left, this means that there is a set of failures with only
a single commonality: the presence of the suspect plug-in. In this case, the
������������ generated by the �����������
�� points to the given plug-
in and contains the description of all failures that led to its conviction, i.e., the
evidence with which it was detected to be broken.3 Finally, all suspect plug-ins
that contain the convicted plug-in in their list of co-defendants are rehabilitated,
i.e., they are removed from the list of current suspects. The basic idea is illustrated
in figure 8.4.

This approach is able to detect a plug-in that causes failures when it is combined
with at least two different components for each plug-in type; it is not able to do
so for combinations of algorithms. For example, if event queue E and simulator S
always fail when combined — but not in combination with other event queues or
simulators — this will go undetected. The algorithm may operate in either strict
or non-strict mode: in non-strict mode, a plug-in gets rehabilitated if it has once
been applied successfully. In strict mode, suspect plug-ins remain suspects. An
additional parameter allows to control how many failures a plug-in has to be in-
volved in before it can be convicted of being broken. Note that a conviction is
not necessarily true; just the evidence in form of failure descriptions suggests that
this might be the case. This kind of basic failure detection should merely prevent
frequent crashes, and suggests where the error could be located.

8.1.3 Integration of Selection Mappings

Several steps are necessary to fully integrate the products of the simulation algo-
rithm selection framework with the rest of JAMES II. Firstly, developers need to
exert some control over the way automatic algorithm selection is carried out by
the �������
�������	���. This is implemented by introducing some ded-
icated Java annotations. Secondly, the �������
�������	��� has to man-

3Failure detection stops analyzing the current failure description in case of a conviction, so no explicit
tie-breaking is necessary.
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A={B,C}
B={A,C}
C={A,B}
D={B,C}

A={B,C}
B={C}
C={B}
D={B,C}
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Y={X,Z}
Z={X,Y}

A={B,C}
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C={B}={}
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Y={X,Z}
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!

X={Y,Z}
Y={X,Z}
Z={X,Y}

5. ...

C
Failure Report:

Figure 8.4: Basic idea of automatic failure detection in JAMES II. The failure descriptions
contain the plug-ins involved (A,B, . . . ,Z), the sets below the horizontal dotted line denote
the co-defendants of each suspected plug-in. After considering four failure descriptions,
plug-in C has no co-defendants left and is hence convicted to be broken. Consequently, all
algorithms that have C in their list of co-defendants are rehabilitated and removed from the
list of suspects. No new algorithms from this failure description (e.g., G) are registered. If
one of them is also faulty, it might still be convicted, based on further failure descriptions.

age multiple SPDM selectors per abstract factory, e.g., one to solve the ASP
for chemical reaction networks and another one to solve the ASP for a paral-
lel and distributed discrete-event simulation. Since both selectors choose from
a set of processor factories, i.e., simulators, there has to be an additional mech-
anism to select one of them that suits the given simulation problem. Finally, the
����������	�
���	��� needs to carry out the actual selection procedure. This
is discussed in the last subsection.

Annotations for Algorithm Selection

JAMES II provides various plug-in types (see fig. 1.2, p. 4); not all of them
shall be selected automatically. For many plug-in types, e.g., model editors or
user interface components, an automatic algorithm selection does not seem desir-
able. Therefore, the ����������	�
���	��� only supports automated selection
for plug-in types that have been associated with a custom Java annotation named
����	���������	�
, to decorate a plug-in type’s abstract factory. Java anno-
tations are simple data structures that can be associated with Java entities (such
as interfaces, classes, or methods) to convey additional meta-information. For ex-
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ample, the built-in annotation ��������� can be used to mark methods that are
intended to override existing methods, thereby allowing the compiler to check if
they really do — if not, there might be a software bug.

Since the �	
�������	������ annotation needs to be available to all plug-in
types, it is located in the JAMES II core (package ������������	
���	���).
To let the �	
���	��������
����� automatically select algorithms of a given
plug-in type (e.g., simulators), its abstract factory has to be annotated as follows:

��������	
���������������������������

����� ���� ��������������������� ������� ���������������������������� !

���

"

The additional parameter ��	��������������� merely specifies that upon se-
lecting a suitable algorithm for this plug-in type, the �	
���	��������
����� is
allowed to pre-select the whole selection tree, i.e., the whole runtime configuration
(see sec. 5.1.1, p. 159), in a single step. It is the only supported mode of algorithm
selection so far. In a tree-like selection, arbitrary sub-algorithms may be selected
as part of a runtime configuration, regardless of the annotation their own abstract
factory has. Adding a similar annotation to another abstract factory, e.g., for event
queues, would just mean that individual selectors for selecting event queues can
be deployed to the registry and will be used. Since the focus is on simulation al-
gorithm selection, the above annotation for simulation algorithms suffices so far.
Nevertheless, the enhanced registry in principle supports automatic selection of
arbitrary algorithms.

Note that the �	
�������	������ annotation is only required for abstract
factories, i.e., it is in the responsibility of the deployer. Individual developers may
provide new plug-ins for certain plug-in types, but to enable automatic selection
for all plug-ins of a plug-in type merely requires to annotate a single class: the
abstract factory. The annotations are checked by the �	
���	��������
�����

at runtime.
Two additional annotations, ������ and ���������	������, shall sup-

port developers in adjusting the status of plug-ins they work on. Both an-
notations are checked at start-up by the plug-in data storage (see sec. 8.1.1,
p. 250), which then sets the status of the annotated plug-in accordingly (see
fig. 8.3, p. 250). This allows developers (and deployers) to easily configure the
�	
���	��������
����� to avoid the plug-in in question. Without such anno-
tations and meta-data on the current plug-in status, the only alternative would be
to remove the problematic plug-in from the registry altogether, e.g., by adjusting
its plug-in definition file. This, on the other hand, will prevent the selection of
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the plug-in in any case and would make it necessary that developers and experi-
menters use distinct versions of the simulation system. These problems are ren-
dered obsolete by explicitly annotating plug-ins that should currently be avoided
by experimenters; this facilitates deployment and maintenance.

Selector Managers and Selector Ensembles

As already mentioned, the ����������	�
���	��� has to be able to manage
multiple SPDM selectors per abstract factory, e.g., selectors that rely on features
from different modeling formalisms. All selectors that are defined for a certain
plug-in type — e.g., all simulation algorithm selectors — are managed by a single
object of type ��������
������. The ��������
������ can be regarded
as some kind of rather complex meta-data, representing knowledge on algorithm
performance for the given plug-in type.

While a ��������
������ may also employ meta-learning to improve the se-
lection of suitable selectors (see fig. 2.15, p. 90), at the moment it merely serves as
a container for ���������
��� instances. A ���������
��� encapsulates
an SPDM selector and hence provides the integration logic to mediate between
the simulation algorithm selection framework and the original JAMES II registry.
The ���������
��� decides whether its selector is able to select an algorithm
for a given simulation problem, which is characterized by a ������������ (see
sec. 4.2.1, p. 127). If so, it extracts the problem features and applies the selector to
the problem. This level of generality allows to define different kinds of integration
logic for selectors, which are completely wrapped and hence transparent to the
����������	�
���	���. Figure 8.5 gives an overview of all relevant classes
and interfaces, and how they are interrelated.

The Selection Procedure

So far, only a simple ���������
��� implementation is provided. It supports
simulation algorithm selectors defined for a certain modeling formalism, i.e., the
applicability of the selector to a problem is checked by considering the interfaces of
the model that is passed along within the parameter block. Additionally, the current
selector manager implementation queries the registry to find all feature extractors
that are subclasses of ������������������������, a sub-class of the base
factory for feature extraction (see sec. 5.1.1, p. 162). It specifies an additional
method to extract features from real-world parameters instead of the performance
database. Future versions may include infrastructure feature extractors, e.g., to
check available network resources, or selectors that are not applicable to all kinds
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Figure 8.5: Overall structure of ����������	�
���	���: the prototypical new registry
class (orange) extends the original JAMES II registry (grey), contains a sub-system for
failure detection (green), and stores meta-data on plug-ins and plug-in types (blue). SPDM
selectors (see fig. 6.12, p. 197), wrapped by ���������
��� objects and managed by
instances of ��������
������ (red), are part of the meta-data.

of models from a modeling formalism. All this can be easily implemented on top
of the current data structures.

To avoid the problem of recursively selecting algorithms without having ac-
cess to the context in which they shall be used (see sec. 4.2.3, p. 132), the
����������	�
���	��� applies a suitable SPDM selector just once. The se-
lector picks the runtime configuration it deems best, given the features extracted
from the given simulation problem. It does so by sorting all runtime configura-
tions (as discussed in sec. 6.2.1, p. 184) and picking the first configuration where
all factories in the selection tree are available and have a sufficient status — e.g.,
no required plug-in is broken (see fig. 8.3, p. 250). The selected runtime configu-
ration, more precisely its selection tree, is transformed by the ���������
���
into a ������������ that configures JAMES II to use this runtime configu-
ration, including all subordinate components. The basic approach is depicted in
figure 8.6.

The advantages of this approach are that algorithm selection — including feature
extraction — only has to be done once, and its results are transparent to the rest
of the system: it does not matter whether an SPDM selector has specified the
resulting parameter block or a user has done so manually.

However, this approach is prone to an issue that arises when using such up-front
algorithm selection in a simulation system as flexible as JAMES II: there is still
no guarantee that the selected setup is able to cope with the unknown problem,
i.e., that the selected plug-ins are indeed applicable. This problem of premature
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Figure 8.6: Configuring JAMES II with a single call to the ����������	�
���	���.
Since parameter blocks are highly nested structures and get partly passed from a fractory
to the factories of its sub-algorithms, it is sufficient to call algorithm selection once and
let it define the whole JAMES II configuration by augmenting the given parameter block
accordingly. In the given (simplified) example, the original parameter block (black) only
contains a description of the simulation problem (model M). Algorithm selection may now
augment this parameter block — since Java uses call-by-reference, the changes made to
the parameter block (red) will then be passed to �������������������, where they
cause the selection of a specific sub-algorithm (F2). As shown in figure 8.7, the algorithm
selection mechanism calls the registry again with the augmented parameter block, so that
the currently desired algorithm can be selected automatically as well (here, F). Only the
abstract factories (AF and SAAF) need to be known at compile time. The parameter block
nesting can be arbitrarily deep.

decision can be avoided by keeping the selectors up to date. Nevertheless, it has
to be taken into account by the new implementation of the ���������	
����

method. Figure 8.7 shows a flow chart that illustrates how ���������	
���� is
implemented in the �������������������	.

Automatic algorithm selection is only carried out in case no specific algorithm
(i.e., factory) has been prescribed yet. Furthermore, all requirements for au-
tomated algorithm selection — annotated abstract factory, available selector en-
semble, eligible selector — have to be fulfilled. If this is not the case, the
�������������������	 falls back to a behavior similar to that of the origi-
nal JAMES II registry. It is just complemented by an additional check of the
plug-in meta-data, regarding the plug-in status and the user’s failure tolerance.
In case of automated algorithm selection, the chosen SPDM selector selects a
certain configuration that is transformed into a �������������� instance by its
��������������� (see fig. 6.5, p. 184). Afterwards, the ���������	
����

method merely copies this parameter block into the one that was passed as a pa-
rameter (see fig. 8.6) and then calls itself again. The updated parameter block

...
myFactory = registry.getFactory(AF.class, params);
myFactory.create(params);
...

Typical James II Code:

...
sub = params.getSubBlock(SAAF.class);
sFac = registry.getFactory(SAAF.class, sub);
myAlgo.setSubAlgo(sFac.create(sub));
...Algorithm Selection:

-
params paramsCopy Configuration

M

F

M

model model

F2

SAAF.class
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Figure 8.7: Flow chart of the selection procedure in ����������	�
���	���. Bold
borders mark the two actions that relate to automatic algorithm selection. Afterwards,
�������������� is called recursively, now with an augmented parameter block that
prescribes which factory to be used. Ideally, subsequent calls to �������������� follow
the green arrows, i.e., the selected algorithms are able to cope with the given problem.

now defines the JAMES II configuration that was selected automatically, so all
subsequent calls to the ����������	�
���	��� should follow the green path in
figure 8.7; it should be able to select all factories prescribed by the new parameter
block.

8.2 Testing the Effectiveness of the Overall Approach

The last chapters have introduced several sub-systems of the simulation algorithm
selection framework. Before they are assessed in real-world scenarios, it seems
mandatory to assess the effectiveness of the overall procedure, namely the exe-
cution of a performance study, the generation of selectors, and their performance
after deployment to the ����������	�
���	���. To get a reliable estimate on
the effectiveness that can be expected from the proposed ASP solution approach,
the problem to be solved should be well understood and easy. In other words, the
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best selection mapping S∗ should be known and it should be attainable, at least in
theory, by considering the extracted model features.

Furthermore, all model features should influence simulator performance in a
straightforward manner. While the problem of feature selection (def. 2.1.3, p. 23)
is also challenging, it has not been addressed so far. More complex relation-
ships between model features and simulator performance may be discovered by
additional machine learning schemes that can also be integrated into the SPDM
(see sec. 6.2.1, p. 186). Section 8.2.1 presents a test setup that complies with
the above requirements. The experimental results are presented and analyzed in
section 8.2.2.

8.2.1 Test Setup

Since the goal of the test setup is to check the overall effectiveness under the
most simple circumstances, a synthetic scenario is preferred over a realistic one —
not even the most simple model formalisms and their simulation algorithms in
JAMES II are as simple and well-understood as the basic benchmark components
specifically designed for this purpose. The ���������	
���	��� defines mod-
els which are essentially name → value mappings. Each name corresponds to a
feature type, and its integer value gives the value of this feature — feature extrac-
tion is therefore trivial. Three different simulation algorithms are applicable to
such models: the bogus simulators A, B, and C. All are sub-classes of the same
bogus simulator and merely define on which of the three model features they rely.
The model features are named after the simulation algorithm they are associated
with: A, B, and C. The simulators use their corresponding feature as a factor in a
simple ���-loop, which generates synthetic load. Hence, each simulator’s execu-
tion time — the performance metric targeted here — linearly depends on its model
feature and is independent of all other model features.

This scenario ensures that no simulation algorithm dominates the others. The
simulation algorithm selection should hence be able to find a selector that is
adaptive-effective (def. 2.1.6, p. 27): the best selection mapping should outper-
form any constant selection mapping that always picks the same simulator. An
optimal selection mapping, S∗, can be defined as:

S∗((a,b,c)) =

⎧⎪⎨
⎪⎩

A a = min({a,b,c})
B b = min({a,b,c})
C c = min({a,b,c})

(8.1)
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where (a,b,c) ∈ F are the problem features and A,B,C ∈ A are the simulators
to be selected.4 Note that there is in fact a set of optimal selection mappings, since
it does not matter which of the corresponding algorithms to choose in case there is
more than one minimal feature. Besides that, the structure of the problem defines
all algorithms to perform equally well overall. Executing each of them on the
whole set of models with features (a,b,c) ∈ [1,10]× [1,10]× [1,10], for example,
would result in all algorithms having a similar overall execution time. They just
outperform each other within the well-balanced problem space. This implies that
the constant selection mappings in SC (see sec. 2.1.2, p. 24) perform similarly as
well, given that future simulation problem features are equally distributed over the
feature space F.

Overall Procedure

The mechanisms introduced in the last chapters should now be judged by their
overall result. The ASP solution process under scrutiny consists of several steps,
which are quite similar to those of other algorithm selection approaches (see
sec. 4.4.1, p. 143):

1. Performance Experiment: The performance database (ch. 5, p. 153) is
filled by using the calibration mechanism (sec. 7.3.2, p. 233) in a simple
simulation space exploration setup (sec. 7.3.3, p. 239): a number of bench-
mark models configurations is chosen at random, where each feature value
is picked from the interval [1, pmax], pmax being an integer parameter to con-
trol the size of the sample space. The size of the sample, i.e., the number
of benchmark model configurations, is denoted by s. Each algorithm execu-
tion is replicated ra times. The adaptive simulation runner (sec. 7.2, p. 208)
is not applied, as there are just three algorithms to deal with. For calibra-
tion, twct

opt = 5 s, twct
max = 10 s, and tsim

min = 2 s were chosen. Since the calibra-
tion mechanism is used for exploration, i.e., the simulation end time varies
across simulation problems, the performance of an algorithm is recorded
as throughput, i.e., simulation end time divided by wall-clock time. This
is necessary to adjust the execution time by the simulation end time (the
benchmark model is in quasi-steady state, see sec. 7.3.1, p. 227). Another
option would be to include the simulation end time of a problem as addi-
tional feature.

4As there is only one user criterion to be considered by S∗, it has been omitted for clarity (see sec. 2.1,
p. 19).
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2. Feature Extraction: Feature extraction is done with a custom feature ex-
tractor (sec. 5.1.1, p. 162), which merely reads out the name → value map
of a benchmark model.

3. Selector Generation: Selector generation and evaluation is done as de-
scribed in chapter 6 (p. 177).

4. Selector Deployment: Finally, selectors are generated from all available
performance data and deployed to the ����������	�
���	���. Their
performance is measured on two sets: first, a new sample set is drawn from
the same problem space (characterized by pmax). The performance of the
selectors reflects the case where the benchmark model characteristics accu-
rately characterize the features of future simulation problems. Secondly, a
different sample space is used to draw a new sample. It reflects situations in
which selectors have to generalize adequately, as they have not been trained
to select algorithms for all problems they are confronted with. Note that
the latter case is still rather optimistic, since simulator performance depends
linearly on the features and is hence very easy to extrapolate. The overall
test setup can be regarded as testing with a test set and a validation set, as
suggested by Hastie et al. in [122] (see sec. 6.2.2, p. 191).

Parameter Setup

The overall procedure is tested with different parameters. The parameter pmax,
controlling the size of the problem space that is explored, is chosen from the
set {10,20,30}. Therefore, the overall feature space F = [1, pmax]× [1, pmax]×
[1, pmax] contains between 103 = 1.000 and 303 = 27.000 elements. As the models
are defined so that their features completely characterize their computational load,
the problem space P has the same size. There are three algorithms (|A|= 3), so the
overall simulation space P×A×R is characterized by a real-valued performance
function p. Its domain contains between 3 ·1.000 = 3.000 and 3 ·27.000 = 81.000
elements. For each problem x ∈ P and for each algorithm a ∈ A, p refers to the
throughput of a when applied to x, i.e., simulation time divided by wall-clock time.
The shape of this function is explored by the simulation space explorer in the first
step.

The exploration of p is carried out by drawing random elements from P; the
sample size s is chosen from {10,20,30}. Since each of the three algorithms in A

is applied at least once to each problem, this results in 30 to 90 performance tuples
that are handed over to the SPDM for selector generation. To control the impact
of stochastic noise during simulation space exploration, the number of replications
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per algorithm, ra, is varied between 1 and 3. Replicating only once yields less
reliable performance data, and should hence lead to selectors that perform less
well. Selectors generated from data averaged over three replications, i.e., with ra =
3, should perform better.5 Similarly, larger sample sizes s and smaller problem
spaces, i.e., smaller pmax, should have a positive impact on selector performance.

Selector generation is carried out by four different mechanisms: WEKA’s com-
ponents to generate a ��� decision tree or an ��� model tree (sec. 6.2.1, p. 187),
the winner-takes all (WTA) selector generator, and the ��	
��
�

�����

�
�
����� (sec. 6.2.3, p. 198). The ��	
��
�

�����
�
����� creates in-
dividual predictors for each algorithm in A by using a (configurable) auxiliary
selector generator. The generated predictors are then stored together, and used as
an ensemble. ��� is used as auxiliary selector generator in this case, as the model
trees employ linear regression — they should hence fit optimally to the synthetic
test setup described in section 8.2.1.

A random algorithm selector is used as an additional benchmark. Only selection
mappings that outperform it are average-effective (see def. 2.1.5, p. 26). Random
selection should perform as well as any winner-takes-all approach in this scenario,
because all algorithms dominate equally large regions of the simulation space.
Therefore, the maximal constant gain (def. 2.1.9, p. 29) is 1, i.e., on average no
constant selection mapping works better than random selection. Furthermore, this
implies that all average-effective selection mappings are also adaptive-effective
(see def. 2.1.6, p. 27). Finally, an optimal selector that implements equation 8.1
is added, to check the effectiveness of the generated selectors. A similar evalua-
tion approach, i.e., to compare generated selection mappings with constant ones
(winner-takes-all) and optimal ones, has been used for other ASP solution ap-
proaches as well (e.g., in [338]).

8.2.2 Results

Figures 8.8 and 8.9 show the performance of the generated selectors for the vali-
dation set, i.e., the set where most models exhibit feature values that were not seen
before. Sample models are drawn randomly as before, but now each feature value
is multiplied by 10. The experiment duration is summed over the execution times
of 20 models that have been drawn in this manner. All selectors are executed on
the same randomly selected models.

The basic setup is defined with sample size s = 10, number of replications
ra = 1, and maximal model parameter value pmax = 10. It is shown on the left

5As the benchmark models are very simple and generate exactly the same load for the given parame-
ters, three replications should suffice to get a good estimate of the average execution time.
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Figure 8.8: Impact of exploration sample size on selector performance. Sample size does
not play an important role in this synthetic performance, as a linear relationship could
even be derived from two samples only. While the ensemble selector (�������� � 	
�)
achieves near-optimal performance, neither decision trees nor model trees are able to clearly
outperform random selection.

200

300

400

500

600

700

800

ll�
Ex

ec
ut

io
n�

Ti
m

e�
(in

�s
)

10�sample,�3�replications,�pmax =�10

0

100

200

Ensemble�
/�M5P

Random WTA Optimal J48 M5P

O
ve

ra

500

1000

1500

2000

2500

er
al

l�E
xe

cu
ti

on
�T

im
e�

(in
�s

)

10�sample,�1�replication,�pmax =�30

0

500

Ensemble�
/�M5P

Random WTA Optimal J48 M5P

O
ve

Figure 8.9: Impact of replication number and problem space size on selector performance.
While the number of replications has little impact on selector performance, increasing the
size of the problem space also increases the gap between the best selector (�������� �

	
�) and the optimum.

of figure 8.8. Each of the other plots shows corresponding results in case one of
the parameters is tripled, i.e., s = 30, ra = 3, or pmax = 30. In all scenarios, the
ensemble selector consistently outperforms the other selectors and achieves near-
optimal performance. Neither increasing the number of explored model setups
(sample size s) nor the number of replications (ra) has much impact on selector
performance. This means that no selector benefits from additional efforts to ex-
plore the simulation space, at least not in terms of a larger sample (s) or in terms
of less noise (ra). Increasing the size of the problem space (pmax = 30, right side
of fig. 8.9), however, leads to a slightly increased gap between ensemble selector
and optimum. Even in this case, the selection efficiency (def. 2.1.7, p. 28) is still
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≈ 0.87, i.e., the distance to the optimal throughput (achieved by S∗) is less than
13% on average. The maximal adaptation gain (def. 2.1.8, p. 28) in this case, i.e.,
the performance benefit of using an optimal selector instead of the best constant
one, is ≈ 0.43. This means optimally adapting to the problem features results in
43% more throughput, i.e., an execution that is 43% faster on the average. While
this speed-up is considerable, the case studies (ch. 9, p. 273, and ch. 10, p. 303)
show that potential benefits can be much larger for real-world problems. How-
ever, neither J48 nor M5P are able to consistently outperform a random selection
in this scenario; they fail to deliver any performance benefit. This illustrates that
there is no guarantee of success — and how important it is to test multiple selector
generators.

Significance of Results

Note that the presented results merely show that a suitable algorithm selector (here,
Ensemble/M5P, see fig. 8.9) that considers suitable problem features is able to
achieve near-optimal performance. This means that the SASF, as a software frame-
work for simulation algorithm selection, can be used effectively. In particular, the
assumption that all performance-relevant model features have been identified is
very optimistic — feature selection as such is a problem that should be addressed
explicitly in the future (see def. 2.1.3, p. 23). The quality of the generated selection
mappings and the efforts required to construct them also depend strongly on the
available SASF components: realistic application domains may require new algo-
rithms for simulation space exploration, adaptive replication, selector generation,
or selector evaluation. Now that the SASF has been shown to function effectively,
the next section revisits the other requirements discussed in section 4.1 (p. 119)
and section 4.3 (p. 134).

8.3 Revisiting the SASF Requirements

8.3.1 Use Cases & User Interfaces

The discussion on SASF use cases (sec. 4.1, p. 119) identified several roles of po-
tential SASF users: experimenter, performance analyst, developer, and deployer.
The main goal of the SASF is to support experimenters in conducting simulation
experiments; the other roles are either related to this task (performance analyst,
developer) or required to support it (deployer). Since experimenters are not neces-
sarily experts in the field of simulation, the user interface for experimenters should
be kept as simple as possible. This requirement has been partly accomplished by



266 8 Automatic Simulation Algorithm Selection in JAMES II

integrating algorithm selection into the ����������	�
���	��� in a transpar-
ent manner — the user interface does not change at all. If an experimenter leaves
the simulator configuration unspecified, this can now be filled in automatically. On
the other hand, no specific graphical interface to support algorithm selection has
been developed yet; it is necessary to let the user decide among the performance
metrics of interest. Other components an experimenter might be confronted with
are the adaptive simulation runner and its sub-system for simulation algorithm
portfolio selection (sec. 7.2, p. 208). While the former is as easy to use as any
other simulation runner available in JAMES II, the latter merely requires some
standard parameters to be called (e.g., the URL of the performance database).

Interfaces for developers, performance analysts, and deployers are all on a pro-
gramming level, i.e., they are the Java interfaces provided by the SASF sub-
systems (e.g., the SPDM). Developers are supported by the algorithmic change
evaluator (sec. 7.3.4, p. 242), which is a simple Java class. Performance ana-
lysts are supported by the simulation space explorer (sec. 7.3.3, p. 237), which
can be combined with the simulation end time calibrator and the adaptive simula-
tion runner. This flexibility makes the simulation space explorer rather complex
to configure correctly. Deployers, finally, may use the SPDM to generate and
evaluate selectors. They simply call the ���������
�����������	�
 (see
fig. 6.12, p. 197). The selector they deem most suitable can be deployed to the
����������	�
���	��� with another simple call (and the instantiation of a
corresponding ���������
���).

8.3.2 Technical Requirements

Based on figure 4.6 (p. 148), figure 8.10 (p. 267) shows which of the SASF com-
ponents realize which required functionality. The figure also shows how different
SASF concerns — performance data storage, data analysis, and so on — have been
separated from each other.

Table 8.1 summarizes the requirements listed in table 4.1 (p. 139) and names the
SASF components that address them the most. The SASF scales with the number
of algorithms by managing their performance data in a performance database. Its
reference implementation uses the Hibernate persistence system. Since this can
be used with various database management systems, the performance database
should scale well even for many algorithms (and their performance data). Another
important mechanism in that regard is the sub-system for simulation algorithm
portfolio selection: it allows to focus on relevant selection trees, i.e., the run-
time configurations of JAMES II that really matter (see sec. 5.1.1, p. 159). The
����������	�
���	���, finally, scales with the number of algorithms because
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Figure 8.10: Overview of the developed SASF components and their interrelationships,
based on the general SASF design shown in figure 4.6 (p. 148). Color semantics are the
same: data storage is blue, data analysis is yellow, performance exploration is orange, and
knowledge exploitation is red. Major components have bold names; explicit ASP solutions
are produced by the SASF in form of algorithm selectors (underlined, dark yellow). The
implementation shown here partly differs from the planned design: the failure reporting of
the adaptive simulation runner has not been considered in chapter 4 (p. 119). Furthermore,
the adaptive simulation runner (ASR) combines performance exploration and knowledge
exploitation.

it selects complete runtime configurations at once, and therefore avoids a regener-
ation of all selectors in case a new algorithm is added (see discussion in sec. 4.2.3,
p. 132).

Behavioral introspection is automated by using the sub-system for simulation
space exploration (including adaptive simulation runner and simulation end time
calibration), and recording the observed performance to the performance database.
The algorithmic change evaluator illustrates the potential of automatic introspec-
tion by supporting developers in the assessment of code changes. Scalability with
respect to performance data is not only provided by the performance database, but
also by the SPDM. It integrates dedicated data mining tools, i.e., tools that should
be able to cope with large amounts of performance data. Behavioral intercession is
supported by two independent mechanisms. The SPDM allows to analyze perfor-
mance data by generating a suitable selector for the ����������	�
���	���,
which adapts the registry’s selection behavior. Alternatively, the adaptive simula-
tion runner changes the behavior of the simulation system during replication.

The performance evaluation of selectors is only partially supported so far. While
the SPDM includes several evaluation strategies and selector performance metrics
(see sec. 6.2.2, p. 190), meta-learning has not been included yet. A component
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Requirement SASF Components
Separation of Concerns � -
Scalability w.r.t. #Algo-
rithms

� Performance Database, Portfolios,
����������	�
���	���

(Automated) Behavioral
Introspection

� Simulation Space Exploration (Simu-
lation End Time Calibration, Adaptive
Simulation Runner, Algorithmic Change
Evaluator), ���������, Perfor-
mance Database

Scalability w.r.t. #Per-
formance Data

� Performance Database, SPDM

Behavioral Intercession � SPDM, Adaptive Simulation Runner,
����������	�
���	���

Meta-Learning / Perfor-
mance Evaluation

≈ SPDM, ����������	�
���	���

Table 8.1: Revisiting the requirements summarized in table 4.1 (p. 139). Checkmarks de-
note the features that the SASF complies with. Only meta-learning is currently not sup-
ported by a dedicated mechanism, while the performance evaluation of selectors is done
by the SPDM. However, the foundation for meta-learning has already been laid in the
����������	�
���	���.

to support this in future would be the ��������
������, as discussed in sec-
tion 8.1.3 (p. 256).

8.3.3 Summary

The results presented in section 8.2.2 show that — given a set of suitable SASF
components (e.g., feature extractors and selector generators) as well as a set of
simulation algorithms where none dominates the others — it is possible to suc-
cessfully use the methods introduced in the previous chapters.

It is now possible to:

1. Conduct meaningful automated performance experiments.

2. Record and store observed performance data.

3. Generate adaptive-effective selection mappings.
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4. Deploy the selection mappings to a prototypical registry that supports auto-
matic simulation algorithm selection.

Alternatively, section 7.2 (p. 208) shows how to employ automatic selection
mechanisms even in the absence of this overall process: if no information is avail-
able, stochastic simulation can still be sped up by adaptive replication. If no mean-
ingful model features can be extracted but performance data is available, this ap-
proach can be enhanced by portfolio selection. While all these findings show the
potential of the presented methods, they do not show their impact in more realistic
scenarios. This is what the third part of this thesis focuses on.
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Examples and Conclusion



9 Case Study I: Chemical Reaction

Networks

For an exhaustive molecular reconstruction of the activity of a
single cell, we would need to simulate the interactions of around
1012 such molecules. And we would have to continue the sim-
ulation many seconds, minutes, hours, days, or even years, a
span of time scales of around 1015. This would require unimagin-
ably large computational resources — around 1027 BLUE GENES.
There simply won’t be enough stuff in the whole solar system to
build such monsters. Yet, this would be only the beginning of our
problems.

Denis Noble [242, p. 76]

This chapter shows how the methods developed in chapter 4 to 8 can be applied
to stochastic simulation algorithms (SSA), which have already been discussed
briefly in section 1.3.1 (p. 7). JAMES II offers several kinds of simulators for the
field of computational systems biology (see [308]). Some of them — e.g., those
for models expressed in stochastic π-calculus [200] — rely on SSA implementa-
tions as well. At the same time, the performance of different SSA implementations
is still fairly unexplored, particularly when it comes to different model properties
and different sub-algorithms, e.g., RNGs or event queues (see discussion in [158]).
Their relative merits are even debated in the literature (e.g., [281, p. 21]). There-
fore, applying the algorithm selection methodology developed in part two of the
thesis seems to be particularly beneficial in this setting.

The following case study is focused on exact SSA variants, i.e., methods that
strictly adhere to the so-called chemical master equation (CME). The CME is
a differential equation defined on a probability function; it defines the behavior
of a chemical system in case it is well-stirred and in thermal equilibrium [107].
Stochastic simulation is used to approximate the CME, as it is often intractable by
current analysis methods. Exact SSAs compute trajectories that comply with the
CME, while approximative SSA variants, such as τ-leaping (see sec. 1.3.1, p. 7),
do not guarantee this.

R. Ewald, Automatic Algorithm Selection for Complex Simulation Problems, 
DOI 10.1007/978-3-8348-8151-9_9, 
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2012
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Clearly, the accuracy of simulation algorithms is a common performance metric
and can be considered in the selection process (see sec. 5.1.1, p. 164). Doing so,
however, is particularly challenging in case of SSA. This is because measuring the
accuracy requires two sets of trajectories: one generated by an exact SSA variant,
and one from the approximative variant under scrutiny. A statistical test can now be
used to reject the null hypothesis that claims both trajectories have been sampled
from the same population. The problem is detailed in a previous study that inves-
tigates the performance of many SSA configurations available in JAMES II, and
which also used the performance database presented in chapter 5 (p. 153) [158, p.
222]. Requiring two sample sets makes measuring the accuracy of SSAs quite ex-
pensive: numerous simulation runs for all considered variants are necessary before
the statistical test can be applied — and the result will merely give the accuracy for
a single simulation problem. Although approximative methods are (usually) much
faster than their exact counterparts, the uncertainty regarding their accuracy for a
given model is a major drawback. The previous study on JAMES II SSAs revealed
that such accuracy loss may even occur for rather simple benchmark models [158].
Finding out how model properties affect the performance of approximative SSA
variants in terms of accuracy is a very interesting topic; nevertheless, it is beyond
the scope of this chapter.

Another limitation of this study is the restriction to a single benchmark model —
the cyclic chain system (CCS) described in section 7.3.1 (p. 231) — where reac-
tions always occur at comparable frequencies, i.e., the modeled systems are not
stiff. Stiff systems are formally defined as “[s]ystems with eigenvalues whose
real parts are widespread along the negative real axis [...]” [34, p. 39]. While
the previous quote relates to models of continuous systems, similar scaling is-
sues occur when these are translated to discrete-event models. Put simply, stiff
systems are hard to simulate because their dynamics occur on very different time
scales: some variables of the system’s state change only rarely, while others change
quite often. This makes efficiently simulating stiff systems a challenging prob-
lem, since the more frequent changes may slow down the simulation considerably.
This motivates specific simulation methods that deal with multiple time scales,
e.g., [27, 299]. An investigation of stiff reaction networks would have to involve
these methods as well, but they are not available in JAMES II yet.

Both this and the next chapter are structured similarly: the first section will
briefly survey the main implementation differences among the simulation algo-
rithms under scrutiny, and will also highlight the usage of auxiliary algorithms,
i.e., plug-ins. The second section will then evaluate some of the mechanisms that
have been developed in the previous part. As the SSAs are among the most sta-
ble, well-engineered, and relevant simulators in JAMES II, this chapter will cover
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some more methods than chapter 10. Chapter 10 mainly serves to demonstrate the
generality of the presented methods.

9.1 Algorithms under Consideration

A chemical reaction network as processed by the SSAs basically consists1 of a set
of reactions, e.g., of the form

R1 : A+B
r1−→C (9.1)

where r1 is the rate constant that basically determines how likely particles of
species A and B react to C when they encounter each other. Given the amount of
the reactants (i.e., A and B), r1, and the volume of the system, one can now calcu-
late the (exponentially distributed) rate with which this reaction occurs somewhere
in the system. The rate parameter is also called the propensity of the reaction. As
mentioned in section 1.3.1 (p. 7), this now allows to formulate the overall prob-
lem as a continuous time Markov chain: given the current state of the model, i.e.,
the amount of particles for each species, the reaction propensities of all reactions
denote the transition probabilities of the Markov chain to potential future states.
Since reactions (usually) change the state of the model, and the reaction propensi-
ties rely on the state, these have to be recalculated after a reaction occurred. The
simulation now proceeds in a discrete-event manner, by applying the effects of
subsequent reactions to the current state until the simulation end time is reached.

Direct Method (DM)

The direct method (DM) is presented in the original paper by Gillespie [105], in
which he introduces the mathematical model on which the SSAs operate. The di-
rect method sums up all reaction propensities and uses this sum as the parameter of
an exponential distribution. The drawn random number determines when the next
event occurs in the model. Afterwards, the method has to decide which reaction
occurred. This is done by randomly drawing one of the reactions, in proportion to
their propensity. After the time point of the next reaction and the kind of the next
reaction are known, the direct method simply executes the reaction, updates the
state accordingly, and recalculates all reaction propensities. Then it starts over.

1What follows is a very superficial explanation that shall merely highlight the algorithmic differences.
The overall subject matter is much more complicated than that, e.g., when it comes to the calcula-
tion of stochastic reaction rates from deterministic ones.
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First Reaction Method (FR)

The first reaction method (FR) is also presented in [105]. Instead of determining
at first the time of the next event and then the kind of reaction to occur, it starts out
with calculating the time of next occurrence for each reaction individually. This is
done by using the reaction propensity as the parameter of an exponential distribu-
tion and drawing a random number. After occurrence times have been computed
for each reaction, the reaction with the smallest occurrence time is selected for
execution. Updating the state and the reaction propensities concludes the iteration.

Next Reaction Method (NRM)

The next-reaction method (NRM) by Gibson and Bruck [104] extends the first-
reaction method in several ways. Most importantly (from an algorithm selection
perspective), the NRM relies on an event queue to sort reactions by their next
time of occurrence. Similar to FR, the NRM then executes the reaction with the
smallest time stamp. The reaction is now retrieved from the event queue. Instead
of recalculating the propensities of all reactions, as done by the FR method, the
NRM now restricts the recalculation to those propensities that could have changed.
Imagine a model consisting of the reaction defined in equation 9.1, as well as the
reactions R2 : C

r2−→ D and R3 : D
r3−→ E + 2F . If the first reaction (eq. 9.1) is

executed, only the propensity of R2 needs to be updated — as there is now one
more particle of species C (the product of R1). The propensity of R3 remains
the same, and is only changed if the number of D particles is changing. During
initialization, the NRM creates a directed dependency graph that connects each
reaction with those it influences. After a reaction Ri is executed, the propensity is
only recalculated for reactions that are influenced by Ri, i.e., the reaction that was
executed. The time of next occurrence can be scaled by the ratio of old and new
propensity, so that only one new random number has to be drawn per iteration: it
determines the next occurrence time for Ri. Afterwards, all involved reactions will
be re-queued by the event queue.

JAMES II offers two alternative implementations of the NRM, in the following
named NRM-A and NRM-B. In the previous study [158], NRM-B consistently
outperformed NRM-A whenever each used its most suitable event queue.

Optimized Direct Method (ODM)

The optimized direct method (ODM) presented by Cao et al. in [31] enhances the
direct method. Like the NRM, it uses a dependency graph to restrict propensity
recalculation. This also allows to optimize the overall propensity summation of
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the direct method: only the recalculated propensities have to be accounted for,
by subtracting the old ones and adding the new ones. Additionally, the reactions
are sorted by their propensity (in descending order) after some pre-simulations
have revealed their average occurrence frequencies.2 This speeds up the DM when
selecting which reaction occurs next, since the most likely reactions are now con-
sidered first.

Event Queues

The event queues that are considered here belong to the standard implementations
provided by JAMES II [135]. For example, JAMES II provides a naïve solu-
tion, SIMPLEEQ, that is based on a sorted list. It is, surprisingly, a good choice
for exact SSAs on some models [158, p. 224]. An adaptation of the popular
MLIST [112] has also been included; its re-queuing operation has been improved,
so it is called MLISTRE here. It previously performed well on some other SSA
benchmark models. Additionally, a Heap-based event queue is used, as it has
been discussed in [31, 104]. Other event queues without much relation to SSAs
have been added for the experiments regarding the adaptive simulation runner, to
make convergence more challenging. Most of them have already been discussed
in [135]. Prior execution time observations show the strong dependence of the next
reaction method on its event queue [158]. Since this dependency is strong enough
to let the next reaction method be either quite slow or quite fast in relation to the
other algorithms, this again shows the pitfalls of restricting performance analysis
to only a few monolithic algorithms.

Random Number Generators

Cao et al. argue that the performance of the random number generator is negligible
for SSA execution performance [31, p. 4064]. This finding is confirmed by the
observations on SSA performance in JAMES II [158]. Therefore, the default Java
implementation (a linear congruential generator, see eq. 3.1, p. 98) is used in the
following experiments.

9.1.1 A Sample Approach to SSA Performance Analysis

In contrast to the parallel and distributed discrete-event simulators covered in chap-
ter 10 (p. 303), the performance analysis of SSAs has not gained much attention

2In the JAMES II implementation, this is handled during a warm-up phase.
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so far. Besides empirical studies such as [158], a notable exception is the perfor-
mance analysis of ODM presented by Cao et al. in [31]. However, neither their
practical experience3 nor their theoretical analysis enable simulation algorithm se-
lection in practice. The analysis centers on the cost of various operations, where a
chemical reaction network with M reactions is considered. Then, Cao et al. define
a weighted average degree

D =
∑M

i=1(di · ki)

∑M
i=1 ki

where di is the out-degree of reaction Ri, i.e., the number of reactions it influ-
ences (except itself), and ki is the average number of executions per simulation (as
determined by ODM via pre-simulation). They also define the variable S∗ as the
optimized search depth, i.e., it is the average number of summands until the reac-
tion that occurred can be picked by ODM. The search depth is optimized here, as
the reactions are ordered by previous occurrence frequencies, so that those which
are likely to have a large propensity are in front of the list (as discussed before).
The result of the analysis is the following rule: “The only situation that ODM is
less efficient than NRM is when D � M and S∗ ≈ M/2” [31, p. 4065].

This illustrates why theoretical considerations — as useful as they are for in-
vestigating general bottlenecks — do not suffice to enable algorithm selection in
practice: just how much smaller than M should D be? How to measure S∗ before
simulation, and when is it sufficiently close to M

2 ? All this depends on the available
implementations, the hardware, and likely also on some other model properties
(e.g., M).

9.2 Experimental Evaluation

This section presents empirical observations regarding the effectiveness of the de-
veloped methods, which are applied to the set of algorithms outlined in the previ-
ous section. After defining the experimental setup (sec. 9.2.1), three major scenar-
ios of applying the SASF are considered:

• Simulation algorithm performance evaluation (sec. 9.2.2, p. 279): the meth-
ods presented in section 7.3 (p. 225) are applied to explore the performance
of the stochastic simulation algorithms (see sec. 9.1) for the CCS bench-
mark model (see sec. 7.3.1, p. 231). The results are managed by the per-
formance database presented in chapter 5 (p. 153). The data is also used to

3“For the practical problems we have tried, NRM is usually less efficient than DM.” [31, p. 4062]
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analyze the impact of code changes with the algorithmic change evaluator
(see sec. 7.3.4, p. 242).

• Algorithm selection without problem features (sec. 9.2.3, p. 287): the adap-
tive simulation runner from section 7.2 (p. 208) is evaluated. The perfor-
mance data obtained in section 9.2.2 is used to construct an algorithm port-
folio for faster convergence (as discussed in sec. 7.2.2, p. 218).

• Algorithm selection with problem features (sec. 9.2.4, p. 294): the SPDM
framework presented in chapter 6 (p. 177) is applied to the data collected in
the first step (sec. 9.2.2). Afterwards, the generated selectors are evaluated
with the methods presented in section 6.2.2 (p. 190), and then deployed
to the ����������	�
���	��� (ch. 8, p. 247) to test them against some
formerly unseen CCS configurations in practice.

It should be clear that this study is focusing on the merits and weaknesses of
the SASF as such. Otherwise, more data from other carefully selected benchmark
models — and not just a single one, the CCS — would have to be collected and
analyzed. In other words, the following experiments shall illustrate the potential
benefits of applying the SASF, and that it works as intended.

9.2.1 Setup

The following experiments have all been executed on the same workstation, in
order to make results as comparable as possible. The workstation has 8 GB RAM
and two quad-core Xeon CPUs (E5420) with a clock rate of 2.5 GHz. Overall,
there are 8 CPU cores to execute jobs in parallel; no hyperthreading is available.
Its Java SciMark [263] composite score is 803.46. The workstation runs the 64-
bit edition of Windows XP Professional; JAMES II is executed by a beta-version
of Sun’s 64-bit Java 1.7 Runtime Environment (1.7.0-ea-b66). The cyclic chain
system discussed in section 7.3.1 (p. 231) is used as a benchmark model, since it
can be parameterized in many ways to mimic different kinds of chemical reaction
networks.

9.2.2 Simulation Space Exploration

This section does not focus on algorithm selection as such, but on the experimen-
tation mechanisms described in section 7.3 (p. 225), which are necessary to obtain
the performance data required for both portfolio selection (see sec. 9.2.3, p. 290)
and data mining (see sec. 9.2.4, p. 294).
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Setup

In this scenario, the goal of the exploration mechanism is to explore the execution
time of six SSA algorithms: DM, ODM, FR, and NRM (variant B), the latter
being combined with SIMPLEEQ, MLISTRE, and a Heap-based event queue. The
algorithms are evaluated on 150 parameterizations of the CCS benchmark model
(sec. 7.3.1, p. 231). A full factorial experiment is defined on the CCS benchmark
model as given in equation 7.8 (p. 231), i.e., all combinations of the following
parameters are considered:

• Number of species: N ∈ {5,10,15,20,25}.

• Number of reactants/products: k ∈ {1,2,3,4,5}.

• Initial population: Xi ∈ {2000,5000,8000}.

• Factor for number of reactions: r ∈ {1,2}.

The factor for the number of reactions, r, is not included in equation 7.8 (p. 231).
If r = 1, all reactions are generated as defined by equation 7.8 (p. 231), but for
r = 2 each reaction is defined twice, and so on. Increasing r therefore increases the
overall number of events that occur in the system, but since it affects all reactions
equally it does not affect the quasi-steady state property of the CCS. Figure 9.1
(p. 280) shows a sample CCS reaction network for N = 4, k = 1, and r = 1. The
reaction rate constant c is set to 10−4·(k−1), i.e., it is determined by the number of
reactants involved per reaction (k). This levels out the reaction frequency in the
model over different k, since it is calculated by multiplying the stochastic rate with
the current amount of particles for each reactant (e.g., [106]).

R1: S2+S3 S4 + S1
R2: S3+S4 S1 + S2
R3: S4+S1 S2 + S3
R4: S1+S2 S3 + S4

c

c

c

c

k+1 k+11...N

r x

Figure 9.1: A sample CCS model with N = 4, k = 1, and r = 1. All parameters that
determine the structure of the reaction network — N, k, and r — are shown in gray.

Considering all combinations of the above parameter values results in 5 · 5 · 3 ·
2 = 150 simulation problems.
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The impact of both the adaptive simulation runner (sec. 7.2, p. 208) and the
calibration mechanism (sec. 7.3.2, p. 233) on performance exploration is evaluated
by considering four different scenarios:

1. Fixed end time (small), fixed replication: The simulation end time is set
to 10 s for all simulation problems. A fixed number of four replications is
executed for each algorithm.

2. Fixed end time (small), adaptive replication: The simulation end time
is again set to 10 s. Instead of executing four replications per algorithm,
the same number of runs is conducted by a specific variant of the εn-
DECREASING policy, which tries every algorithm at least once (in the be-
ginning).

3. Simulation end time calibration, adaptive replication: The simulation
end time is calibrated by the algorithm described in section 7.3.2 (p. 233),
which is configured with twct

opt = 5 s, twct
max = 10 s, tsim

min = 0.1 s, and tsim
max = 1000

s. The subset of algorithms used for calibration consists of two elements:
ODM and NRM (combined with MLISTRE). As in the second scenario, the
variant of εn-DECREASING steers the adaptive replication.

4. Fixed end time (large), fixed replication: The simulation end time is set
to 100 s for all simulation problems. A fixed number of four replications is
executed for each algorithm.

All the above scenarios are executed sequentially, i.e., on a single core. This
minimizes the additional noise that is introduced by multi-threading overhead.

Performance Results

Figure 9.2 (p. 282) compares the overall execution times of the four performance
experiments. Clearly, the second scenario (adaptive replication with fixed simula-
tion end time) is the fastest option (further details on adaptive replication perfor-
mance are presented in sec. 9.2.3, p. 287). Both scenario one and scenario three
achieve a similar speed, with slowdowns of ≈ 26% and ≈ 43% respectively. Sce-
nario four, however, takes much longer to execute: it is more than eight times
slower than scenario three, with ≈ 41 h instead of ≈ 5 h execution time.

One could now argue that the performance data obtained by scenario four is
more accurate, since more time has been spent to execute the algorithms under
investigation — but this is not the case. The average simulation end time used in
scenario three (which uses calibration) is 222.27. In other words, the calibration
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Figure 9.2: Overall execution times of the four performance exploration scenarios. Only
the third scenario (adaptive replication & calibration) includes a non-zero overhead due to
simulation end time calibration (black).

mechanism leads to simulating the models for much more than 100 s simulation
time on average. Yet, the execution time of scenario three is much smaller than the
execution time of scenario four, because it treats each simulation problem individ-
ually (by calibrating the simulation end time). Moreover, figure 9.2 shows that the
overhead introduced by calibration is negligible when compared with the overall
run time of the performance experiments.

To further illustrate the effect of simulation end time calibration and adaptive
replication, figure 9.3 (p. 283) displays the execution times of individual simula-
tion runs for each scenario, sorted in ascending order. The execution times in the
third scenario (lower left plot) are all relatively close to each other, the average
execution time is ≈ 4.28 s. It is relatively close to the desired value twct

opt , which
was set to 5 s (see sec. 9.2.2, p. 280). The difference stems from some execution
times that are considerably smaller than 5 s. For some simulation problems (20
out of 150), the maximal simulation end time (tsim

max = 1000 s) is still too small to
keep the algorithms busy for about 5 seconds (wall-clock time). On the other hand,
some algorithms exceed the maximum wall-clock time (twct

max = 10 s) and are au-
tomatically censored by the calibration mechanism, i.e., their execution is aborted
after 10 s of wall-clock time. This further decreases the execution time of scenario
three, at the cost of not always knowing the worst-case performance. There is no
simulation problem for which all algorithms are censored.
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Figure 9.3: Execution time distributions for the four performance exploration scenarios
(upper row: one and two, lower row: three and four): the plots of the fixed simulation end
time scenarios (i.e., all except the lower left plot) show that the execution times of individual
simulation runs span several orders of magnitude. The upper right plot shows the impact of
adaptive replication on the exploration (scenario two), as there are less longer runs than in
scenario one. Note the different scales of the plots for scenario three (lower left plot) and
scenario four (lower right plot).

Finally, note that figure 9.3 (p. 283) shows 150 · 6 · 4 = 3600 execution times
(simulation problems × algorithms × replications) for scenario one, two, and
four — but for scenario three (lower left) there are even 3900 execution times. This
is because of the calibration mechanism: before a simulation end time is found and
the replication begins, both algorithms from the test subset (here: ODM and NRM
with MLISTRE) have already been executed by the calibrator with the given end
time. This amounts to 2 ·150 = 300 surplus samples of execution time.

While the duration of scenario four (see fig. 9.2) is clearly too long and more
suitable execution times can be obtained by simulation end time calibration, it is
not yet clear if simulation end times larger than 10 s are indeed necessary. Maybe
a shorter simulation time interval of 10 s (as used in scenario one and two) is
sufficient to get an accurate picture of algorithm performance? Figure 9.4 (p. 284)
shows that this is not the case. The outcomes from scenario three and one differ
significantly. With the calibrated simulation end times, only two algorithms —
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Figure 9.4: Best/worst performance counts for SSA algorithms. Blue bars denote the count
of problems where the given algorithm outperformed all others, red bars denote the count
of problems where the given algorithm performed worst. Counts from scenario three (using
calibration) are dark blue and red, counts from scenario one (fixed simulation end time of
10 s) are light blue and red.

ODM and DM — are able to outperform the competition (dark blue bars). For a
fixed simulation end time of 10 s, however, all algorithms are able to outperform
the others for at least one problem. This is due to extremely small execution times
(see upper left plot in fig. 9.3, p. 283), so that stochastic noise governs the outcome.
Similar differences occur for the worst-performing counts. These results illustrate
the importance of methodologically sound performance experiments — if the data
obtained from scenario one would be used to construct selection mappings, the
outcomes are likely to be inconclusive.

Finally, note that the presented results are also interesting in itself. In a previous
study [158], which did not consider the optimized direct method (ODM), several
NRM variants could prevail instead. The good performance of ODM on the given
CCS setups is particularly impressive as the ODM is explicitly optimized towards
systems where a large difference in the occurrence probabilities of the reactions
exist. This assumption does not hold for CCS. Furthermore, the data shows that a
Heap may not be the best data structure to implement the NRM (as is suggested
in [104]) — a finding that was already discussed in [158].

Development Support

Collecting and analyzing performance data in order to make informed decisions
on algorithm development has already been motivated in section 4.1 (p. 119). The
algorithmic change evaluator (ACE) presented in section 7.3.4 (p. 242) illustrates
how performance data can be used for iterative software development. Its applica-
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Figure 9.5: Relative performance gains before and after the code change. Note that, for
the sake of clarity, the performance gains are sorted independent of each other in ascending
order, so two bars at the same position do not represent the same problem.

tion is exemplified by relying on the performance data collected in scenario three
(i.e., with simulation end time calibration). The code change to be evaluated af-
fects the ODM simulator, which so far performed best overall (see fig. 9.4) but
is now initialized with a complete dependency graph. This means the algorithm
now updates reaction propensities even though these do not change — it should be
slower, and the ACE should help to quickly detect this change for the worse.

The ACE is configured to use the same variant of the εn-DECREASING policy
(sec. 7.2.1, p. 212) as discussed before, i.e., at first each algorithm is tried once.
The set of algorithms to choose from is very small, as there is only one selec-
tion tree (i.e., runtime configuration) that contains the ODM; it is not necessary to
re-evaluate its performance when combined with different algorithms. For com-
parison, the best runtime configuration that does not use the ODM is included
for every simulation problem. The εn-DECREASING policy hence only has to de-
cide between two alternatives. All this is set up automatically by the ACE, which
also identifies all relevant problems from the performance database, i.e., those for
which past performance data on the ODM is available. It creates new versions of
all runtime configurations that include the changed algorithm, and marks all of its
old runtime configurations as out-of-date within the performance data base (see
sec. 5.1.1, p. 161). By doing so, one can easily build a ’performance history’ for a
certain algorithm, e.g., to assess optimization efforts.
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The ACE is set up to execute six replications per problem. This results in
6 · 150 = 900 simulation runs (replications × simulation problems), which take
≈ 55 minutes. It is hence much faster than repeating the whole performance exper-
iment from scratch (which takes more than five hours at best, see fig. 9.2, p. 282).
The output of the ACE is used to calculate the relative performance gain regard-
ing execution time, for all 150 simulation problems: it is the difference between
ODM’s average execution time (EODM) and the average execution time of the best
alternative (non-ODM) setup (Ealt ) for a given simulation problem, set into rela-
tion with the best overall execution time:

Ealt −EODM

min(Ealt ,EODM)
(9.2)

A positive relative performance gain denotes setups where ODM delivers the
best overall performance, as it is faster than the best alternative. The opposite holds
for negative performance gains. Considering relative gains avoids a bias towards
problems with longer execution times (and hence larger absolute run time differ-
ences). It cannot be guaranteed in general that the performance of the other algo-
rithms has not been changed in the meantime, e.g., due to more general changes
in JAMES II that affect the overall runtime, or a slightly different experimen-
tal setup. Hence, the most trustworthy results are gained by re-evaluating both
the new algorithm and the best alternative, and to only compare execution times
recorded at the same time. By doing so, the only assumption that needs to be true
relates to the performance ranking of the algorithms: the alternative setup used for
comparison in equation 9.2 should still be the best alternative setup.

Figure 9.5 (p. 285) shows the relative performance gains (eq. 9.2) for the old
and the new ODM variant. Clearly, the new variant performs much worse. While
the old ODM variant is the best-performing algorithm for more than a hundred
problems (see fig. 9.4, p. 284), i.e., its performance gain is positive on these in-
stances, the new one has lost the lead on most of them. The code change should to
be dismissed.

Besides this simple test run of the ACE, there is also anecdotal evidence that
illustrates the benefits of maintaining performance data and re-evaluating algo-
rithms against it. For example, a ’real’ bug in the ODM implementation was only
identified after reviewing previous performance data, which was recorded before
the erroneous code change was made.
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Summary

This section illustrated the potential of automating and improving the process of
obtaining performance data for simulation algorithms, with a focus on execution
time. Simulation end time calibration may reduce performance experiment du-
ration significantly, as it avoids losing time by simulating benchmark problems
for too long. Experiments using calibration will not only be faster, but also more
precise, as the comparison in figure 9.4 (p. 284) illustrates. Consequently, the per-
formance results gathered in scenario three (which employed simulation end time
calibration) are reconsidered and analyzed in the next sections.

Adaptive replication helps to focus on the best-performing algorithms and yields
additional speed-up; its performance is scrutinized in the next section. Finally, test
runs with the algorithmic change evaluator show how previous performance data
can be used to get quick feedback for programming decisions (fig. 9.5, p. 285).

9.2.3 Adaptive Replication

To test the adaptive simulation runner, the policies described in section 7.2.1
(p. 212) have been applied to execute a simple JAMES II experiment. The ex-
periment comprises six CCS setups that are simulated for 25 seconds of simula-
tion time. Each setup is configured to be replicated 500 times.4 The fixed CCS
parameters are:

• Initial population per species: X1 = . . .= XN = 105.

• The number of reactants per reaction, k, is set to 3.

In this experiment, the overall number of species is varied between three and
five, i.e., N ∈ {3,4,5}, and the factor for the number of reactions, r, is chosen
from {1,2} (hence 3 ·2 = 6 CCS setups).

The adaptive simulation runner is restricted to four of the eight available cores,
in order to minimize the impact of external load (e.g., from the operating system)
on the results. The convergence of a policy can be easily studied by measuring
its regret, i.e., the reward difference between an optimal choice and the policy’s
choice after each round (see sec. 2.3.2, p. 48). A per-round comparison is inter-
esting because it shows how fast each policy is able to converge to the optimal
solution: does it outperform the average case (of choosing randomly) already af-
ter 10 replications, or does it take more than 100 rounds? Policies that converge

4This number seems fair, as there are real-world simulation studies using SSAs for many more repli-
cations (e.g., 3000 in [295]) and the number of algorithms to explore here is rather high (37, as
discussed in the following).
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faster can be applied to a broader range of problems, i.e., also to those which re-
quire fewer replications. As discussed in section 7.2 (p. 208), the reward is usually
a consumptive performance measure, i.e., a measure that refers to the consump-
tion of a resource and should hence be minimized (see sec. 5.1.1, p. 164). The
execution time of a simulation run is considered as reward in the following.

Instead of analyzing absolute regret, the central figure of merit is the relative
overhead of not knowing the most suitable algorithm. The relative overhead op

n of
using policy p to execute n replications is defined as

op
n =

∑n
i=1 rewardi

p

n · rewardopt
−1 (9.3)

where rewardi
p is the reward received by policy p at round i, and rewardopt is

the expected reward of the optimal choice (which can be estimated). Subtracting 1
lets op

n denote the overhead only. Hence, an optimal solution — knowing the best
algorithm from the beginning — would have an overhead of 0. Since execution
time is used as reward here, op

n = 0.1 means that using policy p requires 10%
more execution time than the optimal case for executing n replications. Note that
equation 9.3 assumes policies to aim at minimizing the reward (see sec. 7.2, p. 208).

Rewards arrive asynchronously at the adaptive simulation runner (see sec. 7.2,
p. 208), so the empirical measurements have first to be recorded and then analyzed
post-mortem, i.e., after all runs have been executed. The collected data is also used
to determine which of the options is indeed the best choice for each of the six CCS
setups, so that an estimation of rewardopt can be determined.

In this setup, the adaptive simulation runner has to choose from 37 options (see
sec. 9.1, p. 275): a single setup for DM, FR, and ODM, in conjunction with the
two NRM variants, each being combined with 17 different event queues (1+ 1+
1+2 ·17 = 37).

The policies described in section 7.2.1 (p. 212) have been mostly initialized
with well-studied parameters. INTESTIM and INTESTIMDEC are configured with
α = 0.05, a medium value also used in [316, p. 10]. SOFTMAX is initialized with
a temperature τ = 0.1 (see eq. 7.5, p. 216), also a medium value evaluated in [316,
p. 10]. REWARDCOMPARISON has been configured with α = β = 0.5. The β
parameter of PURSUIT is set to 0.01 (as used in [298, p. 44]). εn-DECREASING

(see sec. 7.2.1, p. 212) is initialized with c = 0.2 (a medium value investigated
in [11]) and d = 0.5, the middle of d’s permissible interval of (0,1). All other
ε-policies have been initialized with ε = 0.15, which has also been considered
in [316, p. 10]. The α parameter of UCB2 has been set to 0.001, which was found
suitable in [11].
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Results Analysis

The relative overheads for the sixth setup (N = 5,r = 2) are shown in figure 9.6
(p. 290). This CCS setup imposes the most computational load. Figure 9.6 illus-
trates several important points: firstly, most policies are effective in this case, as
their relative overhead is significantly less than the overhead of the random selec-
tion policy. This becomes apparent after ≈ 120 replications; for less replications
the overhead is too noisy to be evaluated by a single experiment execution.5 Sec-
ondly, policies from the UCB family as well as the SOFTMAX policy perform
rather bad: UCB1 even performs worse than random selection. This illustrates
how important it is to choose a suitable policy for the adaptive simulation runner,
and that it is not sufficient to rely on asymptotic regret bounds — all UCB poli-
cies are proven to eventually converge to the optimum [11] (see sec. 7.2.1, p. 212).
Clearly, a single experiment of this scale does not allow to draw any general con-
clusions on policy convergence — yet it shows that most policies are able to adapt
quickly here, and that their convergence speeds may differ considerably.

The execution times of the policies over the whole experiment are depicted in
figure 9.7 (p. 291). The worst case requires 3.89 times more time than the best
case, even for these relatively small and simple CCS setups. The maximal attain-
able speed-up with respect to the average case (represented by RANDOMSELEC-
TION) is ≈ 1.9, i.e., knowing the most suitable algorithm for each setup in advance
would allow to almost halve the overall execution time. The best-performing pol-
icy — INTESTIM — is only 7.7% slower than optimum, it yields a speed-up (w.r.t.
RANDOMSELECTION) of 1.77: the overall execution time is reduced from 5.72
hours to 3.23 hours.

Furthermore, the performances of most policies are rather similar: all policies
up to (and including) PURSUIT yield execution times only 7.7% to 23% worse than
optimum. The other group of similar-performing policies — consisting of SOFT-
MAX and the UCB policies — performs rather badly, they are not much better
than the average case. Still, even the worst-performing policy (UCB2) needs 6%
less time than RANDOMSELECTION. Moreover, note that using a static selection
decided by a non-expert user only yields RANDOMSELECTION’s performance on
average — so one could argue that even using RANDOMSELECTION is preferable,
as its performance converges to the average case: it is less risky than picking a
single algorithm at the beginning.

5In the beginning, most policies have to ’guess’ which option to choose and ’bad luck’ leads to
peaks in the relative overhead (see eq. 9.3, p. 288). The peaks vanish with a growing number of
replications.
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Figure 9.6: Relative overheads of the adaptive simulation runner, relying on the given poli-
cies to execute one of the six CCS setups. The legend on the right also reflects the final order
of the policy overhead after 500 replications (top to bottom), i.e., UCB1 performs worse
than random selection but the other policies perform better. The worst case scenario has
been calculated afterwards, by considering the average performance of the worst algorithm.

The two clusters of similar-performing policies — one close to the optimum, one
close to RANDOMSELECTION — represent the two possible outcomes of using the
adaptive simulation runner: either its policy can identify a suitable algorithm, or
it does not. In the latter case, this might be due to the policy, its parameters, or
the shape of the algorithms’ runtime distributions. This shows why both potential
outcomes should be taken into account for portfolio selection, and are therefore
reflected in the fitness function for the GA-based selection mechanism (eq. 7.6,
p. 224).

Combination with Portfolio Selection

As the compilation and evaluation of a truly representative set of SSA simulation
problems is beyond the scope of this thesis, the performance experiment discussed
in the following will be restricted to showing the effectiveness of portfolio selec-
tion in a very limited and simple case, namely the adaptive replication of the CCS
benchmark. A more thorough evaluation of portfolio selection effectiveness, based
on synthetic performance data, is presented in section A.5 (p. 339).
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Figure 9.7: Overall execution time of policies applied to execute the CCS benchmark ex-
periment. Optimum and worst-case times have been estimated, just as in figure 9.6 (p. 290).
Over the course of the entire experiment, even the worst-performing policy (UCB2) out-
performs a random selection.

The data for the simple CCS-based evaluation has been obtained from the per-
formance experiments described in section 9.2.2 (p. 279), which cover many CCS
setups but only consider six SSA algorithms: FR, DM, ODM, and NRM-B com-
bined with three event queues (SIMPLEEQ, a Heap, and MLISTRE — see sec. 9.1,
p. 275). Portfolio selection is carried out by the genetic algorithm described in
section 7.2.2 (p. 222), although the problem is very simple.6

The genetic algorithm is configured with a mutation rate of 0.1%, and considers
100 individuals for 20 generations. It has been used to generate both risky and safe
portfolios of various sizes, as displayed in table 9.1 (p. 292). Besides speeding up
the convergence of the adaptive simulation runner, the constructed portfolios also
allow to rank and analyze the considered algorithms.

Firstly, ODM is included in all selected portfolios, regardless of portfolio size
and the value of λ . It performs best overall and is hence the most promising im-

6There are only 26 − 1 = 63 non-empty subsets of algorithms — simply enumerating and evaluating
all eligible combinations would suffice in this case.



292 9 Case Study I: Chemical Reaction Networks

Size Risky (λ = 1.0) Safe (λ = 0.0)

1 ODM ODM
2 ODM + DM ODM + NRM(SimpleEQ)
3 ODM + DM + X

[λ = 0.99: ODM + DM +
NRM(SimpleEQ)]

ODM + NRM(SimpleEQ) +
NRM(MListRe)

1 – 2 ODM + DM ODM
1 – 6 ODM + DM + X [λ = 0.99:

ODM + DM]
ODM

Table 9.1: Portfolios selected by the genetic algorithm (see sec. 7.2.2, p. 222). It uses
the performance data obtained as described in section 9.2.2 (p. 279). Since the objective
function neglects the portfolio size for λ = 1 (eq. 7.6, p. 224), it selects arbitrary algorithms
in case all relevant algorithms have already been included; these are denoted by X . To get
the smallest risky portfolio, the selections in question have been repeated with λ = 0.99 —
their results are given in square brackets. All selection tasks have been replicated five times,
as the genetic algorithm implements a stochastic search.

plementation.7 For two algorithms, safe and risky portfolios differ: while the risky
variant contains DM, the safe one includes NRM with SIMPLEEQ instead. From
this, one can infer that DM outperforms NRM(SimpleEQ) for a relevant set of
problems, i.e., problems for which ODM is not the best option. Furthermore, the
result shows that NRM(SimpleEQ) outperforms DM in terms of average perfor-
mance (since it is included in the safe portfolios). When selecting exactly three
algorithms, a risky portfolios construction results in a combination of ODM, DM,
and any other algorithm. This shows that no other algorithm is able to outperform
both DM and ODM on any given problem. Since λ = 1, only peak performance
per problem is considered in equation 7.6 (p. 224): the first portfolio that contains
both ODM and DM has a maximal fitness value and will be selected. To illus-
trate this point, table 9.1 also gives portfolios for λ = 0.99 whenever this effect
occurs. While portfolios selected with λ = 0.99 are still very risky, they give a
minimal penalty to those portfolios containing algorithms which never outperform
the others.8 The last two rows in table 9.1 give results for variable-size portfo-

7Note that in case of a portfolio size s = 1, both summands of equation 7.6 (p. 224) are equal and
hence the value of λ is irrelevant — the optimal single-element portfolio contains the algorithm
with best average performance.

8Consequently, λ should not be set to 1 in any practical setting, as this basically assumes an opti-
mal algorithm selection right from the beginning of the replication, i.e., there is not even a small
overhead due to exploration.
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lios. The safe portfolios are little surprising, as the algorithm with the best average
performance always maximizes the fitness function in case λ = 0. The risky port-
folios show that both ODM and DM should be included in case adaptation works,
but that no other algorithm is required. All the conclusions drawn from table 9.1
may help a performance analyst or developer to decide upon the next steps, e.g.,
which algorithm deserves most attention. The above analysis matches the results
displayed in figure 9.4 (p. 284), but yields additional insights. For example, it is
not clear from figure 9.4 that NRM(SimpleEQ) outperforms DM when it comes to
average performance (as discussed above).
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Figure 9.8: Prior portfolio selection reduces the execution time of the best-performing pol-
icy (INTESTIM, see fig. 9.7, p. 291) by almost 40%. Executing 50 replications without a
portfolio takes much longer for the other policies as well, due to increased exploration over-
head. All policies still outperform RANDOMSELECTION, but only little can be gained by
adaptation here. This is because both portfolio algorithms (ODM and DM) perform rather
similar, which is illustrated by the strong reduction of worst-case execution time (only ≈ 5.3
% below the optimum). These circumstances cannot be guaranteed in general, so that using
an adaptation policy is still advisable. Since DM is the optimal choice for all six setups
contained in the experiment, both old and new optimum converge to the same value; their
difference here is due to stochasticity.

Besides their use for performance analysis, the selected portfolios have to prove
their positive effect on the convergence speed of adaptive replication. To show
this, the CCS benchmark experiment described before (see fig. 9.7, p. 291) is re-
peated with some of the multi-armed bandit policies. They are now restricted to
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algorithms from the best non-trivial risky portfolio, which just consists of two al-
gorithms: ODM and DM (see tab. 9.1). Since this should particularly speed up
simulation experiments which include only few replications, the number of repli-
cations is reduced from 500 to 50. Figure 9.8 (p. 293) shows the impact of portfolio
selection on convergence speed. While being restricted to a portfolio is beneficial
for the performance of all considered policies in the given scenario, note that the
policies are not guaranteed to reach the optimum anymore. If the portfolio does not
contain the DM — e.g., in case a safe portfolio of size two is chosen (see tab. 9.1,
p. 292) — even the best choice from the portfolio is sub-optimal. The improvement
in convergence speed is hence traded with (potentially) inferior peak performance
and the efforts to collect the performance data required for portfolio selection.

Summary

The results presented in this section show that adaptive replication can be used
effectively in practice, given a number of options that is (much) smaller than the
number of required replications. If this is not the case, prior portfolio selection
helps to reduce the number of options. The results show that the performance of
the adaptive simulation runner strongly depends on the policy that is used, but also
that even bad-performing policies do at least as good as a random selection. Pre-
vious experiments presented in [72] came to similar conclusions and investigated
the performance of the adaptive simulation runner on a larger set of benchmark
models, and also with a larger set of options (48 options for simulating a model
defined in stochastic π-calculus [200]).

Finally, the failure detection mechanism presented in section 8.1.2 (p. 251) is
seldom activated and its execution speed is negligible for the problems currently
encountered in JAMES II (regarding the number of plug-ins involved per sim-
ulation run). Therefore, no quantitative results are presented here; the interplay
between the adaptive simulation runner and failure detection has been shown to
work by unit tests.

9.2.4 Selector Generation

In order to come up with a trustworthy selection mapping to be established for
the SSAs in general, more performance data needs to be gathered. Additionally,
the selectors generated by the SPDM (see ch. 6, p. 177) need to be validated
against real-world models, e.g., from the biomodels database [64]. Since this is
beyond the scope of this thesis, the following experiments are again restricted to
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the CCS benchmark model and the data obtained from scenario three (described
in sec. 9.2.2, p. 279).

Tested Selectors

As discussed in chapter 6 (p. 177), choosing a suitable form of selection map-
ping is hard, even for the relatively small amount of performance data considered
here — there are only 150 simulation problems (see sec. 9.2.2, p. 279). Similar to
the experiments presented in section 8.2 (p. 259), the selector generation mecha-
nisms described in section 6.2.1 (p. 186) are applied to the performance data and
their prediction errors are compared with each other. As in section 8.2 (p. 259), the
performance metric to be predicted is throughput, i.e., the progress in simulation
time per unit of wall-clock time. Four features are extracted from each model:
the number of species (for CCS: N), the number of reactions (for CCS: N · r), the
average number of reactants and products (for CCS: k), and the average initial
population per species (for CCS: X̄ = X1 = . . . = XN). While the initial size of
species populations is not constant over time, it may still yield important insights.
For example, if the population sizes strongly impact SSA performance, this could
motivate (and facilitate) the development of an adaptive scheme that switches SSA
implementations at runtime. Furthermore, note that there are many other features
of SSA models that are not considered in this illustrative example, e.g., the distri-
bution of reaction propensities, the ratios between reaction constants, and so on.

Selector generation is carried out by WEKA, MLJ, and JOONE (see sec. 6.2.1).
WEKA provides the decision tree approach J48 and the model tree approach M5P
(see sec. 6.2.1, p. 187). J48 is configured to distinguish 20 different performance
classes, M5P uses default settings. MLJ provides the decision tree approach ID3
and a Naïve Bayes learner (see sec. 6.2.1, p. 188). ID3 is configured like J48,
i.e., it also distinguishes between 20 performance classes. The same holds for
Naïve Bayes. Finally, JOONE provides the construction of neural networks (see
sec. 6.2.1, p. 189). It is configured to use resilient back-propagation [216, p.
70] with five hidden layers of 20 neurons each. The neurons are configured to
have a linear transfer function and are connected with all neurons of the previ-
ous layer. The learner is configured to execute 100 training cycles with a learn-
ing rate of 1.0 and a momentum of 0.5. The learning rate controls the extent
of a weight change, while the momentum controls the impact of former weight
changes on the current change [216, p. 69]. Furthermore, the schemes that
implement regression (M5P and neural networks) have been combined with the
������������	
�������
�� (see sec. 6.2.3, p. 198), which trains an individ-
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ual predictor for each of the six SSA algorithms and then decides by querying the
individual predictors and comparing their (quantitative) performance predictions.

Selector Performance Measures

Figure 9.9 (p. 297) shows the three performance measures for selectors that are de-
scribed in section 6.2.2 (p. 193). They result from 10 replications of bootstrapping
(see sec. 6.2.2, p. 192).9 Firstly, the way the Naïve Bayes classifier is used here
seems to be ineffective. It fails to decide for many pairs of configurations, so that
it often falls back to predicting equal performance for both configurations that are
compared. Unless both configurations really yield exactly the same throughput,
such indecisiveness will be counted as an error (according to eq. 6.4, p. 195). This
explains why Naïve Bayes performs worse than a random selection when it comes
to the boolean performance measure (fig. 9.9, topmost plot). The misprediction
regret (fig. 9.9, bottom plot) shows that Naïve Bayes is also unable to outperform
a random selection when it comes to a hypothetical selection of the most suitable
simulation algorithm for a problem. Hence a Naïve Bayes approach seems unsuit-
able to cope with this kind of problem, probably because the data set is too small
(150 problems only) and the basic assumption of the classifier is not met, i.e., the
test set did not contain data on problems with exactly the same features as those in
the training set (see sec. 6.2.1, p. 186).

All other kinds of selectors are able to outperform a random choice in terms of
boolean mispredictions, except for using a single neural network, which performs
only slightly worse. This means most selectors are effective in deciding which of
two algorithms will outperform the other on a certain problem — yet none of them
delivered good performance. The best selectors in terms of boolean mispredictions
are generated by the ������������	
�������
�� when using dedicated neural
networks to predict the performance of each algorithm individually (see sec. 6.2.3,
p. 198). However, even those perform only slightly better than the winner-takes-
all approach, which just ranks each algorithm by overall performance and sticks to
this ranking without considering any problem features (see sec. 6.2.3, p. 198). In
other words, none of the selector generation mechanisms is able to come up with a
selector that drastically improves the chance of guessing which of two algorithms
is faster by taking into account the extracted problem features.

There may be several reasons for this result. Firstly, the collected data may
be insufficient: the extracted features may not allow to predict algorithm perfor-
mance (this was ruled out for the effectiveness experiment in sec. 8.2, p. 259),
also the data set may still be too small to train good selectors. Secondly, the

9The results obtained by a 15-fold cross-validation, also replicated 10 times, are similar.
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Figure 9.9: Selector performance estimated by the measures described in section 6.2.2
(p. 193), which are all relative. Boolean mispredictions (top) gives the error percentage
of deciding which of two configurations will be the fastest for a feature combination from
the test set. Numeric mispredictions (middle) quantify this error by giving the average dif-
ference to the true performance in percent. Since classifying methods like decision trees
(J48, ID3) do not give quantitative predictions, this measure only applies to a subset of
methods. Misprediction regret (bottom) plots the performance overhead with respect to an
optimal selection (i.e., S∗) in percent.
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forms of selection mappings, as provided by the selector generators available in
the SPDM so far, may not be appropriate. For example, M5P assumes linear
relationships between problem features and performance. Given M5P’s perfor-
mance, particularly in terms of numeric performance prediction when used by
the ������������	
�������
�� (fig. 9.9, p. 297, middle plot), at least some
of the algorithms seem to depend on the model features in a non-linear way.
This also explains why neural networks do comparably well when trained by the
������������	
�������
��: they are the only SPDM selectors that allow
quantitative predictions and can cope with nonlinearity.

Finally, it should be noted that the winner-takes-all approach does remarkably
well, particularly when considering the most important performance measure, mis-
prediction regret (fig. 9.9, p. 297, bottom plot): even such a simple way of algo-
rithm selection only introduces ≈ 13% overhead w.r.t. the optimum in this sce-
nario, without considering any problem features. While no learned selector was
able to achieve better or similar overhead, ID3 and ensembles of neural networks
achieve an overhead of only ≈ 22% and ≈ 24 %, respectively. Although they do
not outperform the winner-takes-all strategy here, they outperform a random selec-
tion by a good margin (it introduces ≈ 83 % overhead). Since all selectors (apart
from Naïve Bayes) outperform a random selection with respect to misprediction
regret, they all can be regarded as average-effective for the considered scenario
(see def. 2.1.5, p. 26). However, none outperforms the winner-takes-all strategy —
so none of them is adaptive-effective (see def. 2.1.6, p. 27).

Note that the adaptive gain (see def. 2.1.8, p. 28), which basically defines an
upper bound on the speed-up achievable by replacing the best constant selection
mapping S∗C with one that considers problem features, is only about 0.15. In other
words, a feature-based algorithm selection may outperform the best-performing
selector that always picks the same algorithm by at most 15% (for the given prob-
lems). This suggests that a simple selection mechanism suffices in this specific
scenario — its overhead is rather small.

Real-World Performance

To test the real-world effectiveness of the selector generators, they have been
used to create selectors from all data gathered in scenario three of section 9.2.2
(p. 279) — i.e., no data has been left out for testing or validation. Instead, the real-
world performance of the selectors is evaluated by applying them to CCS setups
that are different from the 150 CCS setups that have been considered for selector
generation. The initial number of particles has been set to Xi = 105, instead of
being from {2000,5000,8000} (see sec. 9.2.2, p. 280). Similar to the setups for
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evaluating adaptive replication in section 9.2.3 (p. 287), the number of species (N)
and the factor for the number of reactions (r) are varied. Nine setups are consid-
ered — all combinations with N ∈ {3,4,5} and r ∈ {1,2,3}. Still, the parameter
deviations are relatively small, so the results merely illustrate performance gains in
case the simulation problems considered for prior performance analysis are rather
representative.
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Figure 9.10: Real-world performance of selectors generated by different mechanisms, exe-
cuted on nine formerly unseen CCS setups. Each experiment has been replicated ten times.
Horizontal bars denote the average execution time, vertical bars display the standard devia-
tion in both directions (i.e., average execution time ±σ ).

Each CCS setup is replicated three times,10 so there are 9 · 3 = 27 runs to be
executed with each selector. The simulation end time is set to 50 s. Figure 9.10
(p. 299) shows the results of these experiments: except for the ensemble of M5P
predictors, which performs very bad, all learned selectors outperform a random se-
lection. Similar to the performance metrics evaluated before (see fig. 9.9, p. 297),
however, none is able to outperform the simple winner-takes-all policy on this
small set of nine unseen problems — yet, the performance of the decision trees
(ID3 and J48) is almost identical, with an overhead of only 1.6% and 4.7%, re-
spectively.

The M5P ensemble performs so bad because it selects the NRM in combina-
tion with a Heap for all nine problems, which is not a good choice here. This is

10Replications are used here to reduce the runtime variation of experiments with the random selector
(see sec. 6.2.3, p. 198), which may pick different algorithms for each replication.
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caused by a misleading performance model for this particular runtime configura-
tion, i.e., the performance of NRM(Heap) is predicted to be much better than it
actually is. Potential problems with the M5P ensemble are already suggested by
the large numeric prediction error of this selector, as depicted in figure 9.9 (p. 297).
It illustrates why more than one performance measure is needed: all selectors that
perform well with respect to numeric misprediction and misprediction regret are
able to outperform a random selection. The performance measures shown in fig-
ure 9.9 (p. 297) should be regarded as necessary conditions11 for good selector
performance on unseen problems.

Summary

The evaluation of the SPDM in this context is rather brief, as the circumstances
do not allow any significant improvement in execution time by generating a non-
trivial selector. While this result seems unsatisfying from an algorithm selection
viewpoint, it would be good news in practice: this particular algorithm selection
problem is not hard to solve, since even a simple selection strategy achieves good
performance. This situation will be different for other sets of algorithms, other
benchmark problems, and other application domains. Besides that, one can only
be confident in relying on the winner-takes-all strategy after its performance has
been evaluated and compared to other approaches by the SPDM. The SPDM is
hence quintessential for solving the ASP in JAMES II, even though it is not neces-
sarily able to come up with adaptive-effective selectors. That the creation of such
selectors is possible in principle has been shown in section 8.2 (p. 259), and will
also be illustrated in the second case study (sec. 10.2.4, p. 314).

9.3 Summary

This chapter shows how to apply the simulation algorithm selection methods from
the second part of this thesis to the simulation of chemical reaction networks. The
experiments brought about the following main results:

• An efficient collection of performance data is crucial to the overall selec-
tion process. Performance experimentation must be carried out carefully
and needs to consider simulation-specific aspects. For example, a calibra-
tion of the simulation end times allows to automate experimentation and

11Clearly, none of these conditions can be sufficient, due to the problem of inductive knowledge (see
sec. 1.4, p. 13).
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may speed up experiments by almost one order of magnitude (see fig. 9.2,
p. 282). At the same time, it also improves the reliability of the collected
data (see fig. 9.4, p. 284). Additional tools can be used by developers to ex-
ploit performance data during simulator development, as briefly illustrated
by the usage of the algorithmic change evaluator (see fig. 9.5, p. 285).

• Adaptive replication is shown to be effective for stochastic simulation stud-
ies (see fig. 9.7, p. 291). The pre-selection of a simulation algorithm portfo-
lio makes the approach applicable to experiments that require relatively few
replications. Combining both techniques allowed to achieve near-optimal
performance under the given circumstances (see fig. 9.8, p. 293).

• Almost all selectors generated by the SPDM outperform a random selec-
tion considerably, both in terms of predicted performance (see fig. 9.9,
p. 297) and within a small real-world test setup (see fig. 9.10, p. 299).
However, the simple strategy of choosing the algorithm that is fastest on
average — the ODM — suffices in this scenario to achieve near-optimal per-
formance. More complex selectors that take problem features into account
could achieve a similar performance (e.g., the ID3-based selector), but they
could not outperform it. This situation, however, wholly depends on the
problems that are considered and the available algorithms, in other words
the specifics of the simulation algorithm selection problem. The general ef-
fectiveness of the simulation algorithm selection framework in constructing
adaptive-efficient selectors has already been shown in section 8.2 (p. 259).



10 Case Study II: Parallel Discrete-Event

Simulation

While the water is heating, you have a choice of what to do — just
wait, or do other tasks in that time such as starting the toast (an-
other asynchronous task) or fetching the newspaper, while remain-
ing aware that your attention will soon be needed by the teakettle.
The manufacturers of teakettles and toasters know their products
are often used in an asynchronous manner, so they raise an audible
signal when they complete their task. Finding the right balance of
sequentiality and asynchrony is often a characteristic of efficient
people — and the same is true of programs.

Goetz et al. [111, p. 2]

While the case study on SSAs (ch. 9, p. 273) ought to show the benefits and lim-
itations of the developed methods for simulation algorithm selection, the following
study shall mainly illustrate that these methods are not restricted to SSAs. They
rather provide a general toolkit to analyze simulation algorithm performance and
thereby allow us to solve the algorithm selection problem in a simulation context.
To show the generality of the methods does not require a full evaluation of every
technique, as has been done in chapter 9 (p. 273). The study is hence focused on
the most relevant methods.

As another contrast to the first case study, the algorithms investigated here are
not application-specific. Parallel and distributed discrete-event simulation (PDES)
lends itself well to many application domains where large and computation-
intensive models are considered, e.g., the simulation of computer networks or traf-
fic phenomena (see sec. 1.3.2, p. 9). The algorithms provided by JAMES II enable
a parallel execution in that they use multi-threading to exploit the parallel comput-
ing capabilities of a single machine, e.g., one with a multi-core CPU. They do not
yet allow a distributed simulation, so that this study deals with parallel — but not
distributed — discrete-event simulation.

R. Ewald, Automatic Algorithm Selection for Complex Simulation Problems, 
DOI 10.1007/978-3-8348-8151-9_10, 
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2012
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10.1 Algorithms under Consideration

The implementations of the algorithms that are evaluated here have already been
presented in [321]. All of them are fundamental in that their basic principles
are widely applied today, albeit in combination with various enhancements (e.g.,
see [90] for details).

They operate on a model that can be regarded as a labeled directed graph: the
nodes are logical processes (LPs), i.e., model entities that execute events and pro-
duce new ones by doing so. Logical processes are connected with each other by
directed edges, so that each process may schedule events for its neighbors (w.r.t.
outgoing edges) and may receive new events over its incoming edges. Oftentimes,
processes can guarantee a certain temporal delay between the local execution of an
event and the time stamps of events that are scheduled to a certain neighbor. This
delay is called lookahead, and it can be regarded as an edge label in the directed
graph of LPs. The notion of lookahead is important to grasp the limitations of the
simulation algorithms discussed in the following.

Consider the classical example (see [90, p. 52 et sqq.]) of an air traffic simu-
lation, where each logical process is an airport and the graph edges denote flight
routes. One of the LPs, RLG, may represent the airport Rostock (Laage). It has
an outgoing edge to the LP CGN, which represents the Cologne airport. A civil
aircraft typically takes an hour for this trip, so the lookahead for the edge from
RLG to CGN could be set to l = 45 minutes simulation time. Regardless of the
state RLG is in, it can guarantee CGN that all events caused by the currently ex-
ecuted event, e.g., a landing aircraft at t = 9:00 o’clock, will only produce events
for CGN with time stamps larger or equal to t + l. In this case, t + l = 9:45 in sim-
ulation time. Figure 10.1 illustrates the notion of a lookahead. Generally speaking,
a high lookahead suggests a large degree of model-inherent parallelism, as events
occurring at different processes only impact each other at some later time. Note,
however, that there are also zero lookahead models, in which LPs cannot give such
guarantees. An example for such a kind of model are the chemical reaction net-
works discussed in section 9 (p. 273): reaction times are exponentially distributed
and hence time delays may be arbitrarily close to 0. The efficient execution of such
kinds of models is very challenging (e.g., [160]). Finally, a lookahead is not neces-
sarily fixed during the execution of a simulation run — however, a fixed lookahead
is assumed in the following.

Note that the following algorithm descriptions are very brief, for the sake of
clarity. This, however, leaves out the discussion of some performance-relevant
aspects — for example the computation of the global virtual time (GVT), i.e., the
global minimum of the local virtual times (see sec. 1.3.2, p. 11) and hence the cur-
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e1: 9:00
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8:55
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9:45

Figure 10.1: Lookahead example: since RLG receives (and executes) an event from
Berlin/Tegel (TXL) at 9:00 o’clock, it can now guarantee the Cologne LP (CGN) that the
latter will not receive any events from RLG with time stamps less than 9:45. One way to
deliver such guarantees is by using null messages (see p. 306).

rent simulation time, or mechanisms to cope with transient messages. Some more
details are given in [321]; more knowledge on the algorithms is not necessary to
judge the performance of the simulation algorithm selection methods. Approaches
to predict and analyze the performance of PDES algorithms have already been
discussed in section 3.3 (p. 108).

Sequential Simulator (S)

The sequential simulator works as already outlined in section 1.3.2 (p. 9): events
are stored to an event queue, which orders them by their time stamps. The se-
quential simulator merely retrieves the event with the smallest time stamp from
the event queue, invokes the corresponding LP to execute it, and adds the newly
generated events to the central event queue (see fig. 1.3, p. 10).

Barrier Synchronization (BS)

Barrier synchronization is a conservative approach to PDES, i.e., it restricts each
thread to only execute those events that are safe in the sense that they do not violate
the local causality constraint (see sec. 1.3.2, p. 11). The basic idea is straightfor-
ward: at first, each LPi calculates up to which time stamp ti it is safe to process the
events in its event queue. This calculation involves the current simulation time,
lookahead values, and the time stamps of the events in the queue. A central thread
gathers these time stamps and calculates the minimum tmin = mini ti, which is re-
turned to all LPs as the new time limit up to which event execution is safe. Now,
every LP executes all events up to tmin, sends new events out to their destination
LPs, recalculates its local ti, and sends it to the central thread. Afterwards, it syn-
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chronizes with a barrier, i.e., it waits for all other LPs to finish this procedure as
well.

After all processes have synchronized with the barrier, execution proceeds in
that a new tmin is calculated, and again all LPs execute their safe events with time
stamps less or equal to tmin in parallel. Here, a central barrier is chosen [90, p.
66], namely the cyclic1 barrier implementation of the Java concurrency API (see
e.g., [111]). A more detailed description of this simple synchronization protocol
can be found in [90, p. 74–75].

Null Messages (NM)

The null message protocol [90, p. 54 et sqq.] — also named after its inventors, i.e.,
Chandy/Misra/Bryant — is a conservative synchronization mechanism as well. In
contrast to barrier synchronization, it avoids a central synchronization step by let-
ting each LP consider the lookahead and local virtual times of LPs with incoming
edges. If another LP with an incoming edge has a local virtual time of x and the
edge has a lookahead of l, this means it will not schedule any events to the given
LP with time stamps less than x+ l. Hence, if an LP has an event in the queue
with a time stamp less than the minimal x+ l from any LP with an incoming edge,
this event is safe to be processed. Unfortunately, this simple protocol is prone to
deadlocks, i.e., situations where LPs wait for each other and the simulation comes
to a halt (see sec. 1.3.2, p. 11).

These situations can be avoided by using so-called null messages. After pro-
cessing an event, an LP just sends messages to all LPs to which it has an outgoing
edge. These messages only contain its new local virtual time plus the edge-specific
lookahead, and hence represent a guarantee: the given LP guarantees that it will
not send an event with a smaller time stamp over this outgoing edge in the future.
Since these guarantee messages do not contain simulation events, they are called
null messages. Not that there is also a variant of the null message protocol (see
discussion in [90, p. 57–58]) where the LPs request null messages on-demand,
in order to reduce the overhead due to messaging. Furthermore, the null message
protocol is only able to avoid deadlocks if the LP graph does not contain any cycle
with zero lookahead edges, and is hence restricted to a sub-class of models.

Time Warp (TW)

Time Warp [90, p. 97 et sqq.] is a well-known and popular PDES synchronization
protocol. It is the prototypical optimistic synchronization mechanism, i.e., it risks

1It is cyclic in the sense of being re-usable for many cycles of repeated synchronization.



10.1 Algorithms under Consideration 307

to temporarily violate the local causality constraint in order to better exploit the
model-inherent parallelism (see sec. 1.3.2, p. 11).

Each LP executes all events in its local queue as fast as possible. If a violation
of the local causality constraint is detected, i.e., a straggler event with a time stamp
less than the local virtual time is received (see sec. 1.3.2, p. 11), all events that have
been processed in the meantime are rolled back. This does not only mean to restore
the prior state of the LP, but also to invalidate all new events that were generated by
the events to be rolled back. This is done by keeping book of all messages that have
scheduled events to other LPs. If such a message has been caused by a now-invalid
event, the LP sends a corresponding anti-message to its destination. In analogy to a
matter/anti-matter reaction, an anti-message shall ultimately annihilate the original
message, so that both can be safely deleted if found within an LP’s local event
queue. If the event contained in the original message has already been processed,
the anti-message causes the other LP to roll back as well. This effect is known as
a rollback cascade, as it may involve many LPs and hence slow down the overall
simulation significantly. The given implementation sends out anti-messages in
an aggressive manner, i.e., as soon as a rollback occurs (other alternatives are
discussed in [90]).

Keeping book of all messages and prior LP states2 consumes considerable
amounts of memory. Consequently, book-keeping should be restricted to those
messages and states that actually need saving, i.e., those that could be rolled back.
Therefore, the Time Warp protocol repeatedly initiates the calculation of the global
virtual time, which is the minimum of the local virtual times of all LPs on the one
hand, and the minimal time-stamp of all transient messages on the other hand. By
definition, no LP can be rolled back any further than to the GVT, so that all old
states and messages with smaller time stamps can be safely removed from memory.
This procedure is called fossil collection (e.g., [90, p. 110]), and is implemented
in batch mode here: as soon as a the GVT is updated, all old states and messages
are dismissed.3 In the given implementation, GVT computation is invoked period-
ically after sleeping 1 s and letting the simulation proceed in the meantime.

2Alternatively, the prior LP state could also be reverse-computed. For this, each event needs to define
an invertible transformation of the LP state, which may be non-trivial.

3Also note that the fossil management of the given implementation exhibits some problems: there are
some rare cases — less than ten times during 10 s of wall-clock time, i.e., during the execution of
many thousand events — when a cascading rollback reaches an LP where its prior state cannot be
found anymore. Due to its rareness, the effect of this erroneous behavior on the overall execution
time should not be too strong — and since LPs in PHOLD are essentially stateless, this problem
should neither impact the simulation run time in general.
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Breathing Time Buckets (BTB)

The breathing time buckets (BTB) protocol (e.g., [90, p. 157–159]) is also an
optimistic synchronization scheme, but it constrains the optimistic execution and
avoids rollback cascades. BTB works in three main phases:

1. Each LP processes events from its local event queue, until the time stamp
of a newly generated event is larger than the time stamp of the next event to
be processed. All newly generated events are collected, but not sent to any
other LP.

2. The minimum time stamp of all newly generated events is computed. This
is the global virtual time, as all events with a smaller time stamp have been
safe to execute in retrospect — no new event can invalidate them, and all
old ones have already arrived at the receiving LPs. There are no transient
messages.

3. The new GVT is sent to all LPs, which in turn send all newly generated
events that are safe to process, i.e., with a time stamp less or equal to GVT.
All processed (and newly generated) events with larger time stamps may or
may not be valid and could later be rolled back. This depends on the safe
events each LP now receives from the other LPs. After each LP has rolled
back those optimistically executed events that are invalidated by the received
events, the protocol starts over.

Event Queues

As with some of the SSA algorithms in chapter 9 (sec. 9.1, p. 277), both the se-
quential simulator and BTB can be customized with JAMES II event queues. The
simple event queue (a sorted list) and the Heap-based event queue are used here
(see sec. 9.1, p. 277).

Partitioning and Load Balancing

Since all LPs are executed by single threads on a multi-core machine, no partition-
ing is necessary. Load balancing is handled by the runtime environment, i.e., the
JVM and the operating system.
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10.2 Experimental Evaluation

This section follows the same steps as the case study presented in the previ-
ous chapter (see sec. 9.2, p. 278): after detailing the overall setup (sec. 10.2.1),
algorithm performance is explored (sec. 10.2.2) and both adaptive replication
(sec. 10.2.3) and the application of the SPDM (sec. 10.2.4) are evaluated.

10.2.1 Setup

The benchmark model used throughout the experiments is the PHOLD model, as
described in section 7.3.1 (p. 232). It simply consists of a network of LPs that,
upon receiving a new event, generate a new event with a larger time stamp and
send it to a random neighbor. PHOLD is configurable in many ways. For the
following experiments, the model is altered in three ways:

• Network topology: As the results in [321, p. 1176] indicate, the topology
of the LP network may significantly impact the performance of the synchro-
nization scheme. The same topologies as tested in [321] are used here: a
fully connected graph (����), i.e., each LP has all other LPs as neighbors,
a toroidal grid (����), i.e., each LP has four neighbors, and a ring of LPs
(����), i.e., each LP has just two neighbors.

• Size: The number of LPs in the network. To facilitate the construction of
a grid topology, this number is restricted to square numbers, i.e., 22 = 4,
32 = 9, 42 = 16, and so on.

• Number of events: The number of events that are initially created and sched-
uled to random LPs. Since each event will cause the generation of a new
event, i.e., the amount of events to be processed stays constant, this directly
affects the overall computational load imposed by the model. Each event
only generates a small synthetic load,4 but adding an event to the initial
PHOLD state will cause the generation of many new events over the course
of the simulation. Also note that a growing number of events increases the
model-inherent parallelism; all initial events are independent of each other
and can be processed in parallel.

New events are scheduled at time t + δ +X , where t is the time stamp of the
previous event, δ = 1 serves as the non-zero lookahead (to make the null message
protocol applicable, see sec. 10.1, p. 306), and X is an exponentially distributed

4The load is generated by a ���-loop that calculates a sum.
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random variable with λ = 1
4 . Therefore, the expected value of the new event’s time

stamp is t+δ +λ−1 = t+5. The technical setup, i.e., the machine the experiments
are executed on, is the same as before (see sec. 9.2.1, p. 279).

10.2.2 Simulation Space Exploration

To explore the performance of the simulation algorithms and record the data re-
quired for selector generation (detailed in sec. 10.2.4, p. 314), the three PHOLD
parameters described above are varied as follows:

• The number of LPs is chosen from {4,16,36,64,100,144,196,256}.

• The number of events is defined as a factor of the number of LPs. It is
chosen from { 1

4 ,
1
2 ,

3
4 ,1}. For example, if the number of LPs is 100 and

the factor is 3
4 , then 3

4 · 100 = 75 events exist in the model at any point in
simulation time.

• The three topologies: ����, ����, and ����.

All parameter combinations amount to 8 ·4 ·3 = 96 setups. Since the effective-
ness of the simulation end time calibration and the adaptive simulation runner has
already been shown (scenario three, sec. 9.2.2, p. 279), they are again combined to
conduct this experiment. The given simulation algorithms, however, are not nec-
essarily sequential anymore; instead they may use all eight cores that are available
on the workstation. As multi-threading is likely to introduce additional noise to
the run times, the simulation end time calibration is configured slightly differently
here: twct

opt is set to 10 s, twct
max to 50 s, tsim

min to 100 time units,5 and tsim
max to 105 time

units. The simulation end times have been adjusted to account for the relatively
large delays between events (on average 5 time units, see above). The simulation
end time calibrator is configured to use two algorithms, barrier synchronization
and BTB with the Heap-based event queue (see sec. 10.1, p. 304). All other com-
ponents (e.g., the adaptive simulation runner) have been configured identically to
scenario three, as described in section 9.2.2 (p. 279).

The overall experiment execution took ≈ 9.83 hours, with only ≈ 18.7 minutes
(≈ 3.2%) of the execution time spent for calibration. The calibrated simulation
end times are depicted in figure 10.2, the average end time is 7434.45 time units.
Only 386 executions are required for calibration, i.e., ≈ 2 unsuitable end times

5In contrast to the SSAs, which rely on the rate constants and their unit of time, the time scale of
PHOLD is not specified.
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Figure 10.2: Calibrated simulation end times for the 96 setups of the PHOLD model, in as-
cending order. Note the logarithmic scale, i.e., the end times span two orders of magnitude.
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Figure 10.3: Execution times for PHOLD setups with calibrated simulation end times, in
ascending order.

have been tested per simulation problem (386 divided by 96 setups × 2 algorithms
to execute).

The corresponding wall-clock times for executing the simulation problems with
the calibrated end times are shown in figure 10.3. There are 2880 executions on
problems with calibrated simulation end time, i.e., 30 executions for each of the
96 problems: 28 are carried out by the adaptive simulation runner (7 algorithms
× 4 replications per algorithm, just as in sec. 9.2.2, p. 280). The other two execu-
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Figure 10.4: Best/worst performance counts for PDES algorithms. In contrast to the SSA
case study (see fig. 9.4, p. 284), where only two algorithms dominated all others, here
almost all algorithms outperform the others for at least one simulation problem (except for
Time Warp and the sequential simulator using the simple event queue).

tions again stem from the last round of the calibration mechanism, where barrier
synchronization and BTB with a Heap are already applied to a simulation problem
with a suitable simulation end time. The average execution time is ≈ 11.9 s, which
is a bit longer than the desired execution time of twct

opt = 10 s.
Also note that all execution times ≥ 50 s in figure 10.3 stem from censored

runs, i.e., these executions have been aborted after twct
max was reached. Yet, there

are some runs that lasted considerably longer, with a maximum of 72.8 s. All
these executions are due to a single algorithm, Time Warp, which is occasion-
ally so slow that even a GVT computation takes several seconds (more precisely
72.8−50 = 22.8 s): only after a single GVT computation has been completed, the
control of the simulator is given back to JAMES II, in order to decide whether
the simulation run should proceed or not. This suggests that the given Time Warp
implementation, or at least the way it handles GVT calculation, is implemented in
a sub-optimal manner, a claim that is backed up by the fact that over 75% of all
Time Warp executions have been censored (154 out of 202) and these executions
represent over 80% of all censored executions (154 out of 192). Since the given
Time Warp implementation performs so badly, it is excluded from the following
experiments.

Figure 10.4 shows the number of times each algorithm came out with the best or
worst performance for one of the 96 PHOLD setups. As already discussed, Time
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Warp is the worst-performing algorithm for almost all setups. The null message
protocol, on the other hand, performs best on 52 of 96 simulation problems, and is
hence the best-performing PDES algorithm overall.

10.2.3 Adaptive Replication

As in chapter 9 (p. 273), the evaluation of the adaptive simulation runner is done
by considering slightly different setups than those that were considered for perfor-
mance exploration in section 10.2.2 (p. 310). Here, the number of LPs is chosen
from {25,49}, in combination with all topologies (����, ����, ����); hence each
experiment consists of 6 PHOLD setups. The number of events is set fixed to
2.25, i.e., there are more than twice as much events as LPs in the model at any
time. The simulation end time is set to 2000 time units. Each setup is replicated
only 50 times, as there are only six algorithms to choose from (the ones described
in sec. 10.1, p. 304, except for TimeWarp).

To reduce the impact of noise due to multi-threading, only six of the eight avail-
able cores have been used for the following experiments, leaving out two cores
for the operating system and background tasks. It should be noted that the overall
scenario shall, above all, illustrate that the adaptive replication approach presented
in section 7.2 (p. 208) indeed works for any kind of stochastic simulation. Apart
from that, the given setup makes little sense: all PDES simulators are restricted to
the six cores available on the local machine; if multiple replications are required it
should always be faster to let instances of a sequential simulator run on each core
individually. The latter setup does not require any communication between threads
during a simulation run, and should almost always outperform PDES simulators
that run on a single machine.6

Figure 10.5 (p. 314) shows the relative overhead of the multi-armed bandit poli-
cies for the most challenging PHOLD setup that was executed. The policies have
been configured just as described in section 9.2.3 (p. 287). The best-performing
policies already reduce the relative overhead by 50% (w.r.t. RANDOMSELECTION)
after only 10 replications. After 50 replications, the overhead is only ≈ 16%, i.e.,
using one of these policies is only ≈ 16% slower than knowing the optimal algo-
rithm right from the beginning.

The good performance of the policies is also illustrated in figure 10.6 (p. 315):
all of them yield a speed-up with respect to selecting algorithms randomly. The
best-performing policy is UCB1-TUNED, which just requires ≈ 20% more time

6An exception may occur if there are more cores than required replications — but in that case adaptive
replication needs to be complemented with a more advanced scheduling scheme.
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Figure 10.5: Relative overhead of policies on a PHOLD setup: the same plot as depicted
in figure 9.6 (p. 290). Again, the legend on the right side is ordered by the policies’ relative
overhead after 50 replications. All policies are able to outperform a random selection,
though their convergence speeds differ significantly. As before, worst-case and optimum
performance have been estimated (see sec. 9.2.3, p. 289).

than the optimum to finish the whole experiment. It yields a speed-up of ≈ 2.2
(w.r.t. RANDOMSELECTION).

Similar to the results described in section 9.2.3 (p. 289), the performances of
policies that belong to the same family (see sec. 7.2.1, p. 212) are clustered to-
gether. In contrast to the SSA-study, however, the order of the policy families is
now different: while ε-policies performed better than UCB policies on the SSAs
(see fig. 9.7, p. 291), they now perform worse. It has yet to be shown why this is
the case; e.g., the number of options could play a crucial role. However, the IN-
TESTIM policies are performing well in both studies, so they seem to be the most
robust policies and should be used per default.

10.2.4 Selector Generation

Finally, the ability of the SPDM to generate suitable selectors for the PDES do-
main shall be evaluated. The experimental setup is very much the same as the one
for the SSAs (cf. sec. 9.2.4, p. 294), i.e., the same selector generators are used:
random selectors, winner-takes-all selectors (both sec. 6.2.3, p. 198), M5P selec-
tors, J48 selectors (both sec. 6.2.1, p. 187), ID3 selectors, Naïve Bayes selectors
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Figure 10.6: Overall execution time of policies on PHOLD benchmark experiment: All
policies outperform RANDOMSELECTION by at least 11%. Worst-case and optimum per-
formance have been estimated again (see sec. 9.2.3, p. 289).

(both sec. 6.2.1, p. 188), and neural network selectors (sec. 6.2.1, p. 189). As
in section 9.2.4 (p. 294), the ������������	
�������
�� (sec. 6.2.3, p. 198)
is used as well, in combination with M5P and neural networks. Afterwards, the
real-world performance of the generated selectors is investigated. This is done by
deploying the selectors to the ��������	
��������
�� and applying them to a
small experiment, which consists of formerly unseen simulation problems. The
only difference to the study in section 9.2.4 (p. 294) is in the model features that
are considered for algorithm selection. Here, four model features are extracted
from the LP network to be simulated:

• The number of LPs, nLP.

• The average out-degree ō, i.e., the average number of LPs to which an LP
may schedule an event. For the ���� topology (see sec. 10.2.1, p. 309),
ō = nLP − 1, for the ��� topology ō = 4.0, and for the ��� topology
ō = 2.0. The PHOLD topologies used in the following are very regular, i.e.,
all LPs have the same number of neighbors. This, however, is not likely to
hold for other models — for these, additional features that characterize the
distribution of the out-degrees need to be defined as well, e.g., the median,
the standard deviation, and so on.
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• The average lookahead l̄ per edge. As discussed in section 10.2.1 (p. 309),
the lookahead is globally set to 1.0 — so this feature will not yield any in-
sight for the learners, as it is always the same. In practice, however, a large-
enough lookahead could lead to favoring conservative instead of optimistic
synchronization schemes. As with ō, the distribution of lookaheads should
be considered for a more complete picture, not just the average.

• The average number of initial events per LP in the system, ē. This is constant
in PHOLD, but usually not in other models. Similar to the population size
feature discussed for SSAs in section 9.2.4 (p. 295), the inclusion of ē may
still yield valuable insights: if it is the prevailing factor in determining the
most suitable algorithm, this motivates the development of synchronization
protocols that adapt to ē at runtime. Recall that ē is directly specified as a
PHOLD parameter (see sec. 10.2.1, p. 309); for the performance exploration
it has been chosen from { 1

4 ,
1
2 ,

3
4 ,1} (sec. 10.2.2, p. 310).

Similar to section 9.2.4 (p. 294), the performance of the generated selectors
is at first estimated via 10 replications of bootstrapping (see sec. 6.2.2, p. 191),
applied to the performance data from the experiment described in section 10.2.2
(p. 310). Figure 10.7 (p. 317) shows the results. Similar to the results presented in
section 9.2.4 (p. 296), Naïve Bayes does not even outperform a random selection
for boolean mispredictions (topmost plot, fig. 10.7), which is again due to the
particular problem structure. The best methods — M5P and J48 — select the most
suitable algorithm in over 70% of all trials, more often than the winner-takes-all
(WTA) approach. Still, none of the selectors that rely on quantitative performance
prediction is able to achieve an acceptable accuracy; their average prediction error
varies between 66% and 69% of the actual run time (middle plot, fig. 10.7). The
misprediction regret, which estimates the performance loss due to mispredictions,
show that the use of tree-based selectors – M5P, J48, and ID3 – seems most
promising besides the use of the WTA selector. The strong error of neural network
selectors, which perform worse than a random selection, suggests that there are
too few performance data to properly train a single network for decision-making.

The effectiveness of the generated selectors in practice is evaluated on a sample
experiment, which comprises eight PHOLD setups that have not been considered
by the selectors so far. The eight setups are defined by choosing the number of
LPs (nLP) from {225,400}, the average initial number of events per LP (ē) from
{0.6,1.2}, and setting the topology to either ���� or ����. Hence, some of the
unseen PHOLD setups are a little larger than those in the training set (400 instead
of 256 LPs) and also exhibit a little more inherent parallelism and load (ē = 1.2
instead of 1).
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Figure 10.7: Selector performance estimated by the measures from section 6.2.2 (p. 193),
similar to figure 9.9 (p. 297). Again, the numeric misprediction measure only applies to
methods that give quantitative predictions. Misprediction regret (bottom) plots the perfor-
mance overhead with respect to an optimal selection (i.e., S∗) in percent.

Figure 10.8 (p. 318) shows the results for ten replications of each experi-
ment. An experiment starts out with the generation of a new selector that is now
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Figure 10.8: Real-world performance of selectors generated by different mechanisms, ex-
ecuted on eight formerly unseen PHOLD setups. Each experiment has been replicated ten
times. Horizontal bars denote the average execution time, vertical bars display the standard
deviation in both directions (i.e., average execution time ±σ ). The only exception to this
is the rightmost data point, marked with an asterisk (������������	
�������
�� with
neural networks), where the standard deviation is so high that the average execution time
minus the standard deviation is negative. Here, the vertical line goes down to the minimal
run time that was achieved; the maximum run time lies at 3750.7 s (not displayed).

trained with all available performance data from section 10.2.2 (p. 310). The
������������	
�������
�� relying upon neural networks has a huge stan-
dard deviation: sometimes its choice is almost optimal, but sometimes it is very
bad. This behavior is due to the random initialization of initial node weights that is
carried out by JOONE’s back-propagation algorithm to train the neural networks.
Sometimes, this leads to a neural network for the null message protocol that over-
estimates the performance on setups where NM is clearly inferior; for one setup
it is almost fifty times slower than the best choice! These large performance dif-
ferences between the algorithms also explain why the performance deviation of
randomly selecting an algorithm is rather large as well.

Unlike the results shown for SSAs (see fig. 9.10, p. 299), all other selectors
manage to outperform the WTA approach in this setting. In fact, some even are
adaptive-effective for the considered simulation problems (see def. 2.1.6, p. 27):
while the BTB configuration selected by the WTA is not the best-performing algo-
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rithm for the eight setups in question, even the best constant selector (which would
always choose barrier synchronization) is ≈ 11% slower than the ID3 selector,
which performs best here. In other words, no fixed selection mapping is able to
outperform the best-performing selector that takes into account some model fea-
tures for selection. In fact, both ID3 and J48 select the optimal algorithm for all
eight setups; M5P gets it right six out of eight times. ID3 speeds up the experi-
ment by a factor of ≈ 1.8 (w.r.t. WTA) and ≈ 4 (w.r.t. random selection). All these
results show that an automatic algorithm selection can be very efficient in practice
and may speed up a simulation system considerably, as long as suitable features
are available and no algorithm is too dominant (as in case of the SSAs, sec. 9.2.4,
p. 294). However, it should be kept in mind that this is only a very small case
study, operating on a small set of algorithms and only concerned with relatively
few setups of a single benchmark model.

10.3 Summary

Similar to chapter 9 (p. 273), this chapter illustrates the benefits and shortcom-
ings of the techniques presented in chapter 5 (p. 153) to chapter 8 (p. 247), now
restricted to the main methodological challenges: the collection off sufficient
amounts of performance data (sec. 10.2.2, p. 310), algorithm selection without
any prior knowledge (sec. 10.2.3, p. 313), and finally algorithm selection with
prior knowledge (sec. 10.2.4, p. 314), which applies machine learning to generate
suitable algorithm selectors.

While all other techniques have already been successfully applied in chapter 9
(p. 273), the last section could also show that such learned selectors are indeed able
to improve the overall performance of a simulation system – even when compared
with the best possible constant selection mapping (see sec. 2.1.2, p. 24), which
is usually unknown. While the general effectiveness of this procedure is already
shown in section 8.2.2 (p. 263), section 10.2.4 (p. 314) illustrates that performance
gains due to sophisticated algorithm selection are also attainable in practice.

Nevertheless, this whole study should be considered as a proof of concept: as
with the SSA case study (ch. 9, p. 273), the presented results are hard to gener-
alize and only regard a fairly small algorithm selection problem, i.e., few algo-
rithms, few features, and few model setups. And even here, further methodolog-
ical problems can be noticed: the measures used to evaluate the generated selec-
tors (see fig. 10.7, p. 317) do not allow to anticipate the bad performance of the
������������	
�������
�� with neural networks. One way to alleviate such
problems when deploying selectors to users would be to employ meta-learning (see
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fig. 2.15, p. 90). These and some other directions of future work will be discussed
in the following chapter, which concludes the thesis.
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The truth will set you free. But not until it is finished with you.

David Foster Wallace, Infinite Jest, 1996

As motivated in chapter 1 (p. 1), this thesis covers mechanisms to automatically
select suitable simulation algorithms for complex simulation problems, i.e., prob-
lems for which simulator performance is hard to foresee. This chapter concludes
the thesis. Section 11.1 summarizes the main methodological contributions, in-
troduced in chapter 4 (p. 119) to chapter 8 (p. 247). Besides relating them to the
concepts presented in chapter 2 (p. 19) and chapter 3 (p. 93), their relative merits
and drawbacks are discussed by analyzing the results from the case studies (ch. 9,
p. 273, and ch. 10, p. 303). A more succinct list of theses can be found in sec-
tion A.1 (p. 335). Open questions and future research directions are detailed in
section 11.2.

11.1 Summary

The main contribution of this thesis are two distinct approaches for simulation al-
gorithm selection. Their principal difference is in the reliance on prior efforts: with
a sufficient amount of past performance data and suitable problem features, it is
possible to construct selection mappings that select a suitable simulation algorithm
before execution. If this data is not available, a suitable algorithm can still be se-
lected in case of stochastic simulation, i.e., in the presence of multiple replications.
The latter approach can be improved by taking into account previous performance
data without problem features. Figure 11.1 outlines the three situations that can be
distinguished overall: having no data (using adaptive replication), having past per-
formance data (using adaptive replication and portfolio selection), and having both
past performance data and suitable problem features (using generated selectors).

All components operate on the same basic entities — e.g., runtime configura-
tions (sec. 5.1.1, p. 159) — and are organized within the simulation algorithm se-
lection framework (SASF, ch. 4, p. 119). Adaptive replication does not require to
involve simulation experts (i.e., developers, performance analysts, or deployers —
see sec. 4.1, p. 119). It is relatively straightforward to set up and hence requires

R. Ewald, Automatic Algorithm Selection for Complex Simulation Problems, 
DOI 10.1007/978-3-8348-8151-9_11, 
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2012
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little effort. The downsides are its restriction to multiple simulation replications,
i.e., stochastic simulation, as well as the irreducible overhead due to exploration
(see sec. 2.3.2, p. 43). The latter can be reduced by constructing portfolios of
simulation algorithms (sec. 7.2, p. 208), as shown in section 9.2.3 (p. 290).

The alternative is selector generation, i.e., to conduct a full-fledged performance
study that includes the identification and automatic extraction of important prob-
lem features. The collected data can then be analyzed by the SPDM (ch. 6, p. 177)
and deployed to the ����������	�
���	��� (ch. 8, p. 247). While this method
is generally applicable and predominant in the literature (see ch. 2, p. 19), it also
requires additional efforts.

Categorization: Putting the Developed Methods into a General Context

Figure 11.2 (p. 325) shows how the algorithm selection approaches provided by
the SASF can be categorized, regarding the aspects that have been described in
section 2.6 (p. 71). The reasoning behind the categorization is as follows:

• Problem

The SASF allows to implement approaches for optimization-type selection
problems, i.e., instead of asking whether an algorithm may reach a certain

Figure 11.1: Three ways of solving the algorithm selection problem with the SASF compo-
nents from figure 8.10 (p. 267). If no prior performance data is available, it is still possible
to use the adaptive simulation runner (provided a sufficient number of replications). Portfo-
lio selection may improve the convergence of the adaptive simulation runner, but requires
performance data. Finally, in case there are also feature extractors defined for the simulation
problems, the framework for simulator performance data mining (SPDM) can be used to
construct a suitable selection mapping, i.e., a ��������. A selector should be assessed on
unseen problems, in order to decide whether its performance is satisfactory or a revision is
necessary (e.g., considering new features or simulation problems).
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performance level, the best-performing algorithm shall be selected. Adap-
tive replication tries to find the single most suitable simulation algorithm
by considering a set of simulation problem instances (see discussion in
sec. 2.6.1, p. 73). The selectors generated by the SPDM choose a single
algorithm by considering the features of a single simulation problem in-
stance. The mechanism for portfolio selection supports the selection of an
algorithm set to cope with a set of future problems (see fig. 11.2, p. 325).

• Algorithms: As figure 11.2 also shows, the focus of the SASF is on
combinatorial-parametric algorithms. This suits the abstraction level pro-
vided by JAMES II plug-ins and plug-in types. Depending on the imple-
mentation of a simulation algorithm in JAMES II, it may also be regarded as
monolithic or monolithic-parametric. However, JAMES II does not support
the automated generation of algorithms so far, hence no specific techniques
have been developed in that regard. Moreover, no custom mechanism to
explore the parameter space of a single algorithm is available yet.

• Data: The SASF is focused on the analysis of empirical data (see sec. 1.4,
p. 13, and sec. 2.8, p. 89); it does not support the inclusion of theoretical
findings as such. Nevertheless, theoretical knowledge can be leveraged by
defining suitable problem features, by employing customized methods for
data analysis, or by implementing specific selectors that exploit such knowl-
edge. The SASF does not focus on any particular type of performance data,
i.e., it may come from realistic or synthetic problems. Yet, the exploration
of a simulation space large enough to warrant data analysis with the SPDM
is likely to require a focus on synthetic problems that are representative to
some extent (see discussion in sec. 7.3.1, p. 226). The experiments pre-
sented in section 8.2 (p. 259), chapter 9 (p. 273), and chapter 10 (p. 303) all
relied on synthetic benchmark models and considered platform-dependent
performance. Algorithm performance is likely to vary across different hard-
ware platforms (e.g., due to differing CPU product lines), but should be less
dependent on more specific machine properties, such as the length of the
GPU’s graphics pipeline (unless it is used for execution). While the adaptive
simulation runner collects data continuously and automatically, i.e., during
the execution, the usual way of collecting performance data with the SASF
is triggered by the user: the performance recorder (sec. 5.2, p. 171) needs to
be activated.

• Solution: The solution approach of the adaptive simulation runner can be
regarded as searching for the best constant selection mapping while the sim-
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ulation problem is being processed (see discussion in sec. 2.3.2, p. 48). It
hence continuously solves the algorithm selection problem and applies its
current solution, both at processing time.1 It also works obliviously, i.e., se-
lection mappings are dismissed whenever a new simulation problem is en-
countered. In contrast, portfolio selection is typically conducted at run time;
it does not consider any features of the given simulation problem. Sim-
ilarly, SPDM’s selector generation is triggered by a user — more specifi-
cally, a deployer — at run time. The resulting selector is applied only once
per simulation problem. So far, no incremental learning algorithms have
been considered, so the SPDM solves the algorithm selection problem by
analyzing a batch of performance data. The SASF supports both perfor-
mance prediction and problem classification (see sec. 6.2.1, p. 184). This is
achieved in the SPDM by encapsulating the selection logic within a simple
Java ���������� (see sec. 6.2.1, p. 184, and fig. 6.6, p. 185).

Experiment Results

The general effectiveness of the SASF regarding its ability to automate perfor-
mance data collection (ch. 5, p. 153, and ch. 7, p. 203), data analysis (ch. 6,
p. 177), and finally simulation algorithm selection (sec. 8.1, p. 248) has been il-
lustrated in section 8.2 (p. 259). Here, the major result is that — given appropri-
ate problem features and suitable SPDM selector generators — the performance of
the �	
���	�������
����� is rather close to optimal, with overhead being less
than 13% away from optimum (on average). However, such a synthetic setup does
not illustrate how well-suited the developed methods are for real-world problems;
this has been investigated in chapter 9 (p. 273) and chapter 10 (p. 303).

Section 9.2.2 (p. 279) highlights the importance of advanced techniques for sim-
ulator performance evaluation: naïve setups either slowed down experiment exe-
cution by almost one order of magnitude (fig. 9.2, p. 282) or resulted in noisy
data (fig. 9.4, p. 284). In chapter 10, the same experimentation techniques — the
adaptive simulation runner (sec. 7.2, p. 208) combined with a suitable benchmark
model and simulation end time calibration (sec. 7.3, p. 225) — are also applied
successfully (see sec. 10.2.2, p. 310).

The adaptive simulation runner is not only useful for performance experiments,
but also for algorithm selection without prior knowledge. The effectiveness of

1Note that this refers to the processing time of a simulation problem, not a simulation problem in-
stance (see sec. 2.4.1, p. 52, and sec. 2.6.1, p. 76). Solving the ASP at the processing time of a
simulation problem instance can be done as well; it implies to switch algorithms during the execu-
tion of a single simulation run.
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Figure 11.2: Categorization of the methods provided by the simulation algorithm selection
framework, following figure 2.13 (p. 79) and the categorization in section 2.6 (p. 71). The
SASF does not offer support for the categories that are crossed out. Categories that are
underlined in gray apply to all approaches, but are not explicitly addressed by the SASF. The
solution technique categories (prediction and classification, see sec. 2.6.1, p. 76, and fig. 6.2,
p. 179) are not meaningful for adaptive replication and portfolio selection. During adaptive
replication, the adaptive simulation runner (sec. 7.2, p. 208) learns incrementally which
algorithm works best for the given simulation problem, but this knowledge is dismissed
when moving to the next problem — hence the approach is both incremental and oblivious
(in terms of solution invocation, also see sec. 2.6.1, p. 76).

such an adaptive replication (see fig. 11.1, p. 322) is shown both in section 9.2.3
(p. 287) and section 10.2.3 (p. 313). A speed-up of 1.77 and 2.2 could be achieved,
respectively (compared to RANDOMSELECTION). Note that speed-up by algo-
rithm selection is gained without adapting the algorithms or the hardware; it solely
stems from the flexibility of the simulation system.

While the performance of most policies for adaptive replication varies across
both case studies, some policies like INTESTIM were found to deliver good per-
formance in both cases. However, this does not ensure their suitability for other
simulation studies. On the other hand, all policies outperformed a random algo-
rithm selection over the course of a whole experiment — so there seems to be only
little risk attached with adaptive replication. Section 9.2.3 also shows that prior
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portfolio selection (as described in sec. 7.2.2, p. 218) may even result in near-
optimal performance (fig. 9.8, p. 293).

Finally, the effectiveness of the SPDM and the ����������	�
���	��� is
evaluated in section 9.2.4 (p. 294) and section 10.2.4 (p. 314). In contrast to the
synthetic setup considered in section 8.2 (p. 259), the results on real-world prob-
lems are mixed; some of the selectors performed rather bad — sometimes worse
than random choice (e.g., see fig. 10.8, p. 318). Still, most selectors outperformed
a random algorithm selection. Apart from the simple winner-takes-all approach,
the tree-based methods (M5P, J48, and ID3) exhibited the best real-world perfor-
mance in both case studies.

In the first case study, one algorithm (ODM, sec. 9.1, p. 276) almost dominated
the problem space under scrutiny. None of the other SSA algorithms performed re-
ally bad; one reason for this is the restriction to those JAMES II event queues that
performed well in a previous study (see discussion in sec. 9.1, p. 277). These cir-
cumstances make simulation algorithm selection quite challenging and prevented
the generated selectors from being adaptive-effective, i.e., to outperform the best-
performing constant selection mapping (see def. 2.1.6, p. 27). As such a mapping
is typically unknown a priori, this does not mean the SPDM has failed — it rather
shows that the given machine learning methods cannot derive better selection map-
pings from the given performance tuples (see def. 2.3.1, p. 36). This either moti-
vates the consideration of additional features and problems (see fig. 11.1, p. 322)
to generate better selectors, or the deployment of the winner-takes-all strategy (be-
cause it works well enough). End users can benefit from the deployed selector, no
matter if it relies on problem features or not — and even here, the best selector
could achieve a speed-up of ≈ 1.5 (w.r.t. random choice).

In the second case study (sec. 10.2.4, p. 314), two selectors are adaptive-
effective for the given sample experiment, i.e., they outperform any fixed selection
mapping because they consider problem features. The selectors achieved a speed-
up of ≈ 4 (w.r.t. random choice), and could be shown to make optimal choices
during evaluation.

While the observed speed-ups for SPDM selectors should be interpreted care-
fully — there was only one benchmark model per case study and the test experi-
ments were rather small — they still hint at the potential performance benefits of
simulation algorithm selection. This is because there are many aspects that are
likely to make the SPDM work better when applied at a larger scale in practice.
Firstly, both case studies collected relatively little performance data, and many po-
tential problem features have been excluded from analysis. Secondly, there are
many other machine learning approaches that may generate better selectors, and
the ones that were used have not been fine-tuned during the experiments. This
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leaves much room for improvement. Finally, the performance differences of the
investigated algorithms were rather small — ongoing work in the domain of spa-
tial SSA variants is confronted with problems where one algorithm may be several
thousand times slower than another. It is a promising future application domain
for simulation algorithm selection, as preliminary results from performance data
mining suggest that the construction of suitable selection mappings is feasible.

General Ramifications

Now that it is clear what the mechanisms developed in chapters 4 to 8 mainly pro-
vide, how they can be realized, and how they perform, the question remains which
general conclusions can be drawn for the field of simulation. The flexibility of
JAMES II and the way plug-ins are combined make algorithm selection particu-
larly challenging (see sec. 4.2.3, p. 132, and sec. 4.3, p. 134). As the presented
mechanisms to support simulation algorithm selection were developed for a host
system of this complexity, other simulation systems of similar (or less) complexity
may rely on the same (or simplified) techniques. This should go without additional
work on the principal structure of the SASF.

An interesting aspect of the SASF is the variety of elements it relies upon. It
is already proposed by Rice [272] that algorithm selection requires the collection
of data (ch. 5, p. 153) and their analysis to construct suitable selection mappings
(ch. 6, p. 177). It becomes apparent that, in order to successfully realize simulation
algorithm selection in practice, two additional aspects need to be considered:

• Experimental algorithmics: The analysis of simulation algorithm perfor-
mance is itself complicated and time-consuming (see ch. 3, p. 93). Without
efficient techniques for experimentation, the collection of sufficient perfor-
mance data would be prohibitively time-consuming and cumbersome. Ad-
ditional experimentation mechanisms, motivated by simulation algorithm
selection, are hence covered in chapter 7 (p. 203).

• Deployment: It is not sufficient to just generate a selection mapping, it also
needs to be deployed in a form that suits the host system. Otherwise, the
knowledge gained by analyzing the past performance data cannot be ex-
ploited in practice. Several requirements arise in this context, e.g., it may be
necessary to manage multiple selection mappings,2 or to ensure a seamless
integration of the selection mechanism. The latter is particularly important

2For example, to cover different subspaces of the problem space P; e.g., one selector for SSAs
(sec. 9.2.4, p. 294) and another one for PDES (sec. 10.2.4, p. 314).
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if simulation algorithm selection shall be realized for an existing system, so
that massive changes to the code base (and documentation, etc.) are avoided.
Finally, non-quantifiable performance measures (see sec. 5.1.1, p. 164) may
need to be considered as well, e.g., to prevent the selection of an algorithm
that is unstable.

All these issues have been addressed by a prototypical extension of the
JAMES II registry, which can manage multiple selectors, makes algorithm
selection transparent to other JAMES II code, and keeps track of plug-in
status (ch. 8, p. 247). The status of a plug-in can even be reset automatically
by a simple failure detection mechanism (sec. 8.1.2, p. 251).

The implementation of all these elements requires some effort. On the other
hand, it becomes clear from the use case analysis in section 4.1 (p. 119) that not
only end users — i.e., users in the role of experimenters — benefit from the de-
veloped components: both simulation algorithm developers and performance ana-
lysts may also employ them for performance data management and analysis. This
enables a stronger focus on algorithms of practical relevance and may make per-
formance analyses faster, easier to conduct, and more powerful. One example for
this is the simple component to estimate the effects of code changes on the overall
performance of the simulation system (sec. 7.3.4, p. 242). All this is made possible
by treating simulation algorithms as what they are: not just some code fragments,
but independent abstract entities that deserve careful evaluation and exploration.

Finally, providing means for automated simulation algorithm selection seems to
be a fundamental requirement for any simulation system that is sufficiently flex-
ible. Flexibility and extensibility foster software re-use and should hence be ad-
vocated in any case. As this thesis shows how to complement flexible simulation
systems with mechanisms for simulation algorithm selection, it also demonstrates
how to improve the overall performance of such simulation systems beyond the
performance of systems that only provide single monolithic implementations. In
this sense, the results of this thesis accentuate the importance of flexibility in sim-
ulation systems, while alleviating one of their major weaknesses: increased com-
plexity of configuration. What is the point of having a flexible simulation system if
no end user is able to exploit it? Since the presented techniques help to overcome
this problem, they may also help the proliferation of such simulation systems.

Limitations

As discussed before, this thesis contains some results with interesting general im-
plications, e.g., regarding the development practices for simulation algorithms or
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the merits of flexible simulation systems. However, it is equally important to see
the limitations of these findings.

First of all it should be noted that the SASF, although being tested and developed
for many months, still is a research prototype, in the same sense that its host system
JAMES II still is a research prototype: interfaces may turn out to be incomplete
or ill-suited, components might need to be added, others might need refinement or
refactoring. This is in itself not unusual — as DeMarco puts it: “Software devel-
opment is and always will be somewhat experimental. The actual software con-
struction isn’t necessarily experimental, but its conception is. And this is where
our focus ought to be” [57, p. 95]. At least there is reasonable hope that all essen-
tial entities — e.g., feature extractors, selector generators, selection trees — have
been identified, since the system has been shown to work effectively in principle
(sec. 8.2, p. 259).

However, neither the impact of hardware changes nor the handling of multiple
user criteria has been evaluated so far. The impact of hardware is unlikely to yield
much additional insights regarding the effectiveness of the developed methods,
since the data is already regarded as platform-dependent (see fig. 11.2, p. 325).
The developed methods can cope with multiple user criteria in principle, but this
makes their evaluation much more challenging (see discussion on SSA accuracy
in sec. 9, p. 273). Therefore, this aspect has been left out so far and needs to be
addressed in the future (see sec. 11.2, p. 330).

Another aspect to be examined critically is the automation of algorithm selec-
tion: as described in section 4.2 (p. 122), JAMES II already has an automatic
(yet hard-coded) algorithm selection mechanism in place. One could even argue
that some efforts required for the newly developed methods, e.g., the configura-
tion of suitable performance experiments, are only carried out semi-automatically
so far — hence the approaches presented here make algorithm selection less au-
tomated than it was before! While it is certainly true that manual intervention is
still required for specific tasks (another example would be the deployment of se-
lectors to the ����������	�
���	���), these steps have to be carried out by
the deployers of JAMES II, not by its end users (i.e., experimenters). Further
automation and simplification for all user roles seems likely and straightforward,
e.g., by integrating more powerful techniques for experiment design (see sec. 3.2,
p. 101). Moreover, automatic algorithm selection is only beneficial if suitable al-
gorithms are selected. So far, JAMES II only supported a fixed selection from all
algorithms that are eligible to solve a problem. For example, event queue X was
always preferred over event queue Y , regardless of the model to be simulated or
the simulator to be used (see sec. 4.2.3, p. 132).
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Finally, it has to be conceded that the settings in which algorithm selection was
shown to work are still rather small, both in terms of observed algorithms and
performance data. This is particularly true for the second case study on parallel
discrete-event simulators. Parts of the SASF have also been applied to other prob-
lem domains, e.g., cellular automata [280] or spatial SSA extensions, and thereby
already facilitated research on simulation algorithms [77]. More elaborate stud-
ies are required to give a better impression of the overall SASF effectiveness in
various application domains. All machinery is in place to do so in the future.

11.2 Outlook

Due to the breadth of the algorithm selection problem, many questions have to
be left unanswered for now. Besides research directions that were explicitly left
out of the discussion — e.g., solutions for the best features for algorithms problem
(def. 2.1.3, p. 23) — several other dimensions of simulation algorithm selection
have not been covered in the thesis. They can be easily recognized by considering
the categorization of the current mechanisms, as given by figure 11.2 (p. 325):

• Data: The inclusion of analytical findings has not been considered yet,
although there are some theoretical results that may help designing per-
formance experiments, or could even complement selection mappings de-
rived from empirical data. Examples of interesting approaches to analytical
simulation algorithm analysis have been briefly discussed in section 3.3.1
(p. 108).

• Algorithms: While algorithms in JAMES II are combinatorial-parametric
(sec. 2.6.1, p. 75), i.e., JAMES II plug-ins have parameters and can be com-
bined to some extent, neither the structure of the resulting selection trees (see
def. 5.1.1, p. 159) nor algorithm parameters have been taken into account for
specific algorithm selection techniques. Such advanced techniques could,
for example, exploit additional knowledge on parameters (e.g., performance
sensitivity) to further improve algorithm selection.

• Solution: Incremental learning is supported by the adaptive simulation run-
ner (see sec. 7.2, p. 208), but only in an oblivious manner (i.e., the results are
dismissed after the simulation problem has been processed, see sec. 2.6.1,
p. 76). Fully automated algorithm selection would have to provide non-
oblivious incremental learning that is carried out in the background. This
can be done by including meta-learning, e.g., in the way it has been used
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to extend the AOTA framework (see fig. 2.10, p. 67). Furthermore, if both
solving the ASP and applying the solution shall be done continuously at
processing time, this is currently only supported by the adaptive simulation
runner and hence only applicable for stochastic simulations. Of course, it
could also be beneficial to switch the simulation algorithm during execution.
While approaches that adjust simulation algorithms during execution have
already been developed (e.g., [323, 231]), these are tailored towards specific
algorithms and do not consider prior performance data. Another important
aspect is the algorithm selection based on multiple user criteria — while the
developed methods are (mostly) able to cope with this requirement, they
may still need some enhancements in this regard. Finally, it should be in-
vestigated to what extent meta-learning and empirical tuning may further
improve the performance of a simulation system, by providing complemen-
tary algorithm selection solutions on adjacent levels (as shown in fig. 2.15,
p. 90).

Apart from these rather broad issues, some more specific questions arose in the
chapters presenting the SASF components in detail (i.e., ch. 5, p. 153, to ch. 8,
p. 247). These are listed in the following:

Storage of Performance Data (ch. 5, p. 153)

While the performance database as such is working well, there are many addi-
tional features that would make its usage much easier. First of all, a dedicated user
interface would greatly facilitate the management of performance data. Together
with an automated plotting or reporting mechanism, it could be used to efficiently
share results among peers. Additional visualization techniques can help to grasp
the performance trade-offs between different algorithms. Another important step
would be to make central instances of the performance database accessible over
the Internet, in order to build a common repository for performance results. Be-
sides allowing users to incorporate platform-independent performance data that
was generated by others, this would also make simulation research more transpar-
ent (by providing a general and quantitative overview of different methods).

Selection Mapping Generation (ch. 6, p. 177)

There are many mechanisms to generate selectors — only few of them have been
applied in this thesis. Future work should strive to explore other mechanisms, so
that the most suitable ones can be identified. This also implies the development
of additional performance metrics (besides those defined in sec. 6.2.2, p. 193) to
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estimate the performance of the generated selectors beforehand. The SPDM also
requires a graphical user interface, which should be integrated with that of the
performance database (e.g., in the spirit of PERFEXPLORER [150], see sec. 3.3.2,
p. 112). Moreover, the feature selection problem (see def. 2.1.3, p. 23) should be
addressed explicitly.

Experimentation Methodology (ch. 7, p. 203)

The different mechanisms presented in chapter 7 (p. 203) leave (arguably) the most
room for further improvement and investigation. In case of the adaptive simula-
tion runner, further research should be focused on the pre-selection of simulation
algorithm portfolios. Alternative portfolio approaches should be compared with
the existing ones; some of them should be able to consider multiple user crite-
ria (as discussed in sec. 2.5.4, p. 70, and sec. 7.2.2, p. 219). Another interesting
problem is to automatically determine the size of a portfolio, given the simulation
problem to be solved and the number of replications that shall be executed. Fur-
ther research may also investigate ways to incrementally select portfolios, i.e., to
make performance recording and subsequent portfolio construction transparent to
the user. This issue is closely related to the question of how much data will be
necessary to select portfolios of a certain quality.

The components for simulation space exploration (sec. 7.3.3, p. 237) allow to
incorporate more advanced techniques for experiment design and meta-modeling,
in order to further automate simulation algorithm performance analysis. For exam-
ple, a novel algorithm to find performance trade-off points for a set of simulation
algorithms is already under development. Other work could focus on exploring
the parameter space of an algorithm, which may yield additional feedback for de-
velopers. Finally, the algorithmic change evaluator (sec. 7.3.4, p. 242) — the only
component that specifically addresses the needs of developers so far — should be
easier to use: it needs a graphical user interface, preferably one that can be ac-
cessed easily from an integrated development environment.

Automatic Simulation Algorithm Selection in JAMES II (ch. 8, p. 247)

The ����������	�
���	���, as described in chapter 8 (p. 247), is just a re-
search prototype. Here, some more practical programming issues should be solved
in order to establish algorithm selection as a basic service within the JAMES II
core. More advanced schemes should be developed to handle failure detection, and
the status of all plug-ins should be visible to the user, i.e., the plug-in data storage
should be maintainable through the general JAMES II user interface.
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Looking Ahead...

All of the above issues present challenging future work, which cannot (and should
not) be carried out by a single researcher or research group. Instead, algorithm
selection should be regarded as a major problem to be dealt with in all simula-
tion systems with a certain flexibility. If anything, this thesis shows the potential
benefits of explicitly addressing the problem from a simulation viewpoint.

Ultimately, simulation research shall improve and enhance the usage of simula-
tion in practice (see sec. 1.1). Automatic simulation algorithm selection helps to
do so — it should be worth the trouble!



A Appendix

A.1 Theses

1. Simulation algorithm selection is necessary to support end users in their application
of simulation tools. It is particularly important in case many different algorithms are
available and the relative performance benefits of the simulation algorithms are not
fully understood.

2. The algorithm selection problem has been addressed in many fields, which use dis-
tinct terminology for similar concepts. A categorization for algorithm selection ap-
proaches facilitates their assessment and comparison.

3. Simulation algorithm selection may be supported by techniques for performance pre-
diction and experiment design.

4. Selection mappings for simulation algorithms can be generated by analyzing past
performance data, e.g., with methods from machine learning. To do so, the perfor-
mance data needs to be associated with suitable problem features, so that a relation
between both can be established empirically.

5. The generation of suitable selection mappings requires considerable amounts of per-
formance data, which should be stored in a dedicated data sink.

6. Experimental setups tailored towards algorithm selection allow an efficient collec-
tion of the required data. This includes the usage of suitable synthetic benchmark
models. The models need to exhibit a quasi-steady state and should be scalable,
parameterizable, and simple to implement.

7. Adaptive simulation replication is able to speed up stochastic simulation experiments
without relying on past performance data.

8. Portfolios of simulation algorithms can be pre-selected, based on past performance
data. This can increase the convergence speed of adaptive simulation replication.

9. The methods implemented within the simulation algorithm selection framework
(SASF) allow to improve the overall performance of simulation systems, as long
as these are flexible and their application domain is not dominated by a single algo-
rithm.

10. Methods for simulation algorithm selection are able to support the development and
evaluation of new simulation methods. This efficiency gain in investigating sim-
ulation methods can also be beneficial for end users, as it may lead to improved
implementations.

R. Ewald, Automatic Algorithm Selection for Complex Simulation Problems, 
DOI 10.1007/978-3-8348-8151-9, 
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2012
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A.2 Proof: Average and Adaptive Effectiveness

Theorem A.2.1

If a selection mapping S′ is adaptive-effective (def. 2.1.6, p. 27) for a certain problem set
P ⊆ P and algorithm set A ⊆ A, it is also average-effective (def. 2.1.5, p. 26) for P and A.

Proof It has to be shown that

per f (S′,P)> ∑a∈A per f (Sa,P)
|A| (A.1)

holds.
Let p̂ = maxa∈A{per f (Sa,P)} be the performance of the best constant selection map-

ping S∗C (see def. 2.1.8, p. 28), i.e., p̂ = maxS∈SC{per f (S,P)} = per f (S∗C,P). Since
p̂ ≥ per f (Sa,P) holds for all a ∈ A, an upper bound for the right-hand side of equation A.1
can be written as:

∑a∈A per f (Sa,P)
|A| ≤ |A| · p̂

|A| = p̂ (A.2)

By definition 2.1.6 (p. 27), the following holds for S′:

∀S ∈ SC : per f (S′,P)> per f (S,P) (A.3)

Equation A.3 implies that per f (S′,P) > per f (S∗C,P) = p̂ (see above), so that a combi-
nation with A.2 yields:

per f (S′,P)> per f (S∗C,P) = p̂ ≥ ∑a∈A per f (Sa,P)
|A|

q.e.d.
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Table A.1: Categorization of the most relevant algorithm selection approaches (see fig. 2.13,
p. 79). Only a subset of the categories is displayed, for clarity. In many other regards,
the approaches are fairly similar — e.g., they all rely on empirical data. To keep the table
as simple as possible, approaches from a single research group have been joined, as long
as their categorization w.r.t. the above aspects is identical. The only simulation-related
approaches focus on empirical tuning (sec. 2.7, p. 83), and are hence orthogonal to the
developed methods (see fig. 2.15, p. 90).
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A.4 Performance Database: Tables

features

PK ID

feature_type_id
application_id

problem_parameters

PK id
PK name

value

machine_setups

PK setup_id
PK machine_id

problems

PK ID

model_id
sim_stop_params
sim_stop_factory
sim_end_time
params_hash

machines

PK ID

name
description
mac_address
java_scimark

runtime_configurations

PK ID

up_to_date
version
introduction_date
selection_tree
selection_hash

models

PK ID

uri
name
description
typeString

applications

PK ID

execution_date
problem_instance_id
setup_id
config_id
data_provider

setups

PK ID

name
description
network_speed
network_topology

performance_types

PK ID

name
description
performance_measurer

performances

PK ID

app_id
performance_type_id
performance

feature_types

PK ID

name
description
feature_generation

problem_instances

PK ID

problem_id
rand_seed
rng_factory

feature_values

PK id
PK name

value

Figure A.1: Tables of the performance database. Foreign-key relationships have been omit-
ted for clarity. All tables are automatically created by Hibernate (see sec. 5.1.3, p. 170) .
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A.5 Evaluating Simulation Algorithm Portfolio

Selection with Synthetic Data

To get a broader picture on the performance gains that can be expected from pre-selecting
simulation algorithm portfolios, a dedicated testbed for assessing portfolio selector effec-
tiveness has been developed. The following description is a (slightly extended and adapted)
excerpt from [75]. Section A.5.2 describes how synthetic test data for portfolio selection
are generated, and section A.5.3 discusses experiments that show the (hypothetical) perfor-
mance of different multi-armed bandit policies when their choice is restricted to the selected
portfolios.

A.5.1 Portfolio Performance Metrics

The major challenge in evaluating portfolio selection for the adaptive simulation runner
(sec. 7.2.1, p. 210) stems from the several levels on which stochastic effects occur. As al-
ready discussed in section 2.3.1 (p. 38), the execution time of an algorithm is influenced
by various factors and should hence be regarded as a random variable. The performance
of a multi-armed bandit policy (sec. 7.2.1, p. 212) depends on the stochastic performances
of the algorithms — i.e., its rewards — and may itself exhibit random behavior (e.g., the ε
policies). Moreover, the performance of portfolio selectors may be stochastic as well. For
example, the selection mechanism based on genetic algorithms (sec. 7.2.2, p. 222) defines
stochastic operations for selecting, recombining, and mutating the genomes of existing so-
lutions (e.g., see fig. 7.12, p. 223).

The basic figure of merit is the average execution time θ(X , pi,r,α) of a simulation run
when using policy X to execute r replications of simulation problem pi with portfolio α:

θ(X , pi,r,α) =
∑r

j=1 p̂i,X(α, j)

r
(A.4)

where X(α, j) denotes the choice of policy X at the j-th round and p̂i,X(α, j) is a sam-
ple performance of the chosen algorithm on the given problem pi, drawn from its runtime
distribution for problem pi.

The average execution times θ(X , pi,r,α) of a policy X can now be compared for dif-
ferent portfolios, e.g., retrieved from the GA-based selector, a random search, or just by
including all algorithms into a portfolio. This allows to investigate the impact of portfolio
selection on the performance of adaptive replication policies: the smaller the average execu-
tion time, the better. Since θ is a problem-specific metric, the execution times θ̄(X , pi,r,α)

are now averaged over a set P ⊆ P of simulation problems:

Θ(α,r,X) =
∑|P|

i=1 θ̄(X , pi,r,α)

|P| (A.5)
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where θ̄ denotes averaged calculations of equation A.4. Averaging is necessary because
θ depends on randomly sampled algorithm performances and also potentially random pol-
icy behavior.

Finally, since portfolio selection may be stochastic in itself, we have to replicate the cal-
culation of Θ(α,r,X) with different portfolios α , selected on newly generated performance
data with the same underlying correlations (see sec. A.5.2 below). The resulting overall
average execution time Θ̄ is the quintessential performance indicator of using a portfolio
approach to speed up adaptive replication with policy X . It denotes the expected average
execution time of a simulation run when r replications are required.

A.5.2 Performance Data Generation

The synthetic performance data to test portfolio selection is generated by defining a number
of algorithm clusters, each with the same number of members. All algorithms in a cluster
are assumed to behave similarly for the same kind of problem, but the standard deviations
of their run time distributions differ.1 Algorithm performances could be clustered because
the corresponding selection trees all contain a plug-in that largely determines overall per-
formance, e.g., a very efficient event queue.

The hypothetical problems are equally distributed over different problem classes. Each
problem class can be solved best by algorithms from a specific cluster. Intuitively, the
optimal portfolio contains the algorithm with the minimal performance variance for each
cluster that is best for one problem class. Additional noise is introduced by associating
a (randomized) hardness with each problem — some hypothetical simulation problems are
hence generally easier to solve than others. Figure A.2 summarizes the overall setup.

A.5.3 Experiments

A genetic algorithm (GA) can be parameterized in various ways: the size of its population
(γn), the number of generations to be computed (γg), and the mutation rate (γm) all affect
solution quality and execution time. Furthermore, it relies on the recorded performance
data (for the fitness function) and application-specific parameters like λ , the parameter to
characterize the user’s risk aversion (sec. 2.5.1, p. 60).

To systematically explore the effects of these aspects, a dedicated test environment gen-
erates some synthetic performance data as described above. All portfolio selectors under
scrutiny are applied to the data, and their portfolios are then used in conjunction with the
adaptive simulation runner. This allows to observe the effectiveness of each approach, also
in comparison to not using portfolio selection at all (i.e., using a portfolio that contains all
algorithms).

The adaptive simulation runner is configured with different policies and shall adaptively
replicate r = 200 simulation runs. Its execution is replicated 20 times for each policy,

1If not stated otherwise, the run times are assumed to be normally distributed (see discussion in
sec. 2.5.4, p. 69).
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Figure A.2: Generation of synthetic performance data. The problem hardness (gray hor-
izontal bars on x axes) is randomized, and the sequence of algorithm clusters depends on
the problem class. Algorithms within a single cluster have run time distributions that differ
in their standard deviations. The run time distributions of all algorithms are constructed
as shown, for each problem. Then, the distributions are sampled to generate the synthetic
performance data on which the portfolio selection operates (see fig. 7.13, p. 223).

to account for random algorithm performance and random policy behavior. The policies
are assumed to replicate the simulation runs sequentially, i.e., they receive the feedback
on one decision before they make the next one. The experiments consider the policies
εn-DECREASING (ED), which was performing best in a previous study [72], UCB2, and
PURSUIT (P), all of which have been introduced in section 7.2.1 (p. 212).2 Finally, a random
selection policy (RS) is used to check the execution times without convergence to the most
suitable algorithm.

All policies are compared on the same portfolios. New portfolios will be created from
new synthetic data (with the same properties), and the whole procedure is repeated 10 times.
This is done to estimate Θ̄ and its standard deviation, which results in 200 ·20 ·10 = 40,000
hypothetical simulation runs per policy and Θ̄ value (see sec. A.5.1, p. 339). It is assumed
that the synthetic performance data is representative. Hence, the algorithm performances
p̂i,X(α, j) used for evaluation are drawn from the same probability distributions that are used
to generate the data in the first place.

Synthetic performance data is generated for 100 simulation problems, each executed by
250 available algorithms that are assorted to 50 different clusters. Hence, this is a scenario
where portfolio selection should be beneficial: there are more options (i.e., runtime config-
urations) than replications to be executed (r = 200). Synthetic performance data is gathered
by averaging algorithm performance over three hypothetical executions. The execution time

2Several other policies from the ε- and UCB-families have been evaluated as well, but the above
policies were found to be representative.
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difference between two adjacent clusters is 10 s, i.e., algorithms from the fastest cluster will
need just about 10 s to solve a simulation problem, whereas those from the slowest clus-
ter need approximately 500 s. Similar numbers of algorithm combinations and a similar
contrast between fastest and slowest algorithms have already been encountered in practice
(e.g., [158]). There are 5 different classes of problems, each with another cluster being
fastest.

For the genetic algorithm, mutation should not play too much of a role; its probability
is set to γm = 0,1% (per available algorithm). The population size γn of the GA-based
portfolio selector is set to 250, and the GA was executed for γg = 400 generations. Since
execution times for portfolio selection were in the order of seconds for these scenarios (on
an ordinary desktop computer) — whereas the execution times of the simulation replication
experiments for which it is intended are in the order of minutes, hours, or even days — its
overhead for the following scenarios is considered negligible and is not evaluated in more
detail. To ensure a fair comparison, the stochastic portfolio selector (see sec. 7.2.2, p. 221)
is configured to draw γn · γg = 100,000 random portfolios. Portfolio size s is restricted to
the interval [3,6].

A.5.4 Results

Effectiveness

As a first scenario, figure A.3 compares Θ̄ when using no portfolio selection (None), a port-
folio selected by stochastic search (Stochastic), and a GA-selected portfolio (GA, configured
with λ = 1, i.e., risky). Interestingly, UCB2 (which performs fairly average in the previous
study [72]) benefits most and is able to outperform εn-DECREASING on pre-selected portfo-
lios. It is slightly faster with portfolios selected by the GA than with those of the stochastic
search. The bad performance of UCB2 in the absence of portfolio selection comes at no
surprise, as it initially tries every option once (and hence has no chance to gain any speed-up
in this scenario). In contrast, εn-DECREASING randomly explores the options and uses its
best guess in-between, so it does much better without any portfolio. Finally, GA-selected
portfolios exhibit less performance variance than portfolios selected by stochastic search,
whereas the latter are suited for all kinds of policies: even in a risky setup they consistently
outperform policy performance without portfolio selection. Still, they do not outperform
GA-selection in peak performance (see UCB2 in fig. A.3).

Run Time Distributions

Since algorithm run times are not always distributed normally, it should be checked whether
the performance improvement by portfolio selection is affected if execution times are dis-
tributed differently. The normal distribution was replaced by an Erlang distribution with
k = 2 and θ = 2.0, multiplied by 10% of the mean algorithm performance (to skew the dis-
tribution towards a longer tail). As figure A.4 shows, portfolio quality seems to be largely
unaffected by runtime distribution — except for the performance variance of GA-selected
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Figure A.3: Average execution times in de-
fault scenario. As in the following, horizon-
tal bars denote average values and vertical
bars indicate the standard deviation.
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Figure A.4: Similar scenario as in fig. A.3,
but now with Erlang-distributed execution
times.
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Figure A.6: Similar scenario as in fig. A.3,
but now only one replication is recorded.

portfolios, which is decreased. The results indicate that it should be rather safe to use GA-
based portfolio selection, even though the runtime distributions might be unknown.

Risk

Another interesting aspect is the impact of λ on the quality of the selected portfolios. Fig-
ure A.5 compares the GA-selected portfolios generated with λ = 1 (from fig. A.3) and
λ = 0. Adjusting the fitness function to take no risk (λ = 0) has the desired effect, i.e., even
random algorithm selection now performs much better than without prior portfolio selection
(cf. results for no portfolio selection in fig. A.3). This is useful in scenarios where adapta-
tion cannot be guaranteed. UCB2 still outperforms the other policies: its performance on
safe portfolios is only slightly worse than on risky ones.
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Replications

Finally, it is important to evaluate the impact of noise in the performance data. If noisy
data deteriorates the effectiveness of portfolio selection, it is necessary to eliminate the
noise — e.g., by increasing the number of replications. The more replications are required
per algorithm, the more time is required for the prior simulation space exploration. Fig-
ure A.6 shows the performance gains of portfolio selection when each synthetic runtime
distributions is sampled only once — instead of thrice — to construct the performance data.
As the results are rather similar to those shown in figure A.3, it seems sufficient to try out
each algorithm only once per problem. However, these results depend on the number of
considered problems (noise may be balanced out) and the shape of the run time distribu-
tions.
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A.6 Sample Listings

� �

<?xml v e r s i o n =" 1 . 0 " e n c o d i n g ="UTF−8" ?>
2 < p l u g i n xmlns=" h t t p : / /www. j a m e s i i . o rg / p l u g i n "

x m l n s : x s i =" h t t p : / /www. w3 . o rg / 2 0 0 1 / XMLSchema−i n s t a n c e "
x s i : s c h e m a L o c a t i o n =" h t t p : / /www. j a m e s i i . o rg / p l u g i n
h t t p : / /www. j a m e s i i . o rg / p l u g i n / p l u g i n . xsd ">

< i d name=" Wumpusworld S i m u l a t o r " v e r s i o n =" 1 . 0 " / >
4 < f a c t o r y c l a s s n a m e =

" s i m u l a t o r . wumpusworld . WumpusWorldProcessorFac tory " / >
< / p l u g i n >
� �

Listing A.1: A sample plug-in definition file. It contains a unique name, a version, and the
fully-qualified Java class name of the concrete factory.

� �

1 <?xml v e r s i o n =" 1 . 0 " e n c o d i n g ="UTF−8" ?>
< p l u g i n t y p e xmlns=" h t t p : / /www. j a m e s i i . o rg / p l u g i n t y p e "

x m l n s : x s i =" h t t p : / /www. w3 . o rg / 2 0 0 1 / XMLSchema−i n s t a n c e "
x s i : s c h e m a L o c a t i o n =" h t t p : / /www. j a m e s i i . o rg / p l u g i n t y p e
h t t p : / /www. j a m e s i i . o rg / p l u g i n t y p e / p l u g i n t y p e . xsd ">

3 < i d name=" s i m u l a t i o n / c o m p u t a t i o n a l g o r i t h m plug−i n s "
v e r s i o n =" 1 . 0 " / >

< a b s t r a c t f a c t o r y >
5 james . c o r e . p r o c e s s o r . p l u g i n t y p e . A b s t r a c t P r o c e s s o r F a c t o r y

< / a b s t r a c t f a c t o r y >
7 < b a s e f a c t o r y >

james . c o r e . p r o c e s s o r . p l u g i n t y p e . P r o c e s s o r F a c t o r y
9 < / b a s e f a c t o r y >

< d e s c r i p t i o n > S i m u l a t i o n / Computa t ion a l g o r i t h m
plug−i n s . A s i m u l a t i o n / c o m p u t a t i o n a l g o r i t h m
computes i n a s i m u l a t i o n run t h e t r a j e c t o r y o f an
i n i t i a l i z e d ( e x e c u t a b l e ) model . T y p i c a l l y
s i m u l a t i o n / c o m p u t a t i o n a l g o r i t h m s w i l l on ly work
on one e x e c u t a b l e model i n t e r f a c e , and t h u s t h e r e
has t o be a t l e a s t one s i m u l a t i o n a l g o r i t h m p e r
e x e c u t a b l e model " t y p e " . < / d e s c r i p t i o n >

11 < / p l u g i n t y p e >
� �

Listing A.2: A sample plug-in type definition file. It contains a unique name and a version,
as well as the fully-qualified class names of both abstract and base factory. It may also
contain additional elements, such as a short description.
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� �

1 p u b l i c c l a s s SampleWrapper implements

I S a m p l e J a m e s I I I n t e r f a c e {

3 E x t e r n a l O b j e c t e x t O b j e c t ;

5 p u b l i c SampleWrapper ( ) {
/ / Initialize external components

7 / / [...]
e x t O b j e c t = new E x t e r n a l O b j e c t ( . . . ) ;

9 }

11 @Override
p u b l i c R e s u l t e x e c u t e T a s k ( P a r a m e t e r B l o c k p a r a m e t e r s ) {

13 / / Convert James II parameters to parameters for the external component
/ / [...]

15
/ / Call the external component

17 E x t e r n a l R e s u l t e x t R e s u l t = e x t O b j e c t . execTask ( ) ;

19 / / Convert external result to a James II result object
/ / [...]

21 re turn new R e s u l t ( . . . ) ;
}

23
}
� �

Listing A.3: A sample wrapper, which implements a JAMES II interface and provides
the functionality by internally delegating the task to an external component that is invisible
from the outside.
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� �

p u b l i c c l a s s B e s t S i m u l a t o r I n T h e W o r l d F a c t o r y ex tends

P r o c e s s o r F a c t o r y {
2

p u b l i c Simula t i onRun c r e a t e ( IModel model ,
S imu la t i onRun s i m u l a t i o n ,

4 P a r t i t i o n p a r t i t i o n , P a r a m e t e r B l o c k params ) {
throw new Run t imeExcep t ion ( " E r r o r . " ) ;

6 }

8 p u b l i c double g e t E f f i c e n c y I n d e x ( ) {
re turn Double .MAX_VALUE;

10 }

12 p u b l i c L i s t < Class <?>> g e t S u p p o r t e d I n t e r f a c e s ( ) {
L i s t < Class <?>> r e s u l t = new A r r a y L i s t < Class <? > >() ;

14 r e s u l t . add ( IModel . c l a s s ) ;
re turn r e s u l t ;

16 }

18 p u b l i c boolean s u p p o r t s S u b P a r t i t i o n s ( ) {
re turn true ;

20 }

22 }
� �

Listing A.4: This processor factory (i.e., a factory to create a simulation algorithm)
signals that the simulation algorithm it provides is applicable to all kinds of models
(�����������	
����������) in JAMES II and even supports distributed simulation
(����������������������). Since its efficiency of ���������������� cannot be
surpassed, it will always be selected (unless automatic selection is overridden by a manual
configuration).
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