
ARCHITECTURES
FOR COMPUTER VISION
From Algorithm to Chip with Verilog

Hong Jeong

ARCHITECTURES FOR
COMPUTER VISION

ARCHITECTURES FOR
COMPUTER VISION
FROM ALGORITHM TO CHIP
WITH VERILOG

Hong Jeong
Pohang University of Science and Technology, South Korea

This edition first published 2014
© 2014 John Wiley & Sons Singapore Pte. Ltd.

Registered office
John Wiley & Sons Singapore Pte. Ltd., 1 Fusionopolis Walk, #07-01 Solaris South Tower, Singapore 138628.

For details of our global editorial offices, for customer services and for information about how to apply for
permission to reuse the copyright material in this book please see our website at www.wiley.com.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
expressly permitted by law, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate photocopy fee to the Copyright Clearance Center. Requests for permission should be
addressed to the Publisher, John Wiley & Sons Singapore Pte. Ltd., 1 Fusionopolis Walk, #07-01 Solaris South
Tower, Singapore 138628, tel: 65-66438000, fax: 65-66438008, email: enquiry@wiley.com.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and
product names used in this book are trade names, service marks, trademarks or registered trademarks of their
respective owners. The Publisher is not associated with any product or vendor mentioned in this book. This
publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is
sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice
or other expert assistance is required, the services of a competent professional should be sought.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing
this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of
this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is
sold on the understanding that the publisher is not engaged in rendering professional services and neither the
publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert
assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Jeong, Hong.
Architectures for computer vision : from algorithm to chip with Verilog / Hong Jeong.

pages cm.
Includes bibliographical references and index.
ISBN 978-1-118-65918-2 (cloth)

1. Verilog (Computer hardware description language) 2. Computer vision. I. Title. II. Title: From algorithm to
chip with Verilog.

TK7885.7.J46 2014
621.39–dc23

2014016398

Set in 9/11pt Times by Aptara Inc., New Delhi, India

1 2014

http://www.wiley.com
mailto:enquiry@wiley.com

Contents

About the Author xi

Preface xiii

Part One VERILOG HDL

1 Introduction 3
1.1 Computer Architectures for Vision 3
1.2 Algorithms for Computer Vision 6
1.3 Computing Devices for Vision 7
1.4 Design Flow for Vision Architectures 8

Problems 9
References 10

2 Verilog HDL, Communication, and Control 11
2.1 The Verilog System 11
2.2 Hello, World! 12
2.3 Modules and Ports 14
2.4 UUT and TB 17
2.5 Data Types and Operations 17
2.6 Assignments 20
2.7 Structural-Behavioral Design Elements 22
2.8 Tasks and Functions 25
2.9 Syntax Summary 27
2.10 Simulation-Synthesis 29
2.11 Verilog System Tasks and Functions 30
2.12 Converting Vision Algorithms into Verilog HDL Codes 33
2.13 Design Method for Vision Architecture 36
2.14 Communication by Name Reference 38
2.15 Synchronous Port Communication 40
2.16 Asynchronous Port Communication 44
2.17 Packing and Unpacking 50
2.18 Module Control 51
2.19 Procedural Block Control 55

Problems 61
References 62

vi Contents

3 Processor, Memory, and Array 63
3.1 Image Processing System 63
3.2 Taxonomy of Algorithms and Architectures 64
3.3 Neighborhood Processor 66
3.4 BP Processor 68
3.5 DP Processor 70
3.6 Forward and Backward Processors 73
3.7 Frame Buffer and Image Memory 74
3.8 Multidimensional Array 76
3.9 Queue 77
3.10 Stack 79
3.11 Linear Systolic Array 81

Problems 87
References 88

4 Verilog Vision Simulator 89
4.1 Vision Simulator 90
4.2 Image Format Conversion 91
4.3 Line-based Vision Simulator Principle 98
4.4 LVSIM Top Module 100
4.5 LVSIM IO System 102
4.6 LVSIM RAM and Processor 105
4.7 Frame-based Vision Simulator Principle 109
4.8 FVSIM Top Module 111
4.9 FVSIM IO System 112
4.10 FVSIM RAM and Processor 116
4.11 OpenCV Interface 122

Problems 125
References 128

Part Two VISION PRINCIPLES

5 Energy Function 131
5.1 Discrete Labeling Problem 132
5.2 MRF Model 132
5.3 Energy Function 135
5.4 Energy Function Models 136
5.5 Free Energy 138
5.6 Inference Schemes 139
5.7 Learning Methods 141
5.8 Structure of the Energy Function 142
5.9 Basic Energy Functions 144

Problems 147
References 147

6 Stereo Vision 151
6.1 Camera Systems 151
6.2 Camera Matrices 153

Contents vii

6.3 Camera Calibration 156
6.4 Correspondence Geometry 158
6.5 Camera Geometry 162
6.6 Scene Geometry 163
6.7 Rectification 165
6.8 Appearance Models 167
6.9 Fundamental Constraints 169
6.10 Segment Constraints 171
6.11 Constraints in Discrete Space 172
6.12 Constraints in Frequency Space 176
6.13 Basic Energy Functions 179

Problems 180
References 180

7 Motion and Vision Modules 183
7.1 3D Motion 184
7.2 Direct Motion Estimation 187
7.3 Structure from Optical Flow 188
7.4 Factorization Method 191
7.5 Constraints on the Data Term 192
7.6 Continuity Equation 197
7.7 The Prior Term 197
7.8 Energy Minimization 201
7.9 Binocular Motion 203
7.10 Segmentation Prior 205
7.11 Blur Diameter 205
7.12 Blur Diameter and Disparity 207
7.13 Surface Normal and Disparity 208
7.14 Surface Normal and Blur Diameter 209
7.15 Links between Vision Modules 210

Problems 212
References 213

Part Three VISION ARCHITECTURES

8 Relaxation for Energy Minimization 219
8.1 Euler–Lagrange Equation of the Energy Function 220
8.2 Discrete Diffusion and Biharminic Operators 224
8.3 SOR Equation 225
8.4 Relaxation Equation 226
8.5 Relaxation Graph 231
8.6 Relaxation Machine 234
8.7 Affine Graph 236
8.8 Fast Relaxation Machine 238
8.9 State Memory of Fast Relaxation Machine 240
8.10 Comparison of Relaxation Machines 242

Problems 243
References 244

viii Contents

9 Dynamic Programming for Energy Minimization 247
9.1 DP for Energy Minimization 247
9.2 N-best Parallel DP 254
9.3 N-best Serial DP 255
9.4 Extended DP 256
9.5 Hidden Markov Model 260
9.6 Inside-Outside Algorithm 265

Problems 273
References 274

10 Belief Propagation and Graph Cuts for Energy Minimization 277
10.1 Belief in MRF Factor System 278
10.2 Belief in Pairwise MRF System 280
10.3 BP in Discrete Space 283
10.4 BP in Vector Space 285
10.5 Flow Network for Energy Function 288
10.6 Swap Move Algorithm 291
10.7 Expansion Move Algorithm 295

Problems 299
References 300

Part Four VERILOG DESIGN

11 Relaxation for Stereo Matching 305
11.1 Euler–Lagrange Equation 305
11.2 Discretization and Iteration 307
11.3 Relaxation Algorithm for Stereo Matching 308
11.4 Relaxation Machine 309
11.5 Overall System 309
11.6 IO Circuit 312
11.7 Updation Circuit 314
11.8 Circuit for the Data Term 317
11.9 Circuit for the Differential 319
11.10 Circuit for the Neighborhood 320
11.11 Functions for Saturation Arithmetic 321
11.12 Functions for Minimum Argument 323
11.13 Simulation 324

Problems 325
References 326

12 Dynamic Programming for Stereo Matching 327
12.1 Search Space 327
12.2 Line Processing 330
12.3 Computational Space 331
12.4 Energy Equations 333
12.5 DP Algorithm 334
12.6 Architecture 337
12.7 Overall Scheme 338

Contents ix

12.8 FIFO Buffer 342
12.9 Reading and Writing 344
12.10 Initialization 345
12.11 Forward Pass 347
12.12 Backward Pass 352
12.13 Combinational Circuits 353
12.14 Simulation 355

Problems 358
References 358

13 Systolic Array for Stereo Matching 361
13.1 Search Space 361
13.2 Systolic Transformation 363
13.3 Fundamental Systolic Arrays 365
13.4 Search Spaces of the Fundamental Systolic Arrays 368
13.5 Systolic Algorithm 371
13.6 Common Platform of the Circuits 373
13.7 Forward Backward and Right Left Algorithm 375
13.8 FBR and FBL Overall Scheme 378
13.9 FBR and FBL FIFO Buffer 384
13.10 FBR and FBL Reading and Writing 387
13.11 FBR and FBL Preprocessing 388
13.12 FBR and FBL Initialization 389
13.13 FBR and FBL Forward Pass 391
13.14 FBR and FBL Backward Pass 394
13.15 FBR and FBL Simulation 395
13.16 Backward Backward and Right Left Algorithm 397
13.17 BBR and BBL Overall Scheme 400
13.18 BBR and BBL Initialization 406
13.19 BBR and BBL Forward Pass 407
13.20 BBR and BBL Backward Pass 410
13.21 BBR and BBL Simulation 412

Problems 414
References 415

14 Belief Propagation for Stereo Matching 417
14.1 Message Representation 418
14.2 Window Processing 420
14.3 BP Machine 421
14.4 Overall System 422
14.5 IO Circuit 425
14.6 Sampling Circuit 427
14.7 Circuit for the Data Term 429
14.8 Circuit for the Input Belief Message Matrix 431
14.9 Circuit for the Output Belief Message Matrix 434
14.10 Circuit for the Updation of Message Matrix 435
14.11 Circuit for the Disparity 436
14.12 Saturation Arithmetic 437
14.13 Smoothness 439

x Contents

14.14 Minimum Argument 441
14.15 Simulation 442

Problems 443
References 444

Index 447

About the Author

Hong Jeong joined the Department of Electrical Engineering at POSTECH in January 1988, after
graduating from the Department of EECS at MIT. He has worked at Bell Labs, Murray Hill, New Jersey
and has visited the Department of Electrical Engineering at USC. He has taught integrated courses,
such as multimedia algorithms, Verilog HDL design, and recognition engineering, in the Department
of Electrical Engineering at POSTECH. He is interested in filling in the gaps between computer vision
algorithms and VLSI architectures, using GPU and advanced HDL languages.

Preface

This book aims to fill in the gaps between computer vision and Verilog HDL design. For this purpose,
we have to learn about the four disciplines: Verilog HDL, vision principles, vision architectures, and
Verilog design. This area, which we call vision architecture, paves the way from vision algorithm to chip
design, and is defined by the related fields, the implementing devices, and the vision hierarchy.

In terms of related fields, vision architecture is a multidisciplinary research area, particularly related
to computer vision, computer architecture, and VLSI design. In computer vision, the typical goal of
the research is to design serial algorithms, often implemented in high-level programming languages and
rarely in dedicated chips. Unlike the well-established design flow from computer architecture to VLSI
design, the flow from vision algorithm to computer architecture, and further to VLSI chips, is not well-
defined. We overcome this difficulty by delineating the path between vision algorithm and VLSI design.

Vision architecture is implemented on many different devices, such as DSP, GPU, embedded pro-
cessors, FPGA, and ASICs. Unlike programming software, where the programming paradigm is more
or less homogeneous, designing and implementing hardware is highly heterogeneous in that different
devices require completely different expertise and design tools. We focus on Verilog HDL, one of the
representative languages for designing FPGA/ASICs.

The design of the vision architecture is highly dependent on the context and platform because the
computational structures tend to be very different, depending on the areas of study – image processing,
intermediate vision algorithms, and high-level vision algorithms – and on the specific algorithms used –
graph cuts, belief propagation, relaxation, inference, learning, one-pass algorithm, etc. This book is
dedicated to the intermediate vision, where reconstructing 3D information is the major goal.

This book by no means intends to deal with all the diverse topics in vision algorithms, vision
architectures, and devices. Moreover, it is not meant to report the best algorithms and architectures
for vision modules by way of extensive surveys. Instead, its aim is to present a homogeneous approach
to the design from algorithm to architecture via Verilog HDL, that guides the audience in extracting the
computational constructs, such as parallelism, iteration, and neighborhood computation, from a given
vision algorithm and interpreting them in Verilog HDL terms. It also aims to provide guidance on how
to design architectures in Verilog HDL so that the audience may be familiarized enough with vision
algorithm and HDL design to proceed to more advanced research. For this purpose, this book provides
a Verilog vision simulator that can be used for designing and simulating vision architectures.

This book is written for senior undergraduates, graduate students, and researchers working in computer
vision, computer architecture, and VLSI design. The computer vision audience will learn how to convert
the vision algorithms to hardware, with the help of the simulator. The computer architecture audience will
learn the computational structures of the vision algorithms and the design codes of the major algorithms.
The VLSI design audience will learn about the vision algorithms and architectures and possibly improve
the codes for their own needs.

This book is organized with four independent parts: Verilog HDL, vision principle, vision architecture,
and Verilog design. Each chapter is written to be complete in and of itself, supported by the problem sets

xiv Preface

and references. The purpose of the first part is to introduce the vision implementation methodology, the
Verilog HDL for image processing, and the Verilog HDL simulator for designing the vision architecture.
Chapter 1 deals with the taxonomy of the general and specialized algorithms and architectures that are
considered typical in vision technology. The pros and cons of the different implementations are discussed,
and the dedicated implementation by Verilog HDL design addressed. Chapter 2 introduces the basics of
Verilog HDL and coding examples for communication and control modules. These modules are general
building blocks for designing vision architectures. Chapter 3 introduces Verilog circuit modules, such as
processor, memory, and pipelined array, which are the building blocks of the vision architectures. The
vision architectures are designed using processors, memories, and possibly pipelined arrays, connected
by the communication and control modules. Chapter 4 introduces the Verilog vision simulators, specially
built for designing vision architectures. The simulator consists of the unsynthesizable module, which
functions as an interface for image input and output, and the synthesizable module, which is a platform
for building serial and parallel architectures. This platform is tailored to the specific architectures in later
chapters.

The second part, comprising Chapters 5–7, introduces the fundamentals of intermediate vision algo-
rithms. Instead of treating diverse fields in vision research, this part focuses on the energy minimization,
stereo, motion, and fusion of vision modules. Chapter 5 introduces the energy function, which is a
common concept in computer vision algorithms. The energy function is explained in terms of Markov
random field (MRF) estimation and the free energy concept. The energy minimization methods and the
structure of a typical energy function are also explained. Chapter 6 is dedicated to stereo vision. Instead
of surveying the extensive research done, this chapter focuses on the constraints and energy minimiza-
tion. A typical energy function that is subsequently designed with various architectures is discussed.
Chapter 7 deals with motion estimation and fusion of vision modules. Instead of an extensive survey, this
chapter focuses on the motion principles and the continuity concept that unify the various constraints in
motion estimation. This chapter also deals with the fusion of vision modules, directly with intermediate
variables, bypassing the 3D variables, which give strong constraints for determining the intermediate
vision variables. This chapter closes with a set of equations linking the 2D variables directly, i.e. blur
diameter, surface normal, disparity, and optical flow.

The third part, which comprises Chapters 8–10, introduces the algorithms and architectures of the
major algorithms: relaxation, dynamic programming (DP), belief propagation (BP), and graph cuts (GC).
The computational structures and possible implementations are also discussed. Chapter 8 introduces the
concept underlying the relaxation algorithm and architecture. In addition to the Gauss–Seidel and Jacobi
algorithms, this chapter introduces other types of architectures: specifically, extensions to the Gauss–
Seidel–Jacobi architecture. In Chapter 9, the concept underlying the DP algorithm and architecture is
introduced, and the computational structures of various DP algorithms discussed. Finally, the algorithms
and architectures of BP and GC are addressed in Chapter 10, and their computational structures and
possible implementations discussed.

The fourth part, which comprises Chapters 11–14, is dedicated to the Verilog design of stereo matching
with the major architectures: relaxation, DP, and BP. All the designs are provided with complete Verilog
HDL codes that have been verified by function simulation and synthesis. Chapter 11 addresses the Verilog
design of the relaxation architecture. Chapter 12 deals with the Verilog design of serial architectures for
the DP. The design is aimed at executing stereo matching with the serial vision simulator. Chapter 13 intro-
duces the systolic array in Verilog HDL. This chapter explains in detail how to design the control module
and the systolic array, connected by local neighborhood connections. Finally, Chapter 14 deals with BP
design for stereo matching. This chapter also explains in detail the design methods with Verilog HDL.

All the designs are accompanied by complete source codes that have all been proven correct via
simulation and synthesis tests. A package of the codes in the textbook, and the complementary codes, is
provided separately for readers. The codes are carefully provided with the general constructs in standard
Verilog HDL, which is free from IPs and vendor-dependent codes. I hope that this book will provide
an important opportunity that stirs the reader’s ability to develop more advanced vision architectures

Preface xv

for various vision modules, to deal with the topics that are not dealt within this book because of space
constraints, and to fill in the gaps between computer vision and VLSI design.

Much of the work was accomplished during my one year sabbatical leave from POSTECH from
September 2012 to August 2013, inclusive. This work was supported by the “Core Technology Devel-
opment for Breakthrough of Robot Vision Research” and the “Development of Intelligent Traffic Sign
Recognition System to cope with Euro NCAP” funded by the Ministry of Trade, Industry & Energy (MI,
Korea). During the writing of this book, Altera Corporation provided necessary equipment and tools
through the Altera University Program. I would like to thank Michelle Lee at Altera Korea and Bruce
Choi at Uniquest, Inc. for helping me to participate in the program. I am also grateful to Peter Lee at
Vadas, Inc. for supporting my laboratory financially through projects and Jung Gu Kim at VisionST,
Inc. for providing required data and equipment. Some of the programs and bibliography searches were
done with help from my students, In Tae Na, Byung Chan Chun, and Jeong Mok Ha. Other students, Jae
Young Chun, Seong Yong Cho, and Ki Young Bae, helped with preparation, editing, and proofreading.
I sincerely appreciate publisher James Murphy for choosing my writing subject and editor Clarissa Lim
for helping me with various pieces of advice and notes. I also remember my colleagues, Prof. Rosalind
Picard at MIT Media Lab and Prof. C.-C. Jay Kuo at USC. I thank Professors, Jae S. Lim, Alan V.
Oppenheim, Charles E. Leiserson, and Eric Grimson at MIT, Prof. Bernard C. Levy at UC Davis, Prof.
Stephen E. Levinson at University of Illinois, and Prof. Jay Kyoon Lee at Syracuse University. Finally, I
sincerely appreciate Prof. Bruce R. Musicus at MIT for his generous support and guidance.

Hong Jeong
hjeong@postech.ac.kr

mailto:hjeong@postech.ac.kr

Part One
Verilog HDL

1
Introduction

This chapter addresses the status of the vision architectures in four major fields: computer architec-
tures, vision algorithms, vision devices, and design methodologies. Computer architecture, which is
characterized by serial, parallel, pipelined, and concurrent computation, must be tuned to the under-
lying computational structures – parallel, iterative, and neighborhood computation – that are used in
intermediate computer vision. Vision algorithms, which have evolved from heuristic methods to generic
structured algorithms at each level of computer vision from low level to high level, must be investigated in
terms of computational structures. The vision devices, ranging from CPUs to very-large-scale integration
(VLSI) chips, must be investigated in terms of their flexibility and computational complexity. Finally,
the design flow from vision to chip, which is not well-defined, must be defined and delineated using a
general methodology.

1.1 Computer Architectures for Vision
Vision architectures are special forms of more general computer architectures. In the early 1970s, a
general point of view on computer architecture was to see it as an information flow of data and instructions
into a processor (Figure 1.1). Flynn’s taxonomy (Flynn 1972) is the most universally accepted method of
classifying computer systems. The instruction stream is defined as the sequence of instructions performed
by the processing unit. The data stream is defined as the data traffic exchanged between the memory and
the processing unit. According to Flynn’s classification, the instruction stream and data stream can both
be either singular or multiple in nature.

Flynn’s taxonomy classified architectures into single instruction single data stream (SISD), Single
instruction multiple data stream (SIMD), multiple instruction single data stream (MISD), and multiple
instruction multiple data stream (MIMD). In this classification system, an SISD machine is the traditional
serial architecture where instructions and data are executed serially. This is often referred to as the Von
Neumann architecture. An SIMD machine is a parallel computer, where one instruction is executed many
times with different data in a synchronized manner. An extreme example is the systolic array (Kung
and Leiserson 1980; Kung 1988; Leiserson and Saxe 1991). In an MISD machine, each processing unit
operates on the data independently via independent instruction streams. This computational technique is
also called pipelining. A set of pipelined vectors is referred to as a superscalar. An MIMD machine is a
fully parallel machine where multiple processors execute different instructions and data independently.

This concept can be formalized by a set of state machines, such as the Moore machine or the Mealy
machine. Suppose a processing element (PE) in a state Qk receives date Dk and instruction Ik and

Architectures for Computer Vision: From Algorithm to Chip with Verilog, First Edition. Hong Jeong.
© 2014 John Wiley & Sons Singapore Pte. Ltd. Published 2014 by John Wiley & Sons Singapore Pte. Ltd.
Companion Website: www.wiley.com/go/jeong

http://www.wiley.com/go/jeong

4 Architectures for Computer Vision

SISD SIMD

MISD

GMSV GMMP

DMSV DMMP

MIMD

Data Stream(s)
MultipleSingle

In
st

ru
ct

io
n

St
re

am
(s

)

Si
ng

le
M

ul
ti

pl
e

M
em

or
yG
lo

ba
l

D
is

tr
ib

ut
ed

Communication/Synchronization

Shared variables Message passing

Figure 1.1 Flynn–Johnson taxonomy of computer architectures

generates output Ok, (k = 0, 1,…) according to the state transition T(⋅) and output generation H(⋅). Then,
the SISD machine is modeled by a Mealy machine:{

Qk+1 = T(Qk, Dk, Ik),
Ok = H(Qk, Dk, Ik), k = 0, 1, 2,… .

(1.1)

Other machines can be modeled by a set of PEs by combining data and instructions in various ways.
As such, an SIMD machine is modeled as a set of identical PEs, operating on different data but controlled
by the same instruction set: {

Ql
k+1 = T

(
Ql

k, Dl
k, Ik

)
,

Ol
k = H

(
Ql

k, Dl
k, Ik

)
, ∀l ∈ [0, N − 1],

(1.2)

where N denotes the number of PEs. The MISD machine is modeled as{
Ql

k+1 = Tl
(
Ql

k, Ol−1
k , Il

k

)
,

Ol
k = Hl

(
Ql

k, Ol−1
k , Il

k

)
, ∀l ∈ [0, N − 1],

(1.3)

where the data input is Ol−1
k = Dl

k and the output is ON−1
k . The MIMD machine is a set of different

machines: {
Ql

k+1 = Tl
(
Ql

k, Dl
k, Il

k

)
,

Ol
k = Hl

(
Ql

k, Dl
k, Il

k

)
, ∀l ∈ [0, N − 1].

(1.4)

Introduction 5

Nowadays, the MIMD category includes a wide variety of different computer types and as a result,
taxonomies have been added to the MIMD class. The Flynn–Johnson taxonomy, which is one of many
classification methods, proposed a further classification of such machines based on their memory structure
(global or distributed) and the mechanism used for communications/synchronization (shared variables
or message passing).

A global memory shared variable (GMSV) machine is a machine with shared memory multiprocessors.
A global memory message passing (GMMP) machine is a machine that uses global memory and message
passing. This type of machine is rarely used. In distributed memory shared variables (DMSV) machines,
memory resources are distributed to the processors and the variables are shared. In distributed memory
message passing (DMMP) machines, memory resources are distributed and message passing is used. In
this classification system, DMSV and DMMP machines are loosely coupled machines, and GMSV and
GMMP machines are tightly coupled machines. In addition to data and instructions, this classification
system introduces two more variables: memory M and message m,

{
Ql

k+1 = Tl
(
Ql

k, Dl
k, Il

k, Ml
k, ml

k

)
,

Ol
k = Hl

(
Ql

k, Dl
k, Il

k, Ml
k, ml

k

)
, ∀l ∈ [0, N − 1].

(1.5)

The differences between the four machine types are based on the various combinations of the memory
M, shared by a set of processors, and the messages m, passed between a set of processors.

Modern computer processors, such as central processing units (CPUs), digital signal processors
(DSPs), field-programmable gate arrays (FPGAs), embedded processors (EPs), and graphics processing
units (GPUs), tend to evolve into huge systems that use more computational resources – more pipelines,
multi cores, more shared memory, more distributed memory, and multi-threading.

For computer vision, the computational architectures depend on the levels of vision (early, interme-
diate, and high-level vision) and the algorithms (relaxation, graph cut, belief propagation, etc). Starting
from serial algorithms for general computers, we usually search for more structured algorithms and
architectures for better implementation. The passage from low to intermediate vision is characterized
by high-levels of resource usage for numerical computations and memory space, and the structures
that are used are usually parallel, repetitive, or local neighborhood structures. High-level vision, on the
other hand, is characterized by high-level resource usage for symbolic computation, and the structures
that are used are usually concurrent, heterogeneous, modular, and hierarchical computational structures.
The intermediate level is closer to the regular, SIMD, and MISD architectures and the high level is
closer to the general, SISD, and MIMD architectures. From early to intermediate level, the computa-
tional structures are characterized by pixel or local neighborhood computations, recursive updating, and
scale-dependent (hierarchical or pyramidal) and parallel computations. We will concentrate on designing
architectures for such early- to intermediate-level operations that are parallel and iterative and rely on
neighborhood computations.

Similar to general computer architecture, vision architecture can be modeled by state machines.
Assume an image plane = {(x, y)|x ∈ [0, N − 1], y ∈ [0, M − 1]} and an image defined over , I =
{I(p)|p ∈ }. A neighborhood Np is a set of (topologically) connected pixels around p ∈ , and a
window Ap is a set of pixels around p ∈ . A typical operation is to update the state of a pixel using
the neighborhood values along with the image input. The operation is repeated for all pixels until the
values converge. The outputs are the pixel states in equilibrium. The state equation for parallel iterative
neighborhood computation is defined as follows:

{
Q(k+1)(Ap) = T(Q(k)(N(Ap)), I(Ap)), k = 0, 1,… , K − 1,

O(Ap) = Q(K−1)(Ap), ∀p ∈ ,
(1.6)

6 Architectures for Computer Vision

where the superscript denotes the iteration and K denotes the maximum number of iterations. The
parallelism can be achieved by the set of window Ap. The iteration means the recursive computation
of the states. The neighborhood computation is represented by the local neighborhood function N(Ap).
This is a basic computational structure in low to intermediate vision that generally uses large amounts of
spatial and temporal resources. The run-time is O(MNK), which is proportional to the image size
MN, the window size A, and the number of iterations. The required space is O(MN), which is proportional
to the image size MN.

1.2 Algorithms for Computer Vision
With regards to stereo vision, there are survey papers (Brown et al. 2003; Kappes et al. 2013; Scharstein
and Szeliski 2002; Szeliski et al. 2008) and a site (Middlebury 2013), where state-of-the-art algorithms
are listed and test datasets are stored.

The algorithms can be categorized into local matching and the global matching methods. Local
matching algorithms use matching costs from a small neighborhood of target pixels. Most local matching
algorithms adopt a three-step procedure for matching – cost computation, aggregation, and disparity
computation. The first and the third steps are common both in local and global matching methods. The
aggregation step gathers measured matching costs in pre-defined matching support, whose definition
varies depending on the kind of algorithm. On the other hand, global matching algorithms use matching
costs from every pixels on the image to determine single-pixel correspondence. Global matching methods
commonly consist of the optimization step instead of the aggregation step. In the optimization step, the
algorithm aims to search acceptable solution that minimizes or maximizes some kind of energy function.
Energy functions have various constraints about geometries and appearances of two views.

Though some of the local matching algorithms show acceptable performance based on error rate and
processing speed, most top-ranked algorithms are global matching methods, such as belief propagation
(BP) and graph cuts (GC), which are based on energy functional models. In general, global matching
methods require more computations and more memory than local methods.

The vision algorithms consist of a set of basic general algorithms that can be combined in various
manners. Some of the general algorithms are listed in Table 1.1.

Conceptually, the exhaustive search is a kind of benchmark for the global solution, ignoring all
the other practical requirements such as time and space requirements. The Gauss-Seidel and Jacobi
methods and relaxation algorithm are the fundamental algorithms in iterative optimization methods.
The dynamic programming algorithm is an efficient algorithm for divide-and-conquer type problems.
The simulated annealing (SA) algorithm is an intelligent sampling strategy for statistical optimization,

Table 1.1 Comparison of major vision algorithms

Technology Performance Parallelism Time Flexibility

Exhaustive Search Ultimate goal No NP-hard General
Gauss–Seidel Low Serial Fast General
Jacobi Low Parallel Fast General
Relaxation Medium Parallel Medium General
DP Good Parallel Fast 1D problem only
SA Good No Slow General
BP Near best Parallel Slow General
GC Best Serial Slow General

cf. DP: dynamic programming, SA: simulated annealing, BP: belief propagation, and GC: graph cuts.

Introduction 7

which is guaranteed to converge to the global minima if some ideal conditions, such as generation
probability, acceptance probability, and annealing schedules, are satisfied. The BP is the result of the
long evolution of stochastic relaxation that determines marginal distributions iteratively in a Bayesian
tree. The GC algorithm has evolved from max-flow min-cut problems to the current swap move and
expansion move algorithms (Boykov et al. 2001). Owing to the BP and GC algorithms, the performance
of vision algorithms has improved dramatically. Some research has even reported that due to the two
algorithms there may be no more margins than a few percent to the global optimum. The two algorithms
are general problem solvers but require vast resources for computation and space. The GC algorithm
requires global communication that may in turn require serial computation. The BP algorithm is based
on MRF and neighborhood computation that may require parallel computation.

There are also common optimization techniques in computer vision fields such as expectation
maximization (EM), Bayesian filtering, Kalman filtering, particle filtering, and linear programming
relaxation (LPR).

1.3 Computing Devices for Vision
The lifespan of hardware systems is very short compared to the life spans of algorithms and software
systems. In spite of the poor documentation and the difficulty of surveying the field, we can get a feel
for the state of the field from the survey lists for device types, performance, and trends (Lazaros et al.
2008; Nieto et al. 2012; Tippetts et al. 2011, 2013).

In image processing, the most dedicated devices are FPGAs and ASICs (refer to the books on FPGAs
and image processing (Ashfaq et al. 2012; Bailey 2011; Gorgon 2013, 2014; Samanta et al. 2011). They
are fast enough for real-time processing, yet small enough for portability and mass production.

The flow from algorithm to architecture to device is characterized by the constraints and requirements.
The algorithms and architectures are closer to concepts, and the device is the reality with a smaller
degree of freedom. Therefore, any algorithm, targeted for implementation, must be developed from the
beginning so as to satisfy the device constraints.

Although there are numerous types of devices, they can be classified into roughly six categories:
Generic CPUs, EPs, DSPs, GPUs, FPGAs, and ASICs. All of these six platforms, except dedicated digital
circuits, are common tools for hardware realization. The major differences between these platforms are
speed, flexibility, and development time. In addition, there may be other relevant factors such as cost,
power consumption, and time required for updates.

The major devices and factors are summarized in Table 1.2. With regards to performance and cost,
single-purpose, dedicated ASICs are rated best, and the generic processors, which are targeted for general
application, are rated lowest. However, with regards to flexibility, which deals with major updates or
modifications, the order is reversed: ASICs are rated lowest and the generic processors are the best.

Table 1.2 Comparison of major devices

Technology Performance/cost Time until running Speed Flexibility

ASIC Very High Very long Very high No
FPGA Medium Long High Low
GPU High Medium High Medium
DSP High Medium Medium High
EP Low Short Low High
Generic CPU Low to medium Very short Very low Very high

cf. EP: Embedded Processor.

8 Architectures for Computer Vision

In terms of development time, ASICs take the longest amount of time and the generic processors only
require programming time.

We want to explore the pure computational structures of the vision algorithms and use them as
much as possible in developing dedicated architectures. Because of this, we exclude algorithms that
need sophisticated software control. Devices such as GPU, DSP, EP, and generic processor are heavily
dependent on software. This book focuses on the FPGA/ASIC because they are genuinely dedicated
hardware solutions that do not require software interventions.

1.4 Design Flow for Vision Architectures
The task of researchers is to define vision problems, explore vision algorithms, and build software or
hardware systems. For hardware realization, the vision algorithm can be coded into devices such as
embedded processors, GPUs and CPUs with hyper-threading, and streaming SIMD extensions (SSE).
ASICs, FPGAs, and programmable logic devices (PLD) are more dedicated devices. The chip design
process is separate from the vision algorithms. The algorithms cannot be applied directly to chip design.
The vision algorithm is inherently serial and the chip is inherently concurrent.

There must be an intermediate stage between the vision algorithm and the chip design. This stage,
called vision architecture, must integrate the vision algorithm, which is mostly serial, into the design
architectures, which are concurrent. The overall design flow is illustrated in Figure 1.2.

The design flow consists of the three parts: vision, architecture, and chip design. The vision part
means the ordinary vision research and the algorithms for programming. In the vision architecture, the
vision algorithms are analyzed in terms of computational structure, and redesigned using processing
elements, memory, and connections into architecture. Given the architecture and specifications, the chip

Vision problem

Algorithm design

Architecture design

Architecture algorithm

HDL coding

Simulation, function verification

Gate/transistor-level design

Simulation, timing verification

Implementation (board, FPGA, ASICs)

Prototype testing

Vision

Vision architecture

Chip design

HDL coding

Synthesis

Implementation

Figure 1.2 Design flow from vision to chip

Introduction 9

design progresses sequentially from hardware description language (HDL) coding, to synthesis, and
then to implementation. The HDL coding programs the architecture description into the register transfer
language (RTL) format. This code is converted into circuits, i.e. net list, in the synthesis stage. Each
stage is a loop consisting of design and testing. There are variety of potential realizations for the net list,
such as FPGA (i.e. programming) and ASICs (i.e. hard copy) and full custom.

The FPGA design consists of the following stages.

1. Define a new project and enter the design using VHDL or Verilog HDL languages. The design can
also be entered using schematic diagrams that can be translated to any HDL.

2. Compile and simulate the design. Find and fix timing violations. Obtain power consumption estimates
and perform the synthesis.

3. Download the design to the FPGA using either a parallel port or a USB cable. Designs can also be
downloaded via the Internet to a target device.

Once an FPGA design is verified, validated, and used successfully, there is an option to migrate it to a
structured ASIC. This option is known as hard copy. Using hard copy, FPGA design can be migrated to
a hard-wired design removing all configuration circuitry and programmability so that the target chip can
be produced in high volume. Hard-copied chips use 40% less power than FPGAs and the internal delays
are reduced.

Vision algorithms can be implemented using computational structures that are either serial or parallel
and either iterative or recursive. Therefore, we have to reinterpret the vision algorithms in terms of
architectural modalities and describe them in architectural terms. To expand the vision research to
architecture, vision engineers have to learn two principles:

� Architecture design: Given an algorithm, analyze the computational structures in terms of data
structures – memory, queue, stack, and processing – and express them in a hardware algorithm.

� HDL coding: Code the algorithm in HDL and test.

The first task is to convert vision algorithms into hardware algorithms. Vision algorithms are free from
the constraints of a specific realization and as a result can rely on generic programming. The hardware,
on the other hand, must be described in terms of memory, data structure, communication, and control.
Likewise, the vision algorithm can be coded in a high-level programming language, but the architecture
must be designed using the lower-level HDL programming language.

There are integrated programming environments such as Quatus by Altera, Inc. and ISE by Xilinx,
Inc. They are the software tools for synthesis and analysis of HDL designs, which enable the developer
to synthesize their designs, perform timing analysis, examine RTL diagrams, simulate a design’s reaction
to different stimuli, and configure the target device. We will use Quartus tools as a reference design tool
and Verilog as a design language. Verilog is preferred in this book because it closely resembles C, which
is one of the most prominent languages in vision research.

Problems
1.1 [Architecture] Explain the advantages and disadvantages of SISD. How are problems addressed

in DSP?

1.2 [Architecture] What are the pros and cons of SIMD and MISD?

1.3 [Architecture] What are the problems with shared and distributed memory systems?

1.4 [Architecture] For GMSV and GMMP, how must Equation (1.5) be defined?

1.5 [Architecture] Express an average operation (one-pass) in terms of Equation (1.6).

10 Architectures for Computer Vision

1.6 [Architecture] Express a difference operation (one-pass) for 𝜕

𝜕x
I and 𝜕

𝜕y
I in terms of Equation (1.6).

1.7 [Devices] Explain the processors – CPU, DSP, EP, GPU, FPGA, and ASIC – in terms of their
core functions and specifications. In addition, what are the state-of-the-art technologies for each
device?

1.8 [Algorithm] Understanding vision algorithms in terms of computational structure is very impor-
tant. Name some vision algorithms that make use of (1) one-pass/multi-pass, (2) neighborhood
operation, (3) iteration, and (4) hierarchical structures.

1.9 [Algorithm] The labeling problem assigns labels l ∈ [0, L − 1] to the pixels in = {(x, y)|x ∈
[0, N − 1], y ∈ [0, M − 1]}. How many cases are there in labeling? If the labels of the neighbors
are equal, how many cases are there? Discuss the role of constraints in the labeling problem.

1.10 [Design] Download Altera Quartus or Xilinx ISE and acquaint yourself with the tools. What are
the major functions of these tools? How can vision algorithms be designed into circuits?

References
Ashfaq A, Hameed T, and Mehmood R 2012 FPGA Based Intelligent Sensor for Image Processing: Image Processing

with FPGA. Lambert Academic Publishing.
Bailey DG 2011 Design for Embedded Image Processing on FPGAs. Wiley-IEEE Press.
Boykov Y, Veksler O, and Zabih R 2001 Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern

Anal. Mach. Intell. 23(11), 1222–1239.
Brown M, Burschka D, and Hager G 2003 Advances in computational stereo. IEEE Trans. Pattern Anal. Mach. Intell.

25(8), 993–1008.
Flynn M 1972 Some computer organizations and their effectiveness. IEEE Trans. Computer C-21, 948–960.
Gorgon M 2013 FPGA Imaging: Reconfigurable Architectures for Image Processing and Analysis. Springer.
Gorgon M 2014 FPGA Imaging: Reconfigurable Architectures for Image Processing and Analysis. Springer.
Kappes JH, Andres B, Hamprecht FA, Schnorr C, Nowozin S, Batra D, Kim S, Kausler BX, Lellmann J, Komodakis

N, and Rother C 2013 A comparative study of modern inference techniques for discrete energy minimization
problems EMMCVPR 2013.

Kung H and Leiserson C 1980 Algorithms for VLSI processor arrays In Introduction to VLSI Systems (ed. Mead C
and Conway L) Addison-Wesley Reading, MA pp. 271–291.

Kung S 1988 VLSI Array Processors. Prentice-Hall, Englewood Cliffs, NJ.
Lazaros N, Sirakoulis GC, and Gasteratos A 2008 Review of stereo vision algorithms: from software to hardware.

International Journal of Optomechatronics 2(4), 435–462.
Leiserson C and Saxe J 1991 Retiming synchronous circuitry. Algorithmica 6(1), 5–35.
Middlebury U 2013 Middlebury stereo home page http://vision.middlebury.edu/stereo (accessed Sept. 4, 2013).
Nieto A, Vilarino D, and Sanchez V 2012 Towards the Optimal Hardware Architecture for Computer Vision InTech

chapter 12.
Samanta S, Paik S, and Chakrabarti A 2011 Design & Implementation of Digital Image Processing using FPGA:

FPGA-based digital image processing. Lambert Academic Publishing.
Scharstein D and Szeliski R 2002 A taxonomy and evaluation of dense two-frame stereo correspondence algorithms.

International Journal of Computer Vision 47(1-3), 7–42.
Szeliski RS, Zabih R, Scharstein D, Veksler OA, Kolmogorov V, Agarwala A, Tappen M, and Rother C 2008 A

comparative study of energy minimization methods for Markov random fields with smoothness-based priors.
IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1068–1080.

Tippetts BJ, Lee DJ, Archibald JK, and Lillywhite KD 2011 Dense disparity real-time stereo vision algorithm for
resource-limited systems. IEEE Trans. Circuits Syst. Video Techn 21(10), 1547–1555.

Tippetts BJ, Lee DJ, Lillywhite K, and Archibald J 2013 Review of stereo vision algorithms and their suitability
for resource-limited systems http://link.springer.com/article/10.1007%2Fs11554-012-0313-2 (accessed Sept. 4,
2013).

http://vision.middlebury.edu/stereo
http://vision.middlebury.edu/stereo
http://link.springer.com/article/10.1007
http://link.springer.com/article/10.1007
http://link.springer.com/article/10.1007%2Fs11554-012-0313-2

2
Verilog HDL, Communication,
and Control

As C/C++ is a major language for programming vision algorithms, Verilog HDL/VHDL is a major
language for designing analog/digital circuits. These two types of languages share common properties: a
textual description consisting of expressions, statements, and control structures. One important difference
is that HDLs explicitly include the notion of time and connectivity. As in other types of high-level
programming languages, there are numerous design languages such as Impulse C, VHDL, Verilog,
SystemC, and SystemVerilog, to name a few. In addition, Verilog HDL is one of the most widely used
HDLs, along with VHDL, and its syntax is very similar to that of C, allowing vision engineers to be
comfortable starting a circuit design.

This HDL was standardized in IEEE Standard 1364-2005 (IEEE 2005), resembles C, and covers a wide
range constructs, from gate level to system level. SystemVerilog in IEEE Standard 1800-2012 (IEEE
2012) is a superset of Verilog-2005. In addition to the modules in Verilog-2005, SystemVerilog defines
more design elements such as the program, interface, checker, package, primitive, and configuration. In
addition, the language interface, VPI, in Verilog-2005 is generalized into DPI. This book is mostly based
on Verilog-2005 (IEEE 2005).

This chapter introduces the Verilog syntax, the communication, and control modules. For the Verilog
syntax, we will learn the minimal amount of syntax and grammar necessary for designing a vision
architecture. (Refer to (Stackexchange 2014; Tala 2014) for introduction and questions.) The behavioral
model, which is a high-level description similar to C, is adopted in various pieces of coding throughout
this book. For the design method, we will learn the concept of communication, such as synchronous and
asynchronous communication, and that of control, such as datapath method and distributed control.

2.1 The Verilog System
The overall structure of a design system consists of two modules: a test bench (TB) (a.k.a. test fixture)
and unit under test (UUT) (a.k.a. device under test). The UUT is a target design that is to be implemented
on hardware to execute a certain algorithm. The TB is not a part of the design, but a utility for testing the
UUT (Figure 2.1). Aided by a simulator, the TB generates pattern vectors as inputs to the simulated UUT,
gathers the output, and compares it with the expected values, generating a warning message or counting
the errors, allowing any incorrect design to be accurately caught. After simulation and testing, the UUT

Architectures for Computer Vision: From Algorithm to Chip with Verilog, First Edition. Hong Jeong.
© 2014 John Wiley & Sons Singapore Pte. Ltd. Published 2014 by John Wiley & Sons Singapore Pte. Ltd.
Companion Website: www.wiley.com/go/jeong

http://www.wiley.com/go/jeong

12 Architectures for Computer Vision

Test Bench Unit Under Test

Figure 2.1 The Verilog system: TB-UUT modules

is synthesized for devices such as FPGA, CPLD, and ASIC, aided by synthesis tools and libraries.
While the two modules are programmed by the same HDL language, their properties differ greatly. The
target module must consist of synthesizable Verilog codes only, but the test bench can consist of both
synthesizable and unsynthesizable Verilog codes.

For a vision system, the UUT can be considered as hardware that executes a certain vision algorithm,
receives a series of images, and emits the results through input and output ports. For proper testing,
the TB must provide a set of representative image examples to detect any possible blind spots in the
algorithm or design that were not noted at the programming stage. For example, if we are designing a
stereo matching system, the TB must supply a pair of images to the UUT and assess the output from the
UUT by comparing the results with the predicted disparities.

Because our concern is a vision system, in the next chapter we will develop a TB-UUT system, called
a vision simulator, dedicated to vision.

2.2 Hello, World!
To become familiar with Verilog HDL, let us start by comparing it with C language. Simply put, the
syntax of Verilog is very similar to that of the C programming language. The major features in common
are the case sensitivity, control flow keywords, and operators. The major differences are the logic values,
variable definition, data types, assignment, concurrency, procedural blocks with begin/end instead of
curly braces, and compilation stages. While a C program must be compiled once, aided by a compiler,
an HDL program may undergo two stages, RTL in the HDL and netlist in the synthesizer.

Because the level of language is high enough, many algorithms in vision can be written in Verilog
HDL, if not for synthesis. For example, the ‘hello world’ examples for Verilog and C are listed side by
side below.

Hello world in Verilog Hello world in C

module main;

initial

begin

$display(“Hello, world!\n”);
$finish;

end

endmodule

#include<stdio.h>

main();

{

printf(“Hello, world!\n”);
}

When executed using a Verilog simulator, the program outputs the same string as that of the C program.
A program in Verilog always starts with module and ends with endmodule, after some possible
headers. The scope is delimited by begin and end instead of the curly braces in C. In addition, there
are many common features between the two languages. To make this program work, a file containing
the above contents, hello.v, is provided and executed with a Verilog simulator to obtain the string,
Hello, world! with a one-line feed. There are numerous simulators available, such as Verilog-XL,

Verilog HDL, Communication, and Control 13

NCVerilog, VCS, Finism, Aldec, ModelSim, Icarus Verilog, and Verilator, to name a few. In addition,
there are integrated development environments (IDEs) such as Altera Quartus and Xilinx ISE for editing,
simulating, debugging, synthesis, testing, and programming.

When programming in Verilog HDL, there are three hardware description methods: structural descrip-
tion, behavioral description, and mixed description. A structural description is used to describe how the
device is connected internally at the circuit and gate level. A behavioral description is used to describe
how the device should operate in an imperative manner (cf. object-oriented and declarative in SystemVer-
ilog). Considering the complexity of vision algorithms, we will follow the behavioral description method
most of the time in this book.

As the next step, let us design a simple adder, a four-bit adder, using the behavioral model.

c = a + b, (2.1)

where a, b, and c are all four-bit integers. The source codes are included in the file, adder.v.

Listing 2.1 A 4-bit adder: adder.v

‘timescale 1ns/1ps //unit time/precision

module adder(//ports

input [3:0] a, b, //input ports

output [3:0] c //output ports

);

assign c= a+ b; //continuous assignment

endmodule

The module adder is the target design module, written in RTL syntax, to be simulated and possibly
synthesized. It can be considered a procedure having two input arguments a and b and one output
argument c, considered a call by value protocol (instead of call by reference). In the declaration section,
three ports (similar to arguments in C) are declared as input and output. However, the argument
directions are not formally specified in C. The statement assign c=a+b indicates that c is changed as
soon as a or b is changed. This assignment, called a continuous assignment, is designed for the behavior
of the combinational circuit.

In addition to the main modules, a TB must also be used to examine the adder module. The test bench,
tb.v, is shown below.

Listing 2.2 A test bench: tb.v

‘timescale 1ns/1ps

module tb; //no ports

//declaration

reg [3:0] a, b; //reg type for storage

wire [3:0] c; //wire for connection

//instantiation

adder UUT (.a(a),.b(b),.c(c)); //run UUT

14 Architectures for Computer Vision

//test vector generation

initial begin //run once for simulation

//initialize Inputs

a = 0; //execute sequentially

b = 0;

#100; //wait 100 ns

//add stimulus here

repeat (1000) begin //repeat 1000 times

a = a + 1; //execute sequentially

b = b + 2;

#100; //wait 100 ns

end //repeat end

end //initial end

endmodule

Because this module was designed only for testing, no port declaration is needed. It consists of two
concurrent constructs: instantiation and an initial block, which may appear in arbitrary order. Instantiation
is used to activate the adder module by calling the module as a statement. This module will be activated
whenever the input values are changed. Unlike C, where all variables must be declared and defined before
the statements referencing them, the input variables may not be defined lexically before instantiation but
must be defined somewhere inside the same module. In the initial block, the values for the input ports
are generated according to the designer’s scheme. In a more elaborate system, the desired values must be
generated according to the target algorithm, be compared to the actual values, and indicate the location
of the errors.

In a typical IDE system such as Altera Quatus (with ModelSim) and Xilinx ISE (ISIM or ModelSim),
the Verilog simulator shows the values of the variables in a timing diagram (Figure 2.2). The left side of
the figure shows the data and variables along with their values, in binary format. The horizontal axis is
a time axis with the units specified in the target module. In this diagram, the variable values are shown
in both numeric and signal forms. After a successful simulation, the system enters the synthesis stage
during which a net-list file is generated, which can be observed in a schematic diagram.

2.3 Modules and Ports
An arbitrarily large system can be built by connecting small modules with input and output ports in a
hierarchical manner. As such, a hierarchical hardware description structure is realized that allows the
modules to be embedded within other modules. In C, this mechanism is realized through procedure calls
with parameter passing, forming nested calls. In Verilog HDL, each module definition stands alone, and
the modules are not nested. To connect the modules, higher-level modules create instances of lower-level

Figure 2.2 The simulator output: timing diagram

Verilog HDL, Communication, and Control 15

module A
endmodule

module C
endmodule

module B
endmodule

module D
endmodule

module E
endmodule

module F
endmodule

Figure 2.3 A hierarchy of modules

modules and communicate with them through input, output, and bidirectional ports. In this sense, an
instantiation is similar to a function call in C.

Figure 2.3 illustrates a system consisting of six modules in a hierarchical connection. In this system,
the top module A calls (i.e. instantiates) B, C, and D; C calls E; and D calls E and F twice. An instantiation
creates a circuit, and thus the code means that E and F are created twice, respectively.

To avoid a naming conflict, every identifier must have a unique hierarchical path name. The hierarchy
of modules and the definition of items such as tasks and named blocks within the modules must have
unique names. As with the connected modules, the hierarchy of names forms a tree structure, where
each module instance, generated instance, task, function, named begin-end, or fork-join block defines
a new hierarchical level or scope in a particular branch of the tree. The name of the module or module
instance is sufficient to identify the module and its location in the hierarchy. Therefore, a module can
reference a module below it (downward referencing), a module above it (upward referencing), and a
variable (variable referencing).

Communication between modules is specified through ports, similar to arguments in C. However,
there are significant differences between the two languages in terms of the nature of the arguments used.
Unlike C, the direction of the ports must be specified using an input, output, or inout. In addition,
the port types must be specified in terms of net-type and reg-type only, regardless of whether scalar
or vector data are used. Typically, the input-output pair must be declared as reg-wire. The variable
reg retains its value until it is changed by executing corresponding statements, and the variable wire
simulates a passive wire whose value is determined by the driver, reg.

Figure 2.4 illustrates this concept. Module A calls module B with two arguments, a and b. In this
figure, the pair, a-c, is declared by reg-wire, and the pair, b-d, is declared by wire-reg. (In actuality,

module A

endmodule

module B(c,d)

endmodule

reg a;
wire b;
Bp(a,b);

input c;
output d;
wire c;
reg d;

Figure 2.4 Connecting two modules by ports

16 Architectures for Computer Vision

wire b and wire c are omitted.) This concept holds, in general, for a reg-net type pair, which simulates
a driver-physical wire.

The net data types represent physical connections between structural entities such as gates. A net will
not store a value (except for the trireg net), but its value will be determined by the values of its drivers.
If no driver is connected to a net, its value has to have a high-impedance (z).

There are two ways to name the ports: positional (a.k.a. in-place) and named association, without
allowing a mixed association. In the example, instantiation p(.d(b), .c(a)) in a named association
is equivalent to instantiation p(a,b) in a positional association. The ports are either scalar or vector in
reg-type and net-type but not in arrays or variables.

A module is the region enclosed between the keywords module and endmodule that contains all of
the Verilog constructs except compiler directives having a certain structure.

Listing 2.3 Module constructs

module module_name (port-name, port-name,...,port-name)

//port declarations

input declarations //port directions

output declarations

inout declarations

//type declarations

net declarations //data and variable declarations

variable declarations

parameter declarations //parameter declarations

//functions and tasks

function declarations //function definition

task declarations //task definition

//execute once for TB

initial begin //one-time execution statements

instantiations //instantiation of other modules

end

//procedural statements

always begin //statements for a design

procedural statements

end

endmodule

Followed by the keyword, module is the module identifier and port list. The main body of the module
consists of a port declaration, variable declaration, function and task definition, and statements in the
initial and procedural blocks, which are defined between begin and end. Among them, the initial block,
which is executed once, is provided for a test bench. The order of all constructs, except the statements
inside begin and end, does not matter.

Verilog HDL, Communication, and Control 17

The port list can be specified by the in-place or name list. The I/O declaration defines the direction of
data flow for the ports. The variables are declared into three types: net type, variable type, and parameter.
The function and task correspond to a function and procedure in C: a function returns a result, but a
procedure does not. In addition, a procedure itself can be a statement, but a function cannot. The initial
block is executed once and is therefore used for a design simulation. The module under test herein must put
in the initial block. The main statements appearing in the procedure statements are specified by always.

2.4 UUT and TB
As previously mentioned, a design usually consists of a main module called the device under test (DUT)
(or UUT), and another module called the test bench (TB) (or test fixture). A UUT is designed for synthesis,
but a test bench is not. A test bench consists of test vectors (test suite or test harness), a UUT, and an
instantiation. A set of test vectors must be generated and applied to an instantiated UUT as a stimulus
so that the responses may be observed. Just like any other module description, a test bench is written in
Verilog. A language-based test bench is portable and reproducible. The syntax of a TB is as follows.

Listing 2.4 The test bench constructs

module testbench_name

instantiation //instantiation of UUT

initial //one time execution

begin

procedural-statement //test vector generation

... //checking and

procedural-statement //report

end

endmodule

The structure consists of an instantiation and initial block. The purpose of an instantiation is to call
the UUT, similar to a procedure call in C. However, unlike C, the argument values are defined later in the
initial block. The purpose of an initial block is to provide argument values to the UUT and observe the
output from the UUT and to provide other jobs such as comparing the output with the expected values,
counting errors, and issuing warnings, all under the control of the designer.

A detailed description is shown in Figure 2.5. As shown on the left, the TB sends test signals to
the DUT and receives the response in return. The internal structure of the TB is illustrated in detail on
the right. A simulation with the TB is realized by an instantiation in the initial block. The pattern
generator provides a set of test patterns including critical input cases that are supplied to both the DUT
and the algorithm, which is to be executed by the UUT. Both responses from the TB and algorithm are
collected, observed, and compared by the comparator to see if any mismatches exist. The observation
results are reported outside by characters, diagrams, or graphs.

2.5 Data Types and Operations
Thus far, we have learned the concepts of the UUT-TB and module-port. Now, let us describe in detail the
syntax needed for constructing such modules. A value set is a set of data types designed to represent the
data storage and transmission elements in a digital system. The Verilog value set consists of four basic
values, 0 and 1, for ordinary logic, and x and z for unknown and high-impedance states. For example,

18 Architectures for Computer Vision

TB UUT

(a) The connection of
UUT-TB

Pattern

UUT

Algorithm

Comparison
report

(b) The TB structure

Figure 2.5 The UUT and the TB

one bit can have the values, 1’b0, 1’b1, 1’bx, and 1’bz, where the bases are ’b (binary),’o (octal),
’d (decimal), which is the default value, and ’h (hexadecimal).

There are three groups of data types: net data type, variable data type, and parameter. The net data type
represents physical connections and thus does not store a value (except trireg). Its value is determined
by the values of its drivers and thus has high impedance if disconnected. The exception is trireg, which
holds the previously driven value even when disconnected from the driver. The driver connection is
represented by a continuous assignment statement. The net type consists of wired logic (wire, wand, and
wor), tri-state (tri, triand, trior, tri0, tri1, and trireg), and power (supply0 and supply1).

Among the net types, the wire and tri nets are used for nets that are driven by a single gate or
continuous assignment. The wire net is used when a driver drives a net, and the tri net is used when
multiple drivers drive a net. A wired net is used to model wired logic configurations. The wor/trior
nets create a wired-or, such that if the value of any of the drivers is 1, the resulting value of the net is 1.
Similarly, the wand/triand nets represent a wired-and, such that when the value of any driver is 0, the
value of the net is 0.

The trireg net stores a value to model the charge storage nodes. It can be in one of two states: a
driven state or a capacitive state, each of which corresponds to either a connected or disconnected state.
The tri0 and tri1 nets represent nets with resistive pull-down and resistive pull-up devices on them.
The supply0 and supply1 nets are used to model the power supplies in a circuit.

The variable type is an abstraction of a data storage element, as in C. The values are initially default
and are determined later through procedural assignment statements. The variable data types are reg,
integer, real, time, and realtime. The reg type is for a register that stores data temporarily in a
procedural assignment. It is used to represent either a combinational circuit or a register that is sensitive
to edges or levels of signals. The integer and time variable data types are not for hardware elements
but for a convenient description of the operations. The integer and real types are general-purpose
variables used for manipulating quantities that are not regarded as hardware registers. The time variable
is used for storing and manipulating simulation-time values in cases where timing checks are required
and for diagnostics and debugging purposes.

The net and variable types can be configured as arrays. An n-dimensional array is represented by a
variable identifier and multiple indices: [MSB_1:LSB_1]...[MSB_n:LSB_n], where MSB and LSB
are integers.

Listing 2.5 Arrays

[MSB_1:LSB_1]...[MSB_n:LSB_n] variable_identifier

[MSB_1:LSB_1]...[MSB_m:LSB_m]

Verilog HDL, Communication, and Control 19

The index convention is a row-major order, that is, the LSB changes most rapidly. A variable identifier
is presented between the indices. The indices before and after the variable are called packed and
unpacked, respectively. Packed arrays can have any number of dimensions. They provide a mechanism
for subdividing a vector into subfields, which can be conveniently accessed as array elements. A packed
array differs from an unpacked array, in that the whole array is treated as a single vector for arithmetic
operations. An unpacked array differs from a packed array in that the whole array cannot be accessed,
but rather each element has to be treated separately. (Unfortunately, the multidimensional packed array
is possible only in SystemVerilog.) The memory is realized with a reg-type array.

Example 2.1 (Arrays) Examples of arrays are as follows.

reg a[7:0]; //8 1-bit scalar register

reg [7:0] b; //1 8-bit vector register

reg c[7:0][0:255]; //8 x 256 array of 1-bit

reg [0:7] d [0:255]; //256 8-bit vector indexed from 0 to 7

//The followings are allowed only in SystemVerilog.

reg [1:3][7:0] e; //24-bit 3-field vector

reg [1:3][7:0] f[0:255] //256 24-bit 3-field vectors

reg [1:3][7:0] g[1:2][0:255] //512 24-bit 8-field vectors

In the example, reg could have been replaced with any of the net or variable types.
Parameters do not belong to either a net or variable type but are constants. There are two types of

parameters: module parameters (parameter, defparam) and specify parameters (specify, spec-
param). The parameters cannot be modified at runtime, but can be modified at compilation time to have
values that are different from those specified in the declaration assignment, allowing a customization of
the module instances. The non-local parameter values can be altered in two ways: the defparam state-
ment, which allows assignment to parameters using their hierarchical names, and the module instance
parameter value assignment, which allows values to be assigned in line during module instantiation.

The net types are further specified by the drive strength and propagation delay. There are two types
of strengths: charge strength for trireg and drive strength for net signals. The types of drive strength
are supply, strong, pull, and weak. A signal with drive strength propagates from a gate output and
a continuous assignment output. The charge strength specification is used with trireg with small,
medium, and large. The net delay is specified with triple delays (rise, fall, transition), which indicate
a rise delay, fall delay, and transition to a high-impedance value. Each of these delays can be further
specified through (min:typ:max) keywords.

Example 2.2 (Strengths and delays) Some typical examples are as follows:

trireg a; //charge strength medium

trireg (small) #(0,0,100) b; //charge strength and delay

trireg (large) unsigned [0:7] c; //charge with range

and #(10) and1 (out,input1,input2); //delay

and #(10,20) and2 (out,input1,input2); //delay

bufif0 #(1,2,3) buff0 (i01,io2,dir); //delay

bufif0 #(1:2:3,4:5:6,7:8:9) buff1 (io1, io2, dir); //delay

Now, let us consider the operators defined for the data types. Verilog defines a set of unary, binary,
and ternary operators. For bit-wise logic, ~, &, and | represent NOT, AND, and OR, respectively; ˆ
and ~ˆ/ˆ~ represent XOR and XNOR, respectively. The logical operators are !, &&, and || for NOT,

20 Architectures for Computer Vision

AND, and OR, respectively. The reduction operators are unary operators, &, ~&, |, ~|, ˆ, and ~ˆ/ˆ~
representing AND, NAND, OR, NOR, XOR, and XNOR, respectively.

The arithmetic and shift operators are +, -, ~, *, /, %, and ** for add, subtract, 2’s complement,
multiply, divide, modulus, and exponent, respectively. The relational operators are >, <, >=, and <=. In
addition, the operators, == and =! are used for comparing two numbers excluding x and z. The operators,
=== and ==! are used for numbers with all four states considered.

The shift operators are >> and << for logical, and >>> and <<< for arithmetic shifts. The operators
{,}, {{}}, ?:, and , are concatenation, replication, conditional, and event-or, respectively.

Example 2.3 (Expressions) Some examples are as follows.

&4’b1001=0 //reduction

false: 4’b0000!, true: 4’b0010! //logic value

{2’b10,2’b01} = 4’b1001 //concatenation

4’b0100 & 4’b01xz = 4’b0100 //bit-wise logic

~2’b10 = 2’b01 //bit-wise complement

16’b0,8’bz01 = 8’bzzzzzz01 //bit-wise

true: 2’b10 < 4’b010 //logic statement

2’h06 == 4’b0110 //logic statement

X ? Y:Z //if X is true then Y, else Z

An event-or can be used instead of or in the following case: the expressions, @(clock or trig)
regb = rega and @(clock,trig) regb = rega, are identical, indicating an assignment occurring
when an event occurs on clock or trig. The delay expression is a triplet, (minimum:typical:maximum),
as in (16’d10:16’d50:16’d100). The compiler directives are ‘include, ‘define, and parameter,
where ‘define is used as a global, and parameter as a local to a module.

2.6 Assignments
Unlike in C, where only one type of assignment exists, there are two basic forms of assignments in
Verilog: continuous assignment to drive the nets and procedural assignments to update the variables.
Roughly speaking, they are introduced to specify explicitly whether an assignment is for combinational
or sequential circuits.

The purpose of a continuous assignment is to represent a signal change in a combinational circuit by
assigning values to the nets. The assignment operator is the pair assign and =. As in combinational
logic, the left-hand side of this operator is changed whenever the value of the right-hand side changes.

Example 2.4 (Continuous assignments) The two expressions are effectively the same.

Continuous declaration Declaration, assignment

wire (strong1, pull0) b = a; wire b;

assign (strong1, pull0) b = a;

In the example, the two expressions are identical.
A delay, called a net delay, can be introduced by either a declaration or an assignment.

Example 2.5 (Delays) The continuous assignment with delay.

wire #100 a;

assign wire c = (#20) a + b;

Verilog HDL, Communication, and Control 21

In the first expression, any change of a will take effect after 100 unit times from the cause event. In a
continuous assignment, changes in a or b will take effect with a change of c in 20 time units.

Similar to a delay, strength can be used as a declaration or an assignment. This applies only to
assignments to scalar nets of the following types: wire, tri, trireg, wand, triand, tri0, wor,
trior, and tri1. In other types, the strengths are fixed. For example, the strength value is always 1 for
the following net types: supply1, strong1, pull1, weak1, and highz1. Similarly, the strength value
for an assignment is always 0 for the following: supply0, strong0, pull0, weak0, and highz0.

Example 2.6 (Strengths) The strengths for a continuous assignment.

assign (strong1, pull0) b = a; //the same as below

assign (pull0, strong1) b = a;

assign (pull0, pull1) b = a; //wrong

In the example, the first two expressions are identical: the order does not matter. The third expression is
wrong: the strengths conflict with each other.

In the behavioral model, all of the statements are contained through the following procedures: initial
construct, always construct, task, and function. The activity starts at the control constructs, initial and
always. All of the initial and always constructs are enabled at the beginning of the simulation and run
separately and concurrently. However, the initial construct is executed only once, but the always construct
is permanently executed. There is no implied order of execution between the initial and always constructs.
There is also no limit to the number of initial and always constructs that can be defined in a module.

An initial block is executed once and is externally concurrent. The assignments are either sequential (=)
or concurrent (<=). This construct is not for a synthesis but for a simulation. Contrarily, an always block
is executed permanently until $finish or $stop appears and is internally concurrent. The assignments
are either sequential (=) or concurrent (<=). This construct is provided for synthesis.

The behavioral model is characterized by procedural assignments that are used to place values in
variables. Unlike a continuous assignment, a procedural assignment does not have duration but holds a
value until the next procedural assignment occurs for that variable. Procedural assignments appear within
procedures such as always, initial, task, and function. These assignments can be thought of as
triggered assignments that happen when the flow of execution in the simulation reaches an assignment
within a procedure. Reaching the assignment can be controlled by event controls, delay controls, if
statements, case statements, and looping statements.

There are three types of procedural assignments: = for blocking, <= for nonblocking, and assign-
deassign and force-release for procedural continuous assignments. The first type of procedural
assignment is blocking assignments that are executed before the execution of the statements that follow in
a sequential block. The second type is nonblocking assignments, which are all concurrent, independent,
and order-free within the same parallel block. All of the nonblocking assignments in a parallel block
undergo a two-step execution: the first step (evaluation, execution, and scheduling) and an update.

Example 2.7 (Blocking and nonblocking assignments) Swapping values.

Blocking statements Nonblocking statements

always @(posedge clock) begin

c = a; //temporary variable c

a = b;

b = c;

end //always

always @(posedge clock) begin

b <= a; //RHS for the 1st step

a <= b; //LHS for the 2nd step

end //always

22 Architectures for Computer Vision

The swapping can be realized by both blocking and nonblocking assignments. With blocking assign-
ments, a temporary variable is needed. With nonblocking assignments, two assignments are concurrent.
The variables on the right-hand side are old values, and the ones on the left-hand side are new values
obtained after the swapping.

The third type is a procedural continuous assignment with assign-deassign, which assigns values
only when active and prevents ordinary procedural assignments from affecting the values of the assigned
registers when inactive. This allows expressions to be driven continuously onto variables or nets. The
assign part in a procedural continuous assignment statement overrides all procedural assignments to a
variable. The deassign part in a procedural statement terminates a procedural continuous assignment
to a variable. The value of the variable remains the same until the driver reg is assigned a new value
through a procedural assignment or procedural continuous assignment. Yet another type is a procedural
continuous assignment with force-release, which overrides a procedural assignment or procedural
continuous assignment such that the variable resumes its original value when released.

Example 2.8 (assign-deassign) The procedural continuous assignment.

always @(posedge clock)

Count = Count + 10; //Count generation

always @(reset or set)

if (reset) //asynchronous reset

assign Count = 0; //prevents counting, until reset goes low

else if (set) //asynchronous set

assign Count = 1; //prevents counting, until set goes low

else

deassign Count; //resume counting on next posedge clock

This is a counting example that contains a blocking procedural assignment and procedural continuous
assignments. The counting event in the first always block is suppressed by the events in the second
always block.

2.7 Structural-Behavioral Design Elements
Two design elements are possible: structural and behavioral. A structural design aims at a faithful
hardware realization and uses fourteen gates such as and, or, not, nand, nor, xor, xnor, buf,
buf0, buf1, notif0, and notif1 and twelve switches including cmos, nmos, rtran, and tran (see
IEEE1364-2005 for a full list). In a structural model, an instance statement has the following form.

Listing 2.6 Instantiation

component-name instance_identifier (expr, expr, ..., expr);

Here, the component name indicates the built-in gate.

Example 2.9 (Structure of module) An inhibition gate can be built as follows.

module Inhibitor (in, invin, out); //BUT-NOT

input in, invin; //port declaration

Verilog HDL, Communication, and Control 23

output out;

wire notinvin; //variable

not Q1 (.out(notinvin),.in(invin)); //instantiation

and Q2 (out,in,notinvin); //instantiation

endmodule

This example is for an inhibitor designed by two built-in gates. The arguments can be specified by either
an in-place or a naming method.

As previously stated, all procedures in the behavioral model are defined in the following four state-
ments: initial construct, always construct, task, and function. The initial and always constructs are enabled
at the beginning of a simulation. The initial construct is executed only once, but the always construct is
permanently executed. There is no implied order of execution between the initial and always constructs,
and there is no limit to the number of initial and always constructs that can be defined in a module.

The behavioral (procedural) design is characterized by a procedural assignment for the blocking and
nonblocking processing, a begin-end block for the scope, and a sensitivity list for the synchronization.

Listing 2.7 Procedural assignments

Blocking assignment: variable-name = expression

Non-blocking assignment: variable-name <= expression

The statements with a blocking assignment are executed in order, but those with a nonblocking assignment
are executed concurrently.

The scope is determined by the begin-end pair.

Listing 2.8 Scopes

begin: block-name

variable declaration

parameter declarations

procedural statements

end

A scope consists of declarations and procedural statements. The always block consists of a sensitivity
list.

Listing 2.9 always block

always @(signal-name or signal-name) procedural statements

Whenever any signal in the list is changed, the procedural statements in the scope are executed sequen-
tially for blocking and concurrently for nonblocking.

24 Architectures for Computer Vision

The behavioral design is a high-level programming environment consisting of the following control
flows: condition (if, case), loop (for, repeat, while, forever), and fork/join, which are all
analogous to those in C.

Listing 2.10 Conditionals

if (condition) procedural-statement //if condition

else procedural-statement

case (selection-expression) //case statement

choice,...,choice: procedural-statements

...

choice,...,choice: procedural-statement

endcase

for (loop-index=first, loop-index <= last); //for loop

loop-index = loop-index+1;)

procedural-statement

repeat (index-expression) procedural-statement //repeat loop

while (logical-expression) procedural-statement //while loop

forever procedural-statement //forever loop

fork //fork statement

procedural-statement

join

Here, a forever statement indicates an infinite loop. The fork/join pair is used for parallel processes.
All statements (or blocks) between a fork/join pair begin their execution simultaneously upon the
execution flow hitting the fork. The execution continues after the join upon completion of the longest-
running statement or block between the fork and join.

Example 2.10 (fork/join) A simple example.

initial fork

$write(“A”); //print A

$write(“B”); //print B

begin #5 //wait 5 time units

$display(“C”); //display C

end

join

As a result of the simulation, we may have either sequence ‘ABC’ or ‘BAC’ printed out. In actuality,
the order of simulations between the first and second writes depends on the simulator implementation.

Verilog HDL, Communication, and Control 25

Procedure assignments have two methods for timing control: delay control and event control. Delay
control is used to specify the time duration between when a statement is first reached and when the
statement is actually executed. The event control expression allows a statement execution to be delayed
until a simulation event occurs in a concurrently executing procedure. There are two types of sim-
ulation events: implicit and explicit. An implicit event indicates a change of value on a net or vari-
able, and an explicit event indicates the occurrence of an explicitly named event triggered from other
procedures.

The timing controls are realized through three methods: # for delay control, @ for event control, and
wait for a combination of an event control and a loop. The event control can be made sensitive to signal
edges with posedge and negedge.

Example 2.11 (Timing control) The timing control example.

#100 b = a; //delay 100 time units

@c b = a; //at the change of c

@ (posedge clock) b = a; //positive edge of clock

always @(a or b, c) d= a+b+c; //event logical

always @(*) c = a+b; //equivalent to @(a or b)

always @* begin //equivalent to @(a,b,c,d)

c = a; d = b; e = c + d;

end

wait (!enable) b = a; //at the change of enable

The intra-assignment delay and event controls are the timing controls specified within an assignment
statement. They delay the assignment of a new value to the left-hand side, but the right-hand side
expressions are evaluated before the delay.

Example 2.12 (Intra-assignment) The example is as follows.

always @Swap

fork

#10 a = b;//at 10,

#10 b = a;//a=b and b=a

join

always @Swap

fork

a = #10 b;//at 0, tmp1=b, tmp2=a

b = #10 a;//at 10, a=tmp1, b=tmp2

join

In the code on the left, both a and b are sampled and set at the same simulation time, resulting in a
race condition. In the code on the right, the assignment is deferred 10 time units from the sampling.

Finally, a block of statements is a means for grouping two or more statements together so that they act
syntactically as a single statement. There are two types of blocks: a sequential block with begin-end
and a parallel block with fork-join.

2.8 Tasks and Functions
As in C, tasks and functions are common procedures that can be executed in different locations in a
program. In addition, they are building-blocks of large procedures, and thus, the source descriptions can
be easily built and debugged.

26 Architectures for Computer Vision

However, the two procedures have many different characteristics. Unlike those in C, a function must
execute in one simulation time unit, but a task can execute in multiple time units, according to time-
controlling statements. Another difference is that a function cannot enable a task, but a task can enable
other tasks and functions. As for the arguments, a function has at least one input type argument and does
not have an output or inout type argument, but a task can have zero or more arguments of any type.
A function returns a single value, but a task does not return a value. A function has no output, but a task
can have zero or more arguments of output and inout.

A function responds to an input value by returning a single value, but a task can return multiple values.
Because of this response, a function is used as an operand in an expression, but a task is used as a
statement.

A task is enabled from a statement that defines the argument values to be passed to the task and to
the variables that receive the results. Control is passed back to the enabling process after the task has
completed. If a task has timing controls inside it, then the time of enabling a task can be different from the
time at which the control is returned. A task can enable other tasks, which in turn can enable still other
tasks with no limit on the number of tasks enabled. Regardless of how many tasks have been enabled,
control does not return until all enabled tasks have completed.

There are two forms for tasks: task name-endtask and task name-parenthesis-endtask.

Listing 2.11 Tasks and functions

task task_name;

input declarations

output declarations

variable declarations

parameter declarations

procedural-statements

endtask

function result-type function-name;

input declarations

variable declarations

parameter declarations

procedural-statements

endfunction

The standard formats of task and function are shown.
Tasks without and with the optional keyword automatic are called static tasks and automatic task,

respectively. In a static task, all declared items are statically allocated and shared across all uses of the
task executing concurrently. In an automatic task, all declared items are allocated dynamically for each
invocation and cannot be accessed by hierarchical references. An automatic task can be invoked through
the use of its hierarchical name.

Because a function is limited in a unit simulated time, it cannot contain any time-controlled statements
with #, @, or wait and thus cannot enable tasks. A function definition contains at least one input
argument but not output or inout. A function must include an assignment of the function result value
to the internal variable that has the same name as the function name. Finally, a function should not have
any nonblocking assignments.

To see the differences between tasks and functions, let us look at the factorial example, which is a
typical example of recursion. The recursion can be realized by either a function or a task.

Verilog HDL, Communication, and Control 27

Example 2.13 (Factorial) The use of tasks and functions in factorial.

Task Function

module factorial_task;

//define the task

task factorial (level,result);

input [31:0] level;

output integer result;

integer i;

if (level >= 2)

factorial (level-1,result);

result = result * level;

else

result = 1;

endtask

//test the task

integer result;

integer n;

initial begin

for (n = 0; n <= 7; n = n+1)

begin

factorial(n,result);

$display(“%0d factorial=%0d”,

n, result);

end

end

endmodule //factorial_task

module factorial_function;

//define the function

function automatic integer factorial;

input [31:0] level;

integer i;

if (level >= 2)

factorial = factorial (level - 1)

* level;

else

factorial = 1;

endfunction

//test the function

integer result;

integer n;

initial begin

for (n = 0; n <= 7; n = n+1)

begin

result = factorial(n);

$display(“%0d factorial=%0d”,

n, result);

end

end

endmodule //factorial_function

On the left, the task calls itself recursively, and on the right, the function is called iteratively. The
factorial is a good example that shows the relationship between recursion and iteration.

2.9 Syntax Summary
The typical structure of a module is shown below, containing as many as possible Verilog constructs.

Listing 2.12 Summary of syntax

module arch_vision (Q1,Q2,Q3,Q4);

//declaration

input Q1,Q2; //ports

output[7:0] Q3;

inout Q4;

reg[&:0] Reg1,Mem1[1:254]; //variables

wire Wire1,Wire2,Wire3,Wire4;

parameter String = “vision architecture”;

//one time execution for Test bench

28 Architectures for Computer Vision

initial //for simulation only

begin: BlockName

Statements

end

//continuous assignments

assign Wire1 = Expression;

assign wire[3:0] Wire2 = Expression;

//procedural assignments

always @(sensitivity-list)

begin

procedural-statements;

end

//module instances, COMP defined in other module

COMP Q (Wire3,Wire4); //external module call

Task(.A(Q1),.B(Q4),.C(Q3)); //procedure call

Q3 = Function(Q1); //function call

//procedures definition

task Task:

input A; //ports

inout B;

output C;

begin //main part

Statements

end

endtask

//function definition

function[7:0] Function;

input A; //ports

begin

Function = Expression; //use Function <= RHS

end

endfunction

endmodule

The module consists of declaration, initial block, procedural blocks, task, and function; the order may
be arbitrary, and the execution is concurrent.

In addition, typical Verilog statements are listed below.

Listing 2.13 Summary of statements

#delay //delay expressions

wait (Expression)

@(A or B or C) //triggering statements

@(posedge Clk)

Verilog HDL, Communication, and Control 29

Reg = Expression; //assignment statements

Reg <= Expression;

assign Reg = Expression;

deassign Reg;

TaskEnable(...); //event control

disable TaskOrBlock;

->EventName; //event trigger

The list contains continuous and procedural assignments, along with even triggers.

2.10 Simulation-Synthesis
Once the vision algorithm is written in the Verilog HDL complying with the Verilog syntax and
grammar, the file with extension v must be compiled for simulation and then synthesis. In the simulation
stage, the Verilog syntax is analyzed in the compilation stage, some design constructs such as generate
are interpreted in the elaboration stage, and the compiled code written in Verilog grammar is executed
in the simulation stage. The synthesis stage generates the standard design in the register-transfer
level (RTL) and the target specific net-list, which needs to be downloaded into the devices such
as field-programmable gate arrays (FPGAs), complex programmable logic devices (CPLDs), and
application-specific integrated circuits (ASICs).

Because the synthesis is far more restricted than the simulation, we have to know the requirements for
the constraints and use them in the design stage. There are three types of synthesis: logic gate synthesis,
RTL synthesis, and behavioral synthesis. A logic gate synthesis is a synthesis from logic equations to logic
gate diagrams; it is the simplest level of synthesis. In an RTL synthesis, all operations involve the transfer
of data between registers using only a subset of the Verilog HDL. This is the state of the art of synthesis.
A behavioral synthesis aims to convert a high-level description, like C, to desired circuits. Naturally, the
HDLs have evolved toward this type of synthesis. For example, SystemVerilog is a superset of Verilog-
2005 that has many high-level constructs, seemingly like C++. The behavioral design in Verilog-2005
HDL is a natural choice for vision algorithms, which involve complicated operations. In the future,
SystemVerilog might play a significant role in designing vision algorithms, together with OpenCV.

Some of the guidelines in the synthesis stage are stated below. A combinational logic can be synthesized
with continuous statements with assign and blocking statements with always. Continuous assignment
can be used to represent simple circuits and must be used outside of always or initial blocks. Assign
is used in top-level statements that are executed concurrently and continuously with all other top-level
statements in the module. The left-hand side (LHS) of a continuous assignment statement must be a wire
signal, whereas the variables on the right-hand side can be reg or wire signals.

The always blocks can represent complex combinational circuits; continuous assignment alone is
not enough for complex combinational circuit. All circuit inputs must be included in the event control
clause of the always block. No other signals must be included in the event control clause. No statements
should be sensitive to rising or falling signal edges.

The sequential logic synthesis is designed by always blocks, in which statements execute concurrently
and infinitely. Always blocks use an event control clause in order to prevent inefficient simulation
behavior. The LHS of an assignment in an always block must be the type of reg. Within the same module,
values must not be assigned to a single signal in two or more different always blocks. Use of both positive
and negative edges of the same clock signal in an event control should be avoided. The common code
template for Moore/Mealy-type finite state machines, available in mode Verilog platforms, may be useful.

Verilog consists of synthesizable and unsynthesizable Verilog code. For synthesis, the following must
be considered. System functions and tasks are not for synthesis but for simulation and debugging. Verilog
directives are not for synthesis. The initial block is not for synthesis. The values x and z are difficult

30 Architectures for Computer Vision

to use in synthesis and should typically be avoided, unless there is a very specific reason to use them.
Strength and delay statements cannot be synthesized. In conditional constructs (e.g., if, case), the
default should be used, and don’t-care values should be assigned to the output in order to simplify logic.
Latches are inferred from incomplete if statements.

2.11 Verilog System Tasks and Functions
For simulation purposes, the Verilog HDL defines a set of system functions and tasks, analogously
to those in C libraries. They are divided into ten categories: display tasks, file I/O tasks, timescale
tasks, simulation control tasks, PLA modeling tasks, stochastic analysis tasks, simulation time functions,
conversion functions, probabilistic distribution functions, command line input, and math functions.
Knowing the system functions and tasks is essential to building a sophisticated system. Here, the format
is the same as the normal tasks and functions.

One of the most useful system functions might be the display tasks, called $display, $write,
$strobe, and $monitor.

Listing 2.14 Display-write tasks

display_task_name (list_of_arguments);

The display tasks may have a suffix such as b, o, d or h for binary, octal, decimal, and hex numbers,
respectively; d is the default format for unspecified arguments. The basic display is write, and an
advanced one is display, which adds a newline. In addition, strobe provides the ability to display
simulation data at a selected time, and monitor provides the ability to monitor and display the values
of any variables or expressions specified as arguments. The list of arguments includes strings, formats,
and variables.

Example 2.14 (Display task) Examples of display tasks.

$write (“value = %b”, bval); //binary data

$write (“value = %0d”, dval); //suppress leading zeroes

$display (“value = %0”, dval): //dval is written in octal

$display (“time = %t”, $time); //simulation time

$strobe (“time = %0d”, dval); //at each simulation time

$monitor (“value = %0d”, dval); //displays at dval change

The system tasks and functions for file I/O are divided into the following four groups: open/close, file
write, variable write, and read file. The file open and close tasks are $fopen and $fclose, respectively,
which are very similar to those in C.

Listing 2.15 File open-close

multi_channel_descriptor = $open (“file_name”);

file_descriptor = $open (“file_name”, type);

$fclose (multi_channel_descriptor);

$fclose (file_descriptor);

Verilog HDL, Communication, and Control 31

The multichannel and file descriptors are 32-bit numbers. The argument type is a character string
such as r for read, w for write, or a for append. A single bit in the multichannel descriptor represents
the channel number and open/close. Thus, because multichannel descriptors are combined into one
descriptor that contains all the open channel positions, multiple files can be written. A file descriptor is
used to open a file according to type. The $fclose system task closes an open file.

The file output task names are $fdisplay, $fwrite, $fstrobe, and $fmonitor, defined similarly
to the standard output, $display, $write, $strobe, and $monitor.

Listing 2.16 File output

file_output_task_name (multi_channel_descriptor,list_of_arguments);

file_output_task_name (file_descriptor, list_of_arguments);

]The first argument is either a multichannel descriptor or a file descriptor, which indicates where to direct
the file output.

The system tasks, $swrite and $sformat, are used to write strings.

Listing 2.17 String output

$swrite (output_reg, list_of_arguments);

$sformat (output_reg, format_string, list_of_arguments);

The $swrite is the same as $fwrite except that the first argument is a reg. The $sformat is used for
formatted writing. Files that are opened by file descriptors can be read only if they were opened with r
type values.

Character or string is read by the following commands:

Listing 2.18 Character-string-text input

character = $fgetc (file_descriptor);

code = $ungetc (character, file_descriptor);

code = $fgets (reg, file_descriptor);

code = $fscanf (file_descriptor, format, arguments);

code = $sscanf (reg, format, arguments);

code = $fread (dest, file_descriptor, start, count);

$readmemb (file_reg, memory_name, start, finish);

$readmemh (file_reg, memory_name, start, finish);

For the file and string input, system functions are provided for character ($fgetc, $ungetc), line
($fscanf, $sscanf), register ($fread), and text ($readmemb, $readmemh). $fgetc reads a character,
and $ungetc returns the pointer to the previous position. $fgets reads a line until reg string is filled,
a newline character is read and transferred to string, or an EOF condition is encountered. $fscanf and
$sscanf are used for formatted reading from a file descriptor andreg string, respectively.$fread is used

32 Architectures for Computer Vision

for reading binary data to fill the destination, which is reg or memory. The optional arguments start and
count specify the starting point and the number of reading data, respectively. $readmemb and $readmemh
read and load data from a test file to a memory. The text file may contain white spaces, comments, binary,
or hexadecimal numbers. The start and finish addresses are optional. In addition, the addresses may be
specified in the data file with the @ sign. The integer code represents an error condition.

For file access, the following commands are provided:

Listing 2.19 File positioning

position = $ftell (file_descriptor);

code = $fseek (file_descriptor, offset, operation);

code = $rewind (file_descriptor);

The system function $ftell returns the offset between the beginning of the file and the
file descriptor. $fseek is used to reposition the file to the position. $rewind is equivalent to
$fseek(file_descriptor,0,0). $flush writes any buffered output to the opened files. During
the file I/O system task and function, incidental errors might occur. $ferror is a system function that
returns an error code. There are also command line inputs including the following: $test, $value,
and $plusargs.

Example 2.15 (File I/O) The I/O examples are as follows.

integer messages, broadcast,

r_color, g_color, b_color;

initial begin

r_color = $fopen(“r.dat”);

if (r_color == 0) $finish;

g_color = $fopen(“alu.dat”);

if (g_color == 0) $finish;

b_color = $fopen(“mem.dat”);

if (b_color == 0) $finish;

messages = r_color|g_color|b_color;

//broadcast std output

broadcast = 1 | messages;

end

$fdisplay (broadcast,

“file opened at %d”, $time);

$fdisplay (messages,

“Error on r_color at %d”,

$time);

The simulation control tasks are $finish and $stop for exit and suspend, respectively. There
are a set of system tasks and functions for queue and stack: $q_initialize, $q_add, $q_remove,
$q_full, $q_exam.

Listing 2.20 Queue

$q_initialize (q_id, q_type, max_length, status);

$q_add (q_id, job_id, inform_id, status);

$q_remove (q_id, job_id, inform_id, status);

$q_full (q_id, status);

$q_exam (q_id, q_stat_code, q_stat_value, status);

$q_initialize creates a queue (q_type=1) or stack (q_type=2) with the given queue id and
maximum length. The push and pop operations are simulated with $q_add and $q_remove, respectively.

Verilog HDL, Communication, and Control 33

The job_id is an integer input for identification. The inform_id is a user-defined integer. $q_full
checks spaces in the queue, and $q_exam provides statistical information about queue activity. The
status code is an integer that represents the error warning condition.

The simulation time can be observed by the following system functions: $time, $stime, and $real-
time. There are system functions that convert numbers between different formats: $rtoi for real
to integer, $itor for integer to real, $realtobits for real to binary, and $bitstoreal for binary
to real. There are a set of random number generators: $random, $dist_uniform, $dist_normal,
$dist_exponential, $dist_poisson, $dist_chi_square, $dist_t, and $dist_erlang.

There are integer and real math functions in Verilog system functions, which are identical to those in
C. In addition to the Verilog system tasks/functions, there is a program interface with foreign functions
written in C. With this interface, called VPI, the Verilog program can call user-defined functions and
tasks and obtain the results. In image processing, the file transfer is the most essential operation between
C programs and Verilog programs, which is not feasible in such operations.

2.12 Converting Vision Algorithms into Verilog HDL Codes
Computer-aided hardware design has evolved from the FSM, algorithmic state machine (ASM), HDL,
and high-level synthesis (HLS). In the FSM method, the algorithm is represented by the state table and the
state diagram. The design is in the logic equations and the minimization. In the FSM method with HDL,
the representation is in the RTL (register transfer level) and the state diagram. The goal is to design the
control logic from the state diagram and the datapath from the RTL. In ASM, the algorithm is represented
by the RTL and the ASM chart. The control logic and the data path are designed by ASM chart and the
RTL that are provided. The high-level synthesis works at a higher level of abstraction, starting with an
algorithmic description in a high-level language such as SystemC, ANSI C/C++, OpenCL (Acceleware
2013), or HLS (Xilinx 2013). At the start, the designer develops the module functionality and the
interconnect protocol manually. After that, the high-level synthesis tool constructs the architecture and
transforms the functional codes into fully timed RTL codes. In the end, the RTL codes are used directly
in a conventional logic synthesis flow to create a gate-level implementation.

One of the most fundamental abstractions is the control structure. The basic types of control structures
are sequential, conditional, and loop. Most vision algorithms consist of mixtures of these control struc-
tures. Sequential computation means that statements are executed sequentially during each clock tick.
Consider an algorithm consisting of N such statements. There are two ways to interpret the sequential
computations in Verilog HDL (refer to the following codes).

Listing 2.21 Sequential

always @(posedge clock) begin

a = b;

c = d;

e = f;

g = h;

...

y = z;

end //always

always @ (posedge clock) begin

if (reset) state <= 1;

else begin

state <= state + 1;

34 Architectures for Computer Vision

case (state) begin

1: begin

a <= b;

end

2: begin

c <= d;

end

...

N: begin

y <= z;

end

endcase

end

end //always

In the first code, the statements are executed sequentially by the blocking assignments. In the second
code, the same is true for the sequential execution. However, there is a considerable difference between
the two code segments. In the first code, the statements in a block are executed in one clock period, but
in the second code, the statements are executed in each clock period. This mechanism is possible by the
always-case combination. The sequential order is forced by the state and the statements are divided into
blocks. Notice that the state increment and case block are concurrent.

In Verilog HDL, the available loop statements are for, while, repeat, and forever. The codes seg-
ments, with one exception, are listed side by side in the following. The one exception is forever, which
represents permanent iteration. The assignments are all blocking, but they can also all be nonblocking,
if necessary. For N statements, the loops need NT clocks for blocking and T clocks for nonblocking.

for while repeat

for (t=0;t<T;t=t+1)

begin

a = b;

c = d;

...

y = z;

end

t = 0;

while (t<T)

begin

t = t + 1;

a = b;

...

y = z;

end

repeat (T)

begin

a = b;

c = d;

...

y = z;

end

Regardless of the type of loop, all the statements in a block are executed in one clock period. Even
for the blocking assignments, all of the statements in a block are executed in one clock time period.
Actually, the loop is unfolded into a cascade of combinational modules, with each module executing
each statement. (See unfolding (Wikipedia 2013b).)

In many cases, the statements must be separated and executed sequentially in a clock period, and
repeated iteratively up to a predetermined number of times. Inserting delay statements between each
blocking assignment is useless because the delay statements are not synthesized. It is possible to
implement the sequential mechanism by combining case and if key words.

Verilog HDL, Communication, and Control 35

Loop 1 Loop 2

always @ (posedge clock) begin

if (reset) begin

state <= 1; t <= 1;

end else begin

state <= state + 1;

case (state) begin

1: a <= b;

2: c <= d;

...

N: begin

y <= z;

if (t < T) begin

state <= 1;

t <= t + 1;

end

end

endcase

end

end //always

always @ (posedge clock) begin

if (reset) begin

state <= 1; t <= T;

end else begin

state <= state + 1;

case (state) begin

1: a <= b;

2: c <= d;

...

N: begin

y <= z;

if (t > 0) begin

state <= 1;

t <= t - 1;

end

end

endcase

end

end //always

The code segments on the right also execute the statements iteratively up to the maximum number of
iterations. (The statements can be either blocking or nonblocking, but not a mixture. Each statement can
be replaced with a block of statements, which are either blocking or nonblocking.) In the Verilog loop
statement, one iteration occurs in just one clock period. In this code, on the other hand, one iteration
occurs in N clock periods.

There are many ways to code loops. First, the counter can be either auto-incrementing or auto-
decrementing. The code segments above use both types of counters. There is another variation of the
loop. The position of the if-statement can be either at the beginning or at the end of the statement block.

Autoincrement Autodecrement

always @ (posedge clock) begin

if (reset) begin

state <= 1; t <= 1;

end else if (t < T) begin

state <= state + 1;

t <= t + 1;

case (state) begin

1: a <= b;

2: c <= d;

...

N: y <= z;

endcase

end

end //always

always @ (posedge clock) begin

if (reset) begin

state <= 1; t <= T;

end else if (t > 0) begin

state <= state + 1;

t <= t - 1;

case (state) begin

1: a <= b;

2: c <= d;

...

N: y <= z;

endcase

end

end //always

36 Architectures for Computer Vision

Vision algorithm

Hardware algorithm
(Machine)

Verilog code

Figure 2.6 The three-step design method for vision architecture

Unlike the previous code segments, the if-statement in this code is placed before the statement block.
Like the previous code segments, two types of counters can be implemented. Therefore, there are
four ways to configure the loops, depending on the if-statement positions and the counter types. If the
assignment types are considered as well, then there are eight types of loops.

2.13 Design Method for Vision Architecture
Verilog HDL includes many design aids that transform the codes in high-level languages or diagrams
to the codes in HDL. For example, the ‘C to HDL tools’ convert C program code into an HDL (or
RTL) (Wikipedia 2013a). In the future, high-level languages might evolve to manage both software and
hardware with the same unified compiler. Among others, the two packages, Altera OpenCL (Acceleware
2013) and Xilinx HLS (Xilinx 2013), are evolving rapidly. The design can be downloaded to the FPGAs
(i.e. programming), converted to the hard copy of the ASIC chips (i.e. hard copy), or the full custom
ASIC chips.

As an alternative, this book suggests a systematic method in designing a vision architecture. This
method consists of three steps: 1) to prepare a vision algorithm, 2) to prepare a hardware algorithm, and
3) to code in Verilog HDL (see Figure 2.6). The first step is to provide a vision algorithm that consists
of clear definitions of input and output, step-by-step procedures, (i.e. in time) for computing output, and
all parameters and variables.

The second step is to provide a hardware algorithm that represents a state machine. Consider that q(t)
is the state, {x(t), y(t)} is an input-output pair, and T(⋅) and H(⋅) are the state transition function and the
observation function, respectively. Then, a Moore machine is represented by the state equation:{

q(t + 1) = T(q(t), x(t)),

y(t) = H(q(t)).
(2.2)

This equation represents the general operations in vision algorithms, including sequential operation, par-
allel operation, iterative operation, neighborhood operation, recursive computation, and various memory
structures.

A block diagram is shown in Figure 2.7(a). The state machine expresses how the state evolves and how
the output is generated, as a function of time. To be a hardware algorithm, the standard representation,
Equation (2.2), is not enough, because the use of resources (i.e. memory, ports, and connection) is not
explicitly defined. A state equation must clearly specify which place of the memory must be read in
order for the state to be updated, and which place of the memory must be replaced by the updated values.

Verilog HDL, Communication, and Control 37

y(t)x(t)

q(t)

q(t)

(a) State machine

q

x y

(b) RAM memory

q(p′) = T(q(p), x)
y(p) = H(q(p))

q

x y

(c) Queue

q

x y

(d) Stack

q(p′) = T(q(p), x)
y(p) = H(q(p))

q(p′)

q(p′)q(p′) q(p)q(p)

q(p)

q(p′) = T(q(p), x)
y(p) = H(q(p))

q(t + 1) = T(q(t), x(t))
y(t) = H(q(t))

q(t + 1)

Figure 2.7 State machines for vision

That is, the state equation must be rewritten in terms of the state memory and connectivity. To examine
this further, we must specify the types of memories used most often in vision algorithms: RAM (random
access memory), queue, and stack (Figures 2.7(b)–(d)). With RAM, an algorithm may access an arbitrary
address in a memory for memory read and write. It may be a vector or a plane memory, often like an
image plane. With a queue memory, an algorithm may push the data in one end and read data from
another position of the queue. With a stack, an algorithm may read or write the memory by pop or push
operations. A complicated system may consist of one or more such memories.

Let us denote the reading and writing positions of a memory by p and p′, respectively. Then the new
state equation is

{
q(p′) ← T(q(p), x),

y ← H(q(p)).
(2.3)

Here, the time index is omitted, because this equation is executed in every clock tick in a sequential
circuit. Instead, an index, which represents the connectivity between memory and processor, is specified.
The positions of a state memory, p for reading and p′ for writing, must be defined explicitly. Also,
the assignment can be any of the Verilog assignments, continuous assignment (assign =), blocking
(=) or nonblocking (i.e. <=). (The assignment, ←, collectively represents the three types of assign-
ments.) In a neighborhood system, the access points must be a set of addresses within a neighborhood
window. In most vision algorithms, the addresses are not random; they are fixed. Therefore, deriving
addresses of the memory is one of the major tasks for specifying a hardware algorithm. To differen-
tiate a hardware algorithm from a software algorithm, we use the term ‘(state) machine’ for hardware

38 Architectures for Computer Vision

algorithm. Once the hardware algorithm is provided, we can express the architecture more easily by the
Verilog HDL.

2.14 Communication by Name Reference
For vision processing, large amounts of data must sometimes be transferred between modules very
rapidly. The data may be as small as a scalar or a vector or it may be as large as a set of image arrays
or maps. The data width and data length are usually constant or known in advance. Verilog HDL allows
only a scalar and a vector to be transferred between two ports. Therefore, the data must be a scalar, a
byte, or a long vector constructed from a large array. The data must be transferred sequentially. There
are basically two methods for building channels between modules: the reference-based method and the
port-based method. In addition, there must one or more control programs that copy the original image
and write the copy to the other module.

The reference-based method is useful when a large amount of image data must be transferred between
modules, especially during simulations. Instead of using the physical ports, this method uses the name
referencing in the hierarchical name referencing in Verilog HDL. Depending on where the control
mechanism exists, there are three methods. Assume that a sender contains an image and a receiver wants
copies of it, and that the two modules are instantiated as SENDER and RECEIVER in the third module.
The first possibility is that the sender is active and the receiver is passive during the copying process.

Listing 2.22 Referencing method: active sender and passive receiver

‘define DATA_WIDTH 8

‘define DATA_SIZE 10

module sender(input clock, reset);

reg [‘DATA_WIDTH-1:0] image [0:‘DATA_SIZE-1]; //image to be sent

integer i; //counter

//send data

always @(posedge clock) begin

if (reset) begin //pseudo data

for (i=0; i<‘DATA_SIZE; i=i+1) begin //by random

image[i] <= $random % 256; //number generation

end

end

else begin

//copy data by name reference

for (i=0; i<‘DATA_SIZE; i= i+1) begin //send data

RECEIVER.image[i] <= image[i]; //by referencing

end

end

end //always

endmodule

module receiver(input clock, reset);

reg [‘DATA_WIDTH-1:0] image [0:‘DATA_SIZE-1]; //image to be copied

endmodule

Verilog HDL, Communication, and Control 39

The image data is stored in the sender module and it is copied into the image in the other module.
Without loss of generality, the image is filled by a random number generator for test purposes. In actual
applications, the image must be an actual image or set of vectors or a scalar. (The same method is used
repeatedly in the following for dealing with test images.) In the main part, an image element of the other
module is referenced and copied using the image element in this module. Meanwhile, the receiver module
contains an empty image. Because the receiver is passive, it does nothing, and the sender performs the
copying process. No other module is necessary, though the sender and the receiver must be able to receive
common signals: clock and reset signals.

The second possibility is the opposite of the method above. In this case, the sender is passive and the
receiver is active in the transfer control process.

Listing 2.23 Referencing method: passive sender and active receiver

‘define DATA_WIDTH 8

‘define DATA_SIZE 10

module sender(input clock, reset);

reg [‘DATA_WIDTH-1:0] image [0:‘DATA_SIZE-1]; //image to be sent

integer i; //counter

//send data

always @(posedge clock) begin

if (reset) begin //pseudo data

for (i=0; i<‘DATA_SIZE; i=i+1) begin //by random

image[i] <= $random % 256; //number generation

end

end

end //always

endmodule

module receiver(input clock, reset);

reg [‘DATA_WIDTH-1:0] image [0:‘DATA_SIZE-1]; //empty image

integer i; //counter

//copy data

always @(posedge clock) begin

//copy data by name reference

for (i=0; i<‘DATA_SIZE; i= i+1) begin //copy data

image[i] <= SENDER.image[i]; //by referencing

end

end //always

endmodule

In this case, the sender does nothing but prepare the image data. The receiver copies the image from
the sender into its own image. The receiver references the image in the sender and copies its contents
into the image.

The third possibility is the case where there is a third module that controls the copy process from the
sender to the receiver. In this case, the sender and the receiver are both passive, and the third module

40 Architectures for Computer Vision

is a controller for the communication process. The sender contains an image that is filled by a random
number generator.

Listing 2.24 Referencing method: active third module

‘define DATA_WIDTH 8

‘define DATA_SIZE 10

module sender(input clock, reset);

reg [‘DATA_WIDTH-1:0] image [0:‘DATA_SIZE-1]; //image to be sent

integer i; //counter

//send data

always @(posedge clock) begin

if (reset) begin //pseudo data

for (i=0; i<‘DATA_SIZE; i=i+1) begin //by random

image[i] <= $random % 256; //number generation

end

end

end //always

endmodule

module receiver(input clock, reset);

reg [‘DATA_WIDTH-1:0] image [0:‘DATA_SIZE-1]; //image to be copied

endmodule

module third_module(input clock, reset);

//instantiation

sender SENDER (clock, reset);

receiver RECEIVER (clock, reset);

//control by a third module

integer i; //counter

always @(posedge clock) begin

for (i=0; i<‘DATA_SIZE-1; i= i+1) begin //send data

RECEIVER.image[i] <= SENDER.image[i]; //copy image

end

end //always

endmodule

The receiver contains an empty image to be filled. In this case, the third module plays the role of
transferring data between the sender and receiver. Any module can access the variables in the other
modules by the hierarchical name referencing mechanism in Verilog HDL.

2.15 Synchronous Port Communication
Unlike in the simulation modules, the data in the synthesis modules must be transferred through ports.
Because the port is one-dimensional, sending a multidimensional array through the port requires special

Verilog HDL, Communication, and Control 41

care. On the sender side, the array must first be flattened into one-dimensional vectors and must be sent
iteratively via the data stream. On the receiver side, the flattened vector must be popped out into the
original array.

There are two methods that can be used to send a stream of data: synchronous and asynchronous data
transfer. In synchronous transfer, the sender and the receiver start simultaneously. The role of the sender
is to send the data units synchronously, one at a time, according to the clock. The role of the receiver is to
receive the data synchronously, one at a time, from the common clock. There is no checking mechanism
between the beginning and the end of the transfer, which is called a transaction, except by the common
clock. The clock should allow for a slight delay between the times of sending and receiving.

For synchronous communications, there can be a third module that instantiates the sender and receiver
and connects them by generating control signals.

Listing 2.25 Synchronous communication: third module control

‘define DATA_WIDTH 8

‘define DATA_SIZE 10

module third_module (input clock, reset);

integer i; //counter

wire [7:0] data; //connection

reg state, req_send, req_receive; //control variables

//instantiation

sender SENDER (clock, reset, req_send, data); //sender

receiver RECEIVER (clock, reset, req_receive, data); //receiver

//control

always @(posedge clock) begin

if (reset) begin

i <= 0; state <= 1; req_send <= 0; req_receive <= 0;

end

else begin

case (state)

0: begin

state <= 1;i <= i + 1;req_send <= 1; req_receive <= 0;

end

1: if (i < 10) begin //trigger both modules

state <= 1;i = i + 1;req_send <= 1; req_receive <= 1;

end

else if (i == 10) begin //trigger once more

i <= i + 1; req_send <= 0; req_receive <= 1;

end

else req_receive <= 0;

default: state <= 0;

endcase

end

end //always

endmodule

42 Architectures for Computer Vision

module sender(input clock, reset, req, output reg [7:0] data);

reg [7:0] image [0:9]; //image data

//sending data

integer i; //counter

//fill the image

always @(posedge clock)

if (reset) begin //provide data

for (i=0; i<10; i=i+1) begin image[i] <= $random % 256;

end

always @(posedge clock) case (req) //monitor req_send

0: i <= 0;

1: begin i <= i + 1; data <= image[i]; end

endcase

endmodule

module receiver(input clock, reset, req, input [7:0] data);

reg [7:0] image [0:9]; //empty image

//sending data

integer i; //counter

always @(posedge clock) case (req) //sense req_receive

0: i <= 0;

1: begin i <= i + 1; image[i] <= data; end

endcase

endmodule

The third module must be careful to trigger the sender first during the request for the transaction and
keep the receiver triggered at the end of the transaction. That is, the beginning and end of the transaction
are delayed by one clock period between the sender and the receiver. Unlike the third module, the control
program is the same in both the sender and the receiver.

Another alternative is that the sender controls the data communication.

Listing 2.26 Sender active receiver passive

‘define DATA_WIDTH 8

‘define DATA_SIZE 10

module sender(input clock,reset,output reg req,output reg [7:0]data);

//image

reg [7:0] image [0:9]; //image

//variables

integer i; //counter

reg state; //state

Verilog HDL, Communication, and Control 43

//fill the image

always @(posedge clock) begin

if (reset) begin //fill the image

for (i=0; i<10; i=i+1) image[i] <= $random % 256;

end //always

//sedn data

always @(posedge clock) begin

if (reset) begin state <= 0; i <= 0; end

else begin

case (state)

0: begin

state <= 1; i <= i + 1; data <= image[i]; req <= 1;

end

1: if (i < 10) begin

i <= i + 1; data <= image[i]; req <= 1;

end

else if (i == 10) begin i <= i + 1; req <= 1; end

else req <= 0;

endcase

end

end //always

endmodule

module receiver (input clock,reset,req,input [7:0] data); //receiver

//empty image

reg [7:0] image [0:‘DATA_SIZE-1]; //empty image

//variables

reg state; //state

integer i; //counter

//main part

always @(posedge clock) begin

case (req) //monitor request

0: i <= 0; //idle

1: if (i < 10) begin i <= i + 1; image[i] <= data; end

else i <= 0;

endcase

end //always

endmodule

The sender controls the receiver by sending a request signal. Meanwhile, the receiver monitors for the
request signal and continues to copy data as long as the request signal is asserted.

Note that the request signal is still active for one more clock period even after the counting ends. There
is one clock period delay between the sender and the receiver.

44 Architectures for Computer Vision

2.16 Asynchronous Port Communication
For secure communication, the transaction must include a two-phase or four-phase handshaking protocol.
In both cases, when the two ports are linked, the data transfer is synchronized by a common clock. In
the four-phase handshaking protocol, the quiet (i.e. idle) state is when neither the request nor the
acknowledgement are zero. In the first step, the sender provides data and raises the request signal. In
the second step, the receiver detects the rise in the request signal, receives the data, and raises the
acknowledgement signal. In the third step, the sender detects the rise in the acknowledgement signal,
lowers the request signal, and stops the data transfer. In the fourth step, the receiver detects the low
request signal and lowers the acknowledgement signal. The four steps are repeated again as needed.

The two-phase handshaking protocol is a simplified version. There are two quiet states. The request
and acknowledgement are both either zero or one. In the first step, the sender provides data and changes
the request signal. In the second step, the receiver detects the change in the request signal, receives the
data, and changes the acknowledgement signal. In the third step, the sender detects the change in the
acknowledgement signal and the transaction ends. The loop is repeated forever.

The control mechanism on the sender’s side is shown below. It consists of two states – one state for
idling and the other state for sending data. The assumption is that the database to be sent is provided
already before the transfer. This template shows that the database is a vector and that the transfer unit is
a scalar in the vector. However, the database can be easily expanded to an image array. A counter is used
to count the number of data units that are transferred.

Listing 2.27 Handshaking

‘define DATA_WIDTH 8

‘define DATA_SIZE 10

module third_module (input clock, reset); //call the modules

//variables

wire [‘DATA_WIDTH-1:0] data; //connecting the modules

//instantiation

sender SENDER (clock,reset,req,ack,data); //sender

receiver RECEIVER (clock,reset,req,ack,data); //receiver

endmodule

module sender(input clock,reset,output reg req,input ack,

output reg [7:0] data);

//image

reg [‘DATA_WIDTH-1:0] image [0:‘DATA_SIZE-1]; //image for transfer

//variables

integer i; //counter

reg state; //state

//main part for sending

always @(posedge clock) begin

if (reset) begin //fill the image

for (i=0; i<10; i=i+1) image[i] <= $random % 256;

i <= 0; state <= 1; req <= 0; //initialization

end else begin

Verilog HDL, Communication, and Control 45

case (state)

0: if (!ack) begin state <= 1; req <= 0; end //alt states

1: if (i == 0) begin

state <= 0; i <= i+1; data <= image[i]; req <= 1;

end

else if (ack) begin

if (i < 10) begin

state <= 0; i <= i + 1; data <= image[i]; req <= 1;

end

else begin state <= 0; i <= 0; req <= 0;

end

end

default: state <= 0;

endcase

end

end //always

endmodule

module receiver (input clock,reset,input req,output reg ack,

input [7:0] data);

//empty image

reg [‘DATA_WIDTH-1:0] image [0:‘DATA_SIZE-1]; //to be filled

//variables

reg state; //state

integer i; //counter

//main part for sending

always @(posedge clock) begin

if (reset) begin i <= 0; state <= 1; ack <= 0; end

else begin

case (state)

0: if (!req) begin state <= 1; ack <= 0; end

1: if (req) begin

if (i < 10) begin

state <= 0; i <= i + 1; image[i] <= data; ack <= 1;

end

else begin state <= 0; i <= 0; ack <= 0;

end

end

default: state <= 0;

endcase

end

end //always

endmodule

46 Architectures for Computer Vision

The sender provides the data to be sent and sends the request signal to the receiver. At each clock
signal, the sender sends new data unit until the number of data units reaches a predefined number. Because
the sender and the receiver know the number of data units, the acknowledgement signal is not necessary.
On the receiver side, the control mechanism must be designed similar to the state machine. The receiver
monitors for the request signal from the sender and begins to capture the data at each rising clock signal.
When the number of data units that are captured reaches the predefined number, the receiver sends the
acknowledgement signal to the sender.

The control mechanism must monitor the request bit from the sender and respond immediately when
the request is asserted. At each clock signal, the data is captured and stored and the counter is incremented.
The amount of received data is the same as that of the sent data. Upon completion, an acknowledgement
signal is sent to the sender, which is not necessary in this simple case.

In this case, the handshaking protocol marks the beginning and end of the entire data transfer.
During the transfer process, the data transfer and packet communication are synchronous. For secure
communication, when the clock may be somewhat unreliable due to broadcasting, the handshaking
protocols can be inserted between each data unit, resulting in asynchronous communication. There is a
large difference between synchronous and asynchronous communications. For image transfer, a faster
method is typically used, because the amount of data to be transferred is usually large.

Among the event-sensitive and level-sensitive control statements, the wait statement can be used for
synchronizing or handshaking between the concurrent processes. (Unfortunately, it is not synthesizable
in most systems.) It is sensitive to levels, as opposed to events, and is thus useful for handshake control
(Lin 2008). In addition to the control mechanism, two semaphores (or messages) are needed, ‘send’ and
‘receive’ for example. The process waits until the expression of the semaphores is true, and then executes
the statement. There are two types of handshake protocols: two-phase and four-phase. Further, each
protocol has two alternative methods: sender-initiated and receiver-initiated (Lin 2008). The following
is an example of a receiver-initiated code for the four-phase handshake protocol:

Listing 2.28 Port communication: Four phase handshake

‘define DATA_WIDTH 8

‘define DATA_SIZE 100

module tb; //testbench

reg clock, reset;

wire [‘DATA_WIDTH - 1:0] data; //connection

wire send, receive; //semaphores

integer i; //counter

//instantiation

sender SENDER (clock, reset, send, receive, data); //sender

receiver RECEIVER (clock, reset, send, receive, data); //receiver

//initialization

initial begin

clock = 0; reset = 0; //initialize clock and reset

for(i=0;i<‘DATA_SIZE;i=i+1) SENDER.image[i] = $random % 256;

#50; reset = 1; #150; reset = 0; //reset

end

Verilog HDL, Communication, and Control 47

//clock generation

always #50 clock = ~clock;

endmodule

module sender (//sender

input clock, reset,

input send, //receive message from receiver

output reg receive, //send message to receiver

output reg [‘DATA_WIDTH-1:0] data

);

reg [‘DATA_WIDTH-1:0] image [0:‘DATA_SIZE - 1]; //data

integer i; //variable

always @(posedge clock) begin: SENDER

if (reset) begin i <= 0; end //initialize variable

else if (i < ‘DATA_SIZE) begin

receive = 0; //don’t receive yet

wait (send) data = image[i]; //wait for send

receive = 1; //receive my data

wait (!send) receive = 0; //wait while receiving

i = i + 1; //next data

end

end //always

endmodule

module receiver (

input clock, reset,

output reg send,

input receive,

input [‘DATA_WIDTH-1:0] data

);

reg [‘DATA_WIDTH-1:0] image [0:9];

integer i;

always @ (posedge clock) begin: RECEIVER

if (reset) begin i = 0; end //initialize variable

else begin

send = 1; //send data

wait (receive) image[i] = data; //wait for receive

send = 0; //don’t send

48 Architectures for Computer Vision

wait (!receive) send = 1; //wait

i = i + 1; //next data

end //else

end //always

endmodule

Both modules run concurrently, and therefore, the messages are initialized (send = 1, receive = 0).
Because it was initiated (send = 1), the sender provides data and sends a message (receive = 1). The
receiver receives the data and acknowledges the successful transfer (send = 0). The sender then asks the
receiver if it is ready to receive data whenever the sender is ready (receive = 0). This triggers the last
wait statement in the receiver to change the state (send = 1). Finally, the two processes are back in their
initial states waiting to repeat the above procedure.

The four-phase handshake is based on the semaphore levels, which results in four states, 0/0. 0/1,
1/0, and 1/1, for send/receive semaphore pairs. Conversely, the two-phase handshake can be designed by
event-sensitive control. It has two states – 0/0 and 1/1 – for send/receive semaphores:

Listing 2.29 Port communication: two-phase handshake

‘define DATA_WIDTH 8

‘define DATA_SIZE 100

module tb; //testbench

reg clock, reset;

wire [‘DATA_WIDTH - 1:0] data; //connection

wire send, receive; //semaphores

integer i; //counter

//instantiation

sender SENDER (clock, reset, send, receive, data); //sender

receiver RECEIVER (clock, reset, send, receive, data); //receiver

//initialization

initial begin

clock = 0; reset = 0; //initialize clock and reset

for(i=0;i<‘DATA_SIZE;i=i+1) SENDER.image[i] = $random % 256;

#50; reset = 1; #150; reset = 0; //reset

end

//clock generation

always #50 clock = ~clock;

endmodule

module sender (//sender

input clock, reset,

input send, //receive message from receiver

Verilog HDL, Communication, and Control 49

output reg receive, //send message to receiver

output reg [‘DATA_WIDTH-1:0] data

);

reg [‘DATA_WIDTH-1:0] image [0:‘DATA_SIZE - 1]; //data

integer i; //variable

always @(posedge clock) begin: SENDER

if (reset) begin receive = 0;i <= 0;end //initialize variable

else if (i < ‘DATA_SIZE) begin

receive = ~receive; //don’t receive yet

wait (send) data = image[i]; //wait for send

i = i + 1; //next data

end

end //always

endmodule

module receiver (

input clock, reset,

output reg send,

input receive,

input [‘DATA_WIDTH-1:0] data

);

reg [‘DATA_WIDTH-1:0] image [0:9];

integer i;

always @ (posedge clock) begin: RECEIVER

if (reset) begin send = 0; i = 0; end //initialize variable

else begin

send = ~send; //send data

wait (receive) image[i] = data; //wait for receive

end //else

end //always

endmodule

Many problems exist in both the four-phase and two-phase (a.k.a. XOR) handshakes. In general,
the two-phase handshake will have less overhead and better efficiency if a common clock drives the
communicating modules. On the other hand, the four-phase handshake is more reliable and efficient
when there is no such common clock.

Finally, the handshake and synchronous communication can be mixed, similar to packet communi-
cation, if the data size is very large. Between semaphore exchanges, a large amount of data can move
between the sender and the receiver in an interval of many clocks.

50 Architectures for Computer Vision

2.17 Packing and Unpacking
For image processing, the transfer unit is usually a vector or a set of images or maps. The processor
must access a pixel, a set of pixels for neighborhood operation, or the entire image for internal storage
in an array. Regardless of the type of data, the transfer unit must be a vector, which is a simple byte for a
pixel or a set of bytes for neighborhood pixels. Providing the input and output ports is not enough. The
transfer mechanism introduced above must be embedded into both the sender and receiver ports.

For synthesis, the data communication must be based on the ports. If the size of the data to be
transferred is identical to that of the port, the data can be transferred between the modules through the
input and output ports. The port connections can be either scalar or vector, and no additional circuitry is
needed if the port size is correct.

If the design resource allows for large ports, larger pieces of data can be transferred by assembling
the sending data on the sender’s side so that it fits the data bus and reassembling the data received at the
receiver’s side into data with the original size.

Listing 2.30 Communication: flattening the data

‘define WIDTH 8

‘define SIZE 10

module tb;

reg clock, reset;

initial begin

clock = 0; reset = 0;#100; //initialize

reset = 1; #100; reset = 0; //reset

end

always #50 clock = ~clock; //clock

//fill the memory for test

integer j;

always @(posedge clock) begin

if (reset) for (j = 0; j < ‘SIZE; j=j+1) //not for synthesis

SENDER.image[j] <= $random % 256; //use name reference

end //always

//main part for data connection

wire [‘WIDTH * ‘SIZE - 1:0] data; //very big wire

sender SENDER (clock, reset, data); //sender

receiver RECEIVER (clock, reset, data); //receiver

endmodule

module sender(//sender

input clock, reset,

output [‘WIDTH * ‘SIZE - 1:0] data

);

Verilog HDL, Communication, and Control 51

reg [‘WIDTH - 1:0] image [0:‘SIZE -1]; //image to be sent

//make a single big data

genvar i;

generate //use generate

for (i = 0; i < ‘SIZE; i= i + 1) begin: GEN //fill the fields

assign data[‘WIDTH*i +:‘WIDTH] = image[i];

end

endgenerate

endmodule

module receiver(//receiver

input clock, reset,

input [‘WIDTH * ‘SIZE - 1:0] data //big bus

);

reg [‘WIDTH - 1:0] image [0:9]; //image data

//disassemble the data

integer i;

always @*

for (i = 0; i < ‘SIZE; i = i + 1)

image[i] <= data[‘WIDTHG*i +:‘WIDTH]; //original size

endmodule

In this code, the generate block in the sender assembles a long data with the original data and the
for block in the receiver disassembles the data back into the original data. This method involves the use
of a very wide bus that fits the data. In actuality, there is a limit on the connection resource in a chip,
which therefore limits the use of this method.

2.18 Module Control
A typical vision system may consist of one or more modules, thus requiring a control mechanism to
execute the modules in systematic order: sequentially, concurrently, or partially in serial and partially
concurrently. There are two basic control methods: centralized control and distributed control. In cen-
tralized control, a single control unit controls all the modules, whereas in distributed control, no separate
control module exists, and therefore the modules control themselves interactively via some trigger (or
strobe) signals.

The centralized control can be realized by decomposing the vision system into control unit and
datapath (Hennessy and Parrerson 2012; Patterson and Hennessy 2012). In this control, the overall
system consists of a controlling module and controlled modules, analogous to the control unit and
datapath, respectively, in a typical computer. Between the control unit and the datapath, two types of
signals are transferred: status and control signals. The control unit examines the status and determines
the next order; the datapath operates according to the order and reports the status.

52 Architectures for Computer Vision

Let us consider how to control three modules, each printing A, B, C, respectively.

Listing 2.31 Control: FSM

module tb; //testbench

reg clock, reset;

wire [2:0] q; //connection

//instantiation

control CONTROL (clock,reset,q,ackA,ackB,ackC); //control module

moduleA A (clock, reset, q, ackA); //module A

moduleB B (clock, reset, q, ackB); //module B

moduleC C (clock, reset, q, ackC); //module C

//clock and reset

initial begin

clock = 0; reset = 0; #50; //initialize

reset = 1; #50; reset = 0; //reset signal

forever #50 clock = ~clock; //clock signal

end

endmodule

//control unit

module control (//control unit

input clock, reset,

output reg [2:0] q, //control signal

input ackA, ackB, ackC //status

);

//build input status vector

wire [2:0] qi;

assign qi[0] = ackA ;

assign qi[1] = ackB;

assign qi[2] = ackC;

//determine next state

always @ (negedge clock, posedge reset) begin //negedge used

if (reset) begin q <= 3’b000; end

else case (q) //moore machine

3’b000: q <= 3’b001;

3’b001: if (qi == 3’b001) q <= 3’b010; //next state

3’b010: if (qi == 3’b010) q <= 3’b100;

3’b100: if (qi == 3’b100) q <= 3’b000;

default: q <= 3’b000;

endcase

Verilog HDL, Communication, and Control 53

end //always

endmodule

//datapath modules

module moduleA (input clock,reset,input[2:0]q,output reg ack);//a

always @ (posedge clock, posedge reset) begin //posedge used

if (reset) ack <= 0; //reset the status

else if (q[0]) begin //monitor the control

$display(“A”); //arbitrary statements

ack <= 1; //assert the status

end else ack <= 0; //reset the status

end //always

endmodule

module moduleB (input clock,reset,input[2:0]q,output reg ack);//b

always @ (posedge clock, posedge reset) begin

if (reset) ack <= 0;

else if (q[1]) begin

$display(“B”);

ack <= 1;

end else ack <= 0;

end //always

endmodule

module moduleC (input clock,reset,input[2:0] q,output reg ack);//c

always @ (posedge clock, posedge reset) begin

if (reset) ack <= 0;

else if (q[2]) begin

$display(“C”);

ack <= 1;

end else ack <= 0;

end //always

endmodule

The control unit consists of two parts: a status vector builder and an FSM. The status signals coming
from each module are first assembled into an input vector via continuous assignment. The FSM then
determines the next state depending on the present state and the input vector. The rule can be generally
represented by case statements. (In this example, the rule is simple because the order of execution is
sequential.) There is a delay in both the module response, from control output to status report, and the
control unit response, from status input to control output. If we use negedge instead of posedge, the cycle
time is only one clock instead of two clocks. (See the problems at the end of this chapter.)

The distributed control system needs trigger (strobe) signals to start the first module. Unlike hand-
shaking, there are no feedback signals from the excited module to the exciting module. However, this
mechanism can be realized via the event-sensitive and level-sensitive controls (@ and wait). The acti-
vated module may subsequently trigger other modules. This mechanism is repeated for all the modules,

54 Architectures for Computer Vision

triggering the entire modules in a chain-reaction manner. Each module needs two trigger signals, one for
triggering itself and another for triggering others at the end of the current process. The same problem
can be coded in this method as follows:

Listing 2.32 Control: distributed

module tb; //testbench

reg clock, reset;

reg run; //triggering signal

//instantiation

moduleA A (clock, reset, run, ackA); //module A

moduleB B (clock, reset, ackA, ackB); //module B

moduleC C (clock, reset, ackB, ackC); //module C

//clock and reset

initial begin

clock = 0; reset = 0; run = 0;#50; //initialize

reset = 1; #50; reset = 0; //reset signal

run = 1; #100; run = 0; //run signal

end

always #50 clock = ~clock; //clock signal

endmodule

module moduleA (input clock, reset, input run, output reg ack);//a

always @ (posedge clock, posedge reset) begin

if (reset) ack <= 0; //reset the status

else if (run) begin //monitor the control

$display(“A”); //arbitrary statements

ack <= 1; //assert the status

end else ack <= 0; //reset the status

end //always

endmodule

module moduleB (input clock, reset, input run, output reg ack);//b

always @ (posedge clock, posedge reset) begin

if (reset) ack <= 0; //reset the status

else if (run) begin //monitor the control

$display(“B”); //arbitrary statements

ack <= 1; //assert the status

end else ack <= 0; //reset the status

end //always

endmodule

module moduleC (input clock, reset, input run, output reg ack);//c

always @ (posedge clock, posedge reset) begin

Verilog HDL, Communication, and Control 55

if (reset) ack <= 0; //reset the status

else if (run) begin //monitor the control

$display(“C”); //arbitrary statements

ack <= 1; //assert the status

end else ack <= 0; //reset the status

end //always

endmodule

For this purpose, there must be a trigger signal supplied from the outside, which may be used to trigger
the first module. There can be many variations of this method. Depending on the trigger signal, we
may use either event-sensitive or level-sensitive control (@ and wait). The number of executions can be
controlled by introducing the counters. This method is very efficient in its simplicity. However, if there
are many modules, the complicated control needed cannot be easily designed. Furthermore, contentions
may arise in the input trigger, because one or more modules might possibly try to control the same
module. The other problem is the possibility of the occurrence of a loop, which cannot be easily detected
in a system with many modules. This method is especially efficient when the number of modules is small
and the control flow is sequential.

2.19 Procedural Block Control
Inside the module, controlling of procedural blocks is an important issue in designing vision processors
that must do reading, writing, and buffer updates, in addition to the main task of vision processing. The
most fundamental approach is to use a large state machine that contains all the operations classified into
states. Consider writing ABCABC..., using a three-state machine:

Listing 2.33 Controlling procedural block: state machine

module tb;

reg clock, reset;

reg [1:0] state;

initial begin

clock = 0; reset = 0; #50; reset = 1; #50; reset = 0;

end

always #50 clock = ~clock;

always @(posedge clock) begin

if (reset) begin

state <= 0;

end

else case (state)

0: begin

state <= 1;

$display(“A”);

end

56 Architectures for Computer Vision

1: begin

state <= 2;

$display(“B”);

end

2: begin

state <= 0;

$display(“C”);

end

default: state <= 0;

endcase

end

endmodule

The $display function must be replaced with appropriate vision operations. For a more sophisticated
task, the state can be further divided into smaller states, in a hierarchical manner. The advantage of this
method is the ability to use global variables, such as memory and array, which often contain huge amounts
of image data. The disadvantage is that each state, which may be a large machine, cannot be simulated
and synthesized separately.

The next approach is to divide the large state machine into separate procedural blocks, which are
themselves state machines, even though the sizes are smaller.

Listing 2.34 Controlling procedural blocks: semaphores

module tb1;

reg clock, reset;

reg [1:0] state_A, state_B, state_C;

reg do_A, do_B, do_C;

initial begin

clock = 0; reset = 0; #50; reset = 1; #50; reset = 0;

end

always #50 clock = ~clock;

always @(posedge clock) begin: BLOCK_A

if (reset) begin

state_A <= 0;

do_B <= 0;

end

else case (state_A)

0: begin

if (do_A) begin

state_A <= 1;

do_C <= 0;

Verilog HDL, Communication, and Control 57

end

else begin

state_A <= 0;

do_B <= 0;

end

end

1: begin

state_A <= 0;

$display(“A”);

do_B <= 1;

end

default: state_A <= 0;

endcase

end

always @(posedge clock) begin: BLOCK_B

if (reset) begin

state_B <= 0;

do_C <= 0;

end

else case (state_B)

0: begin

if (do_B) begin

state_B <= 1;

do_C <= 0;

end

else begin

state_B <= 0;

do_C <= 0;

end

end

1: begin

state_B <= 0;

$display(“B”);

do_C <= 1;

end

default: state_B <= 0;

endcase

end

always @(posedge clock) begin: BLOCK_C

if (reset) begin

state_C <= 0;

do_A <= 1;

end

58 Architectures for Computer Vision

else case (state_C)

0: begin

if (do_C) begin

state_C <= 1;

do_B <= 0;

end

else begin

state_C <= 0;

do_A <= 0;

end

end

1: begin

state_C <= 0;

$display(“C”);

do_A <= 1;

end

default: state_C <= 0;

endcase

end

endmodule

Control of this system must be done by exchanging messages that they can use to control each other. In
this case, situations in which a variable is driven by more than two procedural blocks have to be avoided.

The other alternative is to use a control unit, which is a small state machine that receives states from
the procedural blocks and sends control signals to them in return.

Listing 2.35 Controlling procedural blocks: control unit

module tb;

reg clock, reset;

reg [1:0] state, state_A, state_B, state_C;

reg do_A, do_B, do_C, done_A, done_B, done_C;

initial begin

clock = 0; reset = 0; #50; reset = 1; #50; reset = 0;

end

always #50 clock = ~clock;

always @(posedge clock) begin

if (reset) begin

state <= 0;

do_A <= 1;

do_B <= 0;

Verilog HDL, Communication, and Control 59

do_C <= 0;

end

else case (state)

0: if (done_A) begin

do_A <= 0;

do_B <= 1;

state <= 1;

end

1: if (done_B) begin

do_B <= 0;

do_C <= 1;

state <= 2;

end

2: if (done_C) begin

do_C <= 0;

do_A <= 1;

state <= 0;

end

default: state <= 0;

endcase

end

always @(posedge clock) begin: BLOCK_A

if (reset) begin

done_A <= 0;

end

else if (do_A) begin

$display(“A”);

done_A <= 1;

end

else

done_A <= 0;

end

always @(posedge clock) begin: BLOCK_B

if (reset) begin

done_B <= 0;

end

else if (do_B) begin

$display(“B”);

done_B <= 1;

end

else

done_B <= 0;

end

60 Architectures for Computer Vision

always @(posedge clock) begin: BLOCK_C

if (reset) begin

done_C <= 0;

end

else if (do_C) begin

$display(“C”);

done_C <= 1;

end

else

done_C <= 0;

end

endmodule

This code actually generates AABBCCAA..., which can be corrected by counting the number of
executions. This scheme is often called the datapath method, which consists of control unit and datapath.
In the example, the states are done_A, done_B, and done_C. The control signals are do_A, do_B, and
do_C.

Another method is to transfer the control in a daisy-chain manner, without relying on the control unit.

Listing 2.36 Control: internal trigger

module tb; //testbench

reg clock, reset;

reg run; //first module trigger

//instantiation

moduleABC ABC (clock, reset, run); //moduleABC

//clock and reset

initial begin

clock = 0; reset = 0; run = 0; //clock, reset, run

#50; reset = 1; #50; reset = 0; //reset signal

run = 1; #100; run = 0; //run signal

end

always #50 clock = ~clock;

endmodule

module moduleABC (input clock, reset, input run);

reg ack, ackB, ackC;

always @ (posedge clock, posedge reset) begin: A

if (reset) ackB <= 0; //reset the status

else @ (run) begin //monitor the trigger

$display(“A”); //arbitrary statements

Verilog HDL, Communication, and Control 61

ackB <= 1;

end

end

always @ (posedge clock, posedge reset) begin: B

if (reset) ack <= 0; //reset the status

else @ (ackB) begin //monitor the trigger

$display(“B”); //arbitrary statements

ackC <= 1;

end

end

always @ (posedge clock, posedge reset) begin: C

if (reset) ack <= 0; //reset the status

else @ (ackC) begin //monitor the trigger

$display(“C”);

end

end

endmodule

The first module is initiated by the trigger signal coming from another module, except that the processes
are initiated by the trigger signals from other processes executing in the same module. This computation
has many variations: the shape of the trigger signal, the number of executions, the use of event-sensitive
or level-sensitive control, or conditional statements.

When the states or the procedural blocks are too large to be designed in the above manner, they must
be designed with modules. In these large systems, the control structures must also be expanded to module
control. The first alternative is the datapath method, in which a control unit receives states from each
module, determines the next state, and then sends control signals to the modules. The second alternative
is the use of semaphores, which are exchanged between modules, as a handshake, to control themselves.

The decision as to which entities, i.e. state, procedural block, or module, and which type of control,
i.e. data path and handshake, to use depends on the nature and size of the vision problem.

Problems
2.1 [Handshake] Design two always blocks, where one block sends a sequence of random data to the

other via a four-phase handshake. The transfer is synchronized to a common clock.

2.2 [Handshake] Design two always blocks, where one block sends a sequence of random data to the
other via a two-phase handshake. The transfer is synchronized to a common clock.

2.3 [Handshake] Design two modules, where one module sends a sequence of random data to the
other via a four-phase handshake. The transfer is synchronized to a common clock.

2.4 [Handshake] Design two modules, where one module sends a sequence of random data to the
other via a two-phase handshake. The transfer is synchronized to a common clock.

2.5 [Packed and unpacked] Design a circuit that converts an unpacked array into a packed array.

2.6 [Packed and unpacked] Design a circuit that converts a packed array to an unpacked array.

62 Architectures for Computer Vision

2.7 [Control] In Listing 2.31, the negedge trigger is used in the control unit to prevent each state
occupying two clock periods. What happens if, instead of negedge, posedge is used for the
trigger?

2.8 [Control] Write a code that writes ABAB..., using two always blocks and semaphores do_A and
do_B.

2.9 [Control] The following code contains a summation loop:

module loop(input clock, reset, input [7:0] x, output reg [7:0] y);

reg [7:0] sum, i;

always @(posedge clock) begin

if (reset) y = x;

else begin

for (i=0; i<10; i=i+1)

y = 2 * y + i;

end

end //always

endmodule

What happens in synthesis time in terms of the circuit structure?

2.10 [Control] Convert the previous code, so that the summation may be synchronized to the clock.
Use the keyword if in front of the statement block.

References
Acceleware 2013 OpenCL Altera http://www.acceleware.com/opencl-altera-fpgas (accessed May 3, 2013).
Hennessy JL and Patterson DA 2012 Computer Architecture – A Quantitative Approach (fifth edn.). Morgan Kaufmann.
IEEE 2005 IEEE Standard for Verilog Hardware Description Language. IEEE.
IEEE 2012 IEEE Standard for SystemVerilog. IEEE.
Lin MB 2008 Digital System Designs and Practices: Using Verilog HDL and FPGAs. John Wiley & Sons.
Patterson DA and Hennessy JL 2012 Computer Organization and Design – The Hardware / Software Interface

(Revised 4th Edition) The Morgan Kaufmann Series in Computer Architecture and Design. Academic Press.
Stackexchange 2014 Verilog tag in stackoverflow http://stackoverflow.com/ (accessed Feb. 25, 2014).
Tala DK 2014 Welcome to Verilog page http://www.asic-world.com/verilog/index.html (accessed Feb. 25, 2014).
Wikipedia 2013a C to HDL http://en.wikipedia.org/wiki/C_to_HDL (accessed May 3, 2013).
Wikipedia 2013b Unfolding (DSP implementation) http://en.wikipedia.org/wiki/Unfolding_(DSP implementation)

(accessed May 16, 2013).
Xilinx 2013 High level synthesis http://www.xilinx.com/training/dsp/high-level-synthesis-with-vivado-hls.htm

(accessed May 3, 2013).

http://www.acceleware.com/opencl-altera-fpgas
http://www.acceleware.com/opencl-altera-fpgas
http://stackoverflow.com/
http://stackoverflow.com/
http://www.asic-world.com/verilog/index.html
http://www.asic-world.com/verilog/index.html
http://en.wikipedia.org/wiki/C_to_HDL
http://en.wikipedia.org/wiki/C_to_HDL
http://en.wikipedia.org/wiki/Unfolding_(DSP ignorespaces implementation)
http://en.wikipedia.org/wiki/Unfolding_(DSP implementation)
http://www.xilinx.com/training/dsp/high-level-synthesis-with-vivado-hls.htm
http://www.xilinx.com/training/dsp/high-level-synthesis-with-vivado-hls.htm

3
Processor, Memory, and Array

This chapter introduces the general structure of an image processing system and the basic architectures
of its major constituents, processors, and memories.

In general, a vision algorithm can be considered as a systematic organization of small algorithms,
which, in many cases, can be divided further into even smaller algorithms recursively, until the algorithms
cannot be divided further into meaningful units. The final divided algorithms tend to have simple and
regular computational structures and thus can be considered fundamental algorithms. We are concerned
with the architectures consisting of processors and memories that correspond to the fundamental algo-
rithms. In an ordinary architecture, the constructs are the accumulators, arithmetic circuits, counters,
gates, decoders, encoders, multiplexors, flip-flops, RAMs, and ROMs. However, in image processing, the
constructs are bigger units, such as the neighborhood processor, forward processor, backward processor,
BP processor, DP processor, queues, stacks, and multidimensional arrays.

When considered in the algorithm hierarchy, processors and memories are located at the leaf of the
tree and play the role of building blocks of the algorithms. Before we begin to design the full system,
it is helpful to provide processors and memories, collectively called processing elements (PEs), that are
optimally designed in parameterized libraries. We will learn how to define the processing elements and
connect them in an array, allowing us to build a larger system from a set of smaller systems. This chapter
discusses some processors, memories, and processor network in HDL code.

3.1 Image Processing System
In order to process images, possibly in real time, the hardware system must be built with at least two
devices: a frame buffer connected to a camera and an image processing (IP) chip (Figure 3.1(a)). The
frame buffer, or video RAM (VRAM), is a fast memory where the captured images are stored in a full
frame and reading is possible when the buffer contents are being renewed. The IP chip, realized in the
form of CPLD, FPGA, or ASIC, reads the images from the frame buffer, processes them according to
the algorithm, and sends the results to the ports. This is a rough general configuration, and the nature of
the processor and memory may vary, depending on the application.

The internal operations are represented with Verilog modules, as shown on the right side of
Figure 3.1. The images in the frame buffer must be transferred to the image memory so that the PE
can quickly access the image. The memory may be installed externally if the image is too large to be
stored inside the chip. The PE may need additional memory, which we call state memory, to store the

Architectures for Computer Vision: From Algorithm to Chip with Verilog, First Edition. Hong Jeong.
© 2014 John Wiley & Sons Singapore Pte. Ltd. Published 2014 by John Wiley & Sons Singapore Pte. Ltd.
Companion Website: www.wiley.com/go/jeong

http://www.wiley.com/go/jeong

64 Architectures for Computer Vision

Frame buffer

Image processing
(IP) chip

Input

Camera

Output

(a) Devices

Image
memory
module

PE
module

State
memory
module

Output

Input

(b) Modules in IP

Figure 3.1 The general structure of image processing system

intermediate results and retrieve them rapidly. This memory can also be located outside if the data is
too large to be stored inside the chip. The PE is the main processor that computes the main portion of
the algorithm, in addition to port control such as sync and I/O signals. In a compact system, all three
modules reside in the chip, while in a large system, the three modules may be located in separate chips.

We are concerned with the structure of the modules: PEs and memories. Just as there are many
algorithms and architectures, there are also many PEs and memories. In an effort to determine the basic
PEs and memories, we have to first investigate the nature of algorithms, as in the following section.

3.2 Taxonomy of Algorithms and Architectures
In order to derive efficient hardware systematically from the given algorithm, we need some design stages
and representation schemes. Let us consider the following three stages: vision algorithm, architecture
design, and HDL coding. As a starting point, the vision algorithm needs a detailed description of the
computation, with statements listed in serial order. The ordinary representation is almost free, but it
generally follows an Algol- or Pascal-like syntax. The architecture design attempts to interpret the
algorithm in terms of hardware resources, such as PEs and memories, describing their connections and
operations. At this stage, we need to specify the structure of the memory and the access points, the
connections between the processor and memory, and the control mechanism, in addition to the detailed
computation. The Verilog code converts the designed architecture into a behavioral description (and
ultimately a circuit description). Similar to the relationship between a high-level language, assembly
language, and machine code, the Verilog HDL code is converted to RTL and net-list by compilers
and synthesizers. Some algorithms may be simple enough to be designed directly in the HDL coding,
skipping a hardware description. However, other algorithms may need a detailed description of the
hardware before moving on to HDL coding. (In this case, the hardware design paradigm is shifted to
high-level synthesis, such as Altera’s Vivado and Xilinx’s HLS) missed.

In general, algorithms can be decomposed into smaller algorithms recursively until some well-known
algorithms are reached. There are numerous well-known algorithms, such as FFT, relaxation, recursion,
iteration, DP, BP, Kalman filtering, particle filtering, Bayesian filtering, graph cuts, and EM. The well-
known algorithms can then be decomposed into even smaller algorithms, again recursively until the

Processor, Memory, and Array 65

Table 3.1 PEs and memories for fundamental algorithms

Memory/Processor
a) Multi-dimensional

array
b) Local

register
c) Global

queue
d) Local

stack

1) Neighborhood
processor

IN algorithm
GC algorithm

SAT
algorithm

2) BP processor BP algorithm
3) Viterbi processor HMM, DP

algorithms
4) Forward/ backward

processor
HMM

algorithm

cf. IN: iterative neighborhood, BP: belief propagation, GC: Graph cuts and SAT: sum area table.

smallest algorithms are reached. The smallest algorithms are elements of the many well-known algo-
rithms, often having no names, and thus we may call them fundamental algorithms. Examples include
the neighborhood algorithm, iteration, recursion, sorting, shortest path algorithm, forward processing in
the Viterbi algorithm, forward/backward processing in the hidden Markov model (HMM), inside/outside
algorithm in parsing, and one-pass processing in the sum area table (SAT) algorithm (Viola and Jones
2001). (Because we cannot enumerate all such algorithms, we will focus only on the algorithms that
will be used later.) The fundamental algorithms can be modeled by some architecture, which is orga-
nized by well-defined processors and memories, which we may call the fundamental architecture. The
architectural description is the blueprint for the HDL coding.

In this light, we now present the algorithm hierarchy consisting of the fundamental algorithm:

� Fundamental architecture – HDL coding. Each level of description must follow this order.
� Algorithm, architecture, HDL.

In vision, as limited to the intermediate processing in this book, the fundamental algorithms can be
decomposed into the processors and memories, as listed in Table 3.1. In this table, the top row and the
left column represent memories and processors, respectively. The processors are the devices that execute
the most basic operations. The memories are the devices that store temporary, input, and output data.
The table entries are a few examples of fundamental algorithms, which may consist of more than one
processor and memory. They may also need some other processors and memories, which are omitted
from this table due to lack of regular and well-defined structures. For example, the HMM can be realized
with the Viterbi processor for solving the decoding problem, and the forward/backward processor for
solving the evaluation and learning problems. The DP can be realized with the Viterbi processor.

The neighborhood processor executes neighborhood operations regardless of the definition of the
neighborhood and internal operation. Thus, the neighborhood processor includes a general processor
that receives an arbitrary number of inputs, such as a pixel for pixel processing or a window of pixels
for concurrent processing. The IN and SAT algorithms use this type of processor. The BP processor
is the main processor in the BP algorithm; it receives neighbor values and emits output values to the
neighbors. The forward/backward processor provides the values for evaluation and learning in HMM.
The Viterbi processor finds the shortest path in the Viterbi algorithm, which is used in DP and HMM.
The processors may be decomposed into smaller units, but at some point, the meaning of the processor
may be lost because the remaining operations are purely mathematical and logical.

66 Architectures for Computer Vision

As data structures, memories can be classified as arrays, registers, queues, and stacks. An array is
a data structure in which the data can be accessed randomly and be used to store intermediate results
of the neighborhood. A register symbolizes small data, such as variables, reg type, and parameters,
that are stored inside a processor. A queue is a data structure mostly used in one-pass algorithms,
such as SAT, as we shall see later. A stack is another data structure for storing pointers in the Viterbi
algorithm. On the device side, memories can be implemented in many different ways. First, they may be
provided inside or outside the chip. Next, memories can be realized with various devices, such as SRAM,
SDRAM, or EEPROM. A detailed specification of the target device and memory is needed at the time of
synthesis.

In the following sections, we will design some essential processors and memories and provide code
templates.

3.3 Neighborhood Processor
Processors are the main engine where most operations occur for updating system states. In neighborhood
processing, the two major related algorithms are the iterative neighborhood (IN) and SAT algorithms.
The IN algorithm receives four or eight neighbor values, updates the pixel values, and sends out the
value to its neighbors, repeating this process until convergence. We can replace a pixel with a win-
dow to represent concurrent processing. This kind of operation is typical in many image processing
systems, such as filtering, morphological processing, and relaxation. The SAT algorithm is an abstrac-
tion of the SAT algorithm for pattern recognition (Crow 1984; Tapia 2011; Viola and Jones 2001). It
receives the values of three neighbors, updates the pixel value, and stores it until a later computation
recalls it.

The neighborhood processor executes one of the basic operations, a local operation, which determines
the attribute of a pixel based on neighborhood values. The obtained value is again used by the neighbors
in the next iteration. This basic operation can be considered a state machine in which a pixel’s state is
determined by the neighborhood states.

Let us consider an architecture for a four-neighborhood system. For a given pixel, (x, y) ∈ , the
typical neighborhood is the set of pixels {(x, y), (x + 1, y), (x − 1, y), (x, y − 1), (x, y + 1)}. However, for
the SAT algorithm, the neighbors are the set of pixels {(x, y), (x − 1, y), (x, y − 1), (x − 1, y − 1)}. Without
loss of generality, let us use the former definition.

For each pixel, (x, y) ∈ , the state equation is

Q(x, y) ← T{I(x, y), Q(x, y), Q(x + 1, y), Q(x − 1, y), Q(x, y − 1), Q(x, y + 1)},

O(x, y) ← H(Q(x, y)), (3.1)

where I(⋅) is an image, Q(⋅) is a state, and O(⋅) is an output. T(⋅) and H(⋅) are the state transition and
observation transformation, respectively. All the complex operations are abstracted by T(⋅) and all the
state memories are represented by Q(⋅). The operations are repeated as needed based on the predefined
number of iterations. This statement means that a processor receives data from neighbors including itself
as well as the image input, updates its state, and produces an output.

Figure 3.2 illustrates this concept. At the top left, there is an image plane with M × N pixels (i.e.
 = {(x, y)|x ∈ [0, N − 1], y ∈ [0, M − 1]}). PE(x, y) is defined for each pixel (x, y) ∈ that is connected
with its neighbors. The four neighborhood systems are shown in the next figure. A pixel’s state is
determined by the image and the four neighbor states. As shown at the bottom, a PE is a system that
receives inputs and produces an output. The repetition in plane and in time can be controlled by nested
loops.

Processor, Memory, and Array 67

x

y

(a) Image plane

Q(x, y)
Q(x + 1, y)Q(x − 1, y)

Q(x, y + 1)

Q(x, y − 1)

(b) four-neighborhood

Processing element
(PE)

Q(x, y)

Q(x + 1, y)
Q(x − 1, y)
Q(x, y − 1)
Q(x, y + 1)

Q(x, y)

O(x, y)

(c) PE for four-neighborhood

Figure 3.2 Processing elements for neighborhood computation

There are two possible approaches for the system memory. In a distributed system, each processor
possesses a memory register for storing Q. A global memory scheme, on the other hand, includes a large
memory unit, Q = {Q(x, y)|x ∈ [0, N − 1], y ∈ [0, M − 1]}, and all the processors access it as needed.
Without loss of generality, we follow the second scheme.

This PE can be realized by a Moore machine with two states, which can be represented by a scheme
with one bit in binary coding and two bits in a one-hot coding scheme. The following code is used in the
binary coding:

Listing 3.1 The neighborhood processor: pe_neighbor.v

module pe_neighbor #(parameter DATA_WIDTH=32) (

input clock, reset,

input signed [DATA_WIDTH-1:0] image, //pixel value

input signed [DATA_WIDTH-1:0] q_east, q_west,

q_south, q_north //neighbor states

output reg signed [DATA_WIDTH-1:0]q, result//state and result

);

//Moore machine

parameter STATE1 = 1’b0, STATE2 = 1’b1; //assign states

//initialize state

reg [1:0] state = STATE1;

always @(posedge clock) begin

if (reset) begin //reset

state <= STATE2; //next state

q <= 0;

end

68 Architectures for Computer Vision

else case (state)

STATE1 : begin //idle state

state <= STATE1;

q <= 0;

end

STATE2 : begin //main operation

q <= T(image, q, q_east, q_west,

q_south, q_north); //state transition

result <= H(q); //observation

end

endcase

end //always

endmodule

In the above coding, a pixel-centered coordinate system (i.e. east, west, south, north, center) is used for
convenience. Two states are used to define the idling and the main operation. State transition and output
generation are written in the same block. If specified, T(⋅) must be replaced with an actual code. As a
whole, this processor receives five values (one pixel image and four neighborhood states) and computes
the pixel state and output. To form a complete system, the processors must be connected with an external
global memory (i.e. RAM) where their states are stored.

3.4 BP Processor
A more complicated type of PE can be found in BP. In this PE, the states are dependent on both input
and output directions, and a different state is needed for different outputs. For a node (x, y), let us define
the four states {Qe, Qw, Qs, Qn}. The corresponding state equation is described in Equation 3.2. The
subscripts represent the pixel-centered coordinates – east, west, south, and north. In a simple system,
the four transition functions Te, Tw, Ts, and Tn will be identical. In an actual BP system, more terms
exist, such as smoothness terms (i.e. prior) that relate two nodes with costs and normalization terms that
prevent overflow and underflow.

Qe(x, y) ← Te{I(x, y), Qs(x, y + 1), Qw(x − 1, y), Qn(x, y − 1)},

Qw(x, y) ← Tw{I(x, y), Qe(x + 1, y), Qs(x, y + 1), Qn(x, y − 1)},

Qs(x, y) ← Ts{I(x, y), Qe(x + 1, y), Qw(x − 1, y), Qn(x, y − 1)}, (3.2)

Qn(x, y) ← Tn{I(x, y), Qe(x + 1, y), Qs(x, y + 1), Qw(x − 1, y)},

O(x, y) ← H{I(x, y), Qw(x − 1, y), Qe(x + 1, y), Qs(x, y + 1), Qn(x, y − 1)}.

In BP, the states are called beliefs and must be updated until convergence. This operation is accomplished
by iterating the image plane many times. After the convergence, all four states are used to generate the
outputs, as denoted by the transformation H(⋅). The operations – initialization, update scheduling, along
with the state transition functions – are the major factors for designing such a system.

Figure 3.3 represents a PE. On the left figure, there is a pixel that is connected bidirectionally with its
four neighbors. The right side of the figure shows the PE that receives four inputs and gives four outputs.
The outputs will only be stable after the states are stabilized.

Processor, Memory, and Array 69

Q(x, y)

Qw (x + 1, y)

Qe (x − 1, y)

Qn (x, y + 1)

Qs (x, y − 1)

Qe (x, y)

Qw (x, y)

Qs (x, y)

Qn (x, y)

(a) Four neighborhood

Processing
Element

(PE)
Q(x, y)

Qw (x + 1, y)

Qe (x − 1, y)

Qs (x, y − 1)

Qn (x, y + 1)

Qe (x, y)

Qw (x, y)

Qs (x, y)

Qn (x, y)

(b) Processing element

Figure 3.3 A processing element with four states

In HDL code, this processing element can be represented as follows.

Listing 3.2 The BP processor: pe.v

module pe #(DATA_WIDTH=32) (

input clock, reset,

input signed [DATA_WIDTH-1:0] image, //pixel image

input signed [DATA_WIDTH-1:0] i_east, i_west,

i_south, i_north //neighbor states

output reg signed [DATA_WIDTH-1:0] o_east, o_west,

o_south, o_north, //new states

output reg signed [DATA_WIDTH-1:0] result, //result

);

//define states

parameter STATE1 = 1’b0, STATE2 = 1’b1; //assign states

//initialize state

reg [1:0] state = STATE1;

always@(posedge clock) begin

if (reset) begin //reset

state <= STATE2; //next state

result <= 0;

end

else case (state)

STATE1 : begin //idle state

state <= STATE1;

result <= 0;

end

70 Architectures for Computer Vision

STATE2 : begin //state transition

o_east <= T_e(image,i_south,i_west,i_north); //east out

o_west <= T_w(image, i_east,i_south,i_north);//west out

o_south <= T_s(image, i_east,i_west,i_north);//south out

o_north <= T_n(image, i_east,i_west,i_south);//north out

result <= H(i_east,i_west,i_south,i_north); //result

end

endcase

end //always

endmodule

The operation is represented by a two-state Moore machine. The machine may start in the idle state but
can jump to the normal state when it is reset. In an actual PE, the internal operation is more complicated,
depending on the image input, a prior term, and a normalization factor. The image and the states may be
different in data size, but for the sake of simplicity, we have made them the same here.

3.5 DP Processor
In DP and the HMM (Lawrence et al. 2007; Rabiner and Juang 1993), the Viterbi algorithm is commonly
used for solving the decoding problem. Let us call the processor that is dedicated to the Viterbi algorithm
the Viterbi processor. The search space consists of Nq × N nodes, where Nq is the number of states and N
is the time parameter. The shortest path in this space is found via two phases: the forward processing phase
and the backward processing phase. In the forward processing phase, each node determines a pointer to
one of the Nq nodes and pushes it into its stack. If the parent nodes are limited to a small neighborhood
around the node, then it is possible to solve this problem with a linear systolic array. Otherwise, serial
processing is unavoidable because the number of connections is too large to be implemented in an array.
In this case, the processor structure is very simple, like the forward processor that will be explained soon
in terms of HMM. For the linear array, let us design a processor so that in later chapters we can reuse it
for implementing a full DP system.

Let the position of a PE be (i, j), where j ∈ [0, Nq − 1] for states and i ∈ [0, N − 1] for image width. The
PEs are connected linearly, forming an array {(i, 0), (i, 1),… , (i, Nq − 1)} for a variable i ∈ [0, N − 1].
Each PE possesses a private stack, Q = {q0, q1,… , qN−1}, with the top being q0 and the bottom being
qN−1. During the forward processing, the PE determines the minimum cost, 𝜙(i, j), and the parent index,
𝜂(i, j), which is related to the minimum cost. The costs and pointers are determined using the following
equation:

{
𝜙(i, j) = mink∈[0,Nq−1] 𝜙(i − 1, k) + 𝜇(k, j) + 𝜌(i, j),
𝜂(i, j) = argmink∈[0,Nq−1] 𝜙(i − 1, k) + 𝜇(k, j), j ∈ [0, Nq − 1].

(3.3)

Here, 𝜇(⋅) represents a function and 𝜌(⋅) is a local cost. A pair of neighbor processors is blocked by a
register. The Nq processors on the array are all concurrent.

The corresponding circuit is shown in Figure 3.4. The left image is the linear array where the PEs
are connected with neighbors via up and down links. The PEs are blocked by registers with neighbor
PEs, as indicated on the edges, so that the data moves synchronously. The PE determines the cost and
the pointer that is to be pushed into the stack. The function 𝜇 and the local parameter 𝜌 are determined
locally in each PE. All of the processors can update the costs and the pointers concurrently.

Processor, Memory, and Array 71

0

1

j

Nq − 1

−

−

−

−

−

−

−

−

(a) A linear array

(i, j)
Q(i, j)

(i − 1, j + 1)−

(i − 1, j)−ϕ

ϕ

ϕ ϕ

ϕ

− (i − 1, j + 1)

− (i − 1, j − 1)

(b) a PE

…

Figure 3.4 A linear array and the PE in forward processing

The HDL code needs an external stack that can be accessed by instantiation.

Listing 3.3 Viterbi forward processor: pe.v

module forward_processor #(parameter DATA_WIDTH = 16,

STACK_DEPTH = 100)(

input clock, reset,

input signed [DATA_WIDTH-1:0] rho, phiu, phid, //up down and queue

output reg [1:0] eta, pushpop //pointer to queue

);

//variables

parameter mu = 1, muu = 2, mud = 2;

reg [DATA_WIDTH-1:0] phi; //cost

integer epsilon = 1; //threshold

always @ (posedge clock) begin

pushpop = 0; //no operation

if (phiu + muu - phid - mud > epsilon) begin //choose smaller

phi <= phid + mud; //new cost

eta <= 2’b11; //new pointer

end

else if (phiu + muu - phid - mud > epsilon)begin

phi <= phiu + muu;

eta <= 2’b01;

end

else begin //choose itself

phi <= phi + mu; //new cost

eta <= 2’b00; //new pointer

end

72 Architectures for Computer Vision

0

1

j

Nq − 1

−

−

−

−

−

−

−

−

(a) A linear array

(i, j)
Q(i, j)

b(j + 1)−

b(j)−

−b(j + 1)

−b(j − 1)

(b) a PE

ϕ

…

Figure 3.5 A linear array and the PE in the backward processing

pushpop = 2’b01; //push

end //always

endmodule

To avoid exact equality, which is highly improbable, a threshold parameter epsilon is introduced. This
module accesses an external stack via the value eta and the action pushpop. Each processor has its
own stack. Thus, there are Nq processors and stacks. The state update operations and stack operations
are concurrent for all processors.

In the backward processing phase, the PE executes completely different tasks (refer to Figure 3.5).
Each PE contains a bit flag that indicates whether the node is located on the shortest path or not. To
search for the shortest path, each PE must pop from the stack and, if its own flag is set to one, activate
the flag in the upward or downward PE, based on the popped pointer. Since eta ∈ {−1, 0, 1}, indicating
the upward, current, and downward positions, it is easy to find the correct parent. For a flag bit b(j) at
j-th PE, the new flag bit is determined by the following logic:

b(j + 𝜂(j)) ← 1, if b(j) ⋅ 𝜂(j) = 1, (3.4)

where 𝜂(j) is the pointer that has been popped from the stack.
The HDL code is as follows:

Listing 3.4 Viterbi Backward processor: backward_processor.v

module backward_processor (

input clock, reset,

input [1:0] fu, fd, //flag input

output [1:0] qu, qd, //flag output

output [1:0] pushdown, //pop

Processor, Memory, and Array 73

input [DATA_WIDTH-1:0] q //popped data

);

reg flag = 0; //current flag

always @ (posedge clock) begin

qu = 0; qd = 0; //initialize output

pushpop = 2’b11; //issue pop

if (flag & q == 2’b01) qu <= 1; //activate upward

else if (flag & q == 2’b11) qd <= 1; //activate downward

else if (flag) flag <=0; //keep unchanged

else flag <= 0; //turn off the flag

end //always

endmodule

This module shares the same stack with the forward phase module. In order to access the stack, this
module issues the pop command and receives the stack output.

In order to realize the Viterbi algorithm, an array of Nq processors and stacks must be activated. During
the forward processing phase, the processors fill the stacks with the pointers. During the backward pro-
cessing phase, the opposite actions take place. The output is popped pointers from the active processors.
The pointers are relative and thus must be accumulated for the absolution position of the shortest path.

3.6 Forward and Backward Processors
In HMM, the search space is defined over the Nq × N nodes, where Nq is the number of states and N is the
time parameter. In this space, the forward probability 𝛼(i, j) and the backward probability 𝛽(i, j) can be
computed using the forward and backward algorithms. Given the initial values {𝛼(0, j)|j ∈ [0, Nq − 1]}
and the local measures {𝜌(j, k)|j, k ∈ [0, Nq − 1]}, it is possible to compute the forward and backward
probabilities: {

𝛼(i, j) =
∑

k∈[0,Nq−1] 𝛼(i − 1, k) + 𝜇(k, j) + 𝜌(i, j),

𝛽(i, j) =
∑

k∈[0,Nq−1] 𝛽(i + 1, k) + 𝜇(j, k) + 𝜌(i + 1, k),
(3.5)

where i = 0, 1,… , N − 1 and j ∈ [0, Nq − 1]. Here, 𝜇(j, k) denotes the cost between the states j and k. The
purpose is to obtain the result {𝛼(N − 1, j)|j ∈ [0, Nq − 1]}. The backward probability can be obtained
similarly, but in reverse time order. These algorithms are similar to the Viterbi forward algorithm, except
that summation is used instead of minimum. However, unlike the Viterbi algorithm, no pointers or stacks
are involved here. The memory locations are local registers.

A forward processor is shown in Figure 3.6. It is similar to the backward processor, except that the
direction is reversed. The processor takes Nq inputs and produces one output. The processor cannot be
implemented in a linear array, as the Viterbi processor can, because the number of inputs is too high to
allow for adequate connections in an array. Instead, the computation must be executed sequentially in a
double loop: j = 0, 1,… , Nq − 1 for each i = 0, 1,… , N − 1.

The processor takes Nq inputs and produces one output. The processor cannot be implemented in a
linear array, as the Viterbi processor does, for there are too many inputs to be connected in an array.

74 Architectures for Computer Vision

PE

(i − 1, 0)α

α
α...

(i − 1, Nq − 1)
(i, j)

Figure 3.6 A forward processor

Instead, the computation must be executed sequentially in a double loop: j = 0, 1,… , Nq − 1 for each
i = 0, 1,… , N − 1.

For a large Nq, the processor may even perform iterations in order to process Nq inputs: k =
0, 1,… , Nq − 1 for the node pair (k, j).

Listing 3.5 Forward processor: pe.v

module forward_processor #(parameter DATA_WIDTH = 16)(

input clock, reset,

input signed [DATA_WIDTH-1:0] rho, alpha, //input

output reg signed [DATA_WIDTH-1:0] q, //output

);

//variables

parameter mu = 1;

always @ (posedge clock) begin

if (reset) q <= 0;

else q <= q + alpha + mu + rho;

end //always

endmodule

For simplicity, mu is set to an arbitrary value. In addition to the processor, a RAM is needed to store
Nq instances of 𝛼. Since this is a simple processor, the full computation requires three nested loops:
{(i, j, k)|i = 0, 1,… , N − 1, j = 0, 1,… , Nq − 1, k = 0, 1,… , Nq − 1}. Thus, the complexity is O(NN2

q).
The backward processor can be coded similarly. The forward and backward algorithms can be generalized
to the outside and inside algorithms (Baker 1979; Manning 2001).

3.7 Frame Buffer and Image Memory
Before proceeding further, let us first present common modules for the frame buffer and the image
memory. The frame buffer must be external to the chip. For simulation purposes, the following code may
be used:

Listing 3.6 Frame buffer: fbuffer.v

module fbuffer

#(parameter DATA_WIDTH=8, parameter ADDR_WIDTH=10)(

input we, clock,

Processor, Memory, and Array 75

input [(DATA_WIDTH-1):0] data, //input data

input [(ADDR_WIDTH-1):0] read_addr, write_addr, //address

output reg [(DATA_WIDTH-1):0] q //output data

);

//declare the RAM variable

reg [DATA_WIDTH-1:0] ram[0: 2 ** ADDR_WIDTH-1];

always @ (posedge clock) begin

//write and read

if (we) ram[write_addr] <= data; //write data

q <= ram[read_addr]; //read data

end //always

endmodule

This is a simple template of a dual-port RAM with a single clock, where the data can be written and read
simultaneously. In one port, the video stream is written continuously, and in the other port the data is
read out continuously. There are templates and libraries for advanced RAMs in most EDA tools. Initial
values may be prepared with a hex editor in a binary file with a hex or mif extension.

The image memory is the workspace, in which the PE can execute the algorithm and possibly modify
the contents. This memory may be designed inside the chip for a small dataset or outside the chip for a
large dataset. This memory must be written to and read from concurrently. This memory can be realized
by the dual-port memory as in the following template:

Listing 3.7 2D array: imem.v

module imem #(parameter DATA_WIDTH=8, parameter ADDR_WIDTH=10)(

input we_a, we_b, clock,

input [(DATA_WIDTH-1):0] data_a, data_b, //input data ports

input [(ADDR_WIDTH-1):0] addr_a, addr_b, //addresses

output reg [(DATA_WIDTH-1):0] q_a, q_b //output data ports

);

//declare the RAM variable

reg [DATA_WIDTH-1:0] ram[0: 2 ** ADDR_WIDTH-1];

//port A

always @ (posedge clock)

begin

if (we_a)

begin

ram[addr_a] <= data_a; //write data

q_a <= data_a; //store the address

end

else q_a <= ram[addr_a]; //output data

end //always

//port B

76 Architectures for Computer Vision

always @ (posedge clock)

begin

if (we_b)

begin

ram[addr_b] <= data_b; //write data

q_b <= data_b; //store the address

end

else q_b <= ram[addr_b]; //output the data

end //always

endmodule

Note that the array is written only when wena or wenb are asserted. Otherwise, the array is always read
out. All of the systems that follow will use the same frame buffer module and the same image memory
module.

3.8 Multidimensional Array
For the design of state memories, there are many alternative methods that depend on the available
resources in a given device. The most general method is to use the standard Verilog array construct,
which does not specify any available resources. A more advanced method is to use the parameterized
libraries and IPs that are available in EDA tools. If the target devices, such as CPLD or FPGA, are
specified, the library modules can be further tuned to the target devices. In an FPGA, there are several
types of memories, such as registers, ROM, SRAM, and RAM. The registers, as portions of logical
elements (LEs), are very limited in number and usage. For large memories, as required in most vision
algorithms, one or more external RAMs must be connected via appropriate ports. In this section, we
consider a simple design method that uses the standard Verilog construct and does not assume a particular
device or commercial tool.

In image processing, the state memory is often a 2D array, Q = {q(x, y)|x ∈ [0, N − 1], y ∈ [0, M − 1]},
defined over an image plane, I = {I(x, y)|x ∈ [0, N − 1], y ∈ [0, M − 1]}. Unfortunately, the RAM is
organized as a 1D array, RAM = {RAM(z)|z ∈ [0, MN − 1]}. To move from a 2D coordinate, (x, y), to a
1D coordinate, z, the address must be flattened via concatenation: z = {x, y}. Therefore, RAM({x, y}) ←
q(x, y) signifies concatenation. To move from 1D to 2D, the address z must be popped to (x, y). That
is, q(x, y) ← RAM({x, y}). This concept can be expanded to the case where a set of addresses must be
accessed. Figure 3.7 illustrates such a memory.

(x,y)

data
q(x,y)

read/write

clock

(a) A point

QM × NQM × N

{(x,y)}

{data}
{q(x,y)}

read/write

clock

(b) A set of points

Figure 3.7 A 2D memory, Q: (x,y) for address, data for input, q for output, read, write, and clock
for control and clock signals

Processor, Memory, and Array 77

The processor accesses the memory as a 2D array, but internally the memory is an ordinary 1D RAM.
For accessing neighbors and a window, the address and the outputs must be a set of data, as shown on
the right of Figure 3.7.

One of the simplest RAMs is a single-port RAM having a single read/write address bus. In certain
vision algorithms, the memory may be used to store the initial image values. This operation can be
accomplished by initializing the contents. The following code is a template for a 2D array:

Listing 3.8 Module: ram2d.v

module ram #(parameter DATA_WIDTH=32, ADDR_WIDTH=10)(

input we, clock,

input [DATA_WIDTH-1:0] data, //input data

input [ADDR_WIDTH-1:0] x,y, //address

output [DATA_WIDTH-1:0] q //output data

);

//declare the variables

reg [DATA_WIDTH-1:0] ram[0:2 ** (2 * ADDR_WIDTH)-1]; //RAM

reg [ADDR_WIDTH-1:0] x_reg, y_reg; //hold address

//write data

always @ (posedge clock) begin

if (we) ram[{x,y}] //write

x_reg <= x; y_reg <= y; //store address

end //always

//read data

assign q = ram[{x_reg,y_reg}]; //output

endmodule

When synthesized, this array is actually implemented by RAM or registers. There are more advanced
RAMs that have multiple ports and need multiple clocks so that reading and writing can be executed
concurrently. To initialize the 2D memory, there must be an initialization process that reads the external
RAM and writes to the internal 2D array.

For accessing points in a neighborhood or a window, this simple template will not work and thus must
be modified to include a list of address ports. The indexed part select used in stacks can be very useful
in dealing with long flat addresses.

3.9 Queue
The data structure queue (or FIFO buffer) is the main data structure in the fast relaxation equation (FRE)
machine, which will be introduced in Chapter 8. The queue is special in that its size (width and depth) is
constant, the data always enters from one end (i.e. the head) and leaves from the other end (i.e. the tail),
a set of fixed locations are accessed concurrently, and the queue element is a window, thus forming a
parallelepiped.

Let us start with a simple queue. A queue, Q, with width Nw and depth Nq is an array of Nw × Nq

elements:

Q = {q(1), q(2),… , q(Nq)}, (3.6)

78 Architectures for Computer Vision

QNw × Nq

data

Q(A)push

clock

(a) Queue

data

Q(aNa) Q(a1)

· · ·

(b) Structure

Figure 3.8 A queue Q: q for input, A for fixed addresses, Q(A) for output, shift and clock for control
and clock signals

where q(1) and q(Nq) are the head and tail, respectively. The access addresses are the set A =
{a1, a2,… , aNa

}, where Na is the number of access points. (In the FRE machine, A is a neighbor-
hood of addresses, as we shall see in later chapters.) The output must always be available for the PE.
(No loading command is needed.)

A hardware queue can be considered as a system, as shown in Figure 3.8. Initially, the queue is empty.
It is then filled until it is completely full. Thereafter, the queue is always full. In order to access the data
in the queue, either the head or the tail address can be used as a pointer. Mathematically, for an input x,
the push operation is given by

Q
push

←−−−− x. (3.7)

There are three techniques for implementing a hardware queue: systolic, shift register, and circular
buffer. A systolic queue is a systolic array where the registers are cascaded in a linear configuration. A
shift register is a register in which all data is shifted into the put operation. A circular buffer is a memory
with head and tail pointers sliding along the memory buffer.

Out of these three options, we choose the shift register, which is the simplest. We design the core
part of the queue using the shift register. Usually, the input data is a set of data in a window. Since the
port does not allow arrays, the data must be flattened first and then it must be popped out internally. The
following code illustrates this approach:

Listing 3.9 Queue: queue.v

module queue #(parameter DATA_WIDTH=8, DATA_NUM = 2, QUEUE_DEPTH=10,

ADDR0 = 0, ADDR1 = 10)(

clock, push, data, q0, q1);

input clock, push;

input signed [DATA_WIDTH * DATA_NUM - 1:0] data; //input data

output reg signed [DATA_WIDTH-1:0] q0, q1; //output data

//define variables

Processor, Memory, and Array 79

reg [DATA_WIDTH-1:0] ram [0:QUEUE_DEPTH * DATA_NUM -1]; //ram

integer i,j;

//push the data

always @(posedge clock) begin

if (push) begin

for (j = DATA_NUM; j > 0; j = j - 1) begin

for(i = QUEUE_DEPTH * DATA_NUM - 1; i > 0; i = i - 1)

ram[i] <= ram[i-1]; //shift data

//pop out and push the data (indexed part select)

ram[0] <= data[(j * DATA_WIDTH - 1) -: DATA_WIDTH];

end

q0 <= ram[ADDR0]; q1 <= ram[ADDR1]; //read data

end

end //always

endmodule

Note the indexed part select in the data pop-out and push. The output data is a set of queue elements in
a set of pre-defined positions. If the queue size is large, then it may not be possible to complete the shift
operations in one clock cycle. In that case, the clock must be slowed down or counted until a block of
data is pushed completely into the queue. If the queue size is large, then the circular shift buffer, which
uses memory, could be used alternatively.

3.10 Stack
The stack data structure is used heavily in DP and HMM and thus must be optimized. In both algorithms,
the stack is used to store a parent index and possible costs. The parent index is the node from the previous
stage, which has been chosen as a parent from a set of possible options. The stack is defined by an
Nw × Nq array Q = {q(1),… , q(Nq)}, where Nw is the data width and Nq is the stack depth. The stack is
illustrated in Figure 3.9.

The data is an input to be pushed into the stack and q is an output to be popped from the stack. The
stack is parameterized by the data width and the stack depth. The push and pop controls are coded by
the state.

QNw × Nq

data

qpush/pop

clock

Figure 3.9 A stack Q: data for input, q for output, push, pop, and clock for control and clock signals

80 Architectures for Computer Vision

Listing 3.10 Stack: stack.v

module Stack #(parameter DATA_WIDTH = 8, STACK_DEPTH = 100)(

input clock, reset, //clock and reset

input [1:0] state, //state

input [DATA_WIDTH-1:0] data, //input data

output reg [DATA_WIDTH-1:0] q //output data

);

//declaration memory

reg [DATA_WIDTH-1:0] ram[0:STACK_DEPTH-1]; //stack

//integer variables

integer stack_address, i;

//assign states

parameter STATE_IDLE = 0, STATE_PUSH = 1, STATE_POP = 2; //states

//always block

always @ (posedge clock) begin

if (reset) begin //reset

for (i=0; i < STACK_DEPTH; i=i+1) ram[i] <= 0;

stack_address <= 0;

end

else case (state)

STATE_IDLE : q <= 8’hZZ; //idle state

STATE_PUSH : begin //push state

if (stack_address == 0) begin

ram[0] <= data;

stack_address <= stack_address + 1;

end else if (stack_address < STACK_DEPTH - 1) begin

ram[stack_address] <= data;

stack_address <= stack_address + 1;

end else begin

ram[stack_address] <= data;

stack_address <= stack_address;

end

end

STATE_POP : begin //pop state

if (stack_address == 0) begin

q <= ram[stack_address];

ram[stack_address] <= 0;

stack_address <= stack_address;

end else begin

q <= ram[stack_address];

ram[stack_address] <= 0;

stack_address <= stack_address - 1;

end

end

Processor, Memory, and Array 81

default : begin //fault recovery

q <= 8’hZZ;

end

endcase

end //always

endmodule

The combination of various PEs and memories will result in different types of PE memory models.

3.11 Linear Systolic Array
Now, let us design a simple architecture that can execute a linear filter. Through the projects, we will
learn the following concepts: designing processing elements (PEs) with state machine, designing network
systems, and designing test benches. In addition, the linear pipelined array, which will be used in this
chapter, is an important computational structure for DP and HMM, which is frequently used in solving
computer vision problems. In later chapters, such arrays will be derived and designed for computer vision
algorithms.

Once a PE is designed, a set of such elements can be connected in various ways to form different
topologies. One of the possible connections is the linear arrangement, which is often called systolic array
(Kung and Leiserson 1980; Petkovic 1992). The systolic arrays are very convenient for VLSI because
of properties such as pipelining, nearest-neighbor connection, and identical processors. This structure is
also essential for designing the DP or HMM, which will be investigated in later chapters.

As an example, let us consider a linear convolution. A signal x(t) is convolved with weights w, and
the output y(t) is obtained. For a finite impulse response (FIR) filter, the system equation becomes

y(t) =
K−1∑
k=0

wkx(t − k). (3.8)

Here, K is the number of filter taps. Computationally, this simply means a weighted sum, with shifted
input signals and weights.

The serial algorithm is as follows. For the sake of simplicity, we use only three taps for the filter.

Algorithm 3.1 (Serial algorithm) Compute the following:

� input: x(t).
� output: y(t).
� parameters: {w0, w1.w2}.

1. for t = 0, 1,…
(a) y ← w0x(t) + w1x(t − 1) + w2x(t − 2) +⋯ + wK−1(t − k).
(b) output: y.

This can be realized with a PE. (See the problems at the end of this chapter.) However, here, we consider
designing a systolic array. A given function can have many systolic arrays that are different in topology
and registers. Obtaining different arrays is possible, because the registers can be redistributed by retiming
(Leiserson and Saxe 1991), and the topology can be modified by topological transformation (Jeong 1984).

82 Architectures for Computer Vision

w1 w2 w3 w

1

2

1

2

x3x2x1

y3y2y1

x20x1

xi xo

yi yo

xo ← xi,

yo ← yi + w · xi

(a) x&y: same direction, w: stored

w3 w2 w1 w
1

1

1

1

00y10y2

xi xo

yo yi

xo ← xi,

yo ← yi + w · xi

(b) x&y: opposite direction and interleaved, w: stored

w1 w2 w3 w

w1w3

w2w3 w1w2

2

1

4

2

1

4

x200x1

y200y1

wi wo

xi xo

yi yo

wo ← wi,

xo ← xi,

yo ← yi + w · xi

(c) x&y: same direction and interleaved, w: rotating

w1 w2 w3 w

w3w1

w2w1 w3w2

2

1

2

2

1

2

x200x1

00y100y2

wi wo

xi xo

yi yo

wo ← wi,

xo ← xi,

yo ← yi + w · xi

(d) x&y: opposite direction, w: rotating

Figure 3.10 Linear systolic arrays for convolution (Numbers represent the number of registers. PEs
are on the right.)

Furthermore, interleaved circuits, which are collectively called a k-slow circuit, can be obtained by adding
more registers (Leiserson and Saxe 1991). If the transformations in timing and topology are combined,
numerous circuits may result (Jeong 1984).

Among the many circuits, four are shown in Figure 3.10 (Jeong 1984). Only three taps are used here,
but the circuits can be easily expanded for longer taps. The numbers on the edges represent the number
of registers that block the PEs. The array is shown on the left, and the PE is shown on the right. For a
given array, all the PEs are performing the same operations. The data stream is permanently arranged
by the fixed connections and delays. In each clock tick, all the data move in a lock-step manner, like
a machine. The four circuits differ in the direction of input, output, and weight and in the number of
registers. The zeroes, which are introduced between signals, represent interleaving, and independent
signals can be put in those places. In (b), the weights are stored in the PEs, but the directions of input
and output are opposite. In this configuration, the number of registers is reduced, but the signals must

Processor, Memory, and Array 83

be interleaved. A set of different signals can be processed in such an interleaved system. In (c), the PE
does not store weights, and thus all the signals and weights are supplied externally. The first and second
arrays are dual, and thus, the third and the fourth arrays must also be dual.

Let us design only the first array (Figure 3.10(a)). The design consists of three modules: four identical
PEs, a network, and a test bench. The network module connects the four PEs in a cascaded configuration
by using the output of one module as the input of the other module. The overall system is a Moore
machine.

A PE consists of a weight memory, a register for the x output, and two registers for the y output. Using
the memories, we express the internal operation of a PE by the hardware algorithm.

Algorithm 3.2 (PE(k)) For a PE(k), do the following:

� input: {xi(k), yi(k)}.
� memory: w(k), xo(k), {y(k), yo(k)}.
� output: {xo(k), yo(k)}.

1. initialization: w(k).
2. for each clock

(a) y = yi(k) + w(k)xi(k).
(b) output: xo(k) ⇐ x(k), yo(k) ⇐ y.

Here, k means the id of the PE. The Verilog procedural assignments are used – blocking (=) and
nonblocking (<=), to clarify the serial and concurrent processing.

For Algorithm 3.2, we can write the module, pe.v.

Listing 3.11 Module: pe.v

‘timescale 1ns / 100ps //unit time/ precision

‘define DATA_WIDTH 32 //parameter

//module pe, the signals are signed for 2’s complement arithmetic.

module pe(

input signed [‘DATA_WIDTH-1:0] xi, //signal input

output reg signed [‘DATA_WIDTH-1:0] xo, //signal output

input signed [‘DATA_WIDTH-1:0] yi, //output input

output reg signed [‘DATA_WIDTH-1:0] yo, //output output

input clock,

input reset

);

//Moore machine

parameter STATE1 = 2’b00; //idle state

parameter STATE2 = 2’b01; //input weights

parameter STATE3 = 2’b10; //store weights

parameter STATE4 = 2’b11; //main operations

reg [8:1] clock_count; //for weight input

reg [1:0] state = STATE1; //initialize state

reg signed [‘DATA_WIDTH-1:0] w; //weight

84 Architectures for Computer Vision

reg signed [‘DATA_WIDTH-1:0] y; //simulate output

register

(* FSM_ENCODING=’SEQUENTIAL’, SAFE_IMPLEMENTATION=’YES’,

SAFE_RECOVERY_STATE=’<recovery_state_value>’ *) //attributes

always@(posedge clock) begin //sequential circuit

if (reset) begin //synchronous reset

state <= STATE2; xo <= 0; yo <= 0; clock_count <= 0;

end else

(* PARALLEL_CASE, FULL_CASE *) case (state)//attributes

STATE1 : begin //idle state

state <= STATE1; xo <= 0; yo <= 0;

end

STATE2 : begin //input/ load weights

if (clock_count < 4) begin

state <= STATE2;

clock_count <= clock_count + 1;

xo <= xi; yo <= 0;

end else begin

state <= STATE3;

w <= xi; xo = xi; yo <= 0;

end

end

STATE3 : begin //main operations

state <= STATE4;

xo <= xi;

y <= yi + w * xi;

end

STATE4 : begin //for delay

state <= STATE3;

xo <= xi;

yo <= y;

end

default : begin //fault Recovery

state <= STATE1;

$display (”%0t State error occurred!”, $time);//for debugging

end

endcase

end //always

endmodule

In coding the PE, it is convenient to use four states: state 1 for idle state, state 2 for loading filter weights,
state 3 for the weighted sum, and state 4 for output. In the idle state, a PE stays unchanged until the
system is reset. Once it is reset, the system goes to state 2, where the input, which is the weight, is
loaded into the internal memory. It is economical to share the input port for the weight and data input, in

Processor, Memory, and Array 85

time-sharing – weights first and data next. When all the weights are loaded, the system goes to state 3,
where a multiplication-accumulation is performed. The state then goes to 4, where the output signals
are shifted into the registers. Afterward, states 3 and 4 are visited alternately until the system power is
turned off.

The next stage is to define a network module that configures the PEs, connecting their outputs and
inputs. The hardware algorithm is shown below.

Algorithm 3.3 (Network) Connect {PE(k)|k ∈ [0, 2]}.

� input: x.
� output: yo(2).

1. for each clock tick, do the following:

xo(−1) ⇐ x, xi(k) ⇐ xo(k − 1), yi(k) ⇐ yo(k − 1), k ∈ [0, 2].

In this network, the two outputs of a previous PE become the two inputs of a subsequent PE, except
in the case of the first PE, which receives the two inputs from outside. The output of the last PE is the
system output. Like PEs, the network is described by the connection points instead of the system clock,
which is already implicit in the hardware.

For Algorithm 3.3, we can build a module, network.v.

Listing 3.12 Module: network.v

‘timescale 1ns/100ps //unit time/ precision

‘define DATA_WIDTH 32 //parameter

//network for connecting PEs

module network(

input signed [‘DATA_WIDTH-1:0] xi, //input

output signed [‘DATA_WIDTH-1:0] yo, //output

input clock, //clock input

input reset //reset input

);

//nets and variables

wire signed [‘DATA_WIDTH-1:0] xo; //actually dummy

wire signed[‘DATA_WIDTH*3:1] t,s; //connection nets

//chain of instances

pe p[1:4] ({t,xi}, {xo,t}, {s,0}, {yo,s},clock,reset);

endmodule

There are three methods for connecting modules in a chained topology. The first method is to enumerate
all the PEs and their ports directly. The better method is to use the communication net, which is used
in this example. By this method, we used two intermediate variables – t and s – to form a chained
configuration. There is another method using the Verilog construct generate.

Finally, the network must be tested with a test bench, tb.v.

86 Architectures for Computer Vision

Listing 3.13 Module: tb.v

‘timescale 1 ns / 100 ps //unit time/ precision

‘define DATA_WIDTH 32 //parameter

//a test bench

module tb; //test bench

//inputs

reg signed[‘DATA_WIDTH-1:0] x;

reg clock, reset;

//outputs

wire signed [‘DATA_WIDTH-1:0] y;

//instantiate UUT

network UUT (//supply x and receive y

.xi(x),

.yo(y),

.clock(clock),

.reset(reset)

);

//execute once for simutation

initial begin

x = 0; clock = 0; reset = 0; //initialize inputs

#100 reset = 1; //generate reset

#100 reset = 0;

end

always #50 clock = ~clock; //clock generation

always @(posedge clock) begin //generates weights

if (reset == 1) assign x = 0; //assign-deassign

else x = $random; //random numer used here

deassign x; //assign-deassign

end

endmodule

In the code, the network is instantiated with the name UUT, and the signals are supplied by the codes
expressed thereafter. In the signal stream, simulated by the random number generator, the first four input
data are used as weights, and the remaining data are used as signals. There is some latency because of
the tap size, weight preparation, and other initialization processes.

The three modules tb.v, network.v, pe.v collectively construct the overall system and can be
simulated. The simulated signals are shown in Figure 3.11. In the left panel, the input and output reset
and clock are listed. The right panel shows the signals’ corresponding nets and variables.

Figure 3.11 Simulation result

Processor, Memory, and Array 87

gnd pe
x(31:0) xo(31:0) xo(31:0)

yo(31:0) yo(31:0)

xo(31:0)

yo(31:0)

xo(31:0)

yo(31:0)

y(31:0)

ok
restrest

x(31:0)

yo(31:0)

ok

x(31:0)

y(31:0)

ok
rest

x(31:0)

y(31:0)

ok
rest

x(31:0)

y(31:0)

ok
rest

pe pe pe

p<3> p<2> p<1> p<0>

XST_GND

Figure 3.12 RTL schematic diagram after synthesis

The synthesis tool can provide a schematic diagram, as shown in Figure 3.12. The schematic describes
connections of the four PE modules. An IDE usually provides functions for observing the design in
detail. Electronic design automation (EDA) tools such as Altera Quartus tools and Xilinx ISE (or
Vivado) provide a complete set of tools ranging from editing to FPGA programming.

Problems
3.1 [Neighborhood processor] Define the average with four-neighborhood and modify Listing 3.1 for

the image average.

3.2 [Neighborhood processor] Integrate an image by modifying Listing 3.1 for the image average.

3.3 [Neighborhood processor] The code, Listing 3.1, is designed for a four-neighborhood system.
Change the code for the eight-neighborhood system.

3.4 [Neighborhood processor] In Listing 3.1, the image is considered mono color. Expand the mono
to the three channels, R, G, and B, all with the same word length.

3.5 [Viterbi processor] The purpose of the Viterbi forward probability is to find the ending of the
shortest path. Write a code for finding the ending with the given {𝛼(N − 1, j), 𝜂(j)|j ∈ [0, Nq − 1]}.

3.6 [Viterbi forward processor] The template, Listing 3.3, is designed for only three-neighbor. If
the Nq nodes must be considered in comparing operation, the linear array is not possible due to
enormous connections. In that case, serial processing is necessary. Write the code in HDL.

3.7 [Forward backward processor] The purpose of the forward algorithm is to compute the conditional
probability that is used to solve the evaluation problem. Let the joint probability, P(X|Ψ), where
X is the Markov process and Ψ is the prior. Then, write a code for computing P(X|Ψ) with alpha,
which is obtained by Listing 3.5?

3.8 [RAM] In Listing 3.8, 1D array is used for storing image data (in the sense of word unit). Change
the internal array, ‘ram,’ to a 2D array.

3.9 [Array] In Listing 3.5, the signal input was used to carry initial weights. Instead, the weight can be
loaded from an internal memory. Change the weight setting with a reg loading in the reset block.

3.10 [Array] In Listing 3.6, modify the Verilog codes pe.v, network.v, and tb.v so that the number
of taps can be more general.

3.11 [Array] In Listing 3.5, for pe.v, the state coding is done in a ‘binary scheme’. Change the state
into a ‘one-hot’ scheme.

3.12 [Array] In Listing 3.5 to Listing 3.7, for pe.v, change the Moore machine into the Mealy machine
with both binary and one-hot state representations.

88 Architectures for Computer Vision

3.13 [Array] In Listing 3.5 to Listing 3.7, for the module network.v used the ‘communication list,’ t
and s are used to connect the ports of PEs. Instead of a connection list, use generate to obtain
an equivalent network.

3.14 [Array] Design the other arrays in Figure 3.10 by modifying the following Verilog codes: pe.v,
network, and tb.

3.15 [Array] Given the equation y(t) = w0x(t) + w1x(t) + w2x(t − 2), t = 0, 1,…, express a hardware
algorithm that uses only a PE.

3.16 [Array] Given the equation y(t) = w0x(t) + w2x(t − 2)2, t = 0, 1,…, express a hardware algorithm
that uses only a PE.

3.17 [Array] An IIR filter is given by y(t) =
∑p

k akx(t − k) +
∑q

l=1 bly(t − l). Design a machine.

3.18 [Array] For an image I(x, y) (x ∈ [0, N − 1], y ∈ [0, M − 1]), the first-order forward difference is
defined by f (x, y) = I(x + 1, y) − I(x, y). Design a machine for this operation.

References
Acceleware 2013 OpenCL Altera http://www.acceleware.com/opencl-altera-fpgas (accessed May 3, 2013).
Baker J 1979 Trainable grammars for speech recognition In Speech communication papers presented at the 97th

meeting of the Acoustical Society of America (ed. Wolf JJ and Klatt DH), pp. 547–550 Acoustical Society of
America.

Crow FC 1984 Summed-area tables for texture mapping Computer Graphics (SIGGRAPH ’84 Proceedings), pp. 207–
212. Published as Computer Graphics (SIGGRAPH ’84 Proceedings), volume 18, number 3.

Jeong H 1984 Modeling and transformation of systolic network Master’s thesis Massachusetts Institute of Technology.
Kung H and Leiserson C 1980 Algorithms for VLSI processor arrays In Introduction to VLSI Systems (ed. Mead C

and Conway L) Addison-Wesley Reading, MA pp. 271–291.
Lawrence R, Rabiner R, and Schafer R 2007 Introduction to Digital Speech Processing. Now Publishers Inc., Hanover,

MA USA.
Leiserson C and Saxe J 1991 Retiming synchronous circuitry. Algorithmica, 6(1), 5–35.
Manning C 2001 Probabilistic linguistics and probabilistic models of natural language processing NIPS 2001 Tutorial.
Petkovic N 1992 Systolic Parallel Processing. North Holland Publishing Co.
Rabiner L and Juang B 1993 Fundamentals of Speech Recognition Prentice Hall signal processing series. Prentice

Hall.
Tapia E 2001 A note on the computation of high-dimensional integral images. Pattern Recognition Letters 32(2),

197–201.
Viola P and Jones MJ 2011 Robust real time object detection Workshop on Statistical and Computational Theories of

Vision.
Xilinx 2013 High level synthesis http://www.xilinx.com/training/dsp/high-level-synthesis-with-vivado-hls.htm

(accessed May 3, 2013).

http://www.acceleware.com/opencl-altera-fpgas
http://www.xilinx.com/training/dsp/high-level-synthesis-with-vivado-hls.htm

4
Verilog Vision Simulator

In designing a vision chip, testing is more than simply checking for the correct relationship between the
actual output and the desired output, given the test vectors, as in the case of ordinary digital circuit design.
The vision chip must deal with very large amounts of data and high data rates such as video frames, as
well as various image formats such as bitmap, jpg, and tiff. The data rate in a stereo vision chip is expected
to be two to three times higher than it is in an ordinary single video system. Moreover, the vision chip
might be part of a large vision system that consists of various types of software and hardware. To build
such a vision system, we have to interconnect two heterogeneous systems: vision software and a vision
chip. Therefore, we have to move away from the conventional test bench concept to the more specialized
concept of the vision simulator. This vision system will function as an interface to the chip and vision
programs, in a similar fashion to open source computer vision (OpenCV). Generally, the simulator will
perform a long sequence of operations: provide images to the chip, perform preprocessing, supply the
intermediate preprocessed data to the chip, retrieve the result from the chip, perform post-processing, and
provide the final output. In addition to simulation, the simulator by itself can be used as a research tool
to develop vision algorithms. Thus, with a simulator, we can build a complete vision system comprising
vision software and hardware.

In developing a vision simulator, we may choose one of two approaches. One approach is to use
the Verilog system functions and tasks, provided in Verilog 2005 (IEEE 2005). As we learned in the
previous chapter, the system tasks and functions are similar to those in C. We can use these functions
to read images from files, apply preprocessing, feed the processed image to the chip, collect the results
from the chip, and write the results to another file. Another approach is to use the Verilog Procedural
Interface (VPI), in which Verilog code invokes C code, which then invokes the Verilog system tasks and
functions, for image input and output, preprocessing, and post-processing. This method requires that
packages be built both in Verilog and C, using libraries defined in VPI. Unfortunately, this approach is
very challenging and appears impractical, compared to the tremendous investment required. Instead, it
is more efficient to use the first approach, aided by the vision package, OpenCV (OpenCV 2013).

In this context, this chapter introduces two simulators: a Vision Simulator (VSIM) that is based on
scan lines and another that is based on video frames. Both systems are fundamentally based on Verilog
system tasks and functions and OpenCV. The processing element in VSIM is generally designed so
that more detailed algorithms can be implemented on it. Among VSIMs, line-based VSIM (LVSIM) is
designed for algorithms that process images line by line, as in DP. Frame-based VSIM (FVSIM) is more
general; it allows neighborhood and iterative computations, as needed in relaxation and BP algorithms.

Architectures for Computer Vision: From Algorithm to Chip with Verilog, First Edition. Hong Jeong.
© 2014 John Wiley & Sons Singapore Pte. Ltd. Published 2014 by John Wiley & Sons Singapore Pte. Ltd.
Companion Website: www.wiley.com/go/jeong

http://www.wiley.com/go/jeong

90 Architectures for Computer Vision

Main
C/C++

Verilog
Simulator

Processing
Element

OpenCV

Buffer

Images

Result

.bmp/
.bin

.bin

.bmp/
.bin

.bin

.bin

.bin

Simulator

Figure 4.1 The structure of a vision simulator

4.1 Vision Simulator
In general, the simulator must contain the following three components: a main program in C/C++, a
Verilog HDL simulator, and a processing element (Figure 4.1). The main program is a general image
processing software written in a high-level language, the processing element is the target design for
synthesis, and the Verilog HDL simulator is the interface between the main program and the processing
element.

The main program is the front-end of the system, and as such receives a set of images, executes
some vision algorithms, including preprocessing, and writes the intermediate result to a file, so that the
Verilog simulator can access the intermediate result, process it, and store the result of processing in
another part of the file. The main program then reads this result from the file, processes it further using
vision algorithms, conducts post-processing, and outputs the final result. During the processing, the main
program may use other vision packages, such as OpenCV. The OpenCV package represents an image
by an object, Mat, and thereby manipulates it, using various vision processing operations. In its location
between the main program and the processing element, the Verilog simulator reads information from the
buffer file and supplies it to the processing element. At the end of processing, it reads the result from
the processor and writes it back to the file. The processing element receives the raw image data from the
Verilog simulator, processes it, and returns the result to the Verilog simulator. In this manner, the three
components form a loop, consisting of forward and backward paths from the outside into the chip.

It is obvious that the programming paradigms of the three components are different: the main program
is written in C/C++, the Verilog simulator is written in Verilog System tasks/functions, which may not
be synthesized, and the processing element is written in Verilog HDL, which must be synthesized. To
make components exchange data flawlessly without concern for their internal implementation, we must
make the data format between any two interfacing systems the same. The input to the main program
is a set of images, taken from still cameras or video cameras, which are encoded in various formats
(Wikipedia 2013b). The format of the output from the main program is even more varied: data, feature
maps, disparity maps, optical flow maps, other map types, and images. Between the main program and
the Verilog simulator, the image must be coded in a common format, such as bitmap (i.e. a file with the
.bmp extension) or raw image (i.e. a file with the .bin extension, signifying binary data). Between the
Verilog simulator and the processing element, the data format must be raw (i.e. it should have a .bin
extension).

Verilog Vision Simulator 91

In simple cases, the main program can be disregarded and the Verilog simulator alone used to manage
the bitmap or raw image stored in the file. If image formats are a problem, OpenCV may not be
necessary, because they can be converted to bitmap or raw image by dedicated image converters. In
a sophisticated system, the main program can be used to connect the Verilog simulator and OpenCV,
and transfer data between them, without relying on files. This scheme can be accomplished using the
VPI in Verilog-2005 (also DPI in SystemVerilog), which links the high-level programming and Verilog
(also SystemVerilog). A C program can be compiled with VPI constructs using vpi_user.h and called
from the Verilog simulator as user defined procedures (UDPs). However, the programming complexity
involved in building the complicated interface needed is not worth the time investment required. A
more practical approach is to use a simple buffer (i.e. a file) between the main program and the Verilog
simulator, as described above. The systems are loosely coupled but are very versatile in dealing with
general cases. Under these assumptions, we develop the main program and the Verilog simulators, as
well as a general form of processing element in the ensuing sections.

4.2 Image Format Conversion
Because several different programming environments must be linked, a common file format for exchang-
ing the data in files is necessary. Two basic forms are used: raw format and bitmap format. (Let us use
the file extension .bin for raw image files, and .bmp for bitmaps, as per convention.) The raw format is
a 1D array of pixels in Verilog data format, obtained by rearranging the 2D image (Figure 4.2). In math-
ematical terms, an image is represented by an array, I = {I(x, y)|x ∈ [0, N − 1], y ∈ [0, M − 1]} where
each pixel is in the RGB color model, I = {(R, G, B)}, and in Verilog is represented by an array, ‘reg
[7:0] image [0:3*‘N * ‘M-1];’, where ‘M and ‘N are parameters representing row and column,
respectively. For a pixel, the corresponding Verilog array is

⎧⎪⎨⎪⎩
IR(x, y) = image [3Ny + 3x],

IG(x, y) = image [3Ny + 3x + 1],

IB(x, y) = image [3Ny + 3x + 2].

If the image is stored in a 2D Verilog array, ‘reg [7:0] image [0:2][0:‘N-1][0:‘M-1];’, the
mapping would be more natural. However, we prefer to use the 1D array representation because the
coordinate transformation for this type of array is not very difficult. Furthermore, frequent image transfers
between modules is involved, which necessitates a simple counter over more complicated counters.

0 1 · · · N − 1

0

1
...

M − 1

(a) Image array

0

1

...

3MN − 1

(b) Verilog array

Figure 4.2 Raw file format

92 Architectures for Computer Vision

Image processing also needs neighborhood computation. Between the image and the Verilog array,
the relationship is

⎧⎪⎨⎪⎩
IR(x + a, y + b) = image[3N(y+b) + 3(x+a)],

IG(x + a, y + b) = image[3N(y+b) + 3(x+a) + 1],

IB(x + a, y + b) = image[3N(y+b) + 3(x+a) + 2],

where (a, b) is the offset of the neighbor from the pixel (x, y). For a set of images, I = {I1, I2,… , IT}, the
raw map is a stack of the images ‘reg [7:0] image [0: 3*‘N*‘M *‘T-1].’

For a pixel, image[i], within an image, the neighborhoods are (i + 3, i − 3, i + 3N, i − 3N) (i.e.
east, west, south, north) for a four-neighborhood system and (i + 3, i + 3N + 3, i + 3N, i + 3N −
3, i − 3, i − 3N − 3, i − 3N, i − 3N + 3) (i.e. east, southeast, south, southwest, west, northwest, north,
northeast) for an eight-neighborhood system. In stereo matching or motion estimation, two or
more images must be compared. For the neighborhoods (i + 3, i − 3, i + 3N, i − 3N) in the first
image, the corresponding pixels in the second image are (3MN + i + 3, 3MN + i − 3, 3MN + i +
3N, 3MN + i − 3N) for a four-neighborhood system. For an eight-neighborhood system, the pix-
els, (i + 3, i + 3N + 3, i + 3N, i + 3N − 3, i − 3, i − 3N − 3, i − 3N, i − 3N + 3), in the first image, cor-
respond to the pixels, (3MN + i + 3, 3MN + i + 3N + 3, 3MN + i + 3N, 3MN + i + 3N − 3, 3MN + i −
3, 3MN + i − 3N − 3, 3MN + i − 3N, 3MN + i − 3N + 3), in the second image. This relationship can be
expanded to other neighborhood systems.

In addition to the raw format, we use the bitmap file format to facilitate the exchange of data between
modules in the simulator. The bitmap image file format (Wikipedia 2013a) (a.k.a. BMP and DIB) is a raster
graphics image file format used to store bitmap digital images, independently of the display device. The
bitmap file format is capable of storing 2D digital images of arbitrary width, height, and resolution, both
monochrome and color, in various color depths, and optionally with data compression, alpha channels,
and color profiles. The values are stored in little-endian format. The general structure comprises fixed-size
parts (headers) and variable-size parts appearing in a predetermined order (Table 4.1).

Although the format contains many parts describing every detail of the image, only the parts necessary
for our needs are listed in the table. The offset is the address where the pixel array begins. Ordinarily,
the RGB format is ‘8.8.8.0.0,’ which means that the pixel array is a 24-bit RGB block, with each color
represented by one byte. The order of the colors is B, R, G, from lowest to highest addresses. Normally
the pixel order is upside-down with respect to the normal raster scan order, starting in the lower left
corner, going from left to right, and then row by row from the bottom to the top of the image.

In calculating the variables, padding bytes (from zero to three), which are appended to the end of the
rows in order to increase the length of the rows to a multiple of four bytes, must be considered. Therefore,

Table 4.1 Major components in the Bitmap format

Parameter Value

File size {image[5],image[4],image[3],image[2]}
Offset {image[13],image[12],image[11],image[10]}
Width (pixels, no padding) {image[21],image[20],image[19],image[18]}
Height (pixels, no padding) {image[25],image[24],image[23],image[22]}
Bits per pixel {image[31],image[30],image[29],image[28]}
Raw data size (padding) {image[37],image[36],image[35],image[34]}

cf. Numbers in decimal. The notation, {A,B} means the concatenation, AB.

Verilog Vision Simulator 93

when the pixel array is loaded into memory, each row begins at a memory address that is a multiple of
four. From the header information, we have to derive the parameters: row width, excluding padded bits,
image size, and the number of padded bits, which sometimes may not be available in the header. The
parameters can be derived using the following equations:

⎧⎪⎨⎪⎩
(Row width) = (Raw data size)∕(Height),

(Image size) = (Width) × (Height) × (Bits per pixel)∕8,

(Padding) = (Row width) − (Width) × (Bits per pixel)∕8.

The bitmap file is more useful than a file that is in the raw format because it can be viewed on a monitor.
On the other hand, the raw format is required internally by modules that manipulate the raw array in
image processing. Therefore, there has to be an interface for converting the bitmap to raw format and then
reconstructing the raw image to bitmap file format. The former processing is required when the image
processing is going to be applied, whereas the latter is required when the result is going to be observed.
The header and the derived parameters are needed for such image conversions. In the vision simulator,
the two conversions are major operations, which simulate the camera output and monitor display.

Let us build a module that converts file formats between BMP and BIN (binary). Although, there are
many image converters and binary editors, the Verilog-based converter is especially necessary because
it is the part of the vision simulator into which images are fed and which displays the resulting image
format. Incidentally, through this design, we can understand both image formatting and Verilog coding.
The internal function of the converter is illustrated in Figure 4.3. The input to the converter may be either
of the two formats, bitmap or binary. Likewise, the output may be either of the two formats. If a bitmap
file is converted to binary, the file must be stripped into header and binary, where only the binary part
is output. If a binary file is converted to bitmap, the file must be transposed and an appropriate header
synthesized, using the data in the Verilog header, and added. The key operation is the header extraction
and synthesis, extraction of the binary, and pixel order inversion.

We divide the design into three parts: header, file reading, and file writing parts. The header specifies
three pieces of information: The first piece of information is the conversion mode: bmp to bmp, bmp
to bin, bin to bmp, and bin to bin, which is specified by the parameter BMP_BIN. The second piece of
information defines the maximum size of the files. The third piece of information is the size of the bin
file, which carries only the image intensities. This information is essential when the bin format is to be
converted to bmp and bin formats.

bin header

bmp bin

input.bmp

output.bmp output.bin

parameterinput.bin

file reading

file writing

Figure 4.3 An image converter in Verilog

94 Architectures for Computer Vision

Listing 4.1 Converter: header and top module (1/3)

//converter mode

//00: bmp -> bmp, 01: bmp -> bin, 10: bin -> bmp, 11: bin -> bin

‘define BMP_BIN 2’b10 //default

//common to bmp and bin

‘define BIN_ADDR 20 //max size 1 MB

//format for bin -> bmp, must be specified by the user

‘define WIDTH 512 //width of bin

‘define HEIGHT 512 //height of bin

//top module for instantiation

module converter; //top module

bmp_bin BMP_BIN (); //execute

endmodule

The first part (header) also contains an instantiation of the main module, bmp_bin. No signal, such
as clock or reset, is necessary as this design is executed by the Verilog simulator, unencumbered by
synthesis constraints.

The second part (file reading) is for reading bmp and bin files. This file reading part must provide
two pieces of information: header and binary data. For the bmp file, the header and binary parts are all
in a single file and thus must be extracted and stored. The header contains all the information about the
image, such as width, height, and bits per pixel, as mentioned previously. The padding bits may or may
not be provided in the header and must thus be computed and stored. The bitmap header is used when
the converter converts the internally stored binary file into a bitmap file.

Listing 4.2 Converter: reading file (2/3)

module bmp_bin (); //main converter

//declaration

reg [7:0] buffer [1:(1 << ‘BIN_ADDR)]; //[1:-] for $fread

reg [7:0] image [0:(1 << ‘BIN_ADDR)];

integer load_file_id,save_file_id, c; //file opening

integer i, j, k; //variables

reg [31:0] width,height,size,bpp,nop,padding,row_width,offset;

reg [7:0] header [1:54]; //bitmap header

//Reading: bmp -> buffer -> image, header

initial begin: READ_BMP //execute once

if (‘BMP_BIN == 2’b00 || ‘BMP_BIN == 01) begin //check mode

load_file_id = $fopen(input.bmp,”rb”); //open a file

Verilog Vision Simulator 95

c = $fread(buffer, load_file_id); //read the file

$fclose(load_file_id); //close the file

if ({buffer[2], buffer[1]} == 16’h4D42) begin //424D

//image parameters for dealing with general bmp files

size = {buffer[6],buffer[5],buffer[4],buffer[3]};

offset ={buffer[14],buffer[13],buffer[12],buffer[11]};

width = {buffer[22], buffer[21], buffer[20], buffer[19]};

height = {buffer[26], buffer[25], buffer[24], buffer[23]};

bpp = {buffer[30],buffer[29]};

nop = {buffer[38],buffer[37],buffer[36],buffer[35]};

row_width = nop / height; //row width (padding)

padding = row_width - width * bpp / 8; //padding

//store header

for (i = 1; i <= offset; i = i + 1) begin

header[i] = buffer[i]; //store the header

end

//store the BIN image

for (i = 0; i < height; i = i + 1) begin

//store BIN image

for (j = 0; j < (row_width - padding); j = j + 1) begin

image[i* (row_width - padding) + j]

= buffer[(height-1 - i)* row_width + j + offset + 1];

end

end

end else $display (”Error: no bmp files.”);

end //if

end //initial

//Reading: bin -> image, header

initial begin: READ_BIN //execute once

if (‘BMP_BIN == 2’b10 || ‘BMP_BIN == 11) begin //for the BIN map

//check for the first enter

load_file_id = $fopen(input.bin,”rb”); //1st file

c = $fread(buffer, load_file_id); //read file

$fclose(load_file_id);

for (i = 0; i < ‘HEIGHT; i = i + 1) begin

//store BIN image

for (j = 0; j < 3 * ‘WIDTH; j = j + 1) begin

image[3 * i * ‘WIDTH + j]

= buffer[3 * i * ‘WIDTH + j+1];

end

end

96 Architectures for Computer Vision

//build header

for (i = 1; i <= 54; i = i + 1) header[i] = 0; //store header

//id

{header[2], header[1]} = 16’h4D42; //magic number

//offset

offset = 54; //offset

header[14] = 8’h00; header[13] = 8’h00;

header[12] = 8’b00; header[11] = 8’d 54;

//DIB size //DIB size

{header[18],header[17],header[16],header[15]} = 32’d 40;

//width

width = ‘WIDTH; //width

{header[22],header[21],header[20],header[19]} = 32’d ‘WIDTH;

//height

height = ‘HEIGHT; //height

{header[26], header[25], header[24], header[23]}

= 32’d ‘HEIGHT;

//Number of cplor planes

{header[28],header[27]} = 16’d1; //color planes

//bits per pixel

bpp = 24; //bits per pixel

{header[30],header[29]} = 16’d 24;

//padding

case ((3 * ‘WIDTH) % 4) //padded bits

0: padding = 0;

1: padding = 3;

2: padding = 2;

3: padding = 1;

endcase

//row_width

row_width = ‘WIDTH * 3 + padding; //row width

//nop

nop = row_width * height; //no of pixels

{header[38],header[37],header[36],header[35]} = nop;

//size

size = offset + (3 * ‘WIDTH + padding) * ‘HEIGHT; //file size

{header[6],header[5],header[4],header[3]} = size;

//horizontal resolution

{header[42],header[41],header[40],header[39]} = 32’h00000B13;

//vertical resolution

{header[46],header[45],header[44],header[43]} = 32’h00000B13;

end//if

end //initial

Verilog Vision Simulator 97

The bin file has no image information and so this must be provided by the Verilog header file. In the
reverse processing of the bitmap file, the header is composed from the various bitmap fields. The bitmap
header is used when the converter converts the internally stored binary file into an external bitmap file.
This processing is particularly needed in order to observe the output of the vision simulator, such as
maps, disparity maps, and optical flow maps, as we shall see.

The third part of the converter writes the internally stored binary map, extracted or synthesized, to
a binary file or a bmp file. For the bmp output, the internal binary file and the header must be used to
synthesize a bmp file.

Listing 4.3 Converter: writing file (3/3)

//Writing: image, header -> bmp

initial begin: WRITE_BMP //execute once

if ((‘BMP_BIN == 2’b00) || (‘BMP_BIN == 2’b10)) begin //ckeck mode

save_file_id = $fopen(output.bmp, ’wb’); //open the file

//write header first

for (i = 1; i <= offset; i = i + 1) begin

$fwrite(save_file_id, ’%c’, header[i]); // write the header

end

//write image part

for (i=0; i< height; i=i+1) begin //consider padding

for (j=0; j< (row_width - padding); j=j+1) begin

$fwrite(save_file_id, ’%c’, image[(height-1 - i)

*(row_width - padding) + j]); //write image data

end

if (padding) begin //if no padding, skip

for (k=0; k < padding; k=k+1)

$fwrite(save_file_id,’%c’,8’h00); // fill the padding

end

end //for

//close the file

$fclose(save_file_id); //close the file

end //if

end //initial

//Writing: image -> bin

initial begin: WRITE_BIN //execute once

if ((‘BMP_BIN == 2’b01) || (‘BMP_BIN == 2’b11)) begin //check mode

save_file_id = $fopen(output.bin,”wb”); //open the file

//write image part

if (‘BMP_BIN == 2’b01) begin

for (i = 0; i < 3 * width * height; i=i+1) begin //bmp

$fwrite(save_file_id, ”%c”, image[i]); //write image data

end

98 Architectures for Computer Vision

end else begin

for (i = 0; i < 3 * ‘WIDTH * ‘HEIGHT; i=i+1) begin //bin

$fwrite(save_file_id, ”%c”, image[i]); //write image data

end

end

//close the file

$fclose(save_file_id); //close the file

end //if

end //initial

endmodule

The header may be extracted or synthesized, as explained above. Further, the binary file may be
extracted or directly inputted. The bin output does not require a header as it is just a file output of the
internal binary data. In this case, image size header information is not used. This processing may be
needed when the bin image is provided to other image processing software to conduct preprocessing or
post-processing for the simulator.

One can easily verify the correctness of the converter by transforming twice – bmp to bin and then
bin to bmp. To test the design, small size images may be needed because large size images require too
much time, both for simulation and synthesis.

4.3 Line-based Vision Simulator Principle
The line-based vision simulator conducts processing on a line-by-line basis. To derive such a system,
we first of all need to specify the computational scheme for dealing with a frame. Let us define basic
quantities and order of computation, as depicted in Figure 4.4. A frame is an image plane, defined
as = {(x, y)|x ∈ [0, N − 1], y ∈ [0, M − 1]}. The frame rate may be the conventional 30 fps (frames
per second), but may be faster or slower, depending on the situation. Inside each frame, we define a
strip (block, window, or lines), S(j) = {(x, j + b)|x ∈ [0, N − 1], b ∈ [0, h − 1]}, where j ∈ [0, M − h].
The strip moves downwards from j = 0 to j = M − h and returns to the top of the image, and periodically

x

y

j

j + h − 1

(a) A frame and a strip

i i + w − 1

(b) A strip and a window

Figure 4.4 Frame, strip, and window

Verilog Vision Simulator 99

repeats this movement. In a one-pass algorithm, all computations must be completed during one scan. In a
multi-pass algorithm, the computations must be repeated many times. The computational unit may be an
entire strip or a smaller window (or block) in a strip. A window is defined by w(i, j) = {(i + a, j + b)|a ∈
[0, w − 1], j ∈ [0, h − 1]}, which moves to the right inside a strip. The computational unit may be the
window – in which case all the pixels in the window are determined concurrently – or the pixels in the
window – in which case all the pixels in the window are determined serially.

The overall structure of the vision simulator (i.e. the line-based vision simulation (LVSIM)) is shown in
Figure 4.5. First of all, the target design is the processing element (PE), which is to be tested functionally
and later synthesized for chip implementation. This processing element combines with other elements to
construct the simulator. The simulator consists of three parts: a pair of image files, an input-output (IO)
module, and one processor (PE) module. Generally, the images are a set of image pairs, captured from
stereo cameras. However, for mono camera or motion estimation, only one set of images may be used.

In the forward pass, the file converter reads in two image files, converts them into binary files, and
writes the results into the RAMs (IMAGE1 and IMAGE2). This action occurs repeatedly at predetermined
intervals, which can be adjusted as needed. In the backward pass, the converter reads the RAM (RESULT)
in the processing element, again periodically, and converts the contents to a BMP file. In this manner,
a snapshot of the RAM contents can be obtained at desired intervals. The observation positions and
intervals are all adjustable.

The processing element (PE) consists of three identical RAMs and a processor (PROC). Two of the
three RAMs are used to capture the images from video cameras, in a real-time system. Depending on
the given conditions on video input and RAMs (i.e. SRAM, SDRAM, etc.), the RAM module must
be modified, using library modules, so that the image from the camera can be correctly delivered into
the RAMs. For generality, this simulator uses conventional dual port synchronous RAM, instead of
specialized RAM. The remaining RAM is used to store the processed result. The processor (PROC) is

left image

x

ty

right image

result

bmp-bin

bmp-bin

bin-bmp

IMAGE1

IMAGE2

RESULT

img1

img2

res

RAMs PROC

arrays

IO PE

Figure 4.5 The structure of LVSIM

100 Architectures for Computer Vision

the main engine that actually executes the image processing algorithms. It takes a window of image from
each RAM, stores the pair of image windows in two arrays, and uses them to update another array, which
stores the temporary result. The windowed images are small but the resultant image is full. For a small
application, the buffer, res, can also be made small like img1 and img2. The intention is to compute
line by line, in a raster scan manner. The size of the strip is defined by the parameters in the Verilog head
file. We will build the processing element for DP-based algorithms based on this simulator in coming
chapters.

4.4 LVSIM Top Module
Let us now actualize the simulator concepts in Verilog HDL codes. The overall system consists of two
parts: a top module (vsim.v) for simulation and another top module (pe.v) for synthesis.

The first part is the top module of the simulator, containing all the components in Figure 4.5.

Listing 4.4 Top module for simulation: vsim.v

‘define WIDTH 225 //image width

‘define HEIGHT 188 //image height

‘define ADDR_BITS 20 //max image size

‘define LINES 50 //strip size

module vsim; //vsim

reg clock, reset;

//instantiation

pe PE (clock, reset); //processing element

io IO (clock, reset); //file input output

initial begin

clock = 0;

reset = 0; #30; reset = 1; #150; reset = 0; //reset signal

end

always #50 clock = ~clock; //clock generator

endmodule

The parameters specify all the information necessary for synthesis and simulation. The four parameters
are the size of the image (WIDTH and HEIGHT), address bits (ADDR_BITS) for the RAMs to store the
images, and the number of lines (LINES) for neighborhood processing. Other parameters are written in
the simulation module, vsim.v. By default, the system is tuned to the most general case: stereo and
motion. Other systems, such as mono camera, stereo, or motion, can be obtained by removing some of
the resources, such as RAMs and internal buffers.

This module performs three tasks: instantiation of the processing element and the input-output element,
generation of a reset signal, and generation of a common clock. The input-output element is for simulation
and the processing element is for synthesis. Note that there is no port communication between the two
modules. The input-output element, being a simulator, uses many unsynthesizable Verilog constructs,
which provide powerful tools for simulation.

Verilog Vision Simulator 101

The processing element (pe.v) has the following structures:

Listing 4.5 Top module for synthesis: pe.v

module pe(input clock, reset); //processing element

//variables: image ram

wire [‘ADDR_BITS - 1:0] i_raddr, //read addresses

i_waddr1, i_waddr2, //write addresses

r_raddr, r_waddr; //read RESULT

wire [7:0] i_rdata1, i_rdata2, //read data

i_wdata1, i_wdata2, r_wdata; //write data

wire i_wen1, i_wen2, r_wen; //write enable

//instantiation of synthesis modules

//one processor and three RAMs

ram IMAGE1 (clock, i_raddr, i_rdata1,

i_waddr1, i_wdata1, i_wen1); //1st image RAM

ram IMAGE2 (clock, i_raddr, i_rdata2,

i_waddr2, i_wdata2, i_wen2); //2nd image RAM

ram RESULT(clock, r_waddr, r_wdata, r_wen); //result RAM

processor PROC (clock, reset, i_raddr, //processor

r_waddr, i_rdata1, i_rdata2,

r_wdata, r_wen);

endmodule

The purpose of this module is to create three RAMs (IMAGE1, IMAGE2, and RESULT) and a
processor (PROC) and connect them, following the structure in Figure 4.5.

After synthesizing the processor (by Altera Quartus or Xilinx ISE), we can investigate the designed
circuits in detail with the help of the schematic diagram. The top level view is depicted in Figure 4.6.

image:IMAGE2

image:IMAGE1

reset

clock clock
wen
raddrl 19..0
waddrl 19..0
wdatal 7..01

clock
wen
raddrl 19..0
waddrl 19..0
wdatal 7..01

rdatal 7..01

processor:PROC
result:RESULT

clock
reset
l rdata1l / ..0I
l rdata2l / ..0I

clock
wen
raddrl 19..0
waddrl 19..0
wdatal 7 ..0l

r wen
I raddrI19..01
waddrl19 ..0I

r wdataI / ..0I

rdatal 7..01

0

0

20’ h00000 –

20’ h00000 –

8’ h00 –

20’ h00000 –

8’ h00 –

Figure 4.6 The top level schematic of the processing element

102 Architectures for Computer Vision

The three RAMs and the processor are connected via address bus, data bus, and write enable signals.
Although all the possible lines are connected, the connections that are utilized depend on the algorithm
running inside the processor. The input signals are just the clock and reset signals. The two RAMs
(IMAGE1 and IMAGE2) must be linked to the video camera, via writing ports, in an actual system. (The
processor only reads from the two image RAMs it does not write to them.)

The following sections address the substructures of the simulator: memories (IMAGE1, IMAGE2,
and RESULT) and processor (PROC), in detail, with working codes.

4.5 LVSIM IO System
The simulator must supply data to the processor and display the data in the various parts, including
inputs and outputs, dynamically. Unlike an ordinary test bench, the vision simulator must show us data
by means of images. The input and output (IO) function is based on the image converter, as explained
above, but is optimized for the simulator.

The function of this module can be explained using state diagrams (Figure 4.7). The interval at which
the image RAMs are fed is based on the image processing algorithm. When a frame is completed,
a new frame must be available in the RAM. This instance can be obtained from a variable in the
processor. An N × M image frame is defined by I = {I(i, j)|i ∈ [0, M − 1], j ∈ [0, N − 1])}. In this frame,
a window is defined by W(i) = {I(i + k, j)|k ∈ [0, m − 1], j ∈ [0, N − 1]} and proceeds in the order,
i = 0, 1,… , M − m + 1, where m is the number of lines in the window. When the window arrives,
W(M − m + 1), it returns again to the top of the image, W(0). At this point, a new image frame must be
available in the RAM. In Figure 4.7(a), the process begins when the new frame signal is detected. First,
the input image files are opened and read into buffers. Next, the contents in the buffers are classified
into headers and binary images. The headers are used when the output from the processor is viewed as a
bitmap. The binary data is then loaded into RAM, which completes the cycle.

The corresponding code reads as follows. The first part of the code is designed for loading the RAMs
with binary images. In a real system, this section is replaced with video cameras that load the RAMs
with binary images in effectively the same way.

wait

start

open
file

store
buffer

close
fileextract

head

extract
binary

store
RAM

new frame

(a) Loading RAMs

wait

start

open
file

write
head

copy
ROM

close
file

next window

(b) Reading RAM

Figure 4.7 Loading RAM and reading RAM

Verilog Vision Simulator 103

Listing 4.6 IO system: io.v (1/2)

module io (input clock,reset); //read and write

//declaration

reg [7:0] buffer [1:(1 << ‘ADDR_BITS)]; //1st buffer

reg [7:0] buffer2 [1:(1 << ‘ADDR_BITS)]; //2nd buffer

integer load_file_id,save_file_id, c, count = 0; //file opening

integer i, j, k; //variables

reg [31:0] width,height,size,bpp,nop,padding,row_width,offset;

reg [7:0] header [1:54]; //bitmap header

//reading: bmp -> buffer -> image, header

always @(PE.PROC.j) if (!PE.PROC.j) begin: READ //new frame

//load two sequence of images

case (count % 2) //2: image sequence

0: begin

load_file_id = $fopen(”inputl0.bmp”,”rb”); //1st image

c = $fread(buffer, load_file_id); //read the file

$fclose(load_file_id); //close the file

load_file_id = $fopen(”inputr0.bmp”,”rb”); //2nd image

c = $fread(buffer2, load_file_id); //read the file

$fclose(load_file_id);

end

1: begin

load_file_id = $fopen(”inputl1.bmp”,”rb”); //1st image

c = $fread(buffer, load_file_id); //read the file

$fclose(load_file_id); //close the file

load_file_id = $fopen(”inputr1.bmp”,”rb”); //2nd image

c = $fread(buffer2, load_file_id); //read the file

$fclose(load_file_id);

end

endcase

//close the file

if ({buffer[2], buffer[1]} == 16’h4D42) begin //424D

//image parameters for dealing with general bmp files

size = {buffer[6],buffer[5],buffer[4],buffer[3]}; //file size

offset ={buffer[14],buffer[13],buffer[12],buffer[11]};

width = {buffer[22], buffer[21], buffer[20], buffer[19]};

height = {buffer[26], buffer[25], buffer[24], buffer[23]};

bpp = {buffer[30],buffer[29]}; //bits per pixel

nop = {buffer[38],buffer[37],buffer[36],buffer[35]}; //pixels

row_width = nop / height; //row width

padding = row_width - width * bpp / 8; //padding

104 Architectures for Computer Vision

//store header

for (i = 1; i <= offset; i = i + 1) begin

header[i] = buffer[i]; //store the header

end

//fill the RAMs for the two images

for (i = 0; i < height; i = i + 1) begin

for (j = 0; j < (row_width - padding); j = j + 1) begin

PE.IMAGE1.ram[i* (row_width - padding) + j]

= buffer[(height-1 - i)* row_width + j + offset + 1];

PE.IMAGE2.ram[i* (row_width - padding) + j]

= buffer2[(height-1 - i)* row_width + j + offset + 1];

end

end

count = count + 1;

end else $display (”Error: no bmp files.”);

end //always

The two 2D array buffers and the 1D array are provided for two files and a header. The process waits
until a new frame is needed by the processor. (This happens when the strip returns to the top of the
frame in Figure 4.4; that is, S(j) becomes S(0). All the computation must be finished before a new frame
arrives.) Entering the loop, the process opens two files (one file in the case of mono processing) and
stores them in two buffers. From the buffers, the headers and binaries are extracted and inverted in the
correct row order. The header, which is common to both images, is stored for later use, and the binaries
are loaded into the two RAMs. Thus, this action simulates video cameras feeding two RAMs. For each
channel, the input images are a set of bitmap files, I(0), I(1),… , I(n − 1), for n number of images. The
two channels read the image sequences, synchronize, and cycle through, as indicated by the counter.
This part of the code can be easily modified for different scenarios: a still camera, a video camera, two
still cameras, or two video cameras. The default setting is for two video cameras.

The second part of the code is designed for writing files using the data in the RAM, where the result
is stored by the processor.

Listing 4.7 IO system: io.v (2/2)

//writing: image, header -> bmp

always @ (PE.PROC.j) begin: WRITE //new frame

save_file_id = $fopen(”output.bmp”,”wb”); //open the file

//write header first

for (i = 1; i <= offset; i = i + 1) begin

$fwrite(save_file_id, ”%c”, header[i]); //write the header

//$display(”header[%d] = %d”,i, header[i]);

end

Verilog Vision Simulator 105

//write image part

for (i=0; i< height; i=i+1) begin //consider padding

for (j=0; j< (row_width - padding); j=j+1) begin

$fwrite(save_file_id, ”%c”, vsim.PE.RESULT.ram[(height-1 - i)

*(row_width - padding) + j]); //monitoring position

end

if (padding) begin //no padding

for (k=0; k < padding; k=k+1)

$fwrite(save_file_id,”%c”,8’h00); //fill the padding

end

end //for

//close the file

$fclose(save_file_id); //close the file

//$display(”time = %t, read_write: write done.”,$time);

end //always

endmodule

The purpose of this code is to observe the result by reading the result RAM. A suitable instance for
observation occurs at the point when the strip moves to the next position (in Figure 4.4, at the point
when S(j) changes to S(j + 1)). The position of the observation is the result RAM, containing updated
results. During the testing, it is very important to observe various places in the system. In such cases,
the monitoring position can be set to the desired data in the processing element. The typical monitoring
positions are the RAMs (IMG1 and IMG2) and the buffers (img1, img2, and res).

4.6 LVSIM RAM and Processor
The simulator needs three RAMs, two to capture the input images (IMAGE1 and IMAGE2) and one to
preserve the results from the processor (RESULT). They are all the same type of RAMs, double-port
synchronous RAMs.

Listing 4.8 RAM: ram.v

module ram(//image ram

input clock,

input [‘ADDR_BITS - 1:0] raddr, //read address

output reg [7:0] rdata, //read data

input [‘ADDR_BITS - 1:0] waddr, //write address

input [7:0] wdata, //write data

input wen //write enable

);

106 Architectures for Computer Vision

reg [7:0] ram [0:(2**‘ADDR_BITS) - 1]; //array

always @(posedge clock) begin

if (wen)

ram[waddr] <= wdata; //write

rdata <= ram[raddr]; //read

end

endmodule

The output is not buffered, is thus available at all times, and needs no clock synchronization. The RAM
design can be aided by the templates and IPs. In an actual system, SDRAMs may be used to capture the
video signals. In such a case, IPs are required for designing DRAM controllers and PLLs.

The main part of the simulator is the processor, where all the data is processed. Conceptually, the
operation is defined by

S(j) ← T(S1(j), S2(j), S(j)),

where T(⋅) denotes a transformation, representing an algorithm. Inputs S1(j) and S2(j) are strips of the
image frames. Input S(j) is the strip from the internal array and operates like a state memory (Figure 4.8).
The registers (img1 and img2) storing the strips, S1(j) and S2(j), operate as caches and copy only the
required portions of the external RAMs (IMAGE1 and IMAGE2). The array (res) is a full frame memory
that stores the updated states and copies them back to the external RAM (RESULT) on a regular basis.
This computational structure fundamentally realizes a state machine that updates its state based on its
inputs and its previous state. The general computational structure opens up the possibility for iteration
and neighborhood operations, T(⋅), which we will develop in subsequent chapters. Once the state, S(j),
is updated, the computation proceeds to the next strip, S(j + 1). If S(j) hits the bottom of the frame, the
computation advances to S(0) in the next image frame.

To realize this concept in Verilog HDL, we need three always blocks: reading, writing, and processing
(Figure 4.9). Activated by a semaphore (do_load), the reading block reads the external RAMs (IMAGE1

S1 (j)

img1

S2 (j)

img2

processing

S(j)

res

IMAGE1 IMAGE2

RESULT

Figure 4.8 The operations in the processor

Verilog Vision Simulator 107

Compute
T(·)

S(j)

S1 (j), S2 (j)start
Store res

to RESULT

do_ip

do_ip

do_load

Figure 4.9 The always blocks for the processor

and IMAGE2) and builds S1(j) and S2(j) in the internal arrays (img1 and img2). It then activates the
processing block by means of a semaphore (do_ip). The processing block computes a given algorithm on
S1(j) and S2(j), to update S(j) in the internal array (res). On completion, the process returns to the reading
block from the processing block via a semaphore (do_load). It is not known in advance how much time
the processing block may require, and so handshake control must be used for flexible control flow. On
the writing side, the writing block writes the internal array (res) to the external RAM (RESULT). The
two memories are the same in size and thus copying is simple. This copy operation is also relatively
free from other blocks and can thus be assigned any time and interval. In the diagram, the writing action
begins at the same time as the processing block begins processing.

This scheme is general because various algorithms can be plugged into the processing block, especially
algorithms involving line-based processing. In any case, the purpose of the simulator is to provide a
template for the processor by using other parts intact, or with minor modifications. Detailed coding for
the processing block is possible only when an algorithm is determined. The time constraint is flexible
and the computational resources, S1(j), S2(j) and S(j), are enough for line-based algorithms.

The actual Verilog code is as follows.

Listing 4.9 Processor: processor.v

module processor(//processor

input clock, reset,

output reg [‘ADDR_BITS - 1:0] i_raddr, r_waddr,//address bus

input [7:0] i_rdata1, i_rdata2, //data bus

output reg [7:0] r_wdata, //data bus

output reg r_wen //write enable

);

//working array: window of images

reg [7:0] img1 [0: 3* ‘WIDTH * ‘LINES - 1]; //1st image

reg [7:0] img2 [0: 3* ‘WIDTH * ‘LINES - 1]; //2nd image

108 Architectures for Computer Vision

reg [7:0] res [0: 3* ‘WIDTH * ‘HEIGHT - 1]; //result map

reg [‘ADDR_BITS - 1:0] i, j, k, m, n, I; //variables

reg [‘ADDR_BITS - 1:0] idx, idx1; //delay buffer

integer count;

reg do_load, do_ip, do_store; //switching processes

//get a block of the image: PE.IMAGE1 -> img1, PE.IMAGE2 -> img2

always @(posedge clock) begin: READ_img

if (reset) begin

k = 0; //index in a strip

j = 0; //strip number

idx = 0; //address delay

idx1 = 0; //2nd address delay

do_ip = 0; //semaphore

end

else if (do_load) begin //wait for input

do_ip = 0; //deactivate processing

if (j < ‘HEIGHT - ‘LINES + 1) begin //for the strip[j]

if (k < 3* ‘WIDTH * ‘LINES + 2) begin //+2 delay

i_raddr = 3 * ‘WIDTH * j + k; //read address

img1[idx1] = i_rdata1; //IMAGE1 -> img1

img2[idx1] = i_rdata2; //IMAGE2 -> img2

idx1 = idx; //delay

idx = k; //current pixel

k = k + 1; //next strip

end else begin

do_ip = 1; k = 0; I = j; //I for processing

j = j + 1; //next strip

end //else

end else begin

j = 0; k = 0; //image top S(0)

end //else

end //if

end //always

//store the result: res -> PE.RESULT

always @(posedge clock) begin: WRITE_res

if (reset) begin r_wen <= 1; n <= 0; //reset

end

else begin //res -> RESULT

if (n < 3 * ‘WIDTH * ‘HEIGHT) begin //a frame of result

r_wdata <= res[n]; //data

r_waddr <= n; //address

r_wen <= 1; //write enable

Verilog Vision Simulator 109

n <= n + 1; //a pixel

end

else begin r_wen <= 1; n <= 0; //write enable

end

end //else

end //always

//image processing: (img1, img2) -> res

always @ (posedge clock) begin: PROCESSING

if (reset) begin do_load = 1; do_store = 0; m = 0; end //reset

else if (do_ip) begin //do image processing

do_load = 0; //deactivate loading

//wait for processing

if (m < 3 * ‘WIDTH * ‘LINES) begin //strip S(j)

res[3 * ‘WIDTH * I + m] = img1[m] - img2[m];

m = m + 1; //next pixel

end

//end of major part

else begin

do_load = 1; //activate loading

m = 0; //start new strip

end

end //else

end //always

endmodule

The three always blocks appear in the following order: reading, writing, and processing. The reading
block is active only when the processing block activates it by sending a semaphore (do_load). This
block then begins by inhibiting the processing block using a semaphore (do_ip). Its major function is
to provide new strips, S1(j) and S2(j), by copying the contents from the external memories to the internal
registers. The loop count must be corrected by adding one or two more delays as ‘if (k < 3* ‘WIDTH
* ‘LINES + 2),’ otherwise, the last one or two pieces of data may be ignored while they are being
carried on the bus. The instances for moving to the next strip and next frame can be captured by the
variables in this block. When the operations are finished, the reading block activates the processing block
using a semaphore (do_ip). The processing block, when activated, begins by deactivating the reading
block using a semaphore (do_load). This handshake must be carefully designed so that the semaphores
are not driven by more than one always block. The writing block is activated at the same time as the
processing block but can be modified to activate at any other time, for example when we want to observe
the intermediate states.

4.7 Frame-based Vision Simulator Principle
The core concept of the line-based simulator is the internal cache memory, which stores only several
lines of an image frame. There are many variations on this simulator. Among them, we may improve
the strip so that it shifts downwards and skips more than one line. Another major improvement may

110 Architectures for Computer Vision

left image

x

ty

right image

result

bmp-bin

bmp-bin

bin-bmp

IMAGE1

IMAGE2

RESULT

img1

img2

res

RAMs PROC

arrays

IO PE

Figure 4.10 The structure of FVSIM

be to replace the fixed cache memory with barrel shifters, in which case each line of image would be
read only once. The pitfall is that computing the coordinates in a strip would be rather complicated. The
line-based simulator requires less internal memory and is thus faster in general. A suitable algorithm is
DP, which computes line by line. The difficulty of this simulator is the neighborhood operation in the
vertical direction. Because the scope is limited to small lines in the window, the pixels at the top and
bottom of the strip cannot access the neighborhood pixels. If the neighborhood size is large, this problem
gets even worse. Therefore, we would have to devise a very sophisticated scheme to resolve the start of
the strip and the neighborhood pixels out of the window.

The other scheme is to use full frames instead of the small windows. The internal memory would
increase in this case but would facilitate the most important algorithms: neighborhood operation and
iteration. In fact, this scheme may be considered as the line-based scheme with a strip expanded to a full
frame. In this scheme, computing addresses for the pixels is very simple. No scheme for keeping track
of starting address, as in the line-based method, is required. This scheme is suitable for algorithms such
as the relaxation and BP algorithms, and so will be used a lot in subsequent chapters.

The overall structure of the frame-based vision simulator (FVSIM) is illustrated in Figure 4.10. The
big difference between it and the line-based simulator is the two internal arrays (img1 and img2), which
are full frame-sized, in contrast to those of the line-based simulator. Here again, the target design is
the processing element (PE), which includes RAMs (IMAGE1 and IMAGE2) and a processor (PE), as
shown in the figure. Thus, all the RAMs are identical in type and size. In addition, the internal arrays
are all the same in size. The structure is simple and so is the address calculation. The simulator consists
of three parts: a set of image files, a file converter (IO), and one processor (PE) module. As before, the
images are a set of image pairs, captured from stereo cameras, without loss of generality, and thus allows
mono camera or motion estimation, with one channel of the input path being activated.

The IO is slightly modified so that the image can be read, and the result updated whenever the
processor completes a whole frame. This scheme assumes a real-time system, in which the processor

Verilog Vision Simulator 111

must complete the task for the current frame before the next frame arrives. This is in contrast to that of
the line-based method, in which a complete processing is finished before a new line enters the internal
arrays. Technically, this system needs more than one clock, one for the frame, one to read the frame into
the array, and one for the processor – for consuming many clocks for each pixel. (PLL can be used to
generate such clocks.) It depends on the actual algorithm to determine details of such clocks. For the
observation, the contents of the RAM (RESULT) must be converted to a BMP file, on completion of
each iteration.

In the following sections, we examine the components in this simulator.

4.8 FVSIM Top Module
Let us realize the frame-based simulator in Verilog HDL. Like the line-based simulator, the frame-based
simulator consists of two parts: a top module (vsim.v) for simulation and a top module (pe.v) for
synthesis.

The top module of the simulator contains all the modules in Figure 4.10: IO and PE. The code is as
follows:

Listing 4.10 Top module for simulation: vsim.v

‘define WIDTH 225 //image width

‘define HEIGHT 188 //image height

‘define ADDR_BITS 20 //max image size

‘define ITER 0 //iteration no

module vsim; //vsim

reg clock, reset;

//instantiation

pe PE (clock, reset); //processing element

io IO (clock, reset); //file input output

initial begin

clock = 0;

reset = 0; #30; reset = 1; #150; reset = 0; //reset signal

end

always #50 clock = ~clock; //clock generator

endmodule

At the beginning, the four parameters specify all the information necessary for synthesis and simulation.
The big difference is the iteration parameter, instead of the line numbers that appear in the line-based
simulator. For simplicity, all the word lengths for RAMs and arrays are set to one byte, which is common
in RGB bit assignment. The simulator is made even more general, including neighborhood and iteration
in stereo and motion. Similar to the line-based simulator, other applications, such as mono camera, stereo
only, or motion only, can be achieved by removing a channel or resources, such as RAMs and internal
buffers.

112 Architectures for Computer Vision

This module performs three tasks: instantiation of the processing element and the input-output element,
generation of a reset signal, and generation of a common clock. The input-output element is for simulation,
and the processing element is for synthesis. Note that there is no port communication between the two
modules. The input-output element, being a simulator, uses many unsynthesizable Verilog constructs,
which facilitates powerful tools for testing and monitoring.

The processing element is the same as in Listing 4.5 but is listed here again for completeness.

Listing 4.11 Top module for synthesis: pe.v

module pe(input clock, reset); //processing element

//variables: image ram

wire [‘ADDR_BITS - 1:0] i_raddr, //read addresses

i_waddr1, i_waddr2, //write addresses

r_raddr, r_waddr; //read RESULT

wire [7:0] i_rdata1, i_rdata2, r_rdata, //read data

i_wdata1, i_wdata2, r_wdata; //write data

wire i_wen1, i_wen2, r_wen; //write enable

//instantiation of synthesis modules

//one processor and three RAMs

ram IMAGE1 (clock, i_raddr, i_rdata1,

i_waddr1, i_wdata1, i_wen1); //1st image RAM

ram IMAGE2 (clock, i_raddr, i_rdata2,

i_waddr2, i_wdata2, i_wen2); //2nd image RAM

ram RESULT(clock, r_raddr, r_rdata,

r_waddr, r_wdata, r_wen); //result RAM

processor PROC (clock, reset, i_raddr, //processor

r_raddr, r_waddr, i_rdata1, i_rdata2,

r_rdata, r_wdata, r_wen);

endmodule

This module consists of three RAMs (IMAGE1, IMAGE2, and RESULT) and a processor (PROC), and
connects them following the structure in Figure 4.10. Incidentally, the codes are maintained with simple
statements as possible for easy understanding. At the time of synthesis, the codes must be elaborated so
that all the wires are terminated with drivers and all the unused variables are removed. The schematic
diagram of the FVSIM is similar to Figure 4.6.

The following sections explain the infrastructures of the simulator: memories (IMAGE1, IMAGE2,
and RESULT) and processor (PROC), in detail, with working codes.

4.9 FVSIM IO System
The IO function module plays a very important role in the simulator. This module must supply data to the
processor and display the data in the various parts, including inputs and outputs, dynamically. Because
observation of the data is important, the vision simulator must show us data by means of images. This
module is a slightly modified version of that in Figure 4.7.

The function of this module can be explained using state diagrams (Figure 4.11). The intervals at
which the RAM is fed is based on the image processing algorithm. When a frame has been completed,

Verilog Vision Simulator 113

wait

start

open
file

store
buffer

close
fileextract

head

extract
binary

store
RAM

new frame

(a) Loading RAMs

wait

start

open
file

write
head

copy
ROM

close
file

iteration end

(b) Reading RAM

Figure 4.11 Loading RAM and reading RAM

a new frame must be available in the RAM. In the frame-based simulator, this instance can be easily
captured by the semaphore (do_load). In Figure 4.7(a), the process begins when the new frame signal is
detected. First, the input image files are opened and read into the buffers. The contents in the buffers are
then classified into headers and binary images. The heads are used when the output from the processor
is viewed as a bitmap. The binary data is then loaded into the RAM, which completes the cycle.

The corresponding code reads as follows. The first part of the code is designed for loading the RAMs
with binary images. In a real system, this section is replaced with video cameras that load the RAMs
with binary images in the same fashion.

Listing 4.12 IO system: io.v (1/2)

module io (input clock,reset); //read and write

//declaration

reg [7:0] buffer [1:(1 << ‘ADDR_BITS)]; //1st buffer

reg [7:0] buffer2 [1:(1 << ‘ADDR_BITS)]; //2nd buffer

integer load_file_id,save_file_id, c, count = 0; //file opening

integer i, j, k; //variables

reg [31:0] width,height,size,bpp,nop,padding,row_width,offset;

reg [7:0] header [1:54]; //bitmap header

//reading: bmp -> buffer -> image, header

always @(PE.PROC.j) if (!PE.PROC.do_load) begin: READ //new frame

//load two sequence of images

case (count % 2) //sequence length

0: begin //1st pair

load_file_id = $fopen(”inputl0.bmp”,”rb”); //1st image

c = $fread(buffer, load_file_id); //read the file

$fclose(load_file_id); //close the file

114 Architectures for Computer Vision

load_file_id = $fopen(”inputr0.bmp”,”rb”); //2nd image

c = $fread(buffer2, load_file_id); //read the file

$fclose(load_file_id);

end

1: begin //2nd pair

load_file_id = $fopen(”inputl1.bmp”,”rb”); //1st image

c = $fread(buffer, load_file_id); //read the file

$fclose(load_file_id); //close the file

load_file_id = $fopen(”inputr1.bmp”,”rb”); //2nd image

c = $fread(buffer2, load_file_id); //read the file

$fclose(load_file_id);

end

endcase

//close the file

if ({buffer[2], buffer[1]} == 16’h4D42) begin //424D

//image parameters for dealing with general bmp files

size = {buffer[6],buffer[5],buffer[4],buffer[3]}; //file size

offset ={buffer[14],buffer[13],buffer[12],buffer[11]};

width = {buffer[22], buffer[21], buffer[20], buffer[19]};

height = {buffer[26], buffer[25], buffer[24], buffer[23]};

bpp = {buffer[30],buffer[29]}; //bits per pixel

nop = {buffer[38],buffer[37],buffer[36],buffer[35]}; //pixels

row_width = nop / height; //row width

padding = row_width - width * bpp / 8; //padding

//store header

for (i = 1; i <= offset; i = i + 1) begin

header[i] = buffer[i]; //store the header

end

//fill the RAMs for the two images

for (i = 0; i < height; i = i + 1) begin

for (j = 0; j < (row_width - padding); j = j + 1) begin

PE.IMAGE1.ram[i* (row_width - padding) + j]

= buffer[(height-1 - i)* row_width + j + offset + 1];

PE.IMAGE2.ram[i* (row_width - padding) + j]

= buffer2[(height-1 - i)* row_width + j + offset + 1];

end

end

count = count + 1;

end else $display (”Error: no bmp files.”);

end //always

Verilog Vision Simulator 115

The two 2D array buffers and the 1D array are provided for two files and a header. The process waits
until a new frame is needed by the processor. (This happens when the strip returns to the top of the frame
in Figure 4.4, i.e. S(j) becomes S(0). All the computation must be finished before a new frame arrives.)
Entering the loop, the process opens two files (one file in the case of mono processing) and stores them in
the two buffers. From the buffers, the headers and binaries are extracted and inverted for the correct row
order. The header, which is common to both images, is stored for later use and the binaries are loaded
into the two RAMs. Thus, this action simulates video cameras feeding two RAMs. For each channel, the
input images are a set of bitmap files, I(0), I(1),… , I(n − 1), for n number of images. The two channels
read the image sequences, synchronize, and cycle through, as indicated by the counter. This part of the
code can be easily modified for different scenarios: a still camera, a video camera, two still cameras, and
two video cameras. The default is for two video cameras.

The second part of the code is designed for writing files using the data in the RAM, where the result
is stored by the processor.

Listing 4.13 IO system: io.v (2/2)

//writing: image, header -> bmp

always @ (PE.PROC.iter) begin: WRITE //new frame

save_file_id = $fopen(”output.bmp”,”wb”); //open the file

//write header first

for (i = 1; i <= offset; i = i + 1) begin

$fwrite(save_file_id, ”%c”, header[i]); //write the header

//$display(”header[%d] = %d”,i,header[i]);

end

//write image part

for (i=0; i< height; i=i+1) begin //consider padding

for (j=0; j< (row_width - padding); j=j+1) begin

$fwrite(save_file_id, ”%c”, PE.RESULT.ram[(height-1 - i)

*(row_width - padding) + j]); //monitoring position

end

if (padding) begin //no padding

for (k=0; k < padding; k=k+1)

$fwrite(save_file_id,”%c”,8’h00); //fill the padding

end

end //for

//close the file

$fclose(save_file_id); //close the file

//$display(”time = %t, read_write: write done.”,$time);

end //always

endmodule

116 Architectures for Computer Vision

The purpose of this code is to observe the result by reading the result RAM. A suitable instance
for observation is at the point when the internal array (res) is transferred to the external RAM at the
end of each iteration. The semaphore (do_store) indicates such an instance. However, the monitoring
positions and time can easily be changed to other values.

4.10 FVSIM RAM and Processor
For completeness, we repeat the RAMs here. The simulator needs three RAMs, two to capture the input
images (IMAGE1 and IMAGE2) and one to preserve the results from the processor (RESULT). However,
they are all the same double-port synchronous RAMs.

Listing 4.14 RAM: ram.v

module ram(//image ram

input clock,

input [‘ADDR_BITS - 1:0] raddr, //read address

output reg [7:0] rdata, //read data

input [‘ADDR_BITS - 1:0] waddr, //write address

input [7:0] wdata, //write data

input wen //write enable

);

reg [7:0] ram [0:(2**‘ADDR_BITS) - 1]; //array

always @(posedge clock) begin

if (wen)

ram[waddr] <= wdata; //write

rdata <= ram[raddr]; //read

end

endmodule

The RAM design can be aided by the templates and IPs. In an actual system, SDRAMs may be used
to capture the video signals.

The major difference between this and the line-based method is the processor. Conceptually, the
operation is defined by

S(t + 1) ← T(I1(t), I2(t), S(t)),

where T(⋅) denotes a transformation, representing an algorithm. For each time t, the inputs, I_1(t),
I_2(t), are the image inputs and S(t) is the buffer, which stores temporary results, operating as
state memory (Figure 4.12). This computational structure is general and realizes a state machine, which
updates its state based on its inputs and its previous state. The general computational structure opens
up the possibility for iteration and neighborhood operations, T(⋅), which we will develop in subsequent

Verilog Vision Simulator 117

I1 (t)

img1

I2 (t)

img2

processing

S(t)

res

IMAGE1 IMAGE2

RESULT

Figure 4.12 The operations in the processor

chapters. For a pixel, p ∈ , a set of neighbors is defined as N(W(p)). Thus, the neighborhood operation
is defined by

S(k+1) ← T(I1(N(p)), I2(N(p)), S(k)(N(p)). (4.1)

The architecture in Figure 4.12 is rather general and thus implies that this neighborhood operation is a
special case. For concurrent operation, we may expand a pixel, p ∈ , into a window of pixels, W(p).
Consequently, the set of neighbors of the window is N(W(p)). In this case, the operation becomes

S(k+1) ← T(I1(N(W(p))), I2(N(W(p))), S(k)(N(W(p))). (4.2)

We may expand this equation into iteration by introducing an iteration index, k = 0, 1,… , K − 1

Sk+1(p) ← T(I1(N(W(p))), I2(N(W(p)), Sk(N(W(p)))). (4.3)

To realize this concept in Verilog HDL, we need three always blocks: reading, writing, and processing
(Figure 4.13) The reading block accesses the external RAMs (IMAGE1 and IMAGE2) and copies S1(j)
and S2(j) into the internal arrays, img1 and img2. The reading block then activates the processing
block, which computes a given algorithm on S1(j) and S2(j), to update S(j) in the internal array (res).
On completion, the process returns to the reading block from the processing block. It is not known
in advance how much time the processing may consume and so semaphores must be exchanged for
handshake control. On the writing side, the writing block writes the internal array (res) to the external
RAM (RESULT). This action is relatively free from other processing and may need long intervals. In
the diagram, the writing action begins at the same time as the processing block begins.

This scheme is general as various algorithms can be plugged into the processing block, especially
algorithms involving neighborhood and iteration. The time constraint is flexible and the computational
resources, S1(j), S2(j) and S(j), are enough for such algorithms.

118 Architectures for Computer Vision

compute
T(·)

S(t)

I1 (t), I2 (t)start store res
to RESULT

do_ip

do_load

do_store

Figure 4.13 The always blocks for the processor

Let us consider the actual Verilog code. The code consists of three always blocks, appearing in the
following order: reading, writing, and processing. The always block for reading is as follows:

Listing 4.15 Processor: processor.v (1/3)

module processor(//processor

input clock, reset,

output reg [‘ADDR_BITS - 1:0] i_raddr, r_waddr, //address bus

input [7:0] i_rdata1, i_rdata2, //data bus

output reg [7:0] r_wdata, //data bus

output reg r_wen //write enable

);

//working array

reg [7:0] img1 [0: 3* ‘WIDTH * ‘HEIGHT - 1]; //1st image

reg [7:0] img2 [0: 3* ‘WIDTH * ‘HEIGHT - 1]; //2nd image

reg [7:0] res [0: 3* ‘WIDTH * ‘HEIGHT - 1]; //result map

reg [‘ADDR_BITS - 1:0] k, kk, n; //variables

reg [‘ADDR_BITS - 1:0] idx, idx1; //delay buffer

reg do_load, do_store, do_ip; //semaphores

//neighborhood

wire [7:0] im1 [0:8]; //1st image: neighbor

wire [7:0] im2 [0:8]; //2nd image: neighbor

wire [7:0] re [0:8]; //result: neighbor

reg [‘ADDR_BITS - 1:0] x, y; //global counter

reg [1:0] z; //for x,y,z coordinates

Verilog Vision Simulator 119

wire [‘ADDR_BITS-1:0] id1[0:8], id2[0:8]; //neighbor coordinates

genvar v, w;

//get image: PE.IMAGE1 -> img1, PE.IMAGE2 -> img2

always @(posedge clock) begin: READ_img

if (reset) begin

k = 0; //index in a frame

idx = 0; //address delay

idx1 = 0; //2nd address delay

end

else if (do_load && k < 3* ‘WIDTH * ‘HEIGHT + 2) begin

do_ip = 0; //stop processor

i_raddr = k; //read address

img1[idx1] = i_rdata1; //load 1st image

img2[idx1] = i_rdata2; //load 2nd image

idx1 = idx; //delay

idx = k; //delay

k = k + 1; //next pixel

end else begin

k = 0; //first pixel

do_ip = 1; //control to processor

end

end //always

The reading block is active only when the processing block activates it by using the semaphore,
do_load. This block then begins to inhibit the processing block using the semaphore, do_ip. The major
operation is to provide a pair of new images, I1(t) and I2(t), by copying the contents from the external
memories, RAM1 and RAM2, to the internal registers, img1 and img2. When the operation is finished, the
reading block activates the processing block using the semaphore, do_ip. In return, the processing block,
when activated, begins by deactivating the reading block using the semaphore, do_load. This handshake
must be carefully designed so that the semaphores are not driven by more than one always block.

The writing block also does one-way processing, and continuously brings back the result to the external
RAM. The writing block is activated at the same time as the reading block.

Listing 4.16 Processor: processor.v (2/3)

//store the result: res -> PE.RESULT

always @(posedge clock) begin: WRITE

if (reset) begin

r_wen <= 1; //write enable

n <= 0; //first pixel

end

else if (do_store) begin //wait for activation

if (n < 3 * ‘WIDTH * ‘HEIGHT) begin

120 Architectures for Computer Vision

r_wdata <= res[n]; //load data

r_waddr <= n; //load address

n <= n + 1; //next pixel

end

else n <= 0; //first pixel

end

end //always

Therefore, the reading and writing blocks operate concurrently, without interfering with each other.
The external RAM may be omitted and the resulting data can be put onto the pins, so that the data can
be continuously obtained externally. It depends on the actual implementation of the RAMs and pins.

The main part of the processor consists of nested loops, with iteration outside and pixel visit in
the inside loop. The always block is activated by the reading block via the semaphore, do_ip. In this
manner, the always block may take as much time as needed to compute a frame, with neighborhood
and iteration operations.

Listing 4.17 Processor: processor.v (3/3)

//image processing: (img1, img2) -> res

reg [7:0] iter; //iteration variable

always @ (posedge clock) begin: PROCESSOR

if (reset) begin do_load = 1; do_store = 0;

kk = 0; //pixel position

x = 0; y = 0; z = 0; //global address

iter = 0; //iteration no

end

else if (do_ip && iter < ‘ITER) begin //wait for activation

do_load = 0; do_store = 1; //deactivate

if (kk < 3 * ‘WIDTH * ‘HEIGHT) begin

//main operation

res[kk] = (iter)? (res[kk] + im1[1]

+ im1[3] + im1[5] + im1[7]) /5:0;

//next local address

kk = kk + 1; //pixel position

//next global address

if (z < 2) z = z + 1; //count z

else if (x < ‘WIDTH - 1) begin

z = 0; x = x + 1; end //count x

else if (y < ‘HEIGHT - 1) begin

z = 0; x = 0; y = y + 1; end //count y

else begin

x = 0; y = 0; z = 0; end //reset (x,y,z)

end

Verilog Vision Simulator 121

else begin

kk = 0; //start pixel

iter = iter + 1; //next iteration

do_store = 1; //activate store

end

end //if

else begin

iter = 0; //reset iteration

do_load = 1; //activate read

do_store = 0; end //deactivate write

end //always

//building neighborhood

assign id1[0] = kk;

assign id1[1] = ((x > 0) && (x < ‘WIDTH - 1)

&& (0 < y) && (y <‘HEIGHT - 1))? kk + 3 : kk;

assign id1[2] = ((x > 0) && (x < ‘WIDTH - 1)

&& (0 < y) && (y <‘HEIGHT - 1))? kk + 3 * ‘WIDTH + 3 :kk;

assign id1[3] = ((x > 0) && (x < ‘WIDTH - 1)

&& (0 < y) && (y <‘HEIGHT - 1))? kk + 3 * ‘WIDTH : kk;

assign id1[4] = ((x > 0) && (x < ‘WIDTH - 1)

&& (0 < y) && (y <‘HEIGHT - 1))? kk + 3 * ‘WIDTH - 3 : kk;

assign id1[5] = ((x > 0) && (x < ‘WIDTH - 1)

&& (0 < y) && (y <‘HEIGHT - 1))? kk - 3 : kk;

assign id1[6] = ((x > 0) && (x < ‘WIDTH - 1)

&& (0 < y) && (y <‘HEIGHT - 1))? kk - 3 * ‘WIDTH - 3 : kk;

assign id1[7] = ((x > 0) && (x < ‘WIDTH - 1)

&& (0 < y) && (y <‘HEIGHT - 1))? kk - 3 * ‘WIDTH : kk;

assign id1[8] = ((x > 0) && (x < ‘WIDTH - 1)

&& (0 < y) && (y <‘HEIGHT - 1))? kk - 3 * ‘WIDTH + 3 : kk;

generate

for (v = 0; v < 9; v = v + 1) begin: GEN_PE_ID //2nd image coords

assign id2[v] = id1[v] + 3 * ‘WIDTH * ‘HEIGHT;

end

endgenerate

//neighborhood values

generate

for (w = 0; w < 9; w = w + 1) begin: GEN_PE_IM

assign im1[w] = img1[id1[w]]; //1st image neighbor

assign im2[w] = img2[id2[w]]; //2nd image neighbor

assign re[w] = res[id1[w]]; //result image neighbor

end

endgenerate

endmodule

122 Architectures for Computer Vision

Each pixel must be accompanied by neighborhood pixels, in both images. In this code, the neighbor-
hood calculations are achieved by combinational logic. The concept is as follows. The processor block
chooses a pixel position to be computed next, which is represented by two equivalent coordinates, kk
and (x,y,z). The former is the pixel counter, while the latter is a set of counters for row, column, and
RGB. This way of obtaining the pixel coordinates is efficient because it avoids division and multiplica-
tion. Otherwise, we would have to compute the coordinates as ‘z = kk%3, y = ⌊kk∕(3 × WIDTH)⌋,’ and
‘x = kk − 3 × WIDTH × y.’

For each pixel, neighborhood indices are computed, with boundary conditions considered. If the
neighborhood is out of the boundary, then its coordinates are set to those of the center pixel. In this
way, all the neighbors beyond the boundary are set to the boundary values. However, this method can be
modified using reflection, resulting in the outside pixels being reflections of the inside pixels. Any other
definition of the boundary condition must appear around this code. The indices are converted to the actual
values of the neighbors. In addition, the corresponding neighbors on the second image are computed,
using the obtained neighbors of the first image. In actuality, the definition of the corresponding pixel
depends on the application. In stereo matching and optical flow, the corresponding pixel is changing
dynamically and the optimal one must be searched for. This template is simply set to zero disparity or
optical flow. The neighborhood definition can be expanded, so that the range of the neighborhood is
beyond just one pixel. In that case too, the logic is correct but the neighborhood arrays must be expanded
appropriately.

Inside the always block in the processor, the operation can be defined by the neighbor pixels from
the two images and the state register, to determine a new value for the state register. In an actual
application, the neighborhood and the corresponding point must be fitted to the required values, in this
standard template. Finally, this computational architecture is not just for the neighborhood and iterative
computation. It is a general state machine and can therefore be used in more general vision applications.

4.11 OpenCV Interface
For more general vision processing, advanced packages such as OpenCV (Baggio et al. 2012; Bradski
2002; Bradski and Kaehler 2008; Laganiére 2011) can be used in conjunction with the target architecture.
The problem is that there are two levels of barriers between Verilog and C++ (Stroustrup 2013). The first
barrier is the communication between Verilog and C programs. One solution is to use a buffer file at the
Verilog-C boundary to transfer images and data between the two systems, as indicated above.

Now that all other parts have been introduced in terms of VSIM, we can introduce the main program,
which uses OpenCV.

Listing 4.18 OpenCV: main

#include <cv.h>

#include <highgui.h>

#include <conio.h>

void save_binary(); //save_binary function

void load_binary(); //load_binary function

int main()

{

//choose save_binary or load_binary

Verilog Vision Simulator 123

char ch;

printf(”Please enter what you want to do(1, 2).\n”);
printf(”1) OpenCV -> Verilog\n2) Verilog -> OpenCV\n”);
ch = getch();

putch(ch);

printf(” is what you pressed\n”);

if (ch == ”1”){ //if 1 is pressed

save_binary(); //do save_binary function

} else if (ch == ”2”){ //if 2 is pressed

load_binary(); //do load_binary function

} else{

printf(”You pressed wrong number.”);

}

}

In the forward phase, the main program reads in an external file containing a set of image files, does
some preprocessing with the help of OpenCV, and then writes the intermediate results to an output file,
as a raw image, so that VSIM can access it. In the backward phase, the main program reads in the output
file returned by the simulators, that is VSIM, does some post-processing, with the help of OpenCV, and
writes the result to an output file. The advantage of using OpenCV is that the main program can access
most of the image formats and convert them into the raw image and vice versa. The main program calls
two procedures: one for reading in an image file into an image array and the other for writing an image
array into an image file.

The reading procedure in the forward phase is as follows:

Listing 4.19 OpenCV: load_binary

void load_binary()

{

char file_name[100] = ”../image”; //binary file name

char load_name[100] = ”../image”; //original file name

char save_name[100] = ”../image”; //filtered file name

FILE *file = fopen(”../image/Output_data.dat”, ”rb”); //file open

sprintf(load_name, ”../image/load_image.bmp”); //original file name

sprintf(save_name, ”../image/save_image.bmp”); //filtered file name

printf(”Processing...\n”);

//original image structure

IplImage* load_img = cvLoadImage(load_name, CV_LOAD_IMAGE_GRAYSCALE);

int height = load_img->height; //height

int width = load_img->width; //width

124 Architectures for Computer Vision

int widthstep = load_img->widthStep; //width step

uchar *image = new uchar[height*width]; //image data

fread(image, sizeof(uchar), height*width, file); //file read

//filtered image structure

IplImage* save_img = cvCreateImage(cvSize(width, height),

IPL_DEPTH_8U, 1);

uchar *data = (uchar*)save_img->imageData; //image data

//copy image

for (int i=0; i < height; i++){

for (int j=0; j < width; j++){

data[i*widthstep + j] = image[i*width + j];

}

}

cvSaveImage(save_name, save_img); //image save

printf(”Done.\n”);
fclose(file); //file close

}

The properties of the images can be adjusted by various keys that are plugged into the arguments.
Moreover, all the major parameters of the image are available.

The writing procedure in the backward phase is as follows:

Listing 4.20 OpenCV: save_binary

void save_binary()

{

char load_name[100] = ”../image”; //image file name

char file_name[100] = ”../image”; //binary file name

FILE *file = fopen(”../image/Input_data.dat”, ”wb”); //file open

sprintf(load_name, ”../image/load_image.bmp”); //image open

printf(”Processing...\n”);

//image structure

IplImage* load_img = cvLoadImage(load_name, CV_LOAD_IMAGE_GRAYSCALE);

int height = load_img->height; //height

int width = load_img->width; //width

int widthstep = load_img->widthStep; //widthstep

uchar *data = (uchar*)load_img->imageData; //image data

uchar *image = new uchar[height*width]; //image data

Verilog Vision Simulator 125

//copy image

for (int i=0; i < height; i++){

for (int j=0; j < width; j++){

image[i*width + j] = data[i*widthstep + j];

}

}

fwrite(image, sizeof(uchar), height*width, file); //file write

printf(”Done.\n”);
fclose(file); //file close

}

The other forms of processing, such as preprocessing and post-processing, must work on the image
array to generate a result as an output for either forward phase or backward phase.

To be efficient, an image processing system must comprise software and hardware systems, where
the part of the algorithm characterized by serial computation with less computational complexity must
be executed in software and the part characterized by parallel computation with huge computational
complexity must be executed in hardware.

In this chapter, we developed two simulators, LVSIM and FVSIM, for the case of line-based and
frame-based algorithms, respectively. The templates, LVSIM and FVSIM, can be expanded to the other
variations. One possibility is to parallelize them by introducing nonblocking assignments. In such a case,
the semaphores between always blocks must be carefully readjusted. The delay between the module and
the RAM must also be considered. The other possibility is to merge the always blocks into one large
finite state machine, so that the reading, writing, and processing operations are executed alternately.

In subsequent sections, we will use these simulators and focus on the processing elements. The goal
is to design processing elements for the algorithms in the intermediate level vision, although some of
the lower level vision is included during development. The final goal is the development of processors
for stereo vision (possibly motion estimation). The purpose is not simply to derive all the codes for such
systems but to introduce efficient ways of achieving our goals.

Problems
4.1 [Image conversion] Consider an M × N image array with RGB channels. How can you represent

the image in Verilog data format? List the representations and compare and contrast their pros
and cons.

4.2 [Image conversion] A bitmap contains a 225 × 188 image in an 8.8.8.0.0. format. What is the
number of padding bytes in a row? What is the row width? What is the file size?

4.3 [Image conversion] Although the 1D Verilog array is useful for representing an image, some-
times it is required that the 3D coordinates (x, y, z) be retrieved from the array counter k. Let
[7:0] image [0: 3 * ‘M * ‘N - 1] and [7:0] image [0:1] [0:‘M - 1][0:‘N -
1]. If the 1D counter k is successively incremented by one from k=0 to k=3 * ‘M * ‘N
-1, how can you compute the coordinates (x, y, z) in image[z][x][y]?

4.4 [Image conversion] The following code is used to read and write images in three steps. First, it
reads in a file in bitmap format. Next, it extracts the header part and interprets it. Then, according to
the header information, it extracts the raw image and stores it together with the header information.
Finally, the stored header and the stored raw image are written to an external file.

126 Architectures for Computer Vision

Listing 4.21 Module: image_copy.v

module image_copy();

integer load_file_id; //file ID for loading

integer save_file_id; //file ID for saving

integer height; //image height

integer width; //image width

integer row_width; //image width step

integer i, j; //dummy indices

reg [7:0] tmp [0:1000000]; //temporary memory

reg [7:0] image [0:1000000]; //image memory

initial begin

//read a file

load_file_id = $fopen(”airplane.bmp”,”rb”);//file ID for loading

save_file_id = $fopen(”save.bmp”, ”wb”); //file ID

$fread(tmp, load_file_id); //read image

//check bitmap id

if ({tmp[2], tmp[1]} == 16’h424D) begin //bitmapimageid:424D

$display(”It is a bmp file.”);

//retrieve height, width, and width step

height = {tmp[26], tmp[25], tmp[24], tmp[23]}; //height

width = {tmp[22], tmp[21], tmp[20], tmp[19]}; //width

//width step (RGB + dummy 1 byte)

row_width = 3*{tmp[22], tmp[21], tmp[20], tmp[19]}+1;

//divide raw image data from image header section

for (i=0; i<height; i=i+1) begin

for (j=0; j<row_width; j=j+1) begin

image[i*row_width + j] =

tmp[(height-1-i)*row_width+j+55]; //binary image

end

end

//save image header

for (i=1; i<=54; i=i+1) begin

$fwrite(save_file_id,”%c”,tmp[i]); //writeimageheader

end

//write image data

for (i=0; i<height; i=i+1) begin

Verilog Vision Simulator 127

for (j=0; j<row_width; j=j+1) begin

$fwrite(save_file_id, ”%c”,

image[(height-1 - i)*row_width + j]);

end

end

end

else begin

$display(”It is not a bmp file.”);

end

$fclose(load_file_id);

$fclose(save_file_id);

end //initial

endmodule

We would now like to enhance the code by splitting the module into two modules for reading
and writing, and by building a top module that instantiates the two modules, then store the header
and the raw image data in the top module by name reference.

4.5 [Image conversion] Let us enhance the code in the previous problem by introducing a new module,
pe, which copies the raw image to another in the top module. The new module is dedicated to
image processing and synthesis, while other modules are for simulation only. The current task of
the processing element, pe, is just to copy one raw image into another.

4.6 [Simulator] In the simulator, only one place is observed in the code. How can you modify the
code so that multiple places can be observed, possibly at different times?

4.7 [Simulator] Change the following code so that the statement is executed in each clock, instead of
in one period.

always @ (posedge clock) begin

if (trigger) begin

for (k = 0; k < ‘CHANNEL * width * height; k = k + 1) begin

result[k] = raw[k] - raw[‘CHANNEL * width * height + k];

end

trigger = 0;

end

end //always

4.8 [Simulator] What is the problem with the line-based VSIM when computing neighborhood oper-
ations?

4.9 [Simulator] In FVSIM, the neighborhoods out of the boundary are all assigned boundary values. In
Listing 4.15, kk represents the pixel count and (x, y, z) the pixel coordinates. In many applications,
the pixels around the boundary must be arranged to be mirror symmetric. For such a case, modify
the given code for the mirror symmetry.

4.10 [Simulator] In the always block, READ_img, in Listings 4.9 and 4.15, the data from RAM was
assigned to the older address. What happens if the RAM output is buffered with a register?

128 Architectures for Computer Vision

4.11 [Simulator] In the always block, READING, in Listings 4.9 and 4.15, the data from RAM was
assigned to the older address. What happens if the RAM output is buffered with a register?

4.12 [LVSIM] Modify LVSIM using nonblocking assignments so that all the statements work concur-
rently.

4.13 [FVSIM] Make the serial implementations of FVSIM concurrent by introducing nonblocking
assignments.

4.14 [IO] In FSIM, the internal buffers, img1, img2, and res, are filled by reading the external RAMs,
RAM1, RAM2, and RES. However, the memory contents can instead be loaded quickly by the IO
circuit. This method is not synthesizable but useful for quick simulation. Change io.v.

References
Baggio DL, Emami SE, Escriva DM et al. 2012 Mastering OpenCV with Practical Computer Vision Projects. Packt

Publishing.
Bradski GR 2002 OpenCV: Examples of use and new applications in stereo, recognition and tracking Vision Interface,

p. 347.
Bradski GR and Kaehler A 2008 Learning OpenCV. O’Reilly Media, Inc.
IEEE 2005 IEEE Standard for Verilog Hardware Description Language. IEEE.
Laganiére R 2011 OpenCV 2 Computer Vision Application Programming Cookbook. O’Reilly Media, Inc.
OpenCV 2013 Home page http://opencv.org (accessed May 6, 2013).
Stroustrup B 2013 The C++ Programming Language. Pearson, Education, Inc.
Wikipedia 2013a BMP file format http://en.wikipedia.org/wiki/BMP_file_format (accessed Nov. 16, 2013).
Wikipedia 2013b Image file formats http://en.wikipedia.org/wiki/Image_format (accessed May 22, 2013).

http://opencv.org
http://opencv.org
http://en.wikipedia.org/wiki/BMP_file_format
http://en.wikipedia.org/wiki/BMP_file_format
http://en.wikipedia.org/wiki/Image_format
http://en.wikipedia.org/wiki/Image_format

Part Two
Vision Principles

5
Energy Function

Many of the computer vision problems at the low to intermediate levels can be considered to be labeling
problems. Defined over the image plane, the labels form a function mapping that uniquely maps a set
of pixels onto an attribute label. The quality of the labeling is signified with an energy function – a
functional of the label function. Depending on the applications, energy functions have various different
forms in their terms and relationships but have some common categories in their forms and solution
methods. Finding correct representations for energy function and energy minimization methods (Heyden
2013; Szeliski et al. 2008) are key issues in vision problems.

Energy functions are found in many different domains, including optimization, Bayesian estimation,
network flow (Ahuja et al. 1993; Cormen et al. 2001), and thermodynamics domains. In optimization
domains, energy functions are known by various names, such as objective functions, loss functions, cost
functions, and utility functions. The energy function used in thermodynamics is called (Helmholtz or
Gibbs) free energy (Wikipedia 2013h) and equilibrium is the state in which the energy is at a minimum.
In Bayesian estimation, the energy function is the likelihood of the ensemble probability, and the goal is
often to determine the maximum a posteriori (MAP) estimate, the area where the energy is at a minimum.
In a flow network, the energy is the maximum flow from the source to the sink and the purpose of graph
cuts is to find the minimum cut to determine this energy. Regardless of the origin and the level of vision
pathways, all the goals are to find the state in which the energy function is at a minimum. It is well
known that the energy function in vision problems has the same structure, taking two common terms:
data term (t-link in graph cuts terms (Boykov et al. 1998)) and smoothness term (n-link in graph cuts
terms (Boykov et al. 1998)). The data term represents the likelihood, measuring the observation error
between the measurement and the corresponding estimates. The smoothness term represents the prior,
including the inherent statistical properties of the hidden states in nature.

Presently, the field of energy minimization is focused on the energy function model, which includes
higher-order and irregular sets of partitions, and the inference methods that include linear programming
relaxation (LPR), variations of message passing, and move-making algorithms in graph cuts (GC) (see
(Kappes et al. 2013; Szeliski et al. 2008)).

This chapter relates how the concept of the energy equation evolves from the potential of MRF to
the factor graph. In later chapters, the minimization of the energy function is studied in terms of the
basic methods: relaxation (RE) machine, dynamic programming (DP) machine, belief propagation (BP)
machine, and graph cuts (GC) machine.

Architectures for Computer Vision: From Algorithm to Chip with Verilog, First Edition. Hong Jeong.
© 2014 John Wiley & Sons Singapore Pte. Ltd. Published 2014 by John Wiley & Sons Singapore Pte. Ltd.
Companion Website: www.wiley.com/go/jeong

http://www.wiley.com/go/jeong

132 Architectures for Computer Vision

5.1 Discrete Labeling Problem
In a labeling problem, we are given a set of objects, a set of labels for each object, a neighbor relation
over the objects, and a constraint relation over labels of pairs (or n-tuples) of neighboring objects. The
solution is an assignment of labels to each object in a manner that is consistent with respect to the
constraint relation. The formal definition is as follows.

Definition 5.1 (Labeling problem) Let I = {I(p)|p ∈ } be an instance of an image, x = {x(p)|p ∈
 , x(p) ∈ } be a labeling, where = {0, 1,… , L − 1} is the labeling space of size L, and N(⋅) be a
neighborhood. A data term 𝜙 : (x(p), I(p)) ↦ and a smoothness 𝜓 : (x(p), x(q)) ↦ for p, q ∈ .
The energy function is then defined by

E(x) =
∑
p∈

𝜙(x(p)) +
∑
p∈

∑
q∈N(p)⧵p

𝜓(x(p), x(q)). (5.1)

Finally, the labeling problem is defined by

x∗ = argmin
x

E(x). (5.2)

Although the instance is confined to a single image, it may be generalized to a set of images of video
streams. Two functions are defined in such a way that the data term depends on the label and the local
instance, and the smoothness term depends on the local configuration of label distribution. The global
cost is defined by the energy function, which is the sum of the data terms and the smoothness terms. All
the functions are assumed to be bounded below.

This is one of the many definitions of the labeling problem, called multiclass classification. The
more general definition is multi-label classification (Madjarov et al. 2012; Sorower 2010). The labeling
problem is related to classification as well as the learning paradigm. According to the definition, the
labeling problem becomes an optimization problem, given the energy function.

In the following, we justify the energy function by deriving it from the Markov random field (MRF)
hypothesis and examine its meaning in more detail. Ensuing chapters will deal with the energy mini-
mization directly in the paradigms: relaxation, dynamic programming, and message passing.

5.2 MRF Model
Let be a plane with N × M lattice points. On this plane is defined an image, I, and the label,
X = {xp|p ∈ }, where x ∈ for a label set . The image may be expanded to a set of images and the
label to the attributes (or descriptors). The labeling problem is to find an optimal X given an image I.
For stereo matching and motion estimation, the image is a pair of conjugate images and the attributes
are the disparity (stereo matching) and optical flow (motion). To define the optimality, we have to define
the label as random variables on the MRF plane and derive an optimal estimate of the distribution.

The problem formulation can be stated with the joint distribution p(x, I) and its marginal. We assume
an MRF model in which the random variables are defined by their pairwise relationships. The concept is
illustrated in Figure 5.1. The image plane is defined by the column and row coordinates, = {(x, y)|x ∈
[0, N − 1], y ∈ [0, M − 1]}. The relationship between the labels and the data is represented by a graph
G = (V , E, X), where the nodes are assigned random variables (i.e. labels) and the edges the joint
probability. Each node is also connected to a single node that is assigned an image pixel. In later sections,
this graph will be expanded to a more general graph, specifically, factor graph and hypergraph (Wikipedia
2013d).

Consequently, we now have a powerful representation scheme for the labeling in the form of a graph.

Energy Function 133

x

y

(a) image I

x

y

(b) graph G = (V, E)

I(u)

X(u)X(v)

(c) neighborhood

Figure 5.1 MRF model of the image

Definition 5.2 (MRF Graph Model) An MRF graph is a loopy undirected graph G = (V , E, X),
where the vertex (node) V consists of and the edges E between neighbor vertices. Random variables
X defined on the vertices are MRF. Dangling nodes, representing random variables I for representing
image data, are attached to the pixel nodes.

MRF is compactly characterized by four properties (Wikipedia 2013g): context independence, pairwise
Markov property, local Markov property, and global Markov property. Let ⟂ signify independence, |
signify the conditional, and V ⧵ {i, j} signify V − {i, j}. The context-independent property then has the
following meaning:

Xi ⟂ Ij|Ii, ∀j ∈ V ⧵ i. (5.3)

The pairwise Markov property means that any two unadjacent variables are conditionally independent,
given that all other variables are conditionally independent.

Xi ⟂ Xj|XV⧵{i,j}, ∀{i, j} ∈ V and {i, j} ∉ E. (5.4)

The local Markov property states that a variable is conditionally independent of all other variables given
its neighbors.

Xi ⟂ XV⧵c(i)|XNi
, ∀i ∈ V . (5.5)

Here, Ni is the set of neighbors of i, excluding itself, and c(i) = {i} ∪ Ni is the closed neighborhood
system of i. The global Markov property means that any two subsets of variables are conditionally
independent given a separating subset, XC.

XA ⟂ XB|XC, ∀A, B, C ⊆ V . (5.6)

Here, any path from a node in A to a node in B must pass through C. In summary, the intention of these
definitions is to limit the influence of a node just to its local neighborhood so that the joint distribution
can be decomposed into many fragmented factors.

The next step is to define measurable quantities on the graph so that the labeling can be stated in terms
of those quantities. Fortunately, there is an indispensable theorem that states that an MRF distribution

134 Architectures for Computer Vision

(a) four-neighborhood (b) singleton (c) doubletons

Figure 5.2 All types of cliques for a four-neighborhood system

can be modeled with a factorization – in particular, Gibbs distribution (Besag 1974; Clifford 1990;
Hammersley and Clifford 1971). According to the Hammersley-Clifford theorem, we have

p(x, I) = 1
Z
exp

{
−
∑
c∈C

𝜓c(x)

}
= 1

Z

∏
c∈C

pc(x), (5.7)

where C is a set of cliques, 𝜓 is a clique potential, and Z is a partition function. The clique is a set of
nodes such that there is an edge between every pair of nodes that are members of the set. Therefore, the
joint probability is the relationship between functions defined over cliques in the graphical model. Here,
the joint distribution is expressed with the measurable quantities, potential and probability.

One of the simplest cases is the regular graph with four-neighborhood, in which two types of cliques
are defined: singleton and doubleton. In Figure 5.2, all the cliques for the four-neighborhood system are
illustrated. For the four-neighborhood system, the distribution becomes

p(x, I) = 1
Z
exp

{
−

(∑
i∈

𝜙(xi, Ii) +
∑

j∈4(i)⧵i

𝜓(xi, xj)

)}

= 1
Z

∏
i∈

p(xi, Ii)
∏

j∈4(i)⧵i

p(xi, xj), (5.8)

where Ni ⧵ i = Ni − {i}. In this expression, 𝜙(xi, Ii) (equivalently p(xi, Ii)) signifies the compatibility
between a local observation (i.e. image) and the variable (i.e. label or attribute) and enforces a data
constraint. The other term 𝜓(xi, xj) (equivalently p(xi, xj)) signifies a compatibility between neighboring
node labels enforcing the smoothness constraint.

Most of the vision problems at the low to intermediate levels lie in estimating the unknown variable
X defined over the image plane, given the image I as an observation. The observation may signify an
image, I, a pair of images, (Il, Ir), or a sequence of images, {(Il(t), Ir(t)|t = 0, 1,…}. The variable X
signifies some attribution map defined for each pixel or parts of pixels in the image, such as image, edge,
disparity, optical flow, or class label. We use x for the realization of the random variable, X.

The system is weakly described by the conditional, p(I|x), from which we can obtain the maximum
likelihood (ML) estimate

x∗ = max
x

p(I|x). (5.9)

The stronger description is the posterior. Bayes’ rule gives

p(x|I) = p(I|x)p(x)∕p(I), (5.10)

Energy Function 135

where p(x|I) is called posterior (a posteriori), p(I|x) conditional, and p(x) prior (a priori). One approach
is to compute the maximum a posteriori (MAP): given I, estimate x such that

x∗ = argmax
x

p(x|I) = argmax
x

p(I|x)p(x). (5.11)

A more practical approach is to compute the marginalization:

p(xk) =
∑

x:(x)k=xk

p(x|I). (5.12)

The problem is that the complexity is exponential, which is impossible even for small problems. For
instance, a problem with 100 pixels needs a search space of size 299. Fortunately, an efficient algo-
rithm, called the belief propagation (BP) (Pearl 1982), has been introduced for such cases. Computing
marginalization in an iterative manner, this method is known to be exact for Bayesian tree (i.e. BP) and
approximate for loopy Bayesian networks (i.e. loopy belief propagation (LBP)).

Note that all the distributions are joint distributions. The terms usually consist of two different quan-
tities, one that depends upon a particular problem (data term) and another that is commonplace in
many vision problems (smoothness term). Exploring the one that depends on the particular problem
is sometimes a major research concern. It is interesting that there exists a term that is common-
place in many problems. This term often appears as a smoothness, or regularization term, as will
be seen.

5.3 Energy Function
From the Hammersley–Clifford theorem, the vision problem becomes a dual problem: random variable
vs. energy and statistical estimation vs. functional optimization. In this context, we study the vision
problem from the energy point of view. From (5.8), we obtain the posterior:

p(x|I) = 1
Z
exp{−E(x)}, (5.13)

where the positive function E(x) is called energy:

E(x) =
∑
i∈

𝜙(xi|Ii) +
∑
i∈

∑
j∈Ni⧵i

𝜓(xi, xj). (5.14)

Here, the terms, called potential, are related to the density by

𝜙(xi) = − log p(xi|I), 𝜓(xi, xj) = − log p(xi, xj), (5.15)

where the context-independent condition is used for the singleton.
In information theory, the quantities 𝜙 and 𝜓 are pieces of information. In computer vision, 𝜙, is

called the data term (or assignment cost) and 𝜓 the smoothness term (or prior term or separation cost).
The data term is a measure of the discrepancy between observed and estimated values. The measure of
smoothness is a measure of the difference between neighboring pixels.

Because of the introduction of the energy function, obtaining a MAP estimate becomes an energy
minimization problem.

x∗ = argmax
x

p(x|I) ⇐⇒ x∗ = argmin
x

E(x). (5.16)

136 Architectures for Computer Vision

This approach comprises two stages: determination of the energy function and choosing the appropriate
optimization technique. To fully determine the energy function, we have to define the data term and the
prior term. The two terms are specific to problems and conditions. The energy minimization in the second
stage belongs to unconstrained optimization and has been investigated in many areas in the computer
vision field.

Among others, four approaches that have been extensively studied are variational calculus (Courant
and Hilbert 1953; Horn and Shunck 1981), DP (Amini et al. 1990; Bellman 1954), BP (Pearl 1982),
and graph cuts (Greig et al. 1989). There is a package in OpenCV specifically for executing and testing
such algorithms (Szeliski et al. 2006): iterated conditional modes (ICM), graph cuts, max-product belief
propagation, and sequential tree-reweighted message passing (TRW-S). There is also a package, called
OpenGM (Bazin et al. 2013), which wraps major energy models and inference techniques into a uniform
software framework for reproducible benchmarking.

The development of vision algorithms may start from either (5.8) or (5.14). The energy function
approach sometimes has advantages over the probabilistic approach in that it may be considered the
more general concept. Even if its origin is the factorization, the energy can be enhanced by adding
more constraints than can directly be interpreted in terms of probability. The resulting energy function
sometimes becomes highly nonlinear and space-variant. Because of its importance, the energy function
has to be formally defined.

Definition 5.3 (Energy Function) For any given piece of data, I = {I(x, y)|(x, y) ∈ }, the energy
function, E(x), is a functional defined over such that

E(x) =
∑
i∈

𝜙(xi) +
∑
i∈

∑
j∈Ni⧵i

𝜓(xi, xj).

� The range is nonnegative real, E : x ↦ [0,∞),
� x is a function satisfying x : (x, y) ∈ ↦ ,
�
𝜙(⋅) is a data term satisfying 𝜙(⋅) : (x, y) × I ↦ ,

�
𝜓(⋅) is a prior term satisfying 𝜓(p, q) : (p, q) ∈ × ↦ .

In this manner, we can seek the energy function, instead of undergoing the full derivation, considering
all the possible constraints that may hold in the given problem. Moreover, by doing it this way, we can
generalize the energy function so that it is more general than those derived from the Markov concept.

The smoothness term originated from the clique potential, which can be interpreted as some com-
patibility between neighboring pixels in terms of their values. As a term in an energy function, it can
be viewed as a constraint, coupled with a Lagrange multiplier, which makes the constrained problem
unconstrained, so that any minimization technique for global optimization can be applied. Applying a
stricter constraint to the energy function results in the search space becoming smaller and the solution
getting closer to the global solution.

5.4 Energy Function Models
Thus far, we have reviewed the traditional view of the energy function in terms of MRF, which is well
documented (Szeliski et al. 2008). The concept of the energy function is emerging as a mainstay called
discrete energy minimization in the computer vision domain (Kappes et al. 2013).

To integrate the classical and the state-of-the-art concepts, we view the energy function in three
different tasks: energy model, inference scheme, and learning. The model deals with the definition of the
energy function, the inference scheme deals with the general methods for energy minimization, and the
learning addresses the problems of determining system parameters.

Energy Function 137

The energy model is being expanded to more general frameworks (Kappes et al. 2013): factor graph
model, higher factors, larger irregular graphs, and a group of pixels instead of a single pixel. As such, the
MRF in Definition 5.2 must be expanded to the factor graph (Kappes et al. 2013; Koller and Friedman
2009).

Definition 5.4 (MRF Factor Graph) Define an MRF factor graph, G = (U, V , X,Θ), as a vertex
weighted directed bipartite graph, where U is the factor nodes, V is the variable nodes, X = {xv|v ∈ V}
is the MRF variables, and Θ = {𝜃u(xu)|xu = {xv|v ∈ Nu}, u ∈ U} is the factors.

Note that Nu is a set of variable nodes, which are connected to the factor node u.
According to the above definition, terms in the traditional MRF energy model are replaced with the

functions of factors. The factor F defines every relationship in the general graph, including node-to-node
(binary potential, smoothness term, or compatibility term) and node-to-data (unary potential, data term,
or data fidelity), by its associated function sets. Thus, the representation becomes more general and
explicit than the original MRF model, which is defined by an undirected graph.

There are several aspects of model G that explicitly characterize the target vision problem (Kappes
et al. 2013) (e.g. stereo matching, motion estimation, and color segmentation) in terms of complexity
and graph topology (Kappes et al. 2013). The number of possible labels is important since it is directly
related to the feasibility of the algorithm. A larger dimension label space results in an increment of
complexity in computation and memory. The properties of the graph, such as regularity and order, are
also important cues for categorizing the model. The graph order is decided by the maximal degree
among all factors in the graph. It directly indicates the complexity of interconnections between nodes in
the graph. The regular graph assumption enables us to implement inference algorithms using massive
computation methods that are preferred in VLSI, or other hardware-based algorithms. As the final aspect,
we can consider the properties of the associated function (potential/energy function). This functional
property affects the accuracy of the model and the feasibility of the corresponding inference algorithms.
Energy functions based on high-order polynomials can describe a more complex vision environment,
while optimizations on these functions are infeasible in many cases.

The general energy function on the factor graph model above is defined as

E(x) =
∑
f∈F

𝜓f (xNf
), (5.17)

where Nf denotes neighborhood factors such as observation or other neighboring nodes in the MRF
representation. Since this energy model can represent far more complex vision models (i.e. higher-order
graphs or energy functions, and irregular graph representations) owing to its generality, we would like
to confine our discussion to three major early vision applications: stereo matching, motion estimation,
and image segmentation.

Because early vision labels depend on raw image observations rather than high-level information, the
order of their factor graph model is at most two. Hence, we can consider only pairwise relationship to
model the target problem. This fact simplifies the corresponding energy model, which only consists of
data and smoothness terms. Moreover, most of the early vision algorithms are pixel-based, so we can
assume that, except for the boundary points, the graphs are regular. Neighborhood systems for early
vision applications are usually defined by four-neighbors because of the trade-off between performance
and complexity. Nevertheless, there might be a more general representation beyond the factor graph,
which includes complicated factors such as the tripartite graph (Memisevic 2013). The remaining issues
on different applications are the label dimensions, additional parameters, and the functional properties
of energy terms.

The detailed form of the energy model depends on the problem domains. In the following sections,
we review only three domains: stereo matching, motion estimation, and segmentation. In the stereo

138 Architectures for Computer Vision

matching domain, the goal is to recover hidden correspondences between pixels from different views.
Therefore, the disparity value that defines the correspondences becomes the target label to infer. For
basic observation, although a variety of cues are available, such as image color/intensity, gradient, or
color segments, we consider image color/intensity as our primary consideration for simplicity.

5.5 Free Energy
All Bayesian inferences (Roweis and Ghahramani 1999) can be cast in terms of free energy minimization.
When free energy is minimized with respect to internal states, the Kullback–Leibler divergence between
the variational and posterior density over hidden states is minimized. This corresponds to approximate
Bayesian inference when the form of the variational density is fixed, and exact Bayesian inference
otherwise. Free energy minimization therefore provides a generic description of Bayesian inference and
filtering (e.g. Kalman filtering).

The distance between the two distributions can be defined by the statistical divergence (Pardo 2005;
Wikipedia 2013b). Among the many, the Kullback–Leibler (KL) divergence is frequently used for free
energy computation. The KL divergence is a premetric measure, and its quantities can be interpreted
via information theory. Thermodynamics analogy is possible but very limited because there are physical
factors missing (specifically, pressure, volume, and temperature) from the statistical model. For a true
pmf, p(x), assume an approximate 𝜋(x). The KL divergence is

D(𝜋(x)||p(x))
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

free energy

=
∑

x

𝜋(x) ln 𝜋(x)
p(x)

=
{
−
∑

x
𝜋(x) ln p(x)

}
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

energy

−
{
−
∑

x
𝜋(x) ln𝜋(x)

}
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

entropy S

.

The use of the true and approximate pmfs is opposed to the original order. The divergence consists of
two terms – cross-entropy (or energy) and entropy. A specific example is that when the distribution is
Gaussian, the entropy is unity. The entropy is the lower bound of the energy and the energy is the upper
bound of the entropy. One can optimize either of the two terms, which are bounded below or above. The
gap between the energy and entropy is the free energy that must be minimized for an optimal distribution,
which is supposed to be in a state of equilibrium.

The general model of the system is Boltzmann’s law p(x) = 1

Z
exp{−E(x)∕kT}, where k is the Boltz-

mann constant and T is the temperature. We set kT = 1 if the temperature is constant or annealing is not
considered.

D(𝜋(x)||p(x)) =
∑

x

𝜋(x)E(x)∕kT +
∑

x

𝜋(x) ln𝜋(x) + lnZ

= E(x) − S(x) − F(x), (5.18)

where F(x) = − lnZ is the analogy of the Helmholtz free energy, which is defined as −kT ln Z. Further,
S(x) = −

∑
x 𝜋(x) ln𝜋(x) is the entropy and E(x) =

∑
x 𝜋(x) lnE(x) is the internal energy. The approx-

imate distribution is achieved by minimizing E − S, which is bounded below by the Helmholtz free
energy.

Algorithms largely depend upon the models of the approximate distribution, 𝜋(x). The mean field
approximation models the joint pmf using the products of singletons:

𝜋(x) =
∏
p∈

𝜋(xp) = exp

{
−
∑

p

𝜙(xp)

}
. (5.19)

Energy Function 139

The pairwise MRF is

𝜋(x) = 1
Z
exp

{
−
∑
p∈

ln𝜙p(xp) −
∑

p,q∈
ln𝜓(xp, xq)

}
. (5.20)

The Bethe free energy is

𝜋(x) =
∏

p,q 𝜋(xp, xq)∏
p 𝜋

(
x

qp−1
p

) , (5.21)

where qp is the number of nodes neighboring node p (Pearl 1988). It is known that there is a close
connection between the BP algorithm and the Bethe approximation: BP can only converge to a fixed
point that is also a stationary point of the Bethe approximation to the free energy (Yedidia et al. 2005).

The free energy is related to the function of the biological system. Biological systems maintain their
order by restricting themselves to a limited number of states and minimize a free energy function of
their internal states, which entail beliefs about hidden states in their environment. The minimization of
variational free energy is formally related to variational Bayesian methods and was originally introduced
by Karl Friston, as active inference (Friston et al. 2006; Wikipedia 2013c).

5.6 Inference Schemes
Energy functions can model various quantities and interactions in computer vision applications. The only
remaining task is to solve for a target quantity that minimizes its corresponding energy function, called
the inference. Unfortunately, searching for the global optimal solutions for a discrete energy function
is intrinsically an NP-hard problem owing to its combinatorial nature. Hence, there are innumerable
works about the inference method from the perspective of discrete optimization. Traditional inference
methods on discrete energy functions are based on various ideas from the area of optimization, such as
variational calculus (VC), iterated conditional modes (ICM) (Besag 1986), simulated annealing (SA)
(Kirkpatrick et al. 1983), and dynamic programming (DP) (Bertsekas 2007), to name a few. Further,
there are numerous inference schemes that were successful in other areas, such as genetic programming
(GP) (Banzhaf et al. 2001) and reinforcement learning (Sutton and Barto 1998).

Presently, the representative inference methods can be categorized as follows (Kappes et al. 2013):
polyhedral and combinational methods, message passing methods, max-flow and move-making methods,
and deep learning. The polyhedral and combinatorial methods are based on linear programming (LP)
relaxation. In these methods, the original discrete optimization problem is represented by integer linear
problems (ILP) that confine target solutions to finite-range integers in local polytope. Since this ILP
is NP-hard, it is relaxed by several subproblems that can be solved by LP in polynomial time. There
are two major methods in LP relaxation – the Cutting Plane (CP) method (Sontag et al. 2008) and the
branch-and-bound (BB) method (Sun et al. 2012). Under tight bounding conditions, the solution from
LP relaxation methods is guaranteed to be the global optimal solution. The message passing methods
originated from the Belief Propagation (BP) (Pearl 1988) for acyclic graphs. The most popular message
passing method in vision applications is loopy belief propagation (LBP) (Szeliski et al. 2008), which is
an extension of the original BP to graphs with cycles. Although LBP has no confidence on optimality of
the solution, it works well practically in many vision applications. At present, polyhedral methods are
often reformulated by message passing algorithms, for example, the tree-reweighted algorithm (TRWS)
(Kolmogorov 2006), its nonsequential version (TRBP) (Wainwright et al. 2005), and max-product linear
programming (MPLP) algorithm (Globerson and Jaakkola 2007). In contrast to the case with LBP, the
convergence of solutions is guaranteed with tight bounding conditions. Message passing algorithms are

140 Architectures for Computer Vision

easily implemented and converted into parallel architecture. The max-flow and move-making methods
are based on the graph cuts (GC) (Boykov and Kolmogorov 2004). This class includes QPBO (Rother
et al. 2007), 𝛼- expansion (𝛼 − 𝛽 swap) (Boykov et al. 2001), FastPD (Komodakis and Tziritas 2007),
and 𝛼-FUSION (Fix et al. 2011). Deep learning is a newly emerging method (Bengio et al. 2013; Hinton
2007) among the current inference techniques.

A typical example of LP relaxation is as follows (Bazin et al. 2013). Let us consider the image planes,
(l, r), the images (Il, Ir), and the feature descriptors, (Fl, Fr), where F = {fi|i ∈ }. For the two
images, an assignment matrix, Z = {zij|i ∈ l}, where z is one if there is a match and zero otherwise,
and the distance, D = {d(fi, fj)|i ∈ l, j ∈ r}, are defined. Additionally, let Aij be the data associated
with the input data pairs and 𝜃 be the model parameters between the data pairs, such as the fundamental
matrix. The mixed integer optimization problem (MIOP) is defined as follows:

max
∑

i∈ l ,j∈r

zij,

s.t. zijd(fi, fj) ≤ zijTa,∀i ∈ l, j ∈ r

zij|AT
ij𝜃| ≤ zijTg, |𝜃|2 = 1, zij ∈ {0, 1},

0 ≤
∑
i∈ l

zij ≤ 1, 0 ≤
∑
j∈r

zij ≤ 1. (5.22)

Here, Ta and Tg are the parameters for the appearance and geometric terms.
This MIOP cannot be solved directly because of the nonlinear terms. Various methods can be used to

convert the MIOP to LP relaxation. First, the bilinear terms, Ta and Tg, can be made linear (Chandraker

and Kriegman 2008; Kahl et al. 2008; Olsson et al. 2009). Let c = ab, with a ∈ [a, a] and b ∈ [b, b],
where x = ⌊x⌋ and x = ⌈x⌉. The bilinear term can then be relaxed by the convex and concave envelopes:

c ≥ max(ab + ab − ab, ab + ab − ab),

c ≤ min(ab + ab − ab, ab + ab − ab). (5.23)

The second technique is for the unknown bounds for 𝜃. The branch-and-bound (BB) (Breuel 2003; Land
and Doig 1960) is a general global optimization method that iteratively divides the search space into
smaller ones and removes the spaces that contain poor solutions. If the lower bound for some space is
greater than the upper bound for some other space, then the space may be safely discarded from the
search. Using these methods, the MIOP can be converted to LP relaxation.

Another useful example of LP relaxation is MPLP (Globerson and Jaakkola 2007), which converts
MAP problems in 2D MRF to MAP-LP relaxation problems. The original MAP problem is defined by
energy functions comprising pairwise potentials,

E(x) =
∑
i,j∈E

𝜓ij(xi, xj). (5.24)

LP relaxation on the energy model begins from defining marginal distribution over variables in edge set
E:

ML(G) =

{
𝜇 ≥ 0|∑

xi ,xj

𝜇ij(xi, xj) = 1

}
, (5.25)

where ML is the local marginal polytope satisfying
∑

xi
𝜇ij(xi, xj) =

∑
xk
𝜇jk(xj, xk).

Energy Function 141

The resulting LP relaxation is given by

max
𝜇∈ML

{∑
i,j∈E

∑
xi ,xj

𝜓ij(xi, xj)𝜇ij(xi, xj)

}
. (5.26)

The solution to this LP relaxation problem is the upper bound of the MAP solution satisfying

max
x

E(x) ≤ max
𝜇∈ML

{∑
i,j∈E

∑
xi ,xj

𝜓ij(xi, xj)𝜇ij(xi, xj)

}
. (5.27)

This is called edge consistent LP relaxation because marginals are constrained to be pairwise consistent.
Given the LP relaxation of a MAP problem, a variety of ILP solving techniques can be applied, including
CP or BB, to the primal or dual problem domain.

Solutions in the primal domain can be directly computed from standard LP algorithms for small
problems. Unfortunately, most vision problems have a large solution scale, which makes primal solution
practically infeasible. To tackle large problems, the dual problem of the original LP relaxation problem
is widely used (Globerson and Jaakkola 2007; Kappes et al. 2012; Kolmogorov 2006; Komodakis and
Paragios 2008; Sontag et al. 2008; Werner 2007) to provide the lower bound of the primal solution.

Neural networks are emerging with a new tool called deep learning, by which the layers are trained in
two steps: pre-training and global training. Neural network studies are in many different directions (Ben-
gio et al. 2013), such as probabilistic inference (i.e. restricted Boltzmann machine (RBM)), autoencoder
framework, and manifold learning.

We will address the message-passing and the move-making methods in later chapters. In particular,
we will focus on design for the relaxation, DP, and BP, which have the basic computational structures
such as pipelining, iteration, and neighborhood computation.

5.7 Learning Methods
Before going further, let us consider the learning issues on the MRF model. Generally, an MRF system
consists of a set of system parameters 𝜃 that defines its behavior under various conditions and envi-
ronments. For example, we can easily consider the parametric model for observation noise. Under the
Gaussian assumption, these parameters are the mean and variance of the noise. Further, for stereo appli-
cations, regularization weight is adjusted with respect to input image data to provide a more accurate
matching result. The MRF model is, therefore, completely characterized by the distribution p(x|I, 𝜃),
where 𝜃 is another hidden variable. Obtaining optimal system parameters for a given environment is
a very important task in the labeling problem, and can be accomplished by a number of optimization
approaches.

However, true observations on the label, x, are not given in most vision problems. Therefore, supervised
learning methods, which are relatively simpler than unsupervised methods, cannot be applied to recover
an optimal parameter solution for a given system. To find the optimal system parameter for marginal
likelihood p(x, I|𝜃) under an unsupervised configuration, iterative labeling-estimation (Besag 1986;
Bouman and Shapiro 1994; Kelly et al. 1988; Zhang 1992) alternate the labeling and estimation process
while the other side is fixed. The expectation maximization (EM) algorithm (Dempster et al. 1977;
McLachlan and Krishnan 1997) provides theoretical fundamentals and formalism for these iterative
algorithms.

The purpose of the EM algorithm is to simultaneously search for the latent parameter 𝜃 and the label
x that maximize the marginal distribution p(x, I|𝜃). The optimization strategy of the EM algorithm is to
divide the original optimization problem into two steps: E-step (expectation) and M-step (maximization).

142 Architectures for Computer Vision

In the E-step, the inference on the label is tried while fixing the parameters:

p(x|I, 𝜃) = 1
Z

p(I|x, 𝜃)p(x|𝜃), (5.28)

x∗ = argmax
x

p(x|I, 𝜃)). (5.29)

During this process, the conditional distribution given the image observation and fixed parameter esti-
mates is maximized by latent label data x, to provide expectation of target marginal likelihood p(x, I|𝜃).

In the M-step, learning is achieved by maximizing previously computed expectations along the
parameter space.

𝜃
∗ = argmax

𝜃

E(p(x, I|𝜃)) = argmax
𝜃

∑
x

p(x, I|𝜃)p(x|I, 𝜃). (5.30)

The E-step and M-step are iterated until the resulting parameters are converged. Final parameters are
maximum likelihood solutions for the marginal distribution.

In addition to the EM framework, there are a number of works that cope with the MRF parameter
estimation problem, such as iterative conditional estimation (ICE) (Giordana and Pieczynski 1997),
least square estimation (Borges 1999; Derin and Elliott 1987), Markov chain Monte Carlo (MCMC)
(Descombes et al. 1999), simulated annealing (Lakshmanan and Derin 1989), and other artificial intel-
ligence algorithms (Yu 2012). In stereo contexts, empirical decision on parameters were popular since
including the parameter learning process makes a problem more complex. Recently, a number of works
related to learning MRF for stereo matching have been presented (Cheng and Caelli 2007; Huq et al.
2008; Trinh and McAllester 2009; Zhang and Seitz 2007). In NN frameworks, the learning of deep
architectures is actively underway for both representation and parameters (Bengio et al. 2013).

5.8 Structure of the Energy Function
Although the energy function is rooted in MRF factorization, algorithms dealing with advanced problems
often start directly from energy functions that are far more sophisticated than can be interpreted as
graphical models. The original labeling problem, which was interpreted as an estimation problem in
probability, becomes a matching problem, which is interpreted as an optimization problem in the energy
function.

Basic categorization data and smoothness terms are too simple for many problems. In general, the two
terms can be divided into more detailed terms. Let us now return to the posterior:

p(x|I) = p(x)p(x|I)∕p(I). (5.31)

The prior and the conditional terms are the origins of the smoothness and data terms. In many cases, the
variables can be factorized and partitioned into regular or irregular sizes:

p(x|I) =
∏

i

p(xi)
∏

j

p(I|xj), (5.32)

which results in the energy equation:

E(x) =
∑

j

E(xj|I) +
∑

i

E(xi). (5.33)

Energy Function 143

The first term, collectively called the data term (or appearance model), actually consists of many hetero-
geneous terms. Analogously, the second term, collectively called the smoothness term (or geometrical
constraint), actually denotes many heterogeneous terms representing geometric properties between par-
titions.

It is possible that in the future the structure of the energy function will become more sophisticated,
revealing properties that are common and general but not yet discovered. For example, in (Choi et al.
2013), the data term is divided into the target observation and the feature observations terms. The
smoothness term is divided into the camera, target, and geometric feature terms. Another example is that
presented by Torresani (Torresani et al. 2013), in which the energy function, consisting of appearance,
occlusion, geometry, and coherence terms, is interpreted as a graph-matching problem:

E(x) = Ea(x) + Eo(x) + Eg(x) + Ec(x), (5.34)

where the weights are included inside the terms. The appearance and the geometry terms are the gener-
alizations of the data and the smoothness terms. The occlusion terms are introduced for indeterminate
positions and the coherence terms are introduced for the collective values of the neighborhoods.

Although roughly stated with data and smoothness terms, the detailed form of (5.33) depends upon
the problems. In image restoration, it may depend on only one image but in motion or stereo vision it
may depend on more than one image. The data term may have the form

𝜙(xi|Ii) = ‖Î(xi) − Ii‖, (5.35)

where Î is an estimation of the input data Ii by the variable xi). The distance function is a measure
between the true and estimated data.

Unlike the data term, the smoothness term is rather general. Nevertheless, there are many variations
on its forms and usage. Returning to the derivation, the smoothness term originated from the joint
distribution p(xi, xj), meaning some homogeneity in doubletons:

p(xp, xq) = 1
Z
exp{−𝜓(p, q)}. (5.36)

In images, the prior of doubletons is related to the smoothness of the surface, which is often modeled as
a smoothness measure using the differential.

The smoothness measure often uses the Lp − norm, especially with p = 1 or p = 2. Among the
measures, L1 is the baseline measure in compressed sensing (Candes and Wakin 2008; Candès et al.
2006; Donoho 2006). In other applications, L2 is often used because of its differentiability. Various models
exist (Xu et al. 2012): linear model or quadratic model, truncated quadratic, Potts model, generalized
Potts model, Charbonnier (Bruhn et al. 2005) and Lorentzian (Black and Anandan 1996).

Let x = xp − xq. Then, the possible measures are as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Lp : 𝜓(x) = ‖x‖p,
TruncatedLp : 𝜓(x) = min{‖x‖p, Th},
Potts : 𝜓(x) = 1 − 𝛿(x),
ApproximatePotts : 𝜓(x) = 0 if ‖x‖p < Δ, Th if ‖x‖p > Δ,

Charbonnier :
√

x2 + 𝜖2,

Lorentzian : log(1 + x2

2𝜎2).

(5.37)

Here, 𝛿(⋅) is a Kronecker delta and 𝜖, 𝜎, 𝛾 , Th > 0 are parameters. The smoothness functions are illustrated
in Figure 5.3.

144 Architectures for Computer Vision

x
0

Th

(a) Truncated linear and
quadratic

x
0

Th

−Δ Δ
(b) Potts model

Figure 5.3 Graphs for the prior functions (Th,Δ: threshold)

The smoothness term can be made anisotropic so that different smoothness may be applied to different
directions in accordance with the local conditions. The quadratic measure can be written as

E(x) =
∫Ω

𝜓(‖∇x(x, y)‖2)dxdy. (5.38)

If 𝜓(⋅) is in a certain form, ∇E(⋅) becomes an anisotropic diffusion function:

𝜕x
𝜕t

= div(D(x, y, t)∇f). (5.39)

The anisotropic diffusion term performs well in preserving boundaries while smoothing the surfaces. As
was proved in (Wikipedia 2013a), it can be shown that the energy equation and the diffusion are related
by

𝜓
′(x, y) = D(x, y). (5.40)

As we will see, because of this property, the Euler–Lagrange equation of the energy equation contains
the anisotropic diffusion term. In other optimization methods that directly minimize the energy function,
the prior must be satisfied with the condition in Equation (5.40).

The smoothness term is related to the distance measures, which are numerous in definition, including
methods such as earth mover’s distance (EMD) (Rubner et al. 1997 2000), Bhattacharyya coefficients
(Bhattacharyya 1946; Comaniciu et al. 2003), and 𝛽-divergence (Cichocki et al. 2006). However, the
practical design prefers less computation and simpler circuits, as typified by the Potts model and the
linear truncated function (see the problems at the end of this chapter).

5.9 Basic Energy Functions
Let us begin with the energy function in Definition 5.1. The data term is problem dependent but the
smoothness term is more general in many problems. This term is naturally involved with differentials.
In this model, the neighborhood operation is replaced with differentials. If we consider up to the second-
order derivative, the energy function becomes

E(f) =
∑

(x,y)∈

{
𝜙(f) + 𝜆|∇f |2 + 𝜇|∇2f |2} , (5.41)

Energy Function 145

where 𝜆 and 𝜇 are the Lagrange multipliers. The smoothness term contains a gradient and a Laplacian,
which measure the roughness up to the second order derivative. A more advanced model may be

E(f) =
∑

(x,y)∈
{𝜙(f) + 𝜂(x, y)[𝜆|∇f |2 + 𝜇|∇2f |2]}, (5.42)

where 𝜂(x, y) is a switch function indicating possible discontinuities, such as occlusion or object boundary.
Inclusion of such a nonlinear factor may require very different methods to find a solution.

The differentiation must be preceded by a smoothing operation, such as Gaussian filter. The combined
smoothing and differentiation can be considered as filtering with Gaussian differentials. This concept
can give us the meaning of the properties of the smoothness term. It is easy to get

∇G = −
(x

s
,

y

t

)T

G(x, y, s, t), ∇2G =
(x2 − s2)(y2 − t2)

s4t4
G2(x, y, s, t). (5.43)

The shape of the responses is illustrated in Figure 5.4. The Gaussian is considered anisotropic, s ≠ t, to
observe more intuition of the smoothing effects. The first row shows the first derivative Gx and Gx∕G. Gx

detects variations in the x-axis and Gy detects variations in the y-axis. The second row shows the ∇G and
∇2G∕G. This operator detects the zero crossing (ZC), signifying possible edges. It is well-known that
the Laplacian is related with retinal response on edges and approximated with DOG (Marr and Hildreth
1980).

(b) ∇xG(x, y, s, t)/G(x , y , s , t)

(d) ∇2G(x, y, s, t)/G(x , y , s , t)

(a) ∇xG(x, y, s, t)

(c) ∇2G(x, y, s, t)

Figure 5.4 Shapes of Gaussian derivatives (here, s = 0.15 and t = 0.2)

146 Architectures for Computer Vision

The energy function can specify various vision modules. However, a problem exists because it has no
unique representation for a given module, since different applications may emphasize different aspects
of the data and smoothness terms. However, there exist several fundamental forms, in which the terms
appear to be essential, even if some delicate features are missing. Among the vision modules, some
representative problems are image restoration, stereo vision, and motion estimation.

The goal of image restoration is to recover an original image from a corrupted one by removing as
much of the effects of noise as possible. Here is a challenge: for a given I(x, y), restore the estimated
image f (x, y). The energy function is defined as

E(f) =
∑

(x,y)∈
(I(x, y) − f (x, y))2 + 𝜆

∑
(x,y)∈

|∇f |2. (5.44)

Here, 𝜆 is introduced as a Lagrange multiplier that adjusts the weight of the two terms.
Stereo vision is one of the major applications of the MRF model. To facilitate a concise description,

we assume that the stereo vision system has perfectly calibrated binocular cameras, and that the dis-
parity map is left-referenced. The goal is to estimate a dense disparity map D(x, y) between two input
images IL(x, y), Ir(x, y), which can be easily represented as the 2D labeling problem in the image plane.
Fundamentally, the entire energy function to be minimized is defined as

Er(D) = Ed(Dp) + 𝜆Es(Dp, Dq) =
∑

(x,y)∈
‖Ir(x, y) − Il(x + d(x, y), y)‖2

+ 𝜆

∑
(x,y)∈

∑
(x′ ,y′)∈Nxy

min(‖d(x, y) − d(x′, y′)‖, Ts),

El(D) = Ed(Dp) + 𝜆Es(Dp, Dq) =
∑

(x,y)∈
‖Il(x, y) − Ir(x + d(x, y), y)‖2

+ 𝜆

∑
(x,y)∈

∑
(x′ ,y′)∈Nxy

min(‖d(x, y) − d(x′, y′)‖, Ts), (5.45)

where Ts is the threshold for truncation. The singleton Ed(Dp) usually includes photo-consistency con-
straints between the left and right images. The doubleton Es(Dp, Dq) is the smoothness term (see the
problems at the end of this chapter).

The goal of motion estimation is to estimate the motion vector between two consecutive image frames
in a video sequence. Hence, the input is two images, It(x, y) and It+1(x, y), and the target attribute is a
2D array of motion vectors V = {[u(x, y), v(x, y)]T |(x, y) ∈ }. Because the two corresponding pixels
in adjacent frames can be warped forward and backward with respect to the motion vector value of a
particular position in reference view, the motion estimation problem can intuitively be considered an
extension of the stereo vision problem. Generally, an energy function for motion estimation is defined
as

E(V) = Ed(Vp) + 𝜆Es(Vp, Vq)

=
∑

(x,y)∈
‖It(x, y) − It+1(x + u(x, y), y + v(x, y))‖2

+ 𝜆

∑
(x,y)∈

∑
(x′ ,y′)∈Nxy

min(‖𝜓(x, y) − 𝜓(x′, y′)‖2, Tm). (5.46)

The format is very similar to that of the stereo case; in fact, disparity is changed into a motion vector
quantity. Truncated quadratic form is preferred in motion estimation problems.

Energy Function 147

In later chapters, we will design the circuits for stereo matching, modifying the energy function to
more appropriate forms for practical implementation.

Problems
5.1 [Labeling] For an image with M × N 8-bit pixels, how many labels may exist? For M = N = 100,

what is the total number of labels?

5.2 [Labeling] For the previous search space, a computer algorithm is going to search for an optimal
solution. If 1ns is needed to test a label, how long will it take to inspect all the space?

5.3 [Inference] Check the relationship in Equation (5.23).

5.4 [Inference] In Equation (5.23), the ordinary bound is ab ≤ ab ≤ ab. The new lower and upper
bounds must be better than the ordinary bound. How much better are the new bounds than the
ordinary ones?

5.5 [Structure] Some algorithms such as Bayesian estimates, simulated annealing, and graph cuts,
are driven by various probability distribution functions, such as uniform, Gaussian, Laplacian,
and Gibbs distributions. There are numerous pseudorandom number generators (PRNG) (refer
to the lists in (Wikipedia 2013f). The uniform distribution is a versatile distribution that can be
used to derive other distributions. One of the simplest uniform distributions is the linear feedback
shift register (LFSR) (Wikipedia 2013e), a shift register whose input bit is a linear function of
its previous state. There are versions for Fibonacci, Galois, and maximal-length. Design a 20-bit
maximal-length LFSR using the table in (Koopman 2013).

5.6 [Structure] Design a PRGN that generates ones with a probability of 1∕2n, where n is a positive
integer.

5.7 [Structure] In some applications, such as simulated annealing and graph cuts, we randomly select
samples in a window, say a 10 × 10 window. Design such a circuit with the LFSR.

5.8 [Structure] Among the loss (error) functions, design a truncated linear function.

5.9 [Structure] Among the loss (error) functions, design a Potts model in Verilog HDL.

5.10 [Basic Energy] Equation (5.45) is defined for the right image plane as a reference. Write the same
form for the left image plane.

References
Ahuja RK, Magnanti TL, and Orlin JB 1993 Network Flows: Theory, Algorithms, and Applications. Prentice Hall.
Amini AA, Weymouth TE, and Jain RC 1990 Using dynamic programming for solving variational problems in vision.

IEEE Trans. Pattern Anal. Mach. Intell. 12(9), 855–867.
Banzhaf W, Nordin P, Keller RE, and Francone FD 2001 Genetic Programming – An Introduction; On the Automatic

Evolution of Computer Programs and its Applications third edn. Morgan Kaufmann, dpunkt.verlag.
Bazin J, Li H, Kweon IS, Demonceaux C, Vasseur P, and Ikeuchi K 2013 A branch-and-bound approach to corre-

spondence and grouping problems. IEEE Trans. Pattern Anal. Mach. Intell. 35(7), 1565–1576.
Bellman R 1954 The theory of dynamic programming. Bulletin of the American Mathematical Society 60, 503–

516.
Bengio Y, Courville AC, and Vincent P 2013 Representation learning: a review and new perspectives. IEEE Trans.

Pattern Anal. Mach. Intell. 35(8), 1798–1828.
Bertsekas DP 2007 Dynamic Programming and Optimal Control vol. 1,2. Athena Scientific.
Besag J 1974 Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society,

Series B 36, 192–236.

148 Architectures for Computer Vision

Besag J 1986 On the statistical analysis of dirty pictures. Journal Royal Statistical Society B-48(3), 259–302.
Bhattacharyya A 1946 On a measure of divergence between two multinomial populations. The Indian Journal of

Statistics (1933–1960) 7(4), 401–406.
Black MJ and Anandan P 1996 The robust estimation of multiple motions: Parametric and piecewise-smooth flow

fields. Computer Vision and Image Understanding 63(1), 75–104.
Borges CF 1999 On the estimation of Markov random field parameters. IEEE Trans. Pattern Anal. Mach. Intell. 21(3),

216–224.
Bouman C and Shapiro M 1994 A multiscale random field model for Bayesian segmentation. IEEE Trans. Pattern

Anal. Mach. Intell. 3(2), 162–177.
Boykov Y and Kolmogorov V 2004 An experimental comparison of min-cut/max-flow algorithms for energy mini-

mization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137.
Boykov Y, Veksler O, and Zabih R 1998 Markov random fields with efficient approximations International Conference

on Computer Vision and Pattern Recognition (CVPR).
Boykov Y, Veksler O, and Zabih R 2001 Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern

Anal. Mach. Intell. 23(11), 1222–1239.
Breuel TM 2003 Implementation techniques for geometric Branch-and-Bound matching methods. Computer Vision

and Image Understanding 90(3), 258–294.
Bruhn A, Weickert J, and Schnorr C 2005 Lucas/Kanade meets Horn/Schunck: Combining local and global optic

flow methods. International Journal of Computer Vision 61(3), 211–231.
Candes E and Wakin M 2008 An introduction to compressive sampling. IEEE Signal Processing Magazine 25(2),

21–30.
Candès EJ, Romberg JK, and Tao T 2006 Stable signal recovery from incomplete and inaccurate measurements.

Comm. Pure Appl. Math. 59(8), 1207–1223.
Chandraker M and Kriegman DJ 2008 Globally optimal bilinear programming for computer vision applications

CVPR, pp. 1–8.
Cheng L and Caelli T 2007 Bayesian stereo matching. Computer Vision and Image Understanding 106(1), 85–96.
Choi W, Pantofaru C, and Savarese S 2013 A general framework for tracking multiple people from a moving camera.

IEEE Trans. Pattern Anal. Mach. Intell. 35(7), 1577–1591.
Cichocki A, Zdunek R, and Amari Si 2006 Csiszar divergences for non-negative matrix factorization: Family of new

algorithms Independent Component Analysis and Blind Signal Separation Springer pp. 32–39.
Clifford P 1990 Markov random fields in statistics In Disorder in Physical Systems. A Volume in Honour of John M.

Hammersley (ed. Grimmett GR and Welsh DJA), pp. 19–32. Clarendon Press, Oxford.
Comaniciu D, Ramesh V, and Meer P 2003 Kernel-based object tracking. IEEE Trans. Pattern Anal. Mach. Intell.

25(5), 564–577.
Cormen T, Rivest CLR, and Stein C 2001 Introduction to Algorithms second edn. The MIT Press.
Courant R and Hilbert D 1953 Methods of Mathematical Physics, vol. 1. Interscience Press.
Dempster A, Laird N, and Rubin D 1977 Maximum likelihood from incomplete data via the em algorithm. Journal

of the Royal Statistical Society, Series B 39, 1–38.
Derin H and Elliott H 1987 Modeling and segmentation of noisy and textured images using Gibbs random fields.

IEEE Trans. Pattern Anal. Mach. Intell. 9(1), 39–55.
Descombes X, Morris RD, Zerubia J, and Berthod M 1999 Estimation of Markov random field prior parameters using

Markov chain Monte Carlo maximum likelihood. IEEE Trans. Image Processing 8(7), 954–963.
Donoho D 2006 Compressed sensing. IEEE Trans. Information Theory 52(4), 1289–1306.
Fix A, Gruber A, Boros E, and Zabih R 2011 A graph cut algorithm for higher-order Markov random fields In ICCV

(ed. Metaxas DN, Quan L, Sanfeliu A, and Gool LJV), pp. 1020–1027. IEEE.
Friston K, Kilner J, and Harrison L 2006 A free energy principle for the brain. J Physiol Paris. 100(1-3), 70–87.
Giordana N and Pieczynski W 1997 Estimation of generalized multisensor hidden Markov Chain and unsupervised

image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 19(5), 465–475.
Globerson A and Jaakkola T 2007 Fixing max-product: Convergent message passing algorithms for MAP LP-

relaxations In NIPS (ed. Platt JC, Koller D, Singer Y, and Roweis ST). Curran Associates, Inc.
Greig D, Porteous B, and Seheult A 1989 Exact maximum a posteriori estimation for binary images. Journal of the

Royal Statistical Society Series B 51, 271–279.
Hammersley J and Clifford P 1971 Markov fields on finite graphs and lattices Unpublished note.

Energy Function 149

Heyden A 2013 Energy minimization methods in computer vision and pattern recognition 9th International Confer-
ence, EMMCVPR 2013 CVPR.

Hinton GE 2007 Learning multiple layers of representation. Trends in Cognitive Science 11(10), 428–434.
Horn B and Shunck B 1981 Determining optical flow. Artificial Intelligence 17(1-3), 185–203.
Huq S, Koschan A, Abidi B, and Abidi M 2008 Efficient BP stereo with automatic parameter estimation 15th IEEE

International Conference on Image Processing, pp. 301–304.
Kahl F, Agarwal S, Chandraker MK, Kriegman DJ, and Belongie S 2008 Practical global optimization for multiview

geometry. International Journal of Computer Vision 79(3), xx–yy.
Kappes JH, Andres B, Hamprecht FA, Schnorr C, Nowozin S, Batra D, Kim S, Kausler BX, Lellmann J, Komodakis

N, and Rother C 2013 A comparative study of modern inference techniques for discrete energy minimization
problems EMMCVPR 2013.

Kappes JH, Savchynskyy B, and Schnorr C 2012 A bundle approach to efficient MAP-inference by Lagrangian
relaxation CVPR, pp. 1688–1695.

Kelly PA, Derin H, and Hartt KD 1988 Adaptive segmentation of speckled images using a hierarchical random field
model. IEEE Trans. Acoustic, Speech and Signal Processing 36, 1628–1641.

Kirkpatrick S, Jr. DG, and Vecchi MP 1983 Optimization by simmulated annealing. Science 220(4598), 671–680.
Koller D and Friedman N 2009 Probabilistic Graphical Models: Principles and Techniques. MIT Press.
Kolmogorov V 2006 Convergent Tree-reweighted message passing for energy minimization. IEEE Trans. Pattern

Anal. Mach. Intell. 28(10), 1568–1583.
Komodakis N and Paragios N 2008 Beyond loose lp- relaxations: Optimizing MRFs by repairing cycles ECCV.
Komodakis N and Tziritas G 2007 Approximate labeling via graph cuts based on linear programming. IEEE Trans.

Pattern Anal. Mach. Intell. 29(8), 1436–1453.
Koopman P 2013 Maximal length lfsr feedback terms http://www.ece.cmu.edu/∼koopman/lfsr/index.html (accessed

Dec. 15, 2013).
Lakshmanan S and Derin H 1989 Simultaneous parameter estimation and segmentation of Gibbs random fields using

simulated annealing. IEEE Trans. Pattern Anal. Mach. Intell. 11(8), 799–813.
Land AH and Doig AG 1960 An automatic method of solving discrete programming problems. Econometrica: Journal

of the Econometric Society 28, 497–520.
Madjarov G, Kocev D, Gjorgjevikj D, and Džeroski S 2012 An extensive experimental comparison of methods for

multi-label learning. Pattern Recognition 45(9), 3084–3104.
Marr D and Hildreth E 1980 Theory of edge detection. Proceedings of the Royal Society of London. Series B.

Biological Sciences 207(1167), 187–217.
McLachlan GJ and Krishnan T 1997 The EM Algorithms and Extensions. John Wiley & Sons, Inc.
Memisevic R 2013 Learning to relate images. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1829–1846.
Olsson C, Kahl F, and Oskarsson M 2009 Branch-and-bound methods for euclidean registration problems. IEEE

Trans. Pattern Anal. Mach. Intell. 31(5), 783–794.
Pardo L 2005 Statistical Inference Based on Divergence Measures. CRC Press.
Pearl J 1982 Reverend Bayes on inference engines: A distributed hierarchical approach In AAAI (ed. Waltz D),

pp. 133–136. AAAI Press.
Pearl J 1988 Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann,

San Francisco, CA.
Rother C, Kolmogorov V, Lempitsky V, and Szummer M 2007 Optimizing binary MRFs via extended roof duality

Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on, pp. 1–8 IEEE.
Roweis S and Ghahramani Z 1999 A unifying review of linear Gaussian models. Neural computation 11(2), 305–

345.
Rubner Y, Guibas LJ, and Tomasi C 1997 The earth mover’s distance, multi-dimensional scaling, and color-based

image retrieval Image Understanding Workshop, pp. 661–668.
Rubner Y, Tomasi C, and Guibas LJ 2000 The Earth Mover’s Distance as a metric for image retrieval. International

Journal of Computer Vision 40(2), 99–121.
Sontag D, Meltzer T, Globerson A, Weiss Y, and Jaakkola T 2008 Tightening LP relaxations for MAP using message-

passing UAI.
Sorower MS 2010 A literature survey on algorithms for multi-label learning. Technical report, Technical report,

Oregon State University, Corvallis, OR, USA (December 2010).

http://www.ece.cmu.edu/%E2%88%BCkoopman/lfsr/index.html

150 Architectures for Computer Vision

Sun M, Telaprolu M, Lee H, and Savarese S 2012 Efficient and exact MAP-MRF inference using branch and bound
AISTATS, pp. 1134–1142.

Sutton RS and Barto AG 1998 Reinforcement Learning: An Introduction. The MIT Press, Cambridge, MA.
Szeliski R, Zabih R, Scharstein D, Veksler O, V K, Agarwala A, Tappen M, and Rother C 2006 A comparative study

of energy minimization methods for Markov random fields Ninth European Conference on Computer Vision, vol.
2, pp. 16–29 ECCV.

Szeliski RS, Zabih R, Scharstein D, Veksler OA, Kolmogorov V, Agarwala A, Tappen M, and Rother C 2008 A
comparative study of energy minimization methods for Markov random fields with smoothness-based priors.
IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1068–1080.

Torresani L, Kolmogorov V, and Rother C 2013 A dual decomposition approach to feature correspondence. IEEE
Trans. Pattern Anal. Mach. Intell. 35(2), 259–271.

Trinh H and McAllester D 2009 Unsupervised learning of stereo vision with monocular cues BMVC.
Wainwright MJ, Jaakkola TS, and Willsky AS 2005 Map estimation via agreement on trees: Message-passing and

linear programming. IEEE Trans. Information Theory 51(11), 3697–3717.
Werner T 2007 A linear programming approach to max-sum problem : A review. IEEE Trans. Pattern Anal. Mach.

Intell. 29, 1165–1179.
Wikipedia 2013a Anisotropic diffusion http://en.wikipedia.org/wiki/Anisotropic_diffusion (accessed Sept. 30, 2013).
Wikipedia 2013b Divergence http://en.wikipedia.org/wiki/Divergence_(statistics) (accessed Nov. 24, 2013).
Wikipedia 2013c Free energy principle http://en.wikipedia.org/wiki/Active_inference (accessed on Dec. 17, 2013).
Wikipedia 2013d Hypergraph http://en.wikipedia.org/wiki/Hypergraph (accessed Sept. 24, 2013).
Wikipedia 2013e Linear Feedback Shift Register http://en.wikipedia.org/wiki/LFSR (accessed Sept. 30, 2013).
Wikipedia 2013f List of random number generators http://en.wikipedia.org/wiki/List_of_random_number_generators

(accessed Sept. 30, 2013).
Wikipedia 2013g Markov random field http://en.wikipedia.org/wiki/Markov_random_field (accessed Sept. 24, 2013).
Wikipedia 2013h Thermodynamic free energy http://en.wikipedia.org/wiki/Thermodynamic_free_energy (accessed

Sept. 24, 2013).
Xu L, Jia J, and Matsushita Y 2012 Motion detail preserving optical flow estimation. IEEE Trans. Pattern Anal. Mach.

Intell. 34(9), 1744–1757.
Yedidia JS, Freeman WT, and Weiss Y 2005 Constructing free-energy approximations and generalized Belief Propa-

gation algorithms. IEEE Trans. Information Theory 51(7), 2282–2312.
Yu Y 2012 Estimation of Markov random field parameters using ant colony optimization for continuous domains

2012 Spring Congress on Engineering and Technology, pp. 1–4.
Zhang J 1992 The Mean Field Theory in EM procedures for Markov random fields. IEEE Trans. Image Processing

40(10), 2570–2583.
Zhang L and Seitz SM 2007 Estimating optimal parameters for MRF stereo from a single image pair. IEEE Trans.

Pattern Anal. Mach. Intell. 29(2), 331–342.

http://en.wikipedia.org/wiki/Anisotropic_diffusion
http://en.wikipedia.org/wiki/Anisotropic_diffusion
http://en.wikipedia.org/wiki/Divergence_(statistics)
http://en.wikipedia.org/wiki/Divergence_(statistics)
http://en.wikipedia.org/wiki/Active_inference
http://en.wikipedia.org/wiki/Active_inference
http://en.wikipedia.org/wiki/Hypergraph
http://en.wikipedia.org/wiki/Hypergraph
http://en.wikipedia.org/wiki/LFSR
http://en.wikipedia.org/wiki/LFSR
http://en.wikipedia.org/wiki/List_of_random_number_generators
http://en.wikipedia.org/wiki/List_of_random_number_generators
http://en.wikipedia.org/wiki/Markov_random_field
http://en.wikipedia.org/wiki/Markov_random_field
http://en.wikipedia.org/wiki/Thermodynamic_free_energy
http://en.wikipedia.org/wiki/Thermodynamic_free_energy

6
Stereo Vision

Binocular stereo vision is one of the major vision modules by which one can induce the depth of the
surface shape and the volume information of the objects. Created by a pair of cameras, a conjugate pair
of images contains the depth information by means of disparity. Binocular vision naturally expands to
other vision, such as trinocular or multi-view vision (Faugeras 1993; Faugeras and Luong 2004; Hartley
and Zisserman 2004).

Stereo vision deals with the three major problems: correspondence geometry, camera geometry, and
scene geometry. Of these, stereo matching deals with the correspondence geometry and remains the major
research area. It can be classified into various categories according to the features, measures, inference
methods, and learning methods. A comprehensive survey of recent progress on stereo matching is
presented by (Scharstein and Szeliski 2002) for algorithms, and by (Tippetts et al. 2013) for realizations.
Also, they have provided a benchmark for quantitative evaluation of existing stereo matching algorithms.

This chapter introduces some fundamental concepts of stereo vision problems and stereo matching.
Instead of reviewing all the extensive stereo matching algorithms and realizations, we focus instead on the
fundamental constructs of the energy function, classified as appearance model and geometric constraints.
The models and constraints are examined in five categories: space, time, frequency, discrete space, and
other vision module. Stereo matching, as other vision problems, is inherently ill-posed, and thus needs
the best possible natural constraints. Unfortunately, all the constraints are not sufficient and necessary
conditions but are always accompanied by exceptional cases. This is why the study of natural constraints
must be emphasized compared to others. The actual algorithm uses constraints, features, measures in
energy function and optimization methods and parameter estimation methods in a variety of ways.

The contents are not intended to be complete in their scope and depths but intended to be a good
preparation for the topics in subsequent chapters. In particular, a baseline form of energy function is
expressed, which will be used in later chapters for the study of computational structure and circuit design.

6.1 Camera Systems
Projective geometry (Faugeras 1993; Faugeras and Luong 2004; Hartley and Zisserman 2004) is one
of the three components of the image formation process, along with the illumination and reflectance
properties. Since stereo and motion deal with images and videos, knowing the optical environment is
important to describe various vision quantities mathematically. First, we must know the mechanism
of projection from object to image plane. Next, the relationship between world coordinates and image
coordinates must be specified in detail.

Architectures for Computer Vision: From Algorithm to Chip with Verilog, First Edition. Hong Jeong.
© 2014 John Wiley & Sons Singapore Pte. Ltd. Published 2014 by John Wiley & Sons Singapore Pte. Ltd.
Companion Website: www.wiley.com/go/jeong

http://www.wiley.com/go/jeong

152 Architectures for Computer Vision

ΠΠ
xc

yc

zc

xi

yi

o

Oc

f
P

p

(a) Pinhole camera

Π

xc

yc

zc

xi

yi

o

Oc

1

Pp

(b) Normalized camera

Figure 6.1 Two camera systems: pinhole and normalized cameras

In a perspective model (or pinhole model) camera, the image plane is positioned behind the lens
center, in inverted direction. (Figure 6.1(a).) The camera coordinates are denoted by Oc, which is called
the center of projection (or optical center). An image plane 𝚷 is positioned at a distance f , which is
called focal length. Here, the center of the image, o, is the origin of the image coordinates. A point P
in the 3-space is projected, through Oc, on the image plane 𝚷, forming an image p in an inverted and
scaled shape.

The inverted image is inconvenient and thus often represented in a different scheme, in which the
image is positioned in the same direction as the object. The scheme is to consider a virtual image plane
that is located before the lens so that the coordinates of camera and image are overlapped in the depth
direction. This scheme, especially with f = 1, is called normalized camera (Figure 6.1(b)). The fronto-
parallel plane 𝚷 at the focal length, f , in front of the xcyc-plane is called the virtual image plane. The
principal plane is the plane that includes the optical center. The principal point, o, is where the principal
axis zc and the plane 𝚷 coincide. We often use the normalized camera, unless otherwise stated.

In Cartesian coordinates, a point x̃c = (xc, yc, zc)
T is projected to the point x̃i = (xi, yi)

T , satisfying

xi =
f

zc

xc, yi =
f

zc

yc, (6.1)

which means that the system is perspective.
In projective geometry, using homogeneous coordinates is essential, because it makes perspective

projection a linear transformation. In 2D space, a point x̃ = (x, y) in inhomogeneous system (Cartesian,
E

2) is represented by x = [x, y, 1] in homogeneous system (P2). Inversely, a point x = [x, y, w] in homo-
geneous system is represented by x̃ = (x∕w, y∕w) if w ≠ 0. (For simplicity, sometimes we use row vector
instead of column vector.) In short, [x, y, w] ≡ (x∕w, y∕w) if w ≠ 0. In 3D space, a point x̃ = (x, y, z) in
inhomogeneous system (E3) is represented by x = [x, y, z, 1] in homogeneous system (P3). Inversely, a
point x = [x, y, z, w] in homogeneous system is represented by x̃ = (x∕w, y∕w, z∕w) if w ≠ 0. In short,
[x, y, z, w] ≡ (x∕w, y∕w, z∕w) if ≠ 0.

The algebraic properties are summarized as follows. For vector addition, [x, y, z] + [a, b, c] = [za +
xc, zb + yc, zc]. For scalar multiplication, a[x, y, z] = [ax, ay, z], where a ≠ 0. For linear combination,
𝛼[x, y, z] + 𝛽[a, b, c] = [z𝛽𝛼 + 𝛼xc, z𝛽b + 𝛼yc, zc]. For derivative, d[x, y, w] = [dx, dy, w].

In geometric interpretation, E
2 is spanned by (1, 0) and (0, 1), but P

2 is spanned by [1, 0, 1], [0, 1, 1],
and the ideals: x∞ = [1, 0, 0] and y∞ = [0, 1, 0], called point at infinity, and l∞ = [0, 0, 1], called line at

Stereo Vision 153

infinity. However, [0, 0, 0]T does not represent any point. Excluding [0, 0, 0, 0], P
3 consists of the bases

([1, 0, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1]), the ideals (x∞, y∞, z∞, 𝜋∞). The same concept can be expanded to E
3

and P
3 and further higher dimension. (For further information on projective geometry, refer to (Faugeras

and Luong 2004; Hartley and Zisserman 2004).)
According to the homogeneous coordinates, Equation (6.1) becomes

(
xi

yi

)
≡

⎡⎢⎢⎢⎣
fxc

fyc

zc

⎤⎥⎥⎥⎦. (6.2)

In the following, the notations of row and column vectors and of the coordinates are used interchangeably
and the actual meaning must be clear from the context.

6.2 Camera Matrices
A discrete image is often modeled as an array of N × M pixels: I = {I(x, y)|x ∈ [0, N − 1], y ∈ [M − 1]},
where the origin of the image is the north-west corner of the array, like a matrix. Conceptually, such a
discrete image is obtained from a continuous image, I(x, y), x ∈ [−a, a], y ∈ [−b, b], where a and b are
image sizes. Therefore, the two formats are related, with coordinate transformation such as translation
and scale change. Moreover, the camera image must be related to world coordinates, for the camera
is positioned and oriented in 3-space. Besides, the object itself has coordinates. Considering all these
together, we will need the five coordinates system: (x, y) for the pixel coordinates, (xc, yc) for the image
coordinates, (xc, yc, zc) for the camera coordinates, (xo, yo) for the object coordinates, and (X, Y , Z) for
the world coordinates. In Figure 6.2, the five coordinates systems are represented by the origins and the
projected points. In this optical alignment, P is observed as (X, Y , Z) in world coordinates, (xo, yo, zo) in
object coordinates system, (xc, yc, zc) in camera coordinates system, (xc, yc) in image coordinates system,
and (x, y) in pixel coordinates system.

The coordinates transformation from world to pixel plane can be described by linear mapping, provided
that homogeneous coordinates are adopted. The mapping consists of the four stages: from object to world,
world to camera, camera to image, and image to pixel image. (The object coordinates are ignored for
simplicity.) The mapping from world to camera is an orthographic projection in 3D that can be specified
by the rotation matrix R3×3 and the translation vector t3×1. The mapping from camera to image is a
perspective projection, which is specified by the focal length f . The mapping from image to pixel is
a mapping specified by the translation (ox, oy) in pixels and scaling by the effective size of the pixel,
(sx, sy), in the horizontal and vertical direction, respectively. As such, an image point, (x, y), can be related
to the object point, (X, Y , Z), in the world coordinates in the following way. To differentiate between
homogeneous and inhomogeneous coordinates, let

X = (X, Y , Z, 1)T , X̃ = (X, Y , Z)T , x = (x, y, 1)T , x̃ = (x, y)T
. (6.3)

In general, the world and camera coordinates have the relationship, which is described by rotation R and
translation t. In homogeneous coordinates systems, the relationship is linear, xc = [R|t]X:

⎡⎢⎢⎢⎢⎢⎣

xc

yc

zc

1

⎤⎥⎥⎥⎥⎥⎦
=

[
R t

0 1

]
4×4

⎡⎢⎢⎢⎢⎢⎣

X

Y

Z

1

⎤⎥⎥⎥⎥⎥⎦
. (6.4)

154 Architectures for Computer Vision

X

Y

Z

Ow

P

xc
yc

zc

Oc

f

o

xcyc

c

r

O

p

xo

yo

zo

Oo

Figure 6.2 Coordinates systems: pixel (O), image (o), camera (OC), object (Oo), and world coordinates
(Ow)

The projection from camera to image coordinates is described by perspective transformation: xi =
diag(1, 1, 1∕f)[I|0]xc:

⎡⎢⎢⎢⎣
xi

yi

wi

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1∕f

⎤⎥⎥⎥⎦
3×3

⎡⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

⎤⎥⎥⎥⎦
3×4

⎡⎢⎢⎢⎢⎢⎣

xc

yc

zc

1

⎤⎥⎥⎥⎥⎥⎦
, (6.5)

where the dimension is reduced and the scale is reduced by the focal length f . The mapping from image
xi to pixel x is expressed by

⎡⎢⎢⎢⎣
x

y

w

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

sx 0 0

0 sy 0

0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1 0 ox

0 1 oy

0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

xi

yi

zi

⎤⎥⎥⎥⎦, (6.6)

where (sx, sy) are scale factors (isotropic if equal and anisotropic if unequal), and (ox, oy) is the offset
between image and pixel planes.

Stereo Vision 155

The overall combination of Equations (6.4), (6.5) and (6.6) becomes

⎡⎢⎢⎢⎣
x

y

w

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

sx 0 0

0 sy 0

0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1 0 ox

0 1 oy

0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1∕f

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

⎤⎥⎥⎥⎦
[

R t

0 1

] ⎡⎢⎢⎢⎢⎢⎣

X

Y

Z

1

⎤⎥⎥⎥⎥⎥⎦
. (6.7)

We represent this by

x = CX = KC0

[
R t

0 1

]
= K3×3[R|t]3×4X, (6.8)

where C, C0, and K are respectively called the camera matrix, canonical form, and calibration matrix.
The calibration matrix has the form:

K =
⎡⎢⎢⎢⎣

sx 0 0

0 sy 0

0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1 0 ox

0 1 oy

0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

f 0 0

0 f 0

0 0 1

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣
fsx 0 sxox

0 fsy syoy

0 0 1

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
𝛼 𝛾 u0

0 𝛽 v0

0 0 1

⎤⎥⎥⎥⎦. (6.9)

Here, 𝛼 and 𝛽 denote focal length in terms with pixels, 𝛾 (often zero) denotes skew coefficient.
The normalized camera matrix CN is defined by

CN = K−1C = [R|t]3×4. (6.10)

This is equivalent to the camera in which the focal length is unity, the origin is centered on the image,
and the scale is unity. Thus the intrinsic parameters are removed and only the extrinsic parameters are
retained. This camera is often the starting point when only the extrinsic parameters must be considered.

Conceptually, the camera matrix consists of three vanishing points and the projection of world
origin:

C =
[

vx vy vz ow

]
. (6.11)

Let x∞ = [1, 0, 0, 0]T , y∞ = [0, 1, 0, 0]T , and z∞ = [0, 0, 1, 0]T be ideals and O = [0, 0, 0, 1]T be the world
origin. Then, we have

vx = Cx∞, vy = Cy∞, vz = Cz∞, o = CO, (6.12)

where the first three vectors represent respectively the x, y, and z vanishing points and the last represents
the projection of the world origin.

156 Architectures for Computer Vision

In general, the image plane may be transformed from 2D to 2D, so-called homography: x = Hx′ with
x′ = CX. Then, the general expression is x = HCX and thus the general camera matrix C′ is the product
of homography and camera matrix:

C′ = HCN . (6.13)

The camera matrix expresses the 3D to 2D transformation including rotation, translation, perspective,
scaling (isotropic or anisotropic), and offset. The homography expresses the 2D to 2D transformation,
meaning 2D rotation, 2D translation, 2D perspective, and 2D scaling (isotropic or anisotropic).

Excluding homography, the overall system can be described by (K, R, t). In particular, the parameters
in (R, t) called extrinsic parameters and consist of six parameters. The parameters in K is called intrinsic
parameters and consists of five parameters. As a result, the system consists of a total of 11 parameters.

6.3 Camera Calibration
Determining the parameters given the image and scene points is called camera calibration. Among many,
the three major approaches are: direct linear transformation (DLT) method (Dubrofsky 2007; Hartley
and Zisserman 2004), Roger Y. Tsai algorithm (Tsai 1987), and Zhang’s method (Zhang 2000).

The DLT supposes that {(xk, yk), (Xk, Yk, Zk)|k ∈ [1, K]} is the set of 2D-3D pairs. From Equation (6.8),

xk =
c00Xk + c01Yk + c02Zk + c03

c20Xk + c21Yk + c22Zk + 1
,

yk =
c10Xk + c11Yk + c12Zk + c13

c20Xk + c21Yk + c22Zk + 1
. (6.14)

This equation becomes

xk(c20Xk + c21Yk + c22Zk + 1) = c00Xk + c01Yk + c02Zk + c03,

yk(c20Xk + c21Yk + c22Zk + 1) = c10Xk + c11Yk + c12Zk + c13, (6.15)

which can be solved by linear regression methods such as least squares or pseudo-inverse. Since 11
parameters are unknown and two equations are available per point, six points are sufficient, though more
points may be better for making the system over-determined.

The parameters can be determined by solving nonlinear equations (Tsai 1987). The 2D coordinates
are just a nonlinear function of its 3D coordinates, expressed with camera parameters:

xk = f (Xk, Yk, Zk|K, R, T),

yk = g(Xk, Yk, Zk|K, R, T), (6.16)

where f and g are the nonlinear functions, derived from Equation (6.8). Consider that we are given
N points in each of M images: {(xj

i, yj
i)|i ∈ [1, N], j ∈ [1, M]}. The parameters can be estimated by the

nonlinear optimization:

M∑
j=1

N∑
i=1

(
xj

i − f (Xi, Yi, Zi|K, R, T)
)2 +

(
yj

i − g(Xi, Yi, Zi|K, R, T)
)2

. (6.17)

Once we have recovered the numerical form of the camera matrix, we still have to separate out the
intrinsic and extrinsic parameters. This problem is not an estimation problem but a matrix decomposition

Stereo Vision 157

such as SVD. The parameters can also be obtained by using the homography method (Zhang 2000).
Suppose the corresponding pairs are x and X.

x = K[R|t]X. (6.18)

Let Z = 0, then

⎡⎢⎢⎢⎣
x

y

1

⎤⎥⎥⎥⎦ = K[r1 r2 r3 t]

⎡⎢⎢⎢⎢⎢⎣

X

Y

Z

1

⎤⎥⎥⎥⎥⎥⎦
= K[r1 r2 t]

⎡⎢⎢⎢⎣
X

Y

1

⎤⎥⎥⎥⎦. (6.19)

Therefore, the homography is H = K[r1, r2, t], which can be estimated by the given N corresponding
pairs:

H = argmin
H

N∑
i=1

‖xi − HXi‖2
. (6.20)

Given the homography, H = [h1, h2, h3], we can compute the intrinsic parameters by solving

[h1 h2 h3] = 𝜆K[r1 r2 t], (6.21)

where 𝜆 is a scale factor. Since the rotation matrix R is orthonormal, r1 and r2 in Equation (6.21)
satisfy

rT
1 r2 = hT

1 K−T K−1h2 = 0. (6.22)

Let B = K−T K−1, then from Equation (6.18), B becomes

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
𝛼2

− 𝛾

𝛼2𝛽

v0𝛾 − u0𝛽

𝛼2𝛽

− 𝛾

𝛼2𝛽

𝛾
2

𝛼2𝛽2
+ 1

𝛽2
−
𝛾(v0𝛾 − u0𝛽)

𝛼2𝛽2
−

v0

𝛽2

v0𝛾 − u0𝛽

𝛼2𝛽
−
𝛾(v0𝛾 − u0𝛽)

𝛼2𝛽2
−

v0

𝛽2

(v0𝛾 − u0𝛽)2

𝛼2𝛽2
+

v0

𝛽2
+ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (6.23)

Now let’s simplify Equation (6.21) by vector products. Since B is symmetric, we can represent it
by the upper diagonal elements, b = [B11, B12, B22, B13, B23, B33]T . For H, define h = [h11h21, h11h22 +
h12h21, h12h22, h13h21 + h11h23, h13h22 + h12h23]T . Then, Equation (6.22) becomes

hT b = 0. (6.24)

From this, we obtain the following variables first,

v0 = (B12B13 − B11B23)∕
(
B11B22 − B2

12

)
,

𝜆 = B33 −
[
B2

13 + v0(B12B13 − B11B23)
]
∕B11, (6.25)

158 Architectures for Computer Vision

then the remaining parameters,

𝛼 =
√
𝜆∕B11, 𝛾 = −B12𝛼

2∕𝜆, u0 = 𝛾v0∕𝛽 − B13𝛼
2∕𝜆. (6.26)

Next, let’s solve for the extrinsic parameters. From Equation (6.21),

r1 = 𝜆K−1h1, r2 = 𝜆K−1h2, r3 = r × r2, t = 𝜆K−1h3. (6.27)

Besides, we may need more parameters, such as radial distortion (de Villiers et al. 2010; Weng et al.
1992). Let (x, y) and (x′, y′) be ideal and real image coordinates. Let (x, y) be ideal normalized image
coordinates and (x′, y′) be real normalized image coordinates. Then, we have

x′ = x + x
[
k1(x2 + y2) + k2(x2 + y2)2

]
,

y′ = y + y
[
k1(x2 + y2) + k2(x2 + y2)2

]
, (6.28)

where k1 and k2 are distortion parameters. In the pixel domain, (u, v) is the ideal pixel image coordinates
and (u′, v′) is real observed image coordinates. Then,

u′ = u + (u − u0)
[
k1(x2 + y2) + k2(x2 + y2)2

]
,

v′ = v + (v − v0)
[
k1(x2 + y2) + k2(x2 + y2)2

]
. (6.29)

This equation can be represented by Dk = d, or[
(u − u0)(x2 + y2) (u − u0)(x2 + y2)2

(v − v0(x2 + y2) (v − v0)(x2 + y2)2

][
k1

k2

]
=

[
u′ − u

v′ − v

]
. (6.30)

The pseudo-inverse is k = (DT D)−1DT d. If we are given M images with N points each, we can solve this
by linear least squares estimation (LLSE). Combining the homography and the distortions, we have the
complete LLSE:

N∑
i=1

M∑
j=1

‖xij − x̂(A, k1, k2, Ri, ti, Xj)‖2, (6.31)

where x̂ means the projective transform with the intrinsic and extrinsic parameters.
There has been extensive research on camera calibration (Brahmachari and Sarkar 2013; Chin et al.

2009; Hartley and Li 2012; Ni et al. 2009; Rozenfeld and Shimshoni 2005; Zheng et al. 2011). OpenCV
(OpenCV 2013) contains standard camera calibration programs that find intrinsic and extrinsic para-
meters, together with distortions.

6.4 Correspondence Geometry
If more than two cameras are used to capture the same scene, there exist some constraints for the points
in the same image and for the corresponding points in different images. Such constraints play key roles
in restoring three-dimensional information.

In stereo vision, the major problems are classified into these three: correspondence geometry, camera
geometry, and scene geometry. The correspondence problem is to study the topic: given an image point

Stereo Vision 159

X

Y

Z

O

P

Ol Or

oo e ooe

(a) Convergent system

X

Y

Z

O

P

Ol Or

oo

ΠΠl

x

y

z

oo

Πr

x
y

z

(b) Rectified system

Figure 6.3 Stereo camera systems: convergent and rectified systems

in the first view, how does it constrain the corresponding point in the second view? The camera geometry
is the problem: given a set of corresponding points, what are the cameras matrices for the two views?
The scene geometry is the problem: given corresponding image points and cameras matrices, what is
the position of the point in 3D? To answer such problems, we have to understand the geometry of the
stereo system.

The binocular vision system consists of two cameras aligned as in Figure 6.3(a). The points, Ol and Or,
are respectively the projection centers of the left and right cameras. The common focal length is f . In this
alignment, a point P forms a plane POlOr , which is called the epiplane. The lines on the images, called
epipolar lines, are the projection of the pencil of planes passing through the optical centers. Therefore,
ll = POlOr ∩𝚷l and lr = POlOr ∩𝚷r . The point e, called the epipole, is where the projection center of
the other camera is mapped on the image plane. Therefore, el = OlOr ∩𝚷l and er = OlOr ∩𝚷r.

If the camera system is aligned in such a way that two optical axes are parallel, the system looks like
Figure 6.3(b). The images in this system are called rectified images, which are often the starting point
of the stereo matching. The image planes are coplanar and the epipolar lines are collinear and thus the
search for matching points becomes a one-dimensional search problem. The rectification process is to
convert the convergent system to the rectified system by coordinate transformations.

Let’s observe how different points in 3-space generate different epipolar lines in the image convergent
and rectified planes. Figure 6.4 shows the epipolar lines generated by the points at different heights.
In the rectified image, the epipolar lines are always parallel and the epipole is at infinity at the same
height, el = er = ∞. Furthermore, the row of an epipolar line is the same as the y-axis of the camera
image. In such a rectified system, a 3-space point appears on both epipolar lines which are in the same
epiplane. On the other hand, in a convergent system, all the epipolar lines pass through an epipole, e,
forming a set of rays. In this system, too, an object point appears on the corresponding epipolar lines in
both images.

Let’s derive the relationship between corresponding points (Figure 6.5). In this figure, pl and pr are a
conjugate pair, ll and lr are epipolar lines, and el and er are epipoles. A point P is observed as Pl and Pr

on the left and right cameras and pl and pr on the left and right images, respectively. The object point
and the image point are all related by

pl =
f

Zl

Pl, pr =
f

Zr

Pr. (6.32)

160 Architectures for Computer Vision

X

Y

Z

O

P

Q

Ol Or

el er

Figure 6.4 Epiplanes, epipolar lines, and epipoles for two points

If the right system is translated and rotated with respect to the left system by the rotation matrix R and
translation vector t = (tx, ty, tz)

T , then the vector on the left system is observed in the right system as

Pr = R(Pl − t). (6.33)

Since the three vectors, Pl − t, t, and Pl, are all on the same epiplane, the following relationship must
hold:

(Pl − t)T t × Pl = 0. (6.34)

Since RT R = I,

(Pl − t)T RTRt × Pl = 0. (6.35)

P

Ol Or

pl
el

ll

ll

t

P

t / t

Pl / Pl

t × Pl / t × Pl

pr

er

lr

lr

t

Pl Pr = Pl − t

Figure 6.5 The geometry of two camera system

Stereo Vision 161

Combining the front two factors into one, we have

(R(Pl − t))T Rt × Pl = 0, (6.36)

which with Equation (6.33) becomes

PT
r Rt × Pl = 0. (6.37)

Substituting Equation (6.32) into (6.37) yields

pT
r Epl = 0, where E = R[t]×, [t]× ≜

⎡⎢⎢⎢⎣
0 −tz ty

tz 0 −tx

−ty tx 0

⎤⎥⎥⎥⎦, (6.38)

where [t]× is a skew symmetric matrix representing the cross product-conversion to matrix representation
of the cross product with t. (We sometimes use T instead of [t]×.) That is, for two vectors a and b, the
cross product becomes a × b = [a]×b. The relationship, called essential matrix E, was first derived by
(Longuet-Higgins 1981). Conceptually, this equation means that in camera images the corresponding
points must be on the same epipolar line. For a pair of conjugate points, (xl, yl) and (xr , yr), in the image
plane, this equation specifies that yl = yr but doesn’t specify the relation between xl and xr .

The essential matrix encodes information on the extrinsic parameters only. The essential matrix
explains that the conjugates pair, pl and pr , is on the epipolar lines, ll = ET pr and lr = Epl, we have
pT

r lr = 0 and lT
l pl = 0. Since pT

r Eel = 0 and eT
r Fpl = 0 hold for all pr and pl, respectively, Eel = 0 and

ET er = 0. It has rank 2 since R is full rank but [t]× is rank 2. Its two nonsingular values are equal.
The degree of freedom is 5. The essential matrix can be decomposed into the product of epipole and
homography. Let

pr = Hpl, (6.39)

with the homography, H. Then, we get

lr = Epl

= [er]×pr = [er]×Hpl. (6.40)

Repeating for the epipolar line on the left image plane, we have

E = [er]×H, ET = [el]×H−1
. (6.41)

(See the problems at the end of this chapter.)
Suppose that p = [u, v, 1]T and p′ = [u′, v′, 1]T are a corresponding pair. For N ≥ 8 points, the essential

matrix can be obtained by

E⋆ = argmin
E

N∑
k=1

pT Ep′, s.t. ‖E‖2 = 1. (6.42)

This can be transformed to the linear least squares estimation (LLSE). For the points and essential matrix,
define the vectors: x = (uu′, uv′, u, vu′, vv′, v, u′, v′, 1)T and e = (e11, e12, e13, e21, e22, e23, e31, e32, 1)T .

162 Architectures for Computer Vision

Then, Equation (6.38) becomes xT e = 0. For N ≥ 8 points, define X = (x1,… , xN). Then, the essen-
tial matrix can be estimated by

E = argmin
e

‖XT e‖2
. (6.43)

In this formula, the solution is the eigenvector associated with the smallest eigenvalue of eT e.
For the uncalibrated camera, this equation must be expressed in terms with the conjugate points in

the pixel planes. Since the mapping from camera image to the pixel plane can be specified by a shifted,
rotated, and scaled transformation by the calibration matrix K, the image point p and the pixel coordinates
q are related by

ql = Klpl, qr = Krpr . (6.44)

Putting this into Equation (6.38) yields

qT
r Fql = 0, where F = K−1

r EK−1
l . (6.45)

This relation, called the fundamental matrix, was first derived by Luong (Faugeras et al. 1992; Luong
and Faugeras 1996). Conceptually, this relationship means that in pixel images the corresponding points
must be located on the corresponding epipolar lines. Likewise the essential matrix, for a pair of conjugate
points, (xl, yl) and (xr, yr), in the pixel plane, this equation specifies that yl = yr but doesn’t specify the
relation between xl and xr . (See the problems at the end of this chapter.)

As opposed to the essential matrix, the fundamental matrix expresses some important properties of
the uncalibrated camera system. The fundamental matrix encodes information both the intrinsic and
extrinsic parameters. It has rank 2 due to E. It has seven degrees of freedom also up to scale. The lines
Fql and FT qr represent the epipolar lines associated with pl and pr , respectively. Also, the epipoles are
null points, satisfying Fel = 0 and FTer = 0.

6.5 Camera Geometry
The eight-point algorithm (Chojnacki and Brooks 2007; Hartley 1997; Longuet-Higgins 1981) is to
determine the parameters with the known eight conjugate pairs. Suppose that q = (u, v) and q′ = (u′v′)
are a corresponding pair. For N ≥ 8 points, the fundamental matrix can be obtained by

F = argmin
F

N∑
k=1

qTFq′, s.t.‖F‖2 = 1. (6.46)

This can be transformed to the linear least squares estimation (LLSE). For the points and essential matrix,
define the vectors: x = (uu′, uv′, u, vu′, vv′, v, u′, v′, 1)T and f = (f11, f12, f13, f21, f22, f23, f31, f32, 1)T . Then,
Equation (6.38) becomes xT f = 0. For N ≥ 8 points, define X = (x1,… , xN). Then, the fundamental
matrix can be estimated by

F⋆ = argmin
f

‖XTf‖2
. (6.47)

In this formula, the solution is the eigenvector associated with the smallest eigenvalue of fT f.

Stereo Vision 163

For a full description of the perspective projection and the relationship between cameras, all the
matrices (i.e. C, E and finally R and [tx]) must be recovered, starting from F. From the recovered F, we
can compute the singular value decomposition (SVD):

F = UΣV , Σ = diag(𝜎1, 𝜎2, 𝜎3), (6.48)

where U and V are lower and upper triangular matrices, respectively. We project the fundamental matrix
onto the essential manifold:

F = UΣ′VT , Σ′ = diag(𝜎1, 𝜎2, 0). (6.49)

The SVD of F contains the information on epipoles. The epipole e is a null vector, satisfying Fel = 0.
Therefore, the epipole is the column of VT corresponding to the null singular value, VT = (v1, v2, el).
Similarly, er satisfies FT er = 0 and thus the column of UT corresponding to the null singular value,
UT = (u1, u2, er).

From the fundamental matrix, we obtain the essential matrix,

E = Udiag(𝜎, 𝜎, 0)VT , (6.50)

where 𝜎 = (𝜎1 + 𝜎2)∕2. The obtained essential matrix minimizes the Frobenius distance ‖E − F‖2.
Once the essential matrix is obtained, the other matrices, E = TR, can be recovered by SVD (Hartley

and Zisserman 2004):

E = UΣVT , (6.51)

where Σ = diag(1, 1, 0). Let’s define the skew symmetric matrix, W−1 = WT :

W =
⎡⎢⎢⎢⎣

0 −1 0

1 0 0

0 0 1

⎤⎥⎥⎥⎦, WT =
⎡⎢⎢⎢⎣

0 1 0

−1 0 0

0 0 1

⎤⎥⎥⎥⎦. (6.52)

Then, there are two solutions:

(T1, R1) = (VWΣVT , UWVT),

(T2, R2) = (VWTΣVT , UWT VT). (6.53)

6.6 Scene Geometry
The scene geometry problem is to find X, given E and the corresponding pair, xl and xr . According to
(Longuet-Higgins 1981), this problem can be solved as follows.

Let R = (rT
1 , rT

2 , rT
3)T . For simplicity, consider that the world coordinates and the left camera coordinates

coincide. The camera systems are normalized, with the essential matrix (R|t) and the corresponding pair
is given by x̃l and x̃r. Between the recovered scene points, X̃1 and X̃r , the following relationship holds:

X̃r = R(X̃l − t). (6.54)

164 Architectures for Computer Vision

The components are

Xr = r1(X̃l − t), Yr = r2(X̃l − t), Zr = r3(X̃l − t). (6.55)

Then, the image coordinates are xr = KX̃r:

xr =
Xr

Zr

=
Xr∕Zl

Zr∕Zl

=
r1(xl − t∕Zl)

r3(xl − t∕Zl)
, yr =

Yr

Zr

=
Yr∕Zl

Zr∕Zl

=
r2(xl − t∕Zl)

r3(xl − t∕Zl)
. (6.56)

From this, we get one element of the 3D coordinates:

Zl = f
(r1 − xrr3)t
(r1 − xrr3)xl

, Zl = f
(r1 − yrr3)t
(r1 − yrr3)xl

. (6.57)

Here, the scale factor f is restored. As a last step, the remaining element can be recovered by[
Xl

Yl

]
= Zl

[
xl

yl

]
. (6.58)

Therefore, X̃ is recovered from x̃l and x̃r , with the help of (R|t)). Due to the inaccurate corresponding pair,
Zl in Equation (6.57) may not be the same. In actual algorithm, the estimation error must be minimized
for more than one corresponding pairs.

There is a common case, where the camera is positioned at (B, 0, 0), tilted with 𝜃 with respect to the
baseline. The two cameras are focused at the point C, called the subject distance. In this common case,
we have the explicit solution for the 3D position (Figure 6.6). The right camera is shifted by t = (B, 0, 0)
and rotated by

R =
⎡⎢⎢⎢⎣
sin 𝜃 0 −cos 𝜃

0 1 0

cos 𝜃 0 sin 𝜃

⎤⎥⎥⎥⎦ , t = (B, 0, 0)T , (6.59)

C

Or

θ

Z

XOl

f f

P(X, Y, Z)

xl xr

B

Figure 6.6 Cameras on the same plane: world and left camera coordinates coincide. The cameras are
focused at the common point C (f : focal length and B: baseline.)

Stereo Vision 165

where 𝜃 is the angle between the optical axis and the baseline. In that case, Equation (6.58) is
reduced to

Xl = xl

f (sin 𝜃 − xr cos 𝜃)B

xl(sin 𝜃 − xr cos 𝜃) − (cos 𝜃 + xr sin 𝜃)
,

Yl = yl

f (sin 𝜃 − xr cos 𝜃)B

xl(sin 𝜃 − xr cos 𝜃) − (cos 𝜃 + xr sin 𝜃)
,

Zl =
f (sin 𝜃 − xr cos 𝜃)B

xl(sin 𝜃 − xr cos 𝜃) − (cos 𝜃 + xr sin 𝜃)
. (6.60)

6.7 Rectification
In convergent systems, finding corresponding points is a 2D search problem because the epipolar lines
are radiating lines on the plane. Rectification is a warping process via perspective transformation so
that epipolar lines are horizontal. In a rectified system, the problem is a 1D search problem because
the epipolar lines are all horizontally parallel. As such most stereo matching algorithms start with the
premise: epipolar lines in the rectified system.

To see the relationship between the two systems, look at Figure 6.7. In this system, a set of points,
{P, Ol, Or}, constructs an epiplane, POlOr , which intersect the planes of the convergent systems, produc-
ing epipolar lines in slanted directions. The rectified system can be achieved by rotating the convergent
system around the projection center maintaining the focal length unchanged. The condition for the
rotation matrix R is that in the rotated planes the epipolar lines should be collinear.

Let xT
r Fxl = 0. The problem is to find homographies Hl and Hr such that yl = Hlxl and yr = Hrxr,

which satisfies yT
r F′yl = 0. Solving this, we obtain

F′H−T FH−1 =
⎡⎢⎢⎢⎣

0 0 0

0 0 −1

0 1 0

⎤⎥⎥⎥⎦, (6.61)

for the parallel camera.

X

Y

Z

O

P

Ol Or

Πl Πr

Πl Πr

Figure 6.7 Two camera systems: rectified and convergent cameras

166 Architectures for Computer Vision

There are basically three algorithms for image rectification: planar rectification (Fusiello et al. 2000;
Trucco and Verri 1998), cylindrical rectification (Oram 2001), and polar rectification (Pollefeys et al.
1999). Planar rectification is as follows.

Assume that the system is normalized and the extrinsic parameters [R|t] are given. The first step is to
rotate the left image plane so that the epipole goes to infinity along the horizontal line. Since the rotation
matrix is orthonormal, only one vector can be specified and thereby we can derive the other two. The
starting vector is conveniently decided by the epipole which is a foreshortened vector of the translation t
between two camera coordinates. Thus, let the first vector, u = t∕‖t‖. The other two vectors can be built
as follows:

RT
rect =

[
u, u⟂, u × u⟂

]
, (6.62)

where u⟂ must satisfy u × u⟂ and the z-axis. Set the rotation matrices Rl = Rrect and Rr = RRrect for the
left and right cameras. Once Rl and Rr are obtained, the points, q, in the rectified system can be obtained
from the points, p, in the convergent system, according to

ql =
f

zl

Rlpl, qr =
f

zr

Rrpr, (6.63)

where pl = (xl, yl, zl)
T and pr = (xr , yr , zr)

T . As a consequence of rectification, the epipoles are all located
at infinity el = er = ∞ and the epipolar lines are collinear ll × lr = 0.

After the transformation, the resulting image must be resampled and interpolated to compensate for
the irregular empty pixels. (For further methods, refer to (Kang and Ho 2011; Loop and Zhang 1999;
Miraldo and Araújo 2013; OpenCV 2013; Zhang 2000).)

The rectified system is a special case, shown in Figure 6.6. The right camera is positioned at (B, 0, 0),
in parallel with the left camera. This is the most common framework for a rectified system (Figure 6.8).
The right camera is shifted by t = (B, 0, 0) and thus 𝜃 = 𝜋∕2 in Equation (6.60).

Xl = xl

fB

xl − xr

, Yl = yl

fB

xl − xr

, Zl =
fB

xl − xr

. (6.64)

C

Or
θ

Z

XOl

f f

P(X, Y, Z)

xl xr

B

Figure 6.8 Rectified cameras: world and left camera coordinates coincide (f : focal length and
B: baseline)

Stereo Vision 167

As a consequence of rectification, we have derived Equation (6.64). This standard configuration is called
the epipolar plane model. In this alignment, a point P is projected on (xl, yl) for the left image and (xr , yr)
for the right image. The two image points are collectively called corresponding points.

The Equations (6.64) can be conveniently described by the common variable,

d = xl − xr , (6.65)

which is called disparity. It satisfies always d ≥ 0 and configures the 3D positions by

Xl = xl

fB

d
, Yl = yl

fB

d
, Zl =

fB

d
. (6.66)

Unlike in the rectified system, the depth is not a simple function of the disparity.
In Equation (6.66), the importance of disparity is self-evident; depth estimation becomes the disparity

estimation problem. In this optical arrangement, xl ≥ xr ≥ 0. When we estimate the disparity, so-called
stereo matching, one of the two image coordinates must be chosen as a reference. To distinguish the two
cases, we define the left and right disparities:

dl ≜ d(xl) = xl − xr , dr ≜ d(xr) = xl − xr
. (6.67)

Here, d ≥ 0, regardless of the reference systems. Since the mapping between the conjugate pairs is not a
one-to-one mapping due to occlusion, the two quantities, dl and dr, are not generally the same. Knowing
both dl and dr may help to determine the occluding area.

As a special case, if the world coordinates are located between the two cameras, we get

(X, Y , Z) =
(

B
(xl

d
− 1

2

)
,

B
d

y,
f

d
B

)
=
(

B
(xr

d
+ 1

2

)
,

B
d

y,
f

d
B

)
. (6.68)

If the world coordinates coincide with the left camera coordinates, the 3D position is

(X, Y , Z) =
(

B
d

xl,
B
d

y,
f

d
B

)
=
(

B
d

xr + B,
B
d

y,
f

d
B

)
. (6.69)

6.8 Appearance Models
In a simple rectified system, 3-D positions can be recovered by the disparity in Equation (6.66). Otherwise,
the scene geometry can be recovered by the conjugate pairs as mentioned previously. Therefore, the
remaining problem is to find the conjugate pairs, so-called correspondence problem, and represent
them with the disparity map. The constraint is that the conjugate pairs are on the epipolar line, as
specified by the fundamental matrix. Stereo matching is the method for solving the correspondence
problem.

To fulfill this goal, we need some measures to decide the features, distance measures, inference
method, and learning method. The feature is a representation of the matching pixels and generalized
from local to global descriptors. The candidate pairs are compared with the distance measures or other
correlation measures. The matching error is represented by a constrained optimization problem, which
can be resolved by many inference methods. Finally, all the parameters included in the optimization
problem are often estimated by learning methods. Owing to the diversity of stereo matching, some
taxonomy has been tried so far (Scharstein and Szeliski 2002).

Numerous techniques and algorithms have been introduced for solving the constrained and uncon-
strained optimization of the stereo matching problem. However, there is still uncertainty of the bound of

168 Architectures for Computer Vision

performance and the ground-truth solutions. The problem is not the technique for solving the problem
but it seems to reside in the uncertainty in the modeling and the constraints for solving the ill-posed
problem. In this context, instead of reviewing the vast methods, we focus on the more fundamental prin-
ciples, called constraints, as they are close to the nature and building blocks of the optimization problem.
The constraints together become the energy function, consisting of the data term D and the smoothness
term V with the Lagrange multiplier:

E(d) = D(d) + 𝜆V(d). (6.70)

Here, the disparity on the image plane is represented collectively by the disparity map. Depending on
the reference coordinates, the disparity can be defined as left, right, or center disparity. As mentioned
in Chapter 5, the general form consists of the appearance and geometric constraints, which will be
addressed in this and following sections.

As an example, the stereo images consist of a pair of left and right images (Middlebury 2013), as
shown in Figure 6.9. The first two images are the left and right images. The next two images are the
ground-truth disparity maps. The brightness shows the depth and the black segments show the pixels
where the depth information is unavailable due to the sensor limitation. The ground truth is not the

(a) Il (b) Ir

(c) dl: ground-truth (d) dr: ground-truth

Figure 6.9 The stereo images and the ground-truth disparity map

Stereo Vision 169

baseline of the disparity map but a reference, because a lot of the state-of-the-art algorithms, such as
message passing, move-making, or LPR-based algorithms, tend to beat the ground truth.

The appearance model can be interpreted in many different ways: conservation laws, assignment
error, observation error, unary potential, etc. Whatever the interpretation, the appearance model appears
as a data term, relating the image and the putative disparity. One of the most prevailing laws is the
photometric constraints (or intensity conservation or brightness conservation) of the corresponding
points, which posits that the intensity of the same object is invariant in different views, assuming that
they are spatially and temporally differentiable. This assumption results in the two equations:

Il(x, y) = Ir(x + dl(x, y), y), Ir(x, y) = Il(x + dr(x, y), y). (6.71)

For large variations of the disparity range, any series expansion of this function is inappropriate, unlike
the series expansion that is possible for optical flow.

The two disparities are not always the same in general environment, because the disparities can be
viewed as two different mappings. That is, dl: (x, y) ↦ (x + dl(x, y), y) and dr: (x, y) ↦ (x + dr(x, y), y).
The error variance of the disparity is also increasingly deteriorated as the matching point approaches the
boundary. For the right disparity, the mapping ranges is xr ∈ [0, N − 1] ↦ xl ∈ [xr, N − 1], and for
the left disparity, the mapping range is xl ∈ [0, N − 1] ↦ xr ∈ [0, xl]. It is natural that the uncertainty of
the disparity increases as the point approaches the boundary (right boundary for the right disparity and
left boundary for the left disparity). On the other hand, the uncertainty is minimal on the other end of the
boundary (left boundary for the right disparity and right boundary for the left disparity).

6.9 Fundamental Constraints
Unlike the epipolar hypothesis, other constraints are not always true. Although the brightness conservation
is the natural choice of data term in the energy function, the problem is ill-posed in nature and thus needs
more constraints to limit the search space. The geometric constraints fill such gaps, revealing the natural
properties of the 3D geometry because a priori knowledge is possible. Because objects interact in time
and space, there exist numerous geometric constraints. Let us examine the constraints, classified as space,
time, frequency, segment, and 3D-based constraints.

Among the disparity-based constraints, the most fundamental constraint is the smoothness constraint,
which means that the disparity of the neighboring pixels on an object surface must be as smooth
(differentiable) as possible since the object surface is generally smooth. The smoothness measure assumes
that if the surface is smooth, so do the disparity values:

∇Z(p) ←→ ∇d(p) = 0. (6.72)

This premise is also very difficult to justify, because the disparity is the result of two different views for the
same surface and thus the slope and the boundaries may affect the disparity in a very complicated manner.
The are many variations of this form in terms of the derivative order, neighborhood size, and truncated
values. Among many others, the linear truncation and Pott’s model are the most popular methods. This
constraint holds only when the neighbors are on the same surface but not across the boundary. Enforcing
this constraint tends to make the boundary smooth, losing the sharp transition, even when sophisticated
surface fitting methods (i.e. membrane or thin plate) are adopted. To achieve anisotropic diffusion, these
constraints must be supported by the estimation of surface, boundary, and occlusion.

Another constraint is the occlusion, an invisible part of the scene for one of the two cameras. Examples
are shown in Figure 6.10. The disparity maps contain occluding regions, particularly around object

170 Architectures for Computer Vision

(a) Ol (b) Or

(c) Ol (d) Or

Figure 6.10 The occluding regions of the Teddy and Cones images

boundaries. Each disparity map, left or right, has its own occluding regions. Also, the occluding regions
tend to be sparse and difficult to detect for small objects.

Knowing the occluding region can help the stereo matching drastically, because the smoothness can
be suppressed in those areas, resulting in sharp boundaries and preventing smearing between adjacent
regions. However, determining the occluding areas is a difficult problem, particularly when only one
type of disparity map is available (Min and Sohn 2008; Tola et al. 2010; Zitnick and Kanade 2000).

Let O(p) represent an indicator function for the occlusion at p ∈ . One way to define occlusion is
to check the one-to-one correspondence (Bleyer and Gelautz 2007; Kolmogorov 2005; Lin and Tomasi
2003). We can classify the pixels into two classes: consistent (one-to-one mapping) and occlusion
(many-to-one mapping). For dl: p ∈ l ↦ q ∈ r and dr: p ∈ r ↦ q ∈ l, we define

Ol(p) =

{
1, dl(p) ≠ dr(p − dl(p)),

0, otherwise.
(6.73)

Or(p) =

{
1, dr(p) ≠ dl(p + dr(p)),

0, otherwise.
(6.74)

Stereo Vision 171

The left/right occlusion map is an M × N binary image which is the collection of such sites. This
constraint is also not strict, due to the slanted surfaces (Bleyer et al. 2010; Ogale and Aloimonos 2004;
Sun et al. 2005). The occlusion can also be defined by (Woodford et al. 2009)

Ok(p) =

{
1, ∃q : p − d(p) = q − d(q) ∪ d(p) < d(q)), p, q ∈ k,

0, otherwise,
(6.75)

where k ∈ {l, r}.
The possible preservation of order might be a strong constraint in stereo matching. The distribution

of disparities between neighbor pixels may be arbitrary in principle, but the order of pixels tends to be
preserved in both image and disparity map. To see this, consider two consecutive pixels, xl and xl + 1,
which have disparities, dl(xl) and dl(xl + 1), respectively. The corresponding pixels are xr = xl + dl(xl) and
xr = xl + 1 + dl(xl + 1), respectively. Since xl

< xl + 1, it is natural that xl + dl(xl) ≤ xl + 1 + dl(xl + 1).
From this thought, we can conclude that{

0 ≤ dl(xl) ≤ 1 + dl(xl + 1),

0 ≤ dr(xr) ≤ 1 + dr(xr + 1).
(6.76)

Unfortunately, this is a rough guide and not true even for smooth surfaces, where the order may not be
preserved (Forsyth and Ponce 2003). The actual surface may be more than simple smoothness but very
complicated, with many singular points.

Likewise the smoothness constraint, this constraint is also not strict. Around some narrow objects the
background points may be viewed in reverse order. For a strong constraint on the local orders, angular
embedding (Yu 2012) might be a potentially strong method.

6.10 Segment Constraints
The segmented image itself implies a certain kind of disparity information (Bleyer and Gelautz 2007;
Deng et al. 2005; Hong and Chen 2008; Tao et al. 2001; Zitnick et al. 2004). Image segmentation
turns the original image into several compact regions, called segments, where each of them consists
of homogeneous pixels in image color, intensity, texture, or surface orientation. A segment provides
primitive information, such as object color, size, location, or boundary. As such, segments possess
potentially useful constraints for stereo matching in terms with boundary and surface. Furthermore,
other vision modules, lower and higher levels, may help to provide information on the boundary and
region, as a means of module integration.

It is conjectured that for a given segment, the variation of disparity is small. Let S(p) denote the
segment label for p. Then, within the segment, the following holds:

∇S(p) = 0 ←→ ∇d(p) = 0. (6.77)

This constraint is similar to Equation (6.72) but is related with a lot of attributes other than the depth.
Unfortunately, this conjecture may not be true in general. The same surface may be segmented into
different segments due to brightness, color, and texture discontinuities.

The first useful clue obtained from the segment is the boundary constraint. Although not strict, there
exist some correlations between boundaries of the segments, objects, and disparities. It is often the case
that boundaries of segments coincide with boundaries of objects and thus the disparity boundaries. The
segment boundary affects the disparity boundary, as a modified version of smoothness constraint:

∇S(p) ≠ 0 ←→ ∇d(p) ≠ 0. (6.78)

172 Architectures for Computer Vision

This constraint can also be used in either the left or right disparity, depending which image plane is used
as reference.

Next comes the planar constraint, which focuses on the surfaces instead of the boundary. The under-
lying concept is that there exist some correlations between segment surface, object surface, and disparity
surface. The idea is to fit the segment with surface model and match with that of the disparity. Given the
surface model, f (S(p)), the problem is to match to that of the disparity:

d(p) = f (S(p)). (6.79)

This can be embedded into the energy function as an integration of local neighborhood error. In actual
algorithms, the region is over-segmented, fitted, and merged into larger ones to make the disparity
representation more compact.

So far, we have considered the information which is available from the given images and videos.
Besides this intrinsic information, a lot of extrinsic information may be available through internet image
repositories or web videos, as evidenced by the Big Data research. In such places, videos and images
are usually tagged with a lot of information such as place, time, person, objects, and so on. In addition,
algorithms for representation and extraction algorithms on person, object, or action provide multimodal
information for the constraints on object and connectivity.

6.11 Constraints in Discrete Space
The ultimate goal of the stereo matching is to interpret the geometry of the objects in 3D space, by
measuring the relative depths of the surfaces and their occluding relationship. This scene-centered view
naturally assumes the conjecture – continuous space. There is another dual concept, namely view-
centered. When viewed in the digital image, the scene is observed only in the two properties: discrete
in space, time, and intensities. Since the image is defined only on a discrete plane, space must also be
considered discrete or quantized from the beginning. Spaces that are not observed cannot be recovered
in principle and thus must be excluded from consideration. This concept may limit the the search space
to the observable space only, a discrete space. In this manner, the search space becomes very compact
and faithful to the measurement.

Look at Figure 6.11(a), which depicts image pixels and rays within a field of view (FOV), that is
defined by an optical system. In this figure, observable space is defined by a set of rays passing through
the optical center O and image pixels. Positions that are not located on the rays are not observable or
partially integrated into the rays via imaging system. For an image with N pixels width, only N rays can
be observed. However, the ray is continuous and all the points on it is observable.

I : 0,..., N − 1

O
(a) One camera

Ol
Il : 0,..., N − 1

Or
Ir : 0,..., N − 1

P

(b) Two cameras

Figure 6.11 Discrete space observed by a camera (a) and two cameras (b)

Stereo Vision 173

0
1

...

N − 1

0 1 · · · N − 1
x

d

Figure 6.12 The observable space is a discrete triangle. The point at infinity is mapped to the zero
disparity

If two cameras are introduced, as shown in Figure 6.11(b), the observable space becomes even smaller
because the space consists of the set of intersecting points of the two rays. Now, only the discrete points
on a ray are observable and thus the observable space is a discrete cone. The point, P, indicates the
nearest position, where the disparity is maximal, Dmax = N − 1. The point at infinity, that is the vanishing
point, is where the parallel rays meet ultimately. In between the two extreme points, iso-disparity lines
are formed, where the points are located in the same distance from the optical center.

The key point in this observation is that the observable space is a triangle region (or cone) which
consists of intersecting points. From Figure 6.11(b), the observable space is extracted, rescaled, and
illustrated in Figure 6.12. Represented on the left is the disparity level, which is equally spaced for
convenience. The pixels are located along the horizontal line. The importance of this representation is
that the stereo matching can be reduced to a search problem in a discrete triangular region.

In a trinocular stereo vision system, a third camera is introduced between the two cameras (An et al.
2004; Ueshiba 2006). Being rectified, all the three optical axis are parallel and all the three image planes
are coplanar as shown in Figure 6.13. In general, more than one camera system is called multiple view
system and described by multiple view geometry (Faugeras and Luong 2004; Hartley and Zisserman
2004). In a multiple view synthesis system, the extra positions between the left and right cameras are
considered as positions for virtual images (Karsten et al. 2009; Scharstein 1999; Tian et al. 2009). In a

0, ..., N − 1

Il

0, ..., 2N − 1

Ic

0, ..., N − 1

Ir

.

.

.

N − 1

Figure 6.13 Coordinate systems: left (ol), right (or) and center reference (oc)

174 Architectures for Computer Vision

binocular vision system, the intermediate position can be considered as a new coordinate to represent
the left and right disparities.

Let’s represent the the new coordinates by oc. The advantage of the new coordinates is that the left
and right disparities can be represented in the same coordinates, as a cyclopean view (Julesz 1971; Wolfe
et al. 2006). A complete description of disparity needs two quantities (dl, dr). However, this description
is possible with a single view, oc. Besides the convenience of representation, the new coordinates let us
observe the occluding points. The filled circles are visible commonly by the three coordinates systems.
In the left or right system, only one point along the ray is observable. Other points behind the observed
point are occluded. However, in the new coordinates, all such occluding points are also visible. The
places with empty circles are unobservable by any of the cameras but useful to represent the virtual
positions. However, the new representation needs higher resolution than the image: xc ∈ [0, 2N − 1].

The whole effort for coordinates system is to describe the disparity as a function. As disparity is
involved with more than one images, reference coordinates are not unique. For binocular stereo, the
disparity is represented either by dl or dr. Having introduced a third coordinate, the disparity can be repre-
sented by dc. Let the three coordinates be left (reference) coordinates, right (reference) coordinates, and
center (reference) coordinates (aka cyclopean coordinates (Belhumeur 1996; Marr and Poggio 1979)).
As the number of cameras is increased, the search space becomes sparser but keeps its triangular shape.

Now, let us examine the search spaces, represented in the three coordinates systems, in terms
of disparity computation (Figure 6.14). In the search spaces, the nodes are represented by

3210 · · · N − 1

0

1

2

.

.

.

N − 1

N − 1

(a) Right reference

3210 ·· · N − 1

0

1

2

.

.

.

N − 1

(b) Left reference

0 1 2 · · · 2N

0

1

2

.

.

.

(c) Center reference

Figure 6.14 Search spaces for disparity (horizontal: pixel and vertical: disparity)

Stereo Vision 175

{(xr, dr)|xr ∈ [0, N − 1], dr ∈ [0, N − 1]}, {(xl, dl)|xl ∈ [0, N − 1], dl ∈ [0, N − 1]}, and {(xc, dc)|xc ∈
[0, 2N − 1], dc ∈ [0, N − 1]}. At first observation, the node types are not all the same, classified as
matching, occluding, and virtual. As the name represents, the matching nodes, as denoted by the filled
circles, are the places that one or two cameras can observe. Likewise, the occluding nodes, as represented
by the empty circles in the left and right systems, are the places which cannot be observed by two cameras
simultaneously. The empty nodes in the center reference system, the so-called virtual nodes, are different
from the occluding nodes, because they are introduced to fill the spaces in a regular manner.

In the second observation, the search space is characterized by triangular distribution of matching
nodes. This means that, for the right disparity, the number of candidate matching points becomes less
as we move to the right boundary. The reverse is true for the left disparity. For the center reference, the
uncertainty increases at both ends. This property naturally affects the disparity map, with blurred values
around image boundaries.

The legal disparity is interpreted here as a connected path from one side to the other side, which
represents the dissection of the object surface in some transformed way. Assigning penalties and con-
straints on the possible paths, the stereo matching becomes the shortest paths problem. For the left and
right systems, the path should be positioned in the matching nodes area, because the occluding region
is unobserved. However, in the center reference system, the shortest path may pass through the empty
nodes, because they are not actually occluding points but virtual points, to make the search path smooth
if required.

Choosing matching nodes must be based on observations, Il and Ir as well as the smoothness between
neighbor nodes. Analogously, choosing virtual nodes must be based on some prior, such as smoothness
constraints. The appearance model and the geometric constraints play roles in defining good paths in
these spaces.

Since the the three coordinates represent the same scene, there exist relationships between the coordi-
nates systems. Suppose that (xl, xr, xc) are the corresponding points with the disparities, (dl, dr, dc). Then,
the center disparity and the corresponding points are related as follows:

dc(xc) ↦ xl = 1
2

(xc + dc − 1), xr = 1
2

(xc − dc − 1), ∀(xc + dc = odd),

(xl, xr) ↦ xc = xl + xr + 1, dc = xl − xr , ∀(xl, xr). (6.80)

First, if xc + dc = odd, the disparity dc(xc) specifies the conjugate pair, (Il(1

2
(i + dc − 1)), Ir(1

2
(i − dc −

1))). For i + dc = even, the node has no corresponding image pixels. Second, the conjugate pair,
(Il(xl), Ir(xr)), specifies the disparity, dc(xl + xr + 1) = xl − xr .

Similarly, the left and right disparities have the following relationships.

⎧⎪⎪⎨⎪⎪⎩

dl(xl) ↦ xc = 2xl − dl + 1, dr(xr) ↦ xc = 2xr + dr + 1,

dl(xl) ↦ xr = xl − dl, dr(xr) ↦ xl = xr + dr,

(xl, xr) ↦ dl(xl) = xl − xr , dr(xr) = xl − xr
.

(6.81)

By these equations, disparities in one coordinates system can be transformed into another coordinate
system. Moreover, the equations naturally represent the geometric constraints of the disparities and
corresponding points in stereo matching. Assuming multiple views and discrete observations, we obtain
a lot of constraints that must be satisfied by the legal disparities.

176 Architectures for Computer Vision

6.12 Constraints in Frequency Space
So far we have studied disparity as a warping function in the space domain. The notion of spatial warping
can be expanded to the spectral domain, regarded as a phase warping in the spectral domain (Candocia
and Adjouadi 1997; Fookes et al. 2004; Lucey et al. 2013; Sheu and Wu 1995). This view can be
expanded to the space-time space, often called the space-time cube, and frequency representation of both
space and time.

As a similar vision module, motion is known to have a certain conservation law in the frequency
domain (Fleet and Jepson 1990, 1993; Gautama and van Hulle 2002). However, the same is not true
in stereo vision. The major reason is that the optical flows can be modeled as differentials but the
disparity cannot be modeled in that way. Any linear approximation of the photometric conservation laws
is over-simplification. Nevertheless, the disparity, as a warping function, has certain properties in the
spectral domain.

Let’s consider two line images g(x) and h(x), and a disparity function, 𝜙(x) = x + d(x). Then, the
target function can be regarded as a composite function: h(x) = g(𝜙(x)). The goal of stereo matching
is interpreted as finding the warping function for the given g(⋅) and h(⋅). In this case, the reference
coordinates is the left image and thus the left disparity is obtained. Changing the role of the two images,
we can obtain the other type of disparity, the right disparity.

To proceed further, let’s first investigate the properties of the warping function in the spectral domain.
In discrete space, the functions are represented by vectors.

⎧⎪⎨⎪⎩
g = (g(0),… , g(N − 1))T ,

h = (h(0),… , h(N − 1))T ,

𝜙 = (𝜙(0),… ,𝜙(N − 1))T
.

(6.82)

Let G and H be the DFTs s of g and h, respectively. Then, the image vectors have the forms:

G = Wg, H = Wh, (6.83)

where W is the DFT matrix:

W = {wk,l|k, l ∈ [0, N − 1]}, wi,j = exp{−2𝜋jkl}. (6.84)

Then, the composite function, h(x), can be represented as

h(x) = g(𝜙(x)) = 1
N

N−1∑
l=0

exp{j2𝜋l𝜙(x)∕N}G(l). (6.85)

Taking the DFT of h(x), we have

H(k) = 1
N

N−1∑
x=0

N−1∑
l=0

G(l)ej2𝜋l𝜙(x)∕Ne−j2𝜋kx∕N
. (6.86)

Next, let us switch the order of integration. Then, we get

H(k) = 1
N

N−1∑
l=0

G(l)
N−1∑
x=0

ej2𝜋l𝜙(x)∕Ne−j2𝜋kx∕N
. (6.87)

Stereo Vision 177

Noticing that the inner integral is independent of G, we give it its own name, P(k, l) (Bergner et al.
2006),

P(k, l) ≜
1
N

N−1∑
x=0

ej2𝜋(l𝜙(x)−kx)∕N , (6.88)

and call it the spectral warping function (SWF). Substituting Equation (6.88) into (6.87) yields

H(k) =
N−1∑
l=0

P(k, l)G(l). (6.89)

In vector notation, this equation becomes

H = PG, (6.90)

where P = {pk,l}.
Now, all the important properties of the disparity are included in SWF. Note that P(k, l) is point-

symmetric:

P(k, l) = P∗(−k,−l). (6.91)

The kernel P is independent of the properties of g and solely depends on 𝜙. Also, it can be interpreted as
a map telling how a certain frequency component of G is mapped to a frequency in the target spectrum
of H.

Figure 6.15 depicts intensity and warping functions and their spectral warping matrix P(k, l) for the
test stereo dataset. The graphs on the second row contain the intensity function f (x) of the reference
frame and the warping function 𝜙(x) along the indicated scan line, respectively. The plot in the last
row shows profiles of the corresponding kernel maps. Equation (6.90) means that G(l) is integrated
along the column k of the kernel map to produce H(k). If the warping is constant, the kernel map
is also uniform. Otherwise, the input spectrum is modulated by the kernel to produce the resulting
spectrum.

The spectral warping function can be factorized further. Consider the N × N matrices:{
W = {wk,x} = {e−2𝜋jkx∕N},

S = {sx,l} = {sx,l =
1

N
e2𝜋jl𝜙(x)∕N}.

(6.92)

Then, Equation (6.88) becomes

P = WS. (6.93)

Because of this, Equation (6.90) is decomposed into the factorization:

H = WSG. (6.94)

In this expression, the disparity is decomposed into the position and value, represented by the two phasor
matrices, W and S. The two phasors are the unit vectors positioned in a unit circle. The constraints for
the disparity appear as the phasor magnitude and ordering in the spectral domain.

178 Architectures for Computer Vision

(d) ϕ (x)

0 50 100 150 200 250 300 350 400 450
50

100

150

200

250

300

350

400

450

500

550
x+d(x)

x

(c) f (x)

0 50 100 150 200 250 300 350 400 450
60

80

100

120

140

160

180

200
f(x)

x

(e) P(k, l)

50

50 100 150 200 250 300 350 400
450

400

100

300

150

250

350

200

(a) Reference image (b) Disparity map

Figure 6.15 Profile, disparity, and SWP for the scan line

The matrix S is orthogonal:

SS∗ = I∕N, (6.95)

though it is not unitary due to the asymmetric definition of DFT. Containing the disparity as phasor, S is
the variable to be recovered. In the spectrum, information on disparity is encoded in the phasor position
and their order. Like angle modulation, the noise on disparity tends to affect the phasor amplitude rather
than its phase. (See the problems at the end of this chapter.)

Stereo Vision 179

6.13 Basic Energy Functions
We have observed that the central problem of depth estimation is the stereo matching that searches for
an optimal disparity. The major mechanism for disparity is the photometric constraint, Equation (6.71),
which defines the brightness invariance between a pair of corresponding points. However, the disparity
cannot be determined uniquely because it is not one-to-one mapping. To narrow down the vast search
space, various constraints are introduced.

In the energy representation, the photometric constraint plays a major role and the other constraints
play a role of limiting the search space.

Er(D) =
∑

(x,y)∈
‖Ir(x, y) − Il(x + d(x, y), y)‖2

+ 𝜆

∑
(x,y)∈

∑
(x′ ,y′)∈ (x,y)

min(‖d(x, y) − d(x′, y′)‖, Ts),

El(D) =
∑

(x,y)∈
‖Il(x, y) − Ir(x − d(x, y), y)‖2

+ 𝜆

∑
(x,y)∈

∑
(x′ ,y′)∈ (x,y)

min(‖d(x, y) − d(x′, y′)‖, Ts), (6.96)

where 𝜆 is the Lagrange multiplier and Ts is the threshold. The first term comes from the photometric
constraint, Equation (6.71), and is defined along the epipolar line. The second term comes from the
smoothness constraint, Equation (6.72), and is defined over local neighborhood. The parameter, 𝜆, is
a Lagrange multiplier, which makes the problem unconstrained minimization. To detect the occlusion,
both the left and right disparities must be obtained, as discussed in Equation (6.74).

There is a third viewpoint, the center referenced system, where the energy function can be defined,
with the help of Equation (6.80),

E(D) =
M−1∑
y=0

2N−1∑
x = 1

x + d(x) = odd

‖Il((x + d(x) − 1)∕2) − Ir((x − d(x) − 1)∕2)‖2

+
M−1∑
y=0

𝜆

2N∑
x = 0

x + d(x) = even

‖∇d‖2
. (6.97)

Note that xc ∈ [0, 2N], while xl, xr ∈ [0, N − 1], due to Equations (6.80) and (6.81).
Although defined on the image plane, the energy function can be alternatively defined for an epipolar

line. The DP algorithm can manage one line at a time but other algorithms, such as relaxation, BP, and
GC, can manage globally the entire image plane or part of it.

Equations (6.96) and (6.97) are the most basic forms of stereo matching. Various alternative repre-
sentations may be derived by combining appearance and geometric constraints, features, and measures.
The additional constraints may be directional smoothness and occlusion indicator which turns and off
the smoothness term. Unless otherwise stated, these basic forms will be used as baseline equations for
circuit design, though some modifications may be inevitable.

180 Architectures for Computer Vision

Problems
6.1 [Correspondence] Using Equation (6.45), show that the epipolar line is collinear and that the

corresponding points are located on it.

6.2 [Correspondence] Derive ET = [el]×H−1 in Equation (6.41).

6.3 [Correspondence] For parallel optics, derive the essential matrix. Check for the essential matrix
equation.

6.4 [Correspondence] For parallel cameras, derive the fundamental matrix and check for the funda-
mental matrix equation. What is the epipole?

6.5 [Correspondence] What does the fundamental matrix mean in the rectified system?

6.6 [Rectification] In Equation (6.62), derive the three component of Rrect. Check for the parallel
camera system.

6.7 [Rectification] Consider a rectified system. In reference to the world coordinates, the cameras are
located at (−B∕2, 0, 0)T and (B∕2, 0, 0)T and the principal points are defined at (−B∕2, 0, f)T and
(B∕2, 0, f)T , where f is the focal length and B is the baseline between the two camera centers. If
the disparity is defined as d = xl − xr , what is the position of the object, (X, Y , Z)?

6.8 [Rectification] Repeat the previous problem, when the world coordinates coincide with the left
camera and the right camera.

6.9 [Rectification] For the rectified system, with baseline B and focal length f , derive the camera and
fundamental matrices.

6.10 [Spectrum] Solve Equation (6.94) for S using pseudo-inverse and discuss the properties.

References
An L, Jia Y, Wang J, Zhang X, and Li M 2004 An efficient rectification method for trinocular stereovision. Pattern

Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on, vol. 4, pp. 56–59 IEEE.
Belhumeur PN 1996 A Bayesian approach to binocular steropsis. International Journal of Computer Vision 19(3),

237–260.
Bergner S, Muler T, Weiskopf D, and Muraki D 2006 A spectral analysis of function composition and its implications

for sampling in direct volume visualization. IEEE Trans. Vis. Comput. Graph. 12(5), 1353–1360.
Bleyer M and Gelautz M 2007 Graph-cut-based stereo matching using image segmentation with symmetrical treatment

of occlusions. Signal Processing: Image Communication 22(2), 127–143.
Bleyer M, Rother C, and Kohli P 2010 Surface stereo with soft segmentation. Computer Vision and Pattern Recognition

(CVPR), 2010 IEEE Conference on, pp. 1570–1577 IEEE.
Brahmachari AS and Sarkar S 2013 Hop-diffusion Monte Carlo for epipolar geometry estimation between very

wide-baseline images. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 755–762.
Candocia F and Adjouadi M 1997 A similarity measure for stereo feature matching. IEEE Trans. Image Processing

6(10), 1460–1464.
Chin TJ, Wang H, and Suter D 2009 Robust fitting of multiple structures: The statistical learning approach. ICCV,

pp. 413–420 IEEE.
Chojnacki W and Brooks MJ 2007 On the consistency of the normalized eight-point algorithm. Journal of Mathe-

matical Imaging and Vision 28(1), 19–27.
de Villiers JP, Leuschner FW, and Geldenhuys R 2010 Modeling of radial asymmetry in lens distortion facilitated

by modern optimization techniques. IS&T/SPIE Electronic Imaging, pp. 75390J–75390J International Society for
Optics and Photonics.

Deng Y, Yang Q, Lin X, and Tang X 2005 A symmetric patch-based correspondence model for occlusion handling.
Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on, vol. 2, pp. 1316–1322 IEEE.

Stereo Vision 181

Dubrofsky E 2007 Homography estimation Master’s thesis Carleton University.
Faugeras O 1993 Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT Press, Cambridge, Mas-

sachusetts.
Faugeras O and Luong Q 2004 The Geometry of Multiple Images: The Laws That Govern the Formation of Multiple

Images of a Scene and Some of Their Applications. MIT Press.
Faugeras O, Luong Q, and Maybank S 1992 Camera self-calibration: Theory and experiments. ECCV, pp. 321–334.
Fleet DJ and Jepson AD 1990 Computation of component image velocity from local phase information. International

Journal of Computer Vision 5(1), 77–104.
Fleet DJ and Jepson AD 1993 Stability of phase information. IEEE Trans. Pattern Anal. Mach. Intell. 15(12),

1253–1268.
Fookes C, Maeder A, Sridharan S, and Cook J 2004 Multi-spectral stereo image matching using mutual information.

3D Data Processing, Visualization and Transmission, 2004. 3DPVT . Proceedings. 2nd International Symposium
on, pp. 961–968 IEEE.

Forsyth D and Ponce J 2003 Computer Vision: A Modern Approach. Prentice Hall.
Fusiello A, Trucco E, and Verri A 2000 A compact algorithm for rectification of stereo pairs. Machine Vision

Application 12(1), 16–22.
Gautama T and van Hulle MM 2002 A phase-based approach to the estimation of the optical flow field using spatial

filtering. IEEE Trans. Neural Networks 13(5), 1127–1136.
Hartley R and Li H 2012 An efficient hidden variable approach to minimal-case camera motion estimation. IEEE

Trans. Pattern Anal. Mach. Intell. 34(12), 2303–2314.
Hartley R and Zisserman A 2004 Multiple View Geometry in Computer Vision. Cambridge University Press.
Hartley RI 1997 In defense of the eight-point algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 19(6), 580–593.
Hong L and Chen GQ 2008 Segment based image matching method and system. US Patent 7,330,593.
Julesz B 1971 Foundations of Cyclopean Perception. University of Chicago Press.
Kang YS and Ho YS 2011 An efficient image rectification method for parallel multi-camera arrangement. Consumer

Electronics, IEEE Transactions on 57(3), 1041–1048.
Karsten M, Aljoscha S, Kristina D, Philipp M, Peter K, Thomas W et al. 2009 View synthesis for advanced 3D video

systems. EURASIP Journal on Image and Video Processing 2008, 1–11.
Kolmogorov V 2005 Graph Cut Algorithms for Binocular Stereo with Occlusions. Springer-Verlag.
Lin MH and Tomasi C 2003 Surfaces with occlusions from layered stereo. Computer Vision and Pattern Recognition,

2003. Proceedings. 2003 IEEE Computer Society Conference on, vol. 1, pp. I–710 IEEE.
Longuet-Higgins HC 1981 A computer algorithm for reconstructing a scene from two projections. Nature 293(5828),

133–135.
Loop C and Zhang Z 1999 Computing rectifying homographies for stereo vision. Computer Vision and Pattern

Recognition, 1999. IEEE Computer Society Conference on., vol. 1 IEEE.
Lucey S, Ashrat RNN, and Sridharan S 2013 Fourier Lukas-Kanade algorithm. IEEE Trans. Pattern Anal. Mach.

Intell. 35(6), 1383–1396.
Luong Q and Faugeras O 1996 The fundamental matrix: Theory, algorithms, and stability analysis. International

Journal of Computer Vision 17(1), 43–75.
Marr D and Poggio T 1979 A computational theory of human stereo vision. jChemPhys 21(6), 1087–1092.
Middlebury U 2013 Middlebury stereo home page http://vision.middlebury.edu/stereo (accessed Sept. 4, 2013).
Min D and Sohn K 2008 Cost aggregation and occlusion handling with WLS in stereo matching. IEEE Trans. Image

Processing 17(8), 1431–1442.
Miraldo P and Araújo H 2013 Calibration of smooth camera models. IEEE Trans. Pattern Anal. Mach. Intell. 35(9),

2091–2103.
Ni K, Jin H, and Dellaert F 2009 Groupsac: Efficient consensus in the presence of groupings. ICCV, pp. 2193–2200.

IEEE.
Ogale AS and Aloimonos Y 2004 Stereo correspondence with slanted surfaces: Critical implications of horizontal

slant. Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer
Society Conference on, vol. 1, pp. I–568 IEEE.

OpenCV 2013 Camera calibration and 3D reconstruction http://docs.opencv.org/master/modules/calib3d/doc/
-camera_calibration_and_3d_reconstruction.html?highlight=bouguet (accessed Oct. 11, 2013).

Oram D 2001 Rectification for any epipolar geometry. BMVC, p. Session 7: Geometry and Structure.
Pollefeys M, Koch R, and Van Gool L 1999 A simple and efficient rectification method for general motion. Computer

Vision, 1999. The Proceedings of the Seventh IEEE International Conference on, vol. 1, pp. 496–501 IEEE.

http://vision.middlebury.edu/stereo
http://vision.middlebury.edu/stereo
http://docs.opencv.org/master/modules/calib3d/doc/-camera_calibration_and_3d_reconstruction.html?
http://docs.opencv.org/master/modules/calib3d/doc/-camera_calibration_and_3d_reconstruction.html?

182 Architectures for Computer Vision

Rozenfeld S and Shimshoni I 2005 The modified pbM-estimator method and a runtime analysis technique for the
RANSAC family. CVPR, pp. I: 1113–1120.

Scharstein D 1999 View Synthesis using Stereo Vision. Springer-Verlag.
Scharstein D and Szeliski R 2002 A taxonomy and evaluation of dense two-frame stereo correspondence algorithms.

International Journal of Computer Vision 47(1–3), 7–42.
Sheu HT and Wu MF 1995 Fourier descriptor based technique for reconstructing 3D contours from stereo images.

IEE Proceedings-Vision, Image and Signal Processing 142(2), 95–104.
Sun J, Li Y, Kang SB, and Shum HY 2005 Symmetric stereo matching for occlusion handling. Computer Vision and

Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol. 2, pp. 399–406 IEEE.
Tao H, Sawhney HS, and Kumar R 2001 A global matching framework for stereo computation. Computer Vision,

2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on, vol. 1, pp. 532–539 IEEE.
Tian D, Lai PL, Lopez P, and Gomila C 2009 View synthesis techniques for 3D video. SPIE Optical Engineering+

Applications, pp. 74430T–74430T International Society for Optics and Photonics.
Tippetts BJ, Lee DJ, Lillywhite K and Archibald J 2013 Review of stereo vision algorithms and their suitability for

resource-limited systems http://link.springer.com/article/10.1007%2Fs11554-012-0313-2 Sept. 4, 2013).
Tola E, Lepetit V, and Fua P 2010 Daisy: An efficient dense descriptor applied to wide-baseline stereo. IEEE Trans.

Pattern Anal. Mach. Intell. 32(5), 815–830.
Trucco E and Verri A 1998 Introductory Techniques for 3-D Computer Vision. Prentice Hall.
Tsai R 1987 A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-

shelf tv cameras and lenses. Robotics and Automation, IEEE Journal of 3(4), 323–344.
Ueshiba T 2006 An efficient implementation technique of bidirectional matching for real-time trinocular stereo vision.

Pattern Recognition, 2006. ICPR 2006. 18th International Conference on, vol. 1, pp. 1076–1079 IEEE.
Weng J, Cohen P, and Herniou M 1992 Camera calibration with distortion models and accuracy evaluation. IEEE

Trans. Pattern Anal. Mach. Intell. 14(10), 965–980.
Wolfe JM, Kluender KR, Levi DM, Bartoshuk LM, Herz RS, Klatzky RL, and Lederman SJ 2006 Sensation &

Perception. Sinauer Associates Sunderland, MA.
Woodford O, Torr P, Reid I, and Fitzgibbon A 2009 Global stereo reconstruction under second-order smoothness

priors. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2115–2128.
Yu Y 2012 Estimation of Markov random field parameters using ant colony optimization for continuous domains.

2012 Spring Congress on Engineering and Technology, pp. 1–4.
Zhang Z 2000 A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11),

1330–1334.
Zheng Y, Sugimoto S, and Okutomi M 2011 A Branch and Contract algorithm for globally optimal fundamental

matrix estimation. CVPR, pp. 2953–2960 IEEE.
Zitnick CL and Kanade T 2000 A cooperative algorithm for stereo matching and occlusion detection. IEEE Trans.

Pattern Anal. Mach. Intell. 22(7), 675–684.
Zitnick CL, Kang SB, Uyttendaele M, Winder S, and Szeliski R 2004 High-quality video view interpolation using a

layered representation. ACM Transactions on Graphics (TOG), vol. 23, pp. 600–608 ACM.

http://link.springer.com/article/10.1007%2Fs11554-012-0313-2
http://link.springer.com/article/10.1007

7
Motion and Vision Modules

This chapter introduces some of the issues associated with vision modules and their integration. For the
issue of motion, we first review the geometry of the 3D and 2D motion fields. We also review the basics
of structure from motion, and then focus on optical flow, in which we examine various constraints in a
more fundamental manner and review basic energy minimization. The contents are not intended to be
complete in scope and depth, as the aim is to lay the groundwork for the topics in subsequent chapters. For
a more comprehensive treatment of motion, please refer to books on multiple view geometry (Faugeras
and Luong 2004; Hartley and Zisserman 2004), reviews of optical flow (Baker et al. 2011; Barron
et al. 1994; Fleet and Weiss 2006; McCane et al. 2001), and scene flow (Cech et al. 2011; Huguet and
Devernay 2007; Vedula et al. 2005). In addition, a web site dealing with optical flow is also available
(Middlebury 2013).

Like binocular stereo vision, motion vision is one of the major vision modules by which we can induce
motion information in addition to the depth of the surface shape and the volume information of objects.
Created by a camera, the successive frames of images contain depth information by means of optical
flow. The relative velocity between the scene motion and the egomotion appears as the motion field,
when it is projected onto the image plane. The optical flow refers to the apparent velocity of the motion
velocity when viewed with the eyes.

The problem of motion is that of how to recover the 3D structure or the pose for a rigid or non-
rigid body and moving camera (egomotion). Unlike stereo vision, motion estimation is involved with
multidimensional search, camera motion, and rigid or non-rigid body. For the rigid body, structure from
motion (SfM) (Ullman 1979) and for the non-rigid body, scene flow (Vedula et al. 2005), have been
developed. The natural method is to estimate the motion field from the image features directly. The other
method is to estimate a dense intermediate variable, called optical flow, from the images and then use it
to estimate the scene flow.

The second part of this chapter introduces the integration of vision modules, which is by no means
complete but it may give rise to some interesting research questions. There are numerous approaches to
model fusion, especially stereo and motion (Li and Sclaroff 2008; Liu and Philomin 2009; Pons et al.
2007; Wedel et al. 2011, 2008b; Zhang et al. 2003). The general approach is to build each module, obtain
the results, and combine the results via energy minimization or boosting techniques. Instead we focus
on the relationships between some of the major vision modules, bypassing the final motion and structure
variables. This approach gives us an intuitive look into the opto-geometrical relationships between vision
variables and stronger combined constraints than individual constraints. This chapter concludes with a

Architectures for Computer Vision: From Algorithm to Chip with Verilog, First Edition. Hong Jeong.
© 2014 John Wiley & Sons Singapore Pte. Ltd. Published 2014 by John Wiley & Sons Singapore Pte. Ltd.
Companion Website: www.wiley.com/go/jeong

http://www.wiley.com/go/jeong

184 Architectures for Computer Vision

Π

O

X

Y

o x

y

X

x

f

Z

Figure 7.1 A 3D space O and image plane Π (X and x are the object position and image, respectively)

set of ordinary differential equations that directly link the 2D variables – namely, disparity, optical flow,
blur diameter, and surface normal.

7.1 3D Motion
Visual motion provides three types of information: camera motion, dynamics of the moving objects, and
the spatial layout of the scene. To begin with, we consider a 3D space, in which the image plane Π and
an object X are defined (Figure 7.1). The world coordinates and the image coordinates are defined by
the origins O and o, respectively. The image plane is positioned at (0, 0, f) in this space, where f is the
focal length. The vector X is projected onto x in the image plane. When X moves, x does so also in the
2D plane. There is a geometrical relationship between the object motion and the observed velocities.
The relationships can be represented in various forms: component, vector, and matrix. In a more general
setting, both objects and camera may move, resulting in relative velocities.

In a perspective projection, if a point X = (X, Y , Z)T in 3D space is mapped to a point x = (x, y, f)T in
2D space, the image position is represented by

⎧⎪⎨⎪⎩
x = f X

Z
,

y = f Y

Z
,

or

[
x
y

]
=
[

f 0 0
0 f 0

]
1
Z

⎡⎢⎢⎣
X
Y
Z

⎤⎥⎥⎦ . (7.1)

This is the relationship of the absolute positions (x, y) and (X, Y , Z) in the two spaces. The relationship
between differentials ẋ and Ẋ in the two spaces is sometimes needed.

⎧⎪⎨⎪⎩
ẋ = f Ẋ

Z
− x Ż

Z
,

ẏ = f Ẏ

Z
− y Ż

Z
,

or

[
ẋ
ẏ

]
=
[

f 0 −x
0 f −y

]
1
Z

⎡⎢⎢⎣
Ẋ
Ẏ
Ż

⎤⎥⎥⎦ . (7.2)

Note that different matrices are used in transforming the position and velocity from 3D to 2D. In general,
the relationship of the coordinates as well as their differentials is nonlinear. Higher-order differentials
are involved with even more nonlinear representation.

Motion and Vision Modules 185

If the 3D position moves with Ẋ = (U, V , W)T , the observed velocity ẋ = (u, v, 0)T becomes

{
u = f U

Z
− x W

Z
,

v = f V

Z
− y W

Z
,

or

[
u
v

]
=
[

f 0 −x
0 f −y

]
1
Z

⎡⎢⎢⎣
U
V
W

⎤⎥⎥⎦ . (7.3)

If the object is rigid, the motions of the points on the object surface are all dependent. Otherwise, if the
object is non-rigid (Vedula et al. 2005), the object points are all independent in their motion. To deal
with a non-rigid body, we need a dense three-dimensional vector field defined for every point on every
surface in the scene.

For a rigid body’s motion, we define the translational and rotational velocities by t = (tx, ty, tz)
T and

𝝎 = (𝜔x,𝜔y,𝜔z)
T . In the world coordinate system, the composite velocity of the object is

Ẋ = t + 𝝎 × X. (7.4)

In matrix form, the motion vector becomes

Ẋ = t − [X]×𝝎 = t +
[

I −[X]×
][t

𝝎

]
, (7.5)

which, in component form, is

⎧⎪⎨⎪⎩
U = tx + 𝜔yZ − 𝜔zY ,
V = ty + 𝜔zX − 𝜔xZ,
W = tz + 𝜔xY − 𝜔yX.

or
⎡⎢⎢⎣

U
V
W

⎤⎥⎥⎦ =
⎡⎢⎢⎣

1 0 0 0 Z −Y
0 1 0 −Z 0 X
0 0 1 Y −X 0

⎤⎥⎥⎦
[

t
𝝎

]
. (7.6)

Combining Equations (7.3) and (7.6), we get

⎧⎪⎨⎪⎩
u = ftx−xtz

Z
− 𝜔xxy

f
+ 𝜔y

(
x2

f
+ f
)
− 𝜔zy,

v = fty−ytz

Z
− 𝜔x

(
y2

f
+ f
)
+ 𝜔yxy

f
+ 𝜔zx .

(7.7)

The matrix representation is ẋ = HẊ:

[
u
v

]
=
[

f 0 −x
0 f −y

]
1
Z

⎡⎢⎢⎣
1 0 0 0 Z −Y
0 1 0 −Z 0 X
0 0 1 Y −X 0

⎤⎥⎥⎦
[

t
𝝎

]
(7.8)

and the vector form is

ẋ = ẑ × (t × x)
X ⋅ ẑ

+ {ẑ × (x × (𝝎 × x))}. (7.9)

The motion flow comprises translational and rotational components (Figure 7.2). This figure shows
two cases of pure translation, a case of pure rotation, and one of composite motion.

Let’s represent the composite motion vector by

ẋ = ẋtr + ẋrot . (7.10)

186 Architectures for Computer Vision

(d) Composite motion (t, ≠ 0)

(b) Translation (tz = 0, = 0)(a) Translation (t ≠ 0, = 0)

(c) Rotation (t = 0, ≠ 0)

Figure 7.2 Motion fields (FOC, FOE, and AOR are denoted with marks. f = 1 and Z = 10)

The first term is a translation component, known up to a scale factor Z, that is t∕Z. The second term is a
rotational component, which is independent of the depth, Z. If tz ≠ 0, the translational flow field is

utr = (x0 − x)
tz
Z

, vtr = (y0 − y)
tz

Z
, if tz ≠ 0, (7.11)

where (x0, y0) = (f tx∕tz, f ty∕tz) is the focus of expansion (FOE) (or focus of contraction (FOC)), which is
the fixed point of the translational flow field. The translation vector is also related to the time to collision:

T = (x0 − x)∕utr = (y0 − y)∕vtr, (7.12)

which is equivalent to Z∕tz.
The motion field is radial with all the vectors pointing towards or away from a single point. The length

of the motion field is inversely proportional to the depth. It is also directly proportional to the distance
to the FOE. If tz = 0, the translational field is

u = f
tx

Z
, v = f

ty

Z
. (7.13)

All motion field vectors are parallel to each other and inversely proportional to depth.

Motion and Vision Modules 187

If 𝜔z ≠ 0, the rotational flow field is

urot = −
𝜔xxy

f
+ 𝜔y

(
x2

f
+ f

)
− 𝜔zy, vrot = −𝜔x

(
y2

f
+ f

)
+

𝜔yxy

f
+ 𝜔zx, (7.14)

which is centered at a fixed point, (f𝜔x∕𝜔z, f𝜔y∕𝜔z), called an axis of rotation (AOR).
Thus far, we have considered a point motion. In many cases, the moving objects may be modeled by a

moving plane. Let us consider such a plane, X = (X, Y , Z)T , which has the normal vector n = (nx, ny, nz)
T

and a distance d from the origin. Then, nT ⋅ X = d. Substituting the image point, x = f X∕Z, we obtain

Z =
fd

nxx + nyy + nz f
. (7.15)

Putting this into Equation (7.7), we have the motion field equation:

⎧⎪⎨⎪⎩
u = 1

fd

(
a1x2 + a2xy + a3fx + a4fy + a5f 2

)
,

v = 1

fd

(
a1xy + a2y2 + a6fy + a7fx + a8 f 2

)
,

(7.16)

where

a1 = −d𝜔y − tznx, a2 = d𝜔x − tzny, a3 = −tznz + txnx, a4 = d𝜔z + txny,

a5 = −d𝜔y + txnz, a6 = −tznz + tyny, a7 = −d𝜔z + tynx, a8 = d𝜔x + tynz.

The motion field is the second-order polynomials, where the coefficients are the functions of (n, d, t,𝝎).
That is, the motion field of a planar surface is a quadratic function in the image.

7.2 Direct Motion Estimation
Direct motion estimation is used to recover the 3D motion from the observed image features, without
relying on the intermediate variable, optical flow. Because the concept is very intuitive, let us first review
this method.

From the outset, we assume the brightness constancy constraint, which will be treated in detail in
Section 7.5:

− dI
dt

= [Ix Iy]

[
u
v

]
. (7.17)

Combining Equations (7.8) and (7.17), we get

− dI
dt

=
[

Ix Iy

][f 0 −x
0 f −y

]
1
Z

⎡⎢⎢⎣
1 0 0 0 Z −Y
0 1 0 −Z 0 X
0 0 1 Y −X 0

⎤⎥⎥⎦
[

t
𝝎

]
. (7.18)

We can reduce the variables in this equation by using Equation (7.1):

− dI
dt

=
[

Ix Iy

][f 0 −x
0 f −y

]
1
Z

⎡⎢⎢⎣
1 0 0 0 Z −yZ∕f
0 1 0 −Z 0 xZ∕f
0 0 1 yZ∕f −xZ∕f 0

⎤⎥⎥⎦
[

t
𝝎

]
. (7.19)

188 Architectures for Computer Vision

We have one equation for each pixel, which contains seven variables, (Z, t,𝝎). There are algorithms that
solve this problem, by modeling Z in parameters (Black and Yacoob 1995; Negahdaripour and Horn
1985).

In real-time stereo (Harville et al. 1999), the depth can be measured directly. The depth constraint can
then be derived and combined with the brightness constraint. The direct depth method uses the depth
data, Z, to model the depth as

Z(x, y, t) = Z(x + u, y + v, t + 1) − W, (7.20)

which gives the depth constraint,

Zxu + Zyv + Zt − W = 0. (7.21)

Note that the constraint is similar to that of brightness. We can derive

− Zt =
1
Z

[
fZx fZy − (Z + xZx + yZy)

]⎡⎢⎢⎣
U
V
W

⎤⎥⎥⎦ . (7.22)

Similarly, for the brightness constraint, we obtain

− It =
[

fIx fIy −(xIx + yIy)
]⎡⎢⎢⎣

U
V
W

⎤⎥⎥⎦. (7.23)

Combining Equations (7.22) and (7.23), we get

[
−It

−Zt

]
=
[

fIx fIy −(xIx + yIy)
fZx yZy −(Z + xZx + yZy)

]
1
Z

⎡⎢⎢⎣
U
V
W

⎤⎥⎥⎦ . (7.24)

Finally, we have

⎡⎢⎢⎣
− dI

dt

− dZ

dt

⎤⎥⎥⎦ =
[

fIx fIy −(xIx + yIy)
fZx yZy −(Z + xZx + yZy)

]
1
Z

⎡⎢⎢⎣
1 0 0 0 Z −yZ∕f
0 1 0 −Z 0 xZ∕f
0 0 1 yZ∕f −xZ∕f 0

⎤⎥⎥⎦
[

t
𝝎

]
. (7.25)

If ∇tI and ∇tZ are available, we can solve this equation for (t,𝝎).

7.3 Structure from Optical Flow
The other approach is to recover the motion (t,𝝎) from the given optical flow, (u, v). First, let us estimate
t from the optical flow. One of the methods is to minimize the energy:

E(t, Z) =
∫

(
u −

ftx − xtz

Z

)2

+
(

v −
fty − ytz

Z

)2

dxdy. (7.26)

Motion and Vision Modules 189

If we define a = ftx − xtz and b = fty − ytz, the energy function has the form ⟨(u, v), 1

Z
(a, b)⟩. We first

minimize the sum of least squares with respect to the depth, obtaining Z = (a2 + b2)∕(au + bv). Inserting
Z into the energy equation, we have

E(t) =
∫

av − bu
a2 + b2

dxdy. (7.27)

If we differentiate this function in terms of tx, ty, and tz, we obtain

∫
(fty − ytz)Fdxdy = 0,

∫
(ftx − xtz)Fdxdy = 0,

∫
(ytx − xty)Fdxdy = 0, (7.28)

where F = (av − bu)∕(a2 + b2). The three equations are linearly dependent and difficult to solve.
Therefore, we define a different norm instead:

E(t, Z) =
∫

{(
u −

ftx − xtz

Z

)2

+
(

v −
fty − ytz

Z

)2 }
(a2 + b2)dxdy. (7.29)

If we differentiate the function with respect to Z, we get the same Z = (a2 + b2)∕(au + bv), but have a
simpler energy function,

E(t) =
∫

(av − bu)2dxdy. (7.30)

Differentiating this function with respect to the variables, we have

⎡⎢⎢⎣
a d f
d b e
f e c

⎤⎥⎥⎦ t = 0, ‖t‖ = 1, (7.31)

where

a =
∫

v2dxdy, b =
∫

u2dxdy, c =
∫

(yu − xv)dxdy, d =
∫

uvdxdy,

e =
∫

u(yu − xv)dxdy, f =
∫

v(yu − xv)dxdy.

The solution is a singular vector that has the smallest singular value.
For the rotational case, we define

E(t) =
∫

(u − urot)
2 + (v − vrot)

2dxdy. (7.32)

Differentiating with (𝜔x,𝜔y,𝜔z), we have

[
xy f − x2 y

f + y2 −xy −x

]⎡⎢⎢⎣
𝜔x

𝜔y

𝜔z

⎤⎥⎥⎦ =
[

u
v

]
. (7.33)

This can also be solved by LMS or pseudo-inverse.

190 Architectures for Computer Vision

When the motion field contains both translational and rotational components, we can define the
metric:

E(t,𝝎) =
∫

{[
u − urot

v − vrot

]
⋅
[
−vtr

utr

]}2

dxdy, (7.34)

or, in vector form,

∫
((t × x)(ẋ − 𝜔 × x))2dx. (7.35)

The motion parallax can be assumed because the difference in motion between two very close points
does not depend on rotation. This information can be used at depth discontinuities to obtain the direction
of translation. For two points,

Δutr = u1 − u2 = (x − x0)

(
1
Z1

− 1
Z2

)
, (7.36)

Δvtr = v1 − v2 = (y − y0)

(
1
Z1

− 1
Z2

)
. (7.37)

Therefore,

Δv
Δu

=
y − y0

x − x0

. (7.38)

On the other hand, vector components that are perpendicular to the translational component are due
to the rotation.

u⟂
tr =

(y − y0, x − x0)T‖(y − y0, x − x0)‖ , (7.39)

taking

u ⋅ u⟂ = 1
(y − y0, x − x0)

(y − y0)urot − (x − x0)vrot. (7.40)

One of the motion estimation methods is to decompose the motion flow into translational and rotational
components. Translational flow field is radial (all vectors emanate from – or pour into – one point),
whereas rotational flow field is quadratic in image coordinates. Either search in the space of rotations:
remaining flow field should be translational. Translational flow field is evaluated by minimizing deviation
from the radial field:

(−v, u) ⋅ (x − x0, y − y0) = 0, (7.41)

or search in the space of the directions of translation: vectors perpendicular to translation are due to
rotation only. Refer to (Burger and Bhanu 1990; Heeger and Jepson 1992; Nelson and Aloimonos 1988;
Prazdny 1981).

The other line of research is to use the parametric model for the motion field (Higgins and Prazdny
1980; Waxman 1987). In this approach, the flow is linear in the motion parameters (quadratic or higher
order in the image coordinates) and thereby the parametric model for local surface patches (planes or
quadrics) solves locally for motion parameters and structure.

Motion and Vision Modules 191

7.4 Factorization Method
Given a set of feature tracks, the factorization method estimates the 3D structure and 3D (camera) motion
by SVD (Tomasi and Kanade 1992a), using an assumption of orthographic projection.

A general affine camera is represented by the combination of the orthographic projection and the
affine transformation of the image:

x = AX + b, or

[
x
y

]
=
[

a11 a12 a13

a21 a22 a23

]⎡⎢⎢⎣
X
Y
Z

⎤⎥⎥⎦ +
[

b1

b2

]
, (7.42)

where A is the projection matrix and b is the translation vector. Let {xij|i ∈ [1, m], j ∈ [1, n]} be the
images of the fixed 3D points, {Xj|j ∈ [1, n]}, with m cameras. Considering the affine transformation,
the projection is represented by

xij = AiXj + bi, i ∈ [1, m], j ∈ [1, n]. (7.43)

The problem is to determine m projection matrices A, m vectors b, and n points X, given the mn points
x. For the reconstruction, we have 2mn known variables, 8m + 3n − 12 unknowns, and 12 degrees of
freedom for the affine transformation:

2mn ≥ 8m + 3n − 12. (7.44)

This equation gives m ≥ 2 and n ≥ 4 in ideal cases. Generally, we need more than four corresponding
points:

Let us subtract the centroid of the image points:

xij −
1
n

∑
j∈[1,n]

xij = (AiXj + bi) −
1
n

∑
j∈[1,n]

(AiXj + bi)

= Ai

{
Xj −

1
n

∑
j∈[1,n]

Xj

}
, i ∈ [1, m]. (7.45)

We have also the 3D points, subtracted with the centroids. For simplicity, we assume that the origin of
the camera and the world coordinate systems are all defined at the centroid of the image points and 3D
points:

xij = AiXj, i ∈ [1, m], j ∈ [1, n]. (7.46)

We build a matrix equation, H = AX:

H =
⎡⎢⎢⎢⎣

x11 x12 ⋯ x1n

x21 x22 ⋯ x2n

x11 x12 ⋯ x1n

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

A1

A2

⋮
Am

⎤⎥⎥⎥⎦
[

X1 X2 ⋯ Xn

]
. (7.47)

Here, H is the 2m × n measurement matrix, A is the 2m × 3 motion matrix, and X is the 3 × n structure
matrix. Note that the measurement matrix only has rank 3.

The problem becomes one of computing

(A∗, X∗) = argmin
A,X
|H − AX|2. (7.48)

192 Architectures for Computer Vision

The usual approach is to decompose the measurement matrix into two matrices with rank 3. First, we
use the SVD,

H = UΛ′V , (7.49)

where Λ′ is a diagonal matrix that has the eigenvalues sorted along the diagonal. Then, take the first three
largest eiegenvalues, 𝜆1 ≥ 𝜆2 ≥ 𝜆3, of Λ′ and build the diagonal matrix:

Λ = diag(𝜆1, 𝜆2, 𝜆3). (7.50)

The solution is

A = UΛ1∕2, X = Λ1∕2V . (7.51)

The decomposition is not unique, since

H = AGG−1X, (7.52)

where G is any 3 × 3 invertible matrix. To remove this uncertainty, we use the constraint that the image
axes are perpendicular and unity. For each camera, Ai = (ai1, ai2)T , find Fi that satisfies

aT
i1Fai1 = 1 aT

i2Fai2 = 1, aT
i1Fai2 = 0. (7.53)

This gives us a large set of equations for the entries in matrix F. Using Cholesky decomposition, we
have F = GGT . The solution is then

Ai ← AiG, Xi ← G−1Xi, i ∈ [1, m]. (7.54)

There are numerous variations of the factorization methods: orthographic (Tomasi and Kanade 1992b),
weak perspective (Tomasi and Weinshall 1993), para-perspective (Poelman and Kanade 1994, 1997),
sequential factorization (Morita and Kanade 1997), perspective (Sturm and Triggs 1996), factoriza-
tion with uncertainty (Anandan and Irani 2002), element-wise factorization (Dai et al. 2013), online
factorization (Kennedy et al. 2013), and affine factorization (Wang et al. 2013).

7.5 Constraints on the Data Term
Thus far, we have reviewed some issues associated with estimating 3D motion and structures, directly or
indirectly, from images. The optical flow is an intermediate variable that behaves like a latent variable in
3D reconstruction. Unlike the 3D quantities, the optical flow is defined on the 2D image and is related
to the correspondence problem in two or more image sequences. In this problem, the constraints are the
most crucial, together with minimization method, for resolving the uncertainties originating from the
ill-posed nature.

To estimate optical flow, we usually build an energy function that consists of data and smoothness
terms:

E(v) =
∑
p∈

𝜙(v(p)) +
∑

p,q∈

𝜓pq(v(p), v(q)). (7.55)

Here, the variable is the optical flow, v. The data term builds a relationship between the data and the
estimated variable. The smoothness function states the relationship between neighborhoods in terms

Motion and Vision Modules 193

x

t
y

Figure 7.3 A motion cube ({I(x, y, t)|x, y ∈ , t = 0, 1,…})

of the optical flow. From a physical point of view, the data term is related to the conservation law of
brightness or the differential of brightness in time and space. The smoothness term is related with the
spatial variation of the estimated variables. The constraint is local in the data term but global in the
smoothness term.

The optical flow problem consists of building the energy function, which is a cost function of the
variables, and solving it using the optimization method, which is a general optimization technique tailored
to the problem. Therefore, the performance to a large extent depends on how the energy function models
the problem with efficient constraints. The multitude of algorithms in optical flow largely depends
on the diversity of the constraints and the method of optimization. In this section, we review some
representative local and global constraints. For an extensive review on optical flow, see (Raudies 2013;
Wikipedia 2013b). Let us review in detail the constraints on the data term first.

The starting point of the constraints on the data term is the brightness constancy (BC). The motion
analysis needs a stack of video frames, which can be represented as depicted in Figure 7.3. A video signal
can be viewed as a stack of images in the direction of the time domain. In the spatiotemporal space,
called the motion cube, objects are considered to move in the x-y plane as well as in the t direction. The
constraint on motion is the relationship between successive image frames, {I(x, y, t)|t = 0, 1,…}. For
the stereo-motion system, the data sequence is the image pairs, {(Il(x, y), Ir(x, y)|x, y ∈ , t = 0, 1,…}.
In this spatiotemporal space, many new features can be defined (Freeman and Adelson 1991; Sizintsev
and Wildes 2012).

The optical flow is a generalization of the disparity from 1D to 2D. Therefore, the constraints must
also be generalized. As with binocular vision, the corresponding points must have the same intensity,
called the photometric constraint. When the optical flow is (u, v), the two points must be equally bright,
unless some special illumination is involved. The brightness conservation equation (or image constraint
equation) (Fennema and Thompson 1979) is

I(x, y, t) − I(x + u, y + v, t + 1) = 0, (7.56)

where the time is normalized to the sampling interval. This is the brightness constancy (BC).
The residual is defined by

𝛿 = I(x + u, y + v, t + 1) − I(x, y, t), (7.57)

which is a generalization of Equation (6.71). This measure assumes that the illumination is constant
within the sampling time, and holds even for large variations of optical flow. Because this measure holds
for a pixel, it causes the aperture problem to arise. For a pair of pixels, we have one equation with
two variables, and thus obtain one vector: the normal. To remove the uncertainty, we build the energy
function by integrating the local measure and constraints over the image plane.

194 Architectures for Computer Vision

The next constraint is the linearized brightness constancy. If the variation in optical flow is small, the
BC can be approximated by the Taylor series,

I(x + u, y + v, t + 1) = 𝜕

𝜕x
I + 𝜕

𝜕y
I + 𝜕

𝜕t
I + O(u, v), (7.58)

where O(u, v) is the higher-order terms. Taking the first-order Taylor series, we obtain the optical flow
constraint equation (OFCE) (Horn and Shunck 1981),

Ixu + Iyv +
𝜕I
𝜕t

= 0, or ∇IT v = −It, or (∇tI)T
⎡⎢⎢⎣

u
v
1

⎤⎥⎥⎦ = 0, (7.59)

where, v = (u, v)T is the motion vector and ∇t = (𝜕x, 𝜕y, 𝜕t)
T is the gradient operator. We simply call this

the linearized brightness constancy (LBC). We define the residual by

𝛿 =
[

Ix Iy It

]
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

(∇t I)T

⎡⎢⎢⎣
u
v
1

⎤⎥⎥⎦ . (7.60)

Although this measure is defined for a small variable, it inherits all the properties of the BC.
Two variables in one equation signify that the equation is under-determined. Using the Moore-Penrose

pseudo-inverse, we have v⟂ = −It∇I∕|∇I|2. This is just a row-space vector and all the null-space vectors
are missing. Any vector having the form v = v⟂ + v∥ satisfies the equation, where v̂∥ is the unit null-space
vector and 𝜆 ∈ . This can be interpreted geometrically as follows. In (u, v) space, the equation represents
a line. For all vectors on this line v⟂ is unique. In the (u, v) plane, the photometric constraint is represented
by a straight line (Figure 7.4). Only a normal vector, v, can be estimated with the given photometric
constraint. This phenomenon is often called the aperture problem. Viewing in a small window, we can
estimate only the normal component of the motion field. This uncertainty can be resolved by constraint
propagation between neighborhoods. Hence, the energy function must be an integration of the residuals
over the entire image plane.

Even this normal vector cannot be estimated immediately. To see this, consider one-dimensional
motion as in depicted Figure 7.5. Assume that an object moves from I(x, t) to I(x, t + 1). To determine
the vector v, we need a normal vector and a gradient vector. v0 is obtained at the first iteration. Starting

u

v

0

v⊥

Ixu + Iyv + It = 0

v

v

−It /Iy

−It /Ix

Figure 7.4 Given the photometric constraint, only the normal vector, v⟂, of the true vector, v, can be
estimated: v∥ for null vector (The unit null vector: v̂∥ = 1

I2
x +I2

y
(−Iy, Ix)

T .)

Motion and Vision Modules 195

x

y

I (x, t) I (x, t + 1)

P
v

(a)

x

y

P v1

(b)

Figure 7.5 Meaning of the photometric constraint: ∇IT v = −It

from this intermediate position, the next vector can be obtained. The same process can be repeated until
the vector arrives near the second curve, I(x, t + 1). In math expressions, we have

v0(x) = −(∇I∇IT)+∇I(x, t)(I(x, t + 1) − I(x, t)),

vk(x) = −(∇I∇IT)+∇I(x, t)(I(x + vk−1, t + 1) − I(x, t)), k = 1, 2,… , T , (7.61)

where T is the termination time when the difference (I(x + vk−1, t + 1) − I(x, t)) is within a small termi-
nation condition. The convergence can be enhanced if we use the higher terms in the Taylor series of
I(x + u, y + v, t + 1). This iterative approach is used in (Lucas and Kanade 1981).

We can use a local average to expand the LBC to the gradient structure tensor. Multiplying ∇tI on
both sides of Equation (7.59), we obtain

∇tI(∇tI)T
⎡⎢⎢⎣

u
v
1

⎤⎥⎥⎦ = 0. (7.62)

The 2 × 2 upper-left submatrix is the Harris operator (Harris and Stephens 1988). If we further apply
Gaussian filtering to a small neighborhood, the equation becomes

⎡⎢⎢⎢⎣
∑

wpI2
x (p)

∑
wpIx(p)Iy(p)

∑
wpIx(p)It(p)∑

wpIy(p)Ix(p)
∑

wpI2
y (p)

∑
wpIy(p)It(p)∑

It(p)Ix(p)
∑

wpIt(p)Iy(p)
∑

I2
t (p)

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

u
v
1

⎤⎥⎥⎦ = 0, (7.63)

where {wp|p ∈ xy} is a template of the Gaussian filter. The matrix is called a motion tensor (or structure
tensor). This equation is represented by[∑

wpI2
x (p)

∑
wpIx(p)Iy(p)∑

wpIy(p)Ix(p)
∑

wpI2
y (p)

][
u

v

]
= −
[∑

wpIx(p)It(p)∑
wpIy(p)It(p)

]
. (7.64)

This constraint is used in (Lucas and Kanade 1981).

196 Architectures for Computer Vision

The brightness constancy is not always true. If the background illumination is graded, ∇I ≠ 0, it fails.
In such a case, we may use the gradient brightness constancy (GBC):

∇I(x + u, y + v, t + 1) − ∇I(u, v, t) = 0. (7.65)

This constraint also may fail for large changes in background illumination.
Several methods exist that assume that higher-order derivatives are conserved (Nagel 1987; Simoncelli

1993; Uras et al. 1989). The constraint is expressed as

uIxx + vIxy + Ixt = 0, uIxy + vIyy + Iyt = 0. (7.66)

Because of the higher-order derivatives, this method tends to be fragile to noise and may lose the
information about the first-order deformation. We may also build matrices similar to the structure matrix,
by taking local Gaussian filtering.

In a more general environment, the local features can be expanded to the local descriptors (Bay
et al. 2006; Calonder et al. 2010; Lowe 2004; Tola et al. 2010), which provide robust and accurate
correspondences between images under noisy environments. The correspondence based on the descriptors
acts as a concrete matching cue in scenarios with large brightness changes, large motion of small objects,
and affine distortions between frames. Define 𝜌(x, y) to be the matching score for the two descriptors
in the current frame and their corresponding descriptors in the next frame, respectively. The descriptor
matching term can then be defined as

𝛿(x, y)𝜌(x, y)‖v − ṽ‖2
2 = 0, (7.67)

where 𝛿(x, y) is the indicator variable that is activated when the descriptor is located at (x, y) and ṽ is the
correspondence vector from descriptor matching.

Similarly to the brightness, we can define phase constancy for the phase. In the frequency domain, the
motion reveals a certain conservation law – conservation of phase in each bandpass channel (Fleet and
Jepson 1990, 1993; Gautama and van Hulle 2002). Given a complex-valued bandpass channel, r(x, y, t),
with phase 𝜙(x, y, t), the conservations law is stated as

𝜙(x, y, t) = 𝜙(x + u, y + v, t + 1), (7.68)

which is similar to the brightness constancy. We call this the phase constancy (PC). In the first-order
Taylor series, this becomes

𝜙xu + 𝜙yv + 𝜙t = 0, (7.69)

or in vector notation,

∇𝜙(x, t)Tv + 𝜙t(x, t) = 0. (7.70)

The difficulty is that phase is a multifunction, only uniquely defined on intervals of width 2𝜋, so
explicit differentiation is difficult. Instead, the phase derivative is replaced with amplitude derivative
(Fleet 1992; Fleet and Jepson 1990):

𝜙x(x, t) =
Im[rx(x, t)r∗(x, t)]|r(x, t)|2 , 𝜙t(x, t) = arg[r(x, t + 1)r∗(x, t)]. (7.71)

Motion and Vision Modules 197

The phase is amplitude invariant and thus is quite robust to illumination but fragile near occlusion
boundaries and fine-scale objects.

7.6 Continuity Equation
One of the universal laws in physics is that of conservation, which is represented by the continuity
equation. In computer vision, the brightness, gradient brightness, and phase are the quantities preserved
even in space and time variations. If Iv is regarded as a flux, the LBC can be represented by the mass
continuity equation:

𝜕

𝜕t
I + ∇ ⋅ (Iv) = 0, ∇v = 0, (7.72)

where ∇⋅ is divergence. Note that the vector is constrained to ∇v = 0, which means the smoothness
constraint, as we will see shortly. In an analogy to fluid dynamics, ∇ ⋅ v = 0 means that the divergence of
the velocity field is zero everywhere, indicating that the local volume dilation rate is zero. If we consider
∇Iv as a flux, the GBC becomes

𝜕

𝜕t
∇I + ∇ ⋅ (vT∇I) = 0, ∇v = 0. (7.73)

The same continuity equation can be applied to the phase. For the phase, we may consider 𝜙v as a flux.
The LPC then becomes

𝜕

𝜕t
𝜙 + ∇ ⋅ (𝜙v) = 0, ∇v = 0. (7.74)

Similarly, for the GPC, the continuity equation becomes

𝜕

𝜕t
∇𝜙 + ∇ ⋅ (vT∇𝜙) = 0, ∇v = 0. (7.75)

The LBC can be represented by

(∇tI)T v = 0, (7.76)

where ∇t = (𝜕∕𝜕x, 𝜕∕𝜕y, 𝜕∕𝜕t)T . Multiplying ∇t on both sides and convolving with Gaussian filter, we
have

G ∗ ∇tI(∇tI)T v = 0. (7.77)

The resulting matrix is the structure matrix. This derivation can also be applied to the other variables.
It appears that the various models on the data terms are related to the continuity equation. Moreover,

the continuity equations are naturally expanded to color systems such as RGB or HSV. For a detailed
review of continuity, refer to (Raudies 2013).

7.7 The Prior Term
In addition to the data term, the prior term in an energy equation is related to various constraints associated
with motion mechanics and geometry. These constraints are free from the data but dependent on the
nature of the variables in a wider range than the local points. In optimization view, the prior term behaves

198 Architectures for Computer Vision

as a regularizer. The constraints can be classified into isotropic and anisotropic regularizers. The isotropic
regularizer applies the constraint uniformly over the image regardless of the object or motion boundary.
The anisotropic regularizer, on the other hand, determines the weights and directions depending on the
local context.

Let us first review the isotropic smoothness constraints. One of the important constraints on optical
flow is the spatial continuity of the optical flow on the surface. The simplest way to represent the spatial
smoothness of flow vectors is to favor the following first-order derivatives:

∇v = 0, (7.78)

which is the generalization of the disparity from one dimension to two dimensions. The continuity
equations assume this constraint.

In the construction of the smoothness energy function from the first-order constraint defined above,
a variety of penalty functions are utilized to accurately model the characteristics of flow vectors under
complex situations. The energy function based on L2 norm is

‖∇v‖2 =
(
𝜕u
𝜕x

)2

+
(
𝜕u
𝜕y

)2

+
(
𝜕v
𝜕x

)2

+
(
𝜕v
𝜕y

)2

. (7.79)

The energy function based on L1 is

‖∇v}1 =
||||𝜕u
𝜕x

+ 𝜕u
𝜕y

+ 𝜕v
𝜕x

+ 𝜕v
𝜕y

|||| or ‖∇v‖1 =
||||𝜕u
𝜕x

|||| + ||||𝜕u
𝜕y

|||| + ||||𝜕v
𝜕x

|||| + ||||𝜕v
𝜕y

|||| . (7.80)

The prior can be classified into homogeneous and inhomogeneous regularizer. The inhomogeneous
regularizers are further classified into image-driven or flow-driven and isotropic or anisotropic (Raudies
2013). The above regularizers are homogeneous according to this classification.

An image-driven isotropic regularizer varies smoothness depending on the image context:

𝜓(v) = 𝜌(‖∇I‖2
2)‖∇v‖2

2, 𝜌(x) =
(

1 + x2

𝜎2

)
, (7.81)

where 𝜎 is a parameter. The regularization becomes strong around image discontinuity and weak at the
uniform region. There is no directional preference, depending on edge direction (Alvarez et al. 1999).

An image-driven anisotropic regularizer changes smoothness asymmetrically depending on the image
context:

𝜓(v) = ∇uΛ(∇u)T + ∇vΛ(∇v)T ,Λ = 1|∇I|22 + 𝜅

[
(𝜕y)2 + 𝜅

2 −𝜕xI𝜕yI
−𝜕xI𝜕yI (𝜕xI)2 + 𝜅

2

]
, (7.82)

where 𝜅 is a constant. The smoothing becomes weak at the boundary and strong at the homogeneous
region. The smoothing also applies only along the boundary, and not across it.

A flow-driven isotropic regularizer controls the smoothness according to the flow of vectors. The
following measure uses a convex function of the vector (Bruhn et al. 2006):

𝜓(v) = 𝜌(‖∇u‖2
2 + ‖∇v‖2

2), 𝜌(x) =
√

s + 𝜅, (7.83)

where 𝜅 is a constant.

Motion and Vision Modules 199

A flow-driven anisotropic regularizer defines the smoothness anisotropically depending on the vector
flow (Weickert and Schnorr 2001):

𝜓(v) = tr{𝜌((∇u)T∇u + (∇v)T∇v)}, 𝜌(x) =
√

x + 𝜅, (7.84)

where 𝜅 is a constant and tr means trace. See (Raudies 2013) for more details on regularizers.
The motion occlusion is the generalization of the disparity occlusion. When an object moves with v,

there appear two undetermined regions to the front, mid, and rear regions of the object. Let an object
A move from A(t) ⊂ to A(t + 1) ⊂ . The front occluding region A(t − 1) − A(t) then appears in I(t),
the rear occluding region A(t) − A(t + 1) appears in I(t), and the middle occluding area is the overlapped
region, A(t) ∪ A(t + 1), which exists in both images. The occluding regions – front and rear regions – are
the uncertain regions where the optical flow cannot be defined. Detecting the regions is a crucial task in
optical flow computation.

The occluding region is principally where the optical flow is not defined. However, the occluding
region is defined only when the optical flow is assumed. Therefore, most algorithms define an occluding
indicator that is a function of optical flow and use it to switch the smoothness term, so that the smoothness
term is validated only in the non-occluding region.

Let 𝜌(x, t) be an occlusion indicator (or detector). The occlusion can be detected by the squared image
residue (Xiao et al. 2006):

𝜌(x, t) =
{

0, (I(x, t) − I(x + v, t + 1))2
> 𝜖,

1, otherwise,
(7.85)

where 𝜖 is a threshold to detect the occlusion. If 𝜌 = 0, the pixel is occluded and if 𝜌 = 1, the pixel is
visible in both images. To make the occlusion indicator, it can be approximated by

𝜌(x, t) = 1
2
+ 1

𝜋
tan−1((I(v, t) − I(x + v, t + 1))2 − 𝜖). (7.86)

The optical flow vector can be used to detect occlusions (Sand and Teller 2008; Sand 2006):

𝜌(x, t) = |∇ ⋅ v|. (7.87)

The edges and corners in the spatiotemporal domain correspond to the occluded pixels. These points
of interest are detected using the minimum eigenvalue of the gradient structure tensor (Feldman and
Weinshall 2006, 2008):

𝜌(x, t) = 𝜆min{G(x, 𝜎) ∗ (∇I(x, t)∇I(x, t))}, (7.88)

where the operators ∗ and G represent convolution and Gaussian kernel, respectively. The operator is
invariant to the translation and rotation. The region with higher values of 𝜆 tends to be the outline of the
object. This operator can be modified to the velocity-adapted occlusion detector (Feldman and Weinshall
2006, 2008):

𝜌(x, t) = det(G)
G∗ , (7.89)

where G denotes the 2 × 2 upper-left submatrix of the gradient structure tensor.

200 Architectures for Computer Vision

The Frobenius norm of the gradient of the optical flow field can be used to capture the motion
discontinuity (Sargin et al. 2009):

𝜌(x, t) = ‖∇v(x)‖F, (7.90)

which is helpful to detect occlusion.
The occlusion indicator is usually utilized in controlling the prior term:

E(v) =
∑
p∈

𝜙(v(p) + 𝜌(x, t)
∑

p,q∈

𝜓pq(v(p), v(q)). (7.91)

Around the occlusion, only the data term operates, the smoothness term is ignored. As a result, the
occlusion region is undetermined but the boundaries are accurately preserved.

Another strong constraint for the smoothness term is based on the parametric motion model. The
global motion model (Altunbasak et al. 1998; Cremers and Soatto 2005; Odobez and Bouthemy 1995)
offers more constrained solutions than smoothness, such as the Horn–Schunck method. It also involves
integration over a larger area than a translation-only model can accommodate, such as the Lukas-Kanade
method. More specifically, we suppose

E(a) =
∑

(I(T(x, a)) − I0(x))2, (7.92)

where T(⋅) is a transformation in 2D or 3D, with parameters a. The possible models are 2D and 3D
motion models. The 2D models include translation, affine, quadratic, and homography. The 3D model
includes camera motion, homography with epipole, and plane with parallax (Adiv 1985; Hanna 1991;
Nir et al. 2008; Valgaerts et al. 2008; Wedel et al. 2008a, 2009).

A quadratic model for the 2D motion is parameterized by

{
u = a1 + a2x + a3y + a7x2 + a8xy,
v = a4 + a5x + a6y + a7xy + a8y2

.
(7.93)

In the projective model, the parameters are

u =
a1 + a2x + a3y

a7 + a8x + a9y
− x, v =

a4 + a5x + a6y

a7 + a8x + a9y
− y. (7.94)

In the 3D motion model, the instantaneous camera motion method assumes the global parameters, 𝝎
and t, together with the local parameter, Z(x, y). The motion vector is

{
u = −xy𝜔x + (1 + x2)𝜔y − y𝜔z + (tx − xtz)∕Z,
v = −(1 + y2)𝜔x + xy𝜔y − x𝜔z + (ty − xtz)∕Z.

(7.95)

The model for homography and epipole uses the global parameters, a1,… , a9, t1,… , t3 and the local
parameters: 𝛾(x, y).

u =
a1x + a2y + a3 + 𝛾t1

a7x + a8y + a9 + 𝛾t3

− x, v =
a4x + a5y + a6 + 𝛾t1

a7x + a8y + a9 + 𝛾t3

− x. (7.96)

Motion and Vision Modules 201

There is a method that uses residual planar parallel motion, that also uses the global parameters: a1, a2, a3

and the local parameter 𝛾(x, y).

u = 𝛾

1 + 𝛾a3

(a3x − a1), v = 𝛾

1 + 𝛾a3

(a3y − a2). (7.97)

In addition to constraints, special features have been developed for motion estimation. In space-
time, the feature can be either intensity variation (Sizintsev and Wildes 2012) or texture (Derpanis
and Wildes 2012), quadric elements (Granlund and Knutssen 1995) or Grammian (Shechtman and
Irani 2007). The quantities can be a response from the local filter responses such as Gaussian–Hilbert
(Freeman and Adelson 1991), Gabor, and log-normal. For example, Sizintsev et al. proposed Stequel
as a quadric weighted by the Gaussian-Hilbert response in icosahedron directions (Jenkins and Tsotsos
1986; Sizintsev and Wildes 2012).

7.8 Energy Minimization
We have reviewed various constraints on the data and prior terms. The energy function consists of
both these terms. Therefore there are numerous variations on combinations of the data and smoothness
terms. In minimizing the energy function, many optimization methods can be utilized, including baseline
methods such as those of Horn and Shunck (Horn and Shunck 1981) and Lukas and Kanade (Lucas and
Kanade 1981). Horn’s method advocates the LBC and smoothness regularization for the energy function
and the variational method for energy minimization. On the other hand, Lukas–Kanade’s method uses
the gradient structure tensor for the energy function and the LMS method for energy minimization.

A general solution based on the variational method is given by (Horn and Shunck 1981). The energy
function is the combination of the LBC and the smoothness function with gradient magnitude:

E(u, v) =
∑

(x,y)∈
(Ixu + Iyv + It)

2 + 𝜆

∑
v∈ (u)

|∇(u, v)T |2. (7.98)

Let E = ∫ F(u, v, ux, uy, vx, vy)dxdy and derive the Euler–Lagrange equations,

Fu − 𝜕xFux
− 𝜕yFuy

= 0, Fv − 𝜕xFvx
− 𝜕yFvy

= 0. (7.99)

Inserting F, this becomes

Ix(Ixu + Iyv + It) − 𝜆∇2u = 0, Iy(Ixu + Iyv + It) − 𝜆∇2v = 0. (7.100)

Let the local average

ū(x, y) =
∑

w(k,l)∈ (x,y)u(x − k, y − l) (7.101)

and the Laplacian

∇2 = ū(x, y) − u(x, y). (7.102)

Then, the equations become

(I2
x + 𝜆)u + IxIyv = 𝜆ū − IxIt, IxIyu + (I2

y + 𝜆)v = 𝜆v̄ − IyIt. (7.103)

202 Architectures for Computer Vision

Solving this, and taking iterative forms, we have the equations,

⎧⎪⎨⎪⎩
u(k+1) = ū(k) − Ix(Ixū(k)+Iyv̄(k)+It)

𝜆+I2
x +I2

y
,

v(k+1) = v̄(k) − Iy(Ixū(k)+Iy v̄(k)+It)

𝜆+I2
x +I2

y
.

(7.104)

The computational structure is suitable for the Gauss–Seidel or Jacobi methods. This can be efficiently
realized with the relaxation, DP, and BP architectures, introduced in Chapters 8 through 10.

The other general solution based on LMS is given by (Lucas and Kanade 1981), which uses the
gradient structure tensor. For a point, Equation (7.59) becomes

∇IT v = −
[

It(x, y)
]
. (7.105)

The pseudo-inverse is

v = − ∇I‖∇I‖2
It(x, y). (7.106)

For a point, we have one equation and two variables. The solution is the normal flow, v⟂, as observed in
the aperture problem.

To get more equations for a pixel, impose additional constraints by assuming that the flow field is
smooth locally, and thus the neighbors have the same optical flow. Consequently, we obtain, Av = −It:

⎡⎢⎢⎣
Ix(x1, y1) Iy(x1, y1)

⋮ ⋮
Ix(xn, yn) Iy(xn, yn)

⎤⎥⎥⎦
[

u
v

]
= −
⎡⎢⎢⎣

It(x1, y1)
⋮

It(xn, yn)

⎤⎥⎥⎦. (7.107)

Usually, A is a local weighted sum of intensity with a Gaussian function. This can be represented by the
Gaussian kernel, W = {wij|i, j ∈ [1, n]}:

AT W Av = −AT WIt. (7.108)

In component form, this is

[∑
k wkI2

x

∑
k wkIxIy∑

k wkIxIy

∑
k wkI2

y

][
u
v

]
= −
⎡⎢⎢⎣
∑

k wkIx(xk, yk)It(xk, yk)∑
k wkIy(xk, yk)It(xk, yk)

⎤⎥⎥⎦. (7.109)

This system is over-determined and thus can be solved by LLSE. If AT W A is invertible, we have

v = −(AT W A)−1AT WIt. (7.110)

In general, the brightness constancy is not satisfied, the motion is not small, a point does not move
like its neighbors, and thus, the LMS method is not satisfactory. The enhanced method is the iterative
Lukas–Kanade method (Kanade 1987; Lucas and Kanade 1981).

Motion and Vision Modules 203

7.9 Binocular Motion
When objects are observed with a stereo camera, the image frames contain both stereo and motion
information, for example disparity and optical flow. Let us consider the case depicted in Figure 7.6, in
which the origins Ol and Or are, respectively, the projective centers of the left and right images, Il

t and Ir
t ;

the image planes are coplanar and the optical axes are parallel, separated by a baseline B. In this setting,
a point P = (X, Y , Z)T moving from P to Q is projected onto the two image planes as pl = (xl, yl)

T and
pr = (xr , yr)

T . This alignment is parallel optics, and the epipolar lines, on which corresponding points
are located, are the same for both images.

Two images of the same size, M × N, are captured at constant intervals in time t. In 3-space, the
point P is generally moving with a velocity V = (U, V , W)T , where (U, V , W) describes the translation
components. Accordingly, the two projected points also move on the image planes with the optical flows,
vl = (ul, vl) and vr = (ur, vr). Furthermore, the two projected points are separated with the disparity, d,
on both image planes. (Incidentally, the rotational movement is omitted to make the problem simple.) If
the sampling rate is fast enough or, equivalently, the rotation is slow enough, this assumption is correct
even for the general case.

From Equation (7.7), we have

⎧⎪⎨⎪⎩
(ul, vl) = f

Z
(U, V) − f W

Z2 (X, Y),

(ur , vr) = f

Z
(U, V) − f W

Z2 (X − B, Y).
(7.111)

Likewise, the disparity–depth relation becomes

d =
fB

Z
. (7.112)

Taking the time derivative of both sides, we obtain

ḋ = −
fBW

Z2
. (7.113)

x
yz

Il Ir

orol

cl cr

P

Q

pl
ql pr qr

Figure 7.6 Projection of moving object

204 Architectures for Computer Vision

Substituting Equation (7.113) into Equation (7.111) yields the equation

ur − ul = ḋ, vl − vr = 0. (7.114)

The first equation specifies that the difference between the two optical flows is identical to the difference
between the two disparities. The second equation is due to the epipolar assumption: the corresponding
points are on the same epipolar line whenever the point moves. This equation means that there are five
variables in two equations and explains the relationship between disparity and optical flow, bypassing
the 3D positions and velocity.

The combination of motion and stereo can be explained by the two frames of stereo images,
{Il(x, y, t), Ir(x, y, t), Il(x, y, t + 1), Ir(x, y, t + 1)}. In this system, we assume that d(x, y, t) = d0(x, y, t) is
known. Then, for the unknowns, (vl, vr , d), the following constraints hold:

⎧⎪⎨⎪⎩
Il(x, y, t) = Ir(x + d0, y, t), Il(x, y, t + 1) = Ir(x + d, y, t + 1),
ur − ul = ḋ, vl − vr = 0,
M2 : Ir

xur + Ir
yvr + Ir

t = 0, M3 : Il
xu

l + Il
yv

l + Il
t = 0.

(7.115)

The first two equations are the brightness constraints for the stereo matching. The next two con-
straints are the relationships between disparity and optical flow. The last two equations are the lin-
earized brightness constraints for the optical flow. For the four points, we have four equations and five
variables.

The constraint equations are drawn in Figure 7.7. Unlike Figure 7.4, two lines characterize the (u, v)
plane. The equation, vl − vr = 0, appears as a vertical line in this graph and the resulting crossing
points define (ul, ur). However, the position of the vertical line is defined by ḋ, the vertical separation
between the two lines. Hence, if ḋ is decided, via stereo matching, vl and vr are all determined uniquely.
Since there is no other constraint on the two lines except a negative slope, degenerate cases exist. The
typical case is when the two lines are parallel to each other. In this case, even though the separation

ḋ is known, no single vl = vr is defined. The degenerate case occurs when the slopes of the two lines
are the same: Il

y∕Il
x = Ir

y∕Ir
x . The worst case occurs when the two lines are overlapping, that is Il

x =
Ir
x and Il

y = Ir
y . We may solve this problem by the variational method or the LMS method (Jeong

et al. 2012).

v

u

−It /I l
x

M2

−It /I l
y

−It /I r
x

M3

−It /I r
yvl = vr

ḋ

ul

ur

v l

vr

(a) General case

v

u

−It /I l
x

M2

−It /I l
y

−It /I r
x

M3

−It /I r
yvl = vr

ḋ

ul

ur

v l

vr

(b) Degenerate case

Figure 7.7 The relationships between ḋ and (vl, vr)

Motion and Vision Modules 205

7.10 Segmentation Prior
The determination of disparity and optical flow is generally aided by image segmentation. This concept
can be generalized to the segmentation, which involves many attributes of the image. The segmentation,
whether it is defined for regions or edges, is usually the final goal of the early vision. Using this method,
regions classified as having the same label tend to be assigned with the same disparity or optical flow. This
segment-based constraint, if available, can help the smoothness constraint to retain the sharp boundaries.
The reason is that the pixels defined inside the segments or contours are similar with respect to some
characteristic but the pixels in adjacent regions or across contours are significantly different with respect
to the same characteristics. The result of segmentation can be easily integrated into the energy functions
in higher level vision, in the form of constraint terms or initial values of the labeling. However, the
segment characteristics such as brightness, color, texture, and edges and the high level characteristics
such as surface orientation, disparity, optical flow, or object class may not always coincide. Some of
the typical methods are thresholding, edge detection, histogram, compression-based, region growing,
clustering, split-and-merge, model-based method, graph partitioning, and multi-scale methods.

One of the practical segmentation methods is soft matting (Levin et al. 2007, 2008, 2011; Shi and
Malik 2000; Sun et al. 2010), which can be easily ported to the disparity and optical flow. In this method,
the matting Laplacian matrix (Levin et al. 2008) is

Lk =
∑

(i,j)∈Nk

(
𝛿ij −

1|Nk|
(

1 + (Ii − 𝜇k)T

(
Σk +

𝜖|Nk|
)−1

(Ij − 𝜇k)

))
, (7.116)

where Ii and Ij are the colors of the input image at pixels i and j, 𝛿ij is the Kronecker delta, 𝜇k and
Σk are the mean and covariance matrix of the colors in window Nk, I3 is a 3 × 3 identity matrix, 𝜖 is a
regularization parameter, and |Nk| is the number of pixels in window Nk.

We can consider the Laplacian matrix as a quadratic approximation of exponential form:

Lk =
∑

k|(i,j)∈Nk

(
𝛿ij −

1|Nk| exp
[

(Ii − 𝜇k)T

(
Σk +

𝜖|Nk|
)−1

(Ij − 𝜇k)

])
. (7.117)

Furthermore, omitting the 𝜖 term and generalizing the correlation term yields

Lk =
∑

k|(i, j)∈Nk

(
𝛿ij −

1|Nk| exp−(Ii − Ij)
TΣ−1

k (Ii − Ij)

)
. (7.118)

The segmentation result using Lk can be added to the smoothness constraint in the energy equation, so
that the same segment may be assigned with the same labels.

7.11 Blur Diameter
Thus far, we have examined stereo vision and motion estimation, estimating depth, motion, structure,
and camera pose. Now we examine some of other modalities in vision that are associated with depth
estimation. The intrinsic parameters explain the pixels, focal length, and possibly the lens distortion.
What is missing is the effect of real aperture, which generates unequal sharpness, called blurring, across
the image plane. At one end, this unequal focusing is regarded as undesirable and must be rectified by
inverse filtering. At the other end, except for artistic effect such as portrait photographing, the defocusing
is considered as an encoding process of depth information, such that the degree of blur is in proportion
to the depth. The amount of blur can be represented by the blur diameter of the PSF. Like the disparity
or optical flow, the blur diameter can be estimated and used for depth computation.

206 Architectures for Computer Vision

2R

Q2Q1

P

P1 P2

r0 r′

z′z

Image

Plane

P′

Focus position

Defocus position

Aperture stop

D

C

f Optical Axis

Figure 7.8 The camera optics with thin convex lens

Suppose that there is a typical lens system, such as that drawn in Figure 7.8, which is called a thin
lens system. In this figure, P1 and P2 are the principal planes, and Q1 and Q2 are the principal points.
A lens with focal length f is focused on a scene point P at a subject distance r0, and this focused point
is mapped to r′ on the image plane. A point other than the subject distance is mapped to z′ and thus
defocused, as indicated by the blur diameter 2R.

For a point, P, this system satisfies

1
r0

+ 1
r′

= 1
f
. (7.119)

For a point, P, the defocused image satisfies

1
z
+ 1

z′
= 1

f
. (7.120)

These equations express the fact that a point between the lens and P is focused in front of the image
plane, whereas a point behind P is focused behind the image plane. In either case, the projected image
will appear as a spot with radius R of the circle of confusion (or blur circle), on the image plane.

Comparing the two triangles, one on either side of f , we can derive a relationship between the blur
radius R and the distance z′:

R
D

= r′ − z′

z′
. (7.121)

Motion and Vision Modules 207

Using r′ in Equation (7.119) and z′ in Equation (7.120), we have

R =
Dr0f

r0 − f

(
1
r0

− 1
Z

)
. (7.122)

For the case where r0 ≫ f and |z − r0| are not negligible, Equation (7.122) becomes

R ≅ fD

(
1
r0

− 1
Z

)
. (7.123)

Once R is known, we can obtain the object distance from the blur disk:

Z = f

(
f

r0

− R
D

)−1

. (7.124)

We have observed that, like disparity and optical flow, the blur diameter is another measure that can be
obtained from images. If the imaging system consists of compound lenses, the blur–depth relationship
becomes a complicated nonlinear system, although the depth is still related with the blur diameter. Blur
estimation has been studied in areas such as depth from focus (DfF) (Grossmann 1987; Jing and Yeung
2012) and depth from defocus (DfD) (Li et al. 2013; Subbarao and Surya 1994).

7.12 Blur Diameter and Disparity
Similar to disparity and optical flow giving measures on depth, the blur diameter provides the same
measure of depth. It would therefore be useful if the three quantities could be linked in such a way that
the common depth quantity is eliminated and the variables are linked directly. In this light, let us first
consider linking disparity and blur diameter (Ito et al. 2010; Schechner and Kiryati 2000; Subbarao et al.
1997).

If we substitute Z = fB∕d into (7.124) to remove Z, we obtain

d
B
+ R

D
= 1 −

f

r′
. (7.125)

This equation links disparity and blur diameter directly, without intervention of the depth, and has the fol-
lowing properties. In a normalized system, this equation has the form d̂ + R̂ = 1 − f̂ , where the three quan-
tities, d̂, R̂, and f̂ , are the normalized values with respect to the baseline, lens diameter, and the image
plane distance, respectively. The variables are the disparity and the blur diameter. The two variables have
opposite properties in terms of addition: if one decreases, the other increases equivalently, maintaining
the total sum at a constant.

It is convenient to generalize R so that it can be either positive or negative depending on the distance
r′ − z′. Substituting Z for r0 in Equation (6.66) yields

r0 = r′B
d0

. (7.126)

With this and Equation (7.122), we obtain

⎧⎪⎨⎪⎩
R > 0, d < d0,
R = 0, d = d0,
R < 0, d > d0.

(7.127)

208 Architectures for Computer Vision

R

d

0 D (1 − f
r)

R
D + d

B = 1 − f
r

B (1 − f
r)

Figure 7.9 The d–R curve

The d–R curve is drawn in Figure 7.9. Here, the x-intercept is the position where the object is at
infinity and the y-intercept is the position where the object is focused. The negative diameter means that
the object is focused behind the image plane.

This relationship can be used as a constraint for determining disparity, given blur diameter:

𝜓p(d) =
(

d − 1 −
f

r′
− B

D
R

)2

. (7.128)

Note that this constraint holds for a pixel, similar to the data term.

7.13 Surface Normal and Disparity
In other vision modules such as shading, texture, and silhouette, the major estimated quantity is the
surface normal. Considering the depth (x, y, Z(x, y)), we have the surface normal (Horn 1986):

n = 1√
1 + p2 + q2

[−p,−q, 1]T , (7.129)

where (p, q) is the gradient,

p = 𝜕Z
𝜕x

, q = 𝜕Z
𝜕y

. (7.130)

The surface normal can be represented by a more versatile vector, called stereographic projection (Horn
1986).

If a surface is sloped, the slope affects both the surface normal and the disparity (Figure 7.10). At
(xl, yl), the surface depth is Z(x, y) and the disparity is d(xl, yl). At (xl + Δxl, yl + Δyl), the depth changes
by ΔZ and the disparity changes by Δd. If the surface is fronto-parallel, the depth and the disparity are
both constant.

To obtain the relationship between the disparity and the surface slope, we substitute Equation (6.66)
into Equation (7.130) and obtain

p = −
fB

d2

𝜕d
𝜕x

, q = −
fB

d2

𝜕d
𝜕y

, (7.131)

which is, in fact, p = fB𝜕xd
−1 and q = fB𝜕yd−1. Here, the normal vector and the disparity are all defined

in the image coordinates. These identities represent the direct relationship between the disparity and the

Motion and Vision Modules 209

O

ol or

n

P (X, Y, Z)

Q(X + ΔX, Y + ΔY, Z + ΔZ)

x l

x r

x l + Δ x l

x r + Δx r

ΔX

ΔZ

d

d + Δd

Figure 7.10 The relationship between disparity and surface normal (n: surface normal and d: disparity)

surface orientation, all in the image plane. If (p, q) is given, these equations can be used as constraints in
stereo matching (and vice versa):

𝜓x,y,x′,y′ (d(x, y), d(x′, y′)) =
(

p +
fB

d2
(d(x, y) − d(x′, y)

)2

+
(

q +
fB

d2
(d(x, y) − d(x, y′)

)2

, ∀(x′, y′) ∈ xy. (7.132)

Here the distance between neighbors is assumed to be unity.
The surface normal is often estimated with a surface model. If the surface is planar, Z(x, y) = ax +

by + c, we have the constraints, dx = −d2a∕fB, dy = −d2b∕fB. As a special case, if the surface is a fronto-
parallel plane, the disparity is constant. For a quadratic model of the surface, Z(x, y) = ax2 + by2 + cxy +
d, the disparity becomes dx = ax + cy, dy = by + cx.

If (p, q) ≠ 0, these equations can be further combined into one:

q
𝜕d
𝜕x

= p
𝜕d
𝜕y

. (7.133)

This equation means that the two normals, n = (−p,−q, 1)T and d = (−dx,−dy, 1)T , exist in the same

vertical plane, that is (d × n) ⋅ Ẑ = 0. This equation can also be used as a constraint to the smoothness
terms.

7.14 Surface Normal and Blur Diameter
We may link the blur diameter and the surface normal. This can be achieved by substituting Equa-
tion (7.124) into Equation (7.130). The result is

p =
f(

f

r0
− R

D

)2

𝜕R∕D

𝜕x
, q =

f(
f

r0
− R

D

)2

𝜕R∕D

𝜕y
. (7.134)

210 Architectures for Computer Vision

O

ol or

xx

n

P (X, Y, Z)

Q(X + ΔX, Y + ΔY, Z + ΔZ)

p
p

q
q

ΔX

ΔZ

dr

dr

Figure 7.11 The relationship between surface normal and blur diameter (n: surface normal)

These equations directly link the surface normal to the blur diameter. They can be combined to give

qRx = pRy. (7.135)

This equation means that the two normals, n = (−p,−q, 1)T and d = (−Rx,−Ry, 1)T , exist in the same

vertical plane, that is (R × n) ⋅ Ẑ = 0.
The relationship of the surface normal to the blur diameter is illustrated in Figure 7.11. On the left

image, the slope ΔZ appears as a prolonged dr, which affects the degree of blur.
For a stereo system, the surface slope influences the blur diameter on both images, as shown in the

figure. On the right image, the slope appears as a shortened dr and is represented in Equation (7.124).
Unlike other measures, the blur diameters are defined separately in the two images. This results in another
relationship: blur difference in two images. This means that more than two modules can be described. In
this particular case, disparity, surface normal, and blur diameters are involved.

To obtain the relationship between the blur diameter and the disparity, we insert Equation (7.131) into
(7.134) to get

𝜕R
𝜕x

𝜕d
𝜕y

= 𝜕R
𝜕y

𝜕d
𝜕x

. (7.136)

For the functions, R(x, y) and d(x, y), this equation means that the two normals, R = (−Rx,−Ry, 1)T and

d = (−dx,−dy, 1)T , exist in the same vertical plane: (R × d) ⋅ Ẑ = 0. We have two sets of equations,
Equations (7.125) and (7.136). In one equation, the variables are directly related in a linear equation, and
in the other the variables are related in the ratio of differentials.

7.15 Links between Vision Modules
There are vision modules for depth estimation such as depth from defocus (DfD), shape from shading
(SfS) (Harrison and Joseph 2012), shape from texture (SfT), shape from contour or silhouette (SfC), as
well as stereo vision and motion vision. Integration of vision modules can be achieved by combining
them in an energy equation and minimizing it to achieve the best depth. The other approach is to treat
the vision modules as weak classifiers and build a combined classifier with boosting methods. It is

Motion and Vision Modules 211

Table 7.1 The 2D and 3D quantities

Measures Depth Velocity

Disparity d Z = f B

d

Optical flow (u, v) U = uZ + xW
f

, V =
vZ + yW

f

Surface normal (p, q) p = 𝜕Z
𝜕x

, q = 𝜕Z
𝜕y

Blur diameter R Z = f

(
f

r0

− R
D

)−1

cf. f : focal length, B: baseline, D: lens diameter, r0: subject distance, and r′: image
distance.

evident that this integration is limited since the interacting mechanisms between modules are ignored.
Eventually, one must look into the tighter relationships between variables defined in different modules.

Thus far, we have examined the constructs for depth estimation: disparity, optical flow, blur diameter,
and surface orientation. The relationship between the 2D and 3D variables are summarized in Table 7.1.

The 2D quantities are obtained by various vision modules, as stated. Given the 2D quantities, the
3D variables (depth and velocity) can be obtained using the formula in the table. In this formula, we
assume the simplest models possible to avoid complexity. In stereo vision, the epipolar rectified system
is assumed. For a convergent system, the 3D quantities must be transformed with the projective matrix,
which were used in the rectification process. In addition, the aperture system is assumed to be the thin
lens system. The disparity and blur diameter give depth in absolute values whereas the surface normal
gives only the orientation of the surface. In velocity computation, the quasi-orthographic projection and
the small velocity in the Z direction are assumed, and the rotational velocity ignored. For a more general
system, we have to replace the equations with more accurate ones.

To remove the 3D variables, the 2D variables can be combined in various ways. The resulting equation
gives the direct relationship between the 2D variables, bypassing the 3D variables. Table 7.2 summarizes
the relationships between the 2D variables.

The upper triangle is filled with the ordinary equations and the lower triangle is filled with differential
equations. Among others, the disparity–normal relationship has the significant meaning that it links the

Table 7.2 The relationships between 2D variables

d (u, v) (p, q) R

d −

{
ḋ = ur − ul

vl = vr

⎧⎪⎨⎪⎩
p = −

fB

d2
dx

q = −
fB

d2
dy

d
B
+ R

D
= 1 −

f

r′

(u, v) − − − −

(p, q) qdx = pdy − −
⎧⎪⎨⎪⎩

p = f(
f∕D
r0

− R
D

)2 Rx

q = f(
f∕D
r0

− R
D

)2 Ry

R Rxdy = Rydx − qRx = pRy −

cf. (p, q): the surface gradient, (dx, dy): the disparity gradient, and (Rx, Ry): the
gradient of blur diameter.

212 Architectures for Computer Vision

stereo with other modules that provide surface orientation, such as shading, texture, and contour. This
table is complete in the sense that the relationships for the optical flow–surface normal and optical
flow–blur cannot be obtained without introducing the 3D variables. Because the optical flow is related
to (U, V , W) in addition to Z, the blur or surface normal cannot remove all of these four variables. The
common properties of the three normals for Z(x, y), d(x, y), and R(x, y) are all positioned in the same
vertical plane.

The equations in Table 7.2 are defined between two vision variables. It is possible that three or more
variables are linked together. One set of equations is

p = −
f∕B(

1 − f

r′
− R

D

)2
dx, q = −

f∕B(
1 − f

r′
− R

D

)2
dy. (7.137)

The other set of equations is

p =
f(

f

r0D
− 1 + f

r′
+ d

B

)2
Rx, q =

f(
f

r0D
− 1 + f

r′
+ d

B

)2
Ry. (7.138)

In these equations, the optical flow is missing (see the problems at the end of this chapter). If the optical
flow is included also, Equations (7.137) and (7.138) become one or more integro-differential equations,
such as

f (vl, vr , dx, dy, dt, p, q, Rx, Ry) = 0, (7.139)

which we call the fundamental equation (FE). The equations in Table 7.2 and Equations (7.137) and
(7.138) are all special cases of this integrated equation.

Thinking about interaction between two or more vision modules might give insight into understanding
human visual perception. As remarked in Chapter 5, the vision problem can be considered as the
minimization of the free energy. If the vision modules work simultaneously, the free energy is composed
of FE, together with the ordinary data term and the smoothness term. There is evidence that the human
visual system is organized in a systematic manner, such as modules and hierarchy (Bear et al. 2007; Purves
2008; Hubel 1988). It is now necessary to investigate the relationships between vision modules, instead
of treating them as independent modules, and integrating them afterward to obtain the best common
variables, such as structures and poses. The constraints for the linked variables are much stronger than
the constraints when the modules are treated independently and integrated only for their results. Beyond
vision, there is the area of multisensory integration (Wikipedia 2013a), in which multimodal integration
is studied, so that the information from the different sensory modalities, such as sight, sound, touch,
smell, self-motion, and taste, may be integrated.

Problems
7.1 [3D motion] An airplane at height L is moving with constant velocity v towards the image plane.

Derive a formula that determines the time to collision by observing the projected image. Use the
focal length f for the camera.

7.2 [3D motion] Prove the following. If another plane has the direction, n = t∕|t|, and rotates in
𝝎 + n × t, then the two planes have the same motion field.

7.3 [Direct motion] Derive Equation (7.22).

Motion and Vision Modules 213

7.4 [Binocular motion] Expand Equation (7.114) to the general case where the system is not rectified
but the motion is still translational.

7.5 [Surface normal and blur diameter] Prove that n and (−dx,−dy, 1) are in the same vertical plane.

7.6 [Blur diameter and disparity] Prove that the two vectors, (−Rx,−Ry, 1)T and (−dx,−dy, 1)T , are in
the same vertical plane.

7.7 [Vision modules] Using Equation (7.131), derive an equation that holds for the three 2D variables:
surface normal, disparity, and blur diameter.

7.8 [Vision modules] Using Equation (7.134), derive an equation that holds for the three 2D variables:
surface normal, disparity, and blur diameter.

7.9 [Vision modules] Derive an equation containing all three variables: disparity, surface normal, and
blur diameter.

7.10 [Vision modules] How can the optical flow be linked to the other 2D variables?

References
Adiv G 1985 Determining three-dimensional motion and structure from optical flow generated by several moving

objects. IEEE Trans. Pattern Anal. Mach. Intell. 7(4), 384–401.
Altunbasak Y, Eren PE, and Tekalp AM 1998 Region-based parametric motion segmentation using color information.

Graphical models and image processing 60(1), 13–23.
Alvarez L, Esclarin J, Lefebure M, and Sanchez J 1999 A PDE model for computing the optical flow Proc. XVI

congreso de ecuaciones diferenciales y aplicaciones, pp. 1349–1356.
Anandan P and Irani M 2002 Factorization with uncertainty. International Journal of Computer Vision 49(2-3),

101–116.
Baker S, Scharstein D, Lewis JP, Roth S, Black MJ, and Szeliski R 2011 A database and evaluation methodology for

optical flow. International Journal of Computer Vision 92(1), 1–31.
Barron JL, Fleet DJ, and Beauchemin SS 1994 Performance of optical flow techniques. International Journal of

Computer Vision 12(1), 43–77.
Bay H, Tuytelaars T, and Van Gool L 2006 SURF: Speeded up robust featuresComputer Vision–ECCV 2006 Springer

pp. 404–417.
Bear M, Conners B, and Paradiso M 2007 Neuroscience: Exploring the Brain third edn. Williams & Wilkins,

Baltimore.
Black MJ and Yacoob Y 1995 Tracking and recognizing rigid and non-rigid facial motions using local parametric

models of image motion Computer Vision, 1995. Proceedings, Fifth International Conference on, pp. 374–
381IEEE.

Bruhn A, Weickert J, Kohlberger T, and Schnorr C 2006 A multigrid platform for real-time motion computation with
discontinuity-preserving variational methods. International Journal of Computer Vision 70(3), 257–277.

Burger W and Bhanu B 1990 Qualitative understanding of scene dynamics for mobile robots. International Journal
of Robotics Research 9(6), 74–90.

Calonder M, Lepetit V, Strecha C, and Fua P 2010 Brief: Binary robust independent elementary features Computer
Vision–ECCV 2010 Springer pp. 778–792.

Cech J, Sanchez-Riera J, and Horaud R 2011 Scene flow estimation by growing correspondence seeds Computer
Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pp. 3129–3136IEEE.

Cremers D and Soatto S 2005 Motion competition: A variational approach to piecewise parametric motion segmen-
tation. International Journal of Computer Vision 62(3), 249–265.

Dai Y, Li H, and He M 2013 Projective multiview structure and motion from element-wise factorization. IEEE Trans.
Pattern Anal. Mach. Intell. 35(9), 2238–2251.

Derpanis K and Wildes R 2012 Spacetime texture representation and recognition based on a spatiotemporal orientation
analysis. IEEE Trans. Pattern Anal. Mach. Intell. 34(6), 1193–1205.

(ed. Purves D) 2008 Neuroscience fourth edn. Sinaur Associates.

214 Architectures for Computer Vision

Faugeras O and Luong Q 2004 The Geometry of Multiple Images: The Laws That Govern the Formation of Multiple
Images of a Scene and Some of Their Applications. MIT Press.

Feldman D and Weinshall D 2006 Motion segmentation using an occlusion detector Workshop on Dynamical Vision,
pp. 34–47.

Feldman D and Weinshall D 2008 Motion segmentation and depth ordering using an occlusion detector. IEEE Trans.
Pattern Anal. Mach. Intell. 30(7), 1171–1185.

Fennema C and Thompson W 1979 Velocity determination in scenes containing several moving objects. Computer
Graphics and Image Processing 9(9), 301–315.

Fleet D and Weiss Y 2006 Optical flow estimation Handbook of Mathematical Models in Computer Vision Springer
pp. 237–257.

Fleet DJ 1992 Measurement of Image Velocity. Kluwer.
Fleet DJ and Jepson AD 1990 Computation of component image velocity from local phase information. International

Journal of Computer Vision 5(1), 77–104.
Fleet DJ and Jepson AD 1993 Stability of phase information. IEEE Trans. Pattern Anal. Mach. Intell. 15(12),

1253–1268.
Freeman WT and Adelson EH 1991 The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell.

13(9), 891–906.
Gautama T and van Hulle MM 2002 A phase-based approach to the estimation of the optical flow field using spatial

filtering. IEEE Trans. Neural Networks 13(5), 1127–1136.
Granlund G and Knutssen H 1995 Signal Processing for Computer Vision. Kluwer.
Grossmann P 1987 Depth from focus. Pattern Recognition Letters 5(1), 63–69.
Hanna K 1991 Direct multi-resolution estimation of ego-motion and structure from motion Visual Motion, 1991,

Proceedings of the IEEE Workshop on, pp. 156–162.
Harris C and Stephens MJ 1988 A combined corner and edge detector Alvey Conference, pp. 147–152.
Harrison AP and Joseph D 2012 Maximum likelihood estimation of depth maps using photometric stereo. IEEE

Trans. Pattern Anal. Mach. Intell. 34(7), 1368–1380.
Hartley R and Zisserman A 2004 Multiple View Geometry in Computer Vision. Cambridge University Press.
Harville M, Rahimi A, Darrell T, Gordon G, and Woodfill J 1999 3D pose tracking with linear depth and brightness

constraints Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on, vol. 1,
pp. 206–213 IEEE.

Heeger DJ and Jepson AD 1992 Subspace methods for recovering rigid motion I: Algorithms and implementation.
International Journal of Computer Vision 7(2), 95–117.

Higgins HCL and Prazdny K 1980 The interpretation of a moving retinal image. Proceedings of Royal Society of
London B-208, 385–397.

Horn B and Shunck B 1981 Determining optical flow. Artificial Intelligence 17(1-3), 185–203.
Horn BKP 1986 Robot Vision. MIT Press, Cambridge, Massachusetts.
Hubel D 1988 Eye, Brain, and Vision. W H Freeman & Co, http://hubel.med.harvard.edu/index.html.
Huguet F and Devernay F 2007 A variational method for scene flow estimation from stereo sequences Computer

Vision, 2007. ICCV 2007. IEEE 11th International Conference on, pp. 1–7IEEE.
Ito M, Takada Y, and Hamamoto T 2010 Distance and relative speed estimation of binocular camera images based

on defocus and disparity information PCS, pp. 278–281. IEEE.
Jenkins M and Tsotsos J 1986 Applying temporal constraints to the dynamic stereo problem. Journal of Computer

Vision, Graphics, and Image Processing 3358, 16–32.
Jeong H, Yan S, and Han SH 2012 Integrating stereo disparity and optical flow by closely-coupled method. Journal

of Pattern Recognition Research 7(1), 175–187.
Jing BZ and Yeung DS 2012 Recovering depth from images using adaptive depth from focus ICMLC, pp. 1205–1211.

IEEE.
Kanade T 1987 Three-Dimensional Machine Vision. Kluwer.
Kennedy R, Balzano L, Wright SJ, and Taylor CJ 2013 Online algorithms for factorization-based structure from

motion. CoRR abs/1309.6964, on revision.
Levin A, Fergus R, Frédo D, and Freeman W 2007 Image and depth from a conventional camera with a coded aperture

ACM SIGGRAPH 2007 papers SIGGRAPH ’07. ACM, New York, NY, USA.
Levin A, Lischinski D, and Weiss Y 2008 A closed-form solution to natural image matting. IEEE Trans. Pattern Anal.

Mach. Intell. 30(2), 228–242.

http://hubel.med.harvard.edu/index.html
http://hubel.med.harvard.edu/index.html

Motion and Vision Modules 215

Levin A, Weiss Y, Durand F, and Freeman WT 2011 Understanding blind deconvolution algorithms. IEEE Trans.
Pattern Anal. Mach. Intell. 33(12), 2354–2367.

Li C, Su S, Matsushita Y, Zhou K, and Lin S 2013 Bayesian depth-from-defocus with shading constraints CVPR,
pp. 217–224. IEEE.

Li R and Sclaroff S 2008 Multi-scale 3D scene flow from binocular stereo sequences. Computer vision and image
understanding 110(1), 75–90.

Liu F and Philomin V 2009 Disparity estimation in stereo sequences using scene flow. BMVC, vol. 1, p. 2.
Lowe D 2004 Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision

60(2), 91–110.
Lucas BD and Kanade T 1981 An iterative image registration technique with an application to stereo vision. Image

Understanding Workshop, pp. 121–130.
McCane B, Novins K, Crannitch D, and Galvin B 2001 On benchmarking optical flow. Computer Vision and Image

Understanding 84(1), 126–143.
Middlebury 2013 Middlebury optical flow home page http://vision.middlebury.edu/flow/ (accessed Dec. 23, 2013).
Morita T and Kanade T 1997 A sequential factorization method for recovering shape and motion from image streams.

IEEE Trans. Pattern Anal. Mach. Intell. 19(8), 858–867.
Nagel HH 1987 On the estimation of optical flow: Relations between different approaches and some new results.

Artificial Intelligence 33, 299–324.
Negahdaripour S and Horn BK 1985 Determining 3D motion of planar objects from image brightness patterns. IJCAI,

pp. 898–901.
Nelson RC and Aloimonos Y 1988 Finding motion parameters from spherical flow fields (or the advantages of having

eyes in the back of your head). Biological Cybernetics 58, 261–273.
Nir T, Bruckstein AM, and Kimmel R 2008 Over-parameterized variational optical flow. International Journal of

Computer Vision 76(2), 205–216.
Odobez JM and Bouthemy P 1995 Robust multiresolution estimation of parametric motion models. Journal of visual

communication and image representation 6(4), 348–365.
Poelman CJ and Kanade T 1994 A paraperspective factorization method for shape and motion recovery. Lecture

Notes in Computer Science 800, 97–110.
Poelman CJ and Kanade T 1997 A paraperspective factorization method for shape and motion recovery. IEEE Trans.

Pattern Anal. Mach. Intell. 19(3), 206–218.
Pons JP, Keriven R, and Faugeras O 2007 Multi-view stereo reconstruction and scene flow estimation with a global

image-based matching swith. International Journal of Computer Vision 72(2), 179–193.
Prazdny K 1981 Determining the instantaneous direction of motion from optical flow generated by a curvilinearly

moving observer Image Understanding Workshop, pp. 14–21.
Raudies F 2013 Optic flow http://www.scholarpedia.org/article/Optic_flow (accessed on Dec. 8, 2013).
Sand P and Teller S 2008 Particle video: Long-range motion estimation using point trajectories. International Journal

of Computer Vision 80(1), xx–yy.
Sand PPM 2006 Long-range Video Motion Estimation Using Point Trajectories PhD thesis MIT, Dept. of Electrical

Engineering and Computer Science.
Sargin ME, Bertelli L, Manjunath BS, and Rose K 2009 Probabilistic occlusion boundary detection on spatio-temporal

lattices ICCV, pp. 560–567. IEEE.
Schechner YY and Kiryati N 2000 Depth from defocus vs. stereo: How different really are they?. International

Journal of Computer Vision 39(2), 141–162.
Shechtman E and Irani M 2007 Space-time behavior-based correlation-or-how to tell if two underlying motion fields

are similar without computing them?. IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 2045–56.
Shi J and Malik J 2000 Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8),

888–905.
Simoncelli EP 1993 Distributed analysis and representation of visual motion Ph.D.
Sizintsev M and Wildes R 2012 Spatiotemporal stereo and scene flow via stequel matching. IEEE Trans. Pattern

Anal. Mach. Intell. 34(6), 1206–1219.
Sturm PF and Triggs B 1996 A factorization based algorithm for multi-image projective structure and motion ECCV,

pp. II:709–720.
Subbarao M and Surya G 1994 Depth from defocus: A spatial domain approach. International Journal of Computer

Vision 13(3), 271–294.

http://vision.middlebury.edu/flow/
http://www.scholarpedia.org/article/Optic_flow

216 Architectures for Computer Vision

Subbarao M, Yuan T, and Tyan J 1997 Integration of defocus and focus analysis with stereo for 3D shape recoveryIn
Proc. SPIE Three Dimensional Imaging and Laser-Based Systems for Metrology and Inspection iii, vol. 3204,
pp. 11–23.

Sun J, He K, and Tang X 2010 Single image haze removal using dark channel priors. US Patent App. 12/697,575.
Tola E, Lepetit V, and Fua P 2010 Daisy: An efficient dense descriptor applied to wide-baseline stereo. IEEE Trans.

Pattern Anal. Mach. Intell. 32(5), 815–830.
Tomasi C and Kanade T 1992a The factorization method for the recovery of shape and motion from image streams

Image Understanding Workshop, pp. 459–472.
Tomasi C and Kanade T 1992b Shape and motion from image streams under orthography: a factorization method.

International Journal of Computer Vision 9, 137–154.
Tomasi C and Weinshall D 1993 Linear and incremental acquisition of invariant shape models from image sequences

ICCV, pp. 675–682.
Ullman S 1979 The Interpretation of Visual Motion. MIT Press.
Uras S, Girosi F, Verri A, and Torre V 1989 A computational approach to motion perception. Biological Cybernetics

60, 79–87.
Valgaerts L, Bruhn A, and Weickert J 2008 A Variational Model for the Joint Recovery of the Fundamental Matrix

and the Optical Flow vol. 5096 of Lecture Notes in Computer Science. Springer Berlin Heidelberg.
Vedula S, Rander P, Collins R, and Kanade T 2005 Three-dimensional scene flow. IEEE Trans. Pattern Anal. Mach.

Intell. 27(3), 475–480.
Wang G, Zelek JS, Wu QMJ, and Bajcsy R 2013 Robust rank-4 affine factorization for structure from motion WACV,

pp. 180–185. IEEE Computer Society.
Waxman AM 1987 An image flow paradigm RCV87, pp. 145–168.
Wedel A, Brox T, Vaudrey T, Rabe C, Franke U, and Cremers D 2011 Stereoscopic scene flow computation for 3D

motion understanding. International Journal of Computer Vision 95(1), 29–51.
Wedel A, Pock T, Braun J, Franke U, and Cremers D 2008a Duality TV-L1 flow with fundamental matrix prior Image

and Vision Computing New Zealand, 2008. IVCNZ 2008. 23rd International Conference, pp. 1–6.
Wedel A, Pock T, Zach C, Bischof H, and Cremers D 2009 An Improved Algorithm for TV-L1 Optical Flow vol. 5604

of Lecture Notes in Computer Science. Springer Berlin Heidelberg.
Wedel A, Rabe C, Vaudrey T, Brox T, Franke U, and Cremers D 2008b Efficient Dense Scene Flow from Sparse or

Dense Stereo Data. Springer.
Weickert J and Schnorr C 2001 A theoretical framework for convex regularizers in PDE-based computation of image

motion. International Journal of Computer Vision 45(3), 245–264.
Wikipedia 2013a Multisensory integration http://en.wikipedia.org/wiki/Multisensory_integration (accessed Nov. 2,

2013).
Wikipedia 2013b Optical flow http://en.wikipedia.org/wiki/Optic_flow (accessed on Dec. 8, 2013).
Xiao JJ, Cheng H, Sawhney HS, Rao C, and Isnardi M 2006 Bilateral filtering-based optical flow estimation with

occlusion detection ECCV, pp. I: 211–224.
Zhang L, Curless B, and Seitz SM 2003 Spacetime stereo: Shape recovery for dynamic scenes Computer Vision and

Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on, vol. 2, pp. II–367 IEEE.

http://en.wikipedia.org/wiki/Multisensory_integration
http://en.wikipedia.org/wiki/Optic_flow

Part Three
Vision Architectures

8
Relaxation for Energy
Minimization

This chapter introduces the relaxation equation and architecture, one of the basic computing methods
in energy minimization: relaxation, dynamic programming, message passing, graph cuts, and linear
programming relaxation (LPR).

Early to intermediate vision has a common computation structure. One structure has the attributes to
be computed defined on the pixels or a group of pixels. Another structure has the attribute in a pixel
correlated with its neighbor values, as often modeled by MRF. Yet another structure has the attributes
being obtainable by iteration, relaxing intermediate values, and reusing them for a better solution in
a recursive way. We examine a computation structure that combines all these together in terms of
representation and architecture.

First, we represent the relaxation equation in time and space in terms of its common structures –
iteration, neighborhood computation, and concurrency – and thereby observe how the general computa-
tional architectures, Gauss–Seidel and Jacobi methods, can be combined and the numerous architectural
variations that can be positioned between the two ends of the spectrum.

Next, we represent the relaxation in a graph, which is the product space of the image plane and
iteration. The computation can be viewed in different ways, such as edge connections and spanning
orders, in the graph. Deforming the graph in an affine manner, we obtain a new graph in which the
connections enable different spanning orders. As a result of the graphical representations, we obtain
three basic computational structures – the Gauss–Seidel–Jacob (GSJ) method, the diagonal method, and
the vertical method. As regards computation order, the GSJ method completes the plane and advances
to the next layer, but the diagonal and vertical methods operate in reverse. In terms of memory, the GSJ
method requires RAM, whereas the diagonal and vertical methods require queues. Finally, we define
hardware algorithms that are close to Verilog design, called RE and FRE machines, for the GSJ and
vertical methods.

The later part of this chapter deals with the relaxation equation, an equation that is typical in computer
vision. Starting from the energy equation, this chapter outlines how to derive the relaxation equation, fol-
lowing variational calculus, discretization, and iteration formation. Incidentally, isotropic and anisotropic
diffusion are explained as common smoothness terms.

The RE and FRE machines and the relaxation equation form the bases of machine design in
Chapter 11.

Architectures for Computer Vision: From Algorithm to Chip with Verilog, First Edition. Hong Jeong.
© 2014 John Wiley & Sons Singapore Pte. Ltd. Published 2014 by John Wiley & Sons Singapore Pte. Ltd.
Companion Website: www.wiley.com/go/jeong

http://www.wiley.com/go/jeong

220 Architectures for Computer Vision

8.1 Euler–Lagrange Equation of the Energy Function
Relaxation labeling is a numerical method for solving the discrete labeling in Definition 5.1. In this
approach, we are concerned with the decomposition of a complex computation into a network of simple
local computations and the use of context in resolving ambiguities. As a result, the algorithm becomes
parallel, with each process making use of the context to assist in labeling decisions. Relaxation operations
were originally introduced to solve systems of linear equations. In relaxation labeling, the relaxation
operations are extended, the solutions involve symbols rather than functions, and weights are attached
to labels, which do not necessarily have a natural ordering.

Let us begin with the energy function in Definition 5.1:

E(f) =
∑

(x,y)∈

{
𝜙(f (x, y)) + 𝜆

∑
(x′ ,y′)∈N(x,y)⧵(x,y)

𝜓(f (x, y), f (x′, y′))

}
, (8.1)

where 𝜆 is the Lagrange multiplier. The overall energy comprises a functional:

E(f) =
∑

(x,y)∈
F(f , fx, fy, fxx, fyy, fxy, g), (8.2)

where F includes the data and prior terms:

F(f , fx, fy, fxx, fyy, fxy, g) = 𝜙(f) + 𝜆g(x, y)
∑

(x′ ,y′)∈N(x,y)⧵(x,y)

𝜓(f (x, y), f (x′, y′)). (8.3)

The energy model may be enhanced by introducing a switch function multiplied to the second term, as
in the case of occlusion modeling. The switch function can be modeled as a binary indicator or, more
generally, as a differentiable function such as a sigmoid. Depending on the switch function, the ensuing
derivation is rather different.

Minimizing the energy by using function f leads to the Euler–Lagrange equation (Courant and Hilbert
1953; Horn 1986; Wikipedia 2013b): The problem is the Euler–Lagrange equation with two functions
and two variables:

Ff − 𝜕xFfx
− 𝜕yFfy

+ 𝜕xxFfxx
+ 𝜕yyFfyy

= 0, Fg = 0. (8.4)

In other cases in which the number of variables is greater than one, the number of Euler equations is also
greater than one. To continue, we have to specify F(⋅) further. The second term in Equation 8.1 signifies
local variation, which is often modeled using differentials. Considering second-order derivatives, we get

F(f , fx, fy, fxx, fyy, fxy, g) = 𝜙(f) + 𝜆|∇f |2 + 𝜇|∇2f |2. (8.5)

This assumption is a simple example. There are many variations in which the smoothness term is
models, which prelude the use of simple differentials. In most cases, problems occur when the range of
variables is too wide to be approximated by Taylor series and/or the term is nonlinear because of some
multiplied factors, such as occlusion terms. In addition, the measure can be other than the Euclidean
metric, which makes the differential difficult. For such a case, the basic form of the relaxation equation
is in fact often modified directly without undergoing the derivation process.

Substituting Equation (8.5) into Equation (8.4) yields

𝜆∇2f − 𝜇∇2∇2f = 𝜙f . (8.6)

Relaxation for Energy Minimization 221

The Laplacian, ∇2, is related to the diffusion equation, ∇2 = − d

dt
f , in thermal physics. The biharmonic

operator (Polyanin and Zaitsev 2012), is related to the biharmonic equation ∇2∇2f = 0 in continuum
mechanics.

The equations contain two major terms: Laplacian (Ursell 2007) and biharmonic operators (Polyanin
and Zaitsev 2012):

∇2 = 𝜕
2

𝜕x2
+ 𝜕

2

𝜕y2
, ∇2∇2 = 𝜕

4

𝜕x4
+ 2

𝜕
4

𝜕x2𝜕y2
+ 𝜕

4

𝜕y4
. (8.7)

The Euler equation for the general energy equation is compound because of the diffusion and biharmonic
operators. In practical applications, only one of the two operators is adopted.

In its simplest form, the diffusion term is isotropic but in many cases, it becomes an anisotropic operator.
Such cases arise when we deal with directive smoothing or determine local variations adaptively. For
example, in edge preserving filtering, the smoothing must be differentiated from uniform and boundary
regions. Anisotropic diffusion is made possible by introducing a nonlinear diffusion coefficient between
the derivatives (Perona and Malik 1990):

Let us examine the properties of the Laplacian and biharmonic operators. The Euler–Lagrangian
equation can be considered a filtering process of f , driven by the observed signal 𝜙f . The signal f is often
smoothed by the Gaussian filter, allowing the linear filter to function as a Gaussian filter. The equation
consists of two major terms: diffusion and biharmonic terms. The net result is the combination of the
two filters and thus it is necessary to observe the homogeneous solution.

The Gaussian derivatives are conveniently represented by the Hermite polynomials (Wikipedia 2013d):

𝜕
nG(x, 𝜎)
𝜕xn

= (−1)n 1

(𝜎
√

2)n
Hn

(
x

𝜎

√
2

G(x, 𝜎)

)
. (8.8)

Then, up to fourth order, 𝜕n
x G(x, 𝜎)∕G(x, 𝜎) becomes

1,− x
𝜎2

,
x2 − 𝜎

2

𝜎4
,−x3 − 3x𝜎2

𝜎6
,

x4 − 6x2
𝜎

4 + 3𝜎2

𝜎8
. (8.9)

It is also well known that the Laplacian can be approximated by a DOG filter (Marr and Hildreth 1980).
This property has been generalized to higher-order derivatives, with the proposal that the higher-order
Gaussian filters can be constructed by linear summation of lower-order filters (De Ma and Li 1998;
Ghosh et al. 2004).

The 2D Gaussian filter is represented by G(x, y, s, t), where s and t may be different for an anisotropic
system:

G(x, y, s, t) = G(x, s)G(y, t) = 1
2𝜋st

e−(x2∕2s2+y2∕2t2)
. (8.10)

Using the separability property and the Hermite series, we can derive higher-order 2D filters. In particular,
the second order is

∇2G(x, y, s, t) =
(x2 − s2

s4
+

y2 − t2

t4

)
G(x, y, s, t), (8.11)

222 Architectures for Computer Vision

which is well-known as LoG and often approximated by DOG (Marr and Hildreth 1980). The biharmonic
filter is the fourth-order Gaussian:

∇2 ⋅ ∇2G(x, y, 𝜎)
G(x, y, 𝜎)

= 2𝜋
𝜎6

{𝜎4 + 3𝜎4(x + y) − 𝜎
2(x2 + y2) − 𝜎

2(x3 + y3) + x2y2}. (8.12)

The filters are compared in Figure 8.1. The first row shows the Laplacian: ∇2G and ∇2G∕G. The
second row shows the biharmonic: ∇2 ⋅ ∇2G and ∇2 ⋅ ∇2G∕G. The third row shows the composite filter:
(∇2 + ∇2 ⋅ ∇2)G and (∇2 + ∇2 ⋅ ∇2)G∕G.

From another viewpoint, the diffusion operator in Equation (8.6) can be interpreted as a heat equation
and thereby modeled in many different ways. The simple interpretation is the isotropic diffusion:

𝜕f

𝜕t
= D∇2f , (8.13)

where D is a scalar called the diffusion coefficient. The solution of this equation is Gaussian (see the
problems at the end of this chapter). The next level of the diffusion equation is anisotropic diffusion, in
which the diffusion coefficient depends upon the coordinates:

𝜕f

𝜕t
= ∇ ⋅ (D(x, y, f)∇f) = D∇2f + ∇D ⋅ ∇f , (8.14)

where ‘∇⋅’ is the divergence operator. An even more general representation is the tensor diffusion, in
which the scalar diffusion is extended to the diffusion tensor – a positive semi-definite symmetric matrix:

𝜕f

𝜕t
= ∇ ⋅ (D(x, y, f)∇f) =

2∑
i=1

2∑
j=1

𝜕

𝜕xi

[
Dij(x, y, f)

𝜕f (x, y, t)
𝜕xj

]
. (8.15)

In image processing, the research on nonlinear diffusion is rooted in the following equation (Perona
and Malik 1990):

𝜕f

𝜕t
= ∇ ⋅

(∇f|∇f |2 + 𝜆2

)
, (8.16)

where 𝜆 is a parameter. Such cases occur when we deal with directive smoothing or determine local
variations adaptively. For example, in edge preserving filtering, the smoothing must be differentiated
from the uniform region and the boundary region. Among the many, some examples are 𝜕f∕𝜕t =
∇ ⋅ (|∇f |−1∇f) (Rudin et al. 1992), 𝜕f∕𝜕t = |∇f ||k ∗ ∇f |∇ ⋅ (|∇f |−1∇f) (Alvarez et al. 1992), and
𝜕f∕𝜕t = ∇ ⋅ (

√
1 + |∇f |2∇f) (Sochen et al. 1998). Presently, the diffusion equation has been extended

significantly, up to the generalized heat equation:

𝜕f

𝜕t
= F(D(x, y, t),∇2f (x, y, t),∇f (x, y, t), f (x, y, t)), (8.17)

where F(⋅) denotes a function (see (ter Haar Romeny 1994; Weickert 2008) for the surveys). If the
problem is given by this heat equation, instead of the energy equation, the stage of obtaining the Euler
equation is not needed. The relaxation equation is obtained directly by discretizing this equation:

f (t+1) = f (t) + F(D(x, y, t),∇2f (t)(x, y, t),∇f (t)(x, y, t), f (t)(x, y, t)). (8.18)

For numerical computation, the terms on the right must be discretized accordingly.

Relaxation for Energy Minimization 223

(b) ∇2G(x, y, s, t)/G(x, y, s, t)(a) ∇2G(x, y, s, t)

(c) ∇2 • ∇2G(x, y, s, s)

(e) (∇2 + λ∇2 • ∇2)G (f) (∇2 + λ∇2 • ∇2)G/G

(d) ∇2 • ∇2G(x, y, s, s)/G(x, y, s, s)

Figure 8.1 Shapes of Gaussian derivatives (s = 0.15, t = 0.15, and 𝜆 = 20)

Including anisotropic tensor and the biharmonic operator, the Euler–Lagrange equation becomes

𝜆∇ ⋅ (D∇f) − 𝜇∇2∇2f = 𝜙f . (8.19)

In a simple but practical case, the Euler–Lagrange equation is often modeled by

𝜆∇2f = 𝜙f . (8.20)

Meaningful interpretation is possible if the data term satisfies certain conditions (Ursell 2007).

224 Architectures for Computer Vision

As a result, we have various levels of Euler–Lagrange equations: Equations (8.6), (8.19), and (8.20).
The equations further depend on the diffusion model and the nonlinear term by g(⋅).

8.2 Discrete Diffusion and Biharminic Operators
The Euler–Lagrange equations are completed only when the data term 𝜙f is known. Even so, it is very
difficult to obtain an explicit solution. A practical approach is the numerical computation on the relaxation
equations. To arrive at the relaxation equation, we need to discretize the Euler–Lagrange equation and
then convert it into iterative form, while considering possible convergence. We then have to concentrate
on the two terms: diffusion and biharmonic.

To begin with, we need to obtain kernels for the basic differentials. Let us represent the n-th-order dif-
ferential 𝜕n∕𝜕xn by the forward (Δn), and backward (∇n) and central (𝛿n) difference operators (Wikipedia
2013c), which are

Δn[f](x) =
n∑

i=0

(−1)i

(
n
i

)
f (x + (n − i)),

∇n[f](x) =
n∑

i=0

(−1)i

(
n
i

)
f (x − i),

𝛿
n[f](x) =

n∑
i=0

(−1)i

(
n
i

)
f
(

x +
(n

2
− i

))
. (8.21)

It is practical to use 3 × 3 templates for the differences in image processing. The templates for the second
derivatives can be obtained by multiplying the first-order templates twice. In this case, the forward
and backward templates are alternately multiplied to obtain efficient templates. In general, to make
the higher-order difference kernel symmetric about a center point, the forward, backward, and central
differences are mixed alternately. Some of the frequently used kernels are

⎧⎪⎨⎪⎩
Δx f (x, y) = f (x + 1, y) − f (x, y), ∇x f (x, y) = f (x, y) − f (x − 1, y),

Δy f (x, y) = f (x, y + 1) − f (x, y), ∇y f (x, y) = f (x, y) − f (x, y − 1),

𝛿x f (x, y) = 1

2
(f (x + 1, y) − f (x − 1, y)), 𝛿y f (x, y) = 1

2
(f (x, y + 1) − f (x, y − 1)).

Let us now return to Equation (8.6) to discretize the diffusion and biharmonic operators. The Laplacian
operator can be approximated in many different ways (Wikipedia 2013a). The discrete Laplacian is often
approximated by the five-point stencil:

∇2f = f (x + 1, y) + f (x − 1, y) + f (x, y + 1) + f (x, y − 1) − 4f (x, y). (8.22)

The anisotropic diffusion operator in Equation (8.14) is approximated by

∇ ⋅ (D(x, y, t)∇f) = 1
2

∑
i,j∈{−1,1}

(D(x + i, y + j) + D(x, y))(f (x + i, y + j) − f (x, y)). (8.23)

The derivation is all based on four neighbors and typical stencils among many.
Similarly, the biharmonic operator can be discretized in many different ways (Chen et al. 2008). The

standard stencil is the 13-point biharmonic operator that is obtained by applying the five-point diffusion
operator twice.

Relaxation for Energy Minimization 225

∇4f = 2{20f (x, y) − 8[f (x + 1, y) + f (x − 1, y) + f (x, y + 1) + f (x, y − 1)]

+ 2[f (x + 1, y + 1) + f (x − 1, y + 1) + f (x − 1, y − 1) + f (x + 1, y − 1)]

+ [f (x + 2, y) + f (x − 2, y) + f (x, y + 2) + f (x, y − 2)]}. (8.24)

There are a lot of issues surrounding modifying the kernel to compensate for errors on grid points near
the boundary (Glowinski and Pironneau 1979).

8.3 SOR Equation
In the final stage, we have to convert the difference equation into SOR. The general concept of successive
over relaxation (SOR) is as follows. If T(⋅) is a contraction mapping,

f (x, y) = T(f (x, y)), (8.25)

then the corresponding SOR (Young 1950) can be obtained by

f (t+1)(x, y) = (1 − 𝜔)f (t) + 𝜔T(f (t)(x, y)), (8.26)

where 𝜔 is the relaxation parameter. The system is under-relaxation if 𝜔 < 1 and over-relaxation if
1 < 𝜔 < 2.

For Equation (8.20), we get the relaxation equation,

f (t+1)(x, y) = (1 − 𝜔)f (t)(x, y) + 𝜔

(
f̄ (t)(x, y) − 1

4
𝜙

(t)
f (x, y)

)
, ∀(x, y) ∈ , (8.27)

where f̄ denotes the four-neighbor average. The convergence speed can be adjusted by 𝜔. Similarly, for
Equation (8.6), we have

f (t+1)(x, y) = (1 − 𝜔)f (t)(x, y) + 𝜔

{
f̄ (x, y) − 𝜇

2𝜆
[20f (x, y)

− 8[f (x + 1, y) + f (x − 1, y) + f (x, y + 1) + f (x, y − 1)]

+ 2[f (x + 1, y + 1) + f (x − 1, y + 1) + f (x − 1, y − 1) + f (x + 1, y − 1)]

+ [f (x + 2, y) + f (x − 2, y) + f (x, y + 2) + f (x, y − 2)]] − 1
4𝜆

𝜙f (x, y)
}
. (8.28)

The parameters, 𝜆, 𝜇, and 𝜔, play important roles in system stability. Actually, there is no unique way
of deriving the SOR. Some may even lead to the system becoming unstable. The system can be more
complicated if anisotropic diffusion and the enhanced biharmonic stencils are utilized. The complete
expression is possible only when the data term𝜙f is known. If𝜙 = (T(f) − I)2, we get𝜙f = 2(T(f) − I)Tf ,
which further reduces to 𝜙f = 2(f − I) if T(f) = f . If 𝜙 is known, the terms can be better modified, with
the terms and relaxation parameter readjusted.

Equations (8.27) and (8.28) are typical in image processing, although the details may vary depending
on the problems. If the data term is available, we can elaborate the equation by adding more terms and
modifying the links between the terms by adding switching factors, which are otherwise difficult in the
original energy function. In the next chapter, we derive this type of expression in stereo matching and
thereby design appropriate relaxation machines.

226 Architectures for Computer Vision

8.4 Relaxation Equation
Thus far, we have derived a relaxation equation from a basic energy function. We will now expand
the expression to a more general case. There are two types of relaxations in mathematical optimization:
modeling strategy and iterative method. Relaxation as an iterative method solves a problem by generating
a sequence of improved approximate solutions for the given problem until it reaches a termination
condition, usually defined by convergent criteria. Relaxation as a modeling strategy solves a problem by
converting the given difficult problem to an approximate one, relaxing the cost functions and constraints.
The two methods are widely used in vision computation, as successive over-relaxation (SOR) for solving
differential and nonlinear equations and as LPR for solving integer programming. In this chapter, we
deal with the computational structure of iterative relaxation.

Relaxation is one of the most classical algorithms in computer vision that use iteration and neigh-
borhood computation (Glazer 1984; Hinton 2007; Kittler and Illingworth 1985; Kittler et al. 1993;
Terzopoulos 1986). This algorithm is a natural choice in solving many vision problems, because it is
related with the operations: energy minimization, discretization, iterative computation, neighborhood
computation.

In image processing, relaxation research is largely rooted in (Hummel and Zucker 1983). After a
long evolution, relaxation has evolved up to message passing (Pearl 1982) and graph cut (Boykov et al.
1998). Beside the principles, there are also works on relaxation architectures pursuing parallelism (Gu
and Wang 1992; Kamada et al. 1988; Mori et al. 1995; Wang et al. 1987) and hierarchical structures
(Cohen and Cooper 1987; Hayes 1980; Miranker 1979).

From a computational point of view, relaxation algorithms can be characterized by the following
factors: transformation, neighborhood topology, concurrent processing, initial and boundary conditions,
computation order, and scale. The objective of the algorithm is to update the center pixel by concurrently
mapping neighborhood values, following initialization, boundary condition, and computation order. Let
us examine the factors individually below.

First, consider the transformation that maps the input state to a new state. For a point, p ∈ , define a
function f that maps the point to a vector, f : p ∈ ↦ K , where K means K-dimensional. In addition,
define a function T that maps a neighborhood to its center node, T : N(p) ↦ p, where N(p) denotes the
neighborhood of p, including itself. We can then define the relaxation equation by

f (t+1)(p) = T (t)(I(p), f (t)(N(p))), n = 0, 1,… , T − 1. (8.29)

Here, t denotes time up to the maximum T . Usually, the iteration is continued until convergence but in
practice it is terminated in a predefined time. The operation becomes a point-operation or neighborhood
operation, depending on the neighborhood size. The mapping from neighbors to the center point is
represented by a function and its parameters, which can be time-varying or time-invariant, fixed or
variable connections, or linear or nonlinear.

For a linear time-invariant system, we get an IIR filter:

f (t+1)(p) =
∑

q∈N(p)

T(p, q)f (t)(q) + TI(p), (8.30)

and for a linear time and shift invariant system, we get an FIR filter:

f (t+1)(p) =
∑

q∈N(p)⧵p

T(|p − q|)f (t)(q) + TI(p). (8.31)

The operation can be as simple as the momentums: arithmetic mean, geometric mean, harmonic mean,
contraharmonic mean, and the statistical momentum: median, max, min, midpoint, alpha-trimmed mean

Relaxation for Energy Minimization 227

(a) Image with three-
neighborhood

(b) Image with four-
neighborhood

(c) Image with eight-
neighborhood

(x,y) (x,y) (x,y)

(d) three-neighborhood (e) four-neighborhood (f) eight-neighborhood

Figure 8.2 Neighborhood systems: (a)–(c) for images and (d)–(f) for neighborhoods

(Gonzalez et al. 2009), morphological operations, Nagao-Matsuyama filter (Nagao and Matsuyama
2013) and as complicated as message passing and graph cuts.

Relaxation is also characterized by neighborhood topology, which means a set of neighbor nodes
and the connection to the center node. It may be variable or fixed in both time and space. Typical
neighborhood systems are depicted in Figure 8.2. The three image planes, with different neighborhood
connections, are shown at the top of the figure. The arrows signify influence between neighborhoods
as opposed to physical connections. Below these images are the neighborhood definitions, consisting
of a center pixel and neighbor pixels. In the three-neighborhood system, a node is connected to three
neighbor nodes. Similarly, in four- and eight-neighborhood systems, a center pixel is connected to four
or eight neighbors. Let us denote the neighborhood system by N3, N4, and N8. The three neighborhood
systems are the simplest models of MRF, that is first-order Markov field. The rarest among them is the
three-neighbor system such as summed area table (SAT) (Crow 1984) (see problems).

More specifically, the neighborhood systems are as follows:

N3(x, y) = {(x, y), (x − 1, y − 1), (x, y − 1), (x − 1, y)},

N4(x, y) = {(x, y), (x + 1, y), (x − 1, y), (x, y − 1), (x, y + 1)},

N8(x, y) = {(x, y), (x + 1, y), (x + 1, y − 1), (x, y + 1), (x − 1, y − 1),

(x − 1, y), (x − 1, y + 1), (x, y − 1), (x + 1, y + 1)}. (8.32)

In some cases, typically BP, it is convenient to represent neighbors relative to the center node: c(enter),
e(ast), w(est), s(outh), n(orth), ne (north-east), se (south-east), sw (south-west), and nw (north-west), or
using numbers clockwise from one to four: N4(p) = {p, e(p), w(p), s(p), n(p)} or N4 = {1, 2, 3, 4}.

228 Architectures for Computer Vision

Relaxation is also realized in parallel if possible. To achieve concurrent operations, we expand the
center pixel to a window (or block) of pixels. The operation can then be executed window by window,
with the nodes in the window all being maintained concurrently. Let A(p) denote a window around p
and N(A(p)) the set of neighbors in A(p): N(A(p)) = {r|r ∈ N(q), q ∈ A(p)}. For such a window-based
system, Equation (8.29) becomes

f (t+1)(A(x, y)) = T(I(A(x, y)), f (t)(N(A(x, y)))), t ∈ [0, T − 1]. (8.33)

In short, let us call this RE (Relaxation Equation). This is a general representation for the features:
neighborhood operation, iterative computation, and parallel processing.

Relaxation algorithms are also characterized by initial and boundary conditions. For the initial condi-
tion, the initial value is normally f (0)(p) = I(p), p ∈ . For the boundary condition, the neighbor may not
be completely inside the image, provided that the center point is near the image boundary. For brevity, let
N() = {q|q ∈ N(p), p ∈ }. There are two methods: global and local methods. In the global method,
an additional step is needed for boundary management, along with the main computation. The border
shrink method deals with those points whose neighbors are all in the image plane:

f (t+1)(p) = T (t)(I(p), f (t)(N(p))), ∀p ∈ {p|N(p) ∈ }. (8.34)

The result is a smaller area by the neighborhood size: {p|N(p) ∈ , p ∈ }. The zero padding method
pads zeros in the exterior points.

f (t)(q) = 0, ∀q ∈ N() ⧵ ,

f (t+1)(p) = T (t)(I(p), f (t)(N(p))), ∀p ∈ . (8.35)

The result is the same size as the image but it is influenced by the sudden changes of the image across
the boundary. The other method is the border expansion method that pads the exterior using the nearby
boundary values.

f (t)(q) = f (t)(argmin
r∈

|r − q|), ∀q ∈ N() ⧵ ,

f (t+1)(p) = T (t)(I(p), f (t)(N(p))), ∀p ∈ . (8.36)

The boundary effect is less severe than the zero padding. The mirror expansion method fills the exterior
points using the mirror image at the image boundary.

f (t)(q) = f (t)(2(argmin
p∈

|p − q|) − q), ∀q ∈ N() ⧵ ,

f (t+1)(p) = T (t)(I(p), f (t)(N(p))), ∀p ∈ . (8.37)

The result is less sensitive to local variations at the image boundary than other methods.
In the local method, the boundary is treated in each node locally on the fly. During the computation,

each processor checks itself to determine whether it needs exterior values; if the answer is yes, it
generates the exterior value, otherwise it continues. In this local method, additional logic is needed by
the processors to check its position and generate the exterior values. For the border shrink method, each
node executes the following:

if p ∈ {p|N(p) ∈ }, then f (t+1)(p) = T (t)(I(p), f (t)(N(p))). (8.38)

Relaxation for Energy Minimization 229

The zero padding method is realized by the conditional execution:

if q ∉ N() ⧵ ∀q ∈ N(p), then f (t)(q) = 0,

f (t+1)(p) = T (t)(I(p), f (t)(N(p))), ∀p ∈ . (8.39)

The border expansion method executes the relaxation in the following way:

if q ∉ N() ∀q ∈ N(p), then f (t)(q) = f (t)(argmin
r∈

|r − q|),
f (t+1)(p) = T (t)(I(p), f (t)(N(p))), ∀p ∈ . (8.40)

Finally, the mirror expansion method executes locally:

if q ∉ N() ∀q ∈ N(p), then f (t)(q) = f (t)(2(argmin
p∈

|p − q|) − q),

f (t+1)(p) = T (t)(I(p), f (t)(N(p))), ∀p ∈ . (8.41)

The two methods have clear advantages and disadvantages. The local method is generally better for
hardware design, for accessing exterior points with additional indexes, and for managing large memory
with expanded boundaries, which are generally disadvantages in circuit design.

Relaxation algorithms are characterized by their order of computation. Let the image plane be

and the iteration = [0, T − 1]. A relaxation can be viewed as a process of visiting all the nodes in
V = × in some proper order. For brevity, let (a(b(c))|A) represent a loop operation, where c changes
most rapidly, a changes the slowest, and A represents block (window) processing.

The orders, (1(x(y))) or (1(y(x))), are one-pass algorithms, which are most desirable, at least for the
elapsed time. This class of algorithms includes one-pass labeling and SUM. Represented by (2(x(y)))
or (2(y(x))), two-pass algorithms determine the solution using two passes. In general, (t(x(y))) denotes
a multi-pass algorithm, such as labeling, segmentation, morphology, filtering, connected-component,
relaxation, BP, and GC, to name a few.

One of the most important multi-pass algorithms is the Gauss–Seidel method:

f (t+1)(x, y) = T(I(x, y), f (t)(x, y), f (t+1)(x − 1, y), f (t+1)(x, y − 1), f (t)(x + 1, y), f (t)(x, y + 1)), (t(y(x))).

(8.42)

The proceeding order is the most usual scan, that is a raster scan. The neighbors are the most recently
used (MRU) nodes. In contrast to raster scan, (t(x, y)) means that an entire image plane is updated
concurrently, as in the Jacobi method.

f (t+1)(x, y) = T(I(x, y), f (t)(x, y), f (t+)(x − 1, y), f (t)(x, y − 1), f (t)(x + 1, y), f (t)(x, y + 1)), (t(x, y)).

(8.43)

Equation (8.33) includes Gauss–Seidel and Jacobi methods (Golub and Van Loan 1996; Press et al.
2007) as special cases. If the window size is a pixel, it reduces to Gauss–Seidel and if A = , it becomes
the Jacobi method. The two methods are on opposite ends of the relaxation algorithms spectrum. In
summary, a complete expression of relaxation must be constructed using Equation (8.33), mapping,
concurrent processing, initial and boundary policy, neighborhood definition, and updation order.

A very different scheme is possible using (x(y(t))) or (y(x(t))), which means that the computation
proceeds in iteration axis first, then in the column (row) direction, and then the row (column) direction.

230 Architectures for Computer Vision

− L

0

l

l + 1

U

C

P

(a) Children

C

P

(b) Parents

Figure 8.3 Pyramid hierarchy: (a) children and (b) parent

To deal with all these methods in a coherent way, we first consider an efficient method for representing
the computational space in the following section.

Finally, vision problems often involve multi-scale (or multi-resolution) problems. One of the
approaches to the scale is using pyramidal hierarchy, in which the bottom and top levels indicate fine
and coarse scales. This computational hierarchy is efficiently realized using the multigrid method (Heath
2002; Terzopoulos 1986; Wesseling 1992), which primarily performs smoothing, down-sampling, and
interpolation. Pyramid algorithms are widely used in image representation and processing (Burt 1984;
Jolion and Rosenfeld 1994; Kim et al. 2013; Lindeberg 1993).

Suppose that a pyramid has levels l ∈ [−L, U], where L and U are nonnegative integers representing,
respectively, subpixel and coarse scales (Figure 8.3). The connection of the pyramid is the parent node P
at the upper level and the children nodes C in the lower level. There are two types of pyramids: nonover-
lapping and overlapping. For nonoverlapping pyramids, we define the nodes and connections such
that for l ∈ [−L, U], (x, y, l) ∈ 2−l , S(x, y, l) = {(2x, 2y), (2x + 1, 2y), (2x, 2y + 1), (2x + 1, 2y + 1)},
and P(x, y, l) = {(⌊x∕2⌋, ⌊y∕2⌋)}. For overlapping pyramids, we define the nodes and connections
such that for l ∈ [−L, U], (x, y, l) ∈ 4−l , the candidate children are S(x, y, l) = {(2x + i, 2y + j)|i, j ∈
{−1, 0, 1, 2}}, and the parents are P(x, y, l) = {(x + i)∕2, (y + j)∕2|i, j ∈ {−1, 1}}.

As inputs to the pyramid, the images are usually provided in image pyramid filtered using kernels
such as Gaussian, Laplacian, and binomial coefficients. In a Gaussian pyramid, the image in each level
Il is built by smoothing the adjacent level image with Gaussian kernel G(x, y) and down-sampling (↓) or
up-sampling (↑):

Il(x, y) =
⎧⎪⎨⎪⎩

I(x, y), l = 0,

[Il−1(x, y) ∗ G(x, y)] ↓, l ∈ [1, U],

[Il+1(x, y) ↑∗ G(x, y)], l ∈ [−L,−1].

(8.44)

The control flow of the pyramid is also described by the upward and downward streams. In both
directions, node operations are the same but the initialization is different. Depending on the directions,
the node must be initialized by the average of the parent or the children.

f (0)(x, y, l) ←

⎧⎪⎨⎪⎩
1|P| ∑p∈P(x,y,l) f (T−1)(p), downward,

1|S| ∑p∈S(x,y,l) f (T−1)(p), upward,
(8.45)

where |P| and |S| are, respectively, the sizes of the parent and child.

Relaxation for Energy Minimization 231

In accordance with the conventions, the relaxation equation becomes

f (t+1)(A(x, y, l)) = T(Il(A(x, y, l)), f (t)(N(A(x, y, l)))), t ∈ [0, T − 1], (x, y) ∈ 2−l , l ∈ [−L, U].

(8.46)

For a full description of relaxation, we have to specify all the factors as explained in an algorithmic
form. Since the upward and downward control depends on application, we may have to write the
downward algorithm only.

Algorithm 8.1 (Relaxation) Given I, compute the following.

� Input: image pyramid {Il|l ∈ [−L, U]}.
� Output: f (T−1)(A(x, y,−L)), ∀(x, y) ∈ .
� Window: A(x, y) = {(x + i, y + j)|i ∈ [0, n − 1], j ∈ [0, m − 1]}.
� Boundary: global or local methods.

1. for l = U, U − 1,… ,−L,
2. for t = 0, 1,… , T − 1 and ∀(x, y) ∈ 2−l ,

(a) if l = U and t = 0, f (x, y, l) ← 0,
(b) else if t = 0, f (x, y, l) ← 1|P| ∑p∈P(x,y,l) f (p),

(c) else f (A(x, y, l)) ← T(Il(A(x, y, l)), f (N(A(x, y, l)))).

We have now arrived at the final expression that includes all the major factors of relaxation: transfor-
mation, neighborhood, window, initialization, boundary condition, and scale. Even if the hierarchy has
been considered, the major operation is the iterative updation, which is the same regardless of the level.
Therefore, in the following section, we concentrate on the operation in a fixed level, as described by
Equation (8.33) instead of Equation (8.46), unless otherwise stated.

8.5 Relaxation Graph
Computing RE can be viewed as determining all the nodes V = {(x, y, t)|(x, y) ∈ , t ∈ } in systematic
order. The space of the nodes can be considered as a stack of planes numbered upwards with .

The concept is illustrated in Figure 8.4. The bottom layer represents an image plane while the top layer
represents a result plane. In the side views, the vertical and diagonal edges represent the neighborhood

x(y)

t

x
y

(b) x − y plane(a) t − x(y) plane

Figure 8.4 A graph G = (V , E, F) for relaxation (N4 system is shown)

232 Architectures for Computer Vision

connections from lower level to higher level. In the top view, the edges look like an ordinary four-
neighborhood but they mean connections between successive layers. In this graph, we can view the
RE as a method by which we determine nodes, one by one or window by window, from one layer to
another layer in the upward direction. The top layer signifies the end of the iteration, and contains the
final result.

This concept is formally defined as a graph G = (V , E, F).

Definition 8.1 (Relaxation graph) A relaxation graph G = (V , E, F) is a graph consisting of the
nodes V = {(x, y, t)|(x, y) ∈ , t ∈ } and the edges are defined in the neighborhood N(x, y, t) and
connected bidirectionally in the same layer and unidirectionally from lower to upper layer. A node v ∈ V
is assigned with a value F(v) ∈ . Especially, at the bottom plane, F(x, y, 0) ←← I(x, y) and at the top
layer F(x, y, T − 1), the result is stored.

In the graph, the nodes on the bottom and top layers are special in that one is input and the other is
output. Apart from this, all the other nodes are identical in their operation and connection.

Nodes on the same layer are connected bidirectionally, whereas nodes that are between two layers are
connected unidirectionally. The connection is based on the neighborhood system: N3, N4, or N8. In this
graph, the neighbor nodes are as follows:

N(x, y, t) = {(x + i, y + j, t + k)|i, j ∈ {−1, 1}, t ∈ {0,−1}}. (8.47)

Nodes in N4 and N8 are part of this node set.
In this graph, the computational order is not unique. For t, there is only one direction: increasing the

order. However, x and y can proceed forward and backward. Consequently, there is a total of 24 possible
methods. Gauss–Seidel and Jacobi are only two special cases, having the orders (t(y(x))) and (t(x, y)).

Among the many methods, only six are practical (Figure 8.5). The figure illustrates only the t − y
section of V . It also shows the center node, neighbor connection, storage, and proceeding direction. This
figure contains six basic orders of computation. Each row represents computing directions and each
column represents neighborhood connections: Gauss–Seidel or Jacobi connections. Common to all the
computing orders, the computation starts from the bottom layer, where the nodes are initialized by the
input image and ends at the top layer, where the nodes contain the final result. In between, the nodes are
updated, using the values in the neighbor nodes, which have already been visited and determined in the
previous stage. The stored values and proper order facilitate recursive computation in the six cases. It is
obvious that there are three different orders of computation: Gauss–Seidel–Jacobi, diagonal, and vertical
methods. Let us examine the methods in more detail.

As the first figure shows, Gauss–Seidel, which has computation order (t(y(x))), is one possibility. The
neighbor connection is defined by

N(x, y, t) = {(x, y − 1, t), (x − 1, y, t), (x, y, t − 1), (x + 1, y, t − 1), (x, y + 1, t − 1)}, (8.48)

where two neighbors are on the same layer and the other three are in the lower layer. The required storage
is O(MN). The second method is Jacobi, which has computation order (t(x, y)). The neighbors are
defined as

N(x, y, t) = {(x, y − 1, t − 1), (x − 1, y, t − 1), (x, y, t − 1), (x + 1, y, t − 1), (x, y + 1, t − 1)}, (8.49)

where all the neighbors belong to the lower layer. This method needs O(2MN) storage, for lower and
upper layers.

Counterintuitively, the diagonal direction is possible for both Gauss–Seidel and Jacobi connections,
as shown in the second row. The diagonal computation of the Gauss–Seidel connection is represented

Relaxation for Energy Minimization 233

y

t

0 1 ··· M − 1

0

1

···

T − 1

(a) Gauss–Seidel

y

t

0 1 ··· M − 1

0

1

···

T − 1

(b) Jacobi

y

t

0 1 ··· M − 1

0

1

···

T − 1

(c) Diagonal Gauss–Seidel

y

t

0 1 ··· M − 1

0

1

···

T − 1

(d) Diagonal Jacobi

y

t

0 1 ··· M + T − 2

0

1

···

T − 1

(e) Vertical Gauss–Seidel

y

t

0 1 ··· M + T − 2

0

1

···

T − 1

(f) Vertical Jacobi

Figure 8.5 Basic methods of computation order

by (y − t(t(x))). The dual method (x − t(t(y))) is also possible. The required storage is O(NT). Similarly,
the Jacobi connection can also be computed diagonally, with (y − t(t(x))) (or (x − t(t(y)))) order and
O(NT) storage.

The shifted graph and connections are depicted on the third row. Instead of the original graph and
diagonal direction, we may shift the graph so that the current node refers to those nodes whose index
does not exceed that of the current node. In this manner, the diagonal computation can be converted to
vertical direction for both Gauss–Seidel and Jacobi connections. The computation order is (y(x(t))) or
(x(y(t))) and the storage is O(2NT).

The vertical computation is more than simplifying the diagonal computation. It actually contains
three more variants: y, x, and x-y shifts. Shifting in the y-axis, as shown in the figure, results in vertical
movement in the y-t plane. Likewise, shifting in the x-axis results in vertical movement in the x-t direction.
There is a third transformation, in which the original graph is shifted in both the x and y directions. The
result is diagonal movement in both the x-t and y-t planes. As a consequence, we will deal with the
vertical structure, discarding the diagonal structures.

234 Architectures for Computer Vision

The two structures, GSJ and Non GSJ (nGSJ) for diagonal and vertical orders, show completely
different properties in computation and are thus examined separately. In the following section, we examine
the two structures in more detail and eventually represent them using hardware algorithms, called RE
and FRE machines, intermediate representations between software algorithm and Verilog design.

8.6 Relaxation Machine
Let us first examine the GSJ structure. For the Gauss–Seidel method, the order is (t(y(x))) and the
operation is

f (x, y, t) ← T(I(x, y), f (x, y, t − 1), f (x − 1, y, t), f (x, y − 1, t), f (x + 1, y, t − 1), f (x, y + 1, t − 1)).

(8.50)

Among the five neighbors, two are new and three are old. Moving in the order, (t(y(x))), the operation is
obviously recursive. Meanwhile, the Jacobi method has computation order O(t(x, y)) and operations,

f (x, y, t)← T(I(x, y), f (x, y, t− 1), f (x− 1, y, t− 1), f (x, y− 1, t− 1), f (x+ 1, y, t− 1), f (x, y+ 1, t− 1)).

(8.51)

All the neighbor values are located below the current plane. The operation is also recursive if the
computation order (t(x, y)) is maintained.

For a closer look at the Gauss–Seidel method, three side views of G are illustrated in Figure 8.6. The
views are the y-l, x-y, and a part of the x-y planes. The y-t view shows the connection between neighbors,

y

t

M

L

x

y

N

M

(b) x-y plane(a) t-y plane
x

y

A (x, y)m

n

(c) A window

Figure 8.6 Configurations: storage and connections for a node and window

Relaxation for Energy Minimization 235

located on the same layer and the lower layer. The shaded region is the minimal storage for recursive
computation. The same computation is also observed in the x-y plane. The shaded region is the storage
to be used later when the upper layer is updated. In the bottom is shown a window, A(x, y), an expanded
version of a pixel, for window processing. Inside the window, the nodes located around the upper and
left boundaries can access the most recently updated values while the others access older values in the
lower layer. In fact, a window possesses both Gauss–Seidel and Jacobi properties. The boundary nodes
belong to the Gauss–Seidel connection and the inner nodes belong to the Jacobi connection. As mn → 1,
the system tends closer to the Gauss–Seidel method. Conversely, as mn → MN, the system tends closer
to the Jacobi method. Between 1 < mn < MN, the system possesses properties of both the Gauss–Seidel
and Jacobi methods.

In this manner, both the Gauss–Seidel and Jacobi methods are commonly represented by the window
introduced. The RE becomes

f (A(x, y, t)) ← T(I(A(x, y)), f (N(A(x, y, t)))), (t(y(x))|A), (8.52)

which is a graphical representation of Equation (8.33). Here, N(A(x, y, t) is connected to the most recently
updated nodes as explained: boundary nodes to the same layer and inner nodes to the lower layer.

A(x, y, t) = {(x + i, y + j, t − 1)|i ∈ [1, n + 1], j ∈ [1, m + 1]}

∪{(x + i, y − 1, t)|i ∈ [0, n − 1]} ∪ {(x − 1, y + j, t)|j ∈ [0, m − 1]}. (8.53)

If mn = 1, we have A(x, y, t) = {(x, y − 1, t), (x − 1, y, t), (x, y, t − 1), (x + 1, y, t − 1), (x, y + 1, t − 1)}.
If mn = MN, we have A(x, y, t) = {(x, y − 1, t − 1), (x − 1, y, t − 1), (x, y, t − 1), (x + 1, y, t − 1), (x, y + 1,
t − 1)}.

In addition to the updation equation, an algorithm needs more information about initial condition,
boundary condition, control, and memory. It is summarized as follows:

Algorithm 8.2 (RE machine) Given I, determine f.

� Input: {I(x, y)|(x, y) ∈ }.
� Memory: F = {f (x, y)|(x, y) ∈ N()}.
� Window: A(x, y) = {(x + i, y + j)|i ∈ [0, n − 1], j ∈ [0, m − 1]}.
� Boundary: global or local method.
� Output: {f (x, y)|(x, y) ∈ }.

1. Initialization: F ←← I.
2. for t = 0, 1,… , T − 1,

(a) for y = 0, m, 2m,… , M − 1, for x = 0, n, 2n,… , N − 1,

f (N(A(x, y))
read
←← F,

f (A(x, y)) ←← T(I(x, y), f (N(A(x, y))),

F
write
←← f (A(x, y)).

Let us call this the RE machine (relaxation equation machine). This machine needs two memories, a
memory F and a window A, and a logic, global, or local boundary policy. In this algorithm, the detailed
expression, represented by Equation (8.53), is not required, because the memory always contains the
most recent values. Initially, the memory is simply overwritten with the image. The same operation is
then repeated for all nodes in three nested loops. In each operation, a block of neighbors is read from the

236 Architectures for Computer Vision

T(I(x, y), f (N(A(x, y)))

F

I(x, y) F

f (A(x, y))f (N(A(x, y)))

CLKs (t(y(x)))
Reset

Figure 8.7 Architecture of the RE machine

memory and used in the updation equation. The updated window is then overwritten on the older values
in the memory. When the operation reaches the top and is finally over, the final result is the contents in
the memory.

Considered in the computational complexity, the variables are the neighborhood N(⋅) and the window
size mn. This system requires O(mn) processors, O(MNT∕mn) time, and O(MN + mn) space. At one
extreme, it approaches the Gauss–Seidel method as mn → 1, which executes the algorithm with one
processor, O(MNL) time, and O(MN) space. At the other end, as mn → MN, it approaches the Jacobi
method, which uses O(MN) processors, O(T) time, and O(2MN) space. (Two memories are required
in this case for input and output. The roles are alternatively changed in each iteration.) In general, the
degree of serial and parallel computation is controlled by the parameter mn.

The corresponding architecture consists of a combinational circuit T(⋅), a memory plane F, a buffer
memory f (A), and three clocks (t(y(x))) (Figure 8.7). The clocks are represented by the three nested
loops, (t(y(x))), with x for the innermost loop and t the outermost loop. There are no conditional jumps:
the logic is completely deterministic. The image is stored in I and read in each clock period.

8.7 Affine Graph
In Figure 8.5, we observed that the computational order can be (y − t(t(x))) or (x − t(t(y))). However, the
diagonal direction is somewhat complicated when counting node numbers and preserving memories and
thus more convenient representation is needed. There are three possibilities for shift directions: x, y, and
x-y directions. Of the three, the third option is the best because it can use more updated neighbors than
the others.

This concept is shown in Figure 8.8. If we push the graph in both the x and y directions, proportionally
to the layer height – an affine transformation, the shape becomes a parallelepiped – the top plane is still
parallel to the image plane but the other walls are no longer orthogonal to the image plane. Between
two adjacent layers, the amount of shift is just one unit in both directions. Therefore, the neighborhood
connection must also be shifted properly. For better understanding, three views are provided. The
proceeding direction is the raster scan in both the l-y and x-y planes. In this order and connection, the
neighbor values are always the most recently updated ones. This is one of many possible variations of
deformation (see the problems at the end of this chapter).

Because of the deformation, the original cube (rectangular parallelepiped) becomes a parallelepiped. To
make the graph a rectangular parallelepiped, we fill the empty spaces with dummy nodes, which function
the same way as the nodes. The resulting shape is a cube with N′ × T ′ nodes, where N′ = (N + T − 1)
and M′ = (M + T − 1). In this cube, the image input is still the M × N part of the bottom layer and the
output is the same size as the top layer. Now, G′ can be considered G, except that the cube is expanded
and the nodes are connected differently.

Let us define the induced graph formally and call it an affine graph.

Relaxation for Energy Minimization 237

x

t

y

t

(b) y-t plane(a) x-t plane

(c) x-y plane (d) x-y-t cube

y

x x
y

l

Figure 8.8 The induced graph, G′ = (V , E, F)

Definition 8.2 (Affine graph) An affine graph G′ = (V , E, F) is a graph that is induced from the
relaxation graph G by applying the affine transformation, which transforms (x, y, t) ∈ G to (x′, y′, t′) ∈ G′,
using

⎡⎢⎢⎢⎣
x′

y′

t′

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1 0 1

0 1 1

0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x

y

t

⎤⎥⎥⎥⎦, (or x′ = Ax), (8.54)

where A is an affine matrix, and padding nodes so that the graph becomes a rectangular parallelepiped
with V = {(x, y, t)|x ∈ [0, N′ − 1], y ∈ [0, M′ − 1], t ∈ }, where N ′ = N + T − 1 and M′ = M + T − 1.

The affine transformation can only be applied to one direction, in either x or y, but not both. In this
case, we obtain different types of graphs in terms of neighborhood connections (see the problems at the
end of this chapter). The two graphs differ in two aspects: first, the space is changed from M × N × T to
M′ × N′ × T . Second, the original neighborhood must also be transformed by N′ = AN.

The neighborhood systems in Equation (8.32) become

N4(x, y, t) = {(x − 1, y − 1, t − 1), (x, y − 1, t − 1), (x − 2, y − 1, t − 1),

(x − 1, y, t − 1), (x − 1, y − 2, t − 1)},

N8(x, y, t) = {(x − 1, y − 1, t − 1), (x, y − 1, t − 1), (x, y, t − 1), (x − 1, y, t − 1), (x − 2, y, t − 1),

(x − 2, y − 1, t − 1), (x, y − 2, t − 1), (x − 1, y − 2, t − 1), (x − 2, y − 2, t − 1)}. (8.55)

238 Architectures for Computer Vision

(a) four-neighborhood in G (b) four-neighborhood in G′

(x, y)

(x, y)

(x, y)

(x, y)

(c) eight-neighborhood in G (d) eight-neighborhood in G′

Figure 8.9 Neighborhood systems in G and G′. Empty circles are one level above the dark circles. The
edge direction means data dependency

In this expression, all the neighbors are positioned below and withdraw one or two cell distances from
the center node.

The connections are illustrated in Figure 8.9. The filled dots are on the lower layer and the empty
dots are on the upper layer. In the new graph, the neighborhood connections look distorted and thus
the original bearings – east, west, south, and north – are not correct; however, we will keep the same
name for simplicity. The node distances are also changed. The east and south neighbors are in one pixel
distance but the west and north neighbors are in two pixels distance (in one coordinate).

8.8 Fast Relaxation Machine
In G′, one of the efficient schedules is (y(x(t))), where the computation proceeds in the order, layer,
column, and row. A node (x, y, t) can then be computed recursively using the previous values.

f (x, y, t) ← T(I(x, y, t), f (x − 1, y − 1, t − 1), f (x − 2, y − 1, t), f (x − 1, y − 2, t),

f (x, y − 1, t − 1), f (x − 1, y, t − 1)). (8.56)

Here, I(x, y) is the new input while all the other values are stored values that were computed in the
previous stages.

Let us expand the recursive computation from a node, (x, y, t), to a small window, A(x, y, t), whose posi-
tion is represented by the first pixel position in it: A(x, y) = {(x + i, y + j)|i ∈ [0, n − 1], j ∈ [0, m − 1]}.

Relaxation for Energy Minimization 239

The value set is f (A(x, y)) = {f (x + i, y + j)|i ∈ [0, n − 1], j ∈ [0, m − 1]}. The relaxation equation thus
becomes

f (A(x, y, t)) ← T(I(A(x, y)), f (N(A(x, y, t)))), (y(x(t))|A), (8.57)

where y = 0, m,… , M′ − 1, x = 0, n,… , N′ − 1, and t = 0, 1,… , L − 1. Notice that starting from Equa-
tion (8.33), we have derived Equation (8.52) and Equation (8.57). The three equations represent the same
RE but in different spaces – time, G, and G′. This method divides the x-y plane into m × n blocks and
scans the plane block by block.

Together with the scheduling and hardware resources, this method is described as follows:

Algorithm 8.3 (fast relaxation machine) Given I, determine f.

� Input: {I(x, y)|(x, y) ∈ }.
� Queue: F = {f (x, y)|(x, y) ∈ N()}.
� Window: A(x, y) = {(x + k, y + t)|k ∈ [0, n − 1], l ∈ [0, m − 1]}.
� Boundary: global or local boundary policy.
� Output: f (A(x, y, T − 1)).

1. Initialization: F ←← I.
2. for y = 0, m,… , M′ − 1, for x = 0, n,… , N′ − 1, for t = 0, 1,… , L − 1, compute

(a) f (N(A(x, y, t)))
read
←← Q(x, y, t).

(b) f (A(x, y, t)) ←← T(I(A(x, y, t)), f (N(A(x, y, t)))).

(c) Q(x, y, t)
push
←← f (A(x, y, t)).

(d) if t = T − 1, output f (A(x, y, T − 1)).

To differentiate this machine from the RE machine, let us call it the FRE Machine (fast relaxation
equation machine). The major difference from the RE machine is the memory type: queue. The reading
and writing positions, defined by f (N(A(x, y, t))), are fixed but the memory must shift down as the
node position changes. Alternatively, the opposite is possible: fixed memory and moving address. The
memory position is determined by the neighborhood type and the window shape. At the bottom layer, the
processors do not need neighborhood but input image. At the first column, only one neighbor is available
and thus others must be empty. Otherwise, the image input is not available and thus the processors use
neighbor values only. The state memory must also be avoided at the top layer, since it will never be used.
Whenever the processors move upward, the neighbor values must be read from the state memory. The
output is available when the processors complete the top layer. This algorithm uses O(mn) processors
and ((N′∕n + 1)(L − 1))mn space. If mn → 1 and L → 2, it approaches the Jacobi machine but never
approaches the Gauss–Seidel machine.

The architecture is shown in Figure 8.10. The system is driven by the three nested clocks, (y(x(t))),
where the variables respectively denote the block number, row, column, and layer, with t the fastest and y

T(I(A), f (N(A))))

Q

I(x, y) f (A(x, y, T − 1))

f (A(x, y, t))
N(A(x, y, t))

CLKs (y(x(t)))
Reset

Figure 8.10 The block relaxation machine

240 Architectures for Computer Vision

the slowest. The addresses to the state memory blocks and pixels are all computed by the neighborhood
relationship in a window. With image and neighbor values, the m × n processors compute the node values
f (A(x, y, t)). After the updation, the state memory is written with this value when it is not on the top layer.
This architecture is relatively easy to realize, because the memory structure is rather simple.

For a complete system, the machines are the major part in Algorithm 8.1, which includes hierarchical
control. However, those controls are largely dependent upon the problems and applications.

8.9 State Memory of Fast Relaxation Machine
To completely describe FRE, we have to specify f (N(A(x, y, t))), by computing the positions of the
neighbors in the memory. There are two possibilities for the memory: RAM and queue. For RAM, the
addresses N(A(x, y, t)) are changed to write and read the memory and thus no further explanation is
needed. For queue, the addresses are fixed and the contents are shifted down in the queue whenever the
window moves to the next position. Unless otherwise stated, we assume a queue.

Let us consider a 2 × 2 window, A, in a graph G′ (Figure 8.11). The window moves according to the
schedule, (y(x(t))). The left figure indicates a y-t plane view, which consists of an M′ × T grid, with
bottom representing image plane and the top representing the result. In both views, the neighbor values
are indicated by the connecting lines the state memory is denoted by the shaded region. In the y-t plane,
the window moves in (y(t)) order. The state memory is a 4 × T rectangular in this plane. As the window
moves upwards, the top of the memory is filled and the tail is emptied, so that the queue moves upwards.
On reaching the top layer, the window shifts from y to y + 2.

In the x-y plane, the window moves in (y(x)) order. The node inside the window accesses the neighbor
nodes as the links indicate. The memory in this view occupies the 2 × N′ rectangular region. From both
views, the state memory becomes a 2 × T × N′ cube. The memory structure is primarily a queue, which
can be conveniently realized with an array. To fully specify the neighborhood, we have to specify the
addresses, relative to the present window. The addresses depend on the window position, (x, y, t) and the
window size, (m, n).

Typical examples are depicted in Figure 8.12. The figure contains four windows and the neighbor
connections. Nodes in a window access other nodes as indicated by the lines. The shaded area is a part

y

t

A

Q0Q

M′

T

y y 1+

(a) y-t plane (b) x-y plane

x

y

QA 0

Q

N′

x x 1+

M′

Figure 8.11 System state in y-t and x-y planes. A block (2 × 4), a state memory, and a buffer

Relaxation for Energy Minimization 241

(a) The 1 × 1 window (b) The 2 × 1 window

(c) The 1 × 2 window (d) The 2 × 2 window

Figure 8.12 The windows and neighborhoods: 1 × 1, 2 × 1, 1 × 2, and 2 × 2

of the system memory that contains the neighbor values to be used presently and later. For simplicity,
some unused memory cells are also included to make the memory structure more regular. The addresses
indicated by the connecting lines clearly depend upon the window and image size.

Let us first consider the 1 × 1 window, which is located at (x, y, t). If a queue is used, the memory is a
rectangular parallelepiped with 3N′T nodes. The neighborhood pixels are located in five different places
in the memory. When ordered in east, west, south, and north, the neighbor values are as follows:

f (N(A(x, y, t))) = {f (x, y, t − 1), f (x, y − 1, t − 1), f (x − 2, y − 1, t − 1),

f (x − 1, y, t − 1), f (x − 1, y − 2, t − 1)}. (8.58)

The addresses represent the absolute positions in RAM. If a queue is to be used, the offset from (x, y, t)
is the fixed address in memory. This concept is the same for other windows.

For a two-pixel window, we have two possibilities, specifically, 1 × 2 and 2 × 1 windows. There
appears to be no preference about this but the 2 × 1 window seems to be somewhat simpler, because its
height matches the state memory size. For the 2 × 1 window, two nodes independently access 10 cells in
the memory, which has size 3N′T . The absolute positions are defined by

f (N(A(x, y, t))) =

⎡⎢⎢⎢⎢⎢⎢⎣

f (x, y, t − 1) f (x, y + 1, t − 1)

f (x, y − 1, t − 1) f (x, y, t − 1))

f (x − 2, y − 1, t − 1) f (x − 2, y, t − 1)

f (x − 1, y, t − 1) f (x − 1, y + 1, t − 1)

f (x − 1, y − 2, t − 1) f (x − 1, y − 1, t − 1)

⎤⎥⎥⎥⎥⎥⎥⎦

T

, (8.59)

242 Architectures for Computer Vision

where the first row contains the neighbors of (x, y, t) and the second row the neighbors of (x, y + 1, t), all
arranged in the order center, east, west, south, and north.

For the 1 × 2 window, the size of the memory is 2N ′T . The memory addresses are

f (N(A(x, y, t))) =

⎡⎢⎢⎢⎢⎢⎢⎣

f (x, y, t − 1) f (x + 1, y, t − 1)

f (x, y − 1, t − 1) f (x + 1, y − 1, t − 1)

f (x − 2, y − 1, t − 1) f (x − 1, y − 1, t − 1)

f (x − 1, y, t − 1) f (x, y + 1, t − 1)

f (x − 1, y − 2, t − 1) f (x, y − 1, t − 1)

⎤⎥⎥⎥⎥⎥⎥⎦

T

. (8.60)

Likewise, in the 2 × 1 window, this window also accesses 10 neighbors, but in different positions. The
first and the second rows, respectively, correspond to the neighbors of (x, y, t) and (x + 1, y, t).

The 2 × 2 window has 20 elements in the memory, which has 4N′T nodes. The neighborhood is
defined by

f (N(A(x, y))) =

⎡⎢⎢⎢⎢⎣
f (x, y) f (x, y − 1) f (x − 2, y − 1) f (x − 1, y) f (x − 1, y − 2)

f (x, y + 1) f (x, y) f (x − 2, y) f (x − 1, y + 1) f (x − 1, y)

f (x + 1, y) f (x + 1, y − 1) f (x − 1, y − 1) f (x, y) f (x, y − 2)

f (x + 1, y + 1) f (x + 1, y) f (x − 1, y) f (x, y + 1) f (x, y − 1)

⎤⎥⎥⎥⎥⎦
,

(8.61)

where time indices are dropped for simplicity. The neighbors are ordered in a row, for (x, y, t), (x, y + 1, t),
(x + 1, y, t), and (x + 1, y + 1, t), with the same four bearings.

In general, for an (m, n) window, the neighborhood values are determined by

f (N(A(x, y, t))) = f

(⋃
i∈[0,n−1]
j∈[0,m−1]

N(x + i, y + j, t)

)
. (8.62)

The addresses denote absolute positions in RAM, which is organized in the shape of a ‘V’. If the memory
is organized in other multidimensional arrays, the addresses must be converted accordingly. Moreover,
if a queue is used instead, the addresses must be converted to the fixed positions in that memory.

8.10 Comparison of Relaxation Machines
Thus far, we have derived various architectures that possess some major properties of relaxation opera-
tions. We have defined a relaxation equation and, based on a graphical representation, obtained RE and
FRE machines (Park and Jeong 2008a,b). The machines are all summarized in Table 8.1 and compared
with time, space, and space-time product.

The machines included in this table are classified into two classes: RE and FRE machines. The major
difference between the two machines is the direction of computation, that is (t(y(x))) and (t(x, y)) or
(y(x(t))). The RE machine is a unified concept of the Gauss–Seidel (mn = 1) and the Jacobi methods (mn =
MN). The FRE machine is a rather different concept, whose extreme is also the Jacobi machine (mn =
MN). Thus, the Jacobi method is the common connection between the two machines. The memories are
all RAM, but queue is more natural to FRE. In RAM, the address moves and the content remains in the
same position. In queue, the address is fixed and the contents are shifted. All the methods are scalable

Relaxation for Energy Minimization 243

Table 8.1 Relaxation machines

Machine PEs Time Space Space-Time Product Memory

Gauss–Seidel 1 MNT MN M2N2T RAM
Jacobi MN T 2MN 2MNT RAM
RE (m × n) mn MNT∕mn MN + mn MNT(MN + mn)∕mn RAM
FRE (1 × 1) 1 M′N′T 3N′T 3M′N′2T2 Queue
FRE (2 × 1) 2 M′N′T∕2 4N′T 2M′N′2T2 Queue
FRE (1 × 2) 2 M′N′T∕2 3N′T 3M′N′2T2∕2 Queue
FRE (2 × 2) 4 M′N′T∕4 4N′T M′N′2T2 Queue
FRE (m × n) mn M′N′T∕mn (2 + m)N′T (2 + m)M′N′2T2∕mn Queue

cf. M′ = M + T − 1, N′ = N + T − 1, m ∈ [1, M], n ∈ [1, N].

using the parameter mn, denoting the number of parallel processors. One of the advantages of the FRE
over the RE machine is the far smaller memory.

Problems
8.1 [Euler–Lagrange Equation] Prove that the Gaussian distribution is the solution of the diffusion

equation.

8.2 [Discretization] What stencils are possible, other than Equation (8.22), for ∇2f (x, y)?

8.3 [Discretization] Derive Equation (8.23), which is a discretization of anisotropic diffusion operator.

8.4 [SOR] For the above anisotropic diffusion, derive the relaxation equation for Equation (8.6),
similarly to Equation (8.28).

8.5 [Relaxation equation] The relaxation technique originated from the iterative solution of linear
systems. Let Ax = b, where x ∈ n and b ∈ m. One of the approaches is to partition A into two
matrices, A = N − M. Using this method, derive a relaxation equation and discuss the convergence
conditions.

8.6 [Relaxation equation] In deriving relaxation for Ax = b, we may partition A into three matrices.
Using this method, derive the Jacobi method in matrix form.

8.7 [Relaxation equation] As a continuation of the previous problem, derive the Gauss–Seidel method
in matrix form, using the three partitioned matrices.

8.8 [Relaxation equation] As a continuation of the previous problem, derive SOR in matrix form for
the Gauss–Seidel method.

8.9 [Affine graph] In the affine graph, the transformation is applied in both directions, x and y.
What happens to the neighborhood connection if the transformation is applied in only one
direction?

8.10 [FRE machine] There is another type of algorithm that is different from the four-neighborhood
processing, called sum area table (SAT). The SAT (also known as integral table) (Viola and
Jones 2001) uses a three-neighborhood system and raster scan for computing area using just
the previously stored values. It is a data structure and an algorithm for quickly and efficiently
generating the sum of values in a rectangular subset of a grid. Write the updation equation for
SAT and show that it is a one-pass algorithm.

244 Architectures for Computer Vision

8.11 [FRE machine] The original SAT algorithm means mainly fast summation, but inherently implies
an efficient computational structure. In the SAT algorithm, show that the state memory can be
realized with a queue, and rewrite the updation equation in terms of the queue.

8.12 [FRE machine] Derive the SAT in the above problem with corresponding algorithm and machine
architecture, as we have done for the RE and FRE machines.

References
Alvarez L, Lions PL, and Morel JM 1992 Image selective smoothing and edge detection by nonlinear diffusion. ii.

SIAM Journal on Numerical Analysis 29(3), 845–866.
Boykov Y, Veksler O, and Zabih R 1998 Markov random fields with efficient approximations. International Conference

on Computer Vision and Pattern Recognition (CVPR).
Burt PJ 1984 The Pyramid as a Structure for Efficient Computation. Springer.
Chen G, Li Z, and Lin P 2008 A fast finite difference method for biharmonic equations on irregular domains and its

application to an incompressible Stokes flow. Advances in Computational Mathematics 29(2), 113–133.
Cohen FS and Cooper DB 1987 Simple parallel hierarchical and relaxation algorithms for segmenting noncausal

Markovian random fields. IEEE Trans. Pattern Anal. Mach. Intell. 9(2), 195–219.
Courant R and Hilbert D 1953 Methods of Mathematical Physics, vol. 1. Interscience Press.
Crow FC 1984 Summed-area tables for texture mapping. Computer Graphics (SIGGRAPH ’84 Proceedings), pp. 207–

212. Published as Computer Graphics (SIGGRAPH ’84 Proceedings), volume 18, number 3.
De Ma S and Li B 1998 Derivative computation by multiscale filters. Image and Vision Computing 16(1), 43–53.
Ghosh K, Sarkar S, and Bhaumik K 2004 A bio-inspired model for multi-scale representation of even order Gaussian

derivatives. Intelligent Sensors, Sensor Networks and Information Processing Conference, 2004. Proceedings of
the 2004, pp. 497–502 IEEE.

Glazer F 1984 Multilevel Relaxation in Low-level Computer Vision. Springer.
Glowinski R and Pironneau O 1979 Numerical methods for the first biharmonic equation and for the two-dimensional

Stokes problem. SIAM Review 21(2), 167–212.
Golub GH and Van Loan CF 1996 Matrix Computation John Hopkins Studies in the Mathematical Sciences third

edn. Johns Hopkins University Press, Baltimore, Maryland.
Gonzalez RC, Woods RE, and Eddins SL 2009 Digital image processing using MATLAB(R), 2nd edition Gatesmark

Publishing.
Gu J and Wang W 1992 A novel discrete relaxation architecture. IEEE Trans. Pattern Anal. Mach. Intell. 14(8),

857–865.
Hayes KC 1980 Reading handwritten words using hierarchical relaxation. Computer Graphics and Image Processing

14(4), 344–364.
Heath M 2002 Scientific Computing: an Introductory Survey. McGraw-Hill Higher Education. McGraw-Hill.
Hinton GE 2007 Learning multiple layers of representation. Trends in Cognitive Science 11(10), 428–434.
Horn BKP 1986 Robot Vision. MIT Press, Cambridge, Massachusetts.
Hummel RA and Zucker SW 1983 On the foundations of relaxation labeling processes. IEEE Trans. Pattern Anal.

Mach. Intell. 5(3), 267–287.
Jolion JM and Rosenfeld A 1994 A Pyramid Framework for Early Vision: Multiresolutional Computer Vision. Kluwer

Academic Publishers.
Kamada M, Toraichi K, Mori R, Yamamoto K, and Yamada H 1988 A parallel architecture for relaxation operations.

Pattern Recognition 21(2), 175–181.
Kim J, Liu C, Sha F, and Grauman K 2013 Deformable spatial pyramid matching for fast dense correspondences.

Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, pp. 2307–2314 IEEE.
Kittler J and Illingworth J 1985 Relaxation labelling algorithms: Review. Image and Vision Computing 3(4), 206–216.
Kittler J, Christmas WJ, and Petrou M 1993 Probabilistic relaxation for matching problems in computer vision.

Computer Vision, 1993. Proceedings, Fourth International Conference on, pp. 666–673 IEEE.
Lindeberg T 1993 Scale-Space Theory in Computer Vision. Kluwer.
Marr D and Hildreth E 1980 Theory of edge detection. Proceedings of the Royal Society of London. Series B.

Biological Sciences 207(1167), 187–217.
Miranker WL 1979 Hierarchical relaxation. Computing 23(3), 267–285.

Relaxation for Energy Minimization 245

Mori K, Horiuchi T, Wada K, and Toraichi K 1995 A parallel relaxation architecture for handwritten character recog-
nition. Communications, Computers, and Signal Processing, 1995. Proceedings, IEEE Pacific Rim Conference
on, pp. 74–77 IEEE.

Nagao and Matsuyama 2013 http://anorkey.com/nagao-matsuyama-filter/ (accessed May 3, 2013).
Park S and Jeong H 2008a High-speed parallel very large scale integration architecture for global stereo matching.

Journal of Electronic Imaging 17(1), 010501–3.
Park S and Jeong H 2008b Memory efficient iterative process on a two-dimensional first-order regular graph. Optics

Letters 33, 74–76.
Pearl J 1982 Reverend Bayes on inference engines: A distributed hierarchical approach. In AAAI (ed. Waltz D),

pp. 133–136. AAAI Press.
Perona P and Malik J 1990 Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal.

Mach. Intell. 12(7), 629–639.
Polyanin A and Zaitsev V 2012 Handbook of Nonlinear Partial Differential Equations second edn. CRC Press.
Press WH, Teukolsky SA, Vetterling WT, and Flannery BP 2007 Numerical Recipes: The Art of Scientific Computing.

Cambridge Univ. Press.
Rudin LI, Osher S, and Fatemi E 1992 Nonlinear Total Variation based noise removal algorithms. Physica D:

Nonlinear Phenomena 60(1), 259–268.
Sochen N, Kimmel R, and Malladi R 1998 A general framework for low level vision. IEEE Trans. Image Processing

7(3), 310–318.
ter Haar Romeny B 1994 Geometry-driven Diffusion in Computer Vision. Kluwer Academic Dordrecht.
Terzopoulos D 1986 Image analysis using multigrid relaxation methods. IEEE Trans. Pattern Anal. Mach. Intell. 8(2),

129–139.
Ursell TS 2007 The diffusion equation a multi-dimensional tutorial http://dl.dropbox.com/u/46147408/tutorials/

diffusion.pdf (accessed Nov. 1, 2013).
Viola P and Jones MJ 2001 Robust real time object detection. Workshop on Statistical and Computational Theories

of Vision.
Wang W, Gu J, and Henderson T 1987 A pipelined architecture for parallel image relaxation operations. IEEE Trans.

Circuits and Systems for Video Technology 34(11), 1375–1384.
Weickert J 2008 Anisotropic diffusion in image processing http://www.lpi.tel.uva.es/muitic/pim/docus/anisotropic

diffusion.pdf (accessed April 15, 2014).
Wesseling P 1992 An Introduction to Multigrid Methods. Pure and applied mathematics. John Wiley & Sons Australia,

Limited.
Wikipedia 2013a Discrete laplacian operator http://en.wikipedia.org/wiki/Discrete Laplacian operator (accessed

Nov. 1, 2013).
Wikipedia 2013b Euler–Lagrange equation http://en.wikipedia.org/wiki/Euler%E2%80%93Lagrange equation

(accessed May 3, 2013).
Wikipedia 2013c Finite difference http://en.wikipedia.org/wiki/Finite difference (accessed Nov. 1, 2013).
Wikipedia 2013d Hermite polynomials http://en.wikipedia.org/wiki/Hermite polynomials (accessed Nov. 4, 2013).
Young DM 1950 Iterative Methods for Solving Partial Difference Equations df Elliptical Type Phd thesis Harvard

University.

http://anorkey.com/nagao-matsuyama-filter/
http://dl.dropbox.com/u/46147408/tutorials/diffusion.pdf
http://www.lpi.tel.uva.es/muitic/pim/docus/anisotropic_diffusion.pdf
http://en.wikipedia.org/wiki/Discrete_Laplacian_operator
http://en.wikipedia.org/wiki/Euler%E2%80%93Lagrange_equation
http://en.wikipedia.org/wiki/Finite_difference
http://en.wikipedia.org/wiki/Hermite_polynomials
http://dl.dropbox.com/u/46147408/tutorials/diffusion.pdf
http://www.lpi.tel.uva.es/muitic/pim/docus/anisotropic_diffusion.pdf

9
Dynamic Programming for
Energy Minimization

As is the case with the relaxation algorithm and the BP algorithm, dynamic programming (DP) (Bellman
1954) is an important algorithm that can solve, under general settings, many problems in energy functions
(Amini et al. 1990; Felzenszwalb and Zabih 2011). Dynamic programming is extremely fast and uses less
memory space than other algorithms, but unfortunately, DP can only solve one-dimensional problems,
such as line-by-line processing, until it finds local optimal solutions. Given that DP can only solve
one-dimensional problems, this type of algorithm is especially useful for stereo matching, where the
search space is limited to the epipolar line (Gong and Yang 2005; Jeong and Yuns 2000; Ohta and Kanade
1985). DP is also an important construct of the hidden Markov model (HMM), where hidden states must
be recovered in decoding problems.

In this chapter, we study DP as a method for solving energy minimization problems. In addition to
standard DP, we study various forms of DP: parallel DP, serial DP, and extended DP (EDP). Parallel and
serial DPs are designed for extracting multiple best solutions in parallel and in series, respectively. The
extended DP is tailored to solve multiple image lines by introducing the product space. We also study
HMM and the inside-outside algorithm, which can be used in higher-level processing, such as image
interpretation or image understanding.

In this chapter, we will examine the computation structures of DP in serial and vector forms, along
with HMM and inside-outside algorithm, that will be designed in the next chapter on Verilog machines.
More parallel forms of DP that use pipelined PEs are extended versions of these architectures, and they
are also covered in the next chapter.

9.1 DP for Energy Minimization
We start with the energy function in Definition 5.1, in which

E(F) =
∑
p∈

𝜙(f (p)) +
∑
p∈

∑
q∈N(p)⧵p

𝜓(f (p), f (q)), (9.1)

where F = {f (p)|p ∈ , f ∈ } is the target label map and = [0, L − 1] is the label space with max-
imum L labels. The two terms represent data and smoothness terms, respectively. To solve this energy

Architectures for Computer Vision: From Algorithm to Chip with Verilog, First Edition. Hong Jeong.
© 2014 John Wiley & Sons Singapore Pte. Ltd. Published 2014 by John Wiley & Sons Singapore Pte. Ltd.
Companion Website: www.wiley.com/go/jeong

http://www.wiley.com/go/jeong

248 Architectures for Computer Vision

minimization in the DP paradigm, we have to convert this equation into a one-dimensional problem.
Moreover, the neighborhood must be limited to the adjacent nodes on the same line only.

There is a class of problems where the relationship between lines is assumed to be statistically
independent, and thus the lines can be processed independently. The total minimum energy is the
summation of the local minimum energy defined over a line. A typical example is stereo matching,
where the energy function is defined over an epipolar line, and thus the labels between the lines are
independent. In these types of problems, the minimum energy can be obtained independently for each
line, and then added up to comprise the total energy. Therefore, we have two forms,

E(F) =
∑

y∈[0,M−1]

E(f(y)) or E(F) =
∑

x∈[0,N−1]

E(f(x)), (9.2)

where f(y) and f(x) are vectors such that F = (f(y)|y ∈ [0, M − 1]) = (f(x)|x ∈ [0, N − 1]). The local
energy is defined as horizontal or vertical lines. (To adopt the MRF property, the line must be expanded
to a set of consecutive lines as we will see shortly.) Without loss of generality, we assume a single
horizontal image line. If the labels on each line are independent of each other, divide-and-conquer is a
natural method:

F∗ = argmin
F

∑
y∈[0,M−1]

E(f(y)) =
M−1⋃
y=0

argmin
f(y)

E(f(y)). (9.3)

The problem reduces to energy minimization for each line.
In modeling the energy function for a line, we define the neighborhood as N(x, y) = {(x −

1, y), (x, y), (x + 1, y)}, and f ∈ [0, L − 1]. Particularly on the boundaries, the neighborhood becomes,
N(0, y) = {(0, y), (1, y)} and N(N − 1, y) = {(N − 2, y), (N − 1, y)}. Since the formula is the same for all
the lines, we drop the y coordinates in the variables and energy. Considering all these together, we have
the energy for a line:

E(f) =
∑

i∈[0,N−1]

𝜙(f (i)) + 𝜓(f (i − 1), f (i)), where 𝜓(f (−1), f (0)) = 0. (9.4)

The search space consisting of the nodes and edges can be represented by a graph and thereby the energy
can be interpreted efficiently (Figure 9.1).

Definition 9.1 (DP graph) The DP graph G = (V , E, F, W) is a finite, rooted, vertex-weighted, edge-
weighted, directed graph. The vertices are V = {(i, j)|i ∈ [0, N − 1], j ∈ [0, L − 1]}, where i and j denote
the pixel and the label (or state), respectively. The edges are E = {e(i − 1, k, i, j)|i ∈ [1, N − 1], k, j ∈
[0, L − 1]}, where e(i − 1, k, i, j) is a bidirectional edge between the nodes, (i − 1, k) and (i, j). The
vertex has the weight F = {f (p)|f ∈ , p ∈ V}, where the label set is = [0, L − 1] for L labels. The
node input is Ψ = {𝜙(v)|𝜙 ∈ +, v ∈ V}, where + is nonnegative real. The edge has the weight
Ψ = {𝜓(e)|𝜓 ∈ +, e ∈ E} for forward connection only.

This definition describes a trellis, which consists of N × L vertices, nearest neighbor connections,
weighted vertex, and weighted edge. As a result, the solution in Equation (9.4) is equivalent to the
path in the graph and the energy minimization problem becomes the shortest path problem. In such
graphs, the shortest path can be discovered efficiently with the Viterbi algorithm (Viterbi 1967). This
algorithm uses two directional edges: forward connection and backward connection.

The system is also characterized by the edge weights. In the most general case, 𝜓(i − 1, k, i, j) is
dependent on the nodes. In the space-invariant system, 𝜓(i − 1, k, i, j) = 𝜓(|k − j|). Furthermore, the
connection range can be controlled by the truncated linear or Potts model. In such cases, the graph

Dynamic Programming for Energy Minimization 249

0
0

1

j − 1

j

L − 1

…
…

1 i − 1 i N − 1

(a) Graph G

δ (i, j)
η (i, j)

δ (i − 1, L − 1)
η (i − 1, L − 1)

δ (i − 1, 0)
η (i − 1, 0)

(b) Forward connection

η (i, p(i))

(i − 1, L − 1)

(i − 1, 0)

(c) Backward connection

… …

……

Figure 9.1 The graph G = (V , E) and the two directional connections

connection will be very sparse. The matrix 𝜓 = {𝜓(|k − j|)} becomes a symmetric Toeplitz matrix,
which can be represented by L discrete numbers.

In this graph, the energy function can be defined on a path p = {(0, j0)(1, j1),… , (N − 1, jN−1)}, where
(0, j0) is the starting node and (N − 1, jN−1) is the ending node. If (k, j) are adjacent nodes on the path,
Equation (9.4) becomes

E(p) =
∑

i∈[0,N−1]

𝜙(i, j) + 𝜓(k, j), where 𝜓(⋅, ⋅) = 0 at i = 0. (9.5)

If 𝛿(i, j) is the ‘partial cost’ up to (i, j) ∈ p, then it can be represented by the recursion:

𝛿(i, j) = 𝛿(i − 1, k) + 𝜓(k, j) + 𝜙(i, j), i = 0,… , N − 1. (9.6)

The overall cost is 𝛿(p) = 𝛿(N − 1, jN−1). Unfortunately, we have to try all possible paths to find the
shortest path:

p∗ = min
p

𝛿(p). (9.7)

The required computation is exponential time, O(LN), for N pixels and L labels.
To avoid the long computation time, we rely on Bellman’s principle of optimality (Bellman 1954).

We again define 𝛿(p, q) as the ‘minimum cost’ (the cost of the shortest path) on the path between a pair
of nodes, p and q. According to the triangular inequality,

𝛿(p, q) = min
r∈V

𝛿(p, r) + 𝛿(r, q), ∀p, q ∈ V . (9.8)

250 Architectures for Computer Vision

If there is a direct link between r and q with 𝜓(r, q), this becomes

𝛿(p, q) = min
r∈V

𝛿(p, r) + 𝜓(r, q), ∀p, q ∈ V . (9.9)

To satisfy Bellman’s principle, the problem must satisfy the optimal substructure and overlapping
subproblems (Cormen et al. 2001). For any path in G, we have

𝛿(i, j) = min
k∈[0,L−1]

{𝛿(i − 1, k) + 𝜓(k, j)} + 𝜙(i, j), i = 0,… , N − 1, j ∈ [0, L − 1].

This is a special case of the Bellman equation. Initially, the cost is assigned to the data term, 𝛿(0, j) =
𝜙(0, j) (j ∈ [0, L − 1]), because there is no parent (Figure 9.1(b)). In addition to the minimum cost, we
are interested in the shortest path. The Viterbi algorithm (Viterbi 1967) is also the method that recovers
the shortest path. Let us introduce an additional variable, 𝜂(i, j), which is a pointer to the parent node.
The pointer to the parent is

𝜂(i, j) = argmin
k∈[0,L−1]

{(𝛿(i − 1, k) + 𝜓(k, j)}. (9.10)

The computation proceeds sequentially in i = 0,… , N − 1 and concurrently in j ∈ [0, L − 1]. Compared
with the brute force method which requires an O(LN) search, this method uses only O(L2N) operations.

As a result of forward processing, the minimum cost is available at the last nodes:

𝛿
∗ = min

j∈[0,L−1]
𝛿(N − 1, j). (9.11)

In addition, the position of the minimum cost is given by

p(N − 1) = argmin
j∈[0,L−1]

𝛿(N − 1, j). (9.12)

From this pointer, the next pointers can be extracted recursively by

p(i) ← 𝜂(i + 1, p(i + 1)), i = N − 2,… , 0. (9.13)

(Figure 9.1(c)) The result is the shortest path, (p(N − 1),… , p(0)), appearing in reverse order. The data
structure of the pointer is a queue.

Let us consider an architectural model for this method. As a first step in this architectural design, we
use a single processor and global memory, and accordingly, specify the control structure, memory, and
operations. To begin with, look at Figure 9.2. Since we are using only one processor, it must scan all the
nodes in the graph. The natural directions are forward and backward. In each direction, the processor
moves vertically and then horizontally, alternately. The processor performs the required operations,
reading and writing global memories.

The processor executes the operations differently according to four stages: initialization, forward
processing, finalization, and backward processing. One of the major memory allocations is for cost,
{𝛿1(j), 𝛿2(j)|j ∈ [0, L − 1]}, which stores two consecutive columns. At first, 𝛿1 is determined by 𝛿2,
and then the two buffers are switched. The next memory allocation is for the pointer, {𝜂(i, j)|i ∈
[0, N − 1], j ∈ [0, L − 1]}, defined over entire nodes. Arriving at each position, the processor receives
the inputs, 𝜙 = {𝜙(i, j)|i ∈ [0, N − 1], j ∈ [0, L − 1]}. The processor contains the parameter {𝜓(|k −
j|)|k, j ∈ [0, L − 1]}.

Considering all these together, we formally describe the algorithm.

Dynamic Programming for Energy Minimization 251

0

0

1

j

 L − 1

1 i − 1 i T − 1

forward direction

(a) Forward processing
0

0

1

j

L − 1

1 i i + 1 N − 1

backward direction

(b) Backward processing

Figure 9.2 Forward and backward processing

Algorithm 9.1 (DP for energy minimization) For an image line, the energy minimization problem
is solved serially in DP.

Input: {𝜙(i, j)|i ∈ [0, N − 1], j ∈ [0, L − 1]}.

Memory: {𝛿1(j), 𝛿2(j)|j ∈ [0, L − 1]} and {𝜂(i, j)|i ∈ [0, N − 1], j ∈ [0, L − 1]}.

Parameter: {𝜓(|k − j|)|i ∈ [0, N − 1], j ∈ [0, L − 1]}.

Output: 𝛿∗ and {f (N − 1), f (N − 2),… , f (0)}.

1. Initialization: for j ∈ [0, L − 1], 𝛿1(j) ← 𝜙(0, j).
2. Forward processing: for i = 0, ..., N − 1.

(a) for j ∈ [0, L − 1],

𝛿
2(j) ← min

k∈[0,L−1]
{𝛿1(k) + 𝜓(k, j)} + 𝜙(i, j),

𝜂(i, j) ← argmin
k∈[0,L−1]

{𝛿1(k) + 𝜓(k, j)}.

(b) for j ∈ [0, L − 1], 𝛿1(j) ← 𝛿
2(j).

3. Termination:

𝛿
∗ ← min

j∈[0,L−1]
𝛿

1(j),

f (N − 1) ← argmin
j∈[0,L−1]

𝛿
1(j).

4. Backtracking: for i = N − 2, ..., 0, f (i) ← 𝜂(i + 1, f (i + 1)).

The pointer can be stored in either RAM or a queue, although RAM is easier to design. This algorithm
takes O(L2N) operations and O(LN) memory space. In this count, the forward processing and the pointers
are the major factors in the algorithm’s complexity.

252 Architectures for Computer Vision

0

0

1

j

L − 1

1 i − 1 i N − 1

forward direction

(a) Forward processing
0

0

1

j

L − 1

1 i i + 1 N − 1

backward direction

(b) Backward processing

Figure 9.3 Forward and backward processing

The next architectural model is a vector processor, which processes the column concurrently. The
vector processor scans the network horizontally only. Inside the vector processor, all the nodes are
independent and concurrent.

Let us consider the graph G in Figure 9.3. In the forward phase, and while maintaining the concurrent
computation for each column, the computation proceeds in the right direction. All the nodes inside a
block are concurrent. In this scheme, a node (⋅, j) experiences N nodes, and thus it computes 𝛿(⋅, j) and
stores 𝜂(⋅, j). When the forward phase finishes, the processor searches the node that has the smallest
cost by comparing all the L nodes. From this node, backward computation begins. During the backward
phase, the processor finds parent nodes by repeatedly popping the stack until nothing remains. The
popped indices are the pointers to the shortest path (or minimum energy).

The DP operations can be represented by a vector operation. For the input, transition, minimum cost,
and pointer, let

Φ = (𝜙(0),… ,𝜙(N − 1)) = {𝜙(i, j)|i ∈ [0, N − 1], j ∈ [0, L − 1]},

Ψ = {𝜓(k, j)|k, j ∈ [0, L − 1]},

𝜹(i) = (𝛿(i, j)|j ∈ [0, L − 1])T ,

𝜼 = (𝜼(0),… , 𝜼(N − 1)) = {𝜂(i, j)|i ∈ [0, N − 1], j ∈ [0, L − 1]}. (9.14)

Define the operation:

Ψ⊙ 𝜹(i − 1) ≜ { max
k∈[0,L−1]

𝛿(i − 1, k) + 𝜓(k, j)|j ∈ [0, L − 1]}. (9.15)

Then, the cost evaluation becomes

𝜹(i) ← Ψ⊙ 𝜹(i − 1) + 𝜙(i). (9.16)

In addition, define another operation:

Ψ⊕ 𝜹(i − 1) ≜ {argmax
k∈[0,L−1]

𝛿(i − 1, k) + 𝜓(k, j)|j ∈ [0, L − 1]}. (9.17)

Dynamic Programming for Energy Minimization 253

Then, the pointer operation becomes

𝜼(i) ← Ψ⊕ 𝜹(i − 1). (9.18)

All the operations are summarized in the following algorithm.

Algorithm 9.2 (Vector DP) For an image line, the energy minimization problem is solved concurrently
in DP.

Input: {𝜙(i)|i ∈ [0, N − 1]}.

Memory: 𝜹1, 𝜹2, and {𝜼(i)|i ∈ [0, N − 1]}.

Parameter: Ψ.

Output: 𝛿∗ and {f (N − 1),… , f (0)}.

1. Initialization: 𝜹1 ← 𝝓(0).
2. Induction: for i = 0, 1,… , N − 1,

𝜹
2 ← Ψ⊙ 𝜹

1 + 𝝓(i),

𝜼(i) ←← Ψ⊕ 𝜹
1,

𝜹
1 ← 𝜹

2
.

3. Termination:

𝛿
∗ = min 𝜹1,

f (N − 1) = argmin 𝜹1
.

4. Backtracking: for i = N − 2, ..., 0, f (i) ← 𝜂(i + 1, f (i + 1)).

This is simply a vector representation of the original DP, but it reveals well the concurrent nature
of forward processing. We have extended from single processor to vector processor. The next level of
parallelism is obtained when the vector processor is further decomposed into an array of small processing
elements, where all the processing elements are concurrent and memories are localized. However, in order
to design such a system, we have to specify all the information about input, output, and communication
between processors. This condition is possible only when the application is known. Chapter 13 extends
the vector processor to the systolic array for stereo matching.

The shortest path in DP is related to the matrix structure of Ψ, which has the property of transitive
closure (Aho et al. 1974). There are several issues with defining edges and limiting search space
(Lawrence et al. 2007; Rabiner and Juang 1993). In the algorithm, we assume that the beginning point
values are all determined (i.e. 𝛿(0, ⋅)). However, in speech recognition the beginning and ending points
are usually undetermined. The open-end problem naturally needs more computation to deal with all the
possible endings.

254 Architectures for Computer Vision

9.2 N-best Parallel DP
The standard DP algorithm only finds the best path. We can extend DP so as to find multiple best (or
N-best) paths. There are two methods: parallel or serial (Rabiner and Juang 1993). The parallel algorithm
finds all the best paths in parallel and the serial algorithm finds the best paths one by one from best to
worst.

Let us first examine the parallel algorithm that finds T (T ≤ L) best paths, differently from the name. For
this purpose, we modify the variables, memories, and operators that were used in the original DP. Define
𝛿t(i, j) and 𝜂t(i, j) as the minimum cost and the pointer to the tth shortest path, where 1 ≤ t ≤ T ≤ L. We
also provide a storage {(𝛿t(j), 𝜂t(i, j))|i ∈ [0, N − 1], j ∈ [0, L − 1], 1 ≤ t ≤ T}. Replace ‘min’ by ‘min(t)’,
which chooses the tth minimum value from the arguments.

The key point is the operation for choosing the tth path from the previous nodes. Each node in the
previous column already contains costs and pointers up to the Tth best. Among them, paths only up
to the tth paths are the candidates in the tth path search. Since there are L such nodes, the number of
candidate parents is tL. As such, the forward operation is

𝛿t(i, j) = min(t)

0≤k≤L−1
1≤𝜏≤t

{𝛿
𝜏
(i − 1, k) + 𝜓(k, j)} + 𝜙(i, j). (9.19)

The operation needs O(tL) sorting operations for each node, and thereby O(T2L2N) sorting operations
as a whole.

With all other factors considered together, we write the complete operation and memories in the
following definition.

Algorithm 9.3 (Parallel N-best) For an image line, the energy minimization problem is solved by
finding the T best solutions in parallel DP.

Input: Φ.

Memory: {𝛿1
t (j), 𝛿2

t (j)|j ∈ [0, L − 1], 1 ≤ t ≤ T} and {𝜂t(i, j)|i ∈ [0, N − 1], j ∈ [0, L − 1],
1 ≤ t ≤ T}.

Parameter: Ψ.

Output: 𝛿∗t and (ft(N − 1), ft(1),… , ft(1), ft(0)), 1 ≤ t ≤ T.

1. Initialization: for j ∈ [0, L − 1], 𝛿t(0, j) ← 𝜙(0, j).
2. Forward processing: for i = 0,… , N − 1,

(a) for t ∈ [1, T] and j ∈ [0, L − 1],

𝛿
2
t (j) ← min(t)

0≤k≤L−1
1≤𝜏≤t

{𝛿1
𝜏
(k) + 𝜓(k, j)} + 𝜙(i, j),

𝜂t(i, j) ← argmin(t)

0≤k≤L−1
1≤𝜏≤t

{𝛿1
𝜏
(k) + 𝜓(k, j)}.

(b) for t ∈ [1, T] and j ∈ [0, L − 1], 𝛿1
t (j) ← 𝛿

2
t (j).

Dynamic Programming for Energy Minimization 255

3. Termination: for t = 1,… , T,

𝛿
∗
t ← min(t)

0≤j≤L−1
0≤𝜏≤t

𝛿t(N − 1, j),

ft(N − 1) ← argmin(t)

0≤j≤L−1
1≤𝜏≤t

𝛿t(N − 1, j).

4. Backward processing: for i = N − 2,… , 0 and t ∈ [1, T],

ft(i) ← 𝜂t(i + 1, (ft(i + 1)).

This algorithm can also be represented by vector operations. The initialization is a vector operation. The
forward processing is massively parallel, since all the nodes simultaneously compute T paths. Thus, a
total of LT operations can be done concurrently. The following swap is a vector operation. Termination
and backtracking are inherently serial operations.

This algorithm requires O(T2L2N) operations and O(TLN) spaces. Compared to the standard DP, this
algorithm needs T(T + 1)∕2 and T times more operations and spaces, respectively. If T = 1, it returns
to the standard DP. If maximum parallelism is utilized, O(LT) processors can execute the algorithm in
O(N) steps. This scheme is an N-best version of the vector DP.

9.3 N-best Serial DP
The serial algorithm (Rabiner and Juang 1993) finds multiple best paths sequentially, starting from best
to worst. The key idea is that the number of parent candidates is proportional to the number of visits. For
this purpose, we modify the variables, memory, and operation in the parallel algorithm.

Let’s provide a memory, {c(i, j), 𝛿
𝜏1

(i, j),… , 𝛿
𝜏c(i, j)

(i, j), p
𝜏1

(i, j),… , p
𝜏c(i, j)

(i, j)|i ∈ [0, N − 1], j ∈
[0, L − 1]}. The counter, c(i, j), is the number of paths that passed through the node in the previous
operations. The indices, 𝜏1 < 𝜏2 ⋯ < 𝜏c(i, j), are the ranks of the previous paths, such that 𝜏 ∈ [1, T].
Therefore, (𝛿

𝜏
(i, j), p

𝜏
(i, j)) represents the sorted list of the cost and the pointer. After the tth path ends

and during backtracking, the counter is increased by one and the costs and parents are added to the list
of all the nodes along the path.

The central point is that each of the previous nodes contains up to ‘c’ costs. The parent exists among
the ‘1 + c’ costs.

𝛿t(i, j) ← min(t)

0≤k≤L−1
1≤tk≤1+c(i−1,k)

{𝛿tk
(i − 1, k) + 𝜓(k, j)} + 𝜙(i, j).

Another point is that, unlike other algorithms, all the costs must also be stored. Compared to the parallel
DP, the required memory size is doubled. Other operations are similarly derived.

The following algorithm summarizes the complete operations and the required memory.

Algorithm 9.4 (Serial Multiple Best) For an image line, the energy minimization problem is solved
by finding T best solutions in serial DP.

Input: Φ and Ψ.

Memory: Q = {c(i, j), 𝛿
𝜏1

(i, j),… , 𝛿
𝜏c(i, j)

(i, j), p
𝜏1

(i, j),… , p
𝜏c(i, j)

(i, j)|i ∈ [0, N − 1],
j ∈ [0, L − 1]}.

256 Architectures for Computer Vision

Output: 𝛿∗t and ft(i), t = 1,… , T , i = N − 1,… , 0.

1. Initialization: for i ∈ [0, N − 1] and j ∈ [0, L − 1], c(i, j) ← 0.
2. for t = 1, 2,… , T,

(a) Initialization: 𝛿t(0, j) ← 𝜙(0, j), j ∈ [0, L − 1].
(b) Forward processing: for i = 0,… , N − 1, j ∈ [0, L − 1],

𝛿t(i, j) ← min(t)

0≤k≤L−1
1≤tk≤1+c(i−1,k)

{𝛿tk
(i − 1, k) + 𝜓(k, j)} + 𝜙(i, j),

𝜂t(i, j) ← argmin(t)

0≤k≤L−1
1≤tk≤1+c(i−1,k)

{𝛿tk
(i − 1, k) + 𝜓(k, j)}.

(c) Termination:

𝛿
∗
t ← min(t)

0≤j≤L−1
0≤tk≤1+c(i, j)

𝛿tk
(N − 1, j),

ft(N − 1) ← argmin(t)

0≤j≤L−1
1≤tk≤1+c(i, j)

𝛿t(N − 1, j),

Q(N − 1, ft(N − 1)) ← {+c(N − 1, ft(N − 1)),

𝛿
∗
t (N − 1, ft(N − 1)), 𝜂t(N − 1, ft(N − 1))}.

(d) Backward processing: for i = N − 2,… , 0,

ft(i) ← 𝜂t(i + 1, (ft(i + 1)),

Q(i, ft(i)) ← {+c(i, ft(i)), 𝛿t(i, ft(i)), 𝜂t(i, ft(i))}.

Here, ‘+a’ means a ← a + 1. This algorithm needs T passes of DP using O(T2L2N) operations and
O(LNT) space, just as the parallel DP. Essentially, the complexity ignores a two-time constant in the
memory. This algorithm is T times slower than the parallel algorithm in terms of the overall number of
iterations. Since T = 1, it becomes the standard DP.

The parallel and serial algorithms ignore all the previously calculated partial paths and compute all
the required partial paths again in each path exploration. Remembering that the scores of all partial paths
in a trellis, the tree-trellis algorithm efficiently uses them in a backward A* algorithm-based tree search
(Rabiner and Juang 1993; Soong and Huang 1991).

9.4 Extended DP
Although DP is limited to one line – and thus useful for some applications, such as stereo matching –
in typical vision problems where MRF properties are important, it should be extended to multiple lines,
or better yet, to the entire image plane. However, the problem must be converted to a one-dimensional
problem to satisfy the DP requirements.

A block of m (1 ≤ m ≤ M) lines is defined by F(y) = {f (x, y + j)|x ∈ [0, N − 1], j ∈ [0, m − 1]}, which
is arranged by

F(y) ≜ (f(0)… f(N − 1)), (9.20)

Dynamic Programming for Energy Minimization 257

0

1

j

m − 1
10 i − 1 i N − 1

(a) Subimage F(y)

0
0 … 0

0 … 1

j − 1

j

f(m − 1) … f (0)

(L − 1) … (L − 1)

1 … …i − 1 i N − 1

(b) Extended graph G

…

…

…

Figure 9.4 Neighbor connections: (a) subimage F with simple connections and (b) the DP graph

where f(i) = (f (i, y), f (i, y + 1),… , f (i, y + m − 1))T , i ∈ [0, N − 1]. (Figure 9.4(a).) The image plane
consists of the blocks F = {F(y)|y = 0, m,… , M − 1} (potentially overlapped).

For such image blocks, assume that the minimum energy is a summation of the local minimum energy
defined for the block:

E(F) =
∑

y∈{0,m,…,M−1}

E(F(y)). (9.21)

Then, the problem reduces to minimizing block energy. This concept is a line minimization (Equation
(9.3)) to a set of lines:

F∗ = argmin
F

∑
y∈[0,M−1]

E(F(y)) =
M−1⋃
y=0

argmin
F(y)

E(F(y)). (9.22)

The single line problem occurs when m = 1. Since each block is processed individually, we drop the global
coordinate and reorder the pixels: F = {f(i)|i ∈ [0, N − 1]} = {f (i, j)|i ∈ [0, N − 1], j ∈ [0, m − 1]}.

For convenience, let us represent the label through concatenated labels for each f by

q ≜ f (m − 1)f (m − 2)⋯ f (1)f (0). (9.23)

Then, the label q = qm−1qm−2 … q0 uniquely defines the labels of a vertical line by qk = f (k) (k ∈
[0, m − 1]). Then, the label space becomes a product space; m space consists of Lm × N nodes
(Figure 9.4(b)). A point in this space means a unique labeling of the m points of a vertical line. A

258 Architectures for Computer Vision

trajectory in this space means unique trajectories for the m lines. The problem of finding a shortest path
in this space becomes the original DP problem. There are two important properties in this method. First,
the shortest path is not necessarily the shortest paths for all lines, but is the shortest path in the collective
sense. Second, the shortest path might be better than the collection of individual shortest paths, since the
neighborhood constraints are utilized in the transition function.

Let us formally define the new graph.

Definition 9.2 (Extended DP graph) For a label map, F = {f(i)|i ∈ [0, N − 1]}, defined over a
subimage, we define a graph G = (V , E, F, W), which is an extension of the DP graph. With all other
aspects of the graph the same, the vertex is changed from L × N to Lm × N, so that the new graph is a
lattice, consisting of Lm × N nodes, where m is a nonnegative integer. For f ∈ F, a label (or state) is
assigned, l = lm−1 … l0, where lk = f (k) (k ∈ [0, m − 1]).

In this space, the cost 𝛿(i, j) (i ∈ [0, N − 1], j ∈ [0, Lm − 1]) is defined, as was the case when m = 1.
Define also the local cost, 𝜙(i, j), which is the case when the lines are labels represented respectively by
jm−1,… , j0. The overall cost is naturally the summation of the individual local cost:

𝜙(i, j) =
∑

k∈[0,m−1]

𝜙(i, jk), j = jm−1 … j0. (9.24)

The transition function is more comprehensive than a simple transition in the standard DP. Let us
first consider the simple case, where the lines are all independent. The transition penalty is simply the
summation of the individual transition functions:

𝜓(k, j) =
∑

n∈[0,m−1]

𝜓(|kn − jn|). (9.25)

Here, the missing indices mean ‘doesn’t care;’ in other words, the rule holds regardless of what the other
indices will be.

If the nearest neighbor is adopted, the transition function becomes

𝜓(k, j) =
∑

n∈[0,m−1]

𝜓(kn+1knkn−1, jn). (9.26)

The function 𝜓(kn+1knkn−1, jn) describes the transition from (f (i − 1, l + 1), f (i − 1, l), f (i − 1, l − 1))
to f (i, l) for any i and l. If the function does not depend on n, it is space variant. Note that the neighborhood
is different from the four-neighborhood system. For a point (i, j), the neighborhood consists of the three
neighbors {(i, j), (i − 1, j), (i − 1, j + 1), (i − 1, j − 1)}. Here and in the following, we assume that the
transition function is treated especially around the boundary, since around the boundary the neighbors
might not be available. (See the problems at the end of this chapter.)

The next level of neighborhood systems is the mapping from three points to three points:

𝜓(k, j) =
∑

n∈[0,m−1]

𝜓(kn+1knkn−1, jn+1jnjn−1). (9.27)

In this case, the transition function is the possibility that the labels of the three points (f (i − 1, l + 1), f (i −
1, l), f (i − 1, l − 1)) map to the labels of the three points (f (i, l + 1), f (i, l), f (i, l − 1)).

Dynamic Programming for Energy Minimization 259

BA

0

n + 1

n

n − 1

m − 1

10 i − 1 i N − 1

(a) Transition from A to B in F

0
0 … 0

k

j

f(m − 1) … f (0)

(L − 1) … (L − 1)

1 i − 1 i N − 1

B

A

(b) Representation in G

…
…

… …

Figure 9.5 Representation of transition: (a) transition in the subimage and (b) transition in G (a label
configuration appears as a point in the graph)

In this manner, the neighbor size can be extended up to m points (Figure 9.5). As a result, the general
meaning of the transition function, 𝜓(k, j), is the transition from a label km−1 ⋯ k0 to jm−1 ⋯ j0. Each k
and j is a specific label assignment for the vertical m points:

𝜓(k, j) = 𝜓(km−1 … k0, jm−1 … j0). (9.28)

The transition is a collective meaning: transition from the labels of m pixels to the labels of the next
m pixels: from {f (i − 1, l + k)|k ∈ [0, m − 1]} to {(f (i, l + k)|k ∈ [0, m − 1]}. That is, 𝜓 :∈ m × m ↦
+. In Figure 9.5, the image and the corresponding space are shown. The configurations A and B in the
image correspond respectively to the points A and B in the DP space. Through the transition function, we
can provide a constraint that a certain transition is possible in an individual line, but it can be inhibited
in the group sense. In this manner, we can now implement the rules needed between a configuration
to another configuration through the transition function. Depending upon applications, we can define
various types of transition functions. This concept implies MRF in a general formation and can be
determined by rule or by learning method.

All things combined, we can compute the cost recursively in the Lm × N space by

𝛿(i, j) =
Lm−1

min
k=0

{
𝛿(i − 1, k) + 𝜓(k, j)

}
+ 𝜙(i, j), i = 0, 1,… , N − 1. (9.29)

Pointers and other operations can be derived by following the standard DP.
Along with other details, we can summarize the algorithm as follows.

260 Architectures for Computer Vision

Algorithm 9.5 (Extended DP) For a subimage, the energy minimization problem is solved in DP.
Given a subimage, the optimal solution is obtained.

Input: Φ = {𝜙(i, j)|i ∈ [0, N − 1], j ∈ [0, Lm − 1]}.

Memory: {𝛿1(j), 𝛿2(j)|j ∈ [0, Lm − 1]} and {𝜂(i, j)|i ∈ [0, N − 1], j ∈ [0, Lm − 1]}.

Parameter: Ψ = {𝜓(k, j)|k, l ∈ [0, Lm − 1]}.

Output: 𝛿∗ and f(N − 1),… , f(0).

1. Initialization: 𝛿1(j) ← 𝜙(0, j) =
∑

k∈[0,m−1] 𝜙(0, jk).
2. Forward processing: for i = 0,… , N − 1,

(a) for j ∈ [0, Lm − 1],

𝛿
2(j) ← min

j∈[0,Lm−1]
𝛿

1(j) + 𝜓(k, j) + 𝜙(i),

𝜂(i, j) ← argmin
j∈[0,Lm−1]

𝛿
1(j) + 𝜓(k, j).

(b) for j ∈ [0, Lm − 1], 𝛿1(j) ← 𝛿
2(j).

3. Termination:

𝛿
∗ ← min

j∈[0,Lm−1]
𝛿(N − 1, j),

f (N − 1)∗ ← argmin
j∈[0,Lm−1]

𝛿(N − 1, j).

4. Backward processing: for i = N − 2,… , 0, f (i) ← 𝜂(i + 1, f (i + 1)).
(a) for k ∈ [0, m − 1], f (i, y + k) ← f (i)k, where f (i) = f (i)m−1 … f (i)0.

This algorithm uses O(L2mN) operations and O(Lm) space, an exponential complexity.
The concept is general in that the label space can be extended to the multidimensional space by way

of product space. However, this is actually intractable, except that L and m are small. Nevertheless, the
great advantage is when the lines are correlated, as is often the case in images. If applied, the result
is generally much better than the single line solution. The neighborhood concept can be realized by a
mapping from one configuration to another in a collective manner via the transition function. Depending
on the transition function, the space might be highly sparse, and thus might be reduced greatly with
appropriate encoding methods. As is the case with the standard DP, all the multiple best algorithms are
also possible.

In general, the Bellman’s DP suffers from the type of computational complexity that increases expo-
nentially with dimensionality of the state, called curse of dimensionality (Bellman 2003), thus becoming
impractical in large-scale applications. Therefore, we are compelled to seek for dimensionality reduction
or approximate dynamic programming (Bertsekas 2007, 2012, 2013; Powell 2011).

9.5 Hidden Markov Model
A hidden Markov model (HMM) (Baum et al. 1970) is a simple, dynamic Bayesian network in which
the observed process is produced by the unobserved (hidden) Markov process. In vision, HMM is
appropriate in recognizing patterns in dynamically varying scenes. The DP principle is also used for
finding the shortest path via the Viterbi algorithm.

Dynamic Programming for Energy Minimization 261

The energy on a line is

E(f) =
∑

i∈[0,N−1]

𝜙(f (i)) + 𝜓(f (i − 1), f (i)), where 𝜓(f (−1), f (0)) = 0, (9.30)

where 𝜙(f (i)) = T(I(i), f (i)) with some transformation T(⋅). The DP method is to find{
𝛿(i, j) = mini∈[0,N−1]𝛿(i − 1, k) + 𝜓(k, j) + 𝜙(i, j),
𝜂(i, j) = argmini∈[0,N−1]𝛿(i − 1, k) + 𝜓(k, j) + 𝜙(i, j).

(9.31)

HMM is ordinarily defined for Markov processes of time-varying signals. We also assume that the pixel
label is a Markov process that has the following models.

We define the parameter space 𝜽 = (A, B,𝝅); the observation space I = {I(0),… , I(N − 1)}, where
I(⋅) ∈ {Ik|k ∈ [0, n − 1]}; and the hidden state F = {f (0),… , f (N − 1)}, where f ∈ {f k|k ∈ [0, L − 1]}.
The state starts with the initial probability 𝝅 = (𝜋0,𝜋1,… ,𝜋L−1), where 𝜋i = p(f i(0)) and moves to the
next state according to the transition probability A = {a(i, j)}, where a(k, j) = p(f j(i + 1)|f k(i)). For each
state, the output is generated by the output probability B = {b(i, k)|i ∈ [0, L − 1], k ∈ [0, n − 1]}, where
b(i, k) = p(Ik|f i). The variables are nonnegative (a(i, j), b(i, k),𝜋i ≥ 0) and summed to one,∑

j∈[0,L−1]

a(i, j) = 1,
∑

k∈[0,n−1]

b(i, k) = 1,
∑

i∈[0,L−1]

𝜋i = 1. (9.32)

Assume that a label is the first-order Markov process, p(f (i)|Fi−1
0) = p(f (i)|f (i − 1)), where Fi−1

0 is the
set of past states up to i − 1. The other assumption is the output independence (or context-free) condition,
p(I(i)|Ii−1

0 , Fi
0) = p(I(i)|f (i)), where Ii−1

0 denotes the sequence from I(0) to I(i − 1). Assume a state vector

f = (f0,… , fL−1) such that
∑L−1

k=0 fk = 1 (the probability distribution of the label). Then, the system can
be represented by the state equation:{

f(i) = f(i − 1)A, f0 = 𝝅,
I(i) = f(i)B,

(9.33)

where I = (I0,… , In−1) with Ik = p(Ik). It is a Moore machine, where the output depends directly on the
state. The system models between MRF and the Markov process are compared in Table 9.1.

In MRF, the label is regarded as MRF with a posterior distribution and energy function. In the Markov
process, the state is regarded as a Markov process that changes dynamically. In the two system models,
the following are a 1:1 correspondence: label vs. state, smoothness term vs. transition probability, data
term vs. output. In finding the best solution, the two systems use the same Viterbi search method. MRF
focuses on the relationship in space and the Markov process focuses on the relationship in time.

There are three basic problems in HMM (Rabiner and Juang 1993). The evaluation problem is a
pattern-matching problem: given 𝜽 and I, compute p(I|𝜽). The decoding problem is to find the hidden
state: given 𝜽 and I, find F such that F∗ = argmaxF p(F|I,𝜽). The learning problem is to determine the
parameters: given 𝜽 and I, find 𝜽 = argmax

𝜽
p(𝜽|I).

The first problem can be solved by the forward probability,

𝛼(i, j) ≜ p(Ii
0, f j(i)|𝜽), (9.34)

which can be determined recursively

𝛼(i, j) =
∑

k∈[0,L−1]

{𝛼(i − 1, k)a(k, j)} b(j, I(i)), (9.35)

where 𝛼(0, j) = 𝜋j(0)b(j, I(0)) for i = 0, 1,… , N − 1 and j ∈ [0, L − 1]. The result is obtained by p(I|𝜽) =∑
j∈[0,L−1] 𝛼(N − 1, j).
The details are summarized in the following.

262 Architectures for Computer Vision

Table 9.1 The system models between MRF and Markov process

MRF Markov process

Energy function State equation
E(F) =

∑
i∈[0,N−1]𝜙(f (i)) f(i) = f(i − 1)A
+ 𝜓(f (i − 1), f (i)) I(i) = f(i)B

Data term: Output probability:
𝜙(i, j) = T(I(i), f (i, j)) b(j, I(i)) = p(I(i)|qj(i))

b(j, I(i)) = exp{−𝜙(i, j)}
Smoothness term Transition probability
𝜓(k, j) a(k, j)

Forward processing Forward probability
𝛿(i) = min

k∈[0,L−1]
𝛿(i − 1, k) 𝛿(i) = max

k∈[0,L−1]
𝛿(i − 1, k)a(k, j)b(j, I(i))

+ 𝜓(k, j) + 𝜙(i, j)
𝜂(i) = min

k∈[0,L−1]
𝛿(i − 1, k) + 𝜓(k, j) 𝜂(i) = argmax

k∈[0,L−1]
𝛿(i − 1, k)a(k, j)

Termination Termination
f (N − 1) ← argmin

j∈[0,L−1]
𝛿(N − 1, j) f (N − 1) ← argmax

j∈[0,L−1]
𝛿(N − 1, j)

Backtracking Backtracking
f (i) ← 𝜂(i + 1, f (i + 1)) f (i) ← 𝜂(i + 1, f (i + 1))

cf. i ∈ [0, N − 1] and k, j ∈ [0, L − 1].

Algorithm 9.6 (Forward probability) For an image line, the evaluation problem is solved with the
forward probability.

Input: 𝜽 and I.

Memory: {𝛼1(j), 𝛼2(j)|j ∈ [0, L − 1]}.

Output: p(I|𝜽).

1. Initialization: for j ∈ [0, L − 1], 𝛼1(j) = 𝜋jb(j, I(0)).
2. Induction: for i = 1,… , N − 1,

(a) for j ∈ [0, L − 1], 𝛼2(j) ←
∑

k∈[0,L−1]{𝛼
1(k)a(k, j)}b(j, I(i)).

(b) for j ∈ [0, L − 1], 𝛼1(j) ← 𝛼
2(j).

3. Termination: p(I|𝜽) ←
∑

j∈[0,L−1] 𝛼
1(j).

This algorithm is similar to the forward processing in the standard DP. The inputs are 𝜽 and I. The
operations in the initialization stage are concurrent. The operations in the induction stage are recursive
and concurrent. The termination stage is sequential. As is the case with the forward processing in DP,
this algorithm needs O(L2N) operations and O(L2) space. Similar to the DP, the initialization and the
induction stage can be represented by vector operations.

Equivalently, the evaluation problem can be solved by the backward probability:

𝛽(i, k) ≜ p(IN−1
i+1 |f k(i),𝜽). (9.36)

This quantity can be obtained recursively

𝛽(i, k) =
∑

j∈[0,L−1]

{a(k, j)b(j, I(i + 1))𝛽(i + 1, j)} , (9.37)

where 𝛽(N − 1, ⋅) = 1∕L and i = N − 1,… , 0, k ∈ [0, L − 1].
The detailed operations are summarized in the algorithm.

Dynamic Programming for Energy Minimization 263

Algorithm 9.7 (Backward probability) For an image line, the evaluation problem is solved by the
backward probability.

Input: 𝜽 and I.

Memory: {𝛽1(j), 𝛽2(j)|j ∈ [0, L − 1]}.

Output: p(I|𝜽).

1. Initialization: for j ∈ [0, L − 1], 𝛽1(j) = 1∕L.
2. Induction: for i = N − 2,… , 0,

(a) for j ∈ [0, L − 1], 𝛽2(i) ←
∑

k∈[0,L−1]{a(k, j)b(j, I(t + 1))𝛽1(j)}.
(b) for j ∈ [0, L − 1], 𝛽1(j) ← 𝛽

2(j).
3. Termination: p(I|𝜽) =

∑
j∈[0,L−1] 𝛽(0, j).

Given the inputs 𝜽 and I, this algorithm computes the backward probability in the induction stage and
adds up the probabilities at the end. The complexities are identical to the forward probability.

The product of the forward and backward probabilities has the property:

𝛼(i, j)𝛽(i, j) = p(Ii
0, f j(i)|𝜽)p(IN−1

i+1 |f j(i),𝜽) = p(I, f j(i)|𝜽). (9.38)

Taking marginalization, we get

p(I, f (i)|𝜽) =
∑

j∈[0,L−1]

𝛼(i, j)𝛽(i, j),

p(I, f j|𝜽) =
∑

i∈[0,N−1]

𝛼(i, j)𝛽(i, j),

p(I|𝜽) =
∑
i, j

𝛼(i, j)𝛽(i, j). (9.39)

Each of the above respectively means an expected state at i; the occurrence of a particular state along the
input sequence; and the probability of the input sequence (i.e. evaluation problem), given the parameters.
Thus, the evaluation can be achieved in three different ways:

p(I|𝜽) =
∑

j∈[0,L−1]

𝛼(N − 1, j) =
∑

j∈[0,L−1]

𝛽(0, j)

=
∑

i∈[0,N−1]

∑
j∈[0,L−1]

𝛼(i, j)𝛽(i, j). (9.40)

Another property is

p(f j(i)|I,𝜽) =
p(I, f (i)j|𝜽)

p(I|𝜽)
=

𝛼(i, j)𝛽(i, j)∑
j∈[0,L−1] 𝛼(N − 1, j)

. (9.41)

By this equation, we obtain the expected count of the rule, given the instance and parameters.
The decoding problem – where the shortest path is required as well as the minimum values (actually,

the opposites) – is solved by the Viterbi algorithm. Let 𝛿(t, j) be the ‘maximum cost’ up to the node (t, j).

264 Architectures for Computer Vision

Algorithm 9.8 (Decoding) For an image line, the hidden states are found.

Input: 𝜽 and I.

Memory: {𝛿1(j), 𝛿2(j)|j ∈ [0, L − 1]} and {𝜂(i, j)|i ∈ [0, N − 1], j ∈ [0, L − 1]}.

Output: A shortest path {f (N − 1),… , f (0)}.

1. Initialization: for j ∈ [0, L − 1], 𝛿0(j) = 𝜋jb(j, I(0)).
2. Induction: for i = 1,… , N − 1,

(a) for j ∈ [0, L − 1],

𝛿
2(j) ← max

k∈[0,L−1]
{𝛿1(k)a(k, j)}b(j, I(i)),

𝜂(i, j) ← argmax
k∈[0,L−1]

{𝛿1(k)a(k, j)}.

(b) for j ∈ [0, L − 1], 𝛿1(j) ← 𝛿
2(j).

3. Termination:

𝛿
∗ ← max

j∈[0,L−1]
𝛿

1(j),

f (N − 1) = argmax
j∈[0,L−1]

𝛿
1(j).

4. Backtracking: for i = N − 2, ..., 0, f (i) ← 𝜂(i + 1, f (i + 1)).

The algorithm is similar to the forward algorithm. The big difference is the maximum instead of the
summation operations at the induction stage. The required resources are O(L2N) operations and O(LN)
space.

The third problem is solved by the Baum–Welch algorithm (Baum et al. 1970), which is also derived
from the expectation-maximization (EM) algorithm (Dempster et al. 1977). For this method, we need
the transition probability,

𝛾(i, k, j) ≜ p(f i(t − 1), f j(t)|I,𝜽), (9.42)

which can be obtained by the forward and backward probabilities,

𝛾(i, k, j) =
p(f k(i − 1), f j(i), I|𝜽)

p(I|𝜽)
=

𝛼(i − 1, k)a(k, j)b(j, I(i))𝛽(i, j)∑
j∈[0,L−1] 𝛼(N − 1, j)

. (9.43)

Here, the denominator is a constant. This part is the major bottleneck in learning, that needs 3L2T
multiplications, in addition to the required multiplication for 𝛼 and 𝛽.

The operations are summarized by the algorithm.

Algorithm 9.9 (Learning) For an image line, the parameters are determined.

Input: I.

Memory: 𝜽 = (A, B,𝜋) and {𝛼(i, j), 𝛽(i, j), 𝛾(i, k, j)|i ∈ [0, N − 1], k, j ∈ [0, L − 1]}.

Output: 𝜽.

Dynamic Programming for Energy Minimization 265

1. Initialization: 𝜽.
2. for convergence,

(a) Algorithm 9.6 and Algorithm 9.7: {𝛼(i, j), 𝛽(i, j)|i ∈ [0, N − 1], j ∈ [0, L − 1]}.

(b) 𝛾(i, k, j) = 𝛼(i−1,k)a(k, j)b(j,I(i))𝛽(i, j)∑
k∈[0,L−1] 𝛼(N−1,k)

, k, j ∈ [0, L − 1], i ∈ [0, N − 1].

(c) for k, j ∈ [0, L − 1],

𝜋j ← 𝛾0(j, j),

a(k, j) =
∑

i∈[0,N−1]

𝛾(i, k, j)∕
∑

i∈[0,N−1]

∑
k∈[0,L−1]

∑
j∈[0,L−1]

𝛾(i, k, j),

b(j, Ik) =
N−1∑

i=0,Ik(t)

𝛾(i, k, j)∕
∑

i∈[0,N−1]

∑
k∈[0,L−1]

∑
j∈[0,L−1]

𝛾(i, k, j).

This computation needs O(L2N) operations for one iteration and O(L2N) space.
Computing forward, backward, and transition probabilities are all involved with multiplication, which

can be converted into summation operations in the logarithmic space. The result is the integer forward,
backward, Viterbi, and learning algorithms (Rabiner and Juang 1993).

In this section, we have considered only the standard HMM. There are advanced algorithms in
HMM, such as continuous mixture HMM, semi-continuous HMM, hierarchical Dirichlet process
HMM, maximum entropy Markov model, and factorial HMM (Jelinek et al. 1992; Rabiner 1989).
See (Wikipedia 2013a) for further information about HMM. Among others, the forward-backward
algorithm can be generalized into the inside-outside algorithm for probabilistic context-free grammar
(Baker 1979).

9.6 Inside-Outside Algorithm
The inside-outside algorithm (Baker 1979) might be potentially important in the future for image
understanding, since it provides a means by which to interpret the formation of hierarchical constructs in
terms of grammatical rules. If the image contents comprise a hierarchy of progressively larger objects,
and there exist rules among hierarchies, the image can be described by the parse tree, which is the basis
of image interpretation.

A probabilistic context-free grammar (PCFG)) (aka stochastic context-free grammar (SCFG)) is a
context-free grammar in which each production is augmented with a probability (Jelinek et al. 1992;
Jurafsky et al. 2000; Manning 2001). PCFG extends context-free grammar in the same way that hidden
Markov models extend regular grammar.

A PCFG system (W, N, P, G) consists of a set of terminal symbols W = {wj|j ∈ [1, V]}, and grammar
G, which is in CNF (Chomsky normal form):{

p(Nj → NkNl), Nj, Nk, Nl ∈ N,
p(Nj → wk), wk ∈ W,

(9.44)

which satisfies ∑
k,l

p(Nj → NkNl) +
∑

k

p(Nj → wk) = 1. (9.45)

The start symbol N1 is a node from which all others are derived as a binary tree. For n nonterminals
and V terminals, the number of rules is theoretically n3 + nV but can be fewer. A string from p to q is
represented by wpq. A nonterminal symbol Nj that spans p through q is represented by Nj

pq.

266 Architectures for Computer Vision

Table 9.2 Problems in HMM and PCFG

Problems HMM PCFG

The evaluation Given 𝜽 and I, Given G and W,
problem compute p(I|𝜽). compute p(W|G).
The decoding Given 𝜽 and I, Given G and W,
problem Q∗ = argmaxQ p(Q|I,𝜽) t∗ = argmaxt p(t|W, G).
The learning Given 𝜽 and I Given G and W,
problem 𝜽

∗ = argmax
𝜽

p(𝜽|I) G∗ = argmaxG p(W|G).

cf. HMM: I = IN−1
0 and PCFG: W = w1m.

Likewise in HMM, three basic problems are defined in PCFG (Table 9.2). The evaluation problem is to
compute the probability of the observed sequence, conditioned by the grammar. The decoding problem
is to determine the sequence of latent variables. The learning problem is to update the grammar from the
old grammar by observing the given sentence.

The parse tree is t. In other words, HMM is a special case of PCFG, and PCFG is a special case of
EM (Lafferty 2000; Sanchez et al. 1996).

There are three assumptions: place invariance, context-free, and ancestor-free. Similar to the time
invariance in HMM, the place invariance indicates that the probability of a subtree does not depend on
the location in the string where the words it dominates are found:

p(Nj
k,k+a → 𝛼), ∀k ∈ [1, m], j ∈ N, (9.46)

where 𝛼 means terminal or nonterminal symbols. The context-free hypothesis states that the probability
of a subtree does not depend on words not dominated by the subtree:

p(Nj
kl → 𝛼|w1,k−1, wl+1,m) = p(Nj

kl → 𝛼), ∀k, l ∈ [1, m], j ∈ N. (9.47)

The ancestor-free condition means that the probability of a subtree does not depend on nodes in the
derivation outside the subtree:

p(Nj
kl → 𝛼|ancestor nodes) = p(Nj

kl → 𝛼), ∀k, l ∈ [1, m], j ∈ N. (9.48)

The outside and the inside probabilities are 𝛼j(p, q) and 𝛽j(p, q). The forward-backward probabilities and
the inside-outside probabilities are compared in Table 9.3.

The corresponding representations of the two systems are compared. Above all, the search space is
{(i, j)|i ∈ [0, N − 1], j ∈ [0, L − 1]} in HMM and {(i, j, k)|i ∈ [0, m], j, k ∈ [1, n]} in PCFG. The pointer
is one-dimensional in HMM (i.e. 𝜂(i, j)), but it is two-dimensional in PCFG (i.e. 𝜂j(p, q)). The inside
probability is the extension of the forward probability and the outside probability is the extension of
the backward probability. For more information, see (Lari and Young 1990, 1991; Pereira and Schabes
1992; Xia 2006).

Let us first consider the evaluation problem. The inside probability 𝛽j(p, q) is the total probability of
generating words wp ⋯wq, given the root nonterminal Nj and grammar G:

𝛽j(p, q) ≜ p(wpq|Nj, G). (9.49)

Dynamic Programming for Energy Minimization 267

Table 9.3 The forward-backward vs. inside-outside probabilities

HMM PCFG

Forward probability: Inside probability:
𝛼(i, j) = p(I, f (i)j) 𝜷 j(p, q) = p(Nj

pq → wpq)
𝛼(0, j) = 𝜋jb(j, I(0)) 𝜷 j(p, p) = p(Nj → wp)
p(I|𝜽) =

∑
j∈[0,L−1] 𝛼(N − 1, j) p(W|G) = 𝜷1(1, m)

Backward probability: Outside probability:
𝜷(i, j) = p(I|f (i)j) 𝛼j(p, q) = p(w1(p−1), Nj

pq, w(q+1)m)
𝜷(N − 1, j) = 1∕L 𝛼j(1, m) = 𝛿(j − 1)
p(I|𝜽) =

∑
j∈[0,L−1]𝜷(0, j) p(W|G) =

∑
j∈[1,n]𝛼j(p, p)p(Nj → wp)

Cost and pointer: Cost and pointer:
𝛿(0, j) = 𝜋jb(j, I(0)) 𝛿j(p, p) = p(Nj → wp)
𝛿(i, j) = argmax

k∈[0,L−1]
𝛿(i − 1, k)a(k, j)b(j, I(i)) 𝛿j(p, q) = max

1≤k,l≤n
p≤r<q

p(Nj → NkNl)

× 𝛿k(p, r)𝛿l(r + 1, q)
𝜂(i, j) = argmax

k∈[0,L−1]
𝛿(i − 1, k)a(k, j) 𝜂j(p, q) = argmax

1≤k,l≤n
p≤r<q

p(Nj → NkNl)

× 𝛿k(p, r)𝛿l(r + 1, q)
𝜂(N − 1) = argmaxj 𝛿(N − 1, j) 𝜂

∗ = 𝜂1(1, m)

∗cf. HMM: i ∈ [0, N − 1], j ∈ [0, L − 1] and PCFG: p, q ∈ [1, m], j, k, l ∈ [1, n].

It can be computed recursively in bottom-up direction,

𝛽j(p, q) =
∑

k,l∈[1,n]

∑
t∈[p,q−1]

p(Nj → NkNl)𝛽k(p, t)𝛽l(t + 1, q), (9.50)

with the initial condition

𝛽j(k, k) = p(Nj → wk) (9.51)

and termination

p(w1m|G) = 𝛽1(1, m). (9.52)

The detailed operations are summarized in the algorithm.

Algorithm 9.10 (Evaluation by inside probability) For a string of words, the evaluation problem is
solved by the inside probability.

Input: G and w1m.

Memory: {𝛽1
j (p, q), 𝛽2

j (p, q)|p, q ∈ [1, m], j ∈ [1, n]}.

Output: p(w1m|G) = 𝛽1(1, m).

1. Initialization: for k ∈ [1, m] and j ∈ [1, n], 𝛽1
j (k, k) = p(Nj → wk).

268 Architectures for Computer Vision

2. Induction: for q − p = 1, 2,… , m − 1,
(a) for p ∈ [1, m − (q − p)] and j ∈ [1, n],

𝛽
2
j (p, q) =

∑
k,l∈[1,n]

∑
t∈[p,q−1]

p(Nj → NkNl)𝛽1
k (p, t)𝛽1

l (t + 1, q).

(b) for p ∈ [1, m − (q − p)] and j ∈ [1, n], 𝛽1
j (p, q) ← 𝛽

2
j (p, q).

This algorithm begins with a word, proceeds with increasing width, and stops at the full sentence. There
are vast parallelisms in initialization and induction. The algorithm needs O(m2n2) operations and O(m2n)
space, except for the grammar, which uses O(n3) space.

Similarly, the evaluation problem can be solved by the outside probability 𝛼j(p, q), which is the

total probability of grammar G beginning with N1, generating Nj
pq, and having all the words outside

wp …wq:

𝛼j(p, q) ≜ p(w1,p−1, Nj, wq+1,m|G). (9.53)

It has the recursion operations in top-down direction,

𝛼j(p, q) =
∑
f ,k≠j

{
m∑

e=q+1

𝛼f (p, e)p(Nf → NjNk)𝛽k(q + 1, e)

+
∑

e∈[1,p−1]

𝛽k(e, p − 1)p(Nf → NkNj)𝛼f (e, q)

}
, (9.54)

with the initial condition

𝛼j(1, m) = 𝛿(j − 1), (9.55)

and termination

p(w1m|G) =
∑

j∈[1,n]

𝛼j(k, k)p(Nj → wk), k ∈ [1, m]. (9.56)

However, the outside probability cannot be decided alone; it needs the inside probability. The opera-
tions are listed as follows:

Algorithm 9.11 (Evaluation by outside probability) For a string of words, the evaluation problem
is solved by the outside probability.

Input: G, w1m, and {𝛽j(p, q)|p, q ∈ [1, m], j ∈ [1, n]}.

Memory: {𝛼1
j (p, q), 𝛼2

j (p, q)|p, q ∈ [1, m], j ∈ [1, n]}.

Output: p(w1m|G) =
∑

j∈[1,n] 𝛼j(k, k)p(Nj → wk), k ∈ [1, m].

1. Initialization: for j ∈ [1, n], 𝛼1
j (1, m) = 𝛿(j − 1).

2. Induction: for q − p = m − 1,… , 1.

Dynamic Programming for Energy Minimization 269

(a) for p ∈ [1, m − (q − p)] and j ∈ [1, n],

𝛼
2
j (p, q) =

∑
f ,k≠j

{ ∑
e∈[q+1,m]

𝛼
1
f (p, e)p(Nf → NjNk)𝛽k(q + 1, e)

+
∑

e∈[1,p−1]

𝛽k(e, p − 1)p(Nf → NkNj)𝛼1
f (e, q)

}
.

(b) for p ∈ [1, m − (q − p)] and j ∈ [1, n], 𝛼1
j (p, q) ← 𝛼

2
j (p, q).

Here, 𝛿(⋅) means Kronecker delta. This algorithm begins with the full text, advances with decreasing
width, and stops at a word. There are vast parallelisms in initialization and induction. This algorithm uses
O(m2n2) time and O(m2n) space. The inside and outside algorithms proceed in bottom-up and top-down
directions, respectively, but their running time and space are identical.

Analogously to Equation (9.38), the product of the inside and outside probabilities becomes

𝛼j(p, q)𝛽j(p, q) = p(w1(p−1)N
j
pqw(q+1)m)p(wpq|Nj

pqG)

= p(w1m, Nj
pq|G). (9.57)

Taking marginalization, we get

p(w1m, Npq|G) =
∑

j∈[1,n]
𝛼j(p, q)𝛽j(p, q),

p(w1m, Nj|G) =
∑

p∈[1,m]

∑
q∈[1,m]

𝛼j(p, q)𝛽j(p, q),

p(w1m|G) =
∑

j∈[1,n]

∑
p∈[1,m]

∑
q∈[1,m]

𝛼j(p, q)𝛽j(p, q). (9.58)

Each of the probabilities means, respectively, the average nonterminal for wpq, the occurrence of the
nonterminal Nj in the sentence, and the evaluation. The evaluation is especially possible in three ways:

p(w1m|G) = 𝛽1(1, m) =
∑

j∈[1,n]

𝛼j(k, k)p(Nj → wk), k ∈ [1, m],

=
∑

j∈[1,n]

∑
p∈[1,m]

∑
q∈[1,m]

𝛼j(p, q)𝛽j(p, q). (9.59)

Another property is that

p(Nj
pq|w1m, G) =

p(w1m, Nj
pq|G)

p(w1m|G)
=

𝛼j(p, q)𝛽j(p, q)

𝛽1(1, m)
. (9.60)

This means the expected count of the rule, given the instance and grammar.
The next problem is the decoding problem, which determines the syntax tree. This can be obtained by

the cost 𝛿i(p, q), which is the highest inside probability parse of a subtree Ni
pq. The structure is similar to

the inside probability.

270 Architectures for Computer Vision

Algorithm 9.12 (Decoding problem) For a string of words, the decoding problem is solved.

Input: G and w1m.

Memory: {𝛿1
j (p, q), 𝛿2

j (p, q)|p, q ∈ [1, m], j ∈ [1, n]} and {𝜂j(p, q)|p, q ∈ [1, m], j ∈
[1, n]} = {(k, l, r, j, p, q)|p, r, q ∈ [1, m], j, k, l ∈ [1, n]}.

Output: Strings {(k, l, r)}.

1. Initialization: for p ∈ [1, m] and j ∈ [1, n], 𝛿j(p, p) = p(Nj → wp).
2. Induction: for q − p = 1,… , m − 1.

(a) for p ∈ [1, m − (q − p)] and j ∈ [1, n],

𝛿
2
j (p, q) = max

1≤k,l≤n
p≤r<q

p(Nj → NkNl)𝛿1
k (p, r)𝛿1

l (r + 1, q),

𝜂j(p, q) = argmax
1≤k,l≤n
p≤r<q

p(Nj → NkNl)𝛿1
k (p, r)𝛿1

l (r + 1, q).

(b) for p ∈ [1, m − (q − p)] and j ∈ [1, n], 𝛿1
j (p, q) ← 𝛿

2(p, q).
3. Termination: 𝛿∗ = 𝛿1(1, m) and (k, l, r) ← 𝜂1(1, m).
4. Backtracking: for q − p = m − 2,… , 1 and for p ∈ [1, m − (q − p)],

(k, l, r) ← 𝜂j(p, q)(k, l, r).

The pointer stores (p, r, q, k, l), which means the tagging (Nk
pr, Nl

rq). During induction, the pointer (k, l, r)
is stored at the position (j, p, q). During backtracking, the pointer (k, l, r) is read from the position (j, p, q),
recursively. This algorithm needs immense complexity because of the sequence p ≤ r < q and the labels
(j, k, l). The computation time is the same as for the inside and outside probabilities. Therefore, we
need O(m2n2) operations and O(m3n3) space. There are various alternatives to perform the iterations.
Essentially, the parsing is realized with the Cocke–Younger–Kasami (CYK) algorithm (Hopcroft et al.
2006; Knuth 2011; Sudkamp 2005), which requires O(m3|G|) time for the worst-case scenario, where|G| is the grammar size (or O(n3) worst-case) in the worst-case scenario.

The third problem is determining what differentiates the grammar from the instance. For this purpose,
we need the transition probability:

𝛾i(j, k, l, p, q) ≜ p(w1,p−1Njwq+1,m, Nj → wpq, Nj → NkNl)∕p(Wi) (9.61)

with the property,

𝛾i(j, k, k, p, p) = p(Nj → wk)∕p(Wi), (9.62)

where Wi is an instance. The transition probability can be obtained by the inside and outside
probabilities:

𝛾(j, k, l, p, q) = 1
p(w1m)

∑
i∈[p,q−1]

p(Nj → NkNl)𝛽k(p, i)𝛽l(i + 1, q)𝛼j(p, q). (9.63)

Dynamic Programming for Energy Minimization 271

For the sentences {Wi|i ∈ [1,𝜔]}, with each having the size mi, the grammar G can be updated by

p(Nj → NrNs) =
∑𝜔

i=1

∑mi−1
p=1

∑mi
q=p+1 𝛾i(j, r, s, p, q)∑𝜔

i=1

∑
r,s

∑mi−1
p=1

∑mi
q=p+1 𝛾i(j, r, s, p, q)

,

p(Nj → wr) =
∑𝜔

i=1

∑mi
h=1 𝛼j(h, h)p(wh = wk)𝛽j(h, h)∑𝜔

i=1

∑mi
p=1

∑mi
q=p 𝛼j(p, q)𝛽j(p, q)

. (9.64)

The method is summarized in the following.

Algorithm 9.13 (Learning problem) For a string of words, the grammar is determined.

Input: w1m.

Memory: Memories for 𝛼, 𝛽, and 𝛾 .

Output: G.

1. Initialization: G.
2. Until convergence, do the following:

(a) Algorithm 9.10 and 9.12: {𝛼j(p, q), 𝛽j(p, q)|j ∈ [1, n], p < q ∈ [1, m]}.
(b) for p < q ∈ [1, m] and j, k, l ∈ [1, n],

𝛾(j, k, l, p, q) = 1
p(w1m)

∑
i∈[p,q−1]

p(Nj → NkNl)𝛽k(p, i)𝛽l(i + 1, q)𝛼j(p, q).

(c) for j, r, s ∈ [1, n],

p(Nj → NrNs) =
∑

i∈[1,𝜔]

∑mi−1
p=1

∑mi
q=p+1 𝛾i(j, r, s, p, q)∑𝜔

i=1

∑
r,s

∑mi−1
p=1

∑mi
q=p+1 𝛾i(j, r, s, p, q)

,

p(Nj → wr) =
∑𝜔

i=1

∑mi
h=1 𝛼j(h, h)p(wh = wk)𝛽j(h, h)∑𝜔

i=1

∑mi
p=1

∑mi
q=p 𝛼j(p, q)𝛽j(p, q)

.

(d) Update G.

This algorithm needs all the inside, outside, and transition probabilities. The computation is iterated until
convergence. The required operation is O(m2n3

𝜔) for one iteration and the required space is O(m2n + n3).
As an example, let us consider an image that consists of horizontal pixels. An object or background

consists of connected pixels. The goal is to identify the objects and backgrounds when the image is
already segmented. A foreground might be further decomposed into one or more different objects. The
ordering is specified by the production rule:

S → BS O(1) O → O O(.1) O → S(.1)
BS → B BS(.5) O → B O(.2) O → D(.2)
BS → B(.5) O → O B(.1) O → T(.3)
B → E(1)

272 Architectures for Computer Vision

(a) A scene (b) Interpretation 1 (c) Interpretation 2

Figure 9.6 A toy scene and its interpretations: (a) original scene, (b) two objects, and (c) three objects

Here, ‘BS’, ‘B’, and ‘E’ mean backgrounds, background, and empty, respectively. The other symbols,
‘O’, ‘S’, ‘D’, and ‘T’ represent object, singleton, doubleton, and tripleton, respectively. The symbol ‘O’
is a set of one or more connected foreground pixels. The singleton, doubleton, and tripleton represent
cliques consisting of one, two, and three pixels, respectively. The numbers beside the terminal and
nonterminal symbols represent probabilities.

A simple example consists of five pixels, as shown in Figure 9.6(a). The shaded pixels are unknown
objects and the empty pixels are backgrounds, represented by the sequence, W = BOOBO. The other
two figures are two different interpretations. The shaded pixels might mean two objects or three objects.
The interpretations are represented by parse trees (Figure 9.7).

The probability of the first parse tree is 1 × .5 × 1 × .1 × .2 × .2 × 1 × .1 = 0.002. The second
parse tree has the probability 1 × .5 × 1 × .1 × .1 × .1 × .1 × .2 × 1 × .1 = 0.000001. Therefore, the first
parse tree is more probable. In general, the probabilities of parse trees can be calculated with the
inside-outside probabilities. Also, the most probable parse tree can be found through the decoding
algorithm.

The one-dimensional scene can be interpreted by parsing the erroneous input strings by the inside-
outside algorithm. However, the image problem seems to be beyond one-dimensional, unlike natural
language processing. The 3D problem is decomposed into three or more one-dimensional problems,
solved separately, and then combined together for the overall solution. Nevertheless, the sequen-
tial and symbolic descriptions might be the most general representation scheme for describing the
three-dimensional scene, if the direct spatial reasoning is bypassed by more abstract representations.
There are some clues about representation and binding problem in the area of multisensory inte-
gration (Bear et al. 2007; Calvert et al. 2004; Purves 2008; Stein and Meredith 1993; Wikipedia
2013c).

S(1)

O(.1)

O(.2)

O(.1)

S

B(1)

E

O(.2)

D

BS(.5)

B(1)

E

S(1)

O(.1)

O(.1)

O(.2)

O(.1)

S

B(1)

E

O(.1)

S

O(.1)

S

BS(.5)

B(1)

E

Figure 9.7 Parse trees for the two interpretations

Dynamic Programming for Energy Minimization 273

Problems
9.1 [DP] How can you expand the DP algorithm, limited to one line of image, for better performance?

9.2 [DP] Consider multiplying three matrices in various orders.

ABC =
[

1 2 3
4 5 6

]⎡⎢⎢⎣
1 2 3
4 5 6
7 8 9

⎤⎥⎥⎦
⎡⎢⎢⎣

1 2 3
4 5 6
7 8 9

⎤⎥⎥⎦.
Considered under the DP paradigm, what are the states? What is the optimal path and what are the
minimum multiplications? This is a simple example of the matrix chain multiplication problem
(Bradford et al. 1994; Cormen et al. 2001; Ramanan 1996; Wikipedia 2013b).

9.3 [Extended DP] Considering the boundary conditions, rewrite Equation (9.26).

9.4 [Extended DP] Similarly to the previous problem, rewrite Equation (9.27) with boundary consid-
ered.

9.5 [Extended DP] The extended DP is the only concept available, and it is impossible to apply
because of the vast dimensionality in state. How can you manage such a limitation?

9.6 [Extended DP] In EDP, define𝜓(k, j) for a nearest neighbor connection and discuss the sparseness.

9.7 [Inside-outside] For a given consecutive N pixels, how many different objects are there for all
cases of segmentation? Assume that continued pixels are identical objects or background.

9.8 [Inside-outside] Consider a blocks world (Slaney and Thiébaux 2001), where the objects are cubes
as shown in Figure 9.8. The blocks world vision has been extensively explored by Winston and
Waltz for an original concept (Cohen and Feigenbaum 1982; Winston 1992, 1984). (See also the
references (Cohen and Feigenbaum 1982; Gupta et al. 2010; Jeong 1986; Jeong and Musicus 1989;
Mörwald et al. 2010; Slaney and Thiébaux 2001)). David Waltz invented constraint propagation
for solving the problem with a stack. Instead of the constraint propagation, can you interpret the
scene by grammatical description and possibly in an inside-outside algorithm?

(a) A scene (b) Corners (L and Y)

Figure 9.8 Interpretation of a box scene in a blocks world

9.9 [Inside-outside] Given an algorithm that contains several loops, we need a systematic method
to estimate computational complexity. One useful formula is

∑N
i=1 is → O(Ns+1). For multiple

loops,
∏K

k=1

∑Nk
ik=1 1 → O(

∏K
k=1 Nk). Using this formula, obtain the complexity of nested loops∏K

k=1

∑ik+1
ik=1 ik, where iK+1 = N.

274 Architectures for Computer Vision

9.10 [Inside-outside] Using the previous formula, analyze the running complexity of Algorithm 9.12.

9.11 [Inside-outside] The inside-outside algorithm can be converted to CYK by suitably arranging the
loops and replacing the probability with binary decision for the production rules. How can you
modify the loops for CYK?

References
Aho A, Hopcroft J, and Ullman J 1974 The Design and Analysis of Computer Algorithms. Addison-Wesley.
Amini AA, Weymouth TE, and Jain RC 1990 Using dynamic programming for solving variational problems in vision.

IEEE Trans. Pattern Anal. Mach. Intell. 12(9), 855–867.
Baker J 1979 Trainable grammars for speech recognition In Speech communication papers presented at the 97th

meeting of the Acoustical Society of America (ed. Wolf JJ and Klatt DH), pp. 547–550 Acoustical Society of
America.

Baum LE, Petrie T, Soules G, and Weiss N 1970 A maximization technique occurring in the statistical analysis of
probabilistic functions of Markov chains. Ann. Math. Stat. 41, 164–171.

Bear M, Conners B, and Paradiso M 2007 Neuroscience: Exploring the Brain third edn. Williams & Wilkins,
Baltimore.

Bellman R 1954 The theory of dynamic programming. Bulletin of the American Mathematical Society 60, 503–516.
Bellman R 2003 Dynamic Programming Dover Books on Computer Science Series. Dover Publications.
Bertsekas DP 2007 Dynamic Programming and Optimal Control vol. 1,2. Athena Scientific.
Bertsekas DP 2012 Dynamic Programming and Optimal Control: Approximate Dynamic Programming vol. 2 fourth

edn. Athena Scientific.
Bertsekas DP 2013 Abstract Dynamic Programming. Athena Scientific.
Bradford PG, Rawlins GJ, and Shannon GE 1994 Efficient matrix chain ordering in polylog time Parallel Processing

Symposium, 1994. Proceedings, Eighth International, pp. 234–241 IEEE.
Calvert GA, Spence C, and Stein BE 2004 The Handbook of Multisensory Processes. MIT press.
Cohen P and Feigenbaum EA 1982 The Handbook of Artificial Intelligence vol. 3. Morgan Kaufinann.
Cormen T, Rivest CLR, and Stein C 2001 Introduction to Algorithms second edn. The MIT Press.
Dempster A, Laird N, and Rubin D 1977 Maximum likelihood from incomplete data via the em algorithm. Journal

of the Royal Statistical Society, Series B 39, 1–38.
(ed. Purves D) 2008 Neuroscience fourth edn. Sinaur Associates.
Felzenszwalb PF and Zabih R 2011 Dynamic programming and graph algorithms in computer vision. IEEE Trans.

Pattern Anal. Mach. Intell. 33(4), 721–740.
Gong M and Yang YH 2005 Fast unambiguous stereo matching using reliability-based dynamic programming. IEEE

Trans. Pattern Anal. Mach. Intell. 27(6), 998–1003.
Gupta A, Efros AA, and Hebert M 2010 Blocks world revisited: Image understanding using qualitative geometry and

mechanics Computer Vision–ECCV 2010 Springer pp. 482–496.
Hopcroft JE, Motwani R, and Ullman JD 2006 Introduction to Automata Theory, Languages, and Computation

(3rd Edition). Prentice Hall.
Jelinek F, Lafferty JD, and Mercer RL 1992 Basic Methods of Probabilistic Context Free Grammars. Springer.
Jeong H 1986 Mask Extraction of Optical Images of VLSI Circuits PhD thesis MIT.
Jeong H and Musicus BR 1989 Advances in Machine Vision Springer Series in Perception Engineering Springer-Verlag

chapter 6, pp. 214–254.
Jeong H and Yuns O 2000 Fast stereo matching using constraints in discrete space. IEICE Transactions on Information

and Systems 83(7), 1592–1600.
Jurafsky D, Martin JH, Kaehler A, Vander Linden K, and Ward N 2000 Speech and Language Processing: An

Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition vol. 2. MIT
Press.

Knuth DE 2011 The Art of Computer Programming, Volumes 1-4A Boxed Set. Addison-Wesley Professional.
Lafferty JD 2000 A Derivation of the Inside-Outside Algorithm from the EM Algorithm. IBM TJ Watson Research

Center.
Lari K and Young SJ 1990 The estimation of stochastic context-free grammars using the inside-outside algorithm.

Computer speech & language 4(1), 35–56.

Dynamic Programming for Energy Minimization 275

Lari K and Young SJ 1991 Applications of stochastic context-free grammars using the inside-outside algorithm.
Computer speech & language 5(3), 237–257.

Lawrence R, Rabiner R, and Schafer R 2007 Introduction to Digital Speech Processing. Now Publishers Inc., Hanover,
MA USA.

Manning C 2001 Probabilistic linguistics and probabilistic models of natural language processing NIPS 2001 Tutorial.
Mörwald T, Prankl J, Richtsfeld A, Zillich M, and Vincze M 2010 Blort – the blocks world robotic vision toolbox

Proc. ICRA Workshop Best Practice in 3D Perception and Modeling for Mobile Manipulation.
Ohta Y and Kanade T 1985 Stereo by intra- and inter-scanline search using dynamic programming. IEEE Trans.

Pattern Anal. Mach. Intell. 7(2), 139–154.
Pereira F and Schabes Y 1992 Inside-outside reestimation from partially bracketed corpora Proceedings of the

30th annual meeting on Association for Computational Linguistics, pp. 128–135 Association for Computational
Linguistics.

Powell WB 2011 Approximate Dynamic Programming: Solving the Curses of Dimensionality Wiley series in proba-
bility and statistics second edn. Wiley.

Rabiner L and Juang B 1993 Fundamentals of Speech Recognition Prentice Hall signal processing series. Prentice
Hall.

Rabiner LR 1989 A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings
of IEEE 77(2), 257–286.

Ramanan P 1996 An efficient parallel algorithm for the matrix-chain-product problem. SIAM Journal on Computing
25(4), 874–893.

Sanchez JA, Benedı́ JM, and Casacuberta F 1996 Comparison between the inside-outside algorithm and the Viterbi
algorithm for stochastic context-free grammars Advances in Structural and Syntactical Pattern Recognition
Springer pp. 50–59.

Slaney J and Thiébaux S 2001 Blocks world revisited. Artificial Intelligence 125(1), 119–153.
Soong FK and Huang EF 1991 A tree-trellis based fast search for finding the N-best sentence hypotheses in continuous

speech recognition Acoustics, Speech, and Signal Processing, 1991. ICASSP-91, 1991 International Conference
on, pp. 705–708 IEEE.

Stein BE and Meredith MA 1993 The Merging of the Senses. The MIT Press.
Sudkamp TA 2005 Languages and Machines: An Introduction to the Theory of Computer Science (3rd Edition).

Addison-Wesley.
Viterbi A 1967 Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE

Trans. Information Theory 13(2), 260–269.
Wikipedia 2013a Hidden Markov model http://en.wikipedia.org/wiki/Hidden_markov_model (accessed Nov. 13,

2013).
Wikipedia 2013b Matrix chain multiplication http://en.wikipedia.org/wiki/Matrix_chain_multiplication (accessed

Nov. 14, 2013).
Wikipedia 2013c Multisensory integration http://en.wikipedia.org/wiki/Multisensory_integration (accessed Nov. 2,

2013).
Winston 1992 Artificial Intelligence (3rd Edition). Addison-Wesley.
Winston PH 1984 Artificial Intelligence. Addison-Wesley.
Xia F 2006 Inside-outside algorithm LING 572, Lecture note.

http://en.wikipedia.org/wiki/Hidden_markov_model
http://en.wikipedia.org/wiki/Hidden_markov_model
http://en.wikipedia.org/wiki/Matrix_chain_multiplication
http://en.wikipedia.org/wiki/Matrix_chain_multiplication
http://en.wikipedia.org/wiki/Multisensory_integration
http://en.wikipedia.org/wiki/Multisensory_integration

10
Belief Propagation and Graph Cuts
for Energy Minimization

In energy minimization, belief propagation (BP) (Pearl 1982; Yedidia et al. 2003) and graph cut (GC)
(Boykov et al. 2001; Felzenszwalb and Zabih 2011) are two important algorithms that can be used to solve
many intermediate vision problems. These two algorithms are general problem solvers, showing duality
and, in many aspects, evolving competitively in performance, computational speed, and generality. BP is
an excellent general solver, especially for MRF factor graphs because it guarantees reasonable solutions
even for loopy graphs. This method models the system as a joint pmf given by the energy function,
estimates marginals, and iteratively propagates messages between neighbors to enhance beliefs. Upon
convergence, each node contains a belief that is the score of the marginal states. The computational
structure is inherently parallel because all the operations are local and concurrent. However, because of
the vector variables and matrix priors, this method involves significant computation and storage, which
are usually beyond the capacities of serial computers, for real-time computation.

GC is an excellent general solver for graph problems and returns remarkably accurate solutions. It
models the system as a flow graph, in which a graph cut is equivalent to the energy, and thus searches
for the min-cut using the standard max-flow min-cut algorithms. It solves the problem of multiple labels
by first converting the label pairs into the binary label problem. To arrive at the global solution, this
method also iterates in the label space until the converged solution is obtained. The computational
structure is inherently serial because of the core max-flow min-cut algorithms and preparation of the
intermediate graphs. In addition, this method is NP-complete for multiple labels but is practical in
polynomial time because of the move-based algorithms (specifically, swap move and expansion move)
(Boykov et al. 2001).

In this chapter, we discuss BP and GC in terms of their principles, algorithms, and computational
structures. In particular, we analyze the parallel operations of BP in vector space. The RE and FRE
machines in Chapter 8 can be directly applied to the BP machine. The BP architecture will be designed
in the next chapter. Although GC is primarily a serial algorithm, parallel approaches are also investigated.
In the first part of this chapter, we discuss BP, after which we discuss GC. We focus solely on energy
minimization for vision problems in a general setting, skipping the fundamentals of Bayesian estimation
and graph theory.

Architectures for Computer Vision: From Algorithm to Chip with Verilog, First Edition. Hong Jeong.
© 2014 John Wiley & Sons Singapore Pte. Ltd. Published 2014 by John Wiley & Sons Singapore Pte. Ltd.
Companion Website: www.wiley.com/go/jeong

http://www.wiley.com/go/jeong

278 Architectures for Computer Vision

10.1 Belief in MRF Factor System
Consider an MRF system, G = (U, V , X,Θ), as stated in Definition 5.3. Here, U and V denote,
respectively, the factor and the variable sets. Further, the factors and variables are represented by
{𝜃u(xu)|xu = {xv|v ∈ N(u)}, u ∈ U} and {xv|v ∈ V}, respectively. In this system, the joint pmf is the
product of the factor nodes,

p(x) =
∏

u∈U
𝜃u(xu). (10.1)

To estimate a node’s variable, we need that node’s pmf, which can be achieved by marginalizing other
variables, retaining only one variable:

p(xv) =
∑

X⧵xv
p(x), v ∈ V . (10.2)

However, marginalization is an intractable task because the computational complexity involved is expo-
nential. For an image with M × N pixels and L labels, the complexity is O(LMN). This problem is one
of the central issues in many problems based on Bayesian estimation and is solved by various methods.
One approach is to estimate the states using DP, HMM, or Kalman filtering. The other approach is to
simulate the integration by sampling, as in Monte Carlo sampling and simulated annealing. Yet another
method is to find the stable state by local marginalization and iteration, that is mean field approximation
and BP.

BP determines a node probability iteratively by using information from children nodes and parent
nodes. If there is no loop as in Bayesian trees, BP provides an exact solution, just like dynamic pro-
gramming/Viterbi. Otherwise, loopy BP, like our MRF model of an image, provides an approximate
solution.

The purpose is to define the belief that approximates the marginal:

p(xv) =
∏

u∈N(v)

∑
xu⧵xv

𝜃u(xu), v ∈ V . (10.3)

The belief propagation concept links marginals with conditionals using a chain rule. A marginal at a
site can be connected to other marginals by conditioning the factors. This is a recursive relationship,
eventually connecting all the variables in the MRF relationship. The marginal is called a belief and the
conditional is called a message.

Let us formally define belief and message in terms of the factor graph.

Definition 10.1 (Belief and messages) For an MRF factor graph, G = (U, V , X,Θ), we define belief
‘b’ and message ‘m’ as

b(xv) ≜
∏

u∈N(v)
muv(xv), (10.4)

mvu(xv) ≜ b(xv), (10.5)

muv(xv) ≜
∑

xu⧵xv
𝜃(xu)

∏
v∗∈N(u)⧵v

mv∗u(xv∗), (10.6)

where p, q ∈ U ∪ V.

The belief is the product of the messages from the factor nodes. The variable and the factor nodes update
alternately via messages. The message from the variable is the belief itself. The message from the factor
node is the marginalization of the product of the factor and the messages. The underlying operation in
the factor node is a convolution of the incoming messages with the factors.

Belief Propagation and Graph Cuts for Energy Minimization 279

xu\xv

θ (xu)

u∈N(v)

v∈N(u)

b(xv)

mvu (xv)

mvu (xv)

muv (xv)

mv*u (xv*)

mu*v (xv)

muv* (xv*)

muv (xv)

Figure 10.1 Belief and messages between variable and factor nodes (all outputs are blocked by registers,
preventing infinity loops)

We apply the belief and message mechanism to the factor graph to obtain an iterative formulation.
We start with a variable node, v, where the belief b(xv) is defined (Figure 10.1). In Figure 10.1, the top
block is the factor node and the bottom block is the variable node. In accordance with Equation (10.6),
the variable node sends a message to the factor node:

mvu(xv) = b(xv), u ∈ U, v ∈ V . (10.7)

The factor node then assembles the incoming messages and convolves them to generate messages for
the variable node:

muv(xv) =
∑

xu⧵xv
𝜃(xu)

∏
v∗∈N(u)⧵v

mv∗u(xv∗), (10.8)

where the destination node is excluded from the source node list to prevent oscillations. From the
definition of belief, Equation (10.7) becomes

mvu(xv) =
∏

u∗∈N(v)⧵u
mu∗v(xv), (10.9)

where the destination node is also extracted from the source list. Consequently, we obtain a belief and
two messages to describe the system.

Let us now formally define the belief propagation algorithm.

Algorithm 10.1 (Belief propagation for factor graph) Given a Markov factor graph, G =
(U, V , X,Θ), compute the following.

1. Initialization: muv and mvu for u ∈ U and v ∈ V.
2. for t = 0, 1,… , T − 1 and for u, u∗ ∈ U and v, v∗ ∈ V,

mvu(xv) ←
∏

u∗∈N(v)⧵u
mu∗v(xv),

muv(xv) ←
∑

xu⧵xv
𝜃u(xu)

∏
v∗∈N(u)⧵v

mv∗u(xv∗).

280 Architectures for Computer Vision

3. for u ∈ U and v ∈ V,

b(xv) =
∏

u∈N(v)
muv(xv).

The result is the belief b(xv) at a variable node, which is the estimated marginal, p(xv). In this manner,
the marginal is obtained with iterative message passing.

It is known that BP converges to a fixed point that is also a stationary point of the Bethe approximation
to the free energy (Yedidia et al. 2003). Thus, BP is naturally expandable to more general models (Ihler
et al. 2005; Sudderth et al. 2010; Weiss 2014; Yedidia et al. 2005).

10.2 Belief in Pairwise MRF System
Let us now apply the concept of belief to the MRF model, stated in Chapter 5 (see also Figure 10.2(a)).

Each pixel, p ∈ , is assigned with a label xp ∈ and attached to a pixel, Ip ∈ [0, n]. The probabilistic
properties of the system are described by the joint distribution, which is either in factored form or Gibb’s

x p

Ip

(a) MRF network

x p

Ip

(b) Factor graph

p

mpq
q

mep
e

mnp

n

msp

s

(c) Message flow

Figure 10.2 Representations of MRF network, factor graph, and message flow

Belief Propagation and Graph Cuts for Energy Minimization 281

distribution. For I = {Ip|p ∈ }, x = {xp|x ∈ , p ∈ } is an MRF that has

p(x|I) = 1
Z
exp

{
−

(∑
p∈

𝜙(xp|Ip) +
∑

q∈Np⧵p

𝜓(xp, xq)

)}
,

= 1
Z

∏
p∈

p(xp|Ip)
∏

q∈Np⧵p

p(xp, xq), (10.10)

where 𝜙 and 𝜓 denote, respectively, the data term and the smoothness term. Since the variable is discrete,
all the distributions in the following are pmfs, unless otherwise stated.

The MRF graph model is depicted in Figure 10.2(b). Each pixel p is assigned with both unobserved
node (xp) and observed node (Ip). In the factor graph terms, the nodes are the variable nodes, and the
connections between them are the factor nodes. Thus, the MRF model can be viewed as a simple bipartite
graph. The general definition of message can be adapted to the MRF graph in the following way. Consider
the path from a variable node p to a variable node q via a factor node p(xp, xq). The variable node is
attached to another factor node p(xp|Ip). Because there is only one factor node between two variable
nodes, the same variable can be used for the variable node and the factor node.

Consequently, the factor graph is G = (, , X,Θ), the joint pmf is

p(x) = 1
Z

∏
p∈

{
p(xp|Ip)

∏
q∈Np⧵p

p(xp, xq)

}
(10.11)

and the factor at p is

𝜃(p) = 1
Z

p(xp|Ip)p(xp, xq), q ∈ Np, (10.12)

The factors consist of singletons and doubletons only. The message from a variable node p to a factor
node p′ (i.e. 𝜃(p)) is

mpp′ (xp) =
∏
s∈Np

msp(xp). (10.13)

Since there is only one path from a factor node to a variable node, the message between variable nodes
becomes

mpq(xq) =
∑
xp

p(xp|Ip)p(xp, xq)
∏

s∈Np⧵q

msp(xp). (10.14)

The message is now represented by transfers between variable nodes, bypassing the factor nodes (Fig-
ure 10.2(c)). When all the messages have propagated along the tree and are thus determined, the beliefs
are available on the variable nodes:

p(xq) = p(Iq|xq)
∏

p∈N(q)

mpq(xq), p, q ∈ . (10.15)

This representation means that the belief at a node is the marginal pmf, p(xp) (p ∈). This is the original
sum-product algorithm.

282 Architectures for Computer Vision

For a loopy MRF, the message must be iterated until convergence. In iterative form, the sum-product
becomes

sum-product:

⎧⎪⎨⎪⎩
m(t)

pq(xq) =
∑
xp

p(xp, xq)p(Ip|xp)
∏

s∈N(p)⧵q
p(t−1)

sp (xp),

p(xq) = p(Iq|xq)
∏

p∈N(q)
m(T)

pq (xq), t = 0, 1,… , T .
(10.16)

The message m(t)
pq at node p is calculated at iteration t and sent to neighbor node q. After T iterations,

the p(xq) at each node is decided according to the read-out equation. This is known as the sum-product
algorithm. To make the system stable, a normalization process is then needed:∑

xq
mpq(xq) = 1, (10.17)

which also means that the message is a marginal distribution. Although it is better than the original
marginalization that does not use belief, the sum-product is still a prohibitively large problem. Because
f ∈ , obtaining the message of a node requires O(L2) multiplications and O(L2) additions.

To simplify the operations, we replace the summation with the maximum, resulting in the max-product
form:

max-product:

⎧⎪⎨⎪⎩
m(t)

pq(xq) = max
xp

p(xp, xq)p(Ip|xp)
∏

s∈N(p)⧵q
p(t−1)

sp (xp),

p(xq) = p(Iq|xq)
∏

p∈N(q)
mT

pq(xq), t = 0, 1,… , T .
(10.18)

In this algorithm, the summation is replaced with O(L2) ‘max’ operations. In this case, beliefs no longer
estimate marginal but a sort of score of messages, and determine the maxima point to most likely
states. As a consequence of computation, underflow and overflow might occur and must be prevented by
applying some bias. Considering the variables as states, it can be seen that this method is very similar to
the Viterbi algorithm in DP.

Taking the logarithm of the distributions 𝜙(x) = − ln p(I|x) and 𝜓(xp, xq) = − ln p(xp, xq), Equation
(10.16) becomes

sum-sum:

⎧⎪⎪⎨⎪⎪⎩
m(t)

pq(xq) =
∑

xp

{
𝜓(xp, xq) + 𝜙(xp)

+
∑

s∈N(p)⧵q

(
m(t−1)

sp (xp) − 𝛼
)} ,

x̂q = argminxq

{
𝜙(xq) +

∑
p∈N(q) mT

pq(xv)
}

,

(10.19)

where 𝛼 =
∑

xp
m(t−1)

sp (xp). The term 𝛼 is introduced to adjust the bias to prevent underflow. As a conse-

quence of the logarithm, the multiplication is changed to addition. It requires O(L2) additions. Let us call
this sum-sum, considering the two operations involved in the computation.

We can further simplify sum-sum to the min-sum algorithm.

min-sum:

⎧⎪⎪⎨⎪⎪⎩
m(t)

pq(xq) = minxp

{
𝜓(xp, xq) + 𝜙(xp)

+
∑

s∈N(p)⧵q

(
m(t−1)

sp (xp) − 𝛼
)} ,

x̂q = argminxq

(
𝜙(xq) +

∑
p∈N(q) mT

pq(xv)
)

,

(10.20)

Belief Propagation and Graph Cuts for Energy Minimization 283

where 𝛼 =
∑

xp
m(t−1)

sp (xp). We need O(L2) comparisons and O(L) additions. This algorithm is similar to
the Viterbi algorithm. However, we do not return to the previous state by storing the parent pointers.
The computation proceeds only in the forward direction. We started from the marginal distribution but
arrived again at the MAP estimate, which is free from multiplication.

From a computational point of view, we have the four dual equations: sum-product, max-product,
sum-sum, and min-sum. Of these equations, min-sum is the one that is used in practical hardware
systems, owing to its computational simplicity. In the following sections, we analyze the computational
structure of these equations and derive efficient computational models that will be used later to design
architectures.

10.3 BP in Discrete Space
Thus far, we have assumed that the variables are continuous, but from here onwards we consider BP
in discrete space. The variable x is defined as x ∈ [0, L − 1], where L is the size of the discrete labels.
The beliefs and messages are all discrete, that is b, m ∈ [0, Nm − 1], where Nm represent the discrete
levels. Without loss of generality, we use the four-neighborhood system, N4, in which the neighbors
are represented relative to the current node: center (0), east (1), south (2), west (3), and north (4). For
q ∈ {1, 2, 3, 4}, the opposite node is q′ = ((q + 2))4, where ((x))4 signifies modulo-four division. We
also assume that the prior is shift-invariant and symmetric: 𝜓(xp, xq) = 𝜓(|xp − xq|). Therefore, for the
prior, we have only L distinct values. In addition, 𝜙 and 𝜓 are nonnegative and real. The only remaining
unspecified value is the data term, 𝜙(⋅) ≥ 0, which depends on the application, and is therefore assumed
to be given.

Although the min-sum formula is the one actually used in most applications, we use all four formulas
in order to examine their computational aspects. If all assumptions are satisfied, the four equations can
be represented in discrete space as follows. First, the sum-product has the form

sum-product:

{
m(t)

pq(l) =
∑

k p(k, l)p(Ip|k)
∏

s∈N(p)⧵q p(t−1)
sp (k),

p(l) = p(Iq|l)∏p∈N(q) mT
pq(l), t = 0, 1,… , T − 1.

(10.21)

Here,
∑n

k=1 mpq(k) = 1 and k, l ∈ [0, L − 1]. The discrete-form of the max-product is

max-product:

{
m(t)

pq(l) = maxk p(k, l)p(Ip|k)
∏

s∈N(p)⧵q p(t−1)
sp (k),

p(l) = p(Iq|l)∏p∈N(q) mT
pq(l), t = 0, 1,… , T − 1.

(10.22)

Similarly, the discrete form of the sum-sum formula is

sum-sum:

⎧⎪⎪⎨⎪⎪⎩
m(t)

pq(l) =
∑

k

(
𝜓(k, l) + 𝜙(k)

+
∑

s∈N(p)⧵q

(
m(t−1)

sp (k) − 𝛼
)) ,

x̂q = argminl

(
𝜙(l) +

∑
p∈N(q) mT

pq(xv)
)

, 𝛼 =
∑

k m(t−1)
sp (k).

(10.23)

284 Architectures for Computer Vision

Finally, the min-sum form is

min-sum:

⎧⎪⎪⎨⎪⎪⎩
m(t)

pq(l) = mink∈[0,L−1]

(
𝜓(|k − l|) + 𝜙p(k)

+
∑

q∗∈[1,4]⧵q

(
m(t−1)

q∗p (k) − 𝛼
)) ,

xp = argmink

(
𝜙p(k) +

∑
q∗∈[1,4] mT

q∗p(k)
)

, 𝛼 =
∑

k m(t−1)
q∗p (k).

(10.24)

The four equations have the same computational structure, with the exception that the operations, product
vs. sum and maximum vs. minimum, must be replaced appropriately in each equation.

We consider only the representative equation, the min-sum formula. The computation performed by
Equation (10.24) is done in a number of steps. The first step builds an average vector for each port: a
node receives four message vectors from four neighbors, chooses three of them, and builds four different
average vectors.

m̄pq(k) =
∑

q∗∈[1,4]⧵q′

mq∗p(k) =
∑

q∗∈[1,4]⧵q′

mq∗p(k) − mqp(k), k ∈ [1, 4], (10.25)

where constant division for the averaging operation is omitted for simplicity.
The second step adds the prior vector to the averaged messages:

𝜙(k) + m̄pq(k), k ∈ [1, 4], q ∈ [1, 4]. (10.26)

Note that the same prior vector is added to the four different message vectors. This is done because the
prior does not depend on the neighbor but on the incoming data in the current node.

The third step adds the vector with the bias, depending on the difference of the element index between
the k element in the p node and the l element of the q node:

𝜓(|k − l|) + 𝜙(k) + m̄pq(k), k ∈ [1, 4], l ∈ [1, 4]. (10.27)

This bias represents the smoothness factor between message indices. The final step chooses the minimum
of the L elements, which is illustrated in Figure 10.3.

The data and the prior terms are added to the average input message, and all the components compared
to determine the smallest value. This structure and operation are well-known in DP as the Viterbi
algorithm. The input-output connection is just one part of the otherwise long sections in the DP graph

m̄pq (j) + (j) mpq (k)

k ∈[0, L − 1]j ∈[0, L − 1]

(a) mq *p and mpq

m̄ pq(j − 1) + (j − 1)

m̄pq(j) + (j)

m̄pq ϕ

ϕϕ

ϕ

mpq(k)

(| j − 1 − k|)

(| j − k|)

(| j + 1 − k|)

(j + 1)(j + 1) +

(b) min

Figure 10.3 Message update in the min-sum algorithm

Belief Propagation and Graph Cuts for Energy Minimization 285

(refer to Chapter 9). However, the Viterbi algorithm cannot be applied here because the input is changed
by external networks in each iteration. This operation can be represented by

mpq(k) =
n

min
j=1

m̄pq(j) + 𝜙(j) + 𝜓(|j − k|), k ∈ [1, 4]. (10.28)

The concept of choosing one of the L values and storing it in the node for the next iteration is the same
as in the Viterbi algorithm. However, the same node cannot be visited until all other nodes are visited.
This algorithm – which combines localized DP and global relaxation, and can therefore be considered
a generalization of the DP algorithm – can be applied to multidimensional problems, unlike the DP
algorithm, which can only be applied to one-dimensional problems. The parent index, as used in Viterbi,
is not needed for backtracking: this system only has the forward phase. From a macroscopic viewpoint,
the nodes on the graph may be the whole nodes MN, and the new value mo is obtained from the old value
mi, replacing mi with the previous mo. The iteration proceeds until convergence occurs.

The full description is as follows:

Algorithm 10.2 (Min-sum in discrete space) Given the data term, compute the MAP estimate
{xp|p ∈ }.

Input: {𝜙p(k)|p ∈ , k ∈ [0, L − 1]}.

Parameter: {𝜓(|k − l|)|k, l ∈ [0, L − 1]}.

Output: {xp|p ∈ }.

1. Initialization: {mpq(k)|p, q ∈ , k ∈ [0, L − 1]}.
2. Message: for t = 0, 1,… , T − 1 and p ∈ , and q ∈ Np ⧵ p,

mpq(k) =
n

min
j=1

{(∑
q∗∈Np⧵q

mq∗p(j)
)
+ 𝜙(j) + 𝜓(|j − k|)}.

3. Belief: for p ∈ and k ∈ [0, L − 1],

bp(k) = 𝜙(k) +
∑

q∈Np⧵p
mqp(k).

4. Output: for p ∈ , xp = argmink∈[0,L−1] bp(k).

In this algorithm, each node needs O(L2) ‘min’ operations and O(L) space to store 𝜙 and 𝜓 . The entire
system needs O(MNTL2) time and O(MNL) space. This basic algorithm is used in the next chapter for
circuit design.

10.4 BP in Vector Space
Since the state is discrete, the message is a vector-valued quantity, and thus the vector representation
might be more useful for representation. In the min-sum algorithm, we replace all the scalar quantities,
including variables, data terms, and prior terms, with vectors and matrices. The scalar operations are
replaced by special operations on vectors or matrices.

To begin with, let us consider a pixel p and its surrounding neighbors (Figure 10.4). In Figure 10.4,
the four neighbors are named {1, 2, 3, 4}, representing east, south, west, north, according to the current
pixel under consideration. The coordinates of the center node are absolute but those of the neighbors are

286 Architectures for Computer Vision

p 13

2

4

m3p

m4p

m1p

m2p

mp3

mp4

mp1

mp2

(a) Input

p 13

2

4

(b) Output

Figure 10.4 Passing message vectors between nodes (east, south, west, and north are represented by
1, 2, 3, and 4, respectively)

relative to the center node. Because the algorithm is defined for a single node, the mixed absolute and
relative coordinates make the description very compact. In regard to the center node, the input data are
the four incoming message vectors and the outputs are the four output message vectors.

The message vector from p to q is defined as a set of L scalar messages:

mpq ≜ (m(1)pq,… , m(L − 1)pq)T , m ∈ [0,∞). (10.29)

The message values must be nonnegative, as noted by [0,∞). The message is actually represented by an
integer, and thus has a finite range in the circuit. This property, however, does not affect the underlying
concept in any way. A node is surrounded by four neighbors, numbered from one to four, and receives
and sends messages from and to them in a package of four messages. A package of four messages can
be represented by a matrix, for each input or output.

Mo
p ≜

(
mo

p1, mo
p2, mo

p3, mo
p4

)
, Mi

p ≜
(
mi

1p, mi
2p, mi

3p, mi
4p

)
, (10.30)

where the superscript denotes the input and output. All the notations of the message direction and
neighborhood directions are defined relative to a node, because all the other nodes have the same
connection and operation. As a result, a node can be considered a transformation T(⋅) that receives Mi

p
and outputs Mo

p with Mo = T(Mi). This operation is iterative and concurrent for all nodes.
The data term is represented by both a vector 𝜙p and a diagonal matrix Φ:

L × 1 : 𝜙p ≜ (𝜙p(0),… ,𝜙p(L − 1))T ,

L × 4 : Φp = 1T
4 ⊗𝜙p, (10.31)

where 14 is a four-element vector with all ones, and ⊗ is the tensor product. The data term must be
determined at the beginning and must always be available to nodes as the message updation always uses
this value. Because it is a function of the input image, the data term may differ for all the nodes.

Belief Propagation and Graph Cuts for Energy Minimization 287

Unlike the data term, the prior term does not depend on the input image, and thus remains unchanged
for all nodes. It is computed initially and stored inside nodes. Because it is a large two-dimensional
matrix, the prior must be simplified, by using its properties, and coded compactly to save space. One
important property is that, in most cases, the prior is shift-invariant and symmetric:

𝜓(xp, xq) = 𝜓(|xp − xq|). (10.32)

This means that the prior depends only on local neighbors, not on absolute position, and on the absolute
difference of coordinates, which are the same for all neighbors and nodes. This property appears as an
n × n matrix:

n × n : Ψ = {𝜓(|i − j|)|i, j ∈ [0, L − 1]}, (10.33)

or as a symmetric Toeplitz matrix. Among the n × n elements, only n∕2 values differ in the worst case,
needing a small vector for the n∕2 values.

A node receives four messages and builds four different averages by selectively choosing three input
messages. For this selective average, we can define an operation, (141T

4 − I4×4), where 1n is an n × 1
vector with ones and I4×4 is a 4 × 4 identity matrix. Subsequently, using the vector-matrix notations and
the new operations, we can represent sum-sum by

Mo
p = Ψ

(
Φp + Mi

p

(
141T

4 − I4×4

))
,

bp = Φ + Mi
p14. (10.34)

During the iteration, the message matrices are updated iteratively, replacing Mi by Mo at the beginning
of each iteration. Following convergence of the messages, the stabilized belief, b, may be obtained as the
aggregate of all the incoming messages. As a solution of the sum-product formula, the message vector
represents the marginal distribution, p(xp) = bp.

To complete the min-sum algorithm in vector form, we need an additional operation. For an n × n
matrix A and an n × 1 vector b, define the operation

A ⊙ b =
{ n

min
j=1

(aij + bj)|i = 1, 2,… , n
}T

. (10.35)

This operation is related to transitive closure and the shortest path problem (Aho et al. 1974; Cormen
et al. 2001; Knuth 1997).

Combining all these, we obtain the following equations:

⎧⎪⎨⎪⎩
Mo

p = Ψ⊙
(
Φp + Mi

p

(
141T

4 − I4×4

))
,

bp = 𝜙p + Mi
p14,

xp = argmin bp, p ∈ .

(10.36)

After initialization, to determine 𝜙, the updation repeats, replacing Mi with Mo each time. After the
messages have converged when the iteration is at a maximum, we can obtain the final message using the
second and third equations. The elements of a message vector denote scores of the states inversely, and
thus the best state must be chosen by comparing all the elements. The state with the minimum score is
the solution for the node.

288 Architectures for Computer Vision

In vector space, the min-sum algorithm can be represented in a very compact form:

Algorithm 10.3 (Min-sum in vector space) Given the data term, compute the MAP estimate
{xp|p ∈]}.

Input: {𝜙p|p ∈ }.

Parameter: Ψ = {Ψ(j, k)|j, k ∈ }.

Output: {xp|p ∈ }.

1. Initialization: {Mp|p ∈ }.
2. Message updation: for t = 0, 1,… , T − 1 and p ∈ ,

Mo
p ← Ψ⊙

(
Φp + Mi

p

(
141T

4 − I4×4

))
.

3. Belief: for p ∈ , bp ← 𝜙p + Mi
p14

4. Output: for p ∈ , xp ← argminbp(k).

The input is the image, from which the data term is computed. The data term must be computed for each
node initially and must always be available for each node. The smoothness term is universal to the nodes
and must always be available for each node. The first stage of updation is computation of the average
matrix. The second stage is to choose the minimum value from the combined input average message, data
term, and smoothness term. Computation in updation is fully parallel. Thus, the first stage of updation
needs 12n addition operations with a single adder, but only one operation with 12n adders. For the second
stage of updation, 4n2 min-operations are needed with a single processor, but 4n min-operations with
L processors. The updation loop comprises M × N × L iterations. Following the iterations, the message
vectors are computed for all nodes. The elements of the message vector represent scores, and thus the
best index with the largest element is chosen. The result is the MAP estimate.

Because of the iterative neighborhood operation, this algorithm is qualified for the RE and FRE
machines (in Chapter 8). The computation space is the graph G, which consists of M × N × L nodes and
an N4 neighborhood system. As a standard RE, a node p computes Mo

p = T(Mi
p) with a transformation T(⋅).

BP can be separated into two main methods according to update style (Jordan 2004). The first method
updates all the nodes synchronously and in parallel, while the second updates sequentially in the inward
direction, from the leaf to the root, and the reverse direction on the tree. For each update, the sequential
method does not need to calculate the messages of all the nodes during each iteration; thus, they can be
fully propagated in a small number of operations. In the tree scenario, both algorithms produce exact
solutions. For real-time computation, BP is realized as fast belief propagation (FBP), hierarchical BP
(Felzenszwalb and Huttenlocher 2004), and hypertree BP (Bernier and Cheung-Mon-Chan 2006; Bernier
et al. 2009; Grauer-Gray et al. 2008; Guo and Hsu 2002; Jeong and Park 2004; Park and Jeong 2008;
Sun et al. 2003; Yang et al. 2006).

10.5 Flow Network for Energy Function
Thus far, the energy minimization problem has been studied in terms of the functional minimization
in the relaxation paradigm, the shortest path problem in the dynamic programming paradigm, and the
marginal estimation in the belief propagation paradigm. Another important paradigm is the graph cuts
(GC) paradigm, in which the energy minimization problem becomes the min-cut problem.

Belief Propagation and Graph Cuts for Energy Minimization 289

s

t

xp xq
pq (xp , xq)

qp (xq, xp)

p (1) q(1)

p (0) ϕ

ϕϕ

ϕ q(0)

Figure 10.5 A flow graph for binary labeling (there are four possible cuts)

We focus on the flow network defined on the image plane, , and the energy function,

E(x) =
∑
p∈

𝜙p(xp) +
∑

p∈ ,q∈Np

𝜓pq(xp, xq), (10.37)

where Np is the neighborhood of p and the label is x ∈ . Using the Max-flow min-cut theorem, we can
solve energy minimization by maximizing the flow over the network, which is determined by the min-cut
algorithm. This computation can be achieved by the standard minimum cut algorithm.

For a label set = {0, 1}, the energy function E(x) becomes

E(x) =
∑
p∈

{𝜙p(0)(1 − xp) + 𝜙p(1)xp} +
∑

p∈ ,q∈Np⧵p

𝜓pq(xp, xq)(1 − xp)xq. (10.38)

where xp ∈ {0, 1}. This is a quadratic pseudo-Boolean function (QPBF), E : {0, 1} ↦ , which is a
special case of the more general pseudo-Boolean function.

We can easily construct a flow graph, such as that shown in Figure 10.5, for the QPBF. The connection
between a node and the terminal is called a t-link (terminal link) and a connection between nodes is
called an n-link (neighbor link). The data term is assigned to the t-link capacity and the smoothness term
is assigned to the n-link capacity. The label of the pixel is determined by the connected source (0) or sink
(1). The construction of a flow graph means that the energy minimization can be solved by the min-cut
algorithm. In this construction, any st-cut C corresponds to an assignment of label to the pixels x and the
cost of the cut |C| is equal to the energy of E(x).

For the overall image plane, the graph is as shown in Figure 10.6. For simplicity, the image plane
is illustrated as a linear array. Here, the nodes are p ∈ , and the t-link capacities are ts

p = 𝜙p(1) and
tt
p = 𝜙p(0). The n-link capacity is epq = 𝜓pq(xp, xq).

Because all the discussions are based on this type of flow graph, we formally define the graph as
follows below.

Definition 10.2 (Energy Network) For the QPBF E(x) in Equation (10.38), we define a flow graph
G = (V , E, X,Φ,Ψ). V is the set of terminals, s and t, and the pixels . E is the set of t-links and n-links,
E = {ts

p, tt
p, epq|p, q ∈ , p, q ∈ }. The source and sink are permanently labeled with zero and one,

respectively. X denotes the labels of other vertices, X = {xp|xp ∈ {0, 1}, p ∈ }. D is the set of t-link
capacities, Φ = {𝜙s

p(1),𝜙t
p(0)|p ∈ }, and Ψ is the set of n-link capacities, Ψ = {𝜓pq(xp, xq)|p, q ∈ }.

290 Architectures for Computer Vision

s

t

pba q y z
eab · · · epq · · · eyz

t s
a

t s
b t s

y

t s
z

t t
a

t t
b t t

y
t t

z

Figure 10.6 A flow graph for the labeling problem. The nodes are defined on the pixels and the source
and sink are defined externally (p, q ∈ and p, q ∈ . t: t-links and e: n-links)

The graph is different from an ordinary flow network because it is a grid in which the connectivity is
very low, O(MN). This definition connects the labeling problem and the graph problem. The purpose of
the graph cut is to solve the energy minimization problem by finding a min-cut:

x∗ = argmin
x

E(x) = argmin
x

|C|. (10.39)

The characteristics of the graph are completely defined by the capacities {𝜙,𝜓}. In general, the data
term and the smoothness function satisfy the properties:

𝜙(xp) ≥ 0, 𝜓(xp, xq) ≥ 0, 𝜓(xp, xq) = 𝜓(xq, xp),

𝜓(xp+k, xq+k) = 𝜓(xp, xq), ∀p, q ∈ . (10.40)

Otherwise, the smoothness function may be semimetric or metric, which allows for different types of
methods, such as the swap move and the expansion move algorithms.

For a given energy function, we may have more than one representation, which are all equivalent. Two
functions E1(x) and E2(x) are reparameterizations if

E1(x) = E2(x), ∀x. (10.41)

The smoothness function can be reparameterized as follows (Boykov and Kolmogorov 2004):

𝜓pq(xp, xq) = 𝜓pq(0, 0)

= (𝜓pq(1, 0) − 𝜓pq(0, 0))xp + (𝜓pq(1, 0) − 𝜓pq(0, 0))xq

= (𝜓pq(1, 0) + 𝜓pq(0, 1) − 𝜓pq(0, 0) − 𝜓pq(1, 1))(1 − xp)xq. (10.42)

The last term must satisfy

𝜓pq(1, 0) + 𝜓pq(0, 1) − 𝜓pq(0, 0) − 𝜓pq(1, 1) ≥ 0, (10.43)

which is called submodularity. The energy function that satisfies the submodularity is called quadratic
submodular pseudo-Boolean Function. All submodular QPBS are st-min-cut solvable.

Belief Propagation and Graph Cuts for Energy Minimization 291

There are some standard algorithms for max-flow min-cut problems (Cormen et al. 2001). The Ford–
Furkerson algorithm is based on the DFS (depth first search)and runs in O(E|f ∗|), where E is the number
of edges in the graph and |f ∗| is the maximum flow in the graph. The Edmond–Karp algorithm is based
on the BFS (breadth first search) and runs in O(VE2) time. The Goldberg–Tarjan generic maximum-flow
algorithm is based on push-relabel and has a simple implementation that runs in O(V2E) time. The
relabel-to-front algorithm solves in O(V3) better for dense networks. After (Boykov et al. 2001), there
appear numerous algorithms on graph cuts, such as tree recycling, flow recycling, cut recycling, and
hierarchical methods (Wikipedia 2013). For this particular graph, there is an efficient algorithm, called
dual-search augmenting path algorithm (Boykov and Kolmogorov 2004). It finds approximate shortest
augmenting paths efficiently, shows high worst-case time complexity, and empirically outperforms other
algorithms.

10.6 Swap Move Algorithm
The binary labels must be expanded to the multiple labels. The straightforward method is to try all
the labels, using the binary labeling. However, searching LMN space with the traditional algorithms is
intractable. There are three methods: multiway cut, multilayer, and move algorithms. In the multiway
cut, there are as many as terminals as labels. In the multilayer model, there are L layers of planes between
the two terminals (Ishikawa 2003; Ishikawa and Geiger 1998; Roy and Cox 1998). In these algorithms,
however, the multiple label problem is NP-complete (Dahlhaus et al. 1992; Greig et al. 1989). There are
divide-and-conquer algorithms, called move algorithm (i.e. swap move and move expansion) (Boykov
and Kolmogorov 2004; Boykov et al. 1998, 2001), that convert the labeling problems into binary labeling,
having geometrical constraints. These algorithms solve the multiple label problem in polynomial time.

In this section, we consider the swap move algorithm. For a given pair of initial labels, {𝛼, 𝛽}
(𝛼, 𝛽 ∈), an image plane is partitioned into P

𝛼
, P

𝛽
, and P − P

𝛼𝛽
(P

𝛼𝛽
= P

𝛼
∪ P

𝛽
). Then, the energy

function can be decomposed to

E(x) =
∑

p,q∉P𝛼𝛽

q∈Np

E(xp, xq)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

constant

+E
𝛼𝛽

(x′)

⏟⏟⏟

variable

, (10.44)

where the first term belongs to P − P
𝛼𝛽

and the second term belongs to P
𝛼𝛽

. The second term is again
decomposed to

E
𝛼𝛽

(x) =
∑

p,q∈P𝛼𝛽

p,q∈N

E(xp, xq)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

inside P𝛼𝛽

+
∑

p∈P𝛼 ,q∈Np
q∉P𝛼𝛽

E(xp, xq) +
∑

p∈P𝛽 ,q∈Np
q∉P𝛼𝛽

E(xp, xq)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

between P𝛼𝛽 and P−P𝛼𝛽

.

This decomposition is possible because of the pairwise MRF. For higher-order MRF, the partition may
be more complicated with additional pairs of neighbors. The complication of the energy computation
occurs at the interface between two different partitions, where the edge weight depends on the labels of
both ends. If we change 𝛼 and 𝛽 by switching labels in some nodes, E

𝛼𝛽
changes but the first term in

Equation (10.44) does not. Therefore, we can locally minimize E
𝛼𝛽

only and thereby update the labels
in P

𝛼𝛽
. As a result, G is updated and another pair of labels is chosen, and the same routine repeats.

292 Architectures for Computer Vision

p q
(q)

Dp ()

(a) xp =

q
(q)

Dp ()

(b) x p =

Dp () + (q)

Dp () + (, x

, x

, x

q)

(c) xp = αα

α
β, xα

ααα

α α

Vββ

ββ β

βββ

p p

Figure 10.7 Node connections in a local flow graph: p ∈ P
𝛼𝛽

and q ∉ P
𝛼𝛽

With respect to the data and smoothness terms, the energy function becomes

E
𝛼𝛽

(x) =
∑

p,q∈P𝛼𝛽

p,q∈N

𝜓pq(xp, xq)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

inside P𝛼𝛽

+
∑

p∈P𝛼𝛽

{
D(xp) +

∑
q∈Np
q∉P𝛼𝛽

𝜓pq(xp, xq)
}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

between P𝛼𝛽 and P−P𝛼𝛽

. (10.45)

The second term in Equation (10.45) can be represented by the local connections in Figure 10.7(a) or
(b). Choosing an edge connection is equivalent to a graph cut. If a graph cut contains both of the edges
in Figure 10.7(a), it means the node is labeled with 𝛼. The same is true for Figure 10.7(b).

The two configurations can be combined to give Figure 10.7(c), ignoring the external node q. In the
new graph, xp can be readjusted locally, without concern for the external nodes. Our purpose is to build a
graph G

𝛼𝛽
for a pairwise MRF and readjust xp using the min-cut algorithm to minimize Equation (10.45).

In principle, this concept can be expanded to the higher-order MRF.
All the connection types are illustrated in Figure 10.8. In the graph shown, the set of vertices includes

the terminals 𝛼 and 𝛽, pixels p ∈ P
𝛼

with xp = 𝛼 and pixels q ∈ P
𝛽

with xp = 𝛽, where 𝛼 and 𝛽 are,
respectively, source and sink. The set of pixels in G

𝛼𝛽
is P

𝛼𝛽
= P

𝛼
∪ P

𝛽
. Each pixel p ∈ P

𝛼
is connected

β

αα

α

α

α

α

β

β

β

P

P

P

·qp w r s
epq ers

tp

tq

t s

tp

t r

Figure 10.8 A subgraph G
𝛼𝛽

in the swap move algorithm

Belief Propagation and Graph Cuts for Energy Minimization 293

Table 10.1 Edge weights in G
𝛼𝛽

Edge Weight For

t𝛼p 𝜙p(𝛼) +
∑

q∈p
q∉P𝛼𝛽

𝜓(𝛼, xq) p ∈ P
𝛼𝛽

t𝛽p 𝜙p(𝛽) +
∑

q∈p
q∉P𝛼𝛽

𝜓(𝛽, xq) p ∈ P
𝛼𝛽

epq 𝜓(𝛼, 𝛽) p, q ∈ , p, q ∈ P
𝛼𝛽

to the terminals by edges (t-link) t𝛼p and t𝛽p . Each pair of neighbor nodes is connected by edges (n-link)
epq, where {p, q} ⊂ P

𝛼𝛽
and (p, q) ∈ .

For G
𝛼𝛽

, Equation (10.45) becomes

E
𝛼𝛽

(x) =
∑

p∈P𝛼𝛽

{
t𝛼p𝛿(xp − 𝛼) + t𝛽p𝛿(xp − 𝛽)

}
+
∑

p,q∈P𝛼𝛽

q∈Np

𝜓pq(xp, xq)𝛿(xp − 𝛼)𝛿(xq − 𝛽). (10.46)

Here, 𝛿(⋅) is the Kronecker delta and the weights of the t-links are listed in Table 10.1. As already noted,
the costs of t-links contain the edge weight between the nodes in P

𝛼𝛽
and P − P

𝛼𝛽
. On those links, only

the nodes on one side may change labels, while those on the other side have fixed labels.
Given G

𝛼𝛽
, the min-cut algorithm tries to minimize E

𝛼𝛽
by cutting the edges in four different ways

(Figure 10.9). To guarantee the graph cut, the smoothness function must be semimetric:

𝜓(𝛼, 𝛽) ≥ 0, 𝜓(𝛼, 𝛽) = 0 ⇐⇒ 𝛼 = 𝛽. (10.47)

One of the semimetric functions is the truncated quadratic, 𝜓(𝛼, 𝛽) = min(|𝛼 − 𝛽|2, K), where K is a
constant. A stricter constraint is metric, which needs an additional requirement, specifically, triangular
inequality:

𝜓(𝛼, 𝛽) ≤ 𝜓(𝛼, 𝛾) + 𝜓(𝛾 , 𝛽), ∀𝛼, 𝛽, 𝛾 ∈ . (10.48)

p q
epq

tp tq

tp tp

(a)

p q
epq

tp tq

tp tp

(b)

ααα
α α α α α α αα

p qepq

tp tq

tp tp

(c)

p qepq

tp tq

tp tp

(d)

α

ββββ

β β β β β β ββ

Figure 10.9 Legal edge cutting in G
𝛼𝛽

294 Architectures for Computer Vision

The metric functions are the truncated absolute distance, 𝜓(𝛼, 𝛽) = (|𝛼 − 𝛽|, K), and the Potts model,
𝜓(𝛼, 𝛽) = 𝛿(𝛼 ≠ 𝛽). Unlike the swap move, the expansion move requires these strict measures.

A cut, C ⊂ E, separates the terminals in the induced graph G(C) = (V , E − C). No proper subset of
C separates the terminals in G(C). The cost of cut C, denoted |C|, is the sum of its edge weights. The
min-cut problem is to find the minimum cost among all cuts separating the terminals. Any cut, C, on
G

𝛼𝛽
, exactly severs one t-link for any p ∈ P

𝛼𝛽
and thus labels the nodes:

xp =
⎧⎪⎨⎪⎩
𝛼, ∀t𝛼p ∈ C, p ∈ P

𝛼𝛽
,

𝛽, ∀t𝛽p ∈ C, p ∈ P
𝛼𝛽

,

xp, ∀p ∈ P, p ∉ P
𝛼𝛽
.

(10.49)

Under the semimetric condition, the min-cut algorithm guarantees that each node is connected to only
one terminal. (In this graph notation, cutting the t-link actually means connecting, and cutting the n-link
actually means separating.) As a result, cutting an n-link means that nodes on both sides have different
labels. If the n-link is not cut, the connected nodes have the same labels.

If all the conditions are satisfied, it is shown that |C| = E(xC) − K for some constant K (Boykov et al.
2001):

E(xC) =
∑

p∈P𝛼𝛽

𝜙p

(
xC

p

)
+
∑

p∈P𝛼𝛽 ,q∈Np
q∉P𝛼𝛽

𝜓
(
xC

p , xq

)
+
∑

p,q∈P𝛼𝛽

p,q∈

𝜓
(
xC

p , xC
q

)
=

∑
p∈P𝛼𝛽

𝜙p

(
xC

p

)
+
∑

p∧q∈P𝛼𝛽

p,q∈

𝜓
(
xC

p , f C
q

)
, (10.50)

which is E(xC) − K, where

K =
∑

p∉P𝛼𝛽

𝜙p(xp) +
∑

p,q∉P𝛼𝛽

p,q∈

𝜓(xp, xq). (10.51)

The swap move algorithm (Boykov et al. 2001) can be interpreted as follows.

Algorithm 10.4 (Swap move) Compute in the following.

Input: Φ.

Memory: G and G
𝛼𝛽

.

Parameter: Ψ.

Output: x = {xp|p ∈ }.

1. Initialization: x.
2. Cycle: until convergence for each pair of labels {𝛼, 𝛽} ⊂ ,

(a) Subgraph: build G
𝛼𝛽

⊂ G,
(b) Min-cut: solve x

𝛼𝛽
= argminx E

𝛼𝛽
(x) by the min-cut algorithm,

(c) Graph updation: update G with x
𝛼𝛽

.

Here, G
𝛼𝛽

is given by Figure 10.8 and E
𝛼𝛽

is given by Equation (10.50). This algorithm receives an input
Φ and uses the memories to store G and G

𝛼𝛽
. The computation consists of a cycle for choosing the label

pair and an iteration for computing min-cut. The swap move uses a new max-flow algorithm that has the
best speed on these graphs over many modern algorithms; the running time is virtually linear in practice

Belief Propagation and Graph Cuts for Energy Minimization 295

(Boykov and Kolmogorov 2004). After each cycle, G is updated with the updated labels. For L labels,
the label pairs are L2. Therefore, the cycle is within the complexity range O(L2). The same label pairs
may be tried more than once. The memory is proportional to the image size and labels, i.e. O(MNL).
Inside a cycle, we need more operations and memory for the binary min-cut.

The computational structure of this algorithm is sequential. In particular, building G
𝛼𝛽

and using the
min-cut algorithm require sequential and irregular operations.

10.7 Expansion Move Algorithm
The second of the move algorithms is the expansion move algorithm (Boykov et al. 2001). In a procedure
analogous to that of the swap move, it converts the original problem into a series of binary labeling
problems. The difference is that 𝛽 is replaced with all the other labels. Therefore, the 𝛼 region may
expand to other regions.

An image plane is partitioned into Pl, where l ∈ . The energy function can then be partitioned into

E(x) =
∑

p,q∈Pl
(p,q)∈N,l∈

E(xp, xq)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

same label Es

+
∑

p∈Pk ,q∈Pl
(p,q)∈N,k≠l∈

E(xp, xq)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

different label Ed

. (10.52)

The first term is the energy for neighbor nodes that have the same labels, whereas the second term is
the energy for neighbor nodes that have different labels. As in the swap move, this partition is possible
because of the pairwise MRF. For higher-order MRF, two or more pairs of neighbors must be considered.
Unlike the swap move, however, the expansion move deals with the entire plane.

For a label 𝛼 ∈ , the purpose is to change the labels of some nodes to 𝛼. Like the swap move, the
complication occurs at the interface between two different partitions, where the edge weight depends on
the labels of both ends. To make matters worse, one of the ends, but not both, may change to 𝛼. (In the
swap move, a node in P̄

𝛼𝛽
is fixed in the label.) The effect of the label change is reflected on the edge

weight, even though there is only one edge between a pair of neighbors. The expansion move algorithm
solves this problem by introducing an auxiliary node between the nodes, creating two edges.

Between the partition, the energy can be either of those shown in Figures 10.10(a) and (b). The edge
weight has two values depending on which node is changed to 𝛼. This can be remedied by introducing

p q
(, xq)

p ()

q(xq)

(a) xp =

ϕ

ϕ ϕ

ϕ

ϕϕ

ϕ ϕ

α ααα

α α α

α α

p q
(xp ,)

q()

p (xp)

(b) xq =

p q
(xp ,) (, xq)

(xp , xq)

p () q ()

p (xp) p (xq)

(c) Vxp = xq =

α

αααα

α α α α

Figure 10.10 Node connections in a local flow graph: p ∈ Pk and q ∈ Pl, where k ≠ l ∈

296 Architectures for Computer Vision

α

α α

αα

α

α

Pk

Pl

P

qap r b s
epa eaq eqr erb ebs

tp

tq tr

ts

tp
tα α α α

α

α

a tq tr
tb ts

Figure 10.11 A graph G
𝛼

in the expansion move algorithm (k ≠ l ∈)

an auxiliary node apq, which is connected as shown in Figure 10.10(c). If the left edge is cut, xq = 𝛼, if
the right edge is cut, xp = 𝛼, and if the t-link is cut, the labels remain unchanged. Other cuts must be
prohibited by introducing the triangular inequality for the edge weights.

All the connection types are illustrated in the graph in Figure 10.11. In this graph, the set of vertices
includes the terminals 𝛼 and �̄�, pixels p ∈ Pk with k ∈ , where 𝛼 and �̄� are, respectively, source and
sink. Each pixel is connected to the terminals by edges (t-links) t𝛼p and t�̄�p . Each pair of neighbor nodes
is connected by edges (n-links) epq, where {p, q} ⊂ P

𝛼𝛽
and (p, q) ∈ . In addition, an auxiliary node a

is created between every pair of neighbor nodes with different initial labels, that is xp ≠ xq. The weights
of the t-links and n-links are listed in Table 10.2. As already noted, the costs of t-links contain the edge
weight between the nodes in P

𝛼𝛽
and P − P

𝛼𝛽
. On those links, only the nodes on one side may change

labels, while those on the other side have their labels fixed.
Given G

𝛼
, the min-cut algorithm tries to minimize E by cutting the edges in four different ways

(Figure 10.12). To guarantee the graph cut, the smoothness function must be metric:

𝜓(𝛼, 𝛽) ≥ 0, 𝜓(𝛼, 𝛽) = 0 ⇐⇒ 𝛼 = 𝛽,

𝜓(𝛼, 𝛽) ≤ 𝜓(𝛼, 𝛾) + 𝜓(𝛾 , 𝛽), ∀𝛼, 𝛽, 𝛾 ∈ . (10.53)

Table 10.2 Edge weights in G
𝛼

Edge Weight For

t�̄�p ∞ p ∈ P
𝛼

t�̄�p 𝜙p(xp) p ∉ P
𝛼

t𝛼p 𝜙p(𝛼) p ∈ P
𝛼

epa 𝜓pq(xp, 𝛼)

eaq 𝜓pq(𝛼, xq) p, q ∈ , xp ≠ xq

t�̄�a 𝜓pq(xp, xq)

epq 𝜓(xp, 𝛼) p, q ∈ , xp = xq

Belief Propagation and Graph Cuts for Energy Minimization 297

β

α

ap q
epa eaq

tp tq

tp tq

ta

(a) two types

ap q
epa eaq

tp tq

tp tq

ta

(b) two types

α
ααα

α

α α

α

αα

α

β

Figure 10.12 Legal edge cutting in G
𝛼
: four types

The metric functions are the truncated absolute distance, 𝜓(𝛼, 𝛽) = (|𝛼 − 𝛽|, K), and the Potts model,
𝜓(𝛼, 𝛽) = 𝛿(𝛼 ≠ 𝛽). Unlike the swap move, the expansion move requires these strict measures.

A cut, C ⊂ E, separates the terminals in the induced graph G(C) = (V , E − C). No proper subset of
C separates the terminals in G(C). The cost of cut C, denoted |C|, is the sum of its edge weights. The
min-cut problem is to find the minimum cost among all cuts separating the terminals. Any cut, C, on
G

𝛼𝛽
, severs exactly one t-link for any p ∈ P

𝛼𝛽
, and thus labels the nodes:

xp =
⎧⎪⎨⎪⎩
𝛼, ∀t𝛼p ∈ C, p ∈ P

𝛼𝛽
,

𝛽, ∀t𝛽p ∈ C, p ∈ P
𝛼𝛽

,

xp, ∀p ∈ P, p ∉ P
𝛼𝛽
.

(10.54)

Under the metric condition, the min-cut algorithm guarantees that each node is connected to only one
terminal.

If all the conditions are satisfied, it is shown that |C| = E(xC) (Boykov et al. 2001):

|C| = ∑
p∈

|||C ∩
{

t𝛼p , t�̄�p
}||| +∑

p,q∈
xp=xq

|C ∩ epq| +∑
p,q∈
xp≠xq

|C ∩ Epq|
=

∑
p∈

𝜙p

(
xC

p

)
+
∑

p,q∈
𝜓
(
xC

p , f C
q

)
= E(xC), (10.55)

where Epq = {epa, eaq, t�̄�a }.
In summary, the expansion move algorithm (Boykov et al. 2001) becomes as follows:

Algorithm 10.5 (Expansion move) Compute in the following.

Input: Φ.

Memory: G and G
𝛼
.

Parameter: Ψ.

Output: x = {xp|p ∈ }.

298 Architectures for Computer Vision

1. Initialization: x.
2. Cycle: until convergence for 𝛼 ∈ ,

(a) Subgraph: build G
𝛼
,

(b) Min-cut: solve x = argminx E(x) by the min-cut algorithm,
(c) Graph updation: update G with x.

Here, G
𝛼

is given by Figure 10.11, and E(x) is given by Equation (10.55). This algorithm receives an
input Φ and uses the memories to store G and G

𝛼
. The computation consists of the cycle for choosing

the label pair and the iteration for computing min-cut. Like the swap move, this algorithm uses a new
max-flow algorithm that has the best speed on these graphs over many modern algorithms; the running
time is virtually linear in practice (Boykov and Kolmogorov 2004). After each cycle, G is updated with
the updated labels. For L labels, the cycle has a complexity of O(L). The same label may be tried more
than once. The memory is proportional to the image size and labels, that is O(MNL). Inside a cycle, more
operations and memory are needed for the binary min-cut. This algorithm is also highly sequential. In
addition to the min-cut algorithm, the auxiliary node makes the algorithm highly irregular. (For more on
graph cuts, refer to (Felzenszwalb and Zabih 2011; Middlebury 2013; Wikipedia 2013)).

The trouble with the expansion move algorithm is the irregular structure due to the auxiliary nodes,
which may be placed unpredictably depending on the initial labeling. To make it regular, we may put
auxiliary nodes in between pixels. The auxiliary nodes must function normally when they are in between
different labels, otherwise they must function as dummy nodes. For this purpose, we have to define the
links properly, so that the elementary cut can be used for this modified graph (Figure 10.13).

In Figure 12.13, p ∈ Pk, s ∈ P
𝛼
, and q, c, r ∈ Pl. A normal auxiliary node a is inserted between two

different partitions. In Pl, where all the nodes have the same labels, a new auxiliary node c is introduced.
Because of the additional auxiliary node, epq must be replaced with three edges, eqc, ecr, and t�̄�c . We

have to ensure that no two of the three edges are cut. This is the same metric constraint as a (Table 10.3).
The circuit for these weights is highly regular. The status of the auxiliary nodes is determined by the
initial labels, the three edges are determined by the neighbor labels.

The graph cut algorithms can be expanded to problems that are more general. The problems are
expanded to the general non-submodular functions, which are NP-hard, but are commonly solved by
a relaxation of the problem, such as roof dual relaxation (Rother et al. 2007, 2009). Further, because
of the advantage inherent in QBFs, most difficult problems are converted to QBFs. For one thing, the
higher-order pseudo-Boolean functions are converted to the quadratic pseudo-Boolean functions (Kohli

α
αα

α

α
α α

α

α α
α

α

α

Pk

Pl

P

cqap r b s
epa eaq eqc ecr erb ebs

tp

tq t r

t s

tp
ta tq t r

tb t s

tc

α

Figure 10.13 A graph G
𝛼

in the parallel expansion move algorithm (k ≠ l ∈)

Belief Propagation and Graph Cuts for Energy Minimization 299

Table 10.3 Edge weights in G
𝛼

Edge Weight For

t�̄�p ∞ p ∈ P
𝛼

t�̄�p 𝜙p(xp) p ∉ P
𝛼

t𝛼p 𝜙p(𝛼) p ∈ P
𝛼

epa 𝜓pq(xp, 𝛼)

eaq 𝜓pq(𝛼, xq) p, q ∈ , xp ≠ xq

t�̄�a 𝜓pq(xp, xq)

eqc 𝜓pq(xq, 𝛼)

ecr 𝜓pq(𝛼, xr) p, q ∈ , xp ≠ xq

t�̄�c ∞

et al. 2007, 2008, 2009). In addition, the multi-label functions are converted to the pseudo-Boolean
functions (Ishikawa 2003; Roy and Cox 1998; Schlesinger and Flach 2006; Veksler 2012).

The two general paradigms, BP and GC, are advancing toward better performance, complexity, and
general problem-solving. Currently, BP is advancing towards faster computation and GC is moving
towards a more general paradigm. Refer to (Tappen and Freeman 2003) for a comparison of the two
methods, and (Middlebury 2013) for a listing in rated ranking of stereo matching and optical flow
algorithms, which facilitates measurement of the status of BP and GC, as well as other algorithms.

Problems
10.1 [RE, DP, BP, and GC] For the E(x) =

∑
p∈ 𝜙pxp +

∑
p,q∈ 𝜓pqxp(1 − xq), derive the formulation

for relaxation. Here, assume that x ∈ [0, 1].

10.2 [RE, DP, BP, and GC] For the E(x) =
∑

p∈ 𝜙pxp +
∑

p,q∈ 𝜓pqxp(1 − xq), derive the formulation
for DP. Assume that x ∈ {0, 1}.

10.3 [RE, DP, BP, and GC] For the E(x) =
∑

p∈ 𝜙pxp +
∑

p,q∈ 𝜓pqxp(1 − xq), derive the formulation
for sum-sum BP. Assume that x ∈ {0, 1}. Use the simple weight, 𝜓pq = 0, between the same
states and 𝜓pq = 𝜓 between different states.

10.4 [RE, DP, BP, and GC] For the E(x) =
∑

p∈ 𝜙pxp +
∑

p,q∈ 𝜓pqxp(1 − xq), derive the flow graph
for GC. Assume that x ∈ {0, 1}. Use the simple weight, 𝜓pq = 0, between the same states and
𝜓pq = 𝜓 between different states.

10.5 [Flow graph] For the energy function, E(x, y) = 2x + 5x̄ + 9y + 4ȳ + 2xȳ + x̄y, find the reparam-
eterizations (Kumar and Kohli 2008).

10.6 [Swap move] Explain why Equation (10.44) is an approximation.

10.7 [Swap move] Show that the truncated absolute distance is metric.

10.8 [Swap move] Show that the truncated quadratic is semimetric.

10.9 [Swap move] Prove that the truncated Potts model is metric.

10.10 [Swap move] Consider a rooted tree, T , whose edge lengths are non-negative and satisfy the
following properties: (1) the edge lengths from any node to all of its children are the same; and

300 Architectures for Computer Vision

(2) the edge lengths along any path from the root to a leaf decrease by a factor of at least one.
Given such a tree, an r-HST (Bartal 1998; Kumar and Koller 2009), d(x, y) (x, y ∈ T), is the sum
of the edge lengths on the unique path between them. Show that it is a metric.

10.11 [RE, DP, BP, and GC] Compare the four algorithms, RE, DP, BP, and GC, for the same energy
minimization, with the running time and space complexity.

References
Aho A, Hopcroft J, and Ullman J 1974 The Design and Analysis of Computer Algorithms. Addison-Wesley.
Bartal Y 1998 On approximating arbitrary metrics by tree metrics Proceedings of the thirtieth annual ACM symposium

on Theory of computing, pp. 161–168 ACM.
Bernier O and Cheung-Mon-Chan P 2006 Real-time 3D articulated pose tracking using particle filtering and belief

propagation on factor graphs. BMVC, pp. 27–36 Citeseer.
Bernier O, Cheung-Mon-Chan P, and Bouguet A 2009 Fast nonparametric belief propagation for real-time stereo

articulated body tracking. Computer Vision and Image Understanding 113(1), 29–47.
Boykov Y and Kolmogorov V 2004 An experimental comparison of min-cut/max-flow algorithms for energy mini-

mization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137.
Boykov Y, Veksler O, and Zabih R 1998 Markov random fields with efficient approximations International Conference

on Computer Vision and Pattern Recognition (CVPR).
Boykov Y, Veksler O, and Zabih R 2001 Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern

Anal. Mach. Intell. 23(11), 1222–1239.
Cormen T, Rivest CLR, and Stein C 2001 Introduction to Algorithms second edn. The MIT Press.
Dahlhaus E, Johnson DS, Papadimitriou CH, Seymour PD, and Yannakakis M 1992 The complexity of multiway cuts

Proceedings of the twenty-fourth annual ACM symposium on Theory of computing, pp. 241–251 ACM.
Felzenszwalb P and Huttenlocher D 2004 Efficient belief propagation for early vision Proceedings of the 2004 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, pp. I261–I268 number 1.
Felzenszwalb PF and Zabih R 2011 Dynamic programming and graph algorithms in computer vision. IEEE Trans.

Pattern Anal. Mach. Intell. 33(4), 721–740.
Grauer-Gray S, Kambhamettu C, and Palaniappan K 2008 GPU implementation of belief propagation using CUDA

for cloud tracking and reconstruction Pattern Recognition in Remote Sensing (PRRS 2008), 2008 IAPR Workshop
on, pp. 1–4 IEEE.

Greig D, Porteous B, and Seheult A 1989 Exact maximum a posteriori estimation for binary images. Journal of the
Royal Statistical Society Series B 51, 271–279.

Guo H and Hsu W 2002 A survey of algorithms for real-time Bayesian network inference AAAI/KDD/UAI02 Joint
Workshop on Real-Time Decision Support and Diagnosis Systems Edmonton, Canada.

Ihler AT, Fisher III J, and Willsky AS 2005 Loopy belief propagation: Convergence and effects of message errors
Journal of Machine Learning Research, pp. 905–936.

Ishikawa H 2003 Exact optimization for Markov random fields with convex priors. IEEE Trans. Pattern Anal. Mach.
Intell. 25(10), 1333–1336.

Ishikawa H and Geiger D 1998 Segmentation by grouping junctions Computer Vision and Pattern Recognition, 1998.
Proceedings. 1998 IEEE Computer Society Conference on, pp. 125–131 IEEE.

Jeong H and Park S 2004 Generalized trellis stereo matching with systolic array Lecture Notes in Computer Science,
vol. 3358, pp. 263–267.

Jordan MI 2004 Graphical models. Statistical Science (Special Issue on Bayesian Statistics) 19(1), 140–155.
Knuth D 1997 The Art of Computer Programming. Addison-Wesley.
Kohli P, Kumar MP, and Torr PH 2007 P3 & beyond: Solving energies with higher order cliques Computer Vision

and Pattern Recognition, 2007. CVPR’07. IEEE Conference on, pp. 1–8 IEEE.
Kohli P, Kumar MP, and Torr PH 2009 P3 & beyond: Move making algorithms for solving higher order functions.

IEEE Trans. Pattern Anal. Mach. Intell. 31(9), 1645–1656.
Kohli P, Ladicky L, and Torr P 2008 Graph cuts for minimizing robust higher order potentials Proc. Int’l Conf.

Computer Vision and Pattern Recognition.
Kumar MP and Kohli P 2008 MAP estimation algorithms in computer vision – part ii (eccv8 tutorial) http://

www.robots.ox.ac.uk/∼pawan/eccv08.../Tutorial_Part2.ppt (accessed Dec. 3, 2013).

http://www.robots.ox.ac.uk/~pawan/eccv08.../Tutorial_Part2.ppt
http://www.robots.ox.ac.uk/~pawan/eccv08.../Tutorial_Part2.ppt

Belief Propagation and Graph Cuts for Energy Minimization 301

Kumar MP and Koller D 2009 Map estimation of semi-metric mrfs via hierarchical graph cuts Proceedings of the
Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp. 313–320 AUAI Press.

Middlebury U 2013 Middlebury computer vision pages http://vision.middlebury.edu/ (accessed May 3, 2013).
Park S and Jeong H 2008 Memory efficient iterative process on a two-dimensional first-order regular graph. Optics

Letters 33, 74–76.
Pearl J 1982 Reverend Bayes on inference engines: A distributed hierarchical approach In AAAI (ed. Waltz D), pp.

133–136. AAAI Press.
Rother C, Kohli P, Feng W, and Jia J 2009 Minimizing sparse higher order energy functions of discrete variables

Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pp. 1382–1389 IEEE.
Rother C, Kolmogorov V, Lempitsky V, and Szummer M 2007 Optimizing binary MRFs via extended roof duality

Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on, pp. 1–8 IEEE.
Roy S and Cox IJ 1998 A maximum-flow formulation of the n-camera stereo correspondence problem Computer

Vision, 1998. Sixth International Conference on, pp. 492–499 IEEE.
Schlesinger D and Flach B 2006 Transforming an Arbitrary Minsum Problem into a Binary One. TU, Fak. Informatik.
Sudderth EB, Ihler AT, Isard M, Freeman WT, and Willsky AS 2010 Nonparametric belief propagation. Communi-

cations of the ACM 53(10), 95–103.
Sun J, Zheng NN, and Shum HY 2003 Stereo matching using belief propagation. IEEE Trans. Pattern Anal. Mach.

Intell. 25(7), 787–800.
Tappen M and Freeman W 2003 Comparison of graph cuts with belief propagation for stereo, using identical MRF

parameters Proceedings of Ninth IEEE International Computer Vision Conference, pp. 900–906.
Veksler O 2012 Multi-label moves for MRFs with truncated convex priors. International Journal of Computer Vision

98(1), 1–14.
Weiss Y 2014 Belief Propagation (Synthesis Lectures on Computer Vision). Morgan & Claypool Publishers.
Wikipedia 2013 Graph cuts in computer vision http://en.wikipedia.org/wiki/Graph_cuts_in_computer_vision

(accessed on Dec. 3, 2013).
Yang Q, Wang L, Yang R, Wang S, Liao M, and Nister D 2006 Real-time global stereo matching using hierarchical

belief propagation. BMVC, vol. 6, pp. 989–998.
Yedidia J, Freeman W, and Weiss Y 2003 Exploring Artificial Intelligence in the New Millennium Morgan Kaufmann

Publishers Inc. chapter Understanding Belief Propagation and Its Generalizations, pp. 239–269.
Yedidia JS, Freeman WT, and Weiss Y 2005 Constructing free-energy approximations and generalized Belief Propa-

gation algorithms. IEEE Trans. Information Theory 51(7), 2282–2312.

http://vision.middlebury.edu/
http://vision.middlebury.edu/
http://en.wikipedia.org/wiki/Graph_cuts_in_computer_vision
http://en.wikipedia.org/wiki/Graph_cuts_in_computer_vision

Part Four
Verilog Design

11
Relaxation for Stereo Matching

One of the classical approaches to the energy equation is the calculus of variations (Aubert and Kornprobst
2006; Courant and Hilbert 1953; Scherzer et al. 2008), especially functional minimization. In this
paradigm, the solution is the function that minimizes the given energy function and, usually, the solution
is in the form of an integro-differential equation. The resulting architecture, relaxation, belongs to the
four major architectures: relaxation, DP, BP, and GC, which are used in general energy problems. Starting
from an initial set of values, the concept underlying the relaxation architecture is the reuse of previous
values to update new values recursively, so that the operation is a contraction mapping. The relaxation
architecture is the poorest of the four but is often the starting point in designing a vision circuit because
it is fast, simple, and general. It is particularly pertinent here because we are considering a machine for
stereo matching that can be used in other vision problems after some modifications.

This chapter is a continuation of Chapter 8. In it, we learned how to interpret the energy equation
in terms of the calculus of variation, how to derive the Euler–Lagrange equation, and how to derive
relaxation equations from it. We will design the derived relaxation equation with the Verilog HDL (IEEE
2005), using the simulator FVSIM, introduced in Chapter 4: the relaxation equation is inherently frame-
based computation. We will also design various components in the RE machine using efficient Verilog
circuits.

11.1 Euler–Lagrange Equation
In this section, we will learn how to design the RE machine for stereo matching, step-by-step, from
algorithm to architecture. The design method consists of three steps: energy function, relaxation equation,
and the RE machine. First, we have to provide an energy function to model the functional disparity. We
then have to derive a relaxation equation that gives a solution, after a certain number of iterations, from
the energy function. In the final stage, we use the RE machine to realize the relaxation equation.

Numerous definitions for the stereo matching energy function exists, from a simple definition, consist-
ing of data and smoothness terms only, to a complicated definition, consisting of highly nonlinear terms.
We here begin with a basic form that consists of data and smoothness terms and which is differentiable.
For a pair of stereo images, {(Il(p), Ir(p))|p ∈ } and the disparity, d = {d(p)|p ∈ }, we define the
energy function:

E(d) =
∑

(x,y)∈
(Ir(x, y) − Il(x + d(x, y), y))2 + 𝜆|∇d(x, y)|2, (11.1)

Architectures for Computer Vision: From Algorithm to Chip with Verilog, First Edition. Hong Jeong.
© 2014 John Wiley & Sons Singapore Pte. Ltd. Published 2014 by John Wiley & Sons Singapore Pte. Ltd.
Companion Website: www.wiley.com/go/jeong

http://www.wiley.com/go/jeong

306 Architectures for Computer Vision

where 𝜆 is a Lagrange multiplier. For the disparity function, the coordinates of the right image are
adopted as reference. This equation holds for the epipolar constraint. A more advanced system may
contain additional terms, which represent occlusion, geometry, and the local neighborhood relationship
between two images, and further relax the epipolar constraint, modeling the problem as a general setting.

This energy function has the form

E(d) =
∑

F(d, dx, dy), (11.2)

where F(⋅) is a functional and d is the function we seek. The energy function can be differentiated to
form the Euler–Lagrange equation (Courant and Hilbert 1953; Horn 1986; Wikipedia 2013a):

Fd − 𝜕xFdx
− 𝜕yFdy

= 0. (11.3)

From Equation (11.1), the functional has the form

F(d, dx, dy) = (Ir(x, y) − Il(x + d(x, y), y))2 + 𝜆
(
f 2
x + f 2

y

)
. (11.4)

Substituting this into Equation (11.3) yields

𝜆∇2d = (Il(x + d(x, y), y) − Ir(x, y))Il
d(x + d(x, y), y). (11.5)

Here, the smoothness term in the energy becomes the second derivative, which is in Laplacian form. As
mentioned earlier, the Laplacian operator is related to diffusion, which has been intensively studied in
computer vision as nonlinear scalar diffusion by Perona (Perona and Malik 1990) and nonlinear tensor
diffusion by Weickert (Weickert 2008).

The same derivation can be applied to the optical flow, a generalization of the stereo matching that
has the basic form of the energy function:

E(u, v) =
∑

(x,y)∈
(I(x, y) − I(x + u, y + v))2 + 𝜆(|∇u|2 + |∇v|2). (11.6)

The corresponding Euler–Lagrange equation is

𝜆(∇2u + ∇2v) = −(I(x, y, t) − I(x + u, y + v, t + 1))(Iu(x + u, y + v, t + 1)
+ Iv(x + u, y + v, t + 1)).

(11.7)

Clearly, this equation must be decoupled so that the two variables can be obtained together. The conse-
quent approximated equations are

⎧⎪⎨⎪⎩
𝜆∇2u = −(I(x, y, t) − I(x + u, y + v, t + 1))(Iu(x + u, y + v, t + 1)

+ Iv(x + u, y + v, t + 1)),
𝜆∇2v = −(I(x, y, t) − I(x + u, y + v, t + 1))(Iu(x + u, y + v, t + 1)

+ Iv(x + u, y + v, t + 1)).

(11.8)

Relaxation for Stereo Matching 307

11.2 Discretization and Iteration
The next step is to convert the differential equation into a difference equation. For the first-order
difference, 𝜕f , there are three methods: forward, backward, and center difference (Fehrenbachy and
Mirebeauz 2013; Weickert 2008):

⎧⎪⎨⎪⎩
𝜕

f
x f (x, y) = f (x + 1, y) − f (x, y), 𝜕

b
x f (x, y) = f (x, y) − f (x − 1, y),

𝜕
f
y f (x, y) = f (x, y + 1) − f (x, y), 𝜕

b
y f (x, y) = f (x, y) − f (x, y − 1),

𝜕
c
x f (x, y) = 1

2
(f (x + 1, y) − f (x − 1, y)), 𝜕

c
y f (x, y) = 1

2
(f (x, y + 1) − f (x, y − 1)).

(11.9)

The templates for the difference operators are all 3 × 3 pixels. However, for the second derivative, the
template size increases if the same types of differentials are used. We can instead alternate the derivatives
with forward and backward and obtain a template size of the same size, that is 3 × 3 pixels (see the
problems at the end of this chapter).

For the Laplacian, ∇2f (p) ≈
∑

q∈N(p) f (q) − |N|f (p), where |N| denotes the neighborhood size. In
addition, Ir

d(x + d, y) must be discretized around (x + d, y).
Once the equation is discretized, it must be transformed into iterative form. The iterative form can be

obtained by partitioning the equation into two parts. For ax = b, we partition the coefficient a in such a
way that x = 𝛼x + 𝛽b, where 𝛼 is a contraction mapping. This results in the successive-over-relaxation
(SOR) equation x(n+1) = 𝛼x(n) + 𝛽b. For further reading, refer to (Wikipedia 2013d; Young 1950).

Applying this method, we get the disparity equation,

d(x, y)(n+1) = 𝛼d(n) + 𝛽d̄(n)(x, y) + 𝛾(Ir(x, y) − Il(x + d(n)(x, y), y))

× Il
d(x + d(n)(x, y), y), (11.10)

where 0 < 𝛼, 𝛽, 𝛾 < 1 (see the problems at the end of this chapter). The first term acts as a forcing term,
which further represents the data term. The second term tends to make the disparity smooth. The third
term determines the direction of the new solution. The mapping from RHS to LHS must be a contraction
mapping, so that the solution converges to a fixed point, either local or global.

In hardware design, overflow and underflow must also be considered. To ensure that these conditions
are met, each term must be within the number range. In addition, the intermediate result of the two terms
must not deviate from the number range. This requirement needs some kind of saturation logic, in which
the output is guaranteed within the number range. Incidentally, all the values in the disparity map must
be well-defined, avoiding ‘x’ and ‘z.’ Otherwise, any part generating ‘don’t care’ will propagate to all
other parts of the map, spoiling the disparity map. For this reason, a strong guard must be provided for
the computation and the boundary conditions.

For the optical flow, the discrete equation is

𝜆(∇2u + ∇2v) = (I(x + u, y + v, t + 1) − I(x, y, t))(Iu(x + u, y + v, t + 1)

+ Iv(x + u, y + v, t + 1)), (11.11)

and, after decoupling u and v, the relaxation equation becomes

⎧⎪⎨⎪⎩
u(n+1)(x, y) = 𝛼u(n) + 𝛽ū(n)(x, y) + 𝛾{(I(x, y, t) − I(x + u, y + v, t + 1))

× (Iu(x + u, y + v, t + 1) + Iv(x + u, y + v, t + 1))},
v(n+1)(x, y) = 𝛼v(n) + 𝛽v̄(n)(x, y) + 𝛾{(I(x, y, t) − I(x + u, y + v, t + 1))

× (Iu(x + u, y + v, t + 1) + Iv(x + u, y + v, t + 1))}.

(11.12)

308 Architectures for Computer Vision

Direct differentiation is rarely used because of the noise. The image must be filtered with a smoothing
filter such as Gaussian, G(x, y; 𝜎2), with zero mean and 𝜎

2 variance before differentiation. Otherwise,
the filtering coefficients can be implemented in the relaxation:

J(x, y) = G(x, y; 𝜎2) ∗ I(x, y). (11.13)

The first-order differentiation then becomes

Jx(x, y) = Gx ∗ I + G ∗ Ix, Jy(x, y) = Gy ∗ I + G ∗ Iy. (11.14)

In Equations (11.10) and (11.12), I and its derivatives must be replaced with J and its derivatives. This
results in a larger template weighted by the Gaussian coefficients. The design does not use any filtering,
remaining faithful to the original relaxation.

11.3 Relaxation Algorithm for Stereo Matching
Let us now summarize the algorithm for Equation (11.10). We need two input images, and one memory
plane to store the disparity. The computation proceeds in raster scan. As regards the neighborhoods,
the most recently updated values are used, that is the Gauss–Seidel method. The disparity values are
overwritten on the memory as soon as they are updated. For brevity, the algorithm is built only for the
right reference mode.

Algorithm 11.1 (Relaxation algorithm for stereo matching) Given the image pair, (Il, Ir), determine
the disparity map, D, with Literations.

Input: {Il(x, y), Ir(x, y)|(x, y) ∈ }.
Memory: D = {d(x, y)|(x, y) ∈ , }.

1. Initialization: Initialize the disparity map, D.
2. for l = 0, 1,… , L − 1,
3. for y = 0, 1,… , M − 1,
4. for x = 0, 1,… , N − 1,

d(x, y) ← 𝛼d(x, y) + 𝛽d̄(x, y)

+ 𝛾(Ir(x, y) − Il(x + d(x, y), y))Il
d(x + d(x, y), y).

Output: D.

The disparity map can be initialized in many different ways. Because the final solution depends on the
initial point, preparing a good initial value is crucial. The iteration is repeated after a fixed period of time
instead of in accordance with a convergence test. Appropriate constants must also be provided so that
the mapping converges eventually. In actual computation, all the computations must be kept within a
specific number range. In addition, no disparity value is allowed to be uncertain with ‘x’ and ‘z’ during
the computation.

This algorithm is based on the Gauss–Seidel method. For the Jacobi method, we can use two planes
of the disparity maps and alternate the input and the output between them. For fast convergence, other

Relaxation for Stereo Matching 309

img2(Ir) img1(Il)

RE Machine

res(D)

Ir(x + d) (Il (x + d),Il
d (x + d))

d d

Figure 11.1 The flow of computation in the RE machine. Right reference mode. The shaded square is
the current position. The RE machine is terminated by a pipelining register

techniques such as multigrid or adaptive adaptive multigrid (Ilyevsky 2010; Wikipedia 2013b) may be
utilized.

11.4 Relaxation Machine
Now we will design the RE machine that conceptually executes Algorithm 11.1. Between the two
simulators, LSIM and FSIM, we adopt FSIM because frame processing is required (Figure 11.1).

For legibility reasons, only the circuit for the right reference system is shown. For the left reference
system, the role of the images must be switched. The top three elements are the memories (Ir , Il) for the
images, and D for the disparity map. They are the inputs and state memories of the RE machine. The
other constructs are the sequential and combinational circuits, where the actual operations are executed.
At a certain time, the memories are all fixed and the values in the combination circuits are actively
being decided. Blocking the output port of the RE machine and connecting the combinational paths
between the state memory and the blocking registers result in the system becoming a finite state machine
(specifically, a Mealy machine), as a whole.

Within a given period, all the computation is done for Ir(x, y) in the right image plane (in right reference
mode). The conjugate point Il(x + d(x, y)) is determined by reading the disparity at this pixel from the
disparity map, D. The conjugate pairs and the neighborhoods around d(x, y) are used to determine the new
disparity d(x, y), which is overwritten to the disparity map, D. In the next period, the same computation is
executed for the next pixel. This computation is repeated for the frame until the disparity values converge.
(Actually, in a simple design, the number of iterations is predetermined.)

11.5 Overall System
Keeping Figure 11.1 in mind, let us begin to design the Verilog HDL code. The header contains the
parameters that characterize the images and the RE algorithm.

310 Architectures for Computer Vision

Listing 11.1 The header: head.v (1/9)

//file name

‘define file_name ”bear11394” //BMP file name

//image parameters

‘define WIDTH 113 //image width

‘define HEIGHT 94 //image height

//memory parameters

‘define DATA_BITS 8 //word size

‘define ADDR_BITS 15 //max image size

//reference modes

‘define LEFT //left and right mode

//RE parameters (log LAB_DIM < LAB_BITS)
‘define LAB_BITS 8 //disparity bits

‘define LAB_DIM 32 //disparity number

‘define ITER 10 //iteration number

The filename is used for the IO part of the simulator to open and read the image files in the RAM,
imitating the camera output. The image size, defined by the height and the width, M × N, is used in the
specifying of the required resources throughout the circuit. The memory parameters specify the word
length and the address range for the contents in the RAM. The image data is ordinarily stored in bytes
– three bytes for RGB channels. These parameters are also used to define the arrays, img1, img2, and
res, storing two images and a disparity map.

The next parameter is the key, LEFT, indicating the left or right reference mode. The window and
the scan directions differ according to this parameter. The computation order is simply the raster scan
direction in the right mode and the opposite of the raster scan direction in the left mode.

The RE parameters specify the word length of the disparity and also its maximum number. For a
number of bits, B, the maximum disparity level, D, must be D ≤ 2B. Finally, the number of iterations is
specified by ITER.

The template for the main part of the code is as follows.

Listing 11.2 The framework: processor.v (2/9)

‘timescale 1ns / 1ps

‘include ”head.v”

module processor(//RE processor

input clock, reset,

output reg [‘ADDR_BITS - 1:0] i_raddr, r_raddr, r_waddr,//address bus

Relaxation for Stereo Matching 311

input [‘DATA_BITS - 1:0] i_rdata1, i_rdata2, r_rdata, //data bus

output reg [‘DATA_BITS - 1:0] r_wdata, //data bus

output reg r_wen //write enable

);

//working arrays: image 1, image 2, and disparity map

reg [‘DATA_BITS - 1:0] img1 [0: ‘HEIGHT - 1][0: 3*‘WIDTH - 1];//1st

reg [‘DATA_BITS - 1:0] img2 [0: ‘HEIGHT - 1][0: 3*‘WIDTH - 1];//2nd

reg [‘DATA_BITS - 1:0] res [0: ‘HEIGHT - 1][0: 3*‘WIDTH - 1];//map

//variables

reg [‘ADDR_BITS - 1:0] idx, idx1,idx2; //variables

reg [9:0] row, col, x, y, xx, yy, wx, wy; //variables

reg [7:0] iter;

reg do_load, do_display, do_read, do_write; //for control

reg [2:0] state, lstate;

//reading (IMAGE -> img)

always @ (posedge clock) begin: READING //reading block

end

//writing (res -> RESULT)

always @(posedge clock) begin: WRITING //writing block

end

//main

always @ (posedge clock) begin

if (reset) begin

state <= 0;

x <= 0;

y <= 0;

end

else begin

case (state)

0: begin: INITIALIZATION //initialization

end

1: begin: UPDATION //relaxation

if (iter < ‘ITER) begin //iteration

case (lstate)

0: begin: DISPARITY //updation

1: begin: STORE //store the disparity map

end

default: lstate <= 0;

endcase

end

312 Architectures for Computer Vision

else begin

iter <= 0;

state <= 0;

end

end

default: state <= 0;

endcase

end

end //always

//neighbor disparity values

//image and differential

//the data term

//functions

endmodule

The code has three parts: sequential circuits, combinational circuits, and functions. The sequential part
consists of three concurrent parts: reading, writing, and updation. The reading and writing blocks are the
IP interfaces to the external RAMs, RAM1, RAM2, and RES, and the internal buffers, img1, img2, and
res. The updation block writes the updated disparity to the disparity map. In this code, the disparity map
is encoded as an unpacked array, res. However, the data vectors, data, are all coded in packed format
for computational simplicity. While the sequential part works for each clock tick, the combinational part
works between the clock period, reading the data from the registers and stabilizing the result, so that in
the next clock tick the result can be stored in the registers. The combinational circuits have three parts:
a circuit that builds the conjugate pairs, one that builds the data term, and another that determines the
final disparity. The combinational circuits are aided by various functions, which all operate in the same
simulation time.

The complexity of the code is as a result of the boundary conditions and the two modes. The related
variables are the neighbor disparities, d0, d1, d2, d3, and the image values, Ir, Il, dI. The
boundaries used in this code are mirror images. Other definitions are also possible (see the problems at
the end of this chapter).

The components filling this template are explained in the ensuing sections.

11.6 IO Circuit
Two of the sequential circuits are for reading and writing. The image data are located in the external
RAMs, outside of the main processor, and must be accessed periodically. The circuit can be designed as
follows:

Relaxation for Stereo Matching 313

Listing 11.3 The IO circuit (3/9)

//reading (IMAGE -> img)

always @ (posedge clock) begin: READING //reading block

if (reset) begin //initialize

row <= 0;

col <= 0;

do_load <= 1;

end

else begin //read RAM into buffers

do_load <= 0;

if (row < ‘HEIGHT) begin //for a row

if (col < 3 * ‘WIDTH + 2) begin //for a column

i_raddr <= 3 * ‘WIDTH * row + col; //pixel address

img1[row][idx1] <= i_rdata1; //load 1st image

img2[row][idx1] <= i_rdata2; //load 2nd image

//res [row][idx1] <= i_rdata1;

idx1 <= idx; //delay 2

idx <= col; //delay 1

col <= col + 1; //next column

end else begin

col <= 0;

row <= row + 1; //next row

end

end else begin

row <= 0;

do_load <= 1;

end //else

end

end

//writing (res -> RESULT)

always @(posedge clock) begin: WRITING //writing block

if (reset) begin

xxx <= 0;

yyy <= 0;

do_display <= 0;

end

else begin

if (yyy < ‘HEIGHT) begin

do_display <= 0;

if (xxx < 3 * ‘WIDTH) begin

r_wdata <= res[yyy][xxx]; //data

314 Architectures for Computer Vision

r_waddr <= 3*‘WIDTH * yyy + xxx; //address

r_wen <= 1; //write enable

xxx <= xxx + 1; //next

end

else begin

xxx <= 0;

yyy <= yyy + 1;

end

end

else begin

yyy <= 0;

do_display <= 1;

end

end

end

The purpose of the reading part is to read RAM1, RAM2, and RES into the internal buffers, img1, img2,
and res. The processor reads the images (Il, Ir) and the disparity D from the buffers, processes them
to determine the updated disparity, and writes the result into res. To match the address with the data,
some small delays must be introduced into the address bus because a mismatch exists between the
incoming data and the current address: the current data corresponds to the address two clocks ahead.
These problems can be solved by the delay buffers idx and idx1 and the two clock delays in the
address loop.

Another concurrent always block is the writing block. The purpose of this block is to write the disparity
map stored in the buffer, res, into the external RAM, RESULT, in RGB format so that the simulator
can display the disparity map in BMP format. The flags do_load and do_display are used to control
the simulator and thus are not part of the synthesis. Note that the counters representing pixel positions,
(row, col), (x, y), (xx, yy), and (xxx, yyy) are all differently redefined in different always blocks, to avoid
driving a net variable with multiple drivers.

For simplicity, the IO circuit can be bypassed for simulation purposes by the unsynthesizable codes
in io.v (see the problems in Chapter 4).

The remaining circuit can be considered a system that receives img1, img2, and res as inputs and
returns an updated res as output.

11.7 Updation Circuit
The computation is based on window processing. There must be a circuit that relocates the window
around the image plane. The constraint is that as a consequence of window movement, the entire image
plane must be completely scanned, without producing empty spaces. In actuality, the space to be scanned
is (x, y, l), where (x, y) ∈ and l ∈ [0, L − 1] for some maximum iteration L. There is an algorithm called
FBP (Jeong and Park 2004; Park and Jeong 2008) that can scan in the iteration index. For hierarchical
BP (Yang et al. 2006), sampling in this space must be made in the pyramid form. The order of visits may
be deterministic or random. In this chapter, we follow the usual approach: scanning the image plane in
raster scan manner.

Relaxation for Stereo Matching 315

Listing 11.4 The updation circuit (4/9)

always @ (posedge clock) begin

if (reset) begin

state <= 0;

x <= 0;

y <= 0;

end

else begin

case (state)

0: begin: INITIALIZATION //initialize the disparity

if (y < ‘HEIGHT) begin: LAB_INT

if (x < ‘WIDTH) begin

x <= x + 1; //for the next column

‘ifdef LEFT //from right to left

res[y][3*(‘WIDTH-1-x)] <= argmin(data);

‘else //from left to right

res[y][3*x] <= argmin(data);

‘endif

end

else begin

x <= 0;

y <= y + 1; //for the next row

end

end

else begin

state <= 1; //the next state

lstate <= 0; //the next local state

y <= 0; //reset the counter

iter <= 0; //the iteration counter

end

end

1: begin: UPDATION //relaxation

if (iter < ‘ITER) begin //iteration

case (lstate)

0: begin: DISPARITY //updation

if (y < ‘HEIGHT) begin //for each row

if (x < ‘WIDTH) begin //for each column

x <= x + 1; //next column

‘ifdef LEFT //from right to left

res[y][3*(‘WIDTH-1-x)] <= sat(argmin(data)

+ (av4(d0,d1,d2,d3)>>1) + sgn((Ir - Il)* dI));

‘else //from left to right

res[y][3*x] <= sat(argmin(data)

+ (av4(d0,d1,d2,d3)>>1) + sgn((Ir - Il) * dI));

316 Architectures for Computer Vision

‘endif

end

else begin

x <= 0; //reset the column

y <= y + 1; //next row

end

end

else begin

lstate <= 1; //next local state

y <= 0; //reset the row

xx <= 0; //next state counter

yy <= 0; //next state counter

end

end

1: begin: STORE //store disparity map

if (yy < ‘HEIGHT) begin //for each row

if (xx < ‘WIDTH) begin //for each column

xx <= xx + 1; //next column

res[yy][3*xx+1] <= res[yy][3*xx]; //2nd channel

res[yy][3*xx+2] <= res[yy][3*xx]; //3rd channel

end

else begin

xx <= 0; //reset the column

yy <= yy + 1; //next row

end

end

else begin

lstate <= 0; //reset the local state

yy <= 0; //reset the row

iter <= iter + 1; //next iteration

end

end

default: lstate <= 0;

endcase

end

else begin

iter <= 0; //reset the iteration

state <= 0; //reset the state

end

end

default: state <= 0;

endcase

end

end //always

Relaxation for Stereo Matching 317

In iteration notation, the circuit spans the M × N × L × m × n space in (l, y, x) manner, where x is
changed most rapidly and l is changed most slowly. Other iteration methods are also possible. For the
right mode, the circuit scans from left to right, while for the left mode, it scans from right to left. The
absolute positions of the pixels are (Ir(y, x), Il(y, x + d(x, y))) for the right mode and (Il(y, WIDTH − 1 − x),
Ir(y, WIDTH − 1 − (x + d(x, y)))) for the left mode.

In the updation block, the new disparity is determined by the combination of three terms: data,
neighborhood, and differential. The data term functions as a forcing term, preventing the solution from
deviating too much from this value. To balance the dynamic range, the neighborhood average is reduced
by half. Next in line is the differential, which guides the solution in the direction it must move. This
differential is determined by the difference of the conjugate pairs and the slope of the matching image.
The dynamic range of the disparity is very small, and so a large differential may result in an overflow
or an underflow. To prevent such cases, we may take only the unit direction of the differential vector.
Addition of the three terms again must be protected by the saturation function, which limits the number
within the maximum disparity.

11.8 Circuit for the Data Term
From here onwards, all the computations are realized with combinational circuits, unless otherwise
stated. The data vector, d(n), in Equation (11.9), is the major source of the belief message, driven by the
input images, and thus must be provided accurately.

The circuit that provides this vector is depicted in Figure 11.2. As shown in the figure, the sources
of the data vector are the two image frames. The location of the current pixel is indicated by a position
in a frame. A specific field, d, of the data vector is constructed by the data read from the two images.
Therefore, a data vector can be constructed concurrently for all the pixels of the two images on the
same epipolar line. All the elements of the vector are determined by the combinational circuits, as
follows.

img2 (I r)

(x, y)

(x, y)

(x, y)

img1 (I l)

D − 1 d 1 0

MSB LSB

dB

I r
I l

(x + d, y)

(x + d, y)

Figure 11.2 Building the data vector, d(x, y). The vector is generated by the combinational circuits for
all elements in parallel (right reference mode)

318 Architectures for Computer Vision

The data vector is encoded in a packed array of BD bits, because it must be often accessed as one
complete set of data. In the right reference system, the data term is

d(x, y) = {dD−1,… , d1, d0}, (11.15)

where dD−1 is the MSB and d0 is the LSB. Each element is a B bit number with

dd = min

{ ∑
k∈{R,G,B}

||Ir
k(x, y) − Il

k(x + d, y)|| , 2B − 1

}
,

∀d ∈ [0, D − 1]. (11.16)

Here, the data value is limited within B bit word length, preventing overflow.
For the left reference system, the data is defined as

dd = min

{ ∑
k∈{R,G,B}

||Il
k(N − 1 − x, y) − Ir

k(N − 1 − (x + d), y)|| , 2B − 1

}
,

∀d ∈ [0, D − 1]. (11.17)

Advanced algorithms may use different schemes to compute the data term, for example with better
distance measure and perhaps an occlusion indicator. This code is the basic template and contains only
the most basic features.

Keeping in mind the concept, we can code the algorithm as follows. Because there are numerous
identical circuits, the Verilog generate construct is used. The code also contains the Verilog compiler
directive to switch the design between the two reference modes.

Listing 11.5 The data term: processor.v (5/9)

//the data term

wire [‘LAB_BITS * ‘LAB_DIM - 1:0] data;

genvar vary;

for (vary = 0; vary < ‘LAB_DIM; vary = vary + 1) begin: DATA_TERM

‘ifdef LEFT //left mode

assign data[‘LAB_BITS * vary +: ‘LAB_BITS] = (x+vary < ‘WIDTH)?

tadd(tadd(adistance(img1[y][3*(‘WIDTH-1-x)],

img2[y][3*(‘WIDTH-1-(x+vary))]),

adistance(img1[y][3*(‘WIDTH-1-x)+1],

img2[y][3*(‘WIDTH-1-(x+vary))+1])),

adistance(img1[y][3*(‘WIDTH-1-x)+2],

img2[y][3*(‘WIDTH-1-(x+vary))+2])):

tadd(tadd(adistance(img2[y][0],img1[y][3*vary]),

adistance(img2[y][1],img1[y][3*vary + 1])),

Relaxation for Stereo Matching 319

adistance(img2[y][2],img1[y][3*vary + 2]));

‘else //right mode

assign data[‘LAB_BITS * vary +: ‘LAB_BITS] = (x+vary < ‘WIDTH)?

tadd(tadd(adistance(img2[y][3*x], img1[y][3*(x+vary)]),

adistance(img2[y][3*x+1],img1[y][3*(x+vary)+1])),

adistance(img2[y][3*x+2],img1[y][3*(x+vary)+2])):

tadd(tadd(adistance(img2[y][3*x],

img1[y][3*(2*(‘WIDTH-1)-(x+vary))]),

adistance(img2[y][3*x+1],

img1[y][3*(2*(‘WIDTH-1)-(x+vary))+1])),

adistance(img2[y][3*x+2],

img1[y][3*(2*(‘WIDTH-1)-(x+vary))+2]));

‘endif

end

The circuits are compiled separately according to the two types of reference systems. Each reference
system consists of D continuous assignments, with each assignment determining a B bit field in the data
vector. The circuits are generated by the Verilog HDL generate construct. Consequently, this part of the
circuit consists of D combinational circuits.

Two functions are used in the expression: adistance and tadd. The adistance function is an
absolute function that returns the absolute distance between two arguments. The tadd function is an
addition function that accounts for saturation math. The upper bound of the truncation is defined by
2B − 1. The functions, together with other functions, will be discussed together in a later section. The
deciding minimum argument may be enhanced by introducing weights such as the truncated linear or
Potts model.

The code is somewhat lengthy because of the boundary conditions. The mirror image is used around
the boundary.

11.9 Circuit for the Differential
The next term related to the image inputs is the differential term. When the mirror image is adopted in
the boundary values, the code becomes as follows.

Listing 11.6 The data term: processor.v (6/9)

//image and differential

‘ifdef LEFT

assign Il = av3(img1[y][3*(‘WIDTH-1-x)],img1[y][3*(‘WIDTH-1-x)+1],

img1[y][3*(‘WIDTH-1-x)+2]);

assign Ir = (x + d < ‘WIDTH)? //Problem!

av3(img2[y][3*(‘WIDTH-1-(x+d))],

img2[y][3*(‘WIDTH-1-(x+d))+1],img2[y][3*(‘WIDTH-1-(x+d))+2]):

320 Architectures for Computer Vision

av3(img2[y][3*((‘WIDTH - 1) - (x - d))],

img2[y][3*((‘WIDTH - 1) - (x - d))+1],

img2[y][3*((‘WIDTH - 1) - (x - d))]+2);

assign dI = (x + d < ‘WIDTH - 1)?

Ir - av3(img2[y][3*(‘WIDTH-1-(x+d+1))],

img2[y][3*(‘WIDTH-1-(x+d+1))+1],

img2[y][3*(‘WIDTH-1-(x+d+1))+2]):

av3(img2[y][3*((‘WIDTH-1)-(x-d))],

img2[y][3*((‘WIDTH-1)-(x-d))+1],

img2[y][3*((‘WIDTH-1)-(x-d))+2])-

av3(img2[y][3*((‘WIDTH-1)-(x-d-1))],

img2[y][3*((‘WIDTH-1)-(x-d-1))+1],

img2[y][3*((‘WIDTH-1)-(x-d-1))+2]);

‘else

assign Ir = av3(img2[y][3*x],img2[y][3*x+1],img2[y][3*x+2]);

assign Il = (x + d < ‘WIDTH)?

av3(img1[y][3*(x+d)],img1[y][3*(x+d)+1],img1[y][3*(x+d)+2]):

av3(img1[y][3*(2*(‘WIDTH - 1) - (x + d))],

img1[y][3*(2*(‘WIDTH - 1) - (x + d))+1],

img1[y][3*(2*(‘WIDTH - 1) - (x + d))]+2);

assign dI = (x + d < ‘WIDTH - 1)?

av3(img1[y][3*(x+d+1)],img1[y][3*(x+d+1)+1],

img1[y][3*(x+d+1)+2])-Il:

av3(img1[y][3*(2*(‘WIDTH-1)-(x+d))],

img1[y][3*(2*(‘WIDTH-1)-(x+d))+1],

img2[y][3*(2*(‘WIDTH-1)-(x+d))+2])-

av3(img1[y][3*(2*(‘WIDTH-1)-(x+d+1))],

img1[y][3*(2*(‘WIDTH-1)-(x+d+1))+1],

img1[y][3*(2*(‘WIDTH-1)-(x+d+1))+2]);

‘endif

For the right mode, the corresponding pixel on the left image is offset by d, and thus may be located
outside of the image frame. The conditionals check this condition and add mirrored values for such
pixels. For the differential, the description is much more complicated because both terms are offset by
d and d + 1, which may deviate from the image boundary. A similar situation occurs for the left mode
system, but in opposite coordinates.

11.10 Circuit for the Neighborhood
The input disparity vector must be constructed in parallel with the data vector because they will be
combined immediately afterwards. The circuit consists of only five continuous assignments.

Relaxation for Stereo Matching 321

Listing 11.7 The neighborhood: processor.v (7/9)

//neighbor disparity values

wire signed [15:0] d,d0,d1,d2,d3,Ir,Il;

wire signed [15:0] dI;

‘ifdef LEFT

assign d = res[y][3*(‘WIDTH-1-x)];

assign d0 = (x > 0)? res[y][3*(‘WIDTH-1-(x-1))]:

res[y][3*((‘WIDTH-1)-(x+1))];

assign d1 = (y < ‘HEIGHT - 1)? res[y+1][3*(‘WIDTH-1-x)]:

res[2*(‘HEIGHT - 1)-(y+1)][3*(‘WIDTH-1-x)];

assign d2 = (x < ‘WIDTH - 1)? res[y][3*(‘WIDTH - 1 - (x+1))]:

res[y][3*(‘WIDTH - 1 - (x-1))];

assign d3 = (y > 0)? res[y-1][3*(‘WIDTH-1-x)]:

res[y+1][3*(‘WIDTH-1-x)];

‘else

assign d = res[y][3*x];

assign d0 = (x < ‘WIDTH - 1)? res[y][3*(x+1)]:

res[y][3*(2*(‘WIDTH-1)-(x+1))];

assign d1 = (y < ‘HEIGHT - 1)? res[y+1][3*x]:

res[2*(‘HEIGHT - 1)-(y+1)][3*x];

assign d2 = (x > 0)? res[y][3*(x-1)]: res[y][3*(x+1)];

assign d3 = (y > 0)? res[y-1][3*x]: res[y+1][3*x];

‘endif

The circuit must also account for the boundary conditions. (Mirror image is used here.)
Note that the code is separated with the Verilog compiler directive for the right and left reference modes.

The difference between the two modes is in their use of the counters to compute the coordinates. For the
right mode, the conjugate point is on the right, while for the left mode, the conjugate point is on the left.

11.11 Functions for Saturation Arithmetic
The combinational circuits are aided by many functions. They provide a compact method to write the
common codes in the function and task (although task is not used here). The restriction is that the codes
must be executed within the same simulation time and the variables are all local. Because of the variable
scopes, accessing the entire image or message matrix is very inefficient. Let us design the circuits for
such functions.

The first function is tadd, which adds numbers and limits the size of the output to predefined bounds.
Usually, the lower bound is zero and the upper bound is the full field, 2B − 1, where B is the word length
of the message. This operation must be secured so that underflow and overflow are averted. All other
functions doing any kind of addition may use this saturation math.

The second function is av, which takes two arguments and outputs their average value. To avoid
any possible overflow, the arguments are halved before addition. All the arguments must be within the
number range. The functions av3 and av4 are the expansions from two to three or four arguments. The
function computes the average of the multiple arguments, calling av as required.

322 Architectures for Computer Vision

Listing 11.8 The functions (8/9)

//functions

//average of two arguments

function [15:0] av;

input [15:0] a,b;

begin

av = (a>>1) + (b>>1);

end

endfunction

//average of three arguments

function [15:0] av3;

input [15:0] a,b,c;

begin

av3 = (a>>2) + (a>>4) + (b>>2) +(b>>4) + (c>>2) + (c>>4);

end

endfunction

//average of the four arguments

function [15:0] av4;

input [15:0] a,b,c,d;

begin

av4 = av(av(a,b),av(c,d));

end

endfunction

//absolute distance

function [15:0] adistance; //absolute distance

input [15:0] a, b;

begin

adistance = (a > b)? (a - b): (b - a);

end

endfunction

//truncate math

function [15:0] tadd; //saturation logic

input signed[15:0] a, b;

reg signed [15:0] c;

begin

c = a + b;

tadd = (c < 0)? 0: (c < 8’hFF)? c: 8’hFF;

end

endfunction

//saturation lodic

Relaxation for Stereo Matching 323

function [‘DATA_BITS - 1:0] sat;

input [15:0] a;

begin

sat = (a <= 0)? 0:

(a > ‘LAB_DIM - 1)? (‘LAB_DIM - 1): a;

end

endfunction

//sign function

function signed [1:0] sgn;

input signed [15:0] a;

begin

sgn = (a < 0)? -1:

(a > 0)? 1: 0;

end

endfunction

In computing averages, shift operations are used to avoid division. However, a problem arises when
finding the average of the three arguments because getting the exact average of the three arguments is
not possible with shift operations. In general, for n arguments, we have to determine the coefficients ak,
which is ak ∈ {−1, 0, 1}:

B−1∑
k=1

ak2−k ≤
1
n

, (11.18)

where B is the word length of the arguments. For the three arguments, one of the best approximations is
1

4
+ 1

16
<

1

3
(see the problems at the end of this chapter).

In addition to the additions, difference operations are needed to measure the likelihood of two numbers.
The basic distance between two numbers is defined by the absolute distance, although other advanced
distance measures can replace this. The function, adistance, serves this purpose in an integer word
length.

11.12 Functions for Minimum Argument
At the end of the iteration, the messages are supposed to be in equilibrium. At this point, the final
message is determined and therefore so is the disparity. This is the concept underlying the original
theory. In actuality, the circuit executing this task is separated from the circuit utilized for the message
updation and thus operates concurrently with the other circuits. Therefore, there is no reason to halt this
circuit during the iteration.

In Equation (11.16), the required operation is

x = arg
D−1

min
k=0

d(k). (11.19)

The function, argmin, returns the minimum argument, given the input vector.

324 Architectures for Computer Vision

This operation reads as follows in Verilog HDL.

Listing 11.9 The functions (9/9)

//choose argument for the minimum

//minimum argument

function [15:0] argmin; //minimum argument

input [‘LAB_BITS * ‘LAB_DIM - 1:0] a;

reg [15:0] i, tmp, temp;

begin

tmp = 8’hFF;

temp = 0;

for (i=0; i < ‘LAB_DIM; i=i+1) begin

temp = (a[‘LAB_BITS * i +:‘LAB_BITS] < tmp)? i: temp;

tmp = (a[‘LAB_BITS * i +:‘LAB_BITS] < tmp)?

a[‘LAB_BITS * i +:‘LAB_BITS]: tmp;

end

argmin = temp;

end

endfunction

endmodule

It is important that a minimum near the center position be chosen when multiple minima exist throughout
the elements in a vector. This is because the required value is not the message but its index, which must
be as close to the current position as possible. The heavy weight must be designed so that this condition
is guaranteed. Otherwise, the circuit will have to be redesigned in a more complicated manner.

11.13 Simulation
Thus far, we have derived the RE circuit. In order to successfully implement the design, it must first be
optimized by removing as many of the warning signs as possible. If the design is correct, the synthesis
parts, processor.v, pe.v, RAM1, RAM2, RES, excluding io.v, will all pass the synthesis stage. For
the simulation, we used a pair of 225 × 188 images (CMU 2013; Middlebury 2013). The test images
are depicted at the top of Figure 11.3. The lower images are the disparity maps, that is left and right
reference modes.

The parameters for the RE were as follows. The entire image frame was processed in a raster scan
manner and the total number of iterations was 10.

The right reference map has a poor region on the right end. Likewise, the left reference map has a
poor region on the left side (see the problems at the end of this chapter). The result is poorer than the
disparity map obtained by the DP and BP machines. However, more weight for the neighborhood and
preprocessing with smooth filtering may help to improve the performance.

In complexity view, the RE machine needs 3MNB bits to store the images and MNDB bits to store the
disparity map, where B is the word length of the disparity and the image pixel, and D is the number of
disparity levels. In later chapters, we will encounter the DP and BP machines. The RE machine is simple
and fast. It is the starting point for all other vision processing circuits. Improvements can be made to it
by modifying the relaxation equation with more sophisticated terms.

Relaxation for Stereo Matching 325

(a) Left image (b) Right image

(c) Left disparity (d) Right disparity

Figure 11.3 Disparity maps (image size: 225 × 188, disparity level: 32, iteration: 10, mirror-reflected
boundary)

Problems
11.1 [Discretization] Derive the discretization of the second differential, 𝜕f

xxf and 𝜕
fb
xxf .

11.2 [Discretization] Derive the third difference, 𝜕fff
xxx and 𝜕

fbf
xxx. Discuss its properties. The higher-order

derivatives can be interpreted as the Sobel operator (Bradski and Kaehler 2008; OpenCV 2013;
Wikipedia 2013c), which can be obtained by convolving templates of lower order.

11.3 [Discretization] Derive Equation (11.10).

11.4 [Overall system] In Listing 11.2, the computation is based on the Gauss–Seidel method. How
can you convert the circuit into the Jacobi method?

11.5 [Overall system] In Listing 11.2, the pixel value beyond the boundary is set by the mirror image.
Instead of the mirror image, fix the values to zero.

11.6 [Overall system] In Listing 11.2, the pixel value beyond the boundary is set by the mirror image.
Instead of the mirror image, fix the values to the boundary values.

11.7 [Overall system] Listing 11.2 is for the stereo matching. How can you implement the circuit for
motion estimation?

326 Architectures for Computer Vision

11.8 [Saturation arithmetic] In Listing 11.8, function av3 is defined for the average of three arguments.
The result should not exceed the maximum value and division must be avoided. Enhance the
computation by introducing more terms.

11.9 [Simulation] In the right mode system, the disparity value becomes uncertain because the position
is closer to the right boundary. The same is true for the left mode system on the left boundary.
Derive the probability of the disparity located in the given region and discuss the uncertainty.

11.10 [Simulation] In the right mode system, the disparity value becomes uncertain because the position
is closer to the right boundary. The same is true for the left mode system on the left boundary.
Let the range of disparity be N′ ≤ N. Derive the probability and discuss the uncertainty.

References
Aubert G and Kornprobst P 2006 Mathematical Problems in Image Processing: Partial Differential Equations and

the Calculus of Variations (Applied Mathematical Sciences). Springer-Verlag.
Bradski GR and Kaehler A 2008 Learning OpenCV. O’Reilly Media, Inc.
CMU 2013 Cmu data set http://vasc.ri.cmu.edu/idb/html/stereo/ (accessed Sept. 4, 2013).
Courant R and Hilbert D 1953 Methods of Mathematical Physics, vol. 1. Interscience Press.
Fehrenbachy J and Mirebeauz J 2013 Small non-negative stencils for anisotropic diffusion http://arxiv.org/

pdf/1301.3925v1.pdf (accessed May 3, 2013).
Horn BKP 1986 Robot Vision. MIT Press, Cambridge, Massachusetts.
IEEE 2005 IEEE Standard for Verilog Hardware Description Language. IEEE.
Ilyevsky A 2010 Digital Image Restoration by Multigrid Methods: Numerical Solution of Partial Differential

Equations by Multigrid Methods for Removing Noise from Digital Pictures. Lambert Academic Publishing.
Jeong H and Park S 2004 Generalized trellis stereo matching with systolic array Lecture Notes in Computer Science,

vol. 3358, pp. 263–267.
Middlebury U 2013 Middlebury stereo home page http://vision.middlebury.edu/stereo (accessed Sept. 4, 2013).
OpenCV 2013 Sobel operator http://docs.opencv.org/modules/imgproc/doc/filtering.html (accessed Sept. 24, 2013).
Park S and Jeong H 2008 Memory efficient iterative process on a two-dimensional first-order regular graph. Optics

Letters 33, 74–76.
Perona P and Malik J 1990 Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal.

Mach. Intell. 12(7), 629–639.
Scherzer O, Grasmair M, Grossauer H, Haltmeier M, and Lenzen F 2008 Variational Methods in Imaging Applied

Mathematical Sciences. Springer-Verlag.
Weickert J 2008 Anisotropic diffusion in image processing http://www.lpi.tel.uva.es/muitic/pim/docus/anisotropic_

diffusion.pdf (accessed April 15, 2014).
Wikipedia 2013a Euler–Lagrange equation http://en.wikipedia.org/wiki/Euler%E2%80%93Lagrange_equation

(accessed May 3, 2013).
Wikipedia 2013b Multigrid methods http://en.wikipedia.org/wiki/Multigrid_methods (accessed Sept. 23, 2013).
Wikipedia 2013c Sobel operator http://en.wikipedia.org/wiki/Sobel_operator (accessed Sept. 24, 2013).
Wikipedia 2013d Successive over-relaxation http://en.wikipedia.org/wiki/Successive_over-relaxation (accessed Sept.

24, 2013).
Yang QX, Wang L, and Yang RG 2006 Real-time global stereo matching using hierarchical belief propagation BMVC,

p. III:989.
Young DM 1950 Iterative Methods for Solving Partial Difference Equations df Elliptical Type Phd thesis Harvard

University.

http://vasc.ri.cmu.edu/idb/html/stereo/
http://vasc.ri.cmu.edu/idb/html/stereo/
http://arxiv.org/pdf/1301.3925v1.pdf
http://arxiv.org/pdf/1301.3925v1.pdf
http://vision.middlebury.edu/stereo
http://vision.middlebury.edu/stereo
http://docs.opencv.org/modules/imgproc/doc/filtering.html
http://docs.opencv.org/modules/imgproc/doc/filtering.html
http://www.lpi.tel.uva.es/muitic/pim/docus/anisotropic_diffusion.pdf
http://www.lpi.tel.uva.es/muitic/pim/docus/anisotropic_diffusion.pdf
http://www.lpi.tel.uva.es/muitic/pim/docus/anisotropic_diffusion.pdf
http://www.lpi.tel.uva.es/muitic/pim/docus/anisotropic_diffusion.pdf
http://en.wikipedia.org/wiki/Euler%E2%80%93Lagrange_equation
http://en.wikipedia.org/wiki/Euler%E2%80%93Lagrange_equation
http://en.wikipedia.org/wiki/Multigrid_methods
http://en.wikipedia.org/wiki/Multigrid_methods
http://en.wikipedia.org/wiki/Sobel_operator
http://en.wikipedia.org/wiki/Sobel_operator
http://en.wikipedia.org/wiki/Successive_over-relaxation
http://en.wikipedia.org/wiki/Successive_over-relaxation

12
Dynamic Programming
for Stereo Matching

So far, we have discussed the following concepts: vision simulator (Chapter 4), stereo matching
(Chapter 6), and DP machine (Chapter 9). As one of our final goals, in this chapter, we explain how to
design a DP machine for stereo matching (Baker and Binford 1981; Ohta and Kanade 1985).

There are various types of stereo DP machines. One possible source of diversity is the reference system:
left, right, or center. The various types of DP machines may have some parts of their code in common,
but they may also have some dissimilar code that is reference-system-dependent. A good design contains
as much code as possible in common, keeping the number of reference-system-dependent parts as small
as possible. Another possible source of diversity is the number of processors: single processor or array
processor. In a single processor system, all the computation is carried out within the same processor.
The processor is actually a large FSM, driven only by a clock and a reset signal, together with RAMs
storing the left and right images and the disparity map. On the other hand, in an array processor system,
all computation is carried out via a network of identical processors. In this case, there must be a plan
for supplying the images to the network, retrieving the disparity maps, and executing each processor in
various states. Yet another possible source of diversity is the use of lines: one line or a set of lines. A
minimal system may use only a pair of image lines for stereo matching. A more advanced system may
use a set of image lines from both left and right images to compute neighborhood operations.

In this chapter, we explain how to design a DP machine for stereo matching, for the left and right
reference systems, a single processor, and neighborhood computation. The reference systems can be
selected by the Verilog compiler directives, making the three systems into the same Verilog HDL code.
We review the stereo matching algorithm, hypothesize a DP machine, and design Verilog codes.

12.1 Search Space
We start again with the space in which the solution exists. The space consists of the points, {(x, d)|x ∈
[0, N − 1], d ∈ [0, D − 1]} for the left right reference and {(x, d)|x ∈ [0, 2N − 1], d ∈ [0, D − 1]} for the
center reference system (Figure 12.1). The first property of the disparity is that it depends on the reference
system and thus must be explained in a general setting.

The second property is that the solution space must be further confined to the trapezoidal region
within the rectangular space. This is because only points in this region can be observed by both images.

Architectures for Computer Vision: From Algorithm to Chip with Verilog, First Edition. Hong Jeong.
© 2014 John Wiley & Sons Singapore Pte. Ltd. Published 2014 by John Wiley & Sons Singapore Pte. Ltd.
Companion Website: www.wiley.com/go/jeong

http://www.wiley.com/go/jeong

328 Architectures for Computer Vision

0 N-D x r N-1
0

d

D-1

N-1

(a) Right reference

0 x l N-1D-1
0

d

D-1

N-1

(b) Left reference

0 xc 2N
0

N-1

N

d

D-1

(c) Center reference

Figure 12.1 The (x, d) space: left/right and center reference systems

Outside of this region, all the points are indeterminate, due to lack of observation. Consequently, when
we consider the space as a graph, we call the observable nodes matching nodes and the unobservable
nodes occlusion nodes. In the center reference system, occlusion nodes exist even inside the trapezoidal
region. Both types of nodes are alternately distributed in this region. The identity of a node can be easily
verified by observing whether x + d is even or odd. (It depends on where the node origin is defined. For
an x ∈ [0, 2N] system, it is odd and for an x ∈ [0, 2N − 2] system, it is even.) If the domain is defined
as x ∈ [0, 2N], x + d is odd. The corresponding coordinates in the images are xr = (x − d − 1)∕2 and
xl = (x + d − 1)∕2. If the domain is x ∈ [0, 2N − 2], x + d is odd. The corresponding image points are
xr = (x − d)∕2 and xl = (x + d)∕2 (refer to Equation (6.80)). In designing the circuit, we need to know
where the matching nodes are. If we represent such regions by Rr , Rl, and Rc, they are given by

Rr =
{

(xr, d)|xr ∈ [0, N − 1], d ≤ D − 1 − D − 1
N − 1

xr
}

,

Rl =
{

(xl, d)|xl ∈ [0, N − 1], d ≤
D − 1
N − 1

xl
}

,

Rc =
{

(xc, d)|xc ∈ [0, 2N − 2], d ≤
D − 1
N − 1

, d ≤
D − 1
N − 1

(2N − 2 − xc), d ≤ D − 1, xc + d = even
}
.

(12.1)

Dynamic Programming for Stereo Matching 329

0

0

1

j

D − 1

1 i − 1 i
N − 1

2(N − 1)

forward direction

backward direction

(a) Neighborhood size, Ne = D

Figure 12.2 A graph for the search spaces. The size is either D × N or 2D × (N − 1)

In order to find a feasible solution in the solution space, we can embed all the paths that we are
looking for. In this manner, the search space can be defined over the solution space. To make the method
clearer, we can represent the search method by a graph, G = (V , E), which consists of nodes and edges
(Figure 12.2). The nodes are the lattice points in Figure 12.1 and the edges are the feasible path of the
desired object boundary. This graph is specific in that the edges are connected between adjacent nodes
only, although there could be many other connections. This particular graph is very limited but also
efficient in DP realization.

The graph consists of DN nodes for left right references and 2D(N − 1) nodes for center reference.
Some nodes are in the trapezoid; these are called matching nodes, and some others, called occlusion
nodes, are not. This graph shows the center reference as an example. The strategy is to compute column
by column, as the nodes in a column are represented by a block in the figure.

From the previous two figures, we obtain the local connections, as shown in Figure 12.3. On the left
a connection in the right or left reference system is shown. Any pair of nodes connected by the edge are
assigned uniquely in different positions in the right or left image planes: (x − 1) and x. The figure on the
right side is the possible paths in the center reference system. If the coordinates are mapped to the image
plane, the nodes (xc − 1, d − 1) and (xc, d) are mapped to the same position in the right image plane (see

(x, d)

(x − 1, d − 1)

(x − 1, d)

(x − 1, d + 1)

(a) Right or left reference

(x, d)

(x − 1, d − 1)

(x − 1, d + 1)

(b) Center reference

Figure 12.3 Two cases of connections: (a) x + d = odd (b) x + d = even

330 Architectures for Computer Vision

Equation (6.80)). They are actually (x, d − 1) and (x, d) in the left right reference, a path that is prohibited
in the search path. Similarly, the nodes (xc − 1, d + 1) and (xc, d) are actually the same point in the left
image plane. They are the points, (x, d − 1) and (x, d), which must be avoided in building the search path.
The search space of the center reference is the one skewed from the left right reference system. That is,
(x, d − 1) and (x, d) are mapped to either (xc − 1, d − 1) and (xc, d) or (xc − 1, d + 1) and (xc, d) in the
graph. We must expect the result of the center reference system to be very unreliable compared to that
of the left right system.

12.2 Line Processing
From a computational point of view, a pair of conjugate images can be processed in one of three ways:
line, strip, or plane (or frame). In the first method, the image is scanned in raster manner and processed
for disparity computation between the line intervals. In the second method, the line is expanded to a
block of lines, which shifts downwards in an overlapped or skipped manner. Finally, in the third method,
the entire image plane is processed as a body. Before going any further, let us first define this concept.

For the image plane, = {(x, y)|x ∈ [0, N − 1], y ∈ [0, M − 1]}, the three schemes can be illustrated
as depicted in Figure 12.4. Figure 12.4(a) depicts the three images, Il(⋅, y), Ir(⋅, y), and disparity d(⋅, y).
The computation uses the images on the epipolar lines, producing disparity on the same line:

d(⋅, y) ← T(Il(⋅, y), Ir(⋅, y)). (12.2)

Here, T(⋅) represents the disparity computation operations. The computation progresses downwards line
by line. In Figure 12.4(b), the line is expanded to a set of lines, {Il(⋅, y′)|y′ ∈ [y − (L − 1)∕2, y + (L −
1)∕2]} and {Ir(⋅, y′)|y′ ∈ [y − (L − 1)∕2, y + (L − 1)∕2]}, and disparity d(⋅, y). In this case, the disparity

I l (x, y)

x

y

y

I r (x, y)

x

y

y

D (x, y)

x

y

y

(a) Line

I l (x, y)

x
y

y − (L − 1)/ 2

y + (L − 1)/ 2

y

I r (x, y)

x

y

y

D (x, y)

x

y

y

(b) Strip

Figure 12.4 Computing line and strip: left image (Il), right image (Ir), and disparity map D

Dynamic Programming for Stereo Matching 331

computation becomes

d(⋅, y) ← T({Il(⋅, y′)|y′ ∈ [y − (L − 1)∕2, y + (L − 1)∕2]},

{Ir(⋅, y′)|y′ ∈ [y − (L − 1)∕2, y + (L − 1)∕2]}). (12.3)

Using more than one line potentially facilitates neighborhood computation. To make the strip symmetric
on both sides of the centerline, the number of lines in a strip, L, must be an odd number. If L = 1, the
strip becomes a line. If L = M, the image frame itself is signified.

Because the computation progresses downwards, the disparities of the previous lines are available to
the current line and thus recursive computation is made possible:

d(⋅, y) ← T({Il(⋅, y′)|y′ ∈ [y − (L − 1)∕2, y + (L − 1)∕2]},

{Ir(⋅, y′)|y′ ∈ [y − (L − 1)∕2, y + (L − 1)∕2]}, d(⋅, y − 1)). (12.4)

Using the previous disparity may help in deciding the disparity of the present line.
In light of this, in designing the DP machine, we have to consider the computation structure (mul-

tiple lines, neighborhood computation, and recursive computation) and leave the details to the actual
algorithm design.

12.3 Computational Space
As discussed in Chapter 6, the stereo images can be referenced in terms of the three coordinates system:
left, right, and center reference. To design appropriate DP machines, we have to know the search space
of these systems in detail.

Figure 12.5 shows the space observed by two cameras. The space containing the observed sites (black
dots) is the epiplane, and the horizontal axis is the epipolar line. The apex of the inverted triangle is
the nearest point with disparity N − 1, while the base of the triangle and beyond are the farthest points
with disparity zero. This space can be viewed from many directions, such as the right image axis, the
left image axis, and the center between the two images, as illustrated. As a result, we can derive spaces
(xr, d), (xl, d), and (xc, d), respectively called right reference, left reference, and center reference system.

In the right reference system, the image on the right is used as the reference in computing the distance:

Ir(xl, y) − Il(xl + d, y), d ∈ [0, D − 1], (12.5)

x r

x l

x c

d

Figure 12.5 An epiplane plane and three coordinates: right, left, and center reference images (the
disparity is shown as an inverse of the depth)

332 Architectures for Computer Vision

where d denotes disparity and xl denote the coordinates in the left image. Similarly, in the left reference
system, the image on the left is used as the reference in computing the disparity:

Il(xr , y) − Ir(xr − d, y), d ∈ [0, D − 1], (12.6)

where xr are the coordinates in the right image plane. Note the difference in the sign placed before the
disparity. Notice the difference in the sign attached before the disparity. In the center reference system
(Jeong and Oh 2000; Jeong and Park 2004; Jeong and Yuns 2000; Jeong et al. 2002), the corresponding
points are

Il((xc + d − 1)∕2, y) − Ir((xc − d − 1)∕2, y),∀x + d = odd, (12.7)

where xc are the coordinates in the center reference system. After the disparity is obtained, it can be
mapped to the coordinates in the left or right image planes, according to Equation (6.80),

xl = 1
2

(xc + d − 1),

xr = 1
2

(xc − d − 1), ∀xc + d = odd. (12.8)

We will sometimes call the mapped coordinates, respectively, center left reference and center right
reference, for convenience. The places where the occlusion nodes exist are the other positions that do
not satisfy this condition. Those positions can be used for smoothing purposes, as we shall see.

Collectively, we can define a space (x, d), consisting of the coordinates and disparity, and examine
possible computations there. We can derive the three spaces shown in Figure 12.6 from Figure 12.5. In
the three spaces, the horizontal and vertical axes are labeled with pixel numbers and disparity values,
respectively. At a glance, it can be seen that the space is separated into two parts, represented by black
and white nodes. The difference between the two types of nodes is that the nodes below the diagonal
are observed by both cameras, while the nodes above the diagonal are observed by only one camera. In
the center reference system, the observable and unobservable nodes are alternately arranged even inside
the triangle. We call the observable and unobservable nodes, matching nodes and occlusion nodes, for
convenience. In the right reference system, the occlusion nodes exist only in the image on the right.
Similarly, in the left reference system, the occlusion nodes exist only in the image on the left. In the
center reference system, the occlusion nodes exist alternately in both images.

The space occupied by the left and right reference systems consists of N × N nodes, where the number
of matching and occlusion nodes is N(N + 1)∕2 and N(N − 1)∕2, respectively. In the center reference
system, the nodes, (2N + 1)N, consist of N(N + 1)∕2 matching nodes and N(3N + 1)∕2 occlusion nodes.
If the disparity range is limited to D < N, the space becomes the set of N × D and D(2N + 1) nodes,
respectively. In designing the DP machine, the size of the space is a major factor because it correlates to
the amount of space it consumes in the chip. Reducing D may therefore improve the space requirement
significantly.

The given problem is to divide the space into two separate subspaces, above and below, so that the
borderline becomes a disparity. The constraints are that the borderline must pass through the matching
nodes – starting and ending nodes. The purpose of the DP algorithm (Aho et al. 1974; Bertsekas 2007;
Cormen et al. 2001; Knuth 1997) is to find an optimal path along the x-axis. There are constraints
associated with the optimal path. One constraint is that the path must travel through the matching nodes.
The other constraint is the starting and ending nodes. In the right reference system, both ends must be
(0, ⋅) and (N − 1, 0). In the left reference system, the two points must be (N − 1, ⋅) and (0, 0). In the
center reference system, the extreme points must be (0, 0) and (2N, 0). Whether the path may go through
the occlusion nodes is undetermined because there is no information on those nodes. The algorithm has

Dynamic Programming for Stereo Matching 333

0

0
1

d − 1
d

d + 1

…

…

…

…

… …

… … … …

…

…

N − 1

1 x r N − 1

(a) Righ reference system

0

0
1

d − 1
d

d + 1

N − 1

1 x l N − 1

(b) Left reference system

0
0
1

d − 1
d

d + 1

N − 1

1 2 3 x c 2N

(c) Center reference system

Figure 12.6 The search space: (xr , dr), (xl, dl), and (xc, dc): black and white dots represent, respectively,
matching and occlusion nodes

the responsibility of deciding whether to include the occlusion nodes. The occlusion nodes may help to
provide a smoother path but may also lead to wrong interpretation.

In both the left and right reference systems, it is expected that the matching result will become less
reliable as the path progresses because the number of matching candidates will become smaller along the
path. As a result, in the right reference system, the disparity is uncertain on the right side of the image.
Likewise, in the left reference system, the disparity on the left end of the image is naturally uncertain.
How the uncertainties are resolved depends on the algorithms, for example, by using the two types of
disparity results. In the center reference system, there is no such bias depending on the direction of
computation, except that the role of the starting and ending nodes can be changed, resulting in different
disparity maps.

Finally, the left and right reference systems are not suitable for array design, although it is possible to
use them. The data flow and the internal operations are very complicated. On the other hand, the center
reference system is especially efficient when implemented in network arrays. In this chapter, we focus
on single processor design, not array processor design, for the three reference systems.

12.4 Energy Equations
The next step is to define the energy function, defined on the search space, (x, d). In Chapter 6, we
derived the energy equations for the three coordinate systems. To design the DP machines, we simplify
the energy equations by including only the basic features and excluding higher order smoothness and

334 Architectures for Computer Vision

occlusion constraints. However, more advanced energy functions can be applied to the DP machine by
modifying the Verilog functions in later applications.

Consider a pair of epipolar lines, Il(⋅, y) and Ir(⋅, y). The corresponding energy equation in the right
reference system is

E(d) =
N−1∑
x=0

𝜌(Ir(x), Il(x + d)) + 𝜆𝜇(d(x), d(x − 1)), (12.9)

where 𝜌(⋅) is the local distance measure and 𝜇(⋅) is the smoothness constraint. Similarly, in the left
reference system, the corresponding energy equation is

E(d) =
N−1∑
x=0

𝜌(Il(x), Ir(x − d)) + 𝜆𝜇(d(x), d(x − 1)). (12.10)

Here, the negative sign is used to retain the disparity nonnegative number. Finally, the center reference
system has the energy equation

E(d) =
2N∑
x=0

𝜌(Il((x + d − 1)∕2), Ir((x − d − 1)∕2)) + 𝜆𝜇(d(x), d(x − 1)). (12.11)

The major backbone of the DP machine is based on these underlying simplified energy equations.
Higher-order terms and nonlinear time varying terms, which may appear in more specific algorithms, are
all disregarded. Our purpose is to design a DP machine that is general in many ways – energy equation,
DP algorithm, and architecture-so that more advanced terms can be easily imported later. Incorporating
the advanced algorithms introduced in Chapter 6 is a challenging task. Even the distance measure for
the local cost and smoothness will be defined in simplified forms.

12.5 DP Algorithm
Finding the optimal path that minimizes the energy equation can be conveniently explained with the
connections between nodes in the search space, (x, d). For two nodes, (x − 1, d′) and (x, d), the connection
has the configuration shown in Figure 12.7.

φ(x − 1, d)
η

φ
η

φ
η

φ
η

φ
η

φ
η

φ
η

φ
η

(x − 1, d)
(x, d)
(x, d)

(a) Right reference system

(x + 1, d)
(x + 1, d)

(x, d)
(x, d)

(b) Left reference system

(x − 1, d)
(x − 1, d)

(x, d)
(x, d)

(c) Center reference system: matching node

(x − 1, d)
(x − 1, d)

(x, d)
(x, d)

(d) Center reference system: occlusion node

Figure 12.7 Paths from (x − 1, d′) to (x, d) in the three reference systems (only two neighbor nodes are
shown)

Dynamic Programming for Stereo Matching 335

As a part of the search space, (x, d), the horizontal axis denotes the computation direction and the
vertical axis denotes the disparity levels. The direction in the left reference system is opposite to that of
the right reference system. However, in the center reference system it does not matter because the search
space is symmetric. In the center reference system, occlusion nodes are also included in the feasible
paths for possible improvement of smoothness.

The concept is as follows. According to the previous computation, all the nodes, (x − 1, ⋅), already
contain the cost,𝜑(x − 1, d′), and the pointer, 𝜂(x − 1, d′). In the current computation, (x, d) is resolved for
the costs and pointers. For this purpose, (x, d) observes all the nodes in the previous column, (x − 1, ⋅), to
choose the smallest cost and keep the node as a parent. In addition to the parent costs, some smoothness
measure must be applied to the transition between the two nodes. The scope of parent search and
the distance are often the major factors taken into consideration for smoothness. In the right and left
reference systems, the transition is between two matching nodes, whereas in the center reference system
it is between two types of nodes. There are four possible transitions: matching to matching, matching
to occlusion, occlusion to matching, and occlusion to occlusion. In order to assign a suitable penalty to
these transitions, we need to have some physical understanding of the geometry. Another observation is
that the search range of the parent nodes can be limited to a small neighborhood. Smaller neighborhoods
result in smoother disparities, even around object boundaries. Conversely, larger neighborhoods may
result in noisy disparity distributions, although the disparities around object boundaries can be sharper.

From a computational point of view, choosing an optimal parent is a sequential operation, but the
nodes, (x, ⋅), are all concurrent because they do not refer to each other for any costs or pointers. In the
DP machine, we can realize this computation in either of two ways: the loop operation may need less
space but run slower. The parallel realization is the opposite of the serial realization. It depends upon
the conditions of the given resources. We will design the DP machine using many loops, which can be
parallelized easily if required.

The DP algorithms must be defined separately for the three reference systems. For the right reference
system in the space {(x, d)|x ∈ [0, N − 1], d ∈ [0, D − 1], the DP algorithm is as follows:

Algorithm 12.1 (DP algorithm for the right reference system) Given (Il(⋅, y), Ir(⋅, y)),
determine {d(N − 1),… , d(0)}.

1. Initialization: 𝜑(0, d) = 𝜌(0, d), 𝜂(0, d) = 0, for d ∈ [0, D − 1].
2. Forward pass: for x = 0, 1,… , N − 1 and d ∈ [0, D − 1],

𝜑(x, d) = min
k∈[0,D−1]

(𝜑(x − 1, k) + 𝜇(k, d)) + 𝜆𝜌(x, d),

𝜂(x, d) = argmin
k∈[0,D−1]

(𝜑(x − 1, k) + 𝜇(k, d)).

3. Finalization: d(N − 1) = argmind∈[0,D−1] 𝜑(N − 1, d).
4. Backward pass: for x = N − 2,… , 0,

d(x) = 𝜂(x + 1, d(x + 1)).

The finalization is in fact trivial because the starting point is fixed, d(N − 1) = 0. However, this condition
may be somewhat relaxed in a more advanced algorithm where other nodes (N − 1, ⋅) may be allowed as
candidates for the starting node. The direction of computation is from x = 0 to x = N − 1 for the forward
pass and from x = N − 1 to x = 0 for the backward pass. However, designing this algorithm in Verilog
is not straightforward. The effect of the finite D, assignment of occlusion nodes with costs and pointers,
signed and unsigned numbers, and overflow and word length, must all be taken into consideration.

The left reference system has a similar algorithm, but the coordinates are reversed.

336 Architectures for Computer Vision

Algorithm 12.2 (DP algorithm for the left reference system) Given (Il(⋅, y), Ir(⋅, y)),
determine {d(0),… , d(N − 1)}.

1. Initialization: 𝜑(N − 1, d) = 𝜌(N − 1, d), 𝜂(N − 1, d) = 0, for d ∈ [0, D − 1].
2. Forward pass: for x = N − 1,… , 1, 0 and d ∈ [0, D − 1],

𝜑(x, d) = min
k∈[0,D−1]

(𝜑(x + 1, k) + 𝜇(k, d)) + 𝜆𝜌(x, d),

𝜂(x, d) = argmin
k∈[0,D−1]

(𝜑(x + 1, k) + 𝜇(k, d)).

3. Finalization: d(0) = argmind∈[0,D−1] 𝜑(0, d).
4. Backward pass: for x = 1,… , N − 1,

d(x) = 𝜂(x − 1, d(x − 1)).

The computation starts from x = N − 1 and arrives at x = 0 in the forward pass. Next, in the backward
pass, the computation starts from x = 0 and ends at x = N − 1.

We have two options for combining the two algorithms. The first option is to keep the coordinates,
xl and xr, in defining the costs and pointers. In this case, the computation proceeds in the direction of
increasing xr (or decreasing xl), building the pointer array, ordered in the direction of increasing xr (or
decreasing xl). The concept is intuitive but the shape of the search space and the pointer array are different
in two coordinates system. The other choice is to define coordinates that increase in the direction of the
forward pass. In this case, the structure of the pointer array is the same in both systems. We will use the
latter option to design the DP machine.

Among the three coordinate systems, the algorithm structure of the center reference system is somewhat
different from that of the others. Let us define the indicator functions: If x is even, ex = 1, otherwise,
ex = 0. An odd indicator, ox, is therefore, ox = 1 − ex.

Algorithm 12.3 (DP algorithm for the center reference system) Given (Il(⋅, y), Ir(⋅, y)), determine
{(x, d(x))|i ∈ [0, 2N], d ∈ [0, D − 1]}.

1. Initialization: 𝜌(0, 0) = 𝜌(2N, 0) = 0, 𝜌(x, d) = ∞ for x − d ≤ 0 or x + d ≥ 2N.
2. Forward pass: for x = 0,… , 2N, d ∈ [0, D − 1],

(a) for matching node (x + d = odd),

𝜑(x, d) = min
d′∈[0,D−1]

{𝜑(x − 1, d′) + ej−d′+1𝜇(d′, d) + oj−k+1𝛼} + 𝜌(x, d),

𝜂(x, d) = argmin
d′∈[0,D−1]

{𝜑(x − 1, d′) + ej−d′+1𝜇(d′, d)}.

(b) for occlusion node (x + d = even),

𝜑(x, d) = 𝜑(x − 1, d) + 𝛽,

𝜂(x, d) = d.

3. Finalization: d(2N) = 0.
4. Backward pass: for k ∈ [0, D − 1],

d(x) =
{

0, x = 2N,
𝜂(x + 1, d(x + 1)), x = 2N − 1,… , 0.

Dynamic Programming for Stereo Matching 337

5. Map the disparity map:

d(xl) ← d(x), where xl = 1
2

(x + d − 1),

d(xr) ← d(x), where xr = 1
2

(x − d − 1).

In the initialization, nodes outside of the triangular zone in the (x, d) space are assigned very large
numbers, which may prevent the optimal path from being in that region. The exceptions are nodes (0, 0)
and (2N, 0), the start and end nodes of the optimal path. In the forward pass, node updating is carried
according to the matching and occlusion nodes. There are four cases: matching to matching, matching to
occlusion, occlusion to matching, and occlusion to occlusion. Different penalties can be assigned to the
various different types of transitions. Parameters 𝛼 and 𝛽 denote the penalties for the occlusion nodes.
The algorithm considers only three types of transitions. The backtracking is the same as that used in the
right and left reference systems. As the pointers are retrieved, they must be mapped to the coordinates in
the left or right image planes.

In order to allow for expansion to more advanced algorithms if needed, only the basic form of the
DP algorithm is considered here. For example, more advanced algorithms may use features such as
occlusion, neighborhood operations, and previous results.

12.6 Architecture
The concept of DP in Algorithm 9.1 is applied to stereo matching, as summarized in Algorithm 12.1.
Let us design a circuit that implements this algorithm. One approach is to use a large state machine that
computes everything from reading, processing, and writing. Let us use the processor that was developed
as a component of the LVSIM – although we will modify it a great deal to accommodate stereo matching
(see Chapter 4). The other parts in the simulator are all the same and thus need not to be repeated.
Conceptually, the processor computes an image, line by line from top to bottom, and then outputs the
result before the next raster line enters. In this section, we expand this structure more to facilitate the
management of neighborhood operations and recursive computation.

The major components of the DP machine are depicted in Figure 12.8. Three buffers function as the
major data structure storing the intermediate data. Two buffers, called image buffers, store two rows of
the images, left and right, that are read from the two external RAMs. The third buffer, called the disparity
buffer, stores the previous disparity result read from the external RAM. The processor reads the images
and the previous disparity results, computes the new disparities, and stores them in the disparity buffer.
This computation progresses downwards in the image plane. For possible neighborhood operation, we
expand the buffer to a set of rows, that is a strip. The buffers are actually FIFOs, in which the images
enter the bottom and exit the top of the buffers. The three buffers are updated in synchrony. The objective
is to update the contents of the center buffer with the corresponding images.

The machine computes the following mathematical equations:

D(⋅, y, t) = F(Il(⋅, y), Ir(⋅, y), D(⋅, y, t − 1)), (12.12)

where Il(⋅, y) and Ir(⋅, y) are the image rows, D(⋅, y) is the desired disparity, and F(⋅) is the main engine
that computes the stereo matching algorithm. In addition to Il(⋅, y) and Ir(⋅, y), the computational structure
allows us to use all the other components in the buffer, as a neighborhood. Further, the disparity buffer
contains disparities, computed previously, in the current frame as well as the previous frame. The
computational resources facilitate neighborhood and recursive operations, in addition to the primary
algorithm, DP.

338 Architectures for Computer Vision

I l (x, y, t)

RAM

I l

I l (·, y, t)

I r (x, y, t)

RAM

I r

I r (·, y, t)

Pointer array

D (·, y, t)

D (x, y, t)

RAM

Figure 12.8 The concept of the Verilog DP machine

12.7 Overall Scheme
We design the system as a large state machine, with small sub-states within the big states. The required
states are the buffer shift, reading, initialization, forward pass, finalization, backward pass, and writing
states. Three states are associated with input and output, and four states with the DP algorithm. The
states and their connections are illustrated by the state diagram depicted in Figure 12.9. The cycle starts

BUFFER
SHIFT

start

READING

INITIALI-
ZATION

FOR-
WARD
PASS

FINALI-
ZATION

BACK-
WARD
PASS

WRITING

Figure 12.9 The state diagram of the DP machine

Dynamic Programming for Stereo Matching 339

Mode

LRC

LEFT RIGHT

!LRC

LEFT RIGHT

Figure 12.10 The three modes: left, right, and center (LRC) reference modes

from the buffer shift state. The three buffers, left image, right image, and disparity buffers, shift upwards,
providing an empty line at the bottom. In the next state, the empty spaces are filled with the data from the
external RAMs. Although the data at the bottom of the buffer are new, the data processed are those located
along the center of the buffer. This arrangement is utilized in order to accommodate the possibility of
neighborhood processing. The pixels along the buffer center can be grouped with their neighborhoods.
The next state is DP computation, as specified in Algorithm 12.1. In the initialization state, the costs of
the starting nodes are computed. The next state is the forward pass state, in which the costs and pointers
are recursively computed and the pointers are written to the pointer matrix. When the forward pass
ends at the final pixel position, the finalization process starts. Among the final nodes, the node with the
minimum cost must be determined. In the three reference systems, this stage is trivial because the node
with the minimum cost is already known. The backward pass process then starts, reading the pointers
from the pointer matrix. When the process reaches the first pixel, it starts reading the next lines of images.
For real-time processing, the computation in a loop must be completed within the raster scan interval.

The DP machine must be designed for the three reference systems we have studied: left, right,
and center reference systems. Designing separate machines may be very inefficient because they may
have a great many parts in common, which will need to be modified later for specific applications. In
Algorithms 12.1–12.3, the basic structures are all the same and thus must be retained in the code in
the same way. Including common and difference codes in one package can be done using the Verilog
compiler directives, ‘ifdef (Figure 12.10). With the header keys, LRC and LEFT, we can specify one of
four modes: left, right, center left, and center right. In the left and right modes, the left and right image
planes are the reference coordinate planes. In the center reference mode, the disparity obtained must be
mapped to an actual plane, either the left or the right image plane, as derived in Equation (12.8). This
requirement produces two more modes. In fact, there could be two additional modes in each of the center
left and center right modes. In one mode, the computation proceeds from (0, 0) to (2N, 0) in the forward
pass and returns in the backward pass. The other mode is the opposite – it proceeds from (2N, 0) to (0, 0)
then reverses itself. The pointers retrieved in the two different ways are also different.

Let us consider the overall framework of the DP machine. It has four main parts: header, variable
declarations, procedural, and combinational.

Listing 12.1 The Verilog DP machine: framework (1/7)

‘define WIDTH 113 //image width

‘define HEIGHT 94 //image height

‘define DATA_BITS 8 //word size

‘define ADDR_BITS 15 //pixel counter

‘define LINES 3 //strip size

‘define LRC //LR or C reference

‘define LEFT //LR reference

340 Architectures for Computer Vision

‘define COST_BITS 10 //max cost range

‘define INFTY ‘COST_BITS’hFFFF //upper bound

‘define DISPARITY_BITS 8 //disparity counter

‘define DMAX 4 //max disparity

‘define ALPHA 10 //penalty

module processor(//DP stereo processor

input clock, reset,

output reg [‘ADDR_BITS - 1:0] raddr, r_waddr, //address bus

input [‘DATA_BITS - 1:0] i_rdata1, i_rdata2, r_rdata, //data bus

output reg [‘DATA_BITS - 1:0] r_wdata, //data bus

output reg r_wen //write enable

);

//working array: window of images

reg [‘DATA_BITS - 1:0] img1 [0: 3*‘WIDTH*‘LINES -1]; //1st image

reg [‘DATA_BITS - 1:0] img2 [0: 3*‘WIDTH*‘LINES -1]; //2nd image

reg [‘DATA_BITS - 1:0] res [0: 3*‘WIDTH*‘LINES -1]; //disparity map

//variables

reg [‘ADDR_BITS - 1:0] k, idx, idx1; //pixel

reg [9:0] i, j, J; //column, row

reg [‘DISPARITY_BITS - 1:0] jj, pointer; //pointer

reg [‘COST_BITS - 1:0] cost [0:‘DMAX - 1], costp[0:‘DMAX - 1]; //cost

‘ifdef LRC //LR reference

reg [‘DISPARITY_BITS - 1:0] queue [0:‘WIDTH - 1][0: ‘DMAX - 1]; //LR

‘else //center reference

reg [‘DISPARITY_BITS - 1:0] queue [0:2*‘WIDTH][0: ‘DMAX - 1]; //C

‘endif

reg [2:0] state, statef, stater; //state and substates

reg [9:0] count; //general counter

wire [7:0] xl, xr; //coordinates

wire [‘COST_BITS - 1:0] ldistance; //local distance

//DP processing

always @ (posedge clock) begin: PROCESSING //processing block

if (reset) begin //initialize

state <= 0; //global state

count <= 0; //counter

j <= 0; //image line

k <= 0; //pixel in the strip

end

else begin: MAIN

case (state) //state machine

Dynamic Programming for Stereo Matching 341

0: begin: BUFFER

end

1: begin: READING //fill the bottom

end

2: begin: INITIALIZATION //DP initialization

end

3: begin: FORWARD //DP forward pass

end

4: begin: FINALIZATION //DP finalization

end

5: begin: BACKWARD //DP backward pass

end

6: begin: WRITING

end

default: state <= 0; //fault recovery

endcase

end //MAIN

end //PROCESSING

//combinational circuits

endmodule

The header part assumes an image pair M × N in size, three channels, with each channel represented by
a byte, and the total number of pixels specified. The three buffers are sub-images that have one or more
lines of images. The parameters also define the reference systems – left, right, center left, and center
right modes – using the keys LRC and LEFT. In addition, some constant numbers are defined, which we
discuss below.

Inside the module keyword, ports are provided for interfacing with the three RAMs, a clock, and a
reset signal. Two of the RAMs are for left and right images from cameras; the other is for the disparity
result. In the variable declarations, the three buffers are defined as two-dimensional arrays. Three-
dimensional arrays may be more natural for representing images but are more complicated to design. A
two-dimensional array needs only one counter to access the contents, while a three-dimensional array
needs two counters. The pitfall is that we have to consider the pixel coordinates in terms of the array
order, which is rather complicated but advantageous for hardware implementation.

The procedural block consists of six states, as explained in the state diagram. The most important data
structure is the queue that contains the pointers along the shortest paths. This table is filled during the
forward pass and read from during the backward pass. It is an array of DMAX × N cells, where DMAX < N
denotes the maximum disparity. The filled configuration follows that of the search space in the left, right,
and center reference systems. If DMAX < N, the triangular region becomes trapezoid; the meaningful
pointers are written inside this region. Outside the region, the pointers are meaningless and must be
avoided by assigning high costs to them. The pointer array is huge, consisting of N × DMAX log DMAX
elements, and thus the major bottleneck to the implementation. The final part is a combinational circuit
that continuously monitors variables in the procedural block and computes required quantities, such as
smoothness weight and local distance. This part largely depends on the applications and algorithms.

In the template, the combinational circuits are the same for all the reference systems. They also have
parts in common inside the procedural block: reading and writing. The remaining parts are mixtures of

342 Architectures for Computer Vision

L − 1

(L − 1)/2

0

Left image buffer
img1

bufferimageRight
img2

bufferDisparity
res

Figure 12.11 The operation of the three buffers: left image (Il), right image (Ir), and disparity (D)

common and dissimilar parts. In the following sections, we discuss in detail each of the components
comprising the DP template.

12.8 FIFO Buffer
The first state of the DP machine is the buffer shift state. In this state, all three buffers shift one line
upwards and leave the last line empty. The purpose of the FIFO buffer is to store the raster line and keep
it stable during the disparity computation. Without the buffer, the same data would have to be read from
the external RAMs, possibly many times, because the disparity computation may use the same pixel
many times. The buffer could be just one line of image, but it is expanded to a set of lines in order to
accommodate the possibility of neighborhood computation. Wider neighborhoods require more lines,
but we typically use a four-neighborhood system, which means three lines of images. The basic goal is
to use the centerlines from each of the three buffers to compute the disparity and store the result in the
disparity buffer. If the local distance measure uses neighborhoods, then the image lines above and below
the centerlines are also used. Each pixel also signifies three RGB channels, even for the disparity buffer.

To design such a buffer, we may use a circular buffer or just an ordinary buffer. In a circular buffer,
the insertion point changes every time a raster line is to be written. In a shift buffer, the insertion point
is fixed. We will use the shift register method (Figure 12.11).

As depicted in Figure 12.11, let us represent the three buffers by img1, img2, and res. The size of
each buffer is L × 3N bytes, where L is the number of image lines and N is the image width. To make
the coordinates symmetric above and below the centerline, L must be odd. The disparity computation is
applied to the centerline, (L − 1)∕2. The machine computes the following operations:

res(⋅, (L − 1)∕2) = T(img1(⋅, (L − 1)∕2), img2(⋅, (L − 1)∕2), res(⋅, (L − 1)∕2)). (12.13)

Here, T(⋅) denotes disparity computation. In the array, the lines are numbered as [0, L − 1]. In this manner,
the centerline is always the (L − 1)∕2-th line, thus the neighborhood coordinates must be considered
around it.

The pixel may appear in the image plane, buffer, and array and the exact coordinates must be calculated
(Figure 12.12). The image plane is defined as {(x, y)|x ∈ [0, N − 1], y ∈ [0, M − 1]}. The buffer space is
defined as {(a, b, c)|a ∈ [−(L − 1)∕2, (L − 1)∕2], b ∈ [0, N − 1], c ∈ [0, 2]}. The corresponding array is
{i|i ∈ [0, 3LN]}. If the origins are defined in each space as shown, a pixel appears at (x, y), representing
column and row in the image plane – (a, b, c) in the buffer, representing row, column, and channel – and
as (i) element in the array. A point (a, b, c) is mapped to i in the following way:

i = 3(Na + b) + c. (12.14)

If the bottom of the buffer is written with the y′ image line, a point (a, b, c) is mapped to (x, y) in the
following manner:

x = 3b + c,

y = (y′ − (L − 1)∕2 + a + M)%M. (12.15)

Dynamic Programming for Stereo Matching 343

x

y

M × N × 3

(x, y)
3b + c

a L × 3N

(a, b, c)

i

3NL

(i)

Figure 12.12 Three types of coordinates: image plane, buffer, and array

The transformation from buffer to array occurs often, so a dedicated function must be defined:

function [‘ADDR_BITS - 1:0] id;

input signed [9:0] row, column, channel;

begin

id = 3*(‘WIDTH*(((‘LINES-1)>>1)+ row) +column) + channel;

end

endfunction

The shift operation of the buffer is as follows.

Listing 12.2 The Verilog DP machine: buffer (2/7)

//DP processing

0: begin: BUFFER //shift buffer

if (k < 3 * ‘WIDTH * (‘LINES -1)) begin //3 * pixels

img1[k] <= img1[k + 3*‘WIDTH];

img2[k] <= img2[k + 3*‘WIDTH];

res [k] <= res [k + 3*‘WIDTH];

k <= k + 1’b1;

end

else begin

state <= 1; //go to the next state

k <= 0; //initialize variable

idx1 <= 0; //for next state

idx <= 0; //for next state

end

end

This is the first state in the main code. The three buffers are updated concurrently. Because the buffer
is represented by a two-dimensional array, only one counter is used here, at the cost of more involved
coordinates. Two contiguous lines are separated by the distance, 3N, and thus shifting this amount is
equivalent to shifting a row. Once the shift operation has been completed, the process moves to the next
state, possibly by resetting variables. This stage uses 9NL space for three buffers and 3N(L − 1) time for
shift operations.

344 Architectures for Computer Vision

12.9 Reading and Writing
The next state is provided for filling the bottom of the buffer. We are now involved with three external
RAMs and three internal buffers. The three pieces of data must be read from the RAMs and written to
the buffers, concurrently:

img1(⋅, L − 1) ← Il(⋅, y), img2(⋅, L − 1) ← Ir(⋅, y), res(⋅, L − 1) ← D(⋅, y), (12.16)

where Il, Ir, and D are the quantities in the external RAMs, respectively representing left, right, and
disparity map.

The action used when writing is opposite to that used when reading. However, in this case, only the
disparity buffer is stored. Because the most recent result is the centerline, it must be copied to the external
RAM:

D(⋅, J) ← res(⋅, L − 1), (12.17)

where J is the exact memory address defined by Equation (12.14).
The Verilog HDL code is as follows.

Listing 12.3 The Verilog DP machine: reading and writing (3/7)

1: begin: READING //fill the bottom

if (j < ‘HEIGHT) begin //line number

if (k < 3* ‘WIDTH + 2) begin //pixel

state <= 1; //repeat state

raddr <= 3 * ‘WIDTH * j + k; //pixel address

img1[3*‘WIDTH*(‘LINES-1) + idx1] <= i_rdata1; //1st image

img2[3*‘WIDTH*(‘LINES-1) + idx1] <= i_rdata2; //2nd image

res [3*‘WIDTH*(‘LINES-1) + idx1] <= r_rdata;

idx1 <= idx; //delay

idx <= k; //delay

k <= k + 1’b1; //next block

end else begin

state <= 2; //go to the next state

count <= 0;

J <= (‘LINES == 1)? j : //row number

((j - ((‘LINES - 1) >>1) + ‘HEIGHT) % ‘HEIGHT);

j <= j + 1’b1; //next strip

end

end else begin

j <= 0; //hit the bottom

end //else

end

6: begin: WRITING

if (count < ‘WIDTH) begin

if (k < 3) begin //make 3 channels

r_wdata <= res[id(0,count,0)]; //data

Dynamic Programming for Stereo Matching 345

r_waddr <= 3*‘WIDTH*J + 3*count + k; //address

r_wen <= 1; //write enable

k <= k + 1;

end

else begin

count <= count + 1’b1; //next

k <= 0;

end

end

else begin

state <= 0;

k <= 0;

count <= 0;

end

end

Only one line must be read and the reading pauses until the large state loop is complete. Therefore, the
line number and the center of the buffer must be kept in memory throughout the loop. This is explained
in the buffer section. We have to be careful of delays that may be introduced between a piece of data
and its corresponding address. This can be solved by using some auxiliary variables to store the previous
addresses. The range of the loop must also be extended so that the address queue is emptied. Otherwise,
the data in the last part of the loop may be lost.

In writing the state, the disparity buffer is written to the external RAM. Note that the disparity buffer
is copied three times to make the three channels the same. The three RAM channels contain the same
disparity map. This arrangement is necessary in order to provide grey level BMP files.

12.10 Initialization
The main part, Algorithm 12.1, starts at the initialization stage. The purpose of this stage is to provide
two quantities: initial costs and pointers. For an M × N image, we consider the nodes defined in {(i, j)|i ∈
[0, N − 1], j ∈ [0, D − 1]}, where D is the maximum disparity, D ≤ N. For the right reference system,
the costs are defined between Ir(0) and {Il(j)|j ∈ [0, D − 1]}. Therefore, the initial costs become

𝜑(0, j) = ||Ir
R(0) − Il

R(j)|| + ||Ir
G(0) − Il

G(j)|| + ||Ir
B(0) − Il

B(j)|| , j ∈ [0, D − 1]. (12.18)

The three channels are treated separately. For the left reference system, the formula is somewhat
different. The distance is defined between Il(0) and {Ir(j)|j ∈ [0, D − 1]}:

𝜑(0, j) = ||Il
R(N − 1) − Ir

R(N − 1 − j)|| + ||Il
R(N − 1) − Ir

R(N − 1 − j)||
+ ||Il

R(N − 1) − Ir
R(N − 1 − j)|| , j ∈ [0, D − 1]. (12.19)

For the center reference system, the initial costs are

𝜑(0, j) =
{

0, j = 0,
∞, j ∈ [1, D − 1].

(12.20)

346 Architectures for Computer Vision

This condition holds whether the DP starts from (0, 0) or (2N, 0). A large number is necessary to mark all
occlusion nodes apart from the starting node. The pointers can be anything, considering that the nodes
have no parents at this point.

𝜂(0, j) = 0,∀j ∈ [0, D − 1]. (12.21)

At this stage, the first column of the pointer matrix is filled, that is, {𝜂(0, j)|j ∈ [0, D − 1]}. We use
absolute distance measure for the three channels, but other measures can also be used.

The Verilog codes are as follows.

Listing 12.4 The Verilog DP machine: initialization (4/7)

2: begin: INITIALIZATION //DP initialization

if (count < ‘DMAX) begin //for each disparity

queue[0][count] <= 0; //initialize the queue

count <= count + 1’b1; //next in the queue

‘ifdef LRC //LR mode

‘ifdef LEFT //left disparity

costp[count] <=

distance(img1[id(0,(‘WIDTH - 1),0)],

img2[id(0,(‘WIDTH - 1 - count),0)])

+ distance(img1[id(0,(‘WIDTH - 1),1)],

img2[id(0,(‘WIDTH - 1 - count),1)])

+ distance(img1[id(0,(‘WIDTH - 1),2)],

img2[id(0,(‘WIDTH - 1 - count),2)]);

‘else //right disparity

costp[count] <= distance(img1[id(0,count,0)], img2[id(0,0,0)])

+ distance(img1[id(0,count,1)], img2[id(0,0,1)])

+ distance(img1[id(0,count,2)], img2[id(0,0,2)]);

‘endif

‘else //center reference mode

costp[count] <= (count)? ‘INFTY: 0; //assign large number

‘endif

end

else begin

state <= 3; //next state

statef <= 0; //next sub-state

i <= 1; //1st pixel

jj <= 0; //zero disparity

end

end

Here, the distance measure is a function, which we will define later. In the distance measure, the
coordinates of the buffer elements are rather complicated, due to the use of the Verilog array. The
process is similar to that of delineating the two-dimensional image plane into a one-dimensional array. In
calculating such coordinates, we have to take the image width and channels into account. Functions may

Dynamic Programming for Stereo Matching 347

simplify the coordinate transformation from the one-dimensional array to the two-dimensional array,
and vice versa.

At the end of this process, there is a transition to the next state. The next state has both state and
sub-states that must be clearly specified. In addition, variables, which will be used in the next state must
be set to appropriate values. In this manner, we may reuse the same variables many times in different
states, saving space but not the connections.

12.11 Forward Pass
The forward pass in Algorithm 12.1 comprises the core of DP. The key operation in this pass is the
computation of cost and pointer for all the nodes. It provides a big table that stores the pointers. In the
right reference system, the nodes are the elements in the space, {(xr, d)|xr ∈ [0, N − 1], d ∈ [0, D − 1]}.
As a preliminary condition, the costs and pointers of the nodes, {(0, d)|d ∈ [0, D − 1]}, must have
been determined in the previous initialization stage. The remaining nodes are subsequently visited and
computed, recursively (Figure 12.13). In the figure, the horizontal axis signifies the number of pixels,
while the vertical axis signifies the disparity. The maximum disparity level is denoted with thick lines.

0 N-D x r N-1
0

d

D-1

N-1

(a) Right reference

0 x l N-1D-1
0

d

D-1

N-1

(b) Left reference

0 x c 2N
0

N-1

N

d

D-1

(c) Center reference

Figure 12.13 The (x, d) space: left/right and center reference systems

348 Architectures for Computer Vision

The arrows indicate the computing direction of the nodes in a column, and this is represented by a vertical
line. In Figure 12.13(a), the search space is divided into two parts, inside and outside of the trapezoid.
Inside the trapezoid, all the nodes are mapped to a pair of corresponding images. Outside the trapezoid,
all the nodes are mapped only to the right image. In computing costs and pointers, the matching and
occlusion nodes must be dealt with differently. The computation proceeds along the computing costs and
pointers. The computation proceeds along the xr axis. The costs and pointers of the nodes at a point on
the computing costs and pointers. The computation proceeds along the xr axis are computed using the
costs and pointers of the nodes at the computing costs and pointers. The computation proceeds along the
xr − 1 axis. The nodes on the same axis are all independent, allowing for possible parallel computation.
For the occlusion nodes, the costs must be very large to prevent the optimal path from infiltrating this
forbidden region. The pointers, which will never be used, may be arbitrary in this region. The result is
the pointer array P = {𝜂(x, d)|x ∈ [0, N − 1], d ∈ [0, D − 1]}, where x = xr.

The left reference system has a similar interpretation. In Figure 12.13(b), the search space is S =
{(xl, d)|xl ∈ [0, N − 1], d ∈ [0, D − 1]}. The shape of the trapezoid and the search direction are all
opposite to those of the right reference system. The pointer array is also indexed in accordance with the
direction of the forward path: P = {𝜂(x, d)|x ∈ [0, N − 1], d ∈ [0, D − 1]}, where x = N − 1 − xl. This
makes the pointer table the same type for both reference systems.

The forward pass operation for the center reference system is shown in Figure 12.13(c). The search
space is S = {(xc, d)|xc ∈ [0, 2N], d ∈ [0, D − 1]} in this case. The shape of the search space is symmetric,
and so the search direction can be either forward or backward, but the result obtained may be different. For
the forward direction, the pointer table becomes P = {(xc, d)|xc ∈ [0, 2N], d ∈ [0, D − 1]}. The difficulty
of this system is that the region inside the trapezoid also contains both matching and occlusion nodes
(Figure 12.6(c)), which must be treated differently.

In designing the forward pass, we first describe the algorithm with a state diagram (Figure 12.14). The
diagram is common to both the right and left reference systems. The process starts at the initialization state,

x ← x 1+

(φ

φ

φ

p

φ

φ

p

(0, ·), (0, ·))η

η

ηη

d ← d 1+

N(2N)<x
Make
parent
node

Inside
Outside

D<d

Inside
node

update

Outside
node

update

(N − 1, ·)
(·, ·)

Inside

(x, d)
(x, d)

Outside

(x, d)
(x, d)

d = D

(x, ·)

Figure 12.14 The computation of the forward pass: 𝜑(x, d) and 𝜂(x, d) (the value in the parenthesis is
for the center reference system)

Dynamic Programming for Stereo Matching 349

with 𝜑(0, ⋅) and 𝜂(0, ⋅). The first state represents the big loop that computes in the direction of the column,
x = 0, 1,… , N − 1. The second state represents the sub-loop that computes the rows, d = 0, 1,… , N − 1.
In each of the rows in a given column, the node-pointer update is different, depending on whether the
node is a matching or an occlusion node. For a matching node, the costs and the pointers are updated
according to the DP equation. For an occlusion node, the cost must be given as an arbitrarily large number,
which prevents the backtracking from passing the region over the diagonal. However, this assignment is
not sufficient to prevent the optimal path infiltrating this forbidden region. A small addition to the large
number may cause an overflow, resulting in a wrong number. For this reason, the positions inside and
outside of the trapezoid must be considered in the node update.

For the center reference system, there are two differences in the flow graph. First, the column is limited
to x ≤ 2N. Second, the nodes inside the trapezoid are not all matching nodes. The mixed matching and
occlusion nodes inside the trapezoid must be dealt with differently.

Once all the nodes in a column are determined, the costs associated with the nodes present must be
stored as the parent nodes, so that in the next column, the current column can be used as parent nodes.
This series of computations completes one column and thus must proceed to the next column. When all
the columns have been visited, the forward pass is complete, having 𝜑(N − 1, ⋅) and 𝜂(N − 1, ⋅).

The concept in the diagram can be represented as the following Verilog code:

Listing 12.5 The Verilog DP machine: forward pass (5/7)

3: begin: FORWARD //DP forward pass

‘ifdef LRC

if (i < ‘WIDTH) begin: COLUMN //for each column

‘else

if (i < 2*‘WIDTH + 1’b1) begin: COLUMN //for each column

‘endif

if (jj < ‘DMAX) begin: ROW //for each disparity

case (statef)

0: begin: COST_INIT //initialization

statef <= 1; //next sub-state

count <= 0; //parent index

cost[jj] <= ‘INFTY; //cost reset

queue[i][jj] <= ‘DMAX - 1; //queue reset

end

1: ‘ifdef LRC

if (jj <‘WIDTH - i) begin: TRAPEZOID_IN //matching

if(count < ‘DMAX) begin: COMPARISON //shortest path

if (costp[count] < ‘INFTY) begin //avoid overflow

queue[i][jj]<= ((costp[count] + weight(count,jj))

< cost[jj])?(count): queue[i][jj];

cost[jj] <= ((costp[count] + weight(count,jj))

< cost[jj])?(costp[count] + weight(count,jj))

: cost[jj];

end

count <= count + 1’b1; //for each parent

end

350 Architectures for Computer Vision

else begin: COST_UPDATE //add ldistance

‘ifdef LEFT //left disparity

cost[jj] <= (ldistance + cost[jj])>>1;

‘else //right disparity

cost[jj] <= (ldistance + cost[jj])>>1;

‘endif

statef <= 0;

jj <= jj + 1’b1; //repeat disparity

end

stater <= 0; //if not upper TRAPEZOID

end

‘else

if ((jj <= i - 1) & (jj <= 2*‘WIDTH - i - 1)) begin: TRAPEZOID_IN

if ((i + jj) % 2 == 1) begin: MATCHING_NODE

if (count < ‘DMAX) begin: COMPARISON

if (costp[count] < ‘INFTY) begin //avoid overflow

queue[i][jj]<= ((costp[count] + weight(count,jj))

< cost[jj])?(count): queue[i][jj];

cost[jj] <= ((costp[count] + weight(count,jj))

< cost[jj])?(costp[count] + weight(count,jj))

: cost[jj];

end

count <= count + 1’b1; //for each parent

end

else begin: COST_UPDATE //add ldistance

cost[jj] <= (ldistance + cost[jj])>>1; //normalize

jj <= jj + 1’b1; //repeat disparity

statef <= 0;

end

end

else begin: OCCLUSION_NODE //outside TRAPEZOID

statef <= 0;

jj <= jj + 1’b1;

queue[i][jj] <= jj;

cost[jj] <= costp[jj] + ‘ALPHA; //assign penalty

end //smaller the smoother

stater <= 0;//if not upper TRAPEZOID

end

‘endif

else begin: TRAPEZOID_OUT //unobservable region

statef <= 0;

stater <= 0;

cost[jj] <= ‘INFTY; //assign big number

jj <= jj + 1’b1; //next disparity

end

Dynamic Programming for Stereo Matching 351

endcase

end //ROW

else begin

case (stater) //parent update

0: begin //initialization

stater <= 1; //next sub-state

count <= 0; //reset variable

end

1: begin: PARENT //main

if (count < ‘DMAX) begin //for each disparity

stater <= 1; //repeat state

costp[count] <= cost[count]; //copy

count <= count + 1’b1; //next disparity

end

else begin

stater <= 0; //reset sub-state

jj <= 0; //reset disparity

i <= i + 1’b1; //next pixel

end

end

endcase

end

end //COLUMN

else begin

state <= 4; //go to the next state

end

end //FORWARD

The forward pass consists of two loops (j and jj) as explained in the diagram. The internal loop (jj) is
further divided into two parts: ROW_1 and ROW_2. The first part, ROW_1, is for updating node costs and
pointers. The other part, ROW_2, is for collecting all the nodes and making them parent nodes. The two
parts must be separated, otherwise the updated parents may be used too early in the current loop.

The node updating, ROW_1, also consists of two sub-parts: TRAPEZOID_IN and TRAPEZOID_OUT.
One part is for updating the nodes inside the trapezoid; the other part is for updating the nodes outside
the trapezoid. The state of the matching nodes inside the trapezoid also contains a loop, for comparing
the costs of the possible parent nodes. In the center reference mode, the nodes inside the trapezoid are
further divided into matching and occlusion nodes. All the conditions – matching to matching, occlusion
to matching, matching to occlusion, and occlusion to occlusion – must be considered. In this code, the
transition from occlusion to occlusion is excluded.

Note that, in computing local costs, there are transformations from buffer to image plane. Some
parts of the code can be parallelized, whereas some other parts cannot be parallelized. The blocks,
COST_INIT, COST_UPDATE, TRAPEZOID_OUT, and PARENT are possible candidates for parallelization.
The block, TRAPEZOID_IN, however, is inherently serial. Note also that in COST_UPDATE, the cost
update is significantly different among the reference systems and thus must be chosen appropriately by
the compiler directives, ‘ifdef, ‘else, and ‘endif.

352 Architectures for Computer Vision

x ← x − 1

η(N − 1, ·) (η(2N, ·))

Pointer
table

Store
pointer

x > 0

pointer ← η(x, pointer)

Figure 12.15 The backward pass (The expression in the parenthesis is for the center reference system.
Others are for the left and right reference systems.)

12.12 Backward Pass
In Algorithm 12.1, the finalization is the computation stage that follows the forward pass and appears
before the backward pass. The purpose of this stage is to choose a starting point for the backward pass.
The starting point must be a node whose cost is minimal among the nodes in the final column. In the three
reference systems, this starting point is fixed to the last point of the triangle, making this stage almost
trivial. For the left and right reference systems, the starting point is 𝜂(N − 1, 0), because the configuration
of their pointer matrix is the same. However, the center reference system may start from either 𝜂(2N, 0)
or 𝜂(0, 0).

The backward pass (illustrated in Figure 12.15) starts when the finalization state is complete. Starting
from the end of the image pixel for the right reference system (reverse for the left reference system), the
pointers in the pointer array are read in succession. For each reading, the pointer is written as a result on
the disparity map. This concept is represented in the Verilog HDL as follows:

Listing 12.6 The Verilog DP machine: backward pass (6/7)

4: begin: FINALIZATION //DP finalization

state <= 5; //go to the next state

pointer <= 0; //starting pointer

count <= 0; //reset counter

end

5: begin: BACKWARD //DP backward pass

‘ifdef LRC //LR reference

if (count <‘WIDTH) begin

pointer <= queue[‘WIDTH - 1 - count][pointer]; //recursion

‘ifdef LEFT

res[id(0,count,0)] <= queue[‘WIDTH - 1 - count][pointer];

‘else

res[id(0,(‘WIDTH-count),-3)] <= queue[‘WIDTH-1-count][pointer];

‘endif

Dynamic Programming for Stereo Matching 353

‘else //center reference

if (count < 2*‘WIDTH + 1’b1) begin

pointer <= queue[‘WIDTH*2 - count][pointer];

‘ifdef LEFT //center left reference

res[id(0,(‘WIDTH - ((count+pointer-1)>>1)),- 3)]

<= queue[2*‘WIDTH - count][pointer];

‘else //center right reference

pointer <= queue[‘WIDTH*2 - count][pointer];

res[id(0,(‘WIDTH - ((count-pointer-1)>>1)),- 3)]

<= queue[2*‘WIDTH - count][pointer];

‘endif

‘endif

count <= count + 1’b1;

end else begin

state <= 6; //next state

count <= 0;

end

end

The disparity result is written to the first channel only. The two other channels are not used, but are
instead reserved for other possible algorithms. Note that there are coordinate transformations from the
buffer space to the image space. A combinational circuit is provided for monitoring the variables and
providing the appropriate coordinate values.

In this code, the disparity map is exactly the same size as the image, including the three channels. The
coordinates of the center reference system are also transformed to either the left or the right image plane.
The disparity buffer and RAM can more than store the disparity. Usually D ≪ N, and so the three channels
can more than represent the disparity range D, log2 D ≪ 24. This makes it possible to use the disparity
buffer and RAM otherwise, that is to store information other than the disparity, such as features and
other temporary results. We leave this possibility up to the actual applications that use the DP machine.

12.13 Combinational Circuits
The remaining parts are the combinational circuits and functions, which finish in the current simulation
time. There are three parts: coordinates transform, weight computation, and local cost computation. The
coordinates transform is for computing an array index from the given buffer coordinates, according to
Equation (12.14). This can be easily realized by the Verilog function.

The cost computation needs two distance measures: smoothness measure and local distance measure.
The smoothness measure is defined as an absolute of the two arguments:

𝜇(k, j) ≜ |k − j|. (12.22)

The local distance measure uses the same absolute measure:

𝜌(i, j) ≜ ||Il
R(i) − Ir

R(j)|| + ||Il
G(i) − Ir

G(j)|| + ||Il
B(i) − Ir

B(j)|| . (12.23)

However, in the actual code, it becomes somewhat complicated because of the boundary effect, neigh-
borhood computation, and the size of the strip. The use of neighborhoods can also be adopted in many
different ways. Instead of the sum of individual differences, average features or edges may be used.

354 Architectures for Computer Vision

All three effects are considered in the following listing:

Listing 12.7 The Verilog DP machine: functions (7/7)

//coordinates transformation: (row,column,channel) -> id

function [‘ADDR_BITS - 1:0] id;

input signed [9:0] row, column, channel;

begin

id = 3*(‘WIDTH*(((‘LINES-1)>>1)+ row) +column) + channel;

end

endfunction

//absolute distance measure with threshold

function [‘DATA_BITS - 1:0] weight; //smoothness constraint

input [‘DATA_BITS - 1:0] a, b;

begin

weight = (((a > b)? (a-b) : (b - a)) < 5)?

((a > b)? (a-b) : (b - a)): ‘DMAX; //threshold

end

endfunction

//image intensity distance measure

function [‘DATA_BITS - 1:0] distance; //intensity distance

input [‘DATA_BITS - 1:0] a, b;

begin

distance = (a > b)? (a-b): (b - a); //distance measure

end

endfunction

//corresponding points for the given disparity

‘ifdef LRC

‘ifdef LEFT //left coordinate

assign xl = ‘WIDTH-1-i;

assign xr = ‘WIDTH-1-i-jj; //right coordinate

‘else //right coordinate

assign xl = i + jj; //left coordinate

assign xr = i; //right coordinate

‘endif

‘else

assign xl = (i + jj - 1)>>1; //left coordinate

assign xr = (i - jj - 1)>> 1; //right coordinate

‘endif

//local distance: four-neighborhood

assign ldistance =

distance(img1[id(0,xl,0)],img2[id(0,xr,0)]) //center pixel

Dynamic Programming for Stereo Matching 355

+ distance(img1[id(0,xl,1)],img2[id(0,xr,1)])

+ distance(img1[id(0,xl,2)],img2[id(0,xr,2)])

//south neighborhood

+ ((‘LINES < 2)? 0:

(((distance(img1[id(1,xl,0)],img2[id(1,xr,0)]) //south neighbor

+ distance(img1[id(1,xl,1)],img2[id(1,xr,1)])

+ distance(img1[id(1,xl,2)],img2[id(1,xr,2)])

//north neighborhood

+ distance(img1[id(-1,xl,0)],img2[id(-1,xr,0)]) //north neighbor

+ distance(img1[id(-1,xl,1)],img2[id(-1,xr,1)])

+ distance(img1[id(-1,xl,2)],img2[id(-1,xr,2)])

//east neighborhood

+ (((xl < ‘WIDTH - 1) && (xr < ‘WIDTH - 1))? //east neighbor

distance(img1[id(0,(xl+1),0)],img2[id(0,(xr+1),0)]) //boundary

+ distance(img1[id(0,(xl+1),1)],img2[id(0,(xr+1),1)])

+ distance(img1[id(0,(xl+1),2)],img2[id(0,(xr+1),2)]): 0)

//west neighborhood

+ (((xl > 0) && (xr > 0))? //west neighbor

distance(img1[id(0,(xl-1),0)],img2[id(0,(xr-1),0)]) //boundary

+ distance(img1[id(0,(xl-1),1)],img2[id(0,(xr-1),1)])

+ distance(img1[id(0,(xl-1),2)],img2[id(0,(xr-1),2)]): 0))>>2)));

This template contains a local distance measure that uses four pixels from four-neighborhoods, together
with the center pixel. To turn on the neighborhood computation, the buffer must contain at least three
lines. Pixels beyond the boundary are assigned boundary values. However, mirror images or other types
of boundary definitions may be adopted in this function. Moreover, even though the neighborhood is
defined as a four-neighborhood system, it can be expanded to become a larger neighborhood system.
All the neighborhood definitions are possible because the buffer has a general design for storing a strip
instead of a single raster line. For better performance, the distance measure can be expanded to other
measures such as Pott’s model, edges, and features, instead of simple intensity values.

12.14 Simulation
We tested the code for both simulation and synthesis. There were numerous warning signals because
we emphasized readability over optimization. However, before actual implementation, the code must be
cleaned and optimized by rectifying as many of the warnings as possible.

The test images used were a pair of 225 × 188 images. The test images allowed us to test various
versions of the DP machine. The first possibility was the reference modes: left reference, right reference,
center reference right, and center reference left. The center reference has two modes, depending on
where the disparity map is projected: left image or right image plane. In terms of the distance measures,
there are numerous variations. The point operation and the neighborhood operations, in particular, must
be compared for performance.

The first sets of tests were point operations in the DP machine (Figure 12.16). Figures 12.16(a) and
12.16(b) are a pair of stereo images that have 225 × 188 pixels in three channels. The other images
are the disparity maps obtained by the DP machine. The performance depends on the parameters and
distance measures. As a first attempt, the disparity level, D, was restricted to 32, in order to observe

356 Architectures for Computer Vision

(a) Left image (b) Right image

(c) Left reference (d) Right reference

(e) Center Left reference (f) Center Right reference

Figure 12.16 Disparity maps: point operations

the range of the disparity. The smoothness parameter was also limited to 5. The penalty from matching
node to occlusion node was set to 10. In addition, the buffers contained only one line of images, which
automatically turned off the local neighborhood operations, retaining only point operations. The original
disparity map was a single channel gray map. For better rendering, the disparity map was made to three
channels, histogram equalized, and color-coded. The result was a color map, with each level represented
by a different color.

Figure 12.17 depicts the simulation results. Three lines are used to compute local distance in a
four-neighborhood system. The images in the second row (Figures 12.17(c) and 12.17(d)) are the

Dynamic Programming for Stereo Matching 357

(a) Left image (b) Right image

(c) Left reference (d) Right reference

(e) Center left reference (f) Center right reference

Figure 12.17 Disparity maps: four-neighborhood operations

disparity maps for the left and right reference systems, respectively. Of note is the fact that the left side is
poor in the left reference and vice versa in the right reference. The disparity maps for the center reference
are in the third row (Figures 12.17(e) and 12.17(f)). The disparity map is mapped to the left and right
image planes.

A comparison of the two sets of simulations, that is point operation and neighborhood operation,
easily shows the difference between them. The neighborhood operation provides a better disparity map
but uses more combinational circuits and functions.

358 Architectures for Computer Vision

Because the purpose of designing the DP machine is to provide a standard template, it is generally
configured with three buffers, which contain multiple lines, allowing possible neighborhood operations.
Equally important, the reference systems are all counted in the design, which can be turned on and off by
the header parameters. A simple condition on the transition between nodes is used in the center reference
system. The size of the images and the level of disparities are defined by the parameters. As a result,
advanced algorithms can be imported into this DP machine.

Problems
12.1 [Line processing] In a real-time system, the disparity for a line must be computed between the

intervals of two successive lines. For an M × N pixel with a 30 fps video stream, what is the time
interval between successive raster lines? How much time is allowed for each pixel?

12.2 [Computational space] In the right and left reference systems, if the disparity range is limited to
D ≤ N, how many matching nodes and occlusion nodes are there?

12.3 [Computational space] In the center reference system, if the disparity range is limited to D ≤ N,
how many matching nodes and occlusion nodes are there?

12.4 [Architecture] The three buffers are updated by shifting upwards and filling the bottom. What
else could be done instead of shifting?

12.5 [Overall scheme] The DP machine was designed with a large state machine. How can you design
it otherwise?

12.6 [FIFO buffer] The buffer is designed with the Verilog array. How can it be implemented
using a Verilog multidimensional array? What are the advantages and disadvantages of the
two methods?

12.7 [Reading and writing] In representing a line in the buffer, what is the equivalent representation
for res[0,0,k], where k ∈ [0, 3 ∗ WIDTH − 1]?

12.8 [Forward pass] In the forward pass, the previous column is searched for all nodes, with the expec-
tation that the occlusion nodes have a high cost. How can if (costp[count] < ‘INFTY) be
replaced otherwise?

12.9 [Forward pass] In choosing the smallest parent, the occlusion nodes are already assigned very
high costs in the previous loop, and thus, adding a smoothness penalty does not allow them to
be the parents. According to this observation, the conditions in the previous problem are not
necessary. What is the problem in this method for treating all the nodes in the column the same
way?

12.10 [Combinational circuits] What is the critical path that determines the fastest clock period?

References
Aho A, Hopcroft J and Ullman J 1974 The Design and Analysis of Computer Algorithms. Addison-Wesley.
Baker H and Binford T 1981 Depth from intensity and edge based stereo Proc. Seventh Int’l Joint Conf. Artificial

Intelligence, pp. 631–636.
Bertsekas DP 2007 Dynamic Programming and Optimal Control vol. 1,2. Athena Scientific.
Cormen T, Rivest CLR and Stein C 2001 Introduction to Algorithms second edn. The MIT Press.
Jeong H and Oh Y 2000 Trellis-based parallel stereo matching Proceedings of the IEEE International Conference on

Acoustics, Speech, and Signal Processing, Istanbul, Turkey.

Dynamic Programming for Stereo Matching 359

Jeong H and Park S 2004 Generalized trellis stereo matching with systolic array Lecture Notes in Computer Science,
vol. 3358, pp. 263–267.

Jeong H and Yuns O 2000 Fast stereo matching using constraints in discrete space. IEICE Transactions on Information
and Systems 83(7), 1592–1600.

Jeong H, Oh Y, Park J, Koo B and Lee SW 2002 Vision-based adaptive and recursive tracking of unpaved roads.
Pattern Recognition Letters 23(1), 73–82.

Knuth D 1997 The Art of Computer Programming. Addison-Wesley.
Ohta Y and Kanade T 1985 Stereo by intra- and inter-scanline search using dynamic programming. IEEE Trans.

Pattern Anal. Mach. Intell. 7(2), 139–154.

13
Systolic Array for Stereo Matching

In this chapter, following the single processor designed in Chapter 12, we design a systolic machine for
stereo matching. Although the two machines are structurally different, they are both based on the line
processing method (i.e. LVSIM) introduced in Chapter 4, which processes a frame line by line (or strip by
strip), using small internal buffers. The systolic array introduced in Chapter 4 is a linear array consisting
of many identical processors connected in a neighborhood fashion. This type of architecture is especially
effective for VLSI implementation because it has many advantages, such as a regular structure, identical
processors, neighborhood connections, and simple control.

This chapter first deals with the search space, because the problem is to find the path that incurs the least
cost. We derive a systolic array, which is an efficient machine for such problems, in a systematic manner,
following (Jeong 1984; Kung and Leiserson 1980; Leiserson and Saxe 1991). Using huge broadcasting,
we spatially and temporally transform a simple circuit that matches the left and right image streams for
disparity computation into the form of systolic arrays. The result is eight fundamental circuits that can
be classified into two types: forward backward (FB), in which the two signal streams flow in opposite
directions, and backward backward (BB), in which the two signals flow in the same direction. The
multitude of circuits arises from the dualism or degree of freedom originating from the data direction,
the head and tail, and the left right reference, resulting in the eight fundamental circuits.

We start designing FB and BB circuits, separately, as representative circuits, in Verilog HDL. The
major components of the circuits are the systolic array, where actual computation is executed, and a
control unit that drives the array. Although they look like datapath methods, both systems work in perfect
synchrony with a common system clock, without any intervening handshake messages except for a
starting signal, resulting in a very fast machine.

13.1 Search Space
For a pair of epipolar lines (Il(⋅, y), Ir(⋅, y)), the purpose of stereo matching is to find the disparity
that exists in the space {(x, d)|x ∈ [0, N − 1], d ∈ [0, D − 1]}, for the left right reference systems, and
{(x, d)|x ∈ [0, 2N − 2], d ∈ [0, D − 1]}, for the center reference system. The three types of spaces are
shown in Figure 13.1. The measurable region is the trapezoids, a subset inside the rectangular region,
formed by cutting the triangles. Areas out of this region are not observed by both cameras and are thus
are indeterminate in nature. An object surface must appear as a line connecting (0, d) and (N − 1, 0)

Architectures for Computer Vision: From Algorithm to Chip with Verilog, First Edition. Hong Jeong.
© 2014 John Wiley & Sons Singapore Pte. Ltd. Published 2014 by John Wiley & Sons Singapore Pte. Ltd.
Companion Website: www.wiley.com/go/jeong

http://www.wiley.com/go/jeong

362 Architectures for Computer Vision

0 N-D x r N-1
0

d

D-1

N-1

(a) Right reference

0 x l N-1D-1
0

d

D-1

N-1

(b) Left reference

0 D-1 N-1 2N-D-1
0

N-1

2N-2

d

D-1

(c) Center reference

Figure 13.1 The (x, d) space: left, right, and center reference systems

in the right reference, (0, 0) and (N − 1, d) in the left reference, and (1, 0) and (2N − 2, 0) in the center
reference. For the three reference systems, the regions inside the trapezoid are defined by

Rr = {(xr , d)|xr ∈ [0, N − 1], d ≤ min{D − 1, N − 1 − xr}},

Rl = {(xl, d)|xl ∈ [0, N − 1], d ≤ min{D − 1, xl}},

Rc = {(xc, d)|xc ∈ [0, 2N − 2], d ≤ min{D − 1, xc, N − 1 − xc}, xc + d = even}.

(13.1)

Note that in the center reference, only the nodes that satisfy xc + d = even can be projected onto both
images. In computing disparity, we use this equation as constraints on the search region.

In Chapter 12, we designed a DP machine that searches the solution space, column by column, as
indicated by the vertical line. However, in this chapter, we present other methods for scanning the space,
leading to the systolic array. We start the derivation of the array from a purely computational point of
view below.

Systolic Array for Stereo Matching 363

13.2 Systolic Transformation
We consider an array, {PE(d)|d ∈ [0, D − 1]}, where the processing elements are connected only between
neighbors. In Chapter 3, we encountered a linear systolic array that computes convolution. In that system,
the signal and the weights were the inputs, and the output was a weighted summation. The timing
relationship between filter weights, the input signal, and the output was the key to the design of that
array. Although seemingly different, the linear convolution and the disparity computation are, in fact, the
same concept. The disparity is the result of the spatial relationship between two images. If the images
are supplied by streams, the spatial relationship becomes the timing relationship. This transformation is
possible by tilting the vertical scan line, as shall soon be seen.

Let us derive such an array in a more systematic way. The general idea is to begin with a simple
circuit that we can easily understand; then we will modify the simple circuit to a more desirable form,
following some intermediate stages. The techniques used in this approach consist of topological and
timing transformation (Jeong 1984).

Before beginning, let us establish some data representation conventions. First, the image streams
consist of the right and left images, Ir(t) and Il(t), where t ∈ [0, N − 1]. In the array circuit, the timing
relationship between the two streams is the most important factor and we therefore consider only the
sequence order. The order of the stream might be head first, I = 0, 1,… , N1, or tail first, I = N1, N2,… , 0,
where Nx is an abbreviation for N − x. Second, the disparity is a nonnegative integer, satisfying

d(xr) = xl − xr ≥ 0, d(xl) = xr − xl ≥ 0. (13.2)

That is, in the right reference, the corresponding point in the left image is on the right of that in the right
image. Conversely, in the left reference, the corresponding point in the right image is on the left of that
in the left image. This property is essential in deriving the pipelined array with the two image streams,
where the processing elements are numbered with disparities.

Let us first start with the right reference system. One of the simplest forms is a circuit in which the
right image is broadcast to all the nodes and the left image is shifted into the nodes in a pipelined manner
(Figure 13.2(a)). The numbered nodes denote the processing elements PE(d) with d ∈ [0, D − 1], where
D = 3. The other two nodes are the hosts supplying the right and left images, as specified by the node
labels. In this case, the image stream advances in head-first order. There are two things to note about
the circuit. First, while the left image enters the array in its original order, the right image enters late, in
the amount of D − 1 clocks. This delay is indicated by introducing ‘don’t care’ in front of the right image
stream. Note that this delay keeps the two streams synchronized correctly, in such a way that at PE(d),
the right signal xr always encounters the left signal xl = xr + d.

Second, every edge between two nodes is blocked by a clocked register, although the edges from the
two sources are free from this constraint. This small circuit with D = 3 operates as follows. After two
clock periods, the two signals meet at the three nodes in pairs, PE(0) : (Ir(0), Il(0)), PE(1) : (Ir(0), Il(1)),
and PE(2) : (Ir(0), Il(2)). The relationship subsequently holds at all times, PE(0) : (Ir(t), Il(t)), PE(1) :
(Ir(t), Il(t + 1)), and PE(2) : (Ir(t), Il(t + 2)). Each node has only to compute the two incoming data
streams for its disparity computation. In this dynamical system, the spatial relationship (xr, xr + d), is
changed to the time relationship (t, t + d).

To describe the node behavior quantitatively, we use the notations Ii(d) and Io(d), respectively, for the
input and output to a node PE(d). Consequently, node PE(d) performs the following.

Il
o(d) ← Il

i (d),

y(d) ← T(Ir
i (d), Il

i (d)), ∀d ∈ [0, D − 1],
(13.3)

where T(⋅) denotes the operations for forward pass and y(d), the intermediate result.

364 Architectures for Computer Vision

0 1 2

r

l

xx012

012

(a) Broadcasting

0 1 2

r

l

xx012

012

(b) Routing

0 1 2

r

l

xxxx0x1x2

0x1x2

(c) Interleaving

0 1 2

r

l

xx0x1x2

0x1x2

(d) Redistributing registers

Figure 13.2 Deriving a systolic array, in which two image streams, Ir : xx012 and Il : 012, flow in the
opposite direction (the edges are pipelined, and the leading ‘x’ denotes ‘don’t care’)

This structure is very inefficient due to the broadcasting, which may be a major barrier to chip
implementation. To remedy this situation, we have to modify the circuit topology so that the connection
becomes regular and locally connected. Figure 13.2(b) depicts one way, among many, of delineating the
topology (Jeong 1984). (There are numerous different ways. See the problems at the end of this chapter.)
The three broadcasting edges from the right image source are reduced to one, while passing through
all the nodes. To be an equivalent circuit, the node functions must be changed in such a way that an
additional dummy input and output port that is internally connected to pass the input data to the output,
is added to the node:

Ir
o(d) ← Ir

i (d),

Il
o(d) ← Il

i (d),

y(d) ← T(Ir
i (d), Il

i (d)),

(13.4)

where the port Ir
o is added. This kind of node modification is trivial, and perfectly feasible.

The circuit topology is now regular, but the long combinational path still exists. We have to block all
such paths with registers. However, we cannot arbitrarily insert registers or change the number of registers
in the circuit because the timing relationship between data may be harmed. We have to consider using a
pipelining technique, after examining the circuit topology. The point to note is that the circuit consists
of three loops, each pipelined with a register. We need one more register to block the combinational
path in the loop. One way to increase the number of registers without violating the circuit function is
interleaving (or k-slow, in systolic terms). The penalty is that the circuit works at every other clock,
slowed down twice, although the interleaved data can be used otherwise. (See the problems at the end
of this chapter.) In Figure 13.2(c), the number of registers is doubled at all edges. Furthermore, the data
streams, including the leading delays, are also interleaved. Check that the interleaved ‘don’t care’ data,
apart from preserving correct synchronization of the data streams, do not affect the computation on the
normal data.

Systolic Array for Stereo Matching 365

The next step is to redistribute the registers so that all the edges are pipelined. This task can be done
by employing the retiming technique (Kung and Leiserson 1980). In Figure 13.2(d), the registers are
redistributed correctly. In fact, the two leading ‘don’t cares,’ which are equivalent to two register delays,
are carried along the paths. The result is that the leading ‘don’t cares’ are reduced by two and the registers
along the broadcasting path are increased by two. Consequently, the critical path is reduced to the node
delay, making the system very fast.

Incidentally, obtaining systolic arrays by topological and timing transformation has been studied in
detail (Jeong 1984; Leiserson and Saxe 1991). Starting from a basic circuit, we can derive many function-
ally equivalent alternative arrays. The concept involves a combination of timing, spatial regularity, and
duality. The circuit can be represented by an incidence matrix, whose elements represent vertex and edge
registers. The topological and timing transformation can be represented by similarity transformations.
In this chapter, we simply encapsulate the concept in an algorithm.

Algorithm 13.1 (Systolic transformation) Consider an array, {PE(k)|k ∈ [0, K − 1]}, having K
nodes, all connected between neighbors only. The input streams are x(t) and y(t) for t ∈ [0, T − 1].

1. Start from a basic circuit that has a large fan-out and a large fan-in. The node performs

xo(k) ← xi(k),

z(k) ← T(xi(k), yi(k)),

where T(⋅) is the internal operation and y is the intermediate result. The input streams are augmented
by leading ‘don’t cares,’ if necessary, to meet synchronization needs.

2. Remove the fan-in and fan-out edges by routing them in one of many directions through the nodes.
The node becomes

xo(k) ← xi(k),

yo(k) ← yi(k),

z(k) ← T(xi(k), yi(k)).

3. If a loop consists of E edges and R registers, multiply all the edges by a constant ‘c’ so that
c = argminc{cR ≥ E} and interleave the signals, including the leading delays, by c − 1 ‘don’t cares’.

4. Redistribute the registers so that all the edges are blocked by at least one register.
5. For dual circuits, repeat the process from the beginning.

In this formula, the broadcasting is generalized to the fan-in and fan-out, which are convenient for
representing computation but inconvenient for circuit implementation. For the dual circuit, the following
factors must be considered: the direction of routing, the signal directions, and the possibility of moving
the three signals – input data and the result. It is potentially possible to make all the data move around
the circuit, as evidenced by the circuits in Figure 3.10 in Chapter 3. With this concept as our basis, we
will further derive the dual circuits.

13.3 Fundamental Systolic Arrays
Thus far, we have derived one type of systolic array, in which the image streams move in opposite
directions. Intuitively, there must be another type of systolic array, one in which the two data streams
move in the same direction. Let us derive this type of array using Algorithm 13.1. (Figure 13.3.) The
starting graph is the same as before. In the second stage, however, the right image is routed in another

366 Architectures for Computer Vision

0 1 2

r

l

xx012

012

(a) Broadcasting

0 1 2

r

l

xx012

012

(b) Routing

0 1 2

r

l

xx012

012

(c) Inserting registers

0 1 2

r

l

xx012

012

(d) Redistributing registers

Figure 13.3 Deriving a systolic array, in which two image streams flow in the same direction

direction and, as a result, the two streams flow in the same direction. In this circuit, there is no loop
involved, so no interleaving is necessary. Consequently, pipelining can be easily achieved by supplying
registers from the source side. Of course, the number of additional registers must be just enough to
pipeline all the edges. Because there are two combinational edges, we need two additional registers.
As such, two registers can be inserted in front of the sources, without violating data synchronization.
(You may have to put in the lowest number of registers possible to save the registers and speed. In this
case, the number is D − 1.) The inserted registers are moved along the paths and allotted to each edge
in equal numbers (just one in this circuit). In addition, note that the transformation does not alter the
overall function. Each node receives the input data in the correct order. The only change is the lead or
lag between the host nodes and the arrays, which are not a problem from the viewpoint of the host. The
result is that the edges on the upper path are pipelined with one register, while the edges on the lower
path are pipelined with two registers. Like the original circuit, between the two paths, the time difference
is preserved. In this manner, the upper stream moves twice as fast as the lower stream but must initially
wait D − 1 clocks for correct synchronization. That is, the right image starts late but runs faster; the left
image starts fast but runs slower. Because of this difference, four cases of time difference, which we call
disparity, are possible. (We may call this circuit ‘tortoise and hare.’)

If duality is considered, many more circuits can be derived. In Figure 13.2, we assumed that the data
are entering head first. The duality to this data order is that the data enter in tail-first order. Although
there seems to be no benefit to this circuit, such a dual circuit actually exists. The basic circuit can be
redrawn as depicted in Figure 13.4. As a perfect dual condition, no leading ‘don’t care’ is needed at
this time. As before, the broadcasting paths can be detoured in two directions. When the detour path is
chosen as shown, the upper and lower paths are in the same direction. This circuit has no initial latency
as in Figure 13.2, but has final latency. We must wait D − 1 clocks more for output depletion after the
last set of data enters the circuit.

The last dual circuit is obtained by detouring the broadcasting path in another direction. This is the
dual circuit to Figure 13.3 Let us examine this circuit (Figure 13.5). When the right image is connected
to the last node, the resulting path consists of loops. The newly introduced path contains no registers

Systolic Array for Stereo Matching 367

0 1 2

r

l

N1 N2 N3

N3 N2 N1 N3 N2 N1

(a) Broadcasting

0 1 2

r

l

N1 N2 N3

(b) Routing

0 1 2

r

l

N1 N2 N3

N3 N2 N1

(c) Inserting registers

0 1 2

r

l

N1 N2 N 3

N3 N2 N1

(d) Redistributing registers

Figure 13.4 Dual to Figure 13.2. The data with bigger address (tail) comes first

and must be blocked. To secure more registers in the loops, we rely on an interleaving technique. As
in the previous examples, the number of registers is doubled and the input data streams are interleaved.
The resulting circuit is equivalent to the original only at even periods. The registers are redistributed
so that the combinational path is blocked. During this transformation, the input to the zero disparity
must be delayed with D − 1 clocks, the number of edges along the upper path. The result is a pipelined
circuit.

0 1 2

r

l

(a) Broadcasting

0 1 2

r

l

(b) Routing

0 1 2

r

l

N3 xN2 xN1 N3 xN2 xN1 xx

N1 xN2 xN3 N1 xN2 xN3

N3 N2 N1

N1 N2 N3 N1 N2 N3

N3 N2 N1

(c) Interleaving

0 1 2

r

l

(d) Redistributing registers

Figure 13.5 Dual to Figure 13.3. the data with bigger address (tail) come first

368 Architectures for Computer Vision

So far, we have derived four circuits for the right reference. If duality is considered, there must
be four more equivalent circuits for the left reference, in which only the two streams are switched as
inputs compared with the right reference system. Because there are so many circuits, we need a naming
convention that differentiates them. One important factor is the direction of the streams, forward or
backward, according to the array number. The other factor is the stream order, head or tail first. Yet
another factor is the reference system, right or left reference. Combining these factors, we arrive at
the eight circuits: FBR, FBL, BBR, BBL, FFR, FFL, BFR, and BFL, where F, B, R, and L represent,
respectively, forward, backward, right, and left. They are in some way or another all dual to each other.
Because many more circuits can be derived from these basic forms, we may call them fundamental
circuits. All the circuits are listed in Figure 13.6. The first four circuits are interleaved and the others are
not. The last four circuits need more registers, at the cost of original data ordering. All these circuits have
different properties. The circuits are, in fact, all computing with the center reference system. Actually,
the center reference is mapped to the right and left image coordinates, which we call center right and
center left systems. Among the center left and right reference systems, FBR, FBL, BFR, and BFL are
interleaved circuits. Circuits BBR and BBL have head-first streams but need initial delays, while circuits
FFR and FFL do not need initial delays but need tail-first streams.

According to Algorithm 13.1, there can be more equivalent circuits (see the problems at the end of
this chapter). However, the eight fundamental circuits are the most efficient in terms of complexity and
resource usage. Among the fundamental circuits, FBR is an identical circuit for center reference and
has been extensively studied (Jeong and Oh 2000; Jeong and Yuns 2000; Jeong et al. 2002). In the
following sections, we examine the properties of the fundamental circuits in more detail and choose the
best candidates for circuit design.

13.4 Search Spaces of the Fundamental Systolic Arrays
We can compare the eight circuits by observing how they behave in the search space. Conceptually,
the linear array is possible due to the slanted form of the scanning line, as opposed to the vertical line
in Figure 13.1. This interpretation gives us an idea of the properties of the circuits as well as other
possibilities (Figure 13.7). The solution space is defined by {(x, d)|x ∈ [0, N − 1]}. Depending on the
reference system, the region of observation is determined, as indicated by the shaded area. A linear array
corresponds to a line that scans the space. All the nodes in a line operate concurrently, finding their parent
pointers and updating their costs. A node, PE(d), must access previous nodes, PE(d), PE(d + 1), and
PE(d − 1), as shown, to determine a parent. The interleaved system, (a)–(d), corresponds to the circuits
where the line slope is greater than one (empty circles are introduced between filled ones). In a scan line,
two types of nodes operate alternately to match images. The remaining nodes must hold previous costs
and pointers, in order to operate again when their turns come. The circuits with slope one, (e)–(h), do
not need interleaving.

Although all the eight circuits are valid, they are not all the same in terms of performance. The first
factor affecting the performance is the starting points. Finding reliable parents heavily depends upon
the costs of the parent nodes. In BF and FF, the computation proceeds in the space from fewer nodes
to more nodes. On the other hand, in FB and BB, the computation proceeds in the opposite direction.
Thus, the latter circuits will provide us with results that are more reliable. As a result, we will design
circuits FBR (FBL) and BBR (BBL). The next factor is the form of the neighborhoods. In FBR, the
parent candidates are (x, d − 1), (x − 1, d), (x − 1, d + 1). Among the nodes, (x − 1, d) must be stored in
the previous scan line, where the corresponding node does not match anything but preserves the previous
cost and pointer. The node (x, d − 1) means that paths through this node are all mapped to the same image
point, which may give poor results. These properties hold for all the FB and BF type circuits. In BBR,
no occlusion node is involved, so all the nodes are busy during the forward computation. There is one

Systolic Array for Stereo Matching 369

0 1 2 3

I r =
1x 0x∗

I l =
0x1x2

(a) FBR

0 1 2 3

I l =
xN1 x∗

I r =
N1 xN2 x

(b) FBL

0 1 2 3

I r =
N1 xN2 x

I l =
N2 xN1 x∗

(c) BFR

0 1 2 3

I l =
N1 xN 2

I r =
xN1 x

(d) BFL

0 1 2 3

I r =

x∗ 012

I l =
012

(e) BBR

0 1 2 3

I l =
x∗N1

I r =
N1 N 2

(f) BBL

0 1 2 3

I r =
N3 N2 N1

I l =
N3 N2 N1

I r =
N3 N2 N1

I l =
N3 N2 N1

(g) FFR

0 1 2 3

(h) FFL

Figure 13.6 Eight fundamental systolic arrays for disparity computation (Na denotes N − a. x∗ denote
D − 1 number of ‘don’t cares’. In this case, D = 4)

constraint that limits the performance, the parent (x, d + 1), along which all the points map to the same
image point.

It is obvious that the scan line has two degrees of freedom – slope and direction – and thus results in
various dual circuits. If the slope is infinite, the scan line is a vertical line. In such cases, the computation
deviates from array, because one of the images must broadcast to the other every time the scan line
moves. The serial algorithm in Chapter 12 was designed for such cases. If the slope is less than unity,
the range of the neighborhood becomes large, deviating from the nearest neighborhoods.

370 Architectures for Computer Vision

10 x r N − 1

0

1

d

D − 1

(a) FBR

10 x l N − 1

0

1

d

D − 1

(b) FBL

10 x r N − 1

0

1

d

D − 1

(c) BFR

10 x l N − 1

0

1

d

D − 1

(d) BFL

10 x r N − 1

0

1

d

D − 1

(e) BBR

10 x l N − 1

0

1

d

D − 1

(f) BBL

10 x r N − 1

0

1

d

D − 1

(g) FFR

10 x l N − 1

0

1

d

D − 1

(h) FFL

Figure 13.7 The relationship between computation and linear array in the left right reference systems.
In this case, D = 5 and N = 6

Systolic Array for Stereo Matching 371

13.5 Systolic Algorithm
Let us now build a systolic system and algorithm on the basis of the eight fundamental systolic arrays.
In addition to forward processing, each processor must execute backward processing and other forms of
processing. This means that additional ports need to be added to the fundamental circuits. Fortunately,
these additional ports are the same for all of the fundamental circuits. In addition to passing image
streams, the internal operations are all associated with maintenance of the pointer table. The required
values are the costs from neighbor nodes and a bit, called the activation bit, denoting whether the
neighbor node is on the shortest path. Because the communication is bidirectional, the number of input
and output ports must be the same.

Considering all these facts, we can build two types of arrays, one type to perform forward processing
and the other to perform backward processing (Figure 13.8). The array consists of the processors PE(k),
where k ∈ [0, D − 1], and neighborhood connections among them. Although the registers are explicitly
shown, they must be absorbed into the output ports of the processors. A PE has a pair of input and output
ports for image, cost, and activity bits. Only the two end elements are connected outside as inputs. An
output port may be directly connected to the input port or driven by the internal register. The pointer
output is a two-bit line. All the outputs are connected by tri-state, driving a bus.

The two types of arrays can be further decomposed into two types of processors (Figure 13.9). In one
type of processor, the directions of the image ports are opposed, while in the other, they are the same.
When we build the algorithm, the controller must be described in terms of the arrays in Figure 13.8. The
algorithm for the processor must be based on the two types of processors depicted in Figure 13.9. The
following systolic algorithm must describe the internal operations of this basic element.

In order to be a systolic system, the systolic array must be aided by a control unit. Therefore, unlike
single processor algorithms, the array algorithm generally consists of two parts, one for the control unit
and the other for a single processing element. While the control unit drives the array as a whole, feeding
data and receiving the result, the processor only carries out its job on the entering data and outputs the

0 1 d · D 1

η

I1

I2

φ
φ
a

a

(a) The opposite direction

0 1 d · D 1

η

I1

I2

φ
φ
a

a

(b) The same direction

Figure 13.8 Complete form of fundamental systolic arrays for disparity computation (D1 means D − 1
for simplicity)

372 Architectures for Computer Vision

P E (x)

η

I1

φ

a

I2

φ

a

(a) The opposite direction

P E (x)

η

φ

a

I 1

I 2

φ

a

(b) The same direction

Figure 13.9 Two type of fundamental processing elements (the outputs ports are buffered by one or
two registers)

results. The job of a processor can be recognized by its identification and clock counts, as a node is
specified by (x, d) in the graph.

The control unit and systolic array are connected as depicted in Figure 13.10. The systolic array is one
of the two types shown in Figure 13.8. The control unit provides the image stream differently for each
of the eight types of systolic arrays in Figure 13.6 and receives the output from all the array elements
via a wired-OR bus. To avoid conflict, only one of the elements is allowed to emit the pointer, while the
others are in tri-state or all zero. In this manner, the pointer can be obtained by bit reduction. The control
mechanism is very simple because there is no handshake mechanism included between the control unit
and the systolic array. After the controller initiates the systolic array, the two systems work independently
but in synchrony with the common clock. Initially, the array element is in an idle state, waiting for the
initiation signal from the controller. However, the controller needs more time than the array because it
must do other jobs, such as updating the buffers, reading images from the RAMs into the buffers, and
writing results back to the RAM.

Because there are eight types of systolic arrays, we have to write a general algorithm. Algorithms
that are more detailed will follow in the later sections for particular circuits. As already explained,
the algorithm consists of two parts: control unit and systolic element. The control unit performs the
operations outlined in Algorithm 13.2.

Algorithm 13.2 (Control unit) Given (Ir, Il), do the following.

1. Initialization: align the two image streams in the array.
2. Forward pass: for t = 0, 1,… , N − 1, continue to feed the image stream.
3. Finalization: wait for the finalization, setting d(N) ← 0 (or d(0) ← 0).
4. Backward pass: for t = N − 1, N − 2,… , 0, d(t) ← d(t + 1) + 𝜂(t).

Control
unit

Systolic
array

(I l , I r)

η

Figure 13.10 The systolic array system

Systolic Array for Stereo Matching 373

The controller drives the systolic array, treating it like a black box. The purpose of the initialization
is to make the array satisfy a state just one clock before the forward pass. This condition can be met by
shifting the streams into the systolic array until the two streams fill all the registers but the last one. This
condition is necessary because in the beginning of the forward pass, the first data of the two streams
must meet at the last processor. The purpose of the forward pass is to feed the systolic array with the two
streams in synchrony. After waiting a period for the systolic to finalize its operation, the controller starts
to receive the disparity results from the systolic array. This value is differential, 𝜂 ∈ {1, 0,−1}, instead
of an absolute value and must therefore be accumulated. The initialization and forward pass depend on
the eight types of circuits but the finalization and the backward pass are all the same. This is because
all eight types of arrays use the same data structure for the pointers. It can be realized by an array or a
queue. (See the problems at the end of this chapter.)

As a companion to the control unit, an element of the systolic array is executing a predetermined
operation, as others, in synchronization with the system clock. The inputs are image, cost, and activity
bit, while the outputs are image data, cost, and activity bit.

Algorithm 13.3 (Processing element) For a processor PE(d), do the following.

1. Initialization: pass the image data.
2. Forward pass: for t = 0, 1,… , N − 1, read 𝜑(d + 1) and 𝜑(d − 1), determine 𝜂, and update 𝜑(d).
3. Finalization: set a(0) ← 1.
4. Backward pass: for t = N − 1, N − 2,… , 0, retrieve the pointer. If the active bit is true, set the activity

bit of one of the two neighbor PEs, as indicated by the pointer and output the pointer. Otherwise,
output high impedance.

The algorithm is designed for an individual element. All the elements carry out the same operation,
in perfect synchrony. Each element knows its state by the two values, node ID, which is the disparity
number, and the clock count, which is common to all. Once started by the controller, it operates itself up
to the end of the backward pass, and then returns to the wait state. In the initialization state, an element
simply passes the input image data in a predetermined number of times. In the end, its registers will all
be filled with the image data. It subsequently enters forward pass, executing the predefined operations on
the input images, passing the cost, and storing the pointer in its internal array. Finally, in the finalization
stage, a particular element is set with its activity bit, which is predetermined as the node for disparity
zero. The state then enters the backward pass, in which the pointer array is read, one of the two neighbors
are set or reset with the activity bits, and the pointer is issued. The pointer output may be disabled by
tri-state if it is not an active node.

The difficulty of the systolic array design lies in the preparation of the initial condition and the correct
synchronism in the data streams. Once synchronized perfectly, the system becomes a very fast circuit,
with no more intervening control messages. To cover the eight fundamental circuits in a compact code,
we have to make as many common constructs as possible. To design the circuit, let us first consider the
hardware platform that is commonly used for all types of circuits.

13.6 Common Platform of the Circuits
The basic structure of the systolic machine is analogous to the LVSIM but varies somewhat, as shown
in Figure 13.11. (Compare this with Figure 12.8.) Three buffers are the major data structures storing the
intermediate data. Two buffers, called the image buffers, store two rows of the images, left and right,
that are read from the two external RAMs. The difference is that these buffers are expanded with more
channels so that feature vectors can be stored too. The third buffer, called the disparity buffer, stores
the new disparity, updated in this period or the previous disparity result, read from the external RAM.

374 Architectures for Computer Vision

control

img1

I l

x
y

z

img2

I r

systolic array

res

D

Figure 13.11 The concept of the systolic systolic machine. The three buffers, img1, img2, and res,
respectively, store Il, Ir, and D, and the control unit controls the buffers and the systolic array

The three buffers are arrays with a three-dimensional structure in column (x), row (y), and channel (z),
following the image, I(x, y, z), where z signifies the channel. We usually store RGB in the first three
channels and the feature maps in the remaining channels. However, the number of channels may vary
from one to multiple channels, depending on the application. In addition to the expanded channels of the
image buffers, one more component is added – the systolic array.

With the four major resources, the processor executes the following operations, supervised by the
control unit. First, the processor reads the images and the previous disparity results, into the three
buffers. It then processes the images in the buffers (i.e. RGB channels in img1 and img2) and stores
the features in the remaining channels of the two buffers (i.e. channels 3, 4, 5, or 6 in img1 and img2).
The control unit constructs two streams of feature vectors out of the two image buffers and feeds them
to the systolic array as inputs. In the end, as the array emits a stream of disparity values, the control unit
stores them in the disparity buffer. The control unit returns to the beginning and repeats the same series
of operations. In this manner, the computation proceeds downwards for a pair of epipolar lines in the
image frames.

For possible neighborhood operation, we expand the buffer to a set of rows, that is strip instead of a
line of an image. The buffers are actually FIFOs, in which the images enter the bottom and leave the top
of the buffers. The three buffers are updated in synchrony. In this manner, the three buffers indicate the
same window of the image frame at all times. For the added preprocessing, the image buffers contain
more than three channels to store the feature maps. The intention is to update the contents of the buffer
center with the corresponding images.

Mathematically, the machine computes the following equations:

D(⋅, y, t) = T(Il(⋅, y), Ir(⋅, y), D(⋅, y, t − 1)), (13.5)

where Il(⋅, y) and Ir(⋅, y) are the image rows, including feature vectors, D(⋅, y) is the desired disparity, and
T(⋅) signifies the main operations of the stereo matching algorithm. In addition to Il(⋅, y) and Ir(⋅, y), the
computational structure may enable us to use all the other components in the buffer, as a neighborhood.
Moreover, the disparity buffer contains disparities, computed previously, in the current frame as well as
the previous frame. The computational resources enable us to conduct preprocessing, neighborhood, and
recursive operations, in addition to the primary algorithm, DP.

In the following sections, this system is used as a platform for the design of FB and BB circuits.

Systolic Array for Stereo Matching 375

13.7 Forward Backward and Right Left Algorithm
The first choice of the eight fundamental circuits is the FB system, which is characterized by the right
reference and the image streams moving in opposite directions. As dual circuits, FBR and FBL are the
same except for the fact that the roles of their two inputs are reversed. As a result, we can explain the
algorithm primarily in terms of FBR. The architecture of the FBR system is shown in Figure 13.12.
Initially, the left image shifts down the array to fill all the buffers but the last one. Subsequently, the right
image also enters the array, first meeting the left image at PE(0). During the forward pass, the cost ports,
𝜑, are active. The state then enters the backward pass, in which state the activity ports, a, are active. The
results drive the bus so that the output reaches the controller. As boundary conditions, the input ports
at the end processors must be terminated with suitable values. In this case, the terminal conditions are
𝜑 = ∞ and a = 0. The processors use the same values as the others, executing the same operations as
the others, and avoiding complicated logic for testing boundary conditions.

The search space and circuits are not enough to define a detailed algorithm. We need the most detailed
description, the timing diagram. This diagram may provide the precise operations of the controller and
the array element on the basis of clock ticks. Let us return to FBR in Figure 13.7(a). The figure describes
the search space, (x, d), and the computational order. By following the activities of the elements, we can
build a new space, (t, d), which we may call a timing diagram (Figure 13.13). The horizontal axis is the
time and the vertical axis is the disparity. In actuality, the graph, (t, d), is an affine transformation of
(x, d), in which the originally slanted scan line is erected into the vertical direction. Further, this space is
equivalent to that of the center reference. In the forward pass, the computation proceeds as indicated, and
the direction is reversed in the backward pass. The nodes on the computation line try to match images for
the costs and pointers or retain the previous costs and pointers, depending on the costs being compared.
The result is the pointer table, (𝜂, t). A possible solution may be the lines from ‘A’ to ‘B’, which can be

0

·

d

·

D − 1

φ
∞

a
0

φ
∞

a
0

Control

I l 0x1x2…=

I r = x∗ 0x1x …

η

Figure 13.12 The FBR system (x∗ denotes D − 1 ‘don’t cares’. Each out port is buffered by one register.
The input terminals are fixed with 𝜑 = ∞ and a = 0.)

376 Architectures for Computer Vision

0 1 t 2N − 2

0

1

d

D − 1

B

A

Figure 13.13 The computational space, (t, d), of FBR. In this case, D = 5 and N = 6. The dashed line
is a possible solution

traced during the backtracking. Note that the start point is fixed but the end point may be any point on
the left side of the trapezoid.

The algorithm must respect the trapezoid region and its boundary. The region is an affine transform
of that in the (x, d) space (refer to Figure 13.2(a)). For both FBR and FBL, the trapezoid is defined by

R =
{

(t, d)|d ≤ t, d ≤ N − 1 − 1
2

t, t ∈ [0, 2N − 2]
}
. (13.6)

The spaces (x, d) and (t, d) have the following relationship:

FBR : xr = (t − d)∕2, ∀t + d = even,

FBL : xl = (t + d)∕2, ∀t + d = even,
(13.7)

where t is again equivalent to the center reference coordinates.
Each processor must know where it is located in the space, especially in terms of the trapezoid. In the

forward pass, a processor is in one of the four states: out of the right side, on the left side, out of the
left side, matching node inside the trapezoid, and occlusion node in the trapezoid. The region located
out of the right side is the forbidden region and thus all the nodes there are assigned tri-state for the
pointer and a very large number for the cost. The tri-state logic allows us to bundle the outputs from D
processors into a line. (See the problems at the end of this chapter. The tri-state output can be used for a
wired-OR gate. The other alternative is logic zero; in which case, we can use bit reduction.) The high cost
simplifies the comparison in the event of parent decision. Even the boundary processors – PE(D − 1)
and PE(0) – are arranged to receive very high costs from their pseudo-neighbors. The nodes along the
left side are all the same points on the right image. They must be treated specially because they must be
the end of the shortest path. Beyond this side, the nodes are visited in the backtracking but should not
change the disparity value, which has already been determined on the left side. This policy needs to be
implemented using some technique during coding. Inside the trapezoid, the matching node is the major
place where the pointer and cost must be determined on the bases of neighbor costs and input images.
The comparison can be done without worrying about the boundary conditions because illegal nodes have
already been assigned very large numbers in the previous stages. The occlusion nodes do no matching

Systolic Array for Stereo Matching 377

but play the role of keeping cost and point to the previous matching node. The role of the node alternates
between matching and occlusion as we move along the timeline.

In the backtracking, node (2N − 2, 0), is the only starting node. There is only one starting node but there
are D possible end nodes, all located on the left side. The pointers must be compact, indicating relative
positions to the parents with three possible values, (−1, 0, 1). The true disparity is the accumulated value
of the pointers. After recovering the shortest path, the positions must be mapped to the right image, in
accordance with Equation (13.7).

Let us now formally describe the algorithm. To denote the connecting ports, we use the subscripts ‘i’
and ‘o’ for input and output ports, respectively, and ‘u’ and ‘d’ for upper and lower PE, respectively,
keeping in mind the structure, Figure 13.8.

Algorithm 13.4 (FBR: control) Given Ir = {Ir(0), x, Ir(1),⋯ , Ir(N − 1)} and Il = {Il(0),
x, Il(1), x,… , Il(N − 1)}, do the following.

1. Initialization: for t = 0, 1,… , D − 2, Il
i (D − 1) ← Il(t).

2. Forward pass: for t = 0, 1,… , 2N − 2, Ir
i ← Ir(t) and Il

i ← Il(t + D − 2).
3. Finalization: d(2N − 2) ← 0.
4. Backward pass: for t = 2N − 2, 2N − 3,… , 0,

d(t) ← d((t + 1)) + 𝜂(t),

disparity((t − d)∕2) ← d(t), if (t + d) = even.

The system is interleaved and thus twice the image width is needed for the clock period. As a result,
the length of the pointer array is 2N − 1. In the initialization state, the left image flows into the array,
filling the D − 1 registers. In the forward pass, there is an offset, D − 2, between the left and right image
streams. After the end of the left image stream, the flow continues with D − 2 more values, which may
be arbitrary. During the backward pass, the pointers are accumulated but sampled at even periods only.

All PE(d), d ∈ [0, D − 1], do the same operations. For convenience, let us use an indicator function,
I(x) = 1 if x ≠ 0 and I(x) = 0 if x = 0.

Algorithm 13.5 (FBR: processing element) For a processor PE(d), do the following.

1. Initialization: for t = 0, 1,… , D − 2, Ir
o ← Ir

i and Il
o ← Il

i .
2. Forward pass: for t = 0, 1,… , 2N − 2, do the following.

(a) Ir
o ← Ir

i , Il
o ← Il

i , 𝜑
u
o ← 𝜑, and 𝜑

d
o ← 𝜑.

(b) If d > t or d > 2N − 2 − t, then 𝜂 ← 0 and 𝜑 ← ∞. else if d = t, 𝜂(0) ← 0, then 𝜑 ← |Ir
i − Il

i |,
else if t + d = even,

𝜂(t) ← argmin
{
𝜑

u
i ,𝜑,𝜑d

i

}
,

𝜑 ← min
{
𝜑

u
i + 𝛼,𝜑d

i + 𝛼,𝜑
}
+ ||Ir

i − Il
i
|| .

else, 𝜂(t) ← 0 and 𝜑 ← 𝜑.
3. Finalization: a ← I(d = 0).
4. Backward pass: for t = 2N − 2, 2N − 4,… , 0,

au
o ← a ⋅ I(𝜂(t) = 1),

ad
o ← a ⋅ I(𝜂(t) = −1),

a ← a ⋅ I(𝜂(t) = 0) + au
i + ad

i .

378 Architectures for Computer Vision

In the initialization phase, PE(d) with d ≠ 0 is also assigned 𝜂 = 0. This simplifies the logic during
the backward pass operation. During that period, all PEs issue 𝜂 to the bus. Among them, only one PE
issues the desired pointer, the others do not. However, all the outputs are connected together, making a
bus. Therefore, the output of the unactivated PE must be zero (wired-OR) or tri-state (bus). We prefer
the former method, due to its simplicity. In the forward pass, 𝜂 ∈ {1, 0,−1} represents one of the three
parents, PE(d + 1), PE(d), and PE(d − 1). The search region is within the trapezoid, R in Equation
(13.6). A unmatched node within the trapezoid simply retains its previous cost and zero pointer.

For the FBL, Ir and Il are reversed in their roles and switched for their ports in the controller. However,
the systolic array is exactly the same. The algorithm describes the overall scheme but still misses some
details that are possible only in the actual coding. The following section explains the overall framework
of the Verilog HDL code.

13.8 FBR and FBL Overall Scheme
The specifications of the circuits can be defined by a header file, head.v.

Listing 13.1 The framework: head.v

//image property

‘define WIDTH 225 //image width (225)

‘define HEIGHT 188 //image height (188)

//memory property

‘define DATA_BITS 8 //word size

‘define ADDR_BITS 20 //max image size (17)

‘define LINES 3 //strip size -(L-1)/2, 0, (L-1)/2

‘define CHANNELS 6 //buffer channel, CHANNEL =1,2,3,...

‘define DMAX 32 //max disparity

//mode

//‘define LEFT //right or left reference mode

With the header keys, LEFT, we can specify one of the two modes: FBR and FBL. All the image and
disparity specs are defined by an M × N image, three buffers with L lines, and the disparity level D. There
can be one or more channels. One channel may signify mono, while additional channels may signify
RGB colors or feature maps. The maximum disparity level is D < N.

Next, for the main part, we design the system with two subsystems, one for the control, Algorithm
13.4, and the other for the systolic element, Algorithm 13.4. However, the control contains additional
tasks, in addition to the systolic control, such as buffer management, reading, and writing. The states and
their connections are illustrated by the state diagram in Figure 13.14. The system starts from buffer shift
for the control and from the waiting state for the array. The three buffers, left image, right image, and
disparity buffers, shift upwards, providing an empty line at the bottom of each buffer. In the next state, the
empty lines are filled with the data from the external RAMs. Although the data on the bottom of the buffer
are new, the data to be processed are located along the center of the buffer. The philosophy underlying this
arrangement is facilitation of the possibility of neighborhood processing. In this scheme, the pixels along
the buffer center can be grouped with their neighborhoods. The two systems are completely synchronized

Systolic Array for Stereo Matching 379

BUFFER
SHIFT

start

READING

PRE-
PROC

INITIALI-
ZATION

FOR-
WARD
PASS

FINALI-
ZATION

BACK-
WARD
PASS

WRITING

WAIT

start

INITIALI-
ZATION

FOR-
WARD
PASS

FINALI-
ZATION

BACK-
WARD
PASS

run

Figure 13.14 The state diagrams of the controller and the systolic array. The controller activates the
systolic array and synchronizes itself up until the end of backward pass

only in the DP computation – initialization, forward pass, finalization, and backward pass and decoupled
during the other periods. This synchronization is activated by a semaphore, which invokes the idling
processors. In the initialization state, the costs of the starting nodes are computed. The following state
is the forward pass, which recursively computes the costs and pointers, and writes the pointers into the
pointer matrix. When the forward pass ends at the final pixel position, the finalization process starts.
Among the final nodes, a node with the minimum cost must be determined. In BF circuits, this stage is
the most trivial because the node with the minimum cost is already known. From there on, the backward
pass starts, reading the pointers from the pointer matrix. When the computations hit the endpoint, they
restart and read the next lines of images. For real-time processing, the computation in a loop must be
completed within the raster scan interval.

The code, processor.v, is used to realize the control unit, Algorithm 13.4. Let us look at the overall
control framework, in which the states are removed and labeled instead.

Listing 13.2 The framework: processor.v

‘include ’head.v’

module processor(//DP stereo processor

input clock, reset,

output reg [‘ADDR_BITS - 1:0] i_raddr, r_raddr, r_waddr, //address bus

input [‘DATA_BITS - 1:0] i_rdata1, i_rdata2, r_rdata, //data bus

output reg [‘DATA_BITS - 1:0] r_wdata, //data bus

380 Architectures for Computer Vision

output reg r_wen //write enable

);

//working array: window of images

reg [‘DATA_BITS - 1:0] img1 [-((‘LINES-1)>>1):(‘LINES-1)>>1]

[0: ‘CHANNELS* ‘WIDTH - 1]; //1st image

reg [‘DATA_BITS - 1:0] img2 [-((‘LINES-1)>>1):(‘LINES-1)>>1]

[0: ‘CHANNELS* ‘WIDTH - 1]; //2nd image

reg [‘DATA_BITS - 1:0] res [-((‘LINES-1)>>1):(‘LINES-1)>>1]

[0: 3* ‘WIDTH - 1]; //disparity map

//variables

reg [‘ADDR_BITS - 1:0] k, K, idx, idx1,idx2; //variables

reg [9:0] row; //pointer

reg signed [9:0] J; //row in an image

reg [2:0] state; //state variables

reg [15:0] count; //count variable

reg run; //activate array

reg signed [7:0] disparity;

//inputs to the systolic array

reg [0:‘CHANNELS*‘DATA_BITS - 1] left_image, right_image;

//main part for the systolic system

always @ (posedge clock) begin: PROCESSING

if (reset) begin //initialize

state <= 3’b000; //global state

row <= 0;

k <= 0; //pixel address

count <= 10’h0;

run <= 1’b0;

end

else begin: MAIN

case (state) //state machine

3’b000: begin: BUFFER //buffer management

end

3’b001: begin: READING //RAM reading

end

3’b010: begin: PREPROCESSING

end

3’b011: begin: INITIALIZATION //fill the array

end

3’b100: begin: FORWARD //forward processing

end

Systolic Array for Stereo Matching 381

3’b101: begin: FINALIZATION //finalization

end

3’b110: begin: BACKWARD //backward processing

end

3’b111: begin: WRITE //RAM writing

end

default: state <= 3’b000;

endcase

end //MAIN

end //PROCESSING

//connection nets for the array

wire [‘CHANNELS*‘DATA_BITS-1:0]up[0:‘DMAX],down[0:‘DMAX];//image net

wire [7:0] upcost[0:‘DMAX],downcost[0:‘DMAX]; //cost net

wire upactive[0:‘DMAX], downactive[0:‘DMAX]; //active flag net

wire signed [1:0] disp[0:‘DMAX - 1]; //pointer net

wor signed [1:0] dispbus; //pointer bus

//feed the systolic array with the two image streams

‘ifdef LEFT //left reference

assign up[0] = left_image; //upward image

assign down[‘DMAX] = right_image; //downward image

‘else //right reference

assign up[0] = right_image; //upward image

assign down[‘DMAX] = left_image; //downward image

‘endif

//boundary conditions for the top and bottom PEs

assign upcost[0] = 8’hFF; //top boundary cost

assign downcost[‘DMAX] = 8’hFF; //bottom boundary cost

assign upactive[0] = 0; //bottom boundary active bit

assign downactive[‘DMAX] = 0; //top boundary active bit

//build a linear network of PE arrays by instantiation

genvar varx; //systolic array

generate

for (varx = 0; varx < ‘DMAX; varx = varx + 1) begin: SYSTOLIC_ARRAY

systolic #(varx) SYSTOLIC (//array ID

.clock(clock),

.reset(reset),

.upin(up[varx]), //image upstream link

.upout(up[varx + 1]),

.downin(down[varx+1]), //image downstream link

.downout(down[varx]),

.upcostin(upcost[varx]), //cost upstream link

.upcostout(upcost[varx+1]),

382 Architectures for Computer Vision

.downcostin(downcost[varx+1]), //cost downstream link

.downcostout(downcost[varx]),

.upactivein(upactive[varx]), //active bit upstream link

.upactiveout(upactive[varx+1]),

.downactivein(downactive[varx+1]), //active bit downstream link

.downactiveout(downactive[varx]),

.disp(disp[varx]), //pointer output (tri-state)

.run(run) //control signal

);

end

endgenerate

//combine the outputs of the systolic array to obtain a pointer

genvar p; //00, 01, 10, or ZZ

for (p =0; p < ‘DMAX; p = p + 1) begin: BUS

assign dispbus = disp[p]; //wired-OR D pointers

end //0 or 1 bit.

endmodule

Conceptually, the code realizes Algorithm 13.4. It consists of four parts: a procedural block, instantiation,
input, and output. The code instantiates the systolic array, SYSTOLIC, linking individual processing
elements to net arrays. Through the links, the streams of images (Il and Ir), cost (𝜑), and activation bits
(a) flow upwards and downwards, so that an element can receive the necessary data from both neighbors
and send the processed data to both neighbors. Note also that the processors located at the top and
bottom of the array are missing in one of the two neighbors. The streams from the missing neighbors
must be provided appropriately: 𝜑 = ∞ and a = 0. The terminal processor can then execute the same
neighborhood operations as the others. The control also plays the role of driver, supplying the array
with two image streams, in both directions. In FBR, the upstream is the right image and the downstream
is the left image. In FBL, the roles of the two images are reversed. Finally, the output is the pointers
from the array. Among the D elements, only one emits a valid pointer, a two-bit binary, while the others
emit tri-states or zero. To detect the valid pointer, we can combine the output lines via wired-OR. (See
the problems at the end of this chapter.)

The code for the processing element, systolic.v, realizes Algorithm 13.5. This code is instantiated
by the control to form an array, consisting of D elements. Each element executes the same operations,
depending only on the time and processor ID. The ID is assigned by the instantiation and the time is
known by the synchronized clock. No more handshaking is needed, sparing unnecessary communication
overhead. The system behaves like an engine, where all the operations are already predetermined by the
clock and processor identification.

Listing 13.3 The framework: systolic.v

‘include head.v

module systolic #(parameter ID = 0) (//processing element ID

input clock, reset,

Systolic Array for Stereo Matching 383

input [‘CHANNELS*‘DATA_BITS - 1:0] upin, //image upstream input

output reg [‘CHANNELS*‘DATA_BITS - 1:0] upout,//image upstream output

input [‘CHANNELS*‘DATA_BITS - 1:0] downin, //image downstream input

output reg [‘CHANNELS*‘DATA_BITS - 1:0] downout, //image down output

input [7:0] upcostin, //cost upstream input

output [7:0] upcostout, //cost upstream output

output [7:0] downcostout, //cost downstream output

input [7:0] downcostin, //cost downstream input

input upactivein, //active upstream output

output upactiveout, //active upstream output

input downactivein, //active down input

output downactiveout, //active down output

output signed [1:0] disp, //pointer output

input run //control input

);

reg [2:0] state; //state variable

reg [9:0] count; //count variable

reg signed [1:0] queue [0:2*(‘WIDTH - 1)]; //pointer array

reg [7:0] cost, costp; //child parent costs

wire [7:0] ldistance; //local distance

reg active; //activity bit

//state machine

always @(posedge clock) begin

if (reset) begin

state <= 3’b000;

count <= 10’h0;

end

else case (state)

3’b000: begin: IDLE //wait for activation

if (run) begin state <= 3’b001; //start processing

else state <= 3’b000; //idling

end

3’b001: begin: INITIALIZATION //pass the image streams

end

3’b010: begin: FORWARD_PASS //forward processing

end

3’b011: begin: FINALIZATION //define the start point

end

3’b100: begin: BACKWARD_PASS //backward processing

end

default: state <= 3’b000;

endcase

end

384 Architectures for Computer Vision

//drivers

//cost port drive

assign upcostout = costp; //output cost

assign downcostout = costp;

//active port drive //drive active bit

assign upactiveout = ((active) &

(queue[2*(‘WIDTH - 1) - count] == 1))? 1:0;

assign downactiveout = ((active) &

(queue[2*(‘WIDTH - 1) - count] == -1))? 1:0;

//disparity port drive //drive pointer

assign disp = (active == 1)? queue[2*(‘WIDTH - 1) - count]: 2’bZZ;

//functions //distance measure

function [‘DATA_BITS - 1:0] distance; //intensity distance

input [‘DATA_BITS - 1:0] a, b;

begin

distance = (a > b)? (a-b): (b - a); //absolute distance

end

endfunction

//local distance measure //local distance

assign ldistance =

(distance(upin[0 +: 8], downin[0 +: 8])>>2) //channel 0

+ (distance(upin[8 +: 8], downin[8 +: 8])>>2) //channel 1

+ (distance(upin[16 +: 8], downin[16 +: 8])>>2) //channel 2

+ (distance(upin[24 +: 8], downin[24 +: 8])>>1) //channel 3

+ (distance(upin[32 +: 8], downin[32 +: 8])>>1) //channel 4

+ (distance(upin[40 +: 8], downin[40 +: 8])>>1); //channel 5

endmodule

The code consists of four parts: a procedural block, driver, and cost computation parts. The procedural
block is a companion to that of the control unit and thus will be explained shortly together as a pair.
The purpose of the processor is to send the correct output to the output ports after undergoing internal
operations. The values to be sent to the output ports are the costs and the activation bits. Next, for
internal operation, local cost is needed in updating parent costs. This computation is realized with the
combinational circuit, which takes the two image data, computes the distance between them and supplies
it to the forward pass operation. The template shows a basic example, in which all the six channels are
used to compute the distance measure. In terms of the distance measure and the combination of channels,
schemes that are more elaborate must be adopted for better performance.

Now let us examine the parts of this system one by one in more detail.

13.9 FBR and FBL FIFO Buffer
The first state of the systolic machine is the buffer management. In this state, all the three buffers shift
upwards just one line and leave the last line empty. The purpose of the FIFO buffer is to store the raster

Systolic Array for Stereo Matching 385

(L − 1)/2

0

−(L − 1)/2

Left image buffer

img1

Right image buffer

img2

Disparity buffer

res

Figure 13.15 The three buffers: left image, right image, and disparity buffers

line and keep it stable during the disparity computation. Without the buffer, the same data must be read
from the external RAMs, possibly many times, because the disparity computation may use the same
pixel many times. The buffer could be just one line of an image or a set of lines. In the latter case,
neighborhood computation is possible. The neighborhood operation needs more than one line, typically
three lines for the four-neighborhood scenario. The three buffers are the windows, mapping the same
positions of the image plane. The basic goal is to update the centerline of the disparity buffer, using all
the other buffers. Because the position of the image that corresponds to the buffer center is changing,
it is required that that position be remembered in order to write the result back to the memory later. If
the local distance measure uses neighborhoods, then the image lines above and below the centerlines are
also used (Figure 13.15).

We may use a circular buffer or just an ordinary buffer in the design of such a buffer. For the circular
buffer, the insertion position changes every time a raster line is to be written. In the shift buffer, the
insertion position is fixed. We will follow the shift register method. The system contains three buffers,
one for the left image, one for the right image, and one for the disparity. The left right image buffers
have dimension, L × N × C, characterized by the number of lines, L, and channels, C. The image buffers
have more channels than required for the input images. The extra channels are used to store the features’
vectors obtained after preprocessing. Conversely, the disparity buffer has a smaller number of channels,
just enough to store the disparity map.

To code the buffers, we need to define the coordinates for the pixels in the buffers. The underlying
concept is that the array is numbered [−(L − 1)∕2, (L − 1)∕2], instead of [0, L]. This is done so as
to always make the centerline the origin and thereby the neighborhood pixels can be easily located.
Consequently, a pixel appears with different coordinates in image, buffer, and array. We have to know
the exact relationship among the coordinates (Figure 13.16). The image plane is defined as {(x, y)|x ∈
[0, N − 1], y ∈ [0, M − 1]}. The buffer space is defined as {(a, b, c)|a ∈ [−(L − 1)∕2, (L − 1)∕2], b ∈
[0, N − 1], c ∈ [0, C − 1]}. The corresponding Verilog array is {i|i ∈ [0, CLN − 1]}. If the origins are
defined in each space as shown, a pixel appears as (x, y), meaning column and row in the image plane,

x

y

M × N × 3

(x, y)
bC + c

a L × N × C

(a, b, c)

i

CNL

(i)

Figure 13.16 Three types of coordinates: image plane, buffer, and array

386 Architectures for Computer Vision

(a, b, c) in the buffer, meaning row, column, and channel, and as (i) element in the array. A point (a, b, c)
is mapped to i in the following way:

i = C(Na + b) + c. (13.8)

If the bottom of the buffer is written just with y′ image lines, a point (a, b, c) is mapped to (x, y) in the
following manner:

x = Cb + c,
y = (y′ − (L − 1)∕2 + a + M)%M.

(13.9)

The modulo arithmetic is necessary to manipulate the case when the raster line is located at the bottom
of the image. The transform from buffer to RAM is needed whenever the disparity map is to be written
to the external RAM.

The shift operation of the buffer is as follows:

Listing 13.4 Buffer: processor.v

3’b000: begin: BUFFER

if (count < ‘LINES - 1) begin: BUFFER_SHIFT //shift

if (k < ‘CHANNELS * ‘WIDTH) begin //pixels

img1[count-((‘LINES-1)>>1)][k] //buffer img1

<= img1[count-((‘LINES-1)>>1)+1][k];

img2[count-((‘LINES-1)>>1)][k] //buffer img2

<= img2[count-((‘LINES-1)>>1)+1][k];

res [count-((‘LINES-1)>>1)][k] //buffer res

<= res [count-((‘LINES-1)>>1)+1][k];

k <= k + 1; //next pixel

end

else begin

k <= 0; //reset pixel

count <= count + 1; //next line

end

end

else begin

state <= 3’b001; //next state

k <= 0; //for next state

count <= 0; //for next state

idx1 <= 0; //for next state

idx <= 0; //for next state

end

end

This is the first state in the main code. Three buffers are updated concurrently. Because the buffer is
represented by a three-dimensional array, in the sense of the Verilog array, two counters are used here,
rewarded by the easy coordinates. (See the problems at the end of this chapter.) Two contiguous lines

Systolic Array for Stereo Matching 387

are separated by the distance, CN, and thus shifting this amount is equivalent to shifting a row. Once the
shift operation has been completed, the operation moves to the next state, possibly by resetting variables.
This stage uses (2C + 3)NL space for three buffers and CN(L − 1) time. If the buffer contains a line, no
time is consumed here. For larger buffers, this part may take the longest time of all and thus must be
optimized by using dedicated buffers, or altered by directly reading from RAM, although some of the
functionality of the system may inevitably be lost.

13.10 FBR and FBL Reading and Writing
The next state is provided for filling the bottom of the buffer. We are now involved with three external
RAMs and three internal buffers. The three sets of data must be read from the RAMs and written to
the buffers, concurrently. The writing action is opposite to that of reading. However, in this case, only
the disparity buffer is stored. Because the most recent result is the centerline, it must be copied to the
external RAM.

The code reads as follows:

Listing 13.5 Reading and writing: processor.v

3’b001: begin: READING

if (row < ‘HEIGHT) begin: //fill the bottom

if (k < ‘CHANNELS * ‘WIDTH + 2) begin //for a row

i_raddr <= 3 * ‘WIDTH * row + k; //pixel address

if ((idx1%3) == 2) begin //RGB or feature maps

count <= count + 1; //count

end

//RGB channels

img1[(‘LINES-1)>>1][idx1+(‘CHANNELS - 3)*count]

<= i_rdata1;//load 1st image

img2[(‘LINES-1)>>1][idx1+(‘CHANNELS - 3)*count]

<= i_rdata2;//load 2nd image

res [(‘LINES-1)>>1][idx1] <= r_rdata; //load result buffer

idx1 <= idx; //2nd delay

idx <= k; //1st delay

k <= k + 1; //next block

end else begin

state <= 2; //go to the next state

k <= 0; //reset variable

J <= (‘LINES == 1)? row : //keep row number

((row - ((‘LINES - 1) >>1) + ‘HEIGHT) % ‘HEIGHT);

row <= row + 1; //next strip

end

end else begin

row <= 0; //hit the bottom

end

388 Architectures for Computer Vision

3’b111: begin: WRITING //write the result

if (k < 3 * ‘WIDTH) begin

r_wdata <= res[0][k]; //data

r_waddr <= 3*‘WIDTH * J + k; //compute actual addr

r_wen <= 1; //write enable

k <= k + 1; //next

end

else begin

state <= 0; //return to the top

k <= 0; //reset the variable

count <= 0; //reset the variable

end

end

The reading is somewhat involved because the RAM and the buffer has a different number of channels.
While a pixel is assigned three channels in RAM, the same pixel is represented by more than three
channels in the buffer. The read data must be written to the first three channels in each pixel.

This state reads a line and then stops until the whole loop is completed. Therefore, the line number
and the center of the buffer must be kept, throughout the loop. Two unit delays are introduced between
an item of data and the corresponding address. In the loop end, the range is extended so that the address
queue may be emptied and thus the data in the last part of the loop may not be lost.

The last state is reserved for writing, in which the disparity buffer is written to the external RAM. The
same contents of the disparity buffer is written into three channels, to make a gray level bitmap.

13.11 FBR and FBL Preprocessing
After the buffers are loaded, we can conduct preprocessing to extract features or filtering. In the image
buffers, the first three channels contain the source images in RGB format. The other channels, if available,
are provided for storing features. The preprocessing stage is a template provided for processing the image
channels and filling the feature channels. A basic example is to average vertically to obtain feature vectors.

Listing 13.6 Preprocessing: processor.v

3’b010: begin: PREPROCESSING //compute the features

if (k < ‘WIDTH -1) begin //for each pixel

img1[0][‘CHANNELS*k+3] <= (img1[0][‘CHANNELS*k]>>1)

+ (img1[-1][‘CHANNELS*k]>>2) + (img1[1][‘CHANNELS*k]>>2);

img1[0][‘CHANNELS*k+4] <= (img1[0][‘CHANNELS*k+1]>>1)

+ (img1[-1][‘CHANNELS*k+1]>>2) + (img1[1][‘CHANNELS*k+1]>>2);

img1[0][‘CHANNELS*k+5] <= (img1[0][‘CHANNELS*k+2]>>1)

+ (img1[-1][‘CHANNELS*k+2]>>2) + (img1[1][‘CHANNELS*k+2]>>2);

img2[0][‘CHANNELS*k+3] <= (img2[0][‘CHANNELS*k]>>1)

+ (img2[-1][‘CHANNELS*k]>>2) + (img2[1][‘CHANNELS*k]>>2);

img2[0][‘CHANNELS*k+4] <= (img2[0][‘CHANNELS*k+1]>>1)

+ (img2[-1][‘CHANNELS*k+1]>>2) + (img2[1][‘CHANNELS*k+1]>>2);

Systolic Array for Stereo Matching 389

img2[0][‘CHANNELS*k+5] <= (img2[0][‘CHANNELS*k+2]>>1)

+ (img2[-1][‘CHANNELS*k+2]>>2) + (img2[1][‘CHANNELS*k+2]>>2);

k <= k + 1;

end

else begin

state <= 3; //go to the next state

run <= 1; //start the array

k <= 0; //reset the variable

end

end

If the neighborhood operation is to be extended to the four neighbors, boundary conditions must be
considered, as in Listing 4.17. Note that, due to the new definition of the coordinates, the neighborhood
pixels can be easily located.

If the incoming image is black and white, the number of channels is just one or greater. If preprocessing
is needed, an additional channel may be added to store the feature map. In an actual system, this part
must be elaborated in such a way that the feature maps may affect the distance measure and the good
disparity result.

Up to this state, the controller does not yet invoke the systolic array. As soon as the preprocessing is
finished, a control signal, that is, ‘run,’ must be sent to the array, preemptively one clock before, so that
from the next initialization state, both control and systolic array can be synchronized.

13.12 FBR and FBL Initialization
From this state to the end of the backtracking, the control and the systolic array execute concurrently in
perfect synchrony. Therefore, the two systems must be explained together. According to Algorithms 13.4
and 13.5, the control supplies one stream of images and the array fills itself with the stream. Through
D − 1 clocks, D − 2 registers must be filled because, in the next state, the two streams must meet head
to head in FBR (tail to tail in FBL) at PE(0).

The control unit must build two streams of feature vectors, out of the image buffers, and possibly with
the disparity buffer and supply them on both terminals of the array.

Listing 13.7 Initialization: processor.v

3’b011: begin: INITIALIZATION //fill the array

if (k < ‘DMAX - 1) begin //D-2 deep

‘ifdef LEFT

right_image <= (!((2*‘WIDTH - 1 - k)%2))? 1’hx:{

img2[0][‘CHANNELS*((2*‘WIDTH-1 - k)>>1)], //R channel

img2[0][‘CHANNELS*((2*‘WIDTH-1 - k)>>1)+1],//G channel

img2[0][‘CHANNELS*((2*‘WIDTH-1 - k)>>1)+2],//B channel

img2[0][‘CHANNELS*((2*‘WIDTH-1 - k)>>1)+3],//feature map

img2[0][‘CHANNELS*((2*‘WIDTH-1 - k)>>1)+4],//feature map

img2[0][‘CHANNELS*((2*‘WIDTH-1 - k)>>1)+5] //feature map

};

‘else

390 Architectures for Computer Vision

left_image <= (k%2)? 1’hx: {

img1[0][‘CHANNELS*(k>>1)], //R channel

img1[0][‘CHANNELS*(k>>1)+1], //G channel

img1[0][‘CHANNELS*(k>>1)+2], //B channel

img1[0][‘CHANNELS*(k>>1)+3], //feature map

img1[0][‘CHANNELS*(k>>1)+4], //feature map

img1[0][‘CHANNELS*(k>>1)+5] //feature map

};

‘endif

k <= k+1;

end

else begin

state <= 3’b100;

run <= 0; //reset control

K <= k;

k <= 0;

end

end

In FBR, the left image flows down the array just before the bottom array, before the right image enters.
In FBL, the right image flows down while the left image is waiting. The difficulty is that the two streams
must be interleaved.

On the array side, the state is idle and waiting for the semaphore from the control unit. As soon as this
bit enters, the state changes to the initialization process:

Listing 13.8 Initialization: systolic.v

3’b000: begin: IDLE //wait for activation

if (run) begin state <= 3’b001; //start processing

else state <= 3’b000; //idling

end

3’b001: begin: INITIALIZATION //pass the image streams

if (count < ‘DMAX - 1) begin //for DMAX-2 times

downout <= downin; //downwards only

count <= count + 1’b1; //next clock

end

else begin

state <= 3’b010;

count <= 10’h0;

end

end

In this instance, the control and array are in perfect synchrony. Each processor passes the downstream
for the predetermined number of times: D − 2.

Systolic Array for Stereo Matching 391

13.13 FBR and FBL Forward Pass
The forward pass in Algorithms 13.4 and 13.5 is the core of DP. In this state, the control continues to
supply the image streams and the array while passing the streams, and computes the required operations,
through 2N − 1 clocks. The key operation is the computation of the cost and pointer for each processor,
providing a 2N − 1 long pointer array.

The control is relatively simple because the operation is simply to supply the data stream.

Listing 13.9 Forward pass: processor.v

3’b100: begin: FORWARD //forward processing

if (k < 2*‘WIDTH - 1) begin

k <= k + 1;

‘ifdef LEFT //left reference

if (‘DMAX % 2) begin: DMAX_ODD //DMAX odd

right_image <= ((k%2))? 1’hx: {

img2[0][‘CHANNELS*(‘WIDTH-1-((K+k)>>1))],

img2[0][‘CHANNELS*(‘WIDTH-1-((K+k)>>1))+1],

img2[0][‘CHANNELS*(‘WIDTH-1-((K+k)>>1))+2],

img2[0][‘CHANNELS*(‘WIDTH-1-((K+k)>>1))+3],

img2[0][‘CHANNELS*(‘WIDTH-1-((K+k)>>1))+4],

img2[0][‘CHANNELS*(‘WIDTH-1-((K+k)>>1))+5]

};

end else begin: DMAX_EVEN //DMAX even

right_image <= (!(k%2))? 1’hx: {

img2[0][‘CHANNELS*(‘WIDTH-1-((K+k)>>1))],

img2[0][‘CHANNELS*(‘WIDTH-1-((K+k)>>1))+1],

img2[0][‘CHANNELS*(‘WIDTH-1-((K+k)>>1))+2],

img2[0][‘CHANNELS*(‘WIDTH-1-((K+k)>>1))+3],

img2[0][‘CHANNELS*(‘WIDTH-1-((K+k)>>1))+4],

img2[0][‘CHANNELS*(‘WIDTH-1-((K+k)>>1))+5]

};

end

left_image <= (k%2)? 1’hx: {

img1[0][‘CHANNELS*(‘WIDTH-1-(k>>1))],

img1[0][‘CHANNELS*(‘WIDTH-1-(k>>1))+1],

img1[0][‘CHANNELS*(‘WIDTH-1-(k>>1))+2],

img1[0][‘CHANNELS*(‘WIDTH-1-(k>>1))+3],

img1[0][‘CHANNELS*(‘WIDTH-1-(k>>1))+4],

img1[0][‘CHANNELS*(‘WIDTH-1-(k>>1))+5]

};

‘else //right reference

if (‘DMAX % 2) begin: DMAX_ODD //DMAX odd

left_image <= (k%2)? 1’hx: {

img1[0][‘CHANNELS*((K+k)>>1)],

img1[0][‘CHANNELS*((K+k)>>1)+1],

392 Architectures for Computer Vision

img1[0][‘CHANNELS*((K+k)>>1)+2],

img1[0][‘CHANNELS*((K+k)>>1)+3],

img1[0][‘CHANNELS*((K+k)>>1)+4],

img1[0][‘CHANNELS*((K+k)>>1)+5]

};

end else begin: DMAX_EVEN //DMAX even

left_image <= (!(k%2))? 1’hx: {

img1[0][‘CHANNELS*((K+k)>>1)],

img1[0][‘CHANNELS*((K+k)>>1)+1],

img1[0][‘CHANNELS*((K+k)>>1)+2],

img1[0][‘CHANNELS*((K+k)>>1)+3],

img1[0][‘CHANNELS*((K+k)>>1)+4],

img1[0][‘CHANNELS*((K+k)>>1)+5]

};

end

right_image <= (k%2)? 1’hx: {

img2[0][‘CHANNELS*(k>>1)],

img2[0][‘CHANNELS*(k>>1)+1],

img2[0][‘CHANNELS*(k>>1)+2],

img2[0][‘CHANNELS*(k>>1)+3],

img2[0][‘CHANNELS*(k>>1)+4],

img2[0][‘CHANNELS*(k>>1)+5]

};

‘endif

end

else begin

state <= 3’b101;

k <= 0;

count <= 0;

end

end

The stream must be a smooth continuation from that of initialization. Complications arise, however, from
the combined effect of the left right mode, the interleaving, and the even and odd D. As a result, the four
cases shown arise. The control unit packs two image streams with the buffer contents and supplies them
in the predefined order to the systolic array.

The purpose of the array element in the forward pass is twofold: buffering two image streams and
determining a pointer and a cost value.

Listing 13.10 Forward pass: systolic.v

3’b010: begin: FORWARD_PASS //forward processing

if (count < 2*‘WIDTH - 1) begin //for 2N-1 clocks

downout <= downin; //pass downward stream

Systolic Array for Stereo Matching 393

upout <= upin; //pass upward stream

count <= count + 1; //next clock

if ((ID > count) | (ID > (2*‘WIDTH - 2 - count)))

begin: TRAPEZOID_OUT //out of the trapezoid

queue[count] <= 2’bZZ; costp <= 8’hFF; //tri-state pointer

end

else if (ID == count) begin: TRAPEZOID_LEFT_SIDE//left boundary

queue[count] <= 0; costp <= ldistance; //end points

end

else if ((count+ID)%2) begin: OCCLUSION_NODE//occlusion nodes

costp <= costp; //pass cost

queue[count] <= 0; //pass pointer

end

else begin: MATCHING_NODE //matching node

if ((costp <= downcostin) & (costp <= upcostin)) begin

costp <= (costp + ldistance)>>1;

queue[count] <= 0;

end

else if ((upcostin <= costp) & (upcostin <= downcostin))

begin

costp <= (upcostin + ldistance)>>1;

queue[count] <= -1;

end

else begin

costp <= (downcostin + ldistance)>>1;

queue[count] <= 1;

end

end

end

else begin

state <= 3’b011;

count <= 0;

end

end

The details of the task depend on where the element is located in (t, d) space. There are four possibilities.
The first possibility is that the position is located out of the right side of the trapezoid. In that case, the
cost is assigned a large number and the pointer is arbitrarily assigned, because it will never be accessed.
The second possibility is that the position is on the left side of the trapezoid, which is the end position in
the backtracking. Therefore, the cost and pointer are assigned a local cost and zero pointer, respectively.
Beyond the left side, the cost that was determined already in the previous endpoint must be maintained
until the loop ends. Inside the trapezoid, the position might be an occlusion, in which case the cost
and pointer must be retained until it becomes a matching node in the next clock. (A node alternates
between matching and occlusion.) Otherwise, it is the matching node and must be computed using the
normal Viterbi method. The basic operation is to compare the neighbor costs and decide on a parent.

394 Architectures for Computer Vision

The pointer is an incremental disparity, relative to the current node. This operation is the same for the
terminal elements in the bottom or top of the array because those processors are terminated with very
high costs, which prevent the possible shortest path intervening in those positions.

As shown in Listing 13.3, the local cost is computed with the image inputs by the combinational
circuit. There are many variations on the cost computation and weights on the neighborhood.

13.14 FBR and FBL Backward Pass
In Algorithms 13.4 and 13.5, the finalization is the computation stage that follows the forward pass; it
appears before the backward pass. The purpose of this stage is to choose a starting point for the backward
pass. The starting point must be a node whose cost is minimal among the nodes in the final column.
In FBR and FBL, this point is fixed to the last point of the triangle, making this stage almost trivial.
However, there are D candidate points in BFR and BFL, necessitating a full finalization process. As
such, the starting point is PE(0), which means the first pointer, 𝜂 = 0.

In the control side, this concept is represented in Verilog HDL as follows:

Listing 13.11 Backward pass: processor.v

3’b101: begin: FINALIZATION //synchronize

if (count <1) count <= count + 1;

else begin

state <= 3’b110;

k <= 0;

disparity <= 0; //initial disparity

end

end

3’b110: begin: BACKWARD //backward processing

if (k < 2*‘WIDTH - 1) begin

k <= k + 1;

disparity <= disparity + dispbus; //accumulate pointer

if ((disparity < 2*(‘WIDTH - 1) - k + 2)|

(!((2*(‘WIDTH - 1) - k - disparity)%2)))

begin: TRAPEZOID_LEFT //end boundary

‘ifdef LEFT //left reference

res[0][(3*(k+disparity)>>1)] <= disparity;

res[0][(3*(k+disparity)>>1)+1] <= disparity;

res[0][(3*(k+disparity)>>1)+2] <= disparity;

‘else //right reference

res[0][(3*(2*(‘WIDTH-1)- k - disparity)>>1)] <= disparity;

res[0][(3*(2*(‘WIDTH-1)- k - disparity)>>1)+1] <= disparity;

res[0][(3*(2*(‘WIDTH-1)- k - disparity)>>1)+2] <= disparity;

‘endif

end

end

else begin

Systolic Array for Stereo Matching 395

state <= 3’b111;

k <= 0;

end

end

In the backward block, the control receives the pointer via a wired-OR network. Among the D pointers,
only one is valid and the others are tri-states. The values are signed and thus accumulation gives the
disparity. This computation is done by the combinational circuit in Listing 13.2. One of the complicated
parts is the ending points along the left side of the trapezoid. The other part is the assignment of the
disparity to the correct pixel.

In the systolic array side, the role is to provide the control circuit with the pointer, driving a port with
a combinational circuit, as shown in Listing 13.3. The code for the systolic array is as follows.

Listing 13.12 Backward pass: systolic.v

3’b011: begin: FINALIZATION //define the start point

state <= 3’b100;

active <= (ID)? 0:1; //node (2N-2,0)

count <= 0;

end

3’b100: begin: BACKWARD_PASS //backward processing

if (count < 2*‘WIDTH - 1) begin

active <= (((active)&(queue[2*(‘WIDTH - 1) - count] == 0))

|(upactivein)|(downactivein))? 1:0; //update activity bit

count <= count + 1’b1;

end

else begin

state <= 3’b000;

count <= 10’h0;

end

end

Setting and resetting a one-bit flag, called the activation bit, is the key point in the operation. In the
finalization, the processor sets or resets its activation bit depending on whether its ID is d = 0.
The combination of the activation bit and the output of the pointer array create various cases. As
such, the activation bit is set or reset depending on the combined states. The pointer is output to the bus
when its activation bit is set. Otherwise, the output is a tri-state, which has no effect on the wired nets.

13.15 FBR and FBL Simulation
For simplicity, we did not correct the codes for numerous warnings. Most of the warning signals were for
the number casting from long to short word length. After checking whether the codes were synthesizable,
we observed the outputs.

396 Architectures for Computer Vision

(a) Left image (b) Right image

(c) Disparity map by FBL (d) Disparity map by FBR

Figure 13.17 Disparity maps: point operations (D = 32)

As before, the test images were a pair of 225 × 188 images. With these test images, we could test FBR
and FBL. The purpose of the simulation was to check the correctness of the code, not to optimize the
performance by applying advanced techniques, which are unclear and dependent on applications.

The starting point was the circuit with point operations (Figure 13.17). The top figures are a pair of
stereo images, having 225 × 188 pixels in three channels. The remaining images are the disparity maps
obtained by the systolic machines. The performance varied depending on the parameters and distance
measures. As one of the parameters, the disparity level, D was restricted to a value of 32, observing the
range of the disparity. No other parameters, such as smoothness, were adopted in the coding. For point
operation, the buffers were allowed to contain only one line of images, which automatically turned off
the local neighborhood operations. The original disparity map was a single channel gray map; however,
for better rendering, it was expanded to three channels, histogram equalized, and color-coded. The result
was a color map, with different levels represented by difference color.

Figure 13.18 depicts another set of simulation results. Three lines were used in computing local
distance in the four-neighborhood scenario. The images in the second row are the disparity maps for left
reference and right reference, respectively. Note that the left side is poor in the left reference, and vice
versa.

A comparison of the two sets of simulations – point operation and neighborhood operation – eas-
ily shows the difference. The neighborhood operation provides a better disparity map but uses more
combinational circuits and functions.

Systolic Array for Stereo Matching 397

(a) Left image (b) Right image

(c) Disparity map by FBL (d) Disparity map by FBR

Figure 13.18 Disparity maps: four-neighborhood operations (D = 32)

Because the systolic machine is being designed in order to provide a standard template, it is generally
configured with three buffers, containing multiple lines, which allow for possible neighborhood oper-
ations. Of equal importance is the fact that the reference systems are all counted in the design, which
can be turned on and off by the header parameters. A simple condition on the transition between
nodes is used in the center reference system. The size of the images and the level of disparities
are defined by the parameters. As a result, advanced algorithms can be imported into this systolic
machine.

13.16 Backward Backward and Right Left Algorithm
Of the eight fundamental systolic arrays, the second type is the arrays, BBR, BBL, FFR, and FFL, in
which the two image streams flow in the same direction (Figure 13.6). With the exception of their flow
directions and data ordering (head or data first), they are all equivalent. The BBR (and thus BBL) is the
most natural choice for a design because it features right reference and head-first data direction. Let us
proceed to the design of BBR and BBL.

The architecture of the BBR system is illustrated in Figure 13.19. Initially, while the left image shifts
down the array to fill all the buffers, the right image waits at PE(0). Subsequently, the two flows meet
and enter the forward pass. During this state, the cost ports, 𝜑, are actively used to transfer costs between
neighbor processors. After the input streams are exhausted, the state enters the backward pass, in which

398 Architectures for Computer Vision

0

·

d

·

D − 1

φ
∞

a
0

φ =
∞

a
0

Control

I r = x* 0x1x…

I l = 0x1x2…

η

Figure 13.19 The BBR system (x∗ denotes D − 1 ‘don’t cares’. Each out port is buffered by one or
two registers. The input terminals are fixed with 𝜑 = ∞ and a = 0.)

the activity ports, a, are activated to trace the processor along the shortest path. The results of all the
processors drive the same bus so that the output reaches the controller. The input ports located on both
ends of the array must be terminated with suitable values, 𝜑 = ∞ and a = 0, which are analogous to
boundary conditions. The end processors use these values and the values from others to execute the
same operations as others, free from testing boundary conditions, which make the computation very
complicated.

In order to design the system, it is essential that the algorithm be understood at the level of events.
That is, the exact tasks carried out by the controller and the array element in each clock tick have to
be known. Let us observe BBR in Figure 13.7(a). The figure describes the search space, (x, d), and the
computational order. Following the activities of the elements, we can build the space, (t, d), as shown
in Figure 13.20. The diagram shows the disparities computed and their respective times. In the forward
pass, the computation proceeds to the right, building pointers. The nodes on the computation line match
images for the costs and pointers or retain the previous cost and pointers. The result is the pointer table,
(d, t). In the backward pass, the direction is reversed, retrieving the pointers. A possible solution might
be the lines from ‘A’ to ‘B’, which must be traced in the backtracking. Notice that the ending point is
on the left side of the trapezoid. The actual matching occurs at t = N − D; thus, this position must be
redefined as the starting point of the computation. The repositioning may significantly reduce the amount
of computation because the time saved, N − D, is great if D ≪ N.

The side of the trapezoid is defined by the lines,

d = N − 1 − t, d = N − 1 − 1
2

t, ∀t ∈ [0, 2N − 2]. (13.10)

Systolic Array for Stereo Matching 399

0 N − D
2(N − D)

N − 1 t 2N − 2

0

1

d

D − 1

N − 1

d = N − 1 − 1
2 td = N − 1 − t

B

A

Figure 13.20 The computational space, (t, d), of BBR. Here, D = 5 and N = 6

In the graph, a node (t, d) corresponds to the point in both BBR and BBL:

x = t + d − N + 1, ∀t ∈ [N − D, 2N − 2]. (13.11)

(Compare this with Equation (13.7.)
Instead of designing the circuit from scratch, we can simply modify circuits that have already been

designed – in this case, FBR and FBL. One difference between the FB and BB types lies in the direction
of the data streams and the number of registers. Another important difference lies in their search spaces.
Before designing the circuit, let us first clarify the algorithm. Our objective is to build the circuit, depicted
in Figure 13.19, in accordance with the illustration in Figure 13.20.

Algorithm 13.6 (BBR: control) Given Ir = {Ir(0), x, Ir(1),… , Ir(N − 1)} and Il = {Il(0),
Il(1),… , Il(N − 1)}, do the following.

1. Initialization: for t = 0, 1,… , D − 2, Il
i (D − 1) ← Il(t).

2. Forward pass: for t = 0, 1,… , N + D − 2, Ir
i (D − 1) ← Ir(t) and Il

i (D − 1) ← Il(t + D − 2).
3. Finalization: d(N + D − 2) ← 0.
4. Backward pass: for t = N + D − 2,… , 1, 0,

d(t) ← d(t + 1) + 𝜂(t),

disparity(d + t − N + 1) ← d(t).

Notice that the time is reduced to N + D − 1 and so is the length of the pointer array. In the initialization
state, the left image flows into the array, filling the first D − 1 registers among the 2(D − 1) registers.
(Note that each processor has two output registers in the Il ports. Other ports are terminated with a
register, for example, in the FB series.) In the forward pass, there is an offset, D − 2, between the left
and right image streams. At the end of the left image, the flow continues with D − 2 more values, which
may be arbitrary. During the backward pass, the pointers are accumulated and mapped to the pixel in
every period.

400 Architectures for Computer Vision

Because they form a concurrent array, all PE(d), d ∈ [0, D − 1], do identical operations. The major
difference with respect to the FB series is the time period and boundary conditions.

Algorithm 13.7 (BBR: processing element) For a processor PE(d), do the following.

1. Initialization: for t = 0, 1,… , D − 2, Ir
o ← Ir

i , B ← Il
i , and Il

o ← B.
2. Forward pass: for t = 0, 1,… , N + D − 2, do the following.

(a) Ir
o ← Ir

i , B ← Il
i , Il

o ← B, 𝜑u
o,𝜑d

o ← 𝜑.
(b) If d < D − t − 1 or d > (N + D − 2 − t)∕2, 𝜂 ← 0 and 𝜑 ← ∞. else if d = D − t − 1, 𝜂(0) ← 0,

𝜑 ← |Ir
i − Il

i |, else

𝜂(t) ← argmin
{
𝜑

u
i + 𝛼,𝜑d

i + 𝛼,𝜑
}

,

𝜑 ← min
{
𝜑

u
i + 𝛼,𝜑d

i + 𝛼,𝜑
}
+ ||Ir

i − Il
i
|| .

3. Finalization: a ← I(d = 0).
4. Backward pass: for t = N + D − 1,… , 1, 0,

au
o ← a ⋅ I(𝜂(t) = 1),

ad
o ← a ⋅ I(𝜂(t) = −1),

a ← a ⋅ I(𝜂(t) = 0) + au
i + ad

i .

Note how one buffer, B, is introduced for delay in the left image stream. The algorithms are basic
frameworks and so have many details missing; these details are explained in the code section.

For BBL, Ir and Il, are reversed and switched for their ports in the controller. However, the systolic
array is exactly the same.

13.17 BBR and BBL Overall Scheme
Some parts of the code are exactly the same as that of the FB system – specifically, header (Listing 13.1),
buffer (Listing 13.4), reading and writing (Listing 13.5), and preprocessing (Listing 13.6) – and so only
the remaining parts (i.e. the parts that are different), namely, initialization, forward pass, finalization, and
backtracking, are explained in the following.

Algorithm 13.6 is realized by the code, processor.v. The overall framework of the code is:

Listing 13.13 The framework: processor.v

‘include ’head.v’

module processor(//DP stereo processor

input clock, reset,

output reg [‘ADDR_BITS - 1:0] i_raddr, r_raddr, r_waddr, //address bus

input [‘DATA_BITS - 1:0] i_rdata1, i_rdata2, r_rdata, //data bus

output reg [‘DATA_BITS - 1:0] r_wdata, //data bus

output reg r_wen //write enable

);

Systolic Array for Stereo Matching 401

//working array: window of images

reg [‘DATA_BITS - 1:0] img1 [-((‘LINES-1)>>1):(‘LINES-1)>>1]

[0: ‘CHANNELS* ‘WIDTH - 1]; //1st image

reg [‘DATA_BITS - 1:0] img2 [-((‘LINES-1)>>1):(‘LINES-1)>>1]

[0: ‘CHANNELS* ‘WIDTH - 1]; //2nd image

reg [‘DATA_BITS - 1:0] res [-((‘LINES-1)>>1):(‘LINES-1)>>1]

[0: 3* ‘WIDTH - 1]; //disparity map

//variables

reg [‘ADDR_BITS - 1:0] k, K, idx, idx1,idx2; //variables

reg [9:0] row; //pointer

reg signed [9:0] J; //row in an image

reg [2:0] state; //state variables

reg [15:0] count; //count variable

reg run; //activate array

reg signed [7:0] disparity; //disparity value

//input streams to the systolic array

reg [0:‘CHANNELS*‘DATA_BITS - 1] left_image, right_image;

//DP processing

always @ (posedge clock) begin: PROCESSING

if (reset) begin //initialize

state <= 3’b000; //initial state

row <= 0;

k <= 0; //pixel address

count <= 10’h0;

run <= 1’b0; //stop systolic array

end

else begin: MAIN //main part

case (state) //state machine

3’b000: begin: BUFFER //buffer management

end

3’b001: begin: READING //RAM reading

end

3’b010: begin: PREPROCESSING

end

3’b011: begin: INITIALIZATION //fill the array

end

3’b100: begin: FORWARD //forward processing

end

3’b101: begin: FINALIZATION //finalization

end

3’b110: begin: BACKWARD //backward processing

402 Architectures for Computer Vision

end

3’b111: begin: WRITE //RAM writing

end

default: state <= 3’b000; //fault recovery

endcase

end //MAIN

end //PROCESSING

//connections between array elements

wire [‘CHANNELS*‘DATA_BITS - 1:0] down1[0:‘DMAX], down2[0:‘DMAX];

wire [7:0] upcost[0:‘DMAX],downcost[0:‘DMAX]; //cost net

wire upactive[0:‘DMAX], downactive[0:‘DMAX]; //active flag net

wire signed [1:0] disp[0:‘DMAX - 1]; //pointer net

wor signed [1:0] dispbus; //pointer bus

//feed the systolic array with the image streams

‘ifdef LEFT //left reference

assign down1[‘DMAX] = left_image; //downward image 1

assign down2[‘DMAX] = right_image; //downward image 2

‘else //right reference

assign down1[‘DMAX] = right_image; //downward image 1

assign down2[‘DMAX] = left_image; //downward image 2

‘endif

//boundary conditions for the top and bottom array element

assign upcost[0] = 8’hFF; //bottom boundary cost

assign downcost[‘DMAX] = 8’hFF; //top boundary cost

assign upactive[0] = 0; //bottom active bit

assign downactive[‘DMAX] = 0; //top active bit

//build the systolic array by instantiation

genvar varx; //systolic array

generate

for (varx = 0; varx < ‘DMAX; varx = varx + 1) begin: SYSTOLIC_ARRAY

systolic #(varx) SYSTOLIC (//assign ID

.clock(clock), //to each element

.reset(reset),

.downin1(down1[varx+1]), //image input stream 1

.downout1(down1[varx]),

.downin2(down2[varx+1]), //image input stream 2

.downout2(down2[varx]),

.upcostin(upcost[varx]), //cost link

.upcostout(upcost[varx+1]),

.downcostin(downcost[varx+1]),

.downcostout(downcost[varx]),

Systolic Array for Stereo Matching 403

.upactivein(upactive[varx]), //active bit link

.upactiveout(upactive[varx+1]),

.downactivein(downactive[varx+1]),

.downactiveout(downactive[varx]),

.disp(disp[varx]), //pointer output

.run(run) //control signal

);

end

endgenerate

//combine the D systolic outputs

//one PE issues a pointer and others 00 or ZZ

genvar p;

for (p = 0; p < ‘DMAX; p = p + 1) begin: BUS

assign dispbus = disp[p]; //wired-OR

end

//compute the image pixel coordinates for the systolic array output

wire [15:0] pixel;

‘ifdef LEFT //left reference

assign pixel = k - disparity; //right image plane

‘else //right reference

assign pixel = disparity - k + ‘WIDTH - 1; //left image plane

‘endif

endmodule

Conceptually, the code realizes the circuit in Figure 13.19. The code consists of four parts: procedural
block, instantiation, data input, and data output. The procedural block realizes the state diagram in
Figure 13.14(a). Instantiation is done to build the systolic array, SYSTOLIC, linking individual processing
elements with net arrays. Through the links, the streams of image (Il and Ir), cost (𝜑), and activation bits
(a) flow upwards and downwards, so that an element can receive the necessary data from both neighbors
and send the processed data to both neighbors. Note also that the processors located on the top and
bottom of the array miss one of the two neighbors and thus must be terminated properly. The terminal
values are 𝜑 = ∞ and a = 0. In this manner, all the elements execute the same neighborhood operations
without worrying about their positions. This control unit also plays the role of driver, supplying the array
with two image streams, in the same direction. In BBR, the first port, with one buffer register, is for the
right image and the second port, with two buffer registers, is for the left image. In BBL, the roles of the
two images are changed. Finally, the output is the pointers from the array. Of the D elements, only one
emits a valid pointer, a two-bit binary, while the others are either tri-states or zero. To detect the valid
pointer, we can combine all the output lines via wired-OR logic (see the problems at the end of this
chapter).

The code for the processing element, systolic.v, is used to realize Algorithm 13.7. This code is
instantiated by the control unit to form an array of D elements. Each element executes the same operations,
depending only on the time and processor ID. The ID is assigned at the time of instantiation and is kept by
the synchronized clock. Thus, no handshake is needed, sparing unnecessary communication overhead.

404 Architectures for Computer Vision

The system behaves like an engine, in which all the operations are predetermined by the clock and
processor identification.

Listing 13.14 The framework: systolic.v

‘include ’head.v’

module systolic #(parameter ID = 0) (//processing element ID

input clock, reset,

input [‘CHANNELS*‘DATA_BITS - 1:0] downin1, //stream input 1

output reg [‘CHANNELS*‘DATA_BITS - 1:0] downout1, //stream output 1

input [‘CHANNELS*‘DATA_BITS - 1:0] downin2, //stream input 2

output reg [‘CHANNELS*‘DATA_BITS - 1:0] downout2, //stream output 2

input [7:0] upcostin, //cost upstream input

output [7:0] upcostout, //cost upstream output

output [7:0] downcostout, //cost downstream output

input [7:0] downcostin, //cost downstream input

input upactivein, //active up input

output upactiveout, //active up output

input downactivein, //active down input

output downactiveout, //active down output

output signed [1:0] disp, //pointer output

input run //control input

);

reg [2:0] state; //state variable

reg [9:0] count; //count variable

reg signed [1:0] queue [0:‘WIDTH+‘DMAX-2]; //pointer array

reg [7:0] costp; //child parent costs

wire [7:0] ldistance; //local distance

reg active; //activity bit

reg [‘CHANNELS*‘DATA_BITS - 1:0] downbuffer; //delay buffer

//state machine

always @(posedge clock) begin

if (reset) begin

state <= 3’b000;

count <= 10’h0;

end

else case (state)

3’b000: begin: IDLE //wait for activation

if (run) begin //check run

state <= 3’b001; //start processing

count <= 10’h0;

end

Systolic Array for Stereo Matching 405

else state <= 3’b000; //idling

end

3’b001: begin: INITIALIZATION //pass the streams

end

3’b010: begin: FORWARD_PASS //forward processing

end

3’b011: begin: FINALIZATION //find the start point

end

3’b100: begin: BACKWARD_PASS //backward processing

end

default: state <= 0; //fault recovery

endcase

end

//cost port drive

assign upcostout = costp; //cost output

assign downcostout = costp;

//active port drive //activity outputs

assign upactiveout = ((active)

& (queue[‘WIDTH+‘DMAX-2 - count] == 1))? 1:0;

assign downactiveout = ((active)

& (queue[‘WIDTH+‘DMAX-2 - count] == -1))? 1:0;

//disparity port drive //pointer output

assign disp = (count > ‘WIDTH + ID - 1)? 2’b00:

(active == 1)? queue[‘WIDTH+‘DMAX-2 - count]: 2’bZZ;//three regions

//distance measures

function [‘DATA_BITS - 1:0] distance; //intensity distance

input [‘DATA_BITS - 1:0] a, b;

begin

distance = (a > b)? (a-b): (b - a); //distance measure

end

endfunction

//local distance measure //local distance

assign ldistance =

(distance(downin1[0 +: 8],downin2[0 +: 8])>>2) //channel 5

+(distance(downin1[8 +: 8],downin2[8 +: 8])>>2) //channel 4

+(distance(downin1[16 +: 8],downin2[16 +: 8])>>2); //channel 3

//+(distance(downin1[24 +: 8],downin2[24 +: 8])>>2) //channel 2

//+(distance(downin1[32 +: 8],downin2[32 +: 8])>>2) //channel 1

//+(distance(downin1[40 +: 8],downin2[40 +: 8])>>2); //channel 0

endmodule

406 Architectures for Computer Vision

The code comprises four parts: procedural block, data output, and cost computation. The procedural
block is the companion to that of the control unit. The data output drives the ports to send the costs,
activation bits, and the pointer. In the internal operation, local cost is needed in order to update parent
costs. Therefore, the inputs are compared with appropriate distance measures. The template shows a
basic example, in which all the six channels are compared for absolute distance measure. The basic
scheme is to assign the first three channels to the RGB images and the remaining channels to the feature
maps. However, the number of channels is variable and any assignment to deal with various types of
images is possible.

13.18 BBR and BBL Initialization
This part of the code realizes the initiation in Algorithms 13.6 and 13.7. In these algorithms, the two
image streams flow into the array in a head-first manner. The purpose is to align the two image streams
before the main operation begins. The left image always leads the right image by D − 1 clocks; thus,
in this stage the first D − 2 registers are filled with the left image first. Then, at D − 1 clock tick, the
two streams first meet at PE(D − 1). In BBL, the streams flow in a tail-first manner and the right image
stream fills the array before the left image stream.

The control unit must build two streams of feature vectors from the image buffers, and possibly with
the disparity buffer, and supply them on the top of the array.

Listing 13.15 Initialization: processor.v

3’b011: begin: INITIALIZATION //fill the array

if (k < ‘DMAX - 1) begin //D-2 deep

‘ifdef LEFT //left reference

right_image <= {

img2[0][‘CHANNELS*(‘WIDTH-1 - k)], //R channel

img2[0][‘CHANNELS*(‘WIDTH-1 - k)+1], //G channel

img2[0][‘CHANNELS*(‘WIDTH-1 - k)+2], //B channel

img2[0][‘CHANNELS*(‘WIDTH-1 - k)+3], //feature map

img2[0][‘CHANNELS*(‘WIDTH-1 - k)+4], //feature map

img2[0][‘CHANNELS*(‘WIDTH-1 - k)+5] //feature map

};

‘else //right reference

left_image <= {

img1[0][‘CHANNELS*k], //R channel

img1[0][‘CHANNELS*k+1], //G channel

img1[0][‘CHANNELS*k+2], //B channel

img1[0][‘CHANNELS*k+3], //feature map

img1[0][‘CHANNELS*k+4], //feature map

img1[0][‘CHANNELS*k+5] //feature map

};

‘endif

k <= k+1;

end

else begin

Systolic Array for Stereo Matching 407

state <= 4;

run <= 0; //reset control

k <= 0;

end

end

Unlike FBR and FBL, the streams are not interleaved and the coding is straightforward. The code is
switched from BBR and BBL by the Verilog compiler directive.

On the array side, the system is originally in an idle state, waiting for the semaphore from the control
unit. As soon as this bit enters, the state changes to the initialization process. There exists one clock tick,
and thus the signal is sent just before entering this initiation state in the control side.

Listing 13.16 Initialization: systolic.v

3’b000: begin: IDLE //wait for activation

if (run) begin state <= 3’b001; //start processing

else state <= 3’b000; //idling

end

3’b001: begin: INITIALIZATION //pass the image streams

if (count < ‘DMAX - 1) begin //for DMAX-2 times

downbuffer <= downin2; //downwards only

downout2 <= downbuffer; //introduce register

count <= count + 1’b1; //next clock

end

else begin

state <= 2;

count <= 10’h0;

end

end

At this instance, the control and array are in perfect synchrony. Each processor passes the downstream
for the determined times, i.e. D − 2. There is a difference in FB and BB circuits in the amount of delays.
That is, there is a new buffer in the side of the left image stream and thus the input stream must pass two
registers before coming out of an element.

13.19 BBR and BBL Forward Pass
Compared to the FB algorithm, the forward pass in Algorithms 13.6 and 13.7 has a lot of differences,
especially in the systolic array.

On the control unit side, the code is relatively simple because the image streams flow in their original
ordering, without any interpolation involved. The period of this state is N + D − 2, greatly depending on
the disparity level. Compared with the period, 2N − 2, in the FB algorithm, we expect that this algorithm
is potentially very fast.

408 Architectures for Computer Vision

Listing 13.17 Forward pass: processor.v

3’b100: begin: FORWARD //forward processing

if (k < ‘WIDTH + ‘DMAX - 1) begin

k <= k + 1;

‘ifdef LEFT //left reference

right_image <= { //build rightstream

img2[0][‘CHANNELS*(‘WIDTH-1-(‘DMAX-1+k))], //offset

img2[0][‘CHANNELS*(‘WIDTH-1-(‘DMAX-1+k))+1],

img2[0][‘CHANNELS*(‘WIDTH-1-(‘DMAX-1+k))+2],

img2[0][‘CHANNELS*(‘WIDTH-1-(‘DMAX-1+k))+3],

img2[0][‘CHANNELS*(‘WIDTH-1-(‘DMAX-1+k))+4],

img2[0][‘CHANNELS*(‘WIDTH-1-(‘DMAX-1+k))+5]

};

left_image <= { //build left stream

img1[0][‘CHANNELS*(‘WIDTH-1-k)],

img1[0][‘CHANNELS*(‘WIDTH-1-k)+1],

img1[0][‘CHANNELS*(‘WIDTH-1-k)+2],

img1[0][‘CHANNELS*(‘WIDTH-1-k)+3],

img1[0][‘CHANNELS*(‘WIDTH-1-k)+4],

img1[0][‘CHANNELS*(‘WIDTH-1-k)+5]

};

‘else //right reference

left_image <= { //build left stream

img1[0][‘CHANNELS*(‘DMAX-1+k)], //offset

img1[0][‘CHANNELS*(‘DMAX-1+k)+1],

img1[0][‘CHANNELS*(‘DMAX-1+k)+2],

img1[0][‘CHANNELS*(‘DMAX-1+k)+3],

img1[0][‘CHANNELS*(‘DMAX-1+k)+4],

img1[0][‘CHANNELS*(‘DMAX-1+k)+5]

};

right_image <= { //build right stream

img2[0][‘CHANNELS*k],

img2[0][‘CHANNELS*k+1],

img2[0][‘CHANNELS*k+2],

img2[0][‘CHANNELS*k+3],

img2[0][‘CHANNELS*k+4],

img2[0][‘CHANNELS*k+5]

};

‘endif

end

else begin

state <= 5;

Systolic Array for Stereo Matching 409

k <= 0;

count <= 0;

end

end

The control unit constructs two image streams by concatenating one or more channels from the image
buffers. The two streams flow in either a head-first (right reference) or a tail-first (left reference) manner.
Between the two streams, there is a D − 1 delay. The stream must be a smooth continuation from that of
initialization.

On the systolic array side, the goal is to determine the pointers and update the costs. This is the most
delicate part of the BBR circuit.

Listing 13.18 Forward pass: systolic.v

3’b010: begin: FORWARD_PASS //forward processing

if (count < ‘WIDTH + ‘DMAX - 1) begin

downbuffer <= downin2; //pass downward stream 2

downout2 <= downbuffer; //introduce register

dout <= din; //pass downward stream 1

count <= count + 1; //next clock

if (((ID < ‘DMAX - count - 1)&(count < ‘DMAX)) //left outside

|(ID > ((‘WIDTH + ‘DMAX - 2 - count)>>1))) //right outside

begin: TRAPEZOID_OUT

queue[count] <= 2’bZZ; //tri-state pointer

costp <= 8’hFF; //big cost

end

else if (ID == ‘DMAX - count - 1)

begin: TRAPEZOID_LEFT_SIDE //left boundary

queue[count] <= 0; //end of path

costp <= ldistance; //end points

end

else begin: TRAPEZOID_IN //inside region

if ((costp <= downcostin) & (costp <= upcostin))

begin //𝜑(d)≤𝜑(d+1), 𝜑(d-1)

costp <= (costp + ldistance)>>1;

queue[count] <= 0;

end

else if ((upcostin <= costp) & (upcostin <= downcostin))

begin //𝜑(d-1)≤𝜑(d), 𝜑(d+1)

costp <= (upcostin + ldistance)>>1;

queue[count] <= -1;

end

else begin

410 Architectures for Computer Vision

costp <= (downcostin + ldistance);

queue[count] <= 1;

end

end

end

else begin

state <= 3;

count <= 0;

end

end

As in the FB circuit, the operation depends on where the element is located in (t, d) space, which is
characterized by the trapezoid. In the BB circuit, the shape of the trapezoid is somewhat complicated.
Because the left side is slanted, one more region appears on the left side of the search space. The first
case is when the position is located completely outside of the trapezoid. In this case, the cost is assigned
a large number and the pointer is assigned tri-state, because it may not affect the bus when connected
with other elements. The second case is when the position is on the left side of the trapezoid, which is
the end position in the backtracking. Therefore, the cost and pointer are assigned with local cost and
zero pointer, respectively. Inside the trapezoid, the normal forward operations must be performed. The
basic operation is to compare the neighbor costs in deciding on the parent. The pointer is an incremental
disparity relative to the current node. This operation is the same for the terminal elements in the bottom
or top of the array because those processors are terminated with very large costs, which prevent the
possible shortest path from advancing in those positions.

As shown in Listing 13.14, the local cost is computed with the image inputs by the combinational
circuit. This part, in particular, must be changed in more advanced schemes.

13.20 BBR and BBL Backward Pass
In Algorithms 13.6 and 13.7, the finalization is the computation stage that follows the forward pass and
appears before the backward pass. The purpose of this stage is to choose a starting point for the backward
pass. The starting point must be a node whose cost is minimal among the nodes in the final column. In
BBR and BBL, this point is fixed to the point of the trapezoid, that is PE(0), making this stage almost
trivial.

Unlike FB circuits, this part is somewhat complicated because of the introduction of a new region in
the search space. The region, outside of the left side, must be passed, with no effect on the accumulation
and pixel mapping. The more important operation is to compensate the missing pixels when 𝜂 = −1. The
circuits are characterized with the three parent candidates, (t − 1, d), (t − 1, d + 1), and (t − 1, d − 1). Of
the three candidate parents, (t − 1, d + 1) and (t − 1, d) map to the same pixel, xr, meaning step changes
in disparity. The point (t − 1, d − 1), however, maps to xr − 2, meaning that xr − 1 is undetermined.
Therefore, we have to fill this position, with the disparity at either of the two ends.

Listing 13.19 Backward pass: processor.v

3’b101: begin: FINALIZATION //synchronize

if (count <1) count <= count + 1;

else begin

state <= 3’b110;

Systolic Array for Stereo Matching 411

k <= 0;

disparity <= 0; //initial disparity

end

end

3’b110: begin: BACKWARD //backward processing

if (k < ‘WIDTH + ‘DMAX - 1) begin

k <= k + 1;

disparity <= disparity + dispbus; //accumulate pointer

‘ifdef LEFT //left reference

if (pixel < ‘WIDTH - 1) begin: BOUND //out of bound

if (dispbus == -1) begin: INTERPOLATION //interpolation

res[0][3*(pixel+1)] <= disparity;

res[0][3*(pixel+1)+1] <= disparity;

res[0][3*(pixel+1)+2] <= disparity;

end

res[0][3*pixel] <= disparity;

res[0][3*pixel+1] <= disparity;

res[0][3*pixel+2] <= disparity;

end

‘else //right reference

if (pixel <=‘WIDTH + ‘DMAX - 1) begin: BOUND //out of bound

if (dispbus == - 1) begin: INTERPOLATION //interpolation

res[0][3*(pixel-1)] <= disparity;

res[0][3*(pixel-1)+1] <= disparity;

res[0][3*(pixel-1)+2] <= disparity;

end

res[0][3*pixel] <= disparity;

res[0][3*pixel+1] <= disparity;

res[0][3*pixel+2] <= disparity;

end

‘endif

end

else begin

state <= 7;

k <= 0;

end

end

The disparity value is computed by the combinational circuit in Listing 13.13. The concept is as follows.
Each element issues a disparity output to the common bus. Of the D elements, only one element outputs
the disparity; all others output tri-state. Therefore, the feasible output can be detected by wired-OR logic.
In addition, the computation region must be restricted, because the path ends early at the left side of the
trapezoid; thus, the disparity sequence may be shorter than N + D − 2.

412 Architectures for Computer Vision

In the systolic element, the backward pass reads as follows:

Listing 13.20 Backward pass: systolic.v

3’b011: begin: FINALIZATION //start point

state <= 3’b100;

active <= (ID)? 0:1; //node (N+D-2,0)

count <= 0;

end

3’b100: begin: BACKWARD_PASS //backward processing

if (count < ‘WIDTH + ‘DMAX - 1) begin

active <= (((active)&(queue[‘WIDTH+‘DMAX-2 - count] == 0))

|(upactivein)|(downactivein))? 1:0; //update activity bit

count <= count + 1’b1;

end

else begin

state <= 0;

count <= 10’h0;

end

end

The active bits are the major mechanism to trace back the shortest path. The disparity output is computed
by the combinational circuit in Listing 13.14. A somewhat complicated situation occurs when the
computation crosses the region left of the trapezoid: in order not to affect the accumulation operation,
the pointer is set to zero.

A review of the codes shows that this circuit is simpler than FB in data streaming but complicated in
its management of boundary conditions. Interleaving is not involved in the filling of the empty pixels,
but interpolation is. We can expect the disparity result to be jumpy on the right side and smooth on the
left side in the BBR circuit. The reverse holds for the BBL circuit.

13.21 BBR and BBL Simulation
We used sample images – a pair of 225 × 188 images-to test BBR and BBL. Figure 13.21 depicts the
simulation results. Three lines are used in computing local distance in four-neighborhood. The images in
the second row are the respective disparity maps for left reference and right reference. Notably, the left
side is poor in the left reference and vice versa for the right reference. The disparity maps for the center
reference are placed in the third row. The disparity map is mapped to the left image plane and the right
image plane.

By comparing the two sets of simulations – FB and BB, a difference can easily be seen. The FB circuits
provide better performance. One of the reasons for this is that in BB circuits one of the three parent
nodes is abnormal. Unlike FB circuits, in which all three candidate nodes denote three different pixels,
in a BB circuit one of the parent nodes maps to the same pixel. In addition, the other parent candidate
maps to the pixel that is two units away from the current pixel. Therefore, the pixel that is skipped must
be interpolated one way or another. The template simply copies the previous node to fill in for the node
that has been skipped, which may raise problems around boundaries.

Systolic Array for Stereo Matching 413

(a) Left image (b) Right image

(c) BBL (d) BBR

Figure 13.21 Disparity maps: four-neighborhood operations (D = 32)

From a performance standpoint, the FB series appears to be better than the BB series circuits.
Conversely, from a computational standpoint, the opposite holds. The FB series is somewhat complicated
because of the need for leading delays in the image streams and the use of interleaving. The BB series
does not need such complications; the left boundary of the trapezoid is instead somewhat complicated,
resulting in the array element needing more logic. In the BB series, the computation range is significantly
shorter, specifically, N + D, than 2N − 1 in the FB series.

The eight fundamental circuits are defined in Figure 13.6. Of these eight circuits, we have so far
designed only four: FBR, FBL, BBR, and BBL. The remaining circuits, BFR, BFL, FFR, and FFL,
can however be derived from FBR, FBL, BBR, and BBL, respectively, by inverting either their data
directions or their data streams. The duality occurs due to their coordinates systems, stream directions,
and data directions.

The DP algorithm for stereo matching has been realized in two directions: a single processor (specif-
ically, a DP machine) and an array (specifically, a systolic machine), in Chapter 12 and in this chapter,
respectively. As all the circuits are now available, we can compare the two systems. From a computational
standpoint, the array implementation is very fast: O(N2D) vs. O(N). One of the reasons is the fact that
the D nodes are executed serially in single processors while they are processed concurrently in array
processors. It is natural that the need for space is opposite to the need for speed. The other reason is that
there is a full range of parent candidates in the single processor while it is limited to neighborhoods in
the array processor. The smaller neighborhood contributes a speed factor of N to the array processor.
Thus, from a performance standpoint, the single processor is much better than the array processor. The
main reason is of course the wider neighborhood range.

414 Architectures for Computer Vision

In any case, the DP algorithm is based on line processing, which is naturally faster than the others,
but is destined to be poorer than frame processing. The results are always horizontal noise (or vertical
instability), because the lines are processed independently. To compensate for this weakness, we can
use various methods. One such method is to combine the results from the right and left references.
This requires some kind of occlusion detection and a filling of the gaps with suitable disparity. Another
method is preprocessing for vertical smoothing, because the line-based method is poor in the vertical
variation. To remedy the vertical independence, we may rely on segmentation such as soft matting. When
the segmented result is used as the input features, the resulting disparity map is more likely to be stable
in vertical variation. The final attempt might be the fusion of other vision modules or the expanded DP,
which may help the stereo matching.

Problems
13.1 [Systolic transform] In the text, the possibility of many more equivalent circuits was mentioned.

Explain this possibility.

13.2 [Systolic transform] In Figure 13.2, the array size is D = 3. For a general D, how many ways are
there to route the broadcast paths?

13.3 [Systolic transform] In Figure 13.2, the routing is chosen in such a way that the right image
enters PE(2). Derive a new circuit in which the right image enters PE(1). Discuss the property
of the new circuit in terms of FB and BB type circuits.

13.4 [Systolic transform] Repeat the previous problem for the circuit in Figure 13.4.

13.5 [Systolic transform] In Figure 13.2, the edges are multiplied by two for the number of registers,
and the resulting system becomes an interleaved circuit, called 2-slow. This operation must affect
both the number of registers and the input streams. Derive an equivalent circuit that is 3-slow.
Check the correctness of the circuit by counting the number of delays from each node.

13.6 [Systolic transform] It is possible to create another circuit from the above circuit by distributing
the registers differently. Derive the equivalent circuit that has the registers distributed differently.

13.7 [Systolic transform] By analyzing the previous two examples, draw a general principle for k-slow
circuits.

13.8 [Systolic algorithm] In FBR, what are the coordinates of the parent nodes? What kind of
performance can be expected from such a parent formation?

13.9 [Systolic algorithm] Repeat the same discussion as above for BBR (Figure 13.6(e)).

13.10 [Overall scheme] In Listings 13.2 and 13.13, the output of the D elements are gathered by
wired-OR.

wor signed[1:0] dispbus;

genvar p;

for (p =0; p < ‘DMAX; p = p + 1) begin: BUS

assign dispbus = disp[p];

end

If the elements emit 2’b00 instead of 2’bZZ, how must this combinational circuit be
changed?

13.11 [Overall scheme] Discuss the new ideas for improving the systolic arrays.

Systolic Array for Stereo Matching 415

References
Jeong H 1984 Modeling and transformation of systolic network Master’s thesis Massachusetts Institute of Technology.
Jeong H and Oh Y 2000 Trellis-based parallel stereo matching Proceedings of the IEEE International Conference on

Acoustics, Speech, and Signal Processing, Istanbul, Turkey.
Jeong H and Yuns O 2000 Fast stereo matching using constraints in discrete space. IEICE Transactions on Information

and Systems 83(7), 1592–1600.
Jeong H, Oh Y, Park J, Koo B, and Lee SW 2002 Vision-based adaptive and recursive tracking of unpaved roads.

Pattern Recognition Letters 23(1), 73–82.
Kung H and Leiserson C 1980 Algorithms for VLSI processor arrays In Introduction to VLSI Systems (ed. Mead C

and Conway L) Addison-Wesley Reading, MA pp. 271–291.
Leiserson C and Saxe J 1991 Retiming synchronous circuitry. Algorithmica 6(1), 5–35.

14
Belief Propagation for
Stereo Matching

In Chapter 1, we surveyed vision systems in terms of algorithms and implementations. Especially good
surveys have been done on real-time systems with BP (Tippetts et al. 2011) and with others (Tippetts
et al. 2013). Unfortunately, most of the published works do not provide us with any source codes for
actual designs, without which we cannot reconstruct an actual system. The purpose of this chapter is to
develop an actual BP machine in Verilog HDL code (IEEE 2005) in order to equip readers to develop
more advanced systems.

Belief propagation is a general method for solving optimization problems (Yedidia et al. 2003). In this
chapter, we will design a BP circuit especially for stereo matching (Jian et al. 2003). However, although it
is targeted at stereo matching, the design is general because by changing the data term together with other
parameters, it can be used in many other vision problems, such as segmentation and motion estimation
(Szeliski et al. 2008).

BP searches for the global optimal solution by iterative message passing. Since these messages are
computed simultaneously for overall pixels per single iteration step, massive amount of computation and
memory are required. Nevertheless, there are several high-speed implementations of stereo BP algorithm
(Felzenszwalb and Huttenlocher 2004; Grauer-Gray and Kambhamettu 2009; Yang et al. 2006, 2009).

Due to high complexity of the algorithm, various works have tried to reduce computations and memory
requirement in message computation by hierarchical BP (Felzenszwalb and Huttenlocher 2004; Yang
et al. 2006), message compression (Montserrat et al. 2009; Yu et al. 2007), plane fitting to over-segmented
regions (Klaus et al. 2006; Stankiewicz and Wegner 2008; Taguchi et al. 2008), or tile-based subgraph
(Liang et al. 2011).

Due to the nature of BP, between the two simulators, the line-based vision simulator (LVSIM) and
the frame-based vision simulator (FVSIM) in Chapter 4, we select FVSIM because we have to deal with
window processing. In this chapter, we will design the BP circuit based on FVSIM.

In the design of pipelined circuits, synchronization is very important for the coordination of different
circuit components. Therefore, those systems are designed with sequential circuits that are driven by
one or more finite state machines. In contrast, in the BP machine, combinational circuits play the major

Architectures for Computer Vision: From Algorithm to Chip with Verilog, First Edition. Hong Jeong.
© 2014 John Wiley & Sons Singapore Pte. Ltd. Published 2014 by John Wiley & Sons Singapore Pte. Ltd.
Companion Website: www.wiley.com/go/jeong

http://www.wiley.com/go/jeong

418 Architectures for Computer Vision

roles in computing various quantities, such as input belief matrix, output belief matrix, and data term.
Therefore, the design is a collection of many different combinational and sequential circuits, together
with functions. Unlike in DP and GC, the most significant bottleneck in a BP circuit is the fact that it
uses a large amount of memory. Among the many data structures, the message matrix is the main data
structure, which needs 4mnDB bits, where mn is the window size, D is the disparity level, and B is the
number of bits used for the message. We will focus on the window processing, together with boundary
conditions.

Starting from the BP equations developed in the previous chapter, we first examine the computational
scheme. We note here that the operations must be designed with the overflow and underflow in mind
because every piece of data must be represented using a finite word length, and every operation must be
secured within the number range. We will then examine how to use FVSIM to compute the BP operations
and derive the overall structure of the BP machine.

We develop the code for the right and left reference modes, with some customizable parameters. Even
though the template is designed for stereo matching, it can be generalized to other applications, such as
optical flow computation, by changing the message matrix and the data terms.

14.1 Message Representation
In Chapter 10, we discussed the BP algorithm in general and derived expressions, in component and
vector form, of some essential equations for various formulations: sum-product, max-product, sum-
sum, and min-sum. As the formulation evolves, the meaning of messages becomes more abstract, from
marginal probability to some scores. Of the four formulations, the one most suitable for the circuit design
is the min-sum formulation.

In Equation (10.36), we derived the min-sum equation in vector form, which we represent here as

⎧⎪⎨⎪⎩
Mo

p = Ψ⊙
(
Φp + Mi

p

(
141T

4 − I4×4

))
,

mp = 𝜙p + Mi
p14,

xp = argminD−1
k=0 mp(k), p ∈ [1, MN].

These three equations completely describe the BP algorithm. However, to transform the equations into
circuits, we need to add numerous constraints and sometimes modify the original intentions slightly. The
first equation signifies iterations for message updation, although the iteration index is not shown. The
second equation signifies the message vector at equilibrium, after suitable iterations. The third equation
shows the process in which the optimal disparity is extracted from the message vector.

In this equation, the belief message m is originated from the pdf p:

m ≜ − log p ≥ 0. (14.1)

In the design, the message must be represented by a finite word length. For stereo matching with D
disparity levels, the belief vector is defined by

m =
(
m0, m1,… , mD−1

)T
. (14.2)

Thus, the messages can be interpreted as scoring functions for the desirable disparity at a pixel. In
the circuit design, we further process the messages numerically to prevent overflow and underflow and
to secure normalization. After undergoing more numerical transformations, the scoring values further
become a sort of preference order. The operations between such vectors may transform from linear
operations to nonlinear operations. In the design, the vector must be represented by an array either in
packed or unpacked format.

Belief Propagation for Stereo Matching 419

According to the formula, a node p receives four belief vectors from its neighbors,

Mi =
(
mi

0p, mi
1p, mi

2p, mi
3p

)
(14.3)

and outputs another four belief vectors to its neighbors

Mo =
(
mo

p0, mo
p1, mo

p2, mo
p3

)
. (14.4)

The subscript denotes the pixel positions, which may be absolute or relative. The four neighbors are
represented by the relative positions, 0, 1, 2, and 3, referring to east, south, west, and north, encoded in
clockwise direction. Conversely, the current pixel is represented by the absolute coordinate, p ∈ . The
message matrix must also be represented by an array, which is multidimensional.

Let us now design this algorithm with Verilog HDL, by adding more operations and also modifying
the original algorithm appropriately to suit the nature of the numerical computation. The first step is to
represent the belief message, m, in B bits: m ∈ [0, 2B − 1]. The word length must be enough to uniquely
identify D disparity levels and thus, B ≥ logD. However, in actual applications, the entropy of the
message is much smaller than logD and needs a much smaller word length. The determination as to
the word length actually depends on the statistics of the application. Generally, the upper bound of B is
logD. A fair decision on the word length may rely on the perplexity (Wikipedia 2013),

B = 2−
∑

k p(mk) log2 p(mk), (14.5)

for a sufficiently large number of messages.
The next step is to define the normalization on this data. Because the belief value was derived from

the probability, it must satisfy

D−1∑
k=0

exp{−mk} = 1. (14.6)

Because of the finite word length and the smallness of D, this condition is not met exactly. Nevertheless,
the message has already lost the meaning of probability and instead stands for relative magnitude between
vector elements. Therefore, there are numerous ways of defining normalization for the belief message.
One practical operation is to subtract the minimum from all the elements to make the elements unbiased.
This operation is necessary because the message values may diverge due to continuous positive bias
during the iteration.

The other operation is to amplify the messages so that the magnitude variation is maximal, consuming
as many of the bits in B as possible. Otherwise, the distinction between vector elements may become
vague due to small variances. To achieve this, let

m ← 𝛼(m − 1min
k

mk), (14.7)

where

𝛼 = min
𝛼

(2B − 1 − 𝛼max
k

(mk − min
k

mk))2
. (14.8)

If 𝛼 is small, it means that the message variation is small and therefore we can use a lower number of
bits, B, to code the message value. If 𝛼 is large, we have to use a large B. The message variation depends
on the problems, which require adaptive values for the word length B. Because we are concerned with
hardware design, the word length is assumed to have been determined appropriately and fixed.

420 Architectures for Computer Vision

The output message matrix, Mo, is the state memory with which the subsequent states are determined,
along with the input images. The circuit needs to store the message matrix in an array. There are several
key points to bear in mind in representing the message matrix. The message matrix is not for a single
pixel but for the entire image plane and is also defined for the four output message vectors. The storing
of the messages is the main bottleneck in designing the BP. Usually, the spatial complexity in BP is
O(MND). (In graph cuts, the spatial complexity is O(MN).) To represent the message matrix we may use
small windows, m × n, which is much smaller than M × N, and use either a packed array or an unpacked
array. The packed array is convenient for communicating data between modules but needs a field that
is too long in the packed part: BD bits. Conversely, the unpacked array needs only B bits in the packed
field but must be aided by counters for data communications. Considering all things together, let us
represent the message matrix in an unpacked array but represent the incoming message in a packed array,
so that the various operations in the combinational circuit can be more easily designed. This requires
conversions from unpacked to packed and vice versa, which can be done with combinational circuits.

14.2 Window Processing
The basic platform for the BP algorithm is the FVSIM, in which full frame operations are available, as
shown in Figure 14.1. The system consists of three buffers, storing two images (Il, Ir) and a disparity
map D, and a circuit for computing the BP algorithm. The sizes of the three buffers are all M × N RGB
pixels. The BP circuit is the main engine that reads the two images, computes the disparity, and stores
the result in the disparity map. Unlike the buffers in the line-based algorithms, the buffers here are all
full-sized frames.

In the BP circuit, the major data structure is the belief message matrix, M = {Mo(x, y)|x ∈ [0, n −
1], y ∈ [0, m − 1]}, for an m × n window. The total size is m × n × 4 × D, which is the bottleneck of the
computation. To design the circuit, we have to restrict the window size, m × n, to meet the available
resources.

Therefore, the BP circuit is based on window processing. The working window is illustrated in
Figure 14.2. The image plane can be scanned in two opposite directions, as shown. The first type
is the raster scan and is used in the right reference system, where the reference image is the right
image plane. The second type is the opposite of the raster scan and is useful for the left reference

BP circuit

img1

Il

x
y

z

img2

Ir

res

D

Figure 14.1 The components of the BP system. The three buffers, img1, img2, and res, respectively,
store Il, Ir, and D. The BP circuit reads the two image buffers, computes the disparity, and then stores
the result in the disparity buffer

Belief Propagation for Stereo Matching 421

x

y xx

yy

(a) Right scan

x

yxx

yy

(b) Left scan

Figure 14.2 The frame, window, and scan directions

system, where the reference coordinates are for the left image plane. A window is a rectangular area
comprising m × n pixels. It is characterized by the origin, (x, y), defined by the top left corner (right
mode) or the top right corner (left mode), and by the coordinates inside the regions. In addition, it
is characterized by the shift intervals xs and ys between consecutive rectangles. If xs < n or ys < m,
the windows are overlapped; otherwise, they are not overlapped. The coordinates inside the region
are defined by (xx, yy), as shown. (Note that xx is a single variable.) Therefore, a window W(x, y)
is a set of points, {(xx, yy)|xx ∈ [0, n − 1], yy ∈ [0, m − 1]}. This definition is adopted because it is
convenient to locate the conjugate points in the other image. For the type 1 scan, the conjugate pair is
(Ir(x + xx, y + yy), Il(x + xx + d, y + yy)), where the disparity d ≥ 0. Similarly, for the type 2 scan, the
conjugate pair is (Il(N − 1 − (x + xx), y + yy), Ir(N − 1 − (x + xx + d), y + yy)) also d ≥ 0.

Associated with each window is the belief matrix, M(x, y) = {Mo(xx, yy)|xx ∈ [0, n − 1], yy ∈ [0, m −
1]}, where Mo(xx, yy) = (m(0), m(1), m(2), m(3)), indicating east, south, west, and north output belief
vectors. A belief vector is a set of D belief messages, m = (m(0), m(1),… , m(D − 1))T , where D is the
disparity level. The message m is encoded in a B bit binary number, as explained in the previous section.

The window scheme is quite general in that it can represent a pixel, m × n = 1, a line 1 × N in a row, a
line in a column, M × 1, or the entire image plane, M × N. There is also freedom in the amount of overlap
between contiguous windows. Reusing previous values is equivalent to the use of boundary conditions
on the local windows.

14.3 BP Machine
Using the data representation and window processing in the FVIM framework, we can build a BP machine
that computes the BP operations, as shown in Figure 14.3. The illustration shows the major constructs
and operations of the machine. For the sake of clarity, the circuits are drawn only for the right reference
system. For the left reference system, the role of the images must be switched. The top four elements
are the memories, M(x, y) for the belief matrix at the window W(x, y), (Ir, Il) for the images, and D for
the disparity map. They are the inputs and state memories. The other constructs are the sequential and
combinational circuits, in which actual operations are executed. At a given time period, the memories
are all fixed and the values in the combinational circuits are actively decided. Blocked at two sites, Mo

and m, and connected by the combinational paths between the state memory and the blocking registers,
the system as a whole becomes a finite state machine (specifically, a Mealy machine).

In one period, all the computation is done for a pixel (xx, yy) in a window. The first step is to construct
the input message matrix Mi by reading the state memory M. The vectors in the input matrix are the
components of the four neighbors in the state memory. In parallel with the input matrix, the data vector

422 Architectures for Computer Vision

M(x, y) img2(Ir) img1(Il) res(D)

Mi
 (xx, yy) ϕ (xx, yy)

Mo (xx, yy) m(xx, yy)

Figure 14.3 The flow of computation in the BP machine. Right reference mode. Two places are
terminated by pipelining registers

is also composed from the image pairs. Combining the input message matrix and the data vector, we can
build the output message matrix, following some extensive computations, as we will see. The determined
matrix is held until the next clock. Eventually these data are overwritten to the state memory at the
position (xx, yy), replacing the old one with the new one. Unlike the other parts, this section is realized
with a sequential circuit. This cyclic process is repeated for a predetermined number of times and then
the stabilized values in M and the data vector are used to build the message vector, m. The argument
of the minimum element is the quantity that we are seeking and thus is to be stored in the buffer. The
contents of the buffer are the disparity map.

14.4 Overall System
On the basis of Figure 14.3, let us now begin to design the Verilog HDL code. The header contains the
parameters that characterize the images and the BP algorithm.

Listing 14.1 The header (1/12)

//file name

‘define file_name ”bear11394” //BMP file name

//image parameters

‘define WIDTH 113 //image width

‘define HEIGHT 94 //image height

//memory parameters

‘define DATA_BITS 8 //word size

‘define ADDR_BITS 15 //max image size

Belief Propagation for Stereo Matching 423

//reference modes

‘define LEFT //left and right mode

//window parameters

‘define WIDTH1 20 //window width

‘define HEIGHT1 20 //window height

‘define XSHIFT 20 //window x-axis shift

‘define YSHIFT 20 //window y-axis shift

//BP parameters

‘define MESS_BITS 5 //message word

‘define MESS_DIM 30 //message dimension

‘define ITER 10 //iterations

‘define LOCAL 10 //local range

‘define SLOPE 25 //smoothness slope

The filename is used for the IO part of the simulator to open and read the image files in the RAM,
imitating the camera output. The image size, defined by the height and the width, M × N, is used
to specify the required resources throughout the circuit. The memory parameters specify the word
length and the address range for the contents in the RAM. The image data is ordinarily stored in
bytes – three bytes for RGB channels. These parameters are also used to define the arrays, img1, img2,
and res.

The next parameter is the key indicating the left or right reference modes. The window and the
scan directions vary, depending on this parameter (Figure 14.2). The window parameters comprise the
window width, height, horizontal shift, and vertical shift. The shift amount must be less than or equal to
the window size. Otherwise, there will be empty regions in the disparity map.

The BP parameters specify the word length of the message, the number of states, the slope of
the smoothness function, and the iteration number. The message length and dimension are important
parameters as they determine the performance, the computational speed, and the space. The larger values
may be better for better performance but they also require more space and computation. The message
dimension must be the maximum disparity range, which can be observed only after experimentation.
The message word length must be enough to encode the smallest and the largest messages. This decision
is also possible only after observing the computation. The bits must be enough to uniquely differentiate
the disparity levels, 2B ≤ D. This gives us, B ≤ logD. Usually, most of the disparities are labeled with
the same index, making B ≪ logD. The most important factor determining the window is the belief
matrix, which has a complexity of 4mnBD bits. The disparity size D is usually over 30, and thus
the space complexity is overwhelmingly large to be applied to an entire frame. For larger disparity
and message word, the window size must be small to be implemented in a chip. Next comes the
smoothness function, which is characterized by the slope and local range and is the truncated linear
function. The product of the slope and the local range must not exceed the maximum number range.
More advanced algorithms may be implemented for the smoothness function, replacing the slope with
appropriate parameters, such as the Potts model. Finally, the iteration number must be chosen so that the
computation process reaches a stable state, at which time the disparity is determined as the index of the
belief vector.

424 Architectures for Computer Vision

The main part of the code is as follows:

Listing 14.2 The framework: processor.v (2/12)

‘include ’head.v’

module processor(//BP segment processor

input clock, reset,

output reg [‘ADDR_BITS - 1:0] i_raddr, r_raddr, r_waddr,//address bus

input [‘DATA_BITS - 1:0] i_rdata1, i_rdata2, r_rdata, //data bus

output reg [‘DATA_BITS - 1:0] r_wdata, //data bus

output reg r_wen //write enable

);

//parameters

parameter MESS_MAX = {‘MESS_BITS1{’b1}}; //message maximum

//working array: window of images

reg [‘DATA_BITS - 1:0] img1 [0: ‘HEIGHT - 1][0: 3*‘WIDTH - 1];//image

reg [‘DATA_BITS - 1:0] img2 [0: ‘HEIGHT - 1][0: 3*‘WIDTH - 1];//2image

reg [‘DATA_BITS - 1:0] res [0: ‘HEIGHT - 1][0: 3*‘WIDTH - 1];//result

reg [‘MESS_BITS - 1:0] mmat [0: ‘HEIGHT1 - 1][0: ‘WIDTH1 - 1]

[0:3][0:‘MESS_DIM - 1]; //message matrix

//variables

reg [‘ADDR_BITS - 1:0] idx, idx1,idx2; //variables

reg [9:0] row, col, x, y, xx, yy, xxx, yyy, dim; //variables

reg [4:0] iter;

reg [2:0] dir;

reg do_load, do_display, do_read, do_write; //for control

//net variables

wire [‘MESS_BITS * ‘MESS_DIM - 1:0] mess_in [0:3]; //input message

wire [‘MESS_BITS * ‘MESS_DIM - 1:0] mess_out [0:3];//output message

wire [‘MESS_BITS * ‘MESS_DIM - 1:0] data; //data vector

//sequential circuits

//reading (IMAGE -> img)

always @ (posedge clock) begin: READING //reading block

end

//writing (res -> RESULT)

always @(posedge clock) begin: WRITING //writing block

end

Belief Propagation for Stereo Matching 425

//sampling

always @ (posedge clock) begin: SAMPLING //sampling block

end //always

//updating the message matrix (mmat)

always @ (posedge clock) begin: MMAT //belief matrix block

end

//combinational circuits

//determining the disparity

//computing the data term

//building the input message matrix

//building the output messages matrix

//functions

endmodule

The code consists of three parts: sequential circuits, combinational circuits, and functions. The sequential
part consists of four concurrent parts: reading, writing, sampling, and updation. The reading and writing
blocks are the IP interfaces to the external RAMs, RAM1, RAM2, and RES, and the internal buffers,
img1, img2, and res. The sampling block controls the window by moving around the image plane. This
is common to both the left and right reference modes. Finally, the updation block writes the updated
output message vector to the belief matrix, M. In this code, the message matrix is encoded as an unpacked
array, mmat (refer to the problems at the end of this chapter). However, the message vectors, mess_in
and mess_out, and the data vector, data, are all coded in packed format for computational simplicity
(refer to the problems at the end of this chapter).

While the sequential part works for each clock tick, the combinational part works between the clock
period, reading the data from the registers and stabilizing the result, so that in the next clock tick the
result can be stored in the registers. The combinational part consists of four sections: a circuit building
the input belief matrix, another building the data term, another building the output message matrix, and
a circuit for determining the final disparity. The combinational circuits are aided by various functions,
which all work in the same simulation time.

The components filling this template are explained in the following sections.

14.5 IO Circuit
Two of the sequential circuits are for reading and writing. The image data are located in the external
RAMs, outside of the main processor, and must be accessed periodically. The circuit can be designed as
follows.

426 Architectures for Computer Vision

Listing 14.3 The IO circuit (3/12)

//reading (IMAGE -> img)

always @ (posedge clock) begin: READING //reading block

if (reset) begin //initialize

row <= 0;

col <= 0;

do_load <= 1;

end

else begin //read RAM into buffers

do_load <= 0;

if (row < ‘HEIGHT) begin //for a row

if (col < 3 * ‘WIDTH + 2) begin //for a column

i_raddr <= 3 * ‘WIDTH * row + col;//pixel address

img1[row][idx1] <= i_rdata1; //load 1st image

img2[row][idx1] <= i_rdata2; //load 2nd image

//res [row][idx1] <= i_rdata1;

idx1 <= idx; //delay 2

idx <= col; //delay 1

col <= col + 1; //next block

end else begin

col <= 0;

row <= row + 1;

end

end else begin

row <= 0;

do_load <= 1;

end //else

end

end

//writing (res -> RESULT)

always @(posedge clock) begin: WRITING //writing block

if (reset) begin

xxx <= 0;

yyy <= 0;

do_display <= 0;

end

else begin

if (yyy < ‘HEIGHT) begin

do_display <= 0;

if (xxx < 3 * ‘WIDTH) begin

Belief Propagation for Stereo Matching 427

r_wdata <= res[yyy][xxx]; //data

r_waddr <= 3*‘WIDTH * yyy + xxx; //address

r_wen <= 1; //write enable

xxx <= xxx + 1; //next

end

else begin

xxx <= 0;

yyy <= yyy + 1;

end

end

else begin

yyy <= 0;

do_display <= 1;

end

end

end

The purpose of the reading part is to read RAM1 and RAM2, and possibly RES into the internal buffers,
img1, img2, and res. The processor reads the images Il and Ir from img1 and img2, processes them
to determine the disparity, and writes the result into res, which finally stores the disparity map, D. To
pair the address and data, some small delays must be introduced in the address bus. A mismatch exists
between the incoming data and the current address, as the current data corresponds to the address two
clocks ahead. These problems can be solved by the delay buffers idx and idx1 and the two-clocks delay
in the address loop.

Another concurrent always block is the writing block. The purpose of this block is to write the disparity
map, stored in the buffer, res, into the external RAM, RESULT, in RGB format so that the simulator
can display the disparity map in BMP format. The flags, do_load and do_display, are used to control
the simulator and therefore are not part of the synthesis. Note: the counters representing pixel positions
(row, col), (x, y), (xx, yy), and (xxx, yyy) are all differently redefined in different always blocks in
order to avoid multiple drivers for a net variable.

The remaining circuit can be considered a system that receives img1 and img2 as inputs and produces
res as output.

14.6 Sampling Circuit
The computation is based on the window processing. A circuit that relocates the window around the
image plane must be present. The constraint is that as a consequence of window movement, the entire
image plane must be completely scanned, without producing empty spaces. In actuality, the space to
be scanned is (x, y, l), where (x, y) ∈ and l ∈ [0, L − 1] for some maximum iteration L. There is an
algorithm that scans in the iteration index, called FBP (Jeong and Park 2004; Park and Jeong 2008). For
hierarchical BP (Yang et al. 2006), sampling in this space must be made in the pyramid form. The order
of the visit may be deterministic or random. In this chapter, we follow the usual approach, scanning of
the image plane in a raster scan manner.

428 Architectures for Computer Vision

Listing 14.4 The sampling circuit (4/12)

//sampling

always @ (posedge clock) begin: SAMPLING //sampling block

if (reset) begin //initialize

x <= 0;

y <= 0;

xx <= 0;

yy <= 0;

iter <= 0;

end

else begin

if (y < ‘HEIGHT) begin

if (x < ‘WIDTH) begin

if (iter < ‘ITER) begin //iteration

if (yy < ‘HEIGHT1) begin //for a row

if (xx < ‘WIDTH1) begin //for a column

xx <= xx + 1;

end

else begin

xx <= 0;

yy <= yy + 1;

end

end

else begin

yy <= 0;

iter <= iter + 1;

end

end

else begin

iter <= 0;

x <= x + ‘XSHIFT;

end

end

else begin

x <= 0;

y <= y + ‘YSHIFT;

end

end

else begin

y <= 0;

end

end //else

end //always

Belief Propagation for Stereo Matching 429

In iteration notation, the circuit spans the M × N × L × m × n space in a (y(x(l(xx))) manner, where
xx is changed most rapidly and y is changed most slowly. Other iteration methods are also possible.
The sampling circuit guides the window so that the image plane may be scanned in a certain way with
counters. The amount of skipping in the horizontal and vertical directions is specified by the parameters, xs

(XSHIFT) and xy (YSHIFT). The circuit has to generate three types of counters for the purpose: the window
position on the image plane, the pixel position in a window, and the iteration number. With the auto-
incrementing counter, x ≤ N − 1 and y ≤ M − 1, the window is positioned by the top left corner, (x, y),
for the right reference mode and the top right corner, (N − 1 − x, y), for the left reference mode. Inside the
window, the pixel is positioned by the counter, xx = 0, 1,… , n − 1 and yy = 0, 1,… , m − 1. Therefore,
the absolute positions of the pixel are (x + xx, y + yy) and (N − 1 − (x + xx), y + yy), respectively, for
both reference systems.

The amount of overlap between two contiguous windows is determined by the window size and the
shift parameter. In both directions, the overlapped regions are N − xs and M − ys. To be seen through the
contiguous windows, suitable schemes for the boundary conditions must be considered. One way is to
store the previous results around the boundary so that the next window can use them. The results may
be the disparity values or the belief values. The other option is to use the data so that each window is
independent of the other window processing. The former method needs a complicated scheme for storing
the previous values, to use them in later windows, but leads to better performance. The latter scheme is
the simplest of all but may result in poor performance around the window boundary.

The sampling scheme naturally involves a high degree of freedom, which is governed by the three
counters, shift amount, and boundary policy. Here in the template, we consider only the basic one, two
types of scanning, no overlap, and an independent window free from boundary preservation (see the
problems at the end of this chapter).

In any case, the most important thing is that all the computation is described in terms of the current
position and the time period. The current position is (xx, yy) in the message matrix and the current
iteration is iter < ITER. The current position is Ir(x + xx, y + yy) for the right reference system and
Il(N − 1 − (x + xx), y + yy) for the left reference system.

14.7 Circuit for the Data Term
From here onwards, all the computations are realized with combinational circuits, unless otherwise
stated. The data vector, 𝜙, is the major source of the belief message, driven by the input images, and thus
must be provided accurately (Figure 14.3).

The concept for the provision of this vector is drawn in Figure 14.4. As shown in the figure, the
sources of the data vector are the two image frames. The location of the current pixel is indicated as a
position in a window, which is not shown here. A specific field, d, of the data vector is constructed by
the data read from the two images. Therefore, a data vector can be constructed concurrently for all the
pixels of the two images on the same epipolar line. All the elements of the vector are determined by the
combinational circuits as follows.

The data vector is encoded in a packed array of BD bits, because it must often be accessed as one
complete set of data (see the problems at the end of this chapter). In the right reference system, the data
term is

𝜙(x + xx, y + yy) = {𝜙D−1,… ,𝜙1,𝜙0}, (14.9)

where 𝜙D−1 is the MSB and 𝜙0 is the LSB. Each element is a B bit number with

𝜙d = min

{ ∑
k∈{R,G,B}

|Ir
k(x + xx, y + yy) − Il

k(x + xx + d, y + yy)|, 2B − 1

}
,

∀d ∈ [0, D − 1]. (14.10)

430 Architectures for Computer Vision

img2 (Ir)

(x + xx, y + yy)

img1 (I1)

(x + xx + d, y + yy)

D − 1 d 1 0

MSB LSB

ϕ (x + xx, y + yy)B

Ir
 (x + xx, y + yy) Il (x + xx + d, y + yy)

Figure 14.4 Building the data vector, 𝜙(x + xx, y + yy), where (x, y) is the window position and
(xx, yy) is the pixel position within the window. The vector is generated by the combinational circuits
for all elements in parallel

Here, the data value is limited within a B bit word length, preventing overflow.
For the left reference system, the data are defined as

𝜙d = min

{ ∑
k∈{R,G,B}

|Il
k(N − 1 − (x + xx), y + yy) − Ir

k(N − 1

− (x + xx + d), y + yy)|, 2B − 1

}
, ∀d ∈ [0, D − 1]. (14.11)

Advanced algorithms may use different schemes for computing the data term, for example, with better
distance measure and maybe an occlusion indicator. This code is a basic template that contains only the
most basic features.

Keeping in mind the concept, one can code the algorithm as follows. (Because there are a lot of
identical circuits, the Verilog generate construct is used. The code also contains the Verilog compiler
directive to switch the design between the two reference modes.)

Listing 14.5 The data term (5/12)

//computing the data term

genvar vary;

for (vary = 0; vary < ‘MESS_DIM; vary = vary + 1) begin: DATA_TERM

‘ifdef LEFT //left mode

assign data[‘MESS_BITS * vary +: ‘MESS_BITS] =

(x+xx+vary < ‘WIDTH)?

tadd(tadd(adistance(img1[y+yy][3*(‘WIDTH-1-(x+xx))],

img2[y+yy][3*(‘WIDTH-1-(x+xx+vary))]),

Belief Propagation for Stereo Matching 431

adistance(img1[y+yy][3*(‘WIDTH-1-(x+xx))+1],

img2[y+yy][3*(‘WIDTH-1-(x+xx+vary))+1])),

adistance(img1[y+yy][3*(‘WIDTH-1-(x+xx))+2],

img2[y+yy][3*(‘WIDTH-1-(x+xx+vary))+2]))

: MESS_MAX;

‘else //right mode

assign data[‘MESS_BITS * vary +: ‘MESS_BITS] =

(x+xx+vary < ‘WIDTH)?

tadd(tadd(adistance(img2[y+yy][3*(x+xx)],

img1[y+yy][3*(x+xx+vary)]),

adistance(img2[y+yy][3*(x+xx)+1],

img1[y+yy][3*(x+xx+vary)+1])),

adistance(img2[y+yy][3*(x+xx)+2],

img1[y+yy][3*(x+xx+vary)+2]))

: MESS_MAX;

‘endif

end

The circuits are compiled separately according to the two types of reference systems. Each reference
system consists of D continuous assignments, with each assignment determining a B bit field in the data
vector. The circuits are generated by the Verilog HDL generate construct. Consequently, this part of the
circuit consists of D combinational circuits.

Two functions are used in the expression: adistance and tadd. Function adistance is an absolute
function that returns the absolute distance between two arguments. Function tadd is an addition that
accounts for saturation math. The upper bound of the truncation is defined as 2B − 1. The functions,
together with other functions, will be discussed in later sections.

Knowing the distribution of elements in a vector is very important, because the data vector is to be
combined with message vectors. If either of the two vectors dominates the other, the combined result
may be less efficient. This is part of the reason for normalizing the messages, as will be seen. Considering
the sum of three differences in the RGB channels, the range of 𝜙 is between 0 and 255 × 3. To limit
the number in B bits, which are used for message encoding, the data vector must also be normalized
appropriately. This issue is also postponed to a later section.

14.8 Circuit for the Input Belief Message Matrix
The input message vector must be constructed in parallel with the data vector because they are combined
soon afterwards (Figure 14.3). For this purpose, the required circuit is to build Mi in Equation (14.3) out
of Mo.

The concept is depicted in Figure 14.5. Consider that the current position is p = (x + xx, y + yy),
with (x, y) for the window and (xx, yy) for the pixel within the window. At this window, the input belief
matrix, Mi(x, y), is decided. First, take the output belief matrix from the four neighbors, as shown in the
figure. Each matrix contains four vectors, indicating four directions. Next, extract a vector from each
matrix, west for east, north for south, east for west, and south for north vector, as shown, and build a
matrix, Mi

p. The matrix is in the ordinary set of four vectors and thus must be converted to the packed
array form.

432 Architectures for Computer Vision

Mo (x, y)

p

0 1 2 30 1 2 30 1 2 30 1 2 3

0 1 2 3

3
2
1
0

D − 1 0

Mi

M3p
o MM2p

o M1p
o M0p

o

Mp
i

Figure 14.5 Building the input belief message matrix at p = (xx, yy)

This can be explained precisely with equations. In Equation (14.1), this stage corresponds to the
computation: Mi

p. Consider a position p = (x + xx, y + yy). At this position, we are going to build the
input matrix:

Mi
p =

(
mi

0p, mi
1p, mi

2p, mi
3p

)
. (14.12)

The neighbors at p have the output matrices:

Mo
0 =

(
mo

00, mo
01, mo

02, m0
03

)
,

Mo
1 =

(
mo

10, mo
11, mo

12, m0
13

)
,

Mo
2 =

(
mo

20, mo
21, mo

22, m0
23

)
,

Mo
3 =

(
mo

30, mo
31, mo

32, m0
33

)
, (14.13)

Belief Propagation for Stereo Matching 433

where all the subscripts are the relative directions, east, south, west, and north. Extracting a vector from
each matrix, we can construct the input matrix:

Mi
p =

(
mo

02, mo
13, mo

20, mo
31

)
. (14.14)

The criterion for choosing an element is based on the neighborhood. For example, the east input must be
the west output of the east neighbor and the north input must be the south output of the north neighbor.

Although this seems complicated, the core operation is just reading and building the matrix in packed
array format. The circuits consist of only four continuous assignments. Considering the D fields, we
need to generate 4D combinational circuits.

Listing 14.6 The input message matrix: processor.v (6/12)

//building the input message matrix

genvar varx;

for (varx = 0; varx < ‘MESS_DIM; varx = varx + 1) begin: MESS_IN

‘ifdef LEFT //left mode

assign mess_in[0][‘MESS_BITS * varx +:‘MESS_BITS] = //east vector

(xx > 0)?

mmat[yy] [xx - 1][2][varx]:data[‘MESS_BITS * varx +:‘MESS_BITS];

assign mess_in[1][‘MESS_BITS * varx +:‘MESS_BITS] = //south vector

(yy < ‘HEIGHT1 - 1 & y+yy < ‘HEIGHT - 1)?

mmat[yy+1][xx][3][varx]:data[‘MESS_BITS * varx +:‘MESS_BITS];

assign mess_in[2][‘MESS_BITS * varx +:‘MESS_BITS] = //west vector

(xx > 0 & yy > 0 & xx < ‘WIDTH1 - 1 & x+xx < ‘WIDTH - 1)?

mmat[yy] [xx+1][0][varx]:data[‘MESS_BITS * varx +:‘MESS_BITS];

assign mess_in[3][‘MESS_BITS * varx +:‘MESS_BITS] = //north vector

(yy > 0)?

mmat[yy-1][xx][1][varx]:data[‘MESS_BITS * varx +:‘MESS_BITS];

‘else //right mode

assign mess_in[0][‘MESS_BITS * varx +:‘MESS_BITS] = //east vector

(xx > 0 & yy > 0 & xx < ‘WIDTH1 - 1 & x+xx < ‘WIDTH - 1)?

mmat[yy] [xx + 1][2][varx]:data[‘MESS_BITS * varx +:‘MESS_BITS];

assign mess_in[1][‘MESS_BITS * varx +:‘MESS_BITS] = //south vector

(yy < ‘HEIGHT1 - 1 & y+yy < ‘HEIGHT - 1)?

mmat[yy+1][xx][3][varx]:data[‘MESS_BITS * varx +:‘MESS_BITS];

assign mess_in[2][‘MESS_BITS * varx +:‘MESS_BITS] = //west vector

(xx > 0)?

mmat[yy] [xx-1][0][varx]:data[‘MESS_BITS * varx +:‘MESS_BITS];

assign mess_in[3][‘MESS_BITS * varx +:‘MESS_BITS] = //north vector

(yy > 0)?

mmat[yy-1][xx][1][varx]:data[‘MESS_BITS * varx +:‘MESS_BITS];

‘endif

end

434 Architectures for Computer Vision

In addition to choosing the vectors and rotating them into packed field format, the circuit must also
account for the boundary conditions. Around the image boundary, one or two neighbors may be missing.
There are two kinds of boundaries: the window boundary and the image boundary. The neighbor may be
out of the window but within the image frame. In another case, the neighbor may be completely outside
the image frame.

One method is to replace the belief with the data terms. That is, for the first kind of neighbor, the
belief is replaced with the data term in that pixel. For the second kind of neighbor, the belief is replaced
with the data term of the current pixel. In effect, the image is expanded with the boundary values. Using
this method, the windows are independent of each other and glued by the data terms. We will follow this
approach to make the circuit simple. In the code, this concept is reflected as the conditional statements.
A more sophisticated method that stores the actual messages, instead of using the data terms, and reuses
them later in other windows is possible. This kind of strategy is needed for better performance and
iteration over the entire image plane, following the iteration inside the window.

Note that the code is separated with the Verilog compiler directive for the right and left reference modes.
The difference between the two modes is the use of the counters for computing the coordinates. For the
right mode, the conjugate point is on the right and for the left mode, the conjugate point is on the left.

14.9 Circuit for the Output Belief Message Matrix
Given the data vector and message matrix, we can design the main circuits for generating the output
message. This part is the most complicated circuit, where the variance between the data term and the
message term, as well as the variance between messages in a message vector, must be properly regulated.
Moreover, the smoothness function must be applied and the operation of minimum selection must be
introduced. This operation requires four stages: selective averaging, adding of data terms, adding of
smoothness function, and choosing the minimum. These complicated operations must be aided by the
specialized functions.

In Equation (14.1), the output message matrix has the form

Mo
p = Ψ⊙

(
Φ + Mi

p

(
141T

4 − I4×4

))
, (14.15)

where

A ⊙ b = {
n

min
j=1

(aij + bj)|i = 1, 2,… , n}T , (14.16)

for a matrix A and vector b. Let Mo
p = (mo

0, mo
1, mo

2, mo
3) and x = Φ + Mi

p(141T
4 − I4×4). Then, the expres-

sions mean

mo
i = 𝜓 ⊙ xi, ∀i ∈ [0, 3], (14.17)

where ⊙ means that the vector elements satisfy

mik =
n

min
j=1

{
xij + 𝜓(|k − j|)} , ∀k ∈ [0, 3]. (14.18)

Because Ψ is already known and stored as parameters, this operation can be designed into a function,
mess_min, which receives a vector and produces the desired output. This function is one of the most
complicated in the BP circuit, as we will see.

To design the circuit, we divide the equation into several stages, as illustrated in Figure 14.6. In the
first stage, three of the input vectors are selected and then added to the data vector. This is realized with

Belief Propagation for Stereo Matching 435

0
1
2
3

D − 1 0

0
1
2
3

D − 1 0

Mp (14 14 − I4 × 4)i T

D − 1 0

Φ

ϕ
ϕ
ϕ
ϕ

+

0
1
2
3

0
1
2
3

Ψ

0
1
2
3

iMp

Ψ (Φ + Mp (14 14 − I4 × 4))Ti (Φ + Mp (14 14 − I4 × 4))Ti

Figure 14.6 Building the output message matrix

the function mess_4av in the Verilog HDL code. This function operates field by field to take the average
of the four elements.

In the second stage, the vectors are weighted with a smoothness function and the minimum elements
are chosen. This is realized by the function mess_min. The functions will be discussed in more detail in
a later section.

The actual code is as follows.

Listing 14.7 The output belief matrix (7/12)

//building the output messages matrix

assign mess_out[0] = (iter)? mess_min(mess_4av

(data,mess_in[1],mess_in[2],mess_in[3])): 0; //east vector

assign mess_out[1] = (iter)? mess_min(mess_4av

(data,mess_in[0],mess_in[2],mess_in[3])): 0; //south vector

assign mess_out[2] = (iter)? mess_min(mess_4av

(data,mess_in[0],mess_in[1],mess_in[3])): 0; //west vector

assign mess_out[3] = (iter)? mess_min(mess_4av

(data,mess_in[0],mess_in[1],mess_in[2])): 0; //north vector

The four output vectors are independently generated by calling the function mess_min. In the code, the
initialization is also encoded. At the start, which can be recognized by the first iteration, the message
matrix must be initialized. In this case, the initial values are all the same, zero. However, other values
may be used instead of zero.

14.10 Circuit for the Updation of Message Matrix
The output matrix is overwritten to the current position of the output message matrix. This operation must
be sequential, storing the result until the next clock, because the path from Mo(x, y) to the output message

436 Architectures for Computer Vision

matrix is a combinational path. The formats of M and Mo are different: M is encoded and unpacked
while Mo is encoded in packed array format. Therefore, the message format must be transformed from
packed to unpacked array before updation.

This operation is realized by the following circuit.

Listing 14.8 The framework: processor.v (8/12)

//updating the message matrix (mmat)

always @ (posedge clock) begin: MMAT //belief matrix block

if (reset) begin

end

else begin

for (dir = 0; dir < 4; dir = dir + 1) begin: MESSAGE_MATRIX

for (dim = 0; dim < ‘MESS_DIM; dim = dim + 1) begin: UNPACK

mmat[yy][xx][dir][dim] = mess_out[dir]

[‘MESS_BITS * dim +:‘MESS_BITS];

end

end

end

end

In the code, each field is read and written to the vector element. The iteration is converted to 4D different
circuits.

14.11 Circuit for the Disparity
The operations between the input message matrix and the output message matrix form a cycle. The
iteration is aimed at a convergent system. Eventually, when the iteration ends, the message matrix M
must be used for the final operation, which is to determine the disparity from the message vector and to
write it to the result buffer. In Equation (14.1), the corresponding operation is

mp = 𝜙p + Mi
p14,

xp = arg
D−1

min
k=0

mp(k), p ∈ [1, MN]. (14.19)

This can be realized by two functions: mess_4av and argmin. Function mess_4av takes the average
of the four vectors, while function argmin chooses the argument of the minimum element. The concept
is depicted in Figure 14.7. In the figure, Mi is the input belief message matrix at a point. The matrix is
reduced to a vector by mess_4av. This vector is then added to the data vector at this pixel by another
average function, mess_av. From the vector, the minimum and corresponding index, which is the optimal
disparity at this pixel, is computed.

Belief Propagation for Stereo Matching 437

0
1
2
3

Mi

Mi 14ϕ

Mi 14

+

min

x

Figure 14.7 Building the result vector

The operations are designed by the following code.

Listing 14.9 The framework: processor.v (9/12)

//determining the disparity

wire [‘DATA_BITS - 1:0] result;

assign result = argmin(mess_av(data, mess_4av

(mess_in[0],mess_in[1],mess_in[2],mess_in[3]))); //final message

always @(posedge clock) begin

‘ifdef LEFT //left mode

res[y+yy][3*(‘WIDTH - 1 - (x+xx))] <= result;

res[y+yy][3*(‘WIDTH - 1 - (x+xx))+1] <= result;

res[y+yy][3*(‘WIDTH - 1 - (x+xx))+2] <= result;

‘else //right mode

res[y+yy][3*(x+xx)] <= result;

res[y+yy][3*(x+xx)+1] <= result;

res[y+yy][3*(x+xx)+2] <= result;

‘endif

end

The major operation is realized with the combinational circuit. However, an additional sequential opera-
tion is needed for terminating the flow of the combinational circuit and writing the vector to the internal
buffer, res, at each clock tick. The buffer finally stores the disparity map. For the BMP display, the
disparity map is copied into three channels.

14.12 Saturation Arithmetic
Thus far, the combinational circuits are aided by many functions, and are a compact method of writing
the common codes in the function. The restriction is that the codes must be executed within the same

438 Architectures for Computer Vision

simulation time and the variables should all be local. Due to the variable scopes, accessing the entire
image or message matrix is very inefficient. Let us design the circuits for such functions.

The first function is tadd, which adds numbers limiting the size within the predefined bounds. Usually,
the lower bound is zero and the upper bound is the full field: 2B − 1, where B is the word length of the
message. This operation must be secured so that underflow and overflow are avoided. All the other
functions using any kind of addition may use this saturation math.

The second function is mess_av, which takes two vectors in packed array form and takes averages field
by field. This function uses the truncated addition mentioned above. Function mess_4av is an expansion
of mess_av from two to four variables. The function computes the average of the four vectors, using
mess_av twice.

Listing 14.10 The functions (10/12)

//functions //

//truncate math

function [15:0] tadd; //saturation logic

input signed[15:0] a, b;

reg signed [15:0] c;

begin

c = a + b;

tadd = (c < 0)? 0: (c < MESS_MAX)? c: MESS_MAX;

end

endfunction

//average 2-vector

function [‘MESS_BITS * ‘MESS_DIM - 1:0] mess_av; //vector average

input [‘MESS_BITS * ‘MESS_DIM - 1:0] a, b;

reg [7: 0] i;

for (i = 0; i < ‘MESS_DIM; i = i + 1) begin

mess_av[‘MESS_BITS*i +:‘MESS_BITS] =

tadd(a[‘MESS_BITS*i +:‘MESS_BITS]>>1,

b[‘MESS_BITS*i +:‘MESS_BITS]>>1);

end

endfunction

//average 4-vector

function [‘MESS_BITS * ‘MESS_DIM - 1:0] mess_4av; //vector average

input [‘MESS_BITS * ‘MESS_DIM - 1:0] a, b, c, d;

begin

mess_4av = mess_av(mess_av(a,b),mess_av(c,d));

//$display(”4av=%d”, mess_4av);

end

endfunction

Belief Propagation for Stereo Matching 439

//absolute distance

function [15:0] adistance; //absolute distance

input [15:0] a, b;

begin

adistance = (a > b)? (a - b): (b - a);

end

endfunction

As well as the additions, difference operations are needed to measure the likelihood of two numbers.
The basic distance between two numbers is defined by the absolute distance, although other advanced
distance measures can replace this. The function, adistance, works for this purpose, in an integer word
length.

14.13 Smoothness
The output message uses the function mess_min, as described in Equation (14.18). For a given vector x
and the function, 𝜓 , the function evaluates

mk =
n

min
j=1

{
xj + 𝜓(|k − j|)} .

In the Verilog design, the vectors are all represented by packed arrays. The smooth function is predefined
and thus may not be supplied as an additional argument to the function.

The underlying concept of the circuit is illustrated in Figure 14.8. The input vector is a message
vector among the four, represented in packed array. The D weighted message vectors, y, are obtained by

D − 1 0· · ·
x

ykyD − 1 y0

m̂

m

normalization

min

min min......

D − 1ψ ψ k ψ 0

Figure 14.8 Building an output belief message vector with the operations: weighting (truncated linear),
minimum selection, and normalization

440 Architectures for Computer Vision

weighting with D different smooth functions. The smoothness function here is the truncated linear model
but can be any model, such as the quadratic model or the Potts model. Each field of the intermediate
vector, m̂, is obtained by selecting the minimum of the corresponding weighted vector. This vector
undergoes some more processes, collectively called normalization.

In the following, the concept is coded in Verilog HDL.

Listing 14.11 The functions (11/12)

//smoothness distance measure

function [15: 0] smoothed; //truncated linear

input[15:0] center, position, value;

begin

smoothed = (adistance(center,position) < ‘LOCAL)?

tadd(value, adistance(center,position) * ‘SLOPE): {15{1’b1}};

end

endfunction

//minimum with smoothness weight

function [‘MESS_BITS * ‘MESS_DIM - 1:0] mess_min; //weighted minimum

input[‘MESS_BITS * ‘MESS_DIM - 1:0] a;

reg [7:0] i, j;

reg [15:0] tmp, temp, sum;

reg signed [15:0] delta;

begin

//choose the minimum with smoothness constraint

for (i=0; i <‘MESS_DIM; i = i + 1) begin: SMOOTHNESS

tmp = a[‘MESS_BITS * i +:‘MESS_BITS];

for (j = 0; j <‘MESS_DIM; j = j + 1) begin

temp = smoothed(i,j,a[‘MESS_BITS*j +:‘MESS_BITS]);

tmp = (tmp < temp)? tmp: temp;

end

mess_min[‘MESS_BITS * i +:‘MESS_BITS] = tmp;

end

//shift

tmp = {‘MESS_BITS{1’b1}};

for (i=0; i<‘MESS_DIM; i=i+1) begin

tmp = (tmp < mess_min[‘MESS_BITS * i +:‘MESS_BITS])?

tmp :mess_min[‘MESS_BITS * i +:‘MESS_BITS];

end

for (i=0; i<‘MESS_DIM; i=i+1) begin

mess_min[‘MESS_BITS * i +:‘MESS_BITS] =

mess_min[‘MESS_BITS * i +:‘MESS_BITS] - tmp;

end

Belief Propagation for Stereo Matching 441

//normalization: choose max

tmp = 0;

for (i=0; i<‘MESS_DIM; i=i+1) begin: DISTRIBUTION

tmp = (tmp > mess_min[‘MESS_BITS * i +:‘MESS_BITS])?

tmp: mess_min[‘MESS_BITS * i +:‘MESS_BITS];

end

//normalization: division //normalization

delta = {‘MESS_BITS{1’b1/tmp}};

for (j=0; j<‘MESS_DIM; j=j+1) begin

mess_min[‘MESS_BITS * j +:‘MESS_BITS] =

mess_min[‘MESS_BITS * j +:‘MESS_BITS] * delta;

end

end

endfunction

For the weighting,𝜓 + x, a function, calledsmoothed, is defined. The given vectors x and the smoothness
vector 𝜓 in this function evaluate

𝜓 + x. (14.20)

Function mess_min computes Equation (14.20) in two steps: minimum selection of the weighted vector
and normalization. For the first operation, the circuit uses smoothed. The normalization stage involves
a number of sequential stages. The first stage shifts the element down to base zero:

mk ← mk −
D−1

min
j=0

mj, ∀k ∈ [0, D − 1]. (14.21)

This operation is necessary because the message may be increased during the BP operations to the upper
bound, 2B − 1, threatening overflow. The normalization starts with the selection of a maximum number.
Subsequently, all the elements are divided by the common divisor so that the message is in the range
[0, 2B − 1].

Observing the statistical distribution of the message values, we may notice that the dynamic range
is very small and thus the full B bits may not be necessary. In fact, the nature of the images and the
applications, and the chosen smoothness function, all contribute to the message distribution (see the
problems at the end of this chapter). In some cases, normalization may not be necessary. From the given
template, we can further develop circuits that are more efficient in both complexity and performance.

14.14 Minimum Argument
After the iteration is complete, the messages are supposed to be in equilibrium. At this instant, the final
message is determined and, thus, the disparity. This is the concept of the original theory. In actuality, the
circuit executing this task is separate from the circuit for the message updation and is thus concurrent,
as are the other circuits. Therefore, there is no reason to halt this circuit during the iteration.

442 Architectures for Computer Vision

In Equation (14.1), the corresponding operation is

x = arg
D−1

min
k=0

m(k). (14.22)

Function argmin returns the argument of the minimum given the input vector.
In the Verilog HDL, this operation reads:

Listing 14.12 The functions (12/12)

//choose argument for the minimum

function [15:0] argmin; //minimum argument

input [‘MESS_BITS * ‘MESS_DIM - 1:0] a;

reg [15:0] i, tmp, temp;

begin

tmp = MESS_MAX;

temp = 0;

for (i=0; i < ‘MESS_DIM; i=i+1) begin

temp = (a[‘MESS_BITS * i +:‘MESS_BITS] < tmp)? i: temp;

tmp = (a[‘MESS_BITS * i +:‘MESS_BITS] < tmp)?

a[‘MESS_BITS * i +:‘MESS_BITS]: tmp;

end

argmin = temp;

end

endfunction

endmodule

It is important to choose the minimum near the center position when multiple minima exist throughout
the elements in a vector. This is because the required value is not the message but its index, which must be
as near to the current position as possible. An appropriate weight must be designed so that this condition
is guaranteed. Otherwise, the circuit must be redesigned in a more complicated manner.

14.15 Simulation
Let us observe the testing of the BP circuit. The test images used were a pair of 225 × 188 images
(CMU 2013; Middlebury 2013). They can be seen at the top of Figure 14.9, with the lower images being
the disparity maps. The parameters for the BP were as follows. The window size was 40 × 40 and was
moved un-overlapped in raster scan manner. Each window was iterated 10 times, somewhat earlier than
complete convergence. The smoothness function was the truncated linear function with slope 25 in a 10
pixel range. Beyond the range, the smoothed value was saturated to the upper bound.

The right reference map had a poor region at the right side. In like manner, the left reference map had
a poor region at the left side. Compared to the disparity map obtained by the DP machines, the result
was less noisy, even if the result was not yet fully saturated. There were some remnants, some of the
marks of the windows, due to the window processing. To avoid such window traces, the windows must
be overlapped slightly around boundaries. The major differences between the two disparity maps are the
important clues for computing occluding regions.

Belief Propagation for Stereo Matching 443

(a) Left image (b) Right image

(c) Left disparity (d) Right disparity

Figure 14.9 Disparity maps (image size: 225 × 188, disparity level: 32, window size: 40 × 40, iteration:
10, truncated linear function: 25)

In complexity view, the BP machine needed 4mnDB bits to store the message matrix and MNT time
for computation, where T signifies iteration. Compared with the DP O(N2D) for a single processor and
O(N) for the D processor array, the BP consumed more space and time than DP but generally gives
better results. The competitive algorithm, graph cuts, gives similar results, but takes less space, O(MN),
though the control structure is more complicated. It is known that the two algorithms have evolved in
this direction: BP gets faster and GC gets more general.

Problems
14.1 [Data representation] A message is represented by the scoring function. If the abstraction process

continues further, the message loses its meaning as a probability and score function. Instead, the
quantities in the message vector will relate to preference order. Thus, m = (m0, m1,… , mD−1,
where m ∈ [0, D − 1]. In such a case, what are the proper operations that correspond to the
addition and average?

14.2 [Overall system] How is the message matrix, mmat, represented in packed form?

14.3 [Overall system] How can a message be sent in the packed and unpacked forms for the message
matrix mmat?

444 Architectures for Computer Vision

14.4 [Overall system] In the code, the message and data vectors are coded in a packed array in contrast
to the message matrix, which is in an unpacked array. Represent the message and data vectors
in unpacked forms. Discuss their advantages and disadvantages.

14.5 [Overall system] In Listing 14.2, the message matrix was defined for disparity computation. What
is the equivalent matrix representation for optical flow? Discuss using the spatial complexity.
For instance, let the velocity vector (u, v) and their limits be U_DIM and V_DIM. For disparity,
the message matrix is

reg [‘MESS_BITS - 1:0] mmat [0: ‘HEIGHT1 - 1][0: ‘WIDTH1 - 1]

[0:3][0:‘MESS_DIM - 1];

In the disparity matrix, the spatial complexity is 4mnDB bits. For the optical flow, the message
matrix has spatial complexity comprising UV, where U and V are the limits of u and v.

14.6 [Overall system] In Listing 14.2, the IO and sampling circuits are separately designed. Build a
circuit that combines the three into one using an FSM.

14.7 [Sampling circuit] In Listing 14.4, the space is scanned in a (y(x(l(xx))) manner, where xx changes
most rapidly and y changes most slowly. What other scanning methods could be used?

14.8 [Data term] In Listing 14.5, the neighbors outside the window are assigned data along the
boundary. However, we instead want to expand the outside in mirror image. Change the data
term for such a mirror image case. Actually, there can be many more cases, which may need more
computation. This modification is provided for the right mode only. However, similar changes
can be made for the left mode also.

14.9 [Input message matrix] In Listing 14.6, the outside neighbors are bounded by the data on the
boundary. Change the code so that the mirror image is used instead for the neighbors around the
boundary.

14.10 [Functions] In Listing 14.10, the average of vectors is defined for the packed array. Modify the
operation for an addition.

14.11 [Functions] In Listing 14.11, the distance measure is absolute. The Potts model is often more
robust in many noisy environments. Design a function for the Potts model.

References
CMU 2013 Cmu data set http://vasc.ri.cmu.edu/idb/html/stereo/ (accessed Sept. 4, 2013).
Felzenszwalb P and Huttenlocher D 2004 Efficient belief propagation for early vision Proceedings of the 2004 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, pp. I261–I268 number 1.
Grauer-Gray S and Kambhamettu C 2009 Hierarchical belief propagation to reduce search space using CUDA for

stereo and motion estimation In Proceedings of 2009 Workshop on Applications of Computer Vision, pp. 1–8.
IEEE 2005 IEEE Standard for Verilog Hardware Description Language. IEEE.
Jeong H and Park S 2004 Generalized trellis stereo matching with systolic array Lecture Notes in Computer Science,

vol. 3358, pp. 263–267.
Jian S, Zheng N, and Shum H 2003 Stereo matching using belief propagation. IEEE Trans. Pattern Anal. Mach. Intell.

25(7), 787–800.
Klaus A, Sormann M, and Karner K 2006 Segment-based stereo matching using belief propagation and a self-adapting

dissimilarity measure ICPR (3), pp. 15–18. IEEE Computer Society.
Liang C, Cheng C, Lai Y, Chen L, and Chen H 2011 Hardware-efficient belief propagation. IEEE Trans. Circuits and

Systems for Video Technology 21(5), 525–537.
Middlebury U 2013 Middlebury stereo home page http://vision.middlebury.edu/stereo (accessed

Sept. 4, 2013).

http://vasc.ri.cmu.edu/idb/html/stereo/
http://vasc.ri.cmu.edu/idb/html/stereo/
http://vision.middlebury.edu/stereo
http://vision.middlebury.edu/stereo

Belief Propagation for Stereo Matching 445

Montserrat T, Civit J, Escoda O, and Landabaso J 2009 Depth estimation based on multiview matching with depth/color
segmentation and memory efficient belief propagation 16th IEEE International Conference on Image Processing,
pp. 2353–2356.

Park S and Jeong H 2008 Memory efficient iterative process on a two-dimensional first-order regular graph. Optics
Letters 33, 74–76.

Stankiewicz O and Wegner K 2008 Depth map estimation software version 2 ISO/IEC MPEG meeting M15338.
Szeliski RS, Zabih R, Scharstein D, Veksler OA, Kolmogorov V, Agarwala A, Tappen M, and Rother C 2008 A

comparative study of energy minimization methods for Markov random fields with smoothness-based priors.
IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1068–1080.

Taguchi Y, Wilburn B, and Zitnick C, 2008 Stereo reconstruction with mixed pixels using adaptive over-segmentation
CVPR, pp. 1–8.

Tippetts BJ, Lee DJ, Archibald JK, and Lillywhite KD 2011 Dense disparity real-time stereo vision algorithm for
resource-limited systems. IEEE Trans. Circuits Syst. Video Techn 21(10), 1547–1555.

Tippetts BJ, Lee DJ, Lillywhite K, and Archibald J 2013 Review of stereo vision algorithms and their suitability
for resource-limited systems http://link.springer.com/article/10.1007%2Fs11554-012-
0313-2 (accessed Sept. 4, 2013).

Wikipedia 2013 Perplexity http://en.wikipedia.org/wiki/Perplexity (accessed Sept. 2, 2013).
Yang Q, Wang L, Yang R, Stewenius H, and Nister D, 2009 Stereo matching with color-weighted correlation,

hierarchical belief propagation, and occlusion handling. IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 492–504.
Yang QX, Wang L, and Yang RG 2006 Real-time global stereo matching using hierarchical belief propagation BMVC,

p. III:989.
Yedidia J, Freeman W, and Weiss Y 2003 Exploring Artificial Intelligence in the New Millennium Morgan Kaufmann

Publishers Inc. chapter Understanding Belief Propagation and Its Generalizations, pp. 239–269.
Yu T, Lin R, Super B, and Tang B 2007 Efficient message representations for belief propagation ICCV, pp. 1–8.

http://link.springer.com/article/10.1007
http://link.springer.com/article/10.1007
http://en.wikipedia.org/wiki/Perplexity
http://en.wikipedia.org/wiki/Perplexity
http://link.springer.com/article/10.1007%2Fs11554-012-0313-2
http://link.springer.com/article/10.1007%2Fs11554-012-0313-2

Index

A* algorithm, 256
Affine graph, 236, 237
Altera Quartus, 9, 13
Anisotropic diffusion, 144, 169, 222
AOR, 187
Appearance model, 167, 168, 169, 175, 179
Approximate DP, 260
ASIC, 7, 10, 12, 29
ASM, 33
Asynchronous, 41, 46

Backward probability, 73, 262, 266
Baum–Welch algorithm, 264
Bayesian inference, 138
Bayesian network, 260
Bayesian tree, 135
BB, 139
BC, 193, 193
Behavioral model, 13, 22
Belief, 278, 419, 421
Bellman equation, 250
Bellman’s principle, 249
Bethe approximation, 139, 280
Biharmonic, 221, 222, 224
Biltzmann’s law, 138
Binding problem, 272
Blocking, 21, 83
Blocks world, 273
Blur diameter, 206, 207, 207, 209, 210
Blurring, 205, 207
BMP, 92, 345, 427
BNB, 140
Boltzmann machine, 141
Border expansion, 228
Border shrink, 228
BP, 6, 68, 277, 417, 443

Calculus of variation, 305
Calibration matrix, 155
Call by reference, 13
Call by value, 13
Camera calibration, 156
Camera matrix, 155, 156
Canonical form, 155
Center left reference, 332
Center reference, 331
Center right reference, 332
Centroid, 191
Cholesky deccomposition, 192
Circle of confusion, 206
Clique, 134, 272
Clique potential, 134
CNF, 265
Combinational circuit, 421
Compressed sensing, 143
Concurrent, 21, 28
Conjugate pair, 421
Conservation, 197
Constraint propagation, 194
Continuity equation, 197
Continuous assignment, 13, 20
Control unit, 51
Correspondence problem, 167
Corresponding point, 167
CPLD, 12, 29, 76
Curse of dimensionality, 260
CYK, 270

Data term, 135, 201, 212, 247, 261, 430
Datapath, 11, 51
Deep learning, 141
Delay control, 25
DfD, 207

Architectures for Computer Vision: From Algorithm to Chip with Verilog, First Edition. Hong Jeong.
© 2014 John Wiley & Sons Singapore Pte. Ltd. Published 2014 by John Wiley & Sons Singapore Pte. Ltd.
Companion Website: www.wiley.com/go/jeong

http://www.wiley.com/go/jeong

448 Index

DfF, 207
Diagonal method, 219
Diffusion, 222, 224
Dimensionality reduction, 260
Discretization, 307
Disparity, 122, 167, 193, 203, 363, 373
Disparity map, 310, 422
Divide and conquer, 248
DMMP, 5
DMSV, 5
DoG, 145, 222
Doubleton, 134, 272
Downward referencing, 15
DP, 79, 81, 247, 247, 327
DPI, 11
DUT, 17

EDA, 75
Egomotion, 183
EM, 141, 264
EMD, 144
Energy function, 131, 135, 136, 142, 179
Energy minimization, 135, 201, 248, 288–290
EP, 8
Epiplane, 159, 160, 165, 331
Epipolar line, 159, 159, 166, 179, 248, 306, 317, 330,

331, 334
Epipole, 159, 161, 162, 166
Essential matrix, 161
Euler–Lagrange equation, 223, 305, 305
Event control, 25
Expansion move, 295, 297
expansion move, 7
Exponential time, 249
Extended DP, 256, 258
Extrinsic parameter, 156

Factor graph, 137, 279
Factorization method, 191
FBP, 314
FIFO, 337, 342
FIR, 81
Flow network, 131, 289, 290
Flynn’s taxonomy, 3
Flynn–Johnson taxonomy, 5
FOC, 186
Focal length, 152
FOE, 186
Forward probability, 73, 261, 266
FOV, 172
FPGA, 7, 10, 12, 29
Frame buffer, 63, 74
FRE, 77
FRE machine, 238
Free energy, 131, 138

FSM, 33, 309, 327
Function, 25
Fundamental equation, 212
FVSIM, 89, 109, 110, 305, 417, 420

Gauss–Seidel method, 229, 308
Gaussian, 138, 141, 145, 147, 195, 199, 202, 221, 230,

308
GBC, 196
GC, 6, 277, 288, 443
Generalized heat equation, 222
Gibbs distribution, 134, 147
GMMP, 5
GMSV, 5
GP, 139
GPU, 7, 8
GSJ method, 219

Hammersley-Clifford theorem, 134
Handshaking, 44, 372
Hard copy, 9, 36
HDL, 9, 64
Helmholtz free energy, 138
Hermite polynomial, 221
HLS, 36, 64
HMM, 65, 70, 79, 81, 260
Homogeneous coordinates, 152
Homography, 156, 156, 157, 161, 165
Horn-Shunck method, 201
Horn–Shunck method, 200

IDE, 13, 14
Ideals, 152
ILP, 139
Inhomogeneous coordinates, 152
Inside probability, 266, 271
Inside-Outside algorithm, 265, 265
Instantiation, 14, 15, 17, 19, 71, 94, 100, 112, 382,

403
Interleaving, 82, 364
Intrinsic parameter, 156
IPs, 76, 116
Isotropic diffusion, 222
Iteration, 226

Jacobi method, 229, 308

KL divergence, 138

Labeling, 132, 132, 141, 142
Laplacian, 145, 221, 306, 307
LBC, 194
LBP, 135, 139
LE, 76
Left disparity, 167

Index 449

Left reference, 331
Line at infinity, 153
Little-endian, 92
LLSE, 158, 162
LoG, 222
Longuet-Higgins, H. C., 161
Loopy MRF, 282
LPR, 7, 169, 219, 226
Lukas-Kanade method, 200, 201, 202
LVSIM, 89, 98, 337, 361, 417

Manifold lerning, 141
MAP, 135
Marginal, 141, 278, 280, 281, 287, 418
Marginalization, 135, 263, 269, 278
Matching node, 175, 328, 332
Max product, 282
Max-flow Min-cut, 289, 291
max-flow min-cut, 7
MCMC, 142
Mealy machine, 3
Message, 278, 419, 420
Metric, 293
MIMD, 3
MIOP, 140
Mirror expansion, 228
MISD, 3
Mixed model, 13
ML, 134
ModelSim, 14
Module link, 210–212
Moore machine, 3
Motion flow, 185, 190
Move algorithm, 291
MPLP, 140
MRF, 7, 132, 133
MRU, 229
Multigrid method, 309
Multiple view, 173, 183
Multisensory integration, 272

N-best, 255
n-link, 131, 289, 293, 296
Net type, 16, 18
Netlist, 12
NN, 142
Nonblocking, 21, 22, 83, 125
Normal flow, 202
Normalization, 419, 440
Normalized camera, 152
Normalized camera matrix, 155
NP-hard, 139

Occlusion node, 328, 332
Open end problem, 253

OpenCL, 36, 64
OpenCV, 29, 89, 90, 122, 123, 136
Optical center, 152
Optical flow, 122, 187, 188, 203
Orthographic projection, 153
Outside probability, 266, 271

Packed array, 420
Pair-wise MRF, 280
Parallel DP, 254, 254
Parameter, 18
Parse tree, 266
Partition function, 134
PCFG, 265
PE, 3, 63, 64, 66
Perplexity, 419
Perspective projection, 153
Phasor, 178
Pipelining, 3, 81, 141, 309, 363, 364, 366, 367, 417
PLD, 8
Point at infinity, 152
Polytope, 140
Port, 13, 364, 371
Potts model, 143, 319, 440
Principal axis, 152
Principal plane, 152
Principal point, 152
Procedural assignment, 20
PSF, 205, 206

RAM, 337
RE machine, 234, 309
Rectification, 165, 166
Reg type, 16
Regularizer, 198
Reinforcement learning, 139
Relaxation, 226, 242, 305
Relaxation graph, 231, 232
Reparameterization, 290
Retiming, 81
RGB, 91, 122, 310
Right disparity, 167
Right reference, 331
RTL, 9, 12, 29

SA, 6, 139
SAT, 65, 227, 227
Scene flow, 183
SCFG, 265
SDRAM, 116
Semaphore, 46, 106, 109, 113, 117
Semimetric, 293
Sequential, 21
Serial DP, 255
SfC, 210

450 Index

SfM, 183
SfS, 210
SfT, 210
Shortest path algorithm, 65, 248
SIMD, 3
Singleton, 134, 135, 138, 146, 272
SISD, 3
Smoothness constraint, 134, 169, 171, 175, 179, 197,

198, 334
Smoothness term, 135, 192, 200, 201, 209, 212, 247,

261
Soft matting, 205
SOR, 225, 225, 226, 307
Spectral warping function, 177
SSE, 8
Stack, 79
Stereo matching, 167, 418
Stereographic projection, 208
Structural model, 13, 22
Submodularity, 290
Sum product, 282
Sum-sum, 282
Superscalar, 3
Surface normal, 208, 209, 210
SVD, 192
Swap move, 294
swap move, 7
Synchronous, 41, 46
Synthesizable, 29
System functions, 30
System tasks, 30
SystemVerilog, 11, 91
Systolic array, 3, 81, 253, 361

t-link, 131, 289, 293, 296
Task, 25

TB, 11, 17
Tensor diffusion, 222
Terminal symbol, 265
Thin lens, 206
Topological transformation, 81, 363
Transition probability, 261, 264, 270, 271
Tree-trellis, 256
Trellis, 248
Triangle inequality, 293
Trinocular stereo, 173
Tripleton, 272

Unpacked array, 420
Unsynthesizable, 29, 100, 112, 314
Upward referencing, 15
UUT, 11, 17

Value set, 17
Variable referencing, 15
Variable type, 18
Verilog HDL, 11
Vertical method, 219
VHDL, 9, 11
Virtual image plane, 152
Vision integration, 183, 210, 212
Vision simulator, 12
Viterbi algorithm, 65, 66, 70, 73, 248, 250, 260, 261,

282
Von Neumann architecture, 3
VPI, 11, 89
VSIM, 89

Xilinx ISE, 9, 13
Xilinx Vivado, 87

Zero padding, 228

WILEY END USER LICENSE
AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook
EULA.

http://www.wiley.com/go/eula

	Architectures for Computer Vision
	Contents
	About the Author
	Preface
	Part One Verilog HDL
	1 Introduction
	1.1 Computer Architectures for Vision
	1.2 Algorithms for Computer Vision
	1.3 Computing Devices for Vision
	1.4 Design Flow for Vision Architectures
	Problems
	References

	2 Verilog HDL, Communication, and Control
	2.1 The Verilog System
	2.2 Hello, World!
	2.3 Modules and Ports
	2.4 UUT and TB
	2.5 Data Types and Operations
	2.6 Assignments
	2.7 Structural-Behavioral Design Elements
	2.8 Tasks and Functions
	2.9 Syntax Summary
	2.10 Simulation-Synthesis
	2.11 Verilog System Tasks and Functions
	2.12 Converting Vision Algorithms into Verilog HDL Codes
	2.13 Design Method for Vision Architecture
	2.14 Communication by Name Reference
	2.15 Synchronous Port Communication
	2.16 Asynchronous Port Communication
	2.17 Packing and Unpacking
	2.18 Module Control
	2.19 Procedural Block Control
	Problems
	References

	3 Processor, Memory, and Array
	3.1 Image Processing System
	3.2 Taxonomy of Algorithms and Architectures
	3.3 Neighborhood Processor
	3.4 BPBP Processor
	3.5 DP Processor
	3.6 Forward and Backward Processors
	3.7 Frame Buffer and Image Memory
	3.8 Multidimensional Array
	3.9 Queue
	3.10 Stack
	3.11 Linear Systolic Array
	Problems
	References

	4 Verilog Vision Simulator
	4.1 Vision Simulator
	4.2 Image Format Conversion
	4.3 Line-based Vision Simulator Principle
	4.4 LVSIM Top Module
	4.5 LVSIM IO System
	4.6 LVSIM RAM and Processor
	4.7 Frame-based Vision Simulator Principle
	4.8 FVSIM Top Module
	4.9 FVSIM IO System
	4.10 FVSIM RAM and Processor
	4.11 OpenCV Interface
	Problems
	References

	Part Two Vision Principles
	5 Energy Function
	5.1 Discrete Labeling Problem
	5.2 MRF Model
	5.3 Energy Function
	5.4 Energy Function Models
	5.5 Free Energy
	5.6 Inference Schemes
	5.7 Learning Methods
	5.8 Structure of the Energy Function
	5.9 Basic Energy Functions
	Problems
	References

	6 Stereo Vision
	6.1 Camera Systems
	6.2 Camera Matrices
	6.3 Camera Calibration
	6.4 Correspondence Geometry
	6.5 Camera Geometry
	6.6 Scene Geometry
	6.7 Rectification
	6.8 Appearance Models
	6.9 Fundamental Constraints
	6.10 Segment Constraints
	6.11 Constraints in Discrete Space
	6.12 Constraints in Frequency Space
	6.13 Basic Energy Functions
	Problems
	References

	7 Motion and Vision Modules
	7.1 3D Motion
	7.2 Direct Motion Estimation
	7.3 Structure from Optical Flow
	7.4 Factorization Method
	7.5 Constraints on the Data Term
	7.6 Continuity Equation
	7.7 The Prior Term
	7.8 Energy Minimization
	7.9 Binocular Motion
	7.10 Segmentation Prior
	7.11 Blur Diameter
	7.12 Blur Diameter and Disparity
	7.13 Surface Normal and Disparity
	7.14 Surface Normal and Blur Diameter
	7.15 Links between Vision Modules
	Problems
	References

	Part Three Vision Architectures
	8 Relaxation for Energy Minimization
	8.1 Euler–Lagrange Equation of the Energy Function
	8.2 Discrete Diffusion and Biharminic Operators
	8.3 SOR Equation
	8.4 Relaxation Equation
	8.5 Relaxation Graph
	8.6 Relaxation Machine
	8.7 Affine Graph
	8.8 Fast Relaxation Machine
	8.9 State Memory of Fast Relaxation Machine
	8.10 Comparison of Relaxation Machines
	Problems
	References

	9 Dynamic Programming for Energy Minimization
	9.1 DP for Energy Minimization
	9.2 N-best Parallel DP
	9.3 N-best Serial DP
	9.4 Extended DP
	9.5 Hidden Markov Model
	9.6 Inside-Outside Algorithm
	Problems
	References

	10 Belief Propagation and Graph Cuts for Energy Minimization
	10.1 Belief in MRF Factor System
	10.2 Belief in Pairwise MRF System
	10.3 BP in Discrete Space
	10.4 BP in Vector Space
	10.5 Flow Network for Energy Function
	10.6 Swap Move Algorithm
	10.7 Expansion Move Algorithm
	Problems
	References

	Part Four Verilog Design
	11 Relaxation for Stereo Matching
	11.1 Euler–Lagrange Equation
	11.2 Discretization and Iteration
	11.3 Relaxation Algorithm for Stereo Matching
	11.4 Relaxation Machine
	11.5 Overall System
	11.6 IO Circuit
	11.7 Updation Circuit
	11.8 Circuit for the Data Term
	11.9 Circuit for the Differential
	11.10 Circuit for the Neighborhood
	11.11 Functions for Saturation Arithmetic
	11.12 Functions for Minimum Argument
	11.13 Simulation
	Problems
	References

	12 Dynamic Programming for Stereo Matching
	12.1 Search Space
	12.2 Line Processing
	12.3 Computational Space
	12.4 Energy Equations
	12.5 DP Algorithm
	12.6 Architecture
	12.7 Overall Scheme
	12.8 FIFO Buffer
	12.9 Reading and Writing
	12.10 Initialization
	12.11 Forward Pass
	12.12 Backward Pass
	12.13 Combinational Circuits
	12.14 Simulation
	Problems
	References

	13 Systolic Array for Stereo Matching
	13.1 Search Space
	13.2 Systolic Transformation
	13.3 Fundamental Systolic Arrays
	13.4 Search Spaces of the Fundamental Systolic Arrays
	13.5 Systolic Algorithm
	13.6 Common Platform of the Circuits
	13.7 Forward Backward and Right Left Algorithm
	13.8 FBR and FBL Overall Scheme
	13.9 FBR and FBL FIFO Buffer
	13.10 FBR and FBL Reading and Writing
	13.11 FBR and FBL Preprocessing
	13.12 FBR and FBL Initialization
	13.13 FBR and FBL Forward Pass
	13.14 FBR and FBL Backward Pass
	13.15 FBR and FBL Simulation
	13.16 Backward Backward and Right Left Algorithm
	13.17 BBR and BBL Overall Scheme
	13.18 BBR and BBL Initialization
	13.19 BBR and BBL Forward Pass
	13.20 BBR and BBL Backward Pass
	13.21 BBR and BBL Simulation
	Problems
	References

	14 Belief Propagation for Stereo Matching
	14.1 Message Representation
	14.2 Window Processing
	14.3 BP Machine
	14.4 Overall System
	14.5 IO Circuit
	14.6 Sampling Circuit
	14.7 Circuit for the Data Term
	14.8 Circuit for the Input Belief Message Matrix
	14.9 Circuit for the Output Belief Message Matrix
	14.10 Circuit for the Updation of Message Matrix
	14.11 Circuit for the Disparity
	14.12 Saturation Arithmetic
	14.13 Smoothness
	14.14 Minimum Argument
	14.15 Simulation
	Problems
	References

	Index
	EULA

