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Strategic Multiway Cut and Multicut Games�

Elliot Anshelevich, Bugra Caskurlu, and Ameya Hate

Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY

Abstract. We consider cut games where players want to cut themselves
off from different parts of a network. These games arise when players
want to secure themselves from areas of potential infection. For the game-
theoretic version of Multiway Cut, we prove that the price of stability is 1,
i.e., there exists a Nash equilibrium as good as the centralized optimum.
For the game-theoretic version of Multicut, we show that there exists a
2-approximate equilibrium as good as the centralized optimum. We also
give poly-time algorithms for finding exact and approximate equilibria
in these games.

1 Introduction and Model

Networked systems for transport, communication, and social interaction have
contributed to all aspects of life by increasing economic and social efficiency.
However, increased connectivity also gives intruders and attackers better oppor-
tunities to maliciously spread in the network, whether the spread is of disin-
formation, or of contamination in the water supply [26]. Anyone participating
in a networked system may therefore desire to undertake appropriate security
measures in order to protect themselves from such malicious influences.

We introduce a Network Cutting Game, which is a game-theoretic framework
where a group of self-interested players protect vertices that they own by cutting
them off from parts of the network that they find untrustworthy. Cutting an
edge should not be interpreted as destroying a part of the network: instead it
can correspond to taking security measures on that edge such as placing sentries
on lines of communication. These notions are applicable in areas such as airline
security. Consider a situation where country A requires extra security screening
of passengers or cargo from country B. Due to the networked multi-hop structure
of international air travel, the optimal locations for carrying out such screenings
may lie somewhere in between the two countries. In general, the goal of each
player is to make sure that nothing can get to it from an “untrustworthy” part
of the network without passing through an edge with installed security measures.

The purpose of each player is to protect themselves while spending as little
money as possible for their security. We investigate the efficiency of the security
actions taken by a group of agents by studying the price of anarchy and the
price of stability — the ratios between the costs of the worst and best Nash

� This work supported in part by NSF CCF-0914782.

K. Jansen and R. Solis-Oba (Eds.): WAOA 2010, LNCS 6534, pp. 1–12, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 E. Anshelevich, B. Caskurlu, and A. Hate

equilibrium1 respectively, and that of the globally optimal solution. While the
price of anarchy can be extremely high (see Section 5), we prove nice bounds on
the price of stability.

Game Definition. We now formally define the Network Cutting Game as follows.
We are given an undirected graph G = (V, E), and a set P of k players. Each
player i corresponds to a single player node in the graph G, which we will also
denote by i. The strategy set of every player i is 2E ; a strategy Si ⊆ E of player
i is the set of edges that player i will cut. The outcome of the game is GS, which
is a subgraph of G obtained by removing the edges of

⋃
i Si.

The objective of each player i is to protect her node i from a given subset
of nodes Ti of V . We say that player i satisfies her cut requirement if i is dis-
connected from all nodes of Ti in GS . Every player wants to satisfy her cut
requirement, but also wants to minimize the number of edges she cuts, which
we denote by |Si|. If a player i does not satisfy her cut requirement, she faces a
penalty cost of βi. We can think of βi as the maximum number of edges that i
would be willing to cut in order to satisfy her cut requirement. We conclude the
definition of our game by defining the cost function for each player i as:

– cost(i) = |Si| if player i satisfies her cut requirements,
– cost(i) = |Si|+ βi otherwise.

Nash Equilibrium and OPT. A pure Nash equilibrium (NE) of the Network
Cutting Game is a strategy vector S = (S1, . . . , Sk) such that no player i has
an incentive for unilateral deviation from her strategy, i.e., no player can reduce
her cost by changing her strategy from Si to another strategy S′

i, assuming all
other players stay with their existing strategies. Notice that in an equilibrium no
player will cut more than βi edges, since this player could change her strategy to
S′

i = ∅, and reduce her cost to at most βi. By the same reasoning, all players that
do not satisfy their cut requirements will play Si = ∅ at equilibrium. Therefore,
in a Nash equilibrium, all edges must be cut by players that satisfy their cut
requirements.

We analyze the quality of Nash equilibrium solutions by comparing them with
the cost of the socially optimal solution, which we refer to as OPT. The socially
optimal solution is an outcome of the Network Cutting Game that minimizes the
total cost of all the players (equivalently, maximizes social welfare). Let Q(S)
denote the set of players whose cut requirements are not satisfied in GS . The
cost of solution S is given by:

cost(S) =

∣
∣
∣
∣
∣

⋃

i

Si

∣
∣
∣
∣
∣
+

∑

j∈Q(S)

βj ,

1 Recall that a (pure-strategy) Nash equilibrium is a solution where no single player
can switch her strategy and become better off, given that the other players keep
their strategies fixed.
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which is the same as
∑

i cost(i) since for any equilibrium solution we can assume
that all sets Si are disjoint. When all βi are large, OPT is exactly the smallest
set of edges that satisfies all the cut requirements.

Our Results. In general, the Network Cutting Game may not have any pure Nash
equilibrium[22], and the price of anarchy for even very simple instances can be
as large as the number of players. Our main results are about the existence and
computation of cheap, exact, and approximate equilibria for several important
special cases of the Network Cutting Game. By an α-approximate Nash equilib-
rium, we mean that no player in such a solution can reduce her cost by a factor
of more than α by deviating. Specifically, we consider the following special cases
of cut requirements.

In the Single-Source Network Cutting Game, each player i wants to disconnect
her node from a common node t, i.e., Ti = {t} for all players i.

In the Network Multiway Cut Game, each player i wants to disconnect her
node from the nodes of all other players, i.e., Ti = P\{i} for all players i. Notice
that when βi for all players is large enough, the socially optimal solution is
exactly the Minimum Multiway Cut.

In the Network Multi-Cut Game, each player i wants to disconnect her node
i from some specific node ti. In other words, this is the case where |Ti| = 1 for
all players. When βi for all players is large enough, the socially optimal solution
is exactly the Minimum Multicut for the set of pairs (i, ti).

Our main results are as follows:

– In Section 2, we study the Single Source Network Cutting Game and show
that there always exists a Nash equilibrium as cheap as OPT, i.e., the price
of stability is 1. Furthermore, that Nash equilibrium can be computed in
polynomial time. This analysis easily generalizes to the case when Ti are not
singleton sets, but Ti = Tj for all i, j.

– In Section 3, we study the Network Multiway Cut Game and show that there
always exists a Nash equilibrium as good as OPT, i.e., the price of stability
is 1. Given an approximate solution to Multiway Cut (for example, a 1.34-
approximation found by [23]), we show how to compute a Nash equilibrium
with the same or smaller cost than this solution in polynomial time.

– In Section 4, we study the Network Multi-Cut Game and show that there
always exists a 2-approximate Nash equilibrium as cheap as OPT.

In Section 5, we consider the above games on graphs with non-uniform edge
costs, i.e., where each edge has some fixed cost w(e) to cut it. If every edge
must be bought entirely by a single player, the resulting Nash equilibria can
be expensive. We show that if the players are allowed to pay for cutting only a
portion of an edge, the above results extend to non-uniform edge costs.

Related Work. An extensively studied game related to cuts is the max-cut game
[10,14,18]. In this game players are forming a bipartition on the graph, where the
utility of each player is the total weight of the edges of the cut incident to her.
The Max-cut game always admits Nash equilibria since it is a potential game
[29] and it is recently shown that it always admits strong Nash equilibria [16].



4 E. Anshelevich, B. Caskurlu, and A. Hate

A contrasting approach to the Network Cutting Game are Network Formation
Games [1,13,27], where a set of players is collectively trying to built a network,
i.e., players want to connect some subset of nodes, rather than cutting them
apart. Players connect nodes to each other by building edges and sharing the
cost of the edges. The most relevant network formation game to our model
is the Connection Game [4,6,12], where each player i wants to connect a pair
of nodes to each other. Existence and quality of equilibria depend on the cost-
sharing method used [9]. The cost-sharing scheme used for the Connection Game
in [6] is commonly referred to as ’arbitrary-sharing’ [3,19,20,21], which will be
explained in detail in Section 5. Another popular cost-sharing scheme in Network
Formation Games is commonly referred to as ’fair-sharing’, which will also be
explained in detail in Section 5. The Connection Game with fair sharing was
first studied in [5] and later addressed in [8,15], among others.

There have been many interesting applications of game theory to network
security models (eg. [17,28,30]). A notion of interdependent security (IDS) games
was introduced by Kunreuther and Heal [25]. In these games, the decision to
adopt a security measure by a player affects other players in the network. An
algorithm for finding an approximate equilibrium on this model was later given
by Kearns and Ortiz [24]. Work on a similar model by Aspnes et al [2] deals
with players immunizing their nodes against infections that can spread in the
network. There are several major differences between these models and the games
we consider: (i) players in IDS games can only immunize themselves, while in
our games players are allowed to add security to different parts of the network,
and (ii) these models consider that an attack can occur randomly anywhere in
the network, while in our games the players are trying to protect themselves
from specific areas of the network which might be different for different players.

Finally, some of our questions are related to ones studied by Engelberg et al.
[11], who look at bugeted versions of cut problems like Multiway Cut, Multicut,
and k-cut. This work considers centrally optimal solutions, not equilibria, and
while our values βi can be thought of as budgets, they are budgets for individual
players, not global budgets on the cost of the network.

2 Preliminaries and Basic Results

Given a graph G = (V, E), and two disjoint subsets A ⊆ V and B ⊆ V , denote
by M(G, A, B) the set of minimum-size A−B cuts. By an A−B cut, we mean
a set of edges E ′ such that A and B are disconnected by removing E′ from G.
Denote by m(G, A, B) the size of a minimum A − B cut in graph G. We will
also abuse notation slightly, and for a strategy vector S = (S1, . . . , Sk), we will
let S−i denote ∪jSj − Si, i.e., the set of edges cut by players other than i.

Proposition 1. A strategy vector S = (S1, . . . , Sk) of the Network Cutting
Game is a Nash equilibrium if and only if Si are pairwise disjoint, and

– |Si| = m(G−S−i, i, Ti) ≤ βi if cut requirement of player i is satisfied on
GS,

– Si = ∅ and m(G− S−i, i, Ti) ≥ βi otherwise.
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Due to lack of space most of our proofs appear in the full version of the paper.
To add intuition about the structure of Nash equilibria, notice that when βi are
large (say ≥ |E|) for all players, then the above proposition says that a solution
S is a Nash equilibrium exactly when |Si| = m(G− S−i, i, Ti) for all players.

2.1 Single-Source Network Cutting Game

In this section, we study the Single Source Network Cutting Game. Since for
single-source cut games, the LP to compute OPT has an integrality gap of 1,
the theorem below also follows from [19]. This analysis easily generalizes to the
case when Ti are not singleton sets, but Ti = Tj for all i, j.

Theorem 1. For the Single Source Cutting Game, Nash equilibrium is guaran-
teed to exist and the price of stability is 1.

Proof Sketch. The proof idea is quite simple: consider a max-flow from a
super-source s to t, with s connected to each player node i ∈ P with an edge
of capacity βi. Then it is easy to see that OPT is an s − t min-cut, and so is
saturated by this flow. We set Si to be the set of edges of OPT that is used by
the flow passing through node i. Then we can use Proposition 1 to show that
this results in a Nash equilibrium. The full proof of this theorem appears in the
full version.

Notice that the equilibrium constructed in the proof can be easily found in poly-
time using standard flow algorithms.

3 Network Multiway Cut Game

In the Network Multiway Cut Game (NMCG) each player i wants to disconnect
itself from every other player provided that the cost of cutting edges does not
exceed the player’s budget βi. When players all players have large βi, the socially
optimal solution is the well-studied Multiway Cut (MWC) problem. For the sake
of simplicity in exposition, we will derive the main results assuming βi to be
infinitely large. In the full version we show how to extend these results to the
case where values of βi are bounded. Notice that in this scenario where βi =∞,
each player must disconnect itself from every other player node.

Proof Technique. As we saw in Section 2.1 for the Single-Source Network Cutting
Game, we can use flows to determine the payments for players in the game. One
approach would be to create an analogous multi-commodity flow for the Network
Multiway Cut Game, and assign payments based on this flow. Unfortunately, this
approach does not yield the desired results, since for the payments to be stable,
we would need that the size of the maximum flow is equal to the size of the
minimum cut, which does not hold for multi-commodity flow problems.

Instead, in our approach we use the key observation proven in Lemma 1 to
construct a single-commodity flow that lets us determine stable payments for the
optimum solution. It should be noted that this construction does not find the
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minimum multiway cut, but only calculates stable payments for this cut if it
is given. We can, however, use the same ideas to find cheap Nash equilibria in
polynomial time (see Theorem 3).

Properties and Terminology. The problem input consists of graph G = (V, E),
and a set of k terminals T ⊆ V such that every player i ∈ P is assigned one
terminal. For every player i, Ti = T \{i}. We define the following terms with
respect to an instance of a multiway cut problem (G, T ). Any valid MWC X
must divide G into at least k components. Let the component containing terminal
i be termed as Ci(X). We define δi(X) as the set of edges (u, v) such that
|Ci(X) ∩ {u, v}| = 1 and δij(X) as the set of edges (u, v) such that u ∈ Ci(X)
and v ∈ Cj(X). Terminal j is a neighbor of terminal i (denoted by j ∈ Ni(X))
if δij(X) 
= ∅. Let Gi(X) be the subgraph defined as follows: Gi(X) = G−X +
δi(X).

Let OPT be the set of edges in the optimal Multiway Cut. For the sake of
brevity, when defined for OPT we will refer to the above terms simply as Ci,
δi, δij , Ni and Gi respectively. It is well known that when an optimal MWC is
made, the graph G is divided into exactly k components each containing one
terminal. Also, given a graph G, let E[G] correspond to the set of edges of G.

Lemma 1. Recall that M(Gi, {i}, Ni) is the set of minimum edge cuts between
terminal i and its neighboring terminals in graph Gi. Then, there exists M ∈
M(Gi, {i}, Ni), such that the set of edges in M is a subset of E[Ci] ∪ δi.

Following is a useful observation about the optimal solution of the Multiway
Cut.

Observation 1. If OPT is the optimal multiway cut for a graph G with termi-
nals T , then for any S ⊆ OPT , OPT − S is the optimal multiway cut for the
graph G− S with terminals T .

We can now state the main theorem of the section.

Theorem 2. The price of stability for the Network Multiway Cut problem is 1,
i.e. there exists an assignment of the edges of OPT to the players that forms a
Nash Equilibrium.

In order to prove the theorem we make use of the following construction. For
a multiway cut X of an instance (G, T ), we construct a directed flow graph
F (G, T, X) as follows: Construct source node s and sink node t. For every edge
e ∈ X , construct vertices me, ne and a directed edge (me, ne) of capacity 1. Con-
struct a directed edge (ne, t) of capacity ∞ for every such ne. Add components
Ci(X) to this graph and make all of their edges bi-directed with capacity 1. Add
an edge (s, ti) for every terminal i with capacity∞. For every vertex v ∈ Ci(X)
that has an edge e of δi(X) incident on it, construct a directed edge (v, me) with
capacity ∞. The proofs of lemmas in this section appear in the full version.

Lemma 2. Any bounded s−t cut in F (G, T, X) corresponds to a valid multiway
cut for (G, T ) of the same size.
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If X = OPT , then from the construction we can see that the edges repre-
senting OPT in F (G, T, OPT ) form a bounded s− t cut of the same size. If the
minimum s− t cut on F (G, T, OPT ) is smaller than size of OPT then Lemma 2
would imply that there exists a MWC of size smaller than OPT , which is a
contradiction. So the minimum bounded s− t on F (G, T, OPT ) has to be of the
same size as OPT . This means that the maximum s − t flow in F (G, T, OPT )
will saturate edges of OPT . Then the assignment of edges Si to terminal/player
i can be made as shown in Algorithm 1.

Data: Flow Graph F (G, T, OPT )
Result: Assignment of edges to players
Mark the flows that originate through terminal i as fi;
All edges of OPT that carry flows marked fi will be assigned to Si;

Algorithm 1. Algorithm that assigns edges of OPT to players

Since OPT forms the minimum bounded s − t cut, we know that all edges
of OPT will be assigned. Now all we need to prove is that this assignment will
form a Nash Equilibrium, which we do in the following lemma.

Lemma 3. The assignment made by Algorithm 1 forms a Nash Equilibrium.

3.1 Poly-time Computable Nash Equilibrium

Our algorithm in the previous section depends on the knowledge of the optimal
Multiway cut for a given problem. Since this is often computationally infeasible
due to the NP-hardness of the Multiway Cut problem, we give an algorithm
that efficiently computes a Nash equilibrium whose cost is no larger than any
given Multiway Cut. For example, we can begin with an α−approximate MWC
solution that can be obtained in polynomial time [7,23], and obtain a Nash equi-
librium that is no more expensive than this solution. Currently, the best known
approximation algorithm for the Multiway Cut is given by [23] and returns a
1.34-approximate solution.

Theorem 3. Given a multiway cut X, we can find a Nash equilibrium whose
social cost is no more than the cost of X in polynomial time.

4 Network Multicut Game

In the Network Multicut Game each player i wants to be cut from a particular
node ti of G provided that the cost of the strategy Si of player i does not
exceed βi. Recall that Network Multicut Game is a special case of the Network
Cutting Game, where Ti = {ti} is singleton for every player. As pointed out
before, the socially optimal solution is the minimum cost multicut for the pairs
{(1, t1), (2, t2), . . . , (k, tk)} if βi values are large enough. In general, OPT is a
solution that minimizes the total cost of all the players.
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For the Network Multicut game, we don’t know whether there always ex-
ists a Nash equilibrium or not. In this section, we prove the existence of a 2-
approximate Nash equilibrium that is as cheap as OPT. We do this by giving an
algorithm that takes the edges of OPT as the input, and returns an assignment of
edges of OPT to players that is a 2-approximate Nash equilibrium. First, we will
give some properties of Nash equilibria that are as cheap as OPT for the Network
Multicut Game, which enables us to give a simple algorithm that constructs a
2-approximate Nash equilibrium on the edges of OPT. Specifically, we first form
stable payments locally for every pair of neighboring connected components in
OPT, and then combine these payments to form a global 2-approximate Nash
equilibrium.

Let Cj and Ck be two arbitrary components of OPT and let δjk denote the
set of edges of G that are between Cj and Ck. Since Cj and Ck are cut apart in
OPT, all the edges of δjk are cut in OPT. We call that Cj and Ck are neighbor
components if δjk 
= ∅. With the help of this notation, we can write the following
simple observations.

Lemma 4. For any two neighbor components Cj and Ck of OPT, there exists
a player i such that either i ∈ Cj and ti ∈ Ck or vice versa.

Lemma 5. Let i be a player such that i ∈ Cj and ti ∈ Ck for 2 arbitrary
neighbor components Cj and Ck. Then player i cannot cut any edge that is not
in δjk in any Nash equilibrium that cuts OPT.

Lemma 6. If a player i is not assigned any edge by the algorithm, i.e., Si = ∅,
then i cannot reduce her cost by unilateral deviation (even in the case that βi is
finite).

To prove the existence of a 2-approximate Nash equilibrium as cheap as OPT,
we give an algorithm that assigns all the edges of OPT to the players and prove
that no player can reduce her cost by more than half by unilaterally deviating
from the strategy where she cuts the edges assigned to her by the algorithm. If
a player i is not cut from ti in OPT, then our algorithm does not assign any
edge to player i, i.e., Si = ∅. If i and ti are in different connected components of
OPT, say Cj and Ck respectively, then our algorithm assigns a subset of δjk to
player i. Notice that if Cj and Ck are not neighbor components then Si = ∅.

A player i may have an incentive for unilateral deviation from her strategy
Si only if i and ti are in different neighboring connected components of OPT
because of Lemma 6. Let G − S−i denote the subgraph of G where the edges
cut by other players are removed and let i be a player such that 0 < |Si| ≤
βi. Observe that a best deviation of player i from her strategy Si, which is
denoted by χi(Si), is a cheapest strategy that cuts i from ti in G − S−i. The
cost of the best deviation of player i from strategy Si, i.e., |χi(Si)|, is as much
as m(G − S−i, i, ti). Let Gjk be the subgraph of G, which is composed of the
connected components Cj and Ck of OPT and edges δjk. Since player i does not
cut any edge of OPT that is not an element of δjk, then OPT − δjk ⊂ S−i and
therefore, m(G− S−i, i, ti) = m(Gjk, i, ti) = |χi(Si)|.



Strategic Multiway Cut and Multicut Games 9

Algorithm. Let Ljk be the set of players i such that either i ∈ Cj and ti ∈ Ck

or vice versa. Without loss of generality let Ljk = {1, 2, ..., |Ljk|}. Recall that
Ljk 
= ∅ by Lemma 4. Notice that the socially optimal solution of the Network
Multicut Game for players Ljk on Gjk (which we denote by OPT (Gjk , Ljk)) is
δjk. This is by the same argument as in Observation 1. For every δjk, we make
one pass over the players Ljk. For player 1 of Ljk, we send a max-flow from
node 1 to t1 on Gjk(If the size of the max-flow is more than β1 then we just
send an arbitrary flow of size β1). Let m1 denote the subset of edges of δjk that
are used by that flow. Notice that |m1| = min{m(Gjk, 1, t1), β1}. The algorithm
asks player 1 to cut the edges of m1, i.e., sets S1 = m1 and proceeds with player
2. We send a max-flow from 2 to t2 on Gjk − m1(Similarly, if the size of the
max-flow is more than β2 then we just send an arbitrary flow of size β2) and ask
player 2 to cut the edges m2, the subset of δjk −m1 that are used by that flow
and so on.

Let M denote the subset of the edges of δjk that are cut by the players at the
end of the one pass described in detail above, i.e., M =

⋃
i∈Ljk

mi. Notice that
if M = δjk for all neighbor components Cj and Ck then the above algorithm will
return a Nash equilibrium. This is because |mi| = m(G−OPT +mi, i, ti) for all
i since the flow we used to construct mi does not use any edges of OPT except
mi, and thus |mi| ≤ min{m(G − S−i, i, ti), βi} which by Proposition 1 implies
that i is stable.

However, it may be that M 
= δjk and so the greedy algorithm given above
does not always return a Nash equilibrium. Fortunately, we know that |M | ≥
|δjk |/2 by Lemma 7. We next assign the remaining edges of δjk to the players
Ljk proportionally to the number of edges they are assigned so far. Since |M | ≥
|δjk |/2, then any player i ∈ Ljk which has been assigned |mi| edges is now
assigned at most |mi| extra edges. The assignment given by the algorithm is
a 2-approximate Nash equilibrium, since the cost of the best deviation of each
player i ∈ Ljk is min{m(G− OPT + Si, i, ti), βi}, which is at least |mi| by the
above argument.

Lemma 7. |M | ≥ |δjk|/2.

Proof. The critical observation is that |OPT (Gjk −M, Ljk)| − |OPT (Gjk −
M, Ljk − {1})| ≤ m1. For the purpose of contradiction, assume the inequality
does not hold. If the max-flow between 1 and t1 on Gjk is less than β1, then
m(Gjk , 1, t1) = |m1|. Observe m(Gjk −M, 1, t1) ≤ |m1| since player 1 cannot
send a bigger flow in a smaller graph. Then one can obtain a cheaper solution
for the Network Multicut Game for the set of players Ljk on the graph Gjk−M
than OPT (Gjk−M, Ljk) by first cutting the edges of OPT (Gjk−M, Ljk−{1})
and then cutting a min-cut between 1 and t1 on the remaining edges. If the
max-flow between 1 and t1 on Gjk is at least β1, then |m1| = β1. Then one can
obtain a cheaper solution for the Network Multicut Game for the set of players
Ljk on the graph Gjk −M than OPT (Gjk −M, Ljk) by only cutting the edges
of OPT (Gjk −M, Ljk − {1}). Note that in this solution player 1 does not cut
any edges and faces a cost of β1.
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With the same argument one can show |OPT (Gjk −M, Ljk − {1})| − |OPT
(Gjk−M, Ljk−{1, 2})| ≤ m2 and so on. Finally, we have |OPT (Gjk−M, Ljk−
{1, 2, ..., (|Ljk| − 1)})| − |OPT (Gjk −M, ∅)| ≤ m|Ljk|. Summing up all the tele-
scoping inequalities, we obtain |OPT (Gjk −M, Ljk)| ≤ |M |. It is also clear that
|OPT (Gjk , Ljk)| − |OPT (Gjk −M, Ljk)| ≤ |M |.

Therefore, |δjk| = |OPT (Gjk , Ljk)| ≤ 2|M |. As desired, this proves that at
least half of the edges of δjk are cut after one pass over the players of Ljk.

5 Edges with Non-uniform Costs

In the previous sections, the cost to player i for cutting edges Si was just the
number of edges |Si|. We now consider a generalized version of our games where
the edges have positive edge weights/costs w(e). In order for an edge e to be
cut, players will have to pay the weight w(e) of the edge. That is, the cost
to player i is no longer just the number of edges |Si|, but their total weight
which we represent by w(Si). Similarly, the cost of a strategy vector S is now
cost(S) = w(S) +

∑
j∈Q(S) βj , where Q(S) is defined as in the Introduction.

For this more general model with non-uniform edge costs, we first show that if
the weight of an edge cannot be split between players, then the price of stability
can be very high. By allowing players to share the cost of edges, however, we are
able to extend most of our results to this general case.

No Cost Sharing. The game defined above does not allow players to share the
cost of an edge, since if an edge e ∈ Si, then the cost of player i increases by the
full weight w(e) of the edge. We can show that in this case the price of stability
can be as high as k, the number of players.

Fair Sharing. In this model, the players that cut an edge e split the cost of
this edge equally among themselves. Specifically, for a given strategy vector S,
define ke to be the number of players i such that e ∈ Si. Then, player i only
pays w(e)/ke for cutting edge e, i.e., player i’s cost is

∑
e∈Si

w(e)/ke when i’s
cut requirements are satisfied. All the games that we considered in sections 2,
3, and 4 are congestion games [5] under the fair sharing scheme. Using standard
techniques [5], it can be shown that the price of stability is O(log k). Unfortu-
nately, it can also be as high as Ω(log k): just consider the example in Figure ??
with weights 1, 1

2 , 1
3 , . . . , 1

k on the bottom edges instead of 1.

Arbitrary Cost Sharing. In this model players can choose to pay for arbitrary
fractions of edge weights. Specifically, the strategy of each player i is a payment
function Si where Si(e) is the amount player i pays for the cost of edge e.
An edge e is considered cut if the total payment for e exceeds its weight, i.e.,∑

i Si(e) ≥ w(e). The cost of each player i is the total amount of payment it
makes for cutting the edges, i.e.,

∑
e Si(e). Observe that the arbitrary sharing

model gives the players much larger freedom in selecting their strategies since
the strategy space of each player is the positive orthant of the m-dimensional
Euclidean space where m = |E|.
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The algorithms presented in previous sections work for edges with unit cost.
In order to extend those results to non-uniform weighted edges in the arbitrary
cost sharing scheme, we make the following changes: Scale up the weights of
edges so that all weights are integers. Simultaneously increase the value of βi by
the same factor. Now replace any edge having weight w(e) with w(e) parallel
edges of unit cost. We can now use the algorithms in sections 2, 3, and 4 to assign
these edges with unit cost to players. This assignment can be easily mapped to
the original graph with weighted edges where the players pay for fractions of
edge weights. This gives us a Nash equilibrium solution where the edge weights
are arbitrarily shared.

Poly-time computable NE for Network Multiway Cut Game under Arbitrary cost
sharing. Since the algorithm for poly-time computable NE for the NMWG
considered in Section 3.1 may take O(E) steps, for non-uniform edge weights
this may result in exponential running time. So the same algorithm does not
work for this case. However we show that it is possible to form an approximate
NE for NMWG in polynomial time.

Theorem 4. Suppose we have a weighted NMCG and an MWC Sα that is
within a factor α of OPT. Then for any ε > 0, there is a poly-time algorithm
which returns a (1 + ε)-approximate NE for a MWC S′, where w(S′) ≤ w(Sα).
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Abstract. Buy-at-bulk network design is a well-known problem that
has been researched extensively on undirected graphs. In this paper, we
initiate the theoretical study of the same problem on directed graphs,
thus capturing real-life situations where the cost of installing capacity
on an edge is asymmetric with respect to direction, as e.g. in the design
of wireless and satellite communication networks.

More specifically, we develop two approximation algorithms for di-
rected buy-at-bulk network design in the non-uniform cost model. Com-
bined, they achieve a ratio of O

(
min

{
k1/2+ε, n4/5+ε

})
for any constant

ε > 0, where n is the number of nodes of the network and k is the number
of demand pairs to be connected. Further, the above ratio is independent
of the amount of traffic flow requested by each demand pair, which may
vary arbitrarily, and it can be remarkably improved when all demand
pairs share a common sink (or a common source, symmetrically).

To the best of our knowledge, this is the first non-trivial approxima-
tion factor established for the aforementioned problem, and naturally
it also applies to more restricted cost models, such as the uniform and
rent-or-buy models. Moreover, it essentially matches the best currently
known approximation guarantees for directed Steiner forest, which may
be viewed as a special case of directed buy-at-bulk network design.

1 Introduction

Network design has long been a fundamental area of combinatorial optimization.
In a typical such problem, we are given a network topology and a list of pairs of
network nodes, each with an associated traffic demand. The goal is to determine
how to route in the network the traffic demand between each of those pairs,
so that some objective function is optimized—such as minimizing the cost of
installing the requisite capacity to support all traffic. For more than a decade,
researchers have devoted a lot of attention to the buy-at-bulk aspect of net-
work design, in which cost is a sub-additive function of capacity, motivated by
the fact that actual costs of network components tend to exhibit economies of
scale. However, the theoretical study of the above problem has been limited to
undirected graphs so far; by contrast, in this work we focus on directed graphs.

Asymmetric networks. To model a real-life problem more accurately, directed
graphs are often indispensable. Perhaps the most prominent such example is the

K. Jansen and R. Solis-Oba (Eds.): WAOA 2010, LNCS 6534, pp. 13–24, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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asymmetric traveling salesman problem: among other things, it is straightfor-
ward to represent one-way streets by directed edges, whereas undirected edges
would obviously be inappropriate for that purpose. Similar concerns arise in
network design when the cost of carrying a unit of traffic across an edge varies
substantially depending on direction, as is often the case in communication net-
works [21,5], e.g. if they contain satellite and/or wireless links. It is worth point-
ing out that as the popularity of these so-called asymmetric networks continues
to increase, they have become the object of intense study by the networking
community. For instance, see [20,22,15], among many others.

The typical cause of the aforementioned phenomenon is the disparity between
the transmitter and receiver capabilities of network equipment, which in turn
may be due to various technical, geographical, and even regulatory constraints.
As an illustrative example, consider a cellular phone communicating with a base
station. It is much easier, by comparison, to achieve some desired transfer rate
from the latter to the former than vice versa, primarily because the transmission
power of the phone is subject to heavy limitations. Hence, just as the buy-at-bulk
framework was developed to reflect the economies of scale prevalent in network
costs, a directed graph representation is needed to capture common situations
where supporting a given bandwidth capacity in one direction along a network
edge is markedly more expensive than in the opposite direction.

Cost models. The most general cost model considered in buy-at-bulk network
design is called the non-uniform cost model. It stipulates that the cost of sup-
porting � ≥ 0 units of traffic on a given edge e is given by a sub-additive,
non-negative, and non-decreasing function ce(�), with ce(0) = 0. On the other
hand, the uniform cost model adds the restriction that there must exist some
function c(�) such that for every e in the network we have ce(�) = Cec(�), with
Ce ≥ 0 depending only on e. Moreover, the special case where c(�) = 1 for all
� > 0 is equivalent to the well-known Steiner forest problem.

Any buy-at-bulk cost function ce(�) may be approximated by the lower en-
velope of polynomially many linear cost functions [2,9]. Namely, we can replace
every edge e with p(e) parallel edges e1, e2, . . . , ep(e), such that: (a) for each i =
1, . . . , p(e), cei(�) = σ(ei)+ δ(ei) · � for � > 0, where σ(ei), δ(ei) are non-negative
constants called cost coefficients; and (b) ce(�) ≤ mini=1,...,p(e) cei(�) < 3 · ce(�).
Note also that specifying each new edge’s cost coefficients suffices to describe its
cost function. Thus, this alternative representation is (approximately) equivalent
to the original one, and we shall use it throughout the rest of the paper.

Related work. As mentioned above, there is a sizable body of research work
devoted to buy-at-bulk network design, but only in the undirected setting. One
of the earliest approximation algorithm formulations of the problem was due to
Salman et al. [23]. Subsequently, Awerbuch and Azar [3] obtained a O(log n)
approximation for uniform buy-at-bulk network design, where n is the number
of nodes of the network, using probabilistic embeddings into tree metrics [4,12].
For the single-sink case (i.e. when all demand pairs have a common sink, as
opposed to the more general multi-commodity case that has no such restriction),
Guha et al. [16] were the first to achieve an O(1) approximation.
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Non-uniform buy-at-bulk network design proved to be considerably more chal-
lenging to tackle. For the single-sink case, Meyerson et al. [19] presented a ran-
domized O(logn) approximation algorithm, later derandomized in [10]; there is
also an O

(
log4 n

)
competitive online algorithm [18]. Charikar and Karagiozova

[7] gave an eO(√log n log log n) approximation for the multi-commodity case, and
a polylogarithmic approximation was obtained fairly recently by Chekuri et al.
[9], achieving an O

(
log4 k

)
ratio, where k is the number of demand pairs.

On the other hand, unlike buy-at-bulk network design, Steiner problems have
been studied in the directed setting for quite some time. Zelikovsky [24] first gave
an O(kε) approximation for directed Steiner tree on acyclic graphs. Charikar
et al. [5] obtained a slightly better ratio on arbitrary directed graphs using a
somewhat simpler algorithm. Furthermore, they achieved an Õ

(
k2/3

)
approxi-

mation for directed Steiner forest, which was improved to O
(
k1/2+ε

)
by Chekuri

et al. [8] almost a decade later. Very recently, Feldman et al. [13] provided an-
other approximation guarantee for this problem, namely O

(
n4/5+ε

)
. Since k may

range from 1 to O
(
n2

)
, the latter two results are mutually incomparable.

Additionally, it should be pointed out that directed Steiner problems are
closely connected to group Steiner problems. In particular, group Steiner tree
(on undirected graphs) is essentially a special case of directed Steiner tree. The
relation between group Steiner forest and directed Steiner forest is analogous.
Polylogarithmic approximations have been established for both group Steiner
tree [14] (using LP-rounding) and group Steiner forest [8].

Finally, regarding lower bounds, Andrews [1] demonstrated that there is no
Ω

(
log1/2−ε n

)
approximation algorithm for non-uniform buy-at-bulk network

design in the undirected setting, unless NP ⊆ ZPTIME
(
npolylog(n)

)
. This result

clearly distinguishes buy-at-bulk network design from Steiner forest, which is
2-approximable. For directed Steiner forest, however, Dodis and Khanna [11]
showed a hardness factor of Ω

(
2log1−ε n

)
assuming NP � TIME

(
npolylog(n)

)
,

which obviously carries over to directed buy-at-bulk network design as well.

Our results. We present two approximation algorithms for directed buy-at-
bulk network design in the non-uniform cost model, which together yield an
approximation ratio of O

(
min

{
k1/2+ε, n4/5+ε

})
for any constant ε > 0, where

n is the number of nodes of the network and k is the number of demand pairs
to be connected. Note that the ratio is independent of the amount of traffic flow
demanded by each such pair, which may vary arbitrarily, and also that it can be
reduced to O(kε) (or O(nε), equivalently) in the single-sink case.

To the best of our knowledge, this is the first substantial improvement on
the trivial approximation guarantee of k for this problem. Of course, the above
result also covers the uniform cost model as a special case, and furthermore it
matches up to a constant factor the best currently known approximation ratios
for directed Steiner forest from [8] and [13].

Overview of techniques. Our algorithms extend those in [8] and [13] for di-
rected Steiner forest. More specifically, to obtain the O

(
k1/2+ε

)
approximation,

we first reduce our problem to what may be described as the “buy-at-bulk
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generalization” of group Steiner forest, using the so-called layering and path-
splitting transformations [8]. In turn, that is reduced to the buy-at-bulk gen-
eralization of group Steiner tree, following the bucketing-and-scaling method
pioneered in [9]. We then apply a refined version of the LP-rounding scheme de-
veloped in [14] for group Steiner tree, and eventually produce a partial solution
that connects at least some of the demand pairs, at a reasonable cost. The algo-
rithm is then applied recursively to any demand pairs that remain unconnected.

For the analysis of the above algorithm, it is crucial to establish first a
structural property of low-cost solutions, which we achieve by generalizing Ze-
likovsky’s tree height-reduction procedure [24,17] in a suitable fashion. In par-
ticular, the original height-reduction procedure outputs a tree contained in the
metric closure of the network graph. In the buy-at-bulk setting, then, we need to
define the bi-metric closure of a graph, which extends the standard concept of
metric closure and may also be of independent interest. We also take advantage
of the fact that Zelikovsky’s procedure preserves the lengths of all paths from
the root of the tree to its leaves, under any metric. This property is usually
overlooked, because it is not necessary for typical applications of the procedure
to Steiner problems. However, it does play a pivotal role within the bi-metric
closure framework that we introduce, since more than one metrics are involved.

On the other hand, to derive the O
(
n4/5+ε

)
approximation ratio, we partition

the demand pairs into two classes, namely the good and the bad. The good
pairs are distinguished by the fact that they can all be connected in a relatively
straightforward way, at a reasonable cost. Nevertheless, the situation becomes
more complicated for the bad pairs. For these, we have to try out a number of
options that include invoking the O

(
k1/2+ε

)
-approximation algorithm mentioned

earlier, and rounding a near-optimal solution to a restricted LP relaxation of
the problem. This approach resembles the one employed in [13]; however, the
definition of good pairs is more specialized in our context, thus requiring a more
elaborate case analysis to handle the bad pairs.
Organization. The next section presents several key concepts, including the for-
mal definition of the directed buy-at-bulk network design problem. In Section 3,
we show the structural result that is vital to the analysis of our algorithms, which
are then described in Section 4. Lastly, Section 5 discusses some conclusions that
may be drawn from our results and suggests directions for future research.

2 Preliminaries

An instance of the directed buy-at-bulk network design problem has the form
(G, D), where G = (V, E) is a directed multigraph with two non-negative cost
coefficients σ(e), δ(e) specified for every edge e ∈ E, and D = {duv} is a |V |×|V |
matrix with non-negative integer elements. An ordered pair (u, v) ∈ V × V for
which duv ≥ 1 is called a demand pair ; furthermore, u and v are the source
and sink of the demand pair, respectively. For simplicity of notation, we denote
by D ⊆ V × V the set of demand pairs, by k the cardinality of D, and by n
the cardinality of V . Additionally, for any path P , let σ(P ) =

∑
e∈P σ(e) and

δ(P ) =
∑

e∈P δ(e).
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A feasible solution to this instance consists of a collection P = {P (u, v)} of k
paths in G such that for each demand pair (u, v) ∈ D, P contains a path P (u, v)
from u to v. We say that P (u, v) serves the demand pair (u, v) in the solution
P . The goal is to minimize the cost of P :

c(P) =
∑

e∈P
σ(e) +

∑

P (u,v)∈P
δ(P (u, v)) · duv =

∑

e∈P

(
σ(e) + δ(e) · �(e)) , (1)

where the notation e ∈ P indicates that edge e belongs to at least one of the
paths in P , and �(e) is the load of edge e and is equal to

∑
duv, with the sum

taken over all (u, v) ∈ D such that e ∈ P (u, v).
Without loss of generality, we henceforth assume that: (a) dvv = 0 for all

v ∈ V ; (b) if a node of G is the source of a demand pair, then it has in-degree
zero; and (c) if a node is the sink of a demand pair, then it has out-degree zero.
The latter two properties can be guaranteed easily by a simple transformation,
so that the number of nodes of G is at most tripled and the cost of the optimal
solution remains unaffected.

A partial solution is a collection P = {P (u, v)} of paths that serve a non-
empty subset D(P) of the demand pairs, where again P (u, v) denotes the path
serving the pair (u, v) ∈ D(P). The cost c(P) of the partial solution P is given by
(1), similarly to the case of a feasible solution. Moreover, the quantity den(P) =
c(P)/|D(P)| is called the density of the partial solution P . In particular, if P is
a feasible solution then its density is simply den(P) = c(P)/k.

Finally, we introduce a concept that generalizes the metric closure of a graph.

Definition 1. Given a directed multigraph G = (V, E) with two non-negative
cost coefficients σ(e), δ(e) specified for every e ∈ E, we define the bi-metric
closure Ḡ = (V, Ē) of G as a directed multigraph such that: (a) for each (u, v) ∈
V × V , u �= v, and for every distinct (simple) path P from u to v in G, there
exists a directed edge ē ∈ Ē from u to v with cost coefficients σ(ē) = σ(P ) and
δ(ē) = δ(P ); and (b) Ē contains no edges other than those required by (a).

Observe that Ḡ may be exponential in size. Fortunately, for our purposes we can
avoid computing it in its entirety, as we shall see below.

Definition 2. Given an instance (G, D) of directed buy-at-bulk network design,
let �max =

∑
(u,v)∈D duv, which is an upper bound of the load on any edge in

any feasible solution. We define the restricted bi-metric closure Ĝ = (V, Ê) of
G as a subgraph of Ḡ that is minimal under the following property: for each
integer 0 ≤ z < log �max and for every (u, v) ∈ V × V , u �= v, there exists
an edge ê ∈ Ê ⊆ Ē from u to v such that for any other ē ∈ Ē from u to v,
σ(ê) + δ(ê) · 2z ≤ σ(ē) + δ(ē) · 2z.

Clearly, Ĝ is computable by executing a standard all-pairs shortest path routine
on G with edge weights σ(e) + δ(e) · z, for each possible value of z. This takes
time poly(n, log �max) overall, which is polynomial with respect to the size of the
instance (G, D).
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3 Structural Results

The goal in this section is to show that there always exist partial solutions of a
very specific form that have sufficiently low density.

Definition 3. A junction tree J is the union of an in-branching JI and an out-
branching JO, both rooted at some node r which is called the junction node. JI

and JO are not required to be edge-disjoint. The height of J is the maximum of
the heights of JI and JO, i.e. the maximum length (in terms of the number of
edges) of a simple path in J having one endpoint at r.

Furthermore, the support of a partial solution P = {P (u, v)} is the union of the
paths it contains, i.e.

⋃
P (u, v). The first lemma below, whose proof we omit

due to space constraints, is analogous to Lemma 3.1 in [8]. Combining it with
the second lemma leads to Corollary 1.

Lemma 1. There exists a partial solution P◦ = {P ◦(u, v)} whose support is
a junction tree J◦ ⊆ G and den(P◦) ≤ √k · den(P∗), where P∗ is the optimal
solution to the instance (G, D).

Lemma 2. Let P = {P (u, v)} be a partial solution to the instance (G, D) with
density den(P), whose support is a junction tree J ⊆ G. For any integer h ≥ 1,
there exists a partial solution P̂ = {P̂ (u, v)} to the instance (Ĝ, D) whose support
is a junction tree Ĵ ⊆ Ĝ with height ≤ h and den(P̂) < 8h h

√
k/2 · den(P).

Proof. Recall that J is the union of an in-branching JI and an out-branching
JO, both rooted at the junction node r. Denote by D(P) ⊆ D the subset of
demand pairs connected by the paths in P . Moreover, for each (u, v) ∈ D(P),
denote by P (u, r) and P (r, v) the segments of P (u, v) contained in JI and JO

respectively. Observe that node u must be a leaf of JI and v must be a leaf of
JO, by our assumptions in Section 2.

Now, we shall invoke the height-reduction procedure proposed in [24,17]. We
briefly explain its functionality below. Formally, the input must be an integer
parameter h ≥ 1, a branching T , and a non-negative weight function w defined
on the edges of T . However, since the output actually does not depend on those
edge weights, they need not be specified beforehand. The procedure returns
another branching T̄ that has height at most h and whose node set V (T̄ ) is a
subset of V (T ). In particular, T̄ has the same root and leaves as T , but may
be missing some of the latter’s internal nodes. On the other hand, each directed
edge ē = (u, v) of T̄ corresponds to the path PT (u, v) from u to v in T , and is
assigned a weight w(ē) =

∑
e∈PT (u,v) w(e). The salient property of T̄ is that

∑

ē∈T̄

w(ē) ≤ 2h h
√

s/2 ·
∑

e∈T

w(e) , (2)

where s is the number of leaves of T .
Let J̄I and J̄O be the results of applying the aforementioned procedure to JI

and JO respectively. The junction tree J̄ = J̄I∪ J̄O is a subgraph of the bi-metric
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closure Ḡ of G. For any pair (u, v) ∈ D(P), there exists a unique path P̄ (u, v)
in J̄ that consists of edges corresponding to paths in J which, if concatenated,
produce exactly the path P (u, v). Therefore, δ(P̄ (u, v)) = δ(P (u, v)). If P̄ =
{P̄ (u, v) | (u, v) ∈ D(P)}, then using inequality (2) with σ(e) substituting for
w(e) we derive:

c(P̄) =
∑

ē∈P̄
σ(ē) +

∑

P̄ (u,v)∈P̄
δ(P̄ (u, v)) · duv ≤

≤
∑

ē∈J̄I

σ(ē) +
∑

ē∈J̄O

σ(ē) +
∑

P (u,v)∈P
δ(P (u, v)) · duv ≤

≤ 2h
h

√
|D(P)|

2
·
(

∑

e∈JI

σ(e) +
∑

e∈JO

σ(e)

)

+
∑

P (u,v)∈P
δ(P (u, v)) · duv ≤

≤ 2h h
√

k/2 ·
(

2
∑

e∈P
σ(e)

)

+
∑

P (u,v)∈P
δ(P (u, v)) · duv ≤ 4h h

√
k/2 · c(P) .

For an edge ē ∈ J̄ , define �(ē) as the sum of duv for pairs (u, v) ∈ D(P) such
that ē ∈ P̄ (u, v), and set z̄ = 	log �(ē)
. Among the edges parallel to ē in
Ḡ, let ê be the one that minimizes σ(ê) + δ(ê) · 2z̄. Hence, ê also belongs to
the restricted bi-metric closure Ĝ of G, and furthermore it is easy to see that
σ(ê) + δ(ê) · �(ē) < 2

(
σ(ē) + δ(ē) · �(ē)). We create Ĵ ⊆ Ĝ from J̄ (and the

corresponding path collection P̂ from P̄) by replacing each edge ē ∈ J̄ with
ê as above. Clearly, P̂ is a partial solution to the instance (Ĝ, D) with cost
c(P̂) < 2 · c(P̄) ≤ 8h h

√
k/2 · c(P) and density den(P̂) < 8h h

√
k/2 · den(P).

Corollary 1. For any integer h ≥ 1, there exists a partial solution P̂◦ =
{P̂ ◦(u, v)} to the instance (Ĝ, D) whose support is a junction tree Ĵ◦ ⊆ Ĝ with
height ≤ h and den(P̂◦) <

√
k · 8h h

√
k/2 · den(P∗) < 8h · k1/2+1/h · den(P∗).

4 Approximation Algorithms

O
(
k1/2+ε

)
approximation. As implied by the discussion in the previous section,

the principal task of our algorithm is to determine a low-density partial solution
P̂ = {P̂ (u, v)} to the instance (Ĝ, D) whose support is a junction tree Ĵ in Ĝ
with height ≤ h. (Note that h is an adjustable parameter that is specified in
advance of the algorithm’s execution.) Then, P̂ is straightforwardly converted
into a partial solution P = {P (u, v)} to the original instance (G, D) with at
most the same density: for every path P̂ (u, v), replace each of its edges with the
corresponding path in G and concatenate these paths to form P (u, v). Once we
have P , we set duv = 0 for the demand pairs (u, v) ∈ D(P) and repeat the same
process recursively on the residual instance, until there are no demand pairs left.
The final solution is simply the union of all partial solutions produced.

In the following, we describe how to compute P̂ . First of all, the algorithm
guesses the junction node r of the junction tree Ĵ◦ in Ĝ that is implied by
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Corollary 1. In practice, this means exhaustively trying out each of n possible
choices for r and keeping the one that yields the best result. Assuming we know
the correct r, we proceed as follows.

Step 1: Layering and path splitting. We construct an undirected tree T =
(V (T ), E(T )) from Ĝ by applying the layering and path-splitting procedures
presented in Section 3.3 of [8]. We refer the reader to that paper for details of
the construction, which are omitted here to save space. Instead, we provide a
high-level description of the resulting T and its main properties.

First of all, every node of T is a copy of some node of Ĝ. For any v ∈ V ,
the number of its copies in V (T ) is polynomially bounded with respect to the
size of Ĝ (which in turn is polynomial in the size of the problem instance) and
exponentially bounded with respect to the parameter h (which does not depend
on the instance). Furthermore, each edge ĕ of T either (a) joins two distinct
copies of the same node v ∈ V , or (b) is an undirected copy of some edge ê of Ĝ.
In the former case, ĕ is assigned cost coefficients σ(ĕ) = 0 and δ(ĕ) = 0, whereas
in the latter we have σ(ĕ) = σ(ê), δ(ĕ) = δ(ê), and the endpoints of ĕ are copies
of the endpoints of ê.

Overall, the tree T is rooted at node r0, which is a copy of r, and all its leaves
are at distance exactly h from r0. For each v ∈ V , denote by X(v) ⊆ V (T ) the
set of leaves that are copies of v. The construction of T ensures that for every
(u, v) ∈ D, all paths that connect any node in X(u) with any node in X(v)
must pass through the root r0. Additionally, consider a collection P̆ of paths
in T . Among these, let P̆ (u, v) be the path connecting any node in X(u) with
any node in X(v) that minimizes δ(P̆ (u, v)), if any such path is contained in P̆ .
Setting D(P̆) = {(u, v) ∈ D | P̆ (u, v) exists in P̆}, we define the cost of P̆ as

c(P̆) =
∑

ĕ∈P̆
σ(ĕ) +

∑

(u,v)∈D(P̆)

δ(P̆ (u, v)) · duv ,

and its density as den(P̆) = c(P̆)/|D(P̆)|, assuming D(P̆) �= ∅. By the con-
struction of T , from any such path collection P̆ we may easily derive a partial
solution P̂ to the instance (Ĝ, D) whose support is a junction tree of height ≤ h
and den(P̂) ≤ den(P̆). Conversely, for any given partial solution P̂ as above,
there exists a collection of paths in T with density equal to den(P̂).

Step 2: Bucketing and scaling. We now address the problem of finding a
collection P̆ of paths in T with minimum density. A linear programming relax-
ation of this problem is presented in LP1. Each xe variable indicates whether
edge e ∈ P̆ ; yuv indicates whether there is a path in P̆ from any node in X(u)
to any node in X(v); and fe,uv indicates whether e is used by such a path. We
normalize the sum of all yuv variables to 1, thus the objective function is linear.

LP1 is efficiently solvable, either by first reformulating it into an equivalent
linear program with a polynomial number of flow-conservation constraints on
the fe,uv variables, or by applying the Ellipsoid method on LP1 directly, since it
admits a polynomial-time separation oracle. Denote by (x∗,y∗, f∗) the resulting
optimal fractional solution, whose value opt is a lower bound on the minimum
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LP1: min
∑

e∈E(T )

(

σ(e)xe + δ(e)
∑

(u,v)∈D

duv fe,uv

)

s.t.
∑

(u,v)∈D

yuv = 1

xe ≥ fe,uv ∀e ∈ E(T ), ∀(u, v) ∈ D
∑

e∈∂(U)

fe,uv ≥ yuv ∀U ⊆ V (T ), ∀(u, v) ∈ D : (r0 ∈ U) ∧
∧

(
(U ∩ X(u) = ∅) ∨ (U ∩ X(v) = ∅)

)

xe, yuv, fe,uv ≥ 0 ∀e ∈ E(T ), ∀(u, v) ∈ D

density of any collection of paths in T . From the preceding discussion, we deduce
that opt ≤ den(P̂◦), where P̂◦ is the partial solution to the instance (Ĝ, D)
implied by Corollary 1.

Let q = �log k�+ 1 and Di =
{
(u, v) ∈ D ∣

∣ 2−i < y∗
uv ≤ 2−i+1

}
, for 1 ≤ i ≤ q.

Note that
∑q

i=1

(∑
(u,v)∈Di

y∗
uv

) ≥ 1
2
, therefore at least one of the inner sums

must be ≥ 1/(2q). If i∗ is the index value corresponding to that sum, then
|Di∗ | ≥ 2i∗−1/(2q) = 2i∗−2/q. Hence, we formulate a new linear program LP2,
by removing the constraint

∑
(u,v)∈D yuv = 1 from LP1 and fixing the yuv

variables as follows: yuv = 1 for (u, v) ∈ Di∗ , and yuv = 0 for (u, v) ∈ D \ Di∗ .

Step 3: Rounding. Next, we efficiently compute an optimal fractional solution
(x̃, f̃) to LP2. Its value õpt is at most 2i∗opt, because (x̃′, f̃ ′) =

(
2i∗x∗, 2i∗f∗

)

is a feasible solution to LP2.
Consider another feasible solution (̊x, f̊) = (2x̃, 2f̃). For each demand pair

(u, v) ∈ Di∗ , let Δuv =
∑

e∈E(T ) δ(e)f̃e,uv = 1
2

∑
e∈E(T ) δ(e)f̊e,uv. The f̊e,uv

values represent a fractional 2-unit flow, with sources in X(u) and sinks in X(v).
This flow can be decomposed into a collection Πuv of non-disjoint paths, such
that each path carries a fraction of the total flow. Observe that all the paths in
Πuv pass through r0. If Π ′

uv = {P ∈ Πuv | δ(P ) ≤ 2Δuv}, then by Markov’s
inequality at least one unit of flow is carried by the paths in Π ′

uv. We reduce
the flow along the paths in Πuv \Π ′

uv to zero and, if necessary, we also reduce
the flow along paths in Π ′

uv so that there is exactly one unit of flow remaining
in total. Then, we adjust the f̊e,uv values accordingly and prune the x̊e values
so that x̊e = max(u,v)∈Di∗{f̊e,uv} for all e. This transformation does not affect
the feasibility of (̊x, f̊ ).

Finally, we round (̊x, f̊) to an integral solution (x̄, f̄) as follows. Consider the
edges of T in breadth-first-search order, starting from the root r0. For each edge
e ∈ E(T ), either e is incident to r0 or it has a parent edge e′, which is the edge
adjacent to e but closer to r0. In the first case, set x̄e = 1 with probability x̊e,
or x̄e = 0 otherwise. In the second case, if x̄e′ = 0 then set x̄e = 0; else set
x̄e = 1 with probability x̊e/x̊e′ , or x̄e = 0 otherwise. Note that x̊e ≤ x̊e′ , because
T is a tree and all flow paths pass through r0. Moreover, denote by T̄ ⊆ T
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the tree formed by the edges for which x̄e = 1, and let D̄i∗ = {(u, v) ∈ Di∗ |
T̄ contains a path P̆ (u, v) ∈ Π ′

uv}. For each (u, v) ∈ D̄i∗ , set f̄e,uv = 1 along
P̆ (u, v) and f̄e,uv = 0 for all other edges. For each (u, v) ∈ Di∗ \D̄i∗ , set f̄e,uv = 0
for all edges. Now, we can efficiently convert P̆ = {P̆ (u, v) | (u, v) ∈ D̄i∗} into a
partial solution P̂ to the instance (Ĝ, D), with den(P̂) ≤ den(P̆).

Analysis. It is straightforward to realize that the expected cost of P̆ is at
most the expected value of (x̄, f̄ ), which does not exceed

∑
e∈E(T )

(
σ(e)̊xe +

δ(e)
∑

(u,v)∈Di∗
duv f̊e,uv

) ≤ 2 · õpt. For each (u, v) ∈ Di∗ , with probability
Ω

(
h−1

)
there exists a path in T̄ from r0 to any node of X(u) that is an end-

point of a path in Π ′
uv. This is deduced from the arguments in the proof of

Theorem 3.4 in [14], adapted to the special case of a tree with height ≤ h.
The same is true for X(v), by symmetry, and the two events are independent
because any node in C(u0) and any node in C(v2h) have no common ancestor
in T except r0. Hence, the probability that at least one path in Π ′

uv is con-
tained in P̆ is Ω

(
h−2

)
, which is a constant. As a result, with high probability

|D̄i∗ | = Ω(|Di∗ |). Alternatively, we may perform the rounding using the deter-
ministic techniques from [6], so that an analogous property holds with probability
1. Therefore den(P̆) ≤ O

(
õpt/|Di∗ |

) ≤ O
(
2i∗opt

/(
2i∗−2

/
q
)) ≤ O(log k) · opt,

and thus den(P̂) ≤ O(log k) · opt ≤ O(log k) · den(P̂◦). Consequently, we have
proven the following:

Lemma 3. The algorithm computes a partial solution P̂ to the instance (Ĝ, D)
with density den(P̂) ≤ O

(
k1/2+1/h log k

) · den(P∗), where P∗ is the optimal so-
lution to the instance (G, D).

As mentioned earlier, P̂ is easily transformed into a partial solution P to the
instance (G, D) with den(P) ≤ den(P̂). By applying a well-known argument for
recursive greedy covering (see e.g. [5,13]), we establish that the final solution
produced by our algorithm has density at most O

(
k1/2+1/h log k

) · den(P∗). Ad-
ditionally, the overall running time is polynomial in the size of the instance.
Setting the parameter h appropriately, e.g. h = �2/ε�, guarantees that:

Theorem 1. For any constant ε > 0, the directed buy-at-bulk network design
problem may be efficiently approximated within an O

(
k1/2+ε

)
factor.

O
(
n4/5+ε

)
approximation. We start by guessing the value of c(P∗), within a

factor of 2 (so that we need to make only a polynomial number of guesses).
Furthermore, for each demand pair (u, v), define a node set B(u, v) as follows.
The node w ∈ V belongs to B(u, v) if and only if there exist in G two paths P1

and P2, from u to w and from w to v respectively, such that (a) σ(P1), σ(P2) ≤
c(P∗)/n4/5, and (b) δ(P1), δ(P2) ≤ n4/5 · c(P∗)/k. We say that a demand pair
(u, v) is good if |B(u, v)| ≥ n2/5, and bad otherwise. Denote by Dg and Db the
sets of good and bad pairs respectively, with kg = |Dg| and kb = |Db|. We have:

Lemma 4. For any τ ∈ {g, b}, we can efficiently compute a partial solution Pτ

such that D(Pτ ) = Dτ and c(Pτ ) ≤ O
(
n4/5+ε

) · c(P∗).
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This lemma, whose proof is omitted here due to space constraints, leads imme-
diately to our second main result.

Theorem 2. For any constant ε > 0, the directed buy-at-bulk network design
problem may be efficiently approximated within an O

(
n4/5+ε

)
factor.

Approximations for the single-sink case. If all demand pairs share a common
sink (or source, symmetrically), then a simple argument enables us to assume
that the support of the optimal solution is a junction tree. This signifies an
improvement of the quantitative claim in Lemma 1 by a factor of

√
k, and said

improvement propagates to Theorem 1, yielding the corollary below.

Corollary 2. For any constant ε > 0, the single-sink directed buy-at-bulk net-
work design problem may be efficiently approximated within an O(kε) factor.

The above corollary also implies an O(nε) approximation for the single-sink case,
because in the latter the number k of demand pairs cannot exceed n− 1.

5 Concluding Remarks and Open Problems

Recall that, in undirected graphs, buy-at-bulk network design is much harder to
approximate than Steiner forest—and provably so, modulo a reasonable complex-
ity assumption. By contrast, as a consequence of this work, the current picture
in the directed case appears to be quite the opposite, i.e. the two problems have
essentially identical approximation guarantees. A potential explanation may be
that directionality is now the dominant factor determining problem hardness,
overshadowing the effects of the cost model. On the other hand, our results
could also be construed as a small piece of evidence that there exist, in fact, bet-
ter approximation algorithms for directed Steiner forest, thus meriting further
investigation. Last but not least, by the same token it may be possible to obtain
a tighter inapproximability bound for directed buy-at-bulk network design than
for directed Steiner forest, e.g. of the form Ω

(
nλ

)
for some positive λ.
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Abstract. On-line algorithms have been extensively studied for the one-
dimensional bin packing problem. In this paper we investigate two classes
of the one- dimensional bin packing algorithms, and we give lower bounds
for their asymptotic worst-case behaviour. For on-line algorithms so far
the best lower bound was given by van Vliet in 1992 [13]. He proved
that there is no on-line bin packing algorithm with better asymptotic
performance ratio than 1.54014 . . .. In this paper we give an improvement
on this bound to 248

161
= 1.54037 . . . and we investigate the parametric case

as well. For those lists where the elements are preprocessed according to
their sizes in decreasing order Csirik et al. [1] proved that no on-line
algorithm can have an asymptotic performance ratio smaller than 8

7
. We

improve this result to 54
47

.

1 Introduction

The one-dimensional bin packing problem can be stated as follows. We are given
a list L of n items – where the number of items is the length of the list – with
sizes ai, i = 1, . . . , n, satisfying 0 < ai ≤ 1. We need to pack these items into a
minimal number of unit-capacity bins such that the total sum of the sizes in each
bin is at most 1. The problem is known to be NP-hard [7]. So, substantial research
has been focused on finding good approximation algorithms. One possibility to
measure the performance of an algorithm A is to give its asymptotic performance
ratio RA. For a list L let OPT(L) denote the number of bins in an optimal
packing and let A(L) denote the number of bins that algorithm A uses for
packing L. If RA(l) denotes the supremum of the ratios A(L)/OPT(L) for all
lists L with OPT(L) = l, then the asymptotic performance ratio is defined as

RA := lim supl→∞RA(l).

If an algorithm belongs to the class of on-line algorithms then it packs items
immediately when they appear without any knowledge of subsequent items of
the list. After an item has been placed in a bin, it must not be moved again. This
lack of knowledge is such a severe handicap that no on-line algorithm can have an
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asymptotic performance ratio close to 1. In case of on-line algorithms it is more
fashionable to use the phrase asymptotic competitive ratio instead of asymptotic
performance ratio. The best known on-line algorithm is due to Seiden [10] with
asymptotic performance ratio at most 1.58889.., while van Vliet [13] gave a lower
bound 1.54014... for any on-line algorithm in 1992. He also investigated the
parametric case, where for the sizes of the elements the inequality 0 < ai ≤ 1

r is
true for some r > 1 integer. To prove his result van Vliet considered the solution
of a special linear program. The proof is rather complicated and assumes a fair
amount of knowledge about linear programming.

It was observed very early that the asymptotic performance ratio of on-line
algorithms becomes significantly better if one can suppose that the elements
arrive in decreasing order. For this case the best known on-line algorithm is
First Fit Decreasing (FFD) given by Garey et al. [8] with RFFD = 11

9
. For

pre-ordered lists the best known lower bound is 8
7 . It was given by Csirik et

al. [1]. So we have a very narrow gap [1.142857..., 1.22...] between the lower- and
upper-bounds. In spite of great efforts, neither lower nor upper bound could be
improved in the past 27 years.

This paper is organized as follows. In Section 2 we reformulate the packing
pattern technique first introduced in [3]. In Section 3 we show that using this
technique the 1.54014 . . . lower bound is also achievable with the right choice
of the weights. Giving new sequences for the sizes of elements, in Section 4
we consider the parametric case and we slightly improve the van Vliet’s lower-
bound to 248

161
= 1.54037 . . .. In Section 5 for pre-ordered lists we improve the 8

7
lower-bound to 54

47
= 1.148936 . . .. Some open problems conclude the paper.

2 Reformulated Packing Pattern Technique

In this section we reformulate the packing pattern technique which was first
evaluated in [3]. Later the method was used by Galambos and Frenk in [4].
Both versions allowed only equal length lists in the construction of the proof.
In his PhD thesis van Vliet [14] extended the technique for those constructions
where one can use sub-lists with different sizes. Since we will use this basic
theorem in our improvements we discuss the proof in detail. Firstly, we need
some preliminaries and we also introduce some notations.

For an arbitrary large integer n we consider lists L1, L2, . . . , Lk of lengths
nj = cj · n for certain integers cj , j = 1, 2, . . . , k. Sub-list Lj contains equally
sized elements. We assume that the size of an item does not depend on n. In the
concatenated list (L1L2 . . . Lj) the elements of L1 are followed by the elements
of L2 etc. and the list is terminated by the elements of Lj .

As a further notation, let n · Uj be an upper bound for the optimal packing
of the concatenated list (L1L2 . . . Lj), i.e.

Uj ≥ OPT(L1L2 . . . Lj)
n

, 1 ≤ j ≤ k.
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Using the definition of the asymptotic performance ratio it is clear that for any
on-line algorithm A

RA ≥ max
1≤j≤k

lim sup
n→∞

A(L1L2 . . . Lj)
OPT(L1L2 . . . Lj)

≥ max
1≤j≤k

lim sup
n→∞

A(L1L2 . . . Lj)
n · Uj

.

In order to establish the theorems we introduce the definition of packing patterns,
which was first defined in [3]. Suppose that some algorithm A packs the elements
of the concatenated list L = (L1L2 . . . Lk) into bins. A packing pattern p =
(p1, p2, . . . , pk) is a vector that denotes the number of elements from every list
Lj, j = 1, 2, . . . , k, while the algorithm places items into a bin according to that
packing pattern. A packing pattern is feasible if

∑k
i=1 aipi ≤ 1. The set of all

feasible packing patterns will be denoted by P . We define the subsets

Pi = {p ∈ P | pi > 0 and pj = 0, for j < i}, i = 1, 2, . . . k.

Clearly, Pi ∩ Pj = ∅ if i �= j, and P = ∪k
i=1Pi.

While we pack the elements of the concatenated list L = (L1L2 . . . Lk), every
bin must be filled according to one feasible packing pattern. For a given type
p = (p1, p2, . . . , pk) we denote the total number of bins which have been packed
according to packing pattern p by n(p). The number of bins used by algorithm
A while successively packing the lists is

A(L1 . . . Lj) =
j∑

i=1

∑

p∈Pi

n(p), for j = 1, 2, . . . , k, (1)

and
nj =

∑

p∈P

pjn(p), for j = 1, 2, . . . , k. (2)

Van Vliet stated the following theorem.

Theorem 1. [14] Let wj, 1 ≤ j ≤ k, be some positive weights such that for
every p ∈ Pi

k∑

j=i

wjpj ≤ k − i + 1 (3)

holds. Then for every on-line algorithm A we have that

RA ≥
∑k

j=1 wjcj
∑k

j=1 Uj

, (4)

In this theorem van Vliet considered k positive weights without any further
condition, so if we apply this theorem for a special class of algorithms the weights
can be arbitrary small. To avoid this inconvenience we can rescale the weights,
and so we reformulate the above theorem as follows.
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Theorem 2. Let αj and βj are 2k positive integers such that for every p ∈ Pi

k∑

j=i

βjpj ≤
k∑

j=i

αj . (5)

Then for every on-line algorithm A we have that

RA ≥ max
1≤j≤k

lim sup
n→∞

A(L1L2 . . . Lj)
OPT(L1L2 . . . Lj)

≥
∑k

j=1 βjcj
∑k

j=1 αjUj

. (6)

Proof. If we multiply, for j = 1, 2, . . . , k, the equations (1) and (2) by αj and βj ,
respectively, and sum all weighted equations, we get

k∑

j=1

αjA(L1 . . . Lj) =
k∑

j=1

αj

j∑

i=1

∑

p∈Pi

n(p) (7)

and
k∑

j=1

βjnj =
k∑

j=1

βj

∑

p∈P

pjn(p). (8)

Because of the property of the constants it follows that
k∑

j=1

αj

j∑

i=1

∑

p∈Pi

n(p) =
∑

p∈P1

(α1 + α2 + . . . + αk)n(p) +

+
∑

p∈P2

(α2 + . . . + αk)n(p) . . . +
∑

p∈Pk

αkn(p)

≥
∑

p∈P1

(β1p1 + β2p2 + . . . + βkpk)n(p)

+
∑

p∈P2

(β2p2 + . . . + βkpk)n(p) + . . . +
∑

p∈Pk

βkpkn(p)

=
k∑

j=1

βj

∑

p∈P

pjn(p).

So – using (1) and (2) – we get that

k∑

j=1

αjA(L1 . . . Lj) ≥
k∑

j=1

βjnj . (9)

Therefore

RA ≥ max
1≤j≤k

lim sup
n→∞

αjA(L1L2 . . . Lj)
αjOPT(L1L2 . . . Lj)

≥ lim sup
n→∞

∑k
j=1 αjA(L1 . . . Lj)

∑k
j=1 αjOPT (L1 . . . Lj)

≥

≥ lim sup
n→∞

∑k
j=1 βjnj

∑k
j=1 αjOPT (L1 . . . Lj)

≥ lim sup
n→∞

n
∑k

j=1 βjcj

n
∑k

j=1 αjUj

=

∑k
j=1 βjcj

∑k
j=1 αjUj

.
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3 The Right Choice of the Weights

In [4] Galambos and Frenk did not give an explicit discussion of the packing pat-
tern technique, but – using the idea of the packing pattern – they were able to
give a simpler proof for the 1.5363 . . . lower bound for on-line bin packing algo-
rithms given by Liang [9]. They investigated the parametric case as well. In [14]
Van Vliet - using his generalization - improved the lower bound to 1.54014 . . ..
Here we will show that the right choice of the weights allows us to give the same
lower bound using the packing pattern technique as van Vliet got with the help
of the linear programming technique. During his proof he constructed a linear
program, he solved it and defined two functions fk and gk, both of them depend-
ing on k. He received his result as a limit of a function in fk and gk for k →∞.
Since van Vliet proved that with the help of the applied sequences there is no
possibility to get a better lower bound, our procedure will also justify that our
approach has the same power as the LP method has.

In all of the above papers a specific sequence – mostly called as Salzer sequence
– was applied to construct lists with equal sizes of elements. This sequence was
first introduced by Sylvester in 1880 [12], therefore we will refer to this sequence
as Sylvester sequence. We define for k > 1 and r ≥ 1 integers the Sylvester
sequence m1, . . . , mk by setting

– m1 = r + 1,
– m2 = r + 2,
– mj = mj−1(mj−1 − 1) + 1, for j = 3, . . . , k.

Table 1. The first few elements of the parametric Sylvester sequences if k ≥ 5

r = 1 r = 2 r = 3 r = 4 r = 5

m1 = r + 1 2 3 4 5 6

m2 = r + 2 3 4 5 5 7

m3 = m1m2 + 1 7 13 21 31 43

m4 = m3(m3 − 1) + 1 43 157 421 931 1807

m5 = m4(m4 − 1) + 1 1807 24493 176821 865831 3263443

Now we define k lists as follows. Let n = c(mk−1) for some positive integer c.
Each list Lj , j = 1, . . . , k − 1, contains n elements, while Lk contains rn pieces
of elements, i.e. cj = 1, if j = 1, 2, . . . , k−1, and ck = r. The sizes of elements in
Lj are aj = 1/mk−j+1 + ε, where 0 < ε < 1/(r + k)(mk(mk − 1)). The following
Lemma was proved in [9].

Lemma 1

(i) OPT(L1L2 . . . Lj) = n
mk−j+1

, for all j = 1, . . . , k − 1.
(ii) OPT(L1L2 . . . Lk) = n.
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So for a fixed k we set

Uj =

{ 1
mk−j+1−1 , if 1 ≤ j ≤ k − 1,

1 , if j = k,

and we define the following constants.

βj =

⎧
⎪⎨

⎪⎩

1 , if j = 1
(mk−j+1 − 1)βj−1 , if 2 ≤ j ≤ k − 1,

βk−1 , if j = k.

αj =

{
βj+1 , if 1 ≤ j ≤ k − 1,

rβk , if j = k.

Comparing our weights to the ones given in [14] we can realize the difference
between them. So, although the formula is almost the same, our result is better
than the one that van Vliet has got with the help of the packing pattern tech-
nique. On the other side, it is also easy to check that our proof is much simpler
than the LP technique.

Theorem 3. [13] There is no one-dimensional on-line bin packing algorithm A
with worst case ratio

RA ≥ lim
k→∞

∑k
j=1 cjβj

∑k
j=1 αjUj

.

As an example we show the case r = 1, k = 3, where m1 = 2, m2 = 3, m3 = 7,
β1 = 1, β2 = 2, β3 = 2, α1 = 2, α2 = 2, α3 = 2, U1 = 1

6 , U2 = 1
2 , U3 = 1. So we

get

RA ≥
∑3

j=1 cjβj
∑3

j=1 αjUj

=
5

1
3

+ 1 + 2
=

3
2
.

Table 2 displays the van Vliet’s lower bounds for the asymptotic performance
ratio of on-line algorithms for some values of k and r, which where calculated
by our formula.

4 The New Parametric On-Line Lower Bound

Proving his result van Vliet used the Sylvester sequence. This is a so-called
double exponential sequence whose reciprocals tend very quickly to zero. That
is the reason why constructing a lower bound for k = 5 the first five decimals
have been reached by the appropriate choice of the sizes in the lists. During the
last two decades a lot of efforts have been made to improve this result. It was
already proved by van Vliet that his result was not improvable with the Sylvester
sequence. Therefore we inquired to find other sequences which do not tend so
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Table 2. van Vliet’s lower bounds for on-line bin packing algorithms

r = 1 r = 2 r = 3 r = 4 r = 5

k = 3 1,5000000 1,3793103 1,2878787 1,2283464 1,1880733

k = 4 1,5390070 1,3895759 1,2914337 1,2298587 1,1888167

k = 5 1,5401467 1,3896489 1,2914427 1,2298604 1,1888172

k = 6 1,5401474 1,3896489 1,2914427 1,2298604 1,1888172

k = 7 1,5401474 1,3896489 1,2914427 1,2298604 1,1888172

...
...

...
...

...
...

k = ∞ 1,5401474 1,3896489 1,2914427 1,2298604 1,1888172

quickly. Besides other approaches we attempted to give up the greedy choice of
the next elements in the sequence. Among other – unsuccessful – shots we hit
the following sequence. For any r ≥ 1 integer let

- b1,r = r + 1,
- b2,r = r + 2,
- bj,r = (b1,rb2,r + 1)j−2, 3 ≤ j ≤ k − 1,
- bk,r = b1,rb2,rb

k−3
3,r + 1.

For the sake of simpler notation instead of bi,r we will use the notation bi.

Table 3. The first few parametric values of the new sequence for k = 6

r = 1 r = 2 r = 3 r = 4 r = 5

b1 = r + 1 2 3 4 5 6

b2 = r + 2 3 4 5 6 7

b3 = b1b2 + 1 7 13 21 31 43

b4 = (b1b2 + 1)2 49 169 441 961 1849

b5 = (b1b2 + 1)3 343 2197 9261 29791 79507

b6 = b1b2b
3
3 + 1 2059 26365 185221 893731 3339295

It is easy to prove that for any fixed k <∞ integer

r
1
b1

+
k∑

i=2

1
bi

= 1.

If we compare the contents of Table 1 and Table 3 it is conspicuous: we loose
– in contrast to the greedy sequence – a bit at the fourth member, but – as we
will see – our patience effects later improvement.

Using this new sequence we construct our lists as follows. Let A be an on-
line algorithm. In the first step we consider a concatenated list with sub-lists
L1, L2,. . . ,Lk for k ≥ 3 as follows.
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(i) Lk contains nr elements of size ak = 1
b1

+ ε,

(ii) Lk−1 contains n elements of size ak−1 = 1
b2

+ ε,

(iii) Lj contains n elements of size aj = 1
bk−j+1

+ ε, where 2 ≤ j ≤ k − 2
(iv) L1 contains n elements of size a1 = 1

bk
+ ε,

where ε ≤ 1
(k+r)bk(bk−1)

, and n = c(bk − 1), for some integer c ≥ 1. So, the
constants what we will apply while we use the Theorem 2 are cj = 1, if j ≤ k−1,
and ck = r.

Note that for fixed k ≤ 4 this definition gives the same lists, which are used
in the proof of the van Vliet’s lower bound.

If one tries to prove that these sequence of the lists results in a better lower
bound, of course the LP method established by van Vliet in [13] is adaptable.
Indeed, we also constructed this LP. But – as we mentioned above - the proof
of the cited paper seemed to be rather complicated, and so we tried to apply
our packing pattern technique. To do that, the only question was whether we
could find the correct values of α-s and β-s. (To find a good lower bound for
the optimum was not difficult.) Before proving our main theorem we prove some
lemmas.

Lemma 2. For the optimum values of the concatenated lists the following rela-
tions hold

(i) OPT(L1 . . . Lj) ≤ n

b1b2bk−j−2
3

, for 1 ≤ j ≤ k − 2,

(ii) OPT(L1 . . . Lk−1) ≤ n
b1

= n
r+1 ,

(iii) OPT(L1...Lk) ≤ n,

Based on the above Lemma, we can choose the values of Uk
j as follows.

Uk
j =

⎧
⎪⎪⎨

⎪⎪⎩

1

b1b2bk−j−2
3

, if j ≤ k − 2,

1
b1

= 1
r+1

, if j = k − 1,

1 , if j = k

For a given k we define two k-dimensional vectors βk and αk, as follows.

– If k ≤ 4 we use the same constants as in the new proof of the van Vliet’s
lower bound.

– If k ≥ 5, then

βk
j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 , if j = 1
b1b2 , if j = 2
b3β

k
j−1 , if 3 ≤ j ≤ k − 2,

b1β
k
k−2 , if k − 1 ≤ j ≤ k.
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αk
j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

b1b2 , if j = 1
(b1b2)2 , if j = 2
b3α

k
j−1 , if 3 ≤ j ≤ k − 3,

βk
k−1 , if k − 2 ≤ j ≤ k − 1,

rβk
k , if j = k.

Considering the above constants we need to prove for every feasible packing
that inequality (5) holds. Let us suppose that the packing pattern p = (0, ..., 0,
pi, ..., pk) belongs to the subset Pi of the feasible packings. The packing pattern
p is dominant in Pi if

ai +
k∑

j=1

ajpj > 1.

Let Di(p) be the set of those packing patterns for which p is dominant in Pi. So,
it is enough to investigate the dominant patterns for each Pi. See for example
[11].

Lemma 3. Let L = L1 . . . Lk be the above defined concatenated list for some
k ≥ 5. Then for every feasible dominant packing pattern p ∈ Pi

k∑

j=i

βk
j pj ≤

k∑

j=i

αk
j . (10)

Now we are ready to prove the new lower bound.

Theorem 4. Let r be a positive integer, and we consider the parametric bin
packing problem, i.e. ai ≤ 1

r , if ai ∈ L. Then there is no one-dimensional on-
line bin packing algorithm A with an asymptotic performance ratio

RA <
r6 + 8r5 + 29r4 + 60r3 + 75r2 + 55r + 20
r6 + 7r5 + 22r4 + 40r3 + 45r2 + 33r + 13

.

At the end of the section we give a table which displays the new lower bounds
for the asymptotic competitve ratio of on-line algorithms for some values of r.

5 Improved Lower Bound for Decreasing Lists

For those lists where the elements are preprocessed according to their sizes in
decreasing order Csirik et al. [1] proved that there is no on-line algorithm with
better asymptotic performance ratio than 8

7
. Their construction based on 2 lists

which contain elements with sizes 1
3+ε and 1

3−2ε, respectively. The last 3 decades
there was no success to give a better lower bound. The difficulty originates from
the fact that the sizes of the last list in the concatenated list may not be too
small, since they may fill up the opened bins, resulting a better packing than



34 J. Balogh, J. Békési, and G. Galambos

Table 4. The new lower bounds for on-line bin packing algorithms

r = 1 r = 2 r = 3 r = 4 r = 5

k = 3 1,5000000 1,3793103 1,2878787 1,2283464 1,1880733

k = 4 1,5390070 1,3895759 1,2914337 1,2298587 1,1888167

k = 5 1,5403448 1,3896631 1,2914442 1,2298607 1,1888172

k = 6 1,5403721 1,3896636 1,2914443 1,2298607 1,1888172

k = 7 1,5403726 1,3896636 1,2914443 1,2298607 1,1888172

...
...

...
...

...
...

k = ∞ 1,5403726 1,3896636 1,2914443 1,2298607 1,1888172

k = ∞ 248
161

1694
1219

7502
5809

24992
20321

68420
57553

in the earlier step was. So, there is no point about investigation concatenated
lists with k different sub-lists with k → ∞, while the sizes of elements getting
progressively smaller and smaller. As a further application of the Theorem 2
here we give a construction with 3 different lists. (Using 4 sub-lists we were
unsuccessful.) During our proof we will use again the condition that the sub-
lists must not have the same lengths.
Let A be an on-line algorithm. We consider a concatenated list with three sub-
lists L1, L2 and L3.

– L1 contains n1 elements of size 7
24
− 4ε,

– L2 contains n2 elements of size 5
24

+ ε,
– L3 contains n3 elements of size 4

24 + ε,

where ε < 1
96 , n1 = n2 = 6n and n3 = 18n. It means that c1 = c2 = 6 and

c3 = 18. It is easy to see that the following inequalities are true.

OPT(L1) ≤ 2n, OPT(L1L2) ≤ 3n, OPT(L1L2L3) ≤ 6n.

So, we can set the upper bounds to

U1 = 2, U2 = 3, U3 = 6.

In fact, these upper bounds are sharp. Let us now consider the following con-
stants.

α1 = 4, α2 = 3, α3 = 5

and
β1 = 4, β2 = 2, β3 = 1.

Considering the above constants we need to prove that for every dominant pack-
ing pattern inequality (5) holds. Since the number of dominant patterns is small
we can investigate all of them. Three cases have to be distinguished.
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(i) For i = 1, we consider the dominant patterns in P1. We need to prove that
any feasible packing pattern p ∈ P1 satisfies

12 ≥ 4p1 + 2p2 + p3.

The dominant patterns are (3,0,0), (2,2,0), (2,1,1), (2,0,2), (1,3,0), (1,2,1),
(1,1,3) and (1,0,4). It is easy to check that the inequality holds for all of
them.

(ii) For i = 2, the dominant patterns of bins in P2 have to be considered. These
are (0,4,0), (0,3,2), (0,2,3) and (0,1,4). All of them satisfy

8 ≥ 2p2 + p3.

(iii) Finally, we have to address the packing patterns in P3. The only dominant
pattern is (0,0,5) and the inequality

5 ≥ p3

trivially holds.

So, the conditions of Theorem 2 hold and therefore

RA ≥
∑3

j=1 cjβj
∑k

j=1 αjUj

=
24 + 12 + 18
8 + 9 + 30

=
54
47

.

We can summarize our calculation in the following theorem.

Theorem 5. No on-line algorithm for the one-dimensional bin packing problem
which packs the elements in decreasing order and can have better asymptotic
performance ratio than 54

47
= 1.1489361 . . . .

6 Conclusions

In this paper we improved two old lower-bound results for certain classes of one-
dimensional bin packing algorithms. For on-line algorithms we considered the
parametric case and the new lower bounds are summarized for some positive
integers r in Table 4. For those semi–online bin packing algorithms, which allow
preordering, and they get the elements in decreasing order our new lower bound
is 54

47 = 1.1489361 . . . vs. 8
7 = 1.142857 . . . . As a ”byproduct” we gave a simple

combinatorial proof for van Vliet’s lower bound for the performance of on-line
algorithms.

For the latter case we note that if the size of the largest elements is in the
interval ( 8

29
, 1

2
] then First Fit Decreasing yields the upper bound 71

60
(see [8]).

However, our efforts to get a better result were not successful so far. It is true,
that our improvements are very small in absolute values. However we did an
exhaustive search for possible lists and we have not found worse ones. We strongly
believe that the gap might be decreased only by defining better algorithms or
one needs to find a new method for proving lower bounds.
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The packing pattern technique was used for the two- and three-dimensional
bin packing problems [6] and the best known lower bound for the on-line vector
packing algorithms operates also with this technique (see [5]). Since in these
cases the Sylvester sequence were used during the proof it is plausible that
the application of the new series will also improve these lower bounds. We are
convinced that this technique is usable for other classes of algorithms.
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Abstract. This paper presents an extension of Ladner’s Theorem to
the approximation complexity hierarchy. In 1975 Ladner proved that if
P�=NP, then there exists an incomplete problem A which is neither in P
nor NP-complete. Here we show that if RP�=NP, then there is a counting
problem πA which neither has a fully polynomial randomised approxima-
tion scheme (FPRAS), nor is as hard to approximate as #SAT.

This work is motivated by recent results showing that approximately
counting H-colouring problems appears to fall into three complexity
groups. Those problems which admit an FPRAS, those which are ‘AP-
interreducible’ with #SAT and an intermediate class of problems all
AP-interreducible with #BIS (counting independent sets in bipartite
graphs). It has been asked whether this intermediate class in fact col-
lapses into one of the former two classes, or whether it truly occupies
some middle ground. Moreover, supposing it does occupy some middle
ground, does it capture all the ground between?

Our results reveal that there are counting problems whose approxima-
tion complexity lies between FPRASable and #SAT, under the assump-
tion that NP�=RP. Indeed, there are infinitely many complexity levels be-
tween. Moreover we show that if #BIS is genuinely in the middle ground
(neither having an FPRAS, nor as hard to approximate as #SAT), then
there are problems that do not admit an FPRAS, are not equivalent in
approximation complexity to #BIS and are not ‘AP-interreducible’ with
#SAT, thus also occupy the middle ground.

The proof is based upon Ladner’s original proof that there are classes
between P and NP, and suffers the same drawback that the problems
constructed are not natural. In particular our constructed problems are
not H-colourings. The question of the approximation complexity of #BIS
remains open.

1 Introduction

One of the most intriguing aspects of complexity theory is that almost every
‘natural’ problem can be shown to be either in the class P (solvable in poly-
nomial time), or to be NP-complete (as hard to solve as boolean satisfiability
(SAT) and many other well known hard problems). Of the thousands of decision
problems analysed over the years the notable exceptions to this, natural prob-
lems that have not been shown to be in either group, are graph isomorphism
testing and factoring (input (n, t): does n have a factor between 2 and t?). One
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might reasonably wonder whether in fact all problems in NP are either in P or
are NP-complete. In 1975 Ladner showed that this is not the case, in what has
become one of the fundamental theorems in complexity theory [5]. He showed
that under the assumption that P �=NP, then we can construct a problem which
is neither in P nor is NP-complete, using a technique of delayed diagonalisation.
Although Ladner’s Theorem shows that there is an infinite hierarchy of distinct
complexity levels between P and NP, it remains the case that almost every ‘nat-
ural’ problem that has been encountered has been shown to be either in P or
NP-complete. The problem generated in Ladner’s proof is a somewhat complex
interweaving of a trivial and an NP-complete problem, taking enough of each to
be neither NP-complete itself, nor polynomial time decidable.

In recent years there has been great interest in the class of counting problems
#P introduced by Valiant in 1979 [6], and approximation algorithms for problems
in #P. One of the triumphs of research in the area has been the steady progress
towards classifying the complexity of counting graph homomorphisms, known as
H-colouring problems. In this setting the graph H is fixed and we consider the
problem of counting the number of homomorphisms from an input graph G to
the fixed graph H (H-colourings of G). This framework captures many standard
graph problems. For example: if H is a complete graph on k vertices with no
loops, then counting homomorphisms from G to H is equivalent to counting
proper k-colourings of G; if H is a graph on two vertices with an edge between
and a loop on one vertex, then counting H-colourings of G is equivalent to
counting independent sets of G. See [4] for further background on H-colourings.

In 1990 Hell and Nešetřil [4] considered the decision problem of determining
whether there are any homomorphisms from G to H . They showed that there
is a complexity dichotomy between graphs H for which the decision problem
in is P, and those for which it is NP-complete. In 2000 Dyer and Greenhill [3]
considered the problem of counting H-colourings. They were able to completely
characterise the graphs H for which this problem is #P-complete. They defined
a trivial connected component of H to be one that is a complete graph with all
loops present or a complete bipartite graph with no loops present, and showed
that counting H-colourings is #P-complete if H has a nontrivial component
and that it is in P otherwise. In 2003 Dyer et. al. [2] turned their attention
to the relative complexity of approximate counting problems, introducing the
idea of approximation preserving reductions. They showed that there appear to
be three distinct classes of problems relative to such reductions: those that can
be approximated in polynomial time, those that are as hard to approximate as
#SAT, and a logically defined intermediate class of problems that are equivalent
in approximation complexity to approximately counting independent sets in a
bipartite graph (#BIS).

In this paper we show that it cannot be the case that there is a neat tri-
chotomy (or even dichotomy) of approximation complexity in general. That is, if
we assume that we cannot approximate the number of solutions to an instance of
SAT in random polynomial time (it is enough to assume RP �=NP, see [7]), then
there must be an infinite hierarchy of approximation complexity classes between
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those that may be approximated and #SAT. In particular, if #BIS lies in this
intermediate complexity region, then there are problems that may be reduced
to #BIS, but to which #BIS will not reduce, also in the intermediate region.
We note that the problems constructed are not H-colouring problems. There-
fore this work does not preclude the possibility of a trichotomy or dichotomy of
approximation complexity for H-colouring problems.

The intuitive idea of Ladner’s proof is to construct a specific decision problem,
then enumerate all the polynomial time Turing machines and show that each in
turn cannot either solve the decision problem or reduce SAT to the constructed
problem. Here we proceed in the same manner, except that we are dealing with
probabilistic Turing machines and require a bounded probability of erroneous
response. Since there is no effective enumeration of bounded error probabilistic
Turing machines, it may seem that we are stuck. However all we require is an ef-
fective enumeration of all polynomial time probabilistic Turing machines, and we
show that none of these can give an FPRAS for our constructed problem, or the
required reduction. Fortunately polynomial time probabilistic Turing machines,
with no bound on the error, can be efficiently enumerated. For a discussion of
enumeration of probabilistic Turing machines and the difficulty of enumerating
bounded error probabilistic Turing machines see, for example, Du and Ko [1].

2 Preliminaries

A counting problem π is in the class #P if there is some non-deterministic
Turing machine M , constant k and polynomial p such that for any input x
the number of valid witnesses for x is exactly π(x), all valid witnesses have
length exactly |x|k and M runs in time bounded by p(|x|). It follows that for
any problem in NP, there is an associated problem of counting the number of
solutions in #P. For example, determining whether a graph has a proper k-
colouring is an NP problem; counting the number of proper k-colourings is a #P
problem. A randomised approximation scheme (RAS) for a counting problem
π is an algorithm or oracle (black box), which given any input (x, y) returns a
value in [(1−y−1)π(x), (1+y−1)π(x)] with probability at least 3/4. Thus, we are
taking ε = y−1 to be a relative error parameter. A fully polynomial randomised
approximation scheme (FPRAS) for π is an RAS algorithm for π with running
time polynomial in both |x| and y. From here on, when referring to an input
(x, y) we assume that y is encoded in unary, so that |(x, y)| = |x|+ y and hence
polynomial time in the input size is the correct measure for FPRAS.

We will consider two types of special Turing machines: probabilistic Turing
machines taking two inputs (PTMs) and probabilistic oracle Turing machines
taking two inputs (POTMs). Here two inputs means the input is (x, y), where
y−1 is a relative error parameter as above. Let M1, M2, . . . be an enumeration of
polynomial time PTMs and M ′

1, M
′
2, . . . be an enumeration of polynomial time

POTMs. For simplicity we assume that the machines are clocked so that Mi

and M ′
i run in time ni on all inputs of size n. For the probabilistic aspect

of our Turing machines, we assume that each Turing machine has an auxiliary
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input tape of length ni containing random bits. Thus a problem π has an FPRAS
if and only if there is some i for which the machine Mi applied to any input (x, y)
returns a value in [(1− y−1)π(x), (1 + y−1)π(x)] on at least 3/4 of the possible
strings of random bits. We describe a response in this range as a good response
for π.

A POTM operates exactly as a standard PTM, except that it can make oracle
calls during its run. Each oracle call must be computed by the PTM, so has
polynomially bounded size, and the response from the oracle must be read, so
also has polynomially bounded size. For our purposes we are interested in RAS
oracles for counting problems. An RAS oracle for π is a black box about which
we know only that when called with (x, y), it returns an integer z ∈ [0, 2|x|

k

]
such that Pr[z ∈ [(1− y−1)π(x), (1+ y−1)π(x)]] ≥ 3/4. Note that we include the
possibility that the oracle is an omnipotent adversary who can see your other
calculations and objectives in addition to the call (x, y), and is only constrained
by having to give a good response with probability at least 3/4.

We will also be interested in two sub-classes of RAS oracles: binary RAS
oracles and restricted RAS oracles. A binary RAS oracle is an RAS oracle such
that the oracle determines two possible responses, z, z′ ∈ [0, 2|x|

k

], and responds
z with probability 1/4 and z′ (necessarily in [(1 − y−1)π(x), (1 + y−1)π(x)]])
with probability 3/4. (We allow z = z′, which then has probability 1.) This can
be thought of as an adversary giving as much probability as permitted to the
least helpful responses. Again, we describe a response of the oracle in the range
[(1− y−1)π(x), (1 + y−1)π(x)] as a good response. The reader may be concerned
that these definitions allow an oracle to use a different probability distribution
to respond to a given input depending on external factors such as the state of
the POTM making the call. As an alternative we also consider restricted RAS
oracles. We suppose the RAS oracle for a given problem π is assumed to be a
probabilistic Turing machine (with possibly exponential running time) hidden
in a black box. We assume that the running time for input (x, y) is bounded
by p(|x|)2|x|k for some constant k and polynomial p, since we can compute π(x)
exactly in this time by checking every possible witness. Since the probabilistic
nature of a PTM can be captured by an auxiliary tape of random bits, in this
case of length at most 2|x|

k

, the probability of any specific response must be
a multiple of 2−2|x|k

. Hence we define a restricted RAS oracle for a counting
problem π as an RAS oracle for which the probability of any specific response
depends only on the call (x, y), and for some fixed constant k is always a multiple

of 2−2|x|k
.

We next define approximation preserving reductions. A counting problem π1 is
AP-reducible to π2 (denoted π1 ≤AP π2) if for some i and any (x, y) the machine
M ′

i applied to input (x, y) returns a value in [(1− y−1)π1(x), (1 + y−1)π1(x)] on
at least 3/4 of the possible strings of random bits, where the oracle calls made
by M ′

i are to any RAS oracle for π2. If π1 ≤AP π2 and π2 ≤AP π1 we say
π1 and π2 are AP-interreducible. We will also consider binary AP-reductions
(≤bAP ) and restricted AP-reductions (≤rAP ) where the oracle calls are to any
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binary RAS oracle, and any restricted RAS oracle, respectively. We will also
write π1 <AP π2 (π1 <rAP π2) to indicate that π1 ≤AP π2 but π2 �≤AP π1

(π1 ≤rAP π2 but π2 �≤rAP π1, respectively).

3 Results

We may now state the main theorem.

Theorem 1. Let π1 be a #P problem such that there is no FPRAS for π1. Then
we can construct a #P problem πA such that

(i) there is no FPRAS for πA,
(ii) πA <AP π1.

In words: πA is of intermediate approximation complexity between FPRASable
and π1.

This general theorem leads to the following corollaries.

Corollary 1. If NP�=RP then there are an infinite number of problems πA1 ,
πA2 , . . . in #P such that

(i) for all i, πAi does not have an FPRAS,
(ii) for all i, #SAT is not AP-reducible to πAi , and
(iii) for all i, j such that i < j, we have πAj <AP πAi .

Proof. If NP �=RP then there is no FPRAS for #SAT [7]. Thus we can apply
Theorem 1, taking π1 to be #SAT, to obtain πA1 of intermediate approximation
complexity. We then iterate the arguments, for i ≥ 1, taking π1 = πAi to obtain
πAi+1 of intermediate complexity between FPRASable and πAi .

If we make the additional assumption that #BIS does not have an FPRAS and
#SAT is not AP-reducible to #BIS then we obtain the following corollary.

Corollary 2. If there is no FPRAS for #BIS, and #SAT �≤AP #BIS, then
there exists a problem πA in #P that does not have an FPRAS and such that
πA <AP #BIS <AP #SAT.

Proof. We apply Theorem 1 taking π1 to be #BIS, to obtain πA.

4 Proofs

Here we give the proof of Theorem 1. First we show that we may consider only
binary RAS oracles in the proofs.

Lemma 1. For two counting problems π1 and π2, π1 ≤AP π2 if and only if
π1 ≤bAP π2.
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Proof. Suppose first that π1 ≤AP π2. Then there is some POTM M ′
i which has

probability at least 3/4 of returning a good answer for π1 as long as M ′
i makes

calls to any RAS oracle for π2. Since binary RAS oracles are RAS oracles, M ′
i

returns a good answer with sufficient probability whenever the calls are to any
binary RAS oracle. Hence π1 ≤bAP π2.

Suppose now that π1 �≤AP π2, and that π2 has witnesses of length k. Then
for each i there is some input (x, y) and some RAS oracle O, such that M ′

i(x, y)
has less than probability 3/4 of returning a good response when the oracle calls
are to O. We may regard the calculation of M ′

i(x, y) as branching at each use of
a random bit and at each response of the oracle. Down any computation path,
consider the first oracle call (x′, y′). For each response of the oracle, there is some
probability that the calculation of M ′

i continued from this point results in a good
response. There will be some possible response of the oracle z ∈ [0, 2|x

′|k ] which
minimises the probability that the final response of M ′

i will be good for π1, and
likewise some possible good response of the oracle z′ ∈ [(1 − y′−1)π2(x′), (1 +
y′−1)π2(x′)] which minimises this same probability. Consider an oracle O′ which
responds exactly as O except in this specific call at this point of the computation
of M ′

i , when it responds z with probability 1/4, and z′ with probability 3/4.
Then O′ is still a valid RAS oracle for π2, since it always gives a good response
with probability at least 3/4. Moreover, the probability that the computation
of M ′

i(x, y) fails to be good is at least as great using oracle O′ as O. Iterating
this argument at all oracle calls down all computation paths, we see that if there
is any RAS oracle such that M ′

i(x, y) fails to be good for π1 with probability
greater than 1/4 when calling this oracle, then there is a binary RAS oracle
O′′ such that M ′

i(x, y) fails to be good with probability greater than 1/4 when
calling O′′. Hence π1 �≤bAP π2.

Proof (Proof of Theorem 1). We have a problem π1 in #P such that π1 does
not admit an FPRAS. We take a fixed non-deterministic Turing Machine for π1

which has witnesses of size exactly |x|k1 , and a constant c > 2k1 such that the
running time of this NDTM is bounded by |x|c. We define the counting problem
πA to be

πA(x) =

{
0 if f(|x|) is odd,

π1(x) if f(|x|) is even,

where f : N �→ N is a polynomial time computable function which we will define
shortly.

The problem πA is in #P since f is polynomial time computable and hence
there is a polynomial time NDTM which first computes f(|x|) and then outputs
either zero or proceeds exactly as the NDTM for π1, as appropriate. Note that
witnesses for πA therefore have length exactly |x|k1 . It also follows from the
definition that πA ≤AP π1, since given an RAS oracle for π1, we may approximate
πA(x, y) by again computing f(|x|), and then either outputting zero or returning
the result of an oracle call for π1(x, y) as appropriate.

The function f is defined recursively as follows. Set f(n) = n for n ≤ 2. For
n ≥ 2 define f(n + 1) according to the cases below:
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(i) If (log log n)cf(n) ≥ log n set f(n + 1) = f(n);

(ii) if f(n) = 2i check to see if there is an input (x, y), of size |(x, y)| ≤ log log n
such that the probability that Mi(x, y) gives a good response for πA is less
than 3/4. If such an input exists set f(n + 1) = f(n) + 1, otherwise set
f(n + 1) = f(n).

(iii) if f(n) = 2i + 1 check to see if there is an input (x′, y′), of size |(x′, y′)| ≤
log log n and an RAS oracle O′ for πA, such that the probability that
M ′

i(x
′, y′) gives a good response for π1 is less than 3/4 when the oracle

calls are to O′. If such an input and oracle exist set f(n + 1) = f(n) + 1,
otherwise set f(n + 1) = f(n).

We must check that f(n) may be computed in time polynomial in n. It is suffi-
cient to show that we can check each of the conditions above in polynomial time.
Checking condition (i) is polynomial in n. For (ii) there are 2log log n inputs (x, y)
to be checked. For each input |x| is much smaller than n, so we have already
recursively calculated f(|x|). Thus we can compute πA(x) by determining f(|x|)
and checking all possible witnesses for π1(x), if appropriate (2(log log n)k1 possi-
ble witnesses, each checked in time at most |x|c ≤ (log log n)c). Next we must
determine whether the probability that Mi(x, y) gives a good response (for πA)
is less than 3/4.

We shall do this by simulating the computation of Mi(x, y), branching each
time a random bit is used. Each random bit will lead to two branches, thus
there are at most 2|(x,y)|i possible computation paths for the given input (x, y).
We follow each of these and compute the probability that Mi(x, y) gives a good
response. Thus (ii) can be checked in time O(2(log log n)ic

). Since i is bounded by
f(n), by (i) we have 2(log log n)ic ≤ n.

Similarly we can check condition (iii) in polynomial time: we first compute
π1(x′), and then we simulate M ′

i(x
′, y′), now also branching at each oracle call of

the computation, to see if it returns a good response with probability less than
3/4. By Lemma 1 we need only consider binary RAS oracles for πA. Each oracle
call has input (x′′, y′′) of length bounded by |(x′, y′)|i and output in the range
[0, 2|x

′′|k1 ]. Thus the number of valid distributions of a binary RAS oracle for a
given call is bounded by 22|x′′|k1 . We can compute which are valid by determining
π1(x′′) exactly, through checking every possible witness of which there are at
most 2|x

′′|k1 . Hence we branch into at most 22|x′′|k1 possible distributions for the
oracle at each oracle call, and then into two further branches for the randomly
chosen response of the oracle. Any fixed choice of distributions at the oracle
calls corresponds to a possible binary RAS oracle. For each fixed set of such
choices, we may compute the probability of following a computation path which
ends in a good response. Recalling that both the size and number of oracle calls
are bounded by |(x′, y′)|i, there are at most (22|(x′,y′)|ik1 )|(x

′,y′)|i ≤ 2|(x
′,y′)|ic

possible binary RAS oracles we need to check for the given input (x′, y′). Thus
(iii) can be checked in time O(2(log log n)ic

). Since i is bounded by f(n), by (i)
we have 2(log log n)ic ≤ n.



44 M. Bordewich

We now conclude the proof by showing that πA does not admit an FPRAS
and π1 �≤AP πA. This will follow because if either part does not hold, then f
is bounded and in this case we can construct an FPRAS for π1. Suppose first
that there is an FPRAS for πA. Then for some i the machine Mi gives a good
response with probability at least 3/4 on every input (x, y). By condition (ii)
f(n) will never grow larger than 2i. Now suppose that π1 ≤AP πA. Then for
some j the machine M ′

j equipped with any RAS oracle for πA gives a good
response for problem π1 with probability at least 3/4 on every input (x′, y′). By
condition (iii) f(n) will never grow larger than 2j + 1. In either case, f(n) is
bounded, and therefore constant for all sufficiently large n. If f(n) is even for all
sufficiently large n, then some PTM gives an FPRAS for πA, but πA(x) �= π1(x)
only on a constant number of inputs x. Thus we must also have an FPRAS for π1,
which contradicts the assumptions of the theorem. Alternatively if f(n) is odd
for all sufficiently large n, then some POTM gives an approximation preserving
reduction from π1 to πA, but πA(x) �= 0 only on a constant number of inputs x.
Thus πA is polynomial time computable, and all oracle calls to an RAS oracle
for πA may be replaced with a polynomial time computation. So again there
must be an FPRAS for π1, contradicting the assumptions of the theorem.

4.1 Restricted Power Oracles

For the reader concerned that the definition of RAS oracle allows the potential
use of a different probability distribution to respond to a given call depending on
external factors such as the state of the POTM making the call, we now prove
a version of our results only using restricted RAS oracles.

For a binary RAS oracle to problem π, taking witnesses of length k, there are
at most 22|x|k possible distributions of the oracle responses to a given call (x, y).
For restricted RAS oracles we can no longer assume that only two responses have
non-zero probability; we are restricted to assuming that that the probability of
each response is a multiple of 2−2|x|k

. Thus there are at most (22|x|k
)2

|x|k
= 222|x|k

possible distributions for the oracle responses. However this additional exponen-
tial factor need cause us no concern. We can simply delay the diagonalisation a
little further: when defining f(n+1) we only check inputs up to size log log log n
(rather than log log n) in conditions (ii) and (iii). This means we can do more
checking and still compute f in polynomial time. What we lose in doing this
is the rate of growth of f . However all we require is that f is unbounded, how
quickly it grows is irrelevant. Indeed by using a parameter l in the proof, for the
height of an exponential tower, we demonstrate that f could be defined to grow
considerably more slowly if required.

Theorem 2. Let π1 be a #P problem such that there is no FPRAS for π1.
We can construct a #P problem πA such that πA <rAP π1, and there is no
FPRAS for πA. In other words: πA is of intermediate (restricted) approximation
complexity between FPRASable and π1.

Proof. The proof closely follows that of Theorem 1. We take a fixed non-
deterministic Turing Machine for π1 which has witnesses of size exactly |x|k1 ,
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and a constant c such that the running time of this NDTM is bounded by |x|c
and c > 2k1. Let πA and f : N �→ N be defined as follows.

πA(x) =

{
0 if f(|x|) is odd,

π1(x) if f(|x|) is even,

and, for some constants c (defined below) and l ≥ 3, f is defined as follows. Set
f(n) = n for n ≤ 2. For n ≥ 2 define f(n + 1) according to the cases below:

(i) If (logl n)cf(n) ≥ logl−1 n set f(n + 1) = f(n);

(ii) if f(n) = 2i check to see if there is an input (x, y), of size |(x, y)| ≤ logl n
such that the probability that Mi(x, y) gives a good response for πA is less
than 3/4. If such an input exists set f(n + 1) = f(n) + 1, otherwise set
f(n + 1) = f(n).

(iii) if f(n) = 2i + 1 check to see if there is an input (x′, y′), of size |(x′, y′)| ≤
logl n and a restricted RAS oracle O′ for πA, such that the probability that
M ′

i(x
′, y′) gives a good response for π2 is less than 3/4 when the oracle calls

are to O′. If such an input and oracle exist set f(n+1) = f(n)+1, otherwise
set f(n + 1) = f(n).

Again it follows that πA is in #P, as long as we can show that f(n) may be com-
puted in time polynomial in n. For this it is sufficient to show that we can check
each of the conditions in the definition of f in polynomial time. Conditions (i) and
(ii) are essentially unchanged from Theorem 1, except that we have fewer possi-
ble inputs to consider in (ii), so may be checked in time polynomial in n. In order
to check condition (iii) we again proceed as in Theorem 1, but in simulating the
computation of M ′

i(x
′, y′) for each possible input (x′, y′) of size |(x′, y′)| ≤ logl n,

we must consider restricted oracles. The branching at each oracle call (x′′, y′′)

is in two phases. Firstly, we branch into at most 222|x′′|k1
computations, one for

each possible distribution of responses to the oracle call (distribution branches).
Secondly, we branch into at most 2|x

′′|k1 branches depending on the randomly
chosen response of the oracle given the distribution (response branches). We then
determine whether any choice of distribution branches at the oracle calls, and
hence any restricted RAS oracle, results in a weight of probability of less than
3/4 down computation paths (response branches) leading to a good response.
Note we must take the same distribution branch each time a given call is made,
should any calls be repeated. Since there are at most |(x, y)|i oracle calls, each

of size at most |(x, y)|i, there at most (222|(x,y)|ik1
)|(x,y)|i ≤ 22|(x,y)|ic

possible or-

acles to consider. Hence we can check condition (iii) in time O(22|(x,y)|ic

). Since

i ≤ f(n), by condition (i) we have 22|(x,y)|ic ≤ 22logl−1 n ≤ n. Thus condition (iii)
can be checked in polynomial time.

The remainder of the proof follows that of Theorem 1. If f(n) is bounded,
then f is constant for large enough n and therefore only differs from 0 or π1 in
a constant number of places. Either case implies that there is an FPRAS for π1,
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which is a contradiction. Hence f(n) is unbounded. Therefore conditions (ii)
and (iii) are met for every i, which in turn implies that there can not be any
restricted approximation preserving reduction from π1 to πA.
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Abstract. We study an extension of the unit-demand pricing problem
in which the seller may offer bundles of items. If a customer buys such
a bundle she is guaranteed to get one item out of it, but the seller does
not make any promises of how this item is selected. This is motivated
by the sales model of retailers like hotwire.com, which offers bundles of
hotel rooms based on location and rating, and only identifies the booked
hotel after the purchase has been made.

As the selected item is known only in hindsight, the buying deci-
sion depends on the customer’s belief about the allocation mechanism.
We study strictly pessimistic and optimistic customers who always as-
sume the worst-case or best-case allocation mechanism relative to their
personal valuations, respectively. While the latter model turns out to be
equivalent to the pure item pricing problem, the former is fundamentally
different, and we prove the following results about it: (1) A revenue-
maximizing pricing can be computed efficiently in the uniform version,
in which every customer has a subset of items and the same non-zero
value for all items in this subset and a value of zero for all other items.
(2) For non-uniform customers computing a revenue-maximizing pricing
is APX-hard. (3) For the case that any two values of a customer are
either identical or differ by at least some constant factor, we present
a polynomial time algorithm that obtains a constant approximation
guarantee.

1 Introduction

Algorithmic pricing deals with the problem of efficiently determining revenue-
maximizing ways of selling a collection of items given information about the
preferences of the potential customers in the target market. The traditional
way of selling items consists of posting a price for each individual item, then
letting customers pick the bundle of items they prefer and charging them the
sum of prices of items they select. The problem of finding such an item pricing
under various kinds of customer preferences has received a lot of attention re-
cently [1,2,6,7,14] and in many cases, its approximation complexity is quite well
understood.
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Two fundamental classes of customer preferences have been particularly well
investigated. Customers are referred to as single-minded, if items constitute strict
complements and each customer is interested in purchasing one particular subset
of the items. We say that customers are unit-demand, if items are strict substi-
tutes and each customer is interested in buying a single item out of some set
of alternatives. Assuming unlimited supply of all the items, it is known that in
both of these settings the revenue-maximizing item pricing can be approximated
within factors that are logarithmic in the number of customers or linear in the
number of items [14] and, under appropriate complexity theoretic assumptions,
no essential improvement beyond these guarantees is possible [4,11].

In a recent paper Briest et al. [5] consider the unit-demand pricing problem,
but instead of trying to find a revenue-maximizing item pricing, allow to sell
items via a so-called system of lotteries. Here, rather than posting prices for
individual items, the seller may offer a collection of lottery tickets, each such
ticket representing a probability distribution over items and an associated price.
A customer purchasing some given ticket will be asked to pay its price and
in turn receive an item randomly sampled from the ticket’s distribution. It is
shown in [5] that depending on the details of the underlying model of customer
behavior this larger class of selling mechanisms can lead to a significant increase
in revenue while simultaneously allowing for much better algorithmic solutions.

While, apart from its intrinsic connection to the process of haggling in price
negotiations [16,17], we are not aware of any lottery-like pricing mechanism being
applied directly in practice at this point, a related - yet different - method is being
employed by several companies. This method also consists of bundling subsets of
items and pricing bundles of items rather than individual items, and again the
understanding is that a unit-demand customer will receive a single item from the
bundle she picks. The crucial difference to the lottery-based system described
above lies in the fact that the seller does not make any promises as to how the
item allocated to the customer will be selected. This might be done according
to some probability distribution unknown to the customers, but it might also
be done in any other conceivable fashion, e.g. guided by production costs or
availability. One prominent example of a retailer employing this kind of pricing
scheme is the website hotwire.com, where hotel rooms are bundled according to
their location and star rating. Customers can book offers of the form “3 nights
in the Philadelphia downtown area, 4 stars and up for $279” and will receive
information about the exact hotel they will be staying at only after payment has
been made.

Formalizing this kind of unit-demand bundle-pricing problem brings up some
modeling issues. Rational unit-demand customers are commonly modeled as as-
signing a value to each of the items and upon observing the item prices selecting
the item maximizing their utility, defined as the difference between the cus-
tomer’s respective value and its price. While this concept of rationality extends
quite naturally to lottery-based pricing (every lottery holds a fixed expected util-
ity to a customer), it is not obvious what to do in the bundle pricing setting.
A customer’s value for a given bundle depends on the actual item she receives
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and, thus, will only be known in hindsight and, consequently, the buying deci-
sion itself has to depend on the customer’s belief about the seller’s allocation
mechanism. In this paper, we will investigate the two most basic ways of mod-
eling these beliefs and assume that customers assign to each bundle either the
minimum or maximum value of any item contained in it. Intuitively, this cor-
responds to strictly pessimistic or optimistic customers who will always assume
the worst-case or best-case allocation mechanism relative to their personal val-
uations, respectively. Before we give an overview of the results presented in this
paper, let us introduce the problem more formally.

1.1 Preliminaries

The standard unit-demand pricing problem (UdP) is defined as follows. Given a
set of items I, each available in unlimited supply, and a collection of customers
C, each described by a valuation function vc : I → R+

0 , we want to assign prices
to the items such as to maximize the overall revenue. More precisely, we assume
that given prices p(i) for all i ∈ I, a customer c ∈ C will choose to purchase item

ic(p) = argmaxi∈I(vc(i)− p(i)),

whenever that item’s price does not exceed her respective value. To avoid tech-
nicalities, we assume that there is a special item ∅ with vc(∅) = 0, which is
always assigned price 0. The quantity vc(i)− p(i) is termed customer c’s utility
from purchasing item i at price p(i). We will also assume that whenever there
are multiple items yielding identical utility, a customer will pick the one with
highest price among them.1 In this way, item ic(p) is well defined for any set of
prices p. The revenue of a price assignment p is

rev(p) =
∑

i∈I
p(ic(p)).

In the unit-demand bundle-pricing problem (UdBp) considered in this paper
we are again given a ground set I of items and a collection C of unit-demand
customers. The output is a collection B ⊆ 2I of bundles of items and prices p(B)
for all bundles B ∈ B. If a customer decides to purchase a bundle B of items,
she is guaranteed to receive an item from B. However, a customer does not have
any information regarding the details of how the particular item she will receive
is selected once the bundle is bought. Consequently, a customer’s value for any
given bundle has to depend on her belief about the selection procedure.

Most of this paper will be focused on the case of pessimistic customers who will
assign to each bundle its worst-case value (UdBp-Min). Formally, a customer
with (unit-demand) valuation function vc : I → R+

0 will value bundle B ⊆ I at

v̄c(B) = min
i∈B

vc(i).

1 This assumption is w.l.o.g., since in case of a tie decreasing all prices by a factor
of (1 − ε) for an arbitrary value of ε ensures that for each customer the utility-
maximizing item is one of maximal price.
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As in standard unit-demand pricing, given prices p each customer will purchase
her utility-maximizing bundle

Bc(p) = argmaxB∈B(v̄c(B) − p(B)),

where we assume that the empty bundle ∅ ∈ B has price p(∅) = 0 and is valued at
0 by all customers. Furthermore, ties are again broken in favor of more expensive
bundles.

There are of course numerous other ways of extending unit-demand valuation
functions to the set of all bundles. In this paper, we will also briefly look at
the complementing case of customers assigning each bundle its best-case value
(UdBp-Max), formally,

v̄c(B) = max
i∈B

vc(i).

Other models, in particular those assuming some kind of probabilistic selection
method, are beyond the scope of this paper, but might also be of much interest,
particularly as some of them are essentially variations of the lottery concept
investigated in [5] and might have applications in the design of truthful revenue-
maximizing auction mechanisms [3,12,15].

By uniform UdBp we refer to the restricted problem version in which cus-
tomers’ valuation functions assign identical (positive) values to some subset of
the items and value 0 to all items in the complement of this subset. Formally,
every customer is characterized by the set Sc ⊆ I of items she desires and her
value vc ∈ R+ for receiving any such item.

1.2 Contributions

We will first consider UdBp-Min and present a number of algorithmic and com-
plementing hardness results. In Section 2 we present a polynomial time algorithm
for uniform UdBp-Min, which is essentially based on two main ingredients.
First, we observe that the number of bundles that might be part of an optimal
bundle-pricing is small and, in fact, we can derive the set of bundles we need to
consider immediately from the given set of customers. We then show that the
extension of the valuation functions to this collection of bundles is very nicely
structured, as a consequence of which one can apply techniques from [8] to solve
the problem. More precisely, if we define a relation between bundles depending
on whether there exists a customer who strictly prefers one of them to the other,
this relation turns out to be transitive, as a consequence of which we can reduce
the bundle-pricing problem to solving a weighted independent set problem in a
perfect graph.

We proceed by considering the general (i.e., non-uniform) case of UdBp-Min
which turns out to be significantly more complex. In Section 3 we show that
general UdBp-Min is APX-hard. This is true even if all customers have non-
zero values for at most 2 items and there are only 3 distinct values among all of
them. The main distinction of our reduction from previous hardness results for
unit-demand pricing problems stems from the fact that because of the enlarged
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solution space (containing all possible bundles of items) we need to argue about
a significantly larger set of potential solutions to prove that the reduction is
indeed approximation preserving.

On the algorithmic side, we introduce the concept of α-coarse instances, in
which any two values of a single customer must be identical or differ by a factor
of at least α. We present a polynomial time algorithm that obtains a constant
approximation guarantee for any given constant value of α > 1. This is an
interesting distinction from the several related item pricing problems, where
the known inapproximability results suggest that coarse instances in particular
seem to form the hard core of the problem [4]. The algorithm is based on a
novel reduction of the general to the uniform problem, in the process of which
each general valuation function is simulated by a carefully tailored collection of
uniform valuation functions yielding similar revenue under all relevant pricings.
This reduction is also interesting in its own right, as it can be applied to other
unit-demand pricing problems as well, yielding similar algorithmic results as long
as the uniform problem version allows for a good approximation. In particular,
we can obtain constant factor approximation algorithms for α-coarse instances
of UdP with price-ladder constraint [1], i.e., when the relative order of item
prices is predetermined, as the uniform version of this problem is known to be
solvable in polynomial time via dynamic programming. These results are found
in Section 4.

Finally, we briefly turn to UdBp-Max and show that this problem behaves
fundamentally different from UdBp-Min. In Section 5 we argue that the problem
turns out to be equivalent to the pure item pricing problem and, thus, all results
known for UdP carry over in this case.

2 A Polynomial-Time Algorithm for Uniform UdBp-Min

The first main ingredient for our polynomial-time algorithm for uniform UdBp-
Min are the following observations regarding the structure of the optimal collec-
tion of bundles and their prices. Note, that Definition 1 and Proposition 2 also
apply to non-uniform UdBp-Min.

Definition 1. For a customer c with valuation function vc : I → R+
0 we let

Lv
c = {i ∈ I | vc(i) ≥ v}.

We say that Lv
c is customer c’s level-v set.

Proposition 2. Let (I, C) be an instance of UdBp-Min. Then there exists a
revenue-maximizing collection B of bundles with corresponding prices p, such
that B ⊆ {Lv

c | c ∈ C, v ∈ R+
0 }.

Proposition 3. Let (I, C) be an instance of uniform UdBp-Min and (B, p) a
revenue-maximizing solution. It holds w.l.o.g. that B ⊆ {Sc | c ∈ C} and p(i) ∈ P
for all i ∈ I, where P = {vc | c ∈ C}.
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The proofs of Propositions 2 and 3 are left for the full version of this paper.
Proposition 3 states that in the uniform case of UdBp-Min both the set of
possible bundles and the set of possible prices that can appear as part of an
optimal solution are quite managable. In particular, the problem of computing
an optimal bundle pricing reduces to deciding which customers should purchase
their respective bundles Sc and at which price from P .

Similar to the approach first introduced in [8], we will transform the problem
of computing the optimal bundle pricing into a weighted independent set prob-
lem and argue that the resulting graph is perfect, which allows us to solve the
independent set problem in polynomial time [13]. We use (c, Sc, p) to denote the
fact that customer c purchases bundle Sc at price p. We create a vertex with
label (c, Sc, p) and weight p for every c ∈ C and p ∈ P with p ≤ vc. Then we
create a directed edge from the vertex with label (c, Sc, p) to the vertex with
label (d, Sd, q), if and only if Sd ⊆ Sc and q < p. Let us refer to the resulting
directed graph as G and let G̃ refer to the same graph but with undirected edges.

Lemma 4. Graph G̃ as constructed above is perfect.

The proof of Lemma 4, which is an application of the strong perfect graph
theorem [9] and essentially similar to the proof given in [8], is omitted due to
space limitations. Lemma 4 immediately yields a polynomial time algorithm for
uniform UdBp-Min.

Algorithm 1. Poly-Time Algorithm for Uniform UdBp-Min.

(1) Given instance (I, C), construct the perfect weighted graph G̃ containing a
vertex with label (c, Sc, p) and weight p for all c ∈ C, p ∈ P with p ≤ vc, and an
edge between vertices with labels (c, Sc, p) , (d, Sd, q) iff either Sc ⊆ Sd and
p < q or Sd ⊆ Sc and q < p.

(2) Find a maximum weight independent set in G̃.

(3) For each vertex in the independent set, if it has label (c, Sc, p), offer bundle
Sc at price p.

Theorem 5. Algorithm 1 returns a revenue-maximizing bundle pricing in poly-
nomial time.

Proof. By Proposition 3 there always exists a revenue-maximizing bundle pricing
in which every customer c ∈ C buys bundle Sc or nothing at all and all prices are
chosen from the set P . Clearly, for any customer purchasing bundle Sc at price p it
must be the case that no bundle B ⊆ Sc is offered at a price below p, as buying this
bundle would yield higher utility for customer c. Consequently, the bundle pricing
corresponds to an independent set in G̃ of total weight equal to the revenue ob-
tained by the bundle pricing. Similarly, setting prices according to an independent
set in G̃ ensures that customer c purchase bundle Sc at price p whenever the ver-
tex with label (c, Sc, p) is part of the independent set. Thus, we have a one-to-one
correspondence between bundle pricings and weighted independent sets in G̃ and
it follows that Algorithm 1 returns a revenue-maximizing pricing.
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Polynomial running time follows from the observation that graph G̃ has at
most a polynomial number |C| · |P| of vertices and the fact that it is perfect
by Lemma 4, so finding a maximum weight independent set can be done in
polynomial time. �	

3 Hardness of Approximation of UdBp-Min

In this section we show that UdBp-Min is APX-hard. In particular, we show
that there is no polynomial time approximation algorithm achieving a revenue
of at least (428/429+ ε) times the revenue of the optimal bundle pricing, unless
P=NP. This is even true if every customer has non-zero value for at most two
items and there are only three different values among all of them.

Theorem 6. It is NP-hard to approximate UdBp-Min within c = 428
429 + ε for

any ε > 0.

Proof. Our reduction is from the unweighted Max Dicut problem. An instance
of this problem is a directed graph G = (V, E), and the goal is to find a partition
of V into (S, V \S), where S ⊆ V , such that the number of edges that cross this
cut, i.e., edges (u, v) such that u ∈ S but v /∈ S, is maximized. This problem is
not (12/13 + ε)-approximable, for any constant ε > 0, unless P=NP [10].

Given an instance G = (V, E) of the unweighted Max Dicut problem, we
create an instance of UdBp-Min by introducing one item for each node in V
and 48 customers for each edge in E. For the edge (u, v) ∈ E, we introduce
customers with value 0 for all items in V \ {u, v} and with the following values
for u and v:

number of customers c 9 3 3 15 1 3 6 2 6
vc(u) 0 0 0 1 1 2 2 2 4
vc(v) 1 2 4 0 4 0 1 4 0

Given these customers, the only bundles for which there exist customers with
non-zero valuation are singleton bundles and bundles {u, v} for edges (u, v) ∈ E.
Hence, we can focus on setting prices for these bundles. Furthermore, any pricing
can be transformed into a pricing using only the prices 1, 2, 3, and 4 and achieving
at least the same revenue as follows: If we have a pricing with prices below 1,
we can first increase all these prices to 1 without decreasing the revenue, then
we can increase all prices strictly between 1 and 2 to 2 without decreasing the
revenue and so on.

If we have already set prices for the singleton bundles {u} and {v} and there is
an edge (u, v) ∈ E, then the (not necessarily unique) price for the bundle {u, v}
maximizing the revenue is determined. A case analysis yields the following table
showing an optimal price for {u, v} and the total revenue obtained from all
customers belonging to edge (u, v) for the different choices of p({u}) and p({v}):

p({u}) 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
p({v}) 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
opt. price for p({u, v}) 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1
total revenue 48 48 48 48 48 48 48 54 42 42 42 42 48 48 48 48
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The following information from the previous table is crucial:

– For any pricing with p({u}) 
= 3 and p({v}) 
= 3, there is a choice for p({u, v})
for which all customers belonging to edge (u, v) yield a total revenue of 48.

– For any pricing with p({u}) 
= 2 or p({v}) 
= 4, there is no choice for p({u, v})
for which they yield a larger revenue than 48.

– If p({u}) = 2 and p({v}) = 4, then there is a choice for p({u, v}) for which
all customers belonging to edge (u, v) yield a total revenue of 54.

Based on this information, we can relate the maximum directed cut in the graph
G and the revenue-maximizing pricing for the instance of UdBp-Min that we
have constructed. If the graph G has a cut (S, V \S) crossed by � edges, then there
exists a pricing for the instance of UdBp-Min with a revenue of 48·(|E|−�)+54·�.
For this, we assign a price of 2 to every set {u} with u ∈ S and a price of 4 to
every set {u} with u /∈ S. The prices for the sets {u, v} for edges (u, v) ∈ E are
chosen according to the previous table.

If the optimal pricing of the instance of UdBp-Min yields a revenue of 48 ·
(|E| − �) + 54 · � for some � ∈ N, then there exists a cut S in G that is crossed
by � edges. To see this, we can assume w.l.o.g. that in the optimal pricing all
singleton bundles have a price of either 2 or 4 because replacing every price of 1
or 3 by a price of 4 does not decrease the revenue. Then if S consists of exactly
those nodes whose corresponding singleton bundle has a price of 2, there are �
edges crossing the cut (S, V \ S).

An optimal directed cut of any graph G = (V, E) is crossed by at least |E|/4
edges. In order to see this, consider the undirected (multi)-graph G′ obtained
from G by removing the directions of the edges. In a maximum undirected cut
(S, V \S) of G′ at least half of the edges have one endpoint in S and one endpoint
in V \ S. This means that at least a quarter of the edges go from S to V \ S or
at least a quarter of the edges go from V \ S to S.

Assume there was an algorithm achieving a (428
429+ε)-approximation for UdBp-

Min. Let �∗ denote the maximum number of edges crossing any cut in graph G,
then 48 · (|E|− �∗)+54 · �∗ = 48 · |E|+6 · �∗ is the revenue of the optimal pricing
in the instance of UdBp-Min described above. Hence, the algorithm computes
a pricing with revenue 48 · |E|+ 6 · � with

48·|E|+6·�
48·|E|+6·�∗ ≥ c = 428

429 + ε.

From this, we derive

� ≥ c · �∗− 8 · |E| · (1− c) ≥ c · �∗− 32 · �∗ · (1− c) = �∗ · (33c− 32) ≥ �∗ · (12
13 + ε

)
.

Hence, �
�∗ ≥ 12

13
+ ε, contradicting the hardness of the Max Dicut problem. �	

4 Approximation Algorithm for Non-Uniform UdBp-Min

Definition 7. For a customer c let Vc = {v | ∃i ∈ I : vc(i) = v} denote the
range of her valuation function. We say that a UdBp-Min instance (I, C) is
α-coarse for some α > 1, if for every c ∈ C and all v, v′ ∈ Vc with v 
= v′ it holds
that either v ≥ αv′ or v′ ≥ αv.
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Algorithm 2. Approximation Algorithm for α-coarse UdBp-Min.

(1) Given an α-coarse instance (I, C), construct a uniform instance (I, C′) as
follows: For every c ∈ C and every v ∈ Vc, add a customer c(v) with value v and
set of desired items Sc(v) = Lv

c .

(2) Compute an optimal solution (B, p) on this uniform instance.

(3) Return
(
B, (1 − α−1)p

)
.

Theorem 8. Algorithm 2 achieves approximation guarantee (1/4)(1−α−1)2 on
α-coarse instances of UdBp-Min.

Theorem 8 above is an immediate consequence of the following two lemmas.

Lemma 9. Let R∗ denote the optimal revenue obtainable on α-coarse instance
(I, C) and R′ the maximum revenue obtainable on the uniform instance (I, C′)
constructed by the algorithm. It holds that R′ ≥ R∗.

Proof. We have seen in Proposition 2 that the collection of bundles B∗ sold in
the revenue-maximizing solution of instance (I, C) consists only of level sets of
the customers from C. Now assume that we offer all bundles from B∗ at the same
prices to the uniform customers constructed by the algorithm. For each customer
c ∈ C purchasing her level-v set Lv

c at price p ≤ v, we have a uniform customer
c(v) with value v for any item in Lv

c by construction, both of which experience
utility v − p from buying bundle Lv

c . On the other hand, customer c(v)’s values
for all items are no larger than those of customer c and, consequently, she values
no bundle higher than c. Since buying Lv

c at price p is the utility maximizing
choice for c, so it is for c(v) and it follows that we collect as much revenue from
c(v) in the uniform instance as we do from c in the original instance. Summing
over all c ∈ C yields the claim. �	
Lemma 10. Let (B, p) be an optimal solution to the uniform UdBp-Min in-
stance (I, C′) constructed by the algorithm resulting in revenue R′. Then solution
(B, (1−α−1)p) yields revenue at least (1/4)(1−α−1)2R′ on the original α-coarse
instance (I, C).
Proof. Let (B, p) be an optimal solution to the uniform UdBp-Min instance
(I, C′). By Proposition 3 we may w.l.o.g. assume that B is a subset of the desired
sets of customers from C′ and so it is also a subset of the level sets of the original
non-uniform customers from C. We can also assume w.l.o.g. that every customer
who buys a set buys her desired set and no subset.

Let C′+ = {c(v) ∈ C′ |Lv
c ∈ B and v/2 ≤ p(Lv

c) ≤ v} denote the set of cus-
tomers who purchase their set of desired items at a price of at least half their
value. Note, that it must be the case that customers in C′+ contribute total
revenue of at least R′/2. It is easy to argue that if this was not the case, mul-
tiplying all prices by a factor of 2 would increase overall revenue, contradicting
the optimality of (B, p).

Let us refer to the original set of non-uniform customers which have at least
one corresponding customer in C′+ as M and sort the customers in C′+ according
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to the non-uniform customer they represent and their values. For a customer
c ∈M , we define �c to be the number of corresponding customers in C′+. Formally,
let us denote

C′+ =
⋃

c∈M

⋃�c

i=1

{
c
(
vc

i

)}
,

where vc
1 > vc

2 > · · · > vc
�c

for all c ∈ M . Now let C′∗ =
⋃

c∈M{c(vc
1)} be the

thinned out version of C′+ which only contains the uniform customer with highest
value for each original customer c ∈ M . Let R′∗ be the total revenue collected
from customers in C′∗. It holds that

R′
∗ ≥

1
2

∑

c∈M

vc
1 =

1
2
(
1− α−1

) ∑

c∈M

( ∞∑

i=0

α−i

)

vc
1

=
1
2
(
1− α−1

) ∑

c∈M

∞∑

i=0

(α−ivc
1) ≥

1
2
(
1− α−1

) ∑

c∈M

�c∑

i=1

vc
i ≥

1
2
(
1− α−1

)1
2
R′,

where we use the facts that vc
i ≤ α−i+1vc

1 since instance (I, C) is α-coarse and
customer c(vc

i ) cannot contribute more than vc
i to the overall revenue of at least

R′/2 collected from customers in C′+.
Finally, let us fix a single uniform customer c(v) ∈ C ′∗ purchasing bundle Lv

c

at price p. We observe that it must be the case that all bundles B ⊂ Lv
c must

have a price of at least p, as otherwise purchasing Lv
c could not be c(v)’s utility

maximizing choice. Now consider the non-uniform customer c corresponding to
c(v) and the effect of reducing all prices by a factor of (1 − α−1). Customer c
has utility

v − (
1− α−1

)
p ≥ v − (

1− α−1
)
v = α−1v

from purchasing bundle Lv
c at price (1 − α−1)p. Her value for any bundle con-

taining items from outside Lv
c is at most α−1v by α-coarseness, so none of these

bundles can yield higher utility even at price 0. Bundles strictly contained in
Lv

c could potentially yield higher utility, but by our argument above the price of
any such bundle is at least (1 − α−1)p after decreasing prices and we conclude
that customer c contributes at least as much revenue as c(v) under the decreased
prices.

It follows that when offered bundles B at prices (1 − α−1)p, customers C
generate overall revenue of at least (1 − α−1)R′

∗ ≥ (1/4)(1 − α−1)2R′, which
completes the proof. �	
Finally, we briefly mention that the reduction described above has interesting
applications in other varaiants of unit-demand pricing, as well. By UdP-Pl we
refer to the item pricing problem as defined in Section 1.1 with an additional
price ladder constraint [1] π, i.e., a predefined relative order of item prices pπ(1) ≤
· · · ≤ pπ(n). It is known that uniform UdP-Pl can be solved in polynomial
time via a dynamic programming approach and, by our reduction, we obtain
a (1/4)(1− α−1)2-approximation for general α-coarse UdP-Pl. This stands in
sharp contrast to UdP without price ladder contraint, which does not allow for
constant approximation gurantees even on coarse instances [4].



The Power of Uncertainty: Bundle-Pricing for Unit-Demand Customers 57

5 Approximability of UdBp-Max

In this section we turn to UdBp-Max where customers are strictly optimistic
and assign to every bundle the maximum value of any item contained in it. We
will see that this model is fundamentally different from UdBp-Min as it turns
out to be equivalent to the pure item pricing problem.

Let (I, C) be an instance of UdBp-Max and let (B, p) be an optimal solution
to that instance. Then we can transform (B, p) into a solution (B′, p′) yielding the
same revenue where B′ consists of singleton sets only. For this, we just need to
replace any non-singleton bundle in B that is bought by a subset {c1, . . . , c�} ⊆ C
of customers by a set of bundles {i1}, . . . , {i�} where ij denotes the item from
B that customer cj values the most. All these new bundles are offered for price
p(B). For a customer j bundle {ij} has the same value as bundle B and for every
other customer it has at most the same value. Hence, customer j will buy {ij}
and the other customers in C \ {c1, . . . , c�} are not affected by replacing B.

This implies that UdBp-Max and the pure item pricing problem are essen-
tially the same problem. Hence, known results for the latter problem apply also
to UdBp-Max. In particular, the revenue-maximizing item pricing can be ap-
proximated within factors that are logarithmic in the number of customers or
linear in the number of distinct items [14] and, under appropriate complexity
theoretic assumptions, no essential improvement is possible [4,11].

6 Conclusions

We have introduced an extension of the unit-demand pricing problem in which
bundles may be offered. This problem is interesting because it models the sales
model of retailers like hotwire.com. We have seen that different assumptions
about the customers’ beliefs yield very different conclusions. While for the case
of pessimistic customers we presented novel algorithmic results, the case of op-
timistic customers boils down to the pure item pricing problem.

There are many interesting questions open. One question arising directly from
our results is whether there exists a constant factor approximation algorithm for
general non-uniform instances of UdBp-Min without the additional assumption
of α-coarseness. It would also be very interesting to extend our model to different
beliefs of customers. One could, e.g., study a model in which customers believe
that an item is chosen uniformly at random from the set they buy.
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Abstract. We consider dynamic speed scaling on a single processor and
study the tradeoff between throughput and energy for deadline schedul-
ing. Specifically, we assume each job is associated with a user-defined
value (or importance) and a deadline. We allow scheduling algorithms
to discard some of the jobs (i.e., not finishing them) and the objective
is to minimize the total energy usage plus the total value of jobs dis-
carded. We give new online algorithms under both the unbounded-speed
and bounded-speed models. When the maximum speed is unbounded,
we give an O(1)-competitive algorithm. This algorithm relies on a key
notion called the profitable speed, which is the maximum speed beyond
which processing a job costs more energy than the value of the job. When
the processor has a bounded maximum speed T , we show that no O(1)-
competitive algorithm exists and more precisely, the competitive ratio
grows with the penalty ratio of the input, which is defined as the ratio
between the maximum profitable speed of a job to the maximum speed
T . On the positive side, we give an algorithm with a competitive ratio
whose dependency on the penalty ratio almost matches the lower bound.

1 Introduction

Energy efficiency is a major concern not only for mobile devices, but also for large-
scale server farms like those operated by Google [13]. Recently, it has been re-
ported that the average energy cost for running a server exceeds the purchase cost
of the server [9]. To improve energy efficiency, major chip manufacturers like In-
tel and AMD now produce processors equipped with a technology called dynamic
voltage scaling. Specifically, it allows operating systems or application software
to dynamically vary the processor speed so as to manage the energy usage. Run-
ning at a low speed reduces energy usage drastically, yet we still want to maintain
some kind of quality of service (QoS). These conflicting objectives have imposed
new challenges to the research on scheduling. In this paper, the QoS concerned is
the throughput, i.e., total size or value of jobs completed by their deadlines.

The history. The theoretical study of energy-efficient online scheduling was
initiated by Yao, Demers and Shenker [15]. They considered online deadline
scheduling on a processor that can vary its speed dynamically between [0,∞).
When the processor runs at speed s, the rate of energy usage, denoted by P (s),
� Ho-Leung Chan is partially supported by HKU Seed Funding 201002159001.
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is modeled as sα, where α > 1 is a constant commonly believed to be 2 or 3
(determined by the physical properties of the hardware technology). Jobs with
different sizes and deadlines arrive online over time. Jobs are preemptive and a
preempted job can be resumed later at the point of preemption. The objective is
to minimize the total energy usage subject to completing all jobs by their dead-
lines. [15] proposed two online algorithms AVR and OA, and showed that AVR
is (2α−1αα)-competitive. After about a decade, Bansal, Kimbrel and Pruhs [7]
showed that OA is indeed better and is αα-competitive. They also gave another
algorithm BKP which is O(eα)-competitive (i.e., better than OA when α is large).
Recently, Bansal et al. [6] showed that no algorithm can have a competitive ratio
better than eα−1/α, and they also gave an algorithm qOA that is 4α/(2

√
eα)-

competitive. When α = 3, the competitive ratio of qOA can be fine tuned to 6.7.
All the above work assumes that the processor has unbounded maximum speed

and can always complete every job on time. Chan et al. [10] extended the study
of energy-efficient scheduling to a more realistic setting where a processor can
only vary its speed between 0 to some fixed maximum speed T . Since the maxi-
mum speed is bounded, it is possible that no algorithm can complete all the given
jobs. It is natural to consider the case where the optimal algorithm maximizes the
throughput (which is the total size of jobs completed by their deadlines), and min-
imizes the energy usage subject to this maximum throughput. They gave an online
algorithm that is 14-competitive on throughput and (αα + 4αα2)-competitive on
energy. Later, Bansal et al. [4] gave an improved algorithm that is 4-competitive on
throughput, while the competitive ratio on energy remains the same. This
algorithm is optimal in terms of throughput since any algorithm is at least 4-
competitive on throughput even if we ignore the energy concern [11].

Tradeoff between energy and throughput. Note that all the above stud-
ies assume throughput is the primary concern. That is, the objectives require a
scheduling algorithm to first maximize the throughput and then minimize the
energy usage subject to the maximum throughput. With the growing impor-
tance of energy saving, this assumption may not be valid and some systems may
actually prefer to trade throughput for better energy efficiency. For example,
imagine the following scenario. There is a web server whose users are divided
into different levels of importance. During the peak period, it may be desirable to
drop the requests from less important users if the extra energy used for speeding
up the processor to serve these requests costs more than the revenue generated
by these requests. Note that when the server load is low, requests from less im-
portant users could be served at a low speed. The energy usage is much smaller
and could make these jobs profitable.

Our results. To cater for the above situations, we initiate studying the trade-
off between throughput and energy. Specifically, we assume that each job is asso-
ciated with a deadline and a user-defined value, the latter is about the importance
of the job (e.g., the value can be the job size or simply any fixed constant). A
scheduling algorithm may choose to finish only a subset of the given jobs by
their deadlines and discard the rest. The objective is to minimize the total en-
ergy usage plus the total value of jobs discarded. The objective of minimizing the
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total energy usage and value discarded has the following interpretation. From
an economic point of view, a user would estimate the cost for one unit of energy
and the revenue generated for each job. By normalizing the cost for one unit
of energy to be one and assigning the normalized revenue for each job as its
value, minimizing the total energy usage plus value discarded is equivalent to
maximizing the total profit of the system.

We first study the tradeoff in the unbounded speed model. Notice that the
problem of minimizing the total energy usage plus value discarded is a generaliza-
tion of the classical problem of minimizing the total energy usage for completing
all jobs, thus inheriting any lower bound result from the latter. The argument
is as follows. Consider a set of jobs whose values are set to be sufficiently large,
then the optimal offline algorithm and any competitive online algorithm will not
discard any jobs, and the problem of minimizing energy plus value discarded
is reduced to the problem of minimizing the energy usage subject to complet-
ing all jobs. Furthermore, since the value discarded is zero in this case, any
c-competitive algorithm for the new objective gives a c-competitive algorithm
for the classical objective. Recall that for the classical objective, no online algo-
rithm has a competitive ratio better than eα−1/α [6]. This lower bound is also
valid for the new objective of minimizing energy plus value discarded.

On the positive side, when the maximum speed is unbounded, we give an
O(1)-competitive algorithm called PS. Precisely, the competitive ratio of PS
is αα + 2eα. The main idea is about a notion called profitable speed for each
job, which is the maximum speed beyond which processing the job costs more
energy than the value of the job. Roughly speaking, the algorithm works as
follows. When a job is released, PS calculates the OA schedule for all admitted
jobs together with the new job. The new job is admitted if the OA schedule
processes the new job with a speed at most c times the profitable speed, where
c is a carefully chosen constant; otherwise the new job is discarded immediately.
Though PS might look simple, the analysis is non-trivial. We first upper bound
the value discarded by PS in terms of the energy used by PS plus the energy
usage and value discarded of the optimal schedule. Then we bound the energy
usage of PS using a potential function analysis.

For the bounded speed model, we show that the new objective becomes
more difficult by giving a non-constant lower bound on the competitive ratio
of any online algorithm. In particular, we define the penalty ratio of an input
instance as the ratio of the maximum profitable speed of a job to the maxi-
mum processor speed T . We show that the competitive ratio of any algorithm
is Ω(max{eα−1/α, Γ α−2+1/α}), where Γ is the penalty ratio. The lower bound
holds even if all jobs have the value equal to the size. On the other hand, we
adapt the algorithm PS to the bounded-speed setting and show that its compet-
itive ratio is αα + 2Γ α−1(α + 1)α−1. Note that the dependency on the penalty
ratio almost mathes the lower bound.

Remark on an alternative objective. Another and perhaps a more natural
approach for studying the tradeoff between throughput and energy is to consider
the objective of maximizing the total value of jobs completed by their deadlines
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minus the total energy usage. However, we first notice that this objective, unlike
the one for minimizing the total energy usage plus value discarded, is no longer
a generalization of the classical model of minimizing total energy subject to
completing all jobs. That is, a c-competitive algorithm for this maximization
objective no longer gives a c-competitive algorithm for the classical model. More
importantly, even in the unbounded-speed setting with the restriction that job
value equals job size, this maximization objective is intractable as we can easily
construct an instance where any online algorithm has total throughput minus
energy arbitrarily close to zero or even zero, while an offline algorithm can obtain
at least a finite throughput minus energy. We consider optimizing the total
energy plus value discarded to avoid this singularity issue of getting a zero or
close to zero value in the objective function. Recently and independently, Pruhs
and Stein [14] studied the maximization objective. They consider the resource
augmentation model where the online algorithm is given a processor that can
run faster than that of the optimal with the same rate of energy usage; and they
show that an O(1)-competitive algorithm exists.

Other related work. Energy efficiency has attracted a lot attention from
the scheduling community in the past few years, see, e.g., [1] for a survey. Besides
the related work already mentioned, there is another well-studied problem with
similar flavor as ours, which is about energy-efficient flow time scheduling. In
that problem, jobs with arbitrary sizes, but with no deadlines, arrive over time.
The flow time of a job is the length of the duration from its arrival until it
is completed. The objective is to complete all jobs and to minimize the total
energy usage plus the total flow time of the jobs. The objective defined in this
paper is motivated in part by this energy-plus-flow-time objective. Albers and
Fujiwara [2] were the first to study this energy plus flow time objective. Following
a chain of works [8, 12, 5], Andrew et al. [3] have finally given a 2-competitive
algorithm for minimizing energy plus flow time.

2 Preliminaries

We first define the problem formally and review the algorithm OA [15,7].
Problem definition. We consider online scheduling of jobs on a single pro-

cessor. Each job j has a release time r(j), size p(j), deadline d(j) and a value
v(j). Let J and v(J) denote a sequence of jobs and their total values. Preemp-
tion is allowed. The processor can run at any speed in [0,∞) in the unbounded
speed model and can run at speed in [0, T ] in the bounded speed model, where
T is a fixed constant. In any case, the rate of energy usage of the processor is sα,
where s is the running speed and α > 1 is a constant. Let s(t) be the speed of
the processor at time t. Then the total energy usage is

∫ ∞
0

(s(t))αdt. Let s(j, t)
denote the speed at which a job j is being processed at time t. The algorithms in
this paper do not use time sharing; yet, if time sharing is allowed, we require that
∑

j s(j, t) ≤ s(t) for all t. A job j is completed by d(j) if
∫ d(j)

r(j)
s(j, t)dt ≥ p(j);

and j is discarded otherwise. The objective is to minimize the total energy us-
age plus the total value of jobs discarded. We denote Opt as the optimal offline
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schedule which minimizes the objective for any input J . An algorithm is said to
be γ-competitive if for any input J , the total energy usage plus the total value
discarded is at most γ times that of Opt.

Review of algorithm OA. At any time t, OA defines a sequence of times
t0, t1, . . . as follows. Let S be the jobs remaining at time t. Let t0 = t. For
i = 1, 2, . . . ,, let ti be the latest time after ti−1 such that w(ti−1,ti)

ti−ti−1
is maximized,

where w(ti−1, ti) is the total remaining size for jobs in S with deadline in (ti−1, ti].
The interval Ii = (ti−1, ti] is called the i-th critical interval, and the quantity
ρi = w(ti−1,ti)

ti−ti−1
is called the density of Ii. OA processes the jobs by EDF (earliest

deadline first) and the speed during each critical interval (ti−1, ti] is ρi. Note
that ρi is decreasing. It can been shown that OA uses the minimum energy to
complete S if no new jobs arrive. If a new job j arrives after time t, the OA
schedule will be recomputed starting from the time r(j). Below are some known
properties about OA which will be used by our algorithms.

Property 1. Consider an OA schedule and assume a job j arrives at time r(j).
Let S be the jobs remaining just before j arrives and let OA(S) be the OA
schedule just before j arrives. Let OA(S∪{j}) be the re-calculated OA schedule
just after j arrives. Then,

(i) In OA(S ∪ {j}), j is processed by a constant speed s(j). Furthermore, the
speed of OA(S ∪ {j}) during the period [r(j), d(j)] is at least s(j).

(ii) Let I be any set of disjoint intervals after time r(j). The total amount of
work scheduled in I by OA(S ∪ {j}) is at least the total amount of work
scheduled in I by OA(S), but at most the total amount of work scheduled
in I by OA(S) plus p(j).

3 Unbounded Speed Model

This section considers the unbounded speed model where the processor can run
at any speed in [0,∞). We present an algorithm PS(c), which stands for Prof-
itable Speed with parameter c, and show that it is (αα +2eα)-competitive when
setting c = α(α−2)/(α−1). First, we define the notion of profitable speed. For any
job j, let u(j) = v(j)/p(j) be the value density of j.

Definition 1. The profitable speed of Job j, denoted s̃(j), equals (u(j))1/(α−1).

Fact 1. If we complete a job j at a constant speed equal to s̃(j), then the energy
usage on processing j equals the value of j.

Proof. The energy usage is (s̃(j))α p(j)
s̃(j) = (s̃(j))α−1p(j) = u(j)p(j) = v(j). ��

Intuitively, the profitable speed s̃(j) is a “boundary speed” suggesting whether
we should complete or discard j. If the speed needed to complete j is larger than
s̃(j), the energy usage on processing j will be larger than its value and discarding
it (instead of completing it) is more beneficial. On the other hand, if the speed
needed is smaller than s̃(j), completing j is “profitable”. Roughly speaking, our
algorithm completes j only when it can be completed at speed at most c · s̃(j).
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3.1 Algorithm PS(c)

Algorithm PS(c) (c is a parameter) maintains a list Q of admitted jobs, which
is empty initially. When a job arrives, it is immediately admitted into Q or
discarded. PS(c) only processes and completes jobs in Q. Details are below.

Algorithm PS(c)
– Job execution. At any time, PS(c) uses OA to schedule the jobs in Q.

(Note that in the literature, the OA schedule is defined and analyzed
based on the entire input rather than a subset.)

– Job admission. When a job j arrives at time r(j), let S be the set of jobs
remaining in Q just before j arrives. PS(c) calculates the OA schedule
for S ∪ {j}. Let s(j) be the speed of j in this OA schedule. PS(c) admits
j into Q if s(j) ≤ c · s̃(j); and j is discarded immediately otherwise.

– Job Completion. When a job is completed, remove it from Q.

By definition, OA always completes the jobs given to it no later than their
respective deadlines. Thus, PS(c) also meets the deadline of every job in Q. The
main result of this section is about the competitiveness of PS(c) on minimizing
energy plus value discarded.

Theorem 1. ∀c>0, PS(c) is
(
(1+ bα−1

(cb−1)α )max{αα, α2cα−1}+ max{bα−1, 1}
)
-

competitive on energy plus value discarded, for any b > 1
c .

By choosing the parameter c to be α
α−2
α−1 and considering b = α+1

c
= α+1

α(α−2)/(α−1) ,
the competitive ratio becomes αα + 2α(1 + 1

α)α−1. Since (1 + 1
α )α−1 < e, we

conclude that PS(α
α−2
α−1 ) is (αα + 2eα) -competitive.

To prove Theorem 1, we analyze the energy and the value discarded separately.
Consider any input job sequence J and parameter c > 0. Let Ea and Eo be the
total energy usage of PS(c) and Opt, respectively. Similarly, let Da and Do be
the value discarded by PS(c) and Opt, respectively. We will prove the following
two lemmas concerning the value discarded and energy usage of PS(c), whose
proofs are given in the following subsections.

Lemma 1. Da ≤ bα−1

(cb−1)α Ea + bα−1Eo + Do, for any b > 1
c
.

Lemma 2. Ea ≤ max{αα, α2cα−1}(Eo + Do).

Lemmas 1 and 2 together imply Theorem 1 as follows. For Opt, the total energy
usage plus value discarded is Eo + Do. Therefore, the total energy usage plus
discard of PS(c) is

Ea + Da ≤
(
1 + bα−1

(cb−1)α

)
Ea + bα−1Eo + Do

≤
(
1 + bα−1

(cb−1)α

)
max{αα, α2cα−1}

(
Eo + Do

)
+ bα−1Eo + Do

and Theorem 1 follows.
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3.2 Value Discarded by PS(c)

This section analyzes Da and proves Lemma 1. Let JD ⊆ J be the subset
of jobs discarded by PS(c). We further divide JD into JD1 and JD2, which
include the jobs that are completed and discarded by Opt, respectively. Da =
v(JD1)+ v(JD2) ≤ v(JD1)+ Do. To prove Lemma 1, it is sufficient to show that
v(JD1) ≤ bα−1

(cb−1)α Ea + bα−1Eo.
Let j be an arbitrary job in JD1. Let I(j) be the set of maximal time intervals

during which Opt processes j. Denote |I(j)| as the total length of the intervals in
I(j). Denote Ea(I(j)) and Eo(I(j)) as the energy usage by PS(c) and Opt during
I(j), respectively. We will bound v(j) by Ea(I(j)) and Eo(I(j)). Intuitively, if
|I(j)| is small, Opt completes p(j) units of work in a short period of time and
Eo(I(j)) should be relatively large. On the other hand, if |I(j)| is large, then
Ea(I(j)) is relatively large since PS(c) discards j and PS(c) must run at relatively
high speed during I(j). Details are as follows.

Lemma 3. Let j be any job in JD1, then v(j) ≤ bα−1

(cb−1)α Ea(I(j))+bα−1Eo(I(j))
for any b > 1

c .

Proof. To ease the discussion, let us denote �̃(j) as the time to complete j if at
speed s̃(j), i.e., �̃(j) = p(j)/s̃(j). Note that p(j) = s̃(j)· �̃(j). Let bj = |I(j)|/�̃(j).

Note that Opt completes exactly p(j) units of work in I(j) and Opt runs at
the speed p(j)/|I(j)| throughout I(j). Therefore,

Eo(I(j)) =
(

p(j)
|I(j)|

)α

|I(j)| =
(

�̃(j) · s̃(j)
|I(j)|

)α−1

p(j) =
u(j)
bα−1
j

·p(j) =
v(j)
bα−1
j

(1)

where the last equality comes from the definition that u(j) = v(j)/p(j).
Since j is discarded by PS(c), consider the time r(j) when j arrives. Let S be

the set of jobs remaining in Q just before j arrives. Let OA(S) and OA(S ∪{j})
be the OA schedules starting from time r(j) for S and S ∪ {j}, respectively,
assuming no other jobs arrive. Since j is discarded, the speed of j in OA(S∪{j})
is at least c · s̃(j). Since all intervals in I(j) are completely inside [r(j), d(j)],
by Property 1 (i), the speed of OA(S ∪ {j}) throughout these intervals is at
least c · s̃(j). Hence, the total work done by OA(S ∪ {j}) during I(j) is at least
c · s̃(j) · |I(j)|. By Property 1 (ii), the work done by OA(S) in the intervals in
I(j) is at least c · s̃(j) · |I(j)| − p(j). Again by Property 1 (ii), if some more jobs
arrive after j, the amount of work scheduled to the intervals in I(j) may only
increases. Therefore,

Ea(I(j)) ≥
(

c · s̃(j) · |I(j)| − p(j)

|I(j)|

)α

|I(j)|

=

(
c · s̃(j) · bj �̃(j) − s̃(j) · �̃(j)

bj �̃(j)

)α

bj · �̃(j) =
(c · bj − 1)α

bα
j

· (s̃(j))α · bj �̃(j)

=
(cbj − 1)α

bα−1
j

u(j)s̃(j)�̃(j) =
(cbj − 1)α

bα−1
j

v(j) (2)
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Finally, for b > 1/c, there are two cases. If b > bj, by (1), v(j) = bα−1
j Eo(I(j))

< bα−1Eo(I(j)). Otherwise, b ≤ bj, then by (2), v(j) ≤ bα−1
j

(cbj−1)α Ea(I(j)) ≤
bα−1

(cb−1)α Ea(I(j)), where the last inequality comes from the fact that function

f(x) = xα−1

(cx−1)α decreases when x > 1
c
. Hence for all b > 1

c
, Lemma 3 holds. ��

Next, note that for any two jobs j and j′ in JD1, I(j) and I(j′) are disjoint.
Hence, by summing up the inequality in Lemma 3 over all jobs in JD1, we obtain
v(JD1) ≤ bα−1

(cb−1)α Ea + bα−1Eo. Hence, Lemma 1 follows immediately.

3.3 Energy Usage of PS(c)

This section analyzes Ea and proves Lemma 2. We will use a potential function,
which is similar to the one used in analyzing OA [7]. However, a major difference
in our problem is that both PS(c) and Opt may discard jobs, so the set of jobs
scheduled by the two algorithms can be different. In particular, when a job j
is admitted by PS(c) but discarded by Opt, our analysis needs to relate the
extra energy usage of PS(c) on processing j to the value of j discarded by Opt.
Intuitively, this extra energy can be bounded because PS(c) admits j only if its
speed is at most c times the profitable speed. Details are as follows.

W.L.O.G., we assume that Opt admits a job j at r(j) if Opt will complete j;
otherwise, Opt discards j immediately. Let Ea(t) and Eo(t) be the energy usage
of PS(c) and Opt, respectively, by time t. Let Do(t) be the total value of jobs
discarded by Opt by time t. Let sa(t) and so(t) be the speed of PS(c) and Opt,
respectively, at time t. We will define a potential function Φ(t) satisfying the
following conditions.

– Boundary condition: Φ(t) = 0 before any job arrival and after all deadlines.
– Running condition: At any time t without job arrival, d

dtEa(t) + d
dtΦ(t) ≤

max{αα, α2cα−1} d
dt(Eo(t) + Do(t)).

– Arrival condition: When a job j arrives at time t, let ΔΦ(t) and ΔDo(t)
denote the change of Φ(t) and Do(t), respectively, due to the arrival of j.
Then ΔΦ(t) ≤ max{αα, α2cα−1}ΔDo(t).

Similar to [7, 10], we can then prove by induction on time that

∀t, Ea(t) + Φ(t) ≤ max{αα, α2cα−1}(Eo(t) + Do(t))

which implies Lemma 2 as Φ(t) = 0 after all deadlines are passed.
Definition of the potential function. Consider any time t. For any t′′ ≥

t′ ≥ t, let wa(t′, t′′) be the total remaining size for jobs in the admitted list Q
of PS(c) with deadlines in (t′, t′′]. Recall that PS(c) processes Q by OA, which
defines a sequence of times t0, t1, t2, . . . , where t0 = t and for i = 1, 2, . . . , ti is
the latest time after ti−1 such that ρi = wa(ti−1,ti)

ti−ti−1
is maximized. We call Ii =

(ti−1, ti] as the i-th critical interval. On the other hand, consider the schedule of
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Opt, and let wo(t′, t′′) be the total remaining size for jobs admitted by Opt by
time t with deadlines in (t′, t′′]. The potential function Φ(t) is defined as

Φ(t) = α
∑

i≥1

ρα−1
i (wa(ti−1, ti)− αwo(ti−1, ti)) (3)

It is easy to see that Φ(t) satisfies the boundary condition. We prove that it sat-
isfies the arrival and running conditions as follows. Unlike the previous potential
analysis [7, 10], the arrival condition is non-trivial as PS(c) and Opt may have
different decision on admitting a new job.

Arrival condition. When a job j arrives at time t, there are four cases
depending on whether PS(c) and Opt admit j. We first consider the two easier
cases where PS(c) discards j. Since PS(c) discards j, all critical intervals Ii’s,
their densities ρi’s and wa(ti−1, ti)’s do not change. Furthermore, wo(ti−1, ti)
may only increases. Hence, ΔΦ(t) ≤ 0. On the other hand, ΔDo(t) ≥ 0 depending
on whether j is discarded by Opt, so the arrival condition holds.

The following discussion considers the case where PS(c) admits j. For simplic-
ity, we first assume that p(j) is small so that admitting j only affect the density
of the critical interval that contains d(j) while all other critical intervals are
unaffected. Let Ik be the only interval affected and let ρ and ρ′ be the density of
Ik just before and after j is admitted, respectively. Let wa(k) and wo(k) denote
the total remaining size for jobs in PS(c) and Opt, respectively, with deadlines
in Ik just before j is admitted. Let |Ik| denote tk − tk−1. Then, ρ = wa(k)

|Ik | , and

ρ′ = wa(k)+p(j)
|Ik| . We first bound ΔΦ(t).

Lemma 4. Let ΔΦ(t) be the change in Φ(t) if j is admitted by PS(c) and dis-
carded by Opt. Then ΔΦ(t) ≤ α2cα−1v(j).

Proof. Note that wo(k) remains unchanged as Opt discards j. By definition,

ΔΦ = α(ρ′)α−1(wa(k) + p(j)− αwo(k)) − αρα−1(wa(k)− αwo(k))
≤ α(ρ′)α−1(wa(k) + p(j))− αρα−1wa(k)

=
α

|Ik|α−1
((wa(k) + p(j))α − wa(k)α)

Note that for any convex function f(z) and any real numbers y > x, we have
f(y)− f(x) ≤ f ′(y)(y−x), where f ′ denotes the derivative of f . Putting f(z) =
zα where α > 1 and consider y = wa(k) + p(j) and x = wa(k), we have that

α

|Ik|α−1
((wa(k) + p(j))α − wa(k)α) ≤ α

|Ik|α−1
α(wA(k)+p(j))α−1p(j) = α2(ρ′)α−1p(j)

Since j is admitted by PS(c), we have ρ′ ≤ c · s̃(j) by definition. It follows
that ΔΦ ≤ α2cα−1(s̃(j))α−1p(j) = α2cα−1u(j)p(j) = α2cα−1v(j) ��
Therefore, if Opt discards j, ΔDo = v(j), so ΔΦ(t) ≤ max{αα, α2cα−1}ΔDo.
Finally, if Opt admit j, ΔDo = 0. The analysis on ΔΦ(t) is similar to that in [7].
Note that both wa(k) and wo(k) is increased by p(j). Hence,



68 H.-L. Chan, T.-W. Lam, and R. Li

ΔΦ(t) = α(ρ′)α−1
(
wa(k) + p(j)− α(wo(k) + p(j))

)
− αρα−1

(
wa(k)− αwo(k)

)

=
α

|Ik|α−1

[
((wa(k) + p(j))α−1

(
wa(k) + p(j)− α(wo(k) + p(j))

)

−wa(k)α−1
(
wa(k)− αwo(k)

)]

The last term is at most zero by setting q = wa(k), r = wo(k), δ = p(j) to
Lemma 5. Hence, ΔΦ(t) ≤ 0 = max{αα, α2cα−1}ΔDo.
Lemma 5. ( [7]) Let q, r, δ ≥ 0 and α ≥ 1, then (q + δ)α−1(q + δ− α(r + δ))−
qα−1(q − αr) ≤ 0.

So far, we assume that p(j) is small and only one critical interval is affected.
If p(j) is large, we follow the technique of [7, 10]. We split j into two jobs j1
and j2 so that their release times, deadlines and value densities are the same
as j, and p(j1) is the smallest size such that some critical intervals merge or a
critical interval splits. p(j2) = p(j)− p(j1). Note that Φ(t) does not change due
to merging or splitting of critical intervals. The above argument can show that
the arrival condition holds after p(j1) is admitted. Furthermore, we can repeat
the division recursively on j2 to conclude that the arrival condition holds.

Running condition. Analysis for the running condition is similar to [7].
Consider any time t without job arrival. Let sa(t) and so(t) be the speed of
PS(c) and Opt, respectively. Then Ea(t) and Eo(t) are increasing at the rates
of (sa(t))α and (so(t))α while Do(t) remains constant. Note that to prove the
running condition, it is sufficient to prove that (sa(t))α+ d

dtΦ(t)−αα(so(t))α ≤ 0.
In the following, we omit the parameter t for simplicity. E.g., we write sa to mean
sa(t). PS(c) processes jobs by OA, which processes jobs by EDF. So at time t,
PS(c) is processing a job with deadline in I1. sa = ρ1, so wa(t0, t1) is decreasing
at a rate of sa. Suppose Opt is processing a job with deadline in Ik, where k ≥ 1.
Then wo(tk−1, tk) is decreasing at a rate of so. Therefore d

dtΦ = αρα−1
1 (−sa) +

α2ρα−1
k so ≤ αρα−1

1 (−sa) + α2ρα−1
1 so = −αsα

a + α2sα−1
a so, where the inequality

comes from ρk ≤ ρ1. Finally, sα
a + d

dtΦ− ααsα
o ≤ (1− α)sα

a + α2sα−1
a so − ααsα

o .
The last expression can be shown to be non-positive by differentiation.

4 Bounded Speed Model

We first define the penalty ratio of a job sequence.
Definition 2. Consider scheduling in the bounded speed model with maximum
speed T . The penalty ratio of a job, denoted Γ (j), equals s̃(j)/T . The penalty
ratio of a sequence J of jobs, denoted Γ (J) or simply Γ if J is clear in context,
equals the maximum penalty ratio of all jobs in J, i.e., Γ = maxj∈J Γ (j).

4.1 Lower Bound

Theorem 2. For the bounded speed model, any algorithm has competitive ratio
at least min{Γα−2+1/α, 1

2Γ α−1}, where Γ is the penalty ratio of the job sequence.

Proof. Let Alg be any algorithm. The theorem is obviously true if Γ ≤ 1. In
the following, let Γ > 1 be the targeted penalty ratio. Let x > 1 be a variable
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to be set later. At time 0, release a job j1 with d(j1) = x, p(j1) = T and
v(j1) = T αΓα−1. Note that s̃(j1) = (v(j1)/p(j1))1/(α−1) = TΓ and Γ (j1) =
s̃(j1)/T = Γ . At time 1, one of the following two cases occurs.

– If Alg has completed j1 by time 1, Alg must run at speed T during [0, 1]. The
total energy usage is T α. Opt can run at speed T

x during [0, x] to finish j1,
with total energy usage (T

x
)αx. So the competitive ratio is T α

(T/x)α(x)
= xα−1

– If Alg has not completed j1 at time 1, another job j2 is released at time 1
with d(j2) = x, p(j2) = T (x − 1), and v(j2) = T αΓ α−1(x − 1). Note that
s̃(j2) = TΓ and Γ (j2) = Γ . Opt can complete both j1 and j2 by running at
speed T throughout [0, x], with total energy usage T αx. Alg cannot complete
both j1 and j2 by their deadlines. If Alg discards j1, the competitive ratio is
at least v(J1)

T αx = Γ α−1

x ; if Alg discards j2, it is at least v(j2)
Tαx = Γ α−1 − Γα−1

x .

Note that Γ (j1) = Γ (j2) = Γ , so the penalty ratio of the input sequence is Γ . The
competitive ratio is at least k = min{xα−1, Γ α−1

x , Γ α−1 − Γ α−1

x }. If Γ ≥ 2
α

α−1 ,
we set x = Γ

α−1
α , then x ≥ 2, Γ α−1 = xα ≥ 2xα−1 and k ≥ xα−1 = Γα−2+1/α.

If Γ < 2
α

α−1 , we set x = 2 and k ≥ 1
2Γ α−1. ��

Note that 1
2
Γ α−1 = Ω(Γα−2+1/α). When T is large, the eα−1/α lower bound

from the unbounded speed model holds. Hence, for bounded speed model, any
algorithm is Ω(max{eα−1/α, Γ α−2+1/α}) -competitive.

4.2 Algorithm BPS

We propose an algorithm BPS(c) (Bounded Profitable Speed with parameter c).
We show that it is O(αα + 2Γ α−1(α + 1)α−1)-competitive. BPS(c) maintains a
list Q of admitted jobs, which is empty initially and maintained as follows.

Algorithm BPS(c)
– Job execution. At any time, BPS(c) uses OA to schedule the jobs in Q.
– Job admission. When a job j arrives at r(j), let S be the set of jobs

remaining in Q just before j arrives. BPS(c) calculates the OA schedule
for S∪{j}. Let s(j) be the speed of j in this OA schedule. BPS(c) admits j
into Q if s(j) ≤ min{c·s̃(j), T}; and j is discarded immediately otherwise.

– Job completion. When a job is completed, remove it from Q.

In our analysis, c = 1 gives the best competitive ratio for BPS(c), hence, to
ease our discussion, we will fix c = 1 and call the resulting algorithm BPS. Note
that if Γ ≤ 1, then min{s̃(j), T} = s̃(j), and then BPS and PS(1) will admit the
same set of jobs and consequently have the identical schedule. By putting c = 1
and b = α + 1 into Theorem 1, PS(1) is O(αα)-competitive in the unbounded
speed model, which implies that BPS is O(αα)-competitive in the bounded speed
model for Γ ≤ 1. Hence, in the following, we assume Γ > 1.

Theorem 3. BPS is
(
(1 + Γ α−1 bα−1

(b−1)α )max{αα, α2}+ Γ α−1bα−1
)
-competitive

in the bounded speed model for any b > 1, where Γ > 1 is the penalty ratio.
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Putting b = α + 1 for α ≥ 2, and b = α2/α + 1 for 1 < α < 2, we con-
clude that BPS is

(
α2 + 2Γα−1(α2/α + 1)α−1

)
-competitive for 1 < α < 2, and(

αα + 2Γα−1(α + 1)α−1
)

-competitive for α ≥ 2. To prove Theorem 3, consider
any job sequence J ′. Let Opt′ be the optimal offline algorithm in the bounded
speed model. Let E′

a and E′
o be the energy usage of BPS and Opt′, respectively.

Let D′
a and D′

o be the value discarded by BPS and Opt′, respectively. Theorem 3
follows from the following two inequalities. The proofs are left to the full paper.

– D′
a ≤ Γ α−1

(
bα−1

(b−1)α E′
a + bα−1E′

o

)
+ D′

o, for any b > 1.
– E′

a ≤ max{αα, α2}(E′
o + D′

o).
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Abstract. In this paper we consider some basic scheduling questions motivated
by query processing that involve accessing resources (such as sensors) to gather
data. Clients issue requests for data from resources and the data may be dynamic
or changing which imposes temporal constraints on the delivery of the data. A
proxy server has to compute a probing schedule for the resources since it can
probe a limited number of resources at each time step. Due to overlapping client
requests, multiple queries can be answered by probing the resource at a certain
time. This leads to problems related to some well-studied broadcast scheduling
problems. However, the specific requirements of the applications motivate some
generalizations and variants of previously studied metrics for broadcast schedul-
ing. We consider both online and offline versions of these problems and provide
new algorithms and results.

1 Introduction

There is an explosion in the amount of data being produced, collected, disseminated
and consumed. One important source of this data is from sensors that are being widely
deployed to monitor and collect a variety of information, for example, weather and traf-
fic. Another important source of data comes from individuals and entities publishing
content on the web. Two aspects of the above type of data are the following. First, a
consumer/client is typically interested only in some small subset of the available data
that is relevant to her. Second, the data has temporal relevance and a client is also typ-
ically interested in data that is within some time interval of interest to her; for example
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traffic on a particular road during her commute window. These trends have necessitated
a significant increase in the sophistication of data delivery capabilities to keep up with
quantity of the data, and the need for client customization [27]. There is a large effort
in several areas of computer science to address these issues. Typically, software known
as middleware handles the interface between the clients and data sources. In this paper
we consider certain scheduling problems that arise in processing the queries.

Middleware primarily consists of proxy servers that collect client queries and access
data sources (such as sensors) to answer queries [11,15,5,25,12,28]. In this work we
consider a basic and central question that arises when the queries are time sensitive (they
also may be periodic) such as “Give me the reading of sensor A at 15 mins after the hour,
every hour”. The main challenge is to schedule probes to the data sources (e.g., sensors),
to obtain the data at the desired time for the clients. Due to processing limitations, the
proxy server is limited to probing only a small number of sensors at each time step (we
assume for simplicity that it probes one sensor at each time step). However, by probing
a sensor at a particular time, multiple overlapping queries requesting data from this
sensor, can be answered.

More formally, there are clients that issue queries for data from a resource at a spe-
cific time, by specifying an interval of time when the resource should be queried. A
central server collects all the queries and needs to design a schedule to probe the re-
sources to answer client queries. When a resource is probed, several client queries can
be answered. Typically, the queries are simple and so the computational requirements
are minimal; hence we focus on the design of the probing schedule. For example, by
identifying overlapping queries to the same resource we may be able to significantly
reduce the number of times we query the sensors, since we can “piggyback” all the
queries [26,27,28]. This overlapping nature of query processing, is very similar to the
manner in which broadcast scheduling problems are approached [2,20,21,17,6]. How-
ever, the sensor probing application gives rise to new and interesting variants of broad-
cast scheduling problems. In this work we focus on a collection of online and offline
problems motivated by the above application.

In the broadcast scheduling literature, three objectives have been the focus of study:
(i) minimizing average response time1 [20,1,13,14,16,6,18] (and many others), (ii) min-
imizing maximum response time [2,6,8], and (iii) maximizing throughput [21,4,10,29].
By response time of a request, we mean the time from the arrival of the request to when
it is satisfied. The first two metrics apply to settings in which all requests are to be
satisfied. The third metric is relevant in situations where requests may not be satisfied
beyond a certain time; in particular, the following model has been studied: Each request
has a release time and deadline and it can only be satisfied within its time window and
the goal is to maximize the number/weight of satisfied requests. We next explain why
these metrics are not directly suitable for our purposes.

In sensor probing, the requests are time sensitive which calls for a more nuanced view
of “satisfying” a request. For example, if a client requests the temperature reading, or
traffic conditions at 5:30pm, then we may satisfy this query by reporting the value at
5:33pm, this would have a latency of 3 minutes. Suppose we report the value at 5:40pm
with a latency of 10 minutes; the data may still be useful to the client but perhaps less

1 Response time is also commonly referred to as flow time.
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than reporting the value at 5:33pm. Finally, the data may be irrelevant if the latency is
say more than 20 minutes. This example demonstrates the two objectives of interest in a
schedule. We are interested in “completeness”, the number of client requests that can be
satisfied before their deadline. We are also interested in the “latency” of those requests
that we do satisfy. As can be seen, previous metrics do not capture the combination
of these metrics; minimizing average response time ignores deadlines and maximizing
throughput with deadlines ignores the latency of satisfied requests.

In this paper we take two approaches to finding schedules that address both com-
pleteness and latency. In the first approach, we associate an arbitrary time-dependent
profit function with each query. The profit function can take into account the impact of
the latency on the value to the client. The goal then would be to find a schedule that
maximizes the total profit of the requests. This model captures the previously studied
maximum throughput metric, but allows more control over the quality of the schedule
for queries. We consider both offline and online settings and obtain several new results.
In the second approach, we directly address the tradeoff between completeness and
latency. In addition to satisfying as many requests as possible we hope to also satisfy
them close to when the request arrived (the arrival time could be the ideal time when the
sensor should be probed). We formalize this in the following way: among all schedules
that achieve a desired level of completeness, choose the one that minimizes latency of
satisfied requests.

Finally, we consider another variant of the maximum throughput problem that is
relevant to our application domain. In some cases, it is perfectly reasonable to report
the value “before” the arrival time of the request. In the same example above, the proxy
server may have the value of a sensor measuring temperature that has been probed at
5:28pm while a request for the same sensor arrives at 5:30pm. The server can use the
reading at 5:28pm to answer the query. We model this aspect in two ways: by relaxing
the time window of interest to the client both forwards and backwards in time, and by
considering unimodal profit functions.

All the problems we consider are NP-hard in the offline setting via simple reductions
from known results on broadcast scheduling [6]. We, therefore, focus on the design
of efficient approximation algorithms. We also consider online variants and use the
standard competitive analysis framework; for some variants we analyse the algorithms
in the resource augmentation framework [19] wherein the algorithm is given extra speed
over the adversary. We give below a formal description of the problems considered in
the paper, followed by our results.

Problem Definitions: For convenience we shall use the standard broadcast scheduling
notation of referring to pages instead of referring to sensors. We are given a set of pages
P = {p1, . . . , pn}. We assume that time is slotted, T = {1, 2, . . . , T} where T is an
upper bound on the schedule length. Suppose a client sends a request for page p, which
arrives at time a and is associated with deadline d. If the server broadcasts p at some
time slot t such that a ≤ t ≤ d, we say the request is satisfied. We assume the server can
broadcast at most one page in a single time slot. We use Jp,i to denote the ith request for
page p, which has the arrival time ap,i ∈ Z

+ and the deadline dp,i ∈ Z
+. Sometimes,

we will consider a generalized request which may be associated with more than one
interval. We use Tp,i to denote the set of time slots during which Jp,i can be satisfied.
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For example, if Jp,i has only one interval, then Tp,i = {ap,i, ap,i + 1, . . . , dp,i}. In this
paper, we study the following objective functions.

1. Maximizing throughput (MAX-THP): The objective is to maximize the total num-
ber of satisfied requests. In the weighted version of MAX-THP, each request Jp,i

has a weight wp,i. In this case, the objective is to maximize the total weight of all
satisfied requests.

2. Maximizing total profit (MAX-PFT): This is a significant generalization of
MAX-THP. In a MAX-PFT instance, each request Jp,i is associated with an ar-
bitrary non-negative profit function gp,i : T → Z

+. The interpretation is that the
request Jp,i obtains a value/profit of gp,i(t) if it is satisfied by the broadcast of p at
time t. However, p may be broadcast multiple times during a schedule. In that case
the request Jp,i obtains a profit maxt∈T A

p
gp,i(t) where T A

p is the set of time slots
in which p was broadcast by a given schedule. The objective is to find a schedule
A such that the total profit is maximized.

3. Completeness-Latency tradeoff: We are given a completeness threshold C ∈ (0, 1].
The goal is to find a schedule that completes C fraction of the requests before their
deadline and subject to that constraint, minimizes the latency of the completed
requests.

Outline of Results: We obtain several results for the problems described above. We
give a high-level description of these results below.

Maximizing Throughput and Profit: Recall that MAX-PFT is a significant general-
ization of MAX-THP. There is a 3/4-approximation for the MAX-THP problem [17]
via a natural LP relaxation. We adapt the ideas in [17] to obtain a 3/4-approximation for
the special case of MAX-PFT when the profit functions for each query are unimodal
(see Section 3), which is of particular interest to our setting. Second, for the general
MAX-PFT problem we obtain a (1 − 1/e)-approximation, again via the natural LP re-
laxation. In addition, we show that the MAX-PFT problem can be cast as a special case
of submodular function maximization subject to a matroid constraint. This allows us
to not only obtain a different (1 − 1/e)-approximation but also several generalizations
and additional properties via results in [3,9]. The connection also allows us to easily
show that the greedy algorithm gives a 1/2 approximation for MAX-PFT in the online
setting, generalizing prior work that showed this for MAX-THP [21].

We also consider how the approximation ratios and competitive ratios for MAX-THP
and MAX-PFT can be improved via resource augmentation and other relaxations. We
show that there is a 2-speed 1-approximation for MAX-THP. Previously, such a re-
sult was known only if all requests could be scheduled in a fractional solution [6]. In
the online-setting we show that the simple greedy algorithm with s-speed achieves a
s/(s+1) competitive ratio for MAX-PFT. In a different direction we consider relaxing
the time window in MAX-THP and prove the following result. If there is a fractional
schedule that satisfies all the client requests (obtained by solving the LP relaxation to
the IP), then there is an integral schedule with the following property: each request Jp,i

is satisfied in a window [ap,i−L, dp,i + L] where L = dp,i− ap,i is the window length
of Jp,i. In other words, by either left shifting the window or right shifting the window
by its length, we can always satisfy the request.
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Completion-Latency Tradeoff: We show that there is an interesting tradeoff that can
be obtained between latency and completeness when each request has an associated
deadline. Given a fractional LP solution (obtained by relaxing the IP) for minimiz-
ing the total latency subject to a certain completeness level, we show that we can use
randomized rounding to obtain a schedule with the following properties: the expected
completeness of the schedule is 3

4C, where C is the completeness of the fractional
schedule and the expected latency of the scheduled requests is D(C) where D(C) is
the minimum fractional latency with completeness requirement C. The details of this
result are deferred to a full version of the paper.

We also prove another result in broadcast scheduling that is of interest. This concerns
the problem of minimizing the maximum response time. The first-in-first-out (FIFO)
algorithm is 2-competitive in the online setting [2,6,8] and this is also the best known
off-line approximation known. Moreover, it is known that in the online setting no de-
terministic algorithm is (2 − ε)-competitive for any ε > 0 [2,6]. Here, we show that
the same lower bound holds even for randomized online algorithms in the oblivious
adversary model. The details of this result are omitted due to space constraints.

2 Preliminaries

Several of our results rely on the dependent randomized rounding framework of [17].
We first describe the LP relaxation for MAX-THP that is used as the basis for the round-
ing process.

2.1 An LP Relaxation for MAX-THP

We consider a natural integer programming (IP) formulation for MAX-THP. We use
the indicator variable Y

(t)
p . Y

(t)
p = 1 if page p is broadcast in time-slot t and Y

(t)
p = 0

otherwise. In addition we define variables Xp,i for the request Jp,i. This variable is 1 if
and only if Jp,i is satisfied.

maximize
∑

p,i

wp,iXp,i (1)

subject to ∀p, t,
∑

t∈Tp,i

Y (t)
p ≥ Xp,i (If p is not broadcast in Tp,i, Jp,i cannot be satisfied)

∀t,
∑

p

Y (t)
p ≤ 1 (One page broadcast at one time-slot)

∀p, t, Xp,i ∈ {0, 1}, Y (t)
p ∈ {0, 1}

By letting the domain of Xp,i and Y
(t)
p be [0, 1], we obtain the linear programming (LP)

relaxation for the problem.

2.2 Dependent Rounding Scheme of [17]

We briefly describe the dependent randomized rounding method of [17]. Suppose we are
given a bipartite graph (A, B, E) with bipartition (A, B). We are also given a value xi,j ∈
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[0, 1] for each edge (i, j) ∈ E. The scheme in [17] provides a randomized polynomial-
time algorithm that rounds each xi,j to a random variable Xi,j ∈ {0, 1}, effectively
keeping or dropping the edge, in such a way that the following properties hold.

(P1): Marginal distribution. For every edge (i, j), Pr[Xi,j = 1] = xi,j .

(P2): Degree-preservation. Consider any vertex i ∈ A ∪ B. Define its fractional
degree di to be

∑
j:(i,j)∈E xi,j , and integral degree Di to be the random variable

∑
j:(i,j)∈E Xi,j . Then, Di ∈ {�di�, �di	}. Note in particular that if di is an integer,

then Di = di with probability 1.

(P3): Negative correlation. For any vertex i and any subset S of the neighbors of i:

∀b ∈ {0, 1}, Pr[
∧

j∈S

(Xi,j = b)] ≤
∏

j∈S

Pr[Xi,j = b]. (2)

We refer the reader to [17] for more details.

3 Throughput and Profit Maximization

This section is devoted to offline and online algorithms for MAX-THP and MAX-PFT.

3.1 Offline Algorithms

Maximizing the Total Profit. In this section, we consider the profit maximization
(MAX-PFT) problem. Recall that in a MAX-PFT instance, each request Jp,i is associ-
ated with a profit function gp,i(t) ≥ 0 that is an arbitrary non-negative function of the
time it is satisfied. If a request for page p is satisfied multiple times by a schedule A,
the profit we can get for p is the maximum one, i.e., maxt∈T A

p
gp,i(t). The objective is

to find a schedule A such that the total profit is maximized. Note that MAX-THP is just
a special case of MAX-PFT where the profit function gp,i(t) is 1 for ap,i ≤ t ≤ dp,i.

First, we show how to reduce MAX-PFT to MAX-THP with weighted requests
where each request may have multiple intervals. We use a simple slicing trick described
as follows. Consider a single request Jp,i, and let v1 < v2 < . . . < vr be the dis-
tinct nonnegative values taken on by its profit function gp,i. Let v0 = 0. We create r
new requests for the throughput maximization instance, say Jp,i,j , 1 ≤ j ≤ r, which
all require page p. Jp,i,j has weight vj − vj−1 and intervals consisting of time slots
{t | gp,i(t) ≥ vj−1}. See Figure 1. It is not hard to show the following lemma.

Lemma 1. The total (weighted) throughput of a schedule A for the constructed
MAX-THP instance equals its total profit when interpreted as a schedule for the origi-
nal MAX-PFT instance and vise versa.

gp,i(t)

Jp,i

Jp,i,1

Jp,i,2

Jp,i,3 gp,i(t)

Jp,i

Jp,i,1

Jp,i,2

Jp,i,3

Fig. 1. Illustrations of the slicing trick. The left hand side is a request with a general profit function
and the right hand side is one with a unimodal profit function.
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If each profit function is unimodal, meaning that it is non-decreasing up to a point
and non-increasing after that point, we observe that the slicing trick should create re-
quests each having only one request interval since the time slots {t | gp,i(t) > vr−1}
are consecutive (see the right hand side of Figure 1). Therefore, we can apply any ap-
proximation algorithm that works for the weighted throughput maximization problem
with one interval for each request and obtain the same approximation ratio for profit
maximization with unimodal profit functions. The best known approximation ratio for
weighted throughput maximization is 3/4 due to Gandhi et al. [17].

Theorem 1. For arbitrary non-negative unimodal profit functions, there is a 3/4-
approximation for MAX-PFT.

However, if the profit function is not unimodal, the resulting MAX-THP instance may
contain requests that have multiple request intervals. Next, we show that a simple inde-
pendent rounding scheme that gives a (1−1/e)-approximation for MAX-THP with each
request associated with one or more intervals, which implies a (1−1/e)-approximation
for MAX-PFT.

Let xp,i, y
(t)
p be the optimal fractional solution of LP (1). Consider the following sim-

ple independent rounding scheme: Consider each time slot t independently and choose
exactly one page to broadcast. Page p is chosen with probability y

(t)
p . Note that this is

feasible since
∑

p y
(t)
p ≤ 1. We can easily lower bound the probability that a request is

satisfied by the schedule produced by the independent rounding.

Lemma 2. Using independent rounding, the probability that a request Jp,i is satisfied
is at least (1− 1/e)xp,i.

The expected total number of requests captured is thus

∑

p,i

Pr[Jp,i is satisfied] ≥ (1 − 1
e
)
∑

p,i

wp,ixp,i ≥ (1− 1
e
)OPT.

We thus conclude:

Theorem 2. For any non-negative profit functions, there is a (1− 1/e)-approximation
for MAX-PFT.

MAX-PFT via Submodular set function maximization: An alternative algorithm
achieving the same ratio can also be obtained by casting MAX-PFT as a special case of
the problem of maximizing a monotone submodular set function subject to a matroid
constraint. For recent progress on constrained submodular set function maximization,
see e.g. [3] and reference therein.

First we give the definition of matroid. Let N be a finite set and I be a family of
subsets of N . The pair (N,I) is called matroid if I satisfies the following properties.
(1) I is non-empty, (2) downward closed: if A ∈ I and B ⊆ A, then B ∈ I, and (3)
independent: if A, B ∈ I and |A| < |B|, then A ∪ {x} ∈ I for some x ∈ B \A. One
special matroid is a partition matroid. In a partition matroid, N is partitioned into N1,
N2, ... ,N� with associated integers k1, k2, ..., k�, and A ∈ I if and only if ∀i |A∩Ni| ≤
ki. Next we give the definition of monotone submodular set function f : 2N → R+.
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The function f is called submodular when f(A + x) − f(A) ≤ f(B + x) − f(B)
whenever B ⊆ A and x ∈ N . By monotonicity, we mean that if B ⊆ A then f(B) ≤
f(A), and f(∅) = 0. The problem of maximizing the submodular function f under the
matroid constraint (N, I) can be formulated as finding A = argmaxA′∈I f(A′).

We interpret MAX-PFT as a special case of the above general problem in the follow-
ing way. Let N = P ×T , where P is the set of pages and T is the set of time slots. Let
Nt = P ×{t}. Let A ∈ I iff ∀t |A∩Nt| ≤ 1. Notice that (N, I) is a partition matroid.
The function f is defined as follows: f =

∑
p,i maxt:(p,t)∈A gp,i(t). It is not hard to see

that f is a monotone submodular set function. It is known that maximizing a monotone
submodular function can be approximated with factor 1− 1

e
under a matroid constraint

[3]. Therefore, we can obtain a 1− 1
e -approximation for MAX-PFT.

The advantage of the alternative algorithm above is the following. Once the connec-
tion to submodular functions and matroid constraints is seen, one can readily obtain
similar results for more general settings. For example, it is possible that a client request
can be satisfied by sending any one of several similar pages. In this case, as long as,
one is able to define an appropriate submodular profit function, one again obtains a
(1− 1/e)-approximation. Moreover, one can also impose additional constraints as long
as they satisfy a matroid constraint; multiple matroid constraints can also be handled
with some additional loss in the approximation. Finally, one can also obtain concentra-
tion bounds in some cases [9] and these can be useful in handling additional constraints.
We defer a detailed description of these extensions to a later version of the paper.

A 2-Speed 1-Approximation for Throughput Maximization. In this section, our
goal is to show a randomized 2-speed 1-approximation for throughput maximization.
Here the objective is to satisfy as many requests as possible by their deadlines. Recall
that in [6] gave an algorithm to convert a fractional solution that satisfies all requests to
a 2-speed integer solution with the same property. To obtain a true 1-approximation, we
need to also handle the case where the fractional solution does not satisfy all requests.
Our analysis relies on the result of [6]. For completeness, we begin by showing that if
there is a feasible fractional solution to LP (1) that satisfies all requests, there is a 2-
speed integral scheduling that can also satisfy all requests. Then we show how to extend
this to obtain the 2-speed 1-approximation by using dependent rounding.

Let xp,i, y
(t)
p be a fractional solution to the LP where all requests are satisfied by their

deadlines. We first construct a bipartite graph G = (U, V, E) as follows. One partite set

U contains a vertex ut representing each time slot t. Let z
(t)
p =

∑t
t′=1 y

(t)
p be the

cumulative amount of page p transmitted through time t in the fractional solution. Let
Ip,t = [z(t−1)

p , z
(t)
p ), which represents the fractional occurrences of page p transmitted

during time slot t.
The other partite set V contains, for each page p and for i = 1 to �2z

(T )
p 	, a vertex

vp,i representing the ith fractional transmission of half of page p. Let I(vp,i) = [(i −
1)/2, i/2) and let Wp,i be the window of consecutive time slots t such that Ip,t overlaps
I(vp,i). For each t ∈Wp,i, we add an edge (ut, vp,i). See Figure 2 for an illustration of
the construction.

Now we augment the bipartite graph to get a network flow instance. We add a source
s, edges (s, ut) with capacity 1 for ∀t, a sink t and edges (vp,i, t) with capacity 1/2 for
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∀p, i. First we can observe that there is s-t flow f with flow value
∑

p z
(T )
p . In fact, just

by letting f(ut, vp,i) be the measure (i.e., length) of Ip,t∩I(vp,i) and setting f(s, ut)∀t
and f(vp,i, t)∀i accordingly, f is such a flow. For each page p, we delete the last vertex
v

p,�2z
(T )
p � if f(v

p,�2z
(T )
p �, t) < 1/2. After this, we can see that f saturates all edges

(vp,i, t)∀p, i.
Next, we double the capacities of all edges and find a maximum s-t integral flow

f ′. This is possible since all capacities are now integral. The obtained integral flow can
be interpreted as a 2-speed schedule: If there is a unit of flow going from ut to vp,i,
the server will broadcast p at time t. Since the capacity of (s, ut) is 2, at most 2 pages
are broadcast in one time slot. Note that all edges (vp,i, t) are saturated. This in turn
means that for each window Wp,i, the server broadcasts p at least once in some time

slot t ∈ Wp,i. For each request Jp,i, we know that
∑

t∈Tp,i
y
(t)
p ≥ 1. Therefore, some

window Wp,j is fully contained in Tp,i = {ap,i, . . . , dp,i} due to the construction of the
windows. Hence, all requests are satisfied by the 2-speed schedule.

Now, we generalize the above idea to get a true 2-speed 1-approximation, that is a
schedule such that the server broadcasts at most 2 pages in one time slot and satisfies
at least the number of requests that can be satisfied by the optimum 1-speed schedule.
The idea is very simple, instead of scaling the capacities, we just take the bipartite
graph G and the flow f , and do dependent rounding on G with values 2 × f . We
notice that all f values defined on the edges of G are at most 1/2. Therefore, 2 × f
are valid probabilities. Consider a request Jp,i which is not completely satisfied, i.e.,
∑

t∈Tp,i
y
(t)
p < 1. In this case, xp,i =

∑
t∈Tp,i

y
(t)
p . It is easy to see that Tp,i is fully

contained in two windows Wp,j , Wp,j+1 for some j. Let y =
∑

t∈Tp,i
f(ut, vp,j). By

(P2) of the dependent rounding scheme, we know at most 1 edge incident on a window
can be chosen. Therefore, for fixed p, j, the events that (ut, vp,j) is chosen are disjoint.
Then, by (P1),

Pr[(ut, vp,j) is chosen for some t ∈ Tp,i] = 2
∑

t∈Tp,i
y
(t)
p = 2y.

Similarly, we can show that Pr((ut, vp,j+1) is chosen for some t ∈ Tp,i) = 2(x − y).
Therefore, Pr(Jp,i is satisfied) ≥ max(2y, 2(xp,i − y)) ≥ xp,i. If Jp,i is com-
pletely satisfied, we can use the previous argument, that is Tp,i fully contains some
window Wp,j and some edge incident to vp,i must be chosen. Again, we have
Pr(Jp,i is satisfied) = 1 = xp,i. Since we have shown that each request is satisfied
with a probability no smaller than the probability that the request is satisfied in the
fractional optimal solution, we obtain the following theorem.

Theorem 3. There is a polynomial time 2-speed 1-approximation for MAX-THP.

Throughput Maximization with a Relaxed Time Window. In this section, we as-
sume that each request is fractionally fully satisfied by the optimal solution of LP(1),
i.e., xp,i = 1 ∀p, i. Suppose a request Jp,i arrives at time ap,i with deadline dp,i (associ-
ated with the window [ap,i, dp,i]), then we construct an integral schedule such that this
request is satisfied within the window [ap,i− lp,i, dp,i + lp,i] where lp,i = dp,i−ap,i +1
is the length of the window Tp,i. By left shifting the window or right shifting the win-
dow by its length, we can satisfy the request. A shifting, or expanding of the window is
necessary and we refer to this as a relaxed schedule since it satisfies all the requests in
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y
(t)
p

.3 .5 .4 .55 .1 .1 .25 .2

Wp,i

.3 .2 .3 .2 .2 .3 .25 .1 .1 .2 .2.05f

[0, .5) [.5, 1) [1, 1.5) [1.5, 2) [2.5, 3)

u1 u2 u3 u4 u5 u6 u7 u8

vp,1 vp,2 vp,3 vp,4 vp,5

[1.2, 1.75)

[1.5, 1.75)

Time slots:

Windows:

Fig. 2. The construction of the bipartite graph G(U, V, E). E.g. Ip,4 = [1.2, 1.75), I(vp,4) =
[1.5, 2) and I((u4, vp,4)) = Ip,4 ∩ I(vp,4) = [1.5, 1.75].

a relaxed manner, and the client request is satisfied at a time approximately close to the
desired window of time. For a given instance, we consider a fractional solution which,
by assumption, satisfies all requests before their deadlines.

Starting from the instance I that has a fractional solution in which every request is
satisfied, we will create an instance I which is a subset of the requests such that finding
an integral solution for I will also immediately lend a relaxed integral solution to the
instance I . We focus on a single page p. Order all the client requests for page p in order
of non-decreasing window length. Initially I is the empty set of requests. We try to
insert each request (in non-decreasing window length order) into set I, and as long as
it does not overlap with a request already inserted into I, we insert it. This will give
us a collection of non-overlapping requests for page p. We do this filtering for every
possible page. This gives us a fractional solution in which all requests for the same
page are non-overlapping and completely satisfied. Using flow based methods2 it is
easy to convert this to an integral solution that satisfies all the requests. Client requests
in I are clearly satisfied (integrally) within their intervals. Each client request Jp,i that
was not chosen in I overlapped with a chosen request with a smaller window size. Thus
it is also satisfied in the integral solution within time [ap,i− lp,i, dp,i + lp,i],i.e., satisfied
within the relaxed deadlines. We thus conclude:

Theorem 4. Suppose there is a fractional schedule that satisfies all requests. We can
convert the fractional solution to an integral one in polynomial time such that each
request Jp,i can be satisfied in the relaxed window [ap,i − lp,i, dp,i + lp,i] where lp,i =
dp,i − ap,i + 1 is the length of the window Tp,i.

3.2 Online Algorithms

In this section we revisit the problem MAX-PFT, but now in the online setting, in which
a request is not known to the server until it arrives. As previously discussed in Section 3,
maximizing the total profit can be interpreted as maximizing a monotone submodular
function subject on a matroid. It is known that a simple greedy algorithm gives
2-approximation for such a problem [24]. Further, the greedy algorithm can be inter-
preted as an online algorithm in this setting. Thus we can easily obtain a 2-competitive
algorithm for MAX-PFT. For the more restricted setting MAX-THP, [21] gave a

2 This involves the same technique as used for converting a fractional matching in a bipartite
graph to an integral matching [16].
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2-approximation. Here we show that the greedy algorithm’s performance improves in
the resource augmentation model when the algorithm is given a speed larger than 1.
There is no natural way to interpret resource augmentation in the general framework
of submodular set function maximization subject to a matroid constraint. We therefore
resort to a direct analysis.

We will be considering a resource augmentation analysis [19]. In this analysis, the
online algorithm is given s-speed and compared to a 1 speed optimal solution. For some
objective function, we say that an algorithm is s-speed c-competitive if the algorithm’s
objective is within a c factor of the optimal solution’s objective. We describe our greedy
algorithm Maximum Additional Profits First (for short, MAPF) which is given an inte-
ger speed s ≥ 1. As implied in its name, the algorithm MAPF broadcasts s pages which
give the maximum additional profits by broadcasting.

Algorithm. MAPF
– At any time t, broadcast s pages which give the maximum additional profits.

For this algorithm we show the following theorems. Proofs are deferred to a full version
of this paper.

Theorem 5. MAPF is s-speed (1 + 1/s)-competitive online algorithm for MAX-PFT
and MAPF is s-speed (1 + 1/s)-competitive algorithm for MAX-THP.

Theorem 6. For any ε > 0 and speed s ≥ 1, MAPF is not s-speed (1 + 1/s − ε)-
competitive for MAX-THP.

For s = 1, for any ε > 0, there is a lower bound of (2 − ε) on the competitive ratio of
any online algorithm, even if it is randomized [21].
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Abstract. We study approximation solutions for the densest k-subgraph
problem (DS-k) on several classes of intersection graphs. We adopt the
concept of σ-quasi elimination orders, introduced by Akcoglu et al. [1],
generalizing the perfect elimination orders for chordal graphs, and de-
velop a simple O(σ)-approximation technique for graphs admitting such
a vertex order. This concept allows us to derive constant factor approx-
imation algorithms for DS-k on many intersection graph classes, such
as chordal graphs, circular-arc graphs, claw-free graphs, line graphs of
�-hypergraphs, disk graphs, and the intersection graphs of fat geometric
objects. We also present a PTAS for DS-k on unit disk graphs using the
shifting technique.

1 Introduction

The (connected) densest k-subgraph problem (DS-k) is defined as follows: Given
an undirected graph G = (V, E) with n nodes and m edges and a positive integer
k, find an induced (connected) subgraph with k vertices in G maximizing the
number of edges. Reduction from the maximum clique problem shows that this
problem is NP-hard. The weighted version of DS-k in which each edge has a
positive weight and the goal is to maximize the sum of edge weights in the
induced subgraph is called the heaviest k-subgraph problem (HS-k).

Considerable work has been done on finding good quality approximation algo-
rithms for DS-k. The first non-trivial approximation algorithm by Kortsarz and
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(PTAS) for dense graphs with k = Ω(|V |) and |E| = Ω(|V |2). Asahiro et al. [4]
showed that the greedy method achieves an approximation ratio of O(n

k ).
Feige et al. proposed an n

k -approximation algorithm based on semidefinite
programming [15] and an nδ-approximation algorithm for some δ < 1

3
[14]. Re-

cently, Bhaskara et al. [7] proposed an O(n1/4+ε) approximation algorithm that
runs in time nO(1/ε). In [11], Demaine et al. gave a 2-approximation algorithm
for H-minor-free graphs, for any fixed H. It is unlikely that there exists a PTAS
for general graphs [21].

For some special graph classes and special values of k, better algorithms are
known [19,32,34]. Maffioli proposed an O(nk2) time algorithm for connected HS-
k on trees [28]. This algorithm can easily be generalized to solve the unconnected
case. Corneil and Pearl gave a polynomial time algorithm for DS-k on co-graphs,
a subclass of perfect graphs [10].

Keil and Brecht developed polynomial time algorithms for HS-k on graphs
with bounded treewidth based on dynamic programming [20]. Liazi et al. [25]
presented a polynomial time algorithm for DS-k/HS-k on chains (i.e., graphs
with maximum degree 2), and a subclass of proper interval graphs. They also
obtained a PTAS for chordal graphs if the maximal clique intersection graph is
a star, and polynomial time algorithms if the maximal clique intersection graph
is a tree of bounded degree [26]. Recently, they showed that a simple greedy
algorithm achieves an approximation factor of 3 for DS-k on chordal graphs [27].

Finding dense subgraphs with upper or lower bounds on the size of the sub-
graphs has also been studied by several researchers [2,22].

Our Results. In this paper, we focus on DS-k on several intersection graph
classes: chordal graphs, circular-arc graphs, line graphs, disk graphs, and unit
disk graphs. The closely related maximum clique problem is polynomial time
solvable on these graph classes, except on disk graphs. Note that interval graphs
are chordal graphs, and chordal graphs are perfect graphs. Although the max-
imum clique problem is polynomial time solvable on perfect graphs [18], DS-k
is NP-hard on perfect graphs, since it is NP-hard on bipartite graphs [30] and
chordal graphs [10]. Connected DS-k is NP-hard on planar graphs [20]. The
complexity status of unconnected DS-k on planar graphs, interval graphs, and
proper interval graphs has been a long-standing open problem [10].

Since the complexity status of these problems is unknown, it is worthwhile
to consider efficient approximation algorithms for them. We adopt the notion of
σ-quasi elimination orders, for σ ≥ 1, proposed by Akcoglu et al. [1], generalizing
the perfect elimination orders for chordal graphs. It turns out that many intersec-
tion graph classes mentioned above have O(1)-quasi elimination orders [35]. This
type of vertex order allows us to derive new approximation algorithms for DS-k.
Our main result is an O(σ)-approximation algorithm for DS-k if the graph has
a polynomial time computable σ-quasi elimination order. This immediately im-
plies constant factor approximation ratios for many intersection graph classes.
These classes include chordal graphs (with σ = 1), circular-arc graphs (with
σ = 2), claw-free graphs (with σ = 2), line graphs of �-hypergraphs (with σ = �),
disk graphs (with σ = 5), unit disk graphs (with σ = 3), and the intersection
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graphs of λ-fat objects in d-dimensional space (with σ = (3λ)d). We also pro-
pose a PTAS for DS-k on unit disk graphs based on the shifting technique [6]
combined with a result by Arora et al. [3], if a disk representation is given. This
improves the recent 1.5-approximation for DS-k on proper interval graphs [5].
Note that the class of proper interval graphs is equivalent to the class of unit
interval graphs [31] which is a subset of the class of unit disk graphs.

2 Preliminaries

For a graph G = (V, E), we denote its vertex set by V (G) = V and its edge set
by E(G) = E. Let n = |V | and m = |E|. We denote the degree of a vertex v in
G by degG(v). For any v ∈ V and subsets S, W ⊆ V , let d(v, W ) be the number
of edges (v, w) with w ∈ W , and d(S, W ) =

∑
u∈S d(u, W ). Let G[S] denote the

subgraph of G induced by S ⊂ V . Let α(G) be the independence number of G,
i.e., the size of a maximum independent set in G. The classic Turán bound states
that

α(G) ≥
∑

v∈V

1
deg(v) + 1

≥ n

d̄ + 1

where d̄ is the average degree of the nodes in the graph [33]. For convenience,
we rephrase the bound in the following lemma.

Lemma 1. For any graph G, m ≥ n2 − nα(G)
2α(G)

. ��

3 Elimination Orders and Intersection Graphs

If L = (v1, v2, . . . , vn) is an ordering of the vertices in V , we define PredL(vi) =
{vi} ∪ {vj | j < i and (vj , vi) ∈ E}, the predecessors of vi, and SuccL(vi) =
{vj | j > i and (vi, vj) ∈ E}, the successors of vi. In a perfect elimination order,
every set PredL(vi) forms a clique (note that sometimes in the literature it is
required that every set SuccL(vi) forms a clique, instead, which just reverses
the order). We can generalize this definition by allowing some slack. Let σ be a
positive integer.

Definition 2. A σ-quasi elimination order (σ-QEO) of G is an ordering L =
(v1, v2, . . . , vn) of the vertices in V such that α(G[PredL(vi)]) ≤ σ for i =
2, . . . , n.

A perfect elimination order is just a 1-QEO. This notion was introduced by
Akcoglu et al. [1] who proposed a σ-approximation for the weighted maximum
independent set problem. Recently, Ye and Borodin explored many properties of
QEOs and initiated a more comprehensive study on their algorithmic aspects [35].
In particular, they considered the maximum σ-colorable subgraphs problem, the
minimum vertex covering problem and the minimum vertex coloring problem
and obtained improved approximation algorithms on graphs with O(1)-QEO.
Lemma 1 implies that G[PredL(vi)] has at least 1

2σ
·(|PredL(vi)|

2

)
edges, for every
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vi in L, if |PredL(vi)| ≥ 2σ − 1. Note that any induced subgraph of G has a
σ-QEO if G has one. In this paper, we study the following graph classes.

Chordal graphs. G is a chordal graph if it does not contain an induced cycle of
length k, for any k ≥ 4. Chordal graphs are exactly the intersection graphs of
subtrees in a tree. A graph is chordal if and only if it has a perfect elimination
order [17].

Circular-arc graphs. A circular-arc graph is the intersection graph of arcs of
a circle. Circular-arc graphs are not always chordal, for example any chordless
cycle of length greater than four is a circular-arc graph. It is easy to see that
any circular-arc graph has a 2-QEO.

Line graphs. A graph L is the line graph of the (hyper-)graph G if L is the
intersection graph of the (hyper-)edges of G.

Claw-free graphs. A graph G is claw-free if it excludes K1,3 as an induced sub-
graph. Claw-free graphs generalize line graphs, which initially motivated the
study of claw-free graphs. They have many nice properties, for example, claw-
free graphs always have a perfect matching and we can find a maximum indepen-
dent set in polynomial time. However, it is NP-hard to compute a largest clique
in a claw-free graph. For a survey on more results on claw-free graph, see [24],
for example. Conveniently, any ordering of the vertices of a claw-free graph is a
2-QEO.

(Unit) Disk graphs. G is a (unit) disk graph if it is the intersection graph of a set
of closed (unit) disks in the plane. The disk representation specifies the centers
and radii of the disks. If the disks are not given, the recognition problem of (unit)
disk graphs is NP-hard [9]. Disk graphs are a two-dimensional generalization of
interval graphs. However, in general, they are neither planar nor perfect. Some
NP-hard problems become tractable on unit disk graphs (e.g., the maximum
clique problem [8]), and some problems admit significantly better approximation
algorithms (e.g., there is a PTAS for the maximum independent set problem on
unit disk graphs [29] and on arbitrary disk graphs [13]). Ye and Borodin showed
that any (unit) disk graph has a (3-QEO) 5-QEO [35].

Fat intersection graphs. Practical instances of geometric problems often deal
with objects of “reasonable” shape. One way to formalize this is the notion of
fat objects. There are several different definitions of fat objects in computational
geometry literature (e.g., see [12]). In this paper, we say a d-dimensional convex
object K is λ-fat, for some parameter λ ≥ 1 (the fatness), if the ratio between
the radii of B+

K and B−
K is at most λ, where B+

K is a smallest sphere containing
K and B−

K is a largest sphere contained in K . Examples of objects of bounded
fatness are spheres (fatness 1), cubes (fatness

√
d), and ellipsoids with bounded

aspect ratio.
A fat intersection graph is the intersection graph of a set of fat objects. For

example, disk graphs are fat intersection graphs.
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Lemma 3. Every fat intersection graph of λ-fat convex objects in d-dimensional
space has an O((3λ)d)-QEO.

Proof. We sort the vertices of the graph in non-increasing order of the largest
disk contained in each corresponding fat object. Then, for each vertex vi,
α(G[PredL(vi)]) = O((3λ)d). Since similar ideas have been used before in the
literature on algorithms for fat objects (e.g., see [12]), we omit the details of the
proof. ��

4 Approximating DS-k on Graphs with σ-QEO

In this section, we present a constant factor approximation technique for DS-k on
chordal graphs and fat intersection graphs. We focus on presenting the general
framework and do not emphasize on fine-tuning the parameters for the smallest
possible approximation factor. We use the maximum density subgraph problem,
which is polynomial time solvable, as a key subroutine.

4.1 The Maximum Density Subgraph Problem (MDSP)

The maximum density subgraph problem (MDSP) is defined as follows: Given a
graph G = (V, E, w) with non-negative vertex weights w : V → R

+ ∪ {0}, find
an induced subgraph H = (W, F ) maximizing the density

ρ(H) =
∑

v∈W w(v) + |F |
|W | .

This problem can be solved optimally in O(nm log(n2

m
)) time by a reduction

to the parametric maximum flow algorithm [16] which produces an induced
subgraph H = (W, F ) maximizing

∑
e∈F w(e)

∑
v∈W w(v)

, where w is a weight function
on the vertices and edges (we set the weights of all original vertices and edges
to 1; then we create a sibling with weight zero for each vertex in V , connected
to the original vertex by an edge of weight w(v)).

Note that w(v) + degH(v) ≥ ρ, for each vertex v ∈W , for any optimal MDSP
solution H = (W, F ) with maximum density ρ. This is because we could delete
from H all vertices violating this inequality to obtain an induced subgraph of
higher density.

4.2 A Constant Factor Approximation Framework

In this subsection, we show how to compute an O(σ)-approximation for DS-k on
any graph G = (V, E) for which we can efficiently compute a σ-quasi elimination
order.

At a high level, our framework works as follows. If we solve MDSP on G with
w(v) = 0 for all v ∈ V and obtain a subgraph H of k′ vertices, then H is also
an optimal DS-k′ solution. If H is smaller than the sought DS-k solution (i.e.,
k′ < k), then we repeat the MDSP algorithm on the remaining vertices of G and
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combine the solution with H (Phase 1). If H is larger (i.e., k′ > k), then we
select some vertices in H to satisfy the cardinality constraint without losing too
much density (Phase 2).

Let G� = (V �, E�) be an optimal DS-k solution on G = (V, E) with density
ρ� = |E�|

|V �| . Without loss of generality assume ρ� ≥ 8σ; otherwise, we can trivially
get an O(σ)-approximation.

Phase 1: Growing Ut. Let V0 = V , E0 = E, and w0(v) = 0 for all v ∈ V0.
Starting with i = 0, let Gi+1 be obtained from Gi by removing the vertices and
adjacent edges of an optimal MDSP solution Hi = (Wi, Fi) of Gi = (Vi, Ei, wi)
of density ρi, where wi(v) = d(v, Ui−1) for v ∈ Vi. Let Ui = ∪i

j=0Wj be the set
of all removed nodes, and ni = |Ui|. We stop at the first time t such that nt ≥ k

2
.

If nt ≤ k, then we return Ut plus some arbitrary k − nt nodes from Vt+1 as our
DS-k approximation.

Lemma 4. If nt ≤ k, then Ut is a 4-approximation for DS-k on G.

Proof. If G[Ut ∩ V �] has at least |E�|
2 edges, then Ut is a 2-approximation for

DS-k on G. If not, then let Ii = Ui ∩ V � and Ri = V � \ Ii, for all i. Since
|E(It)| = |E(Ut ∩ V �)| < |E�|

2
, we have for i ≤ t

ρi =
|Fi|+ d(Ui−1, Wi)

|Wi| ≥ |E(Ri−1)| + d(Ui−1, Ri−1)
|Ri−1|

≥ |E(Ri−1)|+ d(Ii−1, Ri−1)
|Ri−1| ≥ |E(Ri−1)| + d(Ii−1, Ri−1)

k

=
|E�| − |E(Ii−1)|

k
≥ |E

�| − |E(It)|
k

≥ |E
�|

2k
=

ρ�

2
.

Hence,

|E(Ut)| ≥
∑

i≤t

(ρi · |Ui|) ≥ min
i≤t
{ρi} ·

∑

i≤t

|Ui| ≥ min
i≤t
{ρi} · k/2 ≥ |E

�|
4

. ��

Phase 2: Shrinking Ut. If nt > k, then we must delete some vertices from Ut

without decreasing the density too much. We first compute a σ-quasi elimination
order L = {v1, . . . , vnt} for Ut. If some vertex in L has a large predecessor set in
this order, then we are done, as shown by Lemma 5.

Lemma 5. If there is a vertex v ∈ Ut with |PredL(v)| ≥ k
2 , then we can effi-

ciently find a subgraph of k
2 vertices in PredL(v) that is an O(σ)-approximation

for DS-k on G.

Proof. Let A = PredL(v). Since |A| ≥ k
2 ≥ ρ� ≥ 2σ − 1, the σ-quasi elimina-

tion order property implies that G[A] has at least 1
2σ
·(|A|

2

)
edges by Lemma 1. We
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randomly and uniformly choose a subset B of the k
2 vertices in A. Then, G[B]

has an expected number of Θ( 1
σ ) · Θ(k2) edges:

∑

e∈E(A)

k

2|A| ·
k

2|A| ≥
k2

16σ
· (1− 1

|A|) ≥
1
σ
· (k2

16
− k

8
) .

It is straightforward to derandomize this algorithm using the conditional prob-
ability technique. We omit the details. ��
If no vertex v in L has a predecessor set of size at least k

2
, then we must work a

bit harder to find a dense subgraph.

Lemma 6. If there is no vertex v ∈ Ut with |PredL(v)| ≥ k
2 , then we can

efficiently find a subset of Ut of size at most k that is an O(σ)-approximation
for DS-k on G.

Proof. From the remark at the end of Subsection 4.1, we see that for any vertex
v ∈ Ut, either (1) |SuccL(v)| > ρt

2 , or (2) |PredL(v)| ≥ ρt

2 . We now process the
vertices of Ut in the reverse order of L, i.e., beginning at vnt . If a vertex satisfies
condition (1) above, then we take it. If it satisfies condition (2), then we take
it together with a certain subgraph of high-degree vertices of its predecessor set
(see Lemma 7 below).

We stop if we have collected at least k
2 vertices. In every step, we either add

a single vertex v or a subset of its predecessors to the solution. Since no vertex
has a predecessor set of size at least k

2 , we select at most k vertices in total, i.e.,
we obtain a feasible solution SOL for DS-k.

In G[SOL], each vertex v has a degree either at least ρt

2
if it was selected by

condition (1), or |PredL(v)|−1
4σ

≥ ρt−2
8σ

if it was selected by condition (2). Thus,

|SOL| = 1
2

∑

v∈SOL

deg(v) ≥ ρt − 2
8σ

· k ≥ ρ� − 4
8σ

· k = O(
1
σ

) · |E�| .

��
Lemma 7. If |PredL(v)| ≥ ρt

2 for some vertex v, then we can efficiently identify
a non-empty subset H of PredL(v) such that every vertex in G[H] has a degree
at least |PredL(v)|−1

4σ
.

Proof. We repeatedly delete a vertex of degree less than |PredL(v)|−1
4σ

. Since
|PredL(v)| ≥ ρt

2
≥ ρ�

4
≥ 2σ, G[PredL(v)] contains at least 1

2σ
· (|PredL(v)|

2

)

edges, and thus we cannot delete all vertices (and their edges) of PredL(v). ��
Theorem 8. If G has a polynomial time computable σ-QEO, then we can effi-
ciently compute an O(σ)-approximation for DS-k on G. ��
It is known that a σ-QEO can be constructed in O(σ2nσ+2) time if there is
one [35]. In particular, we can find an O(1)-QEO in polynomial time. Combined
with Theorem 8, we obtain the claimed results on intersection graphs.
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Corollary 9. There is an O(1)-approximation algorithm for DS-k on the fol-
lowing intersection graph classes, even if the intersection models are not given
as input: chordal graphs, circular-arc graphs, claw-free graphs, line graphs of �-
hypergraphs (with � = O(1)), disk graphs (with σ = 5), unit disk graphs (with
σ = 3), and the intersection graphs of λ-fat objects in d-dimensional space (with
λ = O(1) and d = O(1)). ��

5 A PTAS for DS-k on Unit Disk Graphs

A PTAS for DS-k on unit disk graphs can be obtained by a standard shifting
technique [6], combined with a result by Arora et al. [3]. This technique was
also used to develop a PTAS for the maximum independent set problem on unit
disk graphs [29]. We give a brief sketch of our algorithm. The following lemma
indicates how to combine the optimal solutions for HS on independent subgraphs
into a global optimal solution.

Lemma 10. Let G be a graph with connected components G1, . . . , Gp. If we can
efficiently solve HS-� on all Gi, for any �, then we can efficiently solve HS-� on
G, for any �.

Proof. Let OPT (G, �) denote an optimal solution of HS-� on G. Then, OPT
(∪j

i=1Gi, �) can be computed by the following dynamic program, for any j and
�:

OPT (∪j
i=1Gi, �) = max

x
{OPT (∪j−1

i=1 Gi, x) + OPT (Gj , �− x)} .

��
We may assume that the given disks have diameter one and the disk centers
do not have integral coordinates. Let h be a constant to be fixed later. For all
0 ≤ i, j ≤ k − 1, we define Di,j to be the set of disks obtained by removing all
disks intersecting a vertical line x = i + ha for some integer a or a horizontal
line y = j + hb for some integer b.

Let OPT (G, k) be an optimal DS-k solution for G. We can show that
∑h−1

i=0

∑h−1
j=0 |OPT (G, k) ∩Di,j | ≥ (h− 2)2 · |OPT (G, k)|. Therefore, there exist

i, j such that |OPT (Di,j , k)| ≥ |OPT (G, k)∩Di,j | ≥ (1− 2
h )2 · |OPT (G, k)|. By

choosing h = 2/ε, we see that maxi,j |OPT (Di,j , k)| is a (1− ε)-approximation.
Now, we have reduced DS-k on G to computing OPT (Di,j , k). In the following,
we will give a PTAS for computing OPT (Di,j , k). This gives us a PTAS for DS-k
on G.
Di,j may consist of several connected components, each of which is contained

in an h× h square. Let C be one of the components with nc vertices. An h× h
square can be covered by (h + 1)2 + h2 = 2h2 + 2h + 1 unit disks. Thus, C
can be covered by no more than 2h2 + 2h + 1 disjoint cliques, since a set of
disks whose centers lie in a common unit circle induces a clique. Therefore, one
of these cliques contains no less than nc

2h2+2h+1
vertices. If k ≤ nc

2h2+2h+1
, then

OPT (C, k) is a clique. If k > nc

2h2+2h+1 , the size of a maximum independent set



Densest k-Subgraph Approximation on Intersection Graphs 91

in C is no more than 2h2 + 2h + 1. By Lemma 1, C contains Θ(n2
c

h2 ) edges. Since
h is a constant, we can use the algorithm in [3] to obtain a PTAS for problem
instances with Θ(n2

c) edges and satisfying k = Θ(nc). Now, by Lemma 10, we
have a PTAS for computing OPT (Di,j , k).

We note that similar ideas can be used to obtain a PTAS for unit square
intersection graphs. Erlebach et al. [13] used a new subdivision of the plane
and the shifting strategy to obtain a PTAS for the maximum independent set
problem and the vertex cover problem for disk graphs. However, it is not clear
whether their methods can be applied to obtaining a PTAS for DS-k on disk
graphs.

6 Conclusions

In this paper, we studied approximation algorithms for the densest k-subgraph
(DS-k) problem on several classes of intersection graphs. One of our main contri-
butions is a simple O(σ)-approximation framework for graphs admitting σ-QEOs,
which leads to improved approximation DS-k algorithms for these graph classes.

One future research direction is to find more algorithmic applications for σ-
QEO. It is worthwhile noting that after the MDSP preprocessing phase, our algo-
rithm is essentially based on local decisions guided by the vertex ordering. This
is similar to the approximation algorithms for various graph problems developed
in [1,35]. Therefore, we conjecture that there might be a deeper reason to explain
this, or even a unified characterization of the problem structures that allows us
to apply certain local decision-based approximation algorithms on graphs with
QEOs.

Note that all graph classes we considered have σ-quasi elimination orders
with some constant σ ≥ 1. Thus, another direction of research is to identify other
graph classes with a σ-QEO such that σ is o(n1/4) (this ensures an approximation
better than O(n1/4) for DS-k [7]).
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Abstract. We consider the train delivery problem which is a generaliza-
tion of the bin packing problem and is equivalent to a one dimensional
version of the vehicle routing problem with unsplittable demands. The
problem is also equivalent to the problem of minimizing the makespan
on a single batch machine with non-identical job sizes.

The train delivery problem is strongly NP-hard and does not admit an
approximation ratio better than 3/2. We design the first approximation
schemes for the general problem. We give an asymptotic polynomial time
approximation scheme, under a notion of asymptotic that makes sense
even though scaling can cause the cost of the optimal solution of any
instance to be arbitrarily large. Alternatively, we give a polynomial time
approximation scheme for the case where W , an input parameter that
corresponds to the bin size or the vehicle capacity, is polynomial in the
number of items or demands.

1 Introduction

We consider the train delivery problem, which is a generalization of bin packing.
The problem can be equivalently viewed as a one dimensional vehicle routing
problem (VRP) with unsplittable demands, or as the scheduling problem of
minimizing the makespan on a single batch machine with non-identical job sizes.

In the train delivery problem we are given a positive integer capacity W and
a set S of n items, each with a positive position pi and a positive integer weight
wi. We seek a partition of S into subsets {Sj} (train tours) that minimizes

∑

j

max
i∈Sj

pi subject to ∀j
∑

i∈Sj

wi ≤W.

We describe some applications of the different formulations of the train de-
livery problem. In the scheduling setting, integrated circuits are tested by sub-
jecting them to thermal stress for an extended period of time (burn-in). Each
circuit has a prespecified minimum burn-in time (pi) and a number of boards
needed (wi). Since circuits may stay in the oven for a period longer than their
burn-in time, it is possible to place different products as a batch in the oven
� Supported by NSF grant CCF-0728816.
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simultaneously as long as the capacity of the oven (the number of boards in the
oven) is not exceeded. The processing time of each batch is the longest minimum
exposure time among all the products in the batch. Once processing is begun
on a batch, no product can be removed from the oven until the processing of
the batch is complete. We wish to find a partition of the circuits into batches so
that the total processing time of all batches (the makespan) is minimized.

In the VRP setting with unsplittable demands, containers are to be trans-
ported from a harbor to n customers located at positions pi along a railway. The
number of containers destined to customer i is wi, and the maximum number of
containers that the freight train can carry is W . All containers for a particular
customer must be placed on the same train so that they are delivered at the
same time. We wish to find a set of train trips to deliver all containers so as to
minimize the total length of all trips.

In the bin packing setting, various temperature sensitive products are shipped
by sea from southeast Asia. Each product has a weight (in metric tons) and a
maximal temperature at which it may be stored (there is no minimum temper-
ature limit). Each ship can carry at most W tons. Since the route is fixed, the
cost of operating the ship is determined by the ambient temperature in the cargo
area. The lower the temperature, the higher the cost. The shipping company is
interested in keeping the cost of operations as low as possible while keeping the
temperatures low enough so none of the products on board a ship are damaged.
The goal is to find a packing of the products into ships that minimizes the overall
cost of operation.

Bin-packing is the special case of the train delivery problem where all the pi’s
are equal. It is well known [18] that bin-packing is strongly NP-hard and does
not admit a polynomial time approximation algorithm better than 3/2 unless
P=NP, hence those negative results also hold for the train delivery problem.
There are, however, algorithms that achieve an approximation factor of 1 + ε
for bin-packing for any ε > 0, provided that the cost of an optimal solution
is at least 1/ε (i.e. at least 1/ε bins are necessary). Such algorithms are called
asymptotic polynomial time approximation schemes (APTAS).

Our Results. We give the first approximation schemes for the general train deliv-
ery problem. The problem does not admit an asymptotic approximation scheme
in the usual sense as the cost of the solution is determined by the positions pi.
Thus any instance can be scaled so that the optimal solution has arbitrarily large
cost without changing the solution itself. To define a notion of asymptotic approx-
imation scheme for our problem we restrict the ratio of the optimal solution and
the maximal position. In other words, scale the input so that maxi pi = 1; then
we are in the asymptotic regime if the cost of the scaled input is Ω(1/ε6).

Theorem 1. Given an instance of the train delivery problem such that maxi pi =
O(ε6)OPT, Algorithm 1 outputs a solution of cost (1 + O(ε))OPT in time
O(n log(n)) + log(n)(1/ε)O(1/ε).1

1 An alternative version of our algorithm uses the less severe asymptotic assumption,

maxi pi = O(ε)OPT, but runs in time n(1/ε)O(1/ε)
.
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Alternatively, we give a polynomial time approximation scheme (PTAS) for
the case where W = poly(n) (or where W is specified in unary). Note that
bin-packing is still NP-hard for such instances. We note that, unless P=NP, we
cannot hope to achieve a PTAS when the conditions of Theorem 2 do not hold.
A PTAS that also works when W > poly(n) would give us a polynomial time
algorithm, rather than a pseudo polynomial time algorithm, for deciding the
NP-hard partition problem2.

Theorem 2. Given an instance of the train delivery problem such that W =
poly(n), Algorithm 5 outputs a solution of cost (1+O(ε))OPT in time W eO(1/ε)

+
O(n log(n)) + log(n)(1/ε)O(1/ε).

Related work. Train delivery in its formulation as the problem of minimizing
the makespan on a single batch machine with non-identical job sizes has been
extensively studied in the past two decades, and the present paper gives the
first asymptotic PTAS for the general version of the problem. To the best of
our knowledge, Uzsoy [32] was the first to consider the problem. He proved that
it is NP-hard and presented a few heuristics that were evaluated empirically.
Many others have considered the problem since. Various heuristics are given
in [2,13,12,31] to name just a few, while application of meta-heuristics to the
problem were studied in [29,25,23]. The work of Zhang et al. [33] proves approx-
imation ratios for some heuristics, with 7/4 being the best, while showing that
others may perform arbitrarily bad. Zhang and Cao [34] also gave an APTAS
for the symmetric setting where they assumed that pi = wi for all i.

The techniques we use in this paper draw on those used in the literature
for the bin-packing problem and the vehicle routing problem. Both problems
are extensively studied in the literature. Rather than a comprehensive survey,
we focus on the previous techniques we extend in this paper. Bin-packing is
one of the problems originally shown to be strongly NP hard by Garey and
Johnson [18]. Fernandez de la Vega and Lueker [16] obtained the first APTAS.
Their algorithm handles big and small demands separately and uses the fact that
small demands can be ignored initially and added greedily to any near optimal
solution of just the big demands. The big demands are rounded and a linear
program is used to find a near optimal solution for them in time polynomial
in n and exponential in 1/ε. Subsequently, Karmarkar and Karp [22] gave an
asymptotic fully polynomial approximation scheme (AFPTAS) using the same
framework and efficiently solving and rounding the LP relaxation of the prob-
lem. Their running time depends polynomially on 1/ε, rather than exponentially.
Many variants of bin-packing have been considered, (see [10] for a survey). In
multi-dimensional bin-packing (See [7,24,4,9] and references therein), the bins are
multi-dimensional, but the cost of each bin is still a fixed constant. In variable-
size bin-packing (See [17,30,14]) bins of several different sizes are available and

2 Partition: Decide if set of integers S can be partitioned into sets S1, S2 s.t the sum
of S1 and S2 are equal.
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the cost of each bin is proportional to its size. In bin-packing with “general cost
structure”(See [15,27]), the cost of a bin is a non-decreasing concave function
of the number of elements packed in the bin.

There are AFPTAS for all of these variants and all of those we are aware of
handle big and small items separately and use rounding of the big items. None
of these variants, however, captures the problem we consider. In some variants,
in contrast to the classical bin-packing problem, the small demands can make
an important contribution to the cost of the solution and must be handled more
carefully. The results differ substantially on how much consideration is given
to small items while computing a solution of the big items. In the case of bin-
packing with “general cost structure” the small items are considered fluid and
can be split up arbitrarily among bins [14]. This approach was introduced in the
bin-covering problem [11].

The VRP is another widely studied problem. The train delivery problem is
the 1-dimensional version of VRP with unsplittable demands [20,6,5] where a
set of customers, each with its own demand wi must be served by vehicles
which depart from and return to a single depot. Each vehicle may serve at
most W total demand and each customer must be served by a single vehi-
cle. The objective is to minimize the total distance travelled by all vehicles3.
In the 1-dimensional version the depot is located at the origin and the posi-
tion of customer i is given by pi. We are not aware of prior work that specifi-
cally considers the 1-dimensional setting. For the metric case, Haimovich, Rin-
nooy Kan, and Stougie give a constant factor approximation [20]. Bramel et al.
study the problem on the Euclidean plane where customer demands are drawn
i.i.d from any distribution [6]. Labbé et al. [26] give a 2-approximation for the
problem on a tree. Additional heuristics that extend their approach were given
in [28,8].

For the splittable case, where customers may be served by multiple vehi-
cles, Haimovich and Rinnooy Kan gave a PTAS for the Euclidean plane when
W = O(log log n) [19]. Their approximation scheme partitions the customers
into disjoint instances (far and close) based on the distance from the depot.
The far instance is small enough so that it can be solved exactly by brute force,
but sufficiently large, so that the error incurred by solving the instances indepen-
dently is controlled. The close instance is “close” enough to the depot such that
for small values of W a constant factor algorithm (that they also present) finds
a near optimal solution for close. Recently, Adamaszek, Czumaj, and Lingas
extended this to W ≤ 2logδ n (where δ a function of ε) [1]. They use a shift-
ing technique [3,21] to partition the instance into disjoint regions, and solve the
problem in each region independently.

Preliminaries. For the remainder of the paper we use the language of the vehicle
routing problem: We refer to tours (rather than sets), customers (rather than
items), locations (rather than positions) and demands (rather than weights). We
assume the depot is at the origin and that the instance is preprocessed:

3 The VRP objective is 2 times the objective of the train delivery problem.
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Definition 1. (Preprocessed) An instance is preprocessed if:
• No demand is has location pi ≤ ε · pmax/n, where pmax = maxi pi.
• All customers are located to the right of the depot.

If there are demands located closer than ε · pmax/n, serve them each with a
separate tour. The overall cost for this at most εpmax ≤ εOPT as any solution
must have cost at least pmax. If there are customers on the right and left of the
depot, we can solve each side separately, as they are analogous to one another,
and return the union of the two solutions.

2 Algorithm for Theorem 1

We summarize the main steps of Algorithm 1 and provide details in the following
subsections. Its correctness and running time follow from the lemmas below. See
the full version of the paper (available on the authors’ websites) for all proofs.

Algorithm 1. Asymptotic PTAS for train delivery
Input: A preprocessed input with demands (pi, wi)1≤i≤n and train capacity W
Precondition: maxi pi ≤ ε6OPT

1: Round the input using Algorithm 2.
2: for 1 ≤ i ≤ 1/ε do
3: Let Pi be the i-th partition into regions (as in Definition 3).
4: for each non-empty region R of Pi do
5: Get a relaxed solution covering all demands in R treating small demands as

fluid using Algorithm 3.
6: Extend the relaxed solution to cover small demands feasibly using Algorithm

4.
7: Let Best(Pi) be the union of the solutions found for each region R ∈ Pi.

Output: mini Best(Pi), the minimum cost solution found.

Rounding. The number of locations is reduced by rounding each location up to
the next integer power of (1+ ε). We call a demand wi big if wi ≥ εW and small
otherwise. The rounding technique from classical bin packing is use to reduce
the number of distinct big demand sizes at each location.

Partitioning into regions. We partition the demands into disjoint regions
based on their distance from the depot (Definition 3) so that each region has
only a constant number of locations containing demands. We solve the problem
approximately within each region independently. A shifting argument shows that
if we do this for a few different partitions, the union of the approximate solutions
in at least one of the partitions yields a near optimal solution.

Solving within a region. Within each region, we treat big and small demands
differently. We relax the unsplittable constraint for small demands and allow
them to be split up between multiple tours. The relaxed problem is solved by a
linear program that considers the big demands individually and the total small
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demand weight at each location in the region. Since each region contains just
a constant number of locations and each location contains a constant number
of distinct big demand sizes, the total number of distinct big demands in R is
constant. This allows us to solve the relaxed problem in constant time.

We construct a feasible solution from the relaxed solution by adding the small
demands greedily, and prove that the solution output has cost at most (1 + 2ε)
OPT(R) + O((1/ε)5)pR, where OPT(R) denotes the optimal solution of region
R and pR is the location furthest from the depot in R (Lemma 5). Our definition
of regions ensures that pR decreases geometrically as the regions get closer to
the depot. Thus the sum of pR over all regions is O(pmax), where pmax is the
location of the furthest demand in the instance.

Our assumption pmax ≤ O(ε6)OPT ensures that the additive cost incurred by
the greedy extension (the pR terms) is within the desired approximation factor.

2.1 Rounding

Algorithm 2 outputs a rounded instance satisfying Lemma 1. Its proof extends
the bin packing rounding analysis of [16].

Algorithm 2. Rounding Instance
Input: train capacity W , demands (pi, wi)1≤i≤n

1: Round each pi up to the smallest integer power of (1 + ε).
2: Partition demands (wi)i into big (≥ Wε) and small (< Wε).

Rounding big demands:
3: for each location � s.t. n�, the number of big demands at �, is at least 1/ε2 do
4: Go through those big demands in decreasing order to partition them into ε−2

groups such that each group (except possibly one) has cardinality exactly �n�ε
2�.

5: for each group g do
6: Round every demand in g up to the maximum demand in g.

Output: rounded instance I ′ of the train delivery problem

Lemma 1. Given an instance I, Algorithm 2 outputs an instance I ′ such that:
• Each pi has the form (1 + ε)k for some (non-negative) integer k.
• Each location has at most 1/ε2 + 1 distinct big demands.
• Any feasible solution for I ′ is also feasible for I.
• OPT(I ′) ≤ (1 + O(ε))OPT(I).

2.2 Partitioning into Regions

We say that a tour has small expanse if it covers points in a bounded region.
Lemma 2 shows that a near optimal solution can be obtained using only tours
with this simple structure.

Definition 2. A tour that covers only points between locations p and p′, p ≤ p′,
has expanse p′/p. A small expanse tour has expanse at most 1/ε.

Lemma 2. There exists a small expanse tour solution of cost ≤ (1 + 2ε)OPT.
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We partition instance I ′ into regions, where each region has large expanse. In-
tuitively, as the expanse of the region is large only a few tours of the optimal
small expanse solution will cover points in more than one region. Thus we can
find a near optimal solution by solving each region independently.

Definition 3. Let I ′ be a rounded instance of the train delivery problem and
pmax = maxi pi. A block, defined by an integer i, is the set of demands with
locations in (pmaxε

i+1, pmaxε
i]. A region is a group of ≤ 1/ε consecutive blocks.

For 0 ≤ j < 1/ε, let Pj denote the partition of I into regions, one initial
region (εjpmax, pmax] and the other regions (εjpmaxε

(i+1)/ε, εjpmaxε
i/ε] for i ≥ 0.

Note that there are 1/ε possible ways to partition I ′ into regions. We use a
shifting technique similar to that of Baker [3] and Hochbaum and Maass [21]
and an averaging argument to show Lemma 3, which states that at least one
partition yields a near optimal solution for I ′.

Lemma 3. There exists a partition Pj s.t.
∑

R∈Pj
OPT(R) ≤ (1 + O(ε))OPT.

2.3 Solving the Relaxed Problem in a Region

Definition 4. (Big demand type) A big demand type is a pair (p, b) where p
is the location of a big demand and b is one of the at most 1/ε2 big demand
(rounded) sizes at p. n(d) denotes the number of demands of type d in region R.

The configuration of a tour roughly describes which points it will cover: for
each occurrence of demand type (p, b) in its multiset the tour covers one of the
demands from location p with value b.

Definition 5. (Configuration) A configuration f of a tour in R consists of rf ,
the furthest location of the tour, and a multiset Mf of big demand types, each
with location at most rf , whose values sum up to at most W .

Let cf denote the remaining capacity of a tour with configuration f (i.e., cf =
W−∑

(p,b)∈Mf
b). For any big demand type d, let nf (d) denote the multiplicity of

d in Mf . Let S be the set of small demands in a region R. We relax our problem
by removing the unsplittable constraint on only the small demands. Algorithm
3 rounds the solution of the linear program below to obtain, by Lemma 4, a near
optimal solution of the relaxed problem in constant time. The linear program
has one variable xf for each possible tour configuration f . The objective selects
a minimum cost multiset of tour configurations such that two constraints are
satisfied: Constraint 1 ensures that all big demand types are covered by the
selected tour configurations and constraint 2 ensures that for each location p, the
small demands further right than p can be covered with the remaining capacities
of the tour configurations that extend to the right of p.

min
∑

f∈F rfxf s.t.
∑

f∈F xf nf (d) ≥ n(d) for all demand types d (1)
∑

f :rf≥p cfxf ≥
∑

(pi,wi)∈S,pi≥p wi for all locations p (2)
xf ≥ 0
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Algorithm 3. Solve Relaxed Region
Input: R a region of I ′, S the set of small demands in R.

1: Let D be the set of big demand types (Definition 4) and F be the set of tour
configurations for region R (Definition 5).

2: Let x∗ = (x∗
f )f∈F be a basic solution of the linear program (Eq. 1-2).

3: Let x̄f = �x∗
f� for each f ∈ F .

4: Cover the big demand types in D with tours specified by the (x̄f )f∈F . (Some tours
may only be assigned a partial list of the big demands listed in its configuration.)

Output: The resulting set of tours covering D.

Lemma 4. Let pR denote the maximum location in region R, OPT(R) the cost
of the optimal solution to the (unrelaxed) problem and T the set of tours output
by Algorithm 3. T is a solution to the relaxed problem that covers all demands in
R such that the big demands are unsplittable and the small demands are allowed
to be split. Cost(T ) ≤ OPT(R) + pR((1/ε)2 log(1/ε))(2 + 1/ε2). Algorithm 3
outputs T in time (1/ε)O(1/ε).

2.4 Extending a Relaxed Solution of the Region

Let (rt, ct)t denote the set of tours output by Algorithm 3 where rt denotes the
maximum location and ct the remaining capacity of tour t after it has covered
its big demands. Algorithm 4 takes the list of tours (rt, ct)t and extends it to
cover the small demands of R in a feasible way (i.e., without splitting any of
them). Lemma 5 shows that the greedy extension is a near optimal.

Algorithm 4. Greedy Extension
Input: small demands (pi, wi)i and a list T of tours (rt, ct)t. rt is the furthest location
of tour t and ct is its remaining capacity.

1: for each small demand (pi, wi) by order of decreasing pi do
2: if there is a tour t with rt ≥ pi and ct ≥ wi then
3: cover (pi, wi) with t and set ct := ct − wi

4: else
5: add a new tour t with ct = W and rt = pi

6: cover (pi, wi) with t and set ct := ct − wi

Output: the resulting tours.

Lemma 5. The output of Algorithm 4 G has cost(G) ≤ (1 + 2ε)cost(T ) + 2pR.

3 Algorithm for Theorem 2

We summarize the main steps of Algorithm 5 and provide details in the following
subsections. Its correctness and running time follow from the lemmas appearing
in the subsections. See the full version of paper for all proofs.
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Algorithm 5. PTAS for the train delivery problem when W ≤ poly(n)
Input: train capacity W , demands (pi, wi)1≤i≤n

Precondition: W ≤ poly(n).

1: Partition the instance into close and far using Algorithm 6
2: Find OPT(far) using Algorithm 7 and Best(close) using Algorithm 1.

Output: Best(close) ∪ OPT(far), as the solution for the whole instance.

Partition into close and far instances. We index the demands in decreasing
order of location, identify a demand ic and partition the instance into close and
far, where far contains the demands with indices less than ic and close the
demands with indices greater than ic.

Optimal solution of far. The partition is such that far contains O(W ) to-
tal demand. Thus an optimal solution of far uses a constant number of tours
(Lemma 9). This allows us to enumerate, in polynomial time, all possible such
solutions. Using a generalization of the well-known dynamic program for sub-
set sum, we can determine in polynomial time whether a proposed solution is
feasible or not, hence an optimal algorithm for far.

Overall solution. The solution is the union of the solutions for close and far.
We use Algorithm 1 to find a near optimal solution to close. It is crucial that,
on the one hand, far does not contain too much demand, so it can be solved
efficiently. On the other hand, far contains enough demand so that the condition
of Theorem 1 holds for close, namely that pic = O(ε6)OPT, where pic denotes
the furthest location in close.

3.1 Partitioning into Close and Far

Algorithm 6 partitions the instance. Lemma 6 proves that close and far can be
solved separately at small additional cost. Its proof critically uses the definition
of ic. Lemma 7 also follows by choice of ic.

Algorithm 6. Partition Close and Far
Input: train capacity W , demands (pi, wi)1≤i≤n s.t. p1 ≥ · · · ≥ pn

1: Let ic be the smallest index such that
•

∑
j≤ic

wj ≥ W/ε6

• pic

∑
j≤ic

wj ≤ ε
∑n

j=1 wjpj.
If no such ic exist, set ic := n.

2: Far: Let the far instance consist of the demands indexed by 1, . . . , ic.
3: Close: Let the close consist of the remaining demands ic + 1, . . . n.

Output: instances far and close

Lemma 6. Algorithm 6 returns two instances far and close s.t. OPT(close) +
OPT(far) ≤ (1 + O(ε))OPT.

Lemma 7. OPT > 2pic/ε6.
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3.2 Solving the Far Instance

The following combinatorial lemma is an extension of Haimovich and Rinnooy
Kan’s [19] analysis to the case of unsplittable demands. It bounds the total
demand in far by O(W ) by bounding the number of demands that violate the
requirement pic

∑
j≤ic

wj ≤ ε
∑n

j=1 wjpj .

Lemma 8. Let ic be as in Algorithm 6. Then
∑

j≤ic
wj = exp(O(1/ε))W .

Lemma 9 implies that OPT(far) uses a constant, cfar, number of tours. Then
we can solve far using dynamic programming.

Lemma 9. OPT uses at most �2D/W � tours, where D the total demand.

Definition 6. (Far Configuration) Let cfar denote the maximum number of
tours OPT(far) may use. A configuration for far consists of:
• Locations r1 ≥ r2 . . . ≥ rcfar

s.t. ri is the maximum location of tour i.
• For every i ∈ [1, cfar], a list Si of i numbers Si = {si

1, . . . s
i
i}.

The cost of the configuration is
∑

j≤cfar
rj .

For i = 1, 2, . . . cfar−1, define an interval Ii = (ri+1, ri]. Let Icfar
be the interval

[pic , rcfar
]. The demands in Ii can only be covered by the i tours whose maximum

location is at least ri. The list Si specifies the total demand from interval Ii that
is assigned to each of these tours. Si does not directly describe how to partition
the demands among the i tours. Finding a set of partitions that is consistent
with a configuration, or finding out that no such set of partitions exists, is
done in W eO(1/ε)

time (i.e., polynomial in n assuming W ≤ poly(n))) using a
trivial extension of the dynamic program for the subset sum problem (omitted).
Algorithm 7 solves far by iterating all configurations, checking feasibility, and
returning the minimum cost feasible configuration.

Algorithm 7. Solving the far instance
Input: far demands (pi, wi)i with

∑
i wi = WeO(1/ε)

1: for each configuration f of far as given in definition 6 do
2: for each tour j ≤ cfar do
3: if

∑
i≤cfar

si
j > W then

4: Mark f infeasible. {capacity of tour is exceeded}
5: for each interval i ≤ cfar, with total demand dem(Ii) do
6: if Extended DP of subset sum cannot partition dem(Ii) into si

1, . . . , s
i
i then

7: Mark f infeasible. {demands cannot be partitioned}
Output: Solution realized by the minimum cost configuration not marked infeasible.

Lemma 10. Given an instance of far with demand WeO(1/ε) Algorithm 7 finds
the optimal solution of far in time W eO(1/ε)

, which is polynomial in n and W .
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Abstract. We study flows over time in networks with transit times on
the arcs. Transit times describe how long it takes to traverse an arc.
A flow over time specifies for each arc a time-dependent flow rate that
must always be bounded by the arc’s capacity. Only recently, Melkonian
introduced an alternative model where so-called bridge capacities bound
the total amount of flow traveling along an arc, at any point of time.

The contribution of this paper is twofold. Firstly, we introduce a com-
mon generalization of both the classical flow over time model and Melko-
nian’s model. Secondly, we present a non-trivial extension of an FPTAS
by Fleischer and Skutella to our new flow model. Prior to this, no ap-
proximation algorithm was known for Melkonian’s model.

Keywords: network flow, dynamic flow, arc capacity, approximation
algorithm.

1 Introduction

Network flows are a key concept in combinatorial optimization and their model-
ing abilities are fundamental in logistics. Already Ford and Fulkerson introduced
flows over time (or dynamic flows) that model flow moving through a network
over time [2]. (Classical flows without this temporal dimension are often called
static flows.) In a flow over time model, each arc has a transit time and flow
entering the tail of an arc leaves its head only after the transit time has passed.
Flows over time are given by a function for each arc that specifies the rate at
which flow enters the arc at each point in time. Flow originates at sources and
leaves the network at sinks. Traditionally, capacities limit the rate at which flow
enters an arc. In a street network, for example, these capacities can model the
number of lanes of a road.

Melkonian [7] introduced an alternative model with bridge capacities. At any
point in time, bridge capacities limit the amount of flow that has entered but
not yet left an arc. This can be used to model a load limit on a bridge that
supports fewer cars and trucks than the number of lanes might suggest.

In this paper we generalize bridge capacities such that they bound the total
flow entering an arc within a sliding time window. The fixed length of the window
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is independent from the transit time of an arc. In particular, this allows mixing
bridge capacities (time window as long as transit time) with flow rate capacities
(very short/infinitesimal window), and arcs that may be used only by a certain
amount of flow in total (infinite window) in the same network. If necessary, one
can even combine several of such capacity constraints on a single arc.

We refer to this general type of capacity constraints as aggregate capacities. In
this general setting, we study the Dynamic Transshipment Problem which
asks whether there is a flow over time that balances the supplies of the sources
with the demands of the sinks. Besides the aggregate arc capacities, the flow is
restricted by a given time horizon.

Related Work. Already classical flows over time tend to be algorithmically harder
than static flows, beyond merely containing the static problem as a special case.
For traditional flow rate capacities, the Dynamic Transshipment Problem
for a network with a single source and a single sink can be solved efficiently by
computing a minimum cost static circulation [2]. Hoppe and Tardos [3] give a
polynomial-time algorithm for the Dynamic Transshipment Problem with
multiple sources and sinks. As soon as arc costs come into play, even the case
with a single source and a single sink restricted to series-parallel graphs becomes
NP-complete, as shown by Klinz and Woeginger [5].

Fleischer and Skutella [1] present a simple 2-approximation algorithm for a
general class of problems including the Quickest Transshipment Problem,
which is the optimization version of the Dynamic Transshipment Problem,
asking for the minimum feasible time horizon. This result can be generalized to
the setting with aggregate arc capacities in a straightforward way. Moreover, a
fully polynomial time approximation scheme for these problems is given in [1].

For bridge capacities, Melkonian [7] proves that already the Dynamic Trans-
shipment Problem with a single source and sink is weakly NP-complete, but
can be decided by solving a linear program of pseudo-polynomial size. Melkonian
also suggests a heuristic approach where the capacity on each arc is replaced by
traditional capacities equal to the average sustainable flow on the arc. Finally,
he mentions networks with mixed capacities as an interesting research direction,
which we pursue with our model.

A related capacity model has earlier been proposed by Klinz and Woegin-
ger [4]: They study dedicated arcs that are entirely blocked as long as even a
small amount of flow is traveling along them. (As for bridge capacities, the dura-
tion of the block and the transit time are identical.) All their flows are discrete,
meaning that flow travels in whole packets sent once per time step as opposed
to continuous flow rates. They also restrict to integral flow functions, which of-
ten prohibits the use of linear programming techniques. They derive interesting
complexity results for their setting: For instance, even for a fixed time horizon
of 3, one of their variants of the Dynamic Transshipment Problem is NP-
hard. They also translate a complexity result of Papadimitriou, Serafini, and
Yannakakis [8] into the language of flows over time. This implies that the Dy-
namic Transshipment Problem for integral flows and dedicated arcs with
unit capacities is strongly NP-complete.
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Köhler and Skutella [6] study flows over time with load-dependent transit
times. In their model, the speed at which flow travels along an arc always depends
on the current amount of flow (load) on that arc. The model of Melkonian can
be considered as a special case by letting the speed on an arc be constant up to
its capacity and infinite if the load exceeds the capacity.

Our Contribution. In Section 2, we introduce the flow model with aggregate
arc capacities which is a direct generalization of Melkonian’s bridge capacities.
For this new model, we discuss important properties of flows over time, namely
integrality and whether storage at vertices can improve the flow value, and show
that forbidding storage or forcing integrality qualitatively restricts the set of so-
lutions. We argue that our model also generalizes traditional flow rate capacities.

Our main contribution, a fully polynomial time approximation scheme for the
Dynamic Transshipment Problem, is presented in Section 3. If there is a
feasible flow for the original instance, for all ε > 0, we can compute a flow over
time satisfying the same set of demands, but violating the capacities and the
time bound by a factor of at most 1 + ε.

We mention, that the presented FPTAS can be generalized in a straightfor-
ward way to the setting with multiple commodities and costs. Due to space
limitations, however, we restrict our presentation to the Dynamic Transship-
ment Problem in this extended abstract and omit some details and proofs.

2 Aggregate Arc Capacities

We consider finite directed graphs G = (V, A), possibly with loops and parallel
arcs. For a ∈ A, let tail(a) denote the start vertex and head(a) the end vertex
of a. For v ∈ V , we use Ain(v) := {a ∈ A : head(a) = v} and Aout(v) := {a ∈
A : tail(a) = v} for the set of arcs entering and leaving v, respectively.

Each arc a ∈ A has a transit time τa ∈ R≥0, a capacity ua ∈ R≥0 and a length
of the sliding window �a ∈ R≥0. Some vertices belong to the sources S+ ⊂ V ,
some to the sinks S− ⊂ V , and we assume S+ ∩ S− = ∅. The elements of the
set S+ ∪ S− of sources and sinks are called terminals. We assume w. l. o. g. that
sources have no incoming arcs and sinks no outgoing arcs. This can be achieved
by adding a new vertex for each source s+ with a single outgoing arc that points
towards s+ and making it the new source (and similarly for sinks). The tuple
N := (V, A, S+, S−, τ, u, �) forms a flow network.

We can now define a flow over time on the network N . For this, consider a
function f : A × R≥0 → R≥0, where each f(a, ·) is Lebesgue-measurable. For
notational convenience, we extend the domain of the flow functions by setting
f(a, t) = 0 for all t < 0. The value f(a, t) denotes the rate at which flow enters
arc a at time t. The transit times prescribe that the same flow rate must leave
the arc at time t + τa. The balance of a vertex v is the net flow rate entering v
at time t

balf (v, t) :=
∑

a∈Ain(v)

f(a, t− τa)−
∑

a∈Aout(v)

f(a, t)
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and the excess is

exf (v, t) :=
∫ t

0

balf (v, θ) dθ ,

that is, the net amount of flow available at v at time t. Flow conservation gen-
erally demands that the amount of flow traveling through the network should
not change, except at the terminals. There are two competing models for flow
conservation in flows over time. Strict flow conservation demands that all flow
entering a non-terminal vertex immediately leaves it again:

balf (v, t) = 0 ∀t ∈ R≥0 ∀v ∈ V \ (S+ ∪ S−) .

In contrast, weak flow conservation allows for storage at non-terminal vertices.
That is, an unlimited amount of flow may remain at a vertex arbitrarily long,
which we can express as follows:

exf (v, t) ≥ 0 ∀t ∈ R≥0 ∀v ∈ V \ (S+ ∪ S−) .

Since we assume that sources have no incoming arcs, their excess will always
be non-positive. Similarly, the excess of a sink will always be non-negative. We
do not restrict these vertices any further. If at least weak flow conservation is
satisfied, we call the function f a flow over time on N , or simply a flow.

A flow has time horizon T ∈ R≥0 if the network is “empty” for all t > T .
In particular, all flow functions must be 0 after time T , but this is a too weak
requirement. Instead we demand that no flow may be on an arc after time T ,
i. e., f(a, t) = 0 for all t > T − τa, a ∈ A. Additionally, no flow may be stored at
a non-terminal vertex after time T , i. e., exf (v, T ) = 0 for all v ∈ V \ (S+∪S−).

For a flow with finite time horizon T , one can look at how much flow is being
sent from the sources to the sinks. This is conveniently given by the excess of the
terminals. Thus, a flow satisfies demands d ∈ R

V if dv = exf (v, T ) for all v ∈ V .
In particular, the demands of sources have to be non-positive, the demands of
sinks non-negative, and other vertices must have demand 0.

So far, there is no upper limit on f . In our setting, the novelty is that aggregate
arc capacities restrict how much flow can be sent. The total amount of flow
entering arc a must be bounded by ua in every time window of length �a. That
is, we require

∫ t+�a

t

f(a, θ) dθ ≤ ua ∀t ∈ R≥0 ∀a ∈ A .

A flow obeying these capacity constraints is called feasible. Note that this con-
dition is trivially satisfied if �a = 0, and these arcs effectively have no capacity.
Traditional flow rate capacities, however, are of the form f(a, t) ≤ ua, and this
cannot be expressed precisely with aggregate arc capacities. This is no serious
drawback, as we will soon see that a small enough �a can essentially model
traditional capacities.

We now have everything in place to state our main problem precisely.
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Dynamic Transshipment Problem
Input: A flow network N , a time horizon T , and a demand vector d.
Question: Is there a feasible flow over time in N with time horizon T satisfying
demands d?

2.1 Discretizations

From now on we assume that τ , u, �, as well as T , and d are integral. This can
be achieved by scaling, provided that the data was rational to begin with.

When dealing with flows over time algorithmically, most tasks require a rep-
resentation of the actual flow functions. Clearly, every finite representation must
be based on assumptions on the flow function. The most common way is to dis-
cretize the problem into a finite number of time steps. This usually involves a
time-expanded network, which handily reduces many problems involving time to
well-studied static flow problems. We essentially do the same, but avoid introduc-
ing the full machinery of static flows on time-expanded networks, as this plays a
minor role here. Instead we will state our results on piecewise constant functions
that change only at multiples of some parameter. For details on time-expanded
networks we refer to the survey [9].

We quickly fix some notation for rounding: For a, Δ ∈ R, Δ > 0, we use �a�Δ
to denote a rounded up to the next multiple of Δ. Analogously, 
a�Δ rounds
down to multiples of Δ. If Δ is omitted, we assume Δ = 1.

Now, a function g : R→ R is called Δ-constant if g restricted to [iΔ, (i+1)Δ)
is constant for all i ∈ Z. A flow over time is Δ-constant if each f(a, ·) is. Thus,
we need only �T/Δ� values for each arc to describe a Δ-constant flow with time
horizon T .

When dealing with Δ-constant flows on networks with transit times that are
multiples of Δ, we can replace integration by summation in all expressions so far.
Another crucial property is that, assuming a finite time horizon, we need only
finitely many constraints to ensure that the infinitely many flow conservation and
capacity conditions are satisfied. We omit the proof due to space constraints.

Lemma 1. Let N = (V, A, S+, S−, τ, u, �) and assume all τa are multiples of
some Δ > 0. Let f : A × R≥0 → R≥0 be a Δ-constant function for all first
arguments a ∈ A.

(i) Function f is a flow on N satisfying weak (strict) flow conservation if and
only if it satisfies weak (strict) flow conservation for all t = iΔ with i ∈ Z.

(ii) For a ∈ A, the flow f obeys the aggregate arc capacity on a if and only if
the capacity constraints are obeyed for t1 = iΔ and for t2 = iΔ − �a for
all i ∈ Z.

Next we show that 1-constant flows are precise enough for integral transit times
and capacity windows. More generally, Δ-constant flows suffice for data rounded
to multiples of Δ. This lemma is well-known for traditional capacities [1] and
requires only little more work in our setting.
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Lemma 2. Let N = (V, A, S+, S−, τ, u, �) be a flow network and f a feasible
flow over time with time horizon T ∈ R≥0. If the parameters τ and � are multiples
of Δ > 0, then there is a Δ-constant feasible flow over time f̄ with time horizon
�T �Δ with the same demands as f . If strict flow conservation holds for f , then
it also holds for f̄ .

Proof (Sketch). It suffices to average f over each interval [iΔ, (i+1)Δ), for i ∈ Z,
to obtain the desired Δ-constant flow:

f̄(a, t) :=
1
Δ

∫ �t�Δ+Δ

�t�Δ

f(a, θ) dθ ∀t ∈ R≥0 ∀a ∈ A .

The required properties of f̄ can easily be verified. ��
Since we assume that τ , �, and T are integral (u and d may be rational), these
lemmata show that the Dynamic Transshipment Problem can be formulated
as a linear program and thus be solved in time polynomial in the size of the
network and T . Of course, this only yields a pseudo-polynomial time algorithm.

Corollary 1. For integral τ , �, and T , the Dynamic Transshipment Prob-
lem can be decided in pseudo-poylnomial time.

The lemmata also imply that arcs with �a = 1 can be used to limit the flow
rate to at most ua, modeling traditional capacities. While there may be flows
that exceed the traditional capacity momentarily, we can always construct the
equivalent 1-constant flow f̄ that obeys them.

Corollary 2. For integral τ , �, and T , only flows obeying the traditional capac-
ities f(a, t) ≤ ua for all arcs with �a = 1 need to be considered.

2.2 Path Decompositions

One common tool from network flow theory, that we will need, are path decompo-
sitions and flows along paths. A path over time P = (AP , hP ) consists of a finite
sequence of arcs AP = a1, . . . , aq ∈ A and starting times hP = h1, . . . , hq ∈ R≥0.
The path begins at tail(a1) and ends at head(aq). The arcs in between must
form a walk, that is, head(ai) = tail(ai+1) for i = 1, . . . , q − 1. The time hi

states when the path continues on ai. Thus, hi+1 ≥ hi + τai must hold if a flow
unit should travel along P . This is therefore required of all paths over time.

In general, we want to send a certain time-dependent flow rate along a path:
Let xP : R≥0 → R≥0 be a Lebesgue-measurable function. Then we call xP the
inflow rate into P and it yields a flow fP satisfying weak flow conservation as
follows:

fP (a, t) :=
∑

i∈{1,...,q}:a=ai

xP (t− hi) .

Put another way, the flow rate xP (t) is sent along P and enters ai at time t+hi.
We want to restrict ourselves to paths over time that do not visit any vertex v
more than once. This can easily be achieved by removing the subpath starting at
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the first arc with tail(ai) = v and ending with head(aj) = v. The path continues
with aj+1 at time hj+1. The next lemma summarizes that flow traveling along
P is indeed a flow over time. Such a flow is called a path flow. We omit a more
detailed proof.

Lemma 3. Let P and fP be as described above and assume tail(a1) ∈ S+ and
head(aq) ∈ S−. If xP (t) = 0 for all t ≥ T for some fixed T ∈ R≥0, then fP is
a flow over time that satisfies weak flow conservation and has time horizon at
most T + hq + τaq .

A path decomposition describes a flow by the paths over time the flow units take.
More precisely, a flow f has a path decomposition if there is a finite set of paths
over time P and functions xP : R≥0 → R≥0, for P ∈ P , such that f is the sum
of the path flows fP , i. e., f(a, ·) =

∑
P∈P fP (a, ·) for all a ∈ A.

A major advantage is that path decompositions can be readily manipulated
while ensuring flow conservation. However, in general, a flow over time cannot
be decomposed into path flows because flow units may travel in cycles. Omitting
such cycles and possibly storing flow at an intermediate vertex instead does
not have any drawbacks in our setting, and thus we can always obtain a path
decomposition of a flow that is just-as-good. In the following, for a, b ∈ R, let
χ[a,b) : R→ R be the characteristic function of time interval [a, b).

Lemma 4. Let τ be integral and f a 1-constant flow on N with time horizon
T ∈ Z≥0. Then there is a 1-constant flow f ′ ≤ f on N with the same demand
vector as f and the same time horizon T such that f ′ has a path decomposition
with inflow rates of the form dP χ[0,1)(t) for some constants dP ∈ R≥0, for P ∈ P.
Each path P ∈ P contains no vertex more than once.

This follows from slightly rephrased techniques for time-expanded networks. No-
tice that the demands of the decomposed flow are the sum of the demands of
the path flows.

2.3 Understanding the Problem

Flows with bridge capacities can always be interpreted as flows over time for
larger traditional capacities: For 1-constant flows, the flow rates never exceed ua.
But this is a weak bound on the average capacity of an arc over a long period
of time, which is essentially ua/�a. The effect of the aggregate arc capacities is
clearly visible if the capacity windows are close to the time horizon. For instance,
consider a network consisting of a single arc a with length τa = 0, capacity ua =
1, and window �a. The time horizon is T > 0. With traditional capacities, the
flow rate is limited by ua, and a flow can send only T flow units in this instance.
Bridge capacities, however, allow flow value 1 for any arbitrarily small time
horizon T > 0 in this network. This is achieved by sending a short impulse with
a high flow rate.

Flow Conservation and Flow Value. It is useful to think of bridge flows as
flows that tend to send impulses as opposed to more uniform flow rates, that
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traditional flow capacities necessitate. One might even wonder what reason there
could be not to use the full capacity of an arc within a single interval Δ and
then pause until the full capacity is available again �a time units later. We now
discuss the small example in Figure 1. In the case of strict flow conservation, it
already exhibits somewhat unexpected solutions that follow no such simple rule.

yx
�(x,y) = 2

v �(v,x) = 3

w �(w,x) = 6

Fig. 1. The sources are v and w, the sink is y. All capacities are 1 and all transit times
are 0. The capacity windows are given on the arcs.

First note that arcs (v, x) and (w, x) together have an average capacity of
1
3

+ 1
6

= 1
2
, which equals the average capacity of (x, y). Thus, continuously

sending flow with a rate of 1
3

on (v, x) and 1
6

on (w, x), then 1
2

on (x, y) yields
a flow of value T/2, and this is optimal for average capacities (but need not be
optimal for bridge capacities). This solution also satisfies strict flow conservation.

In contrast, a “pulsed” flow sends flow at a rate of ua for one time unit, and
then waits for at least �a − 1 time units. Since u equals 1 for all arcs in our
example, pulsed flows are exactly the integral flows.

A flow that satisfies only weak flow conservation can send a flow of value
⌈

T
2

⌉
.

For this, one simply pulses flow into (v, x) and (w, x). These pulses start arriving
at x at times {0, 3, 6, 9, 12, . . .} and {0, 6, 12, . . .}. They can be forwarded to y at
times {0, 2, 4, 6, 8, 10, 12, . . .} and this repeats with a periodicity of 12. Due to
the capacity on (x, y), this is the optimum flow value for integral time horizon.

Finally, a flow that satisfies strict flow conservation and uses only integral
values cannot send 4 units of flow within time T = 7. For this, the first flow
particles from each pulse would have to arrive at x exactly at times {0, 2, 4, 6}.
At most two of these could be contributed by the more restricted arc (w, x),
but the remaining time steps always contain a pair less than 3 apart. Therefore,
they cannot all be supplied by (v, x). On the other hand, the flow sending the
average capacities achieves a flow value of 3.5, but this is not the optimum value
of a fractional flow without storage. A flow of value 11

3 is the true optimum, but
showing this is best left to an LP-solver.

From this we can see that weak flow conservation really increases the set of
feasible Dynamic Transshipment Problem instances and we will not consider
strict flow conservation in the remainder of this paper. The proof of our main
result also depends on weak flow conservation.

With respect to integrality, we want to draw attention to the complexity re-
sults from Papadimitriou et al. [8] (also described in [4]): Their problem can be
seen as an integral flow on a network with dedicated arcs (that are blocked en-
tirely as long as flow travels on them) with unit capacities. For ua = 1, aggregate
arc capacities and dedicated arcs behave the same, just like the pulsed flows in
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the example above. We immediately obtain strong NP-hardness for integral flows
with aggregate arc capacities. However, the Dynamic Transshipment Prob-
lem is only weakly NP-hard. Because of this, there must be instances where
there is no integral but a fractional solution (assuming P �= NP).

Corollary 3. The Dynamic Transshipment Problem restricted to integral
flow functions is strongly NP-hard, even for unit capacities.

3 Approximation Scheme

Our main result states that while it is NP-complete to decide whether an in-
stance of the Dynamic Transshipment Problem is feasible, one can find an
approximate solution that exceeds the time horizon and the capacities by a fac-
tor of (1 + ε), if the instance is feasible. For infeasible instances we might either
prove they are infeasible or find feasible approximate solutions. Our approach
is a non-trivial extension of the work of Fleischer and Skutella [1] on standard
flows over time.

Throughout this section we consider an instance of the Dynamic Trans-
shipment Problem consisting of N = (V, A, S+, S−, τ, u, �), time horizon T ,
and demands d. All parameters are integers, so that we only need to consider
1-constant flows.

The actual algorithm is quite natural. For given ε > 0, as in [1], we choose
a suitable discretization Δ ∈ Z>0 such that T/Δ is polynomially bounded in
the input size and ε−1. The transit times are rounded up to multiples of Δ, the
rounded transit times are denoted by τ ′

a := �τa�Δ, for a ∈ A. Moreover, the time
horizon and capacities are increased slightly, while the lengths �a of the sliding
windows remain the same. With Lemma 1, we can formulate the resulting new
instance as a polynomial-sized linear program. If the new instance is infeasible, so
is the original one. Otherwise, one obtains a Δ-constant flow that approximately
satisfies the Dynamic Transshipment Problem instance.

We have to prove two directions in order to show correctness of this algorithm.
The easier one is that any solution to the rounded instance is indeed an approx-
imate solution to the original instance. Intuitively, this is true since weak flow
conservation is maintained when the flow is interpreted in the original network
with shorter transit times.

Lemma 5. If f is a feasible flow on N ′ := (V, A, S+, S−, τ ′, u, �) with time
horizon T ′, then f is a feasible flow on N with the same time horizon, satisfying
weak flow conservation and the same demands.

Proof (Sketch). Any condition not involving transit times is identical for both
networks. When we decrease the transit times from τ ′ to τ , this affects the
balance of the vertices in a one-sided way: Flow on an arc may arrive earlier,
and then has to wait at the head vertex for an additional τ ′

a− τa time units. ��
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For the other direction we need to show that the existence of a feasible solution
to the original instance implies feasibility of the rounded instance. The first
problem here is that we increase transit times and, thus, need to rearrange the
flow. Otherwise, flow conservation is violated since flow units will be sent onwards
before they arrive at an intermediate vertex.

The main idea is to consider a path decomposition of a given feasible flow, as
in [1], before we change transit times. Then we can reassemble the flow paths
(now with longer transit times) and are guaranteed weak flow conservation. How-
ever, this might violate the capacities by a large factor: If multiple paths for the
original transit times enter the same arc one after each other, they can possibly
all be delayed to arrive simultaneously according to the rounded transit times.
The solution is to make sure that the flow along each path is distributed over
a larger time interval than flow units can possibly be delayed by the rounding.
This new “smoothed” flow will still be congested, but the collisions are spread
out equally in order to keep the violation of capacities bounded.

Lemma 6. Let f be a feasible 1-constant flow for the given Dynamic Trans-
shipment Problem instance. Let 0 < ε < 1 with ε−1 ∈ Z and Δ := 
ε2T/|V |�.
If Δ > 0, then there is a feasible Δ-constant flow f̄ on N ′ = (V, A, S+, S−, τ ′, (1+
ε)u, �) with time horizon T̄ := (1 + 2ε)T satisfying the same demands as f .

Proof. According to Lemma 4, we can replace f by a flow that has a path
decomposition consisting of a set of paths over time P and flow rates into the
paths of the form xP (t) = dP χ[0,1)(t) with dP ∈ R≥0, for P ∈ P . Moreover, each
path uses every vertex at most once and thus consists of q ≤ |V | − 1 arcs.

We now define for each path P = (AP , hP ) ∈ P a path P ′ = (AP ′
, hP ′

)
with the same sequence of arcs AP ′

= AP that matches the transit times τ ′. To
simplify notation, we denote hP ′

i simply by h′
i, for i = 1, . . . , q. Let h′

1 := �hP
1 �Δ

and h′
i := max{�hP

i �Δ, h′
i−1 + τ ′

ai−1
}, for i = 2, . . . , q. This yields a path over

time, i. e., the starting times are compatible with the transit times. They are also
multiples of Δ and h′

i ≥ hP
i , for all i. On the other hand, a simple induction yields

h′
i − hP

i ≤ iΔ. Since q ≤ |V | − 1, we can generalize this to 0 ≤ h′
i − hP

i ≤ |V |Δ,
for all i.

Instead of sending flow according to the original function dP χ[0,1) into path P ′,
we smooth the flow as follows (in contrast to the approach in [1], we use a
different, somewhat simpler smoothing here). Let z := |V |/ε, which is in Z. We
distribute the flow over an interval of length zΔ ≤ εT . This can be accomplished
by sending flow according to the function x′

P (t) := dP

zΔ · χ[0,zΔ)(t) into path P ′.
The corresponding path flow is f ′

P ′ and we claim that the flow f̄ defined by
f̄(a, ·) :=

∑
P ′:P∈P f ′

P ′(a, ·), for a ∈ A, has the desired properties. It certainly
satisfies weak flow conservation. The time horizon of each f ′

P ′ is at most T +
zΔ + |V |Δ ≤ (1 + ε + ε2)T ≤ (1 + 2ε)T . Each path flow f ′

P ′ still satisfies a
demand of dP . Since the inflow rates into the paths are Δ-constant, and τ ′ was
rounded to multiples of Δ, each path flow and f̄ are Δ-constant. The important
task left is to show that capacities (1 + ε)u are obeyed.
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For a = ai ∈ AP we have f ′
P ′(a, t) = dP

zΔχ[0,zΔ)(t − h′
i). We can conveniently

relate these smoothed flow rates to fP (a, t).

f ′
P ′(a, t) =

dP

zΔ
χ[0,zΔ)(t− h′

i) =
dP

zΔ
χ[h′

i−hi,zΔ+h′
i−hi)(t− hi)

≤ dP

zΔ
χ[0,zΔ+|V |Δ)(t− hi)

=
dP

zΔ

zΔ+|V |Δ−1∑

θ=0

χ[θ,θ+1)(t− hi) .

We continue by assuming t ∈ Z, so we know that t − hi ∈ Z. For integral
arguments, we can express χ[θ,θ+1)(t) more convoluted as

∫ t−θ+1

t−θ
χ[0,1)(1−μ) dμ

and reassemble the last sum into one integral:

f ′
P ′(a, t) ≤ dP

zΔ

∫ t−hi+zΔ+|V |Δ

t−hi

χ[0,1)(1 − μ) dμ

=
1

zΔ

∫ zΔ+|V |Δ

0

fP (a, t + 1− μ) dμ .

As promised, by smoothing the flow, the new path flow is still close to the
averaged original flow, and importantly, the delayed flow units corresponding to
[zΔ, zΔ + |V |Δ) only weigh in at 1

zΔ their original rate.
For a ∈ A, we can now determine the capacity needed by the flow f̄ resulting

from the path flows. For t ∈ Z, it holds that
∫ t+�a

t

f̄(a, θ) dθ =
∫ t+�a

t

∑

P ′:P∈P
f ′

P ′(a, θ) dθ

≤ 1
zΔ

∫ t+�a

t

∫ zΔ+|V |Δ

0

∑

P∈P
fP (a, θ + 1− μ) dμ dθ

=
1

zΔ

∫ zΔ+|V |Δ

0

∫ t+�a

t

f(a, θ + 1− μ) dθ dμ

≤ 1
zΔ

∫ zΔ+|V |Δ

0

ua dμ =
zΔ + |V |Δ

zΔ
ua .

Since z = |V |/ε, the last term is exactly (1 + ε)ua. We satisfy these capacities
for all t ∈ Z. This covers all required test points iΔ and jΔ − la. Thus, f̄ is a
feasible Δ-constant flow on N ′ with time horizon (1 + 2ε)T , satisfying the same
demands as f . ��
Finally, our main theorem falls into place.

Theorem 1. Given a feasible instance of the Dynamic Transshipment Prob-
lem and ε > 0, one can determine, in time polynomial in the input size and ε−1,
a feasible flow on N̄ = (V, A, S+, S−, τ, (1 + ε)u, �) with time horizon (1 + ε)T
satisfying the given demands d.
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Proof. We can assume ε < 1 and use Lemma 6 for ε′ chosen such that 1
4ε < ε′ ≤

1
2ε and 1/ε′ ∈ Z. If Δ = 0, then T ≤ n/ε′2, and we can solve the exact problem
for Δ = 1. Otherwise, we can compute f̄ on (V, A, S+, S−, τ ′, (1 + ε′)u, �) with
time horizon (1 + 2ε′)T ≤ (1 + ε)T . Since T/Δ ∈ O(|V |/ε2), the flow f̄ can be
obtained efficiently by solving a linear program of polynomial size. According
to Lemma 5, f̄ is also a feasible flow for transit times τ , and increasing the
capacities from (1 + ε′)u to (1 + ε)u is no problem, either. ��
Note that simple examples exist showing that the slightly stronger approach
of Fleischer and Skutella for the classical flow over time model (that does not
require a violation of capacities) cannot be generalized to the setting of aggregate
capacities.

4 Conclusion

We have introduced a generalized model of flows over time and presented a
fully polynomial time approximation scheme with resource augmentation for
the problem of computing optimal flows for this model. We only mention that
the FPTAS can easily be generalized to the setting with multiple commodities,
costs on the arcs and a given bound on the total flow cost.

Acknowledgements. The authors are indebted to Martin Guenther, Ronald
Koch, and José Verschae for many helpful comments and discussions.
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Abstract. Relative worst order analysis is a supplement or alternative
to competitive analysis which has been shown to give results more in ac-
cordance with observed behavior of online algorithms for a range of dif-
ferent online problems. The contribution of this paper is twofold. First,
it adds the static list accessing problem to the collection of online prob-
lems where relative worst order analysis gives better results. Second,
and maybe more interesting, it adds the non-trivial supplementary proof
technique of list factoring to the theoretical toolbox for relative worst
order analysis.

1 Introduction

The static list accessing problem [29,4] is a well-known problem in online algo-
rithms. Many deterministic as well as randomized algorithms are known, and
these have been investigated theoretically as well as experimentally. See [10] for
a discussion of the importance of the problem in relation to dictionary imple-
mentation, connections to paging, and applications in compression algorithms.
For readers unfamiliar with the standard algorithms for list accessing or rel-
ative worst order analysis, we refer to the rigorous definitions in Sections 2
and 3.

The starting point for our work was the discrepancy between the findings ob-
tained using competitive analysis [21,29,23] and the observations made through
experimental work. Competitive analysis finds that Move-To-Front is optimal
while Frequency-Count and Transpose have lower bounds on their competitive
ratio which grow linearly with the length of the list [10]. In contrast, experi-
mental results [9] suggest that Move-To-Front and Frequency-Count are almost
equally good and both are far better than Transpose. Results from [7] seem to
indicate the same.

To a large extent driven by the paging problem [10] and the difficulties there
in theoretically separating various algorithm proposals, many alternative per-
formance measures have been developed to supplement standard competitive
analysis. Examples include [31,8,24,25,11,5]; see [16] for a survey. Some of these
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measures are tailored towards a specific online problem, whereas others are more
generally applicable; see [13] for a comparative study of these measures on a sim-
ple problem.

Of these alternatives to competitive analysis relative worst order analysis
[11,12] is the measure that has been applied to the largest variety of online
problems. Results that are in accordance with experiments have been derived
for a range of fairly different online problems in situations where competitive
analysis has given the “wrong” answer. Online problems of this nature include
(but are not limited to) the following:

– Classical bin packing: Worst-Fit is better than Next-Fit [11].
– Dual bin packing: First-Fit is better than Worst-Fit [11].
– Paging: LRU is better than Flush-When-Full and look-ahead helps [12].
– Scheduling: minimizing makespan on two related machines, a post-greedy

algorithm is better than scheduling all jobs on the fast machine [19].
– Bin coloring [26]: a natural greedy-type algorithm is better than just using

one open bin at a time [18].
– Proportional price seat reservation: First-Fit is better than Worst-Fit [14].

We apply relative worst order analysis to the static list accessing problem. We
first extend the list factoring technique [9,3] known from competitive analy-
sis to relative worst order analysis. We then apply the technique to the three
deterministic online list accessing algorithms Move-To-Front, Time-Stamp, and
Frequency-Count. We show that these algorithms are equally good and much bet-
ter than Transpose when analyzed using relative worst order analysis, thereby
obtaining results that are in accordance with the cited experimental work.

Adding static list accessing to the collection of problems above where rela-
tive worst order analysis gives better or more nuanced results than competitive
analysis is a step in documenting to what extent relative worst order analysis is
generally applicable. It is also interesting that relative worst order analysis can
be equipped with a powerful supplementary proof techniques such as list factor-
ing. To our knowledge, relative worst order analysis is the first of the alternative
performance measures to be equipped with a list factoring lemma.

Some of the deterministic list accessing algorithms are quite old. It is diffi-
cult to pin-point the origin of Frequency-Count, since it is intimately related to
probability theoretical considerations, and it is not clear when it started being
viewed as an algorithm. Move-To-Front and Transpose were formulated in [27].
Time-Stamp [1] is a deterministic algorithm that arose as a special case of a
family of randomized algorithms.

In addition to the deterministic algorithms, we also consider the randomized
algorithms BIT [28] and Randomized-Move-To-Front1. Deterministic and ran-
domized online algorithms are often compared informally, but it is not clear how

1 In the many papers that discuss Randomized-Move-To-Front, we have not been able
to find a reference to the paper with the first definition of the algorithm. However,
[7] cites personal communication with J. Westbrook from 1996 regarding properties
of the algorithm.
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much sense it makes to compare a worst-case guarantee with an average-case
performance. We compare the two randomized algorithms to each other and
find them incomparable whereas competitive analysis slightly favors the former
(often referred to as a “surprising result”), showing that BIT is 7

4
-competitive

and Randomized-Move-To-Front is 2-competitive against an oblivious adver-
sary [28,20].

For early related work, we refer the reader to [4,10]. Newer work obtains
separations between list accessing algorithms by analyzing these with respect to
some measure of locality of reference [2,6,15].

2 List Accessing

In the static list accessing problem [29,4], we have a fixed collection of items
arranged in a linear list, L = (a1, a2, . . . , a�), of length �. The request sequence,
I, consists of requests of access to items in the list, and the accesses must be
served in an online manner. The cost of accessing an item depends on its position
(index) in the list. In the full cost model, accessing an item currently at index
j costs j. In the partial cost model, the final positive access is not counted, so
accessing an item currently at index j costs j − 1, denoted negative accesses.

After accessing an item, it can be moved to any position further towards
the front of the list without any additional cost. Such a move can be seen as a
number of transpositions of the accessed item with items preceding it in the list.
The transpositions used to perform such a move are denoted free. Furthermore,
at any time, an algorithm may exchange two adjacent items in the list at a
cost of one. Such a transposition is denoted a paid transposition. The objective
of a list accessing algorithm is to use free and paid transpositions in order to
minimize the overall cost of serving the request sequence. Further discussion of
the modelling issues can be found in [10].

Many different algorithms have been proposed for the list accessing problem.
Some of the most well-known deterministic paging algorithms are the following.

MTF (Move-To-Front): After accessing the requested item, MTF moves the
item to the front of the list.

FC (Frequency-Count): After accessing the requested item, FC moves the item
forward in the list such that the resulting list is in sorted order with respect
to the frequency with which the items have been accessed, i.e., for every item,
FC maintains a counter which is incremented on an access to the item and
the list is sorted in non-increasing order of the counters. FC only moves the
accessed item forward the least number of positions necessary to maintain
the sorted order.

TS (Time-Stamp): After accessing item ai, it is inserted in front of the first item
aj (from the front of the list) that precedes ai in the list and was accessed
at most once since the last access to ai. The algorithm does nothing if there
is no such item aj or if ai is accessed for the first time.

TRANS (Transpose): After accessing the requested item, it is transposed with
the item in front of it in the list. If the item is already at the front of the
list, it stays there.
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In addition to the above deterministic algorithms, we also consider the fol-
lowing well-known randomized algorithms.

BIT: For each item in the list, BIT [28] maintains a bit. Before processing a
request sequence, BIT initializes the bits independently and uniformly at
random. On a request for an item, BIT first complements the items bit. If
the bit is then one, the item is moved to the front of the list. Otherwise, BIT
does not move the item.

RMTF (Randomized-Move-To-Front): After each access to a requested item,
RMTF moves the item to the front of the list with probability 1

2 .

3 Relative Worst Order Analysis

The relative worst order ratio was first introduced in [11] in an effort to combine
the desirable properties of the max/max ratio [8] and the random-order ratio [24].
The measure was later refined in [12].

Instead of comparing online algorithms to an optimal offline algorithm (and
then comparing their competitive ratios), two online algorithms are compared
directly. However, instead of comparing their performance on the exact same
request sequence, they are compared on their respective worst permutations of
the same sequence.

Formally, if I is a request sequence of length n and σ is a permutation on
n elements, then σ(I) denotes I permuted by σ. Let A be a list accessing algo-
rithm and let A(I) denote the cost of running A on I. Define AW(I) to be the
performance of A on a worst possible permutation of I with respect to A, i.e.,
AW(I) = maxσ{A(σ(I))}.

For any pair of algorithms A and B, we define

cu(A, B) = inf{c | ∃b : ∀ I : AW(I) ≤ c BW(I) + b} and
cl(A, B) = sup{c | ∃b : ∀ I : AW(I) ≥ c BW(I)− b}.

Intuitively, cl and cu can be thought of as tight lower and upper bounds, respec-
tively, on the performance of A relative to B.

If cl(A,B) ≥ 1 or cu(A,B) ≤ 1, the algorithms are said to be comparable and
the relative worst order ratio, WRA,B, of algorithm A to algorithm B is defined.
Otherwise, WRA,B is undefined.

If cu(A,B) ≤ 1, then WRA,B = cl(A,B), and
if cl(A,B) ≥ 1, then WRA,B = cu(A,B).

When either cl(A,B) ≥ 1 or cu(A,B) ≤ 1 holds, the relative worst order ratio is
a bound on how much better the one algorithm can be. If WRA,B < 1, then A is
better than B, and if WRA,B > 1, then B is better than A. If A is better than B
according to the relative worst order ratio, A and B are said to be comparable
in A’s favor. Finally, if the ratio is one, then the algorithms perform identically
according to the relative worst order ratio.
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In [11,12], it was shown that the relative worst order ratio is a transitive
measure, i.e., the relative worst order ratio defines a partial ordering of the
algorithms for a given problem.

4 List Factoring

The list factoring technique was first introduced by Bentley and McGeoch [9]
and later extended and improved in a series of papers [22,30,1,3]. It reduces the
analysis of list accessing algorithms to lists of size two. Previously the technique
was developed and applied only in the context of competitive analysis, where it
can be used to prove upper bounds on the competitive ratio [10]. In this section,
we show that list factoring can also be applied in the context of relative worst
order analysis to separate online algorithms and prove upper bounds.

In the following, let A denote any online list accessing algorithm that does not
use paid transpositions. We are going to consider the partial cost model where
accessing the ith item in the list costs i−1. For any request sequence I, let A�(I)
denote the cost A incurs while processing I in the partial cost model.

Consider the list when A is about to process the ith request Ii and define

A�(aj , i) =

{
1 if aj is in front of Ii in the list
0 otherwise (including aj = Ii)

for all items aj in the list.
We also define

A�
ab(I) =

∑

i:Ii∈{a,b}
(A�(a, i) + A�(b, i))

It is an easy observation, also made in [10], that we can then write the cost
of A on a sequence I in the partial cost model as

A�(I) =
∑

{a,b}⊆L,a�=b

A�
ab(I)

Let Iab be the projection of I over a and b, i.e., the sequence obtained from I
by deleting all requests to items different from a or b.

An algorithm A is said to have the pairwise property, if for all pairs, a and b,
of two items in L, we have

A�
ab(I) = A�(Iab)

In competitive analysis, this setup can be used to prove upper bounds on the
competitive ratio (in the partial cost model) of algorithms that have the pairwise
property. In addition, if the algorithms also are cost independent (the decisions
they make are independent of the cost), then the ratio carries over to the full
cost model [10].

For the relative worst order ratio, we show that this technique can also be
used to separate algorithms and prove upper bounds.
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Consider an algorithm A that has the pairwise property. It follows that

A�
W(Iab) = max

σ
A�(σ(Iab)) = max

σ
A�((σ(I))ab) = max

σ
A�

ab(σ(I))

The three equalities follow from the definition of a worst order, simple properties
of permutations, and the pairwise property, respectively.

We now say that A has the worst order projection property, if and only if for
all sequences I, there exist a worst ordering σA(I) of I with respect to A, such
that for all pairs {a, b} ⊆ L (a �= b), σA(I)ab is a worst ordering of Iab with
respect to A.

Using the above, we obtain a lemma similar to the Factoring Lemma for
competitive analysis [10].

Lemma 1. Let A and B be two online list accessing algorithms that do not
use paid transpositions and that have the pairwise property and the worst order
projection property, and let L be a list. If there exists constants c and b1 such that
for every pair {a, b} ⊆ L (a �= b), and for every request sequence I, A�

W(Iab) ≤
c B�

W(Iab)+b1, then there exists a constant b2 such that for every request sequence
I, A�

W(I) ≤ c B�
W(I) + b2.

In addition, if A and B are cost independent and c ≥ 1, then AW(I) ≤
c BW(I) + b2.

Proof. Consider any algorithm A satisfying the hypothesis. Then

A�
W(I) = max

σ
A�(σ(I)) = max

σ

∑

{a,b}⊆L,a�=b

A�
ab(σ(I))

=
∑

{a,b}⊆L,a�=b

max
σ

A�
ab(σ(I)) =

∑

{a,b}⊆L,a�=b

A�
W(Iab)

Now consider two algorithms A and B satisfying the hypothesis. We get

A�
W(I) =

∑

{a,b}⊆L,a�=b

A�
W(Iab) ≤

∑

{a,b}⊆L,a�=b

(c B�
W(Iab) + b1)

= c
∑

{a,b}⊆L,a�=b

B�
W(Iab) +

∑

{a,b}⊆L,a�=b

b1 = c B�
W(I) +

(
�

2

)

b1

Hence, we have the result in the partial cost model. Now assume A and B are
cost independent and c ≥ 1. It is clear that for a cost independent algorithm A,
the cost in the partial and the full cost model are related as AW(I) = A�

W(I)+| I |.
Hence, A�

W(I) ≤ c B�
W(I) + b implies that AW(I) ≤ c BW(I) + b and the result

follows.

It follows from the above that we can use list factoring to separate online algo-
rithms, and an upper bound on the relative worst order ratio on lists of size two
carries over to lists of any size. However, as it is also the case for competitive
analysis, the list factoring technique cannot be used to prove lower bounds.
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For randomized algorithms, the worst ordering is defined in terms of the al-
gorithm’s excepted cost when run on the sequence. In this case, a randomized
algorithm is said to have either of the two properties if for all settings of the
random choices made by the algorithm (a deterministic execution of the algo-
rithm), the property holds. With this definition, it is clear that the list factoring
technique can also be applied to randomized algorithms.

In the following, we repeatedly use the fact that MTF, FC, and TS have the
pairwise property and are cost independent [10].

5 Worst Orderings

Intuition suggests that one can obtain a worst ordering of any sequence for most
online list accessing algorithms by considering the request sequence as a multiset
of items and always request the item from the multiset which currently is farthest
back in the list.

Formally, for any deterministic online list accessing algorithm A and any re-
quest sequence I, we inductively define the FB ordering (Farthest Back ordering)
of I as follows. Let S0 be the multiset of all items requested in I. Let Si−1 be S0

with the first i − 1 items in the FB ordering removed. The ith item in the FB
ordering of I with respect to A, FBA(I)i, is the item in Si−1 which currently is
farthest back in the list after A has processed the first i− 1 requests of FBA(I).
In addition, we say that A has the FB property if for any request sequence the
FB ordering of that sequence is a worst ordering with respect to A.

When the algorithm in question is obvious, we drop it from the notation and
write FB(I). Note that for any deterministic algorithm and request sequence,
the FB ordering of this input sequence is uniquely determined.

Observe that TRANS does not have the FB property as the following example
illustrates. Consider the request sequence I = 〈a, b, c, c〉 with the initial list L =
(a, b, c). In this case, we have FB(I) = 〈c, b, c, a〉 with TRANS(FB(I)) = 10.
However, on the ordering I′ = 〈c, c, b, a〉, TRANS incurs a cost of 11. Hence,
FB(I) is not a worst ordering for TRANS.

The other deterministic algorithms considered in this chapter do have the FB
property.

Lemma 2. MTF, TS, and FC all have the FB property.

Proof. Omitted due to space restrictions; see the full version of the paper [17].

When applying the list factoring technique, we use the following lemma.

Lemma 3. If a deterministic algorithm has the FB property, then it also has
the worst order projection property.

Proof. This holds since a projection of an FB ordering is again an FB ordering.

Thus, MTF, FC, and TS all have the worst order projection property.
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6 Algorithm Comparisons

6.1 Deterministic Algorithms

Theorem 1. The algorithms MTF and FC perform identically according to the
relative worst order ratio.

Proof. We apply the list factoring technique introduced in Section 4 since both
FC and MTF have the FB property.

Consider any request sequence I and any pair {a, b} ⊆ L, a �= b. Assume
without loss of generality that the initial list has a in front of b, i.e., Lab = (a, b).

Now, the FB ordering of Iab for MTF is of the form 〈(b, a)m〉 with a possible
tail of repeated requests to either a or b, whichever is requested the most in I. The
FB ordering for FC is of the form 〈(b, a, a, b)�

m
2 �〉 with a possible tail of repeated

requests to either a or b, whichever is requested the most in I. Observe that if m
is not divisible by two, there is an extra request to either a or b. However, such
a request only contributes a constant extra cost which we can ignore. It now
follows that the cost for FC on its worst permutation (the FB ordering) is the
same as the cost for MTF on its worst permutation (the FB ordering), except
for a possible additive constant.

Theorem 2. The algorithms MTF and TS perform identically according to the
relative worst order ratio.

Proof. We apply the list factoring technique introduced in Section 4 since both
TS and MTF have the FB property.

Consider any request sequence I and any pair {a, b} ⊆ L, a �= b. Assume
without loss of generality that the initial list projected onto a and b has a at the
front, i.e., Lab = (a, b).

The FB ordering of Iab for TS is of the form 〈(b, b, a, a)�
m
2 �〉. The remaining

arguments are exactly the same as in the proof of Theorem 1.

Combining the previous two lemmas and using the fact that the relative worst
order ratio is a transitive measure, we arrive at the following corollary.

Corollary 1. The algorithms MTF, TS, and FC perform identically according
to the relative worst order ratio.

We now show that TRANS cannot be better than any of MTF, TS, and FC
according to the relative worst order ratio.

Lemma 4. There exists a constant b such that for any request sequence I,

MTFW(I) ≤ TRANSW(I) + b

Proof. Omitted due to space restrictions; see the full version of the paper [17].

On the other hand, TRANS can be much worse than MTF, FC, and TS under
the relative worst order ratio.
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Theorem 3. WRTRANS,MTF ≥ �
2 .

Proof. Lemma 4 shows that TRANS cannot be better than MTF according to
the relative worst order ratio. Assume that the initial list is L = (a1, a2, . . . , a�)
and consider the request sequence I = 〈(a�, a�−1)m〉.

It is clear that MTF incurs a cost of 2� + 4(m− 1) on its worst permutation
of I. On the other hand, TRANS leaves the two items at the end of the list and
incurs a cost of 2m�. For m approaching infinity, the ratio approaches �

2
.

6.2 Randomized Algorithms

In this section, to make the proofs more readable, we use the partial cost model.
Here, as in the rest of this paper, all results hold for the full cost model as well.

Lemma 5. For integers n ≥ 1 and m ≥ 2 and a request sequence I = 〈(b, am)n〉
with initial list L = (a, b), the expected cost of BIT for a single repetition of
〈b, am〉 is 7

4
, and I is its own worst permutation with respect to BIT.

Proof. For each access to b, at most the next two accesses to a contribute to
the expected cost of BIT. It follows by induction that after each repetition of
〈b, am〉, a is at the front of the list for BIT. Hence, the expected cost of the
prefix 〈b, a〉 of the next repetition is 3

2
, and after that a is at the front of BIT’s

list with probability 3
4 . Thus, the expected cost of the following access to a is 1

4 ,
after which a is at the front of BIT’s list with probability 1, and the remaining
accesses to a in the current repetition do not cost anything. Hence, for any m,
the total expected cost of a single repetition is 7

4 for BIT. It is clear that I is its
own worst permutation for BIT.

Lemma 6. There exists a request sequence I such that the expected cost for
RMTF on its worst permutation of I is strictly less than the expected cost for
BIT on its worst permutation.

Proof. Consider the request sequence I = 〈(b, a, a)n〉 for some integer n with the
initial list L = (a, b).

For BIT, by Lemma 5, the cost of each repetition of 〈b, a, a〉 is 7
4
.

For RMTF, first consider any subsequence 〈b, am〉 of a worst ordering of I
for some positive integer m. Assume that before this subsequence, in RMTF’s
execution, a is at the front of the list with probability p.

After the access to b, a is not at the front with probability 1− p
2 . In this case,

the up to m requests to a while it is not at the front can be described by a
truncated geometric distribution [10, Lemma 4.1] with an expected number of
2

(
1− 1

2m

)
. Hence, the cost of the entire subsequence is

cm(p) = p +
(
1− p

2

)
2

(

1− 1
2m

)

= 2− 2− p

2m

The probability of a being at the front of the list after the repetition is then
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1− 1− p
2

2m
= 1− 2− p

2m+1

Now, consider the input sequence 〈(b, am)n〉 for n approaching infinity. The
probability of a being at front of the list after each repetition of bam approaches
pm, where

pm = 1− 2− pm

2m+1
⇒ pm = 1− 1

2m+1 − 1
Hence, the cost of a repetition approaches

cm(pm) = 2− 2− pm

2m
= 2− 1

2m
− 1

2m(2m+1 − 1)
=

2m+2 − 4
2m+1 − 1

The results are summarized in Table 1, including values for small m.

Table 1. The cost and the value of p after the phase for various m

m cm(p) p after phase pm cm(pm)

0 p p
2

0 0

1 1 + p
2

1
2

+ p
4

2
3

4
3

2 3
2

+ p
4

3
4

+ p
8

14
15

12
7

3 7
4

+ p
8

7
8

+ p
16

30
31

28
15

≥ 4 ≤ 2 ≤ 1 ≤ 1 ≤ 2

Returning to I, assume for the moment that the ordering of I is indeed a worst
ordering for RMTF. By the above, it is clear that for p < 1, the expected cost
for RMTF to serve a repetition is strictly less than the expected cost for BIT,
and only on the very first repetition is p = 1; all following repetitions have p < 1.
Also, the cost of a repetition approaches c2(p2) = 12

7 for n approaching infinity.
This is strictly less than the cost of BIT, 7

4 .
Now, we only need to show that the ordering of I is a worst ordering for RMTF.

The proof of this is omitted due to space restrictions; see the full version of the
paper [17]. The approach is to match up phases of the form 〈b, am〉.
Lemma 7. There exists a request sequence I such that the expected cost for BIT
on its worst permutation of I is strictly less than the expected cost for RMTF on
its worst permutation.

Proof. Consider the request sequence I = 〈(b, a, a, a)n〉, n ≥ 1, with the initial
list L = (a, b).

For BIT, by Lemma 5, the cost of each repetition of 〈b, a, a, a〉 is 7
4 , and I is

its own worst permutation.
For RMTF, by Table 1, the cost of each repetition approaches c3(p3) = 28

15
from above. Since this is strictly more than 7

4 , RMTF(I) > BITW (I).
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An interesting observation is that the sequences used in the previous lemmas are
both repetitions of the pattern 〈b, am〉 for different values of m. The previous
two lemmas imply the following:

Corollary 2. BIT and RMTF are incomparable under relative worst order
analysis.

7 Open Problems

In order to apply the list factoring technique together with relative worst or-
der analysis, both of the “pairwise properties” and the “worst order projection
properties” must hold. We have not been able to show a dependence between
these two properties, i.e., does one follow from the other? On the other hand,
we have not been able to exhibit an example for which one holds and the other
does not. Another interesting question is whether the list factoring technique
can be used with performance measures other than competitive analysis and, as
demonstrated here, relative worst order analysis.
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Abstract. The r-domination search game on graphs is a game-
theoretical approach to the investigation of several graph and hyper-
graph parameters including treewidth and hypertree width. The task is
to identify the minimum number of cops sufficient to catch the visible
and fast robber. In r-domination search, the robber is being arrested if
he resides inside a ball of radius r around some cop. In this setting, the
power of the cops does not depend only on how many they are but also
on the local topology of the graph around them. This is the main rea-
son why the approximation complexity of the r-domination search game
varies considerably, depending on whether r = 0 or r ≥ 1. We prove that
this discrepancy is canceled when the game is played in (non-trivial)
graph classes that are closed under taking of minors. We give a constant
factor approximation algorithm that for every fixed r and graph H , com-
putes the minimum number of cops required to capture the robber in the
r-domination game on graphs excluding H as a minor.

Keywords: Domination search, graph minors, approximation algorithms.

1 Introduction

Graph searching games are played on graphs (in this paper all graphs are undi-
rected and simple), where a group of searchers (cops) tries to catch a fugi-
tive (robber). In the model known as a node searching, the robber stands on
a vertex of the graph and at any moment he can run (arbitrarily fast) to an-
other vertex along a path in the graph. However he is not allowed to run through
a vertex occupied by a cop [14,15]. Each cop at any time either stands on a vertex
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or is in a helicopter (that is, is temporarily removed from the game). The aim
of the cops is to capture the robber by landing a cop via helicopter on a vertex
occupied by the robber and the robber’s objective is to avoid capture. There are
two variants of the game, which were studied intensively depending on whether
cops posses complete information on the current location of the robber (i.e. the
robber is visible to cops) [7,22] or when the cops have no such information (i.e.
the robber is invisible) [14,17,18,20]. It appeared that the visible case is strongly
related to the fundamental graph parameter called treewidth, and that the in-
visible case is related to the pathwidth of a graph. We refer to [11] for further
references on graph searching.

In the domination or r-domination versions of graph searching, cops’ aim is
more modest: instead of capturing the robber their task is that, during the game,
at least one of the cops will be at distance r or closer to the robber (the distance is
in the standard shortest path metric of the graph). Another interpretation of the
r-domination game is that cops have more power and can catch the robber not
just by occupying his vertex but by just having the robber in its r-neighborhood.
As in the case of classical search games, there are two versions of the game, one
with visible [16] and the other with invisible robber [2,10].

In this paper we study the r-domination search game with a visible robber.
This game is a natural generalization of the search game introduced by Seymour
and Thomas [22], and thus for r = 0, k + 1 cops can capture the robber on
a graph G if and only if the treewidth of G is at most k. For r = 1, the r-
domination search is strongly related to the Marshals and Robber game played
on hypergraphs. The Marshals and Robber game is a game-theoretic approach to
the investigation of the hypertree-width, another intensively studied parameter
within the context of several applications [1,12,13]. Kreutzer and Ordyniak have
shown in [16] that for any hypergraph H, a graph GH with the property that
the minimum number of marshals required to win on H equals the 1-domination
cop number of GH can be constructed. That way r-domination search game is
a powerful model serving as a general game-theoretical model for a number of
fundamental parameters.

However, there is a price one has to pay for such a generality—the compu-
tational complexity of the game changes drastically with even small changes of
r, like from 0 to 1. For example, computing the treewidth of a graph, and thus
the minimum number of cops for r = 0 is fixed parameter tractable [3], while
for r = 1 the problem becomes W [2]-hard [16]. This change is also indicated
by the the fact that the corresponding graph parameter is not closed under the
operation of taking a graph minor, and thus most of the powerful techniques
from Graph Minor Theory cannot be applied. Moreover, the search number can
be approximated within a factor of c · √log n for r = 0, while already for r = 1
it is NP-complete to approximate he search number within a c · log n factor
[16]. The main explanation of this behavior is that for r ≥ 1 the power of the
searchers depends not only on how many they are but also on the local topology
of their position (i.e. their r-neighborhoods). The results of this paper indicate
that this drastic change is canceled when imposing the sparsity restriction of the
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absence of some fixed graph as a minor: then, the approximation complexity of
the general problem (when r ≥ 1) does not deviate from the special case (where
r = 0).

In this paper we give several approximation algorithms computing the min-
imum number of cops required to win in the r-dominating search games for
graphs excluding some fixed graph as a minor. For planar graphs, and more
generally, for graphs excluding some fixed apex graph as a minor, we show that
for every fixed r ≥ 1, the r-domination cop number of a graph G can be approx-
imated within a constant multiplicative factor by the treewidth of G (and hence
by the 0-domination cop number). Since there are constant factor approxima-
tion algorithms for the treewidth of such graphs, our results yield approximation
algorithms. While techniques from Graph Minor Theory do not seem to be ap-
plicable for r ≥ 1, we use the recent results from [9] on contractions in graphs.
This type of arguments cannot be extended further. For example, it is well known
that the treewidth of a (k × k)-grid is k. If we add just one universal vertex v
adjacent to all vertices of the grid, we obtain a graph of treewdith k+1. Clearly,
this graph belongs in the class of graphs excluding K6 as a minor. However, for
r ≥ 1, one cop placed on v is at distance at most r to every vertex of the graph,
and one cop can always win. Thus on graphs excluding some fixed graph H as
a minor, the r-domination cop number of a graph cannot be approximated by
its treewidth. And this marks the borderline where the difference between the
cases r = 0 and r ≥ 1 becomes computationally essential.

Our approximation algorithm for computing the r-domination cop number of
an H-minor-free graph G is technical. The main idea is to construct in polyno-
mial time a new H-minor-free graph G′ such that its treewidth sandwiches up to
a constant factor the cop number of G. Our approach extends the technique used
in [8] for approximating a series of graph or hypergraph parameters including
fractional and generalized hypertree-width. This reduces the whole problem to
the case where r = 0, which is known to have a constant factor approximation
for H-minor free graphs, due to the results of Feige et al. in [6]. In that sense,
our results constitute an extension of the corresponding results of [6], for every
r ≥ 1.

The paper is organized as follows. In Section 2, we give the formal definition
of the dominating search game as well as an annotated extension of it. In the
same section, we also give the main definitions and some preliminary results
that are important for the proofs of the later sections. Our results on apex
minor-free graphs are presented in Section 3, while the approximation algorithm
for H-minor-free graphs and the proofs of the results supporting its correctness
are presented in Section 4. Finally, in Section 5 we conclude with some open
problems.

2 Definitions and Preliminaries

We consider finite undirected graphs without loops or multiple edges. The ver-
tex set of a graph G is denoted by V (G) and its edge set by E(G), or simply by V
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and E if this does not create confusion. If U ⊆ V (G) then the subgraph of G
induced by U is denoted by G[U ]. For a vertex v, the set of vertices which are
adjacent to v is called the (open) neighborhood of v and denoted by NG(v). The
closed neighborhood of v is the set NG[v] = NG(v) ∪ {v}. For U ⊆ V (G), we
put NG[U ] =

⋃

v∈U

NG[v]. The distance distG(u, v) between vertices u and v in

a connected graph G is the number of edges in a shortest (u, v)-path in G. For
a positive integer r, N

(r)
G [v] = {u ∈ V (G) : distG(u, v) ≤ r} and for U ⊆ V (G),

N
(r)
G [U ] =

⋃

v∈U

N
(r)
G [v]. Whenever there is no ambiguity we omit the subscripts.

If U ⊆ V (G) (resp. u ∈ V (G) or E ⊂ E(G) or e ∈ E(G)) then G − U (resp.
G−u or G−E or G−e) is the graph obtained from G by the removal of vertices
of U (resp. of vertex u or edges of E or of the edge e). For graphs G1 and G2,
G1 ∩G2 (G1 ∪G2 respectively) is the graph with the vertex set V (G1) ∩ V (G2)
and the edge set E(G1) ∩ E(G2) (the vertex set V (G1) ∪ V (G2) and the edge
set E(G1) ∪ E(G2) respectively).

Cops and Robber game. We consider a generalization of the Helicopter Cops and
Robber game introduced by Seymour and Thomas [22]. Let G be a connected
undirected graph, and let r be a non-negative integer. The distance r domination
search game is played by two players: cop and robber. The cop-player has a team
of cops who attempt to capture the robber. The robber stands on a vertex of the
graph, and can at any time run at great speed to any other vertex along a path
of the graph. However, he is not permitted to run through a vertex at distance at
most r from a vertex occupied by a cop. Each cop at any time either stands on a
vertex or is in a helicopter (that is, is temporarily removed from the game). The
aim of the cop-player is to capture the robber by landing a cop via helicopter
on a vertex at distance at most r from the vertex occupied by the robber, and
the robber’s objective is to avoid capture. The robber can see the movements of
helicopters and may run to a new vertex before the helicopter lands. We consider
the variant of the game when the robber is visible. For an integer r and a graph
G, we denote by dcr(G) the minimum number of cops sufficient for the cops to
win on graph G and call it the r-domination cop number.

Black & White Domination Cops and Robber game. It is convenient for us to
consider an annotated variant of the Domination Cop and Robber Game. In
this variant the robber can only occupy vertices from a prescribed set and move
along edges of the subgraph induced by this set. Let G be a graph, and let B
(black vertices) and W (white vertices) be a partition of the set of vertices V (G).
We assume that B 
= ∅ (the set W can be empty). We call a graph with a given
partition B and W the black and white graph. By B(G) and W (G) we denote
the set of black vertices and the set of white vertices of G respectively.

Let G be a black and white graph, and let r be a non-negative and k be positive
integers. We define the position of the cops as a set of vertices U ⊂ V (G), |U | ≤ k,
occupied by the cops (clearly, we can assume that each vertex is occupied by
at most one cop). We denote by Uk the set of all possible position of the cops.
The position of the robber is a vertex of B(G) occupied by him. The strategy
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of cops is a function C : Uk × B(G) → Uk. Calls of this function correspond to
moves of cops. If the cops have a position U and the robber has a position v,
then the cops move to the position U ′ = C(U, v): cops remain on the vertices
of U ∩ U ′, the cops from U \ U ′ are removed from the graph, and then cops are
placed on vertices of U ′ \ U . Respectively, we define the strategy of the robber
as a function R : Uk × Uk × B(G) → B(G) such that if v′ = R(U, U ′, v) then
there is a (v, v′)-path P in G[B(G)] with the property V (P )∩N

(r)
G [U ∩U ′] = ∅.

Calls of this function corresponds to moves of the robber. If the cops are moving
from a position U to U ′ and the robber occupies v, then he moves from v to
v′ = R(U, U ′, v).

The game is defined by the (possibly infinite) sequence of pairs from
Uk × B(G) (U0, v0), (U1, v1), . . ., where U0 = ∅, Ui = C(Ui−1, vi−1) and
vi = R(Ui−1, Ui, vi−1). This sequence is finite if there is m ≥ 1 such that
vm ∈ N

(r)
G (Um). In this case we say that the cop-player wins, otherwise it is

said that the robber-player wins.
A strategy of cops is called a winning strategy, if cop-players wins for

any choice of a strategy by the robber-player. The r-domination cop number
dcr(G, B(G)) is the minimum number of cops k such that they have a winning
strategy of cops. For W (G) = ∅, we let dcr(G) = dcr(G, V (G)). The winning
strategy for the robber is a strategy such that the robber wins against any strat-
egy of cops. In what follows we usually give informal descriptions of strategies of
the cops and the robber by describing their movements. It is easy to make the
following two observations.

Proposition 1. For any two non-negative integers r, r′, r ≤ r′, and any black
and white graph G, dcr(G, B(G)) ≥ dcr′(G, B(G)).

Proposition 2. Let G be a black and white graph, X ⊆ W (G) and N
(r)
G [X ] ∩

B(G) = ∅. Then dcr(G, B(G)) = dcr(G−X, B(G)).

The complexity of the r-Domination Cops and Robbers problem was consid-
ered in [16]. This problem asks for given non-negative integer r, positive integer
k and a given connected graph G, whether dcr(G) ≤ k.

Proposition 3 ([16]). For r ≥ 1, the r-Domination Cops and Robbers
problem is

i) NP-hard,
ii) W[2]-hard when parameterized by k, and
iii) there is a constant c such that there is no polynomial time algorithm that

approximates the r-domination cop number for n-vertex graphs within a mul-
tiplicative factor c · log n, unless P 
= NP.

Contractions and minors. Given an edge e = {x, y} of a graph G, the graph
G/e is obtained from G by contracting the edge e, i.e. the endpoints x and
y are replaced by a new vertex vxy which is adjacent to the old neighbors of
x and y (except x and y). We say that x and y are contracted to vxy, and we
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also sometimes say that x is contracted to y (or y to x). For a black and white
graph G, it is assumed that if x ∈ B(G) and y ∈ B(G) then the obtained vertex
vxy is black and vxy is white otherwise. A graph H obtained by a sequence of
edge-contractions is said to be a contraction of G.

It can be observed that the r-domination cop number is a contraction-closed
parameter.

Proposition 4. Let H be a contraction of a connected black and white graph
G. For any r ≥ 0, dcr(H, B(H)) ≤ dcr(G, B(G)).

It is said that a graph H is a minor of a graph G if H is the contraction of some
subgraph of G. We say that a graph G is H-minor-free when it does not contain
H as a minor. We also say that a graph class G is H-minor-free (or, excludes H
as a minor) when all its members are H-minor-free. An apex graph is a graph
that can be made planar by the removal of a single vertex. A graph class G is
apex-minor-free if G excludes a fixed apex graph H as a minor.

Grids and their triangulations. Let k and r be positive integers where k, r ≥ 2.
The (k× r)-grid is the Cartesian product of two paths of lengths k−1 and r−1
respectively. A vertex of a (k × r)-grid is a corner if it has degree 2. Thus each
(k × r)-grid has 4 corners. A vertex of a (k × r)-grid is called internal if it has
degree 4, otherwise it is called external.

A partial triangulation of a (k × r)-grid is a planar graph obtained from a
(k × r)-grid (we call it the underlying grid) by adding edges. Let us note that
there are many non-isomorphic partial triangulations of on underlying grid. For
each partial triangulation of a (k × r)-grid we use the terms corner, internal
and external referring to the corners, the internal and the external vertices of
the underlying grid. We define Γk (see Figure 1) as the following (unique, up

Fig. 1. The graph Γ6

to isomorphism) triangulation of a plane embedding of the (k × k)-grid. Let Γ
be a plane embedding of the (k × k)-grid such that all external vertices are on
the boundary of the external face. We triangulate internal faces of the (k × k)-
grid such that all the internal vertices have degree 6 in the obtained graph and all
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non-corner external vertices have degree 4, and then one corner of degree two is
joined by edges with all vertices of the external face (we call this corner loaded).
We need the following claim.

Lemma 1. Let G be a black & white graph where

i) B(G) induces Γk for some k > 2r + 1,
ii) W (G) is an independent set, and
iii) for any v ∈W (G), NG(v) induces a clique in G.

Then for any r ≥ 0, dcr(G, B(G)) ≥ k
2r+1

− 1.

Proof. We prove that if p < k
2r+1 − 1 then the robber has a winning strategy

on G against p cops. Let B(G) = {(i, j)|0 ≤ i ≤ k − 1, 0 ≤ j ≤ k − 1}. It
is assumed that the vertices are numbered in such a way that (i, j) and (i′, j′)
are adjacent in the underlying grid for Γk if and only if i = i′ and |j − j′| = 1
or |i − i′| = 1 and j = j′. Denote by Xi the set of vertices {(i, j) | r ≤ j ≤
k − r − 1} for i ∈ {r, . . . , k − r − 1}, and let Yj = {(i, j) | r ≤ i ≤ k − r − 1}
for j ∈ {r, . . . , k − r − 1}. Let also Up be the set of all subsets of V (G) with
at most p elements (i.e. Up is the set of all possible positions of p cops). By
i), each vertex v ∈ W (G) is adjacent to either one vertex of B(G), or two
adjacent vertices in this set, or to three vertices which compose a triangle in
Γk. Using this property and ii), we conclude that for any vertex v ∈ V (G),
there is a vertex v′ ∈ B(G) such that N

(r)
G [v] ∩ B(G) ⊆ N

(r)
Γk

[v′]. Hence for any

U ∈ Up, there are i(U), j(U) ∈ {r, . . . , k − r − 1} such that N
(r)
G [U ] ∩Xi(U) = ∅

and N
(r)
G [U ] ∩ Yj(U) = ∅. We define the robber’s strategy R as follows: for any

U, U ′ ∈ Up and each (i, j) ∈ B(G), R(U, U ′, (i, j)) = (i(U ′), j(U ′)). It remains to
note that if i = i(U) and j = j(U ) then Z = Xi ∪ Yj ∪Xi(U ′) ∪ Yj(U) induces a
connected subgraph in Γk and N

(r)
Γk

[U ∩ U ′] ∩ Z = ∅. Therefore R is a winning
strategy for the robber.

Treewidth. A tree decomposition of a graph G is a pair (X , T ) where T is a tree
with nodes {1, . . . , m} and X = {Xi | i ∈ V (T )} is a collection of subsets of
V (G) (called bags) such that:

i)
⋃

i∈V (T ) Xi = V (G),
ii) for each edge {x, y} ∈ E(G), {x, y} ⊆ Xi for some i ∈ V (T ), and
iii) for each x ∈ V (G) the set {i | x ∈ Xi} induces a connected subtree of T .

The width of a tree decomposition ({Xi | i ∈ V (T )}, T ) is maxi∈V (T ) {|Xi| − 1}.
The treewidth of a graph G denoted tw(G) is the minimum width over all tree
decompositions of G.

It is well known that Seymour and Thomas [22] established a close connection
between treewidth and graph searching.

Proposition 5 ([22]). For any connected graph G, dc0(G) = tw(G) + 1.

Surfaces. A surface Σ is a compact 2-manifold without boundary (we always
consider connected surfaces). Whenever we refer to a Σ-embedded graph G we
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consider a 2-cell embedding of G in Σ. To simplify notations, we do not distin-
guish between a vertex of G and the point of Σ used in the drawing to represent
the vertex or between an edge and the line representing it. We also consider a
graph G embedded in Σ as the union of the points corresponding to its vertices
and edges. That way, a subgraph H of G can be seen as a graph H, where
H ⊆ G. Recall that Δ ⊆ Σ is an open (resp. closed) disc if it is homeomorphic
to {(x, y) : x2 +y2 < 1} (resp. {(x, y) : x2 +y2 ≤ 1}) in R2. The Euler genus of a
non-orientable surface Σ is equal to the non-orientable genus g̃(Σ) (or the cross-
cap number). The Euler genus of an orientable surface Σ is 2g(Σ), where g(Σ)
is the orientable genus of Σ. We refer to the book of Mohar and Thomassen [19]
for more details on graphs embeddings. The Euler genus of a graph G (denoted
by eg(G)) is the minimum integer γ such that G can be embedded on a surface
of the Euler genus γ.

3 r-Domination Cop Number for Apex-Minor-Free
Graphs

We prove here that the r-domination cop number of an apex-minor-free graphs
can be approximated by its treewidth.

Theorem 1. Let r be a non-negative integer and let H be an apex graph. Then
for any connected graph G excluding H as a minor, it holds that dcr(G) − 1 ≤
tw(G) ≤ cH,r · dcr(G) where cH,r is a constant depending only on H and r.

Proof. By Proposition 5, it is sufficient to prove this theorem for r > 0. The first
inequality follows immediately from Proposition 1 and Proposition 5. The proof
of the second inequality is based on the following result.

Proposition 6 ([9]). For every apex graph H , there is cH > 0 such that every
connected H-minor-free graph of treewidth at least cH · k, where k is a positive
integer, contains Γk as a contraction.

Let k = 
 tw(G)
cH
� and observe that G contains Γk as a contraction and also

tw(G) ≤ cH(k + 1). Assume that k > 2r + 1. By Proposition 4 and Lemma 1
(for B(G) = V (G) and W (G) = ∅), dcr(G) ≥ dcr(Γk) ≥ k

2r+1
− 1. Hence

(dcr(G)+1)(2r+1) ≥ k and therefore tw(G) ≤ cH((dcr(G)+1)(2r+1)+1). Now
we can conclude that there is a constant cH,r such that tw(G) ≤ cH,r · dcr(G).

4 r-Domination Cop Number for H-Minor-Free Graphs

The following theorem is the main result of this paper.

Theorem 2. Let r be a positive integer and H be a graph. There is a polynomial
time algorithm that given a connected graph G excluding H as a minor returns
a cH,r-factor approximation of dcr(G), where cH,r is a constant depending only
on H and r.

The remaining part of this section is devoted to the proof of Theorem 2.
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4.1 Graph Minor Theorem and Preliminary Results

The proof is based the Excluded Minor Theorem from the Graph Minor theory.
Before we state it, we need some definitions.

Definition 1 (Clique-Sums). Let G1 = (V1, E1) and G2 = (V2, E2) be two
disjoint graphs, and k ≥ 0 an integer. For i = 1, 2, let Wi ⊆ Vi, form a clique
of size h and let G′

i be the graph obtained from Gi by removing a set of edges
(possibly empty) from the clique Gi[Wi]. Let F : W1 →W2 be a bijection between
W1 and W2. The h-clique-sum of G1 and G2, denoted by G1 ⊕h,F G2, or simply
G1 ⊕ G2 if there is no confusion, is the graph obtained by taking the union of
G′

1 and G′
2 by identifying w ∈ W1 with F (w) ∈ W2, and by removing all the

multiple edges. The image of the vertices of W1 and W2 in G1⊕G2 is called the
join of the sum.

Note that some edges of G1 and G2 are not edges of G, since it is possible
that they had edges which were removed by clique-sum operation. Such edges
are called virtual edges of G. We remark that ⊕ is not well defined; different
choices of G′

i and the bijection F could give different clique-sums. A sequence
of h-clique-sums, not necessarily unique, which result in a graph G, is called a
clique-sum decomposition of G.

Definition 2 (h-nearly embeddable graphs). Let Σ be a surface and h > 0 be
an integer. A graph G is h-nearly embeddable in Σ if there is a set of vertices
Z ⊆ V (G) (called apices) of size at most h, such that graph G− Z is the union
of subgraphs R0, . . . , Rh with the following properties:

i) There is a set of cycles C1, . . . , Ch of R0 in Σ such that the cycles Ci are
the borders of open pairwise disjoint discs Δi in Σ;

ii) R0 has an embedding in Σ in such a way that Δ1, . . . , Δh are faces of R0;
iii) Graphs R1, . . . , Rh (called vortices) are pairwise disjoint and for 1 ≤ i ≤ h,

V (R0) ∩ V (Ri) ⊆ Ci;
iv) For 1 ≤ i ≤ h, let Ui := {ui

1, . . . , u
i
mi
} be the vertices of V (R0)∩V (Ri) ⊂ Ci

appearing in an order obtained by clockwise traversing of Ci. Then Ri has a
path decomposition Bi = (Bi

j)1≤j≤mi of width at most h, such that ui
j ∈ Bi

j

for 1 ≤ j ≤ mi.

The following proposition is known as the Excluded Minor Theorem [21] and is
the cornerstone of Robertson and Seymour’s Graph Minors theory.

Proposition 7 ([21]). For every non-planar graph H, there exists an integer
cH , depending only on H, such that every graph excluding H as a minor can
be obtained by cH -clique-sums from graphs that can be cH -nearly embedded in a
surface Σ in which H cannot be embedded. Moreover, while applying each of the
clique sums, at most three vertices from each summand other than apices and
vertices in vortices are identified.
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4.2 Approximation of the r-Domination Cop Number

Now we are ready to describe our approximation of the r-domination cop number
for H-minor-free graphs. Let H be a graph. We assume that H is not planar
(otherwise we can apply Theorem 1). Let G be a graph that does not contain H
as a minor. Let G1 ⊕ · · · ⊕Gm be a cH-clique-sum decomposition of G. Denote
by Zi the set of apices of Gi. For i = 1, . . . , m, we define F (Gi) as the graph
obtained if we consider Gi−N

(r)
G [Zi] and then we remove each virtual edge {x, y}

of Gi such that all (x, y)-paths in G whose internal vertices are not in V (Gi) are
intersected by N

(r)
G [Zi].

The proof of Theorem 2 is based on the following theorem.

Theorem 3. Let r be a positive integer, let H be a graph and let G be a con-
nected graph excluding H. Let also k = max{tw(F (Gi)) | i = 1, . . . , r}. Then,
dcr(G) − cH,r ≤ k ≤ cH,r · dcr(G) where cH,r is a constant depending only on
H and r.

Proof. Due the space restrictions we only sketch here the main ideas of our proof.
We start with the first inequality. It is based on the following claim.

Claim 1. dcr(G) ≤ k + 2cH + 1.

Sketch of the proof of Claim 1. Let p = k + 2cH + 1. We describe a winning
strategy for p cops on H .

The clique-sum decomposition G = G1 ⊕G2 ⊕ · · · ⊕Gm can be considered as
a tree decomposition (X , T ) of G for some tree T with nodes {1, 2, . . . , m} with
the bags Xi = V (Gi), i.e. the vertex sets of the summands are the bags of this
decomposition. The idea behind the winning strategy for cops is to “chase” the
robber in the graph along m+1 decompositions: one is induced by the clique-sum
decomposition and others are tree decompositions of F (Gi).

Now our aim is to prove the second inequality.

Claim 2. There is a constant cH,r such that k ≤ cH,r · dcr(G).

Sketch of the proof of Claim 2. Assume that k = tw(F (Gi)) for some 1 ≤ i ≤ m,
and denote F = F (Gi). Assume that F is connected (otherwise let F be a
component of F (Gi) with treewidth k). Consider a component of G − N

(r)
G [Zi]

which contains vertices of V (F ), denote by B(G) the set of its vertices and
let W (G) = V (G) \ B(G). Clearly, dcr(G) ≥ dcr(G, B(G)). By Proposition 2,
dcr(G, B(G)) ≥ dcr(G− Zi, B(G)). Also using this proposition we can assume
that G′ = G − Zi is connected (otherwise vertices of components of G − Zi

which do not contain B(G) can be removed, since they are at least (r + 1)-
distant from vertices of B(G)). Now we contract all edges {x, y} of G′ such that
either x, y ∈ W (G′) or x, y ∈ B(G′) \ V (F ). Denote the obtained graph by
Ĝ, and let F̂ be the subgraph of Ĝ induced by B(Ĝ). Note that W (Ĝ) is an
independent set of Ĝ. By Proposition 4, dcr(G′, B(G)) ≥ dcr(Ĝ, B(Ĝ)). Hence
dcr(G) ≥ dcr(Ĝ, B(Ĝ)).
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Recall that all summands in the clique-sum decomposition of G can be cH -
nearly embedded in some surface Σ in which H cannot be embedded in a such
way that while applying each of the clique sums, at most three vertices from each
summand other than apices and vertices in vortices are identified. The graph F
is a subgraph of Gi. Therefore, the cH -nearly embedding of Gi induces cH -
nearly embedding of F . Using same arguments as in the proof of Proposition 6
(Theorem 1 in [9]), it can be proved that there exists a constant c > 0, depending
only on Σ, such that if tw(F ) ≥ c ·p, then F̂ can be contracted to Γp. Moreover,
if we consider Ĝ and contract in it the edges that are contracted in F̂ in order to
construct Γp then for the obtained black and white graph Q, each vertex of W (Q)
is adjacent to a clique in B(Q). By Proposition 4, dcr(Ĝ, B(Ĝ)) ≥ dcr(Q, B(Q)).

Now the set B(Q) induces Γp, W (Q) is independent, and for each vertex v ∈
W (Q), NQ(v) induces a clique in Q. Therefore it is possible to apply Lemma 1
and conclude that dcr(Q, B(Q)) ≥ p

2r+1 − 1 and dcr(G) ≥ p
2r+1 − 1.

It remains to note that (2r+1)(dcr(G)+1) ≥ p ≥ k
c−1 and c((2r+1)(dcr(G)+

1) + 1) ≥ k. Now we can choose a constant cH,r for which cH,r · dcr(G) ≥ k.

Finally, Demaine et al. [5] proved that a clique-sum decomposition can be ob-
tained in time O(nc) for some constant c which depends only on H (see also [4]).
As far as we constructed summands Gi, the construction of graphs F (Gi) can be
done in polynomial time. Moreover, since the algorithm of Demaine et al. pro-
vides cH -nearly embeddings of these graphs, it is possible to use it to construct
a polynomial constant factor approximation algorithm for the computation of
tw(F (Gi) (see also [6]). This concludes the proof of Theorem 2.

5 Open Problems

We conclude with the following open problems.

– Can dcr be computed in polynomial time on H-minor free graphs? This
problem is open even for r = 0.

– For every r ≥ 1, the parameterized version of dcr(G) ≤ k is W[2]-hard.
What is the parameterized complexity of the problem on planar graphs?
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Abstract. We consider the problem to minimize the weighted sum of
completion times in nonpreemptive parallel machine scheduling. In a
landmark paper from 1986, Kawaguchi and Kyan [5] showed that schedul-
ing the jobs according to the WSPT rule –also known as Smith’s rule–
has a performance guarantee of 1

2
(1 +

√
2) ≈ 1.207. They also gave an

instance to show that this bound is tight. We consider the stochastic
variant of this problem in which the processing times are exponentially
distributed random variables. We show, somehow counterintuitively, that
the performance guarantee of the WSEPT rule, the stochastic analogue
of WSPT, is not better than 1.243. This constitutes the first lower bound
for WSEPT in this setting, and in particular, it sheds new light on the
fundamental differences between deterministic and stochastic scheduling
problems.

Keywords: stochastic scheduling, WSEPT, exponential distribution.

1 Introduction

Minimizing the weighted sum of completion times on m parallel, identical ma-
chines is an archetypical problem in the theory of scheduling. In this problem, we
are given n jobs which have to be processed non-preemptively on m machines.
Each job j comes with a processing time pj and a weight wj , and when Cj denotes
job j’s completion time in a given schedule, the goal is to compute a schedule
that minimizes the total weighted completion time

∑
j wjCj . In the classical 3-

field notation for scheduling problems [3], the problem is denoted P | | ∑ wjCj .
For a single machine, a simple exchange argument shows that scheduling the jobs
in order of nonincreasing ratios wj/pj gives the optimal schedule [11]. Greedily
scheduling the jobs in this order is known as WSPT rule or Smith’s rule. On
parallel identical machines, WSPT is known to be a 1

2
(1 +

√
2)–approximation,

and this bound is tight [5]. The computational tractability of the problem was

K. Jansen and R. Solis-Oba (Eds.): WAOA 2010, LNCS 6534, pp. 142–153, 2011.
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finally settled by showing the existence of a PTAS [10], given that the problem
is strongly NP-complete if m is part of the input [2].

In this paper, we consider the stochastic variant of the problem. It is assumed
that the processing time pj of a job j is not known in advance. It becomes known
upon completion of the job. Only the distribution of the corresponding random
variable Pj , or at least its expectation E [Pj ], is given beforehand. More specifi-
cally, we assume that the processing times of jobs are governed by independent,
exponentially distributed random variables. That is to say, each job comes with
a parameter λj > 0, and the probability that its processing time exceeds t equals

P [Pj > t] = e−λjt .

We denote that by writing Pj ∼ exp(λj). Exponentially distributed processing
times somehow represent the cream of stochastic scheduling, in particular when
juxtaposing stochastic and deterministic scheduling: The exponential distribu-
tion is characterized by the memory-less property, that is,

P [Pj > s + t |Pj > s] = P [Pj > t] .

So for any non-finished job it is irrelevant how much processing it has already re-
ceived. This is obviously a decisive difference to deterministic scheduling models,
and puts stochastic scheduling apart. Next to that, the model with exponentially
distributed processing times is attractive because it makes the stochastic model
analytically tractable.

In the stochastic setting, the analogue of Smith’s rule is greedily scheduling
the jobs in order of non-increasing ratios wj/E [Pj ], also called WSEPT [8]. For
a single machine, this is again optimal [9]. For parallel machines, it has been
shown that the WSEPT rule achieves a performance bound of (2 − 1

m
) within

the class of all stochastic scheduling policies [7]. That is to say, if Π∗ denotes an
optimal stochastic scheduling policy, then

E
[∑

wjC
WSEPT
j

] ≤
(

2− 1
m

)

E
[∑

wjC
Π∗
j

]
.

We refer e.g. to [6] for precise definitions on stochastic scheduling policies. In
general, scheduling policies can be quite complicated, and it is not even clear
if the optimal policy is non-idling in the setting considered here [12]. For the
purpose of this paper, it suffices to know that stochastic scheduling policies are
non-anticipatory in the sense that they are, at any given time t, only allowed to
use information that is available at that time t. This is also the case for WSEPT,
as the distributions Pj , and particularly E [Pj ] are available beforehand.

The major purpose of this paper is to establish the first lower bound for the
(2 − 1

m
) performance guarantee of [7] for exponentially distributed processing

times. In fact, we are not aware of any result in this direction. The only result
known to us is an instance showing that WSEPT can miss the optimum by a
factor 3/2, but then for arbitrary processing time distributions [13, Ex. 3.5.12].
Our main result is the following.
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Theorem 1. When scheduling jobs with exponentially distributed processing times
on parallel, identical machines in order to minimize E[

∑
wjCj ], the performance

guarantee of WSEPT is not better than α with α > 1.243.

To obtain our result, we carefully adapt and analyze the worst-case instance of
[5]. Note that the originality of this result lies in the fact that 1.243 > 1

2
(1+
√

2) ≈
1.207. Hence, stochastic scheduling with exponentially distributed processing
times has worse worst-case instances than deterministic scheduling.

This result may seem counterintuitive: For unit weights where wj = 1, the
SPT rule is optimal for minimizing

∑
j Cj in the deterministic setting [8], and

also SEPT is optimal for minimizing E[
∑

j Cj ] when processing times are ex-
ponentially distributed [1]. For exponentially distributed processing times and
weights that are agreeable in the sense that there exists an ordering such that
w1 ≥ · · · ≥ wn and w1λ1 ≥ · · · ≥ wnλn, scheduling the jobs in this WSEPT
order is optimal [4], while the corresponding deterministic problem is already
NP-hard, and in particular, WSPT is not optimal. That is to say, there are
examples where the stochastic version with exponentially distributed process-
ing times is computationally easier than the deterministic version of the same
problem. Our result shows that with arbitrary weights, the situation is again
fundamentally different. Next to this qualitatively new insight, our analysis also
sheds light on phenomena in stochastic scheduling which are interesting in their
own right.

The paper is organized as follows. In Section 2, we briefly review the worst-
case instance presented in [5]. We derive several technical lemmas about schedul-
ing jobs with exponentially distributed processing times in Section 3. Section 4
presents the analysis of the stochastified instance of [5], and finally, Section 5
summarizes our conclusions.

2 The Kawaguchi and Kyan Instance

We briefly summarize the instance from [5] that achieves the bound 1
2
(1+
√

2) for
deterministic scheduling, as the instance we will consider is a stochastic variant
thereof. Let n be the number of jobs and m the number of machines. Denote the
processing time of job j by pj and its weight by wj . The (deterministic) instance
is then given by:

m = h + �(1 +
√

2)h�
n = mk + h
pj = wj = 1/k for 1 ≤ j ≤ mk

pj = wj = 1 +
√

2 for mk + 1 ≤ j ≤ mk + h .

Here, h denotes an integer, and k is an integer that can be divided by �(1+
√

2)h�.
In particular, k > h and k can be chosen arbitrarily large. Notice that wj

pj
= 1

for all j. This means that any list schedule is in fact a WSPT schedule. Let us
refer to the first mk jobs as short jobs, and the remaining h jobs as long jobs.
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Let SL be the total weighted completion time of a schedule in which all short
jobs are processed first, and S∗ be the total weighted completion time of a
schedule where the long jobs are processed first. Figure 1 depicts these two
schedules. The schedule on the left of Figure 1 has value S∗. Here the last jobs

�(1 +
√ �

Fig. 1. Two different WSPT schedules with values S∗ and SL respectively

of length 1/k finish at time t ≈ 1.4 (for large values of m and k). The schedule on
the right of Figure 1 has value SL, it finishes the last jobs of length 1/k exactly
at time 1. In Figure 1 we used h = 5 and k = 32. It can be verified (see [5]) that
SL = (1+

√
2)(2+

√
2)h+(m/2)(1+1/k) and S∗ = (1+

√
2)2h+(m/2)(m/�(1+√

2)h�+1/k). The ratio SL/S∗ then tends to (1+
√

2)/2 as h→∞ and k →∞.

3 Preliminaries on Jobs with Exponentially Distributed
Processing Times

The crucial insight when stochastifying the instance by Kawaguchi and Kyan is
the following. The schedule with value SL is essentially identical to the expected
situation in stochastic scheduling. However, the schedule with value S∗ has a
significantly different realization with exponentially distributed processing times.
This is expressed in the following lemmas, where λ and x are arbitrary positive
parameters. In the following we denote by

Hn :=
n∑

i=1

1
i

the nth harmonic number, with H0 := 0.
The first lemma gives an estimate on expected job completion times for par-

allel jobs with Pj ∼ exp(λ).

Lemma 1. When scheduling in parallel m jobs with i.i.d. exponential processing
times Pj ∼ exp(λ), the expected number m(t) of machines that are idle at a given
time t is bounded as follows,

m(t) ≥ �m (
1− e−λt

) � .
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Proof. The first completion time is distributed as the minimum of m independent
exp(λ) distributions. This is an exp(mλ) distribution, hence it is expected at time
t1 = 1

mλ . After the first job completion, we have m−1 jobs remaining. Since the
exponential distribution is memoryless, the next completion is expected a time

1
(m−1)λ

later, so t2 = 1
mλ

+ 1
(m−1)λ

. By continuing this argument we find that
the ith job completion is expected at time

ti =
i∑

j=1

1
(m− j + 1)λ

=
1
λ

m∑

l=m−i+1

1
l

=
1
λ

( Hm − Hm−i) . (1)

Note that m(ti) = i, for i = 1, . . . , m. We now use that Hi ≥ ln(i) + γ for all i,
where

γ := lim
i→∞

(Hi − ln i) ≈ 0.57721

denotes the Euler-Mascheroni constant. Furthermore, Hi− ln(i) is monotonically
decreasing in i. Hence we may conclude that

ti ≤ 1
λ

(ln(m) + γ − ln(m− i)− γ) =
1
λ

ln
(

m

m− i

)

. (2)

Here, i is the expected number of finished jobs at time ti. Hence, (2) yields

m(ti) = i ≥ m(1− e−λti) (3)

for i = 1, 2 . . . , m. Together with the fact that m(t) is integer valued, (3) yields

m(t) ≥ �m (
1− e−tλ

) � .
for all t ≥ 0. ��
Note that the last job is expected to finish at time 1

λΘ(log m). Nevertheless, the
average expected completion time of the jobs is 1/λ; see also Figure 2 for an
illustration.

Lemma 2. Consider kT jobs with i.i.d. processing times Pj ∼ exp(k) and
weights wj = 1/k, scheduled on a single machine. Then for all ε > 0 there
exists k large enough so that

E

[∑
j wjCj

]
≤

∫ T

0

t dt + ε .

Proof. As there is an expected job completion each 1/k time steps, one easily
calculates that E

[∑
j wjCj

]
= 1

2
T 2 + 1

2k
T , so for k ≥ T

2ε
the claim is true. ��

Lemma 3. Let m(t) ≥ 0 denote the number of available machines at time t,
and assume m(t) is non-decreasing. When greedily scheduling jobs with i.i.d.
processing times Pj ∼ exp(k) and weights wj = 1/k from time 0 until T on the
available machines, for all ε > 0 there exists k large enough so that

E

[∑
j wjCj

]
≤

∫ T

0

m(t) t dt + ε .
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Proof. Let Ti (i = 0, 1, 2, ..) be the times that a new machine becomes available,
with T0 := 0. For k large enough, we expect m(Ti)k(Ti+1 − Ti) jobs to be
scheduled between times Ti and Ti+1. It is straightforward to extend Lemma 2
to this case, which yields for the jobs scheduled between times Ti and Ti+1,

E

[∑
j wjCj

]
≤ m(Ti)

∫ Ti+1

Ti

t dt + εi .

Therefore we get for all jobs,

E

[∑
j wjCj

]
≤

∑

i

m(Ti)
∫ Ti+1

Ti

t dt + εi =
∫ T

0

m(t) t dt +
∑

i

εi .

So for ε =
∑

i εi and k accordingly large, the claim is true. ��
The next lemma is concerned with the total weighted completion time of short
jobs that succeed a set of long jobs.

Lemma 4. Suppose we first schedule m i.i.d. long jobs with processing times
Pj ∼ exp(λ), followed by xm k i.i.d. short jobs, with processing times Pj ∼
exp(k) and weights wj = 1/k, where k is large. Let Sshort be the expected weighted
sum of completion times of the short jobs. Then for any T such that 1

λ
(e−λT −

1) + (m−1) T
m ≥ x, and k large enough we have that

Sshort ≤
∫ T

0

(
m(1− e−λt)− 1

)
t dt . (4)

Proof. Denote by m(t) the number of machines at time t that are available for
processing short jobs, and by T ∗ the earliest point in time such that we can
expect all short jobs to be finished by time T ∗. Notice that the total expected
processing of short jobs equals xm. Therefore, for k large enough, T ∗ can be
approximated arbitrarily well by the solution of the equation

xm =
∫ T∗

0

m(t) dt . (5)

With T ∗ as in (5), Lemma 3 yields that Sshort ≤
∫ T∗

0
m(t)t dt + ε. Now recall

that m(t) can be bounded as in Lemma 1. Define

f(t) = m(1− e−λt)− 1 . (6)

Then m(t) ≥ f(t) for all t ≥ 0. If we require for T that

∫ T

0

f(t) dt ≥ xm

⇔ 1
λ

(e−λT − 1) +
(m− 1)T

m
≥ x ,
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then xm =
∫ T∗

0
m(t) dt ≤ ∫ T

0
f(t) dt. We therefore conclude that

∫ T∗

0

m(t) t dt <

∫ T

0

f(t) t dt , (7)

because m(t) ≥ f(t), and m(t) is a step function while f(t) is continuous. Intu-
itively, the expression

∫ T

0
f(t) t dt equals the total weighted sum of completion

times for infinitesimally small jobs (i.e., when k →∞), with total expected pro-
cessing at least xm, scheduled on a set of “machines” that become available no
earlier than m(t). We finally conclude from (7) that

Sshort ≤
∫ T∗

0

m(t) t dt + ε ≤
∫ T

0

f(t) t dt ,

because ε can be chosen arbitrarily small for k large enough. ��
A variation of this lemma will be used later in the analysis. Notice that the
technical condition on T as stated in Lemma 4 only makes sure that all short
jobs can be processed by time T when the machine availability is governed by
f(t) rather than m(t). The same approach will be used also in Section 4. Finally,
we make a statement about scheduling a block of (short) jobs.

Lemma 5. Suppose we schedule xm k i.i.d. short jobs with processing times
Pj ∼ exp(k) greedily on m machines. Then the average expected machine com-
pletion time equals x, and for any δ > 0 there exists k large enough such that
the earliest expected machine completion time is at time t ≥ x− δ.

Proof. The claim about the average expected machine completion time is clear,
because the total expected processing is xm. For the second claim, consider the
first time, say t, that a machine runs out of jobs. Then there are m − 1 jobs
still in process. We know from Lemma 1 that the last machine that runs out
of jobs is expected to be at time t +

∑m−1
i=1

1
i k . For m large enough, we have

∑m−1
i=1

1
i k
≤ 1

k
[ln(m) + γ]. So for k ≥ (m− 1)/(δ(ln(m) + γ)), the last machine

completion time is expected no later than t + δ/(m− 1). Now the claim follows,
as the average machine completion time is x. ��

4 The Stochastic Instance

Even though other instances may lead to comparable results, we find it instruc-
tive to consider the stochastic analogue of the instance presented by Kawaguchi
and Kyan [5]. Indeed, it turns out that the analyses for such instances use identi-
cal arguments, the core of which is represented by the lemmas given in Section 3.

We keep all parameters the same as in Section 2, except that the processing
times of long jobs will be Pj ∼ exp(1/(1 +

√
2)), and the processing times of

short jobs will be Pj ∼ exp(k). So the expected processing times of long and
short jobs are identical to the deterministic processing times in [5].
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4.1 Intuition about the Schedules

Suppose we start all long jobs first and then fill up the remaining machines with
short jobs. By Lemma 1 we expect the ith long job to finish at time:

ti =
i∑

j=1

1 +
√

2
h− j + 1

(8)

Therefore, we expect the last short job to be completed significantly earlier than
in the deterministic case. For a finite number of machines, the schedule will look
like depicted in Figure 2. The crucial point is that the average expected time that

Fig. 2. Schedule with value S∗: long jobs starting at time 0

machines finish processing short jobs will be smaller than in the deterministic
case. This happens because many long jobs finish much earlier, and the late fin-
ishing of few long jobs doesn’t matter for the short jobs. Hence, the contribution
of the short jobs will decrease when compared to the deterministic case.

Suppose on the other hand that we first start all the short jobs. The set of short
jobs is not likely to produce the ideal rectangle as it did in the deterministic case.
However, as suggested by Lemma 5 the gap between the time the first machine
runs out of short jobs and the time the last machine runs out of short jobs can be
made arbitrarily small, by letting k, the inverse of the expected processing time
of short jobs, be large. The crucial point is that, in this situation, the expected
cost of the schedule is almost the same as the cost in the deterministic case.

4.2 Lower Bound on Performance of WSEPT

Let S∗ denote the objective value E

[∑
j wj Cj

]
=

∑
j wj E [Cj ] for the case

when we first schedule all long jobs. Similarly, let SL denote the objective value
for the schedule that starts long jobs only when there is no short job left to
be scheduled. S∗ is in fact optimal, whereas SL is the worst case, but this is
inessential. Both are in fact WSEPT, hence the ratio SL/S∗ is a lower bound for
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Fig. 3. Schedule with value SL: long jobs starting only after short jobs

the approximation ratio of the WSEPT rule in stochastic machine scheduling
with exponentially distributed processing times.

We choose h sufficiently large, and k, a multiple of �(1 +
√

2)h�, we may
choose arbitrarily large in comparison to h (i.e., k >> h). In fact, we can make
the choice of these two parameters in such a way that all our technical lemmas
from Section 3 do apply.

The optimal case, S∗. We split S∗ up into the contribution of the long jobs
S∗

long and the contribution of the short jobs S∗
short. So

S∗ = S∗
long + S∗

short (9)

The value S∗
long. We start all h long jobs at time 0. Their expected completion

time is 1 +
√

2 each. Hence the contribution of the long jobs is simply given by

S∗
long = h(1 +

√
2)2 , (10)

which is actually the same as in the deterministic case.

The value S∗
short: This is a bit more complicated to calculate. We expect the

short jobs to be located in the light and dark gray areas, R and B respectively,
as depicted in Figure 4.

The expected total processing of short jobs B that fit in the light gray area is
given by

B =
∫ T

0

(m− h) dt

According to (6) in the proof of Lemma 4, the number of finished long jobs at
time t ≥ 0 is at least:

f(t) = h(1− e−t/(1+
√

2))− 1 .
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Fig. 4. For T large enough, short jobs fit in the light and dark gray areas R and B

Therefore, the expected total processing of short jobs R that fit in the dark
gray area is bounded by

R ≥
∫ T

0

f(t) dt

We want to find a value for T such that all short jobs are expected to be
finished by T , i.e. B + R ≥ m. We have not attempted to solve this equation
analytically, but one can easily check that

T = 1.2933 (11)

suffices.
Then S∗

short, the expected weighted sum of completion times for all mk short
jobs, can be bounded similarly as in Lemma 4. We now find, for h and k suffi-
ciently large,

S∗
short ≤

∫ T

0

(m− h) t dt +
∫ T

0

f(t)t dt . (12)

With (11) and (12) we can calculate

S∗
short ≤ 2.266h− 0.836 . (13)

Combining (10) and (13) gives

S∗ = S∗
long + S∗

short ≤ (1 +
√

2)2h + 2.266h− 0.836 . (14)

The worst case, SL. Now we switch to the case where we first schedule all
the short jobs. Again split the objective value into the two parts contributed by
the short and long jobs, respectively.

SL = Sshort
L + Slong

L .
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The value Sshort
L : We have m machines working on mk jobs with processing

times Pj ∼ exp(k). According to Lemma 5, on average a machine is expected to
finish with these jobs at time 1, and for any δ > 0, we can find k large enough so
that we expect all machines to be filled with short jobs at least until time 1− δ.
Hence, we conclude that the average expected completion time of a short job is
arbitrarily close to 1/2. Therefore, for any ε > 0, there is k large enough so that

Sshort
L ≥ m

2
− ε/2 . (15)

The value Slong
L : Remember that the schedule is expected to look like depicted

in Figure 3. Using Lemma 5 again, we know that long jobs are expected to start
no earlier than 1− δ. So by assuming they all start at this time, we get a lower
bound for their completion times (and also for Slong

L ). If all long jobs start at
1− δ, the average expected completion time is 2 − δ +

√
2. Multiplying this by

the weight and summing over all h jobs, we may conclude that for any ε > 0
there is k large enough so that

Slong
L ≥ (2 +

√
2) (1 +

√
2)h − ε/2 . (16)

With (15) and (16) we now have

SL = Sshort
L + Slong

L ≥ m

2
+ (2 +

√
2) (1 +

√
2)h − ε . (17)

The ratio. Finally, let α be the approximation ratio of Smith’s rule for expo-
nentially distributed processing times. Then

α ≥ SL

S∗ .

Remember that m = h + �(1 +
√

2)h�. Now for carefully chosen k >> h, and
taking h→∞, equations (14) and (17) give

SL

S∗ ≥
m/2 + (2 +

√
2) (1 +

√
2)h− ε

(1 +
√

2)2h + 2.266h− 0.836
> 1.229 .

So we conclude that α > 1.229. Note that this is strictly larger than the ap-
proximation ratio for WSPT in the the deterministic case, which is 1.207.

Optimizing the parameters. What remains to be done is to optimize over the
parameters of the instance to improve the obtained lower bound. To that end,
recall that the considered instance has h long jobs and m = h + �(1 +

√
2)h� ≈

3.4h machines, and long jobs have processing times Pj ∼ exp( 1
1+

√
2
) ≈ exp(0.41).

However, these parameters are optimized for the deterministic instance. Taking
slightly more long jobs, namely by letting m = 2.3h, with somewhat shorter
processing times, namely Pj ∼ exp(0.56), we obtain a ratio of at least 1.2436,
which proves Theorem 1.
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5 Conclusion

Note that the numerical calculations have been performed using Mathematica.
We also found instances (not discussed in this paper) —with comparable building
blocks and features— where WSPT is always optimal for the deterministic case,
while WSEPT is not optimal for the stochastic counterpart with exponentially
distributed processing times. In conclusion, small improvements in the ratio
1.243 might be possible. Yet, the upper bound (2−1/m) seems out of reach. This
leaves the question to improve the upper bound on the performance guarantee
for WSEPT; in that respect, it is interesting to note that the analysis of [7] does
not explicitly exploit the exponential distribution; it is valid in more generality.
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Abstract. Given a graph H = (U,E) and connectivity requirements
r = {r(u, v) : u, v ∈ R ⊆ U}, we say that H satisfies r if it contains
r(u, v) pairwise internally-disjoint uv-paths for all u, v ∈ R. We consider
the Survivable Network with Minimum Number of Steiner Points (SN-MSP)
problem: given a finite set V of points in a normed space (M, ‖·‖), and
connectivity requirements, find a minimum size set S ⊂ M − V of addi-
tional points, such that the unit disc graph induced by V ∪S satisfies the
requirements. In the (node-connectivity version of the) Survivable Net-
work Design Problem (SNDP) we are given a graph G = (V, E) with edge
costs and connectivity requirements, and seek a min-cost subgraph H of
G that satisfies the requirements. Let k = max

u,v∈V
r(u, v) denote the max-

imum connectivity requirement. We will show a natural transformation
of an SN-MSP instance (V, r) into an SNDP instance (G = (V, E), c, r),
such that an α-approximation for the SNDP instance implies an α·O(k2)-
approximation algorithm for the SN-MSP instance. In particular, for the
most interesting case of uniform requirement r(u, v) = k for all u, v ∈ V ,
we obtain for SN-MSP the ratio O(k2 ln k), which solves an open problem
from [3].

Keywords: Sensor networks, Unit-disc graphs, Node-connectivity,
Approximation algorithms.

1 Introduction

1.1 Problem Definition and Motivation

Network design problems require finding a minimum cost (sub-)network
that satisfies prescribed properties, often connectivity requirements. Classic
examples with 0, 1 connectivity requirements are: Shortest Path, Edge-Cover,
Minimum Spanning Tree, Minimum Steiner Tree/Forest, and others. Examples
of problems with high connectivity requirements are: Min-Cost k-Flow,
Edge-Multicover, k-Edge/Node-Connected Spanning Subgraph, Steiner Network,
and others. Such problems were studied extensively for edge/node-connectivity
and edge/node-costs, see [1,15,13,4,17,5,6,9,20,19,18] for only a small sample
of papers in the area.
� Part of this work was done as a part of author’s M.Sc. Thesis at The Open University

of Israel.
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We consider node-connectivity only. Let H = (U, E) be an undirected graph,
possibly with parallel edges. For u, v ∈ U , let κH(u, v) denote the maximum
number of pairwise internally-disjoint uv-paths in H . Given non-negative integer
connectivity requirements r = {r(u, v) : u, v ∈ R ⊆ U}, we say that H satisfies
r if κH(u, v) ≥ r(u, v) for all u, v ∈ R. In the Survivable Network Design Problem
(SNDP) we are given a graph G = (V, E) with edge-costs {ce : e ∈ E} and node-
connectivity requirements r = {r(u, v) : u, v ∈ R ⊆ V }. The goal is to find a
minimum cost subgraph H of G that satisfies r. SNDP problems were extensively
studied, especially the k-Connected Subgraph problem when r(u, v) = k for all
u, v ∈ V , see [4, 17, 20].

Related SNDP problems have strong motivation in wireless networks [3, 2,
7, 21, 22, 16]. One way to increase connectivity is to assign to each terminal a
high transmission power to satisfy the connectivity requirements. However, the
power needed to transmit through a distance d might be proportional to d4 [8].
Since energy budget is a primary constraint in wireless networks design, one may
prefer adding sensors rather than increasing power. Thus the problem of adding a
minimum number of (identical) sensors to increase the connectivity arises. Note
that in this setting, reliability of the network is measured by node-connectivity,
as it models sensor failures. For further discussion and motivation we refer the
reader to [3] and the references therein.

We consider SNDP problems on unit-disc graphs in normed spaces, where the
goal is to select a minimum number of Steiner Points (transmitters) to satisfy the
requirements between the terminals. Namely, given a normed space, (M, ‖·‖), a
finite set V ⊆M , and connectivity requirements {r (u, v) | u, v ∈ V }, we wish to
adjust the network to satisfy the requirements between the terminals by adding
a minimum number of transmitters (Steiner points).

Definition 1. Given a finite set of points V ⊂ M in a metric space (M, d),
the unit disc graph G[V ] induced by V has node set V and edge set {uv : 0 <
d(u, v) ≤ 1, u, v ∈ V }.
Formally, we consider the following problem:
Survivable Network with Minimum Number of Steiner Points (SN-MSP)
Instance: A finite set V of points in a metric space (M, d) and pairwise connec-

tivity requirements r = {r(u, v) : u, v ∈ R ⊆ V }.
Objective: Find a minimum size set of points S ⊂ M − V such that G[V ∪ S]

satisfies r.
An important special case is that of uniform requirements, when r(u, v) = k

for all u, v ∈ V . We call this particular case k-Connectivity with Minimum Number
of Steiner Points (k-C-MSP). We also consider the following types of requirements.

– Rooted requirements: there is s ∈ V so that r(u, v) > 0 implies u = s or
v = s; in rooted-uniform requirements r(s, v) = k for all v ∈ V − {s}.

– Subset uniform requirements: there is R ⊆ V such that r(u, v) = k for
all u, v ∈ R, and r(u, v) = 0 otherwise; (k-C-MSP is the case of uniform
requirements when R = V ).
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1.2 Our Results

Given an instance of SNDP or of SN-MSP, let k = max
u,v∈R

r(u, v) denote the max-

imum connectivity requirement. As in practical networks k is rather small, we
focus on obtaining approximation ratios that depend on k only. For k = 1, SN-
MSP with uniform requirements is the Steiner Tree with Minimum Number of
Steiner Points problem (ST-MSP). In the Euclidean plane, this problem admits
a 2.5-approximation algorithm [7]. On graphs with unit edge lengths ST-MSP
includes the Set-Cover problem [15], and thus has an Ω(ln |V |)-approximation
threshold. Hence for SN-MSP one cannot expect in arbitrary metric spaces
a ratio that depends on k only. We will consider instances of SN-MSP
defined on a normed space (M, ‖·‖), when the metric d is induced by the
norm ‖·‖.

One can easily reduce SN-MSP to an SNDP variant with unit weights on the
nodes rather than with costs on the edges; this reduction invokes a constant loss
factor in the approximation ratio. In this reduction however, uniform require-
ments in SN-MSP instance become subset uniform requirements in the SNDP
instance. The currently best known ratios for SNDP with node weights are:
O(k2 log |V |) for rooted requirements, O(k3 log |V |) for subset uniform require-
ments, and O(k4 log2 |V |) for general requirements [18]. The factor O(log |V |)
in these ratios is unavoidable even for k = 1, as even for k = 1 the problem
generalizes the Set-Cover problem [15].

Obtaining for k-C-MSP in R
2 an approximation ratio that depends on k only

was posed as an open problem in [3]. We will prove a much more general result.
Our ratios are expressed in terms of k and a parameter Δ that depends on the
normed space. Let Δ = Δ(M, ‖·‖) be the minimum number so that for any
V ⊆ M contained in a unit ball, G[V ] has a dominating set of size at most Δ.
It is known that Δ = 5 in R

2 and Δ = 11 in R
3. In [23] it is proved that for

M = R
� with the norm ‖(x1, x2, . . . , x�)‖p =

(∑�
i=1 |xi|p

)1/p

, Δ is at most the
Hadwiger number of the unit ball; (The Hadwiger number of an open convex
set X in a normed space M is the maximal number of disjoint translations of
X which share a boundary point with X); thus, for the Euclidean space R

�,
Δ ≤ 20.401�(1+o(1)), by [14]. Let ρ(k) = (Δ + 3)k2 + 7k + 2. Our main result is:

Theorem 1. An α-approximation algorithm for SNDP (on multigraphs) implies
an α · ρ(k)-approximation algorithm for SN-MSP, and this is so also for subset
uniform, uniform, rooted, rooted subset uniform, and rooted uniform require-
ments.

In SNDP problems, the input graph is usually assumed to be simple, while in
Theorem 1 it may have parallel edges. One novelty in our approach is considering
SNDP on multigraphs, and proving that the best known ratios for SNDP with
different requirement types remain the same on multigraphs. Specifically, we will
prove the following statement in Sect. 2.
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Lemma 1. There is an approximation ratio preserving reduction from SNDP
on multigraphs to SNDP on simple graphs, if the approximation ratios do not
depend on |V |. The reduction is requirement type preserving for uniform, rooted,
and subset uniform requirements. In the case of rooted uniform requirements, the
problem on multigraphs admits a 2-approximation algorithm.

The best known values of α are as follows. For k-Connected Subgraph on simple
graphs, an O(log k)-approximation algorithm for k = O(

√
n) [4] was obtained

long time ago. This ratio was recently extended to almost all values of n, k

in [20]; specifically, the ratio in [20] is O(ln |V |
|V |−k

· ln k) (which is O(ln k) un-
less k = |V | − o(|V |)). For other SNDP problems, the currently best known
approximation ratios are: 2 for rooted uniform requirements [11], O(k ln k) for
rooted requirements [18], O(k2 ln k) for subset uniform requirements [18], and
O(k3 ln |R|) for general requirements [5].

By substituting the currently best known values of α in Theorem 1, we obtain:

Corollary 1. k-C-MSP admits an approximation ratio of O
(
ln |V |

|V |−k
· ln k

)
·

ρ(k) = O(k2 ln k). Other SN-MSP problems admit the following approxima-
tion ratios: 2ρ(k) = O(k2) for rooted uniform requirements, O(k ln k) · ρ(k) =
O(k3 ln k) for rooted requirements, and O(k2 ln k) · ρ(k) = O(k4 ln k) for subset
uniform requirements,

Corollary 1 solves an open problem of Bredin, Demaine, Hajiaghayi, and Rus [3],
by giving the first non-trivial approximation algorithm for k-C-MSP with k ≥ 2.
In [3] the problem of adding a minimum set S of Steiner points so that the entire
graph G[V ∪S] is k-connected was considered (note that in k-C-MSP we require
k-connectivity only between the set V of terminals). For this problem in R

2, [3]
gave a reduction that invokes a loss of O(k4). They also conjectured that for k-
C-MSP their reduction can be used to reduce the instance to an SNDP instance
with subset uniform requirements, thus leading to an approximation ratio that
depends on k only, provided existence of such an approximation for SNDP with
subset uniform requirements. Even if this conjecture was proved, it leads to
ratio O(k4 · k2 log k), which is much worse than the ratio O(k2 · log k) proved
in this paper. The reason is not only the worse reduction fee, but also since [3]
reduces instances with uniform requirements into instances with subset uniform
requirements, while our reduction preserves the requirements type; consequently,
our result for k-C-MSP rely on algorithms for k-Connected Subgraph only (e.g. [4],
published few years before [3]), and not on recently discovered algorithms for
SNDP with subset uniform requirements [18]. Furthermore, our algorithm works
for arbitrary normed spaces, and for various connectivity requirement types.
However, in the proof of our main result we do use some ideas from [3].

We also note that Theorem 1 together with the O(k3 ln |R|)-approximation
algorithm for SNDP of [5] implies the ratio O(k3 ln |R|) · ρ(k) = O(k5 ln |R|) for
SN-MSP with arbitrary requirements. But in this case we conjecture that a ratio
that depends on k only can be achieved.
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2 Proof of the Main Result

We start by proving Lemma 1, which is restated here for the convenience of the
reader.
Lemma 1. There is an approximation ratio preserving reduction from SNDP
on multigraphs to SNDP on simple graphs, if the approximation ratios do not
depend on |V |. The reduction is requirement type preserving for uniform, rooted,
and subset uniform requirements. In the case of rooted uniform requirements, the
problem on multigraphs admits a 2-approximation algorithm.

Proof. First we consider instances with non-uniform requirements. Given an
SNDP instance (with parallel edges), insert a new node into every edge, and di-
vide (arbitrarily) the cost of the edge between the corresponding two new edges.
Clearly, the obtained graph is simple. It is easy to see that an α-approximation
for the modified instance implies an α-approximation for the original instance
and that this transformation is requirement type preserving for subset uniform,
rooted, and rooted subset uniform requirements. It remains therefore to consider
uniform and rooted uniform requirements.

We now consider the case of uniform requirements, when feasible solutions
are k-connected spanning subgraphs of G. Let H = (V, E) be a minimally k-
connected multi-graph (so H − e is not k-connected for every e ∈ E). We claim
that if |V | ≥ k + 1 then H is simple (thus we can keep for every maximal set
of pairwise parallel edges of G only the cheapest one), and if |V | ≤ k then H
has exactly k + 2 − |V | edges between every pair of it nodes (thus an optimal
solution is found by taking the k + 2 − |V | cheapest edges in G between every
pair of nodes). Assume that |V | ≥ k + 1. Then the simple underlying graph
H ′ of H is k-connected by the theorem of Whitney (c.f. [10]): If κH′ (u, v) ≥ k
for every u, v ∈ V so that uv /∈ E′, then H ′ is k-connected. This holds in our
case, since k pairwise internally-disjoint uv-paths in H have no parallel edges.
If |V | ≤ k, then note that if H has exactly k + 2− |V | edges between every pair
of its nodes then H is k-connected. Hence it is sufficient to prove that there are
at least k + 2 − |V | edges between every two nodes of H . To see this, consider
a set of k internally disjoint uv-paths in H . At most |V | − 2 of these paths may
not be edges between u, v, thus at least k − (|V | − 2) of these paths are edges
between u, v.

Finally, for rooted uniform requirements, we note that the existing 2-approx-
imation algorithm in [11] does not have the restriction that G is simple, and
hence works also for multi-graphs.

To prove Theorem 1, we will prove the following statement.

Lemma 2. There exists a polynomial time algorithm that, given an instance
V, r of SN-MSP, constructs an instance G = (V, E), c, r of SNDP so that: any
solution of cost C to SNDP can be converted in polynomial time to a solution
of size ≤ C to SN-MSP, and for every solution S to SN-MSP there exists a
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solution J of cost ≤ |S| · ρ(k) to SNDP. Furthermore, the construction preserves
the requirement type (subset uniform, uniform, rooted, rooted subset uniform,
and rooted uniform).

Theorem 1 easily follows from Lemma 2. To see this, consider the following
approximation algorithm for SN-MSP:

Algorithm 1. Approximation algorithm for SN-MSP

Approximate-SN-MSP(V, r = {r(u, v) : u, v ∈ R ⊆ V })
1. Construct the SNDP instance (G = (V, E), c, r) as in Lemma 2 from the SN-

MSP instance (V, r).
2. Compute a subgraph J ⊆ G satisfying r using an α-approximation algorithm.
3. Construct from J a feasible solution S to SN-MSP.

Lemma 2 ensures that the algorithm runs in polynomial time and computes a
feasible solution S to the SN-MSP instance. We prove the approximation ratio.
Let J∗ be a minimum cost subgraph of G satisfying r, and let S∗ be a minimum
size set of points so that G[V ∪ S∗] satisfies r. Then

|S| ≤ c(J) ≤ α · c(J∗) ≤ α · |S∗| · ρ(k) .

The second inequality is since J is computed using an α-approximation algo-
rithm, and the last inequality is by Lemma 2.

In the rest of this section we prove Lemma 2.

Definition 2. Given a finite set of points V ⊂ M and an integer k ≥ 1, the
graph KV is obtained by connecting every u, v ∈ V by k parallel edges, one of
cost 
d(u, v)� − 1 the others of cost 
d(u, v)�.
Clearly, given an SN-MSP instance, (V, r), the graph KV with the correspond-
ing edge costs c can be constructed in polynomial time. The triple (KV , c, r)
will serve as the SNDP instance guaranteed in Lemma 2. The construction pre-
serves the requirement types listed in Lemma 2. Let J be a subgraph of KV .
Let u, v ∈ V be adjacent in J by j + 1 ≤ k edges. Place 
d(u, v)� − 1 new
points uniformly on the line segment between u and v, dividing the segment
into 
d(u, v)� subsegments, each of length d(u,v)

�d(u,v)� ≤ 1. Recall that since M is a
normed space, and thus also a linear space, this can be easily done, and in fact,
for 1 ≤ i ≤ 
d(u, v)� − 1, the ith point is of the form

(

1− i


d(u, v)�
)

u +
i


d(u, v)�v

On each subsegment, place uniformly j new points in a similar fashion. Let
S(u, v) be the set of added points. Denote by S(J) the union of S(u, v) over all
adjacent pairs u, v ∈ V . The following statement is straightforward.
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Proposition 1. |S(J)| ≤ c(J) holds for any subgraph J of KV . Furthermore,
if H = G[V ∪ S(J)] is the unit disc graph induced by V ∪ S(J) then κH(u, v) ≥
κJ(u, v) for all u, v ∈ V .

Clearly, S(J) can be computed from J in polynomial time. This proves all parts
of Lemma 2, except the one stating that for every solution S to SN-MSP there
exists a solution J of cost c(J) ≤ |S| · ρ(k) to SNDP; this will be proved in the
rest of this section.

For a subset C of nodes of a graph G let ΓG(C) denote the set of neighbors of
C (outside of C) in G. We need the following lemma on connectivity of graphs.

Lemma 3. Let V be a subset of nodes of a graph G, let k be an integer, and let
C be a connected component of G − V . Let JC be a set of new edges on ΓG(C)
such that the following holds:

(i) If |ΓG(C)| ≤ k then JC has min{�uv, k−|Iuv|} uv-edges for any u, v ∈ ΓG(C),
where Iuv is the set of uv-edges in G and �uv is the maximum number of
internally disjoint uv-paths in the subgraph of G induced by {u, v} ∪ C.

(ii) If |ΓG(C)| ≥ k+1 then the graph induced by ΓG(C) in G+JC is k-connected.

Let J = G− C + JC . Then κJ(u, v) ≥ min{κG(u, v), k} for all u, v ∈ V .

Proof. The case |ΓG(C)| ≤ k easily follows from the following construction. Let
u, v ∈ G − C. Given a set Π of at most k internally disjoint uv-paths in G, for
every P ∈ Π do the following. For every maximal u′v′-subpath of P that visits C
and has all its internal nodes in C, replace this subpath by a u′v′-edge e not used
by any other path in Π . Such e is chosen to be an edge of G if {u′, v′} �= {u, v}
and Iu′v′ �= ∅ or if {u′, v′} = {u, v} and min{�uv, k−|Iuv |} = 0. Otherwise, e is a
new edge added to G. This gives a set of |Π | internally disjoint uv-paths that do
not visit C. Since the paths in Π are internally disjoint, the set of edges added
to G may have parallel edges only between u and v, and by the construction,
the number of uv-edges added, if any, can be at most min{�uv, |Π | − |Iuv|} ≤
min{�uv, k − |Iuv |}.

Now suppose that |ΓG(C)| ≥ k+1, so ΓG(C) induces in G+JC a k-connected
graph. Let u, v ∈ G−C. Let Iuv be a set of uv-edges in J . Let A be a minimum
size subset of nodes of J so that J − (A + Iuv) has no uv-path. By Menger’s
Theorem κJ (u, v) = |A| + |Iuv |. Thus if |A| + |Iuv | ≥ k then κJ(u, v) ≥ k ≥
min{κG(u, v), k}. We claim that if |A|+ |Iuv| ≤ k− 1 then G− (A + Iuv) has no
uv-path, hence by Menger’s Theorem κJ(u, v) = |A|+ |Iuv| ≥ κG(u, v). Suppose
to the contrary that G− (A+ Iuv) has a uv-path P . Going along P from u to v,
let u′ be the first and v′ the last node in ΓG(C); such u′, v′ exist since P must
contain at least one node from C, as P is not a uv-path in J−(A+Iuv). As J has
k internally disjoint u′v′-paths and |A|+ |Iuv | ≤ k − 1, the graph J − (A + Iuv)
has at least one u′v′-path P ′. Replacing the u′v′-subpath of P by P ′ gives a
uv-path in J − (A + Iuv), contradicting the definition of A.

Let S be a feasible solution to an SN-MSP instance, so G = G[V ∪ S] satisfies
r. The key step in constructing a solution J to SNDP of cost c(J) ≤ |S| · ρ(k)
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is replacing every connected component C of G − V by an edge set JC as in
Lemma 3. Obviously, ΓG(C) ⊆ V , and thus JC ⊆ KV . The following lemma
shows that there exists such JC of low cost.

Lemma 4. For every connected component C of G−V there exists a subset JC

of edges of KV as in Lemma 3 of cost c(JC) ≤ ρ(k) · |C|.
The proof of Lemma 4 is somewhat long, so we prove it after the following
corollary, which easily implies the last part of Lemma 2.

Corollary 2. Let C be the set of connected components of G−V . For C ∈ C let
JC be as in Lemma 4. Then J = G− S + (

⋃

C∈C
JC) is a subgraph of KV of cost

c(J) ≤ ρ(k) · |S| that satisfies r.

Proof. It is easy to see that for any u, v ∈ V the number of uv-edges in J is
at most k. Hence J is a subgraph of KV . As C is a partition of S, we have
by Lemma 4 c(J) = c(

⋃

C∈C
JC) ≤ ∑

C∈C
c(JC) ≤ ∑

C∈C
ρ(k) · |C| = ρ(k) · |S|. To

prove that J satisfies r, let C = {C1, C2, . . . , Cm}. For 1 ≤ j ≤ m let Gj =

G − (
j⋃

i=1

Ci) + (
j⋃

i=1

JCi). Using Lemma 3, a simple induction shows that for all

1 ≤ j ≤ m, Gj satisfies r. In particular, this is so for J = Gm.

Now we prove Lemma 4. Let C ∈ C. We start with the easier case |ΓG(C)| ≤ k.
Then JC consists of no more than �uv edges for every u, v ∈ ΓG(C). Let u, v ∈
ΓG(C). Since there are �uv internally disjoint uv-paths in the subgraph of G in-
duced by {u, v} ∪ C, there is one such path containing no more than �|C|/�uv�
points in C. Therefore d(u, v) ≤ |C|/�uv + 1. Consequently, the total cost of uv-
edges in JC is bounded by �uv · ( |C|

�uv
+1) = |C|+ �uv ≤ 2|C|. Thus as |ΓG(C)| ≤ k

we have

c(JC) ≤
(

k

2

)

· 2|C| ≤ 1
2
k(k − 1) · 2|C| ≤ k2 · |C| ≤ ρ(k) · |C| .

This finishes the proof of Lemma 4 for the case |ΓG(C)| ≤ k.
We now turn to prove Lemma 4 for the case |ΓG(C)| ≥ k + 1. We will use the

following two easy statements (Lemma 5 is well known and therefore its proof
is omitted):

Lemma 5. Let H be a k-connected graph on at least k+1 nodes. Then the graph
obtained from H by adding a new node and joining it to some k nodes of H is
also k-connected.

Lemma 6. Let U ′, U ′′ be two subsets of the node set V of a graph H so that
their union is V , and so that each of U ′, U ′′ has at least k +1 nodes and induces
in H a k-connected graph. If H contains a matching M between U ′ − U ′′ and
U ′′ − U ′ of size at least k − |U ′ ∩ U ′′| then H is k-connected.
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Proof. By the theorem of Whitney cited earlier, a graph H on at least k + 1
nodes is k-connected if, and only if, κH(u, v) ≥ k for every u, v ∈ V so that
uv /∈ H . Therefore, it is sufficient to prove that if u, v ∈ V and uv /∈ H then
H−A contains a uv-path for any A ⊆ V −{u, v} so that |A| ≤ k−1. If u, v ∈ U ′

or if u, v ∈ U ′′ then the statement is obvious, so assume that u ∈ U ′ − U ′′ and
v ∈ U ′′−U ′. If there is w ∈ (U ′∩U ′′)−A, then there is a uw-path and a wv-path
in H −A. Therefore there is a uv-path in H −A. Otherwise, U ′ ∩ U ′′ ⊆ A, and
in particular |U ′ ∩ U ′′| ≤ k − 1. Thus H − A has an edge e = w′w′′ ∈ M . We
then obtain a uv-path in H −A by the same argument as before.

Lemma 7. Let CU = {u ∈ C : |ΓG(u) ∩ V | ≥ k + 1} and CW = C − CU . Let
U =

⋃
u∈CU

ΓG(u) ∩ V and W =
⋃

w∈CW
ΓG(w) ∩ V .

(i) If U �= ∅ then |U | ≥ k+1 and there is a set EU of edges of KV on U such that
the graph (U, EU ) is k-connected and c(EU ) ≤ |CU |

(
Δk2 + 2k + 2

)
+ 2k|C|.

(ii) If |W | ≥ k+1 then there is a set EW of edges of KV on W such that the graph
(W, EW ) is k-connected and c(EW ) ≤ |CW |(2k2 + 2k) + |C|(3k2 + 2k)− k.

Proof. Let T be a spanning tree in the subgraph induced in G by C. Order
the nodes in CU and in CW in the order of some Eulerian tour of T , say CU =
{u1, . . . , up} and CW = {w1, . . . , wq}. Let Ui = ΓG(ui)∩V and Wi = ΓG(wi)∩V .
Let Pi be the part of the Eulerian Tour from ui to ui+1, and let Qi be the part
of the Eulerian Tour from wi to wi+1, Clearly,

∑p−1
i=1 |Pi| = 2|C| − 2 ≤ 2|C| and

∑q−1
i=1 |Qi| = 2|C| − 2 ≤ 2|C|.
To prove part (i) of the lemma, assume U is non-empty. By the definition

of CU , |U | ≥ k + 1. For every 1 ≤ i ≤ p, |Ui| ≥ k + 1, and we will construct
a k-connected graph on Ui of cost ≤ Δk2 + 2. Then we will add a match-
ing Mi between Ui − Ui+1 and Ui+1 − Ui so that |Mi| ≥ k − |Ui ∩ Ui+1| and
c(Mi) ≤ k(|Pi|+ 2). The union of the constructed graphs will be a k-connected
graph, by Lemma 6. The total cost of the matchings is ≤ 2k|C| + 2kp. Conse-
quently, we get a k-connected graph on U of cost ≤ p(Δk2 + 2) + 2k|C|+ 2kp ≤
|CU |

(
Δk2 + 2k + 2

)
+ 2k|C| as required.

Fix 1 ≤ i ≤ t. We now construct a k-connected graph on Ui. By the definition
of Δ, since Ui ⊆ ΓG(ui), there is a dominating set U1

i of size at most Δ in
G[Ui]. By the same arguments, if Ui − U 1

i is non-empty, there is a dominating
set U2

i of size at most Δ in G[Ui − U1
i ]. Repeating the process k times, and

accumulating the dominating sets, we obtain a set U ′
i , so that |U ′

i | ≤ Δk and for
every u ∈ Ui −U ′

i , u has at least k neighbors from U ′
i in G[Ui]. By a theorem of

Harary (c.f. [12]), there is a k-connected graph on U ′
i containing 
Δk2/2� edges.

Since Ui ⊆ ΓG(ui), and by the triangle inequality, every such edge has cost ≤ 2.
We get a k-connected graph on U ′

i of cost ≤ 2
Δk2/2� ≤ Δk2 + 2. Every node
in Ui − U ′

i is connected to at least k nodes in the constructed graph, therefore
by Lemma 5, the constructed graph is a k-connected graph on Ui.

To prove part (ii) of the lemma, assume |W | ≥ k + 1. We construct a k-

connected graph on W . The construction is as follows. Let W ′
i = Wi −

i−1⋃

j=1

Wj .

Then the nonempty sets from W ′
1, . . . , W

′
q partition W . Traversing the sequence
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W ′
1, W

′
2, . . . , W

′
q from left to right, we can partition it into blocks, each consisting

of consecutive sets from the sequence, such that: the number of nodes in the
union of the sets in each block is between k + 1 and 2k, except maybe that the
last block has less than k + 1 nodes. We will construct a clique on the nodes of
each block. We then add a matching Mt as in Lemma 6 between each block t
and block t + 1, except that if the last block has less than k + 1 nodes, then we
connect each of its nodes to the preceding block as described in Lemma 5.

Consider the first block, say W ′
1, . . . , W

′
� , and let B1 be the union of the sets

in this block. Note that k + 1 ≤ |B1| ≤ 2k. We bound the cost of a clique on
B1 as follows. In G, each W ′

i is connected by a star with center wi, and wi is
joined to wi+1 by the path Qi. An edge connecting a node in W ′

i to a node in
W ′

i+j shortcuts at most one edge from the star of each of W ′
i , W

′
i+j , and each of

the paths Qi, . . . , Qi+j−1. Thus by the triangle inequality, each such edge adds
at most 2 + |Qi|+ · · ·+ |Qi+j−1| to the cost. Clearly, over all edges, we shortcut
every Qi at most |B1|2/4 times. In addition, every edge adds at most 2 to the

cost, which sums to at most 2
(|B1|

2

) ≤ |B1|2 for all edges. Denoting L1 =
�∑

i=1

|Qi|
and recalling that |B1| ≤ 2k we obtain that the cost of a clique on B1 is bounded
by

|B1|2
4
·

�−1∑

i=1

|Qi|+ |B1|2 ≤ k2L1 + 2k|B1| .

A similar argument applies on every block t. Since
∑

t Lt = 2|C| − 2 and∑
t |Bt| ≤ |W | ≤ k|CW |, the overall cost of the cliques on the blocks is bounded

by
k2

∑

t

Lt + 2k
∑

t

|Bt| ≤ 2k2|C| − 2k2 + 2k2|CW |.

For every t, we choose a set B′
t of k nodes from Bt arbitrarily. Next we

construct consecutive matchings between B′
t and B′

t+1 for all t. For all i, Qi is
shortened at most k times. In addition, by previous arguments, each edge may
shortcut at most one edge from the stars around some w′

i and w′
j . Thus the cost

of all matchings is bounded by

k

q∑

i=1

|Qi|+ 2k|CW | ≤ 2k|C| − 2k + 2k|CW | .

Finally, if the last block has at most k nodes, we connect every its node to k
nodes from the preceding block, thus constructing a k connected graph on W by
Lemma 5. By the triangle inequality, for every u, v ∈ ΓG(C), d(u, v) ≤ |C| + 1,
thus every edge is of cost no greater than |C| + 1, and the added edges add a
cost of at most

k2(|C|+ 1) ≤ k2|C|+ k2 .

The total cost of the edges added is bounded by

|CW |(2k2 + 2k) + |C|(3k2 + 2k)− k2 − 2k ≤ |CW |(2k2 + 2k) + |C|(3k2 + 2k)− k

This completes the proof of Lemma 7.
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Now we finish the proof of Lemma 4. If |W | ≥ k + 1 and U is non-empty,
then there is a matching EUW of size k between U and W . By the triangle
inequality c(EUW ) ≤ k(|C| + 1). By Lemma 7 and Lemma 6, the edge set
JC = EU ∪ EW ∪ EUW forms a k-connected graph on ΓG(C), of cost at most
(assuming Δ ≥ 2):

c(EU ) + c(EW ) + c(EUW ) ≤
≤ |CU |(Δk2 + 2k + 2) + |CW |(2k2 + 2k) + |C|(3k2 + 5k) ≤
≤ (|CU |+ |CW |)(Δk2 + 2k + 2) + |C|(3k2 + 5k) ≤
≤ |C| ((Δ + 3)k2 + 7k + 2

)
= ρ(k)|C| .

If |W | ≤ k, then U is non-empty, since U ∪W = ΓG(C) and |ΓG(C)| ≥ k + 1.
Then in addition to EU , we connect every node in W to k arbitrary nodes in
U . This gives a k-connected graph on ΓG(C), by Lemma 5. By the triangle
inequality, the cost of added edges is ≤ k2(|C|+1) ≤ 2k2|C|. Thus the total cost
is ≤ ρ(k)|C|.

This finishes the proof of Lemma 4, and thus also the proof of Lemma 2 is
complete.

A tight example: The following example shows that our analysis is tight (up
to constants). Given k points in a ball of radius 1/2 with uniform requirements
as an instance for SN-MSP, an optimal solution size is 1 – add one Steiner Point
in the ball. An optimal solution for the SNDP instance has cost

(
k
2

)
, as it is a

union of two cliques on V : in one clique every edge uv has cost 
d(u, v)�−1 = 0,
while in the other every edge uv has cost 
d(u, v)� = 1.
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Abstract. We present a new approximation algorithm for rate-monotonic multi-
processor scheduling of periodic tasks with implicit deadlines. We prove that for
an arbitrary parameter k ∈ N it yields solutions with at most ( 3

2
+ 1

k
)OPT + 9k

many processors, thus it gives an asymptotic 3/2-approximation algorithm. This
improves over the previously best known ratio of 7/4. Our algorithm can be im-
plemented to run in time O(n2), where n is the number of tasks. It is based on
custom-tailored weights for the tasks such that a greedy maximal matching and
subsequent partitioning by a first-fit strategy yields the result.

1 Introduction

In this paper, we consider the synchronous rate-monotonic real-time scheduling prob-
lem with implicit deadlines. That is, we are given a set of n tasks V := {τ1, . . . , τn}
attributed with execution times c(τi) and periods p(τi). Each task releases a job at time
0 and subsequently at each integer multiple of its period (hence synchronous). Fur-
thermore, each job of a task has to be finished before the next job of the same task is
released. In other words the relative deadlines of jobs are implicitly given by the peri-
ods. We allow preemption, but we require fixed priorities to reduce the overhead during
runtime. That is, the current job is preempted, if a new job with a higher priority is
released. In this context, Liu and Layland [1] have shown that if there are feasible fixed
priorities then rate-monotonic priorities, which are higher for smaller periods, also de-
fine a feasible schedule. See the book of Buttazzo [2] for a comparison of fixed-priority
versus dynamic-priority scheduling policies.

Since multi-core and multi-processor environments become more and more popular,
we consider the problem of assigning the tasks to a minimum number of processors
such that there is a feasible rate-monotonic schedule for each processor. Formally

Given tasks V = {τ1, . . . , τn}, running times c : V → Q+, and periods
p : V → Q+, where each task τ generates a job of length c(τ) ≤ p(τ) and
relative deadline p(τ) at z ·p(τ), for all z ∈ Z≥0, find the minimum � such that
there is a partition of V = P1∪̇ . . . ∪̇P� subject to RM-schedulability of Pj for
each j.

K. Jansen and R. Solis-Oba (Eds.): WAOA 2010, LNCS 6534, pp. 166–177, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Here we forbid migration, i.e. jobs of the same task must always be processed on the
same machine. This scheduling problem has received considerable attention in the real-
time and embedded-systems community. This popularity is due to the fact that more
and more safety-critical control applications are carried out by microprocessors and in
particular by multiprocessor environments. Such scheduling problems are today a major
algorithmic challenge in the automotive and aviation industry.

The idea for our algorithm is as follows: Suppose all tasks had utilization larger
than 1

3 . Then at most 2 tasks can be assigned to each processor. Define an undirected
graph G = (V, E) with the tasks being the nodes and an edge {τ1, τ2} for each pair
such that τ1 and τ2 can be RM-scheduled on a single processor. Then the size of a
maximum matching plus the number of nodes not covered by that matching gives OPT .
We incorporate the existence of small tasks by only including an edge {τ1, τ2} ∈ E if
w(τ1)+w(τ2) exceeds a certain threshold. Here w(τ) is a proper weight function which
is monotonically increasing with the utilization u(τ) = c(τ)

p(τ)
.

1.1 Related Work

The famous Bin Packing problem is an important special case of our scheduling prob-
lem. The objective of Bin Packing is to find a partition of a set of items of different sizes,
say ui ∈ (0, 1] for i = 1, . . . , n, into a minimum number of bins such that the total size
of each bin does not exceed 1. The similarity to our scheduling problem becomes ap-
parent by introducing the notion of the utilization of a task, i.e. u(τ) = c(τ)/p(τ). If all
periods are the same, e.g. the common denominator of rational item sizes, then the pri-
orities for the rate-monotonic scheduling problem become irrelevant and a set of tasks
is feasible for one processor, if and only if their total utilization does not exceed 1.

Successful heuristics for Bin Packing are First Fit, Next Fit and Best Fit. In all vari-
ants the items are assigned in a consecutive manner to a bin, which has enough space
(or a new one is opened). For First Fit the current item is assigned to the bin with
the smallest index, in Best Fit it is assigned to the bin, whose item sum is maximal.
For Next Fit an active bin is maintained. If the current item does not fit into it, a new
bin is opened, now being the active one; old bins are never considered again. In First
Fit Decreasing the items are first sorted by decreasing sizes and then distributed via
First Fit. In the worst-case Next Fit produces a 2-approximation, while First Fit needs
� 17

10
OPTBinPacking� + 1 many bins [3]. Asymptotically, Best and First Fit Decreasing

have an approximation ratio of 11/9 [4]. Furthermore, there is an asymptotic PTAS [5]
and even an asymptotic FPTAS exists [6]. More on Bin Packing can be found in the
excellent survey of Coffman et al. [7].

The utilization of a task set V ′ is defined as u(V ′) =
∑

τ∈V ′ c(τ)/p(τ). If V ′ is fea-
sible (i.e. RM-schedulable on a single machine), then the utilization u(V ′) is at most 1.
However, V ′ can be infeasible, even if u(V ′) < 1. Liu and Layland [1] have shown
that V ′ is feasible, if u(V ′) is bounded by n′(21/n′ − 1), where n′ = |V ′|. This bound
tends to ln(2) and the condition is not necessary for feasibility, as the example with
equal periods shows. Stronger, but still not necessary conditions for feasibility are given
in [8,9,10].
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The response time of a job is the difference of release time and completion time.
The response time of a task is defined as the maximal response time of any of its jobs.
In our synchronous setting, this value is attained for the first job (which is released at
time 0), see [1].

If p(τ1) ≤ . . . ≤ p(τn) then the response time for τi in a rate-monotonic, uni-
processor schedule is given by the smallest value r(τi) ≥ 0 with

r(τi) = c(τi) +
∑

j<i

⌈
r(τi)
p(τj)

⌉

c(τj).

Of course τ1, . . . , τn are feasible if and only if r(τi) ≤ p(τi) for i = 1, . . . , n. But it
was proved in [11] that such response times cannot even be approximated in polyno-
mial time within a constant factor, unless NP = P. Nevertheless in practice response
times can be efficiently computed using a fix-point iteration approach [12]. Furthermore
Baruah and Fisher [13] showed that there is an FPTAS for computing the minimum
processor speed, which is needed to make a task system RM-schedulable. However, the
complexity status of verifying, whether the RM-schedule of a set of implicit deadline
tasks on a single machine is feasible, remains an open problem [14]. Fortunately for
n = 2 there is an simple exact criterion (cf. [15], chapter 32): The task set {τ1, τ2} with
p(τ1) ≤ p(τ2) is RM-schedulable if and only if

c(τ2) ≤
⌊

p(τ2)
p(τ1)

⌋

(p(τ1)− c(τ1)) + max
{

0, p(τ2)−
⌊

p(τ2)
p(τ1)

⌋

p(τ1)− c(τ1)
}

. (1)

This constant time test will be used in our algorithm.
Most popular algorithms for rate-monotonic multiprocessor scheduling first sort the

tasks in a suitable way and then distribute them in a First Fit or Next Fit manner us-
ing a sufficient feasibility criterion. See the following table for an overview (with our
algorithm in the last row, for the sake of comparability).

algorithm references sorting distribution ratio time
RMNF [16,17] inc. p(τ) Next Fit 2.67 O(n log n)
RMFF [16,17] inc. p(τ) First Fit 2.00 O(n log n)
RRM-FF [18] - First Fit 2.00 O(n log n)
RRM-BF [18] inc. p(τ) Best Fit 2.00 O(n log n)
FFDU [17] dec. u(τ) First Fit 2.00 O(n log n)
RMST [8] inc. S(τ) Next Fit 1

1−α O(n log n)
RMGT [8] - First Fit + RMST 1.75 O(n2)
FFMP [19] inc. S(τ) First Fit 2.00 O(n log n)
k-RMM - - Matching + FFMP 1.50 O(n2)

Here S(τ) = log2 p(τ) − 	log2 p(τ)
 and α = maxτ∈V u(τ). In the table, column
“ratio” denotes the best known upper bounds on the asymptotic approximation ratio.
The Rate-monotonic general task algorithm [8] distributes tasks with utilization at most
1/3 using RMST and the rest separately with First Fit. Also the algorithms RRM-FF
and RRM-BF apply the same grouping strategy. A more detailed description can be
found in [17].
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Furthermore there is an asymptotic PTAS under resource augmentation, computing
for any fixed ε > 0 a solution with (1 + ε)OPT + O(1) processors, where the tasks
on each processor can be feasibly scheduled after increasing the processor speed by
a factor of 1 + ε [20]. In the same paper it was proved that unless P �= NP, no
asymptotic FPTAS can exist for this multiprocessor scheduling problem. But it is still
an open question whether an asymptotic PTAS is possible. We refer to the article [21]
for an overview on complexity issues of real-time scheduling.

1.2 Our Contribution

We present a new polynomial time algorithm for rate-monotonic real-time scheduling,
which is based on matching techniques and yields solutions of at most ( 3

2
+ 1

k
)OPT+9k

many processors. The asymptotic approximation ratio tends to 3/2 (for growing k), im-
proving over the previously best known value of 7/4. Moreover, we provide experimen-
tal evidence that our new algorithm outperforms all other existing algorithms.

2 Preliminaries

During our algorithm it will happen, that we discard a set of (in general small) tasks
V ′ ⊆ V and schedule them using a simple heuristic termed First Fit Matching Periods
(FFMP), which was introduced in [19]. For a task τ define

S(τ) := log2 p(τ)− 	log2 p(τ)
 and β(V ) := max
τ∈V

S(τ)−min
τ∈V

S(τ)

then the FFMP heuristic can be stated as follows

Algorithm 1. FFMP
(1) Sort tasks such that 0 ≤ S(τi) ≤ . . . ≤ S(τn) < 1
(2) FOR i = 1, . . . , n DO

(3) Assign τi to the processor Pj with the least index j such that

u(Pj ∪ {τi}) ≤ 1 − β(Pj ∪ {τi}) · ln(2)

The idea for this ordering of the tasks is that consecutive tasks will have periods
that are nearly multiples of each other and hence the bin packing aspect of the problem
becomes dominant. Let FFMP(V ) denote the value of the solution, which FFMP pro-
duces, if applied to V . One can prove the following lemma using well known techniques
from [8] (see also [15]).

Lemma 1. Given periodic tasks V = {τ1, . . . , τn} and k ∈ N. FFMP always produces
feasible solutions such that

– If u(τi) ≤ α ≤ 1
2

for all i = 1, . . . , n, then FFMP(V ) ≤ 1
1−α

u(V ) + 3.
– If u(τi) ≤ 1

2 − 1
k for all i = 1, . . . , n, then FFMP(V ) ≤ n

2 + k
2 .

The RMST algorithm of Liebeherr et al. [8] also fulfills the same properties. But on
average the First Fit distribution for FFMP behaves much better than the Next Fit dis-
tribution of RMST. However just for a worst-case analysis one could replace FFMP by
RMST.
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3 Matchings and Schedules

As a powerful tool, we will use matchings in our algorithm. To this end, we define an
undirected graph G = (V, E) such that the nodes correspond to the tasks. If there is an
edge between the nodes τ1 and τ2, then the corresponding tasks can be scheduled on one
processor. Suppose for the time being that all tasks have a utilization of more than 1

3 and
thus at most two tasks fit on one processor. Then the maximum cardinality matching
in G determines a schedule with a minimum number of processors by reserving one
processor for each edge in the matching and one processor for each unmatched node.

For the general setting of tasks with arbitrary utilization, this basic idea for our algo-
rithm persists: Compute a matching in G, schedule each pair of matched tasks together
on one processor, and distribute the remaining tasks by FFMP. Of course, the matching
should be in such a way that we use the processors efficiently. To this end, we will assign
weights to the nodes depending on the utilization of the corresponding tasks. We will
later define the weights exactly. For now, let the weights be a function w : V → [0, 1]
and let the price of a matching M ⊆ E be

price(M) := |M |+ w(M ),

where M := {v ∈ V | ∀e ∈ M : v �∈ e} ⊆ V is the set of unmatched nodes
and w(M ) :=

∑
v∈M w(v). That is, we have to allocate 1 processor for each matched

pair of tasks and also some more processors for distributing the remaining unmatched
tasks. Note that finding the matching with minimum price is equivalent to computing
the maximum weight matching with edge weights w(e) := w(u) + w(v) − 1 for each
edge e = {u, v}, since

w(M) :=
∑

e∈M

w(e) =
∑

v∈V

w(v)−
∑

v∈M

w(v)− |M | = w(V )− price(M).

While a maximum weight matching in a graph with n nodes and m edges can be found
in O(n(m + n log n)) [22], we will see that it is sufficient for our purpose to compute
an inclusion-wise maximal matching greedily. That is, we maintain the property, that
for all e ∈ E \M we have w(e′) ≥ w(e) for all e′ ∈M or there is an edge e′ ∈M with
e ∩ e′ �= ∅ and w(e′) ≥ w(e), throughout the algorithm. Furthermore, the algorithm
iterates until M does not contain an edge, i.e. |e ∩M | < 1 for all e ∈ E. Note that
such a greedy maximal matching can be computed in O(n2) by sorting the tasks by
decreasing weight and searching for each task τi the first unmatched τj with {τi, τj} ∈
E. Although we do not have an explicit representation of the edges, the check whether
a pair of nodes forms an edge takes only constant time. The interested reader is pointed
to [23] or [24] for an extensive account on matchings.

4 The Algorithm

As indicated in the previous section, we compute a weighted matching to find a good
schedule. It remains to define the weights properly. Note that each edge yields a pro-
cessor in the partition. Hence, we do not want to match two nodes which do not use the
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processor to some extent. Moreover, each unmatched node is first discarded and later
scheduled via FFMP. We are now going to define node weights w in such a way, that a
matching with costs γ can be turned into a feasible schedule of roughly γ many proces-
sors. Intuitively, the weight w(τ) ∈ [0, 1] will denote the average number of processors
per task, which the FFMP algorithm needs to schedule a large number of tasks, if all
tasks have the same utilization as τ . Here we distinguish 3 categories of tasks:

– Small tasks (0 ≤ u(τ) ≤ 1
3 ): Consider tasks τ1, . . . , τm with a small utilization, i.e.

u(τi) ≤ α for all i = 1, . . . , m and α ≤ 1/3. Then we may schedule such tasks
with FFMP using u({τ1, . . . , τm}) 1

1−α
+ 3 ≤ m ·α 1

1−α
+ 3 many processors (see

Lemma 1), thus we choose w(τ) := u(τ)
1−u(τ) for a small task τ .

– Medium tasks ( 1
3

< u(τ) ≤ 1
2
− 1

12k
): Suppose we have tasks τ1, . . . , τm whose

utilization is at least 1/3, but bounded away from 1/2, say u(τi) ≤ 1
2 − 1

12k , where
k is an integer parameter that we determine later. Then FFMP({τ1, . . . , τm}) ≤
m/2+O(k) (see again Lemma 1), thus we choose w(τ) := 1/2 for medium tasks.

– Large tasks (u(τ) > 1
2 − 1

12k ): For a large task one processor is sufficient and
possibly needed, thus w(τ) := 1 in this case.

Algorithm 2. k-Rate-Monotonic-Matching algorithm (k-RMM)
(1) Construct G = (V, E) with edges e = {τ1, τ2} ∈ E ⇔ {τ1, τ2} RM-schedulable (accord-

ing to condition (1)) and w(e) > 0.
(2) Sort the edges by decreasing weight (ties are broken arbitrarily) and compute the greedy

maximal matching M w.r.t. this order.
(3) For all {τ1, τ2} ∈ M create a processor with {τ1, τ2}
(4) Define

– Vi = {τ ∈ M : 1
3
· i−1

k
≤ u(τ ) < 1

3
· i

k
} ∀i = 1, . . . , k

– Vk+1 = {τ ∈ M : 1
3
≤ u(τ) ≤ 1

2
− 1

12k
}

– Vk+2 = {τ ∈ M : u(τ ) > 1
2
− 1

12k
}

(5) Distribute Vk+2, Vk+1, . . . , V1 via FFMP.

The reason to define the weights in this way becomes clear with the proof of the fol-
lowing Theorem, saying that the number of used machines is essentially determined by
the price of the matching.

Theorem 1. Let M be an arbitrary matching in G. The schedule created from M as
described in Algorithm 2, uses at most

(
1 +

1
2k

)
· price(M) + 9k

many processors.

Proof. We create |M | processors, covering pairs of tasks {τ1, τ2} ∈M . For scheduling
the tasks in Vk+1 we know that according to Lemma 1
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FFMP(Vk+1) ≤ |Vk+1|
2

+
12k

2
=

∑

τ∈Vk+1

w(τ) + 6k

using that the utilization of all tasks in Vk+1 lies between 1
3 and 1

2 − 1
12k . Of course

FFMP(Vk+2) ≤ |Vk+2| =
∑

τ∈Vk+2
w(τ). For each Vi (i = 1, . . . , k) we know that the

utilization of each task is sandwiched by 1
3
· i−1

k
and 1

3
· i

k
. Consequently

FFMP(Vi) ≤ 1
1− i

3k

·u(Vi)+3 ≤
(
1+

1
2k

) 1
1− i−1

3k

·u(Vi)+3 ≤
(
1+

1
2k

)
w(Vi)+3

by applying again Lemma 1 together with the fact that w(τ) ≥ u(τ) · 1
1−(i−1)/(3k) for

all τ ∈ Vi. We conclude that the total number of processors in the produced solution
is

|M |+
k+2∑

i=1

FFMP(Vi) ≤ |M |+
∑

τ∈Vk+1∪Vk+2

w(τ) + 6k

+
(
1 +

1
2k

) ∑

τ∈V1∪...∪Vk

w(τ) + 3k

≤ |M |+
(
1 +

1
2k

) ∑

τ∈V1∪...∪Vk+2

w(τ) + 9k

≤
(
1 +

1
2k

)
· price(M) + 9k.

��
It remains to show that the price of the matching computed by Algorithm 2 is at most
roughly 3

2
times the number of necessary processors. To this end, we first show that for

any partition, there is a matching with the appropriate price.

Theorem 2. For any feasible partition P = {P1, . . . , P�} of the tasks, there is a match-
ing MP with

price(MP) ≤
(3

2
+

1
12k

)
· |P|

such that no e ∈MP crosses a Pi ∈ P, i.e. either e ⊆ Pi or e ∩ Pi = ∅.
Proof. Consider a processor Pi. After reordering let τ1, . . . , τq be the tasks on Pi, sorted
such that u(τ1) ≥ . . . ≥ u(τq). First suppose that q ≥ 2. We will either cover two tasks
in Pi by a matching edge or leave all tasks uncovered. But in any case we guarantee,
that the tasks in Pi contribute at most (3

2 + 1
12k ) to price(MP). We distinguish two

cases, depending on whether Pi contains a large task or not.

Case τ1 not large: We leave all tasks in Pi uncovered. Note that all tasks in Pi are
either of small or medium size, hence w(τj) ≤ 3

2u(τj) for j = 1, . . . , q. The
contribution of Pi is

∑q
j=1 w(τj) ≤ 3

2

∑q
j=1 u(τj) ≤ 3

2
.
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Case τ1 large: We add {τ1, τ2} to the matching. We may do so since both tasks are
RM-schedulable, the weight of the edge is positive because τ1 is large, and hence
{τ1, τ2} ∈ E. The contribution is

1 +
q∑

j=3

w(τj) ≤ 1 +
q∑

j=3

u(τj)

︸ ︷︷ ︸
≤1−u({τ1,τ2})

· 1
1− u(τj)

︸ ︷︷ ︸
≤u(τ2)

≤ 1 +
1− u(τ1)− u(τ2)

1− u(τ2)
(2)

≤ 1 +
1
2 + 1

12k − u(τ2)
1− u(τ2)

≤ 3
2

+
1

12k

using that τ3, . . . , τq are small and a−x
1−x is monotone decreasing if a < 1.

If q = 1, then we do not cover τ1. The contribution is at most 1. Moreover, the above
construction guarantees that no edge in MP crosses a processor Pi. ��
If we compute a maximum weight matching in our algorithm (say in running time in
O(n3)), by simply combining Theorems 1 and 2, we can already obtain a bound of

(3
2

+
1

12k

)
·
(
1 +

1
2k

)
·OPT + 9k ≤

(3
2

+
1
k

)
OPT + 9k

on the number of used processor. However, we do not want to fall short of the running
time of O(n2) of the 7/4-approximation algorithm of Liebeherr et al. [8]. Hence, we
use a greedy matching instead, which can be computed in O(n2). Observe that in the
previous proof, in particular for the second case, we left some slack to the approxima-
tion ratio. This will become useful in the proof of the next theorem, saying that for any
feasible partition it is sufficient to consider a greedy maximal matching.

Theorem 3. If P = {P1, . . . , P�} be a feasible partition, then we have for a greedy
matching M that

price(M) ≤
(3

2
+

1
6k

)
|P|.

Proof. This proof is based on a comparison of M with the matching MP, constructed
in Theorem 2. To this end, we consider the symmetric difference of the two matchings,
i.e. let E′ := MΔMP. Note that E′ is a collection of disjoint paths and cycles, i.e. for
all v ∈ V , we have |{e ∈ E′ : v ∈ e}| ≤ 2. First, we consider a cycle C ⊆ E′. Observe
that |C ∩M | = |C ∩MP| by the fundamentals of matching theory. Let q := |C ∩M |
and let P1, . . . , Pq be the processors that contain edges from C ∩MP. Note that each
edge in MP is contained in exactly one processor and moreover that M matches all
nodes in P1 ∪ · · · ∪ Pq that MP does. Hence, we have

|C ∩M |+
q∑

i=1

w(Pi ∩M) = |C ∩MP|+
q∑

i=1

w(Pi ∩MP) ≤
(1

2
+

1
12k

)
q.

Next, we consider a path Q ⊆ E′. Again let P1, . . . , Pq be the processors containing
edges from MP ∩ Q. We distinguish the three cases, when both, one, or none of the
end-nodes of the path Q are matched in M as illustrated below. The solid edges belong
to M and the dashed ones belong to MP. The boxes represent the processors of
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(a) (b) (c)

τ τ ′ τ τ ′′ τ ′ τ τ ′

Case (a). If both ends of Q are matched in M , then |M ∩ Q| − 1 = |MP ∩ Q| = q.
Hence,

|M ∩Q| +
q∑

i=1

w(Pi ∩M) ≤ |MP ∩Q|+
q∑

i=1

w(Pi ∩MP) + 1− w(τ) − w(τ ′)

where τ, τ ′ are the both ends of Q. If one of τ, τ ′ is large, then there is nothing to show.
Suppose that none of them is large. Then there is at least one processor that contains
two large tasks, since Q has an odd number of edges and since by definition each edge
contains at least one large task. Furthermore by the greedy selection, there is at least one
large neighboring task in this path, and by the same parity argument, there is a further
processor with two large tasks. Note that q ≥ 2 if neither τ nor τ ′ is large. If q = 2 like
in the above example, then all unmatched tasks on the two processors have a smaller
weight than τ or τ ′, respectively. Since this yields the claim, we suppose that q > 2 in
the following.

|M ∩Q|+
q∑

i=1

w(Pi ∩M) ≤ q + 1 +
(1

2
+

1
12k

)
(q − 2) +

2
6k − 1

≤
(3

2
+

1
6k

)
q

Case (b). If exactly one of the endpoints of Q is matched in M , say τ , and the other
endpoint, say τ ′ is matched on processor Pq, then

|M ∩Q|+
q∑

i=1

w(Pi ∩M) ≤ |MP ∩Q| − w(τ) + w(τ ′) +
q∑

i=1

w(Pi ∩M).

If q = 1, then the greedy selection implies that w(τ) ≥ w(τ ′). Hence, we assume that
q ≥ 2. Let τ ′′ be as in the illustration. By the greedy selection, we have u(τ ′′) ≥ u(τ ′).
If τ ′′ is small, then

w(Pq−1 ∩M) + w(Pq ∩M) ≤
1
2

+ 1
12k
− u(τ ′′)

1− u(τ ′′)
+

1
2

+ 1
12k

1− u(τ ′)
≤ 1 +

1
4k

as in Ineq. (2) in the proof of Theorem 2. By a similar argument, the same bound holds
if τ ′′ is medium. If τ ′′ is large, then either τ is large itself or there is a processor Pj

with j ∈ {1, . . . , q−1}with two large tasks, since each edge contains at least one large
task. In the former case, there is nothing to show, whereas in the latter case, we may
assume w.l.o.g. that j = q − 1 and hence the bound of 1 + 1

4k also holds. Note that if
w(τ ′) = 1, then no further unmatched task can be on Pq , and hence w(Pq ∩M) = 1,
because they would have been matched by the algorithm. Altogether, this yields

|M ∩Q|+
q∑

i=1

w(Pi ∩M) ≤ q +
(1

2
+

1
12k

)
(q − 2) + 1 +

1
4k
≤

(3
2

+
1
6k

)
q.
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Case (c). If none of the endpoints of Q are matched in M , then

|M ∩Q| +
q∑

i=1

w(Pi ∩M) ≤ |M ∩Q|+
q∑

i=1

w(Pi ∩MP)− 1 + w(τ) + w(τ ′)

where τ, τ ′ are the both ends of Q. If neither τ nor τ ′ is large, then there is nothing to
show. Hence, we assume w.l.o.g. that w(τ) = 1. Since τ is not matched in M , there is
no further task on the same processor that is also unmatched in M . Hence,

|M ∩Q|+
q∑

i=1

w(Pi ∩M ) ≤
(3

2
+

1
12k

)
(q− 1)+w(τ ′) ≤

(3
2

+
1

12k

)
q. ��

Corollary 1. Algorithm 2 produces a solution of cost (3
2
+ 1

k
)OPT +9k in time O(n2).

Proof. Note that for each set {τ1, τ2} RM-schedulability can be tested in constant time
using condition (1). Sorting the tasks by decreasing utilization takes O(n log n) time
and is subsumed by the time necessary to create G, which is O(n2). In fact, it is only
necessary to scan each large task and check with every other task with smaller utiliza-
tion whether they can be scheduled together. If so both tasks are marked as matched
provided that none of them has been matched before. However, this procedure still
requires quadratic running time since all tasks might be large in the worst case. The
running time of FFMP is O(n′ log n′) for scheduling n′ tasks, thus the total running
time is O(n2).

The approximation guarantee follows from Theorem 3 and Theorem 1, since we may
combine them to show that the number of processors produced does not exceed

(
1 +

1
2k

)
·
(3

2
+

1
6k

)
OPT + 9k ≤

(3
2

+
1
k

)
·OPT + 9k. ��

5 Experimental Results

We have implemented and compared our k-RMM algorithm experimentally with the
ones, which are known from the literature and have already been mentioned in Sect. 1.1.
To this end, we have randomly generated instances with the number of tasks n ranging
from 10 to 105. That is, for each given n, we have generated 100 samples, where inte-
ger periods have been chosen out of (0, 500) uniformly at random and independently
utilizations from (0, 1) u.a.r. All algorithms have been tested on the same instances to
allow also a direct comparison. With a choice of k = 	√n
, our new algorithm has
outperformed the others on almost all instances (in fact it has been 1 processor worse
on only 4 instances). For n = 10 and n = 20, we have also computed the optimum
solutions by a configuration-based ILP solved with CPLEX. For 82% of the instances
with 10 tasks and 76% of the instances with n = 20, our k-RMM has found the opti-
mum solution, and in the remaining cases it only fell short by one processor. Looking at
the average processor load, i.e. the total utilization divided by the number of allocated
processors, in Fig. 1, one can see that our k-RMM algorithm uses the processor much
more efficiently than the other approximation algorithms.
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Fig. 1. A comparison of our algorithm with the ones known from the literature w.r.t. the average
processor load

Figure 1 suggests that the average load for k-RMM converges to 1 as n goes to infin-
ity. In fact, it is not hard to prove that the waste of k-RMM, i.e. the difference between
the allocated processors and the total utilization, scales sub-linearly with the number
of tasks on random instances. More precisely, the same bound of O(n3/4 log3/8 n) for
the waste of FFMP, which has been shown in [19], also holds for our new algorithm.
However, experiments suggest that this bound for k-RMM might be something closer
to
√

n. A further interesting open question is whether there exists an asymptotic PTAS
for the rate-monotonic multiprocessor scheduling problem.
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Abstract. We consider the online problem for a root (or a coordinator)
to maintain a set of filters for the purpose of keeping track of the domi-
nance relationship of some distributed multi-dimensional data. Such data
keep changing from time to time. The objective is to minimize the com-
munication between the root and the distributed data sources. Assume
that data are chosen from the d-dimensional grid {1, 2, · · · , U}d, we give
an O(d log U)-competitive algorithm for this online problem. The com-
petitive ratio is asymptotically tight as it is relatively easy to show an
Ω(d log U) lower bound.

1 Introduction

In this paper, we study competitive algorithms for online tracking of distributed
data, which is a relatively new class of online problems with the following set-
ting. There are a number of observers (or data streams), each of which keeps
track of a private function whose value changes from time to time. At any time,
the observers may need to communicate with a root (or coordinator) to enable
it to recover some kind of information about the current values of the functions
tracked by the observers. For example, consider a wireless sensor network mon-
itoring the temperature of different places and the root wants to know which
place has the lowest temperature. Depending on the information to be recov-
ered, the root may not need to know the accurate values of the observers, and
this would allow the root and the observers to save some unnecessary commu-
nication. In general, we need online algorithms to determine when and how the
observers communicate to the root so as to minimize the total communication
cost for tracking them.

Based on the above setting, this paper studies a problem called the online
dominance tracking problem. This problem is formulated more intuitively in a
geometric way: There are k observers, each keeps track of a point moving in a
d-dimensional grid. Let D = {1, 2, . . . , d}. At any time, consider two observers b1

and b2 reporting the points with coordinates (p1, p2, . . . , pd) and (q1, q2, . . . , qd),
we say that b1 dominates b2 if pi < qi for some i ∈ D and pj ≤ qj for all other
j ∈ D. Furthermore, we say that b1 dominates b2 over a nonempty subset D′ of D
if, when projected to the dimensions in D′, b1 dominates b2. Consider any set H
of k hyper-rectangles (a hyper-rectangle is the Cartesian product of d intervals,
� Partially supported by the GRF Grant HKU-713909E.
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one from each dimension), each encloses the current point of an observer. We
say that H forms a set of dominance-preserving filters, or simply filters, if no
matter where the points tracked by the observers move within their filters, the
dominance relationship between any two observers over any D′ ⊆ D remains the
same (see the formal definition in Section 2). For example, the smallest filter is
the hyper-rectangle containing only the current point of an observer. In general,
we are interested in big filters.

We are now ready to define the online dominance tracking problem. At any
time, the root and the k observers want to maintain a set of k dominance-
preserving filters. Based on these filters, the root can answer any query on the
dominance relationship of any two observers over any subset of dimensions. Fil-
ters save unnecessary communication in the following sense. As long as an ob-
server’s point is within its filter, it does not need to communicate to the server
about the exact location of the current point. When a point moves out of its
filter (i.e., we call this a filter violation), it must inform the root, which then
computes a new filter for the observer. To do that, the root possibly needs to
probe some other observers for their current points and update some of the filters
eventually. The problem is how to compute the most appropriate filters so that
the total number of messages exchanged with the root over a period of time is
minimized. Note that this is an online problem as the computation of the filters
cannot assume the knowledge of future points.

A trivial algorithm is to use the current point of each observer as its filter. Then
every slight movement at an observer would trigger communication, and using
such a filter is the same as communicating to the root for every possible move-
ment. In this paper we study online algorithms with better communication cost.
To analyze the performance, we compare the online algorithm against an optimal
offline algorithm Opt , which is given in advance the point of every observer at ev-
ery time step. Note that each time Opt modifies the filter of an observer, it uses
one message (as the root has to inform its observer). Thus the communication
cost of Opt is the total number of times it changes the filters. Denote the time
interval in concern as I, and the filters used by Opt at time t as Rt

1, R
t
2, . . . , R

t
k;

then Opt minimizes
∑

t∈I |{j | Rt+1
j �= Rt

j}| (i.e., the sum over all time t of the
number of filter changes from time t to time t+1). For any c ≥ 1, an online algo-
rithm is said to be c-competitive if, over any sequence of possible movements of
the points, its number of messages exchanged is at most c times that of Opt .

Assume that the coordinates of the points are chosen from the d-dimensional
grid {1, 2, · · · , U}d. It is relatively easy to show that any online algorithm for the
online dominance tracking problem is Ω(d log U)-competitive on communication
cost. The main result of this paper is an O(d log U)-competitive algorithm. It is
worth-mentioning that this online algorithm remains competitive if we change
the problem to maintaining filters that preserve the dominance counts of the
observers, where the dominance count of an observer is the number of other
observers dominating it. Furthermore, the algorithm (and its competitiveness)
is robust against the definition of dominance. In particular, it works for the
following simple definition: b1 is said to dominate b2 if pj ≤ qj for all j ∈ D.
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Related work. Distributed online tracking finds applications in database and
network monitoring. In the database and algorithms literature, there are al-
gorithms with worst-case performance analysis for problems like heavy hitters,
quantiles, and threshold counts [3,5,4,6,2]. Yi and Zhang [7] are the first to ap-
ply competitive analysis to distributed online tracking. It is natural because for
many online tracking problems, different algorithms (including the offline algo-
rithm) would have more or less the same communication cost in some worst
cases, and the usual worst-case measure of performance may not reflect which
algorithms are better. Similar situation has happened in other online problems
like online paging (see, e.g., [1] ).

The pioneering work of Yi and Zhang [7] used competitive analysis to study
the following tracking problem. Each observer bi tracks a multi-valued integer
function over time, denoted as bi(t). The observer needs to communicate with
the root such that at any time t, the root can have an estimate b̂i(t) of bi(t) with
|bi(t)− b̂i(t)| ≤ Δ, where Δ is a pre-specified error bound. Yi and Zhang gave an
online algorithm for each observer to determine when to update the root. Their
algorithm is O(d2 log(dΔ))-competitive, where d is the number of dimensions. In
other words, the total communication cost of this algorithm over any period of
time is at most O(d2 log(dΔ)) times that of the optimal offline algorithm, which
is given in advance the values of bi(t) for all time t to determine the best strategy
for an observer to communicate to the root.

We observe that for some applications, the values of the observers’ functions
(or points) are not important, instead their relationships are. Furthermore, the
relationship of the observers may remain the same even if their values change a
lot from time to time. Although one can apply the algorithm of Yi and Zhang
to track the individual functions and then deduce their relationship, the root
obtains over-detailed information and the communication would be too much
to allow any competitive algorithm. It is perhaps not surprising that the prob-
lem of tracking the quantitative information (e.g., the values of the bi(t)’s) is
indeed different from the problem of tracking the qualitative information (e.g.,
the dominance relationship of the bi(t)’s).

The online dominance tracking problem studied in this paper is motivated by
the work of Zhang et al. [8], who are the first to exploit filters to track another
form of dominance relationship called skylines. However, our approach is very
different from theirs. They assumed the knowledge that the functions (or the
points) are changing according to a uniform distribution and gave algorithms
to compute the filters accordingly. These algorithms performed well empirically
when distribution is satisfied; however, in the worst case these algorithms have
competitive ratios with growth rate in the form of kd. For future work, we
believe that it is interesting to study competitive algorithms that assume some
knowledge of the data distribution and try to predict the data.

Organization of the paper. Section 2 presents the Ω(d log U) lower bound.
In the rest of this paper, we restrict our attention to two-dimensional data when
describing our algorithm. In particular, Section 3 is about some structural con-
cepts and properties, Section 4 describes the algorithm, and Section 5 gives the
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analysis. The details of generalizing the two-dimensional algorithm to higher
dimensions will be given in the full paper.

Details of the observers-and-root model. Before we show the lower bound
and upper bound results, we would like to detail how tracking works. An observer
only communicates with the root, but not with the other observers. An observer
starts with an empty filter. Whenever the point (or function) it is tracking moves
out of the filter (we call this a filter violation), it sends a message to the root
reporting the position of the current point and waits for a new filter from the
root. An observer may occasionally receive a probe from the root, then it would
report the position of the current point to the root (even though there is no filter
violation) and then waits for a new filter. From the root’s perspective, in each
time step, if no observer reports a filter violation then it has nothing to update,
and it can answer any dominance query based on the existing filters. When the
root receives some filter violations, it finds out which additional observers it
wants to probe and sends them a request. After hearing from those observers,
the root computes the new filters and sends them to the corresponding observers.

Regarding the communication cost over a period of time, we count the number
of messages between the root and the observers, or equivalently, the total number
of filter violations, probes, and filter updates. For the optimal offline algorithm
Opt , it is given how the points are moving in advance, and we only count its
total number of filter updates.

2 Definitions and Lower Bound

Recall that we consider points chosen from a d-dimensional grid. At any time
t, let p1, . . . , pk be the points currently tracked by the observers b1, . . . , bk, re-
spectively. Consider any k hyper-rectangles R1, . . . , Rk containing p1, . . . , pk,
respectively. We say that these rectangles form a set of filters if, for any two
observers bi, bj and for any subset of dimensions D′, the truth value of the
statement “bi dominates bj over D′” remains the same no matter where the
points of bi and bj move within Ri and Rj , respectively.

We say that two hyper-rectangles A and B overlap in the �-th dimension if
there exist two points p ∈ A, q ∈ B such that p and q have the same coordinate
in the �-th dimension. We say that A and B overlap if they overlap in at least
one dimension. Below is a trivial yet useful property of filters.

Fact 1. Let p1, . . . , pk be the points currently tracked by the k observers. Con-
sider any k hyper-rectangles R1, . . . , Rk that contain p1, . . . , pk, respectively.

– Suppose that these k points have distinct coordinates in every dimension.
Then R1, . . . , Rk form a set of filters if and only if no two of them overlap.

– In general, R1, . . . , Rk form a set of filters if and only if for any pair of bi and
bj, (i) if pi and pj have different coordinates in the �-th dimension, Ri and
Rj do not overlap in the �-th dimension; (ii) otherwise, Ri and Rj, when
projected on the �-th dimension, become a single-point interval containing
exactly the �-th coordinate of pi.
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The following is a lower bound result on maintaining filters online.

Lemma 1. Any online algorithm A for the online dominance tracking problem
over the d-dimensional grid {1, 2, . . . , U}d must have a competitive ratio at least
1
2d(log U − 1).

Proof. Suppose A needs to track two points. Below we describe an adversary
that gives a sequence of movement of the two points such that (i) A needs to
make at least d(log U − 1) filter updates, and (ii) we can find a filter for each
point such that the point only moves within this filter. Note that the offline
algorithm can use two filter updates to send the filters in (ii) to the observers at
the beginning, and then no more filter updates or probings are necessary. The
lemma follows.

Initially, there is a point P at (1, 1, . . . , 1) and another point Q at (U, U, . . . , U).
The adversary checks the filters assigned by A. If Q has a filter [x1, y1]×[x2, x2]×
. . .× [xd, yd] with x1 ≤ U/2, then the adversary moves P to (U/2, 1, . . . , 1); oth-
erwise it moves Q to (U/2, U, . . . , U). Then, A needs to make one filter updates
(in order to restore the dominance-preserving property for the former case, and
make sure Q is within its filter for the latter), and the distance between P and
Q is reduced by half in the first dimension. Repeating this step logU − 1 times,
we conclude that A has at least log U − 1 filter updates before the distance
between P and Q in the first dimension becomes 1. Repeating this argument
for the other dimensions, we conclude that A needs at least d(log U − 1) fil-
ter updates before P and Q is next to each other, i.e., P is at (p1, p2, . . . , pd)
and Q is at (p1 + 1, p2 + 1, . . . , pd + 1). Note that during the process, P is
moving within the hyper-rectangle [1, p1] × [1, p2] × . . . × [1, pd] and Q within
[p1 + 1, U ]× [p2 + 1, U ]× . . .× [pd + 1, U ]. ��

3 Structures and Crossings

To ease our discussion, we first focus on two-dimensional points and assume that
at any time, the k points tracked by the observers have distinct x-coordinates and
distinct y-coordinates. We will show how to remove the distinctness assumption
in Section 5.

For an observer b, we denote its point at time t to be bt, and we refer to
the x-coordinate and y-coordinate of bt as X(bt) and Y (bt), respectively. We
say that c is the left neighbor of b at time t if ct is closest to bt among all
streams on the left of bt after projecting onto the x-axis, i.e. X(ct) is the largest
among all streams with x-coordinate strictly less than X(bt). Neighbors in the
other 3 directions are defined similarly. That is, each observer can have up to 4
neighbors. Furthermore, we denote the filter of b at time t as Rt

b or Rb (if it is
clear that t is the current time).

In designing an online algorithm, a primary concern is how to limit those
unnecessary filter violations and updates, especially when the observers have no
drastic movement, and the optimal offline algorithm Opt does not need any filter
update. In this section, we show a strategy of setting a filter such that a filter
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violation of an observer is always associated with a crossing event of the observer
or its neighbor, and every observer has at most O(log U) crossing events during
any period Opt has no filter update for that observer. This allows us to bound
the number of filter violations. In Section 4, we will further present the details
of our algorithm and show how to upper bound the number of extra probes and
filter updates (not due to filter violation).

3.1 Cell Intersection and Smallest Rectangles

We define the notions of cell intersection and smallest rectangle, which depend
on the inputs (but not the algorithms) and are used to upper bound and lower
bound any possible filter.

Definition 1. The cell of an observer b at time t, denoted by Ct
b, is the largest

rectangle containing bt but not overlapping with the current point of any other
observer. Equivalently, Ct

b is the largest rectangle containing bt but not overlap-
ping with the point of any of b’s current neighbors.

The following is a corollary of Fact 1.

Corollary 1. Let Rt
1, . . . , Rt

k be a set of filters at time t. Then, for each ob-
server b, Rt

b ⊆ Ct
b.

Definition 2. Let t0 be some reference time. For any time t ≥ t0, define the
cell intersection of b over the time interval [t0, t], denoted by Ab(t0, t), to be the
intersection of the cells Ct0

b , . . . , Ct
b. Note that Ab(t0, t) is also a rectangle.

Applying Corollary 1 to Opt ’s filters gives the following corollary.

Corollary 2. Suppose that Opt uses the same filter R∗
b for an observer b through-

out a period [t0, t]. Then R∗
b ⊆ Ab(t0, t).

Intuitively, A gives an upper bound for R. The following definition gives a lower
bound.

Definition 3. Let t0 be some reference time. For t ≥ t0, define the smallest
rectangle of b over [t0, t], denoted by Sb(t0, t), to be the smallest axis-parallel
rectangle enclosing bt0 , . . . , bt.

The following lemma is the key to obtain a lower bound on the number of filter
updates in Opt .

Lemma 2. Suppose that Opt uses the same filter for an observer b throughout
a period [t0, t]. Then Sb(t0, t) ⊆ Ab(t0, t).

Proof. Let R∗
b be b’s filter in Opt during this period. By the definition of Sb,

we have Sb(t0, t) ⊆ R∗
b , since the filter always contains the current point. By

Corollary 2, we have R∗
b ⊆ Ab(t0, t). ��
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3.2 Crossings

We now describe a mid-point strategy for setting filters. Suppose that Opt uses
the same filter for an observer b starting from time t0 up to current time t.
Consider any time t′ in [t0, t], Ab(t0, t′) is monotonically shrinking and Sb(t0, t′) is
monotonically expanding as t′ increases. By Lemma 2, Sb(t0, t) is always enclosed
by Ab(t0, t). For the online algorithm, a natural way to set b’s filter at time t
would be the mid way between the current Ab(t0, t) and Sb(t0, t).1 Below we
show that such an online strategy cannot cause too many filter violations as
each of them is associated with a crossing event (to be defined below), reducing
the gap between Ab(t0, t) and Sb(t0, t) by half.

When t = t0, we define the mid-rectangle Mb as follows: the left boundary of
Mb is the vertical line passing through the mid-point of the left boundaries of
Ab(t0, t0) and Sb(t0, t0), and the other three boundaries are defined similarly. By
definition, we have the inclusion relation that Sb(t0, t0) ⊆ Mb ⊆ Ab(t0, t0). As
time goes by, the smallest rectangle would get bigger and the cell intersection
would get smaller. When the inclusion relation with Mb is violated, we say a
crossing occurs and we obtain a new Mb. See the general definition below.

Definition 4. Consider any time t > t0. Let t1 be the last time before t a
crossing occurred (if t1 does not exist, let t1 = t0), and let Mb be the mid-
rectangle with respect to Ab(t0, t1) and Sb(t0, t1). A crossing occurs at t if (i) bt

moves out of Mb; or (ii) Ct
b �⊇Mb.

We have the following bound on the number of crossings.

Lemma 3. Suppose that Opt uses the same filter for an observer b throughout
a period [t0, t]. Then the number of crossings in b during [t0, t] is O(log U).

Proof. By Lemma 2, Sb(t0, t) ⊆ Ab(t0, t). Consider the four distances between
corresponding boundaries of Ab and Sb. Every crossing in b reduces one (or more)
of the distances by at least half. The initial distances are at most U , thus after
at most 4 log U crossings, all distances become 0. Any crossing after that would
lead to Sb �⊆ Ab. ��
The above lemma naturally suggests an online algorithm to set the filter to be
the mid-rectangle Mb after a crossing occurs. Then a filter violation would imply
a crossing, and there would be at most O(log U) filter violations within a period
during which Opt does not change the filter. However, this will not work since
the mid-rectangles of two observers may overlap. In this case, we need to set the
filters of one (or both) of them to be a proper sub-rectangle of its mid-rectangle.
Intuitively, we “squeeze” a filter until it no longer overlaps with any other mid-
rectangle. Formally, let c be the left neighbor of b. At any time, we say that c
squeezes b from the left if Mc overlaps with Mb in the x-dimension. In that case,
1 For the time being, we assume that the root knows Sb(t0, t) and Ab(t0, t). In the

actual algorithm, we will show how to replace them with reasonable approximations
that can be maintained without extra communication.
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shrink the left boundary of b’s filter to r+1, where r is the right boundary of Mc.
Symmetrically, we also shrink the right boundary of c to the left boundary of Mb

minus one. Note that Mc and Mb may change later, but as long as they overlap,
their filters will be shrunk according to their M ’s boundaries. We perform the
same operation to the other three neighbors of b.

The squeezing operation causes b’s filter to be strictly smaller than Mb. If,
at some later time, b moves out of its filter but still lies inside Mb, a filter
violation would occur without a crossing. We call this a no-crossing violation.
The following lemma suggests that we can charge these no-crossing violations
against the crossings of other observers.

Lemma 4. Suppose that at time t, b has a no-crossing violation on the left. Let
c be the left neighbor of b at t−1. Then c has a crossing at t. Similar statements
hold for other directions.

Proof. Suppose that the left boundary of Rt−1
b is r+1. Then the right boundary

of M t−1
c is r. At t, b violates its left filter boundary, thus X(bt) ≤ r. bt still lies

in M t−1
b , so bt overlaps with M t−1

c in the x-dimension. We see that a crossing
occurs in c at t, since Ct

c �⊇M t−1
c . ��

In summary, whenever a filter violation occurs at an observer, we can charge it
to a crossing of the observer itself or its neighbor. On the other hand, a filter
update can be triggered by a filter violation of the observer itself or its neighbor.
Below we will give an algorithm based on the above concepts, which would allow
us to upper bound the number of filter violations and filter updates.

There is however a technical issue. In the online algorithm, the root does not
maintain S and A, as doing so would cost too many messages. Instead, the root
maintains an approximate smallest rectangle Lb(t0, t), which is always contained
in Sb(t0, t). It also maintains an approximate cell intersection Ub(t0, t), which
always contains Ab(t0, t). The idea is simple: we only update Lb or Ub if doing
so would lead to a crossing in b. The tricky part is to find a small enough U with
few communication so that the corresponding filter would fall completely in the
current cell, and a large enough L so that the filter would contain the current
point.

4 Algorithm

We first give a high level framework of our O(log U)-competitive algorithm. From
the root’s perspective, each observer b proceeds in rounds. At any time t, the
root remembers, for each observer b, a reference time t0(b) (or simply t0 if the
observer is clear from the context) ≤ t, which is the start time of the current
round of b, and the root is interested in what has happened to b during [t0, t]. In
particular, it keeps four rectangles Rb(t0, t), Lb(t0, t), Ub(t0, t) and Mb(t0, t) (or
simply Rb, Lb, Ub and Mb when there is no confusion). Rb is the filter assigned
to b. The root would ensure that Lb ⊆ Sb and Ab ⊆ Ub. Intuitively, Lb is a
lower bound for Sb and Ub an upper bound of Ab; the algorithm uses them to
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approximate Sb and Ab. Mb is the mid-rectangle of Lb and Ub. Note that the
observer b itself only knows Rb among these four rectangles.

Within each round, Lb is monotonically expanding, Ub is monotonically shrink-
ing, and we try to keep the invariant Lb ⊆ Ub. When this invariant is violated,
this implies Sb(t0, t) �⊆ Ab(t0, t), and by Lemma 2, Opt must have updated b’s
filter within the current round. Then, the root starts a new round for b, reinitial-
izing Lb to the rectangle that encloses only the current point of b, and Ub to the
current cell of b. Thus, within each round, Opt updates b’s filter at least once,
and b has at most O(log U) crossings (see Lemma 3). We will argue below that
the total number of filter updates and probes (over all observers) is asymptot-
ically bounded by the total number of crossings (over all observers). It follows
that the competitive ratio of the online algorithm is O(log U).

To maintain the four rectangles, the root at every time step t, after receiving
all the violation notifications, carries out the following steps.

(1) Probe additional observers (if necessary) and determine the new dominance
relationships for all pairs of observers.

(2) For each observer b, check if b has a crossing, and update Lb, Ub, Mb if so.
Start a new round for b if Lb �⊆ Ub, and in such case probe the four neighbors
of b (if not yet done), and then initialize the rectangles Lb = bt and Ub = Ct

b.
(3) For each observer b, set Rb = Mb and then squeeze it from every direction.

The algorithm is shown in Figure 4. The following lemma states the properties
maintained by the algorithm, which also implies the correctness of the algorithm.

Lemma 5. The following properties hold at the end of each time step t for every
observer b.

(i) Lt
b ⊆ U t

b ;
(ii) M t

b is the mid-rectangle of Lt
b and U t

b ;
(iii) bt ∈M t

b and M t
b ⊆ Ct

b;
(iv) bt ∈ Rt

b and Rt
b ⊆M t

b ;
(v) Rt

b does not overlap with M t
c for any observer c �= b.

Properties (iv) and (v) imply that no two Ri’s overlap. By Fact 1, these Ri’s
form a set of filters.

Proof. Property (i): When the root starts a new round for b, this property holds.
As soon as this property is violated, the root starts a new round for b again.
Hence this property always holds. Property (ii): Mb is assigned to be the mid-
rectangle of Lb and Ub whenever either is updated (Step 2). Property (iii): If we
start a new round for b, this holds according to the initialization. Otherwise, if
b has no crossing, then M t

b = M t−1
b , and bt ∈ M t−1

b ⊆ Ct
b by the definition of

crossing. Otherwise, b has a crossing. Step 2 guarantees that bt ∈ Lt
b ⊆ M t

b and
M t

b ⊆ U t
b ⊆ Ct

b. Property (iv): It is obvious that Rt
b ⊆ M t

b . By property (iii),
bt ∈M t

b . Applying property (iii) to any neighbor c of b shows that M t
c does not

overlap with bt. Therefore bt still lies inside the squeezed filter Rt
b. Property (v):

Step 3 guarantees that this property holds for any neighbor c of b. If c is not a
neighbor of b, then Ct

b and Ct
c are disjoint (separated by some observer between

b and c). By property (iii), M t
b , and so Rt

b, does not overlap with M t
c . ��
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1. Computing new dominance relationships. For every pair of observers
b, c, the root computes their new dominance relationship as follows. If neither
of them violates, their dominance relationship remains the same as time t− 1.
If both of them have filter violations, their dominance relationship can be
determined from bt and ct without probing. Suppose exactly one of them
violates, say b. Then, their dominance relationship can be determined without
probing if bt does not overlap with Rt−1

c ; otherwise, we probe c. The neighbors
of all observers are also identified.

2. Updating L, U , M due to crossings. First, the root checks, for every
observer b, whether b has a crossing, or equivalently, whether either (i) bt

moves out of M t−1
b , or (ii) ct overlaps with M t−1

b for some neighbor c of b.
Note that after receiving the filter violation notifications, the root can check
(i) and (ii) without probing because condition (i) is a filter violation for b, and
by property (v) of Lemma 5 below (applied to c at time t − 1), condition (ii)
implies c has a filter violation, and thus the root already knows ct for checking
(ii).
– If b has no crossing, set Lt

b = Lt−1
b , U t

b = U t−1
b , M t

b = M t−1
b .

– Otherwise, set Lt
b to be the smallest rectangle enclosing both Lt−1

b and bt.
Set U t

b to be U t−1
b ∩Ct

b. bt and Ct
b can be determined by probing b and all

its neighbors. If Lt
b �⊆ U t

b , start a new round for b, and reset Lt
b = bt and

U t
b = Ct

b. Then, set M t
b to be the mid-rectangle of Lt

b and U t
b .

3. Squeezing R. In Step 2, L, U and M were fixed for all observers. In this
step, the root initializes every filter and squeezes it from each direction. For
each observer b, do the following steps. Initialize Rt

b = M t
b . If b has a left (i.e.

negative x) neighbor c, and M t
c overlaps with M t

b in the x-dimension, set the
left boundary of Rt

b to r+1, where r is the right boundary of M t
c . Do similarly

for other directions.

Fig. 1. The online algorithm

5 Analysis

In this section, we prove that our algorithm is O(log U)-competitive. The total
cost of our online algorithm is the sum of the numbers of probes, filter violations,
and filter updates. Since a filter violation is always followed by a filter update,
we only count those updates for which there is no violation. We show that each
of these quantities is asymptotically bounded by the total number of crossings
for all observers. In previous sections, we argued that each observer has O(log U)
crossings in a single round. Summing over all rounds for all observers, we can
bound the total cost of our algorithm to be O(r log U), where r is the total
number of rounds for all observers since time 0. For the optimal offline algorithm
Opt , we show that its cost is at least r, thus giving the claimed competitive ratio.

We first account for the number of probes in our algorithm. For convenience,
we assume that a crossing always leads to a filter update, even if the resulting
filter happens to remain unchanged (we see this as a bogus update).

Lemma 6. For any time t ≥ 0, the number of probes at t is O(1) times the
number of filter updates at t.
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Proof. In Step 1, an observer c is probed only if Rt−1
c overlaps with bt for some

b �= c. By property (v) of Lemma 5 (applied to c), Rt−1
c cannot be c’s filter at t

as it overlaps with M t
b 
 bt. Hence, c needs a filter update at t.

In Step 2, when updating L’s and U ’s, an observer b is probed only if (i) b
has a crossing; or (ii) one of b’s neighbors has a crossing. Each observer has at
most 4 neighbors. Each observer with a crossing needs a filter update.

In Step 2, when starting a new round for b, the root probes all neighbors of b
to determine Ct

b. This takes O(1) probes. ��
Next, we bound the number of filter violations (and the associated filter updates).

Lemma 7. Suppose that observer b has a filter violation at time t. Then, either
b or one of its neighbors at t− 1 has a crossing at t.

Proof. Suppose that b has no crossing at t. Without loss of generality, assume
that b violates on the left. Lemma 4 implies that the left neighbor of b at t− 1
has a crossing at t. ��
Each observer has at most 4 neighbors at any time. Lemma 7 implies that the
number of filter violations is upper bounded by 5 times the number of crossings.
This gives the following corollary.

Corollary 3. Let r be the total number of rounds since time 0. Then, the total
number of filter violations since time 0 is O(r log U).

The number of filter updates without violation can be bounded similarly.

Lemma 8. Suppose that observer b has a no-violation filter update at time t.
Then, there must be a crossing at t in (i) b; or (ii) one of b’s neighbors at t; or
(iii) one of b’s neighbors at t− 1.

Proof. If M t
b �= M t−1

b , b has a crossing at t. We assume that M t
b = M t−1

b .
Without loss of generality, suppose that the left boundaries of Rt

b and Rt−1
b are

different. Let c′ and c be the left neighbors of b at t − 1 and t, respectively. If
c �= c′, the right boundary of M t−1

c′ is to the right of that of M t−1
c , for c′ was the

left neighbor of b at t− 1. However, c becomes the left neighbor of b at t, so the
right boundary of M t

c′ is to the left of that of M t
c . Either Mc or Mc′ changes at

t, thus either c or c′ has a crossing at t. If c = c′, then M t
c �= M t−1

c ; otherwise
the left boundary of Rb would not change. Thus, c has a crossing at t. ��
Similar to Corollary 3, the following is a corollary of Lemma 8.

Corollary 4. Let r be the total number of rounds since time 0. Then, the total
number of no-violation filter updates since time 0 is O(r log U).

The following is a corollary of Lemma 2, which helps to lower bound the number
of filter updates in Opt .

Corollary 5. Suppose that one of b’s rounds starts at t0 and ends at t1 due to
Lb(t0, t1 + 1) �⊆ Ub(t0, t1 + 1). Then, Opt updates b’s filter at least once during
[t0 + 1, t1 + 1].
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Theorem 1. At any time t ≥ 0, let cost∗ and cost be the number of messages
used by Opt and our algorithm respectively since time 0. Then cost ≤ O(log U)×
cost∗.

Proof. Let r be the total number of rounds since time 0. By Lemma 6, Corollary 3
and Corollary 4, cost = O(r log U). By Corollary 5, cost∗ is at least the number
of complete rounds, which is at least r − k. Adding the k messages for filter
initialization at time 0, we have cost∗ ≥ r, giving the desired inequality. ��
Remarks on distinct coordinates. We have been assuming that all observers
have distinct x- and distinct y-coordinates. To handle arbitrary coordinates, we
need some modifications. We only consider the x-dimension here. We say that an
observer is hooked-up if its x-coordinate is not unique among all observers. Fact 1
says that for any hooked-up observer b, the projection of b’s filter on the x-axis
must be a single-point interval containing exactly X(bt). We can therefore set
both the left and right boundaries of Ub to be X(bt) in Step 2 of the algorithm
as soon as b becomes a hooked-up observer. In Step 3, we initialize the left and
right boundaries of Rt

b as above instead of using M t
b ’s boundaries. The analysis

still goes through with a few modifications. For Lemma 7, if b violates in either
the left or right direction, the root starts a new round for b, which means that
b has a crossing. For Lemma 8, if b has a no-violation filter update in either the
left or right direction, then it is no longer hooked-up. This implies every observer
it hooked up with has got a new x-coordinate, which, as discussed above, leads
to a crossing.
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Abstract. In this paper, we improve a result by Arora, Khot, Kolla,
Steurer, Tulsiani, and Vishnoi on solving the Unique Games problem on
expanders. Given a (1−ε)-satisfiable instance of Unique Games with the
constraint graph G, our algorithm finds an assignment satisfying at least
a 1 − Cε/hG fraction of all constraints if ε < cλG where hG is the edge
expansion of G, λG is the second smallest eigenvalue of the Laplacian of
G, and C and c are some absolute constants.

1 Introduction

In this paper, we study Unique Games on expander graphs.

Definition 1 (Unique Games Problem). Given a constraint graph G =
(V, E) and a set of permutations πuv on the set [k] = {1, . . . , k} (for all edges
(u, v)), the goal is to assign a label (or state) xu from [k] to each vertex u so as
to satisfy the maximum number of constraints of the form πuv(xu) = xv. The
value of a solution is the fraction of satisfied constraints.

The famous Unique Games Conjecture (UGC) of Khot [8] states that for every
positive ε and δ, there exists k such that it is NP-hard to distinguish between
the case where a 1− ε fraction of all constraints is satisfiable and the case where
at most a δ fraction of all constraints is satisfiable. This conjecture has attracted
a lot of attention since it implies strong inapproximability results for such fun-
damental problems as MAX CUT [9], Vertex Cover [10], Maximum Acyclic Sub-
graph [6], k-CSP [7] [11], which are not known to follow from more standard
complexity assumptions. Several approximation algorithms for Unique Games
were developed in a series of papers by Khot [8], Trevisan [12], Gupta and Tal-
war [5], Charikar, Makarychev and Makarychev [3], and Chlamtac, Makarychev
and Makarychev [4]. These papers, however, did not disprove the Unique Games
Conjecture.

In order to better understand Unique Games, we need to identify which in-
stances of Unique Games are easy, and which instances are potentially hard (the
quantitative measure of hardness of a family of instances is the “approximation
guarantee” of the “optimal” algorithm for this family). That motivates the study
of specific families of Unique Games. Arora, Khot, Kolla, Steurer, Tulsiani, and
Vishnoi [1] disproved the UGC for Unique Games on spectral expanders. Specif-
ically, they showed how given a (1 − ε) satisfiable instance of Unique Games

K. Jansen and R. Solis-Oba (Eds.): WAOA 2010, LNCS 6534, pp. 190–200, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



How to Play Unique Games on Expanders 191

(i.e. an instance in which the optimal solution satisfies at least a (1− ε) fraction
of constraints), one can obtain a solution of value

1− C
ε

λG
log
(

λG

ε

)

in polynomial time, here C is an absolute constant and λG is the second smallest
eigenvalue of the Laplacian of G (see Section 2 for definitions).

In this paper, we improve their result and show that, if the ratio ε/λG is less
than some universal positive constant c, one can obtain a solution of value

1− C′ ε

hG

in polynomial time, here hG is the edge expansion of G. In general, λG can be
significantly smaller than hG, then our result gives much better approximation
guarantee. For example, if Cheeger’s inequality (see below) is tight for a graph
G, then λG ≈ h2

G/8; and

1− C′ ε

hG
� 1− 8C

ε

h2
G

log
(

h2
G

8ε

)

≈ 1− C
ε

λG
log
(

λG

ε

)

.

Say, if ε ≈ λG, the algorithm of Arora, Khot, Kolla, Steurer, Tulsiani, and Vishnoi
satisfies only a small constant fraction of all constraints, while our algorithm satis-
fies almost all constraints. However, even if λG ≈ hG, our bound is asymptotically
stronger, since

1− C′ ε

hG
≥ 1− C′ ε

λG
> 1− C′ ε

λG
log
(

λG

ε

)

(i.e., our bound does not have a log(λG/ε) factor).

1.1 Overview

In this section, we give an informal overview of the algorithm. The algorithm
uses the standard SDP relaxation for Unique Games (see Section 2.2). The SDP
solution gives a vector ui for every vertex u and label i. For simplicity, let us
consider so-called uniform case when all vectors ui have the same length. Then
by scaling all vectors, we can assume that they are unit vectors, and thus vectors
u1, . . . , uk (corresponding to one vertex) form an orthonormal frame.

For every two vertices u and v, we say that labels i and j are matched if
‖ui − vj‖2 < r, where r < 1 is a small threshold value. Note that for every two
labels j1 and j2,

‖ui − vj1‖2 + ‖ui − vj2‖2 ≥ ‖vj1 − vj2‖2 = 2 > 2r.

Therefore, each label i is matched with at most one label j for fixed vertices u
and v. We denote this j by σuv(i) (if it exists).
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Now we use a simple prorogation algorithm. We choose a random vector u and
assign it a random label i. Then we label each vertex v with the label σuv(i), if
it is defined; and with an arbitrary label, otherwise. Let X be the set of vertices
v s.t. σuv(i) is defined. We prove (see Lemma 9) that for every edge (v, w) with
v, w ∈ X , our assignment satisfies the constraint between v and w w.h.p. if the
contribution of the edge (v, w) to the SDP objective is small. Intuitively, that
happens because both vectors vσuv(i) and wσuw(i) are close to ui, and therefore
they are close to each other. On the other hand, the SDP contribution of the
edge (v, w) equals

1
k

k∑

j=1

‖vj − wπvw(j)‖2.

Thus if the SDP contribution is small then the vector vj should be close to
wπvw(j) for most labels j. Since each vσuv(i) is close only to wσuw(i), we have
σuw(i) = πvw(σuv(i)) w.h.p., that is, the constraint between v and w is satisfied.

The crucial step now is to prove that the set X contains almost all vertices,
and so we can ignore edges with one or two endpoints outside of X . First, we
prove that the set X is not very small in Lemma 5 (using a “global correlation”
result of Arora, Khot, Kolla, Steurer, Tulsiani, and Vishnoi). Using a standard
region growing argument we then show that the cut between X and V \X is very
small (if we choose the threshold r randomly; see Lemma 7). Since the graph
G is an expander, that implies that either X or V \ X is very small. But we
know that X is not very small. We conclude that in fact V \ X is very small
(Lemma 8).

To deal with the general case — when vectors ui have different lengths —
we use the vector normalization machinery developed by Chlamtac, Makarychev
and Makarychev [4].

In Section 2, we give basic definitions and describe the semideifnite relaxation
for Unique Games. In Section 3, we present the algorithm and its analysis.

2 Preliminaries

2.1 Expanders: Second Eigenvalue and Edge Expansion

We assume that the underlying constraint graph G = (V, E) is a d-regular ex-
pander. The two key parameters of the expander G are the edge expansion hG

and the second eigenvalue of the Laplacian λG. The edge expansion gives a lower
bound on the size of every cut: for every subset of vertices X ⊂ V , the size of
the cut between X and |V \X | is at least

hG × min(|X |, |V \X |)
|V | |E|.

It is formally defined as follows:

hG = min
X⊂V

( |δ(X, V \X)|
|E|

/
min(|X |, |V \X |)

|V |
)

,
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here δ(X, V \X) denotes the cut — the set of edges going from X to V \X . One
can think of the second eigenvalue of the Laplacian matrix

LG(u, v) =

⎧
⎪⎨

⎪⎩

1, if u = v

−1/d, if (u, v) ∈ E

0, otherwise.

as of continuous relaxation of the edge expansion. Note that the smallest eigen-
value of LG is 0; and the corresponding eigenvector is a vector of all 1’s, denoted
by 1. Thus

λG = min
x⊥1

〈x, LGx〉
‖x‖2 .

Cheeger’s inequality,
h2

G/8 ≤ λG ≤ hG,

shows that hG and λG are closely related; however λG can be much smaller than
hG (the lower bound in the inequality is tight).

2.2 Semidefinite Relaxation for Unique Games

We use the standard SDP relaxation for the Unique Games problem.

minimize
1

2|E|
∑

(u,v)∈E

k∑

i=1

‖ui − vπuv(i)‖2

subject to

∀u ∈ V ∀i, j ∈ [k], i �= j 〈ui, uj〉 = 0 (1)

∀u ∈ V

k∑

i=1

‖ui‖2 = 1 (2)

∀u, v, w ∈ V ∀i, j, l ∈ [k] ‖ui − wl‖2 ≤ ‖ui − vj‖2 + ‖vj − wl‖2 (3)
∀u, v ∈ V ∀i, j ∈ [k] ‖ui − vj‖2 ≤ ‖ui‖2 + ‖vj‖2 (4)
∀u, v ∈ V ∀i, j ∈ [k] ‖ui‖2 ≤ ‖ui − vj‖2 + ‖vj‖2 (5)

For every vertex u and label i we introduce a vector ui. In the intended integral
solution ui = 1, if u is labeled with i; and ui = 0, otherwise. All SDP constraints
are satisfied in the integral solution; thus this is a valid relaxation. The objective
function of the SDP measures what fraction of all Unique Games constraints is
not satisfied.

3 Algorithm

We define the earthmover distance between two sets of orthogonal vectors
{u1, . . . , uk} and {v1, . . . , vk} as follows:

Δ({u}i , {v}i) ≡ min
σ(i)∈Sk

k∑

i=1

‖ui − vσ(i)‖2,
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here Sk is the symmetric group, the group of all permutations on the set [k] =
{1, . . . , k}. Given an SDP solution {ui}u,i we define the earthmover distance
between vertices in a natural way:

Δ(u, v) = Δ({u1, . . . , uk} , {v1, . . . , vk}).

Arora et al. [1] proved that if an instance of Unique Games on an expander is
almost satisfiable, then the average earthmover distance between two vertices
(defined by the SDP solution) is small. We will need the following corollary from
their results:

For every R ∈ (0, 1), there exists a positive c, such that for every (1 − ε)
satisfiable instance of Unique Games on an expander graph G, if ε/λG < c, then
the expected earthmover distance between two random vertices is less than R i.e.

Eu,v∈V [Δ(u, v)] ≤ R.

In fact, Arora et al. [1] showed that c ≥ Ω(R/ log(1/R)), but we will not use
this bound. Moreover, in the rest of the paper, we fix the value of R < 1/4. We
pick cR, so that if ε/λG < cR, then

Eu,v∈V [Δ(u, v)] ≤ R/4. (6)

Our algorithm transforms vectors {ui}u,i in the SDP solution to vectors {ũi}u,i

using a vector normalization technique introduced by Chlamtac, Makarychev and
Makarychev [4]:

Lemma 1. [4] For every SDP solution {ui}u,i, there exists a set of vectors
{ũi}u,i satisfying the following properties:

1. Triangle inequalities in 	2
2: for all vertices u, v, w in V and all labels i, p, q

in [k],
‖ũi − ṽp‖22 + ‖ṽp − w̃q‖22 ≥ ‖ũi − w̃q‖22.

2. For all vertices u, v in V and all labels i, j in [k],

〈ũi, ṽj〉 = 〈ui, vj〉
max(‖ui‖2, ‖vj‖2) .

3. For all non-zero vectors ui, ‖ũi‖22 = 1.
4. For all u in V and i �= j in [k], the vectors ũi and ũj are orthogonal.
5. For all u and v in V and i and j in [k],

‖ṽj − ũi‖22 ≤
2 ‖vj − ui‖2

max(‖ui‖2, ‖vj‖2) .

The set of vectors {ũi}u,i can be obtained in polynomial time.

Now we are ready to describe the rounding algorithm. The algorithm given an
SDP solution, outputs an assignment of labels to the vertices.
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Approximation Algorithm

Input: an SDP solution {ui}u,i of cost ε.
Initialization

1. Pick a random vertex u (uniformly distributed) in V . We call this vertex the
initial vertex.

2. Pick a random label i ∈ [k] for u; choose label i with probability ‖ui‖2. Note
that ‖u1‖2 + · · ·+ ‖uk‖2 = 1. We call i the initial label.

3. Pick a random number t uniformly distributed in the segment [0, ‖ui‖2].
4. Pick a random r in [R, 2R].

Normalization
5. Obtain vectors {ũi}u,i as in Lemma 1.

Propagation
6. For every vertex v,

– Find all labels p ∈ [k] such that ‖vp‖2 ≥ t and ‖ṽp − ũi‖2 ≤ r. Denote
the set of p’s by Sv:

Sv =
{
p : ‖vp‖2 ≥ t and ‖ṽp − ũi‖2 ≤ r

}
.

– If Sv contains exactly one element p, then assign the label p to v.
– Otherwise, assign an arbitrary (say, random) label to v.

Denote by σvw the partial mapping from [k] to [k] that maps p to q if ‖ṽp −
w̃q‖2 ≤ 4R. Note that σvw is well defined i.e. p cannot be mapped to different
labels q and q′: if ‖ṽp − w̃q‖2 ≤ 4R and ‖ṽp − w̃q′‖2 ≤ 4R, then, by the 	2

2

triangle inequality (see Lemma 1, item 1), ‖w̃q − w̃q′‖2 ≤ 8R, but w̃q and w̃q′

are orthogonal unit vectors, so

‖w̃q − w̃q′‖2 = 2 > 8R.

Clearly, σvw defines a partial matching between labels of v and labels of w: if
σvw(p) = q, then σwv(q) = p.

Lemma 2. If p ∈ Sv and q ∈ Sw with non-zero probability, then q = σvw(p).

Proof. If p ∈ Sv and q ∈ Sw then for some vertex u and label i, ‖ṽp− ũi‖2 ≤ 2R
and ‖w̃q − ũi‖2 ≤ 2R, thus by the triangle inequality ‖ṽp − w̃q‖2 ≤ 4R and by
the definition of σvw , q = σvw(p).

Corollary 3. Suppose, that p ∈ Sv, then the set Sw either equals {σvw(p)} or is
empty (if σvw(p) is not defined, then Sw is empty). Particularly, if u and i are
the initial vertex and label, then the set Sw either equals {σuw(i)} or is empty.
Thus, every set Sw contains at most one element.

Lemma 4. For every choice of the initial vertex u, for every v ∈ V and p ∈ [k]
the probability that p ∈ Sv is at most ‖vp‖2.
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Proof. If p ∈ Sv, then i = σvu(p) is the initial label of u and t ≤ ‖vp‖2. The
probability that both these events happen is

Pr (i ∈ Su)× Pr
(
t ≤ ‖vp‖2

)
= ‖ui‖2 ×min(‖vp‖2/‖ui‖2, 1) ≤ ‖vp‖2

(recall that t is a random real number on the segment [0, ‖ui‖2]).
Denote the set of those vertices v for which Sv contains exactly one element by X .
First, we show that on average X contains a constant fraction of all vertices (later
we will prove a much stronger bound on the size of X).

Lemma 5. If ε/λG ≤ cR, then the expected size of X is at least |V |/4.

Proof. Consider an arbitrary vertex v. Estimate the probability that p ∈ Sv given
that u is the initial vertex. Suppose that there exists q such that ‖vp − uq‖2 ≤
‖vp‖2 ·R/2, then

‖ũq − ṽp‖2 ≤ 2‖uq − vp‖2
max(‖uq‖2, ‖vp‖2) ≤ R.

Thus, q = σvu(p) and ‖ũq − ṽp‖2 ≤ r with probability 1. Hence, if q is chosen
as the initial label and ‖vp‖2 ≥ t, then vp ∈ Sv. The probability of this event is
‖uq‖2 ×min(‖vp‖2/‖uq‖2, 1). Notice that

‖uq‖2×min(‖vp‖2/‖uq‖2, 1) = min(‖vp‖2, ‖uq‖2) ≥ ‖vp‖2−‖uq−vp‖2 ≥ ‖vp‖2
2

.

Now, consider all p’s for which there exists q such that ‖vp−uq‖2 ≤ ‖vp‖2·R/2.
The probability that one of them belongs to Sv, and thus v ∈ X , is at least

1
2

∑

p:minq(‖uq−vp‖2)≤‖vp‖2·R/2

‖vp‖2 =
1
2

k∑

p=1

‖vp‖2− 1
2

∑

p:minq(‖uq−vp‖2)>‖vp‖2·R/2

‖vp‖2

≥ 1
2
− 1

2
×

k∑

p=1

2
R

min
q

(‖uq − vp‖2)

≥ 1
2
− Δ({u}q , {v}p)

R
.

Since the average value of Δ({u}q , {v}p) over all pairs (u, v) is at most R/4
(see (6)), the expected size of X (for a random initial vertex u) is at least |V |/4.

Corollary 6. If ε/λG ≤ cR, then

Pr (|X | > |V |/8) >
1
8
.

Lemma 7. The expected size of the cut between X and V \X is at most 6ε/R|E|.
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Proof. We show that the size of the cut between X and V \X is at most 6ε/R|E|
in the expectation for any choice of the initial vertex u. Fix an edge (v, w) and
estimate the probability that v ∈ X and w ∈ V \X . If v ∈ X and w ∈ V \X , then
Sv contains a unique label p, but Sw is empty (see Corollary 3) and, particularly,
πvw(p) /∈ Sw. This happens in two cases:

– There exists p such that i = σvu(p) is the initial label of u and ‖wπvw(p)‖2 <
t ≤ ‖vp‖2. The probability of this event is at most

k∑

p=1

‖uσvu(p)‖2 ×
∣
∣
∣
∣
‖vp‖2 − ‖wπvw(p)‖2
‖uσvu(p)‖2

∣
∣
∣
∣ ≤

k∑

p=1

‖vp − wπvw(p)‖2.

– There exists p such that i = σvu(p) is the initial label of u, t ≤ ‖vp‖2 and
‖ũi − ṽp‖2 < r ≤ ‖ũi − w̃πvw(p)‖2. The probability of this event is at most

k∑

p=1

‖uσvu(p)‖2 × ‖vp‖2
‖uσvu(p)‖2

×
∣
∣
∣
∣
‖ũσvu(p) − w̃πvw(p)‖2 − ‖ũσvu(p) − ṽp‖2

R

∣
∣
∣
∣

≤
k∑

p=1

‖vp‖2 ×
‖ṽp − w̃πvw(p)‖2

R
≤

k∑

p=1

‖vp‖2 ×
2‖vp − wπvw(p)‖2

R ·max(‖vp‖2, ‖wπvw(p)‖2)

≤ 2
R

k∑

p=1

‖vp − wπvw(p)‖2.

Note that the probability of the first event is zero, if ‖wπvw(p)‖2 ≥ ‖vp‖2; and the
probability of the second event is zero, if ‖ũσvu(p)− ṽp‖2 ≥ ‖ũσvu(p)− w̃πvw(p)‖2.

Since the SDP value equals

1
2|E|

∑

(v,w)∈E

k∑

p=1

‖vp − wπvw(p)‖2 ≤ ε.

The expected fraction of cut edges is at most 6ε/R.

Lemma 8. If ε ≤ min(cRλG, hGR/1000), then with probability at least 1/16 the
size of X is at least (

1− 100ε

hGR

)

|V |.

Proof. The expected size of the cut δ(X, V \ X) between X and V \ X is less
than 6ε/R|E|. Hence, since the graph G is an expander, one of the sets X or
V \X must be small:

E [min(|X |, |V \X |)] ≤ 1
hG
× E [|δ(X, V \X)|]

|E| × |V | ≤ 6ε

hGR
|V |.

By Markov’s Inequality,

Pr
(

min(|X |, |V \X |) ≤ 100ε

hGR
|V |
)

≥ 1− 1
16

.
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Observe, that 100ε/(hGR)|V | < |V |/8. However, by Corollary 6, the size of X
is greater than |V |/8 with probability greater than 1/8. Thus

Pr
(

|V \X | ≤ 100ε

hGR
|V |
)

≥ 1
16

.

Lemma 9. The probability that for an arbitrary edge (v, w), the constraint be-
tween v and w is not satisfied, but v and w are in X is at most 4εvw, where

εvw =
1
2

k∑

i=1

‖vi − wπvw(i)‖2.

Proof. We show that for every choice of the initial vertex u the desired proba-
bility is at most 4εvw. Recall, that if p ∈ Sv and q ∈ Sw, then q = σvw(p). The
constraint between v and w is not satisfied if q �= πvw(p). Hence, the probability
that the constraint is not satisfied is at most,

∑

p:πvw(p)	=σvw(p)

Pr (p ∈ Sv) .

If πvw(p) �= σvw(p), then

‖ṽp − w̃πvw(p)‖2 ≥ ‖w̃πvw(p) − w̃σvw(p)‖2 − ‖ṽp − w̃σvw(p)‖2 ≥ 2− 4R ≥ 1.

Hence, by Lemma 1 (5),

‖vp − wπvw(p)‖2 ≥ ‖vp‖2/2.

Therefore, by Lemma 4,

∑

p:πvw(p)	=σvw(p)

Pr (p ∈ Sv) ≤
∑

p:πvw(p)	=σvw(p)

‖vp‖2 ≤ 2
k∑

p=1

‖vp−wπvw(p)‖2 = 4εvw.

Theorem 10. There exists a polynomial time approximation algorithm that
given a (1 − ε) satisfiable instance of Unique Games on a d-expander graph
G with ε/λG ≤ c, the algorithm finds a solution of value

1− C
ε

hG
,

where c and C are some positive absolute constants.

Proof. We describe a randomized polynomial time algorithm. Our algorithm
may return a solution to the SDP or output a special value fail. We show that
the algorithm outputs a solution with a constant probability (that is, the prob-
ability of failure is bounded away from 1); and conditional on the event that the
algorithm outputs a solution its expected value is

1− C
ε

hG
. (7)
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Then we argue that the algorithm can be easily derandomized — simply by
enumerating all possible values of the random variables used in the algorithm
and picking the best solution. Hence, the deterministic algorithm finds a solution
of value at least (7).

The randomized algorithm first solves the SDP and then runs the rounding
procedure described above. If the size of the set X is more than

(

1− 100ε

hGR

)

|V |,

the algorithm outputs the obtained solution; otherwise, it outputs fail.
Let us analyze the algorithm. By Lemma 8, it succeeds with probability at

least 1/16. The fraction of edges having at least one endpoint in V \ X is at
most 100ε/(hGR) (since the graph is d-regular). We conservatively assume that
the constraints corresponding to these edges are violated. The expected number
of violated constraints between vertices in X , by Lemma 9 is at most

4
∑

(u,v)∈E εuv

Pr (|X | ≥ 100ε/(hGR))
≤ 64×

⎛

⎝1
2

∑

(u,v)∈E

‖ui − vπvw(i)‖2
⎞

⎠ ≤ 64ε|E|.

The total fraction of violated constraints is at most 100ε/(hGR) + 64ε.

References

1. Arora, S., Khot, S., Kolla, A., Steurer, D., Tulsiani, M., Vishnoi, N.: Unique games
on expanding constraint graphs are easy. In: Proceedings of the 40th ACM Sym-
posium on Theory of Computing, pp. 21–28 (2008)

2. Austrin, P., Mossel, E.: Approximation resistant predicates from pairwise indepen-
dence. In: Proceedings of the 2008 IEEE 23rd Annual Conference on Computational
Complexity, pp. 249–258. IEEE Computer Society, Los Alamitos (2008)

3. Charikar, M., Makarychev, K., Makarychev, Y.: Near-Optimal Algorithms for
Unique Games. In: Proceedings of the 38th ACM Symposium on Theory of Com-
puting, pp. 205–214 (2006)

4. Chlamtac, E., Makarychev, K., Makarychev, Y.: How to Play Unique Games Using
Embeddings. In: Proceedings of the 47th IEEE Symposium on Foundations of
Computer Science, pp. 687–696 (2006)

5. Gupta, A., Talwar, K.: Approximating Unique Games. In: Proceedings of the 17th
ACM-SIAM Symposium on Discrete Algorithms, pp. 99–106 (2006)

6. Guruswami, V., Manokaran, R., Raghavendra, P.: Beating the Random Ordering
is Hard: Inapproximability of Maximum Acyclic Subgraph. In: Proceedings of the
49th IEEE Symposium on Foundations of Computer Science, pp. 573–582 (2008)

7. Guruswami, V., Raghavendra, P.: Constraint satisfaction over a non-boolean do-
main: Approximation algorithms and unique-games hardness. In: Goel, A., Jansen,
K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS,
vol. 5171, pp. 77–90. Springer, Heidelberg (2008)



200 K. Makarychev and Y. Makarychev

8. Khot, S.: On the power of unique 2-prover 1-round games. In: Proceedings of the
34th ACM Symposium on Theory of Computing, pp. 767–775 (2002)

9. Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproximability results
for MAX-CUT and other two-variable CSPs? SIAM Journal of Computing 37(1),
319–357 (2007)

10. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2−ε. In:
Proceedings of the 18th IEEE Annual Conference on Computational Complexity
(2003)

11. Samorodnitsky, A., Trevisan, L.: Gowers uniformity, influence of variables, and
PCPs. In: Proceedings of the 38th Annual ACM Symposium on Theory of Com-
puting, pp. 11–20 (2006)

12. Trevisan, L.: Approximation Algorithms for Unique Games. In: Proceedings of the
46th IEEE Symposium on Foundations of Computer Science, pp. 197–205 (2005)



Online Ranking for Tournament Graphs�

Claire Mathieu and Adrian Vladu
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Abstract. We study the problem of producing a global ranking of items
given pairwise ranking information, when the items to be ranked arrive in
an online fashion. We study both the maximization and the minimization
versions of the problem on tournaments (max acyclic subgraph, feedback
arc set). We also study the case when the items arrive in random order.

1 Introduction

Context. Given complete pairwise ranking information between data items, of
the form “player i beats player j”, one seeks to provide a global ranking of the
players (or items) that aims to be consistent with the pairwise information, as
far as possible. Motivated by scheduling, graph layout, and rank aggregation,
this NP-hard problem was extensively studied [20,23,21,10,3,15].

Here, we study the online version on tournaments. How should we insert
a newly arrived player without upsetting the current ranking? A new player
arrives, along with pairwise information about which players he beats, and the
algorithm must extend the current ranking by incorporating the new player.
Over time, the algorithm should hedge against the risk that the ranking may
gradually drift from the optimal.

In the maximum acyclic subgraph problem, the objective is to maximize con-
sistency, i.e. the number of pairs uv whose ordering in the output ranking agrees
with the input information. This measure can be too coarse in cases where the
input is almost perfect, since getting 99% of the pairs ordered consistently with
the input is not really a good outcome when there exists a perfect ordering (or,
say, an ordering with one single upset pair); in the more difficult feedback arc
set problem, the objective is to minimize inconsistencies, i.e. the number of pairs
uv whose ordering in the output ranking disagree with the input information.

For the feedback arc set problem on tournaments, we show that there is a wide
gap between the offline and the online performance of algorithms. Indeed, the
offline problem has an approximation scheme [19], yet we prove that no online
algorithm, even with randomization, can be better than the greedy algorithm,
which we prove is (n−2)-competitive. For the easier maximum acyclic subgraph
problem on tournament, the gap is smaller. Still, the offline problem has an
approximation scheme [4,16,19], yet we prove that no online algorithm, even with
randomization, can be 1−ε competitive; the greedy algorithm is 1/2-competitive.
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For both problems the worst case can only happen if the adversary controls
both the input graph and the order of arrival of the graph vertices. The situation
is very different when the input graph is arbitrary but the arrivals are a ran-
dom permutation of the vertices. This online computation model with random
order has been the focus of increased attention in recent years. It is particu-
larly relevant to situations where data items arrive from different, independent
sources. Although the model was already suggested in the 1990s in the context
of best fit bin packing [17], it is increasingly the focus of active research ([5,13]
for example).

This paper presents an instance where the random order model is much more
powerful than the standard online model: it almost enables a reduction to the
offline model! More precisely, for online feedback arc set with random order,
we observe the existence of a 3-competitive algorithm, and for online maximum
acyclic subgraph with random order, we observe the existence of an asymptotic
approximation scheme. Moreover, the results follow easily from prior work on
the offline model. This is a striking example where random order resolves most
of the difficulties inherent to online computation.

Definitions and results. At each time t, a new item v arrives, along with a relative
ranking with respect to each previously arrived item u (pairwise comparisons).
Thus the input after t steps is a tournament over t data items – a directed graph
such that for every pair {u, v}, exactly one of the two arcs (u, v) and (v, u) is
in the edge set. Here (u, v) ∈ E means that u is ranked higher than v. The
algorithm maintains a total ordering of the items: a newly arrived item v must
be inserted in the existing ranking. The final ranking is evaluated as follows: in
the maximum acyclic subgraph problem, the value of the output is the number of
pairs uv whose ordering in the output ranking agrees with the input information;
in the feedback arc set problem, the cost of the output is the number of pairs
uv whose ordering in the output ranking disagree with the input information.

Techniques. The most interesting proofs are the analysis of the greedy algorithm
for minimum feedback arc set and the randomized lower bound for maximum
acyclic subgraph. Every time a vertex arrives, Greedy adds it to the current
ranking at a position that minimizes the number of induced inconsistent pairs,
breaking ties in favor of the position of lowest index.

To analyze Greedy, we argue that if the greedy permutation and the offline
optimum are very different, then there must be some combinatorial structures
that we call c-entanglements (see Figure 1); in turn, c-entanglement implies a
lower bound on the cost of the optimal ranking. To prove a lower bound on the
randomized complexity of maximum acyclic subgraph, we provide a distribution
supported by two inputs and show that any algorithm that works well on the
first input must be far from optimal on the second input; that is done by a
delicate modification of the algorithm’s output, that can be analyzed in terms of
L1 distance; fortunately it is well-known that the inversion and the L1 distances
between permutations are within a factor of 2 of each other (Theorem 3), an
essential tool in our proof.
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Theorem 1. Consider online feedback arc set on tournaments.

1. The greedy algorithm has competitive ratio n− 2.
2. Every (deterministic or randomized) algorithm has competitive ratio at least

n− 2.
3. If vertices arrive in random order then there is a 3-competitive algorithm.
4. Even if vertices arrive in random order, every (deterministic or randomized)

algorithm has competitive ratio at least 1.25.

Theorem 2. Consider online maximum acyclic subgraph on tournaments.

1. (Folklore) The greedy algorithm has competitive ratio (1/2); this is tight.
2. Every deterministic (resp. randomized) algorithm has competitive ratio at

least (1/2) (resp. (1− 1/77)).
3. When vertices arrive in random order, there is a (1− ε) asymptotic approx-

imation.

Theorem 1 is proved in section 2 (with subsections 2.1, 2.3, 2.3 and 2.4 respectively
proving parts 1,2,3 and 4 of the Theorem). Theorem 2 is proved in section 3 (with
subsections 3.1,3.2 and 3.3 respectively proving parts 1, 2 and 3 of the Theorem).

Background results. The following results are known for the offline problems.
The maximum acyclic subgraph problem on tournaments and the feedback arc
set problem on tournaments are NP-hard [2,1,8,11] . The “Quicksort” ranking
algorithm is a randomized 3-approximation for the feedback arc set on tourna-
ments [2]. Moreover, there is a polynomial-time approximation scheme (PTAS)
for the feedback arc set on tournaments [19]. There is a PTAS for the maxi-
mum acyclic subgraph on tournaments [4,16,19]. Moreover the seeded random-
ized greedy algorithm is a PTAS for the problem [19].

2 Online Feedback Arc Set on Tournaments

2.1 Analysis of Greedy

Throughout this section, let π denote the ranking obtained by Greedy. Let
G(V, E) be a tournament graph and let k denote the kth arriving vertex in
the online order (k ≤ n). Greedy maintains a ranking π of vertices where π(u)
denotes the position of vertex u in the ranking at the current time. Let σ denote
the optimal ranking. A back edge of a ranking ρ is a pair of vertices {u, v} such
that (u, v) ∈ E but ρ(v) < ρ(u). Let Bρ(v) denote the number of back edges of ρ
induced by the arrival of a vertex v. Theorem 1 can be proved from the following
two propositions.

For two rankings ρ and τ , letKv(ρ, τ) denote the number of inversions between
τ and ρ induced by the arrival of v, i.e. the number of vertices u arrived before
v and such that {u, v} is ordered differently in ρ and in τ . Let ρ[v → p] denote
the ranking of vertices obtained from a ranking ρ by removing v and putting it
back in so that its resulting rank is p + 1.
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Definition 1. Given two rankings ρ and τ , two sets of vertices A and B of size
c are c-entangled if:

– maxa∈A ρ(a) < minb∈B ρ(b).
– For every i < c there is a subset A′ of A of size at least c− i+1 and a subset

B′ of B of size at least i such that maxb∈B′ τ(b) < mina∈A′ τ(a).

Proposition 1. Given two rankings ρ and τ , let c = minpKk(ρ, τ [k → p]).
Then there are two subsets A and B of {1, 2, . . . k − 1} that are c-entangled.

b1b2 b3a1a2 a3

b1 b2 b3a3 a2 a1

ρ ordering
τ ordering

Fig. 1. Two sets of vertices that are 3-entangled. The upper row represents the ranking
in ρ, the lower row gives the ranking in τ .

Proposition 2. Let G be an arbitrary tournament, with arbitrary arrival order,
π be the greedy ranking, and ρ be an arbitrary ranking. If there are two sets of
vertices A and B that are c-entangled with respect to ρ and π, then ρ has cost
at least c.

Proof. (of part 1 of Theorem 1). The cost of Greedy is
∑n

k=3 Bπ(k). By definition
of Greedy,

Bπ(k) = min
p

Bπ[k→p](k).

Since a back edge in π[k → p] is either a back edge in σ or a pair ordered
differently in σ and in π[k → p], we have: Bπ[k→p](k) ≤ Bσ(k)+Kk(σ, π[k → p]).
Combining, we obtain:

Bπ(k) ≤ Bσ(k) + min
p
Kk(σ, π[k → p]).

Let c = minp Kk(σ, π[k → p]). From Proposition 1, there are two subsets A and B
of [1, k−1] that are c-entangled with respect to σ and π. From Proposition 2, the
restriction of σ to [1, k− 1] has cost at least c. In other words, c ≤∑k−1

i=1 Bσ(i).
Summing over k and inverting summations concludes the proof.

Proof. (of Proposition 1.) Among vertices {1, 2, . . . k − 1}, let L = {i : ρ(i) <
ρ(k)} and R = {i : ρ(i) > ρ(k)}. First we claim that L and R both have cardi-
nality at least c. Indeed, inserting k in first position in τ yields c ≤ Kk(ρ, τ [k →
0]) = |L|, and similarly inserting k in the last position yields c ≤ |R|.

Now, let A denote the c vertices i of L such that τ(i) is maximum, and B
denote the c vertices i of R such that τ(i) is minimum. This defines A and B.
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Clearly maxa∈A ρ(a) < minb∈B ρ(b). Now, fix i < c and consider the element
a∗ of A such that τ(a∗) is the ith largest among elements of A. In τ (k−1), consider
inserting k immediately to the right of a∗. Then there are only c− i vertices v of
L such that {k, v} is an inversion, yet for that value of p, by definition of c we
know that Kk(ρ, τ [k → p]) ≥ c, so there must be at least i vertices v of R such
that {k, v} is an inversion, hence such that τ(v) < τ(a∗). Therefore there must
be at least i vertices v of B such that τ(v) < τ(a∗), proving the lemma.

Proof. (of Proposition 2.) Among all instances of (G, ρ) such that ρ has minimum
cost, we claim that we can choose one such that the following property (P) holds:
let L = {u : ρ(u) ≤ maxa∈A ρ(a)} and R = V \ L. Then π|L = ρ|L and both
have cost 0; similarly, π|R = ρ|R and both have cost 0.

The proof is by contradiction. Among all instances such that the cost of ρ is
minimum, pick the one such that the inversion distance between ρ|L and π|L is
minimum. We claim that it is 0: assuming ρ|L �= π|L, pick u, v ∈ L such that
ρ(u) = i, ρ(v) = i + 1, and π(u) > π(v). Then let ρ′ be equal to ρ except for
transposing u and v, and let G′ be equal to G with the possible exception of
pair {u, v}: in G′, (v, u) ∈ G′. By definition, ρ′ is closer to π than ρ in inversion
distance. Our definition of G′ ensures that the cost of ρ′ is at most the cost of
ρ. Moreover, it is easy to see that π(G′) = π(G). Therefore this provides a new
min cost instance with smaller inversion distance, a contradiction.

Similarly we can argue that ρ|R = π|R.
Finally, among all instances such that the cost of ρ is minimum, ρ|L = π|L

and ρ|R = π|R, we choose one such that the cost of π is minimum. We claim
that π|L and πR have cost 0: if not, modify G into G′ by inverting a back edge
(u, v), and argue as above that π(G′) = π(G), hence a contradiction.

From now on we assume that Property (P) holds. Our next step is to find a
lower bound for cost(ρ). Define a right-left matching to be a matching between
pairs (u, v) ∈ R× L such that π(u) < π(v).

Consider the right-left matching ν =
⋃m

i=1(ri, li) given by the following greedy
algorithm. Go through the vertices r from R in increasing order of π(r). For each
such r find the vertex l = arg min{l∈L:π(r)<π(l),l unmatched} π(l). If such a vertex
exists, match it with r. Matching ν is maximum. Indeed, consider a maximum
right-left matching ν′ =

⋃m′

i=1(r
′
i, l

′
i). First, in ν′ we exchange the vertices r′i,

in increasing order of π(r′i), with those vertices from R that have the lowest
positions in π: this does not affect feasibility since each vertex r′i gets replaced
by a vertex ri” such that π(ri”) ≤ π(r′i). Then we exchange each vertex l′i, in
increasing order of π(r′i), with the one that has the smallest position in π|L
such that feasibility is maintained; one can prove that the maximum matching
obtained is exactly ν.

We claim that cost(ρ) ≥ |ν| and |ν| ≥ c, from which the proposition follows.
To prove the first claim, we argue that if the arrival of a vertex v causes the

size of the maximum matching to increase (necessarily by 1), then we must have
Bρ(v) ≥ 1.

Suppose, for a contradiction, that when inserting some vertex t the size of
the maximum right-left matching increases while Bρ(t) = 0. Assume that t ∈ L
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(the case t ∈ R is similar). Since Bρ(t) = 0, we must have (t, r) ∈ E for every r ∈
R. By definition of Greedy, for every position z < π(t) we have Bπ[t→π(t)](t) ≤
Bπ[t→z](t). Since (t, r) ∈ E for every r, this implies that |{r ∈ R : r < t and z ≤
π(r) < π(t)}| ≤ |{l ∈ L : l < t and z ≤ π(l) < π(t)}|. It is not hard to see that
this implies that all vertices r ∈ R such that π(r) < π(t) can be matched to a
vertex � ∈ L that also has π(�) < π(t). So all vertices of R such that π(r) < π(t)
are matched by the greedy algorithm M. So M will not match t to anything
because all its potential pairs are already matched, so the size of the maximum
matching given byM does not increase: contradiction.

To prove the second claim, take the c-entangled sets A and B. By definition
of c-entanglement (first property) and by definition of L and R, it follows that
A ⊆ L and B ⊆ R. By definition of c-entanglement (second property), we can
get a partition of A ∪ B into c disjoint pairs (bi, ai) such that π(bi) < π(ai) ,
bi ∈ B, ai ∈ A. These pairs form a right-left matching of size c. So the maximum
right-left matching ν has size |ν| ≥ c.

2.2 Deterministic and Randomized Lower Bounds

To prove the deterministic lower bound, consider the following two inputs. I1

has n vertices, labeled 1, 2, . . . , n in order of the optimal ranking, and the only
back edge of the optimal ranking is edge (n, 1). The optimal cost is 1. The arrival
order is n, 1, 2, . . . , n − 1. Input I2 has two vertices, labeled 1, 2 in order of the
optimal ranking, and there are no back edges. The optimal cost is 0 and the
arrival order is 1,2. In order to be competitive for I2, the algorithm must place
the first two vertices so that the cost is 0. Then, for I1, any extension of that
ranking has at least one back edge from each of the other n− 2 vertices, hence
the lower bound.

To prove the randomized lower bound, we use Yao’s minmax theorem [7,22],
and consider the input distribution that is I1 and I2 with equal probability. Input
I1 has n vertices labeled 1, 2, . . . , n in order of the optimal ranking, and the only
back edge of the optimal ranking is edge (n, 1). The optimal cost is 1. The arrival
order is n, 1, 2, . . . , n − 1. Input I2 has n vertices labeled 1, 2, . . . , n in order of
the optimal ranking, and there are no back edges in the optimal ranking. The
optimal cost is 0. The arrival order is 1, n, 2, . . . , n− 1. The average cost of the
optimal output is 1/2. Let A be any deterministic algorithm. We will prove that
the average cost of the output is at least (n− 2)/2.

First, consider the case when A places the first edge forward. With probability
1/2 the input is I1 and then the output ranking has cost at least n − 2; with
the remaining probability 31/2, the input is I2 and then the output ranking has
cost 0. The average cost of the output is at least (n− 2)/2. The analysis in the
other case is similar (and yields (n− 1)/2 > (n− 2)/2).

2.3 Random Order Arrivals: A Better Algorithm

Here is an online algorithm. Upon arrival of vertex t, we place it in the current
ranking ρ as follows. Let S1 the set of all vertices in ρ and i1 the vertex from
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Algorithm 1. Insert a new vertex into the current ranking
Input: a newly arrived vertex t, the current set of vertices S1, the current
ranking ρ, a set A consisting of all the edges between t and the vertices in ρ
Output: the updated ranking ρ′

p← 1, lo← 0, hi← |S1|
while Sp �= ∅ do

Let ip the vertex in Sp that arrived first
if (t, ip) ∈ A then

Let Sp+1 = {v ∈ Sp : (v, ip) ∈ A}, hi← ρ(ip)− 1
else

Let Sp+1 = {v ∈ Sp : (ip, v) ∈ A}, lo← ρ(ip)
end if
p← p + 1

end while
ρ′ ← ρ[t→ lo]

S1 that arrived first. t is before vertex i1 if there is an edge from t to i1, and is
after vertex i1 if there is an edge from i1 to t. Let S2 the set of vertices in S1

that are in ρ on the same side of i1 where we place t. We continue in the same
manner as before until Sp = ∅ and the position of t is entirely determined. So
we place t there. This procedure is presented in Algorithm 1.

Since vertices arrive in random order, vertex i1 is like the first pivot used by
the Quicksort ranking algorithm of Ailon, Charikar and Newman ([2]), and in
fact the above algorithm is an equivalent description. Hence the 3-approximation
result carries over to yield a proof that the algorithm is 3-competitive.

2.4 Random Order Lower Bounds

Consider the following input. There are 4 vertices, labeled 1,2,3,4 in order of
the optimal ranking. The only back edge of the optimal ranking is edge (4, 1).
The optimal cost is 1. The arrival order is random. Let A be any deterministic
algorithm. We will prove that the average cost of the output is at least 5/4.

First, consider the case when A places the first edge forward. With probability(
4
2

)
/4! = 1/4 the first two arriving vertices are 1 and 4 and then the output

ranking has cost at least 2; with the remaining probability 3/4, the output
ranking has cost at least 1. The average cost of the output is at least 5/4. The
analysis in the other case is similar (and yields 7/4 > 5/4).

3 Maximum Acyclic Subgraph

3.1 Analysis of Greedy

The upper bound is folklore. To prove tightness, we exhibit an input I on which
Greedy’s performance is asymptotically OPT/2 . Consider the following input.
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n-1n-2 n21 3 ...

Fig. 2. Input showing that the performance of the greedy algorithm is asymptotically
OPT/2. Only back edges are depicted.

There are n vertices labeled 1, 2, . . . , n in order of the optimal ranking. Here we
assume n is even. The back edges of the optimal ranking are edges (n− i +1, i),
1 ≤ i ≤ n/2. (It’s easy to verify that this ranking is optimal, since all the
back edges belong to edge disjoint triangles.) The optimal profit is

(
n
2

) − n/2,
which is asymptotic to n2/2. The arrival order is 1, n, 2, n − 1, etc. Then it
is easy to see (using the tie-breaking rule) that Greedy produces the ranking
. . . (n− 2), 3, (n− 1), 2, n, 1, with total profit asymptotically n2/4.

3.2 Deterministic and Randomized Lower Bounds

To prove the deterministic lower bound, consider the family of inputs defined
as follows. Here, we label vertices by order of arrival. First, (1, 2) ∈ E. The rest
of the input depends on the algorithm. If the algorithm places 1 before 2, then
every future arrival u has an edge (2, u) and an edge (u, 1), else every future
arrival u has an edge (1, u) and an edge (u, 2). Then, (3, 4) ∈ E. If the algorithm
places 3 before 4, then every future arrival u has an edge (4, u) and an edge
(u, 3), else every future arrival u has an edge (3, u) and an edge (u, 4). This
guarantees that the output has profit at most (n/2) + (

(
n
2

)− (n/2))/2, which is
asymptotically n2/4. On the other hand, there is a ranking with profit at least(
n
2

)− (n/2) which is asymptotically equivalent to n2/2, hence the lower bound.
Since the input is adaptive, this does not extend to the randomized setting.

To prove the randomized lower bound, we use Yao’s minmax theorem [7,22],
and consider the input distribution that is I1 with probability p and I2 with
probability 1 − p (in the end we will set p = 0.967418.) Input I1 consists of n
red vertices R whose optimal ranking r1r2 . . . rn has no back edges. Its optimal

i n-i+1 in-i+12i-12i 2i-1 2i

Fig. 3. As soon as the algorithm determines whether to place vertex 2i before or after
2i − 1, the adversary makes all the subsequent vertices have outgoing edges to the
vertex with the lowest rank among 2i − 1 and 2i and incoming edges from the other
one
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profit is
(
n
2

)
. Input I2 consisting of I1, followed (in arrival order) by g(n+1) blue

vertices B = {bij : 1 ≤ i ≤ n + 1, 1 ≤ j ≤ g} (in the end we will set g = 8). The
ranking

b11 . . . b1grnb21 . . . b2grn−1 . . . r2bn1 . . . bngr1bn+1,1 . . . bn+1,g

has back edges exactly for vertex pairs in R × R. Let m = n + g(n + 1) denote
the total number of vertices in I2. The optimal profit of I2 is at least

(
m
2

)− (
n
2

)
.

The average optimal profit is at least p
(
n
2

)
+ (1 − p)(

(
m
2

) − (
n
2

)
). Let A be any

deterministic algorithm. We will analyze two cases.
First, consider the case when, in input I1, A has profit at most c1

(
n
2

)
(in the

end we will set c1 = 0.897637.) The algorithm trivially has profit at most at
most

(
m
2

)
on input I2. A short computation shows that

EI [profit(A(I))]
EI [profit(OPT (I))]

≤ 1−
(1− c1) p

1−p
− 1

p
1−p

+ (m
2 )

(n
2)
− 1

(1)

Second, consider the case when, in input I1, A has profit greater than c1

(
n
2

)
. The

analysis in that case rests on the following lemma, where K(σ, ρ) is the Kendall-
Tau distance (or inversion distance) between permutations, i.e. the number of
pairs ordered differently in σ and in ρ.

Lemma 1. Let π2 be a maximum profit ranking of I2 extending A(I1) to an .Let
α2 be the ranking b11 . . . b1grnb21 . . . b2grn−1 . . . r2bn1 . . . bngr1bn+1,1 . . . bn+1,g of
I2 (Figure 3.2). Then:

K(π2, α2) ≥ 1
2
(g + 1)c1

(
n

2

)

.

Let us defer its proof for a moment. On input I1, A(I1) = π1 has profit at most(
n
2

)
. On input I2, the profit of A(I2) is at most the profit of π2. Every inversion

between two vertices in π2 and α2 that are not both red determines a back edge
in π2. Therefore, counting out the possible back edges induced by pairs of red
vertices, the number of back edges in π2 is at most K(π2, α2)−

(
n
2

)
. So

profit(π2) ≤
(

m

2

)

−K(π2, α2) +
(

n

2

)

.

Using Lemma 1 and combining, a short calculation yields

EI [profit(A(I))]
EI [profit(OPT (I))]

≤ 1−
c1(g+1)

2 − 2
p

1−p
+ (m

2 )
(n
2)
− 1

(2)

Finally, we numerically find the values for p, g and c1 that minimize the maximum
of (1) and (2). For p = 0.967418, g = 8, c1 = 0.897637, both of these are less
than 0.986822≈ 1− 1/77.

To prove Lemma 1, it is useful to relate two distances between permutations.
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r1 r2 r3b11 ... b18 b21 ... b28 b31 ... b38 b41 ... b48

Fig. 4. Input I2 for n = 3

Theorem 3. ([14]) For any two permutations σ and ρ, we have K(σ, ρ) ≤
L1(σ, ρ) ≤ 2K(σ, ρ), where L1(σ, ρ) =

∑
i |σ(i)− ρ(i)|.

Proof. (of Lemma 1) By Theorem 3, K(π2, α2) ≥ 1
2
L1(π2, α2). Let π′

2 be the
ranking obtained from α2 by reordering the vertices of R according to π1 while
still leaving them in positions i(g + 1) for 1 ≤ i ≤ n: thus π′

2(r) = π1(r)(g + 1)
for all r ∈ R and all the edges in B ×B are forward edges. Since π′

2(b) = α2(b)
for every b ∈ B, we can write

L1(π2, α2) =
∑

j∈B

|π2(j)− π′
2(j)|+

∑

i∈R

|π2(i)− α2(i)|.

First we need the following relation:

Claim ∑

j∈B

|π2(j)− π′
2(j)| ≥

∑

i∈R

|π2(i)− π′
2(i)|

Proof. In order to minimize the left hand side, we can see that the blue vertices
have to appear in the same order in π2 as in π′

2. Indeed, if u, v ∈ B such that
π′

2(u) < π′
2(v) and π2(v) < π2(u), then swapping the positions of u and v in

π2 decreases |π2(u) − π′
2(u)| + |π2(v) − π′

2(v)|. For this particular ranking of
vertices in π2, we can show by a simple calculation that

∑
j∈B |π2(j)− π′

2(j)| =∑
i∈R |π2(i)− π′

2(i)|. Therefore the claim holds.

Thus
L1(π2, α2) ≥

∑

i∈R

|π2(i)− π′
2(i)|+ |π2(i)− α2(i)|.

By the triangular inequality, this implies L1(π2, α2) ≥
∑

i∈R |π′
2(i)−α2(i)|. Since

π′
2(b) = α2(b) for all b ∈ B, we deduce

L1(π2, α2) ≥ L1(π′
2, α2).

Now, let α1 = α2|R. By definition of π′
2 and of α2, we see that L1(π′

2, α2) = (g +
1)L1(π1, α1). From Theorem 3, L1(π1, α1) ≥ K(π1, α1). From our assumption, at
least c1

(
n
2

)
edges given by the ranking π1 are forward edges, and so, K(π1, α1) ≥

c1

(
n
2

)
. This concludes the proof.
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3.3 Random Order Arrivals

Since the optimal ranking has value at least
(

n
2

)
/2, it is enough to provide an

online algorithm with additive error O(εn2). First, observe that it is enough to
provide an approximate ranking, identifying all ranks in [iε, (i + 1)ε) – up to an
additive error of O(εn2), thus we only have k = 1/ε essentially different labels.

Here is the algorithm. We place the first s = O(1/ε4) vertices arbitrarily,
producing a partial ranking π. At that point, we have a random sample S of the
entire set of vertices. The problem can be has one ranking constraint for each
pair of vertices i, j. The offline algorithm from [19] constructs a ranking of S,
then proceeds greedily to place the remaining vertices: we execute that part of
the algorithm and construct a virtual ranking σ of S, unrelated to the ranking
constructed so far. As in [19], we then insert the remaining vertices in a greedy
manner, pretending the original ranking was σ. As the vertices arrive in random
order, the analysis from [19] applies and the result, had we started with the
virtual ranking, would be a ranking with additive error O(εn2). The fact that
S is really ranked according to π instead of σ induces an additional error of
O(s2 + sn), which is O(εn2) assuming that n = Ω(1/ε5).

References

1. Alon, N.: Ranking tournaments. SIAM J. Discrete Math. 20(1), 137–142 (2006)
2. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: rank-

ing and clustering. Journal of the ACM (JACM) 55, 1–27 (2008)
3. Ailon, N., Mohri, M.: An efficient reduction of ranking to classification. In: Procs.

21st COLT, pp. 87–97 (2008)
4. Arora, S., Frieze, A., Kaplan, H.: A new rounding procedure for the assignment

problem with applications to dense graph arrangement problems. Mathematical
Programming 92, 1–36 (2002)

5. Babaioff, M., Immorlica, N., Kleinberg, R.: Matroids, secretary problems, and on-
line mechanisms. In: Proceedings of the Eighteenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 434–443 (2007)

6. Berger, B., Shor, P.: Tight bounds for the maximum acyclic subgraph problem.
Journal of Algorithms 25, 118 (1997)

7. Borodin, A., El-Yaniv, R.: On-Line Computation and Competitive Analysis.
Cambridge University Press, Cambridge (1998)

8. Charbit, P., Thomasse, S., Yeo, A.: The minimum feedback arc set problem is NP-
hard for tournaments. Combinatorics, Probability and Computing 16, 1–4 (2007)

9. Charikar, M., Makarychev, K., Makarychev, Y.: On the advantage over random for
maximum acyclic subgraph. In: 48th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2007, pp. 625–633 (2007)

10. Cohen, W.W., Schapire, R.E., Singer, Y.: Learning to order things. J. Artificial
Intelligence Research 10, 243–270 (2007)

11. Conitzer, V.: Computer Slater rankings using similarities among candidates. In:
Procs. 21st AAAI, pp. 613–619 (2006)

12. Coppersmith, D., Fleischer, L., Rudra, A.: Ordering by weighted number of wins
gives a good ranking for weighted tournaments. In: Proceedings of the Seventeenth
Annual ACM-SIAM Symposium on Discrete Algorithm, p. 782. ACM, New York
(2006)



212 C. Mathieu and A. Vladu

13. Devanur, N., Hayes, T.: The Adwords Problem: Online Keyword Matching with
Budgeted Bidders under Random Permutations. In: Proc. ACM EC (2009); [19]
Moreover, there is a polynomial-time approximation scheme (PTAS) for the feed-
back arc set on tournaments

14. Diaconis, P., Graham, R.: Spearman’s footrule as a measure of disarray. Journal
of the Royal Statistical Society, Series B 39(2), 262–268 (1977)

15. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggegation methods for the
web. In: Procs. 10th WWW, pp. 613–622 (2001), The NP-hardness proof is in the
online-only appendix available from http://www10.org/cdrom/papers/577/

16. Frieze, A.M., Kannan, R.: Quick approximation to matrices and applications. Com-
binatorica 19(2), 175–220 (1999)

17. Kenyon, C.: Best-fit bin-packing with random order. In: Proceedings of the Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 359–364 (1996)

18. Mathieu, C., Schudy, W.: Yet another algorithm for dense max cut: Go greedy. In:
Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 176–182. Society for Industrial and Applied Mathematics, Philadelphia
(2008)

19. Mathieu, C., Schudy, W.: How to rank with few errors: a PTAS for weighted
feedback arc set on tournaments. In: Procs. 39 th ACM STOC, pp. 95–103 (2007),
See rather the journal submission available from
http://cs.brown.edu/people/ws/papers/fast_journal.pdf

20. Seshu, S., Reed, M.B.: Linear Graphs and Electrical Networks. Addison-Wesley,
Reading (1961)

21. Slater, P.: Inconsistencies in a schedule of paired comparisons. Biometrika 48, 303–
312 (1961)

22. Yao, A.: Probabilistic computations: Toward a unified measure of complexity. In:
Proceedings of the 18th IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 222–227 (1977)

23. Younger, D.H.: Minimum feedback arc sets for a directed graph. IEEE Trans.
Circuit Theory 10, 238–245 (1963)



Throughput Maximization for Periodic Packet Routing
on Trees and Grids�

Britta Peis and Andreas Wiese

Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany
{peis,wiese}@math.tu-berlin.de

Abstract. In the periodic packet routing problem a number of tasks periodically
create packets which have to be transported through a network. Due to capacity
constraints on the edges, it might not be possible to find a schedule which delivers
all packets of all tasks in a feasible way. In this case one aims to find a feasible
schedule for as many tasks as possible, or, if weights on the tasks are given, for
a subset of tasks of maximal weight. In this paper we investigate this problem on
trees and grids with row-column paths1. We distinguish between direct schedules
(i.e., schedules in which each packet is delayed only in its start vertex) and not
necessarily direct schedules. For these settings we present constant factor approx-
imation algorithms, separately for the weighted and the cardinality case.

Our results combine discrete optimization with real-time scheduling. We use
new techniques which are specially designed for our problem as well as novel
adaptions of existing methods.

1 Introduction

In the periodic packet routing problem (formally defined below) an infinite number of
packets (created periodically by a set of tasks) has to be sent through a network without
violating given capacities on the edges. This problem is well studied (see e.g. [2,11])
and has numerous applications in theory and practice (e.g., on communication networks
with bounded bandwidth).

Networks occurring in practical applications are mostly of rather simple topology
such as paths, trees, or grids. Also, in communication networks the transmission links
can be used in both directions without interfering with each other. This motivates us
to investigate periodic packet routing primarily on bidirected trees and bidirected grids
with row-column paths.

In this paper we study the corresponding optimization problem of finding a subset
of tasks with maximum weight (w.r.t. given weights on the tasks) such that a feasible
schedule for these tasks exists. This problem, which we call the MAX-TASK-problem,
combines discrete optimization with real-time scheduling. For this reason our algo-
rithms partly are based on techniques from both of these two research directions. On

� This work was partially supported by Berlin Mathematical School and by the DFG Focus Pro-
gram 1307 within the project “Algorithm Engineering for Real-time Scheduling and Routing”.

1 A row-column path moves along the row of its start vertex si to the column of its destination
vertex ti, and then along the column of ti to ti itself. Such paths have also been studied in [1,5].

K. Jansen and R. Solis-Oba (Eds.): WAOA 2010, LNCS 6534, pp. 213–224, 2011.
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the other hand, some of our techniques designed for the MAX-TASK-problem might as
well be extendable for related discrete optimization and scheduling problems.

Beside practical applications, there is also a second reason why we restrict to trees
and grids when searching for constant-factor approximations: even on the simple class
of chain graphs the MAX-TASK-problem contains the MAXIMUM-INDEPENDENT-SET-
problem (see [12]) which is known to be NP -hard to approximate within a factor of
|T |1−ε for all ε > 0 [16]. The hardness carries over to the MAX-TASK-problem.

Periodic packet routing. We now describe our model formally. The periodic packet
routing problem is defined as follows: Let G = (V, E) be a graph and let p be an
integer. Let T =

{
τ0, τ1, ..., τ|T |−1

}
be a set of tasks. Each task τi = (si, ti, Pi) creates

a new packet at all timesteps t = j · p with j ∈ N. The packets of τi start in the vertex
si and have to be delivered to ti along the given path Pi from si to ti. We assume that
all packets move simultaneously, it takes one timestep to transfer a packet over an edge
and each edge can be used by at most one packet at a time in each direction. The goal
is now to determine a feasible schedule such that all packets reach their destination
vertices within a finite timespan after they have been released. In order to stress that the
edges can be used in both direction independently we will use later speak of bidirected
graphs.

Template schedules. Similar as in [2], we define a template schedule for (G, T, p) to be
given by a map task : E×{0, 1, ..., p− 1} → T with the interpretation that the packets
created by a task τi are allowed to use an arc e at time t only if task (e, t mod p) = τi.
We assume that packets do not wait unnecessarily at a node when they would be allowed
to use the next edge of their path. Such a template schedule is feasible if every packet
which is ever created reaches its destination vertex eventually. (Note that if in a feasible
template schedule two packets are located on the same vertex at the same time this
implies that they were created by different tasks.) A schedule is direct if each packet
which is ever created is delayed only in its start vertex. For ease of notation we say a
schedule is indirect if it is not necessarily direct.

In this paper we focus on template schedules. Whenever we say that a feasible sched-
ule for a set of tasks exists, we mean that a template schedule exists. Note that in the
setting of indirect schedules a feasible (template) schedule for a set of tasks T ′ exists if
and only if no arc is used by more than p tasks in T ′ [11].

MAX-TASK-problem. An instance of the MAXIMUM-TASK-problem (or short: MAX-
TASK-problem) is given by a tuple (G, T, p) where each task τi ∈ T is additionally
equipped with a weight wi. The problem is now to find a set T ′ ⊆ T of maximum
weight w(T ′) =

∑
τi∈T ′ wi such that there exists a feasible schedule for (G, T ′, p).

We distinguish between instances for which we want to find a task selection which
allows a direct schedule and instances where we are interested in a task selection which
allows an indirect schedule. For an instance I we denote by OPTindir(I) a subset of the
tasks of I of maximum weight such that there exists an indirect schedule for these tasks.
Likewise, OPTdir(I) denotes a subset of tasks with maximum weight which allows a
direct schedule.

Price of directness. We also study the price of directness. Denote by I the set of
all MAX-TASK-instances on a certain graph class. Intuitively, the price of directness
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measures how much we loose at most when we require a direct schedule rather than an
indirect schedule. Formally, it is defined by maxI∈I

w(OPTindir(I))
w(OPTdir(I)) .

Greedy algorithm. The greedy algorithm considers the tasks in a given order and adds
them if possible. In the setting of indirect schedules the algorithm has to ensure that no
arc is used by more than p tasks. If this property holds, we can define a feasible template
schedule as follows: for each edge e, we define the values task(e, k) such that for each
task τ that uses e there is one value ke ∈ {0, ..., p − 1} such that task(e, ke) = τ . In
the setting of direct schedules the greedy algorithm also computes the actual schedule
in a map task: For each considered task it checks whether there is a start offset for it
such that it does not collide with any previously defined task.

The following example shows that the naive approach to order the tasks by non-
increasing weight and assign priorities w.r.t. this order may perform arbitrarily bad:
Given a path on vertices V = {v0, . . . , vk} let T consist of one task τ0 = (v0, vk) with
weight 1 + ε (for some small ε > 0), and k tasks τi = (vi−1, vi) with weight wi = 1
(i = 1, . . . , k). Then, if p = 1, this simple greedy strategy would select only τ0 with
weight 1+ ε while the optimal solution would select all of the remaining tasks resulting
in a total weight of k. This example also indicates that, even in the cardinality case, the
MAX-TASK-problem contains the EDGE-DISJOINT-PATH-problem which is known to
be MAXSNP -hard even on bidirected trees [4].

General assumptions and notations. When considering a tree, we always assume that
one (arbitrary) vertex vr is picked as the root vertex. For each task τi we denote by vi

the vertex on Pi which is closest to vr , and call it the peak vertex of τi. The distance
between vi and vr is called the height h(τi) of τi. We assume that the tasks are ordered
by non-increasing height, i.e., i < j ⇒ h(τi) ≥ h(τj). This is in particular important
for the greedy algorithm. W.l.o.g. we assume that |T | > p since if |T | ≤ p in the
settings which we study in this paper we can definitely schedule all tasks. In particular,
|T | > p implies that the period p is bounded by a polynomial in the input size.

MAX-TASK on directed trees. Note that the MAX-TASK-problem on directed trees (i.e.,
each edge e is equipped with an orientation and tasks use e only in this one direction)
can be solved optimally in polynomial time. Formulated as a linear program, the result-
ing matrix is a network matrix. Network matrices are uni-modular and linear programs
on them can be reduced to the minimum cost flow problem which is polynomial time
solvable [13,14].

1.1 Our Contribution

In the subsequent Section 2 we study the unweighted MAX-TASK-problem on bidi-
rected trees. We prove that the greedy algorithm with the task ordering given above
results in a 2-approximation for the setting of indirect schedules. The analysis of the
greedy algorithm uses a reduction of the problem to an integral multicommodity flow
problem and a careful adaption of the primal-dual scheme of Garg et al. [6] for the
latter problem on undirected trees. A completely different argumentation shows that in
the setting of direct schedules the greedy algorithm is a max{2, 3− 2

p}-approximation.

Surprisingly, the resulting set is also a max{2, 3 − 2
p
}-approximation in comparison

with the largest set of tasks which allows an indirect schedule.
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In contrast to the cardinality case, the greedy algorithm may perform arbitrarily bad
if weights on the tasks are given. In order to obtain a constant factor approximation
also for the weighted version we thus need more sophisticated algorithms. In Section 3
we reduce the weighted MAX-TASK-problem on a bidirected tree to a special case of
the weighted MAXIMUM-INDEPENDENT-SET-problem, and apply certain integer lin-
ear programming techniques (based on ideas of [5]). We obtain an algorithm which is a
3-approximation for both, the direct and the indirect setting. For the indirect setting, this
result can even be improved: we extend the techniques of [5] to a more general setting
than INDEPENDENT-SET-problems and obtain an max{2, 3− 2

p
}-approximation algo-

rithm. The key idea is to solve the LP-relaxation of our problem and cover the solution
with fractions of certain integral solutions. The new concept is that these integral solu-
tions are not necessarily independent sets. This could have applications for many more
problems in the fields of integral multicommodity flow and integer packing problems.

In Section 4 we show that the price of directness on bidirected trees is at least 6/5 and
at most 2. Even more, we present an algorithm which splits any set of tasks which allows
an indirect schedule into two sets which both allow a direct schedule. For the setting of
directed trees we use certain path-coloring techniques to show that any feasible schedule
can be turned into a feasible direct schedule. This implies that the price of directness on
directed trees is 1.

Finally, in Section 5 we consider bidirected grid graphs where all tasks have row-
column paths. In this setting the EDGE-DISJOINT-PATH-problem – and hence the MAX-
TASK-problem – are still MAXSNP -hard [5]. We prove that we loose at most a factor
of 2 if we restrict either to tasks which move left and up or right and down or to tasks
which move right and up or left and down. In either case we can split the set of tasks
into another two subsets which can be handled separately (with all tasks moving in the
same direction). For the unweighted case in the setting of indirect schedules we employ
a careful charging argument to get a 4-approximation. For the other settings we can
employ similar techniques as for the bidirected tree. Due to space restrictions we spare
the details and refer to our technical report [12].

Table 1 shows a summary of the approximation factors of our algorithms for the
respective settings.

Table 1. Overview of approximation factors for the respective versions of the MAX-TASK-
problem

Graph class indirect schedules direct schedules Complexity
cardinality weighted cardinality weighted (all cases)

Bidirected tree 2 max
{
2, 3 − 2

p

}
max

{
2, 3 − 2

p

}
3 MAXSNP -hard [4]

Bidirected grid 4 max
{
4, 6 − 4

p

}
max

{
4, 6 − 4

p

}
6 MAXSNP -hard [5]

1.2 Related Work

The maximum EDGE-DISJOINT-PATH-problem (a special case of the MAX-TASK-
problem that arises when p = 1) has been studied by Erlebach et al. [4,5] who present
algorithms for the problem on bidirected trees and grid graphs with row-column-paths.
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They also show that the problem is MAXSNP -hard in these settings, implying that
there can be no PTAS unless P = NP . For general graphs there are

√
m-approximation

algorithms [8,15] which is best possible unless P = NP [7].
In [1] Adler et al. consider the problem of scheduling a maximum number of pack-

ets with given release times and deadlines through a network. Like in [4,5] they also
consider trees and and grid graphs in which the paths are row-column-paths. For this
non-periodic setting, they study the cardinality case as well as the weighted case, pro-
viding approximation factors of 3 and 10, respectively. In [5] Erlebach et al. improve
the approximation factor for the weighted case to 3. All these schedules are direct.

As mentioned above, we will reduce the problem of finding a feasible schedule to
an integral maximum multicommodity flow problem. For the latter problem on undi-
rected trees there is a 2-approximation algorithm for the cardinality case [6] and a 4-
approximation for the weighted case [3]. The latter algorithm can be extended to a
4-approximation for bidirected trees [3]. In our case, all edges have the same capacity.
If the capacity of each edge is at least 2 there is even a 3-approximation for the weighted
case on undirected trees [9]. However, this algorithm cannot be adjusted directly to the
setting of bidirected trees.

For the periodic packet routing problem on general graphs, Andrews et al. [2]
prove the existence of a feasible template schedule which delivers each packet within
O (di + 1/ri) steps where di denotes the length of its path and ri denotes the insertion
rate of its task (1/ri = p in our notation). For trees and equal period lengths, Peis et
al. [11] give improved bounds on the delivery time of each packet. Also, they show that
it is NP -hard to decide whether for a set of tasks a direct schedule exists.

2 Unweighted Tasks in Bidirected Trees

As mentioned above, already on bidirected trees the MAX-TASK-problem is
MAXSNP -hard, as it contains the EDGE-DISJOINT-PATH-problem. This holds even
if all tasks have the same weight and no matter whether we want to compute a direct or
indirect schedule. However, we show that the greedy algorithm is a 2-approximation for
the case of indirect schedules and a η(p)-approximation for the case of direct schedules,
with η(p) = max{3− 2

p
, 2}. Surprisingly, the resulting set of tasks in the direct case is

also by at most a factor of η(p) smaller than w (OPTindir), where OPTindir denotes
an optimal set of tasks which allows an indirect schedule.

Let GREEDYindir(I) denotes the set of tasks returned by the greedy algorithm for
the setting of indirect schedules.

Theorem 1. Let I be an unweighted MAX-TASK-instance on a bidirected tree. Then
|OPTindir(I)| ≤ 2 · |GREEDYindir(I)|.
Proof. The claim can be shown using the primal-dual scheme as used in [6] for showing
a 2-approximation for the maximum integral multicommodity flow problem (IMCF)
on undirected trees. In fact, our problem is a special case of the IMCF-problem: each
task corresponds to one commodity with source si and sink ti and each arc is given
capacity p. To model that each task can be assigned at most once we add an arc with
capacity 1 to each si-ti-path.
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As for the IMCF-problem on undirected trees, the dual problem is the minimum
multicut problem: We are looking for a set of edges S such that each si-ti-path uses
at least one of the edges in S. The construction of such a set can be done as described
in [6]. Also, it is possible to show that each si-ti-path uses at most two arcs from the
constructed set. With the primal-dual scheme this proves an approximation factor of
two. 	

Now we analyze the greedy algorithm in the setting of direct schedules. Denote by
GREEDYdir(I) the set of tasks computed by the algorithm. We use a new technique
to charge the weight of an optimal solution to the weight of the GREEDYdir(I).

Theorem 2. Let I be an unweighted MAX-TASK-instance on a bidirected tree. It holds
that |GREEDYdir(I)| ≥ 1

η(p)
|OPTindir (T )| ≥ 1

η(p)
|OPTdir (T )| with η(p) =

max
{

2, 3− 2
p

}
.

Proof. We consider the set DIFF := OPTindir (T )\GREEDYdir(I). For each task
τj ∈ GREEDYdir(I) we introduce a variable βj . Now let τi ∈ DIFF be a task.
For each possible delay d ∈ {0, 1, ..., p− 1} there must be an edge ej ∈ Pi and a task
τi(d) ∈ GREEDYdir(I) with i(d) < i such that task (ej, (d + j) mod p) = τi(d). For
each task τi(d) with d ∈ {0, 1, ..., p− 1} we increase βi(d) by 1

p . We say that the task
τi(d) pays for the task τi. We do this procedure for all tasks τi ∈ DIFF . Note that after
this

∑
i βi = DIFF .

We define T ′
1 := GREEDYdir(I) ∩ OPTindir (T ) and T ′

2 := GREEDYdir(I) \
OPTindir (T ). We claim that βi ≤ 2 · p−1

p
for all tasks τi ∈ T ′

1 and βi ≤ 2 for
all tasks τi ∈ T ′

2. Let τi ∈ GREEDYdir(I) and denote by Pi the path of τi and
by vi ∈ Pi the vertex on Pi which is closest to vr. Denote by ē and ẽ the edges on
Pi which are incident to vi. Let τ̃ be a task which τi pays for. Since h (τ̃) ≤ h (τi)
we conclude that τ̃ either uses ē or ẽ. Since in OPTindir (T ) there can be at most 2p
such tasks we conclude that βi ≤ 2. Moreover, if τi ∈ OPTindir (T ) then there can
be at most 2 (p− 1) tasks in DIFF which use ē or ẽ. Thus, if τi ∈ OPTindir (T )
then βi ≤ 2 · p−1

p . We complete the proof by calculating that |OPTdir(T )| =
∑

i:τi∈T ′1 βi+|T ′
1|+

∑
i:τi∈T ′2 βi ≤ 2· p−1

p
·|T ′

1|+|T ′
1|+2·|T ′

2|which is bounded from

above by max
{

2, 3− 2
p

}
|GREEDYdir(I)|. This shows that |GREEDYdir(I)| ≥

1
η(p)
|OPTindir (T )|. The fact that |OPTindir (T )| ≥ |OPTdir (T )| completes the

proof. 	


3 Weighted Tasks on Bidirected Trees

Now we study the weighted MAX-TASK-problem. We use techniques based on [5].
The idea is to formulate the problem as an integer program and solve the LP-relaxation.
Then we employ a technique to cover the solution of the LP with fractions of certain
integral solutions. We can show that the weight of one of these integral solutions is by
at most a constant factor smaller than the weight of the fractional solution.

First, we present a 3-approximation algorithm for the setting of direct schedules,
using a reduction to a special case of weighted MAXIMUM-INDEPENDENT-SET. By a
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careful analysis of the LP-relaxations of the respective problems we show that the total
weight of the resulting set is also by at most a factor of 3 smaller than w (OPTindir) and
hence it also works as a 3-approximation in the setting of indirect schedules. Finally, we
present a max{2, 3− 2

p
}-approximation algorithm for the setting of indirect schedules.

As a novel concept in this algorithm the integral solutions used for the covering are not
necessarily independent sets. (In particular, here we extend the techniques from [5].)
We also prove that the respective LP has an integrality gap of at most max{2, 3− 2

p
}.

Reduction to Weighted MAXIMUM-INDEPENDENT-SET. Let I = (G, T, p) be an in-
stance of the weighted MAX-TASK-problem on a bidirected tree G in the setting of
direct schedules. We reduce the problem to an instance of the weighted MAXIMUM-
INDEPENDENT-SET-problem. We define the graph GMIS = (VMIS , EMIS) as fol-
lows: for each task τi we introduce p vertices 〈τi, k〉 with 0 ≤ k ≤ p − 1. A vertex
〈τi, k〉 corresponds to scheduling the task τi such that it uses the first edge on its path
at times t with t mod p = k. We call such a value k the offset of τi. We connect two
vertices 〈τi, k〉, 〈τj , �〉 by an edge if and only if either

– τi = τj or
– Pi and Pj use an edge in the same direction and if τi and τj had the offsets k and �

their packets would collide.

We assign each vertex 〈τi, k〉 the weight wi. Then any solution for weighted maximum
independent set on GMIS corresponds to a solution for I with the same weight and vice
versa.

Note that the size of GMIS is bounded by a polynomial in the size of I . We define the
following linear programs LPI and LPw. First, we consider the LP -relaxation LPI of
the weighted maximum independent set problem on GMIS . For defining the linear pro-
gram we need certain maximal cliques {〈τi1 , k1〉 , 〈τi2 , k2〉 , ..., 〈τim , km〉}: The cliques
that arise because τi1 = τi2 = τi3 = ... = τim and the cliques which arise because there
is an edge e which is used by each of the tasks τi1 , ..., τim at the same time if they are
assigned the offsets k1, ..., km. Denote by C the set of all these cliques. Note that the
size of C is bounded by a polynomial in the size of GMIS . We define LPI by

(LPI)max
∑

〈τi,k〉∈VMIS

wi · xi,k

s.t.
∑

〈τi,k〉∈C

xi,k ≤ 1 ∀C ∈ C

0 ≤ xi,k ≤ 1 ∀ 〈τi, k〉 ∈ VMIS

Since the size of LPI is bounded by a polynomial we can solve it optimally in polyno-
mial time.

Fractional Coloring. Let x∗ be an optimal solution of LPI . We now interpret each
value x∗

i,k as a cost value and define ci,k := x∗
i,k. We define a linear program LPw which

computes a fractional coloring for the vertices in VMIS . Each vertex 〈τi, k〉 ∈ VMIS has
to be colored with colors whose total weight is at least ci,k. This can be seen as assigning
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each vertex a set of disjoint intervals of total length ci,k such that the intervals of two
adjacent vertices do not intersect. For the definition of LPw we denote by J the set of
all independent sets in GMIS (note that a coloring can be understood as a partition into
independent sets).

(LPw)min
∑

J∈J
yJ

s.t.
∑

J∈J |〈τi,k〉∈J

yJ ≥ ci,k ∀ 〈τi, k〉 ∈ VMIS

0 ≤ yJ ≤ 1 ∀J ∈ J
In ordinary graph coloring, the clique number ω(G) of a graph G is a lower bound
on the number of needed colors. Likewise, we define a fractional clique number
ωC (GMIS , c) := maxC∈C(G)

∑
〈τi,k〉∈C ci,k which is also a lower bound on the total

weight of the needed colors in our setting. After having computed the optimal solution
to LPI , we compute an approximative solution for LPw as described in the following
lemma.

Lemma 1. There is a polynomial time algorithm which computes a solution y for LPw

with
∑

J∈J yJ ≤ 3 · ωC (GMIS , c).

Proof. We order the vertices 〈τi, k〉 non-descendingly by the height of their peak ver-
tex vi. Then we assign each vertex 〈τi, k〉 (greedily) color intervals of total length ci,k

such that the intervals of two adjacent vertices do not intersect. From this we can extract
a value yJ for each independent set J . When considering a vertex 〈τi, k〉 we observe
that colors of weight at most 2 · ωC (GMIS , c) − 2ci,k cannot be used due to vertices
〈τj , �〉 with τj �= τi such that τj uses one of the edges on Pi adjacent to vi. Also, at
most ωC (GMIS , c) − ci,k cannot be used due to vertices 〈τi, �〉 with � �= k. All other
colors are available. Therefore, colors of total weight 3 · ωC (GMIS , c) suffice for the
greedy algorithm. 	

Having computed the solution y for LPw, we output the independent set J ∈ J of
maximum weight for which yJ > 0. Note that since y was computed in polynomial time
there can be only a polynomial number of such independent sets. Denote by BTdir(I)
the set of tasks corresponding to the vertices in J .

Theorem 3. Let I be a weighted MAX-TASK-instance on a bidirected tree. It holds
that w (BTdir(I)) ≥ 1

3
w (OPTdir(I)).

Proof. Let w (x∗) denote the objective value of the optimal solution x∗ of LPI . The
key idea for the proof is that there is an independent set J with yJ > 0 such that
w(J) ≥ w (x∗) /3. So now assume on the contrary that for all J ∈ J with yJ > 0 we
have that w(J) < w (x∗) /3. Note that any solution y for LPw satisfies

∑
J∈J w(J) ·

yJ ≥ w (x∗). We calculate that

w (x∗) ≤
∑

J∈J
w(J) · yJ <

w (x∗)
3

∑

J∈J
yJ ≤ w (x∗) · ωC (GMIS , c) ≤ w (x∗)

which is a contradiction. 	
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Surprisingly, BTdir(I) is also a 3-approximation in comparison with the set of tasks
with optimal weight which allows an indirect schedule. In the proof of Theorem 3 we
showed that w (BTdir(I)) ≥ w (x∗) /3 where x∗ is the optimal solution for LPI . Now
we prove that w (x∗) is also an upper bound on the optimal weight obtained by a task
selection which allows an indirect schedule. The latter problem can be formulated by
an integer program with the LP-relaxation LP ′

I defined by

(LP ′
I)max{wT x|x ∈ Q}

where Q = {x ∈ R
|T ||∑τi∈C xi ≤ p ∀C ∈ C′}. Here, we derive the set of cliques C′

by considering every arc e and taking the clique consisting of all tasks which use e.
(The original integer program is obtained by additionally requiring xi ∈ {0, 1} for all
xi.)

Even though LPI and LP ′
I differ significantly we show that their optimal solutions

have the same value. Let x′ denote an optimal solution for LP ′
I with value w (x′). Now

we show how to transform x′ to a solution x for LPI with the same weight. For each
variable xi,k with τi ∈ T and k ∈ {0, 1, ..., p− 1} we define xi,k := x′

i/p. Hence,
for the optimal value w (x∗) of LPI we have that w (x∗) ≥ w (x′). Moreover, every
optimal solution x∗ for LPI yields a solution x̄ of LP ′

I with the same weight: We define
x̄i :=

∑p
k=1 x∗

i,k which implies w(x̄) = w(x∗). Hence, w (x∗) = w (x′).
Since LP ′

I is a relaxation of the original integer program, w (x′) is an upper bound
on the maximum weight of a set of tasks which allow an indirect schedule. We conclude
with the following theorem.

Theorem 4. Let I be a weighted MAX-TASK-instance on a bidirected tree. It holds
that w (BTdir(I)) ≥ 1

3
w (OPTindir(I)).

Proof. Follows from w (BTdir(I)) ≥ w(x∗)
3
≥ w(x′)

3
≥ w (OPTindir(I)) /3. 	


Now we describe how an optimal (fractional) solution x′ of LP ′
I can be transformed

to an integral solution whose weight is at least 1
η(p)w(x′). We use a novel approach

which is based on covering the fractional solution with integral solutions which are not
necessarily independent sets. For each task τi we interpret the value x′

i as a cost value
and define ci := x′

i. Denote by J ′ the set of all valid solutions to our problem. We
consider the following linear program LP ′

w.

(LP ′
w)min

∑

J∈J ′
y′

J

s.t.
∑

J∈J ′|τi∈J

y′
J ≥ ci ∀τi ∈ T

0 ≤ y′
J ≤ 1 ∀J ∈ J ′

Intuitively, the solutions in J ′ – represented by the y′
J variables – cover the ci (and

hence x′).

Lemma 2. Assume that the values ci in LP ′
w are constructed from a valid solution x′

for LP ′
I . Then there is a polynomial time algorithm which computes a solution y′ for

LP ′
w such that

∑
J∈J ′ y′

J ≤ max{2, 3− 2
p} =: η(p).
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Proof. We interpret the problem as assigning each task τi a set of disjoint subintervals
of [0, η(p)) with total length ci. We do this such that for each arc e we have that for each
t ∈ [0, η(p)) there are at most p tasks using e which are assigned intervals containing t.
We call this property the packing property. We sort the tasks non-descendingly by the
height of their peak vertices. The intervals are then assigned greedily such that the
packing property is always fulfilled. We can show that within [0, η(p)) such intervals
always exist. For further details cf. [12]. 	

Let y′ be a solution for LP ′

w which is constructed as described in Lemma 2. Our integral
solution for LP ′

I is obtained by taking the solution J ∈ J ′ with maximum weight such
that y′

J > 0. Denote by BTindir(I) the resulting tasks.

Theorem 5. Let I be an instance of the weighted MAX-TASK-problem on a bidi-
rected tree in the setting of indirect schedules. For the solution BTindir(I) it holds
that w (BTindir(I)) ≥ 1

η(p)w (OPTindir(I)) with η(p) = max{2, 3 − 2
p}. Moreover,

the integrality gap of LP ′
I is bounded by η(p).

Proof. Can be shown similarly as Theorem 3. 	


4 Price of Directness on Trees

Now we study the price of directness. For bidirected trees we show an upper bound of 2
and a lower bound of 6/5. For proving the upper bound we give a new algorithm which
splits any set of tasks which allows an indirect schedule into two sets of tasks which both
allow a direct schedule. The algorithm computes both the sets and the direct schedules.
For the setting of directed trees (i.e., each edge e is equipped with an orientation and
tasks use e only in this one direction) we show that the prize of directness is 1.

Theorem 6. Let I = (G, T, p) be a MAX-TASK-instance on a bidirected tree such
that there is an indirect schedule for the set of all tasks T . There is a polynomial time
algorithm which computes sets T 1 and T 2 with T = T 1∪̇ T 2 and direct schedules for
T 1 and T 2.

Proof. We describe the algorithm. For both sets T k we maintain a map taskk : E ×
{0, 1, ..., p− 1} → T which is initially defined by taskk(e, j) := none for all arcs e
and all j ∈ {0, 1, ..., p− 1}. We order the tasks in T non-descendingly by the height
of their peak vertex. We consider the tasks one by one. In the i-th iteration we consider
the task τi ∈ T . Let e0, ..., e|Pi|−1 be the edges on Pi. We try to assign τi an initial start
offset d with which it fits into one of the maps taskk . We say a value d is blocked in a
map taskk if there is an edge ej such that taskk(ej , d+ j mod p) �= none. We want to
determine what values for d are blocked for what maps taskk. The ordering of the task
yields the following useful property: it suffices to check whether a value d is blocked
in one of the edges ē and ẽ incident to the peak vertex vi of τi. There can be in total at
most 2p− 2 task different from τi using ē and ẽ. Each such task can block at most one
value d in one of the maps taskk . We conclude that there is always one value d which is
not blocked in task1 or task2. Let taskk be the map in which a value d is not blocked.
We then define taskk(ej , d + j mod p) := τi for all edges ej ∈ Pi and we assign τi to
the set T k. This procedure defines the sets T 1 and T 2. 	
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Since T = T 1 ∪ T 2 we conclude that either w(T 1) ≥ 1
2w(T ) or w(T 2) ≥ 1

2w(T ).
This gives the following corollary.

Corollary 1. The price of directness for the weighted MAX-TASK-problem on bidi-
rected trees is upper-bounded by 2.

Proposition 14 in our technical report [12] describes an instance Ī on a bidirected tree
such that OPTindir(Ī)/OPTdir(Ī) = 6/5. Hence, the price of directness on bidirected
trees is at least 6/5. Finally, we study the price of directness for directed trees.

Theorem 7. Let I = (G, T, p) be an instance of the MAX-TASK-problem on a directed
tree and let T ′ ⊆ T denote a set of tasks for which there is an indirect schedule. Then
there also exists a direct schedule for the tasks T ′. Hence, the price of directness for the
weighted MAX-TASK-problem on directed trees is 1.

Proof. Can be shown using techniques based on path colorings and time-dependent
edge-coloring introduced in [10]. For full details see [12]. 	


5 Grid Graphs

In this section we study the MAX-TASK-problem on bidirected grid graphs. As it
is common in the literature [1,5] we assume that the paths of the tasks are row-
column-paths. (Note that with arbitrary given paths the problem would contain the
INDEPENDENT-SET-problem and hence there would be no non-trivial polynomial time
approximation algorithm unless P = NP .)

Due to space constraints we only outline the used techniques and state our main
results. For further details we refer to our technical report [12]. For our algorithms
we employ subroutines which compute an approximative solution ALG (Tru) ⊆ Tru

for sets of tasks Tru in which the paths of all tasks move to the right and then up.
Lemma 15 in [12] shows that an 1

α
-approximation algorithm for such sets Tru yields a

1
2α

-approximation algorithm for any set of tasks in the bidirected grid.
For the greedy algorithm the tasks are ordered non-descendingly by the grid column

of the bend vertex of their path (ties are broken by its grid row, non-descendingly).2

Lemma 3. Let I = (G, Tru, p) be an instance of the unweighted MAX-TASK-problem
on the bidirected grid where the paths of all tasks move to the right and then up. Then
it holds that |GREEDYindir (Tru)| ≥ 1

2 |OPTindir (Tru)|.
Proof. Can be shown with a careful charging argument, see Lemma 16 in [12]. 	

Lemma 3 and Lemma 15 in [12] yield the following theorem.

Theorem 8. There is a 4-approximation algorithm for the unweighted MAX-TASK-
problem on the bidirected grid in the setting of indirect schedules.

With similar arguments as in Section 2 we can show that |GREEDYdir (Tru)| ≥ 1
η(p) ·

|OPTdir (Tru)| for sets Tru as described above. This gives the following theorem.

2 We assume that the grid columns and grid rows increase when moving to the right or down,
respectively.
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Theorem 9. There is an 1
2η(p) -approximation algorithm for the unweighted MAX-

TASK-problem on the bidirected grid in the setting of direct schedules.

We can handle the weighted case with similar techniques as in Section 3.

Theorem 10. There is a 1
6

-approximation algorithm for the weighted MAX-TASK-
problem on the bidirected grid in the setting of direct schedules and a 1

2η(p)
-

approximation algorithm for the setting of indirect schedules.

An adaption of our insights for the price of directness on bidirected trees yield the
following theorem.

Theorem 11. The price of directness on the bidirected grid is at most 4 and at
least 6/5.
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k-Edge-Connectivity: Approximation and LP

Relaxation

David Pritchard�
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Abstract. In the k-edge-connected spanning subgraph problem we are
given a graph (V, E) and costs for each edge, and want to find a minimum-
cost F ⊂ E such that (V, F ) is k-edge-connected. We show there is a
constant ε > 0 so that for all k > 1, finding a (1 + ε)-approximation for
k-ECSS is NP-hard, establishing a gap between the unit-cost and general-
cost versions. Next, we consider the multi-subgraph cousin of k-ECSS,
in which we purchase a multi-subset F of E, with unlimited parallel
copies available at the same cost as the original edge. We conjecture
that a (1 + Θ(1/k))-approximation algorithm exists, and we describe an
approach based on graph decompositions applied to its natural linear
programming (LP) relaxation. The LP is essentially equivalent to the
Held-Karp LP for TSP and the undirected LP for Steiner tree. We give
a family of extreme points for the LP which are more complex than those
previously known.

Keywords: graphs, network design, edge-connectivity, linear programs,
Held-Karp relaxation, approximation algorithms, inapproximability.

1 Introduction

In the k-edge-connected spanning subgraph problem (k-ECSS), we are given an
input graph G with edge costs, and must select a minimum-cost subset of edges
so that the resulting graph has edge-connectivity k between all vertices. This is a
natural problem for applications, since it is the same as seeking resilience against
(k − 1) edge failures, or the ability to route k units of flow between any pair of
vertices. A natural variant of k-ECSS is to allow each edge to be purchased
repeatedly, as many times as desired, with each copy at the same cost. We call
this the k-edge-connected spanning multi-subgraph problem (k-ECSM).

When k = 1 the k-ECSS and k-ECSM problems are both equivalent to the
minimum spanning tree problem, which is well-known to be solvable in poly-
nomial time, but they are non-trivial for k > 1. We consider approximation
algorithms for these problems: an algorithm that approximately solves k-ECSS
or k-ECSM is said to be an α-approximation, or have approximation ratio α, if
it always outputs a solution with cost at most α times optimal.
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K. Jansen and R. Solis-Oba (Eds.): WAOA 2010, LNCS 6534, pp. 225–236, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



226 D. Pritchard

Here we survey the oldest and newest results for k-ECSM and k-ECSS. Fred-
erickson & Jájá gave a 2-approximation algorithm for 2-ECSS [19], and a 3/2-
approximation in the special case of metric costs [20]. A 3/2-approximation is
possible for 2-ECSM [9]. For k-ECSS/k-ECSM in general, Khuller & Vishkin [26]
gave a matroid-based 2-approximation, and Jain’s iterated LP rounding frame-
work [25] also gives a 2-approximation. Goemans & Bertsimas [23] give an ap-
proximation algorithm for k-ECSM with ratio 3

2
when k is even, and (3

2
+ 1

2k
)

when k is odd. Fernandes [18] showed 2-ECSS is APX-hard, even for unit costs.
An important special case is where all edges have unit cost. Then k-ECSS gets

easier to approximate as k gets larger: Gabow et al. [22] gave an elegant (1+2/k)-
approximation algorithm for k-ECSS/k-ECSM using iterated LP rounding, and
they showed that for some fixed ε > 0, for all k > 1, it is NP-hard to get a (1 +
ε/k)-approximation algorithm for unit-cost k-ECSS. Together, these establish a
1+Θ(1/k) approximability threshold for unit-cost k-ECSS. Improvements to the
constant, and improvements in the special case that the input graph is simple,
appear in Cheriyan & Thurimella [14] and Gabow & Gallagher [21].

1.1 Contributions

Hardness Results (Section 2). Our first main result is the following hardness
for k-ECSS:

Theorem 1. There is a constant ε > 0 so that for all k ≥ 2, it is NP-hard to
approximate k-ECSS within ratio 1 + ε, even if the costs are 0-1.

Although ε ≈ 1
300

here is small, the qualitative difference is important: whereas
the approximability of unit-cost k-ECSS tends to 1 as k tends to infinity, we see
that the approximability of general-cost k-ECSS is bounded away from 1.

Next we establish a relatively straightforward hardness result for k-ECSM.

Proposition 2. The 2-ECSM problem is APX-hard.

The key step is to show that 2-ECSM and metric 2-ECSS are basically the
same problem. First, we use the following well-known fact: in k-ECSM, the
input is metric without loss of generality [23] (i.e. the graph is complete and its
costs satisfy the triangle inequality).1 Then, simple reduction techniques show
that under metric costs, any 2-ECSM can be efficiently converted to a 2-ECSS
without increasing the costs. We remark that this approach also yields a simpler
3/2-approximation for 2-ECSM (c.f. [9]), using the 3/2-approximation for metric
2-ECSS [20] as a black box.

What Proposition 2 leaves to be desired is hardness for k-ECSM, k > 2, and
asymptotic dependence on k. Why is it hard to show these problems are hard?
The hard instances for k-ECSS given by Theorem 1 and [22] contain certain

1 To see this, take the metric closure (i.e. shortest path costs), solve it, and replace
each uv-edge in the solution with a shortest u-v path from the original graph; it is
not hard to show this preserves k-edge-connectivity. In k-ECSS, note metricity is
not WOLOG, since the replacement step here can introduce multiple edges.
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mandatory parts that are “without loss of generality” included in the optimal
feasible solution; the argument proceeds to show hardness of the residual problem
once the mandatory parts are included. But coming up with suitable mandatory
parts for k-ECSM, while keeping the residual problem hard, is tricky: e.g. the
proof of Theorem 1 will use a spanning tree of zero-cost edges, but in k-ECSM
this leads to a trivial instance (buy that spanning tree k times). The known
hardness for k-VCSS (vertex connectivity) by Kortsarz et al. [28] is similar: we
take hard instances of 2-VCSS and add (k − 2) new vertices, connected to all
other vertices by 0-cost (mandatory) edges. A new trick seems to be needed to
get a good hardness result for k-ECSM.

k-ECSM Conjecture (Section 3). We conjecture that approximation ratio
1 + O(1/k) should be possible for k-ECSM, using LPs. Obtain the natural LP
relaxation of k-ECSM by allowing edges to be purchased fractionally: introduce
a variable xe for each edge, and require that there is a fractional value of at
least k spanning each cut (see Figure 1, where δ(S) denotes the set of edges with
exactly one end in S).

min
{ ∑

e∈E

cexe : x ∈ RE (Nk)

∑

e∈δ(S)

xe ≥ k, ∀∅ �= S � V

xe ≥ 0, ∀e ∈ E
}

min
{ ∑

e∈E

cexe : x ∈ RE (N ′
k)

∑

e∈δ(v)

xe = k, ∀v ∈ V

∑

e∈δ(S)

xe ≥ k, ∀∅ �= S � V

xe ≥ 0, ∀e ∈ E
}

Fig. 1. The undirected relaxation for k-edge connected spanning multi-subgraph. The
unbounded version (Nk) is on the left, the bounded version (N ′

k) is on the right. They
have the same value for metric costs, including all k-ECSM instances.

Conjecture 3. There is a polynomial-time approximation algorithm for k-
ECSM which produces a solution of value at most (1 + C/k) · OPT(Nk) for
some universal constant C.

This conjecture implies a (1 + C/k)-approximation algorithm, since OPT(Nk)
is a lower bound on the optimal k-ECSM cost. What makes us think Conjec-
ture 3 is true? First, we know it holds for unit costs. Second, the same holds
in related high-width problems; to explain, say an integer program has width
W if in every constraint, the right-hand side is at least W times every coef-
ficient. Multicommodity flow/covering problems in trees are closely related to
(Nk) via uncrossing (e.g. [25,22,21]) and they admit an LP-based 1 + O(1/W )-
approximation algorithm [27] (in that setting W is the minimum edge capacity).
Similar phenomena are known for LP relaxations of other structured integer
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programs [13,12,29,6]. In k-ECSM the width is k so one may view our conjecture
as seeking integrality gap2 and approximation ratio 1 + O(1/W ).

Later, we show an open problem of [5] — can every k-edge connected graph be
partitioned into two spanning (k

2
− O(1))-edge-connected subgraphs? — would

imply a nonconstructive version of Conjecture 3. Few partial results towards
Conjecture 3 are known: the integrality gap of (N1) is 2(1−1/n) [23], and that of
(N2) is at most 3/2 [31]. For general k, the best integrality gap bounds known for
(Nk) come from the approximation algorithms [25,23,21,22] mentioned earlier.

One further motivation to investigate the conjecture has to do with the par-
simonious property of Goemans & Bertsimas [23]. Using metricity and splitting-
off, they showed the constraint ∀v ∈ V : x(δ(v)) = k can be added to (Nk)
without affecting the value of the LP (the strengthened LP (N ′

k) is shown in
Figure 1). As observed in [23], parsimony implies that Conjecture 3 would give
a (1 + C

k )-approximation algorithm for subset k-ECSM, where we require edge-
connectivity k only amongst a pre-specified set of terminal nodes (generalizing
the Steiner tree problem). Thus even if we don’t care about LPs a priori, they
have algorithmic dividends in Conjecture 3.

Complex Extreme Points (Section 4). In both of the LPs (Nk) and (N ′
k),

note that k serves only as a scaling factor: x is feasible for (N1) iff kx is feasible
for (Nk). In fact, these LPs are well-studied: (N1) is equivalent (by the parsimo-
nious property [23]) to the undirected cut relaxation of the Steiner tree problem
and (N ′

2) is the Held-Karp relaxation of the Traveling Salesman Problem. We
demonstrate a family of extreme point solutions to these ubiquitous LPs which
are more complex than were previously known.

For a solution x, the support is the edge set {e | xe > 0}, and the support graph
is the graph with vertex set V and the support for its edge set. The fractionality
of x is min{xe | e ∈ E, xe > 0}.
Theorem 4. There are extreme point solutions for the linear program (N ′

2) with
fractionality exponentially small in |V |, and whose support graph has maximum
degree linear in |V |.
The members of the family are also extreme point solutions for (N2), since
(N ′

2) is a face of (N2). The motivation for this theorem comes from a com-
mon design methodology in LP-based approximation algorithms [25,22,24,30]:
algorithmically exploit good properties of extreme point solutions. E.g., Jain’s
algorithm [25] uses the fact that when (Nk) is generalized to skew-submodular
connectivity requirements, every extreme solution x∗ has an edge e with x∗

e ≥ 1
2
.

Hence, complex extreme points give some idea of what properties might or might
not exist that can be exploited algorithmically.

Theorem 4 significantly improves previous results in the same vein. (A long-
standing conjecture that the Held-Karp relaxation (N ′

2) has integrality gap at
most 4/3 has motivated some of the work, e.g. [11,7].) Boyd and Pulleyblank [10]

2 The integrality gap is the worst-case ratio of the integral optimum to the LP
optimum.
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showed that for any even |V | ≥ 10, there is an extreme point of (N ′
2) with

fractionality 2/(|V |−4). Cheung [15] found extreme points of (N ′
2) whose support

graph has maximum degree Θ(
√|V |). The construction in Theorem 4 was found

with the assistance of computational methods, see the full version [1] for details.

2 Hardness Results

In our hardness theorem for k-ECSS, we reduce from the following problem.
(Here � denotes disjoint union.)

Path-Cover-of-Tree
Input: A tree T = (V, E) and another set X ⊂ (

V
2

)
of edges/pairs.

Output: A subset of Y of X so that (V, E � Y ) is 2-edge-connected.
Objective: Minimize |Y |.

Path-Cover-of-Tree is sometimes called the tree augmentation problem and a
1.8-approximation is published [17]; as an aside, it is basically equivalent to the
special case of 2-ECSS where the input graph contains a connected subgraph
of cost zero, plus some unit-cost edges. We give it the alternate name Path-
Cover-of-Tree because it is more natural for us to interpret it as covering a
tree’s edges with a minimum-size subcollection of a given collection of paths. To
make this explicit, for an edge x = {u, v} ∈ X let Px denote the edges of the
unique u-v path in T . We rehash the proof of the following proposition since we
will recycle its methodology.

Proposition 5 (folklore). Y is feasible for Path-Cover-of-Tree if and only
if

⋃
x∈Y Px = E.

Proof. For every edge e of T , a fundamental cut of e and T means the vertex
set of either connected component of T \e.

Let δF (U) denote δ(U ) in the graph (V, F ). First, Y is feasible if |δE�Y (U)| ≥ 2
for every set U with ∅ �= U � V . But |δE(U)| is 1 when U is a fundamental cut
and at least 2 otherwise; hence Y is feasible iff |δY (U)| ≥ 1 for every fundamental
cut U .

Second, when U is a fundamental cut, say for an edge e ∈ E, |δY (U)| ≥ 1 iff⋃
x∈Y Px contains e. Taking this together with the previous paragraph, we are

done.

Path-Cover-of-Tree is shown NP-hard in [19] and a similar construction
implies APX-hardness — see the full version [1]. As an aside, it is even hard for
trees of depth 2; compare this with the depth-1 instances which are in P since
they can be shown isomorphic to edge cover. Now we prove the main hardness
result:

Theorem 1. Let it be NP-hard to approximate Path-Cover-of-Tree within
ratio 1 + ε. Then for all integers k ≥ 2, it is NP-hard to approximate k-ECSS
within ratio 1 + ε, even for 0-1 costs.
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Proof. Let (T = (V, E), X) denote an instance of Path-Cover-of-Tree. We
construct a k-ECSS instance on the same vertex set, with edge set F . For each
e ∈ E, we put k − 1 zero-cost copies of the edge e into F . For each x ∈ X ,
put one unit-cost copy of the edge x into F . These are all the edges of F ; and
although (V, F ) is a multigraph, we later show that this can be avoided.

First we show the multigraph instance is hard. Clearly, there is an optimal
solution for the k-ECSS instance which includes all copies of the 0-cost edges. Let
(k−1)E denote these 0-cost edges. The same logic as in the proof of Proposition
5 (analysis using fundamental cuts) shows that Y is a feasible solution for the
Path-Cover-of-Tree instance if and only if (k−1)E�Y is a feasible solution
for the k-ECSS instance. Since costs are preserved between the two problems,
it follows that an α-approximation algorithm for k-ECSS would also give an
α-approximation algorithm for Path-Cover-of-Tree, and we are done.

Finally, here is how we make (V, F ) a simple graph: replace every vertex v ∈ V
of the tree by a (k + 1)-clique of 0-cost edges; replace every edge uv ∈ E of the
tree by any k − 1 zero-cost edges between the two cliques for u and v; replace
each edge x ∈ X by any unit-cost edge between the cliques for u and v. We
proceed similarly to before: when U is a vertex set of the newly constructed
graph, we see δ(U) has at least k 0-cost edges unless U is a “blown-up” version
of a fundamental cut (i.e., unless there is a fundamental cut U0 of T so that U
exactly equals the set of vertices in cliques corresponding to U0). As before, the
residual problem assuming these edges are bought is the same as the instance
(T, X) (in a cost-preserving way), so we are done.

2.1 Hardness of 2-ECSM (Proof of Proposition 2)

To show that 2-ECSM is APX-hard, we prove that it is “the same” as metric 2-
ECSS, i.e. the special case of 2-ECSS on complete metric graphs. Metric 2-ECSS
is APX-hard by a general result of [8] (see also a sketch in [1]) and so this gives
us what we want. The key observation is the following.

Proposition 6. In a metric instance, given a 2-ECSM (V, F ), we can obtain
in polynomial time a 2-ECSS (V, F ′) with c(F ′) ≤ c(F ), as long as |V | ≥ 3.

In other words, parallel edges can be eliminated without increasing the cost. (A
similar observation in [20] turns a 2-ECSS into a 2-VCSS for metric instances.)
Because the proof of Proposition 6 is relatively straightforward and not too long,
we defer it to the full version [1].

Proof of Proposition 2. Since metric 2-ECSS is APX-hard [8], it is enough to show
that any α-approximation algorithm for 2-ECSM gives an α-approximation for
metric 2-ECSS. The metric 2-ECSS algorithm is: compute an α-approximately-
optimal 2-ECSMF and apply Proposition 6 to get a 2-ECSSF ′ with c(F ′) ≤ c(F ).
Using Proposition 6 a second time, and using the fact that every 2-ECSS is trivially
a 2-ECSM, we see the optimal 2-ECSS and 2-ECSM values are the same. Hence
F ′ is an α-approximately-optimal 2-ECSS, as needed.
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3 k-ECSM Conjecture and Connectivity Decomposition

Here is the conjecture made in the introduction.

Conjecture 3. There is a polynomial-time approximation algorithm for k-
ECSM which produces a solution of value at most (1 + C/k) · OPT(Nk) for
some universal constant C.

For positive integers A and B, define f(A, B) to be the least integer f so
that every f -edge-connected multigraph can be partitioned into two spanning
subgraphs, one A-edge-connected and one B-edge-connected. Bang-Jensen and
Yeo [5] ask the following question, which we call the splitting hypothesis : is there
a constant C such that f(k, k) ≤ 2k + C for all integers k? It has consequences
for Conjecture 3:

Theorem 7. If the splitting hypothesis holds, then every k-ECSM instance has
a solution with cost at most (1+C/k) ·OPT(Nk), i.e. the integrality gap of (Nk)
is at most 1 + C/k.

This would not prove Conjecture 3 due the lack of a polynomial-time algo-
rithm; but one might guess that once the core combinatorial problem is solved,
a polynomial-time implementation could be found, as happened in [13].

Before proving Theorem 7 we make some other remarks about f . The lower
bound f(A, B) ≥ A+B is very easy, and it can be raised by 1 or 2 in some cases —
see details in [1]. The Nash-Williams/Tutte theorem implies f(A, B) ≤ 2(A+B).
However, nothing other than these facts seem to be known. M. DeVos asked3

online whether ∀A, B : f(A, B) ≤ A + B + 2 holds, which is still open.

Proof of Theorem 7. Let x∗ be an optimal extreme point solution to (Nk). Since
x∗ is rational, there is an integer t such that tx∗ is integral. Then, it is easy to
see that tx∗ (or more precisely, the multigraph obtained by taking tx∗

e copies of
each edge e) is a tk-edge-connected spanning multisubgraph. Likewise, for any
positive integer α, αtx∗ is a (αtk)-ECSM.

By induction, the splitting hypothesis easily gives the following.

Claim 8. For all positive integers k and n, every (2n(k + C) − C)-ECSM can
be decomposed into 2n disjoint k-ECSMs.

Now, for any integer n, let us pick α just large enough that αtk ≥ (2n(k +
C) − C). Therefore, αtx∗ can be decomposed into 2n disjoint k-ECSMs. The
cheapest one has cost at most

c(αtx∗)
2n

= αt2−nc(x∗) =
⌈2n(k + C)− C

tk

⌉
t2−nOPT(Nk).

Then using 
2n(k+C)−C
tk � ≤ 
 2n(k+C)

tk � ≤ 2n(k+C)
tk + 1, we see there is a k-ECSM

with cost at most
(2n(k + C)

tk
+ 1

)
t2−nOPT(Nk) = (1 + C/k + t/2n)OPT(Nk).

3 http://garden.irmacs.sfu.ca/?q=op/partitioning_edge_connectivity
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This establishes that the integrality gap is no more than 1+C/k + t/2n. Taking
n → ∞, we are done (since the integrality gap is some fixed real, and since t
doesn’t depend on n).

We feel strongly that the following holds.

Conjecture 9. f(A, 1) = A + o(A).

It is not too hard to see (using repeated splitting and merging) that the splitting
hypothesis would imply f(A, 1) = A+O(C ln A) and hence prove this conjecture.

Variants of f have received some attention. For edge-connectivity in hyper-
graphs, f(1, 1) is not finite [4]. It is not known whether the analogue of f(1, 1)
in directed graphs is finite [5,3].

4 Complex Extreme Points for (N ′
2)

Now we give our construction of a new family of extreme points for the TSP
subtour relaxation (N ′

2); as mentioned earlier, it can be scaled by k/2 to give an
extreme point for (N ′

k) or (Nk), which is relevant to LP-based approaches for
k-ECSM.

Let Fi denote the ith Fibonacci number, where F1 = F2 = 1. For a parameter
t ≥ 3, we denote the extreme point by x∗. The construction is given in the list
below and pictured in Figure 2.

– For i from 1 to t, an edge (2i− 1, 2i) of x∗-value 1
– For i from 2 to t− 1, an edge (1, 2i) of x∗-value Ft−i/Ft

– An edge (1, 2t) of x∗-value 1/Ft

– For i from 3 to t, an edge (2i− 3, 2i− 1) of x∗-value Ft−i+1/Ft

– For i from 3 to t, an edge (2i− 4, 2i− 1) of x∗-value 1− Ft−i+2/Ft

– An edge (2, 3) of x∗-value Ft−1/Ft

– An edge (2t− 2, 2t) of x∗-value 1− 1/Ft

The support graph of x∗ has 2t vertices and 4t− 3 edges with fractionality 1/Ft

and maximum degree t. Therefore, in order to prove Theorem 4, it suffices to
show that x∗ is an extreme point solution.

Proposition 10. The solution x∗ described above is an extreme point solution
for (N ′

2).

Proof. With foresight, we write down the following family of 4t− 3 sets:

L := {{i}2t
i=1, {2i− 1, 2i}ti=1, {1, . . . , 2i}t−2

i=2}.

The plan of our proof is to first show that x∗ is the unique solution to {x(δ(T )) =
2 | T ∈ L}. It is easy to verify that x∗ indeed satisfies all these conditions, so
let us focus on the harder task of showing that x∗ is the only solution. (Note,
we are not assuming that x∗ is feasible, so possibly x∗(δ(S)) < 2 for some other
sets, but we will deal with this later.)
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Fig. 2. Our new construction of a complex extreme point x∗ for the subtour TSP
polytope (N ′

2), illustrated for t = 15. Scaled edge values are shown: the label Fi on an
edge e indicates that x∗

e = Fi/Ft. The symbol Gi denotes Ft − Fi, i.e. an edge e with
x∗

e = 1 − (Fi/Ft).

A set S is tight for a solution x if x(δ(S)) = 2. Consider any solution which
is tight for all sets in L. We first need a simple lemma. For disjoint sets S, T , let
δ(S : T ) denote the set of edges with one end in S and the other in T . The short
proof of the following is in [1].

Lemma 11. For some solution x, if S, T are disjoint tight sets and S ∪ T is
also tight, then x(δ(S : T )) = 1.

Consider a hypothetical solution x with x(δ(S)) = 2, ∀x ∈ L. The lemma shows
all edges {2i − 1, 2i}ti=1 have x-value 1 (take S = {2i − 1}, T = {2i}). Define
yi equal to x(2i+1,2i+3) for i from 1 to t − 2. The degree constraint at 3 (i.e.,
x(δ(3)) = 2) forces x(2,3) = 1− y1. The degree constraint at 2 forces x(5,2) = y1.
Note {1, . . . , 2t−2} is tight since this set has the same constraint as {2t−1, 2t}.
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For i from 1 to t − 2, note that the sets δ({1, . . . , 2i} : {2i + 1, 2i + 2}) and
δ(2i + 1) differ only in that the former contains the edge (2i + 2, 1) and the
latter contains the edges {(2i+1, 2i+2), (2i+1, 2i+3)}. Thus, using the lemma
and degree constraint at 2i + 1, we see x(2i+2,1) + x(2i+1,2i+3) = yi. The degree
constraint at 2i + 2 then forces x(2i+2,2i+5) = 1 − yi for 1 ≤ i ≤ t − 3. The
degree constraint at 2t−2 forces x(1,2t−2) = 1−yt−2; the degree constraint at 2t
forces x(1,2t) = yt−2. The degree constraint at 2t− 1 forces yt−2 = yt−3, and the
degree constraint at 2i + 5 forces yi = yi+1 + yi+2 for i from 1 to t− 4; together
this shows yi = Ft−1−i · yt−2 for i from t − 4 to 1 by induction. The degree
constraint at 5 forces 2y1 + y2 = 1, so (2Ft−2 + Ft−3)yt−2 = 1 and consequently
yt−2 = 1/Ft. Thus we conclude that x = x∗, as desired.

Now, we show x∗ is feasible using standard uncrossing arguments, plus the
fact that |L| = 4t−3. In (N ′

2), the constraints for sets S and V \S are equivalent.
Therefore, if we fix any root vertex r ∈ V , we may keep only the constraints for
sets S not containing r without changing the LP. Correspondingly, we change L
by complementing the sets that contain r, and it is easy to see L is a laminar
family on V \{r}. (This is along the lines of the standard argument by Cornuéjols
et al. [16].) In fact L is a maximal laminar family, since any laminar family of
nonempty subsets of X contains at most 2|X | − 1 elements, for any set X .

Finally, suppose for the sake of contradiction that x∗ is not feasible, so there
is a set S, with r �∈ S, having x∗(δ(S)) < 2. Clearly S �∈ L. Two sets S, T ,
neither containing r, cross if all three of S\T , T\S, and T ∩ S are non-empty.
Take S with x∗(δ(S)) < 2 such that S crosses a minimal number of sets in L.
If S crosses zero sets in L, then L ∪ {S} is laminar, but this is a contradiction
since S �∈ L and, crucially, L was maximal. Otherwise, set S crosses some tight
set T ∈ L, then since

2 + 2 > x∗(δ(S)) + x∗(δ(T )) ≥ x∗(δ(S ∪ T )) + x∗(δ(S ∩ T )),

either x∗(δ(S ∪ T )) < 2 or x∗(δ(S ∩ T )) < 2. It is easy to verify that both S ∪ T
and S ∩ T cross fewer sets of L than S, contradicting our choice of S.

4.1 Relation to Asymmetric TSP

Asymmetric TSP is the analogue of TSP for directed graphs: we are given a
metric directed cost function on the complete digraph (V, A), and seek a min-cost
directed Hamiltonian cycle. Recently Asadpour et al. [2] obtained a breakthrough
O(log n/ log log n) approximation for this problem; its analysis uses the fact that
extreme points of the natural LP relaxation

{y ∈ RA
+ : ∀∅ �= U � V, y(δout(U)) ≥ 1} (A)

have denominator bounded by 2O(n ln n). Our undirected construction implies
that for this directed variant, the extreme points attain denominator at least
2Ω(n); the proof is straightforward and given in the full version [1].

Proposition 12. For even n ≥ 6 there are extreme points for (A) on n vertices
with fractionality 1/Fn/2 or smaller (and hence denominator at least Fn/2).
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20. Frederickson, G.N., JáJá, J.: On the relationship between biconnectivity augmen-
tation and the traveling salesman problem. Theoretical Computer Science 19, 189–
201 (1982)

21. Gabow, H.N., Gallagher, S.: Iterated rounding algorithms for the smallest k-edge-
connected spanning subgraph. In: Proc. 19th SODA, pp. 550–559 (2008)

22. Gabow, H.N., Goemans, M.X., Tardos, É., Williamson, D.P.: Approximating the
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Abstract. We consider the problem of nonclairvoyantly scheduling jobs,
which arrive over time and have varying sizes and degrees of paralleliz-
ability, with the objective of minimizing the maximum flow. We give
essentially tight bounds on the achievable competitiveness. More specifi-
cally we show that the competitive ratio of every deterministic nonclair-
voyant algorithm is high, namely Ω(

√
n) for n jobs. But there is a simple

batching algorithm that is (1 + ε)-processor O(log n)-competitive. And
this simple batching algorithm is optimally competitive as no determinis-
tic nonclairvoyant algorithm can be s-processor o(log n)-competitive for
any constant s.

1 Introduction

The founder of chip maker Tilera asserts that a corollary to Moore’s law will
be that the number of cores/processors will double every 18 months [11]. In
this paper we consider one of the many resulting technical challenges that arises
in such a future: developing algorithms/policies for scheduling jobs on many
processors so as to optimize the resulting quality of service. Such a scheduler
will be faced with scheduling jobs with highly varying degrees of parallelizability,
that is, when allocated many processors some jobs may be considerably sped up,
while on the other extreme, some jobs may not be sped up at all.

We will consider the setting where jobs of varying sizes arrive to the system
over time, and must be scheduled online on a collection of identical processors.
At each point in time the online scheduler needs to partition the processors
among the alive jobs. For each portion of each job, there is an inherient speed-
up function that specifies the rate at which the job is processed as a function
of the number of processor on which it is run. An operating system scheduler
generally needs to be nonclairvoyant, that is, the algorithm tipically does not
have access to the internal knowledge about jobs, such as the size and the speed-
up functions. The standard quality of service measure for a job is its flowtime,
which is the length of time between when the job arrives to the system and
which it is completed. One then normally obtains a quality of service measure
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for a schedule by taking the �p norm of the flowtimes for 1 � p � ∞. The �p

norm is the pth root of the sum of the pth powers of the flow times. The �1 norm
is the total, or equivalently average, flowtime, and the �∞ norm is the maximum
flowtime. Intuitively, the higher the value of p, the more importance that is being
placed on avoiding starvation of jobs.

Formal definitions for all concepts in the introduction can be found in
Section 2.

1.1 Previous Results

The model of speed-up functions that we adopt here was proposed in [4]. [4]
showed that the natural algorithm Equi, which shares the processors equally
among the jobs, is O(1)-competitive for the �1 norm of flow in the special case
that all jobs arrive at the same time. Generalizing to the case of jobs with arbi-
trary release times, [3] gave a quite involved proof that Equi is (2+ ε)-processor
O( 1

ε
)-competitive for the �1 norm of flow. Given that a nonclairvoyant algorithm

does not know the speed-up functions, it is not clear what reasonable alternative
algorithms there are to Equi, as there is no way for a nonclairvoyant algorithm
to avoid the possibility that the jobs that it assigns most processors to may
be the least parallelizable. However, [6] showed that, by sharing the processors
evenly among most recently arriving constant fraction of the jobs, one obtains
an existentially scalable algorithm (see definition p. 242), that is an algorithm
that is O(1)-competitive with arbitrarily small processor augmentation. [6] also
gives a much simpler proof of the competitiveness of Equi proved in [3].

The model was then extended in [16] to include arbitrary precedence con-
straints among tasks within each job. [16] showed that the introduction of prece-
dence constraints does not affect the minimum processor augmentation required
to be competitive for the �1 norm of flow, even if the resulting competitive ratio
depends on the internal dependencies of each job.

The �p norm of flow, for 1 < p <∞ was recently considered in [7]. [7] showed
that a simple algorithm that allocates the processors to the most recent alive
jobs proportional to the (p − 1)st power of their age is (2 + ε)-processor O(1)-
competitive. Very recently it was shown that this algorithm is existentially scal-
able [5].

The only previous work on the �∞ norm of flow was in [15]. [15] showed
that if all the jobs are released all together at time 0, Equi is O(log n/ log log n)-
competitive, and there is a matching general lower bound even allowing constant
factor processor augmentation.

On single processor nonclairvoyant scheduling, or equivalently for multipro-
cessor scheduling when all the work is parallel, there has been a fair amount of
work done to optimize �p norms of flow. Let us first consider the �1 norm. The
competitive ratio of every deterministic nonclairvoyant algorithm is Ω(n1/3),
and the competitive ratio of every randomized nonclairvoyant algorithm against
an oblivious adversary is Ω(log n) [12]. There is a randomized algorithm, Ran-
domized Multi-Level Feedback Queues, that is O(log n)-competitive against an
oblivious adversary [10,2]. The algorithm Shortest Elapsed Time First, which
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shares the processors equally among the jobs that have been processed the least
to date, is universally scalable [9]. For the �p norm of flows for 1 < p <∞, the
competitive ratio of every randomized nonclairvoyant algorithm is Ω(n(p−1)/3p2

),
and Shortest Elapsed Time First is universally scalable [1]. The nonclairvoyant
algorithm First Come First Served is optimal for maximum flow.

There are many related scheduling problems with other objectives, and/or
other assumptions about the machine and job instance. Surveys can be found in
[14,13].

1.2 Our Results

So essentially what competitiveness is achievable by a nonclairvoyant algorithm
for the �p norm of flow is known for finite p. In this paper we address the
obvious remaining open question: What competitiveness is achievable for the
case that p =∞, that is for the objective of maximum flow. We give the following
essentially tight results:

– In section 3 we show that the competitive ratio of every deterministic non-
clairvoyant algorithm is high, namely Ω(

√
n).

– In section 4 we show that there is a simple nonclairvoyant batching algorithm
OBEqui that is (1 + ε)-processor O(log n)-competitive. In OBEqui there
are always two active batches, the current batch and the next batch. The
processors are shared equally among the current batch. Newly arriving jobs
are added to the next batch. When all the jobs in the current batch finish,
the next batch becomes the current batch.

– In section 5 we show that this simple batching algorithm is optimally com-
petitive as no deterministic nonclairvoyant algorithm can be s-processor
o(log n)-competitive for any constant s.

– In section 6 we show that the techniques developed in [16] to handle prece-
dence constraints when the objective is the �1 norm of flow can be extended
to the �∞ norm of flow. Furthermore, we give here a modular presentation
of these reduction-based techniques that will allow easy applications of the
concepts in [16] to arbitrary non-clairvoyant setting.

We find it surprising that such a simple batching strategy is optimal, it was
far from the first algorithm that we tried to analyze. Given the competitiveness
results for nonclairvoyantly scheduling jobs with the objective of the �p norm of
flow on a single and on multiple processors we make the following observations:

– On a single processor the �∞ norm is the easiest objective for the nonclair-
voyant scheduler as First Come First Served produces an optimal schedule,
and the best that a nonclairvoyant scheduler can do for the other norms is to
be universally scalable. Of course scheduling on multiple processors is harder
for a nonclairvoyant scheduler. But on mutiple processors, if jobs can have
arbitrary parallelizability, then the �∞ norm is the hardest objective for the
nonclairvoyant scheduler as it is the one objective where it is not possible for
the scheduler to be at least existentially scalable. This suggests that perhaps
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starvation avoidance is a more difficult objective in a multiprocessor setting
than in a single processor setting.

– By adding release times, the optimal competitive ratio increases signifi-
cantly, from Θ(log n/ log log n) to Ω(

√
n). But adding release dates only

raises the competitiveness achievable by a nonclairvoyant algorithm with
(1 + ε)-processor augmentation from Θ(log n/ log log n) to Θ(log n), and a
larger constant factor processor augmentation doesn’t improve the compet-
itiveness achievable by a nonclairvoyant algorithm.

2 Definitions and Notation

We present here the model in its general form with arbitrary speed-up functions
and precedences constraints. It turns out that our result proceeds by reduction to
a much simpler setting, including only parallel and sequential speed-up functions
and with no precedences constraint, which we will present first. Thus some of
these definitions will not be needed before section 6.

The Setting. We consider a sequence of jobs {J1, J2, . . .} with release times
{r1, r2, . . .}. Following the terminology of [8,16], each job Ji consists in a set
of tasks {Ji,1, . . . , Ji,mi} with precedence constraints that the scheduler has to
execute over p processors. Each task goes through different phases, where each
phase may have a different speed-up function. The scheduler has to decide online
the number of processors to allocate to each alive task. The scheduler is non-
clairvoyant, i.e., discovers the jobs at the time of their arrivals and the tasks
at the time they become available; furthermore, it is unaware of the current
speed-up of each task (i.e., how they take advantage of more processing power)
nor of the amount of work in each task; it is only informed that a task or a job
is completed at the time of its completion. As in [3,16,6], we consider that the
processors can be divided fractionally: fractional allocation is usually realized
through time multiplexing in real systems.

Schedules. A schedule Sp on p processors is a set of piecewise constant functions1

ρij : t �→ ρt
ij where ρt

ij is the amount of processors allotted to the task Jij at
time t; (ρt

ij) are arbitrary non-negative real numbers, such that at any time t:∑
ij ρt

ij � p.

The jobs. The dependencies are defined as in [16] (extending the definition
of [3,4]): each job Ji consists of a directed acyclic graph (DAG for short)
({Ji 1, . . . , Ji mi},≺), where task Jij is released as soon as all tasks Jik, such
that Jik ≺ Jij , are completed. Job Ji is completed as soon as all its tasks are
completed. Each task goes through a sequence of phases J1

ij , . . . , J
qij

ij with differ-
ent degrees of parallelism. Each phase Jk

ij consists in an amount of work wk
ij and

1 Requiring the functions (ρij) to be piecewise constant is not restrictive since any
finite set of reasonable (i.e., Riemann integrable) functions can be uniformly approx-
imated from below within an arbitrary precision by piecewise constant functions. In
particular, all of our results hold if ρij are piecewise continuous functions.
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a speed-up function Γ k
ij . At time t, during its k-th phase, each task Jij progresses

at a rate Γ k
ij(ρ

t
ij) which depends on the amount ρt

ij of processors allotted to Jij

by the scheduler, i.e., the amount of work accomplished between t and t + dt in
each task Jij during its k-th phase is: dw = Γ k

ij(ρ
t
ij)dt.

Given a schedule Sp of the jobs {J1, J2, . . .}. A job or a task is alive as soon
as it is released and until it is completed. Let cij denote the completion time of
task Jij . The release time rij of a task Jij is: rij = ri (the release time of Job
Ji) if Ji,j does not depend on any other task (i.e., if Jik �≺ Jij for all k); and
rij = max{cik : Jik ≺ Jij}, otherwise. Let ck

ij denote the completion time of

the k-th phase of task Jij : ck
ij is the first time t′ such that wk

ij =
∫ t′

ck−1
ij

Γ k
ij(ρ

t
ij) dt

(with c0
ij = rij). Each task Jij completes with its last phase, thus: cij = c

qij

ij .
Job Ji is thus completed at time ci = maxj cij . A schedule is valid if all jobs
eventually complete, i.e., if ci <∞ for all i.

Cost of a schedule. The flowtime Fi of a job Ji is the overall time Ji is alive
in the system, i.e., Fi = ci − ri. The maximum flowtime of a schedule Sp is the
maximum of the flowtimes of the jobs: MaxFlowTime(Sp) = maxi Fi. Our goal is
to design a scheduler that minimizes the maximum flowtime, which corresponds
to the largest response time of the system, which is a classic measure of quality
of service. We denote by OPTp = inf{MaxFlowTime(Sp) : valid schedule Sp},
the optimal cost on p processors.

Speed-up functions. As in [4,16,6], we assume that each speed-up function is non-

decreasing and sub-linear (i.e., such that for all i, j, k, ρ < ρ′ ⇒ Γ k
ij(ρ)

ρ
� Γ k

ij(ρ′)
ρ′ ).

Non-decreasing means that allocating more processors to a job will not slow the
processing of that job, and sub-linear means that efficiency decreases as the
number of processors increase. As in [4,16,6], two types of speed-up functions
will be of particular interest here:

– the sequential phases (Seq) where Γ (ρ) = 1, for all ρ � 0 (the task progresses
at a constant rate even if no processor is allotted to it, similarly to an idle
period); and

– the parallel phases (Par) where Γ (ρ) = ρ, for all ρ � 0.

We say that a job Ji is SeqPar if each of the phases of its tasks is either sequential
or parallel. An instance is SeqPar if all of its jobs are SeqPar. For any task Jij

of a SeqPar job Ji, we define Seq(Jij) and Par(Jij) as the overall sequential and
parallel works in the task respectively:

Seq(Jij) =
∑

k: kth phase of Jij is sequential

wk
ij and Par(Jij) =

∑

k: kth phase of Jij is fully parallel

wk
ij .

We denote by Par(Ji) =
∑

Jij∈Ji
Par(Jij) the total amount of parallel work in the

tasks of a SeqPar job Ji. We denote by Seq(Ji) = maxJij1≺···≺Jijk

∑k
�=1 Seq(Jij�

),
the maximum amount of sequential work along a chain of tasks in job Ji. We
denote by Par(J) = maxi Par(Ji) and Seq(J) = maxj Seq(Ji) for any set of jobs
J = {J1, . . . , Jn}.
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Lemma 1 (Trivial lower bound, [3,16]). For any SeqPar instance
J1, . . . , Jn, we have: OPT1(J) � maxi(Par(Ji), Seq(Ji)).

Non-clairvoyant scheduling with precedence constraints. As in [4,16,6], we con-
sider that the scheduler knows nothing about the progress of each tasks and is
only informed that a job or a task is completed at the time of its completion;
in particular, it is not aware of the different phases that each task goes through
(neither of the amount of work nor of the speed-up function). Furthermore, tasks
are released as soon as they become available without noticing the scheduler of
the precedence constraints: if two tasks complete as other tasks are released, the
scheduler is unable to guess which spawns which. In particular, as in [16], the
order in which the tasks of a given job are released depends heavily on the com-
puted schedule, and the scheduler cannot even reconstruct the DAG a posteriori
in general. It is only aware at all time of the IDs of the current alive jobs and of
their alive tasks.

Competitiveness and resource augmentation. We say that a given scheduler Ap

is c-competitive if it computes a schedule Ap(S) whose maximum flowtime is at
most c times the optimal clairvoyant maximum flowtime (that is aware of the
characteristics of the phases of each task and of the DAG of each job), i.e., such
that MaxFlowTime(Ap(J)) � c · OPTp(J) for all instances J . A scheduler Ap

is s-processor c-competitive if it computes a schedule Asp(J) on sp processors
whose maximum flowtime is at most c times the optimal maximum flowtime
on p processors only, i.e., such that MaxFlowTime(Asp(J)) � c · OPTp(J) for
all instances J [9]. A scheduler A is universally scalable if for every ε > 0,
there is a constant cε such Ap is (1+ε)-processor cε-competitive. A family of
algorithms Ap,ε is existentially scalable if for every ε > 0, there is a constant cε

such algorithm Ap,ε is (1+ε)-processor cε-competitive.

Par→Seq instances. A special case of SeqPar job will be of particular interest
here. A job is said to be Par→Seq if it consists in one single task consisting of
only two phases: one single parallel phase followed by one final sequential phase.
An instance is said to be Par→Seq if all its jobs are Par→Seq. As we will be
show in Section 6, proving the competitiveness of our algorithm on Par→Seq
instances (proved in Section 4) will be enough to conclude its competitiveness
on instances with arbitrary speed-up functions and precedence constraints.

3 The Lower Bound on the Competitive Ratio

Theorem 2. There is no deterministic non-clairvoyant 1-processor c-
competitive algorithm for any c <

√
n/4 for maximum flowtime even in the

case that each consists of a single SeqPar task.

Proof. Consider a deterministic non-clairvoyant algorithm A on 1 processor. Let
n be the square of an even integer: n = 4m2. The adversary releases 2 jobs Ji

and J ′
i at each time t = i ∈ {0, 1, . . . , n/2−1}. Each job is composed of a parallel
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phase followed by a sequential phase of length 1. The amount of parallel work
in each job is determined on-the-fly by the adversary according to the schedule
computed by A so far (since A is non-clairvoyant, the adversary can set the
phases afterwards). The total amount of parallel work within each pair of jobs
Ji, J

′
i will always be equal to 1. This unit of parallel work is split between Ji and

J ′
i as follows. Consider each time slot [t, t + 1] with t ∈ {i, i + 1, . . .}. Both jobs

remain in a parallel phase as long as A allots at most 1/
√

n processors to each
of them during each time slot [t, t + 1] and t � i +

√
n/2 − 1. Then, either we

reach t = i +
√

n/2 and then the adversary sets the amount of parallel work in
each job to 1

2
; since none of the jobs is allotted more than 1/

√
n processors on

average, none of their parallel phases can be completed at time i +
√

n/2 and
the instance is correctly defined. Otherwise, one the of job, say Ji, is allotted
more than 1/

√
n processors during time slot [t, t + 1]. Then, the adversary sets

the amount of parallel work in Ji and J ′
i to the total amount of processors each

received from A between i and t (which sums to some w < 1), and gives the
remaining parallel work 1− w to J ′

i .
The optimum can complete both parallel phases in each pair of jobs during

the time unit after their release and thus guarantees a maximum flowtime of 2
for each job.

We claim that MaxFlowTime(A) � √n/2. Indeed, either there is one pair of
jobs Ji, J

′
i that were never allotted more than 1/

√
n processors each in each time

slot [t, t + 1] for t ∈ {i, . . . , i +
√

n/2 − 1}. Then, both of their parallel phases
could not be completed at time t = i +

√
n/2− 1 and their flowtime is � √n/2.

Otherwise, one job in each pair was allotted at least 1/
√

n processors for its final
sequential phase. Let n + T be the completion time of the last completed job.
n + T has to be at least n/2 · 1/

√
n + n, the total amount of processors wasted

on sequential phases plus the total amount, n, of parallel work in the instance.
It follows that MaxFlowTime(A) � T � √n/2 � √n/4 ·OPT.

4 Analysis of the Batching Algorithm on Par→Seq
Instances

We consider here only Par→Seq instances. Section 6 will show that one can
reduce the general case to this simpler case. Recall our batching algorithm for
job without precedence constraints, named OBEqui (for Online Batching Equi):
it maintains at all time two batches; at the beginning, one batch contains the first
released jobs, and the other one is empty; then repetitively, the jobs contained
in the older batch are all scheduled together using the Equi algorithm (each
alive job in the batch receives an equal share of the processors) until all of them
completes, while OBEqui collects all the jobs released in between in the other
batch; OBEqui then switches the batches and restarts. We denote by Bk the
kth batch of jobs scheduled by OBEqui. This section is dedicated to proving
the following theorem.
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Theorem 3. The simple non-clairvoyant batching algorithm OBEqui is (1+ε)-
processor O( log n

ε2 )-competitive for maximum flowtime on Par→Seq instances, for
all ε > 0.

First, we give a lower bound on the optimal cost that we will use extensively.

Excess. The maximum parallel work in excess of a SeqPar instance {J1, . . . , Jn}
is defined as:

Exc(J) = min
{
W : ∀(t � t′)

∑
ri∈[t,t′] Par(Ji) � t′ − t + W

}
,

i.e. the maximum quantity of parallel work received during any time interval
that cannot be scheduled on 1 processor within this interval. By minimality of
Exc, consider a time interval [t, t′] such that

∑
ri∈[t,t′] Par(Ji) = t′ − t + Exc(J),

no schedule can complete the parallel work received during [t, t′] before time t′ +
Exc(J), it follows that the flowtime of some job released in [t, t′] is at least Exc(J).
Together with Lemma 1, we obtain the following lower bound that we will use
to analyze our algorithms.

Lemma 4 (Lower bound). For all SeqPar instance J1, . . . , Jn,
OPT1(J) � max(Exc(J), Seq(J)).

We use the following notations: γk denotes the completion time of the kth batch,
Bk, (γ0 = −∞ by convention); ρk denotes the release time of the first job in
Batch Bk; nk denotes the number of jobs in Batch Bk. Note that for all k � 2,
max(ρk−1, γk−2) < ρk � γk. Note also that the processing of batch Bk begins
exactly at time βk =def max(ρk, γk−1).

Let T (n, ε) =
(

8
ε + 32

ε2

)
log n ·max(Exc(J), Seq(J)).

The main idea of the analysis is to show that if the previous batch lasts at
most T (n, ε), then the next one will be completed in time at most T (n, ε) as
well. The batch Bk contains all the jobs released between time ρk and time βk =
max(ρk, γk−1). Its processing starts at time βk and ends at time γk. We will
show the following:

Lemma 5. For all τ � T (n, ε), if βk − ρk � τ then γk − βk � τ .

Proof. Since all the jobs in Bk are released in [ρk, βk], the total amount of
parallel work of this batch is at most βk − ρk + Exc(J) by definition of Exc.
Assume that OBEqui is run on 1 + ε processors with ε � 1

2 (this assumption
is not necessary but simplifies the calculations bellow). We now follow the lines
of [15]. We partition the processing period of the batch Bk in two sets: A is
the set of all instant t ∈ [βk, γk] such that a fraction at least 1− ε

8 of the alive
jobs of Bk are in a parallel phase; Ā is its complementary set, i.e. the set of all
instant t ∈ [βk, γk] such that a fraction more than ε

8 of the active jobs of Bk are
in their final sequential phase. By construction,

γk − βk =
∫

A
dt +

∫
Ā

dt.
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At each instant t ∈ A, the amount of parallel work decreases at a rate at least
(1 + ε)(1− ε

8 ). It follows that:

∫
A dt � Par(Bk)

(1+ε)(1− ε
8 ) � (τ + Exc(J))(1− ε

4 ),

since ε � 1
2 . Let Seq(Bk) = maxJi∈Bk

Seq(Ji). Clearly, Seq(Bk) � Seq(J). As
in [15], we cover Ā with a minimum number q of non-overlapping intervals of
length Seq(Bk). At the beginning of each of these q intervals, a fraction larger
than ε

8 of the alive jobs in Bk are in their final sequential phase and will then
be completed at the end of the interval. It follows that the number of alive
jobs decreases by at least a factor 1 − ε

8
after each of these intervals. Thus,

q � − log(1− ε
8 ) nk. Then

∫
Ā

dt � q · Seq(Bk) � − log nk

log(1− ε
8 )

Seq(J) � 8
ε
· log n · Seq(J).

It follows that:

γk − βk �
(
1− ε

4

)
(τ + Exc(J)) + 8

ε · log n · Seq(J).

We are now left with proving that:
(
1− ε

4

)
(τ + max(Exc(J),Seq(J))) + 8

ε · log n ·max(Exc(J),Seq(J)) � τ

whenever τ � T (n, ε) =
(

8
ε

+ 32
ε2

)
log n · max(Exc(J),Seq(J)). This holds since

by subtracting τ from both sides of this inequation, we get:

− ε
4τ +

(
1− ε

4 + 8 log n
ε

)
max(Exc(J), Seq(J))

�
(− ε

4

(
8
ε + 32

ε2

)
log n + 1− ε

4 + 8
ε log n

)
max(Exc(J), Seq(J))

� 0. ��
By immediate induction, the flowtime of every job is at most 2T (n, ε): T (n, ε)
for waiting to be scheduled, plus T (n, ε) for its batch to be completed. Thus,
Theorem 3 follows by the lower bound for OPT given in Lemma 4.

5 The General Lower Bound

This section will be devoted to proving the following theorem.

Theorem 6. For all ε > 0, there is no deterministic non-clairvoyant (1 + ε)-
processor c-competitive algorithm for c < 1

2 · log n. This holds even if instances
are restricted such that each job consists of a single Par→Seq task.

Consider a deterministic non-clairvoyant algorithm A on 1 + ε processors. Let
n = b · m be the product of two integers such that: m ∼ n1−1/

√
log n and

b ∼ n1/
√

log n = e
√

log n. Let F = log n. The adversary releases m jobs J i
1, . . . , J

i
m

at each integer time t = i ∈ {0, 1, . . . , b− 1}; the set J i
1, . . . , J

i
m is referred as the
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ith batch with 0 � i < b. Each job is composed of a parallel phase followed by a
sequential phase of length 1. The adversary will ensure that the total amount of
parallel work in each batch is at most 1, so that the optimum can schedule all
the parallel work between t and t + 1 on one processor and thus complete every
job within 2 time units, i.e. OPT1 � 2.

The adversary sets the parallel work of the jobs in each batch as follows. Let ji
t

denote the number of alive jobs in the i-th batch at time i+ t (ji
0 = m). At each

time i + t, with t ∈ {1, . . . , F}, and as long as ji
t−1 > 0, the adversary sorts the

ji
t−1 surviving jobs of the batch by non-decreasing average number of processors

allotted by A during [i + t− 1, i+ t]. The adversary selects the maximum k such
that the amount of processors allotted by A to the k first jobs in that order is
at most 1/F . The adversary sets these k first jobs in a parallel phase during
[i+ t− 1, i+ t] and sets the ji

t − k others in their final sequential phase (they are
thus completed at time t). Note that after that ji

t = k. All the surviving jobs (if
any) are forced to enter their final sequential phase at time t = i + F .

Note that at most 1/F parallel work is injected into the jobs of the batch in
each time slot; since the lifetime of each batch is at most F , each batch contains
at most one unit of parallel work in total, which ensures that for this instance
OPT1 � 2 as claimed earlier. We will now prove that MaxFlowTime(A) =
Ω(log n).

Let si
t denote the total amount of processors allotted by A during [i+t, i+t+1]

to the surviving jobs of the i-th batch.

Lemma 7. For all i and t < F such that ji
t > 0, we have: ji

t+1 = ji
t if si

t � 1
F ;

and ji
t+1 >

ji
t

F ·si
t
− 1, otherwise.

Proof. During [i + t, i + t + 1], if si
t � 1

F
, all the jobs are set in a parallel phase

and are still alive at time i+t+1, thus ji
t+1 = ji

t . Otherwise, each alive job in the
i-th batch is allotted on average si

t/ji
t processors. It follows, by the maximality

of k, that (k + 1)si
t/ji

t > 1
F and thus ji

t+1 = k >
ji
t

F ·si
t
− 1.

Simple algebraic manipulation yields the following corollary:

Corollary 8. For all i and t < F such that ji
t � (1 + ε)F 3 and si

t > 1
F , we

have:
ji
t+1 >

(
1− 1

F 2

) · ji
t

F ·si
t
.

Let Δi = {t : 0 � t < F and ji
t � (1 + ε)F 3 and si

t > 1
F } denote the set of the

time slots in the lifetime of the ith batch, where it receives from A at least 1
F

processors, and where the number of alive jobs is at least (1 + ε)F 3, so that the
lower bound of the corollary above applies. Let T i = #Δi denote the size of Δi

and ti+ = max Δi. Note that the maximum flowtime of the jobs in the i-th batch
is at least T i.

Note that as long as ji
t � (1 + ε)F 3, we have ji

t+1 < ji
t only for t ∈ Δi, and

ji
t+1 = ji

t otherwise. If the lifetime of the ith batch is F , then the maximum
flow time of A is F and we are done. Let us now assume that the flowtime of all
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batches is less than F . It follows that for all i, ji
t < (1 + ε)F 3 for some t < F , in

particular: Δi �= ∅, ti+ � T i > 0, and ji
1+ti

+
< (1 + ε)F 3 (indeed, since ji

t+1 < ji
t

only for t ∈ Δi as long as ji
t � (1 + ε)F 3, this threshold is crossed exactly

between ti+ and 1 + ti+).
Let si = 1

T i

∑
t∈Δi si

t denote the average amount of processors allotted to
the batch during the time slots in Δi. Note that si > 1

F by construction. By
Corollary 8,

(1 + ε)F 3 > ji
1+ti

+
> ji

0

∏
t∈Δi

1−1/F 2

F ·si
t

� m(
F ·si

1−1/F2

)T i ,

by log-concavity of the product. Now, by taking the log of both ends of the
inequality above,

T i > log m−log((1+ε)F 3)

log
(

F ·si

1−1/F2

) , (1)

since si > 1
F and thus log

(
F ·si

1−1/F 2

)
> 0.

To get the Ω(log n) lower bound on some T i, it suffices now to show that some
batch gets a small enough average amount of processors si compared to 1/F .

Lemma 9. For large enough n, there exists a batch i such that si �
e

F

Proof. Consider some constant K to be chosen later. We proceed by contradic-
tion and assume that for all batches, si > K/F . Since the lifetime of every of the
b batches is at most F by construction, the total amount of processors used by
Algorithm A is at most (b + F )(1 + ε). But, each batch i receives si processors
on average during T i time. It follows that:

(1 + ε)(b + F ) �
∑b−1

i=0 T i · si �
∑b−1

i=0
si

log
(

F ·si

1−1/F2

) · (log m − log((1 + ε)F 3)), by (1).

But s �→ s/ log(a · s) is increasing for s � e/a. Assume K � e · (1− 1/F 2). Now
si > K/F for all i by hypothesis, so:

(1+ ε) · n1/
√

log n ∼ (1 + ε)(b + F )� b · K/F

log(F ·(K/F ) / (1−1/F2))
· (log m − log((1 + ε)F 3))

= b · K
log(K/(1−1/F 2))

·
(1− 1√

log n
) log n−O(log log n)

1
1+ε

log n

∼ (1 + ε) · K
log K

· n1/
√

log n

We obtain thus a contradiction for large enough n when K is chosen so that
K � e and K

log K
> 1, which is true for K = e for all ε > 0. ��

To conclude, consider now a batch i such that si � e
F . By (1),

MaxFlowTime(A) � T i � (1− 1√
log n

) log n−O(log log n)

log(e/(1−1/F 2))
� (1− o(1)) · log n · OPT1

2
.
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6 Reduction from the General Setting to Par→Seq
Instances

Using reductions from [3,15,16](omitted due to space constraints), we are able
to show that Theorem 3 extends to the general setting, as follows:2

Theorem 10. For all ε > 0, for all instance J1, . . . , Jn with arbitrary
speed-up functions and precedence constraints, there exists a simple algorithm
OBEqui ◦ Equi that is (1+ε)-processor (κ(J)+1)cε

2
·log n-competitive, where κ(J)

denotes the maximum number of independent tasks in a job of the instance, and
cε � 16(1

ε
+ 4

ε2 ) for ε � 1
2
.
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Abstract. We consider the problem of scheduling resource allocation
where a change in allocation results in a changeover penalty of one time
slot. We assume that we are sending packets over a wireless channel of
uncertain and varying capacity. In each time slot, a bandwidth of at most
the current capacity can be allocated, but changing the capacity has a
cost, which is modeled as an empty time slot. Only the current bandwidth
and the bandwidth of the immediately following slot are known. We
give an online algorithm with competitive ratio 1.753 for this problem,
improving over the previous upper bound of 1.848. The main new idea of
our algorithm is that it attempts to avoid cases where a single time slot
with a nonzero allocation is immediately followed by an empty time slot.
Additionally, we improve the lower bound for this problem to 1.6959.
Our results significantly narrow the gap between the best known upper
and lower bound.

1 Introduction

In wireless networks, channel conditions can change frequently, which affects the
bit error rate and therefore the channel transmission capacity [5]. We consider
the problem of setting data transmission rates over such a channel in order to
maximize the throughput. Naturally, at any time the transmission rate cannot
be higher than the current transmission capacity, but there is also typically a
nonzero cost involved in changing the transmission rate, because the transmitter
and receiver will have to coordinate and reset to a new transmission rate. We
model this cost as the loss of a single time slot. That is, whenever we want
to change the transmission rate (or if we are forced to change it, because the
current capacity is below the rate that we set earlier), we will have one time slot
in which nothing can be transmitted.

Formally, we are given an online sequence of nonnegative real numbers h(1),
h(2), . . . , which represent the maximum transmission capacities of the wireless
channel at each time step, and we need to determine the transmission rate u(i)
at each time step. Our goal is to maximize

∑
i u(i), and due to the changeover

cost we have for any i that u(i) = u(i+1), u(i) = 0, or u(i+1) = 0. It can be seen
that if only the current bandwidth is known, no competitive online algorithm

� Research supported by the German Research Foundation (DFG).

K. Jansen and R. Solis-Oba (Eds.): WAOA 2010, LNCS 6534, pp. 249–260, 2011.
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exists [2]. We therefore focus on the case where some information about future
bandwidth is given; in particular, for our results we assume that we have a
lookahead of a single time slot.

The name rectangle filling comes from a geometrical interpretation of the
problem, where each time slot i is represented by a rectangle of unit width and
height h(i) (also called a column). An algorithm needs to decide how much of
each rectangle to fill, i.e., what the transmission rate ∈ [0, h(i)] should be. Any
feasible solution for this problem is a set of rectangles (of varying width) where
the transmission rate is constant; all these rectangles are separated by one or
more zero columns.

Probabilistic analysis for this problem was given by Tsibonis et al. [6] and
Borst [3]. Arora and Choi were the first ones to study this problem from a
worst-case perspective [1]. They gave a dynamic program for the offline version
with a running time of O(n3), and a 4-competitive online algorithm called Wait
Dominate Hold (using a lookahead of 1). Arora et al. [2] soon afterwards showed
that this algorithm is actually 8/3-competitive, and gave a lower bound of 8/5.
For the version of the problem with k-lookahead, they gave an online algorithm
with competitive ratio 2 for any k, and a lower bound of (k + 2)/(k + 1).

Wang et al. [7] presented a faster offline algorithm with a running time of
O(n2), and new lower and upper bounds of 1.6358 and 1.848 respectively. In the
following year, the same authors [8] considered the version with k-lookahead.
They gave a deterministic algorithm with a competitive ratio of 1 + 2/(k − 1),
as well as a randomized algorithm with competitive ratio 1 + 1/(k + 1). They
also gave a randomized lower bound of 1+1/(

√
k + 2+

√
k + 1)2, which is more

than 1 + 1/(4k + 8) and tends to 1 + 1/(4k + 4) for large k. The randomized
lower bound was recently improved to (k +2) ln k+2

k+1
> 1+1/(2k+3) by Epstein

and Levin [4].
Generally, despite the seeming simplicity of the model, the gap between the

upper and lower bounds has so far remained relatively large, particularly for the
most basic version with a lookahead of 1, and it appears to be very hard to give
tight bounds for this problem. See also the conclusions.

Our results. We give an improved algorithm which achieves a competitive ratio
of less than 1.753. The main new idea of our algorithm is to try and limit
the amount of changes in the used bandwidth. Therefore, as soon as a nonzero
transmission rate is allocated, we temporarily relax the condition for changing
the rate, and allow a single time slot with relatively high capacity to appear
without resetting the transmission rate. The idea behind this is that as long as
there is only a single slot with high capacity, we do not lose too much compared
to the optimal solution, because the optimal solution needs to allocate zero
columns before and after the slot in order to be able to use the full capacity
of the slot. That is, it is not worth the trouble of paying a penalty to serve a
slot completely, especially if we have very recently paid another penalty to start
transmitting.

The analysis uses the natural block partitioning from Wang et al. [7] as a
starting point, but is significantly more involved. Apart from their partitioning
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rules, we will need a number of additional assignment rules to deal with the
columns that are left unassigned in their scheme. These assignment rules depend
on the optimal solution, and sometimes assign part of the optimal profit to
preceding blocks and part to following blocks in order to allow us to analyze
these blocks independently.

Moreover, in some cases we analyze the competitive ratio by splitting the
instance into two parts, replacing one column by a sequence of columns, and
showing that our algorithm gives exactly the same allocation as before to all
columns where it does not allocate 0, and the optimal profit is split according
to another set of rules between the first part and the second part of the input.

Finally, we improve the lower bound from 1.6358 to 1.6959. The construction
is similar to the one from Wang et al. [7], but we use an extra threat in every
step of the input.

2 Lower Bound

We let ε > 0 be some very small value. The lower bound of r = 1.6959 is
constructed according to the following rules. See Figure 1. We have p < 1 and
q > 2. Each rectangle represents a state. The states consist of three components:
the current online allocation, the current column, and the next column. Hence,
if we move from one state to another, the second column in the starting state
is identical to the first column in the destination state. However, we sometimes
(conceptually) rescale column heights, for instance when we move from state B
to state A.

Additionally, the number x−ε in the ellipse indicates that one final column of
height x−ε arrives, where x is the (nonzero) allocation that the online algorithm
just used. Hence, this column has no value for the online algorithm (it can only
use the column by forfeiting a profit of x on the current column).

The idea behind this construction is that no 1.6959-competitive algorithm
can stay in state A indefinitely, or move back and forth between state A and B
indefinitely. The threat that the allocation x is deemed ’too high’ and one final
column of height x − ε arrives eventually forces a competitive ratio of 1.6959.
What too high means will depend on what has gone before.

Denote the online algorithm by alg. Our proof consists of the following state-
ments, which hold for all r < 1.695.

1. If alg stays in state A long enough, we can let it move to state C and force
a ratio of at least r.

2. If alg stays in state B long enough, the competitive ratio tends to at least
q > r.

3. If alg keeps moving between state A and B, the implied competitive ratio
on the sequence seen so far is at least q.

4. The upper limit of what alg can assign in state A while maintaining a
competitive ratio of r decreases monotonically over time.

5. Eventually, alg must assign such a low value that the competitive ratio is
at least r after all.
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x−eps

0      1       qA

STOP

0

B
0

x OK

C 0     1      p
x<p

0 (after n con−
secutive 0’s)

x      q       q

x

x too high

ratio > r−eps
if implied

x>p or x=0

Fig. 1. Lower bound. The variable x always indicates the allocation chosen by the
online algorithm.

1) Suppose the algorithm spends n steps in state A for some large n, and the
last time that it assigns 0, it moves to state C. We rescale column heights such
that the last columns seen so far have heights 1 and p < 1. On the preceding
n− 1 columns, it is possible to earn 1/q2 + 1/q4 + . . . which tends to 1/(q2 − 1)
and is hence at least (1− ε)/(q2 − 1) for large enough nε for any fixed ε > 0.

In state C, alg must choose an allocation x. If x > p, the input stops. Else, the
next and final column has height (1−ε)x. If x > p, the online profit is at most 1,
and the optimal profit is at least 2p+(1−ε)/(q2−1)−ε. If x ≤ p, the online profit
is at most 2x, whereas the optimal profit is at least 3(1−ε)x+(1−ε)/(q2−1)−ε.
It can be seen that the online algorithm should not set x below p, i.e., it should
choose either p or 1. For ε→ 0, the implied competitive ratios tend to

R1 =
3p + 1/(q2 − 1)

2p
and R2 = 2p + 1/(q2 − 1).

These ratios are equal for

p =
3q2 − 5 +

√
9q4 − 14q2 + 9

8q2 − 8
, (1)

and this is the value that we use.
2) This is clear because alg earns only x ≤ 1 on each column, whereas it is

possible to earn q each time.
In our construction, we will set q = 2.14447. From (1) we then get p =

0.709039. The two statements that we proved above imply that if alg stays
in state A or B sufficiently long, a competitive ratio arbitrarily close to R1 =
R2 = 1.69595 follows, since q > R1. The only option remaining for alg is to
keep moving back and forth. For points 3)–5), we first consider a simple case
where alg always acts in the same way. We partition the input into phases. A
new phase starts whenever alg moves to state A from state B.

Observation 1. If alg allocates a nonzero amount (not necessarily the full
column height!) whenever it is in state A, and zero whenever it is in state B, it
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has earned at most
∑n−1

i=0 q−i after n phases (if the first column height in phase
n is 1), while it is possible to earn q

∑n−1
i=0 q−i in these phases.

Consider an algorithm which acts as in Observation 1 for n consecutive phases.
Scale column heights such that the first column height in phase n is 1. Let the
first column of the n phases be column n0. Let the profit of alg on columns
1, . . . , n0−1 be P0. Since the column heights are geometrically increasing during
the n phases (the lowest column height seen in phase i is qi−n), for any δ > 0
and n large enough, we have P0 < δ

3q−3
< δ

q
after the scaling (possibly P0 = 0).

Write the maximum possible online profit on all columns before the last one
as αn

∑n−1
i=0 q−i. Then by Observation 1 and since P0 < δ

q for sufficiently large
n, we have αn < 1 + δ for such n. Denote the allocation of alg in phase i by xi.
We will use repeatedly that for k ≥ 1,

n−1∑

i=0

q−i =
1− q−n

1− q−1
=

q − q1−n

q − 1
. (2)

Lemma 1. Assume that alg acts as in Observation 1 for n consecutive phases
and has a competitive ratio less than (1 − δ)R1. Then for 0 < δ < 0.2 and
sufficiently large n, we have:

– 1/2 < αn < 1 + δ,
– 1/2 < xn < (1− δ)αn−1, and
– αn < (1− δ

2
)αn−1.

Since these three statements eventually lead to a contradiction (we get xn+1 <
(1− δ)(1 − δ

2
)αn etc.), this proves the lower bound for this type of algorithms.

Proof. For the first statement, if αn ≤ 1/2 for large enough n the input just
stops. alg can earn at most 1 on the final column. By Observation 1 and (2),
the implied competitive ratio is

q
∑n−1

i=0 q−i

1 + αn

∑n−1
i=0 q−i

=
q · q−q1−n

q−1

1 + αn
q−q1−n

q−1

≥ q
(
q − q1−n

)

q − 1 + 1
2 (q − q1−n)

→ q2

3
2q − 1

> 2 > R1

for n → ∞. Similarly, if xn ≤ 1/2, the input stops and the implied competitive
ratio is at least

q
∑n−1

i=0 q−i

2xn + (1 + δ)
∑n−1

i=1 q−i
≥ q(q − q1−n)

q − 1 + (1 + δ)(1− q1−n)
→ q2

q + δ
> R1

for n → ∞, δ < 0.2. (Here we use that already αn−1 < 1 + δ.) If xn > 1/2, we
consider the input where a final column of height (1−ε)xn arrives (after the last
column of phase n, which has height q). Now it is possible to earn 4(1− ε)xn on
the last four columns of the input. Letting ε→ 0, the implied competitive ratio
when allocating y after n phases is at least

4xn + q
∑n−1

i=2 q−i

2xn + αn−1

∑n−1
i=1 q−i

=
4(q − 1)xn + 1− q2−n

2(q − 1)xn + αn−1(1− q1−n)
.
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(Note the indices of the summations.) Let n be large enough so that q2−n < δ.
Then it can be verified that

4(q − 1)(1− δ)αn−1 + q − δ

2(q − 1)(1− δ)αn−1 + αn−1(1− δ
q )

> (1 − δ)R1.

(We get equality for αn−1 = 4/(4−18.69δ), but we have 0 < αn−1 < 1+δ so this
cannot happen. Note that 4 − 18.69δ > 0 since δ < 0.2.) The third statement
can be checked by using that limn→∞

∑n−1
i=1 q−i = q

q−1 and verifying that

αn−1

q
· q

q − 1
+

(1 − δ)αn−1

q
<

(

1− δ

2

)

αn−1 · q

q − 1

for q = 2.144472, independently of αn and δ (the difference is about 0.04).
Here we use that due to the scaling which we always do, the profit in phase
n + 1 is (profit until phase n plus whatever the algorithm allocates on the next
column)/q. Therefore the third statement holds for sufficiently large n. �

We give an example that shows a lower bound of 1.69. Here we assume that alg
allocates the highest possible amount in each time that avoids a competitive
ratio of 1.69. Slightly deviating from the above, we set q = 2.169 and p = 0.710.

Input 1 q q q2 q2 q3 q3 q4 q4 q5 q5 q6 q6 q7 q7 q8

alg 1 0 q 0 q2 0 q3 0 0.98q4 0 0.94q5 0 0.88q6 0 0.76q7 0.76q7

opt 0 q 0 q2 0 q3 0 q4 0 q5 0 q6 0 q7 0 q8

It remains to be shown that alg cannot do better by acting differently than
in Observation 1. First of all, any time that alg allocates a nonzero amount in
state B, this simply gives an additional column on which opt can earn q times
the online profit. Hence the overall competitive ratio does not decrease.

This shows that we only need to deal with phases of the form AkB for some
k ≥ 1. We defer this part of the proof to the full version.

3 Algorithm MoreFilling

We first give an informal description of our algorithm. MoreFilling creates blocks
between zero columns. The nonzero part of a block starts by trying to guess a
good allocation for the first two nonzero columns. If the first height is much
smaller than the second one (by a factor of at least γ > 2, then the nonzero part
of the block is simply postponed till later. Otherwise, if the first height is much
larger (by a factor of at least 1

β > 1.4, then the first column is allocated its full
height, and the block will contain a single nonzero column. If the two heights
are relatively close, the minimum between the two heights is allocated.

The main idea of our algorithm is to try and avoid having zero columns if the
nonzero part of a block has just started. Hence there is one case where the first
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The first column arrives at time t = 1. We take u(0) = 0.

1. If u(t − 1) > h(t), set u(t) = 0.
2. If u(t − 1) = 0, set u(t) depending on h(t + 1)/h(t), as follows:

h(t + 1)/h(t) [0, β) [β, 1) [1, γ) [γ,∞)
u(t) h(t) h(t + 1) h(t) 0

3. If u(t−1) > 0, let t1 = 1+max{t ≥ 0|u(t) = 0}, and set H = min(h(t1), h(t1 +
1)).
If t1 = t − 1 and h(t)/h(t − 1) ∈ [1, δ], set q3 := γ, else q3 := δ.
If h(t + 1) ≥ q3H , set u(t) = 0, else u(t) = u(t − 1).

Fig. 2. The algorithm MoreFilling

nonzero column is fully used, where we allow the column height to grow by a
factor of γ > 2 for just one step, while still keeping other (later) column heights
bounded by a smaller factor. This ensures that there is only a zero column if the
new column height is significantly larger, or if the nonzero column is allocated
its full height.

The third column in a block is almost always limited to a maximum allowed
height of δ < 1.6. The only exception is if the second column has height between
1 and δ times the first column, i.e., the block does not contain a column of height
(almost) γ yet. We never let the heights grow by a factor of γ if the block already
contains at least two nonzero columns.

We now formally define our algorithm. Define the following values.

R = = 1.75214 β = R/(2R− 1) = 0.69966
ε = (2R− 3)β = 0.35282 γ = R/(4− 2R+ ε) = 2.06489
δ = (2Rβ − ε− 1)/β = 1.57074 η = 1−R/γ + ε = 0.50414

We have (5 −R/γ + ε)/(1 + δ) = R. Our algorithm is defined in Figure 2.

Theorem 1. The competitive ratio of MoreFilling is at most R = 1.75214.

It should be pointed out that δ could be set to any value between roughly 1.55
and 5/3, and MoreFilling would still be 1.753-competitive. The other variables,
β, ε and γ are decisive.

4 Analysis

We begin our analysis by introducing the block partitioning and giving some
properties of the optimal solution in Section 4.1. We use this to analyze the
most basic type of block in Theorem 2. The remainder of the analysis is omitted
in this extended abstract.
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4.1 Block Partitioning

We classify the columns with zero allocation (also called zero columns) by the
rule in which they are set to 0: a column is of type i if it is set to 0 by Rule
i. The zero columns partition the input into blocks in a natural way. Note that
type 2 columns only occur after other zero columns. We follow the partitioning
scheme from Wang et al. [7], which we describe next.

A type 1 column ends a block, and is a part of that block. If column i is a type
3 column, one block ends at column i − 1 and the next starts at column i + 1.
(In this case, we will decide later what to do with column i.) This partitioning
scheme ignores the type 2 columns (which only occur after other zero columns).
Each block hence consists of zero or more type 2 columns, followed by one or
more nonzero columns and possibly one final type 1 column. For each block B,
the number of nonzero columns in B, also called the length of B, is denoted
by |B|.

Let us consider the possible optimal profit on a block. We normalize the height
of the columns in this block such that the height of the first column is exactly 1.

Definition 1. We define the BaseHeight of a block with at least two nonzero
columns as the minimum height among its first two columns.

The BaseHeight is abbreviated by H in the algorithm.

Definition 2. A block is called long if it has at least one (nonzero) column after
its first fully-used column, else it is called short.

Observation 2. Consider a block of which the first nonzero column is column
i. We have h(i) = 1. If h(i) > h(i +1), then h(i +1) ≥ βh(i), or u(i +1) = 0. If
u(i + 1) > 0 and the last column k of this block is of type 1, we have h(k) < β.

If h(i) ≤ h(i+1), then h(i+1) < γ. Moreover, almost always we have h(j) < δ
for all j > i + 1 such that j and i belong to the same block. The only exception
to this is if h(i + 1) ≤ δ, in which case we have h(i + 2) < γ if i + 2 is part of
the same block. In addition, if the last column k of the block of i is of type 1, we
have h(k) < α.

We now consider the type 2 zero columns at the start of the block.

Lemma 2 (Wang et al.). Given a sequence of columns S, if each column’s
height is at least γ times the height of the previous one (where γ ≥ 2), then
the value of the optimal solution is at most γ2

γ2−1h where h is the height of the
last column in S. This value is achieved by using every other column completely
starting from the right.

In order to efficiently deal with all the cases, we will in fact use the following
estimates, which are all higher than the bound from Lemma 2. Consider a col-
umn i of height h which is preceded by type 2 columns. We make two distinctions:
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1 1 1δδγ δ γ δδ β βδβδ1δ1 ββδ

Fig. 3. This figure shows the maximum possible heights of nonzero columns in a block
(plus a final type 1 column). There are three cases. Let the first nonzero column of the
block be t, then we have the cases δh(t) < h(t+1) ≤ γh(t) (left), h(t) ≤ h(t+1) ≤ δh(t)
(middle), and βh(t) ≤ h(t + 1) < h(t) (right). If h(t + 1) < βh(t), the block contains
only a single nonzero column; if h(t + 1) > γh(t), no block starts at time t. The third
column may have height γ only if the heights are ascending and the second column has
height at most δ. Shown is the case where the sixth column is of type 1; if there are
additional nonzero columns instead, their maximum height is the same as that of the
fifth column.

one based on whether a(i) > h/γ or not (if a(i) > h/γ, then a(i − 1) = 0), and
one based on whether the block containing column i is long or short (Definition 2).
The bounds used are as follows.

a(i) > h/γ a(i) ≤ h/γ
Short block ε ≈ 0.353 εγ ≈ 0.729
Long block η ≈ 0.505 εγ ≈ 0.729

Naturally the profit on type 2 columns does not really depend on the type of
the following block, but this assumption simplifies the analysis later.

Observation 3. If the input contains a sequence of columns i, . . . , j such that
h(k) ≥ γh(k − 1) for k = i + 1, . . . , j, then MoreFilling earns 0 on columns
i, . . . , j − 1.

To determine the maximum optimal profit on a block, we need to consider
how the type 2 blocks at the start of such a block are serviced. Depending on the
exact heights of the nonzero columns, it may not be optimal to service them as
described in Lemma 2. However, Observation 3 allows us to make the following
assumption.

Assumption 1. If columns i, . . . , j form a sequence of type 2 columns followed
by a nonzero column j, then h(k) = γh(k − 1) for k = i + 1, . . . , j + 1.

Here we simply round up column heights, which can only improve the total
optimal value. Regarding MoreFilling, if the previous block ended with a type
1 column, its behavior is unaffected. If it ended with a type 3 column, then the
column following that was too high for the block to continue, and it is now not
less high than before.

Fix an optimal solution and denote its allocation to column i by a(i).

Lemma 3. For each column i, we have a(i) = 0 or a(i) > h(i)/3.
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Proof. Suppose the optimal allocation for columns i − 1, i, i + 1 is x, a(i), z (if
one of these columns does not exist, assume that its height is zero), then we have
x = 0 or x = a(i) and we also have z = 0 or z = a(i), so if a(i) < h(i)/3 we can
replace x, a(i), z by 0, h(i), 0, which is always feasible. �

Theorem 2. MoreFilling is R-competitive on a block which is not immediately
followed by a type 3 column.

Proof. Let first be the number of the first nonzero column in block b, and
normalize h(first) = 1. Then, the profit of our algorithm on this block is |b| or
β|b|, depending on whether h(first) ≤ h(first + 1). By the text below Lemma
2, the optimal profit on the type 2 columns in b is at most εγh(first) (the
height of the last type 2 column is at most h(first)/γ, and if the last type 2
column is not used, the optimal profit on the other type 2 columns is at most
εh(first), or at most ηh(first) if the block is long). For the calculations, we
make the worst-case assumption that there is a type 1 column at the end of this
block, and it has height 1 (it actually must have smaller height). The exception
to this is a block of length 1; in that case, the type 1 column must have height
at most βh(first) by our algorithm.

Note that all nonzero columns in the block have height at least 1. To derive
upper bounds for the optimal profit on a block, we may assume that each of these
columns has the maximum height as bounded by Observation 2 (Figure 3). The
only allocations that we need to consider to find the optimal profit are values that
are the height of at least one column. In particular, for column first, by Lemma
3 only the following allocations need to be considered: h(first), 1

γ
h(first), and

possibly βh(first).
This gives us the results shown in Figure 4. The figure shows the optimal profit

for each case and compares it to the profit of MoreFilling. Regarding a block of
length 1 for instance, we find that it is optimal to set a(first) = a(first+1) =
h(first + 1) ≤ βh(first), a(first − 1) = 0, and then it is possible to earn at
most εh(first) < 0.353h(first) on the type 2 columns up to column first− 2.

For a block that contains three or more nonzero columns, note that adding a
column of height δ (resp. δβ in case h(first + 1) < h(first)) adds at most δ
(resp. δβ) to the optimal profit and exactly 1 (resp. β) to the profit of MoreFill-
ing. Since δ < R, this does not increase the competitive ratio above R. �

To complete our analysis, we still need to eliminate the type 3 columns. We will
not do this here, but merely indicate the difficulties we encounter in this part of
the proof (which is by far the largest part).

Let column r be a type 3 zero column. These columns are the most difficult to
handle for the following reason. For type 1 columns, MoreFilling already decided
in the previous time step (or earlier) to allocate zero to the type 1 column,
because its height is too small compared to some previous height. Similarly,
type 2 columns are allocated zero because their height is small compared to
the immediately following height. For these cases, it is clear how to group the
columns into blocks as described above (i.e., how to compensate for the missed
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ε + 2β = R 3 + η

2
= R 4 + η

3
= 1.502

3β + ε

2β
= R 4β + η

3β
= 1.574

Fig. 4. Possible profiles of blocks that are followed by type 1 columns. At the top are
blocks which start with a fully-used column, below are blocks where the second column
is fully-used. The triangles indicate preceding type 2 columns (that have geometrically
increasing heights), of value at most ε < 0.353, or η < 0.505 for long blocks. The
dashed blocks indicate blocks created by MoreFilling. Bold lines indicate the optimal
solution for a block.
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ε + 2β = R 3β + ε

2β
= R

4γ + εγ

2γ + 1
= R 5γ + εγ

δγ + γ + 1
= R

Fig. 5. The tight cases. The white triangles represent profits on preceding type two
columns of value ε; the black triangles represent profits of value εγ (in this case, the
optimal solution uses the last of the type 2 columns). For an explanation of the other
symbols, see Figure 4.

profit on the zero column), and we can analyze these cases in a straightforward
way as shown in Theorem 2.

In contrast, type 3 columns are allocated zero “at the last minute”, and this
decision does not depend on its own height. This is in particular troublesome
in the case where column r − 1 was allocated h(r) < h(r − 1). In normal cases,
column r would be allocated h(r) to compensate for the fact that less than
h(r − 1) was earned on column r − 1. But now, column r is allocated zero, and
in many cases we will have to consider the block following column r to complete
the analysis. We show the tight cases in Figure 5.
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5 Conclusions

We have narrowed the gap for this problem to 0.056. We believe that both our
lower bound and upper bound could potentially be improved, but we conjecture
that the lower bound is closer to the true competitive ratio of the problem.
However, it is not easy to see how to narrow the gap further. There are four
cases where the analysis for our algorithm is tight; additionally, there are various
cases where the analysis is nearly tight. An improved algorithm would have to
achieve a better ratio in all of the very different tight cases without losing too
much in other cases.

Acknowledgment. The author would like to thank Leah Epstein and Asaf Levin
for interesting discussions, and Marek Chrobak for bringing a gap in the proof
of the lower bound to our attention.
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Approximate Counting for Complex-Weighted

Boolean Constraint Satisfaction Problems
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Abstract. Constraint satisfaction problems (or CSPs) have been ex-
tensively studied in, e.g., artificial intelligence, database theory, graph
theory, and statistical physics. A practical application often requires only
an approximate value of the total number of assignments that satisfy
all given Boolean constraints. There is a known trichotomy theorem for
such approximate counting for (non-weighted) Boolean CSPs; namely, all
such counting problems are neatly classified into three categories under
polynomial-time approximation-preserving reductions. We extend this
result to approximate counting for complex-weighted Boolean CSPs, pro-
vided that all unary constraints are freely available to use. This marks
a significant progress in the quest for the approximation classification of
all counting Boolean CSPs. To deal with complex weights, we employ
proof techniques along the line of solving Holant problems. Our result
also gives an approximation version of the known dichotomy theorem
of the complexity of exact counting for such complex-weighted Boolean
CSPs.

1 Background and Challenges

Constraint satisfaction problems (or CSPs) have appeared in many different con-
texts, such as graph theory, database theory, type inferences, scheduling, and no-
tably artificial intelligence, from which the notion of CSPs was originated. The
importance of CSPs comes partly from the fact that the framework of the CSPs
is broad enough to capture numerous problems that arise in real applications.
A CSP instance is composed of a set of “variables” (over a specified domain)
and a set of “constraints” (such a set of constraints is sometimes called a con-
straint language) among these variables. As a decision problem, a CSP asks
whether there exists a variable assignment, which satisfies all the given con-
straints. Typical examples of CSPs include the satisfiability problem (or SAT)
and the colorability problem, both of which are known to be NP-complete. On
the contrary, other CSPs, such as the perfect matching problem on planar graphs,
fall into P. Toward a better understanding of the characteristics of CSPs, one
naturally asks what kind of constraints make them NP-complete. Given a set
F of constraints, we restrict our attention on CSP instances that depend only
on constraints chosen from F . Such a restricted CSP is conventionally denoted
CSP(F). A classic dichotomy theorem of Schaefer [8] states that if F is included

K. Jansen and R. Solis-Oba (Eds.): WAOA 2010, LNCS 6534, pp. 261–272, 2011.
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in a certain clearly specified class, CSP(F) belongs to P; otherwise, it is indeed
NP-complete. There are no intermediate Boolean CSPs between P and the class
of NP-complete problems.

To count the number of all satisfying assignments for a given CSP instance
also has been a challenging question. The counting satisfiability problem, #SAT,
is such a counting CSP (or succinctly, #CSP) and it is proven to be complete
for Valiant’s class #P of counting functions. When restricted to a set F of
Boolean constraints, Creignou and Hermann [3] gave the first dichotomy theorem
concerning the complexity of the restricted counting problem #CSP(F).

If all constraints in F are affine,� then #CSP(F) is in FP. Otherwise,
#CSP(F) is #P-complete.

Dyer, Goldberg, and Jerrum [6] extended their result to nonnegative-weighted
Boolean #CSPs. Eventually, Cai, Lu, and Xia [2] further pushed the scope to
complex-weighted Boolean #CSPs.

However, when we turn our attention from exact counting to approximate
counting, a situation looks quite different. Instead of the aforementioned di-
chotomy theorems, Dyer et al. [7] presented a trichotomy theorem for the com-
plexity of approximately counting the number of satisfying assignments for
each Boolean CSP instance. What they actually proved is that, depending on
the choice of a set F of Boolean constraints, the complexity of approximating
#CSP(F) can be classified into three categories.

If all constraints in F are affine, then #CSP(F) is in FP. Other-
wise, if all constraints in F are in a well-defined class, known as IM2,
then #CSP(F) is equivalent to #BIS. Otherwise, #CSP(F) is equiva-
lent to #SAT. The equivalence is defined in terms of polynomial-time
approximation-preserving reductions (or AP-reductions).

Here, #BIS is the problem of counting the number of independent sets in a given
bipartite graph.

There still remains an unsolved question on the approximation complexity of
a “weighted” version of #CSPs: what happens if we expand the scope of #CSPs
from non-weighted ones to complex-weighted ones? When we deal with complex-
weighted constraints, a significant complication occurs as a result of massive can-
cellations of weights on the process of summing all weights of the constraints.
This situation demands a quite different approach toward the complex-weighted
#CSPs. Do we still have a trichotomy theorem, similar to that of Dyer et al.?
In this paper, we answer this question affirmatively under a reasonable assump-
tion that all unary (i.e., arity 1) constraints are freely available to use. Let
the notation #CSP∗(F) denote the counting problem #CSP(F) with this extra
assumption. Such a free use of unary constraints has appeared in the past lit-
erature. In case of bounded-degree #CSPs, Dyer et al. [5] assumed free unary
unweighted Boolean constraints. Although it is reasonable, this extra condition
makes the complexity of #CSP∗(F) look quite different from the complexity
of #CSP(F), except for the case of Boolean constraints. When restricted to
� An affine relation is a set of solutions of a certain set of linear equations over GF(2).
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Boolean constraints, then the only nontrivial unitary constraints are Δ0 and Δ1

(which will be explained in Section 2) and thus, as shown in [7], we can eliminate
them from the definition of #CSP∗(F) using randomized approximation algo-
rithms. In the case of complex-weighted constraints, however, the elimination of
all unitary constraints is seemingly impossible.

As the main theorem, we will prove a trichotomy theorem (as in Theorem 1)
for the approximation complexity of #CSP∗(F)’s. This theorem marks a signif-
icant progress in the quest of determining the approximation complexity of all
#CSP(F)’s. Our proof heavily relies on the previous works of Dyer et al. [6,7]
and, particularly, of Cai et al. [2], which is based on a theory of signatures (see,
e.g., [1]) that formulate underlying concepts of holographic algorithms. A chal-
lenging issue is that core arguments of Dyer et al. [7] exploited Boolean natures
of constraints but they are not designed to lead to a trichotomy theorem for
complex-weighted constraints. Cai’s theory of signature, on the contrary, deals
with such constraints; however, the theory has been developed over polynomial-
time Turing reductions, not meant for AP-reductions. Therefore, our first task
is to re-examine the well-known results in this theory and salvage its key argu-
ments that are still valid for our AP-reductions. From that point on, we need to
find our own way to establish the desired approximation theory for #CSPs.

All proofs omitted due to page limitation can be found in [10].

2 Basic Definitions

We briefly present fundamental notions and notations, which will be used in
later sections. Let N and C denote respectively the set of all natural numbers
(i.e., non-negative integers) and the set of all complex numbers. For convenience,
the notation N+ denotes N−{0}. For each number n ∈ N, [n] denotes the integer
set {1, 2, . . . , n}. Note that we always treat vectors as row vectors, unless stated
otherwise.

When we refer to nodes in a given undirected graph, unless there is any ambi-
guity, we call such nodes by their labels instead of their original node names. For
instance, if a node v is labeled by a variable x, then we often call it “node x,” al-
though there are many other nodes labeled x, as far as it is clear from the context
that which node is referred to.

2.1 Signatures, Holant Problems, and #CSPs

For any undirected graph G = (V, E) (where V is a vertex set and E is an edge
set) and a vertex v ∈ V , an incident set E(v) of v is the set of all edges incident
to v, and deg(v) is the degree of v. For any matrix A, the notation AT denotes
the transposed matrix of A.

We follow the terminology developed in [1]. Let Σ be a finite set with |Σ| ≥ 1.
Let F1 and F2 be two sets of functions f : Σm → C with m ≥ 1. A bipartite
Holant problem Holant(F1|F2) is a counting problem defined as follows. The
problem takes an instance, called a (bipartite) signature grid Ω = (G,F ′

1|F ′
2, π),

which consists of a finite undirected bipartite graph G = (V1|V2, E) (assuming
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V1 ∩ V2 = Ø for simplicity), two finite subsets F ′
1 ⊆ F1 and F ′

2 ⊆ F2, and
a labeling function π such that each vertex v ∈ Vi is labeled by a function
π(v) : {0, 1}deg(v) → C in F ′

i , where i ∈ {1, 2}. For convenience, we some-
times write fv for π(v). Assuming the standard lexicographic order on Σdeg(v),
we express fv as a series of its output values, which is identified with an ele-
ment in the space C⊗|Σ|deg(v)

. For instance, if Σ = {0, 1} and deg(v) = 2, then
fv = (fv(00), fv(01), fv(10), fv(11)). Each function f in F1 ∪ F2 is called a sig-
nature. When all entries in a signature f sit in {0, 1}, we particularly call f
a Boolean signature. A signature f is symmetric iff f ’s values depend only on
the Hamming weight of inputs. For any symmetric function f of arity k, we use
another notation f = [f0, f1, . . . , fk], where each fi is the value of f on inputs
of Hamming weight i. For example, if f is the equality function (EQk) of arity
k, then it is expressed as [1, 0, . . . , 0, 1] (k − 1 zeros). We use two special signa-
tures: Δ0 = [1, 0] and Δ1 = [0, 1]. Generally, let U denote the set of all unary
(i.e., arity 1) signatures.

Let Asn(E) be the set of all edge assignments σ : E → {0, 1}. The bipar-
tite Holant problem is to compute HolantΩ =def

∑
σ∈Asn(E)

∏
v∈V fv(σ|E(v)),

where σ|E(v) denotes the binary string (σ(w1), σ(w2), · · · , σ(wk)) if E(v) =
{w1, w2, . . . , wk}, sorted in a certain pre-fixed order.

Here, we need to address a technical issue concerning complex-valued func-
tions. Recall that each instance to a Holant problem involves a finite set of
signatures. How can we compute those signatures? More importantly, how can
we receive them as a part of input instance in the first place? For our core subject
on the (approximate) computability of a Holant problem, it is quite convenient
to treat such a signature f of arity k as a “black box,” which answers the com-
plex value f(x) instantly whenever one makes a query x ∈ {0, 1}k. In this way,
we do not need to include the entire description of f (e.g., bit sequences rep-
resenting complex numbers) as a part of the instance for the Holant problem.
See Section 2.2 for a further discussion on the running time of an algorithm that
takes complex-valued signatures.

Let us define complex-weighted Boolean #CSP problems. Associated with
a set F of signatures, a complex-weighted Boolean #CSP problem, denoted
#CSP(F), takes a finite set G of constraints (that is, signatures) of the form
h(xi1 , xi2 , . . . , xik

) on Boolean variables x1, x2, . . . , xn, where i1, . . . , ik ∈ [n],
h ∈ F , and it outputs the value:

∑
x1,x2,...,xn∈{0,1}

∏
h∈G f(xi1 , xi2 , . . . , xik

).
In a connection to Holant problems, we can view #CSP(F) as a special case
of bipartite Holant problem of the following form: an instance of #CSP(F)
is a bipartite graph G, where all vertices on the left-hand side are labeled by
variables with the equality functions (EQk) and all vertices on the right-hand
side are labeled by constraints. In short, #CSP(F) is just another name for
Holant({EQk}k≥1|F). Throughout this paper, we interchangeably use these two
different ways to view the complex-weighted Boolean #CSP problems.

To improve readability, we often omit the set notation and express,
e.g., #CSP(f,F ,G) to mean #CSP({f} ∪ F ∪ G). When we allow any unary
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signature to use for free of charge, we briefly write #CSP∗(F) instead of
#CSP(U ,F). In the rest of this paper, we will target the counting problems
#CSP∗(F).

2.2 Randomized Approximation Schemes

We give a general treatment to randomized approximation schemes. Let F be
any counting function mapping from {0, 1}∗ to C. To treat complex numbers,
we need to modify the standard notions of computability and randomized ap-
proximation schemes that are based on the binary alphabet. Now, let us define
the function class FPC as the set of all complex-valued functions that can be
computed deterministically in polynomial time. It is important to note that, as
we have stated before, we do not treat complex numbers as bit sequences; rather,
we treat the complex numbers as basic “objects” and then perform “natural”
operations (such as, multiplications, addition, division, etc.) on them as basic
operations, each of which requires only constant time to execute. To given com-
plex numbers, we apply such natural operations only in a very simple and clear
fashion; therefore, our assumption on the constant execution time of the oper-
ations causes no harm in a later discussion on the computability of #CSP(F).
(See [1] for further justification.)

The notation Re(α) (Im(α), resp.) denotes the real part (imaginary part,
resp.) of a complex number α. A randomized approximation scheme for F is a
randomized algorithm that takes a standard input x ∈ Σ∗ together with an error
tolerance parameter ε ∈ (0, 1), and outputs values w with probability at least
3/4 for which

1. min{γRe(F (x)), γ−1Re(F (x))} ≤ Re(w) ≤ max{γRe(F (x)), γ−1Re(F (x))}
and

2. min{γIm(F (x)), γ−1Im(F (x))} ≤ Im(w) ≤ max{γIm(F (x)), γ−1Im(F (x))},
where γ = e−ε and e is the base of natural logarithms. Moreover, a fully
polynomial-time randomized approximation scheme (or simply, FPRAS) for F
is a randomized approximation scheme for F that runs in time polynomial in
(|x|, 1/ε).

Given two functions F and G, a polynomial-time approximation-preserving
reduction (or AP-reduction) from F to G is a randomized algorithm M that takes
a pair (x, ε) ∈ Σ∗× (0, 1) as input, uses an arbitrary randomized approximation
scheme N for G as oracle, and satisfies the following conditions: (i) M is a
randomized approximation scheme for F ; (ii) every oracle call made by M is
of the form (w, δ) ∈ Σ∗ × (0, 1) with δ−1 ≤ poly(|x|, 1/ε) and its answer is the
outcome of N on (w, δ); and (iii) the running time of M is bounded from above
by a certain polynomial in (|x|, 1/ε), not depending on the choice of N . In this
case, we say that F is AP-reducible to G via M and we also write F ≤AP G.
If F ≤AP G and G ≤AP F , then F and G are AP-interreducible and we write
F ≡AP G. The following lemma is straightforward.

Lemma 1. If F ⊆ G, then #CSP∗(F) ≤AP #CSP∗(G).
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3 T-Constructibility

We will present a key technique of constructing various signatures from a given
set of signatures by applying seven simple operations, while maintaining the
AP-reducibility between them.

To pursue notational succinctness, we use the following succinct no-
tations throughout this paper. For any index i ∈ [k] and any
bit c ∈ {0, 1}, let fxi=c denote the function g satisfying that
g(x1, . . . , xi−1, xi+1, . . . , xk) = f(x1, . . . , xi−1, c, xi+1, . . . , xk) for every tu-
ple (x1, . . . , xi−1, xi+1, . . . , xk) ∈ {0, 1}k−1. For any two indices i, j ∈
[k] with i < j, we denote by fxi=xj the function g defined as
g(x1, . . . , xi, . . . , xj1 , xj+1, . . . , xk) = f(x1, . . . , xi, . . . , xj−1, xi, xj+1, . . . , xk).
Moreover, let fxi=∗ be the function g defined as g(x1, . . . , xi−1, xi+1, . . . , xk) =∑

xi∈{0,1} f(x1, . . . , xi−1, xi, xi+1, . . . , xk).
We say that an arity-k signature f is T-constructible (or T-constructed) from

a set G of signatures if f can be obtained, initially from signatures in G, by
applying a finite number (possibly zero) of operations described below.

1. Permutation: for two indices i, j ∈ [k] with i < j, by exchanging two columns
xi and xj with i < j in (x1, . . . , xi, . . . , xj , . . . , xk), transform g into g′, which
is defined by g′(x1, . . . , xi, . . . , xj , . . . , xk) = g(x1, . . . , xj , . . . , xi, . . . , xk).

2. Pinning: for an index i ∈ [k] and a bit c ∈ {0, 1}, build gxi=c from g.
3. Projection: for an index i ∈ [k], build gxi=∗ from g.
4. Linking: for two distinct indices i, j ∈ [k], construct gxi=xj from g.
5. Expansion: for an index i ∈ [k], introduce a new “free” variable, say, y

and transform g into g′, which is defined by g′(x1, . . . , xi, y, xi+1, . . . , xk) =
g(x1, . . . , xk).

6. Multiplication: from two signatures f and g of arity k, build g1 · g2, which is
defined as (g1 · g2)(x1, . . . , xk) = g1(x1, . . . , xk)g2(x1, . . . , xk).

7. Normalization: for a constant λ ∈ C− {0}, build λ · g from g, where λ · g is
defined as (λ · g)(x1, . . . , xk) = λ · g(x1, . . . , xk).

When f is T-constructible from G, we briefly write f ≤con G. In particular, when
G is a singleton {g}, we write f ≤con g instead of f ≤con {g}.

The usefulness of T-constructibility comes from the following lemma, which
indicates the invariance of the T-constructibility under AP-reductions.

Lemma 2. If f ≤con G, then #CSP∗(f,F) ≤AP #CSP∗(G,F) for any set F
of signatures.

4 Relations and Signature Sets

A relation of arity k is a subset of {0, 1}k. Such a relation can be also viewed
as a function mapping Boolean variables to {0, 1} (i.e., x ∈ R iff R(x) = 1,
for every x ∈ {0, 1}k) and it can be treated as a Boolean signature as well. For
instance, logical relations OR, NAND, XOR, and Implies are all expressed
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as appropriate Boolean signatures in the following manner: OR = [0, 1, 1],
NAND = [1, 1, 0], XOR = [0, 1, 0], and Implies = (1, 1, 0, 1).

For each signature f of arity k, its underlying relation is the set Rf = {x ∈
{0, 1}k | f(x) 
= 0}. A relation R is said to be affine if it is expressed as a set of
solutions to a certain system of linear equations over GF (2). Let AFFINE be
the set of all such affine relations. Moreover, a non-empty set F of relations is
also called affine if F is a subset of AFFINE. A relation R is in IMP (slightly
different from IM2 in [7]) if it is logically equivalent to a conjunction of a certain
“positive” number of relations of the form Δ0(x), Δ1(x), and Implies(x, y). It
is worth mentioning that EQ2 ∈ IMP but EQ1 
∈ IMP .

The purpose of this paper is to extend the trichotomy theorem of Dyer et al. [7]
for relations, stated in Section 1, to another trichotomy theorem for complex
signatures. Recall that U denotes the set of all unary signatures. To simplify our
further descriptions, it is better to introduce the following five special sets of
signatures.

1. Let NZ denote the set of all non-zero signatures.
2. Let DG denote the set of all signatures f of arity k that are expressed by

products of k unary functions, which are applied respectively to k variables.
A signature in DG is called degenerate. Obviously, U ⊆ DG. See [2] for its
basic property.

3. Let ED denote the set of functions expressed as products of unary signatures,
the equality EQ2, and the disequality XOR (which are possibly multiplied
by complex constants). Clearly, DG ⊆ ED. The name ED refers to its key
components, “equality” and “disequality.” See [2] for its definition.

4. Let IM be the set of all signatures f such that Rf is in IMP and f equals
Rf · g for a certain non-zero signature g. Here, Rf is viewed as a Boolean
function (i.e., R(x) = 1 iff x ∈ R, for all x’s). It is important to note that
IM∩NZ = Ø, because IMP ∩ NZ = Ø.

5. Let AF denote the set of all signatures of the form
g(x1, . . . , xk)

∏
j:j �=i Rj(xi, xj) for a certain fixed index i ∈ [k], where

g is in DG and each Rj is an affine relation. Note that f ∈ AF implies
Rf ∈ AFFINE. The name AF comes from its “affine”-like nature.
(Compare this with A in [2].)

5 Counting Complex-Weighted Solutions

We will discuss two important counting problems used in the literature. The
counting satisfiability problem #SAT is a problem of counting the number of
truth assignments that make each given propositional formula true. This problem
was proven to be complete for #P under AP-reductions [4]. Another crucial
problem in this paper is the counting downset problem, which is proven to be AP-
interreducible to #BIS (i.e., the problem of counting the number of independent
sets in a given bipartite graph). For any partially ordered set (X,�), a downset
in (X,�) is a subset D of X that is closed downward under �: namely, for any
x, y ∈ X , if x � y and y ∈ D then x ∈ D. The counting downset problem,
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denoted #DOWNSET, takes an instance of a partially ordered set (X,�), and
it outputs the number of all downsets in (X,�).

Dyer et al. [7] showed that those two counting problems, #SAT and
#DOWNSET, posses the computational power equivalent to #CSP(OR) and
#CSP(Implies), respectively, under AP-reductions. Nevertheless, to deal with
complex-weighted counting problems rather than unweighted ones, we need to
introduce complex-weighted versions of #SAT and #DOWNSET.

In a quite straightforward way, we can define #SAT∗
C, a complex-weighted

version of #SAT. Let φ be any propositional formula and let V (φ) be the set
of all variables appearing in φ. Let {wx}x∈V (φ) be any series of node-weight
functions wx : {0, 1} → C \ {0}. Given such a pair (φ, {wx}x∈V (φ)), #SAT∗

C

outputs the sum of all weights w(σ) over every truth assignment σ satisfying
φ, where w(σ) denotes the product of all wx(σ(x))’s over every x ∈ V (σ). If
wx(σ(x)) always equals 1 for every pair of σ and x ∈ V (σ), then we immediately
obtain #SAT.

Lemma 3. #SAT∗
C
≤AP #CSP∗(OR).

Similar to #SAT∗
C
, we introduce a complex-weighted version of #DOWNSET,

denoted #DOWNSET∗
C. Let (X,�) be any partially ordered set and let {wx}x∈X

be any series of node-weight functions wx : {0, 1} → C − {0}. The count-
ing problem #DOWNSET∗

C for complex-weighted downsets takes an instance
((X,�), {wx}x∈X) and outputs the sum of all weights w(D) over any downset
D of (X,�), where w(D) means

∏
x∈D wx(1). Moreover, we introduce an-

other variant of #DOWNSET, denoted #DOWNSETC. Unlike #DOWNSET∗
C,

#DOWNSETC takes a pair ((X,�), w), where w : P (X) → C − {0}, as an in-
stance and it outputs the sum of all weights w(D) of any downset D in (X,�),
where P (X) is the power set of X .

Proposition 1. 1. #DOWNSET∗
C ≤AP #CSP∗(Implies).

2. For any signature set F , if F ⊆ IM, then #CSP∗(F) ≤AP #DOWNSETC.

6 Elementary AP-Reductions

In the rest of this paper, we intend to prove our trichotomy theorem (Theorem 1).
Its proof is comprised of several crucial ingredients. A starting point of the proof
is the computability result, proven by Cai et al. [2, Section 3], that, for any set
F of signatures, if F ⊆ ED then #CSP(F) belongs to FPC. From this, we can
prove:

Lemma 4. For any signature set F , if either F ⊆ AF or F ⊆ ED, then
#CSP∗(F) is in FPC.

In the remainder of this paper, we will focus our attention on the remaining
case where F � AF ∪ ED. Now, we begin exploring useful properties of binary
(i.e., arity 2) signatures. We remark that, since all unary signatures are free to
use, it holds that #CSP∗(Δ0, Δ1,F) ≡AP #CSP∗(F) for any set F of signatures.
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As one can easily see, two relations, OR and NAND, are similar in nature. T-
constructibility helps establish the AP-interreducibility between OR and NAND
in terms of #CSP∗s.

Lemma 5. For any signature set F , it holds that #CSP∗(OR,F) ≡AP

#CSP∗(NAND,F).

The following lemma shows various lower bounds of #CSP∗s restricted to binary
signatures. These lower bounds will serve a basis to more general lower bounds
of #CSP∗s in Section 8.

Lemma 6. Each of the following statements holds. Let F be any signature set.

1. If a ∈ C with a 
= 0, then #CSP∗(OR,F) ≤AP #CSP∗([0, a, 1],F) and
#CSP∗(OR,F) ≤AP #CSP∗([1, a, 0],F).

2. If a, b ∈ C with ab 
= 0, then #CSP∗(XOR,F) ≤AP #CSP∗((0, a, b, 0),F)
and #CSP∗(OR,F) ≤AP #CSP∗((0, a, b, 1),F). The same statement holds
for (1, a, b, 0).

3. Let f = (1, a, 0, b) with a, b ∈ C. If ab 
= 0, then #CSP∗(Implies,F) ≤AP

#CSP∗(f,F). By permutation, (1, 0, a, b) also yields the same consequence.
4. Let x, y, z ∈ C. If xyz 
= 0 and xy 
= z, then #CSP∗(OR,F) ≤AP

#CSP∗((1, x, y, z),F).

7 Affine Support and Imp Support

Underlying relations of complex-valued signatures f play a distinguishing role in
our analysis of the behaviors of #CSP∗(f). In particular, relations in AFFINE∪
IMP are crucial part of the proof of our trichotomy theorem.

To handle the properties of AFFINE and IMP , it is convenient to introduce
a notion of affine support [6] and “imp” support. A signature f is said to have
affine support if its underlying relation Rf is affine. Clearly, every signature
in AF has affine support; moreover, all unary signatures have affine support.
Signatures that have affine support will be characterized in Lemma 7. A signature
f has imp support if its underlying relation Rf is in IMP . All signatures in IM
obviously have imp support.

In this section, we will present three technical lemmas, which capture useful
properties of affine support and imp support. The first lemma gives a complete
characterization of non-zero signatures that have affine support. Notice that if
either f ∈ NZ or f has arity 1 then f has affine support. For any Boolean matrix
A, the notation ξA denotes the function defined as follows: if AXT = O then
ξA(x1, . . . , xk) = 1; otherwise, ξA(x1, . . . , xk) = 0, where O is an all-0 column
vector, X = (x1, . . . , xk, 1), and AXT is calculated over GF (2).

Lemma 7. For any signature f 
∈ NZ of arity k ≥ 2, f has affine sup-
port iff there exist a (k + 1)-by-(k + 1) Boolean matrix A, a signature g, a
number m with 1 ≤ m < k, and (after properly permuting variable indices)
variables x1, x2, . . . , xm, which are free in the equation AXT = O, and vari-
ables xm+1, xm+2, . . . , xk, which are depending on these free variables, such



270 T. Yamakami

that f(x1, . . . , xm, . . . , xk) = ξA(x1, . . . , xm, . . . , xk)g(x1, . . . , xm) and Rg ⊇
ξ

xm+1=∗,...,xk=∗
A (seen as sets), where X = (x1, x2, . . . , xk, 1). Moreover, in this

case, if g ∈ AF , then f ∈ AF .

The above lemma gives a certain canonical form to signatures when they have
affine support. As a corollary of the lemma, we obtain:

Corollary 1. Let f be any signature of arity k ≥ 3 with f 
∈ AF ∪ NZ. Let
F be any set of signatures. If f has affine support, then there exists a signature
g of arity m such that 2 ≤ m < k, g 
∈ AF , g ≤con f , and either g is a
non-zero signature or g has no affine support. In particular, g is of the form
fxm+1=∗,...,xk=∗ after an appropriate permutation of variable indices.

From any given signature f , it is possible to extract factors of the form Δ0(x),
Δ1(x), and EQ2(x, y) from f . After such an extraction, the remaining portion
of the signature can be expressed by a notion of simple form. For every arity-k
signature f , we consider its representing Boolean matrix Mf , whose rows are in-
dexed by all instances a = (a1, a2, . . . , ak) in Rf (in the standard lexicographical
order), columns are indexed by then numbers in [k], and each (a, i)-entry is a
Boolean value ai. We say that a signature is in simple form if its representing
Boolean matrix does not contain all-0 columns, all-1 columns, or any pair of
identical columns.

As is stated in the lemma below, we can always factorize a given signature
into two factors, at least one of which is in simple form.

Lemma 8. For any arity-k signature f , there exist two indices m and m′ with
1 ≤ m ≤ m′ ≤ k, a relation R ∈ (IMP ∩ AFFINE ∩ ED) ∪ {[1, 1]}, and a
signature g such that (after properly permuting variable indices) f(x1, . . . , xk) =
R(x1, . . . , xm′)g(xm, . . . , xk), g ≤con f , and g is in simple form. Moreover, f
has affine support iff g has affine support.

It is useful to stretch the aforementioned notion of simple form by further ex-
cluding any pair of complementary columns from representing Boolean matrices.
To be more precise, a signature f is said to be in clean form if there is no col-
umn, specified below, in the representing Boolean matrix Mf : (i) all-0 columns,
(ii) all-1 columns, (iii) two identical columns, and (iv) two columns which are
complementary (i.e., the component-wise XOR of the two columns becomes an
all-1 column).

Lemma 9. For each signature f of arity k ≥ 1, there exist two indices m and
m′ with 1 ≤ m ≤ m′ ≤ k, a relation p ∈ (AFFINE ∩ ED) ∪ {[1, 1]}, and a
signature g (or it might possibly be the constant 1) such that (after permuting
variable indices) f(x1, . . . , xk) = R(x1, . . . , xm′)g(xm, . . . , xk) and g is in clean
form. Moreover, (i) if f 
∈ ED then g 
∈ ED and (ii) if f has affine support iff g
has affine support.

Before closing this section, we present a useful property of signatures in clean
form. Let S3 denote the symmetric group over {1, 2, 3}. The proof of this property
is part of the proof of [2, Lemma 4.4].
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Lemma 10. Let f 
∈ ED of arity k ≥ 2 having affine support. If f is in clean
form, then the following two statements hold.

1. If f 
∈ NZ and k ≥ 3, then there exists a signature h ∈ {[a, 0, 1, 0], [0, 1, 0, a]}
not in ED with a 
= 0 such that h ≤con f . In particular, h(x1, x2, x3) =∏

σ∈S3
g(xσ(1), xσ(2), xσ(3)) after an appropriate index re-ordering, where g

(before normalizing) is of the form hx4=0,...,xm=0,xm+1=∗,...,xk=∗ for a certain
index m ≤ k.

2. If f ∈ NZ, then there exists a signature g = (1, x, y, z) 
∈ ED with xyz 
= 0
and z 
= xy such that g ≤con f . In particular, g (before normalizing) is of
the form fx3=c3,...,xk=ck for certain constants (c3, . . . , ck) ∈ {0, 1}k−2, after
an appropriate permutation of variables.

8 Lower Bounds of #CSP∗s

We have shown in Section 5 three specific upper bounds on the approxima-
tion complexity of #CSP∗(f). To complement those bounds, we will present
four lower bounds for #CSP∗(f) by building appropriate AP-reductions to
one of the following counting problems: #CSP∗(OR), #CSP∗(XOR), and
#CSP∗(Implies).

We first discuss the case where f is a signature that lacks affine support. The
proof of this proposition follows from Lemmas 6(1) and 6(3) using a part of the
proof of [2, Lemma 4.2].

Proposition 2. Let f be any signature. If f has no affine support, then there
exists a signature g ∈ {OR, Implies} such that #CSP∗(g,F) ≤AP #CSP∗(f,F)
for any signature set F .

In the next proposition, we target signatures that have no imp support. The
proof of the proposition relies on Lemmas 6(2) as well as the following simple
fact: a binary signature f is not in IM∪NZ iff f is of the form (a, b, 0, c) with
ad = 0 and bc 
= 0.

Proposition 3. Let f be any signature not in NZ. If f has no imp support,
then there exists a signature g ∈ {OR, XOR} such that #CSP∗(g,F) ≤AP

#CSP∗(f,F) for any signature set F .

In what follows, we are focused on signatures in IM. The proof of the state-
ment below requires Lemmas 6(3) and 8 as well as a structural property of IM
signatures that either they have no affine support or they are not in ED. Recall
that IM∩NZ = Ø.

Proposition 4. Let f be any signature having imp support and let F be
any signature set. If either f has no affine support or f 
∈ ED, then
#CSP∗(Implies,F) ≤AP #CSP∗(f,F).

Finally, we discuss signatures that lack both affine support and imp support.
The proof of the following proposition uses Propositions 2 and 3.
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Proposition 5. Let f be any signature not in NZ and let F be any signature
set. If f has neither affine support nor imp support, then #CSP∗(OR,F) ≤AP

#CSP∗(f,F).

9 The Trichotomy Theorem

Our trichotomy theorem states that all counting problems of the form #CSP∗(F)
can be classified into three categories. This theorem extends an earlier work of
Dyer et al. [7] on unweighted Boolean constraints and also gives an approxima-
tion version of the dichotomy theorem of Cai et al. [2].

Theorem 1. Let F be any set of signatures. If either F ⊆ AF or F ⊆ ED,
then #CSP∗(F) is in FPC. Otherwise, if F ⊆ IM, then #DOWNSET∗

C
≤AP

#CSP∗(F) ≤AP #DOWNSETC. Otherwise, #SAT∗
C
≤AP #CSP∗(F).

Theorem 1 immediately follows from the next proposition, which can be proven
by the fundamental properties shown in Sections 5–8.

Proposition 6. Let f be any signature and let F be any set of signatures.
Assume that f 
∈ AF ∪ ED.

1. If f ∈ IM, then #CSP∗(Implies,F) ≤AP #CSP∗(f,F).
2. If f 
∈ IM, then #CSP∗(OR,F) ≤AP #CSP∗(f,F).
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Golovach, Petr A. 130

Hate, Ameya 1

Im, Sungjin 71

Jagtenberg, Caroline 142

Kamma, Lior 154

Karrenbauer, Andreas 166

Khuller, Samir 71

Kohrt, Jens S. 118

Lam, Tak-Wah 59, 178

Larsen, Kim S. 118

Li, Jian 71, 83

Li, Rongbin 59

Liu, Chi-Man 178

Makarychev, Konstantin 190

Makarychev, Yury 190

Mathieu, Claire 94, 201

McCutchen, Richard 71

Moseley, Benjamin 71

Mozes, Shay 94

Nutov, Zeev 154

Peis, Britta 213

Pritchard, David 225

Pruhs, Kirk 237

Raschid, Louiqa 71

Robert, Julien 237
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