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Preface

Polynomial optimization, as its name suggests, is used to optimize a generic
multivariate polynomial function, subject to some suitable polynomial equality
and/or inequality constraints. Such problem formulation dates back to the nineteenth
century when the relationship between nonnegative polynomials and sum of squares
(SOS) was discussed by Hilbert. Polynomial optimization is one of the fundamental
problems in Operations Research and has applications in a wide range of areas,
including biomedical engineering, control theory, graph theory, investment science,
material science, numerical linear algebra, quantum mechanics, signal processing,
speech recognition, among many others. This brief discusses some important
subclasses of polynomial optimization models arising from various applications.
The focus is on optimizing a high degree polynomial function over some fre-
quently encountered constraint sets, such as the Euclidean ball, the Euclidean
sphere, intersection of co-centered ellipsoids, binary hypercube, general convex
compact set, and possibly a combination of the above constraints. All the models
under consideration are NP-hard in general. In particular, this brief presents a
study on the design and analysis of polynomial-time approximation algorithms,
with guaranteed worst-case performance ratios. We aim at deriving the worst-
case performance/approximation ratios that are solely dependent on the problem
dimensions, meaning that they are independent of any other types of the problem
parameters or input data. The new techniques can be applied to solve even broader
classes of polynomial/tensor optimization models. Given the wide applicability
of the polynomial optimization models, the ability to solve such models—albeit
approximately—is clearly beneficial. To illustrate how such benefits might be,
we present a variety of examples in this brief so as to showcase the potential
applications of polynomial optimization.

Shanghai, China Zhening Li
Kowloon Tong, Hong Kong Simai He
Minnesota, MN, USA Shuzhong Zhang
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Chapter 1
Introduction

Polynomial optimization is to optimize a polynomial function subject to polynomial
equality and/or inequality constraints, specifically, the following generic optimiza-
tion model:

(PO) min p(xxx)
s.t. fi(xxx)≤ 0, i = 1,2, . . . ,m1,

g j(xxx) = 0, j = 1,2, . . . ,m2,

xxx = (x1,x2, . . . ,xn)
T ∈ R

n,

where p(xxx), fi(xxx)(i= 1,2, . . . ,m1) and g j(xxx)( j = 1,2, . . . ,m2) are some multivariate
polynomial functions. This problem is a fundamental model in the field of op-
timization, and has applications in a wide range of areas. Many algorithms have
been proposed for subclasses of (PO), and specialized software packages have been
developed.

1.1 History

The modern history of polynomial optimization may date back to the nineteenth
century when the relationship between nonnegative polynomial function and the
sum of squares (SOS) of polynomials was studied. Given a multivariate polynomial
function that takes only nonnegative values over the real domain, can it be
represented as an SOS of polynomial functions? Hilbert [51] gave a concrete answer
in 1888, which asserted that the only cases for a nonnegative polynomial to be a
SOS are: univariate polynomials; multivariate quadratic polynomials; and bivariate
quartic polynomials. Later, the issue about nonnegative polynomials was formulated
in Hilbert’s 17th problem—one of the famous 23 problems that Hilbert addressed
in his celebrated speech in 1900 at the Paris conference of the International
Congress of Mathematicians. Hilbert conjectured that a nonnegative polynomial
entails expression of definite rational functions as quotients of two sums of squares.

Z. Li et al., Approximation Methods for Polynomial Optimization: Models, Algorithms,
and Applications, SpringerBriefs in Optimization, DOI 10.1007/978-1-4614-3984-4 1,
© Zhening Li, Simai He, Shuzhong Zhang 2012
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2 1 Introduction

To be precise, the question is: Given a multivariate polynomial function that takes
only nonnegative values over the real numbers, can it be represented as an SOS
of rational functions? This was solved in the affirmative, by Artin [8] in 1927. A
constructive algorithm was later found by Delzell [29] in 1984. About 10 years ago,
Lasserre [67, 68] and Parrilo [93, 94] proposed a method called the SOS to solve
general polynomial optimization problems. The method is based on the fact that
deciding whether a given polynomial is an SOS can be reduced to the feasibility of
a semidefinite program (SDP). The SOS approach has a strong theoretical appeal, as
it can in principle solve any polynomial optimization problem to any given accuracy.

1.1.1 Applications

Polynomial optimization has wide applications—just to name a few examples:
biomedical engineering, control theory, graph theory, investment science, material
science, numerical linear algebra, quantum mechanics, signal processing, speech
recognition. It is basically impossible to list, even very partially, the success stories
of (PO), simply due to its sheer size in the literature. To motivate our study, below
we shall nonetheless mention some sample applications to illustrate the usefulness
of (PO), especially for high degree polynomial optimization.

Polynomial optimization has immediate applications in investment science. For
instance, the celebrated mean–variance model was proposed by Markowitz [80]
early in 1952, where the portfolio selection problem is modeled by minimizing the
variance of the investments subject to its target return. In control theory, Roberts and
Newmann [105] studied polynomial optimization of stochastic feedback control for
stable plants. In diffusion magnetic resonance imaging (MRI), Barmpoutis et al. [13]
presented a case for the fourth order tensor approximation. In fact, there are a large
class of (PO) arising from tensor approximations and decompositions, which are
originated from applications in psychometrics and chemometrics (see an excellent
survey by Kolda and Bader [65]). Polynomial optimization also has applications
in sinal processing. Maricic et al. [78] proposed a quartic polynomial model
for blind channel equalization in digital communication, and Qi and Teo [101]
conducted global optimization for high degree polynomial minimization models
arising from signal processing. In quantum physics, Dahl et al. [26] proposed a
polynomial optimization model to verify whether a physical system is entangled or
not, which is an important problem in quantum physics. Gurvits [40] showed that
the entanglement verification is NP-hard in general. In fact, the model discussed
in [26] is related to the nonnegative quadratic mappings studied by Luo et al. [75].

Among generic polynomial functions, homogeneous polynomials play an im-
portant role in approximation theory (see, e.g., two recent papers by Kroó and
Szabados [66] and Varjú [113]). Essentially their results state that the homogeneous
polynomial functions are fairly “dense” among continuous functions in a certain
well-defined sense. As such, optimization of homogeneous polynomials becomes
important. As an example, Ghosh et al. [38] formulated a fiber-detection problem
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in diffusion MRI by maximizing a homogenous polynomial function subject to the
Euclidean spherical constraint, i.e.,

(HS) max f (xxx)
s.t. ‖xxx‖2 = 1, xxx ∈ R

n.

The constraint of (HS) is a typical polynomial equality constraint. In this case, the
degree of the homogeneous polynomial f (xxx) may be high. This particular model
(HS) plays an important role in the following examples. In material sciences, Soare
et al. [108] proposed some 4th-, 6th-, and 8th-order homogeneous polynomials
to model the plastic anisotropy of orthotropic sheet metal. In statistics, Micchelli
and Olsen [81] considered a maximum-likelihood estimation model in speech
recognition. In numerical linear algebra, (HS) is the formulation of an interesting
problem: the eigenvalues of tensors (see Lim [71] and Qi [99]). Another widely
used application of (HS) regards the best rank-one approximation of higher order
tensors (see [64, 65]).

In fact, Markowitz’s mean–variance model [80] mentioned previously is also
optimization on a homogeneous polynomial, in particular, a quadratic form. Re-
cently, an intensified discussion on investment models involving more than the
first two moments (for instance, to include the skewness and the kurtosis of the
investment returns) have been another source of inspiration underlying polynomial
optimization. Mandelbrot and Hudson [77] made a strong case against a “normal
view” of the investment returns. The use of higher moments in portfolio selection
becomes quite necessary. Along that line, several authors proposed investment
models incorporating the higher moments, e.g., De Athayde and Flôre [10], Prakash
et al. [96], Jondeau and Rockinger [56], and Kleniati et al. [60]. However, in
those models, the polynomial functions involved are no longer homogeneous. In
particular, a very general model in [60] is

max α ∑n
i=1 μixi −β ∑n

i, j=1 σi jxix j + γ ∑n
i, j,k=1 ςi jkxix jxk − δ ∑n

i, j,k,�=1 κi jk� xix jxkx�
s.t. ∑n

i=1 xi = 1, xxx ≥ 000, xxx ∈R
n,

where (μi), (σi j), (ςi jk), and (κi jk�) are the first four central moments of the given
n assets. The nonnegative parameters α,β ,γ,δ measure the investor’s preference
to the four moments, and they sum up to one, i.e., α + β + γ + δ = 1. Besides
investment science, many other important applications of polynomial function
optimization involve an objective that is intrinsically inhomogeneous. The other
example is the least square formulation to the sensor network localization problem
proposed in Luo and Zhang [76]. Specifically, the problem takes the form of

min ∑i, j∈S

(‖xxxi − xxx j‖2 − di j
2)2

+∑i∈S, j∈A

(‖xxxi −aaa j‖2 −di j
2)2

s.t. xxxi ∈ R
3, i ∈ S,
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where A and S denote the set of anchor nodes and sensor nodes, respectively,
di j (i ∈ S, j ∈ S∪A) are (possibly noisy) distance measurements, aaa j ( j ∈ A) denote
the known positions of anchor nodes, while xxxi (i ∈ S) represent the positions of
sensor nodes to be estimated.

Apart from the continuous models discussed above, polynomial optimization
over variables in discrete values, in particular binary variables, is also widely
studied. For example, maximize a polynomial function over variables picking from
1 or −1, i.e.,

(PB) max p(xxx)
s.t. xi ∈ {1,−1}, i = 1,2, . . . ,n.

This type of problem can be found in a great variety of application domains. Indeed,
(PB) has been investigated extensively in the quadratic case, due to its connections
to various graph partitioning problems, e.g., the maximum cut problem [39]. If the
degree of the polynomial goes higher, the following hypergraph max-cover problem
is also well studied. Given a hypergraph H = (V,E) with V being the set of vertices
and E the set of hyperedges (or subsets of V ), each hyperedge e ∈ E is associated
with a real-valued weight w(e). The problem is to find a subset S of the vertices set
V , such that the total weight of the hyperedges covered by S is maximized. Denoting
xi ∈ {0,1} (i = 1,2, . . . ,n) to indicate whether or not vertex i is selected in S, the
problem thus is maxxxx∈{0,1}n ∑e∈E w(e)∏i∈e xi. By a simple variable transformation
xi → (xi +1)/2, the problem is transformed to (PB), and vice versa.

Note that the model (PB) is a fundamental problem in integer programming.
As such it has received attention in the literature (see, e.g., [41, 42]). It is
also known as the Fourier support graph problem. Mathematically, a polynomial
function p : {−1,1}n → R has Fourier expansion p(xxx) = ∑S⊂{1,2,...,n} p̂(S)∏i∈S xi,
which is also called the Fourier support graph. By assuming that p(xxx) has only
succinct (polynomially many) nonzero Fourier coefficient p̂(S), can we compute
the maximum value of p(xxx) over the discrete hypercube {1,−1}n, or alternatively
can we find a good approximate solution in polynomial time? The latter question
actually motivates the discrete polynomial optimization models studied in this brief.
In general, (PB) is closely related to finding the maximum weighted independent
set in a graph. In fact, any instance of (PB) can be transformed into the maximum
weighted independent set problem, which is also the most commonly used technique
in the literature for solving (PB) (see, e.g., [12, 104]). The transformation uses the
concept of a conflict graph of a 0-1 polynomial function, for details, one is referred
to [9, 21]. Beyond its connection to the graph problems, (PB) also has applications
in neural networks [6, 21, 54], error-correcting codes [21, 97], etc. In fact, Bruck
and Blaum [21] reveal the natural equivalence within the model (PB), maximum
likelihood decoding of error-correcting codes, and finding the global maximum of
a neural network. Recently Khot and Naor [59] show that it has applications in the
problem of refutation of random k-CNF formulas [31–34].

If the objective polynomial function in (PB) is homogeneous, likewise, the
homogeneous quadratic case has been studied extensively, e.g., [5, 39, 87, 89].
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Homogeneous cubic polynomial case is also discussed by Khot and Naor [59].
Another interesting problem of this class is the ∞ 	→ 1-norm of a matrix FFF = (Fi j),
studied by Alon and Naor [5], i.e.,

‖FFF‖∞ 	→1 = max ∑1≤i≤n1,1≤ j≤n2
Fi jxiy j

s.t. xxx ∈ {1,−1}n1, yyy ∈ {1,−1}n2.

It is quite natural to extend the problem of ∞ 	→ 1-norm to higher order tensors. In
particular, the ∞ 	→ 1-norm of a d-th order tensor FFF = (Fi1i2···id ) can be defined as
the optimal value of the following problem:

max ∑1≤i1≤n1,1≤i2≤n2,...,1≤id≤nd
Fi1i2···id x1

i1
x2

i2
· · ·xd

id
s.t. xxxk ∈ {1,−1}nk, k = 1,2, . . . ,d.

Another generalization of the matrix ∞ 	→ 1-norm is to extend the entry Fi j of the
matrix FFF to a symmetric matrix AAAi j ∈ R

m×m, i.e., the problem of

max λmax
(
∑1≤i≤n1,1≤ j≤n2

xiy jAAAi j
)

s.t. xxx ∈ {1,−1}n1, yyy ∈ {1,−1}n2,

where λmax indicates the largest eigenvalue of a matrix. If the matrix AAAi j ∈ R
m1×m2

is not restricted to be symmetric, we may instead maximize the largest singular
value, i.e.,

max σmax
(
∑1≤i≤n1,1≤ j≤n2

xiy jAAAi j
)

s.t. xxx ∈ {1,−1}n1, yyy ∈ {1,−1}n2.

These two problems are actually equivalent to

max ∑1≤i≤n1,1≤ j≤n2,1≤k,�≤m Fi jk� xiy jzkz�
s.t. xxx ∈ {1,−1}n1, yyy ∈ {1,−1}n2,

‖zzz‖2 = 1, zzz ∈R
m

and

max ∑1≤i≤n1,1≤ j≤n2,1≤k≤m1,1≤�≤m2
Fi jk� xiy jzkw�

s.t. xxx ∈ {1,−1}n1, yyy ∈ {1,−1}n2,

‖zzz‖2 = ‖www‖2 = 1, zzz ∈ R
m1 , www ∈ R

m2 ,

respectively, where FFF =(Fi jk�) is a fourth order tensor, whose (i, j,k, �)th entry is the
(k, �)th entry of the matrix AAAi j. These two special models of (PO) extend polynomial
integer programming problems to the mixed integer programming problems, which
is also an important subclass of (PO) studied in this brief.
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1.1.2 Algorithms

Polynomial optimization problems are typically non-convex and highly nonlinear.
In most cases, (PO) is NP-hard, even for very special instances, such as maximizing
a cubic polynomial over a sphere (see Nesterov [89]), maximizing a quadratic form
in binary variables (see, e.g., Goemans and Williamson [39]), etc. The reader is
referred to De Klerk [61] for a survey on the computational complexity issues
of polynomial optimization over some simple constraint sets. In the case that the
constraint set is a simplex and the objective polynomial has a fixed degree, it is
possible to derive polynomial-time approximation schemes (PTAS) (see De Klerk
et al. [63]), albeit the result is viewed mostly as a theoretical one. Almost in
all practical situations, the problem is difficult to solve, theoretically as well as
numerically. However, the search for general and efficient algorithms for polynomial
optimization has been a priority for many mathematical optimizers and researchers
in various applications.

Perhaps the most immediate attempt for solving polynomial optimization
problems is to simply regard them as nonlinear programming problems, and many
existing algorithms and software packages are available, including KNITRO,
BARON, IPOPT, SNOPT, and Matlab optimization toolbox. However, these
algorithms and solvers are not tailor made for polynomial optimization problems,
and so the performance may vary greatly from problem instance to instance. One
direct approach is to apply the method of Lagrange multipliers to reach a set
of multivariate polynomial equations, which is the Karush–Kuhn–Tucker (KKT)
system that provides the necessary conditions for optimality (see, e.g., [30,38,119]).
In [38], the authors develop special algorithms for that purpose, such as subdivision
methods proposed by Mourrain and Pavone [83], and generalized normal forms
algorithms designed by Mourrain and Trébuchet [84]. However, the shortcomings
of these methods are apparent if the degree of the polynomial is high. Generic
solution methods based on nonlinear programming and global optimization have
been studied and tested (see, e.g., Qi [98] and Qi et al. [102], and the references
therein). Recently, a tensor eigenvalue-based method for a global polynomial
optimization problem was also studied by Qi et al. [103]. Moreover, Parpas and
Rustem [92] and Maringer and Parpas [79] proposed diffusion-based methods
to solve the non-convex polynomial optimization models arising from portfolio
selection involving higher moments. For polynomial integer programming models,
e.g., (PB), the most commonly used technique in the literature is transforming them
to the maximum weighted independent set problems (see, e.g., [12, 104]), by using
the concept of a conflict graph of a 0-1 polynomial function.

The so-called SOS method has been one major systematic approach for solv-
ing general polynomial optimization problems. The method was introduced by
Lasserre [67, 68] and Parrilo [93, 94], and a significant amount of research on the
SOS method has been conducted in the past ten years. The SOS method has a
strong theoretical appeal, by constructing a sequence of semidefinite programming
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(SDP) relaxations of the given polynomial optimization problem in such a way
that the corresponding optimal values are monotone and converge to the optimal
value of the original problem. Thus it can in principle solve any instance of (PO) to
any given accuracy. For univariate polynomial optimization, Nesterov [88] showed
that the SOS method in combination with the SDP solution has a polynomial-time
complexity. This is also true for unconstrained multivariate quadratic polynomial
and bivariate quartic polynomial when the nonnegativity is equivalent to the SOS.
In general, however, the SDP problems required to be solved by the SOS method
may grow very large, and are not practical when the program dimension goes high.
At any rate, thanks to the recently developed efficient SDP solvers (e.g., SeDuMi of
Sturm [109], SDPT3 of Toh et al. [112]), the SOS method appears to be attractive.
Henrion and Lasserre [49] developed a specialized tool known as GloptiPoly (the
latest version, GloptiPoly 3, can be found in Henrion et al. [50]) for finding a global
optimal solution of the polynomial optimization problems arising from the SOS
method, based on Matlab and SeDuMi. For an overview on the recent theoretical
developments, we refer to the excellent survey by Laurent [69].

Along a different line, the intractability of general polynomial optimization also
motivates the search for suboptimal, or more formally, approximate solutions. In the
case that the objective polynomial is quadratic, a well-known example is the SDP
relaxation and randomization approach for the max-cut problem due to Goemans
and Williamson [39], where essentially a 0.878-approximation ratio of the model
maxxxx∈{1,−1}n xxxTFFFxxx is shown with FFF being the Laplacian of a given graph. Note that
the approach in [39] has been generalized subsequently by many authors, including
Nesterov [87], Ye [115, 116], Nemirovski et al. [86], Zhang [117], Charikar and
Wirth [23], Alon and Naor [5], Zhang and Huang [118], Luo et al. [74], and He et al.
[48]. In particular, when the matrix FFF is only known to be positive semidefinite,
Nesterov [87] derived a 0.636-approximation bound for maxxxx∈{1,−1}n xxxTFFFxxx. For
general diagonal-free matrix FFF , Charikar and Wirth [23] derived an Ω(1/ lnn)-
approximation bound, while its inapproximate results are also discussed by Arora
et al. [7]. For the matrix ∞ 	→ 1-norm problem maxxxx∈{1,−1}n1 ,yyy∈{1,−1}n2 xxxTFFFyyy, Alon
and Naor [5] derived a 0.56-approximation bound. Remark that all these approx-
imation bounds remain hitherto the best available ones. In continuous polynomial
optimization, Nemirovski et al. [86] proposed an Ω(1/ lnm)-approximation bound
for maximizing a quadratic form over the intersection of m co-centered ellipsoids.
Their models are further studied and generalized by Luo et al. [74] and He et al. [48].

Among all the successful approximation stories mentioned above, the objective
polynomials are all quadratic. However, there are only a few approximation results
in the literature when the degree of the objective polynomial is greater than two.
Perhaps the very first one is due to De Klerk et al. [63] in deriving a PTAS of
optimizing a fixed degree homogenous polynomial over a simplex, and it turns out
to be a PTAS of optimizing a fixed degree even form (homogeneous polynomial
with only even exponents) over the Euclidean sphere. Later, Barvinok [14] showed
that optimizing a certain class of polynomials over the Euclidean sphere also
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admits a randomized PTAS. Note that the results in [14, 63] apply only when
the objective polynomial has some special structure. A quite general result is
due to Khot and Naor [59], where they showed how to estimate the optimal
value of the problem maxxxx∈{1,−1}n ∑1≤i, j,k≤n Fi jkxix jxk with (Fi jk) being square-
free, i.e., Fi jk = 0 whenever two of the indices are equal. Specifically, they
presented a polynomial-time randomized procedure to get an estimated value that

is no less than Ω(
√

lnn
n ) times the optimal value. Two recent papers (Luo and

Zhang [76] and Ling et al. [72]) discussed polynomial optimization problems with
the degree of objective polynomial being four, and start a whole new research
on approximation algorithms for high degree polynomial optimization, which are
essentially the main subject in this brief. Luo and Zhang [76] considered quartic
optimization, and showed that optimizing a homogenous quartic form over the
intersection of some co-centered ellipsoids can be relaxed to its (quadratic) SDP
relaxation problem, which is itself also NP-hard. However, this gives a handle on
the design of approximation algorithms with provable worst-case approximation
ratios. Ling et al. [72] considered a special quartic optimization model. Basically,
the problem is to minimize a biquadratic function over two spherical constraints.
In [72], approximate solutions as well as exact solutions using the SOS method are
considered. The approximation bounds in [72] are indeed comparable to the bound
in [76], although they are dealing with two different models. Very recently, Zhang
et al. [120] and Ling al. [73] further studied biquadratic function optimization over
quadratic constraints. The relations with its bilinear SDP relaxation are discussed,
based on which they derived some data-dependent approximation bounds. Zhang
et al. [121] also studied homogeneous cubic polynomial optimization over spherical
constraints, and derived some approximation bound.

However, for (PO) with an arbitrary degree polynomial objective, the approx-
imation results remained nonexistent until recently. He et al. [46] proposed a first
polynomial-time approximation algorithm for optimizing any fixed degree homo-
geneous polynomial with quadratic constraints. This has set off a flurry of research
activities. In a subsequent paper, He et al. [45] generalized the approximation meth-
ods and proposed first polynomial-time approximation algorithm for optimizing any
fixed degree inhomogeneous polynomial function over a general convex set. Note
that this is the only approximation result for optimizing any degree inhomogeneous
polynomial function. So [106] improved some of the approximation bounds in [45],
for the case of optimizing any fixed degree homogeneous polynomial with spherical
constraints. Along a different line, He et al. [47] studied any degree polynomial
integer programming and mixed integer programming. In particular, they proposed
polynomial-time approximation algorithms for polynomial optimization with binary
constraints and polynomial optimization with spherical and binary constraints. The
results of He, Li, and Zhang were summarized in the recent Ph.D. thesis of Li [70],
which forms a basis for this brief.
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1.2 Contributions

This brief presents a systematic study on approximation methods for optimizing any
fixed degree polynomial function over some important and widely used constraint
sets, e.g., the Euclidean ball, the Euclidean sphere, hypercube, binary hypercube,
intersection of co-centered ellipsoids, a general convex compact set, and even
a mixture of them. The objective polynomial function ranges from multilinear
tensor function, homogeneous polynomial, and generic inhomogeneous polynomial
function. With combination of the constraint sets, the models constitute most of
the subclasses of (PO) in real applications. The detailed description of the models
studied is listed in Sect. 1.3.3, or specifically Table 1.1. All these problems are
NP-hard in general, and the focus is on the design and analysis of polynomial-
time approximation algorithms with provable worst-case performance ratios.
The application of these polynomial optimization models will be discussed.
Specifically, our contributions are highlighted as follows:

1. We propose approximation algorithms for optimization of any fixed degree
homogeneous polynomial over the Euclidean ball, which is the first such result
for approximation algorithms of polynomial optimization problems with an
arbitrary degree. The approximation ratios depend only on the dimensions of
the problems concerned. Compared with any existing results for high degree
polynomial optimization, our approximation ratios improve the previous ones,
when specialized to their particular degrees.

2. We establish key linkages between multilinear functions and homogeneous
polynomials, and thus establish the same approximation ratios for homogeneous
polynomial optimization with their multilinear form relaxation problems.

3. We propose a general scheme to handle inhomogeneous polynomial optimization
through the method of homogenization, and thus establish the same approxi-
mation ratios (in the sense of relative approximation ratio) for inhomogeneous
polynomial optimization with their homogeneous polynomial relaxation prob-
lems. It is the first approximation bound of approximation algorithms for general
inhomogeneous polynomial optimization with a high degree.

4. We propose several decomposition routines for polynomial optimization over
different types of constraint sets, and derive approximation bounds for multi-
linear function optimization with their lower degree relaxation problems, based
on which we derive approximation algorithms for polynomial optimization over
various constraint sets.

5. With the availability of our proposed approximation methods, we illustrate some
potential modeling opportunities with the new optimization models.

The whole brief is organized as follows. In the remainder of this chapter
(Sects. 1.3 and 1.4), we introduce the notations and various polynomial optimiza-
tion models studied in this brief, followed by some necessary preparations, e.g.,
definitions of approximation algorithms and approximation ratios, various tensor
operations, etc. The main part of the brief is the dealing with approximation
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methods for the polynomial optimization models concerned, which will be the
contents of Chaps. 2 and 3. In particular, in Chap. 2, we elaborate on polynomial
optimization over the Euclidean ball: we propose various techniques step by step in
handling different types of objective polynomial functions, and discuss how these
steps leads to the final approximation algorithm for optimizing any fixed degree
inhomogeneous polynomial function over the Euclidean ball. Chapter 3 deals with
various technical extensions of the approximation methods proposed in Chap. 2,
armed with which we propose approximation algorithms for solving many other
important polynomial optimization models. Sample applications of the polynomial
optimization models and their approximation algorithms will be the topic for
Chap. 4. Finally, in Chap. 5 we conclude this brief by tabulating the approximation
ratios developed in the brief so as to provide an overview of the approximation
results and the context; other methods related to approximation algorithms of
polynomial optimization models are also commented on, including a discussion of
the recent developments and possible future research topics.

1.3 Notations and Models

Throughout this brief, we exclusively use the boldface letters to denote vectors,
matrices, and tensors in general (e.g., the decision variable xxx, the data matrix QQQ, and
the tensor form FFF), while the usual non-bold letters are reserved for scalars (e.g., x1

being the first component of the vector xxx, Qi j being one entry of the matrix QQQ).

1.3.1 Objective Functions

The objective functions of the optimization models studied in this brief are all
multivariate polynomial functions. The following multilinear tensor function (or
multilinear form) plays a major role in the discussion:

Function T F(xxx1,xxx2, . . . ,xxxd) := ∑
1≤i1≤n1,1≤i2≤n2,...,1≤id≤nd

Fi1i2···id x1
i1x2

i2 · · ·xd
id ,

where xxxk ∈ R
nk for k = 1,2, . . . ,d; and the letter “T” signifies the notion of tensor.

In the shorthand notation we denote FFF = (Fi1i2···id )∈R
n1×n2×···×nd to be a d-th order

tensor, and F to be its corresponding multilinear form. In other words, the notions
of multilinear form and tensor are exchangeable. The meaning of multilinearity is
that if one fixes (xxx2,xxx3, . . . ,xxxd) in the function F , then it is a linear function in xxx1,
and so on.

Closely related with the tensor form FFF is a general d-th degree homogeneous
polynomial function f (xxx), where xxx∈R

n. We call the tensor FFF =(Fi1i2···id ) supersym-
metric (see [64]), if any of its components Fi1i2···id is invariant under all permutations
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of {i1, i2, . . . , id}. As any homogeneous quadratic function uniquely determines a
symmetric matrix, a given d-th degree homogeneous polynomial function f (xxx) also
uniquely determines a supersymmetric tensor form. In particular, if we denote a d-th
degree homogeneous polynomial function

Function H f (x) := ∑
1≤i1≤i2≤···≤id≤n

F ′
i1i2···id xi1xi2 · · ·xid ,

then its corresponding supersymmetric tensor can be written as FFF =(Fi1i2···id )∈R
nd

,
with Fi1i2···id ≡ F ′

i1i2···id/|Π(i1, i2, . . . , id)|, where |Π(i1, i2, . . . , id)| is the number of
distinctive permutations of the indices {i1, i2, . . . , id}. This supersymmetric tensor
representation is indeed unique. Let F be its corresponding multilinear form defined
by the supersymmetric tensor FFF , then we have f (xxx) = F(xxx,xxx, . . . ,xxx

︸ ︷︷ ︸
d

). The letter “H”

here is used to emphasize that the polynomial function in question is homogeneous.
We shall also consider in this brief the following mixed form:

Function M f (xxx1,xxx2, . . . ,xxxs) := F(xxx1,xxx1, . . . ,xxx1
︸ ︷︷ ︸

d1

,xxx2,xxx2, . . . ,xxx2
︸ ︷︷ ︸

d2

, . . . ,xxxs,xxxs, . . . ,xxxs

︸ ︷︷ ︸
ds

),

where d1+d2+ · · ·+ds = d, xxxk ∈R
nk for k = 1,2, . . . ,s, d-th order tensor form FFF ∈

R
n1

d1×n2
d2×···×ns

ds ; and the letter “M” signifies the notion of mixed polynomial form.
We may without loss of generality assume that FFF has partial symmetric property,
namely for any fixed (xxx2,xxx3, . . . ,xxxs), F(···, ···, . . . , ···

︸ ︷︷ ︸
d1

,xxx2,xxx2, . . . ,xxx2

︸ ︷︷ ︸
d2

, . . . ,xxxs,xxxs, . . . ,xxxs

︸ ︷︷ ︸
ds

) is a

supersymmetric d1th order tensor form, and so on.
Beyond the homogeneous polynomial functions (multilinear form, homogeneous

form, and mixed forms) described above, we also study in this brief the generic
multivariate inhomogeneous polynomial function. An n-dimensional d-th degree
polynomial function can be explicitly written as a summation of homogenous forms
in decreasing degrees as follows:

Function P p(xxx) :=
d

∑
k=1

fk(xxx)+ f0 =
d

∑
k=1

Fk(xxx,xxx, . . . ,xxx︸ ︷︷ ︸
k

)+ f0,

where xxx ∈R
n, f0 ∈R, and fk(xxx) = Fk(xxx,xxx, . . . ,xxx︸ ︷︷ ︸

k

) is a homogenous form of degree k

for k = 1,2, . . . ,d; and letter “P” signifies the notion of polynomial. One natural way
to deal with inhomogeneous polynomial function is through homogenization; that
is, we introduce a new variable, to be denoted by xh in this brief, which is actually
set to be 1, to yield a homogeneous form

p(xxx) =
d

∑
k=1

fk(xxx)+ f0 =
d

∑
k=1

fk(xxx)xh
d−k + f0xh

d = f (x̄xx),
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where f (x̄xx) is an (n+ 1)-dimensional d-th degree homogeneous polynomial func-
tion, with variable x̄xx ∈R

n+1. Throughout this brief, the “bar” notation over boldface
lowercase letters, e.g., x̄xx, is reserved for an (n + 1)-dimensional vector, with the
underlying letter xxx referring to the vector of its first n components and the subscript
“h” (the subscript of xh) referring to its last component. For instance, if x̄xx =
(x1,x2, . . . ,xn,xn+1)

T ∈ R
n+1, then xxx = (x1,x2, . . . ,xn)

T ∈ R
n and xh = xn+1 ∈R.

Throughout we adhere to the notation F for a multilinear form (Function T)
defined by a tensor form FFF , and f for a homogenous form (Function H) or a mixed
form (Function M), and p for a generic inhomogeneous polynomial (Function P).
Without loss of generality we assume that n1 ≤ n2 ≤ ·· · ≤ nd in the tensor form
FFF ∈R

n1×n2×···×nd , and n1 ≤ n2 ≤ ·· · ≤ ns in the tensor form FFF ∈R
n1

d1×n2
d2×···×ns

ds .
We also assume at lease one component of the tensor form, FFF in Functions T, H, M,
and FFFd in Function P is nonzero to avoid triviality.

1.3.2 Constraint Sets

The most commonly used constraint sets for polynomial optimization models are
studied in this brief. Specifically, we consider the following types of constraint sets:

Constraint B
{

xxx ∈ R
n |xi

2 = 1, i = 1,2, . . . ,n
}
=: Bn;

Constraint B̄
{

xxx ∈ R
n |xi

2 ≤ 1, i = 1,2, . . . ,n
}
=: B̄n;

Constraint S

{
xxx ∈R

n |‖xxx‖ :=
(
x1

2 + x2
2 + · · ·+ xn

2
) 1

2 = 1

}
=: Sn;

Constraint S̄ {xxx ∈ R
n |‖xxx‖ ≤ 1}=: S̄n;

Constraint Q
{

xxx ∈ R
n |xxxTQQQixxx ≤ 1, i = 1,2, . . . ,m

}
;

Constraint G {xxx ∈ R
n |xxx ∈ G} .

The notion “B” signifies the binary variables or binary constraints, and “S”
signifies the Euclidean spherical constraint, with “B̄” (hypercube) and “S̄” (the
Euclidean ball) signifying their convex hulls, respectively. The norm notation “‖ ···‖”
in this brief is the 2-norm (the Euclidean norm) unless otherwise specified, including
those for vectors, matrices, and tensors. In particular, the norm of the tensor
FFF = (Fi1i2···id ) ∈ R

n1×n2×···×nd is defined as

‖FFF‖ :=
√

∑
1≤i1≤n1,1≤i2≤n2,...,1≤id≤nd

Fi1i2···id
2 .

The notion “Q” signifies the quadratic constraints, and we focus on convex
quadratic constraints in this brief, or specifically the case of co-centered ellipsoids,
i.e., QQQi � 0 for i = 1,2, . . . ,m and ∑m

i=1 QQQi 
 0. A general convex compact set in R
n

is also discussed in this brief, which is denoted by the notion “G”. Constraints B̄, S̄,
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Q, and G are convex, while Constraints B and S are non-convex. It is obvious that
Constraint G is a generalization of Constraint Q, and Constraint Q is a generalization
of Constraint S̄ and Constraint B̄ as well.

1.3.3 Models and Organization

All the polynomial optimization models discussed in this brief are maximization
problems, and the results for most of their minimization counterparts can be
similarly derived. The names of all the models simply combine the names of the
objective functions described in Sect. 1.3.1 and the names of the constraint sets
described in Sect. 1.3.2, with the names of the constraints in the subscription.
For example, model (TS) is to maximize a multilinear form (Function T) under
the spherical constraints (Constraint S), model (MBS) is to maximize a mixed
polynomial form (Function M) under binary constraints (Constraint B), mixed with
variables under spherical constraints (Constraint S), etc.

Chapter 2 is concerned with the approximation methods for optimizing a multi-
linear form, a homogenous form, a mixed form, and an inhomogeneous polynomial
over the Euclidean ball, i.e., (TS̄), (HS̄), (MS̄), and (PS̄). Chapter 3 deals with various
polynomial optimization over other constraint sets. In particular, Sect. 3.1 deals with
polynomial optimization over hypercube or binary hypercube, i.e., (TB), (HB), (MB),
(PB), (TB̄), (HB̄), (MB̄), and (PB̄); Sect. 3.2 deals with homogeneous polynomial
optimization over the Euclidean sphere, i.e., (TS), (HS), and (MS); Sect. 3.3 deals
with polynomial optimization over intersection of co-centered ellipsoids, i.e., (TQ),
(HQ), (MQ), and (PQ); Sect. 3.4 deals with polynomial optimization over a general
convex compact set, i.e., (PG); and Sect. 3.5 deals with homogeneous polynomial
optimization over binary hypercube and the Euclidean sphere, i.e., (TBS), (HBS),
and (PBS). The details of the models are listed in Table 1.1 for a quick reference.

As before, we also assume that the tensor forms of the objective functions in
(HBS) and (MBS) to have partial symmetric property, m1 ≤ m2 ≤ ·· · ≤ md′ in (TBS),
and m1 ≤ m2 ≤ ·· · ≤ mt in (MBS). For all the polynomial optimization models in
Table 1.1, we discuss its computational complexity, and focus on polynomial-time
approximation algorithms with worst-case performance ratios. Let d1 + d2 + · · ·+
ds = d and d′

1 + d′
2 + · · ·+ d′

t = d′ in the above-mentioned models. The degrees
of the objective polynomials in these models, d and d + d′, are understood as
fixed constants in our subsequent discussions. We are able to propose polynomial-
time approximation algorithms for all these models, and the approximation ratios
depend only on the dimensions (including the number of variables and the number
of constraints) of the models concerned.
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Table 1.1 Description of polynomial optimization models

Section Model Objective to be maximized Constraint set

2.1 (TS̄) F(xxx1,xxx2, . . .,xxxd) xxxk ∈ S̄
nk , k = 1,2, . . . ,d

2.2 (HS̄) f (xxx) xxx ∈ S̄
n

2.3 (MS̄) f (xxx1,xxx2, . . . ,xxxs) xxxk ∈ S̄
nk , k = 1,2, . . . , s

2.4 (PS̄) p(xxx) xxx ∈ S̄
n

3.1 (TB) F(xxx1,xxx2, . . .,xxxd) xxxk ∈ B
nk , k = 1,2, . . .,d

(HB) f (xxx) xxx ∈ B
n

(MB) f (xxx1,xxx2, . . . ,xxxs) xxxk ∈ B
nk , k = 1,2, . . ., s

(PB) p(xxx) xxx ∈ B
n

(TB̄) F(xxx1,xxx2, . . .,xxxd) xxxk ∈ B̄
nk , k = 1,2, . . .,d

(HB̄) f (xxx) xxx ∈ B̄
n

(MB̄) f (xxx1,xxx2, . . . ,xxxs) xxxk ∈ B̄
nk , k = 1,2, . . ., s

(PB̄) p(xxx) xxx ∈ B̄
n

3.2 (TS) F(xxx1,xxx2, . . .,xxxd) xxxk ∈ S
nk , k = 1,2, . . . ,d

(HS) f (xxx) xxx ∈ S
n

(MS) f (xxx1,xxx2, . . . ,xxxs) xxxk ∈ S
nk , k = 1,2, . . . , s

3.3 (TQ) F(xxx1,xxx2, . . .,xxxd) (xxxk)TQQQk
ik xxxk ≤ 1, k = 1,2, . . . ,d,

ik =1,2, . . .,mk

xxxk ∈ R
nk , k=1,2, . . . ,d

(HQ) f (xxx) xxxTQQQixxx ≤ 1, i = 1,2, . . . ,m
xxx ∈ R

n

(MQ) f (xxx1,xxx2, . . . ,xxxs) (xxxk)TQQQk
ik

xxxk ≤ 1, k = 1,2, . . . , s,
ik =1,2, . . .,mk

xxxk ∈ R
nk , k=1,2, . . . , s

(PQ) p(xxx) xxxTQQQixxx ≤ 1, i = 1,2, . . . ,m
xxx ∈ R

n

3.4 (PG) p(xxx) xxx ∈ G

3.5 (TBS) F(xxx1,xxx2, . . .,xxxd ,yyy1,yyy2, . . .,yyyd′ ) xxxk ∈ B
nk , k = 1,2, . . .,d

yyy� ∈ S
m� , �= 1,2, . . . ,d′

(HBS) f (xxx,yyy) xxx ∈ B
n

yyy ∈ S
m

(MBS) f (xxx1,xxx2, . . . ,xxxs,yyy1,yyy2, . . .,yyyt) xxxk ∈ B
nk , k = 1,2, . . ., s

yyy� ∈ S
m� , �= 1,2, . . . , t

1.4 Preliminary

In this last section, we shall try to get necessary preparations for the main contents
to come. The topics include some basics of tensor operations, approximation
algorithms, and randomized algorithms. We shall also present the SDP relaxation
and randomization techniques, which are helpful to understand the main ideas
underlying the approximation methods in this brief.
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1.4.1 Tensor Operations

A tensor is a multidimensional array. More formally, a d-th order tensor is an
element of the tensor product of d vector spaces, each of which has its own
coordinate system. Each entry of a d-th order tensor has d indices associated. A
first order tensor is a vector, a second order tensor is a matrix, and tensors of order
three or higher are called higher order tensors.

This subsection describes a few tensor operations commonly used in this brief.
For a general review of other tensor operations, the reader is referred to [65]. The
tensor inner product is denoted by “•”, which is the summation of products of all
corresponding entries. For example, if FFF1,FFF2 ∈ R

n1×n2×···×nd , then

FFF1 •FFF2 := ∑
1≤i1≤n1,1≤i2≤n2,...,1≤id≤nd

F1
i1i2···id ·F2

i1i2···id .

As mentioned before, the norm of the tensor is then defined as ‖FFF‖ :=
√

FFF •FFF .
Notice that the tensor inner product and tensor norm also apply to the vectors and
the matrices since they are lower order tensors.

The modes of a tensor are referred to its coordinate systems. For example, the
following fourth order tensor GGG ∈R

2×2×3×2, with its entries being

G1111 = 1, G1112 = 2, G1121 = 3, G1122 = 4, G1131 = 5, G1132 = 6,
G1211 = 7, G1212 = 8, G1221 = 9, G1222 = 10, G1231 = 11, G1232 = 12,
G2111 = 13, G2112 = 14, G2121 = 15, G2122 = 16, G2131 = 17, G2132 = 18,
G2211 = 19, G2212 = 20, G2221 = 21, G2222 = 22, G2231 = 23, G2232 = 24,

has 4 modes, to be named mode 1, mode 2, mode 3, and mode 4. In case a tensor
is a matrix, it has only two modes, which we usually call rows and columns. The
indices for an entry of a tensor are a sequence of integers, each one assigning from
one mode.

The first widely used tensor operation is tensor rewritten, which appears fre-
quently in this brief. Namely, by combining a set of modes into one mode, a tensor
can be rewritten as a new tensor with a lower order. For example, by combining
modes 3 and 4 together and put it into the last mode of the new tensor, tensor GGG can
be rewritten as a third order tensor GGG′ ∈ R

2×2×6, with its entries being

G′
111 = 1, G′

112 = 2, G′
113 = 3, G′

114 = 4, G′
115 = 5, G′

116 = 6,
G′

121 = 7, G′
122 = 8, G′

123 = 9, G′
124 = 10, G′

125 = 11, G′
126 = 12,

G′
211 = 13, G′

212 = 14, G′
213 = 15, G′

214 = 16, G′
215 = 17, G′

216 = 18,
G′

221 = 19, G′
222 = 20, G′

223 = 21, G′
224 = 22, G′

225 = 23, G′
226 = 24.

By combining modes 2, 3, and 4 together, tensor GGG is then rewritten as a 2× 12
matrix

[
1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24

]
;
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and by combing all the modes together, tensor GGG becomes a 24-dimensional vector
(1,2, . . . ,24)T, which is essentially vectorization of a tensor.

The other commonly used operation of tensor is modes switch, which is to
switch the positions of two modes. This is very much like the transpose of a
matrix, switching the positions of row and column. Accordingly, the modes switch
will change the sequences of indices for the entries of a tensor. For example, by
switching mode 1 and mode 3 of GGG, tensor GGG is then changed to GGG′′ ∈ R

3×2×2×2,
with its entries defined by

G′′
i jk� := Gk ji� ∀ j,k, � = 1,2, i = 1,2,3.

By default, among all the tensors discussed in this brief, we assume their modes have
been switched (in fact reordered), so that their dimensions are in a nondecreasing
order.

Another widely used operation is multiplying a tensor by a vector. For example,
tensor GGG has its associated multilinear function G(xxx,yyy,zzz,www), where variables
xxx,yyy,www ∈ R

2 and zzz ∈ R
3. Four modes in GGG correspond to the four positions of

variables in function G. For a given vector ŵww = (ŵ1, ŵ2)
T, its multiplication with

GGG in mode 4 turns GGG into GGG′′′ ∈ R
2×2×3, whose entries are defined by

G′′′
i jk := Gi jk1ŵ1 +Gi jk2ŵ2 ∀ i, j = 1,2, k = 1,2,3,

which is basically the inner product of the vectors ŵww and GGGi jk· := (Gi jk1,Gi jk2)
T.

For examples, if ŵww = (1,1)T, then GGG′′′ has entries

G′′′
111 = 3, G′′′

112 = 7, G′′′
113 = 11, G′′′

121 = 15, G′′′
122 = 19, G′′′

123 = 23,
G′′′

211 = 27, G′′′
212 = 31, G′′′

213 = 35, G′′′
221 = 39, G′′′

222 = 43, G′′′
223 = 47.

Its corresponding multilinear function is in fact G(xxx,yyy,zzz, ŵww), with the underling
variables xxx,yyy,zzz. Whenever applicable, we often use G(···, ···, ···, ŵww) to denote this new
multilinear function G(xxx,yyy,zzz, ŵww).

This type of multiplication can extend to a tensor with a matrix, even with a
tensor. For example, if we multiply tensor GGG by a given matrix ẐZZ ∈ R

3×2 in modes
3 and 4, then we get a second order tensor (matrix) in R

2×2, whose (i, j)th entry is

GGGi j·· • ẐZZ =
3

∑
k=1

2

∑
�=1

Gi jk�Ẑk� ∀ i, j = 1,2.

Its corresponding multilinear function is denoted by G(···, ···, ẐZZ). In general, if a d-th
order tensor is multiplied by a d′th order tensor (d′ ≤ d) in appropriate modes, then
its product is a (d−d′)th order tensor. In particular, if d = d′, then this multiplication
is simply the tensor inner product.
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1.4.2 Approximation Algorithms

Approximation algorithms are the algorithms designed to find approximate
solutions for an optimization problem. In practice, the concept of approximation
algorithm is attractive for NP-hard problem, since it is unlikely that there exist
polynomial-time exact algorithms for solving such problems, and therefore one
is forced to settle with polynomial-time suboptimal solutions. Approximation
algorithms are also used for problems where exact polynomial-time algorithms are
possible but are too expensive to compute due to the size of the problem. Usually,
an approximation algorithm is associated with an approximation ratio, which is a
provable value measuring the quality of the solution found.

We now define formally the approximation algorithms and approximation ratios.
Throughout this brief, for any maximization problem (P) defined as maxxxx∈X p(xxx),
we use v(P) to denote its optimal value, and v(P) to denote the optimal value of its
minimization counterpart, i.e.,

v(P) := max
xxx∈X

p(xxx) and v(P) := min
xxx∈X

p(xxx).

Definition 1.4.1. Approximation algorithm and approximation ratio:

1. A maximization problem maxxxx∈X p(xxx) admits a polynomial-time approximation
algorithm with approximation ratio τ ∈ (0,1], if v(P)≥ 0 and a feasible solution
x̂xx ∈ X can be found in polynomial-time such that p(x̂xx)≥ τ v(P);

2. A minimization problem minxxx∈X p(xxx) admits a polynomial-time approximation
algorithm with approximation ratio μ ∈ [1,∞), if v(P)≥ 0 and a feasible solution
x̂xx ∈ X can be found in polynomial-time such that p(x̂xx)≤ μ v(P).

It is easy to see that the larger the τ , the better the ratio for a maximization
problem, and the smaller the μ , the better the ratio for a minimization problem.
In short the closer to one, the better the ratio. However, sometimes a problem
may be very hard, so much so that there is no polynomial-time approximation
algorithm which approximates the optimal value within any positive factor. In those
unfortunate cases, an alternative would be to resort to approximation algorithms
with relative approximation ratios.

Definition 1.4.2. Approximation algorithm and relative approximation ratio:

1. A maximization problem maxxxx∈X p(xxx) admits a polynomial-time approximation
algorithm with relative approximation ratio τ ∈ (0,1], if a feasible solution x̂xx ∈
X can be found in polynomial-time such that p(x̂xx)− v(P) ≥ τ (v(P)− v(P)), or
equivalently v(P)− p(x̂xx)≤ (1− τ)(v(P)− v(P));

2. A minimization problem minxxx∈X p(xxx) admits a polynomial-time approximation
algorithm with relative approximation ratio μ ∈ [1,∞), if a feasible solution x̂xx∈X
can be found in polynomial-time such that v(P)− p(x̂xx) ≥ (1/μ)(v(P)− v(P)),
or equivalently p(x̂xx)− v(P)≤ (1− 1/μ)(v(P)− v(P)).
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Similar to the usual approximation ratio, the closer to one, the better the relative
approximation ratios. For a maximization problem, if we know for sure that the
optimal value of its minimization counterpart is nonnegative, then trivially a relative
approximation ratio already implies a usual approximation ratio. This is not rare, as
many optimization problems always have nonnegative objective functions in real
applications, e.g., various graph partition problems. Of course there are several
other ways in defining the approximation quality to measure the performance of
the approximate solutions (see, e.g., [11, 57]).

We would like to point out that the approximation ratios defined are for the
worst-case scenarios, which might be hard or even impossible to find an example
attaining exactly the ratio in applying the algorithms. Thus it does not mean an
approximation algorithm with a better approximation ratio has better performance
in practice than that with a worse ratio. In reality, many approximation algorithms
have their approximation ratios far from 1, which might approach zero when the
dimensions of the problems become large. Perhaps it is more appropriate to view
the approximation guarantee as a measure that forces us to explore deeper into the
structure of the problem and discover more powerful tools to explore this structure.
In addition, an algorithm with a theoretical assurance should be viewed as a useful
guidance that can be fine tuned to suit the type of instances arising from that specific
applications.

As mentioned in Sect. 1.3.3, all optimization models considered in this brief are
maximization problems. Thus we reserve the greek letter τ , specialized to indicate
the approximation ratio, which is a key ingredient throughout this brief. All the
approximation ratios presented in this brief are in general not universal constants,
and involve problem dimensions and Ω. Here Ω( f (n)) signifies that there are
positive universal constants α and n0 such that Ω( f (n)) ≥ α f (n) for all n ≥ n0.
As usual, O( f (n)) signifies that there are positive universal constants α and n0 such
that O( f (n)) ≤ α f (n) for all n ≥ n0.

1.4.3 Randomized Algorithms

A randomized algorithm is an algorithm which employs a degree of randomness as
part of its operation. The algorithm typically contains certain probability distribution
as an auxiliary input to guide its executions, in the hope of achieving good
performance on average, or with high probability to achieve good performance.
Formally, the algorithm’s performance will be a random variable, thus either the
running time, or the output (or both) are random variables.

In solving NP-hard optimization problems, randomized algorithms are often uti-
lized to ensure performance ratios, in terms of expectation, or with high probability.
The randomized version of approximation algorithms (the deterministic counterpart
is to be found in Definition 1.4.1) below; similarly for Definition 1.4.2.
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Definition 1.4.3. A maximization problem maxxxx∈X p(xxx) admits a polynomial-time
randomized approximation algorithm with approximation ratio τ ∈ (0,1], if v(P)≥ 0
and one of the following two facts holds:

1. A feasible solution x̂xx ∈ X can be found in polynomial-time, such that E[p(x̂xx)] ≥
τ v(P).

2. A feasible solution x̂xx ∈ X can be found in polynomial-time, such that p(x̂xx) ≥
τ v(P) with probability at least 1− ε for all ε ∈ (0,1).

1.4.4 Semidefinite Programming Relaxation
and Randomization

SDP is a subfield of convex optimization concerned with the optimization of a
linear objective function over the intersection of the cone of positive semidefinite
matrices and an affine subspace. It can be viewed as an extension of the well-known
linear programming model, where the vector of variables is replaced by a symmetric
matrix, and the cone of nonnegative orthant is replaced by the cone of positive
semidefinite matrices. It is a special case of the so-called conic programming
problems (specialized to the cone of positive semidefinite matrices).

The standard formulation of an SDP problem is

max CCC •XXX
s.t. AAAi •XXX = bi, i = 1,2, . . . ,m,

XXX � 0,

where the data CCC and AAAi (i = 1,2, . . . ,m) are symmetric matrices, bi (i = 1,2, . . . ,m)
are scalars, the dot product “•” is the usual matrix inner product introduced in
Sect. 1.4.1, and “XXX � 0” means matrix XXX is positive semidefinite.

For convenience, an SDP problem may often be specified in a slightly different,
but equivalent form. For example, linear expressions involving nonnegative scalar
variables may be added to the program specification. This remains an SDP because
each variable can be incorporated into the matrix XXX as a diagonal entry (Xii for
some i). To ensure that Xii ≥ 0, constraints Xi j = 0 can be added for all i �= j.
As another example, note that for any n× n positive semidefinite matrix XXX , there
exists a set of vectors {vvv1,vvv2, . . . ,vvvn} such that Xi j = (vvvi)Tvvv j for all 1 ≤ i, j ≤ n.
Therefore, SDP problems are often formulated in terms of linear expressions on
scalar products of vectors. Given the solution for the SDP in the standard form, the
vectors {vvv1,vvv2, . . . ,vvvn} can be recovered in O(n3) time, e.g., using the Cholesky
decomposition of XXX .

There are several types of algorithms for solving SDP problems. These algo-
rithms output the solutions up to an additive error ε in a time that is polynomial in
the problem dimensions and ln(1/ε). Interior point methods are the most popular
and widely used ones. A lot of efficient SDP solvers based on interior point methods
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have been developed, including SeDuMi of Sturm [109], SDPT3 of Toh et al. [112],
SDPA of Fujisawa et al. [36], CSDP of Borchers [19], DSDP of Benson and Ye [16],
and so on.

SDP is of great importance in convex optimization for several reasons. Many
practical problems in operations research and combinatorial optimization can be
modeled or approximated as SDP problems. In automatic control theory, SDP is
used in the context of linear matrix inequalities. All linear programming problems
can be expressed as SDP problems, and via hierarchies of SDP problems the
solutions of polynomial optimization problems can be approximated. Besides, SDP
has been used in the design of optimal experiments and it can aid in the design of
quantum computing circuits.

SDP has a wide range of practical applications. One of its significant applications
is in the design of approximate solutions to combinatorial optimization problems,
starting from the seminal work by Goemans and Williamson [39], who essentially
proposed a polynomial-time randomized approximation algorithm with approxima-
tion ratio 0.878 for the max-cut problem. The algorithm uses SDP relaxation and
randomization techniques, whose ideas have been revised and generalized in solving
various quadratic programming problems [5, 23, 48, 74, 86, 87, 115–118] and even
quartic polynomial optimization [72, 76]. We now elaborate the max-cut algorithm
of Goemans and Williamson.

The max-cut problem is to find a partition of an undirected graph G= (V,E) with
nonnegative weights on edges, into two disjoint sets, so that the total weight of all
the edges connecting these two sets is maximized. Denote {1,2, . . . ,n} to be the set
of vertices. Let wi j ≥ 0 be the weight of edge connecting vertices i and j for all i �= j,
and let it be 0 if there is no edge between i and j, or i = j. If we let xi (i = 1,2, . . . ,n)
be the binary variable denoting whether it is in the first set (xi = 1) or the second set
(xi =−1), then max-cut is the following quadratic integer programming problem:

(MC) max ∑1≤i, j≤n wi j(1− xix j)/4
s.t. xi ∈ {1,−1}, i = 1,2, . . . ,n.

The problem is NP-hard (see, e.g., Garey and Johnson [37]). Now by introducing a
matrix XXX with Xi j replacing xix j, the constraint is then equivalent to diag(XXX) = eee,
XXX � 0, rank(XXX) = 1. A straightforward SDP relaxation is dropping the rank-one
constraint, which yields

(SMC) max ∑1≤i, j≤n wi j(1−Xi j)/4
s.t. diag(XXX) = eee, XXX � 0.

The algorithm first solves (SMC) to get an optimal solution XXX∗, then randomly
generates an n-dimensional vector following a zero-mean multivariate normal
distribution

ξξξ ∼ N (000n,XXX
∗),
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and lets x̂i = sign(ξi) for i = 1,2, . . . ,n. Note that generating a zero-mean normal

random vector with covariance matrix XXX∗ can be done by multiplying (XXX∗)
1
2 with

a vector whose components are generating from n i.i.d. standard normal random
variables. Besides, the sign function takes 1 for nonnegative numbers and −1 for
negative numbers. Although the output cut (solution x̂xx) may not be optimal, and is
random either. It can be shown [18] that

E [x̂ix̂ j] =
2
π

arcsin X∗
i j ∀1 ≤ i, j ≤ n,

which further leads to

E

[

∑
1≤i, j≤n

wi j(1− x̂ix̂ j)

4

]

≥ 0.878v(SMC) ≥ 0.878v(MC).

This yields a 0.878-approximation ratio for the max-cut problem. The ratio signifi-
cantly improves the previous best known one.

We conclude this subsection as well as this chapter, by introducing another
example of SDP relaxation and randomization technique for solving quadratic con-
strained quadratic programming (QCQP) in Nemirovski et al. [86]. The problem is

(QP) max xxxTFFFxxx
s.t. xxxTQQQixxx ≤ 1, i = 1,2, . . . ,m,

xxx ∈ R
n,

where QQQi � 0 for i = 1,2, . . . ,m and ∑m
i=1 QQQi 
 0. Remark that this is exactly the

model (HQ) when d = 2, which is a special case of general polynomial optimization
discussed in this brief. By using the same relaxation approach where xix j is replaced
by Xi j and the rank-one constraint is dropped, we then obtain a standard SDP
relaxation for (SQP)

(SQP) max FFF •XXX
s.t. QQQi •XXX ≤ 1, i = 1,2, . . . ,m,

XXX � 0.

A polynomial-time randomized approximation algorithm runs in as follows:

1. Solve (SQP) to get an optimal solution XXX∗.
2. Randomly generate a vector ξξξ ∼ N (000n,XXX∗).

3. Compute t = max1≤i≤m

√
ξξξ TQQQiξξξ and output the solution x̂xx = ξξξ/t.

A probability analysis can prove that

x̂xxTFFFx̂xx ≥ Ω(1/ lnm)v(SQP) ≥ Ω(1/ lnm)v(QP)
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holds with probability bigger than a constant. Therefore, running this algorithm
O(ln(1/ε)) times and picking the best solution shall hit the approximation bound of
Ω(1/ lnm) with probability at least 1− ε . For details, one is referred to Nemirovski
et al. [86] or He et al. [48].



Chapter 2
Polynomial Optimization Over
the Euclidean Ball

In this chapter, we shall present approximation methods for polynomial
optimization. The focus will be placed on optimizing several classes of polynomial
functions over the Euclidean ball. The models include maximizing a multilinear
form over Cartesian product of the Euclidean balls, a homogeneous form over the
Euclidean ball, a mixed form over Cartesian product of the Euclidean balls, and a
general inhomogeneous polynomial over the Euclidean ball:

(TS̄) max F(xxx1,xxx2, . . . ,xxxd)

s.t. xxxk ∈ S̄
nk , k = 1,2, . . . ,d

(HS̄) max f (xxx)
s.t. xxx ∈ S̄

n

(MS̄) max f (xxx1,xxx2, . . . ,xxxs)

s.t. xxxk ∈ S̄
nk , k = 1,2, . . . ,s

(PS̄) max p(xxx)
s.t. xxx ∈ S̄

n

Among the above four polynomial optimization models, the degree of generality
increases in the sequential order. Our focus is the design of polynomial-time
approximation algorithms with guaranteed worst case performance ratios. There
are two reasons for us to choose the Euclidean ball as a typical constraint set.
The first is its simplicity, notwithstanding the wide applications. The second and
more important reason is that, through this relatively simple case-study, we hope
to clearly demonstrate how the new techniques work; much of the analysis can be
adapted to other forms of constraints.

Z. Li et al., Approximation Methods for Polynomial Optimization: Models, Algorithms,
and Applications, SpringerBriefs in Optimization, DOI 10.1007/978-1-4614-3984-4 2,
© Zhening Li, Simai He, Shuzhong Zhang 2012
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2.1 Multilinear Form

The first subclass of polynomial optimization models studied in this brief is the
following multilinear form optimization over the Euclidean ball, i.e.,

(TS̄) max F(xxx1,xxx2, . . . ,xxxd)

s.t. xxxk ∈ S̄
nk , k = 1,2, . . . ,d

where n1 ≤ n2 ≤ ·· · ≤ nd .
It is easy to see that the optimal value of (TS̄), denoted by v(TS̄), is positive by

the assumption that FFF is not a zero tensor. Moreover, (TS̄) is equivalent to

(TS) max F(xxx1,xxx2, . . . ,xxxd)

s.t. xxxk ∈ S
nk , k = 1,2, . . . ,d.

This is because we can always scale the decision variables such that ‖xxxk‖= 1 for all
1 ≤ k ≤ d without decreasing the objective. Therefore in this section, for the ease of
presentation, we use S

nk and S̄
nk interchangeably in the analysis.

Homogeneous polynomial functions play an important role in approximation
theory. In a certain well-defined sense, homogeneous polynomials are fairly dense
among all the continuous functions (see, e.g., [66,113]). Multilinear form is a special
class of homogeneous polynomials. In fact, one of the main reasons for us to study
multilinear form optimization is its strong connection to homogenous polynomial
optimization in deriving approximation bounds, whose details will be discussed in
Sect. 2.2. This connection enables a new approach to solve polynomial optimization
problems, and the fundamental issue is how to optimize a multilinear form over a
set. Chen et al. [24] establish the tightness result of multilinear form relaxation for
maximizing a homogeneous form over the Euclidean ball. The study of multilinear
form optimization has become centrally important.

The low degree cases of (TS̄) are immediately recognizable. For d = 1, its
optimal solution is FFF/‖FFF‖ due to the Cauchy–Schwartz inequality; for d = 2, (TS̄)
is to compute the spectrum norm of the matrix FFF with efficient algorithms readily
available. As we shall prove later that (TS̄) is already NP-hard when d = 3, the
focus of this section is to design polynomial-time approximation algorithms with
worst-case performance ratios for any fixed degree d. Our basic approach to deal
with a high degree multilinear form is to bring its order down step by step, finally
leading to a multilinear form optimization in a very low order, hence solvable. Like
any matrix can be treated as a long vector, any tensor can also be regarded as a
reformed lower order tensor, e.g., by rewriting its corresponding multilinear form
by one degree lower. (See the tensor operation in Sect. 1.4.1). After we solve the
problem at a lower order, we need to decompose the solution to make it feasible for
the original order. Then, specific decomposition methods are required, which will
be the topic of this section.
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2.1.1 Computational Complexity

To start, a special case of (TS̄) is worth noting, which plays an important role in our
algorithms.

Proposition 2.1.1 If d = 2, then (TS̄) can be solved in polynomial time, with v(TS̄)≥
‖FFF‖/√n1.

Proof. The problem is essentially maxxxx∈Sn1 ,yyy∈Sn2 xxxTFFFyyy. For any fixed yyy, the corre-
sponding optimal xxx must be FFFyyy/‖FFFyyy‖ due to the Cauchy–Schwartz inequality, and
accordingly,

xxxTFFFyyy =

(
FFFyyy

‖FFFyyy‖
)T

FFFyyy = ‖FFFyyy‖=
√

yyyTFFFTFFFyyy.

Thus the problem is equivalent to maxyyy∈Sn2 yyyTFFFTFFFyyy, whose solution is the largest
eigenvalue and a corresponding eigenvector of the positive semidefinite matrix
FFFTFFF . We then have

λmax(FFF
TFFF)≥ tr(FFFTFFF)/rank(FFFTFFF)≥ ‖FFF‖2/n1,

which implies v(TS̄) =
√

λmax(FFFTFFF)≥ ‖FFF‖/√n1. �

However, for any degree d ≥ 3, (TS̄) becomes NP-hard. Before engaging in a
formal proof, let us first quote a complexity result for a polynomial optimization
over the Euclidean sphere due to Nesterov [89].

Lemma 2.1.2 Suppose AAAk ∈ R
n×n is symmetric for k = 1,2, . . . ,m, and f (xxx) is a

homogeneous cubic form, then

max ∑m
k=1(xxx

TAAAkxxx)2

s.t. xxx ∈ S
n

and

max f (xxx)
s.t. xxx ∈ S

n

are both NP-hard.

The proof is based on the reduction to the Motzkin–Straus formulation [82] of the
stability number of the graph; for details, the reader is referred to Theorem 4 of [89].

Proposition 2.1.3 If d = 3, then (TS̄) is NP-hard.

Proof. In a special case d = 3, n1 = n2 = n3 = n and FFF ∈ R
n3

satisfies Fi jk = Fjik

for all 1 ≤ i, j,k ≤ n, the objective function of (TS̄) can be written as

F(xxx,yyy,zzz) =
n

∑
i, j,k=1

Fi jkxiy jzk =
n

∑
k=1

zk

(
n

∑
i, j=1

Fi jkxiy j

)

=
n

∑
k=1

zk(xxx
TAAAkyyy),
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where symmetric matrix AAAk ∈ R
n×n with its (i, j)th entry being Fi jk for all 1 ≤

i, j,k ≤ n. By the Cauchy–Schwartz inequality, (TS̄) is equivalent to

max ∑n
k=1(xxx

TAAAkyyy)2

s.t. xxx,yyy ∈ S
n.

(2.1)

We shall first show that the optimal value of the above problem is always attainable
at xxx = yyy. To see why, denote (x̂xx, ŷyy) to be any optimal solution pair, with optimal
value v∗. If x̂xx=±ŷyy, then the claim is true; otherwise, we may suppose that x̂xx+ ŷyy �= 000.
Let us denote ŵww := (x̂xx+ ŷyy)/‖x̂xx+ ŷyy‖. Since (x̂xx, ŷyy) must be a KKT point, there exist
(λ ,μ) such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n

∑
k=1

x̂xxTAAAkŷyyAAAkŷyy = λ x̂xx

n

∑
k=1

x̂xxTAAAkŷyyAAAkx̂xx = μ ŷyy.

Pre-multiplying x̂xxT to the first equation and ŷyyT to the second equation yield
λ = μ = v∗. Summing up the two equations, pre-multiplying ŵwwT, and then scaling,
lead us to

n

∑
k=1

x̂xxTAAAkŷyyŵwwTAAAkŵww = v∗.

By applying the Cauchy–Schwartz inequality to the above equality, we have

v∗ ≤
(

n

∑
k=1

(x̂xxTAAAkŷyy)2

) 1
2
(

n

∑
k=1

(ŵwwTAAAkŵww)2

) 1
2

=
√

v∗
(

n

∑
k=1

(ŵwwTAAAkŵww)2

) 1
2

,

which implies that (ŵww, ŵww) is also an optimal solution. Problem (2.1) is then reduced
to Nesterov’s quartic model in Lemma 2.1.2, and its NP-hardness thus follows. �

2.1.2 Cubic Case

In the remainder of this section, we focus on approximation algorithms for (TS̄) with
general degree d. To illustrate the main idea of the algorithms, we first work with
the case d = 3 in this subsection

(T̂S̄) max F(xxx,yyy,zzz) = ∑1≤i≤n1,1≤ j≤n2,1≤k≤n3
Fi jkxiy jzk

s.t. xxx ∈ S̄
n1 , yyy ∈ S̄

n2 , zzz ∈ S̄
n3 .

Denote WWW = xxxyyyT, and we have

‖WWW‖2 = tr(WWWWWW T) = tr(xxxyyyTyyyxxxT) = tr(xxxTxxxyyyTyyy) = ‖xxx‖2‖yyy‖2 ≤ 1.
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Model (T̂S̄) can now be relaxed to

max F(WWW ,zzz) = ∑1≤i≤n1,1≤ j≤n2,1≤k≤n3
Fi jkWi jzk

s.t. WWW ∈ S̄
n1×n2 ,zzz ∈ S̄

n3 .

Notice that the above problem is exactly (TS̄) with d = 2, which can be solved
in polynomial-time by Proposition 2.1.1. Denote its optimal solution to be (ŴWW , ẑzz).
Clearly F(ŴWW , ẑzz) ≥ v(T̂S̄). The key step is to recover solution (x̂xx, ŷyy) from the
matrix ŴWW . Below we are going to introduce two basic decomposition routines:
one is based on randomization and the other on eigen-decomposition. They play a
fundamental role in our proposed algorithms; all solution methods to be developed
later rely on these two routines as a basis.

Decomposition Routine 2.1.1

• INPUT: matrices MMM ∈ R
n1×n2 ,WWW ∈ S̄

n1×n2 .
1 Construct

W̃WW =

[
IIIn1×n1 WWW
WWW T WWW TWWW

]
	 0.

2 Randomly generate
(

ξξξ
ηηη

)
∼ N (000n1+n2 ,W̃WW )

and repeat if necessary, until ξξξ TMMMηηη ≥ MMM •WWW and ‖ξξξ‖‖ηηη‖ ≤ O(
√

n1).
3 Compute xxx = ξξξ/‖ξξξ‖ and yyy = ηηη/‖ηηη‖.
• OUTPUT: vectors xxx ∈ S

n1 , yyy ∈ S
n2 .

Now, let MMM = F(···, ···, ẑzz) and WWW = ŴWW in applying the above decomposition routine.
For the randomly generated (ξξξ ,ηηη), we have

E[F(ξξξ ,ηηη , ẑzz)] = E[ξξξ TMMMηηη ] = MMM •WWW = F(ŴWW , ẑzz).

He et al. [48] establish that if f (xxx) is a homogeneous quadratic form and xxx is drawn
from a zero-mean multivariate normal distribution, then there is a universal constant
θ ≥ 0.03 such that

Pr{ f (xxx)≥ E[ f (xxx)]} ≥ θ .

Since ξξξ TMMMηηη is a homogeneous quadratic form of the normal random vector

(
ξξξ
ηηη

)
,

we know

Pr{ξξξ TMMMηηη ≥ MMM •WWW}= Pr{F(ξξξ ,ηηη , ẑzz)≥ E[F(ξξξ ,ηηη , ẑzz)]} ≥ θ .
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Moreover, by using a property of normal random vectors (see Lemma 3.1 of [76]),
we have

E
[‖ξξξ‖2‖ηηη‖2] = E

[
n1

∑
i=1

n2

∑
j=1

ξi
2η j

2

]

=
n1

∑
i=1

n2

∑
j=1

(
E[ξi

2]E[η j
2]+ 2(E[ξiη j])

2
)

=
n1

∑
i=1

n2

∑
j=1

[
(Ŵ TŴ ) j j + 2Ŵi j

2
]
= (n1 +2) tr(ŴWW

T
ŴWW )≤ n1 +2.

By applying the Markov inequality, for any t > 0

Pr{‖ξξξ‖2‖ηηη‖2 ≥ t} ≤ E
[‖ξξξ‖2‖ηηη‖2]/t ≤ (n1 +2)/t.

Therefore, by the so-called union inequality for the probability of joint events,
we have

Pr {F(ξξξ ,ηηη , ẑzz) ≥ F(ŴWW , ẑzz), ‖ξξξ‖2‖ηηη‖2 ≤ t
}

≥ 1−Pr
{

F(ξξξ ,ηηη , ẑzz)< F(ŴWW , ẑzz)
}−Pr

{‖ξξξ‖2‖ηηη‖2 > t
}

≥ 1− (1−θ )− (n1+ 2)/t = θ/2,

where we let t = 2(n1 + 2)/θ . Thus we have

F(xxx,yyy, ẑzz)≥ F(ŴWW , ẑzz)√
t

≥ v(T̂S̄)

√
θ

2(n1 +2)
,

obtaining an Ω(1/
√

n1)-approximation ratio.
Below we present an alternative (and deterministic) decomposition routine.

Decomposition Routine 2.1.2

• INPUT: a matrix MMM ∈ R
n1×n2 .

1 Find an eigenvector ŷyy corresponding to the largest eigenvalue of MMMTMMM.
2 Compute xxx = MMMŷyy/‖MMMŷyy‖ and yyy = ŷyy/‖ŷyy‖.
• OUTPUT: vectors xxx ∈ S

n1 , yyy ∈ S
n2 .

This decomposition routine literally follows the proof of Proposition 2.1.1, which
tells us that xxxTMMMyyy ≥ ‖MMM‖/√n1. Thus we have

F(xxx,yyy, ẑzz) = xxxTMMMyyy ≥ ‖MMM‖√
n1

= max
ZZZ∈S̄n1×n2

MMM •ZZZ√
n1

≥ MMM •ŴWW√
n1

=
F(ŴWW , ẑzz)√

n1
≥ v(T̂S̄)√

n1
.
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The complexity for DR 2.1.1 is O(n1n2 ln(1/ε)) with probability 1 − ε , and
for DR 2.1.2 it is O

(
max{n1

3,n1n2}
)
. However, DR 2.1.2 is indeed very easy to

implement, and is deterministic. Both DR 2.1.1 and DR 2.1.2 lead to the following
approximation result in terms of the order of the approximation ratio.

Theorem 2.1.4 If d = 3, then (TS̄) admits a polynomial-time approximation algo-
rithm with approximation ratio 1/

√
n1.

2.1.3 General Fixed Degree

Now we are ready to proceed to the general case of fixed degree d. Let XXX = xxx1(xxxd)T,
and (TS̄) can be relaxed to

(T̃S̄) max F(XXX ,xxx2,xxx3, . . . ,xxxd−1)

s.t. XXX ∈ S̄
n1×nd , xxxk ∈ S̄

nk , k = 2,3, . . . ,d −1.

Clearly it is a type of the model (TS̄) with degree d − 1. Suppose (T̃S̄) can be
solved approximately in polynomial time with approximation ratio τ , i.e., we find
(X̂XX , x̂xx2, x̂xx3, . . . , x̂xxd−1) with

F(X̂XX , x̂xx2, x̂xx3, . . . , x̂xxd−1)≥ τv(T̃S̄)≥ τv(TS̄).

Observing that F(···, x̂xx2, x̂xx3, . . . , x̂xxd−1, ···) is an n1 ×nd matrix, using DR 2.1.2 we shall
find (x̂xx1, x̂xxd) such that

F(x̂xx1, x̂xx2, . . . , x̂xxd)≥ F(X̂XX , x̂xx2, x̂xx3, . . . , x̂xxd−1)/
√

n1 ≥ n1
− 1

2 τv(TS̄).

By induction this leads to the following.

Theorem 2.1.5 (TS̄) admits a polynomial-time approximation algorithm with
approximation ratio τ(TS), where

τ(TS) :=

(
d−2

∏
k=1

nk

)− 1
2

.

Below we summarize the above recursive procedure to solve (TS̄) as in
Theorem 2.1.5.
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Algorithm 2.1.3

• INPUT: a d-th order tensor FFF ∈ R
n1×n2×···×nd with n1 ≤ n2 ≤ ·· · ≤ nd.

1 Rewrite FFF as a (d − 1)-th order tensor FFF ′ ∈ R
n2×n3×···×nd−1×ndn1 by combing its

first and last modes into one, and placing it in the last mode of FFF ′, i.e.,

Fi1,i2,...,id = F ′
i2,i3,...,id−1,(i1−1)nd+id

∀1 ≤ i1 ≤ n1,1 ≤ i2 ≤ n2, . . . ,1 ≤ id ≤ nd.

2 For (TS̄) with the (d − 1)-th order tensor FFF ′: if d − 1 = 2, then apply DR 2.1.2,
with input FFF ′ = MMM and output (x̂xx2, x̂xx1,d) = (xxx,yyy); otherwise obtain a solution
(x̂xx2, x̂xx3, . . . , x̂xxd−1, x̂xx1,d) by recursion.

3 Compute a matrix MMM′ = F(···, x̂xx2, x̂xx3, . . . , x̂xxd−1, ···) and rewrite the vector x̂xx1,d as a
matrix XXX ∈ S̄

n1×nd .
4 Apply either DR 2.1.1 or DR 2.1.2, with input (MMM′,XXX) = (MMM,WWW ) and output

(x̂xx1, x̂xxd) = (xxx,yyy).
• OUTPUT: a feasible solution (x̂xx1, x̂xx2, . . . , x̂xxd).

2.2 Homogeneous Form

This section focuses on optimization of homogeneous polynomials (or forms) over
the Euclidean ball:

(HS̄) max f (xxx)
s.t. xxx ∈ S̄

n

When the degree of the polynomial objective, d, is odd, (HS̄) is equivalent to

(HS) max f (xxx)
s.t. xxx ∈ S

n.

This is because we can always use −xxx to replace xxx if its objective value is negative,
and can also scale the vector xxx along its direction to make it in S

n. However, if d is
even, then this equivalence may not hold. For example, the optimal value of (HS)
may be negative, if the tensor FFF is negative definite, i.e., f (xxx) < 0 for all xxx �= 000,
while the optimal value of (HS̄) is always nonnegative, since 000 is always a feasible
solution.

The model (HS̄) is in general NP-hard. In fact, when d = 1, (HS̄) has a close-
form solution, due to the Cauchy–Schwartz inequality; when d = 2, (HS̄) is related
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to the largest eigenvalue of the symmetric matrix FFF ; when n ≥ 3, (HS̄) becomes
NP-hard, which was proven by Nesterov [89] (see Lemma 2.1.2). Interestingly,
when d ≥ 3, the model (HS̄) is also regarded as computing the largest eigenvalue
of the supersymmetric tensor FFF , like the case d = 2 (see, e.g., Qi [99]). Luo
and Zhang [76] proposed the first polynomial-time randomized approximation
algorithm with relative approximation ratio Ω

(
1/n2

)
when d = 4, based on its

quadratic SDP relaxation and randomization techniques.
Here in this section, we are going to present polynomial-time approxima-

tion algorithms with guaranteed worse-case performance ratios for the models
concerned. Our algorithms are designed to solve polynomial optimization with
any given degree d, and the approximation ratios improve the previous works
specialized to their particular degrees. The major novelty in our approach here
is the multilinear tensor relaxation, instead of quadratic SDP relaxation methods
in [72, 76]. The relaxed multilinear form optimization problems admit polynomial-
time approximation algorithms discussed in Sect. 2.1. After we solve the relaxed
problem approximately, the solutions for the tensor model will then be used to
produce a feasible solution for the original polynomial optimization model. The
remaining task of the section is to illustrate how this can be done.

2.2.1 Link Between Multilinear Form and Homogeneous Form

Let FFF be the supersymmetric tensor satisfying F(xxx,xxx, . . . ,xxx
︸ ︷︷ ︸

d

) = f (xxx). Then (HS̄) can

be relaxed to multilinear form optimization model (TS̄) discussed in Sect. 2.1, as
follows:

(ĤS̄) max F(xxx1,xxx2, . . . ,xxxd)

s.t. xxxk ∈ S̄
n, k = 1,2, . . . ,d.

Theorem 2.1.5 asserts that (ĤS̄) can be solved approximately in polynomial time,

with approximation ratio n−
d−2

2 . The key step is to draw a feasible solution of (HS̄)
from the approximate solution of (ĤS̄). For this purpose, we establish the following
link between (HS̄) and (ĤS̄).

Lemma 2.2.1 Suppose xxx1,xxx2, . . . ,xxxd ∈ R
n, and ξ1,ξ2, . . . ,ξd are i.i.d. random

variables, each taking values 1 and −1 with equal probability 1/2. For any
supersymmetric d-th order tensor FFF and function f (xxx) = F(xxx,xxx, . . . ,xxx), it holds that

E

[
d

∏
i=1

ξi f

(
d

∑
k=1

ξkxxxk

)]

= d!F(xxx1,xxx2, . . . ,xxxd).
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Proof. First we observe that

E

[
d

∏
i=1

ξi f

(
d

∑
k=1

ξkxxxk

)]

= E

[
d

∏
i=1

ξi ∑
1≤k1,k2,...,kd≤d

F
(

ξk1 xxxk1 ,ξk2xxxk2 , . . . ,ξkd xxxkd

)
]

= ∑
1≤k1,k2,...,kd≤d

E

[
d

∏
i=1

ξi

d

∏
j=1

ξk j F
(

xxxk1 ,xxxk2 , . . . ,xxxkd

)
]

.

If {k1,k2, . . . ,kd} is a permutation of {1,2, . . . ,d}, then

E

[
d

∏
i=1

ξi

d

∏
j=1

ξk j

]

= E

[
d

∏
i=1

ξ 2
i

]

= 1.

Otherwise, there must be an index k0 with 1 ≤ k0 ≤ d and k0 �= k j for all 1 ≤ j ≤ d.
In the latter case,

E

[
d

∏
i=1

ξi

d

∏
j=1

ξk j

]

= E
[
ξk0

]
E

[

∏
1≤i≤d,i�=k0

ξi

d

∏
j=1

ξk j

]

= 0.

Since the number of different permutations of {1,2, . . . ,d} is d!, by taking into
account of the supersymmetric property of the tensor FFF , the claimed relation
follows. �

Note that the coefficients of the link identity in Lemma 2.2.1, ∏d
i=1 ξi, are not

always positive. Therefore, whether the degree of the polynomial objective d is even
or odd makes a difference.

2.2.2 The Odd Degree Case

When d is odd, the identity in Lemma 2.2.1 can be rewritten as

d!F(xxx1,xxx2, . . . ,xxxd) = E

[
d

∏
i=1

ξi f

(
d

∑
k=1

ξkxxxk

)]

= E

[

f

(
d

∑
k=1

(

∏
i�=k

ξi

)

xxxk

)]

.

Since ξ1,ξ2, . . . ,ξd are i.i.d. random variables taking values 1 or −1, by randomiza-
tion we may find a particular binary vector βββ ∈ B

d , such that

f

(
d

∑
k=1

(

∏
i�=k

βi

)

xxxk

)

≥ d!F(xxx1,xxx2, . . . ,xxxd). (2.2)
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We remark that d is considered a constant parameter in this brief. Therefore,
searching over all the combinations can be done, in principle, in constant time.

Let x̌xx = ∑d
k=1

(
∏i�=k βi

)
xxxk, and x̂xx = x̌xx/‖x̌xx‖. By the triangle inequality, we have

‖x̌xx‖ ≤ d, and thus

f (x̂xx)≥ d!d−dF(xxx1,xxx2, . . . ,xxxd).

Combining with Theorem 2.1.5, we have

Theorem 2.2.2 When d ≥ 3 is odd, (HS̄) admits a polynomial-time approximation
algorithm with approximation ratio τ(HS), where

τ(HS) := d!d−dn−
d−2

2 = Ω
(

n−
d−2

2

)
.

The algorithm for approximately solving (HS̄) with odd d is highlighted below.

Algorithm 2.2.1

• INPUT: a d-th order supersymmetric tensor FFF ∈ R
nd

1 Apply Algorithm 2.1.3 to solve the problem

max F(xxx1,xxx2, . . . ,xxxd)

s.t. xxxk ∈ S̄
n, k = 1,2, . . . ,d

approximately, with input FFF and output (x̂xx1, x̂xx2, . . . , x̂xxd).
2 Compute βββ = argmaxξξξ∈Bd

{
f
(
∑d

k=1 ξkx̂xxk
)}

, or randomly generate βββ uniformly

on B
d and repeat if necessary, until f

(
∑d

k=1 βkx̂xxk
)≥ d!F(x̂xx1, x̂xx2, . . . , x̂xxd).

3 Compute x̂xx = ∑d
k=1 βkx̂xxk

/‖∑d
k=1 βkx̂xxk‖.

• OUTPUT: a feasible solution x̂xx ∈ S
n.

We remark that it is unnecessary to enumerate all possible 2d combinations in
Step 2 of Algorithm 2.2.1, as (2.2) suggests that a simple randomization process
will serve the same purpose, especially when d is large. In the latter case, we will
end up with a polynomial-time randomized approximation algorithm; otherwise,
the computational complexity of Algorithm 2.2.1 is deterministic and runs in
polynomial time for fixed d.

2.2.3 The Even Degree Case

When d is even, the only easy case of (HS̄) appears to be d = 2, and even worse, we
have the following.
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Proposition 2.2.3 If d = 4, then there is no polynomial-time approximation
algorithm with a positive approximation ratio for (HS̄) unless P = NP.

Proof. Let f (xxx) = F(xxx,xxx,xxx,xxx) with FFF being supersymmetric. We say quartic form
F(xxx,xxx,xxx,xxx) is positive semidefinite if F(xxx,xxx,xxx,xxx)≥ 0 for all xxx∈R

n. It is well known
that checking the positive semidefiniteness of F(xxx,xxx,xxx,xxx) is co-NP-complete. If
we were able to find a polynomial-time approximation algorithm to get a positive
approximation ratio τ ∈ (0,1] for v∗ = maxxxx∈S̄n −F(xxx,xxx,xxx,xxx), then this algorithm
can be used to check the positive semidefiniteness of F(xxx,xxx,xxx,xxx). To see why,
suppose this algorithm returns a feasible solution x̂xx with −F(x̂xx, x̂xx, x̂xx, x̂xx) > 0, then
F(xxx,xxx,xxx,xxx) is not positive semidefinite. Otherwise the algorithm must return a
feasible solution x̂xx with 0 ≥ −F(x̂xx, x̂xx, x̂xx, x̂xx) ≥ τ v∗, which implies v∗ ≤ 0; hence,
F(xxx,xxx,xxx,xxx) is positive semidefinite in this case. Therefore, such algorithm cannot
exist unless P = NP. �

This negative result rules out any polynomial-time approximation algorithm with
a positive absolute approximation ratio for (HS̄) when d ≥ 4 is even. Thus we
can only speak of relative approximation ratio. The following algorithm slightly
modifies Algorithm 2.2.1, and works for (HS̄) when d is even.

Algorithm 2.2.2

• INPUT: a d-th order supersymmetric tensor FFF ∈ R
nd

1 Apply Algorithm 2.1.3 to solve the problem

max F(xxx1,xxx2, . . . ,xxxd)

s.t. xxxk ∈ S̄
n, k = 1,2, . . . ,d

approximately, with input FFF and output (x̂xx1, x̂xx2, . . . , x̂xxd).
2 Compute βββ = argmaxξξξ∈Bd ,∏d

i=1 ξi=1

{
f
(
∑d

k=1 ξkx̂xxk)}.

3 Compute x̂xx = ∑d
k=1 βkx̂xxk

/
d.

• OUTPUT: a feasible solution x̂xx ∈ S̄
n.

Theorem 2.2.4 When d ≥ 4 is even, (HS̄) admits a polynomial-time approximation
algorithm with relative approximation ratio τ(HS).

Proof. Like in the proof of Theorem 2.2.2, by relaxing (HS̄) to (ĤS̄), we are able to
find a set of vectors (x̂xx1, x̂xx2, . . . , x̂xxd) in the Euclidean ball, such that

F(x̂xx1, x̂xx2, . . . , x̂xxd)≥ n−
d−2

2 v(ĤS̄).
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Besides, we observe that v(HS̄)≤ v(ĤS̄) and v(HS̄)≥ v(ĤS̄) =−v(ĤS̄). Therefore

2v(ĤS̄)≥ v(HS̄)− v(HS̄). (2.3)

Let ξ1,ξ2, . . . ,ξd be i.i.d. random variables, each taking values 1 and −1 with equal
probability 1/2. Obviously, Pr

{
∏d

i=1 ξi = 1
}
= Pr

{
∏d

i=1 ξi =−1
}
= 1/2. By the

triangle inequality, it follows that 1
d ∑d

k=1 ξkx̂xxk ∈ S̄
n, and so f ( 1

d ∑d
k=1 ξkx̂xxk)≥ v(HS̄).

Applying Lemma 2.2.1 and we have

1
2

E

[

f

(
1
d

d

∑
k=1

ξkx̂xxk

)

− v(HS̄)

∣
∣
∣∣
∣

d

∏
i=1

ξi = 1

]

≥ E

[

f

(
1
d

d

∑
k=1

ξkx̂xxk

)

− v(HS̄)

∣
∣
∣
∣∣

d

∏
i=1

ξi = 1

]

Pr

{
d

∏
i=1

ξi = 1

}

−E

[

f

(
1
d

d

∑
k=1

ξkx̂xxk

)

− v(HS̄)

∣
∣
∣
∣
∣

d

∏
i=1

ξi =−1

]

Pr

{
d

∏
i=1

ξi =−1

}

= E

[
d

∏
i=1

ξi

(

f

(
1
d

d

∑
k=1

ξkx̂xxk

)

− v(HS̄)

)]

= d−dE

[
d

∏
i=1

ξi f

(
d

∑
k=1

ξkx̂xxk

)]

− v(HS̄)E

[
d

∏
i=1

ξi

]

= d−dd!F(x̂xx1, x̂xx2, . . . , x̂xxd)≥ τ(HS)v(ĤS̄)≥ (τ(HS)/2)(v(HS̄)− v(HS̄)) .

Thus we may find a binary vector βββ ∈ B
d with ∏d

i=1 βi = 1, such that

f

(
1
d

d

∑
k=1

βkx̂xxk

)

− v(HS̄)≥ τ(HS)(v(HS̄)− v(HS̄)) . �

2.3 Mixed Form

In this section, we extend the study on the multilinear form and the homogeneous
form to a general mixed form, i.e.,

Function M f (xxx1,xxx2, . . . ,xxxs) = F(xxx1,xxx1, . . . ,xxx1
︸ ︷︷ ︸

d1

,xxx2,xxx2, . . . ,xxx2
︸ ︷︷ ︸

d2

, . . . ,xxxs,xxxs, . . . ,xxxs

︸ ︷︷ ︸
ds

),
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where d = d1 + d2 + · · ·+ ds is deemed a fixed constant, and d-th order tensor
FFF ∈ R

n1
d1×n2

d2×···×ns
ds has partial symmetric property. Here we assume that n1 ≤

n2 ≤ ·· · ≤ ns. The mixed-form optimization model considered here is

(MS̄) max f (xxx1,xxx2, . . . ,xxxs)

s.t. xxxk ∈ S̄
nk , k = 1,2, . . . ,s

The model (MS̄) is a generalization of (TS̄) in Sect. 2.1 and (HS̄) in Sect. 2.2.
For the computational complexity, it is similar to its special cases (TS̄) and (HS̄).
It is solvable in polynomial time when d ≤ 2, and is NP-hard when d ≥ 3, which
will be shown shortly later. Moreover, when d ≥ 4 and all di (1 ≤ k ≤ s) are even,
there is no polynomial-time approximation algorithm with a positive approximation
ratio unless P = NP. This can be verified in its simplest case of d = 4 and d1 =
d2 = 2 by using a similar argument as in Ling et al. [72]. In fact, the biquadratic
optimization model considered in Ling et al. [72] is slightly different from (MS̄),
and is exactly the model (MS) when d = 4 and d1 = d2 = 2, i.e., the Euclidean
sphere is considered instead of the Euclidean ball. In particular, they established
the equivalence between (MS) and its quadratic SDP relaxation, based on which
they proposed a polynomial-time randomized approximation algorithm with relative
approximation ratio Ω

(
1/n2

2
)
.

Like we did earlier, below we are going to present polynomial-time approxi-
mation algorithms with guaranteed worse-case performance ratios. Our algorithms
work for any fixed degree d, and the approximation ratios improve that of
Ling et al. [72] specialized to the quartic case. Instead of using the quadratic SDP
relaxation methods in [72], we resort to the multilinear form relaxation, similar as
for (HS̄). However, one has to adjust Lemma 2.2.1 carefully, and a more general
link from the multilinear form to the mixed form need be established, which is the
objective of this section.

2.3.1 Complexity and a Step-by-Step Adjustment

First, let us settle the following hardness issue.

Proposition 2.3.1 If d = 3, then (MS̄) is NP-hard.

Proof. We need to verify the NP-hardness for three cases under d = 3: (d1,d2,d3) =
(3,0,0), (d1,d2,d3) = (2,1,0) and (d1,d2,d3) = (1,1,1). The first case is exactly
(HS̄) with d = 3, whose NP-hardness was claimed in Lemma 2.1.2, and the last case
is exactly (TS̄) with d = 3, whose NP-hardness was shown in Proposition 2.1.3.

It remains to consider the second case (d1,d2,d3) = (2,1,0). As a special case,
we focus on n1 = n2 = n and FFF ∈R

n3
satisfying Fi jk = Fjik for all 1 ≤ i, j,k ≤ n. We

notice that the following form of (TS̄) is NP-hard (cf. the proof of Proposition 2.1.3):

(ŤS̄) max F(xxx,yyy,zzz)
s.t. xxx,yyy,zzz ∈ S̄

n.
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We shall show that the optimal value of (ŤS̄) is equal to the optimal value of this
special case

(M̌S̄) max F(xxx,xxx,zzz)
s.t. xxx,zzz ∈ S̄

n.

It is obvious that v(ŤS̄) ≥ v(M̌S̄). Now choose any optimal solution (xxx∗,yyy∗,zzz∗) of
(ŤS̄) and compute the matrix MMM = F(···, ···,zzz∗). Since MMM is symmetric, we can compute
an eigenvector x̂xx corresponding to the largest absolute eigenvalue λ (which is also
the largest singular value) in polynomial time. Observe that

|F(x̂xx, x̂xx,zzz∗)|= |x̂xxTMMMx̂xx|= λ = max
xxx,yyy∈S̄n

xxxTMMMyyy= max
xxx,yyy∈S̄n

F(xxx,yyy,zzz∗)=F(xxx∗,yyy∗,zzz∗)= v(ŤS̄),

which implies either (x̂xx, x̂xx,zzz∗) or (x̂xx, x̂xx,−zzz∗) is an optimal solution of (ŤS̄). Therefore
v(ŤS̄)≤ v(M̌S̄), and this proves v(ŤS̄) = v(M̌S̄). If (M̌S̄) can be solved in polynomial
time, then its optimal solution is also an optimal solution for (ŤS̄), which would
solve (ŤS̄) in polynomial time, a contradiction to its NP-hardness. �

Thus we shall focus on polynomial-time approximation algorithms. Similar to
the relaxation in Sect. 2.2, we relax (MS̄) to the multilinear form optimization (TS̄)
as follows:

max F(xxx1,xxx2, . . . ,xxxd)

s.t. xxxk ∈ S̄
n1 , 1 ≤ k ≤ d1,

xxxk ∈ S̄
n2 , d1 + 1 ≤ k ≤ d1 +d2,

...
xxxk ∈ S̄

ns , d1 + d2 + · · ·+ ds−1 +1 ≤ k ≤ d,

then by Theorem 2.1.5 we are able to find (x̂xx1, x̂xx2, . . . , x̂xxd) with ‖xxxk‖ ≤ 1 for all
1 ≤ k ≤ d in polynomial time, such that

F(x̂xx1, x̂xx2, . . . , x̂xxd)≥ τ̃(MS)v(MS̄), (2.4)

where

τ̃(MS) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
∏s−1

k=1 nk
dk

ns−1

)− 1
2

ds = 1,

(
∏s

k=1 nk
dk

ns
2

)− 1
2

ds ≥ 2.

In order to draw a feasible solution for (MS̄) from (x̂xx1, x̂xx2, . . . , x̂xxd), we need to apply
the identity stipulated in Lemma 2.2.1 in a careful manner. Approximation results
for (HS̄) can be similarly derived for the odd case.
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Theorem 2.3.2 If d ≥ 3 and one of dk (k = 1,2, . . . ,s) is odd, then (MS̄) admits a
polynomial-time approximation algorithm with approximation ratio τ̂(MS), where

τ̂(MS) := τ̃(MS) ∏
1≤k≤s,3≤dk

dk!

dk
dk

= Ω (τ̃(MS))

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(

∏
1≤k≤s,3≤dk

dk!

dk
dk

)(
∏s−1

k=1 nk
dk

ns−1

)− 1
2

ds = 1,

(

∏
1≤k≤s,3≤dk

dk!

dk
dk

)(
∏s

k=1 nk
dk

ns
2

)− 1
2

ds ≥ 2.

To prevent the notations from getting out of hand, here we shall only consider a
special case (M̂S̄), which is easily extended to general (MS̄):

(M̂S̄) max F(xxx,xxx,xxx,xxx,yyy,yyy,zzz,zzz,zzz)
s.t. xxx ∈ S̄

n1 ,yyy ∈ S̄
n2 ,zzz ∈ S̄

n3 .

By (2.4), we are able to find xxx1,xxx2,xxx3,xxx4 ∈ S̄
n1 ,yyy1,yyy2 ∈ S̄

n2 , and zzz1,zzz2,zzz3 ∈ S̄
n3

in polynomial time, such that

F(xxx1,xxx2,xxx3,xxx4,yyy1,yyy2,zzz1,zzz2,zzz3)≥ τ̃(MS)v(M̂S̄).

Let us first fix (yyy1,yyy2,zzz1,zzz2,zzz3) and try to get a solution for the problem

max F(xxx,xxx,xxx,xxx,yyy1,yyy2,zzz1,zzz2,zzz3)

s.t. xxx ∈ S̄
n1 .

Using the same argument as in the proof of Theorem 2.2.2, we are able to find
x̂xx∈ S̄

n1 , such that either F(x̂xx, x̂xx, x̂xx, x̂xx,yyy1,yyy2,zzz1,zzz2,zzz3) or F(x̂xx, x̂xx, x̂xx, x̂xx,yyy1,yyy2,−zzz1,zzz2,zzz3)
will be no less than 4!4−4F(xxx1,xxx2,xxx3,xxx4,yyy1,yyy2,zzz1,zzz2,zzz3), whereas in the latter case
we use −zzz1 to update zzz1. In this context the even degree (d1 = 4) of xxx does not
raise any issue, as we can always move the negative sign to zzz1. This process may be
considered variable adjustment, and the approximation bound is 4!4−4τ̃(MS).

Next we work on adjustment of variable yyy and consider the problem

max |F(x̂xx, x̂xx, x̂xx, x̂xx,yyy,yyy,zzz1,zzz2,zzz3)|
s.t. yyy ∈ S̄

n2 .

The problem is equivalent to finding the largest absolute eigenvalue of a matrix,
which can be solved in polynomial time. Denote its optimal solution to be ŷyy, and
update zzz1 with −zzz1 if necessary. This process leads to an approximation bound
4!4−4τ̃(MS) for the solution (x̂xx, x̂xx, x̂xx, x̂xx, ŷyy, ŷyy,zzz1,zzz2,zzz3).
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The last adjustment of the variable zzz is straightforward. Similar to the adjustment
on xxx, now we work with

max F(x̂xx, x̂xx, x̂xx, x̂xx, ŷyy, ŷyy,zzz,zzz,zzz)
s.t. zzz ∈ S̄

n3 ,

and we can find ẑzz ∈ S̄
n3 in polynomial time, such that the solution (x̂xx, x̂xx, x̂xx, x̂xx,

ŷyy, ŷyy, ẑzz, ẑzz, ẑzz) admits an approximation bound 3!3−34!4−4τ̃(MS).
We remark here that the variable zzz is the last variable for adjustment, since we

cannot move the negative sign to other adjusted variables if the degree of zzz is even.
That is why we need one of dk’s to be odd, which allows us to ensure that the last
variable for adjustment has an odd degree.

2.3.2 Extended Link Between Multilinear Form
and Mixed Form

If all dk’s (k = 1,2, . . . ,s) are even, then we can only hope for a relative approxi-
mation ratio. For the simplest case where d = 4 and d1 = d2 = 2, the biquadratic
optimization model maxxxx∈S̄n1 ,yyy∈S̄n2 F(xxx,xxx,yyy,yyy) does not admit any polynomial-time
approximation algorithm with a positive approximation ratio. Before working out
this case, let us first introduce the following link between the multilinear form and
the mixed form, extended from Lemma 2.2.1.

Lemma 2.3.3 Suppose that xxxk ∈ R
n1 (1 ≤ k ≤ d1), xxxk ∈ R

n2 (d1 + 1 ≤ k ≤ d1 +
d2), . . . , xxxk ∈ R

ns (d1 + d2 + · · ·+ ds−1 + 1 ≤ k ≤ d1 + d2 + · · ·+ ds = d), and
ξ1,ξ2, . . . ,ξd are i.i.d. random variables, each taking values 1 and −1 with equal
probability 1/2. Denote

xxx1
ξ =

d1

∑
k=1

ξkxxxk, xxx2
ξ =

d1+d2

∑
k=d1+1

ξkxxxk, . . . , xxxs
ξ =

d

∑
k=d1+d2+···+ds−1+1

ξkxxxk. (2.5)

For any partial symmetric d-th order tensor FFF ∈ R
n1

d1×n2
d2×···×ns

ds and function

f (xxx1,xxx2, . . . ,xxxs) = F(xxx1,xxx1, . . . ,xxx1
︸ ︷︷ ︸

d1

,xxx2,xxx2, . . . ,xxx2
︸ ︷︷ ︸

d2

, . . . ,xxxs,xxxs, . . . ,xxxs

︸ ︷︷ ︸
ds

),

it holds that

E

[
d

∏
i=1

ξi f
(

xxx1
ξ ,xxx

2
ξ , . . . ,xxx

s
ξ

)
]

=
s

∏
k=1

dk!F(xxx1,xxx2, . . . ,xxxd).
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This lemma is easy to prove by invoking Lemma 2.2.1 repeatedly s times. Now, with
this extended link in hand, we can then apply a similar argument as in the proof of
Theorem 2.2.4.

Theorem 2.3.4 If d ≥ 4 and all dk (k = 1,2, . . . ,s) are even, then (MS̄) admits a
polynomial-time approximation algorithm with relative approximation ratio τ(MS),
where

τ(MS) := τ̃(MS)
s

∏
k=1

dk!

dk
dk

= Ω (τ̃(MS))

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
s

∏
k=1

dk!

dk
dk

)(
∏s−1

k=1 nk
dk

ns−1

)− 1
2

ds = 1,

(
s

∏
k=1

dk!

dk
dk

)(
∏s

k=1 nk
dk

ns
2

)− 1
2

ds ≥ 2.

Remark that the case ds = 1 is theoretically not relevant for Theorem 2.3.4 since it
assumes all dk to be even. However, we shall keep this definition of τ(MS) for the
interest of Sect. 3.2 where this definition will be used.

2.4 Inhomogeneous Polynomial

The last section of this chapter tackles an important and useful extension of the
models studied in the previous sections: a generic inhomogeneous polynomial
objective function. As is evident, many important applications of polynomial
optimization involve an objective that is intrinsically inhomogeneous. Specifically,
we consider the following model:

(PS̄) max p(xxx)
s.t. xxx ∈ S̄

n

The above model can be solved in polynomial time when d ≤ 2 and becomes NP-
hard when d ≥ 3. Even worse, for d ≥ 3 there is no polynomial-time approximation
algorithm with a positive approximation ratio unless P = NP, which we shall show
later. Therefore, the whole section is focused on relative approximation algorithms.
The inapproximability of (PS̄) differs greatly from that of the homogeneous model
(HS̄) discussed in Sect. 2.2, since when d is odd, (HS̄) admits a polynomial-time
approximation algorithm with a positive approximation ratio by Theorem 2.2.2.
Consequently, the optimization of an inhomogeneous polynomial is much harder
than a homogeneous one.
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Extending the solution methods and the corresponding analysis from homo-
geneous polynomial optimization to the general inhomogeneous polynomials is
not straightforward. As a matter of fact, so far all the successful approximation
algorithms with provable approximation ratios in the literature, e.g., the quadratic
models considered in [48, 74, 86, 87, 117] and the quartic models considered
in [72, 76], are dependent on the homogeneity in a crucial way. Technically, a
homogenous polynomial allows one to scale the overall function value along
a given direction, which is an essential operation in proving the quality bound
of the approximation algorithms. The current section breaks its path from the
preceding practices, by directly dealing with a homogenizing variable. Although
homogenization is a natural way to deal with inhomogeneous polynomial functions,
it is quite a different matter when it comes to the worst-case performance ratio
analysis. In fact, the usual homogenization does not lead to any assured performance
ratio. In this section we shall point out a specific route to get around this difficulty, in
which we actually provide a general scheme to approximately solve such problems
via homogenization.

Let us now focus on the approximation methods for (PS̄). As this section is
concerned with the relative approximation ratios, we may without loss of generality
assume p(xxx) to have no constant term, i.e., p(000) = 0. Thus the optimal value of this
problem is obviously nonnegative, i.e., v(PS̄) ≥ 0. The complexity to solve (PS̄) is
summarized in the following proposition.

Proposition 2.4.1 If d ≤ 2, then (PS̄) can be solved in polynomial time. If d ≥ 3,
then (PS̄) is NP-hard, and there is no polynomial-time approximation algorithm
with a positive approximation ratio unless P = NP.

Proof. For d ≤ 2, (PS̄) is a standard trust region subproblem. As such it is well
known to be solvable in polynomial time (see, e.g., [110, 111] and the references
therein). For d ≥ 3, in a special case where p(xxx) is a homogeneous cubic form, (PS̄)
is equivalent to maxxxx∈Sn p(xxx), which is shown to be NP-hard by Nesterov [89]; see
also Lemma 2.1.2.

Let us now consider a special class of (PS̄) when d = 3:

v(α) = max f (xxx)−α‖xxx‖2

s.t. xxx ∈ S̄
n,

where α ≥ 0, and f (xxx) is a homogeneous cubic form associated with a nonzero
supersymmetric tensor FFF ∈R

n×n×n. If v(α)> 0, then its optimal solution xxx∗ satisfies

f (xxx∗)−α‖xxx∗‖2 = ‖xxx∗‖3 f

(
xxx∗

‖xxx∗‖
)
−α‖xxx∗‖2 = ‖xxx∗‖2

(
‖xxx∗‖ f

(
xxx∗

‖xxx∗‖
)
−α

)
> 0.
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Thus by the optimality of xxx∗, we have ‖xxx∗‖ = 1. If we choose α = ‖FFF‖ ≥
maxxxx∈S̄n f (xxx), then v(α) = 0. Since otherwise we must have v(α)> 0 and ‖xxx∗‖= 1,
with

v(α) = f (xxx∗)−α‖xxx∗‖2 ≤ max
xxx∈S̄n

f (xxx)−α ≤ 0,

which is a contradiction. Moreover, v(0)> 0 simply because FFF is a nonzero tensor,
and it is also easy to see that v(α) is nonincreasing as α ≥ 0 increases. Hence, there
is a threshold α0 ∈ [0,‖FFF‖], such that v(α) > 0 if 0 ≤ α < α0, and v(α) = 0 if
α ≥ α0.

Suppose there exists a polynomial-time approximation algorithm with a positive
approximation ratio τ for (PS̄) when d ≥ 3. Then for every α ≥ 0, we can find
zzz ∈ S̄

n in polynomial time, such that g(α) := f (zzz)−α‖zzz‖2 ≥ τv(α). It is obvious
that g(α)≥ 0 since v(α)≥ 0. Together with the fact that g(α)≤ v(α) we have that
g(α)> 0 if and only if v(α) > 0, and g(α) = 0 if and only if v(α) = 0. Therefore,
the threshold value α0 also satisfies g(α)> 0 if 0≤α <α0, and g(α) = 0 if α ≥α0.
By applying the bisection search over the interval [0,‖FFF‖] with this polynomial-time
approximation algorithm, we can find α0 and zzz ∈ S

n in polynomial time, such that
f (zzz)−α0‖zzz‖2 = 0. This implies that zzz ∈ S

n is the optimal solution for the problem
maxxxx∈Sn f (xxx) with the optimal value α0, which is an NP-hard problem mentioned
in the beginning of the proof. Therefore, such approximation algorithm cannot exist
unless P = NP. �

The negative result in Proposition 2.4.1 rules out any polynomial-time ap-
proximation algorithm with a positive approximation ratio for (PS̄) when d ≥ 3.
However, a positive relative approximation ratio is still possible, which is the main
subject of this section. Below we shall first present a polynomial-time algorithm
for approximately solving (PS̄), which admits a (relative) worst-case performance
ratio. In fact, here we present a general scheme aiming at solving the polynomial
optimization (PS̄). This scheme breaks down to the following four major steps:

1. Introduce an equivalent model with the objective being a homogenous form.
2. Solve a relaxed model with the objective being a multilinear form.
3. Adjust to get a solution based on the solution of the relaxed model.
4. Assemble a solution for the original inhomogeneous model.

Some of these steps can be designed separately. The algorithm below is one
realization of the general scheme for solving (PS̄), with each step being carried
out by a specific procedure. We first present the specialized algorithm, and then
in the remainder of the section, we elaborate on these four general steps, and prove
that in combination they lead to a polynomial-time approximation algorithm with a
quality-assured solution.
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Algorithm 2.4.1

• INPUT: an n-dimensional d-th degree polynomial function p(xxx).
1 Rewrite p(xxx)− p(000) = F(x̄xx, x̄xx, . . . , x̄xx

︸ ︷︷ ︸
d

) when xh = 1 as in (2.7), with FFF being an

(n+1)-dimensional d-th order supersymmetric tensor.
2 Apply Algorithm 2.1.3 to solve the problem

max F(x̄xx1, x̄xx2, . . . , x̄xxd)

s.t. x̄xxk ∈ S̄
n+1, k = 1,2, . . . ,d

approximately, with input FFF and output (ȳyy1, ȳyy2, . . . , ȳyyd).

3 Compute (z̄zz1, z̄zz2, . . . , z̄zzd)=argmax
{

F
((ξ1yyy1/d

1

)
,
(ξ2yyy2/d

1

)
, . . . ,

(ξd yyyd/d
1

))
,ξξξ ∈ B

d
}

.

4 Compute zzz = argmax
{

p(000); p(zzz(β )/zh(β )) ,βββ ∈ B
d and β1 = ∏d

k=2 βk = 1
}

,
with z̄zz(β ) = β1(d + 1)z̄zz1 +∑d

k=2 βkz̄zzk.
• OUTPUT: a feasible solution zzz ∈ S̄

n.

In Step 2 of Algorithm 2.4.1, Algorithm 2.1.3 is called to approximately solve
multilinear form optimization over the Euclidean ball, which is a deterministic
polynomial-time algorithm. Notice the degree of the polynomial p(xxx) is deemed
a fixed parameter in this brief, and thus Algorithm 2.4.1 runs in polynomial time,
and is deterministic too. Our main result in this section is the following.

Theorem 2.4.2 (PS̄) admits a polynomial-time approximation algorithm with rela-
tive approximation ratio τ(PS), where

τ(PS) := 2−
5d
2 (d + 1)!d−2d(n+ 1)−

d−2
2 = Ω

(
n−

d−2
2

)
.

Below we study in detail how a particular implementation of these four steps
of the scheme (which becomes Algorithm 2.4.1) leads to the promised worst-case
relative performance ratio in Theorem 2.4.2.

2.4.1 Homogenization

The method of homogenization depends on the form of the polynomial p(xxx). With-
out losing generality henceforth we assume p(xxx) to have no constant term, although
Algorithm 2.4.1 applies for any polynomial. If p(xxx) is given as a summation of
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homogeneous polynomial functions of different degrees, i.e., fk(xxx)(1 ≤ k ≤ d) is a
homogeneous polynomial function of degree k, then we may first write

fk(xxx) = Fk(xxx,xxx, . . . ,xxx︸ ︷︷ ︸
k

) (2.6)

with FFFk being a kth order supersymmetric tensor. Then by introducing a homoge-
nizing variable xh, which is always equal to 1, we may rewrite p(xxx) as

p(xxx) =
d

∑
k=1

fk(xxx) =
d

∑
k=1

fk(xxx)xh
d−k =

d

∑
k=1

Fk(xxx,xxx, . . . ,xxx︸ ︷︷ ︸
k

)xh
d−k

= F

((
xxx
xh

)
,

(
xxx
xh

)
, . . . ,

(
xxx
xh

)

︸ ︷︷ ︸
d

)
= F(x̄xx, x̄xx, . . . , x̄xx

︸ ︷︷ ︸
d

) = f (x̄xx), (2.7)

where FFF is an (n+ 1)-dimensional d-th order supersymmetric tensor, whose last
component is 0 (since p(xxx) has no constant term).

If the polynomial p(xxx) is given in terms of summation of monomials, then we
should first group them according to their degrees, and then rewrite the summation
of monomials in each group as homogeneous polynomial function. After that, we
proceed according to (2.6) and (2.7) to obtain the tensor form FFF , as required.

Finally, we may equivalently reformulate (PS̄) as

(P̄S̄) max f (x̄xx)

s.t. x̄xx =

(
xxx
xh

)
,

xxx ∈ S̄
n, xh = 1.

Obviously, we have v(PS̄) = v(P̄S̄) and v(PS̄) = v(P̄S̄).

2.4.2 Multilinear Form Relaxation

Multilinear form relaxation has proven to be effective, as discussed in Sects. 2.2 and
2.3. Specifically, Lemmas 2.2.1 and 2.3.3 are the key link formulae. Now we relax
(P̄S̄) to an inhomogeneous multilinear form optimization model

(T PS̄) max F(x̄xx1, x̄xx2, . . . , x̄xxd)

s.t. x̄xxk =

(
xxxk

xk
h

)
, k = 1,2, . . . ,d,

xxxk ∈ S̄
n, xk

h = 1, k = 1,2, . . . ,d.
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Obviously, we have v(TPS̄) ≥ v(P̄S̄) = v(PS̄). Before proceeding, let us first settle
the computational complexity issue for solving (TPS̄).

Proposition 2.4.3 (T PS̄) is NP-hard whenever d ≥ 3.

Proof. Notice that in Proposition 2.1.3, we proved the following problem is NP-
hard:

max F(xxx,yyy,zzz)
s.t. xxx,yyy,zzz ∈ S̄

n.

For d = 3 and a special case where FFF satisfies Fn+1, j,k = Fi,n+1,k = Fi, j,n+1 = 0 for
all 1 ≤ i, j,k ≤ n+ 1, (T PS̄) is equivalent to the above model, and so it is NP-hard
in general. �

(T PS̄) is still difficult to solve, and moreover it remains inhomogeneous, since
xk

h is required to be 1. To our best knowledge, no polynomial-time approximation
algorithm is available in the literature to solve this problem. Furthermore, we
shall relax the constraint xk

h = 1, and introduce the following parameterized and
homogenized problem:

(T PS̄(t)) max F(x̄xx1, x̄xx2, . . . , x̄xxd)

s.t. ‖x̄xxk‖ ≤ t, x̄xxk ∈ R
n+1, k = 1,2, . . . ,d.

Obviously, (T PS̄) can be relaxed to (T PS̄(
√

2)), since if x̄xx is feasible for (T PS̄) then
‖x̄xx‖2 = ‖xxx‖2 + xh

2 ≤ 1+ 1 = 2. Consequently, v(T PS̄(
√

2))≥ v(T PS̄).
Both the objective and the constraints are now homogeneous, and it is obvious

that for all t > 0, (T PS̄(t)) is equivalent (in fact scalable) to each other. Moreover,
(T PS̄(1)) is

max F(x̄xx1, x̄xx2, . . . , x̄xxd)

s.t. x̄xxk ∈ S̄
n+1, k = 1,2, . . . ,d,

which is exactly (TS̄) as we discussed in Sect. 2.1. By using Algorithm 2.1.3
and applying Theorem 2.1.5, (T PS̄(1)) admits a polynomial-time approximation

algorithm with approximation ratio (n+ 1)−
d−2

2 . Therefore, for all t > 0, (T PS̄(t))
also admits a polynomial-time approximation algorithm with approximation ratio
(n + 1)−

d−2
2 , and v(T PS̄(t)) = td v(T PS̄(1)). After this relaxation step (Step 2 in

Algorithm 2.4.1), we are able to find a feasible solution (ȳyy1, ȳyy2, . . . , ȳyyd) of (T PS̄(1))
in polynomial time, such that

F(ȳyy1, ȳyy2, . . . , ȳyyd) ≥ (n+ 1)−
d−2

2 v(T PS̄(1))

= 2−
d
2 (n+ 1)−

d−2
2 v(T PS̄(

√
2))

≥ 2−
d
2 (n+ 1)−

d−2
2 v(T PS̄). (2.8)
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Algorithm 2.1.3 is the engine which enables the second step of our scheme.
In fact, any polynomial-time approximation algorithm of (T PS̄(1)) can be used
as an engine to yield a realization (algorithm) of our scheme. As will become
evident later, any improvement of the approximation ratio of (T PS̄(1)) leads to the
improvement of relative approximation ratio in Theorem 2.4.2. For example, re-

cently So [106] improved the approximation bound of (TPS̄(1)) to Ω
((

lnn
n

)− d−2
2

)

(though the algorithm is mainly of theoretical interest), and consequently the

relative approximation ratio under our scheme is improved to Ω
(
(

lnn
n

) d−2
2

)
too.

Of course, one may apply any other favorite algorithm to solve the relaxation
(T PS̄(1)). For instance, the alternating least square (ALS) algorithm (see, e.g., [65]
and the references therein) and the maximum block improvement (MBI) method of
Chen et al. [24] can be the other alternatives for the second step.

2.4.3 Adjusting the Homogenizing Components

The approximate solution (ȳyy1, ȳyy2, . . . , ȳyyd) of (T PS̄(1)) satisfies ‖ȳyyk‖ ≤ 1 for all 1 ≤
k ≤ d, which implies ‖yyyk‖ ≤ 1. Other from that, we do not have any control on the
size of yk

h, and thus (ȳyy1, ȳyy2, . . . , ȳyyd) may not be a feasible solution for (T PS̄). The
following lemma plays a link role in our analysis to ensure that the construction of
a feasible solution for the inhomogeneous model (T PS̄) is possible.

Lemma 2.4.4 Suppose x̄xxk ∈R
n+1 with |xk

h| ≤ 1 for all 1 ≤ k ≤ d. Let η1,η2, . . . ,ηd

be independent random variables, each taking values 1 and −1 with E[ηk] = xk
h for

all 1 ≤ k ≤ d, and let ξ1,ξ2, . . . ,ξd be i.i.d. random variables, each taking values 1
and −1 with equal probability 1/2. If the last component of the tensor FFF is 0, then

E

[
d

∏
k=1

ηkF

((
η1xxx1

1

)
,

(
η2xxx2

1

)
, . . . ,

(
ηdxxxd

1

))]

= F(x̄xx1, x̄xx2, . . . , x̄xxd), (2.9)

and

E

[
F

((
ξ1xxx1

1

)
,

(
ξ2xxx2

1

)
, . . . ,

(
ξdxxxd

1

))]
= 0. (2.10)

Proof. The claimed equations readily result from the following observations:

E

[
d

∏
k=1

ηkF

((
η1xxx1

1

)
,

(
η2xxx2

1

)
, . . . ,

(
ηdxxxd

1

))]

= E

[
F

((
η1

2xxx1

η1

)
,

(
η2

2xxx2

η2

)
, . . . ,

(
ηd

2xxxd

ηd

))]
(multilinearity of F)
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= F

(
E

[(
xxx1

η1

)]
,E

[(
xxx2

η2

)]
, . . . ,E

[(
xxxd

ηd

)])
(independence of ηk’s)

= F(x̄xx1, x̄xx2, . . . , x̄xxd),

and

E

[
F

((
ξ1xxx1

1

)
,

(
ξ2xxx2

1

)
, . . . ,

(
ξdxxxd

1

))]

= F

(
E

[(
ξ1xxx1

1

)]
,E

[(
ξ2xxx2

1

)]
, . . . ,E

[(
ξdxxxd

1

)])
(independence of ξk’s)

= F

((
0
1

)
,

(
0
1

)
, . . . ,

(
0
1

))
(zero-mean of ξk’s)

= 0,

where the last equality is due to the fact that the last component of FFF is 0. �

Lemma 2.4.4 suggests that one may enumerate the 2d possible combinations

of
((ξ1yyy1

1

)
,
(ξ2yyy2

1

)
, . . . ,

(ξd yyyd

1

))
and pick the one with the largest value of function

F (or via a simple randomization procedure) to generate a feasible solution for the
inhomogeneous multilinear form optimization (T PS̄) from a feasible solution for the
homogeneous multilinear form optimization (T PS̄(1)), with a controlled possible
quality deterioration. This fact plays a key role in proving the approximation ratio
for (T PS̄).

Theorem 2.4.5 (T PS̄) admits a polynomial-time approximation algorithm with

approximation ratio 2−
3d
2 (n+ 1)−

d−2
2 .

Proof. Let (ȳyy1, ȳyy2, . . . , ȳyyd) be the feasible solution found in Step 2 of Algorithm 2.4.1
satisfying (2.8), and let ηηη = (η1,η2, . . . ,ηd)

T with all ηk’s being independent and
taking values 1 and −1 such that E[ηk] = yk

h. Applying Lemma 2.4.4, we have (2.9)
which implies

F(ȳyy1, ȳyy2, . . . , ȳyyd)

=− ∑
βββ∈Bd ,∏d

k=1 βk=−1

Pr{ηηη = βββ}F

((
β1yyy1

1

)
,

(
β2yyy2

1

)
, . . . ,

(
βdyyyd

1

))

+ ∑
βββ∈Bd ,∏d

k=1 βk=1

Pr{ηηη = βββ}F

((
β1yyy1

1

)
,

(
β2yyy2

1

)
, . . . ,

(
βdyyyd

1

))
,
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and (2.10) which implies

∑
βββ∈Bd

F

((
β1yyy1

1

)
,

(
β2yyy2

1

)
, . . . ,

(
βdyyyd

1

))
= 0.

Combing the above two equalities, for any constant c, we have

F(ȳyy1, ȳyy2, . . . , ȳyyd)

= ∑
βββ∈Bd ,∏d

k=1 βk=−1

(c−Pr{ηηη = βββ})F

((
β1yyy1

1

)
,

(
β2yyy2

1

)
, . . . ,

(
βdyyyd

1

))

+ ∑
βββ∈Bd ,∏d

k=1 βk=1

(c+Pr{ηηη = βββ})F

((
β1yyy1

1

)
,

(
β2yyy2

1

)
, . . . ,

(
βdyyyd

1

))
.

(2.11)

If we let

c = max
βββ∈Bd ,∏d

k=1 βk=−1
Pr{ηηη = βββ},

then the coefficients of each term in (2.11) will be nonnegative. Therefore we are
able to find βββ ′ ∈ B

d , such that

F

((
β ′

1yyy1

1

)
,

(
β ′

2yyy2

1

)
, . . . ,

(
β ′

dyyyd

1

))
≥ τ0F(ȳyy1, ȳyy2, . . . , ȳyyd), (2.12)

where

τ0 =

⎛

⎝ ∑
βββ∈Bd ,∏d

k=1 βk=1

(c+Pr{ηηη = βββ})+ ∑
βββ∈Bd ,∏d

k=1 βk=−1

(c−Pr{ηηη = βββ})
⎞

⎠

−1

≥
⎛

⎝2d−1c+ ∑
βββ∈Bd ,∏d

k=1 βk=1

Pr{ηηη = βββ}+(2d−1−1)c

⎞

⎠

−1

≥
(

2d−1 +1+ 2d−1− 1
)−1

= 2−d.

Let us denote z̄zzk :=
(β ′

kyyyk

1

)
for k = 1,2, . . . ,d. Since ‖zzzk‖ = ‖β ′

kyyyk‖ ≤ 1, we know
that (z̄zz1, z̄zz2, . . . , z̄zzk) is a feasible solution for (T PS̄). By combing with (2.8), we have

F(z̄zz1, z̄zz2, . . . , z̄zzd) ≥ τ0F(ȳyy1, ȳyy2, . . . , ȳyyd)

≥ 2−d2−
d
2 (n+ 1)−

d−2
2 v(T PS̄)

= 2−
3d
2 (n+ 1)−

d−2
2 v(T PS̄). �
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One may notice that our proposed algorithm for solving (T PS̄) is very similar to
Steps 2 and 3 of Algorithm 2.4.1, with only a minor modification at Step 3, namely

we choose a solution in argmax
{

F
((β1yyy1

1

)
,
(β2yyy2

1

)
, . . . ,

(βd yyyd

1

))
,βββ ∈ B

d
}

, instead of

choosing a solution in argmax
{

F
((β1yyy1/d

1

)
,
(β2yyy2/d

1

)
, . . . ,

(βdyyyd/d
1

))
,βββ ∈ B

d
}

. The

reason to divide d at Step 3 in Algorithm 2.4.1 (to solve (PS̄)) will become clear
later. Finally, we remark again that it is unnecessary to enumerate all possible 2d

combinations in this step, as (2.11) suggests that a simple randomization process
will serve the same purpose, especially when d is large. In the latter case, we will
end up with a polynomial-time randomized approximation algorithm; otherwise, the
computational complexity of the procedure is deterministic and is polynomial-time.

2.4.4 Feasible Solution Assembling

Finally we come to the last step of the scheme. In Step 4 of Algorithm 2.4.1,
a polarization formula z̄zz(β ) = β1(d + 1)z̄zz1 + ∑d

k=2 βkz̄zzk with βββ ∈ B
d and β1 =

∏d
k=2 βk = 1 is proposed. In fact, searching over all βββ ∈B

d will possibly improve the
solution, although the worst-case performance ratio will remain the same. Moreover,
one may choose z̄zz1 or any other z̄zzk to play the same role here; alternatively one may
enumerate β�(d+1)z̄zz�+∑1≤k≤d,k �=�βkz̄zzk over all βββ ∈B

d and 1≤ �≤ d, and take the
best possible solution; again, this will not change the theoretical performance ratio.
The polarization formula at Step 4 of Algorithm 2.4.1 works for any fixed degree
d, and we shall complete the final stage of the proof of Theorem 2.4.2. Specifically,
we shall prove that by letting

zzz = argmax

{

p(000); p

(
zzz(β )
zh(β )

)
,βββ ∈ B

d and β1 =
d

∏
k=2

βk = 1

}

with z̄zz(β ) = β1(d + 1)z̄zz1 +∑d
k=2 βkz̄zzk, we have

p(zzz)− v(PS̄)≥ τ(PS) (v(PS̄)− v(PS̄)) . (2.13)

First, the solution (z̄zz1, z̄zz2, . . . , z̄zzd) as established at Step 3 of Algorithm 2.4.1
satisfies ‖zzzk‖ ≤ 1/d (notice we divided d in each term at Step 3) and zk

h = 1 for
k = 1,2, . . . ,d. A same proof of Theorem 2.4.5 can show that

F(z̄zz1, z̄zz2, . . . , z̄zzd)≥ d−d2−
3d
2 (n+ 1)−

d−2
2 v(T PS̄)≥ 2−

3d
2 d−d(n+1)−

d−2
2 v(PS̄).

(2.14)
It is easy to see that

2 ≤ |zh(β )| ≤ 2d and ‖zzz(β )‖ ≤ (d+ 1)/d+(d−1)/d = 2. (2.15)
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Thus z̄zz(β )/zh(β ) is a feasible solution for (P̄S̄), and so f (z̄zz(β )/zh(β )) ≥ v(P̄S̄) =
v(PS̄). Moreover, we shall argue below that

β1 = 1 =⇒ f (z̄zz(β ))≥ (2d)d v(PS̄). (2.16)

If this were not the case, then f (z̄zz(β )/(2d))< v(PS̄)≤ 0. Notice that β1 = 1 implies
zh(β )> 0, and thus we have

f

(
z̄zz(β )
zh(β )

)
=

(
2d

zh(β )

)d

f

(
z̄zz(β )
2d

)
≤ f

(
z̄zz(β )
2d

)
< v(PS̄),

which contradicts the feasibility of z̄zz(β )/zh(β ).
Suppose ξ1,ξ2, . . . ,ξd are i.i.d. random variables, each taking values 1 and −1

with equal probability 1/2. By the link Lemma 2.2.1, noticing that f (z̄zz(−ξ )) =
f (−z̄zz(ξ )) = (−1)d f (z̄zz(ξ )), we have

d!F
(
(d+1)z̄zz1, z̄zz2, . . . , z̄zzd

)
= E

[
d

∏
k=1

ξk f (z̄zz(ξ ))

]

=
1
4

E

[

f (z̄zz(ξ ))

∣
∣
∣∣
∣
ξ1 = 1,

d

∏
k=2

ξk = 1

]

− 1
4

E

[

f (z̄zz(ξ ))

∣
∣
∣∣
∣
ξ1 = 1,

d

∏
k=2

ξk =−1

]

−1
4

E

[

f (z̄zz(ξ ))

∣
∣
∣
∣∣
ξ1 =−1,

d

∏
k=2

ξk = 1

]

+
1
4

E

[

f (z̄zz(ξ ))

∣
∣
∣
∣∣
ξ1 =−1,

d

∏
k=2

ξk =−1

]

=
1
4

E

[

f (z̄zz(ξ ))

∣
∣
∣
∣
∣
ξ1 = 1,

d

∏
k=2

ξk = 1

]

− 1
4

E

[

f (z̄zz(ξ ))

∣
∣
∣
∣
∣
ξ1 = 1,

d

∏
k=2

ξk =−1

]

−1
4

E

[

f (z̄zz(−ξ ))

∣∣
∣
∣
∣
ξ1 = 1,

d

∏
k=2

ξk = (−1)d−1

]

+
1
4

E

[

f (z̄zz(−ξ ))

∣
∣∣
∣
∣
ξ1 = 1,

d

∏
k=2

ξk = (−1)d

]

.

By inserting and canceling a constant term, the above expression further leads to

d!F
(
(d +1)z̄zz1, z̄zz2, . . . , z̄zzd

)
= E

[
d

∏
k=1

ξk f (z̄zz(ξ ))

]

=
1
4

E

[
(

f (z̄zz(ξ ))− (2d)d v(PS̄)
)
∣∣
∣
∣
∣
ξ1 = 1,

d

∏
k=2

ξk = 1

]



2.4 Inhomogeneous Polynomial 51

−1
4

E

[
(

f (z̄zz(ξ ))− (2d)d v(PS̄)
)
∣
∣
∣∣
∣
ξ1 = 1,

d

∏
k=2

ξk =−1

]

+
(−1)d−1

4
E

[
(

f (z̄zz(ξ ))− (2d)d v(PS̄)
)
∣
∣
∣
∣∣
ξ1 = 1,

d

∏
k=2

ξk = (−1)d−1

]

+
(−1)d

4
E

[(
f (z̄zz(ξ ))− (2d)d v(PS̄)

)
∣
∣
∣
∣
∣
ξ1 = 1,

d

∏
k=2

ξk = (−1)d

]

≤ 1
2

E

[
(

f (z̄zz(ξ ))− (2d)d v(PS̄)
)
∣
∣
∣
∣
∣
ξ1 = 1,

d

∏
k=2

ξk = 1

]

, (2.17)

where the last inequality is due to (2.16). Therefore, there is a binary vector βββ ′ ∈ B
d

with β ′
1 = ∏d

k=2 β ′
k = 1, such that

f (z̄zz(β ′))− (2d)dv(PS̄) ≥ 2d!F((d + 1)z̄zz1, z̄zz2, . . . , z̄zzd)

≥ 2−
3d
2 +1(d+ 1)!d−d(n+1)−

d−2
2 v(PS̄),

where the last step is due to (2.14).

Below we argue zzz = argmax
{

p(000); p
(

zzz(β )
zh(β )

)
,βββ ∈ B

d and β1 = ∏d
k=2 βk = 1

}

satisfies (2.13). In fact, if −v(PS̄) ≥ τ(PS)(v(PS̄)− v(PS̄)), then 000 trivially satis-
fies (2.13), and so does zzz in this case. Otherwise, if −v(PS̄)< τ(PS)(v(PS̄)− v(PS̄)),
then we have

v(PS̄)> (1− τ(PS)) (v(PS̄)− v(PS̄))≥
v(PS̄)− v(PS̄)

2
,

which implies

f

(
z̄zz(β ′)

2d

)
− v(PS̄) ≥ (2d)−d2−

3d
2 +1(d + 1)!d−d(n+1)−

d−2
2 v(PS̄)

≥ τ(PS)(v(PS̄)− v(PS̄)) .

The above inequality also implies that f (z̄zz(β ′)/(2d))> 0. Recall that β ′
1 = 1 implies

zh(β ′)> 0, and thus 2d/zh(β ′)≥ 1 by (2.15). Therefore, we have

p(zzz)≥ p

(
zzz(β ′)
zh(β ′)

)
= f

(
z̄zz(β ′)
zh(β ′)

)
=

(
2d

zh(β ′)

)d

f

(
z̄zz(β ′)

2d

)
≥ f

(
z̄zz(β ′)

2d

)
.

This shows that zzz satisfies (2.13) in both cases, which concludes the whole proof.



Chapter 3
Extensions of the Constraint Sets

In this chapter, we shall extend the approximation methods for polynomial
optimization discussed in Chap. 2. The extensions are focused on the constraint sets
of the polynomial optimization models, including binary hypercube, hypercube,
the Euclidean sphere, intersection of co-centered ellipsoids, a general convex
compact set, and even a mixture of binary hypercube and the Euclidean sphere.
These extensions are not straightforward generalizations of the approximation
methods proposed before. Rather, they entail specifications to account for the
different structures of the constraint sets at hand. The most noticeable novelty
is in the decomposition routines, which play an instrumental role in designing
approximation algorithms for multilinear form optimization models, as Sect. 2.1
already shows. Along with the approximation methods discussed in Chap. 2, we
hope these extended techniques will be helpful in designing approximation methods
when new models are encountered.

3.1 Hypercube and Binary Hypercube

The approximation methods proposed in Chap. 2 will be first extended to discrete
models. In fact, discrete polynomial optimization models are commonly encoun-
tered, e.g., the graph partition problems and the satisfiability problems. This section
will be concerned with the models where a polynomial function is optimized over
the binary hypercube B

n, with the objective being the four types of polynomial
functions mentioned in Sect. 1.3.1. Specifically, the models are

(TB) max F(xxx1,xxx2, · · · ,xxxd)

s.t. xxxk ∈ B
nk , k = 1,2, . . . ,d

(HB) max f (xxx)
s.t. xxx ∈ B

n

Z. Li et al., Approximation Methods for Polynomial Optimization: Models, Algorithms,
and Applications, SpringerBriefs in Optimization, DOI 10.1007/978-1-4614-3984-4 3,
© Zhening Li, Simai He, Shuzhong Zhang 2012
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(MB) max f (xxx1,xxx2, · · · ,xxxs)

s.t. xxxk ∈ B
nk , k = 1,2, . . . ,s

(PB) max p(xxx)
s.t. xxx ∈ B

n

These four models will be studied in this section in the above order, each in
one section. The latter model generalizes the former one, and each generalization
follows a similar extension of the approximation methods discussed in Chap. 2. We
shall also discuss polynomial optimization over hypercube as a byproduct. They are
models (TB̄), (HB̄), (MB̄), and (PB̄), i.e., the respective models (TB), (HB), (MB), and
(PB) with B being replaced by B̄. Remark the model (PB) is indeed a very general
discrete optimization model, since in principle it can be used to model the following
general polynomial optimization problem in discrete values:

max p(xxx)
s.t. xi ∈ {ai

1,a
i
2, · · · ,ai

mi
}, i = 1,2, . . . ,n.

All these models are NP-hard in general when the degree of the objective
polynomial d ≥ 2, though they are trivial when d = 1. This is because each one
includes computing the matrix ∞ �→ 1-norm (see, e.g., [5]) as a subclass, i.e.,

‖FFF‖∞ �→1 = max (xxx1)TFFFxxx2

s.t. xxx1 ∈ B
n1 , xxx2 ∈ B

n2 ,

which is also the exact model of (TB) when d = 2. The matrix ∞ �→ 1-norm is related
to so-call the matrix cut-norm, the current best polynomial-time approximation ratio

for matrix ∞ �→ 1-norm as well as the matrix cut-norm is 2ln(1+
√

2)
π ≈ 0.56, due

to Alon and Naor [5]. Huang and Zhang [55] considered similar problems for the
complex discrete variables and derived constant approximation ratios. When d = 3,
(TB) is a slight generalization of the model considered by Khot and Naor [59], where
FFF is assumed to be super symmetric (implying n1 = n2 = n3) and square-free (Fi jk =
0 whenever two of the three indices are equal). The approximation bound of the

optimal value given in [59] is Ω
(√

lnn1
n1

)
. However, no polynomial-time procedure

is provided to find a corresponding approximate solution.
For the model (HB), its NP-hardness for d = 2 can also be derived by reducing

to the max-cut problem, where the matrix FFF is the Laplacian of a given graph. In a
seminar work by Goemans and Williamson [39], a polynomial-time randomized
approximation algorithm is given with approximation ratio 0.878, by the well-
known SDP relaxation and randomization technique. The method is then general-
ized by Nesterov, who in [87] proved a 0.63-approximation ratio for (HB) when the
matrix FFF is positive semidefinite. A more generalized result is due to Charikar and
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Wirth [23], where an Ω (1/ lnn)-approximate ratio for (HB) is proposed when the
matrix FFF is diagonal-free. If the degree of the objective polynomial gets higher,
the only approximation result in the literature is due to Khot and Naor [59] in

considering homogeneous cubic polynomial, where an Ω
(√

lnn
n

)
-approximation

bound is provided when the tensor FFF is square-free. In fact, being square-free
(or in the matrix case diagonal-free) is somewhat necessary for polynomial-time
approximation algorithms (see, e.g., [4]). Even in the quadratic case, there is no
polynomial-time approximation algorithm with a positive approximation ratio for
the general model (HB) unless P = NP.

We shall propose polynomial-time randomized approximation algorithms with
provable worst-case performance ratios for all the models mentioned in the begin-
ning, provided that the degree of the objective polynomial is fixed. Section 3.1.1
discusses the model (TB). Essentially, we apply a similar approach as in Sect. 2.1,
by relaxing the multilinear objective to a lower order multilinear form recursively.
Notwithstanding the similarity to the continuous case, the discrete models need to
be dealt with carefully in the design of the decomposition routine. Sections 3.1.2 and
3.1.3 discuss models (HB) and (MB), respectively. Both will rely on the application
of multilinear form relaxations. After we have dealt with the models in multilinear
objective function, we are in the position to solve the models in homogeneous
form objective using two different versions of certain linkage identities, under
the square-free assumption. General model (PB) is discussed in Sect. 3.1.4, where
the homogenization technique in Sect. 2.4 is modified and applied again. All
these approximation algorithms can be applied to polynomial optimization over
hypercube, which we will briefly discuss in Sect. 3.1.5.

3.1.1 Multilinear Form

The first discrete model in our discussion is to maximize a multilinear objective in
binary variables; specifically

(TB) max F(xxx1,xxx2, · · · ,xxxd)

s.t. xxxk ∈ B
nk , k = 1,2, . . . ,d

where n1 ≤ n2 ≤ ·· · ≤ nd . Essentially, the approximation method follows a similar
flow as we solve the model (TS̄) in Sect. 2.1: we first propose a base algorithm
for the case d = 2, and then design a decomposition routine in order to enable
a recursive scheme. Unlike (TS̄), the case d = 2 for (TB) is already NP-hard.
Fortunately, there is a readily available randomized approximation algorithm with
constant approximation ratio, due to Alon and Naor [5], which is the following.
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Theorem 3.1.1 When d = 2, (TB) admits a polynomial-time randomized approxi-

mation algorithm with approximation ratio at least 2 ln(1+
√

2)
π > 0.56.

The algorithm is based on SDP relaxation and randomization, which is different
from the approach of Goemans and Williamson [39] for the max-cut problem as
described in Sect. 1.4.4. In fact, Alon and Naor’s rounding technique uses the so-
called Grothendieck’s inequality. The approximation ratio is indeed the inverse of
the so-called Grothendieck’s constant, which is upper bounded by π

2 ln(1+
√

2)
while

the precise value is still unknown. For a complete proof of Theorem 3.1.1, one is
referred to [5].

Let us now focus on the decomposition routine. When d = 3, noticing that any
n1×n2×n3 third order tensor can be rewritten as an n1n2×n3 matrix by combining
its first and second modes, (TB) can be relaxed to

max F(XXX ,xxx3)

s.t. XXX ∈ B
n1n2 , xxx3 ∈ B

n3 .

This problem is exactly in the form of (TB) when d = 2, which can be solved

approximately with approximation ratio 2ln(1+
√

2)
π as stipulated in Theorem 3.1.1.

Denote its approximate solution to be (X̂XX , x̂xx3). The next key step is to recover (x̂xx1, x̂xx2)
from X̂XX . For this purpose, we introduce the following decomposition routine, which
plays a fundamental role in our algorithms for binary variables, similar as DR 2.1.1
and 2.1.2 in Sect. 2.1.

Decomposition Routine 3.1.1

• INPUT: matrices MMM ∈ R
n1×n2 , XXX ∈ B

n1×n2 .
1 Construct

X̃XX =

[
IIIn1×n1 XXX/

√
n1

XXXT/
√

n1 XXXTXXX/n1

]

 0.

2 Randomly generate
(

ξξξ
ηηη

)
∼ N (000n1+n2 , X̃XX)

and compute xxx1 = sign(ξξξ ) and xxx2 = sign(ηηη), and repeat if necessary, until
(xxx1)TMMMxxx2 ≥ 2

π√n1
MMM •XXX.

• OUTPUT: vectors xxx1 ∈ B
n1 , xxx2 ∈ B

n2 .
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The complexity for DR 3.1.1 is O(n1n2) in each trial with expectation. Now,
if we let (MMM,XXX) = (F(···, ···, x̂xx3), X̂XX) and apply DR 3.1.1, then we can prove that the
output (xxx1,xxx2) satisfies

E[F(xxx1,xxx2, x̂xx3)] = E[(xxx1)TMMMxxx2]≥ 2MMM • X̂XX
π√n1

=
2F(X̂XX , x̂xx3)

π√n1
≥ 4ln(1+

√
2)

π2√n1
v(TB),

which yields an approximation bound for d = 3. By a recursive procedure, this
approximation algorithm is readily extended to solve (TB) with any fixed degree d.

Theorem 3.1.2 (TB) admits a polynomial-time randomized approximation algo-
rithm with approximation ratio τ(TB), where

τ(TB) :=

(
2
π

)d−1

ln
(

1+
√

2
)
(

d−2

∏
k=1

nk

)− 1
2

= Ω

⎛

⎝

(
d−2

∏
k=1

nk

)− 1
2
⎞

⎠ .

Proof. The proof is based on mathematical induction on the degree d. For the case
of d = 2, it is exactly the algorithm in Theorem 3.1.1 by Alon and Naor [5]. For

general d ≥ 3, let XXX = xxx1(xxxd)
T

and (TB) is then relaxed to

(T̃B) max F(XXX ,xxx2,xxx3 · · · ,xxxd−1)

s.t. XXX ∈ B
n1nd ,

xxxk ∈ B
nk , k = 2,3, . . . ,d −1,

where we treat XXX as an n1nd-dimensional vector, and FFF ∈ R
n1nd×n2×n3×···×nd−1 as a

(d −1)-th order tensor. Observe that (T̃B) is the exact form of (TB) in degree d −1,
and so by induction we can find X̂XX ∈ B

n1nd and x̂xxk ∈ B
nk (k = 2,3, . . . ,d − 1) in

polynomial time, such that

F
(
X̂XX , x̂xx2, x̂xx3, . . . , x̂xxd−1) ≥ (2/π)d−2 ln

(
1+

√
2
)(

∏d−2
k=2 nk

)− 1
2 v(T̃B)

≥ (2/π)d−2 ln
(

1+
√

2
)(

∏d−2
k=2 nk

)− 1
2 v(TB).

Rewrite X̂XX as an n1×nd matrix, construct X̃XX =

[
IIIn1×n1 X̂XX/

√
n1

X̂XX
T
/
√

n1 X̂XX
T

X̂XX/n1

]

as in DR 3.1.1,

and randomly generate

(
ξξξ
ηηη

)
∼ N (000n1+nd , X̃XX). Let x̂xx1 = sign(ξξξ ) and x̂xxd =

sign(ηηη). Noticing that the diagonal components of X̃XX are all ones, it follows
from [18] that

E
[
x̂1

i x̂d
j

]
=

2
π

arcsin
X̂i j√

n1
=

2
π

X̂i j arcsin
1√
n1

∀1 ≤ i ≤ n1, 1 ≤ j ≤ nd ,
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where the last equality is due to |X̂i j| = 1. Let matrix Q̂QQ = F(···, x̂xx2, x̂xx3, · · · , x̂xxd−1, ···),
and we have

E
[
F
(

x̂xx1, x̂xx2, · · · , x̂xxd
)]

= E

[

∑
1≤i≤n1,1≤ j≤nd

x̂1
i Q̂i j x̂

d
j

]

= ∑
1≤i≤n1,1≤ j≤nd

Q̂i j E
[
x̂1

i x̂d
j

]

= ∑
1≤i≤n1,1≤ j≤nd

Q̂i j
2
π

X̂i j arcsin
1√
n1

=
2
π

arcsin
1√
n1

∑
1≤i≤n1,1≤ j≤nd

Q̂i jX̂i j

=
2
π

arcsin
1√
n1

F
(

X̂XX , x̂xx2, x̂xx3, · · · , x̂xxd−1
)

≥ 2
π√n1

(
2
π

)d−2

ln
(

1+
√

2
)(d−2

∏
k=2

nk

)− 1
2

v(TB)

=

(
2
π

)d−1

ln
(

1+
√

2
)
(

d−2

∏
k=1

nk

)− 1
2

v(TB). (3.1)

Thus x̂xx1 and x̂xxd can be found by a randomization process. This paves the way to
solve the problem recursively. �

The algorithm for solving general model (TB) is summarized below. This
algorithm is similar to Algorithm 2.1.3, with a major difference being the different
decomposition routines used, and also the procedure to solve the initial step of d = 2.

Algorithm 3.1.2

• INPUT: a d-th order tensor FFF ∈ R
n1×n2×···×nd with n1 ≤ n2 ≤ ·· · ≤ nd.

1 Rewrite FFF as a (d − 1)-th order tensor FFF ′ ∈ R
n2×n3×···×nd−1×ndn1 by combing its

first and last modes into one, and placing it in the last mode of FFF ′, i.e.,

Fi1,i2,··· ,id = F ′
i2,i3,··· ,id−1,(i1−1)nd+id

∀1 ≤ i1 ≤ n1,1 ≤ i2 ≤ n2, · · · ,1 ≤ id ≤ nd .

2 For (TB) with the (d − 1)-th order tensor FFF ′: if d − 1 = 2, then apply SDP
relaxation and randomization procedure in Theorem 3.1.1 to obtain an approx-
imate solution (x̂xx2, x̂xx1,d); otherwise obtain a solution (x̂xx2, x̂xx3, · · · , x̂xxd−1, x̂xx1,d) by
recursion.
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3 Compute a matrix MMM′ = F(···, x̂xx2, x̂xx3, · · · , x̂xxd−1, ···) and rewrite the vector x̂xx1,d as a
matrix X̂XX ∈ B

n1×nd .
4 Apply DR 3.1.1, with input (MMM′, X̂XX) = (MMM,XXX) and output (x̂xx1, x̂xxd) = (xxx1,xxx2).
• OUTPUT: a feasible solution (x̂xx1, x̂xx2, · · · , x̂xxd).

3.1.2 Homogeneous Form

We now consider the model of maximizing a homogeneous form over binary
hypercube

(HB) max f (xxx)
s.t. xxx ∈ B

n

As before, we propose polynomial-time randomized approximation algorithms of
(HB) for any fixed degree d. First, we remark that the square-free property is a
necessary condition to derive the approximation ratios. Even in the quadratic and
cubic cases for (HB), there is no polynomial-time approximation algorithm with
a positive approximation ratio unless P = NP (see [4]). Like the model (HS̄), the
key link from multilinear form F(xxx1,xxx2, · · · ,xxxd) to the homogeneous form f (xxx)
is Lemma 2.2.1. The approximation ratios for (HB) hold under the square-free
condition. This is because under such conditions, the decision variables are actually
in the multilinear form. Hence, one can replace any point in the hypercube (B̄n) by
one of its vertices (Bn) without decreasing its objective value, due to the linearity.
Before presenting our main results in this section, we first study a property of the
square-free polynomial in binary variables.

Lemma 3.1.3 If polynomial function p(xxx) is square-free and zzz ∈ B̄
n, then x̂xx ∈ B

n

and x̃xx ∈ B
n can be found in polynomial time, such that p(x̂xx)≤ p(zzz)≤ p(x̃xx).

Proof. Since p(xxx) is square-free, by fixing x2,x3, . . . ,xn as constants and taking x1

as an independent variable, we may write

p(xxx) = g1(x2,x3, . . . ,xn)+ x1g2(x2,x3, . . . ,xn).

Let

x̂1 =

{ − 1 g2(z2,z3, · · · ,zn)≥ 0,

1 g2(z2,z3, · · · ,zn)< 0.

Then
p
(
(x̂1,z2,z3, · · · ,zn)

T)≤ p(zzz).

Repeat the same procedures for z2,z3, · · · ,zn, and let them be replaced by binary
scales x̂2, x̂3, . . . , x̂n, respectively. Then x̂xx = (x̂1, x̂2, . . . , x̂n)

T ∈ B
n satisfies p(x̂xx) ≤

p(zzz). Using a similar procedure, we may find x̃xx ∈ B
n with p(x̃xx)≥ p(zzz). �
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Lemma 3.1.3 actually proposes a polynomial-time procedure in finding a point
in B

n to replace a point in B̄
n, without decreasing (or increasing) its function

value. Now, from the approximation result for (TB) in Theorem 3.1.2, together with
Lemma 3.1.3 and the link Lemma 2.2.1, we present the main results in this section.

Theorem 3.1.4 If f (xxx) is square-free and d ≥ 3 is odd, then (HB) admits a
polynomial-time randomized approximation algorithm with approximation ratio
τ(HB), where

τ(HB) :=

(
2
π

)d−1

ln
(

1+
√

2
)

d!d−dn−
d−2

2 = Ω
(

n−
d−2

2

)
.

Proof. Let f (xxx) = F(xxx,xxx, · · · ,xxx
︸ ︷︷ ︸

d

) with FFF being supersymmetric, and (HB) can be

relaxed to

(H̃B) max F(xxx1,xxx2, · · · ,xxxd)

s.t. xxxk ∈ B
n, k = 1,2, . . . ,d.

By Theorem 3.1.2 we are able to find a set of binary vectors (x̂xx1, x̂xx2, · · · , x̂xxd) in
polynomial time, such that

F(x̂xx1, x̂xx2, · · · , x̂xxd) ≥
(

2
π

)d−1

ln(1+
√

2)n−
d−2

2 v(H̃B)

≥
(

2
π

)d−1

ln(1+
√

2)n−
d−2

2 v(HB).

When d is odd, let ξ1,ξ2, · · · ,ξd be i.i.d. random variables, each taking values 1 and
−1 with equal probability 1/2. Then by Lemma 2.2.1 it follows that

d!F(x̂xx1, x̂xx2, · · · , x̂xxd) = E

[
d

∏
i=1

ξi f

(
d

∑
k=1

ξkx̂xxk

)]

= E

[

f

(
d

∑
k=1

(

∏
i�=k

ξi

)

x̂xxk

)]

.

Thus we may find a binary vector βββ ∈ B
d , such that

f

(
d

∑
k=1

(

∏
i�=k

βi

)

x̂xxk

)

≥ d!F(x̂xx1, x̂xx2, . . . , x̂xxd)≥
(

2
π

)d−1

ln
(

1+
√

2
)

d!n−
d−2

2 v(HB).

Now we notice that 1
d ∑d

k=1

(
∏i�=k βi

)
x̂xxk ∈ B̄

n, because for all 1 ≤ j ≤ n,

∣
∣
∣
∣
∣∣

(
1
d

d

∑
k=1

(

∏
i�=k

βi

)

x̂xxk

)

j

∣
∣
∣
∣
∣∣
=

1
d

∣
∣
∣
∣
∣

d

∑
k=1

(

∏
i�=k

βi

)

x̂k
j

∣
∣
∣
∣
∣
≤ 1

d

d

∑
k=1

∣
∣
∣
∣
∣

(

∏
i�=k

βi

)

x̂k
j

∣
∣
∣
∣
∣
= 1. (3.2)
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Since f (xxx) is square-free, by Lemma 3.1.3 we are able to find x̃xx ∈ B
n in polynomial

time, such that

f (x̃xx)≥ f

(
1
d

d

∑
k=1

(

∏
i�=k

βi

)

x̂xxk

)

= d−d f

(
d

∑
k=1

(

∏
i�=k

βi

)

x̂xxk

)

≥ τ(HB)v(HB).

�

Theorem 3.1.5 If f (xxx) is square-free and d ≥ 4 is even, then (HB) admits a
polynomial-time randomized approximation algorithm with relative approximation
ratio τ(HB).

Proof. Like in the proof of Theorem 3.1.4, by relaxing (HB) to (H̃B), we are able to
find a set of binary vectors (x̂xx1, x̂xx2, · · · , x̂xxd) with

F(x̂xx1, x̂xx2, · · · , x̂xxd)≥
(

2
π

)d−1

ln
(

1+
√

2
)

n−
d−2

2 v(H̃B).

Besides, we observe that v(HB)≤ v(H̃B) and v(HB)≥ v(H̃B) =−v(H̃B). Therefore

2v(H̃B)≥ v(HB)− v(HB).

Let ξ1,ξ2, · · · ,ξd be i.i.d. random variables, each taking values 1 and −1 with equal
probability 1/2. Use a similar argument of (3.2), we have 1

d ∑d
k=1 ξkx̂xxk ∈ B̄

n. Then
by Lemma 3.1.3, there exists x̂xx ∈ B

n such that

f

(
1
d

d

∑
k=1

ξkx̂xxk

)

≥ f (x̂xx)≥ v(HB).

Applying Lemma 2.2.1 and we have

1
2

E

[

f

(
1
d

d

∑
k=1

ξkx̂xxk

)

− v(HB)

∣
∣
∣
∣
∣

d

∏
i=1

ξi = 1

]

≥ 1
2

E

[

f

(
1
d

d

∑
k=1

ξkx̂xxk

)

− v(HB)

∣∣
∣
∣
∣

d

∏
i=1

ξi = 1

]

−1
2

E

[

f

(
1
d

d

∑
k=1

ξkx̂xxk

)

− v(HB)

∣
∣∣
∣
∣

d

∏
i=1

ξi =−1

]

= E

[
d

∏
i=1

ξi

(

f

(
1
d

d

∑
k=1

ξkx̂xxk

)

− v(HB)

)]
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= d−dE

[
d

∏
i=1

ξi f

(
d

∑
k=1

ξkx̂xxk

)]

− v(HB)E

[
d

∏
i=1

ξi

]

= d−dd!F(x̂xx1, x̂xx2, . . . , x̂xxd)≥ τ(HB)v(H̃B)≥ (τ(HB)/2)(v(HB)− v(HB)) ,

where the last inequality is due to 2v(H̃B) ≥ v(HB)− v(HB). Thus we may find a
binary vector βββ ∈ B

d with ∏d
i=1 βi = 1, such that

f

(
1
d

d

∑
k=1

βkx̂xxk

)

− v(HB)≥ τ(HB)(v(HB)− v(HB)) .

Noticing that 1
d ∑d

k=1 βkx̂xxk ∈ B̄
n and applying Lemma 3.1.3, by the square-free

property of f (xxx), we are able to find x̃xx ∈ B
n with

f (x̃xx)− v(HB)≥ f

(
1
d

d

∑
k=1

βkx̂xxk

)

− v(HB)≥ τ(HB)(v(HB)− v(HB)) . �

To conclude this section, we summarize the approximation algorithm for (HB)
below (independent of d being odd or even).

Algorithm 3.1.3

• INPUT: a d-th order supersymmetric square-free tensor FFF ∈ R
nd

.
1 Apply Algorithm 3.1.2 to solve the problem

max F(xxx1,xxx2, · · · ,xxxd)

s.t. xxxk ∈ B
n, k = 1,2, . . . ,d

approximately, with input FFF and output (x̂xx1, x̂xx2, · · · , x̂xxd).
2 Compute x̂xx = argmax

{
f
(

1
d ∑d

k=1 ξkx̂xxk
)
,ξξξ ∈ B

d
}

.
3 Apply the procedure in Lemma 3.1.3, with input x̂xx ∈ B̄

n and polynomial function
f (xxx), and output x̃xx ∈ B

n satisfying f (x̃xx)≥ f (x̂xx).
• OUTPUT: a feasible solution x̃xx ∈ B

n.

3.1.3 Mixed Form

We further move on to consider the mixed-form optimization model

(MB) max f (xxx1,xxx2, · · · ,xxxs)

s.t. xxxk ∈ B
nk , k = 1,2, . . . ,s
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where associated with function f is a tensor FFF ∈ R
n1

d1×n2
d2×···×ns

ds with partial
symmetric property, n1 ≤ n2 ≤ ·· · ≤ ns, and d = d1 + d2 + · · ·+ ds is deemed as
a fixed constant. This model is a generalization of (TB) in Sect. 3.1.1 and (HB) in
Sect. 3.1.2, making the model applicable to a wider range of practical problems.

Here again we focus on polynomial-time approximation algorithms. Similar as
the approach in dealing with (HB), we relax the objective function f (xxx1,xxx2, · · · ,xxxs)
of (MB) to a multilinear form, which leads to (TB). After solving (TB) approx-
imately by Theorem 3.1.2, we are able to adjust the solutions step by step, or
use Lemma 2.3.3. The following approximation results are presented, which are
comparable to the ones in Sect. 3.1.2.

Theorem 3.1.6 If f (xxx1,xxx2, · · · ,xxxs) is square-free in each xxxk (k = 1,2, . . . ,s), d ≥
3 and one of dk (k = 1,2, . . . ,s) is odd, then (MB) admits a polynomial-time
randomized approximation algorithm with approximation ratio τ(MB), where

τ(MB) := τ̃(MS)

(
2
π

)d−1

ln
(

1+
√

2
) s

∏
k=1

dk!

dk
dk

= Ω (τ̃(MS))

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
2
π

)d−1

ln
(

1+
√

2
)( s

∏
k=1

dk!

dk
dk

)(
∏s−1

k=1 nk
dk

ns−1

)− 1
2

ds = 1,

(
2
π

)d−1

ln
(

1+
√

2
)( s

∏
k=1

dk!

dk
dk

)(
∏s

k=1 nk
dk

ns
2

)− 1
2

ds ≥ 2.

Proof. Like in the proof of Theorem 3.1.4, by relaxing (MB) to (TB), we are able to
find a set of binary vectors (x̂xx1, x̂xx2, · · · , x̂xxd) with

F(x̂xx1, x̂xx2, · · · , x̂xxd)≥ τ(MB)

(
s

∏
k=1

dk
dk

dk!

)

v(MB).

Let ξξξ = (ξ1,ξ2, · · · ,ξd)
T, whose components are i.i.d. random variables, taking

values 1 and −1 with equal probability 1/2. Similar as (2.5), we denote

x̂xx1
ξ =

d1

∑
k=1

ξkx̂xxk, x̂xx2
ξ =

d1+d2

∑
k=d1+1

ξkx̂xxk, · · · , x̂xxs
ξ =

d

∑
k=d1+d2+···+ds−1+1

ξkx̂xxk.

Without loss of generality, we assume d1 to be odd. Applying Lemma 2.3.3 we have

s

∏
k=1

dk!F(x̂xx1, x̂xx2, · · · , x̂xxd) = E

[
d

∏
i=1

ξi f
(

x̂xx1
ξ , x̂xx

2
ξ , · · · , x̂xxs

ξ

)
]

= E

[

f

(
d

∏
i=1

ξix̂xx
1
ξ , x̂xx

2
ξ , · · · , x̂xxs

ξ

)]

.
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Therefore we are able to find a binary vector βββ ∈ B
d , such that

f

(
d

∏
i=1

βi
x̂xx1

β

d1
,

x̂xx2
β

d2
, · · · , x̂xxs

β

ds

)

≥
s

∏
k=1

dk!dk
−dkF(x̂xx1, x̂xx2, · · · , x̂xxd)≥ τ(MB)v(MB).

Similar as (3.2), it is not hard to verify that ∏d
i=1 βix̂xx

1
β/d1 ∈ B̄

n1 , and x̂xxk
β/dk ∈ B̄

nk

for k = 2,3, . . . ,s. By the square-free property of the function f and applying
Lemma 3.1.3, we are able to find a set of binary vectors (x̃xx1, x̃xx2, · · · , x̃xxs) in
polynomial time, such that

f (x̃xx1, x̃xx2, · · · , x̃xxs)≥ f

(
d

∏
i=1

βi
x̂xx1

β

d1
,

x̂xx2
β

d2
, · · · ,

x̂xxs
β

ds

)

≥ τ(MB)v(MB). �

Theorem 3.1.7 If f (xxx1,xxx2, · · · ,xxxs) is square-free in each xxxk (k = 1,2, . . . ,s), d ≥ 4
and all dk (k = 1,2, . . . ,s) are even, then (MB) admits a polynomial-time randomized
approximation algorithm with relative approximation ratio τ(MB).

The proof is analogous to that of Theorem 3.1.5. The main differences are:
(1) we use Lemma 2.3.3 instead of invoking Lemma 2.2.1 directly; and (2) we

use f
(

1
d1

x̂xx1
ξ ,

1
d2

x̂xx2
ξ , · · · , 1

ds
x̂xxs

ξ

)
instead of f

( 1
d ∑d

k=1 ξkx̂xxk
)

during the randomization
process.

3.1.4 Inhomogeneous Polynomial

Finally, we consider binary integer programming model to the optimization on a
generic (inhomogeneous) polynomial function, i.e.,

(PB) max p(xxx)
s.t. xxx ∈ B

n

Extending the approximation algorithms and the corresponding analysis for
homogeneous polynomial optimization to general inhomogeneous polynomials is
not straightforward. Technically it is also a way to get around the square-free
property, which is a requirement for all the homogeneous polynomial optimization
discussed in previous sections. The analysis here is similar to Sect. 2.4, which deals
with homogenization directly. An important observation here is that p(xxx) can always
be rewritten as a square-free polynomial, since we have xi

2 = 1 for i = 1,2, . . . ,n,
allowing us to reduce the power of xi to 0 or 1 in each monomial of p(xxx). We now
propose the following approximation algorithm for solving (PB).
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Algorithm 3.1.4

• INPUT: an n-dimensional d-th degree polynomial function p(xxx).
1 Rewrite p(xxx) as a square-free polynomial function p0(xxx), and then rewrite

p0(xxx)− p0(000) = F(x̄xx, x̄xx, · · · , x̄xx
︸ ︷︷ ︸

d

) when xh = 1 as in (2.7), with FFF being an (n+1)-

dimensional d-th order supersymmetric tensor.
2 Apply Algorithm 3.1.2 to solve the problem

max F(x̄xx1, x̄xx2, · · · , x̄xxd)

s.t. x̄xxk ∈ B
n+1, k = 1,2, . . . ,d

approximately, with input FFF and output (ūuu1, ūuu2, · · · , ūuud).

3 Compute (z̄zz1, z̄zz2, · · · , z̄zzd)= argmax
{

F
((ξ1uuu1/d

1

)
,
(ξ2uuu2/d

1

)
, · · · ,(ξd uuud/d

1

))
,ξξξ ∈B

d
}

.

4 Compute zzz = argmax
{

p0(000); p0 (zzz(β )/zh(β )) ,βββ ∈ B
d and β1 = ∏d

k=2 βk = 1
}

,
with z̄zz(β ) = β1(d + 1)z̄zz1 +∑d

k=2 βkz̄zzk.
5 Apply the procedure in Lemma 3.1.3, with input zzz ∈ B̄

n and polynomial function
p0(xxx), and output yyy ∈ B

n satisfying p0(yyy)≥ p0(zzz).
• OUTPUT: a feasible solution yyy ∈ B

n.

Before presenting the main result to analyze Algorithm 3.1.4, we first study
another property of the square-free polynomial; namely, the overall average of the
function values on the support set Bn is zero, which plays an important role in the
analysis of the algorithm for (PB).

Lemma 3.1.8 If the polynomial function p(xxx) in (PB) : maxxxx∈Bn p(xxx) is square-free
and has no constant term, then v(PB) ≤ 0 ≤ v(PB), and a binary vector x̃xx ∈ B

n can
be found in polynomial time with p(x̃xx)≥ 0.

Proof. Let ξ1,ξ2, · · · ,ξn be i.i.d. random variables, each taking values 1 and −1
with equal probability 1/2. For any monomial Fi1i2...ik xi1xi2 · · ·xik with degree k (1 ≤
k ≤ d) of p(xxx), by the square-free property, it follows that

E[Fi1i2...ik ξi1ξi2 · · ·ξik ] = Fi1i2···ik E[ξi1 ]E[ξi2 ] · · ·E[ξik ] = 0.

This implies E[p(ξξξ )] = 0, and consequently v(PB)≤ 0 ≤ v(PB). By a randomization
process, a binary vector x̃xx ∈ B

n can be found in polynomial time with p(x̃xx)≥ 0. �

We remark that the second part of Lemma 3.1.8 can also be proven by conducting
the procedure in Lemma 3.1.3 with the input vector 000 ∈ B̄

n, since p(000) = 0.
Therefore, finding a binary vector x̃xx ∈ B

n with p(x̃xx) ≥ 0 can be done by either a
randomized process (Lemma 3.1.8) or a deterministic process (Lemma 3.1.3). We
now present the main result in this section.
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Theorem 3.1.9 (PB) admits a polynomial-time randomized approximation
algorithm with relative approximation ratio τ(PB), where

τ(PB) :=
ln
(

1+
√

2
)

2(1+ e)πd−1 (d + 1)!d−2d(n+1)−
d−2

2 = Ω
(

n−
d−2

2

)
.

The main idea of the proof is quite similar to that of Theorem 2.4.2. However, the
discrete nature of the problem, as well as the non-convexity of the feasible region,
require an extra dose of caution when dealing with the specific details. The entire
proof is presented below.

Proof. Since we are working with relative approximation ratio, by Step 1 of
Algorithm 3.1.4, we may assume that p(xxx) is square-free and has no constant term.
Then by homogenization (see (2.7)), we have

p(xxx) = F

((
xxx
xh

)
,

(
xxx
xh

)
, · · · ,

(
xxx
xh

)

︸ ︷︷ ︸
d

)
= F(x̄xx, x̄xx, · · · , x̄xx

︸ ︷︷ ︸
d

) = f (x̄xx),

where f (x̄xx) = p(xxx) if xh = 1, and f (x̄xx) is an (n + 1)-dimensional homogeneous

polynomial function with associated supersymmetric tensor FFF ∈R
(n+1)d

whose last
component is 0. (PB) is then equivalent to

max f (x̄xx)

s.t. x̄xx =

(
xxx
xh

)
, xxx ∈ B

n, xh = 1,

which can be relaxed to an instance of (TB) as follows:

(P̃B) max F(x̄xx1, x̄xx2, · · · , x̄xxd)

s.t. x̄xxk ∈ B
n+1, k = 1,2, . . . ,d.

Let (ūuu1, ūuu2, · · · , ūuud) be the feasible solution for (P̃B) found by Theorem 3.1.2 with

F(ūuu1, ūuu2, · · · , ūuud) ≥ (2/π)d−1 ln(1+
√

2)(n+1)−
d−2

2 v(P̃B)

≥ (2/π)d−1 ln(1+
√

2)(n+1)−
d−2

2 v(PB).

Denote v̄vvk = ūuuk/d for k = 1,2, . . . ,d, and consequently

F(v̄vv1, v̄vv2, · · · , v̄vvd) = d−dF(ūuu1, ūuu2, · · · , ūuud)

≥ (2/π)d−1 ln(1+
√

2)d−d(n+1)−
d−2

2 v(PB).
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Notice that for all 1 ≤ k ≤ d, |vk
h| = |uk

h/d| = 1/d ≤ 1 and the last component of
tensor FFF is 0. By applying Lemma 2.4.4, it follows that

E

[
d

∏
k=1

ηkF

((
η1vvv1

1

)
,

(
η2vvv2

1

)
, · · · ,

(
ηdvvvd

1

))]

= F(v̄vv1, v̄vv2, · · · , v̄vvd)

and

E

[
F

((
ξ1vvv1

1

)
,

(
ξ2vvv2

1

)
, · · · ,

(
ξdvvvd

1

))]
= 0,

where η1,η2, . . . ,ηd are independent random variables, each taking values 1 and −1
with E[ηk] = vk

h for k = 1,2, . . . ,d, and ξ1,ξ2, · · · ,ξd are i.i.d. random variables, each
taking values 1 and −1 with equal probability 1/2. Combining the two identities,
we have, for any constant c, the following identity:

F(v̄vv1, v̄vv2, · · · , v̄vvd)

= ∑
βββ∈Bd ,∏d

k=1 βk=−1

(c−Pr{ηηη = βββ})F

((
β1vvv1

1

)
,

(
β2vvv2

1

)
, · · · ,

(
βdvvvd

1

))

+ ∑
βββ∈Bd ,∏d

k=1 βk=1

(c+Pr{ηηη = βββ})F

((
β1vvv1

1

)
,

(
β2vvv2

1

)
, · · · ,

(
βdvvvd

1

))
.

If we let c = maxβββ∈Bd ,∏d
k=1 βk=−1 Pr{ηηη = βββ}, then the coefficient of each term F in

the above is nonnegative. Therefore, a binary vector βββ ′ ∈B
d can be found, such that

F

((
β ′

1vvv1

1

)
,

(
β ′

2vvv2

1

)
, · · · ,

(
β ′

dvvvd

1

))
≥ τ1 F(v̄vv1, v̄vv2, · · · , v̄vvd),

with

τ1 =

⎛

⎝ ∑
βββ∈Bd ,∏d

k=1 βk=1

(c+Pr{ηηη = βββ})+ ∑
βββ∈Bd ,∏d

k=1 βk=−1

(c−Pr{ηηη = βββ})
⎞

⎠

−1

≥
(

2dc+1
)−1 ≥

(

2d
(

1
2
+

1
2d

)d

+ 1

)−1

≥ 1
1+ e

,

where c ≤ ( 1
2 +

1
2d

)d
is applied, since E[ηk] = vk

h =±1/d for k = 1,2, . . . ,d. Denote

z̄zzk =
(zzzk

zk
h

)
=
(β ′

kvvvk

1

)
for k = 1,2, . . . ,d, and we have

F(z̄zz1, z̄zz2, · · · , z̄zzd)≥ τ1F(v̄vv1, v̄vv2, · · · , v̄vvd)≥
(

2
π

)d−1ln
(

1+
√

2
)

1+e
d−d(n+1)−

d−2
2 v(PB).
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For any βββ ∈ B
d , denote z̄zz(β ) = β1(d+1)z̄zz1 +∑d

k=2 βkz̄zzk. By noticing zk
h = 1 and

|zk
i |= |vk

i |= |uk
i |/d = 1/d for all 1 ≤ k ≤ d and 1 ≤ i ≤ n, it follows that

2 ≤ |zh(β )| ≤ 2d and |zi(β )| ≤ (d + 1)/d+(d−1)/d = 2 ∀1 ≤ i ≤ n.

Thus zzz(β )/zh(β ) ∈ B̄
n. By Lemma 3.1.3, there exists xxx′ ∈ B

n, such that

v(PB)≤ p(xxx′)≤ p(zzz(β )/zh(β )) = f (z̄zz(β )/zh(β )) .

Moreover, we shall argue below that

β1 = 1 =⇒ f (z̄zz(β ))≥ (2d)d v(PB). (3.3)

If this were not the case, then by Lemma 3.1.8 f (z̄zz(β )/(2d)) < v(PB) ≤ 0. Notice
that β1 = 1 implies zh(β )> 0, and thus we have

f

(
z̄zz(β )
zh(β )

)
=

(
2d

zh(β )

)d

f

(
z̄zz(β )
2d

)
≤ f

(
z̄zz(β )
2d

)
< v(PB),

which is a contradiction.
Suppose ξξξ = (ξ1,ξ2, · · · ,ξd)

T, whose components are i.i.d. random variables,
each taking values 1 and −1 with equal probability 1/2. Noticing that (3.3) holds
and using the same argument as (2.17), we get

1
2

E

[
(

f (z̄zz(ξ ))− (2d)d v(PB)
)
∣∣
∣
∣
∣
ξ1 = 1,

d

∏
k=2

ξk = 1

]

≥ d!F
(
(d +1)z̄zz1, z̄zz2, · · · , z̄zzd

)
.

Therefore, a binary vector βββ ′′ ∈ B
d with β ′′

1 = ∏d
k=2 β ′′

k = 1 can be found, such that

f (z̄zz(β ′′))− (2d)d v(PB) ≥ 2d!F((d + 1)z̄zz1, z̄zz2, · · · , z̄zzd)

≥
(

2
π

)d−1 2 ln
(

1+
√

2
)

1+ e
(d +1)!d−d(n+1)−

d−2
2 v(PB).

By Lemma 3.1.8, a binary vector xxx′ ∈ B
n can be found in polynomial time with

p(xxx′)≥ 0. Moreover, as zzz(β ′′)/zh(β ′′)∈ B̄
n, by Lemma 3.1.3, another binary vector

xxx′′ ∈ B
n can be found in polynomial time with p(xxx′′)≥ p(zzz(β ′′)/zh(β ′′)). Below we

shall prove at least one of xxx′ and xxx′′ satisfies

p(xxx)− v(PB)≥ τ(PB)(v(PB)− v(PB)) . (3.4)

Indeed, if −v(PB) ≥ τ(PB)(v(PB)− v(PB)), then xxx′ satisfies (3.4) in this case.
Otherwise we shall have −v(PB)< τ(PB)(v(PB)− v(PB)), then

v(PB)> (1− τ(PB))(v(PB)− v(PB))≥ (v(PB)− v(PB))/2,
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which implies

f

(
z̄zz(β ′′)

2d

)
− v(PB)

≥ (2d)−d
(

2
π

)d−1 2 ln
(

1+
√

2
)

1+ e
(d +1)!d−d(n+1)−

d−2
2 v(PB)

≥ τ(PB)(v(PB)− v(PB)) .

The above inequality also implies that f (z̄zz(β ′′)/(2d)) > 0. Recall that β ′′
1 = 1

implies zh(β ′′)> 0. Therefore,

p(xxx′′)≥ p

(
zzz(β ′′)
zh(β ′′)

)
= f

(
z̄zz(β ′′)
zh(β ′′)

)
=

(
2d

zh(β ′′)

)d

f

(
z̄zz(β ′′)

2d

)
≥ f

(
z̄zz(β ′′)

2d

)
,

which implies that xxx′′ satisfies (3.4). Finally, argmax{p(xxx′), p(xxx′′)} satisfies (3.4) in
both cases. �

We remark that (PB) is indeed a very general discrete optimization model. For
example, it can be used to model the following general polynomial optimization in
discrete values:

(PD) max p(xxx)
s.t. xi ∈ {ai

1,a
i
2, · · · ,ai

mi
}, i = 1,2, . . . ,n.

To see this, we observe that by adopting the Lagrange interpolation technique
and letting

xi =
mi

∑
j=1

ai
j ∏

1≤k≤mi,k �= j

ui − k
j− k

∀1 ≤ i ≤ n,

the original decision variables can be equivalently transformed to

ui = j =⇒ xi = ai
j ∀1 ≤ i ≤ n, 1 ≤ j ≤ mi,

where ui ∈ {1,2, . . . ,mi}, which can be further represented by �log2 mi� indepen-
dent binary variables. Combining these two steps of substitution, (PD) is then
reformulated as (PB), with the degree of its objective polynomial function no
larger than max1≤i≤n{d(mi − 1)}, and the dimension of its decision variables being
∑n

i=1�log2 mi�.
In many real-world applications, the data {ai

1,a
i
2, · · · ,ai

mi
}(i = 1,2, . . . ,n) in

(PD) are arithmetic sequences. Then it is much easier to transform (PD) to (PB),
without going through the Lagrange interpolation. It keeps the same degree of its
objective polynomial, and the dimension of its decision variables is ∑n

i=1�log2 mi�.
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3.1.5 Hypercube

Let us turn back to the continuous polynomial optimization models. The optimiza-
tion of polynomial function over hypercube (B̄n) also has versatile applications.
Basically, it includes finding the maximum (or minimum) value of a polynomial
function with the variables having lower and upper bounds. As a byproduct of
the analysis in this section, we remark that all the approximation algorithms
proposed in previous sections are also applicable for polynomial optimization over
hypercube, which are models (TB̄),(HB̄),(MB̄), and (PB̄), i.e., the respective models
(TB),(HB),(MB) and (PB) with B being replaced by B̄. In particular, the square-free
conditions are no longer required for homogeneous form objective and mixed-form
objective, and consequently Algorithms 3.1.3 and 3.1.4 can be made simpler without
going through the process in Lemma 3.1.3. We now conclude this section, by the
following theorem without proof. Interested readers can take it as a good exercise.

Theorem 3.1.10 The following approximation results hold for polynomial opti-
mization over hypercube:

1. (TB̄) admits a polynomial-time randomized approximation algorithm with ap-
proximation ratio τ(TB).

2. If d ≥ 3 is odd, then (HB̄) admits a polynomial-time randomized approximation
algorithm with approximation ratio τ(HB); otherwise d ≥ 4 is even, then (HB̄)
admits a polynomial-time randomized approximation algorithm with relative
approximation ratio τ(HB).

3. If one of dk (k = 1,2, . . . ,s) is odd, then (MB̄) admits a polynomial-time ran-
domized approximation algorithm with approximation ratio τ(MB); otherwise
all dk (k = 1,2, . . . ,s) are even, then (MB̄) admits a polynomial-time randomized
approximation algorithm with relative approximation ratio τ(MB).

4. (PB̄) admits a polynomial-time randomized approximation algorithm with rela-
tive approximation ratio τ(PB).

3.2 The Euclidean Sphere

The Euclidean sphere (Sn) is the boundary of the Euclidean ball (S̄n), or conversely,
the Euclidean ball is the convex hull of the Euclidean sphere. In Chap. 2, we
discussed various polynomial optimization models with the constraint set being the
Euclidean ball. In fact, the spherically constrained polynomial optimization might
be encountered more frequently than the ball-constrained polynomial optimization
(see the discussion in Chap. 4), albeit in many cases they are equivalent. Here in this
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section, we shall discuss the approximation methods for homogeneous polynomial
optimization over the Euclidean sphere, i.e.,

(TS) max F(xxx1,xxx2, · · · ,xxxd)

s.t. xxxk ∈ S
nk , k = 1,2, . . . ,d

(HS) max f (xxx)
s.t. xxx ∈ S

n

(MS) max f (xxx1,xxx2, · · · ,xxxs)

s.t. xxxk ∈ S
nk , k = 1,2, . . . ,s

In Sect. 2.1, we mentioned the equivalence relationship between (TS) and (TS̄).
This is because the optimal value of (TS̄) is always positive unless the data FFF is a
zero tensor. Therefore, the corresponding optimal solution must have the Euclidean
norm to be one (otherwise one may simply scale the solution along its direction to
make itself in the Euclidean sphere), and this makes itself being optimal to (TS). In
general, for the homogeneous polynomial optimization models proposed above, we
have the following equivalence.

Proposition 3.2.1 If v(TS) > 0 (respectively v(HS) > 0, and v(MS) > 0), then (TS)
(respectively (HS), and (MS)) is equivalent to (TS̄) (respectively (HS̄), and (MS̄)). In
particular, the equivalence holds for (TS), (HS) with odd d, and (MS) with one of
dk (k = 1,2, . . . ,s) being odd.

Now, the only remaining cases left are the even cases of (HS) and (MS), or
specifically, (HS) with even d, and (MS) with all dk (k = 1,2, . . . ,s) being even. In
fact, the even case of (HS) is a special one of the even case of (MS). Unfortunately,
when d ≥ 4, it is NP-hard to check whether v(MS) > 0 (or v(HS) > 0) for its even
case, otherwise we may at least reserve the first part of Proposition 3.2.1 for help.
In order to express the main ideas in handling these even cases, let us first focus on
(HS) with even d.

When d is even, the only case of (HS) that can be solved in polynomial time is
the quadratic one, which is exactly the largest eigenvalue problem for a symmetric
matrix. Even worse, we have the following inapproximate result, whose proof is
almost same as that of Proposition 2.2.3

Proposition 3.2.2 If d = 4, then there is no polynomial-time approximation algo-
rithm with a positive approximation ratio for (HS) unless P = NP.

Therefore, the only hope is a polynomial-time approximation algorithm with a
relative approximation ratio, similar as the even case of (HS̄). However, unlike
the model (HS̄), whose optimal value is always nonnegative, since 000 is always
a feasible solution, the spherically constrained optimization does not have such
sign properties. Specifically, inequality (2.3) in the proof of Theorem 2.2.4 no
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longer holds here. In order to overcome this difficulty, a feasible solution should be
generated as a bench mark. Below we introduce the algorithm for (HS) for even d.

Algorithm 3.2.1

• INPUT: a d-th order supersymmetric tensor FFF ∈ R
nd

.
1 Choose any vector xxx0 ∈ S

n and define a d-th order supersymmetric tensor HHH ∈
R

nd
with respect to the homogeneous polynomial h(xxx) = (xxxTxxx)d/2.

2 Apply Algorithm 2.1.3 to solve the problem

max F(xxx1,xxx2, · · · ,xxxd)− f (xxx0)H(xxx1,xxx2, · · · ,xxxd)

s.t. xxxk ∈ S
n, k = 1,2, . . . ,d

approximately, with input FFF − f (xxx0)HHH and output (x̂xx1, x̂xx2, · · · , x̂xxd).

3 Compute βββ = argmaxξξξ∈Bd ,∏d
k=1 ξk=1

{
f

(
∑d

k=1 ξk x̂xxk

‖∑d
k=1 ξk x̂xxk‖

)}
.

4 Compute x̂xx = argmax

{
f (xxx0), f

(
∑d

k=1 βkx̂xxk

‖∑d
k=1 βkx̂xxk‖

)}
.

• OUTPUT: a feasible solution x̂xx ∈ S
n.

A similar approximation result as of Theorem 2.2.4 can be derived, which
preserves the same approximation ratio for (HS) and (HS̄).

Theorem 3.2.3 When d ≥ 4 is even, (HS) admits a polynomial-time approximation
algorithm with relative approximation ratio τ(HS).

Proof. Denote HHH to be the supersymmetric tensor with respect to the homogeneous
polynomial h(xxx) = ‖xxx‖d = (xxxTxxx)d/2. Explicitly, if we denote Π to be the set of all
permutations of {1,2, . . . ,d}, then

H(xxx1,xxx2, · · · ,xxxd) =
1
|Π | ∑

(i1,i2,··· ,id)∈Π

(
(xxxi1)Txxxi2

)(
(xxxi3)Txxxi4

) · · ·((xxxid−1)Txxxid
)
.

For any xxxk ∈ S
n (k = 1,2, . . . ,d), we have |H(xxx1,xxx2, · · · ,xxxd)| ≤ 1 by applying the

Cauchy–Schwartz inequality termwise.
Pick any fixed xxx0 ∈ S

n, and consider the following problem:

(H̃S) max F(xxx1,xxx2, · · · ,xxxd)− f (xxx0)H(xxx1,xxx2, · · · ,xxxd)

s.t. xxxk ∈ S
n, k = 1,2, . . . ,d.
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Applying Algorithm 2.1.3 (notice in this case that the ball constraint and the
spherical constraint are equivalent), we obtain a solution (x̂xx1, x̂xx2, · · · , x̂xxd) in poly-
nomial time, and by Theorem 2.1.5 we have

F(x̂xx1, x̂xx2, · · · , x̂xxd)− f (xxx0)H(x̂xx1, x̂xx2, · · · , x̂xxd)≥ τ̃(TS)v(H̃S),

where τ̃(TS) := n−
d−2

2 .
Let us first work on the case that

f (xxx0)− v(HS)≤ (τ̃(TS)/4)(v(HS)− v(HS)) . (3.5)

Since |H(x̂xx1, x̂xx2, · · · , x̂xxd)| ≤ 1, we have

F(x̂xx1, x̂xx2, · · · , x̂xxd)− v(HS)H(x̂xx1, x̂xx2, · · · , x̂xxd)

= F(x̂xx1, x̂xx2, · · · , x̂xxd)− f (xxx0)H(x̂xx1, x̂xx2, · · · , x̂xxd)

+
(

f (xxx0)− v(HS)
)

H(x̂xx1, x̂xx2, · · · , x̂xxd)

≥ τ̃(TS)v(H̃S)−
(

f (xxx0)− v(HS)
)

≥ τ̃(TS)
(
v(HS)− f (xxx0)

)− (τ̃(TS)/4)(v(HS)− v(HS))

≥ (τ̃(TS)(1− τ̃(TS)/4)− τ̃(TS)/4)(v(HS)− v(HS))

≥ (τ̃(TS)/2)(v(HS)− v(HS)) ,

where the second inequality is due to the fact that the optimal solution of (HS) is
feasible for (H̃S).

On the other hand, let ξ1,ξ2, · · · ,ξd be i.i.d. random variables, each taking values
1 and −1 with equal probability 1/2. Applying Lemma 2.2.1 we know

d!
(

F(x̂xx1, x̂xx2, · · · , x̂xxd)− v(HS)H(x̂xx1, x̂xx2, · · · , x̂xxd)
)

= E

[
d

∏
i=1

ξi

(

f

(
d

∑
k=1

ξkx̂xxk

)

− v(HS)h

(
d

∑
k=1

ξkx̂xxk

))]

= E

⎡

⎣ f

(
d

∑
k=1

ξkx̂xxk

)

− v(HS)

∥
∥∥
∥
∥

d

∑
k=1

ξkx̂xxk

∥
∥∥
∥
∥

d ∣∣∣
∣
∣

d

∏
i=1

ξi = 1

⎤

⎦Pr

{
d

∏
i=1

ξi = 1

}

−E

⎡

⎣ f

(
d

∑
k=1

ξkx̂xxk

)

− v(HS)

∥∥
∥
∥
∥

d

∑
k=1

ξkx̂xxk

∥∥
∥
∥
∥

d ∣∣
∣
∣
∣

d

∏
i=1

ξi =−1

⎤

⎦Pr

{
d

∏
i=1

ξi =−1

}

≤ 1
2

E

⎡

⎣ f

(
d

∑
k=1

ξkx̂xxk

)

− v(HS)

∥
∥
∥
∥
∥

d

∑
k=1

ξkx̂xxk

∥
∥
∥
∥
∥

d ∣∣
∣
∣
∣

d

∏
i=1

ξi = 1

⎤

⎦ ,
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where the last inequality is due to the fact that

f

(
d

∑
k=1

ξkx̂xxk

)

− v(HS)

∥
∥
∥
∥
∥

d

∑
k=1

ξkx̂xxk

∥
∥
∥
∥
∥

d

≥ 0,

since ∑d
k=1 ξkx̂xxk

/∥
∥∑d

k=1 ξkx̂xxk
∥
∥ ∈ S

n. Thus by randomization, we can find βββ ∈ B
d

with ∏d
i=1 βi = 1, such that

1
2

⎛

⎝ f

(
d

∑
k=1

βkx̂xxk

)

− v(HS)

∥
∥
∥∥
∥

d

∑
k=1

βkx̂xxk

∥
∥
∥∥
∥

d
⎞

⎠≥ d!(τ̃(TS)/2)(v(HS)− v(HS)) .

By letting x̂xx = ∑d
k=1 βkx̂xxk

/∥
∥∑d

k=1 βkx̂xxk
∥
∥, and noticing ‖∑d

k=1 βkx̂xxk‖ ≤ d, we have

f (x̂xx)− v(HS)≥ d!τ̃(TS)(v(HS)− v(HS))

‖∑d
k=1 βkx̂xxk‖d

≥ τ(HS)(v(HS)− v(HS)) .

Recall that the above inequality is derived under the condition that (3.5) holds.
In case (3.5) does not hold, then

f (xxx0)− v(HS)> (τ̃(TS)/4)(v(HS)− v(HS))≥ τ(HS)(v(HS)− v(HS)) . (3.6)

By picking x̃xx = argmax{ f (x̂xx), f (xxx0)}, regardless whether (3.5) or (3.6) holds, we
shall uniformly have f (x̃xx)− v(HS)≥ τ(HS)(v(HS)− v(HS)). �

Algorithm 3.2.1 can be modified and applied for more general case of (HS),
i.e., the even case of (MS). Essentially, the extended link from multilinear form to
mixed form (Lemma 2.3.3) is required, instead of the one from multilinear form
to homogenous form (Lemma 2.2.1). The following approximation result can be
proven by using a similar argument as of Theorem 3.2.3. The approximation ratio is
same as that for (MS̄) in Theorem 2.3.4.

Theorem 3.2.4 If d ≥ 4 and all dk (k = 1,2, . . . ,s) are even, then (MS) admits a
polynomial-time approximation algorithm with relative approximation ratio τ(MS).

3.3 Intersection of Co-centered Ellipsoids

In this section, we consider a generalization of the polynomial optimization
models discussed in Chap. 2, to include ellipsoidal constraints. Specifically, the
models include optimization of the four types of polynomial functions described in
Sect. 1.3.1, with the constraint sets being extended to intersection of finite number
of co-centered ellipsoids, i.e.,
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(TQ) max F(xxx1,xxx2, · · · ,xxxd)

s.t. (xxxk)TQQQk
ik xxxk ≤ 1, k = 1,2, . . . ,d, ik = 1,2, . . . ,mk,

xxxk ∈R
nk , k = 1,2, . . . ,d

(HQ) max f (xxx)
s.t. xxxTQQQixxx ≤ 1, i = 1,2, . . . ,m,

xxx ∈R
n

(MQ) max f (xxx1,xxx2, · · · ,xxxs)

s.t. (xxxk)TQQQk
ik xxxk ≤ 1, k = 1,2, . . . ,s, ik = 1,2, . . . ,mk,

xxxk ∈ R
nk , k = 1,2, . . . ,s

(PQ) max p(xxx)
s.t. xxxTQQQixxx ≤ 1, i = 1,2, . . . ,m,

x ∈ R
n

where QQQk
ik 
 0 and ∑mk

ik=1 QQQk
ik � 0, and QQQi 
 0 and ∑m

i=1 QQQi � 0 whenever appropriate.
When d = 1, all the models can be formulated as standard second order cone

programs (SOCP), and therefore can be solved in polynomial time. However, they
become NP-hard when d ≥ 2. Nemirovski et al. [86] proposed a polynomial-
time randomized approximation algorithm with approximation ratio Ω(1/ lnm) for
(HQ) when d = 2, based on SDP relaxation and randomization techniques, and
the method can also be applied to (TQ), (MQ), and (PQ) as well. When d = 4,
Luo and Zhang [76] established the relationship of (HQ) with its quadratic SDP
relaxation, and proposed polynomial-time randomized approximation algorithm
when the number of constraints being one, or essentially the model (HS̄).

We shall propose polynomial-time randomized approximation algorithms for
these models with provable worst-case performance ratios, provided the degree of
the objective polynomial is fixed. The extension from the Euclidean ball constraint
to co-centered ellipsoidal constraint is not straightforward, as the complexity for
the quadratic polynomial objective is already different, i.e., NP-hard for (PQ)
while polynomial-time solvable for (PS̄). In fact, the extension from multilinear
form optimization (TQ) to homogeneous form optimization (HQ) and mixed-form
optimization (MQ) are quite similar as that of the Euclidean ball constraint, as well
as the extension to general inhomogeneous polynomial optimization (PQ). However,
the decomposition routine, which plays an indispensable role in solving (TQ), is
quite technically involved.
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3.3.1 Multilinear Form

Let us start by discussing the approximation algorithm for

(TQ) max F(xxx1,xxx2, · · · ,xxxd)

s.t. (xxxk)TQQQk
ik

xxxk ≤ 1, k = 1,2, . . . ,d, ik = 1,2, . . . ,mk,

xxxk ∈R
nk , k = 1,2, . . . ,d

where QQQk
ik 
 0 and ∑mk

ik=1 QQQk
ik � 0 for k = 1,2, . . . ,d, ik = 1,2, . . . ,mk. As before,

we first investigate the base: d = 2. Suppose F(xxx1,xxx2) = (xxx1)TFFFxxx2. Denote yyy =(
xxx1

xxx2

)
, FFF ′ =

[
000n1×n1 FFF/2
FFFT/2 000n2×n2

]
, QQQi =

[
QQQ1

i 000n1×n2

000n2×n1 000n2×n2

]
for all 1 ≤ i ≤ m1, and QQQi =

[
000n1×n1 000n1×n2

000n2×n1 QQQ2
i−m1

]
for all m1 + 1 ≤ i ≤ m1 +m2. Then (TQ) is equivalent to

max yyyTFFF ′yyy
s.t. yyyTQQQiyyy ≤ 1, i = 1,2, . . . ,m1 +m2,

yyy ∈ R
n1+n2 .

The above is a special case of (HQ) for d = 2: a standard quadratically constrained
quadratic program (QCQP). Such problems can be solved approximately by a

polynomial-time randomized algorithm with approximation ratio Ω
(

1
ln(m1+m2)

)
.

Specifically, it is the following approximation result by Nemirovski et al. [86].

Theorem 3.3.1 If d = 2, (HQ) admits a polynomial-time randomized approxima-
tion algorithm with approximation ratio Ω

( 1
lnm

)
.

The underlying algorithm is based on the SDP relaxation and randomization as
discussed in Sect. 1.4.4; for more details, one is referred to Nemirovski et al. [86] or
He et al. [48].

We now proceed to the high degree cases. To illustrate the essential ideas, we
shall focus on the case d = 3. The extension to any higher degree can be done by
recursion. In case d = 3 we may explicitly write (TQ) as

(T̂Q) max F(xxx,yyy,zzz)
s.t. xxxTQQQixxx ≤ 1, i = 1,2, . . . ,m1,

yyyTPPP jyyy ≤ 1, j = 1,2, . . . ,m2,

zzzTRRRkzzz ≤ 1, k = 1,2, . . . ,m3,

xxx ∈ R
n1 ,yyy ∈ R

n2 ,zzz ∈R
n3 ,
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where QQQi 
 0 for all 1≤ i ≤m1, PPP j 
 0 for all 1≤ j ≤m2, RRRk 
 0 for all 1≤ k ≤m3,
and ∑m1

i=1 QQQi � 0, ∑m2
j=1 PPP j � 0, ∑m3

k=1 RRRk � 0.
Combining the constraints of xxx and yyy, we have

tr(QQQixxxyyyTPPPjyyyxxxT) = tr(xxxTQQQixxxyyyTPPP jyyy) = xxxTQQQixxx · yyyTPPP jyyy ≤ 1.

Denoting WWW = xxxyyyT, (T̂Q) can be relaxed to

(ŤQ) max F(WWW ,zzz)
s.t. tr(QQQiWWW PPP jWWW T)≤ 1, i = 1,2, . . . ,m1, j = 1,2, . . . ,m2,

zzzTRRRkzzz ≤ 1, k = 1,2, . . . ,m3,

WWW ∈ R
n1×n2 ,zzz ∈ R

n3 .

Observe that for any WWW ∈R
n1×n2 ,

tr(QQQiWWWPPPjWWW
T) = tr(QQQi

1
2 WWWPPP j

1
2 PPPj

1
2 WWW TQQQi

1
2 ) =

∥
∥
∥QQQi

1
2 WWWPPP j

1
2

∥
∥
∥

2 ≥ 0,

and that for any WWW �= 000,

∑
1≤i≤m1,1≤ j≤m2

tr(QQQiWWWPPPjWWW
T) = tr

((
m1

∑
i=1

QQQi

)

WWW

(
m2

∑
j=1

PPP j

)

WWW T

)

=

∥
∥
∥
∥
∥
∥

(
m1

∑
i=1

QQQi

) 1
2

WWW

(
m2

∑
j=1

PPPj

) 1
2

∥
∥
∥
∥
∥
∥

2

> 0.

Indeed, it is easy to verify that tr(QQQiWWWPPPjWWW T) = (vec(WWW ))T(QQQi⊗PPP j)vec(WWW ), which
implies that tr(QQQiWWWPPP jWWW T) ≤ 1 is actually a convex quadratic constraint for WWW .
Thus (ŤQ) is exactly in the form of (TQ) with d = 2. Therefore we are able to find a
feasible solution (ŴWW , ẑzz) of (ŤQ) in polynomial time, such that

F(ŴWW , ẑzz)≥ Ω
(

1
ln(m1m2 +m3)

)
v(ŤQ)≥ Ω

(
1

lnm

)
v(T̂Q), (3.7)

where m = max{m1,m2,m3}. Let us fix ẑzz, and then F(···, ···, ẑzz) is a matrix. Our next
step is to generate (x̂xx, ŷyy) from ŴWW , and a new decomposition routine is needed. For
this purpose, we first introduce the following lemma.

Lemma 3.3.2 Suppose QQQi ∈ R
n×n, QQQi 
 0 for all 1 ≤ i ≤ m, and ∑m

i=1 QQQi � 0, the
following SDP problem:

(PS) min ∑m
i=1 ti

s.t. tr(UUUQQQi)≤ 1, i = 1,2, . . . ,m,

ti ≥ 0, i = 1,2, . . . ,m,[
UUU IIIn×n

IIIn×n ∑m
i=1 tiQQQi

]

 0

has an optimal solution with optimal value equal to n.
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Proof. Straightforward computation shows that the dual of (PS) is

(DS) max −∑m
i=1 si − 2tr(ZZZ)

s.t. tr(XXXQQQi)≤ 1, i = 1,2, . . . ,m,

si ≥ 0, i = 1,2, . . . ,m,[
XXX ZZZ
ZZZT ∑m

i=1 siQQQi

]

 0.

Observe that (DS) indeed resembles (PS). Since ∑m
i=1 QQQi � 0, both (PS) and (DS)

satisfy the Slater condition, and thus both of them have attainable optimal solutions
satisfying the strong duality relationship, i.e., v(PS) = v(DS). Let (UUU∗, t∗) be an
optimal solution of (PS). Clearly UUU∗ � 0, and by the Schur complement relationship
we have ∑m

i=1 t∗i QQQi 
 (UUU∗)−1. Therefore,

v(PS) =
m

∑
i=1

t∗i ≥
m

∑
i=1

t∗i tr(UUU∗QQQi)≥ tr(UUU∗(UUU∗)−1) = n. (3.8)

Observe that for any dual feasible solution (XXX ,ZZZ,sss) we always have −∑m
i=1 si ≤

−tr(XXX ∑m
i=1 siQQQi). Hence the following problem is a relaxation of (DS):

(RS) max −tr(XXXYYY )− 2tr(ZZZ)

s.t.

[
XXX ZZZ
ZZZT YYY

]

 0.

Consider any feasible solution (XXX ,YYY ,ZZZ) of (RS). Let XXX = PPPTDDDPPP be an orthonor-
mal decomposition with DDD = Diag(d1,d2, · · · ,dn) and PPP−1 = PPPT. Notice that
(DDD,YYY ′,ZZZ′) := (PPPXXXPPPT,PPPYYY PPPT,PPPZZZPPPT) is also a feasible solution for (RS) with the
same objective value. By the feasibility, it follows that diY ′

ii − (Z′
ii)

2 ≥ 0 for i =
1,2, . . . ,n. Therefore,

−tr(XXXYYY )−2tr(ZZZ) = −tr(DDDYYY ′)− 2tr(ZZZ′) =−
n

∑
i=1

diY
′
ii −2

n

∑
i=1

Z′
ii

≤−
n

∑
i=1

(Z′
ii)

2 − 2
n

∑
i=1

Z′
ii ≤−

n

∑
i=1

(Z′
ii +1)2 +n ≤ n.

This implies that v(DS) ≤ v(RS) ≤ n. By combining this with (3.8), and noticing
the strong duality relationship, it follows that v(PS) = v(DS) = n. �

We then have the following decomposition method, to be called DR 3.3.1, as a
further extension of DR 2.1.1, 2.1.2, and 3.1.1.
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Decomposition Routine 3.3.1

• INPUT: matrices QQQi ∈ R
n1×n1 , QQQi 
 0 for all 1 ≤ i ≤ m1 with ∑m1

i=1 QQQi � 0,
PPP j ∈ R

n2×n2 , PPPj 
 0 for all 1 ≤ j ≤ m2 with ∑m2
j=1 PPP j � 0, WWW ∈ R

n1×n2 with

tr(QQQiWWWPPP jWWW T)≤ 1 for all 1 ≤ i ≤ m1 and 1 ≤ j ≤ m2, and MMM ∈R
n1×n2 .

1 Solve the SDP problem

min ∑m1
i=1 ti

s.t. tr(UUUQQQi)≤ 1, i = 1,2, . . . ,m1,

ti ≥ 0, i = 1,2, . . . ,m1,[
UUU IIIn×n

IIIn×n ∑m1
i=1 tiQQQi

]

 0

to get an optimal solution of a matrix UUU and scalars t1, t2, · · · , tm1 .
2 Construct

W̃WW =

[
UUU WWW

WWW T WWW T(∑m1
i=1 tiQQQi)WWW

]

 0.

3 Randomly generate
(

ξξξ
ηηη

)
∼ N (000n1+n2 ,W̃WW )

and repeat if necessary, until ξξξ TMMMηηη ≥ MMM •WWW , ξξξ TQQQiξξξ ≤ O(lnm1) for all 1 ≤
i ≤ m1, and ηηηTPPPjηηη ≤ O(n1 lnm2) for all 1 ≤ j ≤ m2.

4 Compute xxx = ξξξ
/√

max1≤i≤m1{ξξξ TQQQiξξξ} and yyy = ηηη
/√

max1≤ j≤m2{ηηηTPPPjηηη}.

• OUTPUT: vectors xxx ∈ R
n1 , yyy ∈ R

n2 .

The computational complexity of DR 3.3.1 depends on the algorithm for solving
the SDP problem (PS), which has O(n1

2) variables and O(m1) constraints. More-
over, it requires O(n2(n1m1 + n2m2) ln(1/ε)) other operations to get the quality
assured solution with probability 1− ε .

Lemma 3.3.3 Under the input of DR 3.3.1, we can find xxx ∈ R
n1 and yyy ∈ R

n2 by a
polynomial-time randomized algorithm, satisfying xxxTQQQixxx ≤ 1 for all 1 ≤ i ≤ m1 and
yyyTPPPjyyy ≤ 1 for all 1 ≤ j ≤ m2, such that

xxxTMMMyyy ≥ 1√
n

Ω
(

1√
lnm1 lnm2

)
MMM •WWW .
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Proof. Following the randomization procedure in Step 3 of DR 3.3.1, by
Lemma 3.3.2 we have for any 1 ≤ i ≤ m1 and 1 ≤ j ≤ m2,

E[ξξξ TQQQiξξξ ] = tr(QQQiUUU)≤ 1,

E[ηηηTPPP jηηη ] = tr

(

PPPjWWW
T

(
m1

∑
i=1

tiQQQi

)

WWW

)

=
m1

∑
i=1

ti tr(PPPjWWW
TQQQiWWW )≤

m1

∑
i=1

ti = n1.

So et al. [107] have established that if ξξξ is a normal random vector and QQQ 
 0, then
for any α > 0,

Pr
{

ξξξ TQQQξξξ ≥ αE[ξξξ TQQQξξξ ]
}
≤ 2e−

α
2 .

Applying this result we have

Pr
{

ξξξ TQQQiξξξ ≥ α1

}
≤ Pr

{
ξξξ TQQQiξξξ ≥ α1E[ξξξ TQQQiξξξ ]

}
≤ 2e−

α1
2 ,

Pr
{

ηηηTPPP jηηη ≥ α2n1
} ≤ Pr

{
ηηηTPPP jηηη ≥ α2E[ηηηTPPP jηηη ]

}≤ 2e−
α2
2 .

Moreover, E[ξξξ TMMMηηη ] = MMM •WWW . Now let x̂xx = ξξξ/
√

α1 and ŷyy = ηηη/
√

α2n1, and we
have

Pr

{
x̂xxTMMMŷyy ≥ MMM •WWW√

α1α2n1
, x̂xxTQQQix̂xx ≤ 1∀1 ≤ i ≤ m1, ŷyyTPPP jŷyy ≤ 1∀1 ≤ j ≤ m2

}

≥ 1−Pr
{

ξξξ TMMMηηη < MMM •W
}
−

m1

∑
i=1

Pr
{

ξξξ TQQQiξξξ > α1

}
−

m2

∑
j=1

Pr
{
ηηηTPPPjηηη > α2n1

}

≥ 1− (1−θ )−m1 ·2e−
α1
2 −m2 ·2e−

α2
2 = θ/2,

where α1 := 2ln(8m1/θ ) and α2 := 2ln(8m2/θ ). Since α1α2 = O(lnm1 lnm2), the
desired (x̂xx, ŷyy) can be found with high probability in multiple trials. �

Let us now turn back to (T̂Q). If we let WWW = ŴWW and MMM = F(···, ···, ẑzz) in applying
Lemma 3.3.3, then in polynomial time we can find (x̂xx, ŷyy), satisfying the constraints
of (T̂Q), such that

F(x̂xx, ŷyy, ẑzz) = x̂xxTMMMŷyy ≥ 1√
n1

Ω
(

1√
lnm1 lnm2

)
MMM •ŴWW ≥ 1√

n1
Ω
(

1
lnm

)
F(ŴWW , ẑzz).

Combined with (3.7), we thus got a 1√
n1

Ω
(

1
ln2 m

)
-approximate solution (x̂xx, ŷyy, ẑzz) for

the model (TQ) when d = 3.
This result can be generalized to the model (TQ) of any fixed degree d by

induction, as the following theorem asserts, whose proof is omitted.



3.3 Intersection of Co-centered Ellipsoids 81

Theorem 3.3.4 (TQ) admits a polynomial-time randomized approximation algo-
rithm with approximation ratio τ(TQ), where

τ(TQ) :=

(
d−2

∏
k=1

nk

)− 1
2

Ω
(

ln−(d−1)m
)
,

and m = max1≤k≤d{mk}.

Summarizing, the recursive procedure for solving general (TQ) (Theorem 3.3.4)
is highlighted as follows.

Algorithm 3.3.2

• INPUT: a d-th order tensor FFF ∈ R
n1×n2×···×nd with n1 ≤ n2 ≤ ·· · ≤ nd, matrices

QQQk
ik ∈ R

nk×nk , QQQk
ik 
 0 and ∑mk

ik=1 QQQk
ik � 0 for all 1 ≤ k ≤ d and 1 ≤ ik ≤ mk.

1 Rewrite FFF as a (d − 1)-th order tensor FFF ′ ∈ R
n2×n3×···×nd−1×ndn1 by combing its

first and last modes into one, and placing it in the last mode of FFF ′, i.e.,

Fi1,i2,··· ,id = F ′
i2,i3,··· ,id−1,(i1−1)nd+id

∀1 ≤ i1 ≤ n1,1 ≤ i2 ≤ n2, · · · ,1 ≤ id ≤ nd .

2 Compute matrices PPPi1,id = QQQ1
i1 ⊗QQQd

id for all 1 ≤ i1 ≤ m1 and 1 ≤ id ≤ md.

3 For (TQ) with the (d−1)-th order tensor FFF ′, matrices QQQk
ik (2≤ k ≤ d−1,1≤ ik ≤

mk) and PPPi1,id (1≤ i1 ≤m1,1 ≤ id ≤md): if d−1= 2, then apply SDP relaxation
and randomization procedure in Theorem 3.3.1 to obtain an approximate solution
(x̂xx2, x̂xx1,d); otherwise obtain a solution (x̂xx2, x̂xx3, · · · , x̂xxd−1, x̂xx1,d) by recursion.

4 Compute a matrix MMM′ = F(···, x̂xx2, x̂xx3, · · · , x̂xxd−1, ···) and rewrite the vector x̂xx1,d as a
matrix XXX ∈R

n1×nd .
5 Apply DR 3.3.1 with input (QQQ1

i ,QQQ
d
j ,XXX ,MMM′) = (QQQi,PPPj,WWW ,MMM) for all 1 ≤ i ≤ m1

and 1 ≤ j ≤ m2 and output (x̂xx1, x̂xxd) = (xxx,yyy).
• OUTPUT: a feasible solution (x̂xx1, x̂xx2, · · · , x̂xxd).

3.3.2 Homogeneous Form

Next we proceed to homogenous polynomial optimization over intersection of co-
centered ellipsoids

(HQ) max f (xxx)
s.t. xxxTQQQixxx ≤ 1, i = 1,2, . . . ,m,

xxx ∈R
n
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where QQQi 
 0 for i = 1,2, . . . ,m, and ∑m
i=1 QQQi � 0.

If we relax (HQ) to the multilinear form optimization like (TQ), then we have

(H̃Q) max F(xxx1,xxx2, · · · ,xxxd)

s.t. (xxxk)TQQQixxx
k ≤ 1, k = 1,2, . . . ,d, i = 1,2, . . . ,m,

xxxk ∈R
n, k = 1,2, . . . ,d.

Theorem 3.3.4 asserts an approximate solution for (H̃Q), together with Lemma 2.2.1
we are led to the following approximation algorithm for solving (HQ).

Algorithm 3.3.3

• INPUT: a d-th order supersymmetric tensor FFF ∈R
nd

, matrices QQQi ∈R
n×n, QQQi 
 0

for all 1 ≤ i ≤ m with ∑m
i=1 QQQi � 0.

1 Apply Algorithm 3.3.2 to solve the problem

max F(xxx1,xxx2, · · · ,xxxd)

s.t. (xxxk)TQQQixxx
k ≤ 1, k = 1,2, . . . ,d, i = 1,2, . . . ,m,

xxxk ∈R
n, k = 1,2, . . . ,d

approximately, and get a feasible solution (x̂xx1, x̂xx2, · · · , x̂xxd).
2 Compute x̂xx = argmax

{
f
(

1
d ∑d

k=1 ξkx̂xxk
)
,ξξξ ∈ B

d
}

.
• OUTPUT: a feasible solution x̂xx ∈ R

n.

Although Algorithm 3.3.3 applies for both odd and even d for (HQ), the
approximation results are different, as the following theorems attest. Essentially,
we can only speak of a relative approximation ratio when d is even, which is the
same as its special case (HS̄).

Theorem 3.3.5 When d ≥ 3 is odd, (HQ) admits a polynomial-time randomized
approximation algorithm with approximation ratio τ(HQ), where

τ(HQ) := d!d−dn−
d−2

2 Ω
(

ln−(d−1)m
)
= Ω

(
n−

d−2
2 ln−(d−1) m

)
.

Theorem 3.3.6 When d ≥ 4 is even, (HQ) admits a polynomial-time randomized
approximation algorithm with relative approximation ratio τ(HQ).

The proofs of the above theorems are by-and-large similar to those of Theorems
2.2.2 and 2.2.4 for the Euclidean ball-constrained case, with one caveat being the
feasibility of the solution generated in the second step of Algorithm 3.3.3. However,
it can be dealt with by noticing that for any 1 ≤ k ≤ m
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(
d

∑
i=1

βix̂xx
i

)T

QQQk

(
d

∑
j=1

β jx̂xx
j

)

=
d

∑
i, j=1

βi(x̂xx
i)TQQQkβ jx̂xx

j

=
d

∑
i, j=1

(
βiQQQk

1
2 x̂xxi
)T(

β jQQQk
1
2 x̂xx j
)
≤

d

∑
i, j=1

∥
∥
∥βiQQQk

1
2 x̂xxi
∥
∥
∥
∥
∥
∥β jQQQk

1
2 x̂xx j
∥
∥
∥

=
d

∑
i, j=1

√
(x̂xxi)TQQQkx̂xxi

√
(x̂xx j)TQQQkx̂xx j ≤

d

∑
i, j=1

1 ·1 = d 2. (3.9)

3.3.3 Mixed Form

For the general mixed-form optimization over intersection of co-centered ellipsoids

(MQ) max f (xxx1,xxx2, · · · ,xxxs)

s.t. (xxxk)TQQQk
ik xxxk ≤ 1, k = 1,2, . . . ,s, ik = 1,2, . . . ,mk,

xxxk ∈ R
nk , k = 1,2, . . . ,s

where QQQk
ik 
 0 and ∑mk

ik=1 QQQk
ik � 0 for k = 1,2, . . . ,s, ik = 1,2, . . . ,mk, we have the

following results (cf. (MS̄) in Sect. 2.3).

Theorem 3.3.7 If d ≥ 3 and one of dk (k = 1,2, . . . ,s) is odd, then (MQ) admits
a polynomial-time randomized approximation algorithm with approximation ratio
τ(MQ), where

τ(MQ) := τ̃(MS)Ω
(

ln−(d−1)m
) s

∏
k=1

dk!

dk
dk

= Ω
(

τ̃(MS) ln−(d−1)m
)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
s

∏
k=1

dk!

dk
dk

)(
∏s−1

k=1 nk
dk

ns−1

)− 1
2

Ω
(

ln−(d−1)m
)

ds = 1,

(
s

∏
k=1

dk!

dk
dk

)(
∏s

k=1 nk
dk

ns
2

)− 1
2

Ω
(

ln−(d−1)m
)

ds ≥ 2,

and m = max1≤k≤s{mk}.

The proof of Theorem 3.3.7 is quite similar to that of Theorem 2.3.2, where a
typical example is illustrated. Here we only highlight the main ideas. First we relax
(MQ) to the multilinear form optimization (TQ) which finds a feasible solution for

(TQ) with approximation ratio τ̃(MS)Ω
(

ln−(d−1) m
)

. Then, Lemma 2.3.3 servers

as a bridge from that solution to a feasible solution for (MQ). Specifically, we may
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adjust the solution of (TQ) step by step. In each step, we apply Lemma 2.2.1 once,
with the approximation ratio deteriorating no worse than dk!dk

−dk . After s times of
adjustments, we are able to get a feasible solution for (MQ) with performance ratio
τ(MQ). Besides, the feasibility of the solution so obtained is guaranteed by (3.9).

Theorem 3.3.8 If d ≥ 4 and all dk (k = 1,2, . . . ,s) are even, then (MQ) admits a
polynomial-time randomized approximation algorithm with relative approximation
ratio τ(MQ).

The proof is analogous to that of Theorems 2.2.4, 2.3.4, and 3.3.6, which is left to
the interested reader.

3.3.4 Inhomogeneous Polynomial

Finally in this section, we consider general polynomial optimization over quadratic
constraints, namely

(PQ) max p(xxx)
s.t. xxxTQQQixxx ≤ 1, i = 1,2, . . . ,m,

x ∈ R
n

where QQQi 
 0 for i = 1,2, . . . ,m, and ∑m
i=1 QQQi � 0.

We remark here that (PQ) includes as a special case the optimization of a general
polynomial function over a central-symmetric polytope:

max p(xxx)
s.t. −1 ≤ (aaai)Txxx ≤ 1, i = 1,2, . . . ,m,

xxx ∈ R
n,

with rank(aaa1,aaa2, · · · ,aaam) = n.
As general extensions of (PS̄) and (HQ), (PQ) will at most only admit a

polynomial-time approximation algorithm with a relative approximation ratio unless
P = NP. The main algorithm and the approximation result are as follows.

Algorithm 3.3.4

• INPUT: an n-dimensional d-th degree polynomial function p(xxx), matrices QQQi ∈
R

n×n, QQQi 
 0 for all 1 ≤ i ≤ m with ∑m
i=1 QQQi � 0.

1 Rewrite p(xxx)− p(000) = F(x̄xx, x̄xx, · · · , x̄xx
︸ ︷︷ ︸

d

) when xh = 1 as in (2.7), with FFF being an

(n+1)-dimensional d-th order supersymmetric tensor.
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2 Apply Algorithm 3.3.2 to solve the problem

max F(x̄xx1, x̄xx2, · · · , x̄xxd)

s.t. (x̄xxk)T

[
QQQi 000
000T 1

]
x̄xxk ≤ 1, k = 1,2, . . . ,d, i = 1,2, . . . ,m

approximately, and get a feasible solution (ȳyy1, ȳyy2, · · · , ȳyyd).

3 Compute (z̄zz1, z̄zz2, · · · , z̄zzd)= argmax
{

F
((ξ1yyy1/d

1

)
,
(ξ2yyy2/d

1

)
, · · · ,(ξd yyyd/d

1

))
,ξξξ ∈B

d
}

.

4 Compute zzz = argmax
{

p(000); p(zzz(β )/zh(β )) ,βββ ∈ B
d and β1 = ∏d

k=2 βk = 1
}

,
with z̄zz(β ) = β1(d + 1)z̄zz1 +∑d

k=2 βkz̄zzk.
• OUTPUT: a feasible solution zzz ∈ R

n.

Theorem 3.3.9 (PQ) admits a polynomial-time randomized approximation algo-
rithm with relative approximation ratio τ(PQ), where

τ(PQ) := 2−
5d
2 (d + 1)!d−2d(n+ 1)−

d−2
2 Ω

(
ln−(d−1)m

)
= Ω

(
n−

d−2
2 ln−(d−1) m

)
.

Our scheme for solving general polynomial optimization model (PQ) is similar
to that for solving (PS̄) in Sect. 2.4. The main difference lies in Step 2, where a
different relaxation model requires a different solution method to cope with. The
method in question is Algorithm 3.3.2. The proof of Theorem 3.3.9 is similar to that
of Theorem 2.4.2. Here we only illustrate the main ideas and skip the details.

By homogenizing p(xxx) who has no constant term, we may rewrite (PQ) as

(P̄Q) max f (x̄xx)

s.t. x̄xx =

(
xxx
xh

)
,

xxxTQQQixxx ≤ 1, xxx ∈R
n, i = 1,2, . . . ,m,

xh = 1,

which can be relaxed to the inhomogeneous multilinear form optimization model

(T PQ) max F(x̄xx1, x̄xx2, · · · , x̄xxd)

s.t. x̄xxk =

(
xxxk

xk
h

)
, k = 1,2, . . . ,d,

(xxxk)TQQQixxx
k ≤ 1, xxxk ∈ R

n, k = 1,2, . . . ,d, i = 1,2, . . . ,m,

xk
h = 1, k = 1,2, . . . ,d,
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where F(x̄xx, x̄xx, · · · , x̄xx
︸ ︷︷ ︸

d

) = f (x̄xx) with FFF being supersymmetric. We then further relax

(T PQ) to the multilinear form optimization model (T PQ(
√

2)), with

(T PQ(t)) max F(x̄xx1, x̄xx2, · · · , x̄xxd)

(x̄xxk)TQ̄QQix̄xx
k ≤ t2, k = 1,2, . . . ,d, i = 1,2, . . . ,m,

x̄xxk ∈ R
n+1, k = 1,2, . . . ,d,

where Q̄QQi =

[
QQQi 000
000T 1

]
for i = 1,2, . . . ,m.

By Theorem 3.3.4, for any t > 0, (T PQ(t)) admits a polynomial-time randomized

approximation algorithm with approximation ratio (n+1)−
d−2

2 Ω
(

ln−(d−1)m
)

, and

v(T PQ(t)) = td v(T PQ(1)). Thus the approximate solution (ȳyy1, ȳyy2, · · · , ȳyyd) found by
Step 2 of Algorithm 3.3.4 satisfies

F(ȳyy1, ȳyy2, · · · , ȳyyd) ≥ (n+ 1)−
d−2

2 Ω
(

ln−(d−1)m
)

v(T PQ(1))

= (
√

2)−d(n+ 1)−
d−2

2 Ω
(

ln−(d−1)m
)

v(TPQ(
√

2))

≥ 2−
d
2 (n+ 1)−

d−2
2 Ω

(
ln−(d−1)m

)
v(TPQ).

Noticing that (yk
h)

2 ≤ (ȳyyk)TQ̄QQ1ȳyyk ≤ 1 for k = 1,2, . . . ,d, we again apply Lemma 2.4.4
to (ȳyy1, ȳyy2, · · · , ȳyyd), and use the same argument as in the proof of Theorem 2.4.5.

Let c = maxβββ∈Bd ,∏d
k=1 βk=−1 Pr{ηηη = βββ}, where ηηη = (η1,η2, · · · ,ηd)

T and its

components are independent random variables, each taking values 1 and −1 with
E[ηk] = yk

h for k = 1,2, . . . ,d. Similar as in (2.12), we are able to find a binary vector
βββ ′ ∈ B

d , with

F

((
β ′

1yyy1

1

)
,

(
β ′

2yyy2

1

)
, · · · ,

(
β ′

dyyyd

1

))
≥ τ0F(ȳyy1, ȳyy2, · · · , ȳyyd)

≥ 2−dF(ȳyy1, ȳyy2, · · · , ȳyyd)

≥ 2−
3d
2 (n+1)−

d−2
2 Ω

(
ln−(d−1)m

)
v(T PQ).

This proves the following theorem as a byproduct.

Theorem 3.3.10 (T PQ) admits a polynomial-time randomized approximation algo-

rithm with approximation ratio 2−
3d
2 (n+ 1)−

d−2
2 Ω

(
ln−(d−1) m

)
.

To prove the main theorem in this section (Theorem 3.3.9), we only need to check
the feasibility of zzz generated by Algorithm 3.3.4, while the worst-case performance
ratio can be proven by the similar argument in Sect. 2.4.4. Indeed, (z̄zz1, z̄zz2, · · · , z̄zzd) at
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Step 3 of Algorithm 3.3.4 satisfies

(zzzk)TQQQizzz
k ≤ 1/d2 ∀1 ≤ i ≤ m,1 ≤ k ≤ d.

For any binary vector βββ ∈ B
d , as z̄zz(β ) = β1(d + 1)z̄zz1 +∑d

k=2 βkz̄zzk, we have 2 ≤
|zh(β )| ≤ 2d. Noticing by the Cauchy–Schwartz inequality,

|(zzz j)TQQQizzz
k| ≤ ‖QQQi

1
2 zzz j‖ · ‖QQQi

1
2 zzzk‖ ≤ 1/d2 ∀1 ≤ i ≤ m, 1 ≤ j,k ≤ d,

it follows that

(zzz(β ))TQQQizzz(β )≤ 2d ·2d ·1/d2 = 4 ∀1 ≤ i ≤ m.

Thus zzz(β )/zh(β ) is a feasible solution for (PQ), which implies that zzz is also feasible.

3.4 Convex Compact Set

In this section, we study polynomial optimization model in a very general frame-
work

(PG) max p(xxx)
s.t. xxx ∈ G

where G ⊂ R
n is a given convex compact set. (PG) actually includes many of the

precious polynomial optimization models as its subclasses, including polynomial
optimization over the Euclidean ball discussed in Chap. 2, over the hypercube
discussed in Sect. 3.1, and over intersection of co-centered ellipsoids discussed in
Sect. 3.3.

As before, we derive polynomial-time approximation algorithms for solving
(PG). Our approaches make use of the well-known Löwner–John ellipsoids (see,
e.g., [20, 85]), which is the following.

Theorem 3.4.1 Given a convex compact set G ⊂ R
n with nonempty interior.

1. There exists a unique largest volume ellipsoid {AAAxxx+ aaa |xxx ∈ S̄
n} ⊂ G, whose n

times linear-size larger ellipsoid {nAAAxxx+ aaa |xxx ∈ S̄
n} ⊃ G, and if in addition G is

central-symmetric, then {√nAAAxxx+ aaa |xxx ∈ S̄
n} ⊃ G;

2. There exists a unique smallest volume ellipsoid {BBBxxx+ bbb |xxx ∈ S̄
n} ⊃ G, whose n

times linear-size smaller ellipsoid {BBBxxx/n+ bbb |xxx ∈ S̄
n} ⊂ G, and if in addition G

is central-symmetric, then {BBBxxx/
√

n+ bbb |xxx ∈ S̄
n} ⊂ G.

If we are able to find the Löwner–John ellipsoid (either the inner or the outer)
of the feasible region G in polynomial time, or an approximation thereof, then the
following algorithm approximately solves (PG) with a worst-case performance ratio.
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Algorithm 3.4.1

• INPUT: an n-dimensional d-th degree polynomial function p(xxx) and a set G ⊂
R

n.
1 Find a scalar t ∈ R, a vector bbb ∈ R

n, and a matrix AAA ∈ R
n×m with rank(AAA) =

m ≤ n, such that two co-centered ellipsoids E1 = {AAAuuu+ bbb |uuu ∈ S̄
m} and E2 =

{tAAAuuu+bbb |uuu ∈ S̄
m} satisfy E1 ⊂ G ⊂ E2.

2 Compute a polynomial function p0(uuu) = p(AAAuuu+bbb) of variable uuu ∈ R
m.

3 Apply Algorithm 2.4.1 with input p0(xxx) and output yyy ∈ S̄
m.

4 Compute zzz = AAAyyy+ bbb.
• OUTPUT: a feasible solution zzz ∈ G.

The key result in this section is the following theorem.

Theorem 3.4.2 If S̄
n ⊂ G ⊂ t S̄n := {xxx ∈ R

n |‖xxx‖ ≤ t} for some t ≥ 1, then (PG)
admits a polynomial-time approximation algorithm with relative approximation
ratio τ(PG)(t), where

τ(PG)(t) := 2−2d(d + 1)!d−2d(n+ 1)−
d−2

2 (t2 +1)−
d
2 = Ω

(
n−

d−2
2 t−d

)
.

Proof. By homogenizing the object function of (PG), we get the equivalent problem

(P̄G) max f (x̄xx)

s.t. x̄xx =

(
xxx
xh

)
,

xxx ∈ G, xh = 1,

where f (x̄xx) = p(xxx) if xh = 1, and f (x̄xx) is an (n + 1)-dimensional homogeneous
polynomial function of degree d. If we write f (x̄xx) = F(x̄xx, x̄xx, · · · , x̄xx

︸ ︷︷ ︸
d

) with FFF being

supersymmetric, then (P̄G) can be relaxed to the inhomogeneous multilinear form
problem

(T PG) max F(x̄xx1, x̄xx2, · · · , x̄xxd)

s.t. x̄xxk =

(
xxxk

xk
h

)
, k = 1,2, . . . ,d,

xxxk ∈ G, xk
h = 1, k = 1,2, . . . ,d.

Recall that in Sect. 2.4.2, we have defined

(T PS̄(t)) max F(x̄xx1, x̄xx2, · · · , x̄xxd)

s.t. ‖x̄xxk‖ ≤ t, x̄xxk ∈ R
n+1, k = 1,2, . . . ,d.
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As xxxk ∈ G ⊂ t S̄n, it follows that ‖x̄xxk‖ ≤ √
t2 +1 in (T PG). Therefore,

(T PS̄(
√

t2 +1)) is a relaxation of (T PG), and v(T PS̄(
√

t2 +1))≥ v(T PG)≥ v(P̄G) =
v(PG). The rest of the proof follows similarly as that in Sect. 2.4.4. Specifically,
we are able to construct a feasible solution xxx ∈ S̄

n ⊂ G in polynomial time with a
relative performance ratio τ(PG)(t). �

Observe that any ellipsoid can be linearly transformed to the Euclidean ball. By
a variable transformation if necessary, we are led to the main result in this section.

Corollary 3.4.3 Given a bounded set G ⊂ R
n, if two co-centered ellipsoids E1 =

{AAAuuu + bbb | uuu ∈ S̄
n} and E2 = {tAAAuuu + bbb | uuu ∈ S̄

n} can be found in polynomial
time, satisfying E1 ⊂ G ⊂ E2, then (PG) admits a polynomial-time approximation
algorithm with relative approximation ratio τ(PG)(t).

We remark that in fact the set G in Theorem 3.4.2 and Corollary 3.4.3 does not
need to be convex, as long as the two required ellipsoids are in place. However, the
Löwner–John theorem guarantees the existence of such inner and outer ellipsoids
required in Corollary 3.4.3 for any convex compact set, with t = n for G being
non-central-symmetric, and t =

√
n for G being central-symmetric. Thus if we are

able to find a pair of ellipsoids (E1,E2) in polynomial time for G, then (PG) can be
solved by a polynomial-time approximation algorithm with relative approximation
ratio τ(PG)(t). Indeed, it is possible to compute in polynomial time the Löwner–
John ellipsoids in several interesting cases. Below is a list of such cases (assuming
G is bounded); for the details one is referred to [20, 85]:

• G = {xxx ∈ R
n |(aaai)Txxx ≤ bi, i = 1,2, . . . ,m}

• G = conv{xxx1,xxx2, · · · ,xxxm}, where xxxi ∈ R
n for i = 1,2, . . . ,m

• G =
⋂m

i=1 Ei, where Ei is an ellipsoid in R
n for i = 1,2, . . . ,m

• G = conv{⋃m
i=1 Ei}, where Ei is an ellipsoid in R

n for i = 1,2, . . . ,m
• G = ∑m

i=1 Ei := {∑m
i=1 xxxi |xxxi ∈ Ei, i = 1,2, . . . ,m}, where Ei is an ellipsoid in R

n

for i = 1,2, . . . ,m

By Corollary 3.4.3 and the computability of the Löwner–John ellipsoids discussed
above, we conclude that for (PG) with the constraint set G being any of the
above cases, then there is a polynomial-time approximation algorithm with a
relative approximation quality assurance. In particular, the ratio is τ(PG)(

√
m) =

Ω
(

n−
d−2

2 m− d
2

)
for the last case, and is τ(PG)(n) =Ω

(
n−

3d−2
2

)
for the other cases.

We also remark that (PQ) : maxxxxTQQQixxx≤1,i=1,2,...,m p(xxx) discussed in Sect. 3.3.4,
may in principle be solved by directly applying Corollary 3.4.3 as well. If we
adopt that approach (Algorithm 3.4.1), then the relative approximation ratio is

τ(PG)(
√

n) = Ω
(

n−
2d−2

2

)
, which prevails if m is exceedingly large. Taking the

better one of the two, the quality approximation ratio in Theorem 3.3.9 can be

improved to Ω
(

max
{

n−
d−2

2 ln−(d−1) m, n−
2d−2

2

})
.

Our investigation quite naturally leads to a question which is of a general
geometric interest itself. Consider the intersection of m co-centered ellipsoids in
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R
n as a geometric structure. Denote Em,n to be the collection of all such structures,

or more specifically

Em,n :=

{
m⋂

i=1

{
xxx ∈ R

n |xxxTQQQixxx ≤ 1
}
∣
∣
∣∣
∣

QQQi 
 0 for i = 1,2, . . . ,m and
m

∑
i=1

QQQi � 0

}

.

For any central-symmetric and convex compact set G ⊂ R
n centered at bbb, there

exists Em,n ∈ Em,n and t ≥ 1, such that bbb+Em,n ⊂ G ⊂ bbb+ tEm,n. Obviously, one can
naturally define

t(G;m,n) := inf{t |Em,n ∈ Em,n such that bbb+Em,n ⊂ G ⊂ bbb+ tEm,n},
θ (m,n) := sup{t(G;m,n) |G ⊂ R

n is convex compact and central-symmetric}.
The Löwner–John theorem states that θ (1,n) =

√
n. Naturally, θ (∞,n) = 1, because

any central-symmetric convex set can be expressed by the intersection of an infinite
number of co-centered ellipsoids. It is interesting to compute θ (m,n) for general m
and n. Of course, it is trivial to observe that θ (m,n) is monotonically decreasing
in m for any fixed n. Anyway, if we are able to compute θ (m,n) and find the
corresponding Em,n in polynomial time, then Theorem 3.3.9 suggests a polynomial-
time randomized approximation algorithm of (PG) with relative approximation ratio

(θ (m,n))−dτ(PQ) = Ω
(
(θ (m,n))−dn−

d−2
2 ln−(d−1)m

)
.

Finally, to conclude this section, we remark that homogeneous polynomial
(including multilinear form, homogeneous form, and mixed form) optimization
over a general convex compact set also admits a polynomial-time approximation
algorithm with worst-case performance ratio, by resorting to the Löwner–John
theorem.

3.5 Mixture of Binary Hypercube and the Euclidean Sphere

Our last part of the approximation methods brings most of the results in previous
works together, to yield solution methods for solving mixed integer programming
problems. The objective functions are all homogenous polynomial functions, while
the constraints are a combination of two most widely used ones, the Euclidean
spherical constraint and the binary constraint. In particular, the models consid-
ered are:

(TBS) max F(xxx1,xxx2, · · · ,xxxd ,yyy1,yyy2, . . . ,yyyd′)
s.t. xxxk ∈ B

nk , k = 1,2, . . . ,d,
yyy� ∈ S

m� , �= 1,2, . . . ,d′

(HBS) max f (xxx,yyy)
s.t. xxx ∈ B

n,

yyy ∈ S
m
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(MBS) max f (xxx1,xxx2, · · · ,xxxs,yyy1,yyy2, · · · ,yyyt)

s.t. xxxk ∈ B
nk , k = 1,2, . . . ,s,

yyy� ∈ S
m� , �= 1,2, . . . , t

The model (MBS) is a generalization of the models (TBS) and (HBS). In fact, it
can also be taken as a generalization of most of the homogenous polynomial
optimization models discussed in previous sections, namely (TB), (HB), and (MB)
of Sect. 3.1, and (TS), (HS), and (MS) of Sect. 3.2 as well.

These mixed models have versatile applications, e.g., matrix combinatorial
problem, and the vector-valued max-cut problem; we will discuss the details in
Sect. 4.4. Essentially, in many discrete optimization problems, if the objective to
be optimized is extended from a scalar to a vector or a matrix, then we may turn
to optimize the Euclidean norm of the vector, or the spectrum norm of the matrix,
which turns out to be the mixed integer programming models proposed above.

All these models are NP-hard in general, including the simplest constraint set
of one Euclidean sphere and one binary hypercube, i.e., the model (TBS) with
d = d′ = 1. As we will see later, it is actually equivalent to the maximization of
a positive semidefinite quadratic form over binary hypercube, which includes max-
cut as a subproblem and is thus NP-hard. In fact, this simplest form of (TBS) serves
as a basis for all these mixed integer programming models. By using this basis
and mathematical induction, we are able to derive polynomial-time randomized
approximation algorithms with worst-case performance ratios for (TBS) with any
fixed degree. The techniques are similar to that of Sect. 2.1, and two types of
decomposition routines are called, one for decomposition of the Euclidean spherical
(ball) constraint and one for decomposition of the binary constraints. Moreover, in
order to extend the results from (TBS) to (HBS) and (MBS), the multilinear form
relaxation method is again applied. As the key lemmas (Lemma 2.2.1 and 2.3.3)
are still available, we are able to design approximation algorithms under some mild
square-free conditions. For the easy of reading, in this section we shall exclusively
use vector xxx (∈ B

n) to denote discrete variables, and vector yyy (∈ S
m) to denote

continuous variables. Throughout our discussion, we shall fix the degree of the
objective polynomial function in these mixed models, d +d′, as a constant.

3.5.1 Multilinear Form

Our first mixed model is to maximize a multilinear form over binary hypercube and
the Euclidean sphere, namely,

(TBS) max F(xxx1,xxx2, · · · ,xxxd ,yyy1,yyy2, . . . ,yyyd′)
s.t. xxxk ∈ B

nk , k = 1,2, . . . ,d,
yyy� ∈ S

m� , �= 1,2, . . . ,d′
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where n1 ≤ n2 ≤ ·· · ≤ nd and m1 ≤ m2 ≤ ·· · ≤ md′ . The simplest case of (TBS),
d = d′ = 1, is worth mention, as it plays an essential role in the whole section. Based
on this case, we shall derive polynomial-time approximation algorithm with worst-
case performance ratio for (TBS) with any fixed degree d + d′. Towards this end,
let us first introduce an approximation result of Nesterov [87] concerning quadratic
maximization over the binary hypercube—a special case of (HB) for d = 2.

Theorem 3.5.1 If AAA∈R
n×n is positive semidefinite, then the problem maxxxx∈Bn xxxTAAAxxx

admits a polynomial-time randomized approximation algorithm with approximation
ratio 2/π .

This result generalizes that of Goemans and Williamson [39], where matrix AAA is the
Laplacian of a given graph. The proof of Theorem 3.5.1 is based on SDP relaxation
and the randomization method like the one we presented in Sect. 1.4.4, which can
be found in [87]. Let us now present the method for solving (TBS) when d = d′ = 1.

Proposition 3.5.2 If d = d′ = 1, then (TBS) is NP-hard, and admits a polynomial-
time randomized approximation algorithm with approximation ratio

√
2/π.

Proof. When d = d′ = 1, (TBS) can be written as

(T̂BS) max xxxTFFFyyy
s.t. xxx ∈ B

n1 , yyy ∈ S
m1 .

For any fixed xxx in (T̂BS), the corresponding optimal yyy must be FFFTxxx/‖FFFTxxx‖ due to
the Cauchy–Schwartz inequality, and accordingly,

xxxTFFFyyy = xxxTFFF
FFFTxxx

‖FFFTxxx‖ = ‖FFFTxxx‖=
√

xxxTFFFFFFTxxx.

Thus (T̂BS) is equivalent to

max xxxTFFFFFFTxxx
s.t. xxx ∈ B

n1 .

Noticing that matrix FFFFFFT is positive semidefinite, the above problem includes
the max-cut problem (see, e.g., [39]) as a special case. Therefore it is NP-hard.
According to Theorem 3.5.2, it admits a polynomial-time randomized approxi-
mation algorithm with approximation ratio 2/π . This implies that (T̂BS) admits
a polynomial-time randomized approximation algorithm with approximation ratio√

2/π. �

Proposition 3.5.2 serves as the base for solving (TBS) recursively, for the case
of general degrees d and d′. The induction with regard to the discrete variables
and the continuous variables is conducted separately. For the recursion on d with
discrete variables xxxk (k = 1,2, . . . ,d), DR 3.1.1 is applied in each recursive step; for
the recursion on d′ with continuous variables yyy� (�= 1,2, . . . ,d′), two decomposition



3.5 Mixture of Binary Hypercube and the Euclidean Sphere 93

routines in Sect. 2.1 are used: the eigenvalue decomposition approach DR 2.1.2 and
the randomized decomposition approach DR 2.1.1. The main result in this section
is the following.

Theorem 3.5.3 (TBS) admits a polynomial-time randomized approximation
algorithm with approximation ratio τ(TBS), where

τ(TBS) :=

(
2
π

) 2d−1
2
(

d−1

∏
k=1

nk

d′−1

∏
�=1

m�

)− 1
2

= Ω

⎛

⎝
(

d−1

∏
k=1

nk

d′−1

∏
�=1

m�

)− 1
2
⎞

⎠ .

Proof. The proof is based on mathematical induction on the degree d + d′, and
Proposition 3.5.2 can be used as the base for the induction process when d = d′ = 1.

For general d + d′ ≥ 3, if d′ ≥ 2, let YYY = yyy1(yyyd′)T. Noticing that ‖YYY‖2 =

‖yyy1‖2‖yyyd′ ‖2 = 1, similar to the relaxation in the proof of Theorem 2.1.5, (TBS) can
be relaxed to a case with degree d+ d′ − 1, i.e.,

max F(xxx1,xxx2, · · · ,xxxd ,YYY ,yyy2,yyy3, · · · ,yyyd′−1)

s.t. xxxk ∈ B
nk , k = 1,2, . . . ,d,

YYY ∈ S
m1md′ , yyy� ∈ S

m� , �= 2,3, . . . ,d′ −1.

By induction, a feasible solution (x̂xx1, x̂xx2, · · · , x̂xxd ,ŶYY , ŷyy2, ŷyy3, · · · , ŷyyd′−1) can be found in
polynomial time, such that

F(x̂xx1, x̂xx2, · · · , x̂xxd ,ŶYY , ŷyy2, ŷyy3, · · · , ŷyyd′−1)≥
(

2
π

) 2d−1
2
(

d−1

∏
k=1

nk

d′−1

∏
�=2

m�

)− 1
2

v(TBS).

Let us denote matrix QQQ = F(x̂xx1, x̂xx2, · · · , x̂xxd , ···, ŷyy2, ŷyy3, · · · , ŷyyd′−1, ···)∈R
m1×md′ . Then by

Proposition 2.1.1 (used in DR 2.1.2), maxyyy1∈Sm1 ,yyyd′∈Smd′ (yyy
1)TQQQyyyd′ can be solved in

polynomia time, with its optimal solution (ŷyy1, ŷyyd′) satisfying

F(x̂xx1, x̂xx2, · · · , x̂xxd , ŷyy1, ŷyy2, · · · , ŷyyd′) = (ŷyy1)TQQQŷyyd′ ≥ ‖QQQ‖/√m1.

By the Cauchy–Schwartz inequality, it follows that

‖QQQ‖= max
YYY∈S

m1md′
QQQ•YYY ≥ QQQ• ŶYY = F(x̂xx1, x̂xx2, · · · , x̂xxd ,ŶYY , ŷyy2, ŷyy3, · · · , ŷyyd′−1).

Thus we conclude that

F(x̂xx1, x̂xx2, · · · , x̂xxd , ŷyy1, ŷyy2, · · · , ŷyyd′) ≥ ‖QQQ‖/√m1

≥ F(x̂xx1, x̂xx2, · · · , x̂xxd ,ŶYY , ŷyy2, ŷyy3, . . . , ŷyyd′−1)/
√

m1

≥ τ(TBS)v(TBS).
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For d+d′ ≥ 3 and d ≥ 2, let XXX = xxx1(xxxd)T, and (TBS) can be relaxed to the other
case with degree d− 1+ d′, i.e.,

max F(XXX ,xxx2,xxx3, · · · ,xxxd−1,yyy1,yyy2, · · · ,yyyd′)
s.t. XXX ∈ B

n1nd , xxxk ∈ B
nk , k = 2,3, . . . ,d −1,

yyy� ∈ S
m� , �= 1,2, . . . ,d′.

By induction, it admits a polynomial-time randomized approximation algorithm

with approximation ratio
( 2

π
) 2d−3

2
(

∏d−1
k=2 nk ∏d′−1

�=1 m�

)− 1
2
. In order to decompose

XXX into xxx1 and xxxd , we shall conduct the randomization procedure as in Step 2
of DR 3.1.1, which will further deteriorate by an additional factor of 2

π√n1
in

expectation, as shown in (3.1). Combining these two factors together, we are led
to the ratio τ(TBS). �

The algorithm for solving (TBS) is summarized below.

Algorithm 3.5.1

• INPUT: a (d + d′)-th order tensor FFF ∈ R
n1×n2×···×nd×m1×m2×···×md′ with n1 ≤

n2 ≤ ·· · ≤ nd and m1 ≤ m2 ≤ ·· · ≤ md′ .
1 Rewrite FFF as a matrix MMM ∈ R

n1n2···nd×m1m2···md′ by combining its first d modes
into the matrix row, and last d′ modes into the matrix column.

2 Apply the procedure in Proposition 3.5.2, with input MMM and output x̂xx ∈ B
n1n2···nd .

3 Rewrite the vector x̂xx as a d-th order tensor X̂XX ∈B
n1×n2×···×nd and compute a d′-th

order tensor FFF ′ = F(X̂XX , ···, ···, · · · , ···) ∈ R
m1×m2×···×md′ .

4 Apply Algorithm 2.1.3, with input FFF ′ and output (ŷyy1, ŷyy2, · · · , ŷyyd′).
5 Compute a d-th order tensor FFF ′′ = F(···, ···, · · · , ···, ŷyy1, ŷyy2, · · · , ŷyyd′) ∈ R

n1×n2×···×nd .
6 Apply Algorithm 3.1.2, with input FFF ′′ and output (x̂xx1, x̂xx2, · · · , x̂xxd).
• OUTPUT: a feasible solution (x̂xx1, x̂xx2, · · · , x̂xxd , ŷyy1, ŷyy2, · · · , ŷyyd′).

3.5.2 Homogeneous Form

We further extend the mixed model in previous section to more general case of
homogeneous form, namely,

(HBS) max f (xxx,yyy)
s.t. xxx ∈ B

n, yyy ∈ S
m
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where f (xxx,yyy) = F(xxx,xxx, · · · ,xxx
︸ ︷︷ ︸

d

,yyy,yyy, · · · ,yyy
︸ ︷︷ ︸

d′

), and FFF ∈ R
nd×md′

is a (d + d′)-th order

tensor with partial symmetric property. This model is a generalization of the
model (HS) in Sect. 2.2 and the model (HB) in Sect. 3.1.2. The key ingredient
underlying the approximation method is again the multilinear form relaxation (TBS),
which admits a polynomial-time randomized approximation algorithm according
to Theorem 3.5.3. Then by applying Lemma 2.2.1 as a linkage, together with the
square-free property for the discrete variables xxx, we are finally led to the following
conclusion regarding (HBS).

Theorem 3.5.4 If f (xxx,yyy) is square-free in xxx, and either d or d′ is odd, then (HBS)
admits a polynomial-time randomized approximation algorithm with approximation
ratio τ(HBS), where

τ(HBS) :=

(
2
π

) 2d−1
2

d!d−dd′!d′−d′n−
d−1

2 m− d′−1
2 = Ω

(
n−

d−1
2 m− d′−1

2

)
.

Proof. Like in the proof of Theorem 3.1.4, by relaxing (HBS) to (TBS), we are able
to find (x̂xx1, x̂xx2, · · · , x̂xxd , ŷyy1, ŷyy2, · · · , ŷyyd′) with x̂xxk ∈ B

n for all 1 ≤ k ≤ d and ŷyy� ∈ S
m for

all 1 ≤ �≤ d′ in polynomial time, such that

F(x̂xx1, x̂xx2, · · · , x̂xxd , ŷyy1, ŷyy2, · · · , ŷyyd′)≥ (2/π)
2d−1

2 n−
d−1

2 m− d′−1
2 v(HBS).

Let ξ1,ξ2, · · · ,ξd ,η1,η2, · · · ,ηd′ be i.i.d. random variables, each taking values 1 and
−1 with equal probability 1/2. By applying Lemma 2.3.3 (or Lemma 2.2.1 twice),
we have

E

[
d

∏
i=1

ξi

d′

∏
j=1

η j f

(
d

∑
k=1

ξkx̂xxk,
d′

∑
�=1

η�ŷyy
�

)]

= d!d′!F(x̂xx1, x̂xx2, · · · , x̂xxd , ŷyy1, ŷyy2, · · · , ŷyyd′).

(3.10)
Thus we are able to find binary vectors βββ ∈ B

d and βββ ′ ∈ B
d′ , such that

d

∏
i=1

βi

d′

∏
j=1

β ′
j f

(
d

∑
k=1

βkx̂xxk,
d′

∑
�=1

β ′
� ŷyy�
)

≥ d!d′!F(x̂xx1, x̂xx2, · · · , x̂xxd , ŷyy1, ŷyy2, · · · , ŷyyd′).

Denote

(x̂xx, ŷyy) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
d

∏
i=1

βi

d′

∏
j=1

β ′
j

d

∑
k=1

βkx̂xxk,
d′

∑
�=1

β ′
� ŷyy�
)

d is odd,

(
d

∑
k=1

βkx̂xxk,
d

∏
i=1

βi

d′

∏
j=1

β ′
j

d′

∑
�=1

β ′
� ŷyy�
)

d′ is odd.
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Noticing ‖ŷyy‖ ≤ d′ and combining the previous two inequalities, it follows that

f

(
x̂xx
d
,

ŷyy
‖ŷyy‖
)
≥ d−dd′−d′

d

∏
i=1

βi

d′

∏
j=1

β ′
j f

(
d

∑
k=1

βkx̂xxk,
d′

∑
�=1

β ′
� ŷyy�
)

≥ τ(HBS)v(HBS).

Denote ỹyy = ŷyy/‖ŷyy‖ ∈ S
m. Since x̂xx/d ∈ B̄

n by a similar argument as for (3.2), and
f (xxx, ỹyy) is square-free in xxx, by applying Lemma 3.1.3, x̃xx ∈ B

n can be found in
polynomial time, such that

f (x̃xx, ỹyy)≥ f (x̂xx/d, ỹyy)≥ τ(HBS)v(HBS).

�

We remark that in Theorem 3.5.4, if d′ = 2 and d is odd, then the factor d′!d′−d′

in τ(HBS) can be removed for the same reason as we argued in the proof of
Theorem 2.3.2 (basically the corresponding adjustment is an eigenvalue problem),

and this improves the ratio τ(HBS) to
( 2

π
) 2d−1

2 d!d−dn−
d−1

2 m− 1
2 . Now we shall

present the approximation result for the even degree case. The idea of the proof
is quit similar to that of Theorem 2.2.4 and 3.1.5 and the details are thus omitted.

Theorem 3.5.5 If f (xxx,yyy) is square-free in xxx, and both d and d′ are even, then
(HBS) admits a polynomial-time randomized approximation algorithm with relative
approximation ratio τ(HBS).

3.5.3 Mixed Form

Finally, we shall bring together the models discussed in previous sections, and
discuss a very general model, which includes (TS), (HS), (MS), (TB), (HB), (MB),
(TBS), and (HBS) all as its special cases. The model is to maximize a mixed form over
variables in binary hypercube, mixed with variables in the Euclidean sphere, i.e.,

(MBS) max f (xxx1,xxx2, · · · ,xxxs,yyy1,yyy2, · · · ,yyyt)

s.t. xxxk ∈ B
nk , k = 1,2, . . . ,s,

yyy� ∈ S
m� , �= 1,2, . . . , t

where associated with f is a tensor FFF ∈ R
n1

d1×n2
d2×···×ns

ds×m1
d′1×m2

d′2×···×mt
d′t with

partial symmetric property, n1 ≤ n2 ≤ ·· · ≤ ns and m1 ≤ m2 ≤ ·· · ≤ mt , and d =
d1 +d2 + · · ·+ds and d′ = d′

1 + d′
2 + · · ·+ d′

t are deemed as fixed constants.
In order to derive polynomial-time approximation algorithms for this general

model, we relax (MBS) to the multilinear form optimization (TBS), and solve it
approximately using Algorithm 3.5.1, and adjust its solution step by step using
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Lemma 2.2.1 or 2.3.3 as a linkage, and further adjust each discrete variables xxxk

using Lemma 3.1.3, leading to the following general results in two settings.

Theorem 3.5.6 If f (xxx1,xxx2, · · · ,xxxs,yyy1,yyy2, · · · ,yyyt) is square-free in each xxxk (k =
1,2, . . . ,s), and one of dk (k = 1,2, . . . ,s) or one of d′

� (� = 1,2, . . . , t) is odd,
then (MBS) admits a polynomial-time randomized approximation algorithm with
approximation ratio τ̂(MBS), where

τ̂(MBS) :=

(
2
π

) 2d−1
2

⎛

⎝
s

∏
k=1

dk!

dk
dk

∏
1≤�≤t,3≤d′�

d′
�!

d′
�
d′�

⎞

⎠

(
∏s

k=1 nk
dk ∏t

�=1 m�
d′�

ns mt

)− 1
2

= Ω

⎛

⎝

(
∏s

k=1 nk
dk ∏t

�=1 m�
d′�

ns mt

)− 1
2
⎞

⎠.

Theorem 3.5.7 If f (xxx1,xxx2, · · · ,xxxs,yyy1,yyy2, · · · ,yyyt) is square-free in each xxxk (k =
1,2, . . . ,s), and all dk (k = 1,2, . . . ,s) and all d′

� (� = 1,2, . . . , t) are even, then
(MBS) admits a polynomial-time randomized approximation algorithm with relative
approximation ratio τ(MBS), where

τ(MBS) :=

(
2
π

) 2d−1
2
(

s

∏
k=1

dk!

dk
dk

t

∏
�=1

d′
�!

d′
�
d′�

)(
∏s

k=1 nk
dk ∏t

�=1 m�
d′�

ns mt

)− 1
2

= Ω

⎛

⎝
(

∏s
k=1 nk

dk ∏t
�=1 m�

d′�

ns mt

)− 1
2
⎞

⎠ .

To conclude this section as well as this chapter, we remark here that the
approximation methods presented in this section can be actually extended to
homogeneous polynomial optimization model with other mixed constraints, e.g.,
to maximize a multilinear form over binary hypercube and general convex compact
set, among many others.



Chapter 4
Applications

The study of polynomial optimization models is rooted in various problems in
scientific computation and other engineering applications. To illustrate some typical
applications of the models studied in Chaps. 2 and 3, in this chapter we present
some concrete examples in four categories: homogeneous polynomial over the
Euclidean sphere; polynomial optimization over a general set; discrete polynomial
optimization; and mixed integer programming. We shall note that the examples
are selected to serve the purpose of illustration only; many more other interesting
examples can be found in the literature. There is in fact an on-going effort to
apply polynomial optimization models to science and engineering, management
and computation, health care and data driven knowledge discovery, to name a few
examples.

4.1 Homogeneous Polynomial Optimization Over
the Euclidean Sphere

Polynomial optimization with spherical constraint has found many applications,
including biomedical engineering (cf. [13, 38]), numerical linear algebra (cf. [90,
99, 100]), quantum mechanics (cf. [26, 40]). In this section we shall present four
examples for the application of homogenous polynomial optimization over the
Euclidean sphere.

4.1.1 Singular Values of Trilinear Forms

Trilinear forms play an important role in, e.g., Fourier analysis, where they appear
in the guise of paracommutators and compensated quantities (see a survey by Peng
and Wong [95]). The problem of singular values of trilinear forms is the following
(see also [17]). Denote H1, H2, and H3 to be three separable Hilbert spaces over the

Z. Li et al., Approximation Methods for Polynomial Optimization: Models, Algorithms,
and Applications, SpringerBriefs in Optimization, DOI 10.1007/978-1-4614-3984-4 4,
© Zhening Li, Simai He, Shuzhong Zhang 2012
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field K, where K stands either for the real or the complex numbers, and denote a
trilinear form F : H1 ×H2 ×H3 �→K. The spectrum norm of the trilinear form F is
then the following maximization problem:

‖FFF‖S := sup |F(xxx,yyy,zzz)|
s.t. ‖xxx‖ ≤ 1, ‖yyy‖ ≤ 1, ‖zzz‖ ≤ 1,

xxx ∈H1, yyy ∈H2, zzz ∈H3.

More generally, one can state the problem of the stationary values of the functional
|F(xxx,yyy,zzz)| under the same conditions. These corresponding stationary values are
called singular values of the trilinear form F. Bernhardsson and Peetre [17] showed
in the binary case that ‖FFF‖S

2 is among the roots of a certain algebraic equation,
called the millenial equation, thought of as a generalization of the time-honored
secular equation in the case of matrices. Another approach to singular values is
given by De Lathauwer et al. [27].

When specializing the Hilbert spaces to finite-dimensional Euclidean spaces,
i.e., Hi = R

ni for i = 1,2,3, and confining the field K to be the real domain, the
problem of computing the largest singular value ‖FFF‖S is exactly (TS̄) when d = 3,
or equivalently, (TS) when d = 3. This is because the optimal value ‖FFF‖S is always
attainable, and therefore “sup” can be replaced by “max.” Moreover, one can always
use (−xxx,yyy,zzz) to replace (xxx,yyy,zzz) if its objective value is negative, hence the absolute
value sign in |F(xxx,yyy,zzz)| is irrelevant. According to Proposition 2.1.3, the problem of
computing ‖FFF‖S is NP-hard already in this real case. Together with Theorem 2.1.4,
the spectrum norm of a trilinear form can be approximated in polynomial time
within a factor of 1√

min{n1,n2,n3}
.

4.1.2 Rank-One Approximation of Tensors

Decompositions of higher order tensors (i.e., the order of the tensor is bigger than
or equal to 3) have versatile applications in psychometrics, chemometrics, signal
processing, computer vision, numerical analysis, data mining, neuroscience, and
graph analysis. For more information, one is referred to an excellent survey by
Kolda and Bader [65]. The earliest development of tensor decomposition dates back
to 1927, where Hitchcock [52, 53] put forward the polyadic form of a tensor. In
modern days, tensor decomposition is often discussed in the form of canonical
decomposition (CANDECOMP) by Carroll and Chang [22] and parallel factors
(PARAFAC) by Harshman [43], or in short, the CP decomposition.

A CP decomposition decomposes a tensor as a summation of rank-one tensors,
i.e., tensors who can be written as outer product of vectors (see, e.g., [64]).
Specifically, for a d-th order tensor FFF = (Fi1i2···id ) ∈ R

n1×n2×···×nd and a given
positive integer r, its CP decomposition is as follows:

FFF ≈
r

∑
i=1

xxx1
i ⊗ xxx2

i ⊗·· ·⊗ xxxd
i ,
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where xxxk
i ∈ R

nk for i = 1,2, . . . ,r, k = 1,2, . . . ,d. Exact recovery of rank-one
decompositions is in general impossible, due to, e.g., noises and errors in the data.
Instead, one is naturally led to the following CP decomposition, which is in essence
a least square formulation of the problem:

min ‖FFF −∑r
i=1 xxx1

i ⊗ xxx2
i ⊗·· ·⊗ xxxd

i ‖
s.t. xxxk

i ∈R
nk , i = 1,2, . . . ,r,k = 1,2, . . . ,d.

In particular, the case of r = 1 corresponds to the best rank-one approximation of a
tensor, i.e.,

(TA) min ‖FFF − xxx1 ⊗ xxx2 ⊗·· ·⊗ xxxd‖
s.t. xxxk ∈ R

nk , k = 1,2, . . . ,d.

By scaling, we may require the norm of xxxk to be one. Then, (TA) is equivalent to

min ‖FFF −λ xxx1 ⊗ xxx2 ⊗·· ·⊗ xxxd‖
s.t. λ ∈ R, xxxk ∈ S

nk , k = 1,2, . . . ,d.

For any fixed xxxk ∈ S
nk (k = 1,2, . . . ,d), if we optimize the objective function of (TA)

with respect to λ , we shall then have

min
λ∈R

‖FFF −λ xxx1 ⊗ xxx2 ⊗·· ·⊗ xxxd‖

= min
λ∈R

√
‖FFF‖2 − 2λ FFF • (xxx1 ⊗ xxx2 ⊗·· ·⊗ xxxd)+λ 2‖xxx1 ⊗ xxx2 ⊗·· ·⊗ xxxd‖2

= min
λ∈R

√
‖FFF‖2 − 2λ F(xxx1,xxx2, . . . ,xxxd)+λ 2

=

√
‖FFF‖2 − (F(xxx1,xxx2, . . . ,xxxd))

2
.

Therefore, (TA) is equivalent to

max |F(xxx1,xxx2, . . . ,xxxd)|
s.t. xxxk ∈ S

nk , k = 1,2, . . . ,d,

which is exactly (TS) discussed in Sect. 3.2. Remark that similar deductions can also
be found in [28, 64, 119].

4.1.3 Eigenvalues and Approximation of Tensors

The notion of eigenvalues for a matrix has been naturally extended to higher
order tensors; see, e.g., [71, 99]. As it turns out, for general tensor forms, the
notion of eigenvalues becomes drastically more complex than its matrix counterpart.
Qi [99] proposed several definitions of tensor eigenvalues, among which the most
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popular and straightforward one is named the Z-eigenvalues. For a given d-th order
supersymmetric tensor FFF ∈ R

nd
, its Z-eigenvalue λ ∈ R with its corresponding

Z-eigenvector xxx ∈ R
n are defined to be the solutions of the following system:

⎧
⎪⎨

⎪⎩

F(xxx,xxx, . . . ,xxx
︸ ︷︷ ︸

d−1

, ···) = λ xxx,

xxxTxxx = 1.

Notice that the Z-eigenvalues are the usual eigenvalues for a symmetric matrix when
the order of the tensor is 2. It was proven in Qi [98] that Z-eigenvalues exist for an
even order real supersymmetric tensor FFF , and FFF is positive definite if and only if
all of its Z-eigenvalues are positive, which is similar to the matrix case. Thus the
smallest Z-eigenvalue of an even order supersymmetric tensor FFF is an important
indicator of the positive definiteness for FFF . Conversely, the largest Z-eigenvalue can
be an indicator of the negative definiteness for FFF , which is exactly the model (HS).
In general, the optimal value and any optimal solution of (HS) is the largest Z-
eigenvalue and its corresponding Z-eigenvector for the tensor FFF , no matter whether
d is even or odd. By Theorem 2.2.2, the largest Z-eigenvalue of an odd order

supersymmetric tensor FFF can be approximated with a factor of d!d−dn−
d−2

2 . For an
even order tensor, this approximation ratio is understood in the relative sense (see
Theorem 3.2.3). However, if we know in advance that the given even order tensor is
positive semidefinite, we can also have an approximation factor of d!d−dn−

d−2
2 for

its largest Z-eigenvalue.
Regarding to the tensor approximation, in Sect. 4.1.2 we have discussed the

best rank-one decomposition of a tensor. In case that the give tensor FFF ∈ R
nd

is
supersymmetric, then the corresponding best rank-one approximation should be

min

∥
∥
∥
∥FFF − xxx⊗ xxx⊗·· ·⊗ xxx︸ ︷︷ ︸

d

∥
∥
∥
∥

s.t. xxx ∈R
n.

Applying the same technique discussed in Sect. 4.1.2, we can equivalently reformu-
late the above problem as

max F(xxx,xxx, . . . ,xxx
︸ ︷︷ ︸

d

)

s.t. xxx ∈ S
n,

which is identical to the largest eigenvalue problem and (HS). In fact, when d is odd,
if we denote its optimal solution (largest Z-eigenvector) to be x̂xx and optimal value
(largest Z-eigenvalue) to be λ =F(x̂xx, x̂xx, . . . , x̂xx

︸ ︷︷ ︸
d

), then the best rank-one approximation

of the supersymmetric tensor FFF is λ x̂xx⊗ x̂xx⊗·· ·⊗ x̂xx︸ ︷︷ ︸
d

.
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4.1.4 Density Approximation in Quantum Physics

An interesting problem in physics is to precisely characterize the entanglement
in a quantum system. The quantum entanglement describes an intensive interplay
between subsystems of the full quantum system that go far beyond the statistical
correlations found in a classical composite system. One existing mathematical
description of quantum entanglement uses the following formulation, which is
proposed by Dahl et al. [26].

Denote Δ n
+ to be the set of all n× n positive semedefinite matrices with trace

being 1, i.e., Δ n
+ := {AAA ∈ R

n×n |AAA 
 0, tr(AAA) = 1} (aka the matrix simplex). Using
the matrix decomposition method (see, e.g., Sturm and Zhang [110]), it is not hard to
verify that the extreme points of Δ n

+ are all rank-one matrices, or specifically, Δ n
+ =

conv{xxxxxxT |xxx ∈ S
n}. If n = n1n2, where n1 and n2 are given two positive integers,

then we call a matrix AAA ∈ Δ n
+ separable if AAA can be written as a convex combination

AAA =
m

∑
i=1

λi BBBi ⊗CCCi

for some positive integer m, matrices BBBi ∈ Δ n1
+ and CCCi ∈ Δ n2

+ for i = 1,2, . . . ,m,
and nonnegative scalars λi (i = 1,2, . . . ,m) with ∑m

i=1 λi = 1. For given n1 and
n2, denote Δ n,⊗

+ to be the set of all separable matrices of order n = n1n2. The
density approximation problem is the following. Given a density matrix AAA ∈ Δ n

+,
find a separable density matrix XXX ∈ Δ n,⊗

+ which is closest to AAA, or specifically, the
minimization model

(DA) min ‖XXX −AAA‖
s.t. XXX ∈ Δ n,⊗

+ .

This projection problem is in general NP-hard. An important property of Δ n,⊗
+

is that all its extreme points are symmetric rank-one matrices (xxx⊗ yyy)(xxx⊗ yyy)T with
xxx ∈ S

n1 and yyy ∈ S
n2 (see the proof in Theorem 2.2 of [26]), i.e.,

Δ n,⊗
+ = conv{(xxx⊗ yyy)(xxx⊗ yyy)T |xxx ∈ S

n1 , yyy ∈ S
n2}.

Then we may turn to the projection subproblem of (DA), to find the projection of AAA
on the extreme points of Δ n,⊗

+ , which is

min ‖(xxx⊗ yyy)(xxx⊗ yyy)T −AAA‖
s.t. xxx ∈ S

n1 , yyy ∈ S
n2 .

Straightforward computation shows that

‖(xxx⊗ yyy)(xxx⊗ yyy)T −AAA‖2 = 1− 2AAA• (xxx⊗ yyy)(xxx⊗ yyy)T +‖AAA‖2.
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Therefore the projection subproblem is equivalent to

max A• (xxx⊗ yyy)(xxx⊗ yyy)T

s.t. xxx ∈ S
n1 , yyy ∈ S

n2 ,

which is precisely (MS) with d = 4 and d1 = d2 = 2 in Sect. 3.2.

4.2 Inhomogeneous Polynomial Optimization Over
a General Set

The model of polynomial optimization over a general convex compact set has
versatile applications, due primarily to its generic form. To better appreciate this
new framework as well as the approximation algorithms that we have previously
proposed, in this section we shall discuss a few specific examples from real
applications, and show that they are readily formulated by the inhomogeneous
polynomial optimization model.

4.2.1 Portfolio Selection with Higher Moments

The portfolio selection problem dates back to the early 1950s, when the seminal
work of mean–variance model was proposed by Markowitz [80]. Essentially, in
Markowitz’s model, the mean of the portfolio return is treated as the “gain”
factor, while the variance of the portfolio return is treated as the “risk” factor. By
minimizing the risk subject to certain target of reward, the mean–variance model is
as follows:

(MV) min xxxTΣΣΣxxx
s.t. μμμTxxx = μ0,

eeeTxxx = 1, xxx ≥ 000, xxx ∈ R
n,

where μμμ and ΣΣΣ are the mean vector and covariance matrix of n given assets,
respectively, and eee is the all one vector. This model and its variations have
been studied extensively along the history of portfolio management. Despite its
popularity and originality, the mean–variance model certainly has drawbacks. An
important one is that it neglects the higher moments information of the portfolio.
Mandelbrot and Hudson [77] made a strong case against a “normal view” of the
investment returns. The use of higher moments in portfolio selection becomes quite
necessary, i.e., involving more than the first two moments (e.g., the skewness and
the kurtosis of the investment returns) if they are also available. That problem
has been receiving much attention in the literature (see, e.g., De Athayde and
Flôre [10], Prakash et al. [96], Jondeau and Rockinger [56], Kleniati et al. [60],
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and the references therein). In particular, a very general model in [60] is

(PM) max α μμμTxxx−β xxxTΣΣΣxxx+ γ ∑n
i, j,k=1 ςi jkxix jxk − δ ∑n

i, j,k,�=1 κi jk�xix jxkx�
s.t. eeeTxxx = 1, xxx ≥ 000, xxx ∈ R

n,

where μμμ ,ΣΣΣ ,(ςi jk),(κi jk�) are the first four central moments of the n given assets.
The nonnegative parameters α,β ,γ,δ measure the investor’s preference to the four
moments, and they sum up to one, i.e., α +β + γ + δ = 1.

In fact, the mean–variance model (MV ) can be taken as a special case of
(PM) with γ = δ = 0. The model (PM) is essentially in the framework of our
model (PG) in Sect. 3.4, as the constraint set is convex and compact. By directly
applying Corollary 3.4.3 and the discussion on its applicability in a polytope, it
admits a polynomial-time approximation algorithm with relative approximation
ratio Ω

(
n−5
)
.

4.2.2 Sensor Network Localization

Suppose in a certain specified region G ⊂ R
3, there are a set of anchor nodes,

denoted by A, and a set of sensor nodes, denoted by S. What we have known are
the positions of the anchor nodes aaa j ∈ G( j ∈ A), and the (possibly noisy) distance
measurements between anchor nodes and sensor nodes, and between two different
sensor nodes, denoted by di j (i ∈ S, j ∈ S∪A). The task is to estimate the positions
of the unknown sensor nodes xxxi ∈ G(i ∈ S). Luo and Zhang [76] proposed a least
square formulation to this sensor network localization problem. Specifically, the
problem takes the form of

(SNL) min ∑i, j∈S

(‖xxxi − xxx j‖2 − di j
2)2

+∑i∈S, j∈A

(‖xxxi −aaa j‖2 −di j
2)2

s.t. xxxi ∈ G, i ∈ S.

Notice that the objective function of (SNL) is an inhomogeneous quartic poly-
nomial function. If the specified region G is well formed, say the Euclidean ball, an
ellipsoid, a polytope, or any other convex compact set that can be sandwiched by two
co-centered ellipsoids, then (SNL) can be fit into the model (PG) in the following
way. Suppose E1 ⊂ G ⊂ E2 with E1 and E2 being two co-centered ellipsoids, we
know by the Löwner–John theorem that E2 is bounded by three times larger of E1

in linear size (for the Euclidean ball or an ellipsoid it is 1, for a central-symmetric G
it is less than

√
3, and for a general convex compact G it is less than 3). Denote the

number of sensor nodes to be n = |S|, and denote xxx =
(
(xxx1)T,(xxx2)T, · · · ,(xxxn)T

)T ∈
R

3n. Then xxx ∈ G×G×·· ·×G︸ ︷︷ ︸
n

, and this feasible region can be sandwiched by

two co-centered sets E1 ×E1 ×·· ·×E1︸ ︷︷ ︸
n

and E2 ×E2 ×·· ·×E2︸ ︷︷ ︸
n

, which are both
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intersections of n co-centered ellipsoids, i.e., belonging to En,3n. According to the
discussion at the end of Sect. 3.4, and noticing in this case t(G;n,3n) ≤ 3 is a
constant, (SNL) admits a polynomial-time randomized approximation algorithm

with relative approximation ratio Ω
(

1
n ln3 n

)
.

4.3 Discrete Polynomial Optimization

Given the generic nature of the discrete polynomial optimization model, its appli-
cability is self-evident. However, we believe it is helpful to present a few examples
at this point with more details, to illustrate the potential modeling opportunities. We
shall present three problems in this section and show that they are readily formulated
by the discrete polynomial optimization models.

4.3.1 The Cut-Norm of Tensors

The concept of cut-norm is initially defined on a real matrix AAA = (Ai j) ∈ R
n1×n2 ,

denoted by ‖AAA‖C, the maximum over all I ⊂ {1,2, . . . ,n1} and J ⊂ {1,2, . . . ,n2}, of
the quantity |∑i∈I, j∈J Ai j|. This concept plays a major role in the design of efficient
approximation algorithms for dense graph and matrix problems (see, e.g., [3, 35]).
Alon and Naor in [5] proposed a polynomial-time randomized approximation
algorithm that approximates the cut-norm with a factor at least 0.56, which is
currently the best available approximation ratio. Since a matrix is a second order
tensor, it is natural to extend the cut-norm to general higher order tensors, e.g., a
recent paper by Kannan [58]. Specifically, given a d-th order tensor FFF = (Fi1i2···id )∈
R

n1×n2×···×nd , its cut-norm is defined as

‖FFF‖C := max
Ik⊂{1,2,...,nk},k=1,2,...,d

∣
∣
∣
∣
∣ ∑
ik∈Ik ,k=1,2,...,d

Fi1i2···id

∣
∣
∣
∣
∣
.

In fact, the cut-norm ‖FFF‖C is closely related to ‖FFF‖∞ �→1, which is exactly in the
form of (TB). By Theorem 3.1.2, there is a polynomial-time randomized approxima-

tion algorithm which computes ‖FFF‖∞ �→1 with a factor at least Ω
(
(
∏d−2

k=1 nk
)− 1

2

)
,

where we assume n1 ≤ n2 ≤ ·· · ≤ nd . The following proposition, asserts that the
cut-norm of a general d-th order tensor can also be approximated by a factor of

Ω
(
(
∏d−2

k=1 nk
)− 1

2

)
.

Proposition 4.3.1 For any d-th order tensor FFF ∈R
n1×n2×···×nd , ‖FFF‖C ≤‖FFF‖∞ �→1 ≤

2d‖FFF‖C.
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Proof. Recall that ‖FFF‖∞ �→1 = maxxxxk∈Bnk ,k=1,2,...,d F(xxx1,xxx2, · · · ,xxxd). For any xxxk ∈
B

nk (k = 1,2, . . . ,d), it follows that

F(xxx1,xxx2, . . . ,xxxd) = ∑
1≤ik≤nk,k=1,2,...,d

Fi1i2···id x1
i1x2

i2 · · ·xd
id

= ∑
βββ∈Bd

∑
ik∈{ j|xk

j=βk,1≤ j≤nk},k=1,2,...,d

Fi1i2···id x1
i1x2

i2 · · ·xd
id

= ∑
βββ∈Bd

⎛

⎝ ∏
1≤k≤d

βk ∑
ik∈{ j|xk

j=βk,1≤ j≤nk},k=1,2,...,d

Fi1i2···id

⎞

⎠

≤ ∑
βββ∈Bd

∣
∣
∣
∣∣
∣

∑
ik∈{ j|xk

j=βk,1≤ j≤nk},k=1,2,...,d

Fi1i2···id

∣
∣
∣
∣∣
∣

≤ ∑
βββ∈Bd

‖FFF‖C = 2d‖FFF‖C,

which implies ‖FFF‖∞ �→1 ≤ 2d‖FFF‖C.
It is easy to observe that ‖FFF‖C = maxzzzk∈{0,1}nk ,k=1,2,...,d |F(zzz1,zzz2, . . . ,zzzd)|. For

any zzzk ∈ {0,1}nk (k = 1,2, . . . ,d), let zzzk = (eee+ xxxk)/2, where eee is the all one vector.
Clearly xxxk ∈ B

nk for k = 1,2, . . . ,d, and thus

F(zzz1,zzz2, . . . ,zzzd) = F

(
eee+ xxx1

2
,

eee+ xxx2

2
, . . . ,

eee+ xxxd

2

)

=
F(eee,eee, . . . ,eee)+F(xxx1,eee, . . . ,eee)+ · · ·+F(xxx1,xxx2, . . . ,xxxd)

2d

≤ 1
2d · ‖FFF‖∞ �→1 ·2d = ‖FFF‖∞ �→1,

which implies ‖FFF‖C ≤ ‖FFF‖∞ �→1. �

4.3.2 Maximum Complete Satisfiability

The usual maximum satisfiability problem (see, e.g., [37]) is to find the boolean
values of the literals, so as to maximize the total weighted sum of the satisfied
clauses. The key point of the problem is that each clause is in the disjunctive form,
namely if one of the literals is assigned the true value, then the clause is called
satisfied. If the literals are also conjunctive, then this form of satisfiability problem
is easy to solve. However, if not all the clauses can be satisfied, and we alternatively
look for an assignment that maximizes the weighted sum of the satisfied clauses,
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then the problem is quite different. To make a distinction from the usual Max-SAT
problem, let us call the new problem to be maximum complete satisfiability, or to
be abbreviated as Max-C-SAT. It is immediately clear that Max-C-SAT is NP-hard,
since we can easily reduce the max-cut problem to it. The reduction can be done
as follows. For each edge (vi,v j) we consider two clauses {xi, x̄ j} and {x̄i,x j}, both
having weight wi j . Then the Max-C-SAT solution leads to a solution for the max-cut
problem.

Now consider an instance of the Max-C-SAT problem with m clauses, each
clause containing no more than d literals. Suppose that clause k (1 ≤ k ≤ m) has
the following form:

{xk1 ,xk2 , . . . ,xksk
, x̄k′1 , x̄k′2 , . . . , x̄k′tk

},

where sk + tk ≤ d, associated with a weight wk ≥ 0 for k = 1,2, . . . ,m. Then, the
Max-C-SAT problem can be formulated in the form of (PB) as

max ∑m
k=1 wk ∏sk

j=1

1+xk j
2 ·∏tk

i=1

1−xk′i
2

s.t. xxx ∈ B
n.

According to Theorem 3.1.9 and the nonnegativity of the objective function, the
above problem admits a polynomial-time randomized approximation algorithm with

approximation ratio Ω
(

n−
d−2

2

)
, which is independent of the number of clauses m.

4.3.3 Box-Constrained Diophantine Equation

Solving a system of linear equations where the variables are integers and constrained
to a hypercube is an important problem in discrete optimization and linear algebra.
Examples of applications include the classical Frobenius problem (see, e.g., [2,15]),
the market split problem [25], as well as other engineering applications in integrated
circuits design and video signal processing. For more details, one is referred to
Aardal et al. [1]. Essentially, the problem is to find an integer-valued xxx ∈ Z

n and
000 ≤ xxx ≤ uuu, such that AAAxxx = bbb. The problem can be formulated by the least square
method as

(DE) max −(AAAxxx− bbb)T(AAAxxx−bbb)
s.t. xxx ∈ Z

n, 000 ≤ xxx ≤ uuu.

According to the discussion at the end of Sect. 3.1.4, the above problem can be
reformulated as a form of (PB), whose objective function is quadratic polynomial
and number of decision variables is ∑n

i=1�log2(ui+1)�. By applying Theorem 3.1.9,
(DE) admits a polynomial-time randomized approximation algorithm with a con-
stant relative approximation ratio.

Generally speaking, the Diophantine equations are polynomial equations. The
box-constrained polynomial equations can also be formulated by the least square
method as of (DE). Suppose the highest degree of the polynomial equations is d.
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Then, this least square problem can be reformulated as a form of (PB), with the
degree of the objective polynomial being 2d and number of decision variables
being ∑n

i=1�log2(ui + 1)�. By applying Theorem 3.1.9, this problem admits a
polynomial-time randomized approximation algorithm with relative approximation

ratio Ω
(
(∑n

i=1 log2 ui)
−(d−1)

)
.

4.4 Mixed Integer Programming

The generality of the mixed integer polynomial optimization studied gives rises to
some interesting applications. It is helpful to present a few examples at this point
with more details. Here we shall discuss the matrix combinatorial problem and some
extended version of the max-cut problem, and show that they are readily formulated
by the mixed integer polynomial optimization models.

4.4.1 Matrix Combinatorial Problem

The combinatorial problem of interest is as follows. Given n matrices AAAi ∈ R
m1×m2

for i= 1,2, . . . ,n, find a binary combination of them so as to maximize the combined
matrix in terms of spectral norm. Specifically, the following optimization model:

(MCP) max σmax(∑n
i=1 xiAAAi)

s.t. xi ∈ {1,−1}, i = 1,2, . . . ,n,

where σmax denotes the largest singular value of a matrix. Problem (MCP) is NP-
hard, even in a special case of m2 = 1. In this case, the matrix AAAi is replaced by an
m1-dimensional vector aaai, with the spectral norm being identical to the Euclidean
norm of a vector. The vector version combinatorial problem is then

max ‖∑n
i=1 xiaaai‖

s.t. xi ∈ {1,−1}, i = 1,2, . . . ,n.

This is equivalent to the model (TBS) with d = d′ = 1, whose NP-hardness is asserted
by Proposition 3.5.2.

Turning back to the general matrix version (MCP), the problem has an equivalent
formulation

max (yyy1)T (∑n
i=1 xiAAAi)yyy2

s.t. xxx ∈ B
n, yyy1 ∈ S

m1 , yyy2 ∈ S
m2 ,

which is essentially the model (TBS) with d = 1 and d′ = 2
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max F(xxx,yyy1,yyy2)

s.t. xxx ∈ B
n, yyy1 ∈ S

m1 , yyy2 ∈ S
m2 ,

where associated with the trilinear form F is a third order tensor FFF ∈ R
n×m1×m2 ,

whose (i, j,k)th entry is ( j,k)th entry of the matrix AAAi. According to Theorem 3.5.3,
the largest matrix (in terms of spectral norm in (MCP) formulation) can be

approximated with a factor of
√

2
π min{m1,m2} .

If the given n matrices AAAi (i = 1,2, . . . ,n) are symmetric, then the maximization
criterion can be set for the largest eigenvalue in stead of the largest singular
value, i.e.,

max λmax(∑n
i=1 xiAAAi)

s.t. xi ∈ {1,−1}, i = 1,2, . . . ,n.

It is also easy to formulate this problem as the model (HBS) with d = 1 and d′ = 2

max F(xxx,yyy,yyy)
s.t. xxx ∈ B

n, yyy ∈ S
m,

whose optimal value can also be approximated with a factor of
√

2
πm by

Theorem 3.5.4 and the remarks that followed.

4.4.2 Vector-Valued Maximum Cut

Consider an undirected graph G = (V,E) where V = {v1,v2, · · · ,vn} is the set of
the vertices, and E ⊂ V ×V is the set of the edges. On each edge e ∈ E there is an
associated weight, which is a nonnegative vector in this case, i.e., wwwe ∈ R

m,wwwe ≥ 000
for all e ∈ E . The problem now is to find a cut in such a way that the total sum of the
weights, which is a vector in this case, has a maximum norm. More formally, this
problem can be formulated as

max
C is a cut of G

∥
∥
∥
∥
∥∑

e∈C

wwwe

∥
∥
∥
∥
∥
.

Note that the usual max-cut problem is a special case of the above model where each
weight we ≥ 0 is a scalar. Similar to the scalar case (see [39]), we may reformulate
the above problem in binary variables as

max
∥
∥
∥∑1≤i, j≤n xix jwww′

i j

∥
∥
∥

s.t. xxx ∈ B
n,

where
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www′
i j =

⎧
⎪⎨

⎪⎩

−wwwi j i �= j,

−wwwi j +
n

∑
k=1

wwwik i = j.
(4.1)

Observing the Cauchy–Schwartz inequality, we further formulate the above
problem as

max
(

∑1≤i, j≤n xix jwww′
i j

)T
yyy = F(xxx,xxx,yyy)

s.t. xxx ∈ B
n, yyy ∈ S

m.

This is the exact form of (HBS) with d = 2 and d′ = 1. Although the square-free
property in xxx does not hold in this model (which is a condition of Theorem 3.5.4),
one can still replace any point in the hypercube (B̄n) by one of its vertices
(Bn) without decreasing its objective function value, since the matrix F(···, ···,eeek) =(
(w′

i j)k

)

n×n
is diagonal dominant for k = 1,2, . . . ,m. Therefore, the vector-valued

max-cut problem admits an approximation ratio of 1
2

(
2
π
) 3

2 n−
1
2 by Theorem 3.5.4.

If the weights on edges are positive semidefinite matrices (i.e., WWW i j ∈
R

m×m,WWW i j 
 0 for all (i, j) ∈ E), then the matrix-valued max-cut problem can
also be formulated as

max λmax
(
∑1≤i, j≤n xix jWWW ′

i j

)

s.t. xxx ∈ B
n,

where WWW ′
i j is defined similarly as (4.1); or equivalently,

max yyyT
(
∑1≤i, j≤n xix jWWW ′

i j

)
yyy

s.t. xxx ∈ B
n, yyy ∈ S

m,

the model (HBS) with d = d′ = 2. Similar to the vector-valued case, by the diagonal
dominant property and Theorem 3.5.5, the above problem admits an approxima-

tion ratio of 1
4

(
2
π
) 3

2 (mn)−
1
2 . Notice that Theorem 3.5.5 only asserts a relative

approximation ratio. However for this problem the optimal value of its minimization
counterpart is obviously nonnegative, and thus a relative approximation ratio implies
a usual approximation ratio.



Chapter 5
Concluding Remarks

This brief discusses various classes of polynomial optimization models, and our
focus is to devise polynomial-time approximation algorithms with worst-case
performance guarantees. These classes of problems include many frequently en-
countered constraint sets in the literature, such as the Euclidean ball, the Euclidean
sphere, binary hypercube, hypercube, intersection of co-centered ellipsoids, a
general convex compact set, and even a mixture of them. The objective functions
range from multilinear tensor functions, homogeneous polynomials, to general
inhomogeneous polynomials. Multilinear tensor function optimization plays a
key role in the design of algorithms. For solving multilinear tensor optimization
the main construction include the following inductive components. First, for the
low order cases, such problems are typically either exactly solvable, or at least
approximately solvable with an approximation ratio. Then, for a one-degree-higher
problem, it is often possible to relax the problem into a polynomial optimization
in lower degree, which is solvable by induction. The issue of how to recover a
solution for the original (higher degree) polynomial optimization problem involves
a carefully devised decomposition step. We also discuss the connections between
multilinear functions, homogenous polynomials, and inhomogeneous polynomials,
which are established to carry over the approximation ratios to such cases. All the
approximation results are listed in Table 5.1 for a quick reference. Several concrete
application examples of the polynomial optimization models are presented as well;
they manifest unlimited potentials of the modeling opportunities for polynomial
optimization to come in the future. Table 5.1 summarizes the structure of this brief
and the approximation results.

The approximation algorithms for high degree polynomial optimization dis-
cussed in this brief are certainly of great theoretical importance, considering that
the worst-case approximation ratios for such optimization models are mostly new.
As a matter of fact, the significance goes beyond mere theoretical bounds: they
are practically efficient and effective as well. This enables us to model and solve a
much broader class of problems arising from a wide variety of application domains.
Furthermore, the scope of polynomial optimization can be readily extended. In fact,

Z. Li et al., Approximation Methods for Polynomial Optimization: Models, Algorithms,
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a number of polynomial optimization models can be straightforwardly dealt with by
directly adapting our methods. Notably, the methods discussed in this brief represent
one type of approach: there are alternative approximation methods for other
polynomial optimization models. Before concluding this brief, we shall discuss
some recent developments regarding other solution algorithms for polynomial
optimization models.

As we discussed in Chap. 1, much of the theoretical development on polyno-
mial optimization in the last ten years has been on solving general polynomial
optimization problems by the theory of nonnegative polynomials and sums of
squares; see, e.g., Lasserre [67]. Via a hierarchy of SDP relaxations, this method
is capable of finding an optimal solution of the general model (PO). However,
the computational complexity increases quickly as the hierarchy of the relaxation
moves up. The size of the resulting SDP relaxation poses a serious restriction from a
practical point of view. Although the method is theoretically important, numerically
it only works for small size polynomial optimization models. It is certainly possible
to view Lasserre’s relaxation scheme within the realm of approximation method;
see, e.g., the recent papers of De Klerk and Laurent [62], and Nie [91]. For
instance, the hierarchical SDP relaxation scheme always yields a bound on the
optimal value due to the duality theory. However, unless the optimality is reached,
there is no approximate solution to be found. In this sense, the hierarchical SDP
relaxation scheme and the approximation methods proposed in this brief are actually
complementary to each other.

Historically, the approximation algorithms for optimizing higher degree poly-
nomials originated from that for quadratic models, based on the SDP relaxation.
Naturally, the first such attempts were targeted towards the quartic models; see Luo
and Zhang [76], and Ling et al. [72]. Typically, following that direction one would
end up dealing with a quadratic SDP relaxation model. In general, such relaxations
are still hard to solve to optimality, but approximation solutions can be found in
polynomial time. Guided by an approximate solution for the relaxed model, one
can further obtain an approximate solution for the original polynomial (say quartic)
optimization model. In the particular case of the models considered in Luo and

Zhang [76], an approximation bound of Ω
(

1
n2

)
is obtained through that route. The

solution obtained through the new scheme presented in this brief, however, turns
out to be better; in particular, the approximation ratio is Ω

( 1
n

)
if we specialize to

degree four. Remark that the recent papers of Zhang et al. [120] and Ling et al. [73]
considered biquadratic function optimization over quadratic constraints. Both of
these papers derived approximation bounds that are data dependent.

The approach presented in this brief relies on the operations and properties of
the tensor forms. Thus it is generic in some sense, and indeed it has attracted some
follow-up researches. For instance, So [106] improved the approximation ratios of

the models (TS) and (HS) to Ω
(

∏d−2
k=1

√
lnnk
nk

)
and Ω

(
(

lnn
n

) d−2
2

)
, respectively. The

motivation for the study in So [106] stems from the geometric problem of which
was first considered in Khot and Naor [59], who derived approximation bound on



5 Concluding Remarks 117

maximizing a cubic form over binary hypercube, i.e., the model (HB) when d = 3.
However, the method in [59] is a randomized algorithm, while that in [106] is
deterministic. Later, this approach was extended to solve trilinear form optimization
with non-convex constraints by Yang and Yang [114].

Very recently, He et al. [44] proposed some fairly simple randomization methods,
which could further improve the approximation ratios of homogeneous form
optimization over the Euclidean sphere and/or the binary hypercube, with the worst-
case performance ratios/approximation ratios comparable to that in [106]. The
technical analysis involves bounding the cumulative probability distribution of a
polynomial of random variables. The method is simple to implement but its analysis
is involved. This work was actually motivated by the analysis in Khot and Naor [59].
Moreover, the approach in [44] is capable of deriving approximation ratios for
maximizing an even degree square-free homogeneous form over binary hypercube;
i.e., the model (HB) when d is even.

Given a good approximate solution, the next natural question is how to improve
its quality further. In this regard, one may be led to consider some sort of local search
procedure. In Chen et al. [24], a local search procedure was proposed; the local
improve procedure was termed maximum block improvement (MBI). Specifically,
they established the tightness result of multilinear form relaxation (TS) for the model
(HS), and showed that the MBI method can be applied to enhance the approximate
solution. They showed in [24] that the approach is numerically very efficient.

In the past few years, polynomial optimization has been a topic attracting much
research attention. The aim of this brief is to focus on the aspect of approximation
algorithms for polynomial optimization, in the hope that it will become a timely
reference for the researchers in the field.



References

1. Aardal, K., Hurkens, C.A.J., Lenstra, A.K.: Solving a system of linear Diophantine equations
with lower and upper bounds on the variables. Math. Oper. Res. 25, 427–442 (2000)

2. Alfonsı́n, J.L.R.: The Diophantine Frobenius Problem. Oxford University Press, Oxford
(2005)

3. Alon, N., de la Vega, W.F., Kannan, R., Karpinski, M.: Random sampling and approximation
of MAX-CSP problems. In: Proceedings of the 34th Annual ACM Symposium on Theory of
Computing, pp. 232–239 (2002)

4. Alon, N., Makarychev, K., Makarychev, Y., Naor, A.: Quadratic forms on graphs. Inventiones
Mathematicae 163, 499–522 (2006)

5. Alon, N., Naor, A.: Approximating the cut-norm via grothendieck’s inequality. SIAM J.
Comput. 35, 787–803 (2006)

6. Ansari, N., Hou, E.: Computational Intelligence for Optimization. Kluwer Academic
Publishers, Norwell (1997)

7. Arora, S., Berger, E., Hazan, E., Kindler, G., Safra, M.: On non-approximability for quadratic
programs. In: Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer
Science, pp. 206–215 (2005)
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112. Toh, K.C., Todd, M.J., Tütüncü, R.H.: SDPT3—A Matlab software package for semidefinite
programming, version 1.3. Optim. Meth. Softw. 11, 545–581 (1999)
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