

Approximation Algorithms and Semidefinite
Programming

Bernd Gärtner • Jiřı́ Matoušek

Approximation Algorithms
and Semidefinite
Programming

123

Bernd Gärtner
ETH Zurich
Institute of Theoretical Computer Science
8092 Zurich
Switzerland
gaertner@inf.ethz.ch

Jiřı́ Matoušek
Charles University
Department of Applied Mathematics
Malostranské nám. 25
118 00 Prague 1
Czech Republic
matousek@kam.mff.cuni.cz

ISBN 978-3-642-22014-2 e-ISBN 978-3-642-22015-9
DOI 10.1007/978-3-642-22015-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011943166

Mathematics Subject Classification (2010): 68W25, 90C22

c© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This text, based on a graduate course taught by the authors, introduces
the reader to selected aspects of semidefinite programming and its use in
approximation algorithms. It covers the basics as well as a significant amount
of recent and more advanced material, sometimes on the edge of current
research.

Methods based on semidefinite programming have been the big thing in
optimization since the 1990s, just as methods based on linear programming
had been the big thing before that – at least this seems to be a reasonable
picture from the point of view of a computer scientist. Semidefinite programs
constitute one of the largest classes of optimization problems that can be
solved reasonably efficiently – both in theory and in practice. They play an
important role in a variety of research areas, such as combinatorial opti-
mization, approximation algorithms, computational complexity, graph the-
ory, geometry, real algebraic geometry, and quantum computing.

We develop the basic theory of semidefinite programming; we present one
of the known efficient algorithms in detail, and we describe the principles of
some others. As for applications, we focus on approximation algorithms.

There are many important computational problems, such as MaxCut,1

for which one cannot expect to obtain an exact solution efficiently, and in
such cases one has to settle for approximate solutions.

The main theoretical goal in this situation is to find efficient (polynomial-
time) algorithms that always compute an approximate solution of some guar-
anteed quality. For example, if an algorithm returns, for every possible input,
a solution whose quality is at least 87% of the optimum, we say that such an
algorithm has approximation ratio 0.87.

In the early 1990s it was understood that for MaxCut and several
other problems, a method based on semidefinite programming yields a bet-
ter approximation ratio than any other known approach. But the question

1 Dividing the vertex set of a graph into two parts interconnected by as many edges
as possible.

v

vi Preface

remained, could this approximation ratio be further improved, perhaps by
some new method?

For several important computational problems, a similar question was
solved in an amazing wave of progress, also in the early 1990s: the best
approximation ratio attainable by any polynomial-time algorithm (assuming
P �=NP) was determined precisely in these cases.

For MaxCut and its relatives, a tentative but fascinating answer came
considerably later. It tells us that the algorithms based on semidefinite pro-
gramming deliver the best possible approximation ratio, among all possible
polynomial-time algorithms. It is tentative since it relies on an unproven
(but appealing) conjecture, the Unique Games Conjecture (UGC). But if one
believes in that conjecture, then semidefinite programming is the ultimate
tool for these problems – no other method, known or yet to be discovered,
can bring us any further.

We will follow the “semidefinite side” of these developments, presenting
some of the main ideas behind approximation algorithms based on semidefi-
nite programming.

The origins of this book. When we wrote a thin book on linear program-
ming some years ago, Nati Linial told us that we should include semidefinite
programming as well. For various reasons we did not, but since one should
trust Nati’s fantastic instinct for what is, or will become, important in theo-
retical computer science, we have kept that suggestion in mind.

In 2008, also motivated by the stunning progress in the field, we decided
to give a course on the topics of the present book at ETH Zurich. So we came
to the question, what should we teach in a one-semester course? Somewhat
naively, we imagined we could more or less use some standard text, perhaps
with a few additions of recent results.

To make a long story short, we have not found any directly teachable text,
standard or not, that would cover a significant part of our intended scope.
So we ended up reading stacks of research papers, producing detailed lecture
notes, and later reworking and publishing them. This book is the result.

Some FAQs. Q: Why are there two parts that look so different in typography

and style?

A: Each of the authors wrote one of the parts in his own style. We have not
seen sufficiently compelling reasons for trying to unify the style. Also see the
next answer.

Q: Why does the second part have this strange itemized format – is it just
some kind of a draft?

A: It is not a draft; it has been proofread and polished about as much as other
books of the second author. The unusual form is intentional; the (experimen-
tal) idea is to split the material into small and hierarchically organized chunks
of text. This is based on the author’s own experience with learning things,
as well as on observing how others work with textbooks. It should make the

Preface vii

text easier to digest (for many people at least) and to memorize the most
important things. It probably reads more slowly, but it is also more compact
than a traditional text. The top-level items are systematically numbered for
an easy reference. Of course, the readers are invited to form their own opinion
on the suitability of such a presentation.

Q: Why haven’t you included many more references and historical remarks?

A: Our primary goal is to communicate the key ideas. One usually does
not provide the students with many references in class, and adding survey-
style references would change the character of the book. Several surveys are
available, and readers who need more detailed references or a better overview
of known results on a particular topic should have no great problems looking
them up given the modern technology.

Q: Why don’t you cover more about the Unique Games Conjecture and inap-
proximability, which seems to be one of the main and most exciting research
directions in approximation algorithms?

A: Our main focus is the use of semidefinite programming, while the UGC
concerns lower bounds (inapproximability). We do introduce the conjecture
and cite results derived from it, but we have decided not to go into the
technical machinery around it, mainly because this would probably double
the current size of the book.

Q: Why is topic X not covered? How did you select the material?

A: We mainly wanted to build a reasonable course that could be taught in
one semester. In the current flood of information, we believe that less mate-
rial is often better than more. We have tried to select results that we perceive
as significant, beautiful, and technically manageable for class presentation.
One of our criteria was also the possibility of demonstrating various general
methods of mathematics and computer science in action on concrete exam-
ples.

Sources. As basic sources of information on semidefinite programming in
general one can use the Handbook of Semidefinite Programming [WSV00]
and the surveys by Laurent and Rendl [LR05] and Vandenberghe and Boyd
[VB96]. There is also a brand new handbook in the making [AL11]. The books
by Ben-Tal and Nemirovski [BTN01] and by Boyd and Vandenberghe [BV04]
are excellent sources as well, with a somewhat wider scope. The lecture notes
by Ye [Ye04] may also develop into a book in the near future.

A new extensive monograph on approximation algorithms, including a
significant amount of material on semidefinite programming, has recently
been completed by Williamson and Shmoys [WS11]. Another source worth
mentioning are Lovász’ lecture notes on semidefinite programming [Lov03],
beautiful as usual but not including recent results.

Lots of excellent material can be found in the transient world
of the Internet, often in the form of slides or course notes. A
site devoted to semidefinite programming is maintained by Helmberg

viii Preface

[Hel10], and another current site full of interesting resources is http://

homepages.cwi.nl/~monique/ow-seminar-sdp/ by Laurent. We have par-
ticularly benefited from slides by Arora (http://pikomat.mff.cuni.
cz/honza/napio/arora.pdf), by Feige (http://www.wisdom.weizmann.
ac.il/~feige/Slides/sdpslides.ppt), by Zwick (www.cs.tau.ac.il/

~zwick/slides/SDP-UKCRC.ppt), and by Raghavendra (several sets at
http://www.cc.gatech.edu/fac/praghave/). A transient world indeed –
some of the materials we found while preparing the course in 2009 were no
longer on-line in mid-2010.

For recent results around the UGC and inapproximability, one of the best
sources known to us is Raghavendra’s thesis [Rag09]. The DIMACS lecture
notes [HCA+10] (with 17 authors!) appeared only after our book was nearly
finished, and so did two nice surveys by Khot [Kho10a,Kho10b].

In another direction, the lecture notes by Vallentin [Val08] present inter-
actions of semidefinite programming with harmonic analysis, resulting in
remarkable outcomes. Very enlightening course notes by Parrilo [Par06] treat
the use of semidefinite programming in the optimization of multivariate poly-
nomials and such. A recent book by Lasserre [Las10] also covers this kind of
topics.

Prerequisites. We assume basic knowledge of mathematics from standard
undergraduate curricula; most often we make use of linear algebra and basic
notions of graph theory. We also expect a certain degree of mathematical
maturity, e.g., the ability to fill in routine details in calculations or in proofs.
Finally, we do not spend much time on motivation, such as why it is inter-
esting and important to be able to compute good graph colorings – in this
respect, we also rely on the reader’s previous education.

Acknowledgments. We would like to thank Sanjeev Arora, Michel Baes,
Nikhil Bansal, Elad Hazan, Martin Jaggi, Nati Linial, Prasad Raghavendra,
Tamás Terlaky, Dominik Scheder, and Yinyu Ye for useful comments, sugges-
tions, materials, etc., Helena Nyklová for a great help with typesetting, and
Ruth Allewelt, Ute McCrory, and Martin Peters from Springer Heidelberg
for a perfect collaboration (as usual).

Errors. If you find errors in the book, especially serious ones, we would
appreciate it if you would let us know (email: matousek@kam.mff.cuni.cz,
gaertner@inf.ethz.ch). We plan to post a list of errors at http://www.

inf.ethz.ch/personal/gaertner/sdpbook.

Contents

Part I (by Bernd Gärtner)

1 Introduction: MAXCUT Via Semidefinite Programming . . . 3
1.1 The MaxCut Problem . 3
1.2 Approximation Algorithms . 4
1.3 A Randomized 0.5-Approximation Algorithm for MaxCut . . 6
1.4 The Goemans–Williamson Algorithm . 7

2 Semidefinite Programming . 15
2.1 From Linear to Semidefinite Programming 15
2.2 Positive Semidefinite Matrices . 16
2.3 Cholesky Factorization . 17
2.4 Semidefinite Programs . 18
2.5 Non-standard Form . 20
2.6 The Complexity of Solving Semidefinite Programs 20

3 Shannon Capacity and Lovász Theta . 27
3.1 The Similarity-Free Dictionary Problem 27
3.2 The Shannon Capacity . 29
3.3 The Theta Function . 31
3.4 The Lovász Bound . 32
3.5 The 5-Cycle . 35
3.6 Two Semidefinite Programs for the Theta Function 36
3.7 The Sandwich Theorem and Perfect Graphs 39

4 Duality and Cone Programming . 45
4.1 Introduction . 45
4.2 Closed Convex Cones . 47
4.3 Dual Cones . 49
4.4 A Separation Theorem for Closed Convex Cones 51
4.5 The Farkas Lemma, Cone Version . 52

ix

x Contents

4.6 Cone Programs. 57
4.7 Duality of Cone Programming . 62
4.8 The Largest Eigenvalue . 68

5 Approximately Solving Semidefinite Programs 75
5.1 Optimizing Over the Spectahedron . 76
5.2 The Case of Bounded Trace . 78
5.3 The Semidefinite Feasibility Problem . 80
5.4 Convex Optimization Over the Spectahedron 82
5.5 The Frank–Wolfe Algorithm . 84
5.6 Back to the Semidefinite Feasibility Problem 89
5.7 From the Linearized Problem to the Largest Eigenvalue 90
5.8 The Power Method . 92

6 An Interior-Point Algorithm for Semidefinite Programming 99
6.1 The Idea of the Central Path . 100
6.2 Uniqueness of Solution . 101
6.3 Necessary Conditions for Optimality . 102
6.4 Sufficient Conditions for Optimality . 106
6.5 Following the Central Path . 109

7 Copositive Programming . 119
7.1 The Copositive Cone and Its Dual . 119
7.2 A Copositive Program for the Independence Number

of a Graph . 122
7.3 Local Minimality Is coNP-hard . 127

Part II (by Jiř́ı Matoušek)

8 Lower Bounds for the Goemans–Williamson MAXCUT

Algorithm . 133
8.1 Can One Get a Better Approximation Ratio? 133
8.2 Approximation Ratio and Integrality Gap 135
8.3 The Integrality Gap Matches the Goemans–Williamson Ratio 136
8.4 The Approximation Ratio Is At Most αGW 149
8.5 The Unique Games Conjecture for Us Laymen, Part I 152

9 Coloring 3-Chromatic Graphs . 157
9.1 The 3-Coloring Challenge . 157
9.2 From a Vector Coloring to a Proper Coloring 158
9.3 Properties of the Normal Distribution . 159
9.4 The KMS Rounding Algorithm . 161
9.5 Difficult Graphs . 163

Contents xi

10 Maximizing a Quadratic Form on a Graph 167
10.1 Four Problems . 167
10.2 Quadratic Forms on Graphs . 169
10.3 The Rounding Algorithm . 172
10.4 Estimating the Error . 173
10.5 The Relation to ϑ(G) . 176

11 Colorings with Low Discrepancy . 179
11.1 Discrepancy of Set Systems . 179
11.2 Vector Discrepancy and Bansal’s Random Walk Algorithm . . 182
11.3 Coordinate Walks . 185
11.4 Set Walks . 187

12 Constraint Satisfaction Problems, and Relaxing Them
Semidefinitely . 193
12.1 Introduction . 193
12.2 Constraint Satisfaction Problems . 194
12.3 Semidefinite Relaxations of 2-CSP’s . 198
12.4 Beyond Binary Boolean: Max-3-Sat & Co. 205

13 Rounding Via Miniatures . 211
13.1 An Ultimate Rounding Method? . 211
13.2 Miniatures for MaxCut . 212
13.3 Rounding the Canonical Relaxation of Max-3-Sat

and Other Boolean CSP . 219

Summary . 229

References . 239

Index . 245

Part I

(by Bernd Gärtner)

Chapter 1

Introduction: MAXCUT Via Semidefinite
Programming

Semidefinite programming is considered among the most powerful tools in the
theory and practice of approximation algorithms. We begin our exposition
with the Goemans–Williamson algorithm for the MaxCut problem (i.e., the
problem of computing an edge cut with the maximum possible number of
edges in a given graph). This is the first approximation algorithm (from 1995)
based on semidefinite programming and it still belongs among the simplest
and most impressive results in this area.

However, it should be said that semidefinite programming entered the field
of combinatorial optimization considerably earlier, through a fundamental
1979 paper of Lovász [Lov79], in which he introduced the theta function of a
graph. This is a somewhat more advanced concept, which we will encounter
later on.

In this chapter we focus on the Goemans–Williamson algorithm, while
semidefinite programming is used as a black box. In the next chapter we will
start discussing it in more detail.

1.1 The MAXCUT Problem

MaxCut is the following computational problem: We are given a graph G =
(V,E) as the input, and we want to find a partition of the vertex set into two
subsets, S and its complement V \ S, such that the number of edges going
between S and V \ S is maximized.

More formally, we define a cut in a graph G = (V,E) as a pair (S, V \ S),
where S ⊆ V . The edge set of the cut (S, V \ S) is

E(S, V \ S) = {e ∈ E : |e ∩ S| = |e ∩ (V \ S)| = 1}

(see Fig. 1.1), and the size of this cut is |E(S, V \ S)|, i.e., the number of
edges. We also say that the cut is induced by S.

3B. Gärtner and J. Matoušek, Approximation Algorithms and Semidefinite
Programming, DOI 10.1007/978-3-642-22015-9 1,
© Springer-Verlag Berlin Heidelberg 2012

4 1 Introduction: MaxCut Via Semidefinite Programming

Fig. 1.1 The cut edges (bold) induced by a cut (S, V \ S)

The decision version of the MaxCut problem (given G and k ∈ N, is there
a cut of size at least k?) was shown to be NP-complete by Garey et al. [GJS76].
The above optimization version is consequently NP-hard.

1.2 Approximation Algorithms

Let us consider an optimization problem P (typically, but not necessarily,
we will consider NP-hard problems). An approximation algorithm for P is a
polynomial-time algorithm that computes a solution with some guaranteed
quality for every instance of the problem. Here is a reasonably formal defini-
tion, formulated for maximization problems.

A maximization problem consists of a set I of instances . Every instance
I ∈ I comes with a set F (I) of feasible solutions (sometimes also called
admissible solutions), and every s ∈ F (I) in turn has a nonnegative real
value ω(s) ≥ 0 associated with it. We also define

Opt(I) = sup
s∈F (I)

ω(s) ∈ R+ ∪ {−∞,∞}

to be the optimum value of the instance. Value −∞ occurs if F (I) = ∅, while
Opt(I) = ∞ means that there are feasible solutions of arbitrarily large value.
To simplify the presentation, let us restrict our attention to problems where
Opt(I) is finite for all I.

The MaxCut problem immediately fits into this setting. The instances
are graphs, feasible solutions are subsets of vertices, and the value of a subset
is the size of the cut induced by it.

1.2.1 Definition. Let P be a maximization problem with set of instances I,
and let A be an algorithm that returns, for every instance I ∈ I, a feasible
solution A(I) ∈ F (I). Furthermore, let δ:N → R+ be a function.

1.2 Approximation Algorithms 5

We say that A is a δ-approximation algorithm for P if the following two
conditions hold.

(i) There exists a polynomial p such that for all I ∈ I, the runtime of A
on the instance I is bounded by p(|I|), where |I| is the encoding size of
instance I.

(ii) For all instances I ∈ I, ω(A(I)) ≥ δ(|I|) ·Opt(I).

Encoding size is not a mathematically precise notion; what we mean is the
following: For any given problem, we fix a reasonable “file format” in which
we feed problem instances to the algorithm. For a graph problem such as
MaxCut, the format could be the number of vertices n, followed by a list
of pairs of the form (i, j) with 1 ≤ i < j ≤ n that describe the edges. The
encoding size of an instance can then be defined as the number of characters
that are needed to write down the instance in the chosen format. Due to the
fact that we allow runtime p(|I|), where p is any polynomial, the precise
format usually does not matter, and it is “reasonable” for every natural
number k to be written down with O(log k) characters.

An interesting special case occurs when δ is a constant function. For c ∈ R,
a c-approximation algorithm is a δ-approximation algorithm with δ ≡ c.
Clearly, c ≤ 1 must hold, and the closer c is to 1, the better the approximation.

We can smoothly extend the definition to randomized algorithms (algo-
rithms that may use internal coin flips to guide their decisions). A randomized
δ-approximation algorithm must have expected polynomial runtime and must
satisfy

E [ω(A(I))] ≥ δ(|I|) ·Opt(I) for all I ∈ I.
For randomized algorithms , ω(A(I)) is a random variable, and we require
that its expectation be a good approximation of the true optimum value.

For minimization problems, we replace sup by inf in the definition of
Opt(I) and we require that ω(A(I)) ≤ δ(|I|)Opt(I) for all I ∈ I. This leads
to c -approximation algorithms with c ≥ 1.

What Is Polynomial Time?

In the context of complexity theory, an algorithm is formally a Turing
machine, and its runtime is obtained by counting the elementary operations
(head movements), depending on the number of bits used to encode the
problem on the input tape. This model of computation is also called the bit
model.

The bit model is not very practical, and often the real RAM model, also
called the unit cost model, is used instead.

The real RAM is a hypothetical computer, each of its memory cells capable
of storing an arbitrary real number, including irrational ones like

√
2 or π.

6 1 Introduction: MaxCut Via Semidefinite Programming

Moreover, the model assumes that arithmetic operations on real numbers
(including computations of square roots, trigonometric functions, random
numbers, etc.) take constant time. The model is motivated by actual
computers that approximate the real numbers by floating-point numbers
with fixed precision.

The real RAM is a very convenient model, since it frees us from thinking
about how to encode a real number, and what the resulting encoding size
is. On the downside, the real RAM model is not always compatible with
the Turing machine model. It can happen that we have a polynomial-time
algorithm in the real RAM model, but when we translate it to a Turing
machine, it becomes exponential.

For example, Gaussian elimination, one of the simplest algorithms in linear
algebra, is not a polynomial-time algorithm in the Turing machine model if
a naive implementation is used [GLS88, Sect. 1.4]. The reason is that in the
naive implementation, intermediate results may require exponentially many
bits.

Vice versa, a polynomial-time Turing machine may not be transferable to
a polynomial-time real RAM algorithm. Indeed, the runtime of the Turing
machine may tend to infinity with the encoding size of the input numbers,
in which case there is no bound at all for the runtime that depends only on
the number of input numbers.

In many cases, however, it is possible to implement a polynomial-time real
RAM algorithm in such a way that all intermediate results have encoding
lengths that are polynomial in the encoding lengths of the input numbers.
In this case we also get a polynomial-time algorithm in the Turing machine
model. For example, in the real RAM model, Gaussian elimination is an
O(n3) algorithm for solving n×n linear equation systems. Using appropriate
representations, it can be guaranteed that all intermediate results have bit
lengths that are also polynomial in n [GLS88, Sect. 1.4], and we obtain that
Gaussian elimination is a polynomial-time method also in the Turing machine
model.

We will occasionally run into real RAM vs. Turing machine issues, and
whenever we do so, we will try to be careful in sorting them out.

1.3 A Randomized 0.5-Approximation Algorithm for
MAXCUT

To illustrate previous definitions, let us describe a concrete (randomized)
approximation algorithm RandomizedMaxCut for the MaxCut problem.

Given an instance G = (V,E), the algorithm picks S as a random sub-
set of V , where each vertex v ∈ V is included in S with probability 1/2,
independent of all other vertices.

1.4 The Goemans–Williamson Algorithm 7

In a way this algorithm is stupid, since it never even looks at the edges.
Still, we can prove the following result:

1.3.1 Theorem. Algorithm RandomizedMaxCut is a randomized 0.5-ap-
proximation algorithm for the MaxCut problem.

Proof. It is clear that the algorithm runs in polynomial time. The value
ω(RandomizedMaxCut(G)) is the size of the cut (number of cut edges) gener-
ated by the algorithm (a random variable). Now we compute

E [ω(RandomizedMaxCut(G))] = E [|E(S, V \ S)|]
=

∑

e∈E

Prob[e ∈ E(S, V \ S)]

=
∑

e∈E

1
2
= 1

2
|E| ≥ 1

2
Opt(G).

Indeed, e ∈ E(S, V \ S) if and only if exactly one of the two endpoints of e
ends up in S, and this has probability exactly 1

2 . �

The main trick in this simple proof is to split the complicated-looking
quantity |E(S, V \S)| into the contributions of individual edges; then we can
use the linearity of expectation and account for the expected contribution
of each edge separately. We will also see this trick in the analysis of the
Goemans–Williamson algorithm.

It is possible to “derandomize” this algorithm and come up with a deter-
ministic 0.5-approximation algorithm for MaxCut (see Exercise 1.1). Minor
improvements are possible. For example, there exists a 0.5(1+ 1/m) approx-
imation algorithm, where m = |E|; see Exercise 1.2.

But until 1994, no c-approximation algorithm was found for any factor
c > 0.5.

1.4 The Goemans–Williamson Algorithm

Here we describe the GWMaxCut algorithm, a 0.878-approximation algorithm
for the MaxCut problem, based on semidefinite programming. In a nutshell,
a semidefinite program (SDP) is the problem of maximizing a linear function
in n2 variables xij , i, j = 1, 2, . . . , n, subject to linear equality constraints
and the requirement that the variables form a positive semidefinite matrix
X . We write X 0 for “X is positive semidefinite.”

For this chapter we assume that a semidefinite program can be solved in
polynomial time, up to any desired accuracy ε, and under suitable conditions
that are satisfied in our case. We refrain from specifying this further here;
a detailed statement appears in Chap. 2. For now, let us continue with the

8 1 Introduction: MaxCut Via Semidefinite Programming

Goemans–Williamson approximation algorithm, using semidefinite program-
ming as a black box.

We start by formulating the MaxCut problem as a constrained optimiza-
tion problem (which we will then turn into a semidefinite program). For the
whole section, let us fix the graph G = (V,E), where we assume that V =
{1, 2, . . . , n} (this will be used often and in many places). Then we introduce
variables z1, z2, . . . , zn ∈ {−1, 1}. Any assignment of values from {−1, 1} to
these variables encodes a cut (S, V \ S), where S = {i ∈ V : zi = 1}. The
term

1− zizj
2

is exactly the contribution of the edge {i, j} to the size of the above cut.
Indeed, if {i, j} is not a cut edge, we have zizj = 1, and the contribution is 0.
If {i, j} is a cut edge, then zizj = −1, and the contribution is 1. It follows
that we can reformulate the MaxCut problem as follows.

Maximize
∑

{i,j}∈E
1−zizj

2

subject to zi ∈ {−1, 1}, i = 1, . . . , n.
(1.1)

The optimum value (or simply value) of this program is Opt(G), the size of a
maximum cut. Thus, in view of the NP-completeness of MaxCut, we cannot
expect to solve this optimization problem exactly in polynomial time.

Semidefinite Programming Relaxation

Here is the crucial step: We write down a semidefinite program whose value
is an upper bound for the value Opt(G) of (1.1). To get it, we first replace
each real variable zi with a vector variable ui ∈ Sn−1 = {x ∈ R

n : ‖x‖ = 1},
the (n− 1)-dimensional unit sphere:

Maximize
∑

{i,j}∈E
1−uT

i uj

2

subject to ui ∈ Sn−1, i = 1, 2, . . . , n.
(1.2)

This is called a vector program since the unknowns are vectors.1

From the fact that the set {−1, 1} can be embedded into Sn−1 via the
mapping x �→ (0, 0, . . . , 0, x), we derive the following important property: for
every solution of (1.1), there is a corresponding solution of (1.2) with the same
value. This means that the program (1.2) is a relaxation of (1.1), a program
with “more” solutions, and it therefore has value at least Opt(G). It is also

1 We consider vectors in R
n as column vectors, i.e., as n × 1 matrices. The super-

script T denotes matrix transposition, and thus uT
i uj is the standard scalar product

of ui and uj .

1.4 The Goemans–Williamson Algorithm 9

clear that this value is still finite, since uT
i uj is bounded from below by −1

for all i, j.
Vectors may look more complicated than real numbers, and so it is quite

counterintuitive that (1.2) should be any easier than (1.1). But semidefinite
programming will allow us to solve the vector program efficiently, to any
desired accuracy!

To see this, we perform yet another variable substitution, namely, xij =
uT
i uj . This brings (1.2) into the form of a semidefinite program:

Maximize
∑

{i,j}∈E
1−xij

2

subject to xii = 1, i = 1, 2, . . . , n,
X 0.

(1.3)

To see that (1.3) is equivalent to (1.2), we first note that if u1, . . . ,un

constitute a feasible solution to (1.2), i.e., they are unit vectors, then with
xij = uT

i uj , we have
X = UTU,

where the matrix U has the columns u1,u2, . . . ,un. Such a matrix X is
positive semidefinite, and xii = 1 follows from ui ∈ Sn−1 for all i. So X is a
feasible solution of (1.3) with the same value.

Slightly more interesting is the opposite direction, namely, that every fea-
sible solution X of (1.3) yields a solution of (1.2), with the same value. For
this, one needs to know that every positive semidefinite matrix X can be
written as the product X = UTU (see Sect. 2.2). Thus, if X is a feasible
solution of (1.3), the columns of such a matrix U provide a feasible solution
of (1.2); due to the constraints xii = 1, they are actually unit vectors.

Thus, the semidefinite program (1.3) has the same finite value SDP(G) ≥
Opt(G) as (1.2). So we can find in polynomial time a matrix X∗ 0 with
x∗
ii = 1 for all i and with

∑

{i,j}∈E

1− x∗
ij

2
≥ SDP(G)− ε,

for every ε > 0.
We can also compute in polynomial time a matrix U∗ such that X∗ =

(U∗)TU∗, up to a tiny error. This is a Cholesky factorization of X∗; see
Sect. 2.3. The tiny error can be dealt with at the cost of slightly adapting ε.
So let us assume that the factorization is exact.

Then the columns u∗
1,u

∗
2, . . . ,u

∗
n of U∗ are unit vectors that form an

almost-optimal solution of the vector program (1.2):

∑

{i,j}∈E

1− u∗
i
Tu∗

j

2
≥ SDP(G)− ε ≥ Opt(G) − ε. (1.4)

10 1 Introduction: MaxCut Via Semidefinite Programming

Rounding the Vector Solution

Let us recall that what we actually want to solve is program (1.1), where
the n variables zi are elements of S0 = {−1, 1} and thus determine a cut
(S, V \ S) via S := {i ∈ V : zi = 1}.

What we have is an almost optimal solution of the relaxed program (1.2)
where the n vector variables are elements of Sn−1. We therefore need a way
of mapping Sn−1 back to S0 in such a way that we do not “lose too much.”
Here is how we do it. Choose p ∈ Sn−1 and consider the mapping

u �→
{

1 if pTu ≥ 0,
−1 otherwise.

(1.5)

The geometric picture is the following: p partitions Sn−1 into a closed
hemisphere H = {u ∈ Sn−1 : pTu ≥ 0} and its complement. Vectors in H
are mapped to 1, while vectors in the complement map to −1; see Fig. 1.2.

+1

+1
+1

−1
−1

−1

−1

H

p

Fig. 1.2 Rounding vectors in Sn−1 to {−1, 1} through a vector p ∈ Sn−1

It remains to choose p, and we will do this randomly (we speak of random-
ized rounding). More precisely, we sample p uniformly at random from Sn−1.
To understand why this is a good thing, we need to do the computations,
but here is the intuition. We certainly want that a pair of vectors u∗

i and u∗
j

with large value
1− u∗

i
Tu∗

j

2

is more likely to yield a cut edge {i, j} than a pair with a small value. Since
the contribution grows with the angle between u∗

i and u∗
j , our mapping to

1.4 The Goemans–Williamson Algorithm 11

{−1,+1} should be such that pairs with large angles are more likely to be
mapped to different values than pairs with small angles.

As we will see, this is how the function (1.5) with randomly chosen p is
going to behave.

1.4.1 Lemma. Let u,u′ ∈ Sn−1. The probability that (1.5) maps u and u′

to different values is
1

π
arccosuTu′.

Proof. Let α ∈ [0, π] be the angle between the unit vectors u and u′. By
the law of cosines, we have

cos(α) = uTu′ ∈ [−1, 1],

or, in other words,
α = arccosuTu′ ∈ [0, π].

If α = 0 or α = π, meaning that u ∈ {u′,−u′}, the statement trivially holds.
Otherwise, let us consider the linear span L of u and u′, which is a two-
dimensional subspace of Rn. With r the projection of p to that subspace,
we have pTu = rTu and pTu′ = rTu′. This means that u and u′ map
to different values if and only if r lies in a “half-open double wedge” W of
opening angle α; see Fig. 1.3.

α

α
W

u
u′

r

Fig. 1.3 Randomly rounding vectors: u and u′ map to different values if and only
if the projection r of p to the linear span of u and u′ lies in the shaded region W
(“half-open double wedge”)

Since p is uniformly distributed in Sn−1, the direction of r is uniformly
distributed in [0, 2π]. Therefore, the probability of r falling into the double
wedge is the fraction of angles covered by the double wedge, and this is α/π.

�

12 1 Introduction: MaxCut Via Semidefinite Programming

Getting the Bound

Let us see what we have achieved. If we round as above, the expected number
of edges in the resulting cut equals

∑

{i,j}∈E

arccosu∗
i
Tu∗

j

π
.

Indeed, we are summing the probability that an edge {i, j} becomes a cut
edge, as in Lemma 1.4.1, over all edges {i, j}. The trouble is that we do not
know much about this sum. But we do know that

∑

{i,j}∈E

1− u∗
i
Tu∗

j

2
≥ Opt(G)− ε;

see (1.4). The following technical lemma allows us to compare the two sums
termwise.

1.4.2 Lemma. For all z ∈ [−1, 1],

arccos(z)

π
≥ 0.8785672

1− z

2
.

The constant appearing in this lemma is the solution to a problem that
seems to come from a crazy calculus teacher: what is the minimum of the
function

f(z) =
2 arccos(z)

π(1 − z)

over the interval [−1, 1]?

Proof. The plot in Fig. 1.4 below depicts the function f(z); the mini-
mum occurs at the (unique) value z∗ where the derivative vanishes. Using
a numeric solver, you can compute z∗ ≈ −0.68915773665, which yields
f(z∗) ≈ 0.87856720578> 0.8785672. �

Using this lemma, we can conclude that the expected number of cut edges
produced by our algorithm satisfies

∑

{i,j}∈E

arccosu∗
i
Tu∗

j

π
≥ 0.8785672

∑

{i,j}∈E

1− u∗
i
Tu∗

j

2

≥ 0.8785672(Opt(G)− ε)

≥ 0.878Opt(G),

provided we choose ε ≤ 5 · 10−4.

1.4 The Goemans–Williamson Algorithm 13

–0.74 –0.72 –0.70 –0.68 –0.66 –0.64 –0.62

0.8790

0.8795

0.8800

Fig. 1.4 The function f(z) = 2 arccos(z)/π(1 − z) and its minimum

Here is a summary of the Goemans–Williamson algorithm GWMaxCut for
approximating the maximum cut in a graph G = ({1, 2, . . . , n}, E).

1. Compute an almost optimal solution u∗
1,u

∗
2, . . . ,u

∗
n of the vector pro-

gram

maximize
∑

{i,j}∈E
1−uT

i uj

2

subject to ui ∈ Sn−1, i = 1, 2, . . . , n.

This is a solution that satisfies

∑

{i,j}∈E

1− u∗
i
Tu∗

j

2
≥ SDP(G) − 5 · 10−4 ≥ Opt(G)− 5 · 10−4,

and it can be found in polynomial time by semidefinite programming
and Cholesky factorization.

2. Choose p ∈ Sn−1 uniformly at random, and output the cut induced
by

S := {i ∈ {1, 2, . . . , n}:pTu∗
i ≥ 0}.

We have thus proved the following result.

1.4.3 Theorem. Algorithm GWMaxCut is a randomized 0.878-approximation
algorithm for the MaxCut problem.

Almost optimal vs. optimal solutions. It is customary in the literature
(and we will adopt this later) to simply call an almost optimal solution of a
semidefinite or a vector program an “optimal solution.” This is justified, since

14 1 Introduction: MaxCut Via Semidefinite Programming

for the purpose of approximation algorithms an almost optimal solution is
just as good as a truly optimal solution. Under this convention, an “optimal
solution” of a semidefinite or a vector program is a solution that is accurate
enough in the given context.

Exercises

1.1 Prove that there is also a deterministic 0.5-approximation algorithm for
the MaxCut problem.

1.2 Prove that there is a 0.5(1+1/m)-approximation algorithm (randomized
or deterministic) for the MaxCut problem, where m is the number of edges
of the given graph G.

Chapter 2

Semidefinite Programming

Let us start with the concept of linear programming. A linear program is
the problem of maximizing (or minimizing) a linear function in n variables
subject to linear equality and inequality constraints. In equational form, a
linear program can be written as

maximize cTx
subject to Ax = b

x ≥ 0.

Here x = (x1, x2, . . . , xn) is a vector of n variables,1 c = (c1, c2, . . . , cn)
is the objective function vector, b = (b1, b2, . . . , bm) is the right-hand side,
and A ∈ R

m×n is the constraint matrix. The bold digit 0 stands for the zero
vector of the appropriate dimension. Vector inequalities like x ≥ 0 are to be
understood componentwise.

In other words, among all x ∈ R
n that satisfy the matrix equation Ax = b

and the vector inequality x ≥ 0 (such x are called feasible solutions), we are
looking for an x∗ with the highest value cTx∗.

2.1 From Linear to Semidefinite Programming

To get a semidefinite program, we replace the vector space R
n underlying x

by another real vector space, namely the vector space

SYMn = {X ∈ R
n×n : xij = xji, 1 ≤ i < j ≤ n}

of symmetric n×nmatrices, and we replace the matrix A by a linear mapping
A: SYMn → R

m.

1 Vectors are column vectors, but in writing them explicitly, we use the n-tuple
notation.

15B. Gärtner and J. Matoušek, Approximation Algorithms and Semidefinite
Programming, DOI 10.1007/978-3-642-22015-9 2,
© Springer-Verlag Berlin Heidelberg 2012

16 2 Semidefinite Programming

The standard scalar product 〈x,y〉 = xTy over R
n gets replaced by the

standard scalar product

X • Y :=

n∑

i=1

n∑

j=1

xijyij

over SYMn. Alternatively, we can also write X • Y = Tr(XTY), where for a
square matrix M , Tr(M) (the trace of M) is the sum of the diagonal entries
of M .

Finally, we replace the constraint x ≥ 0 by the constraint

X � 0.

Here X � 0 stands for “the matrix X is positive semidefinite.”
Next, we will explain all of this in more detail.

2.2 Positive Semidefinite Matrices

First we recall that a positive semidefinite matrix is a real matrix M that
is symmetric (i.e., MT = M , and in particular, M is a square matrix) and
has all eigenvalues nonnegative. (The condition of symmetry is all too easy to
forget. Let us also recall from Linear Algebra that a symmetric real matrix
has only real eigenvalues, and so the nonnegativity condition makes sense.)

Here are several equivalent characterizations.

2.2.1 Fact. Let M ∈ SYMn. The following statements are equivalent.

(i) M is positive semidefinite, i.e., all the eigenvalues of M are nonnegative.
(ii) xTMx ≥ 0 for all x ∈ R

n.
(iii) There exists a matrix U ∈ R

n×n such that M = UTU .

This can easily be proved using diagonalization, which is a basic tool for
dealing with symmetric matrices.

Using the condition (ii), we can see that a semidefinite program as intro-
duced earlier can be regarded as a “linear program with infinitely many
constraints.” Indeed, the constraint X � 0 for the unknown matrix X can be
replaced with the constraints aTXa ≥ 0, a ∈ Rn. That is, we have infinitely
many linear constraints, one for every vector a ∈ Rn.

2.2.2 Definition. PSDn is the set of all positive semidefinite n×n matrices.

2.3 Cholesky Factorization 17

A matrix M is called positive definite if xTMx > 0 for all x 	= 0. It can
be checked that the positive definite matrices form the interior of the set
PSDn ⊆ SYMn.

2.3 Cholesky Factorization

In semidefinite programming we often need to compute, for a given posi-
tive semidefinite matrix M , a matrix U as in Fact 2.2.1(iii), i.e., such that
M = UTU . This is called the computation of a Cholesky factorization. (The
definition also requires U to be upper triangular, but we don’t need this.)

We present a simple explicit method, the outer product Cholesky Factor-
ization [GvL96, Sect. 4.2.8], which uses O(n3) arithmetic operations for an
n× n matrix M .

If M = (α) ∈ R
1×1, we set U = (

√
α), where α ≥ 0 by the nonnegativity

of the eigenvalues. Otherwise, since M is symmetric, we can write it as

M =

(
α qT

q N

)
.

We also have α = eT1 Me1 ≥ 0 by Fact 2.2.1(ii). Here ei denotes the i-th unit
vector of the appropriate dimension.

There are two cases to consider. If α > 0, we compute

M =

(√
α 0T

1√
α
q In−1

)(
1 0T

0 N − 1
αqq

T

)(√
α 1√

α
qT

0 In−1

)
. (2.1)

The matrix N − 1
αqq

T is again positive semidefinite (Exercise 2.2), and we
can recursively compute a Cholesky factorization

N − 1

α
qqT = V TV.

Elementary calculations yield that

U =

(√
α 1√

α
qT

0 V

)

satisfies M = UTU , and so we have found a Cholesky factorization of M .
In the other case (α = 0), we also have q = 0 (Exercise 2.2). The matrix

N is positive semidefinite (apply Fact 2.2.1(ii) with x = (0, x2, . . . , xn)), so
we can recursively compute a matrix V satisfying N = V TV . Setting

U =

(
0 0T

0 V

)

18 2 Semidefinite Programming

then gives M = UTU , and we are done with the outer product Cholesky
factorization.

Exercise 2.3 asks you to show that the above method can be modified to
check whether a given matrix M is positive semidefinite.

We note that the outer product Cholesky factorization is a polynomial-
time algorithm only in the real RAM model. We can transform it into a
polynomial-time Turing machine, but at the cost of giving up the exact fac-
torization. After all, a Turing machine cannot even exactly factor the 1 × 1
matrix (2), since

√
2 is an irrational number that cannot be written down

with finitely many bits.
The error analysis of Higham [Hig91] implies the following: when we run a

modified version of the above algorithm (the modification is to base the fac-
torization (2.1) not on α = m11 but rather on the largest diagonal entry mjj),
and when we round all intermediate results to O(n) bits (the constant chosen
appropriately), then we will obtain a matrix U such that the relative error

‖UTU −M‖F/‖M‖F is bounded by 2−n. (Here ‖M‖F =
(∑n

i,j=1 m
2
ij

)1/2
is

the Frobenius norm.) This accuracy is sufficient for most purposes, and in
particular, for the Goemans–Williamson MaxCut algorithm of the previous
chapter.

2.4 Semidefinite Programs

2.4.1 Definition. A semidefinite program in equational form is the fol-
lowing kind of optimization problem:

Maximize
∑n

i,j=1 cijxij
subject to

∑n
i,j=1 aijkxij = bk, k = 1, . . . ,m,

X � 0,

(2.2)

where the xij , 1 ≤ i, j ≤ n, are n2 variables satisfying the symmetry
conditions xji = xij for all i, j, the cij , aijk and bk are real coefficients,
and

X = (xij)
n
i,j=1 ∈ SYMn.

In a more compact form, the semidefinite program in this definition can
be written as

Maximize C •X
subject to A1 •X = b1

A2 •X = b2
...

Am •X = bm
X � 0,

(2.3)

2.4 Semidefinite Programs 19

where
C = (cij)

n
i,j=1

is the matrix expressing the objective function,2 and

Ak = (aijk)
n
i,j=1, k = 1, 2, . . . ,m.

(We recall the notation C •X =
∑n

i,j=1 cijxij introduced earlier.)
We can write the system of m linear constraints A1•X = b1,. . . , Am•X =

bm even more compactly as
A(X) = b,

where b = (b1, . . . , bm) and A: SYMn → R
m is a linear mapping. This nota-

tion will be useful especially for general considerations about semidefinite
programs.

Following the linear programming case, we call the semidefinite program
(2.3) feasible if there is some feasible solution, i.e., a matrix X̃ ∈ SYMn with
A(X̃) = b, X̃ � 0. The value of a feasible semidefinite program is defined as

sup{C •X : A(X) = b, X � 0}, (2.4)

which includes the possibility that the value is ∞. In this case, the program
is called unbounded ; otherwise, we speak of a bounded semidefinite program.

An optimal solution is a feasible solution X∗ such that C •X∗ ≥ C •X
for all feasible solutions X . Consequently, if there is an optimal solution, the
value of the semidefinite program is finite, and it is attained, meaning that
the supremum in (2.4) is a maximum.

Warning: If a semidefinite program has finite value, generally we cannot
conclude that the value is attained! We illustrates this with an example below.
For applications, this presents no problem: All known efficient algorithms for
solving semidefinite programs return only approximately optimal solutions,
and these are the ones that we rely on in applications.

Here is the example. With X ∈ SYM2, let us consider the problem

Maximize −x11

subject to x12 = 1
X � 0.

The feasible solutions of this semidefinite program are all positive semidefinite
matrices X of the form

X =

(
x11 1
1 x22

)
.

2 Since X is symmetric, we may also assume that C is symmetric, without loss of
generality; similarly for the matrices Ak.

20 2 Semidefinite Programming

It is easy to see that such a matrix is positive semidefinite if and only if
x11, x22 ≥ 0 and x11x22 ≥ 1. Equivalently, if x11 > 0 and x22 ≥ 1/x11. This
implies that the value of the program is 0, but there is no solution that attains
this value.

2.5 Non-standard Form

Semidefinite programs do not always look exactly as in (2.3). Besides the
constraints given by linear equations, as in (2.3), there may also be inequality
constraints, and one may also need extra real variables that are not entries
of the positive semidefinite matrix X . Let us indicate how such more general
semidefinite programs can be converted to the standard form (2.3).

First, introducing extra nonnegative real variables x1, x2, . . . , xk not
appearing in X can be handled by incorporating them into the matrix.
Namely, we replace X with the matrix X ′ ∈ SYMn+k, of the form

X ′ =

⎛

⎜⎜⎜⎜⎜⎝

X 0 0 · · · 0
0 x1 0 · · · 0
0 0 x2 · · · 0

0 0 0
. . . 0

0 0 0 · · · xk

⎞

⎟⎟⎟⎟⎟⎠
.

We note that the zero entries really mean adding equality constraints
to the standard form (2.3). We have X ′ � 0 if and only if X � 0 and
x1, x2, . . . , xk ≥ 0.

To get rid of inequalities, we can add nonnegative slack variables, just as
in linear programming. Thus, an inequality constraint x23 + 5x15 ≤ 22 is
replaced with the equality constraint x23 + 5x15 + y = 22, where y is an
extra nonnegative real variable that does not occur anywhere else. Finally,
an unrestricted real variable xi (allowed to attain both positive and negative
values) is replaced by the difference x′i − x′′i , where x′i and x′′

i are two new
nonnegative real variables.

By these steps, a non-standard semidefinite program assumes the form of
a standard program (2.3) over SYMn+k for some k.

2.6 The Complexity of Solving Semidefinite Programs

In Chap. 1 we claimed that under suitable conditions, satisfied in the
Goemans–Williamson MaxCut algorithm and many other applications,
a semidefinite program can be solved in polynomial time up to any desired
accuracy ε. Here we want to make this claim precise.

2.6 The Complexity of Solving Semidefinite Programs 21

In order to claim that a semidefinite program is (approximately) solvable
in polynomial time, we need to assume that it is “well-behaved” in some
sense. Namely, we need that the feasible solutions cannot be too large: we
will assume that together with the input semidefinite program, we also obtain
an integer R bounding the Frobenius norm of all feasible matrices X .

We will be able to claim polynomial-time approximate solvability only in
the case where R has polynomially many digits. As we will see later, one can
construct examples of semidefinite programs where this fails and one needs
exponentially many bits in order to write down any feasible solution.

What the ellipsoid method can do. The strongest known theoreti-
cal result on solvability of semidefinite programs follows from the ellipsoid
method (a standard reference is Grötschel et al. [GLS88]). The ellipsoid
method is a general algorithm for maximizing (or minimizing) a given linear
function over a given full-dimensional convex set C.3

In our case, we would like to apply the ellipsoid method to the set C ⊆
SYMn of all feasible solutions of the considered semidefinite program.

This set C is convex but not full-dimensional, due to the linear equality
constraints in the semidefinite program. But since the affine solution space
L of the set of linear equalities can be computed in polynomial time through
Gaussian elimination, we may restrict C to this space and then we have a
full-dimensional convex set. Technically, this can either be done through an
explicit coordinate transformation, or dealt with implicitly (we will do the
latter).

The ellipsoid method further requires that C should be enclosed in a ball
of radius R and it should be given by a polynomial-time weak separation
oracle [GLS88, Sect. 2.1]. In our case, this means that for a given symmetric
matrix X that satisfies all the equality constraints, we can either certify that
it is “almost” feasible (i.e., has small distance to the set PSDn), or find a
hyperplane that almost separates X from C. Polynomial time is w.r.t. the
encoding length of X , the bound R, and the amount of “almost.”

It turns out that a polynomial-time weak separation oracle is provided
by the Cholesky factorization algorithm (see Sect. 2.3 and Exercise 2.3). The
only twist is that we need to perform the decomposition “within” L, i.e., for
a suitably transformed matrix X ′ of lower dimension.

Indeed, if the approximate Cholesky factorization goes through, X ′ is an
almost positive semidefinite matrix, since it is close (in absolute terms) to a
positive semidefinite matrix UTU . The outer product Cholesky factorization
guarantees a small relative error, but this can be turned into a small absolute
error by computing with O(logR) more bits.

Similarly, if the approximate Cholesky factorization fails at some point,
we can reconstruct a vector v (by solving a system of linear equations) such
that vTX ′v is negative or at least very close to zero; this gives us an almost
separating hyperplane.

3 A set C is convex if for all x,y ∈ C and λ ∈ [0, 1], we also have (1− λ)x+ λy ∈ C.

22 2 Semidefinite Programming

To state the result, we consider a semidefinite program (P) in the form

Maximize C •X
subject to A1 •X = b1

A2 •X = b2
...

Am •X = bm
X � 0.

Let L := {X ∈ SYMn : Ai •X = bi, i = 1, 2, . . . ,m} be the affine subspace
of matrices satisfying all the equality constraints. Let us say that a matrix
X ∈ SYMn is an ε-deep feasible solution of (P) if all matrices Y ∈ L of
(Frobenius) distance at most ε from X are feasible solutions of (P).

Now we can state a precise result about the solvability of semidefinite pro-
grams, which follows from general results about the ellipsoid method [GLS88,
Theorem 3.2.1. and Corollary 4.2.7].

2.6.1 Theorem. Let us assume that the semidefinite program (P) has
rational coefficients, let R be an explicitly given bound on the maximum
Frobenius norm ‖X‖F of all feasible solutions of (P), and let ε > 0 be
a rational number.
Let us put vdeep := sup{C •X : X an ε-deep feasible solution of (P)}.
There is an algorithm, with runtime polynomial in the (binary) encoding
sizes of the input numbers and in log(R/ε), that produces one of the
following two outputs.

(a) A matrix X∗ ∈ L (i.e., satisfying all equality constraints) such that
‖X∗ − X‖F ≤ ε for some feasible solution X , and with C •X∗ ≥
vdeep − ε.

(b) A certificate that (P) has no ε-deep feasible solutions. This certifi-
cate has the form of an ellipsoid E ⊂ L that, on the one hand, is
guaranteed to contain all feasible solutions, and on the other hand,
has volume so small that it cannot contain an ε-ball.

One has to be careful here: This theorem does not yet imply the informal
claim made in Chap. 1. It does so if R is not too large. Unfortunately, R may
have to be very large in general, namely doubly-exponential in n, the matrix
size; see the pathological example below. In such a case, the bound of Theorem
2.6.1 is exponential!

What saves us in the applications is that R is usually small. In the Max-
Cut application, for example, all entries of a feasible solution X are inner
products of unit vectors. Hence the entries are in [−1, 1], and thus ‖X‖F ≤ n.

A glance at other algorithms. First we want to point out that the ellipsoid
method is the only known method that provably yields polynomial runtime

2.6 The Complexity of Solving Semidefinite Programs 23

in the Turing machine model, at least under suitable and fairly general con-
ditions such as a good bound R.

On the other hand, the practical performance of the ellipsoid method is
poor, and completely different algorithms have made semidefinite program-
ming into an extremely powerful computational tool in practice.

Perhaps the most significant and most widely used class of algorithms are
interior-point methods, which we will outline in Chap. 6. On the theoreti-
cal side, they are capable of providing polynomial-time bounds in the RAM
model, but there is no control over the sizes of the intermediate numbers that
come up in the computations, as far as we could find in the (huge) literature.
Moreover, describing these methods in full detail is beyond the scope of this
book.

In order to provide a simple and complete algorithm for semidefinite pro-
gramming, we will present and analyzeHazan’s algorithm in Chap. 5. This is a
recent alternative method for approximately solving semidefinite programs,
with a polynomial bound on the running time in the real RAM model. It
comes with output guarantees similar to the ones in Theorem 2.6.1 above,
and it is efficient in practice. However, the running time bound is polynomial
only in 1/ε and not in log(1/ε).

A semidefinite program where all feasible solutions are huge. To
get such a pathological example, let us consider a semidefinite program with
the following constraints:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 0 0 0 0 · · · 0 0
2 x1 0 0 0 0 · · · 0 0
0 0 1 x1 0 0 · · · 0 0
0 0 x1 x2 0 0 · · · 0 0
0 0 0 0 1 x2 · · · 0 0
0 0 0 0 x2 x3 · · · 0 0

...
. . .

...
0 0 0 0 0 0 · · · 1 xn−1

0 0 0 0 0 0 · · · xn−1 xn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 0.

This is in fact a constraint of the form X � 0, along with various equalities
involving entries of X . Due to the block structure, we have X � 0 if and only
if

(
1 xi−1

xi−1 xi

)
� 0, i = 1, . . . , n,

where x0 := 2. But this implies

det

(
1 xi−1

xi−1 xi

)
= xi − x2

i−1 ≥ 0, i = 1, . . . , n,

24 2 Semidefinite Programming

equivalently xi ≥ x2
i−1, i = 1, . . . , n. It follows that

xn ≥ 22
n

for every feasible solution, which is doubly-exponential in n. Hence, the encod-
ing size of xn (when written as say a rational number) is exponential in n
and also in the number of variables.

Exercises

2.1 Prove or disprove the following claim: For all A,B ∈ SYMn, we also have
AB ∈ SYMn.

2.2 Fill in the missing details of the outer product Cholesky factorization.

(i) If the matrix

M =

(
α qT

q N

)

is positive semidefinite with α > 0, then the matrix

N − 1

α
qqT

is also positive semidefinite.
(ii) If the matrix

M =

(
0 qT

q N

)

is positive semidefinite, then also q = 0.

2.3 Show that the outer product Cholesky factorization can also be used to
test whether a matrix M ∈ R

n×n is positive semidefinite.

2.4 A rank-constrained semidefinite program is a problem of the form

Maximize C •X
subject to A(X) = b

X � 0
rank(X) ≤ k,

where k is a fixed integer. Show that the problem of solving a rank-constrained
semidefinite program is NP-hard for k = 1.

2.5 A matrix M ∈ R
n×n is called a Euclidean distance matrix if there exist

n points p1, . . . ,pn ∈ R
n, such that M is the matrix of pairwise squared

Euclidean distances, i.e.,

2.6 The Complexity of Solving Semidefinite Programs 25

mij = ‖pi − pj‖2, 1 ≤ i, j ≤ m.

Prove that a matrix M is a Euclidean distance matrix if and only if M is
symmetric, mii = 0 for all i, and

xTMx ≤ 0 for all x with
n∑

i=1

xi = 0.

2.6 Let G = ({1, . . . , n}, E) be a graph with two edge weight functions αe ≤
βe, e ∈ E. We want to know whether there exist points p1, . . . ,pn ∈ R

n, such
that

α{i,j} ≤ ‖pi − pj‖2 ≤ β{i,j}, for all {i, j} ∈ E.

Show that this decision problem can be formulated as a semidefinite program!

2.7 (Sums of squares and minimization I)

(a) Let p(x) ∈ R[x] be a univariate polynomial of degree d with real coef-
ficients. We would like to decide whether p(x) is a sum of squares,
i.e., if it can be written as p(x) = q1(x)

2 + · · · + qm(x)2 for some
q1(x), . . . , qm(x) ∈ R[x]. Formulate this problem as the feasibility of a
semidefinite program.

(b) Let us call a polynomial p(x) ∈ R[x] nonnegative if p(x) ≥ 0 for all x ∈ R.
Obviously, a sum of squares is nonnegative. Prove that the converse holds
as well: Every nonnegative univariate polynomial is a sum of squares.
(Hint: First factor into quadratic polynomials.)

(c) Let p(x) ∈ R[x] be a given polynomial. Express its global minimum
min{p(t) : t ∈ R} as the optimum of a suitable semidefinite program
(use (b) and a suitable extension of (a)).

2.8 (Sums of squares and minimization II)

(a) Now let p(x1, . . . , xn) be a polynomial in n variables of degree d with real
coefficients, and as in Exercise 2.7, we ask whether it can be expressed as
a sum of squares (of n-variate real polynomials). Formulate this problem
as the feasibility of a semidefinite program. How many variables and
constraints are there in this SDP?

(b) Verify that the Motzkin polynomial p(x, y) = 1 + x2y2(x2 + y2 − 3) is
nonnegative for all pairs (x, y) ∈ R

2, but it is not a sum of squares.

Even though part (b) shows that for multivariate polynomials, nonnegativity
is not equivalent to being a sum of squares, the multivariate version of the
method from Exercise 2.7 constitutes a powerful tool in practice, which can
find a global minimum in many cases (see, e.g., [Par06] or [Las10]).

Chapter 3

Shannon Capacity and Lovász Theta

Here we will discuss a remarkable geometrically defined graph parameter
ϑ(G). This parameter can be regarded as a semidefinite relaxation of the inde-
pendence number α(G) of the graph, and also in a dual view, as a semidefinite
relaxation of χ(G), the chromatic number of G’s complement.

Perhaps even more remarkably, ϑ(G) was invented well before the semidefi-
nite era; it predates the Goemans–Williamson algorithm by more than fifteen
years and the ideas connected with it contributed very much to the founda-
tions of combinatorial applications of semidefinite programming.

We begin our treatment with presenting Lovász’ classical application of
ϑ(G) for determining the Shannon capacity of the 5-cycle. While this material
may be well known to many readers, and while for us it presents a detour
from the main focus on SDP-based approximation algorithms, we feel that
something so impressive and beautiful just cannot be omitted.

3.1 The Similarity-Free Dictionary Problem

Suppose that you have just bought an optical character recognition system.
Your goal as a citizen of the internet age may be to digitize all your books
so that you can safely throw them away.

However, the system is not perfect and it sometimes gets letters wrong.
For example, the letter E might mistakenly be recognized as an F.

In general, there are input letters (the ones in the book) and output let-
ters (the ones being recognized). Input and output letters may come from
the same alphabet, but also from different ones. Two input letters v, v′ are
called similar if there is an output letter w such that both v and v′ may be
recognized as w; see Fig. 3.1 for an example.

In the example, v = E and v′ = F are similar, with w = F witnessing
their similarity. The letters I, J and L are also pairwise similar since all three
could be recognized as I. Finally, each letter is similar to itself by definition.

27B. Gärtner and J. Matoušek, Approximation Algorithms and Semidefinite
Programming, DOI 10.1007/978-3-642-22015-9 3,
© Springer-Verlag Berlin Heidelberg 2012

28 3 Shannon Capacity and Lovász Theta

E

F

I

J

L

E

F

I

J

L

Fig. 3.1 The similarity graph (left) connects two input letters if they may be recog-
nized as the same output letter

We can record this information in an (undirected) similarity graph that
connects two distinct input letters if they are similar; see Fig. 3.1. The infor-
mation that every letter is similar to itself is implicit.

If the similarity graph is empty, the system can correctly scan all your
books: for every recognized output letter w, there is exactly one matching
input letter v, and assuming that the system knows its recognition behavior,
the correct input letter v can be reconstructed.

But already with a relatively sparse but nonempty similarity graph, the
system may get a lot of words wrong. For example, a word with many E’s
is pretty likely to get corrupted since it suffices for only one of the E’s to be
mistakenly recognized as an F. Such errors can be corrected only if no two
distinct words may get recognized as the same word. Given the similarity
graph in Fig. 3.1, both JILL and LILI might turn out as IIII, meaning that
a book featuring these two characters cannot properly be handled.

Formally, two k-letter words v1 . . . vk and v′1 . . . v
′
k are called similar if

vi is similar to v′i for all i. A set of pairwise non-similar words is called a
similarity-free dictionary.

If the set of input words forms a similarity-free dictionary, then error
correction indeed works, since for every recognized word w1 . . . wk, there is
exactly one word v1 . . . vk in the dictionary such that vi may be recognized
as wi for all i, and this word must be the correct input word.

While you are waiting for your next book to be scanned, your mind is
drifting off and you start asking a theoretical question. What is the largest
similarity-free dictionary of k-letter words?

For k = 1 (the words are just letters), this is easy to answer: The dictionary
must be an independent set in the similarity graph. The largest similarity-free
dictionary of 1-letter words is therefore a maximum independent set in the
similarity graph.

3.2 The Shannon Capacity 29

For k > 1, we can easily form a graph Gk whose edges characterize similar-
ity between k-letter words. The vertices of Gk are the words of length k, and
there is an edge between two words v1 . . . vk and v′1 . . . v′k if they are similar
(meaning that vi is similar to v′i for all i). This leads to the following:

3.1.1 Observation. Let α(G) denote the independence number of a
graph G, i.e., the size of a maximum independent set in G. Then the largest
similarity-free dictionary of k-letter words has size α(Gk).

It is known that the independence number of a graph is NP-hard to com-
pute [GJ79, Sect. 3.1.3], so finding the size of the largest similarity-free dic-
tionary is hard even for 1-letter words. However, this is not our main concern
here, since we want to study the sequence (α(Gk))k∈N in its entirety. We start
by showing that the sequence is super-multiplicative.

3.1.2 Lemma. For all k, � ∈ N,

α(Gk+�) ≥ α(Gk)α(G�).

Proof. If I is an independent set in Gk, and J is an independent set in G�,
then the set of |I||J | words

{v1 . . . vkw1 . . . w� : v1 . . . vk ∈ I, w1 . . . w� ∈ J}

is independent in Gk+�. Indeed, no two distinct words in this set can be
similar, since this would imply that at least one of I and J contains two
distinct similar words. If |I| = α(Gk) and |J | = α(G�), the statement follows.

�

The inequality in Lemma 3.1.2 can be strict. For the 5-cycle C5 we have
α(C5) = 2. But α(C2

5) ≥ 5 > α(C5)
2. To see that α(C2

5) ≥ 5, we use the
interpretation of α(C2

5) as the size of a largest similarity-free dictionary of
2-letter words. Suppose that the letters around the cycle C5 are A, B, C,
D, E. Then it is easy to check that the following five 2-letter words are
pairwise non-similar: AA, BC, CE, DB, and ED. This example is actually
the best possible and α(C2

5) = 5.

3.2 The Shannon Capacity

We may view a dictionary as a set of messages, encoded by k-letter words.
The goal is to safely transmit any given message over a noisy channel whose
input/output behavior induces a similarity graph G as in Fig. 3.1. If the
dictionary is similarity-free w.r.t. G, we can indeed correct all errors made
during transmission.

30 3 Shannon Capacity and Lovász Theta

Using 1-letter words, we can thus safely transmit α(G) different messages.
This means that every letter carries (roughly) log(α(G)) bits of information
(the logarithm is binary). Using k-letter words, we can transmit α(Gk) dif-
ferent messages, meaning that each of the k letters carries

1

k
logα(Gk)

bits of information on the average.
We are interested in the “best” k, the one that leads to the highest

information-per-letter ratio. It easily follows from our above considerations
on C5 that k = 1 is not always the best choice. Indeed, we have

logα(C5) = 1 <
1

2
logα(C2

5) =
1

2
log 5 ≈ 1.161.

Consequently, let us define the Shannon capacity of a graph G as

σ(G) = sup
{1
k
logα(Gk) : k ∈ N

}
, (3.1)

the (asymptotically) highest information-per-letter ratio that can be
achieved. This definition is due to Shannon [Sha56].

3.2.1 Lemma. For every graph G = (V,E), σ(G) is bounded and satisfies

σ(G) = lim
k→∞

(
1

k
logα(Gk)

)
.

Proof. Since Gk has |V |k vertices, we obviously have α(Gk) ≤ |V |k which
implies that σ(G) ≤ log |V |. Taking logarithms in Lemma 3.1.2, we see
that the sequence (xk)k∈N = (logα(Gk))k∈N is super-additive, meaning that
xk+� ≥ xk +x� for all k, �. Now we use Fekete’s lemma, which states that for
every super-additive sequence (xk)k∈N , the sequence

(xk

k

)

k∈N

converges to its supremum (Exercise 3.1 asks you to prove this). �

Shannon already remarked in his original paper [Sha56] in 1956 that it can
be quite difficult to compute σ(G) even for small graphs G, and in particular
he failed to determine σ(C5). We know that

σ(C5) ≥ 1

2
log 5,

but it is absolutely not clear whether k = 2 yields the best possible
information-per-letter ratio.

3.3 The Theta Function 31

Only in 1979, could Lovász determine σ(C5) =
1
2 log 5, showing that the

lower bound obtained from 2-letter encodings is tight [Lov79]. Lovász did this
by deriving the theta function, a new upper bound on σ(G) (computable with
semidefinite programming, as we will see), and by showing that this upper
bound matches the known lower bound for σ(C5).

Instead of σ(G), Lovász uses the equivalent quantity

Θ(G) = 2σ(G) = lim
k→∞

k

√
α(Gk) (3.2)

and calls this the Shannon capacity. We will follow his notation. We remark
that the Shannon capacity Θ(G) is bounded from below by α(G) (by super-
multiplicativity) and bounded from above by |V |. The statement σ(C5) =
1
2 log 5 now reads as Θ(C5) =

√
5.

3.3 The Theta Function

We first pinpoint our earlier notation of similarity. Here and in the following,
we assume that a graph with n vertices has the vertex set {1, 2, . . . , n}.
3.3.1 Definition. Let G = (V,E) be a graph. Vertices i and j are called
similar in G if either i = j or {i, j} ∈ E.

We remark that the negative statement “i is not similar to j ” is more
conveniently expressed as “{i, j} ∈ E,” where E :=

(
V
2

) \ E is the edge

set of the complementary graph G = (V,E). Here
(
V
2

)
is the set of all the

two-element subsets of V .

3.3.2 Definition. An orthonormal representation of a graph G = (V,E)
with n vertices is a sequence U = (u1,u2, . . . ,un) of unit vectors in Sn−1

such that
uT
i uj = 0 if {i, j} ∈ E. (3.3)

It is clear that every graph has such a representation, since we may take
the n pairwise orthogonal unit vectors e1, . . . , en.

But we are looking for a better representation, if possible. Intuitively,
a representation is good if its vectors fit into a small spherical cap.

Formally, and at first glance somewhat arbitrarily, we define the value of
an orthonormal representation U = (u1,u2, . . . ,un) as

ϑ(U) := min
‖c‖=1

n
max
i=1

1

(cTui)2
. (3.4)

The minimum exists, since we can cast the problem as the minimization of a
continuous function over a compact set (the unit sphere Sn−1 minus suitable

32 3 Shannon Capacity and Lovász Theta

open sets around the hyperplanes {x : xTui = 0} to avoid singularities).
A vector c that attains the minimum is called a handle of U .

3.3.3 Definition. The theta function ϑ(G) of G is the smallest value
ϑ(U) over all orthonormal representations U of G.

Again, the minimum exists, since (i) ϑ(U) is continuous, and (ii) the set
of orthonormal representations is the compact set (Sn−1)n, intersected with
closed sets of the form {uT

i uj = 0} (which again yields a compact set).
Let us illustrate this notion on two extreme examples. If G is the complete

graph, then every sequence of n unit vectors is an orthonormal representation,
and every c ∈ Sn−1 is a handle for the optimal orthonormal representation
given by ui = c for all i. The theta function ϑ(G), the value of such an
optimal representation, is 1. If G is the empty graph, the ui must form an
orthonormal basis of Rn. We may assume that ui = ei for all i. Then the
handle is c =

∑n
i=1 ui/

√
n, resulting in cTui = 1/

√
n for all i, and hence

ϑ(G) = n.

3.4 The Lovász Bound

In this section we show that ϑ(G) is an upper bound for the Shannon capacity
Θ(G). This requires two lemmas.

With the definition of the graph Gk on page 29, we want to prove that
ϑ(Gk) ≤ ϑ(G)k (recall that the inverse inequality holds for the independence
number α, by Lemma 3.1.2). For this, we first handle the case k = 2, in the
following more general form.

3.4.1 Definition. Let G = (V,E) and H = (W,F) be graphs. The strong
product of G and H is the graph G ·H with vertex set V ×W , and an edge
between (v, w) and (v′, w′) if v is similar to v′ in G and w is similar to w′

in H .

This is called the strong product to distinguish it from the usual graph
product G×H in which there is an edge between (v, w) and (v′, w′) if {v, v′} ∈
E and {w,w′} ∈ F ; see Fig. 3.2. In fact, the strong product is obtained from
the usual product by adding the edges of the square product (or grid) of G
and H . In this latter product, there is an edge between (v, w) and (v′, w′) if
they differ in exactly one component, and the two involved vertices form an
edge in the respective graph.

3.4.2 Lemma. For all graphs G and H ,

ϑ(G ·H) ≤ ϑ(G)ϑ(H).

3.4 The Lovász Bound 33

H

G

1

(1, 1) (2, 1)

(1, 1) (2, 1)

1 2

2

(1, 2) (2, 2)

(1, 2) (2, 2)

G ´ H

G . H

Fig. 3.2 The strong product G · H of two graphs G and H is a supergraph of the
product G×H

We remark that the claim of the lemma actually holds with equality; see
Exercise 4.13.

Since Gk is isomorphic to the k-fold strong product (· · · ((G ·G) ·G) · · ·G),
we have the following consequence.

3.4.3 Corollary. ϑ(Gk) ≤ ϑ(G)k.

Proof of Lemma 3.4.2. Let U = (u1,u2, . . . ,um) and V = (v1,v2, . . . ,vn)
be optimal orthonormal representations of G = (V,E) and H = (W,F), with
handles c and d. From this we will construct an orthonormal representation
of G ·H with value at most ϑ(G)ϑ(H).

The construction is simple: the orthonormal representation is obtained by
taking all tensor products of vectors ui with vectors vj , and an upper bound
for its value is computed using the tensor product of the handles c and d.

The tensor product of two vectors x ∈ R
m and y ∈ R

n is the (column)
vector x⊗ y ∈ R

mn defined by

x⊗ y = (x1y1, . . . , x1yn, x2y1, . . . , x2yn, . . . , xmy1, . . . , xmyn) ∈ R
mn.

Equivalently, the tensor product is the matrix xyT , written as one long vector
(row by row). We have the following identity:

(x⊗ y)T (x′ ⊗ y′) =
m∑

i=1

n∑

j=1

xiyjx
′
iy

′
j =

m∑

i=1

xix
′
i

n∑

j=1

yjy
′
j = (xTx′)(yTy′).

(3.5)

34 3 Shannon Capacity and Lovász Theta

Now we can prove that the vectors ui ⊗ vj indeed form an orthonormal
representation U ⊗ V of G ·H . As a direct consequence of (3.5), all of them
are unit vectors. Moreover, if (i, j) and (i′, j′) are not similar in G ·H , then
i is not similar to i′ in G, or j is not similar to j′ in H . In both cases, (3.5)
implies that

(ui ⊗ vj)
T (ui′ ⊗ vj′) = (uT

i ui′)(u
T
j uj′) = 0,

since U and V are orthonormal representations of G and H .
Thus, we have an orthonormal representation of G · H . By definition,

ϑ(G ·H) is bounded by

ϑ(U ⊗ V) ≤ max
i∈V,j∈W

1

((c⊗ d)T (ui ⊗ vj))2

= max
i∈V,j∈W

1

(cTui)2(dTvj)2
= ϑ(G)ϑ(H). �

Here is the second lemma that we need: The theta function ϑ(G) is an
upper bound for the independence number of G.

3.4.4 Lemma. For every graph G, α(G) ≤ ϑ(G).

Proof. Let I ⊆ V (G) be a maximum independent set in G, and let U =
(u1,u2, . . . ,un) be an optimal orthonormal representation ofG with handle c.

We know that the vectors ui, i ∈ I, are pairwise orthogonal, which implies
(Exercise 3.3) that

cTc ≥
∑

i∈I

(cTui)
2.

We thus have

1 = cT c ≥
∑

i∈I

(cTui)
2 ≥ |I|min

i∈I
(cTui)

2 = α(G)min
i∈I

(cTui)
2.

This in turn means that

α(G) ≤ 1

mini∈I(cTui)2
= max

i∈I

1

(cTui)2
≤ max

i∈V

1

(cTui)2
= ϑ(G). �

Now we are ready for the main result of this section.

3.4.5 Theorem (Lovász’ bound). For every graph G, Θ(G) ≤ ϑ(G).

Proof. By Lemma 3.4.4 and Corollary 3.4.3, for all k we have

α(Gk) ≤ ϑ(Gk) ≤ ϑ(G)k.

3.5 The 5-Cycle 35

It follows that
k

√
α(Gk) ≤ ϑ(G),

and hence

Θ(G) = lim
k→∞

k

√
α(Gk) ≤ ϑ(G). �

3.5 The 5-Cycle

Using the bound of Theorem 3.4.5, we can now determine the Shannon capac-
ity Θ(C5) of the 5-cycle. We already know that Θ(C5) ≥

√
5, by using 2-letter

encodings. The fact that this is optimal follows from the next lemma, together
with Theorem 3.4.5.

3.5.1 Lemma. ϑ(C5) ≤
√
5.

Proof. We need to find an orthonormal representation of C5 with value at
most

√
5. Let the vertices of C5 be 1, 2, 3, 4, 5 in cyclic order.

Here is Lovász’ “umbrella construction” that yields vectors u1, . . . ,u5

in S2 (we can add two zero coordinates to lift them into S4). Imagine an
umbrella with unit handle c = (0, 0, 1) and five unit ribs of the form

ui =
(cos 2πi

5 , sin 2πi
5 , z)

‖(cos 2πi
5 , sin 2πi

5 , z)‖ , i = 1, . . . , 5.

If z = 0, the umbrella is completely “flat,” as in Fig. 3.3 left (this is a top
view where c collapses to the origin). Letting z grow to ∞ corresponds to
the process of folding up the umbrella.

u1

u4

u2

u5

u3

c
2π
5

Fig. 3.3 A five-rib umbrella: fully open and viewed from the top (left), and partially
folded so that non-adjacent ribs are perpendicular (right)

36 3 Shannon Capacity and Lovász Theta

We keep folding the umbrella until the vectors u5 and u2 become orthogo-
nal. This will eventually happen since we start with angle 4π/5 > π/2 in the
flat position and converge to angle 0 as z → ∞. We can compute the value
of z for which we get orthogonality: We must have

0 = uT
5 u2 ⇔ (1, 0, z)

⎛

⎝
cos 4π

5

sin 4π
5

z

⎞

⎠ = cos
4π

5
+ z2 = 0.

Hence

z =

√
− cos

4π

5
, u5 =

(
1, 0,

√
− cos 4π

5

)

√
1− cos 4π

5

.

For this value of z, symmetry implies that we do have an orthonormal repre-
sentation U of C5: every ui is orthogonal to the two “opposite” vectors ui+2

and ui−2 of its two non-neighbors in C5 (indices wrap around). Recalling
that c = (0, 0, 1), we have

ϑ(C5) ≤ ϑ(U) ≤ max 5
i=1

1

(cTui)2
=

1

(cTu5)2
=

1− cos 4π
5

− cos 4π
5

,

by symmetry. Exercise 3.4 asks you to prove that this number equals
√
5.

�

3.6 Two Semidefinite Programs for the Theta Function

The value of Θ(C5) was unknown for more than 20 years after Shannon
had given the lower bound Θ(C5) ≥

√
5. Together with the Lovász bounds

Θ(C5) ≤ ϑ(C5) ≤
√
5, we get

Θ(C5) = ϑ(C5) =
√
5.

Here we want to discuss how ϑ(G) can be computed for an arbitrary
graph G = (V,E). The above method for C5 was somewhat ad-hoc, and
only in hindsight did it turn out that the umbrella construction yields an
optimal orthonormal representation.

Armed with the machinery of semidefinite programming, it is not hard to
show that ϑ(G) is efficiently computable (with an arbitrarily small error). We
can obtain a semidefinite program for it by more or less just rewriting the
definition.

We recall that ϑ(G) is the smallest value of

3.6 Two Semidefinite Programs for the Theta Function 37

ϑ(U) = min
‖c‖=1

max
i∈V

1

(cTui)2
,

over all orthonormal representations U . By replacing ui with −ui if necessary,
we may assume cTui ≥ 0 for all i. But then

1√
ϑ(G)

= max
U

1√
ϑ(U) = max

U
max
‖c‖=1

min
i∈V

cTui.

We introduce an additional variable t ∈ R
n
+ representing the minimum, and

then we get 1/
√
ϑ(G) as the value of the vector program

maximize t
subject to uT

i uj = 0 for all {i, j} ∈ E
cTui ≥ t, i ∈ V
‖ui‖ = 1, i ∈ V
‖c‖ = 1.

(3.6)

This does not yet have the form of a semidefinite program in equational form,
but it can be brought into this form; see Exercise 3.2 and Sect. 2.5.

There are several interesting ways of expressing ϑ(G) itself as a value of
a suitable semidefinite program (above we expressed 1/

√
ϑ(G) rather than

ϑ(G)). Proving that one really obtains ϑ(G) from these semidefinite programs
is not immediate (although not too hard either).

Here we will present just one of these semidefinite formulations (several
others can be found, e.g., in Knuth [Knu94]). In this particular case our work
in the proof of the next theorem will pay off in the next section, where we
relate ϑ(G) to the chromatic number of G’s complement.

3.6.1 Theorem. For every graph G = (V,E) with V = {1, . . . , n}, the theta
function ϑ(G) is the value of the following semidefinite program in the matrix
variable Y ∈ SYMn and the real variable t.

Minimize t
subject to yij = −1 if {i, j} ∈ E

yii = t− 1 for all i = 1, . . . , n
Y 0.

(3.7)

Proof. Let us denote the value of (3.7) by ϑ′(G). We first show that ϑ′(G) ≤
ϑ(G). Let U = (u1,u2, . . . ,un) be an optimal orthonormal representation
of G with handle c. We define a matrix Ỹ ∈ SYMn by

ỹij :=
uT
i uj

(cTui)(cTuj)
− 1, i �= j

and
ỹii := ϑ(G) − 1, i = 1, . . . , n.

38 3 Shannon Capacity and Lovász Theta

Since U is an orthonormal representation, we have ỹij = −1 for {i, j} ∈ E.

If we can show that Ỹ 0, we know that the pair (Ỹ , t̃) with t̃ = ϑ(G)) is a
feasible solution of (3.7), meaning that the program’s value ϑ′(G) is at most
ϑ(G).

To see Ỹ 0, we first observe (a simple calculation) that

ỹij =

(
c− ui

cTui

)T (
c− uj

cTuj

)
, i �= j,

and (by definition of ϑ(G))

ỹii = ϑ(G) − 1 ≥ 1

(cTui)2
− 1 =

(
c− ui

cTui

)T (
c− ui

cTui

)
.

This means that Ỹ is of the form Ỹ = D + UTU , where D is a diagonal
matrix with nonnegative entries, and U is the matrix whose i-th column is
the vector c− ui/c

Tui. Thus, Ỹ 0.
To show that the value of (3.7) is at least ϑ(G), we let (Ỹ , t̃) be any feasible

solution of (3.7) with the property that t̃ is minimal subject to ỹij fixed for

i �= j. This implies that Ỹ has one eigenvalue equal to 0 (otherwise, we could
decrease all ỹii and t̃) and it is therefore singular. Note that t̃ ≥ 1.

Now let Ỹ = STS be a Cholesky factorization of Ỹ ; see Fact 2.2.1(iii).
Let s1, . . . , sn be the columns of S. Since Ỹ is singular, S is singular as well,
and the si span a proper subspace of Rn. Consequently, there exists a unit
vector c that is orthogonal to all the si.

Next we define

ui :=
1√
t̃
(c+ si), i = 1, . . . , n,

and we intend to show that U = {u1, . . . ,un} is an orthonormal representa-
tion of G. For this, we compute

uT
i uj =

1

t̃
(c+ si)

T (c+ sj) =
1

t̃
(cT c
︸︷︷︸

1

+ cT sj︸︷︷︸
0

+ sTi c︸︷︷︸
0

+ sTi sj︸︷︷︸
ỹij

) =
1

t̃
(1 + ỹij).

Since ỹii = t̃− 1, we get

‖ui‖2 = uT
i ui =

1

t̃
(1 + t̃− 1) = 1.

Similarly, if {i, j} ∈ E, then ỹij = −1, and so

uT
i uj =

1

t̃
(1 − 1) = 0.

3.7 The Sandwich Theorem and Perfect Graphs 39

So we have indeed found an orthonormal representation of G. Since we
further have

(cTui)
2 =

(
cT

1√
t̃
(c+ si)

)2

=
1

t̃

(
cT (c+ si)

)2
=

1

t̃
, i = 1, . . . , n,

we get

ϑ(G) ≤ ϑ(U) ≤ n
max
i=1

1

(cTui)2
= t̃,

which completes the proof, since we may choose t̃ arbitrarily close to ϑ′(G).
�

3.7 The Sandwich Theorem and Perfect Graphs

We know that ϑ(G) is bounded below by α(G), the independence number of
the graph G. But we can also bound ϑ(G) from above in terms of another
graph parameter. This bound will also shed more light on the geometric
interpretation of the semidefinite program (3.7) for ϑ(G).

3.7.1 Definition. Let G = (V,E) be a graph.

(i) A clique in G is a subset K ⊆ V of vertices such that {v, w} ∈ E for all
distinct v, w ∈ K. The clique number ω(G) of G is the size of a largest
clique in G.

(ii) A proper k-coloring of G is a mapping c:V → {1, . . . , k} such that c(v) �=
c(w) if {v, w} ∈ E. The chromatic number χ(G) of G is the smallest k
such that G has a proper k-coloring.

According to this definition, an independent set in G is a clique in the
complementary graph G, and vice versa. Consequently,

α(G) = ω(G). (3.8)

Here is the promised upper bound on ϑ(G). Together with the already
known lower bound, we obtain the Sandwich Theorem that bounds ϑ(G) in
terms of clique number and chromatic number of the complementary graph.

3.7.2 Theorem. For every graph G = (V,E),

ω(G) ≤ ϑ(G) ≤ χ(G).

Proof. The lower bound on ϑ(G) is immediate from Lemma 3.4.4 and (3.8).
For the upper bound, let us suppose that ϑ(G) > 1 (the bound is trivial for

40 3 Shannon Capacity and Lovász Theta

ϑ(G) = 1). But then χ(G) ≥ 2, since a 1-coloring is possible only for E = ∅,
in which case ϑ(G) = 1.

Now let us rescale (3.7) into the following equivalent form (as usual, we
assume that V = {1, . . . , n}):

Minimize t

subject to yij = −1/(t− 1) for all {i, j} ∈ E
yii = 1 for all i = 1, . . . , n
Y 0.

(3.9)

If we rewrite Y 0 as Y = STS for S a matrix with columns s1, . . . , sn,
the equality constraints of (3.9) translate as follows:

yij = − 1

t− 1
⇔ sTi sj = − 1

t− 1
yii = 1 ⇔ ‖si‖ = 1.

Lemma 3.7.4 below shows that if G has a proper k-coloring, then we can
find vectors si that satisfy the latter equations with t = k. This implies that
(Y, t) = (STS, k) is a feasible solution of (3.9), and hence k ≥ ϑ(G), the value
of (3.9). The upper bound follows if we choose k = χ(G). �

The vectors si constructed in this proof can be regarded as a “coloring”
of G by vectors. This motivates the following definition.

3.7.3 Definition. For k ∈ R, a vector k-coloring1 of a graph G = (V,E) is
a mapping γ:V → Sn−1 such that

γ(v)T γ(w) = − 1

k − 1
, {v, w} ∈ E.

For a (proper) k-coloring, we require that adjacent vertices have different
colors. For a vector k-coloring, we require the “colors” of adjacent vertices
to have a large angle. The proof of Theorem 3.7.2 shows that ϑ(G) is the
smallest k such that G has a vector k-coloring. The upper bound ϑ(G) ≤ χ(G)
then follows from the fact that the notion of vector k-colorings is a relaxation
of the notion of proper k-colorings:

3.7.4 Lemma. If a graph G has a k-coloring, then it also has a vector
k-coloring.

Proof. We construct k unit-length vectors u1, . . . ,uk such that

uT
i uj = − 1

k − 1
, i �= j.

1 This notion is sometimes called strict vector k-coloring to distinguish it from a non-
strict k-vector coloring, where the requirement γ(v)Tγ(w) = − 1

k−1
is weakened to

γ(v)T γ(w) ≤ − 1
k−1

. In this chapter we deal exclusively with strict vector colorings.

3.7 The Sandwich Theorem and Perfect Graphs 41

120◦

u1

u2

u3

u1

u2

u3

u4

Fig. 3.4 Unit vectors with pairwise scalar products −1/(k − 1) for k = 3, 4

Given a k-coloring c of G, a vector k-coloring of G can then be obtained by
setting γ(v) := uc(v), v ∈ V . The k vectors form the vertices of a regular
simplex centered at the origin; see Fig. 3.4 for the cases k = 3, 4. In general,
we define

ui =
ei − 1

k

∑k
�=1 e�

‖ei − 1
k

∑k
�=1 e�‖

, i = 1, . . . , k. �

Perfect graphs. We know that the clique number ω(G) is NP-hard to com-
pute for general graphs. The same can be said about the chromatic number
χ(G). But there is a class of graphs for which Theorem 3.7.2 makes both
values computable in polynomial time.

3.7.5 Definition. A graph G is called perfect if ω(G′) = χ(G′) for every
induced subgraph G′ of G.

There are many known families of perfect graphs. The perhaps simplest
nontrivial examples are bipartite graphs. Indeed, every induced subgraph of
a bipartite graph is again bipartite, and every bipartite graph has clique
number and chromatic number 2.

Other examples of perfect graphs are interval graphs (intersection graphs
of closed intervals on the real line), and more generally, chordal graphs (every
cycle of length at least four has an edge connecting two vertices that are not
neighbors along the cycle).

For perfect graphs, Theorem 3.7.2 implies

ω(G) = ϑ(G) = χ(G) ,

meaning that maximum cliques and minimum colorings can be computed
for perfect graphs in polynomial time through semidefinite programming.
Indeed, since we are looking for an integer, it suffices to solve (3.9) (for the
complementary graph) up to accuracy ε < 1/2. Moreover, due to yii = 1,
all entries of a feasible Y are scalar products of unit vectors and hence in

42 3 Shannon Capacity and Lovász Theta

[−1, 1]. This means that our requirements for polynomial-time solvability
(see Sect. 2.6) are satisfied.

Although remarkable progress has recently been achieved in understand-
ing perfect graphs (a proof of the Strong Perfect Graph Conjecture by Chud-
novsky et al. [CRST06]), the approach based on semidefinite programming
remains the only known polynomial-time method for computing the clique
number of a perfect graph (as far as we know).

One can also compute the independence number α(G) of a perfect graph G
in polynomial time. Indeed, according to the weak perfect graph conjecture,
proved by Lovász in 1972, the complement of every perfect graph is also
perfect. So ω(G) is polynomial-time computable by the above, and it equals
α(G) by definition.

Exercises

3.1 Let (xk)k∈N be a sequence of real numbers such that for all natural
numbers k and �,

xk+� ≥ xk + x�.

We say that the sequence is super-additive. Prove that

lim
k→∞

xk
k

= sup{xk
k

: k ∈ N},

where both the limit and the supremum may be ∞.

3.2 Prove that the program (3.6) can be rewritten into a semidefinite pro-
gram in equational form, and with the same value.

3.3 Let u1, . . . ,uk be pairwise orthogonal unit vectors in R
n. Prove that

cT c ≥∑k
i=1(c

Tui)
2 for all c ∈ R

n.

3.4 Prove that
1− cos 4π

5

− cos 4π
5

=
√
5.

3.5 For graphs G,H , let G + H stand for the disjoint union of G and H .
Formally, we let H ′ be an isomorphic copy of H whose vertex set is disjoint
from V (G), and we put V (G +H) := V (G) ∪ V (H ′), E(G +H) := E(G) ∪
E(H ′). Prove that Θ(G+H) ≥ Θ(G) + Θ(H).

3.6 With the definition of G+H as in Exercise 3.5, prove that ϑ(G+G) ≥√
2|V (G)|, where G stands for the complement of G.

3.7 The Sandwich Theorem and Perfect Graphs 43

3.7 Let G = (V,E) be a graph, and let K be a field (such as the reals, the
complex numbers, or a finite field GF(q). Let a functional representation F
of G over K consist of the following:

1. A ground set X (an arbitrary set, not necessarily related to G or K in any
way)

2. An element cv ∈ X for every vertex v ∈ V
3. A function fv:X → K for every vertex v ∈ V

These objects have to satisfy

(i) fv(cv) �= 0 for every v ∈ V
(ii) If {u, v} ∈ E, then fu(cv) = 0

We write F = (X, (cv, fv)v∈V). The dimension dimF of F is the dimension
of the subspace generated by all the functions fv, v ∈ V , in the vector space
K

X of all functions X → K.

(a) Check that α(G) ≤ dimF for every functional representation F of G
(over any field).

(b) In what sense can an orthonormal representation U of G be regarded as
a functional representation of G over R? Compare the strength of the
resulting upper bounds on α(G).

(c) Suppose that a graph G = (V,E) has a functional representation F
over some field K and that G′ = (V ′, E′) has a functional representation
F ′ over the same K. Then the strong product G · G′ has a functional
representation over K of dimension at most (dimF)(dimF ′). Infer that
Θ(G) ≤ dim(F) for every functional representation of G.

Remark: For suitable graphs G and a suitable choice of the field K, the
upper bound in (c) on the Shannon capacity can be smaller than ϑ(G). This
tool was developed and used by Alon [Alo98] in surprising results on the
Shannon capacity.

Chapter 4

Duality and Cone Programming

4.1 Introduction

One of the most important results in linear programming is arguably the
duality theorem. Semidefinite programming also has a duality theorem, but
its formulation and proof are less straightforward than in the case of linear
programming.

Instead of developing the duality theorem for semidefinite programming
directly, we will work in the more general setting of cone programming. This
abstraction allows us to see the essence more clearly and illustrate it with
simple geometric examples. Moreover, it can be useful in other contexts; see
Chap. 7.

According to Definition 2.4.1, a semidefinite program in equational form
is an optimization problem of the form

maximize C •X
subject to Ai •X = bi, i = 1, 2, . . . ,m

X � 0.
(4.1)

Here X is an unknown n × n symmetric real matrix (which we write as
X ∈ SYMn). The input data are a matrix C ∈ SYMn specifying the objective
function, a vector b ∈ R

m, and matrices Ai ∈ SYMn, i = 1, 2, . . . ,m.
For the purposes of this chapter, we summarize the m equality constraints

in the form A(X) = b, where A: SYMn → R
m is the linear mapping

A(X) = (A1 •X,A2 •X, . . . , Am •X).

Instead of a linear mapping, we will often use the term linear operator in this
context.

The main goal of this chapter is to derive the following strong duality
theorem of semidefinite programming.

45B. Gärtner and J. Matoušek, Approximation Algorithms and Semidefinite
Programming, DOI 10.1007/978-3-642-22015-9 4,
© Springer-Verlag Berlin Heidelberg 2012

46 4 Duality and Cone Programming

4.1.1 Theorem. If the semidefinite program (4.1) is feasible and has
a finite value γ, and if there is a positive definite matrix X̃ such that
A(X̃) = b, then the dual program

minimize bTy
subject to

∑m
i=1 yiAi − C � 0

(4.2)

is feasible and has finite value β = γ.

Having a positive definite (as opposed to merely a positive semidefinite)
matrix X̃ such that A(X̃) = b is also referred to as “strict feasibility.”

The link to cone programming is established by the fact that the set
PSDn = {X ∈ SYMn : X � 0} of positive semidefinite matrices is a closed
convex cone.

The outline of this chapter is as follows. We first define closed convex cones
and their duals. We prove a simple but powerful separation theorem for closed
convex cones that can already be considered as a very basic duality theorem.
Based on this, and bringing in the linear operator A and the right-hand
side b, we prove the next-level duality theorem, the Farkas lemma for cones.
The final step also takes the objective function into account and provides
duality theorems for cone programming. The semidefinite case will be dealt
with as a corollary.

For people accustomed to the behavior of linear programs, cone programs
have some surprises in store. In fact, they seem to misbehave in various ways,
as examples in this chapter will illustrate. On a large scale, however, these
are only small blunders: Cone programs will turn out to be almost as civilized
as linear programs, from which we draw some intuition at various points.

Throughout this chapter we fix real and finite-dimensional vector spaces
V and W , equipped with scalar products. In the semidefinite case, we will
have V = SYMn with the scalar product 〈X,Y 〉 = X •Y , and W = R

m with
the standard scalar product 〈x,y〉 = xTy.

Actually, the restriction to a finite dimension is not necessary for the mate-
rial presented in this chapter. With only minimal changes, we could consider
V and W as arbitrary Hilbert spaces – we stick to the finite-dimensional set-
ting mainly in the interest of the readers who are not familiar with Hilbert
spaces.

4.2 Closed Convex Cones 47

4.2 Closed Convex Cones

4.2.1 Definition. LetK ⊆ V be a nonempty closed set.1 K is called a closed
convex cone if the following two conditions hold.

(i) For all x ∈ K and all nonnegative real numbers λ, we have λx ∈ K.
(ii) For all x,y ∈ K, we have x+ y ∈ K.

Condition (i) ensures that K is a cone, while condition (ii) guarantees
convexity of K. Indeed, if x,y ∈ K and λ ∈ [0, 1], then (1− λ)x and λy are
both in K by (i), and then (ii) shows that (1−λ)x+λy ∈ K, as required by
convexity.

4.2.2 Lemma. The set PSDn ⊆ SYMn of positive semidefinite matrices is
a closed convex cone.

Proof. Using the characterization of positive semidefinite matrices pro-
vided by Fact 2.2.1(ii), this is easy. If xTMx ≥ 0 and xTNx ≥ 0, then also
xTλMx = λxTMx ≥ 0 for λ ≥ 0 and xT (M +N)x = xTMx+ xTNx ≥ 0.

To show closedness, we check that the complement is open. Indeed, if we
have a symmetric matrixM that is not positive semidefinite, then there exists
x̃ ∈ R

n such that x̃TM x̃ < 0, and this inequality still holds for all matrices
M ′ in a sufficiently small neighborhood of M . �

Let us look at other examples of closed convex cones. It is obvious that
the nonnegative orthant R

n
+ = {x ∈ R

n : x ≥ 0} is a closed convex cone;
even more trivial examples of closed convex cones in R

n are K = {0} and
K = R

n. We can also get new cones as direct sums of cones (the proof of the
following fact is left to the reader).

4.2.3 Fact. Let K ⊆ V , L ⊆ W be closed convex cones. Then

K ⊕ L := {(x,y) ∈ V ⊕W : x ∈ K,y ∈ L}

is again a closed convex cone, the direct sum of K and L.

Let us recall that V ⊕W , the direct sum of V and W is the set V ×W ,
turned into a vector space with scalar product via

(x,y) + (x′,y′) := (x + x′,y + y′),
λ(x,y) := (λx, λy),

〈(x,y), (x′,y′)〉 := 〈x,x′〉+ 〈y,y′〉.

Now we get to some more interesting cones.

1 We refer to the standard topology on V , induced by the open balls B(c, �) =

{x ∈ V : ‖x− c‖ < �}, where ‖x‖ =
√〈x,x〉.

48 4 Duality and Cone Programming

The Ice Cream Cone in R
n

This cone is defined as

n = {(x, r) ∈ R
n−1 × R : ‖x‖ ≤ r};

see Fig. 4.1 for an illustration in R
3 that (hopefully) explains the name. It

is closed because of the “≤” (this argument is similar to the one in the
proof of Lemma 4.2.2), and its convexity follows from the triangle inequality
‖x+ y‖ ≤ ‖x‖+ ‖y‖.

x

z

y

Fig. 4.1 The (lower part of the boundary of the) ice cream cone in R
3

The Toppled Ice Cream Cone in R
3

Here is another closed convex cone, the toppled ice cream cone. It is defined
as

= {(x, y, z) ∈ R
3 : x ≥ 0, y ≥ 0, xy ≥ z2}; (4.3)

see Fig. 4.2.
Exercise 4.1 formally explains why we call this the toppled ice cream cone.

We remark that can alternatively be defined as the set of all (x, y, z) such
that the symmetric matrix (

x z
z y

)

is positive semidefinite. From our earlier considerations, we thus derive

4.2.4 Lemma. is a closed convex cone.

It seems that instead of , we could equivalently talk about PSD2, but
there is a subtlety here: lives in the vector space R

3, while PSD2 lives in
SYM2. As a vector space, SYM2 can be identified with R

3 in an obvious way,
but the scalar products are different. Indeed,

4.3 Dual Cones 49

y

x

z

Fig. 4.2 The toppled ice cream cone

(
x z
z y

)
•
(

x′ z′

z′ y′

)
= xx′ + yy′ + 2zz′,

while
(x, y, z)T (x′, y′, z′) = xx′ + yy′ + zz′.

4.3 Dual Cones

4.3.1 Definition. Let K ⊆ V be a closed convex cone. The set

K∗ := {y ∈ V : 〈y,x〉 ≥ 0 for all x ∈ K}

is called the dual cone of K.

In fact, K∗ is again a closed convex cone. We omit the simple proof; it
uses bilinearity of the scalar product to verify the cone conditions, and the
Cauchy–Schwarz inequality for closedness.

Let us illustrate this notion on the examples that we have seen earlier.
What is the dual of the nonnegative orthant Rn

+? This is the set of all y such
that

yTx ≥ 0 for all x ≥ 0.

This set certainly contains the nonnegative orthant {y ∈ R
n : y ≥ 0} itself,

but not more: Given y ∈ R
n with yi < 0, we have yT ei < 0, where ei is the

i-th unit vector (a member of Rn
+), and this proves that y is not a member

of the dual cone (Rn
+)

∗. It follows that the dual of Rn
+ is Rn

+: the nonnegative
orthant is self-dual.

For the “even more trivial” cones, the situation is as follows:

50 4 Duality and Cone Programming

K K∗

{0} R
n

R
n {0}

We leave the computation of the dual of the ice cream cone n to the
reader (see Exercise 4.2) and proceed with the toppled ice cream cone (4.3).

4.3.2 Lemma. The dual of the toppled ice cream cone is

∗
= {(x, y, z) ∈ R

3 : x ≥ 0, y ≥ 0, xy ≥ z2

4
} ⊆ R

3,

a “vertically stretched” version of .

Proof. The computations are not very enlightening, but we want to show
at least one nontrivial duality proof. We first want to show the inclusion “⊇”
in the statement of the lemma, and this uses the AGM inequality (arithmetic
mean of nonnegative numbers is at least the geometric mean). Let us fix
ỹ = (x̃, ỹ, z̃) such that x̃ ≥ 0, ỹ ≥ 0, x̃ỹ ≥ z̃2/4. For x = (x, y, z) ∈ chosen
arbitrarily, we get

ỹTx = x̃x+ ỹy + z̃z

= 2
x̃x+ ỹy

2
+ z̃z

≥ 2
√
x̃xỹy + z̃z

≥ 2
|z̃|
2
|z|+ z̃z ≥ 0.

This means that y ∈ ∗
.

For the other inclusion, let us fix ỹ = (x̃, ỹ, z̃) such that x̃ < 0 or ỹ < 0

or x̃ỹ < z̃2/4; we now need to find a proof for ỹ ∈ ∗
. If x̃ < 0, we choose

x = (1, 0, 0) ∈ and get the desired proof ỹTx < 0. If ỹ < 0, x = (0, 1, 0)
will do. In the case of x̃, ỹ ≥ 0 but x̃ỹ < z̃2/4, let us first assume that z̃ ≥ 0
and set

x = (ỹ, x̃,−
√
x̃ỹ) ∈ .

We then compute

ỹTx = 2x̃ỹ − z̃
√
x̃ỹ < 2x̃ỹ − 2x̃ỹ = 0.

For z̃ < 0, we pick x = (ỹ, x̃,
√
x̃ỹ) ∈ . �

We conclude this section with the following intuitive fact: the dual of a
direct sum of cones is the direct sum of the dual cones.

4.3.3 Lemma. Let K ⊆ V , L ⊆ W be closed convex cones. Then

4.4 A Separation Theorem for Closed Convex Cones 51

Fig. 4.3 A point b not contained in a closed convex cone K can be separated from K
by a hyperplane h = {x ∈ V : 〈y,x〉 = 0} through the origin (left). The separating
hyperplane resulting from the proof of Theorem 4.4.2 (right)

(K ⊕ L)∗ = K∗ ⊕ L∗.

This fact is easy but not entirely trivial. It actually requires a small proof;
see Exercise 4.3.

4.4 A Separation Theorem for Closed Convex Cones

Under any meaningful notion of duality, you expect the dual of the dual to be
the primal (original) object. For cone duality (Definition 4.3.1), this indeed
works.

4.4.1 Lemma. Let K ⊆ V be a closed convex cone. Then (K∗)∗ = K.

Maybe surprisingly, the proof of this innocent-looking fact already requires
the machinery of separation theorems which will also be essential for cone
programming duality below. Separation theorems generally assert that dis-
joint convex sets can be separated by a hyperplane.

The following is arguably the simplest nontrivial separation theorem. On
top of elementary calculations, the proof only requires one standard result
from analysis.

4.4.2 Theorem. Let K ⊆ V be a closed convex cone, and let b ∈ V \ K.
Then there exists a vector y ∈ V such that

〈y,x〉 ≥ 0 for all x ∈ K, and 〈y,b〉 < 0.

The statement is illustrated in Fig. 4.3 (left). We also say that y is a witness
for b /∈ K.

Proof. The plan of the proof is straightforward: We let z be the point
of K nearest to b (in the distance ‖z−b‖ =

√〈z− b, z− b〉 induced by the
scalar product), and we check that the vector y = z − b is as required; see

52 4 Duality and Cone Programming

Fig. 4.3 (right). The existence of z follows from the general theory: If C is a
nonempty closed and convex set in a finite-dimensional vector space V with
scalar product and x ∈ V is arbitrary, then there is a unique y ∈ C nearest
to x among all points of C; see [EMT04, Sect. 2.2b].

With z a nearest point of K to b, we set y = z − b. First we check that
〈y, z〉 = 0. This is clear for z = 0. For z = 0, if z were not perpendicular
to y, we could move z slightly along the ray {tz : t ≥ 0} ⊆ K and get a point
closer to b (here we use the fact that K is a cone).

More formally, let us first assume that 〈y, z〉 > 0, and let us set z′ =
(1− α)z for a small α > 0. We calculate ‖z′ − b‖2 = 〈(y − αz), (y − αz)〉 =
‖y‖2−2α〈y, z〉+α2‖z‖2. We have 2α〈y, z〉 > α2‖z‖2 for all sufficiently small
α > 0, and thus ‖z′ − b‖2 < ‖y‖2 = ‖z − b‖2. This contradicts z being a
nearest point. The case 〈y, z〉 < 0 is handled through z′ = (1 + α)z.

To verify 〈y,b〉 < 0, we recall that y = 0, and we compute 0 < 〈y,y〉 =
〈y, z〉 − 〈y,b〉 = −〈y,b〉.

Next, let x ∈ K, x = z. The angle ∠bzx has to be at least 90◦, for
otherwise, points on the segment zx sufficiently close to z would lie closer to b
than z (here we use convexity ofK); equivalently, 〈(b−z), (x−z)〉 ≤ 0. This is
similar to the above argument for 〈y, z〉 = 0 and we leave a formal verification
to the reader. Thus 0 ≥ 〈(b− z), (x − z)〉 = −〈y,x〉+ 〈y, z〉 = −〈y,x〉. �

Using this result, we can now show that (K∗)∗ = K for every closed convex
cone.

Proof of Lemma 4.4.1. For the direction K ⊆ (K∗)∗, we just need to
apply the definition of duality: Let us choose b ∈ K. By definition of K∗,
〈y,b〉 = 〈b,y〉 ≥ 0 for all y ∈ K∗; this shows that b ∈ (K∗)∗.

For the other direction, we let b ∈ V \ K. According to Theorem 4.4.2,
we find a vector y such 〈y,x〉 ≥ 0 for all x ∈ K and 〈y,b〉 = 〈b,y〉 < 0. The
former inequality shows that y ∈ K∗, but then the latter inequality shows
that b /∈ (K∗)∗. �

4.5 The Farkas Lemma, Cone Version

The Farkas lemma is a cornerstone of linear programming theory. It comes
in several equivalent versions, among them the following.

4.5.1 Lemma (Farkas). Let A ∈ R
m×n be an m×n matrix, and let b ∈ R

m.
Then

• Either the system Ax = b, x ≥ 0 has a solution x ∈ R
n.

• Or the system ATy ≥ 0, bTy < 0 has a solution y ∈ R
m.

but not both.

4.5 The Farkas Lemma, Cone Version 53

There is also a more general version of the Farkas lemma, which yields
a certificate for the unsolvability of an arbitrary unsolvable system of linear
equations and inequalities.

Here, we first want to make the point that the Farkas lemma is a special
case of Theorem 4.4.2. For this, we define V = R

m and

K = {Ax : x ∈ R
n
+} ⊆ V.

Thus, K consists of all nonnegative linear combinations of columns of A. We
call this a finitely generated cone. Finitely generated cones are closed and
convex, and hence Theorem 4.4.2 applies.

Now the first system Ax = b, x ≥ 0 having no solution just means that
b ∈ V \K. By Theorem 4.4.2, there exists y ∈ V = Rm such that

yTAx ≥ 0 for all x ∈ R
n
+, and yTb < 0.

Since the former inequality means ATy ∈ (Rn
+)

∗ = R
n
+, we indeed get a

solution to the second system ATy ≥ 0, bTy < 0. It remains to observe that
the first system and the second one can never be solvable simultaneously.
(To see this, we premultiply the first system with a transposed solution of
the second one).

In this section, we want to generalize the Farkas lemma to deal with sys-
tems of the form

A(x) = b,x ∈ K,

where K ⊆ V is some closed convex cone, and A is a linear operator from V
to W .

The “standard” Farkas lemma deals with the case K = R
n
+ ⊆ V := R

n,
W = R

m, where a linear operator can be represented by a matrix. For
semidefinite programming, on the other hand, we need to consider the case
K = PSDn ⊆ V := SYMn and W = R

m.
There are two obstacles to overcome, the first one being merely technical:

we need to define what AT is supposed to mean for a general linear operator.
The second obstacle is the real one: a cone of the form {A(x) : x ∈ K} is
convex, but not necessarily closed (we will see an example), so that Theo-
rem 4.4.2 may not be applicable. We now address both obstacles in turn.

Adjoint Operators

Here is the appropriate generalization of the transposed matrix.

4.5.2 Definition. Let A:V → W be a linear operator. A linear operator
AT :W → V is called an adjoint of A if

〈y, A(x)〉 = 〈AT (y),x〉 for all x ∈ V and y ∈ W.

54 4 Duality and Cone Programming

For V = R
n, W = R

m and A represented by an m× n matrix, the trans-
posed matrix represents the unique adjoint of A. More generally, if V and W
are finite-dimensional (which we assume), there is an adjoint AT of A. And
if there is an adjoint, then it is easy to see that it is unique, which justifies
the notation AT .

In semidefinite programming, we have V = SYMn (the scalar product2 is
X • Y), and W = R

m (with standard scalar product). Also in this case the
adjoint is easy to determine.

4.5.3 Lemma. Let V = SYMn,W = R
m, and A:V → W defined by

A(X) = (A1 •X,A2 •X, . . . , Am •X). Then

AT (y) =

m∑

i=1

yiAi.

Proof. We compute

〈y, A(X)〉 := yTA(X)

=
m∑

i=1

yi(Ai •X) = (

m∑

i=1

yiAi) •X = AT (y) •X =: 〈AT (y), X〉.

Here we have used the linearity of • in the first argument. �

In order to stay as close as possible to the familiar matrix terminol-
ogy, we will also introduce the following notation. If V1, V2, . . . , Vn and
W1,W2, . . . ,Wm are vector spaces with scalar products, and if Aij :Vj → Wi

are linear operators for all i, j, then we write the “matrix”

⎛

⎜⎜⎜⎜⎝

A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

...

Am1 Am2 · · · Amn

⎞

⎟⎟⎟⎟⎠
(4.4)

for the linear operator Ā:V1 ⊕ V2 ⊕ · · · ⊕ Vn → W1 ⊕W2 ⊕ · · · ⊕Wm defined
by

Ā(x1,x2, . . . ,xn) =

⎛

⎝
n∑

j=1

A1j(xj),

n∑

j=1

A2j(xj), . . . ,

n∑

j=1

Amj(xj)

⎞

⎠ .

A simple calculation then shows that

2 At this point, a skeptical reader might want to convince him- or herself that this is
indeed a scalar product.

4.5 The Farkas Lemma, Cone Version 55

ĀT =

⎛

⎜⎜⎜⎜⎜⎝

AT
11 AT

21 · · · AT
m1

AT
12 AT

22 · · · AT
m2

...
...

...

AT
1n AT

2n · · · AT
mn

⎞

⎟⎟⎟⎟⎟⎠
, (4.5)

just as with matrices.
For the remainder of this chapter, we fix a linear operator A from V to W .

The Farkas Lemma, Bogus Version

We would like to be able to claim the following.

Let K ⊆ V be a closed convex cone, and let b ∈ W . Either the system

A(x) = b,x ∈ K (4.6)

has a solution x ∈ V , or the system

AT (y) ∈ K∗, 〈b,y〉 < 0 (4.7)

has a solution, but not both.

Indeed, this follows from Theorem 4.4.2 along the lines of what we did
above for the standard Farkas lemma, provided that the cone C := A(K) =
{A(x) : x ∈ K} is closed. But this need not be true. Here is an example.

Let K = , the toppled ice cream cone (4.3) in R
3, and let

A =

(
0 1 0

0 0 1

)
.

Then C is the projection of onto the yz-plane – see Fig. 4.2 on page 49
for the geometric intuition – and assumes the form

C = {(y, z) ∈ R
2 : (x, y, z) ∈ } = 0 ∪ ({y ∈ R : y > 0} × R),

a set that is obviously not closed.
In such cases, Theorem 4.4.2 is not applicable, and the Farkas lemma as

envisioned above may fail. Such a failure can already be constructed from
our previous example. If we in addition set b = (0, 1) ∈ R

2, both (4.6) and
(4.7) are unsolvable (we encourage the reader to go through this example in
detail).

56 4 Duality and Cone Programming

The Farkas Lemma, Cone Version

To save the situation, we work with the closure of C.

4.5.4 Lemma. Let K ⊆ V be a closed convex cone, and C = {A(x) :
x ∈ K}. Then C, the closure of C, is a closed convex cone.

Proof. The closure of C is the set of all limit points of C. Formally, b ∈ C
if and only if there exists a sequence (yk)k∈N such that yk ∈ C for all k and
limk→∞ yk = b. This yields that C is a convex cone, using that C is a convex
cone. In addition, C is closed. �

The fact “b ∈ C” can be formulated without reference to the cone C,
which will be more convenient in what follows.

4.5.5 Definition. Let K ⊆ V be a closed convex cone. The system

A(x) = b, x ∈ K

is called limit-feasible if there exists a sequence (xk)k∈N such that xk ∈ K for
all k ∈ N and

lim
k→∞

A(xk) = b.

It is clear that if A(x) = b, x ∈ K is limit-feasible, then b ∈ C, but
the reverse implication also holds. If (yk)k∈N is a sequence in C converging
to b, then any sequence (xk)k∈N such that yk = A(xk) for all k proves the
limit-feasibility of our system. Here is the correct Farkas lemma for equation
systems over closed convex cones.

4.5.6 Lemma (Farkas lemma for cones). Let K ⊆ V be a closed convex
cone, and b ∈ W . Either the system

A(x) = b,x ∈ K

is limit-feasible, or the system

AT (y) ∈ K∗, 〈b,y〉 < 0

has a solution, but not both.

Proof. If A(x) = b, x ∈ K is limit-feasible, we choose any sequence (xk)k∈N

that proves its limit feasibility. For y ∈ W , we compute

〈y,b〉 = 〈y, lim
k→∞

A(xk)〉 = lim
k→∞

〈y, A(xk)〉 = lim
k→∞

〈AT (y),xk〉.

If AT (y) ∈ K∗, then xk ∈ K yields 〈AT (y),xk〉 ≥ 0 for all k ∈ N, and
〈y,b〉 ≥ 0 follows. Thus, the second system has no solution.

4.6 Cone Programs 57

If A(x) = b, x ∈ K is not limit-feasible, this can be expressed equivalently
as b /∈ C, where C = {A(x) : x ∈ K}. Since C is a closed convex cone,
we can apply Theorem 4.4.2 and obtain a hyperplane that strictly separates
b from C (and in particular from C). This means that we find y ∈ W such
that

〈y,b〉 < 0 and for all x ∈ K, 〈y, A(x)〉 = 〈AT (y),x〉 ≥ 0.

It remains to observe that the statement “〈AT (y),x〉 ≥ 0 for all x ∈ K” is
equivalent to “AT (y) ∈ K∗.” �

4.6 Cone Programs

Here is the definition of a cone program, in a form somewhat more general
than we would need for semidefinite programming. This extra generality will
introduce symmetry between the primal and the dual program.

4.6.1 Definition. Let K ⊆ V , L ⊆ W be closed convex cones, let b ∈
W , c ∈ V , and let A:V → W be a linear operator. A cone program is an
optimization problem of the form

Maximize 〈c,x〉
subject to b−A(x) ∈ L

x ∈ K.

(4.8)

For L = {0}, we get cone programs in equational form.
Following the linear programming case, we call the cone program feasible

if there is some feasible solution, i.e., a vector x̃ with b− A(x̃) ∈ L, x̃ ∈ K.
The value of a feasible cone program is defined as

sup{〈c,x〉 : b−A(x) ∈ L,x ∈ K}, (4.9)

which includes the possibility that the value is ∞.
An optimal solution is a feasible solution x∗ such that 〈c,x∗〉 ≥ 〈c,x〉 for

all feasible solutions x. Consequently, if there is an optimal solution, then the
value of the cone program is finite, and that value is attained, meaning that
the supremum in (4.9) is a maximum.

Reachability of the Value

There are cone programs with finite value but no optimal solution. Here is
an example involving the toppled ice cream cone; see page 48 (we leave it to
the reader to put it into the form (4.8) via suitable A,b, c,K, L):

58 4 Duality and Cone Programming

Minimize x

subject to z = 1

(x, y, z) ∈ .

(4.10)

After substituting z = 1 into the definition of the toppled ice cream cone,
we obtain the following equivalent constrained optimization problem in two
variables:

Minimize x

subject to x ≥ 0

xy ≥ 1.

It is clear that the value of x is bounded from below by 0, and that values
arbitrarily close to 0 can be attained. Due to the constraint xy ≥ 1, however,
the value 0 itself cannot be attained. This means that the cone program (4.10)
has value 0 but no optimal solution.

The Limit Value

Another aspect that we do not see in linear programming is that of limit
feasibility, a notion that we already introduced for equation systems over
cones – see Definition 4.5.5. If a linear program is infeasible, then it will
remain infeasible under any sufficiently small perturbation of the right-hand
side b. In contrast, there are infeasible cone programs that become feasible
under an arbitrarily small perturbation of b.

The following is merely a repetition of Definition 4.5.5 for the linear oper-
ator (A | id):V ⊕W → W (recall the matrix notation introduced on page 54)
and the cone K ⊕ L.

4.6.2 Definition. The cone program (4.8) is called limit-feasible if there
exist sequences (xk)k∈N and (x′

k)k∈N such that xk ∈ K and x′
k ∈ L for all

k ∈ N , and
lim
k→∞

(A(xk) + x′
k) = b.

Such sequences (xk)k∈N and (x′
k)k∈N are called feasible sequences of (4.8).

We stress that the feasible sequences themselves are not required to con-
verge (see also the example on page 59 below).

Every feasible program is limit-feasible, but the converse is guaranteed
only if the cone C = {A(x) + x′ : x ∈ K,x′ ∈ L} is closed. For L = {0}, we
have seen a counterexample on page 55.

We can assign a value even to a limit-feasible cone program, and we call
it the limit value.

4.6.3 Definition. Given a feasible sequence (xk)k∈N of a cone program (4.8),
we define its value as

4.6 Cone Programs 59

〈c, (xk)k∈N〉 := lim sup
k→∞

〈c,xk〉.

The limit value of (4.8) is then defined as

sup{〈c, (xk)k∈N〉 : (xk)k∈N is a feasible sequence of (4.8)}.

It is not hard to check (Exercise 4.6) that the limit value is actually
attained by some feasible sequence.

Value vs. Limit Value

By definition, the value of a feasible cone program is always bounded above
by its limit value, and it is tempting to think that the two are equal. But
this is not true in general. There are feasible programs with finite value but
infinite limit value. Here is one such program in two variables x and z:

Maximize z

subject to (x, 0, z) ∈ .

The program is feasible (choose x ≥ 0, z = 0). Every feasible solution must
satisfy z = 0, so the value of the program is 0. For the following computation
of the limit value, let us explicitly write down the parameters of this program
in the form of (4.8):

c = (0, 1), A =

⎛

⎝
−1 0

0 0

0 −1

⎞

⎠ , b = (0, 0, 0), L = , K = R
2.

Now let us define

xk = (k3, k) ∈ R
2, x′

k = (k3, 1/k, k) ∈ , k ∈ N.

Then we get

lim
k→∞

Axk+x′
k = lim

k→∞
(
(−k3, 0,−k) + (k3, 1/k, k)

)
= lim

k→∞
(0, 1/k, 0) = 0 = b.

This means that (xk)k∈N and (x′
k)k∈N are feasible sequences. The program’s

limit value is therefore at least

lim sup
k→∞

cTxk = lim sup
k→∞

k = ∞,

different from the value.

60 4 Duality and Cone Programming

We may also have a gap if both value and limit value are finite. Adding
the constraint z ≤ 1 to the previous program (which can be done by changing
A, b, L accordingly) results in limit value 1, while the value stays at 0.

Fortunately, such pathologies disappear if the program has an interior
point. In general, requiring additional conditions, with the goal of avoiding
exceptional situations, is called constraint qualification. Requiring an interior
point is known as Slater’s constraint qualification.

4.6.4 Definition. An interior point (or Slater point) of the cone program
(4.8) is a point x such that

x ∈ K, b−A(x) ∈ L,

and the following additional requirement holds:

x ∈ int(K) if L = {0}, and

b−A(x) ∈ int(L) otherwise.

(For a set S, int(S) is the set of all points x ∈ S such that a sufficiently small
ball around x is fully contained in S.)

The case L = {0} (equational form) receives a special treatment in this
definition; if L is some other cone that is not full-dimensional, Slater’s con-
straint qualification does not apply. Now we can prove the following.

4.6.5 Theorem. If the cone program (4.8) has an interior point (which, in
particular, means that it is feasible), then the value equals the limit value.

Proof. Let γ′ be the limit value, and let ε > 0 be a real number. The
strategy is to construct a feasible solution x such that

〈c,x〉 ≥ γ′ − ε. (4.11)

This proves the theorem since it implies that there are feasible solutions
of value arbitrarily close to the limit value. The construction is somewhat
different for L = {0} and the other cases, but the approach is the same.

We choose feasible sequences (xk)k∈N, (x
′
k)k∈N that attain the program’s

limit value γ′ (possibly ∞). Then we slightly modify the xk such that we
obtain a sequence (wk)k∈N satisfying

wk ∈ K, b−A(wk) ∈ L, ‖xk −wk‖ ≤ δ (4.12)

for almost all k, where δ is chosen such that |〈c,xk〉 − 〈c,wk〉| < ε. Once we
have this, we get

lim sup
k→∞

〈c,wk〉 > lim sup
k→∞

〈c,xk〉 − ε = γ′ − ε,

4.6 Cone Programs 61

meaning that for some value of k, x = wk is a feasible solution that satis-
fies (4.11).

It remains to transform the xk into feasible wk, and here the interior point
provides the necessary room. Let us fix such an interior point x̃.

The case L �= {0}. With ξ > 0 a real number, we define

wk := (1 − ξ)xk + ξx̃.

We can guarantee ‖xk −wk‖ ≤ δ by choosing ξ small enough. It is also clear
that wk ∈ K. To establish (4.12), it remains to show that b−A(wk) ∈ L for
almost all k. For this, we use the definition of feasible sequences and compute

b−A(wk) = (1− ξ)(b−A(xk)− x′
k︸ ︷︷ ︸

→0

+ x′
k︸︷︷︸

∈L

) + ξ (b−A(x̃))︸ ︷︷ ︸
∈int(L)

.

We also have ξ(b − A(x̃)) ∈ int(L), with a small ball of radius 	 around it
fully contained in L. Adding (1− ξ)x′

k ∈ L takes us to another point pk ∈ L
to which the same 	 applies. We thus have

b−A(wk) = pk + (1− ξ)(b−A(xk)− x′
k),

where ‖(1−ξ)(b−A(xk)−x′
k)‖ < 	 for k large enough, hence b−A(wk) ∈ L.

The case L = {0}. Recalling that our vector spaces V ⊇ K and W ⊇ L are
finite-dimensional, we choose an arbitrary basis v1, . . . ,vn of V . The image
of A denoted by Im(A) is spanned by the vectors A(v1), . . . , A(vn), and we
choose a subset of vectors that form a basis of Im(A). W.l.o.g. let these be
A(v1), . . . , A(vm), and let V ′ ⊆ V be the span of v1, . . . ,vm. It follows that
the restriction of A to V ′ is a bijection between V ′ and the image of A. Let
A−1: Im(A) → V ′ be the inverse mapping. It is also a linear mapping between
finite-dimensional vector spaces, and as such it is continuous. With ξ > 0, we
define

wk := (1− ξ)(xk +A−1(b−A(xk)︸ ︷︷ ︸
∈Im(A)

)) + ξx̃,

where x̃ is our interior point (b ∈ Im(A) follows from the feasibility of x̃).
By the construction we have A(wk) = b. Since limk→∞ A(xk) = b, we

also have limk→∞ A−1(b− A(xk)) = 0, so we can guarantee ‖xk −wk‖ ≤ δ
for almost all k, by choosing ξ small enough.

In order to get (4.12), it thus remains to show that wk ∈ K for sufficiently
large k. We have ξx̃ ∈ int(K), with a small ball of some radius 	 around it
fully contained in K. Adding (1−ξ)xk ∈ K yields another point pk ∈ int(K)
to which the same 	 applies. We thus have

wk = pk + (1− ξ)A−1(b−A(xk)),

62 4 Duality and Cone Programming

where ‖(1− ξ)A−1(b−A(xk))‖ < 	 for k sufficiently large, and so wk ∈ K.
�

4.7 Duality of Cone Programming

For this section, let us call the cone program (4.8) the primal program and
denote it by (P):

(P) Maximize 〈c,x〉
subject to b−A(x) ∈ L

x ∈ K.

Then we define its dual program as the cone program

(D) Minimize 〈b,y〉
subject to AT (y) − c ∈ K∗

y ∈ L∗.

Formally, this does not have the cone program format (4.8), but we could
easily achieve this if necessary by rewriting (D) as follows.

(D′) Maximize −〈b,y〉
subject to −c+AT (y) ∈ K∗

y ∈ L∗.

Having done this, we can also compute the dual of (D′) which takes us, not
surprisingly, back to (P).

For the dual program (D), which is a minimization problem, the value and
limit value are defined through inf’s and lim inf’s in the canonical way.

Similar to linear programming, we assume that the primal program (P)
is feasible and has a finite value. Then we want to conclude that the dual
program (P) is also feasible and has the same value. But, unlike in linear
programming, we need another condition to make this work: (P) needs to have
an interior point. Here is the Strong Duality Theorem of Cone Programming.

4.7.1 Theorem. If the primal program (P) is feasible, has a finite value γ
and has an interior point x̃, then the dual program (D) is also feasible and
has the same value γ.

Here is an outline of the proof. First, we prove weak duality: If the primal
program (P) is limit-feasible, the limit value of (P) is bounded above by the
value of (D), given that (D) is feasible. The proof of this is a no-brainer and

4.7 Duality of Cone Programming 63

follows more or less directly from the definitions of the primal and the dual.
Still, weak duality has the important consequence that a feasible (D) – a
minimization problem – has a finite value if (P) is limit-feasible.

Then we prove regular duality: if (P) is limit-feasible, then the dual pro-
gram (D) is actually feasible, and there is no gap between the limit value of
(P) and the value of (D). For linear programming where there is no differ-
ence between value and limit value (see Exercise 4.7), we would be done at
this point and would have proved the strong duality theorem. But here the
following scenario is still possible: both (P) and (D) are feasible, but there
is a gap between their values γ and β; see Fig. 4.4. We can indeed derive an
example for this scenario from the cone program with value 0 and limit value
1 that we have constructed on page 59.

value of (P)
value of (D)
limit value of (P)

limit value of (D)

βγ

Fig. 4.4 Gap between the values of the primal and dual cone programs

To get strong duality, we apply Slater’s constraint qualification: If the
primal program has an interior point (Definition 4.6.4), then there is no gap
between primal and dual value. This result is a trivial consequence of regular
duality together with Theorem 4.6.5 (the value equals the limit value in the
case where there is an interior point).

The presentation essentially follows Duffin’s original article [Duf56] in the
classic book Linear Inequalities and Related Systems, 1956. This book, edited
by Kuhn and Tucker, contains articles by many of the “grand old men,”
including Dantzig, Ford, Fulkerson, Gale, and Kruskal.

Weak Duality

Let us start with the weak Duality Theorem.

4.7.2 Theorem. If the dual program (D) is feasible, and if the primal pro-
gram (P) is limit-feasible, then the limit value of (P) is bounded above by
the value of (D).

If (P) is feasible as well, this implies that the value of (P) is bounded
from above by the value of (D), and that both values are finite. This is weak
duality as we know it from linear programming.

64 4 Duality and Cone Programming

Proof. We pick any feasible solution y of (D) and arbitrary feasible
sequences (xk)k∈N, (x

′
k)k∈N of (P). Using the defining property of the adjoint

(Definition 4.5.2), we get

0 ≤ 〈AT (y) − c︸ ︷︷ ︸
∈K∗

, xk︸︷︷︸
∈K

〉+ 〈 y︸︷︷︸
∈L∗

, x′
k︸︷︷︸

∈L

〉 = 〈y, A(xk) + x′
k〉 − 〈c,xk〉, k ∈ N.

Hence

lim sup
k→∞

〈c,xk〉 ≤ lim sup
k→∞

〈y, A(xk) + x′
k〉 = lim

k→∞
〈y, A(xk) + x′

k〉 = 〈y,b〉.

Since the feasible sequences were arbitrary, this means that the limit value
of (P) is at most 〈y,b〉, and since y was an arbitrary feasible solution of (D),
the lemma follows. �

You may have expected the following stronger version of weak duality: if
both (P) and (D) are limit-feasible, then the limit value of (P) cannot exceed
the limit value of (D). But a glance at Fig. 4.4 already shows that this is false
in general.

Regular Duality

Here is the regular Duality Theorem. The proof essentially consists of appli-
cations of the Farkas lemma to carefully crafted systems.

4.7.3 Theorem. The dual program (D) is feasible and has a finite value β
if and only if the primal program (P) is limit-feasible and has a finite limit
value γ. Moreover, β = γ.

Proof. If (D) is feasible and has value β, we know that

AT (y) − c ∈ K∗, y ∈ L∗ ⇒ 〈b,y〉 ≥ β. (4.13)

We also know that

AT (y) ∈ K∗, y ∈ L∗ ⇒ 〈b,y〉 ≥ 0. (4.14)

Indeed, if we had some y that fails to satisfy the latter implication, we could
add a large positive multiple of it to any feasible solution of (D) and in this
way obtain a feasible solution of value smaller than β.

We can now merge (4.13) and (4.14) into the single implication

AT (y)− zc ∈ K∗, y ∈ L∗, z ≥ 0 ⇒ 〈b,y〉 ≥ zβ. (4.15)

4.7 Duality of Cone Programming 65

For z > 0, we obtain this from (4.13) by multiplication of all terms with z
and then renaming zy ∈ L∗ back to y. For z = 0, it is simply (4.14). In
matrix form as introduced on page 54, we can rewrite (4.15) as follows.

⎛

⎜⎝
AT −c

id 0

0 1

⎞

⎟⎠ (y, z) ∈ K∗ ⊕ L∗ ⊕ R+ ⇒ 〈(b,−β), (y, z)〉 ≥ 0. (4.16)

Here and in the following, we use a column vector c ∈ V as the linear operator
z �→ zc from R to V and the row vector cT as the (adjoint) linear operator
x �→ 〈c,x〉 from V to R.

The matrix form (4.16) now allows us to apply the Farkas lemma: We are
precisely in the situation where the second system has no solution. According
to Lemma 4.5.6, the implication (4.16) holds if and only if the first system

(
A id 0

− cT 0T 1

)
(x,x′, z) = (b,−β), (x,x′, z)∈(K∗⊕L∗⊕R+)

∗= K⊕L⊕R+

(4.17)

is limit-feasible. The latter equality uses Lemma 4.3.3 together with Lem-
ma 4.4.1.

System (4.17) is limit-feasible if and only if there are sequences (xk)k∈N,
(x′

k)k∈N, (zk)k∈N with xk ∈ K, x′
k ∈ L, zk ≥ 0 for all k, such that

lim
k→∞

A(xk) + x′
k = b (4.18)

and
lim
k→∞

〈c,xk〉 − zk = β. (4.19)

Now (4.18) shows that (P) is limit-feasible, and (4.19) shows that the limit
value of (P) is at least β. Weak duality (Theorem 4.7.2) shows that it is at
most β, concluding the “only if” direction.

For the “if” direction, let (P) be limit-feasible with finite limit value γ and
assume for the purpose of obtaining a contradiction that (D) is infeasible.
This yields the implication

AT (y) − zc ∈ K∗, y ∈ L∗, ⇒ z ≤ 0, (4.20)

since for any pair (y, z) that violates it, 1
zy would be a feasible solution

of (D). We now play the same game as before and write this in Farkas-
lemma-compatible matrix form (again, we have unsolvability of the second
system):

(
AT −c

id 0

)
(y, z) ∈ K∗ ⊕ L∗ ⇒ 〈(0,−1), (y, z)〉 ≥ 0. (4.21)

66 4 Duality and Cone Programming

According to Lemma 4.5.6, this means that the first system

(
A id

−cT 0

)
(x,x′) = (0,−1), (x,x′) ∈ (K∗ ⊕ L∗)∗ = K ⊕ L (4.22)

is limit-feasible, which in turn means that there are sequences (xk)k∈N,
(x′

k)k∈N with xk ∈ K, x′
k ∈ L for all k, such that

lim
k→∞

A(xk) + x′
k = 0 (4.23)

and
lim
k→∞

〈c,xk〉 = 1. (4.24)

But this is a contradiction: elementwise addition of (xk)k∈N, (x
′
k)k∈N to

any feasible sequences of (P) that attain limit value γ would result in feasible
sequences that witness limit value at least γ + 1.

Consequently, the dual program (D) must have been feasible. Weak duality
(Theorem 4.7.2) yields that (D) has finite value β ≥ γ. But then β = γ follows
from the previous “only if” direction. �

Strong Duality

Here is the proof of the strong Duality Theorem of Cone Programming, under
Slater’s constraint qualification.

Proof of Theorem 4.7.1. The primal cone program (P) is feasible and
hence, in particular, limit-feasible, and since it has an interior point, Theo-
rem 4.6.5 shows that the limit value of (P) is equal to the value of (P) which
is γ. Using the regular Duality Theorem 4.7.3 (“if” direction), the statement
follows. �

In Definition 4.6.4, the reader already may have wondered why a feasible
point x ∈ int(K) is called an interior point only in the case L = {0}. The
reason is that this case is indeed special. For general L, the existence of a
feasible point in int(K) is not enough to guarantee that the value of (P)
equals the limit value. Consequently, strong duality does not necessarily hold
in such a situation.

To demonstrate this, we recall the example program on page 59 that has
K = R

2. It is feasible, has finite value 0 and a feasible solution in int(K) = K.
But the limit value is ∞. This also implies (by weak duality) that the dual
program must be infeasible, and strong duality therefore fails in this example.

To gain a better understanding of the issue, the reader is invited to find the
point in the proof of Theorem 4.6.5 where the condition L = {0} is crucial.

4.7 Duality of Cone Programming 67

Semidefinite Programming Case

Using Theorem 4.7.1, we can now prove what we originally set out to prove,
namely Theorem 4.1.1, the strong Duality Theorem of Semidefinite Program-
ming. To this end, we apply Theorem 4.7.1 with V = SYMn, W = R

m,
K = PSDn and L = {0}. According to Lemma 4.5.3, the adjoint operator
assumes the required form

AT (y) =

m∑

i=1

yiAi.

Generating matrices for the positive semidefinite cone. The last
ingredient for the proof of Theorem 4.1.1 is to determine (PSDn)

∗, the dual
of the cone of all positive semidefinite matrices. As we will see, this cone
happens to be self-dual, i.e., (PSDn)

∗ = PSDn.
First, we will show that PSDn is generated by rank-one matrices; these

will be easier to work with.

4.7.4 Lemma. Let M be an n × n real matrix. We have M � 0 if and
only if there are unit-length vectors ß1, . . . , ßn ∈ Sn−1 and nonnegative real
numbers λ1, . . . , λn such that

M =
n∑

i=1

λißiß
T
i .

This result is, in a sense, analogous to the fact that the nonnegative orthant
R

n
+ can be characterized as the set of all linear combinations with nonnegative

coefficients of the vectors e1, . . . , en of the standard basis. However, in the
case of the nonnegative orthant we have finitely many generators, but for
PSDn we need infinitely many generators.

Proof of Lemma 4.7.4. The “if” direction is immediate: the matrices ßiß
T
i

are positive semidefinite, and since PSDn is a convex cone, every nonnegative
linear combination of such matrices is in PSDn as well.

For the “only if” direction, we diagonalize M as M = SDST , where S is
orthogonal and D is the diagonal matrix of eigenvalues λ1, . . . , λn. The λi are
nonnegative since M � 0. Let D(i) be the diagonal matrix with λi at position
(i, i) and zeros everywhere else. Then

M = S

(n∑

i=1

D(i)

)
ST =

n∑

i=1

SD(i)ST =
n∑

i=1

λißiß
T
i ,

where ßi is the i-th column of S. By the orthogonality of S, ‖ßi‖ = 1 for
all i. �

68 4 Duality and Cone Programming

Now we are ready to prove the self-duality of PSDn.

4.7.5 Lemma. (PSDn)
∗ = PSDn.

Proof. First we check that every X � 0 also belongs to (PSDn)
∗, which

amounts to proving that X • Y ≥ 0 for every X,Y � 0.
To this end, we write X in the form guaranteed by Lemma 4.7.4: X =∑n
i=1 λißiß

T
i , where all λi ≥ 0 and the ßi are unit vectors. Then we employ

the expression of X • Y as Tr(XTY) = Tr(XY), the linearity of the trace,
and a “commutativity” property of it: Tr(AB) = Tr(BA) (Exercise 4.4). We
compute

X • Y = Tr

(n∑

i=1

λißiß
T
i Y

)
=

n∑

i=1

λiTr(ßiß
T
i Y)

=

n∑

i=1

λi Tr(ß
T
i Y ßi) =

n∑

i=1

λiß
T
i Y ßi ≥ 0,

since ßTi Y ßi ≥ 0 by Y � 0; see Fact 2.2.1(ii).
It remains to show the inclusion (PSDn)

∗ ⊆ PSDn. For this, we take
an arbitrary M ∈ (PSDn)

∗. For all x ∈ R
n, the matrix xxT is positive

semidefinite, so using the same trick with the trace as above, from M ∈
(PSDn)

∗ we derive

0 ≤ M • xxT = Tr((Mx)xT) = Tr(xTMx) = xTMx.

So we have xTMx ≥ 0 for all x, and thus M � 0. Lemma 4.7.5 is proved,
and so is Theorem 4.1.1. �

Figure 4.5 summarizes the whole route to the SDP duality theorem under-
taken in this chapter.

4.8 The Largest Eigenvalue

Here we will re-prove a well-known fact from linear algebra using the duality
of semidefinite programming. There exists a much shorter proof of this the-
orem, but we want to illustrate the use of duality in a very simple case. We
will also prepare grounds for a more general statement; see Exercise 4.11.

4.8.1 Theorem. Let C ∈ SYMn. Then the largest eigenvalue of C is equal
to

λ = max{xTCx : x ∈ R
n, ‖x‖ = 1}.

We note that the maximum exists, since we are optimizing a continuous
function xTCx over a compact subset of Rn.

4.8 The Largest Eigenvalue 69

∃ interior point
⇒ limit value = value

WEAK DUALITY
for cone programs:
limit value of (P) ≤ value (D)
[easy]

SEPARATION:
Separating a closed convex cone
from a point by a hyperplane
[argument: closest point]

(PSDn)
∗ = PSDn

CONE PROGRAMS:
(P)
max{〈c,x〉 : b−A(x) ∈ L,x ∈ K}
(D)
min{〈b,y〉 : AT (y)−c ∈ K∗,y ∈ L∗}

FARKAS LEMMA:
the system Ax = b,x ∈ K
limit-feasible
XOR
∃y : AT (y) ∈ K∗, 〈b,y〉 < 0

REGULAR DUALITY
for cone programs:
limit value of (P) = value of (D)

STRONG DUALITY
for cone programs:
(P) feasible, finite value,
interior point ⇒
(D) feasible, same value

(also a version for
equational form)

SDP DUALITY:
max{C •X : A1 •X = b1, . . . , Am •X = bm, X � 0}
feasible, finite value, interior point

⇒
min{bTy : y1A1+· · ·+ymAm−C � 0} feasible, same value

Fig. 4.5 The proof of the strong duality theorem for semidefinite programming

Proof. In the same spirit as in the proof of Lemma 4.7.5, we first rewrite
xTCx as C • xxT and ‖x‖ = 1 as Tr(xxT) = 1. This means that λ is the
value of the constrained optimization problem

Maximize C • xxT

subject to Tr(xxT) = 1.
(4.25)

This program is obtained from the semidefinite program

70 4 Duality and Cone Programming

Maximize C •X
subject to Tr(X) = 1

X � 0

(4.26)

by adding the constraint that X has rank 1. Indeed, the positive semidefi-
nite matrices of rank 1 are exactly the ones of the form xxT (Exercise 4.9).
Consequently, (4.26) can be considered as a relaxation of (4.25).

The crucial fact is that (4.25) and (4.26) have the same value γ. Indeed,
if X is any feasible solution of (4.26), Lemma 4.7.4 allows us write

X =
n∑

i=1

μixix
T
i ,

with nonnegative μi’s. Since the xi are unit vectors, all matrices xix
T
i have

trace 1, so linearity of Tr implies
∑n

i=1 μi = 1. But then we have

C •X = C •
n∑

i=1

μixix
T
i =

n∑

i=1

μi(C • xix
T
i)

≤ n
max
i=1

C • xix
T
i ≤ γ,

since the xix
T
i are feasible solutions of (4.25). Then C •X∗ ≥ λ for some X∗

follows from the fact that (4.26) is a relaxation of (4.25).
Next we use the strong duality theorem (Theorem 4.1.1) of semidefinite

programming. In order to be able to write down the dual of (4.26), we need
to determine the adjoint operator AT :R → SYMn. Since Tr(X) = In • X ,
Lemma 4.5.3 yields AT (y) := yIn, so that the dual of (4.26) is

Minimize y

subject to yIn − C � 0.
(4.27)

Since the primal program (4.26) has a feasible solution X that is positive
definite (choose X = 1

nIn, for example), the duality theorem applies and
shows that the optimal value of (4.27) is also λ. But what is λ? If C has
eigenvalues λ1, . . . , λn, then yIn − C has eigenvalues y − λ1, . . . , y − λn, and
the constraint yIn−C � 0 requires all of them to be nonnegative. Therefore,
the value λ, the smallest y for which yIn − C � 0 holds, equals the largest
eigenvalue of C. This proves the theorem. �

Exercise 4.11 discusses semidefinite programming formulations for the sum
of the k largest eigenvalues.

4.8 The Largest Eigenvalue 71

Exercises

4.1 Let ′
= {(x, y, z) ∈ R

3 : x ≥ 0, y ≥ 0, 2xy ≥ z2}
be a vertically stretched version of the toppled ice cream cone . Prove that
there is an orthogonal matrix M (i.e., M−1 = MT) such that

′
= {Mx : x ∈ 3}.

This means that the toppled ice cream cone is an isometric image of the ice
cream cone, plus some additional vertical squeezing (which naturally happens
when soft objects topple over).

To understand why the isometric image indeed corresponds to “toppling,”
analyze what M does to the “axis” {(0, 0, r) ∈ R

3 : r ∈ R+} of the ice cream
cone.

4.2 What is the dual of the ice cream cone n (see page 48)?

4.3 Prove Lemma 4.3.3: The dual of a direct sum of cones K and L is the
direct sum of the dual cones K∗ and L∗.

4.4 Let A ∈ R
m×n, B ∈ R

n×m be two rectangular matrices. (Then AB and
BA are both square matrices.) Prove that

Tr(AB) = Tr(BA).

4.5 Prove or disprove the following claim:

Tr(ABC) = Tr(ACB)

for all square matrices A,B,C. If you conclude that the claim is false in
general, what about the case where A,B,C ∈ SYMn?

4.6 Let γ′ be the limit value of a limit-feasible cone program

Maximize 〈c,x〉
subject to b−A(x) ∈ L

x ∈ K.

Prove that there is a feasible sequence (xk)k∈N such that

γ′ = lim sup
k→∞

〈c,xk〉.

4.7 Prove the following statement that introduces yet another kind of con-
straint qualification.

72 4 Duality and Cone Programming

If the primal program (P) is feasible, has finite value γ and the cone

C = {
(

A id

cT 0T

)
(x,x′) : (x,x′) ∈ K × L}

is closed, then the dual program (D) is feasible and has finite value β = γ. (We
again refer to the matrix notation of operators introduced on page 54.)

We remark that if K and L are “linear programming cones” (meaning that
they are iterated direct sums of one-dimensional cones {0},R,R+), then the
above cone C is indeed closed, see e.g., [GM07, Chap. 6.5]. It follows that
strong linear programming duality requires no constraint qualification.

Hint: First reprove Theorem 4.6.5 under the given constraint qualification.

4.8 LetM ∈ SYMn be a symmetric n×nmatrix with eigenvalues λ1, . . . , λn.
Prove that Tr(M) =

∑n
j=1 λj .

4.9 Prove that a matrix M ∈ SYMn has rank 1 if and only if M = ±ßßT for
some nonzero vector ß ∈ R

n. In particular, M � 0 has rank 1 if and only if
M = ßßT .

4.10 Given a symmetric matrix C ∈ SYMn, we are looking for a matrix
Y � 0 such that Y − C � 0. Prove that the trace of every such matrix is
at least the sum of the positive eigenvalues of C. Moreover, there exists a
matrix Ỹ � 0 with Ỹ − C � 0 and Tr(Ỹ) equal to the sum of the positive
eigenvalues of C.

4.11 Let C ∈ SYMn.

(a) Prove that the value of the following cone program is the sum of the
k largest eigenvalues of C.

Minimize ky + Tr(Y)

subject to yIn + Y − C � 0

(Y, y) ∈ PSDn ⊕ R.

Hint: You may use the statement of Exercise 4.10

(b) Derive the dual program and show that its value is also the sum of the
k largest eigenvalues of C. In doing this, you have (almost) proved Fan’s
Theorem: The sum of the k largest eigenvalues of C is the equal to

maxC • Y Y T ,

where Y ranges over all n× k matrices such that Y TY = Ik.

4.12 For a given graph G = (V,E) with V = {1, 2, . . . , n}, consider the
semidefinite program

4.8 The Largest Eigenvalue 73

maximize Jn •X
subject to Tr(X) = 1

xij = 0, {i, j} ∈ E

X � 0,

where Jn is the all-one n × n matrix, and show that its value is ϑ(G) (see
Chap. 3).

Hint: Dualize the semidefinite program in Theorem 3.6.1.

4.13 Prove that Lemma 3.4.2 actually holds with equality; that is,

ϑ(G ·H) ≥ ϑ(G)ϑ(H)

for all graphs G,H .

Hint: Use the expression of ϑ(G) from Exercise 4.12.

Chapter 5

Approximately Solving Semidefinite
Programs

In this chapter we present an algorithm for solving a certain class of semidef-
inite programs in polynomial time, up to any desired accuracy.

As we mentioned in Sect. 2.6, no algorithm is known that solves every
semidefinite program in time polynomial in the input size (even the represen-
tation of the output can be problematic – we recall that there are semidefinite
programs for which the coordinates of all feasible points have exponentially
many digits). Each of the known algorithms provides only an approximate
solution, and requires some restriction on the input instances.

The theoretically strongest (but quite impractical) algorithm, the ellipsoid
method, runs in time polynomial in the input size and in log(R/ε), where
ε is the maximum allowed error and R is an upper bound on the norm of all
feasible solutions for a given semidefinite program. Moreover, “polynomial
time” refers to the bit model of computation (or equivalently, the Turing
machine model).

The algorithm discussed in this chapter works only with a somewhat
restricted class of semidefinite programs: namely, optimizing a linear func-
tion, subject to linear constraints, over all positive semidefinite matrices of
trace 1, which is a substantial restriction. On the other hand, every semidef-
inite program with an a priori upper bound on the trace of some optimal
solution can easily be reduced to this form; see Sect. 5.2. Such trace-bounded
semidefinite programs cover many applications, including most of those in
combinatorial optimization. For an illustrative example we come back to the
MaxCut problem on page 79 below.

The running time of the algorithm depends polynomially on 1
ε
, rather than

on log 1
ε . Finally, in order to avoid a tedious analysis of rounding errors etc.,

we establish the polynomial bound on the running time in the real RAM
model of computation, as opposed to the bit model (see page 5), i.e., we
count arithmetic operations with real numbers.

On the other hand, the algorithm is simple (compared to other SDP algo-
rithms), easy to implement, and quite efficient in practice. Moreover, its

75B. Gärtner and J. Matoušek, Approximation Algorithms and Semidefinite
Programming, DOI 10.1007/978-3-642-22015-9 5,
© Springer-Verlag Berlin Heidelberg 2012

76 5 Approximately Solving Semidefinite Programs

analysis is also reasonably simple – we will be able to bound the running
time without too much technical effort.

The algorithm originated in a 1956 paper by Frank and Wolfe [FW56],
which dealt with convex quadratic programs. It was adapted for semidefinite
programming by Hazan [Haz08], and we will refer to it as Hazan’s algorithm.
(More on its history will be mentioned in Sect. 5.4.)

Another, faster but more involved, recent algorithm for approximately
solving semidefinite programs is due to Arora and Kale [AK07,Kal08]. It is
based on the multiplicative weights update method that also appears in many
other applications [AHK05].

5.1 Optimizing Over the Spectahedron

Hazan’s algorithm deals with semidefinite programs of the form

maximize C •X
subject to Ai •X ≤ bi, i = 1, 2, . . . ,m

Tr(X) = 1
X � 0.

(5.1)

Without loss of generality, we assume that all the Ai are symmetric and
nonzero n× n matrices.

The essential difference to a general semidefinite program as introduced in
Sect. 2.4 is the constraint Tr(X) = 1. With this constraint present, we may
consider (5.1) as a “linear program” over the spectahedron1

Spectn := {X ∈ SYMn : Tr(X) = 1, X � 0}. (5.2)

The spectahedron is a compact set, a “semidefinite analog” of the simplex.
Hence the feasible region is bounded, and we always have an optimal solution
if the problem is feasible at all.

The performance of Hazan’s algorithm depends on m, n, the desired rela-
tive error ε, and the input size, which we measure by the quantity

N := n+ supp(C) +
m∑

i=1

supp(Ai),

where supp(A) is the number of nonzero entries of a matrix A.
Here is what we will prove (recall that the Frobenius norm ‖A‖F of a

matrix is defined as ‖A‖F =
√
A •A =

√∑
ij a

2
ij).

1 Not to be confused with a spectrahedron, which is an arbitrary intersection of the
cone of positive semidefinite matrices with an affine subspace of SYMn.

5.1 Optimizing Over the Spectahedron 77

5.1.1 Theorem. Let γopt be the value of the semidefinite program (5.1),
and let ε ∈ (0, 1] be given. Hazan’s algorithm either finds a matrix
X̃ ∈ Spectn such that

γopt − C • X̃
‖C‖F ≤ 2ε,

Ai • X̃ − bi
‖Ai‖F ≤ ε, i = 1, 2, . . . ,m,

or correctly reports that (5.1) has no feasible solution. The number of
arithmetic operations is bounded by

O

(
N(log n)(logm) log(1/ε)

ε3

)

with high probability, assuming that 1/ε is bounded by some fixed poly-
nomial function of n.

Here and in the subsequent theorems, “high probability” means probability
at least 1 − 1/nc for an arbitrary but fixed c > 0. The probability is with
respect to internal random choices made by the algorithm (so we do not
assume any kind of random input; the result holds for every input).

Eigenvalue computations. As we will see, Hazan’s algorithm needs a
subroutine for approximate computation of the largest eigenvalue of a positive
semidefinite matrix. It solves the semidefinite program (5.1) using

O

(
(logm) log(1/ε)

ε2

)

invocations of that subroutine (plus auxiliary computations, which altogether

take only O(N(logm) log(1/ε)
ε2

) operations).
Computing the largest eigenvalue of a matrix is a well-studied problem in

numerical analysis, and several efficient methods are known. We have chosen
a very simple and well-known one, the power method , which is also reason-
ably efficient. It is in this method where we need randomization; otherwise,
Hazan’s algorithm is deterministic.

For completeness, we also present a worst-case analysis of the performance
of the power method in our setting (Sect. 5.8). We will need to apply the power
method only for positive definite matrices, and then, with high probability,
it requires no more than O(N logn

ε
) arithmetic operations.

This is really a worst-case bound. For “typical” matrices, the power
method is much faster. Namely, if the largest eigenvalue of the considered
matrix is well separated from the second largest one (which is the case for
“most” matrices), then O(N log n

ε) arithmetic operations suffice. One can
thus expect that for typical inputs, Hazan’s algorithm is also much faster
than the worst-case analysis indicates.

78 5 Approximately Solving Semidefinite Programs

The power method could also be replaced by other approaches. Perhaps
most notably, one can use the Lanczos algorithm [GvL96, Chap. 9]. In its
exact version, the Lanczos algorithm performs n iterations to transform the
given matrix into a tridiagonal matrix (a matrix T = (tij) is tridiagonal if
tij = 0 whenever |i − j| ≥ 2). Since there is a simple recursive formula for
the characteristic polynomial of a tridiagonal matrix, the largest eigenvalue
can be found quickly through simple interval bisection.

The approximate version of the Lanczos algorithm performs k < n itera-
tions and outputs the largest eigenvalue of the k × k tridiagonal matrix Tk

obtained at this point. In our setting, this approximate computation of the
largest eigenvalue requires O(N logn√

ε
) arithmetic operations with high prob-

ability [KW92].

5.2 The Case of Bounded Trace

Before explaining Hazan’s algorithm, we will show how the rather stringent
requirement Tr(X) = 1 can be relaxed. In a nutshell, we will see that it can be
replaced by Tr(X) ≤ t for a parameter t, but the price to pay is a polynomial
dependence of the running time on t. This part is quite simple, but since it
may be important for applications, we discuss it explicitly nevertheless.

A trace-bounded semidefinite program is of the form

maximize C •X
subject to Ai •X ≤ bi, i = 1, 2, . . . ,m,

Tr(X) {≤,=} t
X � 0,

(5.3)

where t is some positive real number, and {≤,=} stands for either an inequal-
ity or an equality constraint. The algorithm in Theorem 5.1.1 can also be used
to solve trace-bounded semidefinite programs.

First, if the constraint on the trace is the inequality Tr(X) ≤ t, we can add
an extra row and column of slack variables to X , obtaining a new matrix X ′.
Then the constraint Tr(X) ≤ t is replaced with Tr(X ′) = t.

So, assuming that we have the constraint Tr(X) = t in (5.3), we can sub-
stitute X = tY , bi = b′it, and we obtain an equivalent semidefinite program
for which Theorem 5.1.1 applies (with ε/t in the role of ε). Thus, we obtain
the following.

5.2.1 Corollary. Let γopt be the value of the semidefinite program (5.3),

and let ε ∈ (0, 1] be given. Hazan’s algorithm either finds a matrix X̃ � 0
such that Tr(X̃) {≤,=} t and

γopt − C • X̃
‖C‖F ≤ 2ε,

Ai • X̃ − bi
‖Ai‖F ≤ ε, i = 1, 2, . . . ,m,

5.2 The Case of Bounded Trace 79

or correctly reports that (5.3) has no feasible solution. The number of arith-
metic operations is bounded by

O

(
N(logn)(logm)t3 log(t/ε)

ε3

)

with high probability, assuming that t/ε is bounded by some fixed polynomial
function of n.

Solving the Semidefinite Relaxation of MAXCUT

As an illustration, let us see what Corollary 5.2.1 gives us for the semidefinite
relaxation (1.3) of the MaxCut problem:

maximize
∑

{i,j}∈E
1−xij

2

subject to xii = 1, i = 1, 2, . . . , n
X � 0.

Here G = ({1, 2, . . . , n}, E) is the graph whose maximum cut we want to
approximate.

5.2.2 Theorem. Let SDP(G) be the maximum value of the semidefinite
relaxation of the MaxCut problem, for a given graph G = (V,E) with n
vertices. Given a constant ε ∈ (0, 12), we can compute a matrix X̃ � 0 such
that

(i) |x̃ii − 1| ≤ ε for i = 1, 2, . . . , n

(ii)
∑

{i,j}∈E
1−x̃ij

2
≥ SDP(G)− ε

√|E|.
With high probability, this requires

O
(
(n4 + n3|E|) log3 n)

arithmetic operations, with a hidden cubic dependence on 1/ε.

Since SDP(G) ≥ |E|/2, the relative error made in approximately solving
the semidefinite relaxation of the MaxCut problem is at most 2ε/

√|E|.
Actually, we can even require that x̃ii = 1 for all i, which means that we get
a feasible approximately optimal solution (see Exercise 5.1).

Proof. The objective function of the MaxCut relaxation can be written as

|E|
2

− AG •X
4

,

where AG is the adjacency matrix of G (the n × n matrix with aij = 1 if
{i, j} is an edge and aij = 0 otherwise). After removing the constant term,

80 5 Approximately Solving Semidefinite Programs

and replacing each equality constraint with a pair of inequality constraints,
we get a trace-bounded problem in the form (5.3), with maximum value
γopt = SDP(G) − |E|/2:

maximize −AG •X/4
subject to xii ≤ 1, i = 1, 2, . . . , n

xii ≥ 1, i = 1, 2, . . . , n
Tr(X) = n
X � 0.

We have m = 2n, N = O(n + |E|), and t = n. The algorithm of Corol-
lary 5.2.1 then has the claimed runtime and produces a matrix X̃ � 0 such
that Tr(X̃) = n and

γopt +AG • X̃/4

‖AG‖F /4 ≤ 2ε, |x̃ii − 1| ≤ ε, i = 1, 2, . . . , n.

Since ‖AG‖F =
√
2|E| < 2

√|E|, this implies

∑

{i,j}∈E

1− x̃ij

2
=

|E|
2

− AG • X̃
4

≥ |E|
2

+ γopt − ε
√
|E| = SDP(G) − ε

√
|E|,

as claimed. �

The runtime bound of Theorem 5.2.2 is polynomial but by far not the best
known. Klein and Lu showed in 1996 [KL96] that the semidefinite relaxation
of the MaxCut problem can approximately be solved in time Õ(n|E|), where
the Õ notation suppresses polylogarithmic factors. This is still the best known
general bound. For graphs whose maximum degree is larger than the average
degree only by a constant factor, the multiplicative weights update method of
Arora and Kale yields an algorithm with runtime Õ(|E|) [Kal08, Theorem 14].

5.3 The Semidefinite Feasibility Problem

Here we start with the presentation of Hazan’s algorithm. We first reduce
the semidefinite program (5.1) in a standard way to a sequence of feasibility
problems of the following form:

find X ∈ SYMn

subject to Ai •X ≤ bi, i = 1, 2, . . . ,m,
Tr(X) = 1
X � 0.

(5.4)

5.3 The Semidefinite Feasibility Problem 81

We also assume (by rescaling the inequalities) that ‖Ai‖F = 1 for all i =
1, 2, . . . ,m, which will simplify the analysis (it allows us to switch to an
additive error bound).

5.3.1 Definition. Let ε > 0 be a real number. A matrix X ∈ Spectn such
that

Ai •X − bi ≤ ε, i = 1, 2, . . . ,m

is called an ε-approximate solution of the feasibility problem (5.4).

Here is our main result, whose proof will appear in Sect. 5.6 below. This
time we measure the input size by the parameter

N := n+

m∑

i=1

supp(Ai).

5.3.2 Theorem. There is an algorithm that, given an instance of the feasi-
bility problem (5.4) and a number ε ∈ (0, 1], either finds an ε-approximate
solution, or correctly reports that the feasibility problem has no solution. The
number of arithmetic operations required by the algorithm is bounded by

O

(
N(logn)(logm)

ε3

)
,

with high probability.

To derive Theorem 5.1.1 from Theorem 5.3.2, we want to find an approx-
imate solution of a semidefinite program of the form (5.1) by approximately
solving a sequence of feasibility problems. This is based on the following fact,
whose straightforward proof we omit.

5.3.3 Fact. Let γ ∈ R. The semidefinite program (5.1) has a solution of
value at least γ if and only if the feasibility problem

Find X ∈ SYMn

subject to C′ •X ≥ γ′

A′
i •X ≤ b′i, i = 1, 2, . . . ,m,

Tr(X) = 1
X � 0

(5.5)

has a feasible solution, where

C′ :=
C

‖C‖F , γ′ :=
γ

‖C‖F , A′
i :=

Ai

‖Ai‖F , b′i :=
bi

‖Ai‖F .

82 5 Approximately Solving Semidefinite Programs

The strategy is now to perform a binary search for the largest value of γ′ for
which the algorithm in Theorem 5.3.2 still finds an ε-approximate solution X̃
of (5.5). We start with the following lemma.

5.3.4 Lemma. Let C ∈ SYMn, and X ∈ Spectn. Then |C •X | ≤ ‖C‖F .

Proof. By the Cauchy–Schwarz inequality, we have |C •X | ≤ ‖C‖F‖X‖F ,
and it is easy to show that ‖X‖F ≤ 1 for every X ∈ Spectn (Exercise 5.5).

�

The lemma implies that the search space for γ ′ can be restricted to the
interval [−1, 1] where we can apply binary search. The following easy result,
whose proof we again omit, then yields Theorem 5.1.1.

5.3.5 Lemma. Suppose that the semidefinite program (5.1) is feasible. Let
γopt be its optimum value, and let ε ∈ (0, 1]. By solving at most log 1

ε
fea-

sibility problems of the form (5.5), we can find a value γ′ ≥ γopt/‖C‖F − ε

and an ε-approximate solution X̃ of (5.5) for that value of γ′. The matrix X̃
satisfies the requirements of Theorem 5.1.1. �

In order to maintain “high probability” throughout this reduction, we need
the (mild) assumption that log(1/ε) is bounded by a polynomial in n.

5.4 Convex Optimization Over the Spectahedron

We now turn to the problem of finding an ε-approximate solution of the
feasibility problem (5.4). Instead of trying to satisfy the linear constraints
Ai • X ≤ bi directly, we are going to solve a convex minimization problem
over the spectahedron Spectn, where the convex objective function fpen is
chosen so that it penalizes violations of the constraints.2 Namely, we solve
the problem

minimize fpen(X) subject to X ∈ Spectn, (5.6)

where

fpen(X) :=
1

K
log

(
m∑

i=1

eK(Ai•X−bi)

)
, K :=

2 logm

ε
. (5.7)

Checking the convexity of fpen is left as Exercise 5.2.

Hazan’s algorithm will find an approximate solution X̃ of the convex opti-
mization problem (5.6) that is optimal up to an additive error of at most ε/2.
The next lemma shows that such an X̃ either is the desired ε-approximate
solution of the feasibility problem (5.4), or it certifies infeasibility.

2 A function f is convex over a set D if for all x,y ∈ D and λ ∈ [0, 1], we have
f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y).

5.4 Convex Optimization Over the Spectahedron 83

5.4.1 Lemma. Let X∗ be an optimal solution of (5.6), and let X̃ ∈ Spectn
be such that fpen(X̃) ≤ fpen(X

∗)+ ε/2. Then the following statements hold.

(i) If fpen(X̃) ≤ ε, then X̃ is an ε-approximate solution of the feasibility
problem (5.4).

(ii) If fpen(X̃) > ε, then the feasibility problem has no solution.

Proof. For our choice of K = 2 logm/ε, it is easy to calculate (see Exer-
cise 5.3) that

max
i

(Ai •X − bi) ≤ fpen(X) ≤ max
i

(Ai •X − bi) + ε/2 for all X ∈ R
n×n.

Hence if fpen(X̃) ≤ ε, then the lower bound shows that X̃ is an ε-approximate
solution.

On the other hand, for fpen(X̃) > ε we know that for all X ∈ Spectn, we
have ε/2 < fpen(X) ≤ maxi(Ai • X − bi) + ε/2, meaning that there is no
feasible solution. �

The desired approximate minimum of fpen is obtained by the Frank–Wolfe
algorithm. Originally, the algorithm was developed in 1956 to solve convex
quadratic programs through a sequence of linear programs [FW56]. The algo-
rithm works for general convex programs, and this was recently used by Clark-
son [Cla10], who designed efficient approximation algorithms for a number
of mostly geometric optimization problems, based on the Frank–Wolfe algo-
rithm. Clarkson’s approach deals with convex optimization problems whose
feasible region is a simplex. Hazan showed that it can also be used if the
feasible region is the spectahedron.

Gradients. The Frank–Wolfe algorithm works with the gradient of the
minimized function, so we set up some conventions and state a simple fact
concerning this gradient.

For a function f :Rn×n → R, it is customary to write gradients as matrices.
Formally, we define ∇f(X) as the matrix D = (dij) with

dij =
∂f

∂xij
(X), 1 ≤ i, j ≤ n.

If f is symmetric, meaning that f(X) = f(XT), it follows that ∇f(X) ∈
SYMn for all X ∈ SYMn. Moreover, this definition of gradient is compatible
with scalar products in the sense that

∇f(X) • Y = 〈∇f (X),Y〉,

where f , X, Y are obtained from f , X , and Y by identifying Rn×n with Rn2

in a canonical way (listing the matrix entries row by row).

84 5 Approximately Solving Semidefinite Programs

The proof of the following lemma follows from standard calculus and we
omit it.

5.4.2 Lemma. The penalty function fpen as defined in (5.7) is symmetric,
and

∇fpen(X) =

∑m
i=1 zi(X)Ai∑m
i=1 zi(X)

∈ SYMn,

where
zi(X) := eK(Ai•X−bi), i = 1, 2, . . . ,m. �

This means that ∇fpen(X) is a convex combination of the matrices Ai,
where the coefficient of Ai is exponential in the “amount of violation”
Ai •X − bi.

5.5 The Frank–Wolfe Algorithm

In this section we describe the algorithm for minimizing fpen over the specta-
hedron. The algorithm can actually handle any function f that satisfies the
following condition.

5.5.1 Assumption. f :Rn×n → R is a convex and symmetric function. Fur-
thermore, all first and second partial derivatives of f are continuous.

So we consider the optimization problem

minimize f(X) subject to X ∈ Spectn, (5.8)

with f as in Assumption 5.5.1. Our goal is to find a matrix X̃ ∈ Spectn such
that

f(X̃) ≤ f(X∗) + ε/2,

where X∗ is an exact minimizer.
The algorithm is of gradient-based descent type. We start from some initial

matrix X1 ∈ Spectn, and we construct a sequence X2, X3, . . . of matrices in
Spectn.

Given Xk, we first solve a linearized version of (5.8) to get a descent
direction (it need not be the steepest descent direction, as in some other
gradient-based minimization algorithms), and then we make a step in this
direction to obtain Xk+1. One of the main twists in the algorithm is a careful
choice of the length of the step.

Using elementary multivariate calculus, we get that the equation of the
tangent hyperplane to the graph of f at the point (Xk, f(Xk)) is

�(X) = f(Xk) +∇f(Xk) • (X −Xk).

5.5 The Frank–Wolfe Algorithm 85

SYMn

the spectahedron

f(X)

Xk

f(Xk)

Xk+1

f(Xk+1)

the descent direction
towards Sk

�(X)

Sk

Fig. 5.1 A schematic illustration of a typical step of the Frank–Wolfe algorithm

Thus, the linearized problem (the Frank–Wolfe linearization) is to minimize
�(X) over the spectahedron. (For the purpose of this minimization, we can
remove the constant term of �(X), which we do in the description of the
algorithm below.)

It is good to realize that the minimum of �(X) is always attained on the
boundary of Spectn, and its location may thus be nowhere close to the desired
minimizer for f(X). But in the algorithm, we use the minimizer of �(X) only
for finding a local “descent direction” at Xk, and we do not expect it to
approximate the minimizer of f(X).

The Frank–Wolfe algorithm proceeds as follows.

5.5.2 Algorithm (Frank–Wolfe on the spectahedron).

1. Set X1 := xxT for an arbitrary unit vector x ∈ R
n.

2. For k = 1, 2, . . . do:

2.1 Compute a matrix Sk ∈ Spectn such that

∇f(Xk) • Sk ≤ min
X∈Spectn

∇f(Xk) •X +
ε

4
.

2.2 Set Xk+1 := Xk + αk (Sk −Xk), where αk := min
(
1, 2

k

)
.

Step 2 is illustrated in Fig. 5.1.
This formulation of the algorithm does not yet tell us how many iterations

we need to perform; we will derive a bound on this below; see page 88.
Finally, we need to specify how Step 2.1 computes an approximate solution

of the linearized problem

86 5 Approximately Solving Semidefinite Programs

min
X∈Spectn

B •X,

where B ∈ SYMn is the gradient ∇f(Xk). Here is the crucial lemma.

5.5.3 Lemma. Let B ∈ SYMn, let λmin(B) be the smallest eigenvalue of B,
and let ß be a δ-approximate smallest eigenvector of B, meaning that ßTBß ≤
λmin(B)+ δ. Then minX∈Spectn B •X = λmin(B), and for X̃ := ßßT , we have

B • X̃ ≤ λmin(B) + δ.

Proof. In the proof of Theorem 4.8.1 we saw that the largest eigenvalue of a
symmetric matrix C is equal to max{C•X : X ∈ Spectn}, and so the equality
minX∈Spectn B • X = λmin(B) follows by applying this with C := −B. For

the second part, we just use the formula B • X̃ = B • ßßT = ßTBß, easy to
check and also mentioned in the proof of Theorem 4.8.1. �

We will tackle the problem of computing δ-approximate smallest eigen-
vectors in Sect. 5.7. Fortunately, this amounts to approximating the largest
eigenvalue of a suitable positive semidefinite matrix – a standard task in
numerical mathematics.

In the Frank–Wolfe algorithm, Lemma 5.5.3 allows us to use a rank-1
matrix Sk of the form Sk = ßkß

T
k to perform the update in Step 2.2. The

matrix Xk will then be a sum of k rank-1 matrices, and as such it has rank
at most k; see Exercise 5.4. This is relevant in applications where a sublin-
ear number of iterations is performed in Algorithm 5.5.2. In this case, the
algorithm is said to compute a low-rank approximation.

The Curvature Constant

Figure 5.1 indicates that the decrease of the f -value made during one iteration
of Step 2 depends on the “shape” of f – the flatter, the better. Our goal is
to relate the progress in the value of f(X) to the progress in the value of
∇f(Xk)•X , but for this it is important to know how quickly f “rises above”
its linearization as we move from Xk to Xk+1.

It is precisely the second derivative of f (geometrically corresponding to
the curvature of the graph of f) that captures this. Thus, we start the analysis
by assigning a “curvature constant” to f . This can be thought of as the
maximum curvature of the graph of f over the spectahedron.

5.5.4 Definition. Let ∇2f(X) be the Hessian of f at X , i.e., the matrix

∇2f(X) :=

(
∂2f

∂xi∂xj
(X)

)

1≤i,j≤n2

∈ SYMn2

5.5 The Frank–Wolfe Algorithm 87

of second partial derivatives of f atX . (See the paragraph before Lemma 5.4.2
for the boldface notation.)

The curvature constant Γ (f) of f is defined as

Γ (f) = max
X∈Spectn

λmax(∇2f(X)),

where λmax(M) denotes the maximum eigenvalue of a (symmetric square)
matrix M .

We note that the maximum exists by continuity of the second partial
derivatives, continuity of the largest eigenvalue, and compactness of the spec-
tahedron. We also observe that all Hessians under consideration are positive
semidefinite, which is a consequence of the convexity of f [PSU88, Sect. 2.3].
In particular, Γ (f) ≥ 0.

Let us see that we can indeed use the curvature constant to bound the
deviation of f from its linearization. Namely, in the setting of the algorithm,
we have the following estimate.

5.5.5 Lemma. Let f,Xk, Sk, αk, Xk+1 be as in Algorithm 5.5.2, and set
Z := αk(Sk −Xk) = Xk+1 −Xk. Then

f(Xk+1) ≤ f(Xk) +∇f(Xk) • Z + α2
kΓ (f).

In Fig. 5.1, the lemma claims that at the point Xk+1, the vertical distance
between f and the linearization is at most α2

kΓ (f). (We recall that αk is the
step size parameter in the k-th iteration of Algorithm 5.5.2.)

Proof. We use Taylor’s formula [PSU88, Theorem 1.2.4], according to which
there exists a convex combination X ′ of Xk and Xk+1 such that

f(Xk+1) = f(Xk) +∇f(Xk) • Z +
1

2
ZT∇2f(X ′)Z.

We also have
‖Z‖2 = ‖Z‖2F = α2

k‖Sk −Xk‖2F ≤ 2α2
k

(since Spectn has diameter
√
2 ; see Exercise 5.6). Now we use that

λmax(A) = max
‖u‖=1

uTAu

for every matrix A (Theorem 4.8.1) to conclude that

ZT∇2f(X ′)Z ≤ ‖Z‖2λmax(∇2f(X ′)) ≤ 2α2
kΓ (f),

due to X ′ ∈ Spectn. The statement follows. �

88 5 Approximately Solving Semidefinite Programs

The Analysis

We will prove the following result on the convergence rate of the Frank–Wolfe
algorithm.

5.5.6 Proposition. Let X∗ be an optimal solution of the convex optimiza-
tion problem minX∈Spectn f(X), and let Xk be the k-th iterate computed by
Algorithm 5.5.2. Then, for all k = 1, 2, . . . ,

f(Xk) ≤ f(X∗) +
ε

4
+

4Γ (f)

k
.

Proof. The main ingredient of the proof is the inequality

f(Xk+1) ≤ f(Xk) +∇f(Xk) • αk(Sk −Xk) + α2
kΓ (f) (5.9)

that we derived in Lemma 5.5.5. Then we need the fact that Sk is approxi-
mately optimal for the linearized problem; namely,

∇f(Xk) • Sk ≤ min
X∈Spectn

∇f(Xk) •X +
ε

4
≤ ∇f(Xk) •X∗ +

ε

4
. (5.10)

The last ingredient is the convexity of f . Geometrically, this means that the
graph of f is above the graph of any of its linearizations. Here we use this
for the linearization �(X) at Xk:

f(Xk) +∇f(Xk) • (X∗ −Xk) ≤ f(X∗). (5.11)

Starting from (5.9) and plugging in (5.10) and (5.11), we arrive at

f(Xk+1) ≤ (1− αk)f(Xk) + αk

(
f(X∗) +

ε

4

)
+ α2

kΓ (f). (5.12)

From this, we derive the statement of the proposition by induction. For
brevity, let us write ω := f(X∗) + ε

4 .
For k = 1, we have αk = 1, and (5.12) yields f(X2) ≤ ω+Γ (f) as required.

Now let us assume that the statement holds for some k ≥ 2. With αk = 2/k,
(5.12) gives

f(Xk+1) ≤ (1− αk)

(
ω +

4Γ (f)

k

)
+ αkω + α2

kΓ (f)

= ω +

(
1− 2

k

)
4Γ (f)

k
+

4Γ (f)

k2
= ω +

k − 1

k2
· 4Γ (f) ≤ ω +

4Γ (f)

k + 1

by a simple calculation. �

The proposition just proved gives us a bound for the required number of
iterations in the Frank–Wolfe algorithm.

5.6 Back to the Semidefinite Feasibility Problem 89

5.5.7 Corollary. For
k ≥ 16Γ (f)/ε,

the iterate Xk in Algorithm 5.5.2 satisfies f(Xk) ≤ f(X∗) + ε/2. �

We remark that up to a constant, this bound on the number of iterations
cannot be improved in the worst case; see Exercise 5.8.

5.6 Back to the Semidefinite Feasibility Problem

In order to apply Corollary 5.5.7 with f = fpen, we need an upper bound for
Γ (fpen).

5.6.1 Lemma. Γ (fpen) ≤ K =
2 logm

ε
.

Proof. According to Definition 5.5.4, we have to bound the largest eigenvalue
of every Hessian ∇2fpen(X), X ∈ Spectn.

We know (Exercise 4.8) that the sum of eigenvalues of a matrix equals
its trace. Thus, for positive semidefinite matrices, such as the Hessians we
consider, the largest eigenvalue is bounded by the trace. Furthermore, it is
easy to prove (see Exercise 5.7) that

Tr(∇2fpen(X)) ≤ K
m∑

i=1

yi(X) ‖Ai‖2F︸ ︷︷ ︸
=1

, (5.13)

where the yi(X) are nonnegative coefficients summing up to one. �

We also need to show how we can approximately solve the linearized prob-
lem in Step 2.1 of the Frank–Wolfe algorithm. In Sect. 5.7 below, we will
prove the following.

5.6.2 Proposition. Given ∇f(Xk), a matrix Sk ∈ Spectn satisfying

∇fpen(Xk) • Sk ≤ min
X∈Spectn

∇fpen(Xk) •X +
ε

4

can be computed with

O

(
N

ε
logn

)

arithmetic operations, with high probability. Moreover, we obtain Sk of the
form ßkß

T
k , with ßk a unit vector.

90 5 Approximately Solving Semidefinite Programs

Now we have all ingredients together to derive our main theorem from
Sect. 5.3, which bounds the number of arithmetic operations necessary to
solve the feasibility problem.

Proof of Theorem 5.3.2. We set

t :=
16K

ε
= O

(
logm

ε2

)
,

and we perform t iterations of the Frank–Wolfe Algorithm 5.5.2 with the
penalty function fpen. According to Corollary 5.5.7 and Lemma 5.4.1, Xt is
then either the desired ε-approximate solution of the feasibility problem, or
a certificate that there is no feasible solution.

It remains to count the arithmetic operations. Here is what we do in the
k-th iteration:

• We compute the gradient∇fpen(Xk), which can be done with O(N) arith-
metic operations; see Lemma 5.4.2.

• We approximately solve the linearized problemminX∈Spectn∇fpen(Xk) •X.
This can be done with O(N(log n)/ε) arithmetic operations by Proposi-
tion 5.6.2.

• We compute Xk+1. By Lemma 5.4.2 again, the next iteration does not
require the matrix Xk+1 itself but merely the scalar products Ai •Xk+1.
If we already have Ai •Xk, we compute

Ai •Xk+1 = (1− αk)(Ai •Xk) + αk(Ai • Sk), i = 1, 2, . . . ,m,

and the latter scalar products are obtained with O(N) arithmetic opera-
tions for all i, due to Sk = ßkß

T
k .

The bound claimed in the theorem follows by combining these bounds.
To get the high probability result for the whole algorithm, the number t =
O((logm)/ε2) of iterations has to be bounded by a polynomial in n. �

5.7 From the Linearized Problem to the Largest
Eigenvalue

By Lemma 5.5.3, the matrix Sk in iteration k of the Frank–Wolfe algorithm
can be chosen of the form Sk = ßkß

T
k , where the vector ßk is an approximate

eigenvector belonging to the smallest eigenvalue of the symmetric matrix B =
∇f(Xk). The next lemma allows us to further transform this computational
task to computing an approximate eigenvector for the largest eigenvalue of a
positive definite matrix.

5.7 From the Linearized Problem to the Largest Eigenvalue 91

5.7.1 Lemma. Let B ∈ SYMn, B �= 0, ‖B‖F ≤ 1, and let us set Q :=
2In −B. Then the following statements hold.

(i) Q is positive definite.
(ii) λmax(Q) = 2− λmin(B) ∈ [1, 3].
(iii) If u ∈ R

n, ‖u‖ = 1, and uTQu ≥ λmax(Q)−δ, then uTBu ≤ λmin(B)+δ.

Proof. We observe that all eigenvalues of B (as well as those of −B) lie in
the interval [−1, 1]. Indeed, for an eigenvalue λ of B with a unit eigenvector x,
we have

|λ| = |xTBx| = |B • xxT | ≤ ‖B‖F‖xxT ‖F = ‖B‖F ≤ 1,

by the Cauchy–Schwarz inequality. It follows that all eigenvalues of Q are
in the interval [1, 3]. In particular, Q is positive definite, and this shows (i).
Parts (ii) and (iii) are simple calculations. �

As was announced in the introduction, we will employ the power method
for computing an approximate eigenvector. In the next section, we will estab-
lish the following theorem.

5.7.2 Theorem. Let Q be an n × n positive definite matrix with at most
N nonzero entries, such that λmax(Q) ∈ [1, 3]. Then, given δ ∈ (0, 12], we can
compute a unit δ-approximate eigenvector u for the largest eigenvalue of Q,
i.e., a u such that

‖u‖ = 1, uTQu ≥ λmax(Q)− δ.

With high probability, the number of arithmetic operations can be bounded
by

O

(
N

δ
logn

)
.

Now we are ready to provide the oracle for the Frank–Wolfe algorithm
promised in Proposition 5.6.2.

Proof of Proposition 5.6.2. In the setting of the proposition, we have
B = ∇fpen(Xk), and by Lemma 5.4.2, which describes the structure of
∇fpen, we know that B has at most N nonzero entries and satisfies ‖B‖F ≤
maxi ‖Ai‖F = 1. Thus, we can use Lemma 5.7.1, set up the matrix Q, and
compute an approximate eigenvector of it according to Theorem 5.7.2, with
δ := ε/4. It is easy to check, using Lemma 5.7.1(iii), that the resulting approx-
imate eigenvector can be used as ßk in the proposition. �

92 5 Approximately Solving Semidefinite Programs

5.8 The Power Method

The power method is a well-known numerical method for finding a dominant
eigenvalue of a square matrix Q, plus a corresponding eigenvector. (An eigen-
value is dominant if it has the largest absolute value among all eigenvalues
of Q.)

Given a start vector u0 ∈ R
n (whose choice will be discussed starting

from page 95 below), the power method computes a sequence u1,u2, . . . of
unit vectors as follows.

5.8.1 Algorithm (The power method).

1. Let u0 ∈ R
n, u0 �= 0.

2. For k = 0, 1, 2 . . . do:

2.1 vk := Quk,
2.2 �k := uT

k vk,
2.3 uk+1 := vk/‖vk‖ ∈ Sn−1.

It is easy to show by induction that

uk =
Qku0

‖Qku0‖ , k = 1, 2, . . . ,

and this explains the name “power method.”
Under suitable conditions, �k converges to a dominant eigenvalue of Q as

k → ∞, and uk to a corresponding eigenvector.3

One of the conditions is that the initial vector u0 is not orthogonal (or
very close to orthogonal) to the corresponding eigenvector. If we choose u0 at
random, for example, then it is very unlikely to be almost orthogonal to a
fixed vector, and so we will tacitly assume in the following discussion that
this condition is satisfied (we will return to it on page 95).

The convergence of the power method is rather fast, and easy to prove,
provided that Q has only a single dominant eigenvalue λ1, and moreover,
|λi/λ1| ≤ α holds for all the other eigenvalues λi, i = 2, 3, . . . , n, where α < 1
is a constant. Then the error |�k − λ1| decreases geometrically, like αk; see
Exercise 5.10.4

3 In principle, it may happen that one of the vk equals 0, and then uk+1 is not even
well defined. However, if Q has full rank (in particular, if it is positive definite), then
u0 �= 0 implies uk �= 0 for all k, and we need not worry about this issue.
4 The exercise makes the claim about convergence for Q positive definite, but it
actually holds for arbitrary Q, possibly with complex entries and not necessarily
symmetric – the assumption of a single dominant eigenvalue is sufficient. In this
context, one can observe that if Q is real and has a single dominant eigenvalue λ1,
then λ1 has to be real, for example because complex eigenvalues of a real matrix come
in conjugate pairs.

5.8 The Power Method 93

However, the method becomes much slower if there are several dominant
eigenvalues, and in some cases, it may even fail to converge.

For us, it suffices to apply the power method only to positive semidefinite
matrices Q. Then a considerably more sophisticated analysis shows that the
power method converges for all such Q, but the convergence may be much
slower; the error after k iterations may decrease only like k−1.

From now on, we will thus assume that Q is as in Theorem 5.7.2, i.e.,
positive definite and with λmax(Q) ∈ [1, 3]. Let the eigenvalues of Q be
λmax(Q) = λ1 ≥ λ2 ≥ · · · ≥ λn > 0, and let x1, . . . ,xn be the corresponding
unit eigenvectors.

Our convergence analysis for �k starts with the following lemma.

5.8.2 Lemma. Let w1, . . . , wn be the unique coefficients such that

u0 =

n∑

i=1

wixi. (5.14)

Then

�k =

∑n
i=1 w

2
i λ

2k+1
i∑n

i=1 w
2
i λ

2k
i

, k = 1, 2, (5.15)

The simple proof (that works for any square matrix Q) is left as Exer-
cise 5.9. Suppose for a moment that λ1 > λ2 and that w1 �= 0 (meaning that
u0 is not orthogonal to x1). Then for large k, the terms w2

1λ
2k+1
1 and w2

1λ
2k
1

dominate numerator and denominator of (5.15), so the fraction converges
to λ1.

Here we are interested in the rate of convergence, and we also want to
deal with the case λ1 = λ2. Not surprisingly, the convergence rate depends
on “how orthogonal” u0 is to x1. We measure this by the quantity

τ = τ(u0) =
w2

2 + · · ·+ w2
n

w2
1

∈ [0,∞],

where w1, . . . , wn are as in Lemma 5.8.2. The larger τ(u0), the worse the
power method converges. (It is easy to show that τ = tan2 α, where α is the
angle between u0 and x1.)

Now we are ready to state the main result of this section.

5.8.3 Proposition. Suppose that w1 �= 0, and let β ∈ (0, 1/2] be a real
number. If

2k + 1 >
max(1, ln τ)

| ln(1− β)| ,

then the number �k in Algorithm 5.8.1 satisfies

λ1 ≥ �k ≥ (1 − β)λ1.

94 5 Approximately Solving Semidefinite Programs

Proof. We follow [OSV79]. Since the claimed inequalities λ1 ≥ �k ≥ (1−β)λ1

are easily seen to be invariant under scaling Q, we may assume w.l.o.g. that
λ1 = 1. Then (5.15) becomes

�k =
w2

1 +
∑n

i=2 w
2
i λ

2k+1
i

w2
1 +

∑n
i=2 w

2
i λ

2k
i

=:
g2k+1

g2k
, (5.16)

with w2
1 > 0 by assumption. The inequality 1 ≥ �k is immediate from

λ2, . . . , λn ≤ 1. The claimed lower bound follows from the next two lem-
mas. �

5.8.4 Lemma. The value �k as defined in (5.16) is bounded from below by
the unique root �̃k ∈ (0, 1) of the polynomial

pk(x) :=
ckτ

2k + 1
x2k+1 + x− 1, where ck :=

(
2k

2k + 1

)2k

. (5.17)

5.8.5 Lemma. Let �̃k be the unique root of the polynomial pk(x) (as in
Lemma 5.8.4) lying in (0, 1). If

2k + 1 ≥ max(1, ln τ)

| ln(1− β)| ,

then �̃k ≥ 1− β.

Proof of Lemma 5.8.4. We determine the distribution of (λ2, . . . , λn) ∈
[0, 1]n−1 for which the expression (5.16) (considered as a function of λ2, . . .,
λn) is minimized. There must be a minimum over the compact set [0, 1]n−1

by the continuity of �k.
Fixing the values of λj , j �= i, arbitrarily, we have

�k =
W + w2

i λ
2k+1
i

W ′ + w2
i λ

2k
i

, W ≤ W ′.

Elementary calculations then show that �k is minimized for λi ∈ (0, 1). This
means that every minimum of �k is an interior point of [0, 1]n−1, at which
necessarily ∇�k = 0.

We next prove that there are unique positive values λ̃2, . . . , λ̃n for which
the gradient ∇�k vanishes. This means that �k has a unique minimum �̃k at
λ̃2, . . . , λ̃n.

For this, we first compute the partial derivatives and get

∂�k
∂λi

=
(2k + 1)w2

i λ
2k
i g2k − 2kw2

i λ
2k−1
i g2k+1

g22k
, i = 2, . . . , n.

The unique positive zero of ∂�k/∂λi is

5.8 The Power Method 95

λi =
2k

2k + 1

g2k
g2k+1

=
2k

2k + 1
�k < 1, i = 2, . . . , n.

To find the values λ̃i and establish their uniqueness, we need to solve the
polynomial equation

�k =
w2

1 +
(

2k
2k+1�k

)2k+1 ∑n
i=2 w

2
i

w2
1 +

(
2k

2k+1
�k

)2k ∑n
i=2 w

2
i

=
1 +

(
2k

2k+1�k

)2k+1

τ

1 +
(

2k
2k+1

�k

)2k

τ

and argue that it has a unique solution �̃k. Multiplying with the denominator,
this equation simplifies to (5.17). Since we have p′k(x) = ckτx

2k + 1, the
polynomial pk(x) is monotone increasing for 0 ≤ x ≤ 1. Since we have pk(0) =
−1 and pk(1) = ckτ/(2k+1) > 0, there is indeed a unique zero x = �̃k ∈ (0, 1),
which corresponds to the minimum of �k over [0, 1]n−1. The lemma is proved.

�

Proof of Lemma 5.8.5. Let us set α := 1− β ∈ [1/2, 1). As shown in the
proof of Lemma 5.8.4, the polynomial pk(x) defined in (5.17) is monotone
increasing. Hence, if pk(α) < 0, we have �̃k ≥ α. With k as in the statement
of the lemma,

α2k+1 ≤ α−max(1,ln τ)/ lnα = e−max(1,ln τ) = min

(
1

e
,
1

τ

)
. (5.18)

Moreover, for 1/2 ≤ α < 1, we have (α− 1) ≤ (lnα)/2, and so

pk(α) =
ckτ

2k + 1
α2k+1 + α− 1 ≤ ck

2k + 1
+

lnα

2
.

Taking logarithms in (5.18), we obtain lnα ≤ −1/(2k + 1). Then

pk(α) ≤
ck − 1

2

2k + 1
≤ c1 − 1

2

2k + 1
< 0,

since c1 = 4
9
< 1

2
, and the lemma is proved. �

The Start Vector

In order for the power method to converge (quickly), we need a start vector u0

for which ln τ is not too large, where

τ = τ(u0) =
w2

2 + · · ·+ w2
n

w2
1

.

96 5 Approximately Solving Semidefinite Programs

The following lemma shows that a random u0 works with high probability.

5.8.6 Lemma. Let u0 ∈ R
n be a vector whose n components are indepen-

dent N(0, 1) variables (standard Gaussians). For every c > 0,

Prob[ln τ(u0) ≤ (3c+ 1) lnn] ≥ 1− 2

nc
.

Proof. For a standard Gaussian w, E
[
w2

]
= 1, hence E

[
w2

2 + · · ·+ w2
n

]
=

n− 1. By the Markov inequality,

Prob
[
w2

2 + · · ·+ w2
n ≥ nc+1

]
<

1

nc
. (5.19)

We also have

Prob

[
|w1| ≤ 1

nc

]
=

1√
2π

∫ 1/nc

−1/nc

e−x2/2 dx ≤ 1√
2π

∫ 1/nc

−1/nc

dx ≤ 1

nc
. (5.20)

With (5.19) and (5.20), the union bound yields

Prob
[
τ(u0) ≤ n3c+1

] ≥ Prob

[
w2

2 + · · ·+ w2
n ≤ nc+1 and w2

1 ≥ 1

n2c

]

≥ 1− 2

nc
,

and the lemma follows. �

Putting It Together

We can now prove Theorem 5.7.2, stating that an eigenvector belonging to the
largest eigenvalue of a positive definite matrix Q can be computed efficiently.

Proof of Theorem 5.7.2. We set β := δ/λmax(Q). We have δ/3 ≤ β ≤
δ ≤ 1/2 (since we assume λmax(Q) ∈ [1, 3]). According to Proposition 5.8.3,
the value �k in Algorithm 5.8.1 satisfies

uT
kQuk = �k ≥ (1− β)λmax(Q) = λmax(Q)− δ

for 2k+ 1 > max(1, ln τ(u0))/| ln(1− β)|, so uk is the desired δ-approximate
eigenvector of Q.

For β ∈ (0, 1), we have | ln(1− β)| ≥ β ≥ δ/3. Hence we need to perform

k = O

(
1

δ
max(1, log τ(u0))

)

5.8 The Power Method 97

iterations of the power method, where every iteration takes time O(N). The
statement of the theorem follows, since with probability at least 1− 2/nc, we
have log τ(u0) = O(log n) by Lemma 5.8.6. �

The bound of Theorem 5.7.2 on the required number of iterations cannot
be improved in the worst case [KW92]. But if the two largest eigenvalues
are well-separated, the bound drops from O(log n

δ) to O(log n
δ). This is Exer-

cise 5.10.

Exercises

5.1 Prove the following variant of Theorem 5.2.2. Let SDP(G) be the max-
imum value of the semidefinite relaxation of the MaxCut problem, for a
given graph G = (V,E) with n vertices. For every constant ε ∈ (0, 1

2
], we can

compute a matrix X̃ � 0 such that

(i) x̃ii = 1 for i = 1, 2, . . . , n

(ii)
∑

{i,j}∈E
1−x̃ij

2 ≥ SDP(G)− ε|E|
With high probability, The algorithm requires

O
(
(n4 + n3|E|) log3 n)

arithmetic operations, with a hidden cubic dependence on 1/ε.

Hint: Start from the matrix X̃ ′ as guaranteed by Theorem 5.2.2 and set
X̃ = DX̃ ′D for a diagonal matrix D � 0 chosen so that x̃ii = 1 for all i.

5.2 Let A1, A2, . . . , Am ∈ SYMn be symmetric matrices, b ∈ R
m. Show that

the function fpen:R
n×n → R defined by

fpen(X) :=
1

K
log

(m∑

i=1

eK(Ai•X−bi)

)

is convex over Rn×n, for all real numbers K > 0.

Hint: You may proceed in the following steps.

(i) Prove that the function f :Rm → R defined by f(x) = 1
K log

(∑m
i=1 e

Kxi

)

is convex. For this, it is sufficient that all Hessians are positive semidef-
inite [PSU88, Theorem 2.3.7].

(ii) Consider the linear functions gi:R
n×n → R, where gi(X) = Ai •X − bi.

Derive the convexity of fpen(X) = f(g1(X), . . . , gm(X)) from the con-
vexity of f and the linearity of the gi.

98 5 Approximately Solving Semidefinite Programs

5.3 Let K ∈ R, K > 0, and consider the function ΦK :Rm → R defined by

ΦK(y) =
1

K
log

(m∑

i=1

eKyi

)
.

Prove that

maxm
i=1yi ≤ ΦK(y) ≤ maxm

i=1yi +
logm

K
, for all y ∈ R

m.

5.4 Let M ∈ R
n×n, v ∈ R

n. Prove that

rank(M + vvT) ≤ rank(M) + 1.

5.5 Prove that ‖X‖F ≤ 1 for every X ∈ Spectn = {X∈ SYMn : Tr(X) = 1,
X � 0}.

5.6 Prove that ‖X − Y ‖F ≤ √
2 for all X,Y ∈ Spectn, and that this bound

is tight.

5.7 Prove inequality (5.13):

Tr(∇2fpen(X)) ≤ K =
2 logm

ε
.

5.8 Show that the analysis of Hazan’s algorithm cannot be improved in the
worst case. For this, prove that the bound of Corollary 5.5.7 on the number
of iterations is asymptotically tight for the convex function f(X) = ‖X‖2F if
k ≤ n and ε = 2/n.

Hint: Prove that the function f(X) = ‖X‖2F has curvature constant
Γ (f) = 2. Moreover, for 1 ≤ k ≤ n,

min
X∈Spectn
rank(X)=k

f(X) =
1

k
.

5.9 Prove Lemma 5.8.2 that provides a formula for �k in Algorithm 5.8.1.

5.10 Prove the following statement. Suppose that we apply the power
method with a random start vector to a Q � 0 for which λ2/λ1 ≤ α < 1,
where λ1, λ2 are the two largest eigenvalues of Q, and α is a constant. Then
for every β ∈ (0, 1], we have �k ≥ (1− β)λ1 for

k = Θ

(
log

n

β

)
,

with high probability.

Chapter 6

An Interior-Point Algorithm for
Semidefinite Programming

In this chapter we consider another method for approximately solving
semidefinite programs, a primal-dual central path algorithm. This algorithm
belongs to the family of interior-point methods , whose scope reaches far
beyond semidefinite programming.

The primal-dual central path algorithm exhibits some high-level similari-
ties to Hazan’s algorithm discussed in the previous chapter. Both work in the
real RAM model of computation, and both compute approximately optimal
solutions through a sequence of improvement steps.

The major advantage of the interior-point approach considered here is a
vastly better dependence of the running time on the desired approximation
error ε. The version of Hazan’s algorithm that we analyzed in detail has

runtime proportional to log(1/ε)
ε3 . In contrast, the runtime of the primal-dual

central path algorithm is proportional only to log(1/ε). The price to pay
for this efficiency is a mildly more complicated improvement step, and a
substantially more complicated analysis, which we will not do in detail.

What we will present in full detail is the theoretical foundation of the
primal-dual central path algorithm, namely the existence and uniqueness
of the central path under suitable conditions. We also provide a detailed
description of the algorithm’s main step – following the central path – but its
analysis will be only sketched. Also, we will not discuss “phase one” of the
algorithm, whose task is to find a feasible starting point close to the central
path.

Interior-point methods for semidefinite programming have been pioneered
by Nesterov and Nemirovski [NN90,NN94] as well as Alizadeh [Ali95]. The
work of Nesterov and Nemirovski develops an interior-point method for gen-
eral convex programming problems, based on the ingenious concept of self-
concordant barrier functions. The semidefinite programming case is then han-
dled by exhibiting a suitable barrier function for this case.

Alizadeh, in contrast, starts from a specific interior-point method for linear
programming and extends it to the semidefinite case. On the way tools are

99B. Gärtner and J. Matoušek, Approximation Algorithms and Semidefinite
Programming, DOI 10.1007/978-3-642-22015-9 6,
© Springer-Verlag Berlin Heidelberg 2012

100 6 An Interior-Point Algorithm for Semidefinite Programming

developed that allows a similar extension of many other interior-point method
for linear programming.

The algorithm that we present in more detail in this chapter is the short-
step method of Kojima et al. [KSH97] and Monteiro [Mon97]. For the central
path material, we stay close to Laurent and Rendl [LR05]. Throughout this
chapter, we consider semidefinite programs in equational form:

Maximize C •X
subject to Ai •X = bi, i = 1, 2, . . . ,m,

X � 0.
(6.1)

As usual, we assume w.l.o.g. that C and the Ai are symmetric matrices.

6.1 The Idea of the Central Path

The main idea behind all central path interior-point methods is to get rid
of the “difficult” nonlinear constraint X � 0 by modifying the objective
function. Namely, we add a barrier function to it, so that the modified
objective function tends to −∞ as we approach the boundary of the set
PSDn = {X ∈ SYMn : X � 0} from the interior. Then we can drop the
constraints X � 0, since they will be “non-binding” at optimality.

Here is a concrete realization of this idea. For a real number μ > 0, we
consider the auxiliary problem

Maximize fμ(X) := C •X + μ ln detX
subject to Ai •X = bi, i = 1, 2, . . . ,m,

X � 0,
(6.2)

where X � 0 means that X is positive definite (all eigenvalues are strictly
positive). Since all matrices on the boundary of PSDn have at least one
eigenvalue equal to 0, they are singular and satisfy detX = 0. Thus, μ ln detX
is indeed a barrier function in the above sense.

We would like to claim that under suitable conditions, the auxiliary prob-
lem has a unique optimal solution X∗(μ) for every μ > 0, and that C •X∗(μ)
converges to the optimum value of (6.1) as μ → 0. Obviously, we need to
assume that there is a feasible X � 0, but additional conditions will be
needed as well. The set {X∗(μ) : μ > 0} is known as the central path, because
the barrier term μ ln detX pushes X∗(μ) “towards the center” of the feasible
region.

We will proceed in the following steps, always assuming that μ is strictly
positive.

(i) We show that if the auxiliary problem (6.2) has an optimal solution,
then it has a unique optimal solution X∗(μ).

6.2 Uniqueness of Solution 101

(ii) We derive necessary conditions for the existence of X∗(μ), in the form of
a system of equations and inequalities that X∗(μ) has to satisfy. These
conditions will also imply the desired convergence of C •X∗(μ).

(iii) We prove that the necessary conditions derived in (ii) are also sufficient.
(iv) We show that the above necessary and sufficient conditions are satisfied

under suitable assumptions on the semidefinite program. Thus, under
these assumptions, the central path exists, and for μ small enough,X∗(μ)
is an approximately optimal solution of the semidefinite program.

6.2 Uniqueness of Solution

Here is the first step in the above plan.

6.2.1 Lemma. If fμ attains a maximum over the feasible region of (6.2),
then fμ attains a unique maximum.

Proof. This easily follows from the fact that fμ is strictly concave over the
interior of PSDn (see the next lemma), meaning that for all X,Y � 0 with
X �= Y ,

fμ((1 − t)X + tY) > (1 − t)fμ(X) + tfμ(Y), 0 < t < 1.

Indeed, if the maximum were attained for two different matrices X∗ and Y ∗,
then strict concavity would imply that (X∗+Y ∗)/2 has even higher fμ-value
– a contradiction. We note that all considered matrices (1 − t)X + tY are
positive definite as well by convexity of (the interior of) PSDn. �

6.2.2 Lemma. The function X �→ ln detX is strictly concave on the interior
of PSDn. (Since C •X is linear in X , this also implies strict concavity of fμ
for every μ > 0.)

Proof. For fixed matrices X,Y � 0, X �= Y , we define

g(t) = ln det((1− t)X + tY).

If we can prove that g is strictly concave on the interval [0, 1], we are done,
since then

ln det((1− t)X + tY)︸ ︷︷ ︸
g((1−t)0+t1)

> (1− t) ln detX + t ln detY︸ ︷︷ ︸
(1−t)g(0)+tg(1)

, 0 < t < 1.

Because X,Y � 0, the function g is actually defined on some open interval
containing [0, 1]. Moreover, g has derivatives of all orders.

102 6 An Interior-Point Algorithm for Semidefinite Programming

Let us first recall how we can prove strict concavity of a twice differentiable
function in one real variable over an open set U . A sufficient condition from
analysis is that the second derivative is negative throughout U . For example,
to prove that f(x) = ln(x) is strictly concave over the positive reals, we
compute f ′′(x) = −1/x2 < 0 for all x > 0.

Let us now write g(t) as

g(t) = ln det(X + tZ), Z = Y −X ∈ SYMn.

Since X � 0, there is a nonsingular matrix U such that X = UTU , and we
can write

X + tZ = UT (In + t(U−1)TZU−1)U.

Using detU = detUT , together with multiplicativity of the determinant and
the properties of logarithms, gives

ln det(X + tZ) = 2 ln detU + ln det(In + t(U−1)TZU−1)

= ln detX + ln det(In + tZ̃),

with Z̃ := (U−1)TZU−1 ∈ SYMn. Let Z̃ have eigenvalues λ1, . . . , λn. Then
In + tZ̃ has eigenvalues 1 + tλ1, . . . , 1 + tλn, and since the determinant of a
symmetric matrix is the product of its eigenvalues (another fact that we get
from diagonalization), we further have

g(t) = ln det(X + tZ) = ln detX +
n∑

i=1

ln(1 + tλi).

This yields

g′(t) =
n∑

i=1

λi

1 + tλi
, g′′(t) = −

n∑

i=1

λ2
i

(1 + tλi)2
.

Since X �= Y , we have Z̃ �= 0, so least one λi is nonzero, and we obtain
g′′(t) < 0. �

6.3 Necessary Conditions for Optimality

According to the previous section we know that if the auxiliary problem has
an optimal solution at all, then it has a unique optimal solution X∗(μ). Now
we use the method of Lagrange multipliers from analysis to derive a system
of equations and inequalities that X∗(μ) has to satisfy if it exists at all.

6.3 Necessary Conditions for Optimality 103

The Method of Lagrange Multipliers

We recall that this is a general method for finding a (local) maximum of f(x)
subject to m constraints g1(x) = 0, g2(x) = 0,. . . , gm(x) = 0, where f and
g1, . . . , gm are functions from R

n to R. It can be seen as a generalization
of the basic calculus trick for maximizing a univariate function by seeking
a zero of its derivative. It introduces the following system of equations with
unknowns x ∈ R

n and y ∈ R
m (the yi are auxiliary variables called the

Lagrange multipliers):

g1(x) = g2(x) = · · · = gm(x) = 0 and ∇f(x) =
m∑

i=1

yi∇gi(x). (6.3)

Here ∇ denotes the gradient (which, by convention, is a row vector):

∇f(x) =
(
∂f(x)

∂x1
,
∂f(x)

∂x2
, . . . ,

∂f(x)

∂xn

)
.

That is, ∇f is a vector function from R
n to R

n whose i-th component is
the partial derivative of f with respect to xi. Thus, the equation ∇f(x) =∑m

i=1 yi∇gi(x) stipulates the equality of two n-component vectors.

6.3.1 Theorem (see e.g., [PSU88]). Let f and the gi be defined on a
nonempty open subset U of Rn and have continuous first partial derivatives
there. Let x̃ ∈ U be a regular point, meaning that the vectors ∇gi(x̃) are
linearly independent.

If x̃ is a local maximum of f(x) subject to g1(x)= g2(x) = · · · = gm(x) = 0,
then x̃ satisfies (6.3); that is, there exists ỹ such that x̃ and ỹ together
fulfill (6.3).

If the constraint functions gi are linear (as they will be in our application),
the regularity requirement on x̃ can be dropped (Exercise 6.1).

Application to the Auxiliary Problem

We now want to use the method of Lagrange multipliers to derive the follow-
ing lemma.

6.3.2 Lemma. If X∗(μ) � 0 is the optimal solution of the auxiliary problem
(6.2), then there is a vector ỹ ∈ R

m such that X∗(μ) and ỹ satisfy the
equations

Ai •X = bi, i = 1, 2, . . . ,m,

104 6 An Interior-Point Algorithm for Semidefinite Programming

C + μX−1 =

m∑

i=1

yiAi.

The proof of this is straightforward, once we have defined suitable functions
f and gi to which we can apply Theorem 6.3.1.

The domain of these functions is the setRn×n of all n×nmatrices, in which
case gradients can conveniently be written as matrices; see the discussion in
Sect. 5.4. For the open subset U we use a sufficiently small neighborhood
of our optimal solution X∗(μ). Note that this neighborhood also contains
nonsymmetric matrices.

The function f is simply the objective function with the barrier term:

f(X) = fμ(X) = C •X + μ ln det(X).

We have two sets of constraint functions:

gi(X) = Ai •X − bi, i = 1, . . . ,m,

for the linear equality constraints of the problem and

gij(X) = xij − xji, 1 ≤ i < j ≤ n,

to capture the symmetry of X . Since X∗(μ) is a maximum of the auxiliary
problem (6.2), it is also a (local) maximum subject to only the constraints
gi(X) = 0 and gij(X) = 0, because of X∗(μ) � 0. Since the gi and gij are
linear, we need not worry about the regularity of X∗(μ), and Theorem 6.3.1
can readily be applied. For that, it remains to compute ∇f(X). The following
lemma is the matrix analog of the fact that (lnx)′ = 1/x.

6.3.3 Lemma. For X ∈ R
n×n such that detX > 0,

∇ ln detX = (XT)−1.

The proof is left as Exercise 6.2.

Proof of Lemma 6.3.2. The equations Ai • X∗(μ) = bi, i = 1, 2, . . . ,m,
follow from the feasibility of X∗(μ) for the auxiliary problem.

The second set of equations is obtained from the condition involving the
Lagrange multipliers. First we need to compute the gradients of the functions
f, gi, gij defined above. Using Lemma 6.3.3 and the fact that ∇(M •X) = M
for every matrix M , we get

∇fμ(X) = C + μ(XT)−1,

∇gi(X) = Ai, i = 1, 2, . . . ,m.

Moreover, ∇gij(X) is a skew-symmetric matrix for all i < j. (A matrix
M is skew-symmetric if MT = −M .) Hence, the method of Lagrange

6.3 Necessary Conditions for Optimality 105

multipliers provides us with ỹ ∈ R
m and a skew-symmetric matrix Ỹ =∑

i<j ỹij∇gij(X
∗(μ)) such that

C + μ(X∗(μ))−1 =

m∑

i=1

ỹiAi + Ỹ ,

where we have used X∗(μ) ∈ SYMn. Since all matrices in this equation
except Ỹ are symmetric, it follows that the skew-symmetric part Ỹ vanishes,
and the lemma is proved. �

We will rewrite the equations developed in the lemma into a more conve-
nient form, by introducing a “slack” matrix S =

∑m
i=1 yiAi − C = μX−1.

Then X∗(μ) satisfies the Lagrange system

Ai •X = bi, i = 1, 2, . . .m∑m
i=1 yiAi − S = C

SX = μIn
S,X � 0

(6.4)

for suitable y ∈ R
m and S ∈ SYMn.

A Primal-Dual Interpretation

From the fact that X∗(μ) – if it exists – must satisfy the Lagrange sys-
tem (6.4), we can already deduce that as μ tends to 0, the optimal value
C • X∗(μ) of the barrier problem converges to the value of our original
semidefinite program (6.1). This will follow from a stronger property: the
equations (6.4) provide a primal feasible solution and a dual feasible solu-
tion, with a small duality gap (difference between dual and primal objective
function value).

6.3.4 Lemma. If X̃, S̃ ∈ R
n×n, ỹ ∈ R

m satisfy the Lagrange system (6.4)
for some μ > 0, then the following statements hold.

(i) The matrix X̃ is a strictly feasible solution of the primal semidefinite
program

maximize C •X
subject to Ai •X = bi, i = 1, 2, . . . ,m

X � 0.
(6.5)

Here strict feasibility means that X̃ � 0.
(ii) The vector ỹ is a strictly feasible solution of the dual semidefinite pro-

gram

106 6 An Interior-Point Algorithm for Semidefinite Programming

minimize bTy
subject to

∑m
i=1 yiAi − C � 0,

(6.6)

where strict feasibility means that
∑m

i=1 ỹiAi − C � 0.
(iii) The duality gap satisfies

bT ỹ − C • X̃ = nμ.

Proof. From S̃, X̃ � 0 we immediately obtain that X̃ is strictly feasible for
the primal, and ỹ is strictly feasible for the dual. For the duality gap, we use
linearity of • in the first argument to compute

C • X̃ =

(m∑

i=1

ỹiAi − S̃

)
• X̃

=

m∑

i=1

ỹi(Ai • X̃)− S̃ • X̃

=
m∑

i=1

ỹibi − S̃ • X̃

=
m∑

i=1

ỹibi − Tr(S̃X̃︸︷︷︸
μIn

)

= bT ỹ − nμ. �

The lemma just proved shows that if we could compute X∗(μ) for small μ,
then we would have an almost optimal solution of our semidefinite program
(6.1). Indeed, since C •X ≤ bT ỹ for all feasible solutions X by weak duality
(Theorem 4.7.2), C •X∗(μ) comes to within nμ of the optimum value.

6.4 Sufficient Conditions for Optimality

So far we have shown that if the problem of maximizing fμ(X) subject
to the constraints Ai • X = bi and X � 0 has a maximum at X∗, then
there exist S∗ � 0 and y∗ ∈ R

m such that X∗,y∗, S∗ satisfy the Lagrange
equations (6.4). Next, we formulate conditions on the semidefinite program
under which the Lagrange system is uniquely solvable and yields a maximum
of fμ.

For the Lagrange system to be solvable at all, strict feasibility of both
the primal and the dual program must be required. The only condition that
we will need on top of that is linear independence of the matrices Ai; by
Exercise 6.1, this may be assumed without loss of generality.

6.4 Sufficient Conditions for Optimality 107

6.4.1 Lemma. Suppose that both the primal program (6.5) and the dual
program (6.6) have strictly feasible solutions X̃ and ỹ, respectively, and that
the matrices Ai, i = 1, 2, . . . ,m, are linearly independent (as elements of the
vector space SYMn).

Then for every μ > 0, the Lagrange system (6.4) has a unique solution
X∗ = X∗(μ), y∗ = y∗(μ), S∗ = S∗(μ). Moreover, X∗(μ) is the unique
maximizer of fμ subject to Ai •X = bi, i = 1, 2, . . . ,m, and X � 0.

Proof. Let μ > 0 be fixed. We first show that there is a unique maximizer
X∗(μ) of fμ. This already implies that the Lagrange system is solved by
X = X∗(μ) with suitable y and S. Then we prove that there are no other
solutions.

We begin with the following claim, which yields existence of X∗(μ)
(uniqueness is then a consequence of strict concavity of fμ).

Claim. Under the assumptions of the lemma, the set

Q = {X ∈ SYMn : Ai •X = bi, i = 1, 2, . . . ,m, X � 0, fμ(X) ≥ fμ(X̃)}

is closed and bounded, and hence compact (when interpreted as a subset of

R
n2

).

Proof of the claim. Closedness is the easy part (Exercise 6.3), the main thing
to prove is boundedness. Let X � 0 satisfy Ai •X = bi, i = 1, 2, . . . ,m, and
define S̃ :=

∑m
i=1 ỹiAi −C � 0. As in the proof of Lemma 6.3.4 we compute

fμ(X) = C •X + μ ln detX = bT ỹ − S̃ •X + μ ln detX.

Therefore, X ∈ Q if and only if

μ ln detX − S̃ •X ≥ μ ln det X̃ − S̃ • X̃ =: c. (6.7)

Next, we want to show that this lower bound implies an upper bound on
the eigenvalues of every matrix X ∈ Q. Let σ > 0 be the smallest eigenvalue
of S̃, and let λ1(X), . . . , λn(X) > 0 be the eigenvalues ofX . Since S̃−σIn � 0,
we have (S̃ − σIn) • X ≥ 0 (a consequence of the self-duality of PSDn, see
Lemma 4.7.5), and hence

μ ln detX − S̃ •X = μ ln
n∏

j=1

λj(X)− S̃ •X

≤ μ ln
n∏

j=1

λj(X)− σ In •X︸ ︷︷ ︸
Tr(X)

= μ

n∑

j=1

lnλj(X)− σ

n∑

j=1

λj(X),

since the trace of a matrix is the sum of its eigenvalues; see Exercise 4.8.

108 6 An Interior-Point Algorithm for Semidefinite Programming

Putting this together with (6.7), we have

c ≤ μ

n∑

j=1

lnλj(X)− σ

n∑

j=1

λj(X), X ∈ Q. (6.8)

The right-hand side is of the form
∑n

j=1 h(λj(X)), where h is the univariate
function h(x) = μ lnx − σx. Elementary calculus shows that h(x) attains a
unique maximum at x = μ/σ, and in particular, h(x) is bounded from above.
Since (6.8) further yields

σλi(X)− μ lnλi(X) ≤
∑

j �=i

h(λj(X))− c, i = 1, . . . , n,

we thus know that σλi(X)−μ lnλi(X) is bounded from above on Q, and since
the first term asymptotically dominates the second, λi(X) itself is bounded
from above on Q, for all i. According to Exercise 6.4, Q is then bounded as
well. The claim is proved.

We continue with the proof of Lemma 6.4.1. According to the claim, the
set Q is nonempty and compact. Hence the continuous function fμ attains
a maximum on it, which, as we know, is unique. This shows that under the
assumptions of the lemma, the auxiliary problem has a unique maximum,
and by means of Lagrange multipliers we have shown that this maximum
yields a solution of the Lagrange system (6.4). It remains to verify that this
is the only solution, and only here do we need the linear independence of
the Ai.

To this end, we show that for every solution X̃ ′, ỹ′, S̃′ of (6.4), X̃ ′ also
maximizes fμ, hence X̃ ′ = X∗(μ). We note that S̃′ and ỹ′ are uniquely

determined by X̃ ′ through the relations SX = μIn and
∑m

i=1 yiAi − S = C
from (6.4), using the assumption that the Ai are linearly independent. Thus,
unique solvability of the Lagrange system follows.

To show that X̃ ′ maximizes fμ in the auxiliary problem, we use a fact
established in Exercise 6.5: the method of Lagrange multipliers as outlined
on page 103 sometimes also provides sufficient conditions for a local maxi-
mum at x̃ – namely, in the case where the function f is concave in a small
neighborhood of x̃ and the gi are linear. To apply this, we recall that if
X̃ ′, ỹ′, S̃′ solve the Lagrange system (6.4), then X̃ ′ is a feasible solution of
the problem

Maximize fμ(X) := C •X + μ ln detX
subject to Ai •X = bi, i = 1, 2, . . .m

X ∈ SYMn,

and ỹ′1, ỹ
′
2, . . . , ỹ

′
m are Lagrange multipliers for X̃ ′. This is how we derived

the Lagrange system.

6.5 Following the Central Path 109

Since X̃ ′ � 0, the function fμ is concave in a small neighborhood of X̃ ′

(Lemma 6.2.2), and hence X̃ ′ is a local maximum of fμ on the set of positive
definite matrices, by sufficiency of Lagrange multipliers mentioned above.

The strict concavity of fμ also implies that every local maximum coincides
with the unique global maximum (the argument is similar to the one that
we used to establish uniqueness of the global maximum). Hence X̃ ′ indeed
maximizes fμ in the auxiliary problem, and the lemma is proved. �

6.5 Following the Central Path

In this section we address the question of how the Lagrange system (6.4) can
be solved for small μ, since this is what we need to get good primal and dual
solutions; see Lemma 6.3.4.

Let us define the primal-dual central path of the semidefinite program (6.5)
as the set

{(
X∗(μ),y∗(μ), S∗(μ)

) ∈ PSDn × R
m × PSDn : μ > 0

}
.

We can indeed call this a path, since X∗(μ),y∗(μ) and S∗(μ) are continuous
functions of μ (Exercise 6.6).

The idea of the central path method is to start at some (X̃, ỹ, S̃) lying
close to the central path, and approximately follow the central path until
μ becomes sufficiently small.

Let us fix μ for now and introduce a central path function F capturing the
deviation of a given triple (X,y, S) from the central path:

F : SYMn × R
m × SYMn → R

m × SYMn × SYMn,

F (X,y, S) =

⎛

⎝
P (X,y, S)
Q(X,y, S)
R(X,y, S)

⎞

⎠ , (6.9)

with

P (X,y, S) =

⎛

⎜⎜⎜⎝

A1 •X − b1
A2 •X − b2
...
Am •X − bm

⎞

⎟⎟⎟⎠ ,

Q(X,y, S) =

m∑

i=1

yiAi − S − C,

R(X,y, S) = SX − μIn.

110 6 An Interior-Point Algorithm for Semidefinite Programming

We know that F (X∗(μ),y∗(μ), S∗(μ)) = (0, 0, 0), and that this is the
only zero of F subject to X,S � 0, by the unique solvability of the Lagrange
system. Furthermore, we would like to compute this zero for small μ, in order
to obtain almost optimal solutions for the primal and dual programs (6.5)
and (6.6), as guaranteed by Lemma 6.3.4.

Directly solving the system F (X,y, S) = 0 is difficult, since it contains
the n2 nonlinear equations SX−μIn = 0. But there is a well-known stepwise
method for computing the zero of a function that is based on solving systems
of linear equations only. This method is called Newton’s method.

Newton’s Method

Let us first recall Newton’s method for finding a zero of a differentiable uni-
variate function f . We start with some initial guess x(0), and given x(i), i ≥ 0,
we set

x(i+1) := x(i) − f(x(i))

f ′(x(i))
,

or equivalently,

f ′(x(i))
(
x(i+1) − x(i)

)
= −f(x(i)). (6.10)

Under suitable conditions on f and the initial guess, the sequence (x(i))i∈N

quickly converges to a zero of f .
Newton’s method generalizes to higher dimensions. If f :Rn → R

n, then
(6.10) becomes

Df(x(i))
(
x(i+1) − x(i)

)
= −f(x(i)), (6.11)

where Df(x) is the Jacobian of f at x, that is, the n× n matrix given by

(Df(x))ij =
∂f(x)i
∂xj

.

For this to work, the matrix Df(x(i)) must be invertible, for otherwise,
the next iterate x(i+1) is not well-defined.

Newton’s Method Applied to the Central Path Function

Let us now derive the formulas for one step of Newton’s method applied to
the central path function F . For this, we ignore the symmetry of X and S
and write F :R2n2+m → R

2n2+m. The calculations itself are somewhat boring,
but since they involve one or two generally useful arguments, we will do them
anyway.

6.5 Following the Central Path 111

As in Lemma 6.4.1, we assume that we have X(i) = X̃, y(i) = ỹ, S(i) = S̃
such that

Ai • X̃ = bi, i = 1, 2, . . . ,m,

m∑

i=1

ỹiAi − S̃ = C, S̃, X̃ � 0.

Now we want to compute the next iterate X(i+1) = X̃ ′, y(i+1) = ỹ′,
S(i+1) = S̃′ according to the general recipe in (6.11). Let us write

ΔX = X̃ ′ − X̃, Δy = ỹ′ − ỹ, ΔS = S̃′ − S̃. (6.12)

Then (6.11) becomes

DF (X̃, ỹ, S̃)

⎛

⎝
ΔX
Δy
ΔS

⎞

⎠ = −F (X̃, ỹ, S̃) =

⎛

⎝
0
0

μIn − S̃X̃

⎞

⎠ . (6.13)

The matrix DF (X,y, S) has the following block structure.

DF (X,y, S) =

⎛

⎜⎜⎝

DPy,S(X) 0 0

0 DQX,S(y) DQX,y(S)

DRy,S(X) 0 DRX,y(S)

⎞

⎟⎟⎠ ,

where the subscripts mean that the corresponding arguments are fixed. After
dropping constant terms (which does not change derivatives), all the five
“single-argument” functions that we need to differentiate in the blocks are
linear. Exercise 6.7 shows that for a linear function F , we have DF (x)y =
F (y), and we can use this formula to compute the left-hand side of (6.13)
componentwise:

DPy,S(X)(ΔX) =

⎛

⎜⎜⎜⎝

A1 • (ΔX)
A2 • (ΔX)
...
Am • (ΔX)

⎞

⎟⎟⎟⎠ ,

DQX,S(y)(Δy) +DQX,y(S)(ΔS) =

m∑

i=1

(Δy)iAi −ΔS

DRy,S(X)(ΔX) +DRX,y(S)(ΔS) = S(ΔX) + (ΔS)X.

Hence, (6.13) is the following system of linear equations for ΔX,Δy,ΔS.

112 6 An Interior-Point Algorithm for Semidefinite Programming

Ai • (ΔX) = 0, i = 1, 2, . . . ,m (6.14)
m∑

i=1

(Δy)iAi − (ΔS) = 0 (6.15)

S̃(ΔX) + (ΔS)X̃ = μIn − S̃X̃ (6.16)

We claim that this system has a unique solution (ΔX,Δy,ΔS). To see
this, we start by solving the last equation (6.16) for ΔX :

ΔX = S̃−1(μIn − S̃X̃ − (ΔS)X̃)

= S̃−1(μIn − S̃X̃ −
m∑

i=1

(Δy)iAiX̃)

= μS̃−1 − X̃ − S̃−1
m∑

i=1

(Δy)iAiX̃, (6.17)

using the second equation (6.15). Substituting this into the first equation set
(6.14) yields a system only for Δy:

Ai • (μS̃−1 − X̃ − S̃−1
m∑

i=1

(Δy)iAiX̃) = 0, i = 1, 2, . . . ,m.

Equivalently,

Ai • (S̃−1
m∑

i=1

(Δy)iAiX̃) = μAi • S̃−1 − bi, i = 1, . . . ,m.

Exercise 6.8 asks you to prove that this is a system of the form

M(Δy) = q, M � 0;

in particular, M is invertible. It follows that Δy is uniquely determined, and
substituting back into (6.15) yields ΔS, from which we in turn obtain ΔX
through (6.17).

Making ΔX Symmetric

We recall that we would like to obtain the next iterate in Newton’s method
(which hopefully brings us closer to the zero of F (X,y, S)) via X̃ ′ = X̃+ΔX ,
ỹ′ = ỹ + Δy, S̃′ = S̃ + ΔS. The only problem is that ΔX may not be
symmetric, in which case (X̃ ′, ỹ′, S̃′) is not a valid next iterate. We note that
ΔS is symmetric as a consequence of (6.15).

6.5 Following the Central Path 113

The problem with ΔX is due to the fact that we have ignored the sym-
metry constraints and solved the system (6.13) for X,S ∈ R

n×n instead of
X,S ∈ SYMn.

A simple fix is to update according to a “symmetrized” ΔX :

X̃ ′ = X̃ +
1

2

(
ΔX + (ΔX)T

)
.

It can be shown that this modified Newton step also leads to theoretical
convergence and good practical performance [HRVW96].

But to get polynomial runtime bounds, we need to proceed differently. It is
possible to define a function F ′(X,y, S), actually in various ways, for which
the Newton step yields a symmetric update matrix ΔX . This is discussed in
detail in [MT00, Sect. 10.3].

One possible choice is the following. Let

S(X̃)(M) :=
1

2

(
X̃−1/2MX̃1/2 + (X̃−1/2MX̃1/2)T

)
,

where X̃1/2 is the square root of X̃ , the unique positive definite matrix whose
square is X̃ (the existence of X̃1/2 follows from diagonalization: if X̃ = UTDU
with U orthogonal and D diagonal, we can set X̃1/2 := UT

√
DU , where√

D is the diagonal matrix obtained from D by taking the square roots of all
diagonal elements).

Instead of R(X,y, S) = SX − μIn, we now use the function

R(X̃)(X,y, S) = S(X̃)(XS)− μIn

in the definition (6.9) of the function F . Reintroducing μ, let us call the

resulting function F
(X̃)
μ .

When we compute the Newton system (6.13) for F
(X̃)
μ , we again arrive at

(6.14) and (6.15), but (6.16) gets replaced with

X̃−1/2(X̃ΔS +ΔXS̃)X̃1/2 + X̃1/2(ΔSX̃ + S̃ΔX)X̃−1/2

= 2(μIn − X̃1/2S̃X̃1/2).
(6.18)

This yields a symmetric ΔX [Mon97]; the matrix square roots look some-
what scary, but they can be avoided: the modified Newton system is equiv-
alent to a “square-root-free” system of linear equations that was derived by
Kojima et al. [KSH97], see [Mon97, Lemma 2.1].

But there is a price to pay for a symmetric ΔX : We had to change the
function F , losing the crucial property that a zero (X∗,y∗, S∗) of F satisfies

S∗X∗ = μIn. Actually, our modified function F
(X̃)
μ even depends on the

current iterate X̃, so the next Newton step will be with respect to a different
function. But this is not a problem: If for any X̃ , the triple (X∗,y∗, S∗) is a
zero of F

(X̃)
μ , we still have

114 6 An Interior-Point Algorithm for Semidefinite Programming

S∗ •X∗ = μn

(Exercise 6.9). If we reexamine the proof of Lemma 6.3.4, we see that this is
all we need in order to get small duality gap.

The Algorithm

Given that we know how to perform one step of Newton’s method, the fol-
lowing seems to be a natural way of simultaneously solving the semidefinite
program (6.5) and its dual (6.6) up to duality gap ε > 0. Choose μ = ε/n

and then perform Newton steps on F X̃
μ (X̃ always the current iterate), until

F X̃
μ ≈ 0. Then the current X̃, ỹ are almost optimal solutions of (6.5) and

(6.6) with duality gap ε.
There are three obstacles to overcome. First, recall that we are attempting

to find the unique solution of the Lagrange system (6.4), and this includes
the constraints X,S � 0. But Newton’s method does not know about them
and cannot guarantee X(i), S(i) � 0 even if this holds for i = 0. The second
problem is that a fast convergence can be proved only if we start sufficiently
close to the central path. Our initial solution (X̃, ỹ, S̃) could be too far away.
The third and very mundane problem is that we may not even have a feasible
solution to begin with.

The actual algorithm addresses all these obstacles and consists of the fol-
lowing two phases, of which we only describe the second one in detail.

Self-dual Embedding. In order for any interior-point method to get
started, we need – well – some interior point. In the case of the primal-dual
central path algorithm, an interior point can be obtained from strictly feasible
solutions X̃ for the primal problem (6.5) and ỹ for the dual problem (6.6).
The idea is to embed both the primal problem and the dual problem into a
“larger” (and self-dual) semidefinite program for which an interior point is
readily available. Solving this larger problem using the primal-dual central
path algorithm then also yields (approximately) optimal primal and dual
solutions for the original problem; see [WSV00, Chap. 5] for details.

Path following. Suppose that our interior point is close enough to the
central path for some (not necessarily small) value of μ. For the long-step
path following method [Mon97, Sect. 5], any interior point is close enough,
while the faster short-step path following method [Mon97, Sect. 4] that we
detail below requires a concrete distance bound. In both cases, it would not
be good to perform Newton steps with the current (possibly large) value of
μ fixed. All we would get is a point arbitrarily close to the central path at μ,
but unless μ is small, this is not an approximately optimal solution to the
semidefinite program.

Instead, the approach is as follows. In each iteration of Newton’s method,
we perform the step with respect to a slightly smaller value of μ. The intention

6.5 Following the Central Path 115

is to bring the iterate closer to the central path at the smaller μ, and then
to repeat the process until the current iterate is close to the central path for
sufficiently small μ. Here is our notion of being close.

6.5.1 Definition. For a real number γ > 0, the γ-neighborhood of the
central path is the set of interior points (X,y, S) such that ‖X1/2SX1/2 −
μIn‖F ≤ μγ.

We recall that ‖ · ‖F is the Frobenius norm of a matrix. It is justified to
call this a neighborhood of the central path: indeed, a point on the central
path satisfies SX = μIn, and this implies X1/2SX1/2 = μIn, so the point is
in all neighborhoods.

Here is a generic step of the short-step path following algorithm:

1. Given the current iterate X(i),y(i), S(i), set

μi :=
S(i) •X (i)

n
.

(If (X(i),y(i), S(i)) is on the central path, then X(i) = X∗(μi).)

2. Perform one step of Newton’s method w.r.t. FX(i)

μ , where

μ := σμi, and σ := 1− 0.3√
n

is the centrality parameter. This means, compute ΔX,Δy,ΔS by
solving (6.14), (6.15) and (6.18), and set

X (i+1) := X(i) +ΔX,

y(i+1) := y(i) +Δy,

S(i+1) := S(i) +ΔS.

6.5.2 Theorem ([Mon97]). Let γ := 0.3, and suppose that (X(i),y(i), S(i))
is an interior point in the γ-neighborhood of the central path. Then

(X(i+1),y(i+1), S(i+1))

is again an interior point in the γ-neighborhood of the central path, and

S(i+1) •X(i+1) = σ · S(i) •X (i).

A bound on the runtime directly follows from the geometric decrease of
the sequence (S(i) •X (i))i∈N.

6.5.3 Corollary. Let ε > 0 be given, and let us suppose that we have
(X̃, ỹ, S̃) such that

116 6 An Interior-Point Algorithm for Semidefinite Programming

Ai • X̃ = bi, i = 1, 2, . . . ,m, X̃ � 0 (strict primal feasibility),

m∑

i=1

ỹiAi − S̃ = C, S̃ � 0 (strict dual feasibility),

and (X̃, ỹ, S̃) is in the 0.3-neighborhood of the central path. Let σ = 1 −
0.3/

√
n and

k ≥ log1/σ
S̃ • X̃

ε
= O

(
√
n log

S̃ • X̃
ε

)
.

Then the k-th iterate in the above algorithm started withX(0) = X̃, y(0) = ỹ,
S(0) = S̃ satisfies

(i) Ai •X(k) = bi, i = 1, 2, . . . ,m, X(k) � 0

(ii)
∑m

i=1 y
(k)
i − S(k) = C, S(k) � 0

(iii) S(k) •X(k) ≤ ε

We recall that the condition S(k) • X(k) ≤ ε leads to small duality gap,
and therefore to a primal solution that is optimal up to an additive error of ε
(see the proof of Lemma 6.3.4).

We stress that on top of requiring strictly feasible primal and dual points,
we also need to require that the initial solution is close to the central path.
As already indicated, this assumption can be removed by using the long-step
method, but then an extra O(n) factor enters the runtime bound [Mon97,
Corollary 5.3].

Also, good (polynomial) runtime bounds result only if S(0) •X(0) is not
too large. This is the case in many practical applications, but in the worst
case it cannot be guaranteed; see, e.g., the pathological semidefinite program
at the end of Sect. 2.6.

Conclusion. The main virtue of interior-point methods for semidefinite
programming is that they are easy to implement and work well in practice.

Generally they are not easy to analyze. Specific algorithms with known
worst-case bounds are often rather slow in practice, and they are replaced by
other variants, which are apparently faster but whose theoretical performance
is unknown. For example, the algorithm of Helmberg [HRVW96] has been
shown to converge, but without any bounds on the convergence rate. Still,
Helmberg is offering an efficient semidefinite programming solver based on his
algorithm; the convergence is fast in practice, and the primitive operations
are very simple.

From a theoretical point of view, this situation may be somewhat unsat-
isfactory. But the main message of this chapter is this: Semidefinite pro-
grams can efficiently be solved in theory and in practice, using interior-point
methods, and we have outlined how this works.

6.5 Following the Central Path 117

Exercises

6.1 Consider the problem of maximizing a function f(x) (with continuous
partial derivatives) subject to linear constraints gi(x) = aix − bi = 0, i =
1, . . . ,m, (here, the ai are row vectors). Show that if x̃ is a maximizer of f
subject to the constraints gi(x) = 0, then there exists y ∈ R

m such that

∇f(x̃) =

m∑

i=1

yiai.

In particular, we do not need the requirement that x̃ is a regular point.

Hint: You may assume correctness of the general method of Lagrange mul-
tipliers as outlined on page 103.

6.2 Prove that for X ∈ R
n×n, ∇ ln det(X) = (XT)−1. Here the gradient is

the matrix G = (gij) of partial derivatives:

gij =
∂∇ ln det(X)

∂xij
, 1 ≤ i, j ≤ n.

6.3 With fμ as defined in (6.2), prove that for every real number r, the set

{X ∈ SYMn : Ai •X = bi, i = 1, 2, . . . ,m, X � 0, fμ(X) ≥ r}

is closed.

6.4 Let Q ⊆ PSDn be a set of matrices for which all eigenvalues are bounded
by some global constant c. Prove that Q is bounded as well (in Frobenius
norm).

6.5 Prove that if x and y1, . . . , ym satisfy (6.3), where the gi are linear func-
tions gi(x) = aix− bi, and f is concave in a small neighborhood U of x, then
x is a local maximum of f subject to gi(x) = 0, i = 1, . . . ,m.

6.6 Prove that the function

μ �→ (X∗(μ),y∗(μ), S∗(μ))

that maps μ to the unique solution of (6.4) is continuous.

6.7 Let F :Rk → R
k be a linear function, and let x,y ∈ R

k. Prove that

DF (x)y = F (y).

118 6 An Interior-Point Algorithm for Semidefinite Programming

6.8 Let S̃, X̃ � 0, and let Ai be linearly independent matrices. Prove that
there is a matrix M � 0 such that

Ai • (S̃−1
m∑

i=1

yiAiX̃) = My for all y ∈ R
m.

6.9 Let P be a fixed invertible matrix and consider the function

S(M) =
1

2

(
PMP−1 + (PMP−1)T

)
.

Prove that S(M) = Q implies Tr(M) = Tr(Q).

Chapter 7

Copositive Programming

In this chapter we come back to the topic of cone programming (Chap. 4).
So far, we have seen two important classes of cone programs, namely linear
and semidefinite programs. Both classes are “easy” in the sense that there
are practically efficient algorithms and polynomial-time complexity results,
at least under certain conditions (in the semidefinite case).

We cannot expect similar results for general cone programs, since the
involved closed convex cone(s) may be “hard.” In this chapter we exhibit
two concrete hard cones in SYMn: the cone of completely positive matrices,
and its dual, the cone of copositive matrices. The semidefinite cone PSDn is
wedged between them.

On the way we will encounter some connections to the material on the
theta function in Chap. 3, and cone programming duality will appear in an
interesting (not self-dual) way.

As it turns out, copositive matrices naturally arise in the context of
(locally) minimizing smooth functions, and a hardness results for the lat-
ter problem will easily follow from the hardness of copositive programming.

The material in this chapter is classic; our presentation mostly follows
Laurent and Rendl [LR05] as well as Murty and Kabadi [MK87].

7.1 The Copositive Cone and Its Dual

Let us start with a matrix class that is closely related to the class of positive
semidefinite matrices.

7.1.1 Definition. A matrix M ∈ SYMn is called copositive if

xTMx ≥ 0 for all x ≥ 0.

Every positive semidefinite matrix is also copositive due to Fact 2.2.1(ii),
but the converse is false. For example, every matrix with only nonnegative

119B. Gärtner and J. Matoušek, Approximation Algorithms and Semidefinite
Programming, DOI 10.1007/978-3-642-22015-9 7,
© Springer-Verlag Berlin Heidelberg 2012

120 7 Copositive Programming

entries is copositive. Hence

M =

(
0 1
1 0

)

is copositive but not positive semidefinite because det(M) = −1.

7.1.2 Definition. Let

COPn := {M ∈ SYMn : xTMx ≥ 0 for all x ≥ 0}

be the set of copositive matrices in SYMn.

The proof of the following lemma is exactly the same as the proof of
Lemma 4.2.2 for the positive semidefinite case, and so we omit it.

7.1.3 Lemma. The set COPn is a closed convex cone in SYMn.

Once we have a closed convex cone, it is a natural reflex to compute its
dual cone. We recall that for a cone K ⊆ SYMn, the dual cone is

K∗ = {Y ∈ SYMn : Y •X ≥ 0 for all X ∈ K}.

From the equation
xTMx = M • xxT , (7.1)

which we used before (in Sect. 4.8), it follows that all matrices of the form
xxT with x ≥ 0 (and finite sums of such matrices) are in COP∗

n. Let us give
a name to such matrices.

7.1.4 Definition. A matrix M ∈ SYMn is called completely positive if for
some �, there are � nonnegative vectors x1,x2, . . . ,x� ∈ R

n
+, such that

M =
�∑

i=1

xix
T
i = AAT , (7.2)

where A ∈ R
n×� is the (nonnegative) matrix with columns x1,x2, . . . ,x�.

Every completely positive matrix is positive semidefinite. Indeed, M is
positive semidefinite if and only if M is of the form (7.2) for x1, x2,. . . ,
x� ∈ R

n; see Lemma 4.7.4. In the definition, � is arbitrary, but we do not
need to consider � >

(
n+1
2

)
. The proof of the following lemma is left as

Exercise 7.1.

7.1.5 Lemma. M is completely positive if and only if there are
(
n+1
2

)
non-

negative vectors x1,x2, . . . ,x(n+1
2) ∈ R

n such that

7.1 The Copositive Cone and Its Dual 121

M =

(n+1
2)∑

i=1

xix
T
i .

We already know that COP∗
n contains the set of completely positive matri-

ces, but in fact, equality holds. To prove this, let us first show that the com-
pletely positive matrices form a closed convex cone as well.

7.1.6 Lemma. The set

POSn := {M ∈ SYMn : M is completely positive}

is a closed convex cone, and we have POSn ⊆ PSDn ⊆ COPn.

Proof. The latter chain of inclusions writes out two observations that we
have made before. To show that POSn is a cone, we first observe that if
M =

∑�
i=1 xix

T
i ∈ POSn, then also λM =

∑�
i=1(

√
λxi)(

√
λxi)

T ∈ POSn
for λ ≥ 0. For M,M ′ ∈ POSn, M + M ′ ∈ POSn is immediate from Defini-
tion 7.1.4. It remains to prove that the cone POSn is closed. Here we need
that � can be bounded; see Lemma 7.1.5. Let (M (k))k∈N be a sequence such
that

M (k) =

(n+1
2)∑

i=1

x
(k)
i x

(k)
i

T
= A(k)A(k)T ∈ POSn

for all k and limk→∞ M (k) = M ∈ SYMn. We need to show that M ∈ POSn.

Let the vector a
(k)
i ∈ R

(n+1
2)

+ denote the i-th column of A(k)T , i = 1, . . . , n.
Thus,

mii = lim
k→∞

M
(k)
ii = lim

k→∞
a
(k)
i

T
a
(k)
i = lim

k→∞
‖a(k)i ‖2, i = 1, 2, . . . , n,

which implies that the sequence of vectors (a
(k)
i)k∈N is bounded. Hence there

is a convergent subsequence with limit ai. This yields ai ≥ 0 andmii = ‖ai‖2,
by continuity of a

(k)
i �→ ‖a(k)i ‖2, and since any subsequence of the convergent

sequence (‖a(k)i ‖2)k∈N has the same limit. Furthermore,

mij = lim
k→∞

a
(k)
i

T
a
(k)
j = aTi aj

by the same kind of argument, so that

M = AAT ,

where AT is the nonnegative matrix with columns a1, a2, . . . , an. So M is
completely positive indeed. �

Now we can prove duality between COPn and POSn.

122 7 Copositive Programming

7.1.7 Theorem. POS∗n = COPn.

Proof. To prove COPn ⊆ POS∗n, we fixM ∈ COPn and show thatM•X ≥ 0
for all X ∈ POSn. To this end we calculate

M︸︷︷︸
∈COPn

•
�∑

i=1

xix
T
i

︸ ︷︷ ︸
∈POSn

=

�∑

i=1

M • xix
T
i

(7.1)
=

�∑

i=1

xT
i M xi︸︷︷︸

≥0

≥ 0.

For COPn ⊇ POS∗n, consider M /∈ COPn. Then there is x̃ ≥ 0 such that
x̃TM x̃ < 0. Using (7.1) again, x̃x̃T ∈ POSn witnesses M /∈ POS∗n. �

In order to get some intuition on COPn and POSn, Exercise 7.2 asks you
to characterize these cones for n = 2.

7.2 A Copositive Program for the Independence
Number of a Graph

In this section we want to show that there is a copositive program whose
value is the independence number of a given graph, the size of a maximum
independent set. A copositive program looks just like a semidefinite program,
except that it has the constraintX ∈ COPn orX ∈ POSn rather thanX
 0.
The result implies that copositive programming is NP-hard in general, and
we will draw some further consequences from this in Sect. 7.3 below.

Throughout this section, we fix a graph G = (V,E) with V = {1, 2, . . . , n},
n ≥ 1. We also recall that E denotes the edges of the complementary graphG.

7.2.1 Theorem. The copositive program

minimize t
subject to yij = −1, if {i, j} ∈ E

yii = t− 1, for all i = 1, 2, . . . , n
Y ∈ COPn

(7.3)

has value α(G), the size of a maximum independent set in G.

Before we set out to prove this, let us discuss the relation to Chap. 3. The
attentive reader may remember the very similar program (3.7) whose value
is the theta function ϑ(G). Program (7.3) is simply the relaxation of (3.7),
obtained by replacing the constraint Y
 0 with Y ∈ COPn.

Thus we know that the value of (7.3) is at most ϑ(G). Theorem 7.2.1 tells
us that the value is precisely the lower bound α(G) that we have established
for ϑ(G) in Lemma 3.4.4.

7.2 A Copositive Program for the Independence Number of a Graph 123

On the other hand, we have also seen an upper bound for ϑ(G), namely
ϑ(G) ≤ χ(G), the chromatic number of the complementary graph (this
was the Sandwich Theorem 3.7.2). It turns out that this upper bound can
be strengthened by a copositive restriction of the theta function program
(3.7). Dukanovic and Rendl [DR10] show that if we add the constraint
Y + Jn ∈ POSn to (3.7), where Jn is the n × n all-one matrix, we obtain
a program whose value is the fractional chromatic number χf (G) of G. It
holds that χf (G) ≤ χ(G), where strict inequality is possible.

The proof of Theorem 7.2.1 proceeds in two steps. First, we show that
the value of (7.3) is at least α(G). For this, we compute the dual program (a
maximization problem) and exhibit a feasible solution for it that has value
α(G). Weak duality of cone programming then shows that the value of (7.3)
is also at least α(G).

For the difficult direction (the value of (7.3) is at most α(G)), we use the
Motzkin–Straus Theorem, a beautiful result in graph theory that expresses
the problem of computing α(G) as a (nonconvex) quadratic optimization
problem over the unit simplex.

The Value Is at Least α(G)

In Exercise 4.12, we have asked you to compute the semidefinite program
dual to (3.7). We omit the proof of the following lemma, since it proceeds in
precisely the same way, using the general definition of dual cone programs in
Sect. 4.7, along with Lemma 4.5.3 (adjoint calculation). Not surprisingly, the
dual of (3.7) is the relaxation of the dual of (7.3) obtained by replacing the
constraint Y ∈ POSn with Y
 0.

7.2.2 Lemma. Let Jn denote the n × n all-one matrix. The cone program
dual to the copositive program (7.3) is the copositive program

maximize Jn •X
subject to Tr(X) = 1

xij = 0, if {i, j} ∈ E
X ∈ POSn.

(7.4)

Now we are prepared for the “easy” part of the proof of Theorem 7.2.1.

7.2.3 Lemma. The dual program (7.4) is feasible, and its value is at least
α(G).

The weak duality of cone programming (Theorem 4.7.2) now yields the
following.

7.2.4 Corollary. For every graph G, the value of the copositive program
(7.3) is at least α(G).

124 7 Copositive Programming

Proof of Lemma 7.2.3. We construct a feasible solution of value α(G). Let
x̃ ∈ R

n be the characteristic vector of a maximum independent set I ⊆ V ,
i.e., x̃i = 1 if i ∈ I, and x̃i = 0 otherwise. Now consider the matrix

X̃ =
1

α(G)
x̃x̃T =

(
1√
α(G)

x̃

)(
1√
α(G)

x̃

)T

∈ POSn.

We have

Tr(X̃) =
1

α(G)

n∑

i=1

x̃2
i =

1

α(G)
α(G) = 1,

and since I is an independent set, we have x̃ij = 1
α(G)

x̃ix̃j = 0 for all edges

{i, j}. Hence, X̃ is feasible for (7.4), with value

Jn • X̃ =
∑

i,j

x̃ij =
1

α(G)

∑

i,j

x̃ix̃j =
1

α(G)

∑

i,j∈I

1 =
α(G)2

α(G)
= α(G). �

A Modified Program with the Same Value

Next we want to show that the value of program (7.3) is at most α(G). We
start by rewriting it into a different program with the same value, setting the
stage for the Motzkin–Straus theorem. Let Y ∈ SYMn. The constraints

yij = −1, if {i, j} ∈ Ē
yii = t− 1, for all i = 1, 2, . . . , n

can equivalently be expressed as

Y = tIn + Z − Jn,

where Z is a matrix such that zij = 0 for {i, j} /∈ E.
Let AG be the adjacency matrix of G. If Y = tIn + Z − Jn is feasible for

(7.3), and if z is the largest entry of Z, then Y ′ = tIn + zAG − Jn is also
feasible. Indeed, Z ′ = zAG also satisfies z′ij = 0 for {i, j} /∈ E, and since

Y ′ = Y︸︷︷︸
∈COPn

+ zAG − Z︸ ︷︷ ︸
≥0

,

we also have Y ′ ∈ COPn (recall that any nonnegative symmetric matrix is
copositive).

Consequently, we may w.l.o.g. assume that Y in (7.3) is a matrix of the
form tIn + zAG − Jn. This gives the following result.

7.2 A Copositive Program for the Independence Number of a Graph 125

7.2.5 Lemma. The copositive program

Minimize t
subject to tIn + zAG − Jn ∈ COPn

t, z ∈ R

(7.5)

is feasible and has the same value as (7.3); in particular, the value is at
least α(G).

The Motzkin–Straus Theorem

This theorem states that the problem of computing the independence number
of a graph can be solved by minimizing a quadratic form over the unit simplex.

7.2.6 Theorem. For every graph G,

1

α(G)
= min{xT (AG + In)x : x ≥ 0,

n∑

i=1

xi = 1}.

The original theorem is stated in a complementary setting and talks about
cliques rather than independent sets; see Exercise 7.5. The version that we
present here appears as Corollary 1 in [MS65].

Let us postpone the proof of the Motzkin–Straus theorem and first draw
the conclusion.

The Value Is at Most α(G)

7.2.7 Theorem. For every graph G, the value of the copositive program
(7.3) is at most α(G).

Proof. We construct a feasible solution of value α(G) for the modified
program (7.5). The statement then follows from Lemma 7.2.5.

If x ≥ 0 and
∑n

i=1 xi = 1, the Motzkin–Straus theorem implies

xT (α(G)(AG + In))x ≥ 1 = xT Jnx,

meaning that

xT (α(G)In + α(G)AG − Jn)x ≥ 0, if x ≥ 0,
∑n

i=1 xi = 1.

Now, since every nonzero x′ ≥ 0 is a positive multiple of some x ≥ 0 with∑n
i=1 xi = 1, we actually have

126 7 Copositive Programming

xT (α(G)In + α(G)AG − Jn)x ≥ 0, if x ≥ 0.

This shows that the matrix Ỹ := α(G)In + α(G)AG − Jn is copositive and
hence a feasible solution of (7.5) with value t = z = α(G). �

Proof of the Motzkin–Straus Theorem

It remains to prove the Motzkin–Straus theorem (Theorem 7.2.6). We define
f(x) = xT (AG + In)x and let m(G) denote the minimum of f(x) over the
unit simplex.

The inequality m(G) ≤ 1
α(G) is easy. If I is a maximum independent set

with characteristic vector ỹ, then the vector x̃ = 1
α(G) ỹ satisfies x̃ ≥ 0,∑n

i=1 x̃i = 1 and thus

m(G) ≤ f(x̃) = 2
∑

{i,j}∈E

x̃ix̃j +
∑

i∈I

x̃2i = 0 +
α(G)

α(G)2
=

1

α(G)
.

For the other inequality, the strategy is as follows. We start from some
minimizer x∗ of f over the unit simplex and transform it into another min-
imizer y∗ such that J := {i : y∗

i > 0} is an independent set. As above, we
then compute

m(G) = f(x∗) = f(y∗) = 2
∑

{i,j}∈E

y∗i y
∗
j

︸ ︷︷ ︸
=0

+
∑

i∈J

(y∗i)
2 ≥

∑

i∈J

1

|J |2 =
1

|J | ≥
1

α(G)
.

The second-to-last inequality uses the standard fact that
∑

i∈J y2i is mini-
mized subject to

∑
i∈J yi = 1 if all the yi are equal to 1/|J |.

It remains to construct y∗, given a minimizer x∗. We define

F := {{i, j} ∈ E : x∗
ix

∗
j > 0}.

If F = ∅, we set y∗ := x∗ and are done. Otherwise, we choose {i, j} ∈ F and
define z through

zk =

⎧
⎨

⎩

x∗k + ε if k = i
x∗
k − ε if k = j

x∗
k otherwise,

for some real number ε. A simple calculation shows that

f(z) = f(x∗) + �(ε),

7.3 Local Minimality Is coNP-hard 127

where � is a linear function in ε (due to {i, j} ∈ E, the quadratic term in
ε vanishes). Since z is in the unit simplex for |ε| sufficiently small, we must
have �(ε) = 0, since otherwise, f(z) < f(x∗) for some z, contradicting our
assumption that x∗ is a minimizer of f .

We therefore have f(z) = f(x∗), and choosing ε appropriately, we get
zi = 0. Replacing x∗ with z yields a new minimizer for which the set F of
“nonzero edges” has become strictly smaller. We can thus repeat the above
process until F becomes empty and y∗ is obtained.

7.3 Local Minimality Is coNP-hard

Theorem 7.2.1 immediately implies that copositive programming is NP-hard.
In contrast to the case of semidefinite programming, we cannot even get a
reasonable approximation of the optimal value in polynomial time, the reason
being that such an approximation is already impossible for the independence
number of a graph.

In this section, we want to derive some further hardness results, outside
the (somewhat restricted) realm of copositive programming. They concern
the problem of locally minimizing (or maximizing) a smooth function. Let F
be a class of smooth functions φ:Rn → R (by “smooth” we mean that φ has
continuous partial derivatives of all orders). The problem LocMin(F) is to
decide whether 0 (or equivalently, any other point) is a local minimum of a
given function φ ∈ F over Rn. Our main result is the following.

7.3.1 Theorem. The problem LocMin(F) is coNP-complete for the class
F := {φM : M ∈ SYMn}, where the function φM is defined by

φM (x) = (x2
1, x

2
2, . . . , x

2
n)M(x2

1, x
2
2, . . . , x

2
n)

T .

Here coNP is the class of “complements” of all problems in NP, i.e., prob-
lems for which the NO answer can be certified in polynomial time. In our case,
the statement that LocMin(F) is coNP-complete means that the problem
obtained from LocMin(F) by interchanging the YES and NO answers (i.e.,
we ask whether 0 is not a local minimum) is NP-complete.

This result (proved by Murty and Kabadi in 1987 [MK87]) is relevant if
we want to understand to what extent nonlinear optimization problems can
be solved in practice. A web search reveals numerous claims of the form that
this and that code will find a local optimum of the nonlinear function at
hand. Taking this for granted, the focus of the discussion is then rather on
how this local optimum can be further improved to reach the global optimum
in the end.

In view of Theorem 7.3.1, it is generally hard to even check whether a
given solution is a local optimum; therefore, any claims of having reached
local optimality must be taken with care. One misconception underlying such

128 7 Copositive Programming

claims is that a local minimum is confused with a “pseudo-minimum,” a
point where the first derivative vanishes and the second derivative (Hessian)
is positive semidefinite. Indeed, whether a solution is a pseudo-minimum can
efficiently be checked in many cases, but even if it is, there is no guarantee
that it actually is a true local minimum.

For example, every function considered in Theorem 7.3.1 has the point 0
as a pseudo-minimum. The difficulty is thus to distinguish pseudo-minima
from true local minima.

To approach Theorem 7.3.1, we start with the following auxiliary result,
which is also known [MK87], but for which the Motzkin–Straus theorem yields
a simple proof.

7.3.2 Theorem. Given an integer matrix M ∈ SYMn, it is coNP-complete
to decide whether M ∈ COPn.

Proof. The problem is in coNP, since there is a certificate for M ∈ COPn

in form of x ∈ R
n
+ such that xTMx < 0. It is not a priori clear (but true, see

Exercise 7.6) that there is a certificate of size polynomial in the encoding size
of M . To show that the problem is coNP-complete, we provide a reduction
from the independent set problem: given a graph G and an integer k, does
G have an independent set of size larger than k?

The reduction constructs the integer matrix M(G, k) = kIn + kAG − Jn.
It is easy to check (see also the proof of Theorem 7.2.7) that M(G, k) is
copositive if and only if

min{xT (AG + In)x : x ≥ 0,

n∑

i=1

xi = 1} ≥ 1

k
.

Hence
M(G, k) /∈ COPn ⇔ k < α(G),

by the Motzkin–Straus theorem. So G has an independent set of size larger
than k if and only if M(G, k) is not copositive. �

As a corollary, we get our first “hardness of local minimality” result, for
quadratic functions over the positive orthant.

7.3.3 Corollary. Let M ∈ SYMn be an integer matrix. It is coNP-complete
to decide whether 0 is a local minimum of the quadratic form xTMx subject
to x ≥ 0.

Proof. As a direct consequence of Definition 7.1.1, 0 is a local minimum if
and only if M ∈ COPn. Using coNP-completeness of the latter problem, the
statement follows. �

Now we are ready to prove the main result: hardness of local minimality
in smooth unconstrained optimization.

7.3 Local Minimality Is coNP-hard 129

Proof of Theorem 7.3.1. Let φM (x) = (x2
1, x

2
2, . . . , x

2
n)M(x2

1, x
2
2, . . . , x

2
n)

T .
We show that 0 is a local minimum of φ if and only 0 is a local minimum of
xTMx subject to x ≥ 0. Applying Corollary 7.3.3 then finishes the proof.

The point 0 is a local minimum of φ if and only if all x in some small
neighborhood of 0 satisfy φM (x) ≥ 0. Via the transformation yi = x2

i , this is
in turn equivalent to the statement that all y ≥ 0 in some small neighborhood
of 0 satisfy yTMy ≥ 0, meaning that 0 is a local minimum of yTMy subject
to y ≥ 0. �

Exercises

7.1 Prove Lemma 7.1.5.

7.2 Characterize the triples (x, y, z) ∈ R
3 for which the matrix

M =

(
x z
z y

)
∈ SYM2

is (a) copositive, (b) completely positive. (Recall that M is positive semidef-
inite if and only if x ≥ 0, y ≥ 0, xy ≥ z2.)

7.3 Prove or disprove the following statements.

(i) If M ∈ SYMn is positive semidefinite, then the function x �→ xTMx is
convex over Rn.

(ii) If M ∈ SYMn is copositive, then the function x �→ xTMx is convex over
R

n
+.

(iii) If M ∈ SYMn, M = 0 is completely positive, then the function x �→
xTMx is strictly convex over Rn.

A function f :U ⊆ R
n → R is convex over U if for all x,y ∈ U and all

t ∈ (0, 1),
f((1− t)x+ ty) ≤ (1 − t)f(x) + tf(y).

The function is strictly convex if the inequality is strict for x = y.

7.4 We know (Sect. 4.8) that for every matrix C ∈ SYMn,

max{xTCx : ‖x‖ = 1} = max{C •X : In •X = 1, X
 0}.

This means that the problem of finding the largest eigenvalue of C reduces
to a semidefinite program. Prove the following corresponding statement for
copositive programming [BDDK+00].

130 7 Copositive Programming

max
{
xTCx :

∑n
i=1 xi = 1,x ≥ 0

}
= max{C •X : Jn •X = 1, X ∈ POSn}.

7.5 Let ω(G) be the clique number of G, the size of the largest clique. Prove
that

1− 1

ω(G)
= max

{
xTAGx : x ≥ 0,

∑n
i=1 xi = 1

}
.

7.6 Let M ∈ SYMn be a matrix with integer coordinates. Prove that if there
exists x ∈ R

n
+ such that xTMx < 0, then there is also such an x whose binary

encoding length is polynomial in the binary encoding length of M .

7.7 Prove that for the class of functions considered in Theorem 7.3.1, it is
also coNP-complete to check whether the function is bounded from below
over Rn.

Part II

(by Jǐŕı Matoušek)

Chapter 8

Lower Bounds for the
Goemans–Williamson MAXCUT Algorithm

8.1 Can One Get a Better Approximation Ratio?

8.1.1 The Goemans–Williamson algorithm for MaxCut is a showcase result
in SDP-based approximation algorithms. As we know, the analysis yields the
approximation ratio αGW ≈ 0.87856720578. We can hardly avoid asking
questions of the following kind: Is this strange-looking number just an artifact
of the particular algorithm, or does it have any deeper significance for the
MaxCut problem itself? Can we improve on the approximation ratio with
some even more clever tricks?

In the last few hundred years we got used to steady progress of technology.
In optimization, we had linear programming, and then semidefinite program-
ming; so we may expect something even more powerful to come next.

8.1.2 So, can we improve on the GW algorithm’s approximation ratio? Peo-
ple tried hard, and indeed there are positive results for various restricted
cases:

• YES for dense graphs (cn2 edges, c > 0 fixed). Here one can get a
polynomial-time approximation scheme (PTAS), i.e., (1−ε)-approximation
in polynomial time for every ε > 0 and c > 0 fixed.

◦ This follows from an algorithmic version of the Szemerédi regularity
lemma due to Alon et al. [ADRY94], and also from a framework of Arora
et al. [AKK95]. (For faster versions, less astronomically depending on
c, ε, see Frieze and Kannan [FK99] and Alon and Naor [AN96].)

◦ The approach via the regularity lemma was generalized by Alon et al.
[ACOH+10] to graphs that are not necessarily dense, but contain no
“exceptionally dense spots” (i.e., subgraphs whose density exceeds the
average density of the whole graph by more than a constant factor).

133B. Gärtner and J. Matoušek, Approximation Algorithms and Semidefinite
Programming, DOI 10.1007/978-3-642-22015-9 8,
© Springer-Verlag Berlin Heidelberg 2012

134 8 Lower Bounds for the Goemans–Williamson MaxCut Algorithm

• YES for graphs of bounded maximum degree – see Feige et al. [FKL02].
• YES for graphs where the maximum cut is “large” or “small”:

◦ For graphs with large maximum cut (measured as a fraction of the
number of edges), the analysis of the Goemans–Williamson algorithm
yields a better approximation ratio, as was already observed in [GW95].

◦ For graphs with small maximum cut, other rounding techniques also
yield an improved ratio; see O’Donnell and Wu [OW08] for such a result
and references.

This is all very nice, but can one get a better approximation ratio in general
– for all input graphs?

8.1.3 Currently there are good reasons to believe that αGW is the worst-case
optimal approximation factor! Indeed, assuming the Unique Games Conjec-
ture (UGC) and P �=NP, there is no polynomial-time MaxCut algorithm
with approximation ratio better than αGW.

• We will mention the UGC and some of its consequences later. It is a
somewhat technical-sounding statement, and the various hardness proofs
based on it are quite demanding – they involve tools like PCP’s, Fourier
analysis, etc.

8.1.4 Without the UGC, assuming only P �=NP, it is known that no polyno-
mial-time algorithm can approximate MaxCut better than 16

17 ≈ 0.94 (see
H̊astad [H̊as01]; the proof uses advanced PCP techniques). Given a 3-Sat
formula ϕ, H̊astad’s construction yields a graph G = G(ϕ) such that

(1) MaxCut≥ x if ϕ is satisfiable (where x can be efficiently computed
from ϕ)

(2) MaxCut≤ 16
17x if ϕ is unsatisfiable.1

This must give “hard” instances for every MaxCut approximation algo-
rithm, but it is not clear what they look like (essentially because the proof
proceeds by contradiction; or put in another way, because we do not know
what hard instances of 3-Sat look like).

8.1.5 We will not discuss these (difficult) relative results here. Rather we will
cover absolute lower bounds for the Goemans–Williamson algorithm itself.

• These are hands-on “hard” instances, but only for this particular algorithm
(or class of algorithms).

• Beautiful mathematics is involved, and one can learn useful tricks.
• We will not cover the strongest known results. Rather, we want to intro-
duce interesting methods on somewhat weaker, but simpler results.

1 Actually, (16
17

+ ε)x, where G(ϕ) also depends on ε.

8.2 Approximation Ratio and Integrality Gap 135

8.2 Approximation Ratio and Integrality Gap

8.2.1 Let G = (V,E) be an input graph, V = {1, 2, . . . , n}.
• As we recall from Chap. 1, MaxCut for G can be written as the following

integer quadratic program:

max

{ ∑

{i,j}∈E

1− xixj
2

: x1, . . . , xn ∈ {±1}
}
.

The optimum, denoted by Opt or Opt(G), is the true size of a maximum
cut.

• The semidefinite relaxation of MaxCut, written as a vector program, is

max

{ ∑

{i,j}∈E

1− vT
i vj

2
: ‖v1‖ = · · · = ‖vn‖ = 1

}
; (GW)

we denote its optimum value by SDP or SDP(G).
• We let Algo = Algo(G) denote the expected size of the cut found by the
random hyperplane rounding in the GW algorithm.2 Thus, the approxi-
mation ratio of the Goemans–Williamson algorithm can be written as

inf
G

Algo(G)

Opt(G)
.

Here is a pictorial summary of the considered quantities:

SDP . . . optimum of the semidefinite relaxation

rounding

Algo . . . expected size of the computed cut

Opt . . . true maximum cut

8.2.2 A perhaps less intuitive but very important notion is the integrality
gap (of the considered semidefinite relaxation):

2 Actually, we can assume that the algorithm always finds a cut with at least Algo
edges. For example, we can run it repeatedly until it succeeds. There is also a deter-
ministic (derandomized) version by Mahajan and Ramesh [MR99]. The derandom-
ization is not easy, and in particular, the derandomized version in the original GW
paper is not correct.

136 8 Lower Bounds for the Goemans–Williamson MaxCut Algorithm

Gap := sup
G

SDP(G)

Opt(G)
.

• The integrality gap is a general notion in the theory of integer program-
ming. It measures how far the optimum of a semidefinite (or linear) relax-
ation is from the optimum of the underlying integer program.

• A somewhat unpleasant feature of the above definitions is that the approx-
imation ratio is a number smaller than 1, while the integrality gap is larger
than 1.

◦ However, one probably should not try to change the definition of the
approximation ratio since it is too well established. The definition of the
integrality gap as above is also quite common. Moreover, if we defined
integrality gap the other way round, as inf(Opt/SDP), then a smaller
number would mean a larger (more significant) gap, which would sound
very strange.

8.2.3 The integrality gap, or more precisely, the quantity 1/Gap, is usually
an upper bound on the approximation ratio of (maximization) algorithms
based on semidefinite programming. (The same applies to algorithms based
on linear programming.)

• This should not be taken as a precise mathematical statement, but rather
as a rule of thumb. We have not specified the class of the considered
algorithms. So, for example, the algorithm might “cheat”: first solve some
semidefinite relaxation, say with a significant integrality gap, and then
compute a very good approximate solution of the original problem by
some completely different method.

• Why do we expect approximation ratio no better than 1/Gap? Think of
a hypothetical algorithm that beats 1/Gap on all input instances. Such
an algorithm would be able to distinguish instances where SDP/Opt is
close to Gap from those with SDP/Opt close to 1. This task seems to go
significantly beyond the usual scheme of SDP-based algorithms, namely,
compute an SDP optimum and round it to an integral solution.

8.3 The Integrality Gap Matches the
Goemans–Williamson Ratio

8.3.1 For the Goemans–Williamson algorithm, the analysis in Chap. 1
shows that Algo/SDP ≥ αGW, and since Opt ≥ Algo, we have Gap =
sup(SDP/Opt) ≤ 1/αGW. The next theorem shows that the integrality gap
actually equals 1/αGW.

• The proof will require a substantial effort, and it will touch upon several
interesting geometric phenomena.

8.3 The Integrality Gap Matches the Goemans–Williamson Ratio 137

• Nowadays, instances with large integrality gap are usually constructed
by newer techniques, such as PCP-related technology (using dictatorship
tests, long codes, etc.).

8.3.2 Theorem (Feige and Schechtman [FS02]). The integrality gap of
the Goemans–Williamson semidefinite relaxation of MaxCut satisfies
Gap ≥ 1

αGW
≈ 1.1382. In other words, for every ε > 0 there exists a

graph G with
SDP

Opt
≥ 1

αGW
− ε.

8.3.3 To bound the integrality gap from below, we need to exhibit a graph,
provide a feasible solution of the SDP (typically the easier part), and show
that there is no large cut (the harder part).

• Warm-up: For G := C5, we have Opt = 4, and the feasible SDP solution
in the next picture shows that SDP ≥ 5(1− cos 4π

5)/2 ≈ 4.5225:

v1

v2

v3
v4

v5

(this is actually an optimal SDP solution; see Exercise 8.2). Hence Gap ≥
1.1305.

• The theorem asserts that Gap ≥ 1/αGW ≈ 1.1382, and we already have
Gap ≥ 1.1305. So all the fuss below is about 0.7% of the value of Gap. (But
really about understanding.)

8.3.4 We recall the Goemans–Williamson analysis. For an edge {i, j} repre-
sented by vectors vi,vj with angle ϑ, we have:

• Contribution
1−vT

i vj

2
= 1−cosϑ

2
to SDP.

• Expected contribution ϑ
π
to Algo ≤ Opt.

The ratio of these contributions is π
2
1−cosϑ

ϑ
, and 1/αGW is the maximum pos-

sible value of this ratio, attained for ϑ = ϑGW ≈ 133.563◦. Thus, if SDP/Opt
should be close to 1/αGW, we need an SDP solution such that the angle
∠vivj is close to ϑGW for most of the edges {i, j} ∈ E(G).

8.3.5 A simple proof idea: Place a large finite set of points densely on the unit
sphere Sd−1. They are the vertices of G and, at the same time, they define a
feasible SDP solution since they are unit vectors. The edges should correspond
to pairs of vectors whose angle is close to ϑGW. This looks promising since

• SDP is at least about |E|1−cosϑGW

2 .

138 8 Lower Bounds for the Goemans–Williamson MaxCut Algorithm

• The expected size of a random hyperplane cut is close to |E|ϑGW

π .

8.3.6 But, it is not enough to look at hyperplane cuts! (We want an upper
bound on Opt, not only on Algo.) For example, for d = 2, let us consider
8 equally spaced unit vectors in the plane. The edges correspond to angles
135◦, instead of 133.563:

The resulting graph is an 8-cycle and so Opt = 8, but all hyperplane cuts
have only 6 edges. Planar examples of this kind do not work for getting a
better integrality gap. . .

8.3.7 Remedy: Go to higher dimensions! We take d = d(ε) sufficiently large,
depending on how close we want to be to 1/αGW.

8.3.8 The proof of Theorem 8.3.2 has two main parts:

• The continuous analog. We define an infinite “continuous” graph Gc

with vertex set Sd−1 (all unit vectors in R
d) and edges connecting unit

vectors whose angle is within ϑGW ± δ, for a suitable small δ = δ(ε). We
prove geometrically that “the largest cuts are hyperplane cuts.” (We can-
not count the edges of a cut, since cuts are infinite – we have to introduce
a measure on the edge set.)

• Discretization. We divide Sd−1 into a large but finite number of small-
diameter pieces (cells), and in each cell we choose a single vertex of the
“discrete graph” G. These vertices are again connected if their angle is
within ϑGW ± δ. We argue that if G had a large cut, then Gc also has a
large cut.

The Continuous Graph, Caps, and Isoperimetry

8.3.9 Let μ be the uniform probability measure on Sd−1. Here is a “pedes-
trian” definition: For A ⊆ Sd−1, we set

μ(A) :=
λd(Ã)

λd(Bd)
,

8.3 The Integrality Gap Matches the Goemans–Williamson Ratio 139

where

• λd(.) is the d-dimensional volume in R
d (actually, the Lebesgue measure).

• Ã :=
⋃

a∈A 0a is the union of all segments connecting points of A to the
center of the sphere.

• Bd is the d-dimensional unit ball.

Here is a 3-dimensional illustration:

0

A

Ã

8.3.10 Now μ2 measures subsets of Sd−1×Sd−1, such as cuts in our contin-
uous graph Gc.

• Formally, μ2 can be defined as a product measure, which is a general con-
struction in measure theory (generalizing the passage from λ1(.) to λ2(.)).

• We could also proceed in a way similar to the above definition of μ using Ã.
• In any case, we will use only very simple and intuitive properties of μ2.

8.3.11 We fix δ = δ(ε) > 0 sufficiently small, and we define the continuous
graph Gc = (Sd−1, Ec), where

Ec :=
{
(x,y) ∈ Sd−1 × Sd−1 : ∠xy ∈ [ϑGW − δ, ϑGW + δ]

}

• Here ∠xy denotes the angle of vectors x and y. It lies in the interval [0, π],

and it can be expressed as arccos xTy
‖x‖·‖y‖ .

• For convenience, the edges are ordered pairs (x,y).

8.3.12 What is a cut in Gc? For a measurable A ⊂ Sd−1,

cut(Ec, A) :=
{
(x,y) ∈ Ec : exactly one of x,y lies in A

}
.

We will measure the size of cuts in Gc as the fraction of the “edges” of Ec

contained in the cut. In particular,

Opt(Gc) := sup
A

μ2(cut(Ec, A))

μ2(Ec)
.

140 8 Lower Bounds for the Goemans–Williamson MaxCut Algorithm

8.3.13 What is the worst A (largest cut)? This is not easy to tell! But here
is the key trick: We ignore the upper bound on ∠xy; we consider the filled
continuous graph G+

c = (Sd−1, E+
c), where

E+
c :=

{
(x,y) ∈ Sd−1 × Sd−1 : ∠xy ≥ ϑGW − δ

}
.

Unlike for Gc, one can describe maximum cuts in G+
c !

8.3.14 Proposition. Opt(G+
c) is attained by hyperplane cuts. That

is, for every (measurable) A ⊆ Sd−1 we have μ2(cut(E+
c , A)) ≤

μ2(cut(E+
c , H)), where H is a hemisphere.

This proposition is not exactly easy to prove. It belongs to the area of
isoperimetric inequalities and we will discuss it later.

8.3.15 But we are interested in Opt(Gc), not Opt(G+
c). Here the high-

dimensionality comes to the rescue: We will see that for d = d(δ) large,
Gc and G+

c are almost the same measure-wise. We will see this in the proof
of Lemma 8.3.19 below, but first we prepare some tools.

8.3.16 A spherical cap is a set of the form

C = {x ∈ Sd−1 : ∠xv ≤ β}

for some v ∈ Sd−1 (the center of C) and β (the angle of C). We write Cβ for
(some) cap with angle β.

v
C

0
β

8.3.17 Claim. (Contrary to low-dimensional intuition.) For every δ, η > 0
and β ∈ [0, π

2
− δ] there is a dimension d in which μ(Cβ) ≤ η · μ(Cβ+δ).

Thus, in high dimensions, almost all of the measure of a spherical cap lies
very close to the boundary. (Keyword: measure concentration.)

8.3.18 Proof:

• The set C̃β (the cone over Cβ) is contained in the cylinder of height 1 and
radius r := sinβ.

8.3 The Integrality Gap Matches the Goemans–Williamson Ratio 141

Cβ

r

R

Cβ+δ

β+ δ
2

1

• C̃β+δ contains the cylinder of radius R := sin(β + δ
2
) and height h =

cos(β + δ
2
)− cos(β + δ).

• The ratio of volumes of these cylinders is 1
h(

r
R)d−1 < η for d large enough.

This verifies the claim. �

Let us remark that our calculation in this proof was very rough, but fairly
precise quantitative bounds on μ(Cβ) are known.

8.3.19 The next lemma uses the above tools for showing that no cut in Gc

is much larger than hyperplane cuts.

Lemma. We have

Opt(Gc) ≤ ϑGW

π
+O(δ).

8.3.20 Proof:

• We have μ2(E+
c) = μ(Cπ−ϑGW+δ), since the neighborhood of each x in

G+
c is the cap with center −x and angle π−ϑGW + δ. Similarly, μ2(Ec) =

μ(Cπ−ϑGW+δ)− μ(Cπ−ϑGW−δ).
• Using Claim 8.3.17 with 2δ instead of δ and with η := δ, we find

μ2(Ec) = μ(Cπ−ϑGW+δ)− μ(Cπ−ϑGW−δ)

≥ μ(Cπ−ϑGW+δ)(1 − δ) = (1− δ)μ2(E+
c).

So E+
c is just a bit larger than Ec.

• We have

sup
A

μ2(cut(Ec, A)) ≤ sup
A

μ2(cut(E+
c , A)) ≤ μ2(cut(E+

c , H)),

where H is a hemisphere (Proposition 8.3.14).
• Then we use that E+

c \ Ec is small:

μ2(cut(E+
c , H)) ≤ μ2(cut(Ec, H)) + μ2(E+

c \ Ec)

= μ2(cut(Ec, H)) + μ2(E+
c)− μ2(Ec)

≤ μ2(cut(Ec, H)) +
δ

1− δ
μ2(Ec).

142 8 Lower Bounds for the Goemans–Williamson MaxCut Algorithm

• So

Opt(Gc) = sup
A

μ2(cut(Ec, A))

μ2(Ec)
≤ μ2(cut(Ec, H))

μ2(Ec)
+O(δ).

• Now H defines a “hyperplane cut” in Gc. By symmetry all hyperplane
cuts have the same size. The expected contribution of an edge to a random
hyperplane cut, as in the analysis of the GW algorithm, is ϑ

π , where ϑ is
the angle of that edge (to be rigorous, we should really write a double
integral and exchange the order of integration). In Gc the angles of all
edges are within ϑGW ± δ, and the lemma follows. �

8.3.21 So we know that the continuous graph Gc has SDP/Opt arbitrarily
close to 1/αGW (well, except that we have not proved Proposition 8.3.14).
Next, we want to “discretize” Gc.

From the Continuous Graph to the Discrete Graph

8.3.22 To discretize, we need an “obvious-looking” result.

Lemma. For every d and every γ > 0 there exists an integer n such
that Sd−1 can be subdivided into cells U1, . . . , Un with μ(Ui) =

1
n and

diam(Ui) ≤ γ for all i.

8.3.23 Proof (I do not know of a really simple proof; this one also gives
essentially the best known quantitative bound on n in terms of d and γ):

• Avoiding some fractions, we actually go for diam(Ui) ≤ O(γ).
• Let P = {p1, . . . ,pk} ⊂ Sd−1 be an inclusion-maximal γ-separated set

(which means that every two points in P have distance at least γ). Thus,
every x ∈ Sd−1 has some point of P at distance at most γ.

• Let Vi be the Voronoi cell of pi in Sd−1 (the set of all x ∈ Sd−1 closer to
pi than to any other pj).

◦ Vi contains the
γ
2
-ball around pi, and is contained in the γ-ball (balls

taken within Sd−1).
◦ So the Vi have small diameter and their measures vary only within a

factor depending only on d (about 2d). But we want exactly the same
measures.

• Idea: Choose n so that 1
n

< mini μ(Vi). Let each vertex exchange some
land with its neighbors so that everyone’s territory is an integer multiple
of 1

n . Then we just slice each of the resulting territories into regions of
measure 1

n .

8.3 The Integrality Gap Matches the Goemans–Williamson Ratio 143

• We need to organize the territory exchange. Call i, j neighbors if ‖pi −
pj‖ ≤ 2γ. The graph on P with edges corresponding to neighbors is con-
nected.

◦ Why? Consider an arc α from some pi to some pj ; each point of α has
some pk at most γ away, so instead of following α, jump through these
pk. Jump length 2γ suffices.

• Choose a rooted spanning tree T of this neighbor graph (so we can speak
of the root, the leaves, and father-son relations among the vertices).

• In the first step of the territory exchange, each leaf pi in T “rounds down”
its territory to the nearest multiple of 1

n : It gives a portion Di ⊂ Vi

of measure μ(Vi) − 1
n
�nμ(Vi)� to its father, so its remaining territory is

Wi := Vi \Di. After that, such a leaf pi is finished.
• The exchange procedure continues in a similar manner towards the root.
Let us say that a non-leaf vertex pi is ready if all of its sons are finished.
For such pi, we let V ′

i := Vi ∪
⋃

pj son of pi
Dj be the original Voronoi

region of pi plus the territory received from its sons.

leaf p1

leaf p2

p4

leaf p3

V1

V2

V3

V4

D1

D2

D3
W1

W2 W4

V ′
4 = V4 ∪D1 ∪D2 ∪D3

• As soon as some non-root vertex pi becomes ready, it “rounds down” its
territory: It gives a piece Di ⊆ Vi of measure μ(Di) = μ(V ′

i)− 1
n�nμ(V ′

i)�
to its father. The remaining territory V ′

i \Di is called Wi.

V4

= V ′
4 = W4

D4

p4

• In this way, we obtain Wi, with μ(Wi) a positive integer multiple of 1
n
, for

each pi except for the root. For the root pr, we can set Wr := V ′
r , since

μ(V ′
r) = 1−∑

i�=r μ(Wi) is also a positive integer multiple of 1
n .

• We have diam(Wi) = O(γ), since pi received territory only from the orig-
inal Voronoi regions of its neighbors.

• Finally, we chop every Wi into nμ(Wi) pieces, of measure 1
n each, arbi-

trarily. The lemma is proved. �

144 8 Lower Bounds for the Goemans–Williamson MaxCut Algorithm

8.3.24 Now we are going to continue with the proof of Theorem 8.3.2. Based
on the continuous graph Gc, we define the discrete graph G. Take γ very small
compared to δ and divide Sd−1 into n cells as in Lemma 8.3.22. Pick a vertex
vi in every cell Ui and set

V (G) := {v1, . . . ,vn},
E = E(G) := {{vi,vj} : ∠vivj ∈ [ϑGW − δ, ϑGW + δ]}.

8.3.25 Clearly,
SDP(G)

|E| ≥ 1− cosϑGW

2
+ ε

for δ sufficiently small. It remains to bound Opt(G).

8.3.26 Let A ⊂ V (G) define a cut with edge set cut(E,A). Set Ac :=⋃
vi∈A Ui. We want to show that the difference of the “discrete ratio” and

“continuous ratio”
|cut(E,A)|

|E| − μ2(cut(Ec, Ac))

μ2(Ec)

is small, since for the continuous ratio we have the upper bound ϑGW

π
+O(δ)

by Lemma 8.3.19.

8.3.27 Call a pair {Ui, Uj} of cells bad if Ui×Uj contains both pairs (x,y) ∈
Ec and pairs (x,y) �∈ Ec. Let B be the set of all bad pairs.

8.3.28 Fix i; where are the Uj with {Ui, Uj} bad? They are all contained in
two bands of width O(γ), one along the boundary of a cap Cπ−ϑGW−δ and
the other along the boundary of Cπ−ϑGW+δ.

Ui

Uj here

The measure of these bands is O(γ) (here we consider d fixed and γ → 0).
So |B| ≤ βn2, where β can be made as small as desired by taking γ small.

8.3.29 Each cut edge {vi,vj} ∈ cut(E,A) “contributes” the sets Ui × Uj

and Uj × Ui, each of measure n−2, to the continuous cut cut(Ec, Ac), unless
{Ui, Uj} is a bad pair. So

μ2(cut(Ec, Ac)) ≥ 2n−2(|cut(E,A)| − |B|)
≥ 2n−2|cut(E,A)| − 2β.

8.3 The Integrality Gap Matches the Goemans–Williamson Ratio 145

By a similar logic, μ2(Ec) ≤ 2n−2|E|+ 2β.

8.3.30 Now for all γ < γ0, with γ0 suitably small, we have 2n−2|E| ≥
μ2(Ec) − 2β ≥ 1

2μ
2(Ec). This is bounded away from 0 by some function

of d and δ, independent of γ. So we can take γ small enough and make sure
that

|cut(E,A)|
|E| ≤ μ2(cut(Ec, Ac))

μ2(Ec)
+ δ.

8.3.31 It follows that Opt(G) ≤ ϑGW

π
+ O(δ), and this shows that the inte-

grality gap for G is at least α−1
GW − ε, as Theorem 8.3.2 claims. �

The Isoperimetric Inequality: Proof Sketch

8.3.32 The mother of all isoperimetric inequalities asserts that among all
planar geometric figures of a given perimeter, the circular disk has the largest
possible area. We will first talk about this one, and then see how the proof
idea generalizes.

8.3.33 Here is a technically much more convenient formulation:

Theorem (A planar isoperimetric inequality). Let t > 0. If A ⊂ R
2 is a

compact set and C is the circular disk of the same area, then λ2(Ct) ≤
λ2(At). Here At stands for the t-neighborhood of A, consisting of all
points with distance at most t to A, and λ2(.) is the area.

An illustration follows:

The theorem claims that if the dark areas are the same, then the light gray
area is the smallest for a disk.

• The statement above with perimeter can be obtained by considering the
limit for t → 0.

8.3.34 Isoperimetric inequalities constitute an important and advanced area,
with many techniques and results. One way of proving such inequalities is
symmetrization. There are various symmetrizing operations; we discuss one
of them, which we call “foldup.”

• If A is a compact planar set andH is a halfplane, then foldupH(A) is the set
obtained by replacing each point x ∈ A \H with its mirror reflection σHx

146 8 Lower Bounds for the Goemans–Williamson MaxCut Algorithm

w.r.t. the boundary of H , provided that σHx �∈ A. Formally, foldupH(A) =
(A ∩H) ∪ (σH(A \H)) ∪ {x ∈ A \H : σHx ∈ A}.

H A
H

foldupH(A)

8.3.35 Lemma (Properties of foldup). Let A be compact. (Measurable
would be enough.) Then we have:

(i) λ2(foldupH(A)) = λ2(A).
(ii) If C is a (circular) disk and H contains its center, then foldupH(C) = C.
(iii) λ2(foldupH(A)t) ≤ λ2(At), for every t > 0.
(iv) foldupH(A ∩B) ⊆ foldupH(A) ∩ foldupH(B).

8.3.36 Proof:

• (i) and (ii) are obvious. (Actually, if (i) is to be done properly, we need a
bit of measure theory.)

• For (iii), we prove foldupH(A)t ⊆ foldupH(At) and then use (i). The inclu-
sion is left as an exercise.

• Part (iv) is routine and we omit it.

8.3.37 Outline of a proof of Theorem 8.3.33.

• Let t > 0 be fixed. Let C be a disk of area 1 with center c. Among all
planar compact sets A of area 1, let us consider those with λ2(At) minimum
possible, and among these, let B have the largest overlap with C; i.e.,
B maximizes λ2(B ∩ C). We want to prove B = C.

• For contradiction, suppose that B �= C. Then λ2(B \C) = λ2(C \B) > 0.
(If λ2(C \ B) = 0, then C \ B = ∅ since C \ B is open as a subset
of C; therefore, C ⊆ B, and if B had a point outside C, we would get
λ2(Bt) > λ2(Ct).)

• Since λ2(C \ B) > 0, there is p ∈ C \ B such that for every sufficiently
small disk Dp centered at p, the set C \B fills at least 99% of the area in
Dp (by the Lebesgue density theorem3). Similarly, there is q ∈ B \C such
that for every sufficiently small disk Dq centered at q, the set B \ C fills
at least 99% of the area of Dp. Let us fix such disks Dp and Dq of equal
radii.

3 If A ⊆ R
d is measurable, then for all x ∈ A, except for a set of measure 0, the

density dA(x) := limε→0 λd(A ∩ B(x, ε))/λd(B(x, ε)) (exists and) equals 1. Here
B(x, ε) is the ball of radius ε centered at x.

8.3 The Integrality Gap Matches the Goemans–Williamson Ratio 147

c

p

q

B

C
H

• Let H be the halfplane whose boundary bisects the segment pq and that
contains c. Since p ∈ C and q �∈ C, c is closer to p than to q, and so
p ∈ H and q �∈ H .

• Set B∗ := foldupH(B). We claim λ2(B∗ ∩ C) > λ2(B ∩ C), which will be
a contradiction.

• Using Lemma 8.3.35(ii) and then (iv), we have B∗ ∩ C = foldupH(B) ∩
foldupH(C) ⊇ foldupH(B ∩ C). We claim that the inclusion is strict in
terms of measure, i.e., λ2(B∗ ∩ C) > λ2(foldupH(B ∩C)):

◦ Most of Dq is contained in B, and since Dq “gets folded” to Dp, we
get that most of Dp is contained in B∗ ∩C.

◦ On the other hand, most of Dp is disjoint from B, and since C is
disjoint from Dq, we have Dp ∩ foldupH(B ∩ C) = Dp ∩ B. Thus,
most of Dp is disjoint from foldupH(B ∩ C), and so λ2(B∗ ∩ C) >
λ2(foldupH(B ∩ C)) = λ2(B ∩ C).

• So B∗ has a strictly larger overlap with C than B, which contradicts our
initial choice of B.

• This was not a full proof! Why? Because the existence of a minimizer B
is far from clear. (This was the gap in several early “proofs” of the planar
isoperimetric inequality.) A not completely trivial topological argument
is needed, which we omit (see, e.g., Feige and Schechtman [FS02] for an
argument of this kind).

This is not the simplest proof of the planar isoperimetric inequality (there
are several truly beautiful proofs known), but it generalizes to the setting we
are interested in.

8.3.38 Now we work towards the isoperimetric inequality we wanted –
Proposition 8.3.14. By the just indicated method one proves the following:

Lemma. Let ϑ ∈ (0, π), and let E(ϑ) := {(x,y) ∈ Sd−1 × Sd−1 : ∠xy ≥ ϑ}.
Let a ∈ [0, 1]. Then among all closed sets A ⊆ Sd−1 with μ(A) = a, the
quantity μ2(cut(E(ϑ), A)) is maximized by a spherical cap.

8.3.39 Sketch of proof:

• Among all closed A ⊆ Sd−1 with μ(A) = a, we consider those maximizing
μ2(cut(E(ϑ), A)), and among those, pick B maximizing μ(B ∩ C), where
C is a fixed spherical cap of measure a. Again, the existence is nontrivial
(and omitted – see the Feige–Schechtman paper).

148 8 Lower Bounds for the Goemans–Williamson MaxCut Algorithm

• We want to show that B = C, and similar to the previous proof, for
this it suffices to show μ(B ∩ C) = μ(C). So let us assume not, and pick
p,q, Dp, Dq as in the previous proof. This time H is the hemisphere whose
boundary bisects the arc pq.

• Set B∗ := foldupH(B), where the foldup is now defined w.r.t. a hemisphere
in the obvious way. Everything works as before, showing μ(B∗ ∩ C) >
μ(B ∩C), except that we need to check that foldupH cannot decrease the
cut size: μ2(cut(E(ϑ), B∗)) ≥ μ2(cut(E(ϑ), B))??

• Let us consider four unit vectors of the form x,y, σHx, σHy, where
x,y ∈ H . Their angles satisfy ∠xy = ∠(σHx)(σHy) ≤ ∠x(σHy) =
∠(σHx)y.

• We introduce the type T of the ordered pair (x,y) ∈ H×H , which specifies
the following information: which of the four vectors x, σHx,y, σHy lie in B,
and which of the four angles considered above are at least ϑ. We can specify
the type by a picture of the following kind:

x

σHx

y

σHy

This particular picture means that x �∈ B, while the other three points lie
in B, and that ∠x(σHy) = ∠(σHx)y are at least ϑ, while the other two
angles are smaller than ϑ.

• From the type of (x,y) one can determine which of the four pairs (x,y),
(x, σHy), (σHx,y), (σHx, σHy) contribute to cut(E(ϑ), B) – those corre-
sponding to bichromatic edges. So we have

μ2(cut(E(ϑ), B)) =
∑

T

kTMT ,

where the sum is over all possible types, MT is the μ2-measure of all pairs
of type T , and kT is the number of bichromatic edges in the picture for
type T .

• If we replace B by B∗ = foldupH(B), each pair of type T becomes a pair
of some type T ∗, where T ∗ depends only on T . For example, for the type T
depicted above, T ∗ is

x

σHx

y

σHy

• We have MT = MT∗ , so it is enough to check that kT∗ ≥ kT for all T , i.e.,
the new type is counted in the measure with at least as large a weight as
the old type. There are just few easy cases to check. �

8.3.40 Given this lemma, we still want to see that the best spherical cap is a
hemisphere, i.e., μ2(cut(E(ϑ), H)) ≥ μ2(cut(E(ϑ), C)). If we compute the cut

8.4 The Approximation Ratio Is At Most αGW 149

measure in the Goemans–Williamson way, i.e., considering a random cap C
of a given measure a and estimating the probability that it cuts a given
(x,y) ∈ E(ϑ), then this is a reasonably easy geometric argument. We leave
it as an exercise.

Now, finally, we are done with Theorem 8.3.2! �

8.4 The Approximation Ratio Is At Most αGW

8.4.1 In Theorem 8.3.2, we constructed MaxCut instances with large inte-
grality gap, i.e., with the semidefinite optimum SDP as far from the true
maximum cut Opt as it can ever be. But in such a case, the random hyper-
plane rounding finds an almost optimal cut.

Here we do a different thing: a graph where SDP = Opt, but where the
random rounding finds only a cut of size about αGW ·Opt.

Theorem (Karloff [Kar99]). For every ε > 0 there exists a graph G
with

Algo

Opt
≤ αGW + ε,

where Opt is the number of edges of a maximum cut and Algo is the
expected size of the cut found by the random hyperplane rounding.

• We will follow a somewhat simpler proof by Alon and Sudakov [AS00].
• Although the expected size of the hyperplane cut in this example is small,

it turns out that the true maximum cut is also a hyperplane cut. It is
not out of the question to modify the GW algorithm so that it finds the
best hyperplane cut, instead of a random one. The theorem does not say
anything about such an algorithm, but it is possible to modify the example
so that no hyperplane is much better than a random one.

8.4.2 The construction of G has two parameters, an integer d and an even
integer h. The ratio h

d
should approximate (1− cosϑGW)/2 ≈ 0.844579. The

ratio Algo
Opt

obtained for given d and h is 2
π

1−cosϑ
ϑ

, where (1− cosϑ)/2 = h
d
.

8.4.3 G is the (binary) Hamming graph with vertex set

V := {−1, 1}d

and edge set
E := {{a, b} : a, b ∈ V, dH(a, b) = h}.

Here dH(a, b) is the Hamming distance, i.e., the number of coordinates where
a and b differ.

150 8 Lower Bounds for the Goemans–Williamson MaxCut Algorithm

8.4.4 With every vertex a ∈ {−1, 1}d of G we associate the unit vector
va := 1√

d
a ∈ R

d. Then vT
a vb = 1− 2h

d
for all edges {a, b}.

8.4.5 This obviously yields a feasible solution of the SDP relaxation. But
this time we must exhibit an optimal solution, one that the algorithm could
actually use for random rounding.

Lemma. The just defined system of vectors (va : a ∈ V) is an optimal

solution of the vector program (GW); i.e., it maximizes
∑

{a,b}∈E
1−vT

a vb

2

(assuming h even and h
d ∈ [0.6, 0.9]).

8.4.6 Assuming this lemma, the theorem follows:

• Algo approaches (ϑGW/π)|E| as h
d → (1− cosϑGW)/2.

• Every cut by a coordinate hyperplane has h
d |E| edges, and this is a lower

bound for Opt. So Algo/Opt → αGW.
• Actually, SDP = h

d |E| as well, and so SDP = Opt.

8.4.7 The lemma is proved by eigenvalue computation, using the following
general fact.

Proposition. Let G = (V,E) be a graph on n vertices, let A = AG be its
adjacency matrix and let λmin be the smallest eigenvalue of A (most negative,
not with a small absolute value; typically λmin < 0). Then

SDP(G) ≤ 1

2
|E|+ −λminn

4
.

8.4.8 Proof:

• Let v1, . . . ,vn ∈ R
n be an optimal SDP solution (unit vectors). We form

the matrix with the vi as columns, and let r1, . . . , rn ∈ R
n be its rows.

• We have
∑n

k=1 ‖rk‖2 =
∑n

i=1 ‖vi‖2 = n.
• We compute

SDP =
1

2

n∑

i,j=1

aij
1− vT

i vj

2
=

1

2
|E| − 1

4

n∑

i,j=1

n∑

k=1

aijvikvjk

=
1

2
|E| − 1

4

n∑

k=1

rTkArk .

• For every x ∈ R
n, xTAx ≥ λmin‖x‖2. Equality holds iff x is an eigenvector

of A belonging to λmin (by the variational characterization of eigenvalues).
This is a simple corollary of Theorem 4.8.1.

• So SDP ≤ 1
2
|E| − 1

4
λmin

∑n
k=1 ‖rk‖2 = 1

2
|E| − 1

4
λminn; equality holds iff

all the rk are eigenvectors belonging to λmin. �

Actually, the proposition can also be obtained from the SDP duality.

8.4 The Approximation Ratio Is At Most αGW 151

8.4.9 So what is λmin of our (Hamming) graph? (For this method to show
optimality of our SDP solution, the rows of B in the above proof must be
eigenvectors of the adjacency matrix . . . fortunately they are.)

Eigenvalues of Cayley Graphs

8.4.10 A reminder:

• Let Γ be an abelian (= commutative) group.
• A character of Γ is a homomorphism χ:Γ → C

∗ (the group of all nonzero
complex numbers with multiplication; really only z ∈ C with |z| = 1 are
used).

• It is easily seen that all characters of Γ form a group Γ̂ under pointwise
multiplication. (This is important in Fourier analysis.)

• Now if Γ is an arbitrary (not necessarily abelian) group, and S ⊆ Γ is a
symmetric set (i.e., s ∈ S implies s−1 ∈ S), the Cayley graph of Γ with
respect to S is

(Γ, {{g, gs} : g ∈ Γ, s ∈ S}).
• Our Hamming graph is a Cayley graph: the group Γ = ({−1, 1}d, ·)

(coordinate-wise multiplication), and

S = {s ∈ {−1, 1}d : s has exactly h components −1}.

8.4.11 Proposition. Let G be the Cayley graph of Γ w.r.t. some S, where
Γ is finite abelian, and let χ be a character of Γ . Then the vector χ := (χ(g) :
g ∈ Γ) is an eigenvector of the adjacency matrix A of G, with eigenvalue
λχ :=

∑
s∈S χ(s).

8.4.12 Proof: (Aχ)g =
∑

s∈S χ(gs) =
∑

s∈S χ(s)χ(g) = λχχ(g). �

8.4.13 We claim that for our particular Γ = ({−1, 1}d, ·), the characters
are of the form χI with χI(g) =

∏
i∈I gi, where I ⊆ {1, 2, . . . , d}. (This is a

starting point of Fourier analysis on the Boolean hypercube.)

• Clearly, these χI are characters.
• In general, it is known that |Γ̂ | = |Γ |, and so these are all characters.

8.4.14 As we will see next, we can find all eigenvalues of the matrix A via
Proposition 8.4.11.

• Indeed, it is easy to check that the characters χI as above are linearly
independent as functions Γ → C.

• So we have 2d linearly independent eigenvectors for a 2d × 2d matrix –
thus, we have all eigenvectors.

152 8 Lower Bounds for the Goemans–Williamson MaxCut Algorithm

8.4.15 We compute the eigenvalue for χI , |I| = k:

λχI =
∑

s has h components −1

χI(s) =
∑

|J|=h

(−1)|I∩J|

=
∑

t

(−1)t
(
k

t

)(
d− k

h− t

)

= Kd
h(k) . . . the binary Krawtchuk polynomial .

(This polynomial haunts the theory of error-correcting codes; see under Del-
sarte’s bound.)

8.4.16 So λmin = min
{
Kd

h(k) : k = 0, 1, . . . , d
}
.

8.4.17 Fact: the minimum occurs for k = 1 (for h even and such that h
d is

between 0.6 and 0.9, say).

• For not too large specific values of d and h, one can verify this by an exact
calculation on a computer. For example, the exact numerical computation
for d = 1319 and h = 1114 is quite feasible, and it shows the optimality of
the Goemans–Williamson ratio to 6 decimal places.

• The proof for general d and j uses many estimates; it is a good mathe-
matical craft, but lengthy and perhaps not so enlightening. So we omit
it.

8.4.18 If we accept the just mentioned fact, we get λmin = Kd
h(1). The

eigenvectors belonging to λmin are the characters χI with |I| = 1. Some
thought reveals that these are, up to scaling, exactly the rows of the matrix
made of the va (the SDP solution in Lemma 8.4.5).

8.4.19 As we saw in the proof of Proposition 8.4.7, for an SDP solution
consisting of eigenvectors of the adjacency matrix A belonging to λmin, the
inequality in the proposition holds with equality, and consequently, such an
SDP solution is optimal. Lemma 8.4.5 follows, as well as Theorem 8.4.1. �

8.5 The Unique Games Conjecture for Us Laymen,
Part I

8.5.1 The Unique Games Conjecture is one of the most important open
problems in theoretical computer science.

• Proving it would establish many amazingly precise results on hardness
of approximation. For example, it would follow that no polynomial-time
algorithm can approximate MaxCut with ratio better than αGW. We will
state several other consequences later on.

8.5 The Unique Games Conjecture for Us Laymen, Part I 153

• Disproving it would probably bring a powerful new algorithmic technique,
which might be useful in a number of other problems.

• But perhaps proof or disproof is very hard, the conjecture might remain
open for a long time, and we will have to live with it, as we do with P �=NP.

8.5.2 Here we state the Unique Games Conjecture in a simple and concrete
form. But much more material is needed to explain the origins of the conjec-
ture and its connections to inapproximability – at least another one-semester
course.

8.5.3 We introduce the algorithmic problem MAX-2-LIN(mod q), where
q is a fixed prime. The input is a system of m linear equations modulo q,
with unknowns x1, . . . , xn ∈ {0, 1, . . . , q−1}, where each of the equations has
a very simple form xi − xj = c. For example,

x3 − x11 ≡ 87 (mod 97)

x7 − x22 ≡ 3 (mod 97)

...
...

...

x7 − x19 ≡ 56 (mod 97).

Task: Find an assignment of the xi that satisfies the maximum possible num-
ber of the given equations.

8.5.4 A (1−δ, ε)-gap version ofMax-2-Lin(mod q): If there is an assignment
satisfying at least a (1 − δ)-fraction of the equations, the output should be
YES; if no assignment satisfies more than an ε-fraction of the equations, the
output should be NO; in the remaining cases, the output can be either YES
or NO.

Unique Games Conjecture, concrete form.

For every ε > 0 there exists a prime q such that the (1 − ε, ε)-gap ver-
sion of Max-2-Lin(mod q) admits no polynomial-time algorithm unless
P=NP.

• By the way, where are the games, and why unique? Better do not ask
(this refers to a different, essentially equivalent, and more complicated
setting. . .).

8.5.5 Unlike P �=NP, the UGC looks somewhat arbitrary; there do not seem
to be any compelling reasons why it should (or should not) be true.

• Some recent work, most notably a paper by Arora et al. [ABS10], per-
haps points more towards a possible refutation of the UGC. Namely, this
paper gives an approximation algorithm for a (generalization of) Max-2-
Lin(mod q) that runs in time less than exponential in m, the number of
equations.

154 8 Lower Bounds for the Goemans–Williamson MaxCut Algorithm

• Concretely, for some (large) constant C, they give an ingenious algorithm
that, given an instance of Max-2-Lin(mod q) that has an assignment sat-
isfying at least (1 − ε)m of the equations (for some ε > 0), outputs an
assignment satisfying at least (1 − εC)m of the equations. The running

time is bounded by exp(O(qmεC)).

8.5.6 But, the UGC has gained a central status because of the numerous
consequences. In particular, as we mentioned, it implies that αGW is the
optimal approximation ratio for MaxCut.

8.5.7 The proof of this implication by Khot et al. [KKMO07] relies on tech-
niques around the PCP theorem and uses advanced Fourier analysis on the
Boolean cube.

• The technical core of this result, as well as of a number of others, is a
theorem in discrete Fourier analysis called “majority is stablest .”

• In geometric terms, the “majority is stablest” theorem says essentially that
in the Hamming graph example discussed in Sect. 8.4, every near-optimal
cut is close to a cut by a coordinate hyperplane, while all other cuts are
about as bad as a random hyperplane cut. See O’Donnell’s lecture notes,
e.g., http://www.cs.cmu.edu/~odonnell/boolean-analysis/.

8.5.8 In 2010, Guruswami et al. [GRSW10] obtained tight inapproximability
results for two geometric computational problems (which we will not describe
here) assuming only P �=NP. Previously, the same inapproximability bounds
were derived assuming the UGC as well. Perhaps there is hope to bypass
the UGC in a similar way for some of the other optimal inapproximability
results.

Exercises

8.1 Let G be a bipartite graph. What is the optimum value of the vector
program (GW), and what does the corresponding vector representation look
like?

8.2 Prove that the five vectors arranged in a regular pentagon, as shown
in the picture in 8.3.3, constitute an optimal solution of the vector program
(GW) for the 5-cycle C5.

8.3 Suppose that for some graph G, the Goemans–Williamson vector pro-
gram (GW) has an optimal solution whose vectors are all contained in the
set {−d−1/2, d−1/2}d ⊂ R

d (for some d ≤ n). Prove that then the integrality
gap equals 1; that is, there exists a cut in G whose number of edges equals
the optimum of (GW).

8.5 The Unique Games Conjecture for Us Laymen, Part I 155

8.4 Consider an extension of (GW) with the following “triangle constraints”
added:

‖vi − vj‖2 + ‖vj − vk‖2 ≥ ‖vi − vk‖2 for all i, j, k
‖vi + vj‖2 + ‖vj + vk‖2 ≥ ‖vi − vk‖2 for all i, j, k.

(i) Check that the first constraint is equivalent to

vT
i vk − vT

i vj − vT
j vk ≥ −1.

(ii) Prove that for every cycle Cn, the integrality gap of this extended vector
program is 1, i.e., the optimum value is the true size of the maximum
cut.

(iii) What is the expected size of a cut obtained by the random hyperplane
method (the same as in the Goemans–Williamson algorithm) for an opti-
mal solution of this extended vector program for C7? Compare it to the
ratio αGW. (Hint: Find an optimal solution with vectors vi in the set
{−d−1/2, d−1/2}d.)

8.5 Prove Lemma 8.3.35(i) rigorously (elementary measure theory may be
needed.)

8.6 Prove Lemma 8.3.35(iii) following the hint in the proof sketch.

8.7 Prove the last claim in 8.3.40, i.e., μ2(cut(E(ϑ), H)) ≥ μ2(cut(E(ϑ), C)),
where C is an arbitrary cap and H is a hemisphere.

Chapter 9

Coloring 3-Chromatic Graphs

9.1 The 3-Coloring Challenge

9.1.1 We recall

• The chromatic number χ(G), the smallest number of colors needed to color
the vertices of a graph G so that no two neighboring vertices receive the
same color.

• The independence number α(G), the size of the largest independent set in
G, where an independent set is one with no two of its vertices connected
by an edge.

9.1.2 Both of these graph parameters are computationally difficult: they are
NP-hard to approximate with factor n1−ε, for every fixed ε > 0.

• Feige and Kilian [FK98] and H̊astad [H̊as99] obtained this kind of result
with a randomized reduction, which was then derandomized by Zuckerman
[Zuc06]; also see Khot and Ponnuswami [KP06] for a still slightly stronger
inapproximability result.

9.1.3 The strongest known positive results, i.e., efficient coloring algorithms,
are based on SDP.

9.1.4 We will consider the following particular challenge in graph coloring:
Assuming that χ(G) = 3, color G in polynomial time with as few colors as
possible. (There are obvious generalizations for k > 3 fixed but we stick to
the case k = 3.)

9.1.5 Known hardness results for this case:

• If P �=NP, then there is no polynomial-time algorithm guaranteed to color
every 3-colorable graph with at most 4 colors (Khanna et al. [KLS00]).

• Khot’s “2-to-1 conjecture,” similar to the Unique Games Conjecture,
implies that there is no polynomial-time algorithm guaranteed to color

157B. Gärtner and J. Matoušek, Approximation Algorithms and Semidefinite
Programming, DOI 10.1007/978-3-642-22015-9 9,
© Springer-Verlag Berlin Heidelberg 2012

158 9 Coloring 3-Chromatic Graphs

every 4-colorable graphs with one million (or any other fixed number) of
colors; see Dinur et al. [DMR06].

9.1.6 Obviously, every n-vertex graph can be colored with n colors. Here is
a simple way of using significantly fewer colors, namely, O(

√
n) (Wigderson’s

trick):

• If G is 3-colorable, then the neighborhood of a vertex is bipartite and thus
it can be 2-colored (fast).

• So, given a parameter Δ, by repeatedly coloring maximum-degree vertices
and their neighbors, we can use O(n/Δ) colors and reduce the maximum
degree below Δ.

• A graph with maximum degree Δ can easily be colored by Δ + 1 colors
(greedy algorithm – give each vertex a color not used by its neighbors).

• Combining these two methods and setting Δ :=
√
n, we can color every

3-colorable G with O(
√
n) colors.

9.1.7 Other tricks, ingenious but still elementary, can get this down to
Õ(n0.375) (Blum [Blu94]). This was the record for about 10 years.

• We recall that Õ(.) is a convenient notation for ignoring logarithmic fac-
tors; f(n) = Õ(g(n)) means f(n) ≤ g(n)(logn)O(1).

9.1.8 This barrier was finally broken using SDP by Karger et al. [KMS98]:
Õ(n0.25) colors suffice – this is what we are now going to present.

9.1.9 Some improvement of the Õ(n0.25) bound can be achieved by employ-
ing the Blum tricks.

9.1.10 A conceptual improvement of the Karger–Motwani–Sudan algorithm
(a “second generation,” global analysis of the rounding step) was given by
Arora et al. [ACC06], achieving Õ(n0.2111) colors.

9.1.11 A further slight improvement to Õ(n0.2072) was obtained by Chlam-
tac [Chl07], who used an SDP relaxation at a higher level of the Lasserre
hierarchy (which we will briefly mention in 12.3.9). Here we will not dis-
cuss these more advanced results and cover only the Karger–Motwani–Sudan
algorithm, which constitutes a basis for all further developments.

9.2 From a Vector Coloring to a Proper Coloring

9.2.1 A (non-strict) vector k-coloring of a graph G is an assignment of
unit vectors vi to vertices such that for every two adjacent vertices i, j we
have

vT
i vj ≤ − 1

k − 1
.

9.3 Properties of the Normal Distribution 159

• The smallest k can be found using SDP (k need not be an integer); see
Chap. 3.

• Every k-colorable graph has a vector k-coloring. So for 3-colorable G, we
may assume a vector 3-coloring.

◦ Earlier we have seen strict vector coloring, with vT
i vj = − 1

k−1
. There

the smallest k equals ϑ(G), the Lovász theta function of the comple-
ment.

◦ It not clear whether the vector chromatic number and the strict vector
chromatic number may ever differ – at least no such example seems to
be known.

9.2.2 The basis of the KMS coloring algorithm is the following result.

Theorem (The Karger–Motwani–Sudan rounding [KMS98]). There is
a polynomial-time randomized algorithm which, given a graph G on n
vertices of maximum degree at mostΔ and a vector 3-coloring of G, finds
an independent set in G whose expected number of vertices is bounded
by Ω̃(Δ−1/3n).

9.2.3 How can this be used for a coloring? Having found an independent set,
we assign it a new color, and color the rest of the graph recursively. So any
graph as in the theorem can be colored with Õ(Δ1/3) colors.

9.2.4 Combining Theorem 9.2.2 with Wigderson’s trick (see 9.1.6) and set-
ting Δ := n3/4 (we leave the details as an exercise), we obtain:

Corollary. A 3-colorable graph can be colored with Õ(n0.25) colors in ran-
domized polynomial time.

(Adding Blum’s tricks even gives Õ(n0.2143) colors.)

9.3 Properties of the Normal Distribution

9.3.1 Now we make a detour. First we recall the standard normal or Gaus-
sian distribution , denoted by N(0, 1).

• The density of the standard normal distribution is ϕ(x) := 1√
2π

e−x2/2, the

famous bell curve.

160 9 Coloring 3-Chromatic Graphs

-4 -2 2 4

0.1

0.2

0.3

0.4

That is, if Z ∼ N(0, 1) (read “Z is a random variable with the stan-
dard normal distribution”), then for every x ∈ R, Prob[Z ∈ [x, x+ h)] is
approximately h · ϕ(x) for h small.

◦ More precisely,

lim
h→0

1

h
Prob[Z ∈ [x, x+ h)] = ϕ(x).

• We will use the function N(t) := Prob[Z ≥ t] =
∫∞
t

ϕ(x) dx, where Z ∼
N(0, 1).

9.3.2 We will need that, for t large, N(2t) is approximately N(t)4.

• This is how the density function behaves: ϕ(2t) = (2π)3/2ϕ(t)4.
• Intuitively, for large t, the behavior of N(t) is similar to that of ϕ(t), and
that “explains” why N(2t) ≈ N(t)4. But, in order to derive a rigorous
result of this kind, we need good estimates of N(t).

• It is known that N(t) cannot be expressed using elementary functions. In
other words, the integral of the density function ϕ(x) cannot be computed
by the usual tricks from calculus; it is a “new” function. The main trick
for estimating N(t) is finding another function, which is “close” to ϕ(x)
but can be integrated. Namely, we use the following two functions:

◦ (1 + 1
x2)ϕ(x) as an upper bound for ϕ(x).

◦ (1− 1
3x4)ϕ(x) as a lower bound.

Both of them can be integrated by parts, which we leave to the reader.

This yields the following useful estimates.

Lemma. For all t ≥ 0, we have

(
1

t
− 1

t3

)
1√
2π

e−t2/2 ≤ N(t) ≤ 1

t

1√
2π

e−t2/2.

9.3.3 We will also need the n-dimensional standard normal (or Gaussian)
distribution.

9.4 The KMS Rounding Algorithm 161

• This is the distribution of a random vector γ = (γ1, γ2, . . . , γn) ∈ R
n,

whose components γ1, . . . , γn are independent N(0, 1) random variables.
• The distribution of γ is spherically symmetric: its density function is

(2π)−n/2
n∏

i=1

e−x2
i/2 = (2π)−n/2e−‖x‖2/2.

• Thus, if u is a unit vector, then γTu ∼ N(0, 1) (since this holds, by
definition, for u = e1).

• It is hard to overstate the importance of the n-dimensional Gaussian dis-
tribution in probability theory and statistics, but also in geometry and
algorithms. In this book, which is certainly not intentionally focused on
probabilistic methods, we will meet the Gaussian distribution in several
rather different algorithms.

9.4 The KMS Rounding Algorithm

9.4.1 Let G be a graph with maximum degree Δ, and let v1, . . . ,vn ∈ Rn

be a vector 3-coloring (unit vectors, vT
i vj ≤ − 1

2
for all edges). We want to

find a large independent set I in G. The Karger–Motwani–Sudan algorithm
proceeds as follows.

• Pick γ ∈ R
n random Gaussian, and let I0 := {i : γTvi ≥ t}, t a suitable

threshold parameter.
• Let I ⊆ I0 be the set of all isolated vertices in I0 (having no neighbor in
I0). This is the desired independent set.

v1

v2
v3

{x : 〈γ,x〉 ≥ t}

I

9.4.2 Intuition: If {i, j} ∈ E, then vi and vj are far away, and thus unlikely
to fall in the same cap.

162 9 Coloring 3-Chromatic Graphs

9.4.3 Analysis:

• E [|I|] = E [|I0|]−E [|I0 \ I|].
• E [|I0|] =

∑n
i=1 Prob[i ∈ I0] =

∑n
i=1 Prob

[
γTvi ≥ t

]
= nN(t).

• We calculate

E [|I0 \ I|] =

n∑

i=1

Prob[i ∈ I0 and j ∈ I0 for some edge {i, j}]

≤
n∑

i=1

∑

{i,j}∈E

Prob[i, j ∈ I0] (by the union bound).

• We have Prob[i, j ∈ I0] = Prob
[
γTvi ≥ t and γTvj ≥ t

]
; geometrically,

we ask for the probability of γ falling in the dark gray wedge:

{x : xTvi ≥ t}

t
2t

vj

vi

{x : xTvj ≥ t}

• For vi fixed, the wedge grows larger as the angle ∠vivj decreases. But the
vector coloring condition tells us that vT

i vj ≤ − 1
2 , so ∠vivj is at least

120◦. We may assume that it is exactly that.

◦ Alternatively, we could have started with a strict vector 3-coloring; then
vT
i vj = − 1

2 .

• We could calculate the probability of γ lying in the wedge precisely, but
we estimate it: The wedge is contained in the halfspace with the dotted
boundary, whose distance from the origin is 2t.

• So Prob[i, j ∈ I0] ≤ N(2t), and E [|I|] ≥ n(N(t)−ΔN(2t)).
• Set t so that the last expression is large; a good choice is t := (2

3
lnΔ)1/2.

Using Lemma 9.3.2 gives

N(t)−ΔN(2t) ≥ 1√
2π

((
1

t
− 1

t3

)
e−t2/2 − Δ

2t
e−4t2/2

)

= Ω
(
Δ−1/3/

√
lnΔ

)

(we may assume that Δ is larger than a suitable constant, and thus t ≥ 2,
say).

9.5 Difficult Graphs 163

• So the expected size of the independent set I is indeed Ω̃(Δ−1/3n), and
Theorem 9.2.2 is proved. �

9.5 Difficult Graphs

9.5.1 We will construct a graph G with vector chromatic number at most 3
but chromatic number large. Such G shows that it is impossible to guarantee
coloring with a very small number of colors based only on vector chromatic
number 3.

Proposition. There exists a constant δ > 0 such that for infinitely
many values of n, one can construct an n-vertex graph with vector chro-
matic number at most 3 and with chromatic number at least nδ.

• The best δ is obtained by a construction similar to the one for the inte-
grality gap of the Goemans–Williamson algorithm. But that is quite com-
plicated.

• Here we explain a weaker result with a very neat proof (two proofs, actu-
ally).

9.5.2 Construction: The graph G has all s-element sets A ⊆ {1, 2, . . . , d}
as vertices, and edges correspond to pairs of sets A,B with |A ∩B| ≤ t; the
parameters s, t need to be chosen carefully. Setting d = 8t and s = 4t will
work. Thus n = |V (G)| = (

d
s

)
.

9.5.3 Let us see how the vector chromatic number works; this is simple.

• If A ∈ V (G) is an s-element set, we assign it the unit vector vA ∈ R
d

(normalized signed characteristic vector): (vA)i := d−1/2 if i ∈ A and
(vA)i := −d−1/2 if i �∈ A.

• {A,B} ∈ E(G) means |A ∩B| ≤ t; then vT
AvB ≤ 1

d
(d− 4s+ 4t).

• For d = 8t and s = 4t as above, we get vT
AvB ≤ − 1

2
, i.e., vector chromatic

number at most 3.

9.5.4 It remains to bound the chromatic number χ(G) from below.

• We will apply the “usual” lower bound χ(G) ≥ n/α(G). (This holds
because a coloring of G with k colors means a covering of the vertex set
with k independent sets.)

• Here α(G) is the maximum independent set size; in our case, the maximum
number of s-element subsets of {1, 2, . . . , d} such that every two intersect
in at least t+ 1 elements.

• For bounding α(G) from above, will need a “forbidden intersections”
theorem. There are many beautiful “forbidden intersections” theorems
about set systems, which bound the size of the maximum independent set

164 9 Coloring 3-Chromatic Graphs

in graphs of this kind (Ray-Chaudhuri–Wilson, Frankl–Wilson, Frankl–
Rödl . . .). We will rely on the following theorem.

9.5.5 Theorem. Let F be a system of s-element subsets of {1, 2, . . . , d}
such that every two distinct A,B ∈ F satisfy |A ∩B| ≥ t+ 1. Then

|F| ≤
(
d

0

)
+

(
d

1

)
+ · · ·+

(
d

s− t− 1

)
.

• This resembles the famous Erdős–Ko–Rado theorem.
• The well-known basic version of that theorem asserts that if F is a system

of k-element subsets of an n-element set, with A∩B �= ∅ for every A,B ∈
F , and n ≥ 2k, then |F| ≤ (

n−1
k−1

)
.

• Erdős, Ko, and Rado also proved that if |A∩B| ≥ t+1 for every A,B ∈ F ,
then |F| ≤ (

n−t−1
k−t−1

)
provided that n ≥ n0(k, t), where n0(s, t) has to be

sufficiently large – the smallest value is known to be (k − t)t. So in our
setting EKR is not applicable!

• But we can get the slightly worse bound in the theorem.

9.5.6 Let us first see how Theorem 9.5.5 implies Proposition 9.5.1. By the
above, it suffices to bound α(G) from above.

• We employ the following generally useful approximation for the binomial
coefficient: for β ∈ (0, 1) and n large, we have

(
n

βn

)
≈ 2nH(β),

where H(x) := −x log2 x−(1−x) log2(1−x) is the entropy function. More
precisely, for every β ∈ (0, 1) fixed, we have limn→∞ 1

n
log2

(
n

�βn	
)
= H(β).

(This is not so hard to prove but we skip that.)
• Thus, for t large, the bound in Theorem 9.5.5 is about 2dH(3/8) ≈ 20.954d.

That is an upper bound on α(G).
• Our n =

(
d
s

) ≈ 2d, and χ(G) ≥ n/α(G) ≥ 20.045d. Then we obtain δ ≈
0.045, and the proposition is proved. �

9.5.7 It remains to prove Theorem 9.5.5. The first proof is based on a linear
algebra trick – the polynomial method according to Alon et al. [ABS91].

• To each A ∈ F we assign two things:

◦ A vector cA ∈ {0, 1}d: the characteristic vector of A (a 0/1 vector this
time! sorry), with the i-th component 1 if i ∈ A and 0 otherwise.

9.5 Difficult Graphs 165

◦ A function fA: {0, 1}d → R, given by

fA(x) =
s−1∏

j=t+1

((∑

i∈A

xi

)
− j

)
.

• We see: fA(cA) �= 0, fA(cB) = 0 for B �= A.
• This implies: The fA are linearly independent (as elements of the vector
space of all maps {0, 1}d → R).

◦ Indeed, we consider a linear combination
∑

A∈F αAfA equal to the zero
function, and substitute cB into it. This yields αB = 0, and since B was
arbitrary, all the αA are zero.

• Next, we want to show that all the fA lie in a vector space generated by a
small number of functions. Suitable functions are given by monomials, of
the form xi1

1 xi22 · · ·xid
d .

• Each fA is a polynomial in x1, . . . , xd of degree at most s − t − 1, i.e., a
linear combination of monomials.

• Since we are dealing with functions defined on {0, 1}d, x2
i defines the same

function as xi. So we can consider only squarefree (or multilinear) mono-
mials, in which every variable has power 0 or 1.

• It is easily counted that there are
(
d
0

)
+
(
d
1

)
+ · · ·+(

d
s−t−1

)
squarefree mono-

mials of degree ≤ s− t− 1 in d variables. They generate a vector space W
containing all fA. Since we know that the fA are linearly independent,
their number is no more than dimW . The theorem is proved. �

9.5.8 The second proof is based on the (generally useful) Vapnik–Chervo-
nenkis–Sauer–Shelah lemma, which we now state.

• Let M be a set system on a set X . A finite set S ⊆ X (not necessarily
belonging to M) is called shattered by M if for every T ⊆ S there exists
M ∈ M with S ∩M = T .

• The Vapnik–Chervonenkis–Sauer–Shelah lemma: IfX andM are as above,
|X | = n, and no set S ⊆ X with more than k elements is shattered by M,
then M contains at most

(
n
0

)
+
(
n
1

)
+ · · ·+ (

n
k

)
sets.

• This lemma is not hard to prove by double induction (on k and on n).
• In the setting of Theorem 9.5.5, we check that no subset S of {1, 2, . . . , d}

of size s− t is shattered by F . Indeed, if such an S were shattered, there is
some A ∈ F with S∩A = ∅, and there is also some B ∈ F with S∩B = S.
Then, however, |A∩B| ≤ |B|− |S| = s− (s− t) < t+1, which contradicts
the assumption on F .

• Thus, Theorem 9.5.5 follows from the Vapnik–Chervonenkis–Sauer–Shelah
lemma. �

166 9 Coloring 3-Chromatic Graphs

Exercises

9.1 Given a graph G with n vertices and maximum degree Δ, we want to
find a large independent set. Analyze the following randomized strategy.

First, we put each vertex v into a set I0 independently with probability p
(for a suitable parameter p). Next, we remove each adjacent pair from I0,
obtaining the independent set I := {v ∈ I0 : v has no neighbors in I0}. What
is its expected size? Which value of p maximizes this expectation?

How does the result change if we remove from I0 only one vertex from
each edge?

9.2 Suppose that an algorithm is given that, for every n-vertex 3-colorable
graph with maximum degree Δ, finds an independent set of size at least
cn/Δ1/3, where c > 0 is a constant. Show that using this algorithm, we can
color every n-vertex 3-colorable graph with Õ(n1/4) colors.

9.3 Prove Lemma 9.3.2, following the hints in the text.

9.4 Use the polynomial method as in 9.5.7 to prove the Frankl–Wilson
inequality:

Let p be a prime, and let d and s be integers with d > s ≥ p. Let F be
a system of s-element subsets of {1, . . . , d} such that for every two distinct
A,B ∈ F , we have |A ∩B| �≡ s (mod p). Then

|F| ≤
p−1∑

i=0

(
d

i

)
.

9.5 Prove the Vapnik–Chervonenkis–Sauer–Shelah lemma by double induc-
tion, on k and on n.

9.6 (a) Prove the inequality
(
n
k

) ≤ 2nH(k/n) for all n ≥ k ≥ 1, where H(·) is
the entropy function (a true inequality, no asymptotics!).

(b) Prove the asymptotic formula in the text, namely,

lim
n→∞

log2
(

n
�αn	

)

n
= H(α), α ∈ (0, 1).

This can be done using with the Stirling formula for n!; you may also
want to find a proof avoiding it.

Chapter 10

Maximizing a Quadratic Form on a Graph

10.1 Four Problems

MAXCUTGAIN

10.1.1 This is a reconsideration of the objective function in MaxCut.

• A cut with 1
2 |E| edges may be regarded as “trivial” (this is the expected

size if we partition the vertex set randomly); real designers of algorithms
can do better. So we can perhaps better measure the quality of a MaxCut
algorithm by the “gain”; MaxCut−1

2 |E|.
• Solving MaxCutGain exactly is equivalent to solving MaxCut, but
approximation is a very different story (e.g., if the maximum cut has
1
2
|E|+ |E|0.9 edges and an algorithm finds a cut with 1

2
|E|+ 10 edges).

10.1.2 An integer quadratic program formulation of MaxCutGain:

max

{ ∑

{i,j}∈E

−xixj

2
: x1, . . . , xn ∈ {±1}

}

(cut edges contribute + 1
2
, non-cut edges − 1

2
).

Ground State in the Ising Model

10.1.3 The Ising model .

• V is a set of atoms (in a crystal)
• E ⊆ (V

2

)
are the interacting pairs of atoms (“adjacent”)

167B. Gärtner and J. Matoušek, Approximation Algorithms and Semidefinite
Programming, DOI 10.1007/978-3-642-22015-9 10,
© Springer-Verlag Berlin Heidelberg 2012

168 10 Maximizing a Quadratic Form on a Graph

• State of the model: each atom has a spin xi ∈ {+1,−1}
• Energy of the state = −∑{i,j}∈E Jijxixj , where Jij is an interaction con-

stant for the pair {i, j}. (For example, for modeling ferromagnetism, the
Jij are positive.)

10.1.4 This is an important, albeit very simplified, model in physics. It is
much studied and not fully understood. It exhibits phase transition (in the
limit for |V | → ∞) and other remarkable phenomena.

10.1.5 One of the basic problems related to the Ising model is finding a
ground state: i.e., we want to set the spins so that the energy is minimum.

Correlation Clustering

10.1.6 We are given a set V = {1, 2, . . . , n} of objects and judgments about
their similarity, i.e., a function

(
V

2

)
→ {similar, dissimilar, do not know}.

10.1.7 Wanted: a partition of V into clusters so that the correlation is maxi-
mized, where correlation = the number of “right” judgments minus the num-
ber of “wrong” ones. Here a right judgment is a similar pair in the same
cluster or a dissimilar pair divided to different clusters. Wrong judgments
are the opposite, and the “do not know” judgments are ignored.

10.1.8 It is not difficult to show that, up to an approximation factor of 3, it
suffices to look at 2-clusterings and the (single) n-clustering (Exercise 10.1).

10.1.9 For a 2-clustering, maximizing the correlation can be expressed by
the integer quadratic program

max

{ ∑

{i,j} similar

xixj −
∑

{i,j} dissimilar

xixj : x1, . . . , xn ∈ {±1}
}
.

10.2 Quadratic Forms on Graphs 169

CUTNORM

10.1.10 For an m× n matrix A, we define the cut norm ‖A‖cut as

max

{ ∣∣∣
∑

i∈I,j∈J

aij

∣∣∣ : I ⊆ {1, 2, . . . ,m}, J ⊆ {1, 2, . . . , n}
}
.

• The cut norm is a key concept in the work of Frieze and Kannan [FK99]
on approximation algorithms for dense graphs (e.g., MaxCut for a graph
with at least δn2 edges, δ > 0 fixed), with approximation factor arbitrarily
close to 1 (i.e., 1 − ε, where the running time depends exponentially on
ε−1).

• Using an algorithm for approximating the cut norm of a matrix, they
produce a decomposition of a given matrix A = C(1)+C(2)+· · ·+C(s)+W ,
where each C(k) is a “cut” matrix (entries tk on some I × J and zeros
elsewhere), andW is a small error term. Such a decomposition is computed
“greedily,” by approximating the cut norm of the current matrix at each
step and subtracting an appropriate cut matrix C(k).

• Once we have such a decomposition, we can compute things for the C(k)

and ignore W . This leads to simple approximation algorithms for several
problems.

10.1.11 A formulation ofCutNorm as an integer quadratic program (trick):
Given the matrix A, we first make a new matrix B by adding a new row m+1
and a new column n+1, where bm+1,j := −∑m

k=1 akj (negative column sums),
bi,n+1 := −∑n

k=1 aik (negative row sums), and bm+1,n+1 :=
∑

i,j aij . Then
we have

‖A‖cut = ‖B‖cut
(exercise), and

‖B‖cut = 1

4
max

{ m+1∑

i=1

n+1∑

j=1

bijxiyj : x1, . . . , xm+1, y1, . . . , yn+1 ∈ {±1}
}

for every matrix B with zero row sums and zero column sums (another exer-
cise).

10.2 Quadratic Forms on Graphs

10.2.1 We motivated the following problem:

170 10 Maximizing a Quadratic Form on a Graph

MAXQP[G]: maximizing a quadratic form on a graph
G = (V,E)

max

{ ∑

{i,j}∈E

aijxixj : x1, . . . , xn ∈ {±1}
}
,

where aij are real weights on edges, generally both positive and negative.

10.2.2 This includes all of the four problems above.

• For CutNorm, the graph G is complete bipartite. For the Ising model, the
graph is usually sparse (e.g., 3-dimensional grid).

10.2.3 We want to write down a semidefinite relaxation of MaxQP[G].

• We assume that G = ({1, 2, . . . , n}, E) has no loops (that is, aii = 0).
So we maximize a quadratic form with no square terms. Then the form
is a linear function of each xi. Consequently, we can as well consider
x1, . . . , xn ∈ [−1, 1].

• Moreover, if someone gives us a fractional solution, with some xi ∈ (−1, 1),
we can easily find a solution with all xi ∈ {−1, 1} at least as good.

• The following SDP relaxation ofMaxQP[G] is essentially the same as that
for MaxCut:

SDP relaxation of MAXQP[G]

Smax := max

{ ∑

{i,j}∈E

aijv
T
i vj : ‖v1‖, . . . , ‖vn‖ ≤ 1

}

(A small difference: for MaxCut we had ‖vi‖ = 1, here we have ≤ 1; this
will be technically more convenient.)

10.2.4 The Goemans–Williamson rounding by a random hyperplane will not
work in general:

• The expected contribution of an edge {i, j} after this rounding is within a
constant factor of its contribution to Smax. But now the edge contributions
aijxixj can be both positive and negative, and so we cannot bound the
approximation ratio.

• An analogy: If the price of every item on your shopping list changes by at
most 5%, then the total also changes by no more than 5%; not a big deal.
But if each of your monthly expenses changes by at most 5% and your
monthly income also changes by no more than 5%, you may still have
a serious problem with the monthly balance. (Also see under economic
crisis.)

10.2.5 Indeed, MaxQP[G] is harder to approximate than MaxCut:

10.2 Quadratic Forms on Graphs 171

• If P �=NP, then no polynomial-time algorithm for MaxQP[Kn] has a bet-
ter approximation factor than (logn)c, for some small constant c > 0
(Arora et al. [ABH+05]).

• The integrality gap of the SDP relaxation ofMaxQP[Kn] is Ω(logn) (Alon
et al. [AMMN06], Khot and O’Donnell [KO09]).

• Assuming the Unique Games Conjecture (UGC), the problemMaxQP[Kn]
is hard to approximate with factor better than Ω(logn) (Khot and
O’Donnell [KO09]).

10.2.6 But there are impressive and beautiful positive results, which bound
the integrality gap by a constant for a wide class of graphs, and give an
efficient randomized rounding. We begin with a definition:

Let G be a (loopless) graph. The Grothendieck constant KG of G is
defined as

sup
Smax

Opt
,

where Opt is the optimum value of MaxQP[G], Smax is the optimum
of the SDP relaxation, and the supremum is over all choices of the edge
weights aij (not all zeros).

• So KG is the largest integrality gap over all choices of edge weights.

10.2.7 It is not at all clear why KG should be finite. We will cover the
following strong upper bound.

Theorem (Alon et al. [AMMN06]). For every graph G, we have

KG = O(log ϑ(G)),

where G is the complement of G and ϑ(.) is the Lovász theta function.
Moreover, there is a randomized rounding algorithm which, for given G
and weights aij , computes a solution of MaxQP[G] with value at least
Ω(Smax/ logϑ(G)) in expected polynomial time.

10.2.8 Comments:

• We have ϑ(G) ≤ χ(G), where χ(G) is the chromatic number (Theo-
rem 3.7.2). Thus, if G is bipartite (as, e.g., in the CutNorm problem
or in the Ising model for the cubic lattice), then there is a constant-factor
approximation. Similarly if G has constant-bounded maximum degree, or
it can be drawn on a fixed surface, or excludes a fixed minor. . .

172 10 Maximizing a Quadratic Form on a Graph

• The fact that for the complete bipartite graphKn,n we haveKKn,n = O(1)
is the Grothendieck inequality from the 1950s [Gro56]. This inequality
inspired much of the work on the problem MaxQP[G], including the the-
orem above.

• The classical Grothendieck constant is supn KKn,n . The exact value is
unknown; it is in principle computable up to any given error η (and only
in principle so far; the running time is doubly exponential in η−1); see
Raghavendra and Steurer [RS09b].

• The UGC implies that MaxQP[Kn,n] is hard to approximate within any
constant smaller than the Grothendieck constant (see [RS09b]).

• Open problem: can we have KG << logϑ(G)? The known lower bound
is only logω(G) (where ω(G) is the clique number).

10.3 The Rounding Algorithm

10.3.1 The rounding algorithm has several sources: Feige and Langberg
[FL06], Charikar and Wirth [CW04], Nesterov [Nes98], Nemirovski, Roos
and Terlaky [NRT99], Megretski [Meg01] . . . Our presentation mostly follows
K. Makarychev’s thesis [Mak08].

10.3.2 The first idea of the rounding: Having computed vectors v1, . . . ,vn

attaining Smax, we generate a random n-dimensional Gaussian γ ∈ R
n, and

set Zi := γTvi.

10.3.3 We have
E [ZiZj] = vT

i vj .

Because:

• For basis vectors, γT e1, . . . ,γ
T en are independent N(0, 1) by definition,

and so for i �= j we have E
[
(γTei)(γ

T ej)
]
= 0, while E

[
(γT ei)

2
]
is

the variance of an N(0, 1) random variable and thus equals 1. Hence
E
[
(γTei)(γ

Tej)
]
= eTi ej for all i, j.

• For arbitrary vi and vj , E [ZiZj] = vT
i vj holds by bilinearity of the scalar

product.

10.3.4 Therefore, E
[∑

{i,j}∈E aijZiZj

]
= Smax.

• We can thus “round” the vectors to numbers, but this is a big cheat, since
with unbounded numbers we can make the quadratic form as large as we
wish!

10.3.5 However, the Gaussians are mostly reasonably small. The actual algo-
rithm: we scale the Zi down by a suitable factor M , and then we truncate
them to the interval [−1, 1].

10.4 Estimating the Error 173

• Intuition: With quite high probability, we have Zi ∈ [−M,M] anyway, and
then the rounding means just scaling the value of the solution down byM 2.
So the rounding should produce a solution with value about Smax/M

2.
• Of course, sometimes Zi �∈ [−M,M], and this introduces additional error,
which we have to deal with.

10.3.6 We define the “right” factor M , the smallest one for which the effect
of the truncation is insignificant:

• Set

Smin := min

{ ∑

{i,j}∈E

aijv
T
i vj : ‖v1‖, . . . , ‖vn‖ ≤ 1

}

(minimum of the semidefinite program for which Smax was the maximum;
we have Smin < 0, assuming that some aij �= 0).

• Let R := Smax − Smin. So R is the range of the possible values of the
semidefinite relaxation. (We note that R ≥ Smax.)

• Finally,

M := 3

√
1 + ln

R

Smax

(here 3 is just a convenient constant).

10.3.7 The algorithm once again:

Randomized rounding for MAXQP[G]

1. Given v1, . . . ,vn attaining Smax, generate a random n-dimensional
Gaussian γ, and set Zi := γTvi, i = 1, 2, . . . , n.

2. Compute R and M as above, and set

Z̃i :=

{
Zi if |Zi| ≤ M
0 otherwise.

3. Return xi := Z̃i/M , i = 1, 2, . . . , n.

Note that the aij enter the rounding only through M .

10.4 Estimating the Error

10.4.1 To estimate the expected value of the solution returned by the algo-

rithm, we need to bound E
[∑

{i,j}∈E aijZ̃iZ̃j

]
from below.

10.4.2 Set Ti := Zi − Z̃i; then by linearity of expectation

E

⎡

⎣
∑

{i,j}∈E

aij Z̃iZ̃j

⎤

⎦ =
∑

{i,j}∈E

aij

(
E [ZiZj]−E [ZiTj]−E [ZjTi] +E [TiTj]

)

174 10 Maximizing a Quadratic Form on a Graph

= Smax −E

[∑

{i,j}∈E

aij(ZiTj + ZjTi)

]
+E

[∑

{i,j}∈E

aijTiTj

]
.

10.4.3 Here is a general tool for dealing with the second and third terms.

Lemma. Let X1, X2, . . . , Xn and Y1, Y2, . . . , Yn be real random variables
with E

[
X2

i

] ≤ A and E
[
Y 2
i

] ≤ B for all i (no independence assumed). Then

E

[∑

{i,j}∈E

aij(XiYj +XjYi)

]
≤ 2R

√
AB,

with R as in 10.3.6.

10.4.4 First we show that if E
[
X2

i

] ≤ 1 for all i, then

Smin ≤ E

[∑

{i,j}∈E

aijXiXj

]
≤ Smax.

This is where we connect random variables to vectors.

• Note that the right inequality holds with equality for Xi := Zi, where
Zi = γTvi as above. Similarly we can produce standard normal random
variables giving equality on the left.

• The Xi all live on some probability space Ω. We consider the vector space
of all real random variables X on Ω with E

[
X2
]
< ∞. In perhaps more

familiar terms, this is the space L2(Ω, μ), where μ is the probability mea-
sure on Ω.

• A scalar product on this space is given by 〈X,Y 〉 = E [XY]. It makes our
space into a Hilbert space (a basic example of a Hilbert space; not hard to
check the axioms).

• Any set of n vectors in a Hilbert space is isometric to a set of n vectors in
R
n. That is, in our case, there are vectors v1, . . . ,vn ∈ R

n with vT
i vj =

E [XiXj], i, j = 1, 2, . . . , n.

◦ An alternative “direct” approach: One can check that the matrix
(E [XiXj])

n
i,j=1 is positive semidefinite, and construct the vi by Cho-

lesky factorization.

• Thus, E
[∑

{i,j}∈E aijXiXj

]
=
∑

{i,j}∈E aijv
T
i vj ∈ [Smin, Smax].

10.4.5 Proof of Lemma 10.4.3:

• For the Xi and Yi as in the lemma, we introduce the new variables

Ui :=
1

2

(
Xi√
A

+
Yi√
B

)
, Vi :=

1

2

(
Xi√
A

− Yi√
B

)
.

10.4 Estimating the Error 175

• Using (x+y)2 ≤ (x+y)2+(x−y)2 = 2(x2+y2), we check that E
[
U2
i

] ≤ 1,

E
[
V 2
i

] ≤ 1. So we can apply the inequality in 10.4.4 to the Ui and Vi.
• Now

E

[∑

{i,j}∈E

aij(XiYj +XjYi)

]

= 2
√
AB

(
E

[∑

{i,j}∈E

aijUiUj

]
−E

[∑

{i,j}∈E

aijViVj

])

≤ 2
√
AB(Smax − Smin) = 2R

√
AB.

The lemma is proved. �

10.4.6 In order to apply the lemma for estimating the error terms in the last
line of 10.4.2, we need to bound E

[
Z2
i

]
and E

[
T 2
i

]
.

• Zi is standard normal, so E
[
Z2
i

]
= Var [Zi] = 1, of course.

• For Ti, we have

A := E
[
T 2
i

]
=

2√
2π

∫ ∞

M

x2e−x2/2 dx.

• By the trick in 9.3.2, we can bound the integrand from above by
e−x2/2(x2 + x−2), which can be integrated.

• Result:

E
[
T 2
i

] ≤
√

2

π
(M +

1

M
)e−M2/2 ≤ Me−M2/2

(since M = 3
√

1 + ln(R/Smax) ≥ 3, we have M + 1
M ≤ 10

9 M).

• Estimating M ≤ 3
√
R/Smax (using lnx ≤ x− 1), we get

A ≤ 3
√

R/Smax · e−9/2 (Smax/R)
9/2

<
1

10

(
Smax

R

)4

≤ 1

10

(
Smax

R

)2

.

10.4.7 Applying Lemma 10.4.3 to the second and third terms of the last line
of 10.4.2 (once with Xi = Ti, Yi = Zi and once with Xi = −Yi = Ti) yields

E

[∑

{i,j}∈E

aijZ̃iZ̃j

]
≥ Smax − 2R

√
A− 2RA

≥ Smax − 1

5
Smax − 1

5
Smax

(
Smax

R

)
≥ 1

2
Smax.

10.4.8 We can thus conclude:

176 10 Maximizing a Quadratic Form on a Graph

The expected value of the solution x1, . . . , xn, i.e., of
∑

{i,j}∈E aijxixj ,
is at least

1

2

Smax

M2
≥ Smax · Ω

(
1

1 + log R
Smax

)
.

10.5 The Relation to ϑ(G)

10.5.1 Here is the remaining part for the proof of Theorem 10.2.7.

Lemma. For every graph G and for every choice of edge weights (not all
zeros), we have

R

Smax
≤ ϑ(G).

10.5.2 Proof:

• We go via a strict vector coloring.
• If k := ϑ(G), then there are unit vectors ui with uT

i uj = − 1
k−1 for every

edge {i, j} (this is a characterization of the Lovász theta function we had
in Sect. 3.7).

• Let v1, . . . ,vn be vectors attaining Smin. Set wi := ui⊗vi (where ⊗ is the
tensor product as in Sect. 3.4). Recalling the identity (x⊗ y)T (x′ ⊗ y′) =
(xTx′)(yTy′), we see that ‖wi‖ ≤ 1. Then

Smax ≥
∑

{i,j}∈E

aijw
T
i wj =

∑

{i,j}∈E

aij(u
T
i uj)(v

T
i vj)

= − 1

k − 1

∑

{i,j}∈E

aijv
T
i vj =

−Smin

k − 1
.

Thus R
Smax

= Smax−Smin

Smax
≤ k, as the lemma claims. �

10.5.3 Actually, for every G there are weights aij such that equality holds
in the lemma (we will not prove this). So this is yet another characterization
of ϑ(.).

Exercises

10.1 Consider the problem of correlation clustering as in 10.1.7. Prove that
for every instance with n objects, there is a clustering with two clusters or

10.5 The Relation to ϑ(G) 177

with n clusters for which the correlation is at most three times the correlation
for an optimal clustering.

10.2 Prove the two claims in 10.1.11 (those concerning ‖B‖cut).

10.3 (a) Let X be a positive semidefinite matrix, and let Y be the matrix
with yij = arcsinxij . Show that Y −X � 0. (Hint: Consider the Taylor
series of arcsinx− x.)

(b) Let A be an n × n positive definite matrix, and consider the problem
of maximizing xTAx over all x ∈ {−1, 1}n. We relax it to the vector
program of maximizing

∑
i,j aijv

T
i vj subject to ‖vi‖ = 1 for all i (as

in the Goemans–Williamson algorithm), we let v∗
1 , . . . ,v

∗
n be an optimal

solution of the latter, and let y ∈ {−1, 1}n be obtained from the v∗
i

by the random hyperplane rounding (again as in Goemans–Williamson).
Prove, using (a), that the expected approximation ratio is at least 2

π
≈

0.636619
The result in (b) is due to Nesterov [Nes98]; most of the argument is also

contained in Rietz [Rie74].

Chapter 11

Colorings with Low Discrepancy

11.1 Discrepancy of Set Systems

11.1.1 Let V = {1, 2, . . . , n} be a vertex set and let F = {F1, F2, . . . , Fm}
be a system of subsets of V . (We can also regard (V,F) as a hypergraph.)

11.1.2 The basic problem in combinatorial discrepancy theory is to color
each vertex i ∈ V either red or blue, in such a way that each of the sets
of F has roughly the same number of red points and blue points, as in the
following schematic picture:

blue

red

11.1.3 It is not always possible to achieve an exact splitting of each set. As
an extreme example, if F := 2V consists of all subsets of V , then there will
always be a completely monochromatic set of size at least n

2 .

11.1.4 The maximum deviation from an exact splitting, over all sets of F ,
is the discrepancy of the set system F . Formally, we let a coloring of (V,F)
be an arbitrary mapping χ:V → {−1,+1}.

179B. Gärtner and J. Matoušek, Approximation Algorithms and Semidefinite
Programming, DOI 10.1007/978-3-642-22015-9 11,
© Springer-Verlag Berlin Heidelberg 2012

180 11 Colorings with Low Discrepancy

The discrepancy of F is

disc(F) := min
χ

disc(F , χ),

where the minimum is over all colorings χ:V → {−1,+1}, and

disc(F , χ) := max
F∈F

|χ(F)| ,

where we use the shorthand χ(F) for
∑

j∈F χ(j).

If +1’s are red and −1’s are blue, then χ(F) is the number of red points
in F minus the number of blue points in F , which we call the imbalance of F
under χ.

11.1.5 Discrepancy has been investigated extensively, and there are many
upper and lower bounds known for various set systems; see, e.g., [Mat10,
Spe87,AS08] for introductions. There are also close connections to the clas-
sical subject of uniformly distributed point sets and sequences in various
geometric domains, such as the unit square (see, e.g., [Mat10,ABC97]).

11.1.6 We will consider the algorithmic problem of computing a low-discrep-
ancy coloring for a given set system F .

• This question, in addition to its intrinsic interest, also presents a proto-
type question in the more general and very basic problem of simultaneous
rounding under linear constraints. In such a problem, we have a vector
x ∈ [−1, 1]n, which satisfies some system of linear constraints Ax = b,
and we would like to “round” each component to either +1 or −1 so that
the resulting vector z almost satisfies the constraints, i.e., the vector Az−b
is small in a suitable sense.

◦ In the case of discrepancy, we have x = 0, b = 0, and A is the incidence
matrix of the set system F – that is, aij = 1 if j ∈ Fi, and aij = 0
otherwise. The rounding error is measured as ‖Ax− b‖∞.

• We cannot expect a satisfactory general solution of the simultaneous
rounding problem, e.g., because of the hardness results for discrepancy
mentioned below, but it is interesting to study special cases where a good
rounding is possible.

11.1.7 Specifically, we will discuss a recent breakthrough by Bansal [Ban10],
an algorithm for computing colorings with “reasonably low” discrepancy. It
is based on semidefinite programming and it introduces a very interesting
rounding strategy. The coloring is obtained using a random walk, driven by
optimal solutions of suitable semidefinite programs – quite different from the
“usual” hyperplane cuts.

11.1 Discrepancy of Set Systems 181

11.1.8 First, disc(F) in itself is very hard to approximate. Charikar et al.
[CNN11] proved that it is NP-hard to distinguish between set systems of
discrepancy 0 and those with discrepancy of order

√
n.

• To appreciate this, one should know that disc(F) = O(
√
n log(m/n)) for

every system of m ≥ n sets on n points.
• It is easy to show that a random coloring has discrepancy O(

√
n logm)

with high probability, while the improvement of logm to log(m/n) is much
harder; see [Mat10,Spe87,AS08].

• Thus, we have disc(F) = O(
√
n logn) as long as m is bounded by a poly-

nomial in n.

11.1.9 Discrepancy can be regarded as a measure of how complex a set
system is. But it is not very well-behaved, since a system with almost the
maximum possible discrepancy can be hidden in a system with zero discrep-
ancy.

• Example: Take the complete set system F = 2V , make a disjoint copy V ′ of
V , let F ′ be the clone of F in V ′. The set system (V ∪V ′, {F ∪F ′ : F ∈ F})
has discrepancy 0, yet we feel that it is as complex as F .

11.1.10 A better behaved measure is the hereditary discrepancy, defined as

herdisc(F) := max
A⊆V

disc(F|A).

Here F|A denotes the restriction of the set system F to the ground set A,
i.e., {F ∩A : F ∈ F}.
• In other words, the enemy selects a subset A ⊆ V and we must color its
points red or blue so that each set in F is balanced; the uncolored points
outside A do not count.

• Practically all known upper bounds on disc(F) also apply to herdisc(F).
• On the other hand, the question “Is disc(F) ≤ k?” at least belongs to the
class NP, while for “Is herdisc(F) ≤ k?”, membership in NP is open and
maybe false.

11.1.11 Bansal’s algorithm yields a coloring for a given F with discrepancy
not much larger than herdisc(F):

Theorem (Bansal [Ban10]). There is a randomized polynomial-time
algorithm which, for an input set system F on n points, with m sets,
and with hereditary discrepancy at most H , computes a coloring χ with
disc(F , χ) = O(H log(mn)).

• It may be tempting to conclude that the algorithm approximates the hered-
itary discrepancy with O(log(mn)) factor, but this is not necessarily the
case! Paradoxically, the algorithm may err on the good side; it may pos-
sibly compute a coloring with discrepancy much smaller than herdisc(F).
(So we never learn that herdisc(F) is large.)

182 11 Colorings with Low Discrepancy

• Bansal’s paper also has additional, technically subtler results, which save
logarithmic factors in the discrepancy bound in certain special settings.

◦ Our presentation of Bansal’s algorithm below is somewhat simplified
compared to his original formulation. However, for some of the addi-
tional results in his paper, our simplifications do not seem applicable.

11.1.12 Bansal’s algorithm has converted several famous existential proofs
in discrepancy theory into constructive ones.

• For example, Spencer [Spe85] proved in 1986 that every system of n sets on
n points has discrepancyO(

√
n) (which is asymptotically tight in the worst

case). The argument was existential. Bansal gave the first polynomial-time
algorithm that finds a coloring with O(

√
n) discrepancy in this setting

(this requires adding some twists to the algorithm presented here).
• As another example, the system of all arithmetic progressions on the
ground set {1, 2, . . . , n} was known to have discrepancy of order n1/4, but
Bansal’s algorithm is the first polynomial-time algorithm that can com-
pute a coloring with discrepancy close to n1/4 (with an extra logarithmic
factor in this case).

11.2 Vector Discrepancy and Bansal’s Random Walk
Algorithm

11.2.1 First we set up a semidefinite relaxation of discrepancy. Instead of
coloring by ±1’s, we color by unit vectors. We will thus talk about vector
discrepancy vecdisc(F), which is the smallest D ≥ 0 for which the following
vector program is feasible:

∥∥∥∥
∑

j∈Fi

uj

∥∥∥∥
2

≤ D2, i = 1, 2, . . . ,m,

‖uj‖2 = 1, j = 1, 2, . . . , n.

• This is indeed a relaxation of disc, so vecdisc(F) ≤ disc(F).
• We also introduce the hereditary vector discrepancy hervecdisc(F), as the

maximum vector discrepancy of a restriction of F to a subset A ⊆ V .
• In the proof of Theorem 11.1.11, the algorithm will actually find a coloring
with discrepancy at most O(hervecdisc(F) log(mn)).

• vecdisc(F) can be computed (up to a prescribed error) in polynomial time;
for hervecdisc(F) we do not know.

11.2.2 In Bansal’s algorithm we want to find a low-discrepancy coloring (by
±1’s). We will approach the desired coloring through a sequence of semicol-
orings, where a semicoloring is an arbitrary mapping ξ:V → [−1, 1].

11.2 Vector Discrepancy and Bansal’s Random Walk Algorithm 183

• A semicoloring is like a coloring but by real numbers in [−1, 1].
• The discrepancy disc(F , ξ) for a semicoloring is defined in the same way

as for a coloring, as disc(F , ξ) = maxF∈F
∣∣∑

j∈F ξ(j)
∣∣.

• In the algorithm, we will represent a semicoloring by a point x ∈ [−1, 1]n.

11.2.3 Bansal’s algorithm starts with the semicoloring x0 := 0, which has
zero discrepancy but is rather useless as an “approximation” to a true color-
ing. Then it produces a sequence

x0,x1,x2, . . . ,x� ∈ [−1, 1]n,

of semicolorings. Here �, the length of the sequence, is a suitable parameter
to be determined later.

• The algorithm is randomized.
• As we will see, with probability close to 1, the final semicoloring x� is
actually a coloring, i.e., all coordinates are ±1’s. This is the output of the
algorithm.

• If x� is not a coloring, we restart the algorithm from scratch.

11.2.4 The algorithm can be regarded as a random walk in the cube [−1, 1]n.
In the t-th step, xt is obtained from xt−1 by a (small) random step, as follows:

• First we generate an increment Δt ∈ R
n. It is random but chosen from a

carefully crafted distribution; we will discuss this later.
• A “tentative value” of xt is x̃t := xt−1 +Δt. But we still need to truncate
each coordinate to the interval [−1, 1]:

(xt)j :=

⎧
⎨

⎩

+1 if (x̃t)j ≥ 1,
−1 if (x̃t)j ≤ −1, and
(x̃t)j otherwise.

• The increments Δt are generated in such a way that once a coordinate
of xt reaches +1 or −1, it will never change. We can think of the faces of
the cube as being “sticky”; as soon as the walk hits a face, it will stay in
that face until the end.

◦ More formally, we let At := {j ∈ V : (xt−1)j �= ±1} be the set of
coordinates that are still active in the t-th step. We will make sure that
(Δt)j = 0 for all j �∈ At.

• Figure 11.1 shows a schematic illustration of the random walk.

11.2.5 It remains to discuss how the increment Δt is generated. The idea is
that each (active) coordinate of Δt is random, but the various coordinates
are correlated so that the contribution of Δt to the discrepancy is small.

• First, via semidefinite programming, we compute a coloring of the current
active set At by unit vectors witnessing the vector discrepancy of the set
system F|At .

184 11 Colorings with Low Discrepancy

x1

x�

x0

Fig. 11.1 Schematic illustration of the random walk

◦ More explicitly, we compute unit vectors ut,j , j ∈ At, so that

∥∥∥∥
∑

j∈Fi∩At

ut,j

∥∥∥∥
2

≤ D2

for all i, with D ≥ 0 as small as possible.
◦ For notational convenience, we also set ut,j := 0 for j �∈ At.

• Next we generate a random vector γt from the n-dimensional standard
normal (or Gaussian) distribution. That is, the coordinates of γt are inde-
pendent N(0, 1) random variables (also independent of γ1, . . . ,γt−1).

◦ Actually, the Gaussian distribution of the γt is not crucial for the algo-
rithm. For example, independent random ±1 vectors work as well, but
the analysis becomes somewhat more complicated.

• Then we set
(Δt)j := σγT

t ut,j , j = 1, 2, . . . , n.

Here σ is a sufficiently small parameter. As we will see in due time,

σ :=
1

C0n
√
logn

,

with a sufficiently large constant C0, will work (and a smaller σ, say n−2,
would work as well – only the running time would suffer).

• The length � of the random walk should be set to C1σ
−2 logn, with another

suitable constant C1.

This concludes the description of Bansal’s algorithm.

11.3 Coordinate Walks 185

11.2.6 The idea why the algorithm works is outlined in the following two
items (whose formulation is intentionally imprecise):

• First, the projection of the random walk to a given coordinate axis behaves
like a one-dimensional random walk with increments having the normal
distribution N(0, σ2). Such a walk will typically cross the boundary of the
interval [−1, 1] in about σ−2 steps, and after σ−2 logn steps it is even very
likely to have crossed the boundary. But this means that x� is typically a
±1 vector.

• Second, the imbalance of a fixed set Fi starts out at 0 under the zero
semicoloring x0, and in the t-th step it is changed by

∑
j∈Fi

σγT
t ut,j =

σγT
t vt,i, where vt,i :=

∑
j∈Fi

ut,j . But the ut,j were selected with the goal
of making all ‖vt,i‖ small, and so the imbalance of each Fi grows only
slowly during the algorithm.

For proving Theorem 11.1.11, we will establish formal counterparts of the
two intuitive claims above, as follows.

11.2.7 Claim. The algorithm produces a coloring with probability close
to 1.

We will do this in Sect. 11.3.

11.2.8 Claim. With probability close to 1, the discrepancy of the resulting
(semi)coloring is of order O(H log(mn)), where H is the hereditary vector
discrepancy of F .

We will undertake this in Sect. 11.4.

11.3 Coordinate Walks

11.3.1 Let x0, . . . ,x� be the sequence generated by the algorithm, and let
j ∈ {1, 2, . . . , n} be a fixed index. We call the sequence (x0)j , (x1)j , . . . , (x�)j
the j-th coordinate random walk.

11.3.2 We say that the j-th coordinate random walk terminates if (x�)j ∈
{±1}. To prove Claim 11.2.7, it suffices to show that, for every j, the probabil-
ity that the j-th coordinate random walk does not terminate is at most n−2.
Then, with probability at least 1− 1

n , all of the coordinate walks terminate
(by the union bound).

• We note that this argument does not use any kind of independence among
the coordinate walks. Necessarily so, since the whole point of the algorithm
is that the coordinate walks are highly correlated!

11.3.3 To simplify notation, let us fix j and write Xt := (xt)j − (xt−1)j ,
t = 1, 2, . . . , �.

186 11 Colorings with Low Discrepancy

11.3.4 Let t0 ≤ � be the last step of the j-th coordinate walk for which
(xt0)j ∈ (−1, 1).

• By the rules of the algorithm, for t ≤ t0 we haveXt = (Δt)j = σγT
t ut,j for

some unit vector ut,j, where γt is n-dimensional Gaussian, independent of
ut,j . Thus, as was mentioned in 9.3.3, Xt has the one-dimensional normal
distribution N(0, σ2).

• We want to claim that X1, . . . , Xt0 are independent random variables. But
one has to be careful:

◦ First, t0 itself is not independent of X1, X2, . . ., so even the formulation
of such a claim may not be clear.

◦ Moreover, the vector ut,j depends on the previous history of the algo-
rithm (more precisely, it depends on the set At, and through it on the
earlier random choices made by the algorithm).

• Thus, we formulate our claim of independence in the following way. Let
Z ′
1, . . . , Z

′
� be a new sequence of independent random variables, each with

the N(0, σ2) distribution, also independent of everything in the algorithm.
We define another sequence Z1, Z2, . . . , Z� of random variables by

Zt :=

{
Xt for t ≤ t0
Z ′
t for t > t0.

We claim that Z1, . . . , Z� are independent.

◦ Indeed, if we fix the values of γ1, . . . ,γt−1 in the algorithm and also
the values of the auxiliary variables Z ′

1, . . . , Z
′
t−1 arbitrarily, the val-

ues of Z1, . . . , Zt−1 are determined uniquely, while Zt has the N(0, σ2)
distribution.

◦ This easily implies the claimed independence of Z1, . . . , Z�; the reader
is invited to give a formal argument in Exercise 11.4.

11.3.5 According to the way the Zt were defined, if the j-th coordinate walk
does not terminate, then all the partial sums Z1 + Z2 + · · · + Zt belong to
(−1, 1), t = 1, 2, . . . , �. Thus we are left with the task of proving the following.

Lemma. Let Z1, Z2, . . . , Z� be independent random variables, each with
the N(0, σ2) distribution. Then the probability that all of the partial sums∑t

i=1 Zi, t = 1, 2, . . . , �, belong to the interval (−1, 1) is at most e−c1�σ2��,
for a suitable constant c1 > 0.

11.3.6 Here we can see the reason for choosing the walk length � as we did,
namely, � := C1σ

−2 logn. For this � we get e−c1�σ2�� = e−c1�C1 log n� ≤ n−2

(for C1 := 3/c1, and n sufficiently large). So Claim 11.2.7 follows from the
lemma.

11.3.7 It remains to prove the lemma. The asymptotic value of the prob-
ability in question is known quite precisely in the theory of random walks.

11.4 Set Walks 187

Here is a quick proof, which gives only a rough bound, but sufficient for our
purposes.

• Let k := σ−2 (assuming for convenience that this is an integer). Let us
partition the sequence Z1, Z2, . . . into contiguous blocks of length k, and
let Sj be the sum of the j-th block. Formally, Sj :=

∑jk
i=(j−1)k+1 Zi. The

number of full blocks is �/k�.
• Fact: if X,Y are independent N(0, 1) random variables, and a, b ∈ R, then
aX + bY ∼ N(0, a2 + b2).

◦ This is called the 2-stability of the normal distribution.
◦ Sketch of a proof:We may assume a2+b2 = 1 (re-scaling). The vector
(X,Y) has the 2-dimensional standard normal distribution, rotationally
symmetric. Thus, its scalar product with an arbitrary unit vector has
the 1-dimensional N(0, 1) distribution. It remains to observe that aX+
bY is the scalar product of (X,Y) with (a, b).

• So each Sj has the standard normal distribution N(0, kσ2) = N(0, 1).
Thus, Prob[|Sj | ≥ 2] ≥ c0 for a suitable positive c0 (by looking at a table
of the normal distribution we can find that c0 ≈ 0.0455).

• If
∑t

i=1 Zi ∈ (−1, 1) for all t = 1, 2, . . . , �, then necessarily |Sj | < 2 for
all j. The Sj are independent, and thus the probability of the latter is at

most (1−c0)
��/k� = e−c1�σ2��. The lemma is proved, and so is Claim 11.2.7.

11.4 Set Walks

11.4.1 It remains to prove Claim 11.2.8; concretely, we will prove

Prob[disc(F ,x�) > Dmax] ≤ 1

n
,

where Dmax = O(H log(mn)) is the desired bound on the discrepancy.

11.4.2 Let us fix a set Fi ∈ F , and let Di :=
∑

j∈Fi
(x�)j be its imbalance

in the final (semi)coloring x�. We will prove that Prob[|Di| > Dmax] ≤ 1
mn

for every i, and Claim 11.2.8 will follow by the union bound.

11.4.3 We recall how the j-th coordinate of the current semicoloring xt

develops as t goes from 0 to �.

• It starts with (x0)j = 0, then it changes by the random increments (Δt)j ,
t = 1, 2, . . . , t0, then at some step t0 + 1 it gets truncated to +1 or −1,
and then it stays fixed until the end (it may also happen, with some small
probability, that t0 = � and no truncation occurs).

• Since (Δt)j = 0 for t > t0 + 1, we can write

188 11 Colorings with Low Discrepancy

(x�)j =

�∑

t=1

(Δt)j + Tj ,

where Tj is a “truncation effect,” reflecting the fact that (xt0+1)j equals
±1 and not (xt0 +Δt0+1)j .

• We have |Tj| ≤ |(Δt0+1)j |, and as we know, (Δt0+1)j ∼ N(0, σ2).
• Here is where our choice σ := 1/(C0n

√
logn) comes from: we will now

show that for σ this small, all truncation effects are negligible with prob-
ability close to 1. Quantitatively, we claim that, for each j,

Prob
[|Tj| > 1

n

] ≤ 1
n3

(both 1
n and 1

n3 are chosen somewhat arbitrarily here; we could as well

take 1
n10).

• Proof:

◦ We just employ a tail bound for the standard normal distribution, e.g.,
Lemma 9.3.2. For a standard normal random variable Z, that formula
gives Prob[|Z| ≥ λ] ≤ e−λ2/2 for all λ ≥ 1.

◦ In our situation,

Prob

[
|Tj | > 1

n

]
≤ Prob

[
|σZ| ≥ 1

n

]
= Prob

[
|Z| ≥ 1

σn

]

≤ e−σ−2n−2/2 = e−(C2
0 log n)/2 ≤ 1

n3

for a suitable C0.

11.4.4 Thus, with probability at least 1− 1
n2 , the total contribution of the

truncation effects Tj to the discrepancy of each set Fi is at most 1. So instead
of Di, it suffices to bound the “pure random walk” quantity

D̃i :=
∑

j∈Fi

�∑

t=1

(Δt)j =

�∑

t=1

∑

j∈Fi

(Δt)j

=

�∑

t=1

∑

j∈Fi

σγT
t ut,j =

�∑

t=1

σγT
t vt,i,

where vt,i =
∑

j∈Fi
ut,j .

11.4.5 Now, finally, the careful choice of the ut,j (see 11.2.5) comes into play:
we know that ‖vt,i‖ ≤ H for all t and i. Writing Yt := σγT

t vt,i (we recall
that i is considered fixed), we get that Yt ∼ N(0, β2

t), where 0 ≤ βt ≤ σH .

• Intuitively, things should be simple here: the sum D̃i = Y1 + · · · + Y�

should have a distribution like N(0, �σ2H2), and hence we should get an

11.4 Set Walks 189

exponential tail bound; the probability of |D̃i| exceeding σH
√
�, the stan-

dard deviation, λ times, should behave like e−λ2/2.
• However, unlike in the case of the coordinate walks, we cannot claim that
the Yt are independent, because the variance β2

t of Yt does depend on the
random choices made by the algorithm in step 1 through t− 1.

• So we need a more sophisticated and technical tool, such as the following
lemma.

11.4.6 Lemma. Let W1, . . . ,W� be independent random variables on some
probability space, and let Yt be a function of W1, . . . ,Wt, t = 1, 2, . . . , �.
Suppose that, conditioned on W1, . . . ,Wt−1 attaining some arbitrary values
w1, . . . , wt−1, the distribution of Yt is N(0, β2

t), where βt may depend on
w1, . . . , wt−1, but we always have βt ≤ β. Then Y := Y1 + · · · + Y� satisfies
the tail bound

Prob
[
|Y | > λβ

√
�
]
≤ 2e−λ2/2, for all λ ≥ 0.

• We will use the lemma with Wt := γt. Our λ is Dmax

σH
√
�
, where Dmax =

C2H log(mn), σ = 1/(C0n
√
log n,), and � = C1σ

−2 logn. We thus calcu-
late that λ ≥ C3

√
log(mn), with a constant C3 that can be made as large

as needed by adjusting the constant C2 from Dmax. Then

Prob
[
|D̃i| > Dmax

]
≤ 2e−λ2/2 ≤ 1

n2m2
,

and, as announced, Claim 11.2.8 follows by the union bound.
• Some readers may have recognized that we are really talking about a
martingale in the lemma (while those not familiar with martingales may
ignore this remark). They may also know Azuma’s inequality, which gives
a tail bound for martingales. That inequality assumes pointwise bounded
martingale differences, and thus is not directly applicable in our setting.
However, its proof is applicable with only a minor adjustment, and this is
how we prove the lemma.

11.4.7 Proof of the lemma:

• We will prove the upper tail bound, Prob
[
Y > λβ

√
�
]
≤ e−λ2/2; the lower

one follows by applying the upper tail to −Y .
• As in the usual proof of the Chernoff inequality, the main trick is to bound
the moment generating function G(u) := E

[
euY

]
, where u is a real param-

eter.
• By induction on t, we will show that E

[
eu(Y1+···+Yt)

] ≤ eu
2tβ2/2 (the basis

is for t = 0).
• The expectation is over a random choice of W1, . . . ,Wt. We can do the

expectation over Wt first, regarding W1, . . . ,Wt−1 fixed, and then the
expectation of the result over W1, . . . ,Wt−1 (this is Fubini’s theorem).

190 11 Colorings with Low Discrepancy

• For W1, . . . ,Wt−1 fixed, Y1, . . . , Yt−1 are fixed, and so

EWt

[
eu(Y1+···+Yt)

]
= eu(Y1+···+Yt−1)EWt

[
euYt

]

= eu(Y1+···+Yt−1)eu
2β2

t /2 ≤ eu
2β2/2eu(Y1+···+Yt−1).

◦ Here we have used that, with W1, . . . ,Wt−1 fixed, we have Yt ∼
N(0, β2

t). Then E
[
euYt

]
= eu

2β2
t /2 is a standard fact about the nor-

mal distribution, which is also easy to check (a substitution converts

the required integral to
∫∞
−∞ e−x2/2dx).

• Now we take expectation overW1, . . . ,Wt−1 and use the inductive hypoth-
esis, and thus finish the inductive step. We have shown that E

[
euY

] ≤
eu

2�β2/2.
• Next we use the Markov inequality for the random variable euY :

Prob
[
Y > λβ

√
�
]

= Prob
[
euY > euλβ

√
�
]

≤ E
[
euY

]
/euλβ

√
� ≤ eu

2�β2/2−uλβ
√
�.

Substituting u := λ/(β
√
�) gives the required tail bound, and the lemma

is proved. So are Claim 11.2.8 and Theorem 11.1.11.

Exercises

11.1 (a) Show that every set system on n points has vector discrepancy at
most

√
n.

(b) Show that this bound is tight, possibly up to a multiplicative constant
independent of n.

(c) Let F be a system of n sets on a set V of points, such that every point
is contained in exactly r sets of F , and for every two distinct points
i, j ∈ V , there are exactly t sets F ∈ F with {i, j} ⊆ F . Prove that
vecdisc(F) ≥ √

r − t.

Hint: Instead of maxF∈F
∥∥∑

j∈F uj

∥∥2, estimate
∑

F∈F
∥∥∑

j∈F uj

∥∥2.

Remark: The so-called Hadamard designs provide set systems as above
with n = 4m + 3, r = 2m + 1, and t = m for infinitely many values of
m, and thus they show that a system of n sets on n points can have vector
discrepancy Ω(

√
n).

11.2 Use the probabilistic method (and, in particular, the Chernoff bound
for the sum of independent ±1 random variables) to show that disc(F) =
O(

√
n logm) for every system of m sets on n points.

11.4 Set Walks 191

11.3 Use the probabilistic method to show the existence of set systems with
n2 sets on n points and with discrepancy Ω(

√
n logn). (Together with Exer-

cise 11.1(a) this shows that the gap between vecdisc and disc can be at least
of order

√
logm, for m = n2. The complete set system 2V exhibits a similar

gap for m = 2n.)

Hint: Fix an arbitrary coloring χ and show that the discrepancy of χ for
a system of n2 independent random sets is below c

√
n logn with probability

smaller than 2−n. A random set is obtained by including each point indepen-
dently with probability 1

2 .

11.4 Let Z1, Z2, . . . , Zn be real random variables, and suppose that there
are distributions D1, . . . ,Dn such that for each t = 1, 2, . . . , n − 1 and
for every z1, . . . , zt−1 ∈ R, the conditional distribution of Zt given that
Z1 = z1, . . ., Zt−1 = zt−1 is Dt. Prove rigorously that Z1, . . . , Zt are inde-
pendent. (Recall that real random variables X1, . . . , Xn are independent if
for every index set I ⊆ {1, 2, . . . , n} and for every a1, . . . , an ∈ R, we have
Prob[Xi ≤ ai for all i ∈ I] =

∏
i∈I Prob[Xi ≤ ai].)

Chapter 12

Constraint Satisfaction Problems,
and Relaxing Them Semidefinitely

12.1 Introduction

12.1.1 Constraint satisfaction problems constitute an important and much
studied class of computational problems.

We will discuss them from the point of view of SDP-based approximation
algorithms. They are also investigated from other angles, each of them giving
rise to a major field of research. We will mention some of these other aspects
only very briefly and omit others completely.

12.1.2 Before defining a constraint satisfaction problem in general, we recall
a few things about Max-3-Sat and similar computational problems.

The reader is probably familiar with 3-Sat, a prototype NP-complete
problem.

• The input to 3-Sat is a Boolean formula in conjunctive normal form with
three literals per clause, such as

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x5) ∧ (x2 ∨ x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x5).

• There are n Boolean variables x1, . . . , xn, and m clauses, where each clause
is the disjunction of three or fewer literals (or we can insist on exactly three
literals, since the same literal can be repeated twice or three times in a
clause).

• A literal can be xi or xi, where xi is the negation of xi.
• ∧ means “and” (conjunction), and ∨ means “or” (disjunction).
• The goal in 3-Sat is to find an assignment of truth values (True or False)

to the xi such that all of the clauses are satisfied.

12.1.3 MAX-3-SAT is an optimization version of 3-Sat; the goal is to find
an assignment satisfying as many clauses of a given formula as possible.

• We recall that an α-approximation algorithm for Max-3-Sat is an algo-
rithm which, for every input formula ϕ, computes an assignment satisfying

193B. Gärtner and J. Matoušek, Approximation Algorithms and Semidefinite
Programming, DOI 10.1007/978-3-642-22015-9 12,
© Springer-Verlag Berlin Heidelberg 2012

194 12 Constraint Satisfaction Problems, and Relaxing Them Semidefinitely

at least α ·Opt of the clauses, where Opt is the maximum number of sat-
isfiable clauses.

• One of the most spectacular results in the theory of approximation is: The
best approximation factor for Max-3-Sat achievable by any polynomial-
time algorithm is 7

8
, assuming P �=NP.

• The upper bound, inapproximability above 7
8 [H̊as01], is a great achieve-

ment of the theory related to the PCP theorem, beyond our scope.
• The lower bound, i.e., a 7

8 -approximation algorithm, is easy for formulas
where every clause involves literals with three distinct variables.

◦ Indeed, let us consider, e.g., the clause x1 ∨ x2 ∨ x3. There are 8 pos-
sible assignments to x1, x2, x3, and 7 of them satisfy the clause – the
only exception is (False,True,False). Similarly, any other clause involv-
ing 3 distinct variables is satisfied by 7

8
of the possible assignments.

◦ Hence, if we select a random assignment, where each xi attains the
values True and False with probability 1

2
, independent of all the other

variables, then each of the clauses is satisfied with probability 7
8 . So the

expected number of clauses satisfied by a random assignment is 7
8
m.

◦ This can be turned into a randomized algorithm that finds, for every
input formula with the above restriction, an assignment satisfying at
least � 7

8m� clauses (Exercise 12.1).

• Now the clauses with only 1 or 2 literals (or with a multiple occurrence
of the same variable) may look like only a minor nuisance. But a 7

8 -ap-
proximation algorithm for Max-3-Sat with such clauses allowed is much
harder [KZ97] (actually, the approximation ratio has not even been proved
rigorously – there is just a strong numerical evidence). It is based on
a sophisticated semidefinite relaxation, a clever rounding method, and a
very complicated computer-assisted analysis.

12.1.4 One can also consider MAX-2-SAT (two literals per clause), and in
general Max-k-Sat. An interesting feature of the k = 2 case is that the
satisfiability version (2-Sat) is known to be decidable in polynomial time,
yet Max-2-Sat is NP-hard (and hard to approximate with factor better than
roughly 0.954 [H̊as01]).

12.2 Constraint Satisfaction Problems

12.2.1 A clause in a 3-Sat formula, say x1∨x2∨x3, puts a constraint on the
possible values of x1, x2, x3: This particular clause requires that at least one
of them should be true. In various real-life or other problems, we often want
to express different kinds of constraints, e.g., that exactly one of x1, x2, x3

should be true, or all of them should be true, etc.

12.2 Constraint Satisfaction Problems 195

12.2.2 The 3-Sat formulas are universal, i.e., every Boolean function can
be expressed by such a formula, so in principle, we can translate any kind of
constraints into a 3-Sat formula.

But such translation may be nonintuitive and produce large formulas.
More seriously, since 3-Sat formulas are so powerful, they are also hard
to deal with, while for formulas built from other, more special classes of
constraints we can sometimes get better approximability or even polynomial-
time algorithms.

12.2.3 A constraint satisfaction problem can be regarded as a generalization
of k-Sat where clauses are replaced by arbitrary predicates in k variables,
and the variables may generally attain more than two values.

• The variables xi attain values in a finite domain D. We will mostly stick
to the Boolean setting with D = {False,True}. (More generally, each xi
might have its own domain Di.)

• A k-ary predicate over D is a Boolean function P :Dk → {False,True}. It
evaluates to True on the k-tuples for which the predicate is satisfied.

◦ For example, the clause x1 ∨ x2 ∨ x3 can be regarded as the ternary
predicate giving False on the triple (False,True,False) and True on the
7 remaining triples in {False,True}3.

◦ We will often write predicates less formally; e.g., x �= y means the binary
predicate P (x, y) with P (a, b) = True for all a, b ∈ D with a �= b and
P (a, a) = False for all a ∈ D.

• A class of constraint satisfaction problems is specified by k, D, and a list P
of k-ary predicates that can appear in the instances. We write k-CSP[P]
for such a class.

◦ For example, for 3-Sat we have k = 3,D = {False,True}, and P consists
of all ternary predicates that give False for exactly one triple of values
of the variables.

• An instance of a 3-CSP[P] may look like this, for example:

P1(x1, x2, x3) ∧ P2(x2, x1, x4) ∧ · · · ∧ Pm(x3, x5, x1),

P1, P2, . . . , Pm ∈ P .
• The terms P1(x1, x2, x3), P2(x2, x1, x4), etc., are usually called the con-
straints of the instance. But here we will avoid that word, because we
already have constraints in semidefinite programs. If necessary, we will
call them generalized clauses or simply clauses .

196 12 Constraint Satisfaction Problems, and Relaxing Them Semidefinitely

12.2.4 Here is a summary of the general definition.

A class of constraint satisfaction problems k-CSP[P] is specified by

◦ A finite domain D
◦ A natural number k (the arity)
◦ A set P of k-ary predicates over D

k and |D| are usually treated as constants. An instance of k-CSP[P] is

P1(xi11 , xi12 , . . . , xi1k) ∧ P2(xi21 , xi22 , . . . , xi2k) ∧ · · ·

∧Pm(xim1 , xim2 , . . . , ximk
),

where P1, . . . , Pm ∈ P and i11, i12, . . . , imk ∈ {1, 2, . . . , n}. An assign-
ment for this instance is an n-tuple (a1, . . . , an) ∈ Dn, and the
generalized clause P�(xi�1 , . . . , xi�k) is satisfied by that assignment if
P�(ai�1 , . . . , ai�k) = True.

We also define the optimization version MAX-k-CSP[P], where the goal is
to satisfy as many generalized clauses as possible.

12.2.5 Here is a sample of binary constraint satisfaction problems.

• For D = {False,True} and P consisting of the single predicate “x �= y,” the
problem Max-2-CSP[P] encodes MaxCut. The variables x1, . . . , xn cor-
respond to vertices of the given graph G, and for every edge {i, j} ∈ E(G),
we introduce the clause xi �= xj . Then the number of clauses satisfied
by an assignment is the number of edges in the cut defined by the set
{i : xi = True}.

• With the predicate “x ∧ y,” we can encode MaxDiCut, the problem of
finding a maximum directed cut in a directed graph (i.e., we look for a
subset A ⊆ V (G) such that the maximum possible number of directed
edges go from A to V (G) \A).

• We already know Max-2-Sat. Its P consists of four binary predicates.
• Max-2-And, with the predicates “x ∧ y”, “x ∧ y”, “x ∧ y ”, and “x ∧ y ”,
is conjectured to have the worst approximation ratio among all Boolean
2-CSP; see Austrin [Aus07]. Curiously, the corresponding satisfiability
problem is trivial.

• A very trivial example is obtained for the predicate “x = y.”
• As a non-Boolean example, we have graph 3-coloring, where we set D :=
{1, 2, 3} and the predicate is “x �= y.” Clauses correspond to edges.

12.2.6 Comments:

• Constraint satisfaction problems can be further generalized. For example,
each clause may have a nonnegative real weight, and we want to max-

12.2 Constraint Satisfaction Problems 197

imize the total weight of the satisfied clauses. Or, instead of predicates
P :Dk → {False,True}, we can consider nonnegative real payoff functions
P :Dk → [0,∞), which assign a payoff to each possible setting of the k vari-
ables, and we want to maximize the total payoff. The methods discussed
below can easily be generalized to this payoff setting.

• Another useful view of CSP’s is through homomorphisms . Every CSP can
be reformulated as follows: Given an input object, decide whether it admits
a homomorphism into a fixed target object. Here the objects can be, e.g.,
directed graphs, or more generally, colored hypergraphs. Here we will not
pursue this direction.

• Various heuristic approaches to solving CSP’s in practice constitute a
major research field.

• A great effort has been put into classifying the CSP’s according to
their computational complexity, using tools from logic, model theory, and
algebra. A fundamental open problem in the field is the dichotomy con-
jecture (Feder and Vardi [FV98]), asserting that every class k-CSP[P],
considered as a decision problem in the obvious way, is either in P
(polynomial-time decidable), or NP-complete. The conjecture has been
verified for domain size at most 3 (Bulatov [Bul02]), and many other par-
tial results are known.

• Another ongoing project is to classify the problems Max-k-CSP[P]
according to the best achievable approximation factors. Here semidefinite
programming is an indispensable tool for lower bounds (approximation
algorithms), while inapproximability results rely on PCP techniques and
the Unique Games Conjecture. Surprisingly, the inapproximability proofs
under the UGC are closely related to the geometry of certain semidefinite
relaxations of the considered CSP’s, and to their integrality gaps (see,
e.g., [KKMO07,Aus07,Rag08,Rag09]).

The Unique Games Conjecture for Us Laymen, Part II

12.2.7 Now we can put the Unique Games Conjecture in a wider context.

• For constraint satisfaction problem Max-k-CSP[P] we can consider a
(1 − δ, ε)-gap version (distinguish the instances where at least a (1 − δ)-
fraction of the clauses can be satisfied from those where no more than an
ε-fraction are satisfiable).

• Let Pperm denote the set of all binary predicates over some given domain
D that correspond to permutations. That is, for every a ∈ D there is
exactly one b ∈ D with P (a, b) = True, and also exactly one b ∈ D with
P (b, a) = True.

• Here is a different way of stating the UGC (the formulation introduced by
Khot [Kho02]): Assuming P �=NP, for every ε > 0 there exists an integer q

198 12 Constraint Satisfaction Problems, and Relaxing Them Semidefinitely

such that the (1−ε, ε)-gap version of Max-2-CSP[Pperm] over a q-element
domain D cannot be solved in polynomial time.

12.2.8 Comments:

• The problem Max-2-Lin(mod q) introduced in 8.5.3 is a special case of
Max-2-CSP[Pperm] (with domain size q). Indeed, if we have a linear equa-
tion x−y = c (mod q), then for every possible value of x there exists exactly
one value of y satisfying the equation, and thus such an equation corre-
sponds to a predicate in Pperm.

• However, only a small subset of all possible predicates in Pperm can be
obtained in this way. So Max-2-Lin(mod q) might potentially be eas-
ier than Max-2-CSP[Pperm]. But it is not: As was proved by Khot
et al. [KKMO07], the UGC as stated above, with Max-2-CSP[Pperm],
implies the version with Max-2-Lin(mod q) as in Sect. 8.5.

• It is easy to see that the basic satisfiability version 2-CSP[Pperm] is poly-
nomially solvable.

• The example of MaxCut shows that Max-2-CSP[Pperm] is NP-hard.
• The subexponential algorithm of Arora et al. [ABS10] mentioned in 8.5.5
applies to every Max-2-CSP[Pperm].

12.3 Semidefinite Relaxations of 2-CSP’s

12.3.1 First we will set up a semidefinite relaxation of Max-2-Sat. We
replace each Boolean variable xi by a vector variable.

• There are two main ways of “encoding” the truth values by a vector in
the literature. They are equivalent but they look rather different. We will
mainly work with the one which is more suitable for generalizations to
non-Boolean domains, and perhaps more intuitive. However, the other
one seems prevalent in the literature, and we will mention it as well.

12.3.2 We begin with formulating Max-2-Sat as a quadratic program.

• We represent each xi by a real variable yi, where yi = 1 corresponds to
xi = True and yi = 0 to xi = False.

• Instead of requiring yi ∈ {0, 1} explicitly, we express it by the quadratic
constraint yi(1− yi) = 0.

• The clauses are reflected in the objective function. We want to maximize∑m
�=1 f�(y1, . . . , yn). If, for example, the first clause is x1 ∨ x2, then

f1(y1, . . . , yn) := y1y2 + y1(1− y2) + (1− y1)y2.

(This could be simplified to y1+y2−y1y2 but for now we prefer to leave it
as is.) The three terms on the r.h.s. correspond to the three possible assign-
ments to x1 and x2 that satisfy the clause: y1y2 gives 1 for y1 = y2 = 1

12.3 Semidefinite Relaxations of 2-CSP’s 199

and 0 otherwise, y1(1− y2) gives 1 for y1 = 1, y2 = 0 and 0 otherwise, etc.
Thus, the objective function expresses the number of satisfied clauses.

12.3.3 Having set up the quadratic program, we want to relax it by replacing
each yi by a vector ti. (We use the letter t instead of the usual v – this should
remind us that ti expresses the truth value of xi.)

• In rewriting the quadratic program into a vector program, we must be
careful: A vector program may refer only to the scalar products of the
unknown vectors.
For example, we cannot set a vector to a constant. So we represent the
constant 1 by an arbitrary unit vector e. The constraint yi(1 − yi) = 0
then becomes tTi (e− ti) = 0 (or, written another way, tTi e = tTi ti).

12.3.4 Here is the resulting semidefinite relaxation (which we call the basic
semidefinite relaxation), shown on a (trivial) concrete example:

The basic semidefinite relaxation of MAX-2-SAT shown for the
formula (x1 ∨ x2) ∧ (x2 ∨ x4) ∧ (x1 ∨ x3)

Maximize tT1 t2 + tT1 (e− t2) + (e− t1)
T t2

+(e− t2)
T t4 + (e− t2)

T (e− t4) + tT2 t4
+ tT1 (e− t3) + tT1 t3 + (e− t1)

T (e− t3)
subject to eT e = 1

tTi (e− ti) = 0 for all i.

• For every other Boolean 2-CSP, we define the basic semidefinite relaxation
using the same recipe. The only change compared to Max-2-Sat is in
the objective function, where we add terms corresponding to satisfying
assignments of each predicate.

12.3.5 Here is the other “Goemans–Williamson” way of encoding the truth
values.

• In the quadratic program, True is now represented by +1, and False by
−1. The constraint y2i = 1 restricts yi to these two values.

• In the semidefinite relaxation, we replace yi by a vector variable vi. Then
y2i = 1 translates to ‖vi‖2 = 1.

• As in the previous encoding with the ti, we also need a unit vector rep-
resenting a constant (analogous to e). Here it is traditionally denoted
by v0. Intuitively, v

T
0 vi = +1 means xi = True and vT

0 vi = −1 means
xi = False.1

• This setting is perhaps more intuitive geometrically (we deal with unit
vectors).

1 This meaning of v0 was introduced by Goemans and Williamson [GW95]. For
increased confusion, more recent papers use v0 in opposite meaning, −1 or False.
Then, of course, the resulting formulas again look different.

200 12 Constraint Satisfaction Problems, and Relaxing Them Semidefinitely

• It is easy to translate between these two settings, using the relations e = v0

and ti =
1
2
(v0 + vi).

• For MaxCut, v0 does not show up in the resulting objective function and,
by this method, we get the usual semidefinite relaxation.

• For Max-2-Sat, the contribution of the clause x1 ∨ x2 now appears as
1
4 (3 + vT

0 v1 + vT
0 v2 − vT

1 v2) in the objective function.

12.3.6 For the basic semidefinite relaxation of Max-2-Sat (in the version
with the vi), we can apply the Goemans–Williamson random hyperplane
rounding. Their analysis, almost without change, yields approximation ratio
(at least) αGW.

12.3.7 On the other hand, the integrality gap of the basic Max-2-Sat relax-
ation is at least 9

8
= 1.125.

• This occurs for the instance with a single clause x1∨x2. We set e := (1, 0),

t1 :=
(

3
4
,
√
3
4

)
, t2 :=

(
3
4
,−

√
3
4

)
.

t1

t2

e

Then the constraints tTi (e− ti) = 0 hold (right?), but the clause is “over-
satisfied”: The objective function, tT1 t2 + tT1 (e− t2) + (e− t1)

T t2, attains
value 9/8.

12.3.8 It is thus natural to add constraints to the semidefinite program in
order to reduce the integrality gap. For example, we can add constraints
prohibiting “over-satisfaction” of clauses.

Adding Triangle Constraints

12.3.9 Adding constraints to a linear or semidefinite relaxation of an integer
program is an old method for reducing the integrality gap. The additional
constraints (“cutting planes”) should be valid , i.e., preserve all integral solu-
tions, but they should make the set of feasible solutions smaller.

• This can be done in a systematic way, for an arbitrary integer program,
and organized in hierarchies of successively tighter relaxations (but with
increasing number of constraints).

• There are (at least) three well-known hierarchies of this kind: the Lovász–
Schrijver hierarchy, the Sherali–Adams hierarchy, and the Lasserre hier-
archy. The first two concern both linear programming relaxations and
semidefinite relaxations, the last one produces semidefinite relaxations.

12.3 Semidefinite Relaxations of 2-CSP’s 201

• We will not treat them in this book, although they are conceptually impor-
tant. We refer to the surveys by Laurent [Lau03] and by Chlamtac and
Tulsiani [CT11].

• There have been recent negative results concerning these hierarchies. For
example, for some NP-complete problems, it has been shown that even
Ω(n) levels in these hierarchies are not sufficient to improve the approxi-
mation factor (where n is the number of vertices of an input graph, or some
other measure of size of the input instance). See, e.g., Tulsiani [Tul09] and
Raghavendra and Steurer [RS09a] and references therein.

12.3.10 In the previous section, we saw that a natural constraint to be added
to the basic semidefinite relaxation of Max-2-Sat is one bounding the con-
tribution of each clause to the objective function by 1. For example, for the
clause x1 ∨ x2, such a constraint is

tT1 t2 + tT1 (e− t2) + (e− t1)
T t2 ≤ 1.

• Using ‖e‖2 = 1, it can be rewritten in the more elegant form

(e− t1)
T (e− t2) ≥ 0.

• When we translate it to the vi-language (vi = 2ti − e, v0 = e), we obtain
(v0 − v1)

T (v0 − v2) ≥ 0. This tells us that in the triangle v0v1v2, the
angle at the vertex v0 is at least 90◦.

• It is also equivalent to the following inequality for squared distances (using
the cosine theorem):

‖v1 − v0‖2 + ‖v0 − v2‖2 ≤ ‖v1 − v2‖2.

This is a triangle inequality for the squared Euclidean distance on the set
{v0,v1,v2}.
◦ Note that the squared Euclidean distance on arbitrary three points
need not satisfy the triangle inequality; for example, for three distinct
collinear points, the triangle inequality always fails (one of the three
triangle inequalities, that is)!

• For the other three possible forms of clauses (x1 ∨ x2, x1 ∨ x2, and x1 ∨
x2) one obtains similar-looking (but different) constraints. Because of the
above geometric meanings, they are called triangle constraints .

◦ As we will see, they are the “best” constraints, in some sense, that one
can add to the basic semidefinite relaxation of 2-CSP’s.

202 12 Constraint Satisfaction Problems, and Relaxing Them Semidefinitely

12.3.11 Let us list the triangle constraints explicitly:

Let us consider the basic semidefinite relaxation of a 2-CSP, with the
unit vector e representing the constant 1 and with values of the variables
represented by the vectors t1, . . . , tn. Then by the triangle constraints
for e, ti, and tj we mean the following (valid) constraints:

tTi tj ≥ 0

tTi (e− tj) ≥ 0

(e− ti)
T tj ≥ 0

(e− ti)
T (e− tj) ≥ 0.

The Power of the Triangle Constraints

12.3.12 We define the canonical semidefinite relaxation of a 2-CSP as the
basic semidefinite relaxation plus the triangle constraints for e, ti, tj , for all
i, j such that xi and xj occur together in some clause of the input instance.

• Some justification for the word “canonical” will be provided later on.2

• Although some authors set up semidefinite relaxations of 2-CSP with tri-
angle constrains for all pairs i, j, the analysis in these papers uses only
those corresponding to variables in a common clause. Omitting the other
triangle constraints makes the number of constraints linear in m+n. More-
over, it will be essential in a rounding algorithm in the next chapter.

12.3.13 Passing from the basic relaxation of Max-2-Sat to the canonical
one does indeed reduce the integrality gap.

• Lewin et al. [LLZ02], slightly improving on previous results by Feige and
Goemans [FG95], proved that the integrality gap of the canonical semidef-
inite relaxation of Max-2-Sat is at most 1.064 (while, as we saw, for the
basic relaxation it is at least 1.125). They provided a rounding algorithm
with the corresponding approximation ratio of at least 1/1.064 ≈ 0.940.

◦ Although they state the result with all possible triangle constraints
added, for all pairs i, j, their proof uses only triangle constraints of the
canonical relaxation, i.e., involving variables occurring in a common
clause.

2 We borrowed this term from Karloff and Zwick [KZ97], who use it in the context of
Max-3-Sat, but in the 2-CSP context their definition would be equivalent to ours.

12.3 Semidefinite Relaxations of 2-CSP’s 203

• The analysis is complicated and we will not discuss it.
• There is a quite close inapproximability bound of 0.954 for Max-2-Sat

(H̊astad [H̊as01], assuming only P �=NP, as well as 0.943 under the UGC
[KKMO07]).

12.3.14 For other 2-CSP, adding triangle inequalities does not necessarily
help. For example, for MaxCut, it can easily be shown that the optimal
SDP solution for the Hamming graph considered in Sect. 8.4 satisfies all tri-
angle constraints (and all other valid constraints, for that matter). Thus, the
approximation ratio of the Goemans–Williamson algorithm (random hyper-
plane rounding) remains 1/αGW even if we add triangle constraints.

12.3.15 How about adding other kinds of constraints to the basic semidefi-
nite relaxation – can it help, i.e., reduce the integrality gap? We do not know
for sure. However:

• The UGC implies that for every problem Max-2-CSP[P], the canonical
semidefinite relaxation with a suitable rounding algorithm yields the best
(worst-case) approximation ratio achievable by any polynomial-time algo-
rithm (Raghavendra [Rag08]; also see Austrin [Aus07]). We will not prove
this, but later (Chap. 13) we will discuss the rounding algorithm.

◦ Unfortunately, knowing that the approximation ratio is worst-case opti-
mal (assuming the UGC) does not mean that we can actually determine
it. For example, for Max-2-Sat, assuming the UGC, only the bounds
0.940 from below and 0.943 from above mentioned earlier seem to be
known.

12.3.16 The triangle constraints imply all other possible “local” valid con-
straints, as we now explain.

• Let us consider a clause in the input instance containing the variables xi
and xj . We define a local constraint for that clause as a linear inequality
of the form

a1e
T ti + a2e

T tj + btTi tj + c ≥ 0,

for some real coefficients a1, a2, b, c. A local constraint for a given instance
is one that is local for some of the clauses of the instance; in other words, if
the corresponding two variables occur together in some of the clauses.

• Such a constraint is valid if it is satisfied by all integral solutions. That is, it
holds for the 1-dimensional vectors e = 1 and all choices of ti, tj ∈ {0, 1}.

12.3.17 Claim. If ẽ, t̃i, t̃j are vectors satisfying the triangle constraints (and
otherwise completely arbitrary), then they also satisfy all valid constraints
as in 12.3.16.

12.3.18 Proof:

• Let us consider the set

204 12 Constraint Satisfaction Problems, and Relaxing Them Semidefinitely

S :=
{
ξ ∈ R

3 : there exist vectors ẽ, t̃i, t̃j

satisfying the triangle constraints and

such that ξ1 = ẽT t̃i, ξ2 = ẽT t̃j , ξ3 = t̃Ti t̃j

}
.

• The triangle constraint tTi tj ≥ 0 implies that S is contained in the half-
space H1 := {ξ ∈ R

3 : ξ3 ≥ 0}. Similarly, the remaining three triangle
constraints imply that S is also contained in the halfspaces H2, H3, H4

with equations ξ1 − ξ3 ≥ 0, ξ2 − ξ3 ≥ 0, 1− ξ1 − ξ2 + ξ3 ≥ 0, respectively.
The intersection of these halfspaces is the tetrahedron T shown below:

ξ3

ξ2

ξ1

(0, 1, 0)

(1, 0, 0)
(0, 0, 0)

(1, 1, 1)

• Now let a1e
T ti+a2e

T tj+btTi tj+c ≥ 0 be a valid local constraint, and let
H := {ξ ∈ R

3 : a1ξ1 + a2ξ2 + bξ3 + c ≥ 0} be the corresponding halfspace
in R

3.
• Since the constraint is valid, it is satisfied for e = 1 and all choices of ti

and tj in {0, 1}, and so the points (0, 0, 0), (1, 0, 0), (0, 1, 0), and (1, 1, 1)
lie in H . Then their convex hull also lies in H .

• But this convex hull is exactly the tetrahedron T , as is easy to check (this
is the heart of the proof). Since S ⊆ T , all vectors ẽ, t̃i, t̃j satisfying the
triangle constraints also satisfy the considered valid constraint. This proves
the claim. �

12.3.19 Thus, the triangle constraints imply all valid local constraints. Of
course, if the UGC fails, it might still be possible to improve the semidefinite
relaxation by adding non-local constraints, or to set up a completely different
and better semidefinite relaxation, but nobody has managed to do so. The
canonical semidefinite relaxation remains the strongest available one for all
2-CSP.

12.3.20 The canonical semidefinite relaxation of a 2-CSP can be approx-
imately solved in time almost linear in m, the number of clauses (Steurer
[Ste10], building on a work by Arora and Kale [AK07]).

12.4 Beyond Binary Boolean: Max-3-Sat & Co. 205

• Here “approximately” is meant in the following sense: Let ε > 0 be a
parameter, and let ϕ be an input 2-CSP formula with n variables and
m ≥ n clauses. Assuming that the value of an optimal solution of the
canonical relaxation for ϕ is αm, then the algorithm computes a solution
with value at least (α− ε)m that is feasible for the canonical relaxation of
a formula ϕ′, obtained from ϕ by deleting at most εm clauses.

• The running time is bounded by O(mε−C1(logn)C2) with some constants
C1, C2.

12.4 Beyond Binary Boolean: MAX-3-SAT & Co

12.4.1 Now we want a good semidefinite relaxation for constraint satisfaction
problems with more than two variables per clause. We explain it on a concrete
example of Max-3-Sat, but it will be apparent that the same method works
for any CSP with two-valued (Boolean) variables.

12.4.2 So we consider a 3-Sat formula ϕ, say (x2∨x5∨x7)∧· · ·∧(x3∨x4∨x5)
with variables x1, . . . , xn and with m clauses.

• We want to keep the features that worked well for the Max-2-Sat case, so
we again use the vector variables e and t1, . . . , tn with the same meaning,
as well as the basic constraints eTe = 1 and tTi (e− ti) = 0.

• But a problem comes when we try to write down the objective function.
In the binary case, for example, we could use the term tT2 t5 to represent
“x2 = True and x5 = True.” But how do we express “x2 = True and
x5 = True and x7 = True”? It seems that we need a cubic term, but this
does not fit in the SDP context.

12.4.3 Here is an ingenious solution. (It can be viewed as an instance of the
general lift-and-project approach; see, e.g., Laurent [Lau03] – but we will not
go into this.)

• For the first clause, x2 ∨ x5 ∨ x7, we introduce 23 = 8 new auxiliary
scalar variables z1,ω ≥ 0, where ω ∈ {F,T}3 (we abbreviate F = False and
T = True).

• In an integral solution, corresponding to an actual assignment, the z1,ω
should attain values 0 or 1, and, for example, z1,TFT should be 1 for an
assignment with x2 = True, x5 = False, x7 = True, while z1,TFT = 0 for all
other assignments. So for an integral solution, exactly one among the z1,ω
is 1, the one corresponding to the values of x2, x5, x7. In the semidefinite
relaxation we thus add the constraint

∑

ω∈{F,T}3

z1,ω = 1.

206 12 Constraint Satisfaction Problems, and Relaxing Them Semidefinitely

• Now we can conveniently write down the contribution of the first clause
x2 ∨ x5 ∨ x7 to the objective function as

z1,FFF + z1,FFT + z1,FTT + z1,TFF + z1,TFT + z1,TTF + z1,TTT

(z1,FTF is missing).
• Similarly we introduce the z�,ω for every � = 1, 2, . . . ,m.
• This may seem only to postpone the real problem. We can write z1,TFT in
the objective function, but how can we make sure that it really corresponds
to x2 = True, x5 = False, x7 = True? So far there is no connection between
the z�,ω and the ti.

• The solution is, we do what we can and see how it works.

◦ First, eT t2 should express the truth of x2, and x2 should be true exactly
if one of z1,TFF, z1,TFT, z1,TTF, z1,TTT is 1. So we add the constraint

∑

ω∈{F,T}3:ω1=T

z1,ω = eT t2,

and similar constraints for x5 and x7.
◦ An analogous constraint corresponding to x2 = False happens to be

redundant, since eT (e− t2) = 1− eT t2 and
∑

ω z1,ω = 1. So we ignore
it.

• Second, tT2 t5 should express the truth value of x2 ∧ x5, and so we add the
constraint ∑

ω∈{F,T}3:ω1=T,ω2=T

z1,ω = tT2 t5,

as well as analogous constraints with tT2 t7 and tT5 t7. Similar constraints
for (e− t2)

T t5 etc. are again redundant.
• We do this for each clause, and we have set up the canonical semidefinite
relaxation of Max-3-Sat.

• The same works for anyMax-k-CSP[P] with Boolean variables. The pred-
icates play a role only in the objective function, while the constraints do
not depend on them.

12.4.4 We summarize the general definition more formally. Let the input
instance of Max-k-CSP[P] be, as earlier, P1(xi11 , xi12 , . . . , xi1k) ∧ · · · ∧
Pm(xim1

, xim2
, . . . , ximk

).

12.4 Beyond Binary Boolean: Max-3-Sat & Co. 207

The canonical semidefinite relaxation
of a Boolean MAX-k-CSP[P]

Vector variables: e, t1, . . . , tn.
Scalar variables: z�,ω, � = 1, 2, . . . ,m, ω ∈ {F,T}k.

Maximize

m∑

�=1

∑

ω∈{F,T}k:P�(ω)=T

z�,ω

subject to eTe = 1

tTi (e− ti) = 0 1 ≤ i ≤ n

z�,ω ≥ 0 1 ≤ � ≤ m, ω ∈ {F,T}k
∑

ω z�,ω = 1 1 ≤ � ≤ m
∑

ω:ωj=T

z�,ω = eT ti�j 1 ≤ � ≤ m, 1 ≤ j ≤ k

∑

ω:ωj=ωj′=T

z�,ω = tTi�j ti�j′

1 ≤ � ≤ m, 1 ≤ j < j′ ≤ k.

Having displayed the somewhat frightening notation for the general case, we
return to the case of Max-3-Sat, leaving the obvious generalizations to the
reader.

12.4.5 It may be useful to think about the z�,ω in a probabilistic language.

• Let us consider our concrete Max-3-Sat example, where the first clause
was x2 ∨ x5 ∨ x7.

• The z1,ω are nonnegative numbers adding up to 1, so they specify a
probability distribution on {F,T}3. Then the constraints tell us that
Prob[ω1 = T] = eT t2, where ω is drawn at random from the distribution
given by the z1,ω, etc., and also that Prob[ω1 = T and ω2 = T] = tT2 t5, etc.

The Canonical Relaxation Implies All Local Valid Constraints

12.4.6 As in the k = 2 case, the UGC implies that with an appropriate
rounding algorithm, the just defined canonical semidefinite relaxation yields
the best possible approximation ratio for any polynomial-time algorithm
(Raghavendra [Rag08], Raghavendra and Steurer [RS09b]).

12.4.7 An attentive reader of the previous sections may ask, where are the
triangle constraints, which were a crucial part of the canonical relaxation for
the k = 2 case?

208 12 Constraint Satisfaction Problems, and Relaxing Them Semidefinitely

12.4.8 A nice feature of the above approach is that they are already “there”
and we need not add them explicitly. More generally, all valid local constraints
are already there!

• Generalizing the notion introduced earlier in an obvious way, we define a
local constraint for a clause C�, whose variables are xi1 , xi2 , xi3 (so i1, i2, i3
depend on �), as an inequality of the form

a1e
T ti1 + a2e

T ti2 + a3e
T ti3 + b12t

T
i1
ti2 + b13t

T
i1
ti3 + b23t

T
i2
ti3

+ c+
∑

ω∈{F,T}3

dωz�,ω ≥ 0

with some real coefficients a1, a2, a3, b12, b13, b23, c, and dω, ω ∈ {F,T}3. A
local constraint for an instance is again a constraint that is local for some
of the clauses.

• A constraint as above is valid if it is satisfied for every integral solution
induced by an assignment to the variables xi. By this we mean that each xi

is set to either 0 or 1, and then the variables in the semidefinite relaxation
are set as follows:

◦ e := 1 ∈ R
1

◦ ti := xi ∈ R
1

◦ z�,ω := 1 if the assignment to the variables in the �-th clause equals ω,
and z�,ω := 0 otherwise

12.4.9 We have the following generalization of Claim 12.3.17:

Claim. Every feasible solution

e, (t1, . . . , tn),
(
z�,ω : � = 1, . . . ,m, ω ∈ {F,T}3

)

of the canonical semidefinite relaxation of Max-3-Sat (or of some other
Max-k-CSP[P]) satisfies every valid local constraint.

12.4.10 Proof:

• This is actually simpler than for the analogous claim in the k = 2 case.
We write it down for Max-3-Sat but it should be clear that the argument
works for every Max-k-CSP[P].

• Let us consider the first clause, for example. Let the coordinates in R
8 be

indexed by ω ∈ {F,T}3 and let S ⊆ R
8 be the set of all vectors z1 = (z1,ω :

ω ∈ {F,T}3) that can appear as a part of a feasible solution.
• Let T ⊆ R

8 be the set defined by the constraints z1,ω ≥ 0, ω ∈ {F,T}3,
and

∑
ω z1,ω = 1. Every feasible solution satisfies these constraints, and

so S ⊆ T .

12.4 Beyond Binary Boolean: Max-3-Sat & Co. 209

• Geometrically, T is the 7-dimensional regular simplex in R
8, whose vertices

are the vectors eω, ω ∈ {F,T}3, of the standard orthonormal basis in R
8.

The next picture illustrates this for dimension 3 instead of 8:

T

e1

e2

e3

• Now let us consider some valid local constraint for the first clause. For
every feasible solution of the canonical semidefinite relaxation, all the
scalar products appearing in the constraint are linear combinations of the
values of the z1,ω, and so the constraint becomes an inequality for the z1,ω:

c′ +
∑

ω∈{F,T}3

d′ωz1,ω ≥ 0.

This defines a halfspace H in R
8.

• We want to show that no feasible solution violates the constraint, i.e., that
S ⊆ H . Since the constraint is valid, it is satisfied by all integral solutions
derived from actual assignments to the variables xi, as defined in 12.4.8.
This implies that H contains all the vectors eω as above, and hence also
their convex hull T . But we know that S ⊆ T , and the claim is proved. �

Dealing with Multivalued Variables

12.4.11 So far we have considered constraint satisfaction problems with
Boolean variables. Each such variable xi was represented by a single vec-
tor ti in the semidefinite relaxation.

12.4.12 If xi attains values in a larger domain D, say D = {1, 2, . . . , q}, a
good solution is to introduce q vector variables ti,1, ti,2, . . . , ti,q. The intended
meaning is that xi = a should be represented by eT ti,a = 1 and eT ti,b = 0
for all b �= a, b ∈ D.

12.4.13 We would thus like to add the constraint
∑

a∈D ti,a = e (for
every i) to the semidefinite relaxation, but we cannot do it directly, since
only scalar products may be used. However, we can formulate that constraint

as
∥∥e−∑

a∈D ti,a
∥∥2 = 0.

• Alternatively, we can replace ti,q with e − ti,1 − · · · − ti,q−1 everywhere.
This is what we did in the case of D = {F,T}, where ti played the role of
ti,T, while ti,F was represented implicitly as e− ti.

210 12 Constraint Satisfaction Problems, and Relaxing Them Semidefinitely

12.4.14 Now it is straightforward to set up the canonical semidefinite relax-
ation of Max-k-CSP[P] with an arbitrary domain D, imitating the Boolean
case without much change, and check that the obvious generalization of
Claim 12.4.9 goes through. We will not do it, since there is no new idea
and the formalism gets more complicated.

• The near-linear time algorithm of Steurer [Ste10] mentioned in 12.3.20
works for the canonical relaxation of anyMax-k-CSP[P] with an arbitrary
domain D. The running time is bounded by O(m(k|D|/ε)C1(logn)C2).

Exercises

12.1 Consider the following randomized algorithm for approximating Max-
3-Sat with exactly three distinct variables in each clause: Choose an assign-
ment at random (tossing a fair coin for each variable), and repeat until at
least � 7

8
m� of the clauses are satisfied, where m is the total number of clauses.

Prove that the expected running time is polynomial.

Hint: Use Markov’s inequality for the number of unsatisfied clauses.

Chapter 13

Rounding Via Miniatures

13.1 An Ultimate Rounding Method?

13.1.1 The Goemans–Williamson semidefinite relaxation of MaxCut is
quite simple. Still, as we have seen, analyzing it, and proving tight bounds
on the integrality gap, is not an easy task. For other basic problems, such as
Max-2-Sat or Max-3-Sat, semidefinite relaxations proposed in the litera-
ture are more sophisticated.

For these semidefinite relaxations, more sophisticated rounding techniques
have been proposed as well (pre-rounding rotations, skewed random hyper-
plane rounding, threshold rounding. . .). The analysis is complicated (some-
times computer-aided) and problem-specific.

13.1.2 We will discuss a recently discovered “generic” rounding technique,
which attains the (worst-case) integrality gap, up to any given additive
constant ε > 0, for a wide class of semidefinite relaxations of constraint
satisfaction problems. (“A rounding to end all roundings. . . ”)

13.1.3 Moreover, assuming the Unique Games Conjecture, this rounding
technique, applied to the canonical semidefinite relaxation introduced earlier,
almost achieves the best approximation factor attainable by any polynomial-
time algorithm, for every class of constraint satisfaction problems (Raghaven-
dra [Rag08], Raghavendra and Steurer [RS09b]).

13.1.4 This is a wonderful result, but with some caveats:

• The algorithm is so far purely theoretical: the dependence on the con-
stant parameters (ε, k, domain size) is doubly exponential. (A “revenge of
asymptotic analysis.”)

• Not clear what the worst-case approximation factor is. (The method also
provides an algorithm for computing the approximation factor up to any
given error ε, but that algorithm is doubly exponential and totally useless
for an actual computation.)

211B. Gärtner and J. Matoušek, Approximation Algorithms and Semidefinite
Programming, DOI 10.1007/978-3-642-22015-9 13,
© Springer-Verlag Berlin Heidelberg 2012

212 13 Rounding Via Miniatures

• Does not apply to problems such as MaxQP[G] (maximizing a quadratic
form), where the objective function is a sum of both positive and negative
contributions.

• Even for the “usual” constraint satisfaction problems, such as graph 3-col-
oring, we may be interested in a different kind of approximation guarantee:
For example, we may want to control the fraction of unsatisfied constraints,
rather than the satisfied ones. Or we want a proper coloring but allow for
more than three colors. In such cases the method also has nothing to say
at present.

• We should also remark that there are many classes of CSP where, under
the UGC, the SDP machinery does not help at all. These are the so-
called approximation-resistant predicates , for which the straightforward
randomized algorithm, choosing the values of the variables independently
and uniformly at random, achieves the best possible approximation ratio.
See Austrin and Mossel [AM08].

• A strong example of approximation-resistance is a celebrated result of
H̊astad [H̊as01] stating that it is NP-hard to approximate Max-3-CSP[P]
with ratio 1

2
+ ε for every fixed ε > 0, where the domain of the variables

is D = {0, 1} and P (x1, x2, x3) holds if x1 + x2 + x3 ≡ 1 (mod 2).

13.1.5 We will first show Raghavendra’s rounding technique on the Goe-
mans–Williamson semidefinite relaxation for MaxCut. There it brings no
new result, but the basic idea can be illustrated in a simple form and in a
familiar setting.

13.2 Miniatures for MAXCUT

13.2.1 Let G be an input graph for MaxCut with vertex set {1, 2, . . . , n} as
usual, and let (v1, . . . ,vn) be an optimal SDP solution for it (i.e., the vi are

unit vectors maximizing
∑

{i,j}∈E
1−vT

i vj

2).

13.2.2 In the rounding algorithm, we build a miniature (= small model) of
the input instance, which faithfully reflects the original, up to ε. (From now
on, ε > 0 is arbitrarily small but fixed.)

• An important point: the miniature reflects not only the input instance G,
but also the optimal SDP solution (v1, . . . ,vn). It is a small graph Ĝ plus
a sequence (v̂1, . . . , v̂n̂) of unit vectors.

13.2.3 A technical point: The graph in the miniature is weighted.

• By a weighted graph we mean a pair (G,w), where G = (V,E) is a graph
and w:E → (0,∞) is a weight function on the edges.

• We write wij instead of w({i, j}).
• Let Opt(G,w) denote the maximum weight of a cut in (G,w), where the

weight of a cut is the sum of the weights of its edges.

13.2 Miniatures for MaxCut 213

• The Goemans–Williamson algorithm clearly generalizes to such weighted
graphs, with the same performance. The semidefinite relaxation is now

SDP(G,w) := max

{ ∑

{i,j}∈E

wij
1− vT

i vj

2
: ‖v1‖ = · · · = ‖vn‖ = 1

}
.

• We let

Gap := sup
G,w

SDP(G,w)

Opt(G,w)

be the worst-case integrality gap of the semidefinite relaxation, over all
weighted graphs. (It is easily seen that Gap is the same as the maximum
integrality gap for unweighted graphs. So we know from Sect. 1.3 and The-
orem 8.3.2 that Gap = 1/αGW, but we will not use that.)

• We could also handle weighted input graphs without any additional diffi-
culty; we stick to the unweighted case just to keep things (slightly) simpler.

13.2.4 So the miniature is a weighted n̂-vertex graph (Ĝ, ŵ) plus a sequence
v̂1, . . . , v̂n̂ of unit vectors. We will make sure that the v̂i form a feasible
solution (not necessarily optimal) of the semidefinite relaxation, as in 13.2.3,
for (Ĝ, ŵ), and that its value is almost the same as for the original SDP
optimum, namely, at least SDP(G)− ε|E|.
13.2.5 The miniature is so small that the maximum cut of (Ĝ, ŵ) can be
computed exactly by brute force. The number n̂ of vertices is a (huge) con-
stant, depending on ε.
The weighted graph (Ĝ, ŵ) is a legal instance of the weighted MaxCut prob-
lem, and so Opt(Ĝ, ŵ) ≥ SDP(Ĝ, ŵ)/Gap ≥ (SDP(G) − ε|E|)/Gap. (Here it
is important that Gap was defined for weighted graphs, since even when we
start with an unweighted graph, the miniature is weighted.)

214 13 Rounding Via Miniatures

13.2.6 From the optimal solution (maximum cut) for (Ĝ, ŵ), we can recon-
struct (“unfold”) a cut in the original graph G with at least Opt(Ĝ, ŵ) edges.

• This is the output of the rounding algorithm. The number of edges of this
cut is at least (SDP(G)− ε|E|)/Gap.

• This can be further bounded from below by SDP(G,w)(1− 2ε)/Gap, since
SDP(G) ≥ Opt(G) ≥ 1

2 |E|. (Indeed, for MaxCut we know that the opti-
mum has always at least half of the edges.)

• Thus, the approximation factor is at least (1− 2ε)/Gap.

13.2.7 A graphical summary: Rounding via a miniature

Miniature:
A weighted graph (G, w) and
feasible SDP solution (v1, . . . ,vn)

brute
force

“unfolding”

Optimal cut in (G, w)

A large cut in G
Instance:
A graph G and
an SDP optimum (v1, . . . ,vn)

13.2.8 The technique of rounding via miniatures may remind some readers
of applications of the Szemerédi regularity lemma. There are indeed some
similarities, but a key difference is that the graph Ĝ in the miniature depends
not only on the input graph, but also on the optimal SDP solution.

Two Lemmas for Miniature Builders

13.2.9 The first lemma tells us that unit vectors in Sd−1 can be “discretized,”
up to a given error δ > 0:

Lemma. For every d and every δ ∈ (0, 1), there exists a set N ⊆ Sd−1

that is δ-dense in Sd−1 (that is, for every x ∈ Sd−1 there exists z ∈ N
with ‖x− z‖ < δ), and |N | ≤ (3

δ
)d.

• This is a very useful and standard result, which one can hardly avoid in
considerations involving high-dimensional geometry.

• We have seen the proof idea when discretizing the continuous graph in
Sect. 8.3.

13.2 Miniatures for MaxCut 215

13.2.10 Proof:

• We build N = {p1,p2, . . .} by a “greedy algorithm”: We place p1 to Sd−1

arbitrarily, and having already chosen p1, . . . ,pi−1, we place pi to Sd−1

so that it has distance at least δ from p1, . . . ,pi−1.
• This process finishes as soon as we can no longer place the next point, i.e.,
the resulting set is δ-dense.

• To estimate the number of points produced in this way, we observe that
the balls of radius δ

2 centered at the pi have disjoint interiors and are

contained in the ball of radius 1 + δ
2 ≤ 3

2 around 0. Thus, the sum of
volumes of the small balls is at most the volume of the large ball, and this
gives the lemma. �

13.2.11 The second lemma is a special case of the Johnson–Lindenstrauss
lemma, which says roughly the following: If v is a fixed vector in a “high-
dimensional” Euclidean space R

n and Φ:Rn → R
d is a suitably chosen “nor-

malized random linear map” into a “low-dimensional” space, then the image
Φ(v) has, with high probability, almost the same length as v.

13.2.12 Since we will suffice with a weak quantitative bound for the “high
probability,” the proof of what we need is simpler than the “usual” proofs of
the Johnson–Lindenstrauss lemma. On the other hand, we need an enhanced
version asserting that a normalized random linear map also preserves, up to
a small error, the scalar product of two vectors with high probability.

13.2.13 We use the following “normalized random linear map” Φ:Rn →
R

d. We choose d independent standard n-dimensional Gaussian vectors
γ1, . . . ,γd ∈ R

n, and set Φ(v) := 1√
d
(γT

1 v, . . . ,γ
T
d v).

13.2.14 Lemma (Dimension reduction). Let u,v ∈ R
n be unit vectors,

let Φ be the random linear map as above, and let t ≥ 0. Then, for a
sufficiently large constant C,

Prob
[
|uTv − Φ(u)TΦ(v)| ≥ t

]
≤ C

dt2
.

13.2.15 Proof:

• Suffices to prove for u = v; the general case then follows using uTv =
1
2
(‖u‖2 + ‖v‖2 − ‖u − v‖2). (The constant gets worse in this step, since

we need to control the deviations for each of the three terms.)

• Let X := Φ(v)TΦ(v) = ‖Φ(v)‖2. Then X = 1
d

∑d
i=1 Z

2
i , with Zi := γT

i v.
The Zi are standard normal (as we noted in 9.3.3) and independent, with
Var [Zi] = E

[
Z2
i

]
= 1. So E [X] = 1.

• The distribution of X is known as the chi-square distribution, and tail
estimates for it can be found in the literature. For our purposes, there is
also a simple direct proof.

216 13 Rounding Via Miniatures

• We use the Chebyshev inequality: Prob[|X −E [X] | ≥ t] ≤ Var [X] /t2,

where Var [X] = E
[
X2
]−E [X]

2
is the variance.

• By independence, Var [X] = 1
d2

∑d
i=1 Var

[
Z2
i

]
.

• We want to see that each Var
[
Z2
i

]
is bounded by a constant. There

are several ways of checking this. A direct calculation (integration) gives
Var

[
Z2
i

]
= 2. So Var [X] = 2

d
and the lemma follows. �

Building the Miniature

13.2.16 We fix δ > 0; this is the famous δ > 0 which exists for every ε > 0.

13.2.17 We choose d̂ sufficiently large in terms of δ. The vectors v̂i of the
miniature will live in R

d̂.

13.2.18 We fix a δ-dense set N̂ in S d̂−1 according to Lemma 13.2.9. Its size
n̂ := |N̂ | is going to be the number of vertices of the miniature graph Ĝ.

13.2.19 We choose a random linear map Φ:Rn → R
d̂, as in Lemma 13.2.14,

and set v∗
i := Φ(vi), i = 1, 2, . . . , n.

13.2.20 We expect Φ to preserve most of the scalar products up to ±δ. Let
us say that Φ fails on the vertex i if ‖v∗

i ‖
∈ [1 − δ, 1 + δ]. Similarly, Φ fails
on an edge {i, j} if it fails on i or j or if

∣∣(v∗
i)

Tv∗
j − vT

i vj

∣∣ > δ.

13.2.21 Let F ⊆ E be the set of edges where Φ fails. By Lemma 13.2.14
we have E [|F |] ≤ δ|E| (for d̂ sufficiently large). So by Markov’s inequality
|F | ≤ 2δ|E| with probability at least 1

2
. We repeat the random choice of Φ

until |F | ≤ 2δ|E| holds; the expected number of repetitions is at most 2.

13.2.22 We let G∗ be the graph obtained from G by discarding all vertices
and edges where Φ fails.

13.2.23 Next, we discretize the vectors v∗
i : For every i ∈ V (G∗), we choose

v∗∗
i ∈ N̂ at distance at most 2δ from v∗

i . (This is possible since each v∗
i is at

most δ away from the sphere S d̂−1, and N̂ is δ-dense in S d̂−1.)

13.2.24 Finally, we fold the graph G∗ so that all vertices with the same
vector v∗∗

i are identified into the same vertex. The miniature graph (Ĝ, ŵ) is
the result of this folding:

fold

G (Ĝ,ŵ)

3

1 3

4

5

13.2 Miniatures for MaxCut 217

Explicitly:

• The vertices of Ĝ are 1, 2, . . . , n̂.
• Let v̂1, . . . , v̂n̂ be the points (unit vectors) of N̂ listed in some fixed order.
These will form the feasible SDP solution for the miniature.

• The edges of Ĝ are obtained from the edges of G∗; i.e., {ı̂, ĵ} is an edge if
there is an edge {i, j} ∈ E(G∗) such that v∗∗

i = v̂ı̂ and v∗∗
j = v̂ĵ.

• The weight of such an edge {ı̂, ĵ} is the number of edges {i, j} that got
folded onto {ı̂, ĵ}:

ŵı̂ĵ :=
∣∣∣
{
{i, j} ∈ E(G∗) : v∗∗

i = v̂ı̂,v
∗∗
j = v̂ĵ

}∣∣∣.

13.2.25 Clearly, v̂1, . . . , v̂n̂ define a feasible SDP solution for (Ĝ, ŵ) (they
are unit vectors, and there are no other constraints to check – this is why
MaxCut is easy for the method of miniatures).

13.2.26 How much smaller can the SDP value
∑

{ı̂,ĵ}∈E(Ĝ) ŵı̂ĵ(1 − v̂T
ı̂ v̂ĵ)/2

be compared to SDP(G)? Let us follow the algorithm backwards:

• The folding loses nothing; the value equals
∑

{i,j}∈E(G∗)(1− (v∗∗
i)Tv∗∗

j)/2

(here we need to be slightly careful with vertices i, j that get folded to the
same vertex ı̂ of Ĝ, since there is no edge corresponding to {i, j} in Ĝ –
but for such i, j we have (v∗∗

i)Tv∗∗
j = 1, and so they do not contribute to

the SDP value).
• The discretization, replacing v∗

i by v∗∗
i , changes each of the relevant scalar

products (v∗
i)

Tv∗
j by at most O(δ) (additive error), and thus the objective

function changes by no more than O(δ) · |E|.
• Similarly, for each non-failed edge {i, j}, replacing the original vi and vj

by the Φ-images v∗
i ,v

∗
j changes the scalar product vT

i vj by at most δ, and
again, the total change in the objective function is O(δ) · |E|.

• Finally, the number of failed edges is at most 2δ|E|, and discarding these
may decrease the objective function by at most this much.

• Hence, SDP(Ĝ, ŵ) ≥ SDP(G)−O(δ) · |E| ≥ SDP(G)− ε|E| as we wanted.

13.2.27 The miniature is finished. As announced earlier, its size is bounded
by a constant, and we can compute Opt(Ĝ, ŵ) by brute force.

13.2.28 A cut in (Ĝ, ŵ) of weight s can be unfolded to a cut in G∗ with
s edges, and hence to a cut with at least s edges in G.

13.2.29 This finishes the presentation of the rounding algorithm. We have
shown the following:

218 13 Rounding Via Miniatures

Theorem. For every fixed ε > 0, and for every input graph G, the
above rounding algorithm computes a cut of size at least

1

(1 + ε)Gap
· Opt(G),

in expected polynomial time.

• The dependence of the running time on ε is doubly exponential, unfortu-
nately.

• The approximation factor is actually the reciprocal of the integrality gap
for the miniature (up to ε). Even if the integrality gap for the input
instance G is small, it can become large by the folding.

◦ Of course, we cannot expect any polynomial-time algorithm to round
close to the integrality gap for the input instance, since such an algo-
rithm would compute an almost optimum cut, which is known to be
NP-complete.

13.2.30 We actually get a stronger result.

• For c ∈ [1
2
, 1], let

Gap(c) := sup

{
SDP(G,w)

Opt(G,w)
: SDP(G,w) ≥ cw(E)

}

be the integrality gap for graphs whose SDP optimum is at least a c-frac-
tion of the total edge weight.

• The miniature in the algorithm satisfies SDP(Ĝ, ŵ) ≥ SDP(G)−ε|E|. Thus,
for graphs with SDP(G) ≥ c|E|, the algorithm computes a cut within
(1 + ε)Gap(c− ε) of optimum.

13.2.31 Here is a summary of the rounding algorithm.

Rounding via miniatures for MAXCUT

Input: G and an optimal SDP solution v1, . . . ,vn.

1. (Dimension reduction) Map the vectors vi into R
d̂ using the random

Gaussian map Φ. Repeat until only at most a small fraction of the
edges fail.

2. Discard the failed vertices and edges.
3. Discretize the remaining vectors to vectors of a fixed δ-dense set.
4. Fold the graph, lumping together vertices with the same discretized

vector.
5. Compute a maximum cut in the resulting constant-size graph.
6. Unfold back to a cut in the original graph.

13.3 Rounding the Canonical Relaxation of Max-3-Sat 219

13.3 Rounding the Canonical Relaxation of MAX-3-SAT

and Other Boolean CSP

13.3.1 Here we will extend the rounding technique shown in the previous
section to deal with more complicated semidefinite relaxations of constraint
satisfaction problems.

13.3.2 We will demonstrate it for the canonical semidefinite relaxation of
Max-3-Sat and other Boolean CSP.

• As in the case of MaxCut, the approximation ratio will be expressed in
terms of the worst-case integrality gap for the weighted version, in which
each clause C� has a nonnegative real weight w�. We aim at maximizing
the sum of weights of the satisfied clauses.

• In the semidefinite relaxation, the only change is adding the w� as coeffi-
cients in the objective function. Thus, for a set P of k-ary predicates, we
set

GapP := sup
ϕ,w

SDP(ϕ,w)

Opt(ϕ,w)
,

where ϕ is an instance of Max-k-CSP[P] as introduced earlier, w is an
assignment of nonnegative real weights to the clauses of ϕ, Opt(ϕ,w) is
the maximum possible weight of satisfied clauses, and SDP(ϕ,w) is the
optimum of the canonical semidefinite relaxation.

• As in the previous section, we present the rounding algorithm for an
unweighted input instance (although there is almost no difference in han-
dling weighted inputs).

13.3.3 Theorem. For every fixed ε > 0, k, and a set P of k-ary predi-
cates over the domain D = {F,T}, there is a randomized algorithm that,
for every input instance ϕ of Max-k-CSP[P], computes an assignment
satisfying at least

1

(1 + ε)GapP
· Opt(ϕ)

of the clauses of ϕ, in expected polynomial time.

13.3.4 The generalization to larger domains D is not too difficult, but at
some points in the proof one needs to work somewhat harder.

• We assume that each predicate in P has at least one satisfying assignment
(totally unsatisfiable predicates may perhaps make sense as a punishment,
but in the enlightened world of theoretical computer science we can ignore
them). Then Opt(ϕ) ≥ 2−km for every input instance ϕ with m clauses,
since the expected number of clauses satisfied by a random assignment is
at least 2−km.

220 13 Rounding Via Miniatures

13.3.5 The rounding algorithm itself is a straightforward generalization of
the one for MaxCut shown in the previous section. The new part is in the
analysis.

13.3.6 In the algorithm we work only with the vector variables e, t1, . . . , tn
and ignore the z�,ω. Their time comes in the analysis.

13.3.7 Here is the algorithm explicitly.

• We start with an input formula ϕ and an optimal solution s=
(
e, t1, . . . , tn ;

z�,ω : � = 1, . . . ,m, ω ∈ {F,T}k) of the canonical semidefinite relaxation.
The first step is a dimension reduction: We set e∗ := Φ(e) and t∗i := Φ(ti)
for the random Gaussian map Φ:Rn+1 → R

d̂. (Here d̂ = d̂(δ), with δ =
δ(ε) > 0 sufficiently small.)

• Φ fails for a clause C� if at least one of the scalar products eTe, eT ti,
tTi tj , where xi, xj are variables in C�, is changed by more than δ (additive
error). By restarting if necessary, we make sure that at most a δ-fraction
of the clauses fail (using Lemma 13.2.14). In particular, e is all-important
and we always restart if (e∗)Te∗
∈ [1− δ, 1 + δ].

• We discard all the failed clauses from the input formula, obtaining a for-
mula ϕ∗. The corresponding terms in the objective function and the cor-
responding constraints of the semidefinite program are discarded as well,
and so are the variables occurring only in failed clauses.

◦ Here it is important that the canonical semidefinite relaxation includes
only local constraints, and thus the number of constraints is propor-
tional to the number of clauses. Indeed, the random projection will
typically spoil a fixed fraction of the constraints, and so we do not want
to have many more constraints than clauses.

• Now comes the discretization. For MaxCut, we dealt only with (approx-
imately) unit vectors, while here we have vectors of length 1 or smaller.

◦ Indeed, since ‖e‖ = 1, we get eT ti ≤ ‖ti‖. The constraint tTi (e− ti) = 0
can be rewritten as eT ti = ‖ti‖2, and thus we have ‖ti‖ ≥ ‖ti‖2. So
‖ti‖ ≤ 1 follows.

So we choose N as a δ-dense set in the unit ball, rather than unit sphere.
No problem here; the proof of Lemma 13.2.9 applies to this case as well,
actually with exactly the same bound. We obtain the discretized vectors,
e∗∗ and the t∗∗i (where the indices i of the discarded variables are not
considered).

• Folding the formula, by identifying all variables xi with the same dis-
cretized vector t∗∗i to a single variable, is done in an obvious way (we
identify clauses with the same ordered k-tuple of variables and the same
predicate). Let (ϕ̂, ŵ) be the folded instance (with weights).

• We find an optimal assignment for (ϕ̂, ŵ) by brute force, we unfold it to
an assignment for ϕ, and this is the output of the algorithm.

13.3 Rounding the Canonical Relaxation of Max-3-Sat 221

13.3.8 Where is the problem with the analysis? We need to bound from
below SDP(ϕ̂, ŵ), the semidefinite optimum for the miniature. In the Max-
Cut case, the v̂i formed a feasible solution, whose value was almost the SDP
value of the input instance, but here we do not have a feasible solution for
(ϕ̂, ŵ).

• First, we have not really defined the values of the z�,ω variables for the
miniature. But, for each of the clauses Ĉ �̂ of the miniature, we can just
take over the values of the z�,ω from one of the clauses C� that got folded
over to Ĉ �̂.

• More seriously, though, the equality constraints, such as eT e = 1 or
tTi (e− ti) = 0, typically do not hold for the vectors of the miniature –
they all hold approximately, up to O(δ), but not exactly.

13.3.9 We thus need to show that an “almost feasible” solution of the canon-
ical semidefinite relaxation can be fixed to a truly feasible solution, without
much loss in the value of the objective function. We state this as a gen-
eral result about the canonical relaxation (and so we will no longer use the
“miniature” notation).

13.3.10 For convenience, let us recall the constraints of the canonical semi-
definite relaxation and give them names. There are:

• The et-constraints : eT e = 1 and tTi (e− ti) = 0.
• The etz-constraints relating the appropriate sums of the z�,ω to the scalar
products of e, t1, . . . , tn, namely,

∑

ω:ωj=T

z�,ω = eT ti�j and
∑

ω:ωj=ωj′=T

z�,ω = tTi�jti�j′ .

• The nonnegativity constraints z�,ω ≥ 0.
• The z-sum constraints

∑
ω z�,ω = 1.

13.3.11 We call

s̃ =
(
ẽ, t̃1, . . . , t̃n; z̃�,ω : � = 1, . . . ,m, ω ∈ {F,T}k)

a δ-almost feasible solution of the canonical semidefinite relaxation (for some
input formula ϕ, possibly weighted) if it satisfies all et-constraints and etz-
constraints up to δ (i.e., the left-hand and right-hand sides of each constraint
differ by at most δ), and satisfies the nonnegativity constraints and the z-sum
constraints exactly.1

13.3.12 In view of the above discussion, the following proposition is all that
is needed to finish the proof of Theorem 13.3.3.

Proposition (Fixing an almost-feasible solution). For every ε > 0 (and
every k) there exists δ > 0 with the following property. Let s̃ be a δ-almost

1 We could also assume that the nonnegativity constraints are satisfied only up to δ
and easily fix them as well. But since in the algorithm we have them satisfied exactly,
why bother.

222 13 Rounding Via Miniatures

feasible solution of the canonical semidefinite relaxation for an input instance
(ϕ,w), and let M be the value of the objective function for s̃. Then there is
a feasible solution with value at least M − εW , where W is the total weight
of the clauses of ϕ.

• In the analysis of the rounding algorithm we need this proposition as an
existence result. We never need to actually compute the feasible solution.

13.3.13 The fixing proceeds in several steps, which we first outline and then
treat in detail.

1. First we fix ẽ. Namely, we set e′ := ẽ/‖ẽ‖; this is a unit vector, and all
constraints still hold up to O(δ) after replacing ẽ by e′.

2. Next, we fix the et-constraints. We replace each t̃i by t′i, with ‖t̃i − t′i‖ =
O(δ) and with the et-constraint (t′i)

T (e′ − t′i) = 0 satisfied exactly. (Note
that here we can deal with one i at a time.) For (e′, t′1, . . . , t

′
n; z̃�,ω) the

etz-constraints again hold up to O(δ).
3. Now we produce the new z′�,ω, for all � and ω, with |z′�,ω − z̃�,ω| = O(δ),

so that s′ := (e′, t′1, . . . t′n; z′�,ω) satisfies the etz-constraints (as well as
the et-constraints and the z-sum constraint) exactly. However, we may
break the nonnegativity constraints at this step; the z′�,ω may be slightly
negative.

4. Finally, we will adjust all the components of the solution once again, each
of them by a small amount, and obtain the desired feasible solution s′′.
We need to pull the z′�,ω slightly “inwards” into the simplex defined by the
nonnegativity constraints and the z-sum constraints, and this is achieved
by perturbing the solution s′ obtained so far using a particular feasible
solution, the centroid solution s.

13.3.14 We will now execute this program step by step. Step 1 is clear, but
the others will take some work.

Fixing the et-Constraints

13.3.15 In Step 2 we have a unit vector e′ and a vector t̃i with |(e′−t̃i)
T t̃i| =

O(δ), and we want to show that there is a new vector t′i close to t̃i and such
that (e′ − t′i)

T t′i = 0.

13.3.16 There are several possible proofs. A quick one is obtained if we
translate to the vi-language (introduced in 12.3.5), setting ṽi := 2t̃i − e′.
Then, as we know or can easily check, the goal becomes making ṽi unit, and
for that, there is an easy recipe: set v′

i := ṽi/‖ṽi‖. Then we translate back:
t′i :=

1
2
(e′ + v′

i).

13.3.17 It remains to estimate ‖t̃i − ti‖, which is routine.

13.3 Rounding the Canonical Relaxation of Max-3-Sat 223

• We calculate ‖ṽi‖2 = ‖2t̃i − e′‖2 = 1 − 4(e′ − t̃i)
T t̃i = 1 + O(δ). Hence

‖ṽi‖ = 1 +O(δ) as well.
• Then

‖t̃i − t′i‖ =
1

2
‖ṽi − v′

i‖ =
1

2

∥∥∥∥ṽi − ṽi

‖ṽi‖
∥∥∥∥

=
1

2
‖ṽi‖

(
1− 1

‖ṽi‖
)

=
1

2
(1 +O(δ))

(
1− 1

1 +O(δ)

)
= O(δ).

Step 2 is finished.

Fixing the etz-Constraints

13.3.18 We describe Step 3, where the vector variables e′, t′1, . . . , t′n remain
fixed, and the z̃�,ω are changed by a small amount so that they satisfy the etz-
constraints, while the z-sum constraints

∑
ω z�,ω = 1 also remain satisfied.

However, we do not insist on satisfying the nonnegativity constraints z�,ω ≥ 0.
This step is simple linear algebra.

13.3.19 It suffices to treat one clause at a time. We will omit the clause
index � in the notation. We write z̃ = (z̃ω : ω ∈ {F,T}k), and similarly for z′.
13.3.20 Let i1, . . . , ik be the indices of the variables in the considered clause,
and let

p :=
(
1, (e′)T t′i1 , . . . , (e

′)T t′ik , (t
′
i1
)T t′i2 , (t

′
i1
)T t′i3 , . . . , (t

′
ik−1

)T t′ik
)
∈ R

K ,

K := 1 + k +
(
k
2

)
, be the vector of the right-hand sides of the constrains

we want z′ to satisfy. We consider the coordinates in RK indexed by subsets
J ⊆ {1, 2, . . . , k} of size at most 2; then we can write, e.g., p{2,3} = (t′i2)

T t′i3 ,
p{3} = (e′)T t′i3 , and p∅ = 1.

13.3.21 We can formulate the constraints for the desired vector z′ ∈ R
2k

compactly as follows:
f(z′) = p,

where f :R2k → R
K is the linear mapping given by

f(z)J :=
∑

ω∈{F,T}k:ω[J]=T

zω, |J | ≤ 2

(here ω[J] = T means that the components of ω whose indices lie in J should
be T; in particular, for J = ∅ we sum over all ω).

224 13 Rounding Via Miniatures

13.3.22 The assumption on z̃ can be written as ‖f(z̃) − p‖ = O(δ).2 We

want a z′ ∈ R
2k

with f(z′) = p and ‖z′ − z̃‖ = O(δ). Here is a schematic

geometric picture of the situation, with R
2k

indicated as a rectangle and RK

shown as a segment:

R
2k

R
K

f(z̃)

p = f(z′)

z̃ z′??

13.3.23 Since f is a linear map, it suffices to show that the vector v :=
p− f(z̃) has a short preimage u; that is, f(u) = v and ‖u‖ = O(‖v‖). Then
we can set z′ := z̃+ u and we will be done.

13.3.24 Let A be the K × 2k matrix of the linear mapping f (with respect
to the standard bases). Its entries are aJ,ω = 1 if ω[J] = T and aJ,ω = 0
otherwise. For example, for k = 3 we have K = 7 and

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1
0 0 0 1 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

13.3.25 Let us suppose for a moment that A has rank K, which means that
it has a nonsingular K ×K submatrix B (for k = 3 it is easy to see and we
will soon justify this assumption for all k). If needed, rearrange the columns
of A so that B consists of the first K columns of A (for the A just shown no
rearranging is needed).

13.3.26 Let us form the 2k × K matrix A∗, in which first K rows are the
rows of B−1 and the remaining rows are 0’s. Then it is easily checked that
AA∗ = Ik (so A∗ is a pseudoinverse of A).

13.3.27 Now, with v = p − f(z̃) as above, we set u := A∗v. We have
f(u) = v as desired, and it remains to bound ‖u‖.

2 Strictly speaking, we should use the maximum norm and write ‖f(z̃)−p‖∞ = O(δ).
But since the dimension K is a constant, the maximum norm and the Euclidean norm
differ at most by a constant multiplicative factor, which can be swallowed by the O(.)
notation.

13.3 Rounding the Canonical Relaxation of Max-3-Sat 225

13.3.28 But since A∗ depends only on k, and k is considered a constant, it
is obvious that the linear map y → A∗y can expand the length of any vector
at most by a constant factor, and thus ‖u‖ = O(‖v‖).
• We could easily come up with a quantitative bound of the form 2O(k) on

the expansion factor, by estimating the norm of the matrix B−1.

13.3.29 Finally, why are the rows of A linearly independent? It is not hard
to rearrange the rows and columns so that A has 1’s on the main diagonal
and 0’s below it. We leave this as Exercise 13.1.

• Alternatively, one can extend A to a 2k × 2k matrix A, by letting J run
through all subsets of {1, 2, . . . , k}, and check that A is nonsingular. There
are several ways of doing this; for example, one can write down an explicit
inverse of A.

• This A is an inclusion matrix ; if we represent ω ∈ {F,T} by the set
I = {j ∈ {1, 2, . . . , k} : ωj = T}, then aJ,I = 1 for J ⊆ I and aJ,I = 0
otherwise. (It can also be related to the matrix of the discrete Fourier
transform over the Boolean cube.)

Fixing Nonnegativity

13.3.30 In Step 4, we already have a solution s′ satisfying all constraints
except for the nonnegativity of the z′�,ω. We now define a particular feasible
solution s, the centroid solution. The final feasible solution s′′ will be obtained
as a “convex combination” of s′ with s, in which s has a small coefficient and
s′ has coefficient almost 1.

13.3.31 The centroid solution s can be thought of as an average of all integral
solutions, corresponding to all possible assignments to the variables xi.

• The z-part of s is thus defined by

z�,ω :=
1

2k

for all ω and �.
• The etz-constraints are satisfied if eT ti =

1
2
for all i and t

T
i tj =

1
4
for all

i, j. This can be achieved by choosing e and the ti in R
2k , with coordinates

indexed by ω ∈ {F,T}:

(e)ω := 2−k/2,

(ti)ω :=

{
2−k/2 if ωi = T,
0 otherwise.

It is easy to check that the s thus defined is indeed feasible.

226 13 Rounding Via Miniatures

13.3.32 It remains to see how a “convex combination” of s′ and s is con-
structed.

• In the z-components, we will have a convex combination in the usual sense:

z′′�,ω := (1 − δ1)z
′
�,ω + δ1z�,ω,

for a suitable δ1 := Cδ, C a sufficiently large constant.
• Since from the previous steps we have z′�,ω ≥ −C1δ for some constant C1

(depending on k), for C large enough we get z′′�,ω ≥ 0 as desired. At the
same time, the value of the objective function for s′′ differs from the value
for the initial almost-feasible solution s̃ by at most O(δW), where W is
the sum of weights of all clauses (since we have ‖z′′�,ω − z̃�,ω‖ = O(δ) for
all �, ω).

• We still need to define a suitable operation for combining the vectors; we
will use the direct sum. Let us assume that e′, t′1, . . . , t

′
n live in R

d′
for some

d′, and let e, t1, . . . , tn live in R
d. Then we define e′′, t′′1 , . . . , t

′′
n ∈ R

d′+d as

e′′ :=
√
1− δ1e

′ ⊕
√
δ1e,

t′′i :=
√
1− δ1t

′
i ⊕

√
δ1ti.

That is, to get e′′, we write down the d′ coordinates of e′ multiplied by√
1− δ1, and then we append the d coordinates of e multiplied by

√
δ1,

and similarly for t′′i .
• It is easy to check that this works. For arbitrary vectors u1,u2,v1,v2

we have (u1 ⊕ v1)
T (u2 ⊕ v2) = uT

1 v1 + uT
2 v2. It follows that the scalar

products of e′′, t′′1 , . . . , t
′′
n are convex combinations of the corresponding

scalar products for e′, t′1, . . . , t
′
n and for e, t1, . . . , tn, with coefficients 1−δ1

and δ1. So s′′ is indeed a feasible solution of the canonical semidefinite
relaxation.

◦ The centroid solution s, which we have written down explicitly, can
also be obtained from the integral solutions by the same operation as
we used for combining s′ and s into s′′.

13.3.33 Proposition 13.3.12, as well as Theorem 13.3.3, are proved. �

Exercises

13.1 (a) Let A be the matrix as in 13.3.24. Show that its rows are linearly
independent, by rearranging to a triangular matrix.

(b) Let A be the inclusion matrix as in 13.3.29. Prove that it is nonsingular.

13.3 Rounding the Canonical Relaxation of Max-3-Sat 227

(c)∗ Let 1 ≤ k < � ≤ n/2, and let A be the
(
n
k

)× (n�
)
inclusion matrix among

all k-element subsets of {1, 2, . . . , n} and all �-element subsets. Prove
that A has the maximum rank, i.e., rank

(
n
k

)
.

Summary

Chapter 1

• A c-approximation algorithm for a maximization problem is a polynomial-
time algorithm that computes, for every instance, a solution whose value
is at least c times the optimal value.

• The running time is measured in the Turing machine model (and we need
to be careful with arithmetic operations with large numbers!).

• Given a graph G, the MaxCut problem asks for a set S ⊆ V (G) such
that the number of edges between S and its complement is maximum.

• The Goemans–Williamson algorithm is a randomized 0.878-approximat-
ion algorithm for MaxCut, and it works as follows.

• We write the MaxCut problem as a quadratic program, and we relax
it to a vector program, looking for unit vectors u∗

1, . . . ,u
∗
n maximizing∑

{i,j}∈E(1 − uT
i uj)/2. These can be computed (approximately) through

semidefinite programming and Cholesky factorization.
• Randomized rounding : pick a random halfspace H through the origin and

set S := {i : u∗
i ∈ H}; this is the cut returned by the algorithm.

• In the analysis, for each edge {i, j}, we compare its contribution to the
vector solution, which is (1 − u∗

i
Tu∗

j)/2, with the expected contribution

to the resulting cut, which is arccos(u∗
i
Tu∗

j)/π. The approximation factor
0.878 . . . is the minimum possible ratio of these quantities.

Chapter 2

• A semidefinite program generalizes a linear program. It is a problem
of maximizing a linear function over the set of all positive semidefinite
n× n matrices, subject to linear equality constraints involving the matrix
entries.

229B. Gärtner and J. Matoušek, Approximation Algorithms and Semidefinite
Programming, DOI 10.1007/978-3-642-22015-9,
© Springer-Verlag Berlin Heidelberg 2012

230 13 Summary

• This is an equational form of a semidefinite program. More general
semidefinite programs may also have inequality constraints and additional
real (scalar) variables. They can easily be converted to equational form:
for inequalities, we add new slack variables, and to represent a nonnegative
real variable t, we enlarge the positive semidefinite matrix and put t to
the diagonal, with 0’s in the rest of the corresponding row and column.

• Unlike for linear programs, even if a semidefinite program has a finite
value, the value need not be attained by any feasible solution.

• It is often said that semidefinite programs can be solved in polynomial
time, but this has some caveats. The strongest theoretical result to date
comes from the ellipsoid method, and it says that we can either find an
ε-almost feasible and ε-almost optimal solution, or certify that the feasi-
ble region is ε-small. The running time is bounded by a polynomial in the
input size and in log(R/ε), where R is some upper bound on the (Frobe-
nius) norm of all feasible solutions. So a given semidefinite program can be
approximately solved in polynomial time provided that we have an upper
bound R with polynomially many digits.

• We exhibit an artificial semidefinite program for which the best R has
exponentially many digits, meaning that we cannot always get polynomial
runtime. However, in applications (such as MaxCut), a good bound on
R is usually obvious.

• For solving vector programs, we also need the Cholesky factorization, which
decomposes a given positive semidefinite X as X = UTU . We have pre-
sented a simple O(n3) algorithm.

Chapter 3

• The strong product G ·H of graphs G and H has vertex set V (G)×V (H),
and (u, u′) and (v, v′) are connected if u, v form an edge or coincide and
also u′, v′ form an edge or coincide.

• The Shannon capacity of G is Θ(G) := supk α(G
k)1/k, where Gk is the

k-fold strong product and α(.) is the independence number. This is moti-
vated by coding theory, and it is one of the most tantalizing graph param-
eters.

• An orthonormal representation of a graph G is an assignment of unit vec-
tors to vertices such that non-adjacent vertices receive orthogonal vectors.
The Lovász theta-function ϑ(G) measures the smallest possible spherical
cap containing all vectors of an orthonormal representation of G.

• We have Θ(G) ≤ ϑ(G) (the Lovász bound). The proof has two steps: first,
α(G) ≤ ϑ(G), and second, ϑ(G ·H) ≤ ϑ(G)ϑ(H) (via tensor product). As
a (celebrated) consequence, we get Θ(C5) = ϑ(C5) =

√
5.

• ϑ(G) is (approximately) computable in polynomial time; a reformulation
of the definition yields a semidefinite program.

13.3 Summary 231

• Another semidefinite program for ϑ(G) leads to an interpretation of ϑ(G)
as the vector chromatic number of the complementG. This yields the sand-
wich theorem: α(G) ≤ ϑ(G) ≤ χ(G). Consequently, for perfect graphs,
α(G) = χ(G) are computable in polynomial time.

Chapter 4

• For a semidefinite program max{C •X : A1 •X = b1, . . . , Am •X = bm,
X � 0}, the dual semidefinite program is min{bTy :

∑m
i=1 yiAi−C � 0}.

The strong duality theorem asserts that if the primal SDP has a finite
value β and some positive definite solution X̃, then the dual SDP also has
value β.

• The proof is done in the more general framework of cone programming. Let
V,W be Hilbert spaces (vector spaces with a scalar product), let K ⊆ V
and L ⊆ W be closed convex cones, let A:V → W be a linear map, and
let c ∈ V , b ∈ W . A cone program has the form max{〈c,x〉 : x ∈ K,
b − A(x) ∈ L}. The dual cone program is min{〈b,y〉 : AT (y) − c ∈ K∗,
y ∈ L∗}, where the star denotes dual cone and AT is the adjoint of A
(in finite dimension, it corresponds to transposing the matrix of the linear
map).

• For a semidefinite program in equational form, V is the space of all sym-
metric n × n matrices, K = PSDn consists of all positive semidefinite
matrices, W = R

m, and L = {0}. We have PSD∗
n = PSDn.

• Cone programming has a nice duality theory, very similar to linear pro-
gramming duality. The essential difference is that cone programs may
exhibit limit-feasibility, meaning that an infeasible program may become
feasible under an arbitrarily small perturbation of the constraints. Simi-
larly, a cone program has a limit value, which may differ from the value.

• We start with a separation theorem for closed convex cones, and from this
we prove a cone version of the Farkas lemma.

• The Farkas lemma is then used to prove the regular duality theorem of
cone programming: the primal program is limit-feasible with limit value β
if and only if the dual program is feasible with value β.

• Strong cone programming duality (primal value equals dual value) requires
additional conditions, such as the existence of an interior feasible point
(an x̃ ∈ K with b − A(x̃) ∈ int(L), or, for the special case L = {0},
x̃ ∈ int(K)).

232 13 Summary

Chapter 5

• We present Hazan’s algorithm, a recent and simple algorithm for approx-
imately solving semidefinite programs. While the runtime of the ellipsoid
method scales with log(1/ε), where ε is the approximation error, the run-
time of Hazan’s algorithm scales with 1/ε3 (this is the price to pay for the
simplicity of the algorithm and its analysis).

• Hazan’s algorithm works only for trace-bounded semidefinite programs
(i.e., ones with an a priori upper bound on the trace of the matrix X). In
practice, we can usually assume such a bound.

• In a first step, we show how every trace-bounded semidefinite program
can be reduced through binary search to a feasibility problem with linear
constraints over the spectahedron (the set of positive semidefinite matrices
of trace 1).

• In a second step (and this is one of Hazan’s main tricks), the feasibility
problem is approximately solved by minimizing a convex penalty function
(that penalizes constraint violations) over the spectahedron.

• For this task, the Frank–Wolfe algorithm, originally developed for
quadratic programs in the 1950s, is used. In each iteration, we minimize
a linear approximation of the convex function over the spectahedron (this
amounts to largest eigenvector computations), and we make a carefully
chosen step towards the minimizer.

• It can be shown that the error after k iterations is O(1/k), where the con-
stant depends on the curvature of the function. Computing the curvature
for our penalty functions yields the runtime of Hazan’s algorithm, in terms
of the number of approximate largest eigenvector computations.

• To compute approximate eigenvectors, we use and analyze the power
method, the simplest numerical method for this task. It is less efficient
in the worst case than other methods, but if there is a single dominant
eigenvalue, the method is very fast. The analysis for several dominant
eigenvalues that we present is more involved but still elementary.

Chapter 6

• We sketch a primal-dual central path algorithm for approximately solving
semidefinite programs in equational form, given that some initial pair X̃, ỹ
of strictly feasible primal and dual solutions is available. This algorithm
is from the family of interior-point methods.

• Similar to the ellipsoid method, the runtime scales with log(D/ε), where
ε is the desired approximation error, and D = bT ỹ−C • X̃ is the duality
gap of the given initial solution. But here the runtime bound holds only
in the RAM model, and no explicit bounds are available on the size of

13.3 Summary 233

the numbers appearing in the computation. The algorithm is simple and
much more efficient in practice than the ellipsoid method.

• First, we define the primal-dual central path and show that it exists. For
this, we add a barrier term μ ln detX to the objective function C • X ,
where μ > 0 is a parameter. Then we prove that, assuming strict primal
and dual feasibility, this auxiliary problem has a unique optimal solution
X∗(μ). The set of all X∗(μ), μ > 0 form the (primal part of the) central
path. Moreover, for μ small, X∗(μ) is an almost optimal solution of the
original semidefinite program.

• Then we express X∗(μ) as the zero of a multivariate (and nonlinear) func-
tion Fμ.

• The first idea is to compute the zero of Fμ by Newton’s method in which
each step boils down to a system of linear equations.

• But a problem with applying Newton’s method directly is that it may
lead us outside the set of positive definite matrices. (Additional technical
complications are choosing Fμ so that the intermediate solutions stay sym-
metric, and also getting an initial solution sufficiently close to the central
path.)

• The solution is path-following: assuming that we have a positive definite
solution close to the central path at some (possibly large) value of μ, we
make one Newton step w.r.t. a slightly smaller μ. If the parameters are
carefully chosen, the step takes us to a positive definite solution that is
close to the central path at the smaller μ. If we let μ decrease geometrically,
we converge to a solution with error ε in time proportional to log(D/ε).

• One issue that we do not address in detail is how to get hold of the initial
pair of solutions. The idea is to embed the semidefinite program together
with its dual into a single larger program for which an initial solution is
readily available. But this solution could have very large duality gap in the
worst case, so that polynomial runtime is achieved only under additional
conditions, similar to the ones in the ellipsoid method.

Chapter 7

• We introduce two closed convex cones. They are related to the cone of
positive semidefinite matrices, but are hard to optimize over. A matrix M
is called copositive if xTMx ≥ 0 for all x ≥ 0. The set of copositive matri-
ces forms a cone COPn containing the cone PSDn of positive semidefinite
matrices. The cone dual to COPn is the cone POSn of completely positive
matrices which are defined as nonnegative linear combinations of rank-1
matrices. A copositive program looks like a semidefinite program, but with
constraints of the form X ∈ COPn or X ∈ POSn instead of X � 0.

• We relax the second semidefinite program for the Lovász theta function
ϑ(G) introduced in Chap. 3, by replacing the constraint X � 0 with X ∈

234 13 Summary

COPn. The value of the relaxation turns out to be α(G), the independence
number of G. This already implies that copositive programming is hard.

• The proof uses the Motzkin–Straus theorem: the minimum value of the
quadratic form xT (AG+In)x over the unit simplex is 1/α(G), where AG is
the adjacency matrix of G. As a corollary, we get that it is coNP-complete
to decide whether a matrix is copositive.

• Using this, we prove that it is coNP-complete to decide whether a given
point is a local minimizer of a smooth function over R

n. (This shows
that claims of reaching local optimality that are made by many numerical
optimizers, have to be taken with caution.)

• The smooth functions that we use in the proof are of the form (x2)TMx2,
where x2 = (x2

1, x
2
2, . . . , x

2
n). Then, 0 is a local minimizer of (x2)TMx2

over R
n if and only if 0 is a local minimizer of xTMx over the positive

orthant Rn
+. The latter holds if and only if M is copositive.

Chapter 8

• In the Goemans–Williamson MaxCut algorithm, and other algorithms
based on a semidefinite relaxation, the integrality gap Gap is the largest
ratio by which the maximum of the SDP can exceed the maximum of
the original problem. Empirically, the approximation factor of such an
algorithm is never better than 1/Gap.

• We construct graphs showing that 1/Gap for the Goemans–Williamson
algorithm equals αGW ≈ 0.878

• First we take all points of a high-dimensional sphere Sd as vertices, and
connect by edges the pairs with angle close to the worst-case angle ϑGW.
Then we discretize this graph by subdividing Sd into tiny regions and
picking a representative vertex for each region.

• In the proof we encounter measure concentration, in the form stating that
most of the surface area of a high-dimensional spherical cap is concentrated
near the boundary. We also meet isoperimetric inequalities and a proof
method for them called symmetrization.

• Next, we construct graphs for which the Goemans–Williamson algorithm
gives approximation no better than αGW: the vertex set is {−1, 1}, and
the edges are pairs with a suitable Hamming distance corresponding to
the angle ϑGW. In the proof we analyze the smallest eigenvalue of this
graph, given by a binary Krawtchuk polynomial.

• Known: assuming the Unique Games Conjecture and P �=NP, the approx-
imation ratio αGW is the best possible for any polynomial-time algorithm
for MaxCut.

• In the UGC, we consider systems of linear equations with two variables
per equation, over a finite field of large but constant size, and the conjec-
ture asserts that it is NP-hard to distinguish systems in which almost all

13.3 Summary 235

equations are simultaneously satisfiable from those in which only a small
fraction of the equations can be satisfied.

Chapter 9

• Given a 3-chromatic graph, we want to color it by as few colors as possible
in polynomial time.

• An elementary trick (if there is a high-degree vertex, 2-color its neighbor-
hood) yields O(

√
n) colors.

• An SDP-based algorithm guarantees roughly n1/4 colors (current record
is better). The key step is finding a large independent set.

• For this, take a vector 3-coloring, cut off a cap using a random halfspace
generated via the d-dimensional Gaussian distribution, and take all iso-
lated vertices within this cap.

• Difficult graphs for this algorithm have vector chromatic number 3 but
chromatic number nδ. They are obtained using theorems on forbidden
intersections (e.g., take all 4t-element subsets of {1, 2, . . . , 8t} as vertices
and connect pairs with intersection size at most t).

• We present a proof with the linear-algebraic polynomial method and
another using the Vapnik–Chervonenkis–Sauer–Shelah lemma.

Chapter 10

• The problems MaxCutGain, ground state in the Ising model, correlation
clustering, and finding the cut norm of a matrix all lead to maximizing a
quadratic form on a graph, i.e., max

∑
{i,j}∈E aijxixj , with xi ∈ [−1, 1].

• The Grothendieck constant KG of a graph G is the maximum integrality
gap of a natural SDP relaxation of this problem (with xi ∈ [−1, 1] replaced
with vi ∈ R

n, ‖vi‖ ≤ 1).
• The main theorem claims that, for G loopless, KG = O(log ϑ(G)). In

particular, KG is bounded by a constant for graphs of bounded chromatic
number.

• The proof is an approximation algorithm. It rounds the SDP solution by
taking scalar products of the vectors with a random Gaussian vector, trun-
cating them to a suitable interval [−M,M], and scaling down to [−1, 1].

• Estimating the error made by the truncation is based on an interest-
ing connection: the SDP optimum is an upper bound on the maximum
expectation of the quadratic form, where we substitute random variables
Xi with E

[
X2

i

] ≤ 1 for the xi.

236 13 Summary

Chapter 11

• We consider a set system F on a finite ground set X , and want to color
each point by +1 or −1 so that the discrepancy is small; the discrepancy
is the maximum imbalance of the coloring over all F ∈ F .

• Discrepancy is hard to approximate. We present an SDP-based algorithm
that computes a good coloring for systems with small hereditary discrep-
ancy (i.e., every restriction of F to a smaller ground set has a small dis-
crepancy). This gives the first constructive version of several existential
results for discrepancy, e.g., for arithmetic progressions.

• As an SDP relaxation of discrepancy we use the vector discrepancy: we
color points with unit vectors and measure the discrepancy for a set as
the length of the sum of the vectors of its points.

• The algorithm produces a sequence of semicolorings, in which the colors
are reals in [−1, 1]. This is a random walk in the unit cube starting at 0
and proceeding in small increments until it reaches a vertex of the cube,
i.e., a coloring.

• In each step of the walk, we want that the current discrepancies of all sets
do not change too much. To this end, the direction of the step is generated
from an auxiliary vector coloring via a random Gaussian projection.

Chapter 12

• We consider constraint satisfaction problems and their maximization ver-
sions.

• In Max-3-Sat, we have Boolean variables x1, . . . , xn and m clauses of the
form xi ∨ xj ∨ xk (some variables negated, some not), and want to satisfy
as many clauses as possible. Here the best approximation ratio is known
to be 7

8
.

• In a Max-k-CSP[P], the variables can attain q values and each clause is
a k-ary predicate from a given set P (k, q, P are considered fixed).

• The UGC in a more general (but equivalent) form deals with computa-
tional problems of the form Max-2-CSP[P], for predicates corresponding
to permutations and q large. Again it asserts NP-hardness of distinguish-
ing instances with almost all clauses satisfiable from those with only a
small fraction satisfiable.

• Boolean Max-2-CSP’s can be relaxed semidefinitely in a “canonical”
way. The variables in the relaxation are vectors t1, . . . , tn of length
at most 1, and an auxiliary unit vector e, where 〈e, ti〉 expresses the
“degree of truth” of xi. The clauses of the Max-2-CSP are reflected
in the objective function; e.g., the 2-Sat clause x2 ∨ x4 contributes
〈t2, e− t4〉+ 〈t2, t4〉+ 〈e− t2, e− t4〉 (one term for each satisfying assign-
ment).

13.3 Summary 237

• To improve the integrality gap, one can add triangle constraints, essentially
saying that no clause may contribute by more than one to the objective
function. This yields the canonical SDP relaxation.

• Assuming the UGC, the canonical SDP relaxation with a suitable rounding
leads to the best possible approximation ratio. The canonical relaxation
can be solved in near-linear time.

• We show that the triangle constraints imply all valid local constraints.
• There are a similar canonical relaxation and similar results for q-valued

Max-k-CSP. Here the canonical SDP relaxation has variables ti,b, i =
1, 2, . . . , n, b = 1, 2, . . . , q, where 〈e, ti,b〉 should reflect the truth values of
xi = b, and scalar variables z�,ω ∈ [0, 1], where
 is a clause index and ω is
a possible assignment to the variables in the clause. The purpose of z�,ω is
to capture the truth value of “the assignment to the variables of the
-th
clause equals ω.”

Chapter 13

• The canonical relaxation of a Max-k-CSP as in the previous chapter can
be rounded in randomized polynomial time, with approximation factor
no worse than 1/Gap, where Gap is the maximum integrality gap for the
considered class of Max-k-CSP’s. Assuming the UGC, this is the best
approximation possible. The algorithm is not practical because of astro-
nomically large constants.

• The rounding algorithm makes a projection of the optimal SDP solution
to a random subspace of large constant dimension. From this, it builds a
miniature, a constant-size Max-k-CSP of the same type as the original
problem.

• The miniature is solved by brute force, and the solution “unfolds” to a
solution of the original Max-k-CSP.

• The construction of the miniature relies on discretization using an ε-net,
and on the Johnson–Lindenstrauss lemma, which asserts that scalar prod-
ucts of vectors are approximately preserved by a random projection with
high probability.

• This works reasonably easily for MaxCut. For other CSP’s, we still need
to show that an almost feasible solution of the SDP can be fixed to a truly
feasible solution, with only a small loss in the objective function. This
involves some interesting geometry.

References

[ABC97] J. R. Alexander, J. Beck, and W.W.L. Chen. Geometric discrepancy
theory and uniform distribution. In J. E. Goodman and J. O’Rourke,
editors, Handbook of Discrete and Computational Geometry, pages 185–
207. CRC Press LLC, Boca Raton, FL, 1997.

[ABH+05] S. Arora, E. Berger, E. Hazan, G. Kindler, and M. Safra. On non-
approximability for quadratic programs. In FOCS’05: Proc. 46th IEEE
Symp. on Foundations of Computer Science, pages 206–215, 2005.

[ABS91] N. Alon, L. Babai, and H. Suzuki. Multilinear polynomials and Frankl–
Ray-Chaudhuri–Wilson type intersection theorems. J. Comb. Theory,
Ser. A, 58(2):165–180, 1991.

[ABS10] S. Arora, B. Barak, and D. Steurer. Subexponential algorithms for
unique games and related problems. In FOCS’10: Proc. 51st IEEE
Symposium on Foundations of Computer Science, pages 563–572, 2010.

[ACC06] S. Arora, E. Chlamtac, and M. Charikar. New approximation guarantee
for chromatic number. In STOC’06: Proc. 38th ACM Symposium on
Theory of Computing, pages 215–224, 2006.

[ACOH+10] N. Alon, A. Coja-Oghlan, H. Hàn, M. Kang, V. Rödl, and M. Schacht.
Quasi-randomness and algorithmic regularity for graphs with general
degree distributions. SIAM J. Comput., 39(6):2336–2362, 2010.

[ADRY94] N. Alon, R.A. Duke, V. Rödl, and R. Yuster. The algorithmic aspects
of the regularity lemma. J. Algorithms, 16:80–109, 1994.

[AHK05] S. Arora,E. Hazan, and S. Kale. The multiplicative weights update
method: a meta algorithm and applications, 2005. To appear in Theory
of Computing.

[AK07] S. Arora and S. Kale. A combinatorial, primal-dual approach to solv-
ing SDPs. In STOC’07: Proc. 39th ACM Symposium on Theory of
Computing, pages 227–236, 2007.

[AKK95] S. Arora, D. Karger, and M. Karpinski. Polynomial time approximation
schemes for dense instances of NP-hard problems. In STOC’95: Proc.
27th Annual ACM Sympos. on Theory of Computing, pages 284–293,
1995.

[AL11] M.F. Anjos and J. B. Lasserre, editors. Handbook on Semidefinite,
Conic and Polynomial Optimization. Springer, Berlin, 2012. To appear.

[Ali95] F. Alizadeh. Interior point methods in semidefinite programming with
applications to combinatorial optimization. SIAM J. Opt., 5(1):13–51,
1995.

[Alo98] N. Alon. The Shannon capacity of a union. Combinatorica, 18:301–310,
1998.

239B. Gärtner and J. Matoušek, Approximation Algorithms and Semidefinite
Programming, DOI 10.1007/978-3-642-22015-9,
© Springer-Verlag Berlin Heidelberg 2012

240 References

[AM08] P. Austrin and E. Mossel. Approximation resistant predicates from pair-
wise independence. In CCC’08: Proc. 23rd Annual IEEE Conference
on Computational Complexity, Los Alamitos, CA, pages 249–258. IEEE
Computer Society, 2008.

[AMMN06] N. Alon, K. Makarychev, Yu. Makarychev, and A. Naor. Quadratic
forms on graphs. Invent. Math., 163(3):499–522, 2006.

[AN96] N. Alon and A. Naor. Approximating the cut-norm via Grothendieck’s
inequality. SIAM J. Comput., 35(4):787–803, 1996.

[AS00] N. Alon and B. Sudakov. Bipartite subgraphs and the smallest eigen-
value. Combin. Probab. Comput., 9(1):1–12, 2000.

[AS08] N. Alon and J. Spencer. The Probabilistic Method (3rd edition). J. Wiley
and Sons, New York, NY, 2008.

[Aus07] P. Austrin. Towards sharp inapproximability for any 2-CSP. In
FOCS’07: Proc. 48th IEEE Symp. on Foundations of Computer Sci-
ence, pages 307–317, 2007.

[Ban10] N. Bansal. Constructive algorithms for discrepancy minimization.
http://arxiv.org/abs/1002.2259, also in FOCS’10: Proc. 51st IEEE
Symposium on Foundations of Computer Science, pages 3–10, 2010.

[BDDK+00] I.M. Bomze, M. Dür, E. De Klerk, C. Roos, A. J. Quist, and T. Ter-
laky. On copositive programming and standard quadratic optimization
problems. Journal of Global Optimization, 18(4):301–320, 2000.

[Blu94] A. Blum. New approximation algorithms for graph coloring. J. Assoc.
Comput. Mach., 41(3):470–516, 1994.

[BTN01] A. Ben-Tal and A. Nemirovski. Lectures on modern convex optimiza-
tion. Analysis, algorithms, and engineering applications. MPS-SIAM
Series on Optimization. Society for Industrial and Applied Mathemat-
ics (SIAM), Philadelphia, PA, USA, 2001.

[Bul02] A.A. Bulatov. A dichotomy theorem for constraints on a three-element
set. In FOCS’02: Proc. 43rd IEEE Symp. on Foundations of Computer
Science, pages 649–658, 2002.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Uni-
versity Press, Cambridge, 2004.

[Chl07] E. Chlamtac. Approximation algorithms using hierarchies of semidefi-
nite programming relaxations. In FOCS’07: Proc. 48th IEEE Sympo-
sium on Foundations of Computer Science, pages 691–701, 2007.

[Cla10] K. L. Clarkson. Coresets, sparse greedy approximation and the Frank-
Wolfe algorithm. ACM Transactions on Algorithms, 6(4):63:1–63:30,
2010.

[CNN11] M. Charikar, A. Newman, and A. Nikolov. Tight hardness results for
minimizing discrepancy. In Proc. 22nd Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1607–1614, 2011.

[CRST06] M. Chudnovsky, N. Robertson, P.D. Seymour, and R. Thomas. The
strong perfect graph theorem. Ann. Math., 164:51–229, 2006.

[CT11] E. Chlamtac and M. Tulsiani. Convex relaxations and integrality gaps.
In M.F. Anjos and J. B. Lasserre, editors, Handbook on Semidefinite,
Conic and Polynomial Optimization. Springer, Berlin, 2012. To appear;
a preliminary version available from the authors’ home pages.

[CW04] M. Charikar and A. Wirth. Maximizing quadratic programs: extending
Grothendieck’s inequality. In FOCS’04: Proc. 45th IEEE Symp. on
Foundations of Computer Science, pages 54–60, 2004.

[DMR06] I. Dinur, E. Mossel, and O. Regev. Conditional hardness for approxi-
mate coloring. In STOC’06: Proc. 38th ACM Symposium on Theory of
Computing, pages 344–353, 2006.

References 241

[DR10] I. Dukanovic and F. Rendl. Copositive programming motivated bounds
on the stability and the chromatic numbers. Math. Programming,
121:249–268, 2010.

[Duf56] R. J. Duffin. Infinite programs. In H.W. Kuhn and A.W. Tucker,
editors, Linear Inequalities and Related Systems, volume 38 of Annals
of Mathematical Studies, pages 157–170. 1956.

[EMT04] Y. Eidelman, V. Milman, and A. Tsolomitis. Functional Analysis: An
Introduction. Graduate Studies in Mathematics (Vol. 66). American
Mathematical Society, 2004.

[FG95] U. Feige and M.X. Goemans. Approximating the value of two prover
proof systems, with applications to MAX 2-SAT and MAX DICUT.
In Proc. 3rd Israeli Symposium on Theory of Computing and Systems,
pages 182–189, 1995.

[FK98] U. Feige and J. Kilian. Zero knowledge and the chromatic number. J.
Comput. Syst. Sci., 57(2):187–199, 1998.

[FK99] A. Frieze and R. Kannan. Quick approximation to matrices and appli-
cations. Combinatorica, 19(2):175–220, 1999.

[FKL02] U. Feige, M. Karpinski, and M. Langberg. Improved approximation of
Max-Cut on graphs of bounded degree. J. Algorithms, 43:201–219, 2002.

[FL06] U. Feige and M. Langberg. The RPR2 rounding technique for semidef-
inite programs. J. Algorithms, 60(1):1–23, 2006.

[FS02] U. Feige and G. Schechtman. On the optimality of the random hyper-
plane rounding technique for MAX CUT. Random Struct. Algorithms,
20(3):403–440, 2002.

[FV98] T. Feder and M.Y. Vardi. The computational structure of monotone
monadic SNP and constraint satisfaction: A study through Datalog and
group theory. SIAM J. Comput., 28(1):57–104, 1998.

[FW56] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval
research logistics quarterly, 3(1-2):95–110, 1956.

[GJ79] M.R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness (Series of Books in the Mathematical
Sciences). W.H. Freeman & Co Ltd, New York, NY, 1979.

[GJS76] M.R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-
complete graph problems. Theoretical Computer Science, 1(3):237–267,
1976.

[GLS88] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and
Combinatorial Optimization. Springer-Verlag, Berlin Heidelberg, 1988.

[GM07] B. Gärtner and J. Matoušek. Understanding and Using Linear Pro-
gramming. Universitext. Springer-Verlag, Berlin Heidelberg, 2007.

[Gro56] A. Grothendieck. Resumé de la théorie métrique des produits tensoriels
topologiques. Bol. Soc. Mat. Sao Paulo, 8:1–79, 1956.

[GRSW10] V. Guruswami, P. Raghavendra, R. Saket, and Y. Wu. Bypassing the
UGC for some optimal geometric inapproximability results. Electronic
Colloquium on Computational Complexity, Report No. 177, 2010.

[GvL96] G.H. Golub and C. F. van Loan. Matrix Computations. Johns Hopkins
University Press, 3rd edition, 1996.

[GW95] M.X. Goemans and D.P. Williamson. Improved approximation algo-
rithms for maximum cut and satisfiability problems using semidefinite
programming. Journal of the ACM, 42:1115–1145, 1995.

[Haz08] E. Hazan. Sparse approximate solutions to semidefinite programs. In
Proceedings of the 8th Latin American conference on Theoretical Infor-
matics (LNCS 4957), pages 306–316. Springer-Verlag, Berlin, 2008.

[HCA+10] P. Harsha, M. Charikar, M. Andrews, S. Arora, S. Khot, D. Moshkovitz,
L. Zhang, A. Aazami, D. Desai, I. Gorodezky, G. Jagannathan,
A. S. Kulikov, D. J. Mir, A. Newman, A. Nikolov, D. Pritchard, and

242 References

G. Spencer. Limits of approximation algorithms: PCPs and unique
games (DIMACS tutorial lecture notes). arXiv:1002.3864, 2010.

[Hel10] C. Helmberg. Semidefinite programming. Web site, http://www-user.
tu-chemnitz.de/~helmberg/semidef.html, 2010.

[Hig91] N. J. Higham. Analysis of the Cholesky decomposition of a semi-definite
matrix. In M.G. Cox and S. Hammarling, editors, Reliable Numerical
Computation, pages 161–185. Oxford University Pressi, Oxford, 1991.

[HRVW96] C. Helmberg, R. Rendl, R. Vanderbei, and H. Wolkowicz. An interior-
point method for semidefinite programming. SIAM J. Opt., 6(2):342–
461, 1996.

[H̊as99] J. H̊astad. Clique is hard to approximate within n1−ε. Acta Math.,
182(1):105–142, 1999.

[H̊as01] J. H̊astad. Some optimal inapproximability results. Journal of the
ACM, 48(4):798–859, 2001.

[Kal08] S. Kale. Efficient Algorithms using the Multiplicative Weight Update
Method. PhD thesis, Princeton University, 2008.

[Kar99] H. Karloff. How good is the Goemans–Williamson MAX CUT algo-
rithm? SIAM J. Comput., 29(1):336–350, 1999.

[Kho02] S. Khot. On the power of unique 2-prover 1-round games. In STOC’02:
Proc. 34th ACM Symposium on Theory of Computing, pages 767–775,
2002.

[Kho10a] S. Khot. Inapproximability of NP-complete problems, discrete Fourier
analysis, and geometry. In Proc. International Congress of Mathemati-
cians, Hyderabad, India, 2010. Available on-line at http://cs.nyu.edu/

~khot/papers/icm-khot.pdf.
[Kho10b] S. Khot. On the Unique Games Conjecture. In Proc. 25th IEEE Confer-

ence on Computational Complexity, Cambridge, MA, 2010. Available
on-line at http://cs.nyu.edu/~khot/papers/UGCSurvey.pdf.

[KKMO07] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapprox-
imability results for MAX-CUT and other 2-variable CSPs? SIAM J.
Comput., 37(1):319–357, 2007.

[KL96] P. Klein and H. I. Lu. Efficient approximation algorithms for semidefi-
nite programs arising from MAX CUT and COLORING. In STOC’96:
Proc. 28th Annual ACM Symposium on Theory of Computing, pages
338–347. ACM, 1996.

[KLS00] S. Khanna, N. Linial, and S. Safra. On the hardness of approximating
the chromatic number. Combinatorica, 20(3):393–415, 2000.

[KMS98] D. Karger, R. Motwani, and M. Sudan. Approximate graph coloring by
semidefinite programming. J. ACM, 45(2):246–265, 1998.

[Knu94] D.E. Knuth. The sandwich theorem. Electronic J. Combinatorics,
1(1):A1,1–48, 1994.

[KO09] S. Khot and R. O’Donnell. SDP gaps and UGC-hardness for Max-Cut-
Gain. Theory of Computing, 5(1):83–117, 2009.

[KP06] S. Khot and A.K. Ponnuswami. Better inapproximability results for
maxclique, chromatic number and Min-3Lin-Deletion. In Automata,
languages and programming. 33rd international colloquium, ICALP
2006, LNCS 4051, pages 226–237, Springer, Berlin, 2006.

[KSH97] M. Kojima, S. Shindoh, and S. Hara. Interior-point methods for the
monotone semidefinite linear complementarity problem in symmetric
matrices. SIAM J. Opt., 7(1):86–125, 1997.

[KW92] J. Kuczyński and H. Woźniakowski. Estimating the largest eigenvalue
by the power method and Lanczos algorithms with a random start.
SIAM J. Matrix Anal. Appl., 13(4):1094–1122, 1992.

References 243

[KZ97] H. Karloff and U. Zwick. A 7/8-approximation algorithm for
MAX 3SAT? In FOCS’97: Proc. 38th IEEE Symp. on Foundations
of Computer Science, pages 406–415, 1997.

[Las10] J. B. Lasserre. Moments, positive polynomials and their applications.
Imperial College Press, London, 2010.

[Lau03] M. Laurent. A comparison of the Sherali–Adams, Lovás–Schrijver and
Lasserre relaxations for 0-1 programming. Math. Oper. Res., 28:470–
496, 2003.

[LLZ02] M. Lewin, D. Livnat, and U. Zwick. Improved rounding techniques for
the MAX 2-SAT and MAX DI-CUT problems. In Integer programming
and combinatorial optimization. Proc. 9th international IPCO confer-
ence 2002. LNCS 2337, pages 67–82, Springer, Berlin, 2002.

[Lov79] L. Lovász. On the Shannon capcity of a graph. IEEE Transactions on
Information Theory, IT-25(1):1–7, 1979.

[Lov03] L. Lovász. Semidefinite programs and combinatorial optimization. In
B. Reed and C. Linhares-Sales, editors, Recent Advances in Algorithms
and Combinatorics, pages 137–194. Springer, New York, 2003. On-line
at http://www.cs.elte.hu/~lovasz/semidef.ps.

[LR05] M. Laurent and F. Rendl. Semidefinite programming and integer pro-
gramming. In K. Aardal et al., editors, Discrete optimization (Hand-
books in Operations Research and Management Science 12), pages 393–
514. Elsevier, Amsterdam, 2005.

[Mak08] K. Makarychev. Quadratic forms on graphs and their applications.
Ph.D. Thesis, Princeton University, 2008.

[Mat10] J. Matoušek. Geometric Discrepancy (An Illustrated Guide), 2nd print-
ing. Springer-Verlag, Berlin, 2010.

[Meg01] A. Megretski. Relaxation of quadratic programs in operator theory and
system analysis. In A.A. Borichev and N.K. Nikolski, editors, Systems,
Approximation, Singular Integral Operators, and Related Topics, pages
365–392. Birkhäuser, Basel, 2001.

[MK87] K.G. Murty and S.K. Kabadi. Some NP-complete problems in
quadratic and nonlinear programming. Math. Programming, 39(2):117–
129, 1987.

[Mon97] R. Monteiro. Primal-dual path-following algorithms for semidefinite
programming. SIAM J. Opt., 7(3):663–678, 1997.

[MR99] S. Mahajan and H. Ramesh. Derandomizing approximation algorithms
based on semidefinite programming. SIAM J. Comput., 28(5):1641–
1663, 1999.

[MS65] T. .S. Motzkin and E.G. Straus. Maxima for graphs and a new proof
of a theorem of Turán. Canadian Journal of Mathematics, 17:533–540,
1965.

[MT00] R. Monteiro and M. Todd. Path-following methods. In H. Wolkow-
icz, R. Saigal, and L. Vandenberghe, editors, Handbook of Semidefinite
Programming. Kluwer Academic Publishers, 2000.

[Nes98] Yu. Nesterov. Semidefinite relaxation and nonconvex quadratic opti-
mization. Optim. Methods Softw., 9(1–3):141–160, 1998.

[NN90] Yu. Nesterov and A. Nemirovski. Self-concordant functions and
polynomial-time methods in convex programming. USSR Academy of
Sciences, Central Economic & Mathematic Institute, Moscow, 1990.

[NN94] Yu. Nesterov and A. Nemirovski. Interior Point Polynomial Methods in
Convex Programming: Theory and Applications. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, USA, 1994.

[NRT99] A. Nemirovski, C. Roos, and T. Terlaky. On maximization of quadratic
form over intersection of ellipsoids with common center. Math. Pro-
gram., 86(3):463–473, 1999.

244 References

[OSV79] D.P. O’Leary, G.W. Stuart, and J. S. Vandergraft. Estimating the
largest eigenvalue of a positive definite matrix. Mathematics of Com-
putation, 33(148):1289–1292, 1979.

[OW08] R. O’Donnell and Y. Wu. An optimal SDP algorithm for Max-Cut, and
equally optimal Long Code tests. In STOC’08: Proc. 40th Annual ACM
Sympos. on Theory of Computing, pages 335–344, 2008.

[Par06] P. Parrilo. Algebraic techniques and semidefinite optimization. Lec-
ture Notes, MIT OpenCourseWare, http://www.mit.edu/~parrilo/

6256, 2006.
[PSU88] A. L. Peressini, F. E. Sullivan, and J. J. Uhl. The Mathematics of Non-

linear Programming. Springer-Verlag, Berlin, 1988.
[Rag08] P. Raghavendra. Optimal algorithms and inapproximability results for

every CSP? In STOC’08: Proc. 40th ACM Symposium on Theory of
Computing, pages 245–254, 2008.

[Rag09] P. Raghavendra. Approximating NP-hard problems: Efficient algo-
rithms and their limits. PhD Thesis, Department of Computer Science
and Engineering, University of Washington, 2009.

[Rie74] R.E. Rietz. A proof of the Grothendieck inequality. Isr. J. Math.,
19:271–276, 1974.

[RS09a] P. Raghavendra and D. Steurer. Integrality gaps for strong SDP relax-
ations of unique games. In FOCS’09: Proc. 50th IEEE Symposium on
Foundations of Computer Science, 2009.

[RS09b] P. Raghavendra and D. Steurer. Towards computing the Grothendieck
constant. In SODA’09: Proc. 19th ACM-SIAM Symposium on Discrete
Algorithms, pages 525–534, 2009.

[Sha56] C. Shannon. The zero-error capacity of a noisy channel. IRE Transac-
tions on Information Theory, 2(3):9–19, 1956.

[Spe85] J. Spencer. Six standard deviations suffice. Trans. Amer. Math. Soc.,
289:679–706, 1985.

[Spe87] J. Spencer. Ten Lectures on the Probabilistic Method. CBMS-NSF.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA, USA, 1987.

[Ste10] D. Steurer. Fast SDP algorithms for constraint satisfaction problems.
In SODA’10: Proc. 21st Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 684–697, 2010.

[Tul09] M. Tulsiani. CSP gaps and reductions in the Lasserre hierarchy. In
STOC’09: Proc. 41st ACM Symposium on Theory of Computing, pages
303–312, 2009.

[Val08] F. Vallentin. Lecture notes: Semidefinite programs and harmonic anal-
ysis. arXiv:0809.2017, 2008.

[VB96] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Rev.,
38(1):49–95, 1996.

[WS11] D.P. Williamson and D.B. Shmoys. The Design of Approximation Algo-
rithms. Cambridge Univ. Press, Cambridge, 2011.

[WSV00] H. Wolkowicz, R. Saigal, and L. Vandenberghe, editors. Handbook
of semidefinite programming. Theory, algorithms, and applications.
Kluwer Academic Publishers, Dordrecht, 2000.

[Ye04] Y. Ye. Linear conic programming. Lecture Notes, Stanford University,
available at http://www.stanford.edu/class/msande314/notes.shtml,
2004.

[Zuc06] D. Zuckerman. Linear degree extractors and the inapproximability of
max clique and chromatic number. In STOC’06: Proc. 38th ACM Sym-
posium on Theory of Computing, pages 681–690, 2006.

Index

n (ice cream cone), 48

(toppled ice cream cone), 48
AT (transposed matrix), 8
AT (adjoint), 53
‖ · ‖F (Frobenius norm), 18, 76
X � 0 (positive semidefinite), 16
X • Y (scalar product), 16
K ⊕ L (direct sum), 47
x⊗ y (tensor product), 33
K∗ (dual cone), 49
∇f (gradient), 83
F|A (restriction of a set system), 181
G ·H (strong product), 32
G (graph complement), 31
X ∼ Y (same distribution), 160
αGW (Goemans–Williamson ratio), 133
Γ (f) (curvature constant), 87
ϑ(G) (Lovász theta), 32, 159
ϑGW (Goemans–Williamson angle), 137
Θ(G) (Shannon capacity à la Lovász),

31
σ(G) (Shannon capacity), 30
χ(G) (chromatic number), 39, 157
ω(G) (clique number), 39

adjacency matrix, 79
adjoint, 53
AGM inequality, 50
Algo, 135
algorithm

δ-approximation, 5
Bansal’s, 181
Frank–Wolfe, 83, 85
Goemans–Williamson, 7, 133
Hazan’s, 23, 76, 77
Lanczos, 78
primal-dual central path, 99

randomized, 5
rounding, 172

δ-almost feasible solution, 221
Alon–K. Makarychev–Yu. Makarychev–

Naor theorem, 171
δ-approximate smallest eigenvector, 86
ε-approximate solution, 81
approximation

constant-factor, 5
low-rank, 86

approximation algorithm, 4
δ-approximation algorithm, 5
approximation scheme, polynomial-time,

133
approximation-resistant predicate, 212
arithmetic progressions, discrepancy, 182
assignment, 196
Azuma’s inequality, 189

Bansal’s algorithm, 181
barrier function, 100
basic semidefinite relaxation, 199
binary Krawtchuk polynomial, 152
bit model of computation, 5
bound

Delsarte’s, 152
Lovász’, 34

bounded semidefinite program, 19

canonical semidefinite relaxation, 202,
206, 207, 219

approximate solution, 204
cap, spherical, 140
capacity, Shannon, 30
Cayley graph, 151
cell, Voronoi, 142
central path, 100, 109

245B. Gärtner and J. Matoušek, Approximation Algorithms and Semidefinite
Programming, DOI 10.1007/978-3-642-22015-9,
© Springer-Verlag Berlin Heidelberg 2012

246 Index

central path function, 109
centroid solution, 222, 225
character, 151
Chebyshev inequality, 216
chi-square distribution, 215
Cholesky factorization, 17

outer product, 17
chordal graph, 41
chromatic number, 39

inapproximability, 157
clause, generalized, 195
clique, 39
clique number, 39
closed convex cone, 47
clustering, correlation, 168
coloring

of a set system, 179
proper, 39
strict vector, 176
vector, 40, 158

3-coloring (graph), 157, 196
combinatorial discrepancy theory, 179
complementary graph, 31
completely positive matrix, 120
complexity

of ellipsoid method, 22
of semidefinite programming, 20

concentration of measure, 140
cone

closed convex, 47
direct sum, 47
dual, 49
ice cream, 48
self-dual, 49
toppled ice cream, 48

cone program, 57
dual, 62
interior point, 60
limit feasibility, 58
primal, 62
Slater point, 60

cone programming
regular duality theorem, 64
strong duality theorem, 62
weak duality theorem, 63

conjecture
dichotomy, 197
unique games, 134, 152, 153, 171, 197,

211
weak perfect graph, 42

constant
curvature, 87
Grothendieck, 171, 172

constant-factor approximation, 5

constraint, 195
et-, 221
etz-, 221
local, 203, 208
nonnegativity, 221
triangle, 200, 201
valid, 200, 203
z-sum, 221

constraint qualification, 60
constraint satisfaction problem, 193, 195
continuous graph, 138, 139

filled, 139
convex function, 82
convex set, 21
COPn (copositive matrices), 120
copositive matrix, 119
copositive program, 122
correlation clustering, 168
k-CSP[P], 195
curvature constant, 87
cut, 3

in the continuous graph, 139
size, 3

cut norm, 169
CutNorm, 169, 170

dH(a, b) (Hamming distance), 149
ε-deep feasible solution, 22
Delsarte’s bound, 152
δ-dense set, 214
density theorem, Lebesgue, 146
design, Hadamard, 190
dichotomy conjecture, 197
dimension reduction, 215
direct sum, 226

of cones, 47
of vector spaces, 47

disc(F) (discrepancy), 180
discrepancy, 180

hardness of approximation, 180
hereditary, 181
hereditary vector, 182
vector, 182

discrete graph, 144
distance, Hamming, 149
distribution

chi-square, 215
Gaussian, see standard normal
standard normal, 159, 160
n-dimensional, 160, 215

dominant eigenvalue, 92
dual cone, 49
dual cone program, 62
dual semidefinite program, 46

Index 247

duality gap, 105, 106
duality theorem

of cone programming, regular, 64
of cone programming, strong, 62
of cone programming, weak, 63
of semidefinite programming, strong,

45

ei (standard basis vector), 17
edge set of the cut, 3
eigenvalue

dominant, 92
largest, 68

eigenvector, smallest δ-approximate, 86
elimination, Gauss (polynomiality), 6
ellipsoid method, 21

complexity, 22
embedding, self-dual, 114
encoding size, 5
encoding truth values, 198, 199
entropy function, 164
equational form, 18, 57

of a linear program, 15
Erdős–Ko–Rado theorem, 164
et-constraint, 221
etz-constraint, 221

fpen (penalty function), 82
factorization, Cholesky, 17

outer product, 17
Farkas lemma, 52

bogus version, 55
cone version, 56

feasibility problem, 80
feasible sequence, 58

limit value, 59
value, 58

feasible solution, 4
ε-deep, 22
of a cone program, 57
of a linear program, 15
of a semidefinite program, 19
of an optimization problem, 4

Feige–Schechtman theorem, 137
Fekete’s lemma, 30
ferromagnetism, 168
filled continuous graph, 139
folding a graph, 216
foldupH(A), 145
forbidden intersections theorem, 164
form

equational, 57
non-standard, 20

formula, Taylor’s, 87

Frank–Wolfe algorithm, 83, 85
Frank–Wolfe linearization, 85
Frankl–Wilson inequality, 166
Frobenius norm, 18, 76
function

barrier, 100
central path, 109
convex, 82
entropy, 164
Lovász theta, 32, 159, 171
moment generating, 189
payoff, 197
penalty, 82
strictly concave, 101

functional representation of a graph, 43

Gc (continuous graph), 138, 139
gap, integrality, 135

for MaxCut, 137
Gap (integrality gap), 135, 213
Gap(c), 218
GapP , 219
Gauss elimination (polynomiality), 6
Gaussian distribution, see standard

normal distribution, 160
generalized clause, 195
generating function, moment, 189
Goemans–Williamson algorithm, 7, 133
graph

Cayley, 151
chordal, 41
complementary, 31
continuous, 138, 139
filled, 139

discrete, 144
interval, 41
perfect, 41
similarity, 28
3-coloring, 157, 196
weighted, 212

Grothendieck
constant, 171, 172
inequality, 172

ground state, 168

Hadamard design, 190
Hamming distance, 149
handle, 32
Hazan’s algorithm, 23, 76

runtime, 77
herdisc(F) (hereditary discrepancy), 181
hereditary discrepancy, 181
hereditary vector discrepancy, 182
hervecdisc(F), 182

248 Index

Hessian, 86
hierarchy

Lasserre, 158, 200
Lovász–Schrijver, 200
Sherali–Adams, 200

Hilbert space, 174
homomorphism, 197

ice cream cone, 48
incidence matrix, 180
inclusion matrix, 225
independence number, 29

inapproximability, 157
independent random variables, 186
inequality

Azuma’s, 189
Chebyshev, 216
Frankl–Wilson, 166
Grothendieck, 172
isoperimetric, 145
planar isoperimetric, 145
triangle, 201

instance (of an optimization problem), 4
integrality gap, 135

for MaxCut, 137
interior point

of cone program, 60
interior-point method, 23, 99
interval graph, 41
Ising model, 167, 171
isoperimetric inequality, 145

planar, 145

Jacobian, 110
Johnson–Lindenstrauss lemma, 215

k-ary predicate, 195
k-CSP[P], 195
KG (Grothendieck constant), 171
Karger–Motwani–Sudan rounding, 159
Karloff theorem, 149
Krawtchuk polynomial, binary, 152

Lagrange multiplier, 102
sufficiency, 108

Lagrange system (of interior-point
method), 105

Lanczos algorithm, 78
largest eigenvalue, 68

semidefinite program for, 69
Lasserre hierarchy, 158, 200
Lebesgue density theorem, 146
lemma

Farkas, 52

Fekete’s, 30
Johnson–Lindenstrauss, 215
Szemerédi regularity, 133, 214
Vapnik–Chervonenkis–Sauer–Shelah,

165
limit value (of a feasible sequence), 59
limit-feasible

cone program, 58
system, 56

linear operator, 45
linear program, 15

equational form, 15
linearization, Frank–Wolfe, 85
local constraint, 203, 208
local minimality, 127
LocMin(F), 127
long-step path following method, 114
Lovász theta function, 32, 159, 171
Lovász’ bound, 34
Lovász’ umbrella, 35
Lovász–Schrijver hierarchy, 200
low-rank approximation, 86

majority is stablest, 154
matrix

adjacency, 79
completely positive, 120
copositive, 119
incidence, 180
inclusion, 225
positive definite, 17
positive semidefinite, 16
skew-symmetric, 104
square root, 113
symmetric, 15

Max-2-And, 196
Max-2-CSP[P], 198
Max-2-Lin(mod q), 153, 198
Max-2-Sat, 194

integrality gap, 200
Max-3-Sat, 193, 205
Max-k-CSP[P], 196, 197
MaxCut, 3, 4, 7, 20, 22, 154, 196, 212

for bounded maximum degree, 134
for dense graphs, 133
for large maximum cut, 134
for small maximum cut, 134
Goemans–Williamson algorithm, 133
inapproximability, 134
optimal approximation ratio, 154
randomized 0.5-approximation

algorithm, 6
semidefinite relaxation, 8, 79, 135
solving the semidefinite relaxation, 79

Index 249

MaxCutGain, 167
MaxDiCut, 196
MaxQP[G], 169, 212
MaxQP[Kn], 171
measure

concentration, 140
on Sd−1, 138

method
ellipsoid, 21
interior-point, 23, 99
long-step path following, 114
Newton’s, 110
polynomial, 164
power, 92
short-step path following, 114, 115

miniature, 212
minimality, local, 127
minimization (of a polynomial), 25
model

bit, 5
Ising, 167, 171
real RAM, 5
Turing machine, 5
unit cost, 5

modified Newton step, 113
moment generating function, 189
Motzkin–Straus theorem, 125
multiplier, Lagrange, 102

N(0, 1) (standard normal distribution),
159

N(t) (tail of the standard normal
distribution), 160

γ-neighborhood (of the central path),
115

t-neighborhood, 145
Newton step, modified, 113
Newton’s method, 110
non-standard form, 20
nonnegativity constraint, 221
norm

cut, 169
Frobenius, 18, 76

NP-hardness, 4
number

chromatic, 39
inapproximability, 157

clique, 39
independence, 29
inapproximability, 157

Õ(.), 158
operator, linear, 45
optimal solution

of a cone program, 57
of a semidefinite program, 19

oracle, weak separation, 21
orthonormal representation (of a graph),

31
outer product Cholesky factorization, 17

Pperm (permutation predicates), 197
path, central, 100
payoff function, 197
PCP theorem, 154, 194
penalty function, 82
perfect graph, 41
perfect graph conjecture, 42
planar isoperimetric inequality, 145
point

interior (of cone program), 60
Slater, 60

polynomial
binary Krawtchuk, 152
minimization, 25

polynomial method, 164
polynomial-time approximation scheme,

133
POSn (completely positive matrices),

121
positive definite matrix, 17
positive semidefinite matrix, 16
power method, 77, 92

performance, 91
predicate

approximation-resistant, 212
k-ary, 195

primal cone program, 62
primal-dual central path, 109
primal-dual central path algorithm, 99
problem

constraint satisfaction, 193, 195
semidefinite feasibility, 80

product
square, 32
strong, 32
tensor, 33

program
cone, 57
cone, dual, 62
cone, primal, 62
copositive, 122
linear, 15
semidefinite, 18
semidefinite, dual, 46
vector, 8, 135

PSDn (positive semidefinite matrices),
16

250 Index

pseudoinverse, 224
PTAS (polynomial-time approximation

scheme), 133

R
n
+ (nonnegative orthant), 49

random variables, independent, 186
random walk, 183
randomized algorithm, 5
randomized rounding, 10
real RAM model, 5
reduction of dimension, 215
regular duality theorem of cone

programming, 64
regularity lemma, Szemerédi, 133, 214
relaxation, 8

semidefinite
hierarchy, 200
of 2-CSP’s, 198
of discrepancy, 182
for k-CSP’s, 205
of MaxCut, 8, 79, 135
of MaxCut, solution, 79
of MaxQP[G], 170
of proper coloring, 40

relaxation, semidefinite
basic, 199
canonical, 202, 206, 207, 219
approximate solution, 204

of independence number, 27
representation

functional, 43
orthonormal, 31

rounding
Karger–Motwani–Sudan, 159
randomized, 10
simultaneous, 180
via a miniature, 214, 218, 220

rounding algorithm, 172

Sd (unit sphere), 8
Sd−1, measure on, 138
Smax, 170, 172
Smin, 173
sandwich theorem, 39
SDP, 135
self-dual cone, 49
self-dual embedding, 114
semicoloring, 182
semidefinite feasibility problem, 80
semidefinite program, 18

bounded, 19
complexity, 20
dual, 46
feasible, 19

for largest eigenvalue, 69
in equational form, 18
trace-bounded, 78
unbounded, 19
value, 19

semidefinite relaxation
basic, 199
canonical, 202, 206, 207, 219
approximate solution, 204

hierarchy, 200
of 2-CSP’s, 198
of discrepancy, 182
of independence number, 27
for k-CSP’s, 205
of MaxCut, 8, 79, 135
solution, 79

of MaxQP[G], 170
of proper coloring, 40

separation oracle, 21
separation theorem, 51
sequence, feasible, 58
set

convex, 21
δ-dense, 214
shattered, 165

Shannon capacity, 30
shattered set, 165
Sherali–Adams hierarchy, 200
short-step path following method, 114,

115
similar vertices, 31
similarity graph, 28
simultaneous rounding, 180
size

encoding, 5
of a cut, 3

skew-symmetric matrix, 104
Slater point, 60
Slater’s constraint qualification, 60
solution

δ-almost feasible, 221
ε-approximate, 81
centroid, 222, 225
feasible, 4, 15, 19
optimal, 19, 57

space, Hilbert, 174
Spectn (spectahedron), 82
spectahedron, 76
spherical cap, 140
square product, 32
standard normal distribution, 159, 160

n-dimensional, 160, 215
state, ground, 168
strict vector coloring, 40, 176

Index 251

strictly concave function, 101
strong duality theorem

of semidefinite programming, 45
strong duality theorem of cone

programming, 62
strong product, 32
sum

direct, 47, 226
of squares, 25

super-additive sequence, 42
SYMn (symmetric matrices), 15
symmetric matrix, 15
symmetrization, 145
system

Lagrange, 105
limit-feasible, 56

Szemerédi regularity lemma, 133, 214

Taylor’s formula, 87
tensor product, 33
theorem

Alon–K. Makarychev–
Yu. Makarychev–Naor, 171

Bansal’s, 181
Erdős–Ko–Rado, 164
Feige–Schechtman, 137
forbidden intersections, 164
Karloff, 149
Lebesgue density, 146
Motzkin–Straus, 125
PCP, 154, 194
regular duality of cone programming,

64
sandwich, 39
separation, 51
strong duality of cone programming,

62
strong duality of semidefinite

programming, 45
weak duality of cone programming, 63

theta function, Lovász, 32, 159
3-coloring (graph), 157, 196
3-Sat, 193
toppled ice cream cone, 48

Tr(·) (trace), 16
trace, 16
trace-bounded semidefinite program, 78
triangle constraint, 200, 201
triangle inequality, 201
trick, Wigderson’s, 158
truth values, encoding, 198, 199
Turing machine, 5
2-stability, 187

umbrella construction, 35
unbounded semidefinite program, 19
unique games conjecture, 134, 152, 153,

171, 197, 211
unit cost model, 5

valid constraint, 200, 203
value

of a cone program, 57
of a feasible sequence, 58
of a semidefinite program, 19
of a solution, 4
of an instance, 4
of an orthonormal representation, 31

Vapnik–Chervonenkis–Sauer–Shelah
lemma, 165

vecdisc(F) (vector discrepancy), 182
vector coloring, 40, 158

strict, 176
vector discrepancy, 182

hereditary, 182
vector program, 8, 135
vertices, similar, 31
Voronoi cell, 142

walk, random, 183
weak duality theorem of cone program-

ming, 63
weak perfect graph conjecture, 42
weak separation oracle, 21
weighted graph, 212
Wigderson’s trick, 158

z-sum constraint, 221

	Cover
	Approximation Algorithms and Semidefinite Programming
	ISBN 9783642220142
	Preface
	Contents
	Part I: (by Bernd Gärtner)
	Chapter 1 Introduction: MAXCUT Via Semidefinite Programming
	1.1 The MaxCut Problem
	1.2 Approximation Algorithms
	1.3 A Randomized 0.5-Approximation Algorithm for MaxCut
	1.4 The Goemans–Williamson Algorithm

	Chapter 2 Semidefinite Programming
	2.1 From Linear to Semidefinite Programming
	2.2 Positive Semidefinite Matrices
	2.3 Cholesky Factorization
	2.4 Semidefinite Programs
	2.5 Non-standard Form
	2.6 The Complexity of Solving Semidefinite Programs

	Chapter 3 Shannon Capacity and Lovász Theta
	3.1 The Similarity-Free Dictionary Problem
	3.2 The Shannon Capacity
	3.3 The Theta Function
	3.4 The Lovász Bound
	3.5 The 5-Cycle
	3.6 Two Semidefinite Programs for the Theta Function
	3.7 The Sandwich Theorem and Perfect Graphs

	Chapter 4 Duality and Cone Programming
	4.1 Introduction
	4.2 Closed Convex Cones
	4.3 Dual Cones
	4.4 A Separation Theorem for Closed Convex Cones
	4.5 The Farkas Lemma, Cone Version
	4.6 Cone Programs
	4.7 Duality of Cone Programming
	4.8 The Largest Eigenvalue

	Chapter 5 Approximately Solving Semidefinite Programs
	5.1 Optimizing Over the Spectahedron
	5.2 The Case of Bounded Trace
	5.3 The Semidefinite Feasibility Problem
	5.4 Convex Optimization Over the Spectahedron
	5.5 The Frank–Wolfe Algorithm
	5.6 Back to the Semidefinite Feasibility Problem
	5.7 From the Linearized Problem to the Largest Eigenvalue
	5.8 The Power Method

	Chapter 6 An Interior-Point Algorithm for Semidefinite Programming
	6.1 The Idea of the Central Path
	6.2 Uniqueness of Solution
	6.3 Necessary Conditions for Optimality
	6.4 Sufficient Conditions for Optimality
	6.5 Following the Central Path

	Chapter 7 Copositive Programming
	7.1 The Copositive Cone and Its Dual
	7.2 A Copositive Program for the Independence Number of a Graph
	7.3 Local Minimality Is coNP-hard

	Part II: (by Jirí Matoušek)
	Chapter 8 Lower Bounds for the Goemans–Williamson MAXCUT Algorithm
	8.1 Can One Get a Better Approximation Ratio?
	8.2 Approximation Ratio and Integrality Gap
	8.3 The Integrality Gap Matches the Goemans–Williamson Ratio
	8.4 The Approximation Ratio Is At Most GW
	8.5 The Unique Games Conjecture for Us Laymen, Part I

	Chapter 9 Coloring 3-Chromatic Graphs
	9.1 The 3-Coloring Challenge
	9.2 From a Vector Coloring to a Proper Coloring
	9.3 Properties of the Normal Distribution
	9.4 The KMS Rounding Algorithm
	9.5 Difficult Graphs

	Chapter 10 Maximizing a Quadratic Form on a Graph
	10.1 Four Problems
	10.2 Quadratic Forms on Graphs
	10.3 The Rounding Algorithm
	10.4 Estimating the Error
	10.5 The Relation to (G)

	Chapter 11 Colorings with Low Discrepancy
	11.1 Discrepancy of Set Systems
	11.2 Vector Discrepancy and Bansal's Random Walk Algorithm
	11.3 Coordinate Walks
	11.4 Set Walks

	Chapter 12 Constraint Satisfaction Problems, and Relaxing Them Semidefinitely
	12.1 Introduction
	12.2 Constraint Satisfaction Problems
	12.3 Semidefinite Relaxations of 2-CSP's
	12.4 Beyond Binary Boolean: Max-3-Sat & Co.

	Chapter 13 Rounding Via Miniatures
	13.1 An Ultimate Rounding Method?
	13.2 Miniatures for MaxCut
	13.3 Rounding the Canonical Relaxation of Max-3-Sat and Other Boolean CSP

	Summary
	References
	Index

