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Chapter 1

Introduction

The scope of this volume is quite specific. Suppose we wish to determine the solution
V∗ to a fixed point equation V =TV for some operator T. Under suitable conditions,
V∗ will be the limit of an iterative algorithm

V0 = v0

Vk = TVk−1, k= 1, 2, . . . , (1.1)

where v0 is some initial solution. Such algorithms are ubiquitous in applied mathemat-
ics, and their properties well known.

Then suppose (1.1) is replaced with an approximation

V0 = v0

Vk = T̂kVk−1, k= 1, 2, . . . , (1.2)

where each T̂k is close to T in some sense. The subject of this book is the analysis
of algorithms of the form (1.2). The material in this book is organized around three
questions:

(Q1) If (1.1) converges to V∗, under what conditions does (1.2) also converge to V∗?
(Q2) How does the approximation affect the limiting properties of (1.2)? How close

is the limit of (1.2) to V∗, and what is the rate of convergence (particularly in
comparison to that of (1.1))?

(Q3) If (1.2) is subject to design, in the sense that an approximation parameter, such
as grid size, can be selected for each T̂k, can an approximation schedule be
determined which minimizes approximation error as a function of computation
time?

From a theoretical point of view, the purpose of this book is to show how quite
straightforward principles of functional analysis can be used to resolve these ques-
tions with a high degree of generality. From the point of view of applications, the
primary interest is in dynamic programming and Markov decision processes (MDP),
with emphasis on approximation methods and computational efficiency. The emphasis
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is less on the construction of specific algorithms then with the development of theoret-
ical tools with which broad classes of algorithms can be defined, and hence analyzed
with a common theory.

The book is divided into three parts. Chapters 2–8 cover background material in
real analysis, linear algebra, measure theory, probability theory and functional analy-
sis. This section is fairly extensive in comparison to other volumes dealing specifically
with MDPs. The intention is that the language of functional analysis be used to express
concepts from the other disciplines, in as general but concise a manner as possible.
By necessity, many proofs are omitted in these chapters, but suitable references are
given when appropriate.

Chapters 9–11 form the core of the volume, in the sense that the questions (Q1)–
(Q3) are largely considered here. Although a number of examples are considered (most
notable, an analysis of the Robbins-Monro algorithm), the main purpose is to deduce
properties of general classes of approximate iterative algorithms on Banach and Hilbert
spaces.

The remaining chapters deal with Markov decision processes (MDPs), which forms
the principal motivation for the theory presented here. A foundation theory of MDPs
is given in Chapters 12 and 13, from the point of view of functional analysis, while
the remain chapters discuss approximation methods.

Finally, I would like to acknowledge the patience and support of colleagues and
family, especially Cynthia, Benjamin and Jacob.
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Mathematical background



Chapter 2

Real analysis and linear algebra

In this chapter we first define notation, then review a number of important results
in real analysis and linear algebra of which use will be made in later chapters. Most
readers will be familiar with the material, but in a number of cases it will be important
to establish which of several commonly used conventions will be used. It will also
prove convenient from time to time to have a reference close at hand. This may be
especially true of the section on spectral decomposition.

2.1 DEFINITIONS AND NOTATION

In this section we describe the notational conventions and basic definitions to be used
throughout the book.

2.1.1 Numbers, sets and vectors

A set is a collection of distinct objects of any kind. Each member of a set is referred to
as an element, and is represented once. A set E may be indexed. That is, given an index
set T , each element may be assigned a unique index t ∈ T , and all indices in T are
assigned to exactly one element of E, denoted xt. We may then write E={xt; t ∈ T }.

The set of (finite) real numbers is denoted R, and the set of extended real numbers
is denoted R̄=R ∪ {−∞,∞}. The restriction to nonegative real numbers is written
R+ = [0,∞) and R̄+ =R+ ∪ {∞}. We use standard notation for open, closed, left closed
and right closed intervals (a, b), [a, b], [a, b), (a, b]. A reference to a interval I on R̄

may be any of these types.
The set of (finite) integers will be denoted I, while the extended integers will be

I∞= I ∪ {−∞,∞}. The set of natural numbers N is taken to be the set of positive
integers, while N0 is the set of nonnegative integers. A rational number is any real
number expressible as a ratio of integers.

Then C denotes the complex numbers z= a+ bi ∈C, where i=√−1 is the imagi-
nary number and a, b∈R. Note that i is added and multiplied as though it were a real
number, in particular i2 =−1. Multiplication is defined by z1z2 = (a1 + b1i)(a2 + b2i)=
a1a2 − b1b2 + (a1b2 + a2b1)i. The conjugate of z= a+ bi ∈C is written z̄= a− bi,
so that zz̄= a2 + b2 ∈R. Together, z and z̄, without reference to their order, form
a conjugate pair.

The absolute value of a∈R is denoted |a| =√
a2, while |z| = (zz̄)1/2 = (a2 + b2)1/2 ∈

R is also known as the magnitude or modulus of z ∈C.
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If S is a set of any type of number, Sd, d ∈N, denotes the set of d-dimensional
vectors s̃= (s1, . . . , sd), which are ordered collections of numbers si ∈S. In particular,
the set of d-dimensional real vectors is written R

d. When 0, 1∈S, we may write the
zero or one vector �0= (0, . . . , 0), �1= (1, . . . , 1), so that c�1= (c, . . . , c).

A collection of d numbers from S is unordered if no reference is made to the
order (they are unlabeled). Otherwise the collection is ordered, that is, it is a vector.
An unordered collection from S differs from a set in that a number s∈S may be
represented more than once. Braces {. . .} enclose a set while parentheses ( . . . ) enclose a
vector (braces will also be used to denote indexed sequences, when the context is clear).

2.1.2 Logical notation

We will make use of conventional logical notation. We write S1 ⇒ S2 if statement S1

implies statement S2, and S1 ⇔ S2 whenever S1 ⇒ S2 and S2 ⇒ S1 both hold. In addition,
‘for all’ is written ∀, ‘there exists’ is written ∃ and ‘such that’ is written �.

2.1.3 Set algebra

If x is, or is not, an element of E, we write x∈E or x /∈E. If all elements in A are also
in B then A is a subset of B, that is A⊂B. If A⊂B and B⊂A then A=B. If A⊂B
but A �=B, then A is a strict subset of B. Define the empty set, or null set, ∅, which
contains no elements. We may write ∅⊂A for any set A.

Set algebra is defined for the class of all subsets of a nonempty set �, commonly
known as a universe. Any set we consider may only contain elements of�. This always
includes both ∅ and �. Set operations include union (A ∪ B)= (A or B)= (A ∨ B) (all
elements in either A or B), intersection (A ∩ B)= (A and B)= (A ∧ B) (all elements in
both A and B), complementation (∼A)= (not A)= (Ac) (all elements in � not in A),
relative complementation, or set difference, (B∼A)= (B− A)= (B not A)= (BAc) (all
elements in B not in A). For any indexed collection of subsets At ⊂�, t ∈ T , the union
is ∪t∈T At, the set of all elements in at least one At, and the intersection is ∩t∈T At, the
set of all elements in all At. De Morgan’s Law applies to any index set T (finite or
infinite), that is,

∪t∈T Ac
t = (∩t∈T At)

c and ∩t∈T Ac
t = (∪t∈T At)

c .

The cardinality of a set E is the number of elements it contains, and is denoted |E|.
If |E|<∞ then E is a finite set. We have |∅|=0. If |E| =∞, this statement does not
suffice to characterize the cardinality of E. Two sets A, B are in a 1-1 correspondence
if a collection of pairs (a, b), a∈A, b∈B can be constructed such that each element of
A and of B is in exactly one pair. In this case, A and B are of equal cardinality. The
pairing is known as a bijection.

If the elements of A can be placed in a 1-1 correspondence with N we say A is
countable (is denumerable). We also adopt the convention of referring to any subset of
a countable set as countable. This means all finite sets are countable. If for countable
A we have |A| =∞ then A is infinitely countable. Note that by some conventions, the
term countable is reserved for infinitely countable sets. For our purposes, it is more
natural to consider the finite sets as countable.
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All infinitely countable sets are of equal cardinality with N, and so are
mutually of equal cardinality. informally, a set is countable if it can be writ-
ten as a list, finite or infinte. The set N

d is countable since, for example, N
2 =

{(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), . . .}. The set of rational numbers is countable,
since the pairing of numerator and denominator, in any canonical representation, is a
subset of N

2.
A set A is uncountable (is nondenumerable) if |A| =∞ but A is not countable. The

set of real numbers, or any nonempty interval of real numbers, is uncountable.
If A1, . . . , Ad are d sets, then A1 × A2 × · · · × Ad =×d

i=1Ai is a product set, con-
sisting of the set of all ordered selections of one element from each set ai ∈Ai. A vector
is an element of a product set, but a product set is more general, since the sets Ai need
not be equal, or even contain the same type of element. The definition may be extended
to arbitrary forms of index sets.

2.1.4 The supremum and infimum

For any set E⊂R, x=max E if x∈E and y≤ x ∀y∈E. Similarly x=min E if x∈E and
y≥ x ∀y∈E. The quantities min E or max E need not exist (consider E= (0, 1)).

The supremum of E, denoted sup E is the least upper bound of E. Similarly, the
infimum of E, denoted inf E is the greatest lower bound of E. In contrast with the
min, max operations, the supremum and infimum always exist, possibly equalling
−∞ or ∞. For example, if E= (0, 1), then inf E= 0 and sup E= 1. That is, inf E or
sup E need not be elements of E. All numbers in R̄ are both upper and lower bounds
of the empty set ∅, which means

inf ∅=∞ and sup∅=−∞.
If E={xt; t ∈ T } is an indexed set we write, when possible,

max E=max
t∈T

xt, min E=min
t∈T

xt, sup E= sup
t∈T

xt, inf E= inf
t∈T

xt.

For two numbers a, b∈ R̄, we may use the notations max{a, b}=x ∨ y=max(a, b)
and min{a, b}=x ∧ y=min(a, b).

2.1.5 Rounding off

Rounding off will proceed by the floor and ceiling conventions �1.99�=1=�1� and
�1.01�=2=�2�.

When we write x≈ 3.45, we mean x∈ [3.445, 3.455). This convention is adopted
throughout.

2.1.6 Functions

If X, Y are two sets, then a function f : X→Y assigns a unique element of Y to each
element of X, in particular y= f (x). We refer to X and Y as the domain and range
(or codomain) of f . The image of a subset A⊂X is f (A)={f (x)∈Y | x∈A}, and the
preimage (or inverse image) of a subset B∈Y is f−1(B)={x∈X | f (x)∈B}. We say f is
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injective (or one-to-one) if f (x1) �= f (x2) whenever x1 �= x2, f is surjective (alternatively,
many-to-one or onto) if Y = f (X), and f is bijective if it is both injective and surjective.
An injective, surjective or bijective function is also referred to as an injection, surjection
or bijection. A bijective function f is invertible, and possesses a unique inverse function
f−1 : Y →X which is also bijective, and satisfies x= f−1(f (x)). Only bijective functions
are invertible. Note that a preimage may be defined for any function, despite what is
suggested by the notation.

An indicator function f maps a domain X to {0, 1} by specifying a set E⊂X
and setting f (x)= 1 if x∈E and f (x)= 0 otherwise. This may be written explicitly as
f (x)= I{x∈E}, or IE when the context is clear.

For real valued functions f , g, (f ∨ g)(x)= f (x) ∨ g(x), (f ∧ g)(x)= f (x) ∧ g(x). We
write f ≡ c for constant c if f (x)= c ∀x. A function f on R satisfying f (x)=−f (−x)
or f (x)= f (−x) is an odd or even function. A real valued function f will some-
times be decomposed into positive and negative components f = f+ − f− where f+ =
f (x)I{f (x)> 0} and f− = |f (x)|I{f (x)< 0}.

For mappings f : X→Y and g : Y →Z, where f is surjective, we denote the
composition (g ◦ f ) : X→Z, evaluated by g(f (x))∈Z ∀x∈X.

2.1.7 Sequences and limits

A sequence of real numbers a0, a1, a2, . . .will be written {ak}. Depending on the context,
a0 may or may not be defined. For any sequence of real numbers, by limk→∞ ak = a∈R

is always meant that ∀ε>0 ∃K � k>K⇒|a− ak|<ε. A reference to limk→∞ ak implies
an assertion that a limit exists. This will sometimes be written ak → a or ak →k a when
the context makes the meaning clear.

When a limit exists, a sequence is convergent. If a sequence does not converge it is
divergent. This excludes the possibility of a limit ∞ or −∞ for a convergent sequence.
However, it is sometimes natural to think of a sequence with a ‘limit’ in {−∞,∞}. We
can therefore write limk→∞ ak =∞ if ∀M ∃K � k>K⇒ ak>M, and limk→∞ ak =−∞
if ∀M ∃K � k>K⇒ ak<M. Either sequence is properly divergent.

If ak+1 ≥ ak, the sequence must possess a limit a, possibly ∞. This is written
ak ↑ a. Similarly, if ak+1 ≤ ak, there exists a limit ak ↓ a, possibly −∞. Then {ak} is an
nondecreasing or nonincreasing sequence (or increasing, decreasing when the defining
inequalities are strict).

Then lim supk→∞ ak = limk→∞ supi≥k ai. This quantity is always defined since a′k =
supi≥k ai defines an nonincreasing sequence. Similarly lim infk→∞ ak = limk→∞ infi≥k ai

always exists. We always have lim infk→∞ ak ≤ lim supk→∞ ak and limk→∞ ak exists if
and only if a= lim infk→∞ ak = lim supk→∞ ak, in which case limk→∞ ak = a.

When limit operations are applied to sequences of real values functions, the limits
are assumed to be evaluated pointwise. Thus, if we write fn ↑ f , this means that fn(x)↑
f (x) for all x, and therefore fn is a nondecreasing sequence of functions, with analagous
conventions used for the remaining types of limits.

Note that pointwise convergence of a function limn→∞ fn = f is distinct
from uniform convergence of a sequence of functions, which is equivalent to
limn→∞ supx |fn(x)− f (x)| =0. Of course, uniform convergence implies pointwise con-
vergence, but the converse does not hold. Unless uniform convergence is explicitly
stated, pointwise convergence is intended.
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When the context is clear, we may use the more compact notation d̃= (d1, d2, . . . )
to represent a sequence {dk}. If ã={ak} and b̃={bk} then we write ã≤ b̃ if ak ≤ bk

for all k.
Let S be the class of all sequences of finite positive real numbers which con-

verge to zero, and let S− be those sequences in S which are nonincreasing. If {ak} ∈S
we define the lower and upper convergence rates λl{ak}= lim infk→∞ ak+1/ak and
λu{ak}= lim supk→∞ ak+1/ak. If 0<λl{ak}≤ λu{ak}< 1 then {ak} converges linearly.
If λu{ak}=0 or λl{ak}=1 then {ak} converges superlinearly or sublinearly, respec-
tively. We also define a weaker characterization of linear convergence by setting
λ̂l{ak}= lim infk→∞ a1/k

k and λ̂u{ak}= lim supk→∞ a1/k
k .

When λl{ak}= λu{ak}= ρ we write λ{ak}= ρ. Similarly λ̂l{ak}= λ̂u{ak}= ρ is
written λ̂{ak}= ρ.

A sequence {ak} is of order {bk} if lim supk ak/bk<∞, and may be written ak =
O(bk). If ak =O(bk) and bk =O(ak) we write ak =�(bk). Similarly, for two real valued
mappings ft, gt on (0,∞) we write ft =O(gt) if lim supt→∞ ft/gt <∞, and ft =�(gt) if
ft =O(gt) and gt =O(ft).

A sequence {bk} dominates {ak} if limk ak/bk = 0, which may be written ak =
o(bk). A stronger condition holds if λu{ak}<λl{bk}, in which case we say {bk} lin-
early dominates {ak}, which may be written ak = o�(bk). Similarly, for two real
valued mappings ft, gt on (0,∞) we write ft = o(gt) if limt→∞ ft/gt = 0, that is, gt

dominates ft.

2.1.8 Infinite series

Suppose we are given sequence {ak}. The corresponding series (or infinite series) is
denoted

∞∑
k=1

ak =
∑

k

ak = a1 + a2 + · · · .

Some care is needed in defining a sum of an infinite collection of numbers. First, define
partial sums

Sn =
n∑

k=1

ak = a1 + a2 + · · · + an, n≥ 1.

We may set S0 = 0. It is natural to think of evaluating a series by sequentially adding
each an to a cumulative total Sn−1. In this case, the total sum equals limn Sn, assuming
the limit exists. We say that the series (or simply, the sum) exists if the limit exists
(including −∞ or ∞). The series is convergent if the sum exists and is finite. A series
is divergent if it is not convergent, and is properly divergent if the sum exists but is
not finite.
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It is important to establish whether or not the value of the series depends on the
order of the sequence. Precisely, suppose σ : N "→N is a bijective mapping (essentially,
an infinite permutation). If the series

∑
k ak exists, we would like to know if

∑
k

ak =
∑

k

aσ(k). (2.1)

Since these two quantities are limits of distinct partial sums, equality need not hold.
This question has a quite definite resolution. A series

∑
kak is called absolutely conver-

gent if
∑

k|ak| is convergent (so that all convergent series of nonnegative sequences are
absolutely convergent). A convergent sequence is unconditionally convergent if (2.1)
holds for all permutations σ. It may be shown that a series is absolutely convergent
if and only if it is unconditionally convergent. Therefore, a convergent series may be
defined as conditionally convergent if either it is not absolutely convergent, or if (2.1)
does not hold for at least one σ. Interestingly, by the Riemann series theorem, if

∑
kak

is conditionally convergent then for any L∈ R̄ there exists permutation σL for which∑
kaσL(k) =L.

There exist many well known tests for series convergence, and can be found in
most calculus textbooks.

Let E={at; t ∈ T } be a infinitely countable indexed set of extended real numbers.
For example, we may have T =N

d. When there is no ambiguity, we can take
∑

t at

to be the sum of all elements of E. Of course, in this case the implication is that the
sum does not depend on the summation order. This is the case if and only if there
is a bijective mapping σ : N "→ T for which

∑
k aσ(k) is absolutely convergent. If this

holds, it holds for all such bijective mappings. All that is needed is to verify that the
cumulative sum of the elements |at|, taken in any order, remains bounded. This is
written, when possible∑

t∈T
at =

∑
t

at.

We also define for a sequence {ak} the product
∏∞

k=1 ak. We will usually be interested
in products of positive sequences, so this may be converted to a series by the log
transformation:

log

( ∞∏
k=1

ak

)
=

∞∑
k=1

log(ak)

so that the issues are largely the same as for series. Similarly, for indexed set E=
{at; t ∈ T }, we may define

∏
t∈T at =∏t at when no ambiguity arises. This will be the

case when, for example, either at ∈ (0, 1] for all t or at ∈ [1,∞) for all t.
Finally, we make note of the following convention. We will sometimes be interested

in summing over a strict subset of the index set T ′ ⊂ T . This poses no particular
problem if the series

∑
t at is well defined. If it happens that T ′ = ∅, we will take

∑
t∈∅

at = 0 and
∏
t∈∅

at = 1. (2.2)
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2.1.9 Geometric series

We will make use of the following geometric series:

∞∑
i=0

(i +m)!
i! ri = m!

(1− r)m+1
for r2< 1, m= 0, 1, 2, . . .

n∑
i=0

ri = 1− rn+1

1− r
for r �= 1. (2.3)

2.1.10 Classes of real valued functions

Suppose X is a subset of R̄. The real valued function f : X → R̄ is a bounded func-
tion if supx∈X |f (x)|<∞. In addition f is bounded below or bounded above if
infx∈X f (x)>−∞ or supx∈X f (x)<∞.

A real valued function f : X → R̄ is lower semicontinuous at x0 if xn →n x0 implies
lim infn f (xn)≥ f (x0), or upper semicontinuous at x0 if xn → x0 implies lim supn f (xn)≤
f (x0). We use the abbreviations lsc and usc. A function is, in general, lsc (usc) if it is
lsc (usc) at all x0 ∈X . Equivalently, f is lsc if {x∈X | f (x)≤ λ} is closed for all λ∈R,
and is usc if {x∈X | f (x)≥ λ} is closed for all λ∈R. A function is continous (at x0) if
and only if it is both lsc and usc (at x0). Note that only sequences in X are required
for the definition, so that if f is lsc or usc on X , it is also lsc or usc on X ′ ⊂X .

A set X ⊂R
d is convex if for any p∈ [0, 1] and any x1, x2 ∈X we also have

px1 + (1− p)x2 ∈X . A real valued function f : X →R on a convex set X is con-
vex if for any p∈ [0, 1] and any x1, x2 ∈X we have pf (x1)+ (1− p)f (x2)≥ f (px1 +
(1− p)x2). Additionally, f is strictly convex if pf (x1)+ (1− p)f (x2)> f (px1 + (1−
p)x2) whenever p∈ (0, 1) and x1 �= x2. If −f is (strictly) convex then f is (strictly)
concave.

The usual kth order partial derivatives, when they exist, are written
∂kf /∂xi1 . . . ∂xik , and if d= 1 the kth total derivative is written dkf /dxk = f (k)(x). A
derivative is a function on X , unless evaluation at a specific value of x∈X is indicated,
as in dkf /dxk|x=x0 = f (k)(x0). The first and second total derivative will also be written
f ′(x) and f ′′(x) when the context is clear.

The following function spaces are commonly defined: C(X ) is the set of all contin-
uous real valued functions on X , while Cb(X )⊂C(X ) denotes all bounded continuous
functions on X . In addition, Ck(X )⊂C(X ) is the set of all continuous functions
on X for which all order 1≤ j≤ k derivatives exist and are continuous on X , with
C∞(X )⊂C(X ) denoting the class of functions with continuous derivatives of all orders
(the infinitely divisible functions). Note that a function on R may possess derivatives
f ′(x) everywhere (which are consistent in direction), without f ′(x) being continuous.

When defining a function space, the convention that X is open, with X̄ representing
the closure of X when needed, is sometimes adopted. This ensures that the convential
definitions of continuity and differentiability apply (formally, any bounded function
defined on a finite set X is continuous, since the only convergent sequences in X are
constant ones).
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2.1.11 Graphs

A graph is a collection of nodes and edges. Most commonly, there are m nodes uniquely
labeled by elements of set V ={1, . . . , m}. We may identify the set of nodes as V
(although sometimes unlabeled graphs are studied). An edge is a connection between
two nodes, of which there are two types. A directed edge is any ordered pair from V ,
and an undirected edge is any unordered pair from V . Possibly, the two nodes defining
an edge are the same, which yields a self edge. If E is any set of edges, then G= (V , E)
defines a graph. If all edges are directed (undirected), the graph is described as directed
(undirected), but a graph may contain both types.

It is natural to imagine a dynamic process on a graph defined by node occupancy.
A directed edge (v1, v2) denotes the possibly of a transition from v1 to v2. Accordingly,
a path within a directed graph G= (V , E) is any sequence of nodes v0, v1, . . . , vn for
which (vi−1, vi)∈E for 1≤ i≤ n. This describes a path from v0 to vn of length n (the
number of edges needed to construct the path).

It will be instructive to borrow some of the terminology associated with the theory
of Markov chains (Section 5.2). For example, if there exists a path starting at i and
ending at j we say that j is accessible from i, which is written i→ j. If i→ j and j→ i
then i and j communicate, which is written i↔ j. The connectivity properties of a
directed graph are concerned with statements of this kind, as well as lengths of the
relevant paths.

The adjacency matrix adj(G) of graph G is an m×m 0-1 matrix with element
gi,j = 1 if and only if the graph contains directed edge (i, j). The path properties of G
can be deduced directly from the iterates adj(G)n (conventions for matrices are given
in Section 2.3.1).

Theorem 2.1 For any directed graph G with adjacency matrix AG = adj(G) there
exists a path of length n from node i to node j if and only if element i, j of An

G is
positive.

Proof Let g[k]i,j be element i, j of Ak
G. All such elements are nonnegative. Suppose,

as an induction hypothesis, the theorem holds for all paths of length n′, for any n′< n.
We may write

g[n]i,j =
m∑

k=1

g[n′]i,kg[n− n′]k,j,

from which we conclude that g[n]i,j > 0 if and only if for some k we have g[n′]i,k> 0
and g[n− n′]k,j > 0. Under the induction hypothesis, the latter statement is equivalent
to the claim that for all n′< n there is a node k for which there exists a path of length
n′ from i to k and a path of length n− n′ from k to j. In turn, this claim is equivalent
to the claim that there exists a path of length n from i to j. The induction hypothesis
clearly holds for n= 1, which completes the proof. ///

It is interesting to compare Theorem 2.1 to the Chapman-Kolmogorov equations
(5.4) associated with the theory of Markov chains. It turns out that many important
properties of a Markov chain can be understood as the path properties of a directed
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graph. It is especially important to note that in Theorem 2.1 we can, without loss of
generality, replace the ‘1’ elements in AG with any positive number. Accordingly, we
give an alternative version of Theorem 2.2 for nonnegative matrices.

Theorem 2.2 Let A be an n× n matrix of nonnegative elements ai,j. Let a[k]i,j be
element i, j of Ak. Then a[n]i,j > 0 if and only if there exists a finite sequence of n+ 1
indices v0, v1, . . . , vn, with v0 = i, vn = j, for which avk−1,vk > 0 for 1≤ k≤ n.

Proof The proof follows that of Theorem 2.1. ///

The implications of this type of path structure are discussed further in Sections
2.3.4 and 5.2.

2.1.12 The binomial coefficient

For any n∈N0 the factorial is written n! =∏n
i=1 i. By convention, 0! =1 (compare to

(2.2)). The binomial coefficient is(
n
k

)
= n!

k!(n− k)! , n≥ k, n, k∈N0.

Given m≥ 2, if ni ∈N0, i= 1, . . . , m, and n= n1 + · · · + nm, then the multinomial
coefficient is(

n
n1, . . . , nm

)
= n!∏m

i=1 ni! .

The Binomial Theorem states that for a, b∈R and n∈N the following equality
holds

(a+ b)n =
n∑

i=0

(
n
i

)
aibn−i. (2.4)

2.1.13 Stirling’s approximation of the factorial

The factorial n! can be approximated accurately using series expansions. See, for exam-
ple, Feller (1968) (Chapter 2, Volume 1). Stirling’s approximation for the factorial is
given by

sn = (2π)1/2nn+1/2e−n, n≥ 1,

and if we set n! = snρn, we have

e1/(12n+1)<ρn< e1/(12n). (2.5)

The approximation is quite sharp, guaranteeing that (a) limn→∞ n!/sn = 1; (b) 1<
n!/sn< e1/12< 1.087 for all n≥ 1; (c) (12n + 1)−1< log(n!)− log(sn)< (12n)−1 for all
n≥ 1.
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2.1.14 L’Hôpital’s rule

Suppose f , g ∈C(X ) for open interval X , and for x0 ∈X we have limx→x0 f (x)=
limx→x0 g(x)= b, where b∈ {−∞, 0,∞}. The ratio f (x0)/g(x0) is not defined, but the
limit limx→x0 f (x)/g(x) may be. If f , g ∈C1(X − {x0}), and g′(x) �= 0 for x∈X − {x0}
then l’Hôpital’s Rule states that

lim
x→x0

f (x)/g(x)= lim
x→x0

f ′(x)/g′(x),

provided the right hand limit exists.

2.1.15 Taylor’s theorem

Suppose f is n times differentiable at x0. The nth order Taylor’s polynomial about x0

is defined as

Pn(x; x0)=
n∑

i=1

f (i)(x0)
i! (x− x0)i, (2.6)

and the remainder term is given by

Rn(x; x0)= f (x)− Pn(x; x0). (2.7)

The use of Pn(x; x0) to approximate f (x) is made precise by Taylor’s Theorem:

Theorem 2.3 Suppose f is n+ 1 times differentiable on [a, b], f ∈Cn([a, b]), and x0 ∈
[a, b]. Then for each x∈ [a, b] there exists η(x), satisfying min(x, x0)≤ η(x)≤max(x, x0)
for which

Rn(x; x0)= f (n+1)(η(x))
(n+ 1)! (x− x0)n+1, (Lagrange form) (2.8)

as well as η′(x), also satisfying min(x, x0)≤ η′(x)≤max(x, x0), for which

Rn(x; x0)= f (n+1)(η′(x))
(n+ 1)! (x− η′(x))n(x− x0). (Cauchy form) (2.9)

The Lagrange form of the remainder term is the one commonly intended, and
we adopt that convention here, although it is worth noting that alternative forms are
also used.

2.1.16 The lp norm

The lp norm for p≥ 0 is defined for any x= (x1, . . . , xn)∈R
n by

‖x‖p =
(

n∑
i=1

|xi|p
)1/p

.
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for p<∞, and

‖x‖∞ = max
i
|xi| .

when p=∞.

2.1.17 Power means

For a collection of positive numbers ã= (a1, . . . , an) the power mean is defined

as Mp [ã]=
(
n−1∑n

i=1 ap
i

)1/p
for finite nonzero p. The definition is extended to

p= 0,−∞,∞ by the existence of well defined limits, yielding M−∞ [ã]=mini{ai},
M0 [ã]= (∏n

i=1 ai
)1/n and M∞ [ã]=maxi{ai}.

Theorem 2.4 Suppose for positive numbers ã= (a1, . . . , an) and real number p∈
(−∞, 0) ∪ (0,∞) we define power mean Mp [ã]=

(
n−1∑n

i=1 ap
i

)1/p
. Then

lim
p→0

Mp [ã] =
(

n∏
i=1

ai

)1/n

=M0 [ã] , (2.10)

lim
p→∞Mp [ã] = max

i
{ai}=M∞ [ã] and (2.11)

lim
p→−∞Mp [ã] = min

i
{ai}=M−∞ [ã] , (2.12)

which justifies the conventional definitions of M−∞ [ã] , M0 [ã] and M∞ [ã]. In addition,
−∞≤p< q≤∞ implies Mp[ã]≤Mq[ã], with equality if and only if all elements of ã
are equal.

Proof By l’Hôpital’s Rule,

lim
p→0

log(Mp [ã] )= lim
p→0

n−1∑n
i=1 log(ai)a

p
i

n−1
∑n

i=1 ap
i

= n−1
n∑

i=1

log(ai)= log(M0 [ã] ).

Relabel ã so that a1 =maxi{ai}. Then

lim
p→∞Mp [ã]= lim

p→∞n−1a1

(
n∑

i=1

(ai/a1)p

)1/p

= a1 =max
i
{ai}=M∞ [ã] .

The final limit of (2.12) can be obtained by replacing ai with 1/ai.
That the final statement of the theorem holds for 0< p< q<∞ follows from

Jensen’s inequality (Theorem 4.13), and the extension to 0≤ p< q≤∞ follows from
the limits in (2.12). It then follows that the statement holds for −∞≤p< q≤ 0 after
replacing ai with 1/ai, and therefore it holds for −∞≤p< q≤∞. ///

The cases p= 1, 0,−1 correspond to the arithmetic mean, geometric mean and
harmonic mean which will be denoted AM [ã]≥GM [ã]≥HM [ã], respectively.
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2.2 EQUIVALENCE RELATIONSHIPS

The notion of equivalence relationships and classes will play an important role in our
analysis. Suppose X is a set of objects, and ∼ defines a binary relation between two
objects x, y∈X .

Definition 2.1 A binary relation ∼ on a set X is an equivalence relation if it satisfies
the following three properties for any x, y, z ∈X :

Reflexivity x∼ x.
Symmetry If x∼ y then y∼ x.
Transitivity If x∼ y and y∼ z then x∼ z.

Given an equivalence relation, an equivalence class is any set of the form Ex =
{y∈X | y∼ x}. If y∈Ex then Ey =Ex. Each element x∈X is in exactly one equivalence
class, so ∼ induces a partition of X into equivalence classes.

In Euclidean space, ‘is parallel to’ is an equivalence relation, while ‘is perpendicular
to’ is not.

For finite sets, cardinality is a property of a specific set, while for infinite sets,
cardinality must be understood as an equivalence relation.

2.3 LINEAR ALGEBRA

Formal definitions of both a field and a vector space are given in Section 6.3. For the
moment we simply note that the notion of real numbers can be generalized to that
of a field K, which is a set of scalars that is closed under the rules of addition and
multiplication comparable to those available for R. Both R and C are fields.

A vector space V ⊂K
n is any set of vectors x∈K

n which is closed under linear and
scalar composition, that is, if x, y∈V then ax+ by∈V for all scalars a, b. This means
the zero vector �0 must be in V, and that x∈V implies −x∈V.

Elements x1, . . . , xm of K
n are linearly independent if

∑m
i=1 aixi = 0 implies ai = 0

for all i. Equivalently, no xi is a linear combination of the remaining vectors. The span
of a set of vectors x̃= (x1, . . . , xn), denoted span(x̃), is the set of all linear combina-
tions of vectors in x̃, which must be a vector space. Suppose the vectors in x̃ are not
linearly independent. This means that, say, xm is a linear combination of the remaining
vectors, and so any linear combination in span(x̃) including xm may be replaced with
one including only the remaining vectors, so that span(x̃)= span(x1, . . . , xm−1). The
dimension of a vector space V is the minimum number of vectors whose span equals
V. Clearly, this equals the number in any set of linearly independent vectors which
span V. Any such set of vectors forms a basis for V. Any vector space has a basis.

2.3.1 Matrices

Let Mm,n(K) be the set of m× n matrices A, for which Ai,j ∈K (or, when required for
clarity, [A]i,j ∈K) is the element of the ith row and jth column. When the field need not
be given, we will write Mm,n =Mm,n(K). We will generally be interested in Mm,n(C),
noting that the real matrices Mm,n(R)⊂Mm,n(C) can be considered a special case of



Real analysis and linear algebra 17

complex matrices, so that any resulting theory holds for both types. This is important
to note, since even when interest is confined to real valued matrices, complex numbers
enter the analysis in a natural way, so it is ultimately necessary to consider complex
vectors and matrices. Definitions associated with real matrices (transpose, symmetric,
and so on) have analgous definitions for complex matrices, which reduce to the more
familiar definitions when the matrix is real.

The square matrices are denoted as Mm =Mm,m. Elements of Mm,1 are column
vectors and elements of M1,m are row vectors. A matrix in Mm,n is equivalently an
ordered set of m row vectors or n column vectors. The transpose AT ∈Mn,m of a matrix
A∈Mm,n has elements A′

j,i =Ai,j. For A∈Mn,k, B∈Mk,m we always understand matrix

multiplication to mean that C=AB∈Mn,m possesses elements Ci,j =∑k
k′=1 Ai,k′Bk′,j, so

that matrix multiplication is generally not commutative. Then (AT )T =A and (AB)T =
BTAT where the product is permitted.

In the context of matrix algrebra, a vector x∈K
n is usually assumed to be a

column vector in Mn,1. Therefore, if A∈Mm,n then the expression Ax is understood to
be evaluated by matrix multiplication. Similarly, if x∈K

m we may use the expression
xTA, understanding that x∈Mm,1.

When A∈Mm,n(C), the conjugate matrix is written Ā, and is the component-wise
conjugate of A. The identity ĀB̄=AB holds. The conjugate transpose (or Hermitian
adjoint) of A is A∗ = ĀT . As with the transpose operation, (A∗)∗ =A and (AB)∗ =B∗A∗
where the product is permitted. This generally holds for arbitrary products, that is
(ABC)∗ = (BC)∗A∗ =C∗B∗A∗, and so on. For A∈Mm,n(R), we have A= Ā and A∗ =
AT , so the conjugate transpose may be used in place of the transpose operation when
matrices are real valued. We always may write (A+ B)∗ =A∗ + B∗ and (A+ B)T =
AT + BT where dimensions permit.

A matrix A∈Mn(C) is diagonal if the only nonzero elements are on the diag-
onal, and can therefore be referred to by the diagonal elements diag(a1, . . . , an)=
diag(A1,1, . . . , An,n). A diagonal matrix is positive diagonal or nonnegative diagonal if
all diagonal elements are positive or nonegative.

The identity matrix I ∈Mm is the matrix uniquely possessing the property that
A= IA=AI for all A∈Mm. For Mm(C), I is diagonal, with diagonal entries equal to 1.
For any matrix A∈Mm there exists at most one matrix A−1 ∈Mm for which AA−1 = I,
referred to as the inverse of A. An inverse need not exist (for example, if the elements
of A are constant).

The inner product (or scalar product) of two vectors x, y∈C
n is defined as 〈x, y〉=

y∗x (a more general definition of the inner product is given in Definition 6.13). For any
x∈C

n we have 〈x, x〉=∑i x̄ixi =∑i |xi|2, so that 〈x, x〉 is a nonnegative real number,
and 〈x, x〉=0 if and only if x= �0. The magnitude, or norm, of a vector may be taken
as ‖x‖= (〈x, x〉)1/2 (a formal definition of a norm is given in Definition 6.6).

Two vectors x, y∈C
n are orthogonal if 〈x, y〉=0. A set of vectors x1, . . . , xm is

orthogonal if 〈xi, xj〉=0 when i �= j. A set of m orthogonal vectors are linearly inde-
pendent, and so form the basis for an m dimensional vector space. If in addition
‖xi‖= 1 for all i, the vectors are orthonormal.

A matrix Q∈Mn(C) is unitary if Q∗Q=QQ∗ = I. Equivalently, Q is unitary if and
only (i) its column vectors are orthonormal; (ii) its row vectors are orthonormal; (iii)
it possesses inverse Q−1 =Q∗. The more familiar term orthogonal matrix is usually
reserved for a real valued unitary matrix (otherwise the definition need not be changed).
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A unitary matrix preserves magnitude, since 〈Qx, Qx〉= (Qx)∗(Qx)= x∗Q∗Qx=
x∗Ix= x∗x=‖x‖2.

A matrix Q∈Mn(C) is a permutation matrix if each row and column contains
exactly one 1 entry, with all other elements equal to 0. Then y=Qx is a permutation
of the elements of x∈C

n. A permutation matrix is always orthogonal.
Suppose A∈Mm,n and let α⊂{1, . . . , m}, β⊂{1, . . . , n} be any two nonempty sub-

sets of indices. Then A[α,β]∈M|α|,|β| is the submatrix of A obtained by deleting all
elements except for Ai,j, i ∈α, j ∈β. If A∈Mn, and α=β, then A[α,α] is a principal
submatrix.

The determinant associates a scalar with A∈Mm(C) through the recursive formula

det(A)=
∑
i=1

(−1)i+jAi,j det(Ai,j)=
∑
j=1

(−1)i+jAi,j det(Ai,j)

where Ai,j ∈Mm−1(C) is the matrix obtained by deleting the ith row and jth column
of A. Note that in the respective expressions any j or i may be chosen, yielding
the same number, although the choice may have implications for computational
efficiency. As is well known, for A∈M1(C) we have det(A)=A1,1 and for A∈M2

we have det(A)=A1,1A2,2 − A1,2A2,1. In general, det(AT )= det(A), det(A∗)=det(A),
det(AB)= det(A) det(B), det(I)= 1 which implies det(A−1)= det(A)−1 when the inverse
exists.

A large class of algorithms are associated with the problem of determining a solu-
tion x∈K

m to the linear systems of equations Ax= b for some fixed A∈Mm and b∈K
m.

Theorem 2.5 The following statements are equivalent for A∈Mm(C), and a matrix
satisfying any one is referred to as nonsingular, any other matrix in Mm(C) singular:

(i) The columns vectors of A are linearly independent.
(ii) The row vectors of A are linearly independent.

(iii) det(A) �= 0.
(iv) Ax= b possesses a unique solution for any b∈K

m.
(v) x= �0 is the only solution of Ax= �0.

Matrices A, B∈Mn are similar, if there exists a nonsingular matrix S for which B=
S−1AS. Simlarity is an equivalence relation (Definition 2.1). A matrix is diagonalizable
if it is similar to a diagonal matrix. Diagonalization offers a number of advantages.
We always have Bk = S−1AkS, so that if A is diagonal, this expression is particularly
easy to evaluate. More generally, diagonalization can make apparent the behavior of
a matrix interpreted as a transformation. Suppose in the diagonalization B= S−1AS
we know that S is orthogonal, and that A is real. Then the action of B on a vector
is decomposed into S (a change in coordinates), A (elementwise scalar multiplication)
and S−1 (the inverse change in coordinates).

2.3.2 Eigenvalues and spectral decomposition

For A∈Mn(C), x∈C
n, and λ∈C we may define the eigenvalue equation

Ax= λx, (2.13)
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and if the pair (λ, x) is a solution to this equation for which x �= �0, then λ is an eigenvalue
of A and x is an associated eigenvector of λ. Any such solution (λ, x) may be called an
eigenpair. Clearly, if x is an eigenvector, so is any nonzero scalar multiple. Let Rλ be
the set of all eigenvectors x associated with λ. If x, y∈Rλ then ax+ by∈Rλ, so that Rλ

is a vector space. The dimension of Rλ is known as the geometric multiplicity of λ. We
may refer to Rλ as an eigenspace (or eigenmanifold). In general, the spectral properties
of a matrix are those pertaining to the set of eigenvalues and eigenvectors.

If A∈Mn(R), and λ is an eigenvalue, then so is λ̄, with associated eigenvectors
Rλ̄= R̄λ. Thus, in this case eigenvalues and eigenvectors occur in conjugate pairs.
Simlarly, if λ is real there exists a real associated eigenvector.

The eigenvalue equation may be written (A − λI)x= 0. However, by Theorem 2.5
this has a nonzero solution if and only if A− λI is singular, which occurs if and only if
pA(λ)= det(A− λI)= 0. By construction of a determinant, pA(λ) is an order n polyno-
mial in λ, known as the characteristic polynomial of A. The set of all eigenvalues of A
is equivalent to the set of solutions to the characteristic equation pA(λ)= 0 (including
complex roots). The multiplicity of an eigenvalue λ as a root of pA(λ) is referred to as its
algebraic multiplicity. A simple eigenvalue has algebraic multiplicity 1. The geometric
multiplicity of an eigenvalue can be less, but never more, than the algebraic multiplic-
ity. A matrix with equal algebraic and geometric multiplicities for each eigenvalue is a
nondefective matrix, and is otherwise a defective matrix.

We therefore denote the set of all eigenvalues as σ(A). An important fact is that
σ(Ak) consists exactly of the eigenvalues σ(A) raised to the kth power, since if (λ, x)
solves Ax= λx, then A2x=Aλx= λAx= λ2x, and so on. A quantity of particular
importance is the spectral radius ρ(A)=max{|λ| | λ∈ σ(A)}. There is sometimes interest
in ordering the eigenvalues by magnitude. If there exists an eigenvalue λ1 = ρ(A), this
is sometimes referred to as the principal eigenvalue, and any associated eigenvector is
a principal eigenvector.

In addition we have the following theorem:

Theorem 2.6 Suppose A, B∈Mn, and |A| ≤B, where |A| is the element-wise absolute
value of A. Then ρ(A)≤ ρ(|A|)≤ ρ(B).

In addition, if all elements of A∈Mn(R) are nonnegative, then ρ(A′)≤ ρ(A) for
any principal submatrix A′.

Proof See Theorem 8.1.18 of Horn and Johnson (1985). ///

Suppose we may construct n eigenvalues λ1, . . . , λn, with associated eigenvectors
ν1, . . . , νn. Then let �∈Mn be the diagonal matrix with ith diagonal element λi, and
let V ∈Mn be the matrix with ith column vector νi. By virtue of (2.13) we can write

AV =V�. (2.14)

If V is invertable (equivalently, there exist n linearly independent eigenvectors, by
Theorem 2.5), then

A=V�V−1, (2.15)

so that A is diagonalizable. Alternatively, if A is diagonalizable, then (2.14) can
be obtained from (2.15) and, since V is invertable, there must be n independent
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eigenvectors. The following theorem expresses the essential relationship between
diagonalization and spectral properties.

Theorem 2.7 For square matrix A∈Mn(C):

(i) Any set of k≤ n eigenvectors ν1, . . . , νk associated with distinct eigenvalues
λ1, . . . , λk are linearly independent,

(ii) A is diagonalizable if and only if there exist n linearly independent eigenvectors,
(iii) If A has n distinct eigenvalues, it is diagonalizable (this follows from (i) and (ii)),
(iv) A is diagonalizable if and only if it is nondefective.

Right and Left Eigenvectors

The eigenvectors defined by (2.13) may be referred to as right eigenvectors, while left
eigenvectors are nonzero solutions to

x∗A= λx∗, (2.16)

(note that some conventions do not explicitly refer to complex conjugates x∗ in (2.16)).
This similarly leads to the equation x∗(A− λI)= 0, which by an argument identical to
that used for right eigenvectors, has nonzero solutions if and only if pA(λ)= 0, giving
the same set of eigenvalues as those defined by (2.13). There is therefore no need to
distinguish between ‘right’ and ‘left’ eigenvalues. Then, fixing eigenvalue λ we may
refer to the left eigenspace Lλ as the set of solution x to (2.16) (in which case, Rλ now
becomes the right eigenspace of λ).

The essential relationship between the eigenspaces is summarized in the following
theorem:

Theorem 2.8 Suppose A∈Mn(C).

(i) For any λ∈ σ(A) Lλ and Rλ have the same dimension.
(ii) For any distinct eigenvalues λ1, . . . , λm from σ(A), any selection of vectors

xi ∈Rλi for i= 1, . . . , m are linearly independent. The same holds for selections
from distinct Lλ.

(iii) Right and left eigenvectors associated with distinct eigenvalues are orthogonal.

Proof Proofs may be found in, for example, Chapter 1 of Horn and Johnson
(1985). ///

Next, if V is invertible, multiply both sides of (2.15) by V−1 yielding

V−1A=�V−1.

Just as the column vectors of V are right eigenvectors, we can set U∗ =V−1, in which
case the ith column vector υi of U is a solution x to the left eigenvector equation (2.16)
corresponding to eigenvalue λi (the ith element on the diagonal of �). This gives the
diagonalization

A=V�U∗.
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Since U∗V = I, indefinite multiplication of A yields the spectral decomposition:

Am =V�mU∗ =
n∑

i=1

λm
i νiυ

∗
i . (2.17)

The apparent recipe for a spectral decomposition is to first determine the roots
of the characteristic polynomial, and then to solve each resulting eigenvalue equa-
tion (2.13) after substituting an eigenvalue. This seemingly straightforward procedure
proves to be of little practical use in all but the simplest cases, and spectral decompo-
sitions are often difficult to construct using any method. However, a complete spectral
decomposition need not be the objective. First, it may not even exist for many other-
wise interesting models. Second, there are many important problems related to A
that can be solved using spectral theory, but without the need for a complete spectral
decomposition. For example:

(i) Determining bounds ‖Ax‖≤ a ‖x‖ or ‖Ax‖≥ b ‖x‖,
(ii) Determining the convergence rate of the limit limk→∞ Ak =A∞,

(iii) Verifying the existence of a scalar λ and vector ν for which Aν= λν, and
guaranteeing that (for example) λ and ν are both real and positive.

Basic spectral theory relies on the identification of special matrix forms which
impose specific properties on a the spectrum. We next discuss two cases.

2.3.3 Symmetric, Hermitian and positive definite matrices

A matrix A∈Mn(C) is Hermitian if A=A∗. A Hermitian real valued matrix is
symmetric, that is, A=AT . The spectral properties of Hermitian matrices are quite
definitive (see, for example, Chapter 4, Horn and Johnson (1985)).

Theorem 2.9 A matrix A∈Mn(C) is Hermitian if and only if there exists a unitary
matrix U and real diagonal matrix � for which A=U�U∗.

A matrix A∈Mn(R) is symmetric if and only if there exists a real orthogonal Q
and real diagonal matrix � for which A=Q�QT.

Clearly, the matrices � and U may be identified with the eigenvalues and eigen-
vectors of A, with n eignevalue equation solutions given by the respect columns of
AU=U�U∗U=U�. An important implication of this is that all eigenvalues of a
Hermitian matrix are real, and eigenvectors may be selected to be orthonormal.

If we interpet x∈C
n as a column vector x∈Mn,1 we have quadratic form x∗Ax,

which is interpretable either as a 1 × 1 complex matrix, or as a scalar in C, as is
convenient.

If A is Hermitian, then (x∗Ax)∗ = x∗A∗x= x∗Ax. This means if z= x∗Ax∈C, then
z= z̄, equivalently x∗Ax∈R. A Hermitian matrix A is positive definite if and only
if x∗Ax> 0 for all x �= �0. If instead x∗Ax≥ 0 then A is positive semidefinite. A non-
symmetric matrix satisfying xTAx> 0 can be replaced by A′ = (A+ AT )/2, which is
symmetric, and also satisfies xTA′x> 0.
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Theorem 2.10 If A∈Mn(C) is Hermitian then x∗Ax is real. If, in addition, A is
positive definite then all of its eigenvalues are positive. If it is positive semidefinite
then all of its eigenvalues are nonnegative.

If A is positive semidefinite, and we let λmin and λmax be the smallest and largest
eigenvalies in σ(A) (all of which are nonnegative real numbers) then it can be shown
that

λmin = min
‖x‖=1

x∗Ax and λmax = max
‖x‖=1

x∗Ax.

If A is positive definite then λmin> 0. In addition, since the eigenvalues of A2 are the
squares of the eigenvalues of A, and since for a Hermitian matrix A∗ =A, we may also
conclude

λmin = min
‖x‖=1

‖Ax‖ and λmax = max
‖x‖=1

‖Ax‖ ,

for any positive semidefinite matrix A.

Any diagonalizable matrix A possesses a kth root, A1/k, meaning A= (A1/k
)k

.
Given diagonalization A=Q−1�Q, this is easily seen to be A1/k =Q−1�1/kQ, where
[�1/k]i,j =

(
�i,j
)1/k. If A is a real symmetric positive definite matrix then A1/2 is real,

symmetric and nonsingular.

2.3.4 Positive matrices

A real valued matrix A∈Mm,n(R) is positive or nonnegative if all elements are posi-
tive or nonnegative, respectively. This may be conveniently written A> 0 or A≥ 0 as
appropriate.

The spectral properties of A≥ 0 are quite precisely characterized by the Perron-
Frobenius Theorem which is discussed below.

If P∈Mn is a permutation matrix then the matrix PTAP is obtained from A by a
common permutation of the row and column indices.

Definition 2.2 A matrix A∈Mn(R) is reducible if n= 1 and A= 0, or there exists a
permutation matrix P for which

PTAP =
[

B C
0 D

]
(2.18)

where B and D are square matrices. Otherwise, A is irreducible.

The essential feature of a matrix of the form (2.18) is that the block of zeros is of
dimension a× b where a+ b= n. It can be seen that this same block remains 0 in
any power (PTAP)k. The same will be true for A, subject to a label permutation.
Clearly, this structure will not change under any relabeling, which is the essence of the
permutation transformation. The following property of irreducible matrices should be
noted:
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Theorem 2.11 If A∈Mn(R) is irreducible, then each column and row must contain
at least 1 nondiagonal nonzero element.

Proof Suppose all nondiagonal elements of row i of matrix A∈Mn(R) are 0. After
relabeling i as n, there exists a 1× (n− 1) block of 0’s conforming to (2.18). Similarly,
if all nondiagonal elements of column j are 0, relabeling j as 1 yields a similar block
of 0’s. ///

Irreducibility may be characterized in the following way:

Theorem 2.12 For a nonnegative matrix A∈Mn(R) the following statements are
equivalent:

(i) A is irreducible,
(ii) The matrix (I + A)n−1 is positive.

(iii) For each pair i, j there exists k for which [Ak]i,j > 0.

Condition (iii) is often strengthened:

Definition 2.3 A nonnegative matrix A∈Mn is primitive if there exists k for which
Ak is positive.

Clearly, Definition 2.3 implies statement (iii) of Theorem 2.12, so that a primitive
matrix is also irreducible.

The main theorem follows (see, for example, Horn and Johnson (1985)):

Theorem 2.13 (Perron-FrobeniusTheorem) For any primitive matrix A∈Mn, the
following hold:

(i) ρ(A)> 0,
(ii) There exists a simple eigenvalue λ1 = ρ(A),

(iii) There is a positive eigenvector ν1 associated with λ1,
(iv) |λ|<λ1 for any other eigenvalue λ.
(v) Any nonnegative eigenvector is a scalar multiple of ν1.

If A is nonnegative and irreducible, then (i)−(iii) hold.

If A is nonnegative, then ρ(A) is an eigenvalue, which possesses a nonnega-
tive eigenvector. Furthermore, if v is a positive eigenvector of A, then its associated
eigenvalue is ρ(A).

One of the important consequences of Theorem 2.13 is that an irreducible matrix
A possesses a unique principal eigenvalue ρ(A), which is real and positive, with a
positive principal eigenvector. Noting that AT is also irreducible, we may conclude
that the left principal eigenvector is also positive.

We cannot rule out ρ(A)= 0 for A≥ 0 (A≡ 0, among other examples). However, a
convenient lower bound for ρ(A) exists, a consequence of Theorem 2.6, which implies
that maxi Ai,i ≤ ρ(A).
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Suppose a nonnegative matrix A∈Mn is diagonalizable, and ρ(A)> 0. A normal-
ized spectral decomposition follows from (2.17):

[
ρ(A)−1A

]m = n∑
i=1

[
ρ(A)−1λi

]m
νiυ

∗
i .

To fix ideas, suppose A is primitive. By Theorem 2.13 there exists a unique principal
eigenvalue, say λ1 = ρ(A), and any other eigenvalue satisfies |λj|<ρ(A). Then

[
ρ(A)−1A

]m = ν1υ
∗
1 +O

(
mm2−1 [ρ(A)−1|λSLEM|

]m)
, (2.19)

where λSLEM is the second largest eigenvalue in magnitude and m2 is the algebraic
multiplicity of λSLEM, that is, any eigenvalue other than λ1 (not necessarily unique)
maximizing |λj|. Since |λSLEM|<ρ(A) we have limit

lim
m→∞

[
ρ(A)−1A

]m = ν1υ
∗
1, (2.20)

where ν1, υ1 are the principal right and left eigenvectors, with convergence at a geo-
metric rate O

([
ρ(A)−1|λSLEM|

]m). For this reason, the quantity |λSLEM| is often of
considerable interest. Note that in this representation, the normalization 〈νi, υi〉=1 is
implicit.

However, existence of the limit (2.20) for primitive matrices does not depend on
the diagonalizability of A, and is a direct consequence of Theorem 2.13. When A is
irreducible, the limit (2.20) need not exist, but a weaker statement involving asymptotic
averages will hold. These conclusions are summarized in the following theorem:

Theorem 2.14 Suppose nonegative matrix A∈Mn(R) is irreducibile. Let ν1, υ1 be
the principal right and left eigenvectors, normalized so that 〈ν1, υ1〉=1. Then

lim
N→∞

N−1
N∑

m=1

[
ρ(A)−1A

]m = ν1υ
∗
1. (2.21)

If A is primitive, then (2.20) also holds.

Proof See, for example, Theorems 8.5.1 and 8.6.1 of Horn and Johnson (1985). ///

A version of (2.21) is available for nonnegative matrices which are not necessarily
irreducible, but which satisfy certain other regularity conditions (Theorem 8.6.2, Horn
and Johnson (1985)).

2.3.5 Stochastic matrices

We say A∈Mn is a stochastic matrix if A≥ 0, and each row sums to 1. It is easily seen
that A�1= �1, and so λ= 1 and v= �1 form an eigenpair. Since �1> 0, by Theorem 2.13
we must have ρ(A)= 1.

In addition, for a general stochastic matrix, any positive eigenvector v satisfies
Av= v.
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If A is also irreducible then λ= 1 is a simple eigenvalue, so any solution to Av= v
must be a multiple of �1 (in particular, any positive eigenvector must be a multiple of �1).

If A is primitive, any nonnegative eigenvector v must be a multiple of �1. In addition,
all eigenvalues other than the principal have modulus |λj|< 1.

We will see that is can be very advantageous to verify the existence of a principal
eigenpair (λ1, ν1) where λ1 = ρ(A) and ν1> 0. This holds for any stochastic matrix.

2.3.6 Nonnegative matrices and graph structure

The theory of nonnegative matrices can be clarified by associating with a square matrix
A≥ 0 a graph G(A) possessing directed edge (i, j) if and only if Ai,j > 0. Following
Theorems 2.1–2.2 of Section 2.1.11, we know that An

i,j > 0 if and only if there is a path
of length n from i to j within G(A).

By (iii) of Theorem 2.12 we may conclude that A is irreducible if and only if all
pairs of nodes in G(A) communicate (see the definitions of Section 2.1.11).

Some important properties associated with primitive matrices are summarized in
the following theorems.

Theorem 2.15 If A∈Mn(R) is a primitive matrix then for some finite k′ we have
Ak> 0 for all k≥ k′.

Proof By Definition 2.3 there exists finite k′ for which Ak′ > 0. Let i, j be any ordered
pair of nodes in G(A). Since a primitive matrix is irreducible, we may conclude from
Theorem 2.11 that there exists node k such that (k, j) is an edge in G(A). By Theorem
2.2 there exists a path of length k′ from i to k, and therefore also a path of length k′
from i to j. This holds for any i, j, therefore by Theorem 2.2 Ak′+1> 0. The proof is
completed by successively incrementing k′. ///

Thus, for a primitive matrix A all pairs of nodes in G(A) communicate, and in
addition there exists k′ such that for any ordered pair of nodes i, j there exists a path
from i to j of any length k≥ k′.

Any irreducible matrix with positive diagonal elements is also primitive:

Theorem 2.16 If A∈Mn(R) is an irreducible matrix with positive diagonal elements,
then A is also a primitve matrix.

Proof Let i, j be any ordered pair of nodes in G(A). There exists at least one path
from i to j. Suppose one of these paths has length k. Since, by hypothesis, Aj,j > 0 the
edge (j, j) in included in G(A), and can be appended to any path ending at j. This means
there also exists a path of length k+ 1 from i to j. The proof is completed by noting
that there must be some finite k′ such that any two nodes may be joined by a path of
length no greater than k′, in which case Ak′ > 0. ///

A matrix can be irreducible but not primitive. For example, if the nodes of G(A)
can be partitioned into subsets V1, V2 such that all edges (i, j) are formed by nodes
from distinct subsets, then A cannot be primitive. To see this, suppose i, j ∈V1. Then
any path from i to j must be of even length, so that the conclusion of Theorem 2.15
cannot hold. However, if G(A) includes all edges not ruled out by this restriction, it is
easily seen that A is irreducible.
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Finally, we characterize the conectivity properties of a reducible nonnegative
matrix. Consider the representation (2.18). Without loss of generality we may take
the identity permutation P= I. Then the nodes of G(A) may be partitioned into V1

and V2 in such a way that there can be no edge (i, j) for which i ∈V1 and j ∈V2. This
means that no node in V2 is accessible from any node in V1, that is, there cannot be
any path beginning in V1 and ending in V2.

We will consider this issue further in Section 5.2, where it has quite intuitive
interpretations.



Chapter 3

Background – measure theory

Measure theory provides a rigorous mathematical foundation for the study of, among
other things, integration and probability theory. The study of stochastic processes,
and of related control problems, can proceed some distance without reference to mea-
sure theoretic ideas. However, certain issues cannot be resolved fully without it, for
example, the very existence of an optimal control in general models. In addition, if we
wish to develop models which do not assume that all random quantities are stochasti-
cally independent, which we sooner or later must, the theory of martingale processes
becomes indepensible, an understanding of which is greatly aided by a familiarity
with measure theoretic ideas. Above all, foundational ideas of measure theory will be
required for the function analytic construction of iterative algorithms.

3.1 TOPOLOGICAL SPACES

Suppose we are given a set �, and a sequence xk ∈�, k≥ 1. It is important to have
a precise definition of the convergence of xk to a limit. If �⊂R

n the definition is
standard, but if � is a collection of, for example, functions or sets, more than one
useful definition can be offered. We may consider pointwise convergence, or uniform
convergence, of a sequence of real-valued functions, each being the more appropriate
for one or another application.

One approach to this problem is to state an explicit definition for convergence
(xn →n x∈R iff ∀ε>0∃Nε � supn≥Nε

|xn − x|<ε). The much more comprehensive
approach is to endow � with additional structure which induces a notion of prox-
imity. This is achieved through the notion of a neighborhood of any x∈�, a type of
subset which includes x. If xk remains in any neighborhood of x for all large enough
k then we can say that xk converges to x.

This idea is formalized by the topology:

Definition 3.1 Let O be a collection of subsets of a set�. Then (�, O) is a topological
space if the following conditions hold:

(i) �∈O and ∅∈O,
(ii) if A, B∈O then A ∩ B∈O,
(iii) for any collection of sets {At} in O (countable or uncountable) we have∪tAt ∈O.

In this case O is referred to a topology on �. If ω∈O∈O then O is a neighborhood
of ω.
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The sets O are called open sets. Any complement of an open set is a closed set. They
need not conform to the common understanding of an open set, since the power set
P(�) (that is, the set of all possible subsets) satisfies the definition of a topological
space. However, the class of open sets in (−∞,∞) as usually understood does satisfy
the definition of a topological space, so the term ‘open’ is a useful analogy.

A certain flexibility of notation is possible. We may explicitly write the topological
space as (�, O). When it is not necessary to refer to specific properties of the topology
O, we can simply refer to� alone as a topological space. In this case an open set O⊂�
is understood to be an element of some topology O on �.

Topological spaces allow a definition of convergence and continuity:

Definition 3.2 If (�, O) is a topological space, and ωk is a sequence in �, then ωk

converges to ω∈� if and only if for every neighborhood O of ω there exists K such
that ωk ∈O for all k≥K.

A mapping f : X→Y between topological spaces X, Y is continuous if for any
open set E in Y the preimage f−1(E) is an open set in X.

A continuous bijective mapping f : X→Y between topological spaces X, Y is
a homeomorphism if the inverse mapping f−1 : Y →X is also continuous. Two
topological spaces are homeomorphic if there exists a homeomorphism f : X→Y.

We may have more than one topology on �. In particular, if O and O′ are
topologies on � then if O′ ⊂O we say O′ is a weaker topology than O, which is
a stronger topology than O′. Since convergence is defined as a condition imposed
on a class of open sets, a weaker topology necessarily has a less stringent defini-
tion of convergence. The weakest topology is O={�, ∅}, in which case all sequences
converge to all elements of �. The strongest topology is the set of all subsets of �.
Since the topology includes all singletons, the only convergent sequences are constant
ones, which essentially summarizes the notion of convergence on sets of countable
cardinality.

We can see that the definition of continuity for a mapping between topological
spaces f : X→Y requires that Y is small enough, and that X is large enough. Thus, if f
is continuous, it will remain continuous if Y is replaced by a weaker topology, or X is
replaced by a stronger topology. In fact, any f is continuous if Y is the weakest topology,
or X is the strongest topology. We also note that the definitions of semicontinuity of
Section 2.1.10 apply directly to real-valued functions on topologies.

The study of topology is especially concerned with those properties which are unal-
tered by homeomorphisms. From this point of view, two homeomorphic topological
spaces are essentially the same.

If �′ ⊂� and O′ = {U ∩�′ |U ∈O}, then (�′, O′) is also a topology, sometimes
referred to as the subspace topology. Note that �′ need not be an element of O.

An open cover of a subset E of a topological space X is any collection Uα, α∈ I
of open sets containing E in its union. We say E is a compact set if any open covering
of E contains a finite subcovering of E (the definition may be applied to X itself). This
idea is a generalization of the notion of bounded closure (see Theorem 3.3). Similarly,
a set E is a countably compact set if any countable open covering of E contains a finite
subcovering of E. Clearly, countable compactness is a strictly weaker property than
compactness.
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3.1.1 Bases of topologies

We say B(O)⊂O is a base for O if all open sets are unions of sets in B(O). This suggests
that a topology may be constructed from a suitable class of subsets G of � by taking
all unions of members of G and then including � and ∅. As might be expected, not all
classes G yield a topology in this manner, but conditions under which this is the case
are well known:

Theorem 3.1 A class of subsets G of � is a base for some topology if and only if
the following two conditions hold (i) every point x∈� is in at least one G∈G; (ii) if
x∈G1 ∩G2 for G1, G2 ∈G then there exists G3 ∈G for which x∈G3 ⊂G1 ∩G2.

The proof of Theorem 3.1 can be found in, for example, Kolmogorov and Fomin
(1970) (Chapter 3 of this reference can be recommended for this topic).

3.1.2 Metric space topologies

Definition 3.3 For any set X a mapping d : X ×X→ [0,∞) is called a metric, and
(X, d) is a metric space, if the following axioms hold:

Identifiability For any x, y∈X we have d(x, y)= 0 if and only if x= y,
Symmetry For any x, y∈X we have d(x, y)= d(y, x),
Triangle inequality For any x, y, z ∈X we have d(x, z)≤ d(x, y)+ d(y, z).

Convergence in a metric space follows from the metric, so that we write xn →n x
if limn d(xn, x)= 0. Of course, this formulation assumes that x∈X, and we may have
sequences exhibiting ‘convergent like’ behavior even is it has no limit in X.

Definition 3.4 A sequence {xn} in a metric space (X, d) is a Cauchy sequence if for
any ε>0 there exists N such that d(xn, xm)<ε for all n, m≥N. A metric space is
complete if all Cauchy sequences converge to a limit in X.

Generally any metric space can always be completed by extending X to include all
limits of Cauchy sequences (see Royden (1968), Section 5.4).

Definition 3.5 Given metric space (X, d), we say x∈X is a point of closure of E⊂X
if it is a limit of a sequence contained entirely in E. In addition, the closure Ē of E is
set of all points of closure of E. We say A is a dense subset of B if A⊂B and Ā=B.

Clearly, any point in E is a point of closure of E, so that E⊂ Ē. A metric space is
separable if there is a countable dense subset of X. The real numbers are separable,
since the rational numbers are a dense subset of R.

A metric space also has natural topological properties. We may define an open
ball Bδ(x)={y|d(y, x)<δ}.
Theorem 3.2 The class of all open balls of a metric space (X, d) is the base of a
topology.
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Proof We make use of Theorem 3.1. We always have x∈Bδ(x), so condition (i) holds.
Next, suppose x∈Bδ1 (y1) ∩ Bδ2 (y2). The for some ε>0 we have d(x, y1)<δ1 − ε and
d(x, y2)<δ2 − ε. Then by the triangle inequality x∈Bε(x)⊂Bδ1 (y1) ∩ Bδ2 (y2), which
completes the proof. ///

A topology on a metric space generated by the open balls is referred to as the metric
topology, which always exists by Theorem 3.2. For this reason, every metric space can
be regarded as a topological space. We adopt this convention, with the understanding
that the topology being referred to is the metric topology. We then say a topological
space (�, O) is metrizable (completely metrizable) if it is homeomorphic to a metric
space (complete metric space), in which case there exists a metric which induces the
topology O. This generalizes the notion of a metric space. Homeomorphisms form an
equivalence class, and metrics are equivalent if they induce the same topolgy.

Additional concepts of continuity exist for mappings f : X →Y between metric
spaces (X , dx) and (Y, dy). We say f is uniformly continuous if for every ε>0 there
exists δ>0 such that dx(x1, x2)<δ implies dy(f (x1), f (x2))<ε. A family of functions F
mapping X to Y is equicontinuous at x0 ∈X if for every ε>0 there exists δ>0 such
that for any x∈X satisfying dx(x0, x)<δ we have supf∈F dy(f (x0), f (x))<ε. We say F
is equicontinuous if it is equicontinuous at all x0 ∈X .

Theorem 3.3 (Heine-Borel Theorem) In the metric topology of R
m a set S is

compact if and only if it is closed and bounded.

3.2 MEASURE SPACES

In elementary probability, we have a set of possible outcomes �, and the ability to
assign a probability P(A) to any subset of outcomes A⊂�. If we ignore the interpre-
tation of P(A) as a probability, then P becomes simply a set function, which, as we
expect of a function, maps a set of objects to a number. Formally, we write, or would
like to write, P : P(�)→ [0, 1], where P(E) is the power set of E, or the class of all
subsets of E. It is easy enough to write a rule y= x2 + x+ 1 which maps any number
x to a number y, but this can become more difficult when the function domain is a
power set. If �={1, 2, . . .} is countable, we can use the following process. We first
choose a probability for each singleton in �, say P({i})= pi, then extend the definition
by setting P(E)=∑i∈E pi. Of course, there is nothing preventing us from defining an
alternative set function, say P∗(E)=maxi∈E pi, which would possess at least some of
the properties expected of a probability function. We would therefore like to know if
we may devise a precise enough definition of a probability function so that any choice
of pi yields exactly one extension, since definitions of random variables on countable
spaces are usually given as probabilities of singletons.

The situation is made somewhat more complicated when � is uncountable. It is
univerally accepted that a random variable X on R can be completely defined by the
cumulative distribution function F(x)=P{X≤ x}, which provides a rule for calculating
only a very small range of elements of P(R). We can, of course, obtain probabilities of
intervals though subtraction, that is P{X ∈ (a, b]}=F(b)− F(a), and so on, eventually
for open and closed intervals, and unions of intervals. We achieve the same effect if we
use a density f (x) to calculate probabilities P{X ∈E}= ∫E f (x)dx, since our methods
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of calculating an integral almost always assume E is a collection of intervals. We
are therefore confronted with the same problem, that is, we would like to define
probabilities for a simple class of events E∈ E ⊂P(�), for example, singletons or half
intervals (−∞, x], and extend the probability set function P to power sets P(�) in such
a way that P satisfies a set of axioms we regard as essential to our understanding of a
probability calculus.

The mathematical issues underlying such a construction relate to the concept of
measurability, and it is important to realize that it affects both countable and uncount-
able sets �. Suppose we propose a random experiment consisting of the selection of
any positive integer at random. We should have no difficulty deciding that the set Ek

consisting of all integers divisible by k should have probability 1/k. To construct such
a probability rule, we may set �= I+, and define a class of subsets F0 as those E⊂ I+
for which the limit

P∗(E)= lim
n→∞n−1 |E ∩ {1, . . . , n}|

exists. Then P∗ defines a randomly chosen integer X about which we can say
P(X is divisible by 7)= 1/7 or P(X is a square number)= 0. But we are also assum-
ing that each integer i has equal probability pi =α. If we extend P in the way we
proposed, we would end up with P(�) equalling 0 or ∞, whereas the probability that
the outcome is in � can only be 1. Similarly, it is possible to partition the unit interval
into a countable number of uncountably denumerable sets E1 which are each modulo
translations of a one member. Therefore, if we attempt to impose a uniform proba-
bility on the unit interval, we would require that P(E) for each E∈ E has the same
probability, and we would similarly be forced to conclude that P(�) equals 0 or ∞.
Both of these examples are the same in the sense that some principle of uniformity
forces us to assign a common probability to an infinite number of disjoint outcome.

As we will next show, the solution to these problems differs somewhat for count-
able and uncountable �. For countable �, the object will be to extend P fully to P(�),
and the method for doing so will explicitly rule out examples such as the randomly cho-
sen integer, by insisting at the start that

∑
i∈� pi = 1. It could be, and has been (Dubins

and Savage (1976)), argued that this type of restriction (formally known as countable
additivity, see below) is not really needed. It essentially forces P to be continuous in
some sense, which might not be an essential requirement for a given application. We
could have a perfectly satisfactory definition of a randomly chosen positive integer by
restricting our definition to a subset of P(�), as we have done. In fact, this is precisely
how we deal with uncountable �, by first devising a rule for calculating P(E) for inter-
vals E, then extending P to sets which may be constructed from a countable number
of set operations on the intervals, better known as the Borel sets (see below for formal
definition). The final step adds all subsets of all Borel sets of probability zero. This
class of sets is considerably smaller that P(�) for uncountable �, and means that a
probability set function is really no more complex an object than a function on �.

3.2.1 Formal construction of measures

Our discussion suggests that probabilities and integrals are similar objects, and both
usually are based on the construction of a measure space. We do so here, although it is
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possible to construct an axiomatic theory of probability based on the integral operator,
without the mediation of the measure space, the probability itself constructed as the
expectation of an indicator function (Whittle (2000)).

We have already outlined the steps in the creation of a probability measure, or of
measures in general (we need not insist that the measure of � is 1, or even finite). The
first step is to define the sets on which the measure will be constructed.

Definition 3.6 Let F be a collection of subsets of a set �. Then F is a field (or
algebra) if the following conditions hold:

(i) �∈F ,
(ii) if E∈� then Ec ∈�,

(iii) if E1, E2 ∈� then E1 ∪ E2 ∈�.

If (iii) is replaced with

(iv) if E1, E2, . . .∈� then ∪iEi ∈�.

Then F is a σ-field (or σ-algebra).

Condition (iii) extends to all finite unions, so we say that a field is closed under
complementation and finite union, and a σ-field is closed under complementation
and countable union. Both contain the empty set ∅=�c. By De Morgans’ Law
(A ∪ B)c =Ac ∩ Bc, so that a field (or σ-field) is closed under all finite (or countable) set
operations. For a field (or σ-field) F , a measurable partition of E∈F is any partition
of E consisting of elements of F .

Then for any class of subsets E of�we define σ(E) as the smallest σ-field containing
E , or equivalently the intersection of all σ-fields containing E (which must also be a
σ-field). It is usually referred to as the σ-field generated by E . This always exists, since
P(�) is a σ-field, but the intention is usually that σ(E) will be considerably smaller.

If E⊂� and F = σ(E) then σ(E ∩ E)=F ∩ E. If F , F ′ are two σ-fields on � and
F ′ ⊂F , we say that F ′ is a sub σ-field of F .

Example 3.1 Let F0 be a class of sets consisting of �= (∞,∞), and all finite unions
of intervals (a, b], including (∞, b] and ∅= (b, b]. This class of sets is closed under
finite union and complementation, and so is a field on �. Then σ(F0) is the σ-field
consisting of all intervals, and all sets obtainable from countably many set operations
on intervals. Note that σ(F0) could be equivalently defined as the smallest σ-field
containing all intervals in �, or all closed bounded intervals, all open sets, all sets
(∞, b], and so on.

We next define a measure:

Definition 3.7 A set function µ : F → R̄+, where F is a σ-field on �, is a measure if
µ(∅)= 0 and if it is countably additive, that is for any countable collection of disjoint
sets E1, E2, . . . we have

∑
i µ(Ei)=µ (∪iEi). If F is a field, then µ is called a measure

if countable additivity holds whenever ∪iEi ∈F .

If Definition 3.7 did not require that µ(∅)= 0, then it would hold for µ≡∞.
However, that µ(∅)= 0 for any other measure would follow from countable additivity,
since we would have µ(E′)<∞ for some E′, and µ(E′)=µ(E′)+ µ(∅).
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A measure µ is a finite measure if µ(�)<∞, and is a stochastic measure, or prob-
ability measure, if µ(�)= 1. We sometimes need to consider a substochastic measure,
for which µ(�)≤ 1. We say µ is a σ-finite measure if there exists a countable collection
of subsets Ei ∈F such that ∪iEi =� with µ(Ei)<∞. We refer to (�, F) as a measur-
able space if F is a σ-field on �, then (�, F ,µ) is a measure space if µ is a measure on
(�, F). We may also refer specifically to a finite, probability or σ-finite measure space
as appropriate.

We have assumed that µ(E) is always nonnegative. Under some conventions the
term positive measure is used instead. We will encounter signed measures, that is, set
functions which share the properties of a measure, but are allowed to take negative
values.

We have already referred to the countable additivity property as a type of continuity
condition. Formally, we may define sequences of sets in terms of increasing unions.
If E1 ⊂E2 ⊂ . . . we write Ei ↑E=∪jEj. For any sequence A1, A2, . . . we have Ei =
∪i

j=1Aj ↑∪∞j=1Aj =∪∞j=1Ej, so that increasing sequences appear quite naturally. By taking
complements, we equivalently have for any decreasing sequence F1 ⊃ F2 ⊃ . . . the limit
Fi ↓ F=∩jFj, and any sequence A1, A2, . . . generates a decreasing sequence by setting
Fi =∩i

j=1Aj ↓∩∞j=1Aj =∩∞j=1Fj.
This leads to a definition of continuity for measure spaces. It is important to note

that continuity holds axiomatically for any countably additive measure (as all measures
in this book will be), so this need not be verified independently. We summarize a
number of such properties:

Theorem 3.4 Suppose we are given a measure space (�, F ,µ). The following
statements hold.

(i) A⊂B implies µ(A)≤µ(B),
(ii) µ(A)+ µ(B)=µ(A ∪ B)+ µ(A ∩ B),

(iii) Ei ↑E implies limi µ(Ei)=µ(E),
(iv) Fi ↓ F implies limi µ(Fi)=µ(F),

(v) For any sequence A1, A2, . . . in F we have limi µ
(
∪i

j=1Aj

)
=µ

(
∪∞j=1Aj

)
(vi) For any sequence A1, A2, . . . in F we have limi µ

(
∩i

j=1Aj

)
=µ

(
∩∞j=1Aj

)
.

Proof (i) Write the disjoint union B=A ∪ (B− A), then µ(B)=µ(A)+ µ(B− A).
(ii) Write the disjoint unions A= (A− B) ∪ AB, B= (B− A) ∪ AB, A ∪ B= (A− B) ∪
(B− A) ∪ AB, then apply additivity. (iii) We write D1 =E1, Di =Ei − Ei−1 for i≥ 2.
The sequence D1, D2, . . . is disjoint, with Ei =∪j

i=1Dj and E=∪iDi. So, by countable
additivity we have µ(E)=µ( ∪i Di)=∑i µ(Di)= limi

∑i
j=1 µ(Dj)= limi µ(Ei). Then

(v) follows after setting Ei =∪i
j=1Aj and applying (iii). Finally, (iv) and (vi) follow

by expressing a decreasing sequence as an increasing sequence of the complements,
then applying (iii) and (iv). ///

3.2.2 Completion of measures

Any measure satisfies µ(∅)= 0 but ∅ need not be the only set of measure zero. We can
refer to any set of measure zero as a null set. It seems reasonable to assign a measure
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of zero to any subset of a null set, since, if it was assigned a measure, it could only be 0
under the axioms of a measure. However, the definition of a measure space (�, F ,µ)
does not force F to contain all subsets of null sets, and counterexamples can be readily
constructed. Accordingly, we offer the following definition:

Definition 3.8 A measure space (�, F ,µ) is complete if A∈F whenever A⊂B and
µ(B)= 0.

Any measure space may be completed by considering the class of subsets M={A |
A⊂B, µ(B)= 0}, and setting µ∗(A)= 0 for all A∈M and µ∗(B)=µ(B) for all B∈F .
It can be shown that F∗ =F ∪M is a σ-field and µ∗ is a measure, so that (�, F∗,µ∗)
is a complete measure space.

3.2.3 Outer measure

Definition 3.9 A set function λ on all subsets of� is an outer measure if the following
properties are satisfied:

(i) λ(∅)= 0,
(ii) A⊂B⇒ λ(A)≤ λ(B),
(iii) A⊂∪∞i=1Ai ⇒ λ(A)≤∑∞

i=1 λ(Ai).

Property (ii) is referred to as monotonicity and property (iii) is referred to as countable
subadditivity.

The outer measure differs from the measure in that it is defined on all subsets, so
does not require a definition of measurability. However, it does induce a concept of
measurability, and in fact directly induces a measure space.

Definition 3.10 Given an outer measure λ on � a set E is λ-measurable if λ(A)=
λ(A ∩ E)+ λ(A ∩ Ec) for all A⊂�. By countable subadditivity, this condition can be
replaced by λ(A)≥ λ(A ∩ E)+ λ(A ∩ Ec) for all A⊂�.

Theorem 3.5 Given an outer measure λ on �, any set E for which λ(E)= 0 is
λ-measurable.

Proof Suppose A⊂� and λ(E)= 0. By monotonicity 0≤ λ(AE)≤ λ(E)= 0 and
λ(A)≥ λ(AEc), so that Definition 3.10 holds. ///

We can always restrict λ to a class of subsets E of �. In fact, inducing a measure
space from λ is quite straightforward:

Theorem 3.6 Given an outer measure λ on �, the class B of λ-measurable sets is a
σ-field in which λ is a complete measure.

Proof See, for example, Theorem 12.1 of Royden (1968). ///

Many authors reserve a distinct symbol for a set function restricted to a class of
subsets. Theorem 3.6 then describes a measure space (�, B, λB) where λB is λ restricted
to B.
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3.2.4 Extension of measures

Theorem 3.6 permits the construction of a measure space by restricting an outer mea-
sure λ to the class of λ-measurable sets, which can be shown to be a σ-field. The
complementary procedure is to define a measure µ0 on a simpler class of subsets E ,
then to extend µ0 to a measure µ on a σ-field which includes E . The objective is to
do this so that µ and µ0 agree on the original sets E while µ satisfies Definition 3.7.
In addition, we wish to know if any measure µ which achieves this is unique.

We have already introduced the field, in addition to the σ-field (Definition 3.6).
In addition, the idea of extending any class of sets E to the σ-field σ(E) is well defined.
A class of sets, simpler than a field, from which an extension may be constructed is
given by the following definition:

Definition 3.11 A class of subsets A of� is a semifield (semialgebra) if the following
conditions hold:

(i) A, B∈A⇒A ∩ B∈A.
(ii) A∈A⇒Ac is a finite disjoint union of sets in A.

A σ-field is a field, which is a semifield. The latter is a quite intuitive object. The
set of right closed intervals in R, including (−∞, a] and (a,∞) and ∅ is a semifield,
which is easily extended into R

n.
If A is a semifield, then the class of subsets F0 consisting of ∅ and all finite disjoint

unions of sets in A can be shown to be a field, in particular, the field generated by
semifield A.

Theorem 3.7 Suppose A is a semifield on � and F0 is the field generated by A. Let
µ be a nonnegative set function on A satisfying the following conditions:

(i) If ∅∈A then µ(∅)= 0,
(ii) if A∈A is a finite disjoint union of sets A1, . . . , An in A then µ(A)=∑n

i=1 µ(Ai).
(iii) if A∈A is a countable disjoint union of sets A1, A2, . . . in A then µ(A)≤∑n

i=1 µ(Ai).

Then there exists a unique extension of µ to a measure on F0.

We have used the term outer measure to refer to a set of axioms applicable to a
set function defined on all subsets of a space �. The term is also used to describe a
specific constructed set function associated with Lebesgue measure (see Section 3.2.6).

Definition 3.12 Suppose µ is a nonnegative set function defined on a class of subsets
A of � which contains ∅ and covers �. Suppose µ(∅)= 0. The outer measure µ∗
induced by µ is defined as

µ∗(E)= inf
E⊂∪iAi

∑
i=1

µ(Ai), (3.1)

where the infimum is taken over all countable covers of E⊂� from A.

It may be shown that under Definition 3.12 the set function (3.1) is an outer
measure in the sense of Definition 3.9. Our main extension theorem follows (see, for
example, Section 12.2, Royden (1968)).
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Theorem 3.8 (Carathéodory Extension Theorem) Suppose µ is a measure on a
field F0 of subsets of �. Let µ∗ be the outer measure induced by µ. Let F∗ be the
set of all µ∗-measurable sets, and let µ′ be µ∗ restricted to F∗. Then F∗ is a σ-field
containing F0 on which µ′ is a measure.

If µ is finite, or σ-finite then so is µ′. Let µ′′ be the restriction of µ∗ to σ(F0). If µ
is σ-finite then µ′′ is the unique extension of µ to σ(F0).

The progression from a semifield to a field, and finally to a σ-field is a natural
one. In R

n the semifield is adequate to describe assignment of measures to n-rectangles
and their finite compositions. If this can be done in a coherent manner, extension to a
measure space follows as described in Theorem 3.8.

However, it must be noted that several extensions are described in Theorem 3.8.
The extension to the µ-measurable sets F∗ is complete (see Theorem 3.6). Formally,
this is not the same extension as that to σ(F0). In other words the measure spaces
(�, F∗,µ′) and (�, σ(F0),µ′′) are not generally the same. In fact, this distinction plays
a notable role in the theory of stochastic optimization.

3.2.5 Counting measure

We will usually encounter one of two types of measures. If we are given a countable
set S, then µ(E)= |E ∩ S| is called counting measure, and satisies the definition of a
measure. It is important to note that E is not necessarily a subset of S, so that a counting
measure can be defined on any space containing S. Many games of chance are good
examples of counting measures.

3.2.6 Lebesgue measure

The second commonly encountered measure is the Lebesgue measure. On �=
(−∞,∞) the set of intervals (a, b], taken to include (−∞, b] and (a,∞) is a semifield
(we may also simply take the class of all intervals). We assign measure m

(
(a, b]

)= b− a
to all bounded intervals, and ∞ to all unbounded intervals. An application of Theo-
rems 3.7 and 3.8 yields Lebesgue measure, which a completion of a measure which
consistently measures the length of intervals. The same procedure may be used to con-
struct Lebesgue measure in R

n by assigning the usual geometric volume to rectangles.
Whether or not a set is Lebesgue measurable can be resolved by Definition 3.10 and
the outer measure referenced in Theorem 3.8. A subset of [0, 1) which is not Lebesgue
measurable exists, given the axiom of choice, known as the Vitali set (Section 3.4,
Royden (1968)).

3.2.7 Borel sets

For any topological space (�, O) the Borel sets are taken to be B= σ(O), that is, the
smallest σ-field containing all open sets (or equivalently all closed sets). Suppose we
are given a measure space (�, F ,µ). If � is also a topological space (�, O), this will
generally mean we expect all open sets to be measurable, so that O⊂F and therefore
B⊂F . Thus, when all open sets are measurable, µ may be restricted to the Borel sets.
Any measure defined on B is a Borel measure.
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There can be an important advantage to characterizing measurability in terms
of a topology, provided the topology has sufficient structure. For example, if � is
metrizable, then the Borel sets form the smallest class of subsets containing all open
sets which is closed under a countable number of union and intersection operations
(Proposition 7.11, Bertsekas and Shreve (1978)).

At this point, we have defined the properties sufficient to define a type of space
possessing a useful balance of generality and structure, namely the Polish space.

Definition 3.13 A Polish space is a separable completely metrizable topological space.
A Borel space is a Borel subset of a Polish space.

3.2.8 Dynkin system theorem

The Dynkin system theorem is a quite straightforward statement describing the rela-
tionship between various classes of subsets. It permits a number of quite elegant proofs,
and turns out to play a specific role in the theory of dynamic programming.

Definition 3.14 Given a set � and classes of subsets E and L

(i) E is a π-system if A, B∈ E implies AB∈ E .
(ii) L is a λ-system if

(a) �∈L,
(b) A, B∈L and B⊂A implies A− B∈L,
(c) An ∈L for n≥ 1, with An ↑A implies A∈L.

Here, we refer to π- and λ-systems, while other conventions refer to a λ-system as
a Dynkin system, or D-system.

A σ-field is both a π-system and a λ-system. A λ-system is closed under comple-
mentation. A λ-system that is also a π-system (or is closed under finite union) is also
a σ-field. The main theorem follows (see, for example, Billingsley (1995) for a proof):

Theorem 3.9 (Dynkin System Theorem) Given set �, if E is a π-system and L is
a λ-system, then E ⊂L implies σ(E)⊂L.

An important consequence is the following:

Theorem 3.10 Given set �, if E is a π-system, and µ1,µ2 are two finite measures
on σ(E) for which µ1(E)=µ2(E) for all E∈ E , then µ1(E′)=µ2(E′) for all E′ ∈ σ(E).

Proof Let E ′ be the collection of sets E′ for which µ1(E′)=µ2(E′). It is easily verified
that E ′ is a λ-system. If E ⊂ E ′ then by Theorem 3.9 σ(E)⊂ E ′. ///

A topology is also a π-system, so that any measures which agree on the open sets
must agree on the Borel sets by Theorem 3.10. The intervals (a, b], with ∅, also form
a π-system.

3.2.9 Signed measures

Under Definition 3.7 the value of a measure is always nonnegative, which certainly
conforms to the intuitive notion of measure. However, even when this is the intention
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we may have the need to perform algebraic operations on them, and it will prove quite
useful to consider vector spaces of measures. In this case, an operation involving two
measures such as µ1 + µ2 would result in a new measure, say ν=µ1 + µ2. To be sure,
ν could be evaluated by addition ν(E)=µ1(E)+ µ2(E) in R for any measurable set E,
but it is an entirely new measure. Subtraction seems just as reasonable, and we can
define a set function by the evaluation ν(E)=µ1(E)− µ2(E), represented algebraically
as ν=µ1 − µ2. Of course, ν(E) might be negative, but we would expect it to share the
essential properties of a measure.

Accordingly, Definition 3.7 can be extended to set functions admitting negative
values.

Definition 3.15 A set function µ : F → R̄, where F is a σ-field on �, is a signed
measure if µ(∅)= 0 and if it is countably additive, that is for any countable collection
of disjoint sets E1, E2, . . . we have

∑
i µ(Ei)=µ

(∪jEj
)
, where the summation is either

absolutely convergent or properly divergent.

This definition does not appear to differ significantly from Definition 3.7, but the
possibility of negative values introduces some new issues. For example, suppose we
wish to modify Lebesgue measure m on R by assigning negative measure below 0,
that is:

ms(E)=−m(E ∩ (−∞, 0))+m(E ∩ [0,∞)).

We must be able to assign a measure m((∞,−∞)), which by symmetry should be 0.
However, countable additivity fails for the subsets (i − 1, i], i ∈ I, since the implied
summation is not absolutely convergent.

When signed measures are admitted, the notion of a positive measure must be
clarified. It is possible, for example, to have µ(A)≥ 0, with µ(B)< 0 for some B⊂A.
Accordingly, we say a measurable set A is positive if µ(B)≥ 0 for all measurable B⊂A.
A set is negative if it is positive for −µ. A measure on (�, F) is positive (negative) if �
is a positive (negative) set. A set is a null set if it is both positive and negative.

The monotonicity property does not hold for signed-measures. If A is positive and
B is (strictly) negative, then we have µ(A ∪ B)<µ(A). If µ is a positive measure on
(�, F) then µ(�)<∞ forces all measurable sets to be of finite measure. Similarly, a
signed measure is finite if all measurable sets are of finite measure. In fact, to define
a signed measure as finite, it suffices to assume µ(�) is finite. Otherwise, suppose for
some E∈F we have µ(E)=∞. Definition 3.15 precludes assignment of a measure to
Ec ∈F . The definition of the σ-finite property is the same for signed measures as for
positive measures.

3.2.10 Decomposition of measures

We will encounter the situation in which we are given a single measurable space M=
(�, F) on which a class of measures is to be defined. Suppose for example, we have a
probability measure P on �= [0, 1] on which P assigns a probability of 1 to outcome
1/2. For this case we need only a σ-field generated by {1/2}. However, we may wish
to consider a family of probability measures defined on a single σ-field, as well as a
method of calculating expected values. For greater generality, we might like F to be the
Borel sets on [0, 1] when continuous random variable arise, but we would also like to
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include our singular example. This poses no particular problem, since this probability
measure is easily described by P(E)= I{1/2∈E} for all Borel sets E.

To clarify this issue, we introduce a few definitions.

Definition 3.16 Let ν and µ be two measures on M= (�, F). If µ(E)= 0⇒ ν(E)= 0
for all E∈F , then ν is absolutely continuous with respect to µ. This is written ν)µ,
and we also say ν is dominated by µ. If ν)µ and µ) ν then ν and µ are equivalent.
Conversely ν and µ are singular if there exists E∈F for which ν(E)=µ(Ec)= 0, also
written ν⊥µ.

If ν is absolutely continous with respect to a counting measure on S⊂�=R,
and µ is absolutely continuous with respect to Lebesgue measure, then ν⊥µ since
ν(Sc)=µ(S)= 0. Note that a pair of measures need not be either singular or equivalent
(consider a measure describing a random waiting time W which is continuous above
0, but for which P(W = 0)> 0, and Lebesgue measure on the positive real numbers).

The Lebesgue Decomposition Theorem will prove useful:

Theorem 3.11 (Lebesgue DecompositionTheorem) Suppose ν,µ are two σ-finite
signed measures defined on a common measurable space (�, F). Then there exists a
unique decomposition ν= ν0 + ν1 for which ν1 )µ and ν0 ⊥µ.

We have noted that signed measures arise naturally as differences of positive mea-
sures. It turns out that any signed measure can be uniquely represented this way. This
is a consequence of the Jordan-Hahn Decomposition Theorem.

Theorem 3.12 (Jordan-Hahn Decomposition Theorem) Suppose µ is a signed
measure on F .

(i) [Hahn Decomposition] There exists E∈F such that E is positive and Ec is
negative. This decomposition is unique up to null sets.

(ii) [Jordan Decomposition] There exists a unique pair of mutually singular
(positive) measures µ+,µ− for which µ=µ+ − µ−.

The uniqueness of the Jordan decomposition µ=µ+ − µ− permits the definition
of the total variation measure |µ|(E)=µ+(E)+ µ−(E).

3.2.11 Measurable functions

A commonly encountered assumption is that a function is a (usually Borel or Lebesgue)
‘measurable mapping’. It is worth discussing what is meant by this, understanding
that this definition does impose some restrictions on the functions we may consider.
We have the definition:

Definition 3.17 Given two measurable spaces (�i, Fi), i= 1, 2 a mapping f :�1 →�2

is measurable if f−1(A)∈F1 for all A∈F2.

Rather like the definition of a continuous mapping between topologies, a measur-
able functions remains measurable if F1 is replaced by a strictly larger σ-field, or if F2

is replaced by a strictly smaller σ-field.
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The following theorem is easily proven by noting that f−1(A ∪ B)= f−1(A) ∪
f−1(B) and f−1(Ac)= [f−1(A)

]c.
Theorem 3.13 If f maps a measurable space (�, F) to range X then the collection
FX of sets E⊂X for which f−1(E)∈F is a σ-field.

By Definition 3.17 the idea of a measurable function depends on separate defini-
tions of measurability on the domain and the range. In many applications, when using
real-valued functions it suffices to take the Borel sets as measurable on the range.
We therefore adopt the convention that a function f : X→R is F-measurable, or a
measurable mapping on (X, F), if it is a measurable mapping from (X, F) to (R, B).
This simplifies somewhat the characterization of a real-valued measurable function.
Suppose f is a real-valued function on (X, F). Suppose further that

{x∈X | f (x)≤α} ∈F for all α∈R. (3.2)

By Theorem 3.13 the class of subsets E⊂R for which f−1(E)∈F is a σ-field, and by
assumption it contains all intervals (∞,α], and so also contains the Borel sets (since
this is the smallest σ-field containing these intervals). Of course, <, > or ≥ could
replace ≤ in the inequalities of (3.2). We therefore say a real-valued funtction f is
Borel measurable, or Lebesgue measurable, if F are the Borel sets, or the Lebesgue
sets. Similarly, measurablility of a mapping from a measurable space (�, F) to R

n will
be defined wrt the Borel sets on R

n.
Nonmeasurable mappings usually exist, and are easily constructed using indicator

functions of nonmeasurable sets.
We note that composition preserves measurability.

Theorem 3.14 If f , g are measurable mappings from (�1, F1) to (�2, F2), and from
(�2, F2) to (�3, F3) respectively, then the composition g ◦ f is a measurable mapping
from (�1, F1) to (�3, F3).

Note that Theorem 3.14 does not state that compound mappings of Lebesgue
measurable mappings are Lebesgue measurable, since only preimages of Borel sets
(and not Lebesgue sets, a strictly larger class) need be Lebesgue measurable.

If X is a topological space (usually a metric space), then F(X ) will be the set of
mappings f : X →R which are measurable with respect to the Borel sets on X and R.

Theorem 3.15 If f , g ∈F(X ), then so are f + g, fg, f ∨ g and f ∧ g. If fn is a countable
sequence of measurable mappings, then lim supn fn, lim infn fn, supn fn and infn fn are
measurable mappings.

Closure of the class of measurable functions is given only for countable operations.
Suppose E⊂ [0, 1] is not Lebesgue measurable. For each z ∈E define function fz(x)=
I{x= z}. Then supz∈E fz = I{x∈E}, which is not Lebesgue measurable, even though
each fz is.

In the context of a measure space, the notion of the equality of two functions is
often usefully reduced to equivalence classes of functions. In particular, given a mea-
sure space (�, F ,µ), we might find it useful to consider f and g equal if f (x)= g(x)
except for x∈E for whichµ(E)= 0. Such properties are said to hold almost everywhere
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(that is, except on a set of measure zero) with respect to µ, usually shortened
to ae[µ].

We have Dini’s Theorem (Section 9.2, Royden (1968)):

Theorem 3.16 (Dini’sTheorem) If fn is a sequence of usc functions on a countably
compact set X which decreases monotonically to 0 then it also converges uniformly
to 0.

3.3 INTEGRATION

Suppose we have measure space (�, F ,µ) and a measurable function f :�→R.
We say f is a simple function if there is a finite measurable partition A1, . . . , Am

of � and finite constants a1, . . . am such that f (x)=∑m
i=1 aiI{x∈Ai}. We should have

little disagreement in defining the integral of a simple function as

∫
�

fdµ =
m∑

i=1

aiµ(Ai).

Then, if f is the limit of a sequence of simple functions, the integral of f should be the
limit of the integrals of the sequence. Accordingly, for nonnegative f we may define

∫
�

fdµ = sup
{∫

�

sdµ | all simple functions s: 0≤ s≤ f
}
. (3.3)

If E∈F then we let
∫

E fdµ= ∫
�

fIEdµ. This defines the Lebesgue integral, which is
the standard method of constructing integrals on measure spaces. This contrasts with
the Riemann integral, which uses a similar method, except that step functions replace
simple functions as the approximators. A function is Riemann integrable with respect
to Lebesque measure on a bounded interval if and only if it is continuous ae[µ], and
equals the Lebesgue measure when this is the case (for example, Ash (1972) Theorem
1.7.1).

The definition is extended to general functions by the decomposition f = f+ − f−,
where f+ = fI{f > 0} and f− =−fI{f < 0} are nonnegative, by evaluating

∫
�

fdµ=
∫
�

f+dµ−
∫
�

f−dµ.

Some care is needed when asserting that an integral exists. If f is positive it may be the
case that

∫
�

fdµ=∞. On the other hand, if
∫
�

f+dµ= ∫
�

f−dµ=∞, then we must
regard

∫
�

fdµ as undefined in the sense of 0/0. However, the convention is usually to
say that

∫
�

fdµ exists, or that f is µ-integrable if
∫
�

f+dµ and
∫
�

f−dµ are both finite.
In this case, we would say that

∫
�

fdµ is defined if at least one of the components is
finite. Thus, the integral of f (x)= x over Lebesgue measure on R is not defined, so
we cannot assign a value to

∫
xdx. In contrast we say that f (x)= x2 is not integrable

because
∫

x2dx=∞, but the integral is defined.
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3.3.1 Convergence of integrals

If we are given a sequence fn ∈F(X ) and a measure µ on X , there will often be a need
to relate the convergence properties of fn to those of

∫
X fndµ. The following theorems

are therefore of considerable importance.

Theorem 3.17 (Fatou’s Lemma) For any sequence fn ≥ 0 ae[µ]

lim inf
n→∞

∫
X

fndµ≥
∫

X
lim inf

n→∞ fndµ.

In many statements of Fatou’s lemma the sequence fn is assumed to possess a limit,
but this does not strengthen the conclusion.

Theorem 3.18 (Monotone Convergence Theorem) For any sequence fn ≥ 0 for
which fn ↑ f ae[µ]

lim
n→∞

∫
X

fndµ=
∫

X
fdµ.

Theorem 3.19 (Lebesgue Dominated Convergence Theorem) Let fn be a
sequence with limit f ae[µ]. If there exists function h≥ |fn| ae[µ] for which

∫
X hdµ<∞

then

lim
n→∞

∫
X

fndµ=
∫

X
fdµ.

An important special case of the dominated convergence theorem is often stated
independently:

Theorem 3.20 (Bounded ConvergenceTheorem) Let fn be a sequence with limit
f ae[µ]. Suppose µ is a finite measure, and there exists constant M≥ |fn| ae[µ]. Then

lim
n→∞

∫
X

fndµ=
∫

X
fdµ.

A counter-example is not difficult to construct. If µ is Lebesgue measure, f (x)≡ 0
and fn(x)= nI{x∈ (0, 1/n)} then fn →n f ,

∫
X fndµ= 1, but

∫
X fdµ= 0. The hypotheses

of Theorems 3.18, 3.19 and 3.20 do not hold, while the hypothesis of Theorem 3.17
does, asserting that lim infn→∞

∫
X fndµ≥ ∫X fdµ as verified.

It is possible to weaken the assumption that fn ≥ 0 in Theorems 3.17 and 3.18, if
there exists a function f ≤ fn with a finite integral, by considering the sequence fn − f
in place of fn.

It will sometimes be useful to approximate integrals using simple functions.
Accordingly, we state the following theorem (Ash (1972), Theorem 1.5.5):

Theorem 3.21 (a) A nonnegative Borel measurable function is the limit of an
increasing sequence of nonnegative, finite-valued simple functions. (b) Any Borel
measurable function f is the limit of a sequence of finite-valued simple functions fn,
for which |fn| ≤ |f | for all n.
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3.3.2 Lp spaces

Given a measure space (�, F ,µ), we may define the norm

∥∥f∥∥p =
(∫

�

|f |pdµ
)1/p

, 0< p<∞,

for all measurable real valued functions f (see Section 6.4 for a formal definition of a
norm). We may also define the essential supremum

ess sup f = inf{b∈ R̄ |µ({f > b})= 0},

and, we take the definition for p=∞ to be∥∥f∥∥p = ess sup|f |.

This gives the Lp space as the collection of all measurable real valued functions for
which

∥∥f∥∥p<∞. It will sometimes be preferable to specify the measure associated with
an Lp space, in which case we write Lp[µ]. Two theorems associated with Lp spaces
are of particular importance.

Theorem 3.22 (Hölder Inequality) Let p, q be two positive numbers satisfying
p−1 + q−1 = 1, including p= 1, q=∞. If f ∈Lp and g ∈Lq then fg ∈L1 and

∥∥fg∥∥1 ≤∥∥f∥∥p

∥∥g∥∥q.

The pair p, q are referred to as Hölder conjugates. The case p= q= 2 is commonly
referred to as the Cauchy-Schwarz inequality.

Theorem 3.23 (Minkowski Inequality) Let f , g ∈Lp, p≥ 1, then f + g ∈Lp and∥∥f + g
∥∥

p ≤
∥∥f∥∥p +

∥∥g∥∥p.

One important feature of Lp spaces is that the set of simple functions forms a dense
subset, in the sense that for p> 0, including p=∞, for any f ∈Lp and constant ε>0
there exists a simple function h for which

∥∥f − h
∥∥

p<ε, and h may always be chosen
to satisfy |h| ≤ |f | (see, for example, Ash (1972), Section 2.4).

If w is a positive measurable function we may also define the weighted Lp norm,∥∥f∥∥p:w = ∥∥wf
∥∥

p , 0< p≤∞.

The resulting space of finite normed functions is denoted Lp
w.

3.3.3 Radon-Nikodym derivative

In practice, random quantities are often expressed in terms of densities, which are
real-valued functions rather than measures. Of course, calculations involving densities
require integration, which depends on measure, usually Lebesgue or counting measure.
One of the most powerful theorems in analysis allows a unified study of densities which
does not depend on a specific measure.
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Theorem 3.24 (Radon-NikodymTheorem) Suppose µ is a σ-finite measure and λ
is a signed measure on a common measurable space (�, F). If λ)µ then there exists
a F-measurable function f :�→R for which

λ(E) =
∫

E
fdµ, for all E∈F .

If g is any other such function then g= f ae[µ].
Then, if λ is a probability measure then f is its density.

3.4 PRODUCT SPACES

The construction of product spaces, and the projection from product spaces to their
dimensional components, is a natural operation in mathemetical modeling. It is there-
fore necessary to examine the implications with respect to topological and measurabilty
properties of extending and reducing dimension. As will be seen, these implications
can be of some consequence.

In one sense, topological and measurability properties may be considered inde-
pendently of dimension, since the dimension structure of the underlying space plays
no role in their definition. Of course, analysis will usually involve various forms of
projections onto lower dimensional subspaces. It will then be necessary to associate a
topology and σ-algebra with each dimension. In this case, we would like there to be
an unambiguous corresponce between all the systems of sets we will need to consider.
The standard method of achieving this is through the construction of product spaces,
although alternatives exists for models in which the resulting definition of measura-
bility may be too coarse to capture some important model behavior (see, for example,
the introduction to Chapter 5).

Let A={�t; t ∈ T } be an indexed family of sets. The direct product (Cartesian
product) of A is written

×t∈T �t,

and is the set of all indexed sets ã={at; t ∈ T } for which at ∈�t for all t ∈ T . If �t ≡�
for some set �, then ×t∈T �t =×t∈T �=�T is interpretable as a set of vectors.

If we are given subsets Et ⊂�t, then the rectangle ×t∈T Et, is the subset of ×t∈T �t

consisting of all elements ã for which at ∈Et.
When T is infinite, it will be useful to consider the cylinder, which is a rectangle

×t∈T Et ⊂×t∈T �t for which Et =�t for all but a finite set of indices.
With each index t ∈ T we define a projection, which is the mapping projt :

×t∈T �t →�t, which is the coordinate of ã∈×t∈T �t associated with t, that is,
projt

(
ã
)= at when ã={at; t ∈ T }. As a notational convenience, we can accept as a sub-

script for the projection function any symbol identifying the component. For example,
if (x, y)∈X × Y then projX

(
(x, y)

)= x∈X.

3.4.1 Product topologies

If we are given an indexed set of topologies (�t, Ot), t ∈ T we can construct a new
topology on ×t∈T �t by using as a base the class of all cylinders in ×t∈T �t which are
products of open sets.
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Theorem 3.25 Given an indexed set of topologies (�t, Ot), t ∈ T let G be the class of
all cylinders in×t∈T �t which are products of open sets. Then G is a base for a topology
on ×t∈T �t .

Proof We make use of Theorem 3.1. Since Ot covers �t condition (i) is satisfied.
Suppose ω̃={ωt} ∈×t∈T �t. Let G=×tOt and G′ =×tO′

t be two elements of G for
which ω̃=∈G ∩G′ =×tOt ∩O′

t. We have Ot ∩O′
t ∈Ot for all t, and Ot ∩O′

t =�t

for all but a finite number of t, so that condition (ii) holds. ///

The topology for which G defined in Theorem 3.25 is a base is known as the
product topology.

3.4.2 Product measures

Two measurable spaces may form a natural product space:

Definition 3.18 Given measurable spaces (�i, Fi), i= 1, . . . , n the product σ-
field F1 × · · · × Fn on �1 × · · · ×�n is the smallest σ-field containing all rectangles
E1 × · · · × En, Ei ∈Fi.

Consider two measurable spaces (X, X ) and (Y , Y) and the product σ-algebra
(X × Y, X × Y). Given a subset E⊂X × Y, there are various ways of reducing E to
subsets of either X or Y which commonly arise in analysis, and we wish to know if the
measurability of E implies the measurability of such reductions. Recall projX

(
(x, y)

)= x
and projY

(
(x, y)

)= y. The image of the projection map of a subset E⊂X × Y is of
considerable interest:

projX (E) = {x∈X | ∃y∈Y � (x, y)∈E}=∪(x,y)∈E projX
(
(x, y)

)
projY (E) = {y∈Y | ∃x∈X � (x, y)∈E}=∪(x,y)∈E projY

(
(x, y)

)
and is refered to as the projection of a subset of a product space. Intuitively, projX (E)
is the set of all x∈X represented at least once as a coordinate in E. We may also define
a section

secX (E | x) = {y∈Y | (x, y)∈E}
secY

(
E | y) = {x∈X | (x, y)∈E}.

Intuitively, secX (E | x)⊂Y is a cross-section, or slice, of E at fixed x∈X.
A number of statements may be asserted:

Theorem 3.26 Given two measurable spaces (X, X ) and (Y, Y), if E∈X × Y then
secX (E | x)∈Y and secY

(
E | y)∈X for each x∈X and y∈Y. If f : X × Y → R̄ is mea-

surable wrt X × Y then the functions fx(y)= f (x, y) or fy(x)= f (x, y) are measurable
functions on Y and X.

Proof Theorem 18.1 of Billingsley (1995). ///

Suppose (X, X ,µX) and (Y , Y,µY ) are two σ-finite measure spaces. We may assign
to any measurable rectangle A× B the measure

ν(A× B)=µX(A)µY (B).
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The collection of measurable rectangles R is a semifield. Following Royden (1968)
(Section 12.4) it can be shown that ν is countably additive on R, so that Theorem 3.7
applies, then the Carathéodory extension theorem (Theorem 3.8), and there exists a
complete extension of ν from R to a σ-field containing R. The σ-finite property of µX

and µY extends to the product measure, so that the extension is unique on the smallest
σ-field containing R, which is X × Y.

Integration by parts

Suppose given (X, X ,µX) and (Y , Y,µY ), we have a product measure ν on a σ-field F
containing X × Y. Suppose f is F-measurable and integrable wrt ν. By integration by
parts is meant the iterated evaluation of an integral∫

X×Y
f (x, y)dν(x, y) =

∫
X

[∫
Y

f (x, y)dµY (y)
]

dµX(x)

=
∫

Y

[∫
X

f (x, y)dµX(x)
]

dµY (y). (3.4)

The structure is clarified by defining, if possible, the functions

gX(x) =
∫

Y
f (x, y)dµY (y),

gY (y) =
∫

X
f (x, y)dµX(x) (3.5)

so that (3.4) is more compactly written∫
X×Y

f (x, y)dν(x, y)=
∫

X
gX(x)dµX(x)=

∫
Y

gY (y)dµY (y). (3.6)

A few crucial assumptions are implicit in this ubiquitous method. First, it is assumed
that if f (x, y) is F-measurable then fx(y)= f (x, y) and fy(x)= f (x, y) are measurable
functions on Y and X. By Theorem 3.26 this is true if F =X × Y, but this is not the
only case we need to consider. Of course, this assumption only verifies that gX and
gY are well defined. That they are intergrable, and that (3.6) holds is the subject of
Fubini’s Theorem.

Theorem 3.27 (Fubini’sTheorem) Suppose we are given measure spaces (X, X ,µX)
and (Y, Y,µY ).

(i) Suppose µX and µY are σ-finite and ν is the product measure on X × Y, and f is
a ν-integrable function. Then fx, fy are integrable functions for almost all x∈X
and y∈Y, gX and gY are integrable functions, and (3.6) holds.

(ii) Suppose µX and µY are complete measures, and ν is the product measure exten-
sion from the measurable rectangles given in Theorem 3.8. Then the conclusion
of (i) also holds.

Proof Version (i) follows Billingsley (1995) (Section 18) and version (ii) follows
Royden (1968) (Section 12.4). ///
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Borel spaces

One important property of a Borel space is that a countable product of Borel spaces
is also a Borel space under the product topology (Bertsekas and Shreve (1978),
Proposition 7.12). If X and Y are two Borel spaces, this means that the Borel sets
of the product topology are equivalent to X × Y. Thus, defining products of Borel
spaces poses no problem with respect to topology and measurablility.

This does not happen with Lebesgue measurable sets. To see this, suppose now
that X and Y are the Lebesgue sets on [0, 1]. Suppose E is a nonmeasurable sub-
set of [0, 1] (the Vitali set, for example). The rectangle E× ∅ is not in the product
σ-field X × Y, but, as a subset of a null set [0, 1] × ∅, it is Lebesgue measurable
in X × Y.

Projections and optimization

Fubini’s theorem gives one example of a projection method that works as we would like
under very general conditions. The situation can change with optimization. Suppose
we are given a σ-field F containing R, and a F-measurable function f . We will be
interested in subsequent chapters in functions of the form

hX(x)= inf
y∈Y

f (x, y). (3.7)

We have seen already that under various constructions the function fy(x)= f (x, y) is
X -measurable if f is F-measurable. The same cannot be said for hX. Recall that a
real-valued function g is G-measurable if {x | g(x)<α} ∈G for all real α. Then

{x | hX(x)<α}= {x | ∃ y∈Y � f (x, y)<α}=projX
({f (x, y)<α}) ,

so that the measurability of hX is resolved by establishing the measurability of projec-
tions. We have already seen that Lebesgue measurability is not preserved by projection,
for example, by setting f (x, y)= I{E× ∅} for any nonmeasurable E.

The same is true for projections of Borel sets. In descriptive set theory (Kechris
(1995)) projections of Borel sets (on Polish spaces) are termed analytic sets and are
a strictly larger class of sets than the Borel sets. Construction of a non-Borel ana-
lytic subset is not straightforward, and requires theoretical ideas beyond the scope
of this chapter (the reader can consult Appendix B of Bertsekas and Shreve (1978)).
For our purposes, it is important to note that the Borel measurability of f in (3.7)
does not imply the Borel measurability of hX. The issue is an important one. We can
characterize the dynamic programming algorithm introduced in Chapter 12 as the
iterative construction of a function on a Borel product space followed by a projec-
tion onto X of the form (3.7), which is used in the construction of the subsequent
iteration. It is therefore important to verify that measurability is preserved by such
iterations.

It is worth discussing this issue in some more detail. Suppose the solution to our
problem is of the form (3.7). If the infimum is always attained, the solution is express-
ible as a mappingφ : X→Y for which hX(x)= f (x,φ(x)). Otherwise, we may be content
with an ε-optimal solution φ, that is, f (x,φ(x))≤ hX(x)+ ε. Even if f is measurable, or
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more generally all model elements are measurable, conditions must still be developed
under which

(A1) the solution (that is, the pair (hX,φ)) is measurable,
(A2) all operations required to determine the solution are well defined from the point

of view of measurability.

We will see that there are several advantages to confining model definitions to
Borel spaces. However, since the solution described in (A1) is obtained by pointwise
optimization, and because projections need not preserve measurablility, the space of
admissible solutions may reasonably include non-Borel measurable functions. It is
important to note that this issue is not concerned with the distinction between optimal
and ε-optimal solutions (‘place this rock as close to that wall as possible without
touching it’). The problem described here is the possible inability to construct an
ε-optimal solution Borel measurable solution, that is, one uniformly close to a non-
Borel measurable solution.

A number of approaches have been proposed. As our simple counter-example sug-
gests, it seems reasonable to suppose that measurability can be preserved by imposing
suitable topological regularity conditions related to continuity and compactness on
the model components. It may then be possible to guarantee that a measurable solu-
tion exists, so that the algorithm can confine its search to measurable objects, using
only measurable operations, so that (A1) and (A2) hold. This is the approach most
commonly taken.

A second approach is to consider the measurability issues directly, and is exempli-
fied in the seminal work of Bertsekas and Shreve (1978). Models are defined on Borel
spaces, but the possibility of projections induced by (3.7) which are not Borel sets is
not ruled out, eliminating the need for strict topological regularity conditions. In this
approach, the solution space becomes the larger class of universally measurable func-
tions. Definitions of this of varying generality exist in the literature. For our purposes,
we can confine attention to Borel spaces. Then a set E is universally measurable if it is
measurable wrt the completion of all Borel probability measures. This approach per-
mits conditions (A1) and (A2) to hold, but would require significantly more study of
measure theory than that presented here and some knowledge of descriptive set theory.
The interested reader can consult Bertsekas and Shreve (1978), especially Sections 1.2
and B.5 (the measurability issues are made quite concrete by the ’two-stage problem’
of Section 1.2).

For our purposes, we can accept the limits of Borel measurability, acknowledg-
ing the constraints this imposes. The measure theory discussed here suffices to define
measure and integeration as well as a rigorous probability calculus. We are also able
to define vector spaces of probability measures, define satisfactory concepts of con-
tinuity as well as proper norms. Certainly, it is easy to suspect that these constraints
are stronger than should be required. However, weakening them significantly would
require new ideas which would enlarge the class of algorithms we consider, but would
otherwise not have much bearing on the main topic of this book.

This issue will be considered in more detail in the context of dynamic programming
in Section 12.3.5.
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3.4.3 The Kolmogorov extension theorem

That a product measure can be constructed from two measure spaces based on an
inuitive construction for rectangles, that is, µ(A× B)=µ1(A)µ2(B), was shown in
Section 3.4.2. Of course this is only special case of a measure on a product space,
albeit an important one. We also wish to construct a product space measure which is
consistent with a rich enough class of measures defined on projections of the space.
We confine attention to probability measures.

Suppose we are given an indexed set of measurable spaces (�t, Ft), t ∈ T . Let
v⊂ T be a finite subset of indices {t1, . . . , tn}. It is helpful to assume that if T is not
a set of real numbers, then there exists some other canonical ordering that allows
us to assume t1< t2< . . .< tn. For each such v we may denote the product σ-field
Fv =×n

i=1Fti on �v =×n
i=1�ti . If ã∈×t∈T �t, we can let av|T = (at1 , . . . , atn )∈�v be the

vector of components of ã associated with the indices in v, in the canonical order.
We then consider the index subset u={ti1 , . . . , tim}⊂ v. If av = (a1, . . . , an)∈�v, then
let au|v = (ai1 , . . . , aim )∈�u.

Next, suppose Pv is a probability measure on Fv, and P is a probability measure
defined on ×t∈T Ft. We can define the projections

Pv|T (A) = P{ã∈×t∈T �t | av|T ∈A}, A∈Fv,

Pu|v(B) = Pv{av ∈�v | au|v ∈B}, B∈Fu.

We next assume that we may define for each finite index set a probability measure
Pv on Fv, and that these measures are consistent in the sense that for any two nested
finite index sets u⊂ v we have Pu =Pu|v. We further assume that each measurable
space (�t, Ft) is a Polish space (a separable completely metrizable space) so that Ft

are the Borel sets. By the Kolomogorov Extension Theorem this suffices to construct
a probability measure on the product space ×t∈T Ft consistent with the given system
of measures.

Theorem 3.28 (Kolmogorov ExtensionTheorem) We are given an indexed set of
Borel spaces (�t, Ft), t ∈ T , where T possesses an ordering. For each finite ordered
subset of indices v there exists a measure Pv on Fv. Suppose the system of measures
is consistent in the sense that for any pair of finite indices for which u⊂ we have
Pu =Pu|v. Then there exists a unique measure P on ×t∈T Ft for which Pv =Pv|T for all
finite subsets v.

Proof This version of Kolmogorov’s extension theorem is proven in Ash (1972),
Section 4.4. ///



Chapter 4

Background – probability theory

The axiomatic foundation of modern probability theory was originally formalized in
Andrey Kolmogorov’s Foundations of the Theory of Probability (Kolmogorov (1933))
based on the concept of a measure, giving formal rules for the consistent assignment
of probabilities. The set of all possible outcomes is well defined, denoted �, and the
probability that a random outcome ω∈� is in E⊂� is assigned a number P(E) under
the following three axioms:

(i) P(E)≥ 0,
(ii) P(�)= 1,
(iii) If E1, E2, . . . is a countable collection of disjoint subsets of � then P(∪iEi)=∑

i≥1 P(Ei).

Thus, a normalized positive finite measure P on a σ-field F on � satisfies
Komogorov’s axioms, provided the evaluation of probabilites is restricted to sets in
F . Therefore, the resulting probability measure space (�, F , P) is the universe on
which any stochastic model is defined. A random outcome ω is observable up to a
resolution defined by F , that is, we observe whether or not ω∈E for all E∈F . This
doesn’t necessarily mean we observe ω itself. For example, we may have �= [0, 1]
and F ={∅, [0, 1/2), [1/2, 1],�}, in which case we can only observe whether or not
ω∈ [0, 1/2). The obvious rejoinder is that we can avoid trivialities by redefining � to
have only two outcomes, say �={0, 1}, with F ={∅, {0}, {1},�}, and then matching
the probabilities of outcomes 0 and 1 with [0, 1/2), [1/2, 1]. This is correct, but the
larger point to be made is that what gives modern probability theory its rigor is the
ability to construct a single probability measure (�, F , P) on which a potentially quite
complex system of partial observations of ω is defined, each of which must have a
resolution defined by a specific sub σ-field of (�, F), which will often be considerbly
more coarse than F . It might be useful, therefore, to keep this trivial example in mind
from time to time.

Note also that it will sometimes be convenient to consider improper probabil-
ity measures, those for which P(�)< 1 (the term defective is also used). When the
distinction arises, P is a proper probability measure when P(�)= 1.

A random vector X ∈R
d is a measurable mapping from (�, F) to (Rd, B). If d= 1

then X is a random variable (RV). This construction is sometimes emphasized by writ-
ing X=X(ω), ω∈�, which is interpretable as a transformation of a random outcome
ω. Possibly, X is a bijective mapping, but in most models of interest X often represents
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some partial observation of ω. Under these conditions X−1(B)∈F when B∈B. The
collection of sets σ(X)={X−1(B) |B∈B} can be shown to be the smallest σ-field on
� which makes X measurable, and is commonly referred to as the σ-field generated
by X. This definition can play an important role in the study of stochastic processes.
For example, if σ(X1)⊂ σ(X2), then the specific outcome X1(ω) is completely known
if X2(ω) is.

The marginal distribution of a random vector is defined by the induced probabil-
ity measure (Rd, B, PX), where PX(B)=P(X−1(B)), so that all marginal distributions
are implicit in (�, F , P). This distribution can be characterized by the cumulative
distribution function (CDF)

FX(x1, . . . , xn)=P
(∪n

i=1{Xi ≤ xi}
)

, (x1, . . . , xn)∈ R̄
n.

We make use of the shorthand F̄= 1− F. We have seen in Chapter 3 (for example,
Theorem 3.10) that two measures on R

n with equal CDFs must be equal on the Borel
sets. The issue of uniqueness is not a trivial one. For example, two distinct random
variables may be constructed which possess identical moments (see, for example, the
discussion of the ‘moment problem’ in Feller (1971), Section VII.4).

The problem of constructing measures for infinite collections of random variables
will be discussed in the next chapter.

4.1 PROBABILITY MEASURES – BASIC PROPERTIES

Other intuitive notions of probability are modeled by measure theoretic constructions.
The expected value of a random variable X defined on (�, F , P) is taken to be

E[X]=
∫
ω∈�

X(ω)dP(ω)=
∫

x∈R̄

xdPX(x),

where (R, B, PX) is the marginal probability measure of X. The usual rules of
integration apply, so that for a measurable function g

E[g(X)]=
∫

x∈R̄

g(x)dPX(x)=
∫

y∈R̄

ydPg(X)(y),

the logic being that Y = g(X) is a random variable with its own marginal distribution
Pg(X) =PY . This is a consequence of the theory of integration, and not a definition. We
will sometimes need to clarify which measure is being used to define the integral. For
example, EP[g(X)]= ∫

ω∈� g(X(ω))dP(ω), and EX[g(X)]= ∫x∈R̄
g(x)dPX(x).

The identification of E[X] with the integral matches the intuititive notion of an
average outcome weighted by probabilities, for which certain properties must hold, as
described by the theory of integration. Accordingly, limit theorems for integrals apply
to expected values directly:

Theorem 4.1 Let Xn be a sequence of random variables on a probability measure
space (�, F , P).

(i) Fatou’s Lemma: If Xn ≥Y, where E[Y] is finite, then

lim inf
n→∞ E[Xn]≥E[ lim inf

n→∞ Xn].
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(ii) Monotone Convergence Theorem: If Xn ≥Y, where E[Y] is finite, and Xn ↑X
then

lim
n→∞E[Xn]=E[X].

(iii) Lebesgue Dominated Convergence Theorem: Suppose Xn possesses limit X. If
there exists random variable Y ≥ |Xn| for which E[Y]<∞ then

lim
n→∞E[Xn]=E[X].

(iv) Bounded Convergence Theorem: Suppose Xn possesses limit X. If there exists
finite constant M≥ |Xn| then

lim
n→∞E[Xn]=E[X].

We say an event E on (�, F , P) holds almost everywhere if P(E)= 1, which could
also be stated ‘except on a set of measure 0’ (the term almost surely is also used). This
statement is made relative to a specific probability measure P, so we may choose to
express this statement compactly as ae[P]. If we are given two random variables X, Y,
it might be the case that X(ω)≤Y(ω) for all ω∈�, in which case we may simply write
X≤Y. If it happens that P(X>Y)= 0, this does not imply that X≤Y, but that the set
of ω for which X(ω)>Y(ω) has probability measure 0, so we write X≤Y ae[P]. This
convention is important when the properties of P itself are being investigated. When
there is no ambiguity, the more intuitive shorthand wp1 (with probability one) will be
used. All inequalities specified in Theorem 4.1 need only hold ae[P].

Uniform integrability

The uniform integrability condition is sometimes imposed on a collection of random
variables:

Definition 4.1 A collection of random variables {Xt}, t ∈ T , is uniformly integrable
if limK→∞ supt∈T E[|Xt|I{|Xt|>K}]= 0.

This condition implies that supt E[|Xt|]<∞, and it holds if |Xt| ≤Y for all t for
some integrable Y.

Lp norms

The Lp norm is given by ‖X‖p =E[|X|p]1/p, with the essential supremum defining L∞
as before.

The Hölder inequality states that

E[|XY|]≤E[|X|p]1/pE[|Y|q]1/q for conjugate pairs p−1 + q−1 = 1,

while the Minkowski inequality states that

E[|X + Y|p]1/p ≤E[|X|p]1/p + E[|Y|p]1/p for p≥ 1.
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Densities

By the Radon-Nikodym theorem (Theorem 3.24), given a probability measure
(�, F , P) and a σ-finite measureµ on (�, F) for which P)µ, there exists a measurable
density function f :�→R for which

P(E)=
∫

E
f (ω)dµ(ω),

and this density is unique ae[µ]. Usually, a density represents a marginal distribution
(Rd, B, PX) of a random vector X. It is important to note that this definition makes no
explicit distinction between ‘continuous’ and ‘discrete’ distributions. The difference
emerges in the choice of µ. To say that a random vector X is ‘continuous’ means that
PX )µ where µ is Lebesgue measure, so that PX(E)= 0 for any set E of Lebesgue
measure zero. To say that a random vector X is ‘discrete’ means that there exists
a countable set S for which PX )µS where µS is counting measure on S, so that
PX(E)= 0 whenever E ∩ S =∅. Of course, a random vector need not be entirely con-
tinuous or discrete. A relevant example would be the waiting time W of a customer
entering a queueing system, since P(W = 0) is usually greater than zero. In this case,
µ would have to be chosen accordingly, and the appropriate integration method used.
However, once this is done, we may still define a density function for W , evaluated by,
for example

PW (E)= fW (0)I{0∈E} +
∫

E∩(0,∞)
fW (w)dw.

In fact, Lebesque measure µ on R
d and counting measure µS , S ⊂R

d, are examples of
singular measures (see Section 3.2.10), since µ(S)=µS (Sc)= 0. We may have PX )
µ+ µS , in which case there exists a density fX with respect to µ+ µS for which

PX(E)=
∑
x∈S

fX(x)I{x∈E} +
∫

E
fX(x)dx. (4.1)

It is sometimes the convention to explicitly decompose fX(x)= fX(x |µS )+ fX(x |µ),
using fX(x |µS ) only in the summation of (4.1) and fX(x |µ) only in the integral. This
might be preferable to aid clarity, but is not formally necessary, since the values of
fX(x) at x∈S may be changed arbitrarily without changing the value of the integral
portion of (4.1). As with the CDF, we will identify the density of X as fX.

Independence

Independence is an intuitive probabilistic notion, defining unrelatedness of random
outcomes. From a mathematical point of view it is sometimes counterintuitive.

Two sets A, B on (�, F , P) are independent if P(AB)=P(A)P(B). This is com-
monly written A⊥B (independence resembles geometric perpendicularity in some
important ways). We then say two collections of sets F and G are independent if
F⊥G for all F ∈F and G∈G. Finally, two random variables X, Y are independent if
P ({X ∈E} ∩ {Y ∈ F})=P ({X ∈E} ∩ {Y ∈ F}) for all measurable sets E, F. It can be seen
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that the definition of independence for random variables is implicit in the definition
of independence for collections of sets by setting F = σ(X) and G= σ(Y). Indepen-
dence of two random variables or collections of sets is similarly denoted X⊥Y or
F ⊥G.

Suppose E0, E1 are any sets for which P(E0)= 0 and P(E1)= 1. Then for any set A
we must have P(AE0)= 0, since P(AE0)≤P(E0)= 0. This means A⊥E0. Similarly,
P(AE1)=P(A)− P(AEc

1)=P(A), since P(AEc
1)≤P(Ec

1)= 0, and so A⊥E1. In fact,
E⊥E implies P(E)=P(E)2, that is P(E) is 0 or 1.

A finite sequence of subsets E1, . . . , En on (�, F , P) is independent if

P(∩i∈IEi)=
∏
i∈I

P(Ei) , (4.2)

for all nonempty index subsets I⊂{1, . . . , n}. In fact, any sequence of subsets Ei for
which P(Ei)∈ {0, 1} is independent.

It is necessary to insist on the product rule for all nonempty selections from
the sequence. To see this, consider three sets A, B, C. We may construct all joint
probabilities by specifying suitable probability values for all eight regions of the
Venn diagram. Suppose we set P(ABC)= 1/64, P(ABcCc)=P(AcBCc)=P(AcBcC)=
15/64 and P(AcBcCc)= 18/64. This gives P(A)=P(B)=P(C)= 1/4, and so P(ABC)=
P(A)P(B)P(C). On the other hand, P(AB)= 1/64 �=P(A)P(B)= 1/16, and so A and B
are not independent.

Conversly, pairwise independence does not imply independence. For example, if
A⊥B, P(A)=P(B)= 1/2 and C=AB ∪ AcBc, then it is easily verified that we also
have A⊥C and B⊥C, but that P(ABC) �=P(A)P(B)P(C).

Pairwise independence carries some implications. If A⊥B then Ac ⊥B, since
P(AcB)=P(B)− P(AB)=P(B)− P(A)P(B)=P(B)(1− P(A))=P(B)P(Ac). This in turn
implies Ac ⊥Bc and A⊥Bc. It is also true that�⊥A and ∅⊥A for any set A. Therefore,
A⊥B implies σ({A})⊥ σ({B}).

A finite sequence of collections of subsets E1, . . . , En is independent if all selections
of sets Ei ∈ Ei, i= 1, . . . , n are independent as defined in (4.2). The independence of
random variables X1, . . . , Xn is equivalent to the independence of the σ-fields σ(Xi),
i= 1, . . . , n. We use the shorthand iid for independent, identically distributed RVs. If
instead we define the collections of sets Ei ={{Xi ≤ x} |x∈R}, it can be shown that
independence of E1, . . . , En implies the independence of σ(X1), . . . , σ(Xn). This can
be deduced from the Dynkin system theorem of Section 3.2.8 (Durrett (2010), Section
1.4). This means that random variables X̃= (X1, . . . , Xn) are independent if and only if

FX̃(x1, . . . , xn)=
n∏

i=1

FXi (xi) or equivalently fX̃(x1, . . . , xn)=
n∏

i=1

fXi (xi). (4.3)

It can be shown that if E[|Xi|]<∞ for each i, independence implies:

E[
n∏

i=1

Xi]=
n∏

i=1

E[Xi]. (4.4)
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Moments

Let X be any random variable. The kth order moment and central moment are
defined as

µk[X] = µk =E[Xk]

µ̄k [X] = µ̄k =E[(X − E[X])k],

where the reference to X in the notation is omitted when there is no ambiguity.
The binomial theorem allows a comparison of the moments and central moments,

setting µ=µ1[X],

µ̄n [X]=E [(X − µ)n]=E

[
n∑

i=0

(
n
i

)
Xiµn−i

]
=

n∑
i=0

(
n
i

)
µi[X]µn−i.

Many such formulae are described in the literature, and the algebraic manipulation of
moment expressions sometimes represents a significant technical challenge (a system
of tensors for multivariate moments is proposed in McCullagh (1984)).

Some commonly used distributions

We refer to a set of densities indexed by a parameter θ ∈�⊂R
d as a parametric family

of densities. A specific member will be referenced by fX(x | θ) or fθ(x) as convenient.
Then � is referred to as the parameter space.

Table 4.1 lists a number of commonly used parametric density families, with the
notational conventions to be used in this book. The moment generating function m(t)
is given (Section 4.2 below). Also given are the most natural formulae for the higher
order moments.

Density parameters are often given broad classifications, such as location, scale,
rate or shape parameters. Suppose f (x) is a density function on R. For anyµ∈ (−∞,∞)
and σ ∈ (0,∞) it is easily shown that f (x |µ, σ)= σ−1f ((x− µ)/σ) is also a density, and
we have generated a location-scale family of densities with location parameter µ and
scale parameter σ (or a location family or scale family if only one of the parameters is
involved). We expect the location and scale parameter to be in the same unit as the RV.
The reciprocal of a scale parameter is a rate parameter, and so they are interchangeable.
If a RV represents a random arrival time, a scale parameter might be the expected
arrival time (or be related to it), while the rate parameter would represent the arrival
rate (or be related to it). The gamma distribution in Table 4.1 is parametrized with a
rate parameter λ, but many conventions replace λ with 1/µ, where µ would be a scale
parameter.

A shape parameter changes the shape of a density, beyond the translation induced
by a location parameter or the change in scale induced by a scale or rate parameter.
The parameter α of the gamma density is an example.

We adopt the usual shorthand, writing X∼N(µ, σ2) to mean that X is a normally
distributed random variable, and so on. In particular, Z∼N(0, 1) is a unit normal
random variable.
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Table 4.1 Notional conventions for commonly used distributions. The density fX and the moment
generating function m(t) are given, as well as the most convenient formula for higher order
moments.

Normal, X ∼ N(µ, σ2)

σ > 0,µ∈R fX(x) = exp(−(x− µ)2/(2σ2))

(2πσ2)1/2 , x ∈R

Mean = µ, Variance = σ2 m(t)= exp(µt+ σ2t2/2), t∈R

E[(X− µ)k]= σk k!
2k/2(k/2)! , k = 2, 4, . . . , E[(X− µ)k]= 0, k = 1, 3, . . .

Gamma, X ∼ gamma(α, λ)

α>0, λ>0 f X(x) = λ(λx)α−1exp(−λx)
�(α)

, x ≥ 0

Mean = α/λ, Variance = α/λ2 m(t) = (1 − t/λ)−α, t < λ

E[Xs] = λ−s�(α+ s)
�(α)

, s ≥ 0

Exponential, X ∼ exp(λ)
Equivalent to X ∼ gamma(1, λ)

χ2 (chi-squared), X ∼χ2(d)
Equivalent to X ∼ gamma(d/2,1/2)

Double Exponential, X∼DE(λ)

µ∈R, λ> 0 fX(x)= λ

2
exp(−λ|x− µ|), x∈R

Mean = µ,Variance = 2/λ2 m(t)= exp(µt)(1− (t/λ)2)−1, |t|<λ
E[(X− µ)k]= λ−kk!, k= 2, 4,. . . , E[(X− µ)k]= 0, k= 1, 3,. . .

Poisson, X∼ pois(λ)

λ> 0 fX(x)= λx

x! exp(−λ), x∈N0

Mean= λ,Variance= λ m(t)= exp(λ(exp(t)− 1)), t∈R

E[X(X − 1) · · · (X − k+ 1)]= λk, k∈N

Binomial, X∼ bin(n,p)

p∈ [0,1], n∈N fX(x)=
(

n
x

)
px(1− p)n−x, x∈ {0,1, . . . ,n}

Mean= np,Variance= np(1− p) m(t)= (p exp(t)+ (1− p))n, t∈R

E[X(X− 1) · · · (X− k+ 1)]= pk n!
(n− k)! , k∈ {1,2, . . . ,n}

Bernoulli, X ∼ bern(p)
Equivalent to X∼ bin(1,p)

Note that a number of commonly used distributions are special cases, in particular
the χ2 and exponential distributions (of the gamma distribution). In addition, a χ2 RV
of d degrees of freedom (df ) equals in distribution the sum of squares of d iid unit
normal RVs.
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Multivariate distributions

Multivariate distributions describe distributions of random vectors X̃= (X1, . . . , Xn).
The marginal distribution of a component of X̃ is, for example,

fX1(x1)=
∫

Rn−1
f (x1, x2, . . . , xn)dx2 · · ·dxn,

or more generally the distribution of any strict subset of components.
Suppose we are given a probability distribution P= (p1, . . . , pm) on S ={1, . . . , m}.

If we are given an iid sample of size n from P, and we let Ñ= (N1, . . . , Nm) be the vector
of sample frequencies for each outcome, then Ñ has a multinomial distribution with
density given by

fÑ(n1, . . . , nm) = P (N1 = n1, . . . , Nm = nm)

=
(

n
n1, . . . , nm

) m∏
i=1

pni
i , min

i
ni ≥ 0, n1 + · · · + nm = n.

Recall the multinomial coefficient of Section 2.1.12. The marginal distributions
are Ni ∼ bin(n, pi).

Suppose X̃= (X1, . . . , Xm) is a random vector. The mean vector can be written
µX̃ =E[X̃]= (E[X1], . . . , E[Xm]) in the appropriate context. In matrix algebra µX̃ is
usually interpreted as a column vector.

The m×m variance matrix (also referred to as the covariance matrix) of X̃ is
defined elementwise as[

�X̃

]
i,j = cov[Xi, Xj],

where we denote covariance cov[X, Y]=E[(X − E[X])(Y − E[Y])] and consequently
var[X]= cov[X, X]. Two RVs may be refered to as linearly independent if their covari-
ance is zero, although this does not by itself imply independence under the formal
definition.

When the context permits we may write var[X̃]=�X̃. Since cov[X, Y]= cov[Y, X],
�X̃ is always symmetric. For any linear combination Y = a1X1 + · · · + amXm based on
constant coefficients ai it may be shown that

var[Y]= ãT�X̃ã, (4.5)

where ã= (a1, . . . , am) is taken to be a column vector. Since a variance is always non-
negative this must mean �X̃ is positive semidefinite, and is positive definite unless a
subset of the elements of X̃ are linearly dependent wp1.

Next, suppose b is a k× 1 constant column vector, A is a k×m constant matrix,
and X̃ is a m× 1 random vector. Then

Ỹ = b+ AX̃

is a linear tranformation yielding a k× 1 random vector, consisting of k linear
combinations of X̃. The mean and variance matrices of X̃ and Ỹ are always related by

E[Ỹ]= b+ AE[X̃] and var[Ỹ]=A
(
var[X̃]

)
AT .
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Suppose var[X̃] is positive definite. Then there exists an invertible symmetric
square root matrix var[X̃]1/2 (Section 2.3.3). If Ỹ = var[X̃]−1/2X̃ then

var[Ỹ] = var[X̃]−1/2var[X̃]var[X̃]−1/2

= var[X̃]−1/2var[X̃]1/2var[X̃]1/2var[X̃]−1/2

= I.

Thus, any random vector with a positive definite variance matrix var[X̃] possesses a
linear transformation yielding linearly independent coordinates of unit variance.

Suppose µ̃ is a m× 1 column vector and � is a positive defnite m×m matrix.
The multivariate normal density function is defined as

f (x | µ̃,�) = (2π)−m/2 det(�)−1/2 exp(−Q/2), x∈R
m, where

Q = (x− µ̃)T�−1(x− µ̃). (4.6)

Then X̃= (X1, . . . , Xm) is a multivariate normal random vector if it possesses this
density, in which case it may be shown that E[X̃]= µ̃, var[X̃]=�. In addition, the
marginal distributions are Xi ∼N(µ̃i,�i,i). The m= 2 case is often referred to as the
bivariate normal distribution.

It is important to note that a random vector with marginal normal densities is
not necessarily multivariate normal. For example, if X∼N(0, 1) and Y = SX where S
is an independent random sign, then Y ∼N(0, 1), cov[X, Y]= 0, but (X, Y) does not
possess a multivariate normal density.

The definition of a multivariate normal random vector can be generalized to
include any random vector of the form X̃= µ̃+ AZ̃, where µ̃ is an k× 1 column
vector, A is an k×m matrix, and Z̃ is a m× 1 column vector of independent unit
normal random variables. In this case var[X̃] need not be positive definite, so (4.6)
cannot be used directly.

4.2 MOMENT GENERATING FUNCTIONS (MGF) AND CUMULANT
GENERATING FUNCTIONS (CGF)

For a random variable X the moment generating function MGF and cumulant
generating function CGF are defined, where possible, as

mX(t) = E [exp(tX)]

cX(t) = log(mX(t)),

where the reference to X in the notation is omitted when there is no ambiguity. The
MGF is related to the Laplace transform (formally equal to m(−t)), however, the
convention in probability theory is to say that the MGF exists only when m(t) is finite
on a set T containing t= 0 in the interior. It is easily verified that if m(t)<∞, then
m(s)<∞ for 0< s< t or 0> s> t. Therefore, existence of the MGF can be checked by
verifying that m(t)<∞ for one positive and one negative t.
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The MGF and CGF are of value because of their tractability with respect to
standard calculus. This often means freely exchanging the order of differentiation,
summation or integration. This can be justified, as discussed in Section 2.4 of Casella
and Berger (2002).

Convexity of the CGF

The CGF is convex. Its second derivative is given by

d2cX(t)
dt2

∣∣∣∣
t=0

= E
[
X2 exp(tX)

]
E [exp(tX)]− E [X exp(tX)]2

E [exp(tX)]2 . (4.7)

Suppose all the expected values in (4.7) exist. Let Y =X exp(tX). By Hölder’s inequality
we may write

|E[Y]| ≤E[|Y|]=E[
√

YX
√

Y/X]≤E[YX]1/2[Y/X]1/2,

since YX≥X2 exp(Xt)≥ 0 and Y/X= exp(Xt)> 0. This means the second derivative
(4.7) is nonnegative, so that the CGF is convex.

Expansion of the MGF

Expanding the MGF within the expectation operator gives

mX(t)=E [exp(tX)]=E

[ ∞∑
i=0

(tX)i

i!

]
=

∞∑
i=0

µi[X]
ti

i! . (4.8)

If X is a positive RV then exchange of integration and summation is justified by the
bounded convergence theorem (Theorem 4.1), provided mX(t)<∞, in which case all
moments E

[
Xi
]

must exist. Otherwise we have,

∣∣∣∣∣
n∑

i=0

(tX)i

i!

∣∣∣∣∣≤
n∑

i=0

(t|X|)i

i! ≤ exp(t|X|)

so that for general RVs (4.8) holds by the dominated convergence theorem (Theorem
4.1) if m|X|(t)<∞.

Existence of the MGF

The existence of all moments does not guarantee mX(t)<∞, as is the case for the
log-normal distribution, constructed by setting exp(X) where X∼N(µ, σ2).

Suppose X≥ 0, and let µ=E[X]. Then the MGF of X exists if there is some t> 0
for which

∞∑
k=0

µk[X]
k! tk<∞.
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By Jensen’s inequality we must expect µk[X]≥µk, and in fact µk[X]1/k →k ‖X‖∞,
so that if X is not bounded above µk[X] must supergeometric in k, since
‖X‖∞ =∞.

For example, the moments of an exponential RV with λ= 1 are exactly E[Xk]= k!,
and so it possesses a MGF (set t ∈ (0, 1)). On the other hand Y =X2 does not possess a
MGF, since E[Yk]=E[X2k]= (2k)!, and the MGF series is not summable for any t> 0.
A simple sufficient condition for the existence of a MGF can be given by the sequence
of moment bounds

µk[|X|]≤ k!θk, k= 1, 2, . . .

for any finite θ>0.

4.2.1 Moments and cumulants

From (4.8) the following important property is apparent:

dkmX(t)
dtk

∣∣∣∣∣
t=0

=µk[X].

The CGF is a direct transformation of the MGF, but this straightforward device
can lead to considerable simplification of an analysis. The cumulants of X may be
defined in terms of the expansion

cX(t)=
∞∑

i=1

κi[X]
ti

i! . (4.9)

Similar to the MGF, we have

dkcX(t)
dtk

∣∣∣∣∣
t=0

= κk[X].

Note that the order t0 term in (4.9) is necessarily 0, since m(0)= 1. The cumulants
may be deduced by comparing the order tk term in (4.9) to that obtained by substituting
(4.8) into an expansion of log (x) about x= 1. This straightforward (if cumbersome)
process yields

κ1[X] = µ1[X]

κ2[X] = µ̄2 [X]

κ3[X] = µ̄3 [X]

κ4[X] = µ̄4 [X]− 3µ̄2 [X]2

... .
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A number of properties of the cumulants may be noted. First, for any constant b

κk[bX] = bkκk[X],

κ1[X + b] = κ1[X]+ b,

κk[X + b] = κk[X], k≥ 2,

so that the CGF is location invariant after the first order term, unlike the MGF.

4.2.2 MGF and CGF of independent sums

If X1, . . . , Xn are independent random variables then by (4.4) we have

mX1+···+Xn (t)=
n∏

i=1

mXi (t), (4.10)

and for iid RVs this reduces to

mX1+···+Xn (t)= [mX1 (t)
]n
. (4.11)

In addition, following (4.10) we have

cX1+···+Xn (t) =
n∑

i=1

cXi (t),

and for the iid case

cX1+···+Xn (t) = n cX1 (t).

4.2.3 Relationship of the CGF to the normal distribution

One property of the CGF we will find useful is the fact that cX(t)=µt + σ2t2/2 for
X∼N(µ, σ2), and the simplicity of this form will permit some greater precision in
subsequent analysis. Furthermore, when the CGF of X can be bounded by µ+ σ2t2/2
in some sense then a useful approximation method becomes available. This need not
mean that X is ‘approximately normal’. In fact, by Taylor’s theorem (Theorem 2.3):

cX(t)= κ1[X]t + d2cX(t)
dt2

∣∣∣∣
t=η

t2

2
,

where 0≤ η≤ t or t≤ η≤ 0. Noting that limt→0 d2cX(t)/dt2 = var [X], we can see that
the CGF of any RV X resembles that of the normal in a small enough neighborhood
of t= 0. Viewed in this way, the extension of properties of the normal distribution
will depend on how far from t= 0 the second order term of cX(t) remains dominant.
This in turn depends on the size of κ2[X] relative to the higher order cumulants κk[X],
k> 2.
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For example, suppose X̄n is the average of an iid sample from a distribution of
mean zero, which also possesses a MGF. We may normalize Zn = n1/2X̄n, which has
cumulants κ1[Zn]= 0 and κk[Zn]= n1−k/2κk[X1]. Thus κ2[Zn] does not depend on n,
while all higher order cumulants approach 0 as n→ 0, on which basis we may conclude
that Zn is asymptotically normal.

4.2.4 Probability generating functions

When a RV X is distributed on N0 it is sometimes convenient to work with a probability
generating function (PGF):

hq(s)=
∞∑

i=0

siqi =E[sX] (4.12)

for distribution q= (q0, q1, . . . ), P(X= i)= qi. We recover the MGF through m(t)=
hq(et). The PGF may be also be taken as a function of the complex numbers. Otherwise,
we may recover the distribution q and the moments by the following evaluations:

dihq(s)
dsi

∣∣∣∣
s=0

= qi

i! , and

dihq(s)
dsi

∣∣∣∣
s=1

= E
[

X!
(X − i)!

]
. (4.13)

Note that hq(s) and its derivatives exist for |s|< 1, but at s= 1 only the left derivative
may exist, which may be used in (4.13).

4.3 CONDITIONAL DISTRIBUTIONS

The conventional definition of a conditional probablity is

P(A |B)=P(AB)/P(B), when P(B)> 0,

understood to refer to the probability that A occurs given that (conditional on the event
that) B has occured. Extending this idea to a condition distribution poses no problems
for discrete random variables. For example, if fXY (x, y) is a distribution function on I

2

for the random vector (X, Y) we may write

fX|Y (x | y)= P(X= x and Y = y)
P(Y = y)

= fXY (x, y)∑
x fXY (x, y)

= fXY (x, y)
fY (y)

.

This formula is usually extended to continuous densities even though the conditional
event {Y = y} has probability 0. In fact fXY (x, y) is not a probability, so the correspon-
dence to the original definition P(A |B)=P(AB)/P(B) needs to be made. For R

k, this is
not particularly difficult if fX|Y (x | y) is understood as a limit of P(X ∈Bε(x) |Y ∈Bε(y))
as ε↓ 0. Essentially, we are stating that fX|Y (x | y)dx= fXY (x, y)dxdy/fY (y)dy. How-
ever, this informal calculus depends on the geometry of the coordinate system and can
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lead to contradictions in other coordinates. A well known example is Borel’s Paradox,
which illustrates the difficulty of using this formula to characterize densities on the
surface of a sphere (the interested reader can be referred to Section 33 of Billingsley
(1995)).

Under such a formula, conditional expectations become integrals calculated in the
usual way by using conditional densities, that is,

E[X |Y = y]=
∫

xfX|Y (x | y)dµ(x),

where µ is the appropriate measure.
If X is defined on (�, F , P), for A∈F , P(A)> 0, the conditional distribution is

essentially constructed by replacing�with A, by confining the definition of the original
density fX(x) to x∈A then renormalizing, giving conditional density:

fX(x |A)= fX(x)
P(A)

I{x∈A},

and conditional expectation

E[x |A]=P(A)−1
∫

x∈A
xfX(x)dµ=P(A)−1E [XI{X ∈A}] .

This justifies an expression such as E [XI{X ∈A}]=E[x |A]P(A), and the liberal use
of indicator functions in this manner will often be a useful way to apply the concepts
of conditioning.

Independence may also be characterized by the statement

X⊥Y ⇐⇒ fX|Y (x | y)= fX(x),

as a consequence of (4.3).
There exists a definition of conditional probability which is independent of any

specific properties of a measurable space, which is stated in the following theorem.

Theorem 4.2 Let Y be a random variable on (�, F , P) for which E[Y] exists, and
let G be a sub σ-field of F . Then there exists a unique ae[P] random variable E[Y |G]
which is measurable wrt (�, G) and which satisfies∫

E
YdP=

∫
E

E[Y |G]dP (4.14)

for all E∈G.

Proof The result is a consequence of the Radon-Nikoym theorem (Theorem 3.24).
See, for example, Ash (1972), Chapter 6. ///

Recall that a measurable mapping from F1 to F2 remains measurable if F1 is
replaced by a larger, but not smaller, σ-field. Therefore, Y itself will generally not satisfy
the definition of E[Y |G]. This construction is referred to as conditioning on a σ-field,
and it is important to stress that the sub σ-field has replaced the conditional event. To
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see this, suppose we calculate E[Y |A]. The analogous conditional expectation would
be defined by specifying G={A, Ac, ∅,�} and defining YA =E[Y |G] as in Theorem
4.2. Since YA is measurable wrt G, it must be constant on A and also on Ac ae[P].
From (4.14) these values must be YA =E[Y |A] and YA =E[Y |Ac], that is,

YA =E[Y |A]IA + E[Y |Ac]IAc

satisfies the definition of E[Y |G].
Conditional probabilities are naturally defined as P(E |G)=E[Y |G] with Y = IE,

so there is no important difference between conditional expectation and conditional
probability. Theorem 4.2 suffices for both. Furthermore, the object E[X |G] will usu-
ally correspond to the appropriate explicit construction. For example E[X |Y = y] is
formally a function of y, say h(y). On the other hand E[X | σ(Y)] is a RV which is mea-
surable with respect to σ(Y), and so is a function of Y. In fact, E[X | σ(Y)]= h(Y)=
E[X |Y] satisfies (4.14).

Some important properties of conditional expectations are given in the following
theorem.

Theorem 4.3 Suppose we are given a probability measure (�, F , P).

(i) If X= a ae[P] for some constant a, then E[X |G]= a ae[P].
(ii) Conditional expectations are linear:

E[aX + bY |G]= aE[X |G]+ bE[Y |G], ae[P].

(iii) If X≥ 0 ae[P] then E[X |G]≥ 0, ae[P].
(iv) If Xn →X ae[P], |Xn|<Y, and E[Y]<∞, then

E[Xn |G]→E[X |G], ae[P].

(v) If X is measurable wrt G, and E[Y] and E[XY] exist, then

E[XY |G]=XE[Y |G], ae[P].

(vi) If E[Y] exists, and G1 ⊂G2, then

E [E[Y |G2] |G1]=E[Y |G1], ae[P].

Proof See, for example, Billingsley (1995), Section 34. ///

Note that (i) and (v) of Theorem 4.3 imply that E[X |G]=X ae[P] under the
hypothesis of (v). This apparently straightforward fact, along with the other state-
ments of Theorem 4.3, prove to be crucial to many arguments involving conditional
expectations.

If G={�, ∅}, then E[Y |G]=E[Y], the unconditional expectation. Thus, a
consequence of (vi) is that E [E[Y |G′]]=E[Y] for any sub σ-field G ′.

Higher order conditional moments are usually calculated simply by replacing P( · )
with P(· |G) so we may write var(X |G)=E[X2 |G]− E[X |G]2.
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The advantage of conditioning on σ-fields is that a consistent construction method
is available which does not depend on the details of a particular measure. Separate
definitions do not need to be made for continuous and discrete random variables, and
the problem of conditioning on events of measure zero does not arise. Certainly, we
will make use of explicit constructions as needed. But until they are, the approach of
Theorem 4.2 will usually permit arguments that are at the same time more general and
more concise.

4.4 MARTINGALES

Suppose we observe some sequence of random occurrences X1, X2, . . .. It is sometimes
useful to consider a history process Hk = (X1, . . . , Xk), k≥ 1, representing all accumu-
lated information up to and including the kth outcome. Obviously, knowledge of Hk

implies knowledge of Hj if j≤ k.
It is sometimes worth considering a formal generalization of this process, express-

ible in terms of σ-fields, which, as discussed in the previous section, have a close
connection with the notion of information. Consider the following definition:

Definition 4.2 Suppose we are given a probability measure (�, F , P). A sequence
F1, F2, . . ., of sub σ-fields of F is a filtration if Fk ⊂Fk+1, for all k≥ 1. A sequence of
random variables Xk is adapted to Fk if σ(Xk)⊂Fk (that is Xk is measurable wrt Fk).
We refer to Xi, i= 1, 2, . . . as an adapted process. It may be assumed that F0 ={�, ∅}.

The last statement of Definition 4.2 permits any reference to E[Xk |Fk−1] to include
k= 1, in which case E[X1 |F0]=E[X1].

Here, the filtration Fk assumes the role of a history process, except that it need
not be constructed explicitly from a specific process. Rather, we instead consider (and
compare) the entire class of processes adapted to a common filtration. This often proves
to yield some considerable simplification of an analysis. The theory of martingales is
a particularly elegant example of this approach. The formal definition follows.

Definition 4.3 Suppose we are given a probability measure (�, F , P), on which exists
filtration Fn, n≥ 1. Suppose for a sequence of random variables Sn the following
conditions hold:

(i) E[|Sn|]<∞,
(ii) Sn is adapted to filtration Fn,

(iii) E[Sn+1 |Fn]= Sn ae for all n≥ 1,

then Sn is a martingale (on filtration Fn). If equality in (iii) is replaced with ≤ or ≥
then Sn is a supermartingale or submartingale respectively.

A martingale is both a supermartingale and a submartingale.

It is always possible to define the filtration Fn = σ(S1, . . . , Sn), but a richer theory
is available by allowing the more general definition implied by the adapted process.
Monotonicity of the sequence Sn implies Definition 4.3:

Theorem 4.4 If Sn is adapted to filtration Fn, and Sn+1 ≥ Sn ae for all n≥ 1, then Sn

is a submartingale. If ≥ is replaced with ≤ then Sn is a supermartingale.
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Proof From Theorem 4.3 we conclude that 0≤E[Sn+1 − Sn |Fn]=E[Sn+1 |Fn]−
E[Sn |Fn]=E[Sn+1 |Fn]− Sn ae. A similar argument holds for supermartingales. ///

Given sequence Sn the differences are denoted εn = Sn − Sn−1 (set S0 = 0 if needed).
They become martingale differences when Sn is a martingale, so the terminology is
somewhat dependent on context. Whatever the case, these differences assume definite
properties under Definition 4.3.

A (sub-, super-) martingale is an Lp process if E[|Sn|p]<∞ for all n≥ 1. By (i) of
Definition 4.3 all martingales are L1 processes. An L2 martingale is often referred to
as square integrable martingale. By Minkowski’s inequality, the Lp criterion can be
equivalently applied to the sequence Sn, or to the differences εn.

In general, the assumption of stronger integrability conditions confers more struc-
ture. The assumption of uniform integrability will be considered below in Section 4.10,
and some important convergence properties follow from this assumption.

Alternatively, the assumption of square integrability confers on martingales the
character of a random noise process, without requiring the sometimes unrealis-
tic assumption of independence. By Hölder’s inequality, if each squared difference
ε2

n is integrable then so is each product εmεn. In fact, a square integrable martin-
gale is an orthogonal process, that is, the differences εn are uncorrelated and of
zero mean:

Theorem 4.5 If Sn is a martingale on filtration Fn, and εn are the martingale
differences, then E[Sn |Fm]= Sm, and consequently E[εn |Fm]= 0 ae for all n>m.
If in addition Sn is a square intergrable martingale then Sn is an orthogonal process, in
the sense that E[εn]= 0 and E[εnεm]= 0 for all m �= n.

If Sn is a submartingale E[Sn |Fm]≥ Sm, and consequently E[εn |Fm]≥ 0 ae for all
n>m.

If Sn is a supermartingale E[Sn |Fm]≤ Sm, and consequently E[εn |Fm]≤ 0 ae for
all n>m.

Proof (Assume equalities hold ae where appropriate). Suppose n>m. By (vi) of
Theorem 4.3 we have E[Sn |Fm]=E[E[Sn |Fn−1] |Fm]=E[Sn−1 |Fm]. The argument
is completed by repeating until n− 1=m, so that E[Sn |Fm]=E[Sm |Fm]= Sm. Then
for n>m we have E[εn |Fm]=E[Sn − Sn−1 |Fm]= Sm − Sm = 0. We may write E[εn]=
E[E[εn |Fn−1]]=E[0]= 0. Then, for n>m E[εnεm |Fm]= εmE[εn |Fm]= εm · 0, so that
E[εnεm]= 0, assuming square intergrability.

The remainder of the proof holds after a similar argument for submartingales and
supermartingales. ///

Convex transformations of martingales tend to preserve some martingale proper-
ties (see, for example, Section 4.2 of Durrett (2010)):

Theorem 4.6 (i) If Sn is a martingale, h is convex, and h(Sn) are each integrable, then
h(Sn) is a submartingale on the same filtration. (ii) If Sn is a submartingale, h is a convex
nondecreasing function, and h(Sn) are each integrable, then h(Sn) is a submartingale
on the same filtration.

Thus, if Sn is a martingale or a positive submartingale then |Sn|p is a submartingale
for any p≥ 1, where integrability holds.
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4.4.1 Stopping times

One more simple but consequential idea associated with the theory of martingales is
the stopping time. Suppose we are given a filtration Fn. A random variable τ is a
stopping time if {τ= n} ∈Fn for all n≥ 1. The decision to stop a process must be made
on currently available information, which is what this definition forces. A set E is prior
to stopping time τ if E ∩ {τ= n} ∈Fn for all n≥ 1. If Sn is adapted to Fn, then a set
depending on (S1, . . . , Sτ), such as E={maxi≤τ Si > 0} is prior to τ. If we let F τ be the
class of all sets prior to τ, it may be verified that F τ is a σ-field.

Next, suppose τn is a sequence of finite stopping times which is nondecreasing ae.
We can then define a new process Yn = Sτn , where τn<∞. One of the central results in
martingale theory is the Optional Sampling Theorem due to Doob (See, for example,
Section 7.7 of Ash (1972)).

Theorem 4.7 (Optional Sampling Theorem) Let Sn be a submartingale on fil-
tration Fn, and let τn be a nondecreasing sequence of finite stopping times. Then
F τn , n= 1, 2, . . ., is a filtration. Set Yn = Sτn . If (i) E [|Yn|]<∞ for all n, and (ii)
lim infi→∞ E [|Xi|I{τn> i}]= 0 for all n, then Yn is a submartingale on filtration {F τn}.
If Sn is a martingale, so is Yn.

4.5 SOME IMPORTANT THEOREMS

A large part of probability theory relies on a relatively small number of classical
theorems, some of which we introduce here.

Boole’s Inequality is a direct consequence of countable additivity:

Theorem 4.8 (Boole’s Inequality) For any countable collection of sets {Ei} on a
probability measure (�, F , P) it always holds that

P (∪iEi)≤
∑

i

P(Ei).

Very few theorems have quite the same combination of utility and simplicity as
does Markov’s Inequality.

Theorem 4.9 (Markov’s Inequality) If X≥ 0, t> 0, then

P(X≥ t)≤ E [X]
t

.

Proof This follows from the inequality tI{x≥ t}≤x for x∈ [0,∞), and the mono-
tonicity of the expectation operator. ///

Chebyshev’s Inequality is a special case of Markov’s inequality which appeared
earlier.

Theorem 4.10 (Chebyshev’s Inequality) For any random variable with mean µ and
variance σ2 the following inequality holds for any t> 0:

P (|X − µ| ≥ tσ)≤ 1
t2
.
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Proof Apply Theorem 4.9 to the event {(X − µ)2/σ2 ≥ t2}. ///

If we are given a countable sequence of events E1, E2, . . . on (�, F , P) the following
limits may be defined

lim sup
n→∞

En = ∩∞n=1 ∪m≥n Em = lim
n→∞∪m≥nEm ={En i.o.},

where i.o. means ‘infinitely often’, that is, the event {En i.o.} occurs if an infinite
number of the events En occur. A definition often accompanying this is

lim inf
n→∞ En = ∪∞n=1 ∩m≥n Em = lim

n→∞∩m≥nEm ={En a.f.},

where a.f. means ‘all but finitely often’, that is, the event {En a.f.} occurs if for some
finite n all Em, m≥ n occur. By De Morgan’s law {Ec

n i.o.}= {En a.f.}c and {Ec
n a.f.}=

{En i.o.}c.
The Borel-Cantelli Lemmas apply to events of this type:

Theorem 4.11 (Borel-Cantelli Lemma I) If
∑

n≥1 P(En)<∞ then P(En i.o.)= 0.

Proof By Boole’s inequality P
(∪m≥nEm

)≤∑m≥n P(Em). By hypothesis this upper
bound approaches 0 as n→∞ so the result holds by the continuity of P. ///

Theorem 4.12 (Borel-Cantelli Lemma II) If the events En are independent and∑
n≥1 P(En)=∞ then P(En i.o.)= 1.

Proof By independence we may write, for any N≥ n, P
(∩m≥nEc

m

)≤P
(∩N

m=nEc
m

)=∏N
m=n (1− P(Em))≤ exp

(
−∑N

m=n P(Em)
)
. By hypothesis, the upper bound approaches

0 as N→∞. Thus, P
(
Ec

n a.f.
)= 0, which concludes the proof. ///

Example 4.1 On day n, n= 1, 2, . . ., the numbers {1, . . . , n} are randomly ordered,
and each ordering is independent of the previous orderings. The probability that 1
occurs first i.o. is 1, but the probability that 1 and 2 occur first and second i.o. is
zero. The number of days on which any four consecutive integers appear consecutively
anywhere in the random ordering is finite wp1.

Jensens’s Inequality is commonly used, which states:

Theorem 4.13 (Jensen’s Inequality) If X is a random variable with support T , and
φ(t) is a convex function on T then E [φ(X)]≥φ (E [X]). If φ is strictly convex, then
φ(E [X] )=E [φ(X)] implies X=E [x] ae[P], when the expectations exist.

The hypothesis that φ is a convex function includes the assumption that T is a
convex set.

Example 4.2 Since φ(x)= xq, q≥ 1, is a convex function on R+, Jensen’s inequality
implies that the Lp norm for random variables is increasing in p, that is, for r< s, set
φ(x)= xs/r. Then E [|X|s]=E [φ(|X|r)]≥φ (E [|X|r])=E [|X|r]s/r, which is equivalent
to E [|X|s]1/s ≥E [|X|r]1/r.
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4.6 INEQUALITIES FOR TAIL PROBABILITIES

One of the most important technical problems arising in probability theory is the
bounding of tail probabilities of random variables, that is, the construction of
statements such as

P(X≥ t)≤ g(t), t≥ t0

for some function g(t). We have already seen two examples in the Markov and Cheby-
shev inequalities. The work of bounding tail probabilities is usually meant to result in
functions g(t) which converge to 0 as quickly as possible as t→∞. A direct application
of Markov’s inequality to a positive RV X yields g(t)∝ 1/t, which is a quite slow rate
of convergence in comparison to most commonly used distributions. However, there
is some freedom in considering transformations of X. Suppose X is the support of X,
and h : X →R+ is a strictly increasing function. Markov’s inequality gives

P(X≥ t)=P(h(X)≥ h(t))≤ E[h(X)]
h(t)

, t ∈X . (4.15)

Note that we need not assume X≥ 0, since it suffices that h≥ 0.
To take a common application of this method, suppose X≥ 0 has all kth order

moments. Using h(x)= xk, we have P(X≥ t)≤ t−kµk[X]. Thus, the rate of convergence
of the bound to 0 as t→∞ can always be improved by increasing k, although the fact
that µk[X] may increase quickly in k will often hamper the utility of this approach. We
have already seen in Section 4.2 that the rate of increase ofµk[X] is of great importance,
and for unbounded RVs that rate must be supergeometric.

Example 4.3 Returning to the example of the exponential RV with λ= 1, we have
moments µk[X]= k!, and so using Markov’s inequality with power transformation
h(x)= xk gives inequality

P(X≥ t)≤ k!
tk

, t> 0, k= 1, 2, . . . . (4.16)

The bound holds for all k, and it can be seen that the value of k yielding the sharpest
bound varies by t. Therefore, rather than accepting (4.16) for some fixed k, we can
do better by using

P(X≥ t)≤ inf
k

k!
tk

, t> 0. (4.17)

In fact, the strategy of Example 4.3 is commonly used to obtain bounds similar to
(4.17), the Chernoff bound, discussed in the next section, being a well known example.
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4.6.1 Chernoff bounds

Here we consider the class of RVs possessing an MGF. Using (4.15), for any t> 0:

P(X≥ x) = P
(
exp(tX)≥ exp(tx)

)
≤ exp(−tx)mX(t)= exp(cX(t)− tx) ,

and similarly

P(X≤ x) = P
(
exp(−tX)≥ exp(−tx)

)
≤ exp(tx)mX(− t)= exp(cX(− t)+ tx) .

This holds for all t> 0, so we may substitute that value yielding the smallest uppper
bound:

P(X≥ x)≤ inf
t>0

exp(cX(t)− tx)= exp
{

inf
t>0

(cX(t)− tx)
}

, (4.18)

and similarly

P(X≤ x)≤ inf
t>0

exp(cX(− t)+ tx)= exp
{

inf
t>0

(cX(− t)+ tx)
}
. (4.19)

This often turns into a simple exercise in calculus. We note that the CGF is defined
on a set T containing an open neighborhood of t= 0, on which it is infinitely divisible
and convex. This must also hold for h(t)= cX(t)− tx and h(−t). From the point of
view of optimization, we may take cX(t)=∞ for t /∈ T . Thus, if a stationary point
of h(t) exists in (0,∞) ∩ T then it must be the value minimizing (4.18). Similarly, a
stationary point of h(−t) in (0,∞) ∩ −T will minimize (4.19).

On the other hand, a RV X defined by P(X= 1)=P(X=−1)= 1/2 gives an exam-
ple for which this procedure cannot be used, although of course, (4.18) and (4.19) still
hold.

4.6.2 Chernoff bound for the normal distribution

Suppose X∼N(µ, σ2), and assume x>µ, then

inf
t>0

cX(t)− tx= inf
t>0
µt + σ2 t2

2
− tx=− (x− µ)2

2σ2
,

since h(t) possesses stationary point t0 = (x− µ)/σ2> 0. The same holds for (4.19), so
we have

P(X≥ x) ≤ exp
(−2−1(x− µ)2/σ2) , x>µ, and

P(X≤ x) ≤ exp
(−2−1(x− µ)2/σ2) , x<µ. (4.20)
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It turns out that we can obtain somewhat sharper bounds by exploiting some elemen-
tary concepts of stochastic ordering, to be introduced in Section 4.7, but this method
will prove very useful when approximations are used.

4.6.3 Chernoff bound for the gamma distribution

Consider X∼ gamma(α, λ). The CGF for the gamma distribution is cX(t)=−α log(1−
t/λ), t<λ, so the minimum is taken over t ∈ (0, λ). Then h(t)=−α log(1− t/λ)− tx,
which possesses stationary point t0 = λ− α/x. Then t0 ∈ (0, λ) if and only if x>µ=
α/λ, giving bound:

P(X≥ x)≤ exp
(−λx+ α+ α log(x/µ)

)
, x>µ. (4.21)

As in the case of the normal distribution, stochastic ordering may be used to refine the
bound, as will be discussed below.

4.6.4 Sample means

Suppose we are given independent zero mean RVs X1, . . . , Xn, with sum Sn =∑n
i=1Xi.

Furthermore, suppose there exist constants σ2
i , and t∗> 0 for which

cXi (t)≤
σ2

i t2

2
, i= 1, . . .n, t ∈ (0, t∗). (4.22)

Then, letting σ̄2 = n−1∑
i σ

2
i , we may write

P(Sn ≥ n1/2x)≤ inf
t∈(0,t∗)

exp
(

nσ̄2
t2

2
− tn1/2x

)
.

Note that the bound (4.18) holds if the infimum operation is taken over a strict subset
of (0,∞). As shown above, the stationary point of the preceding upper bound is
t′ = x/(n1/2σ̄2), and so if x> 0 and t′< t∗ we may conclude

P(n−1/2Sn ≥ x)≤ exp
(
−x2/(2σ̄2)

)
. (4.23)

The requirement that t′< t∗ is quite reasonable. Suppose we are given a sequence of
RVs for increasing n. We need not insist that the marginal distributions are equal,
but we instead impose a more informal type of uniformity. Suppose (4.22) holds
for all Xi for a common t∗, and that σ̄2 ≥ σ2

min as n→∞. The stationary point t′
satisfies

t′ = x/(n1/2σ̄2)≤ x/(n1/2σ2
min),

so that for all large enough n we will have t′< t∗, so that (4.23) eventually holds.
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This can be made more precise. Define for any CGF c(t):

κ∗2(t)=
{

sup0≤t′≤t
d2c(s)

ds2

∣∣∣
s=t′

; t≥ 0, |c(t)|<∞
∞ ; t≥ 0, |c(t)| =∞ .

Note that since d2cX(s)/ds2
∣∣
s=0 = var [X] we must have κ∗2(t)≥ var [X]≥ 0.

Theorem 4.14 Suppose for a RV X we have E[X]= 0, and cX(t) exists. Then for
x> 0 we have

P(X≥ x)≤ inf{exp
(−x2/(2κ∗2(t∗))

) | t∗> 0, t∗κ∗2(t∗)≥ x}. (4.24)

Proof We proceed by verifying

P(X≥ x)≤ exp
(−x2/(2κ∗2(t∗))

)
(4.25)

for any t∗> 0 satisfying t∗κ∗2(t∗)≥ x, then (4.24) follows. First, if κ∗2(t∗)=∞ then (4.25)
holds trivially. Otherwise, by Taylor’s theorem we must have

cX(t)≤ κ∗2(t∗)t2

2
, t ∈ [0, t∗].

A stationary point of the resulting Chernoff bound exists in (0, t∗] if x≤ t∗κ∗2(t∗), under
which (4.25) holds, which completes the proof. ///

4.6.5 Some inequalities for bounded random variables

Suppose X is a bounded RV, that is, there exists finite a, b for which P(a≤X≤ b)= 1.
Since E[|X|k]≤max (|a|, |b|)k the MGF always exists. This permits some specialized
results for bounded RVs, although if the bounds a, b are truly outliers, there may be
no special advantage over more generally applicable methods.

Hoeffding’s Lemma provides a quadratic bound for the MGF of the bounded RV.

Lemma 4.1 (Hoeffding’s Lemma) Suppose for a RV X, P(a≤X≤ b)= 1, for finite
constants a, b and E[X]= 0. Then

mX(t)≤ exp(t2(b− a)2/8). (4.26)

Proof The lemma may be proven by first noting that from the convexity of exp(tx)
we have exp(t[pa+ (1− p)b])≤ p exp(ta)+ (1− p) exp(tb) for any p∈ [0, 1]. Since
X ∈ [a, b] wp1, and E [X]= 0∈ [a, b] we may then write E[ exp(tX)]≤ p exp(ta)+
(1− p) exp(tb)= exp(g(t)) with p= b/(b− a). The proof follows by verifying that
g′(0)= 0, g′′(t)≤ 1/4 for all t ∈R, then applying Taylor’s theorem. ///

Thus, the CGF of a bounded RV is always dominated by the CGF of some
normal RV.
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The following bound for independent bounded independent random variables is
given in Hoeffding (1963):

Theorem 4.15 If X1, . . . , Xn are independent random variables with finite bounds
ai ≤Xi ≤ bi then

P

(
n∑

i=1

(Xi − E[Xi])≥ t

)
≤ exp

(
−2t2/

n∑
i=1

(bi − ai)2

)
, and

P

(∣∣∣∣∣
n∑

i=1

(Xi − E[Xi])

∣∣∣∣∣≥ t

)
≤ 2 exp

(
−2t2/

n∑
i=1

(bi − ai)2

)

for all t> 0.
In particular, if X ∈ bin(n, p) then

P
(
(X/n)− p≥ ε) ≤ exp

(−2nε2) , and

P
(∣∣(X/n)− p≥ ε∣∣≥ exp

) ≤ 2 exp
(−2nε2)

The following extension of Hoeffding’s inequality due to McDiarmid (1989) will
prove useful:

Theorem 4.16 (McDiarmid’s Inequality) If X̃= (X1, . . . , Xn) are independent
random variables with Xi ∈X , and f : X n →. is a function satisfying, for some fixed
constants ci,

sup
xj=x′j , j �=i

∣∣f (x̃)− f (x̃′)
∣∣ ≤ ci, i= 1, . . . , n,

(that is, vectors x̃, x̃′ ∈X n may differ only for the ith coordinate). Then

P
(
f (X̃)− E[f (X̃)]≥ t

)
≤ exp

(
−2t2/

n∑
i=1

c2
i

)
(4.27)

for all t> 0.

The following elegant bound on the variance of the random variable studied in
(4.27) is due to Devroye (1991).

Theorem 4.17 Under the hypothesis of Theorem 4.16

var
[
f (X̃)

]
≤ 4−1

n∑
i=1

c2
i . (4.28)

4.7 STOCHASTIC ORDERING

Let X, Y be two RVs. There will be some interest in characterizing the tendency of
one random variable to be larger or of greater variability than the other. A stochastic
ordering may be regarded as a formal comparison of two probability distributions,
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as opposed to a concern with an event such as {X≥Y}. Informally, we have already
made use of such an ordering, since if we may claim mX(t)≤mY (t) for all t> 0, then
a Chernoff bound for Y also holds for X.

The conventions used in Ross (1996) will be used here. We say X is stochastically
larger than Y, written X≥st Y, if FX(t)≤ FY (t) for all t ∈R. It may be shown (Proposi-
tion 9.1.2, Ross (1996)) that X≥st Y if and only if E[h(X)]≥E[h(Y)] for all increasing
functions h, and this characterization forms a convenient point of comparison for other
forms of stochastic order. Here, and in what follows, we say that the ordering is strict
if at least one of the defining inequalities is strict.

We say X is stochastically more variable than Y, written X≥v Y, if E[h(X)]≥
E[h(Y)] for all increasing convex functions h. If X, Y are nonnegative with E[X]=E[Y]
then X≥v Y if and only if E[h(X)]≥E[h(Y)] for all convex functions h (Corollary 9.5.2,
Ross (1996)).

A number of orderings apply specifically to nonnegative X, Y with densities fX, fY .
In this case the hazard rate (or failure rate) of X is λX(t)= fX(t)/F̄X(t), which is
interpretable as the rate at time t which a random lifetime X ends (or a component
fails) given survival up to t. We may define hazard rate ordering, denoted X≥HR Y
if λX(t)≤ λY (t) for all t≥ 0. We may also define likelihood ratio ordering, denoted
X≥LR Y, as the condition fX(t)/fY (t) is nondecreasing in t over [0,∞).

We will make use in subsequent chapters of MGF ordering, that is, X≥MGF Y
if mX(t)≥mY (t) for all t> 0 (it may also be specified that mX(t) is finite in a
neighborhood of zero). Suppose E[X]=E[Y]=µ, and X≥MGF Y. Then mX(t)= 1+
µt + var [X] t2/2+ o(t2) and mY (t)= 1+ µt + var [Y] t2/2+ o(t2), where the o(t2)
hold uniformly in a neighborhood of t= 0. By allowing t→ 0+ we can see that
var [X]≥ var [Y], which we can use to define variance ordering X≥var Y between two
random variables of equal mean.

We have the following implications (since exp(tx) is an increasing convex function
on x∈R when t> 0), where applicable:

X≥LR Y ⇒ X≥HR Y ⇒X≥st Y ⇒X≥v Y

⇒ X≥MGF Y ⇒X≥var Y (4.29)

Finally, we may define moment ordering, that is, X≥moment Y if E[Xk]≥E[Yk] for
all k∈N. Clearly, X≥moment Y ⇒X≥MGF Y. In addition, for nonnegative X, Y, X≥v

Y ⇒X≥moment Y. Since we will make considerable use of the ordering X≥MGF Y, the
implications (4.29) may be quite useful in establishing regularity conditions, since the
stronger forms of ordering may be simpler to verify. The reader interested in further
detail on MGF ordering may be referred to, for example, Li (2004) or Wang and Ma
(2009).

4.7.1 MGF ordering of the gamma and exponential distribution

The MGF of a gamma(α,β) distribution is m(t)= (1− t/β)−α for t<β. There will
be some interesting in establishing for a RV Y the ordering X≥MGF Y where X∼
gamma(α,β), in which case we say Y is gamma dominated. If α= 1 we say Y is expo-
nential dominated. If in addition β−1 =E[Y] we say that the exponential domination
is tight. This terminology is motivated by the fact that this tightness may be useful and
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achievable in many important cases, which can be related to well known concepts in
stochastic lifetime modeling.

We say X is IFR (DFR) if it has an increasing (decreasing) failure rate. If X is the
time until repair of a machine, we expect X to be IFR, since the probability of requiring
repair after usage time t should increase with t. On the other hand, the hazard rate
of infant survival of many species tends to be decreasing near birth, then increasing in
maturity, so both IFR and DFR properties appear naturally. The exponential density
(uniquely) has a constant hazard rate, so if, for example Y is IFR, and λY (0)> 0, then
there exists an exponentially distributed random variable X for which X≥HR Y. We
may have Y both IFR and DFR, in which case λY is constant, and Y is exponentially
distributed. If only one of the properties holds, it holds strictly, which is usually what
is intended.

The IFR/DFR properties may be weakened somewhat. A positive random variable
X is new better than used in expectation (NBUE) if E[X − t |X≥ t]≤E[X] for all t≥ 0,
and is new worse than used in expectation (NBWE) is the inequality is reversed. If Y is
NBUE, it may be shown that X≥v Y where X∼ exp(E[Y]−1), so that Y is exponential
dominated (Proposition 9.6.1, Ross (1996)). It may also be shown that if Y is IFR it is
also NBUE, so we may find Xi ∼ exp(µ−1

i ), i= 1, 2 for which X1 ≥HR Y and X2 ≥v Y.
The former is the stronger ordering (as stated in (4.29)), however, it is important to
note that we can set µ2 =E[Y], but would have to set µ1>E[Y] if the IFR property is
strict. Thus, even if Y is IFR it is still preferrable to rely on the weaker NBUE property
(which follows from IFR) from the point of view of verifying exponential dominance.

4.7.2 Improved bounds based on hazard functions

The monotoncity properties of the hazard rate hX(x)= fX(x)/F̄X(x) are well known for
certain distributions, and we can exploit the fact that for IFR distributions

fX(x0)

F̄X(x0)
≤ fX(x)

F̄X(x)
, when x0 ≤ x,

and therefore

F̄X(x)≤ F̄X(x0)
fX(x0)

fX(x), for x≥ x0. (4.30)

If X is a DFR distribution, suppose we have positive limit limx→∞ hX(x)= hmin, or hX

otherwise has a positive lower bound hmin, then

F̄X(x)≤ h−1
minfX(x), for all x. (4.31)

For the normal case, the Chernoff bound is conservative. For X∼N(µ, σ2), it may
be shown that hX(x) is increasing for x≥µ, so setting x0 =µ in (4.30) yields

F̄X(x) ≤ F̄X(µ)
fX(µ)

fX(x)

= 1/2
(2πσ2)−1/2

(2πσ2)−1/2 exp
(−(x− µ)2/2σ2)

= (1/2) exp
(−(x− µ)2/2σ2) , x≥µ, (4.32)

which, after normalization, improves (4.20) by a factor of 1/2.
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In addition, for Z∼N(0, 1) it is well known that for F̄Z(z)/fZ(z)≈ 1/z for large
z. The Chernoff bound is proportional to fZ(z) and so will be considerably larger
than F̄Z(z)≈ z−1fZ(z) as z→∞. However, when given statistical estimators which are
asymptotically normal, such as sample means, we can generally not assume that tail
probabilities decrease at the same rate as the normal distribution, but we will be able
to construct bounds of the form (4.20).

The gamma distribution X∼ gamma(α, λ) is IFR for α≥ 1 and is DFR for α≤ 1.
For α≥ 1 set x0 =α/λ=µ in (4.30), which gives

F̄X(x) ≤ F̄X(µ) exp
(−λ(x− µ)+ (α− 1) log (x/µ)

)
= F̄X(µ) exp

(−λx+ α+ (α− 1) log (x/µ)
)

, x≥µ, (4.33)

which can be seen to be a strict improvement over (4.21), since F̄X(µ)< 1, and (α−
1) log (x/µ)<α log (x/µ) when α>1 and x/µ>1. When α≤ 1 it may be shown that
hmin = λ, so that for all x> 0 (4.31) implies

F̄X(x)≤�(α)−1 exp
(−λx+ (α− 1) log (λx)

)
, x≥ 0, (4.34)

which improves (4.21) for (at least) x>λ−1.

4.8 THEORY OF STOCHASTIC LIMITS

There are many forms of limiting processes associated with stochastic models, but these
are generally of two types, those concerning sequences of probability measures, and
those concerning sequences of random variables X1, X2, . . . considered jointly. Most
of these definitions have a hierarchical relationship, but there are exceptions.

All forms of convergence described here will play a role in models developed in
this book.

4.8.1 Covergence of random variables

Notions of the convergence of random variables can be defined in terms of the con-
vergence of measurable functions (Section 3.2.11). Suppose X1, X2, . . . is a sequence
of random variables defined on a probability measure space (�, F , P). The following
definitions of convergence are standard:

Definition 4.4 Let X and X1, X2, . . . be random variables on a probability measure
space (�, F , P).

(i) If P(|Xn −X|>ε)→ 0 for all ε>0, then Xn converges in probability to X. This
is denoted

Xn
i.p.→X.

(ii) If E[|Xn −X|p]→ 0 then Xn converges in Lp to X, denoted

Xn
Lp→X.



78 Approximate iterative algorithms

(iii) If P
(
limn→∞ Xn =X

)= 1 then Xn converges to X with probability one (wp1),
or almost surely (a.s.), denoted

Xn
wp1→ X.

The implications

Xn
wp1→ X ⇒ Xn

i.p.→X,

Xn
Lp→X ⇒ Xn

i.p.→X, p> 0,

Xn
Lr→X ⇒ Xn

Ls→X, 0< s< r, (4.35)

are verified in most probability textbooks. Counterexamples involving Lp or wp1
convergence are readily constructed using random variables of the form P(Xn = xn)=
pn = 1− P(Xn = 0), with limit X= 0 wp1, using suitably chosen sequences of constants
xn, pn.

4.8.2 Convergence of measures

We next consider convergence defined exclusively in terms of measures. These measures
may exist on a common measure space, but this need not be the case. If they are, joint
distributional properties play no role.

The notion of weak convergence relies on topologicial properties, in particular,
those associated with Borel spaces. We will make use of the following defintion:

Definition 4.5 Given a topological space �, the boundary ∂A of A⊂� is the set of
all limits of sequences in A which are also limits of sequences in Ac.

Theorem 4.18 Let � be a metric space, and let µ µ1,µ2, . . . be finite measures on
the Borel sets of �. The following conditions are equivalent:

(i) limn→∞
∫
�

fdµn =
∫
�

fdµ for all bounded continuous f :�→R.
(ii) lim infn→∞

∫
�

fdµn ≥
∫
�

fdµ for all bounded lower semicontinuous f :�→R.
(iii) lim supn→∞

∫
�

fdµn ≤
∫
�

fdµ for all bounded upper semicontinuous f :�→R.
(iv) lim infn→∞ µn(A)≥µ(A) for every open set A⊂�, and limn→∞ µn(�)=µ(�).
(v) lim supn→∞ µn(A)≤µ(A) for every closed set A⊂�, and limn→∞ µn(�)=µ(�).
(vi) limn→∞ µn(A)=µ(A) for any Borel set A⊂� for which µ(∂A)= 0.

Any sequence of measures µn satisfying any of the conditions of Theorem 4.18
is said to converge weakly to µ. The notation µn ⇒µ is conventionally used for this
assertion. We also write Xn ⇒X if PXn ⇒PX. Note that this can be expressed in terms
of the CDFs, that is Xn ⇒X if and only if FXn (x)→n FX(x) for all continuity points of
FX. Note also that Theorem (4.18) holds for improper probability measures P(�)< 1.

It may be shown that

Xn
i.p.→X implies Xn ⇒X,
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and so from (4.35) we know that Lp and wp1 convergence also imply weak
convergence.

A stronger definition of measure convergence is given by the following:

Definition 4.6 Given a measurable space (�, F), a sequence of measuresµn converges
setwise to µ if and only if limn→∞ µn(E)=µ(E) for all E∈F .

Essentially, setwise convergence is obtained from weak convergence by strengthen-
ing condition (i) of Theorem 4.18, in that the class of continuous functions is replaced
by the larger class of bounded measurable functions.

Theorem 4.19 Given a measurable space (�, F) let µn be a sequence of measures
which converge setwise to µ. Let fn, gn be two sequences of measurable func-
tions with pointwise limits f , g. If |fn| ≤ gn and limn→∞

∫
�

gndµn =
∫
�

gdµ<∞ then
limn→∞

∫
�

fndµn =
∫
�

fdµ<∞.

Proof See Proposition 18, in Section 11.4 of Royden (1968). The characterization
of setwise convergence in given by the following theorem.

Theorem 4.20 Suppose we are given a measurable space (�, F). A sequence of
measures µn converges setwise to a finite measure µ if and only if

lim
n→∞

∫
�

fdµn =
∫
�

fdµ (4.36)

for all bounded measurable functions.

Proof If (4.36) holds for all bounded measurable functions, then setwise conver-
gence follows by setting f = IE for all E∈F . To prove the converse, suppose f is a
measurable function with bound |f | ≤M<∞. Then Theorem 4.19 implies (4.36) by
setting gn = g≡M and fn = f for all n. ///

4.8.3 Total variation norm

An alternative form of convergence is based on the total variation norm. For any finite
signed measure on measurable space (�, F) this is defined as

‖µ‖TV = |µ|(�)=µ+(�)+ µ−(�), (4.37)

where |µ| is the total variation measure and µ+,µ− are the positive measures defining
the Jordan decomposition (Section 3.2.10). An equivalent definition is given by

‖µ‖TV = sup
E∈F

µ(E)− inf
E∈F

µ(E),

where equality is obtainable from the Hahn decomposition.
If µ1,µ2 are two proper probability measures it can be shown that

‖µ1 − µ2‖TV = 2 sup
E∈F

|µ1(E)− µ2(E)| ,

again, a consequence of the Hahn decomposition.
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The total variation norm is related to the L1 norm (Section 3.3.2), which provides
an evaluation method. Suppose for measure µ we have µ) ν, where ν is a positive
measure on �, and f is a density of µ wrt ν. Then (4.37) becomes

‖µ‖TV =
∫
�

|f |dν. (4.38)

Note that the definition (4.37) is independent of the measure of integration used in
(4.38), and does not rely on the notion of a density function at all, so that if ‖µ‖TV
is calculated using density functions, the dependence on ν should be noted (which is
usually Lebesgue measure or counting measure). It is also possible to define a weighted
total variation norm, where w is a positive measurable function

‖µ‖TV(w) =
∫
�

wd|µ| =
∫
�

w|f |dν,

and we note that ‖µ‖TV(w) =‖µ‖TV for weight function w≡ 1. The distance between
two measures may be given as

‖µ1 − µ2‖TV(w) =
∫
�

w|f1 − f2|dν, (4.39)

where fi are the respective densities of µi wrt ν.
The following theorem will be important to note:

Theorem 4.21 For any signed measures µ and positive weight function w

‖µ‖TV(w) = sup
|v|≤w

|
∫
�

vdµ|. (4.40)

Proof Using the Jordan decomposition µ=µ+ − µ− we may write∫
�

vdµ=
∫
�

vdµ+ −
∫
�

vdµ− ≤
∫
�

|v|dµ+ +
∫
�

|v|dµ− =
∫
�

|v|d|µ|.

If we take the supremum, noting that |µ| is a positive measure we have

sup
|v|≤w

∫
�

vdµ≤ sup
|v|≤w

∫
�

|v|d|µ| =
∫
�

wd|µ| = ‖µ‖TV(w) .

Applying essentially the same argument to bound
∫
�

vdµ from below over |v| ≤w gives

sup
|v|≤w

∣∣∣∣
∫
�

vdµ

∣∣∣∣≤‖µ‖TV(w) . (4.41)

Finally, by the Hahn decomposition there exists E∈F which is positive for µ and for
which Ec is negative. Equality in (4.41) can be attained by setting v′ =wIE −wIEc ,
which completes the proof. ///
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Convergence in the total variation norm of a sequence of measures µn to µ is
defined by the limit limn→∞ ‖µn − µ‖TV(w) = 0. The following implications hold:

convergence in ‖·‖TV ⇒ setwise convergence⇒weak convergence.

It is important to note that convergence in ‖·‖TV(w) must imply that the measures
are nonsingular, in which case convergence of measures is equivalent to L1

w convergence
of densities. Suppose µ1,µ2 are two measures such that µ1 possesses a density with
respect to a positive measure ν, andµ2 =µ+2 + µ−2 for whichµ+2 ) ν andµ−2 ⊥ ν, which
may always be done according to the Lebesgue decomposition theorem (Theorem
3.11). Suppose f1 and f+2 are the respective densities of µ1 and µ+2 wrt ν. Then (4.39)
becomes

‖µ1 − µ2‖TV(w) =
∫

w|f1 − f+2 |dν +
∫

wdµ−2 , (4.42)

and so µ1 and µ2 can only be ‘arbitrarily close’ if they are equivalent according to
Definition 3.16.

Total variation and the span seminorm

The span seminorm of a function is defined by

∥∥f∥∥SP = sup
x

f (x)− inf
x

f (x)

(which will be discussed in more detail in Section 6.8.4). We may also denote the
midpoint of the range of f as

mid(f )= (sup
x

f (x)+ inf
x

f (x))/2.

There is an important relationship between the total variation norm and the span
seminorm, which is summarized in the following theorem:

Theorem 4.22 Suppose µ is a measure on (�, F). Let w be any positive function on
X . Then

∣∣∣∣
∫

gdµ

∣∣∣∣ ≤ 1
2
‖µ‖TV(w) ‖w−1g‖SP +

∣∣mid(w−1g)
∣∣ ∣∣∣∣
∫

wdµ

∣∣∣∣ . (4.43)

In addition, if P1 and P2 are two proper probability measures, then

∣∣∣∣
∫

gdP1 −
∫

gdP2

∣∣∣∣ ≤ 1
2
‖P1 − P2‖TV

∥∥g∥∥SP . (4.44)
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Proof Let µ be a measure with Jordan decomposition µ=µ+ − µ−. Let gw
sup =

supx w(x)−1g(x), gw
inf = infx w−1g(x), then write∫

gdµ =
∫

w−1gwdµ+ −
∫

w−1gwdµ−

≤ gw
sup

∫
wdµ+ − gw

inf

∫
wdµ−

= ∥∥w−1g
∥∥

SP

∫
wdµ+ + gw

inf

∫
wdµ. (4.45)

A similar argument gives∫
gdµ ≤ ∥∥w−1g

∥∥
SP

∫
wdµ− + gw

sup

∫
wdµ. (4.46)

We may take the average of the upper bounds (4.45)–(4.46), then apply the argument
to −g to yield (4.43) after which (4.44) follows by noting that

∫
d(P1 − P2)= 0. ///

4.9 STOCHASTIC KERNELS

Suppose we have Borel space X (recall Definition 3.13), with Borel sets B(X ). The
set of all measurable real valued functions on X is denoted F(X ). Let MX the set
of finite signed measures. Suppose we are given another Borel space Y. A type of
object of considerable importance is a mapping of the form Q : Y →MX , an indexed
set of finite signed measures, or measure kernel. The range of Q may be restricted, as
appropriate, to M1

X , M1−
X or M+

X , the set of stochastic, substochastic or positive finite
measures, respectively. We then refer to a stochastic kernel, substochastic kernel, or
positive measure kernel (or more simply, positive kernel when the context is clear). The
possibility that Q is not a positive kernel will sometimes be emphasized by reference
to a signed measure kernel, or simply signed kernel.

Notational conventions

It is important to establish a consistent notation for measure kernels and related oper-
ations. Given Q : Y →MX , the notation Q(· | y) denotes the specific measure indexed
by y∈Y. This is slightly more cumbersome than the notation Q(y) often used, but
we opt for the greater clarity. For any measurable E, Q(E | ·) : Y →R is a real-valued
function on Y evaluated pointwise by Q(E | y).

In general, if V ∈F(X ) and µ is a measure on X then we may use the compact
notation

µV =
∫

x∈X
V(x)dµ ∈ R̄

to represent integration (always over the entire space). Both forms will be used, accord-
ing to which seems most intuitive in the context. The operation W =QV yields a
mapping W : Y → R̄ evaluated pointwise by

W(y)=Q(· | y)V =
∫

x∈X
V(x)dQ(· | y)∈ R̄, y∈Y .
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If µ is a measure on Y, the operation µQ yields a measure µ′ = (µQ) on X evaluated
setwise by

µ′(E)=µQ(E | ·)=
∫

y∈Y
Q(E | y)dµ, E⊂X .

When X =Y a kernel may transform another kernel by combining the preceding oper-
ations. Suppose for i= 1, 2 we have measure kernels Qi : X →MX . Then Q1Q2 yields
kernel Q′ = (Q1Q2) : X →MX , evaluated by

Q′(E | x) = Q1(· |x)Q2(E | ·)
=
∫

x′∈X
Q2(E | x′)dQ1(· |x), x∈X , E⊂X . (4.47)

Of course, there are assumptions underlying these operations, which we consider next.

4.9.1 Measurability of measure kernels

For any V ∈F(X ) and measure kernel Q the mapping W =QV : Y →R is well defined.
We will of course be interested in determining which properties of W follow from V ,
and would at the very least like to conclude that W ∈F(Y) (V must be measurable in
order that the operation QV be defined), so we will reserve the term measure kernel
for mappings Q guaranteeing this minimal requirement.

Construction of the Lebesgue integral follows from limits of approximating simple
functions (Section 3.3). Suppose we are given simple function Vs =∑n

i=1 aiIEi ∈F(X ).
Then Ws =QVs =∑n

i=1 aiQ(Ei | y). Thus, Ws will be measurable if hE(y)=Q(E | y)
is a measurable function for each E∈B(X ). Any measurable function is a bounded
limit of simple functions (Theorem 3.21), so that Q preserves measurability under this
assumption. In the remainder of this section we will make this idea formal.

The essential condition is that Q(E | y) is a measurable function on Y for all mea-
surable E⊂X . The Dynkin system theorem (Section 3.2.8) may be used to simplify
the verification of this assumption. Recall that a π-system E is a class of subsets that
is closed under finite intersection. Under given conditions we may conclude that a
property which holds for all sets in E must hold for all measurable sets. For example,
the set of intervals in R, or the set of measurable rectangles in a product space is a π
system.

Lemma 4.2 Suppose we are given Borel spaces X , Y and mapping Q : Y →MX for
which Q(X | y) is a measurable function on Y. Suppose E is a π-system for which
B(X )⊂ σ(E). Then if hE(y)=Q(E | y) is a measurable function on Y for all E∈ E , it
follows that hE′ (y) is a measurable function for all E′ ∈B(X ).

Proof The proof follows Theorem 3.10. The class E ′ of subsets E′ for which hE′
is measurable is clearly a λ-system (Definition 3.14). By Theorem 3.9, if E ⊂ E ′ then
B(X )⊂ σ(E)⊂ E ′, which completes the proof. ///

A measure kernel preserves pointwise convergence of measurable functions:

Lemma 4.3 If Q is a measure kernel, and Vn →V, with |Vn| ≤V then Wn =QVn

converges to W =QV.
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Proof The result is a direct application of the dominated convergence theorem (The-
orem 3.19). ///

Thus we can give essentially the same notion of kernel measurability proposed in
Bertsekas and Shreve (1978) (Definition 7.12 and Proposition 7.26):

Definition 4.7 Suppose we are given Borel spaces X , Y, and suppose E is a π-system
for which B(X )⊂ σ(E). Then the mapping Q : Y →MX is a measure kernel if Q(E | ·)
is a measurable mapping from Y to R for all E∈ E . The definition extends naturally
to stochastic, substochastic and positive measure kernels.

That a measure kernel preserves measurability, that is QV ∈F(Y) for any V ∈
F(X ), is given in the following theorem:

Theorem 4.23 A measurable stochastic kernel (Definition 4.7) preserves
measurability.

Proof First suppose hE(y)=Q(E | y) is a measurable mapping on Y for all E∈B(X ).
Then for any simple function Vs ∈F(X ) we may conclude that Ws =QVs is also mea-
surable. Then, by Theorem 3.21 any V ∈F(X ) is the limit of simple functions Vn for
which |Vn| ≤ |V |. Using Lemma 4.3 we have W =QV = limn→∞ QVn, that is, W is the
limit of measurable functions, and is therefore measurable. To complete the proof, by
Lemma 4.2 it suffices to claim only that hE is measurable for all E∈ E . ///

This also resolves the measurablility of the composition of two measure kernels.
Consider the composition defined in (4.47). If Q1, Q2 satisfy Definition 4.7 then
Q2(E | ·)∈F(X ), Q1 is measure preserving, which implies Q′(E | ·)∈F(X ), so that
Q′ also satisfies Definition 4.7.

4.9.2 Continuity of measure kernels

The measure preserving property of the measure kernel of Definition 4.7 does not rely
on metric space properties, although this is included in the definition of a Borel space.
However, metric structure becomes important in defining continuity properties, and
so is an important part of the definition.

We then give the following definitions of continuity for a positive measure kernel.

Definition 4.8 Suppose we are given Borel spaces X , Y, and assume X is a met-
ric space. The mapping Q : Y →M+

X is a weakly continuous measure kernel if the
sequence of measures Q(· | yn) converges weakly to Q(· | y) whenever yn → y. Then
Q is a strongly continuous measure kernel if weak convergence is replace by setwise
convergence.

We then have

Theorem 4.24 (i) If Q : Y →M+
X is a weakly continuous measure kernel, then

(a) V is bounded and continuous ⇒W =QV is continuous,
(b) V is bounded below and lsc ⇒W =QV is lsc,
(c) V is bounded above and usc ⇒W =QV is usc.
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(ii) If Q is a strongly continuous measure kernel, then
V is bounded and measurable ⇒W =QV is continuous.

Proof The theorem follows from Theorems 4.18 and 4.20. ///

4.10 CONVERGENCE OF SUMS

Given a sequence of RVs ε1, ε2, . . ., it is sometimes necessary resolve the convergence
properties of the partial sums Sn =∑n

i=1 εi. One straightforward problem, and one
which will suffice for some applications, is to determine if Sn has a finite limit wp1.
Suppose we may assume that supn E[Sn]=K<∞ and that Sn is bounded below by an
integrable random variable Y. If we first assume that Sn is nondecreasing (for example,
if εn ≥ 0), then by the monotone convergence theorem we may conclude directly that
Sn converges wp1 to some S∞ for which E[S∞]=K.

We give two results with which to test convergence of Sn. For independent εn a.s.
convergence is exactly resolved by the Kolmogorov Three Series Theorem (Durrett
(2010), Chapters 1-2).

Theorem 4.25 (Kolmogorov Three Series Theorem) Let εn be an indepen-
dent sequence, and let Yn = εnI{|εn| ≤1}. Then Sn converges a.s. if and only if (i)∑

n≥1 P(|εn|> 1)<∞; (ii) the series
∑

n≥1 E[Yn] is convergent; (iii)
∑

n≥1 var [Yn]<∞.

The assumption that the εn are independent will often be too restrictive. In such
cases, it may help to regard εn as an adapted process on a filtration Fn representing
process history. If it can be verified that εn possesses any martingale properties, as
given in Definition 4.3, then the convergence properties of Sn may be easily resolved.
For example, a standard result for submartingales is given by the Doob Martingale
Convergence Theorem (See, for example, Durrett (2010), Section 4.2).

Theorem 4.26 (Doob Martingale ConvergenceTheorem) If Sn is a submartingale,
and supn E [SnI{Sn ≥ 0}]<∞, then Sn converges a.s. to some random variable S∞, with
E[|S∞|]<∞.

Note that neither Theorems 4.25 or 4.26 imply

E
[

lim
n→∞ Sn

]
= lim

n→∞E [Sn] ,

(an interesting counter-example occurs in branching processes, see Billingsley (1995),
Section 35). So, if interest is in establishing convergence in the Lp norm, additional
argument is needed. It turns out that the uniform integrability property (Definition
4.1) establishes equivalence between L1 and other forms of convergence.

The next two theorems are proven in Durrett (2010) (Section 4.5, Theorems
5.2, 5.3):

Theorem 4.27 Suppose a sequence X1, X2, . . . possesses limit Xn
i.p.→X. Then the

following are equivalent:

(i) the sequence Xn is uniformly integrable,

(ii) Xn
L1→X,

(iii) E [|Xn|]→E [|X|]<∞.
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Since a.s. convergence implies convergence in probability Theorem 4.27 is directly
applicable to submartingales satisfying the hypothesis of Theorem 4.26.

Theorem 4.28 For a submartingale Sn the following are equivalent:

(i) Sn is uniformly integrable,
(ii) Sn converges a.s. and in L1,
(iii) Sn converges in L1.

Convergence properties may also follow from a uniform bound on higher order
moments. For example, it can be shown (Lemma 7.6.9 of Ash (1972)) that if
supn E

[|Sn|p
]
<∞ for any p> 1 then Sn is uniformly integrable. Recall also, by The-

orem 4.6, that if Sn is a martingale or nonnegative submartingale, then for p≥ 1,
given integrability, |Sn|p is a submartingale. As a consequence, conditions for Lp con-
vergence can also be given. We then have the following theorem (Theorem 7.6.10,
Ash (1972)):

Theorem 4.29 If Sn is a martingale or a nonnegative submartingale for which
supn E[|Sn|p]<∞, p> 1 then Sn converges a.s. and in Lp to a limit S∞.

4.11 THE LAW OF LARGE NUMBERS

Given partial sums Sn =∑n
i=1 εi, define the sample means S̄n = n−1Sn. Suppose E[εn]=

µ for all n. A Strong Law of Large Numbers (SLLN) asserts that S̄n
a.s.→µ, and may also

specify convergence rates. In contrast a Weak Law of Large Numbers (WLLN) asserts

that S̄n
i.p.→µ, and we may also define Lp laws when S̄n

Lp→µ. We know that a SLLN or
an Lp law for any p> 0 implies a WLLN (see Section 4.8.1).

Generally, µ can be taken as 0 by replacing εn with εn − µ. Many forms of the
SLLN exist, involving both the properties of εn and the aggregation method of S̄n.

Suppose the εn are independent. If supn E[ε4
n]<∞, the SLLN follows by

applying Markov’s inequality and the Borel-Cantelli lemma I. Assume µ= 0,
then

∑
n≥1 P(S̄4

n >ε
4)≤∑n≥1 E[S̄4

n]/ε4 ∝∑n≥1 n−2<∞, therefore P(|S̄n|>ε i.o.)= 0,

which implies S̄n
a.s.→ 0.

If εn is an orthogonal process, that is, E[εn]= 0 and the sequence εn is uncorrelated,

and supn E[ε2
n]<∞, then E[S̄2

n]∝ n−1, and so S̄n
L2→ 0.

For identically distributed εn a somewhat more detailed argument (but still based
on elementary probability theory) permits a weakening of the moment bound to
E [|ε1|]<∞, while requiring only pairwise independence (this result is quite recent,
introduced in Etemadi (1981)):

Theorem 4.30 Let ε1, ε2, . . . be an identically distributed pairwise independent
sequence. If E [|ε1|]<∞ then S̄n

a.s.→E [ε1].

Proof See, for example, Section 1.7 of Durrett (2010) for a proof. ///

This result may be extended to the infinite mean case.
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Theorem 4.31 Let ε1, ε2, . . . be an iid sequence with ε1 ≥ 0 and E [ε1]=∞ then
S̄n

a.s.→∞.

Proof Suppose P(ε1 =∞)> 0. Then by the Borel-Cantelli lemma II, wp1 we must
have εn =∞ i.o., so the result holds. If P(ε1 =∞)= 0 define, for any finite K> 0,
the sequence εK

1 =min (ε1, K), and let S̄K
n be the sample means for this sequence. Since

E[εK
1 ]≤K<∞, by Theorem 4.30 we must have wp1

lim inf
n→∞ S̄n ≥ lim

n→∞ S̄K
n =E[εK

1 ]. (4.48)

However, by the monotone convergence theorem, E[εK
1 ]→∞ as K→∞, which means

that the lower bound of (4.48) may be made arbitrarilly large, completing the proof. ///

We will make use of the following SLLN for martingales (Feller (1971), Sec-
tion VII.8):

Theorem 4.32 Let Sn = ε1 + · · · + εn be a martingale. If bn is an unbounded increas-
ing sequence of constants , and

∑
n≥1 b−2

n E[ε2
n]<∞, then b−1

n Sn
a.s.→ 0, and the sequence

Yn =∑n
k=1 b−1

k εk is convergent a.s..

If the terms defining Sn are independent with zero mean, then Sn is a martingale, so
Theorem 4.32 applies. If we have bound supn E[ε2

n]<∞ then we generally set bn = n,
which gives S̄n → 0.

More generally, suppose εn is adapted to filtration Fn. If εn represent a noise process
we may be able to claim that that E[εn |Fn−1]= 0 and that E[ε2

n |Fn−1]≤ σ2
n for some

sequence σ2
n . Then by Theorem 4.3 E[ε2

n]≤ σ2
n , so that Theorem 4.32 is applicable. If

the sequence σ2
n is bounded we can similarly conclude that S̄n

a.s.→ 0. Stronger results
are generally possible for the iid case, but for our purposes we lose little by modeling
noise processes as martingales, while gaining considerably more flexibility, especially
in adaptive control models.

We have seen that the behavior of a random sum Sn can be determined by the
behavior of its expected value. The same is not exactly true of the sample mean process
S̄n. Under the hypothesis of Theorem 4.32 (and many other SLLNs) εn will be an
orthogonal process. Suppose we have E[ε2

n]≤ σ2<∞. Then E[S̄2
n]≤ n−1σ2, and we

would conclude E[|S̄n|]=O(n−1/2). It turns out that the convergence rate of S̄n itself is
slightly slower. The best possible rate is known, and any convergence statement giving
this rate is known as a Law of the Iterated Logarithm (LIL). A proof of the following
version may be found in Durrett (2010), (Section 7.9).

Theorem 4.33 (Law of the Iterated Logarithm) If X1, X2, . . . is an iid sequence
with E[Xi]= 0, E[X2

i ]= 1 then

lim sup
n→∞

∑n
i=1 Xi

(2n log log n)1/2
= 1, wp1.

In other words, for L2 convergence we have rate E[|S̄n|]=O(n−1/2), but for almost
sure convergence we have the slightly larger LIL rate S̄n =�(2n−1/2( log log n)1/2).
There are a variety of conditions beyond those given in Theorem 4.33 under which
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the LIL holds, and the reader can be referred to a summary of the quite interesting
history of the LIL in Durrett (2010) and to Hall and Heyde (1980) for a comprehensive
treatment of martingale limit theory.

In the meantime, we can offer the following compromise. The LIL implies that
S̄n = o(n−1/2+δ) for any δ>0, and this can be tested by Theorem 4.32.

Theorem 4.34 If Sn is a martingale for which supn E[ε2
n]= σ2<∞, then S̄n =

o(n−1/2+δ) wp1 for any δ>0.

Proof In Theorem 4.32 set bn = n1/2+δ where δ>0. Under the stated conditions the
hypothesis is satisfied, therefore Sn/n1/2+δ a.s.→ 0, which completes the proof. ///

4.12 EXTREME VALUE THEORY

Suppose we are given an indefinite iid sequence X1, X2, . . ., where Xi has CDF FX,
and we are interested in the process Mn =max1≤i≤n Xi. Suppose Qp is the p-quantile,
that is, p= FX(Qp) (with a suitable adjustment when FX is not continuous), and we
set Q1 = sup{Q | FX(Q)< 1}. The CDF of Mn is

FMn (x)=P (Mn ≤ x)=P (∩i{Xi ≤ x})=
n∏

i=1

P (Xi ≤ x)= FX(x)n.

If for x we have FX(x)< 1, so that Mn> x has nonzero probability, then limn FMn (x)=
limn FX(x)n = 0. In fact, by Borel-Cantelli lemma I wp1 there exists m<∞ for which
Mn> x for all n>m (in other words, Mn

a.s.→Q1). A possible normalization for Mn is
easily deduced by noting

FMn (Q1−1/n)= (1− 1/n)n →n e−1,

so that we can at least expect Mn to be located with high probability near Q1−1/n. In
principle, asymptotic tail probabilities for Mn, suitably normalized, can be constructed
in this way.

It turns out that the study of limiting distributions of this type for the iid case pos-
sesses a remarkably refined theory, based on the Fisher-Tippett-Gnedenko Theorem.
A statement about the limiting distribution of Mn, using a more refined normalization
method, can take the form:

lim
n→∞FX(anx+ bn)n =G(x) at all continuity point of G, (4.49)

for some sequence (an, bn), n≥ 1 and CDF G. Then an, bn are the normalizing constants
for Mn, and G is the limiting distribution, since

P
(

Mn − bn

an
≤ x
)
=P

(
Mn ≤ anx+ bn

)= FX(anx+ bn)n ≈G(x).

We then have, assuming that expectations exist,

E
[

Mn − bn

an

]
≈EG[X], or E [Mn]≈ bn + anEG[X],

the important fact being that EG[X]=O(1).
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Much of the theory underlying statements of the form (4.49) follows from the fact
that there exist only 3 possible candidates for G:

G1(x) = exp
(−e−x) , −∞< x<∞,

G2(x |α) =
{

0 ; x≤ 0
exp
(−x−α

)
; x> 0

,

G3(x |α) =
{

exp(−(−x)α); x< 0
1 ; x≥ 0

,

for some parameter α>0. Location and scale parameters may be introduced into these
distributions, but no generality is lost by normalizing the original sequence Xi instead,
since for a> 0, b∈R, we have max1≤i≤n a(Xi − b)= a(Mn − b). The dependence on
a single parameter can then be emphasized, and so it is therefore possible to regard
G1, G2, G3 as special cases of a single parametric family, refered to as the generalized
extreme value distribution. Otherwise, G1, G2 and G3 are referred to as the Gumbel,
Fréchet and Weibull, or Type I, II and III extreme value distributions.

Theorem 4.35 (Fisher-Tippett-Gnedenko) Suppose for FX there exists some nor-
malizing sequence (an, bn), n≥ 1, with an> 0, for which (4.49) holds for some
nondegenerate CDF G. Then G must be one of the extreme value distributions G1, G2

or G3.

This means the limiting distribution G follows once normalizing constants can be
deduced. For our purposes, the most important special case will involve the Gumbel
distribution G1. Suppose fX(x)> 0 and is differentiable for all x∈ (x0, Q1) for some
large enough x0. Let hX(x) be the hazard rate for FX. If

lim
x→Q1

dh−1
X (x)/dx= 0,

then the limit (4.49) exists for G=G1, and we may take bn =Q1−1/n and an =
[nfX(bn)]−1. This condition is satisfied by the normal distribution. This summarizes
part of Theorem 10.5.2 of David and Nagaraja (2003), and readers can consult this
reference for more details.

4.13 MAXIMUM LIKELIHOOD ESTIMATION

Suppose f (x | θ) defines a parametric family of densities on sample space S, where
θ ∈�⊂R

d. Assume also that f (x | θ) possesses all first order partial derivatives. The
d × d information matrix I(θ) is defined element-wise by

Iij(θ)=Eθ

[
∂

∂θi
log f (X | θ)× ∂

∂θj
log f (X | θ)

]

where X has density function f (x | θ). It may be shown that for all θ

Eθ

[
∂

∂θi
log f (X | θ)

]
= 0,
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so that Iij(θ) is interpretable as the covariance,

Iij(θ)= covθ

(
∂

∂θi
log f (X | θ), ∂

∂θj
log f (X | θ)

)
.

This means I(θ) is a covariance matrix, and is therefore positive semidefinite, and
positive definite unless the partial derivatives of log f (X | θ) are linearly dependent. If
log f (X | θ) possesses second order partial derivatives, we have

Iij(θ)=−Eθ

[
∂2

∂θiθj
log f (X | θ)

]
,

which will often be easier to evaluate.
The log-likelihood function is defined as

L(θ |X)= log f (X | θ),

and is regarded as a function of θ, rather than X. If we are given a random outcome
X from density f (x | θ), the maximum likelihood estimate (MLE) of θ is

θ̂MLE = argminθL(θ |X),

assuming a unique minimum exists.
Suppose we are given an iid random sample X̃= (X1, . . . , Xn) from f (x | θ). By inde-

pendence the density of X̃ is fX̃(x1, . . . , xn | θ)=∏i f (xi | θ), and the likelihood function
of θ given the sample X̃ is

L(θ | X̃)=
∑

i

log f (Xi | θ),

with MLE θ̂MLE = argminθL(θ | X̃). Under quite general conditions (see, for example,
Lehmann and Casella (1998) or Casella and Berger (2002)) we have for the MLE based
on X̃

n1/2(θ̂MLE − θ)→n N(0, I−1(θ)),

or equivalently,

n(θ̂MLE − θ)TI(θ)(θ̂MLE − θ)→n χ
2
d.

Note that I(θ) remains the information matrix for f (x | θ), whereas the information for
the density of the sample would be nI(θ), directly from the definition.

This leads to stochastic bounds of the form∥∥∥θ̂MLE − θ
∥∥∥≤ n−1λmax

[
I−1(θ)

]
χ2

d,

where λmax
[
I(θ)−1

]
is the maximum eigenvalue of I(θ)−1.
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4.14 NONPARAMETRIC ESTIMATES OF DISTRIBUTIONS

Given a sample X1, . . . , Xn from distribution F on R
d, it is generally possible to con-

struct a new distribution F̃ which is close to F in some sense, and may therefore form
the basis for an approximation model. The empirical distribution is defined as

F̂(x1, . . . , xd) = n−1
n∑

i=1

I{Xi,1 ≤ xi, . . . , Xi,d ≤ xd}. (4.50)

When the support S of F is countable F̂ is equivalent to the collection of empirical
frequencies

p̂j = n−1Zj, Zj =
n∑

i=1

I{Xi = j}, j ∈S.

For continuous distributions a wider range of alternatives are generally considered.
Kernel density estimates are based on a density kernel K(x), which is formally a density
function on R

d, and may be written

f̂ (x; K, h) = (nhd)−1
n∑

i=1

K((x−Xi)/h),

where h is a positive constant. The kernel K is typically chosen to be a standardized
uniform or Gaussian density, while h approaches 0 for increasing n. When the support
of F is a bounded set S ⊂R

d a histogram density may be used. Suppose S= (S1, . . . , Sm)
a partition of S. This generates a histogram approximation

f̂ (x; S) =
m∑

i=1

|Si|−1 |{Xi ∈ Si}|
n

I{x∈ Si},

so that f̂ (x; S) is the uniform density conditional on each partition element Si. Typically,
the partition is allowed to become more refined as n increases. Often, Si is defined by a
grid discretization of S of sides h, in which case this parameter plays a role comparable
to h in the definition of f̂ (x; K, h), although the two types of approximations remain
distinct even when K is the uniform density.

Approximation theory requires the definition of a metric for distributions. The
Glivenko-Cantelli (or Kolmogorov) distance between two CDFs F1, F2 on R

d is

dGC(F1, F2) = sup
x
|F1(x)− F2(x)|,

while the total variation distance is

dTV (F1, F2) = sup
A

∣∣∣∣
∫

A
dF1 −

∫
A

dF2

∣∣∣∣ , (4.51)
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the supremum being taken over all measurable sets. This is equivalent to the total
variation norm introduced in Section 4.8.3 in the sense that

‖F1 − F2‖TV = 2dTV (F1, F2).

Some authors introduce a factor of 2 into (4.51), thus equating the total variation norm
and distance. Without this factor the maximum achievable value of dTV is 1. When
F1, F2 are both absolutely continuous with respect to a common measure µ we have

dTV (F1, F2) = 1
2

∫
|f1 − f2|dµ, (4.52)

where f1, f2 are the respective Radon-Nikodym derivatives of F1, F2.
The quantity dGC(F̂, F) plays an important role in mathematical statistics. It is well

known that it converges to 0 as n→∞ for iid samples from F. This forms the basis for
the Kolmogorov-Smirnov statistic

√
ndGC(F̂, F0) for testing against the null hypothesis

H : F= F0, the distribution of which is well understood.
We further note that since dGC is calculable as the supremum over a subset of mea-

surable sets, we necessarily have dGC(F1, F2)≤ dTV (F1, F2) for any two distributions, so
that dTV is the more stringent distance, and this difference is important. The quantity
dGC(F̂, F) can be used to compare an empirical distribution F̂ to a continuous distri-
bution F, even though they are singular measures (see Definition 3.16). In contrast, in
this case we would have dTV (F̂, F)= 1. Thus, when approximation theory necessitates
the use of dTV , any estimate F′ of a distribution F must itself be a measure equivalent
to F, that is, it is the densities wrt a common measure which must be estimated. We
will consider this type of estimate further in Section 15.2.

4.15 TOTAL VARIATION DISTANCE FOR DISCRETE
DISTRIBUTIONS

Suppose FX has support S ={1, 2, . . .}, and is defined by probability vector P=
(p1, p2, . . . ) where pj =P(X= j). The natural choice of approximate distribution is
F̂, defined by corresponding empirical frequences P̂= (p̂1, p̂2, . . . ). Then

2dTV (F, F̂) = ‖P − P̂‖1

=
∑
i≥1

|pi − p̂i|,

where ‖·‖1 is the L1 norm wrt counting measure. We also wish to incorporate weighted
distances, and can do so in a manner for which the theory differs little from the
unweighted case. Suppose w= (w1, w2, . . .) is a system of positive weights with finite
maximum w∗. The weighted L1 norm is then∥∥∥P − P̂

∥∥∥
1:w

=
∑
i≥1

wi|pi − p̂i|.
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Denote the standardized weighted L1 distance based on n samples by

Wn = (w∗)−1
∥∥∥P − P̂

∥∥∥
1:w
.

First note that we must have Wn ≤ 2 for any n, even for unbounded support. Then,
recall that if X∼ bin(n, p), the variance of X is np(1− p), so by Jensen’s inequality we
have the convenient bound

E[Wn] ≤ n−1/2A(P, w), where

A(P, w) = (w∗)−1
∑
i≥1

wi

√
pi(1− pi). (4.53)

The bound is sharp up to a finite constant in the following sense. In Blyth (1980) it
was shown that

E [|X/n− p|] = n−1/2
√

2/π
√

p(1− p)+O(n−3/2)

so the bound (4.53) is asymptotically sharp up to a fixed multiplicative constant
√

2/π.
The quantity A(P, w) is unbounded over the space of all distributions on unbounded
S. If the support is of cardinality m, then a Lagrange multiplier argument gives the
bound:

A(P, w) ≤ m1/2(1−m−1)1/2,

which is shown to be sharp by considering the uniform distribution under uniform
weighting, giving the slightly weaker, but more intuitive form

E[Wn] ≤ (m/n)1/2. (4.54)

It is therefore possible for this bound to be larger that the upper bound of Wn, so that
these approximations become useful only when n is large compared to the support
size (in particular, the tolerance is a function of m/n). It should also be noted that
A(P, w) may be infinite when the support is unbounded, although E[Wn] must be
finite even in this case. The issue is that the bound does not hold uniformly over p,
which proves crucial for the unbounded support case. An exact expression for E[Wn]
was actually derived by Abraham De Moivre in 1730 (Diaconis and Zabell (1991)).
However, this derivation uses mathematical techniques quite distinct from the more
familiar ones used in this section, as this apparently straightforward quantity exhibits
some quite interesting and counterintuitive behavior. As it happens we may conclude
that the bounds derived here are suitable for our purposes, as long as A(P, w)<∞.
Of course, it is entirely possible that this will not hold, in which case a new argument
would be required. Whatever the case, Blyth (1980) and Diaconis and Zabell (1991)
are can be highly recommended to the reader who is curious about this interesting
problem.

Regarding the distribution of Wn, by Theorem 4.15 we have the bound P(|pi −
p̂i|>ε)≤ 2 exp(−2nε2). Applying Booles’ inequality to the events {|pi − p̂i|>ε/m}
indexed by i extends the bound to P(‖P − P̂‖1>ε)≤ 2m exp(−2nε2/m2). However,
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the dependence on m can be all but eliminated by applying McDiarmid’s inequality
(Theorem 4.16):

Theorem 4.36 For an empirical distribution P̂ based on an iid sample from
probability vector P= (p1, p2, . . . ), we have

P (Wn − E [Wn]≥ ε) ≤ exp(−nε2/2), (4.55)

P (Wn − E [Wn]≤−ε) ≤ exp(−nε2/2), (4.56)

P (|Wn − E [Wn]| ≥ ε) ≤ 2 exp(−nε2/2). (4.57)

In addition,

P (Wn ≥ ε) ≤ exp
(
−n
(
ε− n−1/2A(P, w)

)2
/2
)

, for ε≥ n−1/2A(P, w)

which implies, for example, that for P= (p1, . . . , pm)

P (Wn ≥ ε) ≤ exp
(−nε2/8

)
, for ε≥ 2(m/n)−1/2.

Proof In Theorem 4.16, set function f of the hypothesis equal to ‖P − P̂‖1 inter-
preted as a function of the random sequence X1, . . . , Xn. Clearly, altering a single
element Xi in any way forces a change in exactly two empirical frequencies p̂i, p̂j, and
this change is no larger than 1/n. This implies that the hypothesis of Theorem 4.16 is
satisfied by setting each cj = 2/n, which gives (4.55) directly, with (4.56) and (4.57)
following after applying the theorem to −f . The remainder of the lemma follows after
noting that E [Wn]≤√m/n for any distribution on m support points. ///

Thus, for example, if m<∞, then tail probabilities for Wn can be obtained which
do not depend on P, as long as n is a large enough multiple of m.

One useful feature of Theorem 4.36 is that upper bounds for higher order absolute
central moments are easily obtained, leading to a bound on the moment generating
function.

Lemma 4.4 For any distribution P on S ={1, 2, . . .} the following inequality holds

E
[
|Wn − E[Wn]|k

]
≤
{

n−k/2 ; k= 1, 2
2(2/n)k/2�(k/2+ 1); k= 3, 4, . . .

. (4.58)

In addition, if χn = n(Wn − E[Wn])2 then

mχn (t)≤ 2(1− 2t)−1, t< 1/2. (4.59)
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Proof Since |Wn − E[Wn]|k is a positive random variable, its expectation may be
evaluated by

E
[
|Wn − E[Wn]|k

]
=
∫

t>0
P
(
|Wn − E[Wn]|k ≥ t

)
dt

=
∫

t>0
P
(
|Wn − E[Wn]| ≥ t1/k

)
dt

≤
∫

t>0
2 exp

(
−nt2/k/2

)
dt

= 2(2/n)k/2�(k/2+ 1)

using the inequality (4.57) from Theorem 4.36. We then note that the upper bound
can be improved for k= 1, 2 by noting that Theorem 4.17 (using a Doob martingale
construction) gives a sharper bound for the variance var[Wn]≤ n−1 than that obtained
by the preceding inequality (var[Wn]≤ 4n−1) which also improves the bound for k= 1
using Jensen’s inequality, giving (4.58).

Then (4.59) follows after noting that E[χk
n]≤ 2× 2kk!. ///

A bound on E
[
Wk

n

]
can be obtained using an argument such as:

E
[
Wk

n

]
= E

[
(Wn − E[Wn]+ E[Wn])k

]

≤ E[Wn]k +
k∑

j=2

E
[|Wn − E[Wn]|j]E[Wn]k−j

involving quantities for which bounds have been obtained in this section. It can be
concluded, for example that E

[
Wk

n

]=O(n−k/2), and that the contribution from P is
O(A(P, w)k) for fixed n.



Chapter 5

Background – stochastic processes

A stochastic process may be defined as a (possibly uncountable) indexed collection of
random variables {Xt}, t ∈ T . The index set T usually represents time or space, and
may be discrete or continuous. Whatever the case, we will at least assume T can be
ordered (as can any subset of R

k). The central problem usually concerns the interaction
of the dependence structure among the Xt with the index variable t.

Suppose we may define for each finite set of indices v= (t1, . . . , tn), t1< · · ·< tn, a
Borel measurable marginal distribution Pv for X̃v = (Xt1 , . . . , Xtn ). We say this system
of probability measures is consistent if whenever u⊂ v, the distribution Pu is exactly
the marginal distribution of X̃u obtainable from Pv. Then by the Kolmogorov extension
theorem (Theorem 3.28) there exists a unique probability measure P on the product
space BT with marginal distributions Pv, where B are the Borel sets on R.

This method is quite general, in particular T need not be countable. However,
the limits of this extension must be understood. Theorem 3.28 limits the extension
of finite projections to the smallest σ-field containing these projections, which is rela-
tively coarse. The problem is that ‘sample path’ properties which depend on observing
x(t) everywhere on T cannot be reduced to a countable number of projections. This
is because such properties, including continuity, monotonicity or anything involving
extrema, can be altered by changing a single value of x(t). This is not a problem if T is
countable. Otherwise, more specialized methods may be used to construct probablity
measures for widely used stochastic process on T = [0,∞) such as Poisson or Gaussian
processes (see, for example, Billingsley (1995); Durrett (2010)).

5.1 COUNTING PROCESSES

Counting processes form an important class of stochastic processes, which may be
defined as follows:

Definition 5.1 A counting process is a stochastic process N(t) defined on t ∈ [0,∞)
satisfying (i) N(0)= 0; N(t)∈ I; N(t) is nondecreasing in t wp1.

Usually, N(t) represents the number of events in a sequence which have occurred
by time t. It is helpful to think of N(t) as an arrival process, as though we were marking
the arrival of customers at a queue starting at N(0)= 0 at time t= 0. Then for t> s
N(t)−N(s) is the number of arrivals in time interval (s, t]. Note that N(t) contains
perfect information regarding the times at which events occur. Definition 5.1 says
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little about the distributional properties of N(t), so we need to discuss probabilistic
models which permit the description of intuitive properties of N(t), such as an arrival
rate limt→∞ t−1N(t). Many counting processes conform to one of two models, which
we briefly consider next (discussions of these processes in Parzen (1962), Karlin and
Taylor (1975) or Ross (1996) can be recommended to the interested reader).

5.1.1 Renewal processes

Let X1, X2, . . . be an iid sequence of positive random variables. Let Sn =∑n
i=1 Xi. The

counting process

N(t)= sup{n : Sn ≤ t}, with N(0)= 0 (5.1)

is referred to as a renewal process. Conventions may differ. Some definitions require
that P(X1 = 0)= 0 others only that P(X1 = 0)< 1. In addition, some definitions require
that E[X1]<∞, since most of the important results rely on this assumption.

The terminology suggests a process which indefinitely restarts itself stochastically,
with the nth renewal occurring at time Sn. Often, a renewal process is embedded in a
more complex stochastic process with this character. Alternatively, a renewal process
may be interpreted as an arrival process with iid interarrival (renewal) times. Note that
if P(X1 = 0)> 0 the formulation of (5.1) permits instantaneous increments of N(t) of
value greater than 1, as though instantaneous multiple arrivals are permitted. We give
the following lemma:

Theorem 5.1 If N(t) is a renewal process, then

(i) P(X1 =∞)= 0 implies P
(
limt→∞ N(t)=∞)= 1,

(ii) P(X1 =∞)> 0 implies P
(
limt→∞ N(t)<∞)= 1,

(iii) P
(
limt→∞ t−1N(t)=E[X1]−1

)= 1.

Proof (i)–(ii) From (5.1) is follows that limt→∞ N(t)<∞ if and only if Xm =∞
for some finite m. By Boole’s inequality P(∪mXm =∞)= 0 if P(X1 =∞)= 0, and by
the Borel-Cantelli lemma II P(∪mXm =∞)= 1 if P(X1 =∞)> 0, which completes the
proof.

(iii) If P(X1 =∞)> 0 then by (ii) we have limt N(t)<∞ wp1, and E[X1]−1 = 0 so
(iii) holds.

Otherwise, limt N(t)=∞ wp1, and by Theorem 4.30 or 4.31 we may con-
clude n−1Sn

a.s.→E[X1]. We may then write limt→∞ N(t)−1SN(t) =E[X1] wp1. Next, by
definition we must have SN(t) ≤ t< SN(t)+1, so that

N(t)
SN(t)

≥ N(t)
t

>
N(t)+ 1
SN(t)+1

N(t)
N(t)+ 1

.

The result holds by allowing t→∞ and noting the limits just described. ///

There may be interest in the renewal function

m(t)=E[N(t)],

about which the following statements hold.
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Theorem 5.2 For any renewal process with E[X1]=µ>0 we have m(t)<∞ for all
t ∈ [0,∞), with limit

lim
t→∞

m(t)
t

=µ−1. (5.2)

Proof See Proposition 3.2.2 and Theorem 3.3.4 of Ross (1996). ///

It is important to note the generality of Theorem 5.2, requiring only that
P(X1 = 0)< 1. If µ=∞ the limit in (5.2) is µ−1 = 0.

5.1.2 Poisson process

One of the most important stochastic process models is the Poisson process, which
relies on the following definitions. A counting process N(t) has independent increments
if the quantities N(t1)−N(s1) and N(t2)−N(s2) are independent whenever s1< t1<

s2< t2. In addition, N(t) is stationary (or has stationary increments) if the distribution
of N(t)−N(s) depends only on t − s for any s< t.

Definition 5.2 A counting process N(t) is a (homogenous) Poisson process with rate
λ if the following conditions hold:

(i) N(t) has independent and stationary increments,
(ii) P(N(s)= 1)= λs+ o(s),
(iii) P(N(s)> 1)= o(s).

If for some function λ : [0,∞)→R+ (i)–(iii) are replaced by

(i)′ N(t) has independent increments,
(ii)′ P(N(t + s)−N(t)= 1)= λ(t)s+ o(s),

(iii)′ P(N(t + s)−N(t)> 1)= o(s).

then N(t) is a nonhomogenous Poisson process with intensity function λ.

The usual convention is to assume that a Poisson process is homogenous unless
explictly stated otherwise. The properties (ii)–(iii) essentially state that the expected
number of arrivals between times t and t + s is approximately λs, so that λ becomes
the arrival rate. Definition 5.2 is a strong one, since it may shown that when it holds
we must conclude that N(t + s)−N(t) has a Poisson distribution with mean λs (Ross
(1996), Chapter 2). If this is the case then, by the independent increment property,
P(X2> s |X1 = t)=P(N(t + s)−N(t)= 0)= exp(−λs), where Xi is the time between
arrivals i − 1 and i (the 0th arrival occurs at time t= 0). That is, a Poisson process is
a renewal process with exponentially distributed renewal times.

The Poisson process is of importance in stochastic modeling for much the same
reason that the normal distribution is of importance in modeling noise processes. The
latter is the limit of a superposition of an arbitrarily large number of independent
(or weakly dependent) noise processes. Similarly, the Poisson process is a limit of a
superposition of an arbitrily large number of renewal processes. This means that an
arrival process which is really an aggregation of a large number of essentially separate
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arrival processes of general type will resemble a Poisson process. Derivations of this fact
can be found in Section 5.9 of Karlin and Taylor (1975) or Section XI.3 of Feller (1971).

5.2 MARKOV PROCESSES

Given a Borel space X a stochastic process Xn ∈X on a filtration Fn, n≥ 0, is a discrete
time Markov process if for some sequence of stochastic kernels Qn : X →MX , n≥ 1
we have P(Xn ∈E |Fn−1)=Qn(E |Xn−1), with initial state X0 distributed as Q0. A
Markov process is time homogenous if Qn ≡Q, n≥ 1, for some stochastic kernel Q.
The elements of X are usually referred to as states. By convention a Markov process
is assumed to be time homogeneous unless otherwise stated. Markov processes may
also be defined on continuous time. The term Markov chain usually refers to a discrete
time Markov process for which X is countable, although reference is often made to
Markov chains with general (uncountable) state spaces (see Durrett (2010), Section
5.6). The theory of continuous-time Markov processes assumes a different character,
and we will be concerned primarily with Markov chains.

Given two probability measures P0, P1 ∈M1
X , the equation P1 =P0Q means that

if X0 has distribution P0, and X1 is distributed conditionally as Q(· |X0) then X1 has
distribution P1. We have defined composition of stochastic kernels Q : X →MX in
Section 4.9, and they play an important role in the theory of Markov chains. This
leads to the J-step transition probabilities, defined recursively using

QJ(E | x)=
∫

x′∈X
QJ−1(E | x′)dQ(· |x)=

∫
x′∈X

Q(E | x′)dQJ−1(· |x),

which represents the conditional probability P(Xn+J ∈E |Xn = x) for any n. The usual
convention is to associate J= 0 with the identity transformation Q0(E | x)= I{x∈E}.

We say that µ is an invariant measure of Q if

µ=µQ.

Note that µ need not be a finite measure. If it is, it may be normalized to π=µ/µ(X ),
in which case π is a stationary distribution for Q. The existence of such a distribution
has important implications. Since π=πQ, if X0 has distribution π, then so does X1,
and hence all Xn. In this case, we say that the Markov chain is in a steady state, which
generally implies stable and predictable behavior.

Of course, ensuring that a Markov chain possesses an initial distribution π will
usually not be a practical goal. The important question is whether or not the Markov
chain has a tendency to approach π from any initial distribution, in the sense that
Qn(· |x)⇒π as n→∞ for any initial state x∈X . When this holds, we may be able to
replace weak convergence with the stronger convergence in the total variation norm,
and possibly establish rates of convergence.

Alternatively, a weaker version of this property may hold. Suppose a Markov
chain Xn proceeds indefinitely, and the empirical distribution of the observed states
converges to a well defined distribution π. This may occur without Qn(· |x) possessing
a limit, and in fact will be the case for many models of practical interest.

The property under which a Markov chain possesses stable limiting behavior is
referred to as ergodicity, and is also associated with the tendency of a Markov process
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towards recurrent behavior. Ideally, a Markov chain is a renewal process, with renewals
defined by transition to some fixed state. If renewal times have finite expectation, it
becomes possible at least to define long run frequencies.

For convenience we say a Markov chain is discrete if the state space X is countable.
The important ideas can be developed for discrete Markov chains, following which
we will consider the general state space model.

5.2.1 Discrete state spaces

We will rely primarily on the conventions used in Parzen (1962) and Ross (1996), two
particularly elegant introductions to this subject. We first define a family of counting
processes

Nj(t)=
t∑

n=0

I{Xn = j} (5.3)

for each state j ∈X . The total number of visits Nj(∞)= limt→∞ Nj(t) is well defined.
If we condition on X0 = j, then by the Markov property Nj(t) is a renewal process
(Section 5.1.1), with renewal times given by transition into j. Note that for Nj(t) the
time domain may remain continuous (t ∈ [0,∞)), with renewal times as integer valued
random variables. Define

mij(t)=E[Nj(t) |X0 = i].

Directly from (5.3) we have

mij(t)=
�t�∑

n=0

E[Xn = j |X0 = i]=
�t�∑

n=0

Qn(j | i).

Then mjj(t) is a renewal function for Nj(t) given X0 = j, and permits the definition
of a rate of occurrence, or long run frequency, of a state j as limt→∞ t−1mjj(t)=πj,
where the limit exists. In fact, this type of limit is precisely characterized for a renewal
process.

Define the random variable Tj = inf{n≥ 1 |Xn = j} as the minimum number of
transitions required to reach state j from inititial state X0. It will be convenient to set

f (i, j)=P(Tj <∞|X0 = i),

which, by the Markov property, is the probability that Xn+m = j for some m≥ 1 given
that Xn = i. We may then set

µij =E[Tj |X0 = i].

Given X0 = j, Tj models a renewal time for Nj(t), with expected value µjj. By Theorem
5.2 we always have mjj(t)<∞. Otherwise, we have three possible cases.

Transient f (j, j)< 0. Then µjj =∞ and wp1 there is eventually an infinite renewal
time, so directly from (5.1) we have P(Nj(∞)<∞|X0 = j)= 1, and πj = 0.
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Null Recurrent f (j, j)= 1 but µjj =∞. By Theorem 5.1 we have P(Nj(∞)=∞|
X0 = j)= 1, and by Theorem 5.2 we have πj = 0.

Positive Recurrent µjj <∞ (which implies f (j, j)= 1). By Theorem 5.1 we have
P(Nj(∞)=∞|X0 = j)= 1, and by Theorem 5.2 we have πj =µ−1

jj > 0.

The three cases are labeled according to the standard terminology (Ross (1996)). A
state j is transient or recurrent if f (j, j)< 1 or f (j, j)= 1, respectively. Recurrence is then
classified as null recurrence or positive recurrence if µjj =∞ or µjj <∞, respectively.

Most attention is focused on Markov chains with positive recurrent states, since
they possess well defined long run frequencies πj. This case can be further subdivided.
We may have limit Qn(j | j)→n πj, as well as Qn(j | i)→n πj for certain states i (that this
limit might not depend on the initial state is an important fact). In other cases Qn(j | j)
does not possess a limit, so long run frequency is interpreted as a limit of average
probabilities,

πj = lim
n→∞n−1

n∑
k=1

Qk(j | i).

5.2.2 Global properties of Markov chains

Although some of the important properties of a Markov chain can be resolved by
renewal theory applied to specific states, a more powerful theory is available by defin-
ing global properties. These depend on the network structure implied by the kernel Q
(the material in Sections 2.1.11, 2.3.4 and 2.3.6 are very much related).

We first note the Chapman-Kolmogorov equations:

Qm+n(j | i)=
∑
k∈X

Qm(j | k)Qn(k | i) (5.4)

for any n, m≥ 0, which follow from a standard conditioning argument.
Then we may define a directed graph G(Q) with nodes labeled by the states in X ,

which possesses a directed edge from i to j if and only if Q(j | i)> 0. We can have i= j,
permitting self edges, or directed edges from i to i. A Markov chain is then a random
walk on G(Q) along directed paths, with transitions from Xn−1 to Xn represented
by single edges, and governed conditionally by distribution Q(· |Xn−1). Many global
properties of a Markov chain follow from the connectivity properties of this graph
(see, for example, Section 2.4 of Brémaud (1999)).

We say state j is accessible from i if Qn(j | i)> 0 for some n≥ 0. Following Theorem
2.2 and (5.4), if i �= j this holds if and only if there is at least one directed path in G(Q)
from i to j. If i= j then Q0(i | i)= 1, that is i is always accessible from i. This convention
holds even if Q(i | i)= 0 (there is no self edge associated with node i in G(Q)).

If i, j are accessible to each other then they communicate, written i↔ j. As previ-
ously discussed, we always have i↔ i for all i ∈X . This property is also symmetric and
transitive, that is i↔ j if and only if j↔ i; in addition i↔ j and j↔ k implies i↔ k (this
follows from (5.4)). Thus, communication is an equivalence relation (Definition 2.1).
This means that X can be partitioned into disjoint (equivalence) classes, such that i, j are
in the same class if and only if i↔ j. A Markov chain is irreducible if X is a single class.
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A property that may be associated with a state is a class property if whenever it
holds for one member of a class it must also hold for all other members. Transience,
null recurrence and positive recurrence are all class properties.

The period of a state is defined as d= gcd{n≥ 1 |Qn(i | i)> 0} (where gcd is the
greatest common divisor). If there exists at least one finite n′ for which Qn′ (i | i)> 0 then
1≤ d≤ n′, otherwise, d=∞. If d= 1 then Q is aperiodic. Note that if a Markov chain
has period d, it does not follow that Qd(i | i)> 0. However, there must be some n′<∞
for which Qnd(i | i)> 0 for all n≥ n′, in particular, for an aperiodic state Qn(i | i)> 0
for all large enough n (see, for example, complement 8D, Section 6.8, Parzen (1962)).
It may be shown that perodicity is a class property in the sense that all states in a class
have the same period.

Theorem 5.3 For a discrete state Markov chain Q, state i is recurrent if and only if
E[Ni(∞) |X0 = i]=∑∞

n=1 Qn(i | i)=∞.

Proof If i is nonrecurrent then P(Ni(∞)≥ k |X0 = i)= (1− f (i, i))k for all k≥ 0,
which implies E[Ni(∞) |X0 = i]<∞. If i is recurrent, then we must have Ni(∞)=
∞ wp1. Therefore, E[Ni(∞) |X0 = i]=∞ if and only if i is recurrent. Then

E[Ni(∞) |X0 = i]=
∞∑

n=0

E[Xn = i |X0 = i]=
∞∑

n=0

Qn(i | i),

which completes the proof. ///

We may have an absorbing state i, definied by the property Q(i | i)= 1. The Markov
chain will not leave an absorbing state, once entered. A recurrence class E must also be
absorbing in the sense that the Markov chain can never leave it once it is entered. To
see this, suppose the Markov chain leaves E, then returns to E from some state j /∈E.
This means that j is accessible for some state i ∈E, and some state i′ ∈E is accessible
from j. But i↔ i′, which implies j↔ i, so j must be in E. This makes the important
point that recurrence classes may in some sense be studied independently, and if more
than one exists the Markov chain will select one of them, and remain in it indefinitely.
For this reason, many (if not all) of the important properties of Markov chains can be
studied by assuming irreducibility.

We have already seen that the advantage of positive recurrence lies in the natural
definition of a steady state. If state i is visited infinitely often, with a finite recurrence
time µii, then in the long run we can expect to find the process in state i with a
frequency of µ−1

ii , giving us a steady state distribution. We introduced the steady state
distribution as a solution to the equation π=πQ. For discrete Markov chains this
leads to the following definition:

Definition 5.3 A probability distribution π on X is stationary for a Markov chain
Q if

πj =
∑
i∈X

Q(j | i)πi (5.5)

for all j ∈X .
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This means that if a random variable X1 has distribution π={πi}, and P(X2 =
j |X1 = i)=Q(j | i), then X2 also has distribution π. A stationary distribution need
not exist, but when it does it of considerable importance, representing the long run
occupancy of the states.

Recall the definition of counting process Nj(t) as the number of transitions into j
by time t. We give the following theorem (Theorem 4.3.1 of Ross (1996)):

Theorem 5.4 For a given Markov chain, if i↔ j then

(i) P
{
limt→∞ Nj(t)/t=µ−1

jj |X0 = i
}
= 1,

(ii) limn→∞ n−1∑n
k=1 Qk(j | i)=µ−1

jj ,

(iii) If j is aperiodic then limn→∞ Qn(j | i)=µ−1
jj ,

(iv) If j has period d then limn→∞ Qnd(j | j)= dµ−1
jj .

It is important to note that although statements (i)–(iii) of Theorem 5.4 refer to
some initial state i, all of the related limits are independent of i. In this sense, if
a Markov chain is irreducible the dependence on the initial state vanishes in the
limit.

The application of Theorem 5.4 is most clear if we assume that a Markov chain
is irreducible and aperiodic (the definition makes sense, because irreducibility implies
one class, and aperiodicity is a class property). In this case we conclude (Theorem 4.3.3
of Ross (1996)):

Theorem 5.5 Assume that Markov chain is irreducible and aperiodic. Exactly one
of the two statements holds:

(i) All states are transient, or all states are null recurrent, in which case
limn→∞ Qn(j | i)= 0 for all i, j, and no stationary distribution exists.

(ii) All states are positive recurrent, in which case limn→∞ Qn(j | i)=πj > 0 for all
i, j, and πj is the unique stationary distribution for Q.

Following Theorem 5.5 an irreducible aperodic Markov chain on a countable state
space X satisfying (ii) of Theorem 5.5 is called ergodic, and it is ergodic if and only if
it possess a stationary distribution, which is unique when it exists.

If Q is irreducible, positive recurrent but periodic, then (5.5) will hold for πj =µ−1
jj

(see Theorem 5.4 (iv)), but π is a set of long run frequencies, rather than a formal
distribution.

Example 5.1 Suppose we are given state space N0, and permit Q(j | i)> 0 only when
|i − j| =1, with the exception that Q(0 | 0) may be nonzero. In particular, we set ai =
Q(i + 1 | i), and the constraint forces Q(i − 1 | i)= 1− ai for all i≥ 1 and Q(0 | 0)=
1− a0 The steady state equation (5.5) becomes

π0 = (1− a0)π0 + (1− a1)π1,

πi = ai−1πi−1 + (1− ai+1)πi+1, i≥ 1, (5.6)
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the successive addition of which yields solution

πi = ai−1

1− ai
πi−1, i≥ 1, or

πi =
∏i−1

k=0 ak∏i
k=1 (1− ak)

π0, i≥ 1. (5.7)

Clearly, the Markov chain is irreducible on N0 if and only if ai ∈ (0, 1) for i≥ 1 and
a0 ∈ (0, 1]. If a0< 1 it will also be aperiodic, but will have period d= 2 if a0 = 1, since
transitions could only take place between even and odd numbers. In the aperiodic case
a normalized solution to (5.6), if it exists, is interpretable as a steady state distribution,
but in the periodic case it would be a set of long run frequencies, and not a distribution
(steady state or otherwise). The question of periodicity often seems to interfere with
an otherwise elegant theory. Many important theorems assume aperiodicity, but many
commonly studied Markov chains are periodic. That periodicity might not greatly
affect some of the important properties of a Markov chain is suggested by the ease
with which it can be removed, in this case merely by ensuring that a0< 1.

To fix ideas, suppose ai ≡α∈ (0, 1), i≥ 0. The Markov chain is aperiodic and
irreducible, and the solution to (5.6) becomes

πi =
(

α

1− α
)i

π0, i≥ 1.

Applying the normalization constraint
∑

i≥0 πi = 1 yields

π0 =
⎛
⎝1+

∑
i≥1

(
α

1− α
)i
⎞
⎠
−1

,

but as can be seen this is possible only if α<1/2, in which case a solution to (5.6)
exists, so that πi defines a steady state distribution. If α>1/2, there will be a tendency
for the Markov chain to drift upwards indefinitely, and will in this case be transient.
If α= 1/2 the Markov chain can be recognized as the absolute value of a symmetric
random walk, which will be null recurrent (it will return to state i= 0 infinitely often
wp1) but not ergodic (see further discussion below).

We next define a finite state Markov chain on X ={0, . . . , M} by setting a0 =
(0, 1], ai ∈ (0, 1) for i= 1, . . . , M − 1, and ai = 0 for i≥M. This Markov chain will be
irreducible, and a solution to (5.6) can be obtained from (5.7) and a finite normalization
constant.

Thus, for finite state Markov chains, the ergodicity property will follow from
irreducibility and aperodiocity, and a suitable modification of the definition of ergod-
icity can be made for periodic Markov chains (see below). For infinite state Markov
chains, ergodicity often becomes an important point of inquiry, and does not follow
from irreducibility and aperiodicity alone. In addition, as we have seen, even when
these conditions do hold it does not suffice to verify that all states are visited infinitely
often wp1.
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5.2.3 General state spaces

The concept of ergodicity described in Theorem 5.5 involves positive recurrence, under
which each state is visited infinitely often according to a renewal process, the renewal
times possessing finite expected values. When the state space X is a more general metric
space we cannot expect recurrence in this sense. There do, however, exist analogous
definitions of irreducibility, recurrence and ergodicity which permit a unified theory.

First, suppose X is a Borel space, and Q is a stochastic kernel Q : X →M1
X

satisfying Definition 4.7. If we are given P0 ∈M1
X then P1 =P0Q is evaluated by

P1(A) =
∫

X
Q(A | y)dP0(y), for all measurable A⊂X . (5.8)

That P1 is well defined follows from the fact that Q(A | ·) is a measurable real-valued
function on X . That P1 satisfies the definition of a probability measure is then eas-
ily verified. Any measure ν satisfying the fixed point equation ν= νQ is an invariant
measure. Clearly, all scalar multiples of an invariant measure are also invariant mea-
sures. Thus, if a finite invariant measure exists in M+

X , then there exists an invariant
probability measure P=PQ.

We have seen that for discrete state spaces, ergodicity may be characterized by,
in addition to recurrence, the convergence of the n-step transition probabilities to a
proper distributionπ, which is an invariant (i.e. stationary) distribution. Under suitable
regularity conditions this concept extends to general state spaces.

Definition 5.4 Let Q be a stochastic kernel on Borel space X (as in Definition 4.7).
A measure P on X is strictly positive if P(E)> 0 for all open sets E. Then Q is strictly
positive if Q(· |x) is strictly positive for all x∈X .

In addition, Q is regular if the sequence of real-valued functions on X evaluated
by un(x)= ∫ un−1dQ(· |x) is equicontinuous whenever u0 is uniformly continous (see
Section 3.1.2).

Finally, Q is ergodic if there exists a strictly positive probability measure P such
that for any probability measure P0 the sequence P0Qn converges weakly to P (see
Section 4.8.2).

The following is a summary of Theorems 1-2 in Feller (1971), Section VIII.7:

Theorem 5.6 Let Q be a strictly positive regular kernel on Borel space X ⊂R
p. Then:

(i) If X is closed and bounded then Q is ergodic.
(ii) Q is ergodic if and only if it possesses a strictly positive stationary distribution P.

The assumption in Theorem 5.6 that a stationary distribution is strictly positive is
a natural one. In contrast, the assumption that Q is strictly positive is quite restrictive.
It would be similar to the requirement that Q(j | i)> 0 for all i, j ∈X for a discrete state
Markov chain, which would rule out most of the examples used in this book. The
assumption can be relaxed somewhat by considering a finite iteration Qk, which may
be strictly positive even if Q isn’t. The implication of this is that there exists a single
k for which the k-step transition probability Qk(E | x) is positive for all initial states x
and open sets E.
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A much less restrictive characterization of ergodicity is available through the idea
of Harris recurrence (Harris (1956)). It will clarify matters to first summarize how
the recurrence properties of a discrete state space Markov chain can be established
by considering a single state. The notion of recurrence implies an embedded renewal
process, and we may select any state i, and define any transition into that state as a
renewal time. Then i is recurrent if f (i, i)= 1, or, by Theorem 5.3, if E[Ti |X0 = i]=∑∞

n=1 Qn(i | i)=∞. If another state j is accessible from i we must have i↔ j, since
otherwise we would have 1 − f (i, i)≥ f (i, j)> 0. Therefore, all states accessible from i
form a recurrence class. In addition, since positive recurrence and periodicity are class
properties whatever holds for i holds for the entire class (we will make use of this
device again in Section 12.7).

This approach cannot be used directly for general state spaces in which singletons
have measure 0. However, it might be possible to define conditions under which an
auxiliary state α may be embedded into a Markov chain such that (i) Qn({α} |α)> 0
for large enough n; and (ii) the resulting process retains the Markovian property. If
this is possible, then recurrence may be defined in terms of the auxiliary state α.

For any A⊂X , let f (x, A) be the probability that a Markov chain visits any state
y∈A, given initial state x, after a finite number of transitions. This is comparable to
the quantity f (i, j) introduced earlier. Similarly, NA(t) is the counting process of visits
to A, with limit NA(∞).

We then define the Harris chain:

Definition 5.5 A stochastic kernel Q on Borel space X defines a Harris chain if
there exist measurable sets A, B⊂X , a probability measure ν for which ν(B)= 1, and
a constant ε>0 for which the following statements hold:

(i) f (x, A)> 0 for all x∈X ,
(ii) If x∈A and C⊂B then Q(C | x)≥ εν(C).

The definition of a Harris chain may seem unintuitive, at least statement (ii). It is best
understood in relation to its purpose, which is the construction of the type of auxiliary
state α just described. Clearly, the intention is to associate renewal times, and therefore
α, with visits to an aggregation of states A. Unfortunately, we cannot simply collapse
A into a single state. Certainly, there is nothing preventing us from replacing a Markov
chain Xn with Xδ

n =XnI{Xn /∈A} + δI{Xn ∈A}, making use of dummy state label δ /∈X .
We would merely replace any Xn ∈A with an indicator that Xn is in A. The problem
with this approach is that Xδ

n need no longer be a Markov chain, as is generally the
case when states are aggregated in this way.

It is statement (ii) of Definition 5.5 which permits the construction of an auxiliary
state α /∈X with which to define recurrence. Based on Q, we construct stochastic kernel
Q̄ on Borel space X ∪ {α} as follows:

Q̄(C | x) = Q(C | x) for x /∈A, C⊂X ,

Q̄({α} |x) = ε for x∈A,

Q̄(C | x) = Q(C | x)− εν(C) for x∈A, C⊂X ,

Q̄(C |α) =
∫

B
Q̄(C | x)dν for C⊂X ∪ {α}.
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Note that Q̄ is not a stochastic kernel unless statement (ii) of Definition 5.5 holds.
Essentially, Q and Q̄ define the same Markov chain. The distinction may be seen by

defining a third Markov chain X′
n. If X′

n = x /∈A suppose X′
n+1 is selected by Q(C | x).

On the other hand, if X′
n = x∈A suppose the subsequent state is determined by the

mixture

QA(· |x)= (1− ε)Q1 + εQ2

where

Q1 = Q(· |x)− εν
1− ε and Q2 = ν.

This is equivalent to generating an independent random indicator variable Zn equalling
1 with probability ε, then selecting X′

n+1 from Q2 if Zn = 1 and from Q1 otherwise.
Of course, as is easily verified, QA =Q, so X′

n is identical to the Markov chain defined
by Q, except that we now have a sequence of independent indicator variables Zn.

Suppose we then derive the process X̄n from X′
n by setting X̄n =X′

n, unless we had
X′

n−1 ∈A with the associated indicator variable Zn−1 = 1, in which case we set X̄n =α
(and X′

n is distributed as ν). In this case X̄n is a Markov chain with kernel Q̄, and we
have a single state α, with nonzero probability, which may be used to define recurrence.
That X̄n remains a true Markov chain while possessing a single state which might be
recurrent is attributable to the ingenuity of Definition 5.5.

A Harris chain is recurrent if f (α, {α})= 1. Theorem 5.3 is directly applicable, that
is, a Harris chain is recurrent if and only if

∞∑
n=0

Q̄n({α} |α)=∞. (5.9)

Similarly, the period of α is d= gcd{n≥ 1 | Q̄n({α} |α)> 0} and a Harris chain is
aperiodic if d= 1.

Recurrence may also be given in terms of set A. Suppose for all x0 ∈A we have
f (x0, A)= 1. Then for any initial state X0 = x0 ∈A we must have NA(∞)=∞ wp1.
Clearly, E[Nα(∞) |X0 = x0]≥ εE[NA(∞) |X0 = x0]=∞, so α must be recurrent.

We summarize Theorems 6.5 and 6.8 of Durrett (2010):

Theorem 5.7 A recurrent Harris chain possesses an invariant measure. In addition,
if a recurrent aperiodic Harris chain Q possesses a stationary distribution P=PQ then

lim
n→∞

∥∥Qn(· |x)− P
∥∥

TV = 0

whenever f (x, {α})= 1.

If the invariant measure described in Theorem 5.7 is finite, the Harris chain is
positive recurrent. The invariant measure can then be normalized to define a stationary
distribution (see Hernández-Lerma and Lasserre (2001)). Otherwise the Harris chain
is null recurrent.
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Associate with X a σ-finite measure µ, permitting stochastic kernel Qn, for any
n≥ 1 to be represented by a density kernel qn(x′ | x), which is assumed to be a Borel
measurable mapping from X 2 to R̄+. This gives

Qn(E | x)=
∫

x′∈E
qn(x′ | x)dµ. (5.10)

The intention is usually that µ is Lebesgue measure on X ⊂R
p or counting measure

on any countable X .
If µ is Lebesgue measure on X ⊂R

p, we can generally find x0, y0 for which q(y0 |
x0)> 0, with q(y | x) continuous on X 2 at (x0, y0). In this case, we can find ε>0 and
small enough neighborhoods A and B of x0 and y0 so that statement (ii) of Definition
5.5 holds when ν is Lebesgue measure concentrated on B and normalized so that
ν(B)= 1. Thus, verifying that Q is a Harris chain involves selecting a state x0 possessing
a neighborhood to which the Markov chain will indefinitely return, the remainder of
the definition following from sufficient continuity conditions for q.

A similar construction for countable X is simpler, setting A={x0} where x0 is
accessible from all other states, and B={y0} for any state satisfying Q({y0} |x0)> 0. It
may be shown that if any sets A, B satisfy Definition 5.5, there exists a pair of singletons
A′, B′ which also satisfy the definition (see Example 6.1, Chapter 5 of Durrett (2010)).

5.2.4 Geometric ergodicity

Definition 5.4 relies on weak convergence Qn(· |x)⇒n π to define ergodicity. In con-
trast Theorem 5.7 gives conditions for convergence in the total variation norm (recall
from Section 4.8.3 that convergence of measures in ‖·‖TV implies weak convergence).
Norm convergence permits the definition of convergence rates, and a rich theory exists
which yields O(ρn) convergence. The constant ρ<1 is itself of considerable interest.

Definition 5.6 An irreducible aperiodic Markov chain is geometrically ergodic if
it possess a stationary distribution π, and there is a constant ρ<1 and π-integrable
function M such that

∥∥Qn(· |x)− π∥∥TV ≤M(x)ρn

for all n≥ 1, x∈X . The total variation norm may be weighted by w, in which case we
refer to w-geometric ergodicity. For countable state spaces the condition may be stated

∣∣Qn(j | i)− πj
∣∣≤Cijρ

n

where Cij <∞ for all i, j.

Recurrence of a Harris chain is a consequence of the assumption that f (x, A)= 1
for all x∈X . A stronger ergodicity property follows from the assuption that for some
A⊂X we have the uniform lower bound Q(A | x)≥ δ>0 for all x∈X . This can be
seen to be a stronger assumption than that require for Harris recurrence. The following
theorem is derived from Case (b), Section V.5 of Doob (1953).
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Theorem 5.8 Suppose we are given stochastic kernel Q, with Borel measurable
density kernels qn as defined in (5.10). Suppose there exists C⊂X , δ>0 and integer
m for which 0<µ(C)<∞, and

qm(y | x)≥ δ for all y∈C and x∈X . (5.11)

Then Q possesses a stationary distribution π, for which π(C′)≥ δµ(C′) when C′ ⊂C,
and for which

2−1
∥∥Qn(· |x)− π∥∥TV = sup

E⊂X

∣∣Qn(E | x)− π(E)
∣∣

≤ (1− δµ(C))(n/m)−1 (5.12)

for all n≥ 1, x∈X .

The condition (5.11) is known as Doeblin’s condition (see, for example, Isaac
(1963) for further discussion of this condition). For discrete Markov chains this is
equivalent to the existence of j ∈X , δ>0 and integer m≥ 1 for which Qm({j} | i)≥ δ
for all i ∈X .

An alternative approach is given by necessary and sufficient conditions for
geometric ergodicity for countable state spaces, due to Popov (1977):

Theorem 5.9 If X is countable and Q is an ergodic Markov chain, then Q is also
geometrically ergodic if and only if there is a finite real valued function f on X , a
number ρ<1, and a finite subset B⊂X which satisfy

E[f (X1) |X0 = i] ≤ ρf (i) for all i /∈B, and

max
i∈B

E[f (X1) |X0 = i] <∞.

Conditions analagous to those given in Theorem 5.9 for recurrent Harris chains
with general state space are given in Nummelin and Tuominen (1982).

The interested reader can be referred to Section 7.3 of Hernández-Lerma and
Lasserre (1999), and to a concise set of conditions given in Chan (1989). The discussion
of ergodicity for Markov chains on general state spaces in Section V.5 of Doob (1953)
extends beyond the conclusion of Theorem 5.8.

Geometric ergodicity of finite state Markov chains

Suppose X is finite, and Q is irreducible and aperidodic. If case (i) of Theorem 5.5 holds
then Qn(j | i)→n 0 for all pairs i, j. However, this cannot be the case, since Qn(· | i) is a
proper probability distribution for all n≥ 1. By aperiodicity we may then identify N for
which Qn({i} | i)> 0 for all n≥N and i ∈X . By irreducibility, for any pair of states i, j
there exists n for which Qn({j} | i)> 0. If Qn′ ({j} | j)> 0, by the Chapman-Kolmogorov
equations (5.4) we have Qn+n′ ({j} | i)> 0. This in turn implies the existence of Nij for
which Qn({j} | i)> 0 for all n≥Nij. Since the number of pairs i, j is finite, Doeblin’s
condition (5.11) holds, so that (5.12) of Theorem 5.8 holds. We have just proven:

Theorem 5.10 Any irreducible aperiodic Markov chain on a finite state space is
geometrically ergodic.
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It is important to emphasize that the essential condition here is irreducibility.
With some additional technical argument, periodic Markov chains can be analyzed as
aperiodic Markov chains after cyclic decomposition (see, for example, Durrett (2010),
Section 5.5).

We expect stable control systems to be ergodic, but many other important Markov
chains will not be.

Example 5.2 A random walk on R can be defined as a cumulative sum Sn =∑∞
i=1 Xi

where Xi is an iid sequence. Suppose P(X1 = 1)=P(X1 =−1)= 1/2. Then Sn is irre-
ducible and periodic (d= 2 since Sn must have the same parity as n). The kernel can be
given by Q({j} | i)= 1/2 if |i − j| =1 and Q({j} | i)= 0 otherwise. It is easily seen that
counting measure µ on I is an invariant measure for Q. It solves (5.5) but is not a
probability distribution. Despite this, it does describe intuitively the limiting behavior
of Sn as increasingly diffuse. The long run frequencies are easy to deduce from the
marginal distribution of Sn = 2Zn − n, where Zn ∼ bin(n, 1/2), forcing us to conclude
that limn→∞ Qn(j | i)= 0 and so Sn is not positive recurrent. However, it can be shown
that

∑∞
n=1 Qn(i | i)=∞ (use the binomial distribution and Stirling’s approximation) so

that all states are null recurrent. Even without ergodicity, much can be said about the
long run properties of Q.

If we would rather Sn be aperiodic we may alter the support of X1, for example,
P(X1 = 1)=P(X1 =−1)=α<1/2 and P(X1 = 0)= 1− 2α. Then counting measure
remains an invariant measure. Interestingly, the symmetric random walk remains null
recurrent when extended to two dimensions, but becomes transient in any higher
dimension. This is known as Pólya’s Theorem (Example 8.6, Billingsley (1995)).

5.2.5 Spectral properties of Markov chains

Suppose X ={1, . . . , N}. In this case a stochastic kernel Q can be represented as a
stochastic matrix (Section 2.3.5). Taking liberties with notation, we have Q∈MN(R),
setting Qi,j =Q({j} | i). Each row of Q consists of a probability distribution on X , which
is the defining property of a stochastic matrix. If π is a steady state distribution for
Q, then it is a left eigenvector, since π=πQ, with associated eigenvalue 1. In addition
�1 is a right eigenvector, since for any stochastic matrix �1=Q�1, also with associated
eigenvalue 1.

The definition of an irreducible nonnegative matrix (Definition 2.2) corresponds
exactly to the definition of an irreducible Markov chain. The discussion of Section
2.3.6 makes clear that this is precisely what is implied by the mutual communication
between all pairs of states. The stronger definition of the primitive matrix (Definition
2.3) is equivalent in this sense to aperiodicity. Therefore, the Perron-Frobenius theorem
(Theorem 2.13) is directly relevant to the theory of Markov chains.

Finally, the convergence rate given by (2.19) is applicable under general conditions
(see, for example, Section 6.1 of Brémaud (1999)).

5.3 CONTINUOUS-TIME MARKOV CHAINS

The definition of a Markov chain extends naturally from discrete to continuous time
for countable state spaces. A stochastic process {X(t) : t ∈ [0,∞)} is a continuous-time
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Markov chain on X if:

P
(
X(t + s)= j |X(t)= i ∧X(t′)= x(t′), t′ ∈ [0, t)

)
=P
(
X(t + s)= j |X(t)= i

)
(5.13)

for any i, j ∈X , t, s≥ 0, and mapping x : [0, t)→X . It may be assumed that X(t) is right-
continuous wp1. The Markovian property (5.13) actually has two independent aspects.
We may identify a sequence of transition times t0, t1, t2, . . . in which t0 = 0 and ti is the
ith point of discontinuity of X(t). Then {X(ti) : i≥ 0} is referred to as the embedded
Markov chain. Of course, the embedded Markov chain will be a true Markov chain
under the assumption (5.13). In addition, the intertransition times must also satisfy the
appropriate Markovian property. In particular, at any point in time the distribution of
the time remaining until a transition cannot depend on the time since the last transition.
Any waiting time with this property is referred to as memoryless. For this reason, the
transition law of a continuous-time Markov chain may be constructed using elementary
probability theory, based on the remarkable properties of the exponential distribution,
which defines a random variable X on support [0,∞) using density function f (x | λ)=
λ exp(−λx) for any λ>0. The parameter λ is appropriately referred to as the rate,
since a Poisson process with rate λ has interarrival times of density f (x | λ). Note that,
as we would expect, E[X]= λ−1.

Theorem 5.11 The following properties hold for the exponential distribution:

(i) The exponentially distributed random variable is the unique memoryless waiting
time with support [0,∞).

(ii) If X1, . . . , Xn are independent exponentially distributed random variables with
rates λ1, . . . , λn then Y =mini Xi is exponentially distributed with rate

∑
i λi.

(iii) In addition, P(Y =Xj)= λj/
∑

i λi.

Proof (i) A waiting time X on [0,∞) is memoryless if and only if P(X> t + s |X>

t)=P(X> s), or P(X> t + s)=P(X> s)P(X> t), for all s, t≥ 0. That this property
is satisfied by the exponential distribution is easily verified by substituting F̄(x)=
exp(−λx). The prove the converse, suppose a memoryless waiting time on support
[0,∞) has distribution function F. Letting S(u)= log(F̄(u)), the memoryless property
implies S(t + s)= S(t)+ S(s). Since S is monotone, a solution to this equation must be
of the form S(t)= ct, which completes the proof.

(ii) P(Y > t)=P (∩i{Xi > t})=∏i P (Xi > t)=∏i exp(−λit)= exp
(−t
∑

i λi
)
.

(iii) For n= 2, we may evaluate P(Y =X1)=P(X1<X2)= ∫x1<x2
f (x1 | λ1)f (x2 |

λ2)dx1dx2 = λ1/(λ1 + λ2). The extension to n≥ 2 follows from (ii). ///

The proof of (i) of Theorem 5.11 involves a solution to Cauchy’s equation
(S(t + s)= S(t)+ S(s)). This clearly includes S(t)= ct for any constant c, but includes
additional nonlinear solutions. Fortunately, the regularity conditions for S required
to preclude nonlinear solutions are quite minimal, namely that S is continuous at one
point (Kuczma (2009)).

A construction of (5.13) may be based on Theorem 5.11. For countable X we
define a finite transition rate λij ≥ 0 for any pair of states i, j. To avoid complications
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we may assume that for each i ∈X there is at least one j �= i for which λij > 0, otherwise
i would be an absorbing state. If this holds, it can be shown that whenever λii > 0 it
will be possible to reset λii to zero and adjust the remaining rates to yield an equivalent
process. We may therefore assume λii ≡ 0 without loss of generality. Let Ei be all states
j for which λij > 0 and define λ∗i =

∑
j∈Ei

λij. When the process is in state i we associate
with each j ∈Ei an exponentially distributed waiting time of rate λij. All waiting times
are independent of each other and of the process history. The process remains in state
i until completion of any waiting time, at which time the process moves to the state
associated with that waiting time. By Theorem 5.11, this process is a continuous-time
Markov chain, for which the transition time from state i is exponentially distributed
with rate λ∗i , and for which the embedded Markov chain has transition kernel
Q({j} | i)= λij/λ

∗
i .

A distinction has to be made between the steady state of the embedded Markov
chain and the continuous-time Markov chain X(t), and the two can be quite different.
To see this, suppose for some state i all transitions rates λij in Ei are divided by a
common factor M. This does not change the transition probabilities Q({j} | i) of the
embedded Markov chain, but the expected time that X(t) remains in state i pending a
transition has expected value M/λ∗i , and so can be made arbitrarily large while leaving
the distributional properties of the embedded Markov chain unchanged.

The steady state occupation distribution is given by Pj = limt→∞ P(X(t)= j |
X(0)= i), assuming the limit exists and does not depend on i, and is interpretable
as the proportion of time the system spends in state j. Again, this is distinct from the
steady state distribution π of the embedded Markov chain.

A formal derivation would be based on the Chapman-Kolmogorov equations for
continuous-time Markov chains, which are essentially the same set of equations as
(5.4) for Markov chains:

Pij(t + s)=
∑
k∈X

Pik(t)Pkj(s) (5.14)

for s, t≥ 0 and all i, j ∈X , where Pij(t)=P(X(t)= j |X(0)= i) represents the transition
probabilities for time increments of length t. In addition, Pij(t) defines a proper dis-
tribution over j ∈X for all i ∈X and t≥ 0, with limt→0 Pij(t)= 1 if i= j, and is zero
otherwise (the last assumption is comparable to (ii)–(iii) of Definition 5.2 of a Poisson
process).

This elementary construction suffices for our purposes, but does not resolve all
issues related to the type of model defined by (5.13). The interested reader may be
referred to Chapter 14 of Karlin and Taylor (1981) or to Davis (1993) for a more
general treatment.

Accepting the elementary model, necessary conditions for a steady state may be
obtained using the balance equations. These are based on the observation that the
number of times X(t) enters any state i (eventually) equals the number of times it
leaves that state. We may consider the counting process of exits from state i. This
would have rate λ∗i while X(t) is at state i, so that if the occupancy frequency of state
i was Pi, the exit rate would be λ∗i Pi. Of these exits, a proportion Q({j} | i) are to state
j, where Q is the transition kernel of the embedded Markov chain, so transitions from
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i to j occur at rate Q({j} | i)λ∗i Pi = (λij/λ
∗
i )λ∗i Pi = λijPi. Then the entrance rate for state

i is the sum of all transition rates into i, leading to balance equations

λ∗i Pi =
∑
k�=i

λkiPk, i ∈X . (5.15)

With additional regularity conditions the equations (5.15) can be derived as a steady
state solution to a system of differential equations obtained by allowing s to approach
0 in the Chapman-Kolmogorov equations (5.14) (Karlin and Taylor (1981)).

5.3.1 Birth and death processes

One important model for which the balance equations (5.15) do characterize the steady
state is the birth and death process. Here, X =N0, and transitions occur only between
states i, j for which |i − j| =1. Using the elementary model, with each state i we asso-
ciate a birth rate λi = λi,i+1 and death rate µi = λi,i−1, setting µ0 = 0, λ0> 0 and, for
the moment, assuming λi,µi > 0 for i≥ 1. The balance equations become

λ0P0 = µ1P1,

(λi + µi)Pi = λi−1Pi−1 + µi+1Pi+1, i≥ 1, (5.16)

for which a solution must take the form

Pi = λi−1

µi
Pi−1 =

∏i−1
k=0 λk∏i
k=1 µk

P0, i≥ 1. (5.17)

The steady state distribution can be expressed exactly after calculating a normalizing
constant from

∑
i Pi = 1 (the same procedure as in Example 5.1). We may also restrict

the process to a finite state space X ={0, 1, . . . , M}, in which case we would need to
define positive birth and death rates λi−1 and µi for i= 1, . . . , M, and note that (5.17)
would hold for this range.

The steady state distribution of the embedded Markov chain may be obtained
from (5.7) after setting ai = λi/(µi + λi) for i≥ 1 and a0 = 1.

5.4 QUEUEING SYSTEMS

Queueing systems form a class of stochastic process of considerable importance in
operations research, and present a rich set of applications in control and optimiza-
tion. They also possess an elegant and intuitive parametric modeling theory, and will
therefore serve well to illustrate some of the techniques described in this volume. A
queueing system is easy to describe. It contains a queue into which an arrival process of
customers enter. It also contains m servers, who service customers. The time of service
has a specified distribution. A customer in the queueing system is either being served,
or is in the queue waiting to be served. A server is either busy serving a customer, or
is free. Upon service completion the customer exits the system and the server immedi-
ately begins service of some customer from the queue if it is not empty. Accordingly,
a customer entering the system begins service immediately if there is a free server, or
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enters the queue otherwise to wait for service. A variety of queueing disciplines exist to
determine which customer in the queue enters service at the next service completion,
the most common being the normally observed FIFO/FCFS discipline (first in first out
or first come first served). The queue discipline affects some system properties (waiting
time of an arriving customer) but not others (busy period of server), at least absent
additional structure, and so is specified only when relevant.

5.4.1 Queueing systems as birth and death processes

Considerable insight can be gained by modeling queueing systems as birth and death
processes on N0. The state variable will be the number of customers in the system (in
service and in queue), and either increases by one when a customer arrives, or decreases
by one when a service ends. Service times and interarrival times are exponentially
distributed (that is, memoryless), but the service time rates µi and the arrival rates λi

(using the notation of Section 5.3.1) are allowed to depend on the state variable i. The
steady state distribution, if it exists, is obtained directly from (5.17) as

Pi =
∏i−1

k=0 λk∏i
k=1 µk

P0, i≥ 1,

P0 = 1

1+∑∞
i=1

∏i−1
k=0 λk∏i
k=1 µk

(5.18)

We have directly that P0 ≤ 1, so the essential remaining condition is that P0> 0, equiv-
alently, that the sum

∑∞
i=1 (

∏i−1
k=0 λk)/(

∏i
k=1 µk) is finite. A steady state distribution

exists if and only if this condition holds. Similarly, the steady state distribution π of
the embedded Markov chain follows from (5.7) as

πi =
∏i−1

k=0 λk/(µk + λk)∏i
k=1 µk/(µk + λk)

π0

=
(
µi + λi

λ0

)(∏i−1
k=0 λk∏i
k=1 µk

)
π0, i≥ 1,

π0 = 1

1+∑∞
i=1

(
µi+λi
λ0

)(∏i−1
k=0 λk∏i
k=1 µk

) . (5.19)

A few features of (5.18) and (5.19) are worth noting. First, the term λ0 cancels in
(5.19), so that the calculation of πi does not involve λ0, unlike Pi. However, its
inclusion in (5.19) makes the point that if πi is replaced with πi = λ∗i Pi (noting that
λ∗0 = λ0) we obtain (5.18), that is, the respective solutions are related by πi ∝ λ∗i Pi.
This is expected, since 1/λ∗i is the expected time the process remains in state i during
a single visit.

The simplest queueing model asumes constant arrival and service rates λi ≡ λ and
µi =µ with m= 1 server. By substitution into (5.18) or (5.19) we can see that the
process is ergodic if and only if λ<µ.
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The birth and death model easily accomodates modifications. Suppose we have
m> 1 servers, and each is capable of serving at a rate µ. In this case µi models not
a single server rate, but the system service rate. If there are i customers in service,
then by Theorem 5.11 the system service rate is iµ. If there are i customers in the
system, there are min (i, m) customers in service, so the birth and death process is
defined by λi ≡ λ and µi =min (i, m)µ, and these values may be substituted into (5.18)
or (5.19). Similarly, if the queue has finite capacity, that is, it can hold no more than
K<∞ customers, this can be modeled by setting µi, λi to zero for all large enough
i. In addition, the number of customers may be a finite number M. If each potential
customer enters the queueing system at rate λ, then the system arrival rate is λi =
(M − i)λ when there are i customers in the system.

5.4.2 Utilization factor

The utilization factor of a queueing system may be defined as

ρ= λ/µ
where λ is the average arrival rate of customers, and µ is the service rate. The precise
definition depends on the system, since the arrival and service characteristics need not
be time homogenous. In such cases, µmay be taken as the maximum service rate. This
quantity is fundamental to queueing systems, since we expect the service rate to be
smaller than the arrival rate, otherwise the queue size will increase indefinitely (this
generally holds even when ρ= 1). In the single server model of Section 5.4.1, this idea
is made precise by the observation that the queueing system is ergodic if and only ρ<1.
See also equation (5.20) below. The utilization factor will be of some importance in
subsequent examples, since even within the constraint ρ<1 distribution properties
affecting approximation methods can vary greatly, and computational challenges may
arise when ρ is close to 1.

5.4.3 General queueing systems and embedded Markov chains

Birth and death queueing system models offer considerable flexibility and insight, but
will clearly not be adequate for all systems. As discussed in Section 5.1.2 the Poisson
process will approximate an aggregation of many independent arrival processes, which
seems a reasonable assumption for many actual queueing systems. The assumption that
the service time distribution is exponential is more tentative. The exponential density
is defined by only one parameter, so that the mean µ and standard deviation σ obey
a fixed relationship, namely that the coefficient of variation is always σ/µ= 1. There
is certainly no reason to think that this value is inherent to service times in any given
queueing system. The coefficient of variation will surely differ significantly between
for example, the time required to process a fixed payment, and the time required for
general repair services.

Queueing models are commonly classified using Kendall’s notation which origi-
nally took form A/B/m, as originally proposed in Kendall (1953). It is assumed that
the customer arrival process is a renewal process with a renewal distribution described
by A. Then B refers in the same way to the service time (which are assumed to be inde-
pendent), and m is the number of servers. The convention has since been extended,
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most commonly to A/B/m/K/M, in which K is the system capacity, and M is the
number of customers in a finite population. The last two parameters are often omitted
when they equal ∞. The symbols for A, B are standard, with M denoting the expo-
nential distribution (M for ‘memoryless’), D a deterministic, or constant distribution,
and G denoting a general distribution (the assumption of independence is sometimes
indicated by the symbol GI).

As discussed above the queue M/M/m/K/M may be modeled as a birth and death
process, and so the distributional properties can generally be obtained explicitly, with
sufficient algebra. If we require a greater variety of distributional properties, this might
be done within the context of continuous-time Markov chains by using the ‘method of
stages’, due to A.K. Erlang. For example, we may replace a single exponential service
time of rate λwith r exponential service times in series, each with rates λ1, . . . , λr. Thus,
completion of service occurs after the sequential completion of r stages. The result-
ing distribution of the total service time is refered to as the Erlangian distribution,
Er in Kendall’s notation. Note that this system may be modeled as a continuous-time
Markov chain, as long as the state space is extended to include the current stage of
a customer. There is a considerable variety of density shapes within Er, including the
gamma distribution. The coefficient of variation can be made arbitrarily small, but can
never exceed 1. If Er is generated by constructing stages in series, it is also possible to
construct stages in parallel. Here, service consists of selecting one of r stages according
to a fixed probability distribution, and then completing service after an exponential
waiting time with the rate associated with that stage. This may also be modeled with
continuous-time Markov chains, and the resulting service time is refered to as the hyper-
exponential distribution, denoted Hr in Kendall’s notation, and is formally a mixture
of exponential densities. These distributions may of course apply also to arrival times.
In general, a queue G/G/m/K/M can be modeled as a continuous-time Markov chain
if the arrival time and service times are either M, Er or Hr.

Next, consider a M/G/1 queue. In the absence of any Markovian structure a
continuous-time Markov chains model cannot be used. A commonly used approach
is the embedded Markov chain approach (Kendall (1953)), in which a semi-Markov
process (a discrete time Markov process with random inter-transition times) is defined
by taking transition epochs to be service completions. The state space of the embedded
Markov chain Xn is then interpretable as the number of customers left behind in the
system by a departing customer. If G is the service time distribution, then

P{number of arrivals during service= k}=αk =
∫ ∞

0

(λt)k

k! e−λtdG(t).

The quantities αk suffice to determine the transition kernel for Xn. To see this, sup-
pose Xn = 0, that is, the system is empty after the nth service period. At that point the
next event must be an arrival, at which point a service period begins immediately. The
state Xn+1 is determined when this service period ends, and must equal the number
of arrivals during this period (since the current customer leaves the system). Thus, the
transition distribution is Q({j} |0)=αj, and similar reasoning yields Q({j} | i)=αj+i−1

for i≥ 1 and j≥ i − 1. Adjustments may be made for variable arrival rates (for example,
with finite capacity K<∞).
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A general form for the steady state distribution πi of Xn is known in the form a
probability generating function (Section 4.2.4):

hπ(s)= (1− ρ)(s− 1)hα(s)
s− hα(s)

, (5.20)

where hπ(s)=∑∞
i=0 πisi, hα(s)=∑∞

i=0 αisi and the utilization factor ρ= λmG, where λ
is the arrival rate, and mG is the mean service time. Clearly, we must have ρ<1.

Equation (5.20) is known as the Pollaczek-Khinchin transform equation. Discus-
sion of this equation, and of the M/G/1 more generally, may be found in, for example,
Kleinrock (1975).

5.5 ADAPTED COUNTING PROCESSES

We have defined the counting process in Section 5.1. A discrete time counting process
Nn can be represented by Nn =∑n

i=1 Zi for a binary process Z1, Z2, . . .. Suppose Zn is
a nonhomogeneous Markov chain with transition matrix

Qn =
[

1− αn αn

1− γ γ

]
, (5.21)

governing the transition from Zn−1 to Zn. We can think of this process as a sequence
of blocks of consecutive occupancy in state Zk = 1, into which the process enters at a
rate αn when the process is outside a block. The blocks have a length with a common
geometric distribution with parameter γ, so it would be natural to think of the number
of blocks as an embedded counting process, particularly when αn is small, possibly
approaching 0. Such a process can be useful in control policies requiring intermittent
exploration periods of bounded length, the frequency of which is to be decreased at
some predetermined rate. We will show that this can be achieved by (5.21). However,
we may wish to allow Zn to depend on process history, both to exploit available
information, and to avoid the type of completely randomized exploration that might
not be feasible in a working control system.

For any binary process Zn, taking Z0 = 0, define

Bn = I{Zn = 1}I{Zn−1 = 0}, n≥ 1,

Sn =
n∑

i=1

Bi, n≥ 1,

Jk = inf{j : Sj = k}, k≥ 1, (5.22)

Ik = inf{m≥ 1 : ZJk+m = 0}I{Jk<∞}, k≥ 1,

Îk = k−1
k∑

i=1

Ii, k≥ 1.

If Sn remains bounded we will have Jk =∞ for all large enough k so we set Ik = 0 if
Jk =∞. Note that a block (a maximal sequence of consecutive 1’s) begins at stage n if
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Bn = 1, Sn is the number of blocks begun by stage n, Jk is the stage at which the kth
block begins, Ik is the duration of the kth block, and Îk is the cumulative average block
duration. The process is defined on probability measure (�, F , P), and we assume Zn

is adapted to filtration Fn. By analogy with (5.21) we can define the adapted process
αn(Fn−1) by

P(Bn = 1 |Fn−1) = αn(Fn−1)I{Zn−1 = 0}, n≥ 1, (5.23)

so that under (5.21) αn(Fn−1)≡αn.
We make use of the following theorem (Dubins and Freedman (1965)), which

is essentially a statement of Borel-Cantelli lemmas I and II for adapted sequences of
events:

Theorem 5.12 Suppose a sequence of events E1, E2, . . . is adapted to a filtration Fi,
i≥ 0, defined on probability measure space (�, F , P). Then

Ln =
∑n

i=1 I{Ei}∑n
i=1 P(Ei |Fi−1)

converges to a finite limit L wp1 as n→∞, and in addition

∑
i≥1

P(Ei |Fi−1)=∞ implies L= 1, wp1.

5.5.1 Asymptotic behavior

We first consider the asymptotic behavior of Sn. Theorem 5.12 gives necessary and
sufficient conditions for which Sn →∞, and we may give a number of special cases.

Theorem 5.13 Suppose Ik<∞ for all k≥ 1. Then wp1

lim
n→∞ Sn =∞ ⇐⇒

∞∑
i=1

αi(Fi−1)=∞

⇐⇒
∞∑

i=1

αi(Fi−1)I{Zi−1 = 0}=∞. (5.24)

In addition the following statements hold:

(i) If the following bounds hold almost surely

lim sup
k→∞

Îk = µI <∞ (5.25)

lim inf
n→∞

∑n
i=1 αi(Fi−1)I{Zi−1 = 0}∑n

i=1 I{Zi−1 = 0} = ζ>0 (5.26)
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then

lim inf
n→∞ n−1Sn = (µI + ζ−1)−1> 0. (5.27)

If the sequences in (5.25) and (5.26) possess limits µI and ζ then

lim
n→∞n−1Sn = (µI + ζ−1)−1> 0. (5.28)

(ii) If
∑

i≥1 αi(Fi−1)<∞ almost surely, then Sn is bounded.

(iii) If in addition to (5.25) the following conditions hold almost surely:

lim
n→∞

n∑
i=1

αi(Fi−1) = ∞, (5.29)

lim
n→∞αn(Fn−1) = 0, (5.30)

then

lim
n→∞

Sn∑n
i=1 αi(Fi−1)

= 1 (5.31)

almost surely.

Proof The equivalence

lim
n→∞ Sn =∞ ⇐⇒

∞∑
i=1

αi(Fi−1)I{Zi−1 = 0}=∞ (5.32)

follows from Theorem 5.12 applied to the events {Bn = 1} and the formulation of
equation (5.23), since the limits of the numerator and denominator of Ln must be both
finite or both infinite.

Next, suppose Sn is bounded. Then either Zn = 1 or Zn = 0 for all large enough
n. The first case is ruled out by the hypothesis Ik<∞. If the second case holds then
Zn = 0 for all n≥N for some finite N. In this case we have, for n≥N

n∑
i=1

αi(Fi−1)I{Zi−1 = 0}≥
n∑

i=N

αi(Fi−1).

By (5.32) Sn cannot be bounded unless
∑

i≥1 αi(Fi−1)<∞, which completes the proof
of (5.24).

(i) If
∑n

i=1 I{Zi−1 = 0}<∞, then Ik =∞ for some k, which contradicts (5.25).
We again apply Theorem 5.12 applied to the events {Bn = 1}. By (5.26) the
denominator of Ln approach ∞, so Sn →∞ and Ln approaches 1, giving

lim inf
n→∞

Sn

ζ
∑n

i=1 I{Zi−1 = 0} = 1.
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We must have on {Sn> 1} the inequalities

ÎSn−1[Sn − 1]+
n∑

i=1

I{Zi−1 = 0}≤n≤ ÎSnSn +
n∑

i=1

I{Zi−1 = 0},

from which we have
1

ÎSn−1[1− S−1
n ]+ S−1

n
∑n

i=1 I{Zi−1 = 0} ≥
Sn

n

≥ 1

ÎSn + S−1
n
∑n

i=1 I{Zi−1 = 0} ,

which, when combined with (5.33), and the fact that Sn →∞ gives (5.27), and
(5.28) follows from a similar argument.

(ii) The result holds from (5.24), and the fact that

∞∑
i=1

αi(Fi−1)I{Zi−1 = 0}≤
∞∑

i=1

αi(Fi−1).

(iii) We may write

n∑
i=1

αi(Fi−1)I{Zi−1 = 0}=
n∑

i=1

αi(Fi−1)−
n∑

i=1

αi(Fi−1)I{Zi−1 = 1}. (5.33)

Fix ε>0. From (5.25) and (5.30) there is Nε such that S−1
n

∑n
i=1 I{Zi = 1}<µI + ε

and αn(Fn−1)<ε for n>Nε. The final summation in (5.33) satisfies

n∑
i=1

αi(Fi−1)I{Zi−1 = 1}<ε(µI + ε)Sn + Kε

for n>Nε and some finite Kε. Dividing (5.33) by Sn> 0 gives

0≤
∑n

i=1 αi(Fi−1)
Sn

−
∑n

i=1 αi(Fi−1)I{Zi−1 = 0}
Sn

<ε(µI + ε)+ Kε

Sn
. (5.34)

By (5.29) and (5.24) we may conclude that Sn
a.s.→∞. Letting n→∞ in (5.34), using

Theorem 5.12 then letting ε→ 0 completes the proof. ///

Somewhat more precision can be given for Case (iii) of Theorem 5.13 by imposing
bounds αu

n on αn(Fn).

Theorem 5.14 Suppose we are given Case (iii) of Theorem 5.13, and the following
conditions hold:

(i) There exists finite positive N, m and constant γ ∈ [0, 1) such that

P(Zn+m = · · ·=Zn+1 = 1 |Zn = 1) ≤ γ, (5.35)

for all n≥N.



122 Approximate iterative algorithms

(ii) There exists a sequence of constants αu
n, with partial sums ξn =∑n

i=1 α
u
i , for

which the following hold:

αn(Fn−1) ≤ αu
n, n≥ 1, (5.36)

lim
n→∞α

u
n = 0, (5.37)

lim
n→∞ ξn = ∞, (5.38)

lim inf
n→∞

∑n
i=1 αi(Fi−1)∑n

i=1 α
u
i

= Kα, (5.39)

λl{αu
n} = 1 (5.40)

almost surely for a finite constant Kα > 0. Then almost surely

lim inf
n→∞

Sn

ξn
> 0, (5.41)

and

lim inf
n→∞

mαu
n

P(Zn = 1)
≥ (1− γ). (5.42)

Proof By condition (ii), conditions (5.29) and (5.30) of Theorem 5.13, Case (iii)
are satisfied. Additionally, condition (i) implies condition (5.25), so that (5.31) holds,
which in turn implies (5.41).

Next, if m> 1 we may write

{Zn+m = 1 ∧ Zn = 1}⊂
{Zn+m = · · ·=Zn = 1} ∪ [∪m−1

i=1 {Zn+i+1 = 1 ∧ Zn+i = 0 ∧ Zn = 1}] .
Using Theorem 4.3, equation (5.23) and the assumption (5.36) we have, for i≥ 1,

P (Zn+i+1 = 1 ∧ Zn+i = 0 ∧ Zn = 1 |Fn+i) = P (Bn+i+1 |Fn+i) I{Zn = 1}
≤ αu

n+i+1I{Zn = 1}.
Taking the expectation gives

P(Zn+i+1 = 1 ∧ Zn+i = 0 ∧ Zn = 1) ≤ αu
n+i+1P(Zn = 1),

from which we may conclude

P(Zn+m = 1 |Zn = 1) ≤ P(Zn+m = · · ·=Zn+1 = 1 |Zn = 1)+ ξn+m − ξn+1,

≤ γ + ξn+m − ξn+1,

by condition (i). A similar argument may be used to show that

P(Zn+m = 1 |Zn = 0)≤ ξn+m − ξn.
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We may therefore write

P(Zn+m = 1) = P(Zn+m = 1 |Zn = 0)P(Zn = 0)+ P(Zn+m = 1 |Zn = 1)P(Zn = 1),

≤ ξn+m − ξn + (γ + ξn+m − ξn+1)P(Zn = 1).

It may then be directly verified that the preceding inequality holds also for m= 1.
Fix ε>0, then there is finite nε for which ξn+m − ξn+1<ε for n≥ nε. An iterative

argument gives

P(Zn+jm = 1) ≤
j∑

i=1

(γ + ε)j−i(ξn+im − ξn+(i−1)m), n≥ nε.

By (5.40) we have λl{ξn+im − ξn+(i−1)m}=1 for any fixed n, then applying Lemma 9.8
(to be discussed in Section 9.4) gives

lim inf
i→∞

ξn+im − ξn+(i−1)m

P(Zn+im = 1)
≥ (1− γ), n≥ 1,

from which (5.42) follows directly. ///

5.5.2 Relationship to adapted events

We next consider interactions between adapted counting processes and other processes
Yn ∈Y adapted to Fn. For E⊂Y, we define the counting process

Mn(E) =
n∑

i=1

I{Yi ∈E},

representing the cumulative number of visits to E. Suppose the intention is to associate
visits to E with blocks. Define the event

Kn(E)={Bn = 1} ∩
[
∪ISn

j=1{Yn+j−1 ∈E}
]

which is the event that a block starts at stage n, and a visit to E occurs during this
block. Our objective is to verify that if this occurs with a minimum probability, then
Mn(E) increases at the same rate as Sn.

Theorem 5.15 Suppose the following conditions hold:

(i) Sn
a.s.→n ∞.

(ii) For some constant δ>0,

P(Kn(E) |Fn)≥ δI{Bn = 1}.
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Then

lim inf
n→∞

Mn(E)
Sn

≥ δ

almost surely.

Proof Noting that J1, J2, . . . forms a sequence of increasing finite stopping times, by
Theorem 4.7 F Jk , k≥ is a filtration. We then have, for Sn> 1,

Mn(E)≥
Sn−1∑
k=1

I{KJk (E)}, n≥ 1. (5.43)

We then argue that KJk (E)∈F Jk+1 , since the occurrence of KJk (E) is resolved before
stopping time Jk+1. On the other hand we have P(KJk (E) |F Jk )≥ δ, k≥ 1. Applying
Theorem 5.12 gives

1= lim
n→∞

∑Sn−1
k=1 I{KJk (E)}∑Sn−1

k=1 P(KJk (E) |F Jk )
≤ lim inf

n→∞
Mn(E)
δ(Sn − 1)

, w.p.1

which proves the theorem. ///

Finally, we consider conditions under which the limit condition (5.39) of Theorem
5.14 holds. It would be possible to set αn(Fn−1)=αu

n, but this would mean that any
stage could be in a block with positive probability, independently of the history, as
would be the case with the model defined by (5.21). We may wish to impose restrictions
on the initiation of a block, in the form of a sequence of events An ∈Fn, so that if stage
n is not in a block, a block may be initiated in the next stage only if An occurs. This
is summarized in the following theorem. Note that condition (5.44) holds for any
αu

n = n−p, p> 0.

Theorem 5.16 Suppose, given the sequence αu
n of Theorem 5.14, we set

αn(Fn−1)=αu
nIAn−1

where An ∈Fn. Then if the following conditions hold:

lim inf
n

n mini≤n α
u
i∑n

i=1 α
u
i

> 0, (5.44)

lim inf
n

MA
n

n
> 0 (5.45)

almost surely, where MA
n =

∑n
i=1 IAn , then (5.39) of Theorem 5.14 holds

Proof We may write

∑n
i=1 αi(Fi−1)∑n

i=1 α
u
i

≥ MA
n−1 mini≤n α

u
i∑n

i=1 α
u
i

from which the theorem holds directly from (5.44)–(5.45). ///



Chapter 6

Functional analysis

Underlying functional analysis is the specification of a set of objects V on which is
imposed some additional structure, typically representing generalizations of notions
natural to multidimensional Euclidean vector geometry. The objects in V may be func-
tions, infinite dimensional sequences or random variables, in addition to Euclidean
vectors, but may all be conveniently referred to simply as vectors. We therefore need
to define abstract notions of vector algebra, as well as quantitative abstractions of
concepts such as the distance between vectors, the length of a vector, and the angle
between vectors. There is a hierarchical progression to the definition of this structure,
and applications will differ in the amount of structure required.

We start first with a metric space (X , d) which imposes a metric d(x, y) between
two objects x, y from the set X , representing distance (Definition 3.3). The definition
of a vector algebra is the next step in the progression (which is not strictly needed
for the metric space), yielding a vector space V. With a vector algebra comes the zero
vector (the identity with respect to vector addition), which centers the space with a
point of reference, permitting the notion of the length ‖x‖ of a vector x, called a norm.
Paired with V we have a normed vector space (V, ‖·‖). The norm in turn defines a
metric d(x, y)=‖x− y‖, so that a normed vector space is also a metric space.

The final step needed for our analysis is the introduction of angle coupled with
length, in the form of an inner product 〈x, y〉, which is a generalization of the familiar
‘dot product’ for Euclidean vectors. A vector space coupled with an inner product is
known as an inner product space (V, 〈·, ·〉). Conveniently for our hierarchy, an inner
product generates a norm ‖x‖= 〈x, x〉1/2, which in turn generates a metric, as already
described. Thus, an inner product space is also a normed vector space and a metric
space.

Since each of these spaces is also a metric space, the notion of a convergent sequence
is naturally defined. We may also consider Cauchy sequences (Definition 3.4), which
are sequences in X with convergent behavior, but which need not possess a limit in
X . An example of a Cauchy sequence is 1/1, 1/2, 1/3, . . ., which exists in (0,∞) but
does not possess a limit in (0,∞) (and its convergent behavior can be characterized
without reference to the limit 0). A metric space is complete if all Cauchy sequences
possess a limit in X . A normed vector space or inner product space which is complete
with respect to the induced metric is better known as a Banach space or Hilbert space
respectively.
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6.1 METRIC SPACES

If (X , d) is a metric space (Definition 3.3), then a sequence xn ∈X converges to x∈X
if limn→∞ d(xn, x)= 0. If all Cauchy sequences in X possess limits in X , then (X , d) is
a complete metric space (Definition 3.4).

It will sometimes be useful to be able to define a distance function d which does
not strictly satisfy the identifiability axiom in the sense that we may have d(x, y)= 0 for
some x �= y, but satisfies all the other requirements of a metric. This is usually referred
to as a semimetric.

Definition 6.1 If in Definition 3.3 the identifiability axiom is replaced with the
weaker axiom which holds that d(x, x)= 0 for all x∈X , then d is called a semimetric
(or pseudometric), and (X , d) is a semimetric space or (pseudometric space).

For a semimetric we may have d(x, y)= 0 if x �= y.

6.1.1 Contractive mappings

We next consider mappings on a metric space T : X →X . The notion of the continuity
of T is natural on a metric space. We say that T is continuous at x0 ∈X if for all ε>0
there exists δ>0 such that d(x, x0)<δ implies d(Tx, Tx0)<ε. Then limn→∞ Txn =Tx0

whenever limn→∞ xn = x0. We may recursively define the mapping TJ : X →X as the
Jth iteration TJx=TJ−1(Tx). If T is continuous, so is TJ.

A mapping T is Lipschitz continuous (is Lipschitz) if there exists a finite constant
L (referred to as a Lipschitz constant) for which d(Tx, Ty)≤Ld(x, y) for all x, y∈X .
If T is Lipschitz continuous, then the infimum of all Lipschitz constants must also be a
Lipschitz constant. This value is sometimes referred to as the smallest, best or simply
the Lipschitz constant (as opposed to a Lipschitz constant) when the context is clear.
In many instances any Lipschitz constant suffices, so the distinction should be kept
in mind. In addition, T is locally Lipschitz continuous (is locally Lipschitz) if every
x∈X possesses a neighborhood Bx on which T is Lipschitz continuous. Clearly, the
Lipschitz condition implies continuity.

The Lipschitz constant of mapping T on metric space (X , d) is submultiplicative
in the sense that

d(T2x, T2y)= d(T(Tx), T(Ty))≤Ld(Tx, Ty)≤L2d(x, y), (6.1)

so that if L is a Lipschitz constant of T, L2 is a Lipschitz constant of T2. By applying this
argument iteratively, we conclude that if T is Lipschitz continuous so is any iterate TJ.
Clearly then, we can associate with any Lipschitz mapping a sequence of constants ρJ,
J≥ 1, defined as the smallest Lipschitz constant of TJ. The submultiplicative property
can then be characterized by the following theorem:

Theorem 6.1 If T is a Lipschitz continuous mapping on metric space (X , d) and ρJ

is the smallest Lipschitz constant of TJ, then ρm+n ≤ ρmρn.

Proof The proof follows by applying (6.1). ///
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It will be convenient to standardize the constants ρm by defining

ρ̄m = (ρm)1/m,

so that, because ρ̄J
J and ρ

J
1 are both Lipschitz constants for TJ, ρ̄J can be directly

compared to ρ1. We state the following consequence of Theorem 6.1.

Theorem 6.2 If T is a Lipschitz continuous mapping on metric space (X , d) and ρJ

is the smallest Lipschitz constant of TJ, then for any positive integers m, k

ρ̄km ≤ ρ̄m

and in particular

ρ̄m ≤ ρ1

for all m≥ 1.

Proof The proof follows directly from Theorem 6.1. ///

Note that it does not follow that ρ̄m is nonincreasing in m.
The notion of a complete metric space, coupled with the notion of a contraction

mapping, plays a crucial role in the theorem of iterative algorithms. Specifically, a
mapping T : X →X on a metric space (X , d) is a contraction mapping (is contractive)
if it has a Lipschitz constant ρ<1. Then ρ is referred to as a contraction constant,
and we refer to the smallest contraction constant as the contraction constant. If T has
Lipschitz constant ρ= 1 then it is a nonexpansive mapping. By Theorem 6.1, if T is
nonexpansive then ρJ is nonincreasing in J, and if T is contractive then ρJ is decreasing.
Clearly, if T is contractive (or nonexpansive) then so is any iterate TJ.

Then write, by Theorem 6.2,

d(TJx, TJy)= ρ̄J
Jd(x, y)≤ ρJ

1d(x, y). (6.2)

In the simplest applications of the contraction property, the upper bound in (6.2) based
on a single stage contraction constant ρ1< 1 would be used. In effect, when this is done
the bound on the standardized contraction constant ρ̄J ≤ ρ1 is accepted as being sharp,
or at least approximately so. However, this will not always be the case, and we will
encounter important examples in which ρ̄J <ρ1 by a significant factor (whether or not
ρ1< 1). Therefore, it will be important to characterize a ‘best possible’ contraction
constant (or Lipschitz constant in general) for T, which is independent of the iteration
order TJ. This is given in the following theorem:

Theorem 6.3 If T is a Lipschitz continuous mapping on a metric space (X , d), and
ρJ is the smallest Lipschitz constant for TJ, then there exists a finite constant ρ such
that

lim
n→∞ ρ̄n = ρ. (6.3)
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Furthermore, ρ is the best possible contraction rate in the sense that

ρ̄n ≥ ρ, for all n≥ 1, (6.4)

and for any ε>0, there exists nε for which

ρ̄n ≤ ρ + ε, for all n≥ nε. (6.5)

Proof By Theorem 6.2 for any n we have ρ̄n ≤ ρ1, which means there is a finite
constant ρ= lim infn→∞ ρ̄n ≤ ρ1. Then for any ε>0 there is some m for which ρm<

(ρ + ε)m. For any n>m write n= n1m+ n2 where n1 =�n/m� and 0≤ n2<m. Then,
by the submultiplicative property

ρn ≤ ρn1mρn2 ≤ ρn1
m ρ

n2
1 ≤ (ρ + ε)n1mρ

n2
1 = (ρ + ε)n(ρ1/(ρ + ε))n2 ≤K(ρ + ε)n,

where K=max
(
(ρ1/(ρ + ε))m−1, 1

)
, and so does not depend on n. Letting n→∞ gives

lim sup
n→∞

ρ̄n ≤ lim sup
n→∞

[
(ρ + ε)K1/n]= ρ + ε.

Then (6.3) follows by letting ε approach 0, and noting the definition of ρ.
Suppose (6.4) does not hold, so that for some m we have ρ̄m<ρ. By Theorem 6.2

we have ρ̄km ≤ ρ̄m<ρ for all k≥ 1, which contradicts (6.3), so that (6.4) must hold.
Then (6.5) follows directly from (6.3). ///

We may refer to the limit in (6.3) as the asymptotic Lipschitz constant for mapping
T, or asymptotic contraction rate as appropriate. It clearly plays a role analogous to
the spectral radius of a linear operator (see Section 6.8.2), but requires only a metric
space structure for its definition.

6.2 THE BANACH FIXED POINT THEOREM

An element x of a metric space is a fixed point of T if Tx= x, which is referred to
as a fixed point equation. Much of the theory of this book concerns a straightfor-
ward idea. The fixed point equation is ubiquitous in a wide range of applications
in applied mathematics, so general methods for obtaining its solution (that is, the
fixed point) are of considerable importance. When the mapping possesses certain
properties, it can be proven that a fixed point exists, and that an iterative sequence
xk =Txk−1 =Tkx0, k≥ 1 will converge to it. More stringent conditions may guarantee
the uniqueness of the fixed point. The seminal case is that of the contraction map-
ping defined on a complete metric space. In this case it can be verified that a unique
fixed point exists, which is the limit of the iterative sequence Tkx0 for any starting
point.

Theorem 6.4 (Banach Fixed-Point Theorem) If T is a contraction mapping on a
complete metric space (X , d) then a unique fixed point exists, which is the limit of the
iterative sequence Tkx0 for any initial point x0.
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The result holds also if T is continuous and TJ is contractive.

Proof Suppose ρ is the contraction constant for T, and set xn =Tnx0 for any x0 ∈X .
By the triangle inequality we must have

d(xn, x0) ≤
n∑

i=1

d(xi, xi−1).

Then note that for i> 1 we have

d(xi, xi−1)= d(Txi−1, Txi−2)≤ ρd(xi−1, xi−2),

which applied iteratively implies d(xi, xi−1)=≤ ρi−1d(x1, x0) for all i≥ 1. Substituting
into the previous inequality gives d(xn, x0)≤ (1− ρ)−1d(x1, x0).

Next, suppose n≥m. Then

d(xn, xm) = d(Tmxn−m, Tmx0)

≤ ρmd(xn−m, x0)

≤ ρm(1− ρ)−1d(x1, x0),

from which it follows that xn is a Cauchy sequence, and therefore possesses a limit x
in X under the completeness assumption. Since T is Lipschitz, it is continuous. It then
follows that

Tx=T lim
n

xn = lim
n

Txn = lim
n

xn+1, (6.6)

so that x is a fixed point of T. Finally, suppose y is any fixed point of T. Then
d(x, y)= d(Tx, Ty)≤ ρd(x, y). Since ρ<1 this implies d(x, y)= 0.

Next, suppose T is continuous and TJ is contractive. The preceding conclusion
then applies to the J subsequences xJi+k, i≥ 1, for k= 0, 1, . . . , J − 1, so that each
possesses a common limit. Then equation (6.6) holds by the continuity of T, which
completes the proof. ///

The contraction property by itself guarantees that there cannot be more than one
fixed point in X , and that if it exists it will be the limit of the iteration Tkx0. The
role of the completion assumption is to guarantee the existence of a fixed point. The
theory is essentially the same when d is a semimetric, except that multiple fixed points
may exists. In this case, fix starting point x0 and let x be the limit of Tkx0, which
will be a fixed point. Then all fixed points must belong to a unique equivalence class
{y∈X | d(y, x)= 0}, which is obtainable in this way using any starting point x0.

We will sometimes have the weaker property of pseudocontraction, that is, that
there exists some element x∗ ∈X and constant ρ<1 such that d(Tx, x∗)≤ ρd(x, x∗) for
all x∈X . In this case, the essential features of the Banach fixed point theorem will
hold, and the proof is somewhat simpler than for Theorem 6.4, since the hypothesis
has come somewhat closer to implying the existence of a fixed point.
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Theorem 6.5 Suppose T is a pseudocontractive mapping, so that for some x∗ ∈X
and ρ<1 we have d(Tx, x∗)≤ ρd(x, x∗) for all x∈X . Then x∗ is the unique fixed point
of T, which is the limit of the iterative sequence Tkx0 for any initial point x0. The
result holds also if TJ is pseudocontractive.

Proof By hypothesis d(Tx∗, x∗)≤ ρd(x∗, x∗)= 0, so that x∗ =Tx∗. If x′ is any fixed
point, then d(x′, x∗)= d(Tx′, x∗)≤ ρd(x′, x∗), which implies d(x′, x∗)= 0 if ρ<1. Then
d(Tnx0, x∗)≤ ρd(Tn−1x0, x∗), and eventually d(Tnx0, x∗)≤ ρnd(x0, x∗). The remainder
of the theorem follows an argument similar to that used in Theorem 6.4. ///

It is important to note that the terminology can vary considerably by field. We
take the meaning of ‘pseudocontraction’ used in, for example, Bertsekas and Tsitsiklis
(1996) and other texts concerned with control theory and dynamic programming. In
contrast, in the context of functional analysis the terms ‘contraction’ and ‘pseudo-
contraction’ are part of a general classification system of operators, as exemplified in
Berinde (2007). In effect, there is a family of ‘contraction properties’ which are similar
but distinct. We use the simpler meaning of these terms, while introducing our own
classification system in Section 10.4.

6.2.1 Stopping rules for fixed point algorithms

A contraction mapping is also a pseudocontraction, so in either case the convergence of
the iteration algorithm Tnx0 to fixed point x∗ is easily characterized as d(Tnx0, x∗)≤
ρnd(x0, x∗). This leaves a practical problem, in particular that the calculation of x∗
requires an infinite number of iterations, so that in practice xN =TNx0 will have to
suffice as an approximation. So far, we can state the approximation error d(xN , x∗)≤
ρNd(x0, x∗). This has the disadvantage of depending on x∗, which we are trying to
estimate. On the other hand, we may be content to bound d(xN , x∗)/d(x0, x∗)≤ ρN . If
d(x0, x∗) is interpretable as a magnitude of x∗ (which we must remember is a concept
not defined in a metric space), then ρN would be interpretable as a relative error. This
idea will be very natural in normed vector spaces, which we will discuss below.

Fortunately, a much more refined and practical bound on the approximation error
is possible.

Theorem 6.6 If T is the pseudocontractive mapping of Theorem 6.5, and xn =Tnx0

then

d(xn, x∗) ≤ (1− ρ)−1d(Txn, xn). (6.7)

In addition, if T is contractive then

d(xn, x∗) ≤ ρ(1− ρ)−1d(xn, xn−1)≤ ρn(1− ρ)−1d(x1, x0). (6.8)

Proof By the triangle inequality, we may write

d(xn, x∗)≤ d(Txn, x∗)+ d(Txn, xn)≤ ρd(xn, x∗)+ d(Txn, xn)

from which (6.7) follows directly. Under the stronger contraction assumption, (6.8)
follows from (6.7) after noting that d(Txn, xn)= d(Txn, Txn−1)≤ ρd(xn, xn−1). ///
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The advantage of (6.8) over (6.7) is the introduction of the factor ρ<1, and the
fact that the upper bound for d(xn, x∗) does not require the extra iteration Txn. In
many cases ρ will be close to 1, but we will see important examples in which ρ is quite
small. The importance of either bound is that they are both calculable exactly within
a finite number of iterations.

Stopping rules for multistage contractions

In principal, stopping rules (6.7) or (6.8) may be applied to multistage contractive oper-
ators by applying them to the embedded iterations xkJ =TJx(k−1)J to achieve essentially
the same result. However, given the result of Theorem 6.3, there may be some advan-
tage to considering such schemes even when T is single stage contractive. To simplify
the analysis suppose ρJ < 1. There is a choice between regarding xkJ as k iterations of
TJ, or one iteration of TkJ. In the former case, (6.8) becomes

d(xkJ, x∗)≤ ρJ(1− ρJ)−1d(xkJ, x(k−1)J)≤ ρk
J (1− ρJ)−1d(xJ, x0). (6.9)

As a single iteration of TkJ we have

d(xkJ, x∗) ≤ ρkJ(1− ρkJ)−1d(xkJ, x0)

≤ ρkJ(1− ρkJ)−1
k∑

i=1

d(xiJ, x(i−1)J)

≤ ρkJ(1− ρkJ)−1
k∑

i=1

ρi−1
J d(xJ, x0)

≤ ρkJ(1− ρkJ)−1(1− ρJ)−1d(xJ, x0). (6.10)

The upper bounds of (6.9) and (6.10) may be directly compared by the ratio

R= (ρ̄J)kJ

(ρ̄kJ)kJ
[
1− (ρ̄kJ)kJ

]−1 ,

with R< 1 favoring bound (6.9). By Theorem 6.3, ρ̄kJ →k ρ, the asymptotic contraction
rate (Theorem 6.3), so we must have lim infk R≥ 1, with strict inequality if ρ̄J >ρ. Thus
bound (6.10) is asymptotically no worse than (6.9), and strictly better if ρ̄J >ρ. On
the other hand, (6.9) may be the better choice when ρ̄J ≈ ρ, and will usually be simpler
to implement.

6.3 VECTOR SPACES

Suppose we wish to evaluate Tx on a metric space, but we only have available an
approximate mapping T̄, along with an analysis method which yields some bound
d(Tx, T̄x)≤ ε. A satisfactory result may be obtained by analyzing T̄ in place of T.

An alternative point of view is to express the approximation as something like
T̄x=Tx+ u, which requires an addition operation. Unfortunately, addition is not
defined on a metric space. Since our theory is based on the idea that, despite the
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obvious nature of the formulation, the expression Tx+ u yields certain advantages
over T̄x, we will need to use a space in which additive error may be defined, which is
precisely what the vector space allows.

The formal definition of a vector space requires some basic definitions of abstract
algebra, in particular, the group, abelian or commutative group and the field
(Definitions 6.2, 6.3 and 6.4).

Definition 6.2 A group is a pair (G, ∗) where G is a set and ∗ is a binary operation
on G satisfying the axioms:

Closure If a, b∈G then a ∗ b∈G,
Associativity For all a, b, c∈G we have (a ∗ b) ∗ c= a ∗ (b ∗ c),
Existence of identity There exists e∈G such that for all a∈G we have a ∗ e=
e ∗ a= a,
Existence of inverse For each a∈G there exists b∈G such that a ∗ b= b ∗ a= e.

Definition 6.3 An abelian group (or commutative group) is a group (G, ∗) which
satisfies the additional axiom

Commutativity For any a, b∈G we have a ∗ b= b ∗ a.

Definition 6.4 A field is a triplet (K,+,×) where K is a set and + and × are binary
operations on K (by analogy referred to as addition and multiplication) satisfying the
following axioms:

Group structure of addition (K,+) is an abelian group,
Group structure of multiplication (K− {0},×) is an abelian group, where 0 is the
additive identity,
Distributivity of multiplication For all a, b, c∈K we have

a× (b+ c)= (a× b)+ (a× c).

The definition of a vector space follows:

Definition 6.5 Suppose we are given a field K of scalars and an abelian group (V,+)
of vectors (by analogy, + is referred to as vector addition). Suppose also that for each
pair a∈K and x∈V there exists a unique composite product a ◦ x∈V. The collection
(K, V,+, ◦) is a vector space (or linear space) if the following additional axioms are
satisfied:

Existence of identity for composite product For any vector x∈V we have 1 ◦ x= x
where 1 is the multiplicative identity of K,
Compatibility of scalar and composite product For all a, b∈K and x∈V we have
a ◦ (b ◦ x)= (a× b) ◦ x,
Distributivity over scalar addition For all a, b∈K and x∈V we have (a+ b) ◦ x=
a ◦ x+ b ◦ x,
Distributivity over vector addition For all a∈K and x, y∈V we have a ◦ (x+ y)=
(a ◦ x)+ (a ◦ y).

The vector space is intended to be a generalization of the standard algebra for
Euclidean vectors, with the scalar field K representing the set of real numbers under
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the standard binary operations, while the vector group (V,+) represents the space
of Euclidean vectors coupled with vector addition. In this book the scalar field will
usually be the set of real numbers, with the usual operations. On the other hand, the
set of vectors V will be a variety of objects in addition to Euclidean vectors. In general,
it will be convenient to denote a vector space using V alone, assuming all the axioms
of Definition 6.5.

A subset E of a vector space V is a vector subspace (or linear manifold, or simply
subspace) if it is closed under linear composition, that is x, y,∈V, a, b∈K implies
ax+ by∈V. A subspace is also a vector space.

Vector spaces consisting of real valued functions will be of special interest. For
any set X the space of all real valued functions f : X →R will be denoted R(X ). This
notation will sometimes be introduced without defining X , when properties of X play
no role.

6.3.1 Quotient spaces

Let N be a subspace of V. For any x∈V the coset of x modulo N is the subset
[x]={x+ n | n∈N }. If y∈ [x], then y= x+ ny for some ny ∈N . Since N is a subspace,
we have −ny ∈N , so that x∈ [y]. This means that [x]= [y] for any y∈ [x], so that the
definition of a coset does not depend on the representative vector. In addition, it may
be verified that the space of cosets is a vector space under the linear composition a[x]+
b[y]= [ax+ by], with additive identity [�0]=N , where �0 is the additive identity of V.
Note that 0[x]= [0x]={0x+ n | n∈N }=N , which is not the same as elementwise
multiplication by 0 of the set [x].

The condition x− y∈N defines an equivalence relationship x∼ y, under which
the cosets [x] are equivalence classes (see Section 2.2). The vector space of equivalence
sets is referred to as a quotient space V/N .

6.3.2 Basis of a vector space

The definition of a basis follows that for vectors in R
m discussed in Section 2.3. Ele-

ments V1, . . . , Vm of a vector space V are linearly independent if
∑m

i=1 aiVi = 0 implies
ai = 0 for all i. Equivalently, no Vi is a linear combination of the remaining vectors.
The span of a set of vectors Ṽ = (V1, . . . , Vm), denoted span(Ṽ), is the set of all linear
combinations of these vectors. The span is a vector space, and Ṽ is referred to as a
basis whenever the defining vectors are linearly independent. The number of vectors in
Ṽ is the dimension of both the basis and its span. This definition is consistent, because
while a basis of a vector space is not unique, any basis must be of the same dimension.
Recognizing the dimension of a vector space is important, since it will be the case that
any m-dimension vector space will be equivalent to R

m in many important respects.

6.3.3 Operators

An operator is a mapping T : V →W between vector spaces V, W. The domain and
range of T are

domain (T) = {V ∈V |TV is defined},
range (T) = {TV ∈W |V ∈ domain (T)}.
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Unless otherwise stated, assume that range (T)=W. The terms injective, surjective
and bijective (Section 2.1.6) apply to operators, that is, T : V →W is injective (or
one-to-one) if V1 �=V2 ⇒TV1 �=TV2, is surjective if range (T)=W, and is bijective if
it is both injective and surjective. A bijective operator possesses an inverse operator
T−1 : W →V for which TV =W ⇐⇒ T−1W =V . An injective mapping T : V →W
induces a bijective mapping T : V → range (T). Equality of two operators T1 =T2 with
the same domains and ranges means that T1V =T2V for all V ∈V.

Given three vector spaces V, W, Y, and operators T1 : V →W and T2 : W →Y
we may define compound operator T2T1 : V →Y by the evaluation method T2T1V =
T2(T1V).

If E⊂ domain (T), we take the image of E to be the set

TE = {TV ∈W |V ∈E}.
It will be clear from the context when the image TE is intended.

For convenience we say T is an operator on V when V =W. In this case we always
have the identity operator I : V →V for which IV =V . If T is a bijective operator, we
have I=T−1T =TT−1. Operators T1, T2 on V commute if T1T2 =T2T1.

If V is a vector space over field K, then f : V →K is a functional. Given that K

is itself a vector field (with scalar field K), a functional is a type of operator. If V, W
are vector spaces over the same scalar field K, then T : V →W is a linear operator if
T(ax+ by)= aTx+ bTy for all x, y∈V and scalars a, b∈K. The definition applies also
to functionals. This assumption defines linear compositions of operators, so that the
families of linear operators are themselves vectors spaces with scalar field K.

Two vector spaces V, W are isomorphic if there is a linear bijective operator
Q : V →W, and any such mapping is an isomorphism.

The null set of an operator T : V →W is defined as N (T)={V ∈V |TV = �0}.
When orderings are defined on vector spaces V and W, then T : V →W is a

monotone operator if V1 ≤V2 implies TV1 ≤TV2.

6.4 BANACH SPACES

The notion of the length of a vector is not implicit in a metric, unless we fix a reference
vector e, which would naturally become the additive identity element in a vector space
(typically e= �0), and take the length of a vector x to be d(e, x). However, the usual
approach in functional analysis is to define the notion of vector length explictly, using
the norm, from which metric properties will follow. This will require vector addition,
so norms must be defined on vector spaces.

Definition 6.6 Suppose V is a vector space over field K⊂C, and suppose we have
mapping ‖·‖ : V → [0,∞). Then ‖·‖ is a norm, and (V, ‖·‖) is a normed vector space if
the following axioms hold:

Identifiability For any x∈V we have ‖x‖=0 if and only if x= e, the additive
identity element of V.
Scalar homogeneity For any scalar a and vector x∈V we have ‖ax‖= |a|‖x‖,
Triangle inequality (or subadditivity) For any x, y∈V we have ‖x+ y‖≤
‖x‖ + ‖y‖.
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The field K in Definition 6.6 will usually be K=R⊂C. We have already encoun-
tered examples of norms, such as the Lp norm or total variation norm, which both
satisfy Definition 6.6. One further norm which we will encounter repeatedly is the
supremum norm ‖·‖sup. Suppose V ⊂R(X ), containing vectors of the form f : X →R.
Then ‖f ‖sup ≡ supx∈X

∣∣f (x)
∣∣, which is easily seen to satisfy Definition 6.6. This in turn

generates a class of norms, known as the weighted supremum norm ‖·‖w. If w is a
positive function on X , then ‖f ‖w ≡‖f /w‖sup, which must also be a norm.

It must be remembered that the formal definition of a norm includes the vec-
tor space on which it is defined, and it must be assumed that ‖V‖<∞. Of course,
a norm is often associated with a specific method of evaluation, for which we may
have ‖V‖=∞ (the supremum norm of any unbounded function, for example). A
certain flexibility in convention is therefore needed. For example, a normed vector
space is sometimes defined as a subspace on which ‖V‖<∞, which implies the pos-
sibility that ‖V‖=∞. When we speak of a ‘vector with finite norm’, we are really
referring to the evaluation method associated with the norm. This should cause no
contradictions, provided that it is understood that the formal definition of a norm
includes a vector space, and that ‖·‖ may be a norm on one vector space, but
not another.

As in the case of the semimetric, it will sometimes be convenient to define a quantity
which is a norm in every way except that there may not be a unique zero norm vector.
Such an object will be called a seminorm (or pseudonorm).

Definition 6.7 If in Definition 6.6 the identifiability axiom is replaced with the
weaker axiom which holds that ‖e‖=0, then ‖·‖ is called a seminorm (or pseudonorm),
and (V, ‖·‖) is a seminormed vector space (or pseudonormed vector space).

Convergence Vn →V in a normed vector space V follows from the limit
limn→∞ ‖Vn − V‖=0. Sometimes, it will be necessary to distinguish convergence in
the norm ‖·‖ from other forms of convergence which may be defined for the objects
in V (pointwise convergence, for example). When the context is clear, convergence in
V will be assumed to be with respect to the given norm.

We then note that norm convergence of Vn to V is implied by ‖Vn − V‖→n 0, that
is (Vn − V)→n �0. So, all convergence statements can be reexpressed as convergence
to �0.

If T : V →W is an operator between normed vector spaces (V, ‖·‖V ) and
(W, ‖·‖W ), then T is continuous if TVn →TV in W whenever Vn →V ∈V, where
convergence is in the respective norms. In addition, T is bounded if for all ε>0 there
exists Lε <∞ for which ‖V‖≤ ε⇒‖TV‖≤Lε.

Some care must be taken in distinguishing between an operator on general vector
spaces, and a operator on a normed vector space. To say that V is in normed vector
space (V, ‖·‖) implies ‖V‖<∞, and so T cannot be an operator on a normed vec-
tor space unless ‖V‖<∞⇒‖TV‖<∞. If ‖TV‖=∞ for some V ∈V, it may still be
possible to say that T is an operator on the vector space V, if not the normed vector
space V.

Of course, a test for closure of an operator T on a normed vector space is straight-
forward, reducing to ‖TV − V‖<∞ for all V ∈V, since by the triangle inequality we
have ‖TV‖≤‖TV − V‖ + ‖V‖.
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6.4.1 Banach spaces and completeness

If we define the distance function d(x, y)=‖x− y‖, the axioms of the norm (or
seminorm) imply that d is a true metric (or semimetric). It follows that d is trans-
lation invariant (d(x+ z, y + z)= d(x, y) for all x, y, z ∈V) and scalar homogeneous
(d(ax, ay)= |a|d(x, y) for all scalars a and x, y∈V). Conversely, if d is translation
invariant and scalar homogenous, then ‖x‖=d(�0, x) is a norm.

The notions of Lipschitz continuity and contractivity extend to a normed vector
space (V, ‖·‖) through this metric, so that a mapping T : V →V is Lipschitz continuous
if ‖Tx− Ty‖≤L‖x− y‖ for all x, y∈V, locally Lipschitz continuous if for all x∈V it
is Lipschitz continuous on some neighborhood of x, and is a contractive (or nonex-
pansive) mapping if ‖Tx− Ty‖≤ ρ‖x− y‖ for all x, y∈V, for some constant ρ∈ [0, 1)
(or ρ∈ [0, 1]).

Since a normed vector space (V, ‖·‖) is also a metric space, it may also be completed
to include all limits of Cauchy sequences. Therefore, the kind of algorithm considered
by the Banach fixed point theorem (Theorem 6.4) may be defined on V, supplemented
with vector algebra and the rich theory of linear operators.

We then have the definition of a Banach space:

Definition 6.8 A Banach space is a normed vector space (V, ‖·‖) which is complete
with respect to the metric d(x, y)=‖x− y‖.

It is well known that Lp spaces are Banach spaces for 0< p≤∞ (this is often
referred to as the Riesz-Fischer Theorem for historical reasons, although this reference
is sometimes specific to L2). Verifying the completeness of a normed linear space may
proceed using the device of absolutely summable series:

Definition 6.9 Suppose V is a normed vector space. A sequence {Vn} is summable if
for some V ∈V we have ‖V −∑n

i=1 Vi‖→n 0. In addition, {Vn} is absolutely summable
if
∑∞

i=1 ‖Vi‖<∞.

Theorem 6.7 A normed vector space V is complete if and only if every absolutely
summable series is summable.

Proof A proof may be found in Section 6.3 of Royden (1968), the point of which is
that any Cauchy sequence may be represented by an absolutely summable series. ///

A Banach space must be confined to elements V for which ‖V‖<∞, since if we
are given a sequence Vn with ‖Vn‖<∞ and V for which ‖V − Vn‖→n 0, then the
triangle inequality implies ‖V‖≤‖Vn‖ + ‖V − Vn‖<∞.

Suppose G(X )⊂R(X ) is some vector space of real valued functions on X , and
let G(X , ‖·‖)={V ∈G(X ) | ‖V‖<∞}. Verification that G(X , ‖·‖) is complete involves
confirming that any Cauchy sequence converges to some limit in the norm, and that
the limit is in G(X ). We will be especially concerned with the supremum norm on a
vector space of real valued functions.

Theorem 6.8 If G(X )⊂R(X ) is a vector space with additive identity �0 then
G(X , ‖·‖sup) is a Banach space.

Proof It is easily verified that G(X , ‖·‖sup) is a vector space with additive identity
�0. Then suppose {Vn} is absolutely summable, and let Sn =∑n

i=1 Vi. Each sequence
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Sn(x) possesses a limit V(x), which is bounded by |V(x)| ≤M=∑∞
i=1 ‖Vi‖sup<∞,

so that Sn possesses a pointwise limit V bounded in ‖·‖sup. Furthermore, we have
|V(x)− Sn(x)| ≤∑∞

i>n ‖Vi‖sup, and the upper bound vanishes as n→∞, therefore
‖V − Sn‖sup →n 0, which completes the proof. ///

We will be especially interested in the vector space of measurable functions F(X )
on a Borel space X , which is closed under limits, so that F(X , ‖·‖sup) is a Banach space.

6.4.2 Linear operators

Suppose we are given two normed vector spaces (V, ‖·‖V ), (W, ‖·‖W ). Let L(V, W) be
the class of all linear operators A : V →W. For any A∈L(V, W) we may define the
operator norm

|||A|||W|V = sup{‖Ax‖W | ‖x‖V ≤ 1}.
If |||A|||W|V <∞ then A is a bounded linear operator. The class of all bounded linear
operators is denoted B(V, W). The operator norm may be equivalently defined as the
minimum constant c for which ‖Ax‖W ≤ c‖x‖V for all x∈V (because of the scalar
homogeneity of norms of Definition 6.6). Since A is linear, we have

‖Ax1 − Ax2‖W =‖A(x1 − x2)‖W ≤ |||A|||W|V‖x1 − x2‖V ,

so if A is bounded it is also Lipschitz continuous, and hence uniformly continuous.
If (W, ‖·‖W )= (V, ‖·‖V ), so that A is an operator on (V, ‖·‖V ), the operator norm

may be written |||A|||V .
Theorems 6.9, 6.10 and 6.11 state some of the important properties of linear

operators (see, for example, Chapter 10 of Royden (1968)).
In a normed vector space, for a linear operator boundedness, continuity and

Lipschitz continuity are equivalent.

Theorem 6.9 For any A∈L(V, W)

(i) If A is bounded then it is uniformly continuous,
(ii) If A is continuous anywhere then it is bounded.

Linear operators themselves may be considered vectors under linear combination,
that is, if A, B∈L(V, W) then given scalars a, b we have aA+ bB∈L(V, W) under
the usual evaluation rules (aA+ bB)V = aAV + bBV . In fact, Banach space structure
occurs naturally:

Theorem 6.10 The vector space B(V , W), where V is a normed vector space and W
is a Banach space, is a Banach space in the operator norm.

Given normed linear spaces V, W a bijective operator Q∈B(V, W) is an isomor-
phism if it possesses inverse Q−1 ∈B(W, V). In this case V and W are isomorphic. If V
is a Banach space then W must be as well. On the other hand, an important property of
Banach spaces is that any inverse of a bounded linear operator must also be a bounded
linear operator.
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Theorem 6.11 (Bounded InverseTheorem) Given Banach spaces V, W, if Q : V →
W is a bijective continuous linear operator, then Q−1 is a continuous linear operator.

As a true norm, the operator norm is subadditive,

|||A+ B|||W|V ≤ |||A|||W|V + |||B|||W|V .

The operator norm directly forces the Lipschitz property

‖Ax‖W ≤ |||A|||W|V‖x‖V ,

and is equal to the smallest Lipschitz constant. For linear operators on V, the
submultiplicative property holds:

‖ABx‖V ≤ |||A|||V‖Bx‖V ≤ |||A|||V |||B|||V‖x‖V , for all x∈V,

that is, |||AB|||V ≤ |||A|||V |||B|||V , which will prove to be an important property. However,
the fact that the submultiplicative property is sometimes not sharp may necessitate
some amount of additional analysis, in order to compare |||AB|||V and |||A|||V |||B|||V .

If Q is a linear operator, then it is easily verified that the null set N (Q) is a vector
subspace, so we refer to it as the null space of Q. If N (Q)={�0} then Q is nonsingular,
and is otherwise singular. The following theorem is easy to prove, but worth noting.

Theorem 6.12 If Q : V →W is a nonsingular linear operator then it is injective.
Therefore

(i) Any solution V to the equation QV =w is unique.
(ii) If Q is surjective, then it possesses an inverse Q−1.

Proof Suppose QV1 =QV2. Then Q(V1 − V2)= �0, and therefore V1 − V2 ∈N (Q),
that is, V1 =V2. ///

Theorem 6.12 can be compared to Theorem 2.5.

Positive linear operators

Definition 6.10 A linear operator Q on a vector space V ⊂R(X ) is positive if QV ≥ 0
whenever V ≥ 0.

A positive linear operator is monotone:

Lemma 6.1 A positive linear operator Q on a vector space V ⊂R(X ) is monotone
in the sense that V2 ≤V1 implies QV2 ≤QV1. In addition

|Q(V2 − V1)| ≤Q|V2 − V1|
for any two elements V1, V2 ∈V.

Proof If V2 − V1 ≥ 0 then 0≤Q(V2 − V1)=QV2 −QV1. For any two V1, V2 ∈
V. V2 − V1 ≤ |V2 − V1|, so QV2 −QV1 =Q(V2 − V1)≤Q|V2 − V1|, with the proof
completed by exchanging V1 and V2. ///
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Diagonal operator

Suppose we are given vector space V ⊂R(X ), and another mapping h∈R(X ). We may
define the diagonal operator Ih, evaluated for V ∈V by (IhV)(x)= h(x)V(x). It is not
expected that h exist either in the domain or range of Ih. If h≡ 1 then Ih is the identity
operator (in analogy to the identity matrix).

6.5 NORMS AND NORM EQUIVALENCE

When analyzing properties of norms, the notion of norm equivalence will be crucial
for our applications. Since the defining property of a Banach space depends on norm
convergence, if it can be claimed that on a common vector space V two distinct norms
‖·‖α and ‖·‖β imply exactly the same convergence statements, then they are equivalent
norms. This is clearly an equivalence relationship (Section 2.2), expressible ‖·‖α∼
‖·‖β, which defines equivalence classes of norms which possess identical convergence
properties on a common vector space.

Certainly, two equivalent norms define essentially the same Banach space. This
point of view has some quite practical advantages. Because equivalent norms may be
based on very different evaluation methods, it can be quite advantageous to be able to
select the norm most suitable for a given task.

A norm ‖·‖ may be thought of as a family of spheres St ={x | ‖x‖≤ t}, t ∈ [0,∞),
where S0 ={�0}. We may take ‖x‖≤1 to define a canonical sphere (or unit sphere), and
since ‖x‖=1 implies ‖tx‖= |t|, any other sphere St is a scale transformation of S1. The
spheres are clearly concentric, that is St ⊂ Ss if t≤ s (here, a subset of a sphere is meant
to include the interior). Clearly, Vn →n �0 if and only if there is a sequence tn ↓ 0 for
which Vn ⊂ Stn .

Suppose the spheres Sαt and Sβt induced by two norms ‖·‖α and ‖·‖β are mutually
concentric, in sense that for all Sαt and Sβt′ there exists Sβs ⊂ Sαt and Sαs′ ⊂ Sβt′ . This suffices
to establish norm equivalence.

Theorem 6.13 Suppose the spheres induced by norms ‖·‖α and ‖·‖β on a common
vector space V are mutually concentric. Then ‖·‖α∼‖·‖β.
Proof Assume Vn →n �0 wrt ‖·‖α. Choose t1 for which V1 ⊂ Sαt1 . There exists s′ for
which Sβs′ ⊂ Sαt1 . Make 0< s1< s′ as small as we like. Select t2 for which Sαt2 ⊂ Sβs1 . By
convergence wrt ‖·‖α there exists n1 for which Vn1 ⊂ Sαt2 ⊂ Sβs1 . We may select s2, s3, . . .
in the same way, ensuring that sn →n 0. This means that Vn →n �0 wrt ‖·‖β as well. The
proof concludes by exchanging ‖·‖α and ‖·‖β. ///

Norm monotonicity

Consider the following norm property:

Definition 6.11 A norm ‖·‖ on a vector space V ⊂R(X ) is monotone if |V2(x)| ≥
|V1(x)| for all x∈X implies ‖V2‖≥‖V1‖.

Although this property seems quite intuitive, the construction of a counterexample
is straightforward. The monotonicity property implies that if |V2(x)| ≥ |V1(x)| for all
x then V2 is not in the interior of the sphere containing V1 on its surface. Let ‖·‖sup be
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the supremum norm on R
2, which is monotone. The unit sphere is a square with sides

parallel to an axis. To create a counterexample, we only need to rotate this square by
an angle less than 45 degrees.

It is tempting to conclude from an example like this that the properties of a norm
may be very sensitive to its specific geometric properties. However, it also suggests that
when a norm does not possess a certain property, such as monotonicity, it is possible
that a similar norm does. In this case, the modified norm is not monotone, but from
Theorem 6.13 it is clearly equivalent to one that is.

6.5.1 Norm dominance

While Theorem 6.13 gives an intuitive characterization of norm equivalence, the notion
of norm dominance offers greater precision.

Definition 6.12 Suppose we are given two norms ‖·‖α, ‖·‖β on a vector space V. We
say ‖·‖α dominates ‖·‖β if there is a finite constant b for which ‖V‖β ≤ b‖V‖α for all
V ∈V, which is written ‖·‖β ≤‖·‖α.

Dominance may be used to characterize norm equivalence.

Theorem 6.14 Given two norms ‖·‖α, ‖·‖β on vector space V, ‖·‖β ≤‖·‖α if and only
if all sequences converging wrt ‖·‖α also converge wrt ‖·‖β.

As a consequence ‖·‖β∼‖·‖α if and only if ‖·‖β ≤‖·‖α and ‖·‖α≤‖·‖β.
Proof If ‖·‖β ≤‖·‖α and ‖Vn‖α→ 0 for some sequence Vn then lim supn ‖Vn‖β ≤
lim supn b‖Vn‖α= 0 for some finite b.

Next suppose there exists a sequence Vn for which ‖Vn‖α→ 0 but
lim supn ‖Vn‖β= r> 0. Then we cannot have ‖·‖β ≤‖·‖α, since the sequence of
ratios ‖Vn‖β/‖Vn‖α is unbounded as n→∞. This completes the proof. ///

Norm equivalence can be equivalently defined as the existence of two positive
scalars a, b such that

a‖V‖α≤‖V‖β ≤ b‖V‖α
for all V ∈V. This set of inequalities are understood to imply that ‖V‖α=∞ if and
only if ‖V‖β=∞.

If V is complete with respect to two norms, one dominance relationship suffices
to establish norm equivalence.

Theorem 6.15 Given a vector space V which is complete in norms ‖·‖α and ‖·‖β, if
‖·‖α≤‖·‖β then ‖·‖α∼‖·‖β.
Proof Since ‖·‖α≤‖·‖β, the identity map is a bijective continuous linear operator
between Banach spaces (V, ‖·‖α ) and (V, ‖·‖β ), therefore the theorem holds by apply-
ing the bounded inverse theorem (Theorem 6.11). ///

6.5.2 Equivalence properties of norm equivalence classes

We refer to a property as a norm equivalence property if it necessarily holds for all
norms in an equivalence class. The definition of convergence is a norm equivalence
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property (the defining one). All norms in an equivalence class are dominated by any
single member, so dominance by a single norm is a norm equivalence property. We
have seen that monotonicity in V ⊂R(X ) is not a norm equivalence property, but also
that a norm that is not monotone may be equivalent to one that is.

The contraction properties of an operator T on V are defined relative to a norm.
We will show below that the contraction property is not a norm equivalence property,
but that multistage contraction is.

We define the quantity

η(‖·‖β | ‖·‖α)= sup
V :‖V‖α>0

‖V‖β
‖V‖α

which is identical to the operator norm of the identity map from (V, ‖·‖α ) to (V, ‖·‖β)
used in the proof of Theorem 6.15. Then η(‖·‖β | ‖·‖α)<∞ if and only if ‖·‖β ≤‖·‖α,
and is in fact the smallest constant b for which ‖V‖β ≤ b‖V‖α uniformly.

We will also make use of the quantity

η(‖·‖α, ‖·‖β) = η(‖·‖α | ‖·‖β)η(‖·‖β | ‖·‖α).

Clearly, η(‖·‖α, ‖·‖β)<∞ if and only if ‖·‖α∼‖·‖β. We also note the following lower
bound:

Lemma 6.2 The quantity η(‖·‖α, ‖·‖β)≥ 1.

Proof For any nonzero V ∈V we may write

1= ‖V‖β
‖V‖α

‖V‖α
‖V‖α =‖ V

‖V‖α ‖β‖
V

‖V‖β ‖α≤ η( ‖·‖α , ‖·‖β )

///

It will be useful to construct a distance function to define the following relationship
between two extended valued scalars a, b. Suppose we are given a third, fixed finite
scalar η, and that the following inequalities hold:

a≤ ηb and b≤ ηa. (6.11)

Then a and b are either both finite or both infinite. In the former case this is equivalent
to max(a/b, b/a)≤ η. Finally, if only one of a, b is finite, then we must have η=∞.
This suggests a scalar distance function between positive extended scalars

ds(a, b)=
{

max(a/b, b/a); a<∞ or b<∞
1 ; a=∞ and b=∞ .

Then the inequalities in (6.11) are equivalent to ds(a, b)≤ η. Note that ds(a, b)≥ 1.
Then ‖·‖α∼‖·‖β if and only if supV∈V ds(‖V‖α, ‖V‖β)<∞.
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Theorem 6.16 Suppose we are given a vector space V and ‖·‖α and ‖·‖β are alternative
norms which complete V. Then

(i) For any V ∈V ‖V‖β ≤ η(‖·‖β | ‖·‖α)‖V‖α.
(ii) Let T be an operator on V. If T possesses Lipschitz constant L for ‖·‖α, then it

possesses Lipschitz constant Lη(‖·‖α, ‖·‖β) for ‖·‖β.
(iii) For a linear operator Q on V the respective operator norms for Banach spaces

(V, ‖·‖α) to (V, ‖·‖β) satisfy

ds
(|||Q|||α, |||Q|||β

) ≤ η(‖·‖α, ‖·‖β).
Proof (i) follows from the definition of η(‖·‖β | ‖·‖α). To show (ii), suppose V , V ′ ∈V,
then write

‖TV − TV ′‖β ≤ η(‖·‖β | ‖·‖α)‖TV − TV ′‖α
≤ η(‖·‖β | ‖·‖α)L‖V − V ′‖α
≤ η(‖·‖β, ‖·‖α)L‖V − V ′‖β.

Then (iii) follows from (ii), given the interpretation of the operator norm as a Lipschitz
constant. ///

Essentially, the properties of a Banach space important to our application will
be norm equivalence properties. This includes the boundedness of a linear operator
Q and the Lipschitz continuity of an operator T. Strict contractivity is not a norm
equivalence property but multistage contractivity is, as well as a specific the asymptotic
contraction rate (Theorem 6.3). This issue will be considered in detail in Section 7.1,
but it is worth noting the following. Suppose we have ‖TJV1 − TJV2‖α≤KρJ for finite
K and ρ<1. This suffices to establish multistage contractivity. Then by Theorem 6.16
we also have ‖TJV1 − TJV2‖β ≤Kη(‖·‖α, ‖·‖β)ρJ, giving multistage contractivity for
any other norm ‖·‖β∼‖·‖α. The existence of a contractive fixed point algorithm itself
is therefore a norm equivalence property.

6.6 QUOTIENT SPACES AND SEMINORMS

A seminormed vector space is not formally a normed vector space, since the semi-
norm does not possesses the identifiability property ‖V‖=0 ⇐⇒ V = �0. In particular,
‖Vn‖→n 0 does not imply that Vn possesses limit �0.

However, a related normed vector space can be constructed. Since any seminorm
‖·‖α satisfies the triangle inequality, if ‖V −U‖α=‖U −W‖α= 0 we must have ‖V −
W‖α= 0. This means that the relationship ‖V −W‖α= 0 is transitive, and satisfies the
other properties of an equivalence relationship (Section 2.2). Therefore, ‖·‖α partitions
a vector space into equivalence classes EV ={W ∈V | ‖W − V‖α= 0}.

We may also represent this partition as a system of cosets, used to define a quo-
tient space in Section 6.3.1. Set N ={V ∈V | ‖V‖α= 0}. Then W ∈EV if and only if
‖V −W‖α= 0, or equivalently V −W = n∈N , so that EV = [V], where [V] is the
coset of V modulo N .
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The construction of a normed vector space follows.

Theorem 6.17 Suppose (V, ‖·‖α) is a seminormed vector space. Set null space N =
{V ∈V | ‖V‖α= 0}. Then N is a subspace of V, and therefore V/N is a quotient space.

Then ‖V1‖α=‖V2‖α for all V1, V2 ∈ [W] and therefore the quantity ‖[W]‖α=
‖W‖α is well defined (that is, it does not depend on the representative vector W).
Furthermore (V/N , ‖·‖α) is a normed vector space.

Proof If V , W ∈N , then ‖aV + bW‖α≤ a‖V‖α + b‖W‖α= 0, so that N is a sub-
space, and therefore V/N is a quotient space.

Next, suppose V1, V2 ∈ [W]. Then ‖V1‖α≤‖V1 − V2‖α + ‖V2‖α=‖V2‖α, and
reversing the indices gives ‖V2‖α≤‖V1‖α, so that ‖V1‖α=‖V2‖α, therefore ‖[W]‖α=
‖W‖α is well defined. For scalar a we have

‖a[W]‖α=‖[aW]‖α=‖aW‖α= |a|‖W‖α= |a|‖[W]‖α.
Also,

‖[V]+ [W]‖α=‖[V +W]‖α=‖V +W‖α≤‖W‖α + ‖V‖α=‖[W]‖α + ‖[V]‖α.
By definition V ∈N if and only if ‖V‖α= 0, so the additive identity N uniquely satis-
fies ‖N‖α= 0, which completes the proof. ///

By Theorem 6.17 a seminorm ‖·‖α defines a normed quotient vector spaces V/N
for null subspace N ={V ∈V | ‖V‖α= 0}. No reference to a formal normed vector
space is needed. However, construction of a seminormed quotient space will often be
based on a formal normed vector space, so it will be useful to know which properties
of the latter hold for the former.

If N is a vector subspace of a normed vector space (V , ‖·‖), define for the coset of
V modulo N :

‖[V]‖α = inf{‖W‖ |W ∈ [V]}= inf
n∈N

‖V − n‖. (6.12)

Then ‖[V]‖α can be interpreted as the minimum normed distance of V from N . Clearly,
‖N‖α= 0, but not necessarily uniquely.

Theorem 6.18 If N is a vector subspace of a normed vector space (V, ‖·‖), then the
quantity ‖·‖α defined in (6.12) is a seminorm on the quotient space V/N with additive
identity N .

If N is closed (wrt ‖·‖) then ‖·‖α is also a norm, and if in addition (V, ‖·‖) is a
Banach space, then so is (V/N , ‖·‖α).
Proof Since N is a vector space we have for any scalar a

‖a[W]‖α = ‖[aW]‖α
= inf

n∈N
‖aW − n‖

= inf
n∈N

‖aW − an‖
= inf

n∈N
|a|‖W − n‖

= |a|‖[W]‖.
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Similarly,

‖[V]+ [W]‖α = ‖[V +W]‖α
= inf

n∈N
‖V +W − n‖

= inf
n,n′∈N

‖V − n+W − n′‖
≤ inf

n,n′∈N
‖V − n‖ + ‖W − n′‖

= inf
n∈N

‖V − n‖ + inf
n′∈N

‖W − n′‖
= ‖[V]‖α + ‖[W]‖α

In addition, ‖N‖α= 0, which completes the first part of the proof.
If ‖[V]‖α= 0 then V must be a limit wrt ‖·‖ of a sequence in N . If N is closed

then V ∈N , which implies [V]=N and therefore that ‖·‖α is a norm.
To complete the proof we make use of Theorem 6.7. Suppose [Vn] is an absolutely

summable series, that is,
∑

n≥1 ‖[Vn]‖α <∞. By construction, for each n≥ 1 we may
select nn ∈N for which ‖Vn − nn‖≤‖[Vn]‖α + (1/2)n. This means Vn − nn is an abso-
lutely summable sequence in the Banach space (V, ‖·‖), and therefore there exists limit
V ′ ∈V for which ‖V ′ −∑n

i=1 (Vi − ni)‖→n 0. Then

‖[V ′]−
n∑

i=1

[Vi]‖α = inf
n∈N

‖V ′ −
n∑

i=1

Vi − n‖

≤ ‖V ′ −
n∑

i=1

(Vi − nn)‖.

The proof is completed by allowing n→∞. ///

To summarize, suppose we are given a seminorm ‖·‖α on a Banach space (V, ‖·‖).
If its null space N is closed with respect to ‖·‖, and ‖·‖α is equivalent to the seminorm
(6.12), then (V/N , ‖·‖α) is a Banach space.

6.7 HILBERT SPACES

When fixed points are calculated by repeated iterations, and each iteration contributes
error, we expect the effect on the algorithm to be some aggregation of these errors.
In some cases, these errors will be signed and roughly distributed about zero, and
the aggregation will permit some ‘error canceling’ effect, especially when the errors
are stochastic. This introduces a new notion of direction, or angle, in addition to
distance and length. In fact, for random variables statistical independence is analogous
to orthogonality, with the linear correlation coefficient interpetable as a cosine.

These concepts are not naturally expressed in Banach spaces. Suppose we are given
the sum of two random variables X1 +X2. While this is well defined on a vector space,
we know that the properties of this sum are influenced by the stochastic dependence
of X1 and X2. In a Banach space, we could write ‖X1 +X2‖≤‖X1‖ + ‖X2‖, but
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this bound would depend only on the marginal distributions of X1 and X2. In order
to exploit and dependence structure (which in some applications will be crucial) this
would have to be done ‘within the norm’ ‖X1 +X2‖, so that the Banach space structure
does not really offer any contribution in this regard.

Our interest in the Hilbert space will be precisely in its ability to capture forms
of stochastic independence in its structure. This is expressed by the inner product
〈·, ·〉 : V × V →R, which generalizes the ‘dot product’ 〈a, b〉=∑i aibi for Euclidean
vectors a= (a1, . . . , an) and b= (b1, . . . , bn).

Definition 6.13 Suppose V is a vector space with a real valued scalar field, and sup-
pose we have mapping 〈·, ·〉 : V × V →R. Then 〈·, ·〉 is an inner product (or scalar
product), and (V, 〈·, ·〉) is an inner product space (or scalar product space) if the
following axioms hold:

Symmetry For any x, y∈V we have 〈x, y〉= 〈y, x〉,
Scalar linearity For any scalar a and vectors x, y∈V we have 〈ax, y〉= a〈x, y〉,
Vector linearity For any vectors x, y, z ∈V we have 〈x+ y, z〉= 〈x, z〉 + 〈y, z〉,
Positive-definiteness For any x∈V we have 〈x, x〉≥0,
Identifiability For any x∈V we have 〈x, x〉=0 if and only if x= �0, the identity
element of the vector group.

Note that inner products may more generally assume complex values, but we will
confine attention to real inner product spaces.

We will provisionally define the norm ‖x‖= 〈x, x〉1/2, then verify that it is a true
norm. We first present a number of basic theorems.

Theorem 6.19 (Schwartz Inequality for Inner Products) If (V, 〈·, ·〉) is an inner
product space, and ‖x‖= 〈x, x〉1/2, then |〈x, y〉| ≤ ‖x‖‖y‖ for any x, y∈V.

Proof For any constant a set

0≤〈x− ay, x− ay〉= ‖x‖2 − 2a〈x, y〉 + a2‖y‖2.

If y= 0 the theorem holds directly. Otherwise, set a=〈x, y〉/‖y‖2, which completes the
proof. ///

Theorem 6.20 (TheTriangle Inequality for Inner Products) If (V, 〈·, ·〉) is an inner
product space, and ‖x‖= 〈x, x〉1/2, then ‖x+ y‖≤‖x‖ + ‖y‖ for any x, y∈V.

Proof Applying the Schwartz inequality we have

‖x+ y‖2 = 〈x+ y, x+ y〉
= 〈x, x〉 + 2〈x, y〉 + 〈y, y〉
≤ ‖x‖2 + 2‖x‖‖y‖ + ‖y‖2

= (‖x‖ + ‖y‖)2 ,

which completes the proof. ///
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Theorem 6.21 (Parallelogram Law for Inner Products) If (V, 〈·, ·〉) is an inner
product space then ‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2).

Proof Write

‖x+ y‖2 + ‖x− y‖2 = ‖x‖2 + ‖y‖2 + 2〈x, y〉 + ‖x‖2 + ‖y‖2 + 2〈x,−y〉
= 2(‖x‖2 + ‖y‖2).

///

We may now verify that ‖x‖= 〈x, x〉1/2 is a true norm. That ‖·‖ satisfies the triangle
inequality has just been shown. The identifiability of ‖x‖ follows from the identifia-
bility of 〈·, ·〉, while the scalar homogeneity of ‖x‖ follows from the scalar linearity,
then the symmetry, of 〈·, ·〉1/2. This then implies that d(x, y)=〈x− y, x− y〉1/2 is a true
metric, so that an inner product space is also a normed vector space and a metric space,
which may be completed to define the Hilbert space:

Definition 6.14 A Hilbert space is an inner product space (V, 〈·, ·〉) which is complete
with respect to the metric d(x, y)=〈x− y, x− y〉1/2.

Then, any properties of a complete metric space or a Banach space hold also for a
Hilbert space with respect to the metric or norm induced by the inner product.

6.8 EXAMPLES OF BANACH SPACES

In this section we discuss a number of Banach space structures we will make use of in
later chapters.

6.8.1 Finite dimensional spaces

The Banach space structure of R
m is straightforward and intuitive. It is worth charac-

terizing as an illustration of elementary Banach space methods, and also as an example
of an important isomorphism, since any finite dimensional vector space has identical
Banach space properties.

Convergence in R
m is usually taken to be equivalent to pointwise convergence.

Since the dimension is finite, this is also uniform convergence. However, recall that the
definition of convergence depends on the topology. We could decide that all sequences
converge, or that only constant sequences do. We don’t point this out to recommend
such schemes, but rather to emphasize that the choice of topology is ours to make.

However, once we select a norm the notion of convergence is fixed, and in finite
dimensional vector spaces all norms are equivalent. Recall that any finite dimensional
vector space V may be represented by an m-dimensional basis Ṽ , that is, for each V ∈V
there is a unique vector ã= (a1, . . . , am) for which V =∑m

i=1 aiVi. Any norm ‖·‖ on V
must be a continuous function of ã in the Euclidean norm. This is because if |ã| = ε we
must also have |ai| ≤ ε, so that

‖V‖≤
m∑

i=1

|ai|‖Vi‖≤ ε
m∑

i=1

‖Vi‖= |ã|
m∑

i=1

‖Vi‖.
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The Euclidean norm on the coefficients ã is also a norm on V, which dominates any
other norm on V, so that all norms on V form an equivalence class with the Euclidean
norm.

6.8.2 Matrix norms and the submultiplicative property

Let Mn be the class of n× n real valued matrices A with elements ai,j in the ith row
and jth column. This is clearly a finite dimensional vector space, so all norms are
equivalent to the Euclidean norm defined on the n2 matrix elements. However, when
a matrix A is interpreted as a linear operator A : R

m →R
m a somewhat richer norm

structure emerges. We provide a brief introduction to the topic, and refer the reader
to, for example Horn and Johnson (1985) for a comprehensive treatment.

If a vector space admits a composition AB∈V for A, B∈V a norm ‖·‖ is submulti-
plicative if ‖AB‖≤‖A‖‖B‖. The composition of operators is always well defined, and
an operator norm is always submultiplicative. However, despite the fact that Mn is a
class of operators, and all norms on Mn are equivalent, not all norms are submultiplica-
tive. For example, let ‖A‖∞ =maxi,j |ai,j|. This is a norm, but is not submultiplicative,
as can be seen by considering matrix A with ai,j ≡ 1, since in this case ‖A‖∞ = 1 but
‖AA‖∞ =m. Because of the importance of this property, the term matrix norm is
sometimes reserved specifically for submultiplicative norms (as in Horn and Johnson
(1985)), for which the notation |||·||| is reserved.

The operator norm is generated by a vector norm ‖·‖α on R
n using the usual

definition of the operator norm

|||A|||α = sup
‖x‖�=0

‖Ax‖α
‖x‖α . (6.13)

Now, suppose A∈Mn is taken as a linear operator on the Banach space (Rn, ‖·‖α).
We have already established that multistage contraction is a norm equivalence property,
and all norms on R

n are equivalent. An asymptotic contraction rate (Theorem 6.3) can
be defined for operator A alone, and is in fact equal to the spectral radius ρ(A) (see
Section 2.3.2 for definition).

Theorem 6.22 Suppose we are given a square real valued matrix A∈Mn.
(i) limk→∞ Ak = 0 if and only if ρ(A)< 1.
(ii) For any matrix norm |||·||| we have limk→∞ |||Ak|||1/k = ρ(A).

Proof See Theorem 5.6.12 and Corollary 5.6.14 of Horn and Johnson (1985).

6.8.3 Weighted norms on function spaces

For the discussion of this section, it will suit our purposes best to let F(X ) be the
vector space of measurable functions on a Borel space X . Then let F(X , ‖·‖sup) be
a vector space of bounded real valued functions on X , which is a Banach space by
Theorem 6.8. We also define the set of weight functions W(X )={w∈F(X ) |w(x)> 0}.
For any weight function w we define the weighted supremum norm ‖·‖w on F(X ) by
‖V‖w = supx∈X w−1(x)|V(x)|. The space F(X , ‖·‖w)={wV |V ∈F(X , ‖·‖sup)} is clearly
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an isomorphism of F(X , ‖·‖sup) and is therefore also a Banach space. If w≡ 1 we
recover the supremum norm ‖·‖w =‖·‖sup.

Note that the weighted norm is monotone in the sense of Definition 6.11, that is,
if |V1| ≤ |V2| then ‖V1‖w ≤‖V2‖w.

For weight functions w1, w2 define the quantity:

dw(w1, w2) = ‖w1‖w2‖w2‖w1 .

Definition 6.15 Two weight functions w1, w2 are equivalent, written w1 ∼w2, if
dw(w1, w2)<∞. An alterative definition is that supx∈X ds(w1(x), w2(x))<∞.

The analytical properties of weight functions and their equivalence relations will
be of some importance, and so will be given in some detail in the following theorem.

Theorem 6.23 The following statements hold for the weight functions wi ∈W(X ):

(i) For any V ∈F(X ) we have ‖V‖w1 ≤‖w2‖w1‖V‖w2 . In addition, ‖·‖w1
and ‖·‖w2

are equivalent norms if and only if w1 ∼w2; and so F(X , ‖·‖w1
)=F(X , ‖·‖w2

)
if and only if w1 ∼w2.

(ii) dw(w1, w2)≥ 1, with equality if and only if w1 = aw2 for scalar a> 0 (hence
w1 ∼ aw1).

(iii) w1 ∼w2 if and only if there exist finite positive scalars a, b such that aw1 ≤
w2 ≤ bw1.

(iv) Weight equivalence w1 ∼w2 is an equivalence relation in the sense of Definition
2.1.

(v) Suppose w2 ≤w1. Then ‖w1 −w2‖w1 = 1− ‖w1‖−1
w2
≤ 1, hence w1 ∼w2 if and

only if ‖w1 −w2‖w1 < 1.
(vi) For general weight functions, w1 ∼w2 if and only if

min
i=1,2

‖w1 − aw2‖wi < 1,

for some scalar a> 0.
(vii) If weight functions w1, w2 satisfy infx w1> 0 and infx w2> 0 and |w1 −w2| ≤

a<∞ then w1 ∼w2.

Proof
(i) We may write

‖V‖w1 = sup
x

(|V(x)|/w1(x))(w2(x)/w2(x))

= sup
x

(|V(x)|/w2(x))(w2(x)/w1(x))

≤ sup
x

(|V(x)|/w2(x)) sup
x

(w2(x)/w1(x))

= ‖V‖w2‖w2‖w1 .

Then supV dw(‖V‖w1 , ‖V‖w2 )≤max (‖w1‖w2 , ‖w2‖w1 ), which is a finite bound
if w1 ∼w2. Conversely, suppose ‖w1‖w2 =∞. Then ‖·‖w1

and ‖·‖w2
cannot be

equivalent, since ‖w1‖w1 = 1.
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(ii) 1=‖w1‖w1 ≤‖w1‖w2‖w2‖w1 = dw(w1, w2). Suppose for x, y we have w1(x)/
w2(x)= a �=w1(y)/w2(y)= b. Then

‖w1‖w2‖w2‖w1 ≥max(a, b) max(1/a, 1/b)> 1.

(iii) If w1 ∼w2 then set a=‖w1‖−1
w2

and b=‖w2‖w1 . Conversely, we have ‖w1‖w2 ≤
a−1 and ‖w2‖w1 ≤ b.

(iv) The equivalence relation is symmetric by construction, and reflexivity follows
from the equality ‖w‖w = 1 for any weight function w. Transitivity follows by
noting

dw(w1, w3) = ‖w1‖w3‖w3‖w1

≤ ‖w1‖w2‖w2‖w3‖w3‖w2‖w2‖w1

= dw(w1, w2)dw(w2, w3).

(v) If w2 ≤w1 then ‖w1 −w2‖w1 = 1− infx w2(x)/w1(x)= 1− ‖w1‖−1
w2

. Then ‖w1 −
w2‖w1 < 1 if and only if ‖w1‖w2 <∞ so the argument is completed by noting that
‖w2‖w1 ≤ 1.

(vi) We may write ‖w1 −w2‖w1 =max (1− ‖w1‖−1
w2

, ‖w2‖w1 − 1). Then ‖w1 −
w2‖w1 < 1 implies both ‖w1‖w2 <∞ and ‖w2‖w1 <∞. By exchanging w1 and w2

we conclude that ‖w1 −w2‖w1 < 1 implies w1 ∼w2. If mini=1,2 ‖w1 − aw2‖wi <

1 then w1 ∼ aw2 ∼w2. To prove the converse, note that if w1 ∼w2 then if
a=‖w2‖−1

w1
we have aw2 ≤w1 so that the remainder follows from (v).

(vii) Under the hypothesis ‖V‖wi = a/ infx wi <∞ for any constant function V ≡ a.
Then w1 ≤w2 + a, so that ‖w1‖w2 ≤ 1+ ‖a‖w2 <∞, with the proof completed
by exchanging w1 and w2. ///

The weighted norm can be particularly useful when dealing with positive linear
operators. The following lemma will be particularly important.

Theorem 6.24 If Q is a positive linear operator on F(X , ‖·‖w), then its operator
norm is given by

|||Q|||w =‖Qw‖w

Proof First note that since Q is positive |QV | ≤Q|V|. Then, if ‖V‖w ≤ 1 we have
|V | ≤w, consequently, |QV | ≤Q|V| ≤Qw. But ‖w‖w = 1, so by the monotonicity of
‖·‖w we conclude that ‖V‖w is maximized for ‖V‖w ≤ 1 by ‖Qw‖w. ///

6.8.4 Span seminorms

Suppose V ⊂R(X ) is a vector space with identity e≡ �0 and scalar field R. In
Section 4.8.3 the span seminorm was introduced:

‖f ‖SP = sup
x∈X

f (x)− inf
x∈X

f (x).
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We also introduced the span midpoint:

mid(f )= 2−1( sup
x∈X

f (x)+ inf
x∈X

f (x)).

Scalar homogeneity is easily verified, while the triangle inequality follows from the
inequality supx∈X (f (x)+ g(x))≤ supx∈X f (x)+ supx∈X g(x) and infx∈X (f (x)+ g(x))≥
infx∈X f (x)+ infx∈X g(x). Clearly, ‖�0‖SP = 0, but ‖f ‖SP = 0 also for any constant func-
tion f ≡ c, so that ‖·‖SP is a seminorm. The equivalence classes are easily generated from
the null subspace N ={f ∈V | ‖f ‖SP = 0}, which is the class of all constant functions,
and they form the span quotient space V/N .

Suppose we have Banach space (V, ‖·‖sup), on which ‖·‖SP is defined. There is an
interesting relationship between the suprememum norm and the span seminorm which
will assume some importance in subsequent analysis, and should be noted. Assume V
contains �1.

Theorem 6.25 Suppose we have Banach space (V, ‖·‖sup) with real scalars, which
contains �1 and identity �0. Then for all f ∈V with ‖f ‖sup<∞,

‖f ‖SP ≤ 2‖f ‖sup, and (6.14)

inf
a∈R

‖f − a�1‖sup = ‖f −mid(f )�1‖sup = 1
2
‖f ‖SP. (6.15)

In addition, the following inequalities hold:

‖f ‖SP ≤ ‖f ‖sup if inf f ≥ 0 or sup f ≤ 0,

‖f ‖SP ≥ ‖f ‖sup otherwise. (6.16)

Proof Inequality (6.14) follows by noting ‖f ‖SP = supx∈X f (x)− infx∈X ≤∣∣supx∈X f (x)
∣∣+ ∣∣infx∈X f (x)

∣∣. Then by the definition of ‖·‖SP and (6.14) we have

1
2
‖f ‖SP = 1

2
‖f − a�1‖SP ≤‖f − a�1‖sup,

with equality achieved by setting a=mid(f ), giving (6.15). Then (6.16) follows from
the definition of ‖·‖SP. ///

The definition of the weighted span seminorm follows from the weighted
supremum norm, and Theorem 6.25 extends naturally to the weighted case:

‖f ‖SP(ν) =‖ν−1f ‖SP = sup
x∈X

ν(x)−1f (x)− inf
x∈X

ν(x)−1f (x).
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However, it is important to note that the equivalence classes will depend on the weight
function, in particular we have,

‖f − g‖SP(ν) = 0 if and only if f − g= aν and

‖h‖SP(ν) = 0 if and only if h= aν

for some constant a, and

‖f ‖SP(ν) = ‖f + aν‖SP(ν)

for any constant a. The equivalence classes may therefore be identified with the quotient
space V/Nν, where we write the null space Nν={aν | a∈R}.

As a matter of notation the symbol ν will be used to represent weight functions
associated with weighted span seminorms, while w remains the weight function asso-
ciated with weighted supremum norms. The two are the same type of object, but will
often serve different purposes, and may have very different origins. It will sometimes
be the case that ν=w, but using distinct notation will give more clarity. Following this
remark we have the following theorem:

Theorem 6.26 If we have Banach space (V, ‖·‖w) with real scalars, which contains
w and identity �0, and ν∼w, then (V/Nν, ‖·‖SP(ν)) is also a Banach space.

Proof From Theorem 6.25 we can see that if ν∼w we have

‖V‖w <∞ ⇐⇒ ‖V‖ν <∞ ⇐⇒ ‖V‖SP(ν)<∞,

so that all elements of V/Nν are of finite norm. Clearly, the null space Nν is closed
wrt ‖·‖ν∼‖·‖w, so by Theorem 6.18 V/Nν is a Banach space wrt a norm calculable by
(6.12). By Theorem 6.25 this norm is equivalent to ‖·‖SP(ν). ///

6.8.5 Operators on span quotient spaces

We have seen that given Banach space (V, ‖·‖w) the span seminorm ‖·‖SP(ν) induces a
Banach space (V/Nν, ‖·‖SP(ν)), provided ν∼w.

Next, consider a linear operator Q on V. We may define the continuity of Q with
respect to ‖·‖SP(ν), with some caution, as the Lipschitz condition ‖QV‖SP(ν) ≤L‖V‖SP(ν)

for all V ∈V for some L<∞. However, in doing so, we find that the essential condition
is that Q be interpretable as an operator on the quotient space V/Nν.

Theorem 6.27 Consider a linear operator Q on a vector space of functions V, with
weight function ν∈V, and define the following condition:

Qν=αν for some scalar α. (6.17)

(i) If Q is Lipschitz continuous in ‖·‖SP(ν) then (6.17) holds.
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(ii) If Q is Lipschitz continuous in the weighted supremum norm ‖·‖ν and (6.17)
holds then Q is Lipschitz continuous in ‖·‖SP(ν), with

‖QV‖SP(ν) ≤ |||Q|||ν‖V‖SP(ν). (6.18)

(iii) If (6.17) holds, then Q is an operator on the quotient space V/Nν, where Q is
understood to map subsets E⊂V to images QE⊂V.

Proof

(i) If Q is Lipschitz continuous in ‖·‖SP(ν) then for some finite L we must have
‖Qν‖SP(ν) ≤L‖ν‖SP(ν) =‖�1‖SP = 0, which implies (6.17).

(ii) Suppose ‖V‖sup<∞. Then if (6.17) holds, by Theorem 6.25 we have

‖QV‖SP(ν) = ‖Q(V − ν mid(V/ν))‖SP(ν)

≤ 2‖Q(V − ν mid(V/ν))‖ν
≤ 2|||Q|||ν‖V − ν mid(V/ν)‖ν
= |||Q|||ν‖V‖SP(ν),

which completes part (ii).
(iii) Suppose [U] is the coset of U modulo Nν. If V ∈ [U], then V =U + aν for some

scalar a. We then have QV =Q(U + aν)=QU + αaν. Clearly, Q is a bijective
mapping from [U] to [QU], and so is generally a bijective mapping between
elements of V/Nν. If we then regard Q as a mapping from a subset E⊂V to its
image QE⊂V, then Q is well defined as an operator on V/Nν since E∈V/Nν

implies QE∈V/Nν. ///

It is important to know that (6.17) is the essential condition for span continuity,
and if it holds, that continuity in the supremum norm implies span continuity. The
interesting consequence of (6.17) is that it permits the interpretation of Q as an operator
on the Banach space (V/Nν, ‖·‖SP(ν)). We will see that this alternative Banach space
construction can have considerable advantages.

Of course, the pair (α, ν) in (6.17) can be recognized as an eigenvalue and an
associated eigenvector (see Section 2.3.2). It is well known that the existence of a real
nonzero eigenvalue and an associated real eigenvector is an important property for
operators. This is the subject of the Perron-Frobenius theorem (Theorem 2.13) when
Q is a nonnegative matrix, and a central concern of operator theory, which considers
the extension of the spectral properties of matrices to more general linear operators.
We have discussed the implications of this for Markov chains, for which (6.17) will
generally hold. For more general operators, it will suffice for our purposes to verify
(6.17) by construction.

We will see that the Lipschitz constant given in (6.18) may not be sharp, so we
next consider a more refined evaluation of |||Q|||SP(ν).
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6.9 MEASURE KERNELS AS LINEAR OPERATORS

We have introduced measure kernels in Section 4.9 as mappings of the form Q : Y →
MX , given Borel spaces X , Y, where MX is the set of finite signed measures on X . The
range of Q may be restricted to M1

X , M1−
X or M+

X , yielding stochastic, substochastic
or positive kernels, respectively.

Under general assumptions, Q may be equivalently taken to be a linear operator
between vector spaces F(X ) and F(Y) using the evaluation

W(y)=Q(· | y)V , y∈Y .

This assumes that the mapping preserves measurability, which will hold under
Definition 4.7. We will assume that any measure kernel Q is measurable in this sense.

The purpose of this section is to clarify the role of measure kernels in the Banach
space F(X , ‖·‖w). If Y =X then Q is an operator on F(X ). If Q is a signed kernel the
operator norm wrt ‖·‖w becomes,

|||Q|||w = sup
‖V‖w≤1

‖QV‖w

= sup
‖V‖w≤1

sup
x∈X

w(x)−1
∣∣Q(· |x)V

∣∣ .
By Theorem 4.21 we may conclude the operator norm of Q is given by

|||Q|||w =‖Qw‖w = sup
x∈X

w(x)−1‖Q(· |x)‖TV(w).

6.9.1 The contraction property of stochastic kernels

The operator norm |||Q|||w is a Lipschitz constant for Q on the Banach space F(X , ‖·‖w),
so there is considerable interest in determining whether or not |||Q|||w < 1, since this
value will also determine the Lipschitz constant of various operators constructed
from Q.

The contraction property of a positive operator Q in the supremum norm usually
follows from the substochastic property. Possibly, Q=βQ0, where Q0 is a proper
stochastic kernel and β∈ (0, 1). Alternatively, Q may define a Markov process with an
absorbing class �. Suppose we define the vector space F�(X ) of measurable function
for which V(x)= 0 when x∈�. Suppose we have QJ(� | x)≥ δ for all x∈X for some
finite J (in particular, QJ(� | x)= 1 when x∈�). In this case, for any V ∈F�(X ) for
which ‖V‖sup ≤ 1 we must have ‖QJV‖TV ≤ 1− δ, from which the contraction property
follows.

6.9.2 Stochastic kernels and the span seminorm

There will be considerable interest in examining the span seminorm properties of Q,
first, in determining when it is span continuous, and then, in evaluating its span
operator norm.
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If Q is assumed continuous in ‖·‖ν, from Theorem 6.27, Q will be span continuous
if and only if Qν=αν for some scalar α. This condition will be frequently encountered,
but will also be violated for many interesting models.

First, we will assume that Q is span continuous, in which case we may calculate
the span operator norm.

Theorem 6.28 Suppose for Borel space X , Q is a span continuous measure kernel
with respect to weight function ν. Then the span operator norm is given by

|||Q|||SP(ν) = 1
2

sup
x,y∈X

‖(I−1
ν Q)(· |x)− (I−1

ν Q)(· | y)‖TV(ν) ≤ |||Q|||ν. (6.19)

Proof Suppose V ∈F(X ). Then

‖QV‖SP(ν) = sup
x,y∈X

ν(x)−1Q(· |x)V − ν(y)−1Q(· | y)V .

Using the notation of Theorem 4.22 set

µ= ν(x)−1Q(· |x)− ν(y)−1Q(· | y).

By hypothesis µν= 0, since Q(· |x)ν=αν(x), which gives

‖QV‖SP(ν) ≤ 1
2

sup
x,y∈X

‖(I−1
ν Q)(· |x)− (I−1

ν Q)(· | y)‖TV(ν)‖V‖SP(ν). (6.20)

Following the arguments of Section 4.8.3 we can see that equality in (6.20) can be
attained within any ε>0 by selecting a suitable V . Then (6.19) follows directly, after
noting that

1
2
‖(I−1

ν Q)(· |x)− (I−1
ν Q)(· | y)‖TV(ν) ≤ sup

x
ν(x)−1‖Q(· |x)‖TV(ν) = |||Q|||ν.

///

If Q is span continuous, then the alternative Banach space (V/Nν, ‖·‖SP(ν)) may
have quite different contraction properties than the underlying Banach space (V, ‖·‖w).
The following example will be quite relevant. Suppose Q1 is a stochastic kernel with
eigenpair (1, �1). For β<1 we have the uniformly substochastic model Q=βQ1. Then
the span operator norm is

|||Q|||SP =β|||Q1|||SP. (6.21)

Since Q1 is strictly stochastic, we have

|||Q1|||SP = 1
2

sup
x,y∈X

‖Q1(· |x)−Q1(· | y)‖TV ≤ 1.
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so that the contraction constant for Q wrt the span seminorm is never larger than that
wrt to the supremum norm. The next question is whether or not it is smaller. If there
exists a pair x, y∈X for which

Q1(· |x)⊥Q1(· | y),

then the answer is no, since in this case

|||Q1|||SP ≥ (1/2)‖Q1(· |x)−Q1(· | y)‖TV = 1.

However, if the variation norm of all signed measures Q1(· |x)−Q1(· | y) is bounded
away from 2, then |||Q1|||SP< 1, and the contraction constant wrt the span seminorm
is strictly smaller.



Chapter 7

Fixed point equations

Suppose we are given a metric space (V, d), on which is defined an operator T. The
fixed point equation is simply V =TV , and is the common form of many important
mathematical problems. The Banach fixed point theorem (Theorem 6.4) applies to
complete metric spaces, and defines sufficient conditions under which is can be stated
that

1 A solution to V =TV exists,
2 The solution to V =TV is unique,
3 The solution to V is the limit in the given metric of the sequence Tkv0 for any

v0 ∈V.

When this holds we obtain the fixed point algorithm Vk =Tkv0 for any v0 ∈V, and we
define a fixed point iteration as the step Vk+1 =TVk. The most obvious condition is that
T is contractive in a metric space (V, d), but the theorem also implicitly assumes that T
is closed on V in the sense that for any element V ∈V we have d(TV , V)<∞. If we are
given a Banach space, the metric becomes d(V1, V2)=‖V1 − V2‖, so that closure of T is
stated as the condition that ‖TV − V‖<∞, so that by the triangle inequality ‖V‖<∞
implies ‖TV‖<∞. Under this condition, for each iterate ‖Tkv0‖<∞ holds if ‖v0‖<∞
holds. In this case the Banach fixed point theorem applies following the contraction
property ‖TV1 − TV2‖=d(TV1, TV2)≤ ρd(V1, V2)= ρ‖V1 − V2‖ for some ρ<1.

We summarize the discussion in the following theorem:

Theorem 7.1 Suppose we are given operator T on Banach space (V, ‖·‖). Suppose
any of the conditions hold:

(i) T is Lipshitz continuous, and for all V , V ′ ∈V we have ‖TJV − TJV ′‖ ≤ ρ‖V −
V ′‖ for some ρ<1 and finite J;

(ii) There exists V ′ ∈V such that for all V ∈V we have ‖TJV − V ′‖ ≤ ρ‖V − V ′‖ for
some ρ<1 and finite J.

Then there exists a unique fixed point V∗ =TV∗, which is the limit of the iterations
TnV0 →V∗ for any initial point V0 ∈V. In the case of (ii) V∗ =V ′.

Proof The theorem is simply a restatament of Theorems 6.4 and 6.5 in the context
of Banach spaces. ///
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7.1 CONTRACTION AS A NORM EQUIVALENCE PROPERTY

When considering fixed point operators on a metric space, have seen that there are
several versions of the contraction property, in particular pseudocontractivity or mul-
tistage contractivity. However by Theorem 6.3 we may associate a single asymptotic
contraction rate ρ to an operator which gives a convergence rate of O(ρk) for a fixed
point algorithm. For this reason it is worth complementing Theorem 7.1 by restating
Theorem 6.3 in terms of operators on Banach spaces (the proof would be identical):

Theorem 7.2 Suppose we are given a Lipschitz continuous operator T on Banach
space (V, ‖·‖). Then there exists a finite constant ρ such that

lim
n→∞ |||Tn|||1/n = ρ. (7.1)

Furthermore, ρ is the best possible contraction rate in the sense that

|||Tn|||1/n ≥ ρ, for all n≥ 1, (7.2)

and for any ε>0, there exists nε for which

|||Tn|||1/n ≤ (ρ + ε), for all n≥ nε. (7.3)

The asymptotic contraction rate is determined by both the operator and the norm,
so we define

ρ(T, ‖·‖)= lim
n→∞ |||Tn|||1/n.

Since Lipschitz continuity guarantees the exists and finiteness of the limit ρ(T, ‖·‖)
we can adopt the convention of setting ρ(T, ‖·‖)=∞ if and only if T is not Lipschitz
continuous.

If T possesses a single stage contraction constant ρ1 and asymptotic contrac-
tion rate ρ, then we have ρ≤ |||Tn|||1/n ≤ ρ1. On the other hand, if we are only given
ρ(T, ‖·‖α)= ρ, the most we can say about other contraction constants is that

|||Tn||| = bnρ
n, where lim

n→∞b1/n
n = 1. (7.4)

The sequence bn may be unbounded, as long as its increase is subgeometric. Sometimes
it will be useful to impose a contraction property more stringent than (7.4), but less
stringent that the optimal single stage case. First, recall the notation of Section 6.1.1,
which assigns to ρJ the best Lipchitz constant of TJ, that is ρJ = |||TJ|||. This is then
standardized to a contraction rate ρ̄J = ρ1/J

J . We have the following definition.

Definition 7.1 Suppose we are given a Lipschitz continuous operator T on a normed
vector space (V, ‖·‖). We say T is J-stage contractive with rate ρ̄J if |||TJ||| = ρ̄J

J < 1. If
there exists finite K> 0 and ρ>0 for which |||Tn||| ≤Kρn, n≥ 1, then T is uniformly
contractive with rate ρ.
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The relationship between asymptotic, J-stage and uniform contractivity is sum-
marized in the following theorem.

Theorem 7.3 Suppose we are given a normed vector space (V, ‖·‖), and a Lipschitz
continuous operator T on V. Then J-stage contractivity with rate ρ implies uniform
contraction with rate ρ, which implies ρ(T, ‖·‖)≤ ρ.

Conversely, for any ε>0 asymptotic (and therefore uniform) contraction with rate
ρ implies J-stage contractivity with rate (ρ + ε) for some J.

Proof Suppose T is J-stage contractive with rate ρ, and that T possesses Lipschitz
constant L<∞. Write any integer k= Jk1 + k2 where k1 =�k/J� and 0≤ k2 ≤ J − 1.
By the submultiplicative property of Lipschitz continuity we have

‖TkV − TkV ′‖ ≤ ‖TJk1+k2V − TJk1+k2V ′‖
≤ ‖TJk1 (Tk2V)− TJk1 (Tk2V ′)‖
≤ ‖(TJ)k1 (Tk2V)− (TJ)k1 (Tk2V ′)‖
≤ (ρJ)k1‖Tk2V − Tk2V ′‖
≤ ρJk1Lk2‖V − V ′‖
= ρJk1+k2 (L/ρ)k2‖V − V ′‖
= Kρk

for all k≥ 1 for some finite constant K. Then, if uniform contraction holds for K, ρ we
have

lim sup
k→∞

[
‖TkV − TkV ′‖

]1/k ≤ lim
k→∞

K1/kρ= ρ.

To show the converse, suppose ρ(T, ‖·‖α)= ρ. Then for any ε∈ (0, 1− ρ) there
exists large enough J for which ‖TJV − TJV ′‖ ≤ (ρ + ε)J < 1. ///

We next show that uniform and asymptotic contraction rates are norm equivalence
properties.

Theorem 7.4 Suppose we are given a Lipschitz continuous operator T on Banach
space (V, ‖·‖α). If ‖·‖β ≤‖·‖α, then ρ(T, ‖·‖β)≤ ρ(T, ‖·‖α). Therefore ‖·‖β∼‖·‖α implies
ρ(T, ‖·‖β )= ρ(T, ‖·‖α ).

Similarly, if ‖·‖β ≤‖·‖α, and T possesses uniform contraction rate ρ wrt ‖·‖α the
same holds wrt ‖·‖β. Therefore a uniform contraction rate is a norm equivalence
property.

Proof If ‖·‖β ≤‖·‖α then T is Lipschitz continuous wrt ‖·‖β, and so we may write,
for some finite constant b> 0

ρ(T, ‖·‖β )= lim
n→∞ |||Tn|||1/nβ ≤ lim inf

n→∞ b1/n|||Tn|||1/nα = ρ(T, ‖·‖α ).

Norm equivalence follows by exchanging ‖·‖α and ‖·‖β in the argument.
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The remainder of the proof follows immediately from the definition of norm
dominance. ///

As for operators on metric spaces, the theory of this section holds for pseudo-
Lipschitz operators. We may define equivalent notions of J-stage, uniform and
asymptotic contraction rates for pseudo-Lipschitz constants L satisfying ‖TV − V∗‖≤
L‖V − V∗‖, since the submultiplicative property underlying Theorem 6.3 holds also
for this definition.

To summarize, while a specific contraction property of an operator T may depend
on a specific norm (for example, single stage contractivity) contraction in general,
along with a single asymptotic contraction rate, is a norm equivalence property.

7.2 LINEAR FIXED POINT EQUATIONS

There will be special interest in fixed point equations based on bounded linear oper-
ators. Suppose on a Banach space (V , ‖·‖ ) we are given a fixed element R∈V and
a linear operator Q : V →V, and we are given the problem of finding a solution V
to equation V =R+QV . The pair π= (R, Q) will be refered to as a model, and
the fixed point operator will be denoted TπV =R+QV . The Jth iteration of Tπ
is given by

TJ
πV =Tπ(TJ−1

π V)=R+QTJ−1
π V = · · ·=RJ +QJV , (7.5)

where

RJ =
J−1∑
i=0

QiR.

Thus, TJ
π may be interpreted as the operator Tπ[J] for model π[J]= (RJ, QJ). Clearly, a

fixed point of Tπ is also a fixed point of TJ
π, and the converse holds under the conditions

of Theorem 6.4.

Theorem 7.5 Suppose we are given model π= (R, Q) on a vector space V. If ‖·‖α
completes V, and we have ‖R‖α <∞, |||Q|||α <∞ then Tπ is an operator on Banach
space (V, ‖·‖α ).

The iteration TJ
π possesses Lipschitz constant |||QJ|||α. If |||QJ|||α < 1 for some J≥ 1,

then the conditions of the Banach fixed point theorem hold.

Proof Since Q is bounded, ‖V‖α <∞ implies ‖TπV‖α≤‖R‖α + ‖QV‖α <∞. Thus,
Tπ is an operator on Banach space (V, ‖·‖α ). The Lipschitz constant is given by |||Q|||α,
since

‖TV1 − TV2‖α=‖Q(T1 − T2)‖α≤ |||Q|||α‖V1 − V2‖α.

Furthermore, refering to (7.5), we may interpret TJ
π =Tπ[J] as a linear operator on

(V, ‖·‖α ) with Lipschitz constant |||QJ|||α, noting that ‖RJ‖α <∞. ///
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7.3 THE GEOMETRIC SERIES THEOREM

The geometric series theorem gives an alternative approach to the Banach fixed point
theorem which provides a more precise relationship between a fixed point solution
V =TπV and the model π. The fixed point equation may be rewritten (I −Q)V =R,
so that for any V in the domain of Q we may find an element R which generates a fixed
point equation for which V is the solution. Of course, the converse problem is usually
of more interest, that is, we would like to know that (I −Q) possesses an inverse
(I −Q)−1, in which case fixed points could be obtained directly by V = (I −Q)−1R.
This leads to a fundamental characterization of the fixed point equation:

Theorem 7.6 (Geometric SeriesTheorem) If Q is a bounded linear operator with
|||Q|||< 1 then I −Q is a bijection on V, and its inverse is a bounded linear operator
for which |||(I −Q)−1||| ≤ (1− |||Q|||)−1.

In addition, if Q is a bounded linear operator with |||QJ|||< 1 for some J≥ 1,
then I −Q is a bijection on V, and its inverse is a bounded linear operator for which
|||(I −Q)−1||| ≤ (1− |||QJ|||)−1∑J−1

i=0 |||Qi|||.
Proof See, for example, Theorem 2.3.1 and Corollary 2.3.3 in Atkinson and Han
(2001). ///

The geometric series theorem guarantees the existence of a solution to the fixed
point equation for multistage contractive Q, but also relates this solution to R in a
number of ways. First, V may be thought of as a continuous mapping of R, hence fixed
point equations which are close in this sense will have close solutions. In addition, it
provides the bound

‖V‖≤
⎡
⎣(1− |||QJ|||)−1

J−1∑
i=0

|||Qi|||
⎤
⎦ ‖R‖.

Once its existence in given, the inverse map may be identified as

(I −Q)−1 =
∞∑

i=0

Qi

by substitution into V =R+QV , leading to fixed point

V =
∞∑

i=0

QiR.

This also characterizes the convergence of the fixed point algorithm, since we have

TJV0 =RJ +QJV0,

with RJ →V and QJV0 →�0, the vector of norm zero.
Something like a converse result can be obtained for positive linear operators on

F(X , ‖·‖w ).
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Theorem 7.7 Suppose for model π= (R, Q) on vector space V ⊂R(X ) we have R≥ 0
and Q is a positive bounded linear operator.

(i) If there exists a solution V∗> 0 to the fixed point equation V =TπV the
following hold:
(ia) Tπ is nonexpansive.
(ib) RJ ∼V∗ ⇐⇒ |||QJ|||V∗ = ‖V∗ − RJ‖V∗ = 1− ‖V∗‖−1

RJ
< 1.

(ic) ‖Tk
πV0 − V∗‖V∗ →k 0 for all V0 ∈V for which ‖V0‖V∗ <∞ ⇐⇒ RJ ∼V∗

for some J≥ 1.
(id) RJ ∼V∗ ⇒RJ+1 ∼V∗.

(ii) If for any J≥ 1 we have |||Q|||RJ <∞ and |||Qm|||RJ < 1 for some m≥ 1 then there
exists a fixed point solution V∗ to V =TπV for which V∗ ∼RJ.

(iii) Therefore, (i) and (ii) together imply that Tπ possesses a unique fixed point V∗
and is J-stage contractive wrt ‖·‖V∗ if and only if condition (ii) holds.

Proof First note that by hypothesis QJV∗ ≥ 0 and R≥ 0, therefore V∗ ≥RJ ≥ 0.
To show (ia) note that

V∗ − R = QV∗,

so that

|||Q|||V∗ = ‖V∗ − R‖V∗ ≤ 1

since V∗ ≥R (apply Theorem 6.23 (v)).
To show (ib), note that by hypothesis, V∗ =RJ +QJV∗ ≥ 0, so we have

V∗ − RJ = QJV∗,

and therefore

‖V∗ − RJ‖V∗ = |||QJ|||V∗ . (7.6)

Since V∗ ≥RJ, by Theorem 6.23 (v) V∗ ∼RJ if and only if ‖V∗ − RJ‖V∗ < 1. Therefore,
by (7.6) (ib) follows.

To show (ic) suppose ‖Tk
πV0 − V∗‖V∗ →k 0 for V0 = �0. Since this gives Rk =Tk

πV0,
we must have ‖RJ − V∗‖V∗ < 1 for some J, which we have shown implies RJ ∼V∗.
Conversely, if RJ ∼V∗, by (ib) Tπ is contractive, and the Banach fixed point theorem
applies.

We obtain (id) by noting RJ ≤RJ+1 ≤V∗.
Under the conditions of (ii) Tπ is a contractive operator on Banach space

R(X , ‖·‖RJ ) and therefore possess a fixed point V∗ for which ‖V∗‖RJ <∞. Since V ≥RJ

we must also have V∗ ∼RJ.
Then (iii) follows directly. ///

We may refer to π= (R, Q) as a positive model if R≥ 0 and Q is a positive operator.
In this case Rk is an increasing sequence which, if Q is continuous, will converge to the



Fixed point equations 163

fixed point. We would have pointwise convergence if Rk(x)→k V∗(x) for each x∈X .
Theorem 7.7 describes uniform convergence weighted by V∗, that is,

lim
k→∞

sup
x∈X

∣∣∣∣V∗(x)− Rk(x)
V∗(x)

∣∣∣∣ = 0.

It can be seen that while contractivity is not equivalent to the existence of a fixed point,
it is equivalent in the positive model to uniform convergence of the fixed point algo-
rithm. The importance of Theorem 7.7 is that (ii) defines a necessary and sufficient
condition for this form of convergence which can be tested directly from the model
elements defining π= (R, Q), that is, there exists RJ for which Tπ is multistage con-
tractive wrt ‖·‖RJ

. Then, by Theorem 7.3, it suffices to verify contractivity of any form
wrt any equivalent norm.

That a fixed point can exist without the contraction property is shown in the
following counterexample.

Example 7.1 Set X = (1, 2, . . . ) and define model π= (R, Q) with stochastic kernel
Q({i + 1} | i)= 1 and R(i)=α−ii−2, with α<1. Then Tπ possesses a fixed point V∗ to
which RJ converges pointwise, but not uniformly. It may be verfied that V∗ is not
weight equivalent to any RJ.

7.4 INVARIANT TRANSFORMATIONS OF FIXED POINT EQUATIONS

We consider two forms of transformations of the model (R, Q) which yield correspond-
ing transformations of the fixed point equations which are invariant in the sense that
they retain exactly the same Banach space properties. In this case, we would have two
iterative algorithms Vk =TVk−1, V ′

k =T ′V ′
k−1 which are connected by a well defined

transformation V ′
k =H(Vk), which extends also to the respective fixed points. Further-

more, T and T ′ have the same Lipschitz properties, so the two algorithms are identical.

Theorem 7.8 Suppose we are given Banach space (V, ‖·‖w ), V ⊂R(X ), and a model
π= (R, Q) defining operator TπV =R+QV for V ∈V.

(i) Suppose Vπ is a fixed point of Tπ, and that for positive weight function w we have
Qw=αw for some α∈ (0, 1). Then for any c∈R, if πc = (R+ cw, Q) then Tπc is
an operator on (V, ‖·‖w ) with fixed point Vπc =Vπ + (1− α)−1cw. In addition,
if

H(V)=V + (1− α)−1cw,

then V ′ =TπV implies H(V ′)=Tπc H(V). Finally, Tπ and Tπc have identical
Lipschitz constants.

(ii) Suppose Vπ is a fixed point of Tπ. If we define transformed model πw =
(I−1

w R, I−1
w QIw) then Tπw is an operator on Banach space (V, ‖·‖sup) with fixed

point Vπw = I−1
w Vπ. In addition, if

H(V)= I−1
w V ,
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then V ′ =TπV implies H(V ′)=Tπw H(V). Finally, Tπ and Tπw have identical
Lipschitz constants.

(iii) Suppose Tπ is an operator on Banach space (V/Nν, ‖·‖SP(ν) ) with Qν= ν, and
that E is an equivalence class of solutions to the equation V + hν=TπV for some
scalar h. Then for any c∈R, if πc = (R+ cν, Q) then E is also an equivalence
class of solutions to V + (h+ c)ν=Tπc Vπc .

Proof The statements are easily verified by direct substitution. ///

Statement (i) of Theorem 7.8 essentially states that a scalar multiple of w may be
added to R without changing the fixed point equation in any important way. Thus,
the span seminorm of R is a more important quantity of R than its supremum, since
R may always be replaced by R− inf R. For this reason, R is sometimes standardized
into the range [0, 1].

We may refer to the case ‖R‖sup =∞ as an unbounded model. Clearly, the opera-
tor Tπ cannot be defined on Banach space (V, ‖·‖sup ), but can be defined on (V, ‖·‖w )
if ‖R‖w <∞ and |||Q|||w <∞. However, the assumption that R is bounded often per-
mits considerable simplification of the analysis, so it is important to know that an
unbounded model may be transformed to the bounded model πw given in statement
(ii) of Theorem 7.8. The cost of doing this is that the transformation from operator Q
to I−1

w QIw may introduce some complications in the eigenpair structure.
Case (iii) of Theorem 7.8 is of a somewhat different structure, since the fixed point

does not change, and will be of relevance to the average cost Markov decision process,
to be considered in Section 12.7.

7.5 FIXED POINT ALGORITHMS AND THE SPAN SEMINORM

Theorem 7.7 characterizes solutions to fixed point equations, as well as the contractive
properties of Tπ in a class of Banach spaces F(X , ‖·‖w ). Suppose next that Q is span
continuous wrt weight function ν, with Qν=αν for positive α and positive ν. Then
Tπ is well defined on the span quotient space (V/Nν, ‖·‖SP(ν) ), mapping coset [V] to
[TπV]. By Theorem 6.28 we have |||Q|||SP(ν) ≤ |||Q|||ν, and by Theorem 6.25 we also
have ‖R‖SP(ν) ≤ 2‖R‖ν, so that if Tπ is an operator (or is contractive) on (V , ‖·‖ν ) then
it is also an operator (or is contractive) on (V/Nν, ‖·‖SP(ν) ). We summarize this in the
following theorem.

Theorem 7.9 If ‖R‖ν <∞ and |||Q|||ν <∞, and Q is continuous wrt ‖·‖SP(ν), then Tπ
is an operator on (V/Nν, ‖·‖SP(ν) ). If Tπ is contractive wrt ‖·‖ν it is also contractive wrt
‖·‖SP(ν).

The average cost Markov decision process of Section 12.7 gives an example of
an operator which is usually contractive in the span seminorm but not the supremum
norm. However, we will see that interest in the span seminorm need not be a matter
only of necessity. Even when an operator is contractive in the supremum norm, it may
still be worth considering convergence in (V/Nν, ‖·‖SP(ν) ), since the contraction rate
wrt ‖·‖SP(ν) may be considerably smaller. Of course, this leaves open the problem of
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reconstructing a specific solution V =TπV in V from an equivalence class solution
[V]=Tπ[V] in V/Nν. We next consider this question.

Assume, as in Theorem 7.9, that |||Q|||SP(ν)<∞ and that Q is J-stage contractive
on (V/Nν, ‖·‖SP(ν) ). By the Banach fixed point theorem there exists a unique solution
E∈V/Nν to E=TπE, that is, there exists a unique modulo Nν coset [V∗] for which
Tπ : [V∗]→ [V∗]. This, by itself, does not guarantee the existence of a solution to
V =TπV in the original Banach space (V , ‖·‖w ). If one exists, it must be in [V∗], since
for any other E∈V/Nν we must have TπE �=E, since [V∗] is the unique fixed point in
V/Nν, and distinct cosets are disjoint.

Let us consider a somewhat more general problem. Since Tπ : [V∗]→ [V∗] is a
unique coset fixed point, we have TπV − V ∈Nν if and only if V ∈ [V∗], so that we
might expect to find solutions to the equation

V + hν=TπV , (7.7)

for a fixed scalar h. Recall that we must have Qν=αν, and in the applications we
consider we will generally have α∈ (0, 1]. Suppose we may identify some v∗ ∈ [V∗].
This means any solution to (7.7) must be of the form v∗ + aν for some scalar a. This
gives

v∗ + aν + hν=Tπv∗ + αaν

which, rearranged, is

Tπv∗ − v∗ = hν + a(1− α)ν.

Suppose α<1. Then we may solve directly, so that

Vh = v∗ + (1− α)−1(Tπv∗ − v∗ − hν)

is a solution to (7.7). Furthermore, since all solutions may be written in the form
v∗ + aν, and a is uniquely determined, this solution must be unique, including that for
the actual fixed point equation given by h= 0. This simple construction device will
prove useful.

Next, suppose α= 1. Then a(1− α)ν= �0, and (7.7) is simply

Tπv∗ − v∗ = hν,

so that v∗ + aν is a solution for all scalars a. In fact, for any V1, V2 ∈ [V∗] we must
have TπV1 − V1 =TπV2 − V2, and we may equate this quantity with hν in (7.7). This
means that there is a unique h for which all V ∈ [V∗] solve (7.7), and in this case solving
the fixed point equation involves determining this value.

We summarize the discussion in the following theorem:

Theorem 7.10 Suppose for model π= (R, Q), Tπ is an operator on (V/Nν, ‖·‖SP(ν) )
with Qν=αν, α∈ (0, 1]. Suppose the coset (modulo Nν) [v∗] is a unique fixed point of
Tπ.
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(i) If α<1 then V∗
h = v + (1− α)−1(Tπv − v − hν) is the unique fixed point solution

to V + hν=TπV for any scalar h and v∈ [v∗].
(ii) If α= 1 then there exists a unique scalar h for which all elements of [v∗] solve

V + hν=TπV. This scalar is the solution to Tπv − v= hν for any v∈ [v∗].

7.5.1 Approximations in the span seminorm

The error of an approximation V̂ to fixed point Vπ =TπVπ is ideally expressed in the
weighted supremum norm as a bound in the form ‖V̂ − Vπ‖w ≤ ε, where w∼Vπ. We
will see some advantage to measuring approximation error in the span seminorm, but
this leaves the problem of reconstructing a single solution which is uniformly close
to Vπ.

Formally, if we have approximation V̂ for which ‖V̂ − Vπ‖SP(ν) ≤ ε we would like
to use V̂ to construct some V̂ ′ for which ‖V̂ ′ − Vπ‖ν=O(ε). Under the conditions of
Theorem 7.10, with α<1, if ‖V̂ − Vπ‖SP(ν) = 0 we may determine fixed point Vπ = V̂ ′
exactly with the equation

V̂ ′ = V̂ + (1− α)−1(TπV̂ − V̂). (7.8)

We may therefore expect that an order O(ε) approximation to Vπ may be based on
V̂ using a similar device. This will hold for nonlinear operators which share the same
type of relationship to an eigenpair usually associated with linear operators.

Theorem 7.11 Let T be a monotone operator on a vector space V. Suppose there
exists ν∈V and constant α<1 for which T(V + aν)=TV + αaν for all V ∈V. Suppose
Vπ =TVπ is the fixed point of T. Then

‖V̂ − Vπ‖SP(ν) ≤ ε implies ‖V̂ ′ − Vπ‖ν ≤ 1+ α/2
(1− α)

ε (7.9)

for V̂ ′ defined by (7.8).

Proof By Theorem 6.25 there exists a (which can be identified as mid(Vπ − V̂)) for
which, given the assumption of (7.9),

‖Vπ − (V̂ + aν)‖ν ≤ 1
2
ε,

from which we may write

V̂ + (a− 1
2
ε)ν≤Vπ ≤ V̂ + (a+ 1

2
ε)ν. (7.10)

We may apply Tπ to (7.10), which by monotonicity gives

TπV̂ + α(a− 1
2
ε)ν≤Vπ ≤TπV̂ + α(a+ 1

2
ε)ν. (7.11)
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Then (7.10) and (7.11) may be combined to give

0 ≤ TπV̂ − V̂ − (1− α)aν + 1+ α
2

εν

0 ≥ TπV̂ − V̂ − (1− α)aν − 1+ α
2

εν,

from which (7.9) follows. ///

Thus, in Theorem 7.11 an approximation in the span seminorm of ε becomes
order O((1− α)−1ε) in the supremum norm.

7.5.2 Magnitude of fixed points in the span seminorm

One of the consequences of the geometric series theorem (Theorem 7.6) is that the
magnitude of the fixed point of Tπ for model π= (R, Q) follows from the expansion

Vπ =
∞∑

i=0

QiR,

so that in any suitable norm ‖·‖ we have

‖Vπ‖≤
∞∑

i=0

|||Qi|||‖R‖.

If Q is contractive, that is |||Q|||< 1 then,

‖Vπ‖≤
(
1− |||Q|||)−1 ‖R‖.

One situation commonly encountered is the model Q=βQ0 where β<1 and Q0 is a
proper stochastic kernel, for which |||Q0|||sup = 1, and so |||Q|||sup =β. In this case

‖Vπ‖sup ≤ (1− β)−1 ‖R‖sup. (7.12)

Since �1 is a principal eigenvector of Q0, it is also a principal eigenvector of Q, with
principal eigenvalue β. Then

‖Vπ‖SP ≤
∞∑

i=0

βi|||Qi
0|||SP‖R‖SP. (7.13)

From Theorem 7.8 we may always replace R≥ 0 with R− inf R≥ 0, so we lose no
generality in assuming ‖R‖sup =‖R‖SP. We have also seen that |||Qi

0|||SP ≤ 1, so that
‖Vπ‖SP ≤‖Vπ‖sup. However, as discussed in Section 5.2, under well defined ergodicity
conditions Qn

0 approaches a steady state transition kernel Q∞
0 , in the sense that there

exists a steady state distrbution P0 for which Q∞
0 (· |x)=P0 for all x∈X . But this

means |||Q∞
0 |||SP = 0, so it worth investing by what degree a bound for ‖Vπ‖SP can be

improved over the order O((1− β)−1) bound given in (7.12).
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In fact, when Q0 is a stochastic matrix, |||Q0|||SP is equivalent to Dobrushin’s
ergodic coefficient, and is an upper bound for |λSLEM|, where λSLEM is the second
largest eigenvalue in magnitude (Section 2.3.4). See, for example, Theorem 7.2 of
Brémaud (1999). Dobrushin’s inequality states that |||P1P2|||SP ≤ |||P1|||SP|||P2|||SP for any
two stochastic matrices P1, P2 (Theorem 7.1 of Brémaud (1999)), and this is also a
direct consequence of the interpretation of this coefficient as an operator norm, which
possesses the submultiplicative property.

We have already seen that for finite state transition kernels |||Q0|||SP = 1 if and only
if there exists a pair of singular measures Q0(· |x)⊥Q0(· | y) within Q0. If this is true
of Q0, it need not be true of QJ

0. If this is the case, suppose we have |||QJ
0|||SP =α<1 for

some J. By the submultiplicative property we have |||QmJ
0 |||SP ≤αm, and since |||Q0|||SP =

1 we have |||Qi
0|||SP ≤α�i/J�, and therefore |||Qi|||SP ≤βiα�i/J�. We obtain the upper

bound

‖Vπ‖SP ≤min
(
J(1− βJα)−1, (1− β)−1) ‖R‖SP. (7.14)

As we have discussed, as a consequence of the ‘curse of the discount factor’ it is impor-
tant to consider the behavior of any bound as β↑ 1, and we can see that (7.14) implies

‖Vπ‖SP ≤ J(1− α)−1‖R‖SP (7.15)

for any β≤ 1. The value of this magnitude, whether ‖Vπ‖sup or ‖Vπ‖SP, will play a
crucial role in our approximation theory, and so the ability to reduce dependence on
the factor (1− β)−1 will offer considerable practical advantage in many approximation
methods.

7.6 STOPPING RULES FOR FIXED POINT ALGORITHMS

The practical implementation of a fixed point algorithm Vk =TπVk−1 =Tk
πV0 requires

the ability to bound the approximation error after a finite number of iterations, and
therefore to devise a stopping rule which, for any pretermined tolerance ε (or δ),
is able to terminate the algorithm at iteration N so that ‖V∗ − VN‖≤ ε (or ‖V∗ −
VN‖/‖V∗‖≤ δ).

A fixed stopping time is based on any contraction bound of the form

‖VN − V∗‖= ‖TN
π V0 − V∗‖≤KρN‖V0 − V∗‖.

It may be that the ratio ‖VN − V∗‖/‖V0 − V∗‖ may be interpreted as a relative error,
especially if V0 = �0. Then the stopping time is simply

Nδ=min{N |KρN ≤ δ}= �log(δ/K)/ log(ρ)�. (7.16)

Then

‖VNδ − V∗‖/‖V0 − V∗‖≤ δ.
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From Theorem 6.6, a stopping rule based on the contraction constant
ρJ = |||QJ|||< 1 of the Jth iterate TJ is given by

Nε
J =min{N | ρJ(1− ρJ)−1‖VN − VN−J‖≤ ε}, (7.17)

which guarantees absolute approximation bound

‖VNε
J
− V∗‖≤ ε.

As discussed in Section 6.2.1 it is also possible to devise a stopping rule based on
the sequence of contraction constants ρn of the form

Nε
∞=min{N | ρN(1− ρN)−1‖VN − V0‖≤ ε}, (7.18)

which guarantees absolute approximation bound

‖VNε∞ − V∗‖≤ ε.
This stopping rule may be difficult to implement in practice if the sequence ρn is not
available, but does show that an approximation bound based on the best possible
asymptotic contraction rate ρ discussed in Theorem 6.3 can be achieved.

7.6.1 Fixed point iteration in the span seminorm

Here, we consider the implemenation of fixed point algorithms for the operator Tπ,
π= (R, Q) on the quotient space (V/Nν, ‖·‖SP(ν)). This assumes a positive eigenvalue
and eigenvector pair Qν= ρν, ρ∈ (0, 1].

We have already remarked that Tπ may be contractive on (V/Nν, ‖·‖SP(ν)) but not
(V, ‖·‖w), so that Tk

πV0 need not even possess a limit, and in many important cases will
diverge pointwise. However, the operator is defined on an equivalence class, which
may be represented by any member of that class. In this case divergent behavior may
be avoided by using fixed point iterations of the form

Vk =Tπ[Vk−1 − ( inf
x

Vk−1(x)/ν(x))ν] (7.19)

or more simply

Vk =Tπ[Vk−1 − (Vk−1(x0)/ν(x0))ν] (7.20)

for some fixed x0 ∈X . Then any of the stopping rules (7.16) - (7.17) may be used based
on the norm ‖·‖SP(ν) and contraction constants ρJ = |||QJ|||SP(ν).

7.7 PERTURBATIONS OF FIXED POINT EQUATIONS

An important concept in numerical analysis is the perturbation of a system of
equations. The underlying notion is that a bounded perturbation of the equation
parameters will yield a bounded perturbation of the solution. We have considered
a family of models (R, Q), each element of which generates a fixed point equation
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V =R+QV possessing a unique solution. One advantage of the Banach space
construction is that under general conditions we may establish continuous relation-
ships between the three elements, since we may equivalently write V = (I −Q)−1R
or R= (I −Q)V . Under the hypothesis of the geometric series theorem (Theorem
7.6) both (I −Q) and (I −Q)−1 are bounded linear operators, so a perturbation
of either V or R while Q is fixed results in a Lipschitz continuous perturbation of
the other. We may also consider a perturbation of Q. If V is fixed, then for fixed
point equations Ri = (I −Qi)V , i= 1, 2 we may write R2 − R1 =−(Q2 −Q1)V , so
that a perturbation of Q results in a perturbation of R bounded by ‖R2 − R1‖≤
|||Q2 −Q1|||‖V‖. Of course, the same holds when R is fixed, and we have bound
‖V2 − V1‖≤ |||(I −Q2)−1 − (I −Q1)−1|||‖R‖, which may be used in the same way. The
practical problem is that the perturbation Q2 −Q1 will usually be more tractable than
(I −Q2)−1 − (I −Q1)−1, so we would usually prefer to characterize the effect of a
perturbation of Q on V in terms of the former object, unless the form of the geometric
expansion (I −Q)−1 =∑i≥0 Qi is well understood.

We will briefly develop this idea in the context of fixed point equations. Suppose we
are given fixed point operators TV =R+QV and T̂V = R̂+ Q̂V . We are motivated
by the idea that (R̂, Q̂) approximates (R, Q), so that we might claim approximation
bounds ‖R− R̂‖≤ δR and |||Q− Q̂||| ≤ δQ.

Theorem 7.12 Suppose we are given Banach space (V, ‖·‖ ), elements R, R̂∈V and
bounded linear operators Q, Q̂. Suppose solutions V , V̂ ∈V exist to the fixed point
equations

V = R+QV ,

V̂ = R̂+ Q̂V̂ , (7.21)

and that (I − Q̂) has a bounded inverse. Then

‖V − V̂‖≤
∞∑

i=0

|||Q̂i|||
[
‖R− R̂‖ + ‖QV − Q̂V‖

]
, (7.22)

and if |||Q̂|||< 1 then

‖V − V̂‖≤ (1− |||Q̂|||)−1
[
‖R− R̂‖ + ‖QV − Q̂V‖

]
. (7.23)

Proof From (7.21), by subtraction we may obtain

(I − Q̂)(V − V̂)=R− R̂+ (Q− Q̂)V .

Since (I − Q̂)−1 is assumed to be a bounded operator we have

(V − V̂)=
∞∑

i=0

Q̂i
[
(R− R̂)+ (Q− Q̂)V

]
,

from which (7.22) and (7.23) follow from the triangle inequality and the submuliplica-
tive property of operator norms. ///
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Suppose, to fix ideas, we assume R= R̂, and |||Q̂||| =β<1. Then from (7.23) we
obtain bound

‖V − V̂‖ ≤ (1− β)−1‖QV − Q̂V‖
≤ (1− β)−1|||Q− Q̂|||‖V‖
≤ (1− β)−1δQ‖V‖. (7.24)

In order for ‖V − V̂‖ to be small relative to ‖V‖ (which is generally the goal) we must
have δQ small relative to (1− β). However, in some applications, including many MDP
models, this is problematic. First, an approximation of Q may not involve β in any
important way. This is especially true when β is a fixed ‘discount factor’, which is
used to define operator Q=βQ0, but which otherwise plays no role. Essentially, it
would be Q0 that is approximated, and so when β is close to 1, δQ would have little
relationship to β. Therefore, requiring δQ ) (1− β) would be an unrealistic burden,
especially given the incentive in some applications to allow β to approach 1.

The situation improves considerably when there exists a positive eigenpair (α, ν)
common to both Q and Q̂. In this case (Q− Q̂)V = (Q− Q̂)(V + cν) for any scalar
c, so that

‖(Q− Q̂)V‖ν=‖(Q− Q̂)(V + cν)‖ν ≤ |||Q− Q̂|||ν‖V + cν‖ν.
However, we may minimize over c, so that by Theorem 6.25 we have

‖(Q− Q̂)V‖ν ≤ inf
c
|||Q− Q̂|||ν‖V + cν‖ν

≤ 1
2
|||Q− Q̂|||ν‖V‖SP(ν).

This expression can be quite advantageous, since the quantity ‖V‖SP(ν) may be
considerably smaller than ‖V‖ν, so that (7.24) can be replaced by

‖V − V̂‖ν ≤ 1
2

(1− β)−1δQ‖V‖SP(ν). (7.25)

Suppose for some J we have |||QJ|||SP(ν) =αβ for fixed α<1 and all β<1. We may
conclude that ‖V‖SP(ν) is not of order O((1− β)−1), remaining bounded asβ approaches
1. Compare, for example, (7.12) and (7.15). In this case we have

‖V − V̂‖ν=O
(
(1− β)−2δQ

)
using the bound (7.24), in contrast to

‖V − V̂‖ν=O
(
(1− β)−1δQ

)
when using bound (7.25). We are thus able to reduce the approximation bound by a
factor of (1− β)−1.



Chapter 8

The distribution of a maximum

Approximations are often based on statistical estimation, and our reliance on the supre-
mum norm as the measure of approximation will usually require the characterization
of the maximum value of many random quantities. Suppose we are given a sequence
of random variables X1, X2, . . . , Xm, and assume that at least the means and variances
E[Xi]=µi, var[Xi]= σ2

i are finite. We will use the following notation:

M = max
1≤i≤m

Xi,

M̄ = E[M] ,

µmax = max
1≤i≤m

µi,

σ2
max = max

1≤i≤m
σ2

i ,

µ̄ = m−1
m∑

i=1

µi,

µ̄2 = m−1
m∑

i=1

µ2
i

ν̄ = µ̄2 − µ̄2

σ̄2 = m−1
m∑

i=1

σ2
i

σ̄2
j = m−1

m∑
i=1

var[Xi −Xj], j= 1, . . .m.

When appropriate, subscripts will be used with these quantities to denote the number
of random variables, say M=Mm or µ̄= µ̄m.

That M̄≥µmax is clear by noting that Xi ≤max(X1, X2) for i= 1, 2, so that E[Xi]≤
E[max (X1, X2)]. This means max (E[X1], E[X2])≤E[max (X1, X2)]. That M̄≥µmax

follows by induction. Furthermore, if E[|Xi|]<∞ then since M≤∑i |Xi|, we must
have M̄≤∑i E[|Xi|]<∞ since m is assumed finite.
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8.1 GENERAL APPROACH

We will first discuss some general principles. We prefer not to rely on independence
assumptions. One obvious reason is that, everything else being equal, it is always
preferable to impose fewer restrictions, and under general depedendence assumptions
only information about the marginal distributions FXi is used. Interestingly, we find
that we end up losing little in this approach. For example, in the case of iid RVs
approximations can yield precise limits, while the more general methods yield bound-
ing inequalities. However, it turns out these limits are generally comparable to the
upper bounds, the iid case thus representing a worst case scenario.

Next, it is important to note the role that stochastic ordering plays. Recall from
Section 4.7 the following hierarchy:

X≥st Y ⇒X≥MGF Y ⇒X≥var Y .

A number of techniques for the approximation of M will be considered. We can clas-
sify the methods into three groups, according to whether the bounds are based on
FXi , mXi (t) or the moments (µi, σ2

i ). It will often be convenient to rely on stochastic
ordering to develop bounds. Suppose we are given two collections of RVs Xi and X∗

i ,
i= 1, . . . , m, and we can verify that X∗

i ≥st Xi, then a bound for M∗ =maxi X∗
i based

on CDFs, MGFs or the first two moments will also hold for M=maxi Xi. Similarly,
if X∗

i ≥MGF Xi then results for M∗ based on MGFs or the first two moments will hold
also for M, but since MGF ordering does not imply stochastic ordering, bounds based
on the CDFs need not hold. It will sometimes be convenient to replace a sequence
X1, . . . , Xm with m RVs of identical distribution FX (possibly FX = FXj for some Xj)
under the assumption that X is stochastically larger than each Xi in some sense. This
is a perfectly valid approach, provided the appropriate stochastic ordering is used.

This hierarchy is reflected thoughout the theory of stochastic maxima. We have
already seen that bounds based directly on CDFs can be sharper than those constructed
from MGFs, such as the Chernoff bound. We will also consider bounds based on the
the first two moments alone. These are quite convenient to apply, but are generally
far less efficient than those obtainable under assumptions we can expect to hold in the
applications we consider.

We will first consider the problem of bounding M̄, using an MGF based method
similar to that employed in the Chernoff bound.

8.2 BOUNDS ON M̄ BASED ON MGFs

A convenient but powerful method of bounding M̄ can be based on the following
theorem:

Theorem 8.1 Suppose for random variables X1, . . . , Xm, m> 1, we are given
functions mi(t), i= 1, . . . , m for which E [exp(tXi)]≤mi(t) for all t ∈ T ⊂ [0,∞). Then

M̄ ≤ inf
t∈T

t−1 log

(
m∑

i=1

mi(t)

)
. (8.1)
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In particular, if mi(t)≡m(t), then

M̄ ≤ inf
t∈T

t−1(log(m)+ log(m(t))
)
. (8.2)

Proof By Jensen’s inequality, for any t ∈ T ,

exp
{

tE
[

max
1≤i≤m

Xi

]}
≤ E

[
exp
{

t max
1≤i≤m

Xi

}]

= E
[

max
1≤i≤m

exp{tXi}
]

≤
m∑

i=1

E [exp{tXi}]

≤
m∑

i=1

mi(t),

which gives (8.1) following a log transformation of the preceding inequality, and (8.2)
after substituting m(t)=mi(t). ///

The CGF of Z∼N(µ, σ2) is cZ(t)=µt + σ2t2/2 for all t ∈R. Rather than apply
Theorem 8.1 directly to this case, it will be worth considering a weaker condition.

Theorem 8.2 Let X1, . . . , Xm be a collection of RVs, and suppose there exists t∗> 0
for which

cXi (t)≤µt + σ2t2/2+ ε, t ∈ [0, t∗], and t∗ ≥
√

2( log(m)+ ε)
σ2

, (8.3)

for each Xi. Then

M̄≤µ+ σ
√

2( log(m)+ ε). (8.4)

In particular, if Xi ≤MGF Z for 1≤ i≤m, where Z∼N(µ, σ2) then

M̄≤µ+ σ
√

2 log(m) (8.5)

Proof From Theorem 8.1, using (8.3) we may write,

M̄ ≤ inf
t∈[0,t∗]

t−1(log(m)+ ε+ µt + σ2t2/2
)

= µ+ inf
t∈[0,t∗]

t−1(log(m)+ ε+ σ2t2/2
)
.

The preceding upper bound is minimized over t> 0 at stationary point t0 =(
2( log(m)+ ε)/σ2

)1/2. Under the hypothesis, t0 ≤ t∗, from which (8.4) follows. Then
(8.5) is a direct application of (8.4). ///
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We next present what is essentially a refinement of Theorem 8.2. Clearly, any CGF
can be approximated by the normal CGF in a small enough neighborhood of t= 0.
The question is whether a well defined approximation holds uniformly over an interval
large enough to include the stationary point used in the proof of the theorem.

Recall the following function defined in Section 4.6.1,

κ∗2(t)=
{

sup0≤t′≤t
d2c(s)

ds2

∣∣∣
s=t′

; t≥ 0, |c(t)|<∞
∞ ; t≥ 0, |c(t)| =∞ .

for any CGF c(t).
Note that since d2cX(s)/ds2

∣∣
s=0 = var[X] we must have κ∗2(t)≥ var[X]≥ 0.

Theorem 8.3 Given RVs X1, . . . , Xm for which E[Xi]≤µ, suppose for some CGF
c(t) we have cXi (t)≤ c(t) for t≥ 0 and for each Xi. Then

M̄≤µ+ inf{
√
κ∗2(t)2 log(m) | t> 0, t(κ∗2(t))1/2 ≥ (2 log(m))1/2}. (8.6)

Proof By Taylor’s theorem, for t≥ 0

c(t)=µt + d2cX(s)/ds2
∣∣
s=η(t)

t2

2

for some η(t) satisfying η(t)∈ [0, t]. This means that for any s> 0 we have

c(s)≤µs+ κ∗2(t)
s2

2
, s∈ [0, t].

Using the notational conventions of Theorem 8.2 set σ2 = κ∗2(0) and K= κ∗2(t)/σ2. Then
if t≥ (2 log(m)/κ∗2(t))1/2 we conclude

E [Mm]≤µ+
√
κ∗2(t)2 log(m),

so that (8.6) follows by minimizing over all t satisfying the preceding constraint. ///

8.2.1 Sample means

Suppose for zero mean RV X the CGF exists for t ∈ [0, t∗). Suppose we are given
S1, . . . , Sm, where each Si is a sum of n iid RVs equal in distribution to X. Then
cSi (t)= ncX(t). Then let σ2 = var[X], and for X calculate κ∗2(t).

Applying Theorem 8.3 to the maximum MS of S1, . . . , Sm yields bounds on the
expectation

M̄S ≤ inf{
√

nκ∗2(t)2 log(m) | t(κ∗2(t))1/2 ≥ n−1/2(2 log(m))1/2}.
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For any ε>0 we many select tε > 0 close enough to 0 to make

|κ∗2(tε)− σ2| ≤ ε,

and then select large enough nε so that

tε(κ∗2(tε))1/2 ≥ n−1/2
ε (2 log(m))1/2.

Hence

M̄S ≤
√

n(σ2 + ε)2 log(m),

for all n≥ nε. At this point, we standardize the sums to obtain Zi = n−1/2Si, and let M
be the resulting maximum. We need only divide the preceding inequality by n1/2, to
obtain

M̄≤
√

(σ2 + ε)2 log(m). (8.7)

We may make ε arbitrarily small, to conclude that as n→∞ the bound approaches
that equivalent to the normal distribution.

8.2.2 Gamma distribution

If X ∈ gamma(α, λ) then

cX(t)=−α log(1− t/λ), for t≤ λ.

Then we may evaluate

κ∗2(t)= α/λ2

(1− t/λ)2
.

The condition of Theorem 8.3 becomes, for 0≤ t<λ,

t2κ∗2(t)> 2 log(m) ⇐⇒ t/λ>

√
2 log(m)/α

1+√2 log(m)/α
.

Fortunately, the preceding lower bound is less than 1, so there exists t ∈ [0, λ) satisfying
this condition. Following Theorem 8.3 we take the infimum of all permissible bounds,
yielding

M̄≤ α

λ

[
1+

(
1+

√
2 log(m)/α

)√
2 log(m)/α

]
. (8.8)
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8.3 BOUNDS FOR VARYING MARGINAL DISTRIBUTIONS

The strategy adopted up to this point has been to rely on ordering with respect to a
single MGF, although Theorem 8.1 provides a bound for varying marginals. It is worth
considering to what degree modeling distributional variation, as opposed to relying on
a single dominating distribution, can improve bounds. We find that some improvement
is possible, although dependence of the bound on the stochastically largest element of
X1, . . . , Xm remains strong.

We consider specifically the case of normal RVs.

Theorem 8.4 Let X1, . . . , Xm, m> 1, be any random variables with MGFs mi(t) such
that for some finite constant K≥ 1 we have mi(t)≤K exp(σ2

i t2/2) for all i= 1, . . . , m
and t≥ 0. Then the following bounds hold

M̄ ≤ σmax

√
2 log(Km), (8.9)

and

M̄ ≤ s√
2 log(Km)

log

(
K

m∑
i=1

(Km)σ
2
i /s

2

)
for any s> 0. (8.10)

The upper bound of (8.10) is no larger than that of (8.9) when s= σmax, and is
strictly smaller unless all variances σ2

i are equal. In addition, the upper bound of
(8.10) is minimized in the range s= (2−1σmax, 2σmax), and the sharpness of the bound
is limited by

s√
2 log(Km)

log

(
K

m∑
i=1

(Km)σ
2
i /s

2

)
>

1
4
σmax

√
2 log(Km). (8.11)

Proof By Theorem 8.1 we may write

M̄ ≤ t−1 log(Km)+ tσ2
max/2, t≥ 0.

The upper bound is minimized by t= (2 log(Km)/σ2
max

)1/2, which gives (8.9).
Then (8.10) is obtained directly from (8.1) by the reparametrization t=(

2 log(Km)/s2
)1/2. If we set s= σmax in (8.10) we obtain

M̄ ≤ σmax√
2 log(Km)

log

(
K

m∑
i=1

(Km)σ
2
i /σ

2
max

)
. (8.12)

However, we must have K
∑m

i=1 (Km)σ
2
i /σ

2
max ≤ (Km)2, with strict inequality unless all

variances σ2
i are equal. This forces our conclusion.
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We know now that the sharpest upper bound of (8.10) is no larger than
σmax

√
2 log(Km). First note that since K≥ 1 we have

K
n∑

i=1

(Km)σ
2
i /s

2
> (Km)σ

2
max/s

2
,

and therefore

s√
2 log(Km)

log

(
K

m∑
i=1

(Km)σ
2
i /s

2

)
>
σ2

max√
2s

√
log(Km). (8.13)

By substitution, this implies that the upper bound of (8.10) cannot be minimized by
s≤ σmax/2. We also may write

K
m∑

i=1

(Km)σ
2
i /s

2
> Km,

since Kmσ2
i /s

2
> 1. This implies

s√
2 log(Km)

log

(
K

m∑
i=1

(Km)σ
2
i /s

2

)
>

s√
2

√
log(Kn), (8.14)

which in turn implies that the upper bound of (8.10) cannot be minimized by s≥ 2σmax.
Finally, (8.11) is obtained by determining the infimum of either (8.13) or (8.14) over
the range s∈ (σmax/2, 2σmax). ///

We can do better than replacing all variances σ2
i with σ2

max, but the bound will
remain of order O(σmax(2 log(m))1/2). Therefore, σmax(2 log(m))1/2 can be used as
a reasonable first approximation of the bound, which can always be improved by
minimizing (8.10) over the range s∈ (σmax/2, 2σmax).

Suppose the variances are given by σ2
i = σ2/ni, i= 1, . . . , m, where ni represents

a sample size used in the calculation of Xi. Denote the total sample size n=∑i ni. The
harmonic mean of the variances is given by

HM[σ2
i ]=

(∑m
i=1 ni/σ

2

m

)−1

= m
n
σ2.

The quantity n/m is the average sample size, so that HM[σ2
i ] represents the variance

σ2
i obtained when the sample size is allocated uniformly to each RV Xi. In this sense,

it represents a type of best case, and hence a lower bound for the approximation given
in Theorem 8.4 which we verify next. We discuss this issue further in the next section.
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Theorem 8.5 Under the conditions of Theorem 8.4 the bound (8.10) of Theorem
8.4 satisfies

s√
2 log(Km)

log

(
K

m∑
i=1

(Km)σ
2
i /s

2

)
≥HM[σ2

i ]
√

2 log(Km). (8.15)

Proof For convenience, set HM[σ2
i ]= 1/N. Consider the function g(x)= exp(a/x)

on x∈ (0,∞) for a> 0. It may be verified that g(x) is convex, therefore g(x)+ g(y)>
g((x+ y)/2)+ g((x+ y)/2). Suppose x1, . . . , xm is a sequence of positive numbers with∑

i xi =N, for which x1 �= x2. Set x′1 = x′2 = (x1 + x2)/2. Then

g(x′1)+ g(x′2)+ g(x3)+ · · · + g(xm)< g(x1)+ g(x2)+ g(x3)+ · · · + g(xm),

and

x′1 + x′2 + x3 + · · · + xm = x1 + x2 + x3 + · · · + xm =N.

We conclude that
∑

i g(xi) is minimized under the constraint
∑

i xi =N, xi > 0 by
solution xi =N/m.

For any fixed s the minimization of (8.15) under constraint HM[σ2
i ]= 1/N is an

example of the preceding minimization problem. The proof is completed by minimiz-
ing over s as in Theorem 8.4. ///

8.3.1 Example

We will further consider varying distributions generated by sample size allocation.
Suppose we are given m zero mean normal RVs Xi with variances σ2

i = 1/ni. This
models the case in which each Xi is a estimator, such as a sample mean, based on a
sample of size ni. Suppose a total available sample size of n is to be allocated among
the estimators. If the allocation was perfectly balanced, so that for each i, ni = n/m
and σ2

i =m/n= σ2
max, we could use bound

E[Mm]≤ σmax

√
2 log(m)=

√
m
n

√
2 log(m), (8.16)

following Theorem 8.4. Next, suppose ni results from a uniformly random allocation
of the total available sample, so that ni ∼ bin(n, 1/m). In this case σ2

max = 1/mini ni ≥
m/n, with strict inequality unless all sample sizes are equal by chance, which would
usually have probability very close to zero. By Theorem 8.5 the best bound is obtained
by a perfectly balanced allocation, since in this case HM[σ2

i ]= (m/n). Therefore any
randomness in the allocation of a fixed sample size will result in a larger bound. On the
other hand, by Theorem 8.4 we know that minimizing (8.10) will result in a smaller
bound than (8.9), which therefore defines the worst case bound.

Figure 8.1 demonstrates a simulation of this model with m= 100 and n= 10000.
The left plot displays the variances σ2 = 1/ni, which range from 0.0079 to 0.0133.
The right plot shows the upper bound (8.10) over the range s∈ [2−1σmax, 2σmax]. As
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Figure 8.1 Summary of numerical example of Section 8.3.1.

required, a minimum is achieved in the given range, at a value of s slightly less than
σmax. For comparison, the bound (8.9) based on σmax alone is also included in the plot,
as well as the optimal bound based on balanced allocation given by Theorem 8.5. It is
interesting to note that the bound obtained by minimizing (8.10) is reasonably close
to the optimal, and is much closer to it than to the worst case bound.

8.4 TAIL PROBABILITIES OF MAXIMA

Reporting the expected value of a maximum M can be misleading unless the degree of
deviation of M from M̄ can also be predicted. We would therefore like to bound the
tail probability P(M/M̄>η) for some value η which is greater than 1, but not larger
than, say, 2 or 3. If var[M] can be estimated, and var[M]1/2 ) M̄, then by Chebyshev’s
inequality

P
(

M/M̄>

[
1+ t

var[M]1/2

M̄

])
=P

(
M − M̄> t var[M]1/2)≤ t−2.

However, we may only have an upper bound for M̄, say M̄∗ ≥ M̄, so instead we
bound the tail probability P(M/M̄∗>η) (it may sometimes be convenient to use for
M̄∗ a quantity which is asymptotically equivalent to a formal upper bound). Using
Markov’s inequality we have

P
(|M/M̄∗|>η)=P

(
|M/M̄∗|k>ηk

)
≤ E[|M/M̄∗|k]

ηk
(8.17)

for any k> 0, and we will see an example of this strategy used to good effect.
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However, when possible it is usually preferable to model tail probabilities directly,
and the existence of a MGF for the random variables usually makes this possible.

8.4.1 Extreme value distributions

A rich asymptotic theory exists for the process Mn =max1≤i≤n Xi based on an indefinite
iid sequence X1, X2, . . .. In Section 4.12, it was pointed out that the CDF of Mn can
be written

FMn (x)=P (Mn ≤ x)= FX(x)n.

Since

FMn (Q1−1/n)= (1− 1/n)n →n e−1,

the construction of a limiting distribution for a normalized Mn can be based on careful
choices of quantiles near Q1−1/n. In fact, the asymptotic theory for Mn, in the form
of the Fisher-Tippett-Gnedenko theorem (Theorem 4.35), provides a ready method
to do this. This theorem states that if a normalization for Mn in the form of M′

n =
(Mn − bn)/an exists, in the sense that M′

n converges in distribution to a nondegenerate
distribution G, then G must be one of the extreme value distributions (defined in
Section 4.12).

If X1 is the unit normal, then G is the Gumbel distribution, and it was shown in
Hall (1979) that optimal norming constants are given by the solutions to

2πb2
n exp(b2

n)= n2 and an = b−1
n .

The solution is expressible by

bn = (2 log n)1/2 − log log n+ log 4π
2(2 log n)1/2

+O(1/ log n), (8.18)

and satisfies bounds

2 log n− ( log log n+ log 4π)< b2
n< 2 log n, n≥ 2. (8.19)

Thus, M̄≈√2 log(n), and the bound of Theorem 8.4 can be seen to be sharp by
considering the iid normal case.

8.4.2 Tail probabilities based on Boole’s inequality

Although extreme value theory offers some insight into the problem of character-
izing M, there are a number of drawbacks. First, and most obvious, we would
rather not impose the restriction of independence if it is not needed. Second, we
will see that there can be considerable advantage to eliminating the assumption of
equal marginal distributions. A careful modeling of distributional variation can be a
significant improvement over the strategy of selecting the most extreme distribution
as the representational marginal. Finally, we cannot rely on the limiting distribution
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to approximate tail probabilities (consider, for example, bounds on tail probability
approximations given in Hall (1979)).

If X1, . . . , Xm are iid, Xi ∼ FX, then by the binomial theorem, if F̄X(x)) 1/m we
have

F̄M(x)= 1− FM(x)= 1− (1− F̄X(x))m ≈mF̄X(x). (8.20)

Suppose we take another approach which does not assume that the RVs are
independent. Using Booles’ inequality we have

F̄M(x) = P (M> x)

= P (∪i{Xi > x})
=
∑

i

P (Xi > x)

≤ mF̄X(x), (8.21)

which yields an upper bound close to (8.20), but with the considerable advantage
that no assumption on dependence is needed in order to conclude that the inequal-
ity is an exact statement. Thus, although (8.21) appears to be a quite conservative
bound, it often proves to yield accurate approximations. Essentially, the assumption
of independence can be seen to represent a worst case.

In addition, the assumption of identical marginal distributions is no longer needed,
since the application of Boole’s inequality would be identical:

F̄M(x)≤
m∑

i=1

F̄Xi (x). (8.22)

8.4.3 The normal case

Recall the Chernoff bound for X∼N(0, σ2) given in (4.20):

F̄X(x)≤ exp(−2−1x2/σ2).

Suppose we are given X1, . . . , Xm satisfying F̄Xi (x)≤ exp(−2−1x2/σ2
i ). Then using

Boole’s inequality we have

F̄M(x)≤
m∑

i=1

exp(−2−1x2/σ2
i )≤m exp(−2−1x2/σ2

max). (8.23)

The normalizing constant bn ≈
√

2 log(m) defined in (8.18) provides a natural candi-
date for a normalization method. Accordingly, set x= ησmax

√
2 log(m), yielding

F̄M(x)≤m exp(−η2 log(m))= exp((1− η2) log(m)). (8.24)
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Thus, if η>1 we obtain a natural form for the normalization of M, namely

P

(
M

σmax

√
2 log(m)

>η

)
≤ exp((1− η2) log(m))= 1

m(η2−1)
.

Thus, can expect M to be within a small multiple of bound M̄∗ = σmax

√
2 log(m) with a

probability close to 1. Furthermore, the normalized tail probabilities decrease with m,
so that stability increases with m, that is, for η>1 we have limit P(M/M̄∗>η)→m 0.

8.4.4 The gamma(α, λ) case

Suppose Xi ∼ gamma(αi, λi), and set µi =αi/λi. Using (4.21) gives, for any x≥µmax =
maxi µi

F̄M(x) ≤
m∑

i=1

exp
(−λix+ αi + αi log(x/µi)

)
,

or, for identical marginal distributions gamma(α, λ), µ=α/λ:

F̄M(x) ≤ m exp
(−λx+ α+ α log(x/µ)

)
.

Suppose we use a normalizing constant of the form

x= ηµ(1+ δ), η>1, δ>0,

then

F̄M(x) ≤ m exp
(−αη(1+ δ)+ α+ α log(η(1+ δ)))

= m exp
(−ηαδ+ α log(1+ δ)+ α(1− η+ log(η)

)
≤ m exp

(−ηαδ+ α log(1+ δ)) ,

since 1− η+ log(η)≤ 0 for any η>0. Similarly, since η>1 and δ>0, the exponent is
negative, and is of order O(ηαδ) for large δ. More precisely, for δ≥ 3 we always have
log(1+ δ)<δ/2, and so

F̄M(x)≤ exp
(
log(m)− ηαδ/2) .

Based on (8.8) we choose δ≈ 2 log(m)/α, that is, we use

M̄∗ =µ(1+ 2 log(m)/α),

giving

F̄M(x)≤ exp
(
(1− η) log(m)

)= 1
m(η−1)

.

Thus, similarly to the case of the normal, we may conclude that for η>1,
P(M/M̄∗>η)→m 0. We also note that because we have used a Chernoff bound to
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estimate the CDFs, this result holds for RVs stochastically smaller than gamma RVs
with respect to MGF ordering. The bound can be refined for the actual gamma
distribution based on the hazard rate ordering discussed in Section 4.7.2.

8.5 VARIANCE MIXTURES BASED ON RANDOM SAMPLE SIZES

One type of RV which will be of interest results from a statistical estimate θ̂ of a
parameter θ based on a sample size n. There will typically be a loss function d(θ, θ̂).
If we take X= d(θ, θ̂), then statistical theory predicts under quite general conditions
that E[X]≈µ/n1/2, var(X)≈ σ2/n.

Sometimes, however, it may be more appropriate to regard n as itself random. We
have seen an example in Section 8.3.1. By Theorem 8.4, the upper bound obtained by
MGF methods will always be sensitive to the maximum variance. When this is random,
it will be important to estimate its distribution.

In some applications it may be useful to regard n as the realization of an ongoing
counting process. A natural example would the cumulative number of transitions into a
given state of a Markov chain, which would be a type of renewal process. If the renewal
times were memoryless this counting process would be well approximated by a Poisson
process. However, in Aldous (1989) it is shown that for Markov chains with relatively
small stationary probabilities, such a counting process tends to be characterized by
short periods of rapid arrivals separated by longer memoryless waiting times, refered
to as Poisson clumping.

In this case, if N is the number of visits of a Markov chain path of T transitions
to a state i with stationary probability πi then N≈ κY, where κ is the average clump
size, and Y ∼ pois(λ), where E[N]=πiT =E[κ]λ. We then have

λ=E[κ]−1πiT.

The clumps are approximately independent, and of small duration relative to the wait-
ing time between clumps. This means that κ is approximately a sample mean of an iid
sample, and is independent of Y.

If N is the number of visits to state i, and we are interested in estimating some
quantity associated with that state, then N will be the sample size for that estimate,
which would have variance τ= σ2/N for some constant σ2.

This leads to the problem of bounding the maximum of X1, . . . , Xm, assuming that
var[Xi]= σ2/ni for random sample sizes ni (we will content ourselves with modeling
the average clump size κ as a constant). Suppose ni ∼ pois(λ). We will make use of the
following theorem, Proposition 1 of Glynn (1987).

Theorem 8.6 Suppose X∼ pois(λ) and 0≤ n<λ. Then

P(X≤ n)≤P(X= n)(1− (n/λ))−1. (8.25)

Under completely uniform sampling ni = λ, we would have the optimal allocation,
with var[Xi]= σ2/λ, and in particular, σ2

max = σ2/λ. Of course, we must anticipate that
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σ2
max = σ2/nmin>σ

2/λ, where nmin =mini ni. We then regard a bound on the expected
maximum as conditional on the random quantity σmax, that is,

E[Mm | σmax]≤ σmax

√
2 log(m). (8.26)

We would therefore like to develop a bound of the form

P
(
σ2

max ≥ ησ2/λ
)=P(1/nmin ≥ η/λ) ,

for η>1. Using Theorem 8.6 and Boole’s inequality we have, for η>1 (and assuming
for convenience that λ/η is an integer),

P(1/nmin ≥ η/λ) = P(nmin ≤ λ/η)

≤ m
(

η

η− 1

)
λλ/η

(λ/η)! exp(−λ)

≤ m
(

η

η− 1

)
λλ/η(

λ/η

e

)λ/η√
2πλ/η

exp(−λ)

= m
(

η

η− 1

)
1√

2πλ/η
exp(−λ+ λ/η+ (λ/η) log(η)).

We then note the inequality log(1 + x)≤ x− x2

2(1+x)2 for x≥ 0, which when applied to
the preceding inequality yields

P(1/nmin ≥ η/λ)≤m
(

η

η− 1

)
1√

2πλ/η
exp
(
−λ
η

(η− 1)2

2η2

)
. (8.27)

Thus, since λ increases proportionally with the total number of transitions T, the
probability that the maximum variance σ2

max exceeds σ2/λ by a fixed ratio η decreases
exponentially with T, so that the random variation of the sample size does not signifi-
cantly affect the distribution of the maximum of X1, . . . , Xm in comparison to a fixed
sample size allocation. This will be demonstrated in Chapter 15.

8.6 BOUNDS FOR MAXIMA BASED ON THE FIRST TWO MOMENTS

We have seen that the existence of an MGF implies a bound on the rate of growth of
the higher order moments, and so it is worth considering what bounds may be placed
when this condition cannot be assumed. The case considered here will be of set of m
RVs of general dependence structure possessing finite means and variances µi, σ2

i , with
no further restriction on higher order moments. In contrast to the order O( log(m)1/2)
bound obtainable under for normal, or ‘sufficiently normal’, distributions, an order
O(m1/2) bound has been established, first for the iid case in Gumbel (1954) and Hartley
and David (1954), and extended to dependent RVs in Arnold and Groeneveld (1979)
and Aven (1985). A method of attaining tighter bounds from modifications of these
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earlier techniques is proposed in Bertsimas et al. (2006). We summarize below the
approach taken in Aven (1985).

We will make use of the following lemma:

Lemma 8.1 For any sequence of random variables X1, X2, . . . and p≥ 1

E [Mn]≤
∑
i≤n

E[|Xi|p]1/p, (8.28)

where Mn =maxi≤n Xi.

Proof Clearly, E [Mn]≤∑n
i=1 E[|Xi|]. Recall that by Jensen’s inequality E[|Xi|p]1/p

is increasing in p, which completes the proof. ///

The following theorem is due to Aven (1985) (Theorem 2.1), and we offer a proof
for the j= 0 case.

Theorem 8.7 For any finite sequence of random variables X1, X2, . . .Xm possessing
finite second moments the following inequalities hold:

M̄ ≤ µ̄+ (m− 1)1/2
(
σ̄2

j + ν
)1/2

, j= 0, 1, . . . , m, (8.29)

M̄ ≤ µmax + (m− 1)1/2
(
σ̄2

j

)1/2
, j= 0, 1, . . . , m. (8.30)

Proof First, assume µi = 0 for all i. Then for any real number c, by Lemma 8.1

E[M]=E[M + c]− c≤
(

m∑
i=1

E[(Xi + c)2]

)1/2

− c=m1/2(σ̄2
0 + c2)1/2 − c.

It is easily verified that minimizing over c yields

E[M]≤ (m− 1)1/2(σ̄2
0 )1/2.

The proof of (8.30) for general µi for j= 0 follows by noting

E[M]≤µmax + E
[
max

i
(Xi − µi)

]
.

To prove (8.29) replace the sequence X̃ by a random permutation X̃∗ of X̃. The
maximum of X̃∗ and of X̃ are identical. The elements of X̃∗ have identical marginal
distributions with mean µmax and variance σ̄2

0 + ν, so that (8.29) follows after applying
(8.30) to X̃∗. ///

The proof of Theorem 8.7 for j≥ 1 may be found in Aven (1985) and follows
similar arguments.

It is interesting to note that (8.29) follows from (8.30). However, this does not
mean that (8.30) is uniformly sharper. The relative advantages of the two bounds will
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be discussed in more detail for a special case in Section 15.1. We will make a few
general observations here.

8.6.1 Stability

The reliance of Theorem 8.7 on the first two moments limits stability results, but
permits a power law to be obtained using Markov’s inequality. Assume Xi are positive,
and to fix ideas, assume the marginal distributions of Xi are equal. Using (8.30) we have

M̄≤ M̄∗ =E[X1]+ (m− 1)1/2var[X1]1/2.

We may also apply (8.30) to bound the expected value of Mk =maxi≤m Xk
i , assuming

the appropriate moments exist. Using the method of (8.17) we have

P
(
M/M̄∗ ≥ η) ≤ 1

ηk

E
[
Xk

1

]+ (m− 1)1/2var[Xk
1]1/2(

E [X1]+ (m− 1)1/2var[X1]1/2
)k

≈ 1
ηk

1
(m− 1)(k−1)/2

var[Xk
1]1/2

var[X1]k/2
, (8.31)

where the approximation holds if max (E[X1], E[Xk
1])) (m− 1)1/2 for unit variance.

This bound can be effective if var[Xk
1]1/2/var[X1]k/2 is not too large. On interesting

feature of (8.31) is that, as with the examples of Section 8.4, the tail probabilities
decrease as the maximum order m increases when k> 1.
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Chapter 9

Background – linear convergence

The next three chapters form the central portion of this volume, in particular Chapter
10, which defines the approximate iterative algorithm (AIA) on Banach and Hilbert
spaces, and establishes the main convergence results. Following this, Chapter 11 con-
siders the problem of determining the optimal design of an AIA when approximation
tolerances can be controlled. In such cases, it can be advantageous to start the AIA with
a coarse approximation, which would reduce computation cost, gradually refining the
approximation as the iterations proceed. The precise convergence rates derived in
Chapter 10 can be used to determine near optimal rates of approximation refinement,
the problem considered in Chapter 11.

The purpose of this chapter is to introduce some technical results relating to the
properties of linearly convergent sequences. In some cases, in addition to verifying that
a sequence αi converges to 0 at a given rate, it may be necessary to establish that it
does so ‘smoothly’, that is, the decrease of αi must be regular and not too rapid. In a
sense, this type of condition is analgous to the requirement that a real-valued function
f on R possess a bounded derivate. In many applications of interest, this may not be
realistic, for example, when αi is stochastic. In such a case, it will suffice to construct
an envelope di ≥αi, where di possesses the required smoothness properties. This is the
subject of Sections 9.2 and 9.3.

The general theory of AIAs developed in Chapter 10 is largely a consequence of
a straightforward idea presented in Section 9.4. In particular, the essential point of
l’Hôpital’s rule holds for series and sequences, as well as for real-valued functions and
their derivatives. Viewed this way, it becomes natural to specify regularity conditions
for sequences similar to those specified for real-valued functions in almost all theorems.

9.1 LINEAR CONVERGENCE

Suppose we are given a sequence of positive constants ρ̃= {ρk, k≥ 1
}
. Define the

product kernel

λk,j =
{

1 ; j= 0∏k
i=k−j+1 ρi ; j≥ 1

for any k≥ j≥ 0. In general, λk,j = λk,k/λk−j,k−j. Also, since λk,1 = ρk, ρ̃ uniquely defines
the kernel λk,j. For convenience, the superscripts may be omitted in a reference to a
product kernel.
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We have identified various modes of linear convergence in Section 2.1.7, namely

λ{ak}= lim
k

ak+1/ak and λ̂{ak}= lim
k

a1/k
k ,

with superscripts l, u denoting the respective limit infimum and limit supremum.
For the kernel λk,k these conditions are equivalently defined by the ρk sequences

λ{λk,k}= ρ ⇔ lim
k
ρk = ρ and

λ̂{λk,k}= ρ ⇔ lim
k

(
k∏

i=1

ρi

)1/k

= ρ, (9.1)

with analogous conditions for the upper and lower limits. Thus, the two modes of
convergence are defined by convergence either of ρk to ρ or of the convergence of the
cumulative geometric means of the sequence ρ1, ρ2, . . . to ρ, respectively.

The quantities λ{ak}, λ̂{ak} are interpretable as a rate of convergence. The following
lemma is easily verified:

Lemma 9.1 Let {ak} be a positive sequence. If ak possess a finite positive limit
then λ{ak}= λ̂{ak}=1. If ak is nonincreasing then λu{ak}, λ̂u{ak}≤1, and if ak is
nondecreasing then λl{ak}, λ̂l{ak}≥1.

Clearly, the first mode implies the second:

Lemma 9.2 For ρ>0 the implications

λl{λk,k}= ρ ⇒ λ̂l{λk,k}≥ ρ (9.2)

λu{λk,k}= ρ ⇒ λ̂u{λk,k}≤ ρ (9.3)

hold, and therefore

λ{λk,k}= ρ ⇒ λ̂{λk,k}= ρ.
Proof If λl{λk,k}= ρ then for any positive ε<ρ we must have kε <∞ for which
ρk ≥ (ρ − ε) for all k≥ kε. This implies that λk,k ≥ (ρ − ε)k−kελkε,kε for all k≥ kε, in turn
implying λ̂l{λk,k}≥ ρ − ε for all ε>0. Then (9.2) follows by allowing ε to approach 0,
and (9.3) follows using a similar argument. ///

The distinction between statements λ{λk,k}= ρ and λ̂{λk,k}= ρ is that the former
assumes that the linear convergence rate of λk,k approaches a constant ρ, while the
latter states only that ρ is an average rate. For example, if ρk alternates between ρ and
1, then λ{λk,k} would not exist, but we would have λ̂{λk,k}= ρ1/2. This latter case will
sometimes occur in applications of interest.

Lemma 9.3 Suppose {ak} is a sequence which converges to 0. Then

lim
k

k−1
k∑

i=1

∣∣log(1+ ai)
∣∣ = 0. (9.4)
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If in addition
∑

i≥1 |ai|<∞ then

∑
i≥1

∣∣log(1+ ai)
∣∣ <∞. (9.5)

Proof By Taylor’s approximation theorem, for all x∈ (−1/2, 1/2) we have | log(1+
x)| ≤2|x|. Therefore, for any ε∈ (0, 1/2) there exists finite kε such that ak ≤ ε and there-
fore | log(1+ ak)| ≤2ε for all k≥ kε. Setting Kε=∑kε−1

i=1

∣∣log(1+ ai)
∣∣<∞, we have∑k

i=1

∣∣log(1+ ai)
∣∣≤Kε + k2ε, from which it follows lim supk k−1∑k

i=1

∣∣log(1+ ai)
∣∣≤

2ε. Then (9.4) follows by allowing ε to approach 0.
To complete the lemma, using the same constants we may write

k∑
i=1

∣∣log(1+ ai)
∣∣≤ 2

k∑
i=kε

|ai| + Kε≤ 2
∑
i≥1

|ai| + Kε <∞.

Then (9.5) follows by allowing k→∞. ///

We will sometimes need to know if a kernel λk,j retains its convergence properties
when vanishing terms δk are added to the sequence ρ̃.

Lemma 9.4 Suppose product kernels λk,j and λk,j
δ are defined by sequences (ρ1, ρ2, . . .)

and (ρ1 + δ1, ρ2 + δ2, . . .). For ρ>0 the following implications hold:

(i) If δk → 0 then

λl{λk,k}= ρ or λu{λk,k}= ρ⇒ λl{λk,k
δ }= ρ or λu{λk,k

δ }= ρ (9.6)

(ii) If δk/ρk → 0 then

λ̂l{λk,k}= ρ or λ̂u{λk,k}= ρ⇒ λ̂l{λk,k
δ }= ρ or λ̂u{λk,k

δ }= ρ (9.7)

Proof First, (9.6) follows directly from (9.1). To verify (9.7) write

k−1 log(ρk + δk) = k−1(log(ρk)+ log(1+ δk/ρk)
)

then apply (9.4) of Lemma 9.3. ///

The condition for (ii) of Lemma 9.4 can be weakened to the constraint that the
cumulative geometric mean of the sequence 1 + δ1/ρ1, 1+ δ2/ρ2, . . . approaches 1, but
we will be most interested in the case of vanishing δk.

Existence of a limit λ{λk,k}= ρ does not imply the stronger limit λk,k =�(ρk).
We may construct a sequence ρk = akρ for which ak → 1, but for which

∏k
i=1 ak

is unbounded as k→∞, which provides a counterexample. Conditions for the
equivalence of the two limits are given in the following lemma.
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Lemma 9.5 If ρk = ρ + δk where ρ>0 and
∑

i≥1 |δi|<∞ then λk,k =�(ρk).

Proof We may write

λk,k = exp

(
k∑

i=1

log(ρ + δi)

)
= exp(k log(ρ)+

k∑
i=1

log(1+ δi/ρ)).

This gives

λk,k/ρk = exp

(
k∑

i=1

log(1+ δi/ρ)

)
.

The lemma is proven after noting that by hypothesis, using Lemma 9.3 we may con-
clude that the partial sums

∑k
i=1 log(1+ δi/ρ) posses a finite limit. ///

9.2 CONSTRUCTION OF ENVELOPES – THE
NONSTOCHASTIC CASE

We next show that if we are given a kernel λ for which is convergent in the geometric
mean, we may construct upper and lower envelopes with stronger linear convergence
properties.

Theorem 9.1 Consider a nonnegative sequence {ak}.
(i) If for some ρ∈ (0, 1] we have λ̂u{ak}= ρ, then there exists a sequence {a∗k} for

which a∗k ≥ ak, k≥ 1, λl{a∗k}≥ ρ and λ̂{a∗k}= ρ.
(ii) If for some ρ∈ (0, 1] we have λ̂l{ak}= ρ, then there exists a sequence {a∗k} for

which a∗k ≤ ak, k≥ 1, λu{a∗k}≤ ρ and λ̂{a∗k}= ρ.

Proof We first consider (i). First rewrite ak = ckρ
k. If the sequence {ck} possesses a

finite upper bound C then the objective is achieved by setting a∗k =Cρk. Otherwise,
set c′k =maxi≤k ci. We may assume without loss of generality that c1 ≥ 1. Set αk =
k−1 log(ck) and α′k = k−1 log(c′k). Since c′1 = c1 ≥ 1 and c′k is nondecreasing we must
have α′k ≥ 0. Then for k> 1, α′k may be equivalently written as

α′k = max
(
k−1 log(ck), k−1 log(c′k−1)

)
,

and for i> k> 1 we have, similarly,

α′i = max
(
i−1 log(ci), . . . , i−1 log(ck), i−1 log(c′k−1)

)
.

This leads to the expression

sup
i≥k

α′k = max

(
sup
i≥k

αi, (k− 1)/kα′k−1

)
. (9.8)

By hypothesis, limk→∞ supi≥k αi = 0. We also note that the expression in (9.8) is non-
increasing in k, therefore α′k−1 possess a nonnegative limit K′. If K′> 0, then for some
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ρ′> 1 we have c′k ≥ (ρ′)k for all large enough k. However, since ck is unbounded, there is
an infinite subsequence of indices k′ for which ck′ = c′k′ , which contradicts the hypoth-
esis lim supk k−1 log(ak)= log(ρ), implying K′ = 0. Hence, if we set a∗k = c′kρ

k, we have
a∗k ≥ ak, where limk k−1 log(a∗k)= log(ρ), and, since c′k is increasing, we also must have
λl{a∗k}≥ ρ.

The proof of (ii) proceeds in a complementary manner. Again set ak = ckρ
k. If the

sequence {ck} possesses a positive finite lower bound C then the objective is achieved
by setting a∗k =Cρk. Otherwise, suppose ck has a subsequence converging to zero,
and set c′k =mini≤k ci. We may assume without loss of generality that c1 ≤ 1. Set αk =
k−1 log(ck) and α′k = k−1 log(c′k). Since c′1 = c1 ≤ 1 and c′k is nonincreasing we must have
α′k ≤ 0. Then for k> 1, α′k may be equivalently written as

α′k = min
(
k−1 log(ck), k−1 log(c′k−1)

)
,

and for i> k> 1 we have, similarly,

α′i = min
(
i−1 log(ci), . . . , i−1 log(ck), i−1 log(c′k−1)

)
.

This leads to the expression

inf
i≥k
α′k = min

(
inf
i≥k
αi, (k− 1)/kα′k−1

)
. (9.9)

By hypothesis, limk→∞ infi≥k αi = 0. We also note that the expression in (9.9) is non-
decreasing in k, therefore α′k−1 possess a nonpositive limit K′. If K′< 0, then for some
ρ′< 1 we have c′k ≥ (ρ′)k for all large enough k. However, since ck is not bounded away
from 0, there is an infinite subsequence of indices k′ for which ck′ = c′k′ , which con-
tradicts the hypothesis lim infk k−1 log(ak)= log(ρ), implying K′ = 0. Hence, if we set
a∗k = c′kρ

k, we have a∗k ≤ ak, where limk k−1 log(a∗k)= log(ρ), and, since c′k is decreasing,
we also must have λu{a∗k}≤ ρ. ///

The following upper envelopes arise naturally. Relevant conditions are given in
the following theorem.

Theorem 9.2 The following bounds hold for ρ>0:

(i) If ρk ≤ ρ + δk where ρ>0 and
∑k

i=1 |δi|<∞ then there exists a finite constant
K for which λk,j ≤Kρj for all k, j.

(ii) If λu{λk,k}= ρ then for all ε>0 there exists finite Kε such that λk,j ≤Kε(ρ + ε)j

for all k, j.
(iii) If λ̂u{λk,k}= ρ then for all ε>0 there exists finite jε and Kε,j and kε such that

λk,k−j ≤Kε(ρ + ε)k−j for all k≥ jε.

Proof (i) Following the proof of Lemma 9.5 we may write

λk,j = ρj exp

⎛
⎝ k∑

i=k−j+1

log(1+ δi/ρ)

⎞
⎠ .
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If the hypothesis holds then by Lemma 9.4 the summation
∑k

i=k−j+1 log(1+ δi/ρ)) has
a finite upper bound over all j≤ k so (i) holds.

To prove (ii) note that for any ε∈ (0, 1− ρ) we may select finite index iε for which
|δi|<ε for all i> iε. Define ρu

ε =max{ρ + ε, maxi=1,...,iε ρi}. The upper bound follows
by setting Kε= [ρε/(ρ + ε)]iε .

To prove (iii), note that under the hypothesis we may write λk,k = (ρ + εk)k, where
εk → 0. ///

Example 9.1 Consider for some ρ∈ (0, 1) the sequence α̃= ρ, ρ, ρ2, ρ2, . . ., that is,
αk = ρ�(k+1)/2�. We have λl{α̃}= ρ< limk k−1 log(αk)= ρ1/2<λu{α̃}=1. Following The-
orem 9.1 we have representationαk = ck(ρ1/2)k, where ck ∈ {ρ1/2, 1}, so thatα∗k = (ρ1/2)k

defines an envelope of α̃.

9.3 CONSTRUCTION OF ENVELOPES – THE STOCHASTIC CASE

If a sequence {zn} is a mapping of iid sequences we may be able to deduce from the
law of the iterated logarithm ‖zn‖≤dn =Kn−1/2 log log n for some finite K, in which
case λl{zn}=1. See Section 4.11.

The following approach can be used for more general stochastic sequences.
Suppose zn ≥ 0, and τn =E[zn]. We will set supn E[(zn/τn)p]=mp. Suppose we then
have another positive sequence {αn} which converges to 0. From Lemma 8.1 we have
for q≥ 1

E
[
max
i≤n

[αi(zi/τi)]q
]
≤mq

∑
i≤n

α
q
i .

If
∑

i≥1 α
q
i <∞ and mq<∞ we may conclude that the random variable Z∗ =

supi [αi(zi/τi)]q has a finite first moment, and so does (Z∗)1/q, and we may write

zn ≤ α−1
n τn(Z∗)1/q, (9.10)

so that we may assert that if, for example, λl{α−1
n τn}= r then wp1 {zn} has an envelope

d̃ for which λl{d̃}= r. We further note that if mq<∞ for all q≥ 1 we may set the
convergence rate of αn as slow as we wish, noting that αn = n−1/(q+ε), for any ε>0,
would permit a bound of the form (9.10) for which (Z∗)1/q has finite first moment.

9.4 A VERSION OF L’HÔPITAL’S RULE FOR SERIES

Much of the convergence theory of Chapter 10 depends on a version of l’Hôpital’s rule
due to Fischer (1983) (Theorem 9.1). A slightly modified version is given here.

Lemma 9.6 Suppose {an}, {bn} are two real valued sequences such that bn+1> bn> 0
for all n, and limn→∞ bn =∞. Then

lim inf
n→∞

an+1 − an

bn+1 − bn
≤ lim inf

n→∞
an

bn
≤ lim sup

n→∞
an

bn
≤ lim sup

n→∞
an+1 − an

bn+1 − bn
. (9.11)
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Proof We first consider the first inequality of (9.11). This holds trivially if
lim infn→∞ an+1−an

bn+1−bn
=−∞. Otherwise assume lim infn→∞ an+1−an

bn+1−bn
≥L where |L|<∞.

Then for any ε>0 there exists Nε such that (an+1 − an)/(bn+1 − bn)>L− ε for n≥Nε.
It follows that, for k> 0,

aNε+k − aNε

bNε+k − bNε

>L− ε.

We may then write

aNε+k − aNε+k−1 > (L− ε)(bNε+k − bNε+k−1)

aNε+k−1 − aNε+k−2 > (L− ε)(bNε+k−1 − bNε+k−2)

...

aNε+1 − aNε
> (L− ε)(bNε+1 − bNε

)

which after summing the inequalities is equivalent to

aNε+k

bNε+k
>

aNε

bNε+k
+ (1− bNε

bNε+k
)(L− ε).

Letting k→∞ gives

lim inf
k→∞

aNε+k

bNε+k
>L− ε,

so that lim infn→∞ an+1−an
bn+1−bn

≥L implies lim infn→∞ an
bn
≥L by letting ε approach 0. If

lim infn→∞ an+1−an
bn+1−bn

=L, then the first inequality of (9.11) holds. If lim infn→∞ an+1−an
bn+1−bn

=
∞ then lim infn→∞ an+1−an

bn+1−bn
≥L, and therefore lim infn→∞ an

bn
≥L for all finite L, which

completes the argument.
The final inequality of (9.11) holds using essentially the same argument. ///

The essential point of Lemma 9.6 is that for partial sums sn =∑n
i=1 ci, the term

cn = sn − sn−1 is analogous to a derivative, and as for the convential l’Hôpital’s rule, the
limit of the ratio of partial sums is the same as the limit of the ratio of their ‘derivatives’.
Our interest in Lemma 9.6 will be in the evaluation of a type of convolution which
will appear in several applications.

Lemma 9.7 Let sn =∑n
i=1 ci be the partial sums for a nonnegative sequence cn, and

let τn be any positive sequence. Suppose sn →∞. Then

lim inf
n→∞ τn [1− (τn−1cn−1)/(τncn)] ≤ lim inf

n→∞ τncn/sn

≤ lim sup
n→∞

τncn/sn

≤ lim sup
n→∞

τn

[
1− τn−1cn−1

τncn

]
. (9.12)
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Proof If we set an = τncn and bn = sn then the hypothesis of Lemma 9.6 is
satisfied, from which (9.12) follows after noting that (an − an−1)/(bn − bn−1)=
τn [1− (τn−1cn−1)/(τncn)] and an/bn = τncn/sn. ///

Two convolution limit bounds will be of particular importance.

Lemma 9.8 Suppose we are given a product kernel λ, and a positive sequence of
constants dn with λu{λn,n}= ρ and λl{dn}= r>ρ. Then the convolution

Sn =
n∑

i=1

λn,n−idi

possess the limit

1− ρ/r≤ lim inf
n→∞ dn/Sn ≤ lim sup

n→∞
dn/Sn ≤ 1− λl{λn,n}/λu{dn}.

Proof In Lemma 9.7 set τn = 1, cn = dn/λ
n,n and therefore sn = Sn/λ

n,n. Under the
hypothesis we may conclude that sn →∞, so that the hypothesis is satisfied, the result
following froma direct application of (9.12). ///

Theorem 9.3 Suppose we are given a product kernel λ defined by ρn, and a positive
sequence of constants dn. Define

αn = (dn−1/dn)ρn, n≥ 1,

and suppose for all large enough n αn is nondecreasing with αn< 1. Then the
convolution

Sn =
n∑

i=1

λn,n−idi

possess the limit

lim inf
n→∞

dn

Sn(1− αn)
≥ 1. (9.13)

Proof Define cn and sn as in Lemma 9.8, and set τn = (1− αn)−1. By hypothesis αn is
positive and increasing for large enough n, at which point the lower bound of (9.12)
is no smaller than 1. In this case cn−1/cn =αn< 1, so that cn is increasing, therefore
sn →∞, from which (9.13) follows directly. ///



Chapter 10

A general theory of approximate
iterative algorithms (AIA)

We are given a seminormed linear space (V, ‖·‖) on which a sequence of operators
T̃ =T1, T2, . . . is defined. We may take norms to be a special case of seminorms, the
theory of this chapter generally applying in the same manner to each. We usually expect
each operator to have a common fixed point V∗ =TkV∗, or an equivalence class of
fixed points. At the very least, interest is in evaluating or approximating some fixed
point V∗ using the iteration algorithm:

V0 = v0

Vk = TkVk−1, k= 1, 2, . . . , (10.1)

for a given initial solution v0 ∈V. We always assume ‖v0‖<∞ and ‖V∗‖<∞.
The intention is that Vk ∈V for all k≥ 1, and that the sequence converges to V∗ in
the given seminorm, that is, limk ‖Vk − V∗‖=0. In many cases, the algorithm will be
homogenous in the sense that Tk =T, so that Vk =Tkv0, but it turns out that results
obtainable for homogenous algorithms are extendible to the nonhomgenous case with
little loss of generality, and much gain in applicability.

Our interest is in cases for which evaluation of Tk is not feasible, can only be
evaluated with error or can be approximated with some advantage. In this case Tk

in (10.1) may be replaced by approximate operator T̂k, giving approximate iteration
algorithm (AIA)

V0 = v0

Vk = T̂kVk−1

Vk = TkVk−1 +Uk, k= 1, 2, . . . , (10.2)

setting Uk = T̂kVk−1 − TkVk−1, which we take to be the error resulting from the
approximation. We may therefore define an exact iterative algorithm (EIA) as the duple
Qe = (T̃, V0), where V0 ⊂V is the starting point. An approximate iterative algorithm
will be based on an EIA Qe, but will also incorporate the approximate operators T̂k.

However, it is important to stress that we are not taking the point of view that
an AIA is to be analyzed as an EIA after new operators have been substituted. This
approach is certainly not uncommon, but has the disadvantage that any convergence
properties of the AIA tend to depend on specific details of the approximation method.
In contrast, the formulation implied by (10.2) would appear to permit the convergence
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properties of an AIA to be established using only properties of an approximation
method which could be easily generalized.

How then do we characterize T̂k? Certainly, it must map V into V, and we also
expect that ‖T̂kV‖<∞when ‖V‖<∞, as in the EIA. In addition, as a practical matter
we must permit T̂k to depend on process history, as would be the case in adaptive
control applications. To do this define the history process H̃ =H1, H2, . . . of an AIA as
Hk = (V0, U1, . . . , Uk−1) for k> 1 and H1 = (V0), and let Hk be the set of all possible
histories Hk. Then we may consider the mapping T̂k : V ×Hk →V, or alternatively, T̂k

represents a set of operators indexed by Hk.
It may also be the case that T̂k must be regarded as stochastic. In this case,

Tk would remain deterministic (if unknown), so that random outcomes would be
expressible entirely in the history process. Accordingly, we construct a probability
space P = (�, F , P), with the σ-fields Fk = σ(Hk) so that we may set F =∪iFi. Then
H̃ is a filtration process (Definition 4.2), with filtration F1 ⊂F2 . . .. Since Hk is Fk-
measurable, it follows that Vk = T̂kVk−1 =TkVk−1 +Uk is Fk+1-measurable. There are
two approachs to take at this point. It may be possible to identify an event E∈F which
occurs with a probability of 1, or close to 1, in which case the AIA can be analyzed
as a deterministic algorithm with a history satisfying those conditions implied by E.
Alternatively, V itself may be defined on a probability space, with seminorm ‖ · ‖ based
on stochastic Lp norms. Thus, while the specific design of the approximate operator
T̂k would naturally be the central concern for any particular AIA, from the point of
view of developing a general theory for the characterization of AIAs, the more fruitful
approach will be to regard an AIA as an EIA coupled with an error history process,
that is, Qa = (T̃, H̃).

The material in this and the subsequent chapter is organized around three
questions:

(Q1) If an EIA converges to a fixed point, under what conditions does an AIA also
converge to the same fixed point?

(Q2) How can the approximation error of an AIA be expressed in terms of the
sequence Uk, k≥ 1?

(Q3) If a range of approximate operators Tε exists, and the iterations of an AIA are
successively refined, can a rate of refinement be determined which minimizes
computation time?

(Q1) has been discussed in the literature, and it is been long established (as in
Ostrowski (1964) or Ortega and Rheinboldt (1967)) that contractive algorithms eval-
uated with vanishing rounding error converge to the intended fixed point. In our
notation, T ≡Tk is contractive, and limk ‖Uk‖=0. A general theory for (Q2) is not as
well developed, and results tend to be available for specific models only. To the best
of the author’s knowledge, very little theory exists with which to answer (Q3).

In this chapter, a general theory of the convergence properties of (10.2) will be
developed. When T̃ is collectively contractive, this theory unites (Q1) and (Q2), in
the sense that convergence of ‖Uk‖ to zero suffices to establish convergence of (10.2)
to V∗, at a rate directly determined by that of ‖Uk‖. It will also be possible to char-
acterize convergence in terms of relative errors ‖Uk‖/‖Vk−1‖, which will often be
the most natural expression for the error of approximate operator evaluation. In the
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subsequent chapter, the theory will be used to determine general principles with which
to answer (Q3).

10.1 A GENERAL TOLERANCE MODEL

The definition of an AIA is closely tied to an EIA, the convergence properties of which
are assumed known, and are incorporated into the analysis. The AIA is then considered
to be a noisy implementation of an EIA. The question is how the errors modify the EIA
convergence properties. It will therefore be useful to define a general tolerance model
which will summarize the approach.

Usually, we are concerned with the convergence of the quantity ‖Vk − V∗‖,
which we refer to as the algorithm error. Within the kth iteration the quantity
‖T̂kVk−1 − TkVk−1‖ is referred to as the operator error. If a bound on operator error
εk ≥‖T̂kVk−1 − TkVk−1‖ exists, then εk is referred to as the operator tolerance. Simi-
larly, any bound on algorithm error, denoted ηk ≥‖Vk − V∗‖ is referred to as algorithm
tolerance. We can also imagine the evolution V ′

0, V ′
1, . . . of the EIA (assuming it shares

the same initial solution V ′
0 =V0 as the AIA), which has its’ own algorithm error

‖V ′
k − V∗‖. We refer to any bound Bαk ≥‖V ′

k − V∗‖, B> 0, as the exact algorithm tol-
erance. It may also be convenient to refer to αk independently as the exact algorithm
tolerance rate (our intention is to reserve the term tolerance for any bound imposed
or guaranteed by a specific algorithm on a corresponding error).

It will be useful to express the algorithm tolerance using the form

‖Vk − V∗‖ ≤ ηk =Bαk + uk, k≥ 1 (10.3)

where uk is interpretable as a bound on the cumulative effect of the operator errors. We
then refer to uk as the approximation tolerance. In this way, the algorithm tolerance
ηk can be compared to the exact algorithm tolerance Bαk. Clearly, we expect that the
convergence rate of an AIA can never be strictly better than that of the EIA, but it
might be asymptotically equivalent. In fact, the main conclusion of Chapter 11 is that
this should generally be a goal in the design of AIAs.

The model (10.3) becomes useful when the approximation tolerance uk can be
expressed in terms of the operator tolerance, since this quantity is often tractible, and
is in fact widely used in the literature. That this is generally possible is one of the
important consequences of the theory developed below.

10.2 EXAMPLE: A PRELIMINARY MODEL

The general approach will be illustrated using a simple approximation model for a
homogenous algorithm based on ρ-contractive operator T. First, suppose we may set
a constant operator tolerance εk = ε>0, for all k≥ 1. Following Isaacson and Keller
(1966), we have

‖Vk − V∗‖ ≤ ‖TVk−1 − V∗‖ + ‖Vk − TVk−1‖≤ ρ‖Vk−1 − V∗‖ + ε,
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which applied iteratively gives

‖Vk − V∗‖ ≤ ρk‖V0 − V∗‖ + ε(1− ρ)−1, (10.4)

so that the algorithm tolerance is dominated by ε. In particular, we achieve algorithm
tolerance (10.3) with uk = ε(1− ρ)−1 and αk = ρk.

Now suppose εk vanishes as k→∞. This gives an algorithm tolerance

‖Vk − V∗‖ ≤ ρk‖V0 − V∗‖ + ρk
k∑

i=1

ρ−iεi, (10.5)

using an argument similar to (10.4). To fix ideas, consider the special case εk =Krk for
some K> 0, r∈ (0, 1). Then (10.5) becomes

‖Vk − V∗‖ ≤
{
ρk‖V0 − V∗‖ + Kr ρ

k−rk

ρ−r ; r �= ρ
ρk‖V0 − V∗‖ + Kkρk; r= ρ .

Note that the algorithm tolerance corresponds to the structure of (10.3) by set-
ting approximation tolerance uk =Kr(ρk − rk)/(ρ − r) or uk =Kkρk for r �= ρ or r= ρ
respectively. Thus, we have uk =�(max(εk, ρk)) when εk �=�(ρk). When εk =�(ρk)
we have log(uk)=�(klog(ρ)), but it is important to note that εk = o(uk). Stated more
directly, we have algorithm tolerance of order

‖Vk − V∗‖ ≤
{

O(max(εk, ρk)); r �= ρ
O(kρk); r= ρ

for the range of algorithms explicitly considered. It turns out that this form is repre-
sentative of the general case, particularly with respect to its direct relationship to the
operator tolerance. This fact forms the basis of our theory of AIAs.

10.3 MODEL ELEMENTS OF AN AIA

As suggested by the inequality (10.5) there are three elements required to characterize
the behavior of an AIA. The first we generally assume to be given, that is, the convergent
behavior of the EIA (the first term of the upper bound of (10.5)). The remaining
elements contribute to the second term. These are the sequence of operator tolerances
for the operator errors Uk, and then the Lipschitz properties of the sequence T̃, which
we discuss in the next section.

10.3.1 Lipschitz kernels

If we are given an operator sequence T̃, this will define an operator kernel Tk,j =
Tk · · ·Tk−j+1, from which the EIA Vk =Tk,kV0 follows. We say λ̄={λ̄k,j; k≥ j≥ 0} is a
Lipschitz kernel for T̃ if Tk,j possesses Lipschitz constant λ̄k,j (the definition extends in
the obvious way to a pseudo-Lipschitz kernel). We generally set λ̄k,0 = 1. By convention,
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we write λ̄1 ≤ λ̄2 if λ̄k,j
1 ≤ λ̄k,j

2 for all k, j (in which case we say λ̄2 dominates λ̄1). We

also write λ̄ <∞ if each λ̄k,j <∞. A Lipschitz kernel λ̄k,j
1 of T̃ is sharp if λ̄k,j

1 ≤ λ̄k,j
2 for

any other Lipschitz kernel λ̄k,j
2 .

A Lipschitz kernel has a product form (or, is a product kernel, Section 9.1), if there
is a sequence λ̃= λ1, λ2, . . . for which λ̄k,j = λk,j for all k, j. In this case we say that λ̄k,j

is the (product form) kernel induced by λ̃. In this case, for convenience, the notation λ̃
will refer equivalently to the sequence and to the kernel itself. Suppose λ̄ is a Lipschitz
kernel for T̃. Write the sequence λ̃pf = λ̄1,1, λ̄2,1, . . .. If λ̄pf is the product form kernel
induced by λ̃pf then it is also a Lipschitz kernel for T̃. It is important to note that if λ̄
is sharp, λ̄pf need not be, as would be expected in, for example, multistage contractive
models. However, even in such cases it may be useful to construct a product form
kernel which dominates λ̄.

One other form of kernel will be of interest. Suppose the EIA is based on a single
operator T, for which the asymptotic contraction rate may be considerably smaller
than a J-stage contraction rate (see Section 7.1). Then we may set λ̄k,i =βi for all
k≥ i≥ 0, where βJ is a contraction constant for TJ.

10.3.2 Lipschitz convolutions

We next generalize the second term of the upper bound in (10.5) by defining an
Lipschitz convolution of order p:

Ip
k (d̃, λ̄) =

k∑
i=1

[λ̄k,k−idi]p, k≥ 1,

for positive constant p, Lipschitz kernel λ̄ and sequence d̃= (d1, d2, . . .). Our objective
will be quite precise, to construct an algorithm tolerance model of the form

η
p
k = Bαp

k + Ip
k (d̃, λ̄), (10.6)

where λ̄ is a Lipschitz kernel for the EIA, Bαk is the tolerance for the EIA and d̃ is a
sequence of operator tolerances. Note that αk often will, but need not, be related to
λ̄k,1. We will generally be able to set d̃= ( ‖U1‖ , ‖U2‖ , . . .), but it will sometimes be
necessary to use a smooth upper envelope of ‖Uk‖, so the model is best generalized in
this way. See the discussion of envelopes in Chapter 9.

Once (10.6) is established, the next step is to evaluate Ip
k (d̃, λ̄). This turns out to be

relatively simple to do using the extension of l’Hôpital’s rule for series given in Section
9.4. The comparison is then made to the exact algorithm tolerance rate αk to resolve
the convergence properties of ηk itself.

Generally, an AIA will be defined on a Banach space. There will sometimes be a
natural Hilbert space structure to the AIA, which, as will be seen, can generally yield
sharper approximation bounds. This will typically arise when the operator error can be
modeled as a martingale (see Section 4.4). In this case, approximation errors are signed,
so that the resulting averaging effect can be exploited to improve the approximation



204 Approximate iterative algorithms

bound. In either case, in (10.6) p= 1 will apply to the Banach space model, while p= 2
is used for the Hilbert space model.

To study the asymptotic properties of Ip
k (d̃, λ̄) we will make use of the following

quantities:

Ip
k(d̃, λ̄) = d−p

k Ip
k (d̃, λ̄), k≥ 1,

Īp(d̃, λ̄) = lim sup
k→∞

Ip
k(d̃, λ̄),

Îp(d̃, λ̄) = sup
k

Ip
k(d̃, λ̄).

It is also worth noting the simple iteration rule for product form Lipschitz kernels:

Ip
k (d̃, λ̄) = dk + λkIp

k−1(d̃, λ̄). (10.7)

10.4 A CLASSIFICATION SYSTEM FOR AIAs

As is well known, the Lipschitz properties of an EIA are crucial to determining its
convergence properties. The same is obviously true for an AIA, but we have defined
it as Qa = (T̃, H̃), a composition of the original EIA and an error history. The point of
this is that the Lipschitz properties of the original EIA are sufficient to establish the
convergence properties of the AIA, provided the error terms can be suitably bounded.
Accordingly, we have the following definitions:

Definition 10.1 (Pseudo-Lipschitz EIA/AIA) A sequence of operators T̃ on vector
space V is pseudo-Lipschitz if all Tk possess a common set of fixed points V∗ for
which ‖V∗‖<∞; and each Tk possesses a pseudo-Lipschitz constant λk for all V ∈V.
An EIA Qe = (T̃, V0) is pseudo-Lipschitz if T̃ is pseudo-Lipschitz and ‖V0‖<∞. An
AIA Qa = (T̃, H̃) is pseudo-Lipschitz if T̃ is pseudo-Lipschitz, ‖V0‖<∞, Uk ∈V, and
‖Uk‖<∞ for all k.

Definition 10.2 (Lipschitz EIA/AIA) An sequence of operators T̃ on vector space
V is Lipschitz if for each Tk there exists at least one V ′ ∈V for which ‖V ′‖<∞ and
‖TkV ′‖<∞; and there is a Lipschitz kernel λ̄ <∞ such that each compound operator
Tk,j possesses Lipschitz constant λ̄k,j. An EIA Qe = (T̃, V0) is Lipschitz if T̃ is Lipschitz
and ‖V0‖<∞. An AIA Qa = (T̃, H̃) is Lipschitz if T̃ is Lipschitz, ‖V0‖<∞, Uk ∈V,
and ‖Uk‖<∞ for all k.

The assumptions in Definitions 10.1 and 10.2 are enough to guarantee that for an
AIA, ‖Vk‖<∞. For Definition 10.1, if ‖Vk−1‖<∞, then

‖Vk‖ = ‖TkVk−1 − V∗ + V∗ +Uk‖
≤ λk‖Vk−1 − V∗‖ + ‖V∗‖ + ‖Uk‖
≤ λk‖Vk−1‖ + (1+ λk)‖V∗‖ + ‖Uk‖<∞.
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For Definition 10.2, there exists V ′ with ‖V ′‖<∞ and ‖TkV ′‖<∞, so that if
‖Vk−1‖<∞, then

‖Vk‖ = ‖TkVk−1 − TkV ′ + TkV ′ +Uk‖
≤ λ̄k,1‖Vk−1 − V ′‖ + ‖TkV ′‖ + ‖Uk‖
≤ λ̄k,1‖Vk−1‖ + λ̄k,1‖V ′‖ + ‖TkV ′‖ + ‖Uk‖<∞.

The definitions assume that ‖V0‖<∞, so that the assertion that ‖Vk‖<∞ follows by
induction. The same remark of course applies to EIAs by omitting the ‖Uk‖ terms.

It is of some interest to note that while Definition 10.1 relies on the notion of a
fixed point, Definition 10.2 does not. In fact, our foundational theory does not assume
that an EIA satisfying that definition is formally a fixed point algorithm, merely that
it converges to some solution. The analysis and conclusions are the same whether or
not that solution happens to be some fixed point of interest.

We may also classify EIAs and AIAs in terms of their contraction properties.

Definition 10.3 (Contractive EIA/AIA) An EIA is contractive if (1) it is pseudo-
Lipschitz and λ̄k,1 ≤ ρ for some ρ<1, for all k≥ 1; or (2) it is Lipschitz and λ̄N,k ≤Kρk

for some finite K and ρ<1, for all N≥ k≥ 0. A pseudo-Lipschitz or Lipschitz AIA is
contractive if its associated EIA is contractive.

Definition 10.4 (Weakly Contractive EIA/AIA) An EIA is weakly contractive if it is
pseudo-Lipschitz or Lipschitz and limk→∞ λ̄N+k,k = 0 for all N≥ 0. A pseudo-Lipschitz
or Lipschitz AIA is weakly contractive if its associated EIA is weakly contractive.

Definition 10.5 (Nonexpansive EIA/AIA) An AIA is nonexpansize if it is pseudo-
Lipschitz or Lipschitz and λ̄N,k ≤ 1 for all N≥ k≥ 0. A pseudo-Lipschitz or Lipschitz
AIA is nonexpansize if its associated EIA is nonexpansize.

For greater clarity, the contraction property of Definition 10.3 will sometimes be
referred to as strong contraction, in contrast with the weak contraction property of
Definition 10.4.

A few points are worth noting. A contractive pseudo-Lipschitz EIA is assumed to be
single stage contractive, while a contractive Lipschitz EIA may be J-stage contractive.
The reason for this is that for pseudocontractive EIAs the product form representation
of λ̄ becomes important. Of course, if we are given an operator that is J-stage pseudo-
contractive, it would always be possible to consider the EIA defined by iterations
of the J-step operator TJ, yielding a pseudo-Lipschitz contractive EIA according to
Definition 10.3.

In addition, to say that an AIA is contractive, weakly contractive or nonexpansive
does not imply that these properties hold for the approximate operators T̂k, and in
many interesting cases this implication will not hold. Of course, it will sometimes be
useful to be able to state that this implication does hold, but in general the important
point is to study how the contractive properties of the EIAs interact with the error
terms, so these definitions formally apply to the original operators T̃ only.
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10.4.1 Relative error model

The objective is to resolve the convergence properties of an AIA by imposing suffi-
ciently tight bounds on the sequence ‖Uk‖. However, the assumption that an absolute
operator tolerance dk ≥‖Uk‖may be imposed will sometimes be quite restrictive, since
in many applications we cannot expect the quantity ‖TkVk−1 − TVk−1‖ to be uniformly
bounded over all possible Vk−1. In Almudevar (2008) an approximation model was
developed which assumed a relative bound ‖Uk‖≤bk‖Vk−1‖ for some sequence bk.
Accordingly, we develop a general error model which incorporates both absolute and
relative errors, expressed in the following assumption. Here, the model is generalized
to permit the use of alternative seminorms ‖·‖0 which are dominated by ‖·‖.
(ARE) In AIA Qa = (T̃, H̃) the following bound holds

‖Uk‖≤ ak + bk‖Vk−1‖0, k≥ 1 (10.8)

for some sequence of nonnegative finite constants {ak; k≥ 1}, {bk; k≥ 1},
where ‖·‖0 is a seminorm for which ‖V‖0 ≤ κ0 ‖V‖ for all V ∈V for some
finite constant κ0.

The use of a seminorm in (10.8) is motivated by the following observation. Suppose
there exists ν0, ν1 ∈V and constant β such that for all V ∈V and scalars a we have

Tk(V + aν0)=TkV + βaν1 and T̂k(V + aν0)= T̂kV + βaν1, k≥ 1. (10.9)

Suppose we may assert∥∥∥TkV − T̂kV
∥∥∥≤L ‖V‖ , V ∈V.

If (10.9) holds, then for any scalar a∥∥∥TkV − T̂kV
∥∥∥= ∥∥∥Tk(V + aν0)− T̂k(V + aν0)

∥∥∥≤L inf
a
‖V + aν0‖.

Then set ‖V‖0 = infa‖V + aν0‖, which is a seminorm (see Section 6.3.1), which, by
construction, is dominated by ‖·‖. Possibly, ν0 is an eigenvector with associated eigen-
value β, in which case ν0 = ν1, but we may encounter models for which (10.9) holds
without this assumption.

It is important to note that as long as the boundedness alone of an AIA satisfying
(ARE) can be established there need not be an important difference between the relative
and absolute operator tolerance models, since if supk ‖Vk‖0 ≤M we may claim absolute
bound ‖Uk‖≤ ak + bkM, and this observation will sometimes be quite useful.

If we may claim that the AIA converges to V∗ it may be useful to define the sequence
d̃∗ = (d∗1, d∗2, . . .) by

d∗k = ak + bk‖V∗‖0.

If we first suppose that ‖V∗‖0> 0, then d∗k is, asymptotically, an absolute operator
tolerance, since ak + bk‖Vk−1‖0 ≤ ak + bk‖V∗‖0 + bk‖Vk−1 − V∗‖0 = d∗k + o(bk). On
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the other hand, if ‖V∗‖0 = 0, the bound will depend on the relative convergence rates
of the various components, but will be resolvable with the theory developed here.

We may directly establish an important principle, that if an AIA is contractive,
convergence to fixed point V∗ follows if the operator tolerance converges to zero either
absolutely, or relative to the iterates of the algorithm itself. In terms of the relative error
model, this follows if ak →k 0 and bk → 0. This is summarized in the next theorem.

Theorem 10.1 Suppose a pseudo-Lipschitz AIA Qa = (T̃, H̃) is contractive, with
product kernel λ̃ satisfying limk→∞ λk = ρ<1. If for any s≥ 0 and δ∈ [0, 1− ρ) the
limit

lim sup
n→∞

‖Un‖/max(s, ‖Vn−1‖)= δ

holds, then

lim sup
n→∞

‖Vn − V∗‖≤ δ(1− ρ − δ)−1 max(s, ‖V∗‖).

Proof Fix ε>0 such that ρ + δ+ ε<1. Then there exists Nε such that ‖Un‖≤ (δ+
ε/2) max(s, ‖Vn−1‖) and λn ≤ ρ + ε/2 for all n≥Nε. Then

‖Vn − V∗‖ ≤ ‖Tn,1Vn−1 − Tn,1V∗‖ + ‖Un‖
≤ (ρ + ε/2)‖Vn−1 − V∗‖ + (δ+ ε/2) max(s, ‖Vn−1‖)
≤ (ρ + ε/2)‖Vn−1 − V∗‖ + (δ+ ε/2) max(s, ‖Vn−1 − V∗‖ + ‖V∗‖)
= max((ρ + ε/2)‖Vn−1 − V∗‖ + (δ+ ε/2)s

+ (ρ + δ+ ε)‖Vn−1 − V∗‖ + (δ+ ε/2)‖V∗‖)
≤ (ρ + δ+ ε)‖Vn−1 − V∗‖ + (δ+ ε/2) max(s, ‖V∗‖), (10.10)

for all n≥Nε. Applying (10.10) iteratively,

‖VNε+n − V∗‖ ≤ (ρ + δ+ ε)n‖VNε
− V∗‖ + (δ+ ε)

n−1∑
i=0

(ρ + δ+ ε)i max (s, ‖V∗‖)

≤ (ρ + δ+ ε)n‖VNε
− V∗‖ + (δ+ ε)(1− ρ − δ− ε)−1 max (s, ‖V∗‖)

hence

lim sup
n→∞

‖Vn − V∗‖≤ (δ+ ε)(1− ρ − δ− ε)−1 max(s, ‖V∗‖)

which proves the theorem by making ε arbitrarily small. ///
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10.5 GENERAL INEQUALITIES

From Theorem 10.1 the convergence of a contractive AIA to solution V∗ follows from
the convergence to zero in ‖·‖ of the error terms Uk, both in the absolute and relative
sense. The remaining task is to estimate this rate of convergence, or to bound the algo-
rithm tolerance when ‖Uk‖ does not vanish. We consider separately pseudo-Lipschitz
and Lipschitz models, each in Banach and Hilbert spaces. The pseudo-Lipschitz model
is further specialized to the relative error model.

Let Ũ= (U1, U2, . . .) and d̃U = Ũ= ( ‖U1‖ , ‖U2‖ , . . .). We consider each case
in turn.

Theorem 10.2 (Pseudo-Lipschitz AIAs) For any pseudo-Lipschitz AIA,

‖Vk − V∗‖ ≤ λk,k‖V0 − V∗‖ + I1
k (d̃U , λ̃), k≥ 1. (10.11)

Proof We may write

‖Vk − V∗‖ ≤ ‖TkVk−1 − V∗ +Uk‖
≤ λk‖Vk−1 − V∗‖ + ‖Uk‖.

The argument is then applied to the quantity ‖Vk−1 − V∗‖ of the upper bound, after
which sufficient iterations yield (10.11). ///

Theorem 10.3 (Lipschitz AIAs) For any Lipschitz AIA,

‖Vk − V ′‖ ≤ ‖Tk,kV0 − V ′‖ + I1
k (d̃U , λ̄), k≥ 1.

Proof For any operator T ′ with Lipschitz constant L, and any fixed V0 ∈V we may
write

‖T ′(W +U)− V ′‖ ≤ ‖T ′(W +U)− T ′W + T ′W − V ′‖
≤ ‖T ′W − V ′‖ + ‖T ′(W +U)− T ′W‖
≤ ‖T ′W − V ′‖ + L‖W +U −W‖
≤ ‖T ′W − V ′‖ + L‖U‖. (10.12)

Then for any k≥ 3 we may write

‖Vk − V ′‖ ≤ ‖TkVk−1 − V ′‖ + ‖Uk‖
= ‖Tk(Tk−1Vk−2 +Uk−1)− V ′‖ + ‖Uk‖.

Applying (10.12) to the first term of the upper bound gives

‖Vk − V ′‖ ≤ ‖TkVk−1 − V ′‖ + ‖Uk‖
≤ ‖Tk,2Vk−2 − V ′‖ + ‖Uk‖ + λ̄k,1‖Uk−1‖.
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A second application gives

‖Vk − V ′‖ ≤ ‖Tk,2(Tk−2Vk−3 +Uk−2)− V ′‖ + ‖Uk‖ + λ̄k,1‖Uk−1‖
≤ ‖Tk,3Vk−3 − V ′‖ + ‖Uk‖ + λ̄k,1‖Uk−1‖ + λ̄k,2‖Uk−2‖,

and repeating the argument yields (10.12). ///

It is interesting to note that for contractive pseudo-Lipshitz AIAs, under relative
error model (ARE) if bk →k 0, then the constant bk can be incorporated into the kth
contraction constant λk . To see this, given a product form Lipschitz kernel λ̃ we may
introduce the adjusted kernel:

λ
k,j
b =

{
1 ; j= 0∏k

i=k−j+1 (λi + bi) ; j≥ 1

denoted λ̃b.
This is summarized in the following theorem:

Theorem 10.4 (Pseudo-Lipschitz AIAs with Relative Error) For any pseudo-
Lipschitz AIA, under assumption (ARE)

‖Vk − V∗‖ ≤ λ
k,k
b ‖V0 − V∗‖ + I1

k (d̃∗, λ̃b), k≥ 1. (10.13)

where λk,k
b is the product kernel generated by (λ1 + κ0b1, λ2 + κ0b2, . . .).

Proof Following Theorem 10.2 we write

‖Vk − V∗‖ ≤ λk‖Vk−1 − V∗‖ + ‖Uk‖
≤ λk‖Vk−1 − V∗‖ + ak + bk

∥∥Vk−1
∥∥

0

≤ λk‖Vk−1 − V∗‖ + ak + bk

∥∥V∗∥∥
0 + bk

∥∥Vk−1 − V∗∥∥
0

≤ λk‖Vk−1 − V∗‖ + ak + bk

∥∥V∗∥∥
0 + bk

∥∥Vk−1 − V∗∥∥
0

≤ λk‖Vk−1 − V∗‖ + d∗k + bkκ0
∥∥Vk−1 − V∗∥∥

0

≤ (λk + κ0bk)‖Vk−1 − V∗‖ + d∗k.

An iterative argument similar to that used in Theorem 10.2 yields (10.13). ///

10.5.1 Hilbert space models of AIAs

Within the structure permitted by normed linear spaces, the methods discussed here
depend on the ability to bound the terms ‖Uk‖. As will be seen, in some algorithms
which are naturally expressed as AIAs, this will be too restrictive. However, when
Hilbert space structure is present, a strengthening of this bound may be possible. In
practice, this will occur when we may rely on the error terms Uk to fluctuate in sign
about a central quantity, in a manner permitting their cumulative effect to obey a
law of large numbers. This can be expected to result in weaker convergence criteria
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than would be predicted from the bounds ‖Ui‖ alone. Martingale theory will play an
important role here (Section 4.4).

The averaging requirement on the error terms will take the form of the following
nested conditions

(H1) For some V ′, for all k≥ 1 we have 〈Uk, TkVk−1 − V ′〉 ≤0.
(H2) For some V ′, for all k≥ 1 and m≥ 1 we have:

〈Tk+m,m(TkVk−1 +Uk)− Tk+m,m(TkVk−1), Tk+m,m(TkVk−1)− V ′〉 ≤0.

Note that conditions (H1)–(H2) are specified for a particular V ′. This will usually be
a fixed point V∗ (but see next section for an exception). The intention is that V ′ not
depend on Ũ. These conditions represent precisely the conditions required for the sub-
sequent lemmas. However, they would follow from a more intuitive set of conditions
which we now discuss. Recall the AIA history process Hk = (V0, U1, . . . , Uk−1), k≥ 1.
For a fixed operator sequence we may consider Vk−1 or TkVk−1 to be a mapping of Hk.
It may be the case that in the iteration Vk =TkVk−1 +Uk certain interesting properties
of Uk may not depend on history Hk. Accordingly, we let V[Hk] denote all mappings
from Hk to V.

We will motivate a new set of conditions by considering a simple linear space V of
real valued random variables with inner product 〈X, Y〉=E[XY] for X, Y ∈V, which
induces the L2 norm ‖X‖2 =E[X2]1/2. Suppose Uk is a martingale adapted to Hk, in
particular E[Uk |Hk]= 0, so that

〈Uk, X〉=E[UkX]=E[E[UkX |Hk]]=E[XE[Uk |Hk]]= 0

whenever X ∈V[Hk], so that (H1) will hold, assuming V ′ is fixed, which holds if
V ′ ∈V[H1].

In considering (H2) suppose T(x) is a linear function, and that X, Y ∈V[Hk]. Then
by a similar argument

〈T(X +Uk)− T(X), Y〉=0

so that (H2) will hold.
Thus (H1)–(H2) may be restated in a somewhat more restricted but also more

intuitive way. These conditions will be used in the subsequent development, but may
always be replaced by (H1a)–(H2a):

(H1a) For all k≥ 1 we have 〈Uk, V〉≤0 for any V ∈V[Hk].
(H2a) For all k≥ 1 and m≥ 1 we have 〈Tk+m,m(V ′ +Uk)− Tk+m,m(V ′), V ′′〉 ≤0 for

any V ′, V ′′ ∈V[Hk].

Versions of Theorems 10.2 and 10.3 for Hilbert space may now developed using
analagous arguments. We will assume that any norm ‖·‖ is induced by an inner
product 〈·, ·〉.
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Theorem 10.5 (Pseudo-Lipschitz AIAs on Hilbert Spaces) For any pseudo-
Lipschitz AIA with an inner product satisfying (H1) with V ′ =V∗,

‖Vk − V∗‖2 = [λk,k]2‖V0 − V∗‖2 + I2
k (d̃U , λ̃), k≥ 1. (10.14)

Proof We may write

‖Vk − V∗‖2 = ‖TkVk−1 − V∗ +Uk‖2

= ‖TkVk−1 − V∗‖2 + ‖Uk‖2 + 2〈Uk, TkVk−1 − V∗〉
≤ λ2

k‖Vk−1 − V∗‖2 + ‖Uk‖2.

Then (10.14) holds after sufficient iterations. ///

Theorem 10.6 (Lipschitz AIAs on Hilbert Spaces) For any Lipschitz AIA with an
inner product satisfying (H1)–(H2) for some V ′

‖Vk − V ′‖2 = ‖Tk,kV0 − V ′‖2 + I2
k (d̃U , λ̄), k≥ 1. (10.15)

Proof For any operator T ′ with Lipschitz constant L, and any fixed V0 ∈V we may
write

‖T ′(W + U)− V0‖2

= ‖T ′(W +U)− T ′W + T ′W − V0‖2

≤ ‖T ′W − V0‖2 + L2‖U‖2 + 2〈T ′(W +U)

− T ′W , T ′(W +U)− T ′W − V0〉‖. (10.16)

Then for any k≥ 3 we may write

‖Vk − V ′‖2

= ‖TkVk−1 − V ′ +Uk‖2

= ‖TkVk−1 − V ′‖2 + ‖Uk‖2 + 2〈Uk, TkVk−1 − V ′〉
≤ ‖Tk(Tk−1Vk−2 +Uk−1)− TkTk−1Vk−2 + TkTk−1Vk−2 − V ′‖2 + ‖Uk‖2

≤ ‖TkTk−1Vk−2 − V ′‖ + ‖Tk(Tk−1Vk−2 +Uk−1)− TkTk−1Vk−2)‖2 + ‖Uk‖2

+2〈Tk(Tk−1Vk−2 +Uk−1)− TkTk−1Vk−2, TkTk−1Vk−2 − V ′〉
≤ ‖Tk,2Vk−2 − V ′‖ + ‖Uk‖2 + [λ̄k,1]2‖Uk−1‖2.
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A second application of (10.16) gives

‖Vk − V ′‖2 ≤ ‖Tk,2Vk−2 − V ′‖ + ‖Uk‖2 + [λ̄k,1]2‖Uk−1‖2

≤ ‖Tk,2 − V ′‖ + ‖Uk‖2 + [λ̄k,1]2‖Uk−1‖2 + [λ̄k,2]2‖Uk−2‖2.

Sufficient iterations of the argument yields (10.15). ///

Finally, we consider the relative error model in Hilbert spaces.

Theorem 10.7 (Pseudo-Lipschitz AIAs on Hilbert Spaces with Relative Error)
Suppose we are given a pseudo-Lipschitz AIA with an inner product satisfying (H1) and
product form Lipschitz kernel λ̃. Suppose assumption (ARE) holds. Define the prod-
uct form Lipschitz kernels λ̃(1)

b = (λ1 + b1κ0, λ2 + b2κ0, . . .) and λ̃(2)
b = (λ2

1 + 2b2
1κ

2
0, λ2

2 +
2b2

2κ
2
0, . . .). Then if bkκ0 ≤ 2λk for all k≥ 1

‖Vk − V∗‖2 ≤ [λk,k
b ]2‖V0 − V∗‖2 + 2I2

k (d̃∗, λ̃(1)
b ) k≥ 1. (10.17)

and in general

‖Vk − V∗‖2 ≤
{

k∏
i=1

(
λ2

i + 2b2
i

)} ‖V0 − V∗‖2 + 2I1
k ([d̃∗]2, λ̃(2)

b ) k≥ 1, (10.18)

where [d̃∗]2 is obtained by raising each element of d̃∗ to the power 2.

Proof Following Lemma 10.5 we may write:

‖Vk − V∗‖2 = ‖TkVk−1 − V∗ +Uk‖2

= ‖TkVk−1 − V∗‖2 + ‖Uk‖2 + 2〈Uk, TkVk−1 − V∗〉
≤ λ2

k‖Vk−1 − V∗‖2 + (ak + bk‖Vk−1‖0)2

≤ λ2
k‖Vk−1 − V∗‖2 + (d∗k + bk‖Vk−1 − V∗‖0)2

≤ λ2
k‖Vk−1 − V∗‖2 + 2b2

k‖Vk−1 − V∗‖2
0 + 2(d∗k)2

≤ (λ2
k + 2b2

kκ
2
0

) ‖Vk−1 − V∗‖2 + 2(d∗k)2.

Then (10.18) is obtained after sufficient iteration, while (10.17) follows after noting
that

(
λ2

k + 2b2
kκ

2
0

)≤ (λk + bkκ0
)2 under the given assumption. ///

It is not necessary to assume that the seminorm ‖·‖0 used in definition (ARE) is
induced by an inner product, or otherwise has Hilbert space properties.

The inequality (10.18) of Theorem 10.7 is uniformly sharper than (10.17) and
does not require the additional assumption. The latter is included to emphasize the
point that for both Banach and Hilbert space models accomodating a relative error
model is largely a matter of adding the constants bk to the original Lipschitz kernel.
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The condition bk ≤ 2λk will be met by almost any model we would consider for large
enough k.

10.6 NONEXPANSIVE OPERATORS

Referring to a tolerance model of the form (10.6) it is clearly ideal that I1,k →k 0, since
in this case if the EIA converges, then convergence of the AIA follows, with bounds
on the convergence rate following naturally. As we will see, this will generally be the
case when the AIA is contractive. However, convergence properties of the AIA may
follow from those of the EIA under weaker conditions. To see this, we start with the
following definition.

Suppose we are given a Banach space (V, ‖·‖). One important property of the
contractive operator T on V is that there exists exactly one fixed point V∗, to which
the sequence TnV0 converges for all V0 ∈V. If we are given any general operator kernel
T̃, it will be important to establish that Tn,nV0 converges (in the norm) for all V0 ∈V,
and to characterize the set of all limits (which may be greater than 1). An additional
issue arises with AIAs. The introduction of perturbations means that a larger class of
sequences may need to be considered if T̃ is nonhomogeneous. Therefore, we say T̃ is
universally convergent if the sequence Tn+N−1,nV converges in the norm for all N≥ 1,
V ∈V. If we were concerned with EIAs it may suffice for this condition to hold for
N= 1 alone.

We define the offset operation on a sequence: if ã= (a1, a2, . . .) then ã(N) =
(aN , aN+1, . . .) (so that ã(1) = ã). In particular, this can be applied to T̃, d̃ or d̃U .
This will be used in the following way. Suppose we consider a particular iteration of
an AIA:

VN = TNVN−1 +UN .

we may regard the sequence VN , VN+1, . . . as the N-offset AIA with starting point
VN−1, operator kernel T̃ (N) and operator tolerances Ũ(N). Of course, the offset AIA
has the same limit as the original, but any of the general inequalities may be applied.

For a universally convergent operator kernel define the set

V∗(T̃) =
{

lim
n→∞Tn+N−1,nV : V ∈V, N≥ 1

}
,

and define the distance from any subset V ′ ⊂V

D(V , V ′) = inf
V ′∈V ′ ‖V − V ′‖

Next, for any V ∈V let V̄ (N) = limn→∞ Tn+N−1,nV ∈V∗(T̃) be the limit associated
with starting point V and operator sequence TN , TN+1, . . .. Then define the uniform
convergence bound

δn = sup
V∈V ,N≥1

‖Tn+N−1,nV − V̄ (N)‖.
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If δn is finite, then the tolerance for any N-offset AIA from any starting point V is
bounded by δn after n iterations.

10.6.1 Application of general inequalities to nonexpansive AIAs

A suitable general inequality may be applied to nonexpansive operator kernels, which
possesses Lipschitz kernel λ̄k,j ≤ 1 for all k≥ j≥ 0. Define

EN:n
1 =

n∑
i=1

‖UN+i−1‖,

EN
1 =

∑
i≥N

‖Ui‖,

EN:n
2 =

n∑
i=1

‖UN+i−1‖2,

EN
2 =

∑
i≥N

‖Ui‖2.

In this case the Lipschitz convolutions are bounded by

I1
n (d̃U , λ̄) ≤ E1:n

1 ,

I2
n (d̃U , λ̄) ≤ E1:n

2 .

We begin with the following lemma:

Lemma 10.1 For a nonexpansive Lipschitz AIA,

‖Vn+N−1 − Tn+N−1,nVN−1‖ ≤ EN:n
1 (10.19)

for any N, m≥ 1. For a nonexpansive Lipschitz AIA on an inner product space
satisfying (H1a) and (H2a) we have

‖Vn+N−1 − Tn+N−1,nVN−1‖2 ≤ EN:n
2 . (10.20)

Proof We may apply Theorem 10.3 to the N-offset AIA, yielding

‖Vn+N−1 − V ′‖ ≤ ‖Tn+N−1,nVN−1 − V ′‖ + EN:n
1 . (10.21)

Then (10.19) follows by setting V ′ =Tn+N−1,nVN−1.
It remains to apply Theorem 10.6 to the N-offset AIA with V ′ =Tn+N−1,nVN−1.

Note that (in the original AIA) VN−1 ∈V[Hk] for all k≥N and therefore so is
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Tn+N−1,nVN−1, for all n≥ 1. This means that (H1)–(H2) hold for each N-offset AIA
with V ′ =Tn+N−1,nVN−1, and (10.20) follows. ///

We now give the main theorem.

Theorem 10.8 Suppose we are given a nonexpansive Lipschitz AIA Qa = (T̃, H̃),
where T̃ is universally convergent. Then

(i) If EN
1 →N 0 then D(Vn, V∗(T̃))→n 0.

(ii) The finite bound holds:

D(V2n, V∗(T̃)) ≤ En
1 + δn.

(iii) If EN
1 →N 0 and V∗(T̃) is finite, the AIA possesses a limit.

For a nonexpansive Lipschitz AIA on an inner product space satisfying (H1a) and
(H2a) we have

(i)′ If
√

EN
2 →N 0 then D(Vn, V∗)→n 0.

(ii)′ The finite bound holds:

D(V2n, V∗(T̃)) ≤
√

EN
2 + δn.

(iii)′ If
√

EN
2 →N 0 and V∗(T̃) is finite, the AIA possesses a limit.

Proof Fix N. By Lemma 10.1

‖Vn+N−1 − Tn+N−1,nVN−1‖ ≤ EN:n
1 . (10.22)

Then

‖Vn+N−1 − V̄ (N)‖ ≤ EN:n
1 + ‖Tn+N−1,nVN−1 − V̄ (N)‖. (10.23)

Letting n→∞ gives

lim sup
n→∞

‖Vn − V̄ (N)‖ ≤ EN
1 .

Then part (i) is proven by noting that D(Vn, V∗(T̃))≤‖Vn − V̄ (N)‖, then making εN

arbitrarily small.
Part (ii) follows directly from (10.23) by substituting N= n+ 1.
To prove part (iii), let ε∗ =minV1,V2∈∗V∗(T̃ ) ‖V1 − V2‖. Then select N for which

EN
1 <ε

∗, so that Vn must converge to V̄ (N).
To prove (i)′, (ii)′ and (iii)′ we note that by Lemma 10.1 the upper bound of (10.22)

may be replaced by
√

EN:n
2 , then the remaining argument is identical. ///
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10.6.2 Weakly contractive AIAs

The weakly contractive model is something of a hybrid. Nominally, it is nonexpansive.
However, the convergence properties of the EIA rely on the convergence of λk,k to zero.
Essentially, the sequence of operators T̃ are contractive, but the contraction constant
approaches 1, with λk,k vanishing if the approach to 1 is at a slow enough rate. In a
manner similar to Theorem 10.8 we may also conclude that a bound

∑
i≥1 ‖Ui‖<∞

or
∑

i≥1 ‖Ui‖2<∞ suffices for the convergence of an AIA. However, we will see that
the weak contraction property can be exploited within the Lipschitz convolution itself
to provide more general results, and in some cases precise convergence rates.

Theorem 10.9 Suppose an AIA is pseudo-Lipschitz and weakly contractive. Sup-
pose further that EN

1 →N 0. Then limk ‖Vk − V∗‖=0. If in addition the AIA is
defined an inner product space satisfying (H1) for V ′ =V∗ then EN

2 →N 0 implies
limk ‖Vk − V∗‖=0.

Proof Let EN =∑i>N ‖Ui‖. Applying Theorem 10.2 to the N-offset AIA yields
the bound

‖VN+k − V∗‖ = λN+k,k‖VN − V∗‖ + EN
1

so that under the assumptions, lim supk≥1‖VN+k − V∗‖≤EN
1 . However, this holds for

all N, so the lemma holds by noting limN→∞ EN
1 = 0. Under the hypothesis, we may

apply Theorem 10.5 to complete the proof in a similar manner. ///

There exists exactly one fixed point for a weakly contractive EIA and this holds
for the AIA. When only the nonexpansive property is given, a fixed point either need
not exist, or may not be unique.

10.6.3 Examples

A number of EIAs are commonly used for determination of a fixed point V∗ =TV∗
when T is nonexpansive. Some of the most commonly studied algorithms are defined
by the following update rules:

Vk+1 = TVk (Picard iteration),
Vk+1 = (1− α)Vk + αTVk (Krasnoselskij iteration),
Vk+1 = (1− αk)Vk + αkTVk (Mann iteration),
Vk+1 = (1− αk)Vk + αkTYk, where

Yk = (1− βk)Vk + βkTVk (Ishikawa iteration).

See Berinde (2007) for a source on this subject.
All the employed parameters may be, at least provisionally, assumed to be in the

interval [0, 1], so that each iteration listed includes all the preceding ones as special
cases. The distinctions are important with respect to the conditions on the parameters,
operator T and on the structure of (V , ‖·‖), and also on the relative convergence rates.
For this reason, there is an advantage to studying the various algorithms separately,
even though they may be regarded as special cases of the Ishikawa iteration.
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Define the compound operator Tα= (1− α)I + αT, which defines a mapping Tα :
V →V. Then all but the Ishikawa iteration can be written in the form:

Vk+1 = TkVk, where

Tk = Tαk (10.24)

for some sequence αk ∈ [0, 1]. Clearly, Tα has the same fixed points as T. Also, if
T possesses (pseudo-) Lipschitz constant λ, then Tα is easily shown to be (pseudo-)
Lipschitz with constant (1− α)+ αλ.

The Ishikawa iteration is based on operators written explicitly as

Tα,βV = (1− α)V + αT[(1− β)V + βTV].

If T possesses (pseudo-) Lipschitz constant λ, then Tα,β possesses (pseudo-) Lipschitz
constant (1− α)+ α(1− β)λ+ αβλ2.

Since a single evaluation of Tα,β involves two evaluations of T, it is appropriate to
decompose the operator error into two sources, yielding AIA:

Vk+1 = (1− αk)Vk + αkTYk + αkUk,

Yk = (1− βk)Vk + βkTVk + βkWk. (10.25)

We may therefore represent an approximation evaluation of Tα,βV as

T̂α,βV = (1− α)V + αT[(1− β)V + βTV + βW]+ αU, (10.26)

leading to operator tolerance

∥∥∥T̂α,βV − Tα,βV
∥∥∥

≤α ‖U‖ + α ‖T[(1− β)V + βTV + βW]− T[(1− β)V + βTV]‖
≤α ‖U‖ + β ‖W‖ . (10.27)

Theorem 10.8 then applies directly, and in the notation of the hypothesis,

En
1 =

∑
i≥n

(αi ‖Ui‖ + βi ‖Wi‖) ,

En
2 =

∑
i≥n

(αi ‖Ui‖ + βi ‖Wi‖)2 .

Suppose we are given fixed series αk, βk, k≥ 1. Construction of an AIA based on the
approximate operator T̂α,β given in (10.26) leads to iterations of the form (10.25). We
may compare the AIA to the EIA based on operator sequence T̃ = (Tα1,β1 , Tα2,β2 , . . .).
Under the conditions of Theorem 10.8 if the operator sequence T̃ is universally con-
vergent, then the AIA converges to the solution space of the EIA for the Banach space,
or Hilbert space, model if En

1 →n 0, or En
2 →n 0, respectively.



218 Approximate iterative algorithms

The requirement that E1
n →n 0 is a standard one (see Definition 6.1 of Berinde

(2007), also Liu (1995), Osilike (1997), Deng and Li (2000), Liu (2001)). Require-
ments on the constants αk,βk for the convergence of the EIA were originally reported
in Ishikawa (1974) as

0≤αk ≤βk ≤ 1, k≥ 1

lim
k→∞

βk = 0

∑
k≥1

αkβk = ∞,

under the stated hypothesis, that T is a Lipschitz map on a convex compact
subset of a Hilbert space, satisfying the ‘pseudocontractive’ property (using another
terminological convention):

‖V −W‖≤‖(1+ r)(V −W)− r(TV − TW)‖ , for all V , W ∈V, r> 0.

As a general principle, when an EIA is convergent, under the contraction property
an associated AIA is also convergent if the operator tolerance vanishes, while under
the nonexpansive property the same holds if the summation of the operator tolerances
is finite. We next examine an important intermediate case.

10.6.4 Stochastic approximation (Robbins-Monro algorithm)

The Robbins-Monro algorithm (RMA), generally known as stochastic approximation,
is used to find the solution t0 to an equation g(t)= g0 in R, where g(y) is an increas-
ing function which can be evaluated only with random errors (Robbins and Monro
(1951)). Soon after its introduction, the algorithm was extended to the optimization
problem, in this form known as the Kiefer-Wolfowitz algorithm (Kiefer and Wolfowitz
(1952)). The RMA is useful when it is easier to simulate a random variable with mean
g(y) then to evaluate g(y) itself. Like other simulation-based computational tools the
RMA is very general in its applicability, and straightforward to implement.

First, assume g0 = 0 (if necessary, replace g(t) with g(t)− g0). Suppose for any t
we can obtain (by simulation or otherwise) a noisy evaluation of g(t):

Gt = g(t)+ εt, E[εt]= 0.

Let an → 0 be a sequence of positive constants. The RMA is defined by

Yn = Yn−1 − anZn, n≥ 1, (10.28)

where Zn ∼GYn−1 , and the simulation is independent of process history conditional
on Yn−1. Conditions under which Yn → t0 in the L2 norm were originally reported in
Robbins and Monro (1951):∑

n≥1

an =∞, (RM1)

∑
n≥1

a2
n<∞. (RM2)
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Almost sure convergence under (RM1) and (RM2) was verified in Ljung (1978).
The RMA can be expressed as an AIA. For a∈R define the operator Tay= y −

ag(y). The fixed point equation y=Tay is solved by y= t0. Then set

Yn = TnYn−1 +Un, where

Tn = Tan , and

Un = an [g(Yn−1)− Zn].

Under most implementations we may expect Un to possess the martingale prop-
erty E[Un |Fn−1]= 0, where Fn−1 = σ(U1, . . . , Un−1) represents process history. Also,
assume E[U2

n |Fn−1]≤ a2
nσ

2 for all n. We impose further conditions on g(y), first, that it
possesses pseuo-Lipschitz constant L, and that there is a nonzero constant η for which
g(y)/y≥ η for all y �= 0. Otherwise, g need be continuous only at y= 0. Thus, for all a<
L−1, Ta is pseudocontractive with constant 1− aη. To see this, fix y> 0, and suppose
a<L−1. This means y − ag(y)> 0, so that |y − ag(y)| = y − ag(y)≤ (1− aη)y (note that
we must have η≤L, and therefore (1− aη)> 0). The same argument applies for y< 0.

We will now apply Theorem 10.5. The Hilbert space will be the space of ran-
dom variables with inner product E[XY]. Because ak → 0, the condition ak<L−1

will eventually be met. By restarting the algorithm at this point, we may equivalently
assume that ak<L−1 for all k from an abitrary starting point y0. For this reason,
implementation of the RMA does not require the knowledge of the actual values η
and L. So, we have contraction constants ρk = 1− ηak. Furthermore, the condition
〈Uk, TkYk−1〉=E[UkTkYk−1]= 0 follows from the martingale property. We therefore
have (assuming, without loss of generality, ρk ≤ 1),

E[(Yk − t0)2] ≤
[

k∏
i=1

ρ2
i

]
E[(Y0 − t0)2]+

k∑
i=1

ρ2
kE[U2

i ]

≤
[

k∏
i=1

(1− ηai)

]2

E[(Y0 − t0)2]+ σ2
k∑

i=1

a2
i . (10.29)

In general, for a∈ [0, 1) we have log(1− a)≤−a, so that the product in (10.29) is
bounded by

k∏
i=1

(1− ηai)= exp

(
k∑

i=1

log(1− ηai)

)
≤ exp

(
−η

k∑
i=1

ai

)

By condition (RM1) the preceding bound approaches 0 as k→∞, and by condition
(RM2) the summation in the bound given in (10.29) is bounded as k→∞, which
together imply that E[(Yk − t0)2] remains bounded as k→∞.

Next, by condition (RM2) for any εwe may select N for which
∑

i≥N a2
i ≤ ε. Then,

considering the offset algorithm we have
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E[(YN+k − t0)2]≤
[

N+k∏
i=N

(1− ηai)

]2

E[(YN − t0)2]+ σ2ε.

Letting k→∞ we have, following a similar argument, lim supk E[(Yk − t0)2]≤ σ2ε.
This holds for any ε, so we conclude that Yn converges to t0 in the L2 norm. Thus,
the RMA can be seen as an AIA, with EIA based on contraction constants ρk. This
argument is, in fact, a special case of Theorem 10.9.

Note that in deriving the upper bound in (10.29) we simply accepted the
nonexpansive assumption ρk ≤ 1 in the summation. We will see in Section 10.8 below
that exploiting condition (RM1) within this term will lead to a stronger result, in that
we can obtain explicit convergence rates, and can dispense with condition (RM2).

10.7 RATES OF CONVERGENCE FOR AIAs

In this section we obtain asymptotic rates or bounds for AIAs satisfying a general
inequality with a product form Lipschitz kernel. The main task is to resolve the asymp-
totic properties of the Lipschitz convolution in the tolerance model (10.6), the final
step being to compare this rate to the convergence rate of the EIA αn, thus resolving
the convergence rate of the AIA. Clearly, the tolerance ηk can never be smaller than αk

(the question of sharpness will be considered below). We will find, however, that the
contribution of the approximation error, Ip

k (d̃, λ̄) can be asymptotically smaller than
the exact tolerance, and we may predict when this will occur.

In this section we will assume that an AIA satisfies the general inequality

‖Vk − V∗‖p = [λ̄k,k]p‖V0 − V∗‖p + Ip
k (d̃, λ̄) k≥ 1, (10.30)

where λ̄ is a product Lipschitz kernel generated by sequence (ρ1, ρ2, . . .), and d̃ is some
positive sequence. General inequalities of the form (10.30) can be directly verified from
Theorems 10.2, 10.4, 10.5 or 10.7.

It is important to note that the general inequality (10.30) may be used with a
Lipschitz kernel other than that of the AIA itself. For example, it may be the case
that (10.30) holds for some λ̄ which does not satisfy some regularity condition, in
which case it may be possible to replace λ̄ with an upper envelope λ̄′ ≥ λ̄ which does.
This is discussed below in Section 10.7.1. Alternatively, we may be able to establish
(10.30) only for the adjusted kernel λ̄b (using Theorems 10.4 or 10.7) when the relative
error model (ARE) holds. In either case, the following theory does not require that
the Lipschitz kernel satisfying (10.30) be the actual Lipschitz kernel for the AIA.
However, in the case of the relative error model, there may be some value in decom-
posing the bound into components corresponding to the Lipshitz kernel of the AIA
and the sequences defining the relative error model (ARE). This discussion is deferred
to Section 10.7.7 below.

10.7.1 Monotonicity of the Lipschitz kernel

The Lipschitz convolution is clearly monotone, so that Ip
k (d̃, λ̄)≤ Ip

k (d̃′, λ̄) or Ip
k (d̃, λ̄)≤

Ip
k (d̃, λ̄′) if d̃≤ d̃′ or λ̄≤ λ̄′. In addition, it will be natural to use a product form Lipschitz

kernel generated by sequence λk. When λ̄ is not product form, we may substitute any
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other bounding kernel. We may, for example, always define a product form kernel
from the sequence λk = λ̄k,1. For multistage contraction operators, we can not expect
that λ̄k,1< 1. However, if the operator sequence is J-stage contractive, that is, Tk,J

possesses contraction constant ρ for each k≥ J, then we must have λ̄k,j ≤ (ρ1/J)j−J+1,
which can serve as a bounding product form kernel. See Chapter 9 for an extensive
discussion of this issue.

10.7.2 Case I – strongly contractive models with
nonvanishing bounds

We first establish that the asymptotic behavior of an AIA is dominated by dk under
strong contraction.

Theorem 10.10 Suppose an AIA satisfies general inequality (10.30).

(i) If λ̄ is a product form Lipschitz kernel for which λu{λ̄k,k}= ρ<1 then:

lim sup
k→∞

Ip
k (d̃, λ̄) ≤ (1− ρp)−1 lim sup

k→∞
dp

k , and therefore

lim sup
k→∞

∥∥Vk − V∗∥∥ ≤ (1− ρp)−1/p lim sup
k→∞

dk. (10.31)

(ii) If for some nonincreasing sequence βi, i≥ 0, for which limi βi = 0, we have
λ̄k,i =βi for all k≥ i≥ 0 then

lim sup
k→∞

Ip
k (d̃, λ̄) ≤

[ ∞∑
i=0

β
p
i

]
lim sup

k→∞
dp

k , and therefore

lim sup
k→∞

∥∥Vk − V∗∥∥ ≤
[ ∞∑

i=0

β
p
i

]1/p

lim sup
k→∞

dk. (10.32)

Proof Set d′ = lim supk dk. First take the p= 1 case. We may select kε large enough
such that supk≥kε dk ≤ d′ + ε. Then, for k> kε we may write

k∑
i=1

λ̄k,k−idi =
kε∑

i=1

λ̄k,k−idi +
k∑

i=kε+1

λ̄k,k−idi

≤
kε∑

i=1

λ̄k,k−idi + (d′ + ε)
k∑

i=kε+1

λ̄k,k−i. (10.33)

For part (i) we may also select kε large enough that ρk ≤ ρ + ε for all k≥ kε.
Then by (10.33) we have

k∑
i=1

λ̄k,k−idi ≤
kε∑

i=1

λ̄k,k−idi + (d′ + ε)
k∑

i=0

(ρ + ε)i.
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Each term in the first summation of the preceding upper bound approaches 0 as k→∞.
The argument is completed by allowing ε to approach 0.

Similarly, for part (ii) we have

k∑
i=1

λ̄k,k−idi ≤
kε∑

i=1

λ̄k,k−idi + (d′ + ε)
k∑

i=0

βi,

with the remaining argument the same as for part (i). The argument for general p> 0
is essentially the same. ///

10.7.3 Case II – rapidly vanishing approximation error

We say the approximation errors vanish rapidly if the following condition holds:

∑
i≥1

(
di/λ̄

i,i)p <∞. (10.34)

It is easy to prove that when this condition holds the AIA converges at the same rate
as the EIA.

Theorem 10.11 Suppose an AIA satisfies general inequality (10.30). If assumption
(10.34) holds then

Ip
k (d̃, λ̄)=�

(
[λ̄k,k]p

)
and therefore ‖Vk − V∗‖≤�(λ̄k,k). (10.35)

Proof The result holds directly by noting Ik(d̃, λ̄)= λ̄k,k∑k
i=1 di/λ̄

i,i. ///

A convenient special case of Case II is available.

Theorem 10.12 If λ̂l{λ̄k,k}= ρ and λ̂u{d̃}= r<ρ then (10.34) holds for any p> 0.

Proof Select any ε>0 for which r+ ε<ρ − ε. There exists finite kε for which λ̄k,k ≥
(ρ − ε)k and dk ≤ (r+ ε)k for all k> kε. We may write for large enough k and any p> 0

k∑
i=1

(di/λ̄
i,i)p ≤

kε∑
i=1

(di/λ̄
i,i)p +

k∑
i=kε+1

([
r+ ε
ρ − ε

]p)i

≤ Kε +
(

1−
[

r+ ε
ρ − ε

]p)−1

where Kε is a finite constant which does not depend on k. By hypothesis the upper
bound is finite, therefore (10.34) holds. ///
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10.7.4 Case III – approximation error decreasing
at contraction rate

We say the approximation errors decrease at the contraction rate if the following
condition holds:

λ̂

{
k∑

i=1

(
di/λ̄

i,i)p} = 1. (10.36)

The simplest such case occurs when dk = λ̄k,k = ρk, in which case
∑k

i=1

(
di/λ̄

i,i
)p = k,

so that (10.36) holds. Note that if d̃ is positive, which we assume within the general

inequality (10.30), we must have λ̂
{∑k

i=1

(
di/λ̄

i,i
)p}≥ 1 by Lemma 9.1.

Theorem 10.13 Suppose an AIA satisfies general inequality (10.30). If assumption
(10.36) holds then

λ̂u
{
Ip

k (d̃, λ̄)
}
= λ̂u{[λ̄k,k]p} and therefore λ̂u {‖Vk − V∗‖}≤ λ̂u{λ̄k,k}. (10.37)

Proof The result holds directly by noting

k−1 log
(
Ip

k (d̃, λ̄)
)
= k−1

(
log
(
[λ̄k,k]p

)
+ log

(
k∑

i=1

(
di/λ̄

i,i)p))

and applying assumption (10.36) directly. ///

A result analagous to Theorem 10.12 for Case II is available.

Theorem 10.14 If d̃ is positive, λ̂l{λ̄k,k}= ρ and λ̂u{d̃}= ρ then (10.36) holds for any
p> 0.

Proof Select any ε>0 for which 0<ρ − ε and ρ + ε<1. There exists finite kε for
which λ̄k,k ≥ (ρ − ε)k and dk ≤ (ρ + ε)k for all k> kε. We may write for large enough k
and any p> 0

k∑
i=1

(di/λ̄
i,i)p ≤

kε∑
i=1

(di/λ̄
i,i)p +

k∑
i=kε+1

([
ρ + ε
ρ − ε

]p)i

≤ Kε + k
([
ρ + ε
ρ − ε

]p)k

(10.38)

where Kε is a finite constant which does not depend on k. The inequality (10.38) then
leads to

lim sup
k→∞

k−1
k∑

i=1

(di/λ̄
i,i)p ≤ log

(([
ρ + ε
ρ − ε

]p))
,
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which completes the proof after noting that the upper bound approaches 0 as ε
approaches 0. ///

10.7.5 Case IV – Approximation error greater than
contraction rate

Case IV covers an important special case, in particular, dk = k−q for q> 0. For example,
when approximations are based on statistical estimation we will often have q= 1/2.
The point here is that dk approaches zero more slowly than the EIA. In this case we
conclude, in general, that ‖Vk − V∗‖=O(dk). The proof makes use of the l’Hôpital’s
rule analog for discrete series of Section 9.4. Of course, the original l’Hôpital’s rule
makes use of derivatives. In the discrete case, this manifests itself in a smoothness
requirement for the sequence dk. If this does not hold, then dk can be replaced by a
smooth upper envelope (see Chapter 9 for some relevant techniques).

Theorem 10.15 Suppose an AIA satisfies general inequality (10.30) and λu{λ̄k,k}=
ρ<1.

(i) If λl{d̃}= r>ρ then

lim sup
k→∞

d−p
k Ip

k (d̃, λ̄)≤ (1− [ρ/r]p)−1
and therefore

lim sup
k

d−1
k

∥∥Vk − V∗∥∥≤ (1− [ρ/r]p)−1/p. (10.39)

(ii) If λ̂u{d̃}= r>ρ then

λ̂u{Ip
k (d̃, λ̄)}≤ rp and therefore

λ̂u{∥∥Vk − V∗∥∥}≤ r. (10.40)

Proof Part (i) follows directly from Lemma 9.8. For part (ii) from Theorem 9.1
there exists a sequence d̃∗ = {d∗k} for which d∗k ≥ dk, λl{d∗k}≥ ρ and λ̂{a∗k}= ρ. Since

Ip
k (d̃, λ̄)≤ Ip

k (d̃∗, λ̄), we may apply (10.39) to d̃∗ obtain (10.40). ///

10.7.6 Case V – Contraction rates approaching 1

We next consider a class of algorithms based on contractive operators, but with con-
tractive constants approaching 1 as k→∞. In such cases, while the convergence
properties do depend on the contractivity property, the overall convergence rate is
no longer linear. However, convergence rates may be obtained using much the same
analysis as for the strongly contractive case.

The essential assumption is that limk→∞ ρk = 1. It will additionally be convenient
to assume that ρk is increasing. If it isn’t, it may be replaced by the envelope ρ∗k =
supi≤k ρi.
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First consider the exact algorithm (that is, ‖Uk‖=0). Directly from Theorem 10.2
we then have

‖Vk − V∗‖ ≤ λk,k‖V0 − V∗‖, k≥ 1, (10.41)

so that convergence of the AIA requires, at least, that limk λ
k,k = 0 (compare to the

RMA, Section 10.6.4). Following Section 9.1, a necessary and sufficient condition is
easily stated. If ρk = 1− δk, then limk λ

k,k = 0 if and only if
∑

k δk =∞. Intuitively,
this requirement forces ρk to approach 1 slowly enough for the contractive property to
force convergence to the fixed point. However, it is important to note that even without
this condition, approximation theory is still relevant. It may be that the bound (10.41)
suffices for a particular application even if it does not converge to 0, in which case we
may still predict the effect of approximation in the same way.

First note that Case II (Section 10.7.3) does not require the strong contraction
assumption, so we also have

‖Vk − V∗‖ ≤ �
(
λ̄k,k
)

, (10.42)

for the Case II condition. For example, if d̃ convervges to 0 linearly, and ρk → 1,
then λ̄k,k either possesses a nonzero limit, or converges to 0 sublinearly, in which case
(10.42) clearly holds. A similar remark holds for Case III.

With some additional assumptions, a more direct comparison with Case IV can
be made. In particular, if for case IV we have ‖Vk − V∗‖≈ (1− ρp)−1/pdk, we might
expect that for Case V we have ‖Vk − V∗‖≈ (1− ρp

k)−1/pdk, which is in fact the case.

Theorem 10.16 Suppose an AIA satisfies general inequality (10.30). Define

αk = (dk−1/dk)ρk, k≥ 1.

Suppose the hypothesis of Theorem 9.3 is satisfied, that is, αn is nondecreasing with
αn< 1. Then

lim sup
k→∞

Ip
k (d̃, λ̄)

dp
k(1− αp

k)−1
≤ 1 and therefore

lim sup
k→∞

‖Vk − V∗‖
dk(1− αp

k)−1/p
≤ 1. (10.43)

In addition, if d̃ is nonincreasing and ρk → 1 then

lim sup
k→∞

(
dk−1
dk

)p − 1

1− ρp
k

= r< 1 (10.44)
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and

lim sup
k→∞

Ip
k (d̃, λ̄)

dp
k(1− ρp

k)−1(1− r)−1
≤ 1 and therefore

lim sup
k→∞

‖Vk − V∗‖
dk(1− ρp

k)−1/p(1− r)−1/p
≤ 1. (10.45)

Proof The first statement of (10.43) is a direct application of Theorem 9.3, raising
ρn and dn to the pth power. Within the argument of Theorem 9.3 it is shown that
mink→∞ (λ̄k,k)−pIp

k (d̃, λ̄)=∞, so that in (10.30) the term Ip
k (d̃, λ̄) is asymptotically

dominant, which completes the proof.
To prove (10.45) write

1− αp
k = (1− ρp

k)+ ρp
k(1− dk−1

dk
),

then from (10.44), and the fact that ρk → 1, we have

lim inf
k→∞

1− αp
k

1− ρp
k

= 1− r, (10.46)

then (10.45) follows by substitution of (10.46) into (10.43). ///

In order to clarify the assumption in Theorem 10.16 that αn is nondecreasing,
and αn< 1 for all large enough n, consider a simple example in which dn = an−s and
δn = bn−t for positive constants s,t,a and b, so that ρn = 1− δn. As discussed earlier, to
obtain convergence we need to have

∑
n δn =∞, so we assume that t≤ 1. This gives

dn−1/dn = (1− (1/n))−s and ρn = 1− b(1/n)t

It will be convenient to define the functions D(x)= (1− x)−s and ρ(x)= 1− b(x)t on
x∈ [0,∞) so that dn−1/dn =D(1/n) and ρn = ρ(1/n), and we investigate the behavior
of the model as n→∞ by allowing x→ 0. We may use Taylor’s expansions to obtain

D(x)p = 1+ spx+ sp(sp+ 1)x2/2+O(x3) and

ρ(x)p = 1− p(bxt)+ p(p− 1)(bxt)2/2+O(x3t).

Then set α(x)=D(x)ρ(x) so that αn =α(1/n). If t< 1 it can be verified that the first
derivative α′(0)< 0, and since α(0)= 1, it follows that αn ↑ 1. If t= 1 then

dα(x)
dx

= (s− b)+ bx(1− s)
(1− x)s+1

,

so that α′(0)< 0 if b> s or b= s> 1.
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Then consider the rate of convergence of ‖Vn − V∗‖p given in in (10.43), in
particular dn/(1− αp

n)1/p. Taking (1− αp
n) separately, for t< 1 we have

1− α(x)p = 1−D(x)pρ(x)p ≈ pbxt

so that 1− αp
n ≈ pbn−t, giving

dn

(1− αp
n)1/p

≈ a
(pb)1/p

1
ns−t/p

.

Thus, we have convergence if s> t/p, with the Hilbert space model resulting in a strict
improvement in the convergence rate.

Next, suppose t= 1. We have two cases, b> s and b= s> 1. If the first holds
we have

1− α(x)p ≈ (b− s)px,

so that

dn

(1− αp
n)1/p

≈ a
(p(b− s))1/p

1
ns−t/p

,

obtaining the same convergence rate as the t< 1 case, but with a different constant.
Next, suppose t= 1 and b= s> 1. we have

1− α(x)p ≈ ps(s− 1)/2x2,

so that

dn

(1− αp
n)1/p

≈ a
(ps(s− 1)/2)1/p

1
ns−2/p

so that the convergence rate now becomes O(1/ns−2/p).

10.7.7 Adjustments for relative error models

The relative error model (ARE) is accomodated by verifying that the general inequality
(10.30) holds with the adjusted kernel λ̄b. This will generally be adequate if bk → 0,
otherwise it is best to use a bound which explicitly separates the Lipshitz kernel of
the AIA from the sequences defining (ARE). In this case the Banach space and Hilbert
space models can be are treated separately to some advantage as will be discussed in
the next section.

Theorem 10.17 Suppose we are given an AIA with product form Lipschitz kernel
λ̄= (ρ1, ρ2, . . .) and (ARE) holds with lim supk κ0bk = δ for some δ∈ [0, 1− ρ). Then

lim sup
k→∞

∥∥Vk − V∗∥∥ ≤ (1− ρ − δ)−1 lim sup
k→∞

d∗k. (10.47)
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If in addition the assumptions of Theorem 10.7 hold, then if κ0bk ≤ δ∈[
0, 2−1/2

√
1− ρ2

)
,

lim sup
k→∞

∥∥Vk − V∗∥∥ ≤ 21/2(1− ρ2 − 2δ2)−1/2 lim sup
k→∞

d∗k. (10.48)

Proof The bound (10.47) follows directly from Theorem 10.10 by substituting λ̄b

for λ̄. The bound (10.48) is obtained from (10.18) of Theorem 10.7 by applying
Theorem 10.10. ///

10.7.8 A comparison of Banach space and Hilbert space models

There are two issues on which to elaborate. First, the bound (10.31) of Theorem
10.10 depends on the quantity (1 − ρp)−1/p, while the bound (10.39) of Theorem
10.15 depends on the quantity (1− [ρ/r]p)−1/p. In the following discussion, we lose
nothing by considering the quantity (1− ρp)−1/p alone. In both the Banach and Hilbert
space cases (that is, p= 1 or p= 2 respectively), the dependence of the convergence
of the AIA on the asymptotic properties of d̃ is exactly the same. However, there is
an important difference with respect to the constant (1− ρp)−1/p. Although this value
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Figure 10.1 The graph representes the ratio of the contributions to the algorithm tolerance of the
contraction constant for the Hilbert space model (numerator) to the Banach space model
(denominator) (Section 10.7.8).
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does not affect the convergence properties of the AIA, it is still an important quantity
with respect to the algorithm tolerance, particularly because the contraction constant
will, in practice, often be close to 1. To assess the impact of the power p, take the
ration of the quantities:

(1− ρ2)−1/2

(1− ρ)−1
=
√

1− ρ
1+ ρ .

This quantity is plotted in Figure 10.1. Interestingly, this quantity approaches 0 as
ρ→ 1, so that if the Hilbert space model can be used, a much stronger bound on the
algorithm tolerance may be possible.

To deal with the second issue note that (10.47) of Theorem 10.17 states that
lim supk→∞ ‖Vk − V∗‖ / ‖V∗‖≤ δ(1− ρ − δ)−1. The tolerance thus becomes relative
to solution ‖V∗‖, and to attain a useful bound we would need to have δ small in
relation to (1− ρ)−1. This means that the constraint δ<1− ρ of Theorem 10.17 is a
necessary one. It is thus interesting to note that use of the Hilbert space model brings
another advantage, namely that the bound on δ can be relaxed to 2−1/2

√
1− ρ2, which

is strictly larger over ρ∈ (1/3, 1) (bound (10.47) can always be used should we have
ρ≤ 1/3). See Figure 10.2.
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Figure 10.2 Permissible bounds for relative error for Banach space and Hilbert space model. See
Theorem 10.17.
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10.8 STOCHASTIC APPROXIMATION AS A WEAKLY
CONTRACTIVE ALGORITHM

We continue the discussion of the Robbins-Monro algorithm introduced in Section
10.6.4. The kth operator is contractive with constant ρk = 1− ηak. We have already
shown that λk,k →k 0 if and only if

∑
k ak =∞, which is precisely condition (RM1).

It is important to note at this point that if were able to use the RMA to determine a
root of g(t) using noise-free evaluations, we could do so, as long as (RM1) held. In
other words, if RMA is interpreted as an AIA, then (RM1) would be the sole condition
needed to ensure convergence of the EIA on which it is based.

We will make use of Theorems 9.3 and 10.16, and the notation used the respective
proofs. Because we are using a Hilbert space model, for convenience we may set λk = ρ2

k
and dk = σ2a2

k. Then

τk = (1− [ak−1/ak]2(1− ηak)2)−1.

A common practice in the analysis of the RMA is to set ak ∝ k−q. The standard
regularity conditions force q∈ (1/2, 1]. To analyze τk define function

f (x | η, q) = (1− ηxq)(1− x)−q, so that

τk = (1− f (1/k | η, q)2)−1.

The derivative with respect to x is

df (x | η, q)
dx

= q(1− qηxq−1)
(1− x)q+1

. (10.49)

Then, for q∈ (0, 1) and η>0 we have f (0 | η, q)= 1, and from (10.49) df (x | η, q)/dx<
0 for all small enough x> 0, since q< 1. It follows that τk satisfies the required
conditions.

Next, consider the problem of determining constants A and p for which

lim
x↓0

Axp(1− f (x | η, q)2)−1 = 1.

An application of l’Hôpital’s rule gives p= q and A= 2qη, so that

lim sup
k→∞

‖Vk − V∗‖2

2qησ2k−q
≤ 1, (10.50)

so that ‖Vk − V∗‖=O(k−q/2). Thus, in contrast with the strongly contractive
algorithm, for which ‖Vk − V∗‖=O(dk) for the RMA we have ‖Vk − V∗‖=O(d1/2

k ).
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The case q= 1 requires a separate analysis, and is in fact the recommendation
given in Robbins and Monro (1951). First note that

λk,k = exp

(
k∑

i=1

log (1− ηak)

)

≈ k−c0η

where c0 is a finite positive constant independent of all parameters. We then have

‖Vk − V∗‖2 ≤ (ρk,k)2‖V0 − V∗‖2 + σ2(ρk,k)2
k∑

i=1

(di/ρ
i,i)2

≈ k−2c0η

(
‖V0 − V∗‖2 + σ2

k∑
i=1

i2c0η−2

)

≈
{

k−2c0η
(
‖V0 − V∗‖2 + σ2c1

2c0η−1 k2c0η−1
)

; c0η �= 1/2

k−2c0η
(‖V0 − V∗‖2 + σ2c2 log (k)

)
; c0η= 1/2

,

where c1, c2 are finite positive constants independent of all parameters. This leads to
bounds

‖Vk − V∗‖≤

⎧⎪⎪⎨
⎪⎪⎩
‖V0 − V∗‖k−c0η +O(k−1/2); c0η<1/2

σc1/2
2 [k−1 log (k)]1/2 +O(k−1/2); c0η= 1/2√
σ2c1

2c0η−1 [k−1/2]+O(k−c0η); c0η>1/2

. (10.51)

For the q= 1 case, the algorithm tolerance rate depends on the value of η. From (10.51)
we may conclude that for all large enough η the algorithm tolerance is ‖Vk − V∗‖≤
O(k−1/2), with smaller values yielding slower convergence rates.

With this caveat, we have a general form of the algorithm tolerance ‖Vk − V∗‖≤
O(k−q/2) for any q∈ (0, 1). It will be of some interest to note that this holds for values of
q< 1/2 which violate (RM2), thus we conclude that this assumption is not necessary.
A number of alternative conditions for the convergence of the RMA which do not rely
on (RM2) can be found in the literature, for example, Kushner and Yin (2003) (see
Chapters 1 and 5).

10.9 TIGHTNESS OF ALGORITHM TOLERANCE

Clearly, an AIA will not converge more quickly than the error term. This is expressed
formally in the next theorem, in the sense that the algorithm error ‖Vk − V∗‖ will be
of order ‖Uk‖ infinitely often. For simplicity we consider the homogenous EIA based
on T, which is assumed to be Lipschitz, but not necessarily contractive.

Theorem 10.18 In algorithm (10.2) let

dn = sup
n′≥n

‖Un′ ‖



232 Approximate iterative algorithms

for n≥ 1. If V∗ is a fixed point of T, and there exists a finite constant L such that
‖TV − TV∗‖≤L‖V − V∗‖ for all V ∈V, then

lim sup
n→∞

‖Vn−1 − V∗‖
dn

> 0. (10.52)

Proof Suppose (10.52) does not hold. Fix ε>0. Then there exists N such that

‖Vn−1 − V∗‖≤ εdn ∀n≥N. (10.53)

Let N1 be the smallest integer not less than N such that ‖UN1‖≥ (1− ε)dN , which
exists by the definition of dn. This implies ‖UN1‖≥ (1− ε)dN1 . Applying (10.53) gives

‖UN1‖ = ‖ (VN1 − V∗)− (TVN1−1 − TV∗) ‖
≤ ‖VN1 − V∗‖ + ‖TVN1−1 − TV∗‖
≤ ‖VN1 − V∗‖ + L‖VN1−1 − V∗‖
≤ εdN1+1 + LεdN1

≤ (1+ L)εdN1 .

We can always set ε small enough to force (1+ L)εdN1 < (1− ε)dN1 , in which case
(10.53) leads to a contradiction, since ‖UN1‖≥ (1− ε)dN1 . Hence (10.52) follows. ///

10.10 FINITE BOUNDS

The convergence results given above are based on asymptotic bounds. However,
inequality (10.30) provides a means to calculate finite upper bounds on ‖Vk − V∗‖.
In this section we suppose we may bound errors with constants ‖Uk‖≤dk, where we
assume dk> 0. We will consider the single stage ρ-contractive operator T, setting p= 1
in (10.30), which will be easily extended to more general models.

The first term in the upper bound is composed of the exponentially decreasing
error of the exact algorithm. The second term may be bounded by

n∑
i=1

ρn−i‖Ui‖≤dnI1
n(d̃, λ̄), n≥ 1

using the notation introduced in Section 10.3.2. For convenience we may write In =
I1

n(d̃, λ̄). We then have

‖Vn − V∗‖≤ ρn‖V0 − V∗‖ + dnIn, n≥ 1. (10.54)

Under the conditions of Theorem 10.15 we have

lim sup
n→∞

In ≤ (1− ρ/r)−1. (10.55)
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When a simpler finite bound is required we may write

‖Vn − V∗‖≤ ρn‖V0 − V∗‖ + dnÎ1(d̃, λ̄), n≥ 1. (10.56)

If dn has a tractable form, we may simply calculate I1
n(d̃, λ̄) numerically. In this

case, it will be useful to know something of the iterative properties of I1
n(d̃, λ̄). We show

in the following lemma that under a type of convexity assumption on the sequence dn

once I1
n(d̃, λ̄) decreases in n, it decreases indefinitely.

Lemma 10.2 If a positive sequence {dn; n≥ 1} satisfies

dn+1/dn+2 ≤ dn/dn+1, n≥ 1, (10.57)

then I1
n+1(d̃, λ̄)< I1

n(d̃, λ̄) implies I1
n+2(d̃, λ̄)< I1

n+1(d̃, λ̄).

Proof We may write

In+1 − In = 1+
(
ρ

dn

dn+1
− 1
)

In, n≥ 1

from which it follows

In+1 − In< 0 if and only if
(

1− ρ dn

dn+1

)
In> 1. (10.58)

Then, if In+1 − In< 0 we have
(
1− ρ dn

dn+1

)
> 0 and hence

(
1− ρ dn+1

dn+2

)
> 0 from

condition (10.57). This in turn implies by (10.58)(
1− ρdn+1

dn+2

)
In+1 =

(
1− ρdn+1

dn+2

)(
1+ ρ dn

dn+1
In

)

>

(
1− ρdn+1

dn+2

)(
1− ρ dn

dn+1

)−1

≥ 1

which proves the lemma. ///

Condition (10.57) is quite general, and is satisfied by any polynomially decreasing
bound 1/nk. Denote any maximum I∗ =maxn In. As an example, for k= 2, ρ= 0.9,
it is easily determined that In increases up to n= 21, at which I21 = 104.67. However,
I22 = 104.39, so we conclude I∗ = I21. Note that this is considerably larger than the
limiting bound for In given in (10.55), in this case 10.

10.10.1 Numerical example

There are two approaches to obtaining a finite bound. First we can simply accept
(10.56). Otherwise, we may apply Lemma 10.2, assuming the hypothesis holds, which
it will for dn = (1/n)q, q> 0. To do this, we identify n∗ satisfying In∗ = I∗. By Lemma
10.2 this is the minimum n for which In+1< In (if the maximum I∗ is not unique, this
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procedure identifies the largest maximizing n, which is suitable for our purpose). If
the quantities ρ and d̃ are known, we may determine n∗ by calculating I1, I2, . . . until
In is observed to decrease. We then have the finite bound

‖Vn − V∗‖≤ ρn‖V0 − V∗‖ + dnIn∗∗ n≥ n∗∗ (10.59)

for any n∗∗ ≥ n∗, which holds since In ≤ In∗∗ . Since eventually In is decreasing, from
(10.55) we have In ↓ (1− ρ/r)−1. Therefore, In ≥ (1− ρ/r)−1 for n≥ n∗, and a reason-
able strategy would be to select n∗∗ for which In∗∗ (1− ρ/r)= 1+ ε is slightly larger
than 1. Then for n≥ n∗∗ the asymptotic bound will be within this tolerance of the
finite bound.

To illustrate the procedure, we take dn = n−q, with q= 1/2 and ρ= 0.9, so that
r= 1, and we expect In →n (1− ρ)−1. To standardize the comparison define the
quantity c(ρ, q)= In(1− ρ). Figure 10.3 indicates the values for n= 1, . . . , 500. The
symbols A, B and C indicate n= 26, 63, 465, at which In = I∗, In(1− ρ)= 1.1 and
In(1− ρ)= 1.01, respectively.

0 100 200 300 400 500
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Efficiency of Finite Bound
ρ = 0.9, q = 1/2
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A B C

Figure 10.3 Example of finite bound method of Section 10.10.1. Parameters are set to ρ= 0.9,
q= 1/2. Symbols A, B and C indicate n= 26, 63, 465, at which In = I*, In(1− ρ)= 1.1 and
In(1− ρ)= 1.01, respectively.
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10.11 SUMMARY OF CONVERGENCE RATES FOR STRONGLY
CONTRACTIVE MODELS

The analysis of this chapter is based on ideas presented in Almudevar (2008), but which
concerned algorithms for which the EIA was defined by a single operator Tn ≡T. It is
therefore worth noting that extensions to nonhomogenous operator sequences, includ-
ing nonexpansive algorithms, may be developed using essentially the same techniques.
Furthermore, introducing Hilbert space structure can lead to considerable refinement
of approximation bounds, and in the case of the Robbins-Monro algorithm allows a
resolution of convergence not obtainable using Banach space structure alone.

However, the single contractive operator case remains quite central to many
applications, including those considered here, so we will present a specialized summary.

First, for ρ∈ (0, 1) define the following families of sequences:

FL
ρ =

{
{dk} ∈S :

∞∑
k=1

ρ−kdk<∞
}

,

Fρ =
{
{dk} ∈S : λ̂{dk}= ρ

}
, and

FU
ρ =

{
{dk} ∈S : λl{dk}>ρ

}
. (10.60)

Theorem 10.19 Suppose (V, ‖·‖) is a Banach space on which T is a ρ-contractive oper-
ator (which therefore possesses fixed point V∗ =TV∗ ∈V). Suppose Tk is a sequence
of operators on (V, ‖·‖) which defines AIA

Vk = TkVk−1, k≥ 1,

V0 = v0,

for which for which relative model (ARE) holds, in particular,

‖TkVk−1 − TVk−1‖ ≤ ak + bk‖Vk−1‖0, k≥ 1,

for sequences ak, bk, where ‖·‖0 is a seminorm for which ‖V‖0 ≤ κ0 ‖V‖ for all V ∈V
for some finite constant κ0. Define

d∗k = ak + bk

∥∥V∗∥∥
0 , (10.61)

and

λk =
k∏

i=1

(ρ + κ0bi). (10.62)
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The the following statements hold:

(i) If lim supk κ0bk = δ∈ [0, 1− ρ) then

lim sup
k

∥∥Vk − V∗∥∥ ≤ (1− ρ − δ)−1 lim sup
k

d∗k (10.63)

(ii) If {d∗k} ∈FL
ρ then

∥∥Vk − V∗∥∥ ≤ �(λk). (10.64)

(iii) If {d∗k} ∈Fρ then

λ̂u {∥∥Vk − V∗∥∥} ≤ ρ. (10.65)

(iv) If {d∗k} ∈FU
ρ and d∗k → 0 then

lim sup
k

[d∗k]−1
∥∥Vk − V∗∥∥ ≤ (1− ρ/λl{d∗k})−1. (10.66)

Proof We first note that the model satisfies general inequality (10.30) for p= 1 with
sequence d̃={d∗k} defined in (10.61) and product kernel (10.62). Then statements
(i)–(iv) are applications of Cases I–IV.

First, note that if bk →k 0 then λ{λk}= λ̂{λk}= ρ (by Lemma 9.3).

(i) is a direct application of Theorem 10.17.
(ii) follows from Theorem 10.11, after noting that if {d∗k} ∈FL

ρ , then the assumption
(10.34) follows from the fact that λk ≥ ρk.

(iii) follows from Lemma 10.14 and then Theorem 10.13, after noting that bk → 0,
so that λ̂{λk}= ρ.

(iv) follows directly from Theorem 10.15, after noting that bk → 0 and therefore
λ̂{λk}= ρ. ///

More informally, we have

∥∥Vk − V∗∥∥ ≤ �(max(d∗k, (ρ + ε)k)) (10.67)

for all ε>0 if d∗k → 0 at a linear rate of at least ρ, and if d∗k → 0 at a linear rate less
than ρ, then ‖Vk − V∗‖→ 0 at the best possible linear rate ρ. Furthermore, these rates
are sharp by Theorem 10.18.

While it is crucial to understand the convergence rate of these algorithms, there
will still be much to gain by considering the proportionality constant for the rate,
particularly its dependence on (1− ρ)−1. We have seen that improvements are possible
when Hilbert space structure can be exploited. We will also see that the use of various
seminorms in place of ‖·‖ in the relative error model (ARE) may also improve the
bounds.
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At the very least, it should be emphasized that the general inequality (10.30) may
be used as it is. For the relative error model (ARE) this becomes

‖Vk − V∗‖p ≤ [ρk]p‖V0 − V∗‖p + Ip
k (d̃, λ̄) (10.68)

= [ρk]p‖V0 − V∗‖p +
k∑

i=1

ρk−i(ak + bk

∥∥Vk−1
∥∥

0 ), k≥ 1.

That the bound converges to 0 may be verified by Theorem 10.19, and the bound
(10.68) is no larger than the bounds on which those results are based. Applications of
the triangle inequality needed to obtain convergence rates can only weaken the bound.
The only unknown quantity here is V∗, but it will be possible to conclude in many
cases that the first term of (10.68) will converge to zero more quickly than the second.

It is also worth noting that the iteration formula (10.7) for I1
k (d̃, λ̄) reduces to

I1
k (d̃, λ̄) = ak + bk

∥∥Vk−1
∥∥

0 + ρI1
k−1(d̃, λ̄),

I1
1 (d̃, λ̄) = a1 + b1 ‖V0‖0 . (10.69)

Finally, we note that the multistage contractive case can be handled by bounding
the Lipschitz kernel, as discussed in Section 10.7.1. If for the underlying operator T,
TJ has contraction constant ρ, then ρ in Theorem 10.19 would be replaced by ρ1/J, and
the inequalities adjusted by a multiplicative constant as discussed in Section 10.7.1,
Chapter 9 or in Almudevar (2008).



Chapter 11

Selection of approximation schedules
for coarse-to-fine AIAs

Suppose we are given a homogeneous EIA Vk =TVk−1, k≥ 1, and that the contractive
operator T is to be approximated. Suppose next that there exists an indexed family of
approximate operators Tτ , where τ is some natural approximation parameter, such as
grid size or sample size. In this case any AIA is defined by a sequence τk by defining
a sequence of approximate operators T̂k =Tτk . If operator tolerance can be expressed
in terms of τ , then the convergence properties of the AIA may be determined by the
theory of Chaper 10.

However, a new issue arises in algorithm design when the sequence τk may be
selected by the designer with the objective of optimizing algorithmic efficiency. Clearly,
if computational cost is relatively insensitive to the choice of τ , then a satisfactory
resolution is achieved by any sequence τk which forces a convergence rate on the
operator tolerance no slower than that of the EIA (see, for example, Equation (10.67)).
Of course, we usually expect that the computational cost of evaluating Tτ will increase
significantly as operator tolerance approaches zero. In fact, we will assume that this
limiting cost is unbounded.

The material in this chapter is based on Almudevar and de Arruda (2012).

11.1 EXTENDING THE TOLERANCE MODEL

Recall equation (10.3) from Section 10.1:

‖Vk − V∗‖ ≤ ηk =Bαk + uk, k≥ 1 (11.1)

where Vk are the iterates of an AIA with limit V∗, ηk is the algorithm tolerance,
Bαk is the tolerance of the EIA, and uk is the approximation tolerance. We have
already seen that this model usefully bounds a contractive AIA, both for the pre-
liminary model of Section 10.2, and for the more general contractive model of Section
10.4. We have also seen that under general conditions we will have uk =O(εk) where
εk is the operator tolerance, thus providing a direct relationship between the latter
quantity, which can usually be precisely estimated, and the overall performance of the
algorithm.

Now suppose we add a cost structure to the model. In particular, let gk be the
computation cost for the evaluation of the kth iteration. If gk is approximately constant,
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then ηk is an appropriate metric with which to evaluate algorithmic efficiency. On the
other hand, suppose this does not hold, that is, the cumulative cost

Ḡk =
k∑

i=1

gi

does not statisfy Ḡk =�(k). The efficiency of the algorithm is now appropriately eval-
uated relative to Ḡk. In effect, we need to transform ηk to some function which behaves
more like η̂t ≈ ηk when t= Ḡk, which we refer to as the computational algorithm tol-
erance, and is interpretable as the algorithm tolerance achieved after a computational
effort of t.

Now, suppose we have some choice regarding the approximation parameter τ , and
this can be varied within an AIA. For example, evaluation of an operator may involve
approximation on a grid, where τ is the grid size. The positive relationship between
τ and the operator tolerance is well understood, and we also expect computation cost
to be proportional to τ−d for dimension d. Clearly for this, and almost any other
approximation technique, there will be a decreasing relationship between εk and gk,
parametetrized by an approximation parameter τk.

We have already seen that allowing εk to approach zero will yield an AIA which
converges to V∗. However, in our example, we would expect gk to increase unbound-
edly, therefore ηk will no longer be a suitable tolerance metric. It would be more
appropriate to compare algorithms by estimating ηk and gk for any sequence τk, then
transforming ηk into η̂t as just discussed.

Once this is done, we may consider the problem of choosing a tolerance schedule
τk, k≥ 1, which yields the best possible computational algorithm tolerance η̂t.

We proceed in the following way. Because we are able to develop a precise relation-
ship between the computation cost, approximation tolerance and algorithm tolerance,
we are able to reach some quite general conclusions about the optimal approxima-
tion tolerance rate. Examining the algorithm tolerance bound, we can see that ηk is
always at least order O(αk). We expect that forcing a decrease in uk must always be
at the expense of greater cumulative computation cost. However, if we already have
uk = o(αk), then the algorithm tolerance cannot be improved. Clearly, if we increase Ḡk

without significantly changing ηk, we must increase η̂t, so we conclude that there can
be no advantage to decreasing uk in this case. We can be more precise for the contrac-
tive model. In this case αk ≈αk. We also know that if εk ≈ rk for r<α we would have
uk = o(αk), and hence ηk ≈αk. Again, we should expect η̂t to decrease as r approaches
α from below. Interestingly, this argument holds for any type of computation cost that
increases with decreasing operator tolerance.

The case of uk ≥�(αk) presents more of an apparent trade-off, since increasing
uk increases ηk while decreasing computation cost. However, the theory proposed in
Almudevar and de Arruda (2012) may be used to show that for models with linearly
convergent EIAs the situation is not much different than for the lower bound case just
discussed. In particular, it turns out that increasing uk cannot reduce the cumulative
computation cost by an amount sufficient to force a strict improvement in the rate of
η̂t. Furthermore, under certain well defined conditions doing so will yield a strictly
larger η̂t. In particular, if uk converges to 0 sublinearly, then η̂t will be strictly larger
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than an algorithm for which uk converges linearly at a rate r>α. Again, this holds for
quite general cost structures.

This makes a recommendation for a sequence of tolerance parameters τk quite
straightforward. Noting that uk =�(εk) when εk>�(αk), and uk = o(αk) when εk =
o(αk), we may confine attention to approximation schedules for which εk ≈ rk for some
r∈ [α, 1), and as will be seen, in some cases further resolution is possible. However, we
note an important omission, the case that εk ≈αk, noting that in this case uk>�(εk).
Pending further analysis, we may only conjecture that εk ≈αk would be an effective
choice, as calculations in Almudevar and de Arruda (2012) suggest.

11.1.1 Comparison model for tolerance schedules

We are given an EIA with linear congergence rate α ∈ (0, 1), so that the algorithm
tolerance is

‖Vk − V∗‖ ≤ ηk =Bαk + uk, k≥ 1. (11.2)

We also assume there is a nonincreasing nonnegative computation function G on
[0,∞). We then refer to a tolerance model as the pair M= (α, G). We define an
approximation schedule, or simply schedule, to be any sequence S={uk} ∈S−. We
have assumed that uk> 0, since it will be natural to interpret uk ≡ 0 as being equiv-
alent to the exact algorithm. It will be convenient to regard u0 as a dummy value
of arbitrarily large value. The basis for the comparison of schedules is given in the
following definition:

Definition 11.1 A set AS of AIAs conforms to a tolerance model M= (α, G) if a
schedule S={uk} may be associated with each algorithm for which (i) (11.2) holds for
some finite B and for which (ii) the computation cost of the kth iteration is given by
gk =G(uk).

It is important to note that the definition of G as a function of the approximation
tolerance might seem problematic, since uk may depend on previous iterations, while
we expect gk =G(uk) to depend only on iteration k. It would seem to be more natural
to define the cost function as a function of the tolerance parameter, say Gapp(τ ), in
which case gk =Gapp(τk). However, the relevant analysis concerns the interaction of
cost with algorithm tolerance, and therefore with the approximation tolerance uk. In
effect, Definition 11.1 represents the hypothesis that uk and G can interact in this direct
manner, and we have shown earlier that this is the case. We can generally deduce a
function εk = h(τk) relating the tolerance parameter to the operator tolerance (we will
see examples in later chapters). We have already shown that relationships such as
uk ≈ (1− α)−1εk may be established, so that the cost function

G(u)≈Gapp(h−1((1− α)u)) (11.3)

can be used for Definition 11.1. Given these relationships, an approximation schedule
is equivalently expressed as a tolerance schedule {τk}, which is of course our ultimate
objective.
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11.1.2 Regularity conditions for the computation function

It will be useful to define the following condition on the computation function G.

(A) The function G : [0,∞)→ [0,∞] is finite on (0,∞), and satisfies the following
properties for any two sequences {uk}, {u′k} ∈S:

(i) if u′k = o(uk) then lim infk→∞
(
G(u′k)−G(uk)

)= dG for some dG> 0 (pos-
sibly, dG =∞),

(ii) if limk→∞ G(u′k)/G(uk)=∞ then u′k = o(uk).

Note that condition (A) implies that G(u) is unbounded, since G(u) cannot have a finite
limit as u→ 0 (in effect, G(0)=∞, so that the EIA, at least regarded as the limiting
case τk → 0, is not tractable). We also anticipate that arbitrarily low approximation
tolerance requires arbitrarily high computation time, otherwise no meaningful tradeoff
exists.

We will also employ the following growth conditions on G and schedule S:

(B1) There exists a finite constant rG for which the pair (G, S) satisfies

lim sup
k→∞

G(uk+1)/G(uk)= rG.

(B2) The pair (G, S) satisfies

lim
k→∞

G(uk)/
k∑

j=1

G(uj)= 0.

We will sometimes need to strengthen an ordering u′k = o(uk) of two schedules
S={uk} and S′ = {u′k}. It will suffice to impose the following condition:

(C) Given two schedules S, S′ we have u′k = o(uk+d) for all integers d≥ 0.

It is easily verified that (C) holds when u′k = o(uk) and λl{uk}> 0.

11.2 MAIN RESULT

Theorems 11.1, 11.2 and 11.3 together establish a general principle. Suppose we are
given two schedules {uk} and {u′k}, with respective computational algorithm tolerances
η̂t and η̂′t. If schedule {uk} is closer than {u′k} to the linear rate of convergence αk, then
η̂t is not worse, and may be strictly better than, η̂′t.

The first theorem deals with the lower bound case. Suppose uk =O(αk). If u′k =
o(uk) then η̂t cannot be improved by η̂′t, and if in addition condition (C) holds, η̂t will
be strictly better.

Theorem 11.1 Given tolerance model M= (α, G), with G satisfying condition (A),
suppose we are given two schedules S and S′, with constants B, B′. Suppose uk =O(αk).
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Then

(i) if u′k = o(uk) then η̂t =O(η̂′t),
(ii) if S, S′ satisfy condition (C) then η̂t = o(η̂′t).

Proof See Theorem 2 in Almudevar and de Arruda (2012) for the proof. ///

For the upper bound case it is assumed that uk ≥�(αk) and that uk = o�(u′k). Under
the weaker condition (B1) η̂t cannot be improved by η̂′t, and if u′k converges sublinearly
then η̂t is strictly better (Theorem 11.2). Under condition (B2) η̂t is strictly better in
either case (Theorem 11.3).

Theorem 11.2 Suppose a tolerance model M= (α, G) and two schedules S, S′ satisfy
(B1) with uk = o�(u′k). Suppose. also, that schedule S satisfies

lim sup
k→∞

Bαk/uk = κ <∞. (11.4)

Then for any positive constant r< 1 we have

(i) lim infv→0 Ḡ′
η

(
r(1+ κ)−1v

)
/Ḡη(v)≥ r−1

G ,
(ii) for any finite constant γ there exists βγ > 0 such that if β ′ ≤βγ then

lim inf
v→0

Ḡ′
η

(
r(1+ κ)−1v

)
/Ḡη(v) ≥ γ ,

(iii) furthermore, if S′ converges sublinearly then

lim
v→0

Ḡ′
η

(
r(1+ κ)−1v

)
/Ḡη(v) = ∞.

Proof See Theorem 3 in Almudevar and de Arruda (2012) for the proof. ///

Theorem 11.3 Suppose a tolerance model M= (α, G) and two schedules S, S′ satisfy
(B2) with uk = o�

(
u′k
)
. Suppose, in addition, that lim infi→∞ ui/α

i > 0. Then η̂t = o(η̂′t).

Proof See Theorem 4 in Almudevar and de Arruda (2012) for the proof. ///

11.3 EXAMPLES OF COST FUNCTIONS

We will find that cost functions will often assume some general form, so we will con-
sider here two, in order to investigate conditions under which regularity conditions (A),
(B1) or (B2) hold. Consider the general form of G(u) in (11.3). Suppose an approx-
imate operator Tτ is constructed by numerical integration on an interval [a, b]⊂R,
using step sizes τ (see, for example, Isaacson and Keller (1966)). Under general condi-
tions we might establish an operator tolerance ε=O(τ p), where the power p depends
on the particular method. The computation function would then be Gapp(τ )=O(τ−1),
and given (11.3) we would have G(u)=O(u−1/p).

First, we will give a stricter form of (A), based on part (ii) of the definition.

Lemma 11.1 If limk→∞ G(u′k)/G(uk)=∞ holds if and only if u′k = o(uk), then
condition (A) holds.
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Proof Part (ii) of (A) holds by hypothesis. Then if limk→∞ G(u′k)/G(uk)=∞,
we must have lim infk→∞

(
G(u′k)−G(uk)

)= lim infk→∞ G(u′k)
(
1−G(uk)/G(u′k)

)=
lim infk→∞ G(u′k)> 0, so that (i) holds. ///

We can expect many cost functions to be of the form G(u)=�(u−d). The following
theorem characterizes this case.

Theorem 11.4 If a computation function assumes form G(u)=�(u−d), d> 0, then
(A) holds. In addition, for any schedule S={uk}, λl{uk}> 0 implies condition (B1) and
λl{uk}=1 implies condition (B2).

Proof Given two schedules {uk}, {u′k} we have G(u′k)/G(uk)= (u′k/uk)−d, so that by
Lemma 11.1 condition (A) holds.

Now suppose λl{uk}> 0. Directly we have lim supk→∞ G(uk+1)/G(uk)=
lim supk→∞ (uk/uk+1)d = [λl{uk}]−d <∞, so that (B1) holds.

Next, suppose λl{uk}=1. We may write

G(uk)/
k∑

j=1

G(uj) =
⎡
⎣ k∑

j=1

(
uk

uj

)d
⎤
⎦
−1

. (11.5)

Fix small ε >0, and let N be any integer. We may select k′ large enough so that
uk/uk−1> (1− ε)1/dN for all k≥ k′ −N, in which case, for any j= 1, . . . , N, and k≥ k′

(
uk

uk−j

)d

=
j∏

i=1

(
uk−i+1

uk−i

)d

≥
j∏

i=1

(
(1− ε)1/dN

)d

= (1− ε)j/N

≥ (1− ε). (11.6)

The sum in the denominator in (11.5) may be bounded in the following manner, for
all k≥ k′:

k∑
j=1

(
uj

uk

)d

≥
k∑

j=k−N+1

(
uk

uj

)d

≥ (1− ε)N

using inequality (11.6), from which we may conclude lim supk→∞ G(uk)/
∑k

j=1 G(uj)≤
[(1− ε)N]−1. Then (B2) holds, since N may be made arbitrarily large. ///

Another cost function which will arise naturally is G(u)=−b log (cu), for positive
constants b, c. The hypothesis of Lemma 11.1 does not hold (part (ii) of condition (A)
holds, but not the converse).
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Theorem 11.5 If a computation function assumes form G(u)=�(−b log (cu)), d> 0,
then (A) holds. In addition, for any schedule S={uk}, λl{uk}> 0 condition (B2) holds.

Proof Given two schedules {uk}, {u′k} we test part (i) of (A) by writing
lim infk→∞

(
G(u′k)−G(uk)

)= lim infk→∞−b log (cu′k/uk). This limit is unbounded if
u′k = o(uk), so part (i) holds.

Now suppose λl{uk}= ρ > 0, and set ρk = uk+1/uk, so that lim infk→∞ ρk = ρ.
Then write∑k

j=1 G(uj)

G(uk)
=

k∑
j=1

G(uj)
G(uk)

. (11.7)

For any K<∞, we may choose k′ and 1>δ>0 such that uk/uj ≥ δ whenever k′ ≤ j≤
k≤ k′ + K. Additionally, for any finite positive constant M k′ may also be chosen so
that −log(cuj)>M when j≥ k′. Then, if k≥ k′ we may write

∑k+K
j=1 G(uj)

G(uk+K)
≥

k+K∑
j=k+1

G(uj)
G(uk+K)

= 1+
k+K−1∑
j=k+1

− log(cuj)
− log(uk+K/uj)− log(cuj)

≥ K/(− log(δ)M−1 + 1).

Consequently,

lim sup
k→∞

G(uk)/
k∑

j=1

G(uj)≤K−1(− log(δ)M−1 + 1).

This holds for all K, which, following a suitable choice for M, completes the proof. ///

11.4 A GENERAL PRINCIPLE FOR AIAs

The simplicity of the tolerance-cost model permits the formulation of a general prin-
ciple for AIAs. Suppose our intention is to replace α-contractive operator T with a
single approximate operator T̂ with operator tolerance ε (note that it is not necessary
to verify any contractivity properties of T̂ once the operator tolerance is known to be
bounded). We can achieve an algorithm tolerance of order ε(1− α)−1. On the other
hand, if we are given access to a class of approximate operators Tτ indexed by τ with
cost function Gapp, we may devise instead an AIA based on a sequence of approximate
operators T̂k =Tτk . The tolerance schedule τk is selected to yield an approximation
schedule uk ≈αk, which may be done using the methods described earlier. This coarse-
to-fine strategy can be recommended for any suitable approximation scheme. We will
consider two examples in Chapters 16 and 17.



Part III

Application to Markov decision
processes



Chapter 12

Markov decision processes (MDP) –
background

A Markov decision process (MDP) is a controlled Markov chain (Section 5.2), the
objective of the control being to minimize a sum or average of (possibly discounted)
costs associated with each stage (the term used to describe all aspects of a single time
index). The set of admissible controls is precisely given, so we have a well defined opti-
mization problem. Formally, the MDP itself is a selection, through the control process,
from a class of Markov chains, and so may not itself be a Markov chain. This depends
on whether or not the control itself is Markovian, in the sense that it depends only on
the system’s current state. It can be shown that under general conditions the optimal
control can be chosen to be Markovian, assuming perfect system identification. But
even when this holds, there may be formidable computational challenges to overcome,
so, for a number of reasons, there has has been considerable development of approx-
imation methods for MDPs, for example, Hernández-Lerma (1989b), Bertsekas and
Tsitsiklis (1996), Chang et al. (2007), Si et al. (2004), Buşoniu et al. (2010), Powell
(2011).

Given complete model identification, and a feasible computation method, the
theory of MDPs permits the calculation of an optimal control. Obviously, it is ideal that
the optimal control is available thoughout the entire system history, otherwise regret,
or the cost in excess of the minimum attainable due to the application of suboptimal
control, is accrued.

An off-line approximation method mimics this ideal by replacing the optimal con-
trol with an approximation, then using this approximation in the actual system as
though it were the optimal control. An on-line approximation method does not make
this distinction. The control itself incorporates approximation methods, and therefore
has two objectives, minimizing current regret and refining the approximation so as
to minimize future regret. As will be seen, these two objectives may be conflicting,
forming a new optimization problem.

Approximations may take many forms, but are generally of two types. The first
type arises when model estimates are used in place of the true but unknown model.
This typically involves statistical estimation and sampling. The second type involves
functional approximation. In this case the model is assumed known, but calculation of
an optimal control is problematic, possibly because of high computational complexity,
or because of dependence on numerical approximation methods.

The AIA theory developed earlier will allow a general method of relating the
tolerance of an approximation method to regret, usually expressible in finite bounds.
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Once this is done, we may determine the direct relationship between, for example, the
sample size of a statistical model estimate, or the grid size of a numerical integration
method, to the achieved regret of the resulting control. It will then be possible to exploit
these bounds in the design of approximate algorithms, determining, for example, the
sample size needed to achieve regret within a fixed tolerance, the most efficient allo-
cation of finite computing resources, or the optimal rate at which an on-line control
engages in exploratory behavior at the expense of cost minimizing behavior.

In this chapter, we define the MDP, and develop the theory necessary for the
determination of optimal controls, and for the estimation of regret associated with
approximate controls. Value iteration (VI) is discussed in Chapter 13, which is an
iterative algorithm commonly used to calculate the optimal control of MDPs. This
will become the exact iterative algorithm (EIA) described in Chapter 10, for which an
approximate iteration algorithm (AIA) is to be constructed. Some general principles
for the construction of AIAs for MDPs are introduced in Chapter 14.

The remaining chapters discuss specific AIAs. In Chapter 15 model approxima-
tion by statistical estimation is considered, both from the point of view of estimation
methods and of sample size determination. Two examples of functional approximation
follow. Chapter 16 discusses approximation via truncation of the probability distribu-
tions within the stochastic kernel defining an MDP. Chapter 17 discusses discrete grid
approximations of continuous state MDP models. Both of these methods exploit the
optimal tolerance scheduling of Chapter 11. We finally consider the problem of adap-
tive control in Chapter 18, using the general AIA theory to deduce optimal exploration
rates, where exploration may be defined as suboptimal control intended to yield data
for improved model estimation.

12.1 MODEL DEFINITION

In the standard formulation, a MDP navigates indefinitely through a state space X by
discrete stages. Each stage consists of a state x from which an action a from action
space A is taken, resulting in cost R(x, a). The process transfers to a subsequent state
according to probability measure Q(· |x, a), which begins a new stage. The state/action
space K⊂X ×A consists of all state/actions pairs (x, a) for which action a is available
from state x. If β is a cost discount factor, we refer to the object π= (K, Q, R,β)
as a Markov control model (MCM). A control policy � is a rule (which may be
probabilistic) for choosing an action based on the current state and process history.
A MCM π with a control policy � together define a MDP.

The total discounted cost is
∑

n≥1 β
n−1R(Xn, An), where (Xn, An) is the state/action

pair for the nth stage. We will consider other forms of cost, but it turns out that
developing the theory for this case first is a useful approach.

Calculation of an optimal control usually proceeds by considering the value func-
tion V̄π, which gives the lowest achievable expected discounted cost V̄π(x) for initial
state x under MCM π. Under general conditions, V̄π is the fixed point of the Bellman
operator T̄π, which is defined for a specific MCM π. Then V̄π may be calculated by the
iterative algorithm Vn = T̄πVn−1, n≥ 1, that is, value iteration, and it may be estab-
lished that the algorithm converges to V̄π under general conditions. The optimal control
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can then be derived by first calculating V̄π, then implicitly through an evaluation of
T̄πV̄π. Therefore, π must be known in order to optimize cost.

We adopt the following conventions. If U is a Borel space, the class of Borel sets is
denoted B(U). Then M(U) is the set of probability measures on U . In addition, F(U) is
the vector space of all measurable functions V : U →R. As usual, if ‖·‖ is a seminorm
defined on F(U) then F(U , ‖·‖)={V ∈F(U) : ‖V‖<∞}.

A Markov decision process will be made of the following elements (see, for
example, Hernández-Lerma and Lasserre (1996, 1999)):

(M1) A Borel space X . We refer to X as the state space.
(M2) A Borel space A. We refer to A as the action space.
(M3) With each x∈X associate Kx ∈B(A), with Kx �= ∅. The state/action space K=

{(x, a)∈X ×A : a∈Kx} is assumed to be a measurable subset of X ×A.
(M4) A measurable stochastic kernel Q : K→M(X ) (see Definition 4.7).
(M5) A measurable mapping R : K→R, referred to as the cost function.
(M6) A discount factor β≥ 0. ///

A reference to state/action space K will implicitly include (X , A). We have already
defined a Markov control model (MCM) as the object π= (K, Q, R,β). We will use
Hx

n = (X1, A1, . . . , Xn) and Ha
n = (X1, A1, . . . , Xn, An) to denote vectors in Kn−1 × X

and Kn, respectively, with Hx
0 , Ha

0 set to a null vector when needed. These objects
represent system history.

Let Kf be the set of all measurable mappings f : X →A for which f (x)∈Kx for all
x∈X . We will assume K is constructed so that Kf is not empty. We have already seen
that a kernel Q : K→M(X ) can be considered to be a family of stochastic kernels Qφ :
X →M(X ) indexed by φ∈Kf , evaluated for each x∈X by Qφ(· |x)=Q(· |x,φ(x)).
Similarly, Rφ ∈F(X ) is defined by Rφ(x)=R(x,φ(x)).

A Markov decision process will consist of a MCM π= (K, Q, R,β) coupled with
a control policy:

Definition 12.1 A control policy consists of a sequence of stochastic kernels �=
{�n, n≥ 1} of the form �n : (K)n−1 × X →M(A). We assume �n(Kxn |Hx

n = hx
n)= 1

for n≥ 1. We refer to �n as a stage n control function. We say control function �n is
Markovian if �n(· |Hx

n )=�n(· |Xn), and policy � is Markovian if each control func-
tion is Markovian. A control function �n is deterministic if there exists a measurable
mapping φn : (K)n−1 × X →A such that �n(Ea |Hx

n )= I{φn(Hx
n )∈Ea}. A policy � is

deterministic if each control function is determinstic. A control policy is stationary if
�n(· |Hx

n )=�1(· |Xn) for each stage n. A stationary policy is necessarily Markovian.
We will alternatively define a Markovian deterministic policy using �=

{φ1,φ2, . . .} where φn ∈Kf , and a stationary Markovian determinstic policy may be
written simply as �=φ∈Kf .

The class of all admissible policies will be denoted�, and the class of all Markovian
deterministic policies will be denoted �MD.

Intuitively, the MDP is realized as a random process (X1, A1, X2, A2, . . .) on the
product space K∞. Stage n is taken to refer to (Xn, An), at which a cost of R(Xn, An)
is realized. It has been shown (see Hernández-Lerma (1989)) that for each x∈X there
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exists a unique probability measure P�x on K∞ which satisfies

P�x (X1 = x) = 1,

P�x (An ∈Ea |Hx
n ) = �n(Ea |Hx

n ), ∀Ea ∈B(A), Hx
n ∈Kn−1 × X , (12.1)

P�x (Xn+1 ∈Ex |Ha
n) = Q(Ex |Xn, An), ∀Ex ∈B(X ), Ha

n ∈Kn,

for n≥ 1 and each admissible history Hx
n , Ha

n.
The criterion for choosing a policy � is given as a β-discounted cost from initial

point X1 = x;

V�
π (x)=E�x

[ ∞∑
n=1

βn−1R(Xn, An)

]
, x∈X , (12.2)

where E�x is the expectation operator of P�x . We refer to V�
π as the policy value function

for �.
It will also be useful to consider remaining cost at stage n, precisely,

��
n (Hx

n )=E�x

[ ∞∑
i=0

βiR(Xn+i, An+i) |Hx
n

]
, n≥ 1, (12.3)

which may be intepreted as the discounted cost of a MDP which has been ‘restarted’ at
state Xn at stage n. Anticipating nonMarkovian control policies, this value is allowed
to depend on Ha

n−1 as well as Xn, so that ��
n (Hx

n ) may not be expressible as a function
V�′
π (x) for some policy �′. Of course, the special case

��
1 (hx

1)=V�
π (x1)

holds.
Next, suppose we are given control policy �={�n, n≥ 1}. Fix both n≥ 1 and

history Ha
n−1 = ha

n−1. Then for j≥ 1, define �j[n, ha
n−1]=�j+n−1(· |Hx

j × ha
n−1) as a

mapping from Hx
j to M(A). If we then set �(n)[ha

n−1]= (�1[n, ha
n−1],�2[n, ha

n−1], . . .)
this satisfies the definition of a control policy, which we can intepret as the nth stage
offset policy conditional on history Ha

n−1 = ha
n−1.

If �= (φ1,φ2, . . .)∈�MD, then the offset policy is simply �(n)[Ha
n−1]=�(n) =

(φn,φn+1, . . .)∈�MD.
Then, given the construction of P�x according to (12.2) we have

��
n (Hx

n )=V
�(n)[Ha

n−1]
π (Xn), (12.4)

since the distribution of Xn, An, Xn+1, An+1, . . . depends on Ha
n−1 only through the

control policy.
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12.2 THE OPTIMAL CONTROL PROBLEM

Equation (12.2) defines the problem of minimizing V�
π (x) over the family of admissible

policies �. If we are given model π, we have enough information to evaluate V�
π (x)

for any candidate �, so the problem is well defined. This can be conceived of as a
separate problem for each x∈X but, for very good reasons, the usual approach is to
consolidate all optimization tasks into one.

Ideally, there is a control policy�∗ which achieves this minimum, that is V�∗
π (x)=

inf� V�
π (x) for each x. However, as in other optimization problems involving a con-

tinuum, this is not guaranteed, at least without certain continuity assumptions. This
can occur in a quite intuitive and practical models, for example, the capacity expan-
sion problem (see, for example, Davis et al. (1987) or Almudevar (2001)). Suppose
there does exist some �′ for which V�′

π (x)<∞. Then for any ε>0 there must exist an
ε-optimal control policy �ε for which V�ε

π (x)≤ inf� V�
π (x)+ ε.

12.2.1 Adaptive control policies

The structure of a control policy is potentially quite complex, allowing the control
decision applied at state Xn = x to depend on the accumulated history Hx

n . There
exist very good reasons for allowing this. Even if we accept the form of an MCM
π as a good model, we may not have sufficient model identification to determine
the optimal policy. Of course, Hx

n will contain information with which the model
could be estimated. Furthermore, as n→∞ the model estimate can be refined as more
information becomes available. The more accurate the estimate, the closer to optimal
the resulting control can be. In this way, new information can always be converted
to lower costs, and so there is no reason to terminate this type of adaptive updating
process. In this case, we expect that the control � will not be Markovian. An example
of this type of control policy is discussed in Chapter 18.

12.2.2 Optimal control policies

Of course, we first need to consider the problem of determining an optimal control
under the assumption that π is known. The need for complex history dependence is
not so apparent in this case, so it would be useful to know if the optimization problem
can be confined to the simplest type of control, that is, the Markovian deterministic
policy.

That this should be the case seems reasonable. Suppose we are at state Xn at stage
n. We have observed history Ha

n−1, and so will subsequently adopt a policy given by
�(n)[Ha

n−1], as intended by our adoption of the policy �. However, we would also be
able to follow policies given by �(n)[ha

n−1] for any admissible history ha
n−1. We would

also be able to calculate the resulting expected future cost by evaluating V
�(n)[ha

n−1]
π (Xn).

Thus, rather than proceed according to the original policy, we may simply choose

instead whatever policy �(n)[ha
n−1] minimizes V

�(n)[ha
n−1)]

π (Xn) over ha
n−1.

An interesting technical issue arises at this point. Possibly, no particular ha
n−1

achieves the infimum of V
�(n)[ha

n−1]
π (Xn). In this case, we may always improve over

the observed Ha
n−1, but the control would still depend on this observed value. In
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this case interpret E�x [V
�(n)[Ha

n−1]
π (Xn) |Ha

n−1]=ψ(Ha
n−1) as a random function of Ha

n−1.
Clearly, there exists some ha

n−1 for which ψ(ha
n−1)≤E�x [ψ(Ha

n−1)], then we may reduce
the expected discounted cost by using policy �(n)[ha

n−1] rather than �(n)[Ha
n−1] from

stage n onwards. In either case, the control function at n under the modified policy is
Markovian. We may therefore construct a Markovian policy that is at least as good as
the original by sequentially carrying out this process at stages 2, 3, . . ..

A similar argument can be used to show that nondeterminstic policies may be
improved by deterministic ones. Suppose � is a Markovian policy. We may write

V�
π (x) = E�x

[
R(X1, A1)+ βV

�(2)
π (X2)

]
= E�x

[
E�x
[
R(x, A1)+ βV

�(2)
π (X2) |Ha

1

]]
= E�x [ψ(x, A1)] (12.5)

where the distribution of A1 is given by �1(· |x). We may similarly improve � by
replacing �1 with any φ1(x)= a1 which minimizes ψ(x, a1) for fixed x, or a1 for which
E�x [ψ(x, a1)]≤E�x [ψ(x, A1)]. A determinstic policy may then be constructed sequen-
tially as just described. There will therefore be special interest in the class of Markovian
deterministic policies �MD, and we may summarize our argument by the following
theorem:

Theorem 12.1 For any policy � and initial state X1 = x there is a Markovian
deterministic policy �′ ∈�MD for which V�′

π (x)≤V�
π (x).

The value function is formally defined elementwise on X by

V�
π (x) = inf

�∈�V�
π (x).

This term is reserved for the best possible cost (recall that the term ‘policy value’
function refers to the cost attained by a specific policy �). If there is a control policy
� for which V�

π ≤V�
π + ε for ε>0 we say � is ε-optimal, and if V�

π ≤ (1+ ε)V�
π , we

say � is scalar ε-optimal.
This value function is well defined, but because the infimum in V�

π is taken point-
wise there is no guarantee that there is any single V�

π . However, it is easy to verify that
the class of policies � is rich enough to guarantee that this is the case.

Theorem 12.2 If V�
π <∞ then there exists ε-optimal and scalar ε-optimal policies.

Proof For each x select�x for which either V�x
π <V�

π (x)+ ε or V�x < (1+ ε)V�
π (x).

Then let � be the (possibly nonMarkovian) policy which assumes policy �x given
starting point X1 = x. Then � has value value function V�

π (x)=V�x
π (x), and so is ε-

optimal and scalar ε-optimal accordingly. ///

For continuous state/action spaces the issue of measurability arises twice. First, the
calculation of any policy value function V�

π assumes the ability to evaluate the expected
value of R(Xn, An). Second, the value iteration methods we will introduce require also
that V�

π or V̄π are measurable functions. The two conditions are obviously related,
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and we will consider the question of measurability in more detail in Section 12.3.5.
However, it is worth stating at this point the essential measurability requirement:

Assumption 12.1 For every control � for which V�
π exists, there exists �′ ∈�MD

for which V�′
π ∈F(X ) and V�′

π ≤V�
π . This implies that V�

π ∈F(X ).

We will assume Assumption 12.1 holds throughout.

12.3 DYNAMIC PROGRAMMING AND LINEAR OPERATORS

We first consider the problem of analyzing the policy value function. By definition
we have

V�
π (x) = E�x

[ ∞∑
n=1

βn−1R(Xn, An)

]

= E�x [R(X1, A1)]+ βE�x

[ ∞∑
n=1

βn−1R(Xn+1, An+1)

]

= E�x [R(X1, A1)]+ βE�x
[
��

2 (Hx
2)
]

= E�x [R(X1, A1)]+ βE�x
[
V
�(2)[Ha

1]
π (X2)

]
. (12.6)

Suppose we are given Markovian deterministic policy �= (φ1,φ2, . . .)∈�MD. This
means An =φn(Xn) for n≥ 1 wp1, and that�(2)[Ha

1]=�(2) = (φ2,φ3, . . .)∈�MD. Then
by (12.6)

V�
π (x) = R(x,φ1(x))+ βE�x

[
V
�(2)
π (X2)

]
= R(x,φ1(x))+ β

∫
y∈X

V
�(2)
π (y)dQ(y | x,φ1(x)). (12.7)

This expression is quite intuitive. First, from initial state X1 = x assume cost R(x,φ1(x)).
Transfer randomly to the next state X2 according to distribution Q(· |x,φ1(x)). From
this point add to the total, after discounting by β, the expected remaining cost, which
is V

�(2)
π (X2), given subsequent state X2.
We can also see in (12.7) the type of linear operator considered in Section 7.2,

that is, the policy operator

Tφ
πV =Rφ + βQφV ,

so that (12.7) becomes

V�
π =Tφ1

π V
�(2)
π . (12.8)
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This point of view offers considerable flexibility. For example, the operation defined
in (12.8) may be iterated indefinitely,

V�
π =Tφ1

π V
�(2)
π =Tφ1

π Tφ2
π V

�(3)
π = · · ·=Tφ1

π . . .Tφn−1
π V

�(n)
π ,

where evaluation of the operators satisfies the associative property.
The operator may act on functions other than policy value functions. For example,

Tφ
π
�0=Rφ. Suppose we wish to evaluate the cost assumed by an MDP for the first N

stages only. We may do this with the expression

E�x

[
N∑

n=1

βn−1R(Xn, An)

]
=Tφ1

π . . .TφN
π
�0. (12.9)

Next, suppose �=φ is a stationary control. Then �(2) =�, and (12.8) becomes

Vφ
π =Tφ

πVφ
π , (12.10)

that is, the policy value function for stationary policy �=φ must be a fixed point
of Tφ

π .

12.3.1 The dynamic programming operator (DPO)

The operator Tφ
π provides a convenient way of evaluating policy value functions, but

also provides a framework for the optimal control problem. Suppose our intention is
to use control policy �= (φ1,φ2, . . . )∈�MD.

Define mapping Ta
π : F(X )→F(K) elementwise for each (x, a)∈K

(Ta
πV)(x, a)=R(x, a)+ β

∫
y∈X

V(y)dQ(y | x, a), (12.11)

and write, following (12.8) and (12.11),

V�
π (x)= (Tφ1

π V
�(2)
π )(x)= (Ta

πV
�(2)
π )(x,φ1(x)). (12.12)

Of course, this formulation gives us an opportunity to improve the control. At the
first stage we may select instead of φ1(x) any action a∈Kx yielding a smaller value,
for example,

a∗x = argmina∈Kx
(Ta

πV
�(2)
π )(x, a), (12.13)

so that

(Ta
πV

�(2)
π )(x, a∗x)≤V�

π (x). (12.14)
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If this is done for each x∈X , we may devise a new policy function φ∗1(x)= a∗x. If the
original policy �= (φ1,φ2, . . . ) is modified by replacing φ1 with φ∗1, yielding �′ =
(φ∗1,φ2, . . . ), then the comparison is straightforward,

V�′
π =T

φ′1
π V

�(2)
π ≤Tφ1

π V
�(2)
π =V�

π ,

and so we have either improved the policy, or verified that it is the best available under
the given constraints. The minimization operations defined in (12.13) (one for each
x∈X ) have an intuitive meaning. It results in the optimal cost policy for stage 1 under
the constraint that policy �(2) will be used from stage 2 onwards. More generally, it
is the optimal stage 1 policy given that the remaining cost (before discounting) given
a transition to state X2 = x is V(x)=V

�(2)
π (x) for any x. Of course, we may substitute

any measurable V . This minimization procedure may be expressed as a new operator,
defined elementwise by

T̄πV(x) = inf
a∈Kx

(Ta
πV)(x, a)

= inf
a∈Kx

R(x, a)+ β
∫

y∈X
V(y)dQ(y | x, a), (12.15)

which is the infimum of all attainable costs when the remaining cost before discounting
from state X2 = x is V(x). The operator T̄π defined in (12.15) is known as the Bellman
operator, or the dynamic programming operator (DPO).

12.3.2 Finite horizon dynamic programming

We have introduced the idea of a finite horizon process, that is, one in which costs are
assumed only for a finite number of stages N (in which case, the discount factor βmay
or may not play a role). It is necessary only to define a control function for the first
N stages, but the reasoning behind Theorem 12.1 still applies. This means that (12.9)
gives a well defined optimization problem, that is, to minimize the expected cost over
the finite stage control policy (φ1, . . . ,φN).

As is well known, effective optimization strategies are often based on the decom-
position of a problem into simpler subproblems. Dynamic programming is such an
approach to problems with a natural sequential decomposition. Suppose we write

Tφ1
π . . .TφN

π
�0 = Tφ1

π . . .TφN−1
π (TφN

π
�0)

= Tφ1
π . . .TφN−1

π VN ,

setting VN =TφN
π
�0. Note that VN depends only on the MCM π and the final control

function φN . Also, since each Qφ is a positive linear operator, each operator Tφ
π is

monotone (that is, V ≤V ′ implies Tφ
πV ≤Tφ

πV ′), so a necessary condition for an opti-
mal solution is that φN minimize TφN

π
�0, over all single control functions. This means the

optimal selection of φN can be made independently of the rest of the problem. Clearly,
this is achieved by V∗

N(x)= T̄π�0= infa∈Kx R(x, a), and the optimal control function φ∗N
(if it exists) solves T

φ∗N
π
�0= T̄π�0.
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We then move back a step, writing

Tφ1
π . . .T

φ∗N
π
�0=Tφ1

π . . .TφN−2
π (TφN−1

π V∗
N),

so that the next step is to minimize VN−1 =TφN−1
π V∗

N wrt policy function φN−1. Fortu-
nately, this problem is almost as simple as the previous one, since V∗

N is known from

the last step, and we proceed by selecting φ∗N−1 which satisfies T
φ∗N−1
π V∗

N = T̄πV∗
N . This

procedure, known as backwards recursion, is repeated to determine φ∗N ,φ∗N−1, . . . ,φ∗1
in order, which gives the solution. Formally, we have defined a form of dynamic
programming algorithm:

V∗
N = inf

a∈Kx
R(x, a),

V∗
n = T̄πV∗

n+1, n=N − 1, N − 2, . . . , 1, with policy

R(x,φ∗N(x)) = inf
a∈Kx

R(x, a),

Tφ∗n
π V∗

n+1 = T̄πV∗
n+1, n=N − 1, N − 2, . . . , 1. (12.16)

The optimal cost function is then

V∗ = T̄N
π
�0.

Note that the existence of optimal control functions is not needed to calculate V∗.
When these don’t exist, we may always determine instead an ε-optimal control policy.

The advantage here is that a single optimization problem over an N-dimensional
space of control functions has been replaced with N sequentially independent opti-
mization problems, each over a single control function. If the state/action space K is
finite, the search space has been reduced in size from |Kf |N to N|Kf |.

12.3.3 Infinite horizon problem

Next consider the infinite horizon problem, that is, the determination of a control
policy�which minimizes (12.2). By Theorem 12.1 we may confine attention to policies
in �MD. Suppose �= (φ1,φ2, . . . )∈�MD is optimal. This means V�

π =V�
π . It also

means (for any �∈�MD),

V�
π =Tφ1

π V
�(2)
π .

First, note that since V�
π =V�

π we must have V
�(2)
π ≥V�

π . Optimality does not require
strict equality, since V�

π (x) is the expected total discounted cost given initial state
X1 = x. It would be possible to have V

�(2)
π (x′)>V�

π (x′) for some x′ if P(X2 = x′)= 0.
However, by the optimality of � and the monotonicity of Tφ1

π we must have

V�
π =Tφ1

π V
�(2)
π ≥Tφ1

π V�
π =V�′

π ,
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for policy�′ = (φ1,φ1,φ2, . . .). By optimality V�
π ≤V�′

π , so we must have V�
π =V�′

π , so
that �′ is also optimal. This also means

V�
π =Tφ1

π V�
π . (12.17)

We may iterate as many times as we wish, so that if� is optimal, then any other policy
in which the first J<∞ control functions are φ1, followed by the control functions of
�, is also optimal.

We also have a necessary condition for φ1. The value function V�
π can be defined

independently of any specific policy, so φ1 is the solution to:

V�
π =Tφ1

π V�
π . (12.18)

Interestingly, we have so far not made use of the DPO T̄π, which we now do. While the
equation (12.18) seems objective enough, it incorporates the problem of determining
V�
π as well. By construction of the DPO, we must have T̄πV�

π ≤Tφ1
π V�

π . However,
if we had strict inequality T̄πV�

π <Tφ1
π V�

π then φ1 would not be optimal. Therefore,
V�
π =V�

π = T̄πV�
π =Tφ1

π V�
π , and we have

V�
π = T̄πV�

π , or equivalently V�
π = T̄πV�

π .

So, the value function is a fixed point of T̄π. If an optimal policy exists, and T̄π has a
unique fixed point, that fixed point must be V�

π . Then we may solve Tφ1
π V�

π =V�
π to

determine φ1. An optimal policy can be constructed by applying control function φ1

indefinitely. At this point, the original optimal policy � plays no role, and our optimal
control follows entirely from a single optimal control function, denoted φ∗ =φ1. In
fact, by comparing Tφ1

π V�
π =V�

π with (12.10), V�
π can be equated with the policy

value function of stationary policy �∗ =φ∗.
This, in summary, is the solution to the infinite horizon discounted cost MDP

control problem, although the reader is no doubt aware that a number of technical
issues must be considered in order to make the preceding ideas mathematically valid.

12.3.4 Classes of MDP

We originally conceived of the MDP as an infinite horizon problem, in which cost is
assumed indefinitely. The infinite horizon problem optimizes either the total discounted
cost (as in (12.2)) or the long run average cost (see Section 12.7 below).

For the finite horizon problem, the cost will be finite, so there is no need for
a discount factor β<1, although we are free to use one when cost is appropriately
discounted. In addition, there is no need for the transition kernel Q and cost function
R to be the same for each stage. If they differ, the finite horizon dynamic programming
algorithm given in (12.16) is easily modified by employing the appropriate operator
(based on the appropriate cost function and transition kernel) at each iteration.

We may also also define a shortest path problem, in which there exists at least one
terminal state from which no further cost is assumed, and in which the process may
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stay indefinitely. The stage structure is otherwise the same, as is the goal of minimizing
total cost. This means that the process balances the goals of ending the process as soon
as possible with the cost accrued in achieving this goal. The cost is usually assumed to
be undiscounted.

12.3.5 Measurability of the DPO

A number of measure theoretic issues arise from the use of stochastic kernels and of the
infimum operation in T̄π. Evaluation of V ′ = T̄πV or V ′ =Tφ

πV assumes that V is Borel
measurable. We need to know that V ′ is also measurable. This poses no particular
problem for Tφ

π under the assumption that Qφ is a measurable stochastic kernel by
Definition 4.7 (see discussion in Section 4.9.1).

The situation is somewhat more complicated for T̄π due to the infimum operation
when K is uncountable (the reader can refer to Section 3.4 for more background on
this issue). To see this suppose U , V are two Borel spaces, and f (u, v) is a measurable
function on a product space U × V. Evaluation of T̄π is equivalent to evaluation of
f ∗(u)= infv∈V f (u, v) (see the definition in (12.11)). However, without further assump-
tions f ∗(u) is not necessarily a Borel measurable function on U . This problem is
considered in Bertsekas and Shreve (1978) (Section 7.5), from which we cite the
following two theorems:

Theorem 12.3 Suppose U is a metrizable Borel space, V is a compact metrizable
Borel space, D is a closed subset of U × V and f is a lsc function on U × V. Evaluate

f ∗(u) = inf
v∈Du

f (u, v), Du ={v | (u, v)∈D},

for u∈ projUD. Then projUD is closed in U , f ∗ is lsc and there exists a Borel measurable
function φ : projUD→V such that f (u,φ(u))= f ∗(u).

Theorem 12.4 Suppose U is a metrizable Borel space, V is a separable metrizable
Borel space, D is an open subset of U × V and f is an usc function on U × V. Evaluate

f ∗(u) = inf
v∈Du

f (u, v), Du ={v | (u, v)∈D},

for u∈ projUD. Then projUD is open in U , f ∗ is usc and for every ε>0 there exists a
Borel measurable function φε : projUD→V such that f (u,φε(u))≤ f ∗(u)+ ε.

We may, for example, use Theorem 4.24 to verify that if V is lsc on X and R is lsc
on K then (Ta

πV)(x, a) is lsc on K. Then by Theorem 12.3 T̄πV is lsc on X .
In addition to Bertsekas and Shreve (1978) we may also recommend Hernández-

Lerma (1989b) for a rigorous treatment of this issue. Otherwise, we rely on
Assumption 12.1.
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12.4 DYNAMIC PROGRAMMING AND VALUE ITERATION

We first introduce some notation and a preliminary lemma. Various bounds on R will
need to be imposed. Accordingly, we define the following quantities:

Rφ(x) = R(x,φ(x)),

Rinf (x) = inf
a∈Kx

R(x, a) and R̄inf = inf
x∈X

Rinf (x),

Rsup(x) = sup
a∈Kx

R(x, a) and R̄sup = sup
x∈X

Rsup(x).

Clearly, if R̄inf ≥ 0 we must have V�
π ≥ 0 for any policy �, directly from (12.2).

Suppose we are given a control policy �= (φ1,φ2, . . .)∈�MD. We have already
seen the iterative formula

V�
π =Tφ1

π . . .T
φJ
π V

�(J+1)
π . (12.19)

A J-step policy can be taken as φ̃= (φ1, . . . ,φJ)∈KJ
f . If we define the operator T φ̃

π =
Tφ1
π . . .T

φJ
π then (12.19) can be written in the form V�

π =T φ̃
πV

�(J+1)
π . Of course, T φ̃

π

remains a linear operator,

T φ̃
πV = Rφ̃ + βJQφ̃V , where

Rφ̃ = Rφ1 + βQφ1Rφ2 + β2Qφ1Qφ2Rφ3 + · · · + βJ−1Qφ1 . . .QφJ−1RφJ , and

Qφ̃ = Qφ1 . . .QφJ , (12.20)

which follows from the iterations

T φ̃
πV = Rφ1 + βQφ1Tφ2

π . . .T
φJ
π V

= Rφ1 + βQφ1 [Rφ2 + βQφ2 (Tφ3
π . . .T

φJ
π V)]

= Rφ1 + βQφ1Rφ2 + β2Qφ1Qφ2Tφ3
π . . .T

φJ
π V

...

The definition of Rφ̃ is consistent with Rφ for the special case of the 1-step policy.
So that the notation will not become too cumbersome, we will append the symbol

[n] to an operator to signify its nth iteration, that is, T[n]=Tn. In particular,

T̄π[n]V = (T̄π)nV , T φ̃
π [n]V = (T φ̃

π )nV , and Qφ̃[n]=
(
Qφ̃
)n
.

We also set

R̄[n]= T̄π[n]�0 and Rφ̃[n]=T φ̃
π [n]�0,

and in particular, R̄[1]=Rinf and Rφ̃[1]=Rφ̃.
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In a manner similar to (12.20) we note that for J-step policy function φ̃, T φ̃
π [n] is

a linear operator equal to

T φ̃
π [n]V = Rφ̃[n]+ βnJQφ̃[n]V . (12.21)

Note that the operator T φ̃
π [n] nodels nJ stages, as indicated by the power of the discount

factor appearing in (12.21).
Some properties of T̄π and Tφ

π are readily apparent, and summarized in the
following lemma:

Lemma 12.1 The following statements hold for DPO operators:

(i) For any V ∈ F(X ) and φ̃∈KJ
f we have T̄π[J]V ≤T φ̃

πV.

(ii) T̄π and T φ̃
π are monotone operators.

(iii) If R̄inf ≥ 0 and T = T̄π or T =T φ̃
π then:

T(V1 + V2) ≤ TV1 + TV2

TrV ≤ rTV , for scalar r≥ 1

TrV ≥ rTV , for scalar r∈ [0, 1].

(iv) If R̄inf ≥ 0 then R̄[n] and Rφ̃[n] are increasing sequences.

We will usually assume that R̄inf ≥ 0, and sometimes some simplification follows
from the assumption that R̄inf > 0. This constraint is intuitively reasonable in a mini-
mum cost problem, since if costs are allowed to approach −∞, the problem assumes a
very different character. It is important to note that adding a constant c to R does not
alter the problem, since the change to the total expected cost will be exactly the same
for all policies (this idea is made precise in Section 7.4). The essential requirement is
that R̄inf is finite. For this reason it usually suffices to assume that R is nonnegative.

A distinction in the literature is often between bounded and unbounded costs,
defined by the constraint R̄sup<∞. If R is bounded the object would be to construct
an algorithm which is convergent to the value function in the supremum norm.

If R is unbounded, the next question is whether or not there exists a policy � for
which V�

π is bounded. If so, the unboundedness of R is not decisive, and convergence
in the supremum norm would be the goal. On the other hand, if all V�

π are unbounded
(with at least one policy value function being finite everywhere), then we would need to
employ the weighted supremum norm, based on a weight function satisfying contraints
imposed by both R and Q.

In our approach, employing the more general weighted supremum norm does not
greatly complicate the analysis, and offers advantages even for the bounded cost model,
so we will generally do so.

12.4.1 Value iteration and optimality

We are now in a position to make precise the analysis introduced in Section 12.3.3.
Validation of the role of the DPO is based on establishing the equivalence of the value
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function V�
π with the objects

V∗
π = T̄πV∗

π

V̄π = lim
n→∞ R̄[n], (12.22)

that is, the fixed point of T̄π, if it exists, and the limit V̄π, which by Lemma 12.1
(iv) exists when R̄inf ≥ 0, which we generally assume. Following the discussion of
Section 12.3.3 we will be able to define conditions under which V∗

π =V�
π . It is also

important to identify V̄π with V�
π , since this provides the algorithm with which to

solve the optimization problem. In fact, V̄π is the limit of an iterative algorithm based
on operator T̄π and initial solution V0 = �0.

More generally, the goal is to achieve a Value Iteration Algorithm (VIA) which
possesses the following elements:

Definition 12.2 A Value Iteration Algorithm (VIA) consists of spaces V ⊂F(X ),
V0 ⊂V and operator T : V →V for which (i) a unique fixed point V∗ =TV∗ ∈V exists,
and (ii) limn→∞ TnV0 =V∗ for all V0 ∈V0.

In many cases it will be possible to set V0 =V, which offers the possiblity of reducing
the computation time by selecting V0 to be close to V∗ based on some initial estimate.

The central fact of the MDP optimization problem is the equivalence of V�
π , V∗

π

and V̄π, which have nomimally very different derivations. Of course the value function
always exists, as long as at least one policy may be evaluated, but its definition makes
analysis somewhat difficult.

The quantity V∗
π = T̄πV∗

π will prove to be more directly tractable, but before we
use it, we must verify its existence and uniqueness. In most analyses, this is achieved
by verifying that T̄π is a contraction mapping.

First, we generally expect V�
π to be a fixed point of T̄π.

Theorem 12.5 Under Assumption 12.1 we have V�
π = T̄πV�

π .

Proof For any δ>0 there is �∈�MD for which V�
π ≤ (1+ δ)V�

π . By appending any
other φ∈Kf to � we have the optimality conditions

V�
π ≤Tφ

πV�
π ≤ T̄πV�

π ≤ (1+ δ)T̄πV�
π

so we may conclude that V�
π ≤ T̄πV�

π by letting δ vanish. Conversly, for any φ∈Kf

T̄πV�
π ≤Tφ

πV�
π ≤Tφ

πV�
π .

for any control policy �. The preceding upper bound may be set equal to V�
π for any

�∈�MD. In particular, we may choose � for which V�
π ≤ (1+ δ)V�

π . The proof is
completed by letting δ vanish. ///

The next step is to establish the relationship between V̄π and V�
π .



264 Approximate iterative algorithms

Theorem 12.6 If R̄inf ≥ 0 then limn→∞ R̄[n]= V̄π ≤ T̄πV̄π ≤V�
π .

Proof If R̄inf ≥ 0 then R̄[n] is increasing, with R̄[n]≤ V̄π. In addition, T̄π is monotone,
so that T̄πV̄π ≥ lim supn→∞ T̄πR̄[n]= lim supn→∞ R̄[n+ 1]= V̄π.

Next, suppose �∈�MD. Then since R̄inf ≥ 0, using (12.19) and Lemma 12.1 (i)
we may write

V�
π =Tφ1

π . . .Tφn
π V

�(n+1)
π ≥Tφ1

π . . .Tφn
π
�0≥ T̄n

π
�0= R̄[n], n≥ 1, (12.23)

so, from (12.23) we may conclude V̄π ≤V�
π for all �∈�MD. By Theorem 12.1 it fol-

lows that V̄π ≤V�
π . Next, suppose we are given�= (φ1,φ2, . . . )∈�MD. We must have

V̄π ≤V
�(2)
π , and by monotonicity of T̄π also T̄πV̄π ≤ T̄πV

�(2)
π ≤Tφ1

π V
�(2)
π =V�

π . We may
similarly argue that T̄πV̄π ≤V�

π , which completes the proof. ///

After Theorem 12.6 two steps remain. First, we wish to know when V̄π = T̄πV̄π.
If we examine the proof of the Banach fixed point theorem (Theorem 6.4) it can be
seen that the existence of a fixed point for some operator T follows from its Lipschitz
continuity on a metric space. Essentially, if R̄[n]→ V̄π and T̄π is continuous we have
T̄πV̄π = T̄π limn R̄[n]= limn T̄πR̄[n]= limn R̄[n+ 1]= V̄π, where convergence is taken
with respect to the metric. This can be verified, and usually is, by defining a Banach
space on which T̄π is a Lipschitz operator under the supremum norm, so that R̄[n]
converges uniformly to V̄π and therefore also to T̄πV̄π.

It is worth noting, however, that we need only verify continuity of T̄π with respect
to the sequence R̄[n], and continuity with respect to pointwise convergence will suffice.
The following theorem, an application of Dini’s theorem (Theorem 3.16) gives an
example of this approach.

Theorem 12.7 Define

vn+1(x, a) = (Ta
πR̄[n])(x, a)

= R(x, a)+ β
∫

y∈X
R̄[n](y)dQ(y | x, a), n≥ 1, and

v̄(x, a) = (Ta
πV̄π)(x, a)

= R(x, a)+ β
∫

y∈X
V̄π(y)dQ(y | x, a).

Suppose for each x∈X and n≥ 1 the function gx
n(a)= v̄(x, a)− vn(x, a) is usc over

a∈Kx, and Kx is countably compact. Then V̄π = T̄πV̄π

Proof For fixed x we have R̄[n](x)= infa vn(x, a) and T̄πV̄π(x)= infa v̄(x, a), with the
infimum taken over a∈Kx. By the monotone convergence theorem vn(x, a) converges
monotonically to v̄(x, a) for each (x, a).

By hypothesis, for each n and fixed x the function gx
n(a)= v̄(x, a)− vn(x, a) is

usc over a∈Kx. Since Kx is assumed countably compact, Theorem 3.16 implies that
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v̄(x, a)− vn(x, a) converges to 0 uniformly over a∈Kx, from which is follows that
V̄π(x)= limn lim∞ R̄[n](x)= T̄πV̄π(x). ///

The requirement that v̄(x, a)− vn(x, a) be usc in the hypothesis of Theorem 12.7
would typically be resolved by, for example, Theorem 4.24.

That V̄π =V�
π if and only if V̄π = T̄πV̄π holds under quite general conditions,

as stated in Proposition 9.16 of Bertsekas and Shreve (1978) (Definitions 8.1 and 9.1
define the precise model). However, as discussed in Section 9.5 of Bertsekas and Shreve
(1978), deriving general conditions under which either statement holds is not simple
(see, for example, Proposition 9.17 of Bertsekas and Shreve (1978)).

In the context of the present development, we have one half of the equivalence
statement, since under the conditions of Theorem 12.6, V̄π =V�

π implies V̄π = T̄πV̄π.
That V̄π = T̄πV̄π implies V̄π =V�

π will be established in the next section. We therefore
have two strategies.

The first approach is to use Theorem 12.6. For any � we must have V̄π ≤V�
π .

Suppose V̄π may be approximated arbitrarily well by some �, in the sense that V̄π ≤
V�
π ≤V�

π ≤ V̄π + ε. If ε>0 can be made arbitrarily small then we also have V�
π = V̄π.

Note that we have not assumed that there exists �∗ for which V�∗
π =V�

π .
The second approach is to verify that V̄π = T̄πV̄π. If it can be further verified that

any fixed point of T̄π is unique, then by Theorem 12.5 we must have V̄π =V�
π . In fact,

in most MDP models the DPO T̄π is contractive and possesses a unique fixed point,
so this suffices. However, we will be able to establish equivalence without relying on
this structure, so that more general models may be considered.

We take the point of view that the question of the existence of an optimal control
should not dominate the analysis, especially when the reader of this book is motivated
by the difficulty in determining it even when it exists. In some developments, the
analysis is simplified by its existence, but we argue that this need not be the case,
by giving a simple method of constructing ε-optimal solutions. In the process, we
will establish the other half of the equivalence statement, that is, V̄π = T̄πV̄π implies
V̄π =V�

π .

12.5 REGRET AND ε-OPTIMAL SOLUTIONS

The material of this section will be important in resolving optimality conditions, but
will also play a central role in the design of approximate algorithms. The concept of
regret can be intuitively defined as the amount by which the realized cost of a policy
exceeds the optimal achievable. This definition does not rely on the existence of an
optimal policy, as long as we have a sharp lower bound on achievable costs. This role
will be played by T̄πV̄π.

We will make considerable use of the following simple quantity. For any MCM π

and (x, a)∈K define

λπ(x, a)= (Ta
πV̄π)(x, a)− (T̄πV̄π)(x). (12.24)

Essentially the same quantity is employed in Schäl (1987).



266 Approximate iterative algorithms

Recall ��
n (Hx

n ) defined by (12.3), which represents the expected remaining dis-
counted cost calculated from stage n given history Hx

n . The importance of this quantity
is given in the following theorem:

Theorem 12.8 If R̄inf ≥ 0 and V̄π = T̄πV̄π then

��
n (Hx

n )= (V̄π)(Xn)+ E�x

[ ∞∑
i=0

βiλπ(Xn+i, An+i) |Hx
n

]
. (12.25)

Proof First, write

λπ(Xn+i, An+i)=R(Xn+i, An+i)+ β
∫

y∈X
V̄π(y)dQ(y |Xn+i, An+i)− V̄π(Xn+i)

= R(Xn+i, An+i)+ βE�x
[
V̄π(Xn+i+1) |Ha

n+i

]− V̄π(Xn+i).

Noting that σ(Hx
n )⊂ σ(Ha

n+i) for i≥ 0, we may write

E�x

[
N∑

i=0

βiλπ(Xn+i, An+i) |Hx
n

]
(12.26)

= E�x

[
N∑

i=0

βiR(Xn+i, An+i)+ βN+1V̄π(Xn+N+1) |Hx
n

]
− V̄π(Xn).

The expected value on the right side of equation (12.26) can be bounded above and
below as follows:

��
n (Hx

n ) = E�x

[
N∑

i=0

βiR(Xn, An)+ βN+1V�−(n+N+1)

π (Xn+N+1) |Hx
n

]

≥ E�x

[
N∑

i=0

βiR(Xn+i, An+i)+ βN+1V̄π(Xn+N+1) |Hx
n

]

≥ E�x

[
N∑

i=0

βiR(Xn+i, An+i) |Hx
n

]
,

since by Theorem 12.6 V̄π is a lower bound on any achievable cost, so that letting
N→∞ completes the proof. ///

An immediate application of Theorem 12.8 is the identification V̄π =V�
π , as well

as the existence of various forms of ε-optimal policies in �MD.

Theorem 12.9 If V̄π = T̄πV̄π and R̄inf ≥ 0 then for any ε>0 there exists policy �∈
�MD for which

V�
π (x)− ε≤ V̄π(x)≤V�

π (x), for each x∈X . (12.27)

Consequently, V̄π =V�
π .
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In addition, the following hold:

(i) If β<1 there exists a stationary ε-optimal policy φ.
(ii) If R̄inf > 0 there exists a stationary scalar ε-optimal policy φ.

Proof First note that ��
1 (Hx

1)=V�
π (x1), so that Theorem 12.8 may be used directly

to bound policy value functions.
To prove (12.27) select an nth stage control function φn for�∈�MD which satisfies

λπ(x,φn(x))≤ εn for all x∈X . Each εn may be chosen as small as needed, in particular,
we may force

∑
n β

nεn ≤ ε from which (12.27) follows after applying Theorem 12.8.
Since we may construct an example of the inequality V̄π ≤V�

π ≤V�
π ≤ V̄π + ε for any

ε>0, we conclude that V̄π =V�
π .

To prove (i) select φ∈Kf such that λπ(x,φ(x))≤ ε for all x∈X . Then by Theorem
12.8 we have Vφ(x)≤ (T̄πV̄π)(x)+ ε(1− β)−1. We then make ε as small as needed. The
results follows from the fact that V�

π = V̄π.
To prove (ii) select φ∈Kf such that λπ(x,φ(x))≤ εRinf (x) for all x∈X . Set ε<1.

Then letting �=φ, we have

E�x

[ ∞∑
i=0

βiλπ(Xn+i, An+i) |Hx
n

]
≤ E�x

[ ∞∑
i=0

βiεRinf (x) |Hx
n

]

≤ ε��
n (Hx

n ).

An application of Theorem 12.8 yields V�
π ≤ (1− ε)−1V̄π = (1− ε)−1V�

π . Then make
ε as small as needed. ///

12.6 BANACH SPACE STRUCTURE OF DYNAMIC PROGRAMMING

We have seen that for the nonnegative cost model continuity properties of T̄π (equiv-
alently, the existence of a fixed point), coupled with the existence of a single policy
yielding a finite value function, yields an iterative algorithm R̄[n] which converges to
V̄π =V�

π . Before continuing to a Banach space construction, we show that multiple
starting points are permitted.

We first consider policy evaluation.

Theorem 12.10 If R̄inf ≥ 0 then for any policy φ̃∈KJ
f

lim
n→∞ (T φ̃

π [n]�0)(x)= lim
n→∞Rφ̃[n](x)=V φ̃

π (12.28)

for each x∈X . If V φ̃
π =T φ̃

πV φ̃
π then for any V0 for which ‖V0‖V φ̃

π

<∞ we also have

lim
n→∞ (T φ̃

π [n]V0)(x)=V φ̃
π (x). (12.29)
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Proof A direct calculation gives, by the monotone convergence theorem,

V φ̃
π (x)= lim

n→∞Eφ̃x

[
n∑

i=1

βi−1R(Xi, Ai)

]
= lim

n→∞Rφ̃[n],

so that the pointwise limit (12.28) holds.
Next, suppose V φ̃

π =T φ̃
πV φ̃

π . An indefinite number of iterations yields

V φ̃
π =Rφ̃[n]+ βnJQφ̃[n]V φ̃

π .

From (12.28) we conclude that βnJQφ̃[n]V φ̃
π →n �0 pointwise. Then

T φ̃
π [n]V0 =Rφ̃[n]+ βnJQφ̃[n]V0,

and ∣∣∣βnJQφ̃[n]V0

∣∣∣≤‖V0‖V φ̃
π

βnJQφ̃[n]V φ̃
π ,

the upper bound of which converges pointwise to 0, which completes the proof. ///

For the DPO operator we have already identified V̄π as the limit of a monotone
sequence R̄[n], which is also an iterative algorithm based on T̄π and starting point
V0 = �0. The task here is to identify the limit of T̄π[n]V0 for a suitable class of general
starting points V0, under the assumption that V̄π = T̄πV̄π.

Theorem 12.11 If R̄inf ≥ 0 and V̄π = T̄πV̄π then

(i) If �0≤V0 ≤ V̄π then limn→∞ Tπ[n]V0(x)= V̄π(x)
(ii) In addition, if either β<1 or R̄inf > 0 then limn→∞ Tπ[n]V0(x)= V̄π(x) for each

x∈X where V0 ≥ �0 and ‖V0‖V̄π <∞.

Proof To prove part (i), by monotonicity we have

�0≤V0 ≤ V̄π⇒ T̄π[n]�0≤ T̄π[n]V0 ≤ T̄π[n]V̄π = V̄π for all n≥ 1,

which completes the proof by noting T̄π[n]�0→n V̄π.
First suppose V0 ≤ V̄π. Then lim supn→∞ T̄π[n]V0(x)≤ V̄π(x). On the other hand,

by monotonicity we also have T̄π[n]V0(x)≥ T̄π[n]v0(x)= R̄[n] so that by we may
conclude limn→∞ T̄π[n]V0(x)= V̄π(x).

To prove (ii) first suppose V0 ≥ V̄π. If β<1 then by Theorem 12.9 for any ε>0
there is an ε-optimal policy φ. Since Vφ

π ≥ V̄π by hypothesis ‖V0‖Vφ
π
<∞. We may

therefore apply Theorem 12.10

V̄π ≤ lim sup
n→∞

T̄π[n]V0 ≤ lim
n→∞Tφ

π [n]V0 =Vφ
π ≤ V̄π + ε.

Since this holds for any ε we must have limn→∞ T̄π[n]V0(x)= V̄π(x). Essentially the
same argument is made if R̄inf > 0, based on Theorem 12.9.
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The general case is then resolved by constructing an envelope, defined pointwise
by V−

0 (x)=min(V0(x), Vπ(x))≤V0(x)≤max (V0(x), Vπ(x))=V+
0 (x). The cases already

resolved may be used to verify pointwise convergence of both T̄π[n]V−
0 and T̄π[n]V+

0
to V̄π and therefore also of T̄π[n]V0 by monotonicity. ///

12.6.1 The contraction property

It is worth considering conditions under which we expect T̄π to be contractive. If
we first suppose that R(x, a) is bounded and β<1 then it is easily shown that T̄π
and Tφ

π , when calculable, are β-contractive. However, it is important to realize that
contractivity need not be explicitly expressed using the discount parameter β. A unity
of approach becomes apparent when the discount factor is interpreted as a ’kill rate’,
so that at each stage, there is a probability 1− β that the system moves to a ‘kill
state’ �, at which the system stops, or in the context of an infinite horizon model,
remains indefinitely without assuming any more cost. It is possible to incorporate this
transition probability into the kernel, setting Q({�} |x, a)= 1− β for each (x, a)∈K,
and renormalizing all other probability by a factor of β. In this case, there is no need
to incorporate the discount factor in the DPO (so we would set β= 1), but the effect
is exactly the same.

In more complex models, the kill rate may vary across (x, a). This is particu-
larly true of semi-Markov processes, which are continuous-time processes in which a
Markov chain is embedded at time points t1< t2< . . .. In this case, it would usually
be appropriate to regard discounting as being applied over continuous time, so that
the discount factor for a stage may be taken to be exp(−λT), where λ>0 is a discount
rate and T is the time length of the stage (presumed to be a function of state x∈X ). In
this case, the contraction constant would be bounded above by exp(−λTmin), where
Tmin is the minimum time length for a stage. To establish the contraction property it
would be enough to verify that Tmin> 0, but the actual asymptotic contraction rate of
any resulting operator may be strictly smaller.

Finally, we note that the contraction properties of shortest path MDPs (Section
12.3.4) can be established in this way, with the terminal state set as the kill state. In this
case we would generally not expect single stage contration to hold, but would require
instead that QJ({�} |x, a) be uniformly bounded from zero over K, meaning that � is
reachable from all states under all controls within J transitions.

12.6.2 Contraction properties of the DPO

Since T φ̃
π is a linear operator its contraction properties can be precisely resolved by

Theorems 7.6 and 7.7 and the subsequent discussion. It is therefore straightforward
to define a Banach space F(X , ‖·‖w ) on which T φ̃

π is a contractive operator.
The DPO T̄π is of course not a linear operator, but may be regarded as a type

of composition of linear operators, in the sense that for any evaluation T̄πV there
is a linear operator Tφ

πV ≈ T̄πV , with the approximation as accurate as we like, and
possibly exact under well defined continuity conditions. Therefore, it seems reasonable
to suppose that certain properties that hold uniformly over all Tφ

π also hold for T̄π.
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This, in fact, is the approach commonly taken. However, we will find that it may
suffice to find a single operator Tφ

π that sufficiently resembles T̄π, the properties of the
former then holding for the latter.

The first step is to verify that T̄π is an operator on a Banach space F(X , ‖·‖w ) for
some w∈W.

For an MCM we may define, for model elements R, Q

ηw
Q = sup

(x,a)∈K
w(x)−1

∣∣∣∣∣∣Q(· |x, a)
∣∣∣∣∣∣

w

ηw
R = sup

(x,a)∈K
w(x)−1|R(x, a)|. (12.30)

We can see from the definition that for any φ∈Kk we must have

∣∣∣∣∣∣Qφ
∣∣∣∣∣∣

w ≤ ηw
Q and

∥∥Rφ
∥∥

w ≤ ηw
R .

For multistep policies φ̃ it follows that
∣∣∣∣∣∣∣∣∣Qφ̃

∣∣∣∣∣∣∣∣∣
w
<∞ and

∥∥∥Rφ̃

∥∥∥
w
<∞when ηw

Q, ηw
R <

∞ (more precise bounds can follow from (12.20)). To verify that T̄π is an operator on
F(X , ‖·‖w) it will suffice to bound ηw

Q, along with related conditions on R. In contrast,
contractivity may require consideration of J-step operators. Accordingly, we define

ηw
Q[J] = sup

φ̃∈KJ
f

∣∣∣∣∣∣∣∣∣Qφ̃
∣∣∣∣∣∣∣∣∣

w
. (12.31)

We will impose the restriction ηw
Q<∞, but the minimization procedure defining

T̄π permits a weaker assumption than ηw
R <∞. This is summarized in the following

theorem:

Theorem 12.12 If for MCM π and weight function w∈W we have ηw
Q<∞ and

there exists finite positive constant MR and at least one φ′ ∈Kf for which

inf
(x,a)∈K

w(x)−1R(x, a)≥−MR and
∥∥∥Rφ′

∥∥∥
w
≤MR,

then

∥∥T̄πV
∥∥

w ≤MR + βηw
Q ‖V‖w ,

so that T̄π is an operator on F(X , ‖·‖w).
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Proof We always have

w(x)−1(T̄πV)(x) ≤ w(x)−1(Tφ′
π V)(x)

= w(x)−1Rφ(x)+ βw(x)−1
∫

y∈X
V(y)dQ(y | x,φ(x))

≤
∥∥∥Rφ′

∥∥∥
w
+ β

∣∣∣∣∣∣∣∣∣Qφ′
∣∣∣∣∣∣∣∣∣

w
‖V‖w

≤ MR + βηw
Q ‖V‖w .

Similarly,

w(x)−1(T̄πV)(x) = inf
a∈Kx

w(x)−1R(x, a)+ βw(x)−1
∫

y∈X
V(y)dQ(y | x, a)

≥ −MR − β
∣∣∣∣∣∣Q(· |x, a)

∣∣∣∣∣∣
w ‖V‖w

≥ −MR − βηw
Q,

which completes the proof. ///

That contractivity of T̄π follows from the uniform contractivity of the family Tφ
π

is a consequence of the following elementary theorem, proposed for this application
in Hinderer (1970). We will have several occasions to use this theorem, given here in
a slightly different form.

Theorem 12.13 Let f1, f2 be real valued functions on a set E. Suppose infx f2(x)>−∞
and |f2(x)|<∞ for all x∈E. Then | infx f1(x)− infx f2(x)| ≤ supx|f1(x)− f2(x)|.
Proof First note that since f2 is everywhere finite, supx|f1(x)− f2(x)| is well defined.
If | infx f1(x)| =∞ it follows that supx|f1(x)− f2(x)| =∞. Then suppose infx f1(x) is
finite. For any ε>0 there exists x∗ ∈E such that f2(x∗)≤ infx f2(x)+ ε. Then

inf
x

f1(x)− inf
x

f2(x) ≤ f1(x∗)− f2(x∗)+ ε≤ sup
x
|f1(x)− f2(x)| + ε.

A similar argument gives infx f2(x)− infx f1(x)≤ supx |f1(x)− f2(x)| + ε. The theorem
follows by letting ε approach 0. ///

The application of uniform contractivity follows directly.

Theorem 12.14 The J-step DPO T̄π[J] possesses Lipschitz constant ηw
Q[J], defined

in (12.31).
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Proof From Theorem 12.13 we may write

w(x)−1
∣∣T̄J

πV1 − T̄J
πV2

∣∣
= w(x)−1

∣∣∣∣inf
φ̃

[
Rφ̃(x)+ β

∫
X

V1dQφ̃(x)
]
− inf

φ̃

[
Rφ̃(x)+ β

∫
X

V2dQφ̃(x)
]∣∣∣∣

≤ w(x)−1 sup
φ̃

∣∣∣∣Rφ̃(x)+ β
∫

X
V1dQφ̃(x)− Rφ̃(x)+ β

∫
X

V2dQφ̃(x)
∣∣∣∣

= w(x)−1 sup
φ̃

∣∣∣∣β
∫

X
V1 − V2dQφ̃(x)

∣∣∣∣
≤ ηw

Q[J] ‖V1 − V2‖w ,

which completes the proof. ///

Theorems 12.12 and 12.14 together may be used to verify that T̄π is a contraction
operator. They are in fact somewhat weaker than those proposed in Van Nunen and
Wessels (1978) (following earlier work in Lippman (1975)) which can be summarized
as ηw

Q< 1 and ηw
R <∞.

We conclude with the following theorem.

Theorem 12.15 Suppose for MCM π the assumptions of Theorem 12.12 hold for
weight function w∈W. Then T̄π is an operator on F(X , ||·||w) for which T̄π[J] possesses
Lipschitz constant ηw

Q[J].

Proof The result follows directly from Theorems 12.12 and 12.14. ///

12.6.3 The equivalence of uniform convergence and
contraction for the DPO

From the discussion of Section 7.3 we concluded that the contraction property of a
positive linear operator T was equivalent to uniform convergence of the sequence Tn�0
to its limit. This applies directly to T φ̃

π under our assumptions. As an alternative to the
approach underlying Theorem 12.15, we show how this equivalence can be extended
to the DPO.

It will clarify the matter to introduce the definition

ζn = inf
x∈X

R̄[n](x)/V̄π(x)= ∥∥V̄π

∥∥−1
R̄[n] ,

so that uniform convergence of R̄[n] to V̄π is equivalent to ζn ↑ 1. In fact, J-stage

contraction of any operator T φ̃
π follows if

∥∥∥V φ̃
π

∥∥∥
V̄π
<∞ and ζn> 0 for any n≥ 1. This

is shown in the following theorem.
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Theorem 12.16 For any φ̃∈Km
f we have

∣∣∣∣∣∣∣∣∣Qφ̃[n]
∣∣∣∣∣∣∣∣∣

V φ̃
π

≤ 1−
∥∥∥V φ̃

π

∥∥∥−1

Rφ̃[n]
≤ 1− ζnm

∥∥∥V φ̃
π

∥∥∥−1

V̄π
. (12.32)

In addition, the operators Qφ̃[J] for all policies φ̃∈Km
f satisfying

∥∥∥V φ̃
π

∥∥∥
V̄π
≤ 1+ δ satisfy

the uniform bound∣∣∣∣∣∣∣∣∣Qφ̃[n]J
∣∣∣∣∣∣∣∣∣

V̄π
≤ [1− ζnm(1+ δ)−1]J (1+ δ). (12.33)

Proof By Theorem 7.7 we have directly

∣∣∣∣∣∣∣∣∣Qφ̃[n]
∣∣∣∣∣∣∣∣∣

V φ̃
π

≤ 1−
∥∥∥V φ̃

π

∥∥∥−1

Rφ̃[n]
.

Also, Rφ̃[n]≥ R̄[nm] and V̄π ≤V φ̃
π , hence

∥∥∥V φ̃
π

∥∥∥
Rφ̃[n]

≤
∥∥∥V φ̃

π

∥∥∥
V̄π

∥∥V̄π

∥∥
R̄[nm], which com-

pletes the proof. ///

The inequality (12.33) suggests that the family of operators T φ̃
π for which

∥∥∥V φ̃
π

∥∥∥
V̄π
≤

1+ δ forms a type of neighborhood of DPO V̄π, over which a contraction constant
may be uniformly bounded. This suggests the idea of contructing an approximate DPO
based on this neighborhood. To do this we rely on the idea of a restricted policy set
Kδ defined by,

Kδ
x = {a∈Kx | λπ(x, a)≤ δV̄π(x)},

the set of restricted policy functions φ∈Kδ
f constructed from Kδ, and the resulting

restricted DPO, defined for x∈X by

T̄δ
πV(x) = inf

a∈Kδ
x

Ta
πV(x).

Clearly, we have

V̄π = T̄δ
πV̄π = T̄πV̄π,

and we will need to show that this equality holds for V near V̄π. In addition, from

Theorem 12.8 we may may conclude that
∥∥∥V φ̃

π

∥∥∥
V̄π
≤ (1+ δ) for any φ̃∈Kδ

f . The

contraction property for T̄δ
π follws directly:

Theorem 12.17 If there exists n for which ζn> 0 then T̄δ
π is J-stage contractive in

‖·‖V̄π for all δ>0.

Proof Since φ∈Kδ
f implies

∥∥Vφ
π

∥∥
V̄π
≤ (1+ δ), by Theorem 12.16 we have for any J

the uniform bound∣∣∣∣∣∣Qφ[n]J
∣∣∣∣∣∣

V̄π
≤ [1− ζn(1+ δ)−1]J (1+ δ), (12.34)
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over φ∈Kδ
f . By hypothesis J may be selected large enough for force the upper bound

to be less than one. That T̄δ
π is multistage contractive follows from Theorem 12.14. ///

The remaining step is to determine when T̄δ
π and T̄π are interchangeable.

Theorem 12.18 Suppose R̄inf ≥ 0. Given two positive constants b< 1< c, if (1+ δ)>
c/b then bV̄π ≤V ≤ cV̄π implies T̄δ

πV = T̄πV.

Proof We must have T̄δ
πV ≥ T̄πV . If T̄δ

πV(x′)> T̄πV(x′) for some x′ then there
exists a′ /∈Kδ

x for which (Ta
πV)(x′, a′)< T̄δ

πV(x′). Suppose bV̄π ≤V ≤ cV̄π, so that using
Lemma 12.1 we may write

(Ta
πV)(x′, a′)<Tδ

πV(x′)≤ cT̄δ
πV̄π(x′)= cV̄π(x′). (12.35)

Conversely, since a′ /∈Kδ
x′ we have

(Ta
πV)(x′, a′) ≥ R(x′, a′)+ bβ

∫
X

V̄π(y)dQ(y | x′, a′)

≥ b(T̄πV̄π(x′)+ δV̄π(x′))

= b(1+ δ)V̄π(x′). (12.36)

However (12.35) and (12.36) contradict the hypothetical constraint on the constants
δ, δ′, so the theorem must hold. ///

The preceding theorems may be used in the following way. First suppose R̄inf ≥ 0.
If we can find some policy φ and m≥ 1 for which Rφ[m]∼Vφ

π we know that Tφ
π is

contractive. If in addition R̄[m]∼Rφ[m] we may conclude

∥∥V̄π

∥∥
R̄[m] ≤

∥∥V̄π

∥∥
Rφ̃[m]

∥∥∥Rφ̃[m]
∥∥∥

R̄[m]
≤
∥∥∥V φ̃

π

∥∥∥
Rφ̃[m]

∥∥∥Rφ̃
∥∥∥

R̄[m]
<∞,

so that ζm> 0. Theorem 12.17 therefore holds.
Then, suppose we construct a VIA from starting point V0 ≥ 0. We must have

Vn = T̄π[n]V0 ≥ R̄[n]≥ ζmV̄π for all n≥m. Furthermore, since T̄π is nonexpansive, we
have

∥∥Vn+1 − V̄π

∥∥
V̄π
≤C when

∥∥Vn − V̄π

∥∥
V̄π
≤C. Thus, we may find a single pair of

constants b, c for which the hypothesis of Theorem 12.18 holds for all Vn, for n≥m.
Thus, for some δ the VIA is equivalent to Vn+1 = T̄δ

πVn, that is, the VIA satisfies the
contraction property.

12.7 AVERAGE COST CRITERION FOR MDP

There are two motivations for introducing a discount factor β<1. There may be
economic reasons for discounting future costs. The practical consequence of this is
to assign greater weight to short term costs, so that as β→ 0 we would minimize the
single stage cost R(x, a) only.
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If economic criterion play no role, the purpose of β<1 is to ensure that the total
cost is finite. In this case, it might seem unsatisfactory that the attained cost, and hence
the optimal policy, depends on this value, which has no other meaning to the analyst.

At this point, recall that β equivalently defines a ‘kill’ process, in the sense that
the MDP stops assuming cost after a random number of stages which is geometrically
distributed with mean (1− β)−1.

We can predict the magnitude of a value function to be within (1− β)−1R̄sup, which
is the maximum cost per stage multiplied by the expected number of stages. In this
sense, (1− β)V̄π represents the resulting ‘average’ cost per stage. If we let β→ 1 we
should expect to attain an optimal undiscounted cost, as an long term average.

Calculated directly, this becomes

V�
π (x)= lim

N→∞
N−1E�x

[
N∑

n=1

R(Xn, An)

]
, x∈X . (12.37)

The expectation can be evaluated as before using the measure P�x , yielding a well
defined optimization problem over the space of controls. Of course, it would be helpful
if the problem could be formulated so as to exploit the theory developed for the total
discounted cost. One idea which presents itself is to calculate a sequence of solutions
as β approaches 1, then accept the limit as the optimal average cost model. This is a
viable approach, but would be quite cumbersome, particularly since the complexity of
the computation can be very sensitive to the factor (1− β)−1.

We propose instead to develop an optimality criterion by reformulating the prob-
lem as a shorest path MDP (following the approach discussed in Bertsekas (1995b),
Chapter 4).

Assume that a controlled MDP is ergodic (Section 5.2), and that K is countable.
In particular, we can take any state, say x= 1∈X , and decompose the process into
renewal periods, which begin from state Xn = 1 and end when the system first returns
to state Xn+j = 1 following j≥ 1 transitions. Since we have a formal renewal process,
the long term behavior can be deduced from the properties of a single renewal period.

We do this in the following way. Consider a shortest path MDP which begins as
state X1 = 1 and which upon the next return to state 1 transitions instead to a kill state
�, accruing no further cost.

This results in a modification of the original model π. We have appended a kill
state � to X , and the original stochastic kernel Q has been replaced by Q�, for which

Q�(� | x, a) = Q({1} |x, a)

Q�({1} |x, a) = 0

Q�({y} |x, a) = Q({y} |x, a), y∈X − {1},

for all (x, a)∈K. If, for some φ∈Kf , Qφ defines the transition kernel for an ergodic
Markov chain, then all states communicate with state 1, so that, following the dis-
cussion in Section 12.6.1, the operator Qφ

� will be multistage contractive. The cost
function R remains the same, except that it is extended to R(�, a)≡ 0 for any dummy
action a. Denote the new model π[�].
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The total cost, using control policy �, and starting from state 1 is

R[�,�]=E�1

⎡
⎣Ntot∑

n=1

R(Xn, An)

⎤
⎦

where Ntot ≥ 1 is the number of states visited before the kill state (including the initial
state X1 = 1).

Next, note that we may always find a constant λ for which

R[�,�]=E�1

⎡
⎣Ntot∑

n=1

λ

⎤
⎦= λE�1

[
Ntot] ,

which may be interpreted as an average cost per stage.
The MCM will be modified in one more way. Return to the original shortest path

MDP, but now use cost function Rλ(x, a)=R(x, a)− λ, with Rλ(�, a)≡ 0, leaving the
exact value of λ open for the moment. The new model is denoted π[�, λ].

Suppose we use stationary policy φ∈Kf for model π[�, λ]. The resulting policy
value function satisfies the equation

Vφ

π[�,λ](x)=Rφ(x)− λ+
∫

y∈X−{1}
Vφ

π[�,λ]dQφ(y | x), x �=�, (12.38)

where we may force Vφ

π[�,λ](�)= 0. This can be reexpressed in terms of the operator

Tφ

π[�] as

Vφ

π[�,λ] + λ=Tφ

π[�]V
φ

π[�,λ]. (12.39)

Now, return to the original interpretation of λ as the solution, denoted λ= λφ, to
R[�,�]= λφE�1

[
Ntot

]
, with �=φ. Then

Vφ

π[�,λφ](1)=E�1

⎡
⎣Ntot∑

n=1

(R(Xn, An)− λφ)
⎤
⎦=R[�,�]− λφE�1

[
Ntot]= 0,

so that

λφ=
(
Tφ

π[�]V
φ

π[�,λφ]

)
(1).

Finally, consider the original problem of minimizing λφ. It is tempting at this point
to conclude directly that an optimality equation can be obtained from (12.39) simply by
replacing the linear operator with the DPO, that is, V = λ+ T̄πV . This is close to being
correct, but it must be remembered that the shortest path problem is not the problem we
are considering. To complete the argument, suppose we can somehow identify a policy
φ∗ which achieves the minimum average cost λ∗. Now, we consider optimizing the
shortest path MDP under model π[�, λ∗]. Possibly, φ∗ is not optimal for this problem,
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and we may be able to find φ̂ for which V φ̂

π[�,λ∗] ≤Vφ∗
π[�,λ∗]. From (12.39), since λ∗

is common to both policy value functions, we also have T φ̂

π[�]V
φ̂

π[�,λ∗] ≤Tφ∗
π[�]V

φ∗
π[�,λ∗],

so that

λ∗ =
(
Tφ∗
π[�]V

φ∗
π[�,λ∗]

)
(1)

≥
(
T φ̂

π[�]V
φ̂

π[�,λ∗]

)
(1)

≥
(
T φ̂

π[�]V
φ̂

π[�,λ
φ̂
]

)
(1)

= λφ̂,

where the final inequality follows from the fact that Rλ1 (x, a)≤Rλ2 (x, a) over all
(x, a)∈K if λ1 ≥ λ2. Therefore, the assumption that λφ̂ >λ

∗ leads to a contradiction,
and we conclude that a policy yielding optimal average cost λ∗ can be replaced by a
policy optimizing the shortest path cost for model π[�, λ∗]. We already know how
to determine the optimal policy for this problem, namely, by solving the fixed point
equation,

V̄π[�,λ∗] = T̄π[�,λ∗]V̄π[�,λ∗], or equivalently

V̄π[�,λ∗] + λ∗ = T̄π[�]V̄π[�,λ∗]. (12.40)

The development of a VIA for the optimal average cost MDP will be taken up in
Section 13.9.



Chapter 13

Markov decision processes – value
iteration

If we are given a Banach space F(X , ‖·‖w) on which a policy operator Tφ
π or DPO T̄π is

contractive then a VIA is simply the sequence of iterations Vk+1 =Tφ
πVk or Vk+1 = T̄πVk

for any suitable starting point V0 ∈F(X , ‖·‖w). The sequence Vk converges uniformly
to V̄π, but since a VIA is exact only in the limit, the remaining component is a stopping
rule N which permits the claim

∥∥VN − V̄π

∥∥
w ≤ ε for some fixed tolerance ε>0. The

stopping rules discussed in Section 6.2.1 apply to any contractive operator on a metric
space (including multistage or pseudocontractive), and will be used to develop stopping
rules for VIAs.

Regarding the starting point, to fix ideas, assume that costs are bounded. We may
always select V0 = �0. If so, the first DPO iteration yields V1 =Rinf , and subsequent
iterations add an amount to each state between Rinf and Rsup. For discounted costs
we expect (1− β)−1Rinf ≤ V̄π ≤ (1− β)−1Rsup, so the number of iterations needed is of
order O

(
(1− β)−1

)
.

The preceding inequality suggests an alternative starting point, namely V0 =
(1− β)−1Rinf , since we must have

∥∥(1− β)−1Rinf
∥∥

w <∞.
We may also use the comparison approach discussed in Section 12.6.3. If for some

policy φ and integer m we have weight equivalence R̄[m]≡Rφ[m]≡w and Tφ
π is con-

tractive wrt norm ‖·‖w, then
∥∥V̄π

∥∥
w ≤

∥∥Vφ
π

∥∥
w <∞, and we may use starting point

V0 =Vφ
π .

If Vφ
π is to be calculated by VI, starting point V0 = (1− β)−1Rφ may be used, since

under the given conditions
∥∥Rφ

∥∥
w <∞, and in fact from the discussion in Section 7.5.2

we have
∥∥Vφ

π

∥∥
w ≤

∥∥(1− β)−1Rφ
∥∥

w. Although the evaluation of Vφ
π can be expected to

have the same linear convergence rate as a VIA based on T̄π, the computation of Tφ
π

may be considerably more efficient, since minimization over the action space is not
needed. Alternatively, since Vφ

π =Tφ
πVφ

π is a linear system, more efficient specialized
methods may be available. Methods for policy evaluation (the calculation of Vφ

π ) are
discussed in detail in, for example, Puterman (1994) or Bertsekas and Tsitsiklis (1996).
Possibly, it will be easier to verify the contractive property for multistep policies φ̃∈Km

f ,
in which case, the preceding discussion also applies.

13.1 VALUE ITERATION ON QUOTIENT SPACES

Suppose T is an operator (not necessarily linear) on Banach space V =F(X , ‖·‖w)
which possesses an eigenpair (β, ν), in particular, for any scalar c and V ∈V

T(V + cν)=TV + βcν (13.1)
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(at this point, the reader may wish to review the material in Chapters 6 and 7).
As a technical matter, although T is constructed as a mapping between single

elements of V we may also regard it as a mapping between sets of functions, so that
if E⊂V, we take TE⊂V to be a mapping of subsets, evaluated as the image of E
under T.

Next, note that Nν={cν | c∈R} is a subspace of V. Recall that the quotient space
V/Nν consists of all cosets [V]={V + n | n∈Nν} over all V ∈V. These form a vector
space of equivalence classes, with additive identity Nν (see Section 6.3.1). In this case,
we may say that T is an operator on V/Nν if TE∈V/Nν whenever E∈V/Nν. In terms
of the original meaning of the operator, this is equivalent to the claim that for any
E1 ∈V/Nν there is another E2 ∈V/Nν such that T : E1 →E2 is a bijective mapping.
The condition (13.1) suffices for this to hold.

Next, we may define for any coset [V]∈V/Nν

‖[V]‖α= inf
n∈Nν

‖V − ν‖w,

noting that this definition is consistent, since V may be replaced by any other element
of [V]. Then by Theorem 6.18 of Section 6.3.1, if V is a Banach space, then so is
(V/Nν, ‖·‖α ). Finally, by Theorem 6.25 of Section 6.8.4, if we may set w= ν (which
we can if w∼ ν) we have

‖[V]‖α=
1
2
‖V‖SP(ν) ,

which again is consistent in the sense that ‖V1‖SP(ν) =‖V2‖SP(ν) whenever V1, V2 are in
the same coset.

At this point we refer to the Banach space (V/Nν, ‖·‖SP(ν)) on which ‖·‖SP(ν) is a
true norm which defines convergence on V/Nν. Furthermore, contractive properties
for T : V/Nν→V/Nν may be analyzed as for the original Banach space V and we may
be able to conclude that T possesses fixed point [V∗]=T[V∗]∈V/Nν. This does not
(necessarily) mean that there exists V∗ ∈V for which V∗ =TV∗. It does mean that T is
a bijective mapping on [V∗], so that TV ∈ [V∗] whenever V ∈ [V∗], and this turns out
to be a precise enough statement to resolve the optimality problem. In particular, for
the average cost MDP a fixed point in V generally does not exist, but, under suitable
regularity conditions a fixed point in V/Nν does exist in this sense.

A similar issue arises in the actual implementation of value iteration. Whether
we define the algorithm on V or V/Nν the iterates will still take the form Vk+1 =
TVk, where Vk is a specific function in V. If we may guarantee convergence in V
(for example, T is contractive on V), we also have convergence in the span seminorm
(Theorem 6.25). However, if we may only claim convergence in the span seminorm
then the iterates Vk+1 =TVk need not converge, and a modification is needed to yield
a numerically stable algorithm. Fortunately, we need only rely on the fact that a coset
may be represented by any of its elements. Therefore, define a canonical member
V0 ∈ [V], and use evaluations T[V]=TV0. For example, if 1∈X , we may take V0 to
be the unique element of [V] for which V(1)= 0. The iterations then assume the form

Vk+1 =T(Vk − (Vk(1)/ν(1))ν).
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Essentially, we have devised a modified operator T0V =T(V − (V(1)/ν(1))ν), which
yields iterations Vk+1 =T0Vk.

The value of constructing a VIA on V/Nν is clear if T is not contractive on V.
In this case, the essential step is to determine the contractivity properties wrt ‖·‖SP(ν).
However, even when T is contractive on V, and we can achieve our goal by allowing
the iterates Vk+1 =TVk to converge to the fixed point, there can be considerable advan-
tage to conceiving of the algorithm as defined on V/Nν. In this chapter, we consider
both cases.

13.2 CONTRACTION IN THE SPAN SEMINORM

Since Tφ
π is a linear operator based on a stochastic kernel, Theorem 6.28 of Section

6.9.2 gives the Lipschitz constant directly:

∣∣∣∣∣∣Qφ
∣∣∣∣∣∣

SP(ν) =
1
2

sup
x,y∈X

∥∥(I−1
ν Qφ)(x)− (I−1

ν Qφ)(y)
∥∥

TV(ν) ≤
∣∣∣∣∣∣Qφ

∣∣∣∣∣∣
ν

, (13.2)

provided ν is an eigevector of Qφ. As discusses in Section 7.5.2 the quantity
∣∣∣∣∣∣Qφ

∣∣∣∣∣∣
SP(ν)

is equivalent to Dobrushin’s ergodicity coefficient (for example, Section 6.7 of
Brémaud (1999) when Qφ is a proper stochastic kernel.

To fix ideas, suppose Qφ=βQφ

0 where β<1 and Qφ

0 is a proper stochastic ker-
nel, so that Tφ

π is β-contractive, and (1, �1) is an eigenpair of Qφ

0. Then
∣∣∣∣∣∣Qφ

∣∣∣∣∣∣
ν
=∣∣∣∣∣∣∣∣∣βQφ

0

∣∣∣∣∣∣∣∣∣
ν
=β, so by (13.2)

∣∣∣∣∣∣Qφ
∣∣∣∣∣∣

SP(ν) ≤β, and we know that Tφ
π is contractive on both V

and V/Nν.
So far, all contractive properties in the span seminorm are attributable to the dis-

count factor β. However, since
∣∣∣∣∣∣Qφ

∣∣∣∣∣∣
SP(ν) =β

∣∣∣∣∣∣∣∣∣Qφ

0

∣∣∣∣∣∣∣∣∣
SP(ν)

the contraction rate is reduced

further if
∣∣∣∣∣∣∣∣∣Qφ

0

∣∣∣∣∣∣∣∣∣
SP(ν)

< 1, or more generally if
∣∣∣∣∣∣∣∣∣(Qφ

0)J
∣∣∣∣∣∣∣∣∣

SP(ν)
< 1.

13.2.1 Contraction properties of the DPO

In the context of V we have seen that if the Lipschitz constants of all linear operators Tφ
π

over φ∈Kf are bounded by β then β is also a Lipschitz constant of the DPO T̄π. This is
stated in Theorem 12.15, but is largely a consequence of a technical theorem (Theorem
12.13) proposed in Hinderer (1970), which under the stated hypothesis asserts that

| inf
x

f1(x)− inf
x

f2(x)| ≤ sup
x
|f1(x)− f2(x)|

for real valued functions on a general domain.
We can extend this approach to the span seminorm, up to a point, but we don’t

have quite as strong a result. First, we present the extension of Theorem 12.13:

Theorem 13.1 Suppose two functions f , g map K to R, and that

|f (x, a)|<∞ and |g(x, a)|<∞.
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In addition, assume that for each x we have

inf
a∈Kx

f (x, a)>−∞ and inf
a∈Kx

g(x, a)>−∞.

Then∥∥∥inf
a

f (x, a)− inf
a

g(x, a)
∥∥∥

SP
≤ sup

x,a∈K
(f (x, a)− g(x, a))− inf

x,a∈K
(f (x, a)− g(x, a))

Proof From the proof of Theorem 12.13 we have

sup
x

( inf
a

f (x, a)− inf
a

g(x, a)) ≤ sup
x

sup
a

(f (x, a)− g(x, a)),

sup
x

( inf
a

g(x, a)− inf
a

f (x, a)) ≤ sup
x

sup
a

(g(x, a)− f (x, a)).

Then ∥∥∥inf
a

f (x, a)− inf
a

g(x, a)
∥∥∥

SP

= sup
x

( inf
a

f (x, a)− inf
a

g(x, a))− inf
x

( inf
a

f (x, a)− inf
a

g(x, a))

= sup
x

( inf
a

f (x, a)− inf
a

g(x, a))+ sup
x

( inf
a

g(x, a)− inf
a

f (x, a))

≤ sup
x

sup
a

(f (x, a)− g(x, a))− inf
x

inf
a

(f (x, a)− g(x, a)),

which completes the proof. ///

Thus, by Theorem 4.22∥∥T̄πV1 − T̄πV2
∥∥

SP(ν)

= sup
x

sup
a

Q(x, a)(V1 − V2)− inf
x

inf
a

Q(x, a)(V1 − V2)

≤ sup
(x,a),(x′,a′)∈K2

∥∥Q(x, a)−Q(x′, a′)
∥∥

TV(ν) ‖V1 − V2‖SP(ν)

so that the span seminorm operation is simply extended from X to K, and a Lipschitz
constant of T̄π wrt ‖·‖SP(ν) is given by

L= sup
(x,a),(x′,a′)∈K2

∥∥Q(x, a)−Q(x′, a′)
∥∥

TV(ν).

However, it is not sufficient to consider
∣∣∣∣∣∣Qφ

∣∣∣∣∣∣
SP(ν) over all policy functions. To see this,

by decomposing into the cases x= x′ and x �= x′ we obtain∥∥T̄πV1 − T̄πV2
∥∥

SP(ν) = sup
x

sup
a

Q(x, a)(V1 − V2)− inf
x

inf
a

Q(x, a)(V1 − V2)

= max {A, B} ,
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where

A = sup
φ∈K

sup
x,x′∈X×X

∥∥Q(x,φ(x))−Q(x′,φ(x′))
∥∥

TV(ν) ‖V1 − V2‖SP(ν)

= sup
φ∈K

∣∣∣∣∣∣Qφ
∣∣∣∣∣∣

SP(ν) ‖V1 − V2‖SP(ν) ,

and

B = sup
x∈X

sup
a,a′∈Kx×Kx

∥∥Q(x, a)−Q(x, a′)
∥∥

TV(ν) ‖V1 − V2‖SP(ν) .

Therefore, the uniform contraction structure of Theorem 12.15 does not necessarily
extend to the span seminorm, unless we can assert that A≥B.

13.3 STOPPING RULES FOR VALUE ITERATION

Suppose we are given any fixed point algorithm Vk+1 =TVk, with starting point V0

for some operator T, and assume TJ possesses Lipschitz constant ρJ. From Section 7.6
the stopping rules

Nε
J = min{N | ρJ(1− ρJ)−1

∥∥VN − VN−J
∥∥≤ ε},

Nε
∞ = min{N | ρN(1− ρN)−1 ‖VN − V0‖≤ ε},

guarantee absolute approximation bound∥∥VN − V∗∥∥≤ ε,
where N is any of the stopping times. For this example we consider J= 1 and ∞.
The stopping rules may be expressed as stopping bounds:

∥∥VN − V∗∥∥ ≤ ρ1

1− ρ1
‖VN − VN−1‖, (J= 1)

∥∥VN − V∗∥∥ ≤ ρN

1− ρN
‖VN − V0‖, (J=∞).

This applies to any Banach space.

13.4 VALUE ITERATION IN THE SPAN SEMINORM

Next, suppose (β, ν) is an eigenpair for operator T on V =F(X , ‖·‖ν), with β<1,
so that T is β-contractive. Then T is also β-contractive on the quotient space
(V/Nν, ‖·‖SP(ν)). Of course, as we have seen, the contraction constant wrt ‖·‖SP(ν) may
be considerable smaller, and convergence to the fixed point may be considerably faster
on V/Nν than on V. The price we pay for this is that convergence is to a equivalence
class, and not to a specific solution.
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This turns out not to be too high a price. To see this, the discussion in Section 7.5
regarding solutions to linear fixed point equations may be applied here. Because T is
contractive on V, we know there is a unique fixed point satisfying V∗ =TV∗. Suppose
we are given an equivalence class solution E=TE. Following the discussion in Section
7.5 this means that if V̂ ∈E we may obtain the fixed point of T in V by the formula

V∗ = V̂ + (1− β)−1(TV̂ − V̂). (13.3)

This holds for any V̂ ∈E, so that a fixed point solution in V/Nν immediately yields the
fixed point solution in V. It will therefore be useful to construct a composite operator
based on (13.3), which we may refer to as span adjustment

HV =V + (1− β)−1(TV − V). (13.4)

Then V∗ =HV0 is an exact solution to the fixed point equation V∗ =TV∗ in V for any
V0 ∈E where E is a solution to the fixed point equation in V/Nν.

However, we are also interested in the case in which we have a bound∥∥∥V̂ − V∗
∥∥∥

SP(ν)
≤ ε where V̂ is an approximation of a fixed point V∗ =TV∗ in V mea-

sured in the span seminorm, presumably some iterate V̂ =VN of a VIA. By Theorem
7.11 of Section 7.5.1 we have

∥∥∥HV̂ − V∗
∥∥∥
ν
≤ 1+ β/2

(1− β)

∥∥∥V̂ − V∗
∥∥∥

SP(ν)
. (13.5)

In this way we construct both an exact fixed point, or its appproximation, in V from
an exact fixed point, or its approximation, in V/Nν.

13.5 EXAMPLE: M/D/1/K QUEUEING SYSTEM

Consider a M/D/1/K queueing system with arrival rate λ, a deterministic service time
of 1 unit, and system capacity K (see Section 5.4 for a discussion of queueing models).
The control model will be based on the imbedded service model, so that decision epochs
occur at the beginning of service periods. The control variable consists of an integer
service capacity d, meaning that d customers can be served at once. If fewer than d
customers are in the queue at the beginning of a service period, all are serviced, but
the capacity may remain d.

Costs are calculated on a per service period basis, and there will be a number of
cost determinants. We assume there is a time loss cost, so that a unit cost is assumed for
each customer in the system. The service cost is given by Cs(x, d) where x is the system
occupancy and d is the service capacity. There may also be a policy cost Cp(dx, d)
where dx is the capacity of the previous stage and d is the capacity selected for the
current stage. Note that if Cp(dx, d) depends on dx then the previous capacity must
be incorporated into the state space. A discount factor of β will be used to calculate
total cost.

The transition kernel Q(x, d) may be calculated using the methods of Section 5.4.
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Contraction properties

We first explore some of the contraction properties of T̄π. First assume Cp(dx, d)≡
Cp(d) so that the state space becomes X ={1, . . . , K} (an empty queue transitions to
an occupancy of 1, assuming no cost, so will be combined with the state represent-
ing an occupancy of 1). For the moment, consider a single policy φ≡Ns for some
fixed Ns.

The principal eigenpair of Q=Qφ is taken to be (1, �1). The linear operator used
in T̄π will be βQ, with a principal eigenpair of (β, �1). In the supremum norm the
contraction constant is

∣∣∣∣∣∣βQ
∣∣∣∣∣∣

sup =β. Of course, the contractive properties of Q in the
span seminorm are usefully examined independently. Then the contraction properties
of βQ attributable to β and those attributable to its spectral properties are easily
compounded with the formula

∣∣∣∣∣∣(βQ)J
∣∣∣∣∣∣

SP =βJ
∣∣∣∣∣∣QJ

∣∣∣∣∣∣
SP.

For an example, take K= 100, β= 0.999 and parameter pairs (λ, d)= (2, 5)
and (0.4, 1), which we denote models π1 and π2 respectively. Each queue has the
same utilization factor 0.4, but the λSLEM values differ considerably, with values
λSLEM = 0.3231, 0.7725 (abusing notation somewhat, we will take λSLEM = |λSLEM|).
Recall that λSLEM determines the rate of convergence of a Markov chain to its steady
state (Section 2.3.4) and that it is related to the span operator norm of a stochas-
tic kernel (Section 7.5.2). The values of λSLEM are clearly dependent on the model
parameters, but are both considerably smaller than typical values used for the discount
factor β.

Figure 13.1 displays values of
∣∣∣∣∣∣QJ

∣∣∣∣∣∣
SP, standardized as rates using two devices,

geometric standardization
∣∣∣∣∣∣QJ

∣∣∣∣∣∣1/J
SP and geometric rate

∣∣∣∣∣∣QJ
∣∣∣∣∣∣

SP /
∣∣∣∣∣∣QJ−1

∣∣∣∣∣∣
SP for mod-

els π1,π2 (left column of plot array). The values β and λSLEM are superimposed for
comparison. A number of trends are apparent. Recall that

∣∣∣∣∣∣Q∣∣∣∣∣∣SP is the maximum L1

distance of all pairs of distributions of the kernel Q. We expect the distributions Q(1)
and Q(K) to be close to singular, and that this effect will persist for some number of
iterates QJ, as can be seen in Figure 13.1. Of course, as discussed in Section 5.2, QJ

approaches the steady state transition matrix Q∞, in which all rows are identically
πQ, the steady state distribution of Q (this is the fact responsible for the contrac-
tion property). Furthermore, progress towards the steady state eventually occurs at
the rate λSLEM. Thus, the geometric average of the contraction rate of QJ in the the
span seminorm eventually becomes considerably smaller than the discount rate β. The
right columns of Figure 13.1 compare the total cumulative compounded contraction
rates of the operator βQ in the supremum norm βJ to that in the span seminorm
βJ
∣∣∣∣∣∣QJ

∣∣∣∣∣∣
SP.

Policy evaluation

We next consider the evaluation of a value function Vφ
π for the simple policy φ used

in the previous example, with cost function R(x)= 1+ x. As a first demonstration,
the approximation error for the iterates Vi − Tφ

π [i]v0 in the supremum norm, setting
v0 = �0 are shown in Figure 13.2 (left plots) for model π2, using both the unadjusted
iterates, and the span adjusted iterates, as defined in (13.4). In addition, values of
β= 0.999, 0.9999 were considered.
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Figure 13.1 Representations of operator norms
∣∣∣∣∣∣QJ

∣∣∣∣∣∣
SP, discount factor β and λSLEM, for M/D/1/K

model of Section 13.5. Parameters K= 100, (λ, Ns)= (2,5), (0.4,1), β= 0.999 are
represented.

Clearly, convergence of the span adjusted iterates is order of magnitudes faster than
the unadjusted iterates in the supremum norm itself. The relatively large discount factor
β makes this a challenging problem for standard VI, but has little effect on the span
adjusted method. Furthermore, increasing β from 0.999 to 0.9999 has little effect on
the convergence of the span adjusted iterates, but has, predictably considerable effect
on the unadjusted iterates.

Next, consider stopping rules based on the span seminorm. From Section 7.6 the
stopping rules

Nε
J = min{N | ρJ(1− ρJ)−1

∥∥VN − VN−J
∥∥≤ ε},

Nε
∞ = min{N | ρN(1− ρN)−1 ‖VN − V0‖≤ ε},

guarantee absolute approximation bound

∥∥VN − V∗∥∥
SP ≤ ε,
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Figure 13.2 Approximation error forVI iteratesVi (unadjusted and span adjusted) for M/D/1/K model
of Section 13.5. Parameters K= 100, d= 1, β= 0.999, λ= 0.4. [Left Plot]. Bounds for
J= 1,∞ stopping rules [Right Plot].

where N is any of the stopping times. For this example we consider J= 1,∞. The
stopping rules may be expressed as stopping bounds:

∥∥VN − V∗∥∥
SP ≤

ρ1

1− ρ1
‖VN − VN−1‖SP , (J= 1)

∥∥VN − V∗∥∥
SP ≤

ρN

1− ρN
‖VN − V0‖SP , (J=∞).

The choice of stopping time involves a trade-off between smaller increment sizes and
smaller factor. When β= 1, some J larger than 1 will have to be chosen in many appli-
cations. These stopping bounds are shown in Figure 13.2 (right plots). The relative
advantage depends on the value of β, but both methods are effective in these exam-
ples. As suggested in Section 6.2.1, the relative advantage of the asymptotic stopping
rule will increase as β↑ 1, but requires the calculation of ρN . In principal, this may
be obtained from a spectral decomposition of Q, but it is well known that accurate
calcuations of eigenvectors for large matrices may be difficult to obtain. The natural
alternative is to update Qi =Qi−1Q, and calculate

∣∣∣∣∣∣Qi
∣∣∣∣∣∣

SP directly. Of course, absent
any additional structure to the problem, this is an order O(K3) calculation, as is the cal-
culation of

∣∣∣∣∣∣Qi
∣∣∣∣∣∣

SP, while the value iteration step has a calculation cost of only O(K2).
Therefore, if the cost of an iteration is dominated by K, a comparison of the J=∞
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stopping rule must take this into account. If as a simple device we convert the iteration
scale to a computational cost scale, then the iteration scale for the J=∞ stopping rule
should be rescaled by a factor of K= 100 in comparison to the J= 1 stopping rule, and
it can be seen by inspection of Figure 13.2 that the J=∞ stopping rule is much less
efficient from this point of view. The J= 1 stopping rule then becomes recommendable,
and its reliance on the discount factor β is largely offest by the rapid convergence of
the increments ‖VN − VN−1‖SP, which clearly occurs much more quickly than �(βN).

If Q has NQ nonzero elements, then the update Qi =Qi−1Q may be implemented
as an order O(KNQ) computation, while the value iteration step is an order O(NQ)
computation. The worst case is that NQ =O(K2) but if Q is sparse we would have
NQ =O(K). The update of Qi is still larger than the value iteration step by a fac-
tor of K, but in this scenario the state look-up cost may no longer be dominant.
Of course, the evaluation of

∣∣∣∣∣∣QJ
∣∣∣∣∣∣

SP remains O(K3), but we will next consider a
number of modifications.

13.6 EFFICIENT CALCULATION OF
∣∣∣∣∣∣QJ

∣∣∣∣∣∣
SP

We have seen that more detailed knowledge of
∣∣∣∣∣∣QJ

∣∣∣∣∣∣
SP will result in sharper approx-

imation bounds, but also that in the worst case the calculation of
∣∣∣∣∣∣QJ

∣∣∣∣∣∣
SP may

exceed that of the value iteration algorithm itself by a factor of O(K) or even O(K2).
However, we show that we may reduce the order of complexity by exploiting the
anticipated behavior of QJ.

First note that from the spectral decomposition of Q, we can expect that∣∣∣∣∣∣QJ+1
∣∣∣∣∣∣

SP ≈ λSLEM
∣∣∣∣∣∣QJ

∣∣∣∣∣∣
SP for all large enough J. For the examples of Figure 13.1,

this occurs at approximately J= 50, 300 for models π1,π2. Furthermore, the value of
λSLEM may be calculated accurately using a variety of numercial packages. However, it
is also clear that accepting an approximation of the form

∣∣∣∣∣∣QJ
∣∣∣∣∣∣

SP ≈ λJ
SLEM will result

in considerable underestimation, so it will be worth considering how to efficiently
calculate

∣∣∣∣∣∣QJ
∣∣∣∣∣∣

SP before this point is reached.
Recall that for discrete state spaces

∣∣∣∣∣∣QJ
∣∣∣∣∣∣

SP =
1
2

max
i,j

∥∥QJ(i)−QJ(j)
∥∥

TV ,

so that the complexity of the calculation is primarily driven by the maximization
operation. Thus, it is worth considering if the search over pairs i, j may be reduced.

In our example, the distributions of kernel Q(i) change gradually as i increases,
so we would expect

∥∥QJ(i)−QJ(j)
∥∥

TV to increase with index distance |i − j|. It will
generally be difficult, other than for certain special cases, to verify such relations
precisely, but it would be possible to design an algorithm which would work well if
such a conjecture held.

To see this, set Di,j =
∥∥QJ(i)−QJ(j)

∥∥
TV . By the triangle inequality, for i< j

Di,j ≤
j∑

k=i+1

Dk−1,k. (13.6)
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Then construct

F1 = 0, and Fj =
j∑

k=2

Dk−1,k for j= 2, . . . , K, (13.7)

so that we have bound, for i< j,

Di,j ≤ Fj − Fi.

Then, suppose we anticipate that the index pair (i∗, j∗) will be close to maximizing. Set
D∗ =Di∗,j∗ . Then enumerate all remaining pairs (i, j). If Fj − Fi <D∗ then i, j can be
excluded from further consideration (therefore eliminating the order O(K) calculation
of Di,j). The construction of Fj is an order O(K2) calculation, so if the number of
nonexcluded pairs is small compared to the full enumeration order K(K − 1)/2, then
the computation of

∣∣∣∣∣∣QJ
∣∣∣∣∣∣

SP may be reduced by an order of magnitude, so that the
computation is dominated by the calculation of Fj.

The choice of index pair (i∗, j∗) may be based on the anticipated behavior of QJ,
or if

∣∣∣∣∣∣QJ
∣∣∣∣∣∣

SP is being calculated sequentially, it may be the maximizing pair from the
calculation of

∣∣∣∣∣∣QJ−1
∣∣∣∣∣∣

SP, which would be known using this algorithm.
It should also be noted that

∣∣∣∣∣∣QJ
∣∣∣∣∣∣

SP is nondecreasing, with a maximum of 1.
Therefore, if we find Di∗,j∗ = 1 or Di∗,j∗ = 2

∣∣∣∣∣∣QJ−1
∣∣∣∣∣∣

SP within a suitable tolerance, then
we set

∣∣∣∣∣∣QJ
∣∣∣∣∣∣

SP =Di∗,j∗ without the need to calculate Fj.
We summarize the algorithm, using the notation of (13.6)–(13.7):

Algorithm 1 Given kernel Q on state space i= 1, . . . , K, and maximum iteration NJ:

1 Set J= 1.
2 Determine maximum Di,j =

∥∥QJ(i)−QJ(j)
∥∥

TV over all pairs i< j, as well as the
maximizing pair (i∗, j∗).

3 Output
∣∣∣∣∣∣QJ

∣∣∣∣∣∣
SP = 1

2 Di∗,j∗ .
4 If J=NJ stop algorithm otherwise J= J + 1.
5 Calculate D∗ =Di∗,j∗ .
6 If D∗ ≈ 2

∣∣∣∣∣∣QJ−1
∣∣∣∣∣∣

SP then output
∣∣∣∣∣∣QJ

∣∣∣∣∣∣
SP =

∣∣∣∣∣∣QJ−1
∣∣∣∣∣∣

SP and go to Step 4.
7 Calculate Fj, j= 1, . . . , K, where Di,j =

∥∥QJ(i)−QJ(j)
∥∥

TV.
8 For each pair i< j:

(a) If Fj − Fi <D∗ go to next pair,
(b) otherwise if Di,j >D∗ then assign D∗ =Di,j and (i∗, j∗)= (i, j).

9 Output
∣∣∣∣∣∣QJ

∣∣∣∣∣∣
SP = 1

2 Di∗,j∗ .
10 Go to Step 4.

Algorithm 1 would be suitable for any model in which the kernel Q can be ordered so
that proximate distributions QJ(i), QJ(i + 1) can be expected to have small variational
distance.

Algorithm 1 was implemented for the example of Figure 13.2. The computational
cost is given as the number of pairs (i, j) for which the comparison

∥∥QJ(i)−QJ(j)
∥∥

TV
is evaluated, which is itself an order O(K) computation. The maximum complexity is
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therefore
(100

2

)= 4950, and the minimum is 1, which occurs if the condition in Step 6
is met. If it is not, then the calculation of Fj in Step 7 requires K − 1 pair comparisons.

The complexity achieved by Algorithm 1 for model π2 for the evaluation
∣∣∣∣∣∣QJ

∣∣∣∣∣∣
SP

is shown in Figure 13.3 up to J= 300. The number of comaprisons K − 1 required
to evaluate Fj is shown separately. The maximum complexity is required for

∣∣∣∣∣∣Q∣∣∣∣∣∣SP,
although this number could be significantly reduced by an initial guess of, for example,
(i∗, j∗)= (1, K). As suggested by Figure 13.1, we have

∣∣∣∣∣∣QJ
∣∣∣∣∣∣

SP ≈ 1 for a large number
of iterations. This is easily detected by Algorithm 1, so that only one comparison
pair is required for 2≤ J≤ 95. The complexity rises to 2,284 at J= 96, then decreases
rapidly, remaining below 200 for 151≤ J≤ 300. At J= 300,

∣∣∣∣∣∣QJ
∣∣∣∣∣∣

SP decreases at the
rate λSLEM, so that no further evaluations are needed, and we may use the updating
rule

∣∣∣∣∣∣QJ+1
∣∣∣∣∣∣

SP ≈ λSLEM
∣∣∣∣∣∣QJ

∣∣∣∣∣∣
SP.

The total complexity for the first 300 iterations was 95,285 comparison pairs,
or 317.6 per iteration. Evaluation of

∥∥QJ(i)−QJ(j)
∥∥

TV requires 2K state lookups,
yielding approximetely 63,500 state lookups per iteration, which compares with K2 =
10, 000 state lookups required for a single VI iteration.

Of course, this still leaves the order O(K3) computation for the update QJ =
QJ−1Q. We will see in Chapter 16 that truncation of the distributions defining kernel
Q can be an effective way of reducing computation time with a well controlled approx-
imation error. When the distributions Q(i) are dominated by small tail probabilities,
the resulting approximate kernel Q̂ will typically have NQ̂ =O(K) nonzero elements.
Taken together, the calculation of QJ =QJ−1Q and

∣∣∣∣∣∣QJ
∣∣∣∣∣∣

SP will then each have com-
putation cost O(K2) per iteration, while each VI iteration will have computation cost
of O(K). We will generally find that the J= 1 stopping rule will work effectively for
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the values of β used in these examples. For the average cost criterion (that is, β= 1) the
developement of an effective stopping rule will require finding a small enough value
of
∣∣∣∣∣∣QJ

∣∣∣∣∣∣
SP. This will often require allowing J to approach a value comparable in mag-

nitude to |X |, so an effective exploitation of the spectral properties of Q may become
important in the design of the most efficient possible algorithms. Of course, this holds
also when especially small values of 1− β are anticipated.

13.7 EXAMPLE: M/D/1/K SYSTEM WITH OPTIMAL CONTROL OF
SERVICE CAPACITY

The example of the preceding section will now be expanded to incorporate control
structure. Control epochs occur at the beginning of service periods. The state variable is
(x, dx) where x is the system occupancy at the control epoch (customers serviced during
the previous service period have left the system) and dx is the service capacity in effect
during the previous service period. The available action from state (x, dx) is the service
capacity of the imminent service period, with admissible actions d ∈ {1, 2, . . . , Ns},
where Ns is the maximum service capacity. The state space is therefore of size |X | =KNs

and the action space is of size |A| =Ns. Nominally, the computation cost of single VI
iteration is |X |2|A| =K2N3

s . However, the transition kernel is sparse, since transitions
from state (x, dx) under action d must be to (y, d). Therefore, the computation cost in
state lookups is actually K2N2

s .
For demonstration, we have λ= 2, K= 100, Ns = 10, β= 0.999. The service cost

will be Cs(x, d)= d1.5 and the policy cost will be Cp(dx, d)= 50|dx − d|. Top row plots
in Figure 13.4 show progress in terms of ‖Vi − V∗‖sup for both unadjusted iterates [left
plot] and span adjusted iterates [right plot]. As in the previous examples, convergence
in the span seminorm is orders of magnitude faster. In addition, full and accurate
solutions to the optimality equation are obtainable within 300 iterations using the span
adjustment procedure, whereas the unadjusted iterates have not yielded a comparable
accuracy after 15,000 iterations.

Value iteration can be seen to consist of two essentially independent calculations,
the first consisting of the ‘shape’ of V∗, which is reducible to the centered V∗, repre-
sentable as, for example, V∗ − inf V∗. This gives any relative value of V∗(x)− V∗(y),
but not an absolute value V∗(x). The second calculation gives the ‘location’ of V∗,
and is expressible as a single constant which, when added to a centered estimate of V∗
gives the complete value function.

Figure 13.4 (bottom row) shows sequences of VI iterates, both in absolute form
(left plot) and centered form (right plot). The problem of estimating the ‘shape’ of V∗,
that is, V∗ in centered form, is accomplished very quickly, within 100 iterations. At
this point, using span adjustment yields an absolute solution within approximately
300 iterations (Figure 13.4, top right plot). Otherwise, as can be seen in Figure 13.4
(bottom left plot), unadjusted iterates will not be close to V∗ until approximately
10,000 iterations.

This type of decomposition reveals an important point. Once V∗ is solved in a cen-
tered form, the remaining problem reduces to the calculation of a single number, which
represents the multiple of the principal eigenvector required to complete the solution.
This number may be calculated directly, making further iterations unnecessary.
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Figure 13.4 Summary of value iteration for control problem for M/D/1/K model of Section 13.5 with
parameters λ= 2, K= 100, Ns = 10, β= 0.999. Top row plots show progress in terms of∥∥Vi −V *

∥∥
sup for both unadjusted iterates [left plot] and span adjusted iterates [right plot].

Bottom row plots show the full (unadjusted) iterates for various sequences of iteratesVi,
as well as the optimal value functionV *. In the right plot the value functions are centered
as V *(x)− infV * and Vi(x)− infVi. The state space is represented sequentially by index
j= x+ K(dx − 1).

13.8 POLICY ITERATION

Policy iteration is an alternative to value iteration which generates a sequence of
stationary policies φ1,φ2, . . . in the following manner:

Algorithm 2
1 Begin with any policy φ1, set counter n= 1.
2 Policy Evaluation: For step n calculate value function Vφn

π .
3 Policy Improvement: Generate new policy φn+1(x)= argmina∈Kx

T (x,a)
π Vφn

π for each
x∈X . If possible, set φn+1(x)=φn(x).

4 If φn+1 =φn then stop, otherwise increment n, then go to Step 2.

In the policy improvement step of Algorithm 2 it is important to resolve ties in the
minimization operation in favor of the current policy because of the stopping rule in
Step 4. Clearly, we have Vφn+1

π ≤Vφn
π , so that if the number of policies is finite policy

iteration will converge to the optimal policy in a finite number of iterations.
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In the literature, policy iteration is reported to be less efficient than value iteration
(an extensive treatment of this topic can be found in Chapter 6 of Puterman (1994)).
Each value iteration step Vk+1 = T̄πVk implicitly defines a control policy (at least under
suitable continuity assumptions) but as a practical matter there is no need to capture
this until the final iterate. If we do choose to capture these policies, we can expect
to find a process similar to policy iteration, at least in the later iterations, with the
final iterations essentially representing a policy evaluation for the optimal control.
The difference is that until the final optimal policy is reached, what appears to be an
interim policy evaluation is not carried out to convergence.

It is also worth noting that the conditions for convergence of policy iteration are
in one important sense less stringent than for value iteration. It is necessary that the
policy evaluation step yield the correct policy value function, possibly by verifying the
contractive property for each Tφ

π . However, the DPO T̄π plays no role, so there is no
need to verify its contractive properties. We have seen in Chapter 12 that contractivity
in the weighted supremum norm of a rich enough class of operators Tφ

π implies con-
tractivity of T̄π, but the same is not true wrt the span seminorm (Section 13.2.1). In
such cases, policy iteration at least guarantees the existence of a method of determining
the optimal control.

13.9 VALUE ITERATION FOR THE AVERAGE COST OPTIMIZATION

In this section we consider a VIA for the average cost MDP defined in Section 12.7.
Recall that the average cost model was reformulated as a shortest path MDP. One
particular state was taken to be the initial state, with the process terminating upon the
return to that state. The introduction of a kill state induces the contraction property.

This formulation replaces model π with π[�], and we may deduce contraction
properties for operators Tφ

π[�] and T̄π[�]. However, we may still consider the fixed
point equation

V + λ=Tφ
πV . (13.8)

If (β, ν) is an eigenpair for Qφ then Tφ
π is a mapping on the quotient space V/Nν. If Tφ

π

is not contractive on the underlying Banach space, it may be on the quotient space, in
which case it has a unique fixed point. At this point we must be clear as to what this
means. It does not mean that there is some V ∈V for which V =Tφ

πV . It does mean
that there is a unique coset [V]∈V/Nν on which Tφ

π is a bijective mapping. This means
for any V ′ ∈ [V] we also have Tφ

πV ′ ∈ [V], equivalently V ′ + λ′ν=Tφ
πV ′ for some scalar

λ′. If V ′′ is any other element in [V] then we similarly have V ′′ + λ′′ν=Tφ
πV ′′ for some

scalar λ′′. But there exists scalar c for which V ′′ =V ′ + cν. This means

λ′′ = Tφ
πV ′′ − V ′′

= Tφ
π (V ′ + cν)− V ′ − cν

= Tφ
πV ′ + cν − V ′ − cν

= Tφ
πV ′ − V ′

= λ′,
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that is, among the class of solutions (λ, V) to equation (13.8), λ is unique, and all
V comprise a single equivalence class in V/Nν. Thus, (13.8) is the type of invariant
equation defined in part (iii) of Theorem 7.8 (the reader can refer to the discussion in
Sections 7.4 and 7.5).

This equivalence structure is indispensible to our model, and allows us to equate
(12.39) with (13.8). The eigenpair is (1, �1), and there is exactly one solution (λ, V) to
(13.8) for which V(1)= 0. Similarly, by construction the operators Tφ

π[�] and Tφ
π of

equations (12.39) and (13.8) satisfy Tφ

π[�]V =Tφ
πV whenever V(1)= 0. Therefore, we

conclude that there is a unique solution (λ, V) to (13.8) for which V(1)= 0, and this
solution is precisely λ= λφ and V =Vφ

π[�,λ]. Of course, there is no special reason to
associate � with any particular state, and formulating the problem in terms of (13.8)
removes the need to do so. Given any solution (λ, V) we may conclude that λ is the
average cost per stage.

Essentially the same argument holds for the dynamic programming equation
(12.40). If (β, ν) is an eigenpair for each Qφ, then T̄π is an operator in the quotient
space V/Nν, since = T̄π(V + cν)= T̄πv + cν. We then have optimality equation

V + λ= T̄πV , (13.9)

which behaves essentially the same way as (13.8). If T̄π is contractive on the quotient
space, there exists a unique fixed point in the form of an equivalence class, which
yields a unique value of λ, which we have already argued equals the optimal average
stage cost.

To summarize, the optimal MDP by the average cost criterion can be determined
by value iteration in the span seminorm quotient space, as described in this chapter,
provided Tφ

π or T̄π can be shown to be contractive in ‖·‖SP(ν) (which does not require
discount factor β<1). An excellent discussion of the contraction properties of the DPO
for the average cost MDP can be found in Chapter 3 of Hernández-Lerma (1989b).



Chapter 14

Model approximation in dynamic
programming – general theory

In this chapter we consider the problem of determining approximation bounds on
attained costs which result from replacing a model with either a single approximation,
or a sequence of approximations. We are given model π= (R, Q), satisfying definitions
(M1)–(M6) of Section 12.1, where Q may be a single or multiple kernel, and so both
policy evaluation and dynamic programming are of interest. If the model were known,
a VIA Vk+1 = T̄πVk would be employed.

Possibly, the model π is unknown but can be estimated by a single approximation
π̂= (R̂, Q̂), or sequence of approximations π̂k = (R̂k, Q̂k). It may also be that π is
known, but the computation of T̄π can be simplified by replacing π with a simpler
model π̂.

The former case will typically be of interest when π is unknown and is to be
estimated by π̂, and a suitable error bound for this estimate is available, for example,
in the form of a statistical estimate. Interest is in V̄π, but only V̄π̂ is available. If Q
is a single kernel, it will usually suffice to determine an approximation bound of the
form ‖V̄π − V̄π̂‖. If Q is a multiple kernel, then ‖V̄π − V̄π̂‖ will similarly serve as an
approximation bound for the optimal achievable costs, but a complete assessement of
the effect of the approximation on a control policy will usually require further analysis.
Applying dynamic programming to the approximate model π̂will yield control φπ̂, and
it cannot be expected that this control will be the same as the optimal control φπ based
on the true model. For this reason, there may be more interest in the quantity Vφπ̂

π ,
which is the actual cost that would be obtained by applying the approximate control φπ̂
to the true model π, as well as the regret Vφπ̂

π − V̄π. Of course, a small error bound for
the model approximation will generally mean that the various value functions V̄π̂, Vφπ̂

π

and V̄π will be within a common approximation bound of each other.

14.1 THE GENERAL INEQUALITY FOR MDPs

Essentially, we have four classes of problems, according to whether Q is a single or
multiple kernel, and whether we have a single approximation or a sequence. It turns
out that all classes can be unified under the most complex case.

Suppose we are given an EIA based either on DPO T̄π or policy operator Tφ
π .

For convenience we will consider T̄π only, recognizing that Tφ
π is a special case of the

optimization problem with a single admissible policy. Thus, the EIA is based on a
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single operator T̄π. If T̄π is β-contractive the Lipschitz kernel for the EIA is of product
form with λ̄k,i =βi. There may be interest in multistage Lipschitz constants, either
because T̄π is not single stage contractive, or because the asymptotic contraction rate
is significantly lower than the single stage contraction rate. In this case, we let βJ

be the J-stage Lipschitz constant, and set λ̄k,i =βi. We also assume that the DPO is
nonexpansive, which will generally hold by Theorems 7.7 and 12.15.

We then have a sequence of model approximations π̂k, k≥ 1. This generates an
AIA based on operator sequence T̄π̂k

, k≥ 1, with iterates

Vk = T̄π̂k
Vk−1, k≥ 1,

V0 = v0.

We then have approximation terms

Vk = T̄πVk−1 +Uk, k≥ 1, where

Uk = T̄π̂k
Vk−1 − T̄πVk−1.

Recall the general inequality of (10.30). We will assume p= 1. The norm may
be any weighted supremum norm, or a span seminorm. The general inequality then
becomes:

‖Vk − V̄π‖= λ̄k,k‖V0 − V̄π‖ + Ik(d̃, λ̄) k≥ 1, (14.1)

where d̃= (d1, d2, . . . ), with dk serving as a bound on ‖Uk‖.
In general, we must expect that Un is proportional in magnitude to Vn−1, as will be

the case for approximation methods introduced in subsequent chapters. We therefore
assume that the relative error model, defined by (ARE) in Section 10.4.1, holds:

‖Uk‖ ≤ ak + bk‖Vk−1‖0

where ‖·‖0 is a seminorm satisfying ‖V‖0 ≤ κ0‖V‖ for some κ0<∞. In this case,
the error bound of the general inequality (14.1) depends explicitly on the magnitude
of the iterates Vn, so we must either impose a bound on Vn, or confirm that the AIA is
convergent without benefit of a bound. The latter holds if ak → 0 and bk → 0. In fact,
under the hypothesis of Theorem 10.4, it suffices that ak is bounded and lim supk bk<δ

for a small enough but positive δ, but the constraint on this number is proportional to
(1− β)−1, so little is to be gained from this fact.

However, in many applications the relative error model holds, but it is not antici-
pated that bk → 0, and it would be restrictive to impose a bound on bk. In this case,
the boundedness of the AIA can follow from the boundedness of each approximate
operator T̄π̂. The following theorem summarizes this approach.

Theorem 14.1 Suppose for constants β<1, M<∞ each approximate operator T̄π̂
is β-pseudocontractive with respect to unique fixed point V̄π̂ for which ‖V̄π̂‖≤M, then
the AIA is bounded in ‖·‖.
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Proof We may write

‖Vk − V̄π̂k
‖ ≤ ‖T̄π̂k

Vk−1 − V̄π̂k
‖

≤ β‖Vk−1 − V̄π̂k
‖

= β‖Vk−1 − V̄π̂k−1
‖ + β‖V̄π̂k−1

− V̄π̂k
‖

= β‖Vk−1 − V̄π̂k−1
‖ + β2M.

If the preceding inequality is applied iteratively we have

‖Vk − V̄π̂k
‖≤βk‖T̄π̂1V0 − V̄π̂1‖ + (1− β)−12M,

which completes the proof. ///

If each approximate operator T̄π̂ is β-pseudocontractive and the cost functions
R̂≤MR<∞ are uniformly bounded over all approximate models π̂ then the hypothesis
of Theorem 14.1 holds, since ‖V̄π̂‖≤ (1− β)−1MR.

First, for ρ∈ (0, 1) the following families of sequences were defined in Sec-
tion 10.11:

FL
ρ =

{
{dk} ∈S :

∞∑
k=1

ρ−kdk<∞
}

,

Fρ =
{
{dk} ∈S : λ̂{dk}= ρ

}
, and

FU
ρ =

{
{dk} ∈S : λl{dk}>ρ

}
. (14.2)

The following two theorems presents a summary of the relevant convergence rates,
based on Theorems 10.10, 10.19 and Theorem 2.12 of Almudevar (2008).

Theorem 14.2 Suppose the J-stage Lipshitz constant of T̄π is βJ, setting β0 = 1. Then

lim sup
n→∞

‖Vn − V̄π‖w ≤
[∑

i=0

βi

]
lim sup

n→∞
dn. (14.3)

In particular, if T̄π is nonexpansive then

lim sup
n→∞

‖Vn − V̄π‖w ≤ J(1− βJ)−1 lim sup
n→∞

dn. (14.4)
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Theorem 14.3 Suppose T̄π is nonexpansive and possesses J-stage contraction rate
ρ. Then

(i) If d̃ ∈FL
ρ then

lim sup
n→∞

ρ−n‖Vn − V̄π‖w <∞ (14.5)

(ii) If d̃ ∈Fρ then

lim sup
n→∞

n−1 log(‖Vn − V̄π‖w ≤ log(ρ) (14.6)

(iii) If d̃ ∈FU
ρ then

lim sup
n→∞

d−1
n ‖Vn − V̄π‖w ≤K(1− ρ/rl)−1 (14.7)

where rl = λl{dk}, and K is a finite constant dependent on J and rl alone.

14.2 MODEL DISTANCE

The crucial quantity in our approximation theory is the operator tolerance ‖T̄πV −
T̄π̂V‖, allowing V to range over V. For single kernel linear models, this quantity is
easily expressible as

‖T̄πV − T̄π̂V‖ = ‖R+QV − R̂− Q̂V‖
≤ ‖R− R̂‖ + |||Q− Q̂|||‖V‖.

If Q and Q̂ possess a common principal eigenvector ν, we may write

‖T̄πV − T̄π̂V‖ν ≤ ‖R− R̂‖ν + ‖QV − Q̂V‖ν
≤ ‖R− R̂‖ν + |||Q− Q̂|||ν‖V‖SP(ν),

which will generally be preferable. The evaluation of |||Q− Q̂||| will usually be based
on L1 distances of density functions on a common measure.

The principal is much the same for multiple kernels, and we have

Dw
Q(Q1, Q2)= sup

(x,a)∈K
w−1(x)‖Q1(x, a)−Q2(x, a)‖TV(w).

Similarly, the distance between two cost functions R1, R2 will be defined

Dw
R(R1, R2)= sup

(x,a)∈K
w(x)−1 |R1(x, a)− R2(x, a)| .
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Theorem 14.4 The operator tolerance ‖T̄πV − T̄π̂V‖ is bounded by

‖T̄π̂V − T̄πV‖w ≤Dw
R(R, R̂)+Dw

Q(Q, Q̂)‖V‖w. (14.8)

Furthermore, suppose (ρ, ν) is a positive eigenpair for Q, in the sense that

Q(x, a)ν= ρν(x) (14.9)

for all (x, a)∈K. Then

‖T̄π̂V − T̄πV‖ν ≤Dν
R(R, R̂)+ 1

2
Dν

Q(Q, Q̂)‖V‖SP(ν). (14.10)

Proof From Theorem 12.13, for each x∈X and any V ∈V we have

∣∣∣∣ inf
a∈Kx

Ta
πV − inf

a∈Kx
Ta
π̂V

∣∣∣∣ ≤ sup
a∈Kx

∣∣Ta
πV − Ta

π̂V
∣∣

= sup
a∈Kx

∣∣∣R(x, a)+Q(x, a)V − R̂+ Q̂(x, a)V
∣∣∣ .

It follows that

‖T̄πV − T̄π̂V‖w ≤ sup
x∈X

w(x)−1 sup
a∈Kx

∣∣∣R(x, a)+Q(x, a)V − R̂+ Q̂(x, a)V
∣∣∣

≤ Dw
R(R, R̂)+Dw

Q(Q, Q̂)‖V‖w, (14.11)

so that (14.8) holds. If (14.9) holds, then V in the upper bound of (14.11) may be
replaced by V + aν for any scalar a. This leads to

‖T̄πV − T̄π̂V‖ν
≤ sup

x∈X
ν(x)−1 sup

a∈Kx

∣∣∣R(x, a)+Q(x, a)(V + aν)− R̂+ Q̂(x, a)(V + aν)
∣∣∣

≤Dν
R(R, R̂)+Dν

Q(Q, Q̂)‖V + a‖ν.

Using Theorem 6.25 to minimize over a gives (14.10). ///

Suppose for model π, T̄π is defined on Banach space F(X , ‖·‖w). Then let π̂k =
(Rk, Qk) be a sequence of approximations of π. It follows from Theorem 14.4 that if
Dw

Q(Q, Qk)<∞ and Dw
R(R, Rk)<∞ for all k≥ 1, then the resulting AIA is defined on

F(X , ‖·‖w).
The relative error model follows directly from Theorem 14.4. Using inequality

(14.8) we obtain

‖Uk‖w ≤Dw
R(R, Rk)+Dw

Q(Q, Qk)‖Vk−1‖w, (14.12)
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and using inequality (14.10) we obtain

‖Uk‖ν ≤ Dν
R(R, Rk)+ 1

2
Dν

Q(Q, Qk)‖Vk−1‖SP(ν) (14.13)

for eigenvector ν, noting that ‖V‖SP(ν) ≤ 2‖V‖ν, so we may equate ak =Dw
R(R, Rk) and

bk =Dw
Q(Q, Qk) in (14.12), with a similar derivation for (14.13).

14.3 REGRET

Suppose we are given a single model approximation π̂ of π. A reasonable strategy
would be to accept π̂ as the true model, then to apply the control φ̂ that would be
optimal under π̂ (that is, the certainty equivalence control). This could be done using
a VIA based on DPO operator T̄π̂, and the algorithm need not be considered an AIA.

Of course, we wish to estimate the cost of using what we should anticipate to be a
suboptimal control, specifically, the quantity introduced as regret in Chapter 12. The
first step can be to regard the certainty equivalence EIA as an AIA with constant model
approximations π̂n = π̂, n≥ 1. The operator tolerance can be bounded by Theorem
14.4, which together with Theorem 14.2 gives

lim sup
k

‖Vk − V̄π‖w ≤
Dw

R(R, R̂)+Dw
Q(Q, Q̂) lim supk ‖Vk‖α

1− β ,

where ‖·‖α is either ‖·‖w or (1/2) ‖·‖SP(w) as specified in Theorem 14.4. Since the AIA
is equivalently an EIA with respect to the DPO T̄π̂ we have

‖V̄π̂ − V̄π‖w ≤
Dw

R(R, R̂)+Dw
Q(Q, Q̂)‖V̄π̂‖α

1− β , (14.14)

which provides a direct method of comparison between the value functions between
models π, π̂. One notable feature of (14.14) is that when ‖·‖α= (1/2) ‖·‖SP(w) the order
of magnitude of ‖V̄π̂ − V̄π‖w is O(δ(1− β)−1), where max (Dw

R(R, R̂), Dw
Q(Q, Q̂))=

O(δ), which is appropriate since ‖V̄π‖w =O((1− β)−1). In this case, the objective
is to set δ) 1. In contrast, if ‖·‖α=‖·‖w the corresponding approximation error is
O(δ(1− β)−2), and therefore to achieve a comparable tolerance we would need δ)
(1− β), which would be a considerably more burdensome requirement. The tightness
of approximation bounds such as (14.14) is discussed in some detail in Chapter 6 of
Bertsekas and Tsitsiklis (1996); see also Tsitsiklis and Roy (1996).

We present two types of bounds for regret. The first is simpler, and is concerned
with the regret accruing from a stationary suboptimal policy �=φπ̂, where φπ̂ is the
certainty equivalence policy based on approximate model π̂. Although we will make use
of bound (14.14), it is not the quantity we are ultimately interested in. The true model
is π, and so the costs must be calculated using this model, whereas V̄π̂ is calculated
assuming π̂ holds. The actual cost realized is Vφπ̂

π , and so the relevant approximation
bound is ‖Vφπ̂

π − V̄π‖w, which bounds the total discounted regret.
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The second involves bounds on λπ(x, a), defined in (12.24) of Section 12.5, and
permits a more detailed analysis. In particular, it will permit models for regret in
adaptive systems which assume cost in parallel with model refinement, which will be
discussed in Chapter 18. However, even in the case of the single model estimate a
comparison between the two will be instructive, and both are worth considering.

Given models π we can denote the regret under policy φπ̂

Zφπ̂
π =Vφπ̂

π − V̄π ≥ 0,

which is positive by the optimality of V̄π. Appropriately, we are assigning a special
role for model π by calling it the ‘true’ model. However, it will occasionally be more
convenient to consider π and π̂ simply as two alternative models between which certain
relationships can be established. To suggest this structure more explicitly, we will
assume that stationary policies φπ̂ and φπ are optimal for models π and π̂ respectively.
An interesting relationship exists between ‖Zφπ̂

π + Zφπ
π̂
‖α.

Theorem 14.5 Suppose φπ and φπ̂ are optimal policies for models π and π̂. Suppose
for seminorm ‖·‖α the following bounds hold.

‖V̄π − Vφπ
π̂
‖α≤ δ and ‖Vφπ̂

π − V̄π̂‖α≤ δ. (14.15)

Then

‖Zφπ̂
π + Zφπ

π̂
‖α≤ 2δ. (14.16)

Proof By the triangle inequality

‖Zφπ̂
π + Zφπ

π̂
‖α = ‖Vφπ̂

π − V̄π + Vφπ
π̂
− V̄π̂‖α

≤ ‖Vφπ̂
π − V̄π̂‖α + ‖V̄π − Vφπ

π̂
‖α

which completes the proof following (14.16). ///

We next present an approximation bound for λπ(x, a).

Theorem 14.6 Suppose φπ and φπ̂ are optimal policies for models π and π̂. Then

λπ(x,φπ̂(x))≤Vφπ̂
π (x)− V̄π(x) (14.17)

for all x∈X .
In addition, suppose the following bounds hold:

‖V̄π − V̄π̂‖ν ≤ δν

‖V̄π − V̄π̂‖SP(ν) ≤ δSP(ν),
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and that (β, ν) is a principal eigenpair for T̄π and T̄π̂. Then

ν−1λπ(x,φπ̂(x)) ≤ ‖T φ̂
π V̄π − T̄πV̄π‖ν (14.18)

≤ Dν
R(R, R̂)+ 1

2
Dν

Q(Q, Q̂)‖V̄π‖SP(ν) + (1− β)δν + βδSP(ν).

Proof We obtain (14.17) from the optimality of φπ, which implies

Tφπ̂
π V̄π − T̄πV̄π ≤Tφπ̂

π Vφπ̂
π − T̄πV̄π =Vφπ̂

π − V̄π.

Next, suppose the remainder of the hypothesis holds. Then there exists scalar a
for which

‖V̄π − (V̄π̂ + aν)‖ν ≤ 1
2
δSP(ν).

This gives

Tφπ̂
π V̄π − T̄πV̄π =

[
Tφπ̂
π V̄π − T̄π̂V̄π

]+ T̄π̂V̄π − V̄π

≤ [Tφπ̂
π V̄π − T̄π̂V̄π

]+ T̄π̂

(
V̄π̂ + aν + 1

2
δSP(ν)ν

)
− V̄π

= [Tφπ̂
π V̄π − T̄π̂V̄π

]+ V̄π̂ + βaν + β1
2
δSP(ν)ν − V̄π

= [Tφπ̂
π V̄π − T̄π̂V̄π

]+ (1− β)
(
V̄π̂ − V̄π

)
+β
(

V̄π̂ − V̄π + aν + 1
2
δSP(ν)ν

)
≤ [Tφπ̂

π V̄π − T̄π̂V̄π

]+ (1− β)δνν + βδSP(ν)ν,

from which (14.18) follows after applying Theorem 14.4. ///

14.4 A COMMENT ON THE APPROXIMATION OF REGRET

If we are given estimate π̂ of model π, the problem of estimating V̄π with V̄π̂ is straight-
forward, but the quantity of interest is more likely to be Vφπ̂

π , which is the realized
cost under the true model using control φπ̂, which would be optimal for model π̂. If
we are given Dw

R(R, R̂), Dw
Q(Q, Q̂), we may use Theorem 14.5 to obtain a bound for

‖Vφπ̂
π − V̄π‖w based on bounds for ‖Vφπ̂

π − Vφπ̂
π̂
‖w and ‖Vφπ

π − Vφπ
π̂
‖w. We can therefore

bound regret using the model approximation bounds Dw
R(R, R̂) and Dw

Q(Q, Q̂).
However, some care is needed in determing a suitable bound for regret. Clearly,

it should be expressed as a proportion of some cost related quantity, and a number of
possibilities present themselves. An obvious choice is to compare regret to the optimal
cost V̄π. While this is natural mathematically, from an economic point of view a number
of complications arise. Recall that the optimization problem does not change when
a constant is added uniformly to R(x, a). In particular, regret does not change by



Model approximation in dynamic programming – general theory 303

replacing R with R+ cw, but the magnitude of the value function does. Thus, making c
arbitrarily large makes regret arbitrarily small as a proportion of ‖V̄π‖w. Furthermore,
in the example we will consider next regret is only marginally sensitive to factors which
otherwise greatly influence the total optimal cost.

An alternative approach is to regard the cost V̄π as given, and regret as a cost to be
considered independently. In this case, the relationship between regret and the bounds
Dw

Q(R, R̂) and Dw
Q(Q, Q̂) are emphasized. Viewed this way, there is no particular reason

why regret should be compared to V̄π, any more than to any other cost (a reason to
do so might exist, but this would be independent of our analysis). The important
comparison is between regret and the cost of reducing Dw

R(R, R̂) and Dw
Q(Q, Q̂).

If this point of view is accepted, the question remains as to what the appropriate
comparison for regret would be. If a cost can be assigned to the reduction of Dw

R(R, R̂)
and Dw

Q(Q, Q̂), then regret can be compared to this cost directly. This situation might
arise when data from a active system is to be used. If data is acquired from a computer
simulated model, it is more likely that the data acquisition cost would be small com-
pared to an indefinite accrual of regret, and the problem is to determine the running
time for the simulation needed to guarantee negligible regret.

A detailed analysis of regret can be based on the quantities λπ(x, a), which we
have seen is directly interpretable as the regret accrued by using action a from state x.
We have seen that λπ(x, a) can be bounded using Dw

R(R, R̂) and Dw
Q(Q, Q̂), and these

quantities approach 0 at a rate of O(n−1/2), that normally associated with statistical
estimation. A number of other methods, based on adaptive sampling methods such as
bandit processes, report bounds on regret of order O( log (n)/n) (Chang et al. (2007)).
A consideration of the quantity λπ(x, a) yields a direct connection between these two
rates. Suppose K is finite. For each x let λs

π(x)= infa:λπ(x,a)>0 λπ(x, a), and then λs
π =

infx∈X λ
s
π(x).

Next, suppose we may claim for some certainty equivalence policy φπ̂ the bound
λπ(x,φπ̂(x))≤ δ (by Theorem 14.6 such a bound will follow from Dw

R(R, R̂) and
Dw

Q(Q, Q̂)). If δ<λs
π we must have λπ(x,φπ̂(x))≡ 0, so that φπ̂ is optimal for model π,

that is, regret is zero. Then let δn be a sequence of bounds based on a sample size of n.
The distributional properties of δn vary, but we generally expect that E[δp

n]1/p ≈ n−1/2Cp

where Cp increases with p but does not depend on n. In most cases Cp<∞ for
all p (although exceptions should be anticipated). In addition, the tail probability
P(δn ≥ t) will almost alway approach zero much more quickly than n−1/2 (for the nor-
mal distribution convergence is faster than exponential). Therefore, the regret may be
modeled as

Zn ≤ δnI{δn ≥ λs
π}, (14.19)

since regret is zero if δn<λ
s
π. Applying Hölder’s inequality, we have

Eπ[Zn]≤ n−1/2C1/p
p P

(
δn ≥ λs

π

)1/q , (14.20)

for any conjugate pair p−1 + q−1 = 1. If p= 1 the original rate n−1/2 holds, while if
we may set a maximum value Zmax for regret, then q= 1 implies a bound Eπ[Zn]≤
ZmaxP

(
δn ≥ λs

π

)
. Markov’s inequality yields Eπ[Zn]≤ n−k/2Zmax(Ck/λ

s
π)k, so that as
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long as Ck<∞, we may report convergence at rate O(n−k/2) for any k. Of course,
in order for the tail probability P

(
δn ≥ λs

π

)
to play an important role in the bound, it

will be necessary for δn to first approach a neighborhood of λs
π. Thus, convergence

to zero regret occurs in two stages. First, δn approaches λs
π in magnitude, the rate of

which is determined by the convergence rate of the mean and standard deviation of δn,
usually O(n−1/2). At this point the quantity λs

π becomes decisive, and convergence to
zero regret occurs at a rate determined by the tail probability P

(
δn ≥ λs

π

)
, which can

be expected to be considerably faster than n−1/2. In fact, the assumption that λs
π > 0

is explicitly required to obtain a convergence rate for regret of O( log (n)/n) in Chang
et al. (2007) (for example, Theorem 2.3, Chapter 2, for a finite horizon model). This
condition naturally holds for finite K.

This phenomenon can be interpreted in terms of functional analysis. Given model
π we may define V̄π(x, a)= (Ta

πV̄π)(x, a), so that the optimal policy is given by φπ(x)=
argmina∈Kx

V̄π(x, a). We then define the same quantity V̄π̂(x, a)= (Ta
π̂
V̄π̂)(x, a) for model

π̂. We have established that if π≈ π̂ then V̄π(x, a)≈ V̄π̂(x, a), and it can be seen that
in order for an approximate model π̂ to yield the policy optimal for π it is necessarily
only that π̂ be in a neighborhood of π, which is definable by the approximation theory
we have discussed.

When viewed this way, a problem emerges regarding the role played by λs
π. Suppose

we may define a family of models Mπ to which the true model π and any estimate
π̂ belong. It will be possible to partition Mπ into subsets of models with a common
optimal policy (but different value functions). If an approximation π̂ of π is sufficiently
accurate then it will be in the same partition subset as π and will therefore yield zero
regret, assuming general continuity conditions hold.

Of course, we need to take into account the possibility that π is near or on a
partition boundary, so that π̂ could be close toπwhile remaining in a separate partition.
Suppose we are given models π and π̂ in different partition subsets which share a
boundary, and that for some state x∈X , a �= â are the respective (unique) optimal
actions. This means V̄π(x, a)− V̄π(x)= 0 and V̄π(x, â)− V̄π(x)> 0, and that V̄π̂(x, a)−
V̄π̂(x)> 0 and V̄π̂(x, â)− V̄π̂(x)= 0. Of course, if π and π̂ are arbitrarily close, we
would expect V̄π(x, â)− V̄π(x) to be close to V̄π̂(x, â)− V̄π̂(x)= 0, which would mean
that λs

π could itself be made arbitrarily small, although the optimization problem itself
is otherwise a standard one.

This possibility poses no problem, provided the target of zero regret is replaced
by an acceptable maximum regret of λmax, which is guaranteed by the bound
λπ(x,φπ̂(x))≤ λmax, similarly expressible in terms of Dw

R(R, R̂) and Dw
Q(Q, Q̂). Then

(14.19) becomes

Zn ≤ λmax + δnI{δn ≥ λmax}, (14.21)

and so the rate of approach to zero regret implied by (14.20) becomes the rate of
approach to λmax.

14.5 EXAMPLE

We will illustrate these issues with an example of the variable capacity queueing model.
We assume a policy cost Cp ≡ 0, so that the state space is X ={1, . . . , K}, and retain
the previous service cost will be Cs(x, d)= d1.5. We will use K= 10, Ns = 5, and vary
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λ= 1, 3, β= 0.99, 0.9999. Table 14.1 gives for each model the complete values of
λπ(x, d), as well as the value function V̄π, optimal control φπ, the cost function under
the optimal control R(x,φπ(x)), the steady state distribution Q̄(x), as well as the value
for λs

π(x). A number of features of these quantities are worth noting.

Table 14.1 Calculations or regret for example of Section 14.5.

λπ(x,d)

x d= 1 d= 2 d= 3 d= 4 d= 5 V̄(x) φπ(x) R(x,φπ(x)) Q̄(x) λs
π(x)

λ= 1, β= 0.99
1 0 1.83 4.2 7 10.18 304.19 1 2 0.58 1.83
2 0 0.01 2.38 5.18 8.36 307.01 1 3 0.26 0.01
3 1.15 0 0.55 3.35 6.53 309.84 2 5.83 0.11 0.55
4 2.05 0.61 0 0.99 4.17 313.20 3 9.2 0.035 0.61
5 2.92 1.07 0.17 0 1.36 317.01 4 13 0.0083 0.17
6 3.88 1.77 0.47 0 0.2 320.98 4 14 0.0016 0.2
7 4.81 2.53 0.96 0.09 0 325.16 5 18.18 0.00026 0.09
8 5.77 3.37 1.63 0.49 0 329.43 5 19.18 3.70E–05 0.49
9 6.25 3.92 2.06 0.76 0 334.10 5 20.18 4.60E–06 0.76
10 5.81 4.14 2.35 0.93 0 339.04 5 21.18 5.60E–07 0.93

λ= 1, β= 0.9999
1 0 1.83 4.2 7 10.18 30,562.19 1 2 0.7 1.83
2 0.01 0 2.37 5.17 8.35 30,565.01 2 4.83 0.2 0.01
3 1.19 0 0.52 3.33 6.51 30,567.86 2 5.83 0.074 0.52
4 2.13 0.65 0 0.96 4.14 30,571.22 3 9.2 0.02 0.65
5 3.04 1.15 0.21 0 1.34 30,575.03 4 13 0.0043 0.21
6 4.02 1.85 0.51 0 0.16 30,579.04 4 14 0.00078 0.16
7 5.02 2.67 1.04 0.13 0 30,583.22 5 18.18 0.00012 0.13
8 6 3.53 1.73 0.54 0 30,587.53 5 19.18 1.60E–05 0.54
9 6.53 4.12 2.19 0.82 0 30,592.25 5 20.18 1.90E–06 0.82
10 6.1 4.36 2.49 0.99 0 30,597.25 5 21.18 2.20E–07 0.99

λ= 3, β= 0.99
1 0 1.83 4.2 7 10.18 890.32 1 2 0.18 1.83
2 1.77 0 2.37 5.17 8.35 893.15 2 4.83 0.21 1.77
3 3.53 1.23 0 2.8 5.98 896.52 3 8.2 0.22 1.23
4 5.21 2.55 0.79 0 3.18 900.32 4 12 0.17 0.79
5 6.77 3.86 1.74 0.42 0 904.50 5 16.18 0.11 0.42
6 7.94 5 2.63 0.95 0 909.10 5 17.18 0.06 0.95
7 8.24 5.64 3.24 1.31 0 914.23 5 18.18 0.029 1.31
8 7.37 5.59 3.52 1.56 0 919.72 5 19.18 0.013 1.56
9 5.04 4.47 3.22 1.59 0 925.45 5 20.18 0.0052 1.59
10 1.4 2.1 2.07 1.25 0 931.22 5 21.18 0.003 1.25

λ= 3, β= 0.9999
1 0 1.83 4.2 7 10.18 89,797.84 1 2 0.18 1.83
2 1.82 0 2.37 5.17 8.35 89,800.67 2 4.83 0.21 1.82
3 3.64 1.28 0 2.8 5.98 89,804.03 3 8.2 0.22 1.28
4 5.4 2.66 0.84 0 3.18 89,807.84 4 12 0.17 0.84
5 7.06 4.05 1.85 0.46 0 89,812.02 5 16.18 0.11 0.46
6 8.3 5.24 2.77 1.01 0 89,816.66 5 17.18 0.06 1.01
7 8.66 5.94 3.42 1.39 0 89,821.85 5 18.18 0.029 1.39
8 7.81 5.92 3.74 1.66 0 89,827.42 5 19.18 0.013 1.66
9 5.44 4.8 3.45 1.71 0 89,833.26 5 20.18 0.0052 1.71
10 1.72 2.38 2.28 1.37 0 89,839.14 5 21.18 0.003 1.37
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The magnitude of the value function V̄π is highly dependent on the parameters.
This is obviously true of β, but the variation of λ changes the achieved cost by a factor
of almost 3, since larger values of λ force the system to spend a greater proportion
of time in higher cost states. Suppose we chose to express regret as a proportion of
optimal cost. Since λπ(x, d) gives regret on a per stage basis, it would be reasonable to
standardize the optimal cost using the factor (1− β). If we, conservatively, use V̄π(1)
as a reference, we obtain

(1− β)V̄π(1) = 3.04, for λ= 1,β= 0.99,

(1− β)V̄π(1) = 3.06, for λ= 1,β= 0.9999,

(1− β)V̄π(1) = 8.90, for λ= 3,β= 0.99,

(1− β)V̄π(1) = 8.98, for λ= 3,β= 0.9999.

Thus, a comparison between regret and achieved cost can be standardized with respect
to β. However, a remarkable feature of Table 14.1 is that the values of λπ(x, d) do not
change greatly with changes in either β or λ, even though they have considerable effect
on V̄π. If β is held constant, the problem of bounding regret would be quite similar for
either value λ= 1, 3, requiring similar values of Dw

R(R, R̂) and Dw
Q(Q, Q̂) for a similar

achieved regret. Therefore, reporting regret as a proportion of the value function would
yield a spurious advantage for the λ= 3 model, even after standardization for β.

We next note the values λs
π = 0.01, 0.01, 0.42, 0.46 for the models (β, λ)=

(1, 0.99), (1, 0.9999), (3, 0.99), (3, 0.9999). Clearly, we cannot rely on the assumption
λs
π > 0 to obtain a practical convergence rate. We may instead select a suitable value

of λmax for the bound (14.21). If estimates of λπ(x, a) are available, possibly λπ̂(x, a), a
more refined choice for λmax may be made. Values analagous to λs

π(x) may be defined,
for example

λs
π(x | ε)= inf

a:λπ(x,a)>ε
λπ(x, a), and λs

π(ε)= inf
x∈X

λs
π(x | ε),

so that a bound on per stage regret of ε is obtainable by the bound λπ(x, a)<λs
π(ε).

We may also derive the converse, the regret attained by enforcing bound λπ(x, a)<ε,
which may be expressed

Zreg(x | ε)= sup
a:λπ(x,a)<ε

λπ(x, a), and Zreg(ε)= sup
x∈X

Zreg(x | ε).

Clearly, for fixed ε we have Zreg(x | ε)≤ λs
π(x | ε) and Zreg(ε)≤ λs

π(ε), so a distinction
must be made between using ε as a bound for λπ(x, a), and as a target for attainable
regret.

Table 14.2 gives values of Zreg(x | 0.5) and λs
π(x | 0.5) for model (β, λ)= (1, 0.99).

We obtain Zreg(0.5)= 0.49 and λs
π(0.5)= 0.55, which suggests little difference between

using ε as a bound for λπ(x, a) and as a target for regret. However, note that the
combined steady state probabilities for states 1, . . . , 4 is approximately 0.99 (Q̄(x)
is included in Table 14.2 for reference). If bound λπ(x, a)< 0.05 holds, the achieved
regret for three of these states is 0, and is within 0.01 for the remaining state 2,
so that while the nominal regret bound is ε= 0.5 the achieved regret will be much
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Table 14.2 Calculations of regret for example of Section 14.5.

x Z reg(x | 0.5) λs
π(x | 0.5) Q̄(x)

1 0 1.83 0.58
2 0.01 2.38 0.26
3 0 0.55 0.11
4 0 0.61 0.035
5 0.17 1.07 0.0083
6 0.47 1.77 0.0016
7 0.09 0.96 0.00026
8 0.49 1.63 3.70E–05
9 0 0.76 4.60E–06
10 0 0.93 5.60E–07

Zreg(0.5)= 0.49 λs
π(0.5)= 0.55

smaller. Similarly, the bound λπ(x, a)<λs
π(0.5)= 0.55 guarantees an attained bound

of 0.5. If we examine the values of λπ(x, a) for states x= 1, 2, with a combined steady
state probability of 0.84, we find that for any bound λπ(x, a)<ε<1.83 we have
Zreg(1 | ε)= 0 and Zreg(2 | ε)= 0.01, attaining negligible regret for the two highest fre-
quency states with a much higher approximation bound for λπ(x, a). Similar comments
hold for the remaining models.



Chapter 15

Sampling based approximation
methods

As a first application of the model based approximation methods of Chapter 14 we
consider the problem of estimating the model elements (R, Q) by sampling. This may be
based on histories of an active system or on computer simulations. The main problem
we consider is the determination of a sample size sufficient to achieve a fixed algorithm
tolerance. We assume the concern is entirely with model estimation, but will later
consider the problem of determining the optimal rate of exploratory behavior in an
active system also subject to optimal cost control (Chapter 18).

All model based approaches are based on developing an estimate (R̂, Q̂) of (R, Q)
(both elements may be estimated). The certainty equivalence value function V̂∗, that
obtained by accepting (R̂, Q̂) as the true model, will then have an error ‖V̂∗ − V∗‖w

determined directly by Dw
Q(Q̂, Q) and Dw

R(R̂, R), so these quantities are the crucial
ones. We have already seen that we may obtain an approximation bound satisfying

‖V̂∗ − V∗‖w ≤ (1− β)−1
(
Dw

R(R̂, R)+Dw
Q(Q̂, Q)

∥∥V∗∥∥
SP(w)

)
,

and that the advantage of the span seminorm is that the approximation bound is

of order O((1− β)−1δ), where δ=max
(
Dw

R(R̂, R), Dw
Q(Q̂, Q)

)
, rather than O((1−

β)−2δ), which would be the case if ‖V∗‖SP(w) were replaced with ‖V∗‖w. Therefore, it
suffices for δ to be small, rather than (1− β)−1δ.

We will assume for the moment that K is finite. The quantities Dw
Q(Q̂, Q) and

Dw
R(R̂, R) are then maxima of a finite, but possibly quite large set of estimation errors.

The first step is to charactize what is unknown. It will often be the case that the model π
is known up to a relatively small number of parameters (compared to |K|), as would be
the case for a queueing system in which transitions are governed by an arrival process.
In this case the parametric estimation approach of Section 15.3 could be used.

The most difficult case, on which we will focus primarily, occurs when no ana-
lytical relationships are available. This means the estimation of elements R(x, a) by
R̂(x, a) and of Q(x, a) by Q̂(x, a) for each (x, a)∈K are essentially separate estimation
problems. In statistical estimation theory, this distinction is governed by the degrees
of freedom, which is the number of parameters minus the number of constraints on
the parameters. If the transition law is determined by K Poisson arrival processes, the
degrees of freedom will be the number of distinct arrival rates (that is, 1 if all rates are
constrained to be equal, or K if they are allowed to vary independently).
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A nonparametric estimate of a distribution on S ={1, . . . , N} requires estimates of
N parameters pi, but we have a single constraint p1 + · · · + pN = 1, so the degrees of
freedom is N − 1 (see Section 4.15). Although the vector (p1, . . . , pN) may be regarded
as a parameter, the term parametric is usually used to denote the dependence of a dis-
tribution on a relatively small number of parameters, the number of which is unrelated
to the cardinality of the sample space S. Thus, in nonparametric estimation, all distri-
butions on S are considered while the range of distributions considered in parametric
estimation is considerable smaller. Here, the importance of the degrees of freedom is
that it determines the complexity of the estimation problem, and required sample sizes
may be usefully expressed on a per degrees of freedom basis.

15.1 MODELING MAXIMA

In Chapter 8 the problem of estimating the maximum of a set of random variables was
considered in some detail. We are given a set of random variables X1, X2, . . . , Xm and
define the maximum and expected maximum

M=max
i≤m

Xi and M̄=E[M].

Table 15.1 summarizes a number of the bounds on M̄ we have already introduced.
Some of these bounds may be refined, but generally without altering the orders of
magnitude. None of the inequalities require the assumption of independence, which
plays a surprisingly small role in this problem.

The approximation problem is reducible to bounding the maximum of m RVs
X1, . . . , Xm, where Xi represents the statistical error of the ith estimation prob-
lem. We can generally expect that each element of X or K require one or several
estimates.

To analyze the problem, it is helpful to assume there is a fixed sample size n from
which ni is to be allocated to the ith estimaton problem, so that n1 + · · · + nm = n,
and we denote the vector of sample sizes ñ= (n1, . . . , nm). The allocation can also
be conceived as a probability distribution q̃= (q1, . . . , qm) with qi representing the
proportion of the total sample allocated to estimation problem i, so that ni ≈ qin
(we will ignore rounding error from this point, which will be negligible for large
enough n). We will refer to the uniform allocation q̃unif = (1/m, . . . , 1/m).

Table 15.1 Summary of maximum inequalities. All inequalities
assume general dependence structure.

Theorem Result

(a) Lemma 8.1 M̄≤∑i≤m E[|Xi|p]1/p

(b) Theorem 8.7 (i) M̄≤µ+ (m− 1)1/2(σ̄2 + ν)1/2

(c) Theorem 8.7 (ii) M̄≤µmax + (m− 1)1/2(σ̄2)1/2

(d) Theorem 8.4 M̄≤µmax + σmax

√
2 log(m)



Sampling based approximation methods 311

In most statistical estimates, the deviation of an estimate based on sample size n
is of order O(n−1/2) and its variance is of order O(n−1). Therefore, it will serve our
purpose to assume

µi = µ

n1/2
i

= µ

(qin)1/2
and σ2

i =
σ2

ni
= σ2

qin
(15.1)

for some finite µ and σ. The inequalities are monotone in µi and σ2
i , so these may be

exact values or upper bounds. Then denote power transformations q̃p = (qp
1, . . . , qp

m)
and ñp = (np

1, . . . , np
m). This gives mean and variance vectors

µ̃=µñ−1/2 = n−1/2µq̃−1/2 and σ̃2 = σ2ñ−1 = nσ2q̃−1

expressed in terms of the allocation distribution q̃.
We may then express the various quantities appearing in Table 15.1 in terms of

the parameters µ, σ2, sample size n, order of maximum m and allocation distribution
q̃, where q̃ is represented through power means (Section 2.1.17):

µ̄ = µ(
nM−1/2[q̃]

)1/2
µ̄2 = µ2

nM−1[q̃]

ν = µ̄2 − µ̄2 = µ2

n

(
1

M−1[q̃]
− 1

M−1/2[q̃]

)

µmax = µ(
nM−∞[q̃]

)1/2
σ̄2 = σ2

nM−1[q̃]

σ2
max =

σ2

nM−∞[q̃]
. (15.2)

It will also be convenient to use the notation

ν[q̃]= 1
M−1[q̃]

− 1
M−1/2[q̃]

.

We expect the magnitude of the estimation problem to be driven by m, and so it will
be reasonable to express the sample size requirements in terms of the quantity n/m,
that is, the number of samples available per estimation problem. Ideally, the upper
bound depends on m and n only through n/m, but the maximization operation forces
an additional dependence on m independently. Therefore, we express the bounds in
the form

M̄≤
(m

n

)1/2
CI(q̃, m) (15.3)
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for the inequality indexed I. Applied to inequalities (b), (c) and (d) of Table 15.1, this
yields, respectively,

Cb(q̃, m) = µ(
mM−1/2[q̃]

)1/2 + [m− 1]1/2
[

σ2

mM−1[q̃]
+ µ2

mM−1[q̃]
− µ2

mM−1/2[q̃]

]1/2

,

Cc(q̃, m) = µ(
mM−∞[q̃]

)1/2 + [m− 1]1/2 σ(
mM−1[q̃]

)1/2 ,

Cd(q̃, m) = µ(
mM−∞[q̃]

)1/2 + [2 log(m)]1/2 σ(
mM−∞[q̃]

)1/2 . (15.4)

All terms in (15.4) are of the form K/mMp[q̃]s, where p=−∞,−1 or−1/2 and k= 1/2
or 1. In all but one case K> 0. The single exception occurs in Cb(q̃, m). However, noting
that 0≤ ν[q̃]≤M−1[q̃]−1, we can see that this type reciprocal relationship extends to
that term as well.

Dependence on maximum order m

We first consider how the coefficients CI(q̃, m) scale with m. As already discussed, the
bound depends stongly on n/m, but the order m also affects the bound independently.
Here, the important fact is that Cb(q̃, m) and Cc(q̃, m) are of order O(m1/2) while
Cd(q̃, m) is of order O( log(m)1/2) (we will see below that it is reasonable to regard
mMp[q̃] as fixed in this context).

Suppose m increases by a factor of r to m′. We consider the problem of determing
the sample size n′ which keeps the upper bound constant. Clearly (assuming that the m
estimation problems are independent), we must have at least linear scaling n′ ≥ rn, so
the interesting quantity is n′/m′. For bounds Cb(q̃, m), Cc(q̃, m), in order to maintain
a fixed bound n′/m′ must increase from n/m by a factor of approximately r, whereas
for bound Cd(q̃, m), n′/m′ need only increase by a factor of 1 + log(r)/log(m). For
example, if m doubles from 1000 to 2000, then r= 2, and n′/m′ ≈ 2(n/m), meaning
that the new sample size must be n′ ≈ 4n, whereas using bound Cd the new sample size
scales almost linearly as n′ ≈ 2.2n. In addition, if m increases exponentially as KN , for
example, as in a queueing system with N queues of capacity K, the sample size per
state required to maintain a fixed approximation increases proportionally with N.

These forms are directly comparable, and after any necessary modifications,
inequality (d) will be most efficient for all large enough m.

Uniform sample size allocation

Clearly, absent any further structure, the best choice of allocation is the uniform case
q̃unif , and the coefficients of (15.4) can give a quantitative measure of the consequences
of any deviation from the optimal. We first introduce the following lemma:

Lemma 15.1 If q̃= (q1, . . . , qm) is a probability distribution on S ={1, . . . , m} then
for any p< 1 we have

Mp[q̃]≤ 1/m, (15.5)
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with equality if and only if q̃= q̃unif .

Proof The bound (15.5) follows from Theorem 2.4 and the fact that M1[q̃]= 1/m
(since q̃ is a probability distribution). ///

Lemma 15.1 then provides a sharp lower bound for coefficients Cb(q̃, m), Cc(q̃, m)
and Cd(q̃, m).

Theorem 15.1 For any distribution q̃ on S ={1, . . . , m} the coefficients
Cb(q̃, m), Cc(q̃, m) and Cd(q̃, m) defined in (15.4) satisfy the inequalities:

Cb(q̃, m) ≥ µ+ (m− 1)1/2σ,

Cc(q̃, m) ≥ µ+ (m− 1)1/2σ,

Cd(q̃, m) ≥ µ+ [2 log(m)]1/2σ, (15.6)

with equality if and only if q̃= q̃unif .

Proof For fixedµ, σ and m, each term of Cc(q̃, m) and Cd(q̃, m) is a strictly decreasing
function of mMp[q̃] for some p=−∞,−1,−1/2, so that the theorem follows directly
from Lemma 15.1. In reference to Cb(q̃, m), it may be verified that ν[q̃] is always
nonnegative, and is zero if and only if q̃= q̃unif , which also uniquely minimizes the
remaining terms. ///

The lower bounds of (15.6) then provide an optimal baseline against which any
other allocation can be compared.

15.1.1 Nonuniform sample allocation: Dependence on qmin,
and the ‘Curse of the Supremum Norm’

The use of the supremum norm to quantify approximation error forces the need for
a uniform bound on all estimation problems, therefore an approximation bound can
be no better than the worst case among all estimation problems considered separately.
In the sample allocation model this must mean that an approximation measured in
the supremum norm will be especially sensitive to the value qmin, which defines the
worst case.

More precisely, as discussed in Chapter 8, we always have M̄≥µmax =
µ/(nqmin)1/2, and so the influence of an especially large variate, say X1, cannot be ‘aver-
aged out’. Suppose X1 has especially large values of µ1 and σ2

1 . We would then have
µ̄≈µ1/m, σ̄2 ≈ σ2

1/m, µ̄2 ≈µ2
1/m. Bounds (b) and (c) of Table 15.1 are then approx-

imately (σ2
1 + µ2

1)1/2 and µ1 + σ2 respectively (within this approximation, bound (b)
is smaller). In this case, bounds (b) and (c) are sharper than (d), since for the latter
dependence on m is not affected by the variation in distributions.

We have already seen, by Theorem 15.1, that for the uniform allocation case
Cd(q̃, m) gives the best scaling with respect to m, and this advantage will be maintained
for q̃ which do not deviate greatly from the uniform. Furthermore, this deviation can be
quantified by the value of (mM−∞[q̃])−1/2. To do this, note, that the uniform allocation
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provides the smallest bound for all coefficients in (15.4), and for all m≥ 4 the optimal
choice will be Cd(q̃, m). For this reason, it will useful to define (based on Theorem 15.1)

Cunif (m)=µ+ [2 log(m)]1/2σ,

as the best possible bound. Clearly,

Cd(q̃, m)= (mqmin)−1/2Cunif (m),

so that (mqmin)−1/2 measures directly the effect of deviation from uniform allocation.
Thus, if (mqmin)−1/2 does not greatly exceed 1, we will be close to the optimal

efficiency of uniform allocation. Alternatively, when qmin ) 1/m the remaining bounds
Cb(q̃, m) or Cc(q̃, m) will become more efficient. For very small qmin the bound is likely
to be very large for any of the coefficients, but the interaction of the effect of small
qmin with m tends to be smaller for Cb(q̃, m) and Cc(q̃, m) than for Cd(q̃, m).

15.1.2 Some queueing system examples

Figure 15.1 shows values of Cunif (m) for the range 1≤m≤ 1000, for simplicity taking
µ= σ= 1. Recalling (15.3), the best bound is given by M̄≤ (n/m)−1/2Cunif (m). The
value of Cunif (m) rises quickly for small values of m, reaching Cunif (8)≈ 3.04 at m= 8.
However, the remaining increase is smaller, so that at m= 1000 we have Cunif (1000)≈
4.72. Thus, using uniform allocation, for large enough m the required total sample size
n for a fixed approximation bound will scale almost linearly with m. Thus, a uniform
allocation design can be quite effective for large state-space models even when the
approximation tolerance is measured using the supremum norm.

It will be important to consider as an alternative to uniform allocation the online
model, in which data is collected as the system is allowed to operate according to
its stochastic kernel. In this case we also rely on the concept of the proportion of
allocation qi of a total sample size n to estimation problem indexed by i. Here, i may
refer to a single state, or to a state/action pair. In the context of MDPs, if the object is
to estimate the model for a fixed policy φ, i would represent a state, and the stochastic
kernel would define a specific Markov chain with transition law Qφ(x)=Q(x,φ(x)).
Then qi would simply be given by the steady state frequency of state i, and the sampling
is of order m= |X |.

The situation is less precise when the object is to estimate (R, Q) over the entire
state action space K, and a number of strategies are available. The simplest is to use a
stationary randomized exploration control which selects an action a from Kx whenever
the process enters state x, at which point cost R(x, a) is captured as data, and the process
selects the next state from distribution Q(x, a). In this case, the estimation problem i is
associated with a state/action pair, and the sampling is of order m= |K|. In this case,
the observed process is also a Markov chain, but the transition law depends on both
Q and the randomized control.

Under a reasonable conjecture, we may predict that sampling over K under an
exploratory randomized control need not be significantly less efficient that sampling
under a fixed control over X , on a per estimate basis (assuming m= |K| and m= |X |
required estimates respectively). Given model (R, Q) the transition law on state space
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Figure 15.1 Values of Cunif(m) for the range 1≤m≤ 1000, for µ= σ= 1. See Section 15.1.2.

X for a stationary determinstic policy φ is Qφ=Q(x,φ(x)). Suppose we may specify
a set of frequencies q̃ on X such that the steady state frequencies following from Qφ

remain within some neighborhood for each φ (in the sense that the relevant power
means Mp[q̃] would not vary greatly). Then, a randomized policy � defines a Markov
chain on K. However, we may still define state occupancy frequencies q′i as the sum
of those steady-state frequencies on K associated with state i. We then extend our
conjecture to assume q′i ≈ qi. To fix ideas, suppose na = |Kx| is constant for each x∈X ,
and � selects each available action with equal probability. This yields steady state
frequencies for z ∈K of value q′′z = q′i/na for any z= (i, a)∈K. It is easily verified that
for any power mean Mp[q̃′′]= n−1

a Mp[q̃′], and therefore Mp[q̃′′]≈ n−1
a Mp[q̃]. If the

order of the sampling problem on X is m, then it is of order m′′ = nam on K, and so
the crucial quantities (m′′Mp[q̃′′])1/2 ≈ (mMp[q̃])1/2 remains approximately the same,
so that the affect on the bound will be expressed through the factors [m− 1]1/2 or
[2 log(m)]1/2 appearing in (15.4).

Given this simple extension, we will confine attention to sampling over a state
space X , with the control problem playing no role.

15.1.3 Truncated geometric model

It will generally be necessary to make some conjecture regarding q̃ in order to esti-
mate the required sample size n. In our discussion of queueing models (Section 5.4)
it was pointed out that even in such well defined models (for which the control is
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fixed) a closed form solution for the steady state frequencies may not be obtainable,
and this appears to be the rule, rather than the exception. However, it has also been
observed (see, for example, Kleinrock (1975)) that there is a tendency for the steady
state frequencies of commonly used queuieng system models to resemble the geometric
distribution, or more generally, for steady state frequencies to decrease geometrically
with respect to some naturaly state ordering. It will therefore be useful to rely on the
truncated geometric distribution defined by

qi =βi 1− β
β(1− βm)

, i= 1, . . . , m (15.7)

for positive integer m and constant β∈ (0, 1). First, we may directly evaluate the
quantity

qmin = βm

1− βm

1− β
β

, (15.8)

to determine if steady state allocation is feasible. For example, if r= 0.9 and m= 100,
then qmin ≈ 2.95× 10−6, and (mqmin)1/2 ≈ 0.017) 1, so we can expect the small value
of qmin to dominate the bound. Alternatively, if r= 0.9 and m= 25 we have qmin ≈
0.00859 and (mqmin)1/2 ≈ 0.464, and so we may predict that steady state sampling
will be at least of the same order of magnitude of efficiency as uniform sampling.

Figure 15.2 shows the approximation bounds Cb(q̃, m), Cc(q̃, m) and Cd(q̃, m)
relative to Cunif (m) for the truncated geometric distribution for values β=
0.25, 0.5, 0.8, 0.9, 0.95, 0.99, and for values of m for which the relative value does
not exceed 100. We expect that small values of qmin dominate for smaller values of β,
in which case Cb(q̃, m) or Cc(q̃, m) will be the smallest coefficient. On the other hand,
the distribution approaches the uniform allocation case as β approaches 1, so that
Cd(q̃, m) will be smallest for all large enough β. This tendency can be seen in Figure
15.2, with values of β<0.9 favoring Cb(q̃, m) and values of β>0.9 favoring Cd(q̃, m)
(all coefficients are nearly equal for β= 0.9).

15.1.4 M/G/1/K queueing model

As discussed in Section 5.4, closed forms of steady-state distributions for queueing
system models are available only for a small set of special cases. Suppose for the
M/G/1/K model we are given service rate µ, arrival rate λ and queue capacity K.
This defines a system for which the state is the system occupancy, which ranges over
x= 0, 1, . . . , K (in some models states 0 and 1 are consolidated into state 1). Then µ
and λ are interpretable as the rates of decrease and of increase of the state index, except
possibly at the boundaries. Under well defined distributional conditions these rates may
be used in balance equations such as (5.5) or (5.15) to precisely obtain steady-state
occupancy rates (whether in the time domain, or relative to the embedded Markov
chain). These conditions are met by the M/M/1/K queuing model, and the balance
equations yield steady-state occupancy frequencies which decrease geometrically at rate
ρ= λ/µ for either the time-domain system or the embedded Markov chain, except
possibly at the boundaries. Here, ρ equals the utilization factor defined in Section
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Figure 15.2 Approximation bounds Cb(q̃, m), Cc(q̃, m) and Cd(q̃, m) relative to Cunif(m) for the truncated
geometric distribution for values β= 0.25, 0.5, 0.8, 0.9, 0.95, 0.99. Only values of m for
which the relative value does not exceed 100 are shown. See Section 15.1.3.

5.4.2. Thus, the truncated geometric model (15.7) for steady-state sample allocation
will approximately hold (the occupancy of the embedded Markov chain will be of
more relevance to this problem).

For the more general M/G/1/K model, µ and λ retain the same interpretation
as rates of transitions, while the utilization factor ρ= λ/µ still decisively determines
the burden placed on the queue. Thus, while balance equations (5.5) or (5.15) do
not hold strictly, the fact that transitions from state i to i + j or i − j occur at rates
independent of i, at least far enough from the boundaries, and that, aggregately, the
rates of decrease are higher than the rates of increase, together suggest that steady-
state occupancy frequencies πi should decrease in a regular multiplicative manner,
with scalar increments close to ρ, resulting in a distribution close to the geometric.

As an example, consider the M/D/1/K model with unit service time, arrival rate λ
and system capacity K. Here we analyze the embedded Markov chain, and consolidate
states 0 and 1 into 1. We present an analysis of the same form as that of Section 15.1.3,
with Figure 15.3 similarly displaying values of Cb(q̃, m), Cc(q̃, m) and Cd(q̃, m) relative
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Figure 15.3 M/D/1/K model with unit service time, arrival rate λ and system capacity K. Values of
Cb(q̃, m), Cc(q̃, m) and Cd(q̃, m) relative to Cunif(m) are given for parameters λ= 0.5, 0.9,
0.99. Only values of K for which the relative value does not exceed 100 are shown. See
Section 15.1.4.

to Cunif (m) for parameters λ= 0.5, 0.9, 0.99, and values of K giving ratios not greater
than 100, up to K= 100. The utilization factors for the three models are given directly
by ρ= λ/1, and we find the results comparable, if not identical, to those of Figure 15.2
for which β= ρ.

An most important example is the M/M/1/K queue with service rate µ, arrival
rate λ and queue capacity K. The state is the system occupancy, which ranges over
x= 0, 1, . . . , K, so that the order of the sampling process is m=K + 1. In this case, the
steady state frequencies πi of the embedded Markov chain can be calculated analyti-
cally, and closely conform to the truncated geometric distribution, with the relationship
πi+1 = ρπi holding i= 1, . . . , K − 2, but not i= 0, K − 1, for ρ= λ/µ.

15.1.5 Restarting schemes

The issue of mixing is an important one in the study of algorithms based on simulated
Markov chains, which refers to progress to its steady state distribution. The simple
device of restarting the simulated process at a new initial state can sometimes improve
efficiency by improving mixing properties (see, for example, Shonkwiler and Mendivil
(2009)). Frequent enough restarting will alter the steady-state attained by the sampler,
which may interfere with the objectives of some applications, but will help attain the
objectives stated here.

Suppose we propose the following simple algorithm, in which a simulation is
restarted at regular intervals of M transitions.

Algorithm 3 We are given a Markov chain transition kernel Q on state space
X ={1, . . . , m}. Define array n[i] on index set X and initialize to 0. Fix transition
count N and interval count M. Fix current state i∗.
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Figure 15.4 Example of Algorithm 3 discussed in Section 15.1.5.

for J = 1 to N begin loop
if J mod M= 0 then

select i∗ = argmini=X n[i]
else

sample i∗ from distribution Q(i∗)
end if
visit i∗
set n[i∗]= n[i∗]+ 1

end loop

Clearly, setting restart interval M= 1 in Algorithm 3 yields uniform allocation,
which might be more easily accomplished by repeated enumeration of X . However,
depending on the simulation platform, it may be considerably more convenient to set
M much larger.

We give a simple demonstration that this can yield close to uniform allocation.
Consider an M/M/1/K queue with service rate µ= 1, arrival rate λ= 0.75, and queue
capacity K= 100. The state is the system occupancy, which ranges over x= 0, 1, . . . , K,
so that the order of the sampling process is m=K + 1. In this case, the steady state fre-
quencies πi of the embedded Markov chain can be calculated analytically, and closely
conform to the truncated geometric distribution, with the relationship πi+1 = ρπi hold-
ing for i= 1, . . . , K − 2, but not i= 0, K − 1, for ρ= λ/µ= 0.75. Based on Figure 15.2
we may predict that steady-state allocation will not be feasible.

Figure 15.4 shows the resulting sample allocation resulting from a single simulation
of Algorithm 3 for this model, using sampling parameters N= 100, 000 and M= 1000.
Ties in the selection of the lowest visit frequency state were resolved by selecting the
highest index (the rationale for this being that πi is decreasing in i above i= 0). It
is clearly apparent that the algorithm is close to achieving uniform allocation, with
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some clearly apparent exceptions. A set of states between i= 0 and i= 20 are over
represented, in the extreme case by a factor of about 10. In addition, a boundary effect
can be seen at i= 0 and i=K, due to the fact that the steady-state equations force
the values of π0 and πK to be smaller than those of neighboring states by a factor of
µ/(µ+ λ) and λ/(µ+ λ) respectively. Of course, deviations from uniformity such as
this may be anticipated and corrected by suitable modifications of Algorithm 3.

15.2 CONTINUOUS STATE/ACTION SPACES

The case of discrete K receives most attention in the literature, although the principle
of dynamic programming extends also to general state/action spaces. We consider here
the case in which X and A are continuous subsets of Euclidean space. The problem of
estimating model (R, Q) involves a suitable choice of model approximation technique.
The theory of Chapter 14 requires that the model be estimated explicitly in terms of
densities, hence nonparametric density estimation techniques are especially suitable.
We introduce one scheme for convergent approximation of the value function in a
continuous state/action space context. The purpose is to establish the existence of such
approximation schemes with deducible convergence rates.

Suppose the spaces X and A are continuous subsets of R
p, R

q. Let fK(x, a) be a
continuous density on K. We assume for the moment that R is known. For simplicity,
we assume that the unweighted supremum norm is contractive (w≡ 1) and that X and
A are bounded. Suppose a sequence of vectors Hj = (Xj, Aj, Yj), j≥ 1 may be simulated
such that (Xj, Aj) has density fK, and Yj has conditional density f (y|Xj, Aj) (the density
of Q( · |Xj, Aj)). The density fK is known, and selected to be suitable for use in a
simulation algorithm. The vector Hj therefore has density fH(x, a, y)= fy(y|x, a)fK(x, a)

on K × X . If f̂H,n(x, a, y) is an estimate of fH(x, a, y) based on n random vectors, then
the transition kernel is estimated by

f̂y,n(y|x, a)= f̂H,n(x, a, y)/fK(x, a).

We then have the model error of Chapter 14

Dw
Q(Q, Q̂) = sup

(x,a)∈K

∫
y∈X

|f̂y,n(y|x, a)− fy(y|x, a)|dy

= sup
(x,a)∈K

fK(x, a)−1
∫

y∈X
|f̂H,n(x, a, y)− fH(x, a, y)|dy.

If we assume fK(x, a)≥ c> 0 then

Dw
Q(Q, Q̂)≤ c−1vol(X ) sup

(x,a,y)∈K×X
|f̂H,n(x, a, y)− fH(x, a, y)|.
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We then have approximate algorithm

Vn(x) = T̂nVn−1(x)

= min
a∈Kx

R(x, a)+ ρ
∫

Vn−1(y)f̂y,n(y|x, a)dy (15.9)

n≥ 1. Hence uniform convergence of f̂H,n(x, a, y) suffices for the convergence of Vn,
with convergence rate bounded by the convergence rate of f̂H,n(x, a, y).

Many scenarios exist under which consistent estimation of fH(x, a, y) based on
H1, . . . , Hn is possible. In particular the vectors Hj need not be independent. Conver-
gence rates for kernel density estimates on subsets of R

d based on sequences of vectors
satisfying a geometric α-mixing condition are given in Kim and Cox (1996). It is shown
that kernel density estimates exist which wp1 converge in supremum norm at a rate
o(n−δ) when δ<1/(2+ d) (here d= 2p+ q). Thus we have convergence wp1 at a rate
o(n−δ). We note that R(x, a), if unknown, may be similarly estimated using nonpara-
metric kernel regression estimation, with similar convergent behavior (see Györfi et al.
(2002)).

15.3 PARAMETRIC ESTIMATION OF MDP MODELS

It will often be the case that the model π= (R, Q) is indexed by a parameter θ ∈
�⊂R

k, given a metric parameter space (�, d). This generates a family of models
��={(Rθ, Qθ) | θ ∈�}. A typical example is a queueing system in which all model
quantities are known up to a Poisson arrival rate λ. Of course, any model with finite K
is reducible to this type of parametric model, but there will be some advantage to con-
sidering separately the case in which k)|K|, since a more refined estimate than that
permitted by the high dimensional sampling model will usually be possible. We will
assume throughout that for some measure µ, usually Lebesgue or counting measure,
all distributions Qθ(x, a))µ, and so can be represented by density kernel gθ(· |x, a),
with the expectation operator denoted Eθx,a (or Eθ when K is unspecified).

The theory of parametric estimation usually employs a metric defined on a parame-
ter space�⊂R

k, whereas approximation bounds for operators are naturally expressed
using L1 distance between density functions. We therefore need to consider how to
express bounds on Dw

R and Dw
Q in terms of parametric estimates. Ideally, we have the

Lipschitz continuity condition:

Dw
R(Rθ, Rθ̂) ≤ MRd(θ, θ̂)

Dw
Q(Qθ, Qθ̂) ≤ MQd(θ, θ̂). (15.10)

The main technical issue is that this Lipschitz bound will usually not hold uniformly
over the entire parameter space. The problem is then to identify conditions under which
a local Lipschitz constant will suffice. It should also be noted that the magnitude of
this Lipschitz constant may have considerable impact on the computational cost of
an approximation. Even if a uniform Lipschitz constant did exist, it may be worth
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considering whether or not a tighter bound could be obtained by considering the
relationship between θ̂ and θ in more detail.

The precise objective will be to find subset B⊂� and constants MR, MQ for which

sup
(x,a)∈K

sup
θ,θ̂∈B

w(x)−1
∣∣∣Rθ(x, a)− Rθ̂(x, a)

∣∣∣ ≤ MRd(θ, θ̂)

sup
(x,a)∈K

sup
θ,θ̂∈B

w(x)−1L1
w(gθ − gθ̂) ≤ MQd(θ, θ̂). (15.11)

The key is to determine a bounding function t : X ×�×�→R+ for which

|gθ(x)− gθ̂(x)| ≤ t(x, θ, θ̂)
(
gθ(x)+ gθ̂(x)

)
, ∀x∈X , and θ, θ̂ ∈�, (15.12)

and from which an approximation bound can be conveniently formed. This leads to

L1
w(gθ − gθ̂) =

∫
x∈X

w(x)|gθ(x)− gθ̂(x)|dµ(x)

≤
∫

x∈X
w(x)t(x, θ, θ̂)

(
gθ(x)+ gθ̂(x)

)
dµ(x)

= Eθ
[
w(X)t(X, θ, θ̂)

]
+ Eθ̂

[
w(X)t(X, θ, θ̂)

]
. (15.13)

The form of the inequality (15.12) will imply a natural continuity the exponential
family type of density commonly employed in statistical inference. This form of density
usually provides a natural relationship between a parameter space and a probability
measure. See, for example, Lehmann and Casella (1998).

Definition 15.1 An exponential family of densities on X with parameter space�⊂.k

takes the form

gθ(x)= exp (v(x, θ)− b(θ)+ h(x)), x∈X (15.14)

where

v(x, θ)=
k∑

i=1

θivi(x), (15.15)

for real valued functions v1, . . . , vk, h defined on X and b defined on �.

Any density may be transformed to the form (15.14), the distinguishing condition
being given by (15.15), and it permits the development of a general theory of esti-
mation which is applicable to any exponential family. It is important to note that the
definition makes a distinction between fixed and unknown parameters, the parameter
space � including only unknown parameters. The normal distribution N(µ, σ2) is an
exponential family distribution whether µ, σ2 or both parameters are unknown. On
the other hand, the Weibull distribution g(x | κ, λ)= (κλ)(λx)κ−1 exp (−(λx)κ), x≥ 0 is
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an exponential family distribution only if the shape parameter κ is fixed. This is typical
of densities used to model positive random lifetimes.

The Poisson density will be an important example, and may be written

g(x | λ)= λx

x! exp (−λ)= exp(x log(λ)− λ− log(x!)), x= 0, 1, . . . ,

and so is an exponential family density, with k= 1, v1(x)= x, θ= log(λ), b(θ)= λ
and h(x)=− log(x!) (this representation often transforms parameters from commonly
used forms). Exponential family densities also include the gamma, geometric and χ2

densities, but not the uniform or t densities.
The quantities which will define continuity may be given as

�v(x, θ, θ̂) = v(x, θ̂)− v(x, θ)

�b(θ, θ̂) = b(θ̂)− b(θ), (15.16)

and lead to a convenient form for a bounding function. This is given in the following
theorem:

Theorem 15.2 Suppose we have given a parametric family of densities gθ on X , with
θ ∈�⊂R

k. Using the notion of Defintion 15.1 and (15.16),

t(x, θ, θ̂) =
∣∣∣�v(x, θ, θ̂)−�b(θ, θ̂)

∣∣∣ (15.17)

is a bounding function as defined in (15.12). In addition, if (15.15) holds (that is, gθ

is an exponential family of densities) then for any conjugate pair p−1 + q−1 = 1.

t(x, θ, θ̂) = ‖ṽ(x)‖p

∥∥∥θ − θ̂∥∥∥
q
+
∣∣∣b(θ)− b(θ̂)

∣∣∣ (15.18)

is a bounding function as defined in (15.12), where ṽ(x)= (v1(x), . . . , vk(x)).

Proof We will make use of the inequality

|ex − 1| ≤ |x|emax (0,x)

≤ |x|(1+ ex), x∈R. (15.19)

Using the representation (15.14) and the definitions (15.16) we may write directly∣∣∣gθ̂(x)− gθ(x)
∣∣∣= ∣∣∣exp(�v(x, θ, θ̂)−�b(θ, θ̂))− 1

∣∣∣ |gθ(x),

then using (15.19) gives

|gθ̂(u)− gθ(u)|
≤
∣∣∣�v(x, θ, θ̂)−�b(θ, θ̂)

∣∣∣ (1+ exp (�v(x, θ, θ̂)−�b(θ, θ̂))
)

gθ(x),

=
∣∣∣�v(x, θ, θ̂)−�b(θ, θ̂)

∣∣∣ (gθ(x)+ gθ̂(x)
)

,
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so that (15.2) is a bounding function. If (15.15) holds then�v(x, θ, θ̂)=∑k
i=1 vi(x)(θ̂i −

θi), so that (15.18) is a bounding function, following Hölder’s inequality. ///

Continuing the example of the Poisson distribution, from Theorem 15.2 we have
bounding function:

t(x, λ, λ̂)= x
∣∣∣log(λ̂)− log(λ)

∣∣∣+ ∣∣∣λ̂− λ∣∣∣
so that by (15.13) we have, for w≡ 1,

L1(gθ − gθ̂) ≤ (λ̂+ λ)
∣∣∣log(λ̂)− log(λ)

∣∣∣+ 2
∣∣∣λ̂− λ∣∣∣ . (15.20)

We will generally have a locally, but not uniformly, Lipschitz bound for L1(gθ − gθ̂). It
will usually be reasonable to assume that λ̂, if interpreted as an estimate of λ, will be
within a bounded neighborhood of λ. Using Taylor’s approximation theorem, (15.20)
may be approximated by

L1(gθ − gθ̂) ≤
(
λ̂+ λ
λ

+ 2

) ∣∣∣λ̂− λ∣∣∣+O
(∣∣∣λ̂− λ∣∣∣2) . (15.21)

Note that the local Lipschitz constant given in (15.21) may be uniformly bounded if a
scalar proximity condition such as λ̂/λ∈ (r−1, r), r> 1 holds, or if λ is considered fixed
and λ̂− λ∈ (−ε, ε).
Theorem 15.3 Suppose we have given an exponential family of densities gθ on X
(Defintion 15.1), and for a subset B⊂� and conjugate pair p−1 + q−1 = 1 the following
hold:

(i) b(θ) possesses Lipschitz constant Mb wrt ‖·‖q on B,
(ii) supθ∈B Eθ

[
w(X) ‖v(X)‖p

]=Mv <∞,
(iii) supθ∈B Eθ [w(X)]=Mw <∞.

Then

L1
w(gθ − gθ̂) ≤ 2(Mv +MvMb)

∥∥∥θ − θ̂∥∥∥
q

(15.22)

for θ, θ̂ ∈B.

Proof The theorem is a direct application of Theorem 15.2 and (15.13). ///

A bound such as (15.11) could be obtained by applying Theorem 15.3 uniformly
over multiple kernel gθ(· |x, a), so that conditions (i)−(iii) would be replaced by:

(i′) b(θ | x, a) possesses Lipschitz constant Mb wrt ‖·‖q on B for each (x, a)∈K,
(ii′) sup(x,a)∈K supθ∈B w(x)−1Eθx,a

[
w(X) ‖v(X | x, a)‖p

]=Mv <∞,
(iii′) sup(x,a)∈K supθ∈B w(x)−1Eθx,a [w(X)]=Mw <∞.
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Of course, the elements b(θ | x, a) and v(· |x, a) used in the exponential fam-
ily representation of gθ(· |x, a) would usually depend on (x, a)∈K and would have
to be deduced. A simpler approach would be to use the disturbance model, in
which the transition distribution for each (x, a) is modeled as a mapping of a sin-
gle, relatively simple disturbance process (see, for example, Hernández-Lerma and
Lasserre (1996)). An obvious example is a embedded queueing system, in which ran-
dom transitions follow from a service time S and the number of arrivals Y in time
intervals (0, S].

We present one version of this model, which can be generalized when needed.
Suppose there is an iid sequence of random quantities U1, U2, . . ., and the transition
law of a MDP may be written

X0 = x

Xn = H(Xn−1, An−1, Un), n≥ 1, (15.23)

for some fixed mapping H. In the queueing example, Un = (Yn, Sn) where Yn and
Sn are the nth stage arrivals and service time. In the simplest M/G/1 case we have
H(Xn−1, An−1, Un)=H(Xn−1, An−1, Yn)=max(Xn−1 + Yn − 1, 1) (assuming the empty
queue state is consolidated into the single occupancy state). Straightforward modifi-
cations could take into account finite capacity, or controllable service capacity and
service time distribution.

We then suppose the density for the disturbance process U ∈U belongs to a
parametric family gθU , θ ∈�. The kernel must then satisfy

Qθ(Ex | x, a)=
∫

u∈U
I{H(x, a, u)∈Ex}gθ(u)Udµ(u)

over all (x, a)∈K, so that Qθ(x, a) is the distribution of the random quantity H(x, a, U),
and the density gθ(· |x, a) of Qθ(x, a) is obtainable from gθU using a standard measure
transformation method.

Theorem 15.4 For the disturbance model (15.23) the following inequality holds:

Dw
Q(θ, θ̂) ≤ sup

x,a∈K
w(x)−1

∫
u∈U

w(H(x, a, u))
∣∣∣gθ(u)− gθ̂(u)

∣∣∣ dµu(u).

Proof Define

χ(y | x, a, θ, θ̂)=
{

1 ; gθ(y | x, a)≥ gθ̂(y | x, a)
0 ; otherwise

.



326 Approximate iterative algorithms

Fix (x, a)∈K and for convenience set χ(y)=χ(y | x, a, θ, θ̂) and χ(H)=χ(H(x, a, u) |
x, a, θ, θ̂). Then we may write∫

y∈X
w(y)

∣∣∣gθ(y|x, a)− gθ̂(y | x, a)
∣∣∣ dµ�(y)

=
∫

y∈X
w(y)χ(y)

(
gθ(y | x, a)− gθ̂(y | x, a)

)
dµ�(y)

+
∫

y∈X
w(y)(1− χ(y))

(
gθ̂(y | x, a)− gθ(y | x, a)

)
dµ�(y)

=
∫

u∈U
w(H(x, a, u))χ(H)

(
gθ(u)− gθ̂(u)

)
dµu(u)

+
∫

u∈U
w(H(x, a, u))(1− χ(H))

(
gθ̂(u)− gθ(u)

)
dµu(u)

≤
∫

u∈U
w(H(x, a, u))|gθ(u)− gθ̂(u)|dµu(u),

from which the result follows. ///



Chapter 16

Approximate value iteration
by truncation

One simple approximation scheme is to truncate evaluation of the integral∫
y∈X V(y)f (y | x, a)dµ. This would be especially advantageous if the support of den-

sity f (y | x, a) was large, hence computationally burdensome, while concentrating
most of the probability mass onto a relatively small subset E⊂X . It would then be
expected that a good approximation could be obtained by restricting evaluation of∫

y∈X V(y)f (y | x, a)dµ to E, while significantly reducing the computation time. The
material in this chapter is based on Almudevar and de Arruda (2012) and Arruda et al.
(2013).

In such a case, we may simply regard such a scheme as a type of model
approximation:

∫
y∈E

V(y)f (y | x, a)dµ =
∫

y∈X
V(y)fE(y | x, a)dµ,

where fE(y | x, a)= f (y | x, a)I{y∈E} is a truncated density. Of course, fE is not a proper
density, but may be normalized to a proper density by evaluating

f̄E(y | x, a) = fE(y | x, a)∫
y∈E f (y | x, a)dµ

The L1
w distances between an arbitrary density f and its truncation fE or f̄E can be

evaluated as

‖f − fE‖TV(w) =
∫

y∈X
w
∣∣f (y)− fE(y)

∣∣ dµ= ∫
y∈Ec

wf (y)dµ,

‖f − f̄E‖TV(w) =
∫

y∈E
w(P(E)−1 − 1)f (y)dµ+

∫
y∈Ec

wf (y)dµ.

There are two terms of interest. The integral
∫

y∈Ec wf (y)dµ appears in both evaluations.
If weight function w≡ 1, then we have

‖f − fE‖TV(w) =P(Ec)

‖f − f̄E‖TV(w) = 2P(Ec).
(16.1)
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We will develop a model for bounded costs on a finite state space, setting
‖·‖w =‖·‖sup.

16.1 TRUNCATION ALGORITHM

Once we have established that kernel truncation is a form of model approximation
yielding a tractable tolerance, we may develop an AIA directly. We must first associate
a truncation support for each element of the kernel. Accordingly, define a class of state
space subsets E′ = {Ez : z ∈K}, then define approximate operators

TE′V(x) = inf
a∈Kx

R(x, a)+ β
∫

E(x,a)

V(y)Q(dy | x, a), (16.2)

and

T̃E′V(x) = inf
a∈Kx

R(x, a)+ β
∫

E(x,a)
V(y)Q(dy | x, a)

Q(E(x,a) | x, a)
. (16.3)

for each x∈X . It will be convenient to define the complementary class Ē′ = {X − Ez :
z ∈K}, and to define the quantity

P∗(E′) = sup
z∈K

Q(Ez | z)

for any such class. We then conclude from (16.1) and Theorem 14.4 that the operator
tolerance is of order O

(
P∗(Ē′)

)
. The cost of evaluating TE′ or T̃E′ may be given directly

as
∑

z |Ez|, the sum of the cardinalities of the sets in E′. Clearly, the computation cost
can be minimized for a fixed operator tolerance by selecting Ez based on the largest
probabilities.

For convenience set X ={1, . . . , J}, and denote probabilities pj(z)=Q(j | z). For
any state/action pair z ∈K let J̃z = (jz1, jz2, . . .) be an ordering of the states in decreasing
order of transition probabilities, that is pjzk

(z)≥ pjzk+1
(z). This leads to the distribution

functions F(m, z)=∑m
k=1 pjzk

(z), with F̄(m, z)= 1− F(m, z). Let nmax(z, τ)=min{m :

F̄(m, z)≤ τ}, τ ∈ [0, 1), so thet τ becomes an approximation parameter. We may then
define a class of approximate operators in terms of the approximation parameter τ:

TτV(i) = inf
a∈Ki

R(i, a)+ β
nmax(i,a,τ)∑

k=1

V
(
j(i,a)
k

)
pj(i,a)

k
(i, a),

T̃τV(i) = inf
a∈Ki

R(i, a)+
β
∑nmax(i,a,τ)

k=1 V
(
j(i,a)
k

)
pj(i,a)

k
(i, a)

F(nmax(i, a, τ), i, a)
.

We then have operator tolerance

‖TτV − TV‖sup ≤ (1− β)−1‖V‖supτ,

‖T̃τV − TV‖sup ≤ (1− β)−1‖V‖sup2τ. (16.4)
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16.2 REGULARITY CONDITIONS FOR TOLERANCE-COST MODEL

Next, assume we have an AIA with an approximation schedule τk, k≥ 1, based on
approximate operators T̂k =Tτk (the analysis for operator sequence T̃τk is identical).
Evaluation of Tτk requries summation of nmax(z, τk) terms for each z ∈K, so that the
computation cost of an iteration, as a function of τ, may be taken as

Gapp(τ)=
∑
z∈K

nmax(z, τ).

We will make a simplifying assumption that all transition distributions have simi-
lar enough structure to be represented by a single distribution F(m), in the sense
that F(m, z)= F(t(m, z)) for a suitable transformation m= t(m, z) (this transformation
would then generate the orderings J̃z). We may expect such a structure in disturbance
models, for example, when all transition measures are derived from a common arrival
process. We then have

Gapp(τ)= |K|F̄−1(τ).

Following (16.4) and the discussion of Section 11.1.1 we have approximation tolerance
uk ≈C−1τk, and so the cost function becomes

G(u)=Gapp(Cu)= |K|F̄−1(Cu).

Of course, the behavior of F̄(m) may vary considerably, however, the relationship
of the cost function to regularity conditions (A), (B1) or (B2) of Section 11.1.2 may
be easily deduced from the form of the tail probabilities. In particular, for power
law tail probabilities F̄(m)∝m−d, by Theorem 11.4, (A) holds, and (B1) holds for
schedules with λl{uk}> 0. For exponential tail probabilities F̄(m)∝ ρm, by Theorem
11.5, (A) holds, and (B2) holds for schedules with λl{uk}> 0. Applying, as appropriate,
Theorems 11.1, 11.2 and 11.3, and noting operator tolerance (16.4), we adopt the
simple recommendation that an AIA be based on tolerance schedule τk ≈βk. Note that
the cost function G is used only to verify the regularity conditions (A), (B1) or (B2),
and otherwise plays no role in the selection of the tolerance schedule.

16.2.1 Suboptimal orderings

It is important to note that the truncation algorithms do not depend on an availability
of the perfect orderings of the transition probabilities for each state/action pair z. While
a perfect ordering will be most efficient, the convergence properties reported here are
still valid when a suboptimal ordering is used.

Consider the following general example. We may take the previously defined
orderings J̃z = (jz1, jz2, . . .) for each z ∈K as the optimal. Suppose we have a suboptimal
ordering ĵz1, ĵz2, . . . for which ĵzk′ = jzk implies k′ ≤Bk for some number B and all k≤C,
for some large number C (the original ordering of the larger probabilities is maintained
with regular insertions). We then must have nmax(z, τk)≤ n̂max(z, τk)≤Bnmax(z, τk),
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where n̂max(z, τk) is analagously defined for the suboptimal orderings. Note that the
truncation algorithms will have approximately the same convergence properties with
respect to iteration count for both orderings. The difference is that the suboptimal
ordering yields a higher cost per iteration, but by a factor no greater than B.

16.3 EXAMPLE

We will continue the example ontroduced in Section 13.7 (see also Figure 13.4).
Since convergence in the span quotient space has been shown to be considerably faster
than convergence wrt the supremum norm, the trunctation scheme will be developed
in this context.

The first point to note is that we have a choice of two approximate operators, the
unnormalized and normalized truncation operators TE′V and T̃E′V defined in (16.2)
and (16.3), respectively. The operator T̃E′V is based on a strictly stochastic kernel, due
to the normalization, and is therefore continuous on the span quotient space. Since
the same cannot in general be guaranteed of the unnormlized approximate operator
we will use T̃E′ .

The second point to note that the approximation schedule is determined by the
contraction rate of the operator, which is not necessarily equivalent to the discount
factor β, and in the span quotient space generally won’t be. We have seen that this
contraction rate may be difficult to evaluate. In addition, the asymptotic contraction
rate may be significantly smaller than any single J-stage contraction rate.

Formally, the problem is to determine the tolerance αk of the EIA in the tolerance
model (11.1) of Chapter 11. With respect to the supremum norm this would be αk =βk,
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Figure 16.2 Various estimates of linear convergence rates for the example of Section 16.3.

but is more difficult to determine wrt the span seminorm. The rate can be estimate
empirically, however, by using the ratio updating rule

αk+1 ≈ ‖Vk − Vk−1‖
‖Vk−1 − Vk−2‖αk (16.5)

using the appropriate norm.
Figure 16.1 plots the ratios

‖Vk − V∗‖sup

‖Vk−1 − V∗‖sup
,

‖Vk − Vk−1‖sup

‖Vk−1 − Vk−2‖sup
,

‖Vk − V∗‖SP

‖Vk−1 − V∗‖SP
,

‖Vk − Vk−1‖SP

‖Vk−1 − Vk−2‖SP
,

for our example. The linear convergence rate is given directly by ‖Vk − V∗‖/‖Vk−1 −
V∗‖ in the appropriate norm. As seen in Figure 16.1 this rate can be accurately esti-
mated also by the ratios of the value iteration increments, which are available for use
by the algorithm.

Figure 16.2 shows the progressive accuracy of the truncation algorithm using three
methods for estimating αk. The first sets αk ∝βk, while the other two use the updating
rule (16.5) based on norms ‖·‖sup and ‖·‖SP. The progress is measured, appropriately,
not by the iteration index but by the cumulative computation effort. The nontruncated
VI algorithm is also included for comparison (apart from the change of units in the
horizontal axis, this plot is equivalent to the upper right plot of Figure 13.4). The
truncation method clearly results in considerable savings in computation. Furthermore,
we find the updating rule (16.5), based on the span seminorm, is the appropriate choice
for this application.



Chapter 17

Grid approximations of MDPs with
continuous state/action spaces

Much of the theory of MDPs and their approximation does not rely on the assumption
that K is finite or countable, but this question is of significant practical consequence,
arising from the need to first compute Ta

π, then to optimize over the control variable
a∈Kx. The performance of these operations enumeratively when K is finite leads to
issues of complexity, but also permits the development of general algorithms with a
well defined performance, and so the approximation of continuous MDP models using
discrete models seems a natural solution.

The problem can be conceived in two ways. A type of certainty equivalence
approach would be to accept a finite approximation as a substitute for the true model.
Alternatively, we may accept discretization as a method of developing approximate
operators which are tractable, but which also converge to the true operator as defined
on the original continuous state/action space, so that all iterates Vk are formally defined
on the original state space X . We will adopt this approach, which can be see to contain
within itself the certainty equivalence approach as a special case.

The material of this chapter largely follows the seminal methods described in Chow
and Tsitsiklis (1989) and Chow and Tsitsiklis (1991). We will find that the conclusions
reached in that work also follow from the functional analytic approach considered in
this volume.

17.1 DISCRETIZATION METHODS

Suppose f is a function on X . Suppose E ={E1, . . . , En} is a partition of X . Define
E(x)={y∈Ej | x∈Ej}, leading to

fE (x)= 2−1

(
inf

y∈E(x)
f (y)+ sup

y∈E(x)
f (y)

)
.

If we may claim the bound

sup
Ej∈E

sup
x,y∈Ej

f (y)− f (x)≤ τ,

then it follows that∥∥fE − f
∥∥

sup ≤ τ/2. (17.1)
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No assumption of continuity for f has been made, and τ may be made arbitrarily small
by defining E using inverse images of a grid partition of the range of f . For example,
if we have f ∈ [0, 1], we may define for τ≤ 1 partition Eτ ={E1, . . . , En}, n=�1/τ�, by

Ej = f−1((τ(j − 1), τj] ∩ [0, 1]), j= 2, . . . , n, and E1 = f−1([0, τ]),

then (17.1) holds for fEτ . Furthermore, it is not required that X be bounded.
The model elements of π to be discretized are cost function R(x, a) defined on K

and density kernel f (y | x, a) (wrt Lebesgue measure) defined on K × X . A number of
partition schemes may be considered, but we will follow the approach used in Chow
and Tsitsiklis (1991), in which the state and action space are assumed to be subsets of
unit cubes X ⊂ [0, 1]n and A⊂ [0, 1]m, with the dimensions given explicitly in order to
capture their effect on computational complexity. An n dimensional grid partition on
[0, 1]n is defined by the product En

τ =×nEτ , consisting of all cubes in [0, 1]n with sides
of length τ defined by the grid Eτ , with the possible exception of cubes bordering any
upper bound 1, which have sides no greater than τ.

Formally, we need to identify elements of a partition I ∈ En
τ for which I ∩ X �=

∅, and similarly, I ∈ En+m
τ for which I ∩K �= ∅. However we lose little generality in

assuming K= [0, 1]n+m, although careful attention to this point would be needed in
any implementation.

For each element I′ ∈ En+m
τ select a representative element (x′, a′)∈ I′, and let

(xτ , aτ)= (x′, a′) for all (x, a)∈ I′. This leads to approximations

R̂τ(x, a) = R(xτ , aτ),

f̂τ(y | x, a) = f (yτ | xτ , aτ)∫
X f (yτ | xτ , aτ)dy

. (17.2)

We have normalized f̂τ(y | x, a) to be a proper density function. As in the case of the trun-
cation approximation method, this is not formally needed to obtain convergence, but
will be needed to exploit contraction in the span seminorm, as indicated in Chow and
Tsitsiklis (1991). The next objective is to define conditions under which the approx-
imation (17.2) leads to a suitable bound on the operator tolerance. A Lipschitz type
condition is imposed on R and f (y | x, a) over the spaces X and K × X respectively
in Chow and Tsitsiklis (1991). We give similar conditions directly in terms of the
quantities Dr(R, R̂τ) and Dq(Q, Q̂τ), where Q̂τ is the kernel defined by (17.2).

Theorem 17.1 Suppose for model π= (R, Q) there exists a finite constant K for
which:

(i) |R(x, a)− R(x′, a′)| ≤K
∥∥(x, a)− (x′, a′)

∥∥
sup,

(ii) For each (x, a)∈K we have |f (y | x, a)− f (y′ | x, a)| ≤K|y − y′|,
(iii)

∥∥f (· |x, a)− f (· |x′, a′)
∥∥

TV ≤K
∥∥(x, a)− (x′, a′)

∥∥
sup.

Then

Dr(R, R̂τ) ≤ Kτ, and (17.3)

Dq(Q, Q̂τ) ≤ 3Kτ +O(τ2). (17.4)
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Proof Suppose I ∈ En+m
τ . By (i), for any (x, a), (x′, a′)∈ I we have |R(x, a)−

R(x′, a′)| ≤Kτ, and therefore Dr(R, R̂τ)≤Kτ.
Suppose I ∈ En

τ . If (ii) holds, then for any (x, a)∈K we have

|f (y | x, a)− f (y′ | x, a)| ≤Kτ

when y, y′ ∈ I, from which it follows that

|f (y | x, a)− f (yτ | x, a)| ≤Kτ

for all y∈X . This further implies that∫
X

f (yτ | x, a)dy∈ [1− Kτ, 1+ Kτ],

so that∥∥∥f̂τ(y | x, a)− f (yτ | x, a)
∥∥∥

TV
≤ 2Kτ +O(τ2).

Note that, using assumption (iii),

|f (y | x, a)− fτ(y | x, a)| = |f (y | x, a)− f (yτ | xτ , aτ)|
≤ |f (y | x, a)− f (y | xτ , aτ)| + |f (y | xτ , aτ)− f (yτ | xτ , aτ)|
≤ 3Kτ +O(τ2),

from which (17.4) follows. ///

The approximate operator is defined simply as Tτ
π, with πτ = (R̂τ , Q̂τ), and from

Theorem 14.4 we have operator tolerance∥∥T̄πV − Tτ
πV
∥∥

sup ≤ τK(1+ 3 ‖V‖sup )+O(τ2), (17.5)

and given principal eigenvector ν we also have

∥∥T̄πV − Tτ
πV
∥∥
ν
≤ τK

(
1+ 3

2
‖V‖SP(ν)

)
+O(τ2). (17.6)

17.2 COMPLEXITY ANALYSIS

We may develop a cost tolerance model as described in Chapter 11. We may interpret
Tτ
π as the DPO for a discrete model with a state space and action space defined by a
τ-spaced regular grids in [0, 1]n and [0, 1]m, in which case the cardinalities may be taken
as |X | ≈ τ−n and |K| ≈ τ−n−m. Thus, the computational effort required to evaluate Tτ

π

may be given as a function of τ by

Ggrid(τ) = K3τ
−2n−m, (17.7)

where K3 depends only on π, and the cumulative complexity of the algorithm is then
summed over the iterations.



336 Approximate iterative algorithms

A number of important results exist concerning the complexity of this problem.
Suppose we wish to estimate value function V∗ within an error of ε, using discount
factor α. For any algorithm A we define C(A;α, ε, n, m) to be the worst case com-
putation time over all MDPs π ∈P with fixed state/action space dimension (n, m),
assuming discount factor α, and assuming A outputs an ε-optimal solution Vε (that
is, ‖V∗ − Vε‖≤ ε). In Chow and Tsitsiklis (1989) it is shown that a lower bound on
C(A;α, ε, n, m) exists of order C(α, ε, n, m)=�([(1− α)2ε]−2n−m).

It turns out that the multigrid algorithm proposed in Chow and Tsitsiklis (1991)
achieves complexity of order (1 − α)−1C(α, ε, n, m), that is, it is optimal with respect
to ε and dimensions n, m but not with respect to 1− α. In comparison, the single grid
algorithm achieves complexity of order − log((1− α)ε)(1− α)−1C(α, ε, n, m).

Reductions in complexity are possible for subsets of P. In Chow and Tsitsiklis
(1991) an ergodicity condition (Definition 4.1) imposed on P permits a reduction of
the minimum worst-case complexity to order �([(1− α)ε]−2n−m), which is the min-
imum achievable (Chow and Tsitsiklis (1989)). For finite action sets randomized
algorithms can achieve further reductions in complexity (Rust (1997); Kearns et al.
(2000); Szepesvari (2001); Kearns et al. (2002)). We will confine attention to the
general case P.

17.3 APPLICATION OF APPROXIMATION SCHEDULES

An approximation schedule as defined in Chapter 11 will be generated by considering
a sequence of grid sizes τ1, τ2, . . . leading to AIA

Vk = Tτk
π Vk−1, k≥ 1 (17.8)

given starting point V0, and assuming {τk} ∈S−. Recall that Tτ
π remains formally an

operator on the original Banach space F(X , ‖·‖sup). If τ is held constant, then the
approximate model πτ has been constructed so that TV is measurable wrt En

τ if V is. If
the schedule τk is nonincreasing, then the simplest way to maintain consistent measur-
ability is to use only reciprocals of powers of 2, setting τk = 2ik for some nondecreasing
sequence of integers ik.

For any approximation schedule {τk} we have operator tolerance∥∥T̄πVk−1 − Tτk
π Vk−1

∥∥
sup = O(τk). (17.9)

If the parameter τ is held fixed, we attain an approximation bound of order O(τ).
Using (17.9) and Theorems 14.2–14.3 we have, for some finite constant L,

lim sup
k→∞

α−k‖Vk − V∗‖sup <∞, for {τk} ∈FL
α , (17.10)

lim sup
k→∞

τ−1
k ‖Vk − V∗‖sup ≤ L

(
1− α/λl{τk}

)−1
, for {τk} ∈FU

α , (17.11)

and we may in general conclude that Vk converges to the true fixed point in the
supremum norm for any sequence τk → 0.
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Our strategy is then to verify that the tolerance model of Definition 11.1 holds
for pairs of algorithms, following the discussion in Chapter 11. First suppose two
algorithms {τk} and {τ ′k}belong to FL

α , with τ ′k = o(τk). Define respective approximation
schedules S, S′ by uk =O(τk), u′k =O(τ ′k), with computation function G(u)=Ggrid(u)
defined in (17.7). Given (17.10) it is easily verified that this pair of algorithms satisfy
Definition 11.1 for tolerance model (α, G).

Furthermore, from Theorem 11.4, G satisfies condition (A). If {τk} is linearly con-
vergent then condition (C) holds, and by Theorem 11.1 algorithm {τk} has strictly better
computational convergence. Otherwise, again by Theorem 11.1, the computational
convergence of {τk} is no worse than that of {τ ′k}.

A similar argument can be made for pairs of algorithms {τk}, {τ ′k} in FU
α . Here

we assume τk = o�(τ ′k). Using (17.11) we may select a finite constant b such that
Definition 11.1 holds for schedules uk = bτk, u′k = bτ ′k and computation function
G(u)=Ggrid(b−1u). We may use Theorem 11.4 to verify that G satisfies condition (B1)
with each schedule. Our conditions constrain {τk} to be linearly convergent. Applying
Theorem 11.2 we may conclude that if {τ ′k} is also linearly convergent then {τk} has
no worse than the same order computational efficiency, whereas if {τ ′k} is sublinearly
convergent then {τk} is strictly more efficient.

In general, the theory of approximation schedules permits us to rule out as optimal
algorithms any sublinearly or superlinearly convergent approximation schedules. To
simplify the analysis, we consider schedules of the form

τk = Crk, k≥ 1 (17.12)

where r∈ (0, 1), and C> 0. Suppose we have algorithm tolerance

‖Vk − V∗‖sup ≤ ηk.

A final algorithm tolerance of v is achieved after tv iterations, where v= ηtv . From
the computational effort given in (17.7) for iteration k, the cumulative complexity
becomes

Ḡk =K3

k∑
i=1

(Cri)−m−2n =K3C−m−2n (rk)−m−2n − 1
1− rm+2n

, (17.13)

and an algorithm tolerance of v can be achieved using a total computational effort of

Ḡη(v) = Ḡtv . (17.14)

Next, suppose the cost function is bounded by 0≤ h≤ hmax. The iterative relation-
ship ‖Vk‖sup ≤ hmax + α‖Vk−1‖sup is easily verified, giving ‖Vk‖sup ≤ (1− α)−1hmax +
αk‖V0‖sup. We may set V0 ≡ 0, leading to bound ‖Vk‖sup ≤ hmax(1− α)−1. In gen-
eral, for the span seminorm we have ‖V‖SP ≤ 2‖V‖sup, so we may make use of the
inequalities

‖Vk‖sup ≤ (1− α)−1hmax (17.15)

‖Vk‖SP ≤ 2(1− α)−1hmax. (17.16)
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From (17.15) and (17.16), we may substitute into (17.12), yielding

‖Vk − V∗‖sup ≤
{

Kα
4α

k + Kα
5Cζ(r,α)(rk − αk); r �=α,

Kα
4α

k + Kα
5Ckrk ; r=α (17.17)

where

Kα
4 = (1− α)−1hmax,

Kα
5 = (K1 + 2K2(1− α)−1hmax),

ζ(r,α) = r(r− α)−1.

We first consider the choice of constant C in (17.12). We need not make τ greater
than 1 (assuming S is a unit cube). Thus, if C is made large enough that τk> 1 for
the first several iterations, such iterations may be considered void in that they do not
contribute to model refinement and assume no cost. The following lemma verifies
that the computational cost required to attain a given algorithm tolerance increases
unboundedly as C approaches 0.

Lemma 17.1 For fixed r,α, as C→ 0 we have Gη(v)→∞ for any v.

Proof From (17.17), for a fixed algorithm tolerance v we have

v ≥ Kα
4α

tv (17.18)

for all C> 0, where v= ηtv . From (17.13) and (17.14) we have

Ḡη(v) = C−m−2nK3

tv∑
i=1

(ri)−m−2n

≥ C−m−2nK3

log(v/Kα4)/ log(α)∑
i=1

(ri)−m−2n

where the inequality follows from (17.18). The lemma follows by letting C→ 0. ///

Following the above discussion, in the remaining development we will set C= 1.
The immediate objective is to verify that the same complexity obtained by the

multigrid algorithm proposed in Chow and Tsitsiklis (1991) can be attained simply by
varying the grid size according to (17.12).

We will consider r∈ (α, 1). From (17.17) the algorithm tolerance may be bounded
as follows:

ηk ≤
(
Kα

4 + Kα
5ζ(r,α)

)
rk (17.19)

We solve v= ηtv then substitute inequality (17.19) into (17.14) to give

Ḡη(v)≤ K3

1− rm+2n

([
Kα

4 + Kα
5ζ(r,α)

v

]m+2n

− 1

)
. (17.20)
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Then note that Kα
4 =�((1− α)−1) and Kα

5 =�((1− α)−1), while ζ(r,α)≥α/(1− α).
In this case the dominant term of (17.20) becomes

Ḡ1
η(v) = K3

1− rm+2n

[
2K2hmaxζ(r,α)

v(1− α)

]m+2n

. (17.21)

Since an investigation of the complexity involves allowing α→ 1, and we are
assuming r>α, we must allow r to depend on α, which will be denoted rα. We may
write

Ḡ1
η(v)= K6

[v(1− α)]m+2n
× rm+2n

(1− rm+2n)(r− α)m+2n
(17.22)

where K6 does not depend on r,α or v. It is easily verified that over [α, 1] this quantity is
minimized with respect to r by setting rα=α1/(m+2n+1). Substituting into (17.21) gives

Ḡ1,α
η (v) = K6

[v(1− α)]m+2n
× 1(

1− α m+2n
m+2n+1

)m+2n+1 .

It can be verified that the following limits hold:

lim
m+2n→∞

(
1− α m+2n

m+2n+1

)m+2n+1

(1− α)m+2n+1 = exp
(

α

1− α log(α)
)

,

lim
α→1

(
1− α m+2n

m+2n+1

)m+2n+1

(1− α)m+2n+1 =
(

m+ 2n
m+ 2n+ 1

)m+2n+1

. (17.23)

The limits of (17.23) are both approximately e−1 for α close to 1 and large m+ 2n, so
we have the uniform approximation

Ḡ1,α
η (v) ≈ K3

1− α
[

2K2hmax

v(1− α)2

]m+2n

e1

= �([(1− α)2ε]−2n−m) (17.24)

which is equivalent to the complexity reported in equation (7.11) of Chow and Tsitsiklis
(1991).

As a final note, the selection of r affects the order of Ḡη(v) significantly with respect
to m+ 2n. To see this, when r is close to 1 we may write (17.22)

Ḡ1,α
η (v)≥ K3

1− α
[

2K2hmax

v(1− α)2

]m+2n

(m+ 2n)−1
[

r− rα
r− α

]m+2n

,

noting that r>α. Since r− rα> r− α this introduces an exponentially ordered factor
into Ḡ1

η(v) which is not present in when rα is substituted for r, as in (17.24).



Chapter 18

Adaptive control of MDPs

As a final case study, we consider the problem of adaptive control. We have already
considered the problem of estimating regret when the MCM π is unknown but can be
estimated by π̂. Specifically, we have considered the problem of replacingπwith a single
statistical estimate π̂, and the problem of employing successively refined numerical
estimates of a known model π.

We return to the problem of statistical model identification. We are able to translate
statistical model error directly into an estimate of regret, in effect, estimating the cost
of statistical error. However, if the resulting certainty equivalence policy φπ̂ is applied
indefinitely to an MDP governed by model π, a constant amount of regret will also be
accrued indefinitely. Of course, while the MDP is on-line new data is being collected
with which the model can be refined. With a refined model, a new certainty equivalence
policy can be calculated, reducing the regret in a predictable way.

In principle, there is no reason not to continue this process indefinitely. If we do,
we have an adaptive control policy, which is formally a sequence of control functions
φ1,φ2, . . ., such that φn is applied at stage n, and is allowed to depend on history Hx

n .
A certainty equivalence adaptive policy simply sets φn =φπ̂n , the policy optimal for
model π̂n, the best model estimate based on history data Hx

n (which may include any
other auxiliary data or information).

This is an intuitively appealing approach, but we have no guarantee that the
sequence of policies φn converges to the optimal, or equivalently, that regret approaches
0. In fact, there really is no reason to think it should. In the absence of special structure,
in order to calculate the optimal control for π, we must have the entire model π. To fix
ideas, suppose K is finite. For each (x, a)∈K we must estimate R(x, a) and Q(· |x, a).
When an online system visits state/action pair (Xn, An), it transitions to state Xn+1

according to distribution Q(· |Xn, An). As for cost, if the realized cost Rn is determinis-
tic, we have identified without error R(Xn, An) with a single visit. We consider instead
the more general problem in which it is assumed only that E[Rn |Ha

n]=R(Xn, An).
Clearly, we can only expect a sequence of models π̂n to converge to the true model π
if each state/action pair (Xn, An) is visited infinitely often. This might reasonably be
guaranteed for the state variable, but not the action variable.

To see this, suppose for state x we have Kx ={0, 1}. For the sake of argument,
assume Q(· |x, 0)=Q(· |x, 1) and that R(x, 0)<R(x, 1). We can conclude on this basis
that φπ(x)= 0. This particular cost inequality will be correctly infered with probability
approaching 1 as the number of visits to (x, 0) and (x, 1) approach ∞. Next, suppose
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that for some interim model π̂n the distributions Q(· |x, 0) and Q(· |x, 1) are accu-
rately estimated, as is R(x, 1), but that the estimate of R(x, 0) (incorrectly) exceeds
that of R(x, 1) by some large enough amount. On this basis we would probably have
φπ̂n (x)= 1. This means that the online process will choose action 1 for the next visit
to state x. If the estimation process is close to convergence, we would expect little
further change in subsequent estimates of R(x, 1) and Q(· |x, 1), and no further change
in the estimate of R(x, 0) unless state/action pair (x, 0) is visited again. In order for
this to happen, there must be a certainty equivalence policy at some stage n′> n, for
which φπ̂n′ (x)= 0, which may not happen under the given scenario. In this case, the
certainty equivalence adaptive policy never identifies the action a= 0 as optimal from
stage x, and regret does not approach 0. The issue of identifiabilty of certainty equiv-
alence adaptive controls is discussed in detail, with some interesting counterexamples,
in Bertsekas (1995a) and Kumar and Varaiya (1986).

A number of approaches to this problem can be taken. If the objective is to ensure
that each state/action pair is visited infinitely often, then this can be easily achieved
using a suitable randomized control policy. If the purpose of this policy is to ensure
that all state/action pairs are visited, we may refer to it as an exploratory control
policy. Of course, the object is to attain minimum regret, which generates conflicting
goals. Minimum regret cannot be achieved by a certainty equivalence adaptive policy
unless all state/action pairs are visited infinitely often. In the absence of additional
structure, we assume this can only be achieved by enforcing an exploratory control.
We also assume that exploratory control results in regret bounded away from zero. We
therefore have two sources of regret, that due to suboptimal control policies resulting
from imperfect model identification, and that due to exploration.

Of course, these two forms of regret can be quantified and balanced. At any stage
of an online MDP we have access to model estimate π̂n, and therefore to certainty
equivalence control policy φπ̂n . In addition, suppose that at any stage we may choose
between applying the current certainty equivalence control and an exploratory con-
trol. Next, we may define an exploration rate αn, so that at stage n, in some sense,
the probability that the applied control is exploratory is αn. If the exploratory con-
trol satisfies certain assumptions, the number of visits to any state/action pair will be
proportional to

∑n
i=1 αi at stage n. We may always choose αn so that αn →n 0 and∑n

i=1 αi →n ∞, so that each state/action pair is visited infintely often, but also that the
stage frequency of exploratory behavior approaches 0. In this case we can expect the
certainty equivalence policy to approach the optimal, while being applied with a stage
frequency approaching 1.

18.1 REGRET BOUNDS FOR ADAPTIVE POLICIES

Theorem 12.8 gives a direct method of bounding regret through the formula

��
n (Hx

n )= V̄π(Xn)+ E�x

[ ∞∑
i=0

βiλπ(Xn+i, An+i) |Hx
n

]
.

Under an adaptive policy�= (φ1,φ2, . . . ) the regret accrued from state Xn at stage n is

��
n (Hx

n )− V̄π(Xn)=E�x

[ ∞∑
i=0

βiλπ(Xn+i,φn(Xn+i)) |Hx
n

]
. (18.1)
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In addition, by Theorem 14.6 we have bound

λπ(x,φπ̂(x))≤K1 max (Dw
R(R, R̂), Dw

Q(Q, Q̂)), (18.2)

for some constant K1, where π̂= (R̂, Q̂). Immediately, we may reach some conclusions
for the simplest forms of adaptive controls. In some cases, the certainty equivalence
adaptive policy will suffice. For example, for a queueing system the model may be
known up to a small number of parameters, for example, an arrival rate λ. Suppose
cost function R is known. In most models, each stage will generate a datum which
can contribute to an estimate of λ. Suppose the estimate of λ at stage n is λ̂n. Section
15.3 shows how to construct a bound of the form Dw

Q(Q, Q̂n)≤K2|λ̂n − λ| for some

constant K2. We can generally expect |λ̂n − λ| =O(n−1/2). We need to next make an
argument such as

E�x
[
|λ̂n+m − λ| |Hx

n

]
≤ |λ̂n−1 − λ| + o(n−1/2). (18.3)

Combining (18.1), (18.2) and (18.3) immediately yields

��
n (Hx

n )− V̄π(Xn)=O(n−1/2), (18.4)

that is, if the certainty equivalence adaptive policy does yield a consistent estimate of
the model π, we can generally expect regret to conform to the usually statistical error
of O(n−1/2).

18.2 DEFINITION OF AN ADAPTIVE MDP

The point was made earlier, in Section 4.4 for example, that statistical procedures
which rely on assumptions of independence may not be appropriate as part of an
adaptive system with a well defined history process Hn, n≥ 1. This history defines a
filtration (Definition 4.2), with respect to which all processes we study are adapted. It
will usually be the case that properties of adapted statistical procedures are easier to
define conditioned on the history processes. This sometimes necessitates some cumber-
some notation, and the relationship between conditional events and the history process
always needs to be precisely defined. However, this leads to procedures of considerably
more flexibility than would be possible by relying on assumptions of independence.

The first step is to expand on the definition of a MDP to include exploratory
behavior and auxiliary data. For example, we have defined R(x, a) as an expected cost.
The actual cost may be random, and this is not formally modeled by the MDP measure
P�x defined in Section 12.1 (this distinction is explicitly characterized in Bertsekas and
Shreve (1978), Chapters 8–9). Now that the stochastic propreties of the cost are of
relevance, a probability measure must be defined which can do this.

As before, we have MCM π= (K, Q, R,β), and we add two new elements to
definitions (M1)−(M6) of Section 12.1.

(M7) A Borel space O, called the observation space, and a stochastic kernel Qo,x :
K→M(O × X ) for which Qo,x(O × Ex | x, a)=Q(Ex | x, a) for all Ex ∈B(X ),
(x, a)∈K. In addition, EQo,x

x,a is the expectation operator associated with
Qo,x(· |x, a).
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(M8) A binary outcome Z ={0, 1} and a sequence of measurable mappings
pe

n : (XZAO)n−1 × X → [0, 1], n≥ 1.

Two new quantities will be associated with stage n. First, we have On, defined on
O, with distribution calculable from Qo,x(· |Xn, An) according to (M7). This represents
information available to the controller following the realization of the state/action pair
(Xn, An), including that pertaining to the realized stage n cost, and the transition from
Xn to Xn+1. This information is assumed to be available in time to influence the control
applied at the n+ 1st stage.

Second, given state Xn, a binary randomization quantity Zn ∈Z ={0, 1} is
observed. The action An is permitted to depend on Zn as well as history Ha

n. The
role of Zn is to select between exploratory (Zn = 1) and certainty equivalence control
(Zn = 0), as described in the introduction to this chapter. The distributional proper-
ties of the sequence Z1, Z2, . . . are determined by the sequence of mappings pe

n, as
described below. It will be helpful to think of the order of realization of the stage
quantities as Xn →Zn →An →On →Xn+1 →Zn+1 → . . .. We accordingly define the
Borel space S ⊂XZAO to be all elements (x, w, a, o)∈XZAO for which (x, a)∈K.
The history vectors are expanded accordingly:

Ha
n = (X1, Z1, A1, O1, . . . , Xn, Zn, An)

Hz
n = (X1, Z1, A1, O1, . . . , Xn, Zn)

Hx
n = (X1, Z1, A1, O1, . . . , Xn) (18.5)

The adaptive control will be a mixture of two policies, �e = (�e
1,�e

2, . . . ) and
�o = (�o

1,�o
2, . . . ), where �e

n and �o
n are measurable mappings of Hx

n to M(A). The
randomization variable Zn is used to select the policy according to the form

�n(Ea |Hz
n)= (1− Zn)�o

n(Ea |Hx
n )+ Zn�

e
n(Ea |Hx

n ), Ea ∈B(A). (18.6)

The intention is that �e is used to explore. We accept that while this policy is used
an amount of regret bounded away from 0 is accrued, so that no attempt to minimize
regret is made under �e.

On the other hand�o is intended to be the best control available with respect to the
minimization of regret. In our example, this will be the current certainty equivalence
policy.

Although we have explictly defined two new stage quantities, from the point of
view of measure construction we can incorporate Zn into the action space and On into
the state space, retaining the original definition of a MCM given in Section 12.1. Thus,
given elements (M1)−(M8), for any admissible starting state X1 = x a unique measure
P�x exists on the Borel space S∞ satisfying

P�x (X1 = x) = 1,

P�x ((On, Xn+1)∈Eox |Ha
n) = Qo,x(Eox |Xn, An), Eox ∈B(OX ),

P�x (Xn+1 ∈Ex |Ha
n) = Q(Ex |Xn, An), Ex ∈B(X ),

P�x (Zn = 1 |Hx
n ) = pe

n(Hx
n ),

P�x (An ∈Ea |Hz
n) = �n(Ea |Hz

n), Ea ∈B(A), (18.7)
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for n≥ 1 and each admissible history Hx
n , Hz

n, Ha
n. As above, we let E�x be the

expectation operator of P�x , and x may be any initial state.

18.3 ONLINE PARAMETER ESTIMATION

Assume that model π is fully defined by a parameter vector θ= (θ1, . . . , θk), and that
a Lipschitz relationship exists between θ and the model π, in the sense that for any
estimate θ̂= (θ̂1, . . . , θ̂k) of θ there is a constant Kθ for which

max(Dw
R(Rπ, Rπ̂), Dw

Q(Qπ, Q̂π̂))≤Kθd(θ, θ̂),

for a suitable metric d. We have alreay seen that this will be possible under general
conditions. We may also assert that if φπ̂ is the certainty equivalence policy for model
π̂ we have

λπ(x,φπ̂(x))≤Kλd(θ, θ̂).

This will permit us to construct a bound on regret directly from the statistical error of
the model estimates.

The procedure we present will be illustrated using estimators formed from sam-
ple averages, but the essential requirements, of which there are two, will be stated
explicitly.

The first problem which arises concerns the amount of information in the history
process regarding any specific parameter θj. Possibly, each parameter is associated with
a specific state/action pair, so that the properties of the estimation process is closely
dependent on the exploration process, so the two must be considered together.

Accordingly, we offer the following defintion:

Definition 18.1 Suppose we have a MCM π= (K, Q, R,β), observation space O
and kernel Qo,x defined in (M7). The informative subset of K for component θj of
θ= (θ1, . . . , θk), which we denote K(θj), consists of all (x, a)∈K for which a measurable
estimator θ̄j(O), O∈O exists satisfying

EQo,x

x,a [θ̄j(O)]= θ′j and EQo,x

x,a [(θ̄j(O)− θ′j)2]≤ ν (18.8)

for some constant 0≤ ν<∞, where θ′ = (θ′1, . . . , θ′k) is the true parameter. ///

For convenience set In(θj)= I{(Xn, An)∈K(θj)} and

Mn(θj)=
n∑

i=1

Ii(θj), n≥ 1.

Next, define the sequence

Wn(θj)=
n∑

i=1

(θ̄j(Oi)− θ′j)Ii(θj), n≥ 1. (18.9)
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It is easily verified that under Definition 18.1 the process defined by (18.9) is a
martingale on filtration (σ(Ha

2), σ(Ha
3), . . . ), since

E�x [Wn(θj) |Ha
n] = E�x [(θ̄j(On)− θ′j)In(θj) |Ha

n]+Wn−1(θj)

= E�x [(θ̄j(On)− θ′j)In(θj) |Xn, An]+Wn−1(θj)

= Wn−1(θj), n≥ 1.

For each m the quantity τm =min{n≥ 1 |Mn(θj)=m} represents the stage at which
In(θj)= 1 for exactly the mth time. As discussed in Section 4.4.1, τm defines an increas-
ing sequence of stopping times, so that Wτm (θj), m≥ 1 is also a martingale, by the
optional sampling theorem (Theorem 4.7). Under Definition 18.1 the martingale dif-
ferences of both Wn(θj) and Wτm (θj) are square integrable, so by the martingale SLLN
(Theorem 4.34) we have∣∣∣∣Wτm (θj)

m

∣∣∣∣= o
(
m−1/2+ε) , wp1,

which is equivalent to∣∣∣∣Wn(θj)
Mn(θj)

∣∣∣∣= o
(
Mn(θj)−1/2+ε) , wp1, (18.10)

for any small ε>0. This leads to component estimates

θ̂n,j =
{

Mn(θj)−1∑n
i=1 θ̄j(Oi)Ii(θj) ; Mn(θj)≥ 1

θ̂0,j ; Mn(θj)= 0
(18.11)

for n≥ 1, j= 1, . . . , k, where θ̂0 = (θ̂0,1, . . . , θ̂0,k) is a suitably chosen starting value. The
parameter estimate sequence is then θ̂n = (θ̂n,1, . . . , θ̂n,k). From (18.10) we have

|θ̂n,j − θ′j| = o
(
Mn(θj)−1/2+ε) ,

d(θ̂n, θ′) = o
(
Mn(θ)−1/2+ε) (18.12)

for any ε>0 where

Mn(θ)= min
1≤j≤k

Mn(θj), n≥ 1.

Hence, convergence of θ̂n to θ′ follows from Mn(θ)→∞, at a rate implied by
Mn(θ).

We have established the first requirement of an online estimation scheme, that a
rate of convergence of d(θ̂n, θ′) to 0 can be established based on the rate at which
information for the parameters is collected, relying only on minimal conditional
properties.

This suffices to bound regret on a per stage basis. We also wish to bound expected
future regret. While we expect that d(θ̂n, θ′) decreases in the long run as n→∞
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we will need to bound short term variation of θ̂n. This is done in the following
theorem:

Theorem 18.1 Under Definition 18.1 the following inequality holds:

E�x
[
|θ̂n+m−1,j − θ′j| |Ha

n

]
≤ |θ̂n−1,j − θ′j| +

mν1/2

Mn(θj)
(18.13)

for m≥ 0, n≥ 1.

Proof First note that θ̂n−1,j is σ(Ha
n)-measurable, so that (18.13) holds for m= 0.

Next assume m≥ 1. For n≥ 1, if Mn(θj)≥ 1 we may write

|θ̂n+m−1,j − θ′j| =
∣∣∣∑n+m−1

i=1 (θ̄j(Oi)− θ′j)Ii(θj)
∣∣∣

Mn+m−1(θj)

≤
∑n+m−1

i=n

∣∣∣(θ̄j(On)− θ′j)In(θj)
∣∣∣

Mn+m−1(θj)
+
∣∣∣∑n−1

i=1 (θ̄j(Oi)− θ′j)Ii(θj)
∣∣∣

Mn+m−1(θj)

≤
∑n+m−1

i=n

∣∣∣(θ̄j(On)− θ′j)In(θj)
∣∣∣

Mn(θj)
+ |θ̂n−1,j − θ′j|, (18.14)

since Mn(θj) is nondecreasing. We then note that under Definition 18.1

E�x
[
|(θ̄j(On)− θ′j)In(θj)| |Ha

n

]
≤ ν1/2,

and consequently for any m≥ 0

E�x
[
|(θ̄j(On+m)− θ′j)In+m(θj)| |Ha

n

]
=E�x

[
E�x
[
|(θ̄j(On+m)− θ′j)In+m(θj)| |Ha

n+m

]
|Ha

n

]
≤E�x

[
ν1/2 |Ha

n

]= ν1/2.

The proof is completed by taking the expectation of (18.14) conditional on Ha
n, apply-

ing the preceding inequality, and noting that θ̂n−1,j and Mn(θj) are measurable wrt Ha
n. ///

18.4 EXPLORATION SCHEDULE

When the online certainty equivalence policies can be shown to converge to the optimal
(so that exploration is not needed) we have seen that regret will generally approach 0
at a rate of order O(n−1/2). We have also argued that this cannot generally be expected.
We introduced earlier the concept of an exploration rate αn, roughly, the probability
that the control is exploratory at stage n. In this section we show that the optimal
exploration rate will be αn =O(n−1/3+ε), for which regret converges to 0 at a rate of
O(n−1/3+ε), for any ε>0.
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Under an estimation model such as Definition 18.1 the goal of an exploratory pol-
icy is to ensure sufficient visits to each informative subset K(θj) to allow Mn(θj)→n ∞.
Returning to the problem posed in the introduction, we can conceive of an exploration
rate αn, comparable to an arrival rate, which describes the proportion of stages in the
neighborhood of n at which exploratory control is applied. Since a regret bounded
away from zero is accrued under exploratory control, and the object is to allow regret
to approach 0, the exploration rate must also approach 0. However, it must do so
at a slow enough rate to allow Mn(θj)→n ∞, so that the certainty equivalence policy
approaches the true optimal policy, and our objective is achieved.

Of course, we may take the analysis one step further. We have a model which
permits us to determine in terms of exploration rate αn the rate at which regret due
to exploration and regret due to suboptimal certainty equivalence control is accrued.
Therefore, analysis permitting, we may determine the optimal exploration rate, that
is, the rate minimizing the combined regret.

In our model, exploratory behavior is defined by Definition (M8) of Section 18.2.
We refer to Zn, n≥ 1 as the exploration schedule. Then assume that π̂n is the model
estimate available from history Ho

n . Note that at the time at which control is to be
applied at stage n, only model π̂n−1 is available. The control policy is defined in (18.6).
According to the certainty equivalence principle, set �o

n(Ea |Hx
n )=φπ̂n−1 .

It remains to construct pe
n(Hx

n ) as defined in (M8), which is the subject of Sec-
tion 5.5. This can be done from two points of view. The first step, clearly, is to
establish the existence of an exploration schedule which achieves convergence to zero
of total regret, and, if possible, the optimal rate. This is largely a mathematical
problem, so that the schedule may be designed only with this in mind. We will see
below that defining Zn as a two state nonhomogenous Markov chain with transition
matrices

Qn =
[

1− αn αn

1− γ γ

]
,

with certain additional constraints on αn and γ, will suffice (see definition in (5.21) for
more detail). The resulting exploration schedule exhibits the block structure underlying
the methods of Section 5.5. If at stage n the system is not under exploratory control
(Zn = 0) then it transfers in the next stage to exploratory control with probability αn,
otherwise (Zn = 1) it remains in exploratory control with probability γ for stage n+ 1.
In both cases, the selection is made independently of the current state and any process
history. This defines exploration blocks, that is, maximal blocks of consecutive stages
in exploratory control. We then have a well defined block length distribution which
remains the same indefinitely, in this case given by the geometric distribution with
parameter γ. In addition, these blocks occur at a rate determined by αn. If we can
assert that each informative subset K(θj) is visited within any block with a minimum
probability δ>0, then data is accumulated at a rate Mn(θ)=O(ξn) where ξn =∑n

i=1 αi,

the regret due to suboptimal certainty equivalence control is of order O
(
ξ
−1/2+ε
n

)
and

the regret due to exploration is of order O(αn).
For the sake of argument, suppose αn ∝ n−r for 0< r≤ 1. Then ξn ∝ n1−r for r< 1

and ξn ∝ log(n) for r= 1. This gives ξ−1/2+ε
n = o(n(r−1)/2+ε). The remaining step is to
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minimize the maximum of the two rates over r, which, within ε, is attained simply by
setting −r= (r− 1)/2, yielding r= 1/3. On this basis, the optimal exploration rate is
αn ≈ n−1/3.

The remaining step is to formalize this argument.
We accept the model of an adapted counting process Zn, n≥ 1 discussed in Section

5.5, and use the notation introduced in (5.22). In addition, following (5.23) we define
a sequence of measurable mappings αn(Hx

n )∈ [0, 1] for which

P(Bn = 1 |Hx
n )=αn(Hx

n )I{Zn−1 = 0}, n≥ 1, (18.15)

where Bn = 1 is the event that a block starts at stage n (see (5.22)). Here, Zn−1 is
σ(Hx

n )-measurable.
We will assume Theorem 5.14 holds for model (18.15), and that the assumptions of

Theorem 5.15 hold for each informative subset K(θj) for some common δ>0 (Theorem
5.16 may also be used to introduce contraints into the exploration schedule). This
suffices to conclude that Mn(θ)=O(ξn).

Finally, we will make use of the following lemma.

Lemma 18.1 If for model (18.15) αn(Hx
n )≤αn, n≥ 1 for some nonincreasing

sequence of constants αn then for n≥ 1, m≥ 0,

E�x [I{Zn+m = 1} |Hx
n ]≤ I{Zn−1 = 1} + αn(m+ 1). (18.16)

Proof We have

{Zn+m = 1}⊂ {Zn−1 = 1} ∪
(
∪m

j=0{Bn+j = 1}
)

,

which implies

E�x [I{Zn+m = 1} |Hx
n ]≤ I{Zn−1 = 1} +

m∑
j=0

E�x [I{Bn+j = 1} |Hx
n ]. (18.17)

To analyze the terms in (18.17), we write, for j≥ 0

E�x [I{Bn+j = 1} |Hx
n ] = E�x [E�x [I{Bn+j = 1} |Hx

n+j] |Hx
n ]

≤ αn+j (18.18)

which completes the proof. ///

The following theorem completes the argument.

Theorem 18.2 If for positive constants bπ and Kλ

sup
x,a∈K

λπ(x, a)≤ bπ,

λπ(x,φπ̂n (x))≤Kλd(θ̂n−1, θ′),
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then under the conditions of Theorem 18.1 and Lemma 18.1 the following bound on
regret holds:

��
x (Hx

n )− V̄π(Xn) (18.19)

≤ Kλd(θ̂n−1, θ′)+ bπI{Zn−1 = 1} + (1− β)−1
[
bπαn + Kλkν1/2/Mn(θ)

]
1− β .

Proof For fixed n, m≥ 0 consider a term of the form

λπ(Xn+m, An+m) ≤ λπ(Xn+m, An+m)I{Zn+m = 1} + λπ(Xn+m, An+m)I{Zn+m = 0}
= B1

n+m + B2
n+m, (18.20)

and consider the problem of estimating E�x [λπ(Xn+m, An+m) |Hx
n ]. For term B1

n+m, by
Lemma 18.1 we may write

E�x [B1
n+m |Hx

n ] ≤ bπE�x [I{Zn+m = 1} |Hx
n ]

≤ bπ(I{Zn−1 = 1} + (m+ 1)αn). (18.21)

For term B2
n+m note that Zn+m = 0 implies An+m = φ̂n+m(Xn+m), so that

B2
n+m ≤Kλd(θ̂n+m−1, θ′). (18.22)

We similarly have, by Theorem 18.1

E�x [B2
n+m |Hx

n ] ≤ Kλ

(
d(θ̂n−1, θ′)+ kmν1/2Mn(θ)−1

)
(18.23)

Then (18.19) follows from a direct application of Theorem 12.8. ///
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