

A P P L I E D O P T I M I Z A T I O N
Formulation and Algorithms for Engineering Systems

The starting point in the formulation of any numerical problem is to take an intu-
itive idea about the problem in question and to translate it into precise mathematical
language. This book provides step-by-step descriptions of how to formulate numer-
ical problems so that they can be solved by existing software. It examines various
types of numerical problems and develops techniques for solving them. A number
of engineering case studies are used to illustrate in detail the formulation process.
The case studies motivate the development of efficient algorithms that involve, in
some cases, transformation of the problem from its initial formulation into a more
tractable form.

Five general problem classes are considered: linear systems of equations,
non-linear systems of equations, unconstrained optimization, equality-constrained
optimization, and inequality-constrained optimization.

The book contains many worked examples and homework exercises and is suit-
able for students of engineering or operations research taking courses in optimiza-
tion. Supplementary material including solutions, lecture slides, and appendices,
are available online at www.cambridge.org/9780521855648.

Ross Baldick is a professor of electrical and computer engineering at The Uni-
versity of Texas at Austin. His current research involves optimization and economic
theory applied to electric power system operations, and the public policy and tech-
nical issues associated with electric transmission under deregulation. He is an editor
of IEEE Transactions on Power Systems.

APPLIED OPTIMIZATION

Formulation and Algorithms for
Engineering Systems

ROSS BALDICK
Department of Electrical and Computer Engineering

The University of Texas at Austin

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

Information on this title: www.cambridge.org/9780521855648

© Cambridge University Press 2006

This publication is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2006

This digitally printed version 2008

A catalogue record for this publication is available from the British Library

ISBN 978 0 521 85564 8 hardback

ISBN 978 0 521 10028 1 paperback

Cambridge University Press has no responsibility for the persistence or accuracy of

URLs for external or third party Internet websites referred to in this publication,

and does not guarantee that any content on such websites is, or will remain, accurate

or appropriate.

To Ann

Contents

List of illustrations page xii
Preface xvii

1 Introduction 1
1.1 Goals 2
1.2 Course plans 4
1.3 Model formulation and development 4
1.4 Overview 7
1.5 Pre-requisites 14

2 Problems, algorithms, and solutions 15
2.1 Decision vector 16
2.2 Simultaneous equations 16
2.3 Optimization 22
2.4 Algorithms 47
2.5 Solutions of simultaneous equations 54
2.6 Solutions of optimization problems 61
2.7 Sensitivity and large change analysis 80
2.8 Summary 89

3 Transformation of problems 103
3.1 Objective 105
3.2 Variables 122
3.3 Constraints 131
3.4 Duality 139
3.5 Summary 144

vii

viii Contents

Part I Linear simultaneous equations 159

4 Case studies 161
4.1 Analysis of a direct current linear circuit 161
4.2 Control of a discrete-time linear system 176

5 Algorithms 186
5.1 Inversion of coefficient matrix 188
5.2 Solution of triangular systems 189
5.3 Solution of square, non-singular systems 193
5.4 Symmetric coefficient matrix 204
5.5 Sparsity techniques 209
5.6 Changes 219
5.7 Ill-conditioning 227
5.8 Non-square systems 236
5.9 Iterative methods 241
5.10 Summary 242

Part II Non-linear simultaneous equations 257

6 Case studies 259
6.1 Analysis of a non-linear direct current circuit 260
6.2 Analysis of an electric power system 267

7 Algorithms 285
7.1 Newton–Raphson method 286
7.2 Variations on the Newton–Raphson method 291
7.3 Local convergence of iterative methods 298
7.4 Globalization procedures 316
7.5 Sensitivity and large change analysis 324
7.6 Summary 326

8 Solution of the case studies 334
8.1 Analysis of a non-linear direct current circuit 334
8.2 Analysis of an electric power system 340

Contents ix

Part III Unconstrained optimization 361

9 Case studies 363
9.1 Multi-variate linear regression 363
9.2 Power system state estimation 372

10 Algorithms 381
10.1 Optimality conditions 381
10.2 Approaches to finding minimizers 394
10.3 Sensitivity 416
10.4 Summary 419

11 Solution of the case studies 425
11.1 Multi-variate linear regression 425
11.2 Power system state estimation 434

Part IV Equality-constrained optimization 445

12 Case studies 447
12.1 Least-cost production 447
12.2 Power system state estimation with zero injection buses 457

13 Algorithms for linear constraints 463
13.1 Optimality conditions 464
13.2 Convex problems 483
13.3 Approaches to finding minimizers 495
13.4 Sensitivity 509
13.5 Solution of the least-cost production case study 514
13.6 Summary 517

14 Algorithms for non-linear constraints 529
14.1 Geometry and analysis of constraints 530
14.2 Optimality conditions 537
14.3 Approaches to finding minimizers 541
14.4 Sensitivity 545
14.5 Solution of the zero injection bus case study 547
14.6 Summary 549

x Contents

Part V Inequality-constrained optimization 557

15 Case studies 559
15.1 Least-cost production with capacity constraints 559
15.2 Optimal routing in a data communications network 562
15.3 Least absolute value estimation 572
15.4 Optimal margin pattern classification 576
15.5 Sizing of interconnects in integrated circuits 582
15.6 Optimal power flow 593

16 Algorithms for non-negativity constraints 607
16.1 Optimality conditions 608
16.2 Convex problems 618
16.3 Approaches to finding minimizers: active set method 620
16.4 Approaches to finding minimizers: interior point algorithm 630
16.5 Summary 658

17 Algorithms for linear constraints 669
17.1 Optimality conditions 670
17.2 Convex problems 679
17.3 Approaches to finding minimizers 691
17.4 Sensitivity 697
17.5 Summary 700

18 Solution of the linearly constrained case studies 708
18.1 Least-cost production with capacity constraints 708
18.2 Optimal routing in a data communications network 710
18.3 Least absolute value estimation 712
18.4 Optimal margin pattern classification 712

19 Algorithms for non-linear constraints 723
19.1 Geometry and analysis of constraints 724
19.2 Optimality conditions 727
19.3 Convex problems 731
19.4 Approaches to finding minimizers 738
19.5 Sensitivity 741
19.6 Summary 744

20 Solution of the non-linearly constrained case studies 748
20.1 Optimal margin pattern classification 748
20.2 Sizing of interconnects in integrated circuits 748
20.3 Optimal power flow 750

References 754
Index 762

Contents xi

Appendices (downloadable from www.cambridge.org)
Appendix A Mathematical preliminaries 771

A.1 Notation 771
A.2 Types of functions 777
A.3 Norms 781
A.4 Limits 785
A.5 Sets 789
A.6 Properties of matrices 791
A.7 Special results 795

Appendix B Proofs of theorems 802
B.1 Problems, algorithms, and solutions 802
B.2 Algorithms for linear simultaneous equations 805
B.3 Algorithms for non-linear simultaneous equations 809
B.4 Algorithms for linear equality-constrained minimization 818
B.5 Algorithms for linear inequality-constrained minimization 819
B.6 Algorithms for non-linear inequality-constrained minimization 823

List of illustrations

1.1 Problem classes, case studies, and their dependencies. 10
2.1 An example of simultaneous equations and their solution. 17
2.2 Example of inconsistent simultaneous equations. 18
2.3 Solution of linear simultaneous equations. 19
2.4 Solution of non-linear simultaneous equations. 20
2.5 Example objective function. 23
2.6 Function having multiple unconstrained minimizers. 26
2.7 Graph of function. 28
2.8 Contour sets of a function. 28
2.9 Contour sets of function with feasible set superimposed. 31
2.10 Contour sets of function with feasible set superimposed. 32
2.11 Contour sets, feasible set, and minimizer for example problem. 34
2.12 Contour sets of function with feasible set superimposed. 36
2.13 Points that are feasible with respect to inequality constraints. 38
2.14 Dodecahedron. 39
2.15 Problem with no minimum. 43
2.16 Problem with no minimum. 43
2.17 Problem with no minimum. 44
2.18 Update of iterate. 51
2.19 Rates of convergence. 53
2.20 Illustration of definition of monotone. 56
2.21 Function that is not strictly monotone. 58
2.22 Examples of convex sets. 60
2.23 Four examples of non-convex sets. 61
2.24 Local and global minima and minimizers. 63
2.25 Point that is not a local minimizer. 64
2.26 Point that is not a local minimizer. 64
2.27 Local and global minima and minimizers of a problem over a set. 65
2.28 Contour sets of a function. 66
2.29 A function with multiple global minimizers. 67
2.30 Linear interpolation never under-estimates a convex function. 69
2.31 A non-convex function with convex level sets. 70

xii

List of illustrations xiii

2.32 Contour sets of a function. 71
2.33 Multiple minima and minimizers in proof. 72
2.34 First-order Taylor approximation of a convex function. 77
2.35 Sandwiching of convex function between two affine functions. 78
2.36 Example of a piece-wise quadratic non-convex function. 80
2.37 Functions used to define point-wise maximum. 81
2.38 Example of a piece-wise quadratic convex function. 81
2.39 Directions perpendicular to contour sets. 87
2.40 Directions perpendicular to contour sets. 88
2.41 Directions perpendicular to contour sets for changed function. 88
2.42 Data communications network. 91
3.1 The penalty function. 108
3.2 The objective function and the penalized objective function. 108
3.3 Contour sets of function with feasible set superimposed. 110
3.4 Contour sets of penalty function. 110
3.5 Contour sets of penalized function with feasible set superimposed. 112
3.6 Contour sets of penalized function with feasible set superimposed. 112
3.7 Shifted contour sets of penalized function with feasible set superimposed. 113
3.8 The barrier function. 115
3.9 The objective function and the objective plus barrier function. 115
3.10 Function that is defined as point-wise maximum. 116
3.11 Functions used to define point-wise maximum. 118
3.12 Feasible region and contour sets of objective. 118
3.13 Piece-wise linearization of a function. 121
3.14 Smoothed version of function. 123
3.15 Contour sets of a function. 124
3.16 Contour sets of function with scaled variables. 124
3.17 Sets and transformations in theorem. 126
3.18 Contour sets of a function. 130
3.19 Transformed objective function. 130
3.20 Illustration of relaxing the feasible set. 135
3.21 Illustration of divide and conquer. 136
3.22 Illustration of hierarchical decomposition. 137
4.1 A ladder circuit consisting of resistors and current sources. 163
4.2 The ladder circuit with a change in a current source. 171
4.3 The ladder circuit with a change in a conductance. 172
4.4 A graph with eight nodes and all possible branches. 174
4.5 A feedback control system applied to a plant. 176
4.6 A ladder circuit with resistors, current sources and a voltage source. 184
5.1 Storage of sparse matrix by rows. 210
5.2 The ladder circuit with a change in a current source. 212
5.3 Storage of sparse vector by rows. 212
5.4 Storage of block matrix. 219
5.5 The ladder circuit with a change in a conductance. 223
5.6 Solution of linear equations. 239
5.7 A ladder circuit consisting of resistors and current sources. 245

xiv List of illustrations

6.1 Symbol for diode together with voltage and current conventions. 261
6.2 Current to voltage relationship for diode. 262
6.3 A simple non-linear circuit. 263
6.4 Current to voltage relationship for tunnel diode. 266
6.5 Storage of parameters for diode and resistor as linked lists. 266
6.6 An example balanced three-phase system. 271
6.7 Per-phase equivalent circuit. 271
6.8 Equivalent circuit for transmission line. 273
6.9 Per-phase equivalent circuit model for the three-bus, three-line system. 274
6.10 Per-phase equivalent circuit model with parallel components combined. 274
7.1 Taylor approximation to a function. 288
7.2 Finite difference approximations to the derivative of a function. 295
7.3 Image of points under a Lipschitz continuous function. 303
7.4 Image of points and image of a fixed point of map. 304
7.5 Illustration of chord and Kantorovich theorems. 307
7.6 Illustration of linear rate of convergence in chord theorem. 308
7.7 Trade-off between effort per iteration and number of iterations. 314
7.8 Function with a singular Jacobian. 317
7.9 The inverse tan function and its Taylor approximation. 318
7.10 Illustration of back-tracking in Armijo step-size rule. 321
7.11 Armijo step-size rule applied to solving equation with arctan function. 322
7.12 Plate capacitor. 328
8.1 Non-linear circuit. 335
8.2 Per-phase equivalent circuit model. 340
8.3 Four-bus, four-line system. 357
9.1 Data values and affine fit. 365
9.2 Three-bus power system state estimation problem. 375
9.3 Three-bus power system with spread out measurements. 379
10.1 Descent direction for a function at a point. 383
10.2 Descent directions for a function at various points. 384
10.3 Various descent directions for a function at a particular point. 386
10.4 Points which may or may not correspond to a minimum. 389
10.5 First derivative of function. 389
10.6 Second derivative of function. 390
10.7 A critical point that is not a minimizer. 393
10.8 Steepest descent step directions for an objective. 396
10.9 Progress of iterations using steepest descent step directions. 398
10.10 Progress of iterations using steepest descent step directions. 398
10.11 Steepest descent step directions for an objective. 399
10.12 Progress of iterations using steepest descent step directions. 400
10.13 Progress of iterations using steepest descent step directions. 400
10.14 Newton Raphson step direction for an objective with contour sets. 403
10.15 Progress of iterations using Newton Raphson step directions. 404
10.16 Progress of iterations using Newton Raphson step directions. 404
10.17 The need for a step-size rule. 412
10.18 Iterate that is a horizontal inflection point of the objective function. 415

List of illustrations xv

11.1 Resolution of vector into two perpendicular vectors. 431
11.2 Three bus-power system state estimation problem. 439
11.3 Three-bus power system with spread out measurements. 440
12.1 Production from three machines. 449
12.2 Part of feasible set for least-cost production case study. 451
12.3 Average production cost versus production for a typical machine. 454
12.4 Production cost versus production for typical machine. 454
12.5 Three-bus power system with a bus having neither load nor generation. 458
12.6 Zero injection bus re-interpreted as an exact measurement. 458
13.1 Feasible descent directions for a function at a point. 465
13.2 No feasible descent directions for a function at a point. 466
13.3 Tangent plane to contour set of function. 467
13.4 Tangent plane to contour set of function. 469
13.5 Descent directions for a function at a point, none maintaining feasibility. 470
13.6 Feasible set strictly contained in tangent plane to contour set of function. 472
13.7 Contour sets for Lagrangian evaluated with Lagrange multipliers. 479
13.8 Contour sets for Lagrangian evaluated at dual variables. 479
13.9 Contour sets for non-convex objective. 480
13.10 Non-convex objective function. 493
13.11 Convex penalized objective function. 493
14.1 Tangent plane to a set. 532
14.2 Feasible point and tangent plane. 534
14.3 Feasible points and directions along the corresponding tangent planes. 535
14.4 Movement from an infeasible point. 536
14.5 Points that satisfy the first-order necessary conditions. 540
14.6 State estimation problem with zero injection buses. 556
15.1 Feasible set for least-cost production case study. 562
15.2 A data communications network. 564
15.3 Origin destination pair joined by a path consisting of two links. 568
15.4 Data values with outlier and least-squares fit. 574
15.5 Example patterns and hyperplane that separates them. 578
15.6 Schematic diagram of gates and latches joined by interconnect. 585
15.7 Dimensions of segment of interconnect. 585
15.8 Equivalent resistive capacitive circuit for interconnect. 589
15.9 Data communications network with three nodes and four directed links. 603
16.1 Feasible set and minimizer for example problem. 610
16.2 Hyperbolic approximation to the complementary slackness constraint. 612
16.3 Contour sets of function. 614
16.4 Contour sets of function on feasible set. 616
16.5 Changes in the working set. 622
16.6 Trajectory of iterates using active set algorithm. 625
16.7 Barrier objective for non-negativity constraint. 632
16.8 Effect on barrier function as barrier parameter becomes small. 633
16.9 Trajectory of minimizers of barrier problem for example. 637
16.10 A fixed tolerance will prevent convergence to a minimizer. 644
16.11 Progress of primal dual interior point algorithm in primal coordinates. 654

xvi List of illustrations

16.12 Progress of primal dual interior point algorithm in dual coordinates. 655
16.13 Example of barrier objective that is unbounded below. 664
17.1 Contour sets of function with feasible set superimposed. 671
17.2 Contour sets of function with feasible set superimposed. 676
18.1 A data communications network. 718
18.2 Data communications network with three nodes and four directed links. 720
19.1 Dodecahedron. 726
19.2 Contour sets of function and feasible set. 734
20.1 Equivalent resistive capacitive circuit for interconnects. 751
A.1 An example of a monotonically increasing function. 780
A.2 An example of a strictly monotonically increasing function. 780
A.3 Illustration of the triangle inequality in two dimensions. 782
B.1 Graphical illustration of inequality in theorem. 803

Preface

There are many excellent books on optimization and it is important to justify the
need for yet another one. The motivation for this book stems from my observa-
tions of the orientation of typical optimization texts used in optimization courses
compared to the needs of students in our engineering program. Many optimiza-
tion books and courses concentrate on the design of algorithms, with less attention
to adapting a problem to make it amenable to solution by an existing algorithm.
That is, many optimization books are about how to design optimization algorithms,
about how to write optimization software, or about how to apply optimization soft-
ware to an existing problem formulation.

While this book is about the solution of simultaneous equations and optimization
problems, it is not primarily about how to design algorithms, write software, or
solve existing problems. Instead, it is about how to formulate new problems so that
they can be solved by existing software.

Given the fabulous panoply of well-written optimization software available to-
day, the skill of formulating a problem so that it is solvable with standard software
is the most widely applicable skill for most engineers in our graduate program.
Increasingly, the “scarce resource” is the ability to formulate problems, rather than
the hardware or optimization software itself. This book is primarily designed for
people who have a simultaneous equations problem or an optimization problem in
mind and who want to formulate it so that it is solvable with standard software.

Educators in various disciplines have recognized the need to focus on problem
formulation. Business schools have been the most agile in shifting the empha-
sis of optimization and operations research courses from algorithms towards ap-
plications. This book is an attempt to make a similar shift that concentrates on
engineering applications to illustrate the process of formulating engineering opti-
mization problems and then solving them with existing general-purpose software.
The book also discusses simultaneous equations problems, since many signal pro-
cessing and other engineering applications involve the solution of equations.

xvii

xviii Preface

This book began as the notes for a one semester elective course that I teach at
The University of Texas at Austin. The course is taken by many of our incoming
graduate students and is also accessible to advanced undergraduates. A typical
class has approximately thirty to fifty students with a background in electrical or
other engineering.

The slides that I use in teaching this course are available for downloading from
www.cambridge.org/9780521855648. Over two hundred pages of worked solu-
tions to selected exercises are available to instructors. The book can also be used
as a reference for engineers who want to formulate an optimization problem and
apply optimization software to it.

The level of development may appear somewhat formal to a typical first year
engineering graduate student and certainly requires a mathematical background.
Calculus and Analytic Geometry by Thomas and Finney [114], together with the
material in the downloadable Appendix A of mathematical preliminaries, provide
such background. Nevertheless, the definitions and proofs have been deliberately
spelled out to make them accessible and provide motivation, even at the expense of
stating the “obvious,” particularly in the early chapters. In the interest of clarity and
of elementary development, many of the theorems are not stated in their sharpest
form, with more general versions cited in the references.

Engineering students often have considerable past experience with tools such
as MATLAB [74], but little experience in using optimization packages. Use of
the MATLAB Optimization Toolbox [17] in this book builds on typical student
experience and avoids the considerable “start-up costs” of introducing students to
a completely new software package.

I have benefited from extensive feedback from students at The University of
Texas at Austin who have taken this course. Students and graders who have been
particularly helpful with making suggestions, correcting mistakes, and helping
me to improve the presentation include: Seung Jun Baek, Seyeong Choi, Jerome
Froment-Curtil, Philippe Girolami, Sergey Gorinsky, Hyun-moo Kim, Aditya Lele,
Caleb Lo, and Lin Xu. Of course, remaining errors are my own responsibility. If
you come across any errors or have any comments about the material, please send
me email, baldick@mail.utexas.edu, and I will endeavor to improve the presen-
tation for the next edition. I would also like to hear about descriptions of novel
problems that might fit into this framework.

In teaching this material, one of the most delightful comments I have received is
“I finally understand the need for the formal development.” If you are unconvinced
at the beginning, I hope that by the end of the book you are a convert to precise
mathematical descriptions.

Ross Baldick, Austin, Texas, November 2005.

1

Introduction

In this book, we are going to examine various types of numerical problems and
develop techniques for solving them. We will gradually build up the necessary
tools and use a number of case studies to:

(i) illustrate the process of formulating a problem, by which we mean trans-
lating from an intuitive idea of the problem by writing it down mathemati-
cally,

(ii) motivate and develop algorithms to solve problems, that is, descriptions of
operations that can be implemented in software to take a problem specifi-
cation and return a solution, and

(iii) illustrate how to match the formulation of the problem to the capabilities
of available algorithms, involving, in some cases, transformation of the
problem from its initial formulation.

We illustrate how to think about and describe problems to make them amenable to
solution by optimization software. In brief: formulation of problems to facilitate
their solution.

In the five parts of this book, we will consider five general problem classes. The
first problem class is the solution of linear systems of equations (Part I). Solv-
ing linear systems of equations will turn out to be at the center of much of our
subsequent work. For example, our second problem class, solving non-linear sys-
tems of equations (Part II), will be solved by an algorithm that requires repeated
solution of linear systems of equations.

We will then go on to use these two algorithms as building blocks in algorithms
for:

• unconstrained optimization (Part III), which will in turn form part of the algo-
rithms for:

1

2 Introduction

• equality-constrained optimization (Part IV), which will again form part of the
algorithms for:

• inequality-constrained optimization (Part V).

These problem classes will be defined explicitly in Chapter 2.
In the rest of this chapter, we discuss a number of issues in preparation for the

rest of the book. In Section 1.1 goals are discussed. Several course plans to achieve
these goals are outlined in Section 1.2. In Section 1.3 we discuss model formulation
and development. An overview of the organization of the book is then presented in
Section 1.4, with pre-requisites described in Section 1.5.

1.1 Goals

The most important purpose of this book is to give you facility in taking your own
problem and thinking about it in a way that allows you to:

(i) write down equations describing it, and
(ii) use optimization software to solve it.

Although we will outline the major ingredients of algorithms and write our own
experimental software in order to understand some of the issues, we will leave the
detailed development of production software to specialists. Furthermore, we will
omit many details involved with practical implementation, most notably many of
the effects of calculating using finite precision arithmetic. We will provide refer-
ences to some of the details and if you are planning to develop production software
you will need to consult these and many other references that are more oriented
towards algorithm development. Outstanding books in this area include [6, 15, 45,
70, 84].

You can make use of general purpose tools such as GAMS [18], AMPL [38],
Xpress-Mosel [49], LINDO [68], MATLAB [74], and Excel [75], and make use of
the NEOS website (http://www-neos.mcs.anl.gov/) to solve small-scale to medium-
scale problems. This book will provide the skills to formulate your own problems
and you should then be able to use these or other software packages to solve at least
small- to medium-scale versions of your own problems. There are also callable
libraries such as CPLEX, IMSL, LAPACK, NAG, and Xpress-BCL that can be
linked to user software for larger-scale problems [81].

Production software, such as is used in these tools, can be expected to differ
from the algorithms we develop, at least in the details. The most extreme example
of this is our concentration on a particular algorithmic approach called “interior
point” algorithms for inequality-constrained optimization. In contrast, most cur-
rently available commercial software uses classical “active set” algorithms to solve

1.1 Goals 3

these types of problems. Nevertheless, many of the fundamental considerations ap-
ply to all algorithms for a particular problem class. Our development will therefore
help you to build intuition that is generally applicable.

Our reason for analyzing the algorithms is therefore not so much to be able to
write software, but instead to understand under what circumstances we can expect
numerical software to work and when we should be suspicious of results. Getting
a useful answer in a reasonable time depends on understanding:

(i) whether a problem is solvable or not solvable with a particular algorithm,
(ii) how to formulate a problem in a way that is amenable to solution, and
(iii) what computational resources are necessary to get a solution.

At the end of the book, you should be able to:

(i) take a description of your problem,
(ii) translate it into a mathematical formulation in a way that is most amenable

to solution, (and intelligible to others in your field),
(iii) evaluate if optimization techniques will be successful, (and estimate how

much more computational resources a “large” problem will take compared
to a “small” test problem),

(iv) solve small- to medium-scale versions of the problem using commercial
software, such as the MATLAB Optimization Toolbox or the software listed
in [81], and

(v) use the solution of the problem to calculate sensitivities to changes in prob-
lem specifications.

For many problems, such an “off-the-shelf” approach will be adequate for obtain-
ing useful results. The fantastic performance of today’s software and hardware
compared to capabilities of even just a few years ago means that off-the-shelf soft-
ware can be used to solve relatively large and sophisticated problems, so long as
the formulation has been performed with care.

Even if your ultimate goal is the solution of a “large-scale” problem it is worth-
while to start with the formulation of a smaller or simpler problem that can be
solved with standard software on a personal computer or workstation. Such a
small start can reveal modeling flaws, identify the most important issues for more
detailed treatment, and help point towards appropriate directions for larger-scale
development.

In some cases, your problem may be so large or there will be application-specific
issues that will necessitate some tailoring of the algorithm to your purposes. This
book will give you the tools to understand the directions needed for the tailoring
and includes some references to the literature. You should also expect to read
more widely and deeply before developing your own optimization software for a

4 Introduction

“serious” problem. By the end of the book, you should have the skills to pursue
such literature further.

However, before attempting to develop software for a difficult problem, you
should “try out” several commercial software packages. GAMS [18] is a generic
interface to a number of different optimization packages and can be very useful for
finding the most suitable algorithm and implementation for a particular problem.
The use of GAMS to solve various problems is described in [22].

The MATLAB Optimization Toolbox [17] also provides several optimization al-
gorithms. If you already use MATLAB in your work then this book will provide
you with the skills to interface your formulation to the Optimization Toolbox.

1.2 Course plans

In a one semester course that includes all five problem classes, it is generally possi-
ble to cover only a subset of the case studies and only sketch the non-linearly con-
strained versions of equality- and inequality-constrained optimization. Chapter 3,
on problem transformations, can be initially assigned as reading and referenced as
needed throughout the course for details of particular transformations.

Selection of a subset of the case studies allows some tailoring of the case studies
to the audience; however, it is important to also expose students to case studies
outside their immediate field of interest to cross-fertilize from field to field. In-
structors could add case studies from other fields to supplement or replace the case
studies in this book.

A two semester course could comfortably cover all problem classes and all the
case studies and include both linearly and non-linearly constrained optimization.
Alternatively, omitting the solution of linear and non-linear equations would allow
for all the optimization material to be covered in one semester, given that students
had already been exposed to the solution of linear and non-linear equations.

1.3 Model formulation and development

As mentioned in Section 1.1, the principal purpose of this book is in describing the
process of model formulation in the context of the capability of algorithms. It is
typical that a model of a problem that is faithful to our intuitive notion of the prob-
lem will yield a formulation that exceeds the capabilities of available algorithms.
We must then balance computational tractability against fidelity to salient effects
that we are trying to model. We may not be able to exactly solve the precise prob-
lem we have in mind; however, an optimization formulation can often improve on
ad hoc designs.

A guiding principle in model development is Occam’s razor [115]: “keep it

1.3 Model formulation and development 5

simple.” More precisely, the model should be no more complicated than is neces-
sary to represent the important issues. A thorough understanding of the problem
together with “engineering judgment” are central to identifying the important is-
sues that must be represented and identifying the less central issues that can be
neglected. Often, this process involves incremental model development as we re-
vise our opinion of what can be neglected from the model.

The context of our treatment of problem formulation is as follows. We imagine
a historical progression from a simplified analytic model of an engineering system
to a more accurate, perhaps numerical, model. The analytic model may have been
used to roughly evaluate systems, and even to guide design choices somewhat, but
eventually more accurate numerical models became necessary to validate designs
that involve more variables with more complicated interactions. Furthermore, as
performance goals were raised, the need arose to systematically improve designs.
With the analytic model no longer accurate enough or too complicated to analyze
directly, we must embed the numerical model into an optimization framework [79,
chapter 7].

We will see that qualitative understanding from an approximate analytic model
combined with more accurate computational evaluations from a numerical model
can be a powerful aid in formulating and solving such optimization problems. The
qualitative understanding provided by the analytic model can help us to formulate
the problem in a way that makes the computational issues tractable. The case
study in Part V involving design of interconnects in integrated circuits particularly
illustrates this interplay. (See Section 15.5.)

If an accurate analytic model exists, then qualitative analysis of the analytic
model is directly applicable to the computations. Circuit theory case studies (in
Sections 4.1, 6.1, and 6.2) illustrate this category of problems. These case studies
also illustrate the development of progressively more complicated models.

However, accurate analytic models are not always convenient or tractable so
that deliberate approximations can sometimes be judiciously applied to simplify
the analysis. We will also illustrate this issue with some of the circuit theory case
studies. In some applications, we do not even have a detailed analytic model of
the underlying process and we must posit some generic model and identify the
parameters of the model.

For some problems, it may also be difficult to obtain an appropriate analytic
or numerical model to evaluate the performance criterion. Instead we may have to
posit a proxy criterion to evaluate whether or not the decision is satisfactory and we
may have to be content with avoiding bad decisions, rather than obtaining optimal
decisions. There will typically also be some constraints that have to be satisfied.
In this context, we say that we are seeking satisficing solutions, where the word

6 Introduction

satisficing is a contraction of “satisfying” and “sufficient” [109]. Three examples
of such problems are:

• making routing decisions in a communications network, to be described in Sec-
tion 15.2,

• developing a criterion to classify patterns into classes, to be described in Sec-
tion 15.4, and

• choosing the widths of interconnects between latches and gates in integrated
circuits, to be described in Section 15.5.

The progression in the book from formulation to algorithm to solution of the for-
mulation should not be taken as the only way that applications and algorithms are
developed: in practice, algorithm development suggests new possible applications
and vice versa. The most dramatic example of the interplay between algorithm and
application is the development of linear programming; that is, the optimization
of linear objectives with respect to affine constraints. (We will define objectives
and constraints formally in Chapter 2.) The first practical algorithm for this prob-
lem was developed by George Dantzig in the late 1940s. Linear programming has
since become pervasive in many fields, opening up many applications that have in
turn driven algorithm development.

Similarly, the algorithms we present have gone through many stages of refine-
ment, iterated with reformulation of application problems. Our presentation glosses
over many important details of algorithm design, but hopefully leaves intact most
of the issues that are relevant to formulating problems so that they are suscepti-
ble to solution by optimization software. Of course, limited knowledge can be a
dangerous thing!

In any new problem you encounter and try to formulate, you should expect that
finding the best formulation will involve several iterations. At the outset it may not
even be clear to you what sort of problem you have nor what is the best way to
solve it. (As an example, one of the cases of solving linear systems of equations
discussed in Section 5.8.1 will turn out to have a more natural interpretation and
solution in the context of unconstrained optimization, discussed in Section 11.1.)
The purpose of the case studies is to build up your expertise in problem formulation
and in finding an algorithm to solve the problem.

For each case study, we will start with a physical description and move towards
an algebraic description. We will emphasize the use of an explicit physical un-
derstanding of the system to develop each model rather than trying to fit a generic
model to observed behavior. In other applications, a generic model may be nec-
essary or desirable; however, in the context of explaining the process of problem
formulation, applications with a well-defined physical model provide more con-
crete examples.

1.4 Overview 7

Some cases are more fleshed out than others, reflecting mostly my own personal
understanding of the problem rather than any judgment as to the importance of the
problem. Some of the case studies will be introduced with a specific small-scale
example problem having only a few variables. Others will be introduced more
generally.

You may already be very familiar with some of the models we describe in the
case studies; however, you may not be so familiar with the development of the
models. In working on your own application, the construction of a model will be
of central importance. A little time spent understanding the modeling process for
these familiar problems may prove valuable in your own application. As we de-
scribe each case, you should think about your own application and how to translate
your understanding of it into a set of equations that models its behavior and its
performance. The case studies that are drawn from outside of your field of interest
may also provide some useful cross-fertilization of ideas.

You should not look on a case study as showing simply how to solve problems
of that type, nor even showing how to formulate problems of that type. Instead,
you should look at the case studies as examples of how generally to formulate
problems. You should think about how to apply the ideas to your own problems.

Most of our applications are in electrical engineering, but the issues we present
are applicable in a wide variety of areas. For formulation of problems in mechan-
ical and structural engineering, see [117]. Although we touch on control theory
problems, a much more detailed discussion of optimal control appears in, for ex-
ample, [16]. Industrial control is discussed in [98]. A wide variety of problems
is discussed in [6, chapter 1], [15, Part II], [22], [54], [84, chapter 1], and in [99,
chapters 4 and 8].

1.4 Overview

In this section, we overview the organization of the book, describing notational
and other conventions, functions and variables, case studies, algorithms, proofs,
exercises, and a “road map” to the chapters.

1.4.1 Notational and other conventions

Notational conventions are introduced as needed but also collected together for
easy reference in Appendix A, which is available for downloading from the website
www.cambridge.org/9780521855648. Words with technical meanings are shown
in bold face when they are first introduced and defined and, occasionally, when
they are referred to again later in the book.

Many sections in this book are only one or two paragraphs long, with definitions

8 Introduction

and other sectional units divided-off so that they are easy to identify and locate and
so that each idea can be read and digested. This has been done to:

• make it easy to locate specific topics, and
• make sure each topic is well “sign-posted” so that a reader always knows where

the argument is going.

In each of the chapters describing algorithms, key issues are listed and summarized
at the beginning of the chapter.

The order and development of topics and the terminology generally follows stan-
dard literature. However, there are several exceptions.

For example, the two concepts of “convexity” and “duality” are introduced be-
fore developing any algorithms. Convexity is introduced as a problem character-
istic that helps with judging the quality of solutions from optimization algorithms.
Duality is introduced as one of several ways to transform problems. The full sig-
nificance of convexity and duality is detailed as the book progresses.

As examples of deviations from standard terminology:

• the “standard form” of linear programming is referred to by saying that a prob-
lem has “non-negativity constraints,” and

• “quasi-convex” functions are referred to as having “convex level sets.”

These deviations are made in the interest of simplifying the terminology to be more
descriptive.

1.4.2 Functions and variables

The emphasis in this book will be on problems that are defined in terms of smooth
functions of continuous variables, by which we mean functions that possess first
and (usually) second derivatives across a continuous, as opposed to discrete, space
of candidate solutions. The reasons for this concentration are three-fold.

(i) Although we will not cover the optimization of non-smooth functions in
detail this book, optimization of smooth functions provides a basis for sub-
sequent study of non-smooth functions [96, 100, 107]. It is worthwhile to
begin, at least, with the simpler case of smooth functions. (Furthermore, we
will consider some transformation techniques to deal with particular types
of non-smooth functions. See Sections 3.1.3 and 3.1.4.)

(ii) For many engineering problems, we empirically estimate the functions in-
volved using some combination of theory and imperfect observations. Even
if the underlying functions have a complicated non-smooth structure, our
measurement and estimation processes may not warrant a model with such

1.4 Overview 9

detail [45, section 7.3]. The process of estimating such a function forms
one of our case studies. (See Section 9.1.)

(iii) Design problems involving discrete variables can sometimes be approxi-
mately solved by “rounding-off” the solution to a related problem that ne-
glects the discreteness of the variables [45, section 7.7]. (See the sizing of
interconnects case study in Section 15.5 for an example.) In some cases,
neglecting the discreteness yields a solution that happens to satisfy the dis-
creteness condition automatically [84, chapter 8]. (See Section 16.3.6.1 for
an example.) Even if rounding does not provide a good approximation to
the answer, many problems involve a mixture of discrete and continuous
variables, so that study of continuous optimization forms an important start
for the overall problem.

However, you should always be cautious before assuming that a real world problem
is as smooth and well-behaved as our analysis requires. You should be prepared
to delve into the literature if your problem has features that are outside the scope
of this book. For example, the journal Optimization and Engineering focuses on
engineering applications of optimization.

Good starts for non-smooth problems are [100, 107]. Good starts for discrete
problems are [22, 54, 67, 85, 92, 122]. We will make considerable use of a property
called “convexity;” however, a variety of problems that do not have the property of
convexity are covered in the series Nonconvex Optimization and Its Applications
by Kluwer Academic Publishers. A good start for approximation algorithms for
discrete problems is [52], while a good start for heuristics for discrete problems
is [122, chapter 12].

For some problems, there may be multiple optima. References [87, 91] discuss
the search for multiple optima. The Journal of Global Optimization focuses on
such optimization problems.

1.4.3 Case studies

The most unique aspect of this book is the emphasis on case studies to illustrate
the process of problem formulation. The problems are not simply introduced as a
recitation of formulated problems. Instead, a relatively few case studies are moti-
vated and formulated in detail to introduce each of the five problem classes. These
fourteen case studies are chosen from a variety of sub-fields to enable readers to
“get their bearings” for each problem class. The variety also enables readers to
sample problems from other sub-fields and so foster cross-fertilization.

Many of the later case studies build on case studies that were treated in earlier
chapters, demonstrating incremental model development. Figure 1.1 shows the

10 Introduction

Problem class Case studies

Linear
systems of
equations

4.1, 5.2 5.5
Analysis of a direct
current linear circuit

�
�

�
���

4.2, 5.8 Control
of a discrete-time

linear system

Non-linear
systems of
equations

6.1, 8.1 Analysis
of a direct current
non-linear circuit

6.2, 8.2 Analysis
of an electric
power system

�
�

�
�

�
�

�
�

�
�
��

Unconstrained
optimization

9.1, 11.1 Multi-variate
linear regression

�

�
�
�
�
�
�
�
�
���

9.2, 11.2 Power system
state estimation

�
Equality-

constrained
optimization

�

12.1, 13.5 Least-cost
production

12.2, 14.5 Power system
state estimation

with zero injection buses

Inequality-
constrained
optimization

15.1, 18.1 Least-cost
production with

capacity constraints

�

15.2, 18.2 Optimal
routing in a data

communications network

15.3, 18.3 Least absolute
value estimation

15.4, 18.4 Optimal
margin pattern
classification

15.5, 20.2 Sizing of
gate interconnects in
integrated circuits

15.6, 20.3 Optimal
power flow

Fig. 1.1. Problem classes, case studies, and their dependencies. The dashed lines enclose
the case studies for each problem class. Each case study is represented as a box. In each
box, the first section number refers to where the case study is introduced. The subsequent
section number or numbers refer to where the case study is solved. The arrows indicate
dependencies between case studies.

1.4 Overview 11

dependency of the various case studies. The section number and title of each case
study are shown in the figure. An arrow with its head pointing to a particular case
study means that the case study at its tail is one of its pre-requisites. There are
also case studies in most of the problem classes that do not require material from
earlier chapters. For example, for the final problem class of inequality-constrained
optimization, three out of the six case studies do not have any pre-requisite case
studies.

1.4.4 Algorithms

Although our major purpose is the formulation of problems, it is not possible to
formulate problems without some knowledge of how optimization software func-
tions. It is not possible to completely eschew the details of optimization algorithms
in the way that, for example, a manual describing word-processing software can es-
chew the details of typesetting. A book about optimization, particularly non-linear
optimization, should discuss both formulation of problems and algorithms for their
solution.

To this end, we will introduce key issues that have proved pivotal in algorithm
development and problem formulation. Five of the most important are:

• monotonicity (introduced in Section 2.5.3),
• convexity (introduced in Section 2.6.3),
• problem transformations (introduced in Chapter 3),
• symmetry (introduced in Section 5.4), and
• sparsity (introduced in Section 5.5).

We will define these concepts carefully as they arise in the formulation of problems
and in the development of algorithms and we will see how they can guide us in
problem formulation to bridge the gap between:

• our intuitive notion of the problem to be solved, and
• the capabilities of algorithms,

to obtain a useful answer as quickly as possible.
We tease out the characteristics of our case studies, such as sparsity, to provide

“hooks” to “attach” to an algorithm. That is, the formulation of problems is cen-
tered around identifying characteristics that will fit well with the operation of an
optimization algorithm or software.

We will describe algorithms, but only generally, emphasizing the broad-brush
issues for one or two particular example algorithms for each problem class, chosen
because they:

12 Introduction

• illustrate many of the general issues important to formulating and solving the
problem, and

• provide a bridge to an algorithm for the next problem class.

The development of algorithms is therefore incremental. We owe a significant
debt to the authors of [73] for this way of thinking about and ordering the develop-
ment of these problems. We have also used a variety of other sources, particularly
drawing from [11, 15, 22, 45, 54, 58, 59, 70, 84]. You are encouraged to delve into
these books on optimization for further details and different perspectives.

Moreover, in moving from the solution of a linear to a non-linear problem, the
linear case will be used as a base for developing the non-linear case. Results for
problems with non-linearities will often be sketched as incremental extensions of
the corresponding linear case.

We gloss over many of the details in the design of algorithms. This book will
probably frustrate readers who have developed production optimization software
and who know from first hand the importance of such details. Algorithm and soft-
ware design requires intelligence, effort, and talent. But it is the very success of
the developers of these algorithms and software that allows the rest of us to “take
it easy.”

For most problems, there are usually several algorithms available. However,
we typically describe only one or two generic algorithms for each type of prob-
lem and try to focus on the issues that are commonly important for successfully
solving each type of problem. Amongst software available today there are a host
of detailed differences between algorithms that tailor them to particular problem
characteristics. Successfully using optimization software in an application neces-
sitates a careful matching of software capabilities to the problem. In practice, it
is often crucial to utilize an algorithm that can take advantage of special problem
structure. There are several very good guides that can aid in identifying suitable
software, such as [81]. A brief introduction is given in [84, appendix C]. The ref-
erence manuals of optimization packages, such as [49, 74, 88, 120], also provide
useful guidance.

1.4.5 Proofs

There are a number of theorems in the book. In long proofs it can be very easy
to get bogged down in details and lose sight of the thread of the argument. Most
of the longer proofs have been divided up into several parts to make them easier
to follow, with a proof sketch in the body of the text listing the main ideas and
the proof itself relegated to Appendix B, which is available for downloading from
www.cambridge.org/9780521855648. In general, proofs are included in the body

1.4 Overview 13

of the text only if they are particularly important for understanding why an algo-
rithm works or why it must account for a particular issue. The emphasis is on
issues that directly affect how one should formulate an optimization problem.

1.4.6 Exercises

There are a large number of exercises in the book. The exercises cover theory and
solution of problems, both analytically and using software. Most of the case studies
are solved in exercises.

Many of the exercises involving the use of software are designed explicitly
around the MATLAB Optimization Toolbox. There are notes in the exercises about
how to use the functions in the MATLAB Optimization Toolbox. From time to
time, however, these functions are updated and some experimentation might be
necessary if calling options change. If you use another software package instead
of MATLAB then you may find that some of the numerical answers differ slightly
from those produced by MATLAB.

The proofs of many of the earlier theorems are left to the exercises. It could be
argued that many of these results, particularly in Chapter 3 on problem transforma-
tions, are rather too trivial to have been given the formality of a separate theorem.
However, it is valuable to get started on easy proofs before introducing more so-
phisticated results. Part of the value of proving these results formally is in gaining
familiarity with notation, encouraging rigorous thinking, and developing intuition
about the ability of an algorithm to solve a particular type of problem.

1.4.7 Road map

In this section, we briefly summarize the organization of the chapters in the book.
We will begin in Chapter 2 with a brief introduction to and a small example of
each problem class. We then discuss broadly the nature of the algorithms we will
develop and the quality of solutions. In Chapter 3, we introduce several ways to
transform problems to change their characteristics, with a view to making them
easier to solve. Chapters 2 and 3 serve only to introduce these and a variety of
other concepts. We will try to suggest some of the reasons why these issues are
important to problem formulation. However, their full significance will not be
apparent until much later.

In subsequent chapters in each of the five parts of the book, we will revisit in
detail the topics introduced in Chapters 2 and 3 in the context of the five problem
classes. For each problem class, we will:

• formulate at least two case studies,
• develop an algorithm to solve problems in the problem class,

14 Introduction

• develop sensitivity analysis,
• apply the algorithm to solve the corresponding small example problem from

Chapter 2, and
• apply the algorithm to solve an instance of each case study.

Sometimes, solving the case study requires further transformation of the formu-
lation of the case study using the transformations introduced in Chapter 3. For
other case studies, the formulation fits well with the algorithm. As mentioned in
Section 1.4.6, solution of most of the case studies is completed in the exercises.

1.5 Pre-requisites

In Appendix A, which is downloadable from www.cambridge.org/9780521855648,
we present notational conventions and a number of results that we will use in the
book. You should review Appendix A to ensure that you are familiar with all the
topics. Many, but not all, of the results will be familiar to graduates of electrical en-
gineering undergraduate degree programs. You should ensure that you understand
these results before undertaking this book.

The book assumes familiarity with MATLAB and MATLAB M-files and that you
have access to the MATLAB Optimization Toolbox.

Finally, we will also develop and prove a number of theoretical results. If you
have not previously had experience with understanding, stating, and proving re-
sults rigorously, you should spend the time to prove several of the results quoted
in Chapter 3 to prepare yourself for the more ambitious analysis in subsequent
chapters.

2

Problems, algorithms, and solutions

In this chapter we will define the various types of problems that we will treat in the
rest of the book and define various concepts that will help us to characterize the
problems. In Section 2.1, we first define the notion of a decision vector. In Sec-
tion 2.2 we define two problems involving solution of simultaneous equations.
Then in Section 2.3 we describe three optimization problems.

For each problem, we will provide an elementary example, without any context,
to illustrate the type of problem. The case studies in later chapters will provide
more interesting problems and contexts. In this chapter we will concentrate on
basic definitions without explicitly considering applications.

In later chapters, we will also develop algorithms to solve the problems, starting
with the elementary example problems introduced here and then progressing to so-
lution of the case studies. We will explicitly define what we mean by an algorithm
in Section 2.4 in reference to two general schemata:

• direct algorithms, which, in principle, obtain the exact solution to the problem
in a finite number of operations, and

• iterative algorithms, which generate a sequence of approximate solutions or
“iterates” that, in principle, converge to the exact solution to the problem.

We will also consider some of the issues involved in ensuring that these algorithms
provide useful solutions. In particular, in Section 2.5, we will discuss solutions of
simultaneous equations problems, introducing the concepts of a monotone func-
tion and of convex sets and presenting conditions for uniqueness of solutions of
simultaneous equations. In Section 2.6, we will discuss solutions of optimization
problems, introducing the concept of convex functions and discussing the nature
of global and local solutions to optimization problems and various other issues.
In Section 2.7, we discuss sensitivity analysis; that is, the way in which solutions
change with changes in the specification of a problem.

This chapter and the next are designed as overviews of the topics to be stud-

15

16 Problems, algorithms, and solutions

ied in detail in subsequent chapters. Several new concepts are introduced without
much preparation. We will return to them in much greater detail as we progress in
the book. The purpose of introducing them here is to motivate the discussion of
problem formulation in the later chapters. You may want to skim this chapter and
the next at first and then re-read them more carefully when the ideas are applied in
later chapters.

2.1 Decision vector

All the problems that we consider will involve choices of the value of a decision
vector from n-dimensional Euclidean space Rn [82, section 1-5] or from some
subset S of Rn , where:

• R is the set of real numbers, and
• Rn is the set of n-tuples of real numbers.

(We also call Rn the n-fold Cartesian product of R with itself [104, section 1.1].
See Definition A.4.)

We will usually denote the decision vector by x . Individual entries in the vector
x are denoted by a subscript. There are more general types of decision vectors than
the ones we consider, particularly in optimal control problems [16, 55, 63, 89],
where x is considered to be an element of a more general set than Rn .

Our goal will be to find a value of the decision vector x that satisfies some crite-
rion. We will usually write x� to denote a value of x that satisfies this criterion. If
there are several values of x that satisfy the criterion then we sometimes distinguish
them by writing x�, x��,

2.2 Simultaneous equations

In this section, we will define simultaneous equations, both linear and non-linear.

2.2.1 Definition

Consider a vector function g that takes values of a decision vector in a domain Rn

and returns values of the function that lie in a range Rm . We write g : Rn → Rm

to denote the domain and range of the function. Suppose we want to find a value
x� of the argument x that satisfies:

g(x) = 0, (2.1)

where 0 is the m-vector of all zeros and is called the zero vector. To satisfy (2.1),
each entry g�(x) of g(x) must be equal to zero. That is we have m equations, for
� = 1, . . . , m, to be satisfied in all.

2.2 Simultaneous equations 17

�

�

x2

x1

� �
� ��
�

x�

x��

{x ∈ R2|g1(x) = 0}

{x ∈ R2|g2(x) = 0}
Fig. 2.1. An example
of simultaneous equa-
tions and their solu-
tion.

A value, x�, that satisfies (2.1) is called a solution of the simultaneous equations
g(x) = 0. (Even in the case that m = 1 we will refer to g(x) = 0 as simultaneous
equations, although there is only one equation to solve in that case.) The set of all
solutions is denoted by {x ∈ Rn|g(x) = 0}. In words, this is the set of all vectors x
in Rn such that g(x) equals the zero vector. The vertical bar “|” can be interpreted
as meaning “such that.” (Some authors use a colon “:” instead of the vertical bar
to denote “such that.”)

For example, Figure 2.1 shows a case with a function g : R2 → R2. There
are two sets illustrated by the solid curves. One of the curves shows the points in
the set {x ∈ R2|g1(x) = 0}, while the other shows the set {x ∈ R2|g2(x) = 0}.
These two sets intersect at two points, x�, x��, illustrated as bullets •. The points
x� and x�� are the two solutions of the simultaneous equations g(x) = 0, so that
{x ∈ Rn|g(x) = 0} = {x�, x��}.

If there are no solutions to the equations then {x ∈ Rn|g(x) = 0} = ∅, where ∅
is the empty set, and we say that the equations are inconsistent. For example, the
sets illustrated in Figure 2.2 do not intersect, and so the equations are inconsistent.

Consider a linear combination of the entries of g. (See Definition A.54.) If some
linear combination (with coefficients that are not all zero) yields a function that is
identically zero then we say that the equations are redundant. For example, if two
entries of g are the same then the equations are redundant. We will discuss redun-
dant equations further in the context of ill-conditioned problems in Section 2.7.6.2.

2.2.2 Types of problems

To specify a particular instance of a simultaneous equations problem, we must
specify g. We start with the simplest case for g and then generalize.

18 Problems, algorithms, and solutions

�

�

x2

x1

� �
� �

{x ∈ R2|g1(x) = 0}

{x ∈ R2|g2(x) = 0} Fig. 2.2. Example of
inconsistent simulta-
neous equations.

2.2.2.1 Linear simultaneous equations

Suppose that g : Rn → Rm in (2.1) is affine, that is, of the form:

∀x ∈ R
n, g(x) = Ax − b.

(See Definitions A.1 and A.19. The symbol ∀ means “for all” and is used to spec-
ify that a relation holds true for all possible values of the immediately following
variable.) Then we have a set of linear simultaneous equations:

Ax − b = 0.

For brevity, the linear case is often written Ax = b and b is called the right-hand
side vector. The matrix A is called the coefficient matrix.

Examples For example, if:

A =
[

1 2
3 4

]
, b =

[
1
1

]
, (2.2)

then it can be verified that:

x� =
[−1

1

]
is a solution. Figure 2.3 illustrates these simultaneous equations with the point x�

illustrated as a bullet •.
As another example, if:

A =
⎡⎣ 2 3 4

7 6 5
8 9 11

⎤⎦ , b =
⎡⎣ 9

18
28

⎤⎦ , (2.3)

2.2 Simultaneous equations 19

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

x�

{x ∈ R2|g1(x) = 0}

{x ∈ R2|g2(x) = 0} Fig. 2.3. Solution of lin-
ear simultaneous equations
g(x) = Ax − b = 0 with
A and b defined as in (2.2).

then it can be verified that:

x� =
⎡⎣ 1

1
1

⎤⎦
is a solution. (We will return to this particular problem in Section 5.3.2.5.)

Number of solutions In both of the previous cases, we say “a” solution because
we consider the possibility that there is more than one solution satisfying our cri-
terion Ax = b. In other words, as in Figure 2.1, there may be several values that
satisfy the equations. In fact, for each of the two particular example problems spec-
ified by A and b in (2.2) and (2.3), respectively, there is exactly one solution so that
in each case the set of solutions {x ∈ Rn|g(x) = 0} is a singleton set, consisting
of exactly one element. The solution can be obtained by eliminating one of the
entries in x and solving for the other or others. (We will discuss elimination more
generally as an example of a problem transformation in Section 3.2.2.)

Case studies In Part I, we will consider systematic ways to solve simultaneous
linear equations of arbitrary size, if a solution exists. The development will begin
with two case studies:

• nodal analysis of a direct current linear circuit (in Section 4.1), and

• control of a discrete-time linear system (in Section 4.2).

We will also consider the conditions under which there is exactly one solution,
more than one solution, and no solutions.

20 Problems, algorithms, and solutions

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

x�

x��

{x ∈ R2|g1(x) = 0}

{x ∈ R2|g2(x) = 0}

Fig. 2.4. Solution of non-
linear simultaneous equa-
tions g(x) = 0 with g de-
fined as in (2.5).

2.2.2.2 Non-linear simultaneous equations

The conditions for the existence of a unique solution to linear simultaneous equa-
tions will also prove relevant to solution of non-linear simultaneous equations;
that is, the case of (2.1) where g is non-linear, which will be covered in Part II.

Examples For example, suppose that the function g : R → R is defined by:

∀x ∈ R, g(x) = (x)2 + 2x − 3. (2.4)

This is an example of a quadratic function. (See Definition A.20 for a general
definition of a quadratic function.) The familiar “quadratic equation” shows that

x� = −3, x�� = 1,

are the two solutions to g(x) = 0. That is, {x ∈ R|g(x) = 0} = {−3, 1}.
As another example, let g : R2 → R2 be defined by:

∀x ∈ R
2, g(x) =

[
(x1)

2 + (x2)
2 + 2x2 − 3

x1 − x2

]
. (2.5)

Figure 2.4 illustrates these simultaneous equations, with the two solutions illus-
trated with bullets • and labeled x� and x��. (We will return to this particular
problem in Exercise 7.2.)

As a third example, let g : R → R be defined by:

∀x ∈ R, g(x) = (x − 2)3 + 1. (2.6)

By inspection, x� = 1 is the unique solution to g(x) = 0. (We will return to this
particular problem in Section 7.4.1.)

2.2 Simultaneous equations 21

Algorithms and number of solutions For larger non-linear problems, with more
variables and more equations, there is usually no general formula to solve for the
solutions directly. It is reasonable to expect that larger problems might also possess
multiple solutions or no solutions under some circumstances. However, we will
concentrate on case studies where we have reason to expect that there is a unique
solution or, if there are multiple solutions, where we have a “preferred” solution in
mind and we are seeking the preferred solution.

Case studies We will discuss these issues in detail in Part II, beginning with two
case studies:

• nodal analysis of a non-linear direct current electric circuit (in Section 6.1), and
• analysis of an electric power system (in Section 6.2).

We will also consider the conditions under which there is exactly one solution,
more than one solution, and no solutions.

2.2.2.3 Eigenvalue problems

One important class of non-linear equations that we will not treat in detail is the
eigenvalue problem. (See Definition A.31.) Let K be the set of complex numbers.
The n (not necessarily distinct) eigenvalues of a matrix A ∈ Rn×n are given by the
(possibly complex) solutions of the characteristic equation of A:

g(λ) = 0,

where g : K → K is the characteristic polynomial, defined by:

∀λ ∈ K, g(λ) = det(A − λI),

where det is the determinant of the matrix. (See Definition A.10 of the determinant
of a matrix.) The function g is an n-th degree polynomial in one complex variable.
(See Definition A.22.) The characteristic equation g(λ) = 0 is one non-linear
equation in one variable with n (possibly not all distinct) solutions.

The eigenvectors associated with an eigenvalue λ are the solutions of:

(A − λI)x = 0.

(In general, there will be multiple solutions of this equation and if an eigenvalue λ

is complex then each eigenvector x will be a complex n-vector.)

Example For example, for the matrix A ∈ R2×2 defined by:

A =
[

2 1
−5 −4

]
,

22 Problems, algorithms, and solutions

we have that:

∀λ ∈ K, g(λ) = det(A − λI),

= det

[
2 − λ 1
−5 −4 − λ

]
,

= (2 − λ)(−4 − λ) − (1)(−5),

= (λ)2 + 2λ − 3.

From the previous example, we already know that the two solutions to this equation
are:

λ� = −3, λ�� = 1,

so these are the eigenvalues of A. The eigenvectors associated with λ� = −3 are
the vectors in the set:

{x ∈ R
2|(A + 3I)x = 0}.

The eigenvectors associated with λ�� = 1 are the vectors in the set:

{x ∈ R
2|(A − I)x = 0}.

Discussion It turns out that there are special iterative algorithms to solve this sort
of problem that are somewhat different in flavor to the algorithms we will describe
for solving general linear and non-linear equations. Some algorithms for eigen-
value problems, for example, calculate simultaneously all the eigenvalues of A.
The MATLAB function eig finds the eigenvalues and eigenvectors of a matrix.
Further details about finding eigenvalues and eigenvectors and finding solutions of
polynomial equations can be found in [30, 78, 90, 94, 121]. (The second refer-
ence describes how to solve generalized eigenvalue problems where the function g
becomes:

∀λ ∈ K, g(λ) = det(A − λB),

with A, B ∈ Rn×n .) We will have occasion to calculate eigenvalues of some partic-
ular matrices in this book, but we will not discuss general algorithms for eigenvalue
calculation.

2.3 Optimization

In Section 2.3.1 we define optimization problems and some associated concepts.
We discuss various types of problems and provide some examples in Section 2.3.2.
In Sections 2.3.3–2.3.6 we then discuss the existence of solutions to optimization
problems and present some generalizations of optimization problems.

2.3 Optimization 23

5

0

5

5

0

5
10

0

10

20

30

40

50

60

x1x2

f (x)

Fig. 2.5. Graph of the ex-
ample objective function
defined in (2.7).

2.3.1 Definitions

To define an optimization problem, we must first define the concepts of an objec-
tive and a feasible set.

2.3.1.1 Objective

Consider a function f : Rn → R that denominates the “cost” or lack of desirability
of solutions for a particular model or system. That is, f (x) is the cost of using x
as the solution. The function is called an objective function or an objective. The
optimization problems we consider involve finding a value of x that minimizes the
objective function f (x).

Example An example of f : R2 → R is given by:

∀x ∈ R
2, f (x) = (x1)

2 + (x2)
2 + 2x2 − 3. (2.7)

This function is graphed in Figure 2.5 for values of its argument in the range −5 ≤
x1 ≤ 5,−5 ≤ x2 ≤ 5. This objective function is quadratic, since the highest
power of any entry of x is two; however, linear objectives and other non-linear
objectives arise in various applications. There are also linear and constant terms in
the function defined in (2.7). Quadratic functions will be our canonical examples
of objective functions. (See Definition A.20.)

Discussion We have, so far, categorized objectives according to the highest power
of any entry in the argument. We will categorize objectives in a different way in
Section 2.6.3.4 once we have discussed optimization in more detail.

24 Problems, algorithms, and solutions

In some cases, a single objective does not capture the cost of decisions appro-
priately. For example, there may be two issues that are incommensurable; that is,
that cannot be combined into a single measure or cost. In this case, we must use
multi-objective optimization [76].

As another example, we may have several decision-makers who are each trying
to optimize their own objective. If the objective of one decision-maker depends
partly on the decision of another then the outcome of the decision-makers depends
partly on the interaction between their decisions. In this case, we can seek the
resulting equilibrium [119].

For the rest of this book, however, we will assume that a single objective function
is suitable for characterizing the cost of decisions.

2.3.1.2 Feasible set

Our problem might involve restrictions on the choices of values of x . We can
imagine a feasible set S ⊆ Rn from which we must select a solution. For example,
the feasible set for a particular application could be S = {x ∈ R2| − 5 ≤ x1 ≤
5,−5 ≤ x2 ≤ 5}. A point x ∈ S is called a feasible point for the problem.

2.3.1.3 Problem

A minimization problem is to minimize f (x) over choices of x that lie in the
feasible set S. We define the following symbol:

min
x∈�

f (x),

to mean the minimum value that f (x) can take on over values of x ∈ S, assuming
that such a minimum exists. To be more precise, we make:

Definition 2.1 Let S ⊆ Rn , f : S → R, and f � ∈ R. Then by:

f � = min
x∈�

f (x), (2.8)

we mean that:

∃x� ∈ S such that: (f � = f (x�)) and ((x ∈ S) ⇒ (f (x�) ≤ f (x))). (2.9)

�

The symbol ∃ means “there exists.” (See Definition A.1.) It means that there is at
least one value of the immediately following variable that satisfies the subsequent
conditions.

The set S is called the feasible set, the constraint set, or the feasible region.
The value f � is called the minimum of the problem minx∈� f (x), while x� is called
a minimizer. We say that the problem minx∈� f (x) possesses or has a minimum

2.3 Optimization 25

if there exists f � ∈ R satisfying (2.8). We also say that this x� achieves the
minimum.

In describing the process of seeking the minimum, we say that we are trying to
find the minimum of f (x) over x ∈ S. The placement of the notation “x ∈ S” as
a subscript to the “min” provides a visual correspondence to the description of the
minimum being “over” x ∈ S.

We will often define f on a larger set than S, for example on the whole of Rn .
For points x ∈ (Rn \ S), the value of f (x) does not affect the minimum over S.

If a problem possesses a minimum f � then, by definition, there is a minimizer
x� satisfying (2.9). In general, there may be none, one, or more than one x� that
satisfies (2.9). If there is no f � and x� satisfying (2.9), then we say that the problem
has no minimum or that it has no minimizer. This can occur, for example, if S = ∅,
where ∅ is the empty set. If S = ∅, we say that the problem is infeasible. However,
as we will see in Section 2.3.3, it is also possible for there to be no minimum even
if the feasible set is non-empty.

2.3.1.4 Set of minimizers

If there exists one or more values of x� satisfying (2.9), then we say that the prob-
lem has a minimizer or minimizers, respectively. The set of all the minimizers of
minx∈� f (x) is denoted by:

argmin
x∈�

f (x).

The word argmin abbreviates “the argument of the minimum;” that is, the value
(or values) of the argument x that yields the minimum value of the objective. If the
problem has no minimum (and, therefore, no minimizers) then we define:

argmin
x∈�

f (x) = ∅.

If the problem has exactly one minimizer, x�, say, then argminx∈� f (x) = {x�}, a
singleton set. To emphasize the role of S, we also use the following notations:

min
x∈�n

{ f (x)|x ∈ S} and argmin
x∈�n

{ f (x)|x ∈ S},
for the minimum and for the set of minimizers, respectively, of minx∈� f (x). In
words, we are seeking the minimum and the set of minimizers of f (x) over vectors
x in Rn such that x is contained in S. We will often use a more explicit notation if
S is defined as the set of points satisfying a criterion. For example, if f : Rn → R,
g : Rn → Rm , h : Rn → Rr , and S = {x ∈ Rn|g(x) = 0, h(x) ≤ 0} then we will
write minx∈�n { f (x)|g(x) = 0, h(x) ≤ 0} for minx∈� f (x).

Some authors use the word “minimum” for what we call the minimizer. The
distinction that we make is important when there are multiple minimizers of a

26 Problems, algorithms, and solutions

1 5 1 0 5 0 0 5 1 1 5
0 5

1

1 5

2

2 5

3

x

f (x)

x�x��

f �

Fig. 2.6. Function having
multiple unconstrained
minimizers.

problem corresponding to the same minimum. To see an example of a problem
with multiple minimizers, consider the function f : R → R defined by:

∀x ∈ R, f (x) = (x + 1)2(x − 1)2 + 1.

This function is illustrated in Figure 2.6. The unconstrained minimum of f is
f � = 1. The corresponding minimizers are x� = 1 and x�� = −1.

Exercise 2.3 provides a simple example of a minimization problem with x ∈ R.
In Exercise 2.3 and other simple problems, it is possible to determine the minimum
and minimizer by inspection of f because of its particular form. In general, we will
need to develop systematic approaches for functions having more than one or two
variables.

2.3.1.5 Lower bound

In many applications, it can be useful to establish a standard or bound for evaluating
the minimum. This is embodied in the following:

Definition 2.2 Let S ⊆ Rn , f : S → R, and f ∈ R. If f satisfies:

∀x ∈ S, f ≤ f (x),

then we say that f is a lower bound for the problem minx∈� f (x) or that the problem
minx∈� f (x) is bounded below by f . If S 	= ∅ but no such f exists, then we say that
the problem minx∈� f (x) is unbounded below (or unbounded if the “below” is clear from
context.) �

Consider again f : R2 → R defined in (2.7), which we repeat here:

∀x ∈ R
2, f (x) = (x1)

2 + (x2)
2 + 2x2 − 3.

2.3 Optimization 27

This function is illustrated in Figure 2.5. For the feasible set S = R2, the value
f = −10 is a lower bound for the problem minx∈� f (x), as can be verified by
inspection of Figure 2.5. A lower bound, such as f = −10, provides a gauge for
the quality of a candidate solution to a problem. If we find x ∈ S such that f (x)

is not significantly worse (that is, not significantly larger) than the lower bound f
then we know that we have a good, if not exact, solution to the problem and that
the lower bound is strong. That is, the lower bound is close to the minimum of
the problem, if it exists. (On the other hand, if the lower bound is far below the
objective value of the candidate solution then it is not a good gauge of the quality
or otherwise of the candidate solution.)

As we will see in Section 2.3.3, it is possible for a problem to be bounded below
even if it does not possess a minimum; however, if a problem possesses a minimum
then it is bounded below by its minimum. Moreover, a problem that possesses
a minimum is bounded below by every number that is less than or equal to its
minimum. (See Exercise 2.5.)

2.3.1.6 Level and contour sets

To characterize the set of minimizers of the problem we make:

Definition 2.3 Let S ⊆ Rn , f : S → R, and f̃ ∈ R. Then the level set at value f̃ of the
function f is the set:

L f (f̃) = {x ∈ S| f (x) ≤ f̃ }.
The contour set at value f̃ of the function f is the set:

C f (f̃) = {x ∈ S| f (x) = f̃ }.
For each possible function f , we can think of L f and C f themselves as set-valued func-
tions from R to (2)(�

n), where (2)(�
n) denotes the set of all subsets of Rn , sometimes

called the power set of Rn . �

Some authors use the phrase “sub-level sets” for what we call “level sets” [6,
section 3.5.2][15, section 3.1.6]. The level and contour sets of a function are closely
related: under mild conditions, the contour set at a particular value is the boundary
(see Definition A.42) of the level set at the same value and we will often think of
contour and level sets almost interchangeably. The level sets of a function will turn
out to be more useful in analysis; however, the contour sets are easier to draw. We
usually draw a family of contour sets for various values and collectively refer to
the family as “the contour sets.”

The contour sets of a function are often useful in visualizing functions that would
otherwise be very difficult to sketch. This is because the contour set of f : Rn → R

is a subset of Rn whereas the graph of f is a subset of Rn×R and therefore requires

28 Problems, algorithms, and solutions

5

0

5

5

0

5
0

20

40

60

80

100

x1x2

f (x)

Fig. 2.7. The graph of the
function defined in (2.10).

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

Fig. 2.8. The contour sets
C f (f̃) of the function de-
fined in (2.10) for values
f̃ = 0, 2, 4, 6, The
heights of the contours de-
crease towards the point[

1
3

]
, which is illustrated

with a • and is the contour
of height 0.

one more dimension to illustrate. The contour sets of a function f : R2 → R can
be drawn with the MATLAB function contour.

If f � is the minimum of the problem minx∈� f (x), then L f (f �) = C f (f �) =
argminx∈� f (x). Consider the function f : R2 → R defined by:

∀x ∈ R
2, f (x) = (x1 − 1)2 + (x2 − 3)2, (2.10)

The graph of this function is shown in Figure 2.7 and requires three dimensions to
represent.

The contour sets C f (f̃) of the function f defined in (2.10) are shown in Fig-
ure 2.8 for f̃ = 2, 4, 6, 8, . . . over the region {x ∈ R2| − 5 ≤ x1 ≤ 5,−5 ≤
x2 ≤ 5}. The contour sets can be shown in a two-dimensional representation. It is
helpful to show or explain the heights of the contours explicitly, or at least indicate

2.3 Optimization 29

how the heights of the contours vary on the diagram. For example, the caption of
Figure 2.8 includes a description of how the contours vary.

In Section 2.3.2, we will use the function defined in (2.10) as an example objec-
tive to illustrate optimization problems.

2.3.2 Types of problems

In this section, we will categorize optimization problems by the type of feasible set.
An optimization problem involving a specific form of the set S can be referred to
by the form of S. (In Section 2.6.3.4, we will discuss further categorization based
on the properties of the objective.)

The three general forms of S that we will consider in detail in this book are:

• unconstrained optimization,
• equality-constrained optimization, and
• inequality-constrained optimization.

We describe these forms of S in detail in Sections 2.3.2.1–2.3.2.3. There are also
more general forms of S that we will not discuss, particularly in the context of more
general forms of decision vector. For example:

• optimal control problems [16, 55, 63, 89], where the decision vector may be
a function and the constraints are defined in terms of properties of the function,
such as requirements on its derivative, and

• semi-definite programming [15], where the decision “vector” is a matrix and
the constraints are defined in terms of properties of the matrix.

2.3.2.1 Unconstrained optimization

If S = Rn , then the problem is said to be unconstrained, since there are no ad-
ditional restrictions on x besides that it lies in Rn . To specify an unconstrained
problem, we must specify f .

Example For example, consider the objective f : R2 → R defined in (2.10):

∀x ∈ R
2, f (x) = (x1 − 1)2 + (x2 − 3)2.

From Figure 2.8, which shows the contour sets of f , we can see that:

min
x∈�2

f (x) = f � = 0,

argmin
x∈�2

f (x) =
{[

1
3

]}
,

30 Problems, algorithms, and solutions

so that there is a minimum f � = 0 and a unique minimizer x� =
[

1
3

]
of this

problem. (We will return to this particular problem in Section 10.1.1.)
As another example, suppose that we have linear simultaneous equations Ax −

b = 0 that do not have a solution. We may try to seek a value of the decision
vector that “most nearly” satisfies Ax = b in the sense of minimizing a criterion.
A natural criterion is to consider a norm ‖•‖ (see Definition A.28) and then seek
x that minimizes ‖Ax − b‖. The unconstrained minimization problem is then:

min
x∈�n

‖Ax − b‖ . (2.11)

Case studies Unconstrained problems will be investigated generally in Part III,
beginning with two case studies:

• multi-variate linear regression (in Section 9.1), and
• power system state estimation (in Section 9.2).

Both of these case studies will involve a minimization problem that is similar to
Problem (2.11).

2.3.2.2 Equality-constrained optimization

If g : Rn → Rm and S = {x ∈ Rn|g(x) = 0}, so that the feasible set is the set
of values that satisfy the simultaneous equations g(x) = 0, then the problem is
said to be equality-constrained. To emphasize the functional form of the equality
constraints, we usually use the notation minx∈�n { f (x)|g(x) = 0} for an equality-
constrained problem minx∈�n { f (x)|x ∈ S}, where S = {x ∈ Rn|g(x) = 0}.

Sub-types of equality-constrained problems To specify an equality-constrained
problem, we must specify f and g. It is common to divide this type of problem
further depending on the form of g.

Linearly constrained If g is affine then the problem is called linearly constrained.
For example, consider the objective: f : R2 → R defined in (2.10):

∀x ∈ R
2, f (x) = (x1 − 1)2 + (x2 − 3)2,

and include the constraint g(x) = 0 where we define the function g : R2 → R by

∀x ∈ R
2, g(x) = x1 − x2. (2.12)

The constraint g(x) = 0 requires that x1 = x2. Figure 2.9 repeats the contours of
f for values f̃ = 2, 4, 6, . . . from Figure 2.8 but adds a line that represents the set
of feasible points under the equality constraint g(x) = 0.

2.3 Optimization 31

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

Fig. 2.9. The contour sets
C f (f̃) of the function
repeated from Figure 2.8
with feasible set from
Problem (2.13) super-
imposed. The heights
of the contours decrease

towards the point

[
1
3

]
.

The minimizer x� =
[

2
2

]
is illustrated with a •.

Consider the equality-constrained problem:

min
x∈�2

{ f (x)|g(x) = 0} = min
x∈�2

{ f (x)|x1 − x2 = 0}. (2.13)

The constraint restricts x to lie on the line where x1 = x2. We seek the smallest
value of the objective that is consistent with this constraint. Inspection of Fig-

ure 2.9 shows that this occurs for x� =
[

2
2

]
, which is the unique minimizer of

Problem (2.13) and is illustrated with a • in Figure 2.9. The minimum of the prob-
lem is f � = 2. (We will return to this particular problem in Section 13.1.2.)

Non-linearly constrained If there is no restriction on g then the problem is called
non-linearly constrained. For example, consider the same objective as previously,
f : R2 → R defined in (2.10):

∀x ∈ R
2, f (x) = (x1 − 1)2 + (x2 − 3)2.

However, let g : R2 → R be defined by:

∀x ∈ R
2, g(x) = (x1)

2 + (x2)
2 + 2x2 − 3.

The constraint g(x) = 0 requires that (x1)
2 + (x2)

2 + 2x2 − 3 = 0. This is a circle

of radius 2 and center

[
0

−1

]
. Figure 2.10 repeats Figure 2.8 but adds a circle that

represents the set of feasible points for the equality constraint g(x) = 0.
Consider the equality-constrained problem:

min
x∈�2

{ f (x)|g(x) = 0}. (2.14)

32 Problems, algorithms, and solutions

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

Fig. 2.10. Contour sets
C f (f̃) of function re-
peated from Figure 2.8
with feasible set from
Problem (2.14) superim-
posed. The heights of the
contours decrease towards

the point

[
1
3

]
. The min-

imizer x� ≈
[

0.5
0.9

]
is

illustrated as a •.

We seek the smallest value of the objective that is consistent with this constraint.

Inspection of Figure 2.10 shows that this occurs for x� ≈
[

0.5
0.9

]
, which is the

unique minimizer of Problem (2.14) and is illustrated as a • in Figure 2.10. The
minimum of the problem is f � ≈ 4.7. (We will return to this particular problem in
Section 14.2 and solve it more accurately.)

Case studies Equality-constrained problems will be investigated in Part IV, be-
ginning with two case studies:

• least-cost production of a group of manufacturing facilities that must collectively
meet a demand constraint (in Section 12.1), and

• power system state estimation with zero injection buses (in Section 12.2).

2.3.2.3 Inequality-constrained optimization

If g : Rn → Rm , h : Rn → Rr , and S = {x ∈ Rn|g(x) = 0, h(x) ≤ 0} so
that the feasible points satisfy g�(x) = 0, � = 1, . . . , m, and h�(x) ≤ 0, � =
1, . . . , r , then the problem is said to be inequality-constrained. Notice that, by
our definition, an inequality-constrained problem can include equality constraints.
Again, to emphasize the functional form of the equality and inequality constraints,
we usually use the notation minx∈�n { f (x)|g(x) = 0, h(x) ≤ 0} for an inequality-
constrained problem minx∈�n { f (x)|x ∈ S}, where S = {x ∈ Rn|g(x) = 0, h(x) ≤
0}.

2.3 Optimization 33

Sub-types of inequality-constrained optimization problems To specify a prob-
lem that is inequality-constrained, we must specify f , g, and h. It is common to
divide this type of problem further depending on the form of objective and con-
straints. The following is an (overlapping) list of sub-types.

Non-negatively constrained If h is of the form:

∀x, h(x) = −x,

so that the constraints are of the form x ≥ 0 then the problem is non-negatively
constrained.

Linear inequality constraints If h is affine then the problem is linear inequality-
constrained.

Linear program If the objective is linear and g and h are affine then the problem is
called a linear program or linear optimization problem. (The word “program”
is a historical term and does not refer to the software used to solve the problem.)

For example, if n = 2 and the functions f : R2 → R, g : R2 → R, and
h : R2 → R2 are defined by:

∀x ∈ R
2, f (x) = x1 − x2,

∀x ∈ R
2, g(x) = x1 + x2 − 1,

∀x ∈ R
2, h(x) =

[−x1

−x2

]
,

then the problem:

min
x∈�2

{ f (x)|g(x) = 0, h(x) ≤ 0} = min
x∈�2

{x1 − x2|x1 + x2 − 1 = 0, x1 ≥ 0, x2 ≥ 0},
(2.15)

is a linear program. This problem is linearly constrained and, in particular, the
linear inequality constraints are non-negativity constraints. (We will return to this
particular example problem in Section 16.1.1.2.) The contour sets of the objective

and the feasible set are illustrated in Figure 2.11. The minimizer x� =
[

0
1

]
of

Problem (2.15) is illustrated as a •.
Linear programs are usually written so as to emphasize the linear and affine

functions by showing the coefficient matrices explicitly as in, for example:

min
x∈�2

{c†x |Ax = b,Cx ≤ d},

where c ∈ Rn , A ∈ Rm×n , b ∈ Rm , C ∈ Rr×n , d ∈ Rr , and where c† is the
transpose of c. That is, c† is a row vector with entries the same as the entries of

34 Problems, algorithms, and solutions

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x1

x2

Fig. 2.11. Contour sets
C f (f̃) of objective func-
tion and feasible set for
Problem (2.15). The con-
tour sets are the parallel
lines. The feasible set is
shown as the line joining

the two points

[
1
0

]
and[

0
1

]
. The heights of the

contours decrease to the
left and up. The minimizer

x� =
[

0
1

]
is illustrated as

a •.

the column vector c. (See Definition A.6 in Appendix A.) In the case of Prob-
lem (2.15), the appropriate vectors and matrices are:

c =
[

1
−1

]
, A = [

1 1
]
, b = [1], C =

[−1 0
0 −1

]
, d =

[
0
0

]
.

We can write this non-negatively constrained problem even more concisely as:

min
x∈�2

{c†x |Ax = b, x ≥ 0}. (2.16)

There is a rich body of literature on linear programming and there are special
purpose algorithms to solve linear programming problems. The best known are:

• the simplex algorithm (and variants), and
• interior point algorithms.

Considerable effort has been spent on tailoring software for linear programming.
The performance of such software on linear programming problems will generally
be better than the performance on linear programming problems of software that
can handle more general problems. In other words, if the problem at hand is linear,
then it is sensible to use linear programming software to solve it.

Furthermore, the linear objective and affine constraint functions allow a number
of simplifications and special cases that are not available in the general case. There
are various special cases of linear programming problems that can be solved with
very fast special-purpose algorithms. See, for example, [67, chapter 4] and [70,
chapter 5] for linear programming problems involving transportation and flows
on networks. Even some integer and discrete optimization problems turn out

2.3 Optimization 35

to have elegant and simple solutions if the objective is linear and the constraint
functions are affine and have particular properties. We will not describe the special
cases of linear programming in detail in this book, but they are covered in great
detail in many books. For example, see [12][28][54, chapters 5–6][70, part I][84,
part II]. We will not consider integer and discrete linear problems in this book,
except briefly in Sections 15.5.2.1, 15.6.1.4, and 16.3.6.1. However, [12, 22, 46,
54, 67, 85, 92, 113, 122] cover many such problems.

Finally, it is sometimes possible to approximate a non-linear function in terms of
piece-wise linear functions and subsidiary linear constraints. (See Section 3.1.4.3.)
This allows linear programming software to be used on the problem. Because of
the high performance of linear programming software, it is sometimes possible
to solve the piece-wise linearized problem faster than by direct application of an
algorithm for non-linear problems.

Standard format If g is affine and the inequality constraints are non-negativity con-
straints then the problem is said to be in the standard format [45, section 5.6.1][84,
section 4.2]. Problem (2.16) is a linear program in standard format.

Quadratic program If f is quadratic and g and h are affine then the problem is
called a quadratic program or a quadratic optimization problem. For example,
consider the objective f : R2 → R defined in (2.10):

∀x ∈ R
2, f (x) = (x1 − 1)2 + (x2 − 3)2,

the equality constraint function g : R2 → R defined in (2.12):

∀x ∈ R
2, g(x) = x1 − x2,

and include the inequality constraint h(x) ≤ 0 where the inequality constraint
function h : R2 → R is defined by:

∀x ∈ R
2, h(x) = 3 − x2. (2.17)

To satisfy h(x) ≤ 0, we must have that x2 ≥ 3. The problem having (2.10)
as objective as well as the equality constraint function defined in (2.12) and the
inequality constraint function defined in (2.17) is:

min
x∈�2

{ f (x)|g(x) = 0, h(x) ≤ 0}. (2.18)

The contour sets of the objective function and the feasible set are illustrated in
Figure 2.12. By inspection of Figure 2.9 and comparison to Figure 2.12, we can

36 Problems, algorithms, and solutions

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

Fig. 2.12. The contour
sets C f (f̃) of the objective
function and feasible set
for Problem (2.18). The
heights of the contours
decrease towards the point[

1
3

]
. The feasible set

is the “half-line” starting

at the point

[
3
3

]
. The

minimizer x� =
[

3
3

]
is

illustrated with a •.

see that the minimum and minimizer of Problem (2.18) are:

min
x∈�2

{ f (x)|g(x) = 0, h(x) ≤ 0} = 4,

argmin
x∈�2

{ f (x)|g(x) = 0, h(x) ≤ 0} =
{[

3
3

]}
= {x�}.

The minimizer x� =
[

3
3

]
of Problem (2.18) is illustrated as a • in Figure 2.12.

(We will return to this example problem in Section 17.1.1.2.)
As with linear programs, quadratic programs are usually written so as to empha-

size the quadratic and affine functions by showing the coefficient matrices explic-
itly as in, for example:

min
x∈�2

{
1

2
x†Qx + c†x |Ax = b,Cx ≤ d

}
,

where the objective has quadratic and linear terms but for brevity we have omitted
the constant term that was present in f since it does not affect the minimizer of
the problem. To represent Problem (2.18) in this way, the appropriate vectors and
matrices are:

Q =
[

2 0
0 2

]
, c =

[−2
−6

]
,

A = [
1 −1

]
, b = [0],C = [

0 −1
]
, d = [−3].

(Again, we emphasize that the function specified by Q and c differs from f in
Problem (2.18) by a constant but this does not affect the minimizer.)

2.3 Optimization 37

As with linear programming, there has been considerable effort spent on devel-
oping software for this type of problem. If the problem at hand is quadratic, then it
is sensible to use quadratic programming software to solve it.

Non-linear program If there are no restrictions on f , g, and h, then the problem is
called a non-linear program or a non-linear optimization problem. Non-linear
programs include, as special cases, both linear and quadratic programming.

For example, consider the objective f : R3 → R defined by:

∀x ∈ R
3, f (x) = (x1)

2 + 2(x2)
2,

the equality constraint function g : R3 → R2 defined by:

∀x ∈ R
3, g(x) =

[
2 − x2 − sin(x3)

−x1 + sin(x3)

]
,

and the inequality constraint function h : R3 → R defined by:

∀x ∈ R
3, h(x) = sin(x3) − 0.5.

The problem is:

min
x∈�3

{ f (x)|g(x) = 0, h(x) ≤ 0}. (2.19)

(We will return to this problem in Exercise 3.35 and Section 19.2.1.3.)

Convexity We will see in Section 2.6.3 that we can also classify problems on the
basis of the notion of convexity, to be introduced in that section.

Satisfaction of constraints The inequality constraint 3 − x2 ≤ 0 is satisfied with
equality at the solution of Problem (2.18). That is, 3− x�

2 = 0. To describe this we
make:

Definition 2.4 Let h : Rn → Rr . An inequality constraint h�(x) ≤ 0 is called a binding
constraint or an active constraint at x� if h�(x�) = 0. It is called non-binding or inactive
at x� if h�(x�) < 0. The set:

A(x�) = {
� ∈ {1, . . . , r} ∣∣h�(x

�) = 0
}

is called the set of active constraints or the active set for h(x) ≤ 0 at x�. �

The active constraints at x� are the inequality constraints that are satisfied with
equality by x�. Note that the entries in the active set depend on the ordering of the
constraints as specified by the entries in h. Typically, only some of the inequality
constraints are satisfied with equality at a point x� ∈ Rn so that A(x�) is usually a
strict subset of {1, . . . , r}. (See Section A.1.2 in Appendix A for the definition of
set relations such as “strict subset.”)

38 Problems, algorithms, and solutions

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

x1

x2

x���

x��

x� Fig. 2.13. Points x�, x��,
and x��� that are feasible
with respect to inequality
constraints. The feasible
set is the shaded triangular
region for which x2 ≥ 3
and x1 + x2 ≤ 10.

Naturally, if x� is feasible for equality constraints g(x) = 0 then these equality
constraints are also satisfied with equality by x�. However, by definition, we do not
include equality constraints in the set of active constraints. We make the following
definition.

Definition 2.5 Let h : Rn → Rr . The point x� is called strictly feasible for the inequal-
ity constraint h�(x) ≤ 0 if h�(x�) < 0. The point x� is called strictly feasible for the
inequality constraints h(x) ≤ 0 if h(x�) < 0. �

If h : Rn → Rr is continuous and satisfies certain other conditions then, by Ex-
ercise A.15 in Appendix A, the boundary (see Definition A.42) of S = {x ∈
Rn|h(x) ≤ 0} is the set {x ∈ Rn|h(x) ≤ 0 and, for at least one �, h�(x) = 0} and
its interior (see Definition A.40) is the set {x ∈ Rn|h(x) < 0}; that is, the set of
strictly feasible points for the inequality constraints is the interior of S.

Example Consider the inequality constraint function h : R2 → R2 defined by:

∀x ∈ R
2, h(x) =

[
3 − x2

x1 + x2 − 10

]
.

Re-arranging the constraint h(x) ≤ 0 we obtain that feasible points satisfy x2 ≥ 3
and x1 + x2 ≤ 10. We consider the points:

x� =
[

5
4

]
, x�� =

[
5
3

]
, x��� =

[
7
3

]
.

These points are all feasible with respect to the inequality constraints h(x) ≤ 0 and
are illustrated in Figure 2.13 as •.

We have the following.

• For the point x�, constraints h1(x) ≤ 0 and h2(x) ≤ 0 are non-binding so that the
active set is A(x�) = ∅. This point is in the interior of the set {x ∈ R2|h(x) ≤ 0}.

2.3 Optimization 39

Fig. 2.14. Dodecahedron
in R3.

• For the point x��, the constraint h2(x) ≤ 0 is non-binding while the constraint
h1(x) ≤ 0 is binding so that the active set is A(x��) = {1}. This point is on the
boundary of the set {x ∈ R2|h(x) ≤ 0}.

• For the point x���, constraints h1(x) ≤ 0 and h2(x) ≤ 0 are both binding so
that the active set is A(x���) = {1, 2}. This point is on the boundary of the set
{x ∈ R2|h(x) ≤ 0}.

Example in higher dimension Consider Figure 2.14, which shows a dodecahe-
dron, a twelve-sided solid, in R3. Six of the twelve sides are visible in Fig-
ure 2.14. The set of points on the surface and interior to the dodecahedron is
defined by the intersection of 12 half-spaces. These half-spaces can be specified
by a vector of 12 affine inequality constraints. That is, each inequality specifies
one of the half-spaces. The boundary of each half-space in R3 is a plane, but for
spaces Rn with n > 3, the boundary of each space is a hyperplane. (See Defini-
tion A.52.) The dodecahedron is an example of a set that can be described in the
form S = {x ∈ R3|h(x) ≤ 0} with h : R3 → R12 affine.

We consider various cases for a point in S.

• x� is in the interior of the dodecahedron. We have h(x�) < 0 and A(x�) = ∅.
• x�� is on a face of the dodecahedron but not on an edge or vertex. That is,

exactly one constraint � is binding, A(x��) = {�}, and x�� is on the boundary.
• x��� is on an edge but not a vertex of the dodecahedron. That is, exactly two

constraints �, �′ are binding, A(x���) = {�, �′}, and x��� is on the boundary.
• x���� is on a vertex of the dodecahedron. That is, exactly three constraints �, �′,

and �′′ are binding, A(x����) = {�, �′, �′′}, and x���� is on the boundary.

Discussion The importance of the notion of binding constraints is that it is typical
for some of the inequality constraints to be binding at the optimum. Otherwise,
we could omit the constraints and solve an unconstrained or equality-constrained

40 Problems, algorithms, and solutions

problem. On the other hand, it is typical for not all the inequality constraints to be
binding at the optimum. Otherwise, we could just consider them all to be equality
constraints and solve an equality-constrained problem.

Representation of inequality constraints In the definition of inequality-constrained
problems, we have considered only single-sided inequalities of the form h(x) ≤ 0;
however, an inequality of the form ĥ(x) ≥ 0 can be re-expressed in the form
h(x) ≤ 0 by defining h(x) = −ĥ(x),∀x . In practice, most optimization software
can deal directly with both types of inequalities. Furthermore, most optimization
software can deal directly with:

• double-sided functional inequalities such as h ≤ h(x) ≤ h, and
• double-sided inequalities on variables such as x ≤ x ≤ x ,

Moreover, the software will usually take advantage of several simplifications that
arise due to the double-sided inequalities. That is, if a problem is naturally formu-
lated with a double-sided inequality, then the problem should be specified to the
software as a double-sided inequality rather than as two single-sided inequalities.
Furthermore, an inequality on a variable should always be specified to software as
an inequality on the variable rather than as a special case of a functional inequality.

For notational simplicity, we will usually restrict ourselves to inequalities of the
form h(x) ≤ 0, but recognize that problems may be easier to express in terms of
the more comprehensive form x ≤ x ≤ x, h ≤ h(x) ≤ h. As remarked above,
it is almost always worthwhile to take advantage of the more comprehensive form
when the software has the capability.

Case studies Inequality-constrained problems will be investigated generally in
Part V, beginning with six case studies:

• least-cost production with capacity constraints (in Section 15.1),
• optimal routing in a data communications network (in Section 15.2),
• least absolute value data fitting (in Section 15.3),
• optimal margin pattern classification (in Section 15.4),
• sizing of gate interconnects in integrated circuits (in Section 15.5), and
• optimal power flow (in Section 15.6).

2.3.2.4 Summary

For small example problems, whether they are unconstrained, equality-constrained,
or inequality-constrained, inspection of a carefully drawn diagram can yield the
minimum and minimizer. In general, a careful sketch can often be useful in help-
ing to understand a problem. However, for larger problems where the dimension

2.3 Optimization 41

of x increases significantly past two, or the dimension of g or h increases, the ge-
ometry becomes more difficult to visualize and intuition becomes less reliable in
predicting the solution. In the rest of this book, we will develop more abstract char-
acterizations of the conditions for a point to be an optimizer of a problem. These
characterizations will apply to problems where the dimensions of the decision vec-
tor and constraint functions are fixed, but arbitrary, finite values. This will lead
to systematic procedures or “algorithms” for finding such points. We will discuss
algorithms generally in Section 2.4.

2.3.3 Problems without minimum and the infimum

2.3.3.1 Analysis

We emphasize that it is easily possible for a problem to not possess a minimum.
That is, we can easily construct a problem with no minimum. We first enumerate
the possibilities for the existence of a minimum and the existence of lower bounds.

(i) minx∈� f (x) has a minimum, f � say. Then every number f such that f ≤
f � is a lower bound for the problem. Amongst all the lower bounds for the
problem, f � is the greatest lower bound for minx∈� f (x).

(ii) minx∈� f (x) does not have a minimum, but f is bounded below on S. Then
we can still consider the set of all lower bounds for the problem. It turns
out that there is always a well-defined largest element of this set [6, sec-
tion A.3][104, section 2.1], which we again call the greatest lower bound
for minx∈� f (x).

(iii) minx∈� f (x) is unbounded below. Then, no real number is a lower bound.

(iv) S = ∅, so that the problem is infeasible. Then we can adopt the convention
that every real number satisfies the definition of the lower bound.

The following definition embodies the idea of the largest number that is a lower
bound for the problem, but generalizes it to include the cases where the problem is
unbounded or infeasible. To cover these additional cases we must consider “num-
bers” that can either be an element of R or equal to ∞ or to −∞. Such a number
is called an extended real number [104, section 2.3]. The numbers −∞ and ∞
are defined to have the following property:

∀x ∈ R,−∞ < x < ∞.

(See Definition A.17.)

42 Problems, algorithms, and solutions

Definition 2.6 Let S ⊆ Rn , f : S → R. Then, infx∈� f (x), the infimum of the corre-
sponding minimization problem, minx∈� f (x), is defined by:

inf
x∈�

f (x) =

⎧⎪⎨⎪⎩
the greatest lower bound

for minx∈� f (x), if minx∈� f (x) is bounded below,

−∞, if minx∈� f (x) is unbounded below,

∞, if minx∈� f (x) is infeasible.

By definition, the infimum is equal to the minimum of the corresponding minimization
problem minx∈� f (x) if the minimum exists, but the infimum exists even if the problem
has no minimum. To emphasize the role of S, we also use the notation infx∈�n { f (x)|x ∈ S}
and analogous notations for the infimum. �

2.3.3.2 Examples

The following five examples illustrate problems without a minimum.

Unconstrained problem with unbounded objective For an example of an uncon-
strained problem that has no minimum, let S = R and consider the linear objective
f : R → R defined by:

∀x ∈ R, f (x) = x . (2.20)

There is no f � ∈ R such that ∀x ∈ R, f � ≤ f (x). The problem minx∈� f (x) is
unbounded below. The infimum is infx∈� f (x) = −∞.

Unconstrained problem with objective that is bounded below For an example
of an unconstrained problem that has no minimum, but has an objective that is
bounded below, let S = R and consider the objective f : R → R defined by:

∀x ∈ R, f (x) = exp(x).

In this case, f = 0 is a lower bound for the problem minx∈� f (x), but there is no
value of x ∈ R that achieves this bound. The problem has no minimum but the
infimum is infx∈� f (x) = 0. The function exp is illustrated in Figure 2.15.

Strict inequalities Again consider the objective f : R → R defined in (2.20), but
let the feasible set be

S = {x ∈ R|x > 0}.
The inequality defining the feasible set is a strict inequality. Figure 2.16 shows
f (x) versus x for x ∈ S. The circle ◦ at x = 0 indicates that this point is not
included in the graph but that points to the right of x = 0 and arbitrarily close to
x = 0 are included in the graph.

Note that ∀x ∈ S, f (x) ≥ 0, so that the problem is bounded below by 0. (If the
“below” is clear from context, we simply say that the problem is bounded by 0.)

2.3 Optimization 43

5 4 3 2 1 0 1 2 3 4 5

0

5

10

15

20

25

30

35

40

45

50

x

f (x)

Fig. 2.15. The function
exp is bounded below on
the feasible set R but has
no minimum.

1 0 5 0 0 5 1 1 5 2 2 5 3 3 5 4
1

0 5

0

0 5

1

1 5

2

2 5

3

3 5

4

x

f (x)

Fig. 2.16. Function that is
bounded below on feasible
set but where the problem
has no minimum because
the feasible set is defined
by a strict inequality. The
function is illustrated only
on the feasible set. The cir-
cle ◦ at x = 0, f (x) = 0
indicates that this point is
not included in the graph
but that points to the right
of x = 0 and arbitrarily
close to x = 0 are included
in the graph.

However, there is no x� ∈ S such that f (x�) = 0. In this example, the problem
is bounded, but does not have a minimum nor a minimizer. For this problem, the
infimum is infx∈�{ f (x)|x > 0} = 0.

Inconsistent constraints Consider any objective f : R → R and let

S = {x ∈ R|g(x) = 0},
where g : R → R2 is defined by:

∀x ∈ R, g(x) =
[

x + 1
x − 1

]
.

44 Problems, algorithms, and solutions

1 0 5 0 0 5 1 1 5 2 2 5 3 3 5 4
1

0 5

0

0 5

1

1 5

2

2 5

3

3 5

4

x

f (x)

Fig. 2.17. Function (2.21)
that is bounded below on
feasible set but where the
problem has no minimum
because the function is dis-
continuous. The function
is illustrated only on the
feasible set. The bullet • at
x = 0, f (x) = 1 indicates
that this is the value of the
function at x = 0.

Then there are no feasible solutions, since the equality constraints are inconsistent
and so S = ∅. In this example, there are no feasible values of x and therefore no
minimum. The infimum is infx∈�{ f (x)|g(x) = 0} = ∞.

Discontinuous objective Finally, let

S = {x ∈ R|x ≥ 0},
and define f : S → R by:

∀x ∈ S, f (x) =
{

1, if x = 0,

x, if x 	= 0.
(2.21)

The function f has a “jump” at x = 0 as illustrated in Figure 2.17. Such a function
is called not continuous or discontinuous. (See Definition A.35.) The problem
minx∈� f (x) is bounded below by zero, but there is again no minimum nor mini-
mizer. The infimum is infx∈�{ f (x)|x ≥ 0} = 0.

2.3.3.3 Summary

In all five examples in Section 2.3.3.2, argminx∈� f (x) is the empty set ∅. Careful
formulation of a problem can sometimes avoid these issues. The first example can
only occur if the constraint set S is unbounded and the objective is not bounded be-
low. In practical problems, constraint sets are often bounded; however, this is not
the case, by definition, in unconstrained problems. Practical unconstrained prob-
lems typically involve objectives that are bounded below. As the second example
showed, having an objective that is bounded below is not sufficient to guarantee
that a minimum exists. However, many unconstrained problems have objectives

2.3 Optimization 45

that grow rapidly as any entry in their argument grows large. For such functions
there is usually a minimizer.

The third example illustrates the difficulties that can arise when strict inequali-
ties are used to define a feasible region. Such inequalities typically define an open
set. (See Definition A.41.) In contrast, it is often the case in engineering design
problems that either:

• there is no physical interpretation of strict inequality constraints such as x > 0,
or

• there is, practically speaking, no difference between a strict inequality constraint
x > 0 and the non-strict inequality constraint x ≥ 0.

In these cases we should always specify inequalities as non-strict inequalities. This
choice is made explicitly in our definition of inequality-constrained optimization.
Non-strict inequalities specified in terms of continuous functions define closed sets.
(See Definition A.41 and Exercise A.14.)

The fourth example arises because there are no feasible points. This can be a sign
of an incorrect problem formulation; however, in some applications, testing for the
existence of a feasible point may be an important part of the decision process.

Finally, the fifth example illustrates possibilities when the objective is not con-
tinuous. For an engineering design problem, the presence of discontinuities in the
model poses great difficulties if the location of the discontinuity depends on exper-
imental data. We will usually consider continuous objectives.

2.3.4 Conditions for problems to possess a minimum and minimizer

We will usually restrict ourselves to continuous objective and constraint functions
that are, furthermore, also once or twice partially differentiable. (See Defini-
tions A.35 and A.36 for formal definitions of continuous and of partially differ-
entiable.) Such functions are also called smooth. It is important to realize that the
assumption of smoothness is different from assuming that we can explicitly calcu-
late the derivative of a function. In particular, our algorithms will make use of the
assumption that the functions are partially differentiable; however, in some cases
we will develop subsidiary calculations to numerically estimate partial derivatives
if they are not explicitly known analytically.

We are not going to consider optimization of non-smooth functions in detail.
(However, we will introduce a particular class of non-smooth functions in Sec-
tion 2.6.3.6 and then discuss in Sections 3.1.3 and 3.1.4 methods of transforming
problems with this type of non-smooth objective into a problem with a smooth
objective.) Non-smooth objectives are discussed in a variety of references, includ-
ing [45, section 4.2][100].

46 Problems, algorithms, and solutions

In the following, we have a sufficient condition for an optimization problem with
a continuous objective to possess a minimum.

Theorem 2.1 Let S ⊆ Rn be closed (see Definition A.41) and bounded (see Defini-
tion A.46) and let f : S → R be continuous (see Definition A.35.) Then the problem
minx∈� f (x) possesses a minimum and minimizer.

Proof See [104, propositions 2.17 and 9.10]. �

By choosing an objective function, f : Rn → R, and constraint functions, g :
Rn → Rm and h : Rn → Rr , that are continuous and such that the feasible set is
bounded, we can therefore ensure that a problem of the form minx∈�n { f (x)|g(x) =
0, h(x) ≤ 0} possesses a minimum and minimizer.

2.3.5 Maximization problems and the supremum

We can also define a maximization problem by:

max
x∈�

f (x) = −min
x∈�

(− f (x)). (2.22)

Maximization problems are natural when the objective is related to a measure of
“profit” and we want to maximize the profit. We also define argmaxx∈� f (x) =
argminx∈�(− f (x)). We speak of the maximum and maximizer of a maximization
problem. Analogously with minimization problems, we define the supremum as
follows:

Definition 2.7 Let S ⊆ Rn , f : S → R. Then, supx∈� f (x), the supremum of the
corresponding maximization problem maxx∈� f (x) is defined by:

sup
x∈�

f (x) =

⎧⎪⎨⎪⎩
the least upper bound

for maxx∈� f (x) , if maxx∈� f (x) is bounded above,
∞, if maxx∈� f (x) is unbounded above,

−∞, if maxx∈� f (x) is infeasible.

The supremum is equal to the maximum of the corresponding maximization problem
maxx∈� f (x) if the maximum exists. �

We will usually discuss theoretical results in terms of minimization problems,
but this does not limit our applications, since we can always re-write a maximiza-
tion problem in terms of a minimization problem. Some optimization software is
designed to minimize objectives, while other software is designed to maximize ob-
jectives, and some software can either maximize or minimize depending on user
specification. To include both minimization and maximization, we can speak of
the optimum and optimizer of an optimization problem.

2.4 Algorithms 47

2.3.6 Extended real functions

We can generalize Definitions 2.6 and 2.7 to include the possibility that f itself
takes on the special values of∞ or−∞. Such a function is called an extended real
function [104, section 2.3] (See Definition A.17.) First we must make the natural
generalization of the definition of an optimization problem to allow objectives that
are extended real functions:

Definition 2.8 Let S ⊆ Rn , f : S → R ∪ {−∞,∞}, and f � ∈ R. Then by

f � = min
x∈�

f (x),

we mean that:

∃x� ∈ S such that f � = f (x�) ∈ R and (x ∈ S) ⇒ (f (x�) ≤ f (x)).

�

If no finite f � exists satisfying the definition, then there is no minimum accord-
ing to our definition. In particular, this can happen if every feasible x ∈ S has
f (x) = ∞. In this case, we generalize Definition 2.6 of infimum by defining the
infimum of such a problem to be ∞. Similarly, for a maximization problem for
which the objective is always equal to −∞ at feasible points, we also generalize
Definition 2.7 of supremum by defining the supremum of the problem to be −∞
in this case. These generalizations of Definitions 2.6 and 2.7 will be useful in Sec-
tion 3.4 when we discuss some functions that are themselves defined in terms of
the supremum or infimum of associated problems.

Naturally, objectives that arise directly from physical systems do not take on the
values∞ or −∞; however, we will see that the concept of such an objective can be
useful theoretically. Moreover, ∞ can be loosely thought of as a positive number
that is much larger than the largest element of the range of the objective.

2.4 Algorithms

We distinguish two basic types of algorithms in this book:

• direct, to be described in Section 2.4.1, and

• iterative, to be described in Section 2.4.2.

We appeal to intuitive notions of computation to describe these types of algorithms.
More formal definitions of some of these ideas can be found in [40].

48 Problems, algorithms, and solutions

2.4.1 Direct

By a direct algorithm, we mean that from the problem specification it is possible
to write down a finite list of operations that calculates the solution of the problem.
(Some authors use a similar term, direct search, to mean an iterative algorithm that
does not make use of derivatives. The word “direct” is being used in two different
senses in these two terms.)

Each operation must be a basic operation of our computer; that is, each opera-
tion requires an amount of computation time that is bounded by a constant. We will
see that the algorithm we develop for the solution of linear equations in Chapter 5 is
an example of a direct algorithm, given the reasonable assumption that manipulat-
ing any element of a vector or matrix, comparisons of numbers, and the arithmetic
operations of addition, subtraction, multiplication, and division are all basic oper-
ations of our computer. We will usually characterize the computational effort to
execute a direct algorithm in terms of the number of such operations required to
execute the algorithm.

2.4.1.1 Discussion

Under the (usually unrealistic) assumptions that:

• all numbers in the problem specification are represented to infinite precision,
• all arithmetic operations are carried out to infinite precision, and
• the answers to each arithmetic operation are represented to infinite precision,

then the answer obtained from a direct algorithm would be exact. In practice, finite-
precision representation and round-offs during calculations mean that the solutions
are at best approximate. For example, when a large number and a small number are
added together then the calculated answer may not be the true sum because some
of the significant figures of the smaller number were discarded when the numbers
were loaded into the arithmetic unit of the computer.

With modern computational systems and carefully designed algorithms, the er-
rors are often very small; however, certain problem specifications are such that
their solution is extremely sensitive to changes in the values of numbers in the
specification. Such problems are called ill-conditioned. Finite-precision repre-
sentations and calculations will often produce answers that are poor solutions to
ill-conditioned problems, even if the values of numbers in the problem specifica-
tion were exactly known. In practice, even if values were known exactly, they can
only be represented to finite precision. More typically, the values are only known
approximately and their representation introduces further error so that calculations
will produce answers that may be very poor solutions to the exactly specified prob-
lem.

2.4 Algorithms 49

In summary, while direct algorithms in principle can be used to calculate the
exact answer to a problem, there is in practice always some error. The error is typi-
cally small but can be large for ill-conditioned problems. Ill-conditioned problems
will be discussed briefly in Section 2.7.6 and then in several other places through-
out the book as they arise.

2.4.1.2 Applicability

As mentioned above, we will develop a direct algorithm for solving linear equa-
tions in Chapter 5. Special cases of some of our later problems will also be
amenable to direct algorithms. However, some problems cannot be solved by direct
algorithms.

For example, consider non-linear simultaneous equations. To see the issues in-
volved, let us first restrict ourselves to the case m = n = 1 and consider g : R → R

such that g is a polynomial in a single variable. (See Definition A.22.) If g is a
quadratic polynomial, then we have already remarked in Section 2.2.2 that the
“quadratic equation” provides a direct algorithm to find the solution or solutions to
g(x) = 0, if taking a square root is a basic operation of our computer (in addition
to the “standard” operations of addition, subtraction, multiplication, and division.)
There are also direct algorithms to solve a non-linear equation g(x) = 0 involving
a single cubic or a quartic function of one variable, so long as taking square and
cube roots is a basic arithmetic operation of our computer.

However, for non-linear equations involving arbitrary fifth or higher degree poly-
nomials, there is provably no direct algorithm available to find the solution, even
allowing square and cube (and even higher) roots as basic operations [112, the-
orem 15.7]. Generally speaking, there are also no direct algorithms for solving
arbitrary systems of non-linear equations g(x) = 0, g : Rn → Rm when m and n
are both greater than one. (For some special cases, there are direct algorithms. See
Exercise 2.9.)

To solve arbitrary systems of non-linear simultaneous equations (and optimiza-
tion problems) we will have to develop alternative approaches, namely iterative
algorithms, that yield solutions that are sufficiently accurate according to some ap-
propriate criteria. (See Exercise 2.10.) We will introduce iterative algorithms in
the next section.

2.4.2 Iterative

In an iterative algorithm, a sequence of intermediate values are generated succes-
sively by the algorithm. We begin with an initial guess of the solution and try to
successively improve it. Each intermediate value is called an iterate. Under certain
circumstances, the sequence of iterates “approaches” a solution of the problem, if

50 Problems, algorithms, and solutions

a solution exists. Ideally, each successive iterate is a better approximation to the
solution than the previous. Most of the algorithms in this book are iterative: in par-
ticular, we will develop iterative algorithms for each problem that cannot be solved
by a direct algorithm.

In general, none of the iterates produced by an iterative algorithm will exactly
solve the problem; however, we cannot keep iterating forever. As a practical matter,
therefore, we must also include a termination criterion or stopping criterion in
an iterative algorithm [45, section 8.2.3]. That is, we must specify conditions that,
when satisfied, will cause the algorithm to terminate with a suitable approximation
to the exact solution or with a report that no suitable approximation has been found.
We will return to this topic as we develop specific iterative algorithms for each
problem.

In Section 2.4.2.1, we define an update recursion to generate each successive
iterate. Then, in Section 2.4.2.2, using the notion of a norm, we will define care-
fully the way in which successive iterates can be thought of as converging to a
solution.

We will then define the rate of convergence to the solution in Section 2.4.2.3.
We will use this information to characterize how many iterations are needed to
find a solution of desired accuracy. The product of the number of iterations and the
number of operations per iteration then characterizes the total number of operations
required to find a solution of desired accuracy.

2.4.2.1 Recursion to define iterates

The iterative algorithms that we consider can be represented with the following
general form of recursion:

x (ν+1) = x (ν) + α(ν)�x (ν), ν = 0, 1, 2, . . . ,

where (see Definition A.18):

• x (0) is the initial guess of the solution,
• ν is the iteration counter, ν = 0, 1, 2, 3, . . . ,

• x (ν) is the value of the iterate at the ν-th iteration,
• α(ν) ∈ R+ is the step-size (where R+ is the set of non-negative real numbers)

and, usually, 0 < α(ν) ≤ 1,
• �x (ν) ∈ Rn is the step direction, and
• the product α(ν)�x (ν) is the update to add to the current iterate x (ν) to obtain the

new iterate x (ν+1).

We call �x (ν) the step direction because it points in the direction that we step from
x (ν) to obtain the (hopefully) improved solution x (ν+1). The step-size α(ν) is chosen

2.4 Algorithms 51

�

�

x2

x1

�
�

�
�

�
�

���

	
	

		

x (ν)

x (ν+1)

�
�

step direction �x (ν)

update α(ν)�x (ν)

Fig. 2.18. Update of iter-
ate in R2. The bullets
• indicate the locations of
the points x (ν) and x (ν+1),
while the arrows ↗ indi-
cate the magnitudes and
directions of the vectors
�x (ν) and α(ν)�x (ν).

so that x (ν+1) is a “sufficient” improvement over x (ν) according to criteria we will
develop. We often try to arrange that α(ν) = 1 at many or most of the iterations.

The situation is illustrated in Figure 2.18 for x ∈ R2, where x (ν) and the updated
iterate x (ν+1) are illustrated for a step-size of α(ν) = 0.5. The vectors �x (ν) and
α(ν)�x (ν) are drawn as arrows ↗ with their tails at x (ν) to show a step from x (ν)

towards the new iterate x (ν+1).
Usually, the values of �x (ν) and α(ν) can each be thought of as the result of a

direct algorithm for a problem that is specified by x (ν); however, sometimes the
calculation of α(ν) or �x (ν) is itself an iterative algorithm. If the calculation of
�x (ν) and α(ν) is the result of a direct algorithm, then we can characterize the effort
per iteration in terms of the number of basic operations required by that direct
algorithm. Again, calculations involved in each iteration are usually subject to
representation and round-off errors. These errors can be compounded over several
iterations.

There are variations on this algorithm scheme that involve simultaneous compu-
tation of step direction and step-size. However, the separation into step direction
and step-size allows us to introduce a basic approach to finding a step direction and
then refine it with a step-size calculation.

2.4.2.2 Sequence of iterates and closeness to a solution

Iterative algorithms generate a sequence, {x (ν)}∞ν=0, of iterates. We hope that the
successive elements in the sequence get closer to a solution x� of our problem. To
formalize this notion, we make:

Definition 2.9 Let ‖•‖ be a norm on Rn . (See Definition A.28 for the definition of norm.)
Let {x (ν)}∞ν=0 be a sequence of vectors in Rn . Then, the sequence {x (ν)}∞ν=0 converges to a
limit x� if:

∀ε > 0, ∃N ε ∈ Z+ such that (ν ∈ Z+ and ν ≥ N ε) ⇒
(∥∥∥x (ν) − x�

∥∥∥ ≤ ε
)

.

The set Z+ is the set of non-negative integers. (See Definition A.3 in Appendix A.)

52 Problems, algorithms, and solutions

If the sequence {x (ν)}∞ν=0 converges to x� then we write limν→∞ x (ν) = x� or lim
ν→∞ x (ν) =

x� and call x� the limit of the sequence {x (ν)}∞ν=0. �

In the definition of convergence, we write N ε to emphasize that N ε will in general
depend on ε. Typically, the smaller the value of ε, the larger the value of N ε to
satisfy the condition:

(ν ∈ Z+ and ν ≥ N ε) ⇒ (∥∥x (ν) − x�
∥∥ ≤ ε

)
.

If a sequence {x (ν)}∞ν=0 converges to x� then, for any “distance” ε, there must even-
tually be elements of the sequence that are close to x� in the sense that their distance
from x�, as measured by the norm, is less than ε. Moreover, after some iterate N ε ,
all the subsequent iterates are within this distance ε of x�.

For example, consider the sequence {1/(ν + 1)}∞ν=0. This sequence converges to
x� = 0. (See Exercise 2.11.) Similarly, the sequences {(2)−ν}∞ν=0 and {(2)−((2)ν)}∞ν=0

also converge to x� = 0.
The definition of convergence is “theoretical” in that we cannot ever “experi-

mentally” verify for all ε that there exists N ε such that elements of the infinite
sequence satisfy the requirements. Nevertheless, the notion of convergence will
guide our search for a practical criterion for termination of iterations generated by
an iterative algorithm. We will prove theoretical results of the form: “For a partic-
ular algorithm, if the specification of the problem satisfies certain properties then
the sequence of iterates converges to the solution.”

A further issue is that since we usually do not know the solution to the prob-
lem, we usually cannot use Definition 2.9 directly to describe convergence to the
solution. We must usually rely on a combination of theoretical analysis and empir-
ical observation of a finite number of the iterates to judge whether or not we are
approaching a solution and to decide when to terminate calculations.

Sometimes, we cannot even prove that the sequence of iterates converges. In
some cases, the best we can prove is that some sub-sequence (see Definition A.18)
converges. A limit of a sub-sequence is called an accumulation point of the se-
quence.

2.4.2.3 Rate of convergence

Analysis The basic definition of convergence does not characterize how fast we
are converging to the limit. Sometimes it is possible to theoretically characterize
this rate. We make the following ([84, section 2.5]):

Definition 2.10 Let ‖•‖ be a norm. A sequence {x (ν)}∞ν=0 that converges to x� ∈ Rn is
said to converge at rate R ∈ R++ (where R++ is the set of strictly positive real numbers)

2.4 Algorithms 53

0 5 10 15
10

40

10
35

10
30

10
25

10
20

10
15

10
10

10
5

10
0

ν

∥∥x (ν) − x�
∥∥

Fig. 2.19. Rates of
convergence for sev-
eral sequences, with:
R = 1 and C = 0.9
shown as ◦; R = 1
and C = 0.2 shown
as ×; R = 2 and
C = 0.9 shown as
•; and R = 1.5 and
C = 0.9 shown as +.

and with rate constant C ∈ R++ if:

lim
ν→∞

∥∥x (ν+1) − x�
∥∥∥∥x (ν) − x�

∥∥R
= C. (2.23)

If (2.23) is satisfied for R = 1 and some value of C in the range 0 < C < 1 then the rate
is called linear. If (2.23) is satisfied for R = 2 and some C in the range 0 < C < ∞ then
the rate is called quadratic. If (2.23) is satisfied for some R in the range 1 < R < 2 and
some C in the range 0 < C < ∞ then the rate is called super-linear. �

Sometimes, in Definition 2.10, the rate of convergence R is called the asymptotic
convergence rate to emphasize that it may not apply for the first iterates, but only
applies asymptotically as ν → ∞.

Under a linear rate of convergence, the iterates are getting closer to the limit
x� by a fixed factor C at each iteration, at least asymptotically. Notice that for a
linear rate, if C is close to 1 then the progress towards the limit may be very slow.
Roughly speaking, under quadratic convergence, if C ≈ 1 then once the iterates
become close enough to x� then the number of correct digits in the iterate doubles
with each iteration.

Example Figure 2.19 shows values of
∥∥x (ν) − x�

∥∥ versus ν for a linear rate of
convergence (that is, R = 1) with:

• C = 0.9, shown as circles ◦, and
• C = 0.2, shown as crosses ×.

54 Problems, algorithms, and solutions

The vertical scale in Figure 2.19 is logarithmic and so a “linear” rate of convergence
appears as a line on this graph. Clearly, the progress towards the solution is slow if
C = 0.9 but much faster if C = 0.2.

Figure 2.19 shows values of
∥∥x (ν) − x�

∥∥ versus ν for a quadratic rate of con-
vergence with C = 0.9 as •. On the logarithmic scale of the graph, this curve
appears “quadratic.” Figure 2.19 also shows values of

∥∥x (ν) − x�
∥∥ versus ν for a

super-linear rate of convergence with R = 1.5 and C = 0.9 as plus signs +.

Discussion For any given sequence there are generally several combinations of R
and C satisfying (2.23). We can seek the largest value of R (together with some
value of C in the range 0 < C < ∞ for R > 1 or some value of C in the range
0 < C < 1 for R = 1) that satisfies (2.23). It is customary to quote this largest
value of R as the rate of convergence.

Qualitatively, the larger the value of R, the faster the iterates converge, at least
asymptotically. However, as in Figure 2.19, an algorithm with a linear rate of con-
vergence but with a small value of C may out-perform an algorithm with quadratic
convergence, at least in the first few iterations. Moreover, these asymptotic rates of
convergence may not even be a useful guide to the performance in the first few iter-
ations if the asymptotic performance differs markedly from the performance in the
first few iterations. Nevertheless, the convergence rate can be a guide to algorithm
performance if the asymptotic rate applies at least roughly for the early iterations.

If we know the convergence rate as specified in (2.23), we can estimate how
many iterations are required to reduce the initial error

∥∥x (0) − x�
∥∥ by some speci-

fied factor. This is explored in Exercise 2.12. The total effort to reduce the initial
error is the product of the effort per iteration and the number of iterations required.
If we know the computational effort per iteration and the convergence rate then we
can bound the total effort required to reduce the initial error to some desired final
error.

2.5 Solutions of simultaneous equations

We now turn to the solution of simultaneous equations problems. In Section 2.5.1
we discuss the potential for multiple solutions of simultaneous equations while,
in Sections 2.5.2 and 2.5.3, we consider conditions for uniqueness of solutions of
simultaneous equations, first in the linear case and then the non-linear case.

2.5.1 Number of solutions

There may in general be none, one, or several solutions to systems of simultaneous
equations. To demonstrate this, we first consider one linear equation Ax = b in

2.5 Solutions of simultaneous equations 55

one variable so that A, b ∈ R. The three possible cases are as follows:

0x = 0, infinitely many solutions,

0x = b, b 	= 0, no solutions,

Ax = b, A 	= 0, one solution.

The first two cases are trivial in one dimension, but have non-trivial generalizations
in more than one variable. The generalization of the first case is the null space,
to be discussed in Section 5.8.1.2. (See Definition A.50.) The second case is an
example of inconsistent equations.

Non-linear simultaneous equations are more complicated. For example, for one
quadratic equation Q(x)2 + Ax = b in one variable, so that A, b, Q ∈ R, we have
six cases:

0(x)2 + 0x = 0, infinitely many solutions,

0(x)2 + 0x = b, b 	= 0, no solutions,

0(x)2 + Ax = b, A 	= 0, one solution,

Q(x)2 + Ax = b, Q 	= 0, A2 + 4Qb < 0, no (real) solutions,

Q(x)2 + Ax = b, Q 	= 0, A2 + 4Qb = 0, one solution,

Q(x)2 + Ax = b, Q 	= 0, A2 + 4Qb > 0, two solutions.

The first three cases are repetitions of the corresponding cases for linear equations.
The last three cases show the variety of possibilities with even a single equation.
The situation becomes even more complicated for non-linear equations in more
than one variable and for polynomials of higher degree and other functions. In
general, for a polynomial of degree D in one variable, the equation g(x) = 0
can have up to D real solutions [112, theorem 2.8]. In the next two sections, we
consider sufficient conditions for there to be no more than one solution for linear
and non-linear simultaneous equations, respectively.

2.5.2 Uniqueness of solution for linear equations

Consider a matrix A ∈ Rm×n and right-hand side b ∈ Rm . If m = n so that A has
the same number of rows and columns then we say that the system of equations
Ax = b is a square system and that the matrix A is square. (See Definition A.7.)
Necessary and sufficient conditions for there to be a unique solution to a square
system of equations is that the coefficient matrix A be non-singular. (See Defini-
tion A.49.) We will consider non-square systems of linear simultaneous equations
in Section 5.8.

56 Problems, algorithms, and solutions

�

�

x2

x1

	
	

		

x

x ′

(x ′ − x)�
�
�
�
�
���

�
g(x)

�g(x ′)

(g(x ′) − g(x))

Fig. 2.20. Illustration of
the definition of monotone.
For all x and x ′ in S,
the vectors (x ′ − x) and
(g(x ′) − g(x)) point in
directions that are within
less than or equal to 90◦ of
each other.

2.5.3 Uniqueness of solution for non-linear equations

In this section we will consider simultaneous equations where the number of equa-
tions equals the number of variables. We again refer to this as a square system.
We will develop conditions for uniqueness of solution in terms of a property of the
function specifying the equations.

2.5.3.1 Monotone functions

For a function g : R → R of one variable, there is the familiar notion of a mono-
tonically increasing function. (See Definition A.24.) In the following definition,
we generalize this to functions of several variables.

Definition 2.11 Let S ⊆ Rn and let g : S → Rn . We say that g is monotone on S if:

∀x, x ′ ∈ S,
(
g(x ′) − g(x)

)†
(x ′ − x) ≥ 0. (2.24)

We say that g is strictly monotone on S if:

∀x, x ′ ∈ S, (x 	= x ′) ⇒ (
g(x ′) − g(x)

)†
(x ′ − x) > 0.

If g is monotone on Rn then we say that g is monotone. If g is strictly monotone on Rn

then we say that g is strictly monotone. �

Geometrically, g is monotone on S if, for all pairs of vectors x and x ′ in S,
the vectors (x ′ − x) and (g(x ′) − g(x)) point in directions that are within less
than or equal to 90◦ of each other. This is the case for the vectors illustrated in
Figure 2.20. The function g is strictly monotone if, for x 	= x ′, the vectors (x ′ − x)

and (g(x ′) − g(x)) point in directions that are within less than 90◦ of each other.
Roughly speaking, monotone functions approximately preserve relative direc-

tions. For example, a monotone function could involve a translation of coordinates
and a rotation by less than 90◦.

2.5 Solutions of simultaneous equations 57

Example Even if a function ĝ : Rn → Rn is not strictly monotone, we may
find that by permuting the entries of ĝ it is possible to create a strictly monotone
function. For example, the function ĝ : R2 → R2 defined by:

∀x ∈ R
2, ĝ(x) =

[
x2

x1

]
,

is not strictly monotone since:(
ĝ(x ′) − ĝ(x)

)†
(x ′ − x) = 2(x ′2 − x2)(x

′
1 − x1),

< 0, if x ′2 > x2 and x ′1 < x1.

However, the function g : R2 → R2 obtained by swapping the entries of ĝ is
strictly monotone, since:(

g(x ′) − g(x)
)†

(x ′ − x) = ∥∥x ′ − x
∥∥2

2 ,

> 0, for x ′ 	= x .

This example shows that the property of being strictly monotone depends, among
other things, on the choice of the labeling of the entries of x and g.

Analysis The usefulness of the definition of a strictly monotone function lies in
the following:

Theorem 2.2 Let S ⊆ Rn and g : S → Rn be strictly monotone on S. Then there is at
most one solution of the simultaneous equations g(x) = 0 that is an element of S.

Proof Suppose that there are two solutions x�, x�� ∈ S with x� 	= x��. That is,
g(x�) = g(x��) = 0. Consequently, (g(x�) − g(x��))†(x�−x��) = 0. But by definition
of strictly monotone applied to x� and x��, (g(x�) − g(x��))†(x� − x��) > 0. This is a
contradiction. �

Discussion The hypothesis in Theorem 2.2 that g be strictly monotone is impor-
tant since the contradiction relies on the strict inequality in the definition of strict
monotone. (See Exercise 2.16.)

Theorem 2.2 does not guarantee that there are any solutions to g(x) = 0. For
example, consider the exponential function exp : R → R. This function is strictly
monotone (see Exercise 2.18); however, there is no solution to exp(x) = 0.

Moreover, it is possible for a function g to be not strictly monotone and yet there
may be a unique solution or no solution to the equations g(x) = 0. For example,
consider the function g : R → R defined by:

∀x ∈ R, g(x) = (x)3 − x − 6.

58 Problems, algorithms, and solutions

2 1 5 1 0 5 0 0 5 1 1 5 2 2 5 3
10

8

6

4

2

0

2

4

6

8

10

x

g(x)

Fig. 2.21. Function g that
is not strictly monotone but
for which there is only
one solution, x� = 2, to
g(x) = 0. The solution is
illustrated with the •.

This function is illustrated in Figure 2.21 and is not strictly monotone, yet there is
only one solution to g(x) = 0, namely x� = 2.

Sometimes, we first define g : Rn → Rm and then consider its restriction (see
Definition A.13) to a set S ⊆ Rn on which we can show that g is strictly monotone.
Theorem 2.2 makes no claim about the solutions of g(x) = 0 outside of the set S.
(See Exercise 2.19.)

Exercise 2.21 explores several systems of simultaneous equations defined in
terms of monotonically increasing functions. As remarked above, monotonically
increasing functions are a special case of monotone functions.

We can also consider more general conditions for there to be no more than one
solution to simultaneous equations. For example, see Exercise 2.22.

2.5.3.2 Characterizing monotone and strictly monotone functions

The definition of monotone and strictly monotone functions is not convenient to
apply directly because the condition in (2.24) involves checking over all possible
pairs of points in the domain of the function. In this section, we present a theorem
that provides a condition for a function to be strictly monotone. In practice, the
condition is often easier to check than applying the definition of strictly monotone
directly.

The test for strictly monotone involves a property of the matrix of partial deriva-
tives of g. This matrix of partial derivatives is called the Jacobian and is introduced
next. The notion of a positive definite matrix is then introduced. Then, we define
the notion of a convex set. Finally, the condition for g to be strictly monotone is
presented.

2.5 Solutions of simultaneous equations 59

Jacobian Given a function g : Rn → Rm that is partially differentiable, we
can consider a matrix-valued function consisting of these partial derivatives. This
matrix-valued function is called the Jacobian and we will denote it by J . The
entries of J : Rn → Rm×n are defined by:

∀k = 1, . . . , n,∀� = 1, . . . , m, J�k = ∂g�

∂xk
.

The �-th row of J corresponds to an entry g� of g. The k-th column of J corre-
sponds to an entry xk of x . (Sometimes, we also use a special symbol, ∇, called
the gradient, for the operation of taking the transpose of the Jacobian of a function.
See Definition A.36.)

Positive definite and positive semi-definite A matrix Q ∈ Rn×n is positive semi-
definite if:

∀x ∈ R
n, x†Qx ≥ 0.

The matrix is positive definite if:

∀x ∈ R
n, (x 	= 0) ⇒ (x†Qx > 0).

(See Definitions A.58 and A.59.)

Convex sets We introduce the notion of a convex set in:

Definition 2.12 Let S ⊆ Rn . We say that S is a convex set or that S is convex if:

∀x, x ′ ∈ S,∀t ∈ [0, 1], (1 − t)x + t x ′ ∈ S.

�

That is, the line segment joining any two points in a convex set S is itself entirely
contained in S. Notice that (1− t)x + t x ′ = x + t (x ′ − x). The second expression
is often useful in proving results.

Examples of convex and non-convex sets Convex sets are connected and do not
have any indentations; that is, every point can be reached from any other point in
the set via a line segment that stays within the set. Figure 2.22 shows four convex
sets. In each of them, a pair of points is shown with a line segment joining the pair
of points. Each line segment lies wholly within the set that contains its end-points.
This applies for any pair of points in each convex set.

Four non-convex sets are illustrated in Figure 2.23. These sets have “indenta-
tions.” In each set, there are many pairs of points such that a line segment drawn

60 Problems, algorithms, and solutions

Fig. 2.22. Four examples
of convex sets with pairs of
points joined by line seg-
ments.

between the points will lie partly outside the set. Dis-connected sets are also non-
convex. For example, if we re-interpret Figure 2.22 as showing a single set that is
made up of four dis-connected pieces, then this single set is non-convex.

Conditions for strictly monotone The following theorem characterizes strictly
monotone functions g : S → Rm . The proof involves integrating the Jacobian of g
along line segments between pairs of points in S. To ensure that the integration is
well defined, we require S to be a convex set.

Theorem 2.3 Let S ⊆ Rn be a convex set and g : S → Rn. Suppose that g is par-
tially differentiable with continuous partial derivatives on S. Moreover, suppose that
the Jacobian J is positive semi-definite throughout S. Then g is monotone on S. If J is
positive definite throughout S then g is strictly monotone on S.

Proof Suppose that J is positive semi-definite throughout S. Let x, x ′ ∈ S. For
0 ≤ t ≤ 1 we have that (x + t[x ′ − x]) ∈ S since S is a convex set. As t varies from 0
to 1, (x + t[x ′ − x]) traces out the line segment joining x and x ′. Define φ : [0, 1] → R

by:

∀t ∈ [0, 1], φ(t) = (x ′ − x)
†g(x + t[x ′ − x]),

= g(x + t[x ′ − x])†(x ′ − x).

We have:

φ(1) − φ(0) = g(x ′)†(x ′ − x) − g(x)†(x ′ − x),

= (g(x ′) − g(x))
†
(x ′ − x),

2.6 Solutions of optimization problems 61

Fig. 2.23. Four examples
of non-convex sets.

and so we must prove that φ(1) − φ(0) ≥ 0. Notice that:

dφ

dt
(t) = (x ′ − x)

† J (x + t[x ′ − x])(x ′ − x), by the chain rule [72, section 2.4],

≥ 0, for 0 ≤ t ≤ 1, since J (x + t[x ′ − x]) is positive semi-definite. (2.25)

We have:

φ(1) = φ(0) +
∫ 1

t=0

dφ

dt
(t) dt,

by the fundamental theorem of integral calculus applied to φ,

(see Theorem A.2 in Section A.4.4.1 of Appendix A),

≥ φ(0), since the integrand is non-negative everywhere by (2.25),

(see Theorem A.3 in Section A.4.4.2 of Appendix A).

This is the result we were trying to prove. A similar analysis applies for J positive
definite, noting that the integrand is then strictly positive and continuous. �

In the proof of Theorem 2.3, we defined a subsidiary function φ and considered its
derivative. We will take a similar approach in several other proofs.

2.6 Solutions of optimization problems

We now consider solutions to optimization problems. We distinguish local and
global minima of optimization problems in Section 2.6.1 and strict and non-strict
minimizers in Section 2.6.2. In Section 2.6.3 we present some conditions to guar-
antee that a local minimum is a global minimum.

62 Problems, algorithms, and solutions

2.6.1 Local and global minima

2.6.1.1 Definitions

Recall Problem (2.8) and its minimum f �:

f � = min
x∈�

f (x).

Sometimes, we call f � in Problem (2.8) the global minimum of the problem to
emphasize that there is no x ∈ S that has a smaller value of f (x). We can also
define the weaker notion of a local minimum using a norm ‖•‖ to specify that
we are confining our attention locally to a particular subset of the feasible set S.
Given x�, a norm ‖•‖, and a “distance” ε > 0, the set of points x that satisfy
‖x − x�‖ < ε can be considered “close” or “local” to x� in that they are all within
a distance ε, as measured by the norm, from x�. We make:

Definition 2.13 Let ‖•‖ be a norm on Rn , S ⊆ Rn , x� ∈ S, and f : S → R. We say that
x� is a local minimizer of the problem minx∈� f (x) if:

∃ε > 0 such that ∀x ∈ S,
(∥∥x − x�

∥∥ < ε
)⇒ (f (x�) ≤ f (x)). (2.26)

The value f � = f (x�) is called a local minimum of the problem. �

A local minimum may or may not be a global minimum but if a problem possesses
a minimum then there is exactly one global minimum, by definition. The global
minimum is also a local minimum. There can be multiple global minimizers, mul-
tiple local minimizers, and multiple local minima.

If a point x̂ is not a local minimizer, then there are feasible points arbitrarily
close to x̂ having a lower value of objective. Formally, x̂ is not a local minimizer
if:

∀ε > 0, ∃xε ∈ S such that
(∥∥x̂ − xε

∥∥ < ε
)

and (f (x̂) > f (xε)). (2.27)

Notice that (2.27) is the negation of the statement in (2.26). It is very important to
get the order of the universal and existential quantifiers, ∀ and ∃, correct in (2.27).
(See Definition A.1.)

2.6.1.2 Examples

We illustrate local and global minima and minimizers (and points that are not min-
imizers) with three example problems. In each case, we must specify an objective
and a feasible region. In the first two examples, the functions are defined on R,
while in the third example, the functions are defined on R2.

2.6 Solutions of optimization problems 63

4 3 2 1 0 1 2 3 4
6

5

4

3

2

1

0

1

2

3

x

local and global
minimum and minimizer

f �

f ��

local minimum
and minimizer

not a local
minimum

f (x)

x�� x�x̂

Fig. 2.24. Local minima,
f � and f ��, with corre-
sponding local minimizers
x� and x��, over a set
S. The point x� is the
global minimizer and f �

the global minimum over
S.

Multiple local minimizers over a convex set In Figure 2.24, the function f :
R → R illustrated has two local minima, f � and f ��, with corresponding local
minimizers at x� = 3, x�� = −3 over the convex feasible region defined by S =
{x ∈ R| − 4 ≤ x ≤ 4}. The two local minima and minimizers are indicated with
bullets •. Only one of the two minima is the global minimum, with corresponding
global minimizer x� = 3.

In Figure 2.24, the point x̂ = 1.5, which is illustrated with a ◦, is one of many
points that are not local minimizers. For any arbitrarily small but positive ε, we
can find a point that is within a distance ε of x̂ = 1.5 and which has a smaller value
of objective. In particular, if the norm is the absolute value norm, then the point
1.5+ (ε/2) is within a distance ε of x̂ = 1.5 and has a lower value of the objective
than the point x̂ = 1.5.

For example, Figure 2.25 shows the same function as illustrated in Figure 2.24.
This figure illustrates that for ε = 1 there is a point, namely x̂ + (ε/2) = 2 and
illustrated with a bullet • in Figure 2.25, that is within a distance ε of x̂ = 1.5 and
which has lower value of objective than the point x̂ = 1.5. As another example,
Figure 2.26 shows that for ε = 0.5 there is a point, namely x̂ + (ε/2) = 1.75 and
illustrated with a bullet • in Figure 2.26, that is within a distance ε of x̂ = 1.5 and
which has lower value of objective than the point x̂ = 1.5. The point x̂ = 1.5 is
illustrated with a ◦ in both Figures 2.25 and 2.26. Moreover, for any value of ε > 0
it is possible to find a point within a distance ε of x̂ = 1.5 that has a lower value of
objective than the point x̂ = 1.5.

64 Problems, algorithms, and solutions

4 3 2 1 0 1 2 3 4
6

5

4

3

2

1

0

1

2

3

x

f (x)

x̂

Fig. 2.25. A point x̂ =
1.5, illustrated with a ◦,
that is not a local mini-
mizer and another point,
x̂ + (ε/2) = 2, illustrated
with a •, that is within a
distance ε = 1 of x̂ and has
a lower objective value.

4 3 2 1 0 1 2 3 4
6

5

4

3

2

1

0

1

2

3

x

f (x)

x̂

Fig. 2.26. A point x̂ =
1.5, illustrated with a ◦,
that is not a local mini-
mizer and another point,
x̂ + (ε/2) = 1.75, il-
lustrated with a •, that is
within a distance ε = 0.5
of x̂ and has a lower objec-
tive value.

Multiple local minimizers over a non-convex set Consider the non-convex set:

P = {x ∈ R| − 4 ≤ x ≤ 1 or 2 ≤ x ≤ 4}.

Figure 2.27 shows the restriction of the function in Figure 2.24 to P. (See Defi-
nition A.13.) In this case, over the set P there are three local minima with corre-
sponding local minimizers, x� = 3, x�� = −3, and x��� = 1, each indicated by a •.
The additional local minimum compared to Figure 2.24 is due to the characteristics
of the feasible set. Again, there is only one global minimum.

2.6 Solutions of optimization problems 65

4 3 2 1 0 1 2 3 4
6

5

4

3

2

1

0

1

2

3

x

local and global
minimum and minimizer

local minimum
and minimizer

local minimum
and minimizer

f (x)

x

f (x)

x�� x�x���

f �

f ��

f ���

Fig. 2.27. The local and
global minima and mini-
mizers of a problem over a
set P = {x ∈ R|−4 ≤ x ≤
1 or 2 ≤ x ≤ 4}.

Multiple local minimizers over a non-convex set in higher dimension As a
third example, consider Figure 2.28, which shows the contour sets of the function
f : R2 → R defined in (2.10) and repeated from Figure 2.8. The feasible set is
the shaded region on the contour plot in Figure 2.28. In this case there are two

local minima. The local minimizers, x� ≈
[

2.4
−0.1

]
and x�� ≈

[
0.8

−0.7

]
are again

indicated with bullets. There is only one global minimum and one global minimizer

x� ≈
[

2.4
−0.1

]
.

2.6.1.3 Discussion

The significance of the concept of a local minimum is that iterative algorithms
involve generating a sequence of successively “better” points that provide succes-
sively better values of the objective or closer satisfaction of the constraints or both.
That is, we will iteratively improve the solution by moving to a nearby better so-
lution until we decide that no further improvement is possible. With an iterative
improvement algorithm, we can usually only guarantee, at best, that we are moving
towards a local minimum and minimizer.

For example, if a minimization algorithm is applied to the objective and feasible
set in Figure 2.24 with the initial guess x (0) = −4, then it is reasonable to expect
that the algorithm will terminate with a point that is close to the local minimizer
x�� = −3, not the global minimizer x� = 3. (We say “reasonable to expect”
because the progress of the algorithm will actually depend on implementation de-
tails.) If the initial guess x (0) = 0.5 is chosen for the algorithm then it can be
expected to terminate close to the global minimizer.

66 Problems, algorithms, and solutions

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

Fig. 2.28. Contour sets
of the function defined
in (2.10) with feasible set
shaded. The two local
minimizers are indicated
by bullets. The heights
of the contours decrease

towards the point

[
1
3

]
.

On the other hand, if x (0) = 0.5 is chosen as the initial guess for the objective
and feasible set in Figure 2.27, then the algorithm can be expected to terminate
close to the local minimizer x��� = 1 of that problem. For the problem illustrated

in Figure 2.28, initial guesses such as x (0) =
[

1
−2

]
can be expected to result

in the algorithm terminating close to the local minimizer x�� but not the global

minimizer, while initial guesses such as x (0) =
[

2
−1

]
can be expected to result in

the algorithm terminating close to the global minimizer x�.

This observation suggests that one approach to the issue of multiple local min-
ima is to apply an algorithm several times to the problem with randomly chosen
initial guesses. For general discussions of finding global optima where there are
several local optima, see [91, 87]. The Journal of Global Optimization treats global
optimization.

However, as we will see in Section 2.6.3, if a problem has a certain property,
called “convexity,” then a local minimizer is a global minimizer. In this case, un-
der appropriate circumstances, we can guarantee that an iterative improvement al-
gorithm moves closer to a global minimizer at each iteration. As we will see in
Exercises 2.28 and 2.29, the problems illustrated in Figures 2.24–2.28 do not have
the property of convexity.

Most of the theorems in this chapter and the next that are stated in terms of global
optimality can be extended to results in terms of local optimality. Conversely, under

2.6 Solutions of optimization problems 67

4 3 2 1 0 1 2 3 4
0

1

2

3

4

5

6

7

8

9

10

x

f (x)

Fig. 2.29. A function with
multiple global minimiz-
ers. The set of minimizers
is indicated by a thick line.

assumptions of convexity, local optimality results can usually be extended to global
optimality results.

2.6.2 Strict and non-strict minimizers

2.6.2.1 Definitions

There can be more than one minimizer even if the minimum is global. In Fig-
ure 2.29, the function f : R → R illustrated has a single local minimum over the
feasible set S = {x ∈ R| − 4 ≤ x ≤ 4}. This local minimum is also the global
minimum. The global minimum is achieved by infinitely many (global) minimiz-
ers, namely, each point in the set {x ∈ R| − 1 ≤ x ≤ 1}. This set is indicated
by a thick line in Figure 2.29. We sometimes call these non-strict minimizers to
contrast with:

Definition 2.14 We say that x� ∈ S is a strict global minimizer of the problem minx∈� f (x)

if:

∀x ∈ S, (x 	= x�) ⇒ (f (x�) < f (x)).

The value f � = f (x�) is called a strict global minimum of the problem. �

We also define a local version:

Definition 2.15 We say that x� ∈ S is a strict local minimizer of the problem minx∈� f (x)

if:

∃ε > 0 such that ∀x ∈ S,
(
0 <

∥∥x − x�
∥∥ < ε

)⇒ (f (x�) < f (x)).

The value f � = f (x�) is called a strict local minimum of the problem. �

68 Problems, algorithms, and solutions

2.6.2.2 Examples

The two local minimizers, x� = 3 and x�� = −3, in Figure 2.24 are strict local
minimizers. One of them, x� = 3, is a also a strict global minimizer. All three local
minimizers, x� = 3, x�� = −3, x��� = 1, in Figure 2.27 are strict local minimizers.
One of them x� = 3, is also a strict global minimizer. The two local minimizers,

x� ≈
[

2.4
−0.1

]
and x�� ≈

[
0.8

−0.7

]
, in Figure 2.28 are strict local minimizers. One

of them, x� ≈
[

2.4
−0.1

]
, is also a strict global minimizer. The points in the set

{x ∈ R| − 1 ≤ x ≤ 1} in Figure 2.29 are global minimizers but are neither strict
local nor strict global minimizers.

2.6.3 Convex functions

We will introduce the powerful concept of convexity of a function and use it to
derive conditions for when a local minimum is in fact a global minimum. We have
already introduced the definition of convex sets in Section 2.5.3.2. The concept of
convexity applies both to sets and to functions, but the definitions are different for
each case. We will define convexity for functions in Section 2.6.3.1 and provide
some examples in Section 2.6.3.2. We then present a theorem that connects con-
vexity to uniqueness of solutions of optimization problems in Section 2.6.3.3 and
discuss the significance in Section 2.6.3.4. In Section 2.6.3.5 we provide two ways
to characterize convexity of functions that are often easier than verifying the def-
inition directly. We then present the important special case of quadratic functions
in Section 2.6.3.6. Much of the material is based on [70, section 6.4].

2.6.3.1 Definitions

The definition of convex function requires us to consider values of the function on
a convex “test” set. This is embodied in the following definition.

Definition 2.16 Let S ⊆ Rn be a convex set and let f : S → R. Then, f is a convex
function on S if:

∀x, x ′ ∈ S,∀t ∈ [0, 1], f ([1 − t]x + t x ′) ≤ [1 − t] f (x) + t f (x ′). (2.28)

If f : Rn → R is convex on Rn then we say that f is convex. A function h : S → Rr is
convex on S if each of its components h� is convex on S. If h : Rn → Rr is convex on Rn

then we say that h is convex. The set S is called the test set.
Furthermore, f is a strictly convex function on S if:

∀x, x ′ ∈ S, (x 	= x ′) ⇒ (∀t ∈ (0, 1), f ([1 − t]x + t x ′) < [1 − t] f (x) + t f (x ′)
)
.

If f : Rn → R is strictly convex on Rn then we say that f is strictly convex. A function

2.6 Solutions of optimization problems 69

4 3 2 1 0 1 2 3 4
0

1

2

3

4

5

6

7

8

9

10

x

f (x)

Fig. 2.30. Linear interpo-
lation of a convex func-
tion between points never
under-estimates the func-
tion. (For clarity, the
line interpolating f be-
tween x = 0 and x = 1
is drawn slightly above the
solid curve: it should be
coincident with the solid
curve.)

h : S → Rr is strictly convex on S if each of its components h� is strictly convex on S. If
h : Rn → Rr is strictly convex on Rn then we say that h is strictly convex. �

The condition in (2.28) means that linear interpolation of a convex function be-
tween any two points never under-estimates the function. Figure 2.30 repeats the
function of Figure 2.29 but with two pairs of points indicated and a linear interpo-
lation of f between each member of the pair shown as a dashed line. The linear
interpolation of f between points is never below the function values.

In practice, we often define a function f : Rn → R and then want to consider its
convexity on a convex set S ⊆ Rn . In this case, in Definition 2.16, we consider the
restriction of f to S. (See Definition A.13.) If the restriction f : S → R is convex
on S then we say that f is convex on S.

To test whether or not a function is convex we must also specify a convex test
set S. In the most straightforward case, the test set S is the whole of Rn . If the test
set is not specified, then we will assume that the test set is the whole of Rn and that
the function is defined on the whole of Rn; however, it is important to bear in mind
that without a convex test set, it is meaningless to ask whether or not a function is
convex. The identity [1− t] f (x)+ t f (x ′) = f (x)+ t[f (x ′)− f (x)] is often useful
in proving results.

Convex functions are partially differentiable “almost everywhere.” That is, they
are partially differentiable at all points except for a set of points of “measure”
zero [100, theorem 25.5].

We can also define the notion of concavity of a function:

Definition 2.17 Let S ⊆ Rn be a convex set and let f : S → R. We say that f is a
concave function on S if (− f) is a convex function on S. �

70 Problems, algorithms, and solutions

4 3 2 1 0 1 2 3 4
1

1 5

2

2 5

3

3 5

4

4 5

5

x

f

Fig. 2.31. A non-convex
function with convex level
sets.

2.6.3.2 Examples

A linear or affine function is convex and concave on any convex set. (See Exer-
cise 2.33.) The convexity and concavity of affine functions has important implica-
tions for linear programming problems.

The function f : R → R shown in Figure 2.24 is not convex on the convex set
S = {x ∈ R| − 4 ≤ x ≤ 4}. The function f : R → R shown in Figures 2.29
and 2.30 is convex on S = {x ∈ R| − 4 ≤ x ≤ 4} but not strictly convex on this
set. The function shown in Figure 2.5 is strictly convex on R2.

Qualitatively, convex functions are “bowl-shaped” [70, section 6.4] and have
level sets that are convex sets as specified in:

Definition 2.18 Let S ⊆ Rn and f : S → R. Then the function f has convex level sets
on S if for all f̃ ∈ R we have that L f (f̃) is a convex set. If f : Rn → R has convex level
sets on Rn then we say that f has convex level sets. �

(Some authors use the term quasi-convex for a function with convex level sets.)
A convex function has convex level sets. (See Exercise 2.34.) However, the

converse is not true. That is, a function with convex level sets need not itself be
a convex function. For example, Figure 2.31 shows a non-convex function having
convex level sets.

The convexity of the level sets of a convex function is illustrated in Figure 2.32
for the function f : R2 → R defined by:

∀x ∈ R
2, f (x) = (x1 − 1)2 + (x2 − 3)2 − 1.8(x1 − 1)(x2 − 3). (2.29)

In Exercise 2.48, this function is shown to be convex. The contour sets of this func-
tion are elliptical as illustrated in Figure 2.32 because the function is quadratic. The

2.6 Solutions of optimization problems 71

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

Fig. 2.32. Contour sets
C f (f̃) of the function
defined in (2.29). The
heights of the contours
decrease towards the point[

1
3

]
.

level sets of this function are filled ellipses. Filled ellipses are convex sets. Non-
quadratic convex functions have level sets that are convex but which are typically
not elliptical.

Figure 2.7 shows another example of a convex function. Figure 2.8 illustrates
the contour sets of this function. It has circular contour sets. A circle is a special
case of an ellipse.

The function shown in Figure 2.27 is defined on a non-convex set P = {x ∈
R| − 4 ≤ x ≤ 1 or 2 ≤ x ≤ 4}. The feasible set shown in Figure 2.28 is also
non-convex. To discuss convexity of the functions in these figures, we must re-
strict consideration to a convex subset of the domain of definition as discussed in
Exercise 2.29.

2.6.3.3 Relationship to optimization problems

Theorem 2.4 Let S ⊆ Rn be a convex set and f : S → R. Then:

(i) If f is convex on S then it has at most one local minimum over S.
(ii) If f is convex on S and has a local minimum over S then the local minimum is

the global minimum.
(iii) If f is strictly convex on S then it has at most one minimizer over S.

Proof We prove all three items by contradiction.

(i) For the sake of a contradiction, suppose that f is convex, yet that it has two local
minima over S; that is, there are two distinct values f � ∈ R and f �� ∈ R, say, with
f � 	= f �� that each satisfy Definition 2.13.

72 Problems, algorithms, and solutions

4 3 2 1 0 1 2 3 4
6

5

4

3

2

1

0

1

2

3

x

f ��−

x��

f � −

x�

f (x)

Fig. 2.33. Multiple min-
ima and minimizers in
proof of Theorem 2.4,
Item (i).

For concreteness, suppose that f � > f �� and let x� ∈ S and x�� ∈ S be any two
local minimizers associated with f � and f ��, respectively. The situation is illustrated in
Figure 2.33. The solid line shows f (x) as a function of x while the dashed line shows
the linear interpolation of f between x� and x��.

We are going to show that x� satisfies the condition (2.27) for x� not to be a local
minimizer, which we repeat here for reference:

∀ε > 0, ∃xε ∈ S such that
(∥∥x� − xε

∥∥ < ε
)

and (f (x�) > f (xε)).

We have:

∀t ∈ [0, 1], f (x� + t[x�� − x�]) ≤ f (x�) + t[f (x��) − f (x�)],

by convexity of f ,

= f � + t[f �� − f �],

by definition of f � and f ��,

< f �, for 0 < t ≤ 1, since f � > f ��,

= f (x�). (2.30)

For 0 ≤ t ≤ 1, we have x�+ t (x��−x�) ∈ S since S is convex. But this means that there
are feasible points arbitrarily close to x� that have a lower objective value. In particular,
given any norm ‖•‖ and any number ε > 0, we can define xε = x� + t (x�� − x�) where
t is specified by:

t = min

{
1,

ε

2 ‖x�� − x�‖
}

.

2.6 Solutions of optimization problems 73

Note that xε ∈ S since 0 ≤ t ≤ 1 and that xε satisfies:∥∥x� − xε
∥∥ = ∥∥x� − [x� + t (x�� − x�)]

∥∥ , by definition of xε ,

= ∥∥−t (x�� − x�)
∥∥ ,

= |t | × ∥∥x�� − x�
∥∥ , by Property (iv) of norms,

≤ ε

2 ‖x�� − x�‖
∥∥x�� − x�

∥∥ , by definition of t ,

= ε/2,

< ε.

Furthermore 0 < t ≤ 1 by construction, so by (2.30):

f (x�) > f (xε).

That is, x� satisfies (2.27) and is therefore not a local minimizer of f , which is a con-
tradiction. As suggested by the “hump” in f at x ≈ −1, the situation illustrated in
Figure 2.33 is inconsistent with the assumption that f is convex. We conclude that f
has at most one local minimum.

(ii) ([11, proposition B.10]) Suppose that the local minimum is f � ∈ R with corre-
sponding local minimizer x� ∈ S. Suppose that it is not a global minimum and mini-
mizer. That is, there exists x�� ∈ S such that f �� = f (x��) < f (x�). Then the same
argument as in Item (i) shows that f � is not a local minimum.

(iii) Suppose that f is strictly convex, yet that it has two local minimizers, x� 	= x��,
say. Since f is convex, then by Item (i), both minimizers correspond to the unique
minimum, say f �, of f over S. We have:

∀t ∈ (0, 1), f (x� + t[x�� − x�]) < f (x�) + t[f (x��) − f (x�)],

by strict convexity of f ,

= f � + t[f � − f �], by definition of f �,

= f �,

which means that neither x� nor x�� were local minimizers of f , since feasible points
of the form x� + t (x�� − x�) have a lower objective value for all t ∈ (0, 1). That is,
by a similar argument to that in Item (i), we can construct a feasible xε that is within a
distance ε of x� having a smaller value of objective than x�.
�

We combine the notions of convexity of a set and of a function in the following
definition.

Definition 2.19 If S ⊆ Rn is a convex set and f : Rn → R is convex on S, then
minx∈� f (x) is called a convex optimization problem or a convex problem. �

74 Problems, algorithms, and solutions

2.6.3.4 Discussion

Local versus global minimizers Theorem 2.4 shows that a convex problem has
at most one local minimum. Moreover, if we find a local minimum for a convex
problem, it is in fact the global minimum. If we have a strictly convex function and
find a local minimizer, then the minimizer is unique. We emphasize: we will see
that the nature of our iterative algorithms is that we can only guarantee, at best, that
the sequence of iterates converges to a local optimizer. If the problem is convex,
however, the local optimizer is global. Convexity is therefore a very important
property that we should seek in problem formulation.

Choice of step directions Convexity enables us to relate the two goals of:

(i) moving from the current iterate in a direction that decreases the objective
while still maintaining feasibility, and

(ii) moving from the current iterate towards the minimizer of the problem.

The second goal is important; however, since we do not know the value of the
minimizer, we must usually be content to choose step directions that satisfy the
first goal. If we have a convex problem, then these goals are not inconsistent.
For example, suppose that the current iterate is x (ν), while x� is a minimizer of
the convex function f over the convex feasible set S. The step direction �x (ν) =
x� − x (ν) points in a direction from x (ν) that satisfies both goals as Exercise 2.35,
Parts (i) and (ii) show.

In contrast, with a non-convex problem, moving in the direction of the minimizer
might yield a point that is not feasible or increase the objective as Exercise 2.35,
Parts (iii) and (iv) show.

Convex problems and generalizations Exercise 2.36, Part (iii) shows that a min-
imization problem:

min
x∈�n

{ f (x)|g(x) = 0, h(x) ≤ 0}
that has:

• a convex objective f : Rn → R,
• an affine equality constraint function g : Rn → Rm , with ∀x ∈ Rn, g(x) =

Ax − b, and
• a convex inequality constraint function h : Rn → Rr ,

is a convex problem. Our choice of a minimization problem and form of the in-
equality constraints was chosen specifically so that convex objective, convex in-
equality constraint function, and affine equality constraint function yield a convex
problem.

2.6 Solutions of optimization problems 75

Exercise 2.36, Part (iii) shows that it is possible to have a convex problem that
involves non-convex constraint functions; however, the analysis is much simpler
with convex functions. In Section 2.6.3.5, we will investigate several tests for
convexity of a function.

If a problem is not convex, then it is still possible to apply the various algorithms
we will describe. It is, however, not in general possible to guarantee global or
even local optimality for the results of applying the algorithms. As mentioned
in Section 2.6.1.3, a typical approach to this situation is to re-start an iterative
algorithm from various randomly chosen points and check if the solution from
each starting point is consistent.

Furthermore, there are various conditions that are weaker than the ones we
present that still guarantee that there is a unique local optimum to the problem.
The most straightforward of these is to allow the objective function to have convex
level sets. (See Definition 2.18.) A function with convex level sets has only one
local minimum over a convex set. For example, Figure 2.31 shows a non-convex
function that has convex level sets on S = {x ∈ R| − 4 ≤ x ≤ 4}. It has a single
local minimum over any convex region contained in S. In particular, it has a single
local minimum over the feasible set S = {x ∈ R| − 4 ≤ x ≤ 4}.

Analysis under these and other generalizations of convex functions appears in [6,
chapter 3][15, chapter 3 and appendix B][105]. Exercises 2.39 and 2.40 provide
the flavor of some of these generalizations.

Most of the objectives that we will consider in this book are partially differen-
tiable with continuous partial derivatives as well as being convex. We will briefly
discuss convex functions having points of non-differentiability in Section 3.1.3 and
Section 3.1.4. Further discussion of such convex, non-differentiable functions ap-
pears in [6, chapter 3][11, section 6.3][106].

Maximizing a convex function Although we will mostly be concerned with min-
imizing a function, here we will briefly consider maximizing a convex function.
We first make:

Definition 2.20 Let S ⊆ Rn and x ∈ S. We say that x is an extreme point of S if:

∀x ′, x ′′ ∈ S,
(
(x ′ 	= x) and (x ′′ 	= x)

)⇒ (
x 	= 1

2
(x ′ + x ′′)

)
.

�

That is, x is an extreme point of S if it cannot be expressed as the “average” of
two other points in S. Moreover, x is not an extreme point if it can be expressed
as the average of two other points. For a set defined in terms of affine equalities
and inequalities, the extreme points are its vertices. For example, in Figure 2.22,

76 Problems, algorithms, and solutions

there are three polygons. The extreme points of each polygon are its vertices. The
interior and edges of the polygon (not including its vertices) are not extreme points.
As another example, the extreme points of the dodecahedron in Figure 2.14 are its
vertices.

On the other hand, for a set such as a disk or a filled ellipse, all of the points
on its boundary are extreme points. In Figure 2.22, the extreme points of the filled
ellipse are the points on the ellipse.

We have the following:

Theorem 2.5 Let S ⊆ Rn be a convex set and f : S → R be convex on S. Consider the
maximization problem:

max
x∈�

f (x),

Suppose this problem possesses a maximum. Then there is a maximizer of this problem
that is an extreme point of S.

Proof See Exercise 2.44. �

In principle, we can maximize a convex objective over a convex set by searching
over all the extreme points of the feasible set. There may be a very large number of
extreme points of a set and this approach is not practical in general. However, for
affine objectives and affine constraints (and some other cases), this approach leads
to a practical method of optimization: the simplex method of linear programming.
We will discuss the simplex method in Chapter 16.

2.6.3.5 Characterizing convex functions

The definition of convexity of a function, Definition 2.16, is not very convenient to
apply in practice since the condition in (2.28) involves testing every pair of points
in a set. This is analogous to the difficulty with characterizing monotone functions
using the condition in (2.24). As with testing for monotone functions, there are
alternative characterizations that are easier to apply than the definition. We have
the following theorems relating convexity to the first and second derivatives of the
function.

First derivative We will first describe a test for convexity that involves the first
derivative of the function.

Theorem 2.6 Let S ⊆ Rn be a convex set and suppose that f : S → R is partially
differentiable with continuous partial derivatives on S. Then f is convex on S if and
only if:

∀x, x ′ ∈ S, f (x) ≥ f (x ′) +∇ f (x ′)†(x − x ′). (2.31)

2.6 Solutions of optimization problems 77

4 3 2 1 0 1 2 3 4
0

1

2

3

4

5

6

7

8

9

10

x

f (x), φ(x)

Fig. 2.34. First-order Tay-
lor approximation about
x = −2 (shown dashed)
and about x = 3 (shown
dotted) of a convex func-
tion (shown solid).

Proof See Appendix B. �

The function φ : Rn → R on the right-hand side of (2.31) defined by:

∀x ∈ R
n, φ(x) = f (x ′) +∇ f (x ′)†

(x − x ′),

is called the first-order Taylor approximation of the function f , linearized about
x ′. The expression ∇ f (x ′)†

�x is called the directional derivative of f at x ′ in
the direction �x . (See Definition A.37.) The function φ captures the “first-order
behavior” of f nearby to x ′ in the direction �x = x − x ′.

The inequality in (2.31) shows that the first-order Taylor approximation of a
convex function never over-estimates the function as illustrated in Figure 2.34. We
will return to the topic of first-order Taylor approximations and the related topic of
Taylor’s theorem in Section 7.1.2.

The lower bound on f provided by the inequality in (2.31) should be compared
to the upper bound on f in the definition of convexity as illustrated in Figure 2.30.
Combining the upper bound on a convex function using the definition of convexity
with the lower bound using the first-order Taylor approximation allows us to “sand-
wich” the values of a function between two affine functions. This is illustrated in
Figure 2.35. (See Exercise 2.47.)

Second derivative We will also describe a test for convexity involving positive
semi-definiteness of the matrix of second derivatives, which is called the Hessian
and is denoted ∇2f or ∇2

xx f . (See Definition A.38.)
In the particular case that f : R → R then ∇2f is a 1×1 matrix-valued function.

A 1×1 matrix is positive semi-definite if its entry is non-negative and it is positive
definite if its entry is strictly positive. For f : R2 → R, ∇2f is a symmetric 2 × 2

78 Problems, algorithms, and solutions

4 3 2 1 0 1 2 3 4
0

1

2

3

4

5

6

7

8

9

10

x

f (x), φ(x)

Fig. 2.35. Sandwiching of
convex function between
two affine functions. The
first-order Taylor approx-
imation about x = −2
(shown dashed) is a lower
bound to the function. The
linear interpolation of f
between x = −3 and
x = −0.5 (shown dash-
dotted) is an upper bound
to the function on the inter-
val {x ∈ R| − 3 ≤ x ≤
−0.5}.

matrix-valued function. A symmetric 2×2 matrix is positive definite if its diagonal
entries and its determinant are strictly positive. (See Exercises 2.45 and 2.46.)

In general, a positive semi-definite n × n matrix may have both positive and
negative entries so that it may not be obvious that a given matrix is positive defi-
nite or positive semi-definite. That is, non-negativity of the entries of a matrix is
neither sufficient nor necessary for positive semi-definiteness of the matrix. (See
Exercise 2.49.)

In Section 5.4.6, we will see how to systematically identify positive definite
and positive semi-definite matrices. Here we will be satisfied with making the
connection between the positive semi-definiteness of ∇2f and convexity of f in:

Theorem 2.7 Let S ⊆ Rn be convex and suppose that f : S → R is twice partially
differentiable with continuous second partial derivatives on S. Suppose that ∇2f is
positive semi-definite throughout S. (See Definition A.59.) Then f is convex on S. If
∇2f is positive definite throughout S then f is strictly convex throughout S.

Proof See Appendix B. �

Exercise 2.50 explores the case when the second derivative matrix is not positive
semi-definite. This yields a result concerning conditions for a function to not be
convex.

Note that if ∇2f is positive definite then by applying Theorems 2.2 and 2.3 to
∇ f we find that the simultaneous equations ∇ f (x) = 0 have at most one solution.
We will see in Part III that necessary conditions for x� to be an unconstrained min-
imizer of f are that ∇ f (x�) = 0. We will apply this in Section 10.1.4 to identify
conditions for a unique minimizer of an unconstrained optimization problem.

2.6 Solutions of optimization problems 79

2.6.3.6 Further examples of convex functions

In this section, we present some more examples of convex functions.

Quadratic functions Consider a quadratic function f : Rn → R defined by:

∀x ∈ R
n, f (x) = 1

2
x†Qx + c†x, (2.32)

where Q ∈ Rn×n and c ∈ Rn are constants and Q is symmetric. (See Defini-
tions A.20 and A.21.) The Hessian of this function is Q, which is constant and
independent of x . (See Exercise A.10.)

Consider a quadratic function f : Rn → R defined as in (2.32). If the matrix Q
is positive definite then the contour sets of f are elliptical, while if Q is positive
semi-definite and not positive definite, then the contour sets are “cylindrical.” In
both of these cases, f is convex as shown in Exercise 2.49, Parts (i)–(iii).

If Q is not positive semi-definite, then the contour sets are “hyperbolic.” The
corresponding function f is not convex. (See Exercise 2.49, Part (iv).)

Piece-wise functions and point-wise maxima Sometimes a function is defined
by building up its definition over several regions. That is, we think of the function
as being made of pieces that fit together. In general, piece-wise functions may or
may not be convex even if the underlying pieces are convex on their respective
regions. For example, consider the function f : R → R defined by:

∀x ∈ R, f (x) =
{

(x + 5)2, if x ≤ 0,
(x − 5)2, if x > 0.

This function is defined in terms of two pieces: one of the pieces defines the values
of f (x) for the region consisting of negative values of x . The other piece defines
the values of f (x) for the region consisting of positive values of x . On each piece,
the function defining the piece is a convex quadratic function. This function is
illustrated in Figure 2.36 and it is clearly not convex. In summary, functions that
are defined piece-wise in terms of convex functions are not necessarily convex.

It turns out, however, that if a function can be interpreted as the point-wise
maximum of underlying convex functions then it is convex. This situation arises
in problems where the objective itself is defined as the result of a subsidiary opti-
mization problem. For example, suppose that f� : Rn → R for � = 1, . . . , r and
define f : Rn → R by:

∀x ∈ R
n, f (x) = max

�=1,...,r
f�(x). (2.33)

That is, f is the point-wise maximum of the individual functions f�. Such objec-
tives arise when there are a number of issues that must be considered simultane-
ously and we are concerned about the worst-case of all the issues. If each of the

80 Problems, algorithms, and solutions

4 3 2 1 0 1 2 3 4
0

5

10

15

20

25

30

x

f (x)

Fig. 2.36. Example of a
piece-wise quadratic non-
convex function.

functions f� are convex then the point-wise maximum of them is also convex. (See
Exercise 2.52.)

Figure 2.37 shows the two functions f1, f2 : R → R defined by:

∀x ∈ R, f1(x) = (x + 5)2,

∀x ∈ R, f2(x) = (x − 5)2.

Each of these functions is convex.
Figure 2.38 shows the function f : R → R defined by:

∀x ∈ R, f (x) = max{ f1(x), f2(x)},
= max{(x + 5)2, (x − 5)2}.

We can also interpret this function as being defined as a piece-wise quadratic func-
tion:

∀x ∈ R, f (x) =
{

(x + 5)2, if x ≥ 0,
(x − 5)2, if x < 0.

By Exercise 2.52, this function is convex.

2.7 Sensitivity and large change analysis

2.7.1 Motivation

In many cases, the solution of a particular set of simultaneous equations or a par-
ticular optimization problem forms only a part of a larger design process. For
example, consider a factory owner faced with the problem of operating equipment
in the factory to optimize some criterion, such as maximizing profits. The solu-
tion of the maximum operating profit problem will suggest optimal settings of the

2.7 Sensitivity and large change analysis 81

4 3 2 1 0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

x

f1(x), f2(x)

Fig. 2.37. Functions used
to define point-wise maxi-
mum.

4 3 2 1 0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

x

f (x)

Fig. 2.38. Example of a
piece-wise quadratic con-
vex function.

equipment and optimal purchases of raw materials to maximize operating profits,
given the configuration of equipment in the factory.

The owner may also be interested in purchasing more pieces of equipment or
otherwise modifying the configuration of the factory in a way that is not directly
captured by the decision vector of the optimal operation problem. The owner will
want to calculate the potential operating profits of the new configuration given that
the new configuration is also to be operated optimally. The optimal operation of
the new configuration can be expected to differ from the optimal operation of the
old configuration. Furthermore, the owner will want to be able to estimate the
change in operating profits from the current configuration of the factory to the new
configuration to assess whether or not the new purchase is justified by the higher
operating profits. The owner may also be interested in assessing by how much the
operating profits change if the cost of raw materials changes.

82 Problems, algorithms, and solutions

A straightforward way to calculate:

• the optimal settings of the new configuration, or
• the change in operating profit due to a change in raw materials costs,

is to formulate and solve the operational problem corresponding to the new con-
figuration or new costs. Exercise 2.54 gives an example of this kind of analysis,
which involves explicitly solving a “base-case” corresponding to the old configu-
ration and a “change-case” corresponding to the new configuration.

2.7.2 Parameterization

Let us represent the change in the problem by supposing that the problem is pa-
rameterized by a vector χ ∈ Rs . The vector of parameters χ represents the parts of
the problem that are being changed. For example, it might represent a specification
of the configuration of the factory in the example above.

In the case of linear equations, instead of a fixed coefficient matrix and right-
hand side vector, we assume that we have matrix-valued and vector-valued func-
tions A : Rs → Rm×n and b : Rs → Rm and that we want to solve the linear
simultaneous equations:

A(χ)x = b(χ).

We might have particular values of the parameters, for example χ = 0, in mind for
the base-case and we solve the base-case equations A(0)x = b(0) for a base-case
solution x�. We might then want to solve the equations for another value of χ and
we consider solving A(χ)x = b(χ) for the change-case solution.

More generally, we can imagine a function g : Rn×Rs → Rm , where the second
(vector) argument is the parameter χ ∈ Rs . We will represent the dependence on a
parameter notationally by putting a semi-colon between the first and second vector
argument of the function. That is, we write g(x;χ) for g evaluated at x , given the
value χ of the parameter. If we want to consider the function for a particular value
of χ , we write g(•;χ).

In the case of non-linear simultaneous equations, we consider solving:

g(x;χ) = 0,

for x , given a particular value of the parameter χ . We typically have a particular
set of base-case conditions in mind, for example specified by χ = 0, and we are
also interested in solving the simultaneous equations for change-case conditions.

Even more generally, we can imagine functions f : Rn × Rs → R, g :
Rn × Rs → Rm , and h : Rn × Rs → Rr . In each case, χ is a parameter in
the evaluation of the function and we again put a semi-colon between the first and

2.7 Sensitivity and large change analysis 83

second argument of the function. In the case of an optimization problem, we con-
sider solving:

min
x∈�n

{ f (x;χ)|g(x;χ) = 0, h(x;χ) ≤ 0}.
Again, we typically have a set of base-case conditions corresponding to χ = 0 and
also want to solve the problem for non-zero values of χ .

In Exercise 2.54, for example, χ =
[

γ

η

]
∈ R2 and γ and η are parameters in

the definition of the constraint functions in an inequality-constrained problem. The
particular value χ = 0 specifies the base-case. We find both the base-case and
change-case solutions in Exercise 2.54.

2.7.3 Sensitivity

It is typical that many new configurations must be analyzed. Moreover, each new
configuration may represent only a small change to the existing configuration. In
these circumstances, it would be very convenient to be able to use the solution to
the existing problem and apply sensitivity analysis; that is, calculate the partial
derivatives of the minimum and minimizer with respect to the entries of χ , eval-
uated at the base-case solution corresponding to χ = 0, and estimate the change
in the solution based on the partial derivatives. Abusing notation, we will consider

f � and x� to be functions of χ and write
∂ f �

∂χ
and

∂x�

∂χ
for the sensitivities of the

minimum and minimizer with respect to χ . We will generally only evaluate these
sensitivities for χ = 0.

In Exercise 2.54, Parts (ii) and (iii), we calculate these sensitivities by explicitly
solving the change-case problem as a function of the parameters and differentiating
the results. In general, we would prefer not to have to solve the change-case explic-
itly in order to calculate the derivatives. We will develop techniques to calculate
sensitivities directly from the solution of the base-case problem without having to
explicitly re-solve the problem [34, chapter 1].

2.7.4 Large changes

We also may need to estimate the change in the solution due to a large change in
the value of χ in the problem, where by “large change” we mean a change that is
so large that analysis based on the derivatives is or may be inaccurate. Again, we
would prefer not to have to solve the change-case explicitly as in Exercise 2.54,
Part (i). We will also develop techniques to be able to calculate the effect of large
changes in linear simultaneous equations using the solution of the base-case prob-
lem.

84 Problems, algorithms, and solutions

2.7.5 Examples

In this section we consider examples of sensitivity analysis for each of the five
problem classes.

2.7.5.1 Linear simultaneous equations

Consider the linear simultaneous equations defined in (2.2) in Section 2.2.2 but
suppose that the coefficient matrix and right-hand side were parameterized so that
A : R → R2×2 and b : R → R2 were specified by:

∀χ ∈ R, A(χ) =
[

1 2 + χ

3 4

]
, b(χ) =

[
1
1 + χ

]
. (2.34)

We may be interested in the sensitivity of the solution x� of A(χ)x = b(χ) to χ ,
evaluated at χ = 0. We will return to this example in Section 5.6.1.3.

2.7.5.2 Non-linear simultaneous equations

Consider the non-linear equations defined in (2.6) in Section 2.2.2.2 but suppose
that the equations were parameterized so that g : R × R → R was specified by:

∀x ∈ R, ∀χ ∈ R, g(x;χ) = (x − 2 − sin χ)3 + 1.

We may be interested in the sensitivity of the solution x� of g(x;χ) = 0 to χ ,
evaluated at χ = 0. We will return to this example in Section 7.5.1.2.

2.7.5.3 Unconstrained minimization

Consider the unconstrained minimization problem with the objective f defined
in (2.10) in Section 2.3.1 but suppose that the objective was parameterized so that
f : R2 × R → R was specified by:

∀x ∈ R
2, ∀χ ∈ R, f (x;χ) = (x1 − exp(χ))2 + (x2 − 3 exp(χ))2 + 5χ.

We may be interested in the sensitivity of the minimum and minimizer of the prob-
lem minx∈�2 f (x;χ) to χ , evaluated at χ = 0. We will return to this example in
Section 10.3.2.

2.7.5.4 Equality-constrained minimization

Consider the equality-constrained problem defined in (2.13) in Section 2.3.2:

min
x∈�2

{ f (x)|Ax = b},

where the objective f : R2 → R and the coefficient matrix A ∈ R1×2 are defined
by:

∀x ∈ R
2, f (x) = (x1 − 1)2 + (x2 − 3)2,

A = [
1 −1

]
.

2.7 Sensitivity and large change analysis 85

However, suppose that the right-hand side was parameterized so that b : R → R

was defined by:

∀χ ∈ R, b(χ) = [−χ].

We may be interested in the sensitivity of the minimum and minimizer of the prob-
lem minx∈�2{ f (x)|Ax = b(χ)} to χ , evaluated at χ = 0. We will return to this
example in Section 13.4.4.

2.7.5.5 Inequality-constrained minimization

Consider the inequality-constrained Problem (2.18) in Section 2.3.2:

min
x∈�2

{ f (x)|g(x) = 0, h(x) ≤ 0},

where the objective f : R2 → R and equality constraint function g : R2 → R are
defined by:

∀x ∈ R
2, f (x) = (x1 − 1)2 + (x2 − 3)2,

∀x ∈ R
2, g(x) = x1 − x2.

However, suppose that the inequality constraint function was parameterized so that
h : R2 × R → R was defined by:

∀x ∈ R
2, ∀χ ∈ R, h(x;χ) = 3 − x2 − χ.

We may be interested in the sensitivity of the minimum and minimizer of the prob-
lem minx∈�2{ f (x)|g(x) = 0, h(x;χ) ≤ 0} to χ , evaluated at χ = 0. We will
return to this example in Section 17.4.3.

2.7.6 Ill-conditioned problems

2.7.6.1 Motivation

For many problems, a small change in the specification of the problem leads to a
correspondingly small change in the minimum and minimizer. That is, the sensi-
tivity of the minimizer and minimum to a change in the problem specification is
small. In contrast, we make:

Definition 2.21 A problem is said to be ill-conditioned if a relatively small change in the
problem specification leads to a relatively large change in the solution. �

We will interpret “large change” in two ways. In particular, a large change in the
solution could be:

• qualitative, if a change in the problem specification changed the nature of the
solution or affected the feasibility of an optimization problem, or

86 Problems, algorithms, and solutions

• quantitative, if, for some parameter χ in the problem specification, the sensitiv-

ities
∂ f �

∂χ
or

∂x�

∂χ
were large.

Ill-conditioned problems are often a sign of an impractical formulation because
numerical values in a problem formulation are inevitably subject to error.

For example, suppose that a measured quantity q in a problem specification is
subject to as small relative error of, say, ε � 1. That is, the error in the measured
quantity is εq . However, suppose that such an error leads to a relative change in
the minimum f � or minimizer x� that is much larger than ε f � or εx�, respectively.
In this case, we should be very cautious about using the results from this model
because errors in the data will produce large errors in the results. In a practical
implementation of the calculation that involves finite precision arithmetic, repre-
sentation and round-off errors can introduce significant discrepancies between the
computed and the exact solution of an ill-conditioned problem.

2.7.6.2 Simultaneous equations example

Consider simultaneous equations that are redundant. For example, suppose that
two entries, g1 and g2, of g : Rn → Rm are the same. Suppose that x� is a solution
of g(x) = 0, so that g1(x�) = g2(x�) = 0. Now suppose that g1 changes to g̃1 =
g1 + ε. Note that for all ε 	= 0, the equations g(x) = 0 are inconsistent. That is, an
arbitrarily small change in the problem specification results in a large qualitative
change in the solution: the problem changes from having a solution to having no
solution. That is, redundant simultaneous equations are ill-conditioned. For this
reason, we will generally try to avoid redundant equations in the formulation of
simultaneous equations problems and avoid redundancy in formulating equality
constraints in optimization problems.

2.7.6.3 Optimization example

As another example, suppose that we wish to minimize a convex function and con-
sider the problem of finding a step direction that points towards the minimizer of
the problem based on “local” derivative information about the function at a partic-
ular iterate x (ν). This problem is important in unconstrained optimization because
we usually cannot expect to know a step direction such as �x (ν) = x� − x (ν) that
would bring us directly to the minimizer since it requires knowledge of the mini-
mizer. Usually, we must rely on local information at the point x (ν). It will turn out
that the direction perpendicular to the surface of the contour set at a point is partic-
ularly easy to find. As we will see in Section 10.2.1, this direction is the negative
of the gradient of f evaluated at the point. (See Definition A.36.)

In the case that the contour sets of f are circular, as illustrated in Figure 2.8, the
direction perpendicular to the surface of the contour set points directly towards the

2.7 Sensitivity and large change analysis 87

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

Fig. 2.39. Directions per-
pendicular to contour sets.

unconstrained minimizer of f . Figure 2.39 repeats Figure 2.8, but superimposed
on the contour plot is a collection of points denoted by ◦. At each of these points
there is the tail of an arrow. Each arrow points in the direction given by the negative
of the gradient of f , which happens to be towards the minimizer of this function,

x� =
[

1
3

]
, which is shown as the •. In this particular case, the gradient of f is

sufficient to provide a direction that points towards the minimizer.

However, as illustrated in Figure 2.32, in the case that the contour sets are el-
liptical but not circular, movement perpendicular to the contour set will not point
directly towards the minimizer. Figure 2.40 repeats Figure 2.32 and again the ar-
rows show directions that are perpendicular to contour sets; that is, proportional to
the negative of the gradient of f . In this case, the arrows still point in a direction
that reduces the objective. However, the arrows do not point directly towards the
minimizer, which is shown as the •. That is, in this case, the negative of the gradi-
ent of f does not provide a direction that points directly towards the minimizer.

Unfortunately, if the contour sets are highly eccentric then the problem of find-
ing the direction that points towards the minimizer becomes ill-conditioned. To
understand why this is the case, imagine that the function changes slightly, so that

its minimizer is at x�� =
[

2
4

]
instead of x� =

[
1
3

]
.

A contour plot of the changed function is shown in Figure 2.41. The ellipses are
shifted up by one unit and to the right by one unit. The arrows in Figure 2.41 again
show directions that are proportional to the negative of the gradient of the changed

88 Problems, algorithms, and solutions

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

Fig. 2.40. Directions per-
pendicular to contour sets.

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

Fig. 2.41. Directions per-
pendicular to contour sets
for changed function.

function. The arrows in Figure 2.41 are in essentially the same direction as those
shown in Figure 2.40.

In summary, the change in minimizer has had negligible effect on the negative
of the gradient of the function. Conversely, a small change in the negative of the
gradient of f corresponds to a large change in the direction that points towards
the minimizer. Consider the problem of finding a direction that points towards the
minimizer of f using the information provided by the gradient of f . This problem
is ill-conditioned.

2.8 Summary 89

2.7.6.4 Discussion

In both examples, small changes in the problem led to large changes in the solution,
in either a qualitative or quantitative sense. We will consider ill-conditioning in
several contexts throughout the book.

2.8 Summary

In this chapter we have defined two main classes of problems:

(i) solution of simultaneous equations, and
(ii) optimization problems,

illustrating particular types of problems with elementary examples. We defined
direct and iterative algorithms and characterized:

• conditions for uniqueness of solution of simultaneous equations using the notion
of a monotone function,

• local and global and strict and non-strict minima and minimizers of optimization
problems using the notion of convexity, and

• conditions for uniqueness of a local minimum and minimizer.

We also discussed sensitivity analysis and ill-conditioned problems.
In subsequent chapters we will:

• discuss transformations of problems,
• describe case studies that illustrate the various types of problems in detail,
• present algorithms for each case study that take advantage of various problem

characteristics,
• apply problem transformations where necessary, and
• analyze the solutions of the case studies and their sensitivity to changes in prob-

lem specification.

Exercises

Problems

2.1 Find the set of solutions to the linear simultaneous equations Ax = b, with A ∈ R1×1,
x ∈ R1, and b ∈ R1, and where:

(i) A = [1], b = [1],
(ii) A = [0], b = [1],
(iii) A = [0], b = [0].

90 Problems, algorithms, and solutions

2.2 Prove that x� = −3, 1 are the only solutions to g(x) = 0, where g : R → R was
defined in (2.4). (Hint: You must prove that any other value cannot satisfy the equation. A
sketch of g(x) versus x may be useful to suggest an approach.)

2.3 Let f : R → R be defined by:

∀x ∈ R, f (x) = (x − 2)2 + 1,

and let S = R.

(i) Find minx∈� f (x),
(ii) Find argminx∈� f (x).

2.4 Show that any number f ∈ R such that f ≤ 1 is a lower bound for the problem
minx∈� f (x), where f : R → R is the function defined in Exercise 2.3.

2.5 Let S ⊆ Rn and f : S → R and suppose that f � is the minimum of minx∈� f (x).
Also suppose that f ∈ R satisfies f ≤ f �. Show that f is a lower bound for minx∈� f (x).

2.6 Let h : R2 → R2 be defined by:

∀x ∈ R
2, h(x) = −x,

(that is, ∀x ∈ R2, h1(x) = −x1, h2(x) = −x2) and consider the constraints h(x) ≤ 0. For
each of the points:

x� =
[

0
0

]
, x�� =

[
0
1

]
, x��� =

[
1
1

]
,

answer the following:

(i) Is h1(x) ≤ 0 active for the point?
(ii) Is h2(x) ≤ 0 active for the point?
(iii) What is the active set for the point?
(iv) Is the point strictly feasible for the constraint h1(x) ≤ 0?
(v) Is the point strictly feasible for the constraint h2(x) ≤ 0?
(vi) Is the point strictly feasible for the constraints h(x) ≤ 0?
(vii) Is the point on the boundary of {x ∈ R2|h(x) ≤ 0}?

Arrange your answer as a table with a column for each of the points x�, x��, and x��� and
seven rows for Parts (i) (vii).

2.7 Consider the function f : R2 → R defined in (2.7):

∀x ∈ R
2, f (x) = (x1)

2 + (x2)
2 + 2x2 − 3.

(i) Sketch C f (f̃) for f̃ = 0, 1, 2, 3.
(ii) Sketch on the same graph the set of points satisfying g(x) = 0 where g : R → R

is defined by:

∀x ∈ R
2, g(x) = x1 + 2x2 − 3.

Exercises 91

� �
� �� �� �

Customer
1

service

Customer
2

service

Customer 3 service

• • •
X

a

Y

b

Z

Fig. 2.42. Data communi-
cations network.

(iii) Use your sketch to find the minimum and minimizer of min
x∈�2

{ f (x)|g(x) = 0}.

2.8 Suppose that you own a data communications network that has just three customers:
customers k = 1, 2, 3. The network consists of two backbone “links:” link a that joins
point X to point Y and link b that joins point Y to point Z, respectively. Links a and b have
capacities ca and cb, respectively, that represent the maximum bandwidth that the links can
carry. The arrangement is shown in Figure 2.42.

The three customers desire the following services.

• Customer 1 desires service from point X to point Y, requiring bandwidth on link a.
• Customer 2 desires service from point Y to point Z, requiring bandwidth on link

b.
• Customer 3 desires service from point X to point Z, requiring bandwidth on both

link a and link b.

Utilization of bandwidth on a link is additive. That is, the total load on a link is equal to
the sum of the loads of the customers on that link. For each link, the total load on the link
must be less than or equal to the link capacity for the load to be feasible.

You would like to allocate bandwidth to the customers in a systematic way. Somehow,
the customers can communicate their “willingness-to-pay” or “utility” for services. That is,
each customer k can provide a function fk : R+ → R that represents how much customer
k values any particular desired (non-negative) level of service. Let us assume that these
desires are commensurable; that is, they can legitimately be added together to determine
overall utility for all the customers. (See Section 2.3.1.1.) We would like to maximize the
overall value of all customers’ use of the network.

Cast this problem into an optimization problem of the form:

max
x∈�n

{ f (x)|Ax = b,Cx ≤ d},

where f : Rn → R is a function, A and C are matrices, and b and d are vectors. Make
sure that the feasible set does not contain any points for which the functions fk are not
defined. Specify the following explicitly.

(i) The variables in the formulation and their definitions. (Hint: Use n = 3 variables
to represent the service delivered to the three customers.)

(ii) The objective. (You can specify this function in terms of functions already defined.)
(iii) The matrix and vector specifying the equality constraints, if any.
(iv) The matrix and vector specifying the inequality constraints, if any.

92 Problems, algorithms, and solutions

Algorithms

2.9 Consider the non-linear simultaneous equations:

a(x)2 + b(y)2 = c,

A(x)2 + B(y)2 = C,

where x, y ∈ R are unknowns and a, b, c, A, B,C ∈ R are fixed parameters that satisfy:

aB − Ab 	= 0.

Consider the transformation X = (x)2 and Y = (y)2.

(i) Write down the solutions of:

aX + bY = c,

AX + BY = C.

(ii) What are the conditions on a, b, c, A, B,C to yield real solutions in x, y?
(iii) Given that the conditions in Part (ii) hold, find all the solutions of the non-linear

simultaneous equations.

2.10 Show that there is no direct algorithm that, given an arbitrary differentiable function
f : Rn → R, can find the minimum and all minimizers of the unconstrained minimization
problem minx∈�n f (x). (Hint: Use the result from Section 2.4.1.2 that there is no direct al-
gorithm that can solve simultaneous non-linear equations in arbitrary fifth or higher degree
polynomials [112, theorem 15.7].)

2.11 Suppose that the sequence of iterates generated by a particular algorithm satisfied:

∀ν ∈ Z+, x (ν) = 1

ν + 1
.

Apply Definition 2.9 to show that the sequence of iterates {x (ν)}∞ν=0 converges to x� =
0 using the norm ‖•‖ given by the absolute value | • |. (Hint: Do not assume that
limν→∞ 1/(ν + 1) = 0. This is the result that you are being asked to prove.)

2.12 Suppose that our initial guess is in the right “ballpark.” That is, we know that the
initial error satisfies: ∥∥∥x (0) − x�

∥∥∥ ≤ ρ,

where ρ is a relatively large number. Furthermore, assume that our algorithm generates a
sequence of iterates that converge to x� satisfying not just the definition of the asymptotic
rate in (2.23) in Definition 2.10, but also satisfying:

∀ν ∈ Z+,

∥∥x (ν+1) − x�
∥∥∥∥x (ν) − x�

∥∥R
≤ C.

For each of the following specifications of R and C , calculate a bound on the number of
iterations N required to reduce the “final error”

∥∥x (N) − x�
∥∥ to be less than some desired

tolerance ερ, where ε < 1 is the desired reduction in the error.

Exercises 93

(i) R = 1 and 0 < C < 1, so that convergence is linear,
(ii) R = 2 and 0 < C < ∞, so that convergence is quadratic,
(iii) 1 < R < 2 and 0 < C < ∞, so that convergence is super-linear.

Your answer will be in terms of ε, C , and (possibly) ρ.

2.13 For each of the following sequences and each of the following values of R, calculate
the following limit (or state that the limit diverges to ∞):

lim
ν→∞

∥∥x (ν+1) − x�
∥∥∥∥x (ν) − x�

∥∥R
.

Use the following values of R: (a) R = 0, (b) R = 1
2 , (c) R = 1, and (d) R = 2. Consider

the following sequences:

(i) ∀ν ∈ Z+, x (ν) = 1/(ν + 1),
(ii) ∀ν ∈ Z+, x (ν) = (2)−ν ,
(iii) ∀ν ∈ Z+, x (ν) = (2)−((2)ν).

That is, you will have to calculate or bound twelve limits. Show working for at least three
of the limits you calculate. Use the bounds you calculate to find the rate of convergence of
the sequence. That is, find the largest value of R such that the limit is finite. Also, specify
if the convergence is linear, quadratic, or super-linear, or not, according to Definition 2.10.
Arrange your answer as a table with three rows corresponding to the different sequences
and four columns corresponding to the different values of R, with a final column to specify
the rate of convergence. (For each sequence and value of R, use the absolute value as the
norm. You can assume that the limit of each sequence {x (ν)}∞ν=0 is x� = 0.)

2.14 Let ‖•‖ be a norm on Rn and suppose that S ⊆ Rn is convex and bounded. Suppose
that f : S → R is twice partially differentiable with continuous second partial derivatives.
(See Definition A.36.) Suppose that there exist bounds κ, κ ∈ R++ such that:

∀x ′ ∈ S,
∥∥∇ f (x ′)

∥∥ ≤ κ,

∀x ∈ R
n,∀x ′ ∈ S, x†∇2f (x ′)x ≥ κ ‖x‖2 .

Suppose that the sequence {x (ν)}∞ν=0 converges to a point x� ∈ S such that ∇ f (x�) = 0
and with a rate R′ ∈ R+ and rate constant C ′. Calculate a rate, R, of convergence and
an upper bound, C , on the rate constant for the sequence { f (x (ν))}∞ν=0. Note that the
sequence { f (x (ν))}∞ν=0 converges to f (x�). You can assume that f (x (ν)) ≥ f (x�), ∀ν.
Use the absolute value as norm for the sequence { f (x (ν))}∞ν=0. (Hint: Let x ∈ S and define
φ : [0, 1] → R by:

∀t ∈ [0, 1], φ(t) = f (x� + t (x − x�)).

Use the fundamental theorem of calculus, Theorem A.2 in Section A.4.4.1 in Appendix A,
as in the proof of Theorem 2.7.)

Solutions of simultaneous equations

2.15 Consider a function f : R → R. Show that f is monotonically increasing (see
Definition A.24) if and only if it is monotone. (See Definition 2.11.)

94 Problems, algorithms, and solutions

2.16 Give an example of a monotone function g : Rn → Rn such that the simultaneous
equations g(x) = 0 have multiple solutions.

2.17 Let S ⊆ Rn and let g : Rn → S be strictly monotone and onto S. Show that the
inverse function g−1 : S → Rn of g exists. (See Definition A.27 for the definition of
inverse function.)

2.18 In this exercise we consider the exponential and logarithmic functions.

(i) Show that the exponential function exp : R → R is strictly monotone.
(ii) Show that the logarithmic function ln : R++ → R is strictly monotone.

2.19 Consider the function g : R → R defined by:

∀x ∈ R, g(x) = (x)2 − 1.

(i) Show that g is strictly monotone on the set S = R+. (Note that 0 ∈ S.)
(ii) What are the solutions of g(x) = 0 on R?
(iii) How many of these solutions are elements of S?

2.20 Let g : Rn → Rn be affine and of the form:

∀x ∈ R
n, g(x) = Ax − b,

where A ∈ Rn×n and b ∈ Rn . Show that if there is more than one solution to the linear
simultaneous equations Ax = 0 then g is not strictly monotone.

2.21 In this exercise we consider the number of solutions of simultaneous equations.

(i) Consider a function g : R → R having the following form:

∀x ∈ R, g(x) =
m∑

�=1

g�(x),

where each g� : R → R is a strictly monotonically increasing function. Consider
solving the equation g(x) = 0. Prove that there is no more than one solution.

(ii) Consider the function g in Part (i) but suppose that the functions g� : R → R are
monotonically increasing, but not necessarily strictly monotonically increasing. Is
there still only one solution to g(x) = 0? (Prove or give a counter-example.)

(iii) Now consider a two variable function g : R2 → R of the form:

∀x ∈ R
2, g(x) = g1(x1) + g2(x2),

where x =
[

x1
x2

]
and where g1 : R → R and g2 : R → R. Again suppose that

the g� are strictly monotonically increasing. Is there still no more than one possible
solution to g(x) = 0? (Prove or give a counterexample.)

Exercises 95

2.22 Let S ⊆ Rn and g : S → Rn be strictly monotone on S. Moreover, suppose that
h : Rn → Rn specifies a transformation satisfying:

∀y ∈ R
n, ((h(y) = 0) ⇔ (y = 0)).

Prove that there is at most one solution of the simultaneous equations h(g(x)) = 0 that is
an element of S.

2.23 Show that Rn is a convex set. (You can assume that R is closed under multiplication
and addition.)

2.24 In this exercise we consider convexity of sets.

(i) Show that the open ball of radius ρ and center x (0), defined by{
x ∈ R

n
∣∣∣∥∥∥x − x (0)

∥∥∥ < ρ
}

,

(see Definition A.44) is a convex set.
(ii) Show that the closed ball of radius ρ and center x (0), defined by{

x ∈ R
n
∣∣∣∥∥∥x − x (0)

∥∥∥ ≤ ρ
}

,

(see Definition A.43) is a convex set.

2.25 Let S′, S′′ ⊆ Rn . Show that if S′ and S′′ are convex sets then S = S′ ∩S′′ is a convex
set.

2.26 Let S ⊆ Rn be a convex set and g : S → Rn . Suppose that g is partially differen-
tiable with Jacobian J . Prove that if 1

2 (J + J †) is positive definite throughout S then g is
strictly monotone. (Hint: Use the result of Exercise A.1 in Appendix A.)

2.27 Show the following.

(i) If A ∈ Rm×n then Q = A† A is positive semi-definite. (Hint: Consider ‖Ax‖2
2

using the properties of the norm as described in Definition A.28.)
(ii) If Q′ and Q′′ are positive semi-definite then Q = Q′ + Q′′ is also positive semi-

definite.
(iii) If Q′ is positive semi-definite and Q′′ is positive definite then Q = Q′ + Q′′ is

positive definite.
(iv) If A ∈ Rn×n is non-singular, then Q = A† A is positive definite. (Hint: Use the

result from Section 2.5.2 that necessary and sufficient conditions for there to be a
unique solution to a square system of equations is that the coefficient matrix A be
non-singular. Then consider ‖Ax‖2

2.)
(v) If A ∈ Rm×n has linearly independent columns (see Definition A.55), then Q =

A† A is positive definite.
(vi) If A ∈ Rm×n has linearly independent columns and R ∈ Rm×m is positive definite,

then Q = A†RA is positive definite.

96 Problems, algorithms, and solutions

Solutions of optimization problems

2.28 In this exercise we investigate convexity of sets.

(i) Show that the feasible set P = {x ∈ R| − 4 ≤ x ≤ 1 or 2 ≤ x ≤ 4} in Figure 2.27
is not a convex set. (A sketch will suffice.)

(ii) Show that the feasible set in Figure 2.28 is not a convex set. (A sketch will suffice.)

2.29 In this exercise we will consider the function f : P → R illustrated in Figure 2.27
where P = {x ∈ R| − 4 ≤ x ≤ 1 or 2 ≤ x ≤ 4}. To analyze convexity of f , we will
restrict consideration to test sets that are convex subsets of P.

(i) Show that S1 = {x ∈ R| − 4 ≤ x ≤ 1} is convex.
(ii) Show that f is not convex on S1 = {x ∈ R| − 4 ≤ x ≤ 1}.
(iii) Show that S2 = {x ∈ R|2 ≤ x ≤ 4} is convex.
(iv) Is f convex on S2 = {x ∈ R|2 ≤ x ≤ 4}? (Inspection of the graph will suffice for

an answer.)

2.30 Let S be a convex set. Show that if f1, f2 : S → R are convex on S and a, b ∈ R+
then f = a f1 + b f2 is convex on S.

2.31 Let S ⊆ S ⊆ Rn with S and S both convex sets. Suppose that f : S → R is convex
on S. Show that f is convex on S.

2.32 Suppose that f : R → R is concave on S = R+ and that f (0) ≥ 0 with f
continuous at x = 0. Let P = R++. Show that the function φ : P → R defined by:

∀x ∈ P, φ(x) = f (x)

x
,

is non-increasing on P.

2.33 Show that an affine function defined on Rn is convex on any convex subset of Rn .

2.34 Suppose that S is convex and that f : S → R is convex on S. Let f̃ ∈ R. Show that
the level set L f (f̃) at value f̃ of f is a convex set.

2.35 Let S ⊆ Rn be convex and let f : Rn → R be convex on S. Suppose that x (ν) ∈ S

and that x� is a minimizer of f over S. Let �x (ν) = x� − x (ν).

(i) Show that:

∀α ∈ [0, 1], x (ν) + α�x (ν) ∈ S.

(ii) Show that if x (ν) is not a local minimizer, then:

(0 < α ≤ 1) ⇒ (f (x (ν) + α�x (ν)) < f (x (ν))).

(iii) Show by an example that the result in Part (i) is false if we allow S to be non-convex.

Exercises 97

(iv) Show by an example that the result in Part (ii) is false if we allow f to be non-
convex. That is, let S be convex, but suppose that f : Rn → R is not convex on S.
Show that the result in Part (ii) is then not necessarily true.

2.36 In this exercise we investigate convexity of optimization problems.
(i) Show that if g : Rn → Rm is affine and h : Rn → Rr is convex then S =

{x ∈ Rn|g(x) = 0, h(x) ≤ 0} is a convex set. (Hint: To prove convexity of the
set {x ∈ Rn|h(x) ≤ 0} apply the result of Exercise 2.34 with f̃ = 0. To prove
convexity of {x ∈ Rn|g(x) = 0}, note that {x ∈ Rn|g(x) = 0} = {x ∈ Rn|g(x) ≤
0} ∩ {x ∈ Rn| − g(x) ≤ 0}. Then use Exercise 2.25 to prove convexity of S.)

(ii) Show that if f : Rn → R is convex, g : Rn → Rm is affine, and h : Rn → Rr

is convex then minx∈� f (x) is a convex optimization problem, where S = {x ∈
Rn|g(x) = 0, h(x) ≤ 0}.

(iii) Find g : Rn → Rm and h : Rn → Rr , with g and h partially differentiable with
continuous partial derivatives, such that S = {x ∈ Rn|g(x) = 0, h(x) ≤ 0} is
a convex set, but such that g is not affine and at least one component of h is not
convex. That is, give a specific example of functions g and h such that if f is
convex then minx∈� f (x) is a convex optimization problem, but g is not affine and
h is not convex.

2.37 Give an example of functions f : R → R and h : R → R2 such that:
• the constraint h2(x) ≤ 0 is not binding at the minimizer of the constrained problem

minx∈�{ f (x)|h(x) ≤ 0}, but
• the constraint h2(x) ≤ 0 is violated by the minimizer of the unconstrained problem

minx∈� f (x).
(Hint: Consider an inequality constraint function such that h1(x) ≤ 0 is binding at the
minimizer of the constrained problem.)

2.38 Give an example of a function f : R → R such that:
• the constraint x ≥ 0 is not binding in the problem minx∈�{ f (x)|x ≥ 0}, but the

solution of this problem is different to
• the solution of the unconstrained problem minx∈� f (x).

(Hint: Consider a non-convex function with a local minimizer at x = 1, but a global
minimizer at x = −1.)

2.39 Prove the following generalization of Item (i) of Theorem 2.4. Let S ⊆ Rn be
convex and let f : S → R. Prove that if f has convex level sets on S then it has at most
one strict local minimum over S. (Hint: You only need to change one equation and one
sentence of the proof. Specify the changes.)

2.40 Suppose that S ⊆ Rn is convex, f : S → R is convex on S, and g : S → R++ is
concave and strictly positive on S. Show that the function φ : S → R defined by:

∀x ∈ S, φ(x) = f (x)

g(x)
,

has convex level sets on S.

98 Problems, algorithms, and solutions

2.41 Let S ⊆ Rn be convex and let f : S → R be a convex function on S. In this exercise
we will explore Jensen’s inequality.

(i) Prove Jensen’s inequality: ∀N ∈ Z+, ∀x (1), . . . , x (N) ∈ S, ∀t (1), . . . , t (N) ∈ [0, 1]

such that
∑N

ν=1 t (ν) = 1, we have that f
(∑N

ν=1 t (ν)x (ν)
)
≤ ∑N

ν=1 t (ν) f (x (ν)).

(Hint: Prove by induction on N .)
(ii) Show that the function f : R++ → R defined by:

∀x ∈ R++, f (x) = − ln(x),

is convex on S = R++. (The set R++ is the set of strictly positive real numbers.
See Definition A.3.)

(iii) Use the previous two results to prove the arithmetic mean-geometric mean inequal-
ity:

∀N ∈ Z+,∀x (1), . . . , x (N) ∈ R++,
1

N

N∑
ν=1

x (ν) ≥
(

N∏
ν=1

x (ν)

)1/N

.

2.42 Let S = {x ∈ R|a ≤ x ≤ b}, where a, b ∈ R and a < b. What are the extreme
points of S? Prove your answer by applying Definition 2.20.

2.43 In this exercise we consider extreme points of sets.

(i) Find a set that is convex but has no extreme points.
(ii) What are the extreme points of a sector of a disk?

2.44 Prove Theorem 2.5 in the case of a strictly convex function. (Hint: Suppose that
every maximizer is not an extreme point.)

2.45 Let Q ∈ R1×1. That is, Q = [Q11].

(i) Show that Q is symmetric.
(ii) Show that Q is positive semi-definite if and only if Q11 ≥ 0.
(iii) Show that Q is positive definite if and only if Q11 > 0.

2.46 Let Q ∈ R2×2 be symmetric. That is, Q =
[

Q11 Q12
Q12 Q22

]
.

(i) Show that Q is positive semi-definite if and only if Q11 ≥ 0, Q22 ≥ 0, and
det(Q) = Q11Q22 − (Q12)

2 ≥ 0.
(ii) Show that Q is positive definite if and only if Q11 > 0, Q22 > 0, and det(Q) =

Q11Q22 − (Q12)
2 > 0.

(Hint: For the ⇒ direction, consider particular choices of x , such as x = I1. For the ⇐
direction, write out x†Qx explicitly and first consider it to be a quadratic function of x1.
Consider the conditions on the coefficients of this quadratic function for it to be positive.
Note that these conditions are themselves a requirement on a quadratic function of x2 for
it to be positive. Consider these conditions as well.)

Exercises 99

2.47 Consider the function f : R → R defined by:

∀x ∈ R, f (x) = 1

2
(x)2.

(i) Show that this function is convex. (Hint: Use the result of Exercise 2.45.)
(ii) Use Theorem 2.6 to find an affine function that provides a lower bound to f . That

is, find an affine function f : R → R such that:

∀x ∈ R, f (x) ≤ f (x).

(iii) Use the definition of convexity to find an affine function that provides an upper
bound to f in the range [1, 3]. That is, find an affine function f : R → R such
that:

∀x ∈ [1, 3], f (x) ≥ f (x).

2.48 Consider the function f : R2 → R defined in (2.29):

∀x ∈ R
2, f (x) = (x1 − 1)2 + (x2 − 3)2 − 1.8(x1 − 1)(x2 − 3).

Show that the function is convex. (Hint: Evaluate ∇2f and use Theorem 2.7 and Exer-
cise 2.27.)

2.49 Consider the quadratic function f : R3 → R defined by:

∀x ∈ R
3, f (x) = 1

2
x†Qx,

where:

(i) Q =
[

1 0 0
0 1 0
0 0 1

]
.

(a) Show that Q is positive definite,
(b) Sketch C f (2).

(ii) Q =
[

1 −0.2 0
−0.2 1 0

0 0 1

]
.

(a) Show that Q is positive definite,
(b) Sketch C f (2).

(iii) Q =
[

1 0 0
0 1 0
0 0 0

]
.

(a) Show that Q is positive semi-definite,
(b) Sketch C f (2).

(iv) Q =
[

1 0 0
0 −1 0
0 0 0

]
.

(a) Show that Q is not positive semi-definite,
(b) Sketch C f (2).

100 Problems, algorithms, and solutions

(v) Q =
[

1 2 0
2 1 0
0 0 0

]
.

(a) Show that Q is not positive semi-definite,
(b) Sketch C f (2).

(Hint: Exercise 2.27 may be helpful. The MATLAB function contour can only draw the
contour sets of functions f : R2 → R. To use MATLAB, you must use the definition of
C f (2) and the MATLAB functions sphere and mesh.)

2.50 Let f : Rn → R be twice partially differentiable with continuous second partial
derivatives. Suppose that at a point x̂ the matrix ∇2f (x̂) is not positive semi-definite. (See
Definition A.59.) Show that the function f is not convex on Rn .

2.51 Consider a quadratic function f : R → R defined by:

∀x ∈ R, f (x) = 1

2
Q(x)2 + cx,

where Q ∈ R, c ∈ R, and let a, b ∈ R with a < b.

(i) Suppose that Q ∈ R+ so that f is convex. Find the maximum of the problem:

max
x∈�

{ f (x)|a ≤ x ≤ b}.

(ii) Now suppose that you do not know whether f is convex. Find the maximum of the
same problem:

max
x∈�

{ f (x)|a ≤ x ≤ b}.

(Hint: use Theorem 2.5 and Exercise 2.42.)
(iii) Again suppose that you do not know whether f is convex. Find the minimum:

min
x∈�

{ f (x)|a ≤ x ≤ b}.

2.52 Let f� : Rn → R, � = 1, . . . , r , each be convex and define their point-wise
maximum f : Rn → R as in (2.33):

∀x ∈ R
n, f (x) = max

�=1,...,r
f�(x).

Prove that f is convex.

2.53 A colleague of yours has formulated an optimization problem that requires a par-
ticular variable, x1, to be either 0 or 1. To represent the “integrality” of x1, he adds the
following constraint to the formulation:

g1(x) = 0,

where g1 : Rn → R is defined by:

∀x ∈ R
n, g1(x) = x1(x1 − 1).

Exercises 101

(i) Show that requiring g1(x) = 0 is equivalent to requiring that x1 = 0 or 1. You
must show that:

∀x ∈ R
n, (g1(x) = 0) ⇔ (x1 = 0 or 1).

(ii) Is the function g1 : Rn → R convex on Rn? Either prove or disprove.
(iii) Is the set S = {x ∈ Rn|g1(x) ≤ 0} convex? Either prove or disprove. (Note that S

is a subset of Rn , not of R.)
(iv) Is the set P = {x ∈ Rn|g1(x) = 0} convex? (Note that P is a subset of Rn , not of

R.)
(v) Would you expect that software designed for convex optimization could guarantee

to find the global optimum of a problem that included g1(x) = 0 as one of the
constraints? Give your reasons.

Sensitivity and large change analysis

2.54 Recall Problem (2.18):

min
x∈�2

{ f (x)|g(x) = 0, h(x) ≤ 0},

with:
• objective f : R2 → R defined in (2.10):

∀x ∈ R
2, f (x) = (x1 − 1)2 + (x2 − 3)2,

• equality constraint function g : R2 → R defined in (2.12):

∀x ∈ R
2, g(x) = x1 − x2,

and
• inequality constraint function h : R2 → R defined in (2.17):

∀x ∈ R
2, h(x) = 3 − x2.

This problem was solved by inspection of Figure 2.12 and had solution:

min
x∈�2

{ f (x)|g(x) = 0, h(x) ≤ 0} = 4,

argmin
x∈�2

{ f (x)|g(x) = 0, h(x) ≤ 0} =
{[

3
3

]}
= {x�}.

We will call this the base-case problem.

Now consider a parameter χ =
[

γ
η

]
∈ R2 and a corresponding change-case problem

minx∈�2{ f (x)|g(x;χ) = 0, h(x;χ) ≤ 0} where:

• f : R2 → R is the same as in the base-case problem,
• the equality constraint function g : R2 × R2 → R is a parameterized version of

the function g defined in (2.12):

∀x ∈ R
2, g(x;χ) = x1 − x2 + γ,

and

102 Problems, algorithms, and solutions

• the inequality constraint function h : R2 × R → R is a parameterized version of
the function h defined in (2.17):

∀x ∈ R
2, h(x;χ) = 3 − x2 + η.

Note that g(•; 0) is the equality constraint function in the base-case problem and h(•; 0) is
the inequality constraint function in the base-case problem.

(i) Solve the change-case problem in terms of the values of γ and η for values of γ
and η that are close to zero. (Hint: Make a sketch similar to Figure 2.9. The sketch
and a discussion will suffice for the answer.)

(ii) Find the partial derivative of the minimizer and minimum with respect to γ . That
is, calculate:

(a) the partial derivative of the minimizer with respect to γ ,
(b) the partial derivative of the minimum with respect to γ .

(iii) Find the partial derivative of the minimizer and minimum with respect to η. That
is, calculate:

(a) the partial derivative of the minimizer with respect to η,
(b) the partial derivative of the minimum with respect to η.

2.55 Consider the communications network of Exercise 2.8. Suppose that you were
considering expanding the capacity of the network and knew the costs of increasing the
capacity of each link. Also suppose that you could estimate the change in the value to the
customers due to a change in the capacity of the link. Suggest how to decide on whether
or not to expand the capacity of the network.

3

Transformation of problems

In this chapter we consider ways to transform problems. Such transformations are
critical in matching a problem to the characteristics of an algorithm. Sometimes
the transformation is done implicitly by formulating the problem in a particular,
perhaps non-obvious, way. In several of the examples in this book, however, we
will first formulate the problem in what might be considered a “natural” way and
then look for ways to transform the problem to allow an algorithm to be effective.
We will see that problem transformation is one of the key elements in matching a
problem to an effective algorithm.

For example, we can think of transforming:

(i) the variables or equations of a system of simultaneous equations, or
(ii) the objective, variables, or constraints of an optimization problem,

to create a new problem. Typically, to be useful, the numbers of variables and
constraints (or equations) in such a transformed problem should be not significantly
larger than the numbers of variables and constraints (or equations) in the original
problem. We could then consider the original and transformed problems to be
“equivalent” if:

(i) given a solution of the original simultaneous equations it was easy to cal-
culate a solution of the transformed simultaneous equations and vice versa,
or

(ii) given the optimum and an optimizer of the original optimization problem
it was easy to calculate the optimum and an optimizer of the transformed
optimization problem and vice versa.

More formal notions of problem equivalence and of “easy” can be found in [40].
The relationship between maximization and minimization in (2.22) is a triv-

ial example of transformation of an optimization problem to create an equivalent
problem. We will consider other pairs of equivalent problems in this chapter and

103

104 Transformation of problems

also consider some transformations that create “almost” equivalent problems that
can provide useful guidance or insight into the solution of the original problem by
providing an approximate solution to the original problem.

Careful transformation of problems can significantly simplify a problem or even
make an otherwise intractable problem tractable. For example, in some cases we
can transform an equality-constrained problem into a related inequality-constrained
problem, or vice versa. We can then check, either empirically or based on theo-
retical understanding, to see which form is easier to solve. Sometimes, one for-
mulation is much easier to solve than the other. In other cases, the existence of
a transformation to a particular form shows that the original problem formulation
can be solved relatively easily. Transformations can help us to match a problem
formulation to the capabilities of an algorithm. On the other hand, a careless
transformation—or a careless formulation—can render an otherwise simple prob-
lem extremely difficult to solve.

In some cases, we may be able to directly apply a theorem to one formulation
but not to the other, and so gain insight into the solution. For example, we have
indicated that iterative algorithms can only be expected to find local solutions of
problems. In Section 2.6.3 we showed that, for a convex problem, a local minimum
is also a global minimum. Therefore, if a problem can be transformed to a convex
problem in a way that does not qualitatively change the local minima, then we can
guarantee that a local minimum of the original problem is the global minimum.

In practice, we will find that it is not always possible to find transformations that
guarantee convexity. It may nevertheless be possible to find transformations, or to
formulate a problem, so that it is “approximately” convex. Although we may not
be able to prove that a local minimum is the global minimum, we may be able show
that the global minimum is not significantly better than any local minimum.

Even if no suitable transformation is available, knowledge that the problem is
non-convex alerts us to expect several local optima or to look for weaker condi-
tions that still guarantee that there is a unique local minimum. If the possibility
of multiple local minima cannot be eliminated, then various search techniques can
be applied to try to investigate several local optima and obtain the best. We will
not treat such problems in this book; however, there is a wide literature on global
optimization in such cases [91]. (See also the series Nonconvex Optimization and
Its Applications by Kluwer Academic Publishers, including [113].)

We will introduce several transformations, including:

• transformations of the objective in Section 3.1;
• transformations of the variables in Section 3.2;
• transformations of the constraints in Section 3.3; and
• transformation of the problem involving a notion called “duality” in Section 3.4.

3.1 Objective 105

We summarize all the transformations in this chapter for easy reference so that
we become aware of the possibilities of problem transformation early in the book;
however, at this stage it will be unclear how to best use the transformations, partic-
ularly in relation to duality. The presentation here may even seem overly formal.
However, in later chapters, we will further develop the transformations and see that
they are crucial in matching a problem formulation to the capabilities of available
algorithms. You may want to skim this chapter at first and then refer back to it as
we confront particular case studies. Various other transformations are discussed
in [6][15][22, chapter 13][28, chapter 6][41][42][43][70, section 3.10].

3.1 Objective

We consider transformations of the objective of an optimization problem. The four
basic techniques for transforming the objective that we will discuss are:

(i) monotonically increasing transformations,

(ii) adding terms,

(iii) moving the objective into the constraints, and

(iv) approximating the objective.

3.1.1 Monotonically increasing transformations

First we present a very straightforward theorem relating the optimizers of the orig-
inal and transformed problems under a monotonically increasing or monotoni-
cally decreasing transformation of the objective. (See Definition A.24 for defi-
nition of monotonically increasing and decreasing functions. The definition is a
special case of Definition 2.11 of a monotone function. See Exercise 2.15.) The
basic idea is that a monotonically increasing transformation of the objective pre-
serves ordering of objective values so that the original and transformed problem
have the same optimizers.

Theorem 3.1 Let S ⊆ Rn, let f : Rn → R, and let η↗ : R → R be strictly monotonically
increasing on R. Define φ : Rn → R by:

∀x ∈ R
n, φ(x) = η↗(f (x)).

Consider the problems minx∈� φ(x) and minx∈� f (x). Then:

(i) minx∈� f (x) has a minimum if and only if minx∈� φ(x) has a minimum.

(ii) If either one of the problems in Item (i) possesses a minimum (and consequently,

106 Transformation of problems

by Item (i), each one possesses a minimum), then:

η↗
(

min
x∈�

f (x)

)
= min

x∈�
φ(x),

argmin
x∈�

f (x) = argmin
x∈�

φ(x).

Proof See Exercise 3.1. �

Similar results apply for strictly monotonically decreasing transformations of the
objective.

Two transformations of objective that will prove particularly useful in our case
studies involve the exponential and logarithmic functions, which are strictly mono-
tonically increasing by Exercises 2.15 and 2.18. According to Theorem 3.1, a
problem with f as objective will have the same set of minimizers as a problem with
exp(f (•)) or ln(f (•)) as objective. (In the latter case, we must require f > 0, that
is, f : Rn → R++, in order for ln(f (•)) to be well-defined. The set R++ is the
set of strictly positive real numbers. See Definition A.3.) Because f , exp(f (•)),
and ln(f (•)) each have different properties, we can use whichever objective turns
out to be easier to handle with the software at hand. The squared function pro-
vides another example of a monotonically increasing transformation for a function
f : Rn → R+.

3.1.2 Adding terms

Another approach to transforming the objective involves adding terms to the ob-
jective. We will consider adding terms that depend on the constraint function with
a view to incorporating the constraints into the objective so that either:

• we do not have to consider the constraints explicitly, or

• the constraints are easier to deal with.

The basic idea is that there is a tension between minimizing the objective and
satisfying the constraints. By incorporating terms into the objective that worsen
the objective at points that do not satisfy the constraints, or at points which are
close to not satisfying the constraints, we can reduce the tension.

The two basic approaches involve:

• adding a penalty function that makes the objective large for values of the deci-
sion vector that violate the constraints, to be discussed in Section 3.1.2.1, and

• adding a barrier function that erects a barrier to violating the constraints, to be
introduced in Section 3.1.2.2.

3.1 Objective 107

3.1.2.1 Penalty function

In the following, recall that R+ is the set of non-negative real numbers. (See Defi-
nition A.3.)

Theorem 3.2 Let S ⊆ Rn and f : Rn → R. Consider the optimization problem
minx∈� f (x). Let fp : Rn → R+ be such that (x ∈ S) ⇒ (fp(x) = 0) and let
� ∈ R+. Then:

(i) minx∈� f (x) has a minimum if and only if minx∈�(f (x) + � fp(x)) has a mini-
mum.

(ii) If either one of the problems in Item (i) possesses a minimum (and consequently,
by Item (i), each one possesses a minimum), then:

min
x∈�

f (x) = min
x∈�

(f (x) + � fp(x)),

argmin
x∈�

f (x) = argmin
x∈�

(f (x) + � fp(x)).

Proof See Exercise 3.7. �

The function fp in Theorem 3.2 is called a penalty function, the parameter �

is called a penalty coefficient, and the function f + � fp is called the penalized
objective.

Discontinuous penalty function

Example To see how Theorem 3.2 might be useful, consider the objective f : R →
R defined by:

∀x ∈ R, f (x) = x, (3.1)

and the feasible set S = {x ∈ R|1 ≤ x ≤ 3}. The problem:

min
x∈�

{ f (x)|1 ≤ x ≤ 3},
has minimum f � = 1 and minimizer x� = 1.

Let � = 1 and consider the penalty function fp : R → R defined by:

∀x ∈ R, fp =
{

0, if 1 ≤ x ≤ 3,

10, otherwise.
(3.2)

The function fp satisfies the conditions for Theorem 3.2 and is illustrated in Fig-
ure 3.1. The circles, ◦, in Figure 3.1 indicate that the function fp has a point of
discontinuity as x approaches 1 from below or approaches 3 from above. The
functions f and f + � fp are illustrated in Figure 3.2. The circles again indicate
points of discontinuity.

The penalized objective function f +� fp includes information about the feasible

108 Transformation of problems

4 3 2 1 0 1 2 3 4

0

5

10

15

x

fp(x)

Fig. 3.1. The penalty
function fp(x) versus x . In
this figure and the next, the
circles ◦ indicate that the
illustrated function has a
point of discontinuity as x
approaches 1 from below
or 3 from above.

4 3 2 1 0 1 2 3 4
0

5

10

15

x

f (x), f (x) + � fp(x) Fig. 3.2. The objective
function f (x) versus x
(shown solid) and the pe-
nalized objective function
f (x) + � fp(x) versus
x (shown dashed). (For
clarity, for 1 ≤ x ≤ 3
the penalized objective
function is drawn slightly
above the solid curve:
it should be coincident
with the solid curve.)
One local minimizer of
f + � fp in the region
{x ∈ R| − 4 ≤ x ≤ 4} is
indicated by the bullet •.

set. The point x� = 1 is an unconstrained local minimizer of f + � fp in the
region {x ∈ R| − 4 ≤ x ≤ 4} and is indicated in Figure 3.2 by a bullet •. This
point is also the minimizer of the constrained problem minx∈� f (x). That is, the
penalty function allows us to consider the effect of the constraints by considering
the penalized objective only.

Discussion The drawback of the penalty function fp defined in (3.2) is that the
penalized objective function f + � fp is not continuous because of the form of fp.
Moreover, local information at a feasible point in the interior S = {x ∈ R|1 <

x < 3} of S does not inform about the boundary of the feasible region. It is still

3.1 Objective 109

necessary to consider the feasible region explicitly and, from a practical perspec-
tive, it turns out that the discontinuity in the penalized objective imposes other
difficulties [70, section 12.8].

We have indicated that we would like to consider continuous and differentiable
objective functions. We will not treat non-differentiable penalty functions, such
as (3.2), further in this book. However, further details can be found in [6, sec-
tion 9.3][11, section 4.3.1] and an approach to particular types of non-differentiable
functions will be explored in Section 3.1.3. In Section 3.1.2.2, we will see that
some of the disadvantages of discontinuous penalty functions can also be avoided
by solving a sequence of problems using a “barrier function.”

Continuous penalty function

Analysis To avoid discontinuous functions, we will specialize Theorem 3.2 to a
continuous penalty function that has important applications in equality-constrained
and inequality-constrained optimization. We will consider the case of equality
constraints in the following corollary to Theorem 3.2:

Corollary 3.3 Suppose that f : Rn → R, g : Rn → Rm,� ∈ R+, and that ‖•‖ is a
norm on Rm. Consider the problems minx∈�n { f (x)|g(x) = 0} and minx∈�n { f (x) +
� ‖g(x)‖2 |g(x) = 0}. Then:

(i) the problem minx∈�n { f (x)|g(x) = 0} has a minimum if and only if the problem
minx∈�n { f (x) + � ‖g(x)‖2 |g(x) = 0} has a minimum.

(ii) If either one of the problems in Item (i) possesses a minimum (and consequently,
by Item (i), each one possesses a minimum), then

min
x∈�n

{ f (x)|g(x) = 0} = min
x∈�n

{ f (x) + � ‖g(x)‖2 |g(x) = 0},
argmin

x∈�n
{ f (x)|g(x) = 0} = argmin

x∈�n
{ f (x) + � ‖g(x)‖2 |g(x) = 0}.

Proof In the hypothesis of Theorem 3.2, let S = {x ∈ Rn|g(x) = 0} and define
fp : Rn → R+ by fp(•) = ‖g(•)‖2. Then:

(x ∈ S) ⇔ (g(x) = 0),

⇒ (fp(x) = 0),

so that the hypothesis and therefore the conclusion of Theorem 3.2 holds. �

The importance of Corollary 3.3 is that by adding the term � ‖g(x)‖2 to the
objective, we penalize deviations of the variable x outside the feasible set without
changing the objective for feasible points and without destroying the continuity
of the objective. By choosing the L2 norm ‖•‖2 (see Section A.3.1) we can also
preserve partial differentiability of the objective if g is partially differentiable. (See
Exercise 3.8.)

110 Transformation of problems

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

Fig. 3.3. The contour sets
C f (f̃) of the objective
function and the feasible
set from Problem (2.13).
The heights of the contours
decrease towards the point[

1
3

]
.

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

Fig. 3.4. The contour sets
C(g)2(f̃) of (g(•))2. The
heights of the contours
decrease towards the line
x1 = x2.

Example Consider Figure 3.3, which repeats Figure 2.9. The figure shows the
contour sets of the objective f : R2 → R of Problem (2.13):

∀x ∈ R
2, f (x) = (x1 − 1)2 + (x2 − 3)2,

and a line that represents the feasible set {x ∈ R2|g(x) = 0}, where g : R2 → R is
defined by:

∀x ∈ R
2, g(x) = x1 − x2.

3.1 Objective 111

As discussed in Section 2.2.2, the minimizer of minx∈�2{ f (x)|g(x) = 0} is x� =[
2
2

]
.

Consider using the L2 norm ‖•‖2, so that ‖g(•)‖2
2 = (g(•))2. Figure 3.4 shows

the contour sets of (g(•))2. The contours decrease towards the line representing
the feasible set. The contours are parallel since g is affine.

Figure 3.5 shows the contour sets of the corresponding penalized objective f +
�(g)2 for � = 1, and again shows the line representing the feasible set. (The
contours are spaced differently to those in Figure 3.3.) Adding the penalty to the
objective makes infeasible points less “attractive” and does not change the objec-
tive values on the feasible set. Under certain circumstances, this can make it easier
to find the minimum and minimizer of the problem. The unconstrained minimizer

of f +�(g)2 for � = 1 is

[
5/3
7/3

]
, which is closer to the minimizer of the equality-

constrained problem than is the unconstrained minimizer of f .
Larger values of the penalty coefficient �, such as � = 10 as shown in Fig-

ure 3.6, make infeasible points even less attractive. The unconstrained minimizer

of f + �(g)2 for � = 10 is very close to

[
2
2

]
, which is the minimizer of the

equality-constrained problem. (The contours in Figure 3.6 are spaced differently
to those in both Figures 3.3 and 3.5.)

Sequence of problems If the formulation requires that the constraints must be met
exactly then the continuous and differentiable penalty functions we are consid-
ering cannot enforce the constraints exactly for finite values of �. In principle,
a sequence of unconstrained problems can be solved with values of � increasing
without bound. Under certain conditions, the sequence of solutions of these uncon-
strained problems approaches a solution of the constrained problem as � → ∞.
(See Exercise 3.10.) However, because we must eventually terminate at a finite
value of �, this approach is not directly applicable when we have constraints that
must be satisfied to obtain a valid solution.

Soft constraints Sometimes, however, constraints in a formulation actually reflect
“target” values rather than constraints that absolutely must be met. Such targets are
sometimes called soft constraints to distinguish them from the constraints that we
have considered previously, which might be called hard constraints in this con-
text. Unconstrained optimization of a penalized objective can be a very effective
means to approximately satisfy soft constraints. For example, in Figure 3.6, the
unconstrained minimizer of f + �(g)2 is close to being on the feasible set and is

nearby to the point

[
2
2

]
, which is the solution to the constrained problem.

112 Transformation of problems

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

Fig. 3.5. The contour sets
C f+1(g)2(f̃) of the penal-
ized objective function and
the feasible set from Prob-
lem (2.13). The heights of
the contours decrease to-

wards the point

[
5/3
7/3

]
.

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

Fig. 3.6. The contour sets
C f+10(g)2(f̃) of the penal-
ized objective function and
the feasible set from Prob-
lem (2.13). The heights of
the contours decrease to-
wards a point that is near to[

2
2

]
.

If the constraint violation was still not acceptable for the value � = 10, then
the value of � could be increased and the unconstrained problem re-solved. This
process could be repeated until the constraint was satisfied to within an acceptable
tolerance.

3.1 Objective 113

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

Fig. 3.7. The contour sets
from Figure 3.6 shifted up
and to the right. The
feasible set from Prob-
lem (2.13) is also shown.
The heights of the contours
decrease towards a point

that is near to

[
4
4

]
.

Ill-conditioning For very tight tolerances, the required value of � will be large.
Unfortunately, as � becomes large the unconstrained problem itself becomes dif-
ficult to solve. This is because the contour sets of the penalized objective become
increasingly elliptical and eccentric as � increases, even if the contour sets of the
original objective were circular as in Figure 3.3. This is evident in the progression
from Figure 3.3 to Figure 3.5 to Figure 3.6 [6, section 9.2].

As we discussed in Section 2.7.6.3, for a function with roughly circular contour
sets, it is easy to find a direction that points towards the minimizer, while for a
function with highly eccentric elliptical contour sets this can be more problematic:
the problem of finding such a direction is ill-conditioned. As in Section 2.7.6.3,
imagine that the objective function changes slightly, with the center of the ellipses
in Figure 3.6 moving to the right and up. In particular, Figure 3.7 shows the case
where the center of the ellipses are shifted up by two units and to the right by two
units. As in the example in Section 2.7.6.3, the effect on local appearance of the

levels sets at a point such as x =
[

0
−5

]
is only small. If x (ν) =

[
0

−5

]
were the

current iterate, for example, then it would be difficult to accurately determine the
direction of the minimizer of the penalized objective from local information at this
point. There is a trade-off between satisfaction of the constraints and the difficulty
of minimizing the penalized objective.

114 Transformation of problems

Inequality constraints It is also possible to generalize the penalty function ap-
proach to the inequality-constrained case. For example, if h : Rn → Rr then a
penalty function for the constraint h(x) ≤ 0 is fp : Rn → R defined by:

∀x ∈ R
n, fp(x) =

r∑
�=1

max{0, (h�(x))2}.

See [6, chapter 9] and [70, section 13.5] for details and further development of
penalty methods. However, we will take another approach in Part V to inequality-
constrained problems, involving a “barrier function,” to be introduced in Sec-
tion 3.1.2.2.

Summary Large values of the penalty coefficient � yield an ill-conditioned prob-
lem, while for finite values of � we must still consider the constraints explicitly if
we want them to be satisfied exactly. Nevertheless, modest values of the penalty
coefficient can significantly enhance the performance of algorithms that explicitly
treat the constraints, since the penalized objective works in concert with the ex-
plicit treatment of the constraints, reducing the tension between minimizing the
objective and satisfying the constraints. Moreover, the penalty function can serve
to make the penalized objective convex, which guarantees that a local minimum is
a global minimum. (See Exercise 3.11.) We will see that convexity of the objective
can also facilitate the process of finding a locally optimal point.

3.1.2.2 Barrier function

An alternative to the penalty method for inequality-constrained problems involves
adding a function that grows large as we approach the boundary of the feasible
region from the interior. Consider again the feasible set S = {x ∈ R|1 ≤ x ≤ 3}
and its interior, S = {x ∈ R|1 < x < 3}. Figure 3.8 shows a barrier function
fb : S → R that is designed to penalize values of x that are close to the boundary
of the feasible region. (The barrier function fb is not defined for values of x that
are outside the feasible region or on its boundary.)

The barrier function grows very rapidly as x approaches 1 from above or ap-
proaches 3 from below. Moreover, derivative information at points near to the
boundary provides information about proximity to the boundary. This allows us to
avoid considering the inequality constraints explicitly.

Consider again the objective function f : R → R defined in (3.1) and illustrated
in Figure 3.2. Figure 3.9 shows f (x) for 0 ≤ x ≤ 4 together with f (x)+ fb(x) for
values of x that are in the interior of the feasible set {x ∈ R|1 ≤ x ≤ 3}. A local
minimizer of f + fb is illustrated with a •. This point is near to the minimizer of
the original constrained problem minx∈�{ f (x)|x ∈ S}.

3.1 Objective 115

4 3 2 1 0 1 2 3 4

0

5

10

15

x

fb(x)

Fig. 3.8. The barrier func-
tion fb(x) versus x on the
interior of the feasible set.

4 3 2 1 0 1 2 3 4
0

5

10

15

x

f (x), f (x) + fb(x)

Fig. 3.9. The objective
function f (x) versus x
(shown solid) and the
objective plus barrier func-
tion f (x) + fb(x) versus
x on the interior of the fea-
sible set (shown dashed).
The local minimizer of
the objective plus barrier
function is indicated by the
bullet •.

The barrier function avoids the issue of discontinuity that we observed in Fig-
ure 3.2. However, the modified objective does not satisfy Theorem 3.2 because
the added term is non-zero on the feasible set. It turns out that this issue can be
dealt with by solving a sequence of problems where the added term is gradually
reduced towards zero. As the added term becomes smaller, the modified objective
becomes “almost” the same as the original objective except for values of x that are
very close to the boundary of the region defined by the inequality constraints. Un-
der certain conditions, by repeatedly reducing the size of the barrier and re-solving
the resulting problem, we obtain a sequence of solutions that approach a solution
of the original problem; however, we still have to consider ill-conditioning in the
problems. We will investigate this approach in Part V.

116 Transformation of problems

4 3 2 1 0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

x

f (x)

Fig. 3.10. Function that is
defined as point-wise max-
imum.

3.1.3 Moving the objective into the constraints

The discussion in this section is based on [45, section 4.2.3]. Recall the discussion
of point-wise maximum functions from Section 2.6.3.6. Such objectives arise when
there are a number of issues that must be considered simultaneously and we are
concerned about the worst-case of all the issues. (See Exercise 3.15.)

It is typical for such objectives to be non-differentiable. For example, Fig-
ure 3.10 repeats Figure 2.38, and shows the function f : R → R defined by:

∀x ∈ R, f (x) = max{(x + 5)2, (x − 5)2}.
This function is not differentiable at the point x = 0. It is differentiable at every
other point; however, the unconstrained minimizer of the function is at this point of
non-differentiability, so methods that use the derivative of the function or assume
that the function is differentiable will fail precisely at the minimizer.

There are techniques for treating non-differentiable objectives. See, for ex-
ample, [11, 51, 97]. However, we will take the approach of removing the non-
differentiabilities by transforming the problem. We shift the effects of the non-
differentiability into the constraints, using the following theorem [28, section 6.5]:

Theorem 3.4 Let S ⊆ Rn and let f� : Rn → R for � = 1, . . . , r . Define f : Rn → R by:

∀x ∈ R
n, f (x) = max

�=1,...,r
f�(x).

Consider the problems minx∈� f (x) and

min
x∈�,z∈�

{z| f�(x) − z ≤ 0, ∀� = 1, . . . , r}. (3.3)

Then:

3.1 Objective 117

(i) minx∈� f (x) has a minimum if and only if minx∈�,z∈�{z| f�(x) − z ≤ 0, ∀� =
1, . . . , r} has a minimum.

(ii) If either one of the problems in Item (i) possesses a minimum (and consequently,
by Item (i), each one possesses a minimum), then

min
x∈�

f (x) = min
x∈�,z∈�

{z| f�(x) − z ≤ 0, ∀� = 1, . . . , r},

argmin
x∈�

f (x) =
{
x ∈ R

n
∣∣∣∣[x

z

]
∈ arg min

x∈�,z∈�

{
z

∣∣∣∣ f�(x) − z ≤ 0,

∀� = 1, . . . , r

}}
.

Proof See Exercise 3.12. �

In Theorem 3.4, the transformed Problem (3.3) has objective φ : Rn × R → R

defined by:

∀x ∈ R
n, ∀z ∈ R, φ(x, z) = z.

This objective function is convex. Therefore, if S is convex and the functions f�
are convex then the transformed Problem (3.3) is a convex optimization problem.
(See Exercise 3.14.) This provides the key to the usefulness of Theorem 3.4.

To understand the transformation, consider Figure 3.11. This figure repeats Fig-
ure 2.37 and shows the functions f1 and f2 that were point-wise maximized to form
the objective shown in Figure 3.10. Figure 3.12 re-interprets Figure 3.11 in terms of
Problem (3.3). It shows the contour sets of the objective, which are horizontal lines
of constant value of z. Problem (3.3) tries to find the minimum feasible value of z;
that is, it seeks the “lowest” feasible line. Suppose that S = {x ∈ R|− 4 ≤ x ≤ 4}.
Then the two curves shown in Figure 3.12 determine the feasible region of Prob-
lem (3.3). The inequality constraints of Problem (3.3) require that f�(x) − z ≤ 0.
That is, at each value of x , feasible values of z are those that are greater than the
value of all the f�(x), for � = 1, . . . , r . In the case of Figure 3.12, the feasible
points are the ones that lie at or “above” the two curved lines.

Minimizing z forces us to find the “lowest” value of z that lies at or above each
of the curved lines. The minimum is z� = f � = 25. This is the minimum of the
original function f that was defined as a point-wise maximum. The minimizer is
x� = 0.

3.1.4 Approximating the objective

In the previous sections, we have described transformations such that the trans-
formed problem, in principle, yields an exact solution to the original problem. In
some cases the equality between original and transformed problem is obtained only
in a limiting process. In this section, we consider deliberately approximating the
objective to make its characteristics more suitable for solution. Again, equality

118 Transformation of problems

4 3 2 1 0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

x

f1(x), f2(x)

Fig. 3.11. Functions used
to define point-wise max-
imum, repeated from Fig-
ure 2.37.

4 3 2 1 0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

x
x�

z

z� = f �

Fig. 3.12. Feasible re-
gions and contour sets of
objective for transformed
problem. The feasible
region is the set of points[

x
z

]
that lies “above” both

of the curves. The con-
tour sets of the objective
decrease towards z = 0.

between the original and approximating problem may only occur in some limit so
that in practice we may solve the problem repeatedly until we have a sufficiently
accurate approximation. The four basic techniques we will discuss are:

(i) linear approximation,

(ii) quadratic approximation,

(iii) piece-wise linearization, and

(iv) smoothing.

3.1 Objective 119

The first three techniques are used, for example:

• when software designed for a linear objective is to be applied to a problem with
non-linear objective, or

• when software designed for a quadratic objective is to be applied to a problem
with a non-quadratic objective.

Linear approximation can also be applied to constraint functions so that software
designed for linear constraints can be applied to non-linearly constrained problems.

Typically, a sequence of approximate problems is then solved. The approxima-
tion to the objective (and constraints) is updated for each iteration. Particularly
during the early iterations, it may not be worth solving the approximate problem
to high accuracy. We may instead choose to only solve the linear or quadratic
approximating problem “roughly.”

The fourth technique, smoothing, is useful when an objective is not differen-
tiable. By carefully smoothing an objective, a partially differentiable objective can
be created that differs only slightly from the exact objective. Again, a sequence of
approximate problems can be solved if necessary to provide sufficient accuracy.

3.1.4.1 Linear approximation

We first consider linearizing an objective about a current estimate x (ν). (As noted,
non-linear constraints can also be linearized.) A linear programming algorithm is
then used to solve for the optimal x (ν+1) that minimizes the linearized objective
while satisfying the (linearized) constraints. Usually, an extra set of constraints of
the form:

∀k = 1, . . . , n, |x (ν+1)
k − x (ν)

k | ≤ �xk,

where �xk ∈ R++ is the maximum allowed step, is included in the approximating
problem to keep x (ν+1) close enough to x (ν) so that the linear approximation is still
approximately valid at x (ν+1). The objective and constraints are then re-linearized
about x (ν+1), and so on. If the successive iterates stop changing significantly, then
the process is considered to have reached an optimum. This approach is called
successive linear programming. The drawback of this approach is that if the
objective and constraints are significantly non-linear, then many iterations will be
required to obtain a useful solution. Furthermore, linearization ignores interdepen-
dencies between variables due to non-zero mixed second partial derivatives.

3.1.4.2 Quadratic approximation

Instead of a linear approximation, a quadratic approximation can be made to the
objective at each iteration ν. (Additional terms involving the constraints are also
incorporated into the objective [44, section 1].) This approach is called successive

120 Transformation of problems

quadratic programming and allows better approximation of functions with non-
zero second partial derivatives [44].

3.1.4.3 Piece-wise linearization

An alternative to successive linearization and successive quadratic approximation
is to approximate a non-linear function f by defining a piece-wise linear function
that matches f at “break-points.” To make the approximation for convex f , we
define subsidiary variables that partition the decision space. For example, for a
function f : [0, 1] → R we might:

• define subsidiary variables ξ1, . . . , ξ5,

• include constraints:

x =
5∑

j=1

ξ j ,

0 ≤ ξ j ≤ 0.2,

• define parameters:

d = f (0),

c j = 1

0.2
[f (0.2 × j) − f (0.2 × (j − 1))] , j = 1, . . . , 5,

and

• replace the objective f by the piece-wise linearized objective φ : R5 → R

defined by:

∀ξ ∈ R
5, φ(ξ) = c†ξ + d.

The variables ξ are included in the problem together with the constraints. The
variables ξ define “break-points” at x = 0, 0.2, 0.4, 0.6, 0.8, 1.0. The piece-wise
linearized objective φ matches f exactly at the break-points and linearly interpo-
lates f between the break-points. Since f is convex then the piece-wise linearized
objective φ never under-estimates f in between the break-points. (For non-convex
f , a more complicated approach involving discrete variables is necessary.)

For example, consider the quadratic function f : [0, 1] → R defined by:

∀x ∈ [0, 1], f (x) = (x)2.

3.1 Objective 121

0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1
0

0 1

0 2

0 3

0 4

0 5

0 6

0 7

0 8

0 9

1

x

f (x), φ(ξ)

Fig. 3.13. Piece-wise lin-
earization (shown dashed)
of a function (shown
solid).

This function is illustrated in Figure 3.13 as a solid line together with its piece-wise
linearization, which is illustrated as a dashed line. In this case:

d = f (0),

= 0,

c j = 1

0.2
(f (0.2 × j) − f (0.2 × (j − 1))) ,

= (0.4 × j) − 0.2.

To illustrate the approximation, the function φ has been evaluated at the values of
ξ that correspond to each value of x shown in Figure 3.13. Even with only five
pieces, the quadratic function is well approximated by the piece-wise linearization.

To piece-wise linearize f in an optimization problem, we use φ as the objec-
tive instead of f , augment the decision vector to include ξ , and include the con-
straints that link ξ and x . Similarly, non-linear constraints can also be piece-wise
linearized.

Piece-wise linearization can be applied to both quadratic and more general non-
linear functions. For non-linear functions, if the function is additively separable;
that is, if it can be expressed as the sum of functions each of which depend only
on one of the elements of x , then piece-wise linearization will involve an increase
in the number of variables by a factor equal to the number of break-points. (See
Definition A.23 and see [6, section 11.3] for a discussion of this case.) However, if
the function is non-separable, then many extra variables will have to be defined to
represent the function. The MATLAB functions interp1 and interp2 perform
interpolation, including piece-wise linearization, of functions with one and two
arguments, respectively.

122 Transformation of problems

A generalization of this idea is to partition the decision space into regions and
to linearly approximate functions on each region. The leads to the finite element
method [27, 77, 108].

3.1.4.4 Smoothing

In Section 3.1.3, we showed how to treat a non-differentiable objective defined
in terms of the maximum of other functions. We transformed the problem into a
constrained problem where all the functions were differentiable.

In some cases, we prefer not to create extra constraints and may be willing to
accept some inaccuracy in the solution in return for avoiding the extra constraints.
To do this, we smooth the objective at the points of non-differentiability [5, sec-
tion III].

For example, consider the absolute value function |•| : R → R+ defined by:

∀x ∈ R, |x | =
{

x, if x ≥ 0,

−x, if x < 0.

This function is continuous but not differentiable. Consider the function φ :
R → R defined by:

∀x ∈ R, φ(x) =
√

(|x |2 + ε). (3.4)

We call φ a smoothed version of |•|. It can be verified that, for all ε > 0, the
function φ is differentiable. (See Exercise 3.17.) Moreover, the error between
φ and |•| decreases with decreasing ε. Consequently, the smoothed function can
be used as an approximation to |•|, with a controllable approximation error deter-
mined by the choice of ε. Figure 3.14 shows the absolute value function together
with two smoothed versions, for ε = 0.1 (shown dashed) and ε = 0.01 (shown
dotted). Typically, as ε is reduced, problems defined in terms of φ become more
ill-conditioned, so there is a compromise between fidelity to the original function
and solvability.

3.2 Variables

Theorems 3.1 and 3.2 in Section 3.1 show that by solving a problem with a trans-
formed objective, we can also solve the original problem. We will now show that
transformation of variables can also be useful. The two basic techniques that we
will discuss are:

(i) scaling, and

(ii) onto transformations.

3.2 Variables 123

1 0 8 0 6 0 4 0 2 0 0 2 0 4 0 6 0 8 1
0

0 2

0 4

0 6

0 8

1

x

|x | , φ(x)

Fig. 3.14. Smoothed ver-
sion for ε = 0.1 (shown
dashed) and ε = 0.01
(shown dotted) of abso-
lute value function (shown
solid).

3.2.1 Scaling

This simplest way to transform variables is to “scale” them; that is, change their
units. This can be useful when the variables in the initial formulation of the prob-
lem have widely differing magnitudes, since, as a practical matter, optimization
software often makes the implicit assumption that the variables have similar mag-
nitudes at the optimum [45, section 7.5].

For example, suppose that we have two variables x1 and x2 in our formulation.
Suppose that typical values for x1 are between−0.01 and 0.01, while typical values
for x2 are between −104 and 104. Furthermore, let us suppose that, based on
our understanding of the application, a “significant error” in x1 is around 10−3,
while a significant error in x2 is around 103. In particular, consider the objective
f : R2 → R defined by:

∀x ∈ R
2, f (x) = (1000x1)

2 + (x2/1000)2. (3.5)

The contour sets of this function are shown in Figure 3.15. The axes have different
scales in this figure: if the axes were shown at the same scale, the contour sets
would be extremely elliptical.

If we want to obtain an solution that yields an objective that is within one unit
of the minimum then we need to obtain a value of x such that (approximately):

|x�
1 − x1| < 0.001,

|x�
2 − x2| < 1000,

where x� = 0 is the minimizer. That is, errors in the different elements in x have
differing effects on the objective.

In assessing closeness to the actual solution and in implementing stopping cri-

124 Transformation of problems

5 4 3 2 1 0 1 2 3 4 5

x 10
3

5000

4000

3000

2000

1000

0

1000

2000

3000

4000

5000

x1

x2

Fig. 3.15. Contour sets of
function f defined in (3.5).

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

ξ1

ξ2

Fig. 3.16. Contour sets of
function φ defined in (3.6)
with scaled variables.

teria, we will make use of norms that combine the discrepancies or errors of all
elements in x . While we can define a weighted norm that weights the impor-
tance of individual elements of x differently, it is typical for software to use an
unweighted norm such as ‖•‖2 or ‖•‖∞. If we apply an algorithm that uses un-
weighted norms to the formulation as described, then errors in x2 will be accorded
too much importance relative to errors in x1.

To appropriately weight the importance of errors in x1 and x2, suppose that we

3.2 Variables 125

define scaled variables ξ ∈ R2 by:

ξ1 = 1000x1,

ξ2 = x2/1000.

Consider the objective φ : R2 → R defined by:

∀ξ ∈ R
2, φ(ξ) = (ξ1)

2 + (ξ2)
2. (3.6)

We observe that with the scaling of variables, the two functions f and φ represent
the same underlying function. Moreover, errors in ξ1 have the same relative effect
on the objective as errors in ξ2, and the contour sets of φ are circular as shown in
Figure 3.16 with axes shown at the same scale. As we discussed in Section 2.6.3.4,
for a function with roughly circular contour sets, it is easy to find a direction that
points towards the minimizer.

In general, we should scale variables so that, at the solution, the values of each
element of the design vector are of the same order of magnitude and so that an
acceptable error for each element is roughly the same. It might also be necessary
to add a constant offset to some of the variables to achieve this goal if the range
of typical values is not symmetric about zero. Sometimes, software will perform
scaling automatically.

3.2.2 Onto transformations

3.2.2.1 Analysis

Transformations that are more general in nature than scaling can change the struc-
ture of the problem. The basic idea is that we can re-write the problem in terms
of new variables so long as “exploring” over the new variables also “covers” the
whole of the original feasible set S. This idea is embodied in the definition of an
onto function. (See Definition A.25.)

Theorem 3.5 Let S ⊆ Rn, P ⊆ Rn′ , f : S → R, let τ : P → S be onto S, and define
φ : P → R by:

∀ξ ∈ P, φ(ξ) = f (τ (ξ)).

Consider the problems: minξ∈� φ(ξ) and minx∈� f (x). Then:

(i) the problem minx∈� f (x) has a minimum if and only if minξ∈� φ(ξ) has a min-
imum.

(ii) If either one of the problems in Item (i) possesses a minimum (and consequently,

126 Transformation of problems

�

�

�

�

�

�

�

�
�τ

�φ

�f

P

S

R

Fig. 3.17. Sets and trans-
formations in Theorem 3.5.

by Item (i), each one possesses a minimum), then

min
ξ∈�

φ(ξ) = min
x∈�

f (x),

argmin
x∈�

f (x) =
{
τ(ξ)

∣∣∣∣ξ ∈ argmin
ξ∈�

φ(ξ)

}
.

Proof See Exercise 3.18. �

Figure 3.17 illustrates the relationship between the sets and transformations de-
scribed in Theorem 3.5. The function φ is the composition of the onto function τ

with f .
We will see in Part IV that it is sometimes possible to find an onto function such

that P = Rn′ and so the transformed problem minξ∈� φ(ξ) is an unconstrained
problem minξ∈�n′ φ(ξ). Even when it is not possible to find a transformation that
yields an unconstrained problem, it is often possible to choose a transformation
that simplifies the form of the constraints or objective.

For example, Exercise 3.19 considers rectangular to polar coordinate transfor-
mation. In Exercise 3.19, the feasible set in rectangular coordinates is non-convex;
however, in polar coordinates the feasible set is an interval on the real line, which is
convex. Exercise 3.19 shows that a non-linear transformation can be used to create
a convex feasible set.

To apply Theorem 3.5, it is sometimes easiest to first define a function τ : Rn′ →
Rn that is onto Rn and then define P ⊆ Rn′ by:

P = {ξ ∈ R
n′ |τ(ξ) ∈ S}.

Then we consider the restriction of τ to P. (See Definition A.13.) The restriction
of τ to P then satisfies the conditions of Theorem 3.5. (See Exercise 3.20.) That
is, we now think of τ as a function τ : P → S. We can then apply the theorem.

Exercise 3.22 shows that linear transformation of variables preserves convexity
of a function. However, linear transformations of variables can change the shape
of the contour sets of a problem as shown in Exercise 3.23. As we discussed in

3.2 Variables 127

Section 2.6.3.4 and mentioned in Section 3.2.1, for a function with roughly cir-
cular contour sets, it is easy to find a direction that points towards the minimizer.
As Exercise 3.24 suggests, it is possible to transform the variables of a function
with elliptical level sets into one with circular level sets using a linear transforma-
tion of the variables. Nevertheless, objectives with highly elliptical contour sets
can still prove problematic because finding the linear transformation itself requires
knowledge of the second derivative of the function and, moreover, the evaluation
of the linear transformation is an ill-conditioned problem if the level sets are highly
eccentric.

3.2.2.2 Elimination of variables

An important special case of Theorem 3.5 occurs when we eliminate variables. We
first present an elementary theorem involving elimination of variables for simulta-
neous equations and then a corollary of Theorem 3.5 for optimization problems.

Simultaneous equations

Analysis We can sometimes eliminate variables when solving simultaneous equa-
tions using:

Theorem 3.6 Let g : Rn → Rm, n′ ≤ n and collect the last n′ entries of x together

into a vector ξ =
⎡⎢⎣ xn−n′+1

...

xn

⎤⎥⎦ ∈ Rn′ . Suppose that functions ω� : Rn′ → R for

� = 1, . . . , (n − n′), can be found that satisfy:

∀

⎡⎢⎢⎢⎣
x1
...

xn−n′
ξ

⎤⎥⎥⎥⎦ ∈ {x ∈ R
n|g(x) = 0},∀� = 1, . . . , (n − n′), x� = ω�(ξ).

Collect the functions ω�, � = 1, . . . , (n − n′), into a vector function ω : Rn′ → Rn−n′ .
Then, for x ∈ {x ∈ Rn|g(x) = 0}, the vector function ω : Rn′ → Rn−n′ expresses:

• the sub-vector of x consisting of the first (n − n′) components of x,
• in terms of the sub-vector ξ of x consisting of the last n′ components of x.

Suppose that ξ� ∈ Rn′ solves g

([
ω(ξ)

ξ

])
= 0. (Note that these equations involve

only ξ .) Then x� =
[

ω(ξ�)

ξ�

]
satisfies g(x) = 0.

Conversely, suppose that x� ∈ Rn satisfies g(x�) = 0. Let ξ� ∈ Rn′ be the sub-vector

of x� consisting of its last n′ components. Then ξ� solves g

([
ω(ξ)

ξ

])
= 0.

128 Transformation of problems

Proof See Exercise 3.18. �

Discussion In Theorem 3.6, we write the entries of g in terms of the vector ξ and
the function ω by replacing x�, � = 1, . . . , (n − n′) by ω�(ξ), � = 1, . . . , (n − n′),
respectively. This eliminates x�, � = 1, . . . , (n − n′). The functions ω typically
involve re-arranging some of the entries of g. In this case, we can delete the cor-

responding entries of g when solving g

([
ω(ξ)

ξ

])
= 0 since these entries are

satisfied identically by x =
[

ω(ξ)

ξ

]
. The variables ξ are called the independent

variables, while the variables x�, � = 1, . . . , (n − n′), are called the dependent
variables.

Example Consider g : R2 → R2 defined by:

∀x ∈ R
2, g(x) =

[
x1 − x2

(x2)
2 − x2

]
.

The first entry of g can be re-arranged as x1 = ω1(x2), where ξ = x2 and ω1 :
R → R is defined by:

∀x2 ∈ R, ω1(x2) = x2.

We can delete the first entry g1 from the equations to be solved since it is satisfied

identically by x =
[

ω1(ξ)

ξ

]
. We need only solve the smaller system consisting

of the one equation g2

([
ω1(ξ)

ξ

])
= 0. That is, we must solve (ξ)2 − ξ = 0,

which has solutions ξ� = 0, ξ �� = 1. The corresponding solutions of g(x) = 0 are
x� = 0 and x� = 1.

Optimization

Analysis Consider the following:

Corollary 3.7 Let S ⊆ Rn, f : Rn → R, and n′ ≤ n and collect the last n′ entries

of x together into a vector ξ =
⎡⎢⎣ xn−n′+1

...

xn

⎤⎥⎦ ∈ Rn′ . Consider the special case of

the optimization problem minx∈� f (x) such that functions ω� : Rn′ → R for � =

3.2 Variables 129

1, . . . , (n − n′), can be found that satisfy:

∀

⎡⎢⎢⎢⎣
x1
...

xn−n′
ξ

⎤⎥⎥⎥⎦ ∈ S, ∀� = 1, . . . , (n − n′), x� = ω�(ξ).

(Typically, these functions correspond to (n − n′) of the equality constraints in the def-
inition of S. The condition means that these equality constraints can be re-arranged to
express each of the first n−n′ entries of the decision vector in terms of the last n′ entries.)
Collect the functions ω�, � = 1, . . . , (n − n′), into a vector function ω : Rn′ → Rn−n′ .
Let P ⊆ Rn′ be the projection of S onto the last n′ components of Rn. (See Defini-
tion A.47.) Define φ : Rn′ → R by:

∀ξ ∈ R
n′ , φ(ξ) = f

([
ω(ξ)

ξ

])
.

Consider the problems: minξ∈� φ(ξ) and minx∈� f (x). Then:

(i) the problem minx∈� f (x) has a minimum if and only if minξ∈� φ(ξ) has a min-
imum.

(ii) If either one of the problems in Item (i) possesses a minimum (and consequently,
by Item (i), each one possesses a minimum), then:

min
x∈�

f (x) = min
ξ∈�

φ(ξ),

argmin
x∈�

f (x) =
{[

ω(ξ)

ξ

]
∈ R

n
∣∣∣∣ ξ ∈ argmin

ξ∈�
{φ(ξ)}

}
.

Proof See Exercise 3.18. �

The function φ is called the reduced function [84, section 14.2].

Example Consider the linear equality-constrained problem from Section 2.3.2.2,
with objective defined in (2.10) and equality constraint function defined in (2.12).
That is, consider the problem:

min
x∈�2

{(x1 − 1)2 + (x2 − 3)2|x1 − x2 = 0}. (3.7)

As in the previous example, the equality constraint in this problem can be re-
arranged as x1 = ω1(x2), where ξ = x2 and ω1 : R → R is defined by:

∀x2 ∈ R, ω1(x2) = x2.

Moreover, the projection of S = {x ∈ R2|x1 − x2 = 0} onto the last component
of R2 is P = R. To see this, consider Figure 3.18, which repeats Figure 2.8. The
feasible set is shown by the line. For each x2 ∈ R there is a corresponding point

130 Transformation of problems

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

Fig. 3.18. The contour
sets C f (f̃) of the function
defined in (2.10) for values
f̃ = 2, 4, 6, . . . with
feasible set superimposed.
The heights of the contours
decrease towards the point[

1
3

]
.

5 4 3 2 1 0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

x2

φ(x2)

Fig. 3.19. Transformed
objective function φ.

x ∈ S, namely

[
x2

x2

]
. Therefore, the projection of S onto the last component of R2

is the whole of R.

Using the equality constraint, we can eliminate x1 from the objective function

3.3 Constraints 131

by noticing that:

(x ∈ S) ⇒ (x1 − 1)2 + (x2 − 3)2 = (ω1(x2) − 1)2 + (x2 − 3)2,

= (x2 − 1)2 + (x2 − 3)2,

= 2(x2)
2 − 8x2 + 10.

In the context of Corollary 3.7, we can define the transformed objective φ : R → R

by:

∀x2 ∈ R, φ(x2) = f

([
ω(ξ)

ξ

])
,

= f

([
x2

x2

])
,

= 2(x2)
2 − 8x2 + 10.

This objective is shown in Figure 3.19. We can visualize it by imagining the con-
tours in Figure 3.18 along the feasible set and then consider the contours from the
vantage of the x2-axis. That is, Figure 3.19 shows the shape of the objective when
we look from the x2-axis in Figure 3.18 but see only the values of the objective for
points that are in the feasible set.

By Corollary 3.7, Problem (3.7) is equivalent to:

min
x2∈�

{2(x2)
2 − 8x2 + 10}.

In this case, the equality constraint has been completely eliminated from the for-
mulation, leaving an unconstrained problem that can be solved for a minimizer x�

2.
Inspection of Figure 3.19 yields x�

2 = 2. The corresponding optimal value of x�
1

can be found by substituting according to x�
1 = ω1(x�

2). That is, x�
1 = 2.

Discussion We will use elimination of variables in several places throughout the
book beginning in Section 5.2. Moreover, it is possible to generalize the idea of
elimination of variables to the case where ω is not known explicitly but can only
be found implicitly. See [70, section A.6][72, section 4.4] and Section A.7.3 of
Appendix A for a discussion of this generalization, known as the implicit func-
tion theorem. We will use the implicit function theorem in Section 7.5.1.1 and
elsewhere to facilitate sensitivity analysis.

3.3 Constraints

Transformation of constraints is another technique that will prove useful. The five
basic techniques we will discuss are:

132 Transformation of problems

(i) scaling and pre-conditioning,
(ii) slack variables,
(iii) changing the functional form,
(iv) altering the feasible region, and
(v) hierarchical decomposition.

There are a number of other transformations that are possible, particularly in the
context of linear constraints. See, for example, [84, section 7.5].

3.3.1 Scaling and pre-conditioning

The most basic way to transform constraints is to scale them, as we discussed
for variables. This can have a significant effect on the progress of the optimization
algorithm if the units of the constraints are widely varying. For linear constraints, a
generalization of the idea of scaling, called pre-conditioning, involves multiplying
both the coefficient matrix and the right-hand side vector on the left by a suitably
chosen matrix M that:

• does not change the set of points satisfying the constraints, but
• makes it easier to find points satisfying the constraints.

We will investigate pre-conditioning further in Section 5.7.2.
Scaling can also be useful for non-linear constraints. Similar to the discussion in

Section 3.2.1, evaluation of whether or not a set of constraints are satisfied “closely
enough” will usually involve testing a norm of the constraint function. As in the
discussion in Section 3.2.1, it is sensible to scale the entries of the constraint func-
tion so that a “significant” violation of any constraint from the perspective of the
application involves roughly the same numerical value for each of the entries of
the scaled constraint function. Pre-conditioning can also be applied to non-linear
constraints.

3.3.2 Slack variables

In this section, we consider a transformation that alters inequality constraints into a
combination of equality constraints and non-negativity constraints through the use
of slack variables, which account for the amount by which an inequality constraint
is strictly satisfied. This is specified in the following:

Theorem 3.8 Let f : Rn → R, g : Rn → Rm, h : Rn → Rr . Consider the problems:

min
x∈�n

{ f (x)|g(x) = 0, h(x) ≤ 0}, (3.8)

min
x∈�n ,w∈�r

{ f (x)|g(x) = 0, h(x) + w = 0, w ≥ 0}. (3.9)

3.3 Constraints 133

We have that:

(i) Problem (3.8) has a minimum if and only if Problem (3.9) has a minimum.
(ii) If either one of the problems in Item (i) possesses a minimum (and consequently,

by Item (i), each one possesses a minimum), then the minima are equal. More-
over, to each minimizer x� of Problem (3.8) there corresponds a minimizer[

x�

w�

]
of Problem (3.9) and vice versa.

Proof See Exercise 3.30.
�

Theorem 3.8 will be used in Sections 17.3.1 and 19.4.1 to solve problems of the
form of Problem (3.8) using algorithms for solving problems with non-negativity
constraints of the form of Problem (3.9).

3.3.3 Changing the functional form

More generally than in the previous two sections, we can consider transforming the
form of the functions specifying the feasible set without altering the feasible set.
The usefulness of this observation is that the precise formulation of the functions
can significantly affect the tractability of the problem. We will investigate this in
Parts IV and V.

As an example of changing the functional form, Exercise 3.32 shows that by
re-arranging the functional form of the constraints it is possible to transform some
non-convex functions into convex functions. In particular, in Exercise 3.32, it is
possible to transform the constraint function to be affine.

As another example, a monotonically increasing transformation of an equality
or inequality constraint function (together with the corresponding transformation
of its right-hand side) does not change the feasible region, but may transform the
function into being convex. This is embodied in:

Theorem 3.9 Let f : Rn → R, g : Rn → Rm, b ∈ Rm, h : Rn → Rr , and d ∈ Rr .
Let τ

↗
� : R → R, � = 1, . . . , m, and σ

↗
� : R → R, � = 1, . . . , r , each be strictly

monotonically increasing and continuous on R. Define γ : Rn → Rm, β ∈ Rm,
η : Rn → Rr , and δ ∈ Rr by:

∀� = 1, . . . , m, ∀x ∈ R
n, γ�(x) = τ

↗
� (g�(x)),

∀� = 1, . . . , m, β� = τ
↗
� (b�),

∀� = 1, . . . , r, ∀x ∈ R
n, η�(x) = σ

↗
� (h�(x)),

∀� = 1, . . . , r, δ� = σ
↗
� (d�).

134 Transformation of problems

Consider the problems:

min
x∈�n

{ f (x)|g(x) = b, h(x) ≤ d} and min
x∈�n

{ f (x)|γ (x) = β, η(x) ≤ δ}.

The second problem is obtained from the first by transforming corresponding functions
and entries of each constraint. Then:

(i) the problem minx∈�n { f (x)|g(x) = b, h(x) ≤ d} has a minimum if and only if
the problem minx∈�n { f (x)|γ (x) = β, η(x) ≤ δ} has a minimum.

(ii) If either one of the problems in Item (i) possesses a minimum (and consequently,
by Item (i), each one possesses a minimum), then the minima are equal and they
have the same minimizers.

Proof See Exercise 3.31. �

See Exercise 3.33 for an application of this theorem involving posynomial func-
tions [6, section 11.5][15, section 4.5.3], as defined in:

Definition 3.1 Let A ∈ Rm×n and B ∈ Rm++ and define f : Rn++ → R by:

∀x ∈ R
n++, f (x) =

m∑
�=1

B�(x1)
A�1(x2)

A�2 · · · (xn)
A�n .

The function f is called a posynomial function. If m = 1 then f is called a monomial
function. �

In Exercise 3.33, a non-convex problem involving posynomial functions is trans-
formed into a convex problem. (We will use this transformation in Section 20.2 in
the sizing of interconnects in integrated circuits case study.)

3.3.4 Altering the feasible region

Even more generally, it can sometimes also be useful to alter the feasible region as
the following theorem shows:

Theorem 3.10 Let S ⊆ S ⊆ S ⊆ Rn, f : Rn → R and consider the problems:

min
x∈�

f (x), min
x∈�

f (x), min
x∈�

f (x),

and assume that they all have minima and minimizers. Then:

(i) min
x∈�

f (x) ≥ min
x∈�

f (x) ≥ min
x∈�

f (x).

(ii) If x� ∈ argminx∈� f (x) and x� ∈ S then minx∈� f (x) = minx∈� f (x) and,
furthermore, argminx∈� f (x) = (

argminx∈� f (x)
) ∩ S.

(iii) If x� ∈ argminx∈� f (x) and x� ∈ S then minx∈� f (x) = minx∈� f (x) and,
furthermore, argminx∈� f (x) = (argminx∈� f (x)) ∩ S.

3.3 Constraints 135

�

�

x2

x1

�

�

�

�

�
�

�
�

• argmin
x∈�

f (x)

S

S

Fig. 3.20. Illustration of
relaxing the feasible set.

Proof See Exercise 3.34. �

We will discuss the implications of Theorem 3.10 in the following sections.

3.3.4.1 Enlarging or relaxing the feasible set

Item (ii) of Theorem 3.10 suggests a way to solve some problems: consider an al-
ternative problem with the same objective but a “larger” feasible set S. The problem
minx∈� f (x) is called a relaxation of or a relaxed version of the original problem
minx∈� f (x). If the minimizer of the relaxed problem minx∈� f (x) happens to lie
in S, then a minimizer of the original problem minx∈� f (x) has been found. The
situation is illustrated in Figure 3.20, where the minimizer of f over S happens to
be an element of S and consequently is also a minimizer of f over S.

Surprisingly, it is sometimes easier to optimize over a larger set than a smaller
set, if the larger set has a more suitable structure. For example, Exercises 3.36
and 3.37 show cases where, respectively:

(i) S is convex while S is not, and
(ii) S involves temporarily ignoring some of the constraints, yielding an easier

problem.

As another example, in Section 15.6.4.1 we will show that although the feasible set
S for the optimal power flow case study is not convex, a suitable relaxation S of the
feasible set is convex. In Section 15.6.4.1, we consider the circumstances where
the minimizer of the relaxed problem is also an element of S.

If the solution to the relaxed problem is not contained in the feasible set of the
original problem, then at least one of the relaxed constraints was violated. We
can add one or more of these constraints to form a revised problem. (A violated
constraint might not be binding at the solution of the original problem, however.
See Exercises 2.37 and 2.38.) This revised problem is “intermediate” between the
original and relaxed problem. We can try to solve the revised problem in the hope

136 Transformation of problems

�

�

x2

x1

�

�

�

�

�

�

�

�
S1

S2

Fig. 3.21. Illustration of
divide and conquer.

of finding a solution that satisfies all the constraints. This leads to cutting plane
approaches [11, section 6.3.2][12, section 6.5][41][70, section 13.6].

3.3.4.2 Constricting the feasible set

Item (iii) in Theorem 3.10 simply formalizes a way to use a priori knowledge to
narrow a search: if an optimizer is known to lie in a subset S of S then we can
confine our search to that subset. This can be useful if it is easier to search over S

than over S.

3.3.4.3 Divide and conquer

We can generalize the idea of constricting the feasible set to develop a divide and
conquer approach. For example, suppose that S1 ⊆ S, S2 ⊆ S, and S1 ∪ S2 = S.
If the minimizer of the problem over S exists, then it must be contained in either
S1 or S2 (or both). We solve both minx∈�1 f (x) and minx∈�2 f (x) and check for
the smaller minimum and corresponding minimizer. This yields the minimum and
minimizer of minx∈� f (x). (See Exercise 3.39.)

This approach can be very effective if S1 and S2 are chosen so that minimizing
over S1 and minimizing over S2 is easier than minimizing over S itself. For exam-
ple, if S is not itself convex, it may be the case that S can be represented as the
union of convex subsets. If the objective is convex on each of the convex subsets
then the individual minimization problems are convex. The situation is illustrated
in Figure 3.21, where the two sets S1 and S2 illustrated are convex and their union
is the non-convex feasible set S = S1 ∪ S2.

As another example, suppose that the feasible set is the subset of R2 consisting
of the points that are within 1 unit of the point x = 0 or within 1 unit of the point
x = 1. This set is not convex, but is clearly the union of two convex sets.

A third example involves discrete optimization. Suppose that a particular entry
x1 of x ∈ Rn is required to be either 0 or 1. Then, we can partition the feasible set
S into S1 = S ∩ {x ∈ Rn|x1 = 0} and S2 = S ∩ {x ∈ Rn|x1 = 1}. Optimizing

3.3 Constraints 137

�

�

y

x

Fig. 3.22. Illustration of
hierarchical decomposi-
tion.

over S1 and over S2 and further partitioning of the feasible set for other discrete
variables leads to branch and bound techniques [113, 122].

3.3.5 Hierarchical decomposition

Sometimes problems can be decomposed into a hierarchy of levels in such a way
that we can think of solving an outer or master problem, the objective of which is
the solution to an inner problem. For example, consider a feasible set S ⊆ Rn+s

such that:

S =
{[

x
y

]
∈ R

n+s

∣∣∣∣ x ∈ S1, y ∈ S2(x)

}
,

where S1 ⊆ Rn and S2 : S1 → (2)(�s) is a set-valued function. That is, for each
element x in S1, there is a set of elements S2(x) ⊂ Rs such that for any y ∈ S2(x),

the vector

[
x
y

]
is an element of S. We can think of S as the union of “slices,”

where there is one slice S2(x) for each x in S1. This is illustrated in Figure 3.22,
where several such slices are shown. If S2(x) is independent of x then we write S2

for S2(x). In this case, S is the Cartesian product S = S1 × S2.
We have the following ([41, theorem 1][106, section 8.2]):

Theorem 3.11 Suppose that S ⊆ Rn+s is of the form:

S =
{[

x
y

]
∈ R

n+s
∣∣∣∣ x ∈ S1, y ∈ S2(x)

}
,

with S1 ⊆ Rn and, for each x ∈ S1, S(x) ⊆ Rs . Let f : S → R and assume that, for

each x ∈ S1, the minimization problem miny∈�2(x) f

([
x
y

])
has a minimum. Consider

the problems:

min[
x
y

]
∈�

f

([
x
y

])
and min

x∈�1

{
min

y∈�2(x)
f

([
x
y

])}
.

138 Transformation of problems

Then:

(i) min[
x
y

]
∈�

f

([
x
y

])
has a minimum if and only if min

x∈�1

{
min

y∈�2(x)
f

([
x
y

])}
has a

minimum.
(ii) If either one of the problems in Item (i) possesses a minimum (and consequently,

by Item (i), each one possesses a minimum), then:

min[
x
y

]
∈�

f

([
x
y

])
= min

x∈�1

{
min

y∈�2(x)
f

([
x
y

])}
,

arg min[
x
y

]
∈�

f

([
x
y

])
=

⎧⎪⎪⎨⎪⎪⎩
[

x̂
ŷ

]
∈ R

n+s

∣∣∣∣∣∣∣∣
x̂ ∈ argmin

x∈�1

{
min

y∈�2(x)
f

([
x
y

])}
,

ŷ ∈ arg min
y∈�2(x̂)

f

([
x̂
y

])
⎫⎪⎪⎬⎪⎪⎭ .

Proof See Exercise 3.40. �

In Theorem 3.11, S1 is the projection of S onto the first n components of Rn+s .
(See Definition A.47.) For this reason, hierarchical decomposition is sometimes
referred to as projection [41, 42]. Theorem 3.11 allows us to hold some of the
decision vector constant temporarily while we optimize over the rest of the decision
vector. That is, we keep x ∈ S1 constant temporarily or think of it as a parameter
while we optimize the inner problem over y ∈ S2(x). If we can solve for the
solution of the inner problem as a function of x , or can approximate its dependence
on x , then we can use this functional dependence in the outer problem.

For example, consider the feasible set:

S =
{[

x
y

]
∈ R

2

∣∣∣∣ (x)2 + (y)2 = 1

}
,

which is the set of points on the unit circle in the plane. We can re-write this set in
the form:

S =
{[

x
y

]∣∣∣∣− 1 ≤ x ≤ 1, y ∈
{√

1 − (x)2,−
√

1 − (x)2
}}

,

where S1 = {x ∈ R| − 1 ≤ x ≤ 1} is the projection of S onto the first component
of R2. In this particular case, for each x ∈ S1, the inner minimization problem
in Theorem 3.11 involves finding the minimum over a set with just two elements,
namely S2(x) = {√1 − (x)2,−√1 − (x)2}. Even if the objective is non-convex,
and despite the fact that S2(x) is not a convex set, it may be easy to perform this
minimization.

If S is convex and f is a convex function on S then both the inner problem and
the outer problem are convex. (See Exercise 3.41.)

3.4 Duality 139

Hierarchical decomposition is also useful when holding x ∈ S1 constant yields
an inner problem with a particular structure that is easy to solve or for which a
convenient approximate solution is possible. This leads to Bender’s decomposi-
tion [41, 42, 43].

Hierarchical decomposition is often used implicitly in an ad hoc basis, such as
when outer level decision variables are implicitly held constant while inner level
decision variables are optimized. See Section 15.5.1.5 for a discussion of this in the
context of integrated circuit design. More details about hierarchical decomposition
can be found in [106, chapters 8, 12, and 13].

3.4 Duality

In this section we briefly describe a transformation that is rather more radical and
less straightforward than the transformations we have described so far. Its full
explanation and justification will await a more thorough theoretical development in
later chapters in Parts IV and V. We will only give the briefest outline of the issues
involved and introduce it here only to complete our list of problem transformations.

Taking the dual of a problem is a process whereby a new problem is defined
where the role of the variables and the constraints is either partially or completely
exchanged. The variables and constraints have a significant influence on the com-
putational effort to solve a problem, so that “dualizing” a problem may make it
significantly easier to solve. The original problem is called the primal problem in
this context.

Let f : Rn → R, g : Rn → Rm , and h : Rn → Rr and consider the problem:

min
x∈�n

{ f (x)|g(x) = 0, h(x) ≤ 0}. (3.10)

In Sections 3.4.1 and 3.4.2, we define two functions associated with f , g, and
h. In Section 3.4.3, we then consider the relationship between these functions
and minimizing f , providing an example and further discussion in Sections 3.4.4
and 3.4.5, respectively.

3.4.1 Lagrangian

We make:

Definition 3.2 Consider the function L : Rn × Rm × Rr → R defined by:

∀x ∈ R
n,∀λ ∈ R

m, ∀µ ∈ R
r ,L(x, λ, µ) = f (x) + λ†g(x) + µ†h(x). (3.11)

The function L is called the Lagrangian and the variables λ and µ are called the dual
variables. If there are no equality constraints then L : Rn × Rr → R is defined by

140 Transformation of problems

omitting the term λ†g(x) from the definition, while if there are no inequality constraints
then L : Rn × Rm → R is defined by omitting the term µ†h(x) from the definition. �

Sometimes, the symbol for the dual variables is introduced when the problem is
defined by writing it in parenthesis after the constraint, as in the following:

min
x∈�n

f (x) such that g(x) = 0, (λ).

3.4.2 Dual function

Associated with the Lagrangian, we make:

Definition 3.3 Consider the function D : Rm × Rr → R ∪ {−∞} defined by:

∀
[

λ

µ

]
∈ R

m+r ,D(λ, µ) = inf
x∈�n

L(x, λ, µ). (3.12)

The function D is called the dual function. It is an extended real function. (See Def-
inition A.17 and see Exercise 3.43 to confirm that the specification of the range of D is
appropriate.) If there are no equality constraints or there are no inequality constraints, re-
spectively, then the dual function D : Rr → R∪{−∞} or D : Rm → R∪{−∞} is defined
in terms of the corresponding Lagrangian.

The set of points on which the dual function takes on real values is called the effective
domain E of the dual function. That is,

E =
{[

λ

µ

]
∈ R

m+r
∣∣∣∣D(λ, µ) > −∞

}
,

and the restriction of D to E is a real-valued function D : E → R. �

Recall Definition 2.17 of a concave function. The usefulness of the dual function
stems in part from the following:

Theorem 3.12 Let f : Rn → R, g : Rn → Rm, and h : Rn → Rr . Consider the
corresponding Lagrangian defined in (3.11), the dual function defined in (3.12), and the
effective domain E of the dual function. The effective domain E of the dual function is a
convex set. The dual function is concave on E.

Proof See Exercise 3.44 and [6, theorem 6.3.1][11, proposition 5.1.2]. �

The convexity of the effective domain and the concavity of the dual function on
the effective domain does not depend on any property of the objective nor of the
constraint functions.

3.4 Duality 141

3.4.3 Dual problem

We have the following:

Theorem 3.13 Let f : Rn → R, g : Rn → Rm, and h : Rn → Rr . Let λ ∈ Rm and
µ ∈ Rr+ and suppose that x̂ ∈ {x ∈ Rn|g(x) = 0, h(x) ≤ 0}. That is, x̂ is feasible for
Problem (3.10). Then:

f (x̂) ≥ D(λ, µ), (3.13)

where D : Rm × Rr → R ∪ {−∞} is the dual function defined in (3.12).

Proof ([6, theorem 6.2.1].) By definition of D,

D(λ, µ) = inf
x∈�n

L(x, λ, µ),

= inf
x∈�n

{ f (x) + λ†g(x) + µ†h(x)}, by definition of L,

≤ f (x̂) + λ†g(x̂) + µ†h(x̂), by definition of inf,

≤ f (x̂),

since g(x̂) = 0, h(x̂) ≤ 0, and µ ≥ 0. �

Theorem 3.13 enables us to gauge whether we are close to a minimum of Prob-
lem (3.10): for any λ ∈ Rm and µ ∈ Rr+, we know that the minimum of Prob-
lem (3.10) is no smaller than D(λ, µ). The bound in (3.13) will be incorporated
into stopping criteria for iterative algorithms for equality-constrained problems
in Sections 13.3.1.4 and 14.3.2 and for inequality-constrained problems in Sec-
tions 16.4.6.4, 17.3.1.4, and 19.4.1.4 [15, section 5.5.1].

We also have:

Corollary 3.14 ([6, corollaries 1 4 of theorem 6.2.1]) Let f : Rn → R, g : Rn → Rm,
and h : Rn → Rr . Then:

inf
x∈�n

{ f (x)|g(x) = 0, h(x) ≤ 0} ≥ sup[
λ
µ

]
∈�m+r

{D(λ, µ)|µ ≥ 0},

= sup[
λ
µ

]
∈�
{D(λ, µ)|µ ≥ 0},

where E is the effective domain of D. Moreover, if Problem (3.10) has a minimum then:

min
x∈�n

{ f (x)|g(x) = 0, h(x) ≤ 0} ≥ sup[
λ
µ

]
∈�
{D(λ, µ)|µ ≥ 0}. (3.14)

If Problem (3.10) is unbounded below then:

∀λ ∈ R
m,∀µ ∈ R

r+,D(λ, µ) = −∞,

142 Transformation of problems

so that E = ∅. If sup[
λ
µ

]
∈�
{D(λ, µ)|µ ≥ 0} is unbounded above then Problem (3.10) is

infeasible.

Proof See Exercise 3.45. �

This result is called weak duality and the right-hand side of (3.14) is called the
dual problem. If E = ∅ we say that the dual problem is infeasible.

The inequalities in (3.13) and (3.14) can be strict, in which case the difference
between the left- and right-hand sides is called the duality gap. If the left- and
right-hand sides are the same, we say that there is no duality gap or that the duality
gap is zero.

Evaluating the right-hand side of (3.14) requires:

• evaluating how the infimum of the inner problem infx∈�n L(x, λ, µ) in the def-
inition of D depends on λ and µ, and

• finding the supremum of the outer problem sup[λ
µ

]
∈�{D(λ, µ)|µ ≥ 0}.

Exercise 3.46 shows that it is possible for there to be a duality gap. Moreover,
the calculation of sup and inf is not very practical from a numerical point of view.
However, in some circumstances, the inequality in (3.14) can be replaced by equal-
ity and the sup and inf can be replaced by max and min, so that the right-hand side
of (3.14) equals the minimum of the primal Problem (3.10) and the dual problem
on the right-hand side of (3.14) becomes:

max[
λ
µ

]
∈�
{D(λ, µ)|µ ≥ 0} = max[

λ
µ

]
∈�

{
min
x∈�n

{ f (x) + λ†g(x) + µ†h(x)}
∣∣∣∣µ ≥ 0

}
,

(3.15)
having an inner minimization problem embedded in an outer maximization prob-
lem. By Theorem 3.12, D is concave on E, so that, by Theorem 2.4, it has at most
one local maximum. Consequently, Problem (3.15) is amenable to solution by the
optimization techniques we describe, so that if:

• the dual problem has maximum equal to the minimum of the primal, and
• the minimizer of the inner problem in the definition of the dual function sheds

light on the minimizer of the primal problem,

then the dual formulation provides a useful transformation. The requirements for
these conditions to hold depend on the convexity of the primal problem and on
other technical conditions on the functions, which we will discuss in detail in
Parts IV and V. In the next section, we will consider an example where such
conditions happen to hold.

3.4 Duality 143

3.4.4 Example

Consider the problem minx∈�{ f (x)|g(x) = 0} where f : R → R and where
g : R → R are defined by:

∀x ∈ R, f (x) = (x)2,

∀x ∈ R, g(x) = 3 − x .

Since there are no inequality constraints, we will omit the argument µ of L and of
D. We consider the dual function D : R → R ∪ {−∞}, defined by:

∀λ ∈ R,D(λ) = inf
x∈�

L(x, λ),

= inf
x∈�

{(x)2 + λ(3 − x)},

= inf
x∈�

{(
x − λ

2

)2

+ 3λ − (λ)2

4

}
, on completing the square,

= 3λ − (λ)2

4
,

since the minimum value of (x − λ/2)2 occurs for x = λ/2. Moreover, E = R.
Since D is quadratic and strictly concave, the dual problem has a maximum and:

max
λ∈�

{D(λ)} = max
λ∈�

{
3λ − (λ)2

4

}
,

= max
λ∈�

{
−
(

λ

2
− 3

)2

+ 9

}
,

= 9,

with maximizer λ� = 6. The value of the minimizer of L(•, λ�) is x� = λ�/2 = 3,
which is the minimizer of the equality-constrained problem. We have solved the
primal equality-constrained problem by solving the dual problem.

3.4.5 Discussion

The combination of outer and inner optimization problems in duality is superfi-
cially similar to the situation discussed in Section 3.3.5 for hierarchical decom-
position; however, in duality the outer problem seeks to maximize and the inner
problem seeks to minimize, whereas in hierarchical decomposition both the in-
ner and outer problems are minimization problems. Hierarchical decomposition
and duality are therefore different approaches to transforming a problem. (In the
context of duality, hierarchical decomposition is sometimes referred to as primal
decomposition to emphasize this distinction [106, section 8.2].)

144 Transformation of problems

For each equality constraint g�(x) = 0 in the primal problem we have created a
new variable λ� in the dual problem. For each inequality constraint h�(x) ≤ 0 in
the primal problem we have created a new variable µ� and a new constraint µ� ≥ 0
in the dual problem. In some circumstances, such as the example in Section 3.4.4:

• the minimization over x ∈ Rn in the inner problem in (3.15) can be performed
analytically or particularly easily numerically, or

• each entry xk can be eliminated,

making the inner problem easy to solve.
The primal and dual problems are qualitatively different. The dual problem may

be easier to solve than the primal. If so and if the primal and dual have equal op-
tima for a particular problem then duality can provide a useful transformation. For
example, if the primal problem has many variables but only a few constraints, then
the dual problem will involve maximization of a concave function over just a few
variables. We will see an example of such a problem in the least-cost production
case study in Section 12.1. In some cases, the inner problem is very easy to solve
so that the dual problem is, overall, much easier to solve than the primal. For exam-
ple, if the objective is additively separable then we will see that the inner problem
can be decomposed into smaller sub-problems.

Even if the problem at hand does not satisfy the conditions for equality of the
primal and dual, it is still possible to try to solve the dual problem. In general,
the solution of the dual problem will only be a lower bound on the solution of
the primal, as illustrated in Exercise 3.46; however, this may still be useful in
finding a solution of the primal problem or in providing information about the
primal problem such as a bound on the minimum. We will investigate these issues
in Parts IV and V. We will also see in Parts IV and V that the Lagrangian and the
dual problem provide information for sensitivity analysis.

3.5 Summary

In this chapter we introduced various ways to transform problems. These transfor-
mations involved:

• the objective,
• the variables,
• the constraints, and
• duality.

We are now ready to begin discussing the case studies and the algorithms. The
material in this chapter has been very technical in places and you may want to
return to it as we proceed.

Exercises 145

Exercises

Objective

3.1 Prove Theorem 3.1.

3.2 Let f : R → R be defined by:

∀x ∈ R, f (x) = (x)2 + 1.

(i) Find the minimum and minimizer of minx∈� f (x). Explain your answer. (Hint:
You do not need to perform any calculations to solve this problem.)

(ii) Find the minimum and minimizer of minx∈� ln(f (x)). Explain you answer. (Hint:
You should invoke a theorem to solve this problem.)

3.3 Repeat Exercise 2.7 but change the objective to φ = exp(f (•)) instead of f and in the
first part, sketch Cφ(φ̃) for φ̃ = 1, exp(1), exp(2), exp(3). That is, perform the following.

(i) Sketch Cφ(φ̃) for φ̃ = 1, exp(1), exp(2), exp(3).
(ii) Sketch on the same graph the set of points satisfying g(x) = 0 where:

∀x ∈ R
2, g(x) = x1 + 2x2 − 3.

(iii) Find minx∈�2{φ(x)|x1 + 2x2 − 3 = 0} and argminx∈�2{φ(x)|x1 + 2x2 − 3 = 0}.

3.4 This exercise considers convexity under a transformation of the objective.

(i) Show that f : R → R defined by ∀x ∈ R, f (x) = − exp(− 1
2 (x)2) is not convex.

A sketch and explanation will suffice.
(ii) Define φ : R → R by ∀x ∈ R, φ(x) = − ln(− f (x)) and prove that φ is convex.

3.5 Suppose that S ⊆ Rn is convex and that f : S → R has convex level sets on S and
that η↗ : R → R is monotonically increasing. Define φ : S → R by ∀x ∈ S, φ(x) =
η↗(f (x)). Prove that φ has convex level sets on S.

3.6 (Exercise 3.12 of [6].) Suppose that S ⊆ Rn is convex, f : S → R is convex on
S, and η↗ : R → R is monotonically increasing and convex. Define φ : S → R by
∀x ∈ S, φ(x) = η↗(f (x)). Prove that φ is convex on S.

3.7 Prove Theorem 3.2.

3.8 Suppose that: g : Rn → Rm is partially differentiable and � ∈ R. Calculate the
gradient of � ‖g(•)‖2

2.

146 Transformation of problems

3.9 Repeat Exercise 2.7 with the objective f + (g)2 instead of f where f : R2 → R and
g : R2 → R are as defined in Exercise 2.7:

∀x ∈ R
2, f (x) = (x1)

2 + (x2)
2 + 2x2 − 3,

∀x ∈ R
2, g(x) = x1 + 2x2 − 3.

(i) Sketch C f+(g)2(f̃) for f̃ = 0, 1, 2, 3.
(ii) Sketch on the same graph the set of points satisfying g(x) = 0.
(iii) Find minx∈�2{ f (x)+(g(x))2|x1+2x2−3 = 0} and argminx∈�2{ f (x)+(g(x))2|x1+

2x2 − 3 = 0}.

3.10 Suppose that f : Rn → R and g : Rn → Rm are partially differentiable with
continuous partial derivatives. Let ‖•‖ be a norm on Rm .

Suppose that the problem minx∈�n { f (x)|g(x) = 0} has a minimizer. Furthermore, for
each ν ∈ R+, suppose that the problem minx∈�n { f (x) + ν ‖g(x)‖2} has a minimizer and
let x (ν) ∈ argminx∈�n { f (x) + ν ‖g(x)‖2}. Moreover, suppose that the sequence {x (ν)}∞ν=0
converges to x�.

Prove that x� is a minimizer of minx∈�n { f (x)|g(x) = 0}.

3.11 Define f : R2 → R and g : R2 → R by:

∀x ∈ R
2, f (x) = −2(x1 − x2)

2 + (x1 + x2)
2,

∀x ∈ R
2, g(x) = x1 − x2,

and consider the problem minx∈�2{ f (x)|g(x) = 0}.
(i) Show that f is not convex. (A sketch will suffice.)
(ii) Show that the penalized objective f + �(g)2 is convex for � = 2.
(iii) Find all local minima and minimizers of the problem.
(iv) Show that the penalized objective f + �(g)2 is strictly convex for � = 3.

3.12 Prove Theorem 3.4.

3.13 Let f� : Rn → R, � = 1, . . . , r , be convex. Prove that the function f : Rn → R is
convex, where f is defined by:

∀x ∈ R
n, f (x) = max

�=1,...,r
f�(x).

3.14 Let S ⊆ Rn be a convex set and let f� : Rn → R, � = 1, . . . , r , be convex on S.
Consider Problem (3.3):

min
x∈�,z∈�

{z| f�(x) − z ≤ 0, ∀� = 1, . . . , r}.

Prove that Problem (3.3) is a convex problem. (Hint: This problem has:

• decision vector

[
x
z

]
∈ Rn × R,

Exercises 147

• objective φ : Rn × R → R defined by:

∀x ∈ R
n,∀z ∈ R, φ(x, z) = z,

and
• feasible set:

(S × R) ∩
{[

x
z

]
∈ R

n+1
∣∣∣∣ h(x, z) ≤ 0

}
,

where h : Rn × R → Rr is defined by:

∀� = 1, . . . , r, ∀
[

x
z

]
∈ R

n × R, h�(x, z) = f�(x) − z.

Show that:

(i) S × R is a convex set;
(ii) φ is a convex function on S × R; and
(iii) for each � = 1, . . . , r , h� is a convex function on S × R,

and then use previous results.)

3.15 Give an example where f1, f2 : R → R are each differentiable, but f : R → R

defined by:

∀x ∈ R, f (x) = max{ f1(x), f2(x)},
is not differentiable. (Hint: consider f to be the absolute value function and express it as
the maximum of two other elementary functions.)

3.16 Suppose that h : Rn → Rr and that we want to decide if {x ∈ Rn|h(x) ≤ 0} is a
non-empty set. Suggest how to answer this question with an optimization algorithm that
can treat inequality constraints but which must be furnished with an initial guess that is
strictly feasible with respect to the inequalities. (Hint: Consider the problem:

min
x∈�n ,z∈�

{z|h�(x) − z ≤ 0,∀� = 1, . . . , r}.

Pick any initial value x (0). What should z(0) be so that

[
x (0)

z(0)

]
is strictly feasible for the

inequality constraints?)

3.17 Consider the absolute value function |•| : R → R+ and its smoothed version
φ : R → R+ as defined in (3.4), which we repeat here:

∀x ∈ R, φ(x) =
√

(|x |2 + ε).

(i) Show that |•| is not differentiable at x = 0. (Hint, use the definition of derivative
and consider the limits from the left and from the right of x = 0 in the definition.)

(ii) Show that φ is differentiable for ε > 0. (Hint: the only point that poses difficulty
is at x = 0.)

(iii) Calculate the second derivative of φ.
(iv) What happens to the second derivative of φ as ε → 0.

148 Transformation of problems

Variables

3.18 In this exercise we consider onto functions.

(i) Prove Theorem 3.5, Item (i).
(ii) Prove Theorem 3.5, Item (ii).
(iii) Prove Theorem 3.6.
(iv) Prove Corollary 3.7.

3.19 This exercise considers the simplest case of rectangular to polar coordinate trans-
formation. Consider the feasible set S = {x ∈ R2|(x1)

2+ (x2)
2 = 1}. Let P = {ξ ∈ R|0 ≤

ξ < 2π} and define τ : P → S by:

∀ξ ∈ P, τ (ξ) =
[

cos ξ
sin ξ

]
.

(i) Show that S is not convex.
(ii) Show that τ is onto S.
(iii) Show that P is convex.

3.20 Suppose that τ : Rn′ → Rn is onto Rn . Let S ⊆ Rn and define P = {ξ ∈ Rn′ |τ(ξ) ∈
S}. Show that the restriction of τ to P is onto S.

3.21 Let x ∈ Rn and consider the scaling of variables defined by:

∀� = 1, . . . , n, x� = κ�ξ�,

where κ� ∈ R, � = 1, . . . , n.

(i) Show that this transformation can be expressed in the form τ : Rn → Rn , where:

∀ξ ∈ R
n, τ (ξ) = K ξ,

where K is a square matrix with all entries zero except along its diagonal. The �-th
diagonal entry of K is κ�.

(ii) Show that if κ� 	= 0 for each � = 1, . . . , n then τ is onto Rn .

3.22 This exercise considers convexity under a linear transformation of the variables. Let
A ∈ Rn×m and let f : Rn → R be convex.

(i) Show that the function φ : Rm → R defined by ∀ξ ∈ Rm, φ(ξ) = f (Aξ) is
convex.

(ii) Let P ⊆ Rm be convex and define S = {Aξ ∈ Rn|ξ ∈ P}. Show that S is convex.

3.23 Consider the functions f : R2 → R and g : R2 → R as defined in Exercise 2.7.

∀x ∈ R
2, f (x) = (x1)

2 + (x2)
2 + 2x2 − 3,

∀x ∈ R
2, g(x) = x1 + 2x2 − 3.

Exercises 149

Also consider the function τ : R2 → R2 defined by:

∀ξ ∈ R
2, x = τ(ξ) =

[
ξ1 − ξ2

ξ2

]
,

and define the following functions:

• φ : R2 → R, ∀ξ ∈ R2, φ(ξ) = f (τ (ξ)),
• γ : R2 → R, ∀ξ ∈ R2, γ (ξ) = g(τ (ξ)).

Let S = {x ∈ R2|g(x) = 0} and define P = {ξ ∈ R2|τ(ξ) ∈ S}. Consider the restriction
of τ to P.

(i) Show that τ : P → S is onto S.
Now repeat Exercise 2.7 for the functions φ and γ . That is, perform the following.

(ii) Sketch Cφ(φ̃) for φ̃ = 0, 1, 2, 3.
(iii) Sketch the set of points satisfying γ (ξ) = 0.
(iv) Find minξ∈�2{φ(ξ)|γ (ξ) = 0} and argminξ∈�2{φ(ξ)|γ (ξ) = 0}.

3.24 Recall the function f : R2 → R defined in (2.29):

∀x ∈ R
2, f (x) = (x1 − 1)2 + (x2 − 3)2 − 1.8(x1 − 1)(x2 − 3).

Define the function φ : R2 → R by:

∀ξ ∈ R
2, φ(ξ) = f (Aξ),

where A ∈ R2×2 is given by:

A =
[

1 0
0.9 0.4359

]
.

Show that the contour sets of φ are circular.

3.25 In this exercise we consider elimination of variables.

(i) Consider the problem:

min
x∈�2

{(x1)
2 + (x2 − 3)2|x1 − 2x2 = 0}.

Use Corollary 3.7 to solve this problem.
(ii) Consider the problem:

min
x∈�2

{(x1)
2 + (x2 − 3)2|x1 − 2x2 = 0, x2 ≤ 0}.

Use Corollary 3.7 to solve this problem. (Hint: What is the projection of the feasi-
ble set onto the last component of R2?)

3.26 Consider a rectangle with sides x1 and x2. We collect the variables x1 and x2
together into a vector x ∈ R2 and consider three associated functions:

150 Transformation of problems

• f : R2 → R defined by:

∀x ∈ R
2, f (x) = x1x2,

the area of the rectangle,
• φ : R2 → R defined by:

∀x ∈ R
2, φ(x) =

√
(x1)2 + (x2)2,

the length of the diagonal of the rectangle, and
• ϕ : R2 → R defined by:

∀x ∈ R
2, ϕ(x) = x1 + x2,

the sums of the lengths of the sides of the rectangle.

(i) Let ϕ̃ ∈ R and consider the problem:

max
x∈�2

{ f (x)|ϕ(x) = ϕ̃}.

(a) Show that f is not concave.
(b) Use Corollary 3.7 to eliminate x1.
(c) Show that the resulting transformed problem has a concave objective.
(d) Solve the transformed problem.

(ii) Let ϕ̃ ∈ R and consider the problem:

min
x∈�2

{φ(x)|ϕ(x) = ϕ̃}.

(a) Show that φ is not convex.
(b) Use Corollary 3.7 to eliminate x1.
(c) Show that the resulting transformed problem has a convex objective.
(d) Solve the transformed problem.

(iii) Let f̃ ∈ R and consider the problem:

max
x∈�2

{ϕ(x)| f (x) = f̃ }.

(a) Show that the feasible set is not convex.
(b) Use Corollary 3.7 to eliminate x1.
(c) Show that the resulting transformed problem has a concave objective.
(d) Solve the transformed problem.

(iv) Let f̃ ∈ R and consider the problem:

max
x∈�2

{φ(x)| f (x) = f̃ }.

(a) Use Corollary 3.7 to eliminate x1.
(b) Show that the resulting transformed problem has a concave objective.
(c) Solve the transformed problem.

(v) Let φ̃ ∈ R and consider the problem:

max
x∈�2

{ϕ(x)|φ(x) = φ̃}.

Exercises 151

(a) Show that the feasible set is not convex.
(b) Use Corollary 3.7 to eliminate x1.
(c) Show that the resulting transformed problem has a concave objective.
(d) Solve the transformed problem.

(vi) Let φ̃ ∈ R and consider the problem:

max
x∈�2

{ f (x)|φ(x) = φ̃}.

(a) Use Corollary 3.7 to eliminate x1.
(b) Show that the resulting transformed problem has a concave objective.
(c) Solve the transformed problem.

3.27 Consider A ∈ R2×2 and b ∈ R2 defined in (2.2):

A =
[

1 2
3 4

]
, b =

[
1
1

]
.

(i) Use the equation specified by the first row of A to find a function ω1 : R → R that
allows x1 to be expressed in terms of x2.

(ii) Use ω1 to eliminate x1 in the second row of Ax = b.
(iii) Find x�

2 that satisfies the second row with x1 eliminated.
(iv) Find x� that satisfies the complete system Ax = b.

3.28 In this exercise, we consider posynomial functions and monomial functions [6,
section 11.5][15, section 4.5.3]. (See Definition 3.1.) Let A ∈ Rm×n and B ∈ Rm++ and
define the posynomial function f : Rn++ → R by:

∀x ∈ R
n++, f (x) =

m∑
�=1

B�(x1)
A�1(x2)

A�2 · · · (xn)
A�n .

If m = 1 then f is a monomial function.
Also consider the onto function τ : Rn → Rn++ defined by:

∀ξ ∈ R
n, τ (ξ) =

⎡⎣ exp(ξ1)
...

exp(ξn)

⎤⎦ .

If x = τ(ξ) then ξk = ln(xk), k = 1, . . . , n.

(i) Show that posynomial functions are not in general convex on Rn++. (Hint: Consider
the function f : R2++ → R defined by:

∀x ∈ R
2++, f (x) = x1x2.

Consider x =
[

1
3

]
∈ R2++, x ′ =

[
3
1

]
∈ R2++, and t = 0.5.)

(ii) Show that posynomial functions do not in general have convex level sets. (A sketch
and an explanation will suffice.)

152 Transformation of problems

(iii) Let f : Rn++ → R be posynomial and g : Rn++ → R be monomial. Show that
h = f/g is posynomial.

(iv) Let σ� ∈ R, � = 1, . . . , m, and let A� be the �-th row of A, � = 1, . . . , m. Show
that: (

m∑
�=1

σ�[A�]
† A�

)(
m∑

k=1

σk

)
−
(

m∑
�=1

σ�[A�]
†

)(
m∑

k=1

σk Ak

)

=
m∑

�=1

�−1∑
k=1

σ�σk[A� − Ak]
†[A� − Ak].

(v) Show that φ : Rn → R defined by:

∀ξ ∈ R
n, φ(ξ) = ln(f (τ (ξ))),

is a convex function. (Hint: Define b ∈ Rm by b� = ln(B�), � = 1, . . . , m, and
note that:

∀ξ ∈ R
n, φ(ξ) = ln

(
m∑

�=1

exp([A�]
†ξ + b�)

)
,

where A� is the �-th row of A, � = 1, . . . , m. Now apply Theorem 2.7 using the
result from Part (iv).)

(vi) Suppose that f is monomial. What can you say about φ(•) defined in Part (v)?
(vii) Show that ϕ : Rn → R defined by:

∀ξ ∈ R
n, ϕ(ξ) = f (τ (ξ)),

has convex level sets.

Constraints

3.29 Consider A ∈ R2×2 and b ∈ R2 defined in (2.2):

A =
[

1 2
3 4

]
, b =

[
1
1

]
.

Multiply both A and b on the left by M ∈ R2×2 to form the pre-conditioned system:

M Ax = Mb,

where

M =
[−2 1

3
2 − 1

2

]
.

(i) Find the solution of the pre-conditioned system M Ax = Mb.
(ii) Compare it to the solution of Ax = b.
(iii) Would any choice of M be acceptable for facilitating a search for solution to Ax =

b? (For example, would M = 0 be suitable?)

Exercises 153

3.30 Prove Theorem 3.8. (Hint: First suppose that Problem (3.9) has a minimum and let[
x�

w�

]
be any minimizer of Problem (3.9). Conversely, suppose that x� is a minimizer of

Problem (3.8).)

3.31 Prove Theorem 3.9.

3.32 Consider the function h : (R × R++) → R3 defined by:

∀x ∈ (R × R++), h(x) =
⎡⎣ x1

x2
− 1

−x1−x2 + 1

⎤⎦ ,

and consider the feasible region S = {x ∈ (R × R++)|h(x) ≤ 0}.
(i) Show that S is a convex set.
(ii) Show that h1 is not a convex function on S. (Hint: Use Theorem 2.6 and try x ′ such

that x ′1 = 0.)

(iii) Show that the set S is the same as the set Ŝ = {x ∈ R2|ĥ(x) ≤ 0}, where ĥ : R2 →
R3 is defined by:

∀x ∈ R
2, ĥ(x) =

[
x1 − x2−x1−x2 + 1

]
.

(iv) Show that ĥ is a convex function on R2.

Pay particular attention to the difference between a convex set and a convex function. You
should review the definitions of both before answering this question.

3.33 Let f : Rn++ → R and h� : Rn++ → R, � = 1, . . . , r , be posynomial functions
and let g� : Rn++ → R, � = 1, . . . , m, be monomial functions. (See Definition 3.1.) Let
x, x ∈ Rn++ with x ≤ x , g, g ∈ Rm++ with g ≤ g, and h ∈ Rr++. Collect the functions
g� together into the vector function g : Rn++ → Rm , collect the functions h� together
into the vector function h : Rn++ → Rr , and consider the posynomial program ([6,
section 4.5][15, section 4.5]):

min
x∈�n++

{ f (x)|g ≤ g(x) ≤ g, h(x) ≤ h, x ≤ x ≤ x}.

By Exercise 3.28, Parts (i) and (ii), the objective and constraints are neither convex func-
tions nor do they have convex level sets.

Use the transformation in Exercise 3.28 and Theorems 3.1, 3.5, and 3.9 to transform this
problem into a convex optimization problem. (Hint: Use Exercise 3.28, Part (vi) to identify
the functional form of the transformed version of g. You must show that the transformed
version of g is linear. Make sure that the representation of the transformed version of the
constraints x ≤ x ≤ x is as simple as possible.)

3.34 Prove Theorem 3.10.

3.35 Recall the example non-linear program, Problem (2.19), from Section 2.3.2.3:

min
x∈�3

{ f (x)|g(x) = 0, h(x) ≤ 0},

154 Transformation of problems

where f : R3 → R, g : R3 → R2, and h : R3 → R are defined by:

∀x ∈ R
3, f (x) = (x1)

2 + 2(x2)
2,

∀x ∈ R
3, g(x) =

[
2 − x2 − sin(x3)−x1 + sin(x3)

]
,

∀x ∈ R
3, h(x) = sin(x3) − 0.5.

(i) Suppose that the problem has a minimizer. Show that it also has a minimizer x� ∈
S = {x ∈ R3|g(x) = 0, h(x) ≤ 0,−π

2 ≤ x3 ≤ π
2 }.

(ii) Define τ : R2 × [−1, 1] → R3 by:

∀ξ ∈ (R2 × [−1, 1]), τ (ξ) =
⎡⎣ ξ1

ξ2

sin−1(ξ3)

⎤⎦ .

Define P = {ξ ∈ (R2 × [−1, 1])|τ(ξ) ∈ S}. Show that the restriction of τ to P is
onto S.

(iii) Use the previous parts to solve the problem.

3.36 Let f : R2 → R be defined by:

∀x ∈ R
2, f (x) = x1.

Consider the problem:

min
x∈�2

{ f (x)|x ∈ S},

where S = {x ∈ R2|x1 ≤ 0, (x1)
2 + (x2)

2 = 1} and also consider the relaxed problem:

min
x∈�2

{ f (x)|x ∈ S},

where S = {x ∈ R2|x1 ≤ 0, (x1)
2 + (x2)

2 ≤ 1}.
(i) Show that the objective of both problems is convex on R2.
(ii) Show that S is not convex. A sketch and an explanation will suffice.
(iii) Show that S is convex. A sketch and an explanation will suffice.
(iv) Find a local minimum and minimizer of the relaxed problem minx∈�2{ f (x)|x ∈ S}.

A graphical argument showing the contour sets of f and showing the feasible set
is sufficient.

(v) Show that the local minimum and minimizer you have found are, respectively, the
global minimum and minimizer of the relaxed problem minx∈�2{ f (x)|x ∈ S}.
(Hint: apply Theorem 2.4.)

(vi) Show that the global minimum of the relaxed problem minx∈�2{ f (x)|x ∈ S} is
also the global minimum of minx∈�2{ f (x)|x ∈ S}. (Hint: apply Theorem 3.10.)

3.37 Consider the inequality-constrained problem minx∈� f (x) where:

S = {x ∈ R
2|g(x) = 0, x1 − 10 ≤ 0},

Exercises 155

and where f : R2 → R and g : R2 → R were defined in Exercise 2.7. That is:

∀x ∈ R
2, f (x) = (x1)

2 + (x2)
2 + 2x2 − 3,

∀x ∈ R
2, g(x) = x1 + 2x2 − 3.

Re-interpret the equality-constrained problem minx∈�2{ f (x)|g(x) = 0}, which was
solved in Exercise 2.7, Part (iii), as a relaxation of the inequality-constrained problem
minx∈� f (x). Use Theorem 3.10 to solve the inequality-constrained problem.

3.38 Suppose that you own a timber plantation and mill. Because of the plantation’s
proximity to a nuclear fuel waste repository, the raw logs that we harvest come from mu-
tated trees that have elliptical cross-sections. If we measure out from the “center” of the
cross-section of the tree then the edge of the cross-section can be described by the equation:

1

8
(x1)

2 + 1

2
(x2)

2 = 1,

where

[
x1
x2

]
are the coordinates of the edge.

The lumber processing equipment can cut a single rectangular cross-sectioned piece of
sawn wood out of the elliptical log. The pre-1950s technology equipment that we own
turns the rest of the log into sawdust. Sawdust has value equal to 0.1 times the value of
sawn wood per unit cross-sectional area.

We would like to choose the optimum dimensions of the rectangular cross-section to
maximize the sum of:

• the value of the sawn wood, and
• the value of the sawdust,

that we obtain from the log.

(i) Formulate the inequality-constrained problem to maximize the total value of sawn
wood and sawdust we obtain from the elliptical log. Note the following.

• To operate, the processing equipment must be given the coordinates of the top-
right corner of the final product. The equipment cuts a rectangular piece of wood
that is symmetric about the center.

• To cut a “feasible” cross-section from the elliptical log, the top-right corner must
lie inside or on the elliptical edge of the log.

• The coordinates must be non-negative.

The variables in the problem are the coordinates of the edge that is to be given to

the processing equipment. That is, the variables are x =
[

x1
x2

]
. Cast the problem

as a maximization problem of the form:

max
x∈�2

{ f (x)|g(x) = 0, h(x) ≤ 0}.

In particular, specify the following.

• Define the objective function explicitly.
• Define any entries in the equality constraint function (or state that there are no

equality constraints).
• Define any entries in the inequality constraint function (or state that there are no

inequality constraints).

156 Transformation of problems

(ii) Re-formulate the problem as a minimization problem in the most straightforward
way. Make sure you define anything that has not already been defined.

(iii) Sketch the contour sets of the objective of the problem defined in Part (ii).
(iv) Consider the equality-constrained problem formed by changing the inequality con-

straints that limit the top right corner to being inside the log into equality con-
straints. Show that the equality-constrained problem and the problem in Part (ii)
have the same solution. (A sketch will suffice.)

(v) What is the minimum of the problem in Part (ii). What are the values of the coor-
dinates to be specified to the processing equipment?

3.39 Use divide and conquer to prove that x� = 3 is the global minimizer of the function
shown in Figure 2.27 over the set P = {x ∈ R| − 4 ≤ x ≤ 1 or 2 ≤ x ≤ 4}.

3.40 Prove Theorem 3.11.

3.41 Suppose that S ⊆ Rn+s is convex and of the form:

S =
{[

x
y

]
∈ R

n × R
s
∣∣∣∣ x ∈ S1, y ∈ S2(x)

}
,

with S1 ⊆ Rn and, for each x ∈ S1, S2(x) ⊆ Rs . Without loss of generality, assume
that ∀x ∈ S1, S2(x) 	= ∅. (Otherwise, re-define S1 by omitting any elements x such that
S2(x) = ∅.) Let f : S → R be convex on S.

(i) Let x ∈ S1. Show that S2(x) is convex.
(ii) Let x ∈ S1 and define ϕ : S2(x) → R by:

∀y ∈ S2(x), ϕ(y) = f

([
x
y

])
.

Show that ϕ is convex on S2(x).
(iii) Show that S1 is convex.

(iv) Suppose that for each x ∈ S1 the minimization problem miny∈�2(x) f

([
x
y

])
has

a minimum. Consider the function φ : S1 → R defined by:

∀x ∈ S1, φ(x) = min
y∈�2(x)

f

([
x
y

])
.

Show that φ is convex on S1. (Hint: Consider x, x ′ ∈ S1 and corresponding mini-

mizers y� ∈ argminy∈�2(x) f

([
x
y

])
and y′� ∈ argminy∈�2(x ′) f

([
x ′
y

])
.)

3.42 In this exercise we apply hierarchical decomposition to solve a non-convex problem.
Consider the function f : R3 → R defined by:

∀x ∈ R, ∀y ∈ R
2, f

([
x
y

])
= |y2 + x(y1 − y2)|.

(i) Show that f is not convex.

Exercises 157

(ii) Show that f is not concave.
(iii) Show that:

max
x∈�,y∈�2

{
f

([
x
y

])∣∣∣∣ 0 ≤ x ≤ 1, 0 ≤ y1 ≤ ρ, 0 ≤ y2 ≤ ρ

}
= ρ.

(Hint: Use Theorem 3.11 to decompose the problem hierarchically. First consider
the optimizing values of y for given fixed x . Then optimize over values of x . Note
that y2 + x(y1 − y2) = y2(1 − x) + y1x .)

Duality

3.43 Let f : Rn → R, g : Rn → Rm , and h : Rn → Rr . Consider the associated
Lagrangian L : Rn × Rm × Rr → R defined by:

∀x ∈ R
n, ∀λ ∈ R

m, ∀µ ∈ R
r ,L(x, λ, µ) = f (x) + λ†g(x) + µ†h(x),

and the corresponding dual function D : Rm × Rr → R ∪ {−∞,+∞} defined in (3.12):

∀
[

λ
µ

]
∈ R

m+r ,D(λ, µ) = inf
x∈�n

L(x, λ, µ).

Using the definition of inf, show that D is, in fact, an extended real function D : Rm ×
Rr → R ∪ {−∞}. That is, you must show that D never takes on the value +∞.

3.44 Prove Theorem 3.12. (Hint: Let

[
λ
µ

]
,

[
λ′
µ′
]
∈ Rm+r , let t ∈ [0, 1], and note that:

∀x ∈ R
n,L(x, [1 − t]λ + tλ′, [1 − t]µ + tµ′) = [1 − t]L(x, λ, µ) + tL(x, λ′, µ′).

Consider the definitions of D([1− t]λ+ tλ′, [1− t]µ+ tµ′), D(λ, µ), and D(λ′, µ′).)

3.45 Prove Corollary 3.14 using Theorem 3.13.

3.46 In this exercise we consider the left- and right-hand sides of (3.14) for the case
where the feasible set of the primal problem is S = {x ∈ Rn|g(x) = 0}. That is, we
only have equality constraints and we can neglect the dual variables µ corresponding to
the inequality constraints.

(i) Consider the primal problem minx∈�2{ f (x)|g(x) = 0} where the functions f :
R2 → R and g : R2 → R were defined in Exercise 3.11. That is:

∀x ∈ R
2, f (x) = −2(x1 − x2)

2 + (x1 + x2)
2,

∀x ∈ R
2, g(x) = x1 − x2,

Evaluate the left- and right-hand sides of (3.14) for this f and g. That is, evaluate
minx∈�2{ f (x)|g(x) = 0} and supλ∈�D(λ). Be careful that you actually find an
infimum of the inner problem. Is there a duality gap?

(ii) Repeat the previous part but re-define f to be:

∀x ∈ R
2, f (x) = (x1 + x2)

2.

158 Transformation of problems

(iii) Repeat the previous part but re-define f to be:

∀x ∈ R
2, f (x) = (x1 + x2)

2 + (x1 − x2)
2.

Part I

Linear simultaneous equations

4

Case studies of linear simultaneous equations

In this chapter, we will develop two case studies of problems that involve the solu-
tion of linear simultaneous equations:

(i) the solution of Kirchhoff’s laws in a simple electrical circuit (Section 4.1),
and

(ii) the search for a set of inputs to a “discrete-time linear system” that will
bring the system to a desired state (Section 4.2).

The first case study will be developed in some detail, while the second will be
much more briefly described. As we proceed, we will introduce notation to help us
express ideas concisely and precisely. We will try to describe the choices that are
made in formulating a model. You may already be very familiar with these models;
however, the reasoning we present here may help you to pose and answer questions
that arise in formulating your own models. We emphasize that the formulation of
a new problem may involve many stages and refinements and that our presentation
hides some of this process.

4.1 Analysis of a direct current linear circuit

4.1.1 Motivation

In designing a large integrated circuit to be fabricated or even a large circuit consist-
ing of discrete components, it is very important to be able to calculate the behavior
of the circuit without going to the expense of actually building a prototype. Fur-
thermore, because of manufacturing tolerances, manufactured component values
may differ from nominal. The values may also drift over the lifetime of the circuit.
Both manufacturing tolerances and drift of component values can be interpreted as
changes in the values of components from their nominal values in the base-case
circuit. It is useful to calculate the effect of such changes from the nominal values
on the circuit behavior.

161

162 Case studies of linear simultaneous equations

Electrical circuits are well characterized by a set of equations called Kirchhoff’s
laws. This case study assumes some familiarity with basic circuit analysis and, in
particular, Kirchhoff’s laws applied to resistive circuits. However, as with all of
our case studies, the main issue is not the formulation of this particular case study,
but rather the process of formulating case studies.

We will discuss the problem of finding a solution to Kirchhoff’s laws and also
how this solution changes with changes in component values. There are a variety
of texts on circuit theory that cover this material such as [21, 95]. Our development
follows [95].

After formulating the problem in Section 4.1.2, we will consider changes to it in
Section 4.1.3 and explore some of its characteristics in Section 4.1.4.

4.1.2 Formulation

This material is based on an extended example in [95, section 1.3 and following].
Consider a circuit consisting of interconnected resistors and current sources as
shown in Figure 4.1. The current sources are shown as circles with the value of the
current source and a direction for positive conventional current flow shown inside
the circle. The current sources are all direct current (DC). The resistors are shown
as rectangles with a value of the resistance inside. The particular configuration
shown in Figure 4.1 is called a ladder circuit because it resembles a ladder on its
side; however, the arrangement of the interconnected resistors can, in principle, be
arbitrary.

Collectively, the current sources and resistors are called the components in the
circuit or the branches of the circuit. The lines joining the components together
represent wires that are assumed to be ideal conductors. Each set of joined wires
is called a node and is labeled uniquely with a number. We say that the branches
link or are incident to to the nodes. A “node” in our circuit is not just a single
point in the diagram, but includes all the wires associated with each node label. A
collection of nodes joined by branches is called a graph. A circuit can be thought
of as a special type of graph where the branches are components.

We assume that the resistances and current sources have known “nominal” val-
ues; however, we are also interested in the case where these values change from
nominal. That is, we want to:

• calculate all the electrical quantities associated with the circuit, and
• characterize how these quantities change if the circuit changes.

4.1.2.1 Variables of interest

One of the most basic issues in formulating a problem is to identify and distinguish:

4.1 Analysis of a direct current linear circuit 163

� � � �

� � � �1 2 3 4

0

�	
�
↑ I1 Ra

Rb

Rc

Rd

Re

Rf

Rg �	
�
↑ I4

Fig. 4.1. A ladder circuit
consisting of resistors and
current sources.
Source: This figure is
based on [95, figure 1.4].

• the variables of interest from
• the variables that are of less importance.

It is important to realize that for virtually any physical system there are a very
large number of issues that could potentially be modeled. To develop a tractable
model we will have to neglect most of the possible issues and concentrate on just a
small number of them. This choice requires judgment and care and is one aspect of
Occam’s razor [115]. As suggested in Section 1.3, the model should be no more
complicated than is necessary to represent the important issues, where “important”
depends on our perspective.

In typical circuits, we seek values of:

• the voltages across the resistors and current sources, and
• the currents through the resistors.

We usually neglect most other quantities and assume that they do not affect the
voltages and currents. For example, in a resistive circuit, we can usually neglect
the effect of variation in temperature on the values of the resistances and on the
values of the voltages and currents. We have already done this implicitly in our
description of the circuit by specifying the current sources and resistors without
reference to the temperature. It is worthwhile, however, to be explicit about these
decisions.

In general, we can choose to neglect a quantity if we assess that neglecting it
will not significantly impair our ability to calculate the values of the variables of
interest. This assessment may have to be modified as we test and refine the model.
For example, if we find that the power dissipated in the resistors in the circuit is
large, then the assumption of negligible variation of temperature may prove to be
false. In that case we would explore a more refined model that included:

• the dependence of the value of resistance on temperature, and
• the variation of temperature with power dissipated.

164 Case studies of linear simultaneous equations

In this case study, we will initially represent voltage and current assuming that all
other quantities, such as temperature, stay constant. As indicated above, we will
then check to see if this assumption is consistent with the calculated power dissi-
pation in each resistor and its power rating. We will also consider the sensitivity to
temperature variation.

Given our interest in the currents and voltages, let us consider the relationship
between them. By definition of a resistor, the voltage across any resistor is equal to
the product of:

• the current through it, and

• its resistance.

That is, the terminal characteristics of the resistor are specified by its resistance.
So, if we can find the currents through all the resistors then we can calculate the
voltage across each resistor. On the other hand, if we can find the voltages across
all the resistors then we can calculate the current through each resistor.

It is common when formulating a model to concentrate on particular variables as
the ones of most interest or on the ones that are easiest to deal with. Other variables
in the system that are of interest can sometimes be considered dependent in that
they are easy to calculate once the variables of most interest are known. We can
eliminate them from the formulation by substituting for them using their known
dependence on the independent variables. (See Section 3.2.2.2.) The values of
the dependent variables can be found once the independent variables have been
evaluated or specified.

In systems such as circuits that are associated with graphs, we have the choice
between concentrating on:

• nodal quantities, in this case the nodal voltages, as the independent variables,
or

• branch quantities, in this the case branch currents, as the independent variables.

Knowing one set of variables enables us to calculate the other, recognizing that
branch voltages can be expressed in terms of nodal voltages. The relationships
between branch voltages and branch currents are called the branch constitutive
relations and represent the terminal characteristics [95, appendix A.4]. For ex-
ample, for a resistor, the branch constitutive relation says that branch voltage is
proportional to branch current, with constant of proportionality given by the resis-
tance. We could either:

• use the nodal voltages as the independent variables and calulate the current flow-
ing through each resistor in terms of the nodal voltages, or

4.1 Analysis of a direct current linear circuit 165

• use the branch currents as the independent variables and calculate the branch
voltages in terms of the branch currents.

In some problems, the choice of the independent and dependent variables may
be dictated by the relationship between cause and effect in the physical system.
However, the choice of independent and dependent variables is somewhat flexible
for the circuit case study. For example, we can also imagine concentrating on
some mixture of nodal voltages and currents, the knowledge of which allows us
to calculate all the other quantities. For circuit analysis, this is called modified
nodal analysis [95, section 2.2]. Modified nodal analysis is useful when there
is a mixture of voltage and current sources in the circuit. (See Exercise 4.1.) In
general, the choice of the variables of interest will depend on several issues such
as our point of view and the ease of calculation using a particular set of variables.

Usually, we consider circuits that:

• are connected; that is, where any node can be reached from any other node by
traversing branches, and

• have at least one loop.

If a circuit is not connected, we can decompose it into its connected components
for analysis. If a circuit has no loops, then no current can flow, so the analysis is
trivial.

In the case of a connected circuit with at least one loop, one issue to consider
in choosing variables of interest is that there are always at least as many branches
as nodes. (See Exercise 4.2.) A nodal based description will have less variables
than the branch based description. In the absence of other considerations, we will
concentrate on the nodal voltages, realizing that the branch currents can be calcu-
lated once the voltages are known. In other applications, it might be more useful to
concentrate on the currents or on a particular combination of currents and voltages.

4.1.2.2 Kirchhoff’s voltage law

Kirchhoff’s voltage law expresses the fact that the voltage around any loop is
zero [21, chapter 1][95, chapter 1]. This means that we can single out one of the
nodes and call it the datum or ground node. We can think of it as having zero
voltage. We can pick any node in the circuit as datum, but we usually choose a
node that has many branches connected to it. (We will discuss reasons for this
choice in Section 4.1.4.3 and Exercise 4.6.) We label the datum node as node 0.

For any other node k in the circuit, we can measure the voltage from k to the
datum node by summing the voltages across branches in any path from the datum
node to node k. By Kirchhoff’s voltage law, this sum is independent of the path
taken from the datum node to node k. For example, consider a loop in Figure 4.1

166 Case studies of linear simultaneous equations

that includes Ra, Rb, Rd, and Re. By Kirchhoff’s voltage law, the sum of the volt-
ages across Ra, Rb, and Rd in the direction from the datum node to node 1 to node 2
to node 3 must be equal and opposite to the voltage across Re in the direction from
the datum node to node 3. Similarly, along any other path joining the datum node
to node 3, the sum of the voltages across the branches is the same.

That is, Kirchhoff’s voltage law enables the definition of the notion of a nodal
voltage. We will write xk for this nodal voltage, and often refer to it as the voltage
at node k, although it is more properly described as the voltage between node k
and the datum node. Naturally, x0 = 0, since this is the voltage between the datum
node and itself.

Kirchhoff’s voltage law also enables us to express the voltages across branches
as the differences between corresponding nodal voltages. For example, the voltage
across Ra in Figure 4.1 is x1 − x0 = x1.

Kirchhoff’s voltage law is an example of a conservation law. That is, it is a
property associated with position such that when its values are traced over a closed
path, the value at the completion of the path is the same as the value at the beginning
of the path. Many physical properties satisfy conservation laws. For example,
the gravitational potential energy of an object is conserved under movement along
a closed path. Consequently, we can define gravitational potential energy as a
function of position alone.

4.1.2.3 Branch constitutive relations

As indicated above, the branch constitutive relation for each resistor in the circuit
expresses the linear relationship between resistor current and voltage. The other
type of component in our ladder circuit is a current source. For this component,
the branch constitutive relation specifies that the branch current is constant. (For a
voltage source, the branch constitutive relation specifies that the branch voltage is
constant. See Exercise 4.1.)

4.1.2.4 Kirchhoff’s current law

Having defined our variables of interest, we now use Kirchhoff’s current law
[21, chapter 1][95, chapter 1] and the branch constitutive relations to write down
a series of equations to describe the circuit. Kirchhoff’s current law expresses
conservation of charge when current is flowing in a circuit. There is one equation
for each node, expressing the fact that the net current flowing out of each node is
zero. For example, consider node 1 in Figure 4.1. The net current flowing from
node 1 into the components incident to node 1 is:

x1 − x0

Ra
+ x1 − x2

Rb
− I1,

4.1 Analysis of a direct current linear circuit 167

where we have used the branch constitutive relations to express branch currents in
terms of branch voltages and, in turn, used Kirchhoff’s voltage law to express the
branch voltages as the difference between appropriate nodal voltages.

By Kirchhoff’s current law, the net current flowing from node 1 must be zero.
Equating the net current to zero, noting that x0 = 0, and re-arranging, we obtain:(

1

Ra
+ 1

Rb

)
x1 +

(
− 1

Rb

)
x2 = I1. (4.1)

Similarly, we can write down the equations for the other nodes:(
− 1

Rb

)
x1 +

(
1

Rb
+ 1

Rc
+ 1

Rd

)
x2 +

(
− 1

Rd

)
x3 = 0, (4.2)(

− 1

Rd

)
x2 +

(
1

Rd
+ 1

Re
+ 1

Rf

)
x3 +

(
− 1

Rf

)
x4 = 0, (4.3)(

− 1

Rf

)
x3 +

(
1

Rf
+ 1

Rg

)
x4 = I4. (4.4)

There is also an equation for the datum node, but it is redundant. (See Exer-
cise 4.3.)

Kirchhoff’s current law is an example of a flow balance constraint. In a system
where material is moving and cannot be created or destroyed, the sum of the flows
at any point must be zero. Analogous constraints apply to many physical systems,
particularly models of transport of materials.

4.1.2.5 Nodal admittance matrix and voltage and current vector

Define a matrix A ∈ R4×4 and vectors x ∈ R4 and b ∈ R4 as follows:

A =

⎡⎢⎢⎣
A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

⎤⎥⎥⎦ ,

=

⎡⎢⎢⎢⎣
1
Ra

+ 1
Rb

− 1
Rb

0 0
− 1

Rb

1
Rb

+ 1
Rc

+ 1
Rd

− 1
Rd

0
0 − 1

Rd

1
Rd

+ 1
Re

+ 1
Rf

− 1
Rf

0 0 − 1
Rf

1
Rf
+ 1

Rg

⎤⎥⎥⎥⎦ , (4.5)

x =

⎡⎢⎢⎣
x1

x2

x3

x4

⎤⎥⎥⎦ , (4.6)

168 Case studies of linear simultaneous equations

b =

⎡⎢⎢⎣
b1

b2

b3

b4

⎤⎥⎥⎦ ,

=

⎡⎢⎢⎣
I1
0
0
I4

⎤⎥⎥⎦ . (4.7)

The matrix A is called the nodal admittance matrix because it is made up of
admittances in the circuit; that is, inverses of impedances. The matrix A has
entries that correspond to the coefficients in (4.1)–(4.4). (We have a DC system, so
that the admittances are conductances and do not have any reactive or capacitive
components. In Section 6.2, we will re-examine the nodal admittance matrix in the
case of an alternating current (AC) circuit.)

Although we have defined a variable x0, this variable is not included in our
definition of the vector x . In general, we can choose to include or not include
particular variables in the definition of a vector. The vector b is the vector of current
injections from current sources in the circuit, while x is the vector of voltages. Both
b and x exclude the datum node. At nodes 2 and 3 there are no current sources,
so the corresponding entries in the vector b are zero. We will relate A, x , and b in
Section 4.1.2.6.

4.1.2.6 Linear equations

We will express Kirchhoff’s equations as a set of linear simultaneous equations
involving A, x , and b. Recall that the product of the matrix A and vector x is:

Ax =

⎡⎢⎢⎢⎣
∑4

k=1 A1k xk∑4
k=1 A2k xk∑4
k=1 A3k xk∑4
k=1 A4k xk

⎤⎥⎥⎥⎦ .

If we write Ax = b, we reproduce the nodal equations (4.1)–(4.4) for our system.
(See Exercise 4.4.) So, if we could solve the equation Ax = b, which is a system of
linear simultaneous equations, then we could calculate the voltages in the system
and then calculate the branch currents using the branch constitutive relations. We
call A the coefficient matrix of the linear system Ax = b, while b is called the
right-hand side. We will discuss how to solve this general type of equation in
Chapter 5 and also investigate how to take advantage of particular characteristics
of equations to speed up calculations.

4.1 Analysis of a direct current linear circuit 169

4.1.3 Changes

As well as solving the base-case circuit specified by the linear system Ax = b, we
might also want to consider the solution when the circuit changes. That is, we want
to solve a “change-case” circuit. In our ladder circuit, there are two types of circuit
components that can change:

• either the currents from the current sources vary, corresponding to a change in
the right-hand side of the linear system, b, or

• the resistances vary, corresponding to a change in the coefficient matrix of the
system, A.

We would be interested in the effect of changes to the resistances, for example, to
gauge how tight a tolerance we need to specify on the resistors to ensure correct
operation of the circuit. Furthermore, we might want to consider the changes due
to the change of a parameter such as temperature.

For each type of component or parameter change, we can consider two related
notions of change:

(i) infinitesimal changes in component or parameter values, providing a sensi-
tivity analysis, and

(ii) large changes in component values or parameters.

We will consider these in the next two sections. One way to calculate the ef-
fects of such changes is to take differences between a base-case and a change-case.
However, we will avoid such an approach by taking advantage of the base-case
solution for the nominal component or parameter values to yield information for
the change-case.

We can also consider the addition of a new component or of a new node into the
circuit. We observe that we can consider these types of changes as special cases of
changing the resistance.

4.1.3.1 Sensitivity

We define sensitivity analysis, sometimes called small-signal sensitivity analysis
in the context of circuit theory, to mean the calculation of a partial derivative of
the solution x�, or a function of the solution, with respect to some parameter. For
example, we might want to calculate the partial derivative of the solution for a
particular voltage, say x2, with respect to the value of:

• a current source, say I4, to obtain
∂x�

2

∂ I4
,

• a resistor, say Rb, to obtain
∂x�

2

∂Rb
, or

170 Case studies of linear simultaneous equations

• the temperature, T , to obtain
∂x�

2

∂T
.

We will evaluate the derivatives at the base-case or nominal circuit values. The

calculation of
∂x�

2

∂T
will require an explicit model of how the values of components

in the circuit vary with temperature. The calculation will make use of the chain rule
to express the total derivative of x�

2 with respect to T in terms of partial derivatives
of x�

2 with respect to component values and the derivatives of the component values
with respect to T .

As another example of a sensitivity analysis, we may also want to consider the
sensitivity of a performance criterion or objective function to variations in pa-
rameters. For example, consider the function f : R4 → R defined by:

∀x ∈ R
4, f (x) = (x1)

2 + 2(x2)
2 + 3(x3)

2 + 4(x4)
2. (4.8)

We may be interested in the sensitivity of f (x�) to various parameters. For exam-
ple, we might want to calculate the derivative with respect to the value of:

• a current source, say I4, to obtain
∂[f (x�)]
∂ I4

,

• a resistor, say Rb, to obtain
∂[f (x�)]
∂Rb

, or

• the temperature, T , to obtain
∂[f (x�)]
∂T

.

Again, we will evaluate the derivatives at the base-case or nominal circuit values.

4.1.3.2 Large changes

We will discuss, in turn, large changes in the current source and in the resistance
values.

Change in current source Consider a variation in the current injection b� at node
� by an amount �b�. In the case that b� in the original circuit is zero, a change in
b� means that we have added a new current source into the circuit between node �

and the datum node. For example, since b2 and b3 are zero in the circuit shown in
Figure 4.1, a change in either of these currents means that we have added a new
current source into the circuit. This is illustrated in Figure 4.2 for a current source
added at node � = 2. Let us define �b to be the vector that is zero everywhere
except in the �-th entry, where it equals �b�. Then the new circuit must satisfy
Ax ′ = b + �b, where x ′ is the new value of voltages in the circuit. Simultaneous
changes in several current injections are represented by a vector �b with several
non-zero entries. For example, if a current source is added between nodes 2 and 3
then both �b2 and �b3 will be non-zero (and opposite in sign).

4.1 Analysis of a direct current linear circuit 171

� � � � �

� � � � �1 2 3 4

0

�	
�
↑ I1 �	
�

↑�b2Ra

Rb

Rc

Rd

Re

Rf

Rg �	
�
↑ I4

Fig. 4.2. The ladder cir-
cuit of Figure 4.1 with a
change, �b�, in the current
injected at node � = 2.

Change in resistance Consider a variation in the resistance of the resistor joining
nodes � and k. This will change the equations in Kirchhoff’s laws that pertain to
current injections at nodes � and k. We will calculate the change to our system of
linear equations.

First consider the situation before the change and suppose that there was a resis-
tor of resistance R�k between nodes � and k. Kirchhoff’s current law for node �,
for example, includes the terms: (x�/R�k)− (xk/R�k) representing the current flow
from node � to node k along R�k . Corresponding to these terms in the current
law, the expression for A�� includes the term 1/R�k , while the expression for A�k

includes the term −1/R�k . Similarly, the expression for Ak� includes the term
−1/R�k , while the expression for Akk includes the term 1/R�k .

After a change in the resistance, these terms in the admittance matrix are changed
to plus or minus the reciprocal of the new resistance between � and k. The change is
equal to plus or minus the change in the reciprocal of the resistance between nodes
� and k, which is the change in the value of the conductance between these nodes.
Let us write �G�k for the change in the conductance of the resistor between � and
k. Figure 4.3 shows the circuit of Figure 4.1, but with the resistors re-labeled with
their conductances and with a change in the conductance of the resistor between
nodes � = 2 and k = 3. The change in A is �A, where �A has zeros everywhere
except in the ��-th, �k-th, k�-th, and kk-th entries. For these entries:

• �A�� = �Akk = �G�k , and

• �A�k = �Ak� = −�G�k .

The new circuit must satisfy (A + �A)x ′ = b, where x ′ is again the new value of
the voltages.

If a resistance between node � and the datum node changes, then �A is zero
except that �A�� = �G�0, where �G�0 is the corresponding change in the conduc-
tance. Simultaneous changes in the conductances of several components can be
handled with an appropriate matrix �A having more non-zero entries.

172 Case studies of linear simultaneous equations

� � � �

� � � �1 2 3 4

0

�	
�
↑ I1 1

Ra

1/Rb

1
Rc

1/Rd

�G23

1
Re

1/Rf

1
Rg �	
�

↑ I4

Fig. 4.3. The ladder cir-
cuit of Figure 4.1 with re-
sistors re-labeled with their
conductances and with a
change in the conductance
between nodes � = 2 and
k = 3. Note that the con-
vention for labeling the re-
sistors has changed com-
pared to the previous fig-
ures.

4.1.4 Problem characteristics

In this section, we will try to tease out some of the characteristics of the prob-
lem. The discussion will seem a little unmotivated until we develop algorithms
explicitly in Chapter 5. In thinking about your own problem formulation, you
might want to consider this discussion to be an example of probing the model to
understand it better. Sometimes, a little undirected exploration can be useful in
better understanding a model or finding a suitable method of attack. (Of course,
for this description, we have chosen characteristics here that we know are relevant,
while truly undirected exploration will usually turn up at least some unimportant
features.) Exploration can also be useful in finding “bugs” in the model; that is,
errors and unintended consequences of a particular way of looking at things or of
a particular approximation.

4.1.4.1 Numbers of variables and equations

Each row of A represents one of the linear equations (4.1)–(4.4) and there is one
such equation corresponding to every non-datum node. Each entry of x represents
a variable, namely, the voltage at a non-datum node. We are trying to find the
value of the variables in the vector x . Since A is a square matrix (having the same
number of rows as columns) we have the same number of equations as variables.
We call Ax = b a square system of linear simultaneous equations.

4.1.4.2 Solvability

From physical principles, since each node in the ladder circuit has a resistor joining
that node to the datum node then corresponding to any choice of current injections
b by current sources, there will be a unique valid set of voltages. That is, Ax = b
is solvable for any given b and there is only one solution. This is true because of
the arrangement of the resistors and current sources in our ladder circuit, but is

4.1 Analysis of a direct current linear circuit 173

not true for every possible circuit consisting of current sources and resistors [95,
section 2.6]. (See Exercise 4.5.)

4.1.4.3 Admittance matrix

Let us try to describe a way to write down the admittance matrix A for a general
circuit. There are two types of entries in A:

• diagonal entries A��, � = 1, . . . , n, and

• off-diagonal entries A�k, � 	= k, � = 1, . . . , n, k = 1, . . . , n.

The diagonal entries A�� relate the current b� injected by the current source at
node � to the voltage x� at node �, while an off-diagonal entry A�k relates the
current b� injected by the current source at node � to the voltage xk at node k.
Generalizing from (4.1)–(4.4), the �k-th entry of A can be written down as follows
(see Exercise 4.6):

∀� = 1, . . . , n, ∀k = 1, . . . , n, A�k =⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

sum of the conductances
connected to node �, if � = k,

minus the conductance joining � and k, if � 	= k and there is a resistor
between � and k,

0, if � 	= k and there is no resistor
between � and k.

(4.9)

We have progressed from a particular example circuit to an expression for the ad-
mittance matrix corresponding to an arbitrary circuit. It is often easier to proceed
in two such steps:

(i) develop a particular example, and

(ii) generalize,

than it is to formulate the general case directly. (It is often worthwhile to then
check the general case by applying it to the particular example. See Exercise 4.6.)

We now analyze the general form of A, considering the four issues of:

• symmetry,

• sparsity,

• diagonal dominance, and

• changes in the admittance matrix.

174 Case studies of linear simultaneous equations

� �
� �

� �
� �

5 4

6 3

7 2

8 1

�����������

�
�

�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

�
�

�

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
��

�
�

�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

�
�

�

�
�
�
�
�
�
�
��

�
�

�
�

�
�

�
�

�
�

�

�
�
�
�
�
�
�
��

��������� ����������� ���������

Fig. 4.4. A graph with
n = 8 nodes and all
n(n − 1)/2 = 28 possible
branches. For clarity in
this graph, each node is
represented by a bullet •,
while each branch is repre-
sented by a line. This is a
different convention to that
used in Figures 4.1 4.3.

Symmetry Our first observation about the general expression for entries of A is
that A is symmetric. That is, the �k-th entry is equal to the k�-th entry. Symmetry
in models can often help us to avoid some of the computational effort. Symmetry
appears in many ways in many problems. (Ironically, a certain type of symme-
try underlies the non-existence of direct algorithms for non-linear simultaneous
equations. See [69].)

Sparsity If there is no component joining directly between a particular pair of
nodes, then there is a zero entry in the corresponding entries of A. (We emphasized
this in (4.9) by distinguishing the two cases of a resistor and no resistor between �

and k, although “no resistor” can be considered equivalent to a resistor having zero
conductance between � and k.)

Let us think about whether it is “typical” or “atypical” for an arbitrary pair of
nodes to be joined directly by a resistor. In a circuit with n nodes, there are n(n −
1)/2 possible resistive branches in the circuit. (See Exercise 4.7.) For example,
Figure 4.4 shows a graph with n = 8 nodes and n(n − 1)/2 = 28 branches. (In
Figure 4.4, we adopt the convention that a node is drawn as a single •, while a
branch is shown as a line segment. This convention is different to that used in the
circuits shown in Figures 4.1–4.3, but is more standard in graph theory.)

While it is possible for an eight node circuit to have 28 branches, this is not
typical. In typical circuits each node, except for the datum node, has relatively few
branches connected to it. A typical number is three or four branches connected
to each non-datum node, so that in total there are typically less than 2n branches.
Therefore, for n large, the total number of branches is typically far less than the
maximum possible number of n(n − 1)/2 branches.

In our example circuit in Figure 4.1, each node, except for the datum node, has
two or three branches incident to it. However, n = 5, so that the maximum possible
number of branches, n(n−1)/2 = 10, is not much larger than 7, the actual number

4.1 Analysis of a direct current linear circuit 175

of branches. But consider if the ladder circuit was extended to, say, n = 100.
We would then have approximately 200 branches, while the maximum possible
number of branches in an n = 100 node circuit is n(n − 1)/2 = 4450, which is
much larger than 200. In a large ladder circuit, the A matrix would be mostly zeros.
We call a matrix sparse if most of its entries are zero.

The choice of datum node is arbitrary from the perspective of the circuit equa-
tions. However, by choosing as datum node the node with the most branches in-
cident to it, we will minimize the number of non-zeros in the admittance matrix.
(See Exercise 4.6.) This will turn out to reduce the computational effort involved
in solving Ax = b.

In constructing a general algorithm for solving linear equations, we will be par-
ticularly concerned about the growth in computational effort as n increases. The
characteristics of A for n relatively large is therefore of interest to us. Unfortu-
nately, when we draw a picture of an example, such as in Figure 4.1, we will
almost always have to draw a case for small n, which can be misleading in that
the sparsity of typical, large circuits is not evident. We will see that sparsity in
large-scale models allows considerable savings of computational effort.

Diagonal dominance Since each node in the ladder circuit is connected to the
datum node by a resistor, each diagonal entry A�� in A is greater than the sum of
the absolute values of the other entries in the �-th column of A. Similarly, A�� is
greater than the sum of the absolute values of the entries in the �-th row of A. Such
a matrix is called strictly diagonally dominant. (A matrix where each diagonal
entry is greater than or equal to the sum of the absolute values of the other entries
in its column and greater than or equal to the sum of the absolute values of the
other entries in its row is called diagonally dominant. See Definition A.9.)

Changes in the admittance matrix When A is changed by the change of a resistor
between nodes � and k, the change �A is equal to �G�k , the change in conductance,
times a matrix that has ones in the ��-th and kk-th places, minus ones in the �k-th
and k�-th places and zeros elsewhere. That is:

�A = �G�k

⎡⎢⎢⎢⎢⎢⎢⎢⎣

� th column︷︸︸︷ k th column︷︸︸︷
1 −1 } � th row

−1 1 } k th row

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (4.10)

where all entries in the matrix are zero except for the four non-zero entries that are
explicitly shown.

176 Case studies of linear simultaneous equations

�u(t)
plant

w(t)

�controller

Fig. 4.5. A feedback con-
trol system applied to a
plant.

For a resistor between node � and the datum node, �A is equal to �G�0, the
change in conductance, times a matrix that has ones in the ��-th place and zeros
elsewhere. That is:

�A = �G�0

⎡⎢⎢⎢⎣
� th column︷︸︸︷

1 } � th row

⎤⎥⎥⎥⎦ , (4.11)

where again all entries in the matrix are zero except for the one non-zero entry that
is explicitly shown.

If we apply this argument to building up an admittance matrix “from scratch,”
we can think of A as the sum of terms, each one of which is of the form of (4.10)
or (4.11). This is explored in Exercise 4.8, where it is shown that the admittance
matrix is positive definite. (Positive definiteness of the admittance matrix can also
be established from the fact that a resistive circuit dissipates energy. See [39] for a
sketch of the proof.)

4.2 Control of a discrete-time linear system

4.2.1 Motivation

This case study assumes some familiarity with control theory and, in particular,
discrete time linear systems. This material is covered in greater detail in many
books on control and linear systems, such as [55, 89].

In a classical feedback control system, we use the outputs of plant sensors as the
inputs to integrators and other elements, which in turn control the plant actuators.
The integrators and other elements form an analog feedback control system, one
purpose of which is to regulate plant behavior despite, say, random fluctuations in
plant variables such as temperature and material inputs. The situation is illustrated
in Figure 4.5, where the outputs of the plant are labeled w(t) and the inputs are
labeled u(t).

In a digital control system, the function of the feedback control system is per-
formed by a microprocessor or digital controller. Unlike an analog controller,

4.2 Control of a discrete-time linear system 177

which accepts continuous time inputs, the digital controller receives samples of
plant sensor outputs that are sampled at discrete intervals of time. Furthermore,
the controls to the plant actuators are usually adjusted only at discrete intervals of
time.

In this case study, we are going to investigate the conditions under which we
can shift the state of the system to a desired final value by adjusting the inputs
over a sequence of time intervals. That is, we are going to consider the open loop
control of the system. In a feedback controller, as illustrated in Figure 4.5, we
use the output (or the state) of the system to decide on the controls. Furthermore,
in optimal control we recognize the costs of certain control actions and states.
These issues pose somewhat different problems to the one we investigate in this
case study; however, several of the issues turn out to be similar. See Exercise 12.5
and [11, 16, 55, 63, 64, 89] for further details.

We formulate the problem in Section 4.2.2, consider changes in Section 4.2.3,
and explore the problem characteristics in Section 4.2.4.

4.2.2 Formulation

4.2.2.1 Variables

In a typical plant, there will be some variables of interest that we are trying to
control or manipulate. As with our DC circuit case study in Section 4.1, there will
usually be a much larger number of variables that we could potentially study. In a
given application we must identify a subset of salient issues of interest.

To represent the behavior of the plant over time, we will typically find that we
must consider a somewhat larger group of variables than just the variables of inter-
est, in order to be able to predict the behavior of the variables of interest over time.
In particular, we define the state [89, section 5-1] of the system to be the smallest
set of variables, w say, such that:

• w includes all the variables of interest as a sub-vector, and
• knowledge of the value of w for any particular time t = t0, together with the

knowledge of the values of the input u(t) to the plant for t0 ≤ t ≤ t1 completely
specifies the value of w for any time t0 ≤ t ≤ t1.

The usual convention in control theory is to use x for the state and for x to be a
vector of length n; however, we will need to use the variable x to stand for some-
thing else and so we use w for the state. In Figure 4.5 we have implicitly assumed
that all of the state can be measured directly as outputs of the plant; however, in
some applications this is not the case and they must be estimated.

To illustrate the choice of variables of interest, consider the temperature of the
system. In a chemical reactor, we might be very interested in the temperature

178 Case studies of linear simultaneous equations

because it strongly affects the yield of chemicals. We would model temperature
explicitly as one of the state variables in such a system. In contrast, in an electro-
mechanical actuator we may not be so interested in the temperature, except to
verify that it does not exceed a limit. We might not explicitly model the temperature
of the actuator. In summary, the choice of the variables of interest depends on our
interests and judgment.

However, we may find that the specification of the state requires us to include
more variables than just the variables of particular interest. For example, in the
chemical reactor, we may not be directly interested in the pressure, say, but the
pressure may be necessary to include in our state in order to be able to predict the
future temperature.

The definition of state embodies the idea that as time elapses, the value of the
state w changes and so we must think of the state as being a function of time, so
that, for example, w : R → Rm . In our application, we are considering a digital
controller that samples the state of the system and updates the controls every, say, T
units of time. Therefore, we concentrate on the values of the state at these sampling
instants. We can write w(kT) for the value of w at the k-th sampling instant.

We write u for the vector of plant actuator or process inputs. For simplic-
ity, we assume that u is actually only one-dimensional; however, in general we
can consider multi-input systems [19]. Again, since we are considering a digi-
tal controller that updates the controls every T units of time, we will assume that
the input stays constant between the k-th and (k + 1)-th sampling instant so that
u(t) = u(kT), kT ≤ t < (k + 1)T . We will write u(kT) for the value of the
actuator input set by the controller for the period between the k-th and (k + 1)-th
sampling instant.

4.2.2.2 Behavior of system

By the definition of state, the value of the state at time kT and the value of the
input for period k determines value of the state at time (k + 1)T . That is, for each
k, there exists a function φ(k) : Rm ×R → Rm describing the behavior of the plant
such that for any value of the state w(kT) at time kT and any value of the input
u(kT) applied between time kT and time (k + 1)T , we can calculate the value of
the state at time (k + 1)T by:

∀k ∈ Z, w([k + 1]T) = φ(k)(w(kT), u(kT)).

If, for each k, the function φ(k) is linear of the form:

∀k ∈ Z,∀w ∈ R
m,∀u ∈ R, φ(k)(w, u) = G(k)w + h(k)u,

with G(k) ∈ Rm×m and h(k) ∈ Rm , then we say that the system is linear.

4.2 Control of a discrete-time linear system 179

If the functions φ(k) are actually independent of k, so that φ : Rm × R → Rm

can be found satisfying:

∀k ∈ Z, w([k + 1]T) = φ(w(kT), u(kT)),

then we say that the system is time-invariant.
If the functions φ(k) are linear and independent of k and so of the form:

∀k ∈ Z,∀w ∈ R
m,∀u ∈ R, φ(k)(w, u) = Gw + hu,

for G ∈ Rm×m and h ∈ Rm , then the system is linear time-invariant. A typical
situation where this relationship occurs is when the plant can be described by a
linear differential equation with time-invariant coefficients. (See Exercise 4.9.)
Even when the behavior of the system is more complicated, linear approximations
are often made to gauge qualitative behavior.

In summary, linear time-invariant systems behave according to the difference
equation [55, section 2.3.3]:

∀k ∈ Z, w([k + 1]T) = Gw(kT) + hu(kT). (4.12)

The matrix G is called the state transition matrix. We will restrict ourselves to
linear time-invariant systems for the rest of the case study.

4.2.2.3 Changing the state of the system

Let us suppose that at time kT = 0 the plant is in state w(0) ∈ Rm and that we
would like it instead to be in some other desired final state wdesired ∈ Rm . Our only
way to affect the state is by adjusting the input variable u(kT), perhaps over several
successive time-steps. So, our problem is to pick values of the inputs to bring the
state to the desired final value after, say, n time-steps. In other words, our goal is
to have w(nT) = wdesired.

If we allow ourselves to choose values for u(kT) for k = 0, 1, . . . (n − 1), then

180 Case studies of linear simultaneous equations

we will find that:

w(nT)

= Gw([n − 1]T) + hu([n − 1]T),

on substituting for w(nT) from (4.12) for k = n − 1,

= (G)2w([n − 2]T) + Ghu([n − 2]T) + hu([n − 1]T),

on substituting for w([n − 1]T) from (4.12) for k = n − 2,

= (G)3w([n − 3]T) + (G)2hu([n − 3]T) + Ghu([n − 2]T) + hu([n − 1]T),

continuing,

...
...

= (G)nw(0) +
n−1∑
k=0

(G)n−1−khu(kT),

where (G)k means the k-fold product of G with itself. Let us write:

• A for the m × n matrix with k-th column equal to (G)n−1−kh, (where k ranges
from 0 to (n − 1)), so that:

A = [
(G)n−1h (G)n−2h · · · Gh h

]
,

• x for the n-vector with k-th entry u(kT), (where k again ranges from 0 to (n−1)),
so that:

x =

⎡⎢⎢⎢⎢⎢⎣
u(0T)

u(1T)
...

u([n − 2]T)

u([n − 1]T)

⎤⎥⎥⎥⎥⎥⎦ ,

and
• b = wdesired − (G)nw(0).

Then, we have that:

Ax = [
(G)n−1h (G)n−2h · · · Gh h

]
⎡⎢⎢⎢⎢⎢⎣

u(0T)

u(1T)
...

u([n − 2]T)

u([n − 1]T)

⎤⎥⎥⎥⎥⎥⎦ ,

=
n−1∑
k=0

(G)n−1−k hu(kT).

4.2 Control of a discrete-time linear system 181

Therefore, w(nT) will be equal to wdesired if:

wdesired = (G)nw(0) + Ax .

That is, w(nT) will be equal to wdesired if:

Ax = b. (4.13)

The right-hand side of (4.13) is a constant vector (for a given n, w(0), and wdesired).
That is, we have a set of linear simultaneous equations in x with coefficient matrix
A and right-hand side b.

4.2.2.4 Example

Suppose that n = 2, m = 2, and:

h =
[

0
1

]
,

G =
[

0 1
1 1

]
,

w(0) =
[

1
3

]
,

wdesired =
[

3
7

]
.

Then:

A = [
Gh h

]
,

=
[

1 0
1 1

]
,

b = wdesired − (G)nw(0),

=
[−1

0

]
.

Solving for x , we obtain: [
u(0T)

u(1T)

]
= x,

=
[−1

1

]
.

For this particular example, it is also possible to find a control u(0T) that achieved
the desired final state in one time-step; that is, for n = 1. In particular, there is a
solution u(0T) ∈ R to:

hu(0T) = wdesired − Gw(0),

182 Case studies of linear simultaneous equations

namely u(0T) = 3. However, it will typically require more than one time-step to
achieve a desired state. (See Exercise 4.10.)

4.2.2.5 Labeling of vector and matrix entries

The entries of x and the columns of A are labeled from 0 to (n − 1). This con-
trasts with the labeling of the variables in the case study in Section 4.1 where the
entries were labeled from 1 to n. In general, we can label the entries of a vector
in any way we choose. For example, in some applications it may be convenient
to use labels that are not consecutive. Moreover, we call x an n-vector if it has
n entries, independent of the way in which the entries are labeled. For notational
simplicity, most of the theoretical development in this book will assume that en-
tries are labeled consecutively from 1. The changes in algorithms to accommodate
alternative labelings, such as used in this discrete-time linear system case study,
are straightforward and we will not mention them explicitly.

4.2.3 Changes

In this section we will consider changes in the initial state, the desired state, and in
the system.

4.2.3.1 Initial and desired state

If wdesired or w(0) change, then the right-hand side b in the linear equation (4.13)
will also change correspondingly. We would like to be able to solve for the required
values of actuator settings for a variety of possible values of wdesired and w(0).

4.2.3.2 System

If the behavior of the plant changes, then the state transition matrix G and therefore
the coefficient matrix A in (4.13) will change. This can occur as plant components
drift over time or because of manufacturing tolerances. We can think of A as
differing from a correct plant model by �A. We may be interested in calculating
the error between w(nT) and wdesired that results from using the incorrect model
of the system. (See Exercise 5.50.)

4.2.4 Problem characteristics

As in our previous example, let us try to discern some characteristics of the linear
equation.

Exercises 183

4.2.4.1 Numbers of variables and equations

Unlike the previous case study in Section 4.1, the number of variables does not
necessarily equal the number of equations. The number of variables is n, which
is equal to the number of entries in x , but the number of equations is equal to m,
which is the number of entries in b.

4.2.4.2 Solvability

It is not always the case that (4.13) is solvable. Solvability will depend on G, h,
wdesired, w(0), and on n. For some G, h, wdesired, and w(0), it is impossible to
achieve the desired state, whatever the value of n. For other choices, there is a
minimum value of n, below which it is impossible, and at or above which it is
possible to solve (4.13). (See Exercise 4.10.)

4.2.4.3 Coefficient matrix

In general, the coefficient matrix is not symmetric and has different numbers of
rows and columns. The coefficient matrix is not necessarily diagonally dominant
nor is it necessarily sparse, unless the physical system displays these character-
istics. For example, if the plant consists of several independent and uncoupled
sub-systems then A will be sparse, but if the plant state variables are tightly linked
to each other then A will not be sparse.

Exercises

Analysis of a direct current linear circuit

4.1 Suppose that the circuit of Figure 4.1 is modified by adding a voltage source of value
V23 between nodes 2 and 3, with a positive value of V23 meaning that the voltage at node
2 is positive with respect to the voltage at node 3. This voltage source is in parallel with
the resistor between nodes 2 and 3 as illustrated in Figure 4.6. Define a matrix A′ and
vectors x ′ and b′ so that the solution of the system A′x ′ = b′ yields the solution to the
modified circuit. This formulation is called modified nodal analysis. (Hint: The vector
x ′ no longer represents only the unknown voltages but now also includes an unknown
current. The vector b′ no longer represents only known currents but now also includes a
known voltage. The vector x ′ will be of length 5. Its first four entries will be the entries of
x , while its last entry will be the current, i23, flowing into the voltage source at node 2 and
flowing out of the voltage source at node 3. The vector b′ will also be of length 5 and its
first four entries will be the entries of b. The last entry will be V23.)

4.2 Show that there are at least as many branches as nodes in a connected circuit with at
least one loop.

184 Case studies of linear simultaneous equations

� � � �

� � � �1 2 3 4

0

�	
�
↑ I1 Ra

Rb

Rc

Rd

Re

Rf

Rg �	
�
↑ I4

�	
�
V23

→ i23+ −

Fig. 4.6. Circuit for Exer-
cise 4.1. The ladder circuit
of Figure 4.1 with a voltage
source V23 added between
nodes 2 and 3.

4.3 Write down the equation for the datum node for the circuit of Figure 4.1. Show that
it is redundant. That is, show that the equation for the datum node is a linear combination
of the equations for the other nodes. (See Definition A.54.)

4.4 Show that the equation Ax = b with A, x, and b defined in (4.5) (4.7) repro-
duces (4.1) (4.4).

4.5 Give an example of a circuit with current sources for which Kirchhoff’s current law
cannot be satisfied.

4.6 In this exercise we verify the form of the admittance matrix A for the circuit.

(i) Show that (4.9) is the correct definition of A to satisfy Ax = b for an arbitrary
circuit consisting of resistors and current sources.

(ii) Show that (4.5) is the special case of (4.9) for to the circuit of Figure 4.1.
(iii) Show that by choosing the datum node to be the node with the most branches

incident to it, we can minimize the number of non-zeros in the admittance matrix.

4.7 Show that there are at most n(n − 1)/2 branches in an n node circuit.

4.8 In this exercise we verify the form of the change in the admittance matrix �A.

(i) Show that �A defined in (4.10) is of the form �A = γww† for some γ ∈ R,
w ∈ Rn .

(ii) Show that �A defined in (4.11) is of the form �A = γww† for some γ ∈ R,
w ∈ Rn .

(iii) Suppose that there are n non-datum nodes and r ≥ n resistors in the circuit. Sup-
pose that the circuit is connected and that current can flow in it and that each pair
of nodes is joined directly by at most one resistor. (That is, there are no resistors in
parallel.) Show that we can write A in the form A = WGW †, where:

• W ∈ Rn×r has n linearly independent rows, and
• G ∈ Rr×r is a diagonal matrix with positive diagonal entries.

(iv) Show that A is positive definite. (Hint: Use Exercise 2.27, Part (vi).)

Exercises 185

Control of a discrete-time linear system

4.9 Consider a continuous time linear system described by the differential equation:

∀t,
dw

dt (t) = Âw(t) + b̂u(t),

where Â ∈ Rm×m and b̂ ∈ Rm . This describes a linear time-invariant system in continuous
time [55, 89]. The solution to this differential equation on an interval [t0, t1], given that
w(t0) is known and u(τ) is specified for t0 ≤ τ < t1, is:

w(t1) = exp(Â(t1 − t0))w(t0) + exp(Ât1)
∫ t1

t0
exp(− Âτ)b̂u(τ) dτ,

where exp(Ât) ∈ Rm×m is the matrix exponential [89, section 5-6]. Show that the behav-
ior of this system can be described in the form (4.12) when the control input is constant
for kT ≤ t < (k + 1)T . (Hint: Set t0 = kT and t1 = (k + 1)T . Make a substi-
tution of variables in the integral on the right-hand side noting that for any t, t ′ ∈ R,
exp(Â(t + t ′)) = exp(Ât) exp(Ât ′).)

4.10 Choose values of G, h, wdesired, and w(0) for which (4.13) has:

(i) no solution, no matter what value of n;
(ii) a solution for n = 2 but no solution for n = 1.

There is no need to prove that your values of G, h, wdesired, and w(0) correspond to differ-
ential equations describing a physical plant.

5

Algorithms for linear simultaneous equations

In Chapter 4, we introduced two case studies that involved solution of linear equa-
tions. In the case of the direct current linear circuit case study described in Sec-
tion 4.1, we could envision having to solve for a large circuit. We will encounter
linear equations throughout the book in the development of algorithms and will
find that we need to repeatedly solve potentially very large systems. Therefore, in
this chapter we will consider generally how to solve large systems of the form:

Ax = b. (5.1)

The matrix A is called the coefficient matrix, while b is called the right-hand side
vector.

In Section 5.1 we will discuss solution of (5.1) by inversion of the coefficient
matrix using Cramér’s rule [55, appendix A.7]. Because of the computational
burden and other problems with using Cramér’s rule, we seek alternatives to in-
verting A that nevertheless allow us to solve Ax = b. Gaussian elimination is
one such technique.

Gaussian elimination is a computationally efficient approach to solving Ax = b
in that the computational effort to perform Gaussian elimination is bounded by a
polynomial in n, in fact by a cubic polynomial in n. This means that, for large
n, Gaussian elimination takes far less computational effort than Cramér’s rule.
(See [40] for a more precise account of the notion of computational effort: here
we will appeal to an intuitive notion. For example, as discussed in Section 2.4, we
will assume that the arithmetic operations of addition, subtraction, multiplication,
and division are basic operations requiring a constant amount of computational
effort per operation.)

Before discussing Gaussian elimination in more detail, we will first consider in
Section 5.2 the two special cases of (5.1) where the coefficient matrix is:

• upper triangular (that is, all the entries below the diagonal are zero), and

186

Algorithms for linear simultaneous equations 187

• lower triangular (that is, all the entries above the diagonal are zero).

For example, the matrix U ∈ R3×3 defined by:

U =
⎡⎣ 2 3 4

0 − 9
2 −9

0 0 1

⎤⎦ , (5.2)

is upper triangular and the matrix L ∈ R3×3 defined by:

L =
⎡⎣ 1 0 0

7
2 1 0
4 2

3 1

⎤⎦ , (5.3)

is lower triangular.
Linear simultaneous equations involving upper or lower triangular matrices are

called triangular systems. Solution of triangular systems will also prove useful in
the case of more general systems of linear simultaneous equations.

In Section 5.3 we will develop a method for solving our circuit problem and
related problems. In particular, we will assume that A is n × n with rows and
columns labeled consecutively from 1 to n and that there is exactly one solution to
the simultaneous equations. The method we develop will be similar to Gaussian
elimination and involves factorizing A into the product of a lower triangular ma-
trix L and an upper triangular matrix U . We will then use the development from
Section 5.2 to solve the simultaneous equations Ax = b re-written in terms of the
triangular factors of A. The calculations described in Sections 5.2 and 5.3 will
constitute a direct algorithm for solving linear simultaneous equations and will be
applied to the circuit case study from Section 4.1.

Because symmetry arises repeatedly in the systems we solve, we will pay spe-
cial attention to symmetric systems, describing a variant of LU factorization for
symmetric systems in Section 5.4. In Section 5.5 we will discuss how to exploit
the sparsity of equations.

In Section 5.6, we will discuss both sensitivity analysis and also how to re-solve
a system after a large change in either the right-hand side or the coefficient matrix.
In Section 5.7 we will discuss the related issue of ill-conditioning, introducing an
alternative factorization to the LU factorization, called the QR factorization, that
can be useful in ill-conditioned problems.

In Section 5.8 we will discuss non-square systems, including the discrete-time
linear system case study from Section 4.2. Finally, in Section 5.9, we will briefly
discuss iterative solution methods for linear equations.

In the rest of the book, we will find that the solution of linear equations is embed-
ded in algorithms for solving non-linear equations and algorithms for optimization.

188 Algorithms for linear simultaneous equations

The choice of linear equation solver used in the software implementing these algo-
rithms may be beyond our control. In this case, we should think of LU factoriza-
tion as representative of linear equation solving techniques; however, an alternative
factorization or an iterative method may actually be used in a particular applica-
tion. Sometimes we will have direct control over the linear solution method and
the description of LU factorization and variations will then provide information to
aid in making sensible decisions. In all cases, understanding of LU factorization
and alternatives will help in the formulation of problems; however, we will gloss
over many details and you may need to delve more deeply into these techniques
for special purpose applications.

The key issues discussed in this chapter are:

• solution of triangular systems and factorization of matrices,
• computational effort and particular features of problems, such as symmetry

and sparsity that can reduce the necessary computational effort,
• sensitivity analysis and ill-conditioning, and
• solution of non-square systems.

5.1 Inversion of coefficient matrix

Suppose that A is invertible with inverse A−1. (See Definition A.49.) Let x =
A−1b. Then:

Ax = AA−1b,

= Ib, by definition of inverse,

= b, by definition of I.

That is, knowledge of the inverse allows us to calculate the solution of the linear
equations explicitly. Cramér’s rule [55, appendix A.7] shows how to calculate
A−1 in terms of the determinant of A and the determinants of sub-matrices of A.
(See Definition A.10.) In particular, Cramér’s rule says that if the determinant of
A is not equal to zero then A is invertible and the k�-th entry of A−1 is given by:

• (−1)�+k times
• the determinant of the matrix obtained from A by deleting its �-th row and k-th

column, divided by
• the determinant of A.

The most straightforward algorithm for calculating the determinant involves a
recursive calculation requiring computational effort of on the order of n! arithmetic
operations for an n×n matrix. For a 2×2 or a 3×3 matrix, this calculation is fast.
However, if n is large then Cramér’s rule is impractical because the calculation

5.2 Solution of triangular systems 189

of determinants is too computationally intensive. In the rest of this chapter we
describe alternative approaches that require much less effort for large n.

Nevertheless, Cramér’s rule can be extremely useful for:

• proving properties of matrices, as we will see, for example, in Exercise 5.8,

• inverting small matrices, since Cramér’s rule allows the inverse to be written
down explicitly, and

• inverting specific types of matrices. (See Exercise 5.1.)

For example, for A ∈ R2×2, if det(A) = A11 A22 − A12 A21 	= 0 then A is invertible
and by Cramér’s rule:

A−1 = 1

A11 A22 − A12 A21

[
A22 −A12

−A21 A11

]
. (5.4)

5.2 Solution of triangular systems

A set of linear simultaneous equations where the coefficient matrix is lower or
upper triangular is called a triangular system. We will show that:

• a triangular system with a lower triangular coefficient matrix can be solved using
a direct algorithm called forwards substitution, while

• a triangular system with an upper triangular matrix can be solved using a direct
algorithm called backwards substitution.

Both algorithms involve eliminating variables by re-arranging equations, as intro-
duced in Section 3.2.2.2. In Sections 5.2.1–5.2.3, we will discuss forwards and
backwards substitution and the computational effort. The development is based
on [70, appendix C].

5.2.1 Forwards substitution

5.2.1.1 Analysis

Consider an n × n matrix L that is lower triangular. That is, L�k = 0,∀� < k,
assuming that the rows and columns of L are labeled consecutively from 1 through
n. Suppose that we want to find y� ∈ Rn satisfying Ly = b. (We will see in Sec-
tion 5.3.1 the reason for choosing y as the decision variable instead of x .) This is a
special case of our general Problem (5.1) of solving linear simultaneous equations.

190 Algorithms for linear simultaneous equations

In this special case, we have that:

b1 = L11y1,

b2 = L21y1 + L22y2,

b3 = L31y1 + L32y2 + L33y3,

...
...

bn = Ln1y1 + Ln2y2 + Ln3y3 + · · · + Lnn yn.

Assume that the diagonal entries of L are non-zero. The first row can be re-
arranged to give:

y1 = b1

L11
.

We have re-arranged the first row to allow elimination of y1 by expressing it as a
function of the rest of the entries in y, as first discussed in Section 3.2.2.2. In fact,
since the function on the right-hand side of this expression is independent of the
rest of the entries in y, this means that we can directly evaluate y1. Re-arranging
the second row then yields:

y2 = b2 − L21y1

L22
,

which can be calculated once y1 is known. Similarly, once y1, . . . , y�−1 are known,
y� can be calculated as:

y� = b� −∑�−1
k=1 L�k yk

L��

. (5.5)

This process is called forwards substitution since it starts at the first entry of the
vector y and works forward towards the last entry of y. We can eliminate each y�

in turn by expressing it in terms of y1, . . . , y�−1.

5.2.1.2 Example

Consider the lower triangular matrix defined in (5.3):

L =
⎡⎣ 1 0 0

7
2 1 0
4 2

3 1

⎤⎦ ,

and the vector:

b =
⎡⎣ 9

18
28

⎤⎦ .

5.2 Solution of triangular systems 191

Performing forwards substitution on Ly = b, we obtain:

y� =
⎡⎣ 9
− 27

2
1

⎤⎦ .

5.2.2 Backwards substitution

5.2.2.1 Analysis

Now consider an upper triangular matrix U . That is, U�k = 0,∀� > k, again
assuming that the rows and columns of U are labeled consecutively from 1 through
n. Suppose that y ∈ Rn is given and we want to solve Ux = y. (We will see in
Section 5.3.1 the reason for using y as the symbol for the right-hand side vector
instead of b.) This is another special case of our general problem of solving linear
simultaneous equations. We have that:

U11x1 + · · · + U1,n−2xn−2 +U1,n−1xn−1 + U1,nxn = y1,

...
...

Un−2,n−2xn−2 +Un−2,n−1xn−1 +Un−2,nxn = yn−2,

Un−1,n−1xn−1 +Un−1,nxn = yn−1,

Un,nxn = yn.

Again assume that the diagonal entries of U are non-zero. In this case, we can
re-arrange the last equation to give:

xn = yn

Un,n
.

Then we can substitute into the second last equation and obtain:

xn−1 = yn−1 −Un−1,nxn

Un−1,n−1
.

Once xn, . . . , x�+1 are known, the entry x� can be calculated as:

x� = y� −∑n
k=�+1 U�k xk

U��

.

Calculation of x in this way is called backwards substitution because it starts at
the last entry of x and works backwards. Again, we can eliminate each x� in turn
by expressing it in terms of x�+1, . . . , xn .

192 Algorithms for linear simultaneous equations

5.2.2.2 Example

Consider the upper triangular matrix defined in (5.2):

U =
⎡⎣ 2 3 4

0 − 9
2 −9

0 0 1

⎤⎦ ,

and the vector:

y =
⎡⎣ 9
− 27

2
1

⎤⎦ .

Performing backwards substitution on Ux = y, we obtain:

x� =
⎡⎣ 1

1
1

⎤⎦ ,

which is the solution to Ux = y.

5.2.3 Computational effort

5.2.3.1 Forwards substitution

Forwards substitution calculates y�, � = 1, . . . , n. Calculation of y1 requires a
division. Calculation of each y� for � = 2, . . . , n requires: (�− 1) multiplications,
(� − 2) additions, a subtraction, and a division. In total, this is:

n∑
�=2

(� − 1) = 1

2
(n − 1)n multiplications,

n∑
�=2

(� − 2) = 1

2
(n − 2)(n − 1) additions,

(n − 1) subtractions, and

n divisions.

5.2.3.2 Backwards substitution

Backwards substitution calculates x�, � = n, . . . , 1. Calculation of xn requires a
division. Calculation of each x� for � = (n − 1), . . . , 1 requires: (n − �) multipli-

5.3 Solution of square, non-singular systems 193

cations, (n − � − 1) additions, a subtraction, and a division. In total, this is:

n−1∑
�=1

(n − �) = 1

2
(n − 1)n multiplications,

n−1∑
�=1

(n − � − 1) = 1

2
(n − 2)(n − 1) additions,

(n − 1) subtractions, and

n divisions.

5.2.3.3 Overall

The overall effort for forwards and backwards substitution is therefore on the order
of the square of the number of variables. Given that accessing entries of vectors
and matrices and that addition, subtraction, multiplication, and division are basic
operations of our computer then we have described direct algorithms for solving
upper triangular systems and for solving lower triangular systems.

5.3 Solution of square, non-singular systems

In this section, we will develop a method to solve linear simultaneous equations
where the coefficient matrix is square and non-singular. We will first show in Sec-
tion 5.3.1 that if a matrix A had been factorized into an appropriate lower triangular
matrix L and upper triangular matrix U , so that A = LU , then it would be pos-
sible to solve the system Ax = b. The triangular factors allow the simultaneous
equations Ax = b to be solved in terms of two triangular systems involving L and
U .

Then we will show in Section 5.3.2 that it is possible to factorize a square, non-
singular matrix A into appropriate L and U . In Section 5.3.3 we will analyze the
computational effort. Then in Section 5.3.4 we will discuss some variations on the
basic LU factorization.

5.3.1 Combining forwards and backwards substitution

Suppose that we can factorize A ∈ Rn×n into LU , with L lower triangular and U
upper triangular. Then, we have:

b = Ax, the equation we want to solve,

= LUx, since A = LU ,

= L(Ux),

= Ly,

194 Algorithms for linear simultaneous equations

where y = Ux . So, if L has non-zero diagonal entries then we can solve for y
in the equation b = Ly using the algorithm developed in Section 5.2.1. If U has
non-zero diagonal entries then we can solve for x in the equation y = Ux using
the algorithm developed in Section 5.2.2. We obtain a solution x to the system
b = Ax . We conclude that if we can factorize a matrix A into LU with L lower
triangular and U upper triangular and with both L and U having non-zero diagonal
entries, then we can solve the system b = Ax . We have transformed the problem
of solving Ax = b into the solution of three successive problems:

(i) factorization of A into LU ,

(ii) forwards substitution to solve Ly = b, and

(iii) backwards substitution to solve Ux = y.

If A is singular then we cannot factorize A into LU with L and U having non-
zero diagonal entries. To see this, note that if we could factorize a singular matrix
into LU with non-zero diagonals, then we could solve the linear equation Ax = b
for any b and hence invert A, which is a contradiction. (See Exercise 5.2.) In the
following sections we will consider non-singular A.

5.3.2 LU factorization

In the following discussion we will specify a series of “stages” to implement the
algorithm. To index the stages, we will add a superscript in parentheses, so that
M (j) represents a matrix that is defined in the j-th stage of the algorithm. This
is the same notation used for the iterates in an iterative algorithm as introduced in
Section 2.4.2.1; however, here the calculation will terminate in a finite number of
stages (in fact, in (n − 1) stages) with the exact answer (under the assumption that
we could calculate in infinite precision arithmetic.) That is, we describe a direct
algorithm for factorizing the matrix A. (Some authors refer to this algorithm as an
iterative algorithm since it involves a number of stages and, indeed, we will number
the matrices calculated in the stages in a similar fashion to the labeling we use in
iterative algorithms. However, we reserve the word iterative for algorithms that
generate a sequence of approximate solutions that converge to the exact answer.
We have used the word “stages” to distinguish the matrices M (j) from the iterates
in an iterative algorithm.)

To factorize A, we will multiply it on the left by the non-singular matrices
M (1), M (2), . . . , M (n−1) such that the matrix U = M (n−1)M (n−2) · · · M (1) A is upper
triangular. At each stage, the product:

A(j+1) = M (j)M (j−1) · · · M (1) A,

5.3 Solution of square, non-singular systems 195

will become successively “closer” to being upper triangular. In particular, each
successive product will have one more column below the diagonal “zeroed.”

There are many choices of the M (j), j = 1, . . . , n− 1, that will zero out succes-
sive columns below the diagonal. We will choose the M (j), j = 1, . . . , n − 1, to
have two additional properties:

(i) each M (j) will be lower triangular (and therefore, by Exercise 5.1, have a
lower triangular inverse), and

(ii) [M (j)]
−1

, the inverse of M (j), will be easy to compute.

We let:

L = [M (n−1) · · · M (1)]
−1

.

Recalling that the inverse of a product of matrices is equal to the product of the
inverses in reverse order, we have:

L = [M (n−1) · · · M (1)]
−1

,

= [M (1)]
−1 · · · [M (n−1)]

−1
.

That is, L is the product of (n − 1) lower triangular matrices and, by Exercise 5.3,
L is also lower triangular. Finally,

LU = [M (n−1) · · · M (1)]
−1

M (n−1) · · · M (1) A, by definition,

= A,

so that A has been factorized into LU . Using the terminology of Section 3.3.1, we
could say that we have pre-conditioned the system Ax = b by successively multi-
plying by the pre-conditioning matrices M (1), M (2), . . . , M (n−1). We will return to
this interpretation in Section 5.7.3.

5.3.2.1 First stage

Pivoting In the first stage of the algorithm, we let:

M (1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · · · · 0

−L21 1
. . .

...

−L31 0 1
. . .

...
...

...
. . .

. . . 0
−Ln1 0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (5.6)

196 Algorithms for linear simultaneous equations

where L�1 = A�1/A11, � = 2, . . . , n. Now define A(2) = M (1) A. By direct
calculation:

A(2) =

⎡⎢⎢⎢⎣
A11 A12 · · · A1n

0 A(2)

22 · · · A(2)

2n
...

...
...

0 A(2)

n2 · · · A(2)
nn

⎤⎥⎥⎥⎦ , (5.7)

where, for example, A(2)

22 = A22 − L21 A12 and generally:

A(2)
�k = A�k − L�1 A1k, 1 < �, k ≤ n.

The first column of A(2) below the diagonal consists of zeros because:

A(2)

�1 = A�1 − L�1 A11, for 1 < � ≤ n,

= A�1 − A�1

A11
A11,

= A�1 − A�1,

= 0.

We have zeroed the entries in the first column of A below its first entry. We say
that the entries have been annihilated. The operation of zeroing a column is called
pivoting and we say that we have pivoted on the entry A11 or that we have used
A11 as pivot. In subsequent stages, we will proceed to zero the entries below the
diagonal in the other columns of A, but first note that:⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · · · · 0

−L21 1
. . .

...

−L31 0 1
. . .

...
...

...
. . .

. . . 0
−Ln1 0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · · · · 0

L21 1
. . .

...

L31 0 1
. . .

...
...

...
. . .

. . . 0
Ln1 0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= I,

so that:

[M (1)]
−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · · · · 0

L21 1
. . .

...

L31 0 1
. . .

...
...

...
. . .

. . . 0
Ln1 0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

5.3 Solution of square, non-singular systems 197

Small or zero pivot Unfortunately, our construction will fail if A11 = 0. More-
over, even if A11 is non-zero, if A11 is small in magnitude compared to A�1 then
L�1 = A�1/A11 will be large in magnitude. For moderate to large values of A1k

this will mean that the product L�1 A1k can be large compared to A�k . In this case,
when the difference A�k − L�1 A1k is calculated, the calculated result will have an
error, due to round-off error, that is large compared to A�k . That is, the calculated
value A(2,calc)

�k differs from the exact value by A(2,error)
�k so that:

A(2,calc)
�k = A�k − L�1 A1k + A(2,error)

�k . (5.8)

Error analysis Let us try to gauge the effect of the error A(2,error)
�k on the solution.

We can think of the effect of this error as being the same as if we had changed the
value of A�k in the original matrix by A(2,error)

�k and then performed the calculation
using infinite precision arithmetic. That is, we can re-arrange (5.8) to:

A(2,calc)
�k = (A�k + A(2,error)

�k) − L�1 A1k,

where we now imagine the error as being in the original entry of A and that the
calculations are performed to infinite precision.

We will see in Section 5.7 that, for certain matrices A, even a relatively small
change in the value of an entry of A will cause a relatively large change in the
solution of the equation Ax = b. That is, according to Definition 2.21, the problem
of solving the linear equations is ill-conditioned for such matrices. Consequently,
for such matrices, using small pivots will lead to calculated solutions that differ
significantly from the exact solution. We will discuss this further in Section 5.7.3,
but for now we will just bear in mind that small pivots are undesirable. In the next
few paragraphs, we will consider ways to avoid zero or small pivots by re-ordering
equations and variables.

Permuting rows and columns If A11 = 0 (or if A11 is small in magnitude), but
A�k 	= 0 for some � and k then we can re-order the rows and columns and pivot on
A�k instead. This simply corresponds to permuting the equations and permuting
the variables so that:

• equation � is re-numbered to be equation 1, and
• variable k is re-numbered to be variable 1.

This approach is called full pivoting [45, section 2.2.5]. Re-ordering the equations
or variables does not alter the solution of the equations, except that we must keep
track of the re-ordering of the variables to reconstruct the solution in the original
ordering of the variables. So long as we keep track of the permutations, we can
reconstruct the solution in the original order of the variables.

198 Algorithms for linear simultaneous equations

With full pivoting, it is usual to seek the largest entry A�k in the matrix to use as
the pivot. Full pivoting is aimed at creating entries in L that have small magnitudes.
This minimizes the effect of round-off errors in the calculation of A(2)

�k , as will be
discussed in Section 5.7.3.

Partial pivoting An alternative to full pivoting is to permute only, say, the rows.
This is called partial pivoting [45, section 2.2.5]. With partial pivoting, the largest
entry below the diagonal is usually chosen as the pivot. The permutation of the
rows can be represented by multiplying A on the left by a permutation matrix
P ∈ Rn×n; that is, a matrix with exactly one 1 in each row and each column and
zeros elsewhere. For example, for A ∈ R2×2, the matrix:

P =
[

0 1
1 0

]
,

swaps the rows. (See Exercise 5.4.)
Because of the connection to a permutation matrix, pivoting on rows is some-

times called PLU factorization. The MATLAB function lu performs partial pivot-
ing [74] and returns matrices P, L , and U such that P A = LU .

Diagonal pivoting Another alternative to full pivoting is possible if A�k 	= 0 for
some � = k. In this case we can re-order the equations and the variables of our
system with the same permutation applied to both equations and variables. In other
words, we pivot on A�� instead of A11 by re-ordering so that:

• equation � is re-numbered to be equation 1, and
• variable � is re-numbered to be variable 1.

This is called diagonal pivoting.
In the case that A is symmetric, then diagonal pivoting preserves the symmetry

of the system in that the bottom right-hand (n − 1)× (n − 1) sub-matrix of A(2) is
symmetric, as we will see in Section 5.4. This will turn out to have computational
advantages for symmetric systems in that we can take advantage of symmetry to
perform less calculations. On the other hand, unless the matrix is diagonally dom-
inant, we generally will not be able to use the largest pivots if we restrict ourselves
to diagonal pivoting.

Summary In the first stage of the algorithm, to calculate A(2) using A11 as pivot,
we:

• copy the first row of A into A(2);
• zero the entries in the first column of A(2) below the diagonal; and

5.3 Solution of square, non-singular systems 199

• explicitly calculate the entries A(2)
�k for 1 < � ≤ n, 1 < k ≤ n using A(2)

�k =
A�k − L�1 A1k .

We call A11 the standard pivot. If A11 = 0 then the rows and/or columns of A can
be re-ordered to replace A11 with a non-zero entry. Similarly, if A11 is a very small
number, then we may also want to re-order the rows and/or columns of A to replace
A11 with a larger entry to minimize the effects of round-off errors in calculations.

5.3.2.2 Second stage

Pivoting In the second stage of the algorithm, we now choose M (2) to zero the
second column of A(2) below the diagonal. Let:

M (2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0

0 1
. . .

−L32 1
...

... −L42 0
. . .

. . .
...

...
. . .

. . . 0
0 −Ln2 0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.9)

where L�2 = A(2)

�2 /A(2)

22 , � = 3, . . . , n. Now let A(3) = M (2)M (1) A = M (2) A(2).
Then,

A(3) =

⎡⎢⎢⎢⎢⎢⎣
A11 A12 A13 · · · A1n

0 A(2)

22 A(2)

23 · · · A(2)

2n

0 0 A(3)

33 · · · A(3)

3n
...

...
...

...

0 0 A(3)

n3 · · · A(3)
nn

⎤⎥⎥⎥⎥⎥⎦ , (5.10)

so that we have zeroed the second column below the diagonal. The other entries of
A(3) are given by:

A(3)
�k = A(2)

�k − L�2 A(2)

2k , 2 < �, k ≤ n.

We have:

[M (2)]
−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0

0 1
. . .

L32 1
...

... L42 0 1
. . .

...
...

. . .
. . . 0

0 Ln2 0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

200 Algorithms for linear simultaneous equations

Error analysis As in Section 5.3.2.1, we can interpret round-off errors in the cal-
culation of A(3) in terms of a perturbation introduced into A(2), which we can, in
turn, interpret in terms of a perturbation in the original matrix A.

Permuting rows and columns The construction may again fail if A(2)

22 = 0.
Again, full, partial, or diagonal pivoting can be used if there is a suitable non-zero
pivot A(2)

�k for some 2 ≤ � ≤ n and 2 ≤ k ≤ n.

Summary At the second stage of the algorithm, to calculate A(3) using A(2)

22 as
pivot, we:

• copy the first two rows of A(2) into A(3);
• zero the entries in the first two columns of A(3) below the diagonal; and
• explicitly calculate the entries A(3)

�k for 2 < � ≤ n, 2 < k ≤ n using A(3)
�k =

A(2)
�k − L�2 A(2)

2k .

We call A(2)

22 the standard pivot. Again, if A(2)

22 = 0 or if it is small in magnitude,
then the rows and/or columns of A(2) can be re-ordered to place another entry in
the 22 place.

5.3.2.3 Subsequent stages

Pivot We continue in this way using either the standard pivot A(j)
j j at each stage

j , or using some other entry of the matrix as pivot, annihilating each successive
column under the diagonal. In particular, for the standard pivot A(j)

j j at stage j we
have that:

∀� > j, L�j = A(j)
�j /A(j)

j j ,

∀� > j, ∀k > j, A(j+1)

�k = A(j)
�k − L�j A

(j)
jk . (5.11)

Error analysis At each stage, errors in A(j+1) can be interpreted in terms of a
perturbation in A(j), which can be interpreted in terms of a perturbation in the
original matrix A.

Summary At stage j of the algorithm, to calculate A(j+1) using A(j)
j j as pivot, we:

• copy the first j rows of A(j) into A(j+1);
• zero the entries in the first j columns of A(j+1) below the diagonal; and
• explicitly calculate the entries A(j+1)

�k for j < � ≤ n, j < k ≤ n using A(j+1)

�k =
A(j)

�k − L�j A
(j)
jk .

We call A(j)
j j the standard pivot. Again, if A(j)

j j = 0 or if it is small in magnitude,
then the rows and/or columns of A(j) can be re-ordered to place a suitable non-zero
entry A(j)

�k , where j ≤ � ≤ n and j ≤ k ≤ n, in the j j place.

5.3 Solution of square, non-singular systems 201

5.3.2.4 Last stage

After the (n − 1)-th stage of the algorithm:

A(n) = M (n−1)M (n−2) · · · M (1) A =

⎡⎢⎢⎢⎢⎢⎣
A11 A12 A13 · · · A1n

0 A(2)

22 A(2)

23 · · · A(2)

2n

0 0 A(3)

33 · · · A(3)

3n
...

...
. . .

. . .
...

0 0 · · · 0 A(n)
nn

⎤⎥⎥⎥⎥⎥⎦ .

We let U = A(n). The diagonal entries of the upper triangular matrix U are the
pivots. By direct calculation:

L = [M (n−1) · · · M (1)]
−1 =

⎡⎢⎢⎢⎢⎣
1 0 · · · 0

L21 1
. . .

...
...

. . .
. . . 0

Ln1 · · · Ln,n−1 1

⎤⎥⎥⎥⎥⎦ ,

with L lower triangular and LU = A. Factorization of A into L and U does not
involve b, so that once we have factorized A we can solve b = Ax for any b using
forwards and backwards substitution as discussed in Section 5.3.1. (This contrasts
with the usual description of Gaussian elimination, where b is intimately involved
in the elimination.)

5.3.2.5 Example

To illustrate this process, let us perform the LU factorization for the example ma-

trix A =
⎡⎣ 2 3 4

7 6 5
8 9 11

⎤⎦ and solve the system Ax = b, where b =
⎡⎣ 9

18
28

⎤⎦, which

we first met in Section 2.2.2.
In the first stage, we have:

M (1) =
⎡⎣ 1 0 0
− 7

2 1 0
−4 0 1

⎤⎦ , A(2) = M (1) A =
⎡⎣ 2 3 4

0 − 9
2 −9

0 −3 −5

⎤⎦ .

Then, in the second stage:

M (2) =
⎡⎣ 1 0 0

0 1 0
0 − 2

3 1

⎤⎦ ,U = A(3) =
⎡⎣ 2 3 4

0 − 9
2 −9

0 0 1

⎤⎦ , L =
⎡⎣ 1 0 0

7
2 1 0
4 2

3 1

⎤⎦ .

We have already performed forwards and backwards substitution in Sections 5.2.1

202 Algorithms for linear simultaneous equations

and 5.2.2, respectively, for these L and U factors and the vector b =
⎡⎣ 9

18
28

⎤⎦ and

obtained the solution x� =
⎡⎣ 1

1
1

⎤⎦.

5.3.2.6 Singular matrices

Exercises 5.6 and 5.7 show that factorization can sometimes be performed on sin-
gular matrices. However, if factorization fails then (under the assumption of infinite
precision arithmetic) the matrix is singular. (See Exercises 5.8 and 5.9.)

5.3.3 Computational effort

Let us estimate the amount of computational effort involved in performing the LU
factorization. We divided the LU factorization into (n − 1) stages. At the j-th
stage, we calculate:

• the (n − j) entries of L that are in its j-th column and lying below the diagonal,
and

• the (n − j)2 values of A(j+1) that are in the lower right of the matrix.

The entries for L and A(j+1) are shown in (5.6) and (5.7) for stage 1 and are shown
in (5.9) and (5.10) for stage 2. The (n − j) entries calculated for L each require
one division, while calculation of the lower right (n − j)2 entries of A(j+1) each
require one multiplication and one subtraction. The total effort therefore is:

n−1∑
j=1

(n − j) = 1

2
n(n − 1) divisions,

n−1∑
j=1

(n − j)2 = 1

6
(2n − 1)n(n − 1) multiplications, and

n−1∑
j=1

(n − j)2 = 1

6
(2n − 1)n(n − 1) subtractions.

The overall effort for LU factorization is therefore on the order of the cube of
the number of variables. To solve the system Ax = b requires LU factorization
followed by forwards and backwards substitution. The overall effort to solve Ax =
b is therefore on the order of (n)3.

5.3 Solution of square, non-singular systems 203

5.3.4 Variations

We present some variations on the basic theme of LU factorization in the following
sections.

5.3.4.1 Factorization in place

To implement the LU factorization algorithm, we can start with a copy of A and
apply the pivot operations directly to update the entries in the copy of A, thereby
transforming it into the LU factors. The entries of the lower triangle of L can
be entered into the lower triangle of A as they are calculated, while the entries of
the diagonal and upper triangle of U can be entered into the diagonal and upper
triangle of A as they are calculated. This procedure gives correct results because
no information is lost in “re-using” the memory locations that contained the copy
of A.

We do not need to store the diagonal entries of L explicitly, since they are all
ones. Similarly, we do not need to store the entries of the upper triangle of L nor
the lower triangle of U , since they are all zeros. That is, all the essential entries of
L and U will fit in the memory locations that originally contained A. This process
is called factorization in place and we will return to it in the discussion of sparsity
in Section 5.5.3. (See Exercise 5.12.)

5.3.4.2 Diagonal entries of L and U

In the presentation in Section 5.3.2, L has ones on its diagonal, while the entries on
the diagonal of U were the pivots. This allows us to avoid the n divisions described
in Section 5.2.1 for forwards substitution. It is possible instead to factorize A into
two matrices L ′ and U ′ so that U ′ has ones on its diagonal, while the entries on
the diagonal of L ′ are the pivots. This allows us to instead avoid the n divisions
described in Section 5.2.2 for backwards substitution.

To see that this alternative factorization is possible, define D to be a diagonal
matrix with diagonal entries equal to the corresponding diagonal entries of U . Let
L ′ = LD and U ′ = D−1U . Then A = L ′U ′ with L ′ lower diagonal and U ′ upper
diagonal and U ′ has ones on its diagonal.

5.3.4.3 LDU factorization

Suppose we have factorized A into LU ′ with L lower triangular with ones on its
diagonal and U ′ upper triangular. Define a diagonal matrix D to have diagonal
entries equal to the diagonal entries of U ′ and then define U = D−1U ′. We now
have a factorization of A into LDU , where D is a diagonal matrix and both L and
U have ones on the diagonal. The entries in the diagonal of D are the pivots. We
will explore this factorization further for the case of symmetric A in Section 5.4.

204 Algorithms for linear simultaneous equations

5.4 Symmetric coefficient matrix

If A is symmetric, we can save approximately half the work in factorization, so long
as we only use diagonal pivots. Symmetric systems often arise in circuit applica-
tions, as we have seen, and also occur in optimization applications. Sometimes, a
system that appears at first to be not symmetric can be made symmetric by scaling
the rows or columns or re-arranging the rows or columns. (See Exercise 5.13.)

5.4.1 LU factorization

Let us see the modifications for LU factorization of a symmetric A. Consider
the first stage of the construction in Section 5.3.2.1, where the entries in A(2) are
calculated, and consider the sub-matrix of A(2) formed by deleting its first row and
column. We have:

Lemma 5.1 Suppose that A is symmetric and diagonal pivoting was used in the first stage
of factorization to re-order rows and columns. Then:

(i) the first row of A is equal to A11 times the transpose of the first column of L,
(that is, the entries in the first column of L arranged into a row), and

(ii) the sub-matrix of A(2) formed by deleting its first row and column is symmetric.

Proof The proof involves calculation of the entries A(2). See Appendix B for details.
�

Because the sub-matrix of A(2) is symmetric, it is only necessary to calculate and
store its diagonal and upper triangle. (Techniques to store only part of a matrix will
be introduced in Section 5.5.) This saves nearly half the effort of the first stage.
Similar savings are possible at each subsequent stage. We have:

Lemma 5.2 Let 2 ≤ j ≤ (n − 1) and consider the matrix A(j) formed at the (j − 1)-th
stage of the factorization. Suppose that the sub-matrix of A(j) obtained by deleting its
first (j − 1) rows and (j − 1) columns is symmetric. Assume that diagonal pivoting is
used at the j-th stage of factorization. Consider the matrix A(j+1) formed at the j-th
stage of factorization. Then:

(i) the j-th row of A(j+1) is equal to A(j)
j j times the transpose of the j-th column of

L, (that is, the entries in the j-th column of L arranged into a row), and
(ii) the sub-matrix of A(j+1) formed by deleting its first j rows and j columns is also

symmetric.

Proof The proof is analogous to that of Lemma 5.1. See Appendix B for details. �

5.4 Symmetric coefficient matrix 205

Corollary 5.3 Suppose that A is symmetric and that diagonal pivoting is used at each
stage of the factorization. Then for each j , 1 ≤ j ≤ n − 1, the sub-matrix of A(j)

formed by deleting its first (j − 1) rows and (j − 1) columns is symmetric. Moreover,
at the end of the factorization, for each �, the �-th row of U is equal to U�� times the
transpose of the �-th column of L.

Proof By induction. Lemma 5.1 proves the result for j = 1. Lemma 5.2 then proves
the induction step. �

5.4.2 Example

Let us perform LU factorization for the symmetric matrix A =
⎡⎣ 2 3 4

3 5 7
4 7 13

⎤⎦.

5.4.2.1 First stage

We have M (1) =
⎡⎣ 1 0 0
− 3

2 1 0
−2 0 1

⎤⎦. The 2 × 2 sub-matrix obtained from A(2) by

deleting the first row and column of A is symmetric. We need only calculate the
three entries in the diagonal and upper triangle of this sub-matrix to determine all

four entries. Then A(2) = M (1) A =
⎡⎣ 2 3 4

0 1
2 1

0 1 5

⎤⎦, where A(2)

32 = A(2)

23 so that we

need only calculate A(2)

32 to obtain the values of both entries.

5.4.2.2 Second stage

We now have M (2) =
⎡⎣ 1 0 0

0 1 0
0 −2 1

⎤⎦. Then U = A(3) = M (2)M (1) A =
⎡⎣ 2 3 4

0 1
2 1

0 0 3

⎤⎦.

5.4.2.3 Last stage

Finally, L = [M (1)]
−1

[M (2)]
−1 =

⎡⎣ 1 0 0
3
2 1 0
2 2 1

⎤⎦.

5.4.3 Computational savings

The savings in computational effort for the small example in Section 5.4.2 is mod-
est. In general, for a matrix of size n × n, the diagonal and upper triangle has
n(n + 1)/2 entries, while the full matrix has (n)2 entries. Calculating only the

206 Algorithms for linear simultaneous equations

diagonal and upper triangle in the first stage of factorization saves a fraction of the
work equal to:

(n)2 − n(n + 1)/2

(n)2
= (n)2/2 − n/2

(n)2
,

= n − 1

2n
,

≈ 1

2
, for n large.

Similarly, at each successive stage approximately half the work is saved, so that
overall approximately half the computational effort is required compared to factor-
izing a non-symmetric matrix. (See Exercise 5.14.)

5.4.4 LDL† and Cholesky factorization

Consider a symmetric matrix factorized into LU using diagonal pivots at each stage
of the factorization. Let D be a diagonal matrix with entries equal to the diagonal
of U . Then, by Corollary 5.3, U = DL†, where L† is the transpose of L obtained
by the swapping the rows and columns of L . That is, A = LDL† with the diagonal
entries of D being the pivots. We can save storage by factorizing A as LDL† and
storing only L and D since then we do not have to store U explicitly. We will make
use of this advantage in Section 5.5.1.

If the entries of D are all positive, then a related factorization involves setting
R = D

1
2 L†, where the matrix D

1
2 is diagonal with each diagonal entry equal to

the positive square root of the corresponding entry of D. Then A = R†R is called
the Cholesky factorization of A [45, section 2.2.5.2]. The matrix R is upper
triangular.

5.4.5 Discussion of diagonal pivoting

Diagonal pivoting is not always possible for non-singular A and we may be forced
to seek an off-diagonal pivot. (See Exercise 5.17.) Even if there are non-zero
diagonals, if the diagonal entries are very small, then using them as pivots can
prove problematic. We will discuss this further in Sections 5.5.3.4 and 5.7.3.

In our circuit case study from Section 4.1, the admittance matrix is strictly di-
agonally dominant and so the diagonal entries are relatively large compared to the
off-diagonal. Diagonal pivoting is consequently adequate for the particular prob-
lem in our case study as we will see in Exercise 5.22. In other circuit formulations
and more generally in other applications, this may not be the case and off-diagonal
pivoting becomes necessary. (See, for example, [95, section 3.4] for a discussion

5.4 Symmetric coefficient matrix 207

in the context of circuit simulation and see [45, section 2.2.5] for a general discus-
sion.)

5.4.6 Positive definite A

We will often be interested in factorizing symmetric matrices that are positive def-
inite (see Definition A.58) or positive semi-definite (see Definition A.59.) A posi-
tive definite matrix is non-singular. (See Exercise 5.20.) If A is symmetric and can
be factorized into LDL†, then we have the following test for positive definiteness.

Lemma 5.4 Suppose that A ∈ Rn×n is symmetric and can be factorized as A = LDL†,
with D ∈ Rn×n diagonal and L lower triangular with ones on the diagonal. Then A is
positive definite if and only if all the diagonal entries of D are strictly positive.

Proof

⇒ We first prove that A being positive definite implies that the diagonal entries of D
are strictly positive. To prove this, we prove the contra-positive. So, suppose that there
is at least one diagonal entry, D��, say, of D that is non-positive. We will exhibit x 	= 0
such that x† Ax ≤ 0. To find such a x , solve the equation L†x = I� for x . (This
is possible since L is lower triangular and has ones on its diagonal. We just perform
backwards substitution on L†.) Notice that x 	= 0, for else I� = L†x = L†0 = 0, which
is a contradiction. Furthermore,

x† Ax = x†LDL†x, by assumption on A,

= I�†DI�, by definition of x,

= D��, on direct calculation,

≤ 0, by supposition.

Therefore, A is not positive definite.

⇐ We now prove that the diagonal entries of D being positive implies that A is positive
definite. So, suppose that all the diagonal entries of D are strictly positive. Define the

matrix D
1
2 to be diagonal with each diagonal entry D

1
2
�� equal to the square root of the

corresponding diagonal entry of D. That is, D
1
2
�� = √

D��, ∀�. Let x 	= 0 be given and

define y = D
1
2 L†x . We first claim that y 	= 0.

For suppose the contrary. That is, suppose that y = 0. Then,
[
D

1
2

]−1
y = 0. (Notice

that the diagonal entries of D
1
2 are all strictly positive, so that D

1
2 is invertible.) But

then 0 =
[
D

1
2

]−1
y = L†x . Solving L†x = 0 by backwards substitution we obtain

x = 0, a contradiction. Therefore, y 	= 0.

208 Algorithms for linear simultaneous equations

Second, we observe that:

x† Ax = x†LDL†x, by assumption on A,

= x†LD
1
2 D

1
2 L†x, by definition of D

1
2 ,

= y†y, by definition of y,

= ‖y‖2
2 , by definition of ‖•‖2,

> 0,

since the length of a non-zero vector is strictly positive by Property (ii) of norms. That
is, A is positive definite. �

We now use this lemma to prove the following result about symmetric positive
definite matrices.

Theorem 5.5 If A is symmetric and positive definite, then:

(i) A is invertible,
(ii) A is factorizable as LDL†, with D diagonal having strictly positive diagonal

entries and L lower triangular with ones on the diagonal, and
(iii) A−1 is also symmetric and positive definite.

Proof The proof is divided into three parts:

(i) A is invertible,
(ii) A is factorizable as LDL†, and
(iii) A−1 is symmetric and positive definite.

See Appendix B for details. �

Exercises 4.8, 5.21, and 5.22 show why the circuit case study in Section 4.1
has a unique solution: the coefficient matrix is guaranteed to be non-singular. In
fact, it is symmetric and positive definite. Moreover, we can take advantage of
the symmetry of the coefficient matrix and guarantee that the diagonal pivots will
always be satisfactory. Exercise 5.22 shows that diagonal pivoting is equivalent to
full pivoting for a symmetric strictly diagonally dominant matrix.

5.4.7 Indefinite coefficient matrix

In some applications, the coefficient matrix may be of the form:

A =
[

A B
B† C

]
,

consisting of four blocks; that is sub-matrices, A, B, B†, and C . Suppose that A is
a square symmetric matrix that is positive semi-definite or positive definite and that
C is a square symmetric matrix that is negative semi-definite or negative definite.
(See Definitions A.58 and A.59.) The coefficient matrix A is indefinite; that is, it

5.5 Sparsity techniques 209

is neither positive semi-definite nor negative semi-definite. For example, consider
the matrix:

A =
[

1 0
0 −1

]
,

where: A = [1] is positive definite; B = [0]; and C = [−1] is negative definite.
The matrixA is indefinite since the top left-hand block, A = [1], is positive definite
and the bottom right-hand block, C = [−1], is negative definite. This particular
matrix is, however, non-singular.

For a non-singular indefinite matrix there are special purpose factorization tech-
niques to factorize this matrix that take advantage of the known partitioning of the
matrix into positive definite and negative definite parts [37, 116]. We will need to
factorize such matrices as part of the solution of our later case studies and we will
assume that semi-definite factorization algorithms are available to us; however, we
will not treat the details of factorizing such matrices.

5.5 Sparsity techniques

Using the LU or LDL† factorization as described in Sections 5.2–5.4 is not effec-
tive in solving very large systems because the computational effort of factorization
grows as the cube of the number of variables and the effort for forwards and back-
wards substitution grows as the square of the number of variables. As described
in Section 4.1.4 for our circuit case study, the non-zero entries in the admittance
matrix occur only:

• on the diagonal, and
• at those off-diagonal entries corresponding to resistors,

so that the admittance matrix is a sparse matrix. We may also have right-hand
side vectors b that only have a few non-zero entries. In the circuit case study, for
example, this occurs if there are only a small number of current sources in the
circuit.

In the case of a sparse matrix, we can arrange calculations in the LU or LDL†

factorization to reduce the computational effort considerably. We can also take
advantage of the sparsity of the right-hand side vector to reduce calculations.

Sparsity appears in many problems and techniques for treating sparse matrices
are highly developed. We will give an introduction that discusses only the sparsity
techniques that are directly relevant to solving the types of linear systems that we
will need to solve in the circuit case study and in subsequent chapters. The general
issue to bear in mind is that if a problem has a sparse structure then it can be
very worthwhile to exploit the sparsity, particularly for a large-scale problem. In

210 Algorithms for linear simultaneous equations

�
row 1

�

� location 1 2 4 end
value 1 2 5

row 2 �

�

location 1 2 3 end
value 2 1 3

row 3 �

�

location 2 3 4 end
value 3 1 4

row 4 � location 1 3 4 end
value 5 4 1

Fig. 5.1. Sparse matrix
storage by rows of the
matrix defined in (5.12).

our circuit problem, the pattern of non-zeros is somewhat random; however, if the
non-zeros form a regular pattern in the matrix, then this can also lead to further
advantages.

In Section 5.5.1 we discuss storage of sparse matrices and vectors. In Sec-
tion 5.5.2 we discuss forwards and backwards substitution of sparse L and U . Then
in Section 5.5.3, we discuss factorization of sparse matrices. In Section 5.5.4 we
will then mention some other special types of sparse matrices including matrices
that have a regular pattern of non-zeros.

The development is based on [125]. Other references on sparsity include [2, 95].

5.5.1 Sparse storage

5.5.1.1 Sparse matrices

Consider a circuit with 1000 nodes, which would in principle require a 1000×1000
matrix to represent the admittance matrix. Even if there is enough main memory to
store this amount of data as a “dense” matrix, the disk traffic to access the 1,000,000
entries in the matrix will take significant time.

The key to sparse storage is to avoid storing the whole matrix, which includes
both the non-zero and the zero entries, and instead store only the values and the in-
dices of the locations of the non-zero entries in the matrix. It is usually convenient
to break the matrix up into its rows or its columns. To be concrete, we will break up
the matrix into a linked list of its rows as shown in Figure 5.1 [48, section 8.2][60].
Each downward-pointing arrow in Figure 5.1 represents a pointer in the linked list
of rows.

Each row of the matrix can itself be stored as a list of pairs of numbers: the pairs
are the locations and values of successive non-zero entries. This is illustrated in

5.5 Sparsity techniques 211

Figure 5.1 for the matrix:

A =

⎡⎢⎢⎣
1 2 0 5
2 1 3 0
0 3 1 4
5 0 4 1

⎤⎥⎥⎦ . (5.12)

Each horizontal arrow in Figure 5.1 is a pointer to the list of pairs of locations and
values for the corresponding row of the matrix. (These rows can themselves be
stored as a linked list; however, this is not shown explicitly in Figure 5.1.) Row 1
has the values 1, 2, and 5 in, respectively, the 1-st, 2-nd, and 4-th locations in the
row. We store the locations and values as pairs. We indicate the end of the list of
pairs with a special symbol “end.” This is called row-wise storage. The alternative
is column-wise storage.

In the case of a symmetric matrix, we need only store the diagonal and the upper
or (equivalently) the lower triangle. It may be useful to have both row-wise access
and column-wise access to a matrix. We do this by maintaining a list of rows and
a list of columns. In the case of a symmetric matrix, we need only keep one list,
since the row-wise and the column-wise lists are the same.

5.5.1.2 Sparse vectors

Similarly, sparse vectors can be stored as a list of pairs of numbers representing
the locations and values of the non-zero entries of the vector. For example, consider
the change in the circuit case study of Section 4.1 illustrated in Figure 4.2, which
is repeated for reference in Figure 5.2. In this circuit, the current injected at node
2 changes by �b2. Suppose that the value of the change in the current source was
�b2 = 1. Then, we could define a vector �b ∈ R4 that represents the changes at
all nodes as specified by:

�b =

⎡⎢⎢⎣
0
1
0
0

⎤⎥⎥⎦ . (5.13)

This vector can be stored sparsely as the pair of lists of locations and values shown
in Figure 5.3.

5.5.1.3 Implementation

The illustration we have shown is applicable to a programming language with
pointers and records [48, section 8.2][60]. A linked list of records can be easily
modified by changing the pointers. However, there are other possible ways to rep-
resent sparse matrices. For example, in a language such as FORTRAN, the list
can be implemented as a pair of arrays, but this has less flexibility than the use

212 Algorithms for linear simultaneous equations

� � � � �

� � � � �1 2 3 4

0

�	
�
↑ I1 �	
�

↑�b2Ra

Rb

Rc

Rd

Re

Rf

Rg �	
�
↑ I4

Fig. 5.2. The ladder cir-
cuit of Figure 4.2, showing
a change, �b�, in the cur-
rent injected at node � = 2.

�b � location 2 end
value 1

Fig. 5.3. Sparse storage
of the vector defined
in (5.13).

of a linked list. See [2] for details. MATLAB and other packages can define and
treat sparsely stored matrices and vectors. Many of the MATLAB sparse matrix
commands begin with the two letters sp [74].

5.5.2 Forwards and backwards substitution

5.5.2.1 Sparse matrices

Forwards and backwards substitution on matrices L and U that are stored sparsely
is straightforward, since we need only access the entries in L and U that are non-
zero. We first consider forward substitution to solve Ly = b. Suppose we store L
as a list of rows, then for each substitution to solve for y� in (5.5), we use the list
for row � of L . We re-write (5.5) as:

y� = 1

L��

(
b� −

�−1∑
k=1

L�k yk

)
,

= b� −
∑
k < �

L�k 	= 0
yk 	= 0

L�k yk, (5.14)

observing that, for each �:

• L�� = 1, and
• to calculate the sum in (5.14) we need only consider values of k for which both

L�k 	= 0 and yk 	= 0.

To calculate y�, we first initialize y� = b�. For each non-zero entry L�k, k < �,

in row �, if yk 	= 0, we calculate L�k yk and subtract it from the current value of

5.5 Sparsity techniques 213

y�. This calculation can be performed as we “traverse” down the linked lists that
contain row � of L and contain y, noting that these lists specify only the values
satisfying L�k 	= 0 and yk 	= 0.

A similar procedure applies to backwards substitution, except that we will have
to explicitly divide by U��. The total effort for forwards and backwards substitution
depends only on the number of non-zero entries in L and U . This may be only a
very small fraction of the total number of entries in L and U .

5.5.2.2 Sparse vectors

If b has relatively few non-zero entries, that is, it is a sparse vector, then we can
further reduce the computational effort in forwards substitution by only perform-
ing (5.14) for the entries y� for which there is a non-zero value of b� or non-zero
values of L�k yk for k < �. For example, in forwards substitution, if b = In then
we only need perform (5.14) for � = n since y� = 0 for � < n. A similar sav-
ings is possible for backwards substitution to solve Ux = y for sparse y. This is
particularly useful when we are solving a change-case with a changed right-hand
side if the change in the right-hand side �b has only a few non-zero entries. (See
Exercise 5.25.)

5.5.3 Factorization

In the above discussion of forwards and backwards substitution, we tacitly assumed
that L and U would be sparse matrices. In this section, we discuss factorization of
a sparse matrix A in such a way as to make the factors sparse.

5.5.3.1 Fill-ins

The matrix:

A =

⎡⎢⎢⎣
1 2 0 5
2 1 3 0
0 3 1 4
5 0 4 1

⎤⎥⎥⎦
has two zero entries above and two zero entries below the diagonal. However, its
L factor has only one zero entry below the diagonal. (See Exercise 5.14.) We can
represent the zeros and non-zeros of A with the following diagram:

◦ ◦ ◦
◦ ◦ ◦

◦ ◦ ◦
◦ ◦ ◦

,

214 Algorithms for linear simultaneous equations

where the circles ◦ represent the non-zero entries and the blanks represent the zeros.
(This typographical convention is standard but a little confusing: notice that the
circles represent non-zeros, not zeros.) Similarly, we can represent the zeros and
non-zeros of L with:

◦
◦ ◦

◦ ◦
◦ • ◦ ◦

,

where ◦ and • both represent non-zeros, with the circles ◦ corresponding to entries
that were non-zero in A, while the bullet • corresponds to an entry that was zero
in A. We refer to the latter entries, indicated by bullets •, as fill-ins because they
correspond to a non-zero entry in L that was created at a position of a zero in A.

If we represent A as a sparse matrix and try to factorize it in place as discussed
in Section 5.3.2, we will not have allocated storage for the fill-ins. So, to factorize
a matrix stored sparsely, we must first copy it into a sparse matrix with the extra
storage for the fill-ins. The fill-ins are initialized to zero, but will become non-
zero as factorization proceeds. There are several MATLAB functions available to
allocate storage for fill-ins.

5.5.3.2 Choosing pivots to minimize fill-ins

If a fill-in is created at stage j of the factorization then that entry will have to be
annihilated at a later stage of factorization, requiring calculations. Furthermore,
fill-ins increase the number of non-zero entries in the L and U factors, which in-
creases the computational effort required for forwards and backwards substitutions.
By re-ordering the rows and columns of the matrix A, that is, by choosing a dif-
ferent order for the pivots, we will find that we can affect the number of fill-ins
created as calculations proceed. In this section, we seek an ordering of the rows
and columns of the matrix that minimizes the number of fill-ins during factoriza-
tion. For simplicity, we will restrict ourselves to selecting from diagonal pivots, so
that our discussion applies to LDL† factorization of symmetric matrices; however,
it is straightforward to generalize this discussion to the use of non-diagonal pivots.

Heuristic criteria A fill-in created at one stage of the factorization can cause fur-
ther fill-ins to be created at later stages, so it is in general very difficult to find
the optimal ordering to minimize the total number of fill-ins created during the
complete factorization. Finding the optimal ordering could easily take more com-
putational effort than factorization itself. There are several heuristics available to
approximately minimize the number of fill-ins created. (See, for example, [2, 71].)

If we ignore the effect of fill-ins created at one stage on the number of fill-ins

5.5 Sparsity techniques 215

created at subsequent stages then it is reasonable to choose the pivot at stage j so
as to minimize the number of fill-ins created at stage j , ignoring the effect of this
decision on the number of fill-ins created at later stages. This will often produce
good, though potentially sub-optimal, orderings.

In choosing pivots, we must only consider non-zero entries as candidates. If our
matrix is strictly diagonally dominant, for example, then Exercises 5.21 and 5.22
show that all of the diagonal entries will always be positive at each stage of fac-
torization. However, if we choose the pivot at stage j to minimize the number
of fill-ins created at stage j then we will typically not choose the pivot of largest
magnitude. We may decide that the savings in computational effort by choosing the
entry that minimizes the number of fill-ins outweighs the risk that we will choose a
relatively small positive pivot from the diagonal. Section 5.5.3.4 discusses the case
where we might encounter zero or small non-zero pivots.

Number of fill-ins with standard pivot To apply the heuristic, we must calculate
the number of fill-ins created at stage j as a function of the entry chosen as pivot.
To simplify the discussion, we will first calculate the number of fill-ins if we do
not re-order rows and columns; that is, we will first assume that we are using the
standard pivot, entry A(j)

j j , at stage j . We will then consider the number of fill-
ins when other pivots are chosen at stage j . For simplicity, we assume that A is
symmetric, although this is not central to the development. We have the following
upper bound on the number of fill-ins.

Lemma 5.6 Let N (j) be the number of fill-ins created at stage j of factorization using
A(j)

j j as pivot. Then N (j) ≤ N (j), where:

N (j) = [(the number of non-zero entries in the j-th row of A(j)) minus 1]2.

Proof See Appendix B. �

The upper bound N (j) is very easy to evaluate and represents the worst possible
case of creation of fill-ins where every non-zero entry in the j-th row of A creates
a fill-in for every one of the non-zero elements in the j-th column of A below the
diagonal that must be explicitly annihilated. That is, it ignores the entries that are
already non-zero in A(j). (See the proof of Lemma 5.6 in Appendix B for details.)
The calculation of N (j) can be facilitated by explicitly keeping track of the number
of non-zeros in each row and column of the sparse storage.

Number of fill-ins with other pivots We similarly define N (�) to be the number
of fill-ins created at stage j if we pivot on the entry A(j)

�� at stage j instead of
pivoting on the entry A(j)

j j . Again, we can approximate N (�) by ignoring the entries

216 Algorithms for linear simultaneous equations

that are already non-zero in A(j) to obtain an upper bound N (�). Following a
similar argument to Lemma 5.6, we find that N (�) is equal to the square of one
less than the number of non-zero entries in the �-th row of A(j). Again, this bound
is very easy to evaluate.

Application of heuristic To minimize the number of fill-ins at stage j , we will
choose to pivot on the entry A(j)

�� that minimizes N (�), which will also approxi-
mately minimize N (�). That is, we pick the row � of A(j), where j ≤ � ≤ n,
that has the least number of non-zero entries. We break ties arbitrarily or can ap-
ply a more detailed heuristic to distinguish the ties. This scheme is intuitively
reasonable and produces relatively good results, but there are others as discussed
in [2]. Several algorithms for re-ordering the columns and rows of a matrix based
on various heuristics are implemented in MATLAB functions. See, for example, the
MATLAB functions symmmd and symrcm.

5.5.3.3 Computational effort

The computational effort for factorization is difficult to calculate exactly because
it depends on the number of fill-ins as the factorization proceeds. However, the
effort for factorization is typically much less than cubic in the number of variables
and, in practice, sometimes grows only slightly faster than linearly in the number
of variables. (See Exercise 5.26.)

The most important implication is that the solution time depends strongly on the
number of non-zero entries in the A matrix and the computational effort typically
grows less quickly than with the cube of the size of the system. A very large,
but sparse, system can be faster to solve than a small dense system having more
non-zeros than the sparse system.

5.5.3.4 Other criteria for pivot selection

In Section 5.5.3.2, the choice of pivot in performing LU factorization has been to
minimize the number of fill-ins created. However, we cannot pivot on a zero entry
and, moreover, if we pivot on a small but non-zero entry then the coefficients in the
corresponding column of the L matrix will be large, since the entries in the column
of L are inversely proportional to the pivot.

In calculating the entry A(j+1)

�k in A(j+1) at the j-th stage of the factorization al-
gorithm, we subtract L�j A

(j)
jk from A(j)

�k . If L�j A
(j)
jk is much larger than A(j)

�k then we
may expect large round-off errors in the subtraction as discussed in Section 5.3.2.1.
We can again interpret the large round-off error as having the same result as an in-
finite precision calculation done with a perturbed value of A(j)

�k . That is, we will
solve a system of equations that is different to the original system and therefore ob-
tain an answer that is different from the exact solution. We will discuss this issue

5.5 Sparsity techniques 217

in more depth in Section 5.7.3. Here, we again observe that we should try to avoid
small pivots to minimize errors.

One way to avoid small pivots is to choose the pivot based on the pivot mag-
nitude as well as on the number of fill-ins created. As we have indicated above,
this presents difficulties for our LU factorization algorithm for sparse matrices,
because we would like to know the order of the pivots ahead of time so that we
can create the appropriate fill-ins in the linked list representation of the matrix.
However, we cannot easily estimate the size of the pivots before we perform the
factorization, except in the case of special types of matrices such as diagonally
dominant matrices.

Therefore, including magnitude as a criterion in pivot selection will force us to
dynamically allocate storage for fill-ins as factorization proceeds. For this reason,
some implementations of sparse LU factorization do not consider pivot magnitude.
See [95, chapter 7] for a further discussion of this issue as it relates to circuit
analysis and see [45, section 2.2.5] for a general discussion. We will return to this
issue in Section 5.7.3.

5.5.4 Special types of sparse matrices

5.5.4.1 Banded matrices and matrices with regular structure

In some applications, the pattern of non-zeros in the matrix is regular. This occurs,
for example, when the coefficient matrix represents some coupling between adja-
cent cells in a regular structure such as a tessellation of a plane or division of space
into cubes. In such cases, it is not necessary to keep explicit track of the position
of the non-zeros when storing the coefficient matrix. We can avoid explicit storage
of the location information and only maintain a list of the values.

For example, a banded matrix has zeros everywhere except on the diagonal
and on entries that are close to the diagonal. A tri-diagonal matrix is a banded
matrix that has non-zero entries only on the diagonal and adjacent to the diagonal.
There are special factorization algorithms that have been developed for these types
of matrices. (See Exercise 5.28.)

There are also other types of matrices, such as Toeplitz, Hankel, Hessenberg,
and “arrowhead” that have regular patterns that can facilitate factorization. (See
Exercise 5.29.)

5.5.4.2 Block pivoting and sparsity

In the discussion so far, we have performed pivoting on individual entries. How-
ever, consider the matrix:

A =
[

A B
C D

]
,

218 Algorithms for linear simultaneous equations

that consists of four blocks, A, B,C, and D. Assume that A and D are square. If
A is invertible, then we can multiply A on the left by:

M(1) =
[

I 0
−C A−1 I

]
,

to obtain:

A(2) =
[

I 0
−C A−1 I

] [
A B
C D

]
,

=
[

A B
0 D − C A−1B

]
, (5.15)

where we have zeroed the columns beneath A. The pre-conditioning matrix M(1)

was obtained by “pretending” that the matrix:

A =
[

A B
C D

]
,

was a 2 × 2 matrix and pivoting on the block A.

The first block column of L in the block LU factorization of A =
[

A B
C D

]
is

given by

[
I

C A−1

]
and the first block row of U is given by

[
A B

]
. We say that

we have pivoted on the block A. In general, the factorization can continue with
the remaining blocks, but for this matrix the block factorization is complete. We
have that:

A = LU,

=
[

I 0
C A−1 I

] [
A B
0 D − C A−1B

]
.

If A is small in size, such as a 2 × 2 matrix, then we can explicitly calculate
the inverse according to (5.4). Block pivoting can sometimes be used to avoid
numerical problems caused by small pivots if the inverse of the block is calculated
explicitly. (See Exercises 5.30 and 5.31.)

If the sparsity pattern of the system is such that non-zero entries occur in blocks,
then it can be more efficient to store the matrix as a sparse collection of blocks. For
example, in some applications such as the case study to be described in Section 6.2,
we will need to treat complex numbers. As we will discuss in Section 6.2.2.1,
complex numbers can be stored as pairs of numbers corresponding to either:

• the real and imaginary part of the complex number, or
• the magnitude and angle of the complex number.

5.6 Changes 219

�
row 1

�

�
location 1 2 4 end

value

[
1 2
3 4

] [
2 3
4 5

] [
5 6
7 8

]

row 2 �

�

location 1 2 3 end

value

[
2 3
4 5

] [
1 2
3 4

] [
3 4
5 6

]

row 3 �

�

location 2 3 4 end

value

[
3 4
5 6

] [
1 2
3 4

] [
4 5
6 7

]

row 4 �
location 1 3 4 end

value

[
5 6
7 8

] [
4 5
6 7

] [
1 2
3 4

] Fig. 5.4. An ex-
ample of storage
by block rows for
a block matrix.

We can represent complex equations as pairs of real and imaginary parts. The
“entries” of the coefficient matrix for the equations will therefore consist of 2 × 2
blocks and block pivoting can be used. For example, Figure 5.4 shows the storage
of such a matrix. As in Figure 5.1, the matrix is stored by rows; however, in this
case these rows are actually “block rows” and the entries in each block row are
2 × 2 blocks.

5.6 Changes

5.6.1 Sensitivity

5.6.1.1 Analysis

Let us generalize our coefficient matrix and right-hand side vector to be matrix-
and vector-valued functions, respectively, of a parameter χ ∈ Rs . That is, we now
consider A : Rs → Rn×n and b : Rs → Rn to be matrix- and vector-valued
functions of χ , respectively. We suppose that we have solved the linear equation
for a particular base-case value of χ , say χ = 0, for which A(0) ∈ Rn×n was
non-singular, and found x = x�� ∈ Rn that satisfied A(0)x = b(0). We want to
consider the sensitivity of the solution to χ for perturbations around the base-case
value χ = 0.

Theorem 5.7 Suppose that A : Rs → Rn×n and b : Rs → Rn are partially differentiable
with continuous partial derivatives and that A(0) is non-singular. Then, there exists a
function x� : Rs → Rn such that:

220 Algorithms for linear simultaneous equations

• for χ in a neighborhood of 0, (see Definition A.45), the function x� satisfies the linear
simultaneous equations A(χ)x�(χ) = b(χ), and

• the function x� is partially differentiable in the neighborhood with partial derivative
with respect to χ j at χ = 0 given by:

∂x�

∂χ j
(0) = [A(0)]−1

[
∂b
∂χ j

(0) − ∂ A
∂χ j

(0)x��

]
, (5.16)

where x�� ∈ Rn satisfies the base-case linear simultaneous equations A(0)x�� =
b(0).

Proof The matrix A(χ) is invertible for all χ in a neighborhood of 0 by Exercise 5.32.
Consequently, there is a well-defined solution of A(χ)x = b(χ) for all χ in this neigh-
borhood and for each such χ we can define the value of x�(χ) to be this solution. That
is, for all χ within a neighborhood of 0 we have that A(χ)x�(χ) = b(χ). (Since A(0)

is non-singular, the solution is unique and we have that x�(0) = x��.)
That is, x�(χ) = [A(χ)]−1b(χ) for all χ in this neighborhood. By Exercise 5.32,
the inverse [A(χ)]−1 is partially differentiable with respect to χ j in the neighborhood.
Moreover, the partial derivative is continuous. Therefore, x�(χ), being the product of
partially differentiable functions with continuous partial derivatives, is also partially
differentiable with respect to χ j in the neighborhood.
Totally differentiating A(χ)x�(χ) = b(χ) with respect to χ j , evaluating at χ = 0, and
re-arranging yields (5.16). �

If we assume that the function x� : Rs → Rn defined in Theorem 5.7 is well-
defined and partially differentiable then (5.16) can be calculated directly by totally
differentiating the equation A(χ)x�(χ) = b(χ) with respect to χ j , evaluating the
terms at χ = 0, and re-arranging. However, the difficulty in the proof is to prove
that the function x� exists and is actually partially differentiable. We can also use
the implicit function theorem [72, section 4.4], Theorem A.9 in Section A.7.3
of Appendix A, to prove that the function x� : Rs → Rn exists and is partially
differentiable.

5.6.1.2 Discussion

If we have already factorized the base-case coefficient matrix A(0) then (5.16)
shows that the sensitivity of x� with respect to variation in χ j can be calculated
with one additional forwards and backwards substitution using the right-hand side
∂b
∂χ j

(0) − ∂ A
∂χ j

(0)x��. We have therefore achieved our goal of calculating the sen-

sitivity with much less effort than would be required for explicitly solving for a
change-case.

Finding the partial derivative of x� with respect to all entries of χ ∈ Rs requires
s forwards and backwards substitutions. Each forwards and backwards substitution

provides a sensitivity
∂x�

∂χ j
(0).

5.6 Changes 221

Since the base-case solution x�� in Theorem 5.7 is equal to x�(0), we will from
now on abuse notation somewhat and usually write x� for the base-case solution
and also for the function that represents the dependence of the solution on χ . That
is, depending on context:

• x� will sometimes stand for the particular base-case optimal value x�� ∈ Rn , and
• x� will sometimes stand for the function x� : Rs → Rn satisfying A(χ)x�(χ) =

b(χ).

Since we are usually only interested in the base-case solution for χ = 0 and its
sensitivity evaluated at χ = 0, this will not be ambiguous.

We will use Theorem 5.7 in two ways, one straightforward and one more subtle.
The first way leads to direct sensitivity analysis, while the second leads to adjoint
sensitivity analysis. Both approaches follow the discussion in [95, chapter 9].

5.6.1.3 Direct sensitivity analysis

As mentioned above, a single forwards and backwards substitution is required to
calculate the sensitivity of x� to an entry χ j of χ ∈ Rs . Sensitivity analysis based
on direct application of Theorem 5.7 is called direct sensitivity analysis.

Example Recall the example of sensitivity analysis for linear equations (2.34) in-
troduced in Section 2.7.5.1, where A : R → R2×2 and b : R → R2 were specified
by:

∀χ ∈ R, A(χ) =
[

1 2 + χ

3 4

]
, b(χ) =

[
1
1 + χ

]
.

The base-case solution of these equations is:

x�(0) =
[−1

1

]
.

Moreover:

∂ A
∂χ

(χ) = ∂ A
∂χ

(0),

=
[

0 1
0 0

]
,

∂b
∂χ

(χ) = ∂b
∂χ

(0),

=
[

0
1

]
,

∂b
∂χ

(0) − ∂ A
∂χ

(0)x�(0) =
[−1

1

]
.

222 Algorithms for linear simultaneous equations

By Theorem 5.7, the sensitivity of the solution to χ is:

∂x�

∂χ
(0) = [A(0)]−1

[
∂b
∂χ

(0) − ∂ A
∂χ

(0)x�

]
.

Performing forwards and backwards substitution, we obtain:

∂x�

∂χ
(0) =

[
3

−2

]
.

Circuit case study Exercise 5.33 is an example of a direct sensitivity analysis for
the ladder circuit case study. The linear equations that are solved in Exercise 5.33
correspond to circuits having the same components as the base-case circuit but
with different current vectors. Instead of the current vector b as in the base-case,

a circuit is solved with a “current vector” that is equal to
∂b
∂χ j

(0) − ∂ A
∂χ j

(0)x�(0).

Each such circuit is called a direct sensitivity circuit. According to (5.16), the

solution of this circuit yields the sensitivity
∂x�

∂χ j
(0). (The phrase “current vector”

is in quotes since the units of this expression is not the same as the units of current.
Moreover, the solution has the units of voltage divided by the units of χ j .)

For example, for the ladder circuit in Figure 4.3, which is repeated in Figure 5.5,
there is an additional conductance of �G23 between nodes 2 and 3. The sensitivity
of the solution of this circuit with respect to �G23 = χ , evaluated at �G23 = χ =
0, is given by the solution of a circuit with “current injections” (actually having
units of voltage) equal to:

∂b
∂�G23

(0) − ∂ A
∂�G23

(0)x� = 0 −

⎡⎢⎢⎣
0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

⎤⎥⎥⎦ x�,

where:

• x� is the base-case solution,

• the current injections do not depend on �G23 so that
∂b
∂�G23

(0) = 0, and

• the dependence of the admittance matrix A on �G23 was discussed in Sec-
tion 4.1.3.2.

The solution of the circuit is a vector of “voltages” (actually having units of voltage
divided by impedance) that represent the sensitivities with respect to �G23.

5.6 Changes 223

� � � �

� � � �1 2 3 4

0

�	
�
↑ I1 1

Ra

1/Rb

1
Rc

1/Rd

�G23

1
Re

1/Rf

1
Rg �	
�

↑ I4
Fig. 5.5. The ladder cir-
cuit of Figure 4.3 that has a
change in the conductance
between nodes � = 2 and
k = 3.

5.6.1.4 Adjoint sensitivity

In this section we will suppose that there is an objective function f : Rn → R

that provides the value or payoff of the solution x . We define f � : Rs → R by:

∀χ ∈ R
s, f �(χ) = f (x�(χ)).

We are interested in calculating the partial derivatives of f �, again assuming that
we have a base-case solution x�(0) corresponding to the parameter value χ = 0
and also assuming that f is differentiable.

In this case, we seek:

∂ f �

∂χ j
(0) = d[f (x�(χ))]

dχ j
(0),

= ∂ f
∂x

(x�(0))
∂x�

∂χ j
(0), by the chain rule [72, section 2.4],

= ∂ f
∂x

(x�(0))[A(0)]−1

[
∂b
∂χ j

(0) − ∂ A
∂χ j

(0)x�(0)

]
, (5.17)

by (5.16). Let us define ξ ∈ Rn to be the solution of:

[A(0)]†ξ = ∇ f (x�(0)). (5.18)

Solving for ξ in (5.18) and taking the transpose of the result yields:

ξ † = ∂ f
∂x

(x�(0))[A(0)]−1.

Substituting into (5.17), we obtain:

∂ f �

∂χ j
(0) = ξ †

[
∂b
∂χ j

(0) − ∂ A
∂χ j

(0)x�(0)

]
.

Calculation of the vector ξ in (5.18) requires the solution of a linear equation
with coefficient matrix [A(0)]†. If the base-case matrix A(0) has been factorized

224 Algorithms for linear simultaneous equations

into A(0) = LU then [A(0)]† = [LU]† = U †L† by Exercise 5.18 and so the
factors from the base-case can be re-used to obtain ξ . Forwards substitution is
used to solve U †ζ = ∇ f (x�) and then backwards substitution is used to solve
L†ξ = ζ . The roles of L and U are swapped compared to solving an equation such
as Ax = b. The calculation is called an adjoint sensitivity analysis. After ξ has
been calculated with one forwards and backwards substitution, sensitivities of f �

with respect to all entries of χ can be evaluated.

Example Consider the previous example and the objective function f : R2 → R

defined in (2.7) from Section 2.3.1:

∀x ∈ R
2, f (x) = (x1)

2 + (x2)
2 + 2x2 − 3.

We have that:

∀x ∈ R
2,∇ f (x) =

[
2x1

2x2 + 2

]
,

∇ f (x�) =
[−2

4

]
,

In this case, (5.18) becomes: [
1 3
2 4

]
ξ =

[−2
4

]
,

which has solution ξ =
[

10
−4

]
, so that:

∂ f �

∂χ
(0) = ξ †

[
∂b
∂χ

(0) − ∂ A
∂χ

(0)x�(0)

]
,

= [
10 −4

] [−1
1

]
,

= −14.

Circuit case study Exercise 5.34 is an example of an adjoint sensitivity analysis
for the DC circuit case study of Section 4.1. The linear equation that is solved in
Exercise 5.34 corresponds to a circuit that has entries in its admittance matrix that
are the transpose of those in the base-case and has entries in its “current vector”
that are defined in terms of the sensitivity of the objective function. The circuit is
called the adjoint sensitivity circuit. One solution of the adjoint sensitivity circuit
suffices for sensitivities of an objective function with respect to all parameters of
interest.

In the case of resistive circuits with current sources, the admittance matrix is

5.6 Changes 225

symmetric, so that the resistors in the adjoint circuit are the same as those in the
base-case circuit. For some circuits, however, the admittance matrix is not sym-
metric and the adjoint circuit has components that are different from those in the
base-case circuit.

5.6.2 Large changes

In this section, we discuss large changes in the right-hand side and large changes
in the coefficient matrix of a linear system.

5.6.2.1 Right-hand side

In the discussion so far we have developed techniques that enable us to solve the
linear equations Ax = b for a given square, non-singular A and an arbitrary b.
That is, we can easily accommodate large changes in b, either by:

(i) re-solving the equations with the new value of b, or

(ii) solving for the change �x in x to match the change �b in b.

In the second case, we assume that we have already have a solution x� that satisfies
Ax� = b and now we want to find �x that satisfies A(x�+�x) = b+�b, where �b
is the change in the right-hand side. We must solve A�x = �b. The computational
effort using forwards and backwards substitution as described in Section 5.2 is on
the order of (n)2. However, we saw a case in Section 5.5.2.2 where the effort is
much smaller than (n)2 if �b has only a few non-zero entries. (See Exercise 5.25.)

To summarize, the solution of the system Ax = b is a linear function of the
right-hand side vector b. That is, if a sensitivity analysis is carried out with respect
to parameters that are all entries of b then the sensitivity and large change analysis
yield the same result.

5.6.2.2 Coefficient matrix

Suppose that we have factorized a symmetric matrix A into LDL†, but that we want
to now solve the changed equation (A + �A)x = b. Since the factorization of A
involved considerable effort, we may wish to avoid the effort of factorizing A+�A
by making use of the factors of A. We will see that this is practical for certain types
of changes �A for which the effort to update the factorization of A is less than the
effort to factorize A + �A. The development follows [45, section 2.2.5.7].

226 Algorithms for linear simultaneous equations

Assuming that A has been factorized as LDL†, we have:

A + �A = LDL† + �A,

= LDL† + LL−1�A[L−1]
†
L†, since LL−1 = I,

= L(DL† + L−1�A[L−1]
†
L†),

collecting the common factor on the left,

= L(D + L−1�A[L−1]
†
)L†,

collecting the common factor on the right.

Now suppose that we can factorize the matrix D+L−1�A[L−1]
†
into L̂ D̂ L̂† with L̂

lower triangular with ones on its diagonal and D̂ diagonal. Then, we would have:

A + �A = L(D + L−1�A[L−1]
†
)L†,

= L L̂ D̂L̂†L†,

= L̃ D̂ L̃†,

where L̃ = L L̂ . By Exercise 5.3, the product of two lower triangular matrices is
lower triangular, so that L̃ = L L̂ is lower triangular and, moreover, has ones on its
diagonal. That is, A + �A = L̃ D̂ L̃† and we have factorized the changed matrix.

The practicality of this approach depends on being able to factorize the matrix
D + L−1�A[L−1]

†
using less effort than it takes to factorize A + �A. This is not

true if �A is an arbitrary change, but is true for some restricted forms of �A that
are nevertheless extremely useful in applications.

For example, suppose that:

• γ, δ ∈ R with γ and δ non-zero, and
• w, u ∈ Rn with w and u linearly independent (see Definition A.55).

Then, the particular forms:

• �A = γww† ∈ Rn×n , which is called a symmetric rank one update, since the
matrix is of rank one (see Definition A.57), and

• �A = γww† + δuu† ∈ Rn×n , which is called a symmetric rank two update,
since the matrix is of rank two (see Definition A.57),

allow for convenient calculations of L̃ and D̂ from L , D, and γ, δ, w, u. The
computational effort involved is on the order of (n)2, which is considerably less
than the effort involved in factorizing A+�A directly. The forwards and backwards
substitution to solve for the new value of x also requires effort on the order of (n)2.
The details for �A = γww†, the symmetric rank one update, are presented in [45,
section 2.2.5.7].

Exercise 4.8 showed that changes in resistance in circuit problems involve a

5.7 Ill-conditioning 227

change in the admittance matrix that is a symmetric rank one update. Therefore, the
effect of changes in resistance can be calculated using this technique. It is possible
to repeat this process if there are several successive changes to the matrix. How-
ever, it is prudent to occasionally factorize the resulting matrix directly to avoid
accumulation of round-off errors. There are also various special considerations if
the changed matrix is nearly equal to a singular matrix. As with small-signal sen-
sitivity analysis, for the circuit case study there are interpretations of the changed
solution in terms of circuits [95, chapter 8].

5.6.3 New variables and equations

We can also consider augmenting a system of equations by adding a new variable
and a new equation. Methods to make use of the existing factorization in this case
are described in [45, section 2.2.5.7]. In the context of circuit analysis, this allows
us to add a node to the circuit. See [95, chapter 8] for details.

5.7 Ill-conditioning

In describing algorithms, we have mostly assumed that all numbers are represented
to infinite precision and that all calculations are performed to infinite precision. In
practice, we can often assume that numbers are represented with enough precision
and that calculations are performed to enough precision so that the answers are
“almost exact” and they do not “underflow” or “overflow” the representation of the
numbers in the computer. However, this is not always a valid assumption when
issues of numerical conditioning prove critical to understand the nature of errors
in the calculations [45, section 2.1][121, chapter 4]. We mentioned this issue in
Sections 5.3.2.1 and 5.5.3.4 in reference to pivot selection. In Section 5.7.1 we
will discuss issues related to numerical conditioning in more detail.

In Section 5.7.2 we will discuss the ideas of scaling and pre-conditioning and
then relate them to numerical conditioning. In Section 5.7.3, we will discuss the
factorization of ill-conditioned matrices. We will describe the issue for LU and
LDL† factorization and then introduce another factorization, QR, that can be help-
ful in solving systems of equations that involve ill-conditioned matrices.

5.7.1 Numerical conditioning and condition number

5.7.1.1 Discussion

In Section 5.3 we showed that if A is non-singular then we can factorize it, while if
it is singular then at some stage we will find that there are no non-zero pivots. We
avoided discussion of the issue of when a coefficient matrix is “nearly” singular in

228 Algorithms for linear simultaneous equations

the sense that a small perturbation of the matrix (for example, due to representation
or round-off error) would make it singular. This issue is related to the problem of
small pivots mentioned in Sections 5.3.2.1 and 5.5.3.4.

5.7.1.2 Example

For example, consider:

A =
[

1 δ

1 0

]
. (5.19)

If δ 	= 0, then under the assumption of infinite precision arithmetic, we could
reliably factorize A and solve Ax = b exactly for the solution x�.

However, if δ is small in magnitude, then A is “nearly” singular in that perturbing
δ to make it equal to zero would make A singular. In this case, we will see that
small relative errors in the specification of A or b (or in the calculations to factorize
A or to perform forwards or backwards substitution) lead to large relative errors in
the value of the solution x�. That is, the problem of solving Ax = b given the A
defined in (5.19) is ill-conditioned according to Definition 2.21.

We demonstrate that the problem of solving Ax = b, with A specified as
in (5.19), is ill-conditioned. First note that by Cramér’s rule,

A−1 =
[

0 1
1/δ −1/δ

]
.

Also, given b =
[

b1

b2

]
, then:

x� = A−1b =
[

b2

(b1/δ) − (b2/δ)

]
. (5.20)

As a concrete example, let b =
[

1
1

]
so that ‖b‖2 = √

2. According to (5.20),

the solution to Ax = b is x� =
[

1
0

]
, so that ‖x�‖2 = 1. We consider, in turn,

changes to b and to A assuming infinite precision arithmetic.

Right-hand side Consider the “perturbed” system Ax = b+�b, with �b =
[

χ

0

]
,

so that ‖�b‖2 = |χ |. The solution x� +�x� to this system satisfies �x� =
[

0
χ/δ

]
,

so that ‖�x�‖2 = |χ/δ|. The relative change in the norm of the solution is:

‖�x�‖2

‖x�‖2
= |χ/δ| ,

5.7 Ill-conditioning 229

while the relative change in the norm of the right-hand side was:

‖�b‖2

‖b‖2
= |χ |√

2
.

Combining these observations, the relative change in the norm of the solution is
on the order of |1/δ| times the relative change in the norm of the right-hand side.
That is, the norm of the sensitivity of the solution to χ is on the order of |1/δ|. For
small |δ|, this is a large sensitivity to χ . That is, by Definition 2.21, the problem of
solving Ax = b is ill-conditioned because a relatively small change in the problem
specification leads to a relatively large change in the solution.

Coefficient matrix Now consider the perturbed system (A + �A)x = b, with

�A =
[

χ 0
0 0

]
, so that ‖�A‖2 = |χ |, where ‖•‖2 is the induced matrix L2 norm.

(See Definition A.30 and Exercise 5.35.) Also ‖A‖2 ≈
√

2. The solution x� +�x�

to this system satisfies x� + �x� =
[

1
χ/δ

]
, �x� =

[
0

χ/δ

]
, so that ‖�x�‖2 =

|χ/δ|. The relative change in the norm of the solution is:

‖�x�‖2

‖x� + �x�‖2
≈ |χ/δ| ,

if |χ/δ| is small. The relative change in the norm of the coefficient matrix is:

‖�A‖2

‖A‖2
≈ |χ |√

2
.

Again, the relative change in the solution is on the order of |1/δ| times the rela-
tive change in the coefficient matrix. That is, the sensitivity to χ is large and, by
Definition 2.21, the problem of solving Ax = b is again ill-conditioned because
a relatively small change in the problem specification leads to a relatively large
change in the solution.

5.7.1.3 Analysis

As well as the sensitivity of the solution to changes in the exact value of A and b,
evaluation of (5.20) may be significantly affected by the representation and round-
off error in the computational system being used. For example, if the exact value
of δ is 1.3× 10−20, but the closest number that can be represented in the computer
is 1 × 10−20, then there will be a large error in the computed solution compared
to a value calculated with infinite precision representation and arithmetic. This
issue is exacerbated when there are many calculations that must be performed to
obtain the solution as, for example, in the calculations required for factorization
and forwards and backwards substitution. As each calculation is performed, its

230 Algorithms for linear simultaneous equations

solution is rounded off to the nearest number in the finite precision representation
used by the computer. Errors accumulate as calculations proceed [45, section 2.1].
We will return to this issue in Section 5.7.3.

The degree of ill-conditioning is characterized by a measure known as the con-
dition number of the matrix [45, section 2.2.4.3].

Definition 5.1 Let ‖•‖ stand for vector and matrix norms on Rn and Rn×n that are com-
patible. (See Definition A.32.) For example, the matrix norm ‖•‖ could be the matrix
norm induced by the vector norm. (See Definition A.30.) Suppose that A ∈ Rn×n is non-
singular. Then the condition number of A is defined by ‖A‖ ∥∥A−1

∥∥. If A ∈ Rn×n is
singular then the condition number is defined to be ∞. �

The condition number lies in the range from one to infinity. A matrix with a
“large” condition number is said to be “ill-conditioned,” while a matrix with a
“small” condition number is said to be “well-conditioned.” The MATLAB function
cond evaluates the condition number using the L2 norm. The significance of the
condition number is contained in the following theorem ([45, section 2.2.4.3]).

Theorem 5.8 Let ‖•‖ stand for vector and matrix norms on Rn and Rn×n that are com-
patible. (See Appendix A.3.2.) Suppose that A ∈ Rn×n is non-singular and b ∈ Rn.
We consider the relation between solutions of the system Ax = b and solutions of the
perturbed systems Ax = b + �b and (A + �A)x = b. We have the following bounds.

(i) Consider the perturbed system Ax = b + �b. The solution x� + �x� to this
perturbed system satisfies:

‖�x�‖
‖x�‖ ≤ ‖A‖

∥∥∥A−1
∥∥∥ ‖�b‖

‖b‖ ,

where x� is the solution to Ax = b. That is, the relative change in the solution is
bounded by the product of the condition number and the relative change in the
right-hand side.

(ii) Consider the perturbed system (A + �A)x = b. The solution x� + �x� to this
system satisfies:

‖�x�‖
‖x� + �x�‖ ≤ ‖A‖

∥∥∥A−1
∥∥∥ ‖�A‖

‖A‖ ,

where x� is the solution to Ax = b. That is, the relative change in the solution is
bounded by the product of the condition number and the relative change in the
coefficient matrix.

Proof See [45, section 2.2.4.3] and Exercise 5.36. �

Theorem 5.8 suggests that changes in A or b may result in changes in the solu-
tion that are “amplified” by as much as the condition number of A. Note that the
condition number is closely related to the sensitivity of the solution to changes in
A and b as determined by the sensitivity analysis in Theorem 5.7. In particular, if

5.7 Ill-conditioning 231

the condition number is large then the sensitivity as calculated in Theorem 5.7 will
also be large.

Consider the matrix A defined in (5.19) and suppose that δ is small. If the
induced matrix norm ‖•‖2 is chosen, then:

• ‖A‖2 ≈
√

2, and
• ∥∥A−1

∥∥
2 ≈ |1/δ|,

so that the condition number is proportional to |1/δ|. According to Theorem 5.8,
relatively small changes in either the right-hand side b or the coefficient matrix A of
the system Ax = b can potentially produce large relative changes in the solution
with the amplification proportional to |1/δ|. Moreover, applying Theorem 5.7,
we obtain that the norm of the sensitivity to χ is |1/δ|. These observations are
consistent with the above calculations for the matrix defined in (5.19) since the
changes in A and b were indeed amplified by |1/δ| in the solution.

5.7.2 Scaling and pre-conditioning

Scaling can sometimes be used effectively to reduce the condition number of a
matrix. For example, consider the matrix:

A =
[

δ 0
1 1

]
, (5.21)

which has inverse:

A−1 =
[

1/δ 0
−1/δ 1

]
,

so that the solution to Ax = b is given by:

x� = A−1b =
[

b1/δ

−(b1/δ) + b2

]
. (5.22)

If the ‖•‖2 induced matrix norm is again used, then for small δ we have that:

• ‖A‖2 ≈ 1,

• ∥∥A−1
∥∥

2 ≈
∣∣∣√2/δ

∣∣∣,
so that the condition number is again proportional to |1/δ|. By scaling the first
equation of Ax = b by multiplying it by 1/δ we obtain the new system:[

1 0
1 1

]
x =

[
b1/δ

b2

]
, (5.23)

and the coefficient matrix now has a condition number that is a small constant that
is independent of δ. Of course, we still face the issue that the solution in (5.22) is

232 Algorithms for linear simultaneous equations

very dependent on the value of δ; however, the condition number of the coefficient
matrix has improved. We will return to the implications of this observation in
Section 5.7.3 and Exercise 5.38.

We can generalize this idea by multiplying the equations through by a matrix M .
We called this pre-conditioning in Section 3.3.1. The reason for this name is that
multiplying the system can change the condition number of the coefficient matrix.
The ideal would be to multiply the system Ax = b by the inverse A−1 because
then we would have the system Ix = A−1b, and I is trivial to factorize (and has
condition number 1 using the ‖•‖2 norm).

In practice, if an approximate inverse for A can be found then this can be used
to pre-condition the system. A common choice is to pre-condition by a diagonal
matrix. For example, the diagonal matrix that has entries equal to the inverse of
the diagonal entries of A can be used. Diagonal pre-conditioning was used for the
matrix in (5.21) to produce the coefficient matrix in (5.23) and simply involves
scaling the equations.

It is important to realize that pre-conditioning will not remove the sensitivity of
the solution to changes in the originally specified coefficient matrix A and vector
b. However, the condition number of the resulting coefficient matrix can be im-
proved. Scaling of variables can also be applied to improve the condition number
of the matrix. (See Exercise 5.39.) Both approaches can facilitate factorization
by avoiding the factorization of an ill-conditioned matrix, which exacerbates the
ill-conditioning of the originally specified problem. We will discuss factorization
of ill-conditioned matrices in the next section, using the notion of pre-conditioning
to help to explain how the steps in factorization exacerbate ill-conditioning.

5.7.3 Matrix factorization

5.7.3.1 LU factorizing ill-conditioned systems

We observed in Sections 5.3.2.1 and 5.5.3.4 that if we use small pivots then it
is possible that large numerical errors will be introduced into our calculations.
We showed that these errors would yield the same result as if we had calculated
to infinite precision but had started with a perturbed matrix. The analysis of ill-
conditioning has shown that for an ill-conditioned system, such a perturbation will
result in a large change in the solution of the perturbed system compared to the
exact system. Unfortunately, many of the candidate pivots for an ill-conditioned
matrix may be small as shown in Exercise 5.38.

As Exercise 5.38 suggests, if we LU factorize the coefficient matrix of an ill-
conditioned system, we may find that some or all of the pivots are small. In the
presence of finite precision representation of numbers and round-off errors during
computation, large errors can arise in the entries of L and U . We have noted that

5.7 Ill-conditioning 233

pivot schemes can seek the largest available pivot to try to avoid this issue; however,
if the system is sparse and a fixed ordering of the pivots is chosen in advance to
minimize the number of pivots, then it is not always possible to guarantee that the
pivots will be acceptably large. (See Exercise 5.40.)

Even if the largest available pivots are selected at each step of factorization, some
of the pivots will still be small for an ill-conditioned matrix. Representation and
round-off errors will mean that the calculated factors differ significantly from the
exact factors. Solving the system using forwards and backwards substitution will
produce results that do not even approximately solve the original system Ax = b.

To gain further insights into the accumulation of errors throughout a factoriza-
tion, we will interpret the steps involved in factorization as “pre-conditioning”
as discussed in Section 5.7.2. If we encounter small pivots in LU factorization
then there will be some large entries in the matrices M (j) and [M (j)]

−1
. (See Sec-

tion 5.3.2.) Because of this, we can make an already ill-conditioned matrix worse
through the LU factorization. In particular, the condition number of the lower
triangular matrix:

L = [M (n−1) . . . M (1)]
−1

,

is:

‖L‖ ∥∥L−1
∥∥ = ∥∥∥[M (n−1) . . . M (1)]

−1
∥∥∥ ∥∥M (n−1) . . . M (1)

∥∥ ,

which by Lemma A.1 is bounded by:∥∥∥[M (n−1)]
−1
∥∥∥ . . .

∥∥∥[M (1)]
−1
∥∥∥ ∥∥M (n−1)

∥∥ . . .
∥∥M (1)

∥∥ =∥∥M (n−1)
∥∥ ∥∥∥[M (n−1)]

−1
∥∥∥ . . .

∥∥M (1)
∥∥ ∥∥∥[M (1)]

−1
∥∥∥ ,

which is the product of the condition numbers of the matrices M (n−1), . . . , M (1).
Since forward substitution solves the system Ly = b, if any of the M (j) are ill-
conditioned then the solution y� to Ly = b will depend sensitively on b and on
round-off errors in the calculation of the M (j).

Similarly, the condition number of the upper triangular matrix:

U = M (1) . . . M (n−1) A,

is given by:

‖U‖ ∥∥U−1
∥∥ = ∥∥M (1) . . . M (n−1) A

∥∥ ∥∥∥[M (1) . . . M (n−1) A]
−1
∥∥∥ ,

which by Lemma A.1 is bounded by:∥∥M (n−1)
∥∥ . . .

∥∥M (1)
∥∥ ‖A‖

∥∥∥[M (n−1)]
−1
∥∥∥ . . .

∥∥∥[M (1)]
−1
∥∥∥ ∥∥A−1

∥∥ =∥∥M (n−1)
∥∥ ∥∥∥[M (n−1)]

−1
∥∥∥ . . .

∥∥M (1)
∥∥ ∥∥∥[M (1)]

−1
∥∥∥ ‖A‖ ∥∥A−1

∥∥ ,

234 Algorithms for linear simultaneous equations

which is the product of:

• the condition numbers of M (n−1), . . . , M (1), and
• the condition number of A.

Since backward substitution solves the system Ux = y�, if any of the M (j) are ill-
conditioned or if A is ill-conditioned then the solution x� to Ux = y� will depend
sensitively on y� and on round-off errors in the calculation of the M (j).

Unfortunately, both M (j) and [M (j)]
−1

have entries that are proportional to the
inverse of the pivot used at the j-th stage and their norms will both be correspond-
ingly large. (See Exercise 5.41.) The bound on the condition numbers of L and
U will grow large if we do not or cannot avoid small pivots. Even if A were itself
well-conditioned, if we choose small pivots we would find that the matrices L and
U are ill-conditioned. That is, in factorizing we can transform a well-conditioned
problem into the solution of two ill-conditioned problems.

Our suggestions for pivoting included choosing the largest available pivot; how-
ever, it is still generally the case that the condition number of U can be much larger
than that of A. Similarly, the condition number of L can be much larger than 1.
In summary, the effect of pre-conditioning by M (1), . . . , M (n−1) is to increase the
condition number of the resulting system, which exacerbates the ill-conditioning
of A. If A is ill-conditioned then the resulting systems Ly = b and Ux = y can be
extremely ill-conditioned. (For detailed analysis of the “growth” of the condition
number, see [45, section 2.2.5.1].)

5.7.3.2 LDL† for positive definite A

The key issue in LU factorization is that the pre-conditioning matrices M (j) worsen
the condition number of the resulting coefficient matrix U compared to the condi-
tion number of A and worsen the condition number of L compared to the condition
number of I. It turns out that under some circumstances the worsening of the con-
dition number is relatively mild. For example, in the case of a strictly diagonally
dominant matrix such as in our circuit case study of Section 4.1.1, the largest piv-
ots are on the diagonal and diagonal pivoting will keep the condition number of the
system as low as possible. This favorable circumstance also occurs for LDL† fac-
torization of any symmetric positive definite matrix. This property of symmetric
positive definite matrices allowed us to concentrate on pivoting to preserve sparsity
rather than worrying about the size of pivots for factorization of symmetric positive
definite systems. See [45, section 2.2.5.2] for further details.

5.7.3.3 QR

If the matrix is not symmetric and positive definite, then we have indicated that LU
factorization can lead to unacceptable performance because the ill-conditioning of

5.7 Ill-conditioning 235

the original matrix is effectively worsened by the construction of the LU factors.
The basic problem is that the matrices M (j) are themselves ill-conditioned if small
pivots are selected. An alternative factorization involves multiplying by a sequence

of matrices M (j) for which
∥∥M (j)

∥∥
2 =

∥∥∥[M (j)]
−1
∥∥∥

2
= 1 so that the condition

number of L is one and the condition number of U is the same as the condition
number of A.

One particular choice of the pre-conditioning matrices M (j) yields a product,
Q, that has the property of being unitary. That is, Q†Q = I. Each column of a
unitary matrix Q is “perpendicular” to every other column and each column has
‖•‖2 norm equal to 1.

(We have previously used the symbol Q to stand for the quadratic coefficient
matrix of a quadratic function. For example, see Section 2.5.3.2. In the context of
factorization, however, we will follow the literature and also use the symbol Q for
the factor of A.)

The resulting factorization is called the QR factorization and can be applied
to an m × n matrix A with m ≥ n and having linearly independent columns to
produce a factorization A = QR where Q ∈ Rm×m is unitary and R ∈ Rm×n is
upper triangular. That is, R�k = 0 for � > k.

(We have previously used the symbol R to stand for the rate of convergence of
an iterative algorithm and for electrical resistance. See Definition 2.10 and Sec-
tion 4.1. In the context of factorization, we will follow the literature and also use
the symbol R for the factor of the matrix.)

The condition number of Q is 1 using the ‖•‖2 norm. The system Qy = b has a
coefficient matrix Q that is well-conditioned. The system Rx = y has a coefficient
matrix with condition number that is equal to the condition number of A. That is,
unlike LU factorization, QR factorization does not exacerbate the ill-conditioning
of the original matrix A.

As with LU factorization, we may consider full or partial pivoting, in which
case the product QR is equal to a re-ordered version of the columns or rows of A.
If the matrix A has some linearly dependent columns, and so has rank n′ < n, say,
then we may have to re-order the columns to avoid zero pivots. In this case, we
will obtain a factorization AP = QR where:

• P ∈ Rn×n is a permutation matrix,

• Q ∈ Rm×m is unitary, and

• R ∈ Rm×n is upper triangular, but will have zero entries in rows n′ + 1 through
m.

We will not discuss the calculations involved in QR factorization in detail, but
many software packages, such as MATLAB and LAPACK, can perform QR factor-

236 Algorithms for linear simultaneous equations

ization. For example, the MATLAB command for QR factorization is qr [74]. The
MATLAB command qrinsert takes a QR factorization of a matrix and finds the
QR factors of the matrix with an additional column augmented to it.

The main drawbacks of QR factorization are that:

• it takes more computational effort than LU factorization, and
• the matrix Q will not usually be sparse even if A is sparse. (See Exercise 5.42.)

5.8 Non-square systems

In this section we will consider the solution of non-square systems. We will first
consider the case of more variables than equations in Section 5.8.1 and then the
case of more equations than variables in Section 5.8.2. Finally, we will unify the
two cases using the notion of the pseudo-inverse in Section 5.8.3.

5.8.1 More variables than equations

Consider the system Ax = b where A ∈ Rm×n, b ∈ Rm , and m < n.

5.8.1.1 Inconsistent equations

Recall that a system of equations is called inconsistent if there is no solution. The
system is inconsistent if some of the rows of A ∈ Rm×n can be expressed as a linear
combination of the other rows while the corresponding entries of b do not have the
same linear relation. (See Exercise 5.43.)

Faced with an inconsistent system, we may still like to find a “solution” that
satisfies the constraints as nearly as possible in some sense. This problem will turn
out to be an optimization problem and we will treat it in Section 11.1.

5.8.1.2 Consistent equations and the null space

If we assume that the m rows of A are linearly independent; that is, no row can
be expressed as a combination of the rest of the rows (see Definition A.55), then
the system is consistent. In fact, there will be multiple solutions of Ax = b.
(We will return to the case of consistent systems with linearly dependent rows in
Section 5.8.2.2.)

If the m rows of A are linearly independent then there is an m × m sub-matrix
of A with linearly independent columns. We first consider the case where these
linearly independent columns happen to be the first m columns of A. Later, we
will consider the more general case where we do not know which m columns are
linearly independent by using the QR factorization that was introduced in Sec-
tion 5.7.3.3.

5.8 Non-square systems 237

First m columns linearly independent Suppose we are seeking solutions to Ax =
b. Let n′ = n − m and partition A into

[
A‖ A⊥] where A‖ ∈ Rm×m and

A⊥ ∈ Rm×n′ . That is, A‖ is the sub-matrix of A consisting of the first m columns

of A. Similarly, partition x into

[
ω

ξ

]
where ω ∈ Rm and ξ ∈ Rn′ .

Suppose that A‖ has linearly independent columns, so that A‖ is non-singular (or,
more generally, suppose that we can permute the entries of x and the corresponding
columns of A so that this is true.) Then:

Ax = b ⇔ [
A‖ A⊥] [ω

ξ

]
= b, by definition of

[
A‖ A⊥] and

[
ω

ξ

]
,

⇔ A‖ω + A⊥ξ = b,

⇔ A‖ω = b − A⊥ξ,

⇔ ω = [A‖]−1
(b − A⊥ξ),

since A‖ is non-singular.
Let ξ̂ = 0 and ω̂ = [A‖]−1

b. Then define:

x̂ =
[

ω̂

ξ̂

]
,

=
[

[A‖]−1
b

0

]
.

The vector x̂ is one particular solution to Ax = b.
In practice, to calculate the particular solution x̂ we would, for example:

• factorize A‖ = L‖ U ‖ where L‖,U ‖ ∈ Rm×m are lower and upper triangular,
respectively, and

• perform forwards and backwards substitution to solve A‖ω = b.

The set of all solutions to Ax = b is given by {x̂ + �x ∈ Rn|A�x = 0}. (See
Exercise 5.45.) The set:

N (A) = {�x ∈ R
n|A�x = 0},

is called the null space of A. (See Definition A.50.) With this definition, we can
express the set of all solutions to Ax = b as:

{x ∈ R
n|Ax = b} = {x̂ + �x ∈ R

n|�x ∈ N (A)}.

To characterize the null space N (A), partition �x into

[
�ω

�ξ

]
, where �ω ∈ Rm

238 Algorithms for linear simultaneous equations

and �ξ ∈ Rn′ . We have:

A�x = 0 ⇔ [
A‖ A⊥] [�ω

�ξ

]
= 0,

⇔ A‖�ω + A⊥�ξ = 0,

⇔ A‖�ω = −A⊥�ξ,

⇔ �ω = −[A‖]−1
A⊥�ξ.

That is,

N (A) = {�x ∈ R
n|A�x = 0},

=
{[−[A‖]−1

A⊥�ξ

�ξ

]∣∣∣∣�ξ ∈ R
n′
}

,

= {Z�ξ |�ξ ∈ R
n′ },

where:

Z =
[−[A‖]−1

A⊥
I

]
.

We say that the columns of Z form a basis for the null space of A. That is, any
element of the null space of A can be written as a linear combination of the columns
of Z . (See Definition A.56.) Any element of the null space corresponding to a
value of �ξ could be evaluated by factorizing A‖ and solving A‖�ω = −A⊥�ξ by
forwards and backwards substitution.

In summary, every solution of Ax = b is of the form:

x =
[

ω̂

0

]
+
[

�ω

�ξ

]
,

where:

• x̂ =
[

ω̂

0

]
is a particular solution of Ax = b, and

•
[

�ω

�ξ

]
∈ N (A).

The situation is illustrated in Figure 5.6. The null space is shown as a dashed

line. One typical point

[
�ω

�ξ

]
∈ N (A) is shown as a ◦. The particular solution

x̂ =
[

ω̂

0

]
is also shown as a ◦.

The solid line represents the set of points in the set:

{x ∈ R
n|Ax = b} =

{[
ω

ξ

]
∈ R

n

∣∣∣∣ A

[
ω

ξ

]
= b

}
.

5.8 Non-square systems 239

�

ξ

� ω

N (A) {[
ω
ξ

]
∈ Rn

∣∣∣∣ A

[
ω
ξ

]
= b

}

		
		

		
		

		
		

		
		

		
		

	
	

	
	

	
	

	
	

	
	

	
	

�

��

[
ω̂
0

]

[
ω̂
0

]
+
[

�ω
�ξ

]
[

�ω
�ξ

]

Fig. 5.6. Solution of linear
equations. The solid line
represents the set of points
satisfying the linear equa-
tions. The null space of the
coefficient matrix is shown
as the dashed line.

Each point in this set can be represented as the sum of x̂ =
[

ω̂

0

]
and a point in

the null space. The point

[
ω̂

0

]
+
[

�ω

�ξ

]
∈ {x ∈ Rn|Ax = b} is illustrated with a

bullet •. For each choice of �ξ ∈ Rn′ there is a value �ω ∈ Rm such that:[
ω̂

0

]
+
[

�ω

�ξ

]
∈
{[

ω

ξ

]
∈ R

n

∣∣∣∣ A

[
ω

ξ

]
= b

}
.

Linearly independent columns unknown The above construction required that
the first m columns of A were linearly independent, or that we knew how to re-
order the columns of A so that the first m columns were linearly independent. We
develop a systematic approach for the more typical case where we do not know
which columns are linearly independent [84, section 3.3.4]. First, an analogous
factorization to the QR factorization can be used to write P A = LQ, where now:

• P ∈ Rm×m is a permutation matrix,

• L ∈ Rm×n is lower triangular, with its first m ′ columns linearly independent and
its last n′ = n − m ′ columns zero, and

• Q ∈ Rn×n is unitary.

(For example, performing a QR factorization on A† will yield the transpose of the
appropriate factors. See Exercise 5.46.)

Partition L into
[
L‖ 0

]
where L‖ ∈ Rm×m′

is lower triangular with its m ′

columns linearly independent. (If A has m linearly independent columns then m ′ =
m.) Let n′ = n − m ′ and y = Qx and partition y ∈ Rn into y =

[
ω

ξ

]
where

240 Algorithms for linear simultaneous equations

ω ∈ Rm′
and ξ ∈ Rn′ . Then:

Ax = b ⇔ P Ax = Pb, since P is non-singular,

⇔ LQx = Pb, by definition of LQ,

⇔ Ly = Pb and y = Qx,

⇔ [
L‖ 0

] [ω

ξ

]
= Pb and

[
ω

ξ

]
= Qx,

⇐ L‖ω = Pb and y =
[

ω

0

]
= Qx .

If m ′ = m then similar arguments to before show that ŷ =
[

[L‖]−1
Pb

0

]
satisfies

Ly = Pb and that x̂ = Q−1 ŷ = Q† ŷ satisfies Ax = b. That is, x̂ is a particular
solution to the linear equations. Moreover, the null space of A is:

N (A) = {�x ∈ R
n|A�x = 0},

=
{

Q†

[
0

�ξ

]∣∣∣∣�ξ ∈ R
n′
}

,

= {Z�ξ |�ξ ∈ R
n′ },

where Z is the last n′ columns of Q†. That is, the last n′ columns of Q† form a
basis for the null space of A. Moreover, the first m ′ columns of Q† form a basis
for the range space of A†. (See Definition A.50 and Exercise 5.47.) The set of all
solutions to Ax = b is given by {x̂ + Z�ξ |�ξ ∈ Rn′ }, where x̂ is any particular
solution.

5.8.2 More equations than variables

Consider the system Ax = b where A ∈ Rm×n, b ∈ Rm , and m > n.

5.8.2.1 Inconsistent equations

We saw in Exercise 5.5 that if A is square and singular, then there are values of b for
which the system is inconsistent. Inconsistent equations typically also occur if A
is non-square with more equations than variables. We saw an inconsistent system
of simultaneous equations with more equations than variables in Exercise 4.10
where controlling the input of the discrete time linear system during the 0-th period
only was insufficient to be able to move the two variables representing the state of
the system into an arbitrary state: we had two or more equations and only one
variable. We will investigate this type of problem in Section 11.1.

5.9 Iterative methods 241

5.8.2.2 Consistent equations

Consider a coefficient matrix A ∈ Rm×n with m > n. Let x̂ ∈ Rn be an arbitrary
vector and define b = Ax̂ . Then, obviously, the linear simultaneous equations
Ax = b have at least one solution, namely x = x̂ . If A has rank n then this
is the only solution; however, if A has rank less than n then there will be multiple
solutions. We can use a generalization of the QR factorization, called the complete
orthogonal factorization, to find the null space in the case that there are multiple
solutions. (See [45, section 2.2.5.3].)

In summary, for some values of b, namely those in the range space of A, the
system Ax = b will have one or more solutions, even if there are more equations
than variables. For such b, we say that the equations are consistent. In this case,
we can identify a subset of no more than n of the equations such that each of the m
equations can be expressed as a linear combination of the equations in the subset.
(See Definition A.55.) There are redundant equations.

For example, consider the equation for the current injected at the datum node in
our circuit example described in Section 4.1. If we include this equation in the set
of linear simultaneous equations, then we have m = n + 1 equations, so that there
are more equations than variables. The n nodal equations for the non-datum nodes
form a linearly independent subset. Each of the m equations can be expressed
as a linear combination of the n nodal equations for the non-datum nodes. (See
Exercise 4.3.) There is a redundant equation.

5.8.3 The pseudo-inverse

The preceding discussion can be unified by defining the notion of the pseudo-
inverse, which is defined to be the (unique) matrix A+ ∈ Rn×m such that the vector
x = A+b is the vector having the minimum value of norm ‖x‖2 over all vectors that
minimize ‖Ax − b‖2 [45, section 2.2.5.6][89, appendix 8]. If A has rank n then
A+ = [A† A]

−1
A†; however, this is generally a poor method to calculate A+. To

see this, note that if A is square then the condition number of A† A is the square of
the condition number of A. It is better to calculate A+ from the QR factorization
or the complete orthogonal factorization of A. (See [45, section 2.2.25.6] for
further details and also see Section 11.1.)

5.9 Iterative methods

The algorithms we have presented so far in this chapter for solving linear equations
are direct. Very large, but sparse, systems can be solved effectively with these
methods. However, if the coefficient matrix is extremely large or is dense, then the

242 Algorithms for linear simultaneous equations

factorization approaches become too time consuming. It may not even be possible
to store the matrix conveniently.

An alternative approach involves an iterative algorithm, which calculates a se-
quence {x (ν)}∞ν=0 of approximations to the solution of Ax = b. At iteration ν of an
iterative algorithm for solving the linear equations, the coefficient matrix is multi-
plied into a vector. Either implicitly or explicitly, this matrix–vector multiplication
is used to evaluate the difference between Ax (ν) and b and the difference is then
used to obtain the update �x (ν) to calculate the new value of the iterate x (ν+1). For
a dense matrix, the matrix–vector multiplication requires (n)2 operations, so if an
iterative algorithm can be terminated with a useful approximate answer in much
less than n iterations, then the total effort will be smaller than for factorization of a
dense matrix. Moreover, if the matrix is sparse or has a special structure such as:

• a Toeplitz matrix where A�k depends only on (� − k), or

• a Hankel matrix where A�k depends only on (� + k),

then it may be possible to perform a matrix–vector multiplication in far less than
(n)2 operations. In some cases, it may be possible to perform a matrix–vector
multiplication without even explicitly storing the non-zero entries of the matrix.

Iterative approaches are typically used for linear systems with large and dense
coefficient matrices. We will not explore iterative algorithms for linear systems in
this book; however, one commonly used iterative algorithm is called the conju-
gate gradient method. Description of this algorithm (and the reason for its name)
and of other iterative algorithms is contained in [29, 45, 58]. Pre-conditioning is
often used in conjunction with iterative techniques for the solution of linear equa-
tions [70, section 9.7].

5.10 Summary

In this chapter we have described LU factorization (and its variants) and forwards
and backward substitution as an efficient approach to solving systems of linear
equations, paying particular attention to symmetric systems. We considered the
selection of pivots and discussed the solution of perturbed systems, sparse methods,
and the issue of ill-conditioning. We briefly discussed the solution of non-square
systems and iterative techniques. In later chapters we will need to solve large
linear systems repeatedly so that the algorithms developed in this chapter will be
incorporated into all subsequent algorithms.

Exercises 243

Exercises

Solution of triangular systems

5.1 Let L ∈ Rn×n be lower triangular and let U ∈ Rn×n be upper triangular.

(i) Show that det(L) is equal to the product of the diagonal entries.
(ii) Suppose that the diagonal entries of L are all non-zero. Use Cramér’s rule to show

that L−1 is lower triangular.
(iii) Suppose that the diagonal entries of U are all non-zero. Use Cramér’s rule to show

that U−1 is upper triangular.

Solution of square, non-singular systems

5.2 Let A ∈ Rn×n . Suppose that for every b ∈ Rn there is a solution to Ax = b. Show
that A−1 exists. (Hint: consider, in turn, the solutions of Ax = b for b = I1, I2, . . . , In ,
where we recall that Ik is the n-vector with zeros everywhere except at the k-th entry, which
is equal to 1.)

5.3 Prove that the product of any number of lower triangular matrices is lower triangular.
(Hint: Prove by mathematical induction.)

5.4 Consider the 2 × 2 system Ax = b where A =
[

0 1
1 0

]
.

(i) Show that the matrix A is non-singular.
(ii) Show that A cannot be factorized into the product of an upper triangular and a lower

triangular matrix. (Hint: Suppose that A could be factorized into LU with L lower
triangular and U upper triangular. Multiply out the entries of L and U and derive a
contradiction.)

(iii) Show that by re-arranging the order of the equations we can factorize A into upper
and a lower triangular factors. Specify the factors. (Hint: I is both upper triangular
and lower triangular.)

5.5 Factorize A =
⎡⎢⎣ 2 3 4 5

9 8 7 6
10 11 12 13
24 22 20 18

⎤⎥⎦. Use the standard pivot at each stage. Show

each of three stages required. That is, show M (1), A(2), M (2), A(3), M (3), U = A(4), and

L = [M (3)M (2)M (1)]
−1

. (Hint: You will encounter a zero pivot but it will not prevent
you from factorizing the matrix. What should M (3) be so that it is non-singular and makes

L = [M(3)M (2)M (1)]
−1

lower triangular?)

5.6 Consider the matrix A =
[

2 3 4
7 6 5
8 9 10

]
.

(i) Factorize this matrix into L and U factors, using the standard pivot at each stage.

244 Algorithms for linear simultaneous equations

(ii) Is A invertible?
(iii) Is it possible to solve Ax = b for all b?
(iv) Is it possible to solve Ax = b for some particular values of b?

(v) Solve the system Ax = b, where b =
[

9
18
27

]
,

(vi) Try factorizing this matrix using the MATLAB function lu.

5.7 Consider the matrix A =
⎡⎢⎣ 2 3 4 4

7 6 5 5
8 9 10 10
1 1 1 2

⎤⎥⎦.

(i) Apply the first two stages of the LU factorization algorithm using the standard
pivot at each stage and show that A(3)

33 = 0.
(ii) Factorize the matrix A′ obtained from A by swapping the third and fourth rows and

swapping the third and fourth columns.
(iii) Is A invertible?
(iv) Is it possible to solve Ax = b for all b?
(v) Is it possible to solve Ax = b for some particular values of b?
(vi) Try factorizing this matrix using the MATLAB function lu. Why does the answer

differ from your previous factorization?

5.8 Let A ∈ Rn×n and consider LU factorization of A. Suppose at the second stage of
factorization we had A(2)

�k = 0,∀�, k such that � ≥ 2 and k ≥ 2, so that there is no choice
for a pivot, either diagonal or off-diagonal. Show that A is singular. (Assume that all
numbers are represented to infinite precision and all calculations are carried out to infinite
precision.) (Hint: Try using Cramér’s rule to invert A. Recall that:

• by Cramér’s rule, the inverse of a matrix exists if and only if its determinant is
non-zero,

• the determinant of the product of two matrices equals the product of the determi-
nants, and

• by Exercise 5.1, the determinant of an upper or lower triangular matrix equals the
product of its diagonal entries.)

5.9 Let A ∈ Rn×n and consider LU factorization of A. Suppose that partial pivoting (on
rows, say) fails to find any non-zero pivots at a particular stage of factorization. Show that
the matrix is singular. (Assume that all numbers are represented to infinite precision and
all calculations are carried out to infinite precision.) (Hint: Suppose that partial pivoting
fails to find a non-zero pivot at the j-th stage. Consider the matrix A(j) and the hint from
Exercise 5.8.)

5.10 Recall the circuit of Section 4.1 shown in Figure 4.1 and repeated in Figure 5.7 for
reference.

Exercises 245

� � � �

� � � �1 2 3 4

0

�	
�
↑ I1 Ra

Rb

Rc

Rd

Re

Rf

Rg �	
�
↑ I4 Fig. 5.7. Ladder circuit

consisting of resistors and
current sources repeated
from Figure 4.1.
Source: This figure is
based on [95, figure 1.4].

(i) Factorize the nodal admittance matrix for the circuit and solve the base-case circuit
equation Ax = b to obtain the base-case solution x�. Assume that all resistors have
value 1 and that the two current sources have value 1.

(ii) What is the power dissipation in each resistor?
(iii) Suppose that each resistor was 0.5 watt in rating, meaning that the resistor will have

resistance that is close to its nominal resistance and that its temperature will not rise
too high so long as the dissipation is below 0.5 watt. Will each resistor be within
its ratings?

(iv) How about if each resistor was 0.25 watt in rating?

5.11 Factorize the matrix from Exercise 4.1 and solve the circuit for all unknown voltages
and currents. Assume that all resistors have value 1, all current sources have value 1, and
all voltage sources have value 1.

5.12 Write a MATLAB M-file to perform factorization in place of a matrix A.

Symmetric coefficient matrix

5.13 Consider the matrix A =
[

1 2 3
6 16 20
2 5 8

]
. Show that A can be transformed into a

symmetric matrix by multiplying the second row by 0.5 and then swapping the second and
third rows.

5.14 Factorize A =
⎡⎢⎣ 1 2 0 5

2 1 3 0
0 3 1 4
5 0 4 1

⎤⎥⎦ into LU factors. Make use of symmetry to

minimize your calculations.

5.15 Recall the MATLAB M-file developed in Exercise 5.12.

(i) Extend the MATLAB M-file to be able to factorize matrices and solve linear systems
by forwards and backwards substitution.

(ii) Modify the M-file to reduce the computational effort for symmetric matrices.

246 Algorithms for linear simultaneous equations

(iii) Use the M-file to factorize A from Exercise 5.14.

(iv) Solve the system Ax =
⎡⎢⎣ 1

2
3
4

⎤⎥⎦.

5.16 Find the LDL† factorization of the matrix in Exercise 5.14.

5.17 In this exercise we consider diagonal pivoting.

(i) Consider the matrix A =
[

0 1
1 0

]
. Show that A cannot be factorized into LDL†

with L lower triangular with ones on its diagonal and D diagonal. (Hint: See
Exercise 5.4.)

(ii) Show that A is not positive definite. (See Definition A.58.)

5.18 Show the following.

(i) If L ∈ Rn×n is invertible then [L†]
−1 = [L−1]

†
. (Hint: Take the transpose of

LL−1 = I.)
(ii) If A ∈ Rn×n and A = LU then A† = U†L†.

5.19 Suppose that A ∈ Rn×n is symmetric and positive definite.

(i) Consider a diagonal entry App of A and a number �App ∈ R. Let us define the
new matrix A′ from A by adding �App to the pp-th entry of A. That is:

A′
�k =

{
App + �App, if � = k = p,
A�k, otherwise.

Show that there exists ε ∈ R++ such that if �App satisfies 0 ≤ |�App| < ε then
A′ is positive definite. (Hint: Note that:

• addition, multiplication, and subtraction are continuous functions,
• division is continuous at any point where the divisor is non-zero, and
• composition of continuous functions is continuous.)

(ii) Now consider an off-diagonal entry Apq = Aqp and a number �Apq ∈ R. Let:

A′
�k =

{
Apq + �Apq , if � = p and k = q,
Aqp + �Apq , if � = q and k = p,
A�k, otherwise.

Note that A′ is symmetric. Show that there exists ε ∈ R++ such that if �Apq
satisfies 0 ≤ |�Apq | < ε then A′ is positive definite.

(iii) Again consider an off-diagonal entry Apq = Aqp and a number �Apq ∈ R. Let:

A′
�k =

{
Apq + �Apq , if � = p and k = q,
A�k, otherwise.

Note that A′ is not symmetric. Show that there exists ε ∈ R++ such that if �Apq
satisfies 0 ≤ |�Apq | < ε then A′ is positive definite. (Hint: Use Exercise A.1.)

Exercises 247

(iv) Define the following function π : Rn×n → R by:

∀A ∈ R
n×n, π(A) =

{
1, if A is positive definite,
0, if A is not positive definite.

Consider the norm ‖•‖ on Rn×n given by ‖A‖ = max�,k |A�k |. Show that, under
the defined norm, the function π is continuous at a “point” A such that π(A) = 1.
That is, show that if π(A) = 1 then there exists ε ∈ R++ such that if ‖�A‖ < ε
then π(A + �A) = 1. This shows that perturbing a symmetric positive definite
matrix by a small enough perturbation does not destroy its positive definiteness.

(v) Is π continuous at a point A such that π(A) = 0? (Hint: consider A = [0] ∈ R1×1.)

5.20 Let A ∈ Rn×n be symmetric and positive definite. Show that A is non-singular.
(Hint: Prove the contra-positive, using the property of a singular matrix presented in The-
orem A.5.)

5.21 Let A ∈ Rn×n be symmetric and strictly diagonally dominant. Show that A is
positive definite.

5.22 Let A ∈ Rn×n be symmetric and strictly diagonally dominant. Consider the factor-
ization of A into LDL†.

(i) Show that at each stage of factorization any diagonal pivot can be used, since they
are all strictly positive.

(ii) Show that at each stage of the factorization, the largest element in the remaining
matrix is on the diagonal.

Sparsity techniques

5.23 In this exercise we use MATLAB to investigate the speed-up in factorization that is
possible by taking advantage of sparsity.

(i) Create a 100 × 100, random, symmetric matrix that has only 0.1% of its entries
non-zero using the following MATLAB command:
R100 = sprandsym(100, 0.001);
This matrix is stored sparsely by MATLAB. Find the elapsed time to LU factorize
the sparse matrix R100 by issuing the command:
tic; [l100, u100] = lu(R100); toc
Make sure all the command is on one line, otherwise the time you take to type will
be included in the elapsed time. If you are using MATLAB in a time-shared envi-
ronment, you should repeat the factorization several times and record the shortest
time, since the elapsed time depends, in part, on how many other users there are on
the system.

(ii) Create a full matrix (that is a square array) with the same non-zeros as R100 by
issuing the command:
F100 = full(R100);
Now factorize this matrix and find the elapsed time with:
tic; [L100, U100] = lu(F100); toc

248 Algorithms for linear simultaneous equations

Again, you should repeat the factorization several times and record the shortest
time.

(iii) Repeat Parts (i) and (ii) for a 500 × 500 matrix. (Again, repeat each factorization
several times.)

(iv) Repeat Parts (i) and (ii) for a 1000×1000 matrix. (Again, repeat each factorization
several times.)

(v) Explain your results.

5.24 In this exercise we develop MATLAB M-files for sparse backwards substitution.

(i) Write a MATLAB M-file to perform backwards substitution for a sparsely stored
matrix U . Assume that the location and values of the non-zero entries of the n × n
upper triangular matrix U have been stored row-wise in lists, location[�] and
value[�], respectively. For each row �, location[�][k] is the location of the
k-th non-zero entry in row � of U and value[�][k] is its value. For example,
for each row, location[�][1] = �, the location of the diagonal entry, which
is the first non-zero entry in row � of the upper triangular matrix U . Moreover,
value[�][1] is the value of the diagonal entry of U in row �.
Assume that the results of the forwards substitution are in an array y and use an
array x to store the results of the backwards substitution. If there are K non-zero
entries in row � , then assume that the end of the row is indicated by the value of
location[�][K+1] being zero. For example, if there are three non-zero entries
in row row, then location[row][4] = 0.

(ii) Sparsely store the values of entries from the factor U calculated in Exercise 5.14

and then solve Uy =
⎡⎢⎣ 1

2
3
4

⎤⎥⎦.

5.25 Consider the change in the circuit of Section 4.1 shown in Figure 5.2. Assume that
all resistors have value 1 and that the two current sources in the base-case circuit have value
1.

(i) Assume that �b2 = 1 and solve the equation A�x = �b using forwards and back-
wards substitution. Use the factorization from Exercise 5.10 and take advantage of
sparsity to minimize the number of calculations.

(ii) Use the answer from Exercise 5.10 to write down the solution of Ax ′ = b + �b.

5.26 Suppose that there were no fill-ins added in the course of factorization. (This is
unrealistic, but we have developed techniques to minimize the number of fill-ins and in
practice the number of fill-ins may be relatively small.) Calculate the order of the com-
putational effort for factorization in terms of the size of the system, n, and the density, d,
of non-zeros in the matrix, where the density of non-zeros is defined to be the ratio of the
number of non-zero entries in the matrix divided by (n)2. Assume that:

• each diagonal entry is non-zero and no zero pivots are encountered,
• the matrix is symmetric,
• the off-diagonal entries are spread evenly throughout the matrix so that in each

row or column there are approximately dn non-zeros in each row, and

Exercises 249

• d � 1.

5.27 In many applications, the density of a matrix as defined in Exercise 5.26 decreases
with the size of the system. For example, in circuit problems the number of branches
incident to non-datum nodes is typically less than three or four and so the number of
non-zero entries in the matrix is less than three or four times n. Suppose that we are
considering a problem such that the number of non-zero entries in the matrix is κn, where
κ is a positive constant. Use the results of Exercise 5.26 to estimate the computational
effort for factorization. (Hint: The density is given by d = κ/n.)

5.28 Show that the factors of a tri-diagonal matrix are bi-diagonal; that is, they have
non-zeros only on the diagonal and either adjacent to and above the diagonal or adjacent
to and below the diagonal.

5.29 Consider an arrowhead matrix A ∈ Rn×n , which has non-zeros only on the diag-
onal, the last column, and the last row, so that:⎡⎢⎢⎢⎢⎢⎣

A11 0 · · · 0 A1n

0
. . .

. . .
...

...
...

. . .
. . . 0

...
0 · · · 0 An−1,n−1 An−1,n

An1 · · · · · · An,n−1 Ann

⎤⎥⎥⎥⎥⎥⎦ .

(i) Perform LU factorization on A. Do not re-order rows nor columns. Assume that
all pivots are non-zero.

(ii) Comment on the sparsity of the factors obtain in Part (i).
(iii) Now re-order rows and columns so that the last row becomes the first row and

the last column becomes the first column. Comment on the sparsity of the factors
obtained with this matrix ordering.

5.30 Let:

A =
[

A11 A12
A21 A22

]
∈ R

2×2,

B =
[

B1
B2

]
∈ R

2×1,

C = [
C1 C2

] ∈ R
1×2,

D ∈ R.

(i) Perform block pivoting on

[
A B
C D

]
. That is, explicitly calculate −C A−1 and

D − C A−1B.
(ii) Suppose that A11 = A22 = 0. Calculate −C A−1 and D − C A−1B.

250 Algorithms for linear simultaneous equations

5.31 In this exercise we use block LU factorization to calculate the inverse of a block
matrix.

(i) Calculate the inverse of

[
A B
0 D − C A−1B

]
, where A, B,C, D are matrices, with

A and D square. Assume that D − C A−1B is invertible.

(ii) Evaluate the inverse of

[
A B
C D

]
using the previous part together with the block

LU factorization of

[
A B
C D

]
shown in (5.15):

[
I 0

−C A−1 I

] [
A B
C D

]
=
[

A B
0 D − C A−1B

]
.

Changes

5.32 Suppose that A ∈ Rn×n is non-singular.

(i) Consider a diagonal entry App of A and a number �App ∈ R. Let us define the
new matrix A′ from A by adding �App to the pp-th entry of A. That is:

A′
�k =

{
App + �App, if � = k = p,
A�k, otherwise.

Show that there exists ε ∈ R++ such that if �App satisfies 0 ≤ |�App| < ε then
A′ is invertible and moreover its inverse is a differentiable function of �App with
a continuous derivative. (Hint: Note that Cramér’s rule allows us to express the
inverse of A′ in terms of the elements of A and �App and that:

• addition, multiplication, and subtraction are differentiable functions with con-
tinuous derivatives,

• division is differentiable with a continuous derivative at any point where the
divisor is non-zero, and

• composition of differentiable functions with continuous derivatives produces a
differentiable function with continuous derivative.)

(ii) Now consider an off-diagonal entry Apq and a number �Apq ∈ R. Let:

A′
�k =

{
Apq + �Apq , if � = p and k = q,
A�k, otherwise.

Show that there exists ε ∈ R++ such that if �Apq satisfies 0 ≤ |�Apq | < ε then
A′ is invertible and moreover its inverse is a differentiable function of �Apq with a
continuous derivative.

(iii) Show that if the matrix-valued function A : Rs → Rn×n is partially differentiable
with continuous partial derivatives and A(0) is non-singular then its inverse exists
for all χ in a neighborhood of 0 and the inverse is a partially differentiable function
of χ with continuous partial derivatives in this neighborhood.

Exercises 251

5.33 Again consider the circuit of Section 4.1 shown in Figures 4.1 and 5.7 that was
solved for the base-case values of components in Exercise 5.10.

(i) Calculate the sensitivity of all entries in the solution to variations in I4.
(ii) Calculate the sensitivity of all entries in the solution to variations in Rb.
(iii) Suppose that all resistors increased linearly with temperature T , with a variation

of 1% in resistance for each Celsius degree change in temperature. Suppose that
the solution from Exercise 5.10 was for a base-case temperature of 27◦C. Calculate
the sensitivity of all entries in the solution to variations in temperature T about the
base-case temperature.

5.34 Again consider the circuit of Section 4.1 shown in Figures 4.1 and 5.7 that was
solved for the base-case values of components in Exercise 5.10 to obtain the base-case
solution x�. Consider the objective f : R4 → R defined in (4.8). That is:

∀x ∈ R
4, f (x) = (x1)

2 + 2(x2)
2 + 3(x3)

2 + 4(x4)
2.

(i) Calculate
∂ f
∂x (x�).

(ii) Solve (5.18) to obtain ξ corresponding to this objective function for the base-case
circuit. That is, solve [A(0)]†ξ = ∇ f (x�(0)).

(iii) Calculate the sensitivity of the objective to variations in I4.
(iv) Calculate the sensitivity of the objective to variations in Rb.
(v) Suppose that all resistors increased linearly with temperature T , with a variation

of 1% in resistance for each Celsius degree change in temperature. Suppose that
the solution from Exercise 5.10 was for a base-case temperature of 27◦C. Calculate
the sensitivity of the objective to variations in temperature T about the base-case
temperature.

Ill-conditioning

5.35 Let:

�A =
[

χ 0
0 0

]
.

Show that ‖�A‖2 = χ , where ‖•‖2 is the induced matrix L2 norm. (See Section A.3.2.)

5.36 Prove Theorem 5.8. (Hint: Write down the equations satisfied by x� and �x�

and then use the definition of compatible norms to bound ‖�x�‖ in terms of ‖x�‖ and
‖x� + �x�‖.)
5.37 In this exercise we calculate the condition number of two matrices.

(i) Let A =
[

δ 1
1 1

]
. Calculate ‖A‖2 ,

∥∥A−1
∥∥

2, and the condition number of A. (Re-

call that ‖A‖2 for a symmetric matrix is equal to the largest of the absolute values
of the eigenvalues of A. (See Section A.3.2.)) Assume that δ 	= 1.

252 Algorithms for linear simultaneous equations

(ii) Let A =
[

1 + δ 1
1 1

]
. Calculate ‖A‖2 ,

∥∥A−1
∥∥

2, and the condition number of A.

Assume that δ 	= 0.

5.38 Factorize:

(i) the matrix A =
[

1 δ
1 0

]
in (5.19),

(ii) the matrix A =
[

δ 0
1 1

]
in (5.21),

(iii) the matrix A =
[

1 0
1 1

]
in (5.23), and

(iv) the matrix A =
[

δ 1
1 1

]
from Exercise 5.37,

(v) the matrix A =
[

1 + δ 1
1 1

]
from Exercise 5.37,

into LU factors. Do not re-order rows and columns and do not scale rows nor columns. In
each case comment on the size of the pivots if |δ| � 1. Also comment on the sensitivity of
the entries in the factors to:

• changes in δ, and
• round-off errors during factorization.

5.39 Show that by a suitable scaling of the variables, the linear system specified by the
matrix in (5.19),

A =
[

1 δ
1 0

]
,

can be transformed into a system with a coefficient matrix having a small condition number.

5.40 Consider the following matrix:

A =
⎡⎢⎣ 0.1 2 1 0

2 10 2 0
1 2 0.1 0
0 0 0 0.0001

⎤⎥⎦ .

(i) Use diagonal pivoting to re-order the rows and columns of the matrix to minimize
the number of fill-ins at the first stage of factorization.

(ii) Use diagonal pivoting to re-order the rows and columns of the matrix to maximize
the size of the pivot at the first stage of factorization.

(iii) Discuss the implications of the results of the previous parts.

5.41 Show that for any matrix A ∈ Rm×n , ‖A‖2 is at least as large as the absolute value
of each of the elements, where ‖•‖2 is the induced matrix L2 norm. (See Section A.3.2.)

Exercises 253

5.42 In this exercise, we use MATLAB to perform QR factorization.

(i) Factorize the matrix A =
⎡⎢⎣ 2 3 4 4

7 6 5 5
8 9 10 10
1 1 1 2

⎤⎥⎦ from Exercise 5.7 using the MATLAB com-

mand qr. Comment on the sparsity (or otherwise) of the factors.

(ii) Factorize the matrix A =
⎡⎢⎣ 1 2 0 5

2 1 3 0
0 3 1 4
5 0 4 1

⎤⎥⎦ from Exercise 5.14 using the MATLAB com-

mand qr. Comment on the sparsity (or otherwise) of the factors.

Non-square systems

5.43 Give an example of a system with more variables than equations that is inconsistent.

5.44 Suppose that A ∈ Rm×n , with m < n is of the form A = [
I A⊥]. Let b ∈ Rm

and find the set of solutions to Ax = b.

5.45 Let A ∈ Rm×n, b ∈ Rm and suppose that x̂ ∈ Rn satisfies Ax̂ = b. Show that the
set of all solutions to Ax = b, (that is, the set S = {x ∈ Rn|Ax = b}) is the same as the
set P = {x̂ + �x |�x ∈ N (A)}, where N (A) is the null space of A. (Hint: First let x ∈ S

and show that x ∈ P. Then let x ∈ P and show that x ∈ S.)

5.46 Let:

A =
[

1 0 2 0 1
0 3 0 1 1

]
, b =

[
1
1

]
.

(i) Consider the matrix A‖ that consists of the first two columns of A. Find the inverse
of A‖.

(ii) Find a particular solution x̂ to the equations Ax = b.
(iii) Find a matrix Z with columns that form a basis for the null space of A. Evaluate

the entries in Z explicitly.
(iv) Explicitly characterize all solutions of the equations Ax = b.
(v) Use the MATLAB function qr to find the LQ factorization of A. (Hint: Perform

QR factorization of A†.)

5.47 Let A ∈ Rm×n with m < n and suppose that A has been factorized as P A = LQ,
with:

• P ∈ Rm×m is a permutation matrix,
• L ∈ Rm×n is lower triangular, with its first m′ columns linearly independent and

its last n′ = n − m′ columns zero, and
• Q ∈ Rn×n is unitary.

254 Algorithms for linear simultaneous equations

(i) Show that the null space of A is given by:

N (A) = {�x ∈ R
n|A�x = 0},

=
{

Q†
[

0
�ξ

]∣∣∣∣�ξ ∈ R
n′
}

,

= {Z�ξ |�ξ ∈ R
n′ },

where Z is the last n′ columns of Q†.
(ii) Show that the range space of A† is given by:

R(A†) = {A†λ|λ ∈ R
m},

=
{

Q†
[

�ω
0

]∣∣∣∣�ω ∈ R
m′
}

,

= {T�ω|�ω ∈ R
m′ },

where T is the first m′ columns of Q†.
(iii) Prove Theorem A.4 from Appendix A. That is, prove that:

∀x ∈ R
n, ∃λ ∈ R

m, ∃z ∈ R
n with Az = 0 such that x = z + A†λ.

(Hint: Use the previous parts. Note that, since Q is unitary then, for x ∈ Rn , x =
Ix = Q†Qx = [

T Z
] [T †

Z†

]
x . Let z = Z Z†x ∈ Rn and �ω = T †x ∈ Rm′

.)

5.48 Let A ∈ Rm×n and let Z ∈ Rn×n′ be a matrix with columns that form a basis for the
null space of A. Show that AZ = 0. (Hint: Note that the �k-th element of AZ is I�† AZIk .)

5.49 Let A : Rs → Rm×n be a matrix-valued function. Suppose that A(0) has linearly
independent rows. Show that there exists Z : Rs → Rn×n′ that is partially differentiable
with continuous partial derivatives such that for χ in a neighborhood of χ = 0 the matrix
Z(χ) has columns that form a basis for the null space of A(χ). (Hint: Permute the columns
of A(0), if necessary, so that the first m columns of A(0) are linearly independent. As in
Section 5.8.1.2, partition A into

[
A‖ A⊥] where A‖ : Rs → Rm×m and A⊥ : Rs →

Rm×n′ . Use Part (iii) of Exercise 5.32 to show that the inverse of A‖ exists for all χ in
a neighborhood of 0 and that the inverse is a partially differentiable function of χ with
continuous partial derivatives in this neighborhood.)

5.50 Let m = 2. Recall the discrete-time linear system case study from Section 4.2.
Suppose that:

G =
[

1 1
0 1

]
, h =

[
0
1

]
, w(0) =

[
0
0

]
, wdesired =

[
1
1

]
.

Recall that we defined:

• A to be the m × n matrix with k-th column equal to (G)n−1−kh, (where k ranges
from 0 to (n − 1)),

• x to be the n-vector with k-th component u(kT), (where k again ranges from 0 to
(n − 1)), and

Exercises 255

• b = wdesired − (G)nw(0).

For this specification of A and b:

(i) Solve Ax = b for n = 2.

(ii) Now suppose that A changes to A+�A where �A =
[

0.1 0
0 0

]
. Assume that you

apply the input calculated in Part (i). Find the actual value of w(2T) and the error
between w(2T) and wdesired.

(iii) Find any solution of Ax = b for n = 3.

5.51 Suppose that in my pocket I have some pennies (worth 1c each), nickels (worth 5c
each), dimes (worth 10c each), and quarters (worth 25c each.) I do not know how many of
each type of coin that I have, but I do know the following:

• the value of the pennies and quarters is 47c in total,
• the value of the nickels and the quarters is $1.00 in total, and
• the value of the dimes and quarters is $2.00 in total.

I want to know how many pennies, nickels, dimes, and quarters I have in my pocket using
the above information.

(i) Cast this problem into a linear system of equations of the form Ax = b. Specify
explicitly:

• The variables in the formulation and their definitions.
• The coefficient matrix A.
• The right-hand side vector b.

(ii) Find a matrix Z with columns that form a basis for the null space of A.
(iii) Find a particular solution x̂ of Ax = b.
(iv) Find the set of all x ∈ Rn that satisfy Ax = b.
(v) Some of the solutions to the linear equations from the previous part are not phys-

ically feasible. What extra conditions on x would guarantee that the solution is
physically feasible? Express your solution in a similar way to the previous part.

Part II

Non-linear simultaneous equations

6

Case studies of non-linear simultaneous equations

In this chapter, we will develop two case studies of problems that involve the solu-
tion of non-linear simultaneous equations. Both case studies will involve circuits,
but the non-linearities will arise in different ways. The case studies are:

(i) the solution of Kirchhoff’s laws in a non-linear direct current (DC) circuit
(Section 6.1), and

(ii) the solution of Kirchhoff’s laws in a linear alternating current (AC) circuit
where the variables of interest are not currents and voltages but instead are
power (and “reactive power”) injections (Section 6.2).

The first case study will draw on the development from the linear circuit study de-
scribed in Section 4.1 and we will not repeat in detail those issues that were already
presented in Section 4.1. The second case study will be discussed in considerable
detail.

The progression from the case study of Section 4.1 to the case studies of Sec-
tions 6.1 and 6.2 are examples of model extension and development. By devel-
oping the model incrementally, we can treat a few issues at a time without being
overwhelmed by trying to analyze all the issues at once. In developing your own
models, you might also build them step-wise, rather than all-at-once. Even an un-
realistically simple initial model can provide valuable insights into more realistic
cases. For example, most DC circuits in practice include at least some non-linear
components. Nevertheless, formulation of the linear DC circuit case study in Sec-
tion 4.1 has provided most of what we need to formulate a non-linear DC circuit
case study.

259

260 Case studies of non-linear simultaneous equations

6.1 Analysis of a non-linear direct current circuit

6.1.1 Motivation

In the case study in Section 4.1 we analyzed a direct current (DC) circuit where
all the components were linear; that is, the voltage and current in each resistor are
related by a linear function. In contrast, in this case study, some of the components
will be non-linear. As indicated in Section 4.1.1, in both linear and non-linear
circuits it is economically important to be able to predict:

• the behavior of the circuit without actually building a prototype, and
• the effect of changes in component values on the circuit behavior.

This case study assumes some familiarity with non-linear circuits [95, chapter 10].

6.1.2 Formulation

This material is based on an example in [95, section 10.2]. We will first discuss the
modeling of non-linear devices and then write down Kirchhoff’s laws for a circuit
consisting of current sources, resistors, and diodes.

6.1.2.1 Device models

Terminal characteristics If we are interested in the detailed internal behavior of
electronic components then we must use a model that represents these effects. In
circuit applications, however, we are often only interested in the terminal charac-
teristics of the device. We can often avoid considerable internal detail if we are
content to only model the terminal behavior of our components.

We have already restricted ourselves to terminal characteristics in our linear cir-
cuit model in Section 4.1, where we asserted that we knew the resistance of the
resistors; that is, that we knew that the ratio of terminal voltage to current was a
known constant or, equivalently, that the current is a linear function of voltage.
One parameter, the resistance, is sufficient to represent the terminal characteristics
of each resistor, at least if the temperature is constant. We were not interested in a
detailed internal model of the resistor.

Non-linear devices Terminal characteristics of non-linear devices can also be mod-
eled, but the models will typically require more than one parameter. For example,
consider a diode, which is a two-terminal element that allows current to flow in one
direction, the forward direction, but limits the current in the other direction, the
reverse direction, to a very small value. For voltages applied across the diode in
the forward direction, the current is a rapidly growing function of the voltage. That
is, the current flows with only a relatively small voltage drop across the diode. For

6.1 Analysis of a non-linear direct current circuit 261

idiode�

���� Vdiode

+
−

Fig. 6.1. Symbol for diode
together with voltage and
current conventions.

voltages across the diode in the opposite direction, the current flow is small. Semi-
conductor diodes can be approximately modeled with a function idiode : R → R of
the form ([95, section 1.5]):

∀Vdiode ∈ R, idiode(Vdiode) = Isat

[
exp

(
qVdiode

ηKT

)
− 1

]
, (6.1)

where:

• idiode is the function representing current through the diode, with positive values
corresponding to currents flowing in the forward direction,

• Vdiode is the voltage across the diode, with positive values corresponding to volt-
ages that cause current to flow in the forward direction,

• Isat is the reverse saturation current of the diode,
• q is the charge on the electron,
• η is the “non-ideality factor” of the diode,
• K is Boltzmann’s constant, (we use the non-standard symbol K to distinguish

Boltzmann’s constant from k used as an index for nodes), and
• T is the thermodynamic temperature of the diode.

Figure 6.1 shows the symbol for a diode together with the conventions for positive
values of voltage and current.

While q and K are fundamental physical constants,

• the parameters Isat and η depend on the design of the diode, and
• the temperature T depends on the history of power dissipation in the diode, the

thermal characteristics of the diode package, and the operating environment of
the diode.

That is, there are three parameters necessary to specify the function idiode. Fig-
ure 6.2 illustrates idiode defined in (6.1) for q/(ηKT) = 40V−1 and Isat = 10−6A.

As in the case of the linear circuit, we will assume that T is a given constant
in this case study. A typical choice would be that T is equal to the ambient tem-
perature. However, this assumption and similar ones should be analyzed for their

262 Case studies of non-linear simultaneous equations

0 1 0 05 0 0 05 0 1 0 15 0 2 0 25 0 3
0 02

0

0 02

0 04

0 06

0 08

0 1

0 12

0 14

0 16

0 18

Vdiode (volts)

idiode(Vdiode) (amps)

Fig. 6.2. Current to volt-
age relationship for diode.

reasonableness based on the results of the case study calculations. For example, if
the power dissipated by the diode, idiode(Vdiode) × Vdiode, is nearly as large as the
rated maximum power dissipation of the diode then the assumed temperature T
may be in error because it may deviate significantly from ambient. Similar obser-
vations were made for resistors in Section 4.1.2.1 and Exercise 5.10.

Models of terminal characteristics are also available for other non-linear devices
such as bipolar junction transistors and metal-oxide semiconductor field-effect
transistors (MOSFETs) [56, chapter 4][95, section 10.6]. Since these devices
have three terminals, we generally require more than one equation to character-
ize their terminal behavior. The salient point is that by concentrating on terminal
behavior we can obtain a simplified model compared to a model of the detailed
internal behavior. This is particularly important when we try to analyze large sys-
tems; however, the terminal model by definition “hides” the internal behavior of
the component, so that the simplified model does not necessarily characterize ev-
erything about the system. Moreover, the models will typically only represent the
terminal behavior approximately. Nevertheless, in some applications, such as the
modelling of MOSFETs that are very small physically, the terminal models can
themselves become very complicated.

Choice of terminal model As we discussed in Section 4.1.2.1, we should model
components in our system so that the aspects of the system of greatest interest
are included. We may choose to suppress other aspects of the system to keep the
overall model as simple as possible; however, in doing so we must keep aware of

6.1 Analysis of a non-linear direct current circuit 263

� � �

� � �1 2 3 4

0

�	
�
↑ I1 Ra

����
Db

Rc

Rd

Re

Rf

���� Dg

Fig. 6.3. A simple non-
linear circuit.

the deficiencies and inaccuracies in the overall model. For example, (6.1) does not
include the effects of junction capacitance [95, section 10.8] so that it is, strictly
speaking, only valid for direct current (DC) circuits. This is adequate for our DC
calculation, but the diode model must be modified for alternating current (AC)
analysis. Again, Occam’s razor is important in selecting a terminal model.

6.1.2.2 Kirchhoff’s current law

Consider a circuit consisting of interconnected resistors, current sources, and non-
linear elements such as diodes. An example circuit consisting of resistors, a current
source, and two diodes is shown in Figure 6.3.

As in Section 4.1, we will write down Kirchhoff’s current law for the nodes in
this circuit. Again, we label the nodes 0 through 4 and we let xk be the voltage
between node k and the datum node 0. We assume that the resistances and cur-
rent sources have known values and assume that the current through diode Db is a
known function, ib(Vb) of the voltage Vb across it and that, similarly, the current
through diode Dg is ig(Vg), where Vg is the voltage across diode Dg. The functional
forms of ib and ig are assumed to be given by (6.1), with known values of:

• reverse saturation currents Isatb and Isatg, respectively, and

• non-ideality factors, ηb and ηg, respectively,

for diodes Db and Dg and a known common operating temperature T for both
diodes.

Noting that the voltage across diode Db is Vb = x1− x2, while the voltage across
diode Dg is Vg = x4, we then have, by Kirchhoff’s current law applied to nodes 1,
2, 3, and 4: (

1

Ra

)
x1 + ib(x1 − x2) − I1 = 0, (6.2)

264 Case studies of non-linear simultaneous equations

−ib(x1 − x2) +
(

1

Rc
+ 1

Rd

)
x2 +

(
− 1

Rd

)
x3 = 0, (6.3)(

− 1

Rd

)
x2 +

(
1

Rd
+ 1

Re
+ 1

Rf

)
x3 +

(
− 1

Rf

)
x4 = 0, (6.4)(

− 1

Rf

)
x3 +

(
1

Rf

)
x4 + ig(x4) = 0. (6.5)

Note that, for example, ib(x1 − x2) means the function ib : R → R evaluated at

x1 − x2, whereas
(

1
Ra

)
x1 is the product of the conductance 1/Ra and the voltage

at node 1.
As in the direct current linear circuit case study in Section 4.1, the equation for

the datum node is redundant. (See Exercise 6.1.)
In general, for multi-terminal devices, the functions specifying the non-linear

relations will have two or more arguments to represent the voltages at all the ter-
minals. See [95, section 10.6] for a discussion of three-terminal elements.

6.1.2.3 Non-linear equations

Unlike in the case of linear equations, we cannot represent the relationship between
voltage and current in (6.2)–(6.5) by a matrix of real numbers. We must develop a
more general representation. Define the vector function g : R4 → R4 by:

∀x ∈ R
4, g(x) =

⎡⎢⎢⎢⎢⎢⎢⎣

(
1
Ra

)
x1 + ib(x1 − x2) − I1

−ib(x1 − x2) +
(

1
Rc

+ 1
Rd

)
x2 +

(
− 1

Rd

)
x3(

− 1
Rd

)
x2 +

(
1
Rd

+ 1
Re

+ 1
Rf

)
x3 +

(
− 1

Rf

)
x4(

− 1
Rf

)
x3 +

(
1
Rf

)
x4 + ig(x4)

⎤⎥⎥⎥⎥⎥⎥⎦ . (6.6)

If we write g(x) = 0 then we have reproduced (6.2)–(6.5). These are a set of non-
linear simultaneous equations. (Note that g is a vector function while g refers to
the diode.)

Our convention in defining g is to move any constant terms in the equations,
such as the current I1, into the definition of g. For example, to represent linear
equations Ax = b in this way we would define g : Rn → Rm by:

∀x ∈ R
n, g(x) = Ax − b.

6.1.3 Circuit changes

Changes in the values of resistors, current sources, or diode parameters will change
the functional form of corresponding entries in g. For example, if a resistor or a
diode between nodes � and k changes then the functional form of g� and gk will

6.1 Analysis of a non-linear direct current circuit 265

change. If a resistor, current source, or diode between node � and the datum node
changes then the functional form of g� will change. In the case of changes in the
resistance of the resistors and the current of the current sources, the changes were
described in Section 4.1.3: a change can be represented as the addition of a new
conductance or new current source into the circuit. Changes in the diode could
be due to changes in Isat, η, or T , for example, and would change the functional
relationship between the diode current and diode voltage.

6.1.4 Problem characteristics

6.1.4.1 Numbers of variables and equations

As in the linear circuit, we have the same number of variables as equations.

6.1.4.2 Number of solutions

Consider the diode model defined in (6.1) and illustrated in Figure 6.2. The cur-
rent to voltage characteristic is strictly monotonically increasing so that increasing
voltage corresponds to increasing current.

Exercise 2.21, Part (i) showed that in a one variable equation involving the sum
of strictly monotonically increasing functions, there can be at most one solution. In
our more complicated resistor–diode circuit, which requires several equations and
variables to represent, we could observe from our physical experience that there is
only one solution. The uniqueness of solution is, in part, because the diode current
to voltage relationship is strictly monotonically increasing.

Our physical experience is based on a limited number of observations and does
not constitute a general proof. Exercise 6.2 considers the general problem of solv-
ing a circuit with current sources, resistors, and diodes and shows that strict mono-
tonicity of component model functions is sufficient to guarantee that there is at
most one solution for the circuit. Exercise 6.2 illustrates the process of backing up
an empirical observation with a theoretical analysis. It also illustrates the gener-
alization of a result developed for linear simultaneous equations into a result that
applies for non-linear simultaneous equations.

Not every two-terminal electronic component has a strictly monotonically in-
creasing terminal model. For example, a tunnel diode has a characteristic that is
not strictly monotonically increasing. Figure 6.4 shows a typical tunnel diode char-
acteristic [13]. (Note that the axes are scaled differently in Figure 6.4 compared to
Figure 6.2.) The characteristic of the tunnel diode shown in Figure 6.4 is neither
monotonically increasing nor monotonically decreasing.

Circuits that include devices such as tunnel diodes can have multiple solutions.
(In fact, the non-monotonic characteristics of a tunnel diode together with an en-
ergy storage element can be used to make an oscillator.) Moreover, three terminal

266 Case studies of non-linear simultaneous equations

0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1
0

0 1

0 2

0 3

0 4

0 5

0 6

0 7

0 8

0 9

1
x 10

3

Vtunnel diode (volts)

Itunnel diode(Vtunnel diode) (amps)

Fig. 6.4. Current to volt-
age relationship for tunnel
diode.

D � Isat η T

R � R
Fig. 6.5. Storage of pa-
rameters for diode and re-
sistor as linked lists.

devices such as bipolar junction transistors and MOSFETs typically have models
that are not strictly monotone [95, section 10.6]. Indeed, by design, circuits such
as flip-flops, which include bipolar junction transistors and MOSFETS, have two
stable solutions [56, chapter 8].

6.1.4.3 Sparsity

The vector function g is “sparse” in the sense that a typical entry of g depends only
on a few entries of x . Although we cannot store the representation of a non-linear
function as a sparse matrix, we can still store the parameters necessary to specify
the functions in a sparse structure.

For example, we could store the specification in a linked list of records. Each
record would include a flag, R or D, to specify whether the component was a re-
sistor or a diode. If the component is a resistor, then one value would be required
to specify the resistance. If the component is a diode then three values would be
needed to specify the parameters Isat, η, and T . The circuit simulation package,
SPICE [95], for example, allows circuits to be specified in such a manner. Fig-
ure 6.5 shows such a representation, with the parameters for a diode and for a
resistor stored as linked lists.

6.2 Analysis of an electric power system 267

6.1.4.4 Non-existence of direct algorithms

Because of the presence of the non-linear diode elements, there is in general no
direct algorithm for solving an arbitrary circuit consisting of current sources, resis-
tors, and diodes.

6.2 Analysis of an electric power system

6.2.1 Motivation

An electric power system is a physically large electrical circuit consisting of volt-
age sources (generators) and loads interconnected by transmission and distribution
lines. It therefore satisfies Kirchhoff’s laws. In addition, there is a variety of sub-
sidiary protection equipment that monitors for undesirable conditions such as:

• overload conditions on generators and on the transmission and distribution lines,
• under- or over-voltage conditions on loads, and
• short-circuits due to lightning strikes on transmission lines.

In each case, if the undesirable condition is detected and is severe enough then the
affected element is disconnected from the rest of the system using circuit break-
ers, which are switches capable of interrupting large currents. For example, sup-
pose that a lightning strike causes a short-circuit to occur between lines. The severe
current that then flows will be detected and the line will be disconnected from the
rest of the system by the protection equipment through the action of circuit breakers
at either end of the line.

It is important to be able to predict the power flows on lines and the voltage
magnitudes at loads in advance of actual operations so that overloads and under- or
over-voltage conditions can be anticipated and pre-emptive action taken. Typically,
an estimate is made of the loads at some particular time of the day, such as when
loads are anticipated to be greatest. Then the line flows and voltages due to these
loads are calculated and checked against limits.

If a lightning strike results in a transmission line being disconnected from the
system, then the remaining transmission system usually has enough connectivity
so that all loads are still supplied. However, the power flows on the transmission
lines will change due to this outage and the flows in the “outaged system” will
usually be heavier than before the outage. Again, it is important to calculate the
power flows to see if overloads will result in the outaged system.

This case study presents the calculation of the power flows on the transmission
lines and the voltages at various nodes to provide the information for an analysis
of transmission line overloads and of the satisfaction of voltage limits. This calcu-
lation is called a power flow study. The calculation of flows in the system after a

268 Case studies of non-linear simultaneous equations

transmission line outage is called a contingency study. This case study assumes
some familiarity with electric power systems [8][79]. The case study also assumes
some familiarity with complex numbers and their representation [8, chapter 2][79,
chapter 2].

6.2.2 Formulation

The material in this section is based on [8, chapter 10][79, chapter 3], but is con-
siderably simplified. We consider the components in the generation–transmission
system. As with the circuit case study in Section 4.1, we can think of a transmis-
sion network as a set of nodes with branches joining certain pairs of them. In power
systems, it is customary to use the word bus to refer to a node. The branches in-
clude transmission lines, generators, loads, and also various other components that
we will omit for simplicity.

6.2.2.1 Variables

Phasors and reference angle In all modern power systems, generators produce
AC voltages and currents at their terminals that are maintained close to a nominal
frequency of either 50 Hz or 60 Hz, depending on the country. We can use complex
numbers, called phasors, to represent the magnitude and angle of the AC voltages
and currents at a fixed frequency. The magnitude of the complex number represents
the root-mean-square magnitude of the voltage, while the angle of the complex
number represents the angle displacement between the sinusoidal voltage or current
and a reference sinusoid. The specification of the root-mean-square magnitude and
angle displacement completely determines the sinusoid, given a fixed reference
sinusoid.

The angles of the voltages and currents in the system would all change if we
changed the angle of our reference sinusoid, but this would have no effect on the
physical system. In fact, we can arbitrarily assign the angle at one of the buses to
be zero and measure all the other angles with respect to this angle. We call this
bus the reference bus. It is customary to choose the reference bus to be a bus that
has a generator and to assign a reference angle of 0◦ to the reference bus. We will
assume that the reference bus is numbered to be bus 1. Given the arbitrary reference
angle, there is a one-to-one correspondence between the value of a complex phasor
and the sinusoidally varying quantity that it represents.

In other problems, it is also common to find that one of the variables can be
arbitrarily assigned. Some thought should be given to this choice because a careful
choice can often simplify the problem. For example, in our earlier circuit case
studies, we picked out a node to be the datum node and assigned its voltage to be
zero. A logical choice for the datum node in the earlier circuit case studies was

6.2 Analysis of an electric power system 269

the node with the most branches incident to it, since choosing this node as datum
node yields the sparsest admittance matrix. The choice of datum node and of the
reference bus for the power flow case study will be discussed in more detail in
Sections 6.2.2.4 and 6.2.2.6, respectively.

Representation of complex numbers Although some computers support com-
plex arithmetic operations, for our application there will turn out to be advantages
to using pairs of real numbers to represent complex numbers. To represent a com-
plex number V ∈ K with real numbers requires two real numbers, either:

• the magnitude |V | and the angle 	 V , so that V = |V | exp(V
√

−1), or

• the real �{V } and imaginary �{V } parts, so that V = �{V } + �{V }√−1.

(We will use the symbol
√

−1 to avoid confusion with the symbol i that we have
used for current. Since we will occasionally use the symbol j as a counter and
also use j to index entries of vectors, we will also avoid the electrical engineering
convention of using j to stand for

√
−1.)

We indicated that we need to compare voltage magnitudes to limits. Therefore,
it seems sensible to represent the voltages as magnitudes and phases. Magnitude
and angle will also turn out to be a convenient representation for currents. In other
applications, representation with real and imaginary parts might turn out to be more
useful and we will see that power is conveniently represented by real and imaginary
parts.

Scaling and “per unit” The voltage limits in a typical system require that the
voltage magnitude be maintained within about 5% of the “nominal” value. We
use the solution of the power flow to check whether the voltages are within limits.
If the voltages are not within limits, then some action must be taken to avoid the
situation. The voltage magnitudes in the solution of the equations will occasionally
be outside the 5% tolerance; however, typically, the voltages will not fall very far
outside the 5% tolerance unless the system is in a very poor operating state.

There are voltage transformers throughout a typical power system. This means
that the nominal voltage magnitude varies considerably throughout the system, in
fact, by several orders of magnitude. We remarked in Section 3.2.1 that it can be
advantageous to scale all the variables so that they have roughly equal magnitude
at the solution of the problem. If we normalize each voltage by the corresponding
nominal value, then all the normalized voltage magnitudes will be around 1. For
example, one part of a system may have a nominal operating voltage of 110 kV,
while another part of the system may have a nominal operating voltage of 765 kV.
By scaling all the voltages by their nominal values, then an actual value of 121 kV

270 Case studies of non-linear simultaneous equations

in the 110 kV part of the system would be represented by a scaled value of:

121 kV

110 kV
= 1.1,

while an actual value of 688.5 kV in the 765 kV part of the system would be
represented by a scaled value of:

688.5 kV

765 kV
= 0.9.

This scaling makes it easy to determine if the actual voltages are within 5% of the
nominal voltage. Moreover, in assessing the accuracy of a solution, an error of
0.01, say, in the scaled values represents the same relative error in voltage magni-
tudes anywhere in the system. This allows us to use an unweighted norm to assess
error in the voltage values.

It is also customary to scale the power quantities in terms of base units for the
system. For example, a base power of 10 MW might be chosen and all power
quantities will be normalized by 10 MW to give a per unit quantity. The effect of
this scaling is that most magnitudes of power in the system will fall into the range
of approximately 0.1 to 100.

It also turns out that the transmission line limits require that the angles of the
voltages between ends of lines in the system be typically between −45◦ and 45◦ or
−π/4 to π/4 radians. (See Exercise 6.4.)

6.2.2.2 Symmetry

Three-phase circuits Generation–transmission systems are usually operated as
balanced three-phase systems, with three equal-magnitude but 120◦ out-of-phase
sinusoidal voltages imposed on triplets of virtually identical components. This
arrangement is illustrated in Figure 6.6, which shows a three-phase generator con-
nected through a three-phase transmission line to a three-phase load. The dashed
lines separate the generator, transmission line, and load models. The three volt-
ages generated by the three-phase generator are called the three phases and are
conventionally labeled a, b, and c. This arrangement has various advantages over a
single-phase system [8, chapter 2].

The three circles on the left-hand side of Figure 6.6 represent the three stator
windings of the generator. A moving magnetic field induces voltages in the three
stator windings that are 120◦ apart. The wires interconnecting the windings are
drawn so that they are roughly 120◦ apart on the diagram, symbolizing the rela-
tionship between the angles of the generated voltages in each phase. The point
where all three generator windings are connected together is called the star point
and is denoted by an n′.

6.2 Analysis of an electric power system 271

generator transmission line load

� Zn
n′ neutral

�	
�
∼
b Zp

ZL

ZL ZL

n′′���
�	
�
∼

��
a Zp

��
�	
�
∼

��
c

Zp

�
�

�

����

��

��
��

��
��

��
��

��
��

Fig. 6.6. An example bal-
anced three-phase system.

generator

transmission line

load

neutral
�	
�a

∼
Zp

ZL
Fig. 6.7. Per-phase equiv-
alent circuit for the three-
phase circuit in Figure 6.6.

Similarly, the transmission line in the middle of the figure consists of three iden-
tical “phase” wires each of impedance Zp = Rp + Xp

√
−1 together with a neutral

wire of impedance Zn = Rn + Xn
√

−1. (We will qualify the modeling of the trans-
mission line further in Section 6.2.2.3.) The load on the right-hand side consists of
three identical impedances ZL = RL + XL

√
−1. The symbols Rp, Rn, and RL rep-

resent the transmission resistance, the neutral resistance, and the load resistance,
respectively. The symbols Xp, Xn, and XL represent the transmission reactance,
the neutral reactance, and the load reactance, respectively.

The load impedances are connected together at the load star point, denoted by
the n′′. The neutral wire joins the star points of the generator and load. (Many
transmission lines do not have a neutral wire. This can be represented in our model
as an infinite neutral impedance.)

Per-phase equivalent Under certain assumptions (see [8, chapter 2]), the behavior
of a balanced three-phase circuit can be completely determined from the behavior
of a per-phase equivalent circuit, which has components that are derived from
and in many cases are identical to the components of one of the three phases. To
see this, note that the three voltages in the generator result in currents in the a, b,
and c phases that are identical in magnitude and 120◦ apart in angle. The sum of
these currents is zero. (See Exercise 6.3.) But this means that the current flowing
in the neutral impedance Zn in Figure 6.6 is equal to zero so that nodes n′ and n′′

272 Case studies of non-linear simultaneous equations

are at the same voltage. (This is true even if there is no neutral wire; that is, even if
the neutral impedance is infinite.) This means that the currents in each phase can
be calculated by considering each phase separately and all neutral points shorted
together. This yields a per-phase equivalent circuit as shown in Figure 6.7. In
this per-phase equivalent circuit, the other phases have been decoupled. (See [8,
section 2.5] for more details.)

Conventionally, the a-phase quantities are used in the per-phase equivalent. Fig-
ure 6.7 shows the a-phase equivalent circuit of the three-phase circuit of Figure 6.6.
In this case, the a-phase equivalent consists of a single generator winding, a sin-
gle transmission line, a single load impedance, and a neutral wire that has zero
impedance.

Model transformation The determination of the behavior of a three-phase sys-
tem through the analysis of a related per-phase equivalent is an example of model
transformation. We have not discussed the transformation in detail in this case
because it is very specific to the power flow problem; however, the general prin-
ciple is to try to find aspects of the system that allow us to simplify the model.
In this case, it is the symmetry of the balanced three-phase system that allows the
simplification. Even if the loads and other components in the system are not ex-
actly symmetric, the per-phase equivalent can still give a good approximation to
the behavior of the three-phase circuit.

Model transformation is application-specific and usually ad hoc. It is often worth
doing if it significantly lessens the computational requirements for analyzing the
model. In the present problem, we cut down the calculations by a factor of three by
only considering one phase. The other phase quantities can be calculated by adding
or subtracting 120◦ from the angles of the a-phase quantities. (There are also other
more subtle advantages of solving the per-phase equivalent. See [8, chapter 12] for
details.)

In other problems, an investigation of the symmetry may also lead to a simplifi-
cation in the representation. Particularly if there are a large number of symmetri-
cally organized components in the system, symmetry can provide profound insights
into the model. If the system is only approximately symmetric, the analysis based
on the assumption of symmetry will not yield exact solutions but can still be useful
as a verification of the results of a more detailed model that represents the asym-
metries. For example, there are typically slight asymmetries between phases in a
power system. However, the per-phase equivalent provides a good approximation
to behavior. When there are significant asymmetries, the per-phase equivalent is
still useful as part of the calculation of the asymmetric circuit. (See [8, chapter 12].)

6.2 Analysis of an electric power system 273

neutral

� k
�

�
s
h
u
n
t

series �

�
s
h
u
n
t Fig. 6.8. Equivalent π cir-

cuit of per-phase equiva-
lent of transmission line.

6.2.2.3 Transmission lines

Since transmission lines are physically extended objects, the wave equations are
necessary to describe their internal behavior [8, chapter 4]. That is, the boxes
used in Figures 6.6 and 6.7 should be construed as representing distributed pa-
rameter circuits, not just impedances as suggested in Section 6.2.2.2. We can
represent the distributed parameter per-phase equivalents of the transmission lines
with a π-equivalent circuit, which describes the terminal characteristics of the
line for nominal-frequency voltages and currents in terms of lumped parameter el-
ements [8, section 4.4]. A π-equivalent circuit for the per-phase equivalent of a
transmission line joining two buses � and k is shown in Figure 6.8. There are two
shunt components connected from the terminals to neutral and a series compo-
nent bridging the terminals. Each component has an impedance (or, equivalently,
an admittance) determined by the characteristics of the line. Sometimes, the shunt
components have values such that their effect on the circuit is negligible. In this
case, we can neglect them as was done implicitly in Figures 6.6 and 6.7.

The π-equivalent circuit is another example of simplifying a model of a com-
ponent by only considering its terminal behavior. Naturally, if we want to find
out about the current and voltage along the line, we must model the internal be-
havior explicitly. For transmission lines operating in steady state and excited at a
single frequency, it is possible to infer these internal currents and voltages from
the terminal current and voltage phasors, so that the π-equivalent does not omit
any essential information about the transmission line. The π -equivalent circuit ex-
actly represents all the information needed to reconstruct the internal behavior of
the transmission lines, given that the line is in steady state excitement at a single
frequency.

In other cases, terminal models do not always provide enough information to
infer all the internal operating behavior of the system. The choice of terminal
model will depend on the application.

6.2.2.4 Bus admittance matrix and power flow equations

Consider the per-phase equivalent of a three-bus, three-line transmission system as
illustrated in Figure 6.9. The buses 1, 2, and 3 are shown to be interconnected by

274 Case studies of non-linear simultaneous equations

neutral

1 2

3
�
�

�
�

�
�

�
�

�
�

�
�

Fig. 6.9. Per-phase equiv-
alent circuit model for the
three-bus, three-line sys-
tem.

neutral

1 2

3
�

Y1

Y13 �
�Y3

Y23 �
Y2

Y12

Fig. 6.10. The per-phase
equivalent circuit model
for the three-bus, three-
line system with parallel
components combined.

the π-equivalent models of the lines. Generators and loads are omitted from this
circuit but will be re-introduced in Section 6.2.2.5. For each bus � = 1, 2, 3, the
pair of shunt π elements joining bus � to neutral can be combined together to form
a single shunt element. This yields a circuit with:

• one element corresponding to each of the buses � = 1, 2, 3, joining bus � to
neutral, and

• one element corresponding to each line,

as illustrated in Figure 6.10. Let us write:

• Y� for the admittance of the element joining bus � to neutral, so that Y� is the
sum of the shunt admittances of the π-equivalent models of the lines incident to
�, and

• Y�k for the admittance of the series element corresponding to a line joining buses
� and k,

as illustrated in Figure 6.10. (We are abusing notation here by using Y with single
and double subscripts to represent different parts of the circuit.)

The series element is most easily characterized in terms of its impedance. For a
series impedance Z�k = R�k + X�k

√
−1 between buses � and k, the admittance Y�k

6.2 Analysis of an electric power system 275

is given by:

Y�k = 1

Z�k
,

= 1

R�k + X�k
√

−1
,

= 1

R�k + X�k
√

−1
× R�k − X�k

√
−1

R�k − X�k
√

−1
,

= R�k − X�k
√

−1

(R�k)2 + (X�k)2
. (6.7)

Typically, R�k, X�k > 0 for a line. Therefore, Y�k typically has positive real part
and negative imaginary part. Typically, a shunt admittance Y� has positive real and
positive imaginary parts.

Let I� be the complex phasor current injected at bus � into the network. As in
Section 4.1, we define the voltage at any given bus in terms of the voltage between
that bus and a datum node. In particular, we let V� be the phasor voltage at bus �

with respect to neutral, so that the datum node for the circuit is the neutral point.
Since every shunt element is connected to the neutral point, choosing the neutral
point as the datum node will yield the sparsest admittance matrix.

As in Section 4.1, we can collect the currents and voltages into vectors, which
we denote by I and V , respectively. For each bus �:

• V� is the phasor voltage at bus �, and
• I� is the phasor current flowing from any generator or load at bus � into the

network at bus � (including the current flowing into any shunt elements at bus
�).

As in the previous circuit case studies, we can again obtain a relationship of the
form AV = I between current and voltage, where:

∀�, k, A�k =
⎧⎨⎩

Y� +∑
j∈�(�) Y�j , if � = k,

−Y�k, if k ∈ J(�) or � ∈ J(k),
0, otherwise,

(6.8)

where J(�) is the set of buses joined directly by a transmission line to bus �. The
bus admittance matrix A has essentially the same characteristics as in the DC
circuit, except that it is now a complex matrix.

6.2.2.5 Generators and loads

When electricity is bought and sold, prices are usually set for the power and energy,
not for the voltage or current. Because this real power is the variable of most eco-
nomic interest in power systems, we will model generators and loads as constant

276 Case studies of non-linear simultaneous equations

sources or sinks of real power located at buses in the system. However, real power
does not completely describe the interaction between generators or loads and the
system. We also have to characterize the injected reactive power. (Recall that re-
active power is a measure of the energy that is moved into and out of the inductors
and capacitors in the system during each cycle. See [8, chapter 2] for more details.)

We can combine the real and reactive powers into the complex power, which is
the sum of:

• the real power, and
• the reactive power times

√
−1.

That is, we have used the real and imaginary parts of a complex number to repre-
sent the real and reactive power. The usefulness of this representation is that, for
example, the complex power S� injected at bus � into the network is given by:

S� = V� I
∗
� ,

where the superscript ∗ indicates complex conjugate. (This notation should be
carefully distinguished from the similar looking notation for optimum value, indi-
cated by superscript �.) The current I� equals the sum of:

• the current flowing into the shunt element Y�, and
• the sum of the currents flowing into each line connecting � to a bus k ∈ J(�)

through admittance Y�k .

We can substitute for the currents to obtain:

S� = V�

⎡⎣A��V� +
∑

k∈�(�)
A�kVk

⎤⎦∗

,

= |V�|2 A∗
�� +

∑
k∈�(�)

A∗
�kV�V

∗
k , (6.9)

This equation encompasses various cases:

• if a generator at a bus � injects real power into the network, then I� will be in
phase with V� such that V� I ∗� has positive real part;

• if there is no generator nor load at �, then I� is zero and there is zero injected
real and reactive power; and

• if there is a load at �, then the injected current will be out of phase with V� such
that V� I ∗� has negative real part.

The injected reactive power can be positive or negative at a generator or a load bus;
however, reactive power injection is typically positive at a generator and negative

6.2 Analysis of an electric power system 277

at a load. We call a bus with no generation nor load a zero injection bus. We will
return to zero injection buses in Section 12.2.

Because we are interested in voltage magnitudes we are going to re-express (6.9)
in terms of voltage magnitude and angle. Because real power is of economic inter-
est, we will also re-express (6.9) in terms of real and reactive power. Let:

• A�k = G�k + B�k
√

−1, ∀�, k, where we note that by (6.7) and (6.8):

– we have that G�k < 0 and B�k > 0 for � 	= k, and
– we have that G�� > 0 and the sign of B�� is indeterminate but typically less

than zero;

• S� = P� + Q�

√
−1,∀�, with:

– for generator buses, P� > 0 and Q� is typically positive, and
– for load buses, P� < 0 and Q� < 0;

and
• V� = u� exp(θ�

√
−1), ∀�, with:

– the voltage magnitude u� ≈ 1 in scaled units to satisfy voltage limits, and
– the voltage angle θ� typically between −π/4 and π/4 radians.

(We have previously used the symbol P to stand for a permutation matrix. For
example, see Section 5.3.2.1. We have previously used the symbol Q to stand for
the quadratic coefficient matrix of a quadratic function and for a factor of a matrix.
In the context of this and several subsequent case studies, however, we will use
the symbols P and Q for real and reactive power, respectively.) Using the above
definitions, we can separate (6.9) into real and imaginary parts:

P� =
∑

k∈�(�)∪{�}
u�uk[G�k cos(θ� − θk) + B�k sin(θ� − θk)], (6.10)

Q� =
∑

k∈�(�)∪{�}
u�uk[G�k sin(θ� − θk) − B�k cos(θ� − θk)]. (6.11)

The equations (6.10) and (6.11), which are called the power flow equality con-
straints, must be satisfied at each bus �. In some other applications, it may be
more useful to write the equations in terms of the real and imaginary parts of the
voltage or in terms of the magnitude and angle of the complex power. The choice
of representation is driven by our interests.

The relation between P�, Q�, and the voltage magnitudes and angles is non-
linear. Although the transmission system is modeled as a linear circuit, our interest
in real power (as opposed to voltage and current) has forced us to consider systems
of non-linear equations.

278 Case studies of non-linear simultaneous equations

6.2.2.6 The power flow problem

Power balance Let us try to satisfy the constraints (6.10) and (6.11) at each bus.
Consider a typical generator. It can be controlled so that it injects a specified real
and reactive power into the system. The terminal voltage magnitude and angle of
the generator will depend on the interaction with the rest of the system. We call a
bus with such a generator a PQ bus. Similarly, at a typical load bus the real and
reactive power is determined by the loads attached to it. We also call this bus a PQ
bus. (The injected real power at a load bus is typically negative, while the injected
real power at a generator is positive.)

In summary, we specify:

• the real and reactive generations at the generator PQ buses according to the
generator control settings, and

• the real and reactive power at the load PQ buses according to supplied data.

For a moment, suppose we specify the real power injection at all the generator
buses. Recall that the (negative) real power injections have also been specified at
all the load buses. Unless the load plus the losses (dissipated in the resistance of
the lines) adds up to the sum of the specified generations, we will not be able to
satisfy the first law of thermodynamics! In fact, if load plus losses does not add
up to generation, the power flow equality constraints cannot be satisfied. A similar
analysis applies to the reactive power.

Unless we specify all the injections consistently (that is, unless we already know
a solution to the equations), we will find that the equations cannot be satisfied.
That is, if we write down the power flow equality constraints (6.10) and (6.11) for
all buses and specify the real and reactive generations arbitrarily, we will usually
find that we have an inconsistent set of equations. In practice, the control systems
of the generators adjust the outputs of generators to match the loads by detecting
any imbalance between generation and load through deviation of the electrical fre-
quency from nominal. Our specification of the problem does not capture this aspect
of the control of the generators since we assume constant frequency of operation
and therefore we must find another approach to solving the equations. (See [8,
chapter 11] for discussion of this issue.)

Reference bus A traditional, but ad hoc approach to finding a solution to the equa-
tions is to single out the reference bus. At this bus, instead of specifying injected
real and reactive power, we specify the voltage magnitude. The reference generator
is then assumed to produce whatever is needed to balance the real power genera-
tion and load and balance the reactive power generation and load for the rest of the
system, assuming that such a solution exists.

6.2 Analysis of an electric power system 279

In other words, following the discussion in Section 3.2.2, we re-arrange the equa-
tions involving the real and reactive power injections at the reference bus to elim-
inate the real and reactive power injections. We solve the reduced set of equations
and then substitute for the reference bus real and reactive power injections. We
have re-interpreted P1 and Q1 to be variables in our formulation and have elimi-
nated these variables by writing them as a function of the rest of the variables.

A physical interpretation of the reference bus is that it supplies whatever real and
reactive power is necessary for real and reactive power balance. For this reason,
the reference bus is usually chosen to be a generator bus.

The voltage magnitude at the reference bus is typically specified to be u1 = 1
per unit. Recall that the voltage angle at the reference bus is also specified, usually
as θ1 = 0◦. (The reference bus is therefore sometimes called a V θ bus.) We have
re-interpreted u1 and θ1 to be constant parameters in our problem.

Finding a power flow solution then involves calculating:

(i) the voltage magnitudes and angles at the PQ buses, and
(ii) the real and reactive power that must be injected at the reference bus,

to satisfy the power flow equality constraints. (In actual power systems, many
generators are controlled to inject a given amount of real power and also to hold
their terminal voltage magnitudes constant. Such a generator is called a PV bus.
See [8, chapter 10] for details of the formulation and Exercises 6.5 and 6.6.)

6.2.2.7 Non-linear equations

Suppose that there are nPQ PQ buses, including both the PQ generators and the
loads. Let n = 2nPQ and define a vector x ∈ Rn consisting of the voltage magni-
tudes and angles at the PQ buses. Also, for every bus � (that is, including the refer-
ence bus as well as the PQ buses) define functions p� : Rn → R and q� : Rn → R

by:

∀x ∈ R
n, p�(x) =

∑
k∈�(�)∪{�}

u�uk[G�k cos(θ� − θk) + B�k sin(θ� − θk)] − P�,

(6.12)

∀x ∈ R
n, q�(x) =

∑
k∈�(�)∪{�}

u�uk[G�k sin(θ� − θk) − B�k cos(θ� − θk)] − Q�.

(6.13)

The right-hand sides of (6.12)–(6.13) re-arrange the terms in power flow equality
constraints, (6.10)–(6.11). Compared to (6.10)–(6.11), we have shifted P� and Q�,
respectively, onto the right-hand sides of (6.10)–(6.11). The functions p� and q�

represent the net real and reactive power flow, respectively, from bus � into the rest
of the system. The power flow equality constraints (6.10)–(6.11) are equivalent to

280 Case studies of non-linear simultaneous equations

p�(x) = 0 and q�(x) = 0. The equations reflect the fact that the net real power
flow out of a bus must be zero and that the net reactive power flow out of a bus
must be zero. For this reason, (6.10)–(6.11) are also called the real and reactive
power balance equations.

Finally, define a vector function g : Rn → Rn that includes (6.12) and (6.13) for
all the PQ buses, but omits (6.12) and (6.13) for the reference bus. Suppose we
can solve:

g(x) = 0, (6.14)

which consists of n equations in n variables. Then we claim that we can also cal-
culate the real and reactive power injections at the reference bus: we simply substi-
tute into (6.10) and (6.11) for the reference bus. In summary, solving Kirchhoff’s
equations for the electric power network has been transformed into an equivalent
problem:

(i) solve (6.14), which is a system of non-linear simultaneous equations, and
(ii) substitute into (6.10) and (6.11) for the reference bus.

6.2.3 Circuit changes

If a real power injection changes at a bus � then the entries in g corresponding to
p� will change. If a reactive power injection changes at a bus � then the entries
in g corresponding to q� will change. If a transmission line between buses � and
k changes, then the entries of g corresponding to p�, q�, pk , and qk will change.
The entries in the admittance matrix A will change in a manner analogous to the
changes discussed in Section 4.1.3 for the DC circuit.

6.2.4 Problem characteristics

6.2.4.1 Number of variables and equations

There are the same number of variables as equations in (6.14).

6.2.4.2 Non-existence of direct algorithms

As with the non-linear circuit in Section 6.1, because the equations are non-linear,
there is no direct algorithm to solve (6.14) for arbitrary systems. However, it is
possible to directly solve some particular systems. See Exercise 6.4 for an example.

6.2.4.3 Number of solutions

In principle, there may be no solutions, one solution, or even multiple solutions
to (6.14). As we have discussed, however, power systems are usually designed and
operated so that the voltage magnitudes are near to nominal and the voltage angles

Exercises 281

are relatively close to 0◦. If we restrict our attention to solutions such that voltage
magnitudes are all close to 1 (and make some other assumptions) then we can find
conditions for there to be at most one solution. This is explored in Exercises 6.4
and 6.5. If we cannot be sure that the voltage magnitudes are tightly constrained
then the situation is less clear. In general, we may have to combine theoretical
understanding with some engineering judgment to assess whether or not we have
found the solution or just one of several solutions.

6.2.4.4 Admittance matrix

Symmetry The admittance matrix is symmetric. This confers some properties on
g that will help us to solve the equations g(x) = 0.

Sparsity As in all circuits with a large number of nodes, only a small fraction of
the possible lines will actually exist in typical systems. Therefore, the matrix A is
sparse and each component of g depends on only a few components of x . We will
again exploit sparsity in solving the equations.

Values As mentioned in Section 6.2.2.4, for a typical line, the corresponding line
admittance Y�k has positive real part and negative imaginary part. If there is a
line between buses � and k then the entries A�k = G�k + B�k

√
−1 in the admit-

tance matrix therefore typically satisfy G�k < 0, B�k > 0. The diagonal entries
A�� = G�� + B��

√
−1 in the admittance satisfy G�� > 0 and, typically, B�� < 0.

The resistance of transmission lines is relatively small compared to the inductance.
Furthermore, the shunt elements are often also negligible compared to the induc-
tance. This means that:

∀�, ∀k ∈ J(�) ∪ {�}, |G�k | � |B�k |.
This observation will turn out to greatly influence our ability to quickly solve the
power flow equations. In Exercise 6.5 we utilize this observation to find conditions
for there to be no more than one solution to the equations.

Exercises

Analysis of a non-linear direct current circuit

6.1 Write down the equation for the datum node for the circuit of Figure 6.3. Show that
it is redundant. That is, show that the equation expressing Kirchhoff’s current law at the
datum node is identically equal to some linear combination of the equations expressing
Kirchhoff’s current law for the other nodes. (See Definition A.54.)

6.2 Consider a circuit with n non-datum nodes consisting of current sources, resistors,
and diodes, as illustrated in Figure 6.3. Suppose that there are r resistors and diodes. As

282 Case studies of non-linear simultaneous equations

in Section 6.1.2.3, suppose that we define g : Rn → Rn to represent the equations in the
form g(x) = 0, with:

• x ∈ Rn ,
• xk representing the voltage at node k, and
• g� : Rn → R representing the terms in Kirchhoff’s current law at node �.

(i) Consider the Jacobian J : Rn → Rn×n of g : Rn → Rn . (See Definition A.36.)
Show that the Jacobian is of the form:

∀x ∈ R
n, J (x) = WG(x)W †,

where:

• W ∈ Rn×r has linearly independent rows (see Definition A.55), and
• G : Rn → Rr×r is a matrix-valued function with the following properties:

– G is diagonal; that is, all off-diagonal entries in G are identically zero, and
– each diagonal entry of G is strictly positive for all values of x .

(Hint: See Exercise 4.8. The diagonal entries in G are the incremental conduc-
tances of the resistors and diodes in the circuit. For resistors, this is just the con-
ductance of the resistor. For diodes, this is the derivative of the current to voltage
relationship of the diode.)

(ii) Show that for every x ∈ Rn , J (x) is positive definite. (Hint: Use Exercise 2.27,
Part (vi).)

(iii) Show that the equations g(x) = 0 have at most one solution. (Hint: Use Theo-
rems 2.2 and 2.3.)

Analysis of an electric power system

6.3 Consider three complex quantities with the same magnitude but with phases 120◦
apart. In particular, consider u exp(θ

√
−1), u exp([θ+2π/3]

√
−1), u exp([θ−2π/3]

√
−1),

with u, θ ∈ R. Show that they sum to zero.

6.4 Consider a power system consisting of just two buses and one transmission line:

• bus 1 (the reference bus), where there is a generator, and
• bus 2, where there is load.

Suppose that the reference voltage is specified to be V1 = 1	 0◦ and that net injection at
bus 2, as defined in (6.12), is given by:

∀u2 ∈ R+, ∀θ2 ∈ R, p2(u2, θ2) = u2 sin θ2 + (−P2).

(That is, we assume that G22 = G12 = B22 = 0 and B12 = 1.) Suppose that we also know
that u2 = 1.0. (The voltage magnitude can be controlled by sources of reactive power
such as capacitors.)

(i) What is the largest value of demand (−P2) for which there is a solution to the
equation p2(1.0, θ2) = 0? What is the corresponding value of θ2? We will write
θ2 for this value of θ2.

(ii) What happens if θ2 is smaller than θ2?
(iii) Show that there are two solutions to the equation p2(1.0, θ2) = 0 with 0 ≥ θ2 >

−2π if (−P2) = 0.5. What are the corresponding values of θ2?

Exercises 283

6.5 Consider a power system with n PV buses, r transmission lines, and no PQ buses.
Suppose that:

• the real part of the admittance matrix is the zero matrix, and
• the voltage magnitude at each bus �, including the reference bus, is controlled to

be u� = 1.

We consider conditions for the real power equations (6.10) for real power balance to have
no more than one solution.

Define θ ∈ Rn to be the vector of voltage angles at the PV buses. The voltage angle at
the reference bus, θ1, is not included in the vector θ , but θ1 = 0 is known.

Since the voltage magnitudes are assumed constant and all equal to 1, we can re-express
the real power equation (6.10) for each bus � in the form g�(θ) = 0 where g� : Rn → R is
defined by:

∀θ ∈ R
n, g�(θ) =

∑
k∈�(�)∪{�}

B�k sin(θ� − θk) − P�,

where: P� is the net generation at bus �; B�k > 0 for � 	= k; and B�� < 0. Collect the
functions g� for the PV buses together into the vector function g : Rn → Rn . The real
power balance equations are then equivalent to g(θ) = 0. (The value of n and the function
g as defined is different to the value of n and the function defined in (6.14).)

(i) Show that the Jacobian J : Rn → Rn×n of g is of the form:

∀θ ∈ R
n, J (θ) = WB(θ)W †,

where:

• W ∈ Rn×r has linearly independent rows (see Definition A.55), and
• B : Rn → Rr×r is a matrix-valued function with the following properties:

– B is diagonal; that is, all off-diagonal entries in B are identically zero, and
– each diagonal entry Bss of B corresponds to a line joining buses � and k and

is of the form:

∀θ ∈ R
n,Bss(θ) = B�k cos(θ� − θk).

(Hint: See Exercise 6.2. The diagonal entries in B are different to the entries in the
admittance matrix.)

(ii) Show that if θ ∈ S = [−π
4 , π

4]n then J (θ) is positive definite. (Hint: Use Exer-
cise 2.27, Part (vi).)

(iii) Show that the equations g(θ) = 0 have at most one solution for θ ∈ S. (Hint: Use
Theorems 2.2 and 2.3.)

6.6 As an approximation to the power flow equations, the DC power flow is often used.
(The term “DC” stands for “direct current” and refers to an electrical analogy between the
power system and a related, direct current resistive circuit. See [123, section 4.1.4].) As in
Exercise 6.5, we consider a power system with n PV buses and no PQ buses and again
suppose that the voltage magnitude at each bus �, including the reference bus, is controlled
to be u� = 1.

Again define θ ∈ Rn to be the vector of voltage angles at the PV buses. The voltage
angle at the reference bus, θ1, is not included in the vector θ , but θ1 = 0 is known.

284 Case studies of non-linear simultaneous equations

Since the voltage magnitudes are assumed constant and all equal to 1, we can again
re-express the real power equation (6.10) for each bus � in the form g�(θ) = 0 where
g� : Rn → R is defined by:

∀θ ∈ R
n, g�(θ) =

∑
k∈�(�)∪{�}

G�k cos(θ� − θk) + B�k sin(θ� − θk) − P�.

(This function includes terms involving the real part of the admittance matrix since here
we do not assume that the real part of the admittance matrix is zero.) Again collect the
functions g� for the PV buses together into the vector function g : Rn → Rn . The real
power balance equations are again equivalent to g(θ) = 0.

Instead of seeking a solution to g(θ) = 0, however, the DC power flow solves the linear
simultaneous equations Jθ = −g(0), where J ∈ Rn×n is defined by:

∀� 	= 1,∀k 	= 1, J�k = ∂g�

∂θk
(0).

That is, the DC power flow uses a first-order Taylor approximation to g(θ), linearized about
θ = 0, and sets the Taylor approximation equal to zero. (See Section 2.6.3.5.)

(i) Evaluate the entries in J .
(ii) Use the DC power flow approximation to estimate the relationship between voltage

angles and injections for the two-bus, one-line system specified in Exercise 6.4.
(iii) Based on the solution to Exercise 6.4, when can you expect the DC power flow

approximation to be a poor approximation to the exact solution? (See [3].)

7

Algorithms for non-linear simultaneous equations

In Chapter 5, we introduced triangular factorization and forwards and backwards
substitution as a direct algorithm for solving linear equations. In a finite number of
steps (assuming infinite precision arithmetic) we could solve the linear equations
exactly. We have already remarked in Section 2.4.1.2 that no direct algorithm exists
for general non-linear simultaneous equations.

Our approach to solving non-linear simultaneous equations will be iterative. We
will start with an initial guess of the solution and try to successively improve on the
guess. We will continue until the current iterate becomes sufficiently close to the
solution according to a suitable criterion. In general, we will not be able to provide
an exact solution, even if we could calculate in infinite precision. The theme of
iterative progress towards a solution will recur throughout the rest of the book.

In Section 7.1, we discuss an iterative algorithm called the Newton–Raphson
method. Then, in Section 7.2 we will introduce some variations on the basic
Newton–Raphson method. In Section 7.3 we discuss local convergence of the
iterates to a solution, while in Section 7.4 we discuss global convergence. Finally,
we discuss sensitivity and large change analysis in Section 7.5.

The key issues discussed in this chapter are:

• approximating non-linear functions by a linear approximation about a point,

• using the linear approximation to improve our estimate of the solution of the
non-linear equations and then re-linearizing about the improved solution in an
iterative algorithm,

• convergence of the sequence of iterates produced by repeated re-linearization,

• variations that reduce computational effort, and

• sensitivity and large change analysis.

Most of the material is based on [11, 45, 58, 84] and much more detailed discus-
sions are available in those references.

285

286 Algorithms for non-linear simultaneous equations

7.1 Newton–Raphson method

Consider a function g : Rn → Rn and suppose that we want to solve the simulta-
neous non-linear equations:

g(x) = 0. (7.1)

Analogously to the case of linear equations with the same number of equations
as variables described in Section 4.1.4.1, we call this a square system of equa-
tions. We will develop an iterative algorithm called the Newton–Raphson method
to solve (7.1). As we proceed, we will see that we must restrict ourselves to par-
ticular types of functions g to successfully apply the Newton–Raphson method.
In Section 7.1.1, we will consider an initial guess and then in Section 7.1.2 use a
Taylor approximation about the initial guess to set the stage in Section 7.1.3 for
describing the update to the initial guess. In Section 7.1.4 we will present the
Newton–Raphson update for the general iterate and then discuss several further
issues in Section 7.1.5.

7.1.1 Initial guess

Let x (0) be the initial guess of a solution to (7.1). It should be chosen based on our
understanding of the particular problem. The superscript (0) indicates the iteration
count of our iterative process. If we are fortunate, then x (0) will satisfy (7.1); that
is, g(x (0)) = 0. Usually, however, we will not be so fortunate, so that g(x (0)) 	= 0
and we seek an updated value of the vector x (1) = x (0) + �x (0) such that:

g(x (1)) = g(x (0) + �x (0)) = 0, (7.2)

or at least a step direction �x (0) such that g(x (1)) is “closer” than g(x (0)) to the zero
vector.

7.1.2 Taylor approximation

To find an appropriate update �x (0), we will approximate the left-hand side of (7.2)
using a first-order Taylor approximation about x (0) (Section 2.6.3.5) [72, sec-
tion 4.1]. That is, we make a linear approximation to g. We will assume that the
function g : Rn → Rn is partially differentiable with continuous partial derivatives.
(See Definition A.36.) We will first consider the case of a scalar function, in partic-
ular the scalar function g1 given by the first component of the vector function g, and
we will then generalize to a vector function. We first discussed first-order Taylor
approximations in connection with convex functions in Section 2.6.3.5; however,
here we will not be making any assumption about the convexity of the function.

7.1 Newton Raphson method 287

7.1.2.1 Scalar function

Consider the first component of g, namely g1 : Rn → R. If g1 is partially differ-
entiable (see Definition A.36) with continuous partial derivatives then:

g1(x
(1))

= g1(x
(0) + �x (0)), since x (1) = x (0) + �x (0),

≈ g1(x
(0)) + ∂g1

∂x1
(x (0))�x (0)

1 + ∂g1

∂x2
(x (0))�x (0)

2 + · · · + ∂g1

∂xn
(x (0))�x (0)

n ,

= g1(x
(0)) +

n∑
k=1

∂g1

∂xk
(x (0))�x (0)

k ,

= g1(x
(0)) + ∂g1

∂x
(x (0))�x (0), (7.3)

where the last equality follows by definition of the partial derivative. (See Defini-
tion A.36.)

In (7.3), the symbol “≈” should be interpreted to mean that the difference be-
tween the expressions to the left and to the right of the ≈ is small compared to∥∥�x (0)

∥∥. Formally, if we define the remainder at the point x (0), e : Rn → R, by:

∀�x ∈ R
n, e(�x) = g1(x

(0) + �x) − g1(x
(0))

− ∂g1

∂x1
(x (0))�x1 − ∂g1

∂x2
(x (0))�x2 − · · · − ∂g1

∂xn
(x (0))�xn,

then, by Taylor’s theorem with remainder [72, section 4.1], if g1 is partially
differentiable with continuous partial derivatives then:

lim
‖�x‖→0

e(�x)

‖�x‖ = 0.

As first mentioned in Section 2.6.3.5, the expression to the right of the ≈ in (7.3) is
called a first-order Taylor approximation. By Taylor’s theorem with remainder,
for a partially differentiable function g1 with continuous partial derivatives, the
first-order Taylor approximation about x = x (0) approximates the behavior of g1

in the vicinity of x = x (0). This is the fundamental reason why linearization is
effective in approximating functions. (See Exercise 7.1.)

For points remote from x (0), the first-order Taylor approximation can be poor.
Typically, the approximation becomes worse as ‖�x‖ increases. We will discuss
the issue of the region of validity of the Taylor approximation in Section 7.4.2.1.

The first-order Taylor approximation represents a plane that is tangential to the
graph of the function at the point x (0). As an illustration, suppose that g1 : R2 → R

288 Algorithms for non-linear simultaneous equations

5

0

5

5

0

5
10

0

10

20

30

40

50

60

x1

•

x2

g1(x)
Function

Taylor
approximation

Fig. 7.1. Graph of func-
tion repeated from Fig-
ure 2.5 and its Taylor ap-
proximation about x (0) =[

1
3

]
.

is the same function as shown in Figure 2.5, so that n = 2 and

∀x ∈ R
2, g1(x) = (x1)

2 + (x2)
2 + 2x2 − 3.

Let x (0) =
[

1
3

]
. Figure 7.1 shows the function g1 along with the plane representing

its first-order Taylor approximation about x (0). The point

⎡⎢⎢⎣
1
3

g1

[
1
3

]
⎤⎥⎥⎦ ∈ R2 ×

R1 is shown as a bullet •. The graph of the function and its first-order Taylor

approximation are tangential at x (0) =
[

1
3

]
as illustrated in Figure 7.1. (We will

return to the issue of tangents in Section 14.1.2.)

7.1.2.2 Vector function

We now consider the vector function g : Rn → Rn . Since g is a vector function
and x is a vector, the Taylor approximation of g involves the n×n matrix of partial

derivatives
∂g
∂x

evaluated at x (0) [72, section 2.3]. (See Definition A.36.) The �k-th

entry of
∂g
∂x

is
∂g�

∂xk
. A first-order Taylor approximation of g about x (0) yields:

g(x (0) + �x (0)) ≈ g(x (0)) + ∂g
∂x

(x (0))�x (0),

where by the ≈ we mean that the norm of the difference between the expressions
to the left and to the right of ≈ is small compared to

∥∥�x (0)
∥∥. Formally, if we now

7.1 Newton Raphson method 289

define the remainder at the point x (0), e : Rn → Rn , by:

∀�x ∈ R
n, e(�x) = g(x (0) + �x) − g(x (0))

− ∂g
∂x1

(x (0))�x1 − ∂g
∂x2

(x (0))�x2 − · · · − ∂g
∂xn

(x (0))�xn,

then, by Taylor’s theorem with remainder [72, section 4.1], if g is partially dif-
ferentiable with continuous partial derivatives then:

lim‖�x‖→0

‖e(�x)‖
‖�x‖ = 0.

(See Exercise 7.1.) The first-order Taylor approximation again represents a “plane”
that is tangential to the graph of the function; however, the situation is much more
difficult to visualize for a vector function. The remainder is now a vector function
with norm that rapidly approaches zero as the norm of its argument approaches
zero.

7.1.2.3 Jacobian

Recall from Section 2.5.3.2 that the matrix of partial derivatives is called the Jaco-
bian and we will denote it by J (•). Using this notation, we have:

g(x (1)) = g(x (0) + �x (0)), by definition of �x (0),

≈ g(x (0)) + J (x (0))�x (0), (7.4)

using the first-order Taylor approximation. The Jacobian is the transpose of the
gradient ∇g of g.

In some of our development, we will approximate the Jacobian when we evaluate
the right-hand side of (7.4). In this case, the linear approximating function is no
longer tangential to f ; however, this approximation may still be useful as we will
see in Section 7.2.

7.1.3 Initial update

We seek �x (0) that will make the left-hand side of (7.4) equal to zero. However,
as we have argued, there is no direct algorithm to find this update for arbitrary
g. Instead, let us seek �x (0) that makes the right-hand side of (7.4) equal to zero,
which will yield an update that makes the left-hand side of (7.4) approximately
equal to zero. Setting the right-hand side of (7.4) to zero to solve for �x (0) yields a
set of linear simultaneous equations:

J (x (0))�x (0) = −g(x (0)), (7.5)

where:

290 Algorithms for non-linear simultaneous equations

• J (x (0)) ∈ Rn×n is the coefficient matrix and is constant given x (0),
• −g(x (0)) ∈ Rn is the right-hand side vector and is constant given x (0), and
• �x (0) ∈ Rn is the vector of unknowns.

Notice that (7.5) is a linear equation in �x (0) with the same number of variables
as equations. We have already discussed the solution of such linear equations in
Chapter 5 and know that it may in general have none, one, or many solutions.
However, we will initially assume that J (x (0)) is non-singular so that a unique
solution exists. (We will discuss the case of singular J in Section 7.4.) Having
calculated �x (0), we can then calculate x (1), which is the value of the iterate after
the first iteration.

7.1.4 General update

Unfortunately, we cannot expect that x (1) will exactly satisfy the equation g(x (1)) =
0. However, we hope that x (1) will satisfy the equations “more closely” than the
initial estimate x (0). We must repeat the process, updating each successive iterate
according to:

J (x (ν))�x (ν) = −g(x (ν)), (7.6)

x (ν+1) = x (ν) + �x (ν), (7.7)

where x (ν) is the value of x after the ν-th iteration. Equations (7.6)–(7.7) are called
the Newton–Raphson update and �x (ν) is the Newton–Raphson step direction.
We continue until the iterate x (ν) satisfies (7.1) to sufficient accuracy, where “suf-
ficient accuracy” will be defined more precisely in Section 7.3.

7.1.5 Discussion

The basic Newton–Raphson method has some very desirable properties that we
will analyze in Section 7.3. Unfortunately, it has three drawbacks.

(i) The need to calculate the matrix of partial derivatives and solve a system
of linear simultaneous equations at each iteration. Even with sparse matrix
techniques, this can require considerable effort.

(ii) At some iteration we may find that the linear equation (7.6) does not have
a solution, so that the update is not well-defined.

(iii) Even if (7.6) does have a solution at every iteration, the sequence of iterates
generated may not converge to the solution of (7.1).

We will discuss some aspects of the first drawback in Section 7.2, indicating the
great variety of approaches we can follow to minimize the computational effort.
We will select just three of the many approaches:

7.2 Variations on the Newton Raphson method 291

• the “chord method,”

• the basic Newton–Raphson method, and

• the “quasi-Newton method,”

for further analysis in Section 7.3. The analysis will be “local” in that the initial
point must be in the vicinity of the solution for the analysis to apply.

The second and third drawbacks are particularly problematic for iterates that
are far from the solution. In Section 7.4, we will discuss convergence from initial
points that are remote from the solution and so treat the second and third drawback.

7.2 Variations on the Newton–Raphson method

In this section we will discuss various ways to reduce the effort involved in the ba-
sic Newton–Raphson method by approximating the Newton–Raphson update. The
goal will be to reduce the effort per iteration of the update without significantly
disrupting the progress towards the solution. Typically, for a given accuracy of
solution, the methods that approximate the update will take more iterations than
required by the exact Newton–Raphson update. However, the increase in the num-
ber of iterations is often more than compensated by a decrease in the average effort
per iteration.

Because the solution of non-linear equations forms the basis of many of the
algorithms in the rest of the book, the basic trade-off between the number of it-
erations and the effort per iteration also applies in the other algorithms. We will
discuss the issues in some detail here. We will then refer briefly to the analogous
considerations as they appear in later chapters.

We could imagine approximating either or both of g and J in the Newton–
Raphson update to reduce the effort. First, consider using approximate values of g
in the Newton–Raphson update. Of course, the numerical values of g will always
be approximate in that we calculate in finite precision arithmetic, and this poses a
fundamental limit to how accurately we can judge whether the equations g(x) = 0
are satisfied.

Even if we were able to calculate to infinite precision, we could still consider
deliberately using approximate values of g. However, if we only evaluate g ap-
proximately, then we can only ever hope to solve the equations approximately. In
this book, we will not consider in detail issues involved with approximations of g.
We will generally assume that g is evaluated accurately. (See, for example, [58,
section 5.4] for details in the case of approximate evaluation of g. Moreover, if
the calculation of g is subject to random error with zero mean and such that the
errors on successive evaluations of g are independent then it is possible to “average

292 Algorithms for non-linear simultaneous equations

out” the error by evaluating g multiple times to obtain higher accuracy. See [11,
section 2.1].)

On the other hand, we will see that approximating J in the Newton–Raphson up-
date does not inherently prevent us from converging to an accurate solution of the
non-linear simultaneous equations. Moreover, under some circumstances, using
approximate values for J (or only approximately solving the update equation) will
only slightly slow the progress of the iterates towards the solution if the approx-
imation to J is “close enough” to the exact Jacobian in a sense to be made more
precise as we proceed through this chapter. In Section 7.2.1, we will consider
various ways to approximate the Jacobian in the Newton–Raphson update. In Sec-
tion 7.2.2, we will mention an iterative approach to approximating the solution to
the Newton–Raphson update. In Section 7.2.3, we will describe pre-conditioning
as a transformation of the update equations that can facilitate their solution. Fi-
nally, in Section 7.2.4, we will mention an approach to reducing the burden of
writing software to calculate J .

7.2.1 Approximation of the Jacobian

Suppose that at each iteration we approximate the Jacobian in such a way as to
make the update equations easier to solve. That is, at each iteration ν we replace
J (x (ν)) by a matrix J̃ (ν) such that, compared to using J (x (ν)) directly:

(i) LU factorization of J̃ (ν) requires less effort (or has already been performed),
(ii) an inverse of J̃ (ν) is easier to calculate, or
(iii) evaluation of J̃ (ν) is more convenient.

In summary, the use of the approximation J̃ (ν) reduces the average effort per it-
eration for performing the update. If the resulting approximation to the Newton–
Raphson update satisfies suitable conditions, then it turns out that we will still
iterate towards the solution. We will discuss some of these approximations in Sec-
tions 7.2.1.1–7.2.1.5.

7.2.1.1 The chord method

Because of the computational cost of forming and factorizing the Jacobian, we
seek a method that will reduce the effort. Instead of updating the Jacobian at each
iteration, we can think of updating it only occasionally. In the extreme, we form
and factorize the Jacobian only once, for the initial update. That is, we define our
sequence of iterates to be:

J (x (0))�x (ν) = −g(x (ν)), (7.8)

x (ν+1) = x (ν) + �x (ν), (7.9)

7.2 Variations on the Newton Raphson method 293

so that J̃ (ν) = J (x (0)), ∀ν ∈ Z+. Once we have calculated J (x (0)) and LU factor-
ized it, each iteration (7.8)–(7.9) only requires:

• evaluation of g(x (ν)),
• a single forwards and backwards update to calculate �x (ν), and
• a vector addition to calculate x (ν+1).

This approximation, which uses J (x (0)) at every iteration, is called the chord
method [58, section 5.4.1] and (7.8)–(7.9) is called the chord update. No fac-
torization is required for the chord method after the factorization of the Jacobian
evaluated at the initial guess. Therefore, each subsequent iteration requires much
less effort than is required for the Newton–Raphson update (7.6)–(7.7). Some-
times, a judicious choice of initial guess provides a Jacobian J (x (0)) that is espe-
cially easy to form and factorize. (See Section 8.2.4.1 for an example in the case
of the electric power system case study from Section 6.2.)

7.2.1.2 The Shamanskii method

Updating the Jacobian every, say, N iterations (instead of only at the initial iter-
ation) is called the Shamanskii method [58, section 5.4.3]. In the Shamanskii
method, the iterations are:

J (x (N!ν/N"))�x (ν) = −g(x (ν)), (7.10)

x (ν+1) = x (ν) + �x (ν), (7.11)

where:

• !•" returns the largest integer that is no larger than its argument, and
• we evaluate and factorize the Jacobian only if we have not already factorized it

at an earlier iteration.

That is, J̃ (ν) = J (x (N!ν/N")). Again, the average computational effort per iteration
for the Shamanskii update (7.10)–(7.11) is less than for (7.6)–(7.7).

7.2.1.3 Approximating particular terms

Suppose that we replace small terms in the Jacobian by zero. Sparse factoriza-
tion techniques then require less effort to factorize the approximate matrix. In
the extreme, we might be able to approximate the Jacobian by a matrix that can
be inverted with little effort. For example, if the Jacobian is strongly diagonally
dominant; that is, its diagonal terms are much larger than its off-diagonal, then an
approximate inverse is the diagonal matrix having diagonal entries consisting of
the inverse of the diagonal entries of the Jacobian.

Exercise 7.3 shows that such approximations should be used with some caution

294 Algorithms for non-linear simultaneous equations

and that the effort involved in the approximations and the performance of the ap-
proximation should be compared with the performance of more exact techniques.

7.2.1.4 Analytic approximation to Jacobian

If we are using a numerical model, it can be very difficult to obtain a good numer-
ical estimate of J . We may, however, have an approximate analytical model. Then
we can combine a numerical evaluation of g with an approximate analytical model
of J to use in the Newton–Raphson update. (See Exercise 7.4.)

7.2.1.5 Finite difference approximation to Jacobian

If g is the result of a numerical calculation and there is no analytical model for g,
then analytical differentiation to obtain J is not possible. In this case, we have no
choice but to approximate J by a finite difference approximation. Even if there
is an analytical model available, it may be inconvenient to evaluate the Jacobian
using the analytical model and we may again choose to use a finite difference
approximation. The use of finite differences instead of evaluating the Jacobian is
sometimes called a discrete-Newton method.

A basic implementation involves approximating the derivative of g in the direc-
tion �x by the average rate of change in the value of g between, for example:

• the point x (ν) and the point x (ν) + �x , which is called the forward difference
approximation:

J (x (ν))�x ≈ g(x (ν) + �x) − g(x (ν));
• the point x (ν)−�x and the point x (ν)+�x , which is called the central difference

approximation:

2J (x (ν))�x ≈ g(x (ν) + �x) − g(x (ν) − �x);
or

• if x ∈ R, the point x (ν) and the point x (ν−1), which is called the secant approxi-
mation:

∂g
∂x

(x (ν)) ≈ g(x (ν)) − g(x (ν−1))

x (ν) − x (ν−1)
.

(There are other variations on secant approximation, particularly if g is the sum of
linear and non-linear terms or is the sum of terms that each depend on only one vari-
able. This is the case in non-linear DC circuit analysis. See [58, section 5.4.5][101]
and the discussion below.)

The forward, central, and secant approximations are illustrated in Figure 7.2.
Typically, the forward difference will require n evaluations of the vector function
g, in addition to the calculation of g(x (ν)), to approximate the n columns of J (x (ν)),

7.2 Variations on the Newton Raphson method 295

0 5 0 0 5 1 1 5 2 2 5 3
0 6

0 4

0 2

0

0 2

0 4

0 6

0 8

1

1 2

1 4

x

g(x)

g(x (ν))

(x (ν) − �x)x (ν−1) x (ν) (x (ν) + �x)

Fig. 7.2. The finite differ-
ence approximations to the
derivative of a function g :
R → R at a point x (ν). The
function g is illustrated as
a solid curve. The point[

x (ν)

g(x (ν))

]
=

[
1.5
1

]
is

indicated by the •. The
forward difference approx-
imation with �x = 1
is given by the slope of
the dotted line. The cen-
tral difference approxima-
tion with �x = 1 is given
by the slope of the dashed
line. The secant approxi-
mation for x (ν−1) = 0 is
given by the slope of the
dash-dotted line.

while the central difference will require 2n evaluations of g. (See Exercise 7.5.)
The central difference, however, provides higher accuracy under suitable condi-
tions [11, section 1.8]. In special cases, particularly if the Jacobian has a regular
sparsity structure, the Jacobian can be calculated with relatively few evaluations of
g. (See [45, section 4.8.1] for details.)

In principle, the smaller the length of �x , the more accurately the average rate
of change of g approximates the derivative for the forward and central differ-
ence methods, assuming that all calculations are performed to infinite precision.
However, for very small values of ‖�x‖, the calculation of the difference between
g(x (ν) + �x) and g(x (ν)) or between g(x (ν) + �x) and g(x (ν) − �x) will be sub-
ject to significant round-off errors. The choice of the size of �x is therefore a
compromise. A standard prescription is to choose ‖�x‖ to be on the order of the
square root of the round-off error in calculating the finite differences. (See [11,
section 1.8][45, sections 4.6.1 and 8.6.1][58, section 5.4.4][84, section 11.4.1] for
a more careful discussion of this issue.)

The secant approximation can be used to evaluate particular entries of J if they
depend on only one variable. This is useful, for example, for the voltage to current
relations of two-terminal circuit components. (See [101].) A variant of the secant
method for functions for which g(0) ≈ 0 makes the following approximation:

∂g
∂x

(x (ν)) ≈ g(x (ν))

x (ν)
.

296 Algorithms for non-linear simultaneous equations

It is typically the case that two terminal circuit elements satisfy g(0) = 0.

7.2.1.6 Quasi-Newton methods

A drawback of the finite difference method is that it requires many evaluations
of the function g to approximate the Jacobian. In this section, we will discuss a
technique that uses the successive values of g(x (ν)) at each iteration to approximate
the Jacobian, so avoiding any additional evaluations of g.

Consider a first-order Taylor approximation of g about x (ν−1):

g(x (ν−1) + �x (ν−1)) ≈ g(x (ν−1)) + J (x (ν−1))�x (ν−1).

Substituting from the Newton–Raphson update equations (7.6)–(7.7) applied to
calculate x (ν), we obtain:

g(x (ν)) ≈ g(x (ν−1)) + J (x (ν−1))(x (ν) − x (ν−1)).

Re-arranging, we have:

J (x (ν−1))(x (ν) − x (ν−1)) ≈ g(x (ν)) − g(x (ν−1)). (7.12)

Quasi-Newton methods [58, chapter 7] involve successively updating each ap-
proximation J̃ (ν−1) so that the updated approximation J̃ (ν) used for calculating
x (ν+1) satisfies the quasi-Newton condition:

∀ν > 0, J̃ (ν)(x (ν) − x (ν−1)) = g(x (ν)) − g(x (ν−1)). (7.13)

In (7.13), x (ν) ∈ Rn and x (ν−1) ∈ Rn are known and we seek J̃ (ν) ∈ Rn×n to satisfy
the condition. The quasi-Newton method entirely avoids the need to calculate the
Jacobian, since it uses the change in g to approximate J . In particular, J̃ (ν), (which
is used in the calculation of x (ν+1)) is chosen to mimic the behavior of the change
in g that resulted from the choice of x (ν) as specified in (7.12). Since there are
(n)2 entries in J̃ (ν), while the quasi-Newton condition (7.13) specifies n equations,
there are typically many matrices that satisfy the quasi-Newton condition (7.13).

Suppose that we have already factorized J̃ (ν−1) and that we want to update it
to a new approximation J̃ (ν) that satisfies the quasi-Newton condition. Surpris-
ingly, if J̃ (ν−1) is symmetric then, under mild assumptions, symmetric rank two
updates (see Section 5.6.2.2) can be found such that by updating J̃ (ν−1), the new
approximation J̃ (ν) satisfies the quasi-Newton condition. (See Exercise 7.6.) The
updates are known generally as the Broyden family [58, chapter 7], the most pop-
ular of which is the Broyden, Fletcher, Goldfarb, Shanno (BFGS) update [11,
section 1.7].

As discussed in Section 5.6.2.2, if we arrange that J̃ (ν−1) and the updated matrix
J̃ (ν) differ by a symmetric rank two update and if J̃ (ν−1) has already been factorized
then J̃ (ν) can be factorized with additional computational effort that is proportional

7.2 Variations on the Newton Raphson method 297

to (n)2, which is considerably less than the (n)3 effort required for factorization
of the Jacobian from scratch. The details can be found in [45, section 4.5.2][58,
chapter 7][70, chapter 9][84, section 11.3]. Factorizing J̃ (ν) requires much less ef-
fort than factorizing the exact Jacobian. The resulting update direction is typically
a very effective approximation to the Newton–Raphson step direction; however,
the approximations and their factors are typically non-sparse [65, section 4]. The
convergence rate to a solution is often super-linear: as we will see, this is better
than the chord update but not as good as Newton–Raphson.

A typical choice for initialization is J̃ (0) = I; however, J (x (0)) or an approxi-
mation to it can also be used. Occasionally, it can be worthwhile to “restart” by
setting J̃ (ν) = I.

7.2.2 Iterative algorithms

If the Jacobian is large and non-sparse, then the factorization- or inversion-based
techniques that we have discussed so far may not be effective. If the Jacobian is
extremely large then it may not even be possible to store the Jacobian conveniently.
Nevertheless, it may be possible to calculate the product of the Jacobian and a
vector.

Iterative algorithms such as the conjugate gradient method mentioned in Sec-
tion 5.9 only require evaluations of the product of the coefficient matrix and a
vector to iterate towards a solution of the linear system. If the Jacobian cannot
be easily factorized, then we can try to solve (7.6) approximately using an itera-
tive algorithm. In this case, each iteration of the Newton–Raphson update itself
requires several iterations of the iterative algorithm to obtain a suitably accurate
approximation to the Newton–Raphson step direction. Details can be found in [45,
section 4.8.3][58, chapters 1–3][84, chapter 12].

7.2.3 Pre-conditioning

Pre-conditioning can be used to help with the solution of the update equation if an
approximate inverse to the Jacobian is known. A simple “pre-conditioner” is the
diagonal matrix consisting of the inverse of the diagonal elements of the Jacobian.
As mentioned in Section 5.9, pre-conditioning is often used in combination with
iterative methods for the solution of linear equations. Pre-conditioning can also
be used with any of the approximations discussed in Section 7.2.1. (See [45, sec-
tion 4.8.5][58, section 2.5][84, section 12.6] for details and see Section 8.2.4.2 for
an example.)

298 Algorithms for non-linear simultaneous equations

7.2.4 Automatic differentiation

Besides the computational effort involved in calculating the Jacobian, there is also
considerable effort involved in writing the software to calculate it. If the calculation
of g is performed by software that implements a direct algorithm, however, it is
possible to systematically transform the software for calculating g into software
that calculates the Jacobian. For further details, see [84, section 11.4.2].

7.3 Local convergence of iterative methods

Recall that our goal is to solve the equations g(x) = 0. We have introduced the
Newton–Raphson method and variations. The Newton–Raphson update generates
a sequence of iterates that, in principle, approaches a solution of the equations. We
will investigate theoretical conditions for convergence of the sequence of iterates.

Moreover, we have specified how to generate each successive iterate, but not how
to stop. We cannot iterate forever, but instead must stop when the current iterate
x (ν) is close enough to the exact solution for our needs, according to some stopping
criterion. Stopping criteria are extremely important since we must find an answer
in a timely manner that we know to be accurate enough for our needs. We discuss
empirical characterizations of closeness to an exact solution in Section 7.3.1 that,
in conjunction with theoretical conditions, will lead to practical stopping criteria.

In Section 7.3.2, we generalize one of these characterizations of closeness into
a powerful theoretical result called the contraction mapping theorem, which we
then use as part of a convergence proof for the chord method in Section 7.3.3.
We also state a result for the Newton–Raphson method in Section 7.3.3. We then
discuss the computational effort required to achieve a given solution accuracy in
Section 7.3.4.

7.3.1 Closeness to a solution

In this section, we discuss three measures of closeness to a solution that are candi-
dates for use as a stopping criterion. We then discuss using the iteration count and
the combination of several stopping criteria.

7.3.1.1 Function value

A natural measure of closeness to a solution is to calculate ‖g(x)‖ for some norm
‖•‖. This measures the closeness of satisfaction in terms of the function itself. The
infinity norm, ‖•‖∞ (see Section A.3.1), is a typical choice for this criterion. A
criterion of the form: ∥∥g(x (ν))

∥∥∞ ≤ εg, (7.14)

7.3 Local convergence of iterative methods 299

for a specified tolerance εg ∈ R++, then requires that each equation be satisfied
to within a tolerance εg. This criterion can be interpreted as testing elements of
the sequence {g(x (ν))}∞ν=0 for closeness to 0. In practice, since we can only test a
finite number of elements, a test of the form (7.14) cannot by itself guarantee that
{g(x (ν))}∞ν=0 converges to 0.

A variation on (7.14) is to require that:∥∥g(x (ν))
∥∥∞ ≤ εg

∥∥g(x (0))
∥∥∞ . (7.15)

For εg < 1, this condition requires that the satisfaction of the equations be im-
proved relative to the satisfaction of the equations by the initial guess.

7.3.1.2 Iteration space

Another measure of closeness of the solution is to suppose that we have a solution,
say x�, at hand and measure the distance of our current iterate to the solution. That
is, we use ‖x − x�‖ as our measure, for some norm ‖•‖. A typical choice of norm
for this criterion is the Euclidean norm, ‖•‖2. (See Section A.3.1.) A criterion of
the form: ∥∥x (ν) − x�

∥∥
2 ≤ εx , (7.16)

for a specified tolerance εx ∈ R++, then requires that the iterate x (ν) is close to
the actual solution in the sense of Euclidean distance. We are testing elements
of the sequence {x (ν)}∞ν=0 for closeness to x�. A significant drawback of the cri-
terion (7.16) is that we do not know the solution x�. If we did know the solution,
then we wouldn’t have to perform any iterations!

A variation on (7.16) is to require that:∥∥x (ν) − x�
∥∥

2 ≤ εx

∥∥x (0) − x�
∥∥

2 .

For εx < 1, this condition requires that the distance to the solution be reduced
relative to the distance of the initial guess from the solution. As with (7.16), this
criterion cannot be tested empirically; however, in Section 7.3.1.5 we will see that
we can sometimes obtain theoretical results that guarantee a reduction in error of
this form.

7.3.1.3 Change in iterate

Another possible way to measure our progress in the decision vector space is to
consider the change in x (ν) from iteration to iteration. That is, we consider �x (ν) =
x (ν+1) − x (ν) and a criterion of the form:∥∥�x (ν)

∥∥ ≤ ε�x , (7.17)

300 Algorithms for non-linear simultaneous equations

for a specified tolerance ε�x ∈ R++. This criterion can be tested without knowledge
of the solution. We are testing elements of the sequence {�x (ν)}∞ν=0 for closeness
to 0. However, even if {�x (ν)}∞ν=0 is known to converge to 0, the condition (7.17)
is insufficient to guarantee that {x (ν)}∞ν=0 converges, nor a fortiori that a particular
iterate x (ν) is close to a limit. This is explored in Exercise 7.7.

7.3.1.4 Iteration count

Finally, it is common to also limit the total number of iterations. That is, we iterate
for no more than, say, N iterations. This criterion, by itself, provides no guarantee
that x (N) is close to the solution; however, with suitable additional assumptions
about the problem it is sometimes possible to estimate an upper bound on the num-
ber of iterations that are necessary to achieve a given accuracy. In Section 7.3.4, we
will discuss the qualitative dependence of the number of iterations on the accuracy.
Limiting the total number of iterations to this bound (or, perhaps, limiting the total
number of iterations to a slightly larger number) then provides a safeguard against
iterating forever due to a software error or if the theoretical conditions for the upper
bound are not exactly satisfied.

7.3.1.5 Combined stopping criteria

Exercise 7.7 shows that a criterion such as (7.17) that is based on the change in it-
erates is insufficient to guarantee that the iterates are becoming close to a solution.
Since we cannot in practice use a criterion such as (7.16) to evaluate closeness to
a solution, it is usual to base stopping criteria on a combination of criteria, such as
a combination of criteria of the form (7.14), (7.15), and (7.17). The first criterion,
(7.14), ensures that our equations are close to being satisfied, in the sense spec-
ified by the norm, the second, (7.15), ensures that the satisfaction has improved
compared to the satisfaction by the initial guess, while the third criterion, (7.17),
ensures that the update �x (ν) has become small. A fourth stopping criterion is to
have an explicit limit on the total number of iterations.

Various logical combinations of these three criteria are used in practice to bal-
ance the desire to:

• get close to a solution, but
• not perform an excessive number of iterations.

It is also common to require that the combined criteria be satisfied over several
successive iterates. Typically, the norms used will be either the L2 or L∞ norms.
As discussed in Section 3.2.1, it is usually advisable to scale the variables so that a
“significant” error in say, x1, as measured by the norm is roughly the same size nu-
merically in the scaled variables as a significant error in x2. Similarly, as discussed
in Section 3.3.1, it is usually advisable to scale the equations so that a “significant”

7.3 Local convergence of iterative methods 301

error in say, g1, as measured by the norm is roughly the same size numerically in
the scaled equations as a significant error in g2.

A more detailed discussion of stopping criteria, including more examples of
criteria, is presented in [45, section 8.2]. Of course, even if a “tight” criterion
is satisfied over several iterations, this is no guarantee, by itself, that the infinite
sequence of iterates is convergent, nor is it a guarantee that the current iterate is
close to the limit. Further conditions must be satisfied before a stopping criteria
can be used to reliably judge whether or not a particular iterate is close to the limit
of a sequence and close to a solution of the equations. In Section 7.3.2 we will
discuss theoretical conditions that can help us to ensure that the stopping criteria,
when satisfied, will result in useful answers.

7.3.2 The Cauchy criterion and contraction mappings

In Section 7.3.2.1 we discuss a theoretical criterion, called the Cauchy criterion,
that can be used to determine if a sequence is convergent based on information
about the sequence of iterates and without reference to the limit itself. In Sec-
tions 7.3.2.2 to 7.3.2.5 we define some concepts and then apply the Cauchy crite-
rion to the sequence of iterates generated by a particular class of iterative methods
having certain desirable properties. Unfortunately, to express the ideas precisely,
we will have to introduce a number of technical definitions. You may want to read
these sections through quickly at first to get the overall picture and then re-read
them more carefully to follow the details. We will then go on in Section 7.3.3 to
apply these ideas to the sequence of iterates generated by the chord method and
state an analogous result for the Newton–Raphson method. Most of the material is
based on [58, chapter 4].

7.3.2.1 Cauchy sequences

We make the following definition.

Definition 7.1 A sequence {x (ν)}∞ν=0 is said to be a Cauchy sequence or Cauchy or satisfy
the Cauchy criterion if:

∀ε ∈ R++, ∃N ∈ Z+ such that (ν, ν′ ∈ Z+ and ν, ν′ ≥ N) ⇒
(∥∥∥x (ν) − x (ν′)

∥∥∥ ≤ ε
)

.

�

Definition 7.1 says that for any tolerance ε, we can find an iteration N such that
any two iterates subsequent to iterate N will be apart by no further than a distance
ε. Being a Cauchy sequence is a stronger condition than requiring that the norm of

302 Algorithms for non-linear simultaneous equations

the successive differences approaches zero. That is, the condition:

∀ε ∈ R++, ∃N ∈ Z+ such that (ν ∈ Z+ and ν ≥ N) ⇒ (∥∥x (ν+1) − x (ν)
∥∥ ≤ ε

)
,

(7.18)
which states that the norm of the difference between successive iterates converges
to zero (see Definition 2.9), is insufficient to guarantee that the sequence {x (ν)}∞ν=0

is Cauchy. As shown in Exercise 7.7, condition (7.18) is insufficient to guarantee
convergence of the sequence.

The condition for being a Cauchy sequence is stronger than (7.18), but is ap-
parently weaker than the condition for being a convergent sequence. (See Exer-
cise 7.8.) It is somewhat surprising then that for a Cauchy sequence we have:

Lemma 7.1 A sequence {x (ν)}∞ν=0 of real vectors converges to a limit in Rn if and only if
it is Cauchy.

Proof See [82, chapter 7][111, theorem 3 of chapter 21]. �

In Exercise 7.7, we will see that a sequence can satisfy (7.18) and yet not be
Cauchy and also not converge. Lemma 7.1 says that if a sequence is Cauchy then
it does converge. The advantage of Lemma 7.1 over Definition 2.9 of convergence
is that we do not need to know the limit of the sequence to apply Lemma 7.1.
Recall that the reason we sought a criterion that can be applied to the difference
between iterates is that the direct criterion (7.16) cannot be implemented in practice
because we do not know the limit of the sequence. The Cauchy criterion is the key
to proving convergence of a sequence of iterates when we do not know its limit.

7.3.2.2 Lipschitz continuity

A continuous function does not have any jumps; however, continuous functions can
have undesirable properties from the perspective of the Newton–Raphson update
and its variants. To rule out these undesirable properties, we define a special type
of continuity as follows.

Definition 7.2 A function � : Rn → Rm (or � : Rn → Rm×n) is Lipschitz continuous:

• on a set S ⊆ Rn ,
• with respect to a norm ‖•‖ on the domain Rn ,
• with respect to a norm ‖•‖ on the range Rm (or to a norm on Rm×n), and
• with constant L ≥ 0,

if:

∀x, x ′ ∈ S,
∥∥�(x) − �(x ′)

∥∥ ≤ L
∥∥x − x ′

∥∥ . (7.19)

If S = Rn then we say that � : Rn → Rm is Lipschitz continuous with constant L . �

7.3 Local convergence of iterative methods 303

�

�

�

�x1

x2

�1

�2

S

x ′′ •
• x ′

• x

• �(x ′′)
�(x ′) •

• �(x)

Fig. 7.3. Points x, x ′, and
x ′′ in a set S ⊆ R2 (left
panel) and their images
�(x), �(x ′), and �(x ′′)
(right panel) under a Lip-
schitz continuous function
� : R2 → R2.

Lipschitz continuity is illustrated in Figure 7.3 for a function � : R2 → R2

and the ‖•‖2 norm on both the domain and range. In the figure, three elements
x, x ′, and x ′′ of a set S are shown together with their images under the map �.
In this case, the Euclidean distance between the images of pairs of the points is
less than the Euclidean distance between the points. If this is true for every pair of
points in S, then the function � is Lipschitz continuous on S with respect to the
Euclidean norm on its domain and range and with a constant L that is less than
one. In general, the Lipschitz constant can be larger than or smaller than one.

If a function is Lipschitz continuous with Lipschitz constant L then it is also
Lipschitz continuous with Lipschitz constant equal to any value that is greater than
L . For reasons that will become apparent in Section 7.3.2.5, we will usually want
to find the smallest value of the Lipschitz constant or find a bound on the Lipschitz
constant that is as tight as possible.

Lipschitz continuity is a stronger condition than ordinary continuity as Exer-
cise 7.9 demonstrates. Moreover, the Lipschitz constant L depends on the choice
of norm on Rn and Rm (or Rm×n .) (See Exercise 7.11.) Condition (7.19) is called
a Lipschitz condition. For a partially differentiable function � with continuous
partial derivatives, if the norm of the derivative is bounded by L on a convex set S

then L is a Lipschitz constant for � on S. (See Exercise 7.10.)

7.3.2.3 Contraction mapping

In the following we consider the special case of a Lipschitz continuous function
with the same domain and range and for which the Lipschitz constant is less than
one.

Definition 7.3 A map � : Rn → Rn is called a contraction mapping or a contraction
map:

• on a set S ⊆ Rn , and
• with respect to a norm ‖•‖ on Rn ,

304 Algorithms for non-linear simultaneous equations

�

�

�

�x1

x2

x1

x2

S S

x ′′ •
• x ′

• x

• x�
• �(x ′′)

�(x ′) •• �(x�) = x�

• �(x)

Fig. 7.4. Points x, x ′, x ′′,
and x� in R2 (left
panel) and their images
�(x), �(x ′),�(x ′′), and
�(x�) (right panel) under
a function � : R2 → R2.
The point x� is a fixed
point of � because
�(x�) = x�.

if ∃0 ≤ L < 1 such that:

∀x, x ′ ∈ S,
∥∥�(x) − �(x ′)

∥∥ ≤ L
∥∥x − x ′

∥∥ .

If S = Rn then we say that � : Rn → Rn is a contraction map. �

A map from Rn to Rn is a contraction map on S ⊆ Rn if it is:

• Lipschitz continuous on S for one particular norm applied to both its domain and
range, and

• the Lipschitz constant is less than one.

That is, under a contraction map the images of two points are closer together than
the original two points. A map may be a contraction with respect to one norm
and not a contraction with respect to another norm. (See Exercise 7.12.) The map
� illustrated in Figure 7.3 is a contraction mapping with respect to the Euclidean
norm.

7.3.2.4 General iterative methods and fixed points

We will discuss generally whether the Newton–Raphson and other iterative meth-
ods converge. For convenience, we express a general iterative method in the form:

∀ν ∈ Z+, x (ν+1) = �(x (ν)), (7.20)

where � : Rn → Rn represents the calculations during a single iteration. (See
Exercise 7.13.)

We are interested in whether the sequence of iterates generated by an iterative
method in the form (7.20) converges to a solution. To consider the limit of a se-
quence of iterates generated by such a method, we make the following.

Definition 7.4 A point x� is called a fixed point of a map � : Rn → Rn if x� = �(x�).
�

7.3 Local convergence of iterative methods 305

Figure 7.4 repeats the points from Figure 7.3 but also includes a point x� and its
image �(x�). Because �(x�) = x�, we observe that x� is a fixed point of the map
�.

Suppose that x� is the solution to a particular system of equations. Consider an
iterative method of the form (7.20) that was designed to solve the equations. We
would hope that if we applied � to the solution x� then it would return x�. That is,
we would hope that x� = �(x�), so that x� would be a fixed point of �.

7.3.2.5 Contraction mapping theorem

We are now ready to present our main result on contraction maps.

Theorem 7.2 Suppose that � : Rn → Rn is a contraction mapping with Lipschitz constant
0 ≤ L < 1 with respect to some norm ‖•‖ on a closed set S ⊆ Rn. Also suppose
that ∀x ∈ S, �(x) ∈ S. Then, there exists a unique x� ∈ S that is a fixed point of
�. Moreover, for any x (0) ∈ S, the sequence of iterates generated by the iterative
method (7.20) converges to x� and satisfies the bound:

∀ν ∈ Z+,

∥∥∥x (ν) − x�
∥∥∥ ≤ (L)ν

∥∥∥x (0) − x�
∥∥∥ . (7.21)

Proof The long proof is divided into four parts:

(i) proving that {x (ν)}∞ν=0 is Cauchy and has a limit that is contained in S;

(ii) proving that the limit is a fixed point of �;

(iii) proving that the fixed point is unique; and

(iv) proving that the sequence converges to the fixed point according to (7.21).

See Appendix B for details. �

The rate of convergence in the theorem is linear according to Definition 2.10 with
a rate constant C = L that is less than one.

7.3.3 The chord and Newton–Raphson methods

In this section we will outline the proof of a convergence result for the chord
method and state analogous results for the Newton–Raphson method, called the
Kantorovich theorem. In the proof for the chord method, we apply the contraction
mapping theorem to the sequence of iterates generated by the chord update. For
brevity, our statements do not draw out the full sharpness of the theorems; however,
we will see the nature of the restrictions that must be placed on g : Rn → Rn to
ensure convergence of the sequence of iterates generated by the chord and Newton–
Raphson methods. Sharper theorem statements can be found in [58].

306 Algorithms for non-linear simultaneous equations

7.3.3.1 The chord method

We have the following convergence result for the chord method. The theorem
demonstrates a linear rate of convergence of the error bound to zero. (We quote the
result and the proof from [58, section 5.5].)

Theorem 7.3 Consider a function g : Rn → Rn. Let ‖•‖ be a norm on Rn and let ‖•‖
also stand for the corresponding induced matrix norm. (See Definition A.30.) Suppose
that there exist a, b, c, and ρ ∈ R+ such that:

(i) g is partially differentiable with continuous partial derivatives at x(0), having
Jacobian J (x (0)) satisfying: ∥∥∥[J (x (0))]

−1
∥∥∥ ≤ a,∥∥∥[J (x (0))]

−1
g(x (0))

∥∥∥ ≤ b,

(ii) g is partially differentiable in a closed ball of radius ρ about x (0), with Jacobian
J that is Lipschitz continuous with Lipschitz constant c; that is,

∀x, x ′ ∈
{
x ∈ R

n
∣∣∣∥∥∥x − x (0)

∥∥∥ ≤ ρ
}

,
∥∥J (x) − J (x ′)

∥∥ ≤ c
∥∥x − x ′

∥∥ ,

(iii) abc < 1
2 , and

(iv) ρ− ≤ ρ where ρ− = (1 −√
1 − 2abc)/(ac).

Then we have the following.

(i) In the open ball of radius ρ+ = min{ρ, (1+√
1 − 2abc)/(ac)} about x (0) there

is a unique solution x� of g(x) = 0. (There may be other solutions outside this
ball.)

(ii) Consider the chord update (7.8) (7.9) with x (0) as initial guess. The sequence
of iterates converges to x� and each iterate x (ν) is contained in the closed ball
of radius ρ− about x (0). Furthermore,

∀ν ∈ Z+,

∥∥∥x (ν) − x�
∥∥∥ ≤ (acρ−)νρ−. (7.22)

Proof We define � : Rn → Rn to be the map that represents the update in the chord
method. That is:

∀x ∈ R
n, �(x) = x − [J (x (0))]

−1
g(x).

The proof is divided into four parts:

(i) proving that the iterates stay in S = {
x ∈ Rn

∣∣∥∥x − x (0)
∥∥ ≤ ρ−

}
;

(ii) proving that � is a contraction map with Lipschitz constant L = acρ− < 1 so
that, by the contraction mapping Theorem 7.2, there exists a unique x� ∈ S that
is a fixed point of �;

(iii) proving that the fixed point x� of � satisfies (7.1) and (7.22); and
(iv) proving that x� is the only solution within a distance ρ+ of x (0).

See Appendix B for details. �

7.3 Local convergence of iterative methods 307

�

�

x2

x1

� �
� ��
�

x��
�

�
�

�
���

��
��

x (0)

x��

ρ−ρ+

{x ∈ R2|g1(x) = 0}

{x ∈ R2|g2(x) = 0} Fig. 7.5. Illustration of
chord and Kantorovich
theorems.

The first part of the conclusion of the theorem is illustrated in Figure 7.5 for a
function g : R2 → R2. This figure repeats and extends Figure 2.1. The set of
points satisfying g1(x) = 0 and the set of points satisfying g2(x) = 0 are shown.
The intersections of these curves, x� and x��, are solutions to the simultaneous
equations g(x) = 0 and are shown as •. The initial guess x (0) is shown as a ◦
at the center of a ball of radius ρ−. A solution x� of the simultaneous equations
g(x) = 0 lies inside the ball of radius ρ−. There are no other solutions within a
larger ball of radius ρ+ centered at x (0). However, another solution x�� to g(x) = 0
lies outside of the ball of radius ρ+ centered at x (0). (If g were strictly monotone
then Theorem 2.2 can be used to show that there is no such other solution x��.)

The second part of the conclusion says that the iterates converge to the solution
and that the rate of convergence is linear. Because the map � defined in the theorem
is Lipschitz continuous with Lipschitz constant L = acρ−, the error reduces by the
factor acρ− at each iteration. Multiplying this factor together for each iteration
yields (7.22). Figure 7.6 illustrates a sequence having linear rate of convergence
to the solution x�. The arrows joining x� to, respectively, the points x (0), x (1), and
x (2), which are illustrated with ◦, have lengths that are less than ρ−, (acρ−)ρ−, and
(acρ−)2ρ, respectively.

7.3.3.2 Kantorovich theorem

We quote the Kantorovich theorem essentially as stated in [58, section 5.5].

Theorem 7.4 (Kantorovich) Consider a function g : Rn → Rn. Let ‖•‖ be a norm on Rn

and let ‖•‖ also stand for the corresponding induced matrix norm. (See Definition A.30.)
Suppose that there exists a, b, c, and ρ ∈ R+ such that:

(i) g is partially differentiable with continuous partial derivatives at x(0), having

308 Algorithms for non-linear simultaneous equations

�

�

x2

x1

x����
�

��	
	x (0)

�
	x (1)

	x (2)

Fig. 7.6. Illustration of
linear rate of convergence
in chord theorem.

Jacobian J (x (0)) satisfying: ∥∥∥[J (x (0))]
−1
∥∥∥ ≤ a,∥∥∥[J (x (0))]

−1
g(x (0))

∥∥∥ ≤ b,

(ii) g is partially differentiable, with Jacobian J that is Lipschitz continuous with
Lipschitz constant c in a closed ball of radius ρ about x (0); that is,

∀x, x ′ ∈
{
x ∈ R

n
∣∣∣∥∥∥x − x (0)

∥∥∥ ≤ ρ
}

,
∥∥J (x) − J (x ′)

∥∥ ≤ c
∥∥x − x ′

∥∥ ,

(iii) abc < 1
2 , and

(iv) ρ− ≤ ρ where ρ− = (1 −√
1 − 2abc)/(ac).

(These are the same as conditions (i) (iv) of the chord theorem, Theorem 7.3.) Then we
have the following.

(i) In the open ball of radius ρ+ = min{ρ, (1+√
1 − 2abc)/(ac)} about x (0), there

is only one solution x� of g(x) = 0. (There may be other solutions outside this
ball.)

(ii) Consider the Newton Raphson update (7.6) (7.7) with x (0) as initial guess. The
sequence of iterates converges to x� and each iterate x (ν) is contained in the
closed ball of radius ρ− about x (0). Furthermore,

∀ν ∈ Z+,

∥∥∥x (ν) − x�
∥∥∥ ≤ (2abc)((2)ν)

(2)νac
. (7.23)

Proof See [58] and the references therein. �

The first part of the conclusion is the same as for the chord theorem. The ex-
pression (2abc)((2)ν) in the second part of the conclusion means 2abc raised to the
power (2)ν . At each iteration, the error bound on the norm of the difference be-
tween x (ν) and x� is proportional to (2abc)((2)ν)/(2)ν . This factor decreases rapidly

7.3 Local convergence of iterative methods 309

from iteration to iteration. According to Definition 2.10, the rate of convergence of
the error bound for the Newton–Raphson method is quadratic.

The error bound (7.23) does not imply that the difference between x (ν) and x�

decreases at each iteration, only that the bound on the difference decreases. This
means that the error may not always be decreasing, which is different to the case
for the proof of the chord theorem, which shows (see Appendix B) that the error
itself decreases by the factor acρ− < 1 at each iteration using the chord update.
However, even for values of abc close to 1

2 , the iterates calculated according to the
Newton–Raphson update will become very close to the solution within just a few
iterations.

7.3.3.3 Discussion

Both the chord theorem and the Kantorovich theorem are “local” in that the initial
guess must have sufficiently “good” properties (see Items (i) and (iii) of the hy-
potheses of the theorems) for the iterates to converge. We will discuss approaches
to ensuring more “global” convergence properties in Section 7.4.

The parameter c is a measure of the non-linearity of g. If g is linear then J is
constant and so arbitrarily small values of c satisfy the conditions of the theorem.
In this case, it takes one step to solve linear equations exactly with the chord or
Newton–Raphson update: we just solve the linear equations directly.

For non-linear functions, the theorems say the following:

• if the Jacobian is non-singular at the initial guess (so that a is well-defined),
• if the initial guess satisfies the equations sufficiently well (so that the norm b of

the initial update:

b =
∥∥∥[J (x (0))]

−1
g(x (0))

∥∥∥ ,

= ∥∥�x (0)
∥∥ ,

is small), and
• if the Jacobian does not vary too much over the closed ball of radius ρ about x (0)

(so that c is small),

then the chord and the Newton–Raphson updates converge to the solution. More-
over:

• the smaller the norm of the inverse of the Jacobian at the initial guess (and there-
fore the smaller the value of a),

• the closer the satisfaction of the equations by the initial guess (and therefore the
smaller the norm of initial update b), and

• the closer that g is to being linear and (therefore the smaller the value of c),

310 Algorithms for non-linear simultaneous equations

the faster is the approach to the solution. An implication is that if we can transform
linear equations to make them “more nearly” linear then this will aid in solving
the equations, other things being equal. This is explored in Exercise 7.15, where
the function arctan is considered together with two transformed versions. One
of the transformed versions removes all the non-linearity: the transformation is the
inverse of the arctan function. Generally, we cannot expect to find the exact inverse
of the function we are trying to equate to zero.

However, another transformation applied to arctan shows a more typical situa-
tion: the transformed function is closer to being linear in the sense that the coef-
ficients in the chord and Kantorovich theorems are smaller. We will return to this
issue in the next chapter and in Section 11.1.4.

7.3.4 Computational effort

For direct algorithms, we were able to characterize the computational effort in
terms of parameters such as n, the number of entries in the decision vector. In an
iterative algorithm, the computational effort also depends on the total number of
iterations until the stopping criterion is satisfied.

As suggested in Section 7.3.1.4, we will estimate the number of iterations re-
quired to reduce, by a factor of εx , the bound on the error between the iterate and
the solution. To be concrete, we will assume that ρ is the best bound we have on
the initial error; that is: ∥∥x (0) − x�

∥∥ ≤ ρ, (7.24)

and that we want to estimate the number of iterations N such that the error bound
is reduced by a factor εx < 1 so that:∥∥x (N) − x�

∥∥ ≤ εxρ. (7.25)

Let us first assume that each scalar function evaluation requires constant com-
putational effort to evaluate and that matrices and vectors are dense. That is, each
of the n entries of g and each of the (n)2 entries of J requires a constant amount
of computational effort. We analyze the computational effort for the chord method
in Section 7.3.4.1, for the Newton–Raphson method in Section 7.3.4.2, and for
the quasi-Newton method in Section 7.3.4.3. We briefly discuss the situation for
the other variations in Section 7.3.4.4 and then summarize the performance of the
chord, Newton–Raphson, and quasi-Newton methods in Section 7.3.4.5. Finally,
in Section 7.3.4.6, we discuss how a more detailed characterization of the compu-
tational effort to calculate g and J and to factorize J can be incorporated into the
analysis for the other variations on the Newton–Raphson method.

7.3 Local convergence of iterative methods 311

7.3.4.1 Chord method

In the case of the chord method the computations required for N iterations are:

• one evaluation and one factorization of the Jacobian, requiring effort on the order
of (n)3, and

• one evaluation of g per iteration, one forwards and backwards substitution per
iteration, and one vector addition per iteration, requiring effort on the order of
N (n)2.

The overall effort is on the order of (n)3+N (n)2 and the average effort per iteration
is on the order of (n)3/N + (n)2. We must find a bound on the size of N that is
necessary to satisfy (7.25).

If the hypothesis of Theorem 7.3 holds for the value of ρ specified in the bound
on the initial error, (7.24), then using (7.22) we have:∥∥x (N) − x�

∥∥ ≤ (acρ−)Nρ−,

= (acρ−)N

(
ρ−
ρ

)
ρ,

≤ (acρ−)N

(
ρ−
ρ+

)
ρ,

since ρ+ ≤ ρ by definition. Then (7.25) will be satisfied if:

(acρ−)N

(
ρ−
ρ+

)
≤ εx .

Re-arranging this condition we obtain that:

(acρ−)N ≤ εxρ+
ρ−

.

Taking natural logarithms and re-arranging, we obtain:

N ≥ ln(εx) + ln(ρ+) − ln(ρ−)

ln(acρ−)
,

noting that ln(acρ−) < 0, so that the overall effort is on the order of:

(n)3 + ln(εx) + ln(ρ+) − ln(ρ−)

ln(acρ−)
(n)2.

Assuming that a, c, ρ+, and ρ− can be bounded approximately independently of
x (0), then this means that the computational effort grows with (n)3 and (n)2| ln(εx)|.

312 Algorithms for non-linear simultaneous equations

7.3.4.2 Newton–Raphson method

In the case of the Newton–Raphson method, the computations required for N iter-
ations are:

• one evaluation and factorization of the Jacobian per iteration, requiring effort on
the order of N (n)3, and

• one evaluation of g per iteration and one forwards and backwards substitution
per iteration, requiring effort on the order of N (n)2.

The overall effort is on the order of N (n)3. Again, we must find a bound on the
size of N that is necessary to satisfy (7.25).

If the hypothesis of Theorem 7.4 holds for the value of ρ specified in the bound
on the initial error, (7.24), then using (7.23) we have:

∥∥x (N) − x�
∥∥ ≤ (2abc)((2)N)

(2)Nac
,

= (2abc)((2)N)

(2)Nacρ
ρ,

≤ (2abc)((2)N)

(2)Nacρ+
ρ,

≤ (2abc)((2)N)

acρ+
ρ,

since ρ+ ≤ ρ by definition and (2)N ≥ 1. Then (7.25) will be satisfied if:

(2abc)((2)N)

acρ+
≤ εx .

Re-arranging this condition we obtain that:

(2abc)((2)N) ≤ acρ+εx .

Taking natural logarithms, we obtain:

(2)N ln(2abc) ≤ ln(acρ+εx).

Now 2abc < 1 by hypothesis, so ln(2abc) < 0 and dividing both sides by the
negative number ln(2abc) yields:

(2)N ≥ ln(acρ+εx)

ln(2abc)
.

7.3 Local convergence of iterative methods 313

Taking natural logarithms again and re-arranging yields:

N ≥
ln
(

ln(acρ+εx)

ln(2abc)

)
ln(2)

,

= ln(| ln(acρ+εx)|) − ln(| ln(2abc)|)
ln(2)

,

so that the overall effort is:

(n)3 ln(| ln(acρ+εx)|) − ln(| ln(2abc)|)
ln(2)

.

Again assuming that a, c, ρ+, and ρ− can be bounded approximately indepen-
dently of x (0), then for small εx this means that the computational effort grows
with (n)3 ln(| ln(εx)|).

For small values of εx , the required value of N will be smaller for the Newton–
Raphson method than for the chord method; however, for large n and relatively
large εx the effort for factorization at each iteration will be unattractive compared
to the chord iteration.

7.3.4.3 Quasi-Newton methods

Although we will not discuss the results in detail, quasi-Newton methods can have
super-linear convergence to the solution [58, chapter 7]. For the quasi-Newton
method, the computations required for N iterations are:

• a symmetric rank two update to a factorization per iteration, requiring effort on
the order of N (n)2 , and

• one evaluation of g, one forwards and backwards substitution, and one vector
addition per iteration, requiring effort on the order of N (n)2.

Assuming super-linear convergence we again find that the number of iterations
N grows with ln(| ln(εx)|) and consequently the computational effort grows with
(n)2 ln(| ln(εx)|). (See Exercise 2.12.) This effort grows much more slowly with n
than for the Newton–Raphson method.

When the iterates converge super-linearly, quasi-Newton methods such as the
BFGS method (see Section 7.2.1.6) can have the smallest overall effort for a given
reduction in error. For this reason, many software implementations for general
purpose use involve a quasi-Newton update to approximate the Newton–Raphson
update.

7.3.4.4 Other variations

Besides the chord method and quasi-Newton methods, we discussed several other
variations on the Newton–Raphson method in Section 7.2 that involve computa-
tional effort per iteration on the order of (n)2. In general, they do not perform as

314 Algorithms for non-linear simultaneous equations

0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1
0

10

20

30

40

50

60

70

80

90

100

Average effort per iteration

Newton Raphson

Quasi-Newton

Chord

Number of iterations to satisfy stopping criterion

Fig. 7.7. The qualitative
trade-off between effort
per iteration and number
of iterations.

well as the Newton–Raphson method, but they typically perform better than the
chord method. In general, the convergence rates will be between the extremes of
the rates for the chord and Newton–Raphson methods. Consequently the required
value of N to reduce the error by a given factor εx will also lie between the extremes
for the chord and Newton–Raphson methods. For problems with large values of
n, it is often the case that N � n for each of the variations, so that the variations
that avoid a complete factorization at every iteration will be more attractive than
the basic Newton–Raphson method.

7.3.4.5 Summary of performance of methods

Figure 7.7 illustrates the typical performance of the chord, Newton–Raphson, and
quasi-Newton methods qualitatively. The graph shows both the average effort per
iteration and the total number of iterations required to satisfy the criteria. The
hyperbolas show curves of equal total effort, where the total effort is equal to the
product of the average effort per iteration and the total number of iterations. That
is, any point on a given hyperbola represents the same overall effort, with effort
increasing from the bottom left hyperbola to the top right hyperbola.

The Newton–Raphson method requires relatively few iterations but the effort
per iteration is high. The point illustrated at the lower right of the figure represents
the effort per iteration and the number of iterates required to reach a desired accu-
racy with the Newton–Raphson method. The point lies on the middle of the three
hyperbolas.

The chord method requires less effort per iteration on average than the Newton–

7.3 Local convergence of iterative methods 315

Raphson method but may sometimes require more effort overall than the Newton–
Raphson method because of the larger number of iterations required to achieve a
desired accuracy. As illustrated in Figure 7.7, the point representing the chord iter-
ation has relatively low effort per iteration on average, but the number of iterations
required is large. The point representing the chord method lies on the highest effort
hyperbola.

Quasi-Newton methods often have the best overall performance, as illustrated in
Figure 7.7, because of the reduced effort per iteration compared to the Newton–
Raphson method. It is to be emphasized, however, that Figure 7.7 is only a qualita-
tive illustration: it should not be taken literally and particular problems may behave
differently to the typical case illustrated in the figure.

7.3.4.6 Calculation of Jacobian

It is sometimes more difficult to calculate entries of J than it is to calculate entries
of g. For example, if analytical expressions for the entries of J are unavailable
and the central difference approximation is used instead then each entry of J will
require at least two evaluations of a scalar function. In this case, we may choose to
use a method that uses less information about J but also has a slower rate of con-
vergence, and consequently a larger required number of iterations, because of the
savings in the computational effort per iteration. This again points in the direction
of using one of the variations instead of the exact Newton–Raphson method. With
sparse systems, the trade-offs may change somewhat depending on the effort for
factorization versus the effort for forwards and backwards substitution.

The calculations in Sections 7.3.4.1 and 7.3.4.2 about computational effort are
based on the assumption that the first iterate is close enough to the solution so that
the local analysis can be applied. If the starting point is far from the solution, then
the local analysis will not be valid and the rates of convergence will not be as good
or the sequence of iterates may not even converge. Again, it is unattractive to form
and factorize J exactly because the computational effort to calculate and factorize
J is not rewarded with significantly improved performance when we are not close
to the solution. Convergence from starting points that are far from the solution will
be discussed in Section 7.4.

7.3.5 Discussion

The theoretical results in this section show the great local performance of the chord
method and of the Newton–Raphson method. As we will see in Chapter 8, Exer-
cises 8.1 and 8.3, however, the parameters in these theorems are often very difficult
to evaluate since they involve properties that hold across regions. It is often easier
just to apply the algorithms than to verify the conditions of the convergence theo-

316 Algorithms for non-linear simultaneous equations

rems. Even when we can calculate the parameters explicitly, their values may not
satisfy the requirements of the theorems.

Even if we cannot explicitly use the theorems to prove convergence of the iter-
ates, the theorems can nevertheless provide qualitative insights into convergence.
For example, in Section 11.2.3.1, we will use insights from the theorems to under-
stand how a particular transformation helps to improve the solvability of the power
system state estimation case study.

Moreover, we can consider iterating from an initial guess until the difference
between successive iterates is small and the value of the function is close to zero.
We can then try to apply the theorems to the current iterate, x (ν) say, re-interpreted
as a new initial guess. The values of the parameters at this point may enable us to
guarantee that the sequence of iterates will converge to the solution.

For initial guesses that are far from the solution we may find, however, that the
iterations do not bring us closer to the solution. This necessitates globalization
procedures, to be discussed in Section 7.4.

7.4 Globalization procedures

The theorems in the last section are local in nature in that they only apply for
initial guesses that are close enough to the solution to satisfy the hypotheses of the
theorems. In general, we must consider the possibility that an initial guess is far
from the solution and consider the convergence to the solution from arbitrary initial
guesses. Such convergence is called global.

A characterization of the global convergence of the Newton–Raphson method
that requires information at only the initial point is detailed in [110]. However, the
information required in that approach involves bounds on higher order derivatives,
which are also somewhat difficult to calculate except in special cases.

Instead of characterizing global convergence conditions, we will consider the
implications of an initial guess that is far from the solution. For such an initial
guess, we must safeguard our algorithm from two related issues:

(i) singular Jacobian, and

(ii) excessively large steps.

In Section 7.4.1, we will discuss the first issue. In Section 7.4.2 we will discuss the
Armijo step-size rule [6, section 8.3][58, chapter 8][70, section 7.5] as an approach
to the second issue. We then make some brief comments about computational effort
in Section 7.4.3.

7.4 Globalization procedures 317

0 5 1 1 5 2 2 5 3
0 5

0

0 5

1

1 5

x
x� x (ν) x (ν−1)

g(x)

Fig. 7.8. A function with
a singular Jacobian at
the point x (ν) = 2. The
first-order Taylor approxi-
mation about x (ν) is shown
dashed. The approxima-
tion implied by the secant
approximation through
x (ν) and x (ν−1) is shown
as the dash-dotted line.

7.4.1 Singular Jacobian

7.4.1.1 Example

Consider the function of one variable g : R → R defined in (2.6) in Section 2.2.2.2,
which we repeat here for reference:

∀x ∈ R, g(x) = (x − 2)3 + 1.

This function is illustrated in Figure 7.8 as a solid line. Notice that we have g(1) =
(1 − 2)3 + 1 = 0 and that x� = 1 is the unique solution to g(x) = 0. The point[

x�

g(x�)

]
=
[

1
0

]
is illustrated with a • in Figure 7.8.

Suppose that we apply the Newton–Raphson update to solve g(x) = 0 at some

iteration ν for which x (ν) = 2. The point

[
x (ν)

g(x (ν))

]
=
[

2
1

]
is illustrated with a ◦

in Figure 7.8. However, J (x) = 3(x − 2)2, so that J (x (ν)) = J (2) = 0. Therefore,
the Newton–Raphson update equation (7.6) does not have a solution since the first-
order Taylor approximation is a horizontal line as illustrated by the dashed line in
Figure 7.8. The conditions of Theorems 7.3 and 7.4 cannot be satisfied for this
point re-interpreted as an initial guess.

7.4.1.2 Modified factorization

It is clear from the example in the last section that if J is singular at any iterate
then the basic Newton–Raphson update will fail. An ad hoc approach to this issue
is to modify terms in J (x) if it is singular and then solve the resulting equation. In

318 Algorithms for non-linear simultaneous equations

15 10 5 0 5 10 15
2

1 5

1

0 5

0

0 5

1

1 5

2

x

arctan(x)

x� x (ν)

Fig. 7.9. The inverse
tan function (shown
solid) and its first-order
Taylor approximation
about x (ν) = 5 (shown
dashed.) The point[

x (ν)

g(x (ν))

]
=
[

5
1.3734

]
is

illustrated with a ◦, while
the solution to the equation
g(x) = 0 is shown with a
•.

this example, g : R → R and, if |J (x (ν))| < E for some threshold E ∈ R++, then
we might replace J (x (ν)) by the secant approximation:

J̃ (ν) = g(x (ν)) − g(x (ν−1))

x (ν) − x (ν−1)

or replace J (x (ν)) by the value E . The dash-dotted line in Figure 7.8 illustrates the
secant approximation for this function, given that the previous value of the iterate
was x (ν−1) = 2.5. The update can be based on setting this secant approximation
equal to zero. (See Exercise 7.17.)

This idea can be generalized to the multi-dimensional case: during factorization
of J , if we encounter a small or zero pivot, we simply replace the pivot by a small
non-zero number. This modification of the factorization should be performed at any
iteration for which J (x (ν)) is singular. We will discuss this modified factorization
further in Section 10.2.3 when we consider unconstrained minimization.

7.4.2 Step-size selection

7.4.2.1 Region of validity of approximation of function

Even if the Jacobian is non-singular at each iteration, our update is problematic if it
suggests a step direction �x (ν) that is so large that it takes us outside the region of
validity of the first-order Taylor approximation of g about x (ν). A simple example
of this is shown by the inverse tangent function, which is illustrated by the solid line
in Figure 7.9 [58, section 8.1]. (This function is also considered in Exercise 7.15.)

7.4 Globalization procedures 319

For g = arctan, the solution of g(x) = 0 is x� = 0. The point

[
x�

g(x�)

]
= 0 is

illustrated with a • in Figure 7.9. The point

[
x (ν)

g(x (ν))

]
=
[

5
1.3734

]
is illustrated

with a ◦. We have that
∥∥x (ν) − x�

∥∥ = ‖5 − 0‖ = 5, using absolute value as
the norm on R. Figure 7.9 also shows the first-order Taylor approximation to the
inverse tangent function about x (ν) = 5 as a dashed line.

For x (ν) = 5, using the Newton–Raphson update yields x (ν) + �x (ν) < −15, so
that

∥∥x (ν+1) − x�
∥∥ > 15, again using absolute value as the norm on R. That is, the

next iterate x (ν+1) is further than x (ν) from the solution x� = 0. Furthermore, the
value of g is worse. That is:∥∥x (ν+1) − x�

∥∥ >
∥∥x (ν) − x�

∥∥ ,∥∥g(x (ν+1))
∥∥ >

∥∥g(x (ν))
∥∥ .

In this case, the first-order Taylor approximation does not predict the behavior
of the inverse tangent function for points that are even a relatively small distance
from from x (ν). If the Newton–Raphson step direction �x (ν) is so large that it would
take the next iterate outside the region of validity of the linear approximation, then
we should not move as far as �x (ν) suggests. Instead, we will consider moving a
smaller step in the direction of �x (ν).

7.4.2.2 Step-size rules

The simplest approach to avoiding updates that take the next iterate outside the
region of validity of the linear approximation is to pick a fixed 0 < α < 1 and use
it at each iteration. That is, we modify (7.7) to be:

x (ν+1) = x (ν) + α�x (ν),

where 0 < α ≤ 1 is fixed for all iterations. This is called the damped Newton
method. In general, α must be “tuned” for best performance on each problem.

An approach that requires less tuning when J varies significantly is to choose
the length of the step at each iteration to bring us closer to solving (7.1). That is,
we modify (7.7) to be:

x (ν+1) = x (ν) + α(ν)�x (ν), (7.26)

where 0 < α(ν) ≤ 1 is chosen at each iteration so that:∥∥g(x (ν) + α(ν)�x (ν))
∥∥ <

∥∥g(x (ν))
∥∥ . (7.27)

If the L2 norm is chosen in (7.27) then it is possible to choose a suitable α(ν) if:

• g is partially differentiable with continuous partial derivatives, and

320 Algorithms for non-linear simultaneous equations

• the step direction �x (ν) satisfies:

[�x (ν)]
†
J (x (ν))

†
g(x (ν)) < 0. (7.28)

For the Newton–Raphson step direction, �x (ν) = −[J (x (ν))]
−1

g(x (ν)). If J (x (ν))

is non-singular, then (7.28) will be satisfied by the Newton–Raphson step direction
except at a solution of the simultaneous equations. (See Exercise 7.16.) The vari-
ations on the Newton–Raphson method do not automatically ensure that reduction
is possible according to (7.27).

7.4.2.3 Armijo step-size rule

A simple way to seek a suitable α(ν) that satisfies (7.27) is to first try α(ν) = 1,
calculate a trial value of x (ν+1), and check if (7.27) is satisfied. If so, we adopt the
trial value as the iterate. If not, we reduce α(ν) by, say, halving it, and recalculate
a new trial value of x (ν) + α(ν)�x (ν) and check (7.27). We proceed until (7.27) is
satisfied. The drawback in practice of this approach is that (7.27) does not specify
by how much the norm of g should decrease to ensure that we obtain a satisfactory
improvement in the satisfaction of the equations.

A variation on (7.27) that does specify a “sufficient” decrease requires that:∥∥g(x (ν) + α(ν)�x (ν))
∥∥ ≤ (1 − δα(ν))

∥∥g(x (ν))
∥∥ , (7.29)

where 0 < δ < 1 is a positive constant. Instead of the strict inequality in (7.27),
in (7.29) we specify a non-strict inequality involving an explicit requirement for
reduction of the norm of the function.

To understand (7.29), suppose that α(ν) is small enough so that the first-order
Taylor approximation is accurate and also assume that the Newton–Raphson step
direction was used. Then:

g(x (ν) + α(ν)�x (ν)) ≈ g(x (ν)) + J (x (ν))α(ν)�x (ν), since α(ν) is assumed to be

small enough so that the first-order Taylor approximation is accurate,

= g(x (ν)) − α(ν)g(x (ν)), by definition of �x (ν),

= (1 − α(ν))g(x (ν)).

Therefore, taking norms:∥∥g(x (ν) + α(ν)�x (ν))
∥∥ ≈ (1 − α(ν))

∥∥g(x (ν))
∥∥ .

So, with a step-size of α(ν), the best we could expect is for
∥∥g(x (ν) + α(ν)�x (ν))

∥∥
to be reduced by a factor of (1 − α(ν)) compared to

∥∥g(x (ν)
∥∥. In practice, we will

not achieve a reduction as great as this because:

• the first-order Taylor approximation is not exact, and
• the step direction might not be the exact Newton–Raphson step direction.

7.4 Globalization procedures 321

�

�

x2

x1

x (ν)
���

�
��	

x (ν) + �x (ν)

�
��	

 x (ν) + (2)−1 × �x (ν)

��	

 x (ν) + (2)−2 × �x (ν)

Fig. 7.10. Illustration of
back-tracking in Armijo
step-size rule.

Consequently, we accept the step-size if the norm of the function is reduced by a
factor of only (1 − δα(ν)) instead of requiring a reduction by the smaller factor of
(1 − α(ν)).

Condition (7.29) together with a reduction rule for choosing α(ν) is called the
Armijo step-size rule [6, section 8.3][58, chapter 8][70, section 7.5]. For example,
the rule could be to find the largest step length of the form:

α(ν) = (2)−k, k ≥ 0, (7.30)

that satisfies (7.29). The condition (7.29) avoids a step-size that is so large that the
norm of the equations increases. We seek the largest step-size of the form (2)−k

that leads to a fractional reduction in the norm of the equations that satisfies (7.29).
To find a step-size of the form (7.30) satisfying (7.29), we can think of first tenta-
tively trying the full step of �x (ν), which would yield a tentative updated iterate of
x (ν) +�x (ν). If the tentative updated iterate does not satisfy the sufficient decrease
criterion (7.29) then we try x (ν) + (2)−1 × �x (ν). If this tentative updated iterate
does not satisfy (7.29) then we try x (ν) + (2)−2 × �x (ν) and so on. The process
of reducing the step-size can be thought of as “back-tracking” from x (ν) + �x (ν)

towards x (ν). The first few tentative updates are illustrated in Figure 7.10 for a
decision vector x ∈ R2.

7.4.2.4 Example

Again consider the inverse tangent function discussed in Section 7.4.2.1. Fig-
ure 7.11 repeats the function g = arctan from Figure 7.9 and its first-order Taylor
approximation about x (ν) = 5, but also illustrates the Armijo rule. As in Fig-
ure 7.9, the solution to g(x) = 0 is illustrated with a • in Figure 7.11. Figure 7.11
also shows, as a dashed line, the first-order Taylor approximation to the inverse
tangent function about x (ν) = 5, which is illustrated with a ◦.

322 Algorithms for non-linear simultaneous equations

35 30 25 20 15 10 5 0 5 10 15
2

1 5

1

0 5

0

0 5

1

1 5

2

x

arctan(x)

x�

× ××

x (ν)

Fig. 7.11. Armijo step-
size rule applied to solving
equation with arctan func-
tion (shown solid). The
first-order Taylor approxi-
mation about x (ν) = 5 is
shown dashed. The point[

x (ν)

g(x (ν))

]
is illustrated

by the right-most ◦, while
the solution x� = 0 to
the equation g(x) = 0 is
shown with a •. The dotted
lines bound the region of
acceptance for the Armijo
rule with δ = 0.5. The
three × do not satisfy the
Armijo rule. The updated
iterate is illustrated by the
left-most ◦.

The Newton–Raphson step direction to solve g(x) = 0 is:

�x (ν) = −[J (x (ν))]
−1

g(x (ν)),

≈ −35.7,

where J is the Jacobian of g. Using this update would yield x (ν) +�x (ν) ≈ −30.7.

The left-most × in Figure 7.11 shows the point

[
x (ν) + �x (ν)

g(x (ν) + �x (ν))

]
. As mentioned

in Section 7.4.2.1, using a step-size equal to one does not result in an improved
iterate in this case.

The Armijo rule seeks a value of step-size 0 < α(ν) < 1 such that (7.29) holds.
The dotted lines in Figure 7.11 bound the region satisfying these requirements for

δ = 0.5. That is, the dotted lines bound the set of points

[
x (ν) + α(ν)�x (ν)

γ

]
that

satisfy:

0 ≤ α(ν) ≤ 1,

−(1 − δα(ν))
∥∥g(x (ν))

∥∥ ≤ γ ≤ (1 − δα(ν))
∥∥g(x (ν))

∥∥ .

Using step-sizes of the form (7.30) results in tentative updated iterates and corre-

7.4 Globalization procedures 323

sponding function values of:

x (ν) + �x (ν) ≈ −30.7, g(x (ν) + �x (ν)) ≈ −1.54,

x (ν) + (2)−1 × �x (ν) ≈ −12.9, g(x (ν) + (2)−1 × �x (ν)) ≈ −1.49,

x (ν) + (2)−2 × �x (ν) ≈ −3.93, g(x (ν) + (2)−2 × �x (ν)) ≈ −1.32,

x (ν) + (2)−3 × �x (ν) ≈ 0.54, g(x (ν) + (2)−3 × �x (ν)) ≈ 0.49.

The first three tentative updated iterates fail to satisfy (7.29). They are illustrated by
the three× in Figure 7.11. They fall outside the region bounded by the dotted lines.
The last tentative updated iterate satisfies (7.29) and is illustrated by the left-most
◦ in Figure 7.11. The updated iterate is therefore x (ν+1) = x (ν) + (2)−3 × �x (ν) ≈
0.54.

7.4.2.5 Choice of δ

If the parameter δ is close to one then it may take many reductions of α(ν) to
satisfy (7.29). Since each tentative update requires a function evaluation, we would
prefer to avoid excessive “back-tracking.” Consequently, in practice, δ is often
chosen to be considerably less than one.

7.4.2.6 Variations

There are other variations on (7.29)–(7.30) that seek to avoid unnecessary “back-
tracking.” Moreover, instead of repeatedly reducing the step-size until the condi-
tion (7.29) is satisfied, we might choose to fit a polynomial equation to the depen-
dence of

∥∥g(x (ν) + α�x (ν))
∥∥ on the step-size α and then seek the value of α that

minimizes the polynomial. This approach is discussed in [58, section 8.3.1]. There
are other variants and we will return to this issue when we discuss related issues in
unconstrained optimization in Section 10.2.4.

7.4.2.7 Discussion

Step-size rules can significantly aid in convergence from initial guesss that are far
from the solution. Their advantages include that:

(i) they can be easily incorporated into any of the methods discussed in this
chapter,

(ii) they make an algorithm much more robust in that it can handle initial points
that do not satisfy the conditions of our theorems, and

(iii) local to the solution, the step-size rule will typically be satisfied for α(ν) = 1
so that the local convergence properties will hold for the latter iterations.

Nevertheless, we cannot expect the Newton–Raphson method to perform satisfac-
torily if the Jacobian varies greatly with its argument because the Jacobian will

324 Algorithms for non-linear simultaneous equations

then have a large Lipschitz constant. Fortunately, many problems of practical in-
terest possess Jacobians that are Lipschitz continuous or even approximately con-
stant. Furthermore, as suggested in Exercise 7.15, we will see by example in Sec-
tions 11.1 and 11.2 that we can sometimes apply a transformation to a problem
that makes the Jacobian more nearly constant and therefore provides better perfor-
mance than applying the Newton–Raphson update to the untransformed equations.

7.4.3 Computational effort

Computational effort is more difficult to characterize when the initial guess is
far from the solution. We will make a qualitative observation to aid in choosing
amongst the Newton–Raphson method and its variations. In particular, if we start
far from the solution, it is unlikely that the effort to exactly calculate and factorize
the Jacobian will be rewarded with fast convergence. That is, the variations on the
Newton–Raphson method that require less effort per iteration will tend to perform
better overall than the exact Newton–Raphson method.

7.5 Sensitivity and large change analysis

We now suppose that the equations are parameterized by a parameter χ ∈ Rs .
That is, g : Rn × Rs → Rn . We imagine that we have solved the equations for a
base-case value of the parameters, say χ = 0, to find the base-case solution x� and
that now we are considering the sensitivity of the base-case solution to variation of
the parameters around χ = 0.

7.5.1 Sensitivity

7.5.1.1 Implicit function theorem

The implicit function theorem (Theorem A.9 in Section A.7.3 of Appendix A)
allows us to solve implicitly for the solution in terms of the parameters. The fol-
lowing corollary to the implicit function theorem provides us with the sensitivity
of the solution to the parameters.

Corollary 7.5 Let g : Rn × Rs → Rn be partially differentiable with continuous partial
derivatives. Consider solutions of the equations g(x;χ) = 0, where χ is a parameter.
Suppose that x� satisfies:

g(x�; 0) = 0.

7.5 Sensitivity and large change analysis 325

We call x = x� the base-case solution and χ = 0 the base-case parameters. Define the
(parameterized) Jacobian J : Rn × Rs → Rn×n by:

∀x ∈ R
n,∀χ ∈ R

s, J (x;χ) = ∂g
∂x

(x;χ).

Suppose that J (x�; 0) is non-singular. Then, there is a solution to g(x;χ) = 0 for χ in
a neighborhood of the base-case values of the parameters χ = 0. The sensitivity of the
solution x� to variation of the parameters χ , evaluated at the base-case χ = 0, is given
by:

∂x�

∂χ
(0) = −[J (x�; 0)]−1K (x�; 0),

where K : Rn × Rs → Rn×s is defined by:

∀x ∈ R
n,∀χ ∈ R

s, K (x;χ) = ∂g
∂χ

(x;χ).

�

If J (x�; 0) has already been factorized then the calculation of the sensitivity re-
quires one forwards and backwards substitution for each entry of χ .

7.5.1.2 Example

Consider a parameterized version of the function defined in (2.6). In particular,
suppose that g : R × R → R is defined by:

∀x ∈ R, ∀χ ∈ R, g(x;χ) = (x − 2 − sin χ)3 + 1.

We first met this parameterized example in Section 2.7.5.2. We know from Fig-
ure 7.8 that the base-case solution is x� = 1. We consider the sensitivity of the
solution to the parameter χ , evaluated at χ = 0. Using Corollary 7.5, we have that
the sensitivity is given by:

∂x�

∂χ
(0) = −[J (x�; 0)]−1K (x�; 0),

where J : Rn × Rs → Rn×n and K : Rn × Rs → Rn×s are defined by:

∀x ∈ R
n, ∀χ ∈ R

s, J (x;χ) = ∂g
∂x

(x;χ),

= 3(x − 2 − sin χ)2,

J (x�; 0) = 3,

∀x ∈ R
n,∀χ ∈ R

s, K (x;χ) = ∂g
∂χ

(x;χ),

= 3(x − 2 − sin χ)2(− cos χ),

K (x�; 0) = −3.

326 Algorithms for non-linear simultaneous equations

Substituting, the sensitivity is 1.

7.5.2 Large changes

If a parameter in the problem changes very significantly then sensitivity analysis
using the base-case may be inadequate. In this case, we may want to solve the
problem explicitly for the changed parameter explicitly. We can use the iterative
techniques we have developed, using as initial guess the solution to the base-case.
(See Exercise 7.18.)

7.6 Summary

In this chapter we have introduced the Newton–Raphson method and its variants as
an effective means to iterate towards the solution of non-linear simultaneous equa-
tions. We have presented local convergence results and also discussed convergence
from initial guesses that are far from the solution. We also discussed sensitivity
analysis. In the next chapter we will apply these ideas to our case studies from
Chapter 6.

Exercises

Newton–Raphson method

7.1 This exercise concerns Taylor’s theorem. Let g : R2 → R2 be defined by:

∀x ∈ R
2, g(x) =

[
exp(x1) − x2
x1 + exp(x2)

]
.

(i) Use Taylor’s theorem to linearly approximate g(x + �x) in terms of:

• g(x),
• the Jacobian J (x), and
• �x .

Write out the linear approximation explicitly for the given g. That is, you must
explicitly differentiate g to find the entries in J .

(ii) Calculate the difference between the exact expression for g(x +�x) and the linear
approximation to it. Let us call this difference e : R2 × R2 → R defined by:

∀x ∈ R
2, ∀�x ∈ R

2, e(x,�x) = g(x + �x) − (the linear approximation).

(iii) Show that:

‖e(x, �x)‖2

‖�x‖2
≤ exp(2x1)(exp(�x1) − 1 − �x1)

2

(�x1)2

+ exp(2x2)(exp(�x2) − 1 − �x2)
2

(�x2)2
.

Exercises 327

Use the norm given by: ∀x ∈ R2, ‖x‖ = √
(x1)2 + (x2)2.

(iv) Show that ‖e(x,�x)‖ / ‖�x‖ → 0 as ‖�x‖ → 0. Use the norm given by: ∀x ∈
R2, ‖x‖ = √

(x1)2 + (x2)2. Be careful when proving this limit. (Hint: Consider
‖e(x,�x)‖2 / ‖�x‖2 and use the previous part together with l’Hôpital’s rule to eval-
uate the limit of the ratio. (See Theorem A.8 in Section A.7.2 of Appendix A.))

7.2 In this exercise we will apply the Newton Raphson update to solve g(x) = 0 where
g : Rn → Rn was specified in Section 2.2.2 by (2.5):

∀x ∈ R
2, g(x) =

[
(x1)

2 + (x2)
2 + 2x2 − 3

x1 − x2

]
.

(i) Calculate the Jacobian explicitly.
(ii) Calculate the update �x (ν) according to (7.6) in terms of the current iterate x (ν).
(iii) Starting with the initial guess x (0) = 0, calculate x (1) according to (7.6) (7.7).
(iv) Calculate x (2) according to (7.6) (7.7).

Variations on the Newton–Raphson method

7.3 Consider the system of non-linear simultaneous equations g(x) = 0 where g : R2 →
R2 is defined by:

∀x ∈ R
2, g(x) =

[
(x1)

2 − 0.1x1x2
(x2)

2 − 0.1x1x2

]
.

(i) Write out explicitly the Newton Raphson update to solve g(x) = 0. Invert the
Jacobian matrix explicitly using the formula for the inverse of a 2 × 2 matrix.

(ii) Is there a solution to g(x) = 0?

(iii) Starting at x (0) =
[

1
2

]
, calculate the first three iterates.

(iv) Now replace the exact Jacobian by the approximation J̃ (x) obtained by neglecting
the off-diagonal terms of the Jacobian. Write down the new update equations.

(v) Starting at x (0) =
[

1
2

]
, calculate the first five iterates based on the approximate

Jacobian J̃ (x).
(vi) Which method takes less effort overall to achieve a solution satisfying the condition∥∥g(x (ν))

∥∥∞ < 0.3: using the exact Jacobian or using the approximate Jacobian?
Compare the total number of multiplications, divisions, additions, and subtractions.
(Hint: The answer is: “it all depends.”)

7.4 Consider a plate capacitor, illustrated in Figure 7.12. (We will consider a similar
arrangement in the sizing of interconnects in integrated circuits case study in Section 15.5.)
The capacitor consists of two conductors separated by a non-conducting dielectric. The
upper conductor is of length L and width w and has thickness T . The upper conductor is
separated from the lower conductor by a dielectric of thickness d and dielectric constant ε.

328 Algorithms for non-linear simultaneous equations

� �� �

 �

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Conductor

Dielectric

Conductor

��

��

��
�
 L

�
���
�w

�

�

T

��d

Fig. 7.12. Plate capacitor.

The capacitance, C , of this capacitor appears as a term in a set of non-linear simultane-
ous equations, g(x) = 0 that we are trying to solve. The variables L , w, T, d are entries in
the decision vector x ∈ Rn . In particular,

x =

⎡⎢⎢⎢⎣
L
w
T
d
ξ

⎤⎥⎥⎥⎦ ,

∀x ∈ R
n, g1(x) = C(x) + ω(x),

where C, ω : Rn → R are functions and ξ ∈ Rn−4. To apply the Newton Raphson method

to solve the equations, we must evaluate C and its partial derivatives
∂C
∂x at the values of

the iterates. (We will ignore the calculation of ω and its derivative.)
If we consider only the sheet capacitance and ignore the fringing capacitance then the

capacitance is approximately given by:

∀x ∈ R
n,C(x) ≈ Lwε

d
.

In fact, because of fringing capacitance and other issues, the functional dependence of the
capacitance is more complicated. We have access to some software that can accurately
calculate the capacitance; however, the software does not provide information about the
partial derivatives of the capacitance.

(i) Suggest how to combine the results of the software with the approximate capacitor
model for use in the Newton Raphson method to solve g(x) = 0.

(ii) Provide an approximation to
∂C
∂x . (Make sure you provide approximations to all

the entries in the partial derivatives, including with respect to ξ .)

Exercises 329

7.5 Show how to approximate the Jacobian using the forward difference approximation
with n finite difference calculations. Each finite difference calculation requires the dif-
ference between two n-vectors. (Hint: Note that the �-th column of J is equal to the
directional derivative of g in the direction I�.)

7.6 In this exercise we consider updates that satisfy the quasi-Newton condition (7.13).
Let g : Rn → Rn and suppose that J̃ (ν−1) ∈ Rn×n is symmetric. Also assume that:

• (x (ν) − x (ν−1))
†
[J̃ (ν−1)]

†
(x (ν) − x (ν−1)) 	= 0,

• (g(x (ν)) − g(x (ν−1)))
†
(x (ν) − x (ν−1)) 	= 0, and

• J̃ (ν−1)(x (ν) − x (ν−1)) 	= g(x (ν)) − g(x (ν−1)).

Define the updated approximation J̃ (ν) ∈ Rn×n by J̃ (ν) = J̃ (ν−1) + �J , where �J ∈
Rn×n is defined by:

�J = − J̃ (ν−1)(x (ν) − x (ν−1))(x (ν) − x (ν−1))
†
[J̃ (ν−1)]

†

(x (ν) − x (ν−1))
†[J̃ (ν−1)]

†
(x (ν) − x (ν−1))

+ (g(x (ν)) − g(x (ν−1)))(g(x (ν)) − g(x (ν−1)))
†

(g(x (ν)) − g(x (ν−1)))
†
(x (ν) − x (ν−1))

,

where we note that the terms in the denominators are non-zero by assumption.

(i) Show that J̃ (ν) satisfies the quasi-Newton condition (7.13), which we repeat here:

J̃ (ν)(x (ν) − x (ν−1)) = g(x (ν)) − g(x (ν−1)).

(ii) Show that �J is a symmetric rank two update.

Local convergence of iterative methods

7.7 This exercise investigates whether the norm of the change in the iterates of a sequence
is, by itself, a good measure of closeness of the iterates to a limit. Suppose that x ∈ R is a
scalar and that it turned out that:

∀ν ∈ Z+, �x (ν) = 1

ν + 1
.

Then �x (ν) → 0 as ν → ∞ (see Exercise 2.11), so that for any ε�x > 0 the criterion∥∥�x (ν)
∥∥ ≤ ε�x will eventually be satisfied.

(i) Is x (ν) ever “close” to a limit? (Hint: Bound x (ν) from below by an appropriate
definite integral of 1

t+1 .)

(ii) Can we use the criterion
∥∥�x (ν)

∥∥ ≤ ε�x alone to measure closeness to a solution?

7.8 Show that any convergent sequence is Cauchy. That is, suppose that {x (ν)}∞ν=0 con-
verges to x� and therefore by definition satisfies:

∀ε ∈ R++, ∃N ∈ Z+ such that (ν ∈ Z+ and ν ≥ N) ⇒
(∥∥∥x (ν) − x�

∥∥∥ ≤ ε
)

.

330 Algorithms for non-linear simultaneous equations

Show that the sequence satisfies:

∀ε ∈ R++, ∃N ∈ Z+ such that (ν, ν′ ∈ Z+ and ν, ν′ ≥ N) ⇒
(∥∥∥x (ν) − x (ν′)

∥∥∥ ≤ ε
)

.

(Hint: Use the triangle inequality to bound
∥∥∥x (ν) − x (ν′)

∥∥∥ in terms of
∥∥x (ν) − x�

∥∥ and∥∥∥x (ν′) − x�
∥∥∥.)

7.9 Consider the function � : R → R defined by:

∀x ∈ R,�(x) =
{

1/x, if x 	= 0,
0, otherwise,

let S = {x ∈ R|x > 0}, and use absolute value as the norm.

(i) Show that � is continuous on S.
(ii) Show that � is not Lipschitz continuous on S.
(iii) Show that � is Lipschitz continuous on P = {x ∈ R|x ≥ 10−47}. Find a Lipschitz

constant.

7.10 Suppose that � : Rn → Rm is partially differentiable with continuous partial deriva-
tives on a convex set S and that, for some induced matrix norm ‖•‖ (see Definition A.30):

∀x ∈ S,

∥∥∥∥ ∂�

∂x (x)

∥∥∥∥ ≤ L .

(i) Show that � is Lipschitz continuous with constant L for some norms on Rn and
Rm . (Hint: Let x ′, x ′′ ∈ S and define the function φ : [0, 1] → Rm by:

∀t ∈ [0, 1], φ(t) = �(x ′′ + t (x ′ − x ′′)).

Then,

�(x ′) − �(x ′′) = φ(1) − φ(0) =
∫ 1

0

dφ

dt (t) dt.

Use the chain rule to evaluate the derivative and then use the definition of the in-
duced matrix norm to bound the derivative in terms of L and the norm of appropri-
ate vectors.)

(ii) Is the result still true if S is not convex? (Prove or give a counterexample.)

7.11 Let � : R2 → R2 be defined by:

∀x ∈ R
2,�(x) =

[
0.9(x1 − x2)/

√
2

0.9(x1 + x2)/
√

2

]
.

Calculate the smallest values of L that satisfy (7.19) on S = R2 for the following choices
of norms on both the domain and range of �:

(i) ‖•‖ = ‖•‖1,
(ii) ‖•‖ = ‖•‖2,

Exercises 331

(iii) ‖•‖ = ‖•‖∞.
Notice that there are really two sub-parts to each question:

(a) Find an L that satisfies (7.19). That is, find an L that satisfies:

∀x, x ′ ∈ S,
∥∥�(x) − �(x ′)

∥∥ ≤ L
∥∥x − x ′

∥∥ .

(Hint: You can use Exercise 7.10; however, it may be easier to apply the
definition of Lipschitz constant directly.)

(b) Prove that the L you have found is actually the smallest value that satisfies
the definition.

7.12 Is the map � : R2 → R2 defined in Exercise 7.11 a contraction map on R2 with
respect to the:

(i) ‖•‖1 norm?
(ii) ‖•‖2 norm?
(iii) ‖•‖∞ norm?

7.13 Define � in such a way that (7.20) represents the Newton Raphson update (7.6)
(7.7). You can assume that any matrix inversion that you need to perform is well-defined.

7.14 In this exercise we consider applying the chord and Kantorovich theorems to a
function. Consider the function g : R → R defined by:

∀x ∈ R, g(x) = exp(x) − 1 − 0.2(x − 1)2.

(i) Calculate the parameters a, b, c for the chord and Kantorovich theorems for apply-
ing the Newton Raphson update to solve g(x) = 0 with an initial guess of x (0) = 0.
Use absolute value as the norm. For calculating c, use the closed ball of radius 0.5
about x (0). To calculate a Lipschitz constant for the Jacobian J , you can use the

following result from Exercise 7.10: if

∣∣∣∣ ∂ J
∂x (x)

∣∣∣∣ ≤ L for all x in the closed ball of

radius 0.5 about x (0) then L is a Lipschitz constant for J in this ball.
(ii) Use the MATLAB function fsolve to solve the equation g(x) = 0 for the initial

guess of x (0) = 0. Report the number of iterations required to satisfy the default
stopping criterion and the number of function evaluations.

7.15 In this exercise we consider applying the chord and Kantorovich theorems to a
function and transformed versions of it. Consider the function g : R → R defined by:

∀x ∈ R, g(x) = arctan(x).

This function is illustrated in Figure 7.9.

(i) Calculate the parameters a, b, c for the chord and Kantorovich theorems for apply-
ing the Newton Raphson update to solve g(x) = 0 with an initial guess of x (0) = 5.
(Use ρ = 5.)

(ii) Comment on the value of abc for g.

332 Algorithms for non-linear simultaneous equations

(iii) Use the MATLAB function fsolve to solve the equation g(x) = 0 for the initial
guess of x (0) = 5. Report the number of iterations required to satisfy the default
stopping criterion.

(iv) Consider the transformed function γ : R → R defined by:

∀x ∈ R, γ (x) = exp(g(x)) − 1.

Sketch the graph of γ .
(v) Calculate the parameters a, b, c for γ as defined in Part (iv) for the chord and

Kantorovich theorems for applying the Newton Raphson update to solve γ (x) = 0
with an initial guess of of x (0) = 5. (Use ρ = 5.)

(vi) Comment on the value of abc for γ as defined in Part (iv).
(vii) Use the MATLAB function fsolve to solve the equation γ (x) = 0 with γ as

defined in Part (iv) for the initial guess of x (0) = 5. Report the number of iterations
required to satisfy the default stopping criterion.

(viii) Consider the transformed function � : R → R defined by:

∀x ∈ R, �(x) = tan(g(x)).

Sketch the graph of �.
(ix) Calculate the parameters a, b, c for � as defined in Part (viii) for the chord and

Kantorovich theorems for applying the Newton Raphson update to solve �(x) = 0
with an initial guess of x (0) = 5.

(x) Comment on the value of abc for � as defined in Part (viii).
(xi) Use the MATLAB function fsolve to solve the equation �(x) = 0 with � as de-

fined in Part (viii) for the initial guess of x (0) = 5. Report the number of iterations
required to satisfy the default stopping criterion.

Globalization procedures

7.16 This exercise considers properties of the Newton Raphson step direction.

(i) Show that the Newton Raphson step direction satisfies (7.28) at any point x (ν) such
that J (x (ν)) is well-defined and non-singular and such that x (ν) is not a solution to
g(x) = 0.

(ii) Show that if (7.28) is satisfied then there exists an α(ν) that satisfies (7.27). (Hint:
Consider a first-order Taylor approximation about x = x (ν). Consider the remain-
der.)

7.17 Consider the function g : R → R defined in (2.6) in Section 2.2.2.2, which we
repeat here for reference:

∀x ∈ R, g(x) = (x − 2)3 + 1.

The function is illustrated in Figure 7.8. Suppose that the current iterate is x (ν) = 2, as
discussed in Section 7.4.1.1. Since the Jacobian is singular at this iterate, we will use the
secant approximation instead of the Jacobian to calculate a step direction.

Exercises 333

(i) Calculate the step direction based on the secant approximation, given x (ν−1) = 2.5
as illustrated in Figure 7.8.

(ii) Apply the Armijo step-size rule, with δ = 0.5, to find the largest step-size of the
form (7.30) satisfying (7.29). Calculate the updated iterate x (ν+1).

Sensitivity and large change analysis

7.18 Consider the function g : R × R → R defined by:

∀x ∈ R,∀χ ∈ R, g(x;χ) = arctan(x − χ) − χ.

(i) Find the base-case solution x� to g(x; 0) = 0 in the range −π
2 < x� < π

2 .
(ii) Calculate the sensitivity of the base-case solution to variation of χ , evaluated at

χ = 0.
(iii) Use the solution from the previous part to estimate the solution of g(x; 0.1) = 0.
(iv) Use the MATLAB function fsolve to solve the equation g(x; 0.1) = 0. Use as

initial guess the solution from Part (iii). Report the number of iterations required to
satisfy the default stopping criterion.

7.19 Recall the discussion of eigenvalues in Section 2.2.2.3. Suppose that A : Rs →
Rn×n and consider the parameterized characteristic equation for A:

g(λ;χ) = 0,

where g : K × Rs → K is the parameterized characteristic polynomial defined by:

∀λ ∈ K,∀χ ∈ R
s, g(λ;χ) = det(A(χ) − λI),

where det is the determinant of the matrix. (See Definition A.10 of the determinant of a
matrix.)

For a given value of χ , the characteristic equation g(λ;χ) = 0 is one non-linear equa-
tion in one variable λ having n (possibly not all distinct) solutions.

(i) Suppose an eigenvalue λ� is known for the base-case value of χ = 0. Calculate the
sensitivity of λ� to χ , evaluated at χ = 0.

(ii) What if the eigenvalue is repeated?

8

Solution of the non-linear simultaneous equations case
studies

In this chapter we will apply the techniques described in the last chapter to the
non-linear direct current circuit in Section 8.1 and to the power flow problem in
Section 8.2.

8.1 Analysis of a non-linear direct current circuit

In Section 6.1 we developed equations for the non-linear DC circuit illustrated in
Figure 6.3, which is repeated in Figure 8.1. The equations describing this circuit
were expressed in the form g(x) = 0. In Section 8.1.1 we will discuss the Jacobian
of g for this problem, while in Sections 8.1.2 and 8.1.3 we discuss the initial guess
and the calculation of successive Newton–Raphson iterates. In Section 8.1.4 we in-
vestigate the application of the chord and Kantorovich theorems. In Sections 8.1.5
and 8.1.6 we discuss application of the Armijo rule and stopping criteria. In Sec-
tion 8.1.7 we discuss changes to the circuit.

8.1.1 Jacobian

We must calculate the Jacobian J = ∂g
∂x

. The function g : R4 → R4 is defined

in (6.6), which we repeat:

∀x ∈ R
4, g(x) =

⎡⎢⎢⎢⎢⎢⎢⎣

(
1
Ra

)
x1 + ib(x1 − x2) − I1

−ib(x1 − x2) +
(

1
Rc

+ 1
Rd

)
x2 +

(
− 1

Rd

)
x3(

− 1
Rd

)
x2 +

(
1
Rd

+ 1
Re

+ 1
Rf

)
x3 +

(
− 1

Rf

)
x4(

− 1
Rf

)
x3 +

(
1
Rf

)
x4 + ig(x4)

⎤⎥⎥⎥⎥⎥⎥⎦ .

334

8.1 Analysis of a non-linear direct current circuit 335

� � �

� � �1 2 3 4

0

�	
�
↑ I1 Ra

����
Db

Rc

Rd

Re

Rf

���� Dg

Fig. 8.1. The non-linear
DC circuit from Figure 6.3.

From this expression we can obtain the Jacobian J : R4 → R4×4 defined by:

∀x ∈ R
4, J (x) =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
1
Ra

)
+ dib

dVb
(x1 − x2) − dib

dVb
(x1 − x2) 0 0

− dib
dVb

(x1 − x2)
dib
dVb

(x1 − x2) +
(

1
Rc

+ 1
Rd

) (
− 1

Rd

)
0

0
(
− 1

Rd

) (
1
Rd

+ 1
Re

+ 1
Rf

) (
− 1

Rf

)
0 0

(
− 1

Rf

) (
1
Rf

)
+ dig

dVg
(x4)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(8.1)

The general case for an arbitrary circuit consisting of resistors, diodes, and cur-
rent sources was considered in Exercise 6.2. The Jacobian is similar in appearance
to the admittance matrix for a linear circuit, with the same sort of sparsity structure:

• non-zeros on the diagonals, and

• non-zeros on the off-diagonals corresponding to branches.

The only qualitative difference is that for the diodes, we have incremental admit-
tances evaluated at x instead of admittances. In other words, we have linearized
the behavior of the diode about our guess of the operating point. As remarked in
Section 6.1.4.3, we can store the information specifying the functional represen-
tation of the Jacobian to take advantage of sparsity. Moreover, we can store the
value of the Jacobian evaluated at a particular value of x as a sparse matrix and
use sparsity techniques when factorizing and performing forwards and backwards
substitution.

336 Solution of the non-linear simultaneous equations case studies

8.1.2 Initial guess

To start the iterative method, we must provide an initial guess x (0) for the value
of the solution x�. If we know the solution of a similar circuit from previous cal-
culations, then we can use it as x (0). We may know such a previous solution, for
example, if we are solving a sequence of circuits that represent the transient be-
havior of the circuit over time at successive time-steps, t = 0, 1, 2, To calculate
the solution for each time-step t except t = 0, we can use the solution from the
previous time-step (t−1) as the initial guess for the calculation for time-step t [95,
section 10.7]. Of course, we first have to solve the non-linear circuit for t = 0
without the benefit of a solution from the previous time-step.

In the absence of a better guess, x (0) = 0 may be a reasonable initial guess for
our circuit; however, better guesses will save on computation time and occasion-
ally make the difference between successful and unsuccessful application of the
algorithm. In the case of the diode circuit, we may anticipate which diodes are for-
ward conducting and which are not and use this to calculate an initial guess. (See
Exercise 8.2 for an example of bounding the solution to the diode circuit.)

8.1.3 Calculation of iterates

The basic Newton–Raphson update (7.6)–(7.7) can now be applied. To calculate
x (1), we solve:

J (x (0))�x (0) = −g(x (0)),

x (1) = x (0) + �x (0).

Successive iterates have an analogous form. Exercise 8.1 applies the Newton–
Raphson and chord updates to the non-linear DC circuit from Exercise 6.1.

8.1.4 Application of chord and Kantorovich theorems

Exercise 8.1 suggests that the Newton–Raphson and chord updates generate a se-
quence of iterates that converge to the solution. The bounds calculated in Exer-
cise 8.2 are consistent with this observation. To guarantee convergence, however,
we must apply our theorems. Exercise 8.3 is an extended example of applying the
chord and Kantorovich theorems to the circuit.

As Exercise 8.3 makes clear, applying the chord and Kantorovich theorems can
require considerable effort even for simple problems. It is usually easier just to
calculate the iterates and empirically judge if they are providing useful answers as
Exercise 8.1 shows. However, the theorems:

• confirm that the sequence of iterates converges, and

8.1 Analysis of a non-linear direct current circuit 337

• estimate the rate of convergence to the solution.

Notice that the theorems will run into difficulty if the entries in the Jacobian vary
greatly with their argument because this will cause a large value for the Lipschitz
constant c. (See Part (vii) of Exercise 8.3 and compare to Exercise 8.7.) Large
variation of the entries in the Jacobian occurs in the diode model and other models
with cut-off/cut-on characteristics where the slope of the current versus voltage
characteristic varies from near zero to very large.

In Exercise 8.1 we deliberately chose the current source to be small enough so
that the diodes are never strongly conducting and therefore the slope of the current
versus voltage characteristic varies only over a relatively small range. In practice,
we need to solve systems that include diodes that are in the forward conducting
region as in Exercises 8.4–8.6. In this case, the theorems will not provide useful
results as shown in Exercise 8.7.

Exercise 8.4 indicates that the iterates seem to be converging for the Newton–
Raphson update for the 1 amp current source but not converging for the chord
update for the 1 amp current source. However, Exercise 8.7 shows that the hy-
potheses of the chord and Kantorovich theorems do not hold so that we are unsure
as to whether the iterates will converge. In fact, in Exercise 8.4,

∥∥g(x (1))
∥∥

2 >
∥∥g(x (0))

∥∥
2 ,

so that for the first iteration at least, the Newton–Raphson step direction with step-
size one is not reducing ‖g(x)‖2, although it does bring us towards the solution
in the sense of reducing ‖x − x�‖2. (Notice that

∥∥g(x (1))
∥∥

2 >
∥∥g(x (0))

∥∥
2 is not

inconsistent with
∥∥x (1) − x�

∥∥
2 <

∥∥x (0) − x�
∥∥

2.) Another problematic issue is that
we must calculate to very high precision to get reasonable answers. This is indica-
tive that the Newton–Raphson method is not working well because the “problem”
of solving for the Newton–Raphson update is ill-conditioned.

Of course, if we had a starting point closer to the solution, then we would be
able to satisfy the hypotheses of the theorems. We could do this, for example,
by guessing the voltages across the forward biased diodes. Another good starting
point would be the bounds on the solution calculated in Exercise 8.6. However, in
general we will not be able to calculate such tight bounds a priori.

The basic issue is that the chord and Kantorovich convergence theorems we
have presented are local in nature. Their conclusions do not help us if we are
solving a circuit for the first time and do not know which diodes will be conducting
and which will be off. We will discuss step-size rules in Section 8.1.5 to enable
convergence from initial guesses that are far from the solution.

338 Solution of the non-linear simultaneous equations case studies

8.1.5 Step-size rules

A step-size rule can significantly aid in convergence even when the Jacobian varies
greatly. For our circuit, the Armijo rule will guarantee that

∥∥g(x (1))
∥∥

2 <
∥∥g(x (0))

∥∥
2

and improve convergence. This is shown in Exercise 8.9.
The value of δ in the Armijo rule controls the stringency of the acceptance cri-

terion. A small value of δ, such as used in Exercise 8.9, requires only a small
reduction in the value of the norm of the function to satisfy the criterion. In con-
trast, for a large value of δ it may take many calculations of trial values, and many
reductions of α(ν), to find a value that satisfies the Armijo criterion. That is, there
will be considerable “back-tracking” from the full step-size. If evaluation of g re-
quires considerable computational effort, then a small value of δ will decrease the
amount of “back-tracking.”

The Armijo rule guards against the iterations going outside the region of accu-
racy of the first-order Taylor approximation to g. As suggested in Exercise 8.9 for
the Newton–Raphson update, the Armijo rule can consequently improve the con-
vergence. As suggested in Exercise 8.9 for the chord method, the Armijo rule can
also mean the difference between convergence and non-convergence. As discussed
in Section 7.4.2.6, there are also other methods for aiding in global convergence.
The general idea with such approaches is to avoid steps that worsen the value of
the iterate and also to avoid taking unnecessarily small steps.

8.1.6 Stopping criteria

We continue with Newton–Raphson or one of the other techniques such as the
chord method, using the Armijo rule or some other step-size rule or other approach
to guard against excessively large steps, until we obtain a solution that satisfies an
appropriate criterion based on “engineering judgment.” To determine an appropri-
ate criterion, we should consider the accuracy of the data. For example, the current
source in Exercise 8.4 has value 1, but we have not specified the accuracy of the
measurement. If the measurement is accurate to, say, 0.1%, then it is superfluous
to try to solve the equations to far better than this accuracy. On the other hand, we
should choose a criterion that is somewhat more stringent than 0.1% to avoid stop-
ping at a point that satisfies the stopping criterion, but which is actually far from
a solution [45, section 8.2.3]. A reasonable criterion for this problem, assuming
that the measurements were all accurate to around 0.1% = 10−3, would be to stop
when:

• ∥∥g(x (ν))
∥∥∞ ≤ 10−4, and

• ∥∥�x (ν−1)
∥∥

2 ≤ 10−4 or
∥∥�x (ν−1)

∥∥∞ ≤ 10−4.

8.1 Analysis of a non-linear direct current circuit 339

We might require that this condition be satisfied over several successive iterations.
We might also impose a maximum iteration limit based on our previous experience
with the problem or based on analysis using the chord or Kantorovich theorems.
As mentioned in Section 7.3.5, we can also try to apply the chord and Kantorovich
theorems to the current iterate, x (ν) say, re-interpreted as a new initial guess in
order to obtain an explicit bound on the proximity to the solution.

8.1.7 Circuit changes

Suppose that we have solved the circuit equations for the base-case to a desired
accuracy and found an acceptable base-case solution x�. Now we suppose that the
equations are parameterized by a parameter χ ∈ Rs . That is, g : Rn × Rs → Rn ,
with the base-case solution corresponding to χ = 0, and we want to consider how
the solution changes with variation in χ . In the next two sections, we consider
sensitivity analysis and large change analysis.

8.1.7.1 Sensitivity

Using Corollary 7.5, we can evaluate the sensitivity of the base-case solution to
changes in χ , by:

∂x�

∂χ
(0) = −[J (x�; 0)]−1K (x�; 0),

where J : R4 × Rs → R4×4 and K : R4 × Rs → R4×s are defined by:

∀x ∈ R
4, ∀χ ∈ R

s, J (x;χ) = ∂g
∂x

(x;χ), K (x;χ) = ∂g
∂χ

(x;χ).

See Exercise 8.10.

8.1.7.2 Large change analysis

If a component or current source changes significantly, we can apply the Newton–
Raphson method (or one of the variants) to the changed system using an initial
guess for the changed system that is given by the base-case solution x� or an esti-
mate of the solution of the changed system obtained by sensitivity analysis. (See
Exercise 8.10.)

For a change in a resistor or diode, we can update the Jacobian using a rank one
update. In the case of a change in the resistance, we update the Jacobian based on
the change in the conductance of the resistor. In the case of a change in a diode, we
can update the Jacobian based on the calculated change in the incremental conduc-
tance of the diode evaluated at the previous solution x�. The original factorization
can then be updated by the effect of the rank one update. (See Exercise 8.10.)

340 Solution of the non-linear simultaneous equations case studies

neutral

1 2

3
�

Y1

Y13 �
�Y3

Y23 �
Y2

Y12

Fig. 8.2. Per-phase equiv-
alent circuit model re-
peated from Figure 6.10.

If several successive changes are made to the circuit then the updated Jacobian
should eventually be factorized again from scratch. Otherwise, accumulated nu-
merical errors from the updates can become large.

8.2 Analysis of an electric power system

In Section 6.2, we developed equations for the power flow problem in the form
g(x) = 0 for a per-phase equivalent circuit such as shown in Figure 6.10, which is
repeated in Figure 8.2.

As with the non-linear DC circuit analyzed in Section 8.1, to apply the Newton–
Raphson method we must evaluate the terms in the Jacobian. This will be discussed
in Section 8.2.1. We will then go on in Sections 8.2.2 and 8.2.3 to discuss the initial
guess and the calculation of iterates using the Newton–Raphson update. We will
then discuss approximations to the Jacobian and to the update in Section 8.2.4, dis-
cuss step-size rules in Section 8.2.5, and discuss stopping criteria in Section 8.2.6.
Finally, in Section 8.2.7 we will discuss circuit changes.

8.2.1 Jacobian

Exercise 6.5 considered the calculation of the Jacobian in the special case where:

• the real part of the admittance matrix is the zero matrix, and
• the voltage magnitude at each bus � is u� = 1.

Here we consider the general case.

8.2.1.1 Terms

The entries in g : Rn → Rn are either of the form p� : Rn → R, which we repeat
from (6.12):

∀x ∈ R
n, p�(x) =

∑
k∈�(�)∪{�}

u�uk[G�k cos(θ� − θk) + B�k sin(θ� − θk)] − P�,

8.2 Analysis of an electric power system 341

or of the form q� : Rn → R, which we repeat from (6.13):

∀x ∈ R
n, q�(x) =

∑
k∈�(�)∪{�}

u�uk[G�k sin(θ� − θk) − B�k cos(θ� − θk)] − Q�.

The components in the vector x are either of the form θk or of the form uk , so
we have four qualitative types of partial derivative terms corresponding to each
combination:

∀x ∈ R
n,

∂ p�

∂θk
(x) =⎧⎪⎪⎨⎪⎪⎩

∑
j∈�(�)

u�u j [−G�j sin(θ� − θ j) + B�j cos(θ� − θ j)], if k = �,

u�uk[G�k sin(θ� − θk) − B�k cos(θ� − θk)], if k ∈ J(�),
0, otherwise,

∀x ∈ R
n,

∂ p�

∂uk
(x) =⎧⎪⎪⎨⎪⎪⎩

2u�G�� +
∑
j∈�(�)

u j [G�j cos(θ� − θ j) + B�j sin(θ� − θ j)], if k = �,

u�[G�k cos(θ� − θk) + B�k sin(θ� − θk)], if k ∈ J(�),
0, otherwise,

∀x ∈ R
n,

∂q�

∂θk
(x) =⎧⎪⎪⎨⎪⎪⎩

∑
j∈�(�)

u�u j [G�j cos(θ� − θ j) + B�j sin(θ� − θ j)], if k = �,

u�uk[−G�k cos(θ� − θk) − B�k sin(θ� − θk)], if k ∈ J(�),
0, otherwise,

∀x ∈ R
n,

∂q�

∂uk
(x) =⎧⎪⎪⎨⎪⎪⎩

−2u�B�� +
∑
j∈�(�)

u j [G�j sin(θ� − θ j) − B�j cos(θ� − θ j)], if k = �,

u�[G�k sin(θ� − θk) − B�k cos(θ� − θk)], if k ∈ J(�),
0, otherwise.

8.2.1.2 Partitioning by types of terms

To emphasize the four types of terms in the Jacobian, we can partition it into four
blocks. To see this, order the entries in g so that all the equations for real power
appear first in a sub-vector p followed by all the equations for reactive power in a
sub-vector q. Then partition x so that all the voltage angles appear first in a sub-
vector θ followed by all the voltage magnitudes in a sub-vector u. Partitioning into

342 Solution of the non-linear simultaneous equations case studies

the four blocks corresponding to these sub-vectors, we obtain:

∀x ∈ R
n, J (x) =

[
Jpθ (x) Jpu(x)

Jqθ (x) Jqu(x)

]
, (8.2)

where:

∀x ∈ R
n, Jpθ (x) = ∂p

∂θ
(x),

∀x ∈ R
n, Jpu(x) = ∂p

∂u
(x),

∀x ∈ R
n, Jqθ (x) = ∂q

∂θ
(x),

∀x ∈ R
n, Jqu(x) = ∂q

∂u
(x).

8.2.1.3 Sparsity

Each of the four blocks in (8.2) has the same sparsity structure as the bus ad-
mittance matrix. In particular, in each block there are non-zero functions on the
diagonal and at the �k and k� entries for each line �k. The zero function appears in
each of the other entries in each block.

8.2.1.4 Symmetry

Notice that the blocks Jpθ , Jpu, Jqθ , and Jqu are not symmetric and [Jpu]† 	= Jqθ .
That is, the Jacobian as a whole is not symmetric. In fact, it is also not possible to
re-arrange the order of the variables and equations to make it symmetric. In Sec-
tion 8.2.4.2, however, we will discuss approximations that yield update equations
with coefficient matrices that are symmetric.

8.2.1.5 Partitioning by bus number

An alternative to partitioning by the types of terms is to partition the Jacobian into
blocks based on the bus number. That is, we re-order the equations and variables
so that corresponding entries of Jpθ (x), Jpu(x), Jqθ (x), and Jqu(x) are grouped
together in 2 × 2 blocks. As discussed in Section 5.5.4.2, we can treat each 2 × 2
block as a single “entry” in our sparse matrix. This saves on pointers and arrays,
therefore reducing overheads of sparse storage.

With the entries arranged as blocks, we can use block pivoting as discussed in
Section 5.5.4.2. We can treat each 2× 2 block as a single entity in factorization by
explicitly inverting the block using the formula for the inverse of a 2×2 matrix. We
will not use this approach for solving the power flow problem; however, in some
extensions of this problem block pivoting can be exploited to speed up calculations
considerably.

8.2 Analysis of an electric power system 343

8.2.2 Initial guess

To apply the Newton–Raphson method to the power flow equations, we must start
with an initial guess. If we do not have the solution to a similar problem at hand,
then we must make a suitable guess based on our knowledge of the problem. We
discuss this guess in this section.

As we described in Section 6.2.2.1, power systems are designed and operated
so that the magnitude of the voltages at the buses are all approximately equal to
the nominal rated voltage. In the formulation of the power flow problem we nor-
malized all the voltage magnitudes by their nominal values. Therefore, a sensible
choice for the initial guess for the voltage magnitude is u(0) = 1, where 1 is the
vector of all ones.

We have indicated that the voltage angles vary somewhat widely, for example,
in the range −45◦ to 45◦. A possible guess for the voltage angle is θ(0) = 0. These
choices of initial guess for voltage angle and magnitude are called a flat start.

8.2.3 Calculation of iterates

The basic Newton–Raphson update (7.6)–(7.7) can now be applied. In terms of the
blocks we have defined, the update equations are:[

Jpθ (x (ν)) Jpu(x (ν))

Jqθ (x (ν)) Jqu(x (ν))

] [
�θ(ν)

�u(ν)

]
= −

[
p(x (ν))

q(x (ν))

]
, (8.3)

θ(ν+1) = θ(ν) + �θ(ν), (8.4)

u(ν+1) = u(ν) + �u(ν). (8.5)

8.2.4 Approximation of the Jacobian and update

In this section, we describe various approximations that reduce the computational
effort required in the update equations.

8.2.4.1 Chord and Shamanskii updates

Using a flat start, x (0) =
[

θ(0)

u(0)

]
=
[

0
1

]
, as our initial guess, the entries for the

Jacobian become:

∂ p�

∂θk
(x (0)) =

⎧⎪⎪⎨⎪⎪⎩
∑
j∈�(�)

B�j , if k = �,

−B�k, if k ∈ J(�),
0, otherwise,

344 Solution of the non-linear simultaneous equations case studies

∂ p�

∂uk
(x (0)) =

⎧⎪⎪⎨⎪⎪⎩
2G�� +

∑
j∈�(�)

G�j , if k = �,

G�k, if k ∈ J(�),
0, otherwise,

∂q�

∂θk
(x (0)) =

⎧⎪⎪⎨⎪⎪⎩
∑
j∈�(�)

G�j , if k = �,

−G�k, if k ∈ J(�),
0, otherwise,

∂q�

∂uk
(x (0)) =

⎧⎪⎪⎨⎪⎪⎩
−2B�� −

∑
j∈�(�)

B�j , if k = �,

−B�k, if k ∈ J(�),
0, otherwise.

Note that
∂ p�

∂θk
(x (0)) and

∂q�

∂uk
(x (0)) are symmetric although

∂ p�

∂θk
and

∂q�

∂uk
are not

in general symmetric. In the chord method we use J (x (0)) as the approximation to
the Jacobian throughout the iterations. In the Shamanskii method, we occasionally
update the Jacobian.

8.2.4.2 Approximating particular terms

We have already observed that the Jacobian in the Newton–Raphson update for the
power flow equations is sparse and that by taking advantage of sparsity, we can
decrease the work in factorization. The necessary effort to solve for the Newton–
Raphson update increases with the number of non-zero entries in the Jacobian. We
will first approximate the Jacobian by:

(i) neglecting all the terms in the blocks Jpu and Jqθ , and

(ii) approximating some of the terms in the blocks Jpθ and Jqu .

Neglecting terms in the blocks increases the sparsity of the equations. Approxima-
tions to the terms in Jpθ and Jqu then yield a linear system that is similar to the
Jacobian used in the chord update with a flat start. (We will see the relationship be-
tween the approximations described here and the chord method in Exercise 8.19.)

Neglecting terms As noted in Section 6.2.4.4, in typical power systems:

(i) the inductive reactance of the series elements is much larger than the resis-
tance, and

(ii) the capacitive susceptance of the shunt elements is much larger than the
shunt conductance.

8.2 Analysis of an electric power system 345

Therefore, for a line between buses � and k, k ∈ J(�):

|G�k | � |B�k |. (8.6)

(See Exercise 8.15.)
Furthermore, as mentioned in Section 6.2.2.1 and as discussed in Exercise 6.4,

because of flow limits on lines, the real power flow must be limited so that the dif-
ference between the voltage angles at each end of a line is not too great. A typical
limit is |θ� − θk | ≤ π

4 and the angle difference is often much smaller. Therefore,

| sin(θ� − θk)| ≈ |θ� − θk |, for small angle differences in radians,

� 1, for small angle differences, (8.7)

cos(θ� − θk) ≈ 1, for small angle differences. (8.8)

Since the system is operated so that voltage magnitudes are near to one per unit:

u� ≈ 1. (8.9)

Recall the partition of the Jacobian defined in (8.2). Consider typical terms in the
four blocks Jpθ (x), Jpu(x), Jqθ (x), and Jqu(x). For k ∈ J(�), assuming that (8.6)–
(8.9) hold, we have that:

∂ p�

∂θk
(x) = u�uk[G�k sin(θ� − θk) − B�k cos(θ� − θk)],

≈ G�k(θ� − θk) − B�k, since u� ≈ 1, uk ≈ 1, and cos(θ� − θk) ≈ 1,

≈ −B�k, since |θ� − θk | � 1 and |G�k | � |B�k |, (8.10)∣∣∣∣ ∂ p�

∂uk
(x)

∣∣∣∣ = ∣∣u�[G�k cos(θ� − θk) + B�k sin(θ� − θk)]
∣∣ ,

≈ |G�k + B�k(θ� − θk)| , since u� ≈ 1, cos(θ� − θk) ≈ 1,

and sin(θ� − θk) ≈ (θ� − θk),

� |B�k |, since |θ� − θk | � 1 and |G�k | � |B�k |, (8.11)∣∣∣∣ ∂q�

∂θk
(x)

∣∣∣∣ = ∣∣u�uk[−G�k cos(θ� − θk) − B�k sin(θ� − θk)]
∣∣ ,

≈ |−G�k − B�k(θ� − θk)| , since u� ≈ 1, uk ≈ 1, cos(θ� − θk) ≈ 1,

and sin(θ� − θk) ≈ θ� − θk),

� |B�k |, since |θ� − θk | � 1 and |G�k | � |B�k |, (8.12)

346 Solution of the non-linear simultaneous equations case studies

∂q�

∂uk
(x) = u�[G�k sin(θ� − θk) − B�k cos(θ� − θk)],

≈ G�k(θ� − θk) − B�k, since u� ≈ 1, cos(θ� − θk) ≈ 1,

and sin(θ� − θk) ≈ (θ� − θk),

≈ −B�k, since |θ� − θk | � 1 and |G�k | � |B�k |. (8.13)

Therefore, for k ∈ J(�), if (8.6)–(8.9) are true then the terms
∂ p�

∂uk
(x) and

∂q�

∂θk
(x)

are much smaller in magnitude than the terms
∂ p�

∂θk
(x) and

∂q�

∂uk
(x), so that we

can often neglect
∂ p�

∂uk
(x) and

∂q�

∂θk
(x). Similar approximations hold for k =

�. (See Exercise 8.16.) These approximations reflect the qualitative observation
that real power flow is mostly determined by differences in voltage angles across
lines, while reactive power flow is mostly determined by voltage magnitude dif-

ferences [8, section 10.7] so that the partial derivatives
∂ p�

∂uk
(x) and

∂q�

∂θk
(x) are

relatively small.
If we neglect all the terms in Jpu and Jqθ , then we can then approximate the

Jacobian by:

J (x) ≈
[

Jpθ (x) 0
0 Jqu(x)

]
,

where 0 represents matrices of all zeros of appropriate dimensions. The Newton–
Raphson update (8.3)–(8.5) at iteration ν is then approximated by:[

Jpθ (x (ν)) 0
0 Jqu(x (ν))

] [
�θ(ν)

�u(ν)

]
= −

[
p(x (ν))

q(x (ν))

]
, (8.14)

θ(ν+1) = θ(ν) + �θ(ν),

u(ν+1) = u(ν) + �u(ν).

These are called the decoupled Newton–Raphson update equations, since (8.14)
separates or decouples into two smaller sets of equations:

Jpθ (x
(ν))�θ(ν) = −p(x (ν)), (8.15)

Jqu(x
(ν))�u(ν) = −q(x (ν)), (8.16)

which are easier to solve than the original larger system. If we use the chord update
with a flat start then each system is symmetric.

Approximating terms We can simplify the decoupled equations by using some
of the above approximations and some further approximations. In particular, in

8.2 Analysis of an electric power system 347

addition to assuming that |G�k | � |B�k | and that cos(θ� − θk) ≈ 1, we will assume
that:

(i) for any bus �, the magnitude of the voltages u j at buses j ∈ J(�) is approx-
imately the same as the magnitude of the voltage u� at �, and

(ii) B�� ≈ −∑ j∈�(�) B�j .

The first approximation states that the voltage drop along any line is relatively
small. This is reasonable so long as lines are not very heavily loaded. The second
approximation neglects the contribution of the shunt susceptances to B��. This is
reasonable for short and medium length lines with nominal voltages below about
500 kV.

We will apply these approximations to each entry �k of Jpθ and Jqu . There are
three cases:

(i) diagonal terms, with k = �;

(ii) off-diagonal terms with a line joining buses � and k; and

(iii) off-diagonal terms with no line joining buses � and k.

We will assume that (8.6)–(8.9) hold in addition to the above assumptions. First,
for k = �:

∂ p�

∂θ�

(x) =
∑
j∈�(�)

u�u j [−G�j sin(θ� − θ j) + B�j cos(θ� − θ j)],

≈
∑
j∈�(�)

(u�)
2[−G�j sin(θ� − θ j) + B�j cos(θ� − θ j)],

assuming u j ≈ u� for j ∈ J(�),

≈
∑
j∈�(�)

(u�)
2B�j , since |G�k | � |B�k | and cos(θ� − θk) ≈ 1,

≈ −(u�)
2B��, since B�� ≈ −∑ j∈�(�) B�j .

∂q�

∂u�

(x) = −2u�B�� +
∑
j∈�(�)

u j [G�j sin(θ� − θ j) − B�j cos(θ� − θ j)],

≈ −2u�B�� +
∑
j∈�(�)

u�[G�j sin(θ� − θ j) − B�j cos(θ� − θ j)],

assuming u j ≈ u� for j ∈ J(�),

≈ −2u�B�� −
∑
j∈�(�)

u�B�j , since |G�k | � |B�k | and cos(θ� − θk) ≈ 1,

≈ −u�B��, assuming B�� ≈ −∑ j∈�(�) B�j .

348 Solution of the non-linear simultaneous equations case studies

Second, for k ∈ J(�), we need only use the approximations |G�k | � |B�k | and
cos(θ� − θk) ≈ 1 to obtain:

∂ p�

∂θk
(x) ≈ −u�B�kuk,

∂q�

∂uk
(x) ≈ −u�B�k .

Finally, consider buses k and � such that k 	∈ J(�) and k 	= �. For these values
of � and k:

∂ p�

∂θk
(x) = 0,

= −u�B�kuk,

∂q�

∂uk
(x) = 0,

= −u�B�k .

In summary, the approximations
∂ p�

∂θk
(x) ≈ −u�B�kuk and

∂q�

∂uk
(x) ≈ −u�B�k

apply for all � and k. We will express these approximation values compactly in
terms of the imaginary part of the admittance matrix and the voltage vector.

Compact representation Define the matrix B to be the imaginary part of the bus
admittance matrix A, except that we delete the row and column of A corresponding
to the reference bus. Define U to be the diagonal matrix having diagonal entries
equal to the corresponding entries of u. (Recall that the vector u does not include
the voltage magnitude for the reference bus.) Similarly, at iteration ν, U (ν) is de-
fined to be the diagonal matrix having diagonal entries equal to the corresponding
entries of u(ν).

For any �, k, consider the �k-th entry of the matrix U BU . It is equal to u�B�kuk ,
which is minus the �k-th entry of the approximation to Jpθ (x). Also, consider the
�k-th entry of the matrix U B. It is equal to u�B�k , which is minus the �k-th entry
of the approximation to to Jqu(x). We have:

Jpθ (x) ≈ −U BU,

Jqu(x) ≈ −U B.

At iteration ν, the decoupled equations (8.15)–(8.16) can therefore be approxi-
mated by:

−U (ν)BU (ν)�θ(ν) = −p(x (ν)), (8.17)

−U (ν)B�u(ν) = −q(x (ν)). (8.18)

8.2 Analysis of an electric power system 349

(See Exercise 8.18.) Exercise 8.19 shows the close connection between the chord
method using a flat start and the approximations we have described.

Pre-conditioning and scaling variables Unless u = 1 (for example, if we are
using a flat start), the matrix −U B is not symmetric. However, since the ma-
trix U (ν) is diagonal, U (ν) can be inverted easily so that it can be used to pre-
condition (8.17)–(8.18). By moving U (ν) to the right-hand sides of (8.17) and (8.18)
and scaling the variables by defining �φ(ν) = U (ν)�θ(ν), we obtain the equivalent
system:

−B�φ(ν) = −[U (ν)]
−1

p(x (ν)), (8.19)

−B�u(ν) = −[U (ν)]
−1

q(x (ν)). (8.20)

The coefficient matrix (−B) on the left-hand sides of both (8.19) and (8.20) is
constant and symmetric. We have pre-conditioned the system (8.17)–(8.18) to
form (8.19)–(8.20).

To solve (8.19) and (8.20), we need only factorize (−B) once, not once per iter-
ation. The factors of (−B) can be used at every iteration ν. This saves considerable
time compared to a complete factorization at every iteration, since only forwards
and backwards substitutions are then required to calculate �φ(ν) and �u(ν). Once
�φ(ν) is known, �θ(ν) can be calculated using:

�θ(ν) = [U (ν)]
−1

�φ(ν), (8.21)

which can then be used to evaluate θ(ν+1) and substituted into the functions p and
q. Slight modifications of these equations are referred to as the fast decoupled
Newton–Raphson updates. (See [8, section 10.7].)

Discussion The advantage of using a constant coefficient matrix in (8.19) and
(8.20) is that it significantly reduces the computational effort per iteration, so that
overall the time to converge is usually faster.

However, the approximations we have described are not always very good. (For
example, compare Exercises 8.12 and 8.18.) The effect is to slow the rate of con-
vergence and sometimes, in extreme cases, to disrupt convergence if the approxi-
mation to the Jacobian is too poor. This is particularly the case for heavily loaded
systems where the voltage angles and magnitudes across lines are relatively large.
In Section 8.2.5, we briefly discuss the Armijo step-size rule to aid in convergence.

An alternative to using the very approximate Jacobian we have described is to
update the Jacobian only every few iterations. A hybrid approach is to begin with
these approximations for the first few iterations and then switch to the exact Ja-
cobian. In the next section, we will describe another alternative of using a quasi-
Newton method.

350 Solution of the non-linear simultaneous equations case studies

8.2.4.3 Quasi-Newton methods

Quasi-Newton methods can also be applied to solve the equations. Equations (8.19)
and (8.20) specify a suitable initialization for the approximation to the Jacobian.

8.2.4.4 Iterative methods

Instead of directly solving the linear equations for the Newton–Raphson update, it
is also possible to use an iterative algorithm, such as the conjugate gradient method.
A pre-conditioned conjugate gradient algorithm for solving the power flow equa-
tions is discussed in [39].

8.2.5 Step-size rules

As discussed in Section 8.1.5 for the non-linear DC circuit, a step-size rule can aid
in convergence. Exercise 8.13 illustrates the use of the Armijo step-size rule for
solving the power flow equations.

8.2.6 Stopping criteria

Typical stopping criteria involve requiring a sufficiently small value of the norm of
the:

• change between successive iterates, and

• deviation of the entries of g from zero.

Typically, the infinity norm is used. Since the voltage magnitudes are all nor-
malized by the associated nominal voltages, a given tolerance on all the voltage
magnitude changes will result in a comparable bound on the relative change in
each of them. Similarly, a single tolerance can be used for all the voltage angles.
The deviation of g from 0 is called the mismatch. Since the values of real and
reactive power are all normalized by the base power, a given tolerance on the norm
of the mismatch will result in a comparably small absolute bound on all the real
and reactive power mismatches.

8.2.7 Circuit changes

In this section, we consider sensitivity and large change analysis. We imagine that
the equations are parameterized by χ ∈ Rs , with χ = 0 corresponding to the
base-case solution, and that we have found a base-case solution x�.

Exercises 351

8.2.7.1 Sensitivity

As in Section 8.1.7.1, we can use Corollary 7.5 to evaluate the sensitivity of the
base-case solution to changes in χ , by:

∂x�

∂χ
(0) = −[J (x�; 0)]−1K (x�; 0),

where J : Rn × Rs → Rn×n and K : Rn × Rs → Rn×s are defined by:

∀x ∈ R
n, ∀χ ∈ R

s, J (x;χ) = ∂g
∂x

(x;χ), K (x;χ) = ∂g
∂χ

(x;χ).

See Exercise 8.21.

8.2.7.2 Large change analysis

Large changes to the real and reactive injections into the system can be analyzed
by restarting the Newton–Raphson updates based on the solution to the base-case
system. If the fast decoupled update equations are used, no changes are necessary
to the Jacobian.

Changes to the transmission lines require an update to the Jacobian even if the
approximate Jacobian is used. Addition of a transmission line or change in a trans-
mission line parameter involves rank one updates to each of the blocks of the Jaco-
bian. (See Exercise 8.22.)

Exercises

Non-linear DC circuit

8.1 Assume that the current source in the circuit of Figure 8.1 has value 0.05 and that all
resistors have value 1. Assume that q/(ηKT) = 40V−1 and Isat = 10−6A. Let x (0) = 0.
Perform the following calculations, making sure you keep at least 10 significant figures in
all calculations. Report answers to at least 5 significant figures.

(i) Evaluate g(x (0)).
(ii) Evaluate J (x (0)).
(iii) Factorize J (x (0)).
(iv) Calculate �x (0) and x (1) using the Newton Raphson update.
(v) Evaluate g(x (1)).
(vi) Calculate �x (1) and x (2) using the chord update.
(vii) Evaluate J (x (1)).
(viii) Factorize J (x (1)).
(ix) Calculate �x (1) and x (2) using the Newton Raphson update.
(x) Compare the effort required to calculate x (2) using the chord and the Newton

Raphson updates and comment on the accuracy.

352 Solution of the non-linear simultaneous equations case studies

8.2 In this exercise, we will calculate an upper and a lower bound for the solution x� to
the circuit of Figure 8.1 specified in Exercise 8.1 based on our specific knowledge of the
circuit. That is, we seek x and x such that:

x ≤ x� ≤ x .

These bounds will help us to evaluate the performance of the iterative techniques used in
Exercise 8.1.

(i) Lower bound x ≤ x�:

(a) Find a lower bound x on x� by short-circuiting diode Dg and solving the
resulting circuit. You should first combine resistors using the formulas for
resistors in series and resistors in parallel to obtain a non-linear problem
with just one unknown.

(b) Explain why short-circuiting the diode provides a lower bound on x�.

(ii) Upper bound x ≥ x�:

(a) Find an upper bound x on x� by open-circuiting diode Dg and solving the
resulting circuit.

(b) Explain why open-circuiting the diode provides an upper bound on x�.

(iii) Comment on the results of Exercise 8.1.

8.3 In this exercise we apply the chord Theorem 7.3 and the Kantorovich Theorem 7.4
to the non-linear DC circuit whose Jacobian J was shown in (8.1) and is repeated here for
reference:

∀x ∈ R
4, J (x) =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
1
Ra

)
+ dib

dVb
(x1 − x2) − dib

dVb
(x1 − x2) 0 0

− dib
dVb

(x1 − x2)
dib
dVb

(x1 − x2) +
(

1
Rc

+ 1
Rd

) (
− 1

Rd

)
0

0
(
− 1

Rd

) (
1
Rd

+ 1
Re

+ 1
Rf

) (
− 1

Rf

)
0 0

(
− 1

Rf

) (
1
Rf

)
+ dig

dVg
(x4)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We use x (0) = 0 as the initial guess and we will use the L2 norm.

(i) Let P, Q ∈ R and A =
⎡⎢⎣ P −P 0 0
−P P 0 0

0 0 0 0
0 0 0 Q

⎤⎥⎦ ∈ R4×4, which is a symmetric

matrix. In this case, ‖A‖2 is equal to the largest of the absolute values of the
eigenvalues of A. (See Section A.3.2.) Show that ‖A‖2 = max{2|P|, |Q|}.

(ii) Show that:

∀x, x ′ ∈ R
4, J (x) − J (x ′) =

⎡⎢⎣ P(x, x ′) −P(x, x ′) 0 0
−P(x, x ′) P(x, x ′) 0 0

0 0 0 0
0 0 0 Q(x, x ′)

⎤⎥⎦ ,

Exercises 353

where P(x, x ′) = dib
dVb

(x1 − x2) − dib
dVb

(x ′1 − x ′2) and Q(x, x ′) = dig
dVg

(x4) −
dig
dVg

(x ′4).
(iii) Show that:

∀Vb ∈ R,
d2ib
dVb

2 (Vb) =
(

q

ηKT

)2

Isat exp

(
qVb

ηKT

)
,

∀Vg ∈ R,
d2ig
dVg

2 (Vg) =
(

q

ηKT

)2

Isat exp

(
qVg

ηKT

)
.

(iv) Show that:

|x4 − x ′4| ≤ ∥∥x − x ′
∥∥

2 ,

|(x1 − x ′1) − (x2 − x ′2)| ≤ √
2
∥∥x − x ′

∥∥
2 .

(Hint: for the second part, note that:

(x1 − x ′1)2 + (x2 − x ′2)2 ≤ [(x1 − x ′1) + (x2 − x ′2)]2 + (x1 − x ′1)2 + (x2 − x ′2)2,

expand, re-arrange, and take positive square roots.)
(v) Let ρ ∈ R++ and show that:

max
‖x‖2 ,

∥∥x ′∥∥2 ≤ ρ,
0 ≤ t ≤ 1

|x ′4 + t (x4 − x ′4)| = ρ,

max
‖x‖2 ,

∥∥x ′∥∥2 ≤ ρ,
0 ≤ t ≤ 1

|(x ′1 − x ′2) + t[(x1 − x2) − (x ′1 − x ′2)]| = √
2ρ.

(Hint: Use Theorem 3.11 to decompose the problem hierarchically. First consider
the optimizing values of x and x ′ for given fixed t . Then optimize over values of t .
Exercise 3.42 solves a similar problem.)

(vi) Show that:

(‖x‖2 ,
∥∥x ′∥∥2 ≤ ρ

) ⇒
(
|Q(x, x ′)| ≤

(
q

ηKT

)2

Isat exp

(
qρ

ηKT

)∥∥x − x ′
∥∥

2

)
,(‖x‖2 ,

∥∥x ′∥∥2 ≤ ρ
) ⇒(

|P(x, x ′)| ≤
(

q

ηKT

)2

Isat exp

(
q
√

2ρ

ηKT

)√
2
∥∥x − x ′

∥∥
2

)
.

Note carefully that the coefficients in the exp and of the
∥∥x − x ′

∥∥
2 are different for

the two results. (Hint: For the second result, define the function φ : [0, 1] → R by

∀t ∈ [0, 1], φ(t) = dib
dVb

(
(x ′1 − x ′2) + t[(x1 − x2) − (x ′1 − x ′2)]

)
. Note that

|P(x, x ′)| = |φ(1) − φ(0)| =
∣∣∣∣∣
∫ t=1

t=0

dφ

dt (t) dt

∣∣∣∣∣ .
Use the chain rule to evaluate the derivative of φ.)

354 Solution of the non-linear simultaneous equations case studies

(vii) Show that ∀x, x ′ ∈ R4 such that ‖x‖2 ,
∥∥x ′∥∥2 ≤ ρ, we have

∥∥J (x) − J (x ′)
∥∥

2 ≤
c
∥∥x − x ′

∥∥
2, where:

c = 2
√

2

(
q

ηKT

)2

Isat exp

(
q
√

2ρ

ηKT

)
.

That is, show that J is Lipschitz continuous with constant c. (Notice, however, that
the Lipschitz “constant” c is parameterized in terms of ρ and increases with ρ.)

(viii) Use MATLAB to evaluate:

a =
∥∥∥[J (x (0))]

−1
∥∥∥

2
=
∥∥∥[J (0)]−1

∥∥∥
2
,

b =
∥∥∥[J (v(0))]

−1
g(x (0))

∥∥∥
2
=
∥∥∥[J (0)]−1g(0)

∥∥∥
2
.

(ix) We know that the current source is of value 0.05 and that the voltage across Ra
must therefore be no more than 0.05. We expect the voltages across the other
components to be even smaller. Therefore, we know that any solution of the circuit
equations must also satisfy ‖x‖∞ ≤ 0.05. We might guess that the solution will
satisfy ‖x‖2 ≤ 0.06. If we can meet the conditions of the chord and Kantorovich
theorems, then these theorems guarantee that there is no solution in the region
ρ− ≤ ‖x‖2 ≤ ρ+ ≤ ρ. If we choose a value for ρ that is larger than 0.06 and
we are able to find values of the coefficients so that we can apply the theorem, we
will not obtain any new information about the number of solutions in the region
‖x‖2 ≥ 0.06 because we already believe that there are no solutions in this region.
Since c increases with ρ and since abc must be less than 1

2 to satisfy Item (iii) of
the hypotheses of the chord and Kantorovich theorems, we should choose ρ to be
approximately equal to 0.06 to yield the smallest possible value of abc. Calculate
c for ρ = 0.06.

(x) Check that Items (iii) and (iv) of the hypotheses of the chord and Kantorovich
theorems are satisfied for ρ = 0.06.

(xi) Evaluate ρ+.
(xii) Explicitly evaluate the error estimates (7.22) and (7.23) for ν = 0, 1, 2.

8.4 Repeat Exercise 8.1 but change the value of the current source to 1. That is, assume
that the current source in the circuit of Figure 8.1 has value 1 and that all resistors have
value 1. Assume that q/(ηKT) = 40V−1 and Isat = 10−6A. Let x (0) = 0. Perform the fol-
lowing calculations, making sure you keep at least 15 significant figures in all calculations.
Report answers to at least 5 significant figures.

(i) Evaluate g(x (0)).
(ii) Evaluate J (x (0)).
(iii) Factorize J (x (0)).
(iv) Calculate �x (0) and x (1) using the Newton Raphson update.
(v) Evaluate g(x (1)).
(vi) Calculate �x (1) and x (2) using the chord update.
(vii) Evaluate J (x (1)).
(viii) Factorize J (x (1)).
(ix) Calculate �x (1) and x (2) using the Newton Raphson update.

Exercises 355

(x) Compare the effort required to calculate x (2) using the chord and the Newton
Raphson updates and comment on the accuracy.

8.5 Use the MATLAB function fsolve to solve the circuit problem specified in Exer-
cise 8.4. Solve it two ways:

(i) without specifying the Jacobian to MATLAB so that it uses finite differences to
approximate the Jacobian, and

(ii) specifying a MATLAB M-file to evaluate both g and the Jacobian J and specifying
that you are supplying the Jacobian by setting the Jacobian option to on using
the optimset function.

For each method, report the number of iterations required to satisfy the default stopping
criterion and the number of function evaluations.

8.6 Repeat Exercise 8.2 to calculate upper and lower bounds x and x for the solution x�

to the circuit problem specified in Exercise 8.4. (That is, assume that the current source
in the circuit of Figure 8.1 has value 1 and that all resistors have value 1. Assume that
q/(ηKT) = 40V−1 and Isat = 10−6A.)

(i) Find a lower bound x on x� by short-circuiting diode Dg and solving the resulting
circuit.

(ii) Find an upper bound x on x� by open-circuiting diode Dg and solving the resulting
circuit.

(iii) Comment on the results of Exercise 8.4.

8.7 In this exercise we attempt to apply the chord and Kantorovich theorems.

(i) Calculate a, b, and c for use in the chord and Kantorovich theorems if the current
source has value 1. (Hint: You should be able to use the answers to Exercise 8.3
to minimize the calculations. Just make the appropriate modifications. Use, say,
ρ = 1.05.)

(ii) Can you apply the chord and Kantorovich theorems for these values?

8.8 Assume that the current source in the circuit of Figure 8.1 has value 1 and that all
resistors have value 1. Assume that q/(ηKT) = 40V−1 and Isat = 10−6A. For each of
the following initial guesses, perform one Newton Raphson update, making sure you keep
at least 10 significant figures in all calculations. Report answers to at least 5 significant
figures.

(i) As initial guess, use the average of the upper and lower bounds calculated in Exer-
cise 8.6.

(ii) As initial guess, assume that the voltage across each diode is 0.6 volts, but that
nodes 2, 3, and 4 are at the same voltage.

8.9 Repeat Exercise 8.4. (That is, assume that the current source in the circuit of Fig-
ure 8.1 has value 1 and that all resistors have value 1. Assume that q/(ηKT) = 40V−1

356 Solution of the non-linear simultaneous equations case studies

and Isat = 10−6A. Let x (0) = 0.) However, instead of the basic update equation, use the
Armijo step-size rule (7.29):∥∥∥g(x (ν+1))

∥∥∥ ≤ (1 − δα(ν))

∥∥∥g(x (ν))

∥∥∥ ,

at each iteration and find the largest value of α(ν) of the form of (7.30):

α(ν) = (2)−k, k ≥ 0,

that satisfies (7.29) to select α(ν). Use δ = 0.01 and use the Euclidean norm to deter-
mine whether a step is accepted. Make sure you keep at least 10 significant figures in all
calculations. Report answers to at least 5 significant figures.

(i) Calculate x (1) using the Newton Raphson step direction and Armijo step-size rule.
(ii) Evaluate g(x (1)).
(iii) Calculate �x (1) and x (2) using the chord step direction and Armijo step-size rule.
(iv) Evaluate J (x (1)).
(v) Factorize J (x (1)).
(vi) Calculate �x (1) and x (2) using the Newton Raphson step direction and Armijo

step-size rule.
(vii) Compare the effort required to calculate x (2) using the chord and the Newton

Raphson step directions and comment on the accuracy.

8.10 Suppose that the current source in the circuit of Figure 8.1 has value 1 and that
all resistors have value 1. Assume that the temperature of diode Db changes so that
q/(ηKT) = 38V−1 for diode Db. Assume that q/(ηKT) stays at 40V−1 for diode Dg

and that the saturation current remains the same at Isat = 10−6A for both diodes Db and
Dg. Suppose that we have a solution x� of the base-case circuit and the corresponding
value of the Jacobian J (x�) for the original value of q/(ηKT) = 40V−1.

(i) Use sensitivity analysis to evaluate the change in the solution. (Use the result of
Exercise 8.5 for the solution to the base-case.)

(ii) Show that the change in the Jacobian evaluated at x� but with the changed temper-
ature for diode Db is a symmetric rank 1 update.

Power flow equations

8.11 Consider the four-bus, four-line system illustrated in Figure 8.3. There are no shunt
elements and the series admittances Ya = Ba

√
−1, Yb = Bb

√
−1, Yc = Bc

√
−1, and

Yd = Bd
√

−1 have zero conductance.

(i) Write down the bus admittance matrix for the system.
(ii) With bus 1 as the reference bus and the rest of the buses PQ buses, write down the

entries of x , the vector of variables in the power flow equations. Make sure you
only include the variables in the formulation.

(iii) Explicitly write down the entries of g(x), the vector of functions in the power flow
formulation, as defined in (6.12) (6.13). Make sure you omit the reference bus
equations from g.

Exercises 357

1 2

4 3

�

�
Yd

Ya

Yc

�

�
Yb

Fig. 8.3. Four-bus, four-
line system for Exer-
cise 8.11.

(iv) Write out the elements in the Jacobian (8.2) for the Newton Raphson update. As-
sume a flat start; that is, with x (0) having all voltage angles equal to zero radians
and all voltage magnitudes equal to one per unit.

8.12 Write a MATLAB program that takes two vectors containing θ and u, and two
matrices containing G and B, (the real and imaginary parts of A,) and calculates the terms
in the Jacobian evaluated at the given values of θ and u. The program should ask the user
for the bus numbers � and k and then print out the four terms in the Jacobian associated
with the �k-th entry. Test the program on the three-bus system illustrated in Figure 6.10
and repeated in Figure 8.2, assuming that the bus voltages are:

V1 = 1 	 0rad,

V2 = 1.05 	 0.2rad,

V3 = 0.95 	 0.5rad,

and that the lines have π -equivalent models with:
• shunt elements purely capacitive with admittance 0.01

√
−1 so that the combined

shunt elements are:

Y1 = Y2 = Y3 = 0.02
√

−1,

and
• series elements having admittances:

Y12 = (0.01 + 0.1
√

−1)
−1

,

Y23 = (0.015 + 0.15
√

−1)
−1

,

Y31 = (0.02 + 0.2
√

−1)
−1

.

Provide values of the Jacobian for � = 1 and k = 1, 2, and 3.

8.13 Combine the MATLAB program from Exercise 8.12 with calls to the MATLAB func-
tion lu to build a program that performs the Newton Raphson update for the power flow
equations. Use the system and data for the three-bus system shown in Figure 8.2 and de-
scribed in Exercise 8.12. Assume that bus one is the reference bus and that buses two and
three are PQ buses. Let S2 = 1 + √

−1 and S3 = −2 − √
−1, so that bus 2 is a PQ

generator bus, while bus 3 is a PQ load bus.
Use a flat start, that is, with x (0) having all voltage angles equal to zero radians and all

voltage magnitudes equal to one per unit. Use the Armijo criterion with δ = 0.1. Iterate
until:

358 Solution of the non-linear simultaneous equations case studies

• the change in successive iterates is smaller than 10−4 using the infinity norm, and
• the mismatch in the power flow equations is less than 10−3 using the infinity norm.

Specify the voltage angles and voltage magnitudes in your answer as well as the number
of iterations necessary to satisfy the stopping criterion.

8.14 Use the MATLAB function fsolve to solve the power flow problem specified in
Exercise 8.13. Use a flat start as the initial guess. Solve it two ways:

(i) without specifying the Jacobian to MATLAB so that it uses finite differences to
approximate the Jacobian,

(ii) specifying a MATLAB M-file to evaluate both g and the Jacobian J and specifying
that you are supplying the Jacobian by setting the Jacobian option to on using
the optimset function.

For each method, report the number of iterations required to satisfy the default stopping
criterion and the number of function evaluations.

8.15 Justify (8.6) for a line between buses � and k so that k ∈ J(�). Assume that the
series resistance R�k of the line is much smaller than the series inductive reactance, X�k .

8.16 Show approximations analogous to (8.10) (8.13) in the case k = �. Assume that
|G�j | � |B�j ′ | for all j, j ′ ∈ J(�) and neglect shunt elements.

8.17 Modify the MATLAB program in Exercise 8.13 to perform the decoupled Newton
Raphson update (8.15) (8.16). Use the same stopping criterion as in Exercise 8.13. How
many iterations does it take to satisfy the stopping criterion? Also, report the voltage angles
and voltage magnitudes in your answer.

8.18 Repeat Exercise 8.12 with the approximations (8.17) and (8.18) instead of the exact
Jacobian.

8.19 Show that the approximate Jacobian

[−U BU 0
0 −U B

]
is exact in the particular

case of no shunt elements, zero series resistance, and a flat start; that is, all voltage angles
equal to zero radians and all voltage magnitudes equal to one per unit.

8.20 Modify the MATLAB program in Exercise 8.17 to perform the fast decoupled
Newton Raphson update (8.19) (8.21) instead of the decoupled Newton Raphson up-
date (8.15) (8.16). Use the same stopping criterion as in Exercise 8.13. How many it-
erations does it take to satisfy the stopping criterion? Also, report the voltage angles and
voltage magnitudes in your answer.

8.21 In this exercise, we consider a sensitivity study for the base-case problem specified
in Exercise 8.13. In particular, calculate the sensitivity of the solution to changes �Y23 in
the admittance Y23 in Figure 8.2 from its base-case value of Y23 = (0.015 + 0.15

√
−1)

−1.
Calculate the sensitivity with respect to the real and with respect to the imaginary part of
�Y23.

8.22 In this exercise, we consider a contingency study for the base-case problem specified

Exercises 359

in Exercise 8.13. In particular, suppose that the admittance Y23 in Figure 8.2 becomes open
circuit due to a line outage. (Neglect any change in the shunt elements.)

(i) Solve the contingency study using the MATLAB function fsolve with the solution
of the base-case as the initial guess. Report the number of iterations required to
satisfy the default stopping criterion.

(ii) Re-solve the contingency study using as initial guess an estimate of the solution of
the contingency case based on the sensitivity calculated in Exercise 8.21. (That is,
by setting �Y23 = −Y23.) Report the number of iterations required to satisfy the
default stopping criterion.

Part III

Unconstrained optimization

9

Case studies of unconstrained optimization

In this chapter we will introduce two case studies:

(i) multi-variate linear regression (Section 9.1), and
(ii) state estimation in an electric power system (Section 9.2).

Both problems will turn out to be unconstrained optimization problems of the spe-
cial class of least-squares data fitting problems [84, chapter 13].

9.1 Multi-variate linear regression

Some of this section is based on [103] and further details can be found there. The
development assumes a background in probability. See, for example, [31, 103].

9.1.1 Motivation

In many applications, we have a hypothesized functional relationship between vari-
ables. That is, we believe that there are some dependent variables that vary ac-
cording to some function of some independent variables. The simplest relation-
ship that we can imagine is a linear or affine relationship between the variables.

For example, we may be trying to estimate the circuit parameters of a black-box
circuit by measuring the relationship between currents and voltages at the termi-
nals of the circuit. We will have to try several values of current and voltage to
characterize the circuit parameters. As in the circuit case study of Section 4.1, we
could either:

• apply vectors of current injections and measure voltages, interpreting the cur-
rents as the independent variables and the voltages as the dependent variables,
or

• apply vectors of voltages and measure currents, interpreting the voltages as the
independent variables and the currents as the dependent variables.

363

364 Case studies of unconstrained optimization

As another example, we may be testing the efficacy of a combination of drugs
or treatments for a particular disease. The independent variables include such vari-
ables as:

• the pre-treatment severity of the symptoms for each patient,
• the dosages of the various administered drugs, and
• the particulars of the various treatments.

The dependent variables could include some measure of the recovery of the patient.
To characterize the efficacy of the drugs and treatment we must test several, maybe
a large number of, patients. Unlike in the circuit case study of Section 4.1, in this
example the independent and dependent variables are determined by the underlying
cause and effect in the system.

In general, we do not have a complete specification of the function relating the
variables (and we often do not know the underlying cause and effect in the system.)
For example, if the hypothesized function is linear, the entries in coefficient matrix
will typically be unknown to us. These unknown entries are called the parameters
of the function.

To obtain enough information to estimate the parameters, we can imagine vary-
ing the independent variables over successive trials and measuring the resulting
variation of the dependent variables. A suitably large number of trials should be
examined to fully probe the functional relationship. We assume that the indepen-
dent variables either:

(i) can be controlled to any desired level, or
(ii) cannot be controlled directly but exhibit a natural variability from trial to

trial.

Independent variables that, in principle, can be controlled to any desired level in-
clude:

• the injected currents in the circuit estimation example, (given currents as the
independent variables), and

• the dosages of drugs and the particulars of various treatments in the drug efficacy
example.

Independent variables that naturally vary from trial to trial include the pre-treatment
severity of the symptoms in the drug efficacy example.

In this case study, we will examine a general approach to characterizing a linear
or affine relationship between the dependent and independent variables. This is
called a multi-variate linear regression problem. It is also possible to characterize
more complex relationships between dependent and independent variables. (See
Exercise 9.1.)

9.1 Multi-variate linear regression 365

�

� ψ

ζ

�
�

�
�

�
�

��

× (ψ(1), ζ(1))

×(ψ(2), ζ(2))
× (ψ(3), ζ(3))

×
(ψ(4), ζ(4))

× (ψ(5), ζ(5))

× (ψ(6), ζ(6))

× (ψ(7), ζ(7))

Fig. 9.1. The values of
(ψ(�), ζ(�)) (shown as ×)
and affine fit.

9.1.2 Formulation

9.1.2.1 Measurement variables

Let us suppose that there is one dependent variable in our problem and call it ζ .
The case of multiple dependent variables is a straightforward generalization. Let
us suppose that there are (n−1) independent variables. We collect the independent
variables together into a vector ψ ∈ Rn−1.

9.1.2.2 Functional relationship

Suppose that we believe that there is an affine relationship between ζ and ψ . That
is, we believe that there are unknown constants β ∈ Rn−1 and γ ∈ R such that:

∀ψ ∈ R
n−1, ζ = β†ψ + γ. (9.1)

For later convenience, let us collect β and γ together into a vector x =
[

β

γ

]
∈ Rn .

9.1.2.3 Trials

We can perform a number of “trials” with varying values for the independent
variables ψ . The goal is to discover a value of the vector x that best “satisfies”
the measured data. We would like to estimate the “best” values of the param-
eters β ∈ Rn−1, γ ∈ R in the relationship (9.1). Let the trials be numbered
� = 1, . . . , m. We use ψ(�) and ζ(�), respectively, to denote the value of the
independent variables ψ and the corresponding measured value of the dependent
variable ζ for the �-th trial. The situation is illustrated in Figure 9.1 for n = 2 and
m = 7. The independent and dependent variables have been plotted as ordered
pairs (ψ(�), ζ(�)). An affine function of the form (9.1) has also been drawn.

366 Case studies of unconstrained optimization

9.1.2.4 Measurement error

For various reasons, the measured value ζ(�) for the �-th trial may not equal
β†ψ(�) + γ , but instead will be:

ζ(�) = β†ψ(�) + γ + e�, (9.2)

where e� is the error introduced in the �-th trial. The quantity e� is also called
the residual implying that it is the remaining discrepancy between the measured
value ζ(�) and the value predicted by (9.1) [118, section 4.1.3]. In Figure 9.1,
for example, the values of (ψ(�), ζ(�)) do not exactly fall on the affine function
illustrated and, furthermore, there is no affine function that passes through all the
points.

In (9.2), we think of the error as occurring in our measurement of ζ(�). However,
it is also possible to consider errors in the values of ψ(�). For our case study,
however, we will assume that ψ(�) can be specified or measured to great accuracy.
The general case, where there are errors in both ψ(�) and ζ(�), and which is called
the total linear regression problem, is considered in [84, section 13.4].

In the following sections, we consider three possible types of error in the mea-
surement ζ(�). One of them, random error, will be discussed in more detail in
Section 9.1.2.5.

Calibration error The error e� may be due to calibration error in the measure-
ment. That is, there exists a function c : R → R, called the calibration function,
such that on each trial � the error is given by e� = c(ζ(�)). If c is known then we
can calculate:

β†ψ(�) + γ = ζ(�) − c(ζ(�)),

and estimate the parameters β and γ that relate ψ to the calibrated measurement
ζ − c(ζ). We will not consider calibration functions in this case study, but the
analysis can easily be extended to include this situation if c is known.

Functional error The error e� may arise because (9.1) does not reflect the actual
relationship between ψ and ζ . For example, the actual relationship may be of the
form

ζ = β†ψ + γ + ψ†�ψ, (9.3)

where � ∈ R(n−1)×(n−1) is a matrix of unknown parameters that represent interac-
tion between entries of ψ . This could occur in our drug efficacy example if there
are important interactions between the drugs. We will not consider functional error
in this case study, but in general we must verify whether or not our functional form
captures the relationship between the variables. This can be done, in principle, by:

9.1 Multi-variate linear regression 367

• testing whether or not the functional form captures most of the variation in the
data [118, section 4.1.2],

• testing whether or not the estimated parameters specify a function that yield
small residuals on the original trial data [118, section 4.1.3], and

• testing whether or not the function can predict the results of other trials not
included in the original trial data.

In many cases, we can easily generalize the formulation we describe to represent a
more complicated function [118, section 4.2]. For example, Exercise 9.1 illustrates
the case for the relationship defined in (9.3).

Random error The error e� may be random with expected value, say, 0. Such
errors are present because our model is a simplification of the real world. That is, ζ
also depends on other variables besides ψ that we can neither control nor measure
easily. Under some circumstances, it may be reasonable to model these errors as
random variables that vary independently of the trials.

To illustrate, consider the two examples introduced earlier.

Black-box circuit In our black-box circuit we may not be able to control, for ex-
ample, ambient temperature, but this will affect the resistances in the circuit and
therefore affect the measurements. That is, the ambient temperature also affects ζ .
If we perform trials such that each trial is performed at a random temperature, then
the measurement will reflect this randomness. It may be reasonable to assume that
the temperature is independent of the injected currents. Furthermore, the voltmeter
used to measure the circuit response may also introduce further error that is random
and independent of the injected currents.

Drug efficacy The recovery of patient � may depend on other variables besides
the severity of the symptoms and the drugs and treatment. These variables might
include specific properties of each patient’s immune system. If we perform trials
on a large number of patients, then we would expect to see patients with a variety
of immune system properties. It may be reasonable to assume that immune sys-
tem properties vary randomly from patient to patient and are independent of the
symptoms, drugs, and treatment.

Discussion Caution is in order here. For example, the injected currents in the
circuit will heat up the resistors, so that the temperature also depends on the in-
jected currents. Similarly, the severity of the patient’s symptoms may actually be
strongly correlated with the properties of the patient’s immune system. We should,
in general, be very cautious about asserting independence between the independent

368 Case studies of unconstrained optimization

variables ψ(�) and the error e�. Nevertheless, for the rest of this case study we will
assume that the error is random and uncorrelated with ψ .

9.1.2.5 Random error distribution

In the following, we discuss the use of the central limit theorem to model the dis-
tribution of the random error. We then develop a model of the joint probability of
errors in several measurements.

Central limit theorem We must model the probability density function [31, chap-
ter 1] of the random variable e�. Suppose that there are a number of factors that
sum to produce the error e� in trial �. For example, in the circuit example, suppose
that the voltmeter consists of a number of parts or components, each of which in-
dependently adds a random error into the measurement. The total resulting error
e� is due to the sum of these individual introduced errors.

The central limit theorem [31, chapter 2] says that the sum of a large number of
independent random variables has a distribution that is approximately Gaussian.
That is, the probability density function of e� is:

1√
2πσ�

exp

(
−(e� − µ�)

2

2(σ�)2

)
, (9.4)

where µ� is the expected value of e�, in our case 0, and σ� is its standard deviation.
In other cases, a different model may be more appropriate. For example, the

error in the measurement might be due to the sum of:

• a relatively small random error with distribution that is well approximated by a
Gaussian distribution, and

• a large error due to gross meter failure that occurs with a small probability.

In this case, the resulting error distribution would be more complicated than the
basic Gaussian distribution we have discussed. (See [4] for an example of the
specification of such a distribution.)

Furthermore, if the independent variables ψ are also subject to random error,
then this should also be modeled explicitly. Details for this total linear regression
problem can be found in [84, section 13.4].

Error correlation The model (9.4) applies to a specific trial �, but we must con-
sider the correlation between the errors on various trials. For example:

(i) the errors on two trials � and �′ could be correlated, so that e� is likely to
be positive when e�′ is positive and e� is likely to be negative when e�′ is
negative, or

(ii) the errors on separate trials could be uncorrelated.

9.1 Multi-variate linear regression 369

Let us suppose that only zero mean random error is present and that, furthermore,
the errors on different trials are uncorrelated. That is, we model the measurement
as (9.2), with the probability density function of e� given by (9.4) with µ� = 0 and
where e� is uncorrelated with e�′ for � 	= �′.

The assumption of uncorrelated errors is not always true in practice. For ex-
ample, in the circuit estimation example, if two trials are chosen to have the same
values of the independent variables then it may be the case that the measurement is
the same for the two trials and the measurement error is the same for the two trials.
That is, the errors may be correlated; however, we will ignore this possibility.

Distribution of dependent variables Since e� is a random variable then, prior
to performing trial �, ζ(�) = β†ψ(�) + γ + e� is also a random variable. The
prior probability density function of e� is given by (9.4) with µ� = 0 and so
the prior probability density function of the dependent variable ζ(�) is the function
φ� : R → R that is parameterized by ψ(�) and x and defined by:

∀ζ(�) ∈ R, φ�(ζ(�);ψ(�), x) = 1√
2πσ�

exp

(
−(ζ(�) − β†ψ(�) − γ)2

2(σ�)2

)
.

We use a semi-colon to separate the arguments of the function from the parameters
ψ(�) and x .

Joint measurement distribution We have assumed that e� and e�′ are uncorre-
lated for � 	= �′. If we assume that their distributions are jointly Gaussian then
they are independent. Therefore, the joint probability density function, φ : Rm →
R, is the product of the individual probability densities ([31]):

∀ζ(1) ∈ R, . . . ,∀ζ(m) ∈ R, φ(ζ(1), . . . , ζ(m);ψ(1), . . . , ψ(m), x)

=
m∏

�=1

1√
2πσ�

exp

(
−(ζ(�) − β†ψ(�) − γ)2

2(σ�)2

)
. (9.5)

This distribution is parameterized by ψ(1), . . . , ψ(m), and x .

9.1.2.6 Problem variables

After performing the trials, the values of ψ(�) and ζ(�) are known and we will
re-interpret them as constants. The unknowns are the parameters β and γ in the
relationship (9.1). We have collected together these parameters into the vector x
and they will be re-interpreted as the variables in our problem formulation since
they are the values that are to be determined to solve our regression problem.

370 Case studies of unconstrained optimization

9.1.2.7 Maximum likelihood estimation

Suppose that we perform the trials and want to find β and γ . We must decide on a
criterion for choosing the “best value.” Suppose that we are given:

• a collection of measurements ζ(1) ∈ R, . . . , ζ(m) ∈ R,
• values of the parameters x ∈ Rn , and
• a distance δ ∈ R+.

Now suppose that we consider taking new measurements, ζ̃ (1), . . . , ζ̃ (m) using
the same values of the independent variables. Consider the probability that for all
� the value of the �-th new measurement, ζ̃ (�), lies within a distance δ of the value
ζ(�). That is, consider the probability that the new measurements ζ̃ (1), . . . , ζ̃ (m)

lie in the set:

S(x) = {ζ̃ (1) ∈ R, . . . , ζ̃ (m) ∈ R|ζ(�) − δ ≤ ζ̃ (�) ≤ ζ(�) + δ, ∀� = 1, . . . , m}.
This probability is equal to the integral of the joint probability distribution func-
tion (9.5) over the set S(x). For δ small enough, this integral is approximately
equal to:

φ(ζ(1), . . . , ζ(m);ψ(1), . . . , ψ(m), x)(2δ)m .

We pick x ∈ Rn to maximize the probability that the new measurements are in
the set S(x). That is, we maximize the probability that we would observe similar
results if we were to repeat the experiment. This means finding x that maximizes:

φ(ζ(1), . . . , ζ(m);ψ(1), . . . , ψ(m), x)(2δ)m,

which is equivalent to maximizing:

φ(ζ(1), . . . , ζ(m);ψ(1), . . . , ψ(m), x)

over x ∈ Rn . That is, we maximize φ, re-interpreted to be the function φ : Rn → R

defined by:

∀x ∈ R
n, φ(ζ(1), . . . , ζ(m);ψ(1), . . . , ψ(m), x)

=
m∏

�=1

1√
2πσ�

exp

(
−(ζ(�) − β†ψ(�) − γ)2

2(σ�)2

)
,

=
m∏

�=1

1√
2πσ�

exp

(
−(ψ(�)†β + γ − ζ(�))2

2(σ�)2

)
, (9.6)

where x =
[

β

γ

]
.

This criterion for “best” is called maximum likelihood estimation and can be
justified more formally by Bayes’ rule [31, chapter 4][103, section 5.5].

9.1 Multi-variate linear regression 371

9.1.2.8 Problem

We write the maximum likelihood estimation problem in the form of an uncon-
strained optimization problem as:

max
x∈�n

φ(ζ(1), . . . , ζ(m);ψ(1), . . . , ψ(m), x). (9.7)

9.1.3 Change of number of trials or correction of data

We may find that after solving the maximum likelihood estimation using trials
1, . . . , m we conduct further trials or find that some of the data might be in error
and need to be corrected. We would like to be able obtain an updated estimation
without starting from scratch.

9.1.4 Problem characteristics

9.1.4.1 Parameters re-interpreted as variables

We have re-interpreted the parameters β and γ of the probability density in (9.5)
to be the variables in our optimization problem. We interpret ψ(�) and ζ(�) to be
known values once the trials have been completed. So far in this book, functions
have been defined very explicitly by first indicating the domain and range and
then specifying the functional relation. You may have found this approach rather
pedantic. However, in this case study where we re-interpret the parameters and
variables, it is very important to be explicit about the variables and domain of
functions.

9.1.4.2 Objective

Because of the assumption that the measurements errors for different trials are
uncorrelated and jointly Gaussian, the objective:

φ(ζ(1), . . . , ζ(m);ψ(1), . . . , ψ(m), x),

is the product of terms. Each term in the product depends on x .

9.1.4.3 Number of parameters and trials

In principle, the number of parameters, n, could be smaller than, equal to, or greater
than the number m of trials. Intuitively, if the number of trials is greater than the
number of parameters and the trials “explore” the space of independent variables
then there is redundancy in the measurements that can be used to reduce the effects
of the random measurements errors. If m ≤ n then there is no redundancy and we
will not be able to reduce the effects of measurement errors. In practice, we should
always have many more trials than the number of parameters we want to estimate.

372 Case studies of unconstrained optimization

We will see also that we must have sufficient “variety” in our choice of trials ψ(�),
as well as sufficient number, to be able to uniquely estimate all the parameters and
reduce the effects of measurement error.

If there is not sufficient variety, then we may still want to obtain parameters that
maximize Problem (9.7) even though the parameters will not be unique. We will
also consider approaches to this case.

9.1.4.4 Generalizations

In some cases, we may have a non-linear relationship between the dependent and
independent variables, as in (9.3). The formulation of this problem is explored in
Exercise 9.1. A number of other generalizations are explored in [15, chapter 6].
Other aspects of regression analysis are contained in various references, includ-
ing [84, section 13.3][118].

9.2 Power system state estimation

This case study builds on the multi-variate linear regression case study of Sec-
tion 9.1 and the electric power system case study introduced in Section 6.2. Again,
some familiarity with electric power systems is assumed [8]. The problem we
formulate will be a non-linear regression problem. A general discussion of non-
linear regression is in [84, chapter 13]. Some of this section is based on [123, chap-
ter 12]. Another formulation of this problem is contained in [22, section 3.4.1].
General discussions of state estimation are presented in [1, 80].

9.2.1 Motivation

9.2.1.1 Non-linear regression

Suppose that we hypothesize a non-linear relationship, such as ζ = γ (ψ)β , be-
tween scalars ψ and ζ with unknown parameters β and γ . A standard approach
for this particular non-linear relationship is to take logarithms of both sides to form
the equation:

ln(ζ) = β ln(ψ) + ln(γ).

We consider a transformation of the problem. Define variables � and Z such that:

� = ln(ψ),

Z = ln(ζ),

That is, we have implicitly defined an onto function τ : R2++ → R2 specified by:

∀
[

ψ

ζ

]
∈ R

2
++, τ

([
ψ

ζ

])
=
[

ln(ψ)

ln(ζ)

]
.

9.2 Power system state estimation 373

Then:

Z = β� + �,

where � = ln(γ). We now have a linear regression problem as discussed in Sec-
tion 9.1, involving the measurement variables � and Z and the unknown parame-
ters β and �.

We could apply the same analysis as in Section 9.1 to this linear regression prob-
lem, if we assume that measurement of Z is subject to random additive Gaussian
error, so that ζ is subject to random multiplicative error. This approach can be
generalized to any case where the function relating the dependent and independent
variables is linear in the unknown parameters, or where the function can be trans-
formed to a function that is linear in the unknown parameters. (See Exercise 9.1.)

The assumption of multiplicative error is an appropriate model for some appli-
cations; however, if the error actually adds to ζ then a multiplicative error model
is inappropriate. In practice, computational convenience will often suggest a lin-
ear regression model even if it does not capture the underlying error probability
distribution accurately. The resulting estimator will not in general be equal to the
maximum likelihood estimator for the given probability distribution; however, the
difference may be small if the measurement errors are small. The resulting esti-
mate may be satisfactory, despite not having a rigorous formulation. In this case,
we might refer to the estimate as satisficing [109].

In some problems, however, the unknown parameters appear non-linearly in the
relationship between dependent and independent variables and, furthermore, there
is no transformation that will make them appear linearly. For example, consider a
functional relationship between scalars ψ and ζ of the form:

ζ = γ (ψ)β + δψ,

with unknown parameters β, γ , and δ. We cannot transform this equation in a way
such that all the unknown parameters β, γ , and δ (or their transformed versions)
appear linearly. Such a problem is called a non-linear regression problem. A con-
crete example of a non-linear regression problem is the state estimation problem in
power systems, to be discussed in Section 9.2.1.2.

9.2.1.2 Power system measurements

In Section 6.2, we discussed the power flow model where the problem is to solve
the power flow equations to find voltage angles and magnitudes in the system, given
known values of real and reactive demand and generation. This is most appropriate
when we want to, say, predict worst-case loadings on the system based on forecasts
of peak demand conditions.

In on-line applications, however, we may want to observe the actual state of the

374 Case studies of unconstrained optimization

system to check if the system is operating within limits. In this case, we will typ-
ically have telemetered values of some (but not necessarily all) of the generations
and loads in the system and of some (but not all) of the line flows and voltage
magnitudes. (It is also possible to measure the voltage angles, using accurate time
reference information from the global positioning system [32].)

Telemetered values are subject to both:

(i) meter error, where the meter is working but delivers somewhat inaccurate
data, and

(ii) meter failure, where the meter delivers grossly inaccurate data.

We will consider the first issue here, but note that the second issue of bad data
detection presents several additional complications. (See [53] for a general dis-
cussion on rejection of bad data from measurements; see [1], [80, chapters 8, 9,
and 13], and [123, chapter 12] for specific discussions in relation to state estima-
tion in power systems; and see [4] for a discussion of the maximum likelihood
estimator in the presence of meter failure.)

The state estimation problem involves finding the voltage angles and magnitudes
in the system that best match the measured values. As we have seen in Section 6.2,
the relationship amongst the measured values and the voltage angles and magni-
tudes is non-linear and this leads to a non-linear regression problem.

9.2.2 Formulation

9.2.2.1 Measurements

Various quantities are measured at various places in the electric power system and
telemetered for processing. In the following sections, we will consider measure-
ments of:

• real and reactive power injection at a bus,
• real and reactive power flow along a line, and
• voltage magnitude.

Figure 9.2 illustrates a three-bus power system with meters. This is the same sys-
tem shown in Figure 6.10, except that we have explicitly shown generators at buses
1 and 2 and a load at bus 3 and we have explicitly shown meters. Each meter is
denoted by a filled box: . The measured quantities are shown adjacent to the box.

Real and reactive power injection Let B be the set of buses where there are mea-
surements of the real and reactive power injections into the system. In Figure 9.2,
B = {1}. (It is common to measure both real and reactive power together since, as
a practical matter, the equipment needed to measure real power also furnishes data

9.2 Power system state estimation 375

neutral

1 2

3

�
�	
�
∼

P̃1, Q̃1, Ũ1

P̃12, Q̃12

P̃13, Q̃13�
Y1

Y13 � �
� �Y3

l
o
a
d

Y23

�
�	
�
∼

�
Y2

Y12

Fig. 9.2. Three-bus power
system state estimation
problem.

for reactive power.) For each � ∈ B, let P̃� and Q̃� be the injection measurement at
bus �. The tilde ˜ over the symbol for the measurement signifies that the measured
values are approximately, but not exactly, equal to the actual injections P� and Q�.
At a load bus, these “injection” measurement values will typically be negative.

Real and reactive line flow Let F be the set of lines where we have line flow
measurements. Each element of F is an ordered pair (�, k) of “from-bus” and “to-
bus” and P̃�k and Q̃�k is the measurement of real and reactive power flow on the
line from � to k, measured at � in the direction k. In Figure 9.2, F = {(1, 2), (1, 3)}.
If there were no line losses and no meter errors then a measurement P̃�k taken at
one end of a line would be equal and opposite to a measurement P̃k� taken at the
other end of the line. Because of line losses, however, these quantities will not sum
exactly to zero, even if there are no meter errors. We may have (�, k) ∈ F, yet
(k, �) 	∈ F, indicating that there is a meter at the bus � end of the line between �

and k but not at the k end of the line. For example, in Figure 9.2, (1, 2) ∈ F, yet
(2, 1) 	∈ F.

Voltage magnitude Finally, let U be the set of buses where there are voltage mag-
nitude measurements. In Figure 9.2, U = {1}. For each � ∈ U, let Ũ� be the voltage
magnitude measurement at bus �.

9.2.2.2 Variables

In Section 6.2, we defined x to be the set of voltage angles and magnitudes in the
system, excluding the reference bus. We arbitrarily assigned the voltage magnitude
and angle at the reference bus. That is, we specified these as constant parameters
in the problem of solving the power flow equations in Section 6.2.

In the state estimation problem, if we do not have any angle measurements,
then we can still assign the reference bus to have zero angle since the angle at the

376 Case studies of unconstrained optimization

reference bus depends on an arbitrary time reference. That is, we can set θ1 = 0.
However, the voltage magnitude at the reference bus and the voltage angles and
voltage magnitudes in the rest of the system must be estimated. Let us therefore
modify the definition of x in Section 6.2 to include:

• the voltage angles at all buses except the reference bus, and
• the voltage magnitudes at all buses in the system, including the reference bus.

Now x ∈ Rn , where n is equal to one less than twice the number of buses, so that
the vector x has been re-defined compared to Section 6.2.

9.2.2.3 Measurement functions

Recall the definitions of the functions p�, q� : Rn → R in (6.12) and (6.13) that
were used in the power flow case study:

∀x ∈ R
n, p�(x) =

∑
k∈��∪{�}

u�uk[G�k cos(θ� − θk) + B�k sin(θ� − θk)] − P�,

∀x ∈ R
n, q�(x) =

∑
k∈��∪{�}

u�uk[G�k sin(θ� − θk) − B�k cos(θ� − θk)] − Q�.

Let us define new functions by omitting the values of the real and reactive injec-
tions, P� and Q�. That is, let us define p̃� : Rn → R and q̃� : Rn → R to be:

∀x ∈ R
n, p̃�(x) =

∑
k∈��∪{�}

u�uk[G�k cos(θ� − θk) + B�k sin(θ� − θk)],

∀x ∈ R
n, q̃�(x) =

∑
k∈��∪{�}

u�uk[G�k sin(θ� − θk) − B�k cos(θ� − θk)].

With this definition, p̃� and q̃� represent the real and reactive power injection at
the bus into the series and shunt elements connected to the bus expressed as a
function of x . Similarly, each real and reactive line flow and each voltage can
be expressed as a function of x . (See Exercise 9.2.) In particular, we define the
functions p̃�k, q̃�k : Rn → R to represent the real and reactive power flows on
the line joining bus � to bus k, measured at � in the direction of k. We define
the function ũ� : Rn → R to represent the voltage magnitude at node �. These
functions that express the exact values of the measured quantities in terms of x
are called the measurement functions. In summary, we denote the measurement
functions by:

p̃�, q̃�, for the real and reactive power injection measurements, � ∈ B,

p̃�k, q̃�k, for the real and reactive line flow measurements, (�, k) ∈ F,

ũ�, for the voltage magnitude measurements, � ∈ U.

9.2 Power system state estimation 377

Let us now collect the measurement functions into a vector function g̃ and collect
the measurements together into a corresponding vector G̃. (We deviate from our
typographical convention by using an upper case letter G to stand for a vector, since
we are using the corresponding lower case letter to stand for a vector function.)
That is,

∀x ∈ R
n, g̃(x) =

⎛⎜⎜⎜⎜⎜⎝

[
p̃�(x)

q̃�(x)

]
�∈�[

p̃�k(x)

q̃�k(x)

]
(�,k)∈�[

ũ�(x)
]
�∈�

⎞⎟⎟⎟⎟⎟⎠ , G̃ =

⎛⎜⎜⎜⎜⎜⎝

[
P̃�

Q̃�

]
�∈�[

P̃�k

Q̃�k

]
(�,k)∈�[

Ũ�

]
�∈�

⎞⎟⎟⎟⎟⎟⎠ ,

where we have ordered the entries in g̃ and G̃ to correspond. Let us define a new
index set M that specifies all the measurements. We re-index the entries of g̃ and
G̃ using the set M, so that g̃ = (g̃�)�∈� and G̃ ∈ R�, where by R� we mean
the set of all vectors having entries indexed by the elements in the set M. (See
Definition A.5.) That is, R� has as many dimensions as there are elements in the
set M. In summary, g̃ : Rn → R� and G̃ ∈ R�.

9.2.2.4 Error distribution

As in Section 9.1, we expect the measurements to differ from the measurement
functions due to meter error. In general, we would expect the error in one measure-
ment to be independent of the measurement in another meter. (One exception to
this is where two or more measurements are actually based on a third measurement.
This occurs for pairs of real and reactive power measurements. Another exception
is where the “measurement error” includes the effects of data transmission errors
and several measurements are transmitted over a single error-prone communication
link.) Assuming independent Gaussian measurement errors then, as in the multi-
variate linear regression case study in Section 9.1, we can write the probability
density, φ : R� → R, of the measurement vector G̃ as the product of probability
densities:

∀G̃ ∈ R
�, φ(G̃; x) =∏

�∈�
φ p̃�

(P̃�; x)
∏
�∈�

φq̃�
(Q̃�; x)

∏
(�,k)∈�

φ p̃�k (P̃�k; x)
∏

(�,k)∈�
φq̃�k (Q̃�k; x)

∏
�∈�

φũ�
(Ũ�; x),

where each function φ p̃�
(P̃�; x), φq̃�

(Q̃�; x), φ p̃�k (P̃�k; x), φq̃�k (Q̃�k; x), φũ�
(Ũ�; x)

represents the probability density function of the corresponding error distribution
and is parameterized by x . For example,

∀P̃� ∈ R, φ p̃�
(P̃�; x) = 1√

2πσ p̃�

exp

(
−(p̃�(x) − P̃�)

2

2(σ p̃�
)2

)
,

378 Case studies of unconstrained optimization

where σ p̃�
is the standard deviation of the measurement error of real power at bus

� and where we have assumed that the expected error is zero.
After the measurements are made, we can re-interpret φ to be a function φ :

Rn → R. That is, as in the multi-variate linear regression case study, we re-
interpret φ as:

∀x ∈ R
n, φ(G̃; x) =∏

�∈�
φ p̃�

(P̃�; x)
∏
�∈�

φq̃�
(Q̃�; x)

∏
(�,k)∈�

φ p̃�k (P̃�k; x)
∏

(�,k)∈�
φq̃�k (Q̃�k; x)

∏
�∈�

φũ�
(Ũ�; x).

Our maximum likelihood estimation problem is then:

max
x∈�n

φ(G̃; x). (9.8)

9.2.3 Change in measurement data

Over time, the state of the power system changes as demand and supply situations
change. Consequently, the measured data will change. We will consider how a
change in measurement data affects the result.

9.2.4 Problem characteristics

9.2.4.1 Objective

The objective of this problem is very similar to the objective of Problem (9.7) de-
fined in (9.6), except that each term in the product has one of the non-linear func-
tions p̃�, q̃�, p̃�k, q̃�k, or ũ� in the exponent instead of the linear function ψ(�)†β+γ

that appears in (9.6).

9.2.4.2 Solvability

Consider the three-bus system in Figure 9.2. There are two PQ buses, at buses 2
and 3, so nPQ = 2. Recall that the angle at the reference bus, bus 1, is assigned to
be zero. There are n = 2nPQ + 1 = 5 variables that must be estimated, namely:

• u1, u2, u3, the voltage magnitudes at buses 1, 2, and 3, and
• θ2 and θ3, the voltage angles at buses 2 and 3.

From u1, u2, u3, θ2, and θ3, all the real and reactive power injections and line flows
in the system can be calculated.

Consider the placement of meters in the system. If all the measurements are
concentrated in one part of the system, say near bus 1 as illustrated in Figure 9.2,
then it may not be possible to estimate the voltage magnitudes and angles at the
other buses. This is because the information from bus 1 does not uniquely identify

Exercises 379

neutral

1 2

3

�
�	
�
∼

P̃1, Q̃1, Ũ1 P̃2, Q̃2, Ũ2

P̃12, Q̃12

P̃3, Q̃3

�
Y1

Y13 � �

� �
Y3

l
o
a
d

Y23

�
�	
�
∼

�
Y2

Y12

Fig. 9.3. Three-bus power
system state estimation
problem with spread out
measurements.

the generation at bus 2 and the load at bus 3. The measurements shown in the
system illustrated in Figure 9.2 do not have enough information to determine all
the values of the entries in x .

It is important to have enough measurements in the system and to “spread out”
the measurements across the system as illustrated in Figure 9.3. We will see that
this requirement is similar to the need for sufficient variety in the trial vectors ψ(�)

in the multi-variate linear regression problem.

Exercises

Multi-variate linear regression

9.1 Consider a non-linear relationship between independent variables ψ and a dependent
variable ζ of the form defined in (9.1):

∀ψ ∈ R
n−1, ζ = β†ψ + ψ†�ψ,

where β ∈ Rn−1 and � ∈ R(n−1)×(n−1). For simplicity, assume that � is known to be
diagonal. (The generalization to arbitrary � is straightforward, but notationally clumsy.)
Assume that:

• the measurement ζ(�) for trial � is subject to additive Gaussian error e� with dis-
tribution given by (9.4) with µ� = 0, and

• the error on trial � is independent of the error on trial �′ for � 	= �′ and the joint
distribution is jointly Gaussian.

Let γ ∈ Rn−1 be the vector with elements that are equal to the corresponding diagonal

elements of �. Define x =
[

β
γ

]
∈ R2n−2. Formulate the maximum likelihood problem

analogous to Problem (9.7) by defining φ appropriately.

380 Case studies of unconstrained optimization

Power system state estimation

9.2 Consider the functional form of the measurement functions for line flows and voltage
magnitudes.

(i) Explicitly define the form of the real and reactive line flow measurement functions
p̃�k, q̃�k : Rn → R for an arbitrary (�, k) ∈ F. (Hint: consider the terms in (6.12)
and (6.13) that represent the flow along the line from � to k.)

(ii) Explicitly define the form of the voltage measurement function ũ� : Rn → R for
an arbitrary � ∈ U.

10

Algorithms for unconstrained minimization

In this chapter we will discuss algorithms for unconstrained minimization problems
of the form:

min
x∈�n

f (x),

where x ∈ Rn and f : Rn → R. In Section 10.1, we describe necessary condi-
tions that are satisfied by optimizers of unconstrained problems and describe suf-
ficient conditions to guarantee that a point is an optimizer. Some of the sufficient
conditions can be weakened; however, we present them in their simplest versions
for expositional clarity. Algorithms for finding optimizers are presented in Sec-
tion 10.2. As in our analysis of the solution of non-linear simultaneous equations,
we will initially not make any assumptions about f , besides partial differentiability
of f and continuity of its partial derivatives, but will gradually restrict our atten-
tion to those f for which we can construct effective algorithms. We will discuss
sensitivity analysis in Section 10.3.

The key issues discussed in this chapter are:

• the notion of descent directions to update the iterate to reduce the value of the
objective,

• optimality conditions based on descent directions,
• optimality conditions for convex objectives,
• the development of iterative algorithms that seek to successively improve the

value of the function, and
• sensitivity analysis.

10.1 Optimality conditions

We characterize local optimizers of a problem having an objective that is partially
differentiable with continuous partial derivatives. This characterization will in-

381

382 Algorithms for unconstrained minimization

volve properties of the objective at a candidate solution. Much of the presentation
is based on [70, chapter 6].

In Section 10.1.1, we discuss how to move from a point that is not a minimum in
a direction that decreases the objective. This will lead to necessary conditions for
optimality in Section 10.1.2; that is, conditions that must be true at a local optimum.
The simplest conditions, the first-order necessary conditions, based on the first
derivative of the objective, will lead to an algorithm for seeking a minimum. (The
conditions are sometimes referred to by their acronym FONC.) In the proof of
these conditions, we will make the links to the algorithm. We will also discuss
second-order necessary conditions (or SONC) in Section 10.1.3.1 that are based
on both the first and second derivatives.

Unfortunately, the first-order conditions are not sufficient to guarantee a local
minimum. In particular, the conditions also hold at a maximum or other critical
point. We will therefore also present in Section 10.1.3.2 second-order sufficient
conditions (or SOSC) that are based on both the first and the second derivative of
the objective and sufficient to guarantee a minimum. However, the conditions are
not necessary; that is, some minimizers will not satisfy the conditions.

In practice, we may find candidate solutions that satisfy the first-order and even
the second-order necessary conditions (to within the accuracy allowed by the pre-
cision of our calculations or to within a specified tolerance,) but do not “quite”
satisfy the second-order sufficient conditions. In this case, we must apply other
tests to the problem or apply “engineering judgment” to gauge whether we are at a
local optimum or at least have found a useful solution.

Fortunately, the notion of convexity provides conditions for global optimal-
ity. Section 10.1.4 discusses necessary and sufficient conditions for global op-
timality for convex objectives. In contrast to the local optimality conditions in
Sections 10.1.2–10.1.3, however, the conditions involving convexity require us to
know properties of the objective f throughout Rn .

10.1.1 Descent direction

10.1.1.1 Analysis

In this section we consider when we can move from a candidate point in a way that
reduces the objective. We make the following definition.

Definition 10.1 Let x̂ ∈ Rn and f : Rn → R. Then the vector �x ∈ Rn is called a
descent direction for f at x̂ if:

∃α ∈ R++ such that (0 < α ≤ α) ⇒ (f (x̂ + α�x) < f (x̂)).

�

10.1 Optimality conditions 383

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

Fig. 10.1. Descent direc-
tion (shown as the longer
arrow) for a function at a

point x̂ =
[

2
1

]
, shown as

a ◦. The contours of the
function decrease towards

x� =
[

1
3

]
, which is shown

as a •.

That is, �x is a descent direction for f at x̂ if the objective is smaller than f (x̂) at
points along the line segment x̂ + α�x for α > 0 and α ≤ α.

10.1.1.2 Example

The situation is illustrated in Figure 10.1, which shows contour sets of the function
f : R2 → R defined by:

∀x ∈ R
2, f (x) = (x1 − 1)2 + (x2 − 3)2, (10.1)

which we first saw in (2.10) in Section 2.3.1 and was first illustrated in Figure 2.8.

The unconstrained minimizer of this function is the point x� =
[

1
3

]
, which is

illustrated by the • in Figures 2.8 and 10.1.

Superimposed on the contour plot is a point x̂ =
[

2
1

]
shown as a ◦. At this

point are tails of two arrows. The longer arrow illustrates a descent direction �x
at x̂ , while the shorter arrow shows the vector α�x , for a value α < 1. The head
of the arrow representing �x lines on a contour of the function that is higher than
the contour associated with x̂ . The head of the arrow representing α�x lies on a
contour of the function that is lower than the contour associated with x̂ . That is,
f (x̂ + α�x) < f (x̂) < f (x̂ + �x). Moreover, all points of the form x̂ + α�x
for 0 < α ≤ α also lie on contours of lower value than that of x̂ . Note that �x
is a descent direction even though f (x̂ + �x) > f (x̂). The requirement in the
definition is that f (x̂ + α�x) < f (x̂) for all sufficiently small α.

By definition of descent direction, since there exists �x that is a descent direction
for f at x̂ in Figure 10.1, then x̂ cannot be a local minimizer of f . As illustrated in

384 Algorithms for unconstrained minimization

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

Fig. 10.2. Descent direc-
tions for a function at var-
ious points. The contours
of the function decrease to-

wards x� =
[

1
3

]
, which is

shown as a •.

Figure 10.1, by moving from x̂ in the direction of �x , we can move to points with
lower function values. That is, x̂ is not a local minimizer of f .

If we cannot find a descent direction, we might hope that this would indicate
that we have found a local minimizer. Unfortunately, this is not true in general as
Exercise 10.1 shows. In the special case of a convex function, however, there is a
descent direction at a point if and only if the point is not a local minimizer. (See
Exercise 10.2.)

Figure 10.2 repeats the contour plot of Figure 10.1 and includes more contours.
Superimposed on the contour plot are a collection of points denoted by ◦. At each
of these points there is the tail of an arrow. Each arrow is pointed in a descent
direction for the function at the point corresponding to the tail of the arrow. In
particular, each arrow points in the direction opposite to ∇ f (x) at the point x .
Moving from any such point x in the descent direction will reduce the value of the
objective. Moreover, the length of each arrow is chosen so that the value α = 1
will satisfy the definition of the descent direction. At the minimizer of the function,

that is, at x� =
[

1
3

]
, which is indicated by a • in Figure 10.2, there is no descent

direction.

10.1.1.3 Steepest descent step direction

The step direction �x = −∇ f (x) is called the direction of steepest descent be-
cause it involves moving in the direction from x in which f is reducing at the
greatest rate locally around x . (See Exercise 14.15 in Chapter 14 for details.)

10.1 Optimality conditions 385

The arrows in Figure 10.2 are proportional to the steepest descent step directions
�x = −∇ f (x) at each point x shown as a ◦.

Because we chose a function with circular contour sets, at each point x , the
direction −∇ f points directly to the minimizer and is perpendicular to the contour
set at x . We will see that in general the steepest descent step direction does not
point directly towards the minimizer.

10.1.1.4 Analysis

We now develop conditions to characterize descent directions. As suggested by
Figure 10.2, the conditions involve ∇ f (x).

Lemma 10.1 Let f : Rn → R be partially differentiable with continuous partial deriva-
tives and let x̂ ∈ Rn, �x ∈ Rn. Suppose that ∇ f (x̂)

†
�x < 0. Then �x is a descent

direction for f at x̂ .

Proof Let φ : R → R be defined by:

∀t ∈ R, φ(t) = f (x̂ + t�x).

By the chain rule,
dφ

dt
(t) = ∂ f

∂x
(x̂ + t�x)�x . Evaluating this at t = 0 yields:

dφ

dt
(0) = ∂ f

∂x
(x̂)�x,

= ∇ f (x̂)
†
�x,

= −2ε,

say, where ε > 0 by assumption.
But, by definition, since f is partially differentiable with continuous partial derivatives,

dφ

dt
(0) = lim

α→0

f (x̂ + α�x) − f (x̂)

α
.

(See Definition A.37 and Exercise A.9 in Appendix A.) Let α ∈ R++ be small enough
such that

(0 < |α| ≤ α) ⇒
(∣∣∣∣ f (x̂ + α�x) − f (x̂)

α
− dφ

dt
(0)

∣∣∣∣ ≤ ε

)
.

But this means that:

(0 < |α| ≤ α) ⇒
(∣∣∣∣ f (x̂ + α�x) − f (x̂)

α
− (−2ε)

∣∣∣∣ ≤ ε

)
,

which implies that:

(0 < |α| ≤ α) ⇒
(

f (x̂ + α�x) − f (x̂)

α
≤ −ε

)
.

386 Algorithms for unconstrained minimization

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

Fig. 10.3. Various descent
directions for a function
a particular point x̂ =[

3
−3

]
. The contours de-

crease towards the point

x� =
[

1
3

]
, which is shown

as a •.

(See Exercise 10.3.) So:

(0 < α ≤ α) ⇒ (f (x̂ + α�x) − f (x̂) ≤ −αε < 0),

⇒ (f (x̂ + α�x) < f (x̂)),

and �x is a descent direction for f at x̂ . �

Recall that ∇ f (x̂)
†
�x is called the directional derivative of f at x̂ in the di-

rection �x . (See Definition A.37.) Analytically, the condition in Lemma 10.1 that
∇ f (x̂)

†
�x < 0 requires that the directional derivative in the direction �x be nega-

tive. Geometrically, this condition requires that the angle between �x and −∇ f (x̂)

be less than 90◦ for �x to be a descent direction. This is illustrated in Figure 10.3

for descent directions from the point x̂ =
[

3
−3

]
, which is illustrated with a ◦, and

for the same function as shown in Figure 10.2. There are seven descent directions
illustrated at the point x̂ .

One of the descent directions illustrated in Figure 10.3, the “middle” one, is the
direction −∇ f (x̂). All of the descent directions make an angle of less than 90◦

with the direction −∇ f (x̂). For example, the direction −∇ f (x̂) makes an angle of
0◦ with the direction −∇ f (x̂).

Because of the circular contour sets of the function illustrated in Figure 10.3,
the steepest descent step direction points directly towards the minimizer and is
perpendicular to the contour set at x̂ . Again, it is to be remembered that this is due
to the special case of circular contour sets. We will investigate the more general
(and more typical) case in Section 10.2.

10.1 Optimality conditions 387

We have the following:

Corollary 10.2 Let x̂ ∈ Rn, let M ∈ Rn×n be positive definite, and let f : Rn → R be
partially differentiable with continuous partial derivatives and such that ∇ f (x̂) 	= 0.
Then �x = −M ∇ f (x̂) is a descent direction for f at x̂ .

Proof Note that ∇ f (x̂)
†
�x = −∇ f (x̂)

†M ∇ f (x̂) < 0, since M is positive definite
and ∇ f (x̂) 	= 0. Apply Lemma 10.1. �

To interpret the direction �x , let us first suppose that M = I, yielding �x =
−∇ f (x̂), the steepest descent step direction. Consider a move away from x̂ in the

direction specified by �x = −M ∇ f (x̂) = −∇ f (x̂). Then if
∂ f
∂xk

(x̂) > 0 notice

that �xk = − ∂ f
∂xk

(x̂) < 0, so that we move away from x̂ so as to reduce the k-th

coordinate of x̂ and reduce f , at least for small steps in this direction. Similarly,

if
∂ f
∂xk

(x̂) < 0 then �xk > 0 and we move away from x̂ so as to increase the k-th

coordinate of x̂ and reduce f , at least for small steps in this direction.
We can again use Figure 10.3 to help with interpretation. As discussed above,

this figure shows several descent directions at the point x̂ =
[

3
−3

]
. Also as

mentioned above, the “middle” arrow in Figure 10.3 shows the steepest descent
step direction at x̂ , corresponding to the choice M = I. The other directions
correspond to other choices of positive definite M and also yield descent directions
in that f is also reducing in these directions away from x̂ . In fact, this allows us
to characterize the minimum of an unconstrained problem as the first theorem in
Section 10.1.2 shows. Moreover, as we will see in Section 10.2, other choices of
positive definite M will turn out to be more desirable than M = I when the contour
sets are not circular.

10.1.2 First-order conditions

In this section, we discuss optimality conditions that are based on the first derivative
of the objective function. We call these first-order conditions.

10.1.2.1 Necessary conditions

In this section we discuss necessary conditions involving the first derivative of f .

Theorem 10.3 Let f : Rn → R be partially differentiable with continuous partial deriva-
tives. If x� is a local minimizer of f then ∇ f (x�) = 0.

388 Algorithms for unconstrained minimization

Proof We prove the contra-positive. That is, we prove that if ∇ f (x�) 	= 0 then x� is
not a local minimizer. Let M ∈ Rn×n be positive definite. By Corollary 10.2, �x =
−M ∇ f (x�) is a descent direction for f at x� and so x� is not a local minimizer of f .
�

The conditions ∇ f (x�) = 0 are often referred to as the first-order necessary
conditions, abbreviated FONC. However, strictly speaking, the first-order neces-
sary conditions include the rest of the hypothesis of Theorem 10.3.

Inspection of Figure 10.2 shows that x� =
[

1
3

]
is the (unique) local mini-

mizer of the function illustrated. From (10.1) we have that ∇ f (x) =
[

2(x1 − 1)

2(x2 − 3)

]
.

Therefore, ∇ f (x�) = 0, which is exactly as Theorem 10.3 claims.
The statement and proof of Theorem 10.3, respectively, suggest two approaches

to finding a minimizer of f :

(i) solve ∇ f (x) = 0, or
(ii) from the current point x , move in the direction �x = −M ∇ f (x), where M

is positive definite.

We will see that both these ideas should be combined to produce an effective algo-
rithm.

10.1.2.2 Example of insufficiency

Unfortunately, as we noted, the condition ∇ f (x) = 0 is not sufficient to guarantee
a minimum. We call points that satisfy ∇ f (x) = 0 critical points. Not all critical
points are minimizers. Consider the function f : R → R shown in Figure 10.4
and the derivative of this function shown in Figure 10.5. The function shown in
Figure 10.4 has three critical points, illustrated with ◦, corresponding to the zeros
of the derivative function shown in Figure 10.5:

(i) x̂ = −3, f (x̂) = 8, a local maximizer and maximum of f , respectively,
(ii) ˆ̂x = 0, f (ˆ̂x) = 0, a horizontal inflection point of f , and
(iii) x� = 3, f (x�) = −8, a local minimizer and minimum of f , respectively.

Clearly, the first-order necessary conditions ∇ f (x) = 0 are not sufficient to guar-
antee that we are at a minimum.

10.1.3 Second-order conditions

If f is twice partially differentiable with continuous second partial derivatives,
then we can consider using the second partial derivatives to help to determine if
we are at a minimizer. Recall that we call the matrix of second partial derivatives

10.1 Optimality conditions 389

4 3 2 1 0 1 2 3 4
10

8

6

4

2

0

2

4

6

8

10

x
x̂ ˆ̂x x�

f (x)

Fig. 10.4. Graph of f and
points (illustrated by the ◦)
satisfying ∇ f (x) = 0 but
which may or may not cor-
respond to a minimum.

4 3 2 1 0 1 2 3 4
10

8

6

4

2

0

2

4

6

8

10

x

∇ f (x)

x̂ ˆ̂x x�

Fig. 10.5. The first deriva-
tive ∇ f of the function f
shown in Figure 10.4.

the Hessian. (See Definition A.38.) Optimality conditions based on second deriva-
tives are called second-order conditions. We first discuss second-order necessary
conditions and then second-order sufficient conditions.

10.1.3.1 Necessary conditions

Analysis The following theorem gives second-order necessary conditions, ab-
breviated SONC.

390 Algorithms for unconstrained minimization

4 3 2 1 0 1 2 3 4
20

15

10

5

0

5

10

15

20

x

∇2f (x)

x̂ ˆ̂x x�

Fig. 10.6. The second
derivative ∇2f of the
function f shown in
Figure 10.4.

Theorem 10.4 Let f : Rn → R be twice partially differentiable with continuous second
partial derivatives and suppose that x� is a local minimizer of f . Then:

∇ f (x�) = 0, (10.2)

∇2f (x�) is positive semi-definite. (10.3)

Proof See [70, section 6.1][84, section 10.2]. �

Example To illustrate application of this theorem, again consider the function f
shown in Figure 10.4. Its first and second derivatives are shown in Figures 10.5
and 10.6, respectively. Since f : R → R in this case, the Hessian ∇2f : R → R is
positive semi-definite if and only if it is non-negative.

The critical points of f are at:

x̂ = −3. At this point, the Hessian of f , shown in Figure 10.6, is negative and
hence not positive semi-definite. Therefore, by Theorem 10.4, x̂ = −3 cannot be
a local minimizer of f . We will discuss how to avoid critical points that are not
minimizers of f in Section 10.2.6.

ˆ̂x = 0. At this point, the Hessian of f is zero and hence positive semi-definite. The
second-order necessary conditions are satisfied but by inspection of Figure 10.4,
ˆ̂x = 0 is clearly not a minimizer. This example shows that in general even the
second-order necessary conditions alone are insufficient to guarantee that a candi-
date point is a minimizer.

To identify whether or not ˆ̂x = 0 is a minimizer using derivative information at

10.1 Optimality conditions 391

ˆ̂x = 0 alone requires higher-order derivative information at this point. Unfortu-
nately, such information is usually difficult to obtain unless the function is known
analytically. Therefore, objectives with horizontal inflection points are difficult to
handle because first and second derivatives alone do not characterize minimizers.
We will discuss the case of horizontal inflection points further in Section 10.2.6.

x� = 3. This point is a local minimizer of f . Figure 10.6 and Theorem 10.4 both
concur that the Hessian is positive semi-definite.

10.1.3.2 Sufficient conditions

Analysis In the following theorem, we discuss second-order sufficient condi-
tions (or SOSC) for a point to be a local minimizer of a twice partially differen-
tiable function with continuous second partial derivatives.

Theorem 10.5 Let f : Rn → R be twice partially differentiable with continuous second
partial derivatives and suppose that:

∇ f (x�) = 0,

∇2f (x�) is positive definite.

Then x� is a strict local minimizer of f .

Proof By hypothesis, ∇2f (x�) is positive definite and ∇2f is continuous. Therefore,
by Exercise 5.19:

∃ε ∈ R++ such that
(∥∥x� − x

∥∥ ≤ ε
)⇒ (∇2f (x) is positive definite). (10.4)

Let �x be any step direction such that 0 < ‖�x‖ ≤ ε and define φ : R → R by

∀t ∈ R, φ(t) = f (x� + t�x).

Then:

dφ

dt
(t) = ∂ f

∂x
(x� + t�x)�x,

dφ

dt
(0) = ∂ f

∂x
(x�)�x,

= ∇ f (x�)
†
�x,

= 0, by hypothesis, (10.5)

d2φ

dt2
(t) = �x† ∂2 f

∂x2 (x� + t�x)�x,

> 0, (10.6)

where the last inequality follows from (10.4) since �x 	= 0 and since:

(0 < t ≤ 1) ⇒ (∥∥x� − (x� + t�x)
∥∥ = t ‖�x‖ ≤ ‖�x‖ ≤ ε

)
.

392 Algorithms for unconstrained minimization

We have that φ(0) = f (x�) and:

∀�x ∈ R
n, (0 < ‖�x‖ ≤ ε) ⇒

f (x� + �x) = φ(1),

= φ(0) +
∫ 1

t=0

dφ

dt
(t) dt,

by the fundamental theorem of integral calculus applied to φ,

(see Theorem A.2 in Section A.4.4.1 of Appendix A),

= φ(0) +
∫ 1

t=0

[
dφ

dt
(0) +

∫ t

t ′=0

d2φ

dt2
(t ′) dt ′

]
dt,

by the fundamental theorem of integral calculus applied to
dφ

dt
,

(see Theorem A.2 in Section A.4.4.1 of Appendix A),

= φ(0) + dφ

dt
(0) +

∫ 1

t=0

∫ t

t ′=0

d2φ

dt2
(t ′) dt ′ dt,

evaluating the integral of the first term in the integrand,

= φ(0) +
∫ 1

t=0

∫ t

t ′=0

d2φ

dt2
(t ′) dt ′ dt, by (10.5),

> f (x�), since the integrand is strictly positive at t 	= 0 by (10.6),

(see Theorem A.3 in Section A.4.4.2 of Appendix A).

That is, x� is a strict local minimizer. �

Example Continuing with the example from Section 10.1.1.2, note that:

∀x ∈ R
2,∇2f (x) =

[
2 0
0 2

]
,

which is positive definite. Therefore, by Theorem 10.5, the point x� =
[

1
3

]
is a

strict local minimizer of f .

Example of insufficiency We emphasize that positive semi-definiteness of the sec-
ond derivative matrix at a critical point ˆ̂x is not sufficient to guarantee that ˆ̂x is a
minimizer. For example, consider the function f : R → R defined by:

∀x ∈ R, f (x) = −(x)4,

and the point ˆ̂x = [0] as illustrated in Figure 10.7. In this case∇ f (ˆ̂x) = [−4(ˆ̂x)3] =
[0] and ∇2f (ˆ̂x) = [−12(ˆ̂x)2] = [0] so that:

∀�x ∈ R, 0 = �x∇2f (ˆ̂x)�x ≥ 0,

10.1 Optimality conditions 393

1 5 1 0 5 0 0 5 1 1 5
5

4

3

2

1

0

1

x

f

ˆ̂x

Fig. 10.7. A critical point
ˆ̂x = 0, illustrated by
the ◦, where the second
derivative matrix is posi-
tive semi-definite at ˆ̂x yet
the point is not a mini-
mizer.

and so ∇2f (ˆ̂x) is positive semi-definite. However, ˆ̂x = [0] is clearly not a min-
imizer of f . The second derivative ∇2f is not even positive semi-definite for
x 	= [0]. In the next section we will consider the convex case where f is posi-
tive semi-definite everywhere.

10.1.4 Convex objectives

10.1.4.1 First-order sufficient conditions

Analysis If f is twice partially differentiable with continuous partial derivatives
and the second derivative matrix of f is positive semi-definite everywhere then the
objective is convex by Theorem 2.7. In the case of a convex objective, the first-
order conditions are necessary and sufficient as the following corollary to Theo-
rem 2.6 shows.

Corollary 10.6 Let f : Rn → R be convex and partially differentiable with continuous
partial derivatives on Rn and let x� ∈ Rn. If ∇ f (x�) = 0 then f (x�) is the global
minimum and x� is a global minimizer of f .

Proof Recall Theorem 2.6. The hypothesis of Theorem 2.6 is satisfied for S = Rn .
Consequently, (2.31) holds, which we repeat:

∀x, x ′ ∈ S, f (x) ≥ f (x ′) +∇ f (x ′)†(x − x ′).

Letting x ′ = x� and S = Rn in (2.31) and noting that ∇ f (x�) = 0, we obtain:

∀x ∈ R
n, f (x) ≥ f (x�).

That is x� is a global minimizer of f . �

394 Algorithms for unconstrained minimization

Summarizing previous results, if f is convex and partially differentiable with
continuous partial derivatives then by Theorem 10.3 and Corollary 10.6, ∇ f (x�) =
0 is a necessary and sufficient condition for global optimality. Moreover, as Ex-
ercise 10.4 exemplifies, if f is convex and partially differentiable with continuous
partial derivatives but no point satisfies the equations ∇ f (x) = 0 then there is no
minimizer.

Example Continuing with the example from Sections 10.1.1.2 and 10.1.3.2, note
that ∇2f is positive definite so that f is convex. Therefore, by Corollary 10.6, the

point x� =
[

1
3

]
is the global minimizer of f .

10.1.4.2 Uniqueness of minimizer

A related result stems from Theorem 2.2. Recall that the Hessian of f is the same
as the Jacobian of ∇ f . Therefore, by Theorems 2.3 and 2.2, if the Hessian of f is
positive definite on Rn then there can be at most one solution of ∇ f (x) = 0. Alter-
natively, by Theorem 2.7, f is strictly convex and so by Item (iii) of the conclusion
of Theorem 2.4, f has a unique minimizer. That is, we have the following.

Theorem 10.7 Let f : Rn → R be twice partially differentiable with continuous second
partial derivatives on Rn. If ∇2f is positive definite throughout Rn and minx∈�n f (x)

possesses a minimum then the associated minimizer is unique.

Proof Applying Theorems 2.3 and 2.2 to ∇ f we find that there is at most one point
that satisfies the necessary conditions for minimizing f . Alternatively, Theorem 2.7 and
Item (iii) of the conclusion of Theorem 2.4 imply the same result. �

10.2 Approaches to finding minimizers

In Sections 10.2.1 and 10.2.2 we will discuss two approaches to finding minimiz-
ers based on, respectively, the proof and the statement of Theorem 10.3, which
characterized the first-order necessary conditions. We will discuss the advantages
and disadvantages of each and then combine the approaches into an effective al-
gorithm in Section 10.2.3. Initially we will ignore the selection of step-sizes but
we will return to this issue in Section 10.2.4. Stopping criteria are discussed in
Section 10.2.5. In Section 10.2.6 we discuss how to avoid critical points that are
not minimizers. Most of the development is based on [70, chapters 7 and 9].

10.2 Approaches to finding minimizers 395

10.2.1 Steepest descent

Using the steepest descent step direction, we update our iterate according to:

x (ν+1) = x (ν) − α(ν) ∇ f (x (ν)). (10.7)

Geometrically, the steepest descent step direction at x (ν) is perpendicular to the sur-
face of the contour set C f (f (x (ν))) as illustrated in Figure 10.2, where the descent
directions illustrated are the steepest descent step directions at each point. (See
Exercise 10.6.)

In addition to the step direction, we must also choose the step-size α(ν). We will
discuss some of the issues in selecting a step-size in Section 10.2.4; however, in
this section we assume that we know how to pick α(ν) to reduce the objective. That
is, we assume we can find α satisfying Definition 10.1.

10.2.1.1 Advantages

The main advantage of the steepest descent step direction �x (ν) = −∇ f (x (ν))

is that, unless ∇ f (x (ν)) = 0, it is always possible to find a step-size α(ν) such
that the objective will be reduced from f (x (ν)) by updating the iterate to x (ν) −
α(ν) ∇ f (x (ν)). Recall that in the absence of further assumptions, a point x satisfying
∇ f (x) = 0 may be a minimum, a maximum, or a point of inflection. If f is convex,
then Corollary 10.6 shows that if ∇ f (x (ν)) = 0 then x (ν) is a minimizer of f .

10.2.1.2 Example

Consider the quadratic function illustrated in Figure 10.2 and defined in (10.1).

We have: ∇ f (x) =
[

2(x1 − 1)

2(x2 − 3)

]
. Suppose that we use x (0) =

[
3

−5

]
as the initial

guess. Then ∇ f (x (0)) =
[

2(3 − 1)

2(−5 − 3)

]
=
[

4
−16

]
and the steepest descent step

direction at x (0) is �x (0) =
[−4

16

]
. We update according to:

x (1) = x (0) + α(0)�x (0) =
[

3
−5

]
+ α(0)

[−4
16

]
.

If we were fortunate enough to pick the step-size of α(0) = 0.5 then we would

find that x (2) = x� =
[

1
3

]
so that we would have reached the minimizer in one

iteration.

10.2.1.3 Disadvantages

Besides the difficulty of choosing the step-size in the update, the main disadvantage
of the steepest descent step direction is that progress towards the solution may be

396 Algorithms for unconstrained minimization

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

Fig. 10.8. The steepest
descent step directions
for an objective, defined
in (10.8), with contour sets
that are highly eccentric
ellipses. The contours
of the function decrease

towards x� =
[

1
3

]
, which

is shown as a •.

very slow if the contour sets of the function are very “eccentric.” In Figure 10.2,
the level sets are circular and so the steepest descent step direction points directly
to the global minimizer, x�. However, as remarked, this is not the typical case in
practice.

10.2.1.4 Example

Figure 10.8 shows the steepest descent step directions for a quadratic function f :
R2 → R defined by:

∀x ∈ R
2, f (x) = (x1 − 1)2 + (x2 − 3)2 − 1.8(x1 − 1)(x2 − 3), (10.8)

which we first met in Section 2.6.3.2. This function is of the form:

∀x ∈ R
2, f (x) = 1

2
x†Qx + c†x,

where:

Q = ∇2f (x),

=
[

2 −1.8
−1.8 2

]
,

c =
[

3.4
−4.2

]
.

This function has the same minimizer, x� =
[

1
3

]
, as the function in Figure 10.2,

but has eccentric contour sets. This function is more typical of functions encoun-

10.2 Approaches to finding minimizers 397

tered in practice. In this case, Figure 10.8 shows that the steepest descent step
directions do not point towards x�.

For a step-size of α(ν), the next iterate has objective value given by f
(
x (ν+1)

) =
f
(
x (ν) − α(ν) ∇ f (x (ν))

)
. Even if we were able to choose α(ν) at each iteration to

minimize f
(
x (ν) − α(ν) ∇ f (x (ν))

)
exactly with respect to α(ν), it can take many

iterations to find the minimum of a quadratic function having eccentric contour
sets. The iterates will “zig-zag” back and forth across the axes of the eccentric
contour sets, making slow progress towards x�. We will see in Section 10.2.1.5
that non-quadratic functions with eccentric contour sets will exhibit similarly poor
behavior using the steepest descent step direction.

Using the function defined in (10.8), we obtain:

∀x ∈ R
2,∇ f (x) =

[
2(x1 − 1) − 1.8(x2 − 3)

2(x2 − 3) − 1.8(x1 − 1)

]
.

Again, suppose that we use x (0) =
[

3
−5

]
as the initial guess. Then:

∇ f (x (0)) =
[

2(3 − 1) − 1.8(−5 − 3)

2(−5 − 3) − 1.8(3 − 1)

]
=
[

18.4
−19.6

]
,

and the steepest descent step direction at x (0) is �x (0) =
[−18.4

19.6

]
. This is consis-

tent with the direction of the arrow at the point x (0) =
[

3
−5

]
in Figure 10.8. We

update according to:

x (1) = x (0) + α(0)�x (0) =
[

3
−5

]
+ α(0)

[−18.4
19.6

]
.

If we find the value of α(0) that minimizes f (x (0) + α(0)�x (0)) over choices of α(0),

we would find that x (1) ≈
[−1.8467

0.1628

]
, which is relatively far from the minimizer

of f .
Figure 10.9 illustrates the progress of iterations using steepest descent step di-

rection, starting at x (0) =
[

3
−5

]
, and assuming that at the ν-th iteration the step-

size α(ν) were chosen to minimize f (x (ν) + α�x (ν)). Figure 10.9 shows that after
two iterations of steepest descent we are close to the minimizer of this function.

However, starting at x (0) =
[−2
−5

]
, the progress is much slower, as illustrated

in Figure 10.10, requiring six steepest descent step directions to get close to the
minimizer.

In higher dimensions, with n larger than 2, the steepest descent algorithm will

398 Algorithms for unconstrained minimization

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

Fig. 10.9. Progress of iter-
ations, shown as ◦, using
steepest descent step direc-
tions for an objective, de-
fined in (10.8), with con-
tour sets that are highly ec-
centric ellipses. The con-
tours of the function de-

crease towards x� =
[

1
3

]
,

which is shown as a •. The
initial guess was x (0) =[

3
−5

]
.

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

Fig. 10.10. Progress of it-
erations, shown as ◦, using
steepest descent step direc-
tions for an objective, de-
fined in (10.8), with con-
tour sets that are highly ec-
centric ellipses. The con-
tours of the function de-

crease towards x� =
[

1
3

]
,

which is shown as a •. The
initial guess was x (0) =[−2
−5

]
.

repeatedly take us in directions that do not point directly towards the minimizer.
(See Exercise 10.9.) The steepest descent step direction can be arbitrarily close to
being at right angles to the direction that points towards the minimizer. Moreover,
we cannot expect to exactly minimize f (x (ν) + α(ν)�x (ν)) over choices of α(ν) as
assumed in Figures 10.9 and 10.10. This typically increases further the number of
iterations required to find a useful answer. Finally, if the objective is not quadratic
then the performance can be even worse as shown in the following example.

10.2 Approaches to finding minimizers 399

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

Fig. 10.11. The steepest
descent step directions
for an objective, defined
in (10.9), with contour sets
that are perturbed eccen-
tric ellipses. The contours
of the function decrease

towards x� =
[

1
3

]
, which

is shown as a •.

10.2.1.5 Example with non-quadratic objective

Consider the function f : R2 → R defined by:

∀x ∈ R
2, f (x) = 0.01(x1 − 1)4 + 0.01(x2 − 3)4 + (x1 − 1)2 + (x2 − 3)2

− 1.8(x1 − 1)(x2 − 3). (10.9)

This a perturbation of the quadratic function defined in (10.8). Figure 10.11 shows
the steepest descent step directions for this function. The contour sets of this func-
tion are perturbed ellipses.

The gradient of this function is:

∀x ∈ R
2,∇ f (x) =

[
0.04(x1 − 1)3 + 2(x1 − 1) − 1.8(x2 − 3)

0.04(x2 − 3)3 − 1.8(x1 − 1) + 2(x2 − 3)

]
.

Again, suppose that we use x (0) =
[

3
−5

]
as the initial guess. Then, ∇ f (x (0)) =[

18.72
−40.08

]
and the steepest descent step direction at x (0) is �x (0) =

[−18.72
40.08

]
.

This is consistent with the direction of the arrow at the point x (0) =
[

3
−5

]
in

Figure 10.11. We update according to:

x (1) = x (0) + α(0)�x (0) =
[

3
−5

]
+ α(0)

[−18.72
40.08

]
.

Figure 10.12 shows the progress of a steepest descent algorithm starting at x (0) =

400 Algorithms for unconstrained minimization

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

Fig. 10.12. Progress of it-
erations, shown as ◦, using
steepest descent step direc-
tions for an objective, de-
fined in (10.9), with con-
tour sets that are perturbed
eccentric ellipses. The
contours of the function
decrease towards x� =[

1
3

]
, which is shown as a

•. The initial guess was

x (0) =
[

3
−5

]
.

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

Fig. 10.13. Progress of it-
erations, shown as ◦, using
steepest descent step direc-
tions for an objective, de-
fined in (10.9), with con-
tour sets that are perturbed
eccentric ellipses. The
contours of the function
decrease towards x� =[

1
3

]
, which is shown as a

•. The initial guess was

x (0) =
[−2
−5

]
.

[
3

−5

]
and assuming that at the ν-th iteration the step-size α(ν) were chosen to

minimize f (x (ν) + α�x (ν)). Figure 10.12 shows that many iterations are required
to approach the minimizer.

Figure 10.13 shows the progress of a steepest descent algorithm starting at x (0) =[−2
−5

]
, again with the step-size chosen to minimize f (x (ν) + α�x (ν)) at each iter-

10.2 Approaches to finding minimizers 401

ation. Figure 10.13 shows that the iterates again zig-zag back and forth across the
axis of the contour sets and many iterations are required to approach the minimizer.

10.2.2 Solving ∇ f (x) = 0

Another approach to minimizing f is based on the observation that ∇ f (x) = 0
is a system of either linear or non-linear equations having the same number of
equations as variables. We discussed the solution of linear equations in Chapter 5
and the iterative solution of non-linear equations in Chapter 7. We will apply these
ideas to the solution of ∇ f (x) = 0 in Sections 10.2.2.1 and 10.2.2.2.

10.2.2.1 Linear first-order necessary conditions

Analysis Suppose that f : Rn → R is quadratic of the form:

∀x ∈ R
n, f (x) = 1

2
x†Qx + c†x,

where Q ∈ Rn×n and c ∈ Rn . In this case, the equations ∇ f (x) = 0 are linear and
of the form Qx + c = 0. (See Exercise 10.10.) If the coefficient matrix Q = ∇2f
of this linear system is non-singular then we can solve the equations:

Qx� = −c,

by, for example, factorization of Q and forwards and backwards substitution, to
find a critical point of f in one step. If the coefficient matrix is singular or ill-
conditioned then we can use the QR factorization. (Note that the “Q” factor of the
quadratic coefficient matrix Q will, of course, be different to the coefficient matrix
Q.) If the coefficient matrix is singular then there will be multiple solutions. (We
will explore this case further in Section 11.1.4.)

Example Consider the function f : R2 → R defined in (10.8):

∀x ∈ R
2, f (x) = (x1 − 1)2 + (x2 − 3)2 − 1.8(x1 − 1)(x2 − 3),

= 1

2
x†Qx + c†x,

where:

Q = ∇2f (x),

=
[

2 −1.8
−1.8 2

]
,

c =
[

3.4
−4.2

]
.

402 Algorithms for unconstrained minimization

Solving Qx� = −c we obtain the minimizer x� =
[

1
3

]
.

10.2.2.2 Non-linear first-order necessary conditions

Analysis For non-linear equations, the basic idea is to apply the Newton–Raphson
update to solve ∇ f (x) = 0. At the ν-th iteration the Newton–Raphson update to
solve ∇ f (x) = 0 is given by:

∇2f (x (ν))�x (ν) = −∇ f (x (ν)),

x (ν+1) = x (ν) + α(ν)�x (ν),

where α(ν) is the step-size. The choice of step direction is called the Newton–
Raphson step direction to minimize f . Initially, we will consider α(ν) = 1 or
assume that the step-size has been chosen at the ν-th iteration to minimize f (x (ν)+
α(ν)�x (ν)). We will discuss the choice of step-size in more detail in Section 10.2.4.
The Jacobian of ∇ f is the Hessian ∇2f of f , so that the Newton–Raphson step
direction involves linearizing ∇ f to solve ∇ f (x) = 0.

Example with quadratic objective For a quadratic function, the necessary con-
ditions are linear. Nevertheless, we can consider applying the Newton–Raphson
update to solve them as though they were non-linear. For a quadratic function
f : Rn → R defined by:

∀x ∈ R
n, f (x) = 1

2
x†Qx + c†x,

where Q ∈ Rn×n and c ∈ Rn , the Newton–Raphson step direction is the solution
to Q�x (ν) = −Qx (ν) − c. Using this update with step-size one yields a point satis-
fying the first-order necessary conditions for minimizing f . (See Exercise 10.10.)
That is, at any point, the Newton–Raphson step direction points directly towards
the minimizer. Figure 10.14 shows the Newton–Raphson step directions at vari-
ous points for the function defined in (10.8). They all point towards the minimizer

x� =
[

1
3

]
.

Example with non-quadratic objective We continue with the function f : R2 →
R from Section 10.2.1.5 defined in (10.9):

∀x ∈ R
2, f (x) = 0.01(x1 − 1)4 + 0.01(x2 − 3)4 + (x1 − 1)2 + (x2 − 3)2

−1.8(x1 − 1)(x2 − 3).

The Hessian of this function is:

∀x ∈ R
2,∇2f (x) =

[
0.12(x1 − 1)2 + 2 −1.8

−1.8 0.12(x2 − 3)2 + 2

]
.

10.2 Approaches to finding minimizers 403

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

Fig. 10.14. The Newton
Raphson step directions
for an objective, defined
in (10.8), with contour sets
that are highly eccentric el-
lipses. The contours of the
function decrease towards

x� =
[

1
3

]
, which is shown

as a •.

Again, suppose that we use x (0) =
[

3
−5

]
as the initial guess. Then, as in the

steepest descent iteration, ∇ f (x (0)) =
[

18.72
−40.08

]
. The Newton–Raphson step

direction at x (0) is the solution to:[
2.96 −1.8
−1.8 9.68

]
�x (0) =

[−18.72
40.08

]
.

Solving this, we obtain �x (0) ≈
[−5.250

3.164

]
. We update according to:

x (1) = x (0) + α(0)�x (0) =
[

3
−5

]
+ α(0)

[−5.250
3.164

]
.

For step-size α(0) = 1, we obtain x (1) =
[−2.250
−1.836

]
. This value is still relatively

far from the minimizer, which is x� =
[

1
3

]
.

Figure 10.15 shows the progress of a Newton–Raphson algorithm starting at

x (0) =
[

3
−5

]
and assuming that at the ν-th iteration the step-size α(ν) were chosen

to minimize f (x (ν) + α�x (ν)). Three iterations are required to get close to the
minizer. For this function, the Newton–Raphson step direction at the initial guess is
not as good as the steepest descent step direction. However, after the first iteration,
the progress towards the minimizer is rapid.

Figure 10.16 shows the progress of a Newton–Raphson algorithm starting at

404 Algorithms for unconstrained minimization

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

Fig. 10.15. Progress of it-
erations, shown as ◦, us-
ing Newton Raphson step
directions for an objective,
defined in (10.9), with con-
tour sets that are perturbed
eccentric ellipses. The
contours of the function
decrease towards x� =[

1
3

]
, which is shown as a

•. The initial guess was

x (0) =
[

3
−5

]
.

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

Fig. 10.16. Progress of it-
erations, shown as ◦, us-
ing Newton Raphson step
directions for an objective,
defined in (10.9), with con-
tour sets that are perturbed
eccentric ellipses. The
contours of the function
decrease towards x� =[

1
3

]
, which is shown as a

•. The initial guess was

x (0) =
[−2
−5

]
.

x (0) =
[−2
−5

]
, again with the step-size chosen to minimize f (x (ν)+α�x (ν)) at each

iteration. The progress is much faster than for the steepest descent step direction
for the same value of initial guess.

10.2.2.3 Advantages

The advantages of using the Newton–Raphson step direction include the following.

(i) The convergence properties of the Newton–Raphson method discussed in

10.2 Approaches to finding minimizers 405

Section 7.3.3 will be inherited. That is, convergence to the solution of
∇ f (x) = 0 will be rapid, at least for initial guesses that are near to a solu-
tion of the equations or after the iterate becomes close to a solution of the
equations. Ideally, convergence of the sequence of iterates is quadratic. (As
we will discuss in Section 10.2.4, we can use a step-size selection rule to
aid in convergence from initial guesses that are far from the solution.)

(ii) If f is a quadratic function then, as discussed in Section 10.2.2.2, the
Newton–Raphson step direction with step-size α(ν) = 1 takes us to a criti-
cal point in just one iteration. (See Exercise 10.10.) Figure 10.14 shows the
contour sets of the quadratic objective defined in (10.8) and illustrated in
Figure 10.8 but with the Newton–Raphson step directions shown as arrows
at various points. The Newton–Raphson step directions point directly to
the minimizer of a quadratic function.

(iii) Since ∇2f (x) is symmetric, we can take advantage of symmetry in factor-
ization.

10.2.2.4 Disadvantages

There are some significant disadvantages of using the Newton–Raphson approach.

(i) For non-quadratic objectives and particularly at points that are far from
the minimizer, the Newton–Raphson step direction is not necessarily a bet-
ter direction than the steepest descent step direction. As shown in Fig-
ure 10.15, this is the case for the non-quadratic function (10.9) discussed
in Section 10.2.2.2 using the Newton–Raphson step direction starting at

x (0) =
[

3
−5

]
.

(ii) Factorization of the Hessian may require considerable effort if n is large or
the Hessian is dense. Moreover, if the function has highly elliptical level
sets then the Hessian is an ill-conditioned matrix and we may have to use
QR factorization to get useful search directions.

(iii) If ∇ f (x (ν)) is not known analytically then it may be difficult or impossible
to directly calculate ∇2f (x (ν)).

(iv) If ∇2f (x (ν)) is not positive definite, then the Newton–Raphson update may
take us towards a maximum or a point of inflection. For example, consider
the function shown in Figure 10.4. Its derivative and Hessian are illustrated
in Figures 10.5 and 10.6. Depending on the proximity of the current iterate
x (ν) to the critical points, the Newton–Raphson update may move towards
one or other of the critical points or may cause the update to move far from
the critical points. For example, consider the following.

(a) For iterates x (ν) < −3, the Hessian ∇2f (x (ν)) < 0. Therefore, a

406 Algorithms for unconstrained minimization

linear approximation to ∇ f yields a line with negative slope. Set-
ting the linear approximation equal to zero will yield an update that
brings the iterate closer to x̂ = −3, a local maximizer of f .

(b) For iterates x (ν) > 3, the Hessian ∇2f (x (ν)) > 0. Therefore, a linear
approximation to ∇ f yields a line with positive slope. Setting the
linear approximation equal to zero will yield an update that brings
the iterate closer to x� = 3, a local minimizer of f .

(c) For iterates −3 ≤ x (ν) ≤ 3, the sign of the Hessian ∇2f (x (ν)) varies
with x (ν). Therefore, a linear approximation to∇ f yields a line with
either positive or negative slope.

1. For x (ν) ≈ ±2.121, the Hessian is approximately zero, but
∇ f (x (ν)) is very different from zero. The linear approxima-
tion to ∇ f at x (ν) is a very poor approximation. Setting the
approximation equal to zero yields an update that could be
very large in magnitude and a new iterate that is far from
any of the critical points.

2. For x (ν) ≈ 0, the Hessian is approximately zero and∇ f (x (ν))

is also close to zero. Setting the linear approximation to
∇ f equal to zero will yield an update that brings the iterate
closer to ˆ̂x = 0, the horizontal inflection point.

3. For other values of x (ν), the update will bring the iterate
closer to one of the critical points.

Since we cannot in general predict whether x (0) is close to a minimizer,
maximizer, or a point of inflection, we must add safeguards to the basic
Newton–Raphson update to seek points satisfying ∇ f (x) = 0 that are min-
imizers of f .

Exercise 10.10 confirms that for a quadratic function with quadratic coefficient
matrix Q ∈ Rn×n , if Q is not positive semi-definite then the “reduction” in objec-
tive when using the Newton–Raphson step direction can be negative; that is, the
objective can increase if the Newton–Raphson update is applied to a function that
has a Hessian that is not positive semi-definite.

Exercise 10.11 shows that the Newton–Raphson step direction is independent of
the coordinate system. This is consistent with our observation that the Newton–
Raphson step direction always points towards the minimizer of a convex quadratic
function.

10.2 Approaches to finding minimizers 407

10.2.3 Generalization of Newton–Raphson and steepest descent

In this section we generalize the Newton–Raphson and steepest descent updates in
a way that can combine the advantages of each approach.

10.2.3.1 Uniform treatment of updates

We can treat the Newton–Raphson and steepest descent step directions uniformly
by writing:

�x (ν) = −M ∇ f (x (ν)), (10.10)

with M ∈ Rn×n positive definite as in Corollary 10.2. The choice M = I yields
the steepest descent step direction, while the choice M = [∇2f (x (ν))]

−1
(if the

Hessian ∇2f is non-singular) yields the Newton–Raphson step direction [70, sec-
tion 7.8 and section 9.1]. We will generalize both of these choices to avoid the
disadvantages of both.

10.2.3.2 Modified update

Recall that the Newton–Raphson step direction is not defined if ∇2f (x (ν)) is singu-
lar. Furthermore, even if ∇2f (x (ν)) is non-singular, Figure 10.5 and Exercise 10.10
show that if ∇2f (x (ν)) is not positive definite then the Newton–Raphson step direc-
tion may take us away from the minimizer. Nevertheless, let us think of calculating
�x (ν) in (10.10) using M = [∇2f (x (ν))]

−1
even if ∇2f (x (ν)) is not positive definite.

Of course, we would not explicitly invert ∇2f (x (ν)) except in special cases where
an inverse was easy to calculate. Instead, to calculate �x (ν) satisfying (10.10), we
would solve the linear system:

∇2f (x (ν))�x (ν) = −∇ f (x (ν)), (10.11)

by, for example, factorizing ∇2f (x (ν)) and performing forwards and backwards
substitution.

Consider the factorization of ∇2f (x (ν)). Since ∇2f (x (ν)) is symmetric, we will
restrict ourselves to diagonal pivots and factorize it as LDL†. Suppose that at the
j-th stage of the factorization of ∇2f (x (ν)) there are no positive diagonal pivots
available. By Lemma 5.4, this means that ∇2f (x (ν)) is not positive definite, so that
the Newton–Raphson step direction, even if it is defined, may not be a descent
direction. (See Exercise 10.10.)

Let us modify the factorization by adding a positive quantity E j j to A(j)
j j , where

A(j) is the matrix obtained at the j-th stage of the factorization of ∇2f (x (ν)).

408 Algorithms for unconstrained minimization

Adding E j j to A(j)
j j is equivalent to adding the matrix:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
. . .

0
E j j

0
. . .

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(10.12)

to ∇2f (x (ν)).
We continue the modified factorization by adding a positive quantity each time

we encounter a zero or negative value of A(j)
j j . We may also add a positive quantity

to the pivot if A(j)
j j is positive but small in magnitude. The overall effect is to add

to ∇2f (x (ν)) a diagonal matrix E , where the j-th diagonal entry of E is E j j . We
choose E j j = 0 if A(j)

j j is positive and large enough in magnitude, while we choose

E j j > 0 if the unmodified value of A(j)
j j is close to zero or is negative. In both

cases, we obtain a positive pivot. If ∇2f (x (ν)) is positive definite and so E = 0,
then (10.10) yields the Newton–Raphson step direction.

By construction, ∇2f (x (ν)) + E is symmetric and positive definite. By Theo-
rem 5.5, this matrix is invertible and its inverse M = [∇2f (x (ν)) + E]

−1
is also

symmetric and positive definite. By Corollary 10.2, the search direction defined
by (10.10) using this M is a descent direction.

Recall that in the discussion in Section 7.4.1 of the Newton–Raphson method
for solving systems of equations, when we encountered a zero pivot we suggested
replacing the pivot by a non-zero number. We did not specify the sign of the re-
placement. Here, however, we see that if we are trying to solve the first-order
necessary conditions to minimize a function, then during factorization we should
replace a zero (or negative) pivot by a positive pivot to ensure a descent direction.
This is called a modified factorization [84, section 10.4]. Furthermore, even if the
pivot A(j)

j j is positive, if A(j)
j j is a small positive number then we should increase it

to avoid problems with small non-zero pivots. (If we have a maximization prob-
lem, then we should replace an approximately zero or positive pivot by a negative
pivot to ensure an ascent direction.)

We must choose the size of E j j . Qualitatively, for descent it should be chosen so
as to guarantee that the pivot is positive and sufficiently large but not so large as to
unnecessarily alter the original matrix. Details on the choice of pivot modification
are contained in [45, section 4.4.2.2][84, section 10.4].

10.2 Approaches to finding minimizers 409

10.2.3.3 Further variations

We have seen that the step direction (10.10), with M positive definite, is a descent
direction. Furthermore, if ∇2f (x) is positive definite, then M = [∇2f (x)]

−1
yields

a good choice of step direction at x since for quadratic f a step-size of 1 in this
direction will bring us to the minimum of the function. These observations suggest
that we have considerable flexibility to either:

(i) construct positive definite approximations to [∇2f (x)]
−1

, or
(ii) approximately solve the equation:

∇2f (x)�x = −∇ f (x),

in a way that guarantees that for the resulting �x we have that �x = −M∇ f (x)

for some positive definite M . Many algorithms for unconstrained optimization can
be interpreted as one or the other of these alternative approximations. (See [45,
chapter 4] and [70, chapters 8 and 9] for examples.) These approximations are
introduced for various reasons that are analogous to the reasons discussed for ap-
proximating the Jacobian in the Newton–Raphson update for solving systems of
non-linear equations, discussed in Section 7.2. Various reasons include the follow-
ing.

(i) To reduce computational effort, we may only want to factorize ∇2f (x (ν)) at
some of the iterations, as in the chord and Shamanskii methods discussed
in Sections 7.2.1.1 and 7.2.1.2.

(ii) To reduce computational effort, we may approximate particular terms in
the second derivative as discussed in Section 7.2.1.3. For example, we may
approximate small off-diagonal terms by zero. If we approximate all the
off-diagonal terms by zero then the remaining matrix is diagonal and easily
inverted.

(iii) Only approximate analytic models are available for the second derivative
as discussed in Section 7.2.1.4. In the extreme, we may approximate the
second derivative by I or by λI for some λ > 0. In this case, our iteration
becomes simply steepest descent or a scaled version of steepest descent.
(A variation of this approach is to approximate some of the terms in the
second derivative by λI for some λ > 0, which leads to the Levenberg–
Marquandt method. See [45, section 4.7.3][84, section 13.2] and Sec-
tion 11.2.3.2.)

(iv) First or second derivative information is not available analytically, even
approximately, so finite differences must be used in a discrete-Newton
method as discussed in Section 7.2.1.5 [45, sections 2.3.5, 4.5.1, 4.6, 4.8,
8.1, 8.6][84, section 11.4].

410 Algorithms for unconstrained minimization

(v) To reduce computational effort or because we do not have access to the
second derivative directly, we may want to build up a positive definite ap-
proximation to ∇2f (x (ν)) or its inverse over a series of iterations instead of
evaluating it and factorizing it directly, as in the quasi-Newton method [45,
section 4.5] discussed in Section 7.2.1.6.

(vi) The system (10.11) may be difficult to solve directly because it is large
or non-sparse, in which case we can use an iterative algorithm such as the
conjugate gradient method [45, section 4.8.3] mentioned in Section 7.2.2.
Pre-conditioning is often used in conjunction with the conjugate gradient
method. For example, pre-conditioning by dividing by the diagonal entries
was initially discussed in Section 5.7.2 and has the effect of improving the
condition number of ∇2f (x (ν)).

Depending on the particular application, one or more of these reasons may be rele-
vant, and this will suggest a particular choice of algorithm. A variety of algorithms
are discussed in [45, sections 4.5–4.8]. As with the solution of non-linear equa-
tions, there is a compromise between the effort per iteration and the improvement
in the objective per iteration.

The variations on the Newton–Raphson method can have better performance
than the basic Newton–Raphson method because the reduction in effort required
for factorization is large enough to offset the slower rate of convergence. The con-
siderations are similar to the analysis of computational effort for solving systems
of non-linear equations that was discussed in Section 7.3.4. The variations on the
basic Newton–Raphson method will usually have better performance than steepest
descent. The most commonly used method in optimization software appears to be
the quasi-Newton method [84, section 11.3].

10.2.4 Step-size

In Sections 10.2.1–10.2.3, we ignored the issue of step-size selection. In Sec-
tion 10.2.4.1, we will illustrate the need for choosing a step-size. A more detailed
discussion of this topic appears in [45, chapter 4][70, sections 7.1–7.5][84, sec-
tion 10.5]. There are several approaches to step-size selection, including:

• the Armijo step-size rule [58, chapter 8][70, section 7.5][84, section 10.5],
• the Wolfe condition [70, section 7.5][84, section 10.5],
• polynomial approximation [70, section 7.2][84, section 10.5], and
• trust-region methods [84, section 10.6].

We briefly discuss these approaches to selecting step-sizes in Sections 10.2.4.2–
10.2.4.6.

10.2 Approaches to finding minimizers 411

10.2.4.1 Need for step-size selection

Let us consider the reduction in f due to updating the iterate at iteration ν. The
situation is illustrated in Figure 10.17. A function f : R → R is shown as a solid
line together with a quadratic approximation to it, which is shown as a dashed line.
The quadratic approximation is taken at the current iterate x (ν) = 0.3. This is the

second-order Taylor approximation of f about x (ν). The point

[
x (ν)

f (x (ν))

]
is

illustrated by the left-most ◦ in Figure 10.17.
We assume that we have used one of the techniques discussed previously to cal-

culate a step direction at the current iterate x (ν). For concreteness, suppose that we
choose the Newton–Raphson step direction. That is, we solve ∇2f (x (ν))�x (ν) =
−∇ f (x (ν)), obtaining �x (ν) = 0.5, in this case. For this choice, x̌ = x (ν)+�x (ν) =
0.8 minimizes the quadratic approximation to f . The value of the quadratic ap-
proximation at the point x̌ = x (ν) + �x (ν) is illustrated by the right-most ◦ in
Figure 10.17.

In fact, at x̌ = x (ν) + �x (ν), the actual value of the objective f (x̌) is somewhat
higher than the quadratic approximation. The value of the objective f (x̌) at the
point x̌ is illustrated by the right-most • in Figure 10.17. Note that f (x̌) = f (x (ν)+
�x (ν))) > f (x (ν)). Clearly, choosing a step-size of α(ν) = 1 would lead to an
increase in the objective, even though we had solved for the Newton–Raphson step
direction exactly. For this reason, we must consider rules to select a step-size that
will guarantee that the objective or its gradient, or both, improve from iteration to
iteration.

10.2.4.2 Armijo step-size rule

Analogously to the discussion in Section 7.4.2.3, suppose that we had chosen a
step-size α(ν) that is small enough so that f is accurately represented by a second-
order Taylor approximation about x (ν). Then:

f (x (ν) + α(ν)�x (ν))

≈ f (x (ν)) + α(ν) [∇ f (x (ν))]
†
�x (ν) + 1

2
(α(ν))2[�x (ν)]

† ∇2f (x (ν))�x (ν),

by a second-order Taylor approximation,

≈ f (x (ν)) + α(ν) [∇ f (x (ν))]
†
�x (ν) − 1

2
(α(ν))2[�x (ν)]

†∇ f (x (ν)),

assuming that �x (ν) approximately solves ∇2f (x (ν))�x (ν) = −∇ f (x (ν)),

= f (x (ν)) + α(ν)

(
1 − 1

2
α(ν)

)
[∇ f (x (ν))]

†
�x (ν),

≤ f (x (ν)) + 1

2
α(ν) [∇ f (x (ν))]

†
�x (ν), (10.13)

412 Algorithms for unconstrained minimization

0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1
0

0 1

0 2

0 3

0 4

0 5

0 6

0 7

0 8

0 9

1

x

f

f (x (ν))

x (ν) x̌x (ν+1)

Fig. 10.17. The need for a
step-size rule. The func-
tion f is illustrated with a
solid line together with a
quadratic approximation to
it, illustrated as a dashed
line. The quadratic ap-
proximation is a second-
order Taylor approxima-
tion of f about x (ν) = 0.3.

where the last inequality is true for 0 ≤ α(ν) ≤ 1 (see Exercise 10.13) and assuming
that the step direction �x (ν) was chosen to satisfy [∇ f (x (ν))]

†
�x (ν) < 0. Recall

that, by Lemma 10.1, [∇ f (x (ν))]
†
�x (ν) < 0 is sufficient for �x (ν) to be a descent

direction for f at x (ν) and that all of the updates we have described satisfy this
requirement when ∇ f (x (ν)) 	= 0.

In practice, as in the discussion in Section 7.4.2.3 of step-size rules for updates
to solve non-linear equations, we cannot expect that the reduction in the objective
will always be as large as predicted by (10.13) because:

(i) the second-order Taylor approximation is only approximate as shown in
Figure 10.17, and

(ii) the step direction may only approximately satisfy the Newton–Raphson
condition ∇2f (x (ν))�x (ν) = −∇ f (x (ν)).

This suggests a step-size rule that is analogous to the Armijo rule we discussed
in Section 7.4.2.3 for solving non-linear equations. We first choose an acceptance
tolerance 0 < δ < 1. We start with tentative step-size α(ν) = 1 and calculate the
trial objective f (x (ν) + α(ν)�x (ν)). The step-size is accepted if:

f (x (ν) + α(ν)�x (ν)) ≤ f (x (ν)) + δ

2
α(ν) [∇ f (x (ν))]

†
�x (ν). (10.14)

Otherwise, reduce the step-size by a factor of, say, one half and repeat the process
until an iterate is produced that satisfies (10.14).

For example, consider Figure 10.17 again. The ◦ in the middle of the graph

10.2 Approaches to finding minimizers 413

illustrates the quadratic approximation to the objective function for the step-size of
α(ν) = 0.5. The exact value of the objective for this step-size, f (x (ν) + 0.5�x (ν)),
which is illustrated by the • just above the middle ◦, is only slightly different
from the prediction made by the second-order Taylor approximation. Moreover,
for values of δ that are not too close to 1, the condition (10.14) would be satisfied
and the step-size of α(ν) = 0.5 would be accepted. The updated iterate is x (ν+1) =
x (ν)+α(ν)�x (ν) = 0.55. This yields an updated iterate x (ν+1) that has objective that
is significantly improved over x (ν). This description suggests that a suitable choice
of acceptance tolerance δ will be a number that is significantly less than 1.

10.2.4.3 Wolfe condition

The rule for reducing the step-size discussed in the last section does not check for
“improvement” in the gradient ∇ f . Recall that the first-order necessary conditions
are that∇ f (x�) = 0 so that we want the update to satisfy∇ f (x (ν)+α(ν)�x (ν)) ≈ 0.
An alternative to the Armijo step-size rule that makes use of gradient information
rather than objective values is provided by the Wolfe condition:∣∣∣[∇ f (x (ν) + α(ν)�x (ν))]

†
�x (ν)

∣∣∣ ≤ η

∣∣∣[∇ f (x (ν))]
†
�x (ν)

∣∣∣ . (10.15)

This condition ensures that the directional derivative (see Definition A.37) in the
direction �x evaluated at the next iterate, [∇ f (x (ν+1))]

†
�x (ν), is small compared to

the directional derivative in the direction �x at the current iterate, [∇ f (x (ν))]
†
�x (ν).

Loosely speaking, the Wolfe condition ensures that ∇ f (x (ν) + α(ν)�x (ν)) ≈ 0.
For values of η not too close to zero, the Wolfe condition (10.15) is satisfied by

the updated iterate x (ν+1) = f (x (ν) + 0.5�x (ν)) illustrated in Figure 10.17, since
∇ f (x (ν+1)) ≈ 0.

10.2.4.4 Combined Armijo and Wolfe conditions

The Wolfe condition (10.15) is often used in conjunction with the Armijo condi-
tion (10.14). The Armijo condition (10.14) ensures that the step-size is not so large
as to invalidate the quadratic approximation of the objective, while the Wolfe con-
dition (10.15) ensures that the gradient of the objective is reduced sufficiently by
the step. Details and convergence results can be found in [45, section 4.3.2.1][84,
sections 10.4–10.6].

10.2.4.5 Curve fitting

If f is relatively easy to evaluate, then we can evaluate it at several points along
the line x (ν) + α�x (ν) for 0 ≤ α ≤ 1 and then fit a polynomial curve to it, using,
for example, a least-squares fit. (We will see how to do this in Section 11.1.4
and Exercise 11.1.) The fitted curve can then be approximately minimized and

414 Algorithms for unconstrained minimization

the corresponding value of α used as the step-size. If f is itself quadratic then
f (x (ν) + α�x (ν)) is a quadratic function of α. (See Exercise 10.14.)

If either:

• f (x (ν) + α�x (ν)) is itself a quadratic function, or
• f is not quadratic but we fit a quadratic function to the points,

then we can minimize the quadratic function of α using the following method.

(i) If the coefficient of (α)2 in the quadratic function is positive, then the un-
constrained minimum of the quadratic function occurs at the point x (ν) +
α�x (ν) for α such that the derivative of the quadratic function with respect
to α is equal to zero. If this value of α lies outside the range 0 ≤ α ≤ 1
then the closest end-point should be selected.

(ii) If the coefficient of (α)2 in the quadratic function is negative, then the min-
imizer is one of the end-points α = 0 or α = 1.

(See Exercise 2.51 for details.)
If a higher-order polynomial curve is fitted, then various special-purpose tech-

niques can be used to find an approximate minimizer of a function of one vari-
able [45, section 4.1.2][70, section 7.2].

10.2.4.6 Trust region

In our approaches so far we have separated the selection of a step direction from
the selection of a step-size. In contrast, in a trust region approach the selection of
an appropriate step direction and step-size both explicitly consider the region over
which a second-order Taylor approximation represents the function f accurately.
Details and convergence results can be found in [59, section 3.3][84, section 10.6].

10.2.5 Stopping criteria

If f is convex and quadratic, then we can obtain the minimum and a minimizer of f
in one Newton–Raphson step. Otherwise, we must iterate until we are satisfied with
the value of the objective, the change in iterates, and the gradient of the function.
A typical criterion is to require that

∥∥∇ f (x (ν))
∥∥ and

∥∥�x (ν)
∥∥ be sufficiently small.

By Theorem 2.6, if f is convex then the minimizer x� of f (x) must satisfy:

f (x�) ≥ f (x (ν)) + [∇ f (x (ν))]
†
(x� − x (ν)), by Theorem 2.6,

with S = Rn , x = x�, and x ′ = x (ν),

≥ f (x (ν)) −
∣∣∣[∇ f (x (ν))]

†
(x� − x (ν))

∣∣∣ ,
≥ f (x (ν)) − ∥∥∇ f (x (ν))

∥∥ ∥∥x� − x (ν)
∥∥ . (10.16)

10.2 Approaches to finding minimizers 415

0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1
0 3

0 35

0 4

0 45

0 5

0 55

0 6

0 65

x

f

x (ν−1)
x (ν)

Fig. 10.18. Iterate that is a
horizontal inflection point
of the objective function.

If we know an a priori bound on where the optimizer can lie, then we can bound∥∥x� − x (ν)
∥∥ independently of x� by some ρ, say. Then, we can ensure that f (x (ν))

is within ε f of the value of the global minimum by iterating until
∥∥∇ f (x (ν))

∥∥ ≤
ε f /ρ. This criterion is often implemented in practice as a slightly different relative
criterion by testing if: ∥∥∇ f (x (ν))

∥∥ ≤ ε f

ρ

(
1 + | f (x (ν)|) .

The relative criterion effectively increases the tolerance if | f (x (ν)| is large. Further
details are presented in [45, section 8.2.3.2][84, section 11.5].

As with the solution of non-linear equations, it is usual to combine various cri-
teria to ensure that we are close enough to a solution before stopping and also to
safeguard against infinite loops by imposing an upper limit on the number of itera-
tions. Further discussion is contained in [45, section 8.2.3.2][84, section 11.5].

10.2.6 Avoiding critical points that are not minimizers

If, at some iteration ν, we find that ∇ f (x (ν)) = 0 then our basic algorithm termi-
nates unable to make any further progress. (In practice, if

∥∥∇ f (x (ν))
∥∥ ≈ 0, then

we may not be able to make any further progress.) If f is convex and ∇ f (x (ν)) = 0
then, by Corollary 10.6, x (ν) is a minimizer and f (x (ν)) is a minimum. If f is con-
vex and ∇ f (x (ν)) ≈ 0 then f (x (ν)) is close to a minimum in the sense of (10.16).

If f is not convex, then we may be at a point of inflection or a local maximizer.
For example, in Figure 10.18, the iterate x (ν) = 0.5 is a horizontal inflection point

416 Algorithms for unconstrained minimization

of the objective. The first-order necessary conditions are satisfied by x (ν); however,
it is clearly not a minimizer.

If the first-order necessary conditions are satisfied, but we can detect that the
current iterate is not a minimizer, then one approach is to restart the algorithm by
perturbing x (ν) by a random amount to move it away from the point of inflection
or local maximum [45, section 8.1.3.6]. Alternatively, at a horizontal inflection,
we can use the previous iterate in a secant approximation as discussed in Sec-
tion 7.2.1.5, to seek a descent direction. For example, in Figure 10.18, using a
secant approximation based on x (ν−1) and x (ν) would yield a descent direction.
The linear interpolation of f between x (ν−1) and x (ν) is shown as a dashed line in
Figure 10.18. The secant approximation uses the slope of the interpolating line as
the approximation to the directional derivative.

If we are not at a horizontal inflection point then another approach is to look for
negative eigenvalues of the Hessian and move in the direction of the correspond-
ing eigenvector [45, section 4.4.2]. (See Exercise 10.16. See Section 2.2.2.3 for
discussion of eigenvalues and eigenvectors.)

10.3 Sensitivity

We now suppose that the objective f is parameterized by a parameter χ ∈ Rs .
That is, f : Rn × Rs → R. We imagine that we have solved the unconstrained
minimization problem:

min
x∈�n

f (x;χ),

for a base-case value of the parameters, say χ = 0, to find the base-case solution
x� and that now we are considering the sensitivity of the base-case solution to
variation of the parameters around χ = 0.

10.3.1 Implicit function theorem

As with sensitivity analysis of non-linear equations in Section 7.5, we use the im-
plicit function theorem (Theorem A.9 in Section A.7.3 of Appendix A.) The fol-
lowing corollary to the implicit function theorem provides us with the sensitivity
of the solution to the parameters.

Corollary 10.8 Let f : Rn × Rs → Rn be twice partially differentiable with continuous
second partial derivatives. Consider the minimization problem:

min
x∈�n

f (x;χ),

where χ ∈ Rs is a parameter. Suppose that x� is a local minimizer of this problem for
the base-case value of the parameters χ = 0. We call x = x� a base-case solution.

10.3 Sensitivity 417

Define the (parameterized) Hessian ∇2
xx f : Rn × Rs → Rn×n by:

∀x ∈ R
n, ∀χ ∈ R

s,∇2
xx f (x;χ) = ∂2 f

∂x2 (x;χ).

Suppose that ∇2
xx f (x�; 0) is positive definite, so that x� satisfies the second-order suffi-

cient conditions for the base-case problem. Then, there is a local minimizer of f (x;χ)

for χ in a neighborhood of the base-case values of the parameters χ = 0 and the local
minimizer is a partially differentiable function of χ in this neighborhood. The sensitivity
of the local minimizer x� with respect to variation of the parameters χ , evaluated at the
base-case χ = 0, is given by:

∂x�

∂χ
(0) = −[∇2

xx f (x�; 0)]
−1

K (x�; 0),

where K : Rn × Rs → Rn×s is defined by:

∀x ∈ R
n, ∀χ ∈ R

s, K (x;χ) = ∂2 f
∂x∂χ

(x;χ).

The sensitivity of the corresponding local minimum f � to variation of the parameters
χ , evaluated at the base-case χ = 0, is given by:

∂ f �

∂χ
(0) = ∂ f

∂χ
(x�; 0).

If f (•;χ) is convex for χ in a neighborhood of 0 then the minimizers and minima are
global in this neighborhood.

Proof The sensitivity of the local minimizer follows from Corollary 7.5, noting that by
assumption the Hessian is positive definite in a neighborhood of the base-case minimizer
and parameters by Exercise 5.19.
The sensitivity of the corresponding local minimum follows by totally differentiating
the value of the local minimum f �(χ) = f (x�(χ);χ) with respect to χ . In particular,

∂ f �

∂χ
(0) = d[f (x�(χ);χ)]

dχ
(0),

= ∂ f
∂χ

(x�; 0) + ∂ f
∂x

(x�; 0)
∂x�

∂χ
(0),

on totally differentiating f (x�(χ);χ) with respect to χ,

= ∂ f
∂χ

(x�; 0),

since the first-order necessary conditions at the base-case are
∂ f
∂x

(x�; 0) = 0.

The global results follow from Corollary 10.6. �

Analogously to the case of linear and non-linear systems of equations, if∇2
xx f (x�; 0)

has already been factorized then each sensitivity of x� with respect to an entry of

418 Algorithms for unconstrained minimization

χ requires only a forwards and backwards substitution. The sensitivity of the local
minimum is called the envelope theorem [119, section 3.3].

10.3.2 Example

Consider the parameterized objective function f : R2 × R → R defined by:

∀x ∈ R
2, ∀χ ∈ R, f (x;χ) = (x1 − exp(χ))2 + (x2 − 3 exp(χ))2 + 5χ.

We first met this example in Section 2.7.5.3. This is a parameterized version of the
function defined in (10.1). For χ = 0, the parameterized function is the same as
the function defined in (10.1) and from the discussion in Section 10.1.1.2 we know

that the base-case solution is x� =
[

1
3

]
.

By Corollary 10.8, there is an unconstrained minimizer of f (•;χ) for χ in a
neighborhood of the base-case value of the parameter χ = 0 and the minimizer is a
differentiable function of χ in this neighborhood. The sensitivity of the minimizer
x� with respect to variation of the parameter χ , evaluated at the base-case χ = 0,
is given by:

∂x�

∂χ
(0) = −[∇2

xx f (x�; 0)]
−1

K (x�; 0),

where ∇2
xx f : R2 × R → R2×2 and K : R2 × R → R2×1 are defined by:

∀x ∈ R
2, ∀χ ∈ R,∇2

xx f (x;χ) = ∂2 f
∂x2 (x;χ),

=
[

2 0
0 2

]
,

∇2
xx f (x�; 0) =

[
2 0
0 2

]
,

∀x ∈ R
2, ∀χ ∈ R, K (x;χ) = ∂2 f

∂x∂χ
(x;χ),

=
[−2 exp(χ)

−6 exp(χ)

]
,

K (x�; 0) =
[−2
−6

]
,

10.4 Summary 419

where we observe that ∇2
xx f (x�; 0) is positive definite. That is, the sensitivity is:

∂x�

∂χ
(0) = −[∇2

xx f (x�; 0)]
−1

K (x�; 0),

= −
[

2 0
0 2

]−1 [−2
−6

]
,

=
[

1
3

]
.

The sensitivity of the minimum f � to variation of the parameter χ , evaluated at
the base-case χ = 0, is given by:

∂ f �

∂χ
(0) = ∂ f

∂χ
(x�; 0).

We have that:

∂ f
∂χ

(x;χ) = 2(x1 − exp(χ))(− exp(χ)) + 2(x2 − 3 exp(χ))(−3 exp(χ)) + 5,

and so the sensitivity is:

∂ f �

∂χ
(0) = ∂ f

∂χ
(x�; 0) = 5.

10.4 Summary

In this chapter we have introduced descent directions for reducing the value of
an objective function. We described optimality conditions and algorithms based
on the conditions. The algorithms made use of step-size rules. Descent will be
a continuing theme in the rest of the book. The unconstrained algorithms will
be applied to the case studies in the next chapter. We also considered sensitivity
analysis.

Exercises

Optimality conditions

10.1 Give an example of an objective f : R2 → R, with f partially differentiable with
continuous partial derivatives, and a point x̂ ∈ R2 such that x̂ is not a local minimizer of
f but there is no descent direction at x̂ according to Definition 10.1. (Hint: the function f
must be non-convex.)

10.2 Suppose that f : Rn → R is convex and that x� ∈ argminx∈�n f (x). Let x̂ ∈ Rn .
Show that if x̂ 	∈ argminx∈�n f (x) then �x = x� − x̂ is a descent direction for f at x̂ .

420 Algorithms for unconstrained minimization

10.3 Show that if |δ + 2ε| ≤ ε then −3ε ≤ δ ≤ −ε.

10.4 Consider the function f : R → R defined by:

∀x ∈ R, f (x) = exp(−x).

(i) Calculate ∇ f .
(ii) Calculate ∇2f .
(iii) Show that f is convex.
(iv) Show that no x exists satisfying ∇ f (x) = 0.
(v) Show that there is no minimizer of minx∈� f (x).

Approaches to finding minima

10.5 Suppose that g : Rn → Rn is partially differentiable with continuous partial deriva-
tives and consider solution of the simultaneous equations g(x) = 0. Define f : Rn → R

by:

∀x ∈ R
n, f (x) = 1

2
‖g(x)‖2

2 .

Show that the Newton Raphson step direction at x̂ ∈ Rn for solving the simultaneous
equations g(x) = 0 is a descent direction for f at x̂ if g(x̂) 	= 0.

10.6 Let f : Rn → R be partially differentiable with continuous partial derivatives.
Show that, at a point x (ν), the steepest descent step direction �x = −∇ f (x (ν)) is perpen-
dicular to the surface of the contour set C f (f (x (ν))) at x (ν). (Hint: Calculate the first-order
Taylor approximation to f at x (ν). Find the set P of points such that the first-order Taylor
approximation is equal to f (x (ν)). That is,

P = {x ∈ R|∇ f (x (ν))
†
(x − x (ν)) = 0}.

You can assume that this set is tangential to the contour set C f (f (x (ν))) at the point x (ν)

(see Definition 13.1) and, moreover, that a direction �x is perpendicular to the surface of
the contour set C f (f (x (ν))) at x (ν) if and only if it is perpendicular to P at x (ν). A direction
�x is perpendicular to P at x (ν) if for every x ∈ P, �x†(x − x (ν)) = 0.

10.7 Consider a quadratic function f : Rn → R defined by:

∀x ∈ R
n, f (x) = 1

2
x†Qx + c†x,

where Q ∈ Rn×n is symmetric and c ∈ Rn . Consider an initial guess x (0) of the uncon-
strained minimizer of f . Suppose that the steepest descent step direction is used at x (0)

with step-size 1 to calculate:

x (1) = x (0) −∇ f (x (0)).

Show that x (1) cannot satisfy the first-order necessary conditions for minimizing f unless
(I − Q)(Qx (0) + c) = 0.

Exercises 421

10.8 In this exercise, we use MATLAB to minimize a function.

(i) Use the MATLAB function fminunc to minimize f : R2 → R defined in (10.1):

∀x ∈ R
2, f (x) = (x1 − 1)2 + (x2 − 3)2.

You should write an MATLAB M-file to evaluate both f and ∇ f . Specify that
you are supplying the gradient ∇ f by setting the GradObj option to on us-
ing the optimset function. Use the steepest descent algorithm by setting the
LargeScale option to off and the HessUpdate option to steepdesc using

the optimset function. Use initial guess x (0) =
[

3
−5

]
.

(ii) What is the condition number of the quadratic coefficient matrix Q = I?

10.9 In this exercise we use MATLAB to minimize a function.

(i) Use the MATLAB function fminunc to minimize f : R2 → R defined in (10.8):

∀x ∈ R
2, f (x) = (x1 − 1)2 + (x2 − 3)2 − 1.8(x1 − 1)(x2 − 3).

You should write an MATLAB M-file to evaluate both f and ∇ f . Specify that
you are supplying the gradient ∇ f by setting the GradObj option to on us-
ing the optimset function. Use the steepest descent algorithm by setting the
LargeScale option to off and the HessUpdate option to steepdesc using

the optimset function. Use initial guess x (0) =
[

3
−5

]
. Report the number of

iterations required.
(ii) Use the MATLAB function cond to evaluate the condition number of the quadratic

coefficient matrix:

Q =
[

2 −1.8
−1.8 2

]
.

(iii) Repeat the first part, but minimize the function f : R4 → R defined by:

∀x ∈ R
4, f (x) = (x1 − 1)2 + 2(x2 − 3)2 + 2(x3 − 1)2 + (x4 − 3)2

− 1.8(x1 − 1)(x2 − 3) − 1.8(x2 − 3)(x3 − 1) − 1.8(x3 − 1)(x4 − 3),

using initial guess x (0) =
⎡⎢⎣ 3
−5

3
−5

⎤⎥⎦. Report the number of iterations required.

(iv) Use the MATLAB function cond to evaluate the condition number of the quadratic
coefficient matrix:

Q =
⎡⎢⎣ 2 −1.8 0 0
−1.8 4 −1.8 0

0 −1.8 4 −1.8
0 0 −1.8 2

⎤⎥⎦ .

422 Algorithms for unconstrained minimization

10.10 Consider the quadratic function f : Rn → R defined by:

∀x ∈ R
n, f (x) = 1

2
x†Qx + c†x,

where Q ∈ Rn×n is symmetric and non-singular and c ∈ Rn .

(i) Prove that the first-order necessary conditions for the problem minx∈�n f (x) are
that Qx� + c = 0.

(ii) Show that from any initial guess x (0) the Newton Raphson update with step-size
α(0) = 1 yields a point x (1) that satisfies the first-order necessary conditions.

(iii) Show that for the Newton Raphson update the reduction in the objective is given
by:

f (x (0)) − f (x (1)) = 1

2
�x (0)†Q�x (0).

This reduction is called the Newton decrement [84, section 17.6.2].
(iv) Can the Newton decrement be negative?

10.11 Let f : Rn → R. Consider an onto function τ : Rn → Rn defined by ∀ξ ∈
Rn, τ (ξ) = R−1ξ , with R ∈ Rn×n and non-singular. Let the function φ : Rn → R be
defined by ∀ξ ∈ Rn, φ(ξ) = f (τ (ξ)) = f (R−1ξ). We consider step directions �ξ in ξ
coordinates and �x in x coordinates. We say that the step directions �ξ and �x correspond
if �x = τ(�ξ) = R−1�ξ . If an algorithm can be applied in either the x coordinates or the
ξ coordinates and its step directions correspond then an algorithm will have similar results
when applied in either coordinate system. Otherwise, the choice of coordinate system will
be critical in applying the algorithm.

(i) Show that the Newton Raphson step direction �ξ for φ at a point ξ (ν) in the ξ
coordinates corresponds to the Newton Raphson step direction �x for f at the
corresponding point x (ν) = R−1ξ (ν) in the x coordinates. That is, show that �x =
R−1�ξ .

(ii) Show that the steepest descent step directions in ξ and x coordinates do not corre-
spond.

10.12 In this exercise we use MATLAB to minimize two functions.

(i) Use the MATLAB function fminunc to minimize f : R2 → R defined in (10.8):

∀x ∈ R
2, f (x) = (x1 − 1)2 + (x2 − 3)2 − 1.8(x1 − 1)(x2 − 3).

You should write an MATLAB M-file to evaluate both f and ∇ f . Specify that
you are supplying the gradient ∇ f by setting the GradObj option to on. Set the
LargeScale option to off. With the other parameter settings set to the default,
fminunc uses a Broyden, Fletcher, Goldfarb, Shanno (BFGS) quasi-Newton ap-
proximation to the Newton Raphson step direction. (See Section 7.2.1.6.) Use

initial guess x (0) =
[

3
−5

]
. Report the number of iterations required.

Exercises 423

(ii) Repeat the first part, but minimize the function f : R4 → R defined by:

∀x ∈ R
4, f (x) = (x1 − 1)2 + 2(x2 − 3)2 + 2(x3 − 1)2 + (x4 − 3)2

− 1.8(x1 − 1)(x2 − 3) − 1.8(x2 − 3)(x3 − 1) − 1.8(x3 − 1)(x4 − 3),

using initial guess x (0) =
⎡⎢⎣ 3
−5

3
−5

⎤⎥⎦. Report the number of iterations required.

10.13 Show that:

(0 ≤ α ≤ 1) ⇒ α

(
1 − 1

2
α

)
≥ 1

2
α.

10.14 Suppose that f : Rn → R is quadratic. Consider the function φ : R → R defined
by:

∀α ∈ R, φ(α) = f (x (ν) + α�x (ν)).

Show that φ is a quadratic function.

10.15 In this exercise we consider conditions for step-size rules.

(i) Show that x (ν+1) (for ν ≥ 0) cannot be a global maximizer of f if we choose α(ν)

to satisfy:

f (x (ν) + α(ν)�x (ν)) < f (x (ν)).

(ii) Is it possible for x (ν+1) to be a local maximizer?

10.16 Suppose that at some iteration ν we find that ∇ f (x (ν)) = 0 for a quadratic function
f : Rn → R defined by:

∀x ∈ R
n, f (x) = 1

2
x†Qx + c†x,

where Q ∈ Rn×n is symmetric and c ∈ Rn . Suppose that λ ∈ R is an eigenvalue of Q and
ξ ∈ Rn is the corresponding eigenvector. Show that if λ < 0 then �x = ξ is a descent
direction for f at x (ν).

Sensitivity

10.17 Show by an example that the conclusion of Corollary 10.8 may fail to hold if
the objective is not positive definite at the base-case minimizer and parameters. (Hint:
Consider f : R×R → R defined by ∀x ∈ R,∀χ ∈ R, f (x;χ) = xχ . Note that x� = [0]
is a base-case minimizer corresponding to the base-case value of the parameters χ = [0].)

424 Algorithms for unconstrained minimization

10.18 Consider the function f : R × R → R defined by:

∀x ∈ R, ∀χ ∈ R, f (x;χ) = 1

2
(x − χ)2.

(i) Find the base-case minimizer of minx∈� f (x; 0).
(ii) Calculate the sensitivity of the minimizer to variation of χ , evaluated at χ = 0.
(iii) Calculate the sensitivity of the minimum to variation of χ , evaluated at χ = 0.

10.19 Let f : Rn → R, g : Rn → Rm , and h : Rn → Rr be twice partially differentiable
with continuous second partial derivatives. Recall the definition of the Lagrangian L :
Rn ×Rm ×Rr → R and the dual function D : Rm ×Rr → R∪{−∞} from Sections 3.4.1
and 3.4.2, respectively:

∀x ∈ R
n,∀λ ∈ R

m, ∀µ ∈ R
r ,L(x, λ, µ) = f (x) + λ†g(x) + µ†h(x),

∀λ ∈ R
m, ∀µ ∈ R

r ,D(λ, µ) = inf
x∈�n

L(x, λ, µ).

Let λ̂ ∈ Rm and µ̂ ∈ Rr and suppose that x̂ ∈ Rn is a minimizer of L(•, λ̂, µ̂). Further

suppose that
∂2L
∂x2 (x̂, λ̂, µ̂) is positive definite. Show that D is partially differentiable in a

neighborhood of

[
λ̂
µ̂

]
and that:

∇D(λ̂, µ̂) =
[

g(x̂)
h(x̂)

]
.

(Hint: Define φ : Rn × Rm+r → R by:

∀x ∈ R
n, ∀χ =

[
�λ
�µ

]
∈ R

m+r , φ(x;χ) = f (x) +
(
λ̂ + �λ

)†
g(x) + (

µ̂ + �µ
)†

h(x),

so that φ(x; 0) = L(x, λ̂, µ̂). Apply Corollary 10.8 and characterize the dual function in a

neighborhood of

[
λ̂
µ̂

]
.)

11

Solution of the unconstrained minimization case studies

In this chapter, we apply algorithms from Chapter 10 to the two case studies
from Chapter 9. We consider the multi-variate linear regression case study in
Section 11.1 and the power system state estimation case study in Section 11.2.
Both of our case studies will be transformed into least-squares problems. Uncon-
strained optimization algorithms that exploit the special characteristics of least-
squares problems are described in [45, section 4.7][84, chapter 13]; however, we
will first apply our basic unconstrained optimization algorithm to these problems
because in later chapters we will need to solve more general unconstrained prob-
lems.

In practice, a special purpose algorithm for least-squares problems can be ex-
pected to yield better performance on least-squares problems compared to the per-
formance of a general purpose algorithm for unconstrained problems. That is, as
we have discussed previously in Section 2.3.2, we should always in practice try
to find the most specifically applicable algorithm for a problem [84, section 13.1].
We will consider such specific algorithms for least-squares problems using further
transformations.

11.1 Multi-variate linear regression

In Section 11.1.1 we transform the objective of Problem (9.7) and in Section 11.1.2
we compare the transformed and original problem. In Sections 11.1.3 and 11.1.4
we calculate the derivatives of the transformed objective and present the optimality
conditions. In Section 11.1.5, we transform the problem further to avoid numerical
ill-conditioning issues. Then, in Section 11.1.6, we relate the optimality conditions
to linear regression.

425

426 Solution of the unconstrained minimization case studies

11.1.1 Transformation of objective

Recall Problem (9.7):

max
x∈�n

φ(ζ(1), . . . , ζ(m);ψ(1), . . . , ψ(m), x),

where φ : Rn → R was defined in (9.6), which we repeat here:

∀x ∈ R
n, φ(ζ(1), . . . , ζ(m);ψ(1), . . . , ψ(m), x)

=
m∏

�=1

1√
2πσ�

exp

(
−(ψ(�)†β + γ − ζ(�))2

2(σ�)2

)
.

Problem (9.7) is in the form of a maximization problem. In the introduction to
Chapter 3, we remarked that we could transform a maximization problem into a
minimization problem by using the definition (2.22):

max
x∈�

φ(x) = −min
x∈�

(−φ(x)).

However, by Exercise 3.4, the transformed objective will not in general be convex.
Exercise 3.4 does nevertheless suggest a transformation that will produce a convex
objective. We will now explore this transformation.

First define f̂ : Rn → R by:

∀x ∈ R
n, f̂ (x) = − ln(φ(ζ(1), . . . , ζ(m);ψ(1), . . . , ψ(m), x)).

Then:

∀x ∈ R
n, f̂ (x) = − ln

(
m∏

�=1

1√
2πσ�

exp

(
−(ψ(�)†β + γ − ζ(�))2

2(σ�)2

))
,

= −
m∑

�=1

[
ln

(
1√

2πσ�

)
− (ψ(�)†β + γ − ζ(�))2

2(σ�)2

]
,

=
m∑

�=1

[
(ψ(�)†β + γ − ζ(�))2

2(σ�)2

]
−

m∑
�=1

ln

(
1√

2πσ�

)
,

where we recall that:

x =
[

β

γ

]
∈ R

n.

The term −∑m
�=1 ln

(
1/(

√
2πσ�)

)
in the definition of f̂ is independent of the

variables β and γ and so does not affect the set of minimizers of f̂ . Furthermore,

11.1 Multi-variate linear regression 427

assuming that σ� = σ,∀� = 1, . . . , m, we can define f : Rn → R by:

∀x ∈ R
n, f (x) = σ 2

[
f̂ (x) +

m∑
�=1

ln

(
1√

2πσ�

)]
,

= 1

2

m∑
�=1

(ψ(�)†β + γ − ζ(�))2,

= 1

2

m∑
�=1

(A�x − b�)
2,

where A� =
[
ψ(�)† 1

] ∈ R1×n and b� = ζ(�) ∈ R,

= 1

2
(Ax − b)†(Ax − b),

where A =
⎡⎢⎣ A1

...

Am

⎤⎥⎦ ∈ Rm×n and b =
⎡⎢⎣ b1

...

bm

⎤⎥⎦ ∈ Rm ,

= 1

2
‖Ax − b‖2

2 .

The function f is half of the sum of squares of functions of the form ψ(�)†β+γ −
ζ(�). These functions are the entries in the affine function Ax−b. The functions f
and φ are related by a strictly monotonically decreasing transformation. Therefore,
by Theorem 3.1, so long as either:

(i) Problem (9.7) has a maximum, or
(ii) the problem:

min
x∈�n

f (x), (11.1)

has a minimum,

then they both have the same set of optimizers. Furthermore, their optima are
related by the same transformation that relates f and φ. Since f is (half of) the
sum of squares of terms, we call Problem (11.1) a least-squares problem. We
refer to the corresponding specification of the affine function defined in (9.1) as a
least-squares fit to the data.

Since each term ψ(�)†β+γ −ζ(�) depends linearly on β and γ , Problem (11.1)
is further classified as a linear least-squares problem. Exercise 11.1 illustrates
that linear least-squares problems arise whenever the dependent variable ζ(�) can
be interpreted as an affine function of the unknown parameters (for a fixed value
of the independent variables ψ(�)) even if the dependent variable depends non-
linearly on the independent variables.

428 Solution of the unconstrained minimization case studies

11.1.2 Comparison of objectives

Since f is a quadratic function, Exercise 10.10 shows that ∇ f is linear and that the
necessary conditions for a minimum of Problem (11.1) are a set of linear simul-
taneous equations. This should be contrasted with the necessary conditions for a
maximum of Problem (9.7), which are a set of non-linear simultaneous equations
since φ is non-quadratic. (See Exercise 11.3.)

This means that the transformation from φ to f has created a problem for which
the optimality conditions in terms of f are simpler than the optimality conditions
for the original problem in terms of φ. We can solve linear equations with one
factorization and one forwards and backwards substitution, whereas solving the
non-linear necessary conditions of Problem (9.7) requires an iterative algorithm
with each iteration typically involving the solution of linear equations. Moreover,
we will be able to show that f is convex, so that, by Corollary 10.6, the necessary
conditions for optimality of Problem (11.1) are also sufficient.

On the other hand, Exercise 3.4 suggests that (−φ) is non-convex, so it is not
apparent that the necessary conditions of Problem (9.7) are also sufficient for op-
timality of that problem. In fact, the necessary conditions for Problem (9.7) are
sufficient for optimality for Problem (9.7). However, the easiest way to prove this
is to note that f is convex and then note that the set of points satisfying the nec-
essary conditions for Problem (11.1) is the same as the set of points satisfying the
necessary conditions for Problem (9.7). (See Exercise 11.3.)

In Sections 11.1.3 and 11.1.4, we calculate the derivatives of the objective f and
then use the results to find optimality conditions for Problem (11.1).

11.1.3 Derivatives of objective

Let us now calculate the first and second derivatives of f . We have (see Exer-
cise 11.2):

∇ f (x) = A†(Ax − b), (11.2)

∇2f (x) = A† A. (11.3)

11.1.4 Optimality conditions

We now use the results from Chapters 2, 3, and 10 to prove a series of results for
Problem (11.1).

∇2f (x) is positive semi-definite Since ∇2f (x) = A† A then, by Part (i) of Exer-
cise 2.27, it is positive semi-definite.

11.1 Multi-variate linear regression 429

The objective f is convex Since ∇2f (x) is positive semi-definite, then by Theo-
rem 2.7, f is convex.

First-order conditions are sufficient Since f is convex, then by Corollary 10.6,
the first-order conditions ∇ f (x) = 0 are sufficient for global optimality of
Problem (11.1). So if ∇ f (x) = 0 has any solutions, then Problem (11.1)
has a minimum with minimizers given by the solution or solutions of
∇ f (x) = 0.

Solving either problem yields the same set of minimizers By Theorem 3.1, if ei-
ther Problem (9.7) or Problem (11.1) possesses an optimum, then the set
of optimizers of both problems are the same.

In summary, by solving ∇ f (x) = 0 for x� =
[

β�

γ �

]
we will find a maximizer of

Problem (9.7).
Setting ∇ f (x) = 0 and re-arranging, we obtain A† Ax = A†b, which we can

re-write as:

Ax = B, (11.4)

where A = A† A and B = A†b. As we have observed, (11.4) is a linear equation

in x =
[

β

γ

]
and so, in principle, can be solved through factorization of A and

a single forwards and backwards update, so long as A is non-singular. For the
sensitivity analysis to be discussed in Section 11.1.7.2, we note that the solution
can also be written as x = [A† A]

−1
A†b; however, we emphasize that inversion of

A† A is not usually a good way to solve the equations.

11.1.5 Further transformation

There are two basic drawbacks to solving (11.4). First, if A = A† A is not positive
definite then it is singular and so we will encounter zero pivots in the factorization
of A† A. In this case, there will be multiple solutions of (11.4). Even if A† A is non-
singular, however, it is important to realize that the condition number of A† A can be
large. For example, if A is a square non-singular matrix, then the condition number
of A† A is the square of the condition number of A. Consequently, factorizing A† A
into LU factors may lead to numerical difficulties.

This observation suggests that we might try the QR factorization of A† A. How-
ever, there is an alternative approach that transforms the problem further and avoids
the need to calculate and factorize A† A.

To motivate this alternative approach, note that if we could solve Ax = b then,
by (11.2), we would have a solution of∇ f (x) = 0. However, the matrix A typically
has more rows than columns, so in general it will not be possible to find a solution

430 Solution of the unconstrained minimization case studies

of Ax = b. Fortunately, by (11.2), all we require is a value of x such that Ax − b
is in the null space of A†, since this will be a solution of ∇ f (x) = 0. So, instead of
calculating and factorizing A† A, we QR factorize A itself to obtain (ignoring any
permutations of the rows or columns of A):

A = QR,

with Q ∈ Rm×m unitary, R =
[

U
0

]
∈ Rm×n upper triangular, with U ∈ Rn′×n

upper triangular and U having n′ linearly independent rows. We have:

∀x ∈ R
n, f (x) = 1

2
(Ax − b)†(Ax − b),

= 1

2
(x† A† − b†)(Ax − b),

= 1

2
(x†R†Q† − b†)(QRx − b), by definition of QR,

= 1

2
(x†R†Q† − b†QQ†)(QRx − QQ†b), since Q is unitary,

= 1

2
(x†R† − b†Q)Q†Q(Rx − Q†b), on factorizing,

= 1

2
(x†R† − b†Q)(Rx − Q†b), because Q is unitary,

= 1

2

(
x†

[
U
0

]†

− b†Q

)([
U
0

]
x − Q†b

)
,

where R =
[

U
0

]
,

= 1

2

∥∥∥∥[U
0

]
x − Q†b

∥∥∥∥2

2

,

= 1

2

∥∥∥∥∥
[

U
0

]
x −

[
[Q‖]†

[Q⊥]
†

]
b

∥∥∥∥∥
2

2

, where Q = [
Q‖ Q⊥],

with Q‖ ∈ Rm×n′, Q⊥ ∈ Rm×(m−n′),

= 1

2

∥∥∥∥∥
[

Ux − [Q‖]†b
0x − [Q⊥]

†
b

]∥∥∥∥∥
2

2

,

= 1

2

∥∥∥Ux − [Q‖]†b
∥∥∥2

2
+ 1

2

∥∥∥[Q⊥]
†
b
∥∥∥2

2
,

by definition of the L2 norm.

The last expression is minimized when Ux = [Q‖]†b since 1
2

∥∥∥[Q⊥]
†
b
∥∥∥2

2
is inde-

11.1 Multi-variate linear regression 431

�

Ux ′ − [Q‖]†b

�
Ux ′′ − [Q‖]†b

�

−[Q⊥]
†
b

�������������������

Ax ′ − b

�������������������

Ax ′′ − b
Fig. 11.1. Resolution of
the vector Ax − b into
two perpendicular vectors
for the values x = x ′ and
x = x ′′.

pendent of x . Geometrically, we have resolved the vector Ax − b into the sum of
two vectors:

• Ux − [Q‖]†b, which depends on x , and
• 0x − [Q⊥]

†
b = −[Q⊥]

†
b, which does not depend on x .

When these two vectors are added together, the length of Ax − b is mostly deter-
mined by the length of −[Q⊥]

†
b, so that the dependence of the length of Ax − b

on x is “swamped” by the effect of −[Q⊥]†b. However, because these two vectors
are perpendicular to each other we can write ‖Ax − b‖2

2 as the sum of the squares
of the lengths of these vectors. The situation is illustrated in Figure 11.1 for two
values of x , namely x = x ′ and x = x ′′. The columns Q‖ are such that [Q‖]†b
“aligns” with Ux , whereas the columns Q⊥ are such that (−[Q⊥]

†
b) is perpendicu-

lar to Ux . This allows us to decompose ‖Ax − b‖2
2 as the sum of

∥∥∥Ux − [Q‖]†b
∥∥∥2

2

and
∥∥∥[Q⊥]†b

∥∥∥2

2
. The function f is minimized at a value of x that also minimizes∥∥∥Ux − [Q‖]†b
∥∥∥2

2
. If U is non-singular then the first-order necessary conditions for

minimizing
∥∥∥Ux − [Q‖]†b

∥∥∥2

2
are Ux = [Q‖]†b.

Exercise 11.4 confirms that we can transform the problem of solving the first-
order necessary conditions ∇ f (x) = 0, which involve the coefficient matrix A† A,
into the problem of solving a linear equation Ux = [Q‖]†b that does not suffer
from the potential ill-conditioning of the matrix A† A. Moreover, once we have
QR factorized the matrix A, we can obtain the solution to Problem (11.1) by:

• evaluating y� = [Q‖]†b, and
• performing a backwards substitution to solve Ux� = y�.

(If n′ < n then there will be multiple solutions. In this case, any particular solu-
tion can be found or the value of x having the smallest L2 norm can be found by
performing the complete orthogonal factorization of A instead of QR factoriza-
tion [45, section 2.2.5.3]. See Section 5.8.2.2.)

432 Solution of the unconstrained minimization case studies

The solution x� =
[

β�

γ �

]
specifies the maximum likelihood estimate of the rela-

tionship between the independent and dependent variables:

∀ψ ∈ R
n−1, ζ = [β�]†ψ + γ �.

The drawback of this approach for large sparse systems is that Q is usually dense
even if A is not dense. For large sparse systems we may use an iterative technique
or choose to solve (11.4) (assuming that A† A is sparse) even despite the potential
ill-conditioning of the coefficient matrix.

Exercise 11.6 explores the relationship between finding an approximate solution
to an inconsistent linear system Ax = b and least-squares problems that involve
the L2 norm of Ax − b. Exercise 11.6 also considers objectives based on L1 and
L∞ norms of Ax − b. See [45, section 4.2.3] for a discussion of how to use a
sequence of solutions to least-squares problems to obtain the solution to a problem
having the L1 or L∞ norm of Ax − b as its objective. We can also treat these
norms by transforming the problem into a constrained optimization problem us-
ing, for example, the transformation described in Section 3.1.3. We will explore
some of these ideas in Part V when we consider least absolute value estimation in
Section 15.3.

11.1.6 Relationship of optimality conditions to linear regression

In designing the values of ψ(�) for the trials, there are two related issues to be
addressed.

(i) Providing enough variety in the trials to ensure that ∇2f = A† A is positive
definite. We discuss this issue in Sections 11.1.6.1 and 11.1.6.2.

(ii) Providing enough redundancy so that the effects of measurement error can
be “averaged out.” We discuss this briefly in Section 11.1.6.3.

In practice, to provide both variety and redundancy, we must usually have a much
larger number of trials m than unknown parameters n so that A will have many
more rows than columns.

11.1.6.1 Insufficient variety in the trials

The Hessian of the objective ∇2f (x) = A† A is independent of x and positive semi-
definite, but it is not necessarily positive definite, depending on the nature of the
trials, so that it may be singular as Exercise 11.7 shows.

If ∇2f (x) is singular then there will be many possible values of the parameters x
that satisfy the maximum likelihood criterion in the model (9.1), based on the data
from trials � = 1, . . . , m. There is insufficient variety in the trials to determine

11.1 Multi-variate linear regression 433

a unique maximum likelihood estimator. In these circumstances it is customary
to choose the maximum likelihood estimator that has the smallest L2 norm. As
mentioned above, the complete orthogonal factorization [45, section 2.2.5.3] can
be used in this case to obtain the maximum likelihood estimator having the smallest
L2 norm. (See Section 5.8.2.2.)

11.1.6.2 Sufficient variety in the trials

On the other hand, if there is an n element subset {�1, �2, . . . , �n} of the trials
{1, . . . , m} such that the n rows of A corresponding to these trials are linearly
independent, then ∇2f (x) = A† A is non-singular. (See Exercise 2.27, Parts (ii)
and (iv).) This condition requires that there is enough variety in the trials so that
they adequately “cover” the space of all possible trials. Notice that m must be at
least as large as n to satisfy the condition.

11.1.6.3 Redundancy and validation of model

We may want to find not only the maximum likelihood estimator but also esti-
mate the variance of the error. This issue is discussed, for example, in [53, chap-
ter 7][103, chapter 7]. A further consideration is that we may also be interested in
validating the linear model ζ = β†ψ+γ . “Goodness of fit” of the linear regression
model is discussed in [84, section 13.3][103, chapter 7]. In general, it requires that
m be larger, and typically considerably larger, than n. It is sometimes necessary to
increase the number trials in order to obtain enough redundancy [53, chapter 7].

11.1.7 Changes in the problem

In this section, we discuss changes in the problem involving an additional trial and
changes to the measured values.

11.1.7.1 Additional trials

If additional trials are added then there will be additional rows added to A and
additional entries added to b, necessitating factorization of the augmented A as
mentioned in Section 5.6.3.

11.1.7.2 Sensitivity

If a measured value changes then b will change. We consider the sensitivity of
the coefficients β� and γ � to changes in the measurements. That is, for each � =
1, . . . , m, we will imagine that the �-th measurement is actually ζ(�) + χ�, with
χ ∈ Rm . We calculate the sensitivity of β� and γ � to χ , evaluated at χ = 0.

434 Solution of the unconstrained minimization case studies

By Corollary 10.8, the sensitivity of the minimizer x� is given by:

∂x�

∂χ
(0) = −[∇2

xx f (x�; 0)]
−1

K (x�; 0),

where ∇2
xx f : Rn × Rm → Rn×n and K : Rn × Rm → Rn×m are defined by:

∀x ∈ R
n, ∀χ ∈ R

m,∇2
xx f (x;χ) = ∂2 f

∂x2 (x;χ),

= A† A,

∀x ∈ R
n,∀χ ∈ R

m, K (x;χ) = ∂2 f
∂x∂χ

(x;χ),

= −A†.

That is, the sensitivity to χ� is given by [A† A]
−1

A†I�, where I� ∈ Rm is a vector
with zeros in all places except the �-th place, which is a one. Note that this is
the same as the solution of a multi-variate linear regression problem that had the
same values of independent variables as in the base-case, but where the vector of
measurements was changed from b to I�. Using the analysis in Section 11.1.5, we
can calculate the sensitivity to χ� by:

• evaluating y = [Q‖]†I�, and

• performing a backwards substitution to solve U
∂x�

∂χ
(0) = y.

11.2 Power system state estimation

11.2.1 Transformation of objective

We use a similar transformation to the one in Section 11.1. In contrast to the
transformation described in Section 11.1, however, we usually cannot assume that
the measurement errors of the meters all have the same standard deviation. We will
nevertheless assume that the measurement errors have known standard deviations,
σ�, � ∈ M. Therefore, we define:

∀x ∈ R
n, f (x) = − ln φ(G̃; x) +

∑
�∈�

ln
1√

2πσ�

, (11.5)

11.2 Power system state estimation 435

where φ, G̃, x, σ�, and M were defined in Section 9.2.2. Then, by definition of φ

expressed in terms of the measurement functions g̃�:

∀x ∈ R
n, f (x) =

∑
�∈�

(g̃�(x) − G̃�)
2

2σ 2
�

,

= 1

2
(g̃(x) − G̃)

†
[�]−2(g̃(x) − G̃), (11.6)

where:

• � ∈ R�×� is the diagonal matrix with �-th diagonal entry equal to σ�, � ∈ M,
• g̃ : Rn → R� is the vector of all measurement functions, and
• G̃ ∈ R� is the vector of all measurements.

The transformed problem is:

min
x∈�n

f (x), (11.7)

where we recall that x ∈ Rn with n = 2nPQ + 1. As in Section 11.1, we have a
least-squares problem since the objective is (half of) the sum of squares of terms.
Each term is of the form (g̃�(x) − G̃�)/σ�. Since (g̃(•) − G̃) is non-linear, we
classify Problem (11.7) as a non-linear least-squares problem.

11.2.2 Derivatives of objective

We can differentiate (11.6) to obtain the gradient of f , which we manipulate into
a form that makes the calculation of the second derivative more convenient.

∀x ∈ R
n,∇ f (x) = J̃ (x)

†
[�]−2(g̃(x) − G̃),

=
∑
�∈�

∇g̃�(x)[��]
−2(g̃�(x) − G̃�), (11.8)

∀x ∈ R
n,∇2f (x) = J̃ (x)

†
[�]−2 J̃ (x) +

∑
�∈�

∇2g̃�(x)[��]
−2(g̃�(x) − G̃�),

(11.9)

where J̃ is the Jacobian of g̃ and ∇g̃� is the transpose of the �-th row of J̃ .

11.2.3 Optimality conditions and algorithms

In Section 11.2.3.1 we will compare the optimality conditions of Problems (9.8)
and (11.7). Then, in Section 11.2.3.2, we discuss finding points that satisfy the
optimality conditions for Problem (11.7).

436 Solution of the unconstrained minimization case studies

11.2.3.1 Qualitative comparison between Problems (9.8) and (11.7)

The first-order necessary conditions for minimizing Problem (9.8), ∇φ(G̃; x) = 0,
are non-linear as Exercise 11.9 shows. The first-order necessary conditions for
minimizing Problem (11.7), ∇ f (x) = 0, are also non-linear since the measurement
functions are, in general, non-linear. Let us consider the measurement functions in
detail.

(i) Each voltage magnitude measurement function, ũk(x) = uk , is in fact lin-
ear.

(ii) In Section 8.2.4, we approximated the Jacobian of the power flow equa-
tions by a constant matrix. We observed that this approximation was often
reasonable in practice. Therefore, the real and reactive injection measure-
ment functions and the real and reactive flow measurement functions are
approximately linear. This observation and the expression for ∇ f , (11.8),
mean that the necessary conditions for Problem (11.7), ∇ f (x) = 0, are also
approximately linear.

Recall the transformation of the objective of the linear regression problem de-
scribed in Section 11.1. The non-linear objective was transformed into a quadratic
objective, so that the necessary conditions for optimality were linear and could be
solved, for example, with a single QR factorization, a matrix–vector multiplica-
tion, and a backwards update.

In this section, the transformation (11.5) transforms a non-linear objective into
an approximately quadratic objective, so that, as we have discussed, the necessary
conditions for optimality are approximately linear. Because the conditions are not
exactly linear, however, we must use an algorithm such as the Newton–Raphson
method described in 10.2 to iterate towards their solution.

To verify that the Newton–Raphson update will converge, we can try to apply
the chord and Kantorovich theorems. Let us use the hypotheses of the theorems to
qualitatively compare the convergence properties of the Newton–Raphson update
when applied to solving the optimality conditions of:

• Problem (9.8); that is, ∇φ(x) = 0, and
• Problem (11.7); that is, ∇ f (x) = 0.

To apply the theorems, we need an estimate of Lipschitz constants for ∇2φ and
∇2f . We know that ∇φ is non-linear. (See Exercise 11.9.) If ∇ f were linear, then
∇2f would be constant and L = 0 would be a Lipschitz constant for ∇2f . Since
∇ f is approximately linear, then ∇2f is approximately constant and a Lipschitz
constant can be found for ∇2f that is smaller than a Lipschitz constant for ∇2φ.

Recall from Exercise 8.3 that the smaller the value of the Lipschitz constant for
the Jacobian of the non-linear equations, (that is, the smaller the value of the Lip-

11.2 Power system state estimation 437

schitz constant for ∇2f and ∇2φ) the easier it is to satisfy the conditions of the
chord and Kantorovich Theorems 7.3 and 7.4, assuming that all else were equal.
Therefore, the transformation from φ to f has made it easier to satisfy the condi-
tions of the theorems. We expect the radii ρ−, ρ+, and ρ defined in Theorems 7.3
and 7.4 to be larger for the problem of solving ∇ f (x) = 0 than for the problem of
solving ∇φ(x) = 0. That is, we can expect to converge to a solution from a poorer
initial guess if we apply the chord or Newton–Raphson update to solve ∇ f (x) = 0
instead of applying it to solve ∇φ(x) = 0. This is an example of using the chord
and Kantorovich theorems to qualitatively compare a problem and its transformed
version, without explicitly evaluating the parameters required for the theorem.

11.2.3.2 Problem (11.7)

Hessian We now consider the Hessian ∇2f from (11.9) in detail. It consists of the
sum of two terms:

(i) J̃ (x)
†
[�]−2 J̃ (x), which is of the form A† A for A = [�]−1 J̃ (x) and so by

Exercise 2.27, the matrix J̃ (x)
†
[�]−2 J̃ (x), is positive semi-definite, and

(ii)
∑

�∈� ∇2g̃�(x)[��]−2(g̃�(x) − G̃�), which can turn out to be not positive
semi-definite.

Despite the possibility that the second term in the Hessian is not positive semi-
definite, we have observed that g̃(x) is approximately linear. Therefore, each gra-
dient ∇g̃�, � ∈ M is an approximately constant vector and ∇2g̃� is approximately
equal to the zero matrix. Moreover, we expect that near to a solution of the prob-
lem we will find that (g̃�(x) − G̃�) ≈ 0, unless the measurement G̃� is grossly in
error. Therefore, the second term in the Hessian, being the sum of terms of the
form ∇2g̃�(x)[��]−2(g̃�(x) − G̃�), will only have a small influence on the Hessian
∇2f .

This suggests that f itself may be “approximately” convex, and in practice f of-
ten has only one local minimum. However, note well that we have not proved that
there is a unique local minimum. For some least-squares problems, the objective
can be significantly non-convex and there may be multiple local minima. Fortu-
nately, many least-squares problems, including the power system state estimation
problem, are relatively “well-behaved.”

Search direction Recall that in defining a search direction, we found that �x (ν) =
−M∇ f (x (ν)) is a descent direction if M is positive definite. We know that the

matrix J̃ (x)
†
[�]−2 J̃ (x) is positive semi-definite, even though it may not be positive

definite; however, we are not sure about even the positive semi-definiteness of∇2f .
Therefore, instead of using the exact Newton–Raphson update, we approximate

438 Solution of the unconstrained minimization case studies

∇2f by its first term:

J̃ (x)
†
[�]−2 J̃ (x), (11.10)

which is positive semi-definite, and then solve for the approximate update direc-
tion:

J̃ (x (ν))
†
[�]−2 J̃ (x (ν))�x (ν) = −∇ f (x (ν)),

= J̃ (x (ν))[�]−2(G̃ − g̃(x (ν))). (11.11)

This approximation is called the Gauss–Newton method [84, section 13.2].

We must still consider the possibility that J̃ (x (ν))
†
[�]−2 J̃ (x (ν)) is not positive

definite. We can follow the approach discussed in Section 10.2.3.2 and add terms
to the diagonal of the matrix during factorization to ensure that the modified matrix
is positive definite. This issue is closely related to the placement of meters in the
system, which we will discuss in Section 11.2.4.

Search direction by solving a related linear least-squares problem The use
of (11.11) to calculate a search direction suffers from a similar drawback to the
solution of (11.4) in the linear case. By defining A = [�]−1 J̃ (x (ν)) and b =
[�]−1(G̃ − g̃(x (ν))), note that (11.11) is equivalent to A† A�x (ν) = A†b, which is
the same form as the optimality conditions for the multi-variate linear regression
problem. We can therefore find �x (ν) by noting that �x (ν) is the solution to the
linear least-squares problem:

min
�x∈�n

1

2
‖A�x − b‖2

2 . (11.12)

Again, we can use QR factorization of A = [�]−1 J̃ (x (ν)) to avoid the possible ill-
conditioning in A† A. However, Q will in general be dense and so for large sparse

problems we may choose to LU factorize A† A = J̃ (x (ν))
†
[�]−2 J̃ (x (ν)) instead.

Levenberg–Marquandt An alternative approach is to approximate the possibly
not positive semi-definite term

∑
�∈� ∇2g̃�(x)[��]−2(g̃�(x) − G̃�) by the positive

definite matrix λI, where λ > 0 is chosen to be large enough to make the resulting
approximation of the Hessian positive definite. As mentioned in Section 10.2.3.3,
this is called the Levenberg–Marquandt method [45, section 4.7.3][84, sec-
tion 13.2] and is related to the trust region approach that was mentioned in Sec-
tion 10.2.4 [84, section 10.6].

Further approximation We can further approximate J̃ using the using the fast-
decoupled or other approximations to the Jacobian of the power flow equations, as
in the discussion of the solution of the power flow equations in Section 8.2.4.2.

11.2 Power system state estimation 439

neutral

1 2

3

�
�	
�
∼

P̃1, Q̃1, Ũ1

P̃12, Q̃12

P̃13, Q̃13�
Y1

Y13 � �
� �Y3

l
o
a
d

Y23

�
�	
�
∼

�
Y2

Y12

Fig. 11.2. The three-bus
power system state esti-
mation problem repeated
from Figure 9.2.

11.2.4 Placement of meters in the system

11.2.4.1 Insufficient variety in the measurements

If the measurements are not spread out throughout the system, then J̃ (x)
†
[�]−2 J̃ (x)

can be singular. For example, consider the system in Figure 9.2, which is repeated
in Figure 11.2. The are five unknown variables: u1, θ2, u2, θ3, and u3. There are
seven measurements: P̃1, Q̃1, Ũ1, P̃12, Q̃12, P̃13, and Q̃13. However, since:

p̃1(x) = p̃12(x) + p̃13(x),

q̃1(x) = q̃12(x) + q̃13(x),

there is redundant information concerning bus 1. This would enable us to estimate
the voltage magnitude and flows around bus 1, even in the presence of measurement
errors. However, there is not enough information to estimate all the voltage and
flows in the system.

In fact, similarly to the case discussed in Section 11.1.6.1, the matrix A† A =
J̃ (x)

†
[�]−2 J̃ (x) is singular for every x . We can certainly add diagonal terms to

such a singular J̃ (x)
†
[�]−2 J̃ (x) as suggested in Section 10.2.3 to create a positive

definite matrix and obtain a descent direction; however, because J̃ (x)
†
[�]−2 J̃ (x)

is singular for every x it turns out that there are many minimizers of f .
If we apply a minimization algorithm and if it converges, it will have converged

to some arbitrary minimizer depending on the algorithm details. Since our mea-
surements do not determine the split of power flowing into buses 2 and 3, there
will be many sets of voltages and angles θ2, u2, θ3, and u3 that are consistent with
maximizing the likelihood of the observed measurements. We say that the system
is unobservable [80, chapter 7]. The starting point for the iteration will have a
strong influence on the solution. As in the linear least-squares case, we can, in
principle, pick one of the multiple minimizers by seeking a solution having small-
est norm.

440 Solution of the unconstrained minimization case studies

neutral

1 2

3

�
�	
�
∼

P̃1, Q̃1, Ũ1 P̃2, Q̃2, Ũ2

P̃12, Q̃12

P̃3, Q̃3

�
Y1

Y13 � �

� �
Y3

l
o
a
d

Y23

�
�	
�
∼

�
Y2

Y12

Fig. 11.3. The three-bus
power system state es-
timation problem with
spread out measurements
repeated from Figure 9.3.

If we are designing a measurement system, then singularity of J̃ (x)
†
[�]−2 J̃ (x)

for a candidate meter placement plan suggests that we should add more meters to
the plan [80, section 7.3]. If we are operating a measurement system and we find

that because of, for example, meter failures, the matrix J̃ (x)
†
[�]−2 J̃ (x) is singular,

then we cannot estimate the state completely. In practice, in the latter case, the user
of the software usually specifies pseudo-measurements; that is, guesses at what
the actual measurement would be, based on experience, so that a rough estimate of
the complete state can be found [80, section 7.3].

11.2.4.2 Sufficient variety in the measurements

Usually, if there is sufficient variety in the measurements, the positive semi-definite

matrix J̃ (x)
†
[�]−2 J̃ (x) will turn out to be positive definite for almost all, if not all

values of x , and hence be non-singular. If it is non-singular then the approximate
update equation (11.11) has a unique solution.

For example, for the arrangement in Figure 9.3, which is repeated in Figure 11.3,
for almost all values of x there is a five element subset of the rows of J̃ (x) that
is linearly independent, so that J̃ (x)

†
[�]−2 J̃ (x) is non-singular. The Newton–

Raphson update and variants will usually bring us towards the unique minimizer
of the problem and the system is said to be observable. Further details, including
methods to determine if the rows of J̃ are linearly independent for almost all values
of x , can be found in [62].

Even if the rows of J̃ are linearly independent for almost all values of x , it is

possible to encounter singular J̃ (x (ν))
†
[�]−2 J̃ (x (ν)) at some iterations ν; however,

this is extremely rare in practice for the power system state estimation problem
and is also relatively rare for a variety of non-linear least-squares problems. If the
matrix does turn out to be singular, then it can be modified during factorization as
discussed in Section 11.2.3.2 to approximate it by a positive definite matrix.

Exercises 441

11.2.4.3 Sensitivity

We can consider variation of the estimate with variation in the measurement data.
This is explored in Exercise 11.11.

Exercises

Multi-variate linear regression

11.1 Consider the maximum likelihood problem formulated in Exercise 9.1. Show that
this maximum likelihood problem can be transformed to a problem with objective f that
is quadratic in x . That is, we still have a linear least-squares problem, even though the
measurement function is non-linear in the independent measurement variables.

11.2 Prove (11.2) and (11.3).

11.3 In this exercise we show that the first-order necessary conditions for Problem (9.7)
and Problem (11.1) are equivalent.

(i) Write out explicitly the first-order necessary conditions for a maximum of Prob-
lem (9.7).

(ii) Show that the set of points satisfying the first-order necessary conditions for Prob-
lem (9.7) is the same as the set of minimizers of Problem (11.1).

11.4 Let A ∈ Rm×n, b ∈ Rm , and let ∇ f : Rn → Rn be as defined in (11.2):

∀x ∈ R
n,∇ f (x) = A†(Ax − b).

Suppose that we have factorized A = QR with Q ∈ Rm×m unitary. Moreover, suppose we
have partitioned Q into Q = [

Q‖ Q⊥], where Q‖ ∈ Rm×n, Q⊥ ∈ Rm×(m−n), and that

R =
[

U
0

]
∈ Rm×n is upper triangular with U non-singular. Show that x� = U−1[Q‖]†b

satisfies ∇ f (x) = 0.

11.5 In this exercise we solve a multi-variate linear regression problem.

(i) Use the MATLAB backslash operator to find the affine function:

∀ψ ∈ R, ζ = β�ψ + γ �,

with β� ∈ R and γ � ∈ R that best fits the following pairs of data (ψ(�), ζ(�)),
for � = 1, . . . , 7. Assume that the measurements ζ(�) are subject to independent
Gaussian errors of identical standard deviation and zero mean so that the least-
squares technique yields the best fit. (Hint: You need to explicitly form the matrix
A and vector b discussed in Section 11.1.1.)

� 1 2 3 4 5 6 7
ψ(�) 0.27 0.2 0.8 0.4 0.2 0.7 0.5
ζ(�) 0.3 0.65 0.75 0.4 0.15 0.6 0.5

(ii) Find the sensitivity of β� and γ � to each measurement ζ(�).

442 Solution of the unconstrained minimization case studies

11.6 Let A ∈ Rm×n , b ∈ Rm , and recall the inconsistent linear system Ax = b discussed
in Section 5.8. If there is no x satisfying Ax = b we can instead think of minimizing, for
example:

• f (x) = ‖Ax − b‖1,
• f (x) = ‖Ax − b‖2

1,• f (x) = ‖Ax − b‖2,
• f (x) = ‖Ax − b‖2

2,• f (x) = ‖Ax − b‖∞, or
• f (x) = ‖Ax − b‖2∞,

with respect to x to find a point x� that most nearly satisfies Ax = b in the sense of
minimizing f .

Consider the choice f (x) = 1
2 ‖Ax − b‖2

2 = 1
2 (Ax − b)†(Ax − b). Notice that the

problem minx∈�n f (x) is a linear least-squares problem and we have shown how to solve
it. Can you suggest why it is customary to choose the square of the L2 norm instead of one
of the other norms or their squares when trying to find x that most nearly satisfies Ax = b?

11.7 Give an example with n = 3 and m = 4 of Problem (11.1) where ∇2f (x) is singular.

Power system state estimation

11.8 Suppose that x̂ ∈ Rn were the true value of the voltage angles and magnitudes in
the system. Show that the expected value of (g̃�(x̂) − G̃�)

2/(σ�)
2 is 1. (Hint: Refer to the

discussion in Section 9.2.2.4 of the error distribution.)

11.9 In this exercise we investigate the first-order necessary conditions for Problem (9.8).

(i) Write out the first-order necessary conditions for Problem (9.8).
(ii) Show that the first-order necessary conditions for Problem (9.8) would be non-

linear even if g̃ were linear.

11.10 Consider the state estimation problem involving the arrangement of meters shown
in Figure 9.2, which is repeated in Figure 11.2.

(i) Write down the form of the measurement functions g̃. (Use the results of Exer-
cise 9.2.)

(ii) Calculate the Jacobian J̃ of g̃.
(iii) Show that J̃ has linearly dependent rows.

11.11 Consider the state estimation problem involving the arrangement of meters shown
in Figure 9.3, which is repeated in Figure 11.3.

(i) Write down the form of the measurement functions g̃. (Use the results of Exer-
cise 9.2.)

Exercises 443

(ii) Calculate f and ∇ f .
(iii) Use MATLAB to perform one update of the Newton Raphson method for solving

Problem (11.7) with the Gauss Newton approximation (11.10) to the Hessian. Use

the transmission parameters from Exercise 8.12 and a flat start

[
θ
u

]
=
[

0
1

]
as the

initial guess for x . Assume that the real power injection measurements at buses 1
and 2 are both equal to 1, the reactive power injection measurements at buses 1 and
2 are both equal to 0.5, and all voltage measurements are equal to 1.0. Also, assume
that P̃12 = 0.5, Q̃12 = 0.25, P̃3 = −2, and Q̃3 = −1. Assume measurement error
standard deviations of σ� = 0.02 for all measurements.

(iv) Use the MATLAB function lsqnonlin to solve the problem specified in Part (iii).
You should write MATLAB M-files to evaluate both [�]−1(g̃ − G̃) and [�]−1 J̃ .
Specify that you are supplying the Jacobian by setting the Jacobian option to on
using the optimset function. Use the Gauss Newton method by specifying both
LevenbergMarquadt to off and LargeScale to off using the optimset

function and use a flat start

[
θ
u

]
=
[

0
1

]
as the initial guess for x .

(v) Repeat the previous part but use the default Levenberg Marquandt method. Specify
that you are supplying the Jacobian by setting the Jacobian option to on using
the optimset function.

(vi) Calculate the sensitivity of the solution to changes in each measurement.
(vii) Is the state estimation problem ill-conditioned?

Part IV

Equality-constrained optimization

12

Case studies of equality-constrained optimization

In this chapter we will introduce two case studies:

(i) production, at least-cost, of a commodity from machines, while meeting a
total demand (Section 12.1), and

(ii) state estimation in an electric power system where the power injections at
some of the buses are known to high accuracy (Section 12.2).

Both problems will turn out to be equality-constrained optimization problems. The
first will introduce several new ideas in problem formulation, while the second will
build on the state estimation case study from Section 9.2.

12.1 Least-cost production

12.1.1 Motivation

Consider a machine that makes a certain product, requiring some costly input to
produce. In many industries it is possible to stock-pile the product at low cost from
day to day, week to week, or even season to season. In this case, it is natural to try
to operate the machine at constant output. Ideally, the constant value of machine
output would be matched to either:

• the point of maximum operating efficiency of the machine, or
• some other desirable operating point of the machine.

When demand is lower than production, some of the production goes into the stock-
pile. When demand is higher than production, the stocks are used to help to meet
demand.

However, if stock-piling is costly or inconvenient or if demand for the product
varies rapidly, then to avoid over-supplies and shortages we have to vary production
to follow variations in demand. If we have just one machine to make the product,
it is easy to decide on the level of the production; however, if there are several

447

448 Case studies of equality-constrained optimization

machines, and particularly if the operating efficiencies of the machines vary with
output and differ from machine to machine, then the problem becomes more inter-
esting.

An extreme example of this problem is in the production of electricity, where
energy in a fuel is converted to energy in electricity. Typically the fuel cost is
non-zero and it is not practical to stock-pile electrical energy over even very short
periods. Moreover, electric generators have efficiencies that vary markedly with
output. In electric power, the problem of least-cost production is called economic
dispatch [22, section 1.8][123, chapter 3].

A variety of scheduling problems arise in manufacturing industries. Many of
these problems involve discrete variables; however, we will not treat discrete vari-
ables explicitly in this case study, although an extension of the economic dispatch
problem, called the unit commitment problem, does include discrete variables [79,
chapter 12][123, chapter 5]. General references for problems with discrete vari-
ables include [22, 67, 85, 92, 122]. (We will treat a rather different kind of schedul-
ing problem in Section 15.2, where we consider optimal routing in data networks.
Again, this problem does not involve discrete variables.)

12.1.2 Formulation

12.1.2.1 Variables

Suppose that we own n machines or plants that are producing a commodity or
product. We consider the production over a particular period of time. The length T
of this period of time should be chosen to be short enough so that the production per
unit time for the commodity or product by each machine can be well approximated
by a constant over the time period T . That is, we are assuming that the plant is
in quasi-steady state. Consequently, the total amount of commodity produced by
a machine over the time period then completely specifies the production per unit
time throughout the period by the machine. In practice, this assumption might only
be roughly true.

Define xk ∈ R to be the total amount of the commodity produced by ma-
chine k over the time period. We collect the production decisions of machines

k = 1, . . . , n, into a vector x ∈ Rn , so that x =
⎡⎢⎣ x1

...

xn

⎤⎥⎦. The situation for n = 3 is

illustrated in Figure 12.1, where three machines, represented as circles, are produc-
ing, respectively, amounts x1, x2, and x3 of the commodity over the time period.

12.1 Least-cost production 449

�	
�
1

x1

�������

�	
�
2

x2

�	
�
3

x3

�������

�D Fig. 12.1. Production
from three machines.

12.1.2.2 Production costs

We suppose that for k = 1, . . . , n there are functions fk : R → R such that fk(xk)

is the cost for machine k to produce xk over the time period T . We assume that
we can choose to take machines out-of-service and assume that if a machine is
out-of-service, then it does not cost anything to run. That is, fk(0) = 0. At non-
zero production levels, when the machine is in-service, the production cost will
typically be non-zero. There may be a discontinuity in fk at xk = 0 or, as we
will discuss in Section 12.1.2.4, it may not be possible to operate the machine at
arbitrarily small non-zero levels of production.

12.1.2.3 Objective

A sensible criterion to choose the production levels is to seek the values of xk, k =
1, . . . , n, that minimize the total cost of production. That is, we would like to
minimize the objective f : Rn → R defined by:

∀x ∈ R
n, f (x) =

n∑
k=1

fk(xk). (12.1)

12.1.2.4 Constraints

Machine We assume that machine k has a maximum production capacity, say xk ,
and a minimum production capacity, xk ≥ 0, reflecting the design capability of the
machine. If the machine is in-service then the machine capacity constraints require
that:

xk ≤ xk ≤ xk, (12.2)

while if the machine is off, then xk = 0. Typically, xk 	= 0 representing the fact
that under normal conditions we cannot operate the machine at arbitrarily small
non-zero levels of production. (For example, for fossil-fueled electric generators
this is due to flame stability in the furnace and due to allowable temperatures in

450 Case studies of equality-constrained optimization

the boiler tubes [123, section 2.1].) The feasible operating set for machine k is
therefore:

Sk = {0} ∪ [xk, xk].

The set Sk is not convex if xk > 0. (See Exercise 12.1.) In specifying (12.1) we
assumed that each function fk was defined on the whole of R; however, only the
values of fk on Sk are relevant to the solution of the problem. In defining f , we
have implicitly extrapolated the cost function of each machine from its operating
range, as specified by Sk , to the whole of R.

Production Let us assume that during the time period T we face a total demand
for the commodity of quantity D, say, as represented in Figure 12.1. To meet
demand, we must satisfy the constraint:

D =
n∑

k=1

xk, (12.3)

which we can write in the form Ax = b with either of the following two choices
for A ∈ R1×n and b ∈ R:

• A = 1†, b = [D], or
• A = −1†, b = [−D].

For reasons that will be made clear in Section 13.5 when we discuss an economic
interpretation of the problem, we prefer to use the second choice for A and b.

Machine and production combined The feasible operating set for all the ma-
chines is: (

∏n
k=1 Sk) ⊂ Rn , where the symbol

∏
means the Cartesian product

(see Definition A.4), so that the feasible set for the problem is:

S =
(

n∏
k=1

Sk

)
∩ {x ∈ R

n|Ax = b
}
.

Relaxation For the discussion in this chapter, however, we are going to:

• assume that each machine is in-service and operating, and
• ignore minimum and maximum production capacity constraints.

That is, we are going to relax the set of feasible operating points for machine k
from the set Sk to the whole of R and correspondingly relax the feasible set for the
problem from S to:

S = {
x ∈ R

n|Ax = b
}
.

12.1 Least-cost production 451

0
2

4
6

8
10

0

2

4

6

8

10

0

2

4

6

8

10

x1x2

x3

Fig. 12.2. Part of feasible
set S for least-cost produc-
tion case study.

Part of the feasible set S lying in the non-negative orthant is illustrated in Fig-
ure 12.2 for n = 3 and D = 10. In general, S is a hyperplane in Rn . (See
Definition A.52.)

12.1.2.5 Problem

Our relaxed optimization problem is:

min
x∈�n

{ f (x)|Ax = b} , (12.4)

which is a linear equality-constrained optimization problem. As stated above, we
have implicitly assumed that each function fk has been extrapolated to being a
function defined on the whole of R.

12.1.2.6 Alternative formulation

If the cost function for each machine increases monotonically with production, as is
normal for many types of machines, we could also consider solving the inequality-
constrained problem:

min
x∈�n

{
f (x)

∣∣∣∣∣D ≤
n∑

k=1

xk

}
, (12.5)

which is a further relaxation of our constraints, but which has the same minimum
and minimizer as Problem (12.4) if costs are strictly monotonically increasing.
(See Exercise 12.2.) The flexibility in the choice of formulation can sometimes
be useful in adapting a problem formulation to an algorithm or in proving results

452 Case studies of equality-constrained optimization

about the problem; however, in this chapter we will only consider the equality-
constrained version, Problem (12.4). (In Section 15.6.4.1, we use this flexibility to
show conditions under which the “optimal power flow” problem is equivalent to a
convex problem.)

12.1.2.7 Discussion

As we remarked in Section 3.3.4, if the solution x� of the relaxed Problem (12.4)
happens to satisfy the omitted minimum and maximum capacity constraints (12.2)
so that x�

k ∈ Sk , then the solution of the relaxed Problem (12.4) is optimal for the
complete problem including the machine constraints:

min
x∈�

f (x).

If the omitted constraints are not satisfied, then we must consider them explic-
itly. We will explicitly consider inequality constraints such as the minimum and
maximum production capacity constraints (12.2) in Part V, but the feasible set Sk

for machine k is non-convex since it includes the points 0 and xk but not any points
between 0 and xk . (See Exercise 12.1.) We will not treat such feasible sets in
this book. (See [79, chapter 12][123, chapter 5] for several approaches to treating
the non-convex feasible set that involve adding discrete variables to the formula-
tion and solving the resulting integer problem. See [22, 67, 85, 92, 122] for more
general discussion of problems with discrete variables.)

12.1.3 Change in demand

We can expect that demand will change over time. Consequently, it is important to
be able to estimate the change in the costs due to a change in demand from D to
D + �D, say.

12.1.4 Problem characteristics

12.1.4.1 Objective

Separability Although the objective defined in (12.1) is typically non-linear, it is
expressed as the sum of functions, fk , each of which depends only on a single entry,
xk , of x . That is, the objective is additively separable. (See Definition A.23.)

Average production costs Consider the average cost per unit of production
fk(xk)/xk for machine k producing xk . This is the ratio of:

• the costs over the time period, divided by
• the production over the time period.

12.1 Least-cost production 453

At low levels of production, that is, for relatively small values of xk , we would
expect the average production cost to be relatively high. This is because there are
usually costs that must be incurred whenever the plant is in-service and produc-
ing non-zero levels of output. These costs include, for example, costs of running
auxiliary equipment such as pumps, lighting, computers, and air-conditioning. If
we switch the machine off then we can also switch (most of) the auxiliary equip-
ment off and so the auxiliary operating costs would be zero. If the machine is
in-service, however, the auxiliary equipment must be operating and, moreover, the
operating costs of this auxiliary equipment might not depend on xk . For low but
non-zero values of xk , the costs of running the auxiliary equipment are averaged
over a relatively small quantity of production and so the average costs are high.
Figure 12.3 illustrates the average costs for xk ≤ xk ≤ xk . For xk ≈ xk , the aver-
age costs are high. (In practice, the costs are typically less smooth than illustrated
in Figure 12.3.)

As xk increases from low levels, the average production costs typically decrease
because the costs of operating the auxiliary equipment are averaged over a greater
amount of production. We do not expect the average production cost to decrease
indefinitely, however, so that for some xk , the average costs fk(xk)/xk reach a
minimum and then begin to increase again for larger values of xk . The point where
fk(xk)/xk is at a minimum is the point of maximum efficiency of the machine. This
is illustrated in Figure 12.3.

Production costs If we multiply the values of fk(xk)/xk in Figure 12.3 by xk , we
obtain the production costs fk(xk) as illustrated in Figure 12.4. The bullet • at
xk = 0, fk(xk) = 0 indicates that if the machine is out of service then the cost
of production is zero. In the presence of auxiliary operating costs, there is a jump
in cost between the value fk(0) = 0 at xk = 0 and the values of fk(xk) > 0 for
xk > 0. That is, if we extrapolate the shape of fk from xk to values xk < xk then
we would find that at xk = 0 the extrapolated value of the production cost function
would be greater than zero due to the auxiliary operating costs.

Convexity Let us use the qualitative shape of the average cost curve in Figure 12.4
to try to determine whether or not fk is convex. If xk > 0, then the operating set of
the machine, Sk = {0} ∪ [xk, xk], is not convex. (See Exercise 12.1.) Recall that
the definition of convexity of a function required us to specify a convex test set on
which to test the function for convexity.

To consider a convex test set, let us first suppose that xk = 0, so that the feasible
set {0} ∪ [xk, xk] = [xk, xk] = [0, xk] is convex. Even in this case, however, if
there are non-zero auxiliary operating costs then fk is not a convex function on
[0, xk] because of the discontinuity in fk , as Exercise 12.3 shows.

454 Case studies of equality-constrained optimization

0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1
0

0 5

1

1 5

2

2 5

3

3 5

4

xk

xk xk

fk(xk)/xk

Fig. 12.3. The average
production cost fk(xk)/xk
versus production xk for
a typical machine for
xk ≤ xk ≤ xk .

0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1
0

0 2

0 4

0 6

0 8

1

1 2

1 4

1 6

1 8

2

xk

xk xk

fk(xk)

Fig. 12.4. Production cost
fk(xk) versus production
xk for a typical machine.

To identify a test set on which the objective might be convex, suppose that:

• xk = 0 and consider the set Sk = {xk ∈ R|0 < xk ≤ xk} ⊂ Sk , or

• xk > 0 and consider the set Sk = {xk ∈ R|xk ≤ xk ≤ xk} ⊂ Sk .

In both cases, Sk is a convex set. Moreover, for both these cases, Figure 12.4 sug-

12.1 Least-cost production 455

gests that fk is convex on Sk . The convexity of fk on Sk arises from a fairly plausi-
ble characterization of typical machines. We will assume that the cost function of
each machine has been extrapolated to a function that is convex on the whole of R.

For example, it is often reasonable to assume that fk : Sk → R is quadratic and
of the form:

∀xk ∈ Sk, fk(xk) = 1

2
Qkk(xk)

2 + ckxk + dk . (12.6)

We can extrapolate fk to being defined on the whole of R by simply writing fk :
R → R and extending the definition in (12.6) to all of R, effectively redefining
the function value at xk = 0. For convex costs, Qkk ≥ 0. With non-zero auxiliary
costs, dk > 0. We also usually expect that ck > 0.

Adding together the cost functions for all machines, we obtain:

∀x ∈ R
n, f (x) = 1

2
x†Qx + c†x + d,

where:

• Q ∈ Rn×n is a diagonal matrix with k-th diagonal entry equal to Qkk ,
• c ∈ Rn has k-th entry equal to ck , and
• d =∑n

k=1 dk ∈ R.

12.1.4.2 Constraint

Eliminating a variable The constraint (12.3) of Problem (12.4) is linear. Because
of the linearity, by Corollary 3.7, we can use the equality constraint Ax = b to
eliminate one of the variables, say x1, by writing:

x1 = D − x2 − · · · − xn.

Expressing the objective in terms of x2, . . . , xn yields an unconstrained problem
with objective f (x̃) where:

x̃ =

⎡⎢⎢⎢⎣
D − x2 − · · · − xn

x2
...

xn

⎤⎥⎥⎥⎦ ,

=
[

D
0

]
+
[−1†

I

]⎡⎢⎣ x2
...

xn

⎤⎥⎦ ,

= x̂ + Zξ,

= τ(ξ),

456 Case studies of equality-constrained optimization

where:

x̂ =
[

D
0

]
∈ S,

Z =
[−1†

I

]
∈ R

n×(n−1),

ξ =
⎡⎢⎣ x2

...

xn

⎤⎥⎦ ∈ R
n−1,

and where τ : Rn−1 → S is defined by:

∀ξ ∈ R
n−1, τ (ξ) = x̂ + Zξ,

and we note that τ is onto S. The point x̂ is a particular solution of the equations
Ax = b. The matrix Z has columns that form a basis for the null space of A.
(See Exercise 12.4.) The objective f (x̃) depends only on ξ ∈ Rn−1. We have
transformed the equality-constrained problem into an unconstrained problem with
objective φ : Rn−1 → R defined by:

∀ξ ∈ R
n−1, φ(ξ) = f (x̃),

= f

(
D − 1†ξ

ξ

)
,

= f (τ (ξ)).

The unconstrained problem:

min
ξ∈�n−1

f (x̃) = min
ξ∈�n−1

φ(ξ)

could then be solved using the techniques developed in Chapter 10.
Elimination of variables is often an effective way to solve a problem with linear

constraints. The number of variables will be decreased by the number of linearly
independent constraints. In the case of Problem (12.4), the use of one constraint re-
duces the number of variables to (n−1). If there were, say, m equality constraints,
then there would be (n − m) variables in the resulting transformed problem, as-
suming that the corresponding rows of A were linearly independent.

The objective, φ, of the resulting unconstrained problem is not additively sepa-
rable. Sometimes, the loss of separability can make the problem more difficult to
solve so that elimination of variables is not always the best approach.

Treating the constraint directly We will also explore approaches that treat the
equality constraints directly. These will also preserve the separability of the ob-
jective and provide an intuitive interpretation of the characteristics of the solution.

12.2 Power system state estimation with zero injection buses 457

In fact, these approaches will be derived in Section 13.1 by first eliminating the
variables, then writing down the first-order necessary conditions for the resulting
unconstrained problem, and then re-interpreting the optimality conditions in terms
of the original variables.

12.1.4.3 Solvability

Since:

(i) we have defined the objective function f on the whole of Rn ,
(ii) the objective increases with increasing values of xk , for each k, and
(iii) the constraint has a particularly simple form,

there will always be a solution to Problem (12.4). However, the solution might
not satisfy the minimum and maximum machine constraints (12.2). That is, the
solution to Problem (12.4) might require that a particular machine k operate at a
level xk < xk or at a level xk > xk . This issue will be treated explicitly in Part V
when we cover inequality constraints. (As discussed previously, we will not treat
non-convex feasible sets such as Sk = {0} ∪ [xk, xk] in this book.)

12.2 Power system state estimation with zero injection buses

12.2.1 Motivation

12.2.1.1 Zero injection buses

Recall the power system state estimation problem introduced in Section 9.2. In that
problem, we wrote down a measurement equation g̃�(x) for each measurement G̃�.
Consider the situation in Figure 12.5. Bus 2 does not have any load nor generation
nor any measurement devices. Such buses are common at intermediate points in
electric power systems between generators and load.

Since there is no generator nor load at bus 2, the “injection” at bus 2 into the rest
of the system is known to be exactly zero. In Section 6.2.2.5, we called this bus
a zero injection bus. Since we know that the injection is zero, we can interpret
the zero injection as an exact measurement of the real and reactive power, as il-
lustrated in Figure 12.6, where we have shown an injection measurement but have
written P2 = 0 and Q2 = 0 to emphasize the fact that we know that the injec-
tions are exactly zero. We will try to incorporate this implicit measurement into
the formulation of the state estimation problem.

12.2.1.2 Ignoring zero injection buses

Before considering the zero injection buses in detail, we first consider the possibil-
ity of ignoring the zero injection buses in the formulation. The drawback of this
approach is that if there are many zero injection buses and we ignore them, then

458 Case studies of equality-constrained optimization

neutral

1 2

3

�
�	
�
∼

P̃1, Q̃1, Ũ1

P̃12, Q̃12

P̃13, Q̃13�
Y1

Y13 � �
� �Y3

l
o
a
d

Y23

�
�

Y2

Y12

Fig. 12.5. Three-bus elec-
tric power system with a
bus, bus 2, having neither
load nor generation.

neutral

1 2

3

�
�	
�
∼

P̃1, Q̃1, Ũ1

P̃12, Q̃12

P̃13, Q̃13

P2 = 0, Q2 = 0

�
Y1

Y13 � �
� �Y3

l
o
a
d

Y23

�
�

Y2

Y12

Fig. 12.6. Zero injection
bus re-interpreted as an
exact measurement.

the remaining system is likely to be unobservable, as defined in Section 11.2.4,
because the remaining measurements will be insufficient to completely determine
the unknowns. For example, if we use only the measurements shown explicitly in
Figure 12.5 in the objective of Problem (9.8), then we do not have enough infor-
mation to uniquely determine the voltage magnitudes and angles at buses 2 and 3.
This is because we have seven measurements that are clustered around bus 1 and
these are insufficient to estimate the five unknowns. (See Exercise 12.6.)

12.2.1.3 Treating zero injection buses as accurate measurements

Alternatively, we could think of the zero injection at bus 2 as a pair of very accurate
real and reactive power measurements having zero value and zero measurement er-
ror as illustrated in Figure 12.6. This would give us a total of nine measurements.
It turns out that these nine measurements are spread out around the system suffi-
ciently to be able to calculate all five unknowns. These measurements also provide
redundancy. (See Exercise 12.6.)

Recall that the optimality conditions developed in Section 11.2 for the state es-
timation problem involved either the matrix [�]−1 or the matrix [�]−2. If we inter-

12.2 Power system state estimation with zero injection buses 459

pret, say, the power injection at a zero injection bus to be a measurement having
value G̃� = 0 and having zero measurement error, then the associated measurement
standard deviation would be σ� = 0. Unfortunately, this makes the corresponding
entry of [�]−1 or [�]−2 infinite.

An ad hoc approach to this issue would be to pick a small but non-zero value of
σ� for each zero injection bus measurement. We must then compromise between:

(i) making σ� small enough to approximately represent our certainty that the
measurement is zero, and

(ii) making σ� large enough so that the entries in [�]−1 are not too large.

The entry in [�]−1 corresponding to the zero injection bus measurement G̃� = 0 is
(σ�)

−1, which must be “approximately” infinity to enforce satisfaction of the con-
straint g̃�(x) = 0. We are effectively enforcing the constraint by penalizing the ob-
jective for points that do not satisfy the constraint, as discussed in Section 3.1.2.1.
Other entries in [�]−1 will be smaller, corresponding to the measurement standard
deviations of the actual measurements. Recall that the optimality conditions and

algorithms developed in Section 11.2.3 involved factorizing either J̃ (x)
†
[�]−2 J̃ (x)

or [�]−1 J̃ (x), where J̃ is the Jacobian of g̃. In both cases, the presence of widely
differing values in � will lead to an ill-conditioned coefficient matrix as discussed
in Section 3.1.2.1. For this reason, interpreting zero injection buses as measure-
ments with zero error is somewhat unsatisfactory. However, we will return to this
approach in Section 14.5 in discussion of the merit function.

12.2.1.4 Treating zero injection buses as equality constraints

The approach we will follow is to explicitly represent the zero injection buses as
pairs of equality constraints each of the form g�(x) = 0. This approach will be
treated in detail in Section 12.2.2.

12.2.2 Formulation

12.2.2.1 Objective

As in Section 11.2, let M be the set of measurements in the system, not including
the injection measurements at the zero injection buses. For each � ∈ M, let the
measurements and measurement functions be G̃� and g̃�, respectively. We can
construct a maximum likelihood function and, as in Section 11.2.1, transform it
into a function f : Rn → R defined by:

∀x ∈ R
n, f (x) =

∑
�∈�

(g̃�(x) − G̃�)
2

2σ 2
�

. (12.7)

460 Case studies of equality-constrained optimization

12.2.2.2 Constraints

Let M0 be the set of real and reactive injections at the zero injection buses. For
each � ∈ M0, let g� : Rn → R be the function representing an injection at a zero
injection bus. The power flow equations require that ∀� ∈ M0, g�(x) = 0, so that
our estimate of the state x should be consistent with these constraints. We can
collect the functions associated with the zero injection buses together into a vector
function g : Rn → Rm , where m is the number of zero injection bus measurements,
which is the number of elements in M0. That is, g : Rn → Rm is defined by:

∀x ∈ R
n, g(x) = (g�(x))�∈�0, (12.8)

so that to satisfy the zero injection bus constraints we require that g(x) = 0.

12.2.2.3 Problem

We would still like to obtain the maximum likelihood estimator, but now we must
maximize the likelihood over those values of x that are consistent with the zero
bus injections. Equivalently, we must minimize the transformed objective over
those values of x that are consistent with the zero bus injections. Our problem is
therefore:

min
x∈�n

{ f (x)|g(x) = 0}, (12.9)

which is a non-linear equality-constrained optimization problem.

12.2.3 Change in measurement data

As in the unconstrained state estimation case study in Section 9.2, over time, the
state of the power system changes as demand and supply situations change. Con-
sequently, the measured data will change. We will consider how a change in mea-
surement data affects the result.

12.2.4 Problem characteristics

12.2.4.1 Objective

As with the basic state estimation problem without zero injection buses introduced
in Section 9.2, the objective of Problem (12.9) defined in (12.7) is approximately
quadratic. The objective is continuous and differentiable.

12.2.4.2 Constraints

The constraints g(x) = 0 are approximately linear; however, since they are not ex-
actly linear we cannot use them to eliminate variables to re-write the problem as an

Exercises 461

unconstrained optimization in fewer variables. We must develop techniques to deal
explicitly with the non-linear equality constraints that appear in Problem (12.9).

12.2.4.3 Solvability

The constraints in the problem are consistent with Kirchhoff’s laws and we know
from physical principles that there are solutions to Kirchhoff’s laws. For example,
if the transmission line models have zero values for their shunt elements then we
can construct a feasible point: all voltage angles equal to zero and all voltage mag-
nitudes equal to one. (See Exercise 12.7.) In more realistic systems we also expect
there to be feasible points and a minimizer.

Exercises

Least-cost production

12.1 Show that if xk > 0 then Sk = {0} ∪ [xk, xk] is not convex.

12.2 In this exercise we compare solutions of Problems (12.4) and (12.5).

(i) Suppose that Problems (12.4) and (12.5) have minima and minimizers, respectively.
Show that if each production cost is monotonically increasing, then Problems (12.4)
and (12.5) have the same minima.

(ii) Show that if each production cost is strictly monotonically increasing, then Prob-
lems (12.4) and (12.5) have the same set of minimizers. (Hint: Suppose that a
minimizer x� of Problem (12.5) satisfies D <

∑n
k=1 xk .)

12.3 Let fk : R → R and xk ∈ R++. Suppose that fk(0) = 0 but that:

lim
xk→0+

fk(xk) > 0,

where xk → 0+ means that xk is approaching 0 from positive values. Show that fk is not
convex on [0, xk].

12.4 Show that the matrix Z =
[−1†

I

]
∈ Rn×(n−1) has columns that form a basis for

the null space of the matrix A = −1† ∈ R1×n .

12.5 Recall the discrete-time linear system control problem from Section 4.2. Suppose
that we have a linear time-invariant system with state w(kT) ∈ Rm at time kT satisfy-
ing (4.12):

∀k ∈ Z, w([k + 1]T) = Gw(kT) + hu(kT),

where:

• u(kT) ∈ R is the input for the time interval from time kT to (k + 1)T ,
• G ∈ Rm×m is the state transition matrix, and

462 Case studies of equality-constrained optimization

• h ∈ Rm .

Suppose that at time kT = 0 the plant is in state w(0) ∈ Rm and that we are considering
applying inputs for n intervals from k = 0, . . . , n − 1. Moreover, suppose that there
is a cost associated with applying the input at each time-step and a cost associated with
the state at the end of each time-step. That is, there are functions fk : R × Rm → R,
k = 0, . . . , n − 1, such that the cost of applying input u(kT) during the time interval from
time kT to (k + 1)T and of arriving in state w([k + 1]T) at the end of the interval is
fk(u(kT), w([k + 1]T)).

Formulate the problem of minimizing the sum of the costs of controls and states subject
to the dynamics of the system being specified by (4.12). (This optimal control problem is
called a dynamic programming problem [7, 10][11, section 1.9]. There are systematic
methods to solve such problems involving exploiting the separability of the objective and
structure of the constraints.)

Power system state estimation with zero injection buses

12.6 In this exercise we consider observability.

(i) Show that the power system in Figure 12.5 is unobservable. (Hint: Consider Exer-
cise 11.10.)

(ii) Show that the power system in Figure 12.6 is observable if we consider the zero
injection bus to provide two highly accurate injection measurements.

12.7 Show that the value of x having all voltage magnitudes equal to one and all voltage
angles equal to zero is consistent with the constraints g(x) = 0 of Problem (12.9) in the
case that all the transmission line models have zero values for their shunt elements.

13

Algorithms for linear equality-constrained minimization

In this chapter we will develop algorithms for constrained optimization problems
of the form:

min
x∈�

f (x),

where f : Rn → R and the feasible set S is of the form:

S = {x ∈ R
n|g(x) = 0},

with g : Rn → Rm affine. That is, we will consider problems of the form:

min
x∈�n

{ f (x)|Ax = b}, (13.1)

where A ∈ Rm×n and b ∈ Rm are constants. We call the constraints linear equal-
ity constraints, although, strictly speaking, it would be more precise to refer to
them as affine equality constraints. The feasible set defined by the linear equality
constraints is convex. (See Exercise 2.36.)

In Section 13.1, we will derive optimality conditions for Problem (13.1). Then,
in Section 13.2 we will specialize further to the case where the objective f is con-
vex. That is, we will specialize to convex problems. In Section 13.3, we develop
algorithms for solving these problems based on the optimality conditions. In Sec-
tion 13.4 we will discuss sensitivity analysis. Finally, in Section 13.5, we will apply
the algorithms to the least-cost production case study introduced in Section 12.1.

Our approach will involve combining ideas from Chapter 5 on solving systems of
linear equations with ideas from Chapter 10 on solving unconstrained optimization
problems. The key issues discussed in this chapter are:

• consideration of descent directions for the objective that also maintain feasibil-
ity for the constraints,

• consideration of the null space of the coefficient matrix A to transform the con-
strained problem into an unconstrained problem,

463

464 Algorithms for linear equality-constrained minimization

• optimality conditions and the definition and interpretation of the dual variables
and the Lagrange multipliers,

• optimality conditions for convex problems, and

• duality and sensitivity analysis.

13.1 Optimality conditions

We will first discuss descent directions in Section 13.1.1 and then present first-
order necessary conditions for local optimality in Section 13.1.2. Following this,
we will present second-order sufficient conditions in Section 13.1.3.

13.1.1 Descent directions

13.1.1.1 Conditions for non-minimizer

Analysis Consider a feasible point x̂ that is a candidate solution to Problem (13.1).
By the discussion in Section 5.8.1.2, every feasible point is of the form x̂ + �x
where:

�x ∈ N (A) = {�x ∈ R
n|A�x = 0},

= {Z�ξ |�ξ ∈ R
n′ },

where Z ∈ Rn×n′ , with n′ ≥ n − m, is a matrix with columns that form a basis
for the null space of A. (See Definition A.50.) We discussed ways to find such a
matrix in Section 5.8.1.2.

Now suppose that a vector �x ∈ N (A) happened to also satisfy ∇ f (x̂)
†
�x < 0.

By Lemma 10.1, such a direction is a descent direction for f at x̂ . That is:

∃α ∈ R++ such that (0 < α ≤ α) ⇒ (f (x̂ + α�x) < f (x̂)). (13.2)

We also have that:

∀α ∈ R, A(x̂ + α�x) = b + αA�x,

= b,

so that ∀α ∈ R, x̂ + α�x ∈ S. Combining this observation with (13.2) means that
we can find feasible points that have lower objective than f (x̂), so that x̂ is not a
minimizer. So, if �x ∈ N (A) and ∇ f (x̂)

†
�x < 0 then x̂ cannot be a minimizer.

Example The conditions for a point x̂ to not be a minimizer are illustrated in
Figure 13.1, which repeats the contour plot from Figure 10.3 but also includes a

13.1 Optimality conditions 465

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

Fig. 13.1. Descent direc-
tions for a function at a

point x̂ =
[

3
−3

]
, indi-

cated by the ◦, and one de-
scent direction that main-
tains feasibility for the
equality constraint corre-
sponding to the feasible set
illustrated by the line.

solid line that represents the set of points satisfying the linear equality constraint
Ax = b, where:

A = [
1 1

] ∈ R
1×2,

b = [
0
] ∈ R

1.

The circles centered at x =
[

1
3

]
show the contour sets of the function f : R2 → R

defined in (2.10) and (10.1):

∀x ∈ R
2, f (x) = (x1 − 1)2 + (x2 − 3)2.

The point x̂ =
[

3
−3

]
is indicated by the ◦.

Several descent directions for the function f at x̂ are illustrated by the arrows
in Figure 13.1. One of the descent directions �x is such that ∀α ∈ R, x̂ + α�x ∈
{x ∈ R2|Ax = b}. The corresponding arrow lies along the line representing the
feasible set. In this case, we conclude that x̂ cannot be a minimizer for the problem
minx∈�2{ f (x)|Ax = b}, since proceeding along the direction �x from x̂ maintains
feasibility and, at least for some positive values of α, reduces the objective.

13.1.1.2 Minimizer

Analysis Considering the contrapositive of the statement in Section 13.1.1.1, if x�

is a minimizer of the linear equality-constrained problem, then for any direction
�x ∈ N (A), that is, such that A�x = 0, we must have that ∇ f (x�)†�x 	< 0.

466 Algorithms for linear equality-constrained minimization

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

Fig. 13.2. Descent direc-
tions for a function at a

point x� =
[

3
−3

]
, in-

dicated by the •, none of
which maintains feasibility
for the equality constraint
corresponding to the feasi-
ble set S illustrated by the
line.

Moreover, applying the same argument to the vector (−�x), which is also an ele-
ment of the null space of A, we must have that ∇ f (x�)†(−�x) 	< 0. Combining
these two observations, we have that ∇ f (x�)†�x = 0.

In summary, if x� is a minimizer of the linear equality-constrained problem then
for each �x ∈ N (A) we must have that ∇ f (x�)†�x = 0. That is, N (A) ⊆ {�x ∈
Rn|∇ f (x�)†�x = 0}. We can think of these two sets as being “parallel,” although
in general N (A) may be a strict subset of {�x ∈ Rn|∇ f (x�)†�x = 0}.

Example This situation is illustrated in Figure 13.2, which repeats Figure 10.3
but shows the set of points that satisfy a different linear equality constraint to that
of Figure 13.1. In particular, the solid line indicates the feasible set S = {x ∈
R2|x1 − 3x2 = 12}. The point x� =

[
3

−3

]
, illustrated with a •, is a minimizer of

the problem minx∈�2{ f (x)|x1 − 3x2 = 12}. Descent directions for the function at
the point x� are illustrated by arrows.

For the point x�, none of the descent directions �x for f at x� is such that
x� + α�x ∈ S. The point x� is a minimizer for the problem minx∈�2{ f (x)|x1 −
3x2 = 12}. In particular, there is no direction that simultaneously reduces the
objective and maintains feasibility. The set {�x ∈ Rn|∇ f (x�)†�x = 0} contains
the set N (A). (In fact, for this example, these two sets are the same.)

13.1.1.3 Geometry of contour set

Tangent plane To develop a geometric interpretation of the conditions for a min-
imizer, we first make ([72, section 2.5]):

13.1 Optimality conditions 467

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

x�

P

C f (f �) Fig. 13.3. Tangent plane P

(shown dashed) to contour
set C f (f �) of f (shown
solid) at a point x� =[

3
−3

]
, indicated by the

bullet •.

Definition 13.1 Let f : Rn → R be partially differentiable, x� ∈ Rn , and suppose that
∇ f (x�) 	= 0. Let f � = f (x�). Then the tangent plane to the contour set C f (f �) =
{x ∈ Rn| f (x) = f �} of f at the point x� is the set:

P = {x ∈ R
n|∇ f (x�)

†
(x − x�) = 0}.

For brevity, we will often refer to P as “the tangent plane to the contour set of f at x�.” If
a set S ⊆ Rn is contained in P then we say that “the contour set of f is tangential to S at
x�.” �

The tangent plane to the contour set of f at x� is obtained by linearizing f at
x� and then finding the set of points such that the linearized function is equal to
f � = f (x�). (Some authors refer to the related set {�x ∈ Rn|∇ f (x�)†�x = 0} as
the tangent plane [70, section 10.2].)

Example Consider again the function f : R2 → R defined in (2.10) and (10.1):

∀x ∈ R
2, f (x) = (x1 − 1)2 + (x2 − 3)2,

and the point x� =
[

3
−3

]
. We have that:

∀x ∈ R
2,∇ f (x) =

[
2(x1 − 1)

2(x2 − 3)

]
,

∇ f (x�) =
[

4
−12

]
.

Figure 13.3 shows the contour set, C f (f �), of this function at height f � =

468 Algorithms for linear equality-constrained minimization

f (x�) = 40, as a solid line. The point x� lies on the circular contour set and is
indicated by the •. The tangent plane to the contour set of f at x� is:

P = {x ∈ R
2|∇ f (x�)

†
(x − x�) = 0},

=
{

x ∈ R
2

∣∣∣∣∣
[

4
−12

]† [
x1 − 3
x2 + 3

]
= 0

}
,

= {x ∈ R
2|x1 − 3x2 = 12}.

The tangent plane to the contour set, P, is shown as the dashed line in Figure 13.3.

Example in higher dimension In Rn , the tangent plane is a hyperplane; that is,
a space of dimension n − 1 defined by a single equality constraint. (See Defini-
tion A.52.) For example, consider the objective function f : R3 → R defined
by:

∀x ∈ R
3, f (x) = (x1)

2 + (x2)
2 + (x3)

2, (13.3)

and the point x� =
⎡⎣ 1

1
0

⎤⎦. For this function, we have that:

∀x ∈ R
3,∇ f (x) =

⎡⎣ 2x1

2x2

2x3

⎤⎦ ,

∇ f (x�) =
⎡⎣ 2

2
0

⎤⎦ .

Figure 13.4 shows the contour set, C f (f �), of this function of height f � = f (x�) =
2. The point x� lies on the spherical contour set and is indicated by the •. The tan-
gent plane to the contour set of f at x� is:

P = {x ∈ R
3|∇ f (x�)

†
(x − x�) = 0},

=

⎧⎪⎨⎪⎩x ∈ R
3

∣∣∣∣∣∣∣
⎡⎣ 2

2
0

⎤⎦†⎡⎣ x1 − 1
x2 − 1
x3 − 0

⎤⎦ = 0

⎫⎪⎬⎪⎭ ,

= {x ∈ R
3|x1 + x2 = 2}.

The tangent plane to the contour set P, is shown as the plane in Figure 13.4. De-
scent directions for f at x� point from x� into the sphere.

13.1 Optimality conditions 469

2

1

0

1

2

2

1

0

1

2

2

1 5

1

0 5

0

0 5

1

1 5

2

x1
x2

x3

P

C f (f �)

Fig. 13.4. Tangent plane P

to contour set C f (f �) of f

at a point x� =
[

1
1
0

]
, indi-

cated by the •. The contour
set is the sphere and the
tangent plane is the plane.

13.1.1.4 Geometric interpretation

Analysis In Section 13.1.1.2, we showed that if x� is a constrained minimizer of
f then:

N (A) ⊆ {�x ∈ R
n|∇ f (x�)

†
�x = 0}.

Translating both of these sets by adding x� to every element in both sets and noting
that Ax� = b, we have that:

S = {x ∈ R
n|Ax = b},

= {x ∈ R
n|x = x� + �x,�x ∈ N (A)}, since Ax� = b, (see Exercise 13.1),

⊆ {x ∈ R
n|x = x� + �x,∇ f (x�)

†
�x = 0},

since x� is a constrained minimizer of f ,

= {x ∈ R
n|∇ f (x�)

†
(x − x�) = 0},

= P,

which is the tangent plane to the contour set of f at x�. Geometrically, we can say
that the feasible set, S = {x ∈ Rn|Ax = b}, is contained in the set P, which is the
tangent plane to the contour set of f at x�. More simply, using Definition 13.1, we
can also say that the contour set of f is tangential to the feasible set at x�. This
observation is consistent with Figures 13.2 and 13.3.

To see why the inclusion of sets S ⊆ P is necessary for x� to be a minimizer, we
can repeat the argument from Section 13.1.1.2. In particular, suppose that there is
some point x̂ ∈ S that lies outside P. That is, ∇ f (x�)†(x̂−x�) 	= 0. If ∇ f (x�)†(x̂−
x�) < 0 then define �x = x̂ − x�. On the other hand, if ∇ f (x�)†(x̂ − x�) > 0
then define �x = x� − x̂ . In either case, ∇ f (x�)†�x < 0 and so �x is a descent
direction for f at x� by Lemma 10.1. Moreover, x� + α�x is feasible for any α

and x� is therefore not a minimizer.

470 Algorithms for linear equality-constrained minimization

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

Fig. 13.5. Descent direc-
tions for a function at a

point x� =
[

2
2

]
, (indi-

cated by the •), none of
which maintains feasibility
for the equality constraint
illustrated by the line.

Example Recall the example equality-constrained Problem (2.13) first mentioned
in Section 2.3.2.2:

min
x∈�2

{ f (x)|Ax = b},

where f : R2 → R, A ∈ R1×2, and b ∈ R1 were defined by:

∀x ∈ R
2, f (x) = (x1 − 1)2 + (x2 − 3)2,

A = [
1 −1

]
,

b = [
0
]
.

The (unique) local minimizer is at x� =
[

2
2

]
with minimum f � = 2.

The tangent plane to the contour set of f at x� is:

P = {x ∈ R
2|∇ f (x�)

†
(x − x�) = 0},

=
{

x ∈ R
2

∣∣∣∣∣
[

2
−2

]† (
x −

[
2
2

])
= 0

}
,

= {x ∈ R
2|x1 − x2 = 0},

which is the same set as the feasible set.

The situation is illustrated in Figure 13.5, which shows the point x� =
[

2
2

]
as a

•, together with the circular contour sets of the objective, several descent directions
for the objective, and the feasible set. There is no descent direction for f at x� that

13.1 Optimality conditions 471

maintains feasibility of the constraints. The contour set of f is tangential to the
feasible set at x�. (In fact, the contour set of f is coincident with the feasible set.)

Example of strict containment In the previous example, the feasible set was the
same as the tangent plane to the contour set. In higher dimensions, it can typically
be the case that the feasible set S = {x ∈ Rn|Ax = b} is strictly contained in
P = {x ∈ Rn|∇ f (x�)†(x − x�) = 0}. For example, consider again the objective
function f : R3 → R defined in (13.3):

∀x ∈ R
3, f (x) = (x1)

2 + (x2)
2 + (x3)

2.

Moreover, suppose that the equality constraints Ax = b are defined by:

A =
[

1 0 0
0 1 0

]
,

b = 1.

The constraints specify that x1 = x2 = 1, so that the feasible set is the line in R3

that is parallel to the x3-axis and that passes through x1 = x2 = 1. By inspection,

the minimizer of minx∈�3{ f (x)|Ax = b} is x� =
⎡⎣ 1

1
0

⎤⎦.

In this case:

S = {x ∈ R
n|Ax = b},

= {x ∈ R
n|x1 = x2 = 1},

P = {x ∈ R
n|∇ f (x�)

†
(x − x�) = 0},

=
⎧⎨⎩x ∈ R

n

∣∣∣∣∣∣[2 2 0
]⎛⎝x −

⎡⎣ 1
1
0

⎤⎦⎞⎠ = 0

⎫⎬⎭ ,

= {x ∈ R
n|x1 + x2 = 2}.

That is, the tangent plane to the contour set of f at x� is a plane, P, in R3, which
strictly contains the feasible set S, which is a line. The situation is illustrated in
Figure 13.6, which repeats Figure 13.4 but adds a line that represents S. Recall that
descent directions for f at x� point into the sphere. That is, no descent directions
point along the feasible set S.

13.1.1.5 Summary

In summary, at a minimizer x� of Problem (13.1), every descent direction for f
at x� must lie outside the null space of A. Every point in the null space must not
be a descent direction. Translating these sets, we observe that, at a minimizer, the

472 Algorithms for linear equality-constrained minimization

2

1

0

1

2

2

1

0

1

2

2

1 5

1

0 5

0

0 5

1

1 5

2

x1
x2

x3

P

S

C f (f �)

Fig. 13.6. Feasible set S

that is strictly contained in
the tangent plane P to the
contour set C f (f �) of f at

a point x� =
[

1
1
0

]
, indi-

cated by the •. The contour
set is the sphere; the tan-
gent plane is the plane; and
the feasible set is the verti-
cal line.

contour set of f is tangential to the feasible set. In the next section we will develop
these geometric insights into tractable analytic conditions.

13.1.2 First-order necessary conditions

The discussion in Section 13.1.1 developed necessary conditions in terms of inclu-
sions of sets that were defined in terms of the first derivative of f . In this section,
we will develop algebraic conditions in terms of the first derivative of f . Such
algebraic conditions are called first-order necessary conditions. As in the uncon-
strained case, the conditions are sometimes referred to by their acronym FONC.

Our approach to developing first-order necessary conditions will first involve a
transformation of the problem defined in terms of the null space of A that parallels
the discussion in Section 13.1.1. Then, the necessary conditions will be character-
ized in two other ways in terms of the variables in the original problem.

13.1.2.1 Transformation of problem

Following the discussion in Section 13.1.1, let Z ∈ Rn×n′ , with n′ ≥ n − m, be a
matrix with columns that form a basis for the null space of A. As discussed above,
the null space of A is specified by:

N (A) = {�x ∈ R
n|A�x = 0},

= {Z�ξ |�ξ ∈ R
n′ }.

This allows us to eliminate variables by expressing the vectors in the feasible set
in terms of a particular solution to Ax = b and an arbitrary vector in Rn′ . Suppose

13.1 Optimality conditions 473

that x̂ ∈ Rn is a particular solution to Ax = b. Then (see Exercise 13.1):

S = {x ∈ R
n|Ax = b},

= {x ∈ R
n|x = x̂ + �x, A�x = 0, �x ∈ R

n},
= {x̂ + Z�ξ |�ξ ∈ R

n′ }.
That is, we can define an onto function τ : Rn′ → S by:

∀ξ ∈ R
n′, τ (ξ) = x̂ + Zξ.

(See Definition A.25 of an onto function.) Notice that varying ξ over Rn′ allows
τ(ξ) to explore over the feasible set S. Formally, we use Theorem 3.5 to trans-
form the equality-constrained Problem (13.1) into an unconstrained problem. In
particular, in the hypothesis of Theorem 3.5, let P = Rn′ and define φ : Rn′ → R

by:

∀ξ ∈ R
n′, φ(ξ) = f (τ (ξ)). (13.4)

The function φ is called the reduced function [84, section 14.2]. By Theorem 3.5:

(i) minx∈�n { f (x)|Ax = b} has a minimum if and only if minξ∈�n′ φ(ξ) has a
minimum; and

(ii) if either one of the problems in Item (i) possesses a minimum (and conse-
quently, by Item (i), each one possesses a minimum), then:

min
ξ∈�n′

φ(ξ) = min
x∈�

f (x),

argmin
x∈�n

{ f (x)|Ax = b} =
{
τ(ξ)

∣∣∣∣ξ ∈ argmin
ξ∈�n′

φ(ξ)

}
.

Since minξ∈�n′ φ(ξ) is an unconstrained problem, we can use the techniques from
Chapter 10 to write down optimality conditions for it. We can solve these opti-
mality conditions in terms of ξ and then find the corresponding value of x in the
original problem.

The gradient of φ, ∇φ(•) = Z †∇ f (τ (•)), is called the reduced gradient or the
projected gradient [84, section 14.2]. The transformation into an unconstrained
problem leads us to a class of algorithms for solving Problem (13.1) using the
reduced gradient that will be presented in Sections 13.3.1.2 and 13.3.2.2.

We now consider the direction corresponding to the reduced gradient in the
original decision variables x ∈ Rn . Referred to the original decision variables
x , the reduced gradient ∇φ corresponding to a point x̂ ∈ Rn lies in the direction
Z Z†∇ f (x̂) ∈ Rn . The vector �x = −Z Z†∇ f (x̂), which is opposite to the direc-
tion corresponding to the reduced gradient, is a descent direction for f at x̂ unless
the reduced gradient equals the zero vector. Moreover, if Ax̂ = b then, for any α,
x̂ + α�x also satisfies the equality constraints. (See Exercise 13.2.)

474 Algorithms for linear equality-constrained minimization

13.1.2.2 Necessary conditions in terms of original problem

Analysis Instead of forming the function τ explicitly and introducing the variables
ξ each time we want to solve Problem (13.1), we can write down the necessary
conditions in terms of the variables x in Problem (13.1). We will develop this
approach in the next theorem. The proof essentially repeats the above discussion.

Theorem 13.1 Suppose that f : Rn → R is partially differentiable with continuous
partial derivatives, A ∈ Rm×n, and b ∈ Rm. Let Z ∈ Rn×n′ be a matrix with columns
that form a basis for the null space of A. If x� ∈ Rn is a local minimizer of the problem:

min
x∈�n

{ f (x)|Ax = b},

then:

Z†∇ f (x�) = 0, (13.5)

Ax� = b.

Proof See Appendix B for details. �

Example Continuing with the previous equality-constrained Problem (2.13) from

Sections 2.3.2.2 and 13.1.1.4, we observe that, by inspection, Z =
[

1
1

]
∈ R2×1 is

a matrix with columns that form a basis for the null space:

N (A) = {�x ∈ R
n|A�x = 0},

since:

• A�x = 0 if and only if �x1 = �x2, and

• for ξ ∈ R, Zξ =
[

ξ

ξ

]
.

Also:

∀x ∈ R
2,∇ f (x) =

[
2(x1 − 1)

2(x2 − 3)

]
,

∇ f (x�) =
[

2
−2

]
,

13.1 Optimality conditions 475

so that x� =
[

2
2

]
is not an unconstrained minimizer of f . Using these calcula-

tions, we obtain:

Z †∇ f (x�) = [
1 1

] [2
−2

]
,

= [0],

consistent with the conclusion of Theorem 13.1.

13.1.2.3 Lagrange multipliers

Analysis We can characterize the necessary conditions slightly differently in terms
of a vector λ� ∈ Rm called the vector of Lagrange multipliers with the following.

Theorem 13.2 Suppose that f : Rn → R is partially differentiable with continuous
partial derivatives, A ∈ Rm×n, and b ∈ Rm. If x� ∈ Rn is a local minimizer of the
problem:

min
x∈�n

{ f (x)|Ax = b},

then:

∃λ� ∈ R
m such that ∇ f (x�) + A†λ� = 0, (13.6)

Ax� = b. (13.7)

Proof ([84, section 14.2].) By Theorem 13.1:

Z†∇ f (x�) = 0, (13.8)

Ax� = b,

where Z ∈ Rn×n′ is a matrix with columns that form a basis for the null space of A. By
Theorem A.4 in Appendix A and Exercise 5.47, any vector in Rn can be written in the
form Zξ − A†λ for some ξ ∈ Rn′ and λ ∈ Rm . In particular, since ∇ f (x�) ∈ Rn , we
have:

∃ξ� ∈ R
n′ , ∃λ� ∈ R

m such that ∇ f (x�) = Zξ� − A†λ�.

Multiplying this expression through by Z† we obtain:

Z†∇ f (x�) = Z†Zξ� − Z† A†λ�.

But Z†∇ f (x�) = 0 by (13.8), so:

Z†Zξ� − Z† A†λ� = 0.

Also AZ = 0 by Exercise 5.48, so Z† A†λ� = 0 and Z†Zξ� = 0. But this means that
ξ� = 0 since Z has linearly independent columns. (See Exercise 2.27.) That is,

∃λ� ∈ R
m such that ∇ f (x�) + A†λ� = 0,

which is (13.6). We already have that Ax� = b, which is (13.7). �

476 Algorithms for linear equality-constrained minimization

A vector λ� satisfying (13.6), given an x� that also satisfies (13.7), is called a vector
of Lagrange multipliers for the problem. The conditions (13.6)–(13.7) are called
the first-order necessary conditions (or FONC) for Problem (13.1), although,
strictly speaking, the first-order necessary conditions also include the rest of the
hypotheses of Theorem 13.2.

Example Continuing with the previous equality-constrained Problem (2.13) from
Sections 2.3.2.2, 13.1.1.4, and 13.1.2.2 we obtain:

∇ f (x�) + A†[−2] =
[

2
−2

]
+
[

1
−1

]
[−2],

= 0,

which is consistent with Theorem 13.2 for λ� = [−2].

13.1.2.4 Analytic interpretation

The necessary conditions in Theorems 13.1 and 13.2 are rather abstract. We will
offer two analytic interpretations in terms of the Lagrangian to help understand the
conditions and then illustrate with an example.

The Lagrangian Recall Definition 3.2 of the Lagrangian. For a problem with
objective f : Rn → R and equality constraints Ax = b, with A ∈ Rm×n and
b ∈ Rm , the Lagrangian L : Rn × Rm → R is defined by:

∀x ∈ R
n, ∀λ ∈ R

m,L(x, λ) = f (x) + λ†(Ax − b), (13.9)

where λ is called the vector of dual variables for the problem.
In the context of the Lagrangian and the dual variables, we call x ∈ Rn the pri-

mal variables. The optimal value of the primal variables is the minimizer x�. The
Lagrange multipliers λ� are the particular value of the dual variables that satisfy
the first-order necessary conditions.

We also define the gradients of L with respect to x and λ by, respectively, ∇xL =[
∂L
∂x

]†

and ∇λL =
[

∂L
∂λ

]†

. That is:

∇xL(x, λ) = ∇ f (x) + A†λ,

∇λL(x, λ) = Ax − b.

We can interpret the first-order necessary conditions (13.6)–(13.7) in two ways
using the Lagrangian L:

13.1 Optimality conditions 477

Minimization of Lagrangian over primal variables The first-order necessary con-
ditions imply that x� is a critical point of the function L(•, λ�) that also satisfies
the constraints Ax = b. If f is convex then, by Corollary 10.6, x� is a global
minimizer of L(•, λ�) minimized as a function of x for fixed λ = λ�. We seek a
point x� that minimizes L(•, λ�).

To interpret this observation, first recall that for an unconstrained problem, The-
orem 10.3 shows that if x� is a local minimizer of partially differentiable f having
continuous partial derivatives then ∇ f (x�) = 0. Moving away from x� cannot
improve the objective, at least for small enough movements.

In the constrained case, however, if x� is a local minimizer of Problem (13.1),
then by Theorem 13.2, there exists λ� ∈ Rm such that ∇ f (x�)+ A†λ� = 0. If λ� 	=
0 then we expect that∇ f (x�) 	= 0, as confirmed by the example in Section 13.1.2.2.
We could improve the objective by moving away from x�; however, such a move
would violate the constraints. The vector of Lagrange multipliers λ� “adjusts”
the unconstrained optimality conditions by A†λ� and this adjustment is just the
right amount to “balance” the minimization of the objective against satisfaction
of the constraints. For some problems this allows us to solve an unconstrained
optimization problem to find x�, so that the equality constraints do not have to be
treated explicitly.

Critical point of the Lagrangian The first-order necessary conditions also imply

that

[
x�

λ�

]
is a solution of the non-linear simultaneous equations:

∇xL(x, λ) = 0, (13.10)

∇λL(x, λ) = 0. (13.11)

The second set of equations requires that x� be feasible and are linear equations.

We seek

[
x�

λ�

]
satisfying ∇L(x�, λ�) = 0, where ∇L =

[∇xL
∇λL

]
. That is,

[
x�

λ�

]
is

a critical point of L; however,

[
x�

λ�

]
is not a minimizer of L(•, •) over values of[

x
λ

]
. (See Exercise 13.6.)

The Lagrangian provides a convenient way to remember the first-order necessary
conditions since setting the gradient∇L of the Lagrangian equal to zero reproduces
the first-order necessary conditions as in (13.10)–(13.11).

Algorithms As in the unconstrained case, these two interpretations lead us to two
(of several) classes of algorithms for solving Problem (13.1):

478 Algorithms for linear equality-constrained minimization

(i) minimize the Lagrangian over x for a fixed λ and then adjust λ until feasi-
bility is obtained, (Sections 13.3.1.4 and 13.3.2.4), and

(ii) solve the first-order necessary conditions (13.10)–(13.11) for x and λ, (Sec-
tions 13.3.1.3 and 13.3.2.3).

Example Continuing with the previous equality-constrained Problem (2.13) from
Sections 2.3.2.2, 13.1.1.4,. . . , 13.1.2.3, the Lagrangian L : R2 ×R → R is defined
by:

∀x ∈ R
2, ∀λ ∈ R,L(x, λ) = (x1 − 1)2 + (x2 − 3)2 + λ(x1 − x2). (13.12)

Setting the value of the dual variable in the Lagrangian equal to the Lagrange mul-
tiplier, λ� = [−2], we have:

∀x ∈ R
2,L(x, λ�) = (x1 − 1)2 + (x2 − 3)2 + (−2)(x1 − x2).

The first-order necessary conditions for minimizing L(•, λ�) are:

∇xL(x, λ�) =
[

2(x1 − 1) − 2
2(x2 − 3) + 2

]
,

= 0,

which yields a solution of x� =
[

2
2

]
. The contour sets of L(•, λ�) are shown

in Figure 13.7, confirming that the unconstrained minimizer of L(•, λ�) is at x�,

which is illustrated by a • in Figure 13.7. Although

[
x�

λ�

]
is a critical point of L,

it does not minimize L as shown in Exercise 13.6.
For other values of the dual variables λ not equal to the Lagrange multipliers

λ�, the corresponding minimizer of L(•, λ) will differ from the minimizer of Prob-
lem (2.13). For example, for λ̃ = [−5], the contour sets of L(•, λ̃) are illustrated

in Figure 13.8. The unconstrained minimizer of this function is at x̃ =
[

3.5
0.5

]
,

illustrated with a ◦ in Figure 13.8, which differs from x�. The point

[
x̃
λ̃

]
satis-

fies (13.10), but does not satisfy (13.11).

13.1.2.5 Relation to geometric interpretation

To see that the first-order necessary conditions imply the geometric observation
made in Section 13.1.1, suppose that x̂ ∈ Rn satisfies:

x̂ ∈ S = {x ∈ R
n|Ax = b}.

13.1 Optimality conditions 479

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

Fig. 13.7. Contour sets for
LagrangianL(•, λ�) evalu-
ated at the Lagrange multi-
pliers λ� = [−2].

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

Fig. 13.8. Contour sets for
Lagrangian L(•, λ̃) evalu-
ated at value of dual vari-
ables λ̃ = [−5] not equal
to Lagrange multiplers.

Then A(x̂ − x�) = 0 and so [λ�]† A(x̂ − x�) = 0. The necessary conditions require
that ∇ f (x�)† + [λ�]† A = 0. Multiplying by (x̂ − x�) on the right we obtain:

0 =
(
∇ f (x�)

† + [λ�]† A
)

(x̂ − x�),

= ∇ f (x�)
†
(x̂ − x�).

Therefore:

x̂ ∈ P = {x ∈ R
n|∇ f (x�)

†
(x − x�) = 0}.

480 Algorithms for linear equality-constrained minimization

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

Fig. 13.9. Contour sets for
non-convex objective. The
objective decreases away
from x̂ = 0.

As we observed in Section 13.1.1, we can say that S and P are “parallel,” although
it may be the case that S is strictly contained in P. Moreover, the contour set of f
is tangential to the feasible set S at x�.

13.1.2.6 First-order necessary conditions are not sufficient

Discussion As with unconstrained problems, it is possible for a point x̂ to satisfy
the first-order necessary conditions (13.6)–(13.7) and yet not be a local minimizer
of Problem (13.1).

Example For example, consider the case of Problem (13.1) with n = 2 and m = 1
and:

∀x ∈ R
2, f (x) = −1

2
(x1)

2 − 1

2
(x2)

2,

A = [
1 −1

]
,

b = [0].

That is, the problem is minx∈�2{ f (x)|x1 − x2 = 0}. The contour sets of f are
illustrated in Figure 13.9. The contour sets of f are circular, with center at x̂ = 0.
The point x̂ = 0 is illustrated with a ◦. The objective decreases away from x̂ = 0
and the arrows indicate various descent directions for f at x̂ , including two that
lie along the feasible set, which is illustrated with a line. That is, x̂ cannot be a
minimizer of the problem.

However, the point x̂ = 0 satisfies the first-order necessary conditions (13.6)–

13.1 Optimality conditions 481

(13.7) with λ̂ = [0] since:

∇ f (x̂) + A†λ̂ = −x̂ +
[

1
−1

]
λ̂,

= 0 +
[

1
−1

]
0,

= 0,

Ax̂ = A0,

= [0],

= b.

That is, x̂ = 0 and λ̂ = [0] satisfy the first-order necessary conditions for Prob-
lem (13.1), but x̂ = 0 is not a minimizer of this problem. In fact, it is a maximizer
of f over the feasible set. Similarly, a point of inflection could satisfy the neces-
sary conditions for Problem (13.1) and be neither a maximizer nor a minimizer of
the problem. In the next section we discuss sufficient conditions for a minimizer.

13.1.3 Second-order sufficient conditions

We present second-order sufficient conditions (or SOSC) for local optimality,
first in terms of a basis for the null space of the coefficient matrix and then in terms
of the Lagrange multipliers.

13.1.3.1 Null space basis

Analysis We have the following conditions in terms of a basis for the null space.

Theorem 13.3 Suppose that f : Rn → R is twice partially differentiable with continuous
second partial derivatives, A ∈ Rm×n, and b ∈ Rm. Let Z ∈ Rn×n′ be a matrix with
columns that form a basis for the null space of A. Let x� ∈ Rn and suppose that:

Z†∇ f (x�) = 0,

Ax� = b,

Z†∇2f (x�)Z is positive definite.

Then x� ∈ Rn is a strict local minimizer of the problem minx∈�n { f (x)|Ax = b}.

Proof See [84, lemma 14.2, section 14.2]. The conditions follow from the second-
order sufficient conditions presented in Theorem 10.5 for unconstrained minimization
applied to the problem of minimizing the reduced function φ : Rn′ → R defined
in (13.4):

∀ξ ∈ R
n′ , φ(ξ) = f (τ (ξ)).

�

482 Algorithms for linear equality-constrained minimization

In addition to the first-order necessary conditions, the second-order sufficient
conditions require that Z†∇2f (x�)Z is positive definite. The condition that the
matrix Z†∇2f (x�)Z is positive definite means that along any direction �x = Zξ

in the null space N (A) = {�x ∈ Rn|A�x = 0}, if �x 	= 0 then �x†∇2f (x�)�x >

0. The function ∇2φ is called the reduced Hessian [84, section 14.2] and the
condition requires that the reduced Hessian is positive definite at the minimizer.

Example Continuing with the previous equality-constrained Problem (2.13) from

Sections 2.3.2.2, 13.1.1.4,. . . , 13.1.2.4, we have already verified that x� =
[

2
2

]
and λ� = [−2] satisfy the first-order necessary conditions. We have:

∀x ∈ R
2,∇2f (x) =

[
2 0
0 2

]
,

Z †∇2f (x�)Z = [
1 1

] [2 0
0 2

] [
1
1

]
,

= [4],

which is positive definite. Applying Theorem 13.3, we conclude that x� is a local
minimizer of Problem (2.13).

13.1.3.2 Lagrange multipliers

Analysis As previously, we can also develop second-order sufficient conditions in
terms of Lagrange multipliers.

Corollary 13.4 Suppose that f : Rn → R is twice partially differentiable with continuous
second partial derivatives, A ∈ Rm×n, and b ∈ Rm. Let x� ∈ Rn and λ� ∈ Rm satisfy:

∇ f (x�) + A†λ� = 0,

Ax� = b,

(A�x = 0 and �x 	= 0) ⇒ (�x†∇2f (x�)�x > 0).

Then x� ∈ Rn is a local minimizer of the problem minx∈�n { f (x)|Ax = b}.

Proof The hypotheses of this corollary imply the hypotheses of Theorem 13.3. (See
Exercise 13.7.) �

We refer to the conditions in Corollary 13.4 as the second-order sufficient con-
ditions (or SOSC). In addition to the first-order necessary conditions, the second-
order sufficient conditions require that f is twice partially differentiable with con-
tinuous second partial derivatives and that:

(A�x = 0 and �x 	= 0) ⇒ (�x†∇2f (x�)�x > 0).

13.2 Convex problems 483

This condition on ∇2f (x�) is referred to by saying that ∇2f (x�) is positive definite
on the null space N (A) = {�x ∈ Rn|A�x = 0}. (See Definition A.60.) See [70,
section 10.6][79, section 4.B] and Exercise A.18 for tests to determine if a matrix
is positive definite on a null space.

Example Continuing with the previous equality-constrained Problem (2.13) from

Sections 2.3.2.2, 13.1.1.4,. . . , 13.1.3.1, we have already verified that x� =
[

2
2

]
and λ� = [−2] satisfy the first-order necessary conditions. We have that:

∇2f (x�) =
[

2 0
0 2

]
,

which is positive definite on R2 and, in particular, on the null spaceN (A) = {�x ∈
Rn|A�x = 0}. Applying Corollary 13.4, we conclude that x� is a local minimizer
of Problem (2.13). In this example, ∇2f (x�) is positive definite and it is therefore
positive definite on the null space N (A). Exercise 13.8 shows an example where at
the minimizer x� the Hessian ∇2f (x�) is not positive definite, even though ∇2f (x�)

is positive definite on the null space N (A).

13.2 Convex problems

The convexity of the constraint set in the case of linear constraints allows us to ob-
tain global optimality results for linear equality-constrained problems with convex
objectives.

13.2.1 First-order sufficient conditions

13.2.1.1 Analysis

As in the unconstrained case, when we specialize to convex problems, we find that
the first-order necessary conditions are also sufficient for optimality.

Theorem 13.5 Suppose that f : Rn → R is partially differentiable with continuous
partial derivatives, A ∈ Rm×n, and b ∈ Rm. Consider points x� ∈ Rn and λ� ∈ Rm.
Suppose that:

(i) f is convex on {x ∈ Rn|Ax = b},
(ii) ∇ f (x�) + A†λ� = 0, and

(iii) Ax� = b.

Then x� is a global minimizer of the problem minx∈�n { f (x)|Ax = b}.

484 Algorithms for linear equality-constrained minimization

Proof Consider any feasible point x ∈ {x ∈ Rn|Ax = b}. We have:

f (x) ≥ f (x�) +∇ f (x�)
†
(x − x�), by Theorem 2.6, noting that:

f is partially differentiable with continuous partial derivatives;

f is convex on the convex set {x ∈ Rn|Ax = b},
by Item (i) of the hypothesis; and

x, x� ∈ {x ∈ Rn|Ax = b},
by Item (iii) of the hypothesis and construction,

= f (x�) − [λ�]† A(x − x�), by Item (ii) of the hypothesis,

= f (x�), since Ax = Ax� by Item (iii) of the hypothesis and construction.

Therefore x� is a global minimizer of f on {x ∈ Rn|Ax = b}. �

Corollary 13.6 Suppose that f : Rn → R is partially differentiable with continuous
partial derivatives, A ∈ Rm×n, and b ∈ Rm. Let Z ∈ Rn×n′ have columns that form a
basis for the null space {�x ∈ Rn|A�x = 0}. Consider a point x� ∈ Rn. Suppose that:

(i) f is convex on {x ∈ Rn|Ax = b},
(ii) Z†∇ f (x�) = 0, and
(iii) Ax� = b.

Then x� is a global minimizer of the problem minx∈�n { f (x)|Ax = b}.

Proof Items (i) and (iii) of the hypothesis of this corollary are the same as the corre-
sponding Items (i) and (iii) of the hypothesis of Theorem 13.5.
Item (ii) of the hypothesis of this corollary says that Z†∇ f (x�) = 0. In the proof of
Theorem 13.2, it was proven that:

(Z†∇ f (x�) = 0) ⇒ (∃λ� ∈ R
m such that ∇ f (x�) + A†λ� = 0).

That is, Item (ii) of the hypothesis of Theorem 13.5 holds. Therefore, the result then
follows from Theorem 13.5. �

13.2.1.2 Example

Continuing with the previous equality-constrained Problem (2.13) from Sections

2.3.2.2, 13.1.1.4,. . . , 13.1.3.2, we have already verified that x� =
[

2
2

]
and λ� =

[−2] satisfy the first-order necessary conditions. Moreover, f is convex. By The-
orem 13.5, this means that x� is a global minimizer of Problem (2.13).

13.2.2 Duality

The discussion in Section 13.1.2.4 suggests that if we knew the vector of Lagrange
multipliers λ� we could avoid explicit consideration of the equality constraints if
f were convex. Here we discuss one method to find the Lagrange multipliers and

13.2 Convex problems 485

indicate some of the issues that arise. In particular, we will see that we generally
require strict convexity of f to yield useful results.

13.2.2.1 Dual function

Analysis As we discussed in Section 3.4, we can define a dual problem where the
role of variables and constraints is partly or fully swapped [84, chapter 6]. We have
observed in Section 13.1.2.4 that if f is convex then x� is a global minimizer of
L(•, λ�) over values of x .

Recall Definition 3.3 of the dual function and effective domain. For Prob-
lem (13.1), the dual function D : Rm → R ∪ {−∞} is defined by:

∀λ ∈ R
m,D(λ) = inf

x∈�n
L(x, λ), (13.13)

while the effective domain is:

E = {λ ∈ R
m |D(λ) > −∞},

so that the restriction of D to E is a function D : E → R.

Example Continuing with the previous equality-constrained Problem (2.13) from
Sections 2.3.2.2, 13.1.1.4, . . . , 13.2.1.2, the Lagrangian L : R2 × R → R was
defined in (13.12):

∀x ∈ R
2, ∀λ ∈ R,L(x, λ) = (x1 − 1)2 + (x2 − 3)2 + λ(x1 − x2).

The dual function evaluates the infimum of this function over x ∈ R2 for a given
λ. That is, by (13.13),

∀λ ∈ R,D(λ) = inf
x∈�2

L(x, λ),

= inf
x∈�2

{(x1 − 1)2 + (x2 − 3)2 + λ(x1 − x2)}.

For each λ ∈ R, the objective L(•, λ) in the infimum is partially differentiable
with continuous partial derivatives and is strictly convex, so by Corollary 10.6 the
first-order necessary conditions for minimizing L(•, λ) are sufficient for global
optimality.

The first-order necessary conditions for minimizing L(•, λ) are that:

∇xL(x, λ) =
[

2(x1 − 1) + λ

2(x2 − 3) − λ

]
,

= 0,

which, for any given λ ∈ R, yields the unique solution of x (λ) =
[

1 − λ/2
3 + λ/2

]
.

486 Algorithms for linear equality-constrained minimization

Substituting into the Lagrangian L, we obtain:

∀λ ∈ R,D(λ) =
(

1 − λ

2
− 1

)2

+
(

3 + λ

2
− 3

)2

+ λ

(
1 − λ

2
− 3 − λ

2

)
,

= −(λ)2

2
− 2λ. (13.14)

That is, we have evaluated the dual function explicitly.

13.2.2.2 Dual problem

Analysis In the case that the objective is convex on Rn , if Problem (13.1) has a
minimum then the minimum is equal to D(λ�), where λ� is the vector of Lagrange
multipliers that satisfies the necessary conditions for Problem (13.1). Moreover, the
Lagrange multipliers maximize, over the dual variables λ, the following problem:

max
λ∈�

D(λ), (13.15)

where D : E → R is the dual function defined in (13.13). Problem (13.15) is
called the dual problem to Problem (13.1). Problem (13.1) is called the primal
problem in this context to distinguish it from Problem (13.15).

In particular, we have the following.

Theorem 13.7 Suppose that f : Rn → R is convex and partially differentiable with
continuous partial derivatives, A ∈ Rm×n, and b ∈ Rm. Consider the primal problem,
Problem (13.1):

min
x∈�n

{ f (x)|Ax = b}.

Also, consider the dual problem, Problem (13.15). We have the following.

(i) If the primal problem possesses a minimum then the dual problem possesses a
maximum and the optima are equal. That is:

min
x∈�n

{ f (x)|Ax = b} = max
λ∈�

D(λ). (13.16)

(ii) If:

• λ ∈ E,
• minx∈�n L(x, λ) exists, and
• f is twice partially differentiable with continuous second partial derivatives

and ∇2f is positive definite,

then D is partially differentiable at λ with continuous partial derivatives and

∇D(λ) = Ax (λ) − b, (13.17)

where x (λ) is the unique minimizer of minx∈�n L(x, λ).

13.2 Convex problems 487

Proof See [6, theorems 6.2.4 and 6.3.3][11, proposition 3.4.3][70, lemma 1 of chap-
ter 13][84, corollaries 6.1 and 14.2] and (for Item (ii)) Exercise 10.19. This is a special
case of Theorem 17.4 to be presented in Chapter 17. �

It is important to note that for some λ ∈ Rm it is possible for:

• infx∈�n L(x, λ) to be a real number, so that λ ∈ E, yet for there to be no mini-
mum of minx∈�n L(x, λ), or

• ∇2f to fail to be positive definite so that there are multiple minimizers of the
problem minx∈�n L(x, λ).

In either case, the dual function D may be non-differentiable at λ ∈ E. See Exer-
cises 13.10 and 13.11.

Recall from Theorem 3.12 that the effective domain E of the dual function is a
convex set and that the dual function is concave on E.

Corollary 13.8 Let f : Rn → R be twice partially differentiable with continuous second
partial derivatives and with ∇2f positive definite, A ∈ Rm×n, and b ∈ Rm. Let E be the
effective domain of the dual function.
If:

• E = Rm, and
• ∀λ ∈ Rm, minx∈�n L(x, λ) exists,

then necessary and sufficient conditions for λ� ∈ Rm to be the maximizer of the dual
function are that:

Ax (λ�) − b = 0,

where {x (λ�)} = argminx∈�n L(x, λ�). Moreover, if λ� maximizes the dual function then
x (λ�) and λ� satisfy the first-order necessary conditions for Problem (13.1).

Proof Note that the hypothesis implies that the dual function is finite for all λ ∈ Rm

so that Problem (13.15) is an unconstrained maximization of a real-valued function and,
moreover, by Theorem 3.12, −D is convex and partially differentiable with continuous
partial derivatives. By Theorem 10.3 and Corollary 10.6, ∇D(λ) = 0 is necessary and
sufficient for λ to be a global maximizer ofD. By Theorem 13.7, ∇D(λ) = Ax (λ)−b, so
the necessary and sufficient conditions for maximizing the dual are that Ax (λ) − b = 0.
Direct substitution shows that x (λ�) and λ� satisfy the first-order necessary conditions
for Problem (13.1). �

Theorem 13.7 shows that an alternative approach to finding the minimum of
Problem (13.1) involves finding the maximum of the dual function over λ ∈ Rm .
Theorem 3.12 shows that the dual function has at most one local maximum, with
necessary and sufficient conditions for the maximizer specified in Corollary 13.8.
To seek the maximum of D(λ), we can, for example, utilize the value of the partial
derivative of D from (13.17) in a steepest ascent algorithm. Under some cir-
cumstances, it is also possible to calculate the second partial derivatives of D to

488 Algorithms for linear equality-constrained minimization

implement a Newton–Raphson algorithm [70, section 12.3]; however, it is more
usual to use steepest ascent or a quasi-Newton method to seek a maximizer of the
dual problem.

The results in Theorem 13.7 and Corollary 13.8 can be sharpened in some
cases. See [6, theorems 6.2.4 and 6.3.3][11, proposition 3.4.3][84, corollaries 6.1
and 14.2] for details.

Example Continuing with the previous equality-constrained Problem (2.13) from
Sections 2.3.2.2, 13.1.1.4,. . . , 13.2.2.1, we note that ∇2f is positive definite and
for each λ ∈ R, L(•, λ) has a unique minimizer, specified by the solution of
∇xL(x, λ) = 0, so that, by Theorem 13.7, E = R and the dual function is par-
tially differentiable with continuous partial derivatives on the whole of R.

Moreover, since the dual function is concave, the first-order necessary conditions
to maximize D are also sufficient. Partially differentiating D as defined in (13.14)
we obtain:

∇D(λ) = [−λ−2].

This is consistent with Theorem 13.7, since:

Ax (λ) − b = [
1 −1

] [1 − λ/2
3 + λ/2

]
− [0],

= [−λ−2].

Moreover, ∇D(λ�) = [0] for λ� = [−2], which is the value of the Lagrange mul-
tiplier. Also, D(λ�) = 2, which is equal to the minimum of Problem (2.13) and

x (λ�) =
[

2
2

]
, which is the minimizer of Problem (2.13).

In this case, it was possible to solve for the dual function explicitly so that we
could then evaluate the first-order conditions for maximizing the dual function ex-
plicitly. For non-quadratic objectives this is not usually possible and we will typi-
cally resort to an iterative algorithm to maximize D.

Wolfe dual In some cases we can write down conditions characterizing the value
of the dual function more explicitly than in (13.13) [84, section 14.8.2]. Evaluating
the conditions explicitly then facilitates maximization of the dual function.

In particular, consider minx∈�nL(•, λ) for a particular value λ ∈ Rm . Sup-
pose that f is partially differentiable with continuous partial derivatives and that
it is convex on Rn . Then by Corollary 10.6, the first-order necessary conditions
∇xL(x, λ) = 0 are sufficient for minimizing L(•, λ).

Given λ ∈ Rm , if there is a solution to ∇xL(x, λ) = 0 then we can evaluate the

13.2 Convex problems 489

dual function by:

D(λ) = {L(x, λ)|∇xL(x, λ) = 0},
where by the notation on the right-hand side we mean the value of L(x, λ) evalu-
ated for a value of x that satisfies ∇xL(x, λ) = 0, assuming a solution for x exists.
That is, for given λ, we solve for the value of x that satisfies ∇xL(x, λ) = 0 and
substitute x and λ into L. If the solution for x is not unique, we pick any solution
of ∇xL(x, λ) = 0, since any solution of the first-order necessary conditions will
minimize the convex function L(•, λ).

For some values of λ there may be no solution to ∇xL(x, λ) = 0. In this case
there is no minimum ofL(•, λ) and we must explicitly characterize infx∈�n L(x, λ)

to evaluate D(λ).
Using Theorem 13.7, this observation means that under the same assumptions,

we can solve for the minimum of Problem (13.1) by using the Wolfe dual:

min
x∈�n

{ f (x)|Ax = b} = max
λ∈�m

{L(x, λ)|∇xL(x, λ) = 0}, (13.18)

where we again use the equation ∇xL(x, λ) = 0 to evaluate x and have tacitly
assumed that ∇xL(x, λ) = 0 has a solution for each λ. We will use the notion of the
Wolfe dual in the context of inequality-constrained problems in Section 17.2.2.3.

Discussion It is essential in Theorem 13.7 for f to be convex on the whole of Rn ,
not just on the feasible set. The reason is that the inner minimization of L(•, λ) to
evaluate the dual function is taken over the whole of Rn .

Unfortunately, if f is not strictly convex then L(•, λ) may have multiple min-
imizers over x for fixed λ. In this case, it may turn out that some of the mini-
mizers of L(•, λ�) do not actually minimize Problem (13.1). Moreover, if there
are multiple minimizers of L(•, λ) then D(λ) may not be partially differentiable.
Exercise 13.10 explores this situation.

Even when the objective is not strictly convex, (or, indeed, if the feasible set is
not convex as we will explore in Section 14.3.2) we can still try to solve the dual
problem to obtain λ� and extract a corresponding value of x (λ�). In general, we
may find that there are multiple minimizers of L(•, λ) for given λ, so that the dual
function may not be differentiable. However, it turns out that the step direction
�λ = Ax (λ) − b can still be useful in guiding a search to maximize D. If we find
the maximizer λ� of the dual then we may be able to modify x (λ�) to obtain a useful
solution; however, this is not always easily accomplished. This approach forms the
basis of Lagrangian relaxation [11, section 6.4.1][35][79, chapter 9], the sub-
gradient method [11, section 6.1], and other methods to solve non-differentiable
problems that result from “dualizing” a non-convex problem.

If f is strictly convex and the feasible set is {x ∈ Rn|Ax = b} then, for each

490 Algorithms for linear equality-constrained minimization

λ ∈ E, if the minimizer of L(•, λ) exists it will be unique and consequently D
is partially differentiable at λ. Unfortunately, a further issue remains. Even for
strictly convex f , we may find that the effective domain E is a strict subset of Rm .
This poses some inconvenience in maximizing the dual because the dual problem
is not unconstrained. We may not be able to find an initial guess λ(0) ∈ E nor
find updates to increase the value of the dual function. This issue is explored in
Exercise 13.11.

In Section 13.2.2.4 we will see that a penalty function approach can be used
to to avoid the difficulties that arise when the minimizer of L(•, λ) does not exist
for some values of λ (that is, to avoid the case where E is a strict subset of Rm).
Moreover, the penalty function we use can help to ensure that the penalized objec-
tive is strictly convex on the whole of Rn , guaranteeing that argminx∈�nL(x, λ) is
a singleton for each λ and so, by Theorem 13.7, that the dual function is partially
differentiable. Before discussing this approach in Section 13.2.2.4, however, we
will consider the important special case of a separable objective.

13.2.2.3 Separable objective

Analysis If f : Rn → R is separable, so that:

∀x ∈ R
n, f (x) =

n∑
k=1

fk(xk),

where fk : R → R, k = 1, . . . , n, then:

∀λ ∈ E,D(λ) = inf
x∈�n

L(x, λ),

= min
x∈�n

L(x, λ), assuming that the minimum exists,

= min
x∈�n

f (x) + λ†(Ax − b), by definition of L,

= min
x∈�n

{
n∑

k=1

fk(xk) + λ†

(
n∑

k=1

Akxk − b

)}
,

where Ak is the k-th column of A,

= min
x∈�n

{
n∑

k=1

(
fk(xk) + λ† Akxk

)}− λ†b,

since λ†b is independent of x ,

=
n∑

k=1

min
xk∈�

{ fk(xk) + λ† Akxk} − λ†b, (13.19)

since each term in the sum depends only on one entry of x . (See Exercise 13.13.)
For each fixed λ ∈ Rm , the dual function D(λ) is the sum of:

13.2 Convex problems 491

• a constant (−λ†b), and
• n one-dimensional optimization “sub-problems” that can each be evaluated in-

dependently.

We have decomposed the problem by exploiting the separability of the objective. If
there are relatively few constraints but many variables and the objective is separable
then maximizing the dual problem involves optimization in a smaller dimension
than minimizing the primal problem. Each evaluation of the dual objective and
its derivative can be broken up into parallel calculations. In this case, maximizing
the dual often turns out to be faster and requires less memory than minimizing the
primal problem, since each sub-problem can be treated separately in the evaluation
of the dual function.

If the sub-problems minxk∈�{ fk(xk) + λ† Akxk} are simple enough then it may
be possible to solve them analytically in terms of λ. (See Section 13.3.1.4 for the
case of a quadratic objective.) In this case, the dual function D can be evaluated
analytically.

In some applications, the separability does not involve individual entries of x but
rather to collections of entries. We can apply an analysis similar to (13.19); how-
ever, the sub-problems will then be multi-dimensional problems [100, section 28].

Example Continuing with the previous equality-constrained Problem (2.13) from
Sections 2.3.2.2, 13.1.1.4,. . . , 13.2.2.2, note that the objective is separable. The
dual function is:

∀λ ∈ R,D(λ) = min
x∈�2

L(x, λ),

= min
x1∈�

{(x1 − 1)2 + λx1} + min
x2∈�

{(x2 − 3)2 − λx2}. (13.20)

The minimization problem in the definition of the dual has decomposed into two
sub-problems. Each of the two convex sub-problems can be solved separately and
the result is the same as obtained previously. (The term λ†b is zero in this case
since b = [0]. See Exercise 13.14.)

13.2.2.4 Penalty functions and augmented Lagrangians

In this section, we consider the combined use of penalty functions and duality [70,
section 13.4]

Discussion In Section 3.1.2.1, we discussed an approach to approximately solv-
ing constrained problems by defining an unconstrained problem with a penalized
objective. For example, for the problem minx∈�n { f (x)|g(x) = 0}, we might try
to solve the unconstrained problem minx∈�n f (x) + � ‖g(x)‖2 for some suitable

492 Algorithms for linear equality-constrained minimization

value of the penalty coefficient � ∈ R++ and some norm ‖•‖ such as the L2 norm.
Unfortunately, as mentioned in Section 3.1.2.1, for finite values of � the solu-
tion of the unconstrained problem will usually differ from the solution of the con-
strained problem. Very large values of � will make the solutions of the constrained
and unconstrained problems nearly coincide; however, the resulting unconstrained
problem will then typically be ill-conditioned.

In Section 3.1.2.1 we also observed that we could consider the penalized objec-
tive f + � ‖g‖2 and retain the constraints. We found that the added term � ‖g‖2

did not affect the solution, since it did not alter the objective on the feasible set.
However, the additional term could aid in making the objective convex and also re-
duce the tension between minimizing the objective and satisfying the constraints.
In this section, we will explore the addition of the penalty function to the objective
in conjunction with an approach involving dual variables. Recall that Theorem 13.7
required the objective to be convex on the whole of Rn , not just on the feasible set.
We will use a penalty function to alter the objective for points not in the feasible
set so that the penalized objective is strictly convex on the whole of Rn .

Example To see the advantages of a penalized objective in conjunction with a
dual approach, consider the problem described in Exercise 3.11, and revisited in
Exercise 13.8, having objective function f : R2 → R, equality constraint Ax = b,
and Lagrangian function L : R2 × R → R defined, respectively, by:

∀x ∈ R
2, f (x) = −2(x1 − x2)

2 + (x1 + x2)
2,

A = [
1 −1

]
,

b = [0],

∀x ∈ R
2,∀λ ∈ R,L(x, λ) = f (x) + λ†(Ax − b),

= −2(x1 − x2)
2 + (x1 + x2)

2 + λ(x1 − x2).

The objective function f is shown in Figure 13.10. The objective is not convex
and is not bounded below. Moreover, for any given λ ∈ R, L(•, λ) is not bounded
below. (See Exercise 3.46, Part (i).) Therefore:

∀λ ∈ R, inf
x∈�n

L(x, λ) = −∞,

and E = ∅. We cannot usefully apply Theorem 13.7.
From Exercise 3.11, we know that the solution to the equality-constrained op-

timization problem minx∈�n { f (x)|Ax = b} is x� = 0. Substitution into the nec-
essary conditions shows that corresponding value of the Lagrange multiplier is
λ� = 0, so that L(•, λ�) = f (•). The primal problem is well-defined, the first-
order necessary conditions hold at the minimizer, and x� and λ� satisfy the second-
order sufficient conditions.

13.2 Convex problems 493

5

0

5

5

0

5
200

150

100

50

0

50

100

x1
x2

f (x)

Fig. 13.10. Example non-
convex objective function
defined in Section 13.2.2.4
and in Exercises 3.11
and 13.8.

5

0

5

5

0

5
0

20

40

60

80

100

x1
x2

f (x) + � fp(x)

Fig. 13.11. Convex penal-
ized objective function f +
� fp for � = 3.

The difficulties in applying Theorem 13.7 arise here because the objective is not
strictly convex on Rn . Suppose that instead we consider a penalized objective. That
is, we modify the objective to be f + � fp, where � ∈ R++ and fp : Rn → R+ is
defined by:

∀x, fp(x) = ‖Ax − b‖2
2 ,

= (x1 − x2)
2.

Theorem 3.2 guarantees that we will not change the minimizer or minimum if we
use the penalized objective with a non-negative value of �. For example, suppose
that we choose � = 3. The penalized objective is shown in Figure 13.11 and this
value of � is large enough so that the penalized objective is strictly convex.

The Lagrangian of the corresponding problem with penalized objective is called

494 Algorithms for linear equality-constrained minimization

the augmented Lagrangian, Lp : R2 × R → R, defined by:

∀x ∈ R
2, ∀λ ∈ R,Lp(x, λ) = L(x, λ) + � fp(x),

= (x1 + x2)
2 + λ(x1 − x2) + (x1 − x2)

2,

which is strictly convex as a function of x for fixed λ. Moreover, for each λ ∈ R,
the minimizer of Lp(•, λ) exists, so that E = R, and the minimizer is unique, so
that the dual function is partially differentiable.

In particular, for the example shown, minimizing Lp(•, λ�) over x now yields
the minimizer x� of the equality-constrained problem, as shown in Exercise 3.46,
Part (iii). In general, to achieve this, we must pick � large enough so that:

• the augmented Lagrangian Lp(•, λ) is strictly convex for each given λ (so that
there is at most one minimizer of Lp(•, λ) for each given λ), and

• there is a minimizer of the augmented Lagrangian Lp(•, λ) for each λ.

Analysis We now formalize some of the issues with the augmented Lagrangian in
the special case of a quadratic objective.

Consider a quadratic f : Rn → R with quadratic coefficient matrix Q ∈ Rn×n

and the use of a penalty function � ‖Ax − b‖2
2. The Hessian of the augmented

Lagrangian Lp(•, λ) for fixed λ is Q + 2�A† A. We have the following.

Theorem 13.9 Suppose that Q ∈ Rn×n is positive definite on the null-space of A ∈ Rm×n.
Then there exists � > 0 such that Q + 2�A† A is positive definite.

Proof See [11, lemma 3.2.1][70, section 13.4] and Exercise A.18. �

Theorem 13.9 shows that there exists � such that the augmented Lagrangian is
strictly convex as a function of x for fixed λ. In practice we may not know a priori
how large we need to choose �. Moreover, if � is too large, then the minimization
of the augmented Lagrangian will be ill-conditioned. An adjustment procedure for
finding a value of � that is large enough to achieve strict convexity and further
comments about ill-conditioning appears in [11, section 4.2.1].

It is important to realize that non-strict convexity of the augmented Lagrangian is
generally not sufficient to guarantee uniqueness of the minimizer of the augmented
Lagrangian. Fortunately, achieving strict convexity is often possible for modest
values of � that do not lead to serious ill-conditioning [70, sections 13.4 and 14.2].
(See Exercises 13.11 and 13.12.) Moreover, the quadratic penalty can often be
chosen to make E = Rm .

The augmented Lagrangian (or the ordinary Lagrangian if the objective is strictly

13.3 Approaches to finding minimizers 495

convex) allows us to perform an unconstrained minimization to obtain the mini-
mizer, given that we know the Lagrange multipliers. As previously, we must max-
imize the dual function over values of the dual variables to seek the Lagrange
multipliers.

Separability and the augmented Lagrangian Augmented Lagrangians have a
drawback for separable objectives since the penalty function adds “cross-terms”
between variables, which prevent decomposition into sub-problems. One approach
to preserving separability while maintaining the advantage of convexity of aug-
mented Lagrangians involves linearizing the cross-terms. This approach is dis-
cussed in [26] and an application is presented in [61].

13.3 Approaches to finding minimizers

In this section we will briefly describe algorithms for various cases, moving from
the most straightforward to the most complex cases. Unless otherwise mentioned,
for each case considered, we will tacitly assume that a minimum and minimizer
exists. Our basic approach is to solve the first-order necessary conditions for opti-
mality. As the example in Section 13.1.2.6 shows, the necessary conditions are not
sufficient for optimality unless the problem satisfies additional properties, such as
convexity.

As in our previous discussion of unconstrained optimization, the algorithms will
either be:

• direct, typically involving solution of a linear system of equations, or

• iterative, typically requiring at each iteration the solution of a linear equation
representing a Newton–Raphson update for solving non-linear equations or an
approximation to the Newton–Raphson update.

In principle, evaluation of the coefficient matrices in the linear systems requires
calculation of the Hessians of functions. We will proceed as though these Hessians
are available and that the resulting linear systems can be conveniently factorized
using the basic LU factorization. However, in practice, it may be necessary or
desirable to:

• use a variation on the basic Newton–Raphson update along the lines described in
Section 10.2.3.3 to avoid the computational effort of evaluation and factorization
of the Hessian at each iteration, or

• use a different factorization method such as QR factorization if the equations
are ill-conditioned.

496 Algorithms for linear equality-constrained minimization

We first consider convex quadratic objectives in Section 13.3.1 and then non-
quadratic objectives in Section 13.3.2.

13.3.1 Convex quadratic objective

13.3.1.1 Problem

Suppose that the objective function f : Rn → R is of the form:

∀x ∈ R
n, f (x) = 1

2
x†Qx + c†x,

with c ∈ Rn and Q ∈ Rn×n and symmetric. Exercise 13.15 indicates that for
quadratic objectives we should concentrate on the convex case. Therefore, we
assume that Q is positive semi-definite, or at least positive semi-definite on the
null space N (A) = {�x ∈ Rn|A�x = 0}. We will consider three approaches to
convex quadratic objectives in the next three sections.

13.3.1.2 Null space basis

Optimality conditions Let Z ∈ Rn×n′ be a matrix with columns that form a basis
for the null space N (A) = {�x ∈ Rn|A�x = b}. By Theorems 13.1 and 13.6,
necessary and sufficient conditions for x� ∈ Rn to be a global minimizer are that:

Z†Qx� = −Z †c, (13.21)

Ax� = b. (13.22)

Algorithm Equations (13.21) and (13.22) are linear and involve n′ + m equa-
tions in n variables. By Exercise 13.17, if Q is positive definite on the null space
N (A) = {�x ∈ Rn|A�x = 0} then the equations will have a unique solution.
Otherwise, there will be multiple minimizers.

Example Continuing with the previous equality-constrained Problem (2.13) from
Sections 2.3.2.2, 13.1.1.4,. . . , 13.2.2.3,

min
x∈�2

{ f (x)|Ax = b},

we note that the objective f : R2 → R is convex and of the form:

∀x ∈ R
2, f (x) = 1

2
x†Qx + c†x,

with:

Q =
[

2 0
0 2

]
, c =

[−2
−6

]
,

13.3 Approaches to finding minimizers 497

and the coefficient matrix and right-hand side of the constraints are defined by:

A = [
1 −1

]
, b = [0].

From Section 13.1.2.2:

Z =
[

1
1

]
∈ R

2×1

is a matrix with columns that form a basis for the null space of A. The matrices
and vectors in (13.21)–(13.22) are:

Z†Q = [
1 1

] [2 0
0 2

]
,

= [
2 2

]
,

−Z†c = − [1 1
] [−2

−6

]
,

= [8]

A = [
1 −1

]
,

b = [0].

The equations to be solved are therefore:[
2 2
1 −1

]
x� =

[
8
0

]
.

The solution to this system is x� =
[

2
2

]
.

Discussion The main drawback of this approach is the need to construct the matrix

Z and then form and factorize the coefficient matrix

[
Z †Q
A

]
. If the coefficient

matrix A is large and sparse, then it may be unattractive to form the matrix Z ,
which is typically dense. In this case, it can be better to deal with the necessary
conditions written in terms of the minimizer x� and the Lagrange multipliers λ� as
discussed in the next section.

13.3.1.3 Lagrange multipliers

Optimality conditions By Theorems 13.2 and 13.5, necessary and sufficient con-
ditions for x� ∈ Rn to be a global minimum are that there exists λ� ∈ Rm such that
x� and λ� satisfy:

Qx� + A†λ� = −c, (13.23)

Ax� = b. (13.24)

498 Algorithms for linear equality-constrained minimization

Algorithm Equations (13.23) and (13.24) are linear and involve n + m equations
in n + m variables. As shown in Exercise 13.17, if Q is positive definite on the
null space N (A) = {�x ∈ Rn|A�x = 0} and A has linearly independent rows
then the linear simultaneous equations (13.23)–(13.24) will have a unique solution.
However, the coefficient matrix of this system:

A =
[

Q A†

A 0

]
, (13.25)

is indefinite, so that a special purpose algorithm for factorization of indefinite ma-
trices should be used, as mentioned in Section 5.4.7. Performing a single forwards
and backwards substitution then solves:[

Q A†

A 0

] [
x
λ

]
=
[−c

b

]
. (13.26)

Example Continuing with the previous equality-constrained Problem (2.13) from
Sections 2.3.2.2, 13.1.1.4,. . . , 13.3.1.2, the objective f : R2 → R is defined by:

∀x ∈ R
2, f (x) = 1

2
x†Qx + c†x,

where:

Q =
[

2 0
0 2

]
, c =

[−2
−6

]
,

and the coefficient matrix and right-hand side of the constraints are defined by:

A = [
1 −1

]
, b = [0].

Necessary and sufficient conditions for Problem (2.13) are given by (13.26):⎡⎣ 2 0 1
0 2 −1
1 −1 0

⎤⎦[x
λ

]
=
⎡⎣ 2

6
0

⎤⎦ .

Solving this system we obtain:

x� =
[

2
2

]
, λ� = [−2].

Discussion The coefficient matrix A in (13.25) is sparse if Q and A are sparse.
Consequently, solving (13.23)–(13.24) avoids the drawback of the null space basis
approach that involved the matrix Z , which is typically dense. Although (13.23)–
(13.24) has more equations than (13.21)–(13.22), if (13.23)–(13.24) is sparse then
it can be much easier to solve than (13.21)–(13.22) for the reasons discussed in
Section 5.5.3.3.

13.3 Approaches to finding minimizers 499

If Q is positive semi-definite but not positive definite, then it may be the case
that the minimizer of Problem (13.1) is non-unique. A QR factorization of A spe-
cialized to indefinite matrices can be used. (See Section 5.4.7. Note that the “Q”
factor of A will, of course, be different to the Hessian Q of f .) If Problem (13.1)
has a minimum then it is possible to assign arbitrary values to some of the entries
of x� and solve for the remaining entries.

If Q = 0 so that the problem is actually linear, then it is usually the case that no
minimum exists. Furthermore, for some positive semi-definite Q, it is also possible
that no minimum exists. (See Exercise 13.18.)

If some of the rows of A are linearly dependent, then the Lagrange multipliers
are not unique. (See Exercises 13.4 and 13.19.)

13.3.1.4 Dual maximization

Optimality conditions The dual function D : Rm → R ∪ {−∞} is defined by:

∀λ ∈ R
m,D(λ) = inf

x∈�n

{
1

2
x†Qx + c†x + λ†(Ax − b)

}
. (13.27)

The dual problem is:

max
λ∈�

D(λ).

To evaluate the dual function for a given λ ∈ E we must minimize the Lagrangian
as a function of x . The first-order necessary conditions for the unconstrained min-
imization problem on the right-hand side of (13.27) are:

∇xL(x, λ) = Qx + c + A†λ = 0. (13.28)

For the rest of the analysis of dual maximization, we will assume that Q is posi-
tive definite so that the unconstrained problem on the right-hand side of (13.27) is
strictly convex and (13.28) has a unique solution. We can write down the unique
solution to (13.28) as:

x (λ) = −Q−1(c + A†λ),

where x (λ) denotes the unique solution for the given value of λ. If f is separable,
so that Q is diagonal, and if Q has strictly positive entries on its diagonal, then f
is strictly convex and Q−1 exists and is easy to calculate. The unique solution x (λ)

for the given λ is very easy to obtain. Otherwise, if Q−1 is not readily available
then Q can be factorized and the linear equation Qx = −(A†λ + c) solved.

Substituting the value of x (λ) into the objective of the dual function yields the
value of the dual function at λ. We seek the maximum of the dual function over
all values of λ. Since we have assumed that Q is positive definite then the solution

500 Algorithms for linear equality-constrained minimization

to (13.28) is unique and the dual is partially differentiable by Theorem 13.7. The
necessary conditions for maximizing the dual are that:

∇D(λ) = Ax (λ) − b = 0,

where x (λ) is the solution to (13.28). Each entry in λ can be increased or decreased
depending on whether the corresponding entry of Ax (λ) − b is greater than or less
than zero.

Algorithm A steepest ascent algorithm based on maximizing the dual function
when Q is positive definite involves the following recursion to define the updates:

x (ν) = −Q−1(c + A†λ(ν)), (13.29)

�λ(ν) = Ax (ν) − b, (13.30)

λ(ν+1) = λ(ν) + α(ν)�λ(ν),

where α(ν) should be chosen to ensure a sufficient increase in D(λ(ν+1)) compared
to D(λ(ν)) using, for example, the Armijo criterion described in Section 10.2.4.2.
(Alternatively, if an augmented Lagrangian is used then the step-size may be cho-
sen in relation to the penalty coefficient. See [70, sections 13.4 and 13.5] for further
details.) If Q is not diagonal nor otherwise easy to invert then (13.29) should be
evaluated by solving the linear equation Qx (ν) = −(c + A†λ(ν)) for x (ν).

Stopping criterion By Theorem 3.13, D(λ(ν+1)) provides a lower bound on the
value of the minimum. This lower bound can be incorporated into a stopping cri-
terion if a feasible solution x̂ is known. (Calculation of a feasible point from the
sequence of dual solutions is described in [6, section 6.5].) We will use this idea
more explicitly in the discussion of inequality constraints. (See Exercise 16.25.)

Example Continuing with the previous equality-constrained Problem (2.13) from
Sections 2.3.2.2, 13.1.1.4,. . . , 13.3.1.3, the objective f : R2 → R is defined by:

∀x ∈ R
2, f (x) = 1

2
x†Qx + c†x,

where:

Q =
[

2 0
0 2

]
, c =

[−2
−6

]
,

and the coefficient matrix and right-hand side of the constraints are defined by:

A = [
1 −1

]
, b = [0].

13.3 Approaches to finding minimizers 501

Let λ(0) = [0]. Then:

x (0) = −Q−1(c + A†λ(0)),

= −
[1

2 0
0 1

2

] [−2
−6

]
,

=
[

1
3

]
,

�λ(0) = Ax (0) − b,

= [
1 −1

] [1
3

]
− 0,

= [−2],

λ(1) = λ(0) + α(0)�λ(0),

= [0] + 1 × [−2], picking α(0) = 1,

= [−2],

x (1) = −Q−1(c + A†λ(1)),

= −
[1

2 0
0 1

2

]([−2
−6

]
+
[

1
−1

]
× (−2)

)
,

=
[

2
2

]
,

�λ(1) = Ax (1) − b,

= [0],

and the dual algorithm has converged in one iteration.
Usually, the dual iteration using steepest ascent requires more than one iteration

to obtain a useful estimate of the Lagrange multipliers and minimizer, even if an
optimal step-size is chosen. This is because the level sets of the dual function are
elliptical and not spherical. In this example, with only one constraint, the steepest
ascent algorithm converges rapidly. More generally, this algorithm is most effective
when there are only a few constraints but many variables in the primal problem.
In principle, the Hessian of the dual function can be calculated or estimated and
incorporated into a Newton–Raphson algorithm to facilitate faster convergence to
the dual maximizer [70, section 13.1].

Discussion The algorithm adjusts λ until the optimality conditions for the dual are
satisfied. Maximizing the dual involves:

• choosing x to satisfy ∇ f (x) + A†λ(ν) = 0 at each iteration, given the current
estimate of the Lagrange multiplier, λ(ν), and

502 Algorithms for linear equality-constrained minimization

• updating the Lagrange multiplier estimate at each iteration so as to more nearly
satisfy the constraint (13.7), that is, Ax = b.

13.3.2 Non-quadratic objective

13.3.2.1 Problem

Suppose that the objective f : Rn → R is partially differentiable with continuous
partial derivatives. We will consider several approaches to this problem.

13.3.2.2 Null space basis

Optimality conditions Let Z ∈ Rn×n′ be a matrix with columns that form a basis
for the null space N (A) = {�x ∈ Rn|A�x = b}. By Theorem 13.1, necessary
conditions for x� ∈ Rn to be a global minimizer are that x� is feasible and that the
reduced gradient is zero. That is:

Z †∇ f (x�) = 0, (13.31)

Ax� = b. (13.32)

If f is convex then, by Theorem 13.6, the conditions (13.31)–(13.32) are sufficient.
If the reduced function φ is twice partially differentiable with continuous partial
derivatives and its Hessian is positive definite then, by Theorem 13.3, x� is a strict
local minimizer.

Algorithm Suppose we construct an initial guess x (0) that satisfies the equality
constraints. That is, we use the techniques from Section 5.8.1.2 to construct any
point that satisfies the equality constraints. At the same time, we can also construct
the matrix Z . The set of all solutions to the linear equations is given by:

{x (0) + Zξ |ξ ∈ R
n′ }.

We can now proceed to minimize the reduced function φ : Rn′ → R defined by:

∀ξ ∈ R
n′, φ(ξ) = f (x (0) + Zξ).

Any of the unconstrained minimization methods developed in Section 10.2 can
be used to minimize this function. For example, a steepest descent algorithm us-
ing the reduced gradient ∇φ would involve the following recursion to define the
iterates:

ξ (ν+1) = ξ (ν) − α(ν) ∇φ(ξ (ν)),

13.3 Approaches to finding minimizers 503

or equivalently:

ξ (ν+1) = ξ (ν) − α(ν) Z†∇ f (x (0) + Zξ (ν)),

= ξ (ν) − α(ν) Z†∇ f (x (ν)),

where x (ν) = x (0) + Zξ (ν) and the step-size α(ν) should be chosen to achieve suf-
ficient decrease in the reduced function φ(ξ (ν+1)) according to, for example, the
Armijo step-size rule as discussed in Section 10.2.4.2. The steepest descent algo-
rithm uses the reduced gradient ∇φ(ξ (ν)) = Z†∇ f (x (ν)).

Alternatively, a Newton–Raphson algorithm would involve the update:

∇2φ(ξ (ν))�ξ(ν) = −∇φ(ξ (ν)),

ξ (ν+1) = ξ (ν) + α(ν)�ξ(ν),

or equivalently:

Z†∇2f (x (ν))Z�ξ(ν) = −Z †∇ f (x (ν)),

ξ (ν+1) = ξ (ν) + α(ν)�ξ(ν).

The Newton–Raphson algorithm uses the reduced Hessian:

∇2φ(ξ (ν)) = Z†∇2f (x (ν))Z .

If zero pivots are encountered in factorizing the reduced Hessian, then the pivots
should be modified to be positive to ensure descent of the reduced function.

A natural initial guess for ξ is ξ (0) = 0, corresponding to an initial guess of x (0)

in the x coordinates.

Example Recall the non-quadratic objective f : R2 → R defined in (10.9) in
Section 10.2.1.5:

∀x ∈ R
2, f (x) = 0.01(x1 − 1)4 + 0.01(x2 − 3)4 + (x1 − 1)2 + (x2 − 3)2

− 1.8(x1 − 1)(x2 − 3).

Consider the problem minx∈�2{ f (x)|Ax = b}, where A ∈ R1×2 and b ∈ R1 are
defined by:

A = [
1 −1

]
, b = [8].

By inspection, Z =
[

1
1

]
is a matrix with columns that form a basis for the null

space of A. Consider the initial guess x (0) =
[

3
−5

]
, which is feasible for the

504 Algorithms for linear equality-constrained minimization

equality constraint. We perform one iteration of a steepest descent algorithm to
minimize the reduced function with initial guess ξ (0) = [0].

We have:

f (x (0)) = 137.77,

∇ f (x) =
[

0.04(x1 − 1)3 + 2(x1 − 1) − 1.8(x2 − 3)

0.04(x2 − 3)3 − 1.8(x1 − 1) + 2(x2 − 3)

]
,

∇ f (x (0)) =
[

18.72
−40.08

]
,

Z †∇ f (x (0)) = [−21.36].

Using a step-size of 1, we obtain a tentative update of:

ξ (1) = ξ (0) − Z †∇ f (x (0)),

= [21.36],

x (0) + Zξ (1) =
[

24.36
16.36

]
,

f (x (0) + Zξ (1)) = 3458.8,

which is larger than f (x (0)), so we must consider a step-size rule. We use the
Armijo rule, with the step-size halved until the Armijo condition (10.14) is satis-
fied. For a step-size of α(0) = 0.5, the update still yields an objective that exceeds
f (x (0)). However, for α(0) = 0.25, the Armijo condition is satisfied and we obtain:

ξ (1) = [5.34],

x (1) =
[

8.34
0.34

]
,

f (x (1)) = 125.6.

(See Exercise 13.25.)

Stopping criterion The algorithm involved unconstrained minimization of the re-
duced function φ. Stopping criteria for unconstrained problems as discussed in
Section 10.2.5 can be used for this algorithm.

Discussion Whatever algorithm is used for minimizing φ, at each iteration the
iterate x (ν) = x (0) + Zξ (ν) is feasible for the equality constraints. That is, we
can terminate the calculations at any iteration and obtain a feasible, if not optimal,
solution for the problem. In summary, we generate iterates that are:

• feasible at each iteration, satisfying (13.32), and
• in principle, become closer to satisfying the condition (13.31).

13.3 Approaches to finding minimizers 505

Analogously to the discussion of algorithms in Section 10.2, we can also con-
sider the variations that avoid calculation of the reduced Hessian or avoid factoriz-
ing the reduced Hessian. We should choose α(ν) according to a sufficient decrease
criterion as discussed in Section 10.2.4.

As with quadratic objectives, the main drawback of this approach is the need to
construct the matrix Z . If the coefficient matrix A is large and sparse, then it may
be unattractive to form the matrix Z , which is typically dense. In this case, it can
be better to deal with the necessary conditions written in terms of the minimizer x�

and the Lagrange multipliers λ� as discussed in the next section.

13.3.2.3 Lagrange multipliers

Optimality conditions By Theorem 13.2, first-order necessary conditions for x� ∈
Rn to be a local minimizer are that there exists λ� ∈ Rm such that x� and λ� satisfy:

∇ f (x�) + A†λ� = 0, (13.33)

Ax� − b = 0. (13.34)

If f is convex, then by Theorem 13.5, the conditions (13.33)–(13.34) are also suf-
ficient. If f is twice partially differentiable with continuous partial derivatives and
its Hessian is positive definite on the null space N (A) = {�x ∈ Rn|A�x = 0}
then, by Theorem 13.4, x� is a strict local minimizer.

Algorithm Equations (13.33)–(13.34) are non-linear in

[
x
λ

]
, involve n+m equa-

tions in n + m variables, and can be solved iteratively using the Newton–Raphson
method. This algorithm will inherit the convergence properties of the Newton–
Raphson method as discussed in Section 7.3.3. In particular, convergence can be
quadratic.

Moreover, since the constraints Ax = b are linear, we can, in principle, construct
an initial point x (0) that satisfies Ax (0) = b using the techniques discussed in Sec-
tion 5.8.1. At each subsequent iteration, we try to solve for the Newton–Raphson
step direction using:

A
[

�x (ν)

�λ(ν)

]
= −

[∇ f (x (ν)) + A†λ(ν)

Ax (ν) − b

]
,

= −
[∇ f (x (ν)) + A†λ(ν)

0

]
, (13.35)

where A ∈ R(n+m)×(n+m) is defined by:

A =
[∇2f (x (ν)) A†

A 0

]
,

506 Algorithms for linear equality-constrained minimization

and where we have assumed that Ax (ν) − b = 0.

Example Continuing with the non-quadratic objective f : R2 → R defined
in (10.9) in Sections 10.2.1.5 and 13.3.2.2:

∀x ∈ R
2, f (x) = 0.01(x1 − 1)4 + 0.01(x2 − 3)4 + (x1 − 1)2 + (x2 − 3)2

− 1.8(x1 − 1)(x2 − 3),

and the problem minx∈�2{ f (x)|Ax = b}, where:

A = [
1 −1

]
, b = [8],

we consider the initial guess x (0) =
[

3
−5

]
and λ(0) = [0], and perform one

Newton–Raphson update. The coefficient matrix A in (13.35) is given by:

A =
[∇2f (x (0)) A†

A 0

]
,

=
⎡⎣ 2.48 −1.8 1

−1.8 9.68 −1
1 −1 0

⎤⎦ ,

and the right-hand side is:

−
[∇ f (x (ν)) + A†λ(ν)

0

]
=
⎡⎣−18.72

40.08
0

⎤⎦ .

Solving (13.35) for these values yields:[
�x (ν)

�λ(ν)

]
=
⎡⎣ 2.4953

2.4953
−20.4168

⎤⎦ .

Using a step-size of one, we obtain:

x (1) =
[

5.4953
−2.5047

]
,

λ(1) = [−20.4168],

with objective value f (x (1)) = 108.3163. (See Exercise 13.25.)

Stopping criterion If f is convex and x (ν) and λ(ν) satisfy ∇ f (x (ν)) + A†λ(ν) =
0 then x (ν) minimizes L(•, λ(ν)). Therefore, D(λ(ν)) = L(x (ν), λ(ν)) and so, by
Theorem 3.13, L(x (ν), λ(ν)) provides a lower bound for minx∈�n { f (x)|Ax = b}
that can be incorporated into a stopping criterion.

13.3 Approaches to finding minimizers 507

However, x (ν) will typically only be an approximate minimizer of L(•, λ(ν)). In
this case, if f is convex and we want to ensure that f (x (ν)) is within ε f of the
minimum, and if there is a known bound on where the minimizer of the prob-
lem minx∈�n { f (x)|Ax = b} can lie of the form

∥∥x� − x (ν)
∥∥ ≤ ρ, then an ap-

proach analogous to that in Section 10.2.5 can be taken based on iterating until∥∥∇ f (x (ν)) + A†λ(ν)
∥∥ ≤ ε f /ρ. (See Exercise 13.23.)

Discussion As in the case of the quadratic objective, even if ∇2f (x (ν)) is positive
definite, the coefficient matrix A in (13.35) is indefinite. To factorize it, we should
use a special purpose algorithm as mentioned in Section 5.4.7.

If the coefficient matrix A in (13.35) is non-singular then we can always solve
the equation uniquely. On the other hand, if the coefficient matrix A in (13.35) is
singular then, as discussed in Section 10.2.3, we will have to modify the pivots.
However, so long as A has linearly independent rows, we can, in principle, order
the pivoting so that we do not have to modify any of the pivots corresponding to the
lower right block of the matrix. If none of the pivots in the lower right block of the

matrix are modified, then the search direction

[
�x (ν)

�λ(ν)

]
will satisfy A�x (ν) = 0.

Zero or negative pivots in the top left-hand block ∇2f (x (ν)) should be modified
to be positive. This ensures that �x (ν) corresponds to a descent direction for the
reduced function. That is, we modify ∇2f (x (ν)) to be equal to Q, where Q is a
positive definite matrix. (See Exercise 13.24.)

In summary, if A has linearly independent rows, we can construct a search direc-

tion

[
�x (ν)

�λ(ν)

]
that satisfies A�x (ν) = 0, modifying pivots in the top left-hand block

if necessary to be positive. (If A has linearly dependent rows, it is still possible to
find a search direction that satisfies A�x (ν) = 0; however, the factorization scheme
is more complicated.)

As in Section 13.3.2.2 for the null space basis approach, we will always stay
feasible with respect to the constraints Ax (ν) − b = 0. This means that we can
terminate calculations at any iteration and use x (ν) as a feasible, if not optimal,
solution. Again, in principle, the iterates converge to a solution of the first-order
necessary conditions. As with the approach in Section 13.3.2.2, the iterates are:

• feasible at each iteration, satisfying (13.34), and
• in principle, become closer to satisfying the condition (13.33).

As in Section 13.3.2.2, we can also:

• use the variations described in Section 10.2.3 to approximate the Hessian or the
update to save computational effort,

508 Algorithms for linear equality-constrained minimization

• use the ideas from Section 10.2.4 to choose the step-size α(ν) to ensure sufficient
descent in f , and

• use the ideas from Section 10.2.5 to develop stopping criteria.

The coefficient matrix A in (13.35) is sparse if A and ∇2f are sparse. As in Chap-
ter 5, we should take advantage of sparsity in factorization.

13.3.2.4 Dual maximization

Optimality conditions The dual function in this case is D : Rm → R ∪ {−∞}
defined by:

∀λ ∈ R
m,D(λ) = inf

x∈�n
{ f (x) + λ†(Ax − b)}.

The dual problem is:

max
λ∈�

D(λ).

If we assume that there is a minimum and minimizer of the primal problem and
that there is no duality gap, then maximizing the dual function yields the minimum
of the primal problem. If the conditions of Corollary 13.8 hold then the optimality
conditions for the dual problem are that:

∇D(λ) = Ax (λ) − b,

= 0,

where x (λ) is the unique minimizer of minx∈�n { f (x) + λ†(Ax − b)}.

Algorithm In this case, the algorithm involves the following recursion:

x (ν) ∈ argmin
x∈�n

{ f (x) + [λ(ν)]
†
(Ax − b)}, (13.36)

�λ(ν) = Ax (ν) − b,

λ(ν+1) = λ(ν) + α(ν)�λ(ν).

Example Continuing with the objective defined in (10.9),

∀x ∈ R
2, f (x) = 0.01(x1 − 1)4 + 0.01(x2 − 3)4 + (x1 − 1)2 + (x2 − 3)2

− 1.8(x1 − 1)(x2 − 3),

constraints defined by:

A = [
1 −1

]
, b = [8],

and the problem from Sections 10.2.1.5, 13.3.2.2, and 13.3.2.3, we let λ(0) = [0],
and solve the problem on the right-hand side of (13.36).

We perform one (outer) iteration of a dual maximization algorithm. Since λ(0) =

13.4 Sensitivity 509

[0], Problem (13.36) is equivalent to unconstrained minimization of f . The mini-

mizer is x (0) =
[

1
3

]
, and we have:

�λ(0) = Ax (0) − b,

= [
1 −1

] [1
3

]
− [8],

= [−10].

Using a step-size of α(0) = 1, this yields:

λ(1) = λ(0) + α(0)�λ(0),

= [0] + 1 × [−10],

= [−10].

(See Exercise 13.25.)

Stopping criterion Again Theorem 3.13 can be used to show that D(λ(ν)) pro-
vides a lower bound on the value of the minimum.

Discussion As in Section 13.3.1.4, maximizing the dual involves:

• satisfying ∇ f (x (ν)) + A†λ(ν) = 0 at each outer iteration, given the current esti-
mate of the Lagrange multiplier, λ(ν), and

• updating the Lagrange multiplier estimate at each outer iteration so as to more
nearly satisfy the constraint (13.7).

For each update of λ there are a number of inner iterations to solve Problem (13.36)
to sufficient accuracy. Once a minimizer of Problem (13.36) is obtained then, to
update λ, the step-size α(ν) should be chosen to yield a sufficient increase in the dual
function using, for example, the Armijo criterion as described in Section 10.2.4.2.

If f is separable then the update of x in (13.36) can be performed very easily
and in parallel since the dual function separates into n sub-problems. (Notice that
the term −[λ(ν)]

†
b in the objective of the right-hand side of (13.36) is constant

with respect to x and so does not enter into the optimization in (13.36) and can be
ignored.)

13.4 Sensitivity

We now suppose that the objective f , constraint matrix A, and right-hand side
vector b are parameterized by a parameter χ ∈ Rs . That is, f : Rn × Rs → R,

510 Algorithms for linear equality-constrained minimization

A : Rs → Rm×n , and b : Rs → Rm . We imagine that we have solved the
constrained minimization problem:

min
x∈�n

{ f (x;χ)|A(χ)x = b(χ)},

for a base-case value of the parameters, say χ = 0, to find the base-case minimizer
x� and base-case Lagrange multipliers λ� and that now we are considering the
sensitivity of the base-case solution to variation of the parameters around χ = 0.
In Section 13.4.1, we consider the general case using the implicit function theorem
and then in Section 13.4.2 we specialize to the case where only the right-hand side
of the equality constraints vary.

13.4.1 General case

As with the sensitivity analysis of non-linear equations in Section 7.5 and of un-
constrained minimization in Section 10.3, we use the implicit function theorem
(Theorem A.9 in Section A.7.3 of Appendix A.) The following corollary to the
implicit function theorem provides us with the sensitivity of the solution to the
parameters.

Corollary 13.10 Let f : Rn × Rs → Rn be twice partially differentiable with continuous
second partial derivatives and let A : Rs → Rm×n and b : Rs → Rm be partially
differentiable with continuous partial derivatives. Consider the minimization problem:

min
x∈�n

{ f (x;χ)|A(χ)x = b(χ)}, (13.37)

where χ is a parameter. Suppose that x� ∈ Rn is a local minimizer of Problem (13.37)
for the base-case value of the parameters χ = 0 with corresponding Lagrange multi-
pliers λ� ∈ Rm. We call x = x� a base-case solution and call λ = λ� the base-case
Lagrange multipliers. Define the (parameterized) Hessian ∇2

xx f : Rn ×Rs → Rn×n by:

∀x ∈ R
n, ∀χ ∈ R

s,∇2
xx f (x;χ) = ∂2 f

∂x2 (x;χ).

Suppose that:

• ∇2
xx f (x�; 0) is positive definite on the null space of A(0), so that x� and λ� satisfy the

second-order sufficient conditions for the base-case problem, and
• A(0) has linearly independent rows.

Then, for values of χ in a neighborhood of the base-case value of the parameters χ = 0,
there is a local minimum and corresponding local minimizer and Lagrange multipliers
for Problem (13.37). Moreover, the local minimum, local minimizer, and Lagrange
multipliers are partially differentiable with respect to χ and have continuous partial
derivatives in this neighborhood.

13.4 Sensitivity 511

We consider the sensitivity with respect to χ j , the j-th entry of χ . The sensitivity of
the local minimizer x� and Lagrange multipliers λ� to χ j , evaluated at the base-case
χ = 0, is given by the solution of:

A

⎡⎢⎢⎣
∂x�

∂χ j
(0)

∂λ�

∂χ j
(0)

⎤⎥⎥⎦ =

⎡⎢⎢⎣−K j (x�; 0) −
[

∂ A
∂χ j

(0)

]†

λ�

− ∂ A
∂χ j

(0)x� + ∂b
∂χ j

(0)

⎤⎥⎥⎦ , (13.38)

where:

A =
[∇2

xx f (x�; 0) [A(0)]†

A(0) 0

]
,

and K j : Rn × Rs → Rn is defined by:

∀x ∈ R
n, ∀χ ∈ R

s, K j (x;χ) = ∂2 f
∂x∂χ j

(x;χ).

The sensitivity of the local minimum f � to χ , evaluated at the base-case χ = 0, is given
by:

∂ f �

∂χ
(0) = ∂L

∂χ
(x�, λ�; 0),

where L : Rn × Rm × Rs → R is the parameterized Lagrangian defined by:

∀x ∈ R
n,∀λ ∈ R

m, ∀χ ∈ R
s,L(x, λ;χ) = f (x;χ) + λ†(A(χ)x − b(χ)).

If f (•;χ) is convex for χ in a neighborhood of 0 then the minimizers and minima are
global in this neighborhood.

Proof (See [34, theorem 3.2.2] and see Exercise 13.27 for a special case.) The sen-
sitivity of the local minimizer and Lagrange multipliers follows from Corollary 7.5,
noting that:

• by assumption and Exercises 5.19 and 5.49, the Hessian ∇2
xx f (x;χ) is positive defi-

nite on the null space of A(χ) for x in a neighborhood of the base-case minimizer x�

and χ in a neighborhood of χ = 0, and
• by assumption and Exercises 5.32 and 13.17, the coefficient matrix A is non-singular

in a neighborhood of the base-case minimizer and parameters,

so that the first-order necessary conditions (13.6) (13.7) for Problem (13.37) are well-
defined and satisfied in a neighborhood of χ = 0 and the sensitivity of the solution of the
first-order necessary conditions at χ = 0 is given by the solution of (13.38). Moreover,
the second-order sufficient conditions for Problem (13.37) given in Corollary 13.4 are
satisfied in this neighborhood.
The sensitivity of the local minimum follows by totally differentiating the value of the
local minimum f �(χ) = f (x�(χ);χ) with respect to χ and noting that the first-order

necessary conditions for the minimizer mean that
∂ f
∂x

(x�; 0) = −[λ�]† A(0). But:

A(0)
∂x�

∂χ
(0) = − ∂ A

∂χ
(0)x� + ∂b

∂χ
(0), (13.39)

512 Algorithms for linear equality-constrained minimization

by the second block row of (13.38) evaluated for j = 1, . . . , s and where, abusing no-

tation, we interpret
∂ A
∂χ

(0)x� ∈ Rm×s as having �j-th entry equal to
∑n

k=1
∂ A�k

∂χ j
(0)x�

k .

Therefore,

∂ f �

∂χ
(0) = ∂ f

∂x
(x�; 0)

∂x�

∂χ
(0) + ∂ f

∂χ
(x�; 0), since f �(χ) = f (x�(χ);χ),

= −[λ�]† A(0)
∂x�

∂χ
(0) + ∂ f

∂χ
(x�; 0),

= ∂ f
∂χ

(x�; 0) − [λ�]†
(
− ∂ A

∂χ
(0)x� + ∂b

∂χ
(0)

)
, by (13.39),

= ∂L
∂χ

(x�, λ�; 0), by definition of L.

�

As in the unconstrained case, the sensitivity of the local minimum is sometimes
called the envelope theorem [119, section 27.4]. The sensitivity result can be
sharpened [34, theorem 2.4.4 and chapter 3].

The matrix A in (13.38) is given by (13.25) in the case of a quadratic objective.
If the algorithm in Section 13.3.1.3 was used then A was factorized to find the
minimizer and Lagrange multipliers. Similarly, if the algorithm in Section 13.3.2.3
was used then A or a close approximation to it was factorized at the last iteration to
find the minimizer and Lagrange multipliers. No further factorizations are required
to evaluate the sensitivities.

13.4.2 Special case

In this section, we consider a special case of Problem (13.37) where only the right-
hand side of the linear equality constraints are varied.

Corollary 13.11 Consider Problem (13.1), a perturbation vector γ ∈ Rm, and a perturbed
version of Problem (13.1) defined by:

min
x∈�n

{ f (x)|Ax = b − γ }. (13.40)

Suppose that f : Rn → R is twice partially differentiable with continuous second par-
tial derivatives, A ∈ Rm×n, and b ∈ Rm, with the rows of A linearly independent. Let
x� ∈ Rn and λ� ∈ Rm satisfy the second-order sufficient conditions in Corollary 13.4
for Problem (13.1):

∇ f (x�) + A†λ� = 0,

Ax� = b,

((A�x = 0) and (�x 	= 0)) ⇒ (�x†∇2f (x�)�x > 0).

13.4 Sensitivity 513

Consider Problem (13.40). For values of γ in a neighborhood of the base-case value
of the parameters γ = 0, there is a local minimum and corresponding local minimizer
and Lagrange multipliers for Problem (13.40). Moreover, the local minimum, local
minimizer, and Lagrange multipliers are partially differentiable with respect to γ and
have continuous partial derivatives. The sensitivity of the local minimum to γ , evaluated
at the base-case γ = 0, is equal to λ�. If f is convex then the minimizers and minima
are global.

Proof See [11, Proposition 3.2.2] or apply the proof of Corollary 13.10. (See Exer-
cise 13.28.) �

13.4.3 Discussion

A significant part of the effort in proving Corollary 13.10 and Corollary 13.11 is
using the implicit function theorem to show that the sensitivity of the minimizer
is well-defined. That is, proving that the value of the minimizer is partially dif-
ferentiable with respect to χ , which then implies that the value of the minimum
is partially differentiable. If we assume that the minimizer and minimum are par-
tially differentiable with respect to χ , then the following argument explains why
the sensitivity of the minimum is given by the value of the Lagrange multipliers.

Consider Problem (13.40), a perturbation γ , and the corresponding change �x�

in the minimizer of the perturbed problem. The change in the minimum is:

f (x� + �x�) − f (x�)

≈ ∇ f (x�)
†
�x�, with equality as �x� → 0,

= −[λ�]† A�x�, by the first-order necessary condition ∇ f (x�) + A†λ� = 0,

= [λ�]†γ,

since A(x� + �x�) = b − γ , so that −A�x� = γ . But this is true for any such
perturbation γ . In the limit as γ → 0, the change in the minimum approaches
[λ�]†γ . That is, the sensitivity of the minimum is given by λ�.

We can interpret the Lagrange multipliers as the sensitivity of the minimum to
changes in γ . In many problems, the specification of constraints represents some
judgment about the availability of resources. If there is some flexibility in the
availability of resources, perhaps involving the purchase of additional resources
at additional cost, then we can use the Lagrange multipliers to help in trading off
the change in the optimal objective against the cost of the purchase of additional
resources.

The sensitivity result is also extremely useful if we must repeatedly solve prob-
lems that differ only in the specification of γ because we can estimate the changes
in the solution using the sensitivity.

514 Algorithms for linear equality-constrained minimization

13.4.4 Example

We continue with Problem (2.13) from Sections 2.3.2.2, 13.1.1.4,. . . , 13.3.1.4,
minx∈�2{ f (x)|Ax = b}, where f : R2 → R, A ∈ R1×2, and b ∈ R1 were de-
fined by:

∀x ∈ R
2, f (x) = (x1 − 1)2 + (x2 − 3)2,

A = [
1 −1

]
,

b = [
0
]
.

The minimizer and Lagrange multiplier for this base-case problem are x� =
[

2
2

]
and λ� = [−2].

However, suppose that the equality constraints changed from Ax = b to Ax =
b − γ . We first met this example, parameterized in a slightly different way, in
Section 2.7.5.4. If γ is small enough, the minimum of the perturbed problem differs
from the minimum of the original problem by approximately [λ�]†γ = (−2)γ .
(See Exercise 13.29.)

13.5 Solution of the least-cost production case study

In this section, we solve the least-cost production case study from Section 12.1.
We recall the problem in Section 13.5.1, describe algorithms to solve it in Sec-
tion 13.5.2, discuss the solution, including an economic interpretation, in Sec-
tion 13.5.3, and sketch sensitivity analysis in Section 13.5.4.

13.5.1 Problem

Recall Problem (12.4): minx∈�n { f (x)|Ax = b}. Suppose that n = 3. Then the
coefficient matrix and right-hand side can be specified as:

A = [−1 −1 −1
]
,

b = [−D
]
.

(The apparently “unnatural” choice of the signs of the entries of A and b will be
motivated in the discussion of dual maximization.) As discussed in Section 12.1.4.1,
the objective is separable and convex.

In summary, this problem has a convex separable objective and only one equality
constraint. Furthermore, the equality constraint is linear. That is, the problem is
convex.

13.5 Solution of the least-cost production case study 515

13.5.2 Algorithms

We can solve Problem (12.4) by several methods as discussed in the following
sections. The calculations are completed in Exercises 13.30 and 13.31.

13.5.2.1 Null space basis

We first construct an initial guess x (0) that is feasible for the equality constraint.
For example, by inspection,

x (0) =
⎡⎣ D

0
0

⎤⎦
is a suitable initial guess. (If the equality constraints are more complicated it may
be necessary to use the techniques from Section 5.8.1 to construct an initial guess
satisfying the linear equality constraints.)

By Exercise 12.4, a matrix Z with columns that form a basis for the null space of

A is Z =
⎡⎣−1 −1

1 0
0 1

⎤⎦. We can form the reduced gradient and update ξ to decrease

the reduced objective. Because of the choice of Z , this is equivalent to expressing
x1 in terms of x2 and x3 as discussed in Section 12.1.4.2. (See Exercise 13.30,
Part (i) and Exercise 13.31, Part (i).)

13.5.2.2 Lagrange multipliers

Writing out each of the entries in the first-order necessary conditions, we obtain:

∀k = 1, . . . , n,
d fk
dxk

(x�
k) − λ� = 0,

D −
n∑

k=1

x�
k = 0.

We can solve these equations using the Newton–Raphson update, or some approx-
imation to the Newton–Raphson update. If each fk is quadratic and convex, then
the necessary conditions are linear and can be solved directly. If each fk is strictly
convex then there will be a unique minimizer. (See Exercise 13.30, Part (ii) and
Exercise 13.31, Part (ii).)

516 Algorithms for linear equality-constrained minimization

13.5.2.3 Dual maximization

The recursion is:

∀k = 1, . . . , n, x (ν)
k ∈ argmin

xk∈�
{ fk(xk) − λ(ν)xk}, (13.41)

�λ(ν) = Ax (ν) − b,

= D −
n∑

k=1

x (ν)
k ,

λ(ν+1) = λ(ν) + α(ν)�λ(ν).

If fk is quadratic then, at each iteration ν, the k-th sub-problem on the right-hand
side of (13.41) can be solved directly in one step by solving the linear neces-
sary conditions. If fk is not quadratic then (13.41) can be solved by applying the
Newton–Raphson update until a value of x (ν)

k is obtained that satisfies the necessary
conditions to within a tolerance. That is, if fk is non-quadratic, then at each outer
iteration ν and for each k we must perform several inner iterations to solve the
necessary conditions of (13.41). (See Exercise 13.30, Part (iii) and Exercise 13.31,
Part (iii).)

13.5.3 Discussion

Maximizing the dual has a suggestive economic interpretation if we think of λ as
the price paid for producing the commodity. The values λ(ν) are tentative prices
that are proposed at each iteration by a central purchaser. The goal of the cen-
tral purchaser is to pick prices such that supply matches demand. The Lagrange
multiplier λ� is the final price that matches supply to demand.

Each cost function fk is associated with a decision-making agent that makes
decisions based on:

• its own cost function, and
• the tentative prices.

Each decision-making agent wants to maximize its profits, which is the difference
between its revenues and its costs of production. Equivalently, each agent wants
to minimize the difference between its costs of production and its revenues. (The
difference between costs and revenues will hopefully be negative so that the prof-
its will be positive!) That is, the agent sells a quantity of product xk based on
minimizing the difference between:

• the cost of production fk(xk) for the quantity xk , minus
• the revenues xkλ

(ν), based on the current value of the dual variable, λ(ν).

13.6 Summary 517

The value of λ(ν) is the proposed tentative price per unit of production at the ν-th
iteration. For any given price λ(ν), each agent offers for sale an amount given by the
solution of (13.41). The solution of (13.41) maximizes the agent’s profit, that is,
revenues minus costs, for the given value of the dual variable. The price is adjusted
until the production summed across all agents equals the demand. (If we had made
the more “natural” choice of defining A and b to have all positive entries then the
dual variable would have been negative and the payment would have been minus
the value of the dual variable. We made the “unnatural” definition of negative
values in the entries of A and b so that the economic interpretation would not
involve the negative of the dual variable.)

At each iteration, the central purchaser adjusts the tentative prices based on com-
paring the sum of offered productions by the agents to the target value D. If there
is not enough production, then the price is raised for the next iteration to encour-
age more production. Conversely, if production exceeds the target then the price
is reduced in the next iteration to discourage production. At the optimum, when
the dual variable has converged to the Lagrange multiplier, this price encourages
just the right amount of production. This value is sometimes called the shadow
price [15, section 5.4.4]. Moreover, at the optimum, the “marginal cost of produc-
tion” for each agent, that is, the derivative of its cost function, is the same for all
agents. This idea can be generalized to other contexts. Further discussion of the
relation of duality to economic contexts can be found in [119, chapter 6].

13.5.4 Change in demand

Suppose that the demand changes from D to D + �D. By Corollary 13.10 or
Corollary 13.11, the sensitivity of the minimum of the problem to �D, evaluated
at �D = 0, is λ�. We can also use Corollary 13.10 to find the sensitivity of the
minimizer and Lagrange multipliers. (See Exercise 13.32.)

13.6 Summary

We have discussed descent directions for linear equality-constrained optimization
problems. Analysis of descent directions yielded optimality conditions, which in
turn led to algorithms. We also discussed sensitivity analysis. Finally, we discussed
solution of the least-cost production case study.

518 Algorithms for linear equality-constrained minimization

Exercises

Optimality conditions

13.1 Let A ∈ Rm×n and let Z ∈ Rn×n′ , n′ ≥ n − m, be a matrix with columns that form
a basis for the null space of A. Let b ∈ Rm and suppose that x̂ ∈ Rn satisfies Ax = b.
Define τ : Rn′ → Rn by:

∀ξ ∈ R
n′ , τ (ξ) = x̂ + Zξ.

(i) Show that S′ = S where:

S = {x ∈ R
n|Ax = b},

S
′ = {x̂ + Z�ξ |�ξ ∈ R

n′ }.
(Hint: First suppose that x ∈ S′ and show that this implies that x ∈ S. Then
suppose that x ∈ S and show that this implies that x ∈ S′.)

(ii) Show that τ is onto S. (See Definition A.25.)

(iii) Show that
∂τ

∂ξ
= Z .

13.2 Let A ∈ Rm×n, b ∈ Rm , and let f : Rn → R be partially differentiable with
continuous partial derivatives. Let Z be a matrix with columns that form a basis for the
null space of A.

(i) Let x̂ ∈ Rn and suppose that the reduced gradient at x̂ is non-zero. That is, suppose
that Z†∇ f (x̂) 	= 0. Show that �x = −Z Z†∇ f (x̂) is a descent direction for f at x̂ .
(Hint: Use Lemma 10.1 and Exercise 2.27.)

(ii) Suppose that Ax̂ = b. Show that A(x̂ + α�x) = b for any value of α, where �x
was specified in Part (i).

13.3 Consider the objective f : R2 → R defined by:

∀x ∈ R
2, f (x) = (x1 − 1)2 + (x2 − 3)2,

and the problem minx∈�2{ f (x)|Ax = b}.
(i) Find a matrix with columns that form a basis for the null space of the matrix A =[

1 1
]
. (Hint: See Exercise 12.4.)

(ii) Verify that x� =
[

3
−3

]
does not satisfy (13.5) for the problem minx∈�2{ f (x)|x1+

x2 = 0}.
(iii) Find a matrix with columns that form a basis for the null space of the matrix A =[

1 −3
]
.

(iv) Verify that x� =
[

3
−3

]
does satisfy (13.5) for the problem minx∈�2{ f (x)|x1 −

3x2 = 12}.

Exercises 519

13.4 Suppose that f : Rn → R is partially differentiable with continuous partial
derivatives, A ∈ Rm×n , and b ∈ Rm . Suppose that x� ∈ Rn is a local minimizer of the
problem:

min
x∈�n

{ f (x)|Ax = b}.
(i) Show that if A has linearly independent rows then there is at most one λ� that

satisfies (13.6) in Theorem 13.2.
(ii) Give an example of a problem where there there are multiple values that sat-

isfy (13.6) in Theorem 13.2.

13.5 Consider the objective f : R2 → R from Exercise 13.3 defined by:

∀x ∈ R
2, f (x) = (x1 − 1)2 + (x2 − 3)2,

and the problem minx∈�2{ f (x)|Ax = b}.
(i) Show that x� =

[
3

−3

]
does not satisfy (13.6) for the problem minx∈�2{ f (x)|x1 +

x2 = 0}. (You must show that no λ� exists that satisfies ∇ f (x�) + A†λ� = 0.)

(ii) Show that x� =
[

3
−3

]
does satisfy (13.6) for the problem minx∈�2{ f (x)|x1 −

3x2 = 12}. (You must find a λ� that satisfies ∇ f (x�) + A†λ� = 0.)

13.6 Show that

[
x�

λ�

]
=
[

2
2

−2

]
does not minimize the Lagrangian L : R2 × R → R

defined in (13.12):

∀x ∈ R
2,∀λ ∈ R,L(x, λ) = (x1 − 1)2 + (x2 − 3)2 + λ(x1 − x2).

13.7 Prove that the hypotheses of Corollary 13.4 imply the hypotheses of Theorem 13.3.

13.8 Recall the problem described in Exercise 3.11, having objective function f : R2 →
R and coefficient matrix and right-hand side defined by:

∀x ∈ R
2, f (x) = −2(x1 − x2)

2 + (x1 + x2)
2,

A = [
1 −1

]
,

b = [0].

The objective function is illustrated in Figure 13.10. From Exercise 3.11, we know that the
minimizer of the problem minx∈�2{ f (x)|x1 − x2 = 0} is x� = 0.

(i) Show that ∇2f (x�) is not positive semi-definite.
(ii) Show that ∇2f (x�) is positive definite on the null space N (A).
(iii) Show that x� = 0 and λ� = [0] satisfy the second-order sufficient conditions for

this problem.

520 Algorithms for linear equality-constrained minimization

Convex problems

13.9 Let x̂ ∈ Rn, A ∈ R1×n, A 	= 0, b ∈ R and consider the hyperplane:

{x ∈ R
n|Ax = b}.

Show that the Euclidean distance of x̂ to the closest point on the hyperplane is given by:

|Ax̂ − b|
‖A‖2

,

where ‖A‖2 =
√

AA† is the Euclidean norm of the (row vector) A. (Hint: for an arbitrary
point x ∈ Rn , one half of the square of the Euclidean distance from x to x̂ is given by the
function f : Rn → R defined by:

∀x ∈ R
n, f (x) = 1

2

∥∥x − x̂
∥∥2

2 .

Formulate the problem of minimizing f over values of x that lie in the set {x ∈ Rn|Ax =
b}. Write down the first-order necessary conditions; solve for the Lagrange multiplier
λ� ∈ R explicitly in terms of A, b, and x̂ ; and use this to evaluate

∥∥x − x̂
∥∥2

2.)

13.10 Consider the function f : R → R defined by:

∀x ∈ R, f (x) =
⎧⎨⎩ (x + 1)2, if x ≤ −1,

0, if −1 < x < 1,

(x − 1)2, if x ≥ 1,

together with the equality constraint Ax = b specified by A = [1] ∈ R1×1, b = [0] ∈ R1.
We consider:

• the problem minx∈�{ f (x)|Ax = b},
• the corresponding dual function, D : R → R ∪ {−∞} defined by:

∀λ ∈ R,D(λ) = inf
x∈�

L(x, λ),

and
• the problem of maximizing the dual function:

max
λ∈�

D(λ).

(i) Show that f is differentiable. (Hint: The function is defined in pieces and is con-
tinuous. On the interior of each piece, the function is either quadratic or constant
and so is differentiable. You only need to check that the derivatives match at the
boundaries of the pieces.)

(ii) Show that f is convex. (Hint: f is not twice differentiable, so you cannot use
the Hessian to determine convexity. You must either use the definition of a convex
function or rely on first derivative information.)

(iii) Find the minimizer of the problem minx∈�{ f (x)|Ax = b} by solving the first-
order necessary conditions. (Hint: the problem is convex so that the solution of the
first-order necessary conditions are sufficient for optimality.)

Exercises 521

(iv) Evaluate the dual function. (Hint: There are three cases that must be considered:
λ < 0, λ = 0, and λ > 0. Specify the functional form of the dual function for each
case.)

(v) What is the effective domain E of the dual function?
(vi) For each value of λ ∈ E, specify argminx∈� L(x, λ).
(vii) Is D differentiable at λ = 0?
(viii) What is the maximizer λ� of the dual function?
(ix) Does argminx∈� L(x, λ�) provide the minimizer of minx∈�{ f (x)|Ax = b}?

13.11 Consider the function f : R → R defined by:

∀x ∈ R, f (x) = exp(−x),

together with the equality constraint Ax = b specified by A = [1] ∈ R1×1, b = [0] ∈ R1.
We consider:

• the problem minx∈�{ f (x)|Ax = b},
• the corresponding dual function D : R → R ∪ {−∞} defined by:

∀λ ∈ R,D(λ) = inf
x∈�

L(x, λ),

and
• the problem of maximizing the dual function:

max
λ∈�

D(λ).

By Exercise 10.4 we know that the function f is convex.
(i) Find the minimizer of the primal problem minx∈�{ f (x)|Ax = b}.
(ii) Evaluate the dual function.
(iii) What is the effective domain E of the dual function?
(iv) Is the dual function differentiable on E? (Hint: Consider λ = 0 carefully. Does

minx∈� L(x, 0) exist?)

13.12 Consider the problem from Exercise 13.11, with objective function f : R → R

defined by:

∀x ∈ R, f (x) = exp(−x),

together with the equality constraint Ax = b specified by A = [1] ∈ R1×1, b = [0] ∈ R1.
We consider the problem minx∈�{ f (x)|Ax = b}, but form a penalized objective f + � fp
using the penalty function fp : R → R defined by:

∀x ∈ R, fp(x) = ‖Ax − b‖2
2 ,

with � = 1.
Consider the minimization in the definition of the corresponding dual function Dp :

R → R ∪ {−∞} defined by:

∀λ ∈ R,Dp(λ) = inf
x∈�

Lp(x, λ),

where Lp = L+ � fp and L is the Lagrangian. Also consider the problem of maximizing
the corresponding dual function Dp.

522 Algorithms for linear equality-constrained minimization

(i) Show that f + � fp is strictly convex.
(ii) Find the minimizer of the primal problem minx∈�{ f (x) + � fp(x)|Ax = b}.
(iii) What is the effective domain E of the dual function Dp?
(iv) Is the dual function Dp differentiable on E?

13.13 Prove the equality between the last two lines of (13.19) using the definition of
min. That is, prove that for a separable f : Rn → R, A ∈ Rm×n , and b ∈ Rm if
the problem minx∈�n

{∑n
k=1

(
fk(xk) + λ† Akxk

)}
has a minimum then each of the sub-

problems minxk∈�{ fk(xk) + λ† Akxk}, k = 1, . . . , n, have minima and:

min
x∈�n

{
n∑

k=1

(
fk(xk) + λ† Akxk

)}
=

n∑
k=1

min
xk∈�

{ fk(xk) + λ† Akxk},

where:

∀x ∈ R
n, f (x) =

n∑
k=1

fk(xk),

with fk : R → R, k = 1, . . . , n.

13.14 Consider the dual function D : R → R defined in (13.20), which is repeated here
for reference:

∀λ ∈ R,D(λ) = min
x∈�2

L(x, λ),

= min
x1∈�

{(x1 − 1)2 + λx1} + min
x2∈�

{(x2 − 3)2 − λx2}.

(i) Solve each of the two sub-problems explicitly as a function of λ.
(ii) Maximize the dual function using the results from the previous part.
(iii) For the value λ� that maximizes the dual, calculate the corresponding solutions of

the sub-problems.

Approaches to finding minimizers

13.15 ([70, exercise 13, section 10.10]) Let A ∈ Rm×n , b ∈ Rm , c ∈ Rn , and Q ∈ Rn×n

with Q symmetric.

(i) Suppose that Q is not positive semi-definite on the null space N (A) = {�x ∈
Rn|A�x = 0}. Also suppose that there is at least one solution to Ax = b. Show
that the problem minx∈�n { 1

2 x†Qx + c†x |Ax = b} is unbounded below. (Hint: By
assumption, there exists x̂ ∈ Rn such that Ax̂ = b and there exists �x ∈ Rn such
that A�x = 0 and �x†Q�x < 0. Find a descent direction for the objective at x̂
and show that moving in this direction maintains feasibility.)

(ii) Prove that x� is a local minimizer of the problem minx∈�{ 1
2 x†Qx + c†x + d|Ax =

b} if and only if it is a global minimizer.

Exercises 523

13.16 Consider the equality-constrained problem minx∈�2{ f (x)|Ax = b} where f :
R2 → R is defined by:

∀x ∈ R
2, f (x) = 1

2
x†Qx + c†x,

with:

Q =
[

2 −1
−1 2

]
, c =

[
4
3

]
,

and the coefficient matrix and right-hand side of the constraints is specified by:

A = [
1 −1

]
, b = [0].

Eliminate variables to solve the problem by finding a matrix with columns that form a basis
for the null space of A.

13.17 In this exercise we consider the coefficient matrix A defined in (13.25).

(i) Prove that if Q ∈ Rn×n is positive definite and A ∈ Rm×n has linearly indepen-
dent rows, then A defined in (13.25) is non-singular. (Hint: Recall that A defined

in (13.25) is non-singular if

([
x
λ

]
	= 0

)
⇒
([

Q A†

A 0

] [
x
λ

]
	= 0

)
.)

(ii) Prove that if Q ∈ Rn×n is positive definite on the null space N (A) = {�x ∈
Rn|A�x = 0} and A ∈ Rm×n has linearly independent rows, then A defined
in (13.25) is non-singular.

(iii) Perform block factorization of A defined in (13.25) into block LDL† factors, as-
suming that any inverses you need exist.

(iv) Calculate the inverse of A defined in (13.25).

13.18 In this exercise we consider the solvability of Problem (13.1).

(i) Give an example, with n = 2 and m = 1, of Problem (13.1) with linear objective
such that there is no minimum.

(ii) Give an example, with n = 2 and m = 1, of Problem (13.1) with convex quadratic
(but non-linear) objective such that there is no minimum.

13.19 Consider Problem (2.13) from Section 2.3.2.2, where f : R2 → R, was defined
by:

∀x ∈ R
2, f (x) = (x1 − 1)2 + (x2 − 3)2,

but change the coefficient matrix and right-hand side to:

A =
[

1 −1
1 −1

]
, b =

[
0
0

]
.

(i) Show that the first-order necessary conditions (13.26) of this problem have many
solutions; however, all of them specify the same value of x�.

(ii) Use the MATLAB function quadprog to solve the problem. Use initial guess

x (0) =
[

3
−5

]
.

524 Algorithms for linear equality-constrained minimization

13.20 Consider again the problem minx∈�2{ f (x)|Ax = b} from Exercise 13.16 where
f : R2 → R is defined by:

∀x ∈ R
2, f (x) = 1

2
x†Qx + c†x,

with:

Q =
[

2 −1
−1 2

]
, c =

[
4
3

]
,

and the coefficient matrix and right-hand side of the constraints is specified by:

A = [
1 −1

]
, b = [0].

(i) Solve the problem from Exercise 13.16 by solving the first-order necessary condi-
tions (13.26).

(ii) Use the MATLAB function quadprog to solve the problem. Use initial guess

x (0) =
[

3
−5

]
.

13.21 Consider Problem (13.1) in the case that the objective f : R2 → R is quadratic of
the form:

∀x ∈ R
2, f (x) = 1

2
x†Qx + c†x,

with:

Q =
[

1 0
0 0

]
, c =

[
1
1

]
,

and the coefficient matrix and right-hand side specified by:

A = [
0 1

]
, b = [

1
]
.

(i) Calculate the minimum and describe the set of minimizers of this problem by solv-
ing the first-order necessary conditions (13.26).

(ii) Use the MATLAB function quadprog to solve the problem. Use initial guess

x (0) =
[

3
−5

]
.

13.22 Consider again the problem minx∈�2{ f (x)|Ax = b} from Exercise 13.16 where
f : R2 → R is defined by:

∀x ∈ R
2, f (x) = 1

2
x†Qx + c†x,

with:

Q =
[

2 −1
−1 2

]
, c =

[
4
3

]
,

Exercises 525

and the coefficient matrix and right-hand side of the constraints is specified by:

A = [
1 −1

]
, b = [0].

Solve the problem from Exercise 13.16 by dual maximization. Start with λ(0) = [0]. Use
a step-size of α(ν) = 0.5 at each iteration.

13.23 Let f : Rn → R be convex, A ∈ Rm×n , and b ∈ Rm . Consider the algorithm
described in Section 13.3.2.3 for solving minx∈�n { f (x)|Ax = b}. Suppose that at iteration
ν we have that: ∥∥∥∇ f (x (ν)) + A†λ(ν)

∥∥∥ = ε f /ρ,

Ax (ν) = b,

and that we also know that the minimizer, x�, of the problem satisfies
∥∥x� − x (ν)

∥∥ ≤ ρ.
Suppose that the problem has a minimum, f � say, and show that it satisfies:

f � ≥ f (x (ν)) − ε f .

(Hint: Use Theorem 2.6 and take a similar approach to that used in Section 10.2.5, noting
that:

[∇ f (x (ν))]
†
(x� − x (ν)) = [∇ f (x (ν)) + A†λ(ν) − A†λ(ν)]

†
(x� − x (ν)),

= [∇ f (x (ν)) + A†λ(ν)]
†
(x� − x (ν)) − [λ(ν)]

†
A(x� − x (ν)),

= [∇ f (x (ν)) + A†λ(ν)]
†
(x� − x (ν)).)

13.24 Let A ∈ Rm×n, b ∈ Rm, f : Rn → R be convex and twice partially differentiable
and let x (ν) ∈ Rn and λ(ν) ∈ Rm . Suppose that Ax (ν) = b and that we use (13.35) to cal-

culate a step direction

[
�x (ν)

�λ(ν)

]
. However, suppose that during the course of factorization

of A we modify pivots in the top left-hand block of A to be positive so that the system we
solve is actually: [

Q A†

A 0

] [
�x (ν)

�λ(ν)

]
= −

[∇ f (x (ν)) + A†λ(ν)

0

]
,

with Q ∈ Rn×n positive definite. (We may still need to use a special purpose factoriza-
tion routine to deal with the indefinite system.) Prove that the resulting direction corre-
sponds to a descent direction for the reduced function, assuming that the reduced gradi-
ent, Z†∇ f (x (ν)), is non-zero, where Z is a matrix with columns that form a basis for the
null space of A. (Hint: By the second block row, A�x (ν) = 0. Moreover, the direc-
tion �x (ν) corresponds to the direction �ξ(ν) in the variables of the reduced function with
�x (ν) = Z�ξ(ν). Substitute into the first block row, multiply through by Z† and note that
Z† A† = 0. Show that the direction �ξ(ν) is a descent direction for the reduced function.)

13.25 Consider the objective (10.9), defined by:

∀x ∈ R
2, f (x) = 0.01(x1−1)4+0.01(x2−3)4+(x1−1)2+(x2−3)2−1.8(x1−1)(x2−3),

526 Algorithms for linear equality-constrained minimization

constraint matrix and vector defined by:

A = [
1 −1

]
, b = [8],

and the problem minx∈�2{ f (x)|Ax = b}.
(i) Using:

ξ (1) = [5.34],

x (1) =
[

8.34
0.34

]
,

apply one iteration of the null space basis algorithm in Section 13.3.2.2 to calculate
x (2). Use the Armijo rule to calculate the step-size, with the step-size halved until
the Armijo condition (10.14) is satisfied.

(ii) Using

x (1) =
[

5.4953
−2.5047

]
,

λ(1) = [−20.4168],

apply one iteration of the Newton Raphson method described in Section 13.3.2.3
to calculate x (2) and λ(2). Use a step-size of α(1) = 1.

(iii) Using λ(1) = [−10], apply one outer iteration of the dual maximization algorithm
in Section 13.3.2.4 to calculate x (1) and λ(2).
For the inner iterations, use the MATLAB function fminunc, with default options

and initial guess of x (0) =
[

1
3

]
to find the minimizer, x (1), of the problem on the

right-hand side of (13.36) for ν = 1. You will have to write a MATLAB M-file to
evaluate the Lagrangian.
For the outer iteration, use a step-size of α(1) = 1 to calculate λ(2).

(iv) Use the MATLAB function fmincon with default parameters and initial guess

x (0) =
[

1
3

]
to solve the problem. You will have to write a MATLAB M-file to

evaluate f .

Sensitivity

13.26 Show by an example that the conclusion of Corollary 13.10 may fail to hold if
the base-case constraint matrix does not have linearly independent rows. (Hint: Consider
A : R → R2×1 and b : R → R2 defined by:

∀χ ∈ R, A(χ) =
[

χ
−χ

]
,

∀χ ∈ R, b(χ) = 0.)

Exercises 527

13.27 Let Q : Rs → Rn×n , c : Rs → Rn , A : Rs → Rm×n , and b : Rs → Rm be
partially differentiable with continuous partial derivatives. Suppose that Q(0) is symmetric
and that it is positive definite on the null space of A(0). Let f : Rn × Rs → R be defined
by:

∀x ∈ R
n,∀χ ∈ R

s, f (x) = 1

2
x†Q(χ)x + c(χ)†x .

Consider the minimization problem:

min
x∈�n

{ f (x;χ)|A(χ)x = b(χ)},

where χ is a parameter.

(i) Write down the first-order necessary conditions for minimizing this problem. (Use
the form of the first-order necessary conditions in (13.6) (13.7).) Use the sym-
bols x�(χ) and λ�(χ) for the solution of the first-order necessary conditions at a
particular value of χ .

(ii) Show that the first-order necessary conditions have a unique solution for χ = 0.

(iii) Suppose that A(0) has linearly independent rows and calculate the sensitivity of the
solution of the first-order necessary conditions to χ , evaluated at χ = 0.

(iv) Show that the sensitivity calculated in Part (iii) is equivalent to (13.38).

13.28 Prove Corollary 13.11 using the proof of Corollary 13.10.

13.29 Consider Problem (2.13) from Section 2.3.2.2:

min
x∈�2

{ f (x)|Ax = b},

where f : R2 → R, A ∈ R1×2, and b ∈ R1 were defined by:

∀x ∈ R
2, f (x) = (x1 − 1)2 + (x2 − 3)2,

A = [
1 −1

]
,

b = [
0
]
.

Suppose that the equality constraints changed from Ax = b to Ax = b − γ .

(i) Calculate the sensitivity of the minimum to γ , evaluated at γ = [0].

(ii) Solve the changed problem explicitly for γ = [0.1] and compare to the estimate
provided by the sensitivity analysis.

(iii) Repeat the previous part for γ = [1].

528 Algorithms for linear equality-constrained minimization

Solution of the least-cost production case study

13.30 Consider Problem (12.4) in the case that n = 3, D = 5, and the fk are of the form:

∀x1 ∈ R, f1(x1) = 1

2
(x1)

2 + x1,

∀x2 ∈ R, f2(x2) = 1

2
× 1.1(x2)

2 + 0.9x2,

∀x3 ∈ R, f3(x3) = 1

2
× 1.2(x3)

2 + 0.8x3.

Solve it in four ways.

(i) By eliminating x1 using a matrix with columns that form a basis for the null space
of the coefficient matrix and solving the resulting unconstrained problem.

(ii) By solving the first-order necessary conditions in terms of the minimizer x� and the
Lagrange multipliers λ�.

(iii) By maximizing the dual function. Use λ(0) = [0] as the initial guess and perform
steepest ascent with step-size equal to 0.5 at each iteration.

(iv) Using the MATLAB function quadprog, with initial guess x (0) =
[

0
0
0

]
.

13.31 Repeat Exercise 13.30, but modify each fk to be:

∀x1 ∈ R, f1(x1) = 0.01(x1)
3 + 1

2
(x1)

2 + x1,

∀x2 ∈ R, f2(x2) = 0.01(x2)
3 + 1

2
× 1.1(x2)

2 + 0.9x2,

∀x3 ∈ R, f3(x3) = 0.01(x1)
3 + 1

2
× 1.2(x3)

2 + 0.8x3.

For Part (iii), at each outer iteration, perform two inner iterations. For outer iteration
ν = 0, use x (0) = 0 as initial guess. For each subsequent outer iteration, use the value of x
from the previous outer iteration as initial guess. For Part (iv), use the MATLAB function
fmincon with default parameters and initial guess given by the solution of Exercise 13.30.

13.32 Consider the problem specified in Exercise 13.30 but suppose that the demand
changes to D + �D, where �D = 0.1.

(i) Estimate the change in the minimum and minimizer of the problem using the sen-
sitivity analysis results from Corollaries 13.10 and 13.11.

(ii) Calculate the change in the minimum and minimizer of the problem by explicitly
re-solving the problem.

(iii) Compare the results.

14

Algorithms for non-linear equality-constrained
minimization

In this chapter we will develop algorithms for constrained optimization problems
of the form:

min
x∈�

f (x),

where the feasible set S is of the form:

S = {x ∈ R
n|g(x) = 0},

and f : Rn → R and g : Rn → Rm . That is, we consider problems of the form:

min
x∈�n

{ f (x)|g(x) = 0}. (14.1)

We call the constraints non-linear equality constraints although, strictly speak-
ing, it would be more precise to refer to them as non-affine equality constraints.

We first investigate properties of non-linear equality constraints in Section 14.1
and then derive optimality conditions in Section 14.2. The optimality conditions
we present are not as sharp as possible, but illustrate the general flavor of these
results. The optimality conditions will help us to develop algorithms for non-linear
equality-constrained minimization problems in Section 14.3. We will discuss the
sensitivity of the optimum to changes in the constraints in Section 14.4. Finally, in
Section 14.5, we discuss solution of the power system state estimation with zero
injection buses case study that was introduced in Section 12.2.

The key issues discussed in this chapter are:

• the notion of a regular point of constraints as a characterization of suitable
formulations of non-linear equality constraint functions,

• linearization of non-linear constraint functions and consideration of the null
space of the coefficient matrix of the linearized constraints and the associated
tangent plane,

529

530 Algorithms for non-linear equality-constrained minimization

• optimality conditions and the definition and interpretation of the Lagrange mul-
tipliers,

• algorithms that seek points that satisfy the optimality conditions,
• use of a merit function in the trade-off between satisfaction of constraints and

improvement of the objective, and
• duality and sensitivity analysis.

14.1 Geometry and analysis of constraints

In the case of linear equality constraints, the convexity of the feasible set allowed
us to consider step directions such that successive iterates were always feasible.
That is, for linear equality constraints we can move from a feasible point along a
line segment that lies entirely within the feasible set, choosing the direction of the
segment to decrease the objective. This motivated the approach of first finding a
feasible point and then seeking step directions that kept the iterates feasible and
also reduced the value of the objective.

With non-linear constraints, movement from a feasible point along a line seg-
ment will usually take us outside the feasible set. Nevertheless, our approach to
non-linear equality constraints will be to linearize the equality constraint function
about a current iterate. We must explore conditions under which this linearization
yields a useful approximation to the original feasible set. The notion of a regu-
lar point, to be introduced in Section 14.1.1, provides such a condition. We relate
the notion of a regular point of constraints to the notion of the tangent plane to
the feasible set in Section 14.1.2 and then discuss the relationship to non-linear
equality-constrained optimization in Section 14.1.3.

14.1.1 Regular point

14.1.1.1 Definition

When we use {x ∈ Rn|g(x) = 0} to represent a feasible set S, we usually have
many choices of functions g : Rn → Rm such that S = {x ∈ Rn|g(x) = 0}.
However, some choices of g may be more suitable than others. In this section we
characterize suitability of g in terms of the following.

Definition 14.1 Let g : Rn → Rm . Then we say that x� is a regular point of the equality
constraints g(x) = 0 if:

(i) g(x�) = 0,
(ii) g is partially differentiable with continuous partial derivatives at x�, and
(iii) the m rows of the Jacobian J (x�) of g evaluated at x� are linearly independent.

�

14.1 Geometry and analysis of constraints 531

Notice that for g(x) = 0 to have any regular points, we must have that m ≤ n,
since otherwise the m rows of J (x�) cannot be linearly independent. Furthermore,
if x� is a regular point, then we can find a sub-vector ω ∈ Rm of x such that the

m × m matrix
∂g
∂ω

(x�) is non-singular.

14.1.1.2 Example

Consider the function g : R3 → R defined by:

∀x ∈ R
3, g(x) = (x1)

2 + (x2 + 1)2 − x3 − 4,

and the point x� =
⎡⎣ 1

3
13

⎤⎦. We observe that x� is a regular point of the equality

constraints g(x) = 0 because:

(i) g(x�) = (1)2 + (3 + 1)2 − 13 − 4 = 0,
(ii) g is partially differentiable with Jacobian J : R3 → R1×3 defined by ∀x ∈

R3, J (x) = [
2x1 2(x2 + 1) −1

]
, which is continuous at x�, and

(iii) the one row of the Jacobian J (x�) of g evaluated at x� is given by J (x�) =[
2 8 −1

]
, which is a linearly independent row.

14.1.2 Tangent plane

14.1.2.1 Definition

We make the following generalization of Definition 13.1.

Definition 14.2 Let g : Rn → Rm be partially differentiable and x� ∈ Rn . Let J :
Rn → Rm×n be the Jacobian of g. Suppose that x� is a regular point of the constraints
g(x) = 0. Then the tangent plane to the set S = {x ∈ Rn|g(x) = 0} at the point x� is the
set T = {x ∈ Rn|J (x�)(x − x�) = 0}. �

The tangent plane at x� is the set of points such that the first-order Taylor approxi-
mation to g about x� has value 0.

14.1.2.2 Example

Consider again the function g : R3 → R defined in Section 14.1.1.2. Figure 14.1
shows the set S = {x ∈ R3|g(x) = 0} and the tangent plane T to the set S at the

regular point x� =
⎡⎣ 1

3
13

⎤⎦, which is shown as a bullet •. Geometrically, the tangent

plane T to S at x� is tangential to the surface of the set S at the point x�.

532 Algorithms for non-linear equality-constrained minimization

5

0

5

5

0

5
10

0

10

20

30

40

50

60

x1

•

x2

x2
Set S

Tangent plane T

Fig. 14.1. Tangent plane
T to a set S in R3 at the

point x� =
[

1
3

13

]
∈ S,

shown as a •.

14.1.2.3 Affine case

In the case that g is affine of the form:

∀x ∈ R
n, g(x) = Ax − b,

then J (x) = A and the tangent plane T at a point x� ∈ S = {x ∈ Rn|Ax = b} is
given by:

T = {x ∈ R
n|A(x − x�) = 0},

= {x ∈ R
n|Ax = b}, since Ax� = b at a feasible point x�,

= S.

That is, in the case that g is affine, the tangent plane T is the same as the feasible
set S = {x ∈ Rn|g(x) = 0}. In contrast, for non-linear g such as shown in
Figure 14.1, the tangent plane T to {x ∈ Rn|g(x) = 0} at x� is usually different to
S = {x ∈ Rn|g(x) = 0}.

14.1.2.4 Discussion

The concept of a regular point will help us to characterize when the tangent plane T

is a good approximation to the feasible set S, as Exercises 14.1 and 14.3 show. Ex-
ercises 14.1 and 14.3 suggest that if x� is a regular point of the constraints g(x) = 0
then:

• in the vicinity of x�, the tangent plane T = {x ∈ Rn|J (x�)(x − x�) = 0} is a
good approximation to the feasible set S = {x ∈ Rn|g(x) = 0},

• a slight perturbation to g will not qualitatively change the feasible set S = {x ∈
Rn|g(x) = 0}, and

14.1 Geometry and analysis of constraints 533

• a slight perturbation to the Jacobian J will not qualitatively change the tangent
plane T = {x ∈ Rn|J (x�)(x − x�) = 0}.

If x� is a regular point of the constraints g(x) = 0 then we cannot have situations
such as occur in the following.

• Exercise 14.1, Part (iv), where the tangent plane is not qualitatively similar to
the feasible set. In Exercise 14.1, Part (iv), S is a line, while T is the whole of
the x2–x3 plane.

• Exercise 14.1, Parts (ii) and (iv), where a slight perturbation of g produces a
qualitative change in the feasible set S = {x ∈ Rn|g(x) = 0}.

• Exercise 14.1, Parts (ii) and (iv), where a slight perturbation of the Jacobian
produces a qualitative change in the tangent plane T = {x ∈ Rn|J (x�)(x−x�) =
0} significantly.

The definition of regular point provides one characterization of useful equality
constraint functions that is straightforward conceptually and has an intuitive in-
terpretation in terms of the tangent plane. In particular, if x� is a regular point of
constraints g, then our intuitive geometric notion of the tangent plane to the set S at
x� coincides with the definition of tangent plane in terms of the analytic represen-
tation of the feasible set. With suitable continuity and differentiability assumptions
on f and g, the behavior of the objective f of Problem (14.1) for points in the set
T and near to x� will be similar to the behavior of the objective for points in the set
S and near to x�. (See Exercise 14.2.)

If x� is not a regular point of g(x) = 0 then the tangent plane can still be defined
geometrically as discussed in [70, section 10.2]; however, we cannot conveniently
represent it using the Jacobian of g. In particular, the set T = {x ∈ Rn|J (x�)(x −
x�) = 0}will not necessarily have the geometric characteristics of the tangent plane
if x� is not a regular point of the constraints. Since we generally have considerable
flexibility in choosing g to represent a feasible set S, we should try to pick g so that
feasible points are all regular points.

It is possible to define conditions that are weaker than regularity that also lead
to characterizations of useful equality constraint functions; however, we will not
discuss these alternative constraint qualifications except in the context of non-
linear inequality constraints in Chapter 19. Constraint qualifications are discussed
at length in [6, chapter 5].

534 Algorithms for non-linear equality-constrained minimization

0 1 2 3 4 5 6 7 8 9 10
2

1 5

1

0 5

0

0 5

1

1 5

2

x1

x2

x�

S

T

Fig. 14.2. Feasible set S

(shown solid), feasible
point x� ∈ S (shown as
◦), and tangent plane T

(shown dashed) to S at x�.

14.1.3 Relationship of regular points to seeking minimizers

14.1.3.1 Movement from a feasible point

Suppose we are at a point x� that we think may be a minimizer for Problem (14.1).
As we have remarked, if the equality constraints are non-linear, then moving along
a straight line segment away from x� will in general take us outside the feasible set
S. However, by Exercise 14.2, if x� is a regular point of g(x) = 0 then we will be
close to a point that satisfies the constraints so long as we stay near to x� and in the
tangent plane T = {x ∈ Rn|J (x�)(x − x�) = 0}. Since T is defined by a linear
equality, then by Exercise 2.36 it is convex and we can move along straight line
segments within T. Our basic approach to finding a step direction will be to move
along straight line segments within T that are descent directions for the objective
f . Of course, for non-convex S as in Exercise 14.3, by moving along a direction
�x that lies in T we will actually move at least slightly outside the feasible set S.

For example, consider n = 2 and f : R2 → R defined by:

∀x ∈ R
2, f (x) = −x1. (14.2)

Let g : R2 → R be defined by:

∀x ∈ R
2, g(x) = x2 − sin(x1). (14.3)

Consider Problem (14.1) for these choices of objective and constraint function.
Figure 14.2 shows, as a solid curve, part of the set of points S satisfying the equality

constraint g(x) = 0. Also shown is the feasible point x� =
[

5
− sin(5)

]
, shown

as a ◦, and the tangent plane T to the feasible set S at x�, shown dashed. For this
problem, the tangent plane T is only a good approximation to the feasible set for
points that are close to x�.

14.1 Geometry and analysis of constraints 535

0 1 2 3 4 5 6 7 8 9 10
2

1 5

1

0 5

0

0 5

1

1 5

2

x1

x2

Fig. 14.3. Feasible points
(shown as ◦) and direc-
tions along the correspond-
ing tangent planes (shown
as arrows).

We will need to numerically calculate directions that keep us in the set T. Be-
cause of finite precision in our calculations, we may not exactly be able to calculate
a direction that allows us to stay in T. We will instead move in a direction that lies
in a set such as T̃ = {x ∈ Rn| J̃ (x�)(x − x�) = 0}, where J̃ : Rn → Rm×n

is an approximation to the Jacobian J of g. Regularity ensures that the errors so
introduced will not destroy the qualitative resemblance between T, T̃, and S.

14.1.3.2 Descent

Figure 14.3 shows the same feasible set as illustrated in Figure 14.2. Several fea-
sible points are illustrated by the ◦. The arrows emanating from the feasible points
illustrate directions along the tangent plane at these points. Moving in the direction
of the arrows takes us outside the feasible set but reduces the value of the objective
defined in (14.2). Evidently, the candidate point x� illustrated in Figure 14.2 is not
optimal for this problem. (In fact, the problem is unbounded below.)

In summary, each arrow in Figure 14.3 points in a direction such that the objec-
tive is decreasing. Paths that stay on the feasible set must follow the curve g(x) = 0
and therefore depart from straight line segments. Nevertheless, we will consider
paths that, at least initially, follow the tangent plane T.

14.1.3.3 Movement from an infeasible point

If we are at a point x̂ that does not satisfy the equality constraints, we will still
be interested in moving towards a minimizer of the problem. In this case, we will
try to more nearly satisfy the constraints and, at the same time, try to decrease
the value of the objective. We will again approximate the feasible points by a set
defined in terms of linear equalities. In this case, we define an approximation to

536 Algorithms for non-linear equality-constrained minimization

0 1 2 3 4 5 6 7 8 9 10
2

1 5

1

0 5

0

0 5

1

1 5

2

x1

x2

x̂

S

T

Fig. 14.4. An infeasible
point x̂ 	∈ S and approxi-
mation T (shown dashed)
to feasible set S (shown
solid).

the feasible set of the form ([70, section 12.7]):

T = {x ∈ R
n|J (x̂)(x − x̂) = −g(x̂)}. (14.4)

This definition is consistent with the previous definition of tangent plane in that we
are still specifying the set of points such that the first-order Taylor approximation
to g about x̂ has value 0. Linear independence of the rows of J and proximity
of x̂ to the feasible set will again guarantee that this set closely approximates the
feasible set in the vicinity of x̂ .

Figure 14.4 again shows, as a solid curve, part of the feasible set S of points
satisfying the equality constraint g(x) = 0. Also shown is an infeasible point

x̂ =
[

5
−1.5

]
and the set T defined according to (14.4), shown dashed. In this

particular case, the set T is tangential to the feasible set S; however, in general this
is not the case. (See Exercise 14.5.)

14.1.3.4 Linear constraints

If g is affine as in Section 14.1.2.3 and g(x�) = 0 then T = {x ∈ Rn|A(x−x�) = 0}
is the same as the feasible set, whether or not A has linearly independent rows.
However, if A does not have linearly independent rows then the constraints are
redundant and a slight perturbation of the coefficient matrix will make the linear
approximation to the feasible set empty, as Exercise 14.1, Part (ii) shows. That is,
as discussed in Section 2.7.6, a minimization problem with redundant constraints is
ill-conditioned. This difficulty can be avoided if calculations are performed in exact
arithmetic or if redundant constraints are detected and discarded [70, section 4.7].

14.2 Optimality conditions 537

14.1.3.5 Formulation of problems

Whether or not g is affine, we should try to formulate the problem to avoid linear
dependence of the rows of J since redundant constraints make the problem ill-
conditioned. In large-scale problems this is not always easy because the constraints
may be compiled from several sources and it may be difficult to identify which
constraints are linearly dependent, particularly when there are representation errors
in the coefficients used to specify the constraints. This issue is discussed at length
in [45, section 6.5.4.1].

Furthermore, we may be able to avoid non-linear equality constraints in some
cases. Exercise 14.6 explores this for the problem having objective defined in (14.2)
and constraint defined in (14.3). (See also Exercise 14.9.)

14.2 Optimality conditions

In Section 14.2.1, we discuss first-order necessary conditions (or FONC) for
non-linear equality-constrained problems. Second-order sufficient conditions (or
SONC) are discussed in Section 14.2.2.

14.2.1 First-order necessary conditions

In Section 14.2.1.1 we analyze the first-order necessary conditions, showing the
relationship to the Lagrangian in Section 14.2.1.2 and to the corresponding linearly
constrained problem in Section 14.2.1.3. We present a geometric interpretation of
the necessary conditions in Section 14.2.1.4 and an example in Section 14.2.1.5.

14.2.1.1 Analysis

We have the following.

Theorem 14.1 Consider Problem (14.1) and a point x� ∈ Rn. Suppose that:

(i) f is partially differentiable with continuous partial derivatives,

(ii) x� is a regular point of the equality constraints g(x) = 0. That is:

(a) g(x�) = 0,

(b) g is partially differentiable with continuous partial derivatives, and

(c) the m rows of the Jacobian J (x�) of g evaluated at x� are linearly inde-
pendent.

Then if x� is a local minimizer of Problem (14.1) then:

∃λ� ∈ R
m such that ∇ f (x�) + J (x�)

†
λ� = 0. (14.5)

538 Algorithms for non-linear equality-constrained minimization

Proof (See Exercise 14.7 and [11, section 3.1][70, section 10.3][84, section 4.5.1].)
�

As in the linear equality-constrained case, the vector λ� is again called the vector
of Lagrange multipliers for the constraints g(x) = 0. Sometimes we will refer
to:

∇ f (x�) + J (x�)
†
λ� = 0, (14.6)

g(x�) = 0, (14.7)

as the first-order necessary conditions (or FONC) for the solution of a non-linear
equality-constrained problem, although, strictly speaking, the first-order necessary
conditions also include the other items in the hypothesis of Theorem 14.1.

14.2.1.2 Lagrangian

Recall Definition 3.2 of the Lagrangian. For Problem (14.1) the Lagrangian L :
Rn × Rm → R is defined by:

∀x ∈ R
n,∀λ ∈ R

m,L(x, λ) = f (x) + λ†g(x).

As in the linear case, we can reproduce the first-order necessary conditions (14.6)–
(14.7) by setting the gradients of L with respect to x and λ, respectively, equal to
zero.

14.2.1.3 Relationship to linearly constrained problems

The condition (14.5) is the same as the corresponding first-order condition for the
linearly constrained problem:

min
x∈�n

{ f (x)|J (x�)(x − x�) = 0}, (14.8)

which is obtained by replacing the feasible set S by the tangent plane T to S at
the minimizer x�. (See Exercise 14.8.) Regularity of the constraints, in addition to
the hypotheses for the linear case, ensures that (14.5) characterizes the necessary
conditions in the non-linear equality-constrained case. Unlike in the linear case, the
assumption of regularity is important to ensure that there are Lagrange multipliers
satisfying (14.5). (See Exercises 14.9 and 14.10.)

14.2.1.4 Geometric interpretation

In the linear equality-constrained case, we interpreted the first-order necessary con-
ditions as requiring that the feasible set be a subset of the tangent plane to the con-
tour set of the objective. We said that the contour set of f was tangential to the
feasible set at x�. In the non-linear equality-constrained case, we can similarly in-
terpret (14.5) as requiring that the feasible set and the contour set be tangential at
x�.

14.2 Optimality conditions 539

14.2.1.5 Example

As with the linear equality-constrained case, it is possible for x� to satisfy the
first-order necessary conditions (14.6)–(14.7) and yet not be a local minimizer of
Problem (14.1). For example, as in the example in Section 13.1.2.6, if the objective
is non-convex then a maximizer can satisfy the necessary conditions.

Recall that if the objective is convex and the constraints are linear equality con-
straints, then the first-order conditions are both necessary and sufficient. This is
because the problem is then convex, as discussed in Section 13.2.

In the case of non-linear equality constraints, however, we may have an objective
f : Rn → R that is convex on Rn , but have a non-convex feasible set. In this case,
and unlike the case of linear equality constraints, the necessary conditions are not
sufficient in the absence of additional assumptions. For example, consider the case
of Problem (14.1) with n = 2 and m = 1 and:

∀x ∈ R
2, f (x) = 1

2
(x1)

2 + 1

2
(x2)

2, (14.9)

∀x ∈ R
2, g(x) = 1

4
(x1)

2 + (x2)
2 − 1. (14.10)

The circular contour sets of f together with the set of points in S = {x ∈ Rn|g(x) =
0} are shown in Figure 14.5. The contour sets of f are circles with center 0, while
the feasible set S is illustrated by the heavy ellipse. There are four points that
satisfy the first-order necessary conditions.

• Two of the points are x� =
[

0
1

]
and x�� =

[
0

−1

]
, both with Lagrange multi-

plier λ� = λ�� = − 1
2 , which corresponds to a minimum f � = 0.5 of the objective

over the feasible set. The points x� and x�� are illustrated with • in Figure 14.5.

• The other two points are x̂ =
[

2
0

]
and ˆ̂x =

[−2
0

]
, both with dual variables

λ̂ = ˆ̂
λ = −2, which corresponds to a maximum f̂ = 2 of the objective over the

feasible set. The points x̂ and ˆ̂x are illustrated with ◦ in Figure 14.5.

The feasible set and the contour set are tangential at the points that satisfy the
first-order necessary conditions. The tangent planes are shown as dashed lines.

In this example, m = 1 and the tangent planes to the objective and to the contour
set are coincident. For m > 1, at a regular point of the equality constraints satis-
fying the necessary conditions, the tangent plane to the feasible set will typically
be strictly contained in the tangent plane to the contour set as in the example in
Section 13.1.1.4.

In Section 14.2.2, we will discuss second-order sufficient conditions to ensure

540 Algorithms for non-linear equality-constrained minimization

3 2 1 0 1 2 3
3

2

1

0

1

2

3

x1

x2

x�

x��

ˆ̂x x̂

Fig. 14.5. Points x�, x��,
x̂ , and ˆ̂x that satisfy the
first-order necessary con-
ditions but which may or
may not be minimizers.

that we are at a minimum and so avoid points such as x̂ =
[

2
0

]
and ˆ̂x =

[−2
0

]
that satisfy the necessary conditions but which are not optimal.

14.2.2 Second-order sufficient conditions

14.2.2.1 Analysis

In the following theorem, we present sufficient conditions for a local minimizer of
Problem (14.1).

Theorem 14.2 Suppose that f : Rn → R and g : Rn → Rm are twice partially differen-
tiable with continuous second partial derivatives. Let J : Rn → Rm×n be the Jacobian
of g. Consider Problem (14.1) and points x� ∈ Rn and λ� ∈ Rm. Suppose that:

∇ f (x�) + J (x�)
†
λ� = 0,

g(x�) = 0,

∇2f (x�) +
m∑

�=1

λ�
�∇2g�(x

�) is positive definite on the null space:

N = {�x ∈ R
n|J (x�)�x = 0}. (14.11)

Then x� is a strict local minimizer of Problem (14.1).

Proof See [70, section 10.5] and Exercise 14.11. �

Compared to the first-order necessary conditions, the second-order sufficient
conditions (or SOSC) in addition require that:

14.3 Approaches to finding minimizers 541

• the objective and constraint functions are twice partially differentiable with con-
tinuous second partial derivatives, and

• x� and λ� satisfy (14.11).

In (14.11), the function ∇2
xxL : Rn × Rm → R defined by:

∀x ∈ R
n, ∀λ ∈ R

m,∇2
xxL(x, λ) = ∇2f (x) +

m∑
�=1

λ�∇2g�(x),

is called the Hessian of the Lagrangian. The condition (14.11) is analogous to the
corresponding condition in Corollary 13.4 for linear constraints and can be tested
similarly, but involves the Hessians of the equality constraint functions in addition
to the Hessian of the objective. (See Exercise 14.12.) It requires that the Hessian of
the Lagrangian evaluated at the minimizer and corresponding Lagrange multipliers,
∇2

xxL(x�, λ�), is positive definite on the null space N defined in the theorem. The
null space N is sometimes called the tangent subspace [70, section 13.1].

14.2.2.2 Example

Continuing with the example from Section 14.2.1.5, Exercise 14.13 confirms that
both of the minimizers of the problem satisfy the second-order sufficient conditions
but that both of the other points that satisfy the first-order necessary conditions do
not satisfy the second-order sufficient conditions.

14.3 Approaches to finding minimizers

In general, if the constraints are non-linear, we cannot expect to exactly satisfy
them. Moreover, even if we could find a feasible point, we cannot descend from
a feasible point along a straight line segment and remain feasible. Nevertheless,
we can consider algorithms that attempt to satisfy the first-order necessary condi-
tions or use step directions based on the Newton–Raphson update for solving the
first-order necessary conditions. In Section 14.3.1 we discuss solution of the first-
order necessary conditions and then in Section 14.3.2 we discuss solution by dual
maximization.

14.3.1 Solution of first-order necessary conditions

The most straightforward approach to finding a minimizer of Problem (14.1) is to
solve the first-order necessary conditions (14.6)–(14.7):

∇ f (x) + J (x)†λ = 0,

g(x) = 0,

542 Algorithms for non-linear equality-constrained minimization

which are n+m non-linear equations in n+m variables. In Section 14.3.1.1, we dis-
cuss the Newton–Raphson step direction to solve the non-linear equations (14.6)–
(14.7). We then then discuss step-size selection in Section 14.3.1.2, feasibility in
Section 14.3.1.3, and stopping criteria in Section 14.3.1.4.

14.3.1.1 Newton–Raphson step direction

The Newton–Raphson step direction to solve (14.6)–(14.7) is given by the solution
of: [∇2

xxL(x (ν), λ(ν)) J (x (ν))
†

J (x (ν)) 0

] [
�x (ν)

�λ(ν)

]
= −

[∇ f (x (ν)) + J (x (ν))
†
λ(ν)

g(x (ν))

]
.

(14.12)
As in Sections 13.3.1.3 and 13.3.2.3, this system is indefinite and an indefinite fac-
torization algorithm should be used. If the coefficient matrix in (14.12) is singular
then some of the pivots will have to be modified to make them positive. If J (x (ν))

has linearly independent rows for every iterate, however, we will not need to mod-
ify the pivots for the bottom right-hand block of the matrix. This will help us to
obtain a direction that brings us closer to satisfying the equality constraints. As dis-
cussed for the unconstrained case in Section 10.2.3.2, zero and negative pivots in
the top left-hand block should be modified to be positive to ensure that the step di-
rection �x (ν) is a descent direction for f + [λ(ν)]

†
g at x (ν). See [45, section 6.5.4.2]

for further comments on the modifications to the Hessian of the Lagrangian in this
case.

As in previous approaches to solving systems of non-linear equations, we can
approximate the coefficient matrix to reduce the amount of work compared to exact
solution of (14.12). For example, we can use a quasi-Newton update to build up an
approximation over several iterations or we can factorize an approximation of the
coefficient matrix. (See [70, section 14.7] for comments on maintaining a positive
definite approximation to the Hessian of the Lagrangian.) These approaches will,
in principle, inherit the corresponding convergence rates described for the solution
of non-linear equations.

Whether an exact or approximate solution to (14.12) is found, the update is then:[
x (ν+1)

λ(ν+1)

]
=
[

x (ν)

λ(ν)

]
+ α(ν)

[
�x (ν)

�λ(ν)

]
.

14.3.1.2 Selection of step-size

We must choose the step-size. In choosing a step-size α(ν), we cannot just seek
reduction in f because if we are far from satisfying the constraints then we may
have to accept an increase in f to obtain a feasible point or to become closer
to feasibility. That is, we must trade-off the tension between satisfaction of the
constraints and improvement in the objective.

14.3 Approaches to finding minimizers 543

A standard approach to this trade-off is to define a merit function [45, sec-
tion 6.5.3.3] φ : Rn → R of the form, for example:

∀x ∈ R
n, φ(x) = f (x) + � ‖g(x)‖2 , (14.13)

for some norm ‖•‖ and some � ∈ R++ and use a rule analogous to the Armijo rule
or variants to seek a step that leads to sufficient reduction in the merit function φ

at each iteration. Because the merit function combines the objective with a penalty
for constraint violation, there is a trade-off between improving the objective and
more closely satisfying the constraints. Unfortunately, the appropriate trade-off, as
represented by the value of �, is often difficult to decide on a priori. It may be
necessary to update � during the course of calculation. (See [11, section 4.2.1] for
related discussion and see [45, section 6.5.3.3] and [70, section 14.2] for several
different merit functions.)

Furthermore, as described in Section 3.3.1, the entries of g should be scaled
to ensure that “significant” violation of any constraint involves roughly the same
numerical value for each of the entries in the scaled constraint function. We will
discuss some of these issues in the context of the power system state estimation
with zero injection buses case study in Section 14.5.

A variant on the merit function approach is to replace the objective in Prob-
lem (14.1) with the merit function φ : Rn → R defined in (14.13) [70, sec-
tion 14.2]. In this case, the Newton–Raphson update will explicitly seek a direc-
tion that reduces the merit function. This approach is analogous to the augmented
Lagrangian. A drawback of using the merit function as the objective is that the
sparsity of the top left-hand block of the coefficient matrix in (14.12) may be spoilt
because of the terms due to the second derivative of � ‖g(x)‖2.

There are other approaches to trading off the tension between satisfying con-
straints and improving the objective including:

• a filter [36], where the step-size is selected to improve satisfaction of the con-
straints or the value of the objective or both at each iteration, and

• a watchdog [23], where the merit function is allowed to increase for a limited
number of iterations.

14.3.1.3 Feasibility

In the discussion so far we have assumed that the iterates will eventually become
close enough to being feasible to be useful. In some applications, we might want to
be able to terminate at any iteration with an iterate that is close to being feasible. In
this case, at each iteration we can first update x to reduce the objective or reduce a
merit function and then do a subsidiary search using an iterative technique to return
to the feasible set [70, section 11.4]. The hope is that the reduction in objective

544 Algorithms for non-linear equality-constrained minimization

is not negated by the movement necessary to restore feasibility. This approach
is used in the generalized reduced gradient algorithm, which has traditionally
been the most successful technique for dealing with non-linear constraints [45,
section 6.3][84, section 15.6]. The generalized reduced gradient code of Lasdon is
the most widely used [66].

14.3.1.4 Stopping criteria

We iterate until the first-order necessary conditions are satisfied to sufficient ac-
curacy. Comments on appropriate stopping criteria are presented in [45, sec-
tion 8.2.3]. Notice that we can only expect x (ν) to approximately satisfy g(x (ν)) =
0. Unless the second-order sufficient conditions hold or approximately hold, we
cannot be certain that we are at or close to a local optimum.

14.3.2 Dual maximization

Recall Definition 3.3 of the dual function. For Problem (14.1), the dual function
D : Rm → R ∪ {−∞} is defined by:

∀λ ∈ R
m,D(λ) = argmin

x∈�n
L(x, λ),

where L : Rn × Rm → R is the Lagrangian. Although the problem is not convex,
we can try to maximize the dual function. The following recursion can be used to
define the iterates:

x (ν) ∈ argmin
x∈�n

{ f (x) + [λ(ν)]
†
g(x)},

�λ(ν) = g(x (ν)),

λ(ν+1) = λ(ν) + α(ν)�λ(ν).

If f or g is non-quadratic then we will have to perform several inner iterations to
approximately minimize the Lagrangian for each outer iteration to update λ.

In general, we cannot guarantee that the maximum of the dual function equals
the minimum of the primal problem so that there can be a duality gap. Nevertheless,
by Theorem 3.13, the maximum of the dual is a lower bound for the minimum
of the primal problem and the solution of the dual may be a useful guide to the
solution of the primal. Moreover, under second-order sufficient conditions, the
primal value corresponding to the maximum of the dual is at least a local minimizer
of Problem (14.1) [70, section 13.1].

If there are a large number of variables and only a small number of constraints,
then solving the primal problem directly may be prohibitive computationally; how-
ever, if the objective is separable it may be feasible to solve the dual problem using

14.4 Sensitivity 545

parallel processing. Even if the resulting primal variables x do not satisfy the con-
straints in the primal problem, it may be possible to apply a heuristic that modifies
x to make them feasible. Furthermore, the bound in Theorem 3.13 can be incorpo-
rated into a stopping criterion.

14.4 Sensitivity

14.4.1 Analysis

In this section we will analyze a general and a special case of sensitivity analysis
for Problem (14.1). For the general case, we suppose that the objective f and
equality constraint function g are parameterized by a parameter χ ∈ Rs . That is,
f : Rn × Rs → R and g : Rn × Rs → Rm . We imagine that we have solved the
non-linear equality-constrained minimization problem:

min
x∈�n

{ f (x;χ)|g(x;χ) = 0}, (14.14)

for a base-case value of the parameters, say χ = 0, to find the base-case local
minimizer x� and the base-case Lagrange multipliers λ�. We now consider the
sensitivity of the local minimum of Problem (14.14) to variation of the parameters
about χ = 0.

As well as considering the general case of the sensitivity of the local minimum
of Problem (14.14) to χ , we also specialize to the case where only the right-hand
sides of the equality constraints vary. That is, we return to the special case where
f : Rn → R and g : Rn → Rm are not explicitly parameterized. However, we
now consider perturbations γ ∈ Rm and the problem:

min
x∈�n

{ f (x)|g(x) = −γ }. (14.15)

For the parameter values γ = 0, Problem (14.15) is the same as Problem (14.1).
We consider the sensitivity of the local minimum of Problem (14.15) to variation
of the parameters about γ = 0.

We have the following corollary to the implicit function theorem, Theorem A.9
in Section A.7.3 of Appendix A.

Corollary 14.3 Consider Problem (14.14) and suppose that the functions f : Rn ×Rs →
R and g : Rn × Rs → Rm are twice partially differentiable with continuous second
partial derivatives. Also consider Problem (14.15) and suppose that the functions f :
Rn → R and g : Rn → Rm are twice partially differentiable with continuous second

partial derivatives. Let J = ∂g
∂x

be the Jacobian of g. Suppose that x� ∈ Rn and

λ� ∈ Rm satisfy:

• the second-order sufficient conditions for Problem (14.14) for the base-case value of
parameters χ = 0, and

546 Algorithms for non-linear equality-constrained minimization

• the second-order sufficient conditions for Problem (14.15) for the base-case value of
parameters γ = 0.

In particular:

• x� is a local minimizer of Problem (14.14) for χ = 0, and

• x� is a local minimizer of Problem (14.15) for γ = 0,

in both cases with associated Lagrange multipliers λ�. Moreover, suppose that the rows
of the Jacobians J (x�) and J (x�; 0), respectively, are linearly independent so that x� is
a regular point of the constraints for the base-case problems.

Then, for values of χ in a neighborhood of the base-case value of the parameters χ = 0,
there is a local minimum and corresponding local minimizer and Lagrange multipliers
for Problem (14.14). Moreover, the local minimum, local minimizer, and Lagrange mul-
tipliers are partially differentiable with respect to χ and have continuous partial deriva-
tives in this neighborhood. The sensitivity of the local minimum f � to χ , evaluated at
the base-case χ = 0, is given by:

∂ f �

∂χ
(0) = ∂L

∂χ
(x�, λ�; 0),

where L : Rn × Rm × Rs → R is the parameterized Lagrangian defined by:

∀x ∈ R
n,∀λ ∈ R

m, ∀χ ∈ R
s,L(x, λ;χ) = f (x;χ) + λ†g(x;χ).

Furthermore, for values of γ in a neighborhood of the base-case value of the parameters
γ = 0, there is a local minimum and corresponding local minimizer and Lagrange
multipliers for Problem (14.15). Moreover, the local minimum, local minimizer, and
Lagrange multipliers are partially differentiable with respect to γ and have continuous
partial derivatives. The sensitivity of the local minimum to γ , evaluated at the base-case
γ = 0, is equal to λ�.

Proof See [34, theorem 2.4.4] and [70, section 10.7]. �

14.4.2 Discussion

As in the case of linear equality constraints, we can interpret the Lagrange mul-
tipliers as the sensitivity of the minimum to changes in γ . Again, this allows us
to trade-off the change in the optimal objective against the cost of changing the
constraint. The sensitivity result is also extremely useful if we must repeatedly
solve problems that differ only in the specification of γ because we can estimate
the changes in the minimum using sensitivity analysis. We can also estimate the
changes in the minimizer and Lagrange multipliers using sensitivity analysis of the
first-order necessary conditions. (See Exercise 14.19.)

14.5 Solution of the zero injection bus case study 547

14.4.3 Example

Consider Problem (2.14) from Section 2.3.2.2:

min
x∈�2

{ f (x)|g(x) = 0},

where f : R2 → R and g : R2 → R were defined by:

∀x ∈ R
2, f (x) = (x1 − 1)2 + (x2 − 3)2,

∀x ∈ R
2, g(x) = (x1)

2 + (x2)
2 + 2x2 − 3.

By Exercise 14.14, the minimizers and Lagrange multipliers of Problem (2.14)
satisfy the second-order sufficient conditions and the minimizers are regular points
of the constraints. If the equality constraint changes to g(x) = −γ , where γ = 0.1,
then we can use Corollary 14.3 to approximate the change in the minimum by
0.1λ�.

14.5 Solution of power system state estimation with zero injection buses case
study

In this section, we solve the power system state estimation with zero injection
buses case study from Section 12.2. We recall the problem in Section 14.5.1, de-
scribe algorithms to solve it in Section 14.5.2, and sketch sensitivity analysis in
Section 14.5.3.

14.5.1 Problem

Recall Problem (12.9):

min
x∈�n

{ f (x)|g(x) = 0},

where f : Rn → R and g : Rn → Rm were defined in (12.7) and (12.8), respec-
tively:

∀x ∈ R
n, f (x) =

∑
�∈�

(g̃�(x) − G̃�)
2

2σ 2
�

,

∀x ∈ R
n, g(x) = (g�(x))�∈�0 .

14.5.2 Algorithms

In this section we discuss the Newton–Raphson step direction, the merit function
and step-size, and observability.

548 Algorithms for non-linear equality-constrained minimization

14.5.2.1 Newton–Raphson step direction

The most straightforward way to solve this problem is to seek a solution of the
necessary conditions (14.6)–(14.7) using the Newton–Raphson step direction given
by the solution of (14.12) or some approximation to it that ensures that a descent
direction is found for f + [λ(ν)]

†
g. Possible approximations to the coefficient

matrix for the Newton–Raphson step direction include:

• using the fast-decoupled or other approximations to the Jacobian of the power
flow equations, as in the discussion of the solution of the power flow equations
in Section 8.2.4.2, and

• using the Gauss–Newton or Levenberg–Marquandt approximation to the Hes-
sian of the Lagrangian, as in the discussion of the state estimation problem in
Section 11.2.3.2.

14.5.2.2 Merit function and step-size

Recall that f consists of (half of) the sum of squares of terms each of which rep-
resent a measurement error for measurement � divided by the standard deviation
σ� of the measurement error. Consequently, each term has expected value of 1 if
evaluated at the true value of the voltage angles and magnitudes in the system. (See
Exercise 11.8.)

On the other hand, the terms in g represent real and reactive power values that
are exactly equal to zero when evaluated at the true value of the voltage angles
and magnitudes in the system. In Section 12.2.1.3, we discussed incorporating
the zero injection bus measurement equations into the objective by assigning them
measurement errors that were smaller than the typical measurement error standard
deviation for the measurements. We will take this approach here.

In particular, we can use the merit function φ defined in (14.13) with the L2

norm ‖•‖2 and a value of penalty coefficient � that is somewhat larger than the
inverse of the square of a typical real and reactive power measurement error stan-
dard deviation. We can interpret the merit function as being a penalized objective,
as discussed in Section 12.2.1.3, that uses modest values of the penalty coeffi-
cient. The step-size should be selected to ensure sufficient reduction in the merit
function defined in (14.13) using a step-size rule such as the Armijo rule. (See
Exercise 14.20.)

14.5.2.3 Observability

As in Section 11.2, to ensure that there is a unique maximum likelihood estimator
there must be enough measurements and zero bus injections spread around the
system to make it observable.

14.6 Summary 549

14.5.3 Changes in measurement data

If the measurements change then we can estimate the change in the state using
sensitivity analysis. (See Exercise 14.20.)

14.6 Summary

In this chapter we considered the notion of a regular point of constraints as a
bridge between equality-constrained problems with linear constraints and equality-
constrained problems with non-linear constraints. We developed optimality condi-
tions, algorithms, and sensitivity analysis. We then applied one of the algorithms
to the power system state estimation with zero injection buses case study.

Exercises

Geometry and analysis of constraints

14.1 Consider the subset of R3 defined by the set of points that lie on the x3 axis. That
is, consider the set S = {x ∈ R3|x1 = x2 = 0}, which is a line. We are going to consider
whether, for various choices of g : R3 → Rm , the set {x ∈ R3|g(x) = 0} is a suitable
representation for the set S = {x ∈ R3|x1 = x2 = 0}. Consider each of the following
definitions of a constraint function, g : R3 → Rm :

(i) m = 2,∀x ∈ R3, g(x) =
[

x1
x2

]
,

(ii) m = 3,∀x ∈ R3, g(x) =
[

x1
x1
x2

]
,

(iii) m = 2,∀x ∈ R3, g(x) =
[

x1 + (x2)
2

x2

]
,

(iv) m = 2,∀x ∈ R3, g(x) =
[

(x1 − 1)2 + (x2)
2 − 1

(x1 + 1)2 + (x2)
2 − 1

]
.

For each of the functions g defined in (i) (iv) above, consider its Jacobian J :
R3 → Rm×3, and also consider the functions g̃ : R3 → Rm and J̃ : R3 → Rm×3

defined by:

∀x ∈ R
3, g̃(x) = g(x) − 10−6 ×

⎡⎢⎢⎣
1
2
...
m

⎤⎥⎥⎦ ,

∀x ∈ R
3, J̃ (x) = J (x) − 10−6 ×

⎡⎢⎢⎣
1 0 0
2 0 0
...

...
...

m 0 0

⎤⎥⎥⎦ .

550 Algorithms for non-linear equality-constrained minimization

The functions g̃ and J̃ are slight perturbations of g and J , respectively, that sim-
ulate the effects of small round-off or representation errors in the computational
representations of g and J .
Consider each of the alternative definitions of functions g defined in Parts (i) (iv)
above and their corresponding Jacobians J and the perturbations g̃ and J̃ of g and
J , respectively. For each alternative, answer the following.

(a) Determine whether x� =
[

0
0
0

]
is a regular point of the equality constraints

g(x) = 0.
(b) Show that the set {x ∈ R3|g(x) = 0} is the same as the set S = {x ∈

R3|x1 = x2 = 0}. That is, show that each point contained in {x ∈
R3|g(x) = 0} is an element of {x ∈ R3|x1 = x2 = 0} and vice versa.

(c) Describe in words the set T = {x ∈ R3|J (x�)(x − x�) = 0}.
(d) Describe in words the set S̃ = {x ∈ R3|g̃(x) = 0}.
(e) Describe in words the set T̃ = {x ∈ R3| J̃ (x�)(x − x�) = 0}.

(v) We are interested in whether the various sets T, S̃, and T̃ are “similar” to S =
{x ∈ R3|x1 = x2 = 0} in the sense of whether their qualitative appearance is only
slightly different from {x ∈ R3|x1 = x2 = 0}. Using this notion of “similar” and
your answers to the previous parts of the question, answer the following questions
for each of the functions g defined in (i) (iv) above:

(a) Is x� a regular point of the equality constraints g(x) = 0?
(b) Is T similar to S = {x ∈ R3|x1 = x2 = 0}?
(c) Is S̃ similar to S = {x ∈ R3|x1 = x2 = 0}?
(d) Is T̃ similar to S = {x ∈ R3|x1 = x2 = 0}?

Arrange your answers in a table with:

• rows corresponding to the functions g defined in Parts (i) (iv), and
• columns corresponding to the answers to Parts (v)(a) (v)(d).

14.2 Let g : Rn → Rm be partially differentiable with continuous partial derivatives
having Jacobian J : Rn → Rm×n . Suppose that x� is a regular point of the constraints
g(x) = 0. For convenience, suppose that the m × m matrix Ĵ consisting of the first m

columns of J (x�) is non-singular. Partition x� into x� =
[

ω�

ξ�

]
, where ω� ∈ Rm, ξ � ∈

Rn−m .

(i) Use the implicit function Theorem A.9 to show that there is a neighborhood P of
0 ∈ Rn−m and a partially differentiable function ω : Rn−m → Rm with continuous
partial derivatives such that:

• ω(0) = ω�,
• ω satisfies:

∀χ ∈ P, g

([
ω(χ)

ξ� + χ

])
= 0,

and

Exercises 551

• the partial derivative of ω satisfies:

∂ω

∂χ
(0) = −

[
Ĵ
]−1

K ,

where K = ∂g
∂ξ

(x�).

(ii) Consider the tangent plane to S = {x ∈ Rn|g(x) = 0} at x�. That is, consider
T = {x ∈ Rn|J (x�)(x − x�) = 0}. Let χ ∈ Rn−m , t ∈ [0, 1], and let x ′ =[

ω� − t
[
Ĵ
]−1

Kχ

ξ� + tχ

]
. Show that x ′ ∈ T.

(iii) Let χ ∈ P, t = [0, 1], and consider the points x ′ =
[

ω� − t
[
Ĵ
]−1

Kχ

ξ� + tχ

]
∈ T and

x ′′ =
[

ω(tχ)
ξ� + tχ

]
∈ S . Show that as t → 0, ‖x ′−x ′′‖

t → 0.

14.3 Consider the set S ∈ R2 defined by S = {x ∈ Rn|g(x) = 0}, where g : R2 → R

was defined in (14.3). That is:

∀x ∈ R
2, g(x) = x2 − sin(x1).

(i) Is x� = 0 a regular point of the equality constraint g(x) = 0?
(ii) Describe the set T = {x ∈ R|J (x�)(x − x�) = 0}, where J : Rn → Rm×n is the

Jacobian of g.
(iii) Consider the points in R2 in the vicinity of x� = 0. That is, consider x ∈ R2 such

that ‖x‖2 ≈ ‖x�‖2 = 0. For these points, is the set T = {x ∈ R2|J (x�)(x − x�) =
0} qualitatively a good approximation to the set S = {x ∈ R2|g(x) = 0}? A sketch
and qualitative assessment will suffice.

14.4 Consider g : R2 → R defined in (14.3). That is:

∀x ∈ R
2, g(x) = x2 − sin(x1).

For each of the following values of x�, write out explicitly the set of points in the set:

T = {x ∈ R
2|J (x�)(x − x�) = −g(x�)},

defined in (14.4).

(i) x� =
[

5
− sin(5)

]
.

(ii) x� =
[

5
−1.5

]
.

14.5 Consider g : R2 → R defined by:

∀x ∈ R
2, g(x) = (x2)

3 − (sin(x1))
3.

552 Algorithms for non-linear equality-constrained minimization

For each of the following values of x�, write out explicitly the set of points in the set:

T = {x ∈ R
2|J (x�)(x − x�) = −g(x�)},

defined in (14.4).

(i) x� =
[

5
− sin(5)

]
.

(ii) x� =
[

5
−1.5

]
.

14.6 Consider the optimization problem minx∈�2{ f (x)|g(x) = 0}, where f : R2 → R

and g : R2 → R were defined in (14.2) and (14.3), respectively, which we repeat here:

∀x ∈ R
2, f (x) = −x1,

∀x ∈ R
2, g(x) = x2 − sin(x1).

Consider the function τ : R → R defined by:

∀ξ ∈ R, τ (ξ) =
[

ξ
sin(ξ)

]
.

(i) Show that τ is onto S = {x ∈ R2|g(x) = 0}.
(ii) Show that the problem minξ∈� f (τ (ξ)), has a linear objective.
(iii) What can you say about the solution of minx∈�2{ f (x)|g(x) = 0}?

Optimality conditions

14.7 Use Exercise 14.2, Part (i), Theorem 10.3, and Theorem A.4 in Section A.6.1.1 of
Appendix A to prove Theorem 14.1.

14.8 Show that the first-order necessary conditions for Problem (14.8) yield (14.5).

14.9 ([11, example 1.2 of chapter 3]) Consider the problem minx∈�2{ f (x)|g(x) = 0}
where f : R2 → R and g : R2 → R2 are defined by:

∀x ∈ R
2, f (x) = x1 + x2,

∀x ∈ R
2, g(x) =

[
(x1 − 1)2 + (x2)

2 − 1
(x1 − 2)2 + (x2)

2 − 4

]
.

(i) Show that x� = 0 is the unique feasible point and (therefore) the unique mini-
mizer for the problem minx∈�2{ f (x)|g(x) = 0}. (Hint: Describe the set of points
satisfying each equality constraint g1(x) = 0 and g2(x) = 0 geometrically.)

(ii) Show that x� is not a regular point of the constraints g(x) = 0.
(iii) Show that no λ� exists satisfying (14.5).
(iv) Find another specification of the equality constraint functions that specifies the

same feasible set and such that x� is a regular point of the constraints g(x) = 0.

Exercises 553

14.10 Consider the problem minx∈�2{ f (x)|g(x) = 0} where f : R2 → R and g : R2 →
R3 are defined by:

∀x ∈ R
2, f (x) = x1 + x2,

∀x ∈ R
2, g(x) = Ax − b,

where A ∈ R3×2 and b ∈ R3 are defined by:

A =
[

1 0
1 0
0 1

]
, b = 0.

(i) Show that x� = 0 is the unique feasible point and (therefore) the unique minimizer
for the problem minx∈�2{ f (x)|g(x) = 0}.

(ii) Show that x� is not a regular point of the constraints g(x) = 0.
(iii) Show that there exists λ� ∈ R3 satisfying (14.5).
(iv) Specify the set of all λ� ∈ R3 satisfying (14.5).
(v) The constraints are redundant. Suppose we perturb the first row of A to be

[
1 χ

]
,

with χ 	= 0. How does the solution change?

14.11 Prove Theorem 14.2. (Hint: Suppose that x� is not a strict local minimizer, define
an appropriate sequence {�x (ν)}∞ν=1, apply Theorem A.7 in Section A.7.1 of Appendix A,
and consider an accumulation point �x� of the sequence.)

14.12 Consider Problem (14.1) in the case that g : Rn → Rm is affine. That is, there are
A ∈ Rm×n and b ∈ Rm such that:

∀x ∈ R
n, g(x) = Ax − b.

Assume that A has linearly independent rows. Show that Theorem 14.2 specializes to
Corollary 13.4.

14.13 In this exercise we consider the points that satisfy the first-order necessary condi-
tions for the problem from Sections 14.2.1.5 and 14.2.2.2.

(i) Show that all four points in Figure 14.5 satisfying the first-order necessary condi-
tions:

∇ f (x) + J (x)†λ = 0,

g(x) = 0,

are regular points of the constraints g(x) = 0.
(ii) Show that second-order sufficient conditions are satisfied by the two minimizers

and corresponding Lagrange multipliers of the example problem in Section 14.2.1.5.
(iii) Show that second-order sufficient conditions are not satisfied by the other points

that satisfy the necessary conditions of the example problem in Section 14.2.1.5.

554 Algorithms for non-linear equality-constrained minimization

14.14 Consider Problem (2.14), minx∈�2{ f (x)|g(x) = 0}, from Section 2.3.2.2, where
f : R2 → R and g : R2 → R were defined by:

∀x ∈ R
2, f (x) = (x1 − 1)2 + (x2 − 3)2,

∀x ∈ R
2, g(x) = (x1)

2 + (x2)
2 + 2x2 − 3.

(i) Find all the points satisfying the first-order necessary conditions of Problem (2.14):

∇ f (x�) + J (x�)
†
λ� = 0,

g(x�) = 0.

(ii) Show that all the points satisfying the first-order necessary conditions are regular
points of the constraints g(x) = 0.

(iii) Show that second-order sufficient conditions are satisfied by the minimizer and
corresponding Lagrange multipliers of Problem (2.14).

(iv) Show that second-order sufficient conditions are not satisfied by the other point that
satisfies the first-order necessary conditions of Problem (2.14).

14.15 Let f : Rn → R be partially differentiable with continuous partial derivatives.
Show that the steepest descent step direction −∇ f (x̂) for f at a point x̂ ∈ Rn satisfies:

−∇ f (x̂)∥∥∇ f (x̂)
∥∥

2

∈ arg min
�x∈�n

{∇ f (x̂)
†
�x | ‖�x‖2 = 1}.

(Hint: Solve the first-order necessary conditions for min�x∈�n {∇ f (x̂)
†
�x | ‖�x‖2 = 1}.

Show that the solution is unique, that it satisfies the second-order sufficient conditions so
that it is the only local minimizer, and use Theorem 2.1 to show that it must be the global
minimizer.)

Approaches to finding minimizers

14.16 Consider Problem (2.14), minx∈�2{ f (x)|g(x) = 0}, from Section 2.3.2.2, where
f : R2 → R and g : R2 → R were defined by:

∀x ∈ R
2, f (x) = (x1 − 1)2 + (x2 − 3)2,

∀x ∈ R
2, g(x) = (x1)

2 + (x2)
2 + 2x2 − 3.

Use the MATLAB function fmincon to solve this problem. You should write MATLAB M-
files to evaluate f, g,∇ f , and J .

14.17 ([11, figure 5.1.4].) Consider the problem minx∈�{ f (x)|g(x) = 0}, where f :
R → R and g : R → R are defined by:

∀x ∈ R, f (x) = x,

∀x ∈ R, g(x) = (x)2.

(i) Evaluate the dual function.

Exercises 555

(ii) Does the dual function have a maximum?

Sensitivity

14.18 Consider the example problem minx∈�2{ f (x)|g(x) = 0} from Section 14.2.1.5
with objective f : R2 → R and constraint function g : R2 → R defined by:

∀x ∈ R
2, f (x) = 1

2
(x1)

2 + 1

2
(x2)

2,

∀x ∈ R
2, g(x) = 1

4
(x1)

2 + 1

4
(x2)

2 − 1,

but suppose that the constraint changed to g(x) = −γ , where γ = [−0.1]. The base-case
minimum for γ = [0] was f � = 0.5. By Exercise 14.13, the minimizer x� ∈ R and
corresponding Lagrange multiplier λ� ∈ R satisfy the second-order sufficient conditions
and x� is a regular point of the constraints. Calculate the change in the minimum of the
problem in three ways:

(i) Using the sensitivity analysis in Corollary 14.3.
(ii) Explicitly re-solving the necessary conditions of problem.
(iii) Using the MATLAB function fmincon to solve the problem. You should write

MATLAB M-files to evaluate f, g,∇ f , and J .

14.19 Let f : Rn×Rs → R and g : Rn×Rs → Rm be twice partially differentiable with
continuous partial derivatives and consider the problem minx∈�n { f (x;χ)|g(x;χ) = 0},
where χ is a parameter. Let J : Rn ×Rs → Rm×n be the Jacobian of g. That is, J = ∂g

∂x .

Suppose that x� ∈ Rn and λ� ∈ Rm satisfy the second-order sufficient conditions for this
problem for the base-case value of parameters χ = 0. In particular x� is a local minimizer
of the problem for χ = 0 with associated Lagrange multipliers λ�. Moreover, suppose that
the rows of the Jacobian J (x�; 0) are linearly independent so that x� is a regular point of
the constraints for the base-case value of the parameters χ = 0.

(i) Write down the first-order necessary conditions for minimizing this problem. (Use
the form of the first-order necessary conditions in (14.6) (14.7).) Use the sym-
bols x�(χ) and λ�(χ) for the solution of the first-order necessary conditions at a
particular value of χ .

(ii) The first-order necessary conditions are non-linear simultaneous equations. Write
down the Jacobian corresponding to these equations.

(iii) Find the sensitivity of the solution of the first-order necessary conditions to χ j ,
evaluated at χ = 0.

Solution of power system state estimation with zero injection buses case study

14.20 Consider the system shown in Figure 12.6, which is repeated for convenience in
Figure 14.6. Using:

556 Algorithms for non-linear equality-constrained minimization

neutral

1 2

3

�
�	
�
∼

P̃1, Q̃1, Ũ1

P̃12, Q̃12

P̃13, Q̃13

P2 = 0, Q2 = 0

�
Y1

Y13 � �
� �Y3

l
o
a
d

Y23

�
�

Y2

Y12

Fig. 14.6. State estimation
problem with zero injec-
tion buses, repeated from
Figure 12.6.

• the parameters from Exercise 8.12, that is, assuming that the lines have π -equivalent
models with:
– shunt elements purely capacitive with admittance 0.01

√
−1 so that the combined

shunt elements are:

Y1 = Y2 = Y3 = 0.02
√

−1,

and
– series elements having admittances:

Y12 = (0.01 + 0.1
√

−1)
−1

,

Y23 = (0.015 + 0.15
√

−1)
−1

,

Y31 = (0.02 + 0.2
√

−1)
−1

,

• measurements of P̃1 = 1.0, Q̃1 = 0.5, and Ũ1 = 1.0, and
• measurement error standard deviation of σ� = 0.02 for all measurements,

perform the following.

(i) Solve (14.12) for the Newton Raphson step direction

[
�x (0)

�λ(0)

]
using a flat start as

the initial guess for x (0) and λ(0) = 0.

(ii) Calculate the next iterate

[
x (1)

λ(1)

]
. To select a step-size, α(0), apply the Armijo crite-

rion to the merit function defined in (14.13), using the L2 norm and � = (10/σ�)
2.

Initially set the step-size to one and halve it until the Armijo criterion (10.14) is
satisfied.

(iii) Use the MATLAB function fmincon to solve the problem. You should write
MATLAB M-files to evaluate f, g,∇ f , and J . Use a flat start as the initial guess.

(iv) Suppose that the measurements change to P̃1 = 1.05, Q̃1 = 0.55, and Ũ1 = 0.95.
Use sensitivity analysis of the first-order necessary conditions for this problem to
estimate the change in the estimated state from the solution to Part (iii).

(v) Use the MATLAB function fmincon to solve the change-case problem specified
in Part (iv) using as initial guess the solution from Part (iii).

(vi) Compare the results of the previous two parts.

Part V

Inequality-constrained optimization

15

Case studies of inequality-constrained optimization

In this chapter we will introduce six case studies:

(i) production, at least-cost, of a commodity from machines that have mini-
mum and maximum machine capacity constraints (Section 15.1),

(ii) optimal routing in a data communications network (Section 15.2),

(iii) least absolute value estimation (Section 15.3),

(iv) optimal margin pattern classification (Section 15.4),

(v) choosing the widths of interconnects between latches and gates in inte-
grated circuits (Section 15.5), and

(vi) the optimal power flow problem in electric power systems (Section 15.6).

The first and third case studies will draw from the previous formulations in Sec-
tions 12.1 and 9.1, respectively. The sixth case study combines the formulations
from Sections 15.1 and 6.2. These three case studies will be introduced briefly,
concentrating on the extensions from the previous formulations. They further il-
lustrate the idea of incremental model development. The second, fourth, and fifth
case studies introduce new material and will be developed in more detail. All six of
these case studies will turn out to be optimization problems with both equality and
inequality constraints. The first three have linear constraints, while the last three
have non-linear constraints. Transformations will be applied to the fourth and fifth
to deal with the non-linear constraints.

15.1 Least-cost production with capacity constraints

This case study generalizes the least-cost production case study from Section 12.1.

559

560 Case studies of inequality-constrained optimization

15.1.1 Motivation

Recall the least-cost production case study discussed in Section 12.1. For that
problem we ignored the minimum and maximum machine capacity constraints in
order to formulate it as equality-constrained Problem (12.4), which we repeat here:

min
x∈�n

{ f (x)|Ax = b} .
That is, we ignored the inequality constraints. We noted that if we found a solu-
tion of Problem (12.4) that happened to also satisfy the minimum and maximum
machine capacity constraints, then the solution was optimal for the formulation
that includes these inequality constraints. In this section, we will consider the case
where the solution of Problem (12.4) does not satisfy all the minimum and max-
imum machine capacity constraints so that these inequality constraints must be
considered explicitly [8, section 11.9].

15.1.2 Formulation

15.1.2.1 Objective

As in Section 12.1, we assume that there are n machines with total cost of produc-
tion f : Rn → R defined by:

∀x ∈ R
n, f (x) =

n∑
k=1

fk(xk).

That is, f is additively separable. (See Definition A.23.)

15.1.2.2 Equality constraints

As in Section 12.1, the n machines face the production constraint (12.3), which we
repeat here:

D =
n∑

k=1

xk .

We represented these constraints in the form Ax = b with A = −1† ∈ R1×n and
b = [−D] ∈ R1.

15.1.2.3 Inequality constraints

In this case study we also explicitly include the minimum and maximum machine
capacity constraints of the form (12.2) for each machine:

∀� = 1, . . . , n, x� ≤ x� ≤ x�.

We summarize these constraints by writing x ≤ x ≤ x , where x ∈ Rn and x ∈ Rn

are constant vectors with �-th entries x� and x�, respectively.

15.1 Least-cost production with capacity constraints 561

15.1.2.4 Problem

We write the complete problem as:

min
x∈�n

{ f (x)|Ax = b, x ≤ x ≤ x}. (15.1)

We are seeking the minimum value of f over x in Rn such that the sum
∑n

k=1 xk

equals D and such that x ≤ x ≤ x . (As discussed in Section 12.1, we will not
consider the extension of this problem to the case where we also allow machines
to be switched off.)

15.1.3 Changes in demand and capacity

As in the least-cost production case study in Section 12.1, demand will change over
time. Consequently, it is important to be able to estimate the change in the costs
due to a change in demand from D to D + �D, say.

Moreover, if the capacity of a machine k changes or it fails then the correspond-
ing entries xk and xk of, respectively, x and x will change.

15.1.4 Problem characteristics

15.1.4.1 Objective

We noted in Section 12.1.4.1 that for machine k if xk > 0 then, for typical cost
functions, fk is convex on [xk, xk]. Exercise 15.1 explores convexity further for
Problem (15.1).

As in Section 12.1.2.5, we will assume that each function fk has been extrap-
olated to a function that is convex on the whole of R. Again, this is natural if fk
is specified on [xk, xk] as a quadratic polynomial with a positive quadratic coeffi-
cient.

15.1.4.2 Equality constraints

We have already discussed the equality constraint D =∑n
k=1 xk in Section 12.1.2.4.

15.1.4.3 Inequality constraints and the feasible region

As discussed in Section 12.1.2.4 and illustrated in Figure 12.2, the production con-
straint D =∑n

k=1 xk is a hyperplane in Rn . The lower and upper bound constraints
on x define a “box” in Rn . The intersection of the box with the equality constraint
restricts the feasible region to being a planar slice through the box. This is illus-
trated in Figure 15.1 for n = 3, D = 10, and:

x =
⎡⎣ 1

2
3

⎤⎦ , x =
⎡⎣ 4

5
6

⎤⎦ .

562 Case studies of inequality-constrained optimization

1
1 5

2
2 5

3
3 5

4

2

2 5

3

3 5

4

4 5

5

3

3 5

4

4 5

5

5 5

6

x1
x2

x3

Fig. 15.1. Feasible set for
least-cost production case
study described in Sec-
tion 15.1.4.3.

The planar slice is specified by the equality constraint D = ∑n
k=1 xk and is the

same as illustrated in Figure 12.2.

15.1.4.4 Solvability

By Exercise 15.1, Problem (15.1) is convex. As in our study of equality-constrained
optimization, we will find that for convex problems that possess a solution, there
are necessary and sufficient conditions for optimality that are based on first-order
derivative information only. However, it is certainly possible for there to be no
solution to Problem (15.1). For example, the feasible set can be empty as Exer-
cise 15.2 shows.

15.2 Optimal routing in a data communications network

This case study considers one aspect of the operation of a communications net-
work.

15.2.1 Motivation

This case study is based on [9, chapter 5] and assumes some familiarity with data
networks. We consider a communications network consisting of communications
links that join between nodes. Users desire to send data from origin nodes to des-
tination nodes over links between the nodes. Each link has a maximum capacity
to transmit data. Usually, several links are incident to each node.

We will assume that data is sent by users to the network in collections called
packets. For simplicity, each packet is assumed to consist of the same number of
bits; that is, the packets are of equal length.

15.2 Optimal routing in a data communications network 563

Time elapses between the arrival of each successive packet at an origin node.
This inter-arrival time between packets is assumed to be random, with exponen-
tial distribution [9, section 3.3.1]. The parameter of the exponential probability
distribution characterizing the inter-arrival times can differ from node to node, but
we assume that the underlying probability distributions of the inter-arrival times do
not vary over time. This allows us to consider the average traffic on each link due
to:

• the distributions of inter-arrival times, and

• a routing policy; that is, a decision process for choosing the links on which to
send the data.

There are a large number of issues relevant to a data communications network,
including: error correcting codes, acknowledgment of message receipt, initializa-
tion, synchronization of hardware, reliability, and the expansion of an existing net-
work. (See [9] for details.) We will concentrate on just one of these issues: choos-
ing the links along which to send each message from an origin to a destination
pair. We refer to the choice of links, with respect to a given criterion and for given
traffic levels between origin–destination pairs, as optimal routing. (We consider
one extension of optimal routing to include another issue in Exercise 15.4.) We
will discuss this problem as though it can be solved centrally; however, in practice
the algorithm must be decentralized [9, chapter 5].

We will see that our formulation of the objective of this problem only approx-
imately captures the criterion we discuss. Nevertheless, the objective is useful in
avoiding unsatisfactory routing decisions. As in the case of non-linear regression
discussed in Section 9.2.1.1, we might better refer to our problem as seeking satis-
ficing routing. As mentioned in Section 1.4.7, the word satisficing is a contraction
of “satisfying” and “sufficient” [109]. The routing will satisfy the constraints and
will (we hope) provide sufficiently good, although perhaps not optimal, routing.

Moreover, traffic levels in a network do in practice change over time, due to
patterns of human activity and link failures. We will avoid this issue by assuming
that the traffic levels are in quasi-steady state. In practice, the implication is that
we must occasionally update the routing as conditions change. We will consider
how changes in the conditions affect the solution.

Furthermore, we abstract away from the random nature of arrivals by assuming
that the variances of the traffic on the links are small enough so that the traffic flow
can be well-characterized by just its expected or average value. We will see that
this has implications for specifying the notion of the “capacity” of a link.

564 Case studies of inequality-constrained optimization

� �
� �

� �
� �

5 4

6 3

7 2

8 1

�����������

�
�

�
�

�
�

�
�

�
�

��

�
�
�
�
�
�
�
��

�
�

�

�
�

�

�
�
�
�
�
�
�
��

Fig. 15.2. Graphical rep-
resentation of a data com-
munications network with
eight nodes and 12 links.

15.2.2 Formulation

As with several of our previous case studies, we can represent the communications
network as a graph. An example network is shown in Figure 15.2. Each of the eight
nodes in Figure 15.2 is shown as a bullet •, while each of the 12 links is shown as
a line. As in previous case studies involving graphs, the typical number of links
is far less than in a complete graph. In the following sections, we will discuss
links, nodes, origin–destination pairs, paths, and then the variables, constraints,
and objective of the problem.

15.2.2.1 Links

Typical communication links are bi-directional. That is, they can transmit data
in both directions. We use a single line to represent the data connections in both
directions between the ends of each link, interpreting each line as symbolizing a
bi-directional link. We assume that the maximum capacity of a link is the same in
each direction, although the generalization to asymmetric links is straightforward.
(See Exercise 15.5.)

We write L for the set of all links in the network, where each link is repre-
sented by an ordered pair (i, j) of node numbers, with the first node i being the
transmitting node and the second node j being the receiving node. Since links
are bi-directional in our formulation, for each link (i, j) ∈ L, there is also a link
(j, i) ∈ L that can carry data in the opposite direction. For the data communica-
tions network represented in Figure 15.2, we have:

L = {(1, 8), (8, 1), (1, 2), (2, 1), (1, 3), (3, 1), (1, 6), (6, 1),

(2, 3), (3, 2), (2, 4), (4, 2), (2, 6), (6, 2), (3, 4), (4, 3),

(3, 6), (6, 3), (4, 5), (5, 4), (5, 6), (6, 5), (6, 7), (7, 6)}.
The capacity of link (i, j) is denoted by yi j ∈ R++ and represents the maximum
number of packets that can be transmitted per second on the link. Because of our

15.2 Optimal routing in a data communications network 565

assumption of symmetric link capacities, for each link (i, j) ∈ L, we have that
yi j = y ji .

15.2.2.2 Nodes

For our purposes, we can consider the nodes to have three roles, as follows.

• Users put data into the network at nodes. These nodes can be thought of as the
origins of data.

• A node switches arriving data onto one of the links incident to it.
• Users take data out of the network at nodes. These nodes can be thought of as

the destinations of data.

The equipment that performs these roles is called a router.

15.2.2.3 Origin–destination pairs

Some particular pairs of nodes represent origin–destination pairs. For example, a
user located nearby to node 7 might put data into the network at node 7 and desire
to transmit it to someone located near to node 5, so that node 7 is the origin for the
data and node 5 is the destination for the data.

Other users might wish to transmit data from node 2 to node 5. We assume that
there are m origin–destination pairs and write W for the set of all origin–destination
pairs. In our example, if (7, 5) and (2, 5) are the only origin–destination pairs then:

W = {(7, 5), (2, 5)},
with m = 2. In general, an origin–destination pair (�, �′) ∈ W might or might
not be joined directly by a link. In our example, neither of the origin–destination
pairs (7, 5) (2, 5) is joined directly by a link. If there is no link joining such an
origin–destination pair then it is necessary for the data between this pair to traverse
several successive links.

15.2.2.4 Paths

A collection of successive links that joins an origin–destination pair is called a
path. There will typically be several alternative paths joining between each origin–
destination pair. Consider again the traffic for the origin–destination pair (7, 5).
Since there is only one link incident to node 7, the data that is put into the network
at node 7 would be sent via that link, which joins node 7 to node 6. A routing
decision must then be made as to which link would receive the data from node 6.

Since the destination for the data is node 5 then a natural choice would be to
send the data along the link joining node 6 to node 5. However, if this link was
already experiencing considerable traffic then a different choice of links such as,
for example, from 6 to 3 to 4 to 5, might be used. Even if an origin–destination

566 Case studies of inequality-constrained optimization

pair were joined directly by a link, we still might want to consider several alternate
paths for routing between the origin–destination pairs to keep the flow on each link
to an acceptable level.

In summary, two paths for the origin–destination pair (7, 5) are:

• links (7, 6) and (6, 5), and
• links (7, 6), (6, 3), (3, 4), (4, 5).

For each origin–destination pair (�, �′) ∈ W, we write P(�,�′) for the set of all
allowable paths connecting � to �′. We index the paths with consecutive integers.
For example, for the origin–destination pair (7, 5) ∈ W, we will denote:

• the path consisting of links (7, 6) and (6, 5) as path 1, and
• the path consisting of links (7, 6), (6, 3), (3, 4), (4, 5) as path 2.

For the origin–destination pair (2, 5) ∈ W, we will denote:

• the path consisting of links (2, 4) and (4, 5) as path 3, and
• the path consisting of links (2, 3), (3, 4), (4, 5) as path 4.

We summarize these assignments by P(7,5) = {1, 2}, P(2,5) = {3, 4}.
We assign a different index k for each allowed path in the network and suppose

that there are n paths in all. In our example, if we have described all the allowable
paths then n = 4.

15.2.2.5 Variables

Since the inter-arrival times are random, then so will be the number of packets in
the network, the number of packets on any link, and the number of packets on any
path. To characterize the behavior of the network, we consider the expected or
average flow of packets and ignore variance of the distribution of flow.

We define xk, k = 1, . . . , n, to be the average flow of traffic, in packets per
second, on path k. This flow represents the average amount of flow for a particular
origin–destination pair that has been assigned to path k. We collect the set of all
traffic assignments for all origin–destination pairs together into a vector x ∈ Rn .

15.2.2.6 Equality constraints

Consider any origin–destination pair (�, �′) ∈ W. Let the input traffic arrival pro-
cess for origin–destination pair (�, �′) have expected rate of arrival of b(�,�′), in
packets per second. In general, we must choose how to share the traffic amongst
all the paths that join � to �′. In order that all the arriving traffic for each origin–
destination pair (�, �′) be transported, we must apportion the flow so that:

∀(�, �′) ∈ W,
∑

k∈�(�,�′)

xk = b(�,�′).

15.2 Optimal routing in a data communications network 567

In our example, the constraints for the origin–destination pairs (7, 5) and (2, 5) are,
respectively:

x1 + x2 = b(7,5),

x3 + x4 = b(2,5).

We collect the entries b(�,�′) for (�, �′) ∈ W into a vector b ∈ Rm . Also, define
A ∈ Rm×n to be the path to origin–destination pair incidence matrix. That is,
define:

∀(�, �′) ∈ W, ∀k = 1, . . . , n, A(�,�′)k =
{

1, if k ∈ P(�,�′),
0, otherwise.

The entries of A are either 1 or 0. In our example:

A =
[

1 1 0 0
0 0 1 1

]
,

b =
[

b(7,5)

b(2,5)

]
,

where the rows of A and the entries of b correspond to the origin–destination pairs
(7, 5) and (2, 5), respectively. With these definitions, we can write the equality
constraints as:

Ax = b. (15.2)

15.2.2.7 Objective

Discussion There are several criteria that could be used to define an objective func-
tion. Unlike the least-cost production case study in Sections 12.1 and 15.1, where
the cost of production depended on the amount of production, the operating cost of
a data network is generally relatively constant. In particular, the costs of operating
the network are relatively independent of the loading on routers and links.

In delivering service to customers, however, the quality of service depends on a
number of factors, including the delay between sending data and receiving it. In
some circumstances, we may be able to distinguish between very valuable service,
for which even short delays are intolerable, and less valuable service, for which
long delays may not be problematic. For example, some customers may have a
contract for high quality service while others may have subscribed to a service that
offers only best-effort with no guarantees for maximum delay.

In this case study we will assume that there is no such distinction between cus-
tomers. That is, we consider all customers equally and consider all traffic to have
equal priority. (While this may be a poor approximation to reality, it can be readily

568 Case studies of inequality-constrained optimization

• • •
� j �′

Fig. 15.3. A network with
an origin destination pair
joined by a path consisting
of two links.

generalized to the case of different traffic priorities, so long as the different traf-
fic types can be distinguished.) Our goal will be to minimize the average delay
experienced by the traffic in the network.

Delay The delay on a link depends on how much traffic is on the link. When the
traffic is nearly as large as the capacity of the link, the delay is longer. We say that
the link is congested.

It is difficult to obtain an analytic model of the delay in a network. The reason
is that the packets interact as they traverse the links, so that the analysis of their
statistics is complicated. For example, consider an origin–destination pair (�, �′)
that is joined by one path, which consists of two successive links (�, j) and (j, �′)
as shown in Figure 15.3.

We have assumed in our formulation that the inter-arrival time at the origin � is
exponentially distributed. The inter-arrival time at node j cannot be exponentially
distributed. The reason is that successive packets arriving at j must be separated
in time by at least the packet transmission time for the first link and this violates
the assumption of exponential distribution [9, section 3.6]. We could, in principle,
calculate the distribution of inter-arrival times at node j , but the situation becomes
more complicated as we try to analyze larger networks because of the interaction
between packets flowing over successive links.

In general, the probability distribution of the inter-arrival times of packets at
nodes is difficult to calculate analytically. Consequently the delay experienced
by packets is difficult to calculate analytically. (Under somewhat unrealistic as-
sumptions, the traffic on each link can be considered approximately independent
of every other link. This, together with several other assumptions, can be used
to calculate a delay function that is very similar to the objective we will develop.
See [9, chapter 3] for details.)

Congestion model As a proxy to calculating the delay experienced by the packets
in the network, we define a measure of the congestion on each link. For conve-
nience, we will develop a congestion measure for each link that is convex in the
flow on a link and assume that a reasonable proxy to the average delay experienced
by all the packets in the network is the sum of the congestion measure across all
the links.

Following [9, section 5.4], suppose that a link (i, j) ∈ L between nodes i and

15.2 Optimal routing in a data communications network 569

j has capacity yi j so that the expected flow yi j on this link can never exceed yi j .
In fact, since the instantaneous flow on the link actually varies from its expected
value yi j , it must be the case that the expected flow is always strictly less than
yi j . This will affect our formulation of the function representing congestion in this
section and also affect the formulation of the inequality constraints to be described
in Section 15.2.2.8.

Also suppose that when data is sent on the link, data is queued at the sending end
of a link until it is sent on the link. We will posit a congestion measure that depends
on the expected flow yi j through the link. In particular, consider the function φi j :
[0, yi j) → R+ defined by:

∀yi j ∈ [0, yi j), φi j (yi j) = yi j

yi j − yi j
+ δi j yi j , (15.3)

where:

• δi j is the sum of the processing delay and the propagation delay through the
router and link, and

• the term yi j

yi j−yi j
is due to queuing at the sending end of the link.

The rapid rise in the congestion function as the flow approaches the capacity mod-
els the increase in delay as capacity is reached. This rapid rise can be explained
in terms of the random arrival of packets. Even with high expected flow rates, be-
cause of random fluctuations, there will occasionally be times when there are no
packets in the queue and none on the link. Unfortunately, such “lost opportuni-
ties” are lost forever. Therefore, if the expected arrival rate for the link were to
equal the capacity of the link then the queue at the sending end of the link would
become arbitrarily long, with the result that the average queue length (and the av-
erage delay) would be unbounded. For expected flows less than the capacity, the
delay increases with increasing expected flow. The first term in the right-hand side
of (15.3) qualitatively captures these observations.

Flow The flow yi j on the link is equal to the sum of the flows on all the paths that
include link (i, j). We write F(i, j) for the set of paths that include link (i, j), so
that the flow yi j can be expressed as:

∀(i, j) ∈ L, yi j =
∑

k∈�(i, j)

xk .

Define a matrix C ∈ R�×n by:

∀(i, j) ∈ L, ∀k = 1, . . . , n,C(i, j)k =
{

1, if k ∈ F(i, j),
0, otherwise.

570 Case studies of inequality-constrained optimization

For each (i, j) ∈ L, let C(i, j) be the (i, j)-th row of C . Then the flow yi j can be
expressed as:

∀(i, j) ∈ L, yi j = C(i, j)x .

Moreover, let y ∈ R� be a vector with entries yi j , (i, j) ∈ L. (See Definition A.4.)
Then:

y = Cx .

Additive congestion We have assumed that the congestion measure for each link
can be added together to obtain an overall proxy for delay through the network. If
we let P = {y ∈ R�|0 ≤ yi j < yi j ,∀(i, j) ∈ L} then the objective φ : P → R can
be expressed as:

∀y ∈ P, φ(y) =
∑

(i, j)∈�
φi j (yi j). (15.4)

To understand this objective, notice that, for example, both of the paths for
origin–destination pair (7, 5) must use the link (7, 6). Flow on either of these
paths will contribute to congestion on link (7, 6).

Moreover, paths between various origin–destination pairs will typically have
some links in common. For example, recall that:

• path 3 consists of the links (2, 4), (4, 5), and
• path 4 consists of the links (2, 3), (3, 4), (4, 5),

and both of these paths are for the origin–destination pair (2, 5). Traffic on these
paths must share the capacity of the link (4, 5) with traffic on path 2, which consists
of links (7, 6), (6, 3), (3, 4), (4, 5) for origin–destination pair (7, 5). This means
that there will be an interaction between traffic between various origin–destination
pairs. The objective we have defined captures the issue that increasing the flow
on a path that is incident to a particular link will increase the average delay for all
paths incident to that link.

It is important to realize that the objective that we have defined does not exactly
capture the average delay due to the flows on the paths. It is a proxy to the average
delay that is designed to capture the qualitative dependence of average delay on the
choice of routing. It may be sufficiently accurate to provide guidance to avoid bad
routing decisions. That is, it facilitates finding satisficing solutions to the routing
problem [109]. An alternative objective is discussed in [9, section 5.4].

15.2.2.8 Inequality constraints and feasible set

All traffic flows must be non-negative. Therefore, we must also include the non-
negativity constraints:

x ≥ 0.

15.2 Optimal routing in a data communications network 571

Since the capacity of each link (i, j) ∈ L is yi j , the instantaneous flow on link
(i, j) can never exceed yi j . Consequently, the average flow can never exceed yi j ,
suggesting constraints of the form:

∀(i, j) ∈ L, yi j ≤ yi j .

However, as discussed in Section 15.2.2.7, the objective is unbounded if any yi j

were to equal yi j , so we must limit the values of the flows yi j with constraints of
the form:

∀(i, j) ∈ L, yi j < yi j .

We use the strict inequality because if the assigned flow were to equal the capacity
then the congestion function would be unbounded.

To represent these strict inequality constraints explicitly in terms of x , we note
that:

∀(i, j) ∈ L, yi j =
∑

k∈�(i, j)

xk,

= C(i, j)x .

If we define y ∈ R� to be a vector with entries yi j , (i, j) ∈ L then we can write
the strict inequality constraints as:

Cx < y. (15.5)

The inequality constraints for the problem therefore specify a set of the form:

S = {x ∈ R
n|x ≥ 0,Cx < y}.

15.2.2.9 Problem

The optimization model for optimal routing is:

min
x∈�n

{ f (x) |Ax = b, x ≥ 0,Cx < y } , (15.6)

where f : S → R is defined by:

∀x ∈ S, f (x) = φ(Cx),

=
∑

(i, j)∈�
φi j
(
C(i, j)x

)
. (15.7)

15.2.3 Changes in links and traffic

We can imagine that a link capacity might change due to, for example, failure
of equipment associated with the link or degradation of transmission conditions
in a medium. In the first case of equipment failure, we could imagine that the

572 Case studies of inequality-constrained optimization

link is completely removed from the network. Alternatively, a partial failure or a
communication degradation might reduce the capacity of the link but not remove
it from the network. Conversely, a link returning to service or an improvement
in transmission conditions would increase capacity. We would like to be able to
change the routing to respond to changes in link capacity.

Over time, we also expect that the traffic on the network would change. We
would also like to be able to change the routing to respond to changes in traffic.

15.2.4 Problem characteristics

15.2.4.1 Objective

The objective defined in (15.7) of the optimal routing problem is convex and dif-
ferentiable on S = {x ∈ Rn|x ≥ 0,Cx < y}, since it is the composition of a
linear function with the sum of functions φi j , which are themselves convex. (See
Exercise 15.6.) The objective becomes arbitrarily large as the flow on any link
approaches its capacity.

15.2.4.2 Equality constraints

The equality constraints are indexed by ordered pairs (�, �′) ∈ W. This differs
from our previous case studies where index sets were subsets of the integers. The
equality constraints are affine and the coefficient matrix consists of only zeros and
ones.

15.2.4.3 Inequality constraints

There are non-negativity constraints and also strict inequality constraints due to the
link capacities. The strict inequality constraints are indexed by the ordered pairs
(i, j) ∈ L. We discussed the potential difficulties with strict inequality constraints
in Section 2.3.3. We will see in Section 18.2, however, that because of the form of
the objective we can avoid explicit consideration of the strict inequality constraints.

15.2.4.4 Solvability

There may be no feasible solution if there is not enough capacity in the network.

15.3 Least absolute value estimation

This case study generalizes the multi-variate linear regression case study from Sec-
tion 9.1.

15.3 Least absolute value estimation 573

15.3.1 Motivation

Recall the multi-variate linear regression case study from Section 9.1. We trans-
formed that problem into a least-squares problem in Section 11.1.1. In particular,
the objective f : Rn → R was defined in Section 11.1.1 to be:

∀x ∈ R
n, f (x) = 1

2
‖Ax − b‖2

2 ,

where:

• A =
⎡⎢⎣ A1

...

Am

⎤⎥⎦ ∈ Rm×n ,

• A� =
[
ψ(�)† 1

] ∈ R1×n, � = 1, . . . , m,

• b =
⎡⎢⎣ b1

...

bm

⎤⎥⎦ ∈ Rm ,

• b� = ζ(�), and
• (ψ(�), ζ(�)) are the ordered pairs of independent and dependent variables for

trial �.

In some contexts, we may find the resulting solution is not robust to outliers in
the data. That is, the quadratic objective allows data from a single trial to signif-
icantly affect the resulting estimate of the affine function that best represents the
data.

For example, Figure 15.4 repeats the data from Figure 9.1, except that the data
for one of the trials, (ψ(6), ζ(6)), is significantly different, perhaps due to a gross
failure of a measurement device. This data point is an outlier; that is, it appears to
be inconsistent with the data from the other trials. The outlier significantly affects
the result of the least-squares problem. The least-squares fit to all of the points in
Figure 15.4, including the outlier, is shown by the thick line. This least-squares fit
is very different to the least-squares fit shown in Figure 9.1.

If we ignore the point (ψ(6), ζ(6)) then the least-squares fit to the rest of the
points is very different from the thick line. A least-squares fit to the rest of the
points is shown as the thin line in Figure 15.4. The two least-squares fits are very
different. That is, the least-squares fit is very sensitive to gross errors in individual
data points. (See Exercise 15.7.)

In these circumstances, we may prefer to use an objective that is less affected by
outliers. This provides the motivation for robust estimation [53]. One objective
that is used to reduce the effect of outliers involves the L1 norm of Ax − b instead
of the Euclidean norm. Instead of squaring the residuals e� = A�x − b�, as in the
least-squares problem, we take the absolute value of them. Outliers, which have

574 Case studies of inequality-constrained optimization

�

�

�
�

�
�

�
�

�
�

�
�

��

ψ

ζ

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

× (ψ(1), ζ(1))

×(ψ(2), ζ(2))
× (ψ(3), ζ(3))

×
(ψ(4), ζ(4))

× (ψ(5), ζ(5))

(ψ(6), ζ(6)) ×

× (ψ(7), ζ(7))
Fig. 15.4. The values of
(ψ(�), ζ(�)), including
an outlier, (shown as
×) and least-squares fit
(shown as a thick line).
The thin line shows the
least-squares fit if the
data point (ψ(6), ζ(6)) is
ignored.

large values of residual, will contribute relatively less to the objective when we use
the absolute value rather than the square of the residual.

15.3.2 Formulation

15.3.2.1 Unconstrained problem

Instead of the least-squares objective defined in Section 11.1.1, consider the L1

norm objective φ : Rn → R discussed in Exercise 11.6:

∀x ∈ R
n, φ(x) = ‖Ax − b‖1 ,

=
m∑

�=1

|A�x − b�|,

where A ∈ Rm×n and b ∈ Rm are as defined in Section 11.1.1 and A� is the �-th
row of A. That is, as in the least-squares problem:

A� = [
ψ(�)† 1

]
,

b =
⎡⎢⎣ b1

...

bm

⎤⎥⎦ .

We define an unconstrained problem:

min
x∈�n

φ(x). (15.8)

15.3 Least absolute value estimation 575

As we saw in Section 3.1.4.4, the objective of this problem is non-differentiable
because of the absolute values. There are techniques to treat non-differentiable
objectives [11, section 6.3] and, moreover, in Section 3.1.4.4, we described how
such an objective could be approximated by a smooth objective. However, we
will describe a transformation that preserves the problem formulation exactly and
removes the non-differentiability of the objective.

15.3.2.2 Transformation

Problem (15.8) can be transformed into an inequality-constrained problem in sev-
eral steps. As in Section 9.1.2.4, the residual, e�, for the �-th measurement, is
defined by:

∀� = 1, . . . , m, e� = A�x − b�.

Each absolute value of a residual can be obtained as:

|e�| = max{e�,−e�}, � = 1, . . . , m. (15.9)

We then use a similar approach to that used in Theorem 3.4 to evaluate the max-
imum in (15.9). In particular, by defining variables z�, � = 1, . . . , m, and linear
constraints:

z� ≥ e�, � = 1, . . . , m,

z� ≥ −e�, � = 1, . . . , m,

we can evaluate |e�| by observing that:

|e�| = min
z�∈�

{z�|z� ≥ e�, z� ≥ −e�}.
Then note that:

∀x ∈ R
n, φ(x) =

m∑
�=1

|A�x − b�|,

=
m∑

�=1

|e�|, where e� = A�x − b�,

=
m∑

�=1

min
z�∈�

{z�|z� ≥ e�, z� ≥ −e�}.

Combining these observations, we consider the transformed problem:

min
z∈�m ,x∈�n ,e∈�m

{1†z|Ax − b − e = 0, z ≥ e, z ≥ −e}. (15.10)

In (15.10), z ∈ Rm is a vector with entries z�, corresponding to the need to find
the maximum of e� and −e� for each � = 1, . . . , m. Exercise 15.8 explores the
equivalence between Problems (15.8) and (15.10).

576 Case studies of inequality-constrained optimization

15.3.3 Changes in the number of points and the data

We could imagine adding a new trial and recalculating the estimate of the least-
squares fit without starting from scratch. We can also imagine modifying the data
for a particular trial.

15.3.4 Problem characteristics

15.3.4.1 Objective

The objective of Problem (15.8) is non-differentiable. Transformation into Prob-
lem (15.10) by representing each absolute value using two inequality constraints
then yields a differentiable, in fact linear, objective.

15.3.4.2 Constraints

The “cost” of making the objective differentiable is that we have introduced a large
number of subsidiary constraints. There are m equality constraints and 2m inequal-
ity constraints in Problem (15.10), whereas Problem (15.8) was unconstrained.

15.3.4.3 Variables

We have also increased the number of variables, from n to n + 2m.

15.3.4.4 Solvability

Problem (15.8) has a minimum and consequently Problem (15.10) also has a min-
imum.

15.3.4.5 Discussion

If the number of trials m is extremely large then it may be unattractive to solve
Problem (15.10). In this case, we may prefer to, for example:

• solve Problem (15.8) using techniques of non-differentiable optimization [11,
section 6.3],

• approximate the objective of Problem (15.8) with a smooth function using the
approach described in Section 3.1.4.4, or

• use an iterative technique to successively approximate φ by smooth functions,
such as a sequence of least-squares objectives [45, section 4.2.3].

15.4 Optimal margin pattern classification

This case study considers the classification of, for example, images, into pre-
defined classes.

15.4 Optimal margin pattern classification 577

15.4.1 Motivation

There are many problems arising in pattern recognition and classification. In this
case study, we will consider the problem of distinguishing between two classes
of patterns on the basis of a linear decision function. This case study is based on
the discussion in [14] and [15, section 8.6.1]. A number of generalizations of this
problem are described in [15, chapter 8].

Geometrically, we seek a hyperplane that separates the two classes of patterns.
We assume that the patterns have been classified for us. That is, for each pattern
we know to which class it belongs. A generalization of this problem involves
clustering patterns into classes without prior knowledge of the classes.

In practice, we may have more than two classes of patterns. If there are more
than two classes then we can, in principle, use several classifiers to distinguish all
the classes.

15.4.2 Formulation

15.4.2.1 Classes and training set

For convenience, we label the two classes as class A and class B. We will consider
how to find the coefficients that specify a linear decision function in such a way as
to provide the best discrimination between classes A and B of patterns.

In particular, we assume that we have r representatives in our training set. Po-
tentially, r is very large. The training set is to be used to determine the best linear
decision function to separate the classes.

We index the representives in the training set as � = 1, . . . , r . The �-th repre-
sentative consists of two items:

• a pattern, namely a vector ψ(�) ∈ Rn−1, and
• a value ζ(�) ∈ {−1, 1}.
The value ζ(�) shows to which class the pattern belongs. In particular:

∀� = 1, . . . , r, ζ(�) =
{

1, if ψ(�) is of class A,
−1, if ψ(�) is of class B.

That is, for each pattern in the training set we know to which class it belongs. Fig-
ure 15.5 shows an example of a training set with n−1 = 2. Patterns ψ(1), . . . , ψ(4)

in the bottom half of the figure are of class A, while the patterns ψ(5), . . . , ψ(7)

in the top half of the figure are of class B. That is, ζ(1) = ζ(2) = ζ(3) = ζ(4) = 1
and ζ(5) = ζ(6) = ζ(7) = −1. The horizontal line in Figure 15.5 perfectly dis-
criminates between classes A and B. That is, the members of class A are all on
one side of the line and the members of class B are all on the other side of the line.
In general, a line that discriminates between the two classes may not be horizontal

578 Case studies of inequality-constrained optimization

�

� ψ1

ψ2

× ψ(1)

ψ(2) ×
× ψ(3)× ψ(4)

× ψ(5)
× ψ(6)

× ψ(7)

Fig. 15.5. Seven example
patterns and hyperplane
that separates them.

and, moreover, it may not even be possible to find a line that perfectly discriminates
between the two classes.

The vectors representing each pattern may have a very large number of entries.
That is, n − 1 may be very large. For example, a pattern might encode gray-scale
levels of pixels in an image and the number of pixels could be millions or more.

15.4.2.2 Feature space

In a variation on this formulation, the patterns ψ(�) are transformed versions of
the �-th original image. That is, the original images are transformed into a feature
space that extracts features that involve multiple pixels, such as the presence of
horizontal lines in the image [14]. For the purposes of our discussion, it does
not matter whether we think of the patterns as being “raw” images or transformed
images in the feature space; however, the definition of a suitable feature space can
be instrumental in discriminating between classes of patterns.

15.4.2.3 Decision function

We consider an affine decision function D : Rn−1 → R defined by:

∀ψ ∈ R
n−1, D(ψ) = β†ψ + γ,

where the parameters β ∈ Rn−1 and γ ∈ R are to be chosen so that:

∀� = 1, . . . , r, (D(ψ(�)) > 0) ⇔ (ζ(�) = 1). (15.11)

That is, the function D can be used to classify the patterns in the training set.
Typically, there are many choices of parameters β and γ that will satisfy (15.11).
As mentioned above, Figure 15.5 shows a line, which is a hyperplane in Rn−1 =
R2, of the form:

{ψ ∈ R
n−1|D(ψ) = 0},

15.4 Optimal margin pattern classification 579

that divides Rn−1 into two half-spaces, one of which contains all the patterns in
class A and the other one of which contains all the patterns in class B. That is, the
hyperplane separates the patterns and the corresponding decision function D can
be used to classify the patterns. There are evidently many choices of β and γ that
would satisfy (15.11).

In practice, the parameters that determine the function D are calculated using
the training set and the function is then subsequently used to estimate the classes
of new, unknown patterns for which we do not know the class. Since we must find
the parameters β and γ based on the training set, we must select a suitable criterion
for choosing from amongst the values of β and γ that satisfy (15.11).

In principle, if we know, say, the functional form of the probability distribution
from which the patterns are drawn then we could estimate the “best” values of
the parameters β and γ using a maximum likelihood criterion, as discussed in the
multi-variate linear regression case study in Section 9.1. Unfortunately, we usually
do not have a lot of information about the patterns that we must subsequently clas-
sify and do not know the functional form of the probability distribution from which
they are drawn. Consequently, the criterion for choosing the parameters β and γ

will be ad hoc, aimed at finding a satisficing solution [109]. We will seek the β

and γ such that the corresponding hyperplane {ψ ∈ Rn−1|D(ψ) = 0} is as far as
possible from all the patterns in the training set. That is, we will find the values of
β and γ that:

• maximize the minimum distance of any pattern from the hyperplane, and
• allow classification of the two classes of patterns according to (15.11).

We will use the notion of Euclidean distance to define distance. That is, we will
use the norm ‖•‖2. As Boyd and Vandenberghe describe it, we are trying to find
the hyperplane between the two classes that is at the middle of “the thickest slab
that separates the two sets of points” [15, section 8.6.1].

15.4.2.4 Variables

The decision vector for this problem consists of β ∈ Rn−1 and γ ∈ R. We collect

these together into a vector x =
[

β

γ

]
∈ Rn . That is, the parameters that specify

the decision function D are the variables for the problem.

15.4.2.5 Objective

We must evaluate the Euclidean distance of a pattern ψ(�) from the closest point
on the hyperplane:

{ψ ∈ R
n−1|D(ψ) = 0}.

580 Case studies of inequality-constrained optimization

This distance is given by:

|D(ψ(�))|
‖β‖2

,

assuming that β 	= 0. (See Exercise 13.9. The hyperplane is not well-defined if
β = 0.)

Define the set P ⊂ Rn by:

P =
{[

β

γ

]
∈ R

n

∣∣∣∣β 	= 0
}

.

If the decision function D satisfies (15.11) then for each pattern ψ(�) and classifi-
cation ζ(�) we have that:

ζ(�)D(ψ(�)) = |D(ψ(�))|.
Therefore, if we choose the coefficients β and γ such that (15.11) holds then,
for each pattern ψ(�), the distance of ψ(�) from the hyperplane is given by the
function φ� : P → R defined by:

∀x ∈ P, φ�(x) = |D(ψ(�))|
‖β‖2

,

= ζ(�)D(ψ(�))

‖β‖2
.

The minimum distance of any point ψ(�) to the hyperplane, over all the patterns �,
is given by φ : Rn → R defined by:

∀x ∈ P, φ(x) = min
�=1,...,r

φ�(x).

We call this minimum distance the margin between the hyperplane and the pat-
terns. It is a measure of how easy it is to discriminate between the two classes of
patterns. In particular, if the margin is “large” then the hyperplane is far from all
the patterns and it is easy to distinguish between the two classes in the training
set. If the patterns that we must subsequently classify are similar to the training set
then we expect that the hyperplane will also be able to classify these new patterns
reliably.

15.4.2.6 Constraint

In order for the objective to be well-defined, we must restrict ourselves to choices
of x ∈ P; that is, we must require β 	= 0. This constraint is not in the form of
either an equality or an inequality constraint. Furthermore, P is neither closed nor
convex. (See Exercise 15.10.)

15.4 Optimal margin pattern classification 581

15.4.2.7 Problem

We seek the coefficients β 	= 0 and γ such that the margin is maximized. Our
problem is therefore:

max
x∈�n

{φ(x)|β 	= 0}, (15.12)

which involves finding the x that maximizes the margin. In the next section, we
will transform this problem to remove the minimization embedded in the definition
of the objective.

15.4.2.8 Transformation

By Theorem 3.4, we can remove the minimization in the definition of the objective
φ by defining a subsidiary variable z. (Theorem 3.4 concerns minimizing a function
defined as the maximum of several functions. Here we want to maximize a function
defined as the minimum of several functions, but the theorem can be applied by
recalling that maximizing a function is equivalent to minimizing the negative of
the function.) The transformation in Theorem 3.4 allows the maximization with
embedded minimization in Problem (15.12) to be transformed in the following
manner:

max
x∈�n

{φ(x)|β 	= 0}

= max
x∈�n

{
min

�=1,...,r
φ�(x)

∣∣∣∣β 	= 0
}

, by definition of φ,

= max
z∈�,x∈�n

{z |φ�(x) ≥ z, ∀� = 1, . . . , r, β 	= 0} , by Theorem 3.4,

= max
z∈�,x∈�n

{
z

∣∣∣∣ζ(�)D(ψ(�))

‖β‖2
≥ z, ∀� = 1, . . . , r, β 	= 0

}
,

= max
z∈�,x∈�n

{
z
∣∣ζ(�)(β†ψ(�) + γ) ≥ ‖β‖2 z, ∀� = 1, . . . , r, β 	= 0

}
,

(15.13)

where we note that ∀ψ, D(ψ) = β†ψ + γ and we have re-arranged the inequality
constraints by multiplying them through by the strictly positive value ‖β‖2. Instead
of solving Problem (15.12), we solve Problem (15.13). If the maximum z� of
Problem (15.13) is strictly positive then the optimal margin is equal to z� and is
strictly positive.

15.4.3 Changes

We could consider a change in the problem due to the addition of an extra pattern.

582 Case studies of inequality-constrained optimization

15.4.4 Problem characteristics

15.4.4.1 Objective

The objective z of Problem (15.13) is linear.

15.4.4.2 Constraints

The inequality constraints in Problem (15.13) are non-linear. Each binding inequal-
ity constraint at a solution to the problem corresponds to a pattern that is closest to
the hyperplane. These are called the supporting patterns [14].

As mentioned above, the constraint β 	= 0 in Problem (15.13) is not in the form
of equality or inequality constraints. Moreover, the feasible set of Problem (15.13):

S =
{[

z
x

]
∈ R

n+1

∣∣∣∣ ζ(�)(β†ψ(�) + γ) ≥ ‖β‖2 z,∀� = 1, . . . , r, β 	= 0
}

,

is not closed and may not be convex. As discussed in Section 2.3.3, feasible sets
that are not closed can potentially present difficulties. We will consider further
transformation of Problem (15.13) in Sections 18.4 and 20.1.

15.4.4.3 Solvability

If there is no hyperplane that can separate the patterns then Problem (15.13) is
infeasible. (See Exercise 15.11.)

15.5 Sizing of interconnects in integrated circuits

This case study considers one aspect of integrated circuit design and assumes some
familiarity with digital logic synthesis [95].

15.5.1 Motivation

15.5.1.1 Hierarchical design

The design of digital integrated circuits (ICs) is usually divided into a hierarchy of
planning stages. For example, a specification of the functionality of the IC is trans-
lated into the logic required to meet the specification. The integrated components
to implement the logic must then be laid out on the floor-plan of the chip [15, sec-
tion 8.8.2]. Once the layout is done, there are still various decisions to be made.
For example, the widths of the interconnects that join one gate to another can be
adjusted, within limits, to achieve performance goals.

15.5 Sizing of interconnects in integrated circuits 583

15.5.1.2 Delay constraints

In high-speed synchronous circuits, one goal is to make sure that the propagation
delay on each path from the output of one latch through combinational logic to
the input of the next latch is within a limit. Signals propagate between latches and
logic on interconnects, which are metal or polysilicon “wires.” Each interconnect
introduces a delay that adds to the delay through the combinational logic.

Adjusting the width of the interconnects affects the delay. Qualitatively, in-
creasing the width of the interconnect decreases the resistance and increases the
capacitance of an interconnect. Decreasing resistance tends to reduce delay be-
cause the current from the driving latch or logic is increased, while increasing ca-
pacitance tends to increase delay because the increased capacitance requires more
current to charge or discharge. If our goal were to minimize delay, then the optimal
widths would depend on the source impedance of the gates driving the intercon-
nect, the load impedance on the interconnect, the way in which the widths affect
the resistance and capacitance, and, potentially, the way in which the load of the
interconnect affects the delay through the combinational logic.

ICs are typically designed by dimensioning features to be an integer multiple
of a length that represents the minimum feature size that can be fabricated on a
particular fabrication line. It turns out that as the minimum feature size is reduced,
the interconnect delay becomes a larger fraction of the overall circuit delay. In this
case study we will concentrate on interconnect delay in specifying the functional
form of the delay constraints, but recognize that the combinational logic contributes
significantly to delay.

15.5.1.3 Area of layout

Another consideration besides delay is that the wider the interconnects, the more
area may be required for the circuit. ICs are fabricated on silicon wafers by etching
the circuit patterns. The larger the area per circuit, the smaller the number of ICs
that can be produced from each wafer and, it turns out, the larger the proportion
of those circuits that have defects. Bearing in mind that, for a given fabrication
technique, both:

• the cost of production of the IC, and

• the probability of defects,

increase with the area of the chip, we will try to minimize chip area by adjusting the
widths of the interconnects, while satisfying the delay constraints. We will assume
that the interconnect area is the only issue that affects area; however, many other
issues and decisions also affect area and other issues besides area and delay need
to be considered, as will be discussed briefly in the next section.

584 Case studies of inequality-constrained optimization

15.5.1.4 Other issues

There are many other goals, such as minimizing power dissipation, and other con-
straints, such as guaranteeing noise immunity, that must be considered. A practical
design must effect a compromise between several criteria that may not be easily
comparable and the design must also respect many constraints. Our consideration
of area and delay is merely one example of an objective and constraints and our
focus is on just one of many phases of IC design. (See Exercise 15.12 for some
examples of variations on the formulation.) In seeking a compromise between var-
ious goals, we are again seeking a satisficing solution [109].

15.5.1.5 Interaction between design levels

Hierarchical decomposition is used in a variety of applications. At each level of
the hierarchy, we take as fixed the decisions made at higher levels and seek to
optimize the remaining decisions. This approach was described in Section 3.3.5.
In principle, the decisions made at lower levels must be “fed back” to the upper
levels and we need to iterate between levels.

In our application, for example, by adjusting the widths of interconnects, we may
impact other parts of the design. This may necessitate changes to the layout, which
will in turn change the optimal widths. However, we will not consider this issue in
detail here and will assume that everything except the widths of the interconnects
is fixed. The problem we develop is just a small part of the overall design process.

15.5.2 Formulation

15.5.2.1 Variables

Interconnect widths and lengths Consider Figure 15.6, which shows a schematic
diagram of three latches and combinational logic joined by interconnect. The out-
put of latch a at the left of Figure 15.6 drives gate b through a piece of interconnect,
labeled 1. Gate b drives a branching interconnect, labeled 2, 3, 4, 5, and 6, which
in turn drives two more gates, labeled c and d. These gates drive the pieces of
interconnect labeled 7 and 8, which in turn drive latches e and f. The ends of the
interconnect at the points where gates and latches are driven are called sinks.

Segments The interconnect can be thought of as consisting of segments, corre-
sponding to the labeled pieces of interconnect shown in Figure 15.6. We assume
that the interconnect can be partitioned into a set of n segments such that each seg-
ment has a uniform width along its length. Let the k-th segment have width xk ,
thickness Tk , and length Lk , as illustrated in Figure 15.7. (Despite the appearance
of Figure 15.7, Lk $ Tk > xk in practice. That is, Figure 15.7 is not to scale.)
An aluminum or copper segment is shown lying above a silicon dioxide insulating

15.5 Sizing of interconnects in integrated circuits 585

latch
a

1

���b
��� 2 �

4

3

6
d

5 c

���
���

���
��� 7 latch

e

8 latch
f

Fig. 15.6. Schematic dia-
gram of gates and latches
joined by interconnect.

� �� �

 �

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�

�
�
�
�
�
�
�
�

�
�

�
�

�
�

�
�
�
�

Silicon

Silicon dioxide

Aluminum or Copper

��

��

��
�
 Lk

�
���
� xk

�

�

Tk

Fig. 15.7. Dimensions of
the k-th segment of the in-
terconnect. The figure is
not to scale.

layer, which is in turn above a silicon substrate layer. The silicon substrate can be
thought of as a “ground plane” at the datum voltage.

There are n = 8 segments, k = 1, . . . , 8, shown in Figure 15.6. For a given lay-
out and technology, we will assume that the length and thickness of each segment
is a constant; however, we will assume that the width can be adjusted to achieve
performance goals. We collect the variables xk together into the n-vector x .

Discreteness Because we can only dimension features to be an integer multiple of
the minimum feature size, xk can only be chosen from a discrete set of alternatives.
In a technology that can produce minimum features on the chip of size 65 nm, say,
it might be the case that all widths must be an integer multiple of 65 nm. In general,
optimizing over a discrete set of alternatives is much more difficult than optimizing
over a continuous variable because in the discrete case we:

• cannot use calculus to derive optimality conditions,

586 Case studies of inequality-constrained optimization

• cannot obtain descent directions from purely local first derivative information,
and

• cannot make use of convexity to establish global optimality.

If the discretization step of the discrete variable is “small,” however, we can of-
ten obtain a good approximate answer by assuming that the widths are continuous
variables. After solving the continuous problem, we must then convert each con-
tinuous width into a discrete value. A practical approach is to “round-off” to the
nearest feasible discrete value, but this does not necessarily produce the best dis-
crete alternative. (If the rounded-off solution is feasible we may, at least, be able
to bound its sub-optimality.) In this case study, we will neglect discreteness and
assume that the widths are continuously variable.

Alternative formulations Another formulation of this problem that avoids the
issue of discreteness of widths is described in [25]. In that approach, instead of
optimizing over a continuous range of widths xk for segment k, we consider a finite
collection of possible widths, say {Wk1, . . . , Wks} for segment k. For example,
these widths might correspond to the allowable integer multiples of the minimum
feature size. A segment is then specified by a collection of sub-lengths Lkj , j =
1, . . . , s such that

∑s
j=1 Lkj = Lk . The value Lkj specifies how much of the total

length of segment k is of width Wkj .
This alternative formulation avoids the discrete variables almost completely: it is

still necessary to round off the sub-lengths; however, they are usually much longer
than the minimum feature size so that rounding-off these lengths introduces negli-
gible error. Although it seems that there are many more variables in this formula-
tion, it can be the case that far less segments need be used to model the problem.
This is an example of a radical transformation of a problem compared to its “nat-
ural” formulation. We will not pursue this formulation further; however, details of
this formulation are presented in [25]. It is often worthwhile to “step back” from a
problem and try to seek an alternative formulation.

15.5.2.2 Objective

We have indicated that our goal is to minimize the area of interconnect. The area
f : Rn → R is defined by:

∀x ∈ R
n, f (x) =

n∑
k=1

Lkxk,

where Lk is the length of the k-th segment. As remarked, this does not completely
characterize the area, but can be a reasonable approximation to the dependence of

15.5 Sizing of interconnects in integrated circuits 587

the area on the interconnect widths. This objective is also related to the dissipation
in charging and discharging the interconnect capacitance. (See Exercise 15.12.)

15.5.2.3 Constraints

Upper and lower bounds There are technical limits to how small or how large the
interconnects can be. For example, we have indicated that a particular technology
will have a minimum feature size. On the other hand, in a particular part of the
chip there may only be limited space to increase the width of an interconnect. We
can model this with upper and lower limits on the width:

∀k = 1, . . . , n, xk ≤ xk ≤ xk,

where xk is the minimum width, for example, the minimum feature size, and xk is
the maximum width allowable for the k-th segment.

Bottlenecks There may also be “bottlenecks” in the design; that is, parts of the
chip where several segments run side-by-side and the sum of the widths of these
segments cannot exceed a limit. This constraint might be expressed in the form:∑

k∈�
xk ≤ x�, (15.14)

where B is the set of segments involved in a particular bottleneck and x� is the
maximum total width available for the segments in the set B.

Delay constraints Consider a path from a latch through the combinational logic
to the input of the next latch. We assume that the paths are labeled � = 1, . . . , r .
Our performance specification requires that, for each latch-to-latch path �, a signal
can propagate from:

• the output of the latch at the beginning of path �,
• through the gates in path �,
• to the input of the latch at the end of path �,

within a maximum allowed time delay that depends on ([56, section 8.5]):

• the clock period,
• the delay from the clock edge to when the outputs of latches become valid, and
• the set-up time from when the input of latches become valid to the clock edge.

It is reasonable to suppose that the latch-to-latch delay on each path will depend
on the widths of the segments (as well as on other fixed parameters.) Therefore,
the delay on the �-th path is a function h� : Rn → R depending on the widths and
we require that:

∀� = 1, . . . , r, ∀x ∈ R
n, h�(x) ≤ h�, (15.15)

588 Case studies of inequality-constrained optimization

where h� is the maximum allowed latch-to-latch delay on path �. We collect the de-
lay functions for each path together into a vector function h : Rn → Rr . Similarly,
we collect the maximum allowed delays into a vector h ∈ Rr .

To evaluate the function h� we must define “delay” more carefully. Normatively,
it is the time difference between:

(i) when the voltage at the output of the latch that is driving path � can be
considered to have changed state, and

(ii) when the voltage at the input of the latch that is driven by path � can be
considered to have changed state.

In practice, “changing state” is defined on an ad hoc basis as when, for example,
the voltage waveform has risen to or fallen to within 50%, say, or 90%, say, of its
final value.

Calculation of such a delay time is itself somewhat difficult for large circuits
since it requires transient simulation of the circuit or some approximation to the
transient simulation [95, chapters 4 and 5]. Moreover, coupling between nearby
pieces of interconnect means that the delay depends partly on the coupling of sig-
nals from nearby interconnect. Consequently, the delay is often approximated by a
function h̃� that is easier to calculate than h�. A typical approximation involves the
sum of an approximation to the delays through the gates together with an approxi-
mation to the interconnect delays in the path.

We will approximate the gate delays by constants neglecting the effect of the
load of the interconnect on the delay through the combinational logic. Because of
this assumption, we can re-interpret h� as being the delay through the interconnect
alone, neglecting the gate delays, and reduce the corresponding delay limit h� by
the sum of the gate delays on path �. That is, we re-define each inequality in (15.15)
by reducing the left-hand side and the right-hand side by the sum of the gate delays
on path �.

A typical approximation used for the interconnect delay is the Elmore delay
[33]. The Elmore delay can be calculated from an electrical model of the in-
terconnect. We will initially use the Elmore delay as an approximation to the
50% rise- and fall-times for the pieces of interconnect and assume that our delay
constraints (15.15) are expressed in terms of 50% rise- and fall-times. In Sec-
tion 20.2.2.3, we will also consider how to use more accurate delay models and
how to combine analytical information from the Elmore approximation with nu-
merical evaluation of the delay by a more accurate model.

Interconnect electrical model Figure 15.7 shows that the interconnect consists of
aluminum or copper conductor separated from the silicon substrate by an insulating
dielectric layer of silicon dioxide. As mentioned in Section 15.5.2.1, the substrate

15.5 Sizing of interconnects in integrated circuits 589

�	
�
Vb

Rb R2 �
C2

�
R4�

C4

�
C3

R3

R6 �
C6

�
Cd

R5 �
C5

�
Cc

���
���

���
���

Fig. 15.8. The equivalent
circuit of the intercon-
nect between gate b and
gates c and d consisting
of resistive capacitive L-
segments.

can be considered to be at the voltage of the datum node. The separation of the
conductor from the datum voltage means that there is a capacitance between the
conductor and substrate. The finite conductivity of the aluminum or copper means
that the segment is resistive. This means that each segment of the interconnect
is a distributed resistive–capacitive transmission line. (Inductance can usually be
ignored except at extremely high frequencies.)

If the segments are chosen to be short enough then their electrical characteristics
are well approximated by a lumped resistive–capacitive model as shown in Fig-
ure 15.8 for the part of the original circuit shown in Figure 15.6 between gate b and
gates c and d. Segment k, for k = 2, . . . , 6, has been represented by a series re-
sistance Rk and shunt capacitance Ck . This representation is called an L-segment.
The “lower” end of each shunt capacitance is at the datum voltage represented by
the “ground” symbol . There are various refinements of this model such as
splitting the equivalent shunt capacitance between the two ends of the segment to
form a π-equivalent circuit, as we used for modeling electric transmission lines in
Section 6.2.2.3.

The resistance of segment k is determined by the resistivity ρk of the segment
and its thickness, length, and width. In particular, resistance is proportional to
length but inversely proportional to thickness and width, with the proportionality
specified by ρk . That is:

∀k = 1, . . . , n, Rk = ρk Lk/(Tkxk),

= κRk/xk, (15.16)

where κRk = ρk Lk/Tk is a parameter that depends on the manufacturing process
and the length and thickness of the segment.

The capacitance of segment k is determined approximately by the sheet capaci-

590 Case studies of inequality-constrained optimization

tance per unit area κSk , its fringing capacitance per unit length κFk , and its length
and width. In particular, sheet capacitance increases with the length and width of
the segment with constant of proportionality κSk and the fringing capacitance in-
creases with the length of the segment with constant of proportionality κFk . (See
Exercise 7.4.) That is:

∀k = 1, . . . , n,Ck = κSk Lkxk + κFk Lk,

= κCkxk + CFk, (15.17)

where κCk = κSk Lk and CFk = κFk Lk are parameters that depend on the manufac-
turing process and the length of the segment.

Gate model We can model the gate driving the interconnect by considering its
output transistor. It can be approximately represented by a voltage source driving
a resistance. The voltage source can be approximately modeled as a step rise or
fall in voltage. The time instant of the step change in voltage coincides with when
the gate changes state. (As discussed above, we have incorporated the propagation
delay through the gate by subtracting it from our delay limit.) The driving gate b
is modeled in Figure 15.8 as the voltage source Vb and the driver resistance Rb. (In
practice, accurate models of the output of the gate can be much more complicated
than just a step voltage in series with constant resistance and models for the delay
through the gate can also be more complicated.)

The load presented by complementary metal-oxide semiconductor (CMOS)
gates at the sinks can be modeled by a capacitance [56, section 3.6][95, sec-
tion 10.8]. This is shown by Cc and Cd in Figure 15.8 for the inputs to gates c
and d, respectively. Other more detailed models may be necessary for other types
of gates or for more detailed modeling of delay [95, chapters 10 and 11]. We as-
sume that the capacitive load of a gate that is driven from, say, segment k is lumped
into the capacitance CFk . For example, for segment 5, CF5 would include Cc, the
input capacitance of gate c.

If we have the opportunity to change the size of the output transistors of the
gates, then we can approximately model the gate output resistance as depending
inversely on the size of the output transistor. In this case, we include the size of the
transistor as a variable and can represent the resistance Rb similarly to (15.16).

Elmore delay Consider a constant voltage source charging a capacitor C through
a resistance R. The voltage across the capacitor will exponentially approach the
driving voltage. The time-constant of the exponential is RC , so that a reasonable
order-of-magnitude estimate for the rise time of the voltage across the capacitor is
RC . (In fact, RC is the time for the capacitor voltage to come within 1−exp(−1) ≈
0.63 of the final voltage. See Exercise 15.13.)

15.5 Sizing of interconnects in integrated circuits 591

For more complicated circuits, such as the multiple resistive–capacitive elements
in our interconnect model, the response will be more complicated than a single
exponential. However, we can still think of approximating the response by a single
exponential. The “Elmore delay” is an estimate of the time constant of a single
exponential that approximates the true response. We use this time constant as an
estimate of the delay; however, under certain conditions it can be a poor estimate
of the delay [50].

Given the lumped L-segment models, the Elmore delay is given by ([33]):

∀� = 1, . . . , r, ∀x ∈ R
n, h̃�(x) =

∑
�∈��

∑
j∈�

⎡⎣R j

∑
k∈�(j)

Ck

⎤⎦ ,

where:

• P� is the set of sets of connected segments on path �. Two segments are con-
nected if there is a path of segments between them. In a set of connected seg-
ments, each pair of segments is connected. For example, for the path � from
latch a to latch e in Figure 15.6, we have that P� = {{1}, {2, 3, 5}, {7}}, since the
path from latch a to latch e consists of three sets of connected segments, namely
J = {1}, {2, 3, 5}, {7}. The connected segments are separated by the latches b
and c on the path from latch a to latch e.

• D(j) is the set of downstream segments including and between segment j and
all sinks that are driven from segment j through connected segments. For exam-
ple, in Figure 15.6, for j = 2, D(2) = {2, 3, 4, 5, 6}. For j = 3, D(3) = {3, 5}.

The Elmore delay is the sum of the resistive–capacitive time-constants of each
segment, where:

• the resistive–capacitive time-constant of a segment is equal to the product of the
resistance of the segment and all the capacitive load on it, and

• the capacitive load is defined to be the sum of the capacitances of all the con-
nected downstream segments (including the input capacitance of all connected
downstream gates and latches.)

Using the lumped resistive–capacitive model (15.16)–(15.17) for each segment,
we obtain:

∀� = 1, . . . , r,∀x ∈ R
n, h̃�(x) =

∑
�∈��

∑
j∈�

⎡⎣κRj

x j

∑
k∈�(j)

(κCkxk + CFk)

⎤⎦ . (15.18)

We can collect the Elmore delay functions for each path together into a vector
function h̃ : Rn → Rr , which we use to approximate the actual delay function
h : Rn → Rr .

592 Case studies of inequality-constrained optimization

15.5.2.4 Problem

The approximate model for minimizing the area subject to the upper and lower con-
straints on the segment widths and subject to the delay constraints can be written
as:

min
x∈�n

{ f (x)|h̃(x) ≤ h, x ≤ x ≤ x}. (15.19)

The more accurate delay model is:

min
x∈�n

{ f (x)|h(x) ≤ h, x ≤ x ≤ x}, (15.20)

where the delays h are calculated, for example, by transient circuit simulation.
We will initially consider Problem (15.19), but will then consider the extension to
Problem (15.20). Both problems have non-linear inequality constraints. Bottleneck
constraints such as (15.14) can also be added to the formulation.

15.5.3 Changes

We could consider changes in parameters such as the sheet or fringe capacitance
constants, due to a change in dielectric properties. We could also consider the effect
of changing the allowed delays or adding an additional gate in a path. Typically,
the addition of a buffering gate will reduce the interconnect delay but increase the
delay through the combinational logic. The overall effect depends on the relative
magnitude of the changes in the interconnect and combinational logic delay.

15.5.4 Problem characteristics

15.5.4.1 Objective

The objective, f (x), of both Problems (15.19) and (15.20) is linear.

15.5.4.2 Constraints

Upper and lower bounds As shown in Exercise 15.1, Part (i), the lower and upper
bound constraints x ≤ x ≤ x define a convex set.

Delay constraints We focus on Problem (15.19). Consider the constraint function
h̃ : Rn → Rr and the set {x ∈ Rn|h̃(x) ≤ h}. Recall that if the �-th entry h̃� :
Rn → R of h̃ were a convex function on Rn then, by Exercise 2.34, the level sets of
h̃� would be convex. In particular, for each �, the set {x ∈ Rn|h̃�(x) ≤ h�} would
be convex and so {x ∈ Rn|h̃(x) ≤ h} would also be a convex set. In summary,
if each component function h̃� were a convex function, then {x ∈ Rn|h̃(x) ≤ h}
would be a convex set and, therefore, S = {x ∈ Rn|h̃(x) ≤ h, x ≤ x ≤ x}, the
feasible set for Problem (15.19), would be a convex set.

15.6 Optimal power flow 593

Unfortunately, as Exercise 15.14 shows, the Elmore delay functions h̃�, � =
1, . . . , r , are not convex functions. We will have to consider the feasible set more
carefully to understand whether or not the problem has a unique local minimum.

The constraint functions h̃� involve the sum of terms each of which is a positive
constant times the product of powers of the entries in the decision vector. (See
Exercise 15.14.) That is, they are posynomial functions. (See Definition 3.1.)
This observation will be the key to solving the gate interconnect sizing problem.
Posynomial functions occur in many applications.

15.5.4.3 Solvability

If there is no selection of widths that yield delays satisfying the delay constraints,
then there may be no feasible solution. This would indicate that some higher level
design decisions must be revised before the design procedure can continue. For
example, we may find that the delay on a particular path cannot be reduced enough
to satisfy the delay constraint. We may need to insert a buffer to break a long
segment into two shorter pieces.

15.6 Optimal power flow

In this case study we will consider the optimal power flow problem, which gen-
eralizes the least-cost production case study from Sections 12.1 and 15.1 and the
power systems analysis case study from Section 6.2. There are many variations
and extensions of the basic optimal power flow problem [20][79, chapter 11][123,
chapter 13], but we will formulate the most straightforward combination of our
previous case studies.

15.6.1 Motivation

15.6.1.1 Generalization of economic dispatch

When applied to electric power systems, the problems described in Sections 12.1
and 15.1 are called economic dispatch problems. The equality constraint (12.3)
requires that electric generation equal the demand; however, this does not fully
characterize the situation in an electricity network. For example, if generators are
remote from demand centers then there will be losses incurred in moving power
along transmission lines. At the least, (12.3) should be modified to account for
losses in this case [8, section 11.10].

15.6.1.2 Constraints on operation

Transmission lines between generation and demand can also limit the feasible
choices of generation. In particular, transmission lines have capacity limits on how

594 Case studies of inequality-constrained optimization

much real and reactive power can be transmitted along them. If there is limited
transmission capacity between a particular generator and the demand, then the fea-
sible choices for generation are limited by the transmission line flow constraints [8,
section 11.13]. Additionally, as discussed in the electric power system case study
in Section 6.2.2.1, the voltage magnitudes at the buses must be maintained within
5% of nominal in typical systems. This also limits the feasible generation choices.

There may also be other constraints on operation due to emissions limits or fuel
availability. See [79, section 11.V].

15.6.1.3 Power flow equations

To check whether or not the line flow and voltage constraints are satisfied, we
must expand the detail of representation of the network by explicitly incorporat-
ing Kirchhoff’s laws, as described in the electric power system case study in Sec-
tion 6.2.2.4, or by at least incorporating some approximation to Kirchhoff’s laws.
That is, we should replace the single constraint (12.3) by the power flow equations
or by an approximation to them. In this context, (12.3) is sometimes called a sur-
rogate constraint because it acts in place of the full set of power flow equations.

15.6.1.4 Other controllable elements

Besides real power generations, we can also consider adjusting any controllable
elements in the system so as to minimize costs and meet constraints. Typically, the
reactive power generations of the generators and switchable capacitors and other
controllable quantities are included in the optimal power flow problem. In fact,
elements such as switched capacitors can only be switched in discrete amounts.
We will ignore the discrete nature of the reactive power from switched capacitors
and assume that they can be represented with continuous variables.

15.6.2 Formulation

15.6.2.1 Variables

In the decision vector, we need to represent:

• real and reactive power generations at the generators, which we will collect to-
gether into the vectors P and Q,

• any other controllable quantities in the system, such as the settings of phase-
shifting transformers [8, section 5.9] and capacitors,

• the voltage magnitudes at every bus in the system, which we collect together
into the vector u, and

• the voltage angles at every bus in the system except for the reference bus, which
we collect together into the vector θ . (The voltage angle at the reference bus is
constant since, as previously, it represents an arbitrary time reference.)

15.6 Optimal power flow 595

The choice of symbols for the vectors of real and reactive power violates our
convention for using lower case letters for vectors; however, we have already used
the lower case letters p and q for vector functions in the power flow case study in
Section 6.2 and we will need to consider these functions again. Moreover, in that
case study, P and Q represented parameters, namely, the specified real and reactive
generations at the generator buses (and demands at the demand buses). However,
here we have re-interpreted the real and reactive generations to be variables: we
keep the same symbol, but re-interpret the meaning.

In this case study we will not treat any controllable quantities besides the real
and reactive power generations; however, the formulation can be expanded to en-
compass other controllable quantities as well. We collect all the variables into the
vector:

x =

⎡⎢⎢⎣
P
Q
u
θ

⎤⎥⎥⎦ ∈ R
n.

In the power flow case study in Section 6.2, the generations at the generators were
fixed parameters, except at the reference bus. In this case study, the real and reac-
tive power generations at all generator buses are variables. This is similar to the
least-cost production case studies of Sections 12.1 and 15.1, where the real power
generations were variables.

In the case studies of Sections 12.1 and 15.1, the decision vector consisted en-
tirely of the real power generations; however, in this case study, the real power
generations is just a sub-vector of the decision vector. In the power flow case study
in Section 6.2, the decision vector consisted entirely of the voltage magnitudes and
angles; however, in this case study the voltage magnitudes and angles is just a sub-
vector of the decision vector. This case study generalizes all of these earlier case
studies and exemplifies the process of starting with only a few variables and many
parameters and gradually re-interpreting the parameters to be variables.

15.6.2.2 Objective

As in the least-cost production case study, a typical objective for optimal power
flow is to minimize the total cost of power generation. Let f : Rn → R represent
this cost. Typically:

• f depends only on the entries of x corresponding to real power generations;
however, in some formulations f also depends somewhat on the entries of x
corresponding to reactive power generations, and

• f is separable since the decisions at one generator do not usually affect the costs
at any other generators.

596 Case studies of inequality-constrained optimization

15.6.2.3 Equality constraints

The equality constraints for optimal power flow are Kirchhoff’s laws expressed in
terms of the voltage magnitudes and angles and the real and reactive generations.
We considered these equations in detail in Section 6.2 and repeat them here for
reference:

∀�,
∑

k∈�(�)∪{�}
u�uk[G�k cos(θ� − θk) + B�k sin(θ� − θk)] − P� = 0,

∀�,
∑

k∈�(�)∪{�}
u�uk[G�k sin(θ� − θk) − B�k cos(θ� − θk)] − Q� = 0,

where J(�) is the set of buses joined directly by a line to bus �. These equations
represent the fact that, by Kirchhoff’s current law, the net real and reactive powers
flowing out of a node into the rest of the system must be zero.

In Section 6.2, we expressed these equations in the form:

∀�, p�(x) = 0,

∀�, q�(x) = 0,

where p� : Rn → R and q� : Rn → R were defined in (6.12)–(6.13), which we
repeat here for convenience:

∀x ∈ R
n, p�(x) =

∑
k∈�(�)∪{�}

u�uk[G�k cos(θ� − θk) + B�k sin(θ� − θk)] − P�,

∀x ∈ R
n, q�(x) =

∑
k∈�(�)∪{�}

u�uk[G�k sin(θ� − θk) − B�k cos(θ� − θk)] − Q�.

Unlike in Section 6.2.2.6, however, here we must explicitly include a pair of
equations for the reference bus, since the objective will depend on generation at
the reference bus. Moreover, here the vector x includes not only the voltage mag-
nitudes and angles but also the real and reactive injections at the generator buses.
As stated above, the vector x includes the voltage magnitude at the reference bus
but does not include the voltage angle at the reference bus. Finally, we collect the
equations together into a vector equation similar to the form of (6.14):

g(x) = 0,

where a typical entry of g is of the form of (6.12) or (6.13), but the decision vector
x includes the real and reactive generations as well as the voltage magnitudes and
angles.

15.6 Optimal power flow 597

15.6.2.4 Inequality constraints

The inequality constraints include limits on the entries in x , which can be expressed
in the form:

x ≤ x ≤ x .

For example, a voltage magnitude limit at bus � could be 0.95 = u� ≤ u� ≤ u� =
1.05. A generator real power limit could be 0.15 = P� ≤ P� ≤ P� = 0.7.

There are also constraints involving functions of x . For example, there are typi-
cally angle difference constraints of the form:

∀�,∀k ∈ J(�),−π/4 ≤ θ� − θk ≤ π/4, (15.21)

and there might be limits on angle differences between buses that are not joined
directly by a line. In addition, transmission line flow constraints can be expressed
via the power flow equations in terms of x . That is, we will also have functional
constraints of the form:

h ≤ h(x) ≤ h.

A typical constraint might limit the flow on a line that joins bus � to bus k. To
understand this constraint, we consider the basic power flow equations. Recall that
we derived the power flowing from a given bus into the network by summing the
power flowing into the shunt element at node � together with the sum of the powers
flowing along each line connected to bus �. This yielded the terms in (6.12)–(6.13).

If we just consider the terms in (6.12)–(6.13) corresponding to the power flowing
along a particular line that joins bus � to bus k, say, then we can evaluate the line
flow on that line. In particular, if we neglect any shunt elements in the line models,
then we can define the real and reactive flow functions for the line joining bus � to
bus k by selecting the �k terms in the equations (6.12)–(6.13) and noting that G��

and B�� are equal to minus the sum of the entries G�k and B�k , respectively. That
is, ignoring shunt elements in the line models, the line flow real and reactive power
flow functions p�k : Rn → R and q�k : Rn → R are defined by:

∀x ∈ R
n, p�k(x) = u�uk[G�k cos(θ� − θk) + B�k sin(θ� − θk)] − (u�)

2G�k,

(15.22)

∀x ∈ R
n, q�k(x) = u�uk[G�k sin(θ� − θk) − B�k cos(θ� − θk)] + (u�)

2B�k .

(Notice that p�k and q�k in fact only depend on u�, uk, θ�, and θk and not on the
whole vector x . We will use this observation in Section 15.6.4.1.) If there is a real
power flow limit of p�k on the line joining bus � and k then we represent this limit
as an inequality constraint of the form p�k(x) ≤ p�k in the inequality constraints
h(x) ≤ h. We can also represent constraints on reactive power flow and on the
magnitude of the complex power flow; that is, the square root of the sum of the

598 Case studies of inequality-constrained optimization

squares of the real and the reactive power flows. If there are shunt elements in the
line models then the functions p�k and q�k must be modified accordingly.

15.6.2.5 Problem

The optimal power flow problem is:

min
x∈�n

{ f (x)|g(x) = 0, x ≤ x ≤ x, h ≤ h(x) ≤ h}. (15.23)

The problem has non-linear equality and inequality constraints.

15.6.3 Changes in demand, lines, and generators

We can consider changes in demand at buses and also consider changes in the
system. The two basic ways in which the system can change are:

• failure or return to service of a transmission line, and

• failure or return to service of a generator.

When a transmission line fails, power flows redistribute through the remaining
lines. An important issue is whether the resulting redistributed flows are within the
ratings of the remaining transmission lines. If the new flows exceed the ratings of
lines, then protection equipment will eventually disconnect them from the system
to prevent damage to them. Unfortunately, this will typically lead to yet larger flows
on the remaining lines and further disconnections, which can rapidly “cascade” to
a complete system black-out.

Similarly, if a generator fails, the remaining generators will typically make up
the difference in power. However, if there is insufficient capacity to make up the
difference then more generators may disconnect from the system. Again, this can
cascade to a black-out.

In the case of both types of failures, it is important to be able to assess the effect
of the failure. A system that is operated so that it can withstand any single failure
is called secure and the additional constraints to ensure that any single failure does
not result in overloads are called security constraints [123]. These constraints
can, in principle, be included in the inequality constraints.

15.6.4 Problem characteristics

15.6.4.1 Convexity

Objective As argued in the least-cost production case study in Section 12.1, the
objective of this problem is typically convex.

15.6 Optimal power flow 599

Equality constraints Because the function g is non-linear, the set {x ∈ Rn|g(x) =
0} is not generally convex. We can argue from two perspectives that this non-
convexity does not necessarily create multiple local minima of the optimal power
flow problem in practice.

First, following the discussion in Section 8.2.4, we observe that the Jacobian
J of g can often be well approximated by a constant; that is, the equations are
approximately linear. Since the equations are approximately linear, the feasible set
{x ∈ Rn|g(x) = 0} is not very different from a set defined by a linear equality
constraint. Consequently, the convex objective will typically have only a single
local minimum on such a set. (In Exercise 17.16 we will consider a version of
Problem (15.23) where the constraints are linearized.)

However, we can make a second, stronger argument, based on [24], by consid-
ering a relaxation of the feasible set as discussed in Section 3.3.4.1. We observe
that if we can “throw away” real and reactive power, then we can replace the power
flow equalities with inequalities. That is, we can consider relaxing the power flow
equality constraints at each bus � to:

p�(x) ≤ 0, (15.24)

q�(x) ≤ 0. (15.25)

That is, we have relaxed the constraints to requiring that the net power flowing out
of a node is at most zero. That is, we allow net power to flow into a node from a
line or generator and be “thrown away.”

Consider solving the relaxed problem having inequality constraints as specified
in (15.24) and (15.25) at each bus �, but with all the other constraints as represented
in Problem (15.23). That is, consider the following problem:

min
x∈�n

{ f (x)|g(x) ≤ 0, x ≤ x ≤ x, h ≤ h(x) ≤ h}. (15.26)

In Problem (15.26), the feasible set S = {x ∈ Rn|g(x) ≤ 0, x ≤ x ≤ x, h ≤
h(x) ≤ h} is a relaxed version of the feasible set of Problem (15.23): S = {x ∈
Rn|g(x) = 0, x ≤ x ≤ x, h ≤ h(x) ≤ h}. Suppose we obtain a solution x� ∈ S

to Problem (15.26) such that at bus � we have p�(x�) < 0 or q�(x�) < 0. In this
case, so long as we can dispose of real or reactive power at bus �, then we can
consider “throwing away” the difference and re-establishing equality. That is, we
can construct a solution x�� ∈ S to the original equality-constrained problem with
the same value of objective and all constraints satisfied.

From a practical perspective, if there is a generator at � then to “throw away”
power at bus � we can consider reducing the output of the generator to enable
satisfaction of the constraint with equality. This would reduce the objective of the
problem since costs typically increase with output. (In fact, electricity is generally

600 Case studies of inequality-constrained optimization

not freely disposable and a generator at bus � might be at its lower production limit.
That is, we might have P�

� = P�. However, we will ignore this issue.) In summary,
the inequality-constrained Problem (15.26) that we have described has essentially
the same solution as Problem (15.23).

Now we will show that the feasible set defined by the relaxed constraints (15.24)
is convex under the assumption that all voltage magnitudes are constant. We will
not consider the reactive power constraints (15.25) nor the case where voltage mag-
nitudes can vary, which can introduce multiple local optima. Recall that p� is de-
fined in (6.12) to be:

∀x ∈ R
n,

p�(x) =
∑

k∈�(�)∪{�}
u�uk[G�k cos(θ� − θk) + B�k sin(θ� − θk)] − P�,

=
∑

k∈�(�)
u�uk[G�k cos(θ� − θk) + B�k sin(θ� − θk)] + (u�)

2G�� − P�,

=
∑

k∈�(�)
{u�uk[G�k cos(θ� − θk) + B�k sin(θ� − θk)] − (u�)

2G�k}

+ (u�)
2

⎛⎝G�� +
∑

k∈�(�)
G�k

⎞⎠− P�,

on adding and subtracting (u�)
2∑

k∈�(�) G�k ,

=
∑

k∈�(�)
p�k(x) + (u�)

2

⎛⎝G�� +
∑

k∈�(�)
G�k

⎞⎠− P�,

where, for each k ∈ J(�), the function p�k : Rn → R was defined in (15.22).
Moreover, given the assumption that all voltage magnitudes are constant, we can
define functions p̂�k : R → R by:

∀k ∈ J(�), ∀θ�k ∈ R, p̂�k(θ�k) = u�uk[G�k cos(θ�k) + B�k sin(θ�k)] − (u�)
2G�k,

and we obtain that:

∀�, ∀x ∈ R
n, p�(x) =

∑
k∈�(�)

p̂�k(θ� − θk) + (u�)
2

⎛⎝G�� +
∑

k∈�(�)
G�k

⎞⎠− P�.

That is, p� is equal to the sum of {(u�)
2(G�� +∑

k∈�(�) G�k) − P�} plus the sum
of terms p̂�k(θ� − θk) each of which depends only on a linear function of two of
the entries of x . We will find conditions for p̂�k to be convex. By Exercises 2.30
and 3.22 these conditions guarantee that p� is convex.

15.6 Optimal power flow 601

We have that the second derivative of p̂�k is:

∀θ�k ∈ R,
d2 p̂�k

dθ�k
2 (θ�k) = −u�uk[G�k cos(θ�k) + B�k sin(θ�k)].

Recalling that G�k < 0, B�k > 0 for k ∈ J(�), the condition for this term to be
positive (and for p̂�k to be convex) is that:

∀k ∈ J(�), |G�k | cos(θ�k) − |B�k | sin(θ�k) ≥ 0.

This will be true if:

−π + arctan

(|G�k |
|B�k |

)
≤ θ� − θk ≤ arctan

(|G�k |
|B�k |

)
.

Additionally incorporating the condition that arises from considering power bal-
ance at bus k ∈ J(�), we obtain that the functions will be convex if for each line
joining a bus � to a bus k we have:

|θ� − θk | ≤ min

{
arctan

(|G�k |
|B�k |

)
, π − arctan

(|G�k |
|B�k |

)}
. (15.27)

(See Exercise 15.15.) Typically, |G�k |/|B�k | ≈ 0.1 so this requires that |θ� −
θk | ≤ 0.1 radian ≈ 6◦, which is somewhat more restrictive than the angle restric-
tions (15.21) that we previously mentioned for stability limits in Section 15.6.2.4.
If (15.27) is satisfied for each � and k ∈ J(�) (and no lower production limits are
binding for generators) then the optimal power flow equality constraints are equiv-
alent to inequality constraints that are specified by a convex inequality constraint
function.

Inequality constraints Similarly, if a flow constraint between � and k requires
that p�k(x) ≤ p�k then the constraint defines a convex set if (15.27) holds.

Discussion We have provided sufficient conditions under which the optimal power
flow problem is convex. If these assumptions are violated then there may be mul-
tiple local minimizers.

15.6.4.2 Solvability

There are a variety of constraints in the optimal power flow problem and it is easily
possible for there to be no solution. In fact, one application of optimal power flow
software is to identify when the power system will be operating beyond its ratings.
The results are used to inform preventive or remedial action such as switching
another generator on to provide more power.

602 Case studies of inequality-constrained optimization

Exercises

Least-cost production with capacity constraints

15.1 In this exercise we consider the convexity of the least-cost production with capacity
constraints problem.

(i) Show that the set {x ∈ Rn|x ≤ x ≤ x} is convex.
(ii) Show that the set S = {x ∈ Rn|D =∑n

k=1 xk, x ≤ x ≤ x} is convex.
(iii) Show that if ∀k = 1, . . . , n, fk : R → R is convex on [xk, xk] then f : Rn → R

defined by ∀x ∈ Rn, f (x) =∑n
k=1 fk(xk) is convex on {x ∈ Rn|D =∑n

k=1 xk, x ≤
x ≤ x}.

15.2 Give an example with n = 3 of Problem (15.1) with no feasible points. (Hint:
Modify the problem illustrated in Figure 15.1.)

15.3 Consider the generalization of Problem (15.1) where instead of each machine pro-
ducing a single commodity, there are two types of commodities, commodity 1 and com-
modity 2. In particular, suppose that there are three machines, k = 1, . . . , 3, and that the
entries x2k−1 and x2k , k = 1, . . . , 3, of x ∈ R6, represent, respectively, the production
by machine k of commodity 1 and commodity 2. Assume that each machine can produce
both types of commodities within limits and that there is a convex function that expresses
the cost of production in terms of the production of each commodity. That is, the cost of
production of machine k is fk(x2k−1, x2k), where fk : R2 → R is convex. Moreover,
suppose that there is demand for both commodities. Formulate the least-cost production
problem for these two commodities. That is, specify the following.

(i) Explicitly define the objective f : R6 → R.
(ii) Explicitly define the equality constraints in the form Ax = b.
(iii) Explicitly define the inequality constraints in the form Cx ≤ d.

Optimal routing in a data communications network

15.4 In this exercise we generalize the formulation of Problem (15.6) to that of a flow
control problem. In Problem (15.6), we are given fixed rates of arrival for traffic between
each origin destination pair. Suppose instead that the rates can be controlled. Moreover,
for each origin destination pair (�, �′), there is a customer utility function u(�,�′) : R →
R that denominates the value to the customer of receiving a traffic rate b(�,�′) for data.
Assume that the customer utilities can be summed across all customers to obtain a total
customer utility and that the congestion measure is denominated in the same units. That is
we assume that the customer utilities and the congestion measure are all commensurable.
(See Section 2.3.1.) Formulate the problem of maximizing the total customer utility minus
the congestion while satisfying the link capacity constraints. (See also Exercise 2.8.) That
is, specify the following.

(i) Explicitly define the decision vector.
(ii) Explicitly define the objective.
(iii) Explicitly define the feasible set.

Exercises 603

�

�
�

3

2

1

������������

�
�

�
�

�
�

�
��

�
�

���
�

��

Fig. 15.9. The data com-
munications network
with three nodes and
four directed links for
Exercise 15.5.

15.5 In this exercise, we generalize the formulation of Problem (15.6) to the case where
the links are not bi-directional. In particular, consider the nodes and directed links illus-
trated in Figure 15.9. There are three nodes and four directed links. (Note that there are
two directed links joining nodes 1 and 2, as indicated by the pair of arrows.) Each link
allows communication in one direction only as specified by the direction of the arrow and
as specified by the set L defined below. For this network, we are given that:

Links: L = {(1, 2), (2, 1), (1, 3), (2, 3)},
Link capacities: ∀(i, j) ∈ L, yi j = 2,

Origin destination pairs: W = {(1, 3), (2, 3)},
Paths for origin destination pair (1, 3): P(1,3) = {1, 2},
Paths for origin destination pair (2, 3): P(2,3) = {3, 4},
Flow for origin destination pair (1, 3): b(1,3) = 1,

Flow for origin destination pair (2, 3): b(2,3) = 1.

Moreover, the allowable paths are:

• path 1, consisting of link (1, 3), for origin destination pair (1, 3),
• path 2, consisting of links (1, 2), (2, 3), for origin destination pair (1, 3),
• path 3, consisting of links (2, 1) and (1, 3), for origin destination pair (2, 3), and
• path 4, consisting of link (2, 3), for origin destination pair (2, 3).

The congestion model is given by functions of the form φi j : [0, yi j) → R+ for each
(i, j) ∈ L and defined by:

∀yi j ∈ [0, yi j), φi j (yi j) = yi j

yi j − yi j
.

Formulate the optimal directed routing problem. That is, specify the following.

(i) Explicitly define the objective f : S → R, as defined in (15.7).
(ii) Explicitly define the equality constraints Ax = b, as defined in (15.2).
(iii) Explicitly define the inequality constraints Cx < y, as defined in (15.5).

15.6 Show that the objective defined in (15.7) of the optimal routing Problem (15.6) is
convex on S = {x ∈ Rn|x ≥ 0,Cx < y}. (Hint: See Exercises 2.30 and 3.22.)

604 Case studies of inequality-constrained optimization

Least absolute value estimation

15.7 In this exercise we consider the effect of outliers.

(i) Use the MATLAB function lsqlin to find the affine function:

∀ψ ∈ R, ζ = β�ψ + γ �,

with β� ∈ R and γ � ∈ R that best fits the following pairs of data (ψ(�), ζ(�)),
for � = 1, . . . , 7. Assume that the measurements ζ(�) are subject to independent
Gaussian errors of identical standard deviation and zero mean so that a least-squares
fit yields the best fit.

� 1 2 3 4 5 6 7
ψ(�) 0.27 0.2 0.8 0.4 0.2 0.7 0.5
ζ(�) 0.3 0.65 0.75 0.4 0.15 1.45 0.5

(ii) Find the sensitivity of β� and γ � to each measurement ζ(�).
(iii) Repeat Part (i), but omit the data point (ψ(6), ζ(6)). That is, find the best least-

squares fit to the rest of the data besides (ψ(6), ζ(6)).
(iv) Find the sensitivity of β� and γ � to each measurement ζ(�) when the outlier is

omitted.
(v) The data in the table is the same as in Exercise 11.5, except that the data point

(ψ(6), ζ(6)) has been altered to equal (0.7, 1.45). Compare the results of the pre-
vious parts to the solution of Exercise 11.5.

15.8 Show that Problems (15.8) and (15.10) are equivalent in the sense that the minima
are the same and that to each minimizer x� of Problem (15.8) there is a corresponding
minimizer (z�, x�, e�) of Problem (15.10), and vice versa.

15.9 In this exercise, we consider the formulation of an estimation problem using the L∞
norm instead of the L1 norm. In particular, consider the objective φ : Rn → R defined by:

∀x ∈ R
n, φ(x) = max

�=1,...,m
|A�x − b�|,

where A ∈ Rm×n , b ∈ Rm , and A� is the �-th row of A. We consider the unconstrained
problem:

min
x∈�n

φ(x).

We also consider the transformed problem:

min
z∈�,x∈�n ,e∈�m

{z|Ax − b − e = 0, 1z ≥ e, 1z ≥ −e}.

Show that these two problems are equivalent in the sense that the minima are the same
and that to each minimizer x� of the first problem there is a corresponding minimizer
(z�, x�, e�) of the second problem, and vice versa.

Exercises 605

Optimal margin pattern classification

15.10 Consider the set P ⊂ Rn by:

P =
{[

β
γ

]
∈ R

n
∣∣∣∣β 	= 0

}
.

(i) Show that P is not closed.
(ii) Show that P is not convex.

15.11 Show that if there is no hyperplane that can separate the patterns then Prob-
lem (15.13) is infeasible.

Sizing of interconnects in integrated circuits

15.12 Write down the formulations of the following problems.
(i) Find if a feasible solution exists that satisfies the delay constraints and the upper

and lower bound constraints on interconnect width.
(ii) Minimize a linear combination of area and delay subject to the upper and lower

bound constraints on interconnect width.
(iii) Minimize the power dissipation subject to the delay constraints and the upper and

lower bound constraints on interconnect width. (Hint: Assume that the power dis-
sipation is due to the interconnect capacitance being charged and discharged. As-
sume that each segment of interconnect is, on average, charged up every alternate
clock cycle and that the clock frequency is fixed.)

15.13 Consider a voltage source that is initially at zero volts but steps to 1.0 volts at time
t = 0. Suppose that the voltage source drives a capacitor C through a resistor R and that
the capacitor initially has zero volts across it.

(i) Solve for the voltage across the capacitor.
(ii) Show that the time taken for the capacitor voltage to reach (1 − exp(−1)) is equal

to RC .

15.14 Consider the Elmore delay function h̃� : Rn → R defined in (15.18) and repeated
here for reference:

∀x ∈ R
n, h̃�(x) =

∑
�∈��

∑
j∈�

⎡⎣κRj

x j

∑
k∈�(j)

(κCkxk + CFk)

⎤⎦ .

(i) Show that the Elmore delay function is not in general a convex function on Rn++.
(Hint: Consider an interconnect that consists of a single segment and take each
constant in the Elmore delay function to be of value one. You might find that
Exercise 3.32, Part (ii), helps in suggesting an approach.)

(ii) Show that the Elmore delay function is a posynomial function. (See Definition 3.1.)

606 Case studies of inequality-constrained optimization

Optimal power flow

15.15 Consider buses � and k joined directly by a line. Prove that:(
|θ�k | ≤ min

{
arctan

(|G�k |
|B�k |

)
, π − arctan

(|G�k |
|B�k |

)})
⇒

(
d2 p̂�k

dθ�k
2 (θ�k) > 0

)
,(

|θk�| ≤ min

{
arctan

(|G�k |
|B�k |

)
, π − arctan

(|G�k |
|B�k |

)})
⇒

(
d2 p̂k�

dθk�
2 (θk�) > 0

)
,

where
d2 p̂�k

dθ�k
2 : R → R and

d2 p̂k�

dθk�
2 : R → R are defined by:

∀θ�k ∈ R,
d2 p̂�k

dθ�k
2 (θ�k) = −u�uk[G�k cos(θ�k) + B�k sin(θ�k)],

∀θk� ∈ R,
d2 p̂k�

dθk�
2 (θk�) = −uku�[G�k cos(θk�) + B�k sin(θk�)].

16

Algorithms for non-negatively constrained
minimization

In this chapter we will develop algorithms for constrained optimization problems
of the form:

min
x∈�

f (x),

where f : Rn → R and where the feasible set S is of the form:

S = {x ∈ R
n|g(x) = 0, x ≥ 0},

with g : Rn → Rm affine. That is, we will consider problems of the form:

min
x∈�n

{ f (x)|Ax = b, x ≥ 0}, (16.1)

where A ∈ Rm×n and b ∈ Rm are constants. In Problem (16.1), the only inequality
constraints are the non-negativity constraints x ≥ 0. These require the deci-
sion vector x to lie in the non-negative orthant Rn+. (See Definition A.5.) We
refer to Problem (16.1) as a non-negatively constrained problem, where it is un-
derstood that it also includes equality constraints in addition to the non-negativity
constraints. As mentioned in Section 2.3.2.3, the form of constraints is also referred
to as the standard format, particularly in the context of linear programming [45,
section 5.6.1][84, section 4.2].

The feasible set defined by the linear equality and non-negativity constraints is
convex. (See Exercise 2.36.) If f is convex on the feasible set then the problem is
convex.

We will develop optimality conditions for Problem (16.1) in Section 16.1, spe-
cializing in Section 16.2 to convex problems. The optimality conditions will help
us to develop algorithms for non-negatively constrained minimization. In Sec-
tions 16.3 and 16.4, we will describe two qualitatively different approaches to find-
ing the minimizer of a non-negatively constrained problem of the form of Prob-
lem (16.1).

607

608 Algorithms for non-negatively constrained minimization

The key issues in this chapter are:

• optimality conditions for non-negatively constrained problems based on the
results for equality-constrained problems,

• the complementary slackness conditions in the optimality conditions,

• optimality conditions for convex problems, and

• active set and interior point algorithms to seek solutions.

16.1 Optimality conditions

In the following sections we first present first-order necessary conditions and then
second-order sufficient conditions for optimality of Problem (16.1).

16.1.1 First-order necessary conditions

In this section we present first-order necessary conditions (or FONC.)

16.1.1.1 Analysis

We have the following.

Theorem 16.1 Let f : Rn → R be partially differentiable with continuous partial deriva-
tives, A ∈ Rm×n, and b ∈ Rm. Consider Problem (16.1),

min
x∈�n

{ f (x)|Ax = b, x ≥ 0},

and a point x� ∈ Rn. If x� is a local minimizer of Problem (16.1) then:

∃λ� ∈ R
m, ∃µ� ∈ R

n such that: ∇ f (x�) + A†λ� − µ� = 0;
M�x� = 0;

Ax� = b;
x� ≥ 0; and

µ� ≥ 0, (16.2)

where M� = diag{µ�
�} ∈ Rn×n is a diagonal matrix with diagonal entries equal to

µ�
�, � = 1, . . . , n. The vectors λ� and µ� satisfying the conditions (16.2) are called the

vectors of Lagrange multipliers for the constraints Ax = b and x ≥ 0, respectively. The
conditions that M�x� = 0 are called the complementary slackness conditions. The
complementary slackness conditions together with the conditions x� ≥ 0 and µ� ≥ 0
imply that, for each �, either the �-th non-negativity constraint x� ≥ 0 is binding or the
�-th Lagrange multiplier µ�

� is equal to zero (or both).

16.1 Optimality conditions 609

Proof ([84, section 14.4].) This is a special case of Theorem 17.1 to be presented in
Chapter 17. We will only sketch the proof of this special case.
Consider the equality-constrained problem:

min
x∈�n

{ f (x)|Ax = b,−x� = 0, ∀� ∈ A(x�)}, (16.3)

where A(x�) = {� ∈ {1, . . . , n}|x�
� = 0} is the active set corresponding to the non-

negativity constraints x ≥ 0 for the point x�. That is, the equality-constrained Prob-
lem (16.3) includes as equality constraints the following:

• all of the equality constraints from Problem (16.1), and
• all of the non-negativity constraints of Problem (16.1) that were satisfied with equal-

ity by x�.

That is, the active non-negativity constraints from Problem (16.1) at its minimizer x�

have been included as equality constraints in Problem (16.3). The representation of
the constraint as −x� = 0 rather than as x� = 0 is for convenience in interpreting the
Lagrange multipliers for equality-constrained Problem (16.3).
The proof involves applying our earlier results for equality-constrained problems to
Problem (16.3). The proof is divided into three parts:

(i) showing that x� is a local minimizer of equality-constrained Problem (16.3),
(ii) using the necessary conditions of the equality-constrained Problem (16.3) to de-

fine λ� and µ� that satisfy the first four lines of (16.2), and
(iii) proving that µ� ≥ 0 by showing that if a particular Lagrange multiplier were

negative, say µ�
� < 0, then the objective could be reduced by moving in a di-

rection such that x� increases and so becomes strictly feasible for the constraint
x� ≥ 0. The intuition behind this observation is that if the second-order suffi-
cient conditions held for Problem (16.3) at x� then we could apply the sensitivity
analysis Corollary 13.11. If we consider changing the constraint from −x� = 0
to −x� = −γ , with γ > 0, then, if µ�

� < 0, Corollary 13.11 indicates that the
minimum of the changed problem would be lower and x� would be strictly pos-
itive. (See Exercise 16.2.) This means that the constraint x� ≥ 0 could not have
been binding at a minimizer of Problem (16.1) since a strictly positive value of
x� would reduce the objective.

�

16.1.1.2 Example

Consider Problem (2.15), which we first saw in Section 2.3.2.3:

min
x∈�2

{x1 − x2|x1 + x2 = 1, x1 ≥ 0, x2 ≥ 0}. (16.4)

The feasible set for this problem is shown in Figure 16.1 as a line interval. Consid-

eration of the objective and inspection of Figure 16.1 shows that x� =
[

0
1

]
is the

unique minimizer of Problem (16.4), as illustrated in Figure 16.1.

610 Algorithms for non-negatively constrained minimization

0 0 2 0 4 0 6 0 8 1 1 2 1 4 1 6 1 8 2
0

0 2

0 4

0 6

0 8

1

1 2

1 4

1 6

1 8

2

x1

x2

x�

Fig. 16.1. The feasible set
(shown as line) and the
minimizer x� (shown as •)
for example problem.

We apply Theorem 16.1 to this non-negatively constrained problem. The objec-
tive is linear, and hence partially differentiable with continuous partial derivatives.
We have:

∀x ∈ R
2, f (x) = x1 − x2,

∀x ∈ R
2,∇ f (x) =

[
1

−1

]
,

A = [
1 1

]
,

= 1†,

b = [1],

where 1 is the two-vector of all ones. We claim that µ� =
[

2
0

]
and λ� = [1]

satisfy (16.2). For:

∇ f (x�) + A†λ� − µ� =
[

1
−1

]
+
[

1
1

]
[1] −

[
2
0

]
,

= 0;
M�x� =

[
2 0
0 0

] [
0
1

]
,

= 0;
Ax� = [

1 1
] [0

1

]
,

= [1],

= b;

16.1 Optimality conditions 611

x� =
[

0
1

]
,

≥ 0; and

µ� =
[

2
0

]
,

≥ 0.

These results concur with Theorem 16.1.

16.1.1.3 Discussion

As in the equality-constrained case, the Lagrange multipliers adjust the uncon-
strained optimality conditions to balance the constraints against the objective. For
the non-negativity constraints the balance is only needed if the objective would en-
courage the non-negativity constraints to be violated. Consequently, the Lagrange
multipliers on the non-negativity constraints are themselves non-negative.

As in the equality-constrained case, we will refer to the equality and inequality
constraints specified in (16.2) as the first-order necessary conditions, although we
recognize that the first-order necessary conditions also include, strictly speaking,
the other items in the hypothesis of Theorem 16.1. These conditions are also known
as the Kuhn–Tucker (KT) or the Karush–Kuhn–Tucker (KKT) conditions and a
point satisfying the conditions is called a KKT point, after the discoverers of these
necessary conditions.

As in the linear equality-constrained case, if A does not have linearly indepen-
dent rows then the Lagrange multipliers may not be unique. Unlike the linear
equality-constrained case where the first-order necessary conditions involve only
simultaneous equations, we now have inequality constraints on both the minimizer
x� and on the Lagrange multipliers µ� in the first-order conditions for inequality
constraints.

The complementary slackness conditions require that M�x� = 0. For each entry
�, this requires that either µ� = 0 or x� = 0. That is, for each entry �, the ordered

pair

[
µ�

x�

]
∈ R2 must lie either on the x�-axis or on the µ�-axis. (The inequality

constraints x� ≥ 0 and µ� ≥ 0 then restrict the ordered pair further to lying either
on the non-negative x�-axis or on the non-negative µ�-axis.)

It might seem that a straightforward approach to solving for x ∈ Rn, µ ∈ Rn

that satisfy these conditions for each entry � would be to use the Newton–Raphson
method. That is, we might think of linearizing the equation Mx = 0 about the
current values of µ and x at a particular iteration ν and using the linearized equa-
tions to construct an update. However this approach is not effective unless we are
careful to avoid the boundary of the set defined by µ ≥ 0 and x ≥ 0.

612 Algorithms for non-negatively constrained minimization

0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1
0

0 1

0 2

0 3

0 4

0 5

0 6

0 7

0 8

0 9

1

µ�

x�

Fig. 16.2. The complementary
slackness condition for the en-
try � requires that the point[

µ�

x�

]
∈ R2 lie either on the

µ�-axis or on the x�-axis. The
hyperbola µ� x� = t approx-
imates the set of points satis-
fying the complementary slack-
ness constraints. The dashed
curve shows the hyperbola for
t = 0.1; the dash-dotted
curve shows the hyperbola for
t = 0.05; and the dotted curve
shows the hyperbola for t =
0.01.

To understand the pitfalls of applying the Newton–Raphson method to seek solu-
tions of the complementary slackness conditions Mx = 0, suppose that at iteration
ν we had x (ν)

� = 0. That is, x (ν) is on the boundary of x ≥ 0. In this case, for
the particular entry �, linearizing the complementary slackness conditions involves
linearizing µ� x� about µ

(ν)
� and x (ν)

� . We obtain:

(µ
(ν)
� + �µ

(ν)
�)(x (ν)

� + �x (ν)
�) ≈ µ

(ν)
� x (ν)

� + x (ν)
� �µ

(ν)
� + µ

(ν)
� �x (ν)

� ,

= µ
(ν)
� �x (ν)

� ,

since x (ν)
� = 0. Setting this equal to zero yields �x (ν)

� = 0. That is, if we ever were
at an iterate for which x (ν)

� = 0 then the Newton–Raphson update would prevent
us from ever moving from this value. Similarly, if µ

(ν)
� = 0 at some iteration

then linearization of the complementary slackness conditions would prevent any
changes in µ�. Linearizing the complementary slackness constraint does not yield
a useful approximation in these cases.

We will see in Section 16.4.3.3 that an effective linearization of this constraint
requires us to carefully avoid the possibilities that µ(ν)

� = 0 or x (ν)
� = 0. We will see

that one way to do this is to first approximate the constraint µ� x� = 0 by a hyper-
bola µ� x� = t , where t ∈ R++, and then linearize the hyperbolic approximation.
Then, we gradually reduce t . Figure 16.2 shows a hyperbolic approximation to the
set of points satisfying the complementary slackness constraint for several values

of t . As t is reduced, the set of ordered pairs

[
µ�

x�

]
satisfying µ� x� = t , µ� ≥ 0,

and x� ≥ 0 approaches the union of the non-negative µ�-axis and the non-negative
x�-axis.

16.1 Optimality conditions 613

16.1.2 Second-order sufficient conditions

In this section we present second-order sufficient conditions (or SOSC) for Prob-
lem (16.1).

16.1.2.1 Analysis

We have:

Theorem 16.2 Let f : Rn → R be twice partially differentiable with continuous second
partial derivatives, A ∈ Rm×n, and b ∈ Rm. Consider Problem (16.1),

min
x∈�n

{ f (x)|Ax = b, x ≥ 0},

and points x� ∈ Rn, λ� ∈ Rm, and µ� ∈ Rn. Let M� = diag{µ�
�}. Suppose that:

∇ f (x�) + A†λ� − µ� = 0,

M�x� = 0,

Ax� = b,

x� ≥ 0,

µ� ≥ 0, and

∇2f (x�) is positive definite on the null space:

N+ = {�x ∈ R
n|A�x = 0;�x� = 0, ∀� ∈ A+(x�, µ�)},

where A+(x�, µ�) = {� ∈ {1, . . . , n}|x�
� = 0, µ�

� > 0}. Then x� is a strict local
minimizer of Problem (16.1).

Proof See [45, section 3.3.2]. �

The conditions in the theorem are called the second-order sufficient conditions
(or SOSC.) In addition to the first-order necessary conditions, the second-order
sufficient conditions require that:

• f is twice partially differentiable with continuous second partial derivatives, and
• ∇2f (x�) is positive definite on the null space N+ defined in the theorem.

16.1.2.2 Example

Consider the objective f : R2 → R defined by:

∀x ∈ R
2, f (x) = (x1)

2 + (x2 − 1)2,

and suppose that we do not have any equality constraints. That is, consider the
problem:

min
x∈�2

{ f (x)|x ≥ 0}.

614 Algorithms for non-negatively constrained minimization

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

x1

x2

Fig. 16.3. Contour sets of
objective function defined
in Section 16.1.2.2. The
heights of the contours de-
crease towards the point

x� =
[

0
1

]
, which is illus-

trated as a •.

The objective is twice partially differentiable with continuous second partial deriva-
tives. The contour sets of this objective are shown in Figure 16.3.

We claim that the second-order sufficient conditions hold for x� =
[

0
1

]
and

µ� = 0. The point x� is illustrated as a • in Figure 16.3. For this example, the
second-order sufficient conditions are that:

∇ f (x�) − µ� =
[

2x�
1

2(x�
2 − 1)

]
− µ�,

= 0,

M�x� = 0,

x� ≥ 0,

µ� ≥ 0,

and that ∇2f (x�) is positive definite on the null space:

N+ = {�x ∈ R
2|�x� = 0, ∀� ∈ A+(x�, µ�)}.

We note that:

A(x�) = {1},
A+(x�, µ�) = {� ∈ {1, 2}|x�

� = 0, µ�
� > 0},

= ∅,

16.1 Optimality conditions 615

N+ = {�x ∈ R
2|�x� = 0, ∀� ∈ A+(x�, µ�)},

= {�x ∈ R
2|�x� = 0, ∀� ∈ ∅},

= R
2,

∇2f (x�) = 2I,

which is positive definite on N+ = R2. The second-order sufficient conditions

hold at x� =
[

0
1

]
and µ� = 0. Note that A+(x�, µ�) is a strict subset of A(x�) for

this example.

16.1.2.3 Discussion

The example in Section 16.1.2.2 shows that the set A+(x�, µ�) can be a strict subset
of A(x�), since, compared to A(x�), the set A+(x�, µ�) omits those constraints �

for which x�
� = 0 and µ�

� = 0. Therefore, the null space specified in Theorem 16.2:

N+ = {�x ∈ R
n|A�x = 0,�x� = 0,∀� ∈ A+(x�, µ�)},

can strictly contain the null space corresponding to the equality constraints and the
active inequality constraints. That is, N+ can strictly contain the null space:

N = {�x ∈ R
n|A�x = 0,�x� = 0, ∀� ∈ A(x�)},

corresponding to the constraints of equality-constrained Problem (16.3), which we
repeat here:

Ax = b,

−x� = 0, ∀� ∈ A(x�).

By Corollary 13.4 of Chapter 13, satisfaction by x� of the first-order necessary
conditions for equality-constrained Problem (16.3), together with positive definite-
ness of ∇2f (x�) on the null space N , guarantees that x� is a strict local minimizer
of equality-constrained Problem (16.3). However, this is insufficient to guaran-
tee that x� is a strict local minimizer of the corresponding inequality-constrained
Problem (16.1) if there are any constraints � for which both x�

� = 0 and µ�
� = 0.

Constraints for which x�
� = 0 and µ�

� = 0 are called degenerate constraints.
Intuitively, a degenerate constraint � is only “just” binding. The sensitivity of the
objective to changes in x� is zero. (See Exercise 16.2.) Moreover, there exist
feasible movements �x away from x�, namely those in which �x� > 0, for which
the constraint x� ≥ 0 is no longer binding. Such feasible movements do not satisfy
�x� = 0. Therefore, to guarantee that we are at a minimizer of Problem (16.1)
we must test for positive definiteness of the objective in the larger subspace that
allows movement in directions �x such that �x� > 0. If the Hessian is positive
definite in these directions then the objective must increase in these directions as

616 Algorithms for non-negatively constrained minimization

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

x1

x2

Fig. 16.4. Contour sets of
objective function defined
in Section 16.1.2.4. The
heights of the contours de-
crease away from the point

x̂ =
[

0
1

]
, which is illus-

trated as a ◦, in the direc-
tion of increasing values of
x1. The heights of the con-
tours increase away from
the point x̂ in the direction
of increasing or decreasing
values of x2.

we move away from x� and consequently we are indeed at a local minimizer of
Problem (16.1). That is, if ∇2f (x�) is positive definite on N+ then there can be no
feasible descent directions for f at x�.

In the example in Section 16.1.2.2, the binding constraint was degenerate and we
had to check for positive definiteness of the Hessian of the objective on the whole
of R2. In general, we might expect that some constraints might be degenerate and
some might not be degenerate so that N+ might not be the whole of Rn . (See
Exercise 16.3.) However, it is very important to check for positive definiteness on
the set N+ and not just on the set N . In the following section, we present another
example that illustrates this issue.

16.1.2.4 Example of not satisfying second-order sufficient conditions

For example, suppose that we have the objective f : R2 → R defined by:

∀x ∈ R
2, f (x) = −(x1)

3 + (x2 − 1)2.

The contour sets of this objective are shown in Figure 16.4. The function decreases
with increasing values of x1.

As in the example in Section 16.1.2.2, suppose that we do not have any equality
constraints. That is, consider the problem:

min
x∈�2

{ f (x)|x ≥ 0}.

The problem is unbounded below on the feasible set and therefore has no mini-
mizer.

16.1 Optimality conditions 617

However, consider the candidate minimizer x̂ =
[

0
1

]
and candidate value of

Lagrange multipliers µ̂ = 0. The point x̂ is illustrated as a ◦ in Figure 16.4. For
these values of x̂ and µ̂ we have:

∇ f (x̂) − µ̂ = 0,

M̂ x̂ = 0,

x̂ ≥ 0,

µ̂ ≥ 0,

where M̂ = diag{µ̂�} ∈ R2×2 is a diagonal matrix with diagonal entries equal to
µ̂�, � = 1, 2. That is, x̂ and µ̂ satisfy the first-order necessary conditions.

The active set at x̂ = 0 includes the first non-negativity constraint. That is,
A(x̂) = {1}. This set is different to A+(x̂, µ̂). In fact, A+(x̂, µ̂) = {� ∈ {1, 2}|x�

� =
0, µ�

� > 0} = ∅. Therefore, if x̂ =
[

0
1

]
and µ̂ = 0 were the minimizer and

corresponding Lagrange multipliers of this problem, then the constraint x1 ≥ 0
would be degenerate.

The Hessian of the objective is:

∇2f (x̂) =
[

0 0
0 2

]
.

The subspace corresponding to the constraints of equality-constrained Problem (16.3)
is:

N = {�x ∈ R
2|A�x = 0,�x� = 0, ∀� ∈ A(x̂)},

= {�x ∈ R
2|�x� = 0, ∀� ∈ {1}},

= {�x ∈ R
2|�x1 = 0}.

Note that:

∀�x ∈ N , (�x 	= 0) ⇒ (�x1 = 0,�x2 	= 0),

⇒ (�x†∇2f (x̂)�x = 2(�x2)
2 > 0).

That is, the Hessian is positive definite on N and, by Corollary 13.4, x̂ is a local
minimizer of the equality-constrained problem minx∈�2{ f (x)| − x1 = 0}. But this
is insufficient to guarantee local optimality for Problem (16.1). In fact, ∇2f (x̂) is
not positive definite on the null space N+ specified in Theorem 16.2:

N+ = {�x ∈ R
2|A�x = 0,�x� = 0, ∀� ∈ A+(x̂, µ̂)},

= {�x ∈ R
2|�x� = 0, ∀� ∈ ∅},

= R
2.

618 Algorithms for non-negatively constrained minimization

The second-order sufficient conditions do not hold and x̂ is not a minimizer of the
problem.

As in the equality-constrained case, this example shows that we may encounter
problems where we can find a point that satisfies the first-order necessary condi-
tions but which does not satisfy the second-order sufficient conditions. We must
use further judgment in this case to decide if the point is a minimizer. In this
example, the contour sets of the objective confirm that x̂ is not a minimizer.

16.2 Convex problems

16.2.1 First-order sufficient conditions

16.2.1.1 Analysis

If the constraints consist of linear equality constraints and non-negativity con-
straints and if f is convex on the feasible set then the problem is convex. In this
case, the first-order necessary conditions are also sufficient for optimality.

Theorem 16.3 Let f : Rn → R be partially differentiable with continuous partial deriva-
tives, A ∈ Rm×n, and b ∈ Rm. Consider Problem (16.1),

min
x∈�n

{ f (x)|Ax = b, x ≥ 0},

and points x� ∈ Rn, λ� ∈ Rm, and µ� ∈ Rn. Let M� = diag{µ�
�} ∈ Rn×n. Suppose

that:

(i) f is convex on {x ∈ Rn|Ax = b, x ≥ 0},
(ii) ∇ f (x�) + A†λ� − µ� = 0,
(iii) M�x� = 0,
(iv) Ax� = b and x� ≥ 0, and
(v) µ� ≥ 0.

Then x� is a global minimizer of Problem (16.1).

Proof By Item (iv), x� is feasible. Consider any other feasible point x ∈ Rn . That is,
consider x such that:

Ax = b, x ≥ 0.

We have Ax = Ax� = b, so A(x − x�) = 0 and:

[λ�]† A(x − x�) = 0. (16.5)

We now consider constraints � ∈ A(x�) and constraints � 	∈ A(x�) separately.
For � 	∈ A(x�), we have that x�

� > 0. Consequently, Item (iii) implies that µ�
� = 0.

Therefore,

∀� 	∈ A(x�), µ�
�(x� − x�

�) = 0. (16.6)

16.2 Convex problems 619

For � ∈ A(x�), we have that x�
� = 0. Moreover, since x� ≥ 0 for all �, we have:

∀� ∈ A(x�), x� − x�
� = x� − 0,

≥ 0.

Therefore, since µ�
� ≥ 0, we have:

∀� ∈ A(x�), µ�
�(x� − x�

�) ≥ 0. (16.7)

Combining (16.6) and (16.7), we have:

[µ�]†(x − x�) =
∑

�∈�(x�)

µ�
�(x� − x�

�) +
∑

� 	∈�(x�)

µ�
�(x� − x�

�),

=
∑

�∈�(x�)

µ�
�(x� − x�

�), by (16.6),

≥ 0, by (16.7). (16.8)

We have:

f (x) ≥ f (x�) +∇ f (x�)
†
(x − x�), by Theorem 2.6, noting that:

f is partially differentiable with continuous partial derivatives;
f is convex on the convex set {x ∈ Rn|Ax = b, x ≥ 0},

by Item (i) of the hypothesis; and

x, x� ∈ {x ∈ Rn|Ax = b, x ≥ 0},
by Item (iv) of the hypothesis and construction,

= f (x�) − [A†λ� − µ�]
†
(x − x�),

by Item (ii) of the hypothesis,

= f (x�) − [λ�]† A(x − x�) + [µ�]†(x − x�),

= f (x�) + [µ�]†(x − x�), by (16.5),

≥ f (x�), by (16.8).

Therefore, x� is a global minimizer of f on {x ∈ Rn|Ax = b, x ≥ 0}. �

16.2.1.2 Example

Consider again the problem from Section 16.1.2.2:

min
x∈�2

{ f (x)|x ≥ 0},

with objective f : R2 → R defined by:

∀x ∈ R
2, f (x) = (x1)

2 + (x2 − 1)2.

The objective is partially differentiable with continuous partial derivatives and con-

vex. We have already verified that x� =
[

0
1

]
and µ� = [0] satisfy the first-order

necessary conditions. By Theorem 16.3, x� is a global minimizer of the problem.

620 Algorithms for non-negatively constrained minimization

16.3 Approaches to finding minimizers: active set method

In this section, we will discuss the first of two major classes of algorithms for
solving inequality-constrained problems. The key to this first approach will be the
identification of which constraints are active. If the active inequality constraints
could be identified, then they can be treated as equality constraints, much as we did
in the proof of Theorem 16.1, and the algorithms we have developed for equality-
constrained optimization can be used to solve the problem. However, in general it
is difficult to decide a priori which constraints are active, and searching over all
possible combinations of binding constraints is prohibitive in computation time as
shown in Exercise 16.6.

One approach to identifying the active inequality constraints, called the active
set method is to consider a tentative list of the constraints that we believe are
binding at the optimum [84, section 15.4]. This tentative list is called the working
set and typically consists of the indices of the binding inequalities at the current
iterate.

We update the iterates to reduce the objective while temporarily holding as
equalities those constraints that are in the working set. Since our tentative list
may not be the correct list for the minimizer, we must consider how to change this
tentative list, either by:

• adding another constraint to the list, which is called swapping in, or

• removing a constraint from the list, which is called swapping out.

Geometrically, active set algorithms tend to step along the boundary of the region
defined by the inequality constraints.

In Section 16.3.1 we discuss the working set, while in Sections 16.3.2, 16.3.3,
and 16.3.4, respectively, we discuss swapping in, swapping out, and alternation of
swapping in and out. In Section 16.3.5, we discuss finding an initial feasible point.
Finally, in Section 16.3.6, we specialize to linear and quadratic objectives. The
discussion is drawn from a number of sources, including [45, 70, 84].

16.3.1 Working set

Let us write W(ν) for the working set, with the understanding that the working set
will change from iteration to iteration and, in some cases, during an iteration, based
on values of the iterates. (That is, we will be abusing notation; however, the entries
in the working set will always be made clear by the context of the discussion.) The
constraints in the working set are treated temporarily as equality constraints. A
search direction is calculated that seeks the minimizer of an equality-constrained
problem where the equality constraints consist of:

16.3 Approaches to finding minimizers: active set method 621

• all the equality constraints in the original problem, and
• the binding inequality constraints listed in W(ν).

If the working set W(ν) happens to coincide with the active set for the minimizer x�

of the inequality-constrained Problem (16.1) then, by the proof of Theorem 16.1,
the solution of the equality-constrained problem using W(ν) will be x�.

Inequality constraints are “swapped” in and out of the working set as calculations
proceed. After each change to the working set, the updated equality-constrained
problem is considered. We will explore this in the following sections.

16.3.2 Swapping in

16.3.2.1 Descent direction

Consider iteration ν, the current value of the iterate x (ν), and a working set W(ν).
Suppose that x (ν) is feasible with respect to all the constraints and strictly feasible
with respect to the constraints that are not in the working set W(ν). (We will discuss
in Section 16.3.5 how to obtain an initial feasible point.)

We consider the equality-constrained problem that is obtained by treating the
constraints in the working set as equality constraints and temporarily ignoring the
other inequality constraints. That is, we consider the problem:

min
x∈�n

{ f (x)|Ax = b,−x� = 0, ∀� ∈ W
(ν)}. (16.9)

We can use the algorithms from Chapter 13 to find a descent direction �x (ν) at x (ν)

for this equality-constrained problem.

16.3.2.2 Step-size

We now seek movements along the descent direction �x (ν) that also do not violate
any of the inequality constraints that are not in the current working set W(ν). That
is, we seek a step-size for the update that will maintain feasibility with respect to
all of the constraints in Problem (16.1).

In particular, consider any inequality constraint �′ that is not in the current work-
ing set. That is, consider �′ 	∈ W(ν) so that x (ν)

�′ > 0. For simplicity, first sup-
pose that the objective function decreases along the descent direction for arbitrary
step-sizes. Suppose further that an update �x (ν) based on the current working set
and a step-size of 1 would cause inequality constraint �′ to be violated because
x (ν)

�′ + �x (ν)

�′ < 0. Then:

• the step-size α(ν) for the update should be chosen to make constraint �′ just
binding at the next iterate x (ν)

�′ + α(ν)�x (ν)

�′ , and
• the working set should be updated by including constraint �′ so that W(ν+1) =

W(ν) ∪ {�′}.

622 Algorithms for non-negatively constrained minimization

0
2

4
6

8
10

0

2

4

6

8

10

0

2

4

6

8

10

x1x2

x3

x (ν)

�x (ν)

x (ν+1)�x (ν+1)x (ν+2)

Fig. 16.5. Changes in the
working set.

Now we consider the decrease of the objective function along the descent di-
rection. In Section 10.2.4 we discussed the selection of step lengths to ensure
sufficient decrease of the objective f . We may find that the function evaluated at
x (ν)

�′ + α(ν)�x (ν)

�′ does not satisfy a sufficient decrease criterion. In this case, we
should decrease the step size further (and not add the constraint �′ to the working
set.) Further details about step length selection can be found in [45, section 5.2.2].

16.3.2.3 Example

For example, consider Figure 16.5, which shows the feasible set {x ∈ R3|1†x =
10, x ≥ 0}. This feasible set is an example of a set of the form:

{x ∈ R
n|Ax = b, x ≥ 0}, (16.10)

where A = −1† ∈ Rm×n and b = [−10
] ∈ Rm , for m = 1 and n = 3. This is

the same form as the equality constraint in the least-cost production case study of
Section 12.1 and we know from Section 12.1.4.2 and Exercise 12.4 that:

Z =
⎡⎣−1 −1

1 0
0 1

⎤⎦ ,

is a matrix with columns that form a basis for the null space of A.

Also illustrated in Figure 16.5 is a current iterate x (ν) =
⎡⎣ 1

3
6

⎤⎦ ∈ R3+ that is

feasible for the equality constraint. Since x (ν) > 0, we suppose that the current
working set is empty, W(ν) = ∅.

Consider a partially differentiable objective f : R3 → R such that ∇ f (x (ν)) =

16.3 Approaches to finding minimizers: active set method 623⎡⎣ 2
−1
11

⎤⎦. By the discussion in Section 13.1.2.2, since the vector:

�x (ν) = −Z Z†∇ f (x (ν)),

=
⎡⎣ 6

3
−9

⎤⎦
is non-zero then it is a descent direction for f that lies in the null space of the
equality constraint. (There are many other such descent directions and, unless Z is
known, it would be inconvenient to evaluate Z in general. However, since we have
already found Z , we have used it to find a descent direction in the null space of A.)
The vector �x (ν) is illustrated in Figure 16.5 as the arrow with tail at x (ν).

Consider movement from x (ν) along the direction �x (ν). Summarizing the ob-
servations above, moving from x (ν) in the direction �x (ν) will simultaneously:

• improve the objective, and
• maintain satisfaction of the equality constraint 1†x = 10.

Let us suppose that the objective decreases along the direction �x (ν) for step-
sizes up to at least 1. That is,

∀α(ν) ∈ (0, 1], f (x (ν) + α(ν)�x (ν)) < f (x (ν)).

Nevertheless, to maintain feasibility of the next iterate x (ν+1) with respect to the
non-negativity constraints, the update cannot progress past the x3 = 0 plane. We
must choose α(ν) such that:

x (ν+1) = x (ν) + α(ν)�x (ν),

=
⎡⎣ 1

3
6

⎤⎦+ α(ν)

⎡⎣ 6
3

−9

⎤⎦ ,

≥ 0.

To satisfy x (ν+1) ≥ 0, a step-size of α(ν) = 2
3 is chosen so that x (ν+1) satisfies

x (ν+1)

3 = 0 and, therefore, x (ν+1) =
⎡⎣ 5

5
0

⎤⎦. Constraint 3 is added to the working set

so that, tentatively, W(ν+1) = {3}.
For the next iteration, we consider movement in a direction �x (ν+1) such that:

• �x (ν+1) is a descent direction for the objective f at x (ν+1),
• movement in the direction �x (ν+1) maintains feasibility for the equality con-

straint 1†x = 10, and

624 Algorithms for non-negatively constrained minimization

• movement in the direction �x (ν+1) maintains satisfaction of the equality con-
straint −x3 = 0 implied by the current working set.

For example, suppose that at x (ν+1) the objective decreases with increasing values
of x1 and decreasing values of x2. Then a suitable update direction is shown in
Figure 16.5 as the arrow labelled �x (ν+1) having its tail at x (ν+1) and pointing

towards x =
⎡⎣ 10

0
0

⎤⎦.

We would update along the direction �x (ν+1) until a minimum of the objective
was reached or another constraint became binding. In the former case, a point such
as x (ν+2) in Figure 16.5 would be obtained. In the latter case, another constraint
would be added to the working set and the procedure would continue. As men-
tioned above, the iterates typically lie on the boundary of the region defined by the
inequality constraints.

16.3.3 Swapping out

16.3.3.1 Descent direction

We can also consider swapping a constraint �′′ out of the feasible set. In seeking a
descent direction for the equality-constrained Problem (16.9), we can obtain esti-
mates of the Lagrange multipliers for the active constraints. Suppose that for some
�′′ ∈ W(ν) we find that a Lagrange multiplier estimate for the constraint −x�′′ = 0
is negative for Problem (16.9). In this case, we can potentially reduce the objective
by moving in a direction that makes the constraint non-binding. That is, we should
consider removing �′′ from the working set.

This approach again follows the proof of Theorem 16.1. In the proof of Theo-
rem 16.1, a negative value of a Lagrange multiplier corresponding to an inequality
constraint allowed us to reduce the objective by moving in a direction such that
the constraint became strictly feasible. Similarly, a negative Lagrange multiplier
estimate for a constraint in the active set signals that the objective can be reduced
by removing the constraint from the working set.

In practice, the equality-constrained problems may not be solved to optimality,
so that the Lagrange multiplier estimate may be in error. In this case, the working
set approach can be prone to “zig-zagging” where constraints repeatedly move in
and out of the active set without significant progress. Various strategies have been
devised to avoid erroneously swapping a constraint out. Nevertheless, suppose that
we choose to swap out constraint �′′ to update the working set. Then we revise
the working set to be W(ν) \ {�′′}. That is, we remove �′′ from the working set. A

16.3 Approaches to finding minimizers: active set method 625

0 0 2 0 4 0 6 0 8 1 1 2 1 4 1 6 1 8 2
0

0 2

0 4

0 6

0 8

1

1 2

1 4

1 6

1 8

2

x1

x2

x� = x (1)

x (0)

Fig. 16.6. The trajectory
of iterates using the active
set algorithm for the exam-
ple problem. The feasible
set is indicated by the solid
line.

descent direction is sought for the corresponding equality-constrained problem:

min
x∈�n

{ f (x)|Ax = b,−x� = 0, ∀� ∈ W
(ν) \ {�′′}},

and the next iterate is calculated based on this descent direction.

16.3.3.2 Example

Consider again Problem (16.4) from Sections 2.3.2.3 and 16.1.1.2:

min
x1,x2∈�

{x1 − x2|x1 + x2 = 1, x1 ≥ 0, x2 ≥ 0}.
(This is an example of a linear programming problem, which will discuss more
specifically in Section 16.3.6.1.) Suppose that we start with the initial guess of

x (0) =
[

1
0

]
for this problem. This initial guess is feasible with respect to all the

constraints, is strictly feasible with respect to the inequality constraint x1 ≥ 0,
and the inequality constraint x2 ≥ 0 is active at this initial guess. The situation is
illustrated in Figure 16.6.

Working set Since the inequality constraint x2 ≥ 0 is active for the initial guess,
the initial working set is W(0) = {2}.

Descent direction at x (0) We consider the equality-constrained problem:

min
x1,x2∈�

{x1 − x2|x1 + x2 = 1,−x� = 0,∀� ∈ W
(0)}

= min
x1,x2∈�

{x1 − x2|x1 + x2 = 1,−x2 = 0}, (16.11)

and seek a descent direction for it. In fact, however, x (0) is optimal for this problem,
but the sign of the Lagrange multiplier for the constraint −x2 = 0 is negative. (See

626 Algorithms for non-negatively constrained minimization

Exercise 16.7.) That is, we are at the minimizer of the equality-constrained prob-
lem but have not found the minimizer of inequality-constrained Problem (16.4).

Update working set We update the working set by removing constraint 2 from it.
That is, we now have the revised working set W(0) = ∅.

Descent direction at x (0) Since the objective increases with x1 and decreases with
x2, a descent direction at x (0) for the objective that maintains feasibility for the

equality constraints x1 + x2 = 1 is given by �x (0) =
[−1

1

]
. (See Exercise 16.7.)

16.3.4 Alternation of swapping in and out

In general, we must solve a sequence of problems, alternately swapping in and
out. To illustrate, we continue with Problem (16.4) from Sections 2.3.2.3, 16.1.1.2,

and 16.3.3.2, starting at x (0) =
[

1
0

]
and using descent direction �x (0) =

[−1
1

]
.

16.3.4.1 Swapping in

If we move along the descent direction according to x (0) + α(0)�x (0), we find that
for α(0) = 1, the constraint x1 ≥ 0 becomes binding. We obtain the next iterate:

x (1) = x (0) + α(0)�x (0),

=
[

1
0

]
+ 1

[−1
1

]
,

=
[

0
1

]
,

and we update the working set to W(1) = {1}.
16.3.4.2 Descent direction

We consider the equality-constrained problem corresponding to the working set
W(1) = {1}:

min
x1,x2∈�

{x1 − x2|x1 + x2 = 1,−x� = 0, ∀� ∈ W
(1)}

= min
x1,x2∈�

{x1 − x2|x1 + x2 = 1,−x1 = 0}, (16.12)

and seek a descent direction for it. In fact, x (1) is the minimizer of this equality-
constrained problem and, moreover, the sign of the Lagrange multiplier for the
constraint −x1 = 0 is positive. (See Exercise 16.8.) That is, we are at the op-
timum of the equality-constrained problem and have also found the optimum of
inequality-constrained Problem (16.4).

16.3 Approaches to finding minimizers: active set method 627

16.3.4.3 Discussion

For this example, since there were only two inequality constraints we took just one
swapping out operation and one swapping in operation to find the minimizer. The
sequence of iterates is illustrated in Figure 16.6. In general we will find that we
will have to successively swap in and out various of the constraints and solve sev-
eral equality-constrained problems before reaching the minimizer of the original
inequality-constrained problem.

16.3.5 Finding an initial feasible guess

The algorithm we have sketched relies on starting with an initial feasible guess.
We discussed how to find a point satisfying equality constraints Ax = b in Sec-
tion 5.8.1; however, in general this approach will not guarantee satisfaction of
the non-negativity constraints x ≥ 0. To find an initial feasible guess for Prob-
lem (16.1), we will instead define another optimization problem that is related to
Problem (16.1) and having the following properties:

• it is easy to find an initial feasible guess for the related problem,
• if Problem (16.1) is feasible, then a minimizer of the related problem yields a

feasible initial guess for Problem (16.1), and
• if Problem (16.1) is infeasible, then the minimum of the related problem signals

this fact.

The related problem includes the variables x ∈ Rn from Problem (16.1) and, addi-
tionally, includes artificial variables w ∈ Rn [6, section 2.7][45, section 5.7][84,
section 5.5]. To simplify the discussion of the related problem, let us suppose that
b ≥ 0 (or, swap the sign of any negative entry in b and the signs of the entries
in the corresponding row of A.) Consider the following problem, related to Prob-
lem (16.1):

min
x∈�n ,w∈�n

{1†w|Ax + w = b, x ≥ 0, w ≥ 0}. (16.13)

Note that x (0) = 0, w(0) = b ≥ 0 satisfies the equality and inequality constraints
of Problem (16.13). We solve Problem (16.13) using the active set method and the

feasible initial guess

[
x (0)

w(0)

]
. If, at a minimizer

[
x�

w�

]
of Problem (16.13), we find

that w� = 0 (so that the minimum is 1†w� = 0) then x� is a a feasible initial guess
for Problem (16.1), since:

b = Ax� + w�, since

[
x�

w�

]
is feasible for Problem (16.13),

= Ax�, since w� = 0,

628 Algorithms for non-negatively constrained minimization

x� ≥ 0, since

[
x�

w�

]
is feasible for Problem (16.13).

On the other hand, if the minimum is non-zero (so that the minimizer

[
x�

w�

]
satis-

fies w� 	= 0) then Problem (16.1) is infeasible. (See Exercise 16.9.)
The process of finding a feasible initial guess for Problem (16.1) is sometimes

called phase 1 of optimization. The feasible initial guess is then used as a starting
point by an algorithm to minimize the objective of Problem (16.1) in what is called
phase 2 [70, section 3.5][84, section 5.5].

16.3.6 Linear and quadratic objectives

In this section we specialize to linear and to quadratic objectives.

16.3.6.1 Linear programming

Analysis Consider a non-negatively constrained linear programming problem:

min
x∈�n

{c†x |Ax = b, x ≥ 0}. (16.14)

As mentioned previously, this is called the standard format for linear programs.
For this problem, Theorem 16.1 indicates that, except for:

• the complementary slackness conditions Mx = 0, and
• the inequalities x ≥ 0 and µ ≥ 0,

the necessary conditions are linear simultaneous equations. The linearity facili-
tates:

• the calculation of descent directions for the corresponding equality-constrained
problem,

• avoiding zig-zagging, and
• maintaining feasibility as successive iterates are calculated.

Moreover, since the objective is linear, it is both convex and concave. The linear
minimization Problem (16.14) is equivalent to maximizing the objective−c†x over
the same feasible set. By Theorem 2.5, there is a maximizer of−c†x (and therefore
a minimizer of c†x) that is an extreme point of the feasible set. We can restrict
attention to points that are vertices of the feasible set and do not need to consider
points such as x (ν+2) in Figure 16.5 that are on the boundary but not at a vertex of
the feasible set.

Geometrically, contour sets of the objective are parallel hyperplanes. The min-
imum of the linear program corresponds to the hyperplane with minimum height

16.3 Approaches to finding minimizers: active set method 629

that intersects the feasible set. The intersection will contain a vertex of the feasible
set.

Discussion The active set strategy applied to linear programming problems repre-
sented in the form of Problem (16.14), together with various techniques to make
the constraint swapping and calculation of descent directions more efficient, leads
to the simplex algorithm, developed in the 1940s by George Dantzig [41, sec-
tion 3.2]. The simplex algorithm updates the iterates by proceeding from vertex to
vertex of the feasible set along edges of the feasible set. (A simplex is a set that
consists of the convex combinations of a finite number of vertices. The feasible set
for the problem is an example of a simplex.) The vertices of the feasible set for
Problem (16.14) are points that satisfy equations of the form:

Ax = b,−x� = 0,∀� ∈ W,

with W having n − m members (for A ∈ Rm×n having m linearly independent
rows.) For example, for the feasible set illustrated in Figure 16.5, the vertices are:⎡⎣ 10

0
0

⎤⎦ ,

⎡⎣ 0
10
0

⎤⎦ ,

⎡⎣ 0
0

10

⎤⎦ ,

corresponding, respectively, to the three choices:

W = {2, 3}, W = {1, 3}, W = {1, 2}.
Each of these choices of working set has n − m = 3 − 1 = 2 members.

The form of the feasible set for linear programming leads to important simpli-
fications for updating iterates and swapping in and swapping out. In particular,
swapping in and out is performed simultaneously and calculation of a descent di-
rection is facilitated by maintaining and updating factors of an appropriate square
sub-matrix of the coefficient matrix of the constraints Ax = b,−x� = 0,∀� ∈ W.
Moreover, the algorithm terminates in a finite number of iterations with the ex-
act minimizer (assuming infinite precision arithmetic). Details can be found in a
number of references, including [28][70, part I][84, chapter 5]. The MATLAB func-
tion linprog uses the simplex algorithm under some circumstances. (See Exer-
cise 16.10.)

For some pathological problems, the simplex algorithm must examine a large
proportion of the possible combinations of active inequalities [84, section 9.3]. As
shown in Exercise 16.6, the number of combinations is large for n large and would
be computationally prohibitive if a large proportion of the combinations had to be
examined. However, in practice, the simplex algorithm usually finds a solution of
the problem in relatively few iterations. In fact, if we choose linear programming

630 Algorithms for non-negatively constrained minimization

problems “randomly” by choosing the coefficients in the linear and affine functions
from particular random distributions, then there are theoretical results that indicate
that the simplex algorithm has good expected behavior over certain distributions of
random problems [84, section 9.5]. Despite the existence of problems where the
simplex algorithm is slow, the simplex algorithm and its variants remain the most
used and practical optimization algorithms.

There is a vast literature on linear programming. If an optimization problem
can be formulated as a linear program (or can be linearized without much loss of
accuracy) then it is worthwhile to do so. Many special issues arise in linear pro-
gramming that allow simplifications of hypotheses and sharpening of conclusions
of the theory we have discussed. For example, some linear integer optimization
problems have simple solutions in terms of linear programming if all the vertices
of the set obtained by relaxing the integrality constraints turn out to have integer
coordinates. (See Exercise 16.11.) As another example, a linear programming
problem with a feasible solution either has a minimum or is unbounded below [70,
section 3.3]. We will not discuss these issues in detail in this book, but refer the
interested reader to, for example, [28][67][70, Part I][83][84, Part II].

16.3.6.2 Quadratic programming

As with linear programming, there are also simplifications possible in the case
of quadratic objectives [70, section 14.1]. Moreover, there is a large body of ac-
tive set-based software available to solve quadratic programming problems. The
MATLAB function quadprog uses an active set algorithm under some circum-
stances.

16.3.6.3 Further details

Active set algorithms are covered in detail in, for example, [45, section 5.2][70,
section 11.3][84, section 15.4]. We have only introduced them briefly here; how-
ever, much software written for optimization problems uses some form of active
set algorithm.

16.4 Approaches to finding minimizers: interior point algorithm

A very different approach to solving inequality-constrained problems is not based
on identifying the active constraints directly. Conceptually, a “barrier” is erected
that prevents violation of all the inequality constraints so that the sequence of iter-
ates remains strictly feasible with respect to the inequality constraints. That is, the
iterates remain in the interior of the set defined by the inequality constraints. (See
Definition 2.5.)

Ideally, the iterates step directly towards the minimizer across the interior of the

16.4 Approaches to finding minimizers: interior point algorithm 631

feasible region, rather than stepping along its boundary as in the active set algo-
rithm. For this reason, the technique is called an interior point algorithm. The
barrier is a term added to the objective that increases very rapidly as we approach
the boundary of the feasible region from its interior. This approach is the topic of
significant research, prompted by Karmarkar’s presentation of a theoretically and
practically fast interior point algorithm for linear programming [57].

In Section 16.4.1, we illustrate the interior point algorithm for the case of a
constraint x ≥ 0, where x ∈ R. In Section 16.4.2 we define and discuss the
approach in more detail, considering the general case of x ∈ Rn . A computational
implementation using the Newton–Raphson update is sketched in Sections 16.4.3
and 16.4.4. We discuss finding an initial feasible guess in Section 16.4.5. We
summarize the algorithm in Section 16.4.6 and provide some further discussion in
Section 16.4.7. The material in the following sections is based on [70, 73, 84, 102,
126].

16.4.1 Illustration

To illustrate the interior point algorithm, consider the objective f : R → R defined
by:

∀x ∈ R, f (x) = x,

and a non-negativity constraint x ≥ 0. We add a barrier function for the constraint
x ≥ 0 to the objective f (x) to form the barrier objective, φ : R++ → R.

The essential characteristic of the barrier function is that it is partially differen-
tiable on the interior of the constraint set but becomes unbounded as the boundary
of the constraint set is approached [70, section 12.2]. Two such barrier functions
for non-negativity constraints are:

• the reciprocal function (see Exercise 16.12), and
• the negative of the logarithm function, which is called the logarithmic barrier

function.

We will consider the logarithmic barrier function in detail.
In particular, define the logarithmic barrier function fb : R++ → R for the

constraints x ≥ 0 by:

∀x ∈ R++, fb(x) = − ln(x).

Let t ∈ R++ be a parameter, called the barrier parameter [102, chapter 5]. We
add t fb to the objective f to obtain the barrier objective φ : R++ → R defined by:

∀x ∈ R++, φ(x) = f (x) + t fb(x),

= f (x) − t ln x .

632 Algorithms for non-negatively constrained minimization

0 2 0 1 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8
0 2

0

0 2

0 4

0 6

0 8

1

x

f (x), φ(x) = f (x) − t ln(x)

Fig. 16.7. The barrier ob-
jective for the constraint
x ≥ 0, x ∈ R. The solid
curve shows the objective
f while the dashed curve
shows the barrier objective
φ for t = 0.1 on the inte-
rior of the feasible region.

The objective and barrier objective are illustrated in Figure 16.7 for t = 0.1. The
solid curve shows f (x) for −0.2 ≤ x ≤ 0.8, while the dashed curve shows φ(x)

for 0 < x ≤ 0.8. (We can also imagine that φ is an extended real function with
φ(x) defined to be equal to ∞ if x is less than or equal to zero.)

Note that, despite appearances in Figure 16.7, as x → ∞, the barrier objective,
as defined, falls below the objective. This is because the barrier function is negative
for x > 1. This can present problems if the feasible set is unbounded and the objec-
tive becomes “flat” as any component of x becomes large. It is possible to define a
modified logarithmic barrier function that is non-negative; however, we will as-
sume that this issue is not problematic. (See Exercises 16.14 and 16.15 for further
discussion of this issue and [84, section 16.2, problem 4][102, section 2.2.3].)

As x → 0+, φ(x) → ∞. An algorithm that is trying to minimize φ will avoid
the vicinity of the boundary of the feasible region. That is, it will produce iterates
that are interior to the set defined by the inequality constraint. (See Definition 2.5.)
If we use an iterative algorithm starting with an initial guess that is in the interior of
the feasible region then we will tend to stay away from the boundary of the feasible
region. That is, we will stay in the interior of the feasible region. (We will discuss
how to find an initial feasible point that is in the interior of the set defined by the
inequality constraints in Section 16.4.5.)

For any fixed x > 0, the value of −t ln(x) approaches 0 as t → 0. That is,
as shown in Figure 16.8, the effect of the term −t ln(x) on the barrier objective
becomes negligible for points that are in the interior as we reduce t towards zero.
This means that as t → 0, the term −t ln(x) has the effect of confining the iterates
to the feasible region, but within the feasible region it has no effect asymptotically
as t → 0. As t → 0, the sequence of unconstrained minimizers of φ will, under
conditions to be established, converge to the constrained minimizer of f .

16.4 Approaches to finding minimizers: interior point algorithm 633

0 0 02 0 04 0 06 0 08 0 1 0 12 0 14 0 16 0 18 0 2
0

0 1

0 2

0 3

0 4

0 5

0 6

0 7

0 8

0 9

1

x

−t ln(x)

Fig. 16.8. The effect on
the barrier function for the
constraint x ≥ 0 as t →
0. The dashed curve shows
−t ln(x) for t = 0.1; the
dash-dotted curve shows
−t ln(x) for t = 0.05;
and the dotted curve shows
−t ln(x) for t = 0.01.

16.4.2 Outline

In this section we discuss the interior point algorithm for a constraint x ≥ 0, where
x ∈ Rn . Throughout the rest of this chapter, we will assume that f : Rn → R is
(at least) continuous and that Problem (16.1) has a minimum f � and at least one
minimizer x�. (There may be more than one minimizer if f is not strictly convex.)
We will mention some convexity conditions in Section 16.4.3.

16.4.2.1 Logarithmic barrier function

We define the logarithmic barrier function fb : Rn++ → R for the constraints x ≥ 0
by:

∀x ∈ R
n
++, fb(x) = −

n∑
�=1

ln(x�). (16.15)

The set Rn++ is the strictly positive orthant. (See Definition A.5.) The properties
of fb are explored in Exercise 16.13. Part (i) of Exercise 16.13 shows that we can
differentiate fb and use calculus to find descent directions. Part (ii) shows that fb
behaves as a barrier to enforce the constraints x ≥ 0 and penalize values of x near
to the boundary. Part (iii) shows that fb is convex so that adding a non-negative
multiple of it to a convex function results in a convex function.

16.4.2.2 Barrier problem

Given an objective f : Rn → R, a barrier function fb : Rn++ → R, and a barrier
parameter t ∈ R++, we form the barrier objective φ : Rn++ → R defined by:

∀x ∈ R
n
++, φ(x) = f (x) + t fb(x).

634 Algorithms for non-negatively constrained minimization

Instead of solving Problem (16.1), we will consider solving the barrier problem:

min
x∈�n

{φ(x)|Ax = b, x > 0}. (16.16)

That is, we minimize φ(x) over values of x ∈ Rn that satisfy Ax = b and which
are also in the interior of x ≥ 0.

Problem (16.16) is still inequality-constrained. Furthermore, the constraint is
now a strict inequality, which makes the problem seem more complicated than
Problem (16.1). We discussed the potential disadvantages of an open feasible set
such as {x ∈ Rn|x > 0} in Section 2.3.3. However, in practice, for suitable f ,
Problem (16.16) can be solved by a technique that considers only the equality con-
straints when seeking a descent direction. For any given value of t , the rapid in-
crease of the barrier as the boundary is approached means that the minimizer of
Problem (16.16) is bounded away from the boundary of the set {x ∈ Rn|x ≥ 0}.

16.4.2.3 Slater condition

For Problem (16.16) to be useful in finding a solution of Problem (16.1), we need
to assume that:

{x ∈ R
n|Ax = b, x > 0} 	= ∅,

so that Problem (16.16) has a non-empty feasible set. This is called the Slater
condition [6, chapter 5][11, section 5.3][15, section 5.2.3][84, page 485] and will
appear again in the analysis of non-linear inequality constraints in Section 19.3.1.
This condition requires the existence of a feasible point that is strictly feasible for
the inequality constraints. That is, there must be a feasible interior point. (See
Definition 2.5 and [15, section 5.2.3].)

Many constraint systems arising from physical systems satisfy the Slater con-
dition. However, a simple example of constraints that do not satisfy the Slater
condition is defined by the following:

A = [
1 1

]
,

b = [
0
]
,

x ≥ 0.

The set {x ∈ R2|Ax = b, x > 0} is empty.

16.4.2.4 Solving the barrier problem

To find the minimizer of Problem (16.16) for any particular value of t , we can start
with an initial guess x (0) that satisfies Ax = b and x > 0. We then search from x (0)

using an iterative algorithm that seeks the value of x that minimizes φ(x) subject
to Ax = b.

16.4 Approaches to finding minimizers: interior point algorithm 635

Since the objective function φ of Problem (16.16) becomes arbitrarily large as
its argument approaches the boundary of x ≥ 0, “the search technique (if care-
fully implemented) will automatically” satisfy x > 0 [70, page 370]. The only
explicit consideration that needs to be given to the constraints x > 0 is to prevent
the iterates from going outside the region x > 0 by controlling the step-size ap-
propriately. As Luenberger puts it, “although problem [(16.16)] is from a formal
viewpoint a[n inequality-]constrained problem, from a computational viewpoint it
is” equality-constrained [70, page 370].

16.4.2.5 Sequence of problems

We solve Problem (16.16) not just at one value of t , but for a sequence of values of
t that approach 0. Allowing t → 0 reduces the effect of the barrier at points in the
interior of the feasible set, while still preventing x from violating the constraints
x ≥ 0. We create a sequence of minimizers of Problem (16.16) for values of t
that approach 0. The trajectory of minimizers of Problem (16.16) as a function of
t is called the central path [84, section 17.4][102, section 2.2.4]. Under certain
circumstances, the trajectory approaches x�, a minimizer of Problem (16.1), as t
approaches zero.

In principle, we construct a strictly decreasing sequence {t (ν)}∞ν=0 that converges
to zero and for each t (ν) find a minimizer of Problem (16.16) for the value t = t (ν).
As an initial guess for an iterative algorithm to solve Problem (16.16) for t =
t (ν), ν = 1, 2, 3, . . ., we can use the minimizer of Problem (16.16) for t = t (ν−1).

Consider the corresponding sequence {x (ν)}∞ν=0 of minimizers and Lagrange mul-
tipliers for Problem (16.16) for the values {t (ν)}∞ν=0. Exercise 16.23 shows that if
the sequences of minimizers and Lagrange multipliers converge then the limits sat-
isfy the first-order necessary conditions for Problem (16.1). (In Section 16.4.4, we
will revisit the approach of solving Problem (16.16). In Section 16.4.5, we will
discuss how to obtain an initial feasible guess x (0) for t = t (0).)

16.4.2.6 Example

Consider again Problem (16.4), which we analyzed in Section 16.3.3.2:

min
x1,x2∈�

{x1 − x2|x1 + x2 = 1, x1 ≥ 0, x2 ≥ 0}.

The interior point algorithm involves solving the barrier problem, Problem (16.16),
for a sequence of values of t that decrease towards zero. For Problem (16.4), the
barrier problem is:

min
x1,x2∈�

{x1 − x2 − t ln(x1) − t ln(x2)|x1 + x2 = 1, x1 > 0, x2 > 0}. (16.17)

Because of its simplicity, we can calculate the minimizer of Problem (16.17)

636 Algorithms for non-negatively constrained minimization

explicitly as a function of t . As discussed in Section 13.1.2.1, we can eliminate x2

using the equality constraint. That is, we can express the objective as a function of
x1 alone:

2x1 − 1 − t ln(x1) − t ln(1 − x1). (16.18)

We now have an unconstrained problem:

min
x1∈�

{2x1 − 1 − t ln(x1) − t ln(1 − x1)}.

The reduced objective defined in (16.18) is convex and differentiable. (See Exer-
cise 16.13.) By Theorem 10.3 and Corollary 10.6, first-order necessary and suf-
ficient conditions for minimizing (16.18) are that its derivative be equal to zero.
Differentiating (16.18), setting the derivative equal to zero, and re-arranging we
find that:

(x1)
2 − x1(1 + t) + t/2 = 0, (16.19)

where we note that both x1 and x2 = 1 − x1 must be greater than zero for the ob-
jective and derivative to be defined (and for the inequality constraints to be strictly
satisfied.) The quadratic equation (16.19) has two solutions, both of which are
positive. However, only one of the solutions:

x1 = 1 + t −√
1 + (t)2

2
, (16.20)

yields a value of x2 = 1 − x1 that satisfies the strict non-negativity constraint for
x2. Substituting, we obtain:

x2 = 1 − t +√
1 + (t)2

2
. (16.21)

In general, we may not be able to conveniently eliminate variables and solve for
the minimizer of the barrier problem explicitly as a function of t as we have done
for Problem (16.17). Nevertheless, we can think, in principle, of solving the barrier
problem for a sequence of decreasing values of t .

Figure 16.9 shows the minimizer given in (16.20) and (16.21) of Problem (16.17)
versus t for t = 1.0, 0.9, . . . , 0.1. The minimizers are always in the interior of the
set {x ∈ Rn|x ≥ 0}. That is, the minimizers are always in Rn++.

As mentioned in Section 16.4.2.5, the trajectory of minimizers of the barrier
problem versus the barrier parameter is called the central path. In this example,
the central path is contained in a line segment in R2 because the feasible set is a
line segment in R2; however, in general it will be a curving path through Rn . (See
Exercise 16.19.)

For large values of t , the minimizer of Problem (16.17) is far away from the

16.4 Approaches to finding minimizers: interior point algorithm 637

0 0 2 0 4 0 6 0 8 1 1 2 1 4 1 6 1 8 2
0

0 2

0 4

0 6

0 8

1

1 2

1 4

1 6

1 8

2

x1

x2

x�

minimizer for t = 0.1

minimizer for t = 1.0

Fig. 16.9. The trajectory
of minimizers of Prob-
lem (16.17) versus t for
t = 1.0, 0.9, . . . , 0.1
shown as ◦. The minimizer
x� of Problem (16.4) is
shown as a •. The feasible
set is indicated by the solid
line.

minimizer, x� =
[

0
1

]
, of inequality-constrained Problem (16.4); however, as t

decreases towards zero, the minimizer of Problem (16.17) approaches x� =
[

0
1

]
.

In practice, we find the minimizers of Problem (16.17) for only a finite number of
values of t , stopping when t is small enough to guarantee that the minimizer of
Problem (16.17) is close enough to a minimizer of Problem (16.4) to satisfy our
accuracy requirements. (We will explicitly discuss a stopping criterion in Exer-
cise 16.25 and Section 17.3.1.4.)

Any minimizer of Problem (16.17) is feasible for the constraints Ax = b, x ≥ 0.
Therefore, stopping at any given value of t will yield a feasible, if not optimal,
solution of Problem (16.4).

16.4.2.7 Reduction of barrier parameter

For Problem (16.17), we solved for the minimizers explicitly as a function of t .
Because we evaluated the minimizer explicitly as a function of t , we could just
pick t = 10−10, say, and evaluate (16.20)–(16.21) to obtain:

x� ≈
[

5 × 10−11

1.0000

]
,

which is essentially the exact minimizer of Problem (16.4). However, in general,
we cannot solve for the minimizer of Problem (16.16) explicitly and we will have
to use an iterative algorithm. It turns out that it is very difficult to solve Prob-
lem (16.16) from scratch for a small value of t because the initial guess that we
can provide for the iterative algorithm leads to a poor update in seeking an uncon-
strained minimizer. An example of this issue is shown in Exercise 16.20.

In Exercise 16.20, the step direction suggests a step that is far too large, but at

638 Algorithms for non-negatively constrained minimization

least it is in the correct direction. In problems with more than one variable, if the
initial guess is far from the minimizer of Problem (16.16) for the current value of
the barrier parameter t then the coefficient matrix to determine the step direction
can be ill-conditioned. Consequently, with finite precision calculations we may
obtain a very poor step direction. Moreover, the step-size to ensure that x > 0 will
be very small and we will make very slow progress towards the minimizer of the
problem.

Instead of trying to minimize the barrier problem from scratch for a small value
of t , we start with a large value of t and solve the problem, at least approximately,
for this value of t . Then we reduce t and re-solve, using the minimizer (or ap-
proximate minimizer) for the previous value of t as the initial point for an iterative
algorithm. We continue, successively reducing t and restarting the algorithm with
the approximate minimizer from the previous value of t . We will develop this
approach using the Newton–Raphson method in the next section.

16.4.3 Newton–Raphson method

In this section, we will discuss how to seek a minimizer of Problem (16.16) for
a given value of t using the Newton–Raphson method and how to factorize the
resulting Jacobian.

16.4.3.1 Discussion of the barrier problem

To solve Problem (16.16), we will partially ignore the inequality constraints and
the domain of the barrier function. That is, computationally, we seek a minimizer
of the problem:

min
x∈�n

{φ(x)|Ax = b}. (16.22)

We discussed such equality-constrained problems in Part IV. To solve Prob-
lem (16.22) we will seek a solution of its first-order necessary conditions and up-
date successive iterates along descent directions for the objective φ that maintain
feasibility with respect to the equality constraints Ax = b. By Theorem 13.2, the
first-order necessary conditions of Problem (16.22) are:

∇φ(x) + A†λ = 0, (16.23)

Ax − b = 0. (16.24)

We must bear in mind, however, that a one-to-one correspondence between
minimizers of Problem (16.22) and solutions of the first-order necessary condi-
tions (16.23)–(16.24) can generally only be guaranteed if φ = f + t fb satisfies
further conditions. For example, sufficient conditions are that f and fb are convex.

Nevertheless, our approach to solving Problem (16.22) is to seek x� and λ� that

16.4 Approaches to finding minimizers: interior point algorithm 639

satisfy the first-order necessary conditions (16.23)–(16.24). These are a set of non-
linear simultaneous equations. To solve these equations, we will use the Newton–
Raphson method. In Section 16.4.3.2 we introduce a straightforward approach
called the primal interior point algorithm, while following that in Section 16.4.3.3
we will develop a second algorithm, called the primal–dual interior point algo-
rithm.

16.4.3.2 Primal interior point algorithm

First, let us investigate a straightforward approach to applying the Newton–Raphson
method to solving the first-order necessary conditions (16.23)–(16.24) of Prob-
lem (16.22). In particular, consider the first term in (16.23):

∇φ(x) = ∇[f (x) + t fb(x)],

= ∇ f (x) + t∇ fb(x),

= ∇ f (x) + t

⎡⎢⎢⎢⎢⎢⎣
∂ fb(x)

∂x1
...

∂ fb(x)

∂xn

⎤⎥⎥⎥⎥⎥⎦ ,

= ∇ f (x) + t

⎡⎢⎣− 1
x1
...

− 1
xn

⎤⎥⎦ ,

= ∇ f (x) − t[X]−11,

∇2φ(x) = ∇2 f (x) + t[X]−2,

where X = diag{x�} ∈ Rn×n is a diagonal matrix with diagonal entries equal to
x�, � = 1, . . . , n. The Newton–Raphson step direction to solve (16.23)–(16.24) is
given by: [∇2φ(x (ν)) A†

A 0

] [
�x (ν)

�λ(ν)

]
=
[−∇φ(x (ν)) − A†λ(ν)

b − Ax (ν)

]
,

or: [∇2 f (x (ν)) + t[X (ν)]
−2

A†

A 0

] [
�x (ν)

�λ(ν)

]
=

[−∇ f (x (ν)) + t[X (ν)]
−11 − A†λ(ν)

b − Ax (ν)

]
, (16.25)

where X (ν) = diag{x (ν)
� } ∈ Rn×n is a diagonal matrix with diagonal entries equal

to x (ν)
� , � = 1, . . . , n. This update leads to the primal interior point algorithm.

640 Algorithms for non-negatively constrained minimization

We are not going to investigate this algorithm further, except in Section 18.2.1 in
the discussion of enforcement of the strict inequality constraints in the case study
of optimal routing in a data communication network.

Instead of developing the primal interior point method, we will consider a variant
in the next section.

16.4.3.3 Primal–dual interior point algorithm

Instead of the primal interior point algorithm, we will describe an algorithm that in-
corporates linearization of a hyperbolic approximation to the complementary slack-
ness constraints, as first introduced in Section 16.1.1.3.

New variable and equation We are going to introduce a new variable µ, which
will turn out to correspond to the dual variables for the inequality constraints in
Problem (16.1). We incorporate the equations:

∀� = 1, . . . , n, µ� x� = t, (16.26)

so that t/x� = µ�. These equations are almost the same as the complementary
slackness conditions, except that the right-hand side is equal to the barrier param-
eter t instead of zero.

As discussed in Section 16.1.1.3, the ordered pairs

[
µ�

x�

]
that satisfy both the

complementary slackness conditions and the non-negativity requirements µ� ≥ 0
and x� ≥ 0 consist of the union of the non-negative x�-axis and the non-negative
µ�-axis. This set has a severe “kink” at the origin, corresponding to the extreme
non-linearity in the complementary slackness condition. Consequently:

• linearization of the complementary slackness conditions at any point on the x�-
axis yields the x�-axis, while

• linearization of the complementary slackness conditions at any point on the µ�-
axis yields the µ�-axis.

That is, linearization of the complementary slackness conditions at any point on
the x�- or µ�-axes yields a linear approximation that does not represent the kink at
all. Based on our discussion in Section 7.4.2.7 of the Newton–Raphson method,
linearization of the complementary slackness conditions will not yield a useful
update.

The approximation in (16.26) instead allows

[
µ�

x�

]
to lie on a hyperbolic-shaped

set as shown in Figure 16.2. Linearization of (16.26), together with an explicit
requirement to avoid the x�- and µ�-axes, yields a useful update that can approxi-
mately represent the kink in the complementary slackness conditions.

16.4 Approaches to finding minimizers: interior point algorithm 641

We have remarked that we will solve Problem (16.16) for a sequence of decreas-
ing values of t . As t → 0, points that satisfy (16.26) will approach satisfaction of
the complementary slackness conditions:

Mx = 0,

for Problem (16.1). That is, as t is reduced, the hyperbolic-shaped sets become
closer to the set of points satisfying the complementary slackness conditions and
the non-negativity constraints.

We can re-write (16.26) as:

Xµ − t1 = 0, (16.27)

which we can re-arrange as µ = t[X]−11. Recall that the gradient of the barrier
objective, ∇φ : Rn++ → Rn , is given by:

∀x ∈ R
n
++,∇φ(x) = ∇ f (x) − t[X]−11.

Substituting the expression for ∇φ into (16.23) and making the substitution µ =
t[X]−11, we obtain:

∇ f (x) + A†λ − µ = 0. (16.28)

For convenience, we repeat (16.24):

Ax = b. (16.29)

Equations (16.27)–(16.29) are equivalent to (16.23)–(16.24) in that:

• a solution of (16.23)–(16.24) satisfies (16.28)–(16.29), given that µ is defined
by (16.27), and

• a solution of (16.27)–(16.29) satisfies (16.23)–(16.24).

To summarize, the hyperbolic approximation to the complementary slackness con-
ditions together with (16.28) and (16.29) are equivalent to the first-order necessary
conditions for minimizing Problem (16.22).

Moreover, (16.28) and (16.29) are two of the lines of the first-order necessary
conditions for Problem (16.1). The condition (16.27) becomes more nearly equiv-
alent to the complementary slackness conditions for Problem (16.1) as t → 0.
Instead of seeking x� and λ� that satisfy (16.23)–(16.24), we will seek x�, λ�, and
µ� that satisfy (16.27)–(16.29).

Step direction We can use the Newton–Raphson method to find a step direction
to solve (16.27)–(16.29). The iterations start with a guess µ(0), x (0), and λ(0). We

linearize (16.27)–(16.29) about µ(0), x (0), and λ(0) and seek an update

⎡⎣�µ(0)

�x (0)

�λ(0)

⎤⎦

642 Algorithms for non-negatively constrained minimization

to make

⎡⎣µ(1)

x (1)

λ(1)

⎤⎦ =
⎡⎣µ(0)

x (0)

λ(0)

⎤⎦+
⎡⎣�µ(0)

�x (0)

�λ(0)

⎤⎦ more nearly satisfy (16.27)–(16.29). As

mentioned above, we are linearizing (16.27), which is already an approximation to
the complementary slackness conditions. The Newton–Raphson step direction to
solve (16.27)–(16.29) is given by:⎡⎣ X (ν) M (ν) 0

−I ∇2f (x (ν)) A†

0 A 0

⎤⎦⎡⎣�µ(ν)

�x (ν)

�λ(ν)

⎤⎦ =
⎡⎣ −X (ν)µ(ν) + t1
−∇ f (x (ν)) − A†λ(ν) + µ(ν)

−Ax (ν) + b

⎤⎦ ,

where M (ν) = diag{µ(ν)
� } and X (ν) = diag{x (ν)

� }.

Symmetry The Newton–Raphson update equations have a coefficient matrix that
is not symmetric. By multiplying the first block row of the equations through by
−[M (ν)]

−1
on the left, we can create the symmetric system:⎡⎣−[M (ν)]

−1
X (ν) −I 0

−I ∇2f (x (ν)) A†

0 A 0

⎤⎦⎡⎣�µ(ν)

�x (ν)

�λ(ν)

⎤⎦
=

⎡⎣ x (ν) − t[M (ν)]
−11

−∇ f (x (ν)) − A†λ(ν) + µ(ν)

−Ax (ν) + b

⎤⎦ . (16.30)

This system is symmetric, but indefinite. In general, to factorize it we must make
use of the special factorization algorithms for indefinite matrices as mentioned in
Section 5.4.7.

Block pivoting of Jacobian and sparsity issues Unfortunately, the top left-hand
block of the coefficient matrix of this system may have entries that are very large
and entries that are very small, depending on whether or not the corresponding
constraint x� ≥ 0 is binding. This means that the coefficient matrix can be ill-
conditioned. Moreover, the entries in the first sub-vector of the right-hand side
involve the differences between numbers that may be large and approximately the
same magnitude. This means that the problem of solving for the update direction
can be ill-conditioned. An approach to avoiding the ill-conditioning is described
in [84, sections 16.3–16.4]; however, it will in general require us to use a QR fac-
torization of the coefficient matrix, which may be unattractive for sparse systems.

Here we will assume that the ill-conditioning does not lead to any significant
problems. (This generally requires that x (ν) and µ(ν) are close enough to the exact
minimizer and Lagrange multipliers of the barrier problem for the given value of
t . A discussion of this issue is contained in [124].) Moreover, we will see that we

16.4 Approaches to finding minimizers: interior point algorithm 643

can deal analytically with the entries in the top left-hand block of the coefficient
matrix because of its simple structure. We will do this by block factorizing the
Jacobian using the diagonal matrix −[M (ν)]

−1
X (ν) as block pivot, noting that we

can explicitly invert −[M (ν)]
−1

X (ν) to obtain −[X (ν)]
−1

M (ν). We obtain:⎡⎣ I 0 0
−[X (ν)]

−1
M (ν) I 0

0 0 I

⎤⎦⎡⎣−[M (ν)]
−1

X (ν) −I 0
−I ∇2f (x (ν)) A†

0 A 0

⎤⎦
=

⎡⎢⎣−[M (ν)]
−1

X (ν) −I 0
0 ∇2f (x (ν)) + [X (ν)]

−1
M (ν) A†

0 A 0

⎤⎥⎦ . (16.31)

The only terms in the lower right-hand four blocks that have been altered are the di-
agonal entries in ∇2f (x (ν)). These terms are increased, effectively “convexifying”
the problem [65, section 3]. (See [65, section 3] for discussion regarding adjusting
these entries so that they do not become too large.)

Since the diagonal entries in ∇2f are often non-zero, block pivoting on the di-
agonal matrix −[M (ν)]

−1
X (ν) usually introduces no new fill-ins. If we had cho-

sen instead to pivot on any other entries first, before pivoting on the entries of
−[M (ν)]

−1
X (ν), then we would typically have introduced several fill-ins. There-

fore, pivoting on the top left-hand block first is typically consistent with the heuris-
tic for choosing pivots to minimize fill-ins as discussed in Section 5.5.3.2. (In fact,
we deliberately ordered the equations and variables to be consistent with the min-
imum fill-in heuristic.) Another interpretation is that we have used the first block
row of (16.30) to eliminate �µ(ν).

After block pivoting, we can directly factorize the remaining bottom right-hand
four blocks of the coefficient matrix on the right-hand side of (16.31) using an
indefinite factorization algorithm. The system corresponding to these bottom right-
hand four blocks is very similar to the system (16.25) in the primal interior point
algorithm, except that [X (ν)]

−1
M (ν) has replaced t[X (ν)]

−2
. These two terms would

be equal if (16.27) were satisfied exactly.

Selection of step-size If we set:⎡⎣µ(ν+1)

x (ν+1)

λ(ν+1)

⎤⎦ =
⎡⎣µ(ν)

x (ν)

λ(ν)

⎤⎦+
⎡⎣�µ(ν)

�x (ν)

�λ(ν)

⎤⎦ ,

we may find that the new value of the iterate violates the non-negativity constraints
on µ or x . To avoid this we may have to take a step that is shorter than the full step

644 Algorithms for non-negatively constrained minimization

�

� µ�

x�

•
[

µ�
�

x�
�

]

 �ε

�

�
ε

Fig. 16.10. Using a fixed
tolerance to enforce
non-negativity will pre-
vent convergence to a
minimizer.

direction. That is, we modify the update to:⎡⎣µ(ν+1)

x (ν+1)

λ(ν+1)

⎤⎦ =
⎡⎣µ(ν)

x (ν)

λ(ν)

⎤⎦+ α(ν)

⎡⎣�µ(ν)

�x (ν)

�λ(ν)

⎤⎦ ,

where α(ν) is the step-size.
Similarly to the case of “swapping in” discussed in Section 16.3.2, we should

also consider a sufficient decrease criterion for φ. That is, in addition to constrain-
ing α(ν) so that we do not violate the constraints x (ν+1) > 0 and µ(ν+1) > 0, we
should also include a sufficient decrease criterion for φ(x).

The strict non-negativity constraints are somewhat problematic. For example,
suppose that we implement the requirement of strict non-negativity by choosing
a tolerance ε > 0 and requiring that the next iterate satisfies x (ν+1)

� ≥ ε,∀�, and
µ

(ν+1)
� ≥ ε,∀�. A serious drawback of this approach is that a priori we do not

know how close the minimizer of Problem (16.22) is to the boundary. In particular,
our choice of α(ν) should not prevent the iterates from converging to a minimizer
that is very close to the boundary. However, as t is reduced, the minimizers may
become close to the boundary. In particular, if a constraint x� ≥ 0 is binding at the
minimizer of Problem (16.1) then we would hope that the x (ν)

� would become close
to zero.

Picking a fixed tolerance ε > 0 and choosing α(ν) at every iteration so that
x (ν+1)

� ≥ ε,∀�, and µ
(ν+1)
� ≥ ε, ∀�, will not work. This is because µ(ν) and x (ν)

can never in this case get within ε of the boundary, as illustrated in Figure 16.10.
By complementary slackness, either the entry x�

� of the minimizer x� of Prob-
lem (16.22), or the entry µ�

� of the vector of Lagrange multipliers µ�, or both, will
be within ε of the boundary. Therefore, our algorithm will be unable to converge to
the minimizer if we prevent the iterates from getting closer than ε to the boundary.

That is, we must adjust the tolerance so that iterates can, asymptotically, ap-
proach the boundary. One scheme is to pick α(ν) ≤ 1 at each iteration so that

16.4 Approaches to finding minimizers: interior point algorithm 645[
µ(ν+1)

x (ν+1)

]
is no closer than a fixed fraction, say 0.9995, of the distance from the

current iterate

[
µ(ν)

x (ν)

]
to the boundary of x ≥ 0, µ ≥ 0 under the L∞ norm. With

this choice, µ(ν) and x (ν) can approach any point that satisfies the complementary
slackness condition. There are many variations on the choice of step-size.

It is also possible to use a different step-size for:

• the primal variables x , and

• the dual variables µ and λ.

That is, we can update according to:

x (ν+1) = x (ν) + α
(ν)

primal�x (ν),[
µ(ν+1)

λ(ν+1)

]
=

[
µ(ν)

λ(ν)

]
+ α

(ν)

dual

[
�µ(ν)

�λ(ν)

]
,

where α
(ν)

primal is chosen to preserve the strict non-negativity of x and α
(ν)

dual is chosen
to preserve the strict non-negativity of µ. In fact, the main advantage of the primal–
dual algorithm over the primal algorithm is the ability to use a different step-size
for x and for µ and λ to control the approach to the boundary of the feasible region
separately for these variables. (See, for example, [73, 124].) However, we will not
take advantage of this flexibility in our development and examples.

16.4.3.4 Example

Let us apply the primal–dual interior point algorithm to our example Problem (16.4)
from Sections 2.3.2.3, 16.1.1.2, 16.3.3.2, and 16.4.2.6.

Terms in update From Section 16.1.1.2, we have the following for Problem (16.4):

∀x ∈ R
2, f (x) = x1 − x2,

∀x ∈ R
2,∇ f (x) =

[
1

−1

]
,

∀x ∈ R
2,∇2f (x) =

[
0 0
0 0

]
,

A = [
1 1

]
,

= 1†,

b = [1].

646 Algorithms for non-negatively constrained minimization

Factorization We must factorize the coefficient matrix in (16.30), which we will
symbolize by A:

A =
⎡⎣−[M (ν)]

−1
X (ν) −I 0

−I ∇2f (x) A†

0 A 0

⎤⎦ ,

=
⎡⎣−[M (ν)]

−1
X (ν) −I 0

−I 0 1
0 1† 0

⎤⎦ .

This matrix is indefinite and, in general, we should use a special purpose factor-
ization algorithm. Here, we will simply apply LU factorization, using the symbols
A(j) and M(j) for the matrices created at the j-th stage of factorization. (Note that
M (ν) = diag{µ(ν)

� }.) Block pivoting of A using its top-left block −[M (ν)]
−1

X (ν) as
pivot yields M(1) and A(1) given by:

M(1) =
⎡⎣ I 0 0
−[X (ν)]

−1
M (ν) I 0

0 0 I

⎤⎦ ,

A(1) =
⎡⎢⎣−[M (ν)]

−1
X (ν) −I 0

0 [X (ν)]
−1

M (ν) 1
0 1† 0

⎤⎥⎦ .

Block pivoting of A(1) using [X (ν)]
−1

M (ν) as pivot yields:

M(2) =
⎡⎣ I 0 0

0 I 0
0 −1†[M (ν)]

−1
X (ν) I

⎤⎦ ,

=
⎡⎣ I 0 0

0 I 0
0 −[x (ν)]

†
[M (ν)]

−1 I

⎤⎦ ,

A(2) = M(2)A(1),

=
⎡⎢⎣−[M (ν)]

−1
X (ν) −I 0

0 [X (ν)]
−1

M (ν) 1
0 0 −1†[M (ν)]

−1
X (ν)1

⎤⎥⎦ ,

=
⎡⎢⎣−[M (ν)]

−1
X (ν) −I 0

0 [X (ν)]
−1

M (ν) 1

0 0 −[µ(ν)

1]
−1

x (ν)

1 − [µ(ν)

2]
−1

x (ν)

2

⎤⎥⎦ ,

16.4 Approaches to finding minimizers: interior point algorithm 647

so that we can factorize A into:

L =
⎡⎢⎣ I 0 0

[X (ν)]
−1

M (ν) I 0
0 [x (ν)]

†
[M (ν)]

−1 1†

⎤⎥⎦ ,

U =
⎡⎢⎣−[M (ν)]

−1
X (ν) −I 0

0 [X (ν)]
−1

M (ν) 1

0 0 −[µ(ν)

1]
−1

x (ν)

1 − [µ(ν)

2]
−1

x (ν)

2

⎤⎥⎦ .

Initial guess As an initial guess, we pick:

x (0)

1 = 0.5,

x (0)

2 = 0.5,

λ(0) = 2,

t (0) = 0.25,

µ
(0)

1 = t (0)/x (0)

1 = 0.25/0.5 = 0.5,

µ
(0)

2 = t (0)/x (0)

2 = 0.25/0.5 = 0.5.

The value of t (0) is large enough to yield a useful update direction for the initial
guess x (0), λ(0), and µ(0). Exercise 16.22 explores the situation if we instead chose
a value of t (0) that is too small.

We chose x (0) to satisfy Ax (0) = b. However, x (0) =
[

0.5
0.5

]
is in the “middle”

of the region Ax = b, x ≥ 0 and is not close to the minimizer of Problem (16.4).
Moreover, we will find that λ(0) is far from the Lagrange multiplier value. In other
words, x (0) has not been chosen to make solution especially easy. We chose µ(0)

to satisfy M (0)x (0) = t (0)1. In Section 16.4.5, we will discuss in more detail the
selection of an initial point satisfying the requirements x > 0 and µ > 0.

Step direction The right-hand side of (16.30) is given by:

B =
⎡⎣ x (0) − t[M (0)]

−11
−∇ f (x (0)) − A†λ(0) + µ(0)

−Ax (0) + b

⎤⎦ ,

=

⎡⎢⎢⎢⎢⎢⎢⎣
x (0)

1 − t (0)[µ(0)

1]
−1

x (0)

2 − t (0)[µ(0)

2]
−1

−1 − λ(0) + µ
(0)

1

1 − λ(0) + µ
(0)

2

−x (0)

1 − x (0)

2 + 1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

648 Algorithms for non-negatively constrained minimization

=

⎡⎢⎢⎢⎢⎣
0
0

−2.5
−0.5

0

⎤⎥⎥⎥⎥⎦ .

We must solve the system:

A

⎡⎢⎢⎢⎢⎢⎣
�µ

(0)

1

�µ
(0)

2

�x (0)

1

�x (0)

2
�λ(0)

⎤⎥⎥⎥⎥⎥⎦ = B,

Performing forwards substitution to solve LY = B, we obtain:

Y =

⎡⎢⎢⎢⎢⎣
0
0

−2.5
−0.5

3

⎤⎥⎥⎥⎥⎦ .

Performing backwards substitution to solve U

⎡⎢⎢⎢⎢⎢⎣
�µ

(0)

1

�µ
(0)

2

�x (0)

1

�x (0)

2
�λ(0)

⎤⎥⎥⎥⎥⎥⎦ = Y , we obtain:

⎡⎢⎢⎢⎢⎢⎣
�µ

(0)

1

�µ
(0)

2

�x (0)

1

�x (0)

2
�λ(0)

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
1

−1
−1

1
−1.5

⎤⎥⎥⎥⎥⎦ .

First iterate If we set:⎡⎣µ(1)

x (1)

λ(1)

⎤⎦ =
⎡⎣µ(0)

x (0)

λ(0)

⎤⎦+
⎡⎣�µ(0)

�x (0)

�λ(0)

⎤⎦ , (16.32)

16.4 Approaches to finding minimizers: interior point algorithm 649

we will obtain: ⎡⎢⎢⎢⎢⎢⎣
µ

(1)

1

µ
(1)

2

x (1)

1

x (1)

2
λ(1)

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
1.5

−0.5
−0.5

1.5
0.5

⎤⎥⎥⎥⎥⎦ ,

which will not satisfy the non-negativity constraints on x or µ. Nevertheless, the

direction specified by

⎡⎣�µ(0)

�x (0)

�λ(0)

⎤⎦ points from

⎡⎣µ(0)

x (0)

λ(0)

⎤⎦ in a direction that improves

the solution. The full step direction

⎡⎣�µ(0)

�x (0)

�λ(0)

⎤⎦, however, can take us too far. In-

stead, we will update according to:⎡⎣µ(1)

x (1)

λ(1)

⎤⎦ =
⎡⎣µ(0)

x (0)

λ(0)

⎤⎦+ α(0)

⎡⎣�µ(0)

�x (0)

�λ(0)

⎤⎦ ,

where 0 < α(0) < 1 is chosen to prevent the iterates from going outside µ >

0, x > 0. (As discussed previously, it is also possible to use different step-sizes for
the primal variables x and for the dual variables µ and λ.)

For the initial guess

[
µ(0)

x (0)

]
=

⎡⎢⎢⎣
0.5
0.5
0.5
0.5

⎤⎥⎥⎦, the boundary is 0.5 unit away in the

L∞ norm. Using the step-size rule suggested in Section 16.4.3.3, we pick α(0) ≤ 1
so that we come no closer than (0.9995) × 0.5 units of the distance towards the
boundary under the L∞ norm. That is, we choose the largest α(0) ≤ 1 such that:

α(0)

⎡⎢⎢⎢⎣
�µ

(0)

1

�µ
(0)

2

�x (0)

1

�x (0)

2

⎤⎥⎥⎥⎦ ≥ −0.9995

⎡⎢⎢⎢⎣
µ

(0)

1

µ
(0)

2

x (0)

1

x (0)

2

⎤⎥⎥⎥⎦ ,

which yields α(0) = 0.49975 and:⎡⎢⎢⎢⎢⎢⎣
µ

(1)

1

µ
(1)

2

x (1)

1

x (1)

2

λ(1)

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
0.99975
0.00025
0.00025
0.99975
1.250375

⎤⎥⎥⎥⎥⎦ .

650 Algorithms for non-negatively constrained minimization

In general, we could also consider further reduction of α(0) to ensure satisfaction
of a sufficient decrease criterion for the objective. However, this particular problem
has a linear objective and therefore the objective decreases monotonically with
increasing α(0) along the step direction. That is, we should not reduce α(0) further
for this problem.

16.4.4 Adjustment of the barrier parameter

In this section, we discuss reduction of the barrier parameter.

16.4.4.1 Sequence of equality-constrained problems

In principle, we could continue iterating with a fixed value t = t (0) until we ap-
proach a minimizer x (0)� of equality-constrained Problem (16.22). We could then
use x (0)� as the starting point for the Newton–Raphson method for Problem (16.22)
for a smaller value of t . That is, we would be accurately solving a sequence of
equality-constrained problems for points on the central path.

However, we want to reduce t as quickly as possible so that the iterates converge
quickly to a minimizer of inequality-constrained Problem (16.1). Taking many
iterations to solve equality-constrained Problem (16.22) very close to optimality
for a fixed value of t is therefore unattractive, particularly for values of t that are
large. This is because we only use the solution to Problem (16.22) as an initial
guess for Problem (16.22) for a smaller value of t .

16.4.4.2 Reduction of barrier parameter at every iteration

The minimizer of Problem (16.1) can typically be approached more quickly by
reducing t after every Newton–Raphson update. For Problem (16.4), we started far

from its minimizer with an initial guess of x (0) =
[

0.5
0.5

]
and used a relatively large

value of t = t (0) = 0.25. Nevertheless, x (1) is actually very close to the minimizer
of inequality-constrained Problem (16.4). That is, x (1) can be thought of as being
close to a minimizer of Problem (16.17) for a much smaller value of t than t (0).
In this particular case we would like to reduce t significantly. In other cases, we
might not be so fortunate and may have to reduce t more slowly. Exercise 16.22
shows that reducing t by too much will yield a very poor update direction because
the step-size to maintain non-negativity of the iterates will be very small.

16.4.4.3 Effective value of barrier parameter

We would like a measure of how close the current iterate is to a minimizer of the
original inequality-constrained problem and adjust t accordingly. That is, instead
of interpreting x (1) as an approximate minimizer of Problem (16.22) for t = t (0),

16.4 Approaches to finding minimizers: interior point algorithm 651

we will see if we can interpret x (1) as an exact (or nearly exact) minimizer of
Problem (16.22) for some other, hopefully smaller, value of t . We think of this
value of t as the effective value t (1)

effective for which x (1) is nearly the minimizer of
Problem (16.22). We will then pick t (1) < t (1)

effective for the value of t to apply in the
next Newton–Raphson update to calculate x (2).

By continuing in this way we will construct a sequence {t (ν)

effective}∞ν=0 and corre-
sponding (approximate) minimizers x (ν) of Problem (16.22) for t = t (ν)

effective. If the
sequence {t (ν)

effective}∞ν=0 converges to 0 then we have achieved our goal of a sequence
of minimizers of Problem (16.22) with t → 0. We will have avoided the effort of
performing many iterations at each value of the barrier parameter t to solve Prob-
lem (16.22). Exercise 16.23 explores the case where each x (ν) can be interpreted
as the minimizer of Problem (16.16) for a value of barrier parameter t = t (ν)

effective.
To interpret the iterates as in Exercise 16.23, recall that we have been try-

ing to solve (16.27)–(16.29). We are going to interpret

⎡⎣µ(1)

x (1)

λ(1)

⎤⎦ together with a

value t (1)

effective as nearly satisfying (16.27)–(16.29). We will assume that (16.28)
and (16.29) are very nearly satisfied by µ(1) and x (1). If f is quadratic or linear
then (16.28) and (16.29) are linear. If (16.28) and (16.29) are satisfied by µ(0) and
x (0), then they will also be satisfied at each successive iteration. Even if (16.28)
and (16.29) are not satisfied exactly by µ(0) and x (0), the next iterates µ(1) and x (1)

will more nearly satisfy these equations.
Satisfying (16.27) exactly is not possible unless, for all all �, the values of

x (1)
� µ

(1)
� are the same, and all equal to t (1)

effective. However, if we let:

t (1)

effective =
[x (1)]

†
µ(1)

n
, (16.33)

where n is the length of x , so that t (1)

effective is the average value of x (1)
� µ

(1)
� , and,

moreover, if the values of x (1)
� µ

(1)
� do not vary too much with �, then:

X (1)µ(1) − t (1)

effective1 ≈ 0.

That is, x (1) and µ(1) satisfy (16.27) approximately for t = t (1)

effective.

16.4.4.4 Update of barrier parameter

We now set:

t (1) < t (1)

effective.

652 Algorithms for non-negatively constrained minimization

For example, we could choose:

t (1) = t (1)

effective

n
,

= [x (1)]
†
µ(1)

(n)2
.

For large n, this reduces t significantly at each step. (See [47, page 212][65, sec-
tion 1][73][84, chapter 17][102, chapter 7] for alternative interpretations and rules
for the adjustment of t .)

We now must solve (or approximately solve) the barrier problem for the updated
value t = t (1). As initial guess for the minimizer of the barrier problem for t =
t (1) we can use µ(1), x (1), λ(1). We calculate the Newton–Raphson step direction⎡⎣�µ(1)

�x (1)

�λ(1)

⎤⎦, and update according to:

⎡⎣µ(2)

x (2)

λ(2)

⎤⎦ =
⎡⎣µ(1)

x (1)

λ(1)

⎤⎦+ α(1)

⎡⎣�µ(1)

�x (1)

�λ(1)

⎤⎦ ,

where α(1) is chosen to ensure that the x (2) and µ(2) strictly satisfy the non-negativity
constraints.

16.4.4.5 Adjustment of barrier parameter in example problem

In Problem (16.4), since n = 2 is rather small, we will take an even more aggressive
approach and set:

t (1) = 1

10
t (1)

effective,

= 2.499375 × 10−5,

for t (1)

effective calculated according to (16.33). The value of t (1) is significantly smaller
than t (0). We now calculate the next iterate using forwards and backwards substi-
tution. First, we have LY = B, where:

L =
⎡⎢⎣ I 0 0

[X (1)]
−1

M (1) I 0
0 [x (1)]

†
[M (1)]

−1
1

⎤⎥⎦ ,

=

⎡⎢⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 0

3999 0 1 0 0
0 2.501 × 10−4 0 1 0
0 0 2.501 × 10−4 3999 1

⎤⎥⎥⎥⎥⎦ ,

16.4 Approaches to finding minimizers: interior point algorithm 653

B =

⎡⎢⎢⎢⎢⎢⎢⎣
x (1)

1 − t (1)[µ(1)

1]
−1

x (1)

2 − t (1)[µ(1)

2]
−1

−1 − λ(1) + µ
(1)

1

1 − λ(1) + µ
(1)

2

−x (1)

1 − x (1)

2 + 1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

=

⎡⎢⎢⎢⎢⎣
2.250 × 10−4

0.899775
−1.251
−0.250

0

⎤⎥⎥⎥⎥⎦ ,

so that:

Y =

⎡⎢⎢⎢⎢⎣
2.250 × 10−4

0.899775
−2.150
−0.250

1001.050

⎤⎥⎥⎥⎥⎦ .

Now we solve U
⎡⎣�µ(1)

�x (1)

�λ(1)

⎤⎦ = Y , where:

U =
⎡⎢⎣−[M (1)]

−1
X (1) −I 0

0 [X (1)]
−1

M (1) 1

0 0 −[µ(1)

1]
−1

x (1)

1 − [µ(1)

2]
−1

x (1)

2

⎤⎥⎦ ,

=

⎡⎢⎢⎢⎢⎣
−2.501 × 10−4 0 −1 0 0

0 −3999 0 −1 0
0 0 3999 0 1
0 0 0 2.501 × 10−4 1
0 0 0 0 −3999

⎤⎥⎥⎥⎥⎦ ,

so that: ⎡⎢⎢⎢⎢⎢⎣
�µ

(1)

1

�µ
(1)

2

�x (1)

1

�x (1)

2

�λ(1)

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
1.000

−2.251 × 10−4

−4.751 × 10−4

4.755 × 10−4

−0.25032

⎤⎥⎥⎥⎥⎦ .

654 Algorithms for non-negatively constrained minimization

0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1
0

0 1

0 2

0 3

0 4

0 5

0 6

0 7

0 8

0 9

1

x1

x2

x (0)

x (1) ≈ x (2) ≈ x�

Fig. 16.11. The progress
of the primal dual inte-
rior point algorithm in
x coordinates for Prob-
lem (16.4). The feasible
set is indicated by the solid
line.

Again, solving for α(1) to bring the next iterate no closer than 0.9995 of the distance
to the boundary of x ≥ 0, µ ≥ 0 under the L∞ norm we find α(1) = 0.526 and:

⎡⎢⎢⎢⎢⎢⎣
µ

(2)

1

µ
(2)

2

x (2)

1

x (2)

2

λ(2)

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
1.525428

1.317 × 10−4

3.056 × 10−7

0.999999875
1.119

⎤⎥⎥⎥⎥⎦ .

After only two iterations, x (2) is extremely close to the minimizer of Problem (16.4),

which is x� =
[

0
1

]
. (Stopping criteria are discussed in Section 16.4.6.4 and in

Exercise 16.25.) The optimal values of the other variables are µ� =
[

2
0

]
and

λ� = [1]. The progress of the algorithm in the x coordinates is shown in Fig-
ure 16.11. The set defined by the equality constraints is also shown as a line. The
progress of the algorithm in µ and λ coordinates is shown in Figure 16.12.

Asymptotically,

[
µ(ν)

x (ν)

]
can approach the boundary of µ ≥ 0 and x ≥ 0. Even

at iteration ν = 2, the change in x is small, the equality constraint Ax = b is
satisfied, and t (2)

effective = 6.61 × 10−5, using (16.33). For practical purposes, we
could say that the problem has been solved, at least from the perspective of finding
an accurate estimate of x�. More iterations are need to obtain accurate estimates of
µ� and λ�. (See Exercises 16.17 and 16.25.)

16.4 Approaches to finding minimizers: interior point algorithm 655

0 5

1

1 5

2

0

0 1

0 2

0 3

0 4

0 5
1

1 2

1 4

1 6

1 8

2

µ1µ2

λ [
µ(0)

λ(0)

]

[
µ(1)

λ(1)

] [
µ(2)

λ(2)

] [
µ�

λ�

]
Fig. 16.12. The progress
of the primal dual inte-
rior point algorithm in
µ and λ coordinates for
Problem (16.4).

16.4.4.6 Rate of convergence

For larger and more complex problems, we should expect to take more iterations
to approach an accurate answer and we might expect to use a less aggressive re-
duction of the barrier parameter t at each iteration. Empirically, however, even
large problems usually take no more than a few tens of iterations to solve to high
accuracy. Variants of this algorithm can be proven to converge super-linearly or
quadratically for linear and quadratic programming problems and for some other
types of convex objectives. See [84, section 17.7] for the flavor of the results.
See [6, section 9.3][86][93][102] for detailed analysis under various assumptions
on the objective.

16.4.5 Finding an initial feasible guess

As with the active set algorithm, we must find an initial feasible guess in phase 1
before proceeding to minimize the objective in phase 2. The approach described
in Section 16.3.5 used an active set method to solve Problem (16.13) that yielded
a point on the boundary of the feasible set of Problem (16.1), assuming that some
feasible point existed. That is, an active set method applied to the related Prob-
lem (16.13) yielded a point with some or all of the entries of x being zero, which
was then suitable as an initial guess for the active set method applied to Prob-
lem (16.1) itself.

As discussed in Section 16.4.3.3, however, we require that the initial guess for
the primal–dual interior point algorithm satisfies x > 0 and µ > 0. We will
define another problem related to Problem (16.1) that includes artificial variables

656 Algorithms for non-negatively constrained minimization

and apply the primal–dual interior point algorithm to it. There are a number of
possible ways to define the related problem. For example, ([6, section 9.5][12,
section 9.4][79, section 6.IX][102, section 20.5]), let x (0) ∈ Rn++, suppose A has
linearly independent rows, define b̃ = b − Ax (0), and consider the problem:

min
x∈�n ,w∈�

{w|Ax + b̃w = b, x ≥ 0, w ≥ 0}. (16.34)

Note that x (0) and w(0) = 1 satisfies the equality constraints and strictly satisfies the
inequality constraints of Problem (16.34) and is therefore a feasible initial guess
for this problem that can be used by the primal–dual interior point algorithm. (The
values of the dual variables for the non-negativity constraints can be initialized to
satisfy M (0)x (0) = t (0)1 and σ (0)w(0) = t (0)1, where σ ∈ R is the dual variable
corresponding to the non-negativity constraint w ≥ 0.) We solve this problem
using the primal–dual interior point algorithm and this feasible initial guess. If, at

a minimizer

[
x�

w�

]
of Problem (16.34), we find that w� = 0 then x� satisfies the

equality and inequality constraints of Problem (16.1). If the Slater condition holds

for Problem (16.1) then there is a minimizer

[
x�

w�

]
of Problem (16.34) such that

x� satisfies the equality constraints and strictly satisfies the inequality constraints
of Problem (16.1). The primal–dual interior point algorithm can then use x� as
an initial guess for solving Problem (16.1). If w� > 0 then Problem (16.1) is
infeasible. (See Exercise 16.24. Also see Exercise 3.16 for another example of a
related problem that can be used to find an initial guess that strictly satisfies the
inequality constraints.)

16.4.6 Summary

The primal–dual interior point algorithm to solve Problem (16.1) has involved
many stages and considerable development. We summarize the main steps of the
algorithm in this section.

16.4.6.1 Initial guess

The algorithm begins with an initial guess

⎡⎣µ(0)

x (0)

λ(0)

⎤⎦ satisfying Ax (0) = b, µ(0) >

0, x (0) > 0, and with an initial barrier parameter t (0). We may try to arrange that
M (0)x (0) = t (0)1.

16.4 Approaches to finding minimizers: interior point algorithm 657

16.4.6.2 General iteration

Newton–Raphson step direction At the ν-th iteration we solve (16.30) for the

Newton–Raphson step direction

⎡⎣�µ(ν)

�x (ν)

�λ(ν)

⎤⎦. The coefficient matrix has been par-

tially block factorized as shown in (16.31). The factorization should be completed
by an algorithm for symmetric indefinite matrices as mentioned in Section 5.4.7
and in conjunction with an optimal ordering algorithm as discussed in Section 5.5
to keep the matrix factors as sparse as possible. Forwards and backwards substitu-
tion is then used to evaluate the step direction as discussed in Section 5.2.1. Vari-
ants to avoid complete factorization at each iteration are also possible as discussed
in Section 7.2. A further discussion of this is contained in [84, section 16.4].

Step-size The iterate is updated according to:⎡⎣µ(ν+1)

x (ν+1)

λ(ν+1)

⎤⎦ =
⎡⎣µ(ν)

x (ν)

λ(ν)

⎤⎦+ α(ν)

⎡⎣�µ(ν)

�x (ν)

�λ(ν)

⎤⎦ ,

where α(ν) is chosen so that µ(ν+1) > 0 and x (ν+1) > 0, (and possibly also to satisfy
a sufficient decrease criterion for the barrier objective φ.) One rule to guarantee
non-negativity of µ(ν+1) and x (ν+1) is to set:

α(ν) = min

{
1.0, 0.9995 ×

[
min

�∈{1,...,n}

{
µ

(ν)
�

−�µ
(ν)
�

∣∣∣∣∣�µ
(ν)
� < 0

}]
,

0.9995 ×
[

min
�∈{1,...,n}

{
x (ν)

�

−�x (ν)
�

∣∣∣∣∣�x (ν)
� < 0

}]}
,

but the step-size may have to be reduced further to satisfy the sufficient decrease
criterion for the barrier objective φ. (In some implementations, the step-size for x
is chosen separately from the step-size for λ and µ.)

16.4.6.3 Update of barrier parameter

We then update the value of the barrier parameter using a rule such as:

t (ν+1) =
∑n

�=1 µ
(ν+1)
� x (ν+1)

�

(n)2
,

where µ and x are of length n. (In some applications, a less aggressive reduction in
the barrier parameter may be necessary. In our example problem, we used a more
aggressive reduction.)

658 Algorithms for non-negatively constrained minimization

16.4.6.4 Stopping criteria

The iterations continue until t (ν) is sufficiently reduced, the change in iterates is
small, and the first-order necessary conditions of Problem (16.1) are satisfied suffi-
ciently accurately. In the case of linear and quadratic programs, we can use duality
to develop a stopping criterion that guarantees closeness of f (x (ν)) to the mini-
mum. In particular, if at each iteration ν we generate iterates x (ν) > 0, λ(ν), and
µ(ν) > 0 that satisfy (16.28)–(16.29) then we can use duality to bound the error in
the estimate of the infimum by:

f (x (ν)) − inf
x∈�n

{ f (x)|Ax = b, x ≥ 0} ≤ [µ(ν)]
†
x (ν).

If the problem has a minimum and we iterate until:

[µ(ν)]
†
x (ν) ≤ ε f ,

then f (x (ν)) will be within ε f of the minimum. (See Exercise 16.25.)

16.4.7 Discussion and variations

The equality constraints (16.29) are linear. Linearization introduces no error in
these constraints. If f is quadratic then (16.28) is linear in µ, x , and λ. That is,
if f is quadratic then linearizing (16.28) introduces no error so that the Newton–
Raphson update can exactly predict the changes necessary to satisfy the condi-
tions (16.28)–(16.29). Similarly, if f is approximately quadratic then the update
will approximately predict the changes necessary to satisfy (16.28)–(16.29).

On the other hand, (16.27) is always non-linear and we neglect important terms
when we linearize it. A development of the primal–dual algorithm we have de-
scribed, called the primal–dual predictor–corrector method, uses the factoriza-
tion of (16.30) for two successive updates, one of which is used to bring the iter-
ates closer to being on the central path by reducing the variation of x (ν)

� µ
(ν)
� with

�. We will not describe this development in this book, but it is discussed in [84,
section 9.6][102, section 20.4.3].

Finally, if the problem formulation requires non-negativity constraints on only
some of the entries of x , then the barrier function terms and the corresponding
Lagrange multipliers can be omitted for the other, unconstrained, entries. We will
make use of this observation in Section 17.3.1.

16.5 Summary

In this chapter, we have described optimality conditions for non-negatively con-
strained minimization problems, considering also the special case of convex prob-

Exercises 659

lems. We then considered active set algorithms briefly and interior point algorithms
in more detail as algorithms to solve non-negatively constrained problems.

Exercises

Optimality conditions

16.1 Give examples of problems of the form of Problem (16.1) where there is no mini-
mum because of the following.

(i) There are no feasible points.
(ii) The objective f is unbounded below on the feasible set (but f is twice partially

differentiable with continuous second partial derivatives on the feasible set and
there are feasible points).

(iii) The objective f is not continuous.

16.2 Let f : Rn → R be twice partially differentiable with continuous second partial
derivatives, A ∈ Rm×n , and b ∈ Rm . Let A ⊆ {1, . . . , n} be any subset of the indices of
the decision vector x and suppose that there are r elements in A. Define C ∈ Rr×n to be
the matrix consisting of those rows of the identity matrix corresponding to the indices in
A. For example, if A = {3, 5} then r = 2 and:

C =
[

0 0 1 0 0 · · ·
0 0 0 0 1 · · ·

]
∈ R

2×n .

Suppose that the matrix:

Â =
[

A
C

]
,

has linearly independent rows. Consider the following generalization of Problem (16.3):

min
x∈�n

{ f (x)|Ax = b,−x� = 0, ∀� ∈ A} = min
x∈�n

{ f (x)|Ax = b,−Cx = 0}.

Suppose that x� ∈ Rn , λ� ∈ Rm , and µ� ∈ Rr satisfy the second-order sufficient conditions
for this problem. That is, x� is a local minimizer with Lagrange multipliers λ� and µ�

corresponding to the constraints Ax = b and −Cx = 0, respectively.
Consider the perturbed problem:

min
x∈�n

{ f (x)|Ax = b,−Cx = −γ },

where γ ∈ Rr . Show that the sensitivity of the minimum of the perturbed problem to γ ,
evaluated at γ = 0, is µ�. (Hint: Use Corollary 13.11.)

16.3 Consider each of the following objectives fk : R2 → R, k = 1, 2, 3:

(i) ∀x ∈ R2, f1(x) = (x1 − 1)2 + (x2 − 1)2,
(ii) ∀x ∈ R2, f2(x) = (x1 − 1)2 + (x2 + 1)2,
(iii) ∀x ∈ R2, f3(x) = (x1)

2 + (x2 + 1)2.
For each of these objectives, consider the problem minx∈�2{ fk(x)|x ≥ 0} and
answer the following.

660 Algorithms for non-negatively constrained minimization

(a) Evaluate x�, µ� that satisfy the first-order necessary conditions for the prob-
lem.

(b) Describe A(x�).
(c) Describe N = {�x ∈ Rn|�x� = 0, ∀� ∈ A(x�)}.
(d) Describe A+(x�, µ�).
(e) Describe N+ = {�x ∈ Rn|�x� = 0, ∀� ∈ A+(x�, µ�)}.
(f) Are any of the binding constraints degenerate?
(g) Is x� the minimizer of the problem?

16.4 Consider Problem (16.1) in the case that f : Rn → R is convex and partially
differentiable with continuous partial derivatives and that A = 1† ∈ R1×n, b ∈ R1. That
is, there is only one equality constraint and it requires that the sum of the entries in x
is equal to b. Show that any minimizer x� of this problem satisfies the “minimum first
derivative length” property [9, section 5.5]:

(x�
k > 0) ⇒

(
∂ f
∂xk

(x�) ≤ ∂ f
∂x�

(x�), ∀� = 1, . . . , n

)
.

(Hint: Apply Theorem 16.1.)

Convex problems

16.5 Consider the problem from Section 16.1.2.4:

min
x∈�2

{ f (x)|x ≥ 0},

with objective f : R2 → R defined by:

∀x ∈ R
2, f (x) = −(x1)

3 + (x2 − 1)2.

Also consider the candidate minimizer x̂ =
[

0
1

]
and candidate value of Lagrange multi-

pliers µ̂ = 0. Explain which of the hypotheses of Theorem 16.3 are not satisfied by this
problem.

Active set method

16.6 Consider Problem (16.1).

(i) Suppose that any of the n non-negativity constraints can be binding or not binding.
How many possibilities are there if we want to enumerate all the cases of constraints
being binding and not binding?

(ii) A more usual case is that no more than approximately (n−m) of the non-negativity
constraints will be binding, where n is the number of variables and m is the number
of equality constraints. How many possibilities are there now if we want to enu-
merate all the cases where there are no more than (n − m) inequality constraints
binding out of the total of n inequality constraints?

Exercises 661

16.7 In this exercise we consider swapping out.

(i) Consider Problem (16.11):

min
x1,x2∈�

{x1 − x2|x1 + x2 = 1,−x2 = 0}.

Solve the first-order necessary conditions for this problem. Report the value of the
minimizer and corresponding Lagrange multipliers.

(ii) Show that the direction �x (0) =
[−1

1

]
is a descent direction for the objective of

Problem (16.11) at the point x (0) =
[

1
0

]
.

(iii) Show that the direction �x (0) maintains feasibility for Ax = b at x (0).

16.8 Consider Problem (16.12):

min
x1,x2∈�

{x1 − x2|x1 + x2 = 1,−x1 = 0}.

(i) Show that x� =
[

0
1

]
is a minimizer of this problem.

(ii) Show that the corresponding Lagrange multiplier on the constraint −x1 = 0 is
positive.

16.9 Let A ∈ Rm×n, b ∈ Rm and consider Problem (16.13):

min
x∈�n ,w∈�n

{1†w|Ax + w = b, x ≥ 0, w ≥ 0}.

Suppose that a minimizer,

[
x�

w�

]
, of this problem satisfies w� 	= 0. Show that {x ∈

Rn|Ax = b, x ≥ 0} = ∅.

16.10 Solve Problem (16.4),

min
x∈�2

{x1 − x2|x1 + x2 = 1, x1 ≥ 0, x2 ≥ 0},

with the MATLAB function linprog by setting the LargeScale option to off and the
Simplex option to on using the optimset function.

16.11 Consider an integer optimization problem:

min
x∈�n

{c†x |Ax = b, x ≥ 0},

where Z is the set of integers. Suppose that b ∈ Zm and that A ∈ {0,−1, 1}m×n is totally
unimodular; that is, every square sub-matrix of A has determinant equal to either 0, −1,

662 Algorithms for non-negatively constrained minimization

or 1 [67, section 4.12]. Consider the continuous relaxation of this problem:

min
x∈�n

{c†x |Ax = b, x ≥ 0}.

Show that some minimizer of the relaxed problem is also a minimizer of the integer opti-
mization problem. (Hint: You can use the observation made in Section 16.3.6.1 that, for a
linear program, there is a minimizer that is a vertex. Moreover, you can also assume that
([67, theorem 4.12.7]):

• if A is totally unimodular then so is

[
A
I

]
, and

• if A is totally unimodular then any sub-matrix of A is also totally unimodular.)

Interior point algorithm

16.12 Consider the reciprocal barrier function fb : Rn++ → R for the constraints
x ≥ 0 defined by:

∀x ∈ R
n++, fb(x) =

n∑
�=1

1

x�

.

(i) Show that the reciprocal barrier function is partially differentiable with continuous
partial derivatives on Rn++.

(ii) Show that for each �, the term 1/x� in the definition of the reciprocal barrier func-
tion is such that:

∀B ∈ R, ∃x� ∈ R++ such that
(
(0 < x� ≤ x�) ⇒ (1/x� > B)

)
.

(iii) Show that the reciprocal barrier function is convex on Rn++.

16.13 Consider the logarithmic barrier function fb : Rn++ → R for the constraints x ≥ 0
defined by:

∀x ∈ R
n++, fb(x) = −

n∑
�=1

ln(x�).

(i) Show that the logarithmic barrier function is partially differentiable with continu-
ous partial derivatives on Rn++. (Hint: You can assume that ln is differentiable on
R++ with continuous derivative.)

(ii) Show that for each �, the term − ln(x�) in the definition of the logarithmic barrier
function is such that:

∀B ∈ R, ∃x� ∈ R++ such that
(
(0 < x� ≤ x�) ⇒ (− ln(x�) > B)

)
.

(iii) Show that the logarithmic barrier function is convex on Rn++.

Exercises 663

16.14 Consider the modified logarithmic barrier function fb : Rn++ → R for the
constraints x ≥ 0 defined by:

∀x ∈ R
n++, fb(x) = −

n∑
�=1

ln(x�) + 1†x − n,

=
n∑

�=1

(− ln(x�) + x� − 1),

=
n∑

�=1

f �
b (x�),

where the functions f �
b : R++ → R, � = 1, . . . , n, are defined by:

∀� = 1, . . . , n, ∀x� ∈ R++, f �
b (x�) = − ln(x�) + x� − 1.

(i) Show that the modified logarithmic barrier function is partially differentiable with
continuous partial derivatives on Rn++. (Hint: You can assume that ln is differen-
tiable on R++ with continuous derivative.)

(ii) Show that for each �, the function f �
b is such that:

∀B ∈ R, ∃x� ∈ R++ such that
(
(0 < x� ≤ x�) ⇒ (f �

b (x�) > B)
)

.

(iii) Show that for each �, the function ∇ f �
b is such that:

(x� ≥ 1) ⇒ (∇ f �
b (x�) ≥ 0).

(iv) Show that the modified logarithmic barrier function is convex on Rn++.
(v) Show that the modified logarithmic barrier function is non-negative on Rn++.

16.15 Consider the inequality-constrained problem:

min
x∈�

{ −1

(x + 1)2 + 1

∣∣∣∣ x ≥ 0

}
.

(This example appears in [84, section 16.2, exercise 4] and is attributed to Powell.) The
objective is shown by the solid curve in Figure 16.13. Although the objective of this
problem is not convex, it has convex level sets, is bounded below by −1, and a descent
direction for the objective from a feasible point is always in the direction of decreasing
x . Problem (16.16) in this case is minx∈� {φ(x)| x > 0}, where the barrier objective φ :
R++ → R is defined by:

∀x ∈ R++, φ(x) = −1

(x + 1)2 + 1
− t ln(x).

The barrier objective is shown as the dashed curve in Figure 16.13 for t = 0.1. The barrier
objective has a local minimum for x ≈ 0, but the barrier objective is unbounded below
as x → ∞ so that the local minimum is not a global minimum and, indeed, the barrier
problem does not have a global minimum. If we restrict ourselves to the vicinity of x = 0
then the sequence of local minimizers of the barrier problems as t → 0 will converge to the

664 Algorithms for non-negatively constrained minimization

5 0 5 10 15 20 25
1

0 5

0

0 5

x

f (x), φ(x) = −1
(x+1)2+1

− t ln(x)

Fig. 16.13. Example of a
barrier objective that is un-
bounded below. The func-
tion f is shown solid while
the barrier objective, for
t = 0.1, is shown dashed.

minimizer x� = 0 of the inequality-constrained problem. However, if we use an iterative
algorithm to solve the barrier problem and start with an initial point that is far from x = 0,
then the iterative algorithm may generate a sequence of iterates that diverge to ∞.

Instead of the logarithmic barrier, consider using the modified logarithmic barrier func-
tion fb : R++ → R for x ≥ 0 from Exercise 16.14. The modified barrier is defined
by:

∀x ∈ R++, fb(x) = − ln(x) + x − 1.

Show that the corresponding barrier problem for this barrier function has a global mini-
mum and minimizer for each value of t . (Hint: Use the results from Exercise 16.14 and
Theorem 2.1.)

16.16 Prove that if:
• {x (ν)}∞ν=0 converges to x�, and
• ∀ν, Ax (ν) = b, x (ν) > 0,

then Ax� = b and x� ≥ 0.

16.17 Consider Problem (16.4), which we repeat here:

min
x∈�2

{x1 − x2|x1 + x2 = 1, x1 ≥ 0, x2 ≥ 0}.

The iterates x (1) and x (2) generated by the primal dual interior point algorithm were cal-
culated in Section 16.4.4.5. Use the primal dual interior point algorithm to calculate two
more updates, starting at x (2). That is:

(i) Calculate the third iterate x (3).
(ii) Calculate the fourth iterate x (4).
(iii) Comment on the improvement or otherwise in accuracy of each of the components

of µ, x , and λ.

For each iteration, use t (ν) = 1
10 t (ν)

effective = 1
10n [x (ν)]

†
µ(ν) and use the step-size rule sug-

gested in Section 16.4.6.2 to allow the next iterate to be no closer to the boundary than a
fraction 0.9995 of the distance of the current iterate to the boundary under the L∞ norm.

Exercises 665

16.18 Consider the problem:

min
x∈�3

{c†x |Ax = b, x ≥ 0},

where:

c =
[

2
−1
11

]
,

A = 1†,

b = [
10
]
.

(i) Use the primal dual interior point algorithm to calculate one update to find the

minimizer of this problem, starting at x (ν) =
[

1
3
6

]
, λ(ν) = 2, t (ν) = 0.25, choosing

µ(ν) to satisfy M (ν)x (ν) = t (ν)1, and using the rule suggested in Section 16.4.6.2
to determine the step-size α(ν). In particular, calculate x (ν+1), λ(ν+1), and µ(ν+1).

(ii) At the point x (ν), the gradient of the objective matches that described in Sec-
tion 16.3.2.3. Compare the update calculated in Part (i) to that calculated in Sec-
tion 16.3.2.3 and shown in Figure 16.5.

16.19 In this exercise, we sketch the central path for the problem in Exercise 16.18.

(i) Use the MATLAB function fmincon to solve Problem (16.16) for the objective
and constraints specified in Exercise 16.18 for values of barrier parameter t =
100, 90, 80, . . . , 10, 9, 8, . . . , 1, 0.9, 0.8, . . . , 0.1. Enforce the strict non-negativity
constraints by requiring x ≥ 0 and using an initial guess that satisfies the strict non-
negativity constraints. That is, solve:

min
x∈�3

{
c†x − t

n∑
�=1

ln(x�)|Ax = b, x ≥ 0

}
,

where:

c =
[

2
−1
11

]
,

A = 1†,

b = [
10
]
.

You should write a MATLAB M-file to evaluate the objective and its gradient and set
the GradObj option to on using the optimset function. For all other options,

use default parameters. For t = 1, use an initial guess of x (0) =
[

1
3
6

]
. For each

subsequent value of t , use as initial guess the minimizer for the previous value of t .
(ii) Use the results from the previous part to sketch the central path.

666 Algorithms for non-negatively constrained minimization

16.20 Suppose that we try to minimize the objective defined in (16.18) in Section 16.4.2.6
using the Newton Raphson step direction to find a zero of the derivative of (16.18).

(i) Calculate the derivative of (16.18).
(ii) Calculate the Hessian of (16.18).
(iii) Calculate the Newton Raphson step direction to seek a zero of the derivative of (16.18).
(iv) Evaluate the Newton Raphson step direction for the first iteration with the values

t = 10−10 and x (0)
1 = 0.5.

(v) Why is this step direction problematic?

16.21 Consider the problem:

min
x∈�2

{ f (x)|x ≥ 0},

where f : R2 → R is defined by:

∀x ∈ R
2, f (x) = (x1 + 1)2 + (x2 + 1)2.

Use the primal dual interior point algorithm to calculate two updates to find the minimizer

of this problem, starting at x (0) =
[

5
5

]
and t (0) = 1. That is:

(i) Calculate x (1).
(ii) Calculate x (2).

Use the step-size rule suggested in Section 16.4.6.2 and, for ν > 0, use t (ν) = 1
10 t (ν)

effective =
1

10n [x (ν)]
†
µ(ν).

16.22 In this exercise, we consider a value of the barrier parameter that is too small.
(i) Calculate the step direction for the example problem in Section 16.4.3.4 for the

values t = 10−10, x (0) =
[

0.5
0.5

]
, λ(0) = 1.5+2×10−2, and µ(0) =

[
2 × 10−10

2 × 10−10

]
.

(Hint: You should be able to re-use some of the calculations from Section 16.4.3.4.)
(ii) Use the step-size rule suggested in Section 16.4.6.2 to calculate an appropriate step-

size so that the updated iterate remains in the interior. Comment on the size of the
step-size.

16.23 In this exercise we investigate the relationship between:

• the limits (or accumulation points) of the sequences {µ(ν)}∞ν=0, {x (ν)}∞ν=0, and
{λ(ν)}∞ν=0 generated by the interior point algorithm, and

• a solution of the first-order necessary conditions for Problem (16.1).
Suppose that the objective function f is partially differentiable with continuous partial
derivatives. Consider a sequence of values for the barrier parameter {t (ν)

effective}∞ν=0 that
converge to t� = 0. Suppose that for each value of ν, the ν-th elements of the sequences
{µ(ν)}∞ν=0, {x (ν)}∞ν=0, and {λ(ν)}∞ν=0 satisfy (16.27) (16.29) for t = t (ν)

effective and that x (ν) >

0 and µ(ν) > 0 for every ν. Moreover, assume that {µ(ν)}∞ν=0, {x (ν)}∞ν=0, and {λ(ν)}∞ν=0
converge to µ�, x�, and λ�, respectively. Show that µ�, x�, and λ� satisfy the first-order
necessary conditions for Problem (16.1).

Exercises 667

16.24 Let A ∈ Rm×n, b ∈ Rm , and x (0) ∈ Rn++. Suppose that A has linearly independent
rows and define b̃ = b − Ax (0) and w(0) = 1 and consider Problem (16.34):

min
x∈�n ,w∈�

{w|Ax + b̃w = b, x ≥ 0, w ≥ 0}.

(i) Show that x (0), w(0) satisfies Ax + b̃w = b.
(ii) Show that Problem (16.34) possesses a minimum and minimizer. (Hint: You can

use the result that if a linear programming problem has a feasible point then ei-
ther the problem has a minimum and minimizer or it is unbounded below [70,
section 3.3].)

(iii) Consider a minimizer,

[
x�

w�

]
, of Problem (16.34). Show that if w� = 0 then x�

satisfies the equality and inequality constraints of Problem (16.1). That is, show
that Ax� = b and x� ≥ 0.

(iv) Consider a minimizer,

[
x�

w�

]
, of Problem (16.34). Show that if w� > 0 then

Problem (16.1) is infeasible.

16.25 Let f : Rn → R be convex and partially differentiable with continuous partial
derivatives, A ∈ Rm×n , and b ∈ Rm . Consider the non-negatively constrained problem:

min
x∈�n

{ f (x)|Ax = b, x ≥ 0}.

Suppose that we use a primal dual interior point algorithm such as the one described
in Section 16.4.3.3 to solve this problem. Moreover, suppose that, as discussed in Sec-
tion 16.4.7, at each iteration ν we generate iterates x (ν) > 0, λ(ν), and µ(ν) > 0 that
exactly satisfy (16.28) (16.29). That is:

∀ν,∇ f (x (ν)) + A†λ(ν) − µ(ν) = 0,

∀ν, Ax (ν) = b,

∀ν, x (ν) > 0,

∀ν, µ(ν) > 0.

(In general, it will only be possible to satisfy the first condition exactly at each iteration if
f is linear or quadratic.)

(i) What is the Lagrangian for this problem? (Hint: Refer to Section 3.4.1, write the
equality constraints as Ax−b = 0, and write the inequality constraints as−Ix ≤ 0.)

(ii) Show that, at each iteration ν, x (ν) is the global minimizer of the Lagrangian
L(•, λ(ν), µ(ν)).

(iii) Evaluate D(λ(ν), µ(ν)).
(iv) Show that we can bound the error in the estimate of the infimum by:

f (x (ν)) − inf
x∈�n

{ f (x)|Ax = b, x ≥ 0} ≤ [µ(ν)]
†
x (ν).

(Hint: Note that since µ(ν) ≥ 0, we have by Corollary 3.14:

f (x (ν)) − inf
x∈�n

{ f (x)|Ax = b, x ≥ 0} ≤ f (x (ν)) −D(λ(ν), µ(ν)).)

668 Algorithms for non-negatively constrained minimization

16.26 In this exercise, we apply the bound calculated in Exercise 16.25:

f (x (ν)) − inf
x∈�n

{ f (x)|Ax = b, x ≥ 0} ≤ [µ(ν)]
†
x (ν),

to bound the error in the estimate of the minimum for the initial guess and for the iter-
ates calculated for Problem (16.4) in Sections 16.4.3.4 and 16.4.4.5. Evaluate the bound
[µ(ν)]

†
x (ν) for ν = 0, 1, 2.

16.27 Solve Problem (16.4),

min
x∈�2

{x1 − x2|x1 + x2 = 1, x1 ≥ 0, x2 ≥ 0},

using the MATLAB function linprog. Use the default interior point algorithm.

17

Algorithms for linear inequality-constrained
minimization

In this chapter we will develop algorithms for constrained optimization problems
of the form:

min
x∈�

f (x),

where f : Rn → R and where the feasible set S is of the form:

S = {x ∈ R
n|g(x) = 0, h(x) ≤ 0},

with both g : Rn → Rm and h : Rn → Rr affine. That is, we will consider
problems of the form:

min
x∈�n

{ f (x)|Ax = b,Cx ≤ d}, (17.1)

where A ∈ Rm×n , b ∈ Rm , C ∈ Rr×n , and d ∈ Rr are constants. We call the
constraints Cx ≤ d linear inequality constraints, although, strictly speaking, it
would be more precise to refer to them as affine inequality constraints. The fea-
sible set defined by the linear equality and inequality constraints is convex. (See
Exercise 2.36.) If f is convex on the feasible set then the problem is convex. We re-
fer to Problem (17.1) as an inequality-constrained problem, where it is understood
that it also includes equality constraints in addition to the inequality constraints.

We will first present the optimality conditions in Section 17.1 for the general case
and in Section 17.2 for convex problems. In Section 17.3 we show how to apply the
algorithms developed in Chapter 16 for non-negatively constrained optimization
to Problem (17.1) through two transformations of Problem (17.1). We discuss
sensitivity analysis in Section 17.4.

The key issues in this chapter are:

• optimality conditions for inequality-constrained problems based on the results
for equality-constrained problems,

• optimality conditions for convex problems,

669

670 Algorithms for linear inequality-constrained minimization

• transformations of problems, and
• duality and sensitivity analysis.

17.1 Optimality conditions

In this section we present first-order necessary and second-order sufficient condi-
tions.

17.1.1 First-order necessary conditions

17.1.1.1 Analysis

We have:

Theorem 17.1 Suppose that f : Rn → R is partially differentiable with continuous
partial derivatives, A ∈ Rm×n, b ∈ Rm,C ∈ Rr×n, d ∈ Rr . Consider Problem (17.1):

min
x∈�n

{ f (x)|Ax = b,Cx ≤ d},

and a point x� ∈ Rn. If x� is a local minimizer of Problem (17.1) then:

∃λ� ∈ R
m, ∃µ� ∈ R

r such that: ∇ f (x�) + A†λ� + C†µ� = 0;
M�(Cx� − d) = 0;

Ax� = b;
Cx� ≤ d; and

µ� ≥ 0, (17.2)

where M� = diag{µ�
�} ∈ Rr×r . The vectors λ� and µ� satisfying the conditions (17.2)

are called the vectors of Lagrange multipliers for the constraints Ax = b and Cx ≤ d,
respectively. The conditions that M�(Cx� − d) = 0 are called the complementary
slackness conditions. They say that, for each �, either the �-th inequality constraint is
binding or the �-th Lagrange multiplier is equal to zero (or both).

Proof ([84, section 14.4].) The proof consists of several steps:

(i) showing that x� is a local minimizer of the related equality-constrained problem:

min
x∈�n

{ f (x)|Ax = b,C�x = d�,∀� ∈ A(x�)},

where the active inequality constraints at x� for Problem (17.1) are included as
equality constraints,

(ii) using the necessary conditions of the related equality-constrained problem to
define λ� and µ� that satisfy the first four lines of (17.2), and

(iii) proving that µ� ≥ 0 by showing that if a constraint �, say, had a negative value
of its Lagrange multiplier µ�

� < 0 then the objective could be reduced by moving
in a direction such that constraint � becomes strictly feasible.

See Appendix B for details. �

17.1 Optimality conditions 671

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

Fig. 17.1. The contour
sets of the objective
function and feasible set
for Problem (2.18). The
heights of the contours
decrease towards the point[

1
3

]
. The feasible set is

the “half-line” starting at

the point

[
3
3

]
, which is

also the minimizer and is
illustrated with a •.

17.1.1.2 Example

Recall the example quadratic program, Problem (2.18), which we first met in Sec-
tion 2.3.2.3. The problem is:

min
x∈�2

{ f (x)|Ax = b,Cx ≤ d},

where:

∀x ∈ R
2, f (x) = (x1 − 1)2 + (x2 − 3)2,

A = [
1 −1

]
,

b = [
0
]
,

C = [
0 −1

]
,

d = [−3
]
.

The contours of the objective, the feasible set, and the solution were shown in
Figure 2.12, which we repeat in Figure 17.1. In Section 2.3.2, we observed that the

solution of this problem was x� =
[

3
3

]
.

We claim that x� =
[

3
3

]
together with λ� = [−4] and µ� = [4] satisfy (17.2)

for Problem (2.18). To see this, first observe that:

∀x ∈ R
2,∇ f (x) =

[
2 0
0 2

]
x +

[−2
−6

]
.

672 Algorithms for linear inequality-constrained minimization

We have:

∇ f (x�) + A†λ� + C†µ�

=
[

2 0
0 2

] [
3
3

]
+
[−2
−6

]
+
[

1
−1

]
[−4] +

[
0

−1

]
[4],

= 0;
µ�(Cx� − d) = [4]

([
0 −1

] [3
3

]
− [−3]

)
,

= [0];
Ax� = [

1 −1
] [3

3

]
,

= [0],

= b;
Cx� = [

0 −1
] [3

3

]
,

= [−3],

≤ [−3],

= d; and

µ� = [4],

≥ [0].

17.1.1.3 Discussion

As in the non-negatively constrained case, the Lagrange multipliers adjust the un-
constrained optimality conditions to balance the constraints against the objective.
For the inequality constraints the balance is only needed if the objective would
encourage the inequality constraints to be violated. Consequently, the Lagrange
multipliers on the inequality constraints are non-negative.

We will again refer to the equality and inequality constraints specified in (17.2)
as the first-order necessary conditions, although we recognize that the first-order
necessary conditions also include, strictly speaking, the other items in the hypoth-
esis of Theorem 17.1. As previously, these conditions are known as the Kuhn–
Tucker (KT) or the Karush–Kuhn–Tucker (KKT) conditions and a point satisfy-
ing the conditions is called a KKT point.

If the rows of A together with the rows of C corresponding to the binding con-
straints are not linearly independent then the Lagrange multipliers are not uniquely
defined. See [11, section 3.4][45, section 3.3.2] for details and Exercise 17.2 for an
example. Linear independence of these rows will play a role in sensitivity analysis
in Section 17.4 and in optimality conditions for non-linear inequality constraints to
be discussed in Chapter 19. (See Exercise 17.17.)

17.1 Optimality conditions 673

17.1.1.4 Lagrangian

Recall Definition 3.2 of the Lagrangian. For Problem (17.1) the Lagrangian L :
Rn × Rm × Rr → R is defined by:

∀x ∈ R
n, ∀λ ∈ R

m, ∀µ ∈ R
r ,L(x, λ, µ) = f (x) + λ†(Ax − b) + µ†(Cx − d).

As in the equality-constrained case, define the gradients of L with respect to x ,

λ, and µ by, respectively, ∇xL =
[

∂L
∂x

]†

, ∇λL =
[

∂L
∂λ

]†

, and ∇µL =
[

∂L
∂µ

]†

.

Evaluating the gradients with respect to x, λ, and µ, we have:

∇xL(x, λ, µ) = ∇ f (x) + A†λ + C†µ,

∇λL(x, λ, µ) = Ax − b,

∇µL(x, λ, µ) = Cx − d.

Setting the first two of these expressions equal to zero reproduces some of the first-
order necessary conditions for the problem. As with equality-constrained prob-
lems, the Lagrangian provides a convenient way to remember the optimality con-
ditions. However, unlike the equality-constrained case, in order to recover the
first-order necessary conditions for Problem (17.1) we have to:

• add the complementary slackness conditions; that is, M�(Cx� − d) = 0,

• add the non-negativity constraints on µ, that is, µ ≥ 0, and

• interpret the third expression as corresponding to inequality constraints; that is,
Cx ≤ d.

If the hypotheses of Theorem 17.1 are satisfied and if, in addition, f is con-
vex then x� is a global minimizer of L(•, λ�, µ�), where λ� and µ� are the La-
grange multipliers. Analogously to the equality and non-negatively constrained

cases,

⎡⎣ x�

λ�

µ�

⎤⎦ is not a minimizer of L but the entries of ∇xL(x�, λ�, µ�) and of

∇λL(x�, λ�, µ�) and some of the entries of ∇µL(x�, λ�, µ�) are zero. This observa-
tion will play an important role in the discussion of duality in Section 17.2.2.

17.1.2 Second-order sufficient conditions

17.1.2.1 Analysis

In the following, we present second-order sufficient conditions for the minimizer
of Problem (17.1).

674 Algorithms for linear inequality-constrained minimization

Theorem 17.2 Let f : Rn → R be twice partially differentiable with continuous second
partial derivatives, A ∈ Rm×n, b ∈ Rm,C ∈ Rr×n, d ∈ Rr . Consider Problem (17.1):

min
x∈�n

{ f (x)|Ax = b,Cx ≤ d},
and points x� ∈ Rn, λ� ∈ Rm, and µ� ∈ Rr . Let M� = diag{µ�

�}. Suppose that:

∇ f (x�) + A†λ� + C†µ� = 0,

M�(Cx� − d) = 0,

Ax� = b,

Cx� ≤ d,

µ� ≥ 0, and

∇2f (x�) is positive definite on the null space:

N+ = {�x ∈ R
n|A�x = 0,C��x = 0,∀� ∈ A+(x�, µ�)},

where C� is the �-th row of C and A+(x�, µ�) = {� ∈ {1, . . . , r}|C�x� = d�, µ
�
� > 0}.

Then x� is a strict local minimizer of Problem (17.1).

Proof See [45, section 3.3.2]. �

The conditions in the theorem are called the second-order sufficient conditions
(or SOSC.) In addition to the first-order necessary conditions, the second-order
sufficient conditions require that:

• f is twice partially differentiable with continuous second partial derivatives, and
• ∇2f (x�) is positive definite on the null space N+ defined in the theorem.

17.1.2.2 Example

Recall again the example quadratic program, Problem (2.18) from Sections 2.3.2.3
and 17.1.1.2.

For this problem,

Cx� = d,

µ� = [4],

A+(x�, µ�) = {� ∈ {1, . . . , r}|C�x
� = d�, µ

�
� > 0},

= {1},
since the only inequality constraint in this problem is binding and the correspond-
ing Lagrange multiplier is non-zero. Consequently,

N+ = {�x ∈ R
n|A�x = 0,C��x = 0, ∀� ∈ A+(x�, µ�)},

= {�x ∈ R
n|A�x = 0,C�x = 0},

= {0},
and ∇2f (x�) is positive definite on this null space by definition.

17.1 Optimality conditions 675

17.1.2.3 Discussion

The sets N+ and A+(x�, µ�) have analogous roles to their roles in the case of non-
negativity constraints presented in Section 16.1.2. If ∇2f (x�) is positive definite
on N+ then there can be no feasible descent directions for f at x�. As in the non-
negatively constrained case, the set A+(x�, µ�) can be a strict subset of A(x�),
since it omits those constraints � for which C�x� = d� and µ�

� = 0. Therefore, the
null space specified in Theorem 17.2:

N+ = {�x ∈ R
n|A�x = 0,C��x = 0,∀� ∈ A+(x�, µ�)},

can strictly contain the null space corresponding to the equality constraints and the
active inequality constraints; that is N+ can strictly contain the null space:

N = {�x ∈ R
n|A�x = 0,C��x = 0,∀� ∈ A(x�)}.

As in the non-negatively constrained case, constraints for which C�x� = d� and
µ�

� = 0 are called degenerate constraints.

17.1.2.4 Example of degenerate constraints

Recall again Problem (2.18) from Sections 2.3.2.3, 17.1.1.2 and 17.1.2.2. Consider
the following modified version of Problem (2.18):

min
x∈�2

{ f (x)|Ax = b,Cx ≤ d̂}, (17.3)

where:

∀x ∈ R
2, f (x) = (x1 − 1)2 + (x2 − 3)2,

A = [
1 −1

]
,

b = [
0
]
,

C = [
0 −1

]
,

d̂ = [−2
]
.

First consider the relaxation of Problem (17.3) where we neglect the inequal-
ity constraint. This relaxation yields Problem (2.13), which we first met in Sec-

tion 2.3.2.2 and which has minimizer x� =
[

2
2

]
. Now notice that:

Cx� = [−2] ≤ [−2] = d̂,

so that x� is feasible for Problem (17.3). By Theorem 3.10, x� is a also minimizer of
Problem (17.3). The contours of the objective, the feasible set, and the minimizer
are shown in Figure 17.2.

676 Algorithms for linear inequality-constrained minimization

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

x1

x2

Fig. 17.2. The contour
sets of the objective
function and feasible set
for Problem (17.3). The
heights of the contours
decrease towards the point[

1
3

]
. The feasible set is

the “half-line” starting at

the point

[
2
2

]
, which is

also the minimizer and is
illustrated with a •.

We claim that x� together with λ� = [−2] and µ� = [0] satisfy the first-order
necessary conditions for Problem (17.3). To see this, observe that:

∇ f (x�) + A†λ� + C†µ�

=
[

2 0
0 2

] [
2
2

]
+
[−2
−6

]
+
[

1
−1

]
[−2] +

[
0

−1

]
[0],

= 0;
µ�(Cx� − d̂) = [0]

([
0 −1

] [2
2

]
− [−2]

)
,

= [0] × [0],

= [0];
Ax� = [

1 −1
] [2

2

]
,

= [0],

= b;
Cx� = [

0 −1
] [2

2

]
,

= [−2],

≤ [−2],

= d̂; and

µ� = [0],

≥ [0].

17.1 Optimality conditions 677

Notice that Cx� = d̂ and µ� = [0], so that the constraint Cx ≤ d̂ is degenerate.
For this problem:

A+(x�, µ�) = {� ∈ {1, . . . , r}|C�x
� = d̂�, µ

�
� > 0},

= ∅,

N+ = {�x ∈ R
2|A�x = 0,C��x = 0, ∀� ∈ A+(x�, µ�)},

= {�x ∈ R
2|A�x = 0},

= {�x ∈ R
2|�x1 = �x2}.

We have that:

∀x ∈ R
2,∇2f (x) =

[
2 0
0 2

]
,

which is positive definite on R2 and therefore also positive definite on N+. There-
fore, the second-order sufficient conditions hold and, by Theorem 17.2, x� is a
strict local minimizer of Problem (17.3).

17.1.2.5 Example of second-order sufficient conditions not holding

Consider the following modified version of Problem (17.3) from Section 17.1.2.4:

min
x∈�2

{φ(x)|Ax = b,Cx ≤ d̂}, (17.4)

where φ : R2 → R is defined by:

∀x ∈ R
2, φ(x) = − f (x).

That is, we are minimizing (− f) instead of f .

We claim that x̂ =
[

2
2

]
together with λ̂ = [2] and µ̂ = [0] satisfy the first-order

necessary conditions for Problem (17.4). To see this, first observe that:

∀x ∈ R
2,∇φ(x) =

[−2 0
0 −2

]
x +

[
2
6

]
.

678 Algorithms for linear inequality-constrained minimization

We have:

∇φ(x̂) + A†λ̂ + C†µ̂

=
[−2 0

0 −2

] [
2
2

]
+
[

2
6

]
+
[

1
−1

]
[2] +

[
0

−1

]
[0],

= 0;
µ̂(Cx̂ − d̂) = [0]

([
0 −1

] [2
2

]
− [−2]

)
,

= [0] × [0],

= [0];
Ax̂ = [

1 −1
] [2

2

]
,

= [0],

= b;
Cx̂ = [

0 −1
] [2

2

]
,

= [−2],

≤ [−2],

= d̂; and

µ̂ = [0],

≥ [0].

Notice that again Cx̂ = d̂ and µ̂ = [0]. Therefore, if x̂ =
[

2
2

]
and µ̂ = [0] were

the minimizer and the Lagrange multiplier corresponding to the constraint Cx ≤ d̂,
then this constraint would be degenerate. For this problem:

A+(x̂, µ̂) = {� ∈ {1, . . . , r}|C� x̂ = d̂�, µ̂� > 0},
= ∅,

N+ = {�x ∈ R
2|A�x = 0,C��x = 0, ∀� ∈ A+(x̂, µ̂)},

= {�x ∈ R
2|A�x = 0},

= {�x ∈ R
2|�x1 = �x2}.

However, we note that ∇2φ(x̂) =
[−2 0

0 −2

]
is not positive definite on N+. (See

Exercise 17.5.) Therefore the second-order sufficient conditions do not hold. In
fact, x̂ is not a minimizer of the problem, since the objective can be reduced by
moving away from x̂ along the equality constraint so as to make the inequality
constraint strictly feasible. This can be seen from Figure 17.2, on noting that the

17.2 Convex problems 679

contours of φ are the same as those of f , except that the heights of the contours

of φ decrease away from the point

[
1
3

]
. (In fact, x̂ maximizes φ over the feasible

set.)
If we had erroneously considered the null space:

N = {�x ∈ R
2|A�x = 0,C��x = 0,∀� ∈ A(x̂)},

= {�x ∈ R
2|�x1 = �x2,−�x2 = 0},

= {0},
then we would not have realized that x̂ is not a minimizer.

17.2 Convex problems

As previously, convexity allows us to obtain global optimality results.

17.2.1 First-order sufficient conditions

17.2.1.1 Analysis

If the constraints consist of linear equality and inequality constraints and if f is
convex on the feasible set then the problem is convex. Again, in this case, the
first-order necessary conditions are also sufficient for optimality.

Theorem 17.3 Suppose that f : Rn → R is partially differentiable with continuous
partial derivatives, A ∈ Rm×n, b ∈ Rm,C ∈ Rr×n, d ∈ Rr . Consider Problem (17.1):

min
x∈�n

{ f (x)|Ax = b,Cx ≤ d},

and points x� ∈ Rn, λ� ∈ Rm, and µ� ∈ Rr . Let M� = diag{µ�
�}. Suppose that:

(i) f is convex on {x ∈ Rn|Ax = b,Cx ≤ d},
(ii) ∇ f (x�) + A†λ� + C†µ� = 0,
(iii) M�(Cx� − d) = 0,
(iv) Ax� = b and Cx� ≤ d, and
(v) µ� ≥ 0.

Then x� is a global minimizer of Problem (17.1).

Proof The proof is very similar to the proof of Theorem 16.3 in Chapter 16. See
Appendix B for details. �

In addition to the first-order necessary conditions, the first-order sufficient con-
ditions require that f is convex on the feasible set.

680 Algorithms for linear inequality-constrained minimization

17.2.1.2 Example

Again consider Problem (2.18) from Sections 2.3.2.3, 17.1.1.2, and 17.1.2.2. In

Section 17.1.1.2, we observed that x� =
[

3
3

]
, λ� = [−4], and µ� = [4] satisfy

the first-order necessary conditions for this problem. Moreover, f is twice contin-
uously differentiable with continuous partial derivatives and the Hessian is positive
definite. Therefore, f is convex and x� is the global minimizer of the problem.

17.2.2 Duality

As we discussed in Section 3.4 and as in the discussion of linear equality con-
straints in Section 13.2.2, we can define a dual problem where the role of variables
and constraints is partly or fully swapped [84, chapter 6]. We again recall some of
the discussion from Section 3.4 in the following sections.

17.2.2.1 Dual function

Analysis We have observed in Section 17.1.1.4 that if f is convex then x� is a
global minimizer of L(•, λ�, µ�). Recall Definition 3.3 of the dual function and
effective domain. For Problem (17.1), the dual functionD : Rm×Rr → R∪{−∞}
is defined by:

∀
[

λ

µ

]
∈ R

m+r ,D(λ, µ) = inf
x∈�n

L(x, λ, µ). (17.5)

The effective domain of D is:

E =
{[

λ

µ

]
∈ R

m+r

∣∣∣∣D(λ, µ) > −∞
}

.

Recall that by Theorem 3.12, E is convex and D is convex on E.

Example We continue with Problem (2.18) from Sections 2.3.2.3, 17.1.1.2, . . . ,
17.2.1.2. The problem is:

min
x∈�2

{ f (x)|Ax = b,Cx ≤ d},

where:

∀x ∈ R
2, f (x) = (x1 − 1)2 + (x2 − 3)2,

A = [
1 −1

]
,

b = [
0
]
,

C = [
0 −1

]
,

d = [−3
]
.

17.2 Convex problems 681

The Lagrangian L : R2 × R × R → R for this problem is defined by:

∀x ∈ R
2,∀λ ∈ R, ∀µ ∈ R,

L(x, λ, µ) = f (x) + λ†(Ax − b) + µ†(Cx − d),

= (x1 − 1)2 + (x2 − 3)2 + λ
[
1 −1

]
x + µ

([
0 −1

]
x + 3

)
.

For any given λ and µ, the Lagrangian L(•, λ, µ) is strictly convex and therefore,
by Corollary 10.6, the first-order necessary conditions ∇xL(x, λ, µ) = 0 are suf-
ficient for minimizing L(•, λ, µ) and, moreover, a minimizer exists, so that the
inf in the definition of D can be replaced by min. Furthermore, there is a unique
minimizer x (λ,µ) corresponding to each value of λ and µ. In particular, we have:

∀x ∈ R
2, ∀λ ∈ R, ∀µ ∈ R,

∇xL(x, λ, µ) = ∇ f (x) + A†λ + C†µ,

=
[

2 0
0 2

]
x +

[−2
−6

]
+
[

1
−1

]
λ +

[
0

−1

]
µ,

∀λ ∈ R, ∀µ ∈ R,

x (λ,µ) = −
[

2 0
0 2

]−1 [[−2
−6

]
+
[

1
−1

]
λ +

[
0

−1

]
µ

]
,

=
[

1
3

]
+
[−0.5

0.5

]
λ +

[
0
0.5

]
µ. (17.6)

Consequently, the effective domain is E = R × R and the dual function D : R ×
R → R is given by:

∀
[

λ

µ

]
∈ R

2,D(λ, µ) = inf
x∈�n

L(x, λ, µ),

= L(x (λ,µ), λ, µ), since x (λ,µ) minimizes L(•, λ, µ),

= (x (λ,µ)

1 − 1)2 + (x (λ,µ)

2 − 3)2

+ λ
[
1 −1

]
x (λ,µ) + µ

([
0 −1

]
x (λ,µ) + 3

)
,

= −1

2
(λ)2 − 1

4
(µ)2 − 2λ − 1

2
µλ,

on substituting from (17.6) for x (λ,µ).

17.2.2.2 Dual problem

Analysis As in the equality-constrained case, if the objective is convex on Rn then
the minimum of Problem (17.1) is equal to D(λ�, µ�), where λ� and µ� are the
Lagrange multipliers that satisfy the necessary conditions for Problem (17.1). As
in the equality-constrained case, under certain conditions, the Lagrange multipliers

682 Algorithms for linear inequality-constrained minimization

can be found as the maximizer of the dual problem:

max[
λ
µ

]
∈�
{D(λ, µ)|µ ≥ 0}, (17.7)

where D : E → R is the dual function defined in (17.5). Again, Problem (17.1) is
called the primal problem in this context to distinguish it from Problem (17.7).

These observations are embodied in the following. (Also see [6, theorems 6.2.4
and 6.3.3][11, proposition 5.2.1] [15, section 5.2.3] [84, corollaries 6.1 and 14.2]
for generalizations.)

Theorem 17.4 Suppose that f : Rn → R is convex and partially differentiable with
continuous partial derivatives, A ∈ Rm×n, b ∈ Rm, C ∈ Rr×n, and d ∈ Rr . Consider
the primal problem, Problem (17.1):

min
x∈�n

{ f (x)|Ax = b,Cx ≤ d}.

Also, consider the dual problem, Problem (17.7). We have the following.

(i) If the primal problem possesses a minimum then the dual problem possesses a
maximum and the optima are equal. That is:

min
x∈�n

{ f (x)|Ax = b,Cx ≤ d} = max[
λ
µ

]
∈�
{D(λ, µ)|µ ≥ 0}.

(ii) If:

•
[

λ

µ

]
∈ E,

• minx∈�n L(x, λ, µ) exists, and
• f is twice partially differentiable with continuous second partial derivatives

and ∇2f is positive definite,

then D is partially differentiable at

[
λ

µ

]
with continuous partial derivatives

and: [∇λD(λ, µ)

∇µD(λ, µ)

]
= ∇D(λ, µ) =

[
Ax (λ,µ) − b
Cx (λ,µ) − d

]
, (17.8)

where x (λ,µ) is the unique minimizer of minx∈�n L(x, λ, µ).

Proof ([6, theorems 6.2.4 and 6.3.3][11, proposition 3.4.3][70, lemma 1 of chap-
ter 13][84, corollaries 6.1 and 14.2].)

(i) Suppose that Problem (17.1) possesses a minimum with minimizer x�. By The-
orem 17.1,

∃λ� ∈ R
m, ∃µ� ∈ R

r such that 0 = ∇ f (x�) + A†λ� + C†µ�,

= ∇xL(x�, λ�, µ�),

17.2 Convex problems 683

where we note that L(•, λ�, µ�) is convex and partially differentiable, so that,
by Corollary 10.6, x� is also a minimizer of L(•, λ�, µ�). Therefore,

D(λ�, µ�) = inf
x∈�n

L(x, λ�, µ�),

= L(x�, λ�, µ�), because x� minimizes L(•, λ�, µ�),

= f (x�) + [λ�]†(Ax� − b) + [µ�]†(Cx� − d), by definition,

= f (x�), since x� is feasible and, by Theorem 17.1,

µ�
�(C�x� − d�) = 0,∀� = 1, . . . , r ,

≥ D(λ, µ), ∀λ ∈ R
m,∀µ ∈ R

r+, by Theorem 3.13.

That is,

[
λ�

µ�

]
maximizes the dual function over λ ∈ Rm and µ ∈ Rr+:

f (x�) = max[
λ
µ

]
∈�
{D(λ, µ)|µ ≥ 0},

= D(λ�, µ�).

(ii) See Exercise 10.19.

�

As in the equality-constrained case, it is possible for D to not be partially differ-

entiable at a point

[
λ

µ

]
∈ E if:

• L(•, λ, µ) is bounded below (so that infx∈�nL(x, λ, µ) ∈ R) yet the minimum
minx∈�nL(x, λ, µ) does not exist, or

• ∇2f is not positive definite and minx∈�nL(x, λ, µ) has multiple minimizers.

Corollary 17.5 Let f : Rn → R be twice partially differentiable with continuous second
partial derivatives and with ∇2f positive definite, A ∈ Rm×n, b ∈ Rm,C ∈ Rr×n, d ∈
Rr . Consider Problem (17.1):

min
x∈�n

{ f (x)|Ax = b,Cx ≤ d},

the Lagrangian of this problem, and the effective domain E of the dual function. If:

• the effective domain E contains Rm × Rr+, and
• for each λ ∈ Rm and µ ∈ Rr+, minx∈�n L(x, λ, µ) exists,

then necessary and sufficient conditions for

[
λ�

µ�

]
∈ Rm+r to be the maximizer of the

dual problem:

max[
λ
µ

]
∈�
{D(λ, µ)|µ ≥ 0},

684 Algorithms for linear inequality-constrained minimization

are:

M�(Cx (λ�,µ�) − d) = 0;
Ax (λ�,µ�) = b;

Cx (λ�,µ�) − d ≤ 0; and

µ� ≥ 0,

where {x (λ�,µ�)} = argminx∈�n L(x, λ�, µ�) and M� = diag{µ�
�}. Moreover, if

[
λ�

µ�

]
maximizes the dual problem then x (λ�,µ�), λ�, and µ� satisfy the first-order necessary
conditions for Problem (17.1).

Proof Note that the hypothesis implies that the dual function is finite for all λ ∈ Rm

and all µ ∈ Rr+ so that the dual problem is a non-negatively constrained maximization
of a real-valued function and, moreover, by Theorem 3.12, −D is convex and partially
differentiable with continuous partial derivatives on the convex set:{[

λ

µ

]
∈ R

m+r
∣∣∣∣µ ≥ 0

}
.

Moreover, by Theorem 17.4,

∇λD(λ�, µ�) = Ax (λ�,µ�) − b,

∇µD(λ�, µ�) = Cx (λ�,µ�) − d.

Applying Theorems 17.1 and 17.3 to the dual problem and some substitution yields the
conclusion. (See Exercise 17.7.) �

Theorem 17.4 shows that an alternative approach to finding the minimum of
Problem (17.1) involves finding the maximum of the dual function D(λ, µ) over
λ ∈ Rm, µ ∈ Rr , µ ≥ 0. Theorem 3.12 shows that the dual function has at most
one local maximum. To seek the maximum of D(λ, µ) over λ ∈ Rm, µ ∈ Rr , µ ≥
0, we can, for example, utilize the value of the gradient of D from (17.8) as part
of an active set or interior point algorithm. As in the equality-constrained case,
under some circumstances, it is also possible to calculate the Hessian of D [70,
section 12.3].

Example Continuing with Problem (2.18) from Sections 2.3.2.3, 17.1.1.2, . . . ,
17.2.2.1, we recall that the effective domain of the dual function is E = R×R and
the dual function D : R × R → R is:

∀
[

λ

µ

]
∈ R

2,D(λ, µ) = −1

2
(λ)2 − 1

4
(µ)2 − 2λ − 1

2
µλ,

17.2 Convex problems 685

with unique minimizer of the Lagrangian specified by (17.6). The dual function is
twice partially differentiable with continuous second partial derivatives. In partic-
ular,

∀
[

λ

µ

]
∈ R

2,∇D(λ, µ) =
[−2 − λ − µ/2

−λ/2 − µ/2

]
,

∀
[

λ

µ

]
∈ R

2,∇2D(λ, µ) =
[−1 −0.5
−0.5 −0.5

]
.

We claim that

[
λ�

µ�

]
=
[−4

4

]
maximizes the dual function over µ ≥ [0]. In

particular,

∇D(λ�, µ�) = 0,

µ� > [0], and ∇2D is negative definite. Consequently,

[
λ�

µ�

]
is the unique maxi-

mizer of Problem (17.7).
We also observe that λ� = [−4] and µ� = [4] satisfy the conditions specified in

Corollary 17.5 for maximizing the dual. To see this, we first use (17.6) to evaluate

x (λ,µ) at λ� = [−4] and µ� = [4]. We obtain x (λ�,µ�) =
[

3
3

]
. The necessary and

sufficient conditions in Corollary 17.5 for maximizing the dual are satisfied, since:

µ�(Cx (λ�,µ�) − d) = [4]

([
0 −1

] [3
3

]
− [−3]

)
,

= [0];
Ax (λ�,µ�) − b = [

1 −1
] [3

3

]
,

= [0];
Cx (λ�,µ�) − d = [

0 −1
] [3

3

]
− [−3],

= [0],

≤ [0]; and

µ� = [4],

≥ [0].

Moreover, x (λ�,µ�), λ�, and µ� satisfy the first-order necessary conditions for Prob-
lem (2.18).

Discussion As in the equality-constrained case, it is essential in Theorem 17.4 for
f to be convex on the whole of Rn , not just on the feasible set. The reason is again
that the inner minimization of L(•, λ, µ) is taken over the whole of Rn .

686 Algorithms for linear inequality-constrained minimization

Unfortunately, if f is not strictly convex then L(•, λ, µ) may have multiple
minimizers over x for fixed λ and µ. In this case, it may turn out that some of the
minimizers of L(•, λ�, µ�) do not actually minimize Problem (17.1). Moreover,
if there are multiple minimizers of L(•, λ, µ) then D(λ, µ) may be not partially
differentiable. The issues are similar to the equality-constrained case. We will see
in Section 17.2.2.3, however, that in the particular cases of linear and of strictly
convex quadratic programs, we can calculate the dual function and characterize the
effective domain explicitly. This allows us to use duality for the not strictly convex
case of linear programs.

Problem (17.7) is itself an inequality-constrained optimization problem; how-
ever, depending on the structure of Problem (17.1), it may be easier to solve than
Problem (17.1). In particular, the dual problem is non-negatively constrained of
the form of Problem (16.1), except that the non-negativity constraints apply to
only some of the decision vector, and we can apply essentially the same algorithms
as we developed for Problem (16.1). We will take this approach in Section 17.3.2.

17.2.2.3 Dual of linear and quadratic programs

In the case of linear and of strictly convex quadratic programs, we can character-
ize the effective domain and the dual function explicitly by solving the first-order
necessary conditions for minimizing the Lagrangian:

∇xL(x, λ, µ) = 0.

The approach parallels that of the Wolfe dual, described in Section 13.2.2.2. We
first consider the case of linear objective and then strictly convex quadratic objec-
tives. The analysis is based in part on [6, section 6.6][84, section 14.8].

Linear program Suppose that the objective is linear and the constraint functions
are all affine. In particular, suppose f : Rn → R is of the form:

∀x ∈ R
n, f (x) = c†x,

for some c ∈ Rn . We have:

∀x ∈ R
n, ∀λ ∈ R

m, ∀µ ∈ R
r ,L(x, λ, µ) = c†x + λ†(Ax − b)

+ µ†(Cx − d),

∀x ∈ R
n, ∀λ ∈ R

m, ∀µ ∈ R
r ,∇xL(x, λ, µ) = c + A†λ + C†µ.

The first-order necessary and sufficient conditions for minimizing the Lagrangian
are that c + A†λ + C†µ = 0. These conditions do not involve x , but also do not
necessarily have a solution for all values of λ and µ. In particular, if c + A†λ +

17.2 Convex problems 687

C†µ 	= 0 then L(•, λ, µ) is unbounded below and

[
λ

µ

]
	∈ E. Conversely, if

c + A†λ + C†µ = 0 then, after substituting, we find that:

D(λ, µ) = −λ†b − µ†d,

> −∞.

That is:

E =
{[

λ

µ

]
∈ R

m+r

∣∣∣∣ c + A†λ + C†µ = 0
}

,

∀
[

λ

µ

]
∈ E,D(λ, µ) = −λ†b − µ†d.

(See Exercise 17.8.)
We now substitute the characterization of the dual function and effective domain

into the definition of the dual problem and apply Theorem 17.4. In particular, if
minx∈�n {c†x |Ax = b,Cx ≤ d} possesses a minimum then by Theorem 17.4:

min
x∈�n

{c†x |Ax = b,Cx ≤ d}
= max[

λ
µ

]
∈�
{D(λ, µ)|µ ≥ 0},

= max[
λ
µ

]
∈�m+r

{D(λ, µ)|c + A†λ + C†µ = 0, µ ≥ 0},

since E =
{[

λ

µ

]
∈ Rm+r

∣∣∣∣ c + A†λ + C†µ = 0
}
,

= max[
λ
µ

]
∈�m+r

{−λ†b − µ†d|c + A†λ + C†µ = 0, µ ≥ 0},

since D(λ, µ) = −λ†b − µ†d for c + A†λ + C†µ = 0,

= − min[
λ
µ

]
∈�m+r

{λ†b + µ†d|c + A†λ + C†µ = 0, µ ≥ 0},

= − min[
λ
µ

]
∈�m+r

{[
b
d

]† [
λ

µ

] ∣∣∣∣∣
[

A
C

]† [
λ

µ

]
= −c, µ ≥ 0

}
. (17.9)

The dual problem in the last line of (17.9) has a linear objective, linear equality
constraints, and non-negativity constraints on the variables µ. We observe that

688 Algorithms for linear inequality-constrained minimization

there is at least one point in the feasible set of the dual problem,{[
λ

µ

]
∈ R

m+r

∣∣∣∣∣
[

A
C

]† [
λ

µ

]
= −c, µ ≥ 0

}
,

namely the Lagrange multipliers

[
λ�

µ�

]
that correspond to the minimizer x� of the

primal problem. We say that the problem is dual feasible.
We have transformed a primal problem with n variables, m equality constraints,

and r inequality constraints into a dual problem with m + r variables, n equality
constraints, and r inequality constraints. The dual of a linear program is there-
fore also a linear program. However, the form of the inequality constraints in
the dual is simpler than in the primal problem since in the dual problem they are
non-negativity constraints on some of the variables rather than general linear in-
equalities. Moreover, we have substituted for the solution of the embedded inner
problem in the dual. Under an appropriate re-definition of variables, the dual prob-
lem is essentially in the same form as Problem (16.1). The only difference is that
the non-negativity constraints only apply to the variables µ and not to λ. (See
Exercise 17.12.)

Quadratic program Suppose that the objective is quadratic and the constraint
functions are all affine. In particular, suppose f : Rn → R is of the form:

∀x ∈ R
n, f (x) = 1

2 x†Qx + c†x,

for some Q ∈ Rn×n and c ∈ Rn . We assume that Q is positive definite so that the
objective is strictly convex. (See [6, section 6.6] for further discussion in the case
of Q positive semi-definite.) We have:

∀x ∈ R
n, ∀λ ∈ R

m, ∀µ ∈ R
r ,L(x, λ, µ) = 1

2 x†Qx + c†x + λ†(Ax − b)

+ µ†(Cx − d),

∀x ∈ R
n, ∀λ ∈ R

m, ∀µ ∈ R
r ,∇xL(x, λ, µ) = Qx + c + A†λ + C†µ.

The first-order necessary conditions for minimizing L(•, λ, µ) are that Qx + c +
A†λ + C†µ = 0. Since Q is positive definite, this condition has a solution for all
values of λ and µ, namely x = −Q−1[c+ A†λ+C†µ]. After substituting, we find
that:

∀
[

λ

µ

]
∈ R

m+r ,D(λ, µ) = − 1
2 [c + A†λ + C†µ]

†
Q−1[c + A†λ + C†µ]

− λ†b − µ†d,

> −∞,

17.2 Convex problems 689

so that E = Rm+r . (See Exercise 17.9.)
As in the case of a linear program, we now substitute the characterization of

the dual function and effective domain into the definition of the dual problem. In
particular, if minx∈�n { 1

2 x†Qx + c†x |Ax = b,Cx ≤ d} possesses a minimum then
by Theorem 17.4:

min
x∈�n

{ 1
2 x†Qx + c†x |Ax = b,Cx ≤ d}

= max[
λ
µ

]
∈�
{D(λ, µ)|µ ≥ 0},

= max[
λ
µ

]
∈�m+r

{ − 1
2 [c + A†λ + C†µ]

†
Q−1[c + A†λ + C†µ]

− λ†b − µ†d

∣∣∣∣µ ≥ 0
}

,

= − min[
λ
µ

]
∈�m+r

{
1
2 [c + A†λ + C†µ]

†
Q−1[c + A†λ + C†µ]

+ λ†b + µ†d

∣∣∣∣µ ≥ 0
}

. (17.10)

The dual problem in the last line of (17.10) has a quadratic objective and non-
negativity constraints. We have transformed a primal problem with n variables, m
equality constraints, and r inequality constraints into a dual problem with m + r
variables and r inequality constraints. The dual of a quadratic program is therefore
also a quadratic program. Again, the form of the inequality constraints in the dual
is simpler than in the primal problem since they are non-negativity constraints. If
we solve the problem in the last line of (17.10) for optimal λ� and µ� then the
minimizer, x�, of the primal problem can be recovered as x� = −Q−1[c + A†λ� +
C†µ�].

Discussion There is considerable literature on the relationship between primal and
dual linear programs [84, chapter 6] and on primal and dual quadratic programs.
The standard treatment of duality in linear programming differs from the way we
have discussed it here, there are a variety of special cases, and we have omitted
many details. For example, we have not discussed how to recover a minimizer of
the primal problem from the solution of the dual of a linear program.

Furthermore, primal–dual algorithms (including the primal–dual interior point
algorithm described in Section 16.4.3.3) represent both the primal and dual vari-
ables and simultaneously solve for both the minimizer and the Lagrange multipli-
ers [70, section 4.6]. The primal–dual interior point algorithm is therefore essen-
tially the same whether it is applied to the primal or dual problem. Nevertheless, in
Exercise 16.25 and Section 17.3.1.4 we will use duality to develop stopping criteria
for primal–dual algorithms.

690 Algorithms for linear inequality-constrained minimization

17.2.2.4 Partial duals

Analysis A variant of the dual problem is often very useful. We can define the
partial dual with respect to some of the constraints [70, section 13.1]. For exam-
ple, we define D= : Rm → R ∪ {−∞} and D≤ : Rr → R ∪ {−∞} by:

∀λ ∈ R
m,D=(λ) = inf

x∈�n
{ f (x) + λ†(Ax − b)|Cx ≤ d},

∀µ ∈ R
r ,D≤(µ) = inf

x∈�n
{ f (x) + µ†(Cx − d)|Ax = b}.

The function D= is called the partial dual with respect to the equality constraints,
while D≤ is called the partial dual with respect to the inequality constraints. As
before, under conditions of convexity, we have:

Theorem 17.6 Suppose that f : Rn → R is convex and partially differentiable with
continuous partial derivatives, A ∈ Rm×n, b ∈ Rm, C ∈ Rr×n, and d ∈ Rr . Suppose
that Problem (17.1) possesses a minimum. Then:

min
x∈�n

{ f (x)|Ax = b,Cx ≤ d} = max
λ∈�=

{D=(λ)} = max
µ∈�≤

{D≤(µ)|µ ≥ 0},

where D= is the partial dual with respect to the equality constraints and E= is its ef-
fective domain and D≤ is the partial dual with respect to the inequality constraints and
E≤ is its effective domain.

Proof See [11, section 3.4][70, section 13.1]. �

It is also possible to take a partial dual with respect to only some of the equality
or some of the inequality constraints or some of both of the equality and inequal-
ity constraints, leaving the other constraints explicitly in the problem. See [11,
section 3.4] for details.

Separable problems To see an example of the usefulness of partial duality, con-
sider the case where:

• f is separable and strictly convex, so that f (x) =∑n
k=1 fk(xk), and

• the inequality constraints consist only of upper and lower bound constraints x ≤
x ≤ x .

Then:

∀λ ∈ R
m,D=(λ) = min

x∈�n
{ f (x) + λ†(Ax − b)|Cx ≤ d},

= min
x∈�n

{ f (x) + λ†(Ax − b)|x ≤ x ≤ x},

17.3 Approaches to finding minimizers 691

= min
x∈�n

{
n∑

k=1

fk(xk) + λ†
n∑

k=1

Akxk − λ†b

∣∣∣∣∣ xk ≤ xk ≤ xk,

∀k = 1, . . . , n

}
,

where Ak is the k-th column of A,

= min
x∈�n

{
n∑

k=1

(
fk(xk) + λ† Akxk

)− λ†b

∣∣∣∣∣ xk ≤ xk ≤ xk,

∀k = 1, . . . , n

}
,

on re-arranging,

=
n∑

k=1

min
xk∈�

{ fk(xk) + λ† Akxk |xk ≤ xk ≤ xk} − λ†b, (17.11)

on swapping the minimum and the summation, noting that there is no coupling
between the sub-problems because of the form of the upper and lower bound con-
straints. (See Exercise 17.11.)

This means that, for a given value of λ, the dual with respect to the equality
constraints is the sum of:

• a constant (−λ†b), and

• n one-dimensional optimization sub-problems that can each be evaluated inde-
pendently.

The primal problem has been decomposed into a collection of sub-problems us-
ing the partial dual. In general, if the problem has constraints that couple between
sub-problems, then by dualizing with respect to these coupling constraints we
can decompose the problem into the sub-problems. If each sub-problem is sim-
ple enough, it may be possible to evaluate its minimizer and minimum explicitly
without resorting to an iterative technique. This applies to the least-cost production
case study from Section 15.1 and will be described in detail in Section 18.1.2.2.

17.3 Approaches to finding minimizers

In this section we will show two basic ways in which inequality-constrained Prob-
lem (17.1) can be transformed into the form of Problem (16.1) from Chapter 16. We
can then use the algorithmic development from Chapter 16 to solve Problem (17.1).

17.3.1 Primal algorithm

17.3.1.1 Transformation

In this section we use slack variables to transform Problem (17.1) into a non-
negatively constrained problem.

692 Algorithms for linear inequality-constrained minimization

Slack variables To handle the inequality constraints of the primal problem, we
consider the following problem incorporating slack variables as introduced in Sec-
tion 3.3.2:

min
x∈�n ,w∈�r

{ f (x)|Ax = b,Cx + w = d, w ≥ 0}. (17.12)

The variables w are called the slack variables because they account for the “slack”
in the constraints Cx ≤ d . By Theorem 3.8, Problem (17.12) is equivalent to
Problem (17.1).

Relation to non-negatively constrained minimization We just showed the equiv-
alence between Problem (17.1) and Problem (17.12). We will now show that Prob-
lem (17.12) can be solved using the algorithms developed in Sections 16.3 and 16.4
for non-negatively constrained minimization.

In Problem (17.12), if we consider:

•
[

x
w

]
∈ Rn+r to be the decision vector,

• f to be the objective, and

•
[

Ax − b
Cx + w − d

]
= 0, or equivalently,

[
A 0
C I

] [
x
w

]
=
[

b
d

]
to be the equality

constraints,

then Problem (17.12) can be expressed in the form of Problem (16.1) (except that
we have non-negativity constraints on just w and not on the whole of the decision

vector

[
x
w

]
.) The equivalent problem is:

min
x∈�n ,w∈�r

{
f (x)

∣∣∣∣[A 0
C I

] [
x
w

]
=
[

b
d

]
, w ≥ 0

}
. (17.13)

Under an appropriate re-definition of variables, this is essentially in the same form
as Problem (16.1). The only difference is that the non-negativity constraints only
apply to the variables w and not to x . (See Exercises 17.6 and 17.12.)

In the next section, we will apply the primal–dual interior point algorithm from
Section 16.4 to Problem (17.13).

17.3.1.2 Primal–dual interior point algorithm

In this section we consider the barrier objective and problem and associated as-
sumptions for Problem (17.13), which has non-negativity constraints w ≥ 0.

17.3 Approaches to finding minimizers 693

Barrier objective and problem Analogously to the discussion in Section 16.4.2.2,
given a barrier function fb : Rr++ → R for the constraints w ≥ 0 and a barrier pa-
rameter t ∈ R++, we form the barrier objective φ : Rn × Rr++ → R defined
by:

∀x ∈ R
n, ∀w ∈ R

r
++, φ(x, w) = f (x) + t fb(w).

(Note that there are no barrier function terms corresponding to the entries in x
because there are no constraints in Problem (17.1) of the form x ≥ 0. See Sec-
tion 17.3.1.4 for representing non-negativity constraints x ≥ 0.)

Instead of solving (17.13), we will consider solving the barrier problem:

min
x∈�n ,w∈�r

{
φ(x, w)

∣∣∣∣[A 0
C I

] [
x
w

]
=
[

b
d

]
, w > 0

}
. (17.14)

We seek (approximate) minimizers of Problem (17.14) for a decreasing sequence
of values of the barrier parameter.

Slater condition As in the case of non-negativity constraints described in Sec-
tion 16.4.2.2, in order to apply the interior point algorithm effectively, we must
assume that the Slater condition holds so that there are feasible points for Prob-
lem (17.14). That is, we assume that {x ∈ Rn|Ax = b,Cx < d} 	= ∅.

Equality-constrained problem To solve Problem (17.14), we can take a similar
approach to the primal–dual interior point algorithm for non-negativity constraints
presented in Section 16.4 of Chapter 16. In particular, we can partially ignore the
inequality constraints and the domain of the barrier function and seek a solution to
the following linear equality-constrained problem:

min
x∈�n ,w∈�r

{
φ(x, w)

∣∣∣∣[A 0
C I

] [
x
w

]
=
[

b
d

]}
, (17.15)

which has first-order necessary conditions:

∇ f (x) + A†λ + C†µ = 0, (17.16)

Ax = b, (17.17)

Cx + w = d, (17.18)

t∇ fb(w) + µ = 0, (17.19)

where λ and µ are the dual variables on the constraints Ax = b and Cx + w = d,
respectively. (See Exercise 17.13.) We can use the techniques for minimiza-
tion of linear equality-constrained problems from Section 13.3.2 of Chapter 13
to solve Problem (17.15). In particular, in Section 17.3.1.3, we will consider the

694 Algorithms for linear inequality-constrained minimization

Newton–Raphson method for solving the first-order necessary conditions of Prob-
lem (17.15).

Logarithmic barrier function As in the primal–dual interior point algorithm for
non-negativity constraints, we will use the logarithmic barrier function. That is:

∀w ∈ R
r
++, fb(w) = −

r∑
�=1

ln(w�),

∀w ∈ R
r
++,∇ fb(w) = −[W]−11,

where W = diag{w�} ∈ Rr×r is a diagonal matrix with diagonal entries equal
to w�, � = 1, . . . , r . Substituting the expression for ∇ fb into (17.19) and re-
arranging, we obtain:

Wµ − t1 = 0. (17.20)

17.3.1.3 Newton–Raphson method

Analysis The Newton–Raphson step direction to solve (17.20) and (17.16)–(17.18)
is given by the solution of:⎡⎢⎢⎣

M (ν) 0 0 W (ν)

0 ∇2f (x (ν)) A† C†

0 A 0 0
I C 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣

�w(ν)

�x (ν)

�λ(ν)

�µ(ν)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−W (ν)µ(ν) + t1

−∇ f (x (ν)) − A†λ(ν) − C†µ(ν)

b − Ax (ν)

d − Cx (ν) − w(ν)

⎤⎥⎥⎦ ,

where M (ν) = diag{µ(ν)
� } and W (ν) = diag{w(ν)

� }. As in the case of the primal–
dual interior point algorithm for non-negativity constraints that was discussed in
Section 16.4.3.3, we can re-arrange these equations to make them symmetric and
use block pivoting on the top left-hand block of the matrix since the top left-hand
block is diagonal. This results in a system that is similar to (13.35), except that a
diagonal block of the form [M (ν)]

−1
W (ν) is added to the Hessian ∇2f (x (ν)). Issues

regarding solving the first-order necessary conditions, such as factorization of the
indefinite coefficient matrix, approximate solution of the conditions, sparsity, and
step-size selection, are similar to those described in Sections 13.3.2.3 and 16.4.3.3.

Example In this section, we will apply the primal–dual algorithm to the example
quadratic program, Problem (2.18), from Sections 2.3.2.3, 17.1.1.2, . . . , 17.2.2.2.
Recall that the problem is:

min
x∈�2

{ f (x)|Ax = b,Cx ≤ d},

17.3 Approaches to finding minimizers 695

where:

∀x ∈ R
2, f (x) = (x1 − 1)2 + (x2 − 3)2,

A = [
1 −1

]
,

b = [
0
]
,

C = [
0 −1

]
,

d = [−3
]
.

The Newton–Raphson update for the corresponding barrier problem is:

⎡⎢⎢⎢⎢⎣
µ(ν) 0 0 0 w(ν)

0 2 0 1 0
0 0 2 −1 −1
0 1 −1 0 0
1 0 −1 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣

�w(ν)

�x (ν)

�λ(ν)

�µ(ν)

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−w(ν)µ(ν) + t
−2(x (ν)

1 − 1) − λ(ν)

−2(x (ν)

2 − 3) + λ(ν) + µ(ν)

−x (ν)

1

x (ν)

2

−3 + x (ν)

2 − w(ν)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Exercise 17.14 discusses the calculation of iterates.

17.3.1.4 Other issues

In this section, we discuss adjustment of the barrier parameter, the initial guess, a
stopping criterion, and non-negativity and lower and upper bound constraints on x .

Adjustment of barrier parameter To reduce the barrier parameter, we can use
the approach described in Section 16.4.4 of Chapter 16. See Exercise 17.14 for an
example.

Initial guess We can take an approach analogous to that in Section 16.4.5 to find
an initial feasible guess for Problem (17.13) that is strictly feasible for the non-
negativity constraints.

Stopping criterion Exercise 16.25 investigated the use of a primal–dual algorithm
such as the one described in Section 16.4.3.3 to solve a non-negatively constrained
problem:

min
x∈�n

{ f (x)|Ax = b, x ≥ 0}.

where f : Rn → R is convex and partially differentiable with continuous partial
derivatives, A ∈ Rm×n , and b ∈ Rm . Exercise 16.25 showed that if we iterate until:

[µ(ν)]
†
x (ν) ≤ ε f ,

696 Algorithms for linear inequality-constrained minimization

then f (x (ν)) will be within ε f of the minimum of the non-negatively constrained
problem. The corresponding condition for Problem (17.1) is to iterate until:

[µ(ν)]
†
w(ν) ≤ ε f ,

where µ is now the vector of dual variables corresponding to the constraints w ≥ 0
(and corresponding to the constraints Cx ≤ d.)

Non-negativity and lower and upper bound constraints on x If we add con-
straints of the form x ≥ 0 to Problem (17.1) then we can also include them in the
barrier function and Problem (17.14). Similarly, it is also possible to treat con-
straints of the form x� ≤ x� ≤ x� by using a barrier function of the form:

−t
(
ln(x� − x�) + ln(x� − x�)

)
.

This will be discussed in more detail in Section 18.1.2.1 in the context of the least-
cost production with capacity constraints case study.

17.3.2 Dual algorithm

In this section we treat Problem (17.1) through problem transformations involving
duality with respect to some or all of the inequality and equality constraints. We
then discuss non-quadratic objectives.

17.3.2.1 Inequality constraints

In Section 17.2.2.2, we showed that, by taking the dual with respect to all of the
constraints, an inequality-constrained problem of the form of Problem (17.1) could
be transformed into a dual problem with the dual function defined in (17.5) as
its objective. We observed in Section 17.2.2.4 that we could also take the dual
with respect to just the inequality constraints. Under convexity assumptions, the
dual and primal problems had the same optima. If the objective is strictly convex
then the minimizer of the primal problem can be recovered as the unconstrained

minimizer of L(•, λ�, µ�), where

[
λ�

µ�

]
is the maximizer of the dual problem.

Whereas Problem (17.1) has general linear inequality constraints, taking the dual
with respect to all the constraints or with respect to just the inequality constraints
yields a dual problem where the inequality constraints are non-negativity con-
straints on variables only. We can apply algorithms developed for Problem (16.1).
For example, the algorithms developed in Sections 16.3 and 16.4 can be applied
to the dual problem; however, we have to swap the roles of primal and dual vari-
ables compared to the discussion in Sections 16.3 and 16.4. (See Exercise 17.12.
In the case of the primal–dual interior point algorithm presented in Section 16.4,

17.4 Sensitivity 697

the dual variables are already explicitly represented in the algorithm so there is no
advantage to taking the dual with respect to all of the constraints for use in the
primal–dual algorithm.)

17.3.2.2 Equality constraints

Taking the dual with respect to the equality constraints yields a dual problem with
no equality nor inequality constraints, but with inner problems having inequality
constraints. To maximize the dual function, we can apply the algorithms devel-
oped in Section 10.2. Taking the dual with respect to only some of the equality
constraints yields a dual problem with equality constraints. We can apply the al-
gorithms developed in Section 13.5.2. As discussed in Section 17.2.2.4, the use
of partial duality for problems with separable objectives can yield inner problems
with a simple structure.

17.3.2.3 Non-quadratic objectives

Although the dual can be found for general non-quadratic objectives, it is often not
as useful because the non-linearity of the optimality conditions in the definition
of the dual function prevents us from simplifying the objective of the dual as in
the linear and quadratic cases. If the primal problem is non-convex, we can still
apply the algorithm to the dual problem; however, we must be more cautious about
interpreting the results since the corresponding value of the primal variables may
be infeasible or not optimal for the primal problem.

17.4 Sensitivity

17.4.1 Analysis

In this section we will analyze a general and a special case of sensitivity analysis
for Problem (17.1). For the general case, we suppose that the objective f , equality
constraint matrix A, right-hand side vector b, inequality constraint matrix C , and
right-hand side vector d are parameterized by a parameter χ ∈ Rs . That is, f :
Rn×Rs → R, A : Rs → Rm×n , b : Rs → Rm , C : Rs → Rr×n , and d : Rs → Rr .
We imagine that we have solved the inequality-constrained minimization problem:

min
x∈�n

{ f (x;χ)|A(χ)x = b(χ),C(χ)x ≤ d(χ)}, (17.21)

for a base-case value of the parameters, say χ = 0, to find the base-case local min-
imizer x� and the base-case Lagrange multipliers λ� and µ�. We now consider the
sensitivity of the local minimum of Problem (17.21) to variation of the parameters
about χ = 0.

As well as considering the general case of the sensitivity of the local minimum of
Problem (17.21) to χ , we also specialize to the case where only the right-hand sides

698 Algorithms for linear inequality-constrained minimization

of the equality and inequality constraints vary. That is, we return to the special case
where f : Rn → R, A ∈ Rm×n , b ∈ Rm , C ∈ Rr×n , and d ∈ Rr are not explicitly
parameterized. However, we now consider perturbations γ ∈ Rm and η ∈ Rr and
the problem:

min
x∈�n

{ f (x)|Ax = b − γ,Cx ≤ d − η}. (17.22)

For the parameter values γ = 0 and η = 0, Problem (17.22) is the same as Prob-
lem (17.1). We consider the sensitivity of the local minimum of Problem (17.22)
to variation of the parameters about γ = 0 and η = 0.

We have the following corollary to the implicit function theorem, Theorem A.9
in Section A.7.3 of Appendix A.

Corollary 17.7 Consider Problem (17.21) and suppose that f : Rn × Rs → R is twice
partially differentiable with continuous second partial derivatives and that A : Rs →
Rm×n, b : Rs → Rm, C : Rs → Rr×n, and d : Rs → Rr are partially differentiable
with continuous partial derivatives. Also consider Problem (17.22) and suppose that the
function f : Rn → R is twice partially differentiable with continuous second partial
derivatives. Suppose that x� ∈ Rn, λ� ∈ Rm, and µ� ∈ Rr satisfy:

• the second-order sufficient conditions for Problem (17.21) for the value of parameters
χ = 0, and

• the second-order sufficient conditions for Problem (17.22) for the value of parameters
γ = 0 and η = 0.

In particular:

• x� is a local minimizer of Problem (17.21) for χ = 0, and
• x� is a local minimizer of Problem (17.22) for γ = 0 and η = 0,

in both cases with associated Lagrange multipliers λ� and µ�. Moreover, suppose that
the matrix Â has linearly independent rows, where Â is the matrix with rows consisting
of:

• the m rows of A (or A(0)), and
• those rows C� of C (or of C(0)) for which � ∈ A(x�).

Furthermore, suppose that there are no degenerate constraints at the base-case solution.
Then, for values of χ in a neighborhood of the base-case value of the parameters χ = 0,
there is a local minimum and corresponding local minimizer and Lagrange multipliers
for Problem (17.21). Moreover, the local minimum, local minimizer, and Lagrange mul-
tipliers are partially differentiable with respect to χ and have continuous partial deriva-
tives in this neighborhood. The sensitivity of the local minimum f � to χ , evaluated at
the base-case χ = 0, is given by:

∂L
∂χ

(x�, λ�, µ�; 0),

where L : Rn × Rm × Rr × Rs → R is the parameterized Lagrangian defined by:

∀x ∈ R
n, ∀λ ∈ R

m,∀µ ∈ R
r , ∀χ ∈ R

s,

L(x, λ, µ;χ) = f (x;χ) + λ†(A(χ)x − b(χ)) + µ†(C(χ)x − d(χ)).

17.4 Sensitivity 699

Furthermore, for values of γ and η in a neighborhood of the base-case value of the
parameters γ = 0 and η = 0, there is a local minimum and corresponding local
minimizer and Lagrange multipliers for Problem (17.22). Moreover, the local minimum,
local minimizer, and Lagrange multipliers are partially differentiable with respect to γ

and η and have continuous partial derivatives. The sensitivities of the local minimum
to γ and η, evaluated at the base-case γ = 0 and η = 0, are equal to λ� and µ�,
respectively.

Proof See [34, theorem 3.2.2] and [70, section 10.8] for details. �

17.4.2 Discussion

We can again interpret the Lagrange multipliers as the sensitivity of the minimum
to the right-hand sides of the equality constraints and inequality constraints. We
can use the Lagrange multipliers to help in trading off the change in the optimal
objective against the cost of modifying the constraints. As in the case of non-linear
equality constraints described in Section 14.4, we can again use sensitivity analysis
of the first-order necessary conditions to estimate the changes in the minimizer and
Lagrange multipliers.

Corollary 17.7 does not apply directly to linear programming problems; how-
ever, sensitivity analysis can also be applied to linear programming and, as with
linear programming in general, the linearity of both objective and constraints leads
to various special cases. For example, the range of validity of the sensitivity anal-
ysis can be determined as a by-product of the sensitivity analysis. See [84, sec-
tions 6.4–6.5][102, section 5.2 and chapter 19].

17.4.3 Example

Consider Problem (2.18) from Sections 2.3.2.3, 17.1.1.2, . . . , 17.3.1.3, which has
objective f : R2 → R and constraints Ax = b and Cx ≤ d defined by:

∀x ∈ R
2, f (x) = (x1 − 1)2 + (x2 − 3)2,

A = [
1 −1

]
,

b = [
0
]
,

C = [
0 −1

]
,

d = [−3
]
.

We have already verified that the second-order sufficient conditions are satisfied at
the base-case solution. Moreover, the matrix

Â =
[

A
C

]
=
[

1 −1
0 −1

]
,

700 Algorithms for linear inequality-constrained minimization

has linearly independent rows, and, furthermore, the inequality constraint is not
degenerate at the base-case solution. Suppose that the inequality constraint was
changed to Cx ≤ d − η. We first met this example, parameterized in a slightly
different way, in Section 2.7.5.5. If η is small enough, then by Corollary 17.7
the minimum of the perturbed problem differs from the minimum of the original
problem by approximately [µ�]†η. (See Exercise 17.21.)

17.5 Summary

In this chapter, we considered linear inequality-constrained problems and showed
that they could be solved using the techniques developed for non-negatively con-
strained problems in two ways:

(i) using slack variables, and
(ii) using duality.

We also considered sensitivity analysis.

Exercises

Optimality conditions

17.1 ([34, example 2.1.1]) Let f : R2 → R, C ∈ R2×2, and d ∈ R2 be defined by:

∀x ∈ R
2, f (x) = 1

2
(x1 + 1)2 + 1

2
(x2 + 1)2,

C =
[

1 −1
−1 −1

]
,

d = 0.

Consider the problem:

min
x∈�2

{ f (x)|Cx ≤ d} = min
x∈�2

{1
2
(x1 + 1)2 + 1

2
(x2 + 1)2|x2 ≥ x1, x2 ≥ −x1}.

(i) Find the minimizer of this problem. (Hint: Sketch the feasible set and the contour
sets of the objective.)

(ii) What are the Lagrange multipliers?
(iii) Are either of the constraints degenerate?

17.2 Suppose that f : Rn → R is partially differentiable with continuous partial
derivatives, A ∈ Rm×n, b ∈ Rm,C ∈ Rr×n , and d ∈ Rr . Suppose that x� ∈ Rn is a local
minimizer of the problem:

min
x∈�n

{ f (x)|Ax = b,Cx ≤ d}.

Exercises 701

(i) Suppose that the matrix Â has linearly independent rows, where Â is the matrix
with rows consisting of:

• the m rows of A, and
• those rows C� of C for which � ∈ A(x�).

Show that the there is at most one value of the vector of Lagrange multipliers.
(ii) Give an example of a problem where the Lagrange multipliers are not unique.

(Hint: See Exercise 13.4.)

17.3 Use Theorem 17.1 to show that the first-order necessary conditions for Problem (16.1)
are:

∇ f (x) + A†λ − µ = 0;
Mx = 0;

Ax − b = 0;
x ≥ 0; and

µ ≥ 0,

where M = diag{µ�} ∈ Rn×n . (Hint: Define the inequality constraints by specifying
C = −I and d = 0 in Problem (17.1) so that (Cx ≤ d) ⇔ (x ≥ 0) and write down
the resulting first-order necessary conditions from Theorem 17.1. The second line of these
conditions are the complementary slackness conditions for Problem (16.1).)

17.4 Write down the Lagrangian for Problem (16.1). (Hint: Define the inequality con-
straints by specifying C = −I and d = 0 in Problem (17.1) so that (Cx ≤ d) ⇔ (x ≥ 0).)

17.5 Consider the function φ : R2 → R defined by:

∀x ∈ R
2, φ(x) = −(x1 − 1)2 − (x2 − 3)2.

(i) Show that the Hessian of φ is not positive definite.
(ii) Show that the Hessian of φ is not positive definite onN+ = {�x ∈ R2|�x1 = �x2}.

17.6 In this exercise we consider the generalization of Problem (16.1) where we only
have non-negativity constraints on some of the entries of x . Let f : Rn → R be partially
differentiable with continuous partial derivatives, A ∈ Rm×n , and b ∈ Rm . Let A ⊆
{1, . . . , n} be any subset of the indices of the decision vector x and suppose that there are r
elements in A. Write down the first-order necessary conditions for the following problem:

min
x∈�n

{ f (x)|Ax = b, x� ≥ 0,∀� ∈ A}.

(Hint: Define C ∈ Rr×n to be the matrix consisting of the negative of those rows of the
identity matrix corresponding to the indices in A. For example, if A = {3, 5} then r = 2
and:

C =
[

0 0 −1 0 0 · · ·
0 0 0 0 −1 · · ·

]
∈ R

2×n .

Consider the problem minx∈�{ f (x)|Ax = b,Cx ≤ 0}.)

702 Algorithms for linear inequality-constrained minimization

Convex problems

17.7 Under the hypotheses of Corollary 17.5, apply Theorems 17.1 and 17.3 to the dual
problem to derive the necessary and sufficient conditions for maximizing the dual problem.
(Hint: Let w ∈ Rr be the dual variables corresponding to the non-negativity constraints
µ ≥ 0 in the dual problem. Find the first-order necessary conditions and show that they
are also sufficient. Eliminate w.)

17.8 Let c ∈ Rn, A ∈ Rm×n, b ∈ Rm,C ∈ Rr×n , and d ∈ Rr . Consider the problem
minx∈�n {c†x |Ax = b,Cx ≤ d}. Show that the corresponding dual function D : E → R

and its effective domain E satisfy:

E =
{[

λ
µ

]
∈ R

m+r
∣∣∣∣ c + A†λ + C†µ = 0

}
,

∀
[

λ
µ

]
∈ E,D(λ, µ) = −λ†b − µ†d.

17.9 Let Q ∈ Rn×n be positive definite, c ∈ Rn, A ∈ Rm×n, b ∈ Rm,C ∈ Rr×n , and
d ∈ Rr . Consider the problem minx∈�n { 1

2 x†Qx + c†x |Ax = b,Cx ≤ d}. Show that the
corresponding dual function D : E → R and its effective domain E satisfy:

E = R
m+r ,

∀
[

λ
µ

]
∈ E,D(λ, µ) = − 1

2 [c + A†λ + C†µ]
†
Q−1[c + A†λ + C†µ] − λ†b − µ†d.

17.10 Consider the non-negatively constrained problem:

min
x∈�n

{ f (x)|x ≥ 0},

where f : Rn → R is convex and partially differentiable with continuous partial deriva-
tives.

(i) Write down the definition of the dual function. (Hint: Use Exercise 17.4.)
(ii) Suppose that f : Rn → R is quadratic and of the form:

∀x ∈ R
n, f (x) = 1

2
x†Qx + c†x,

with Q ∈ Rn×n symmetric and positive definite, having inverse Q−1. Use the
optimality conditions in the definition of the dual function to explicitly evaluate the
dual function.

(iii) Explain why taking the dual of a non-negatively constrained problem (or taking the
partial dual with respect to the non-negativity constraints) is not likely, in itself, to
be useful from a computational perspective.

17.11 Prove the equality between the last two lines of (17.11) using the definition of min.
That is, prove that for fk : R → R, k = 1, . . . , n, A ∈ Rm×n , and b ∈ Rm if the problem
minx∈�n

{∑n
k=1

(
fk(xk) + λ† Akxk

)∣∣ xk ≤ xk ≤ xk, ∀k = 1, . . . , n
}

has a minimum then

Exercises 703

each of the sub-problems minxk∈�{ fk(xk) + λ† Akxk |xk ≤ xk ≤ xk}, k = 1, . . . , n, have
minima and:

min
x∈�n

{
n∑

k=1

(fk(xk) + λ† Akxk

∣∣∣∣∣ xk ≤ xk ≤ xk, ∀k = 1, . . . , n

}

=
n∑

k=1

min
xk∈�

{ fk(xk) + λ† Akxk |xk ≤ xk ≤ xk}.

(Hint: Exercise 13.13 treats a similar situation in the case of no inequality constraints.)

Approaches to finding minimizers

17.12 In this exercise we consider the relationship between Problem (16.1) and the vari-
ous problem forms discussed in Chapter 17.

(i) Consider Problem (17.13):

min
x∈�n ,w∈�r

{
f (x)

∣∣∣∣[A 0
C I

] [
x
w

]
=
[

b
d

]
, w ≥ 0

}
.

Show that this problem can be written in the form:

min
X∈�N

{φ(X)|AX = B,X≥ ≥ 0},

where X≥ ∈ Rr consists of the last r entries of X . Explicitly define N ,X , φ,A,
and B.

(ii) Consider the problem in the last line of (17.9):

min[
λ
µ

]
∈�m+r

{[
b
d

]† [
λ
µ

] ∣∣∣∣∣
[

A
C

]† [
λ
µ

]
= −c, µ ≥ 0

}
.

Show that this problem can be written in the form:

min
X∈�N

{C†X |AX = B,X≥ ≥ 0},

where X≥ ∈ Rr consists of the last r entries of X . Explicitly define N ,X , C,A,
and B.

(iii) Consider the problem in the last line of (17.10):

min[
λ
µ

]
∈�m+r

{
1

2
[c + A†λ + C†µ]

†
Q−1[c + A†λ + C†µ] + λ†b + µ†d

∣∣∣∣µ ≥ 0
}

.

Show that this problem can be written in the form:

min
X∈�N

{
1

2
X †QX + C†X +D|X≥ ≥ 0

}
,

where X≥ ∈ Rr consists of the last r entries of X . Explicitly define N ,X ,Q, C,
and D.

704 Algorithms for linear inequality-constrained minimization

17.13 Consider Problem (17.15):

min
x∈�n ,w∈�r

{
f (x) + t fb(w)

∣∣∣∣[A 0
C I

] [
x
w

]
=
[

b
d

]}
,

where f : Rn → R, fb : Rr++ → R, A ∈ Rm×n, b ∈ Rm,C ∈ Rr×n , and d ∈ Rr .
Ignoring the issue of the domain of fb, show that the problem has first-order necessary
conditions:

∇ f (x) + A†λ + C†µ = 0,

Ax = b,

Cx + w = d,

t∇ fb(w) + µ = 0,

where λ and µ are the dual variables on the constraints Ax = b and Cx + w = d,
respectively.

17.14 Consider Problem (2.18):

min
x∈�2

{ f (x)|Ax = b,Cx ≤ d},

where:

∀x ∈ R
2, f (x) = (x1 − 1)2 + (x2 − 3)2,

A = [
1 −1

]
,

b = [
0
]
,

C = [
0 −1

]
,

d = [−3
]
.

(i) Perform three iterations of the primal dual interior point algorithm described in
Section 17.3.1 for this problem. The Newton Raphson update was presented in
Section 17.3.1.3. Use as initial guess:

µ(0) = [0.25], x (0)
1 = 5, x (0)

2 = 5, w(0) = [2], λ(0)
1 = 0, λ

(0)
2 = 0, t (0) = 0.5.

For ν > 0, use t (ν) = 1
10 t (ν)

effective = 1
10r [w(ν)]

†
µ(ν) and, at each iteration, allow the

next iterate to be no closer to the boundary than a fraction 0.9995 of the distance of
the current iterate to the boundary under the L∞ norm.

(ii) Evaluate [µ(ν)]
†
w(ν) for ν = 0, 1, 2, 3.

17.15 Consider Problem (2.18):

min
x∈�2

{ f (x)|Ax = b,Cx ≤ d},

Exercises 705

where

∀x ∈ R
2, f (x) = (x1 − 1)2 + (x2 − 3)2,

A = [
1 −1

]
,

b = [
0
]
,

C = [
0 −1

]
,

d = [−3
]
.

(i) Use the MATLAB function quadprog to find the minimizer and minimum of the
problem. Use as initial guess:

x (0)
1 = 5, x (0)

2 = 5.

(ii) Form the dual of the problem.
(iii) Use the MATLAB function quadprog to find the maximum of the dual problem.

Use as initial guess:

µ(0) = [0.25], λ(0) = [0].

17.16 Using the DC power flow approximation developed in Exercise 6.6 to approximate
the real power flows on the lines, use the MATLAB function quadprog to solve a DC
optimal power flow that minimizes the cost of production of the generators subject to
linearized constraints on the line flows. That is, consider a version of Problem (15.23)
where the constraints are linearized. Use the line data from Exercise 8.12. That is, the
π -equivalent line models have:

• shunt elements purely capacitive with admittance 0.01
√

−1 so that the combined
shunt elements are:

Y1 = Y2 = Y3 = 0.02
√

−1,

and
• series elements having admittances:

Y12 = (0.01 + 0.1
√

−1)
−1

,

Y23 = (0.015 + 0.15
√

−1)
−1

,

Y31 = (0.02 + 0.2
√

−1)
−1

.

Furthermore, assume the following.

• There are generators at bus 1 and bus 2 and a real power load of 1 at bus 3.
• All lines have real power flow limits of 0.75.
• All voltage magnitudes are set to 1.0 per unit so that u can be ignored in the

formulation.
• Zero cost for reactive power production and no constraints on reactive power pro-

duction nor on reactive power flow so that Q can be ignored in the formulation.

706 Algorithms for linear inequality-constrained minimization

• Costs for real power production at the generators:

f1(P1) = P1 × 1
$

per unit
+ (P1)

2 × 0.1
$

(per unit)2
,

f2(P2) = P2 × 1.1
$

per unit
+ (P2)

2 × 0.05
$

(per unit)2
,

where Pk is the real power production at generator k = 1, 2, with 0 ≤ Pk ≤ 1 for
each generator.

• No other constraints on production.

Use as initial guess P(0) = 0 and θ(0) = 0. Use as stopping criterion that all of the
following are satisfied:

• teffective < 10−5, and
• the change in successive iterates is less than 0.0001 per unit.

Sensitivity

17.17 Show by an example that the conclusion of Corollary 17.7 may fail to hold if
the matrix Â defined in Corollary 17.7 does not have linearly independent rows. (Hint:
Consider C : R → R2×1 and d : R → R2 defined by:

∀χ ∈ R,C(χ) =
[

χ
−χ

]
,

∀χ ∈ R, d(χ) = 0.)

17.18 Show by an example that the conclusion of Corollary 17.7 may fail to hold if there
is a degenerate constraint at the base-case solution. (Hint: ([34, example 2.1.1]) Consider
the problem in Exercise 17.1, but change the objective to f : R2 × R → R defined by:

∀x ∈ R
2,∀χ ∈ R, f (x;χ) = 1

2
(x1 + 1 − χ)2 + 1

2
(x2 + 1)2.

Consider the trajectory of the minimizer as χ varies around χ = [0].

17.19 ([34, example 2.1.2]) Let f : R × R → R be defined by:

∀x ∈ R, ∀χ ∈ R, f (x;χ) = xχ.

Consider the problem minx∈�{ f (x;χ)|x ≥ −1}.
(i) Find the minimum, set of minimizers, and Lagrange multipliers for the base-case

problem where χ = 0.
(ii) Find the minimum, minimizer, and Lagrange multipliers for χ > 0.
(iii) Show that there is no minimum for χ < 0.
(iv) Which of the hypotheses of Corollary 17.7 fail to hold at the base-case for this

problem?

Exercises 707

17.20 Consider the sensitivity result in Corollary 17.7 for Problem (17.21):

min
x∈�n

{ f (x;χ)|A(χ)x = b(χ),C(χ)x ≤ d(χ)},

where χ ∈ Rs , f : Rn × Rs → R, A : Rs → Rm×n , b : Rs → Rm , C : Rs → Rr×n , and
d : Rs → Rr . Use the sensitivity result for Problem (17.21) to prove the sensitivity result
in Corollary 17.7 for Problem (17.22):

min
x∈�n

{ f (x)|Ax = b − γ,Cx ≤ d − η}.

17.21 Consider Problem (2.18), which has objective f : R2 → R and equality constraint
Ax = b defined by:

∀x ∈ R
2, f (x) = (x1 − 1)2 + (x2 − 3)2,

A = [
1 −1

]
,

b = [−3
]
.

However, suppose that the inequality constraint was changed to Cx ≤ d − η, with C ∈
R1×2 and d ∈ R1 defined by:

C = [
0 −1

]
,

d = [−3
]
.

Let η = [0.1].

(i) Use Corollary 17.7 to estimate the change in the minimum due to the change in the
inequality constraint.

(ii) Solve the change-case problem explicitly and compare the result to that obtained
by sensitivity analysis.

18

Solution of the linear inequality-constrained case
studies

In this chapter we solve the case studies that can be formulated as or transformed
to linear inequality-constrained minimization problems. These case studies are:

• least-cost production with capacity constraints (Section 18.1),
• optimal routing in a data communications network (Section 18.2),
• least absolute value estimation (Section 18.3), and
• optimal margin pattern classification (Section 18.4).

18.1 Least-cost production with capacity constraints

In this section, we solve the least-cost production with capacity constraints case
study from Section 15.1. We recall and analyze the problem in Section 18.1.1, de-
scribe algorithms in Section 18.1.2, and sketch sensitivity analysis in Section 18.1.3.

18.1.1 Problem and analysis

Recall Problem (15.1):

min
x∈�n

{ f (x)|Ax = b, x ≤ x ≤ x},

where the equality constraints are represented in the form A = −1†, b = [−D].
This problem has:

• a convex separable objective,
• one equality constraint, and
• two inequality constraints for each variable.

The inequality constraints are simple bounds on variables. We can solve this prob-
lem using slight modifications of the algorithms developed in Section 17.3.

708

18.1 Least-cost production with capacity constraints 709

18.1.2 Algorithms

18.1.2.1 Primal–dual interior point algorithm

We can use a primal–dual interior point algorithm to solve the problem. For each
variable x�, in order to enforce the bounds x� ≤ x� ≤ x�, the corresponding term
in the barrier objective is:

−t
(
ln(x� − x�) + ln(x� − x�)

)
.

(See Exercise 18.1.)

18.1.2.2 Dual algorithm

Alternatively, we can solve the dual problem by taking the partial dual with re-
spect to the equality constraints. This decomposes the problem into a set of sub-
problems, one for each machine k, each with two bound constraints xk ≤ xk ≤ xk

as discussed in Section 17.2.2.4. The objective of each sub-problem is convex
and (at least approximately) quadratic consisting of the cost function for the cor-
responding machine together with a term involving the latest estimate of the La-
grange multiplier.

Suppose that for each k, the cost fk of machine k is quadratic and of the form
defined in (12.6):

∀xk ∈ Sk, fk(xk) = 1

2
Qkk(xk)

2 + ckxk + dk .

Then, for a particular value of the dual variable λ, we obtain constrained sub-
problems of the form:

∀k = 1, . . . , n, min
xk∈�

{
1

2
Qkk(xk)

2 + ckxk + dk − λxk |xk ≤ xk ≤ xk

}
.

The unconstrained minimizer of the objective of each sub-problem is given by
setting the derivative of the objective equal to zero. That is, the unconstrained
minimizer of the objective of each sub-problem is:

xk = 1

Qkk
(λ − ck).

If the unconstrained minimizer is within the range allowed by the upper and lower
bound constraints then, by Theorem 3.10, the unconstrained minimizer is also the
minimizer of the constrained sub-problem. If the unconstrained minimizer lies
outside the range allowed by the bound constraints then the minimizer of the sub-
problem is the nearest bound. (See Exercise 2.51 for details.)

710 Solution of the linear inequality-constrained case studies

In summary, for a given value of the dual variable λ, the corresponding mini-
mizer of the inner problem in the definition of the partial dual is x (λ), where:

∀k = 1, . . . , n, x (λ)
k = min

{
xk, max

{
xk,

1

Qkk
(λ − ck)

}}
.

This expression is very easy to evaluate. Substituting the solution x (λ)
k into the

expression for the dual, we obtain:

∀λ ∈ R,D(λ) =
n∑

k=1

fk(x
(λ)
k) + λ

(
D −

n∑
k=1

x (λ)
k

)
.

The dual variable can be updated using a steepest ascent algorithm based on the
satisfaction of the equality constraint according to:

�λ = ∇D(λ),

= Ax (λ) − b,

= D −
n∑

k=1

x (λ)
k .

(See Exercise 18.1.) Since each machine cost function is strictly convex, the mini-
mizer of the primal problem can be found from the solution of the dual algorithm.
As in Section 13.5.3, we can interpret λ as the tentative price per unit of production.

18.1.3 Changes in demand and capacity

Corollary 17.7 can be used to estimate the changes in costs due to a change in
demand or capacity. (See Exercise 18.2.)

18.2 Optimal routing in a data communications network

In this section, we solve the optimal routing in a data communications network
case study from Section 15.2. We recall and analyze the problem in Section 18.2.1,
sketch algorithms in Section 18.2.2, and sketch sensitivity analysis in Section 18.2.3.

18.2.1 Problem and analysis

Recall Problem (15.6):

min
x∈�n

{ f (x) |Ax = b, x ≥ 0,Cx < y } ,

18.2 Optimal routing in a data communications network 711

where f : S → R, with S = {x ∈ Rn|x ≥ 0,Cx < y}, was defined in (15.7),
which we repeat here:

∀x ∈ S, f (x) = φ(Cx),

=
∑

(i, j)∈�
φi j
(
C(i, j)x

)
.

The delay function φi j in the objective increases without bound as a flow ap-
proaches its capacity. Consequently, assigning a flow to be arbitrarily close to
the link capacity can never be optimal.

In fact, the delay function has the same form as the reciprocal barrier function
investigated in Exercise 16.12. As with the logarithmic barrier function, this means
that the strict inequality constraints:

Cx < y,

can be ignored so long as:

• an initial feasible solution can be found that satisfies these constraints, and
• a step size is chosen at each iteration to avoid going outside the feasible region.

We effectively have a problem with a barrier objective that enforces the strict in-
equality constraints Cx < y and that must be solved for a single fixed value of
the barrier parameter. That is, to solve Problem (15.6) we can effectively solve the
problem:

min
x∈�n

{ f (x)|Ax = b, x ≥ 0}. (18.1)

A Newton–Raphson step direction to minimize f subject to equality constraints
would be similar to the update for the primal interior point algorithm described in
Section 16.4.3.2.

18.2.2 Algorithms

Problem (18.1) is non-negatively constrained and these constraints can be treated
using an active set or interior point algorithm, so long as we ensure that the step-
size is chosen at each iteration to also satisfy Cx < y. A step-size rule analogous
to that for the primal–dual interior point algorithm from Section 16.4.3.3 can be
used to ensure satisfaction of the strict inequality constraints Cx < y. (See Exer-
cise 18.3.)

18.2.3 Changes in links and traffic

Corollary 17.7 and extensions can be used to estimate the changes in optimal rout-
ing to respond to a change in traffic or link capacities. (See Exercise 18.4.)

712 Solution of the linear inequality-constrained case studies

18.3 Least absolute value estimation

In this section, we solve the least absolute value estimation case study from Sec-
tion 15.3. We recall the problem in Section 18.3.1, sketch algorithms in Sec-
tion 18.3.2, and sketch sensitivity analysis in Section 18.3.3.

18.3.1 Problem

Recall Problem (15.10):

min
z∈�m ,x∈�n ,e∈�m

{1†z|Ax − b − e = 0, z ≥ e, z ≥ −e}.
This problem has a linear objective and linear inequality constraints.

18.3.2 Algorithms

We can solve this problem using the primal or the dual algorithms developed in
Section 17.3. The solution to the corresponding least-squares estimation problem
can provide a suitable initial guess for x (0). (See Exercise 18.6.)

18.3.3 Changes in the number of points and data

Corollary 17.7 and extensions can be used to estimate the changes in parameters
specifying the affine fit if additional data points are added or if the data changes.
(See Exercise 18.6.)

18.4 Optimal margin pattern classification

In this section, we solve the optimal margin pattern classification case study from
Section 15.4. We recall and analyze the problem in Section 18.4.1, describe algo-
rithms in Section 18.4.2, and sketch sensitivity analysis in Section 18.4.3.

18.4.1 Problem and analysis

Recall Problem (15.13):

max
z∈�,x∈�n

{
z
∣∣ζ(�)(β†ψ(�) + γ) ≥ ‖β‖2 z,∀� = 1, . . . , r, β 	= 0

}
,

where x =
[

β

γ

]
. This problem has the drawback that its feasible set is not closed

and may not be convex. Furthermore, the inequality constraints are non-linear.
In the following sections, we will discuss two ways to further transform the

problem. Both transformations rest on the observation that, given a maximizer

18.4 Optimal margin pattern classification 713[
z�

x��

]
of Problem (15.13) and a constant κ ∈ R++, then

[
z�

x�

]
=
[

z�

x��/κ

]
is also

a maximizer of Problem (15.13). This simply reflects the fact that the coefficients
in the equation for a hyperplane can be scaled without changing the hyperplane. In
particular, suppose that Problem (15.13) has maximizer:[

z�

x��

]
=
⎡⎣ z�

β��

γ ��

⎤⎦ ,

and let κ ∈ R++. Consider the candidate solution

[
z�

x�

]
defined by:

[
z�

x�

]
=

⎡⎣ z�

β�

γ �

⎤⎦ ,

=
⎡⎣ z�

β��/κ

γ ��/κ

⎤⎦ . (18.2)

We observe that

[
z�

x�

]
is also a maximizer of Problem (15.13) with the same max-

imum. (See Exercise 18.7.)

18.4.1.1 First approach to transforming constraints

The first way to transform the problem into an inequality-constrained problem is
to choose κ = ‖β��‖2 in (18.2). That is, if there is a maximizer to Problem (15.13)
then there is a maximizer that satisfies β� = β��/ ‖β��‖2, so that ‖β�‖2 = 1.
That is, we can impose the additional constraint ‖β‖2 = 1 in Problem (15.13)
without changing its maximum. Furthermore, since ‖β‖2 = 1 implies that β 	= 0,
we can ignore the constraint β 	= 0. We can use Theorem 3.10 to show that if
Problem (15.13) has a maximum then maximizing the objective over the “smaller”
feasible set:

Ŝ =
{[

z
x

]
∈ R

n+1

∣∣∣∣ ζ(�)(β†ψ(�) + γ) ≥ ‖β‖2 z,∀� = 1, . . . , r, ‖β‖2 = 1

}
,

will yield the same maximum as Problem (15.13) and, moreover, the maximizer
specifies the same hyperplane.

The smaller feasible set Ŝ is closed and bounded, which as we saw in Sec-
tion 2.3.3 avoids the difficulties that non-closed and unbounded sets present. How-
ever, a constraint of the form ‖β‖2 = 1 is still difficult to handle directly because
it defines a non-convex set. One way to deal with this is to convert the representa-
tion into polar coordinates. (See Exercise 3.19.) However, a more straightforward

714 Solution of the linear inequality-constrained case studies

further transformation is to note that if Problem (15.13) has a maximum then the
value of the maximum is given by:

max
z∈�,x∈�n

{
z
∣∣ζ(�)(β†ψ(�) + γ) ≥ ‖β‖2 z, ∀� = 1, . . . , r, β 	= 0

}
= max

z∈�,x∈�n

{
z
∣∣ζ(�)(β†ψ(�) + γ) ≥ ‖β‖2 z, ∀� = 1, . . . , r, ‖β‖2 = 1

}
,

by the argument above,

= max
z∈�,x∈�n

{
z
∣∣ζ(�)(β†ψ(�) + γ) ≥ z, ∀� = 1, . . . , r, ‖β‖2 = 1

}
,

since ‖β‖2 = 1,

= max
z∈�,x∈�n

{
z
∣∣ζ(�)(β†ψ(�) + γ) ≥ z, ∀� = 1, . . . , r, ‖β‖2 ≤ 1

}
,

where we note that any maximizer

[
z�

x�

]
=
⎡⎣ z�

β�

γ �

⎤⎦ of the last problem will satisfy

‖β�‖2 = 1, since if ‖β�‖2 < 1 then we could find a feasible solution having a larger
objective by dividing both z� and x� by ‖β�‖2. (See Exercise 18.8.) The relaxation
of the problem to having the larger feasible set with the constraint ‖β‖2 ≤ 1 yields
a convex feasible set with the same maximum as Problem (15.13) and its maximizer
specifies the same hyperplane as a maximizer of Problem (15.13). Since ‖β‖2 is
not smooth, we will use the equivalent condition ‖β‖2

2 ≤ 1.
By defining C ∈ Rr×n to have �-th row:

C� = −ζ(�)
[
ψ(�)† 1

]
,

and noting that z − ζ(�)(β†ψ(�) + γ) = z + C�x , we can transform the problem
to the equivalent problem:

max
z∈�,x∈�n

{z ∣∣1z + Cx ≤ 0, ‖β‖2
2 ≤ 1}, (18.3)

where we have squared the norm of β to obtain a differentiable function. (See Ex-
ercise 18.9.) This problem has a linear objective, r linear inequality constraints,
and one quadratic inequality constraint. We will treat the solution of this formula-
tion of the problem in Section 20.1. (See [15, section 8.6.1] for a slightly different
transformation of this problem.)

18.4.1.2 Second approach to transforming constraints

We will present a second transformation of Problem (15.13) that yields a problem

with quadratic objective and linear constraints. Consider a maximizer

[
z�

x��

]
=⎡⎣ z�

β��

γ ��

⎤⎦ of Problem (15.13). Suppose that z� ∈ R++ so that the margin is strictly

18.4 Optimal margin pattern classification 715

positive. Since β�� is feasible, we have that β�� 	= 0. We can choose κ = ‖β��‖2 z�

in (18.2). Consequently, if there is a maximizer to Problem (15.13) with posi-
tive margin then there is a maximizer that satisfies β� = β��/(‖β��‖2 z�), so that
‖β�‖2 z� = 1.

As in the first approach to transforming the constraints in Section 18.4.1.1, we
can impose the additional constraint ‖β‖2 z = 1 in Problem (15.13) without chang-
ing its maximum. Furthermore, since ‖β‖2 z = 1 implies that β 	= 0, we can again
ignore the constraint β 	= 0. We can again use Theorem 3.10 to show that if Prob-
lem (15.13) has a maximizer and strictly positive maximum z� then z� will also be
the maximum of a problem having the same objective but with “smaller” feasible
set:

S =
{[

z
x

]
∈ R

n+1

∣∣∣∣ ζ(�)D(ψ(�))

‖β‖2
≥ z, ∀� = 1, . . . , r, ‖β‖2 z = 1

}
.

Moreover, if Problem (15.13) has a maximum and maximizer, then at least one of
maximizers of the problem is an element of S. That is, if Problem (15.13) has a
maximum and the margin is positive then the value of the maximum is given by:

max
z∈�,x∈�n

{
z
∣∣ζ(�)(β†ψ(�) + γ) ≥ ‖β‖2 z, ∀� = 1, . . . , r, β 	= 0

}
= max

z∈�,x∈�n

{
z
∣∣ζ(�)(β†ψ(�) + γ) ≥ ‖β‖2 z,∀� = 1, . . . , r, ‖β‖2 z = 1

}
,

by the argument above,

= max
z∈�,x∈�n

{
z
∣∣ζ(�)(β†ψ(�) + γ) ≥ 1, ∀� = 1, . . . , r, ‖β‖2 z = 1

}
,

since ‖β‖2 z = 1,

= max
z∈�,x∈�n

{
1

‖β‖2

∣∣∣∣ ζ(�)(β†ψ(�) + γ) ≥ 1, ∀� = 1, . . . , r, ‖β‖2 z = 1

}
,

since z = 1/ ‖β‖2,

= max
x∈�n

{
1

‖β‖2

∣∣∣∣ ζ(�)(β†ψ(�) + γ) ≥ 1, ∀� = 1, . . . , r

}
, by Corollary 3.7,

on eliminating the variable z using the constraint ‖β‖2 z = 1,

=
[

1

minx∈�n
{‖β‖2

∣∣ ζ(�)(β†ψ(�) + γ) ≥ 1, ∀� = 1, . . . , r
}] ,

by Theorem 3.1, since the reciprocal function is monotonically decreasing. As in
Section 18.4.1.1, by defining C ∈ Rr×n to have �-th row:

C� = −ζ(�)
[
ψ(�)† 1

]
,

and defining d = −1 ∈ Rr , we can transform the problem in the denominator to

716 Solution of the linear inequality-constrained case studies

the equivalent problem:

min
x∈�n

{
1

2
‖β‖2

2

∣∣∣∣Cx ≤ d

}
, (18.4)

which has a quadratic objective and linear constraints and so is a quadratic pro-
gram. (The factor 1

2 in the objective has been included to be consistent with our
conventions for quadratic functions. The norm ‖β‖2 has been squared to make it

differentiable.) If Problem (18.4) has a minimizer x� =
[

β�

γ �

]
and β� 	= 0 then the

optimal margin is given by 1/ ‖β�‖2. (See Exercise 18.9.)

18.4.2 Algorithms

18.4.2.1 Primal algorithm

Problem (18.4) has a convex quadratic objective, linear inequality constraints, and
no equality constraints. A quadratic programming algorithm, such as the algorithm
in Section 17.3.1, can be applied to Problem (18.4). See Exercise 18.11.

If the number, r , of patterns is extremely large then a further relaxation of the
problem may be much easier to solve. In particular, we can first solve the problem
using only some of the patterns to find a tentative separating hyperplane. The
feasible set using only some of the patterns is a relaxed version of the feasible
set of Problem (18.4). Then the rest of the patterns are searched until a pattern is
found that is not correctly identified by the tentative separating hyperplane. The
problem is re-solved with the new pattern incorporated and the process repeated. If
a separating hyperplane is found after only a modest number of patterns are added
then we have avoided the computational effort of solving the problem will all r
constraints explicitly represented.

18.4.2.2 Dual algorithm

The dual of Problem (18.4) has a quadratic objective, non-negativity constraints,
and one linear equality constraint. (See Exercise 18.10.)

18.4.3 Changes

Adding a pattern would add an extra row to the inequality constraints Cx ≤ d. The
relaxation procedure described in Section 18.4.2.1 can be applied or the dual can
be updated and solved.

Exercises 717

Exercises

Least-cost production with capacity constraints

18.1 In this exercise, we add minimum and maximum capacity constraints to the problem
from Exercise 13.30. Consider Problem (15.1) in the case that n = 3, D = 5, and the fk
are of the form:

∀x1 ∈ R, f1(x1) = 1

2
(x1)

2 + x1,

∀x2 ∈ R, f2(x2) = 1

2
× 1.1 × (x2)

2 + 0.9 × x2,

∀x3 ∈ R, f3(x3) = 1

2
× 1.2 × (x3)

2 + 0.8 × x3.

Also, suppose that the minimum and maximum capacity constraints are specified by:

x =
[

1
1
2

]
, x =

[
4
5
6

]
.

Solve it in three ways.

(i) By performing three iterations of the primal dual interior point algorithm. Use

initial guess x (0) =
[

2.5
3
4

]
, λ(0) = [0], and initial value of barrier parameter

t (0) = 1. Note that there are r = 6 constraints corresponding to the six entries
of w ∈ R6. Define µ(0) to satisfy M (0)w(0) = t (0)1. For ν > 0, use t (ν) =
1
10 t (ν)

effective = 1
10r [w(ν)]

†
µ(ν) and, at each iteration, allow the next iterate to be no

closer to the boundary than a fraction 0.9995 of the distance of the current iterate
to the boundary under the L∞ norm.

(ii) By maximizing the partial dual with respect to the equality constraints. At each
iteration of the algorithm to maximize the dual, explicitly solve the inner inequality-
constrained problem using the discussion from Section 18.1.2.2. Use λ(0) = [0] as
the initial guess and perform steepest ascent of the dual function with step-size
equal to 0.5 at each iteration.

(iii) Using the MATLAB function quadprog. Use initial guess x (0) =
[

0
0
0

]
.

18.2 Consider the solution of Exercise 18.1.

(i) Using sensitivity analysis, estimate the minimum if demand changes to D = 5.1.
(ii) Use the MATLAB function quadprog to calculate the minimum if demand changes

to D = 5.1. Compare the result to the previous part.
(iii) Using sensitivity analysis, estimate the minimum if the capacity of machine 3

changes to x3 = 5.
(iv) Use the MATLAB function quadprog to calculate the minimum if the capacity of

machine 3 changes to x3 = 5. Compare the result to the previous part.

718 Solution of the linear inequality-constrained case studies

� �
� �

� �
� �

5 4

6 3

7 2

8 1

�����������

�
�

�
�

�
�

�
�

�
�

��

�
�
�
�
�
�
�
��

�
�

�

�
�

�

�
�
�
�
�
�
�
��

Fig. 18.1. The graph of
the data communications
network with eight nodes
and 12 links from Sec-
tion 15.2.

Optimal routing in a data communications network

18.3 Consider the optimal routing problem described in Section 15.2 with data commu-
nications network illustrated in Figure 18.1. For this network, we are given that:

L = {(1, 8), (8, 1), (1, 2), (2, 1), (1, 3), (3, 1), (1, 6), (6, 1),

(2, 3), (3, 2), (2, 4), (4, 2), (2, 6), (6, 2), (3, 4), (4, 3),

(3, 6), (6, 3), (4, 5), (5, 4), (5, 6), (6, 5), (6, 7), (7, 6)},
∀(i, j) ∈ L, yi j = 2,

W = {(7, 5), (2, 5)},
P(7,5) = {1, 2},
P(2,5) = {3, 4},
b(7,5) = 1,

b(2,5) = 1.

Moreover, the allowable paths are:

• path 1, consisting of links (7, 6), (6, 5), for origin destination pair (7, 5),
• path 2, consisting of links (7, 6), (6, 3), (3, 4), (4, 5), for origin destination pair

(7, 5),
• path 3, consisting of links (2, 4), (4, 5), for origin destination pair (2, 5), and
• path 4, consisting of links (2, 3), (3, 4), (4, 5), for origin destination pair (2, 5).

The congestion model is given by functions of the form φi j : [0,Ci j) → R+ for each
(i, j) ∈ L and defined by (15.3), which we repeat here:

∀yi j ∈ [0, yi j), φi j (yi j) = yi j

yi j − yi j
+ δi j yi j .

For simplicity, we assume that the processing delay and propagation delay through each
link is negligible so that δi j = 0 for each (i, j) ∈ L. Consider optimal routing Prob-
lem (18.1) for this network.

(i) Perform three iterations of the primal dual interior point algorithm to solve the
optimal routing problem. For the initial guess x (0), assign half of the flow for each
origin destination pair to each corresponding path. Also set λ(0) = [0] and initial
value of barrier parameter t (0) = 1. Note that there are n = 4 non-negativity
constraints corresponding to the four entries of x ∈ R4. Define µ(0) to satisfy

Exercises 719

M (0)x (0) = t (0)1. For ν > 0, use t (ν) = 1
10 t (ν)

effective = 1
10n [x (ν)]

†
µ(ν) and, at

each iteration, allow the next iterate to be no closer to the boundary than a fraction
0.9995 of the distance of the current iterate to the boundary under the L∞ norm.

(ii) Use the MATLAB function fmincon to solve the problem. For the initial guess
x (0), assign half of the flow for each origin destination pair to each corresponding
path. Represent the strict inequality constraints as non-strict inequality constraints.

(iii) Verify that the solution from Part (ii) satisfies the minimum first derivative length
property that was proved in Exercise 16.4. (This allows for a more efficient algo-
rithm for solving this problem. See [9, section 5.5] for details.)

18.4 Consider the solution of Exercise 18.3.

(i) Using sensitivity analysis of the first-order necessary conditions, estimate the opti-
mal routing if the expected rate of arrival for both origin destination pairs changes
to 1.1.

(ii) Use the MATLAB function fmincon to calculate the optimal routing if the ex-
pected rate of arrival for both origin destination pairs changes to 1.1. Compare the
result to the previous part.

(iii) Using sensitivity analysis of the first-order necessary conditions, estimate the opti-
mal routing if the capacity of each link changes to 1.5.

(iv) Use the MATLAB function fmincon to calculate the optimal routing if the capac-
ity of each link changes to 1.5. Compare the result to the previous part.

18.5 Consider the optimal routing problem described in Exercise 15.5 having directed
links. The nodes and the directed links were illustrated in Figure 15.9, which is repeated in
Figure 18.2. There are three nodes and four directed links. For this network, we are given
that:

Links: L = {(1, 2), (2, 1), (1, 3), (2, 3)},
Link capacities: ∀(i, j) ∈ L, yi j = 2,

Origin destination pairs: W = {(1, 3), (2, 3)},
Paths for origin destination pair (1, 3): P(1,3) = {1, 2},
Paths for origin destination pair (2, 3): P(2,3) = {3, 4},
Flow for origin destination pair (1, 3): b(1,3) = 1,

Flow for origin destination pair (2, 3): b(2,3) = 1.

Moreover, the allowable paths are:

• path 1, consisting of link (1, 3), for origin destination pair (1, 3),
• path 2, consisting of links (1, 2), (2, 3), for origin destination pair (1, 3),
• path 3, consisting of links (2, 1), (1, 3), for origin destination pair (2, 3), and
• path 4, consisting of link (2, 3), for origin destination pair (2, 3).

The congestion model is given by functions of the form φi j : [0, yi j) → R+ for each
(i, j) ∈ L and defined by:

∀yi j ∈ [0, yi j), φi j (yi j) = yi j

yi j − yi j
.

720 Solution of the linear inequality-constrained case studies

�

�
�

3

2

1

������������

�
�

�
�

�
�

�
��

�
�

���
�

��

Fig. 18.2. The graph of
the data communications
network with three nodes
and four directed links for
Exercise 18.5.

(i) Use the MATLAB function fmincon to solve optimal routing Problem (18.1)
for this network. As initial guess x (0), assign half of the flow for each origin
destination pair to each corresponding path. Represent the strict inequality con-
straints as non-strict inequality constraints.

(ii) Verify that the solution satisfies the minimum first derivative length property that
was proved in Exercise 16.4. (As in the case of bi-directional links, this allows for
a more efficient algorithm for solving this problem. See [9, section 5.5] for details.)

Least absolute value estimation

18.6 In this exercise we consider best fits to data in the sense of least absolute error.

(i) Use the MATLAB function fmincon to find the affine function:

∀ψ ∈ R, ζ = αψ + β,

with α ∈ R and β ∈ R, that best fits the following pairs of data (ψ(�), ζ(�)), for
� = 1, . . . , 7, in a least absolute error sense. Use as initial guess the solution from
Exercise 11.5.

� 1 2 3 4 5 6 7
ψ(�) 0.27 0.2 0.8 0.4 0.2 0.7 0.5
ζ(�) 0.3 0.65 0.75 0.4 0.15 0.6 0.5

(ii) Compare the result of the previous part to the solution to Exercise 11.5.
(iii) Now suppose that the data point (ψ(6), ζ(6)) is altered to equal (0.7, 1.45). Use

sensitivity analysis of the first-order necessary conditions for Part (i) to estimate the
parameters for the best affine fit to the altered data in the least absolute error sense.
You will have to calculate the sensitivity with respect to χ = �ζ(6).

(iv) Again suppose that the data point (ψ(6), ζ(6)) is altered to equal (0.7, 1.45). Use
the MATLAB function fmincon to find the parameters for the best affine fit to the
altered data in the least absolute error sense. Use as initial guess the solution from
Part (i).

(v) Compare the result of Parts (iii) and (iv) to the solution to Exercise 15.7.

Exercises 721

Optimal margin pattern classification

18.7 Suppose that Problem (15.13) has maximizer:[
z�

x��

]
=
[

z�

β��

γ ��

]
.

(i) Let κ ∈ R++. Show that: [
z�

x�

]
=
[

z�

x��/κ

]
is also a maximizer of Problem (15.13).

(ii) Show that: [
z�

x�

]
=
[

z�

x��/ ‖β��‖2

]
is also a maximizer of Problem (15.13). (Why is β�� 	= 0?)

(iii) Suppose that z� ∈ R++. Show that:[
z�

x�

]
=
[

z�

x��/(‖β��‖2 z�)

]
is also a maximizer of Problem (15.13). (Why is β��z� 	= 0?)

18.8 Consider the following two problems:

maxz∈�,x∈�n
{
z
∣∣ζ(�)(β†ψ(�) + γ) ≥ z,∀� = 1, . . . , r, ‖β‖2 = 1

}
,

maxz∈�,x∈�n
{
z
∣∣ζ(�)(β†ψ(�) + γ) ≥ z, ∀� = 1, . . . , r, ‖β‖2 ≤ 1

}
.

Suppose that the first problem has a maximum.

(i) Show that the second problem has a maximum.
(ii) Show that both problems have the same maximum and that their maximizers spec-

ify the same hyperplane.

(Hint: Consider a feasible solution

[
z��

x��

]
=
[

z��

β��

γ ��

]
of the second problem. Show that

if ‖β��‖2 < 1 then we could find a feasible solution having a larger objective by dividing
both z�� and x�� by ‖β��‖2.)

18.9 In this exercise we consider the transformed versions of Problem (15.13).

(i) Show that if there is no hyperplane that can separate the patterns then Problem (18.3)
is infeasible.

(ii) Show that if there is no hyperplane that can separate the patterns then Problem (18.4)
is infeasible.

722 Solution of the linear inequality-constrained case studies

18.10 Consider Problem (18.4):

min
x∈�n

{
1

2
‖β‖2

2

∣∣∣∣Cx ≤ d

}
.

Show that the dual of Problem (18.4) has a quadratic objective, non-negativity constraints,
and one linear equality constraint.

18.11 Consider the following patterns and their classification:

� 1 2 3 4 5 6 7

ψ(�)

[
1.25
−0.2

][
0.0
1.05

][
0.8
0.45

][
0.4
0.45

][
0.2
0.8

][
0.7
0.85

][
0.5
0.7

]
ζ(�) 1 1 1 1 −1 −1 −1

(i) Use the MATLAB function quadprog to find the solution of Problem (18.4) for
these data.

(ii) Explicitly write out the dual of Problem (18.4) for these data.
(iii) Use the MATLAB function quadprog to find the solution of the dual of Prob-

lem (18.4) for these data.

19

Algorithms for non-linear inequality-constrained
minimization

In this chapter we will develop algorithms for constrained optimization problems
of the form:

min
x∈�

f (x),

where f : Rn → R and where the feasible set S is of the form:

S = {x ∈ R
n|g(x) = 0, h(x) ≤ 0},

with both g : Rn → Rm and h : Rn → Rr non-linear. That is, we will consider
problems of the form:

min
x∈�n

{ f (x)|g(x) = 0, h(x) ≤ 0}. (19.1)

We refer to Problem (19.1) as a non-linear inequality-constrained problem, where
it is understood that it also includes non-linear equality constraints in addition to
the inequality constraints.

We first investigate properties of non-linear equality constraints in Section 19.1
and then derive optimality conditions in Section 19.2. We consider the convex
case in Section 19.3. As in previous chapters, the optimality conditions we present
are not as sharp as possible, but illustrate the general flavor of the results. The
optimality conditions will help us to develop algorithms for non-linear inequality-
constrained minimization problems in Section 19.4. We will discuss sensitivity
analysis in Section 19.5.

The key issues discussed in this chapter are:

• the notion of a regular point of constraints as one characterization of suitable
formulations of non-linear equality and inequality constraint functions,

• linearization of non-linear constraint functions and consideration of the null
space of the coefficient matrix of the linearized constraints and the associated
tangent plane,

723

724 Algorithms for non-linear inequality-constrained minimization

• optimality conditions and the definition and interpretation of the Lagrange mul-
tipliers,

• the Slater condition as an alternative characterization of suitable formulation of
constraint functions for convex problems,

• algorithms that seek points that satisfy the optimality conditions,
• use of a merit function in the trade-off between satisfaction of constraints and

improvement of the objective, and
• sensitivity analysis.

19.1 Geometry and analysis of constraints

In the case of linear equality and inequality constraints, the convexity of the fea-
sible set allowed us to consider step directions such that successive iterates were
always feasible. That is, we could move from a feasible point along a line segment
that lies entirely within the feasible set, choosing the direction of the segment to
decrease the objective. This motivated the approach of first finding a feasible point
and then seeking step directions that kept the iterates feasible and also reduced the
value of the objective.

Similarly to our approach to non-linear equality constraints, for non-linear in-
equality constraints we will again linearize the constraint functions g and h about
a current iterate and seek step directions. We must explore conditions under which
this linearization yields a useful approximation to the original feasible set. The
notion of a regular point, introduced in Section 14.1.1 for non-linear equality-
constrained problems and suitably generalized here for non-linear inequality con-
straints, provides one such constraint qualification.

19.1.1 Regular point

As in the non-linear equality-constrained case, when we use the representation
{x ∈ Rn|g(x) = 0, h(x) ≤ 0} for a feasible set S, we usually have many choices
of functions g : Rn → Rm and h : Rn → Rr such that S = {x ∈ Rn|g(x) =
0, h(x) ≤ 0}. However, some choices of g and h may be more suitable than others.
In this section we characterize suitability of g and h in terms of the following.

Definition 19.1 Let g : Rn → Rm and h : Rm → Rr . Then we say that x� is a regular
point of the constraints g(x) = 0 and h(x) ≤ 0 if:

(i) g(x�) = 0 and h(x�) ≤ 0,
(ii) g and h are both partially differentiable with continuous partial derivatives, and
(iii) the matrix Â has linearly independent rows, where Â is the matrix with rows con-

sisting of:

• the m rows of the Jacobian J (x�) of g evaluated at x�, and

19.1 Geometry and analysis of constraints 725

• those rows K�(x�) of the Jacobian K of h evaluated at x� for which � ∈ A(x�).

The matrix Â consists of the rows of J (x�) together with those rows of K (x�)

that correspond to the active constraints. If there are no equality constraints then
the matrix Â consists of the rows of K (x�) corresponding to active constraints. If
there are no binding inequality constraints then Â = J (x�). If there are no equality
constraints and no binding inequality constraints then the matrix Â has no rows
and, by definition, it has linearly independent rows.

�

Notice that for x� to be a regular point of the constraints g(x) = 0 and h(x) ≤ 0,
we must have that m + r̂ ≤ n, where r̂ is the number of active inequality con-
straints at x�, since otherwise the m + r̂ rows of Â cannot be linearly independent.
Furthermore, if x� is a regular point, then we can find a sub-vector ω ∈ Rm+r̂ of
x such that the (m + r̂) × (m + r̂) matrix consisting of the corresponding m + r̂
columns of Â is non-singular.

At a regular point of inequality constraints, linearization of the equality con-
straints and of the binding inequality constraints yields a useful approximation to
the feasible set or its boundary, at least locally in the vicinity of the regular point.
For this reason, and as in the case of non-linear equality constraints, the definition
of a regular point provides one characterization of useful equality and inequality
constraint functions.

19.1.2 Example

Recall the dodecahedron from Section 2.3.2.3 and illustrated in Figure 2.14. Fig-
ure 19.1 repeats Figure 2.14.

The dodecahedron can be described as the set of points satisfying the inequality
constraints h(x) ≤ 0, with h : R3 → R12 affine:

∀x ∈ R
3, h(x) = Cx − d,

where:

• C ∈ R12×3 with each row of C not equal to the zero vector (see Exercise 19.1),
and

• d ∈ R12.

The Jacobian of h is K = C and the �-th row of K is the �-th row of C , which we
will denote by C�.

We will consider whether or not each point x� ∈ R3 is a regular point of the
constraints h(x) ≤ 0. First, if h(x�) 	≤ 0 so that x� is not in the dodecahedron then
x� is not a regular point by definition.

If h(x�) ≤ 0 then we consider the matrix Â consisting of the rows C� of C for

726 Algorithms for non-linear inequality-constrained minimization

Fig. 19.1. The dodecahe-
dron in R3 repeated from
Figure 2.14.

which � ∈ A(x�). We consider whether or not Â has linearly independent rows.
There are several cases.

(i) x� is in the interior of the dodecahedron. That is, h(x�) = Cx� − d < 0,
A(x�) = ∅, Â has no rows, and so x� is a regular point by definition.

(ii) x� is on a face of the dodecahedron but not on an edge or vertex. That is,
exactly one constraint � is binding, A(x�) = {�}, Â = C�, where C� is the
�-th row of C . The single row of Â is linearly independent, since it is a
single row that is not equal to the zero vector.

(iii) x� is on an edge but not a vertex of the dodecahedron. That is, exactly two
constraints �, �′ are binding, A(x�) = {�, �′}, and

Â =
[

C�

C�′

]
.

Since the corresponding two faces of the dodecahedron are not parallel then
the two corresponding rows of C , namely C� and C�′ , are linearly indepen-
dent.

(iv) x� is on a vertex of the dodecahedron. That is, exactly three constraints
�, �′, and �′′ are binding, A(x�) = {�, �′, �′′}, and

Â =
⎡⎣C�

C�′

C�′′

⎤⎦ .

The corresponding three faces are oblique to each other and therefore the
three corresponding rows of C are linearly independent.

In summary, every feasible point is a regular point of the constraints h(x) ≤ 0.
If we assume that the dodecahedron in Figure 19.1 is a regular solid (in the sense

of solid geometry) then each face is a regular pentagon and the opposite faces of
the dodecahedron are parallel. The corresponding rows of C (and corresponding

19.2 Optimality conditions 727

rows of K) are the same to within a multiplicative constant. That is, the rows of K
corresponding to opposite faces of the dodecahedron are not linearly independent.
However, the constraints corresponding to two opposite faces are never both bind-
ing at the same point. Consequently, they will never both be included in the matrix
Â in Definition 19.1.

Now consider adding an additional inequality constraint corresponding to a plane
that just grazes the dodecahedron at one of its vertices, say x�. This constraint is
redundant. To represent this additional inequality constraint, we augment an addi-
tional row to C to form C̃ ∈ R13×3 and augment an additional entry to d to form
d̃ ∈ R13. We define the function h̃ : R3 → R13 to consist of the entries of h
together with a thirteenth entry h̃13 : R3 → R defined by:

∀x ∈ R
3, h̃13(x) = C̃13x − d̃13.

We now have that {x ∈ R3|h(x) ≤ 0} = {x ∈ R3|h̃(x) ≤ 0}. However, the
vertex x� is not a regular point of the constraints h̃(x) ≤ 0 because there are four
constraints active at x� and the four corresponding rows of C̃ cannot be linearly
independent in R3. Since {x ∈ R3|h(x) ≤ 0} and {x ∈ R3|h̃(x) ≤ 0} represent the
same set, it is important to realize that whether or not a point x� is a regular point
of the constraints depends on the choice of representation of the constraints.

Although this example involves affine inequality constraint functions for sim-
plicity, similar observations apply to non-linear constraint functions, which are the
central topic of this chapter. As with non-linear equality constraints, we should
seek g and h such that feasible points are all regular points.

19.2 Optimality conditions

In Section 19.2.1 we present first-order necessary conditions and in Section 19.2.2
we present second-order sufficient conditions.

19.2.1 First-order necessary conditions

19.2.1.1 Analysis

We have:

Theorem 19.1 Suppose that the functions f : Rn → R, g : Rn → Rm, and h : Rn → Rr

are partially differentiable with continuous partial derivatives. Let J : Rn → Rm×n and
K : Rn → Rr×n be the Jacobians of g and h, respectively. Consider Problem (19.1):

min
x∈�n

{ f (x)|g(x) = 0, h(x) ≤ 0}.

728 Algorithms for non-linear inequality-constrained minimization

Suppose that x� ∈ Rn is a regular point of the constraints g(x) = 0 and h(x) ≤ 0. If x�

is a local minimizer of Problem (19.1) then:

∃λ� ∈ R
m, ∃µ� ∈ R

r such that: ∇ f (x�) + J (x�)
†
λ� + K (x�)

†
µ� = 0;

M�h(x�) = 0;
g(x�) = 0;
h(x�) ≤ 0; and

µ� ≥ 0, (19.2)

where M� = diag{µ�
�} ∈ Rr×r . The vectors λ� and µ� satisfying the conditions (19.2)

are called the vectors of Lagrange multipliers for the constraints g(x) = 0 and h(x) ≤
0, respectively. The conditions that M�h(x�) = 0 are called the complementary slack-
ness conditions. They say that, for each �, either the �-th inequality constraint is bind-
ing or the �-th Lagrange multiplier is equal to zero (or both).

Proof ([70, section 10.8].) �

As previously, we refer to the equality and inequality constraints in (19.2) as the
first-order necessary conditions (or FONC). As in the case of non-linear equality
constraints, the condition that x� be a regular point of the constraints is again called
a constraint qualification. In Section 19.3.1, we will see an alternative constraint
qualification for the case of convex problems.

19.2.1.2 Lagrangian

Recall Definition 3.2 of the Lagrangian. Analogously to the discussion in Sec-
tion 17.1.1.4, by defining the Lagrangian L : Rn × Rm × Rr → R by:

∀x ∈ R
n, ∀λ ∈ R

m, ∀µ ∈ R
r ,L(x, λ, µ) = f (x) + λ†g(x) + µ†h(x),

we can again reproduce some of the first-order necessary conditions as:

∇xL(x�, λ�, µ�) = 0,

∇λL(x�, λ�, µ�) = 0,

∇µL(x�, λ�, µ�) ≤ 0.

19.2.1.3 Example

Recall the example non-linear program, Problem (2.19), from Section 2.3.2.3:

min
x∈�3

{ f (x)|g(x) = 0, h(x) ≤ 0},

19.2 Optimality conditions 729

where f : R3 → R, g : R3 → R2, and h : R3 → R are defined by:

∀x ∈ R
3, f (x) = (x1)

2 + 2(x2)
2,

∀x ∈ R
3, g(x) =

[
2 − x2 − sin(x3)

−x1 + sin(x3)

]
,

∀x ∈ R
3, h(x) = [sin(x3) − 0.5].

We claim that x� =
⎡⎣ 0.5

1.5
π/6

⎤⎦, λ� =
[

6
1

]
, and µ� = [5] satisfy the first-order

necessary conditions in Theorem 19.1. First, x� is feasible. Now let J : R3 →
R2×3 and K : R3 → R1×3 be the Jacobians of g and h, respectively. Then:

∀x ∈ R
3,∇ f (x) =

⎡⎣ 2x1

4x2

0

⎤⎦ ,

∀x ∈ R
3, J (x) =

[
0 −1 − cos(x3)

−1 0 cos(x3)

]
,

J (x�) =
[

0 −1 − cos(π/6)

−1 0 cos(π/6)

]
,

∀x ∈ R
3, K (x) = [

0 0 cos(x3)
]
,

K (x�) = [
0 0 cos(π/6)

]
.

Note that Â =
[

J (x�)

K (x�)

]
has linearly independent rows so that x� is a regular point

of the constraints. Moreover,

∇ f (x�) + J (x�)
†
λ� + K (x�)

†
µ�

=
⎡⎣ 1

6
0

⎤⎦+
⎡⎣ 0 −1

−1 0
− cos(π/6) cos(π/6)

⎤⎦[6
1

]
+
⎡⎣ 0

0
cos(π/6)

⎤⎦ 5,

= 0;
µ�h(x�) = [5] × [0],

= [0];
g(x�) = 0;
h(x�) = [0],

≤ [0]; and

µ� = [5],

≥ [0].

730 Algorithms for non-linear inequality-constrained minimization

That is, x� =
⎡⎣ 0.5

1.5
π/6

⎤⎦, λ� =
[

6
1

]
, and µ� = [5] satisfy the first-order necessary

conditions in Theorem 19.1. (See also Exercise 3.35.)

19.2.2 Second-order sufficient conditions

19.2.2.1 Analysis

Theorem 19.2 Suppose that the functions f : Rn → R, g : Rn → Rm, and h : Rn → Rr

are twice partially differentiable with continuous second partial derivatives. Let J :
Rn → Rm×n and K : Rn → Rr×n be the Jacobians of g and h, respectively. Consider
Problem (19.1):

min
x∈�n

{ f (x)|g(x) = 0, h(x) ≤ 0},

and points x� ∈ Rn, λ� ∈ Rm, and µ� ∈ Rr . Let M� = diag{µ�
�}. Suppose that:

∇ f (x�) + J (x�)
†
λ� + K (x�)

†
µ� = 0,

M�h(x�) = 0,

g(x�) = 0,

h(x�) ≤ 0,

µ� ≥ 0, and

∇2f (x�) +
m∑

�=1

λ�
�∇2g�(x

�) +
r∑

�=1

µ�
�∇2h�(x

�) is positive definite on the null space:

N+ = {�x ∈ R
n|J (x�)�x = 0, K�(x

�)�x = 0,∀� ∈ A+(x�, µ�)},
where A+(x�, µ�) = {� ∈ {1, . . . , r}|h�(x

�) = 0, µ�
� > 0}.

Then x� is a strict local minimizer of Problem (19.1).

Proof See [11, proposition 3.3.2][70, section 10.8]. �

The conditions in the theorem are called the second-order sufficient conditions
(or SOSC). The function ∇2

xxL : Rn × Rm × Rr → R defined by:

∀x ∈ R
n, ∀λ ∈ R

m,∀µ ∈ R
r ,

∇2
xxL(x, λ, µ) = ∇2f (x) +

m∑
�=1

λ�∇2g�(x) +
r∑

�=1

µ�∇2h�(x),

is again called the Hessian of the Lagrangian. In addition to the first-order nec-
essary conditions, the second-order sufficient conditions require that:

• f , g, and h are twice partially differentiable with continuous second partial
derivatives, and

19.3 Convex problems 731

• the Hessian of the Lagrangian evaluated at the minimizer and corresponding
Lagrange multipliers, ∇2

xxL(x�, λ�, µ�), is positive definite on the null space N+
defined in the theorem.

The sets N+ and A+ have analogous roles to their roles in the non-negatively
constrained case presented in Section 16.1.2 and the linear inequality-constrained
case presented in Section 17.1.2. Again, constraints � for which µ�

� = 0 and
h�(x�) = 0 are called degenerate constraints.

19.2.2.2 Example

Continuing with Problem (2.19) from Sections 2.3.2.3 and 19.2.1.3, we note that
f , g, and h are twice partially differentiable with continuous second partial deriva-
tives. By the discussion in Section 19.2.1.3, the first-order necessary conditions are

satisfied by x� =
⎡⎣ 0.5

1.5
π/6

⎤⎦, λ� =
[

6
1

]
, and µ� = [5]. We have:

A(x�) = A+(x�, µ�) = {1},
since the one inequality constraint is binding and the corresponding Lagrange mul-
tiplier is non-zero. That is, the constraint is not degenerate. Finally,

N+ = {�x ∈ R
n|J (x�)�x = 0, K�(x

�)�x = 0, ∀� ∈ A+(x�, µ�)},
= {�x ∈ R

n|J (x�)�x = 0, K1(x
�)�x = 0},

= {0},
so that the Hessian of the Lagrangian ∇2

xxL(x�, λ�, µ�) is positive definite on the
null space N+. That is x�, λ�, and µ� satisfy the second-order sufficient conditions.

19.3 Convex problems

In this section, we consider the case where g : Rn → Rm is affine and h : Rn → Rr

is convex. That is, we consider the following problem:

min
x∈�n

{ f (x)|Ax = b, h(x) ≤ 0}, (19.3)

where A ∈ Rm×n and b ∈ Rm . If f : Rn → R is convex on the feasible set then
Problem (19.3) is convex.

We discuss first-order necessary conditions for Problem (19.3) in Section 19.3.1,
then first-order sufficient conditions in Section 19.3.2, and finally discuss duality
in Section 19.3.3.

732 Algorithms for non-linear inequality-constrained minimization

19.3.1 First-order necessary conditions

19.3.1.1 Slater condition

In the case of affine g and convex h, we can obtain first-order necessary conditions
with an alternative constraint qualification to the assumption of regular constraints
that was presented in Section 19.1.1. In particular, we will assume that:

{x ∈ R
n|Ax = b, h(x) < 0} 	= ∅. (19.4)

This alternative constraint qualification is called the Slater condition [6, chap-
ter 5][11, section 5.3][15, section 5.2.3][84, page 485]. The Slater condition was
first introduced in Section 16.4.2.3 in the context of the interior point algorithm
for linear inequality-constrained problems. We will see in Section 19.4.1.2 that we
also need to make a similar assumption for applying the interior point algorithm
to non-linearly constrained problems. As mentioned in Section 16.4.2.3, many
constraint systems arising from physical problems satisfy the Slater condition.

19.3.1.2 Analysis

We have the following.

Theorem 19.3 Suppose that f : Rn → R and h : Rn → Rr are partially differentiable
with continuous partial derivatives and with h convex, A ∈ Rm×n, and b ∈ Rm. Let
K : Rn → Rr×n be the Jacobian of h. Consider Problem (19.3) and suppose that the
Slater condition (19.4) holds. If x� ∈ Rn is a local minimizer of Problem (19.3) then:

∃λ� ∈ R
m, ∃µ� ∈ R

r such that: ∇ f (x�) + A†λ� + K (x�)
†
µ� = 0;

M�h(x�) = 0;
Ax� = b;

h(x�) ≤ 0; and

µ� ≥ 0,

where M� = diag{µ�
�} ∈ Rr×r .

Proof ([11, section 5.3].) �

19.3.2 First-order sufficient conditions

19.3.2.1 Analysis

In the convex case, the first-order necessary conditions are also sufficient for opti-
mality.

Theorem 19.4 Suppose that f : Rn → R and h : Rn → Rr are partially differentiable
with continuous partial derivatives, A ∈ Rm×n, and b ∈ Rm. Let K : Rn → Rr×n

19.3 Convex problems 733

be the Jacobian of h. Consider Problem (19.3) and points x� ∈ Rn, λ� ∈ Rm, and
µ� ∈ Rr . Let M� = diag{µ�

�}. Suppose that:

(i) h is convex,
(ii) f is convex on {x ∈ Rn|Ax = b, h(x) ≤ 0},
(iii) ∇ f (x�) + A†λ� + K (x�)†µ� = 0,
(iv) M�h(x�) = 0,
(v) Ax� = b and h(x�) ≤ 0, and
(vi) µ� ≥ 0.

Then x� is a global minimizer of Problem (19.3).

Proof The proof is very similar to the proofs of Theorem 16.3 in Chapter 16 and of
Theorem 17.3 in Chapter 17. See Appendix B for details. �

In addition to the first-order necessary conditions in Theorem 19.3, the first-order
sufficient conditions require that f is convex on the convex feasible set.

19.3.2.2 Example

Let f : R2 → R and h : R2 → R be defined by:

∀x ∈ R
2, f (x) = x1 + x2,

∀x ∈ R
2, h(x) = (x1)

2 + (x2)
2 − 2.

Consider the problem:

min
x∈�2

{ f (x)|h(x) ≤ 0}.
Figure 19.2 illustrates the contour sets of the objective and the feasible set. We ob-
serve that both f and h are partially differentiable with continuous partial deriva-
tives and convex. We claim that x� = −1 is the global minimizer with µ� = [0.5]
the corresponding Lagrange multiplier. To see this, note that:

∀x ∈ R
2,∇ f (x) = 1,

∀x ∈ R
2, K (x) = [

2x1 2x2
]
,

K (x�) = [−2 −2
]
,

∇ f (x�) + K (x�)
†
µ� = 1 + [−2 −2

]× [0.5],

= 0;
µ�h(x�) = 0;

h(x�) = [0],

≤ [0]; and

µ� = [0.5],

≥ [0],

734 Algorithms for non-linear inequality-constrained minimization

2 1 5 1 0 5 0 0 5 1 1 5 2
2

1 5

1

0 5

0

0 5

1

1 5

2

x1

x2

Fig. 19.2. Contour sets of
objective function defined
in Section 19.3.2.2 with
feasible set shaded. The
heights of the contours de-
crease to the left and down.
The minimizer, x� = −1,
is indicated with the •.

so that x� = −1 and µ� = [0.5] satisfy the first-order sufficient conditions. The
point x� = −1 is illustrated as a • in Figure 19.2.

19.3.3 Duality

As we discussed in Section 3.4 and as in the discussion of linear equality con-
straints in Section 13.2.2 and linear inequality constraints in Section 17.2.2, we
can define a dual problem where the role of variables and constraints is partly or
fully swapped [84, chapter 6].

19.3.3.1 Dual function

Analysis If f and h are convex and g is affine then L(•, λ, µ) is convex for µ ≥ 0
and so x� is a global minimizer of L(•, λ�, µ�). Recall Definition 3.3 of the dual
function and effective domain. For Problem (19.3), the dual function D : Rm ×
Rr → R ∪ {−∞} is defined by:

∀λ ∈ R
m, µ ∈ R

r ,D(λ, µ) = inf
x∈�n

L(x, λ, µ). (19.5)

The effective domain of D is:

E =
{[

λ

µ

]
∈ R

m+r

∣∣∣∣D(λ, µ) > −∞
}

.

Recall that by Theorem 3.12, E is convex and D is convex on E.

19.3 Convex problems 735

Example Continuing with the example problem from Section 19.3.2.2, the La-
grangian L : R2 × R → R for this problem is defined by:

∀x ∈ R
2, ∀µ ∈ R,L(x, µ) = f (x) + µ†h(x),

= x1 + x2 + µ((x1)
2 + (x2)

2 − 2).

For µ > 0, the Lagrangian L(•, µ) is strictly convex and therefore, by Corol-
lary 10.6, the first-order necessary conditions ∇xL(x, µ) = 0 are sufficient for
minimizing L(•, µ) and, moreover, a minimizer exists, so that the inf in the defi-
nition of D can be replaced by min. Furthermore, there is a unique minimizer x (µ)

corresponding to each value of µ > 0. In particular, we have:

∀x ∈ R
2, ∀µ ∈ R,∇xL(x, µ) = ∇ f (x) + K (x)†µ,

=
[

1 + 2µx1

1 + 2µx2

]
,

∀µ ∈ R++, x (µ) =
[−1/(2µ)

−1/(2µ)

]
,

∀µ ∈ R++,D(µ) = − 1

2µ
− 2µ.

On the other hand, if µ ≤ 0 then the objective in the dual function is unbounded
below. Consequently, the effective domain is E = R++.

19.3.3.2 Dual problem

Analysis If the Lagrangian L(•, λ�, µ�) is convex on Rn then the minimum of
Problem (19.3) is equal to D(λ�, µ�), where λ� and µ� are the Lagrange multipli-
ers that satisfy the necessary conditions for Problem (19.3). As in the equality-
constrained case and the linear inequality-constrained case, under certain condi-
tions, the Lagrange multipliers can be found as the maximizer of the dual prob-
lem:

max[
λ
µ

]
∈�
{D(λ, µ)|µ ≥ 0}, (19.6)

where D : E → R is the dual function defined in (19.5). Again, Problem (19.3) is
called the primal problem in this context to distinguish it from Problem (19.6).

Similarly to Theorem 17.4, these observations are embodied in the following.
(Also see [6, theorems 6.2.4 and 6.3.3][11, proposition 5.2.1] [15, section 5.2.3]
[84, corollaries 6.1 and 14.2] for generalizations.)

Theorem 19.5 Suppose that f : Rn → R and h : Rn → R are convex and partially
differentiable with continuous partial derivatives, A ∈ Rm×n, and b ∈ Rm. Consider

736 Algorithms for non-linear inequality-constrained minimization

the primal problem, Problem (19.3):

min
x∈�n

{ f (x)|Ax = b, h(x) ≤ 0},

and suppose that the Slater condition (19.4) holds. Also, consider the dual problem,
Problem (19.6). We have that:

(i) If the primal problem possesses a minimum then the dual problem possesses a
maximum and the optima are equal. That is:

min
x∈�n

{ f (x)|Ax = b, h(x) ≤ 0} = max[
λ
µ

]
∈�
{D(λ, µ)|µ ≥ 0}.

(ii) If:

•
[

λ

µ

]
∈ E,

• minx∈�n L(x, λ, µ) exists, and
• f and h are twice partially differentiable with continuous second partial

derivatives, ∇2f is positive definite, and ∇2h�, � = 1, . . . , r , are all positive
definite,

then D is partially differentiable at

[
λ

µ

]
with continuous partial derivatives

and:

∇D(λ, µ) =
[

Ax (λ,µ) − b
h(x (λ,µ))

]
. (19.7)

Proof The proof is very similar to the proof of Theorem 17.4 in Chapter 17. See
Appendix B for details. �

As in the equality-constrained and linear inequality-constrained cases, it is pos-

sible for D to not be partially differentiable at a point

[
λ

µ

]
∈ E if:

• L(•, λ, µ) is bounded below (so that infx∈�nL(x, λ, µ) ∈ R) yet the minimum
minx∈�nL(x, λ, µ) does not exist, or

• there are multiple minimizers of minx∈�nL(x, λ, µ).

Corollary 19.6 Let f : Rn → R and h : Rn → Rr be twice partially differentiable with
continuous second partial derivatives, ∇2f be positive definite, and ∇2h�, � = 1, . . . , r ,
all be positive definite; A ∈ Rm×n; and b ∈ Rm. Consider Problem (19.3):

min
x∈�n

{ f (x)|Ax = b, h(x) ≤ 0},

the Lagrangian of this problem, and the effective domain E of the dual function. If:

• the effective domain E contains Rm × Rr+, and
• for each λ ∈ Rm and µ ∈ Rr+, minx∈�n L(x, λ, µ) exists,

19.3 Convex problems 737

then necessary and sufficient conditions for

[
λ�

µ�

]
∈ Rm+r to be the maximizer of the

dual problem:

max[
λ
µ

]
∈�
{D(λ, µ)|µ ≥ 0},

are:

M�h(x (λ�,µ�)) = 0;
Ax (λ�,µ�) = b;

h(x (λ�,µ�)) ≤ 0; and

µ� ≥ 0,

where {x (λ�,µ�)} = argminx∈�n L(x, λ�, µ�) and M� = diag{µ�
�}. Moreover, if λ� and

µ� maximize the dual problem then x (λ�,µ�), λ�, and µ� satisfy the first-order necessary
conditions for Problem (19.3).

Proof The proof is very similar to the proof of Corollary 17.5 in Chapter 17. See
Appendix B for details. �

Theorem 19.5 shows that, as in the linear inequality-constrained case, an alter-
native approach to finding the minimum of Problem (19.3) involves finding the
maximum of the dual function over λ ∈ Rm and µ ∈ Rr+. Theorem 3.12 shows
that the dual function has at most one local maximum. To seek the maximum of
D(λ, µ) over λ ∈ Rm, µ ∈ Rr+, we can, for example, utilize the value of the gradi-
ent of D from (19.7) as part of an active set or interior point algorithm. As in the
equality-constrained and linear inequality-constrained cases, under some circum-
stances, it is also possible to calculate the Hessian of D [70, section 12.3].

Example Continuing with the dual of the example problem from Sections 19.3.2.2
and 19.3.3.1, we recall that the effective domain is E = R++ and the dual function
D : R++ → R is:

∀µ ∈ R++,D(µ) = − 1

2µ
− 2µ.

Moreover, for each µ ∈ R++ the dual function is twice partially differentiable. In
particular,

∀µ ∈ R++,∇D(µ) = 1

2(µ)2
− 2,

∀µ ∈ R++,∇2D(µ) = − 1

4(µ)3
,

< 0.

738 Algorithms for non-linear inequality-constrained minimization

Although we cannot apply Corollary 19.6 directly because E = R++ does not
contain R+, we note that, by inspection of D, µ� = [0.5] maximizes the dual over
E. Moreover, the corresponding minimizer of the Lagrangian, x (µ�), together with
µ� satisfy the first-order necessary conditions for the primal problem.

Discussion As in the equality and linear inequality-constrained cases, it is essen-
tial in Theorem 19.5 for f and h to be convex on the whole of Rn , not just on the
feasible set. The reason is again that the inner minimization of L(•, λ, µ) is taken
over the whole of Rn . Furthermore, we generally require strict convexity of f and
h to ensure that there are not multiple minimizers of the Lagrangian. The issues
are similar to the discussion in Section 17.2.2.2.

Problem (19.6) is non-negatively constrained of the form of Problem (16.1)
and so we can apply essentially the same algorithms as we developed for Prob-
lem (16.1). We will take this approach in Section 19.4.2.

19.3.3.3 Partial duals

As in Section 17.2.2.4, it is also possible to take the partial dual with respect to
some of the equality and some of the inequality constraints.

19.4 Approaches to finding minimizers

19.4.1 Primal algorithm

19.4.1.1 Transformation

In Section 17.3.1.1, we transformed linear inequality-constrained Problem (17.1)
into non-negatively constrained Problem (17.12) through the use of slack variables.
This allowed the use of an algorithm for non-negatively constrained minimization
to solve Problem (17.1).

We will take a similar approach here to Problem (19.1). In particular, to handle
the inequality constraints involving h we consider the following problem:

min
x∈�n ,w∈�r

{ f (x)|g(x) = 0, h(x) + w = 0, w ≥ 0}. (19.8)

By Theorem 3.8, Problems (19.1) and (19.8) are equivalent.

19.4.1.2 Primal–dual interior point algorithm

In this section we outline a primal–dual interior point algorithm for Problem (19.8).
See [65] for further details.

19.4 Approaches to finding minimizers 739

Barrier objective and problem Analogously to the discussion in Section 16.4.2.2
and as in the discussion in Section 17.3.1.2, given a barrier function fb : Rr++ → R

and a barrier parameter t ∈ R++, we form the barrier objective φ : Rn ×Rr++ →
R defined by:

∀x ∈ R
n, ∀w ∈ R

r
++, φ(x, w) = f (x) + t fb(w).

Instead of solving Problem (19.8), we will consider solving the barrier problem:

min
x∈�n ,w∈�r

{φ(x, w)|g(x) = 0, h(x) + w = 0, w > 0}. (19.9)

That is, we minimize φ(x, w) over values of x ∈ Rn and w ∈ Rr that satisfy
g(x) = 0 and h(x) + w = 0 and which are also in the interior of w ≥ 0. We then
decrease the barrier parameter t .

Slater condition Analogously to the discussion in Sections 16.4.2.2 and 17.3.1.2,
we must assume that Problem (19.9) is feasible. That is, we assume that {x ∈
Rn|g(x) = 0, h(x) < 0} 	= ∅. We again call this the Slater condition.

Equality-constrained problem To solve Problem (19.9), we can take a similar
approach as in the primal–dual interior point algorithm for non-negativity con-
straints presented in Section 16.4.3.3 and for linear inequality constraints presented
in Section 17.3.1.2. In particular, we can partially ignore the inequality constraints
and the domain of the barrier function and seek a solution to the following non-
linear equality-constrained problem:

min
x∈�n ,w∈�r

{φ(x, w)|g(x) = 0, h(x) + w = 0}, (19.10)

which has first-order necessary conditions:

∇ f (x) + J (x)†λ + K (x)†µ = 0, (19.11)

g(x) = 0, (19.12)

h(x) + w = 0, (19.13)

t∇ fb(w) + µ = 0, (19.14)

where J and K are the Jacobians of g and h, respectively, and λ and µ are the dual
variables on the constraints g(x) = 0 and h(x) + w = 0, respectively. We can
use the techniques for minimization of non-linear equality-constrained problems
from Section 14.3 to solve Problem (19.10). In particular, in Section 19.4.1.3, we
will consider the Newton–Raphson method for solving the first-order necessary
conditions of Problem (19.10).

740 Algorithms for non-linear inequality-constrained minimization

Logarithmic barrier function As in the primal–dual interior point algorithm for
non-negativity constraints and for linear inequality constraints, we will use the
logarithmic barrier function. That is:

∀w ∈ R
r
++, fb(w) = −

r∑
�=1

ln(w�),

∀w ∈ R
r
++,∇ fb(w) = −[W]−11,

where W = diag{w�} ∈ Rr×r . Substituting the expression for ∇ fb into (19.14) and
re-arranging, we again obtain:

Wµ − t1 = 0. (19.15)

19.4.1.3 Newton–Raphson method

The Newton–Raphson step direction to solve (19.15) and (19.11)–(19.13) is:⎡⎢⎢⎣
M (ν) 0 0 W (ν)

0 ∇2
xxL(x (ν), λ(ν), µ(ν)) J (x (ν))

†
K (x (ν))

†

0 J (x (ν)) 0 0
I K (x (ν)) 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣

�w(ν)

�x (ν)

�λ(ν)

�µ(ν)

⎤⎥⎥⎦

=

⎡⎢⎢⎣
−W (ν)µ(ν) + t1

−∇ f (x (ν)) − J (x (ν))
†
λ(ν) − K (x (ν))

†
µ(ν)

−g(x (ν))

−h(x (ν))

⎤⎥⎥⎦ ,

where M (ν) = diag{µ(ν)
� } and W (ν) = diag{w(ν)

� }. As in the case of the primal–
dual interior point algorithm for non-negativity constraints that was discussed in
Section 16.4.3.3 and for linear inequality constraints that was discussed in Sec-
tion 17.3.1.3, we can re-arrange these equations to make them symmetric and use
block pivoting on the top left-hand block of the matrix since the top left-hand block
is diagonal. This results in a system that is similar to (14.12), except that a diagonal
block of the form [M (ν)]

−1
W (ν) is added to the Hessian of the Lagrangian. Issues

regarding solving the first-order necessary conditions, such as factorization of the
indefinite coefficient matrix, approximate solution of the conditions, sparsity, the
merit function, step-size selection, and feasibility, are similar to those described in
Sections 14.3.1 and 16.4.3.3.

19.4.1.4 Other issues

In this section, we discuss adjustment of the barrier parameter, the initial guess,
and a stopping criterion.

19.5 Sensitivity 741

Adjustment of barrier parameter To reduce the barrier parameter, we can again
use the approach described in Section 16.4.4 of Chapter 16.

Initial guess We can again take an approach analogous to that in Section 16.4.5 to
find an initial feasible guess for Problem (19.8). However, the effort to find such
a guess in a phase 1 approach may be significant. An alternative is to begin with
w(0) > 0, x (0), λ(0), µ(0) > 0 that do not necessarily satisfy the equality constraints
g(x) = 0 nor h(x) + w = 0. Feasibility is approached during the course of
iterations from this infeasible start [15, section 11.3.1][65, section 1][126].

Stopping criterion As for the linear inequality-constrained case discussed in Sec-
tion 17.3.1.4, we can develop a stopping criterion based on duality using Theo-
rem 3.13. If f or h are non-quadratic or g is non-linear, however, we can typically
only approximately evaluate the dual function.

19.4.2 Dual algorithm

Problem (19.6):

max[
λ
µ

]
∈�
{D(λ, µ)|µ ≥ 0},

has non-negativity constraints. If the dual function can be evaluated conveniently,
then the algorithms from Section 16.3 and 16.4 for non-negativity constraints can
be applied to the dual problem. For example, if the objective and inequality con-
straint function are quadratic and strictly convex and the equality constraints are
linear then the dual function can be evaluated through the solution of a linear equa-
tion. (See Exercise 19.6 and [15, appendix B] for further results involving quadratic
objectives and inequality constraint functions.) A dual algorithm can be particu-
larly attractive if there are only a few constraints or if a partial dual is taken with
respect to only some of the constraints [70, section 13.1].

19.5 Sensitivity

19.5.1 Analysis

In this section we will analyze a general and a special case of sensitivity analysis
for Problem (19.1). For the general case, we suppose that the objective f , equality
constraint function g, and inequality constraint function h are parameterized by
a parameter χ ∈ Rs . That is, f : Rn × Rs → R, g : Rn × Rs → Rm , and

742 Algorithms for non-linear inequality-constrained minimization

h : Rn × Rs → Rr . We imagine that we have solved the non-linear inequality-
constrained minimization problem:

min
x∈�n

{ f (x;χ)|g(x;χ) = 0, h(x;χ) ≤ 0}, (19.16)

for a base-case value of the parameters, say χ = 0, to find the base-case solution x�

and the base-case Lagrange multipliers λ� and µ�. We now consider the sensitivity
of the minimum of Problem (19.16) to variation of the parameters about χ = 0.

As well as considering the general case of the sensitivity of the minimum of
Problem (19.16) to χ , we also specialize to the case where only the right-hand
sides of the equality and inequality constraints vary. That is, we return to the
special case where f : Rn → R, g : Rn → Rm , and h : Rn → Rr are not
explicitly parameterized. However, we now consider perturbations γ ∈ Rm and
η ∈ Rr and the problem:

min
x∈�n

{ f (x)|g(x) = −γ, h(x) ≤ −η}. (19.17)

For the parameter values γ = 0 and η = 0, Problem (19.17) is the same as Prob-
lem (19.1). We consider the sensitivity of the minimum of Problem (19.17) to
variation of the parameters about γ = 0 and η = 0.

We have the following corollary to the implicit function theorem, Theorem A.9
in Section A.7.3 of Appendix A.

Corollary 19.7 Consider Problem (19.16) and suppose that the functions f : Rn ×Rs →
R, g : Rn × Rs → Rm, and h : Rn × Rs → Rr are twice partially differentiable with
continuous second partial derivatives. Also consider Problem (19.17) and suppose that
the functions f : Rn → R, g : Rn → Rm, and h : Rn → Rr are twice partially
differentiable with continuous second partial derivatives. Suppose that x� ∈ Rn, λ� ∈
Rm, and µ� ∈ Rr satisfy:

• the second-order sufficient conditions for Problem (19.16) for the value of parameters
χ = 0, and

• the second-order sufficient conditions for Problem (19.17) for the value of parameters
γ = 0 and η = 0.

In particular:

• x� is a local minimizer of Problem (19.16) for χ = 0, and
• x� is a local minimizer of Problem (19.17) for γ = 0 and η = 0,

in both cases with associated Lagrange multipliers λ� and µ�. Moreover, suppose that
x� is a regular point of the constraints for the base-case problems and that there are no
degenerate constraints at the base-case solution.
Then, for values of χ in a neighborhood of the base-case value of the parameters χ = 0,
there is a local minimum and corresponding local minimizer and Lagrange multipliers
for Problem (19.16). Moreover, the local minimum, local minimizer, and Lagrange mul-
tipliers are partially differentiable with respect to χ and have continuous partial deriva-
tives in this neighborhood. The sensitivity of the local minimum f � to χ , evaluated at

19.5 Sensitivity 743

the base-case χ = 0, is given by:

∂L
∂χ

(x�, λ�, µ�; 0),

where L : Rn × Rm × Rr × Rs → R is the parameterized Lagrangian defined by:

∀x ∈ R
n, ∀λ ∈ R

m,∀µ ∈ R
r , ∀χ ∈ R

s,

L(x, λ, µ;χ) = f (x;χ) + λ†g(x;χ) + µ†h(x;χ).

Furthermore, for values of γ and η in a neighborhood of the base-case value of the
parameters γ = 0 and η = 0, there is a local minimum and corresponding local
minimizer and Lagrange multipliers for Problem (19.17). Moreover, the local minimum,
local minimizer, and Lagrange multipliers are partially differentiable with respect to γ

and η and have continuous partial derivatives. The sensitivities of the local minimum
to γ and η, evaluated at the base-case γ = 0 and η = 0, are equal to λ� and µ�,
respectively.

Proof See [34, theorem 2.4.4] and [70, section 10.8] for details. �

19.5.2 Discussion

We can again interpret the Lagrange multipliers as the sensitivity of the minimum
to the right-hand side of the equality constraints and inequality constraints. We
can use the Lagrange multipliers to help in trading off the change in the optimal
objective against the cost of modifying the constraints. As in the case of non-linear
equality constraints described in Section 14.4 and linear inequality constraints de-
scribed in Section 17.4, we can again use sensitivity analysis of the first-order
necessary conditions to estimate the changes in the minimizer and Lagrange mul-
tipliers.

19.5.3 Example

Continuing with Problem (2.19) from Sections 2.3.2.3, 19.2.1.3, and 19.2.2.2, we
have already verified that the second-order sufficient conditions are satisfied at the
base-case solution, that x� is a regular point of the constraints, and that there are
no degenerate constraints. Suppose that the first entry in the equality constraint
changed to 2 − x2 − sin(x3) = −γ1 and that the inequality constraint changed to
sin(x3) − 0.5 ≤ −η. Then, by Corollary 19.7, if γ1 and η are small enough the
change in the minimum is given approximately by λ�

1γ1 + µ�η = 6γ1 + 5η. (See
Exercise 19.8.)

744 Algorithms for non-linear inequality-constrained minimization

19.6 Summary

In this chapter we have considered problems with non-linear equality and inequal-
ity constraints, providing optimality conditions. We considered the convex case
and sketched application of the primal–dual interior point method and dual algo-
rithm to these problems. Finally, we provided sensitivity analysis.

Exercises

Geometry and analysis of constraints

19.1 Let C ∈ Rr×n and d ∈ Rr . Suppose that the first row of C is equal to the zero
vector. Characterize the set {x ∈ Rn|Cx ≤ d} in the cases that:

(i) d1 < 0,
(ii) d1 ≥ 0.

19.2 Consider the set S ∈ R2 defined by S = {x ∈ Rn|h(x) ≤ 0}, where h : R2 → R is
defined by:

∀x ∈ R
2, g(x) = x2 − sin(x1).

This exercise is similar to Exercise 14.3.

(i) Is x� = 0 a regular point of the inequality constraint h(x) ≤ 0?
(ii) Describe the set T = {x ∈ R|K (x�)(x − x�) = 0}, where K is the Jacobian of h.
(iii) Consider the points in R2 in the vicinity of x� = 0. That is, consider x ∈ R2 such

that ‖x‖2 ≈ ‖x�‖2 = 0. For these points, is the set T = {x ∈ R2|K (x�)(x − x�) =
0} qualitatively a good approximation to the set P = {x ∈ R2|h(x) = 0}?

Optimality conditions

19.3 ([84, example 14.12]) Consider the problem minx∈�2{ f (x)|h(x) ≤ 0} where f :
R2 → R and h : R2 → R2 are defined by:

∀x ∈ R
2, f (x) = x1 + x2,

∀x ∈ R
2, h(x) =

[
(x1 − 1)2 + (x2)

2 − 1
(x1 + 1)2 + (x2)

2 − 1

]
.

(i) Show that x� = 0 is the unique feasible point and (therefore) the unique mini-
mizer for the problem minx∈�2{ f (x)|h(x) ≤ 0}. (Hint: Describe the set of points
satisfying each inequality constraint geometrically.)

(ii) Show that x� is not a regular point of the constraints h(x) ≤ 0.
(iii) Show that the problem does not satisfy the Slater condition (19.4).
(iv) Show that no µ� exists satisfying (19.2).

Exercises 745

(v) Find another specification of the inequality constraint functions (possibly involving
more than two inequality constraints) that specifies the same feasible set and such
that x� is a regular point of the constraints h(x) ≤ 0.

Convex problems

19.4 Consider the problem minx∈�2{ f (x)|h(x) ≤ 0} from Section 19.3.2.2 with objec-
tive f : R2 → R and inequality constraint function h : R2 → R be defined by:

∀x ∈ R
2, f (x) = x1 + x2,

∀x ∈ R
2, h(x) = (x1)

2 + (x2)
2 − 2.

Show that the problem satisfies the Slater condition (19.4).

Approaches to finding minimizers

19.5 Consider Problem (19.10):

min
x∈�n ,w∈�r

{φ(x, w)|g(x) = 0, h(x) + w = 0},

where φ : Rn × Rr++ → R is defined by:

∀x ∈ R
n,∀w ∈ R

r++, φ(x, w) = f (x) + t fb(w),

where f : Rn → R, g : Rn → Rm, h : Rn → Rr , and where fb : Rr++ → R is the
logarithmic barrier function defined by:

∀w ∈ R
r++, fb(w) = −

r∑
�=1

ln(w�).

Ignoring the issue of the domain of the barrier function, show that Problem (19.10) has
first-order necessary conditions given by (19.11) (19.14):

∇ f (x) + J (x)†λ + K (x)†µ = 0,

g(x) = 0,

h(x) + w = 0,

t∇ fb(w) + µ = 0,

where J and K are the Jacobians of g and h, respectively.

19.6 Let Q ∈ Rn×n be positive definite, Q(�) ∈ Rn×n, � = 1, . . . , r , all be positive
definite, c ∈ Rn, c(�) ∈ Rn, � = 1, . . . , r , d(�) ∈ R, � = 1, . . . , r , A ∈ Rm×n, b ∈ Rm ,
and define f : Rn → R and h : Rn → Rr by:

∀x ∈ R
n, f (x) = 1

2
x†Qx + c†x,

∀x ∈ R
n,∀� = 1, . . . , r, h�(x) = 1

2
x†Q(�)x + [c(�)]

†
x + d(�),

746 Algorithms for non-linear inequality-constrained minimization

and consider the problem minx∈�n { f (x)|Ax = b, h(x) ≤ 0} and its Lagrangian L : Rn ×
Rm × Rr → R and dual function D : Rm × Rn → R ∪ {−∞} defined by:

∀x ∈ R
n, ∀λ ∈ R

m,∀µ ∈ R
r ,L(x, λ, µ) = f (x) + λ†(Ax − b) + µ†h(x),

∀λ ∈ R
m, µ ∈ R

r ,D(λ, µ) = inf
x∈�n

L(x, λ, µ).

(i) Let λ ∈ Rm and µ ∈ Rr+ and find necessary and sufficient conditions to minimize
L(•, λ, µ).

(ii) Evaluate the dual function for λ ∈ Rm, µ ∈ Rr+ and show that the effective domain
contains Rm × Rr+.

(iii) For a fixed value of µ ∈ Rr+, find the maximizer of the dual over λ ∈ Rm .

Sensitivity

19.7 Use the general case result in Corollary 19.7 for Problem (19.16) to prove the special
case result in Corollary 19.7 for Problem (19.17).

19.8 Consider the example non-linear program, Problem (2.19), from Section 2.3.2.3:

min
x∈�2

{ f (x)|g(x) = 0, h(x) ≤ 0},

where f : R2 → R, g : R2 → R2, and h : R2 → R are defined by:

∀x ∈ R
2, f (x) = (x1)

2 + 2(x2)
2,

∀x ∈ R
2, g(x) =

[
2 − x2 − sin(x3)−x1 + sin(x3)

]
,

∀x ∈ R
2, h(x) = sin(x3) − 0.5.

(i) Use the MATLAB function fmincon to find the minimizer and minimum of this
problem. Write MATLAB M-files to evaluate functions and Jacobians. Use an

initial guess of x (0) =
[

1
1
0

]
.

(ii) Now suppose that the first entry in the equality constraint changed to 2 − x2 −
sin(x3) = −γ1, where γ1 = 0.1. Use Corollary 19.7 to estimate the change in the
minimum.

(iii) Use the MATLAB function fmincon to find the minimizer and minimum of the
problem in Part (ii). Compare to the result of Part (ii).

(iv) Now suppose that the inequality constraint changed to sin(x3) − 0.5 ≤ −η, where
η = 0.1. Use Corollary 19.7 to estimate the change in the minimum.

(v) Use the MATLAB function fmincon to find the minimizer and minimum of the
problem in Part (iv). Compare to the result of Part (iv).

(vi) Now suppose that the first entry in the equality constraint changed to 2 − x2 −
sin(x3) = −γ1, where γ1 = 0.1, and the inequality constraint changed to sin(x3)−
0.5 ≤ −η, where η = 0.1. Use Corollary 19.7 to estimate the change in the
minimum.

Exercises 747

(vii) Use the MATLAB function fmincon to find the minimizer and minimum of the
problem in Part (vi). Compare to the result of Part (vi).

20

Solution of the non-linear inequality-constrained case
studies

In this chapter we will solve the non-linear inequality-constrained case studies:

• optimal margin pattern classification (Section 20.1),
• sizing of interconnects in integrated circuits (Section 20.2), and
• optimal power flow (Section 20.3).

20.1 Optimal margin pattern classification

Recall the first transformation of the optimal margin pattern classification case
study in Section 18.4.1.1. This transformation yielded the maximization Prob-
lem (18.3), which we recast into a minimization problem as:

min
z∈�,x∈�n

{−z
∣∣1z + Cx ≤ 0, ‖β‖2

2 ≤ 1}. (20.1)

This problem has a linear objective, r linear inequality constraints, and one convex
quadratic inequality constraint. This can be solved using the algorithms developed
in Section 19.4. Exercise 20.1 shows that the dual of Problem (20.1) is equivalent
to a quadratic program.

20.2 Sizing of interconnects in integrated circuits

In this section, we solve the sizing of interconnects in integrated circuits case study
from Section 15.5. We recall and analyze the problem in Section 20.2.1, describe
algorithms in Section 20.2.2, and sketch sensitivity analysis in Section 20.2.3.

20.2.1 Problem and analysis

Recall Problem (15.19):

min
x∈�n

{ f (x)|h̃(x) ≤ h, x ≤ x ≤ x},

748

20.2 Sizing of interconnects in integrated circuits 749

which used the Elmore delay approximation h̃ to the actual delay h. This problem
has a linear objective but has inequality constraints defined in terms of functions
that are, in general, non-convex as shown in Exercise 15.14. However, as discussed
in Section 15.5.4 and Exercise 15.14, the objective and constraint functions are
posynomial. (See Definition 3.1.)

As discussed in Exercise 3.33, each posynomial function can be transformed into
a convex function through a transformation involving the exponential of each entry
of the decision vector and the logarithm of the function. (See Exercise 20.2.) The
transformed problem is convex and therefore possesses at most one local minimum.
Because the transformation of the decision vector is one-to-one and onto and the
transformations of the objective and constraints are monotonically increasing then,
by Theorems 3.1, 3.5, and 3.9, the original problem also possesses at most one
local minimum.

20.2.2 Algorithms

20.2.2.1 Primal algorithm

In principle, we can apply the optimization techniques developed in Section 19.4 to
either the original problem or the transformed problem and be guaranteed that any
local minimum is the global minimum. (See Exercise 20.2.) However, since the
inequality constraint functions are not convex in the original problem, the Hessian
of the Lagrangian for the original problem will typically not be positive definite
and so we can expect that pivots will be modified significantly during factorization,
potentially retarding the progress towards the minimizer.

20.2.2.2 Dual algorithm

Since the transformed problem is convex, we can also dualize the transformed
problem. (See Exercise 20.2.) Further transformation of the dual problem is
possible to simplify the dual problem to having linear constraints. (See [6, sec-
tions 11.5.1–11.5.2] for details.)

20.2.2.3 Accurate delay model

Recall Problem (15.20):

min
x∈�n

{ f (x)|h(x) ≤ h, x ≤ x ≤ x},

which used the more accurate delay model h instead of the Elmore delay model h̃.
In general, we cannot expect that h will have any particular functional form. That
is, we cannot expect that h will be posynomial. However, h̃ may be a reasonable
approximation of h. The algorithms we have described typically require both func-
tion evaluations and derivative evaluations. To solve the problem with the more

750 Solution of the non-linear inequality-constrained case studies

accurate delay model, we can combine accurate delay values calculated according
to h with approximate first and second derivatives calculated from the functional
form of h̃. Furthermore, we can apply such an algorithm to the original problem or
to the transformed problem.

20.2.3 Changes

Corollary 19.7 and extensions can be used to estimate the changes in area and width
due to changes in parameters and allowed delays. (See Exercise 20.4.)

20.3 Optimal power flow

Recall Problem (15.23):

min
x∈�n

{ f (x)|g(x) = 0, x ≤ x ≤ x, h ≤ h(x) ≤ h}.
This problem has non-linear objective and equality and inequality constraint func-
tions. As argued in Section 15.6.4.1, however, under certain assumptions the prob-
lem is equivalent to a convex problem. We can use the primal–dual interior point
algorithm sketched in Section 19.4.1 to solve it [126]. (See Exercise 20.5.) Corol-
lary 19.7 and extensions can be used to estimate the changes in costs due to changes
in demand and changes in line and generator capacities. (See Exercise 20.6.)

Exercises

Optimal margin pattern classification

20.1 Consider Problem (20.1):

min
z∈�,x∈�n

{−z|1z + Cx ≤ 0, ‖β‖2
2 ≤ 1}.

(i) Write down the Lagrangian L and the dual function D explicitly for this problem.

For convenience in the rest of the exercise, partition x into x =
[

β
γ

]
and partition

C into C = [
Ĉ c

]
, where Ĉ ∈ Rr×(n−1) is the first n − 1 columns of C and

c ∈ Rm is its last column. Use µ ∈ Rr for the dual variables for the constraints
1z + Cx ≤ 0 and use σ ∈ R for the dual variable for the constraint ‖β‖2

2 ≤ 1.
(ii) Find the effective domain E of the dual function.
(iii) Evaluate the dual function D on the effective domain.
(iv) Use hierarchical decomposition Theorem 3.11 to simplify the dual problem by op-

timizing over σ ≥ 0.
(v) Show that the resulting problem is equivalent to a quadratic program.

(See [15, section 8.6.1] for the dual of a related problem.)

Exercises 751

�	
�
Vb

Rb R2 �
C2

�
R4�

C4

�
C3

R3

R6 �
C6

�
Cd

R5 �
C5

�
Cc

���
���

���
���

Fig. 20.1. The equivalent
circuit of interconnect be-
tween gate b and gates
c and d with resistive
capacitive segments, re-
peated from Figure 15.8.

Sizing of interconnects in integrated circuits

20.2 Consider Problem (15.19):

min
x∈�n

{ f (x)|h̃(x) ≤ h, x ≤ x ≤ x}.

(i) Apply the transformation described in Exercise 3.33 to Problem (15.19) to form a
convex problem.

(ii) Prove that any local minimizer of Problem (15.19) is a global minimizer.
(iii) Find the dual of the transformed problem from Part (i).

20.3 Consider the resistive capacitive model of interconnect shown in Figure 15.8 and
repeated in Figure 20.1. The figure shows part of the circuit between gate b (having driving
voltage Vb) and buffers c and d (having input capacitances Cc and Cd, respectively).

Suppose that the buffer input capacitances are Cc = Cd = 1 in normalized capacitive
units and that Rb = 1 in normalized resistive units. Also assume that the length of each
segment is equal to 1 in normalized length units. Assume that we can choose the width
of any of the segments k = 2, 3, . . . , 6 illustrated in the figure, which will have the effect
of changing the segment resistance and capacitance. In normalized width units, the k-th
segment can have width xk in the range:

xk = 1 ≤ xk ≤ 5 = xk .

We assume that the width can be chosen as a continuous variable. The dependence of
resistance on width is specified in (15.16), which we repeat:

∀k = 1, . . . , n, Rk = κRk/xk,

where κRk = 1 in normalized units for all segments. The dependence of capacitance on
width is specified in (15.17), which we repeat:

∀k = 1, . . . , n,Ck = κCkxk + CFk,

752 Solution of the non-linear inequality-constrained case studies

where κCk = 1 and CFk = 1 in normalized units.

(i) Calculate the Elmore delay from the driving voltage Vb to the input of buffer c,
assuming that all segment widths are equal to 1.

(ii) Use the MATLAB function fmincon to solve the problem of finding the widths
that minimize the Elmore delay from the driving voltage Vb to the input of buffer c.

(iii) For the widths chosen in Part (ii), find the Elmore delay from the driving voltage
Vb to the input of buffer d.

(iv) Use the MATLAB function fmincon to solve the problem of finding the widths
that minimize the maximum of the Elmore delays from:

• the driving voltage Vb to the input of buffer c, and
• the driving voltage Vb to the input of buffer d.

(Hint: You should first transform the problem using Theorem 3.4.)
(v) Define h ∈ R to be the average of the delays calculated in Parts (i) and (iv). Use the

MATLAB function fmincon to solve Problem (15.19) where we want to minimize
the area of interconnect subject to the delay constraint that the delays from voltage
Vb to buffer c and to buffer d are both less than or equal to h.

(vi) Use the MATLAB function fmincon to solve the problem in Part (v) using the
transformed version of the problem from Exercise 20.2.

20.4 Consider the solution of Exercise 20.3, Part (v).

(i) Using sensitivity analysis, estimate the change in the minimum area if the delay
constraints were changed so that the delays were both required to be less than 0.9h.

(ii) Use the MATLAB function fmincon to calculate the minimum area if the delay
constraints were changed so that the delays were both required to be less than 0.9h.

(iii) Compare the results of the previous parts.

Optimal power flow

20.5 Using the program developed in Exercise 8.13 as a basis, develop an optimal power
flow program that minimizes the cost of production of the generators using the primal-dual
interior point algorithm. Test the program using the line data from Exercise 8.12. That is,
the π -equivalent line models have:

• shunt elements purely capacitive with admittance 0.01
√

−1 so that the combined
shunt elements are:

Y1 = Y2 = Y3 = 0.02
√

−1,

and
• series elements having admittances:

Y12 = (0.01 + 0.1
√

−1)
−1

,

Y23 = (0.015 + 0.15
√

−1)
−1

,

Y31 = (0.02 + 0.2
√

−1)
−1

.

Furthermore, assume the following.

Exercises 753

• There are generators at bus 1 and bus 2 and a load of 1 + 0.5
√

−1 at bus 3.
• All lines have real power flow limits of 0.75.
• All voltage magnitudes constrained to be between 0.95 and 1.05 per unit.
• Zero cost for reactive power production.
• Costs for real power production at the generators:

f1(P1) = P1 × 1
$

per unit
+ (P1)

2 × 0.1
$

(per unit)2
,

f2(P2) = P2 × 1.1
$

per unit
+ (P2)

2 × 0.05
$

(per unit)2
,

where Pk is the real power production at generator k = 1, 2, with 0 ≤ Pk ≤ 1 for
each generator.

• No other constraints on production.

Use as initial guess:

x (0) =

⎡⎢⎢⎣
P(0)

Q(0)

u(0)

θ (0)

⎤⎥⎥⎦ =
⎡⎢⎣ 0

0
1
0

⎤⎥⎦ .

Use as stopping criterion that all of the following are satisfied:

• teffective < 10−5,
• power flow equations are satisfied to within 0.0001 per unit, and
• the change in successive iterates is less than 0.0001 per unit.

Compare your result to that of Exercise 17.16.

20.6 Consider the optimal power flow problem specified in Exercise 20.5.

(i) Use the MATLAB function fmincon to solve the problem. Use as initial guess
x (0) as specified in Exercise 20.5.

(ii) Using sensitivity analysis, estimate the change in the minimum if the real and reac-
tive power load at bus 3 increased by 5%.

(iii) Use the MATLAB function fmincon to calculate the minimum if the real and
reactive power load at bus 3 increased by 5%. Use the solution from Part (i) as
initial guess. Compare the result to the previous part.

References

[1] A. Abur and A. Gomez-Exposito. Power System State Estimation. New
York: Marcel Dekker, 2004.

[2] F. L. Alvarado, W. F. Tinney, and M. K. Enns. Sparsity in large-scale net-
work computation. In: C. T. Leondes (editor), Advances in Electric Power
and Energy Conversion System Dynamics and Control. San Diego, CA: Aca-
demic Press, Inc., 1991.

[3] R. Baldick. Variation of distribution factors with loading. IEEE Transac-
tions on Power Systems, 18(4):1316–1323, 2003.

[4] R. Baldick, K. A. Clements, Z. Pinjo-Dzigal, and P. W. Davis. Implementing
nonquadratic objective functions for state estimation and bad data rejection.
IEEE Transactions on Power Systems, 12(1):376–382, 1997.

[5] R. Baldick, A. B. Kahng, A. Kennings, and I. L. Markov. Efficient opti-
mization by modifying the objective function: Applications to timing-driven
VLSI layout. IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications, 48(8):947–956, 2001.

[6] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear Programming:
Theory and Algorithms. New York: John Wiley and Sons, Inc., Second
Edition, 1993.

[7] R. E. Bellman and S. E. Dreyfus. Applied Dynamic Programming. Prince-
ton: Princeton University Press, 1962.

[8] A. R. Bergen and V. Vittal. Power Systems Analysis. Upper Saddle River,
NJ: Prentice-Hall, Second Edition, 2000.

[9] D. Bertsekas and R. Gallager. Data Networks. Upper Saddle River, NJ:
Prentice Hall, Second Edition, 1992.

[10] D. P. Bertsekas. Dynamic Programming and Optimal Control. Belmont,
MA: Athena Scientific, 1995.

[11] D. P. Bertsekas. Nonlinear Programming. Belmont, MA: Athena Scientific,
1995.

754

REFERENCES 755

[12] D. Bertsimas and J. N. Tsitsiklis. Linear Optimization. Belmont, MA:
Athena Scientific, 1997.

[13] M. Bhattacharya and P. Mazumder. Augmentation of SPICE for simula-
tion of circuits containing resonant tunneling diodes. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 20(1):39–50,
2001.

[14] B. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin
classifiers. In: Proceedings of the Fifth Annual ACM Workshop on Compu-
tational Learning Theory COLT. ACM Press, July 1992.

[15] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge and New
York: Cambridge University Press, 2004.

[16] S. P. Boyd and C. H. Barratt. Linear Controller Design: Limits of Perfor-
mance. Englewood Cliffs, NJ: Prentice Hall, 1991.

[17] M. A. Branch and A. Grace. The Optimization Toolbox User’s Guide. The
MathWorks, Inc., www.mathworks.com, Natick, MA, 1996.

[18] A. Brooke, D. Kendrick, and A. Meeraus. GAMS User’s Guide. Redwood
City, CA: The Scientific Press, 1990.

[19] F. M. Callier and C. A. Desoer. Multivariable Feedback Systems. New York:
Springer, 1982.

[20] J. Carpentier. Contribution a l’etude du dispatching economique. Bulletin
de la Societe Française Electriciens, 3:431–437, 1962.

[21] G. W. Carter and A. Richardson. Techniques of Circuit Analysis. Cambridge:
Cambridge University Press, 1972.

[22] E. Castillo, A. J. Conejo, P. Pedregal, R. Garcia, and N. Alguacil. Building
and Solving Mathematical Programming Models in Engineering and Sci-
ence. New York: John Wiley and Sons, Inc., 2002.

[23] R. M. Chamberlain, M. J. D. Powell, D. Lemarechal, and H. C. Pedersen.
The watchdog technique for forcing convergence in algorithms for con-
strained optimization. Mathematical Programming Study, 16:1–17, 1982.

[24] H. Chao and S. Peck. A market mechanism for electric power transmission.
Journal of Regulatory Economics, 10(1):25–59, 1996.

[25] C. C. N. Chu and D. F. Wong. A new approach to simultaneous buffer inser-
tion and wire sizing. In: IEEE/ACM International Conference on Computer-
Aided Design, pages 614–621. IEEE/ACM, November 1997.

[26] G. Cohen and D. L. Zhu. Decomposition coordination methods in large
scale optimization problems: The nondifferentiable case and the use of aug-
mented Lagrangians. In: J. B. Cruz (editor), Advances in Large Scale Sys-
tems, Volume 1, pages 203–266. Greenwich, CT: JAI Press Inc., 1984.

[27] C. Cuvelier, A. Segal, and A. van Steenhoven. Finite Element Methods and
Navier–Stokes Equations. Boston, MA: Kluwer Academic, 1986.

756 REFERENCES

[28] G. B. Dantzig and M. N. Thapa. Linear Programming, 1: Introduction. New
York: Springer, 1997.

[29] J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Op-
timization and Nonlinear Equations. Englewood Cliffs, NJ: Prentice Hall,
1983.

[30] J. J. Dongarra, G. A. Geist, and C. H. Romine. ALGORITHM 710 FOR-
TRAN subroutines for computing the eigenvalues and eigenvectors of a gen-
eral matrix by reduction to general tridiagonal form. ACM Transactions on
Mathematical Software, 18(4):392–400, 1992.

[31] R. Durrett. Probability: Theory and Examples. Pacific Grove, CA:
Wadsworth and Brooks/Cole, 1991.

[32] A. El-Rabbany. Introduction to GPS: The Global Positioning System.
Boston, MA: Artech House, 2002.

[33] W. C. Elmore. The transient response of damped linear networks with partic-
ular regard to wide-band amplifiers. Journal of Applied Physics, 19(1):55–
63, 1948.

[34] A. V. Fiacco. Introduction to Sensitivity and Stability Analysis in Nonlinear
Programming. New York: Academic Press, 1983.

[35] M. L. Fisher. The Lagrangian relaxation method for solving integer pro-
gramming problems. Management Science, 27(1):1–18, 1981.

[36] R. Fletcher and S. Leyffer. Nonlinear Programming without a Penalty Func-
tion. Technical Report Numerical Analysis Report NA/171, University of
Dundee, September 1997.

[37] F. Fourer and S. Mehrotra. Solving Symmetric Indefinite Systems in an
Interior-point Method for Linear Programming. Technical Report 92-01,
Department of Industrial Engineering and Management Sciences, North-
western University, Evanston, IL, 1992.

[38] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Mathematical Pro-
gramming Language. Murray Hill, NJ: AT&T Bell Laboratories, 1989.

[39] F. Galiana, H. Javidi, and S. McFee. On the application of a pre-conditioned
conjugate gradient algorithm to power network analysis. IEEE Transactions
on Power Systems, 9(2):629–636, 1994.

[40] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. San Francisco, CA: W. H. Freeman and
Company, 1979.

[41] A. M. Geoffrion. Elements of large scale mathematical programming part I:
Concepts. Management Science, 16(11):652–675, 1970.

[42] A. M. Geoffrion. Elements of large scale mathematical programming
part II: Synthesis of algorithms and bibliography. Management Science,
16(11):676–691, 1970.

REFERENCES 757

[43] A. M. Geoffrion. Generalized Benders decomposition. Journal of Optimiza-
tion Theory and Applications, 10(4):237–260, 1972.

[44] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. SNOPT: an SQP
algorithm for large-scale constrained optimization. SIAM Review, 47(1):99–
131, 2005.

[45] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. London:
Academic Press, Inc., 1981.

[46] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Reading, MA: Addison-Wesley Publishing, 1989.

[47] C. C. Gonzaga. Path-following methods in linear programming. SIAM Re-
view, 34(2):167–224, 1992.

[48] P. Grogono. Programming in Pascal. Reading, MA: Addison-Wesley, 1978.

[49] C. Guéret, C. Prins, and M. Sevaux. Applications of optimization with
Xpress-MP. Northants, United Kingdom: Dash Optimization, 2002.

[50] R. Gupta, B. Krauter, B. Tutuianu, J. Willis, and L. T. Pileggi. The Elmore
delay as a bound for RC trees with generalized input signals. In: ACM/IEEE
Conference on Design Automation, pages 364–369. IEEE/ACM, June 1995.

[51] M. Held, P. Wolfe, and H. P. Crowder. Validation of subgradient optimiza-
tion. Mathematical Programming, 6:62–88, 1974.

[52] D. S. Hochbaum, editor. Approximation Algorithms for NP-Hard Problems.
Boston, MA: PWS Publishing, 1997.

[53] P. J. Huber. Robust Statistics. New York: John Wiley and Sons, 1981.

[54] P. A. Jensen and J. F. Bard. Operations Research Models and Methods.
Hoboken: John Wiley and Sons, 2003.

[55] T. Kailath. Linear Systems. Prentice-Hall Information and System Sciences
Series. Englewood Cliffs, NJ: Prentice-Hall, 1980.

[56] S.-M. Kang and Y. Leblebici. CMOS Digital Integrated Circuits. Boston,
MA: McGraw-Hill, Second Edition, 1999.

[57] N. K. Karmarkar. A new polynomial-time algorithm for linear program-
ming. Combinatorics, 4:273–295, 1984.

[58] C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations.
Philadelphia, PA: SIAM, 1995.

[59] C. T. Kelley. Iterative Methods for Optimization. Philadelphia, PA: SIAM,
1999.

[60] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Engle-
wood Cliffs, NJ: Prentice-Hall, Inc., 1978.

[61] B. Kim and R. Baldick. Coarse-grained distributed optimal power flow.
IEEE Transactions on Power Systems, 12(2):932–939, 1997.

758 REFERENCES

[62] G. R. Krumpholz, K. A. Clements, and P. W. Davis. Power system observ-
ability: A practical algorithm using network topology. IEEE Transactions
on Power Apparatus and Systems, 99:1534–1542, 1980.

[63] P. R. Kumar and P. Varaiya. Stochastic Systems: Estimation, Identification,
and Adaptive Control. Prentice-Hall Information and System Sciences Se-
ries. Englewood Cliffs, NJ: Prentice Hall, 1986.

[64] R. E. Larson and J. L. Casti. Principles of Dynamic Programming, Part I:
Basic Analytic and Computational Methods. New York: Marcel Dekker,
Inc., 1978.

[65] L. S. Lasdon, J. Plummer, and G. Yu. Primal–dual and primal interior point
algorithms for general nonlinear programs. ORSA Journal on Computing,
7(3):321–332, 1995.

[66] L. S. Lasdon and A. D. Warren. Generalized reduced gradient software
for linearly and nonlinearly constrained problems. In: H. J. Greenberg
(editor), Design and Implementation of Optimization Software, NATO Ad-
vanced Study Institutes Series. Series E, Applied Sciences No. 28. Alphen
aan den Rijn, Netherlands: Sijthoff and Noordhoff, 1978.

[67] E. L. Lawler. Combinatorial Optimization: Networks and Matroids. New
York: Holt, Rinehart and Winston, 1976.

[68] Lindo Systems, Inc., Chicago, IL. The LINDO API User’s Manual, 2005.
Available from www.lindo.com.

[69] M. Livio. The Equation That Couldn’t Be Solved. New York, NY: Simon
and Schuster, 2005.

[70] D. G. Luenberger. Linear and Nonlinear Programming. Reading, MA:
Addison-Wesley Publishing Company, Second Edition, 1984.

[71] H. M. Markowitz. The elimination form of the inverse and its application to
linear programming. Management Science, 3:255–269, 1957.

[72] J. E. Marsden and A. B. Tromba. Vector Calculus. New York: W. H. Free-
man and Company, 2nd Edition, 1981.

[73] R. Marsten, R. Subramanian, M. Saltzman, I. Lustig, and D. Shanno. Inte-
rior point methods for linear programming: Just call Newton, Lagrange, and
Fiacco and McCormick. Interfaces, 20(4):105–116, 1990.

[74] MathWorks, Inc. The Student Edition of MATLAB. Englewood Cliffs, NJ:
Prentice-Hall, 1995.

[75] Microsoft Corporation, Washington. Microsoft Excel, 1994.
[76] K. M. Miettinen. Nonlinear Multiobjective Optimization. Boston, MA:

Kluwer Academic Publishers, 1998.
[77] A. R. Mitchell and R. A. Wait. The Finite Element Method in Partial Differ-

ential Equations. London and New York: Wiley, 1977.

REFERENCES 759

[78] C. B. Moler and G. W. Stewart. An algorithm for generalized matrix eigen-
value problems. SIAM Journal on Numerical Analysis, 10(2):241–256,
1973.

[79] J. Momoh. Electric Power System Applications of Optimization. New York
and Basel: Marcel Dekker, Inc., 2001.

[80] A. Monticelli. State Estimation in Electric Power Systems: A Generalized
Approach. Power Electronics and Power Systems. Boston, MA: Kluwer
Academic, 1999.

[81] J. J. Moré and S. J. Wright. Optimization Software Guide. Philadelphia, PA:
Society for Industrial and Applied Mathematics, 1993.

[82] J. R. Munkres. Topology: A First Course. Englewood Cliffs, NJ: Prentice-
Hall, Inc., 1975.

[83] B. A. Murtagh. Advanced Linear Programming: Computation and Practice.
New York and London: McGraw-Hill International Book, 1981.

[84] S. G. Nash and A. Sofer. Linear and Nonlinear Programming. New York:
McGraw-Hill, 1996.

[85] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimiza-
tion. New York: John Wiley and Sons, 1988.

[86] Y. Nesterov and A. S. Nemirovskii. Interior-point Polynomial Algorithms in
Convex Programming. Philadelphia, PA: SIAM, 1993.

[87] A. Neumaier. Complete search in continuous global optimization and con-
straint satisfaction. Acta Numerica, 13:271–369, 2004.

[88] The Numerical Algorithms Group Ltd, Oxford, UK. NAG C Library Man-
ual, Mark 7, 2002. Available from www.nag.co.uk.

[89] K. Ogata. Discrete-Time Control Systems. Englewood Cliffs, NJ: Prentice-
Hall, Inc., 1987.

[90] V. Y. Pan. Solving a polynomial equation: Some history and recent progress.
SIAM Review, 39(2):187–220, 1997.

[91] P. M. Pardalos and J. B. Rosen. Constrained Global Optimization: Algo-
rithms and Applications. Lecture Notes in Computer Science: 268. Berlin
and New York: Springer-Verlag, 1987.

[92] R. G. Parker and R. L. Rardin. Discrete Optimization. San Diego, CA:
Academic Press, Inc., 1988.

[93] J. Peng, C. Roos, and T. Terlaky. Self-Regularity: A New Paradigm for
Primal-Dual Interior-Point Algorithms. Princeton and Oxford: Princeton
University Press, 2002.

[94] G. Peters and J. H. Wilkinson. Eigenvectors of real and complex matrices
by LR and QR triangularizations. Numerische Mathematik, 16(3):181–204,
1970.

760 REFERENCES

[95] L. T. Pillage, R. A. Rohrer, and C. Visweswariah. Electronic Circuit and
System Simulation Methods. New York: McGraw-Hill, Inc., 1995.

[96] E. Polak. Computational Methods in Optimization. New York: Academic
Press, 1971.

[97] B. T. Polyak. Minimization of unsmooth functionals. USSR Computational
Mathematics and Mathematical Physics, 9(3):14–29, 1969.

[98] S. J. Qin and T. A. Badgwell. An overview of industrial model predictive
control technology. In: Proceedings of the Fifth International Conference
on Chemical Process Control: Chemical Process Control-V, Tahoe City, CA.
New York: American Institute of Chemical Engineers, 1997.

[99] N. S. Rau. Optimization Principles: Practical Applications to the Operation
and Markets of the Electric Power Industry. Piscataway, NJ: IEEE Press,
2003.

[100] R. T. Rockafellar. Convex Analysis. Princeton, NJ: Princeton University
Press, 1970.

[101] R. Rohrer. Successive secants in the solution of nonlinear network equa-
tions. In: H. S. Wilf and F. Harary (editors), Mathematical Aspects of
Electrical Network Analysis, Volume III, pages 103–112. Providence, RI:
American Mathematical Society, 1971.

[102] C. Roos, T. Terlaky, and J.-P. Vial. Theory and Algorithms for Linear Opti-
mization. Chichester: John Wiley and Sons, 1997.

[103] S. M. Ross. Introduction to Probability and Statistics for Engineers and
Scientists. New York: John Wiley and Sons, 1987.

[104] H. L. Royden. Real Analysis. New York and London: Macmillan, Second
Edition, 1968.

[105] S. Schaible. Fractional programming: A recent survey. Journal of Statistics
and Management Systems, 5(1–3):63–86, 2002.

[106] K. Shimuzu, Y. Ishizuka, and J. F. Bard. Nondifferentiable and Two-Level
Mathematical Programming. Boston, MA: Kluwer Academic Publishers,
1997.

[107] N. Z. Shor. Minimization Methods for Non-Differentiable Functions. Berlin:
Springer-Verlag, 1985.

[108] P. P. Silvester and R. L. Ferrari. Finite Elements for Electrical Engineers.
Cambridge: Cambridge University Press, 1996.

[109] H. A. Simon. A behavioral model of rational choice. Quantitative Journal
of Economics, 69:174–183, 1955.

[110] S. Smale. Newton’s method estimates from data at one point. In: R. E.
Ewing, K. I. Gross, and C. F. Martin (editors), The Merging of Disciplines:
New Directions in Pure, Applied, and Computational Mathematics, pages
185–196. New York: Springer Verlag, 1986.

REFERENCES 761

[111] M. Spivak. Calculus. London and Menlo Park: W. A. Benjamin, Inc., 1967.
[112] I. Stewart. Galois Theory. London: Chapman and Hall, 1973.
[113] M. Tawarmalani and N. V. Sahinidis. Convexification and Global Optimiza-

tion in Continuous and Mixed-Integer Nonlinear Programming. Nonconvex
Optimization and Its Applications. Boston, MA: Kluwer Academic, 2002.

[114] G. B. Thomas, Jr. and R. L. Finney. Calculus and Analytic Geometry. Read-
ing, MA: Addison-Wesley, Ninth Edition, 1996.

[115] W. M. Thorburn. Occam’s razor. Mind, XXIV(2):287–288, 1915.
[116] R. J. Vanderbei. Symmetric Quasi-definite Matrices. Technical Report SOR-

91-10, School of Engineering and Applied Science, Department of Civil
Engineering and Operations Research, Princeton University, 1991.

[117] G. N. Vanderplaats. Numerical Optimization Techniques for Engineering
Design. New York: McGraw-Hill, Inc., 1984.

[118] S. B. Vardeman and J. M. Jobe. Basic Engineering Data Collection and
Analysis. Pacific Grove, CA: Duxbury Brooks/Cole, 2001.

[119] H. R. Varian. Microeconomic Analysis. New York: W. W. Norton and
Company, Third Edition, 1992.

[120] Visual Numerics, Inc., San Ramon, CA. IMSL C Numerical Library: User’s
Guide, 2003. Available from www.vni.com.

[121] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford and New York:
Oxford University Press, 1965.

[122] L. A. Wolsey. Integer Programming. New York: John Wiley and Sons, Inc.,
1998.

[123] A. J. Wood and B. F. Wollenberg. Power Generation, Operation, and Con-
trol. New York: Wiley, Second Edition, 1996.

[124] S. J. Wright. Primal Dual Interior Point Methods. Philadelphia, PA: SIAM,
1997.

[125] F. F. Wu. Course Notes for EE215, Power Systems. Department of Electri-
cal Engineering and Computer Sciences, University of California, Berkeley,
1988.

[126] Y.-C. Wu, A. S. Debs, and R. E. Marsten. A direct nonlinear predictor-
corrector primal-dual interior point algorithm for optimal power flows. IEEE
Transactions on Power Systems, 9(2):876–883, 1994.

Index

LU factorization of symmetric matrix, 205
L1 norm, 782
L2 norm, 781
L∞ norm, 782
π equivalent circuit, 273

accumulation point, 52, 785
accumulation point of a sequence, 785
achieves minimum, 25
active constraint, 37
active set, 37
active set method, 620
addition of penalty function to objective, 107
additively separable, 121, 452
additively separable function, 779
adjoint sensitivity analysis, 221, 224
adjoint sensitivity circuit, 224
admittance, 168, 273
affine equality constraints, 463
affine function, 18, 778
affine inequality constraints, 669
affine subspace, 792
algorithm, 15
altering the feasible region, 132
angle of complex number, 218, 269
annihilated, 196
Armijo step size rule, 321
arrowhead matrix, 249
artificial variables, 627
ascent direction, 408
asymptotic convergence rate, 53
augmented Lagrangian, 494
augmented objective, 109
average cost per unit of production, 452
average flow, 566

backwards substitution, 189, 191
bad data detection, 374
banded matrix, 217
barrier function, 106, 114, 631
barrier objective, 631, 633, 693, 739
barrier parameter, 631
barrier problem, 634, 693, 739

base units, 270
basic operation of computer, 48
basis, 238, 240, 794
Bender’s decomposition, 139
best effort service, 567
BFGS update, 296
binding constraint, 37
bipolar transistors, 262
black out, 598
block pivoting, 218
blocks, 208
bound on norms, 783
boundary, 27, 38, 790
bounded below, 26
bounded set, 791
branch and bound, 137
branch constitutive relations, 164
branch currents, 164
branches, 162
Broyden family, 296
Broyden, Fletcher, Goldfarb, Shanno update, 296
buffer, 592
bus, 268
bus admittance matrix, 275

calibrated measurement, 366
calibration error, 366
calibration function, 366
Cartesian product, 16, 137, 450, 772
Cauchy criterion, 301
Cauchy sequence, 301
central difference approximation, 294
central limit theorem, 368
central path, 635
changing the functional form, 132
characteristic equation, 21, 784
characteristic polynomial, 21
Cholesky factorization, 206
chord method, 293, 306
chord update, 293
circuit breakers, 267
classified patterns, 577
clock edge, 587

762

Index 763

closed ball, 790
closed set, 790
clustering patterns, 577
CMOS, 590
coefficient matrix, 18, 168, 186
column rank, 794
column sub matrix, 794
column vector, 772
commensurable, 24
communication links, 562
communication nodes, 562
commutativity with inverse, 793
compatible norms, 784
complementary metal oxide semiconductor, 590
complementary slackness, 608
complementary slackness conditions, 670, 728
complete orthogonal factorization, 241, 431
complex conjugate, 276, 776
complex numbers, 21, 218
complex power, 276
complex power flow, 597
components, 162, 772
concave function, 69
condition number, 230
condition number analysis, 230
conditions for dual optimum, 487, 683, 736
conditions for positive definite matrix, 207
conductances, 168
congested link, 568
conjugate gradient method, 242, 297, 410
connected circuit, 165
connected segments, 591
conservation law, 166
consistent equations, 236, 241
constants, 775
constraint qualification, 533, 724, 728
constraint set, 24
containment, 771
contingency study, 268
continuous function, 785
continuous variables, 8
contour set, 27
contraction mapping, 303, 305
contraction mapping theorem, 298
convergence of Cauchy sequence, 302
convergent sequence, 51, 785
convex function, 15, 68
convex level sets, 70
convex problem, 73
convex set, 15, 59
convexity, 37
corresponding directions, 422
coupling constraints, 691
Cramér’s rule, 186, 188
critical point, 382, 388
current source, 162
customer utility, 602
cutting plane, 136

damped Newton method, 319
DC optimal power flow, 705

DC power flow, 283
decision function, 578
decision vector, 16
decomposed, 144, 491
decomposition along range and null spaces, 792
decomposition of primal problem, 691
decoupled Newton Raphson update, 346
degenerate constraints, 615, 675, 731
density, 248
dependent variables, 128, 164, 363
derivative, 786
descent direction, 385, 387
descent direction for unconstrained problem, 382
destination node, 562, 565
determinant, 188, 774
diagonal, 773, 792
diagonal matrix, 773
diagonal pivoting, 198
diagonally dominant matrix, 175, 773
dielectric, 327
difference equation, 179
differentiation, 786
diode, 260
direct algorithm, 15, 48
direct search, 48
direct sensitivity analysis, 221
direct sensitivity circuit, 222
directional derivative, 77, 386, 787
discontinuous function, 44
discrete optimization, 9, 34
discrete Newton method, 294, 409
distributed parameter circuits, 273
divide and conquer, 136
dodecahedron, 39, 725
domain, 16, 774
double sided functional inequalities, 40
double sided inequalities on variables, 40
downstream segments, 591
dual feasible, 688
dual function, 140, 485, 544, 680, 734
dual function is concave, 140
dual problem, 139, 142, 682, 735
dual variables, 139, 476
duality for convex non linear inequality constrained

problems, 735
duality for linear equality constrained problems, 486
duality for linear inequality constrained problems,

682
duality gap, 142
dynamic programming, 462

economic dispatch, 448, 593
edge, 39, 726
effective domain, 140, 485, 680, 734
eigenvalue, 21, 333, 784
eigenvector, 21, 784
elimination of variables, 19, 127, 128, 164
Elmore delay, 588
empty set, 25
entries, 772
envelope theorem, 418, 512

764 Index

equality constrained optimization, 30
equilibrium, 24
Euclidean length, 781
Euclidean space, 16
existence of minimum and minimizer, 46
existential quantifier, 771
expected flow, 566
exponential distribution, 563
exponentiation, 777
extended real function, 47, 777
extended real number, 41, 777
extrapolated, 451
extreme point, 75

face, 39, 726
fast decoupled Newton Raphson updates, 349
feasible point, 24
feasible region, 24
feasible set, 24
feature space, 578
feedback controller, 177
fill ins, 214
filter, 543
finite difference approximation, 294
finite element method, 122
first stage of LU factorization, 204
first order conditions, 387
first order necessary conditions, 382, 387, 388, 472,

476, 537, 538, 608, 728
first order necessary conditions for convex

inequality constrained minimum, 732
first order necessary conditions for linear

equality constrained minimum, 474
first order necessary conditions for linear

equality constrained minimum in terms of
Lagrange multipliers, 475

first order necessary conditions for linear
inequality constrained minimum, 670

first order necessary conditions for non linear
equality constrained minimum, 537

first order necessary conditions for non linear
inequality constrained minimum, 727

first order necessary conditions for non negatively
constrained minimum, 608

first order sufficient conditions for minimum of
convex objective, 393

first order sufficient conditions for minimum of
convex objective over affine equality constraints
and non negativity constraints, 618

first order sufficient conditions for minimum of
convex objective over convex set, 679, 732

first order sufficient conditions for minimum of
convex objective over linear constraints, 483, 484

first order Taylor approximation, 77, 286, 287
fixed point, 304
flat start, 343
flip flop, 266
floor plan, 582
flow balance constraint, 167
flow control, 602
flows on networks, 34

FONC, 382, 388, 472, 476, 537, 538, 608, 728
forward difference approximation, 294
forward direction, 260
forwards substitution, 189, 190
fringing capacitance, 328, 590
Frobenius norm, 785
full column rank, 794
full pivoting, 197
full row rank, 794
function, 774
fundamental theorem of calculus, 789

Gauss Newton method, 438
Gaussian distribution, 368
Gaussian elimination, 186
general stage of LU factorization, 204
generalized reduced gradient, 544
global convergence, 285, 316
global minimizer, 15
global minimum, 15, 62
gradient, 786
graph, 162
greatest lower bound, 41

Hankel matrix, 242
hard constraints, 111
Hessian, 389, 787
Hessian of the Lagrangian, 541, 730
hierarchical decomposition, 132
hierarchical decomposition theorem, 137
horizontal inflection point, 388
hyperplane, 39, 451, 468, 792

ideal conductors, 162
identity matrix, 774
ill conditioned problem, 48, 85, 187, 197
imaginary part of complex number, 218, 269
impedance, 168, 271
implicit function theorem, 131, 220, 324, 416, 510,

796
incident, 162
incommensurable, 24
inconsistent equations, 17, 44, 236, 240
incremental admittances, 335
incremental conductances, 282
indefinite matrix, 208
independent variables, 128, 164, 363
induced matrix norm, 783
inequality constrained optimization, 32
inf, 42
infeasible problem, 25
infeasible start, 741
infimum, 42
infinite precision, 48
infinity norm, 782
initial guess, 49, 50, 777
inner problem, 137, 142
integer optimization, 34, 661
integration of non negative functions, 789
inter arrival time, 563
interconnect, 582

Index 765

interior, 38, 726, 790
interior point, 790
interior point algorithm, 34, 631
inverse function, 781
inverse of a positive definite matrix is positive

definite, 208
inverse of matrix, 791
invertible matrix, 791
iterate, 49
iteration count, 777
iterative, 187
iterative algorithm, 15, 49, 242

Jacobian, 59, 289, 786, 787
Jensen’s inequality, 98
jointly Gaussian, 369
junction capacitance, 263

Kantorovich, 307
Karush Kuhn Tucker conditions, 611, 672
Kirchhoff’s current law, 166
Kirchhoff’s laws, 162
Kirchhoff’s voltage law, 165
KKT point, 611, 672
Kuhn Tucker conditions, 611, 672

l’Hôpital’s rule, 795
L segment, 589
ladder circuit, 162
Lagrange multipliers, 475, 476, 538
Lagrangian, 139, 476, 538, 673, 728
Lagrangian relaxation, 489
large change, 83, 187
least upper bound, 46
least squares fit, 427
least squares problem, 363, 425, 427
level set, 27
Levenberg Marquandt method, 409, 438
limit of sequence, 51, 785
limit point, 790
linear approximation, 118
linear combination, 793
linear convergence rate, 53
linear equality constraints, 463
linear function, 778
linear inequality constraints, 669
linear inequality constrained problem, 33
linear least squares problem, 427
linear optimization problem, 33
linear program, 33
linear simultaneous equations, 18
linear system, 178
linear time invariant system, 179
linear variety, 792
linearly constrained problem, 30
linearly dependent, 793
linearly independent, 236, 793
link, 162
Lipschitz condition, 303
Lipschitz continuity, 302
local convergence, 285

local minimizer, 15, 62
local minimum, 15, 62
logarithmic barrier function, 631
loop, 165
lower bound, 26, 42
lower triangle, 792
lower triangular matrix, 187, 792

magnitude of complex number, 218, 269
margin, 580
master problem, 137
matrix, 772
matrix exponential, 185
matrix norm, 783
maximization problem, 46
maximizer, 46
maximum, 46
maximum likelihood estimation, 370
maximum of convex function at extreme point, 76
measurement error, 366
measurement functions, 376
merit function, 459, 543
metal oxide semiconductor field effect transistor, 262
minimization of extended real functions, 47
minimization problem, 24
minimizer of a problem, 24
minimum feature size, 583
minimum of a problem, 24
minimum over a set, 25
minmax problem, 116
mismatch, 350
model transformation, 272
modified factorization, 318, 408
modified logarithmic barrier function, 632, 663
modified nodal analysis, 165, 183
monomial function, 134, 151
monotone function, 15, 56
monotonically decreasing function, 779
monotonically increasing function, 779
monotonically increasing transformation of

constraints, 133
monotonically increasing transformation of objective,

105
MOSFET, 262
multi objective optimization, 24
multi variate linear regression, 364
multiplicatively separable function, 779

negative definite, 794
negative semi definite, 794
neighborhood, 790
network flows, 34
neutral wire, 271
Newton decrement, 422
Newton Raphson method, 285
Newton Raphson step direction, 290, 402
Newton Raphson update, 290
nodal admittance matrix, 168
nodal voltages, 164
node, 162
non affine equality constraints, 529

766 Index

non linear equality constraints, 529
non linear least squares problem, 435
non linear optimization problem, 37
non linear program, 37
non linear regression, 373
non linear simultaneous equations, 20
non linearly constrained problem, 31
non negative orthant, 607, 772
non negatively constrained problem, 33
non negativity constraints, 607
non singular matrix, 55, 791
non smooth function, 45
non smooth optimization, 8
non square, 187
non strict minimizer, 67
not continuous, 44
null space, 55, 237, 791
null space of singular matrix, 793
number of fill ins using standard pivot, 215
numerical conditioning, 227

objective function, 23, 170, 223
observable, 440
Occam’s razor, 5, 163
one to one and onto correspondence, 781
one to one function, 781
ones matrix and vector, 774
onto function, 122, 473, 781
onto transformation of variables, 125
open ball, 790
open loop, 177
open set, 45, 790
operations, 48
optimal control, 16, 29, 177, 462
optimal or desired value of vector and function, 776
optimal routing, 563
optimization problems, 15, 22
optimizer, 46
optimum, 46
origin, 565
origin node, 562
origin destination pairs, 565
outage, 267
outer problem, 137, 142
outliers, 573

packets, 562
parameterized Lagrangian, 546, 698, 743
parameters, 364, 775
partial derivative, 786
partial dual, 741
partial duality for inequality constrained problems,

690
partial pivoting, 198
particular solution, 237
path, 565, 587
pattern, 577
penalized objective, 107, 491
penalty coefficient, 107
penalty function, 106, 107
penalty function to guarantee convexity of augmented

Lagrangian, 494

per unit, 270
per phase equivalent circuit, 271
perfect discrimination, 577
performance criterion, 170
phase 1, 628, 655
phase 2, 628, 655
phase shifting transformers, 594
phases, 270
phasor, 268
piece wise linearization, 118
pivot, 196
pivoted, 196
pivoting, 196
point of closure, 790
point wise maximum, 79
polar coordinates, 148
polynomial function, 49, 779
positive definite, 207, 794
positive definite Jacobian implies strictly monotone,

60
positive definite on a null space, 483, 795
positive semi definite, 207, 794
positive semi definite on a null space, 795
posynomial function, 134, 151, 593, 749
posynomial program, 153
power balance equations, 280
power flow equality constraints, 277
power flow study, 267
power set, 27
pre conditioning, 132, 232, 410
predictor corrector method, 658
primal decomposition, 143
primal interior point algorithm, 639
primal problem, 139, 486, 682, 735
primal variables, 476
primal dual algorithm, 689
primal dual interior point algorithm, 640
prior probability density function, 369
projected gradient, 473
projection, 138
projection on a set, 791
projection onto components, 791
protection equipment, 267, 598
pseudo inverse, 236, 241
pseudo measurements, 440

quadratic approximation, 118
quadratic convergence rate, 53
quadratic function, 20, 778
quadratic objective, 23
quadratic optimization problem, 35
quadratic program, 35
quasi convex function, 70
quasi Newton condition, 296
quasi Newton method, 296, 410
quasi steady state, 448, 563

random error, 291
range, 16, 774
range space, 240, 791
rank, 794

Index 767

rate of convergence, 52
reactive power, 276
real part of complex number, 218, 269
real power, 275
reciprocal barrier function, 631, 662, 711
rectangular coordinates, 148
reduced function, 129, 473
reduced gradient, 473
reduced Hessian, 482
redundant equations, 17, 167, 264
reference angle, 268
reference bus, 268
regular point of equality constraints, 530
regular point of inequality constraints, 724
regular solid, 726
relaxation, 135
relaxed problem, 135
remainder at a point, 287
residual, 366, 573
resistance, 162
resistivity, 589
resistor, 162
restriction, 58, 126, 775
reverse direction, 260
right hand side, 18, 168, 186
robust estimation, 573
router, 565
routing strategy, 563
row rank, 794
row sub matrix, 794
row vector, 772

satisficing, 5, 373, 563, 579, 584
scaling, 122, 204
scaling and pre conditioning, 132
secant approximation, 294
second derivative, 787
second derivative condition on convexity, 78
second order conditions, 389
second order necessary conditions, 382, 389, 390
second order sufficient conditions, 382, 391, 481,

482, 537, 540, 613, 674, 730
second order sufficient conditions for linear

equality constrained minimum, 481, 482
second order sufficient conditions for linear

inequality constrained minimum, 674, 730
second order sufficient conditions for non linear

equality constrained minimum, 540
second order sufficient conditions for non negatively

constrained minimum, 613
second order Taylor approximation, 411
secure, 598
security constraints, 598
segments, 584
semi definite programming, 29
sensitivity analysis, 15, 83, 169, 187
sensitivity of linear equality constrained minimum

and minimizer, 510, 512
sensitivity of linear inequality constrained minimum

and minimizer, 698

sensitivity of non linear equality constrained
minimum and minimizer, 545

sensitivity of non linear inequality constrained
minimum and minimizer, 742

sensitivity of solution of linear equations, 219
sensitivity of solutions of non linear equations, 324
sensitivity of unconstrained minimum and minimizer,

416
sequence, 777
series component, 273
set defined as subset, 789
set difference, 771
set of active constraints, 37
set of all subsets, 27
set of complex numbers, 772
set of integers, 772
set of minimizers, 25
set of real numbers, 772
set up time, 587
sets, 771
shadow price, 517
Shamanskii method, 293
Shamanskii update, 293
sheet capacitance, 328, 590
shunt components, 273
simplex, 629
simplex algorithm, 34, 629
simultaneous equations, 15, 17
single phase system, 270
single sided inequalities, 40
singleton set, 19
singular matrix, 791
sinks, 584
slack variables, 132, 692
Slater condition, 634, 693, 732, 739
small signal sensitivity analysis, 169
smooth function, 8, 45
smoothed version, 122
smoothing, 118
soft constraints, 111
SONC, 382, 389, 537
SOSC, 382, 391, 481, 482, 540, 613, 674, 730
sparse matrix, 175, 209
sparse vector, 211, 213
sparsity, 187
square matrix, 55, 773
square system, 55, 56
square system of equations, 286
square system of linear equations, 172
standard format, 35, 607, 628
standard pivot, 199
star point, 270
state, 177
state transition matrix, 179
stator, 270
steepest ascent, 487
steepest descent, 384
step direction, 50
step size, 50, 644
stock pile, 447
stopping criterion, 50, 298

768 Index

strict global minimizer, 67
strict global minimum, 67
strict inequality, 42
strict local minimizer, 67
strict local minimum, 67
strict subset, 771
strictly concave function, 69
strictly convex function, 68
strictly diagonally dominant matrix, 175, 773
strictly feasible, 38
strictly monotone function, 56
strictly monotonically decreasing function, 779
strictly monotonically increasing function, 779
strictly positive orthant, 633, 772
strong lower bound, 27
strongly diagonally dominant Jacobian, 293
sub gradient method, 489
sub sequence, 777
subset, 771
successive iterates, 777
successive linear programming, 119
successive quadratic programming, 120
sup, 46
super linear convergence rate, 53
supporting patterns, 582
supremum, 46
surrogate constraint, 594
swapping in, 620
swapping out, 620
symmetric matrix, 174, 778
symmetric rank one update, 226
symmetric rank two update, 226, 296
symmetry, 187

tangent, 287
tangent plane, 531
tangent plane to the contour set, 467
tangent subspace, 541
tangential, 420, 467
Taylor bound for convex functions, 76
Taylor’s theorem with remainder, 287, 289
terminal characteristics, 164, 260, 273
termination criterion, 50
test set, 68
three phase system, 270
time invariant system, 179
Toeplitz matrix, 242
total linear regression, 366, 368
totally unimodular, 661
training set, 577
transformation of constraint set, 134
transient simulation, 336, 588
transport models, 167
transportation problem, 34
transpose, 33, 206, 772, 773
tri diagonal matrix, 217
triangle inequality, 782
triangular system, 187, 189
trust region approach, 414
tunnel diode, 265

unbounded above, 46

unbounded below, 26
unconstrained optimization, 29
uniqueness of minimum for convex functions, 71
uniqueness of solution for strictly monotone

functions, 57
uniqueness of solution to first order conditions, 394
unit commitment, 448
unitary matrix, 235
universal quantifier, 771
unobservable system, 439
update, 50
upper triangle, 792
upper triangular matrix, 186, 792

vector, 772
vector function, 264
vector norm, 781
vector relations, 776
vector subspace, 792
vertex, 39, 726

watchdog, 543
wave equations, 273
weak duality, 141, 142
weak duality in terms of minimum of problem, 141
Weierstrass accumulation principle, 795
weighted norm, 124, 782
Wolfe condition, 413
Wolfe dual, 489
working set, 620

zero injection bus, 277, 457
zero matrix and vector, 774
zero vector, 16

	APPLIED OPTIMIZATION
	Contents
	List of illustrations
	Preface
	Introduction
	Problems, algorithms, and solutions
	Transformation of problems
	Linear simultaneous equations
	Case studies of linear simultaneous equations
	Algorithms for linear simultaneous equations
	Non-linear simultaneous equations
	Case studies of non-linear simultaneous equations
	Algorithms for non-linear simultaneous equations
	Solution of the non-linear simultaneous equations case studies
	Unconstrained optimization
	Case studies of unconstrained optimization
	Algorithms for unconstrained minimization
	Solution of the unconstrained minimization case studies
	Equality-constrained optimization
	Case studies of equality-constrained optimization
	Algorithms for linear equality-constrained minimization
	Algorithms for non-linear equality-constrained minimization
	Inequality-constrained optimization
	Case studies of inequality-constrained optimization
	Algorithms for non-negatively constrained minimization
	Algorithms for linear inequality-constrained minimization
	Solution of the linear inequality-constrained case studies
	Algorithms for non-linear inequality-constrained minimization
	Solution of the non-linear inequality-constrained case studies
	References
	Index

