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Preface

Mathematics and mathematical modelling are of central importance in computer sci-
ence. For this reason the teaching concepts of mathematics in computer science have
to be constantly reconsidered, and the choice of material and the motivation have to
be adapted. This applies in particular to mathematical analysis, whose significance
has to be conveyed in an environment where thinking in discrete structures is pre-
dominant. On the one hand, an analysis course in computer science has to cover the
essential basic knowledge. On the other hand, it has to convey the importance of
mathematical analysis in applications, especially those which will be encountered
by computer scientists in their professional life.

We see a need to renew the didactic principles of mathematics teaching in com-
puter science, and to restructure the teaching according to contemporary require-
ments. We try to address this situation with this textbook, which we have developed
based on the following concepts:
1. An algorithmic approach.
2. A concise presentation.
3. Integrating mathematical software as an important component.
4. Emphasis on modelling and applications of analysis.
The book is positioned in the triangle between mathematics, computer science and
applications. In this field, algorithmic thinking is of high importance. The algorith-
mic approach chosen by us encompasses:
(a) Development of concepts of analysis from an algorithmic point of view.
(b) Illustrations and explanations using MATLAB and maple programs as well as

Java applets.
(c) Computer experiments and programming exercises as motivation for actively

acquiring the subject matter.
(d) Mathematical theory combined with basic concepts and methods of numerical

analysis.
Concise presentation means for us that we have deliberately reduced the subject

matter to the essential ideas. For example, we do not discuss the general convergence
theory of power series; however, we do outline Taylor expansion with an estimate of
the remainder term. (Taylor expansion is included in the book as it is an indispens-
able tool for modelling and numerical analysis.) For the sake of readability, proofs
are only detailed in the main text if they introduce essential ideas and contribute to
the understanding of the concepts. To continue with the example above, the integral
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vi Preface

representation of the remainder term of the Taylor expansion is derived by integra-
tion by parts. In contrast, Lagrange’s form of the remainder term, which requires the
mean value theorem of integration, is only mentioned. Nevertheless we have put ef-
fort into ensuring a self-contained presentation. We assign a high value to geometric
intuition, which is reflected in the large number of illustrations.

Due to the terse presentation it was possible to cover the whole spectrum from
foundations to interesting applications of analysis (again selected from the view-
point of computer science), such as fractals, L-systems, curves and surfaces, linear
regression, differential equations and dynamical systems. These topics give suffi-
cient opportunity to enter various aspects of mathematical modelling.

The present book is a translation of the original German version that appeared
in 2005 (with a second edition in 2009). We have kept the structure of the German
text, but we took the opportunity to improve the presentation at various places.

The contents of the book are as follows. Chapters 1–8, 10–12 and 14–17 are
devoted to the basic concepts of analysis, Chapters 9, 13 and 18–21 are dedicated to
important applications and more advanced topics. Appendices A and B collect some
tools from vector and matrix algebra, and Appendix C supplies further details, which
were deliberately omitted in the main text. The employed software, which is an
integral part of our concept, is summarised in Appendix D. Each chapter is preceded
by a brief introduction for orientation. The text is enriched by computer experiments
which should encourage the reader to actively acquire the subject matter. Finally,
every chapter has exercises, half of which are to be solved with the help of computer
programs. The book can be used from the first semester on as the main textbook for
a course, as a complementary text, or for self-study.

We thank Elisabeth Bradley for her help in the translation of the text. Further, we
thank the editors of Springer, especially Simon Rees and Wayne Wheeler, for their
support and advice during the preparation of the English text.

Michael Oberguggenberger
Alexander Ostermann

Innsbruck
March 2011
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1Numbers

The commonly known rational numbers (fractions) are not sufficient for a rigorous
foundation of mathematical analysis. The historical development shows that for is-
sues concerning analysis, the rational numbers have to be extended to the real num-
bers. For clarity we introduce the real numbers as decimal numbers with an infinite
number of decimal places. We illustrate exemplarily how the rules of calculation
and the order relation extend from the rational to the real numbers in a natural way.

A further section is dedicated to floating point numbers, which are implemented
in most programming languages as approximations to the real numbers. In partic-
ular, we will discuss optimal rounding and in connection with this the relative ma-
chine accuracy.

1.1 The Real Numbers

In this book we assume the following number systems as known:

N = {1,2,3,4, . . .} the set of natural numbers;
N0 = N ∪ {0} the set of natural numbers including zero;
Z = {. . . ,−3,−2,−1,0,1,2,3, . . .} the set of integers;

Q =
{

k

n
; k ∈ Z and n ∈ N

}
the set of rational numbers.

Two rational numbers k
n

and �
m

are equal if and only if km = �n. Further, an integer
k ∈ Z can be identified with the fraction k

1 ∈ Q. Consequently, the inclusions N ⊂
Z ⊂ Q are true.

M. Oberguggenberger, A. Ostermann, Analysis for Computer Scientists,
Undergraduate Topics in Computer Science,
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2 1 Numbers

Fig. 1.1 The real line

Let M and N be arbitrary sets. A mapping from M to N is a rule which assigns
to each element in M exactly one element in N .1 A mapping is called bijective, if
for each element n ∈ N there exists exactly one element in M which is assigned
to n.

Definition 1.1 Two sets M and N have the same cardinality if there exists a bijec-
tive mapping between these sets. A set M is called countably infinite if it has the
same cardinality as N.

The sets N, Z and Q have the same cardinality and in this sense are equally large.
All three sets have an infinite number of elements which can be enumerated. Each
enumeration represents a bijective mapping to N. The countability of Z can be seen
from the representation Z = {0,1,−1,2,−2,3,−3, . . .}. To prove the countability
of Q, Cantor’s2 diagonal method is used:

1
1 → 2

1
3
1 → 4

1 . . .

↙ ↗ ↙
1
2

2
2

3
2

4
2 . . .

↓ ↗ ↙
1
3

2
3

3
3

4
3 . . .

↙
1
4

2
4

3
4

4
4 . . .

...
...

...
...

The enumeration is carried out in the direction of the arrows, where each rational
number is only counted at its first appearance. In this way the countability of all
positive rational number (and therefore all rational numbers) is proven.

To visualise the rational numbers we use a line, which can be pictured as an
infinitely long ruler, on which an arbitrary point is labelled as zero. The integers are
marked equidistantly starting from zero. Likewise each rational number is allocated
a specific place on the real line according to its size; see Fig. 1.1.

However, the real line also contains points which do not correspond to rational
numbers. (We say that Q is not complete.) For instance, the length of the diagonal d

in the unit square (see Fig. 1.2) can be measured with a ruler. Yet, the Pythagoreans
already knew that d2 = 2, but that d = √

2 is not a rational number.

1We will rarely use the term mapping in such generality. The special case of real-valued functions,
which is important for us, will be discussed thoroughly in Chap. 2.
2G. Cantor, 1845–1918.



1.1 The Real Numbers 3

Fig. 1.2 Diagonal in the unit
square

Proposition 1.2
√

2 /∈ Q.

Proof This statement is proven indirectly. Assume that
√

2 were rational. Then
√

2
can be represented as a reduced fraction

√
2 = k

n
∈ Q. Squaring this equation gives

k2 = 2n2 and thus k2 would be an even number. This is only possible if k itself is
an even number, so k = 2l. If we substitute this into the above we obtain 4l2 = 2n2

which simplifies to 2l2 = n2. Consequently n would also be even which is in con-
tradiction to the initial assumption that the fraction k

n
was reduced. �

As is generally known,
√

2 is the unique positive root of the polynomial x2 − 2.
The naive supposition that all non-rational numbers are roots of polynomials with
integer coefficients turns out to be incorrect. There are other non-rational numbers
(so-called transcendental numbers) which cannot be represented in this way. For
example, the ratio of a circle’s circumference to its diameter,

π = 3.141592653589793 . . . /∈ Q,

is transcendental, but it can be represented on the real line as half the circumference
of the circle with radius 1 (e.g. through unwinding).

In the following we will take up a pragmatic point of view and construct the
missing numbers as decimals.

Definition 1.3 A finite decimal number x with l decimal places has the form

x = ±d0.d1d2d3 . . . dl

with d0 ∈ N0 and the single digits di ∈ {0,1, . . . ,9}, 1 ≤ i ≤ l, with dl �= 0.

Proposition 1.4 (Representing rational numbers as decimals) Each rational num-
ber can be written as a finite or periodic decimal.

Proof Let q ∈ Q and consequently q = k
n

with k ∈ Z and n ∈ N. One obtains the
representation of q as a decimal by successive division with remainder. Since the
remainder r ∈ N always fulfils the condition 0 ≤ r < n, the remainder will be zero
or periodic after a maximum of n iterations. �

Example 1.5 Let us take q = − 5
7 ∈ Q as an example. Successive division with

remainder shows that q = −0.71428571428571 . . . with remainders 5,1,3,2,
6,4,5,1,3,2,6,4,5,1,3, . . . The period of this decimal is six.



4 1 Numbers

Each non-zero decimal with a finite number of decimal places can be written as
a periodic decimal (with an infinite number of decimal places). To this end one
diminishes the last non-zero digit by one and then fills the remaining infinitely
many decimal places with the digit 9. For example, the fraction − 17

50 = −0.34 =
−0.3399999 . . . becomes periodic after the third decimal place. In this way Q can
be considered as the set of all decimals which turn periodic from a certain number
of decimal places onwards.

Definition 1.6 The set of real numbers R consists of all decimals of the form

±d0.d1d2d3 . . .

with d0 ∈ N0 and digits di ∈ {0, . . . ,9}, i.e., decimals with an infinite number of
decimal places. The set R \ Q is called the set of irrational numbers.

Obviously Q ⊂ R. According to what was mentioned so far the numbers

0.1010010001000010 . . . and
√

2

are irrational. There are much more irrational than rational numbers, as is shown by
the following proposition.

Proposition 1.7 The set R is not countable and has therefore higher cardinality
than Q.

Proof This statement is proven indirectly. Assume the real numbers between 0 and
1 to be countable and tabulate them:

1 0. d11 d12 d13 d14 . . .

2 0. d21 d22 d23 d24 . . .

3 0. d31 d32 d33 d34 . . .

4 0. d41 d42 d43 d44 . . .

. . . .

. . . .

With the help of this list, we define

di =
{

1 if dii = 2,

2 else.

Then x = 0.d1d2d3d4 . . . is not included in the above list, which is a contradiction
to the initial assumption of countability. �
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The relation ≤ obviously has the following properties. For all a, b, c ∈ R one has

a ≤ a (reflexivity),

a ≤ b and b ≤ c ⇒ a ≤ c (transitivity),

a ≤ b and b ≤ a ⇒ a = b (antisymmetry).

In case of a ≤ b and a �= b one writes a < b and calls a less than b. Furthermore,
one defines a ≥ b, if b ≤ a (in words: a greater than or equal to b), and a > b, if
b < a (in words: a greater than b).

Addition and multiplication can be carried over from Q to R in a similar way.
Graphically one uses the fact that each real number corresponds to a segment on
the real line. One thus defines the addition of real numbers as the addition of the
respective segments.

A rigorous and at the same time algorithmic definition of the addition starts from
the observation that real numbers can be approximated by rational numbers to any
degree of accuracy. Let a = a0.a1a2 . . . and b = b0.b1b2 . . . be two non-negative real
numbers. By cutting them off after k decimal places we obtain two rational approx-
imations a(k) = a0.a1a2 . . . ak ≈ a and b(k) = b0.b1b2 . . . bk ≈ b. Then a(k) + b(k)

is a monotonically increasing sequence of approximations to the yet to be defined
number a+b. This allows one to define a+b as supremum of these approximations.
To justify this approach rigorously we refer to Chap. 5. The multiplication of real
numbers is defined in the same way. It turns out that the real numbers with addi-
tion and multiplication (R,+, ·) are a field. Therefore the usual rules of calculation
apply, e.g., the distributive law

(a + b)c = ac + bc.

The following proposition recapitulates some of the important rules for ≤. The state-
ments can easily be verified with the help of the real line.

Proposition 1.9 For all a, b, c ∈ R the following holds:

a ≤ b ⇒ a + c ≤ b + c,

a ≤ b and c ≥ 0 ⇒ ac ≤ bc,

a ≤ b and c ≤ 0 ⇒ ac ≥ bc.

Note that a < b does not imply a2 < b2. For example −2 < 1, but nonetheless
4 > 1. However, for a, b ≥ 0 always a < b ⇔ a2 < b2 holds.

Definition 1.10 (Intervals) The following subsets of R are called intervals:

[a, b] = {x ∈ R; a ≤ x ≤ b} closed interval;

(a, b] = {x ∈ R; a < x ≤ b} left half-open interval;

[a, b) = {x ∈ R; a ≤ x < b} right half-open interval;

(a, b) = {x ∈ R; a < x < b} open interval.
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Fig. 1.4 The intervals (a, b), [c, d] and (e, f ] on the real line

Intervals can be visualised on the real line, as illustrated in Fig. 1.4.
It proves to be useful to introduce the symbols −∞ (minus infinity) and ∞ (in-

finity), by means of the property

∀a ∈ R : −∞ < a < ∞.

One may then define, e.g., the improper intervals

[a,∞) = {x ∈ R; x ≥ a}
(−∞, b) = {x ∈ R; x < b}

and furthermore (−∞,∞) = R. Note that −∞ and ∞ are only symbols and not
real numbers.

Definition 1.11 The absolute value of a real number a is defined as

|a| =
{

a, if a ≥ 0,

−a, if a < 0.

As an application of the properties of the order relation given in Proposition 1.9
we exemplarily solve some inequalities.

Example 1.12 Find all x ∈ R satisfying −3x − 2 ≤ 5 < −3x + 4.
In this example we have the following two inequalities:

−3x − 2 ≤ 5 and 5 < −3x + 4.

The first inequality can be rearranged to

−3x ≤ 7 ⇔ x ≥ −7

3
.

This is the first constraint for x. The second inequality states

3x < −1 ⇔ x < −1

3

and poses a second constraint for x. The solution to the original problem must fulfil
both constraints. Therefore, the solution set is

S =
{
x ∈ R; −7

3
≤ x < −1

3

}
=

[
−7

3
,−1

3

)
.
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Example 1.13 Find all x ∈ R satisfying x2 − 2x ≥ 3.
By completing the square the inequality is rewritten as

(x − 1)2 = x2 − 2x + 1 ≥ 4.

Taking the square root we obtain two possibilities

x − 1 ≥ 2 or x − 1 ≤ −2.

The combination of those gives the solution set

S = {x ∈ R; x ≥ 3 or x ≤ −1} = (−∞,−1] ∪ [3,∞).

1.3 Machine Numbers

The real numbers can be realised only partially on a computer. In exact arithmetic,
like for example in maple, real numbers are treated as symbolic expressions, e.g.,√

2 = RootOf(_Zˆ2-2). With the help of the command evalf they can be
evaluated, exact to many decimal places.

The floating point numbers that are usually employed in programming languages
as substitutes for the real numbers have a fixed relative accuracy, e.g., double preci-
sion with 52 bit mantissa. The arithmetic rules of R are not valid for these machine
numbers, e.g.,

1 + 10−20 = 1

in double precision. Floating point numbers have been standardised by the Institute
of Electrical and Electronics Engineers IEEE 754–1985 and by the International
Electrotechnical Commission IEC 559:1989. In the following we give a short outline
of these machine numbers. Further information can be found in [19].

One distinguishes between single and double format. The single format (single
precision) requires 32 bit storage space

V e M

1 8 23

The double format (double precision) requires 64 bit storage space

V e M

1 11 52

Here, V ∈ {0,1} denotes the sign, emin ≤ e ≤ emax is the exponent (a signed integer)
and M is the mantissa of length p

M = d12−1 + d22−2 + · · · + dp2−p ∼= d1d2 . . . dp, dj ∈ {0,1}.
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Fig. 1.5 Floating point numbers on the real line

This representation corresponds to the following number x:

x = (−1)V 2e

p∑
j=1

dj 2−j .

Normalised floating point numbers in base 2 always have d1 = 1. Therefore, one
does not need to store d1 and obtains for the mantissa

single precision p = 24;
double precision p = 53.

To simplify matters we will only describe the key features of floating point numbers.
For the subtleties of the IEEE-IEC standard, we refer to [19].

In our representation the following range applies for the exponents:

emin emax
single precision −125 128
double precision −1021 1024

With M = Mmax and e = emax one obtains the largest floating point number

xmax = (
1 − 2−p

)
2emax ,

whereas M = Mmin and e = emin gives the smallest positive (normalised) floating
point number

xmin = 2emin−1.

The floating point numbers are not evenly distributed on the real line, but their rel-
ative density is nearly constant; see Fig. 1.5.

In the IEEE standard the following approximate values apply:

xmin xmax

single precision 1.18 · 10−38 3.40 · 1038

double precision 2.23 · 10−308 1.80 · 10308

Furthermore, there are special symbols like

±INF . . . ±∞
NaN . . . not a number; e.g., for zero divided by zero.

In general, one can continue calculating with these symbols without program termi-
nation.
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1.4 Rounding

Let x = a · 2e ∈ R with 1/2 ≤ a < 1 and xmin ≤ x ≤ xmax. Furthermore, let u,v be
two adjacent machine numbers with u ≤ x ≤ v. Then

u = 0 e b1 . . . bp

and

v = u + 0 e 00 . . .01 = u + 0 e − (p − 1) 10 . . .00 .

Thus v − u = 2e−p and the inequality

∣∣rd(x) − x
∣∣ ≤ 1

2
(v − u) = 2e−p−1

holds for the optimal rounding rd(x) of x. With this estimate one can determine the
relative error of the rounding. Due to 1

a
≤ 2 the following holds:

|rd(x) − x|
x

≤ 2e−p−1

a · 2e
≤ 2 · 2−p−1 = 2−p.

The same calculation is valid for negative x (by using the absolute value).

Definition 1.14 The number eps= 2−p is called relative machine accuracy.

The following proposition is an important application of this concept.

Proposition 1.15 Let x ∈ R with xmin ≤ |x| ≤ xmax. Then there exists ε ∈ R with

rd(x) = x(1 + ε) and |ε| ≤ eps.

Proof We define

ε = rd(x) − x

x
.

According to the calculation above, we have |ε| ≤ eps. �

Experiment 1.16 (Experimental determination of eps)
Let z be the smallest positive machine number for which 1 + z > 1.

1 = 0 1 100 . . .00 , z = 0 1 000 . . .01 = 2 · 2−p.

Thus z = 2eps. The number z can be determined experimentally and therefore eps
as well. (Note that the number z is called eps in MATLAB.)
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In IEC/IEEE standard the following applies:

single precision: eps= 2−24 ≈ 5.96 · 10−8,

double precision: eps= 2−53 ≈ 1.11 · 10−16.

In double precision arithmetic an accuracy of approximately 16 places is avail-
able.

1.5 Exercises

1. Show that
√

3 is irrational.
2. Prove the triangle inequality

|a + b| ≤ |a| + |b|
for all a, b ∈ R.
Hint. Distinguish the cases where a and b have either the same or different signs.

3. Solve the following inequalities by hand as well as with maple (using solve).
State the solution set in interval notation.

(a) 4x2 ≤ 8x + 1, (b)
1

3 − x
> 3 + x,

(c) |2 − x2| ≥ x2, (d)
1 + x

1 − x
> 1,

(e) x2 < 6 + x, (f) |x| − x ≥ 1,

(g) |1 − x2| ≤ 2x + 2, (h) 4x2 − 13x + 4 < 1.

4. Compute the binary representation of the floating point number x = 0.1 in single
precision IEEE arithmetic.

5. Experimentally determine the relative machine accuracy eps.
Hint. Write a computer program in your programming language of choice which
calculates the smallest machine number z such that 1 + z > 1.



2Real-Valued Functions

The notion of a function is the mathematical way of formalising the idea that one
or more independent quantities are assigned to one or more dependent quantities.
Functions in general and their investigation are at the core of analysis. They help to
model dependencies of variable quantities, from simple planar graphs, curves and
surfaces in space to solutions of differential equations or the algorithmic construc-
tion of fractals. On the one hand, this chapter serves to introduce the basic concepts.
On the other hand, the most important examples of real-valued, elementary func-
tions are discussed in an informal way. These include the power functions, the ex-
ponential functions and their inverses. Trigonometric functions will be discussed in
Chap. 3, complex-valued functions in Chap. 4.

2.1 Basic Notions

The simplest case of a real-valued function is a double-row list of numbers, con-
sisting of values from an independent quantity x and corresponding values of a
dependent quantity y.

Experiment 2.1 Study the mapping y = x2 with the help of MATLAB. First choose
the region D in which the x-values should vary, for instance D = {x ∈ R : −1 ≤
x ≤ 1}. The command

x = -1:0.01:1;

produces a list of x-values, the row vector

x = [x1, x2, . . . , xn] = [−1.00,−0.99,−0.98, . . . ,0.99,1.00].
Using

y = x.ˆ2;

M. Oberguggenberger, A. Ostermann, Analysis for Computer Scientists,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-0-85729-446-3_2, © Springer-Verlag London Limited 2011
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http://dx.doi.org/10.1007/978-0-85729-446-3_2
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Fig. 2.1 A function

a row vector of the same length of corresponding y-values is generated. Finally,
plot(x,y) plots the points (x1, y1), . . . , (xn, yn) in the coordinate plane and con-
nects them with line segments. The result can be seen in Fig. 2.1.

In the general mathematical framework we do not just want to assign finite lists
of values. In many areas of mathematics functions defined on arbitrary sets are
needed. For the general set-theoretic notion of a function we refer to the litera-
ture, e.g. [3, Chap. 0.2]. This section is dedicated to real-valued functions, which
are central in analysis.

Definition 2.2 A real-valued function f with domain D and range R is a rule which
assigns to every x ∈ D a real number y ∈ R.

In general, D is an arbitrary set. In this section, however, it will be a subset
of R. For the expression function we also use the word mapping synonymously.
A function is denoted by

f : D → R : x �→ y = f (x).

The graph of the function f is the set

Γ (f ) = {
(x, y) ∈ D × R; y = f (x)

}
.

In the case of D ⊂ R the graph can also be represented as a subset of the coordinate
plane. The set of the actually assumed values is called image of f or proper range:

f (D) = {
f (x); x ∈ D

}
.

Example 2.3 A part of the graph of the quadratic function f : D = R → R,
f (x) = x2 is shown in Fig. 2.2. If one chooses the domain to be D = R, then the
image is the interval f (D) = [0,∞).

Experiment 2.4 On the website of maths online go to Functions 1 in the gallery
area and practise with the applet Function and graph.
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Fig. 2.2 Quadratic function

An important tool is the concept of inverse functions, whether to solve equations
or to find new types of functions. If, and in which domain, a given function has
an inverse depends on two main properties, injectivity and surjectivity, which we
investigate on their own first.

Definition 2.5 (a) A function f : D → R is called injective or one-to-one, if differ-
ent arguments always have different function values:

x1 �= x2 ⇒ f (x1) �= f (x2).

(b) A function f : D → B ⊂ R is called surjective or onto from D to B , if each
y ∈ B appears as a function value:

∀y ∈ B ∃x ∈ D : y = f (x).

(c) A function f : D → B is called bijective, if it is injective and surjective.

Figures 2.3 and 2.4 illustrate these notions.
Surjectivity can always be enforced by reducing the range B; for example

f : D → f (D) is always surjective. Likewise, injectivity can be obtained by re-
stricting the domain to a subdomain.

If f : D → B is bijective, then for every y ∈ B there exists exactly one x ∈ D

with y = f (x). The mapping y �→ x then defines the inverse of the mapping x �→ y.

Definition 2.6 If the function

f : D → B : y = f (x),

is bijective, then the assignment

f −1 : B → D : x = f −1(y),

which maps each y ∈ B to the unique x ∈ D with y = f (x) is called the inverse
function of the function f .

Example 2.7 The quadratic function f (x) = x2 is bijective from D = [0,∞) to
B = [0,∞). In these intervals (x ≥ 0, y ≥ 0) one has

y = x2 ⇔ x = √
y.
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Fig. 2.3 Injectivity

Fig. 2.4 Surjectivity

Fig. 2.5 Bijectivity and
inverse function

Here
√

y denotes the positive square root. Thus the inverse of the quadratic function
on the above intervals is given by f −1(y) = √

y; see Fig. 2.5.

Once one has found the inverse function f −1, it is usually written with variables
y = f −1(x). This corresponds to flipping the graph of y = f (x) about the diagonal
y = x, as is shown in Fig. 2.6.
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Fig. 2.6 Inverse function and
reflection in the diagonal

Experiment 2.8 The term inverse function is clearly illustrated by the MATLAB plot
command. The graph of the inverse function can easily be plotted by interchanging
the variables, which exactly corresponds to flipping the lists y ↔ x. For example,
the graphs in Fig. 2.6 are obtained by

x = 0:0.01:1;
y = x.ˆ2;
plot(x,y)
hold on
plot(y,x)

How the formatting, the dashed diagonal and the labelling are obtained can be
learned from the M-file mat02_1.m.

2.2 Some Elementary Functions

The elementary functions are the powers and roots, exponential functions and loga-
rithms, trigonometric functions and their inverse functions, as well as all functions
which are obtained by combining these. We are going to discuss the most important
basic types which have historically proven to be of importance for applications. The
trigonometric functions will be dealt with in Chap. 3, the hyperbolic functions in
Chap. 14.

Linear Functions (Straight Lines) A linear function R → R assigns each
x-value a fixed multiple as y-value, i.e.,

y = kx.

Here

k = increase in height

increase in length
= �y

�x
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Fig. 2.7 Equation of a straight line

is the slope of the graph, which is a straight line through the origin. The connection
between the slope and the angle between the straight line and x-axis is discussed in
Sect. 3.1. Adding an intercept d ∈ R translates the straight line d units in y-direction
(Fig. 2.7). The equation is then

y = kx + d.

Quadratic Parabolas The quadratic function with domain D = R in its basic
form is given by

y = x2.

Compression/stretching, horizontal and vertical translation are obtained via

y = αx2, y = (x − β)2, y = x2 + γ.

The effect of these transformations on the graph can be seen in Fig. 2.8.

α > 1 . . . compression in x-direction

0 < α < 1 . . . stretching in x-direction

α < 0 . . . reflection in the x-axis

β > 0 . . . translation to the right γ > 0 . . . translation upwards

β < 0 . . . translation to the left γ < 0 . . . translation downwards

The general quadratic function can be reduced to these cases by completing the
square:

y = ax2 + bx + c

= a

(
x + b

2a

)2

+ c − b2

4a

= α(x − β)2 + γ.
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Fig. 2.8 Quadratic parabolas

Power Functions In the case of an integer exponent n ∈ N the following rules
apply:

xn = x · x · x · · · · · x (n factors), x1 = x,

x0 = 1, x−n = 1

xn
(x �= 0).

The behaviour of y = x3 can be seen in the picture on the right-hand side of
Fig. 2.3, the one of y = x4 in the picture on the left-hand side of Fig. 2.4. The
graphs for odd and even powers behave similarly.

Experiment 2.9 On the website of maths online go to Functions 1 in the gallery
area and experiment with the applets Graphs of simple power functions and Cubic
polynomials and familiarise yourself with the Function plotter.

As an example of fractional exponents we consider the root functions y = n
√

x =
x1/n for n ∈ N with domain D = [0,∞). Here y = n

√
x is defined as the inverse

function of the nth power; see Fig. 2.9 left. The graph of y = x−1 with domain
D = R \ {0} is pictured in Fig. 2.9 right.

Absolute Value, Sign and Indicator Function The graph of the absolute value
function

y = |x| =
{

x, x ≥ 0,

−x, x < 0

has a kink at the point (0,0); see Fig. 2.10 left.



20 2 Real-Valued Functions

Fig. 2.9 Power functions with fractional and negative exponents

Fig. 2.10 Absolute value and sign

The graph of the sign function or signum function

y = signx =

⎧⎪⎨
⎪⎩

1, x > 0,

0, x = 0,

−1, x < 0

has a jump at x = 0 (Fig. 2.10 right). The indicator function of a subset A ⊂ R is
defined as

1A(x) =
{

1, x ∈ A,

0, x /∈ A.

Exponential Functions and Logarithms Integer powers of a number a > 0 have
just been defined. Fractional (rational) powers give

a1/n = n
√

a, am/n = ( n
√

a)m = n
√

am.

If r is an arbitrary real number, then ar is defined by its approximations am/n, where
m
n

is the rational approximation to r obtained by decimal expansion.
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Fig. 2.11 Exponential functions

Example 2.10 2π is defined by the sequence

23, 23.1, 23.14, 23.141, 23.1415, . . . ,

where

23.1 = 231/10 = 10
√

231; 23.14 = 2314/100 = 100
√

2314; . . . etc.

This somewhat informal introduction of the exponential function should be suffi-
cient to have some examples at hand for applications in the following sections. With
the tools we have developed so far we cannot yet show that this process of approx-
imation actually leads to a well-defined mathematical object. The success of this
process is based on the completeness of the real numbers. This will be thoroughly
discussed in Chap. 5.

From the definition above we obtain the following rules of calculation, valid for
rational exponents:

aras = ar+s ,(
ar

)s = ars = (
as

)r
,

arbr = (ab)r

for a, b > 0 and arbitrary r, s ∈ Q. The fact that these rules are also true for real-
valued exponents r, s ∈ R can be shown by employing a limiting argument.

The graph of the exponential function with base a, the function y = ax , increases
for a > 1 and decreases for a < 1; see Fig. 2.11. Its proper range is B = (0,∞);
the exponential function is bijective from R to (0,∞). Its inverse function is the
logarithm to the base a (with domain (0,∞) and range R):

y = ax ⇔ x = loga y.

For example, log10 2 is the power by which 10 needs to be raised to obtain 2:

2 = 10log10 2.
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Other examples are, for instance,

2 = log10
(
102), log10 10 = 1, log10 1 = 0, log10 0.001 = −3.

Euler’s number1 e is defined by

e = 1 + 1

1
+ 1

2
+ 1

6
+ 1

24
+ · · ·

= 1 + 1

1! + 1

2! + 1

3! + 1

4! + · · · =
∞∑

j=0

1

j !
≈ 2.718281828459045235360287471 . . . .

That this summation of infinitely many numbers can be defined rigorously will be
proven in Chap. 5 by invoking the completeness of the real numbers. The logarithm
to the base e is called natural logarithm and is denoted by log:

logx = loge x.

In some books the natural logarithm is denoted by lnx. We stick to the notation
logx, which is used, e.g., in MATLAB. The following rules are obtained directly by
rewriting the rules for the exponential function:

u = elogu,

log(uv) = logu + logv,

log
(
uz

) = z logu,

for u,v > 0 and arbitrary z ∈ R. In addition, the following holds:

u = log
(
eu

)
,

for all u ∈ R, and log e = 1. In particular it follows from the above that

log
1

u
= − logu, log

v

u
= logv − logu.

The graphs of y = logx and y = log10 x are shown in Fig. 2.12.

2.3 Exercises

1. How does the graph of an arbitrary function y = f (x) : R → R change under
the transformations

y = f (ax), y = f (x − b), y = cf (x), y = f (x) + d,

1L. Euler, 1707–1783.
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Fig. 2.12 Logarithms to the
base e and to the base 10

with a, b, c, d ∈ R? Distinguish the following different cases for a:

a < −1, −1 ≤ a < 0, 0 < a ≤ 1, a > 1,

and for b, c, d the cases

b, c, d > 0, b, c, d < 0.

Sketch the resulting graphs.
2. Let the function f : D → R : x �→ 3x4 −2x3 −3x2 +1 be given. Using MATLAB

plot the graphs of f for

D = [−1,1.5], D = [−0.5,0.5], D = [0.5,1.5].
Explain the behaviour of the function for D = R and find

f
([−1,1.5]), f

(
(−0.5,0.5)

)
, f

(
(−∞,1]).

3. Which of the following functions are injective/surjective/bijective?

f : N → N : n �→ n2 − 6n + 10;
g : R → R : x �→ |x + 1| − 3;
h : R → R : x �→ x3.

Hint. Illustrative examples for the use of the MATLAB plot command may be
found in the M-file mat02_2.m.

4. Check that the following functions D → B are bijective in the given regions
and compute the inverse function in each case:

y = −2x + 3, D = R, B = R;
y = x2 + 1, D = (−∞,0], B = [1,∞);
y = x2 − 2x − 1, D = [1,∞), B = [−2,∞).
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5. On the website of maths online go to Functions 1 in the gallery area and solve
the exercises set in the applets Recognize functions 1 and Recognize graphs 1.
Explain your results. Go to Interactive tests, Functions 1 and work on The big
function graph puzzle.

6. On the website of maths online go to Functions 2 in the gallery area and solve
the exercises set in the applets Recognize functions 2 and Recognize graphs 2.
Explain your results.

7. Find the equation of the straight line through the points (1,1) and (4,3) as well
as the equation of the quadratic parabola through the points (−1,6), (0,5) and
(2,21).

8. Let the amount of a radioactive substance at time t = 0 be A grams. According
to the law of radioactive decay, there remain A · qt grams after t days. Compute
q for radioactive iodine 131 from its half life (8 days) and work out after how
many days 1

100 of the original amount of iodine 131 is remaining.
Hint. The half life is the time span after which only half of the initial amount of
radioactive substance is remaining.

9. Let I [W/cm2] be the sound intensity of a sound wave that hits a detector sur-
face. According to the Weber–Fechner law, its sound level L [Phon] is com-
puted by

L = 10 log10(I/I0)

where I0 = 10−16 W/cm2. If the intensity I of a loudspeaker produces a sound
level of 80 Phon, which level is then produced by an intensity of 2I by two
loudspeakers?

10. For x ∈ R the floor function �x� denotes the largest integer not greater than x,
i.e.,

�x� = max{n ∈ N; n ≤ x}.
Plot the following functions with domain D = [0,10] using the MATLAB com-
mand floor:

y = �x�, y = x − �x�, y = (
x − �x�)3

, y = (�x�)3
.

Try to program correct plots in which the vertical connecting lines do not ap-
pear.

11. Draw the graph of the function f : R → R : y = ax + signx for different values
of a. Distinguish between the cases a > 0, a = 0, a < 0. For which values of a

is the function f injective and surjective, respectively?
12. A function f : D = {1,2, . . . ,N} → B = {1,2, . . . ,N} is given by the list of its

function values y = (y1, . . . , yN), yi = f (i). Write a MATLAB program which
determines whether f is bijective. Test your program by generating random
y-values using

(a) y = unirnd(N,1,N), (b) y = randperm(N).

Hint. See the two M-files mat02_ex12a.m and mat02_ex12b.m.
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Trigonometric functions play a major role in geometric considerations as well as in
the modelling of oscillations. We introduce these functions at the right-angled tri-
angle and extend them periodically to R using the unit circle. Furthermore, we will
discuss the inverse functions of the trigonometric functions in this chapter. As an
application we will consider the transformation between Cartesian and polar coor-
dinates.

3.1 Trigonometric Functions at the Triangle

The definitions of the trigonometric functions are based on elementary properties
of the right-angled triangle. Figure 3.1 shows a right-angled triangle. The sides ad-
jacent to the right angle are called legs (or catheti), the opposite side is called the
hypotenuse.

One of the basic properties of the right-angled triangle is expressed by Pythago-
ras’ theorem.1

Proposition 3.1 (Pythagoras) In a right-angled triangle the sum of the squares of
the legs equals the square of the hypotenuse. In the notation of Fig. 3.1 this says that
a2 + b2 = c2.

Proof According to Fig. 3.2 one can easily see that

(a + b)2 − c2 = area of the grey triangles = 2ab.

From this it follows that a2 + b2 − c2 = 0. �

1Pythagoras, approx. 570–501 B.C.
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Fig. 3.3 Similar triangles

Fig. 3.4 A general triangle

Note that tanα is not defined for α = 90◦ (since b = 0) and that cotα is not
defined for α = 0◦ (since a = 0). The identities

α = sinα

cosα
, cotα = cosα

sinα
, sinα = cosβ = cos(90◦ − α)

follow directly from the definition, and the relationship

sin2 α + cos2 α = 1

is obtained using Pythagoras’ theorem.
The trigonometric functions have many applications in mathematics. As a first

example we derive the formula for the area of a general triangle; see Fig. 3.4. The
sides of a triangle are usually labelled in counterclockwise direction using lower-
case Latin letters, the angles opposite the sides are labelled using the corresponding
Greek letters. Because F = 1

2ch and h = b sinα, the formula for the area of a trian-
gle can be written as

F = 1

2
bc sinα = 1

2
ac sinβ = 1

2
ab sinγ.

So the area equals half the product of two sides times the sine of the enclosed angle.
The last equality in the above formula is valid for reasons of symmetry. There γ

denotes the angle opposite to the side c; in other words γ = 180◦ − α − β .
As a second example we compute the slope of a straight line. Figure 3.5 shows a

straight line y = kx +d . Its slope k is the change of the y-value per unit change in x.
It is calculated from the triangle attached to the straight line in Fig. 3.5 as k = tanα.
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Fig. 3.5 Straight line with
slope k

Fig. 3.6 Relationship
between degrees and radian
measure

In order to have simple formulas such as

d

dx
sinx = cosx,

one has to measure the angle in radian measure. The connection between degree
and radian measure can be seen from the unit circle (the circle with centre 0 and
radius 1); see Fig. 3.6.

The radian measure of the angle α (in degrees) is defined as the length � of the
corresponding arc of the unit circle with the sign of α. The arc length � on the unit
circle has no physical unit. However, one speaks of radians (rad) to emphasise the
difference to degrees.

As is generally known, the circumference of the unit circle is 2π with the con-
stant

π = 3.141592653589793 . . . ≈ 22

7
.

For the conversion between the two measures we use that 360◦ corresponds to 2π

in radian measure, for short 360◦ ↔ 2π [rad], so

α◦ ↔ π

180
α [rad] and � [rad] ↔

(
180

π
�

)◦
,

respectively. For example, 90◦ ↔ π
2 and −270◦ ↔ − 3π

2 . Henceforth, we always
measure angles in radians.
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Fig. 3.7 Definition of the
trigonometric functions on
the unit circle

Fig. 3.8 Extension of the
trigonometric functions on
the unit circle

3.2 Extension of the Trigonometric Functions to R

For 0 ≤ α ≤ π
2 the values sinα, cosα, tanα and cotα have a simple interpretation

on the unit circle; see Fig. 3.7. This representation follows from the fact that the
hypotenuse of the defining triangle has length 1 on the unit circle.

One now extends the definition of the trigonometric functions for 0 ≤ α ≤ 2π by
continuation with the help of the unit circle. A general point P on the unit circle,
which is defined by the angle α, is assigned the coordinates

P = (cosα, sinα);

see Fig. 3.8. For 0 ≤ α ≤ π
2 this is compatible with the earlier definition. For larger

angles the sine and cosine functions are extended to the interval [0,2π] by this
convention. For example, it follows from the above that

sinα = − sin(α − π), cosα = − cos(α − π)

for π ≤ α ≤ 3π
2 ; see Fig. 3.8.

For arbitrary values α ∈ R one finally defines sinα and cosα by periodic contin-
uation with period 2π . For this purpose one first writes α = x + 2kπ with a unique
x ∈ [0,2π) and k ∈ Z. Then one sets

sinα = sin(x + 2kπ) = sinx, cosα = cos(x + 2kπ) = cosx.
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Fig. 3.9 The graphs of the sine and cosine functions in the interval [−2π,2π]

With the help of the formulae

tanα = sinα

cosα
, cotα = cosα

sinα

the tangent and cotangent functions are extended as well. Since the sine function
equals zero for integer multiples of π , the cotangent is not defined for such argu-
ments. Likewise the tangent is not defined for odd multiples of π

2 .
The graphs of the functions y = sinx, y = cosx are shown in Fig. 3.9. The do-

main of both functions is D = R.
The graphs of the functions y = tanx and y = cotx are presented in Fig. 3.10.

The domain D for the tangent is, as explained above, given by D = {x ∈ R; x �=
π
2 + kπ, k ∈ Z}, the one for the cotangent is D = {x ∈ R; x �= kπ, k ∈ Z}.

Many relations are valid between the trigonometric functions. For example, the
following addition theorems, which can be proven by elementary geometrical con-
siderations, are valid; see Exercise 2. The maple commands expand and com-
bine use such identities to simplify trigonometric expressions.

Proposition 3.3 (Addition theorems) For x, y ∈ R the following holds:

sin(x + y) = sinx cosy + cosx siny,

cos(x + y) = cosx cosy − sinx siny.
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Fig. 3.10 The graphs of the tangent (left) and cotangent (right) functions

A wealth of material on trigonometric functions can be found on the website of
maths online. We refer to the gallery, where one can find, under the link Trigono-
metric Functions, the applet Definition of the trig functions and under Functions 2
the applet The graphs of sin, cos and tan.

3.3 Cyclometric Functions

The cyclometric functions are inverse to the trigonometric functions in the appro-
priate bijectivity regions.

Sine and Arcsine The sine function is bijective from the interval [−π
2 , π

2 ] to the
range [−1,1]; see Fig. 3.9. This part of the graph is called the principal branch of
the sine. Its inverse function is called the arcsine (or sometimes inverse sine); see
Fig. 3.11:

arcsin : [−1,1] →
[
−π

2
,
π

2

]
.

According to the definition of the inverse function it follows that

sin(arcsiny) = y for all y ∈ [−1,1].
However, the converse formula is only valid for the principal branch, i.e.,

arcsin(sinx) = x is only valid for − π

2
≤ x ≤ π

2
.

For example, arcsin(sin 4) = −0.8584073 . . . �= 4.



32 3 Trigonometry

Fig. 3.11 The principal branch of the sine (left); the arcsine function (right)

Fig. 3.12 The principal branch of the cosine (left); the arccosine function (right)

Cosine and Arccosine Likewise, the principal branch of the cosine is defined as
the restriction of the cosine to the interval [0,π] with range [−1,1]. The principal
branch is bijective, and its inverse function is called the arccosine (or sometimes
inverse cosine); see Fig. 3.12:

arccos : [−1,1] → [0,π].

Tangent and Arctangent As can be seen in Fig. 3.10 the restriction of the tangent
to the interval (−π

2 , π
2 ) is bijective. Its inverse function is called the arctangent (or

inverse tangent); see Fig. 3.13:

arctan : R →
(

−π

2
,
π

2

)
.

To be precise, this is again the principal branch of the inverse tangent.

Application 3.4 (Polar coordinates in the plane) The polar coordinates (r, ϕ) of a
point P = (x, y) in the plane are obtained by prescribing its distance r from the
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Fig. 3.13 The principal branch of the arctangent

Fig. 3.14 Plane polar
coordinates

origin and the angle ϕ with the positive x-axis (in counterclockwise direction); see
Fig. 3.14.

The connection between Cartesian and polar coordinates is therefore described
by

x = r cosϕ,

y = r sinϕ,

where 0 ≤ ϕ < 2π and r ≥ 0. The range −π < ϕ ≤ π is also often used.
In the converse direction the following conversion formulae are valid:

r =
√

x2 + y2,

ϕ = arctan
y

x
(in the region x > 0; −π

2 < ϕ < π
2 ),

ϕ = signy · arccos
x√

x2 + y2
(if y �= 0 or x > 0; −π < ϕ < π).

The reader is encouraged to verify these formulas with the help of maple.







4Complex Numbers

Complex numbers are not just useful when solving polynomial equations, but they
play an important role in many fields of mathematical analysis. With the help of
complex functions, transformations of the plane can be expressed, solution formulae
for differential equations can be obtained, and matrices can be classified. Not least,
fractals can be defined by complex iteration processes. In this section we introduce
complex numbers and then discuss some elementary complex functions, like the
complex exponential function. Applications can be found in Chaps. 9 (fractals), 20
(systems of differential equations) and in Appendix B (normal form of matrices).

4.1 The Notion of Complex Numbers

The set of complex numbers C represents an extension of the real numbers in which
the polynomial z2 +1 has a root. Complex numbers can be introduced as pairs (a, b)

of real numbers for which addition and multiplication is defined as follows:

(a, b) + (c, d) = (a + c, b + d),

(a, b) · (c, d) = (ac − bd, ad + bc).

The real numbers are considered as the subset of all pairs of the form (a,0), a ∈ R.
Squaring the pair (0,1) shows that

(0,1) · (0,1) = (−1,0).

The square of (0,1) thus corresponds to the real number −1. Therefore, (0,1) pro-
vides a root for the polynomial z2 + 1. This root is denoted by i; in other words

i2 = −1.

Using this notation and rewriting the pairs (a, b) in the form a + ib, one obtains a
computationally more convenient representation of the set of complex numbers:

C = {a + ib; a ∈ R, b ∈ R}.
M. Oberguggenberger, A. Ostermann, Analysis for Computer Scientists,
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The rules of calculation with pairs (a, b) then simply amount to common calcula-
tions with the expressions a + ib with the additional rule that i2 = −1:

(a + ib) + (c + id) = a + c + i(b + d),

(a + ib)(c + id) = ac + ibc + iad + i2bd

= ac − bd + i(ad + bc).

So, for example,

(2 + 3i)(−1 + i) = −5 − i.

Definition 4.1 For the complex number z = x + iy,

x = Re z, y = Im z

denote the real part and the imaginary part of z, respectively. The real number

|z| =
√

x2 + y2

is the absolute value (or modulus) of z, and

z̄ = x − iy

is the complex conjugate to z.

A simple calculation shows that

zz̄ = (x + iy)(x − iy) = x2 + y2 = |z|2,
which means that zz̄ is always a real number. From this we obtain the rule for cal-
culating with fractions:

u + iv

x + iy
=

(
u + iv

x + iy

)(
x − iy

x − iy

)
= (u + iv)(x − iy)

x2 + y2
= ux + vy

x2 + y2
+ i

vx − uy

x2 + y2
.

It is achieved by expansion with the complex conjugate of the denominator. Appar-
ently one can therefore divide by any complex number not equal to zero, and the set
C forms a field.

Experiment 4.2 Type in MATLAB: z = complex(2,3) (equivalently, z =
2+3*i or z = 2+3*j) as well as w = complex(-1,1) and try out the com-
mands z * w, z/w as well as real(z), imag(z), conj(z), abs(z).

Clearly every negative real x has two square roots in C, namely i
√|x| and

−i
√|x|. Moreover, the fundamental theorem of algebra says that C is algebraically

closed. Thus every polynomial equation

αnz
n + αn−1z

n−1 + · · · + α1z + α0 = 0
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Fig. 4.1 Complex plane

with coefficients αj ∈ C, αn �= 0 has n complex solutions (counted with their multi-
plicity).

Example 4.3 (Taking the square root of complex numbers) The equation z2 = a+ ib
can be solved by the ansatz

(x + iy)2 = a + ib

so

x2 − y2 = a, 2xy = b.

If one uses the second equation to express y through x and substitutes this into the
first equation, one obtains the quartic equation

x4 − ax2 − b2/4 = 0.

Solving this by the substitution t = x2 one obtains two real solutions. In the case of
b = 0, either x or y equals zero depending on the sign of a.

The Complex Plane A geometric representation of the complex numbers is ob-
tained by identifying z = x + iy ∈ C with the point (x, y) ∈ R

2 in the coordinate
plane (Fig. 4.1). Geometrically |z| = √

x2 + y2 is the distance of point (x, y) from
the origin; the complex conjugate z̄ = x − iy is obtained by reflection in the x-axis.

The polar representation of a complex number z = x + iy is obtained like in
Application 3.4 by

r = |z|, ϕ = arg z.

The angle ϕ to the positive x-axis is called argument of the complex number, where-
upon the choice of the interval −π < ϕ ≤ π defines the principal value Arg z of the
argument. Thus

z = x + iy = r(cosϕ + i sinϕ).

The multiplication of two complex numbers z = r(cosϕ + i sinϕ), w = s(cosψ +
i sinψ) in polar representation corresponds to the product of the absolute values and
the sum of the angles:

zw = rs
(

cos(ϕ + ψ) + i sin(ϕ + ψ)
)
,
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which follows from the addition formulae for sine and cosine:

sin(ϕ + ψ) = sinϕ cosψ + cosϕ sinψ,

cos(ϕ + ψ) = cosϕ cosψ − sinϕ sinψ;
see Proposition 3.3.

4.2 The Complex Exponential Function

An important tool for the representation of complex numbers and functions, but also
for the real trigonometric functions, is given by the complex exponential function.
For z = x + iy this function is defined by

ez = ex(cosy + i siny).

The complex exponential function maps C to C \ {0}. We will study its mapping be-
haviour below. It is an extension of the real exponential function, i.e., if z = x ∈ R,
then ez = ex . This is in accordance with the previously defined real-valued expo-
nential function. We also use the notation exp(z) for ez.

The addition theorems for sine and cosine imply the usual rules of calculation

ez+w = ezew, e0 = 1,
(
ez

)n = enz,

valid for z,w ∈ C and n ∈ Z. In contrast to the case when z is a real number, the last
rule (for raising to powers) is generally not true, if n is not an integer.

Exponential Function and Polar Coordinates According to the definition the
exponential function of a purely imaginary number iϕ equals

eiϕ = cosϕ + i sinϕ,

∣∣eiϕ
∣∣ =

√
cos2 ϕ + sin2 ϕ = 1.

Thus the complex numbers
{
eiϕ; −π < ϕ ≤ π

}
lie on the unit circle (Fig. 4.2).

For example, the following identities hold:

eiπ/2 = i, eiπ = −1, e2iπ = 1, e2kiπ = 1 (k ∈ Z).

Using r = |z|, ϕ = Arg z results in the especially simple form of the polar represen-
tation

z = reiϕ.

Taking roots is accordingly simple.
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Fig. 4.2 The unit circle in
the complex plane

Example 4.4 (Taking square roots in complex polar coordinates) If z2 = reiϕ , then
one obtains the two solutions ±√

reiϕ/2 for z. For example, the problem

z2 = 2i = 2eiπ/2

has the two solutions

z = √
2eiπ/4 = 1 + i

and

z = −√
2eiπ/4 = −1 − i.

Euler’s Formulae By addition and subtraction, respectively, of the relations

eiϕ = cosϕ + i sinϕ,

e−iϕ = cosϕ − i sinϕ

one obtains at once Euler’s formulae

cosϕ = 1

2

(
eiϕ + e−iϕ)

,

sinϕ = 1

2i

(
eiϕ − e−iϕ)

.

They permit a representation of the real trigonometric functions by means of the
complex exponential function.

4.3 Mapping Properties of Complex Functions

In this section we study the mapping properties of complex functions. More pre-
cisely, we ask how their effect can be described geometrically. Let

f : D ⊂ C → C : z �→ w = f (z)
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Fig. 4.3 The complex quadratic function

be a complex function, defined on a subset D of the complex plane. The effect of the
function f can best be visualised by plotting two complex planes next to each other,
the z-plane and the w-plane, and studying the images of rays and circles under f .

Example 4.5 The complex quadratic function maps D = C to C : w = z2. Using
polar coordinates, one obtains

z = x + iy = reiϕ ⇒ w = u + iv = r2e2iϕ.

From this representation it can be seen that the complex quadratic function maps a
circle of radius r in the z-plane onto a circle of radius r2 in the w-plane. Further, it
maps half-rays

{
z = reiψ : r > 0

}
with the angle of inclination ψ onto half-rays with angle of inclination 2ψ (Fig. 4.3).

Particularly important are the mapping properties of the complex exponential
function w = ez because they form the basis for the definition of the complex loga-
rithm and the root functions. If z = x + iy, then ez = ex(cosy + i siny). We always
have ex > 0; furthermore, cosy + i siny defines a point on the complex unit circle
which is unique for −π < y ≤ π . If x moves along the real line then the points
ex(cosy + i siny) form a half-ray with angle y, as can be seen in Fig. 4.4. Con-
versely, if x is fixed and y varies between −π and π , one obtains the circle with
radius ex in the w-plane. For example, the dotted circle (Fig. 4.4, right) is the image
of the dotted straight line (Fig. 4.4, left) under the exponential function.

From what has just been said it follows that the exponential function is bijective
on the domain

D = {z = x + iy; x ∈ R, −π < y ≤ π} → B = C \ {0}.
It thus maps the strip of width 2π onto the complex plane without zero. The argu-
ment of ez exhibits a jump along the negative u-axis as indicated in Fig. 4.4 (right).
Within the domain D the exponential function has an inverse function, the princi-
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2. Rewrite the following complex numbers in the form z = reiϕ and sketch them in
the complex plane:

z = −1 − i, z = −5, z = 3i, z = 2 − 2i.

3. Compute the two complex solutions of the equation

z2 = 2 + 2i

with the help of the ansatz z = x + iy and equating the real and the imaginary
part. Test and explain the MATLAB-commands

roots([2,0,-2-2*i])
sqrt(2+2*i).

4. Compute the two complex solutions of the equation

z2 = 2 + 2i

in the form z = reiϕ from the polar representation of 2 + 2i.
5. Compute the four complex solutions of the quartic equation

z4 − 2z2 + 2 = 0

by hand and with MATLAB (command roots).
6. Let z = x + iy, w = u + iv. Check the formula ez+w = ezew by using the defini-

tion and applying the addition theorems for the trigonometric functions.
7. Compute z = Logw for

w = 1 + i, w = −5i, w = −1.

Sketch w and z in the complex plane and verify your results with the help of the
relation w = ez and with MATLAB (command log).



5Sequences and Series

The concept of a limiting process at infinity is one of the central ideas of math-
ematical analysis. It forms the basis for all its essential concepts, like continuity,
differentiability, series expansions of functions, integration, etc. The transition from
the discrete to the continuous constitutes the modelling strength of mathematical
analysis. Discrete models of physical, technical or economic processes can often be
better and easier understood, provided that the number of their atoms—their dis-
crete building blocks—is sufficiently big, if they are approximated by a continuous
model with the help of a limiting process. The transition from difference equations
for biological growth processes in discrete time to differential equations in contin-
uous time or the description of share prices by stochastic processes in continuous
time are examples for that. The majority of models in physics are field models, that
is, they are expressed in a continuous space and time structure. Even though the
models are discretised again in numerical approximations, the continuous model is
still helpful as a background, for example for the derivation of error estimates.

The following sections are dedicated to the specification of the idea of limiting
processes. This chapter starts by studying infinite sequences and series, gives some
applications and covers the corresponding notion of a limit. One of the achieve-
ments which we especially emphasise is the completeness of the real numbers. It
guarantees the existence of limits for arbitrary monotonically increasing bounded
sequences of numbers, the existence of zeros of continuous functions, of maxima
and minima of differentiable functions, of integrals etc. It is an indispensable build-
ing block of mathematical analysis.

5.1 The Notion of an Infinite Sequence

Definition 5.1 Let X be a set. An (infinite) sequence with values in X is a mapping
from N to X.
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Fig. 5.1 Graph of a sequence

Thus each natural number n (the index) is mapped to an element an of X (the nth
term of the sequence). We express this by using the notation

(an)n≥1 = (a1, a2, a3, . . .).

In the case of X = R one speaks of real-valued sequences, if X = C of complex-
valued sequences, if X = R

m of vector-valued sequences. In this section we only
discuss real-valued sequences.

Sequences can be added

(an)n≥1 + (bn)n≥1 = (an + bn)n≥1

and multiplied by a scalar factor

λ(an)n≥1 = (λan)n≥1.

These operations are performed componentwise and endow the set of all real-valued
sequences with the structure of a vector space. The graph of a sequence is visualised
by plotting the points (n, an), n = 1,2,3, . . . in a coordinate system; see Fig. 5.1.

Experiment 5.2 The M-file mat05_1a.m offers the possibility to study various
examples of sequences which are increasing/decreasing, bounded/unbounded, oscil-
lating, convergent. For a better visualisation the discrete points of the graph of the se-
quence are often connected by line segments (exclusively for graphical purpose)—
this is implemented in the M-file mat05_1b.m. Open the applet Sequences and
use it to illustrate the sequences given in the M-file mat05_1a.m.

Sequences can either be defined explicitly by a formula, for instance

an = 2n,

or recursively by giving a starting value and a rule how to calculate a term from the
preceding one,

a1 = 1, an+1 = 2an.

The recursion can also involve several previous terms at a time.
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Example 5.3 A discrete population model which goes back to Verhulst1 (limited
growth) describes the population xn at the point in time n (time intervals of length 1)
by the recursive relation

xn+1 = xn + βxn(L − xn).

Here β is a growth factor and L the limiting population, i.e., the population which
is not exceeded in the long-term (short-term overruns are possible, however, lead
to immediate decay of the population). Additionally one has to prescribe the initial
population x1 = A. According to the model the population increase xn+1 −xn during
one time interval is proportional to the existing population and to the difference to
the population limit. The M-file mat05_2.m contains a MATLAB function, called

x = mat05_2(A,beta,N),

which computes and plots the first N terms of the sequence x = (x1, . . . , xN). The
initial value is A, the growth rate β; L was set to L = 1. Experiments with A = 0.1,
N = 50 and β = 0.5, β = 1, β = 2, β = 2.5, β = 3 show convergent, oscillating and
chaotic behaviour of the sequence, respectively.

Below we develop some concepts which help to describe the behaviour of se-
quences.

Definition 5.4 A sequence (an)n≥1 is called monotonically increasing, if

n ≤ m ⇒ an ≤ am;
(an)n≥1 is called monotonically decreasing, if

n ≤ m ⇒ an ≥ am;
(an)n≥1 is called bounded from above, if

∃T ∈ R ∀n ∈ N : an ≤ T .

We will show in Proposition 5.13 below that the set of upper bounds of a bounded
sequence has a smallest element. This least upper bound T0 is called the supremum
of the sequence and it is denoted by

T0 = sup
n∈N

an.

The supremum is characterised by the following two conditions:
(a) an ≤ T0 for all n ∈ N;
(b) if T is a real number and an ≤ T for all n ∈ N, then T ≥ T0.

1P.-F. Verhulst, 1804–1849.
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Fig. 5.2 Convergence of a
sequence

Note that the supremum itself does not have to be a term of the sequence. However,
if this is the case, it is called maximum of the sequence and denoted by

T0 = max
n∈N

an.

A sequence has a maximum T0 if the following two conditions are fulfilled:
(a) an ≤ T0 for all n ∈ N;
(b) there exists at least one m ∈ N such that am = T0.
In the same way, a sequence (an)n≥1 is called bounded from below, if

∃S ∈ R ∀n ∈ N : S ≤ an.

The greatest lower bound is called infimum (or minimum, if it is attained by a term
of the sequence).

Experiment 5.5 Investigate the sequences produced by the M-file mat05_1a.m
with regard to the concepts developed above.

As mentioned in the introduction to this chapter, the concept of convergence is a
central concept of mathematical analysis. Intuitively, it states that the terms of the
sequence (an)n≥1 approach a limit a with growing index n. For example, in Fig. 5.2
with a = 0.8 one has

|a − an| < 0.2 from n = 6, |a − an| < 0.05 from n = 21.

For a precise definition of the concept of convergence we first introduce the no-
tion of an ε-neighbourhood of a point a ∈ R (ε > 0):

Uε(a) = {
x ∈ R; |a − x| < ε

} = (a − ε, a + ε).

We say that a sequence (an)n≥1 settles in a neighbourhood Uε(a), if from a certain
index n(ε) on all subsequent terms an of the sequence lie in Uε(a).

Definition 5.6 The sequence (an)n≥1 converges to a limit a if it settles in each
ε-neighbourhood of a.
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These facts can be expressed in quantifier notation as follows:

∀ε > 0 ∃n(ε) ∈ N ∀n ≥ n(ε) : |a − an| < ε.

If a sequence (an)n≥1 converges to a limit a, one writes

a = lim
n→∞an or an → a as n → ∞.

In the example of Fig. 5.2 the limit a is indicated as a dotted line, the neighbourhood
U0.2(a) as a strip with a dashed boundary line and the neighbourhood U0.05(a) as a
strip with a solid boundary line.

In the case of convergence the limit can be interchanged with addition, multipli-
cation and division (with the exception of zero), as expected.

Proposition 5.7 (Rules of calculation for limits) If the sequences (an)n≥1 and
(bn)n≥1 are convergent then the following rules hold:

lim
n→∞(an + bn) = lim

n→∞an + lim
n→∞bn

lim
n→∞(λan) = λ lim

n→∞an (for λ ∈ R)

lim
n→∞(anbn) =

(
lim

n→∞an

)(
lim

n→∞bn

)

lim
n→∞(an/bn) =

(
lim

n→∞an

)/(
lim

n→∞bn

)
(if lim

n→∞bn 
= 0)

Proof The verification of these trivialities is left to the reader as an exercise. The
proofs are not deep, but one has to carefully pick the right approach in order to
verify the conditions of Definition 5.6. In order to illustrate at least once how such
proofs are done, we will show the statement about multiplication. Assume that

lim
n→∞an = a and lim

n→∞bn = b.

Let ε > 0. According to Definition 5.6 we have to find an index n(ε) ∈ N satisfying

|ab − anbn| < ε (5.1)

for all n ≥ n(ε). Due to the convergence of the sequence (an)n≥1 we can first find
an n1(ε) ∈ N so that |a − an| ≤ 1 for all n ≥ n1(ε). For these n also

|an| = |an − a + a| ≤ 1 + |a|

applies. Furthermore, we can find n2(ε) ∈ N and n3(ε) ∈ N which guarantee that

|a − an| < ε

2 max(|b|,1)
and |b − bn| < ε

2(1 + |a|)
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for all n ≥ n2(ε) and n ≥ n3(ε), respectively. It thus follows that

|ab − anbn| = ∣∣(a − an)b + an(b − bn)
∣∣ ≤ |a − an||b| + |an||b − bn|

≤ |a − an||b| + (|a| + 1
)|b − bn| ≤ ε

2
+ ε

2
≤ ε

for all n ≥ n(ε) with n(ε) = max(n1(ε), n2(ε), n3(ε)). This is the statement that was
to be proven. �

The important ideas of the proof were: Splitting in two summands with the help
of the triangle inequality (see Exercise 2 of Chap. 1); bounding |an| by 1 + |a|
using the assumed convergence; upper bounds for the terms |a − an| and |b − bn|
by fractions of ε (again possible due to the convergence) so that the summands
together stay less than ε. All elementary proofs of convergence in mathematical
analysis proceed in a similar way.

Real-valued sequences with terms that increase to infinity with growing index n

have no limit in the sense of the definition given above. However, it is practical to
assign them the symbol ∞ as an improper limit.

Definition 5.8 A sequence (an)n≥1 has the improper limit ∞ if it has the property
of unlimited increase

∀T ∈ R ∃n(T ) ∈ N ∀n ≥ n(T ) : an ≥ T .

In this case, one writes

lim
n→∞an = ∞.

In the same way one defines

lim
n→∞bn = −∞, if lim

n→∞(−bn) = ∞.

Example 5.9 We consider the geometric sequence (qn)n≥1. Obviously the following
holds:

lim
n→∞qn = 0, if |q| < 1,

lim
n→∞qn = ∞, if q > 1,

lim
n→∞qn = 1, if q = 1.

For q ≤ −1 the sequence has no limit (neither proper nor improper).
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5.2 The Completeness of the Set of Real Numbers

As remarked in the introduction to this chapter, the completeness of the set of real
numbers is one of the pillars of real analysis. The property of completeness can be
expressed in different ways. We will use a simple formulation which is particularly
helpful in many applications.

Proposition 5.10 (Completeness of the set of real numbers) Each monotonically
increasing sequence of real numbers that is bounded from above has a limit (in R).

Proof Let (an)n≥1 be a monotonically increasing, bounded sequence. First we prove
the theorem in the case that all terms an are non-negative. We write the terms as
decimal numbers

an = A(n).α
(n)
1 α

(n)
2 α

(n)
3 . . . .

with A(n) ∈ N0, α
(n)
j ∈ {0,1, . . . ,9}. By assumption there is a bound T ≥ 0 so that

an ≤ T for all n. Therefore, also A(n) ≤ T for all n. But the sequence (A(n))n≥1
is a monotonically increasing, bounded sequence of integers and therefore must
eventually reach its least upper bound A (and stay there). In other words, there
exists n0 ∈ N such that

A(n) = A for all n ≥ n0.

Thus we have found the integer part of the limit a to be constructed:

a = A. . . . .

Let now α1 ∈ {0, . . . ,9} be the least upper bound for α
(n)
1 . As the sequence is mono-

tonically increasing there is again an n1 ∈ N with

α
(n)
1 = α1 for all n ≥ n1

and consequently

a = A.α1 . . . .

Let now α2 ∈ {0, . . . ,9} be the least upper bound for α
(n)
2 . There is an n2 ∈ N with

α
(n)
2 = α2 for all n ≥ n2

and consequently

a = A.α1α2 . . . .

Successively one defines a real number

a = A.α1α2α3α4 . . .
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in that way. It remains to show that a = limn→∞ an. Let ε > 0. We first choose
j ∈ N so that 10−j < ε. For n ≥ nj

a − an = 0.000 . . .0α
(n)
j+1α

(n)
j+2 . . . ,

since the first j digits after the decimal point in a coincide with those of an provided
n ≥ nj . Therefore,

|a − an| ≤ 10−j < ε for n ≥ nj .

With n(ε) = nj the condition required in Definition 5.6 is fulfilled.
If the sequence (an)n≥1 also has negative terms, it can be transformed to a

sequence with non-negative terms by adding the absolute value of the first term
which results in the sequence (|a1| + an)n≥1. Using the obvious rule lim(c + an) =
c + liman allows to apply the first part of the proof. �

Remark 5.11 The set of rational numbers is not complete. For example, the decimal
expansion of

√
2,

(1,1.4,1.41,1.414,1.4142, . . .)

is a monotonically increasing, bounded sequence of rational numbers (an upper
bound is for example T = 1.5, since 1.52 > 2), but the limit

√
2 does not belong

to Q (as it is an irrational number).

Example 5.12 (Arithmetic of real numbers) Due to Proposition 5.10 the arithmeti-
cal operations on the real numbers introduced in Sect. 1.2 can be legitimised a pos-
teriori. Let us look for instance at the addition of two non-negative real numbers
a = A.α1α2 . . . and b = B.β1β2 . . . with A,B ∈ N0, αj ,βj ∈ {0,1, . . . ,9}. By trun-
cating them after the nth decimal place we obtain two approximating sequences of
rational numbers an = A.α1α2 . . . αn and bn = B.β1β2 . . . βn with

a = lim
n→∞an, b = lim

n→∞bn.

The sum of two approximations an + bn is defined by the addition of rational num-
bers in an elementary way. The sequence (an + bn)n≥1 is evidently monotonically
increasing and bounded from above, for instance by A+B +2. According to Propo-
sition 5.10 this sequence has a limit and this limit defines the sum of the real numbers

a + b = lim
n→∞(an + bn).

In this way the addition of real numbers is rigorously justified. In a similar way one
can proceed with multiplication. Finally, Proposition 5.7 allows one to prove the
usual rules for addition and multiplication.
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Consider a sequence with upper bound T . Each real number T1 > T is also an
upper bound. We can now show that there always exists a smallest upper bound.
A bounded sequence thus actually has a supremum as claimed earlier.

Proposition 5.13 Each sequence (an)n≥1 of real numbers which is bounded from
above has a supremum.

Proof Let Tn = max{a1, . . . , an} be the maximum of the first n terms of the se-
quence. These maxima on their part define a sequence (Tn)n≥1 which is bounded
from above by the same bounds as (an)n≥1 but is additionally monotonically in-
creasing. According to the previous proposition it has a limit T0. We are going to
show that this limit is the supremum of the original sequence. Indeed, as Tn ≤ T0
for all n, we have an ≤ T0 for all n as well. Assume that the sequence (an)n≥1 had
a smaller upper bound T < T0, i.e., an ≤ T for all n. This in turn implies Tn ≤ T

for all n and contradicts the fact that T0 = limTn. Therefore, T0 is the least upper
bound. �

Application 5.14 We are now in a position to show that the construction of the
exponential function for real exponents given informally in Sect. 2.2 is justified.
Let a > 0 be a basis for the power ar to be defined with real exponent r ∈ R. It
is sufficient to treat the case r > 0 (for negative r , the expression ar is defined
by the reciprocal of a|r|). We write r as the limit of a monotonically increasing
sequence (rn)n≥1 of rational numbers by choosing for rn the decimal representation
of r , truncated at the nth digit. The rules of calculation for rational exponents imply
the inequality arn+1 − arn = arn(arn+1−rn − 1) ≥ 0. This shows that the sequence
(arn)n≥1 is monotonically increasing. It is also bounded from above, for instance
by aq , if q is a rational number bigger than r . According to Proposition 5.10 this
sequence has a limit. It defines ar .

Application 5.15 Let a > 0. Then limn→∞ n
√

a = 1.
In the proof we can restrict ourselves to the case 0 < a < 1 since otherwise the
argument can be used for 1/a. One can easily see that the sequence ( n

√
a )n≥1 is

monotonically increasing; it is also bounded from above by 1. Therefore, it has a
limit b. Suppose that b < 1. From n

√
a ≤ b we infer that a ≤ bn → 0 for n → ∞,

which contradicts the assumption a > 0. Consequently b = 1.

5.3 Infinite Series

Sums of the form

∞∑
k=1

ak = a1 + a2 + a3 + · · ·
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with infinitely many summands can be given a meaning under certain conditions.
The starting point of our considerations is a sequence of coefficients (ak)k≥1 of real
numbers. The nth partial sum is defined as

Sn =
n∑

k=1

ak = a1 + a2 + · · · + an,

thus

S1 = a1,

S2 = a1 + a2,

S3 = a1 + a2 + a3, etc.

As needed we also use the notation Sn = ∑n
k=0 ak without further comment if the

sequence a0, a1, a2, a3, . . . starts with the index k = 0.

Definition 5.16 The sequence of the partial sums (Sn)n≥1 is called a series. If the
limit S = limn→∞ Sn exists, then the series is called convergent, otherwise diver-
gent.

In the case of convergence one writes

S =
∞∑

k=1

ak = lim
n→∞

(
n∑

k=1

ak

)
.

In this way the summation problem is reduced to the question of convergence of the
sequence of the partial sums.

Experiment 5.17 The M-file mat05_3.m, when called as mat05_3(N,Z), gen-
erates the first N partial sums with time delay Z [seconds] of five series, i.e., it
computes Sn for 1 ≤ n ≤ N in each case:

Series 1 : Sn =
n∑

k=1

k−0.99, Series 2 : Sn =
n∑

k=1

k−1,

Series 3 : Sn =
n∑

k=1

k−1.01, Series 4 : Sn =
n∑

k=1

k−2.

Series 5 : Sn =
n∑

k=1

1

k! ,

Experiment with increasing values of N and try to see which series shows conver-
gence or divergence.
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In the experiment the convergence of Series 5 seems obvious, while the observa-
tions for the other series are rather not as conclusive. Actually, Series 1 and 2 are
divergent, while the others are convergent. This shows the need for analytical tools
in order to be able to decide the question of convergence. However, we first look at
a few examples.

Example 5.18 (Geometric series) In this example we are concerned with the series∑∞
k=0 qk with real factor q ∈ R. For the partial sums we deduce that

Sn =
n∑

k=0

qk = 1 − qn+1

1 − q
.

Indeed, by subtraction of the two lines

Sn = 1 + q + q2 + · · · + qn,

qSn = q + q2 + q3 + · · · + qn+1

one obtains the formula (1 − q)Sn = 1 − qn+1, from which the result follows.
The case |q| < 1: As qn+1 → 0 the series converges with value

S = lim
n→∞

1 − qn+1

1 − q
= 1

1 − q
.

The case |q| > 1: For q > 1 the partial sum Sn = (qn+1 − 1)/

(q − 1) → ∞ and the series diverges. In the case of q < −1 the partial sums
Sn = (1 − (−1)n+1|q|n+1)/(1 − q) are unbounded and oscillate. They thus diverge
as well.

The case |q| = 1: For q = 1 we have Sn = 1 + 1 + · · · + 1 = n + 1 which tends
to infinity; for q = −1, the partial sums Sn oscillate between 1 and 0. In both cases
the series diverges.

Example 5.19 The nth partial sum of the series
∑∞

k=1
1

k(k+1)
is

Sn =
n∑

k=1

1

k(k + 1)
=

n∑
k=1

(
1

k
− 1

k + 1

)

= 1 − 1

2
+ 1

2
− 1

3
+ 1

3
− 1

4
+ · · · − 1

n
+ 1

n
− 1

n + 1
= 1 − 1

n + 1
.

It is called a telescopic sum. The series converges to

S =
∞∑

k=1

1

k(k + 1)
= lim

n→∞

(
1 − 1

n + 1

)
= 1.
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Example 5.20 (Harmonic series) We consider the series
∑∞

k=1
1
k

. By combining
blocks of two, four, eight, sixteen, etc. elements, one obtains the grouping

1 + 1

2
+

(
1

3
+ 1

4

)
+

(
1

5
+ 1

6
+ 1

7
+ 1

8

)
+

(
1

9
+ · · · + 1

16

)
+

(
1

17
+ · · ·

)
+ · · ·

≥ 1 + 1

2
+

(
1

4
+ 1

4

)
+

(
1

8
+ 1

8
+ 1

8
+ 1

8

)
+

(
1

16
+ · · · + 1

16

)

+
(

1

32
+ · · ·

)
+ · · ·

= 1 + 1

2
+ 1

2
+ 1

2
+ 1

2
+ 1

2
+ · · · → ∞.

The partial sums tend to infinity, therefore, the series diverges.

There are a number of criteria which allow one to decide whether a series con-
verges or diverges. Here we only discuss two simple comparison criteria, which
suffice for our purposes. For further considerations we refer to the literature; for
instance [3, Chap. 9.2].

Proposition 5.21 (Comparison criteria) Let 0 ≤ ak ≤ bk for all k ∈ N or at least
for all k greater than or equal to a certain k0. Then we have
(a) If the series

∑∞
k=1 bk is convergent then the series

∑∞
k=1 ak converges, too.

(b) If the series
∑∞

k=1 ak is divergent then the series
∑∞

k=1 bk diverges, too.

Proof (a) The partial sums fulfil Sn = ∑n
k=1 ak ≤ ∑∞

k=1 bk = T and Sn ≤ Sn+1,
hence are bounded and monotonically increasing. According to Proposition 5.10
the limit of the partial sums exists.

(b) This time, we have for the partial sums

Tn =
n∑

k=1

bk ≥
n∑

k=1

ak → ∞,

since the latter are positive and divergent. �

Under the condition 0 ≤ ak ≤ bk of the proposition one says that
∑∞

k=1 bk domi-
nates

∑∞
k=1 ak . A series thus converges if it is dominated by a convergent series; it

diverges if it dominates a divergent series.

Example 5.22 The series
∑∞

k=1
1
k2 is convergent. For the proof we use that

n∑
k=1

1

k2
= 1 +

n−1∑
j=1

1

(j + 1)2
and aj = 1

(j + 1)2
≤ 1

j (j + 1)
= bj .

Example 5.19 shows that
∑∞

j=1 bj converges. Proposition 5.21 then implies conver-
gence of the original series.
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Example 5.23 The series
∑∞

k=1 k−0.99 diverges. This follows from the fact that
k−1 ≤ k−0.99. Therefore, the series

∑∞
k=1 k−0.99 dominates the harmonic series

which itself is divergent; see Example 5.20.

Example 5.24 In Chap. 2 Euler’s number,

e =
∞∑

j=0

1

j ! = 1 + 1 + 1

2
+ 1

6
+ 1

24
+ 1

120
+ · · · ,

was introduced. We can now show that this definition makes sense, i.e., the series
converges. For j ≥ 4 it is obvious that

j ! = 1 · 2 · 3 · 4 · 5 · . . . · j ≥ 2 · 2 · 2 · 2 · 2 · . . . · 2 = 2j .

Thus the geometric series
∑∞

j=0

( 1
2

)j is a dominating convergent series.

Example 5.25 The decimal notation of a positive real number

a = A.α1α2α3 . . .

with A ∈ N0, αk ∈ {0, . . . ,9} can be understood as a representation by the series

a = A +
∞∑

k=1

αk10−k.

The series converges since A + 9
∑∞

k=1 10−k is a dominating convergent series.

5.4 Supplement: Accumulation Points of Sequences

Occasionally we need sequences which themselves do not converge but have con-
vergent subsequences. The notions of accumulation points, limit superior and limit
inferior are connected with this concept.

Definition 5.26 A number b is called accumulation point of a sequence (an)n≥1 if
each neighbourhood Uε(b) of b contains infinitely many terms of the sequence:

∀ε > 0 ∀n ∈ N ∃m = m(n, ε) ≥ n : |b − am| < ε.

Figure 5.3 displays the sequence

an = arctann + cos(nπ/2) + 1

n
sin(nπ/2).

It has three accumulation points, namely b1 = π/2 + 1 ≈ 2.57, b2 = π/2 ≈ 1.57
and b3 = π/2 − 1 ≈ 0.57.
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Fig. 5.3 Accumulation
points of a sequence

If a sequence is convergent with limit a then a is the unique accumulation point.
Accumulation points of a sequence can also be characterised with the help of the
concept of subsequences.

Definition 5.27 If 1 ≤ n1 < n2 < n3 < · · · is a strictly monotonically increasing
sequence of integers (indices), then

(anj
)j≥1

is called a subsequence of the sequence (an)n≥1.

Example 5.28 We start with the sequence an = 1
n

. If we take for instance nj = j2,
then we obtain the sequence anj

= 1
j2 as subsequence:

(an)n≥1 =
(

1,
1

2
,

1

3
,

1

4
,

1

5
,

1

6
,

1

7
,

1

8
,

1

9
,

1

10
, . . .

)
,

(anj
)j≥1 =

(
1,

1

4
,

1

9
, . . .

)
.

Proposition 5.29 A number b is an accumulation point of the sequence (an)n≥0 if
and only if b is the limit of a convergent subsequence (anj

)j≥1.

Proof Let b be an accumulation point of the sequence (an)n≥0. Step by step we will
construct a strictly monotonically increasing sequence of indices (nj )j≥1 so that

|b − anj
| < 1

j
(5.2)

is fulfilled for all j ∈ N. According to Definition 5.26 for ε1 = 1 we have

∀n ∈ N ∃m ≥ n : |b − am| < ε1.

We choose n = 1 and denote the smallest m ≥ n which fulfils this condition by n1.
Thus

|b − an1 | < ε1 = 1.
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For ε2 = 1
2 one again obtains according to Definition 5.26:

∀n ∈ N ∃m ≥ n : |b − am| < ε2.

This time we choose n = n1 + 1 and denote the smallest m ≥ n1 + 1 which fulfils
this condition by n2. Thus

|b − an2 | < ε2 = 1

2
.

It is clear how one has to proceed. Once nj is constructed one sets εj+1 = 1/(j +1)

and uses Definition 5.26 according to which

∀n ∈ N ∃m ≥ n : |b − am| < εj+1.

We choose n = nj + 1 and denote the smallest m ≥ nj + 1 which fulfils this condi-
tion by nj+1. Thus

|b − anj+1 | < εj+1 = 1

j + 1
.

This procedure guarantees on the one hand that the sequence of indices (nj )j≥1 is
strictly monotonically increasing and on the other hand that the inequality (5.2) is
fulfilled for all j ∈ N. In particular, (anj

)j≥1 is a subsequence that converges to b.
Conversely, it is obvious that the limit of a convergent subsequence is an accu-

mulation point of the original sequence. �

In the proof of the proposition we have used the method of recursive definition
of a sequence, namely the subsequence (anj

)j≥1.
We next want to show that each bounded sequence has at least one accumulation

point—or equivalently—a convergent subsequence. This result bears the names of
Bolzano2 and Weierstrass3 and it is an important technical tool for proofs in many
areas of analysis.

Proposition 5.30 (Theorem of Bolzano–Weierstrass) Every bounded sequence
(an)n≥1 has (at least) one accumulation point.

Proof Due to the boundedness of the sequence there are bounds b < c so that all
terms of the sequence an lie between b and c. We bisect the interval [b, c]. Then in
at least one of the two half-intervals [b, (b + c)/2] or [(b + c)/2, c] there have to
be infinitely many terms of the sequence. We choose such a half-interval and call
it [b1, c1]. This interval is also bisected; in one of the two halves again there have
to be infinitely many terms of the sequence. We call this quarter-interval [b2, c2].

2B. Bolzano, 1781–1848.
3K. Weierstrass, 1815–1897.
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Continuing this way we obtain a sequence of intervals [bn, cn] of length 2−n(c − b)

each of which contains infinitely many terms of the sequence. Obviously the bn are
monotonically increasing and bounded, therefore converge to a limit b. Since each
interval [b − 2−n, b + 2−n] by construction contains infinitely many terms of the
sequence, b is an accumulation point of the sequence. �

If the sequence (an)n≥1 is bounded then the set of its accumulation points is
also bounded and hence has a supremum. This supremum is itself an accumulation
point of the sequence (which can be shown by constructing a suitable convergent
subsequence) and thus forms the largest accumulation point.

Definition 5.31 The largest accumulation point of a bounded sequence is called
limit superior and is denoted by limn→∞an or lim supn→∞ an. The smallest accu-
mulation point is called limit inferior with the corresponding notation limn→∞an or
lim infn→∞ an.

The relationships

lim sup
n→∞

an = lim
n→∞

(
sup
m≥n

am

)
, lim inf

n→∞ an = lim
n→∞

(
inf
m≥n

am

)

follow easily from the definition and justify the notation.
For example, the sequence (an)n≥1 from Fig. 5.3 has lim supn→∞ an = π/2 + 1

and lim infn→∞ an = π/2 − 1.

5.5 Exercises

1. Find a law of formation for the sequences below and check for monotonicity,
boundedness and convergence:

−3,−2,−1,0,
1

4
,

3

9
,

5

16
,

7

25
,

9

36
, . . . ;

0,−1,
1

2
,−2,

1

4
,−3,

1

8
,−4,

1

16
, . . . .

2. Verify that the sequence an = n2

1+n2 converges to 1.
Hint. Given ε > 0, find n(ε) such that

∣∣∣∣ n2

1 + n2
− 1

∣∣∣∣ < ε

for all n ≥ n(ε).
3. Determine a recursion formula that provides the terms of the geometric se-

quence an = qn, n ≥ 0 successively. Write a MATLAB program that calculates
the first N terms of the geometric sequence for an arbitrary q ∈ R.
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Check the convergence behaviour for different values of q and plot the re-
sults. Do the same with the help of the applet Sequences.

4. Investigate whether the following sequences converge and, in case of conver-
gence, compute the limit:

an = n

n + 1
− n + 1

n
, bn = −n + 1

n
, cn =

(
−1

n

)n

,

dn = n − n2 + 3n + 1

n
, en = 1

2

(
en + e−n

)
, fn = cos(nπ).

5. Investigate whether the following sequences have a limit or an accumulation
point. Compute, if existent, lim, lim inf, lim sup, inf, sup:

an = n + 7

n3 + n + 1
, bn = 1 − 3n2

7n + 5
, cn = en − e−n

en + e−n
,

dn = 1 + (−1)n, en = 1 + (−1)n

n
, fn = (

1 + (−1)n
)
(−1)n/2.

6. Open the applet Sequences, visualise the sequences from Exercises 4 and 5 and
discuss their behaviour by means of their graphs.

7. The population model of Verhulst from Example 5.3 can be described in appro-
priate units in simplified form by the recursive relationship

xn+1 = rxn(1 − xn), n = 0,1,2,3, . . .

with an initial value x0 and a parameter r . We presume in this sequence that
0 ≤ x0 ≤ 1 and 0 ≤ r ≤ 4 (since all xn then stay in the interval [0,1]). Write
a MATLAB-program which calculates for given r, x0,N the first N terms of the
sequence (xn)n≥1. With the help of your program (and some numerical values
for r, x0,N ) check the following statements:
(a) For 0 ≤ r ≤ 1 the sequence xn converges to 0.
(b) For 1 < r < 2

√
2 the sequence xn tends to a positive limit.

(c) For 3 < r < 1 + √
6 the sequence xn eventually oscillates between two

different positive values.
(d) For 3.75 < r ≤ 4 the sequence xn behaves chaotically.
Illustrate these assertions also with the applet Sequences.

8. The sequence (an)n≥1 is given recursively by

a1 = A, an+1 = 1

2
a2
n − 1

2
.

Which starting values A ∈ R are fixed points of the recursion, i.e. A = a1 =
a2 = · · ·? Investigate for which starting values A ∈ R the sequence converges
or diverges, respectively. You can use the applet Sequences. Try to locate the
regions of convergence and divergence as precisely as possible.
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9. Write a MATLAB program which, for given α ∈ [0,1] and N ∈ N, calculates the
first N terms of the sequence

xn = nα − 
nα�, n = 1,2,3, . . . ,N

(
nα� denotes the largest integer smaller than nα). With the help of your pro-
gram, investigate the behaviour of the sequence for a rational α = p

q
and for an

irrational α (or at least a very precise rational approximation to an irrational α)
by plotting the terms of the sequence and by visualising their distribution in a
histogram. Use the MATLAB commands floor and hist.

10. Give formal proofs for the remaining rules of calculation of Proposition 5.7, i.e.,
for addition and division by modifying the proof for the multiplication rule.

11. Check the following series for convergence with the help of the comparison
criteria:

∞∑
k=1

1

k(k + 2)
,

∞∑
k=1

1√
k
,

∞∑
k=1

1

k3
.

12. Check the following series for convergence:

∞∑
k=1

2 + k2

k4
,

∞∑
k=1

(
1

2

)2k

,

∞∑
k=1

2

k! .

13. Try to find out how the partial sums Sn of the series in Exercises 11 and 12 can
be calculated with the help of a recursion and then study their behaviour with
the applet Sequences.

14. Prove the convergence of the series

∞∑
k=0

2k

k! .

Hint. Use the fact that j ! ≥ 4j is fulfilled for j ≥ 9 (why)? From this it follows
that 2j /j ! ≤ 1/2j . Now apply the appropriate comparison criterion.

15. Prove the ratio test for series with positive terms ak > 0: If there exists a num-
ber q , 0 < q < 1 such that the quotients satisfy

ak+1

ak

≤ q

for all k ∈ N0, then the series
∑∞

k=0 ak converges.
Hint. From the assumption it follows that a1 ≤ a0q , a2 ≤ a1q ≤ a0q

2 and thus
successively ak ≤ a0q

k for all k. Now use the comparison criteria and the con-
vergence of the geometric series with q < 1.
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In this section we extend the notion of the limit of a sequence to the concept of
the limit of a function. Hereby we obtain a tool which enables us to investigate
the behaviour of graphs of functions in the neighbourhood of chosen points. More-
over, limits of functions form the basis of one of the central themes in mathematical
analysis, namely differentiation (Chap. 7). In order to derive certain differentiation
formulae some elementary limits are needed, for instance, limits of trigonometric
functions. The property of continuity of a function has far-reaching consequences,
like, for instance, the intermediate value theorem, according to which a continuous
function which changes sign in an interval has a zero. Not only does this theorem
allow one to show the solvability of equations, it also provides numerical proce-
dures to approximate the solutions. Further material on continuity can be found in
Appendix C.

6.1 The Notion of Continuity

We start with the investigation of the behaviour of graphs of real functions

f : (a, b) → R

while approaching a point x in the open interval (a, b) or a boundary point of the
closed interval [a, b]. For that we need the notion of a zero sequence, i.e., a sequence
of real numbers (hn)n≥1 with limn→∞ hn = 0.

Definition 6.1 (Limits and continuity)
(a) The function f has a limit M at a point x ∈ (a, b), if

lim
n→∞f (x + hn) = M

for all zero sequences (hn)n≥1 with hn �= 0. In this case one writes

M = lim
h→0

f (x + h) = lim
ξ→x

f (ξ)

M. Oberguggenberger, A. Ostermann, Analysis for Computer Scientists,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-0-85729-446-3_6, © Springer-Verlag London Limited 2011

63

http://dx.doi.org/10.1007/978-0-85729-446-3_6


64 6 Limits and Continuity of Functions

Fig. 6.1 Limit and continuity; left- and right-hand limits

or

f (x + h) → M as h → 0.

(b) The function f has a right-hand limit R at the point x ∈ [a, b), if

lim
n→∞f (x + hn) = R

for all zero sequences (hn)n≥1 with hn > 0, with the corresponding notation

R = lim
h→0+f (x + h) = lim

ξ→x+f (ξ).

(c) The function f has a left-hand limit L at the point x ∈ (a, b], if:

lim
n→∞f (x + hn) = L

for all zero sequences (hn)n≥1 with hn < 0. Notation:

L = lim
h→0−f (x + h) = lim

ξ→x−f (ξ).

(d) If f has a limit M at x ∈ (a, b) which coincides with the value of the function,
i.e. f (x) = M , then f is called continuous at the point x.

(e) If f is continuous at every x ∈ (a, b), then f is said to be continuous on the open
interval (a, b). If in addition f has right- and left-hand limits at the endpoints a

and b, it is called continuous on the closed interval [a, b].

Figure 6.1 illustrates the idea of approaching a point x for h → 0 as well as
possible differences between left-hand and right-hand limits and the value of the
function.

If a function f is continuous at a point x, the function evaluation can be inter-
changed with the limit:

lim
ξ→x

f (ξ) = f (x) = f
(

lim
ξ→x

ξ
)
.
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Fig. 6.3 Discontinuities:
jump discontinuity and
exceptional value

Fig. 6.4 No limits,
oscillation with
non-vanishing amplitude

Example 6.7 The function f (x) = sin 1
x

has no left- or right-hand limit at x = 0
but oscillates with non-vanishing amplitude (Fig. 6.4). Indeed, one obtains different
limits for different zero sequences. For example, for

hn = 1

nπ
, kn = 1

π/2 + 2nπ
, ln = 1

3π/2 + 2nπ

the respective limits are

lim
n→∞f (hn) = 0, lim

n→∞f (kn) = 1, lim
n→∞f (ln) = −1.

All other values in the interval [−1,1] can also be obtained as limits with the help
of suitable zero sequences.

Example 6.8 The function g(x) = x sin 1
x

can be continuously extended by g(0) = 0
at x = 0; it oscillates with vanishing amplitude (Fig. 6.5). Indeed,

∣∣g(hn) − g(0)
∣∣ =

∣∣∣∣hn sin
1

hn

− 0

∣∣∣∣ ≤ |hn| → 0

for all zero sequences (hn)n≥1; thus limh→0 h sin 1
h

= 0.

Experiment 6.9 Open the M-files mat06_1.m and mat06_2.m and study the
graphs of the functions in Figs. 6.4 and 6.5 with the use of the zoom tool in the
figure window. How can you improve the accuracy of the visualisation in the neigh-
bourhood of x = 0?
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Fig. 6.5 Continuity,
oscillation with vanishing
amplitude

6.2 Trigonometric Limits

Comparing the areas in Fig. 6.6 below shows that the area of the grey triangle with
sides cosx and sinx is smaller than the area of the sector which in turn is smaller or
equal to the area of the big triangle with sides 1 and tanx.

The area of a sector in the unit circle (with angle x in radian measure) equals
x/2, as is well known. In summary, we obtain the inequalities

1

2
sinx cosx ≤ x

2
≤ 1

2
tanx,

or, after division by sinx and taking the reciprocal,

cosx ≤ sinx

x
≤ 1

cosx
,

valid for all x with 0 < |x| < π/2.
With the help of these inequalities we can compute several important limits. From

an elementary geometric consideration, one obtains

|cosx| ≥ 1

2
for − π

3
≤ x ≤ π

3
,

and together with the previous inequalities

|sinhn| ≤ |hn|
|coshn| ≤ 2|hn| → 0

for all zero sequences (hn)n≥1. This means that

lim
h→0

sinh = 0.

The sine function is therefore continuous at zero. From the continuity of the square
function and the root function as well as the fact that cosh equals the positive square
root of 1 − sin2 h for small h it follows that

lim
h→0

cosh = lim
h→0

√
1 − sin2 h = 1.
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Fig. 6.7 The intermediate
value theorem

Proof The proof is based on the successive bisection of the intervals and the com-
pleteness of the set of real numbers. One starts with the interval [a, b] and sets
a1 = a, b1 = b.

Step 1: Compute y1 = f
(

a1+b1
2

)
.

If y1 > 0 : set a2 = a1, b2 = a1 + b1

2
.

If y1 < 0 : set a2 = a1 + b1

2
, b2 = b1.

If y1 = 0 : termination, ξ = a1 + b1

2
is a zero.

By construction f (a2) < 0, f (b2) > 0 and the interval length is halved:

b2 − a2 = 1

2
(b1 − a1).

Step 2: Compute y2 = f
(

a2+b2
2

)
.

If y2 > 0 : set a3 = a2, b3 = a2 + b2

2
.

If y2 < 0 : set a3 = a2 + b2

2
, b3 = b2.

If y2 = 0 : termination, ξ = a2 + b2

2
is a zero.

Further iterations lead to a monotonically increasing sequence,

a1 ≤ a2 ≤ a3 ≤ · · · ≤ b,

which is bounded from above. According to Proposition 5.10 the limit ξ =
limn→∞ an exists.

On the other hand |an − bn| ≤ |a − b|/2n−1 → 0, therefore limn→∞ bn = ξ as
well. If ξ has not appeared after a finite number of steps as either ak or bk then for
all n ∈ N:

f (an) < 0, f (bn) > 0.
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From the continuity of f it follows that

f (ξ) = lim
n→∞f (an) ≤ 0, f (ξ) = lim

n→∞f (bn) ≥ 0,

which implies f (ξ) = 0, as claimed. �

The proof provides at the same time a numerical method to compute zeros of
functions, the bisection method. Although it converges rather slowly, it is easily
implementable and universally applicable—also for non-differentiable, continuous
functions. For differentiable functions, however, considerably faster algorithms ex-
ist. The order of convergence and the discussion of faster procedures will be taken
up in Sect. 8.2.

Example 6.12 Calculation of
√

2 as the root of f (x) = x2 − 2 = 0 in the interval
[1,2] using the bisection method:

Start: f (1) = −1 < 0, f (2) = 2 > 0; a1 = 1, b1 = 2.

Step 1: f (1.5) = 0.25 > 0; a2 = 1, b2 = 1.5.

Step 2: f (1.25) = −0.4375 < 0; a3 = 1.25, b3 = 1.5.

Step 3: f (1.375) = −0.109375 < 0; a4 = 1.375, b4 = 1.5.

Step 4: f (1.4375) = 0.066406 . . . > 0; a5 = 1.375, b5 = 1.4375.

Step 5: f (1.40625) = −0.022461 . . . < 0; a6 = 1.40625, b6 = 1.4375.

etc.

After five steps the first decimal place is ascertained:

1.40625 <
√

2 < 1.4375.

Experiment 6.13 Sketch the graph of the function y = x3 + 3x2 − 2 on the interval
[−3,2] and try to first estimate graphically one of the roots by successive bisection.
Execute the interval bisection with the help of the applet Bisection method. Assure
yourself of the plausibility of the intermediate value theorem using the applet Ani-
mation of the intermediate value theorem.

As an important application of the intermediate value theorem we now show that
images of intervals under continuous functions are again intervals. For the different
types of intervals which appear in the following proposition we refer to Sect. 1.2;
for the notion of the proper range to Sect. 2.1.

Proposition 6.14 Let I ⊂ R be an interval (open, half-open or closed, bounded or
improper) and f : I → R a continuous function with proper range J = f (I). Then
J is also an interval.

Proof As subsets of the real line, intervals are characterised by the following prop-
erty: with any two points all intermediate points are contained in it as well. Let
y1, y2 ∈ J , y1 < y2, and let η be an intermediate point, i.e. y1 < η < y2. Since
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f : I → J is surjective there are x1, x2 ∈ I such that y1 = f (x1) and y2 = f (x2).
We consider the case x1 < x2. Since f (x1) − η < 0 and f (x2) − η > 0, it follows
from the intermediate value theorem applied on the interval [x1, x2] that there exists
a point ξ ∈ (x1, x2) with f (ξ)−η = 0, thus f (ξ) = η. Hence η is attained as a value
of the function and therefore lies in J = f (I). �

Proposition 6.15 Let I = [a, b] be a closed, bounded interval and f : I → R a
continuous function. Then the proper range J = f (I) is also a closed, bounded
interval.

Proof According to Proposition 6.14 the range J is an interval. Let d be the least
upper bound (possibly d = ∞). We take a sequence of values yn ∈ J which con-
verges to d . The values yn are function values of certain arguments xn ∈ I = [a, b].
The sequence (xn)n≥1 is bounded and, according to Proposition 5.30, has an accu-
mulation point x0, a ≤ x0 ≤ b. Thus a subsequence (xnj

)j≥1 exists which converges
to x0 (see Sect. 5.4). From the continuity of the function f it follows that

d = lim
j→∞ynj

= lim
j→∞f (xnj

) = f (x0).

This shows that the upper endpoint of the interval J is finite and is attained as
function value. The same argument is applied to the lower boundary c; the range J

is therefore a closed, bounded interval [c, d]. �

From the proof of the proposition it is clear that d is the largest and c the smallest
value of the function f on the interval [a, b]. We thus obtain the following important
consequence.

Corollary 6.16 Each continuous function defined on a closed interval I = [a, b]
attains its maximum and minimum there.

6.4 Exercises

1. (a) Investigate the behaviour of the functions

x + x2

|x| ,

√
1 + x − 1

x
,

x2 + sinx√
1 − cos2 x

in a neighbourhood of x = 0 by plotting their graphs for arguments in
[−2,− 1

100 ) ∪ ( 1
100 ,2].

(b) Find out by inspection of the graphs whether there are left- or right-hand
limits at x = 0. Which value do they have? Explain your results by rearranging
the expressions in (a).
Hint. Some guidance for part (a) can be found in the M-file mat06_ex1.m.
Expand the middle term in (b) with

√
1 + x + 1.
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2. Do the following functions have a limit at the given points? If so, what is its
value?
(a) y = x3 + 5x + 10, x = 1.
(b) y = x2−1

x2+x
, x = 0, x = 1, x = −1.

(c) y = 1−cosx

x2 , x = 0.

Hint. Expand with (1 + cosx).
(d) y = signx · sinx, x = 0.
(e) y = signx · cosx, x = 0.

3. Let fn(x) = arctannx, gn(x) = (1 + x2)−n. Compute the limits

f (x) = lim
n→∞fn(x), g(x) = lim

n→∞gn(x)

for each x ∈ R and sketch the graphs of the thereby defined functions f and g.
Are they continuous? Plot fn and gn using MATLAB and investigate the behaviour
of the graphs for n → ∞.
Hint. An advice can be found in the M-file mat06_ex3.m.

4. With the help of zero sequences, carry out a formal proof of the fact that the ab-
solute value function and the third root function of Example 6.3 are continuous.

5. Argue with the help of the intermediate value theorem that p(x) = x3 + 5x + 10
has a zero in the interval [−2,1]. Compute this zero up to four decimal places
using the applet Bisection method.

6. Compute all zeros of the following functions in the given interval with accuracy
10−3, using the applet Bisection method.

f (x) = x4 − 2, I = R.

g(x) = x − cosx, I = R.

h(x) = sin
1

x
, I =

[
1

20
,

1

10

]
.

7. Write a MATLAB program which locates—with the help of the bisection method—
the zero of an arbitrary polynomial

p(x) = x3 + c1x
2 + c2x + c3

of degree three. Your program should automatically provide starting values a, b

with p(a) < 0, p(b) > 0. (Why do such values always exist?) Test your program
by choosing the coefficient vector (c1, c2, c3) randomly, for example by using
c = 1000*rand(1,3).
Hint. A solution is suggested in the M-file mat06_ex7a.m. In mat06_
ex7b.m you can find an alternative in which the vector functions of MATLAB
are exploited in a more efficient way.
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Starting from the problem to define the tangent to the graph of a function, we in-
troduce the derivative of a function. Two points on the graph can always be joined
by a secant, which is a good model for the tangent whenever these points are close
to each other. In a limiting process, the secant (discrete model) is replaced by the
tangent (continuous model). Differential calculus, which is based on this limiting
process, has become one of the most important building blocks of mathematical
modelling.

In this section we discuss the derivative of important elementary functions as
well as general differentiation rules. Thanks to the meticulous implementation of
these rules, expert systems such as maple have become helpful tools in mathemat-
ical analysis. Furthermore, we will discuss the interpretation of the derivative as
linear approximation and as rate of change. These interpretations form the basis of
numerous applications in science and engineering.

The concept of the numerical derivative follows the opposite direction. The con-
tinuous model is discretised and the derivative is replaced by a difference quotient.
We carry out a detailed error analysis which allows us to find an optimal approxima-
tion. Further, we will illustrate the relevance of symmetry in numerical procedures.

7.1 Motivation

Example 7.1 (The free fall according to Galilei1) Imagine an object which, released
at time t = 0, falls down under the influence of gravity. We are interested in the
position s(t) of the object at time t ≥ 0 as well as in its velocity v(t); see Fig. 7.1.
Due to the definition of velocity as change in travelled distance divided by change
in time, the object has the average velocity

vaverage = s(t + �t) − s(t)

�t

1G. Galilei, 1564–1642.
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Fig. 7.1 The free fall

in the time interval [t, t +�t]. In order to obtain the instantaneous velocity v = v(t)

we take the limit �t → 0 in the above formula and arrive at

v(t) = lim
�t→0

s(t + �t) − s(t)

�t
.

Galilei discovered through his experiments that the travelled distance in free fall
increases quadratically with the time passed, i.e., the law

s(t) = g

2
t2

with g ≈ 9.81 m/s2 holds. Thus we obtain the expression

v(t) = lim
�t→0

g
2 (t + �t)2 − g

2 t2

�t
= g

2
lim

�t→0

(
2t + �t

) = gt

for the instantaneous velocity. The velocity is hence proportional to the time passed.

Example 7.2 (The tangent problem) Consider a real function f and two differ-
ent points P = (x0, f (x0)) and Q = (x, f (x)) on the graph of the function. The
uniquely defined straight line through these two points is called secant of the func-
tion f through P and Q; see Fig. 7.2. The slope of the secant is given by the differ-
ence quotient

�y

�x
= f (x) − f (x0)

x − x0
.

As x tends to x0, the secant graphically turns into the tangent, provided the limit
exists. Motivated by this idea we define the slope

k = lim
x→x0

f (x) − f (x0)

x − x0
= lim

h→0

f (x0 + h) − f (x0)

h

of the function f at x0. If this limit exists, we call the straight line

y = k · (x − x0) + f (x0)

the tangent to the graph of the function at the point (x0, f (x0)).
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Fig. 7.2 Slope of the secant

Experiment 7.3 Plot the function f (x) = x2 on the interval [0,2] in MATLAB. Draw
the straight lines through the points (1,1), (2, z) for various values of z. Adjust z

until you find the tangent to the graph of the function f at (1,1) and read off its
slope.

7.2 The Derivative

Motivated by the above applications we are going to define the derivative of a real-
valued function.

Definition 7.4 (Derivative) Let I ⊂ R be an open interval, f : I → R a real-valued
function and x0 ∈ I .
(a) The function f is called differentiable at x0 if the difference quotient

�y

�x
= f (x) − f (x0)

x − x0

has a (finite) limit for x → x0. In this case one writes

f ′(x0) = lim
x→x0

f (x) − f (x0)

x − x0
= lim

h→0

f (x0 + h) − f (x0)

h

and calls the limit derivative of f at the point x0.
(b) The function f is called differentiable (in the interval I ) if f ′(x) exists for all

x ∈ I . In this case the function

f ′ : I → R : x �→ f ′(x)

is called the derivative of f . The process of computing f ′ from f is called
differentiation.

In place of f ′(x) one often writes df
dx

(x) or d
dx

f (x). The following examples
show how the derivative of a function is obtained by means of the limiting process
above.
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Example 7.5 (The constant function f (x) = c)

f ′(x) = lim
h→0

f (x + h) − f (x)

h
= lim

h→0

c − c

h
= lim

h→0

0

h
= 0.

The derivative of a constant function is zero.

Example 7.6 (The affine function g(x) = ax + b)

g′(x) = lim
h→0

g(x + h) − g(x)

h
= lim

h→0

ax + ah + b − ax − b

h
= lim

h→0
a = a.

The derivative is the slope a of the straight line y = ax + b.

Example 7.7 (The derivative of the quadratic function y = x2)

y′ = lim
h→0

(x + h)2 − x2

h
= lim

h→0

2hx + h2

h
= lim

h→0
(2x + h) = 2x.

Similarly, one can show for the power function (with n ∈ N):

f (x) = xn ⇒ f ′(x) = n · xn−1.

Example 7.8 (The derivative of the square root function y = √
x for x > 0)

y′ = lim
ξ→x

√
ξ − √

x

ξ − x
= lim

ξ→x

√
ξ − √

x

(
√

ξ − √
x)(

√
ξ + √

x)
= lim

ξ→x

1√
ξ + √

x
= 1

2
√

x
.

Example 7.9 (Derivatives of the sine and cosine functions) We first recall from
Proposition 6.10 that

lim
t→0

sin t

t
= 1.

Due to

(cos t − 1)(cos t + 1) = − sin2 t

also the following holds:

cos t − 1

t
= − sin t︸︷︷︸

→0

· sin t

t︸︷︷︸
→1

· 1

cos t + 1︸ ︷︷ ︸
→1/2

→ 0 for t → 0,

and thus

lim
t→0

cos t − 1

t
= 0.
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Due to the addition theorems (Proposition 3.3) we get with the preparations from
above

sin′ x = lim
h→0

sin(x + h) − sinx

h
= lim

h→0

sinx cosh + cosx sinh − sinx

h

= lim
h→0

sinx · cosh − 1

h
+ lim

h→0
cosx · sinh

h

= sinx · lim
h→0

cosh − 1

h︸ ︷︷ ︸
=0

+ cosx · lim
h→0

sinh

h︸ ︷︷ ︸
=1

= cosx.

This proves the formula sin′ x = cosx. Likewise it can be shown that cos′ x =
− sinx.

Example 7.10 (The derivative of the exponential function with base e) Rearranging
terms in the series expansion of the exponential function (Proposition 24.12) we
obtain

eh − 1

h
=

∞∑
k=0

hk

(k + 1)! = 1 + h

2
+ h2

6
+ h3

24
+ · · · .

From this one infers∣∣∣∣eh − 1

h
− 1

∣∣∣∣ ≤ |h|
(

1

2
+ |h|

6
+ |h|3

24
+ · · ·

)
≤ |h|e|h|.

Letting h → 0 hence gives the important limit

lim
h→0

eh − 1

h
= 1.

The existence of the limit

lim
h→0

ex+h − ex

h
= ex · lim

h→0

eh − 1

h
= ex

shows that the exponential function is differentiable and that (ex)′ = ex .

Example 7.11 (New representation of Euler’s number) By substituting y = eh − 1,
h = log(y + 1) in the above limit one obtains

lim
y→0

y

log(y + 1)
= 1

and in this way

lim
y→0

log(1 + αy)1/y = lim
y→0

log(1 + αy)

y
= α lim

y→0

log(1 + αy)

αy
= α.
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Definition 7.14 If the function f ′ is again differentiable then

f ′′(x) = d2

dx2
f (x) = d2f

dx2
(x) = lim

h→0

f ′(x + h) − f ′(x)

h

is called the second derivative of f with respect to x. Likewise higher derivatives
are defined recursively as

f ′′′(x) = (
f ′′(x)

)′ or
d3

dx3
f (x) = d

dx

(
d2

dx2
f (x)

)
, etc.

Differentiating with maple Using maple one can differentiate expressions as
well as functions. If the expression g is of the form

g := x^2 - a*x;

then the corresponding function f is defined by

f := x -> x^2 - a*x;

The evaluation of functions generates expressions, for example f(t) produces the
expression t2 − at . Conversely, expressions can be converted to functions using
unapply

h := unapply(g,x);

The derivative of expressions can be obtained using diff, those of functions us-
ing D. Examples can be found in the maple worksheet mp07_1.mws.

7.3 Interpretations of the Derivative

We introduced the derivative geometrically as the slope of the tangent, and we saw
that the tangent to a graph of a differentiable function f at the point (x0, f (x0)) is
given by

y = f ′(x0)(x − x0) + f (x0).

Example 7.15 Let f (x) = x4 + 1 with derivative f ′(x) = 4x3.
(i) The tangent to the graph of f at the point (0,1) is

y = f ′(0) · (x − 0) + f (0) = 1

and thus horizontal.

(ii) The tangent to the graph of f at the point (1,2) is

y = f ′(1)(x − 1) + 2 = 4(x − 1) + 2 = 4x − 2.

The derivative allows further interpretations.
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Interpretation as Linear Approximation We start off by emphasising that every
differentiable function f can be written in the form

f (x) = f (x0) + f ′(x0)(x − x0) + R(x, x0),

where the remainder R(x, x0) has the property

lim
x→x0

R(x, x0)

x − x0
= 0.

This follows immediately from

R(x, x0) = f (x) − f (x0) − f ′(x0)(x − x0)

by dividing by x − x0, since

f (x) − f (x0)

x − x0
→ f ′(x0) as x → x0.

Application 7.16 As we have just seen, a differentiable function f is characterised
by the property that

f (x) = f (x0) + f ′(x0)(x − x0) + R(x, x0),

where the remainder term R(x, x0) tends faster to zero than x − x0. Taking the
limit x → x0 in this equation shows in particular that every differentiable function
is continuous.

Application 7.17 Let g be the function given by

g(x) = k · (x − x0) + f (x0).

Its graph is the straight line with slope k passing through the point (x0, f (x0)). Since

f (x) − g(x)

x − x0
= f (x) − f (x0) − k · (x − x0)

x − x0
= f ′(x0) − k + R(x, x0)

x − x0︸ ︷︷ ︸
→0

as x → x0, the tangent with k = f ′(x0) is the straight line which approximates the
graph best. One therefore calls

g(x) = f (x0) + f ′(x0) · (x − x0)

the linear approximation to f at x0. For x close to x0 one can consider g(x) as a
good approximation to f (x). In applications the (possibly complicated) function f

is often replaced by its linear approximation g which is easier to handle.
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Example 7.18 Let f (x) = √
x = x1/2. Consequently,

f ′(x) = 1

2
x− 1

2 = 1

2
√

x
.

We want to find the linear approximation to the function f at x0 = a. According to
the formula above the following holds:

√
x ≈ g(x) = √

a + 1

2
√

a
(x − a)

for x close to a, or, alternatively with h = x − a,

√
a + h ≈ √

a + 1

2
√

a
h for small h.

If we now substitute a = 1 and h = 0.1, we obtain the approximation

√
1.1 ≈ 1 + 0.1

2
= 1.05.

The first digits of the actual value are 1.0488 . . . .

Physical Interpretation as Rate of Change In physical applications the deriva-
tive often plays the role of a rate of change. A well-known example from everyday
life is the velocity; see Sect. 7.1. Consider a particle which is moving along a straight
line. Let s(t) be the position where the particle is at time t . The average velocity is
given by the quotient

s(t) − s(t0)

t − t0
(difference in displacement divided by difference in time).

In the limit t → t0 the average velocity turns into the instantaneous velocity

v(t0) = ds

dt
(t0) = ṡ(t0) = lim

t→t0

s(t) − s(t0)

t − t0
.

Note that one often writes ḟ (t) instead of f ′(t) if the time t is the argument of the
function f . In particular, in physics this dot notation is most commonly used.

Likewise one obtains the acceleration by differentiating the velocity

a(t) = v̇(t) = s̈(t).

The notion of velocity is also used in the modelling of other processes that vary over
time, e.g., for growth or decay.
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7.4 Differentiation Rules

In this section I ⊂ R denotes an open interval. We first note that differentiation is a
linear process.

Proposition 7.19 (Linearity of the derivative) Let f,g : I → R be two functions
which are differentiable at x ∈ I and take c ∈ R. Then the functions f + g and c · f
are differentiable at x as well and

(
f (x) + g(x)

)′ = f ′(x) + g′(x),(
cf (x))′ = cf ′(x).

Proof The result follows from the corresponding rules for limits. The first statement
is true because

f (x + h) + g(x + h) − (f (x) + g(x))

h
= f (x + h) − f (x)

h︸ ︷︷ ︸
→f ′(x)

+ g(x + h) − g(x)

h︸ ︷︷ ︸
→g′(x)

as h → 0. The second statement follows similarly. �

Linearity together with the differentiation rule (xm)′ = mxm−1 for powers imply
that every polynomial is differentiable. Let

p(x) = anx
n + an−1x

n−1 + · · · + a1x + a0.

Then its derivative has the form

p′(x) = nanx
n−1 + (n − 1)an−1x

n−2 + · · · + a1.

For example, (3x7 − 4x2 + 5x − 1)′ = 21x6 − 8x + 5.
The following two rules allow one to determine the derivative of products and

quotients of functions from their factors.

Proposition 7.20 (Product rule) Let f,g : I → R be two functions which are dif-
ferentiable at x ∈ I . Then the function f · g is differentiable at x and

(
f (x) · g(x)

)′ = f ′(x) · g(x) + f (x) · g′(x).

Proof This fact follows again from the corresponding rules for limits:

f (x + h) · g(x + h) − f (x) · g(x)

h

= f (x + h) · g(x + h) − f (x) · g(x + h)

h
+ f (x) · g(x + h) − f (x) · g(x)

h
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= f (x + h) − f (x)

h︸ ︷︷ ︸
→f ′(x)

·g(x + h)︸ ︷︷ ︸
→g(x)

+ f (x) · g(x + h) − g(x)

h︸ ︷︷ ︸
→g′(x)

as h → 0. The required continuity of g at x is a consequence of Application 7.16. �

Proposition 7.21 (Quotient rule) Let f,g : I → R be two functions differentiable

at x ∈ I and g(x) 
= 0. Then the quotient f
g

is differentiable at the point x and

(
f (x)

g(x)

)′
= f ′(x) · g(x) − f (x) · g′(x)

g(x)2
.

In particular,

(
1

g(x)

)′
= − g′(x)

(g(x))2
.

The proof is similar to the one for the product rule and can be found in [3,
Chap. 3.1], for example.

Example 7.22 An application of the quotient rule to tanx = sinx
cosx

shows that

tan′ x = cos2 x + sin2 x

cos2 x
= 1

cos2 x
= 1 + tan2 x.

Complicated functions can often be written as a composition of simpler func-
tions. For example, the function

h : [2,∞) → R : x �→ h(x) = √
log(x − 1)

can be interpreted as h(x) = f (g(x)) with

f : [0,∞) → R : y �→ √
y,

g : [2,∞) → [0,∞) : x �→ log(x − 1).

One denotes the composition of the functions f and g by h = f ◦ g. The following
proposition shows how such compound functions can be differentiated.

Proposition 7.23 (Chain rule) The composition of two differentiable functions
g : I → B and f : B → R is also differentiable and

d

dx
f

(
g(x)

) = f ′(g(x)
) · g′(x).

In short-hand notation the rule is

(f ◦ g)′ = (f ′ ◦ g) · g′.
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Proof We write

1

h

(
f

(
g(x + h)

) − f
(
g(x)

)) = f (g(x + h)) − f (g(x))

g(x + h) − g(x)
· g(x + h) − g(x)

h

= f (g(x) + k) − f (g(x))

k
· g(x + h) − g(x)

h
,

where, due to the interpretation as a linear approximation (see Sect. 7.3), the expres-
sion

k = g(x + h) − g(x)

is of the form

k = g′(x)h + R(x + h,x)

and tends to zero itself as h → 0. It follows that

d

dx
f

(
g(x)

) = lim
h→0

1

h

(
f

(
g(x + h)

) − f
(
g(x)

))

= lim
h→0

(
f (g(x) + k) − f (g(x))

k
· g(x + h) − g(x)

h

)

= f ′(g(x)
) · g′(x),

and hence the assertion of the proposition follows. �

The differentiation of a composite function h(x) = f (g(x)) is consequently per-
formed in three steps:
1. Identify the outer function f and the inner function g with h(x) = f (g(x)).
2. Differentiate the outer function f at the point g(x), i.e., compute f ′(y) and then

substitute y = g(x). The result is f ′(g(x)).
3. Take the inner derivative, i.e., differentiate the inner function g and multiply it

with the result of step 2. One obtains h′(x) = f ′(g(x)) · g′(x).
In the case of three or more compositions, the above rules have to be applied recur-
sively.

Example 7.24 (a) Let h(x) = (sinx)3. We identify the outer function f (y) = y3

and the inner function g(x) = sinx. Then

h′(x) = 3(sinx)2 · cosx.

(b) Let h(x) = e−x2
. We identify f (y) = ey and g(x) = −x2. Thus

h′(x) = e−x2 · (−2x).

The last rule that we will discuss concerns the differentiation of the inverse of a
differentiable function.
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Fig. 7.4 Derivative of the inverse function with detailed view of the slopes

Proposition 7.25 (Inverse function rule) Let f : I → J be bijective, differentiable
and f ′(y) 
= 0 for all y ∈ I . Then f −1 : J → I is also differentiable and

d

dx
f −1(x) = 1

f ′(f −1(x))
.

In short-hand notation this rule is

(
f −1)′ = 1

f ′ ◦ f −1
.

Proof We set y = f −1(x) and η = f −1(ξ). Due to the continuity of the inverse
function (see Proposition 24.3) we see that η → y as ξ → x. It thus follows that

d

dx
f −1(x) = lim

ξ→x

f −1(ξ) − f −1(x)

ξ − x
= lim

η→y

η − y

f (η) − f (y)

= lim
η→y

(
f (η) − f (y)

η − y

)−1

= 1

f ′(y)
= 1

f ′(f −1(x))
,

and hence the statement of the proposition follows. �

Figure 7.4 shows the geometric background of the inverse function rule. The
slope of a straight line in x-direction is the inverse of the slope in y-direction.

If it is known beforehand that the inverse function is differentiable, then its
derivative can also be obtained in the following way. One differentiates the iden-
tity

x = f
(
f −1(x)

)

with respect to x using the chain rule. This yields

1 = f ′(f −1(x)
) · (f −1)′

(x)

and one obtains the inverse rule by division by f ′(f −1(x)).
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Example 7.26 (Derivative of the logarithm) Since y = logx is the inverse function
to x = ey , it follows from the inverse function rule that

(logx)′ = 1

elogx
= 1

x

for x > 0. Furthermore

log |x| =
{

logx, x > 0,

log(−x), x < 0

and thus

(
log |x|)′ =

{
(logx)′ = 1

x
, x > 0,

(log(−x))′ = 1
(−x)

· (−1) = 1
x
, x < 0.

Altogether one obtains the formula

(
log |x|)′ = 1

x
for x 
= 0.

For logarithms to the base a one has

loga x = logx

loga
, thus

(
loga x

)′ = 1

x loga
.

Example 7.27 (Derivatives of general power functions) From xa = ea logx we infer
by the chain rule that

(
xa

)′ = ea logx · a

x
= xa · a

x
= axa−1.

Example 7.28 (Derivative of the general exponential function) For a > 0 we have
ax = ex loga . An application of the chain rule shows that

(
ax

)′ = (
ex loga

)′ = ex loga · loga = ax loga.

Example 7.29 For x > 0 we have xx = ex logx and thus

(
xx

)′ = ex logx

(
logx + x

x

)
= xx(logx + 1).

Example 7.30 (Derivatives of cyclometric functions) We recall the differentiation
rules for the trigonometric functions on their principal branches:

(sinx)′ = cosx =
√

1 − sin2 x, −π

2
≤ x ≤ π

2
,

(cosx)′ = − sinx = −
√

1 − cos2 x, 0 ≤ x ≤ π,

(tanx)′ = 1 + tan2 x, −π

2
< x <

π

2
.
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Table 7.1 Derivatives of the elementary functions

f (x) a xa ex ax log |x| loga x

f ′(x) 0 axa−1 ex ax loga 1
x

1
x loga

f (x) sinx cosx tanx arcsinx arccosx arctanx

f ′(x) cosx − sinx 1 + tan2 x 1√
1−x2

−1√
1−x2

1
1+x2

The inverse function rule thus yields

(arcsinx)′ = 1√
1 − sin2(arcsinx)

= 1√
1 − x2

, −1 < x < 1,

(arccosx)′ = −1√
1 − cos2(arccosx)

= − 1√
1 − x2

, −1 < x < 1,

(arctanx)′ = 1

1 + tan2(arctanx)
= 1

1 + x2
, −∞ < x < ∞.

The derivatives of the most important elementary functions are collected in Ta-
ble 7.1. The formulae are valid on the respective domains.

7.5 Numerical Differentiation

In applications it often happens that a function can be evaluated for arbitrary argu-
ments but no analytic formula is known which represents the function. This situa-
tion, for example, arises if the dependent variable is determined using a measuring
instrument, e.g., the temperature at a given point as a function of time.

The definition of the derivative as a limit of difference quotients suggests that
the derivative of such functions can be approximated by an appropriate difference
quotient

f ′(a) ≈ f (a + h) − f (a)

h
.

The question is how small h should be chosen. In order to decide this we will first
carry out a numerical experiment.

Experiment 7.31 Use the above formula to approximate the derivative f ′(a) of
f (x) = ex at a = 1. Consider different vales of h, for example for h = 10−j with
j = 0,1, . . . ,16. One expects a value close to e = 2.71828 . . . as result. Typical
outcomes of such an experiment are listed in Table 7.2.

One sees that the error initially decreases with h, but increases again for
smaller h. The reason lies in the representation of numbers on a computer. The
experiment was carried out in IEEE double precision, which corresponds
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Table 7.2 Numerical differentiation of the exponential function at a = 1 using a one-sided differ-
ence quotient. The numerical results and errors are given as functions of h

h value error

1.000E-000 4.67077427047160 1.95249244201256E-000

1.000E-001 2.85884195487388 1.40560126414838E-001

1.000E-002 2.73191865578714 1.36368273280976E-002

1.000E-003 2.71964142253338 1.35959407433051E-003

1.000E-004 2.71841774708220 1.35918623152431E-004

1.000E-005 2.71829541994577 1.35914867218645E-005

1.000E-006 2.71828318752147 1.35906242526573E-006

1.000E-007 2.71828196740610 1.38947053418548E-007

1.000E-008 2.71828183998415 1.15251088672608E-008

1.000E-009 2.71828219937549 3.70916445113778E-007

1.000E-010 2.71828349976758 1.67130853068187E-006

1.000E-011 2.71829650802524 1.46795661959409E-005

1.000E-012 2.71866817252997 3.86344070924416E-004

1.000E-013 2.71755491373926 -7.26914719783700E-004

1.000E-014 2.73058485544819 1.23030269891471E-002

1.000E-015 3.16240089670572 4.44119068246674E-001

1.000E-016 1.44632569809566 -1.27195613036338E-000

to a relative machine accuracy of eps ≈ 10−16. The experiment shows that the best
result is obtained for

h ≈ √
eps≈ 10−8.

This behaviour can be explained by using a Taylor expansion. In Chap. 12 we will
derive the formula

f (a + h) = f (a) + hf ′(a) + h2

2
f ′′(ξ),

where ξ denotes an appropriate point between a and a+h. (The value of ξ is usually
not known.) Thus, after rearranging, we get

f ′(a) = f (a + h) − f (a)

h
− h

2
f ′′(ξ).

The discretisation error, i.e., the error which arises from replacing the derivative by
the difference quotient, is proportional to h and decreases linearly with h. This be-
haviour can also be seen in the numerical experiment for h between 10−2 and 10−8.
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Fig. 7.5 Approximation of
the tangent by a symmetric
secant

For very small h, rounding errors additionally come into play. As we have seen
in Sect. 1.4 the calculation of f (a) on a computer yields

rd
(
f (a)

) = f (a) · (1 + ε) = f (a) + εf (a)

with |ε| ≤ eps. The rounding error turns out to be proportional to eps/h and
increases dramatically for small h. This behaviour can be seen in the numerical
experiment for h between 10−8 and 10−16.

The result of the numerical derivative using the one-sided difference quotient

f ′(a) ≈ f (a + h) − f (a)

h

is then most precise if the discretisation and rounding errors have approximately the
same magnitude, so if

h ≈ eps

h
or h ≈ √

eps≈ 10−8.

In order to calculate the derivative of f ′(a) one can also use a secant placed
symmetrically around (a, f (a)), i.e.,

f ′(a) = lim
h→0

f (a + h) − f (a − h)

2h
.

This suggests the symmetric formula (see Fig. 7.5)

f ′(a) ≈ f (a + h) − f (a − h)

2h
.

This approximation is called symmetric difference quotient.
To analyse the accuracy of the approximation, we need the Taylor series from

Chap. 12:

f (a + h) = f (a) + hf ′(a) + h2

2
f ′′(a) + h3

6
f ′′′(a) + · · · .

If one replaces h by −h in this formula

f (a − h) = f (a) − hf ′(a) + h2

2
f ′′(a) − h3

6
f ′′′(a) + · · ·
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Table 7.3 Numerical differentiation of the exponential function at a = 1 using a symmetric dif-
ference quotient. The numerical results and errors are given as functions of h

h value error

1.000E-000 3.19452804946533 4.76246221006280E-001

1.000E-001 2.72281456394742 4.53273548837307E-003

1.000E-002 2.71832713338270 4.53049236583958E-005

1.000E-003 2.71828228150582 4.53046770765297E-007

1.000E-004 2.71828183298958 4.53053283777649E-009

1.000E-005 2.71828182851255 5.35020916458961E-011

1.000E-006 2.71828182834134 -1.17704512803130E-010

1.000E-007 2.71828182903696 5.77919490041268E-010

1.000E-008 2.71828181795317 -1.05058792776447E-008

1.000E-009 2.71828182478364 -3.67540575751946E-009

1.000E-010 2.71828199164235 1.63183308643511E-007

1.000E-011 2.71829103280427 9.20434522511116E-006

1.000E-012 2.71839560410381 1.13775644761560E-004

and takes the difference, one obtains

f (a + h) − f (a − h) = 2hf ′(a) + 2
h3

6
f ′′′(a) + · · ·

and furthermore

f ′(a) = f (a + h) − f (a − h)

2h
− h2

6
f ′′′(a) + · · · .

In this case the discretisation error is hence proportional to h2, while the rounding
error is still proportional to eps/h.

The symmetric procedure thus delivers the best results for

h2 ≈ eps

h
or h ≈ 3

√
eps,

respectively. We repeat Experiment 7.31 with f (x) = ex, a = 1 and h = 10−j for
j = 0, . . . ,12. The results are listed in Table 7.3.

As expected one obtains the best result for h ≈ 10−5. The obtained approxima-
tion is more precise than that of Table 7.2. Since symmetric procedures generally
give better results, symmetry is an important concept in numerical mathematics.

Numerical Differentiation of Noisy Functions In practice, it often occurs that a
function which has to be differentiated consists of discrete data that are addition-
ally perturbed by noise. The noise represents small measuring errors and behaves
statistically like random numbers.
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Fig. 7.6 The left picture shows random noise which masks the data. The noise is modelled by 801
normally distributed random numbers. The frequencies of the chosen random numbers can be seen
in the histogram in the right picture. For comparison, the (scaled) density of the corresponding
normal distribution is given there as well

Example 7.32 Digitising a line of a picture by J + 1 pixels produces a function

f : {0,1, . . . , J } → R : j �→ f (j) = fj = brightness of thej th pixel.

In order to find an edge in the picture, where the brightness locally changes very
rapidly, this function has to be differentiated.

We consider a concrete example. Suppose that the picture information consists
of the function

g : [a, b] → R : x �→ g(x) = −2x3 + 4x

with a = −2 and b = 2. Let �x be the distance between two pixels and

J = b − a

�x

denote the total number of pixels minus 1. We choose �x = 1/200 and thus obtain
J = 800. The actual brightness of the j th pixel would then be

gj = g(a + j�x), 0 ≤ j ≤ J.

However, due to measuring errors the measuring instrument supplies

fj = gj + εj ,

where εj are random numbers. We choose normally distributed random numbers
with expected value 0 and variance 2.5 · 10−5 for εj ; see Fig. 7.6. For an exact
definition of the notions of expected value and variance we refer to the literature,
for instance [17].

These random numbers can be generated in MATLAB using the command

randn(1,801)*sqrt(2.5e-5).

Differentiating f using the previous rules generates

f ′
j ≈ fj − fj−1

�x
= gj − gj−1

�x
+ εj − εj−1

�x
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Fig. 7.7 Numerically obtained derivative of a noisy function f , consisting of 801 data values
(left); derivative of the same function after filtering using a Gaussian filter (middle) and after
smoothing using splines (right)

and the part with g gives the desired value of the derivative, namely

gj − gj−1

�x
= g(a + j�x) − g(a + j�x − �x)

�x
≈ g′(a + j�x).

The sequence of random numbers results in a non-differentiable graph. The expres-
sion

εj − εj−1

�x

is proportional to J · max0≤j≤J |εj |. The errors become dominant for large J ; see
Fig. 7.7, left picture.

To still obtain reliable results, the data have to be smoothed before differentiat-
ing. The simplest method is a so-called convolution with a Gaussian filter which
amounts to a weighted averaging of the data (Fig. 7.7, middle). Alternatively one
can also use splines for smoothing, for example the routine csaps in MATLAB. For
the right picture in Fig. 7.7 this method has been used.

Experiment 7.33 Generate Fig. 7.7 using the MATLAB program mat07_1.m and
investigate the influence of the choice of random numbers and of the smoothing
parameter in csaps on the result.

7.6 Exercises

1. Compute the first derivative of the functions

f (x) = x3, g(t) = 1

t2
, h(x) = cosx, k(x) = 1√

x
, �(t) = tan t

using the definition of the derivative as a limit.
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2. Compute the first derivative of the functions

a(x) = x2 − 1

x2 + 2x + 1
, b(t) = t2ecos(t2+1),

c(x) = x2 sinx, d(s) = log
(
s +

√
1 + s2

)
.

Check your results with maple.
3. Compute an approximation of

√
34 by replacing the function f (x) = √

x at
x = 36 by its linear approximation. How accurate is your result?

4. Show that the functions f (x) = arctanx and g(x) = arctan 1+x
1−x

differ in the in-
terval (−∞,1) by a constant. Compute this constant. Answer the same question
for the interval (1,∞).

5. Sand runs from a conveyor belt onto a heap with a velocity of 2 m3/min. The
sand forms a cone-shaped pile whose height equals 4

3 of the radius. With which
velocity does the radius grow if the sand cone has a diameter of 6 m?
Hint. Determine the volume V as a function of the radius r , consider V and r as
functions of time t and differentiate the equation with respect to t . Compute ṙ .

6. Use the Taylor series

y(x + h) = y(x) + hy′(x) + h2

2
y′′(x) + h3

6
y′′′(x) + h4

24
y(4)(x) + · · ·

to derive the formula

y′′(x) = y(x + h) − 2y(x) + y(x − h)

h2
− h2

12
y(4)(x) + · · ·

and read off from this expression a numerical method for calculating the second
derivative. The discretisation error is proportional to h2, the rounding error is
proportional to eps/h2. By equating the discretisation and the rounding error
deduce the optimal step size h. Check your considerations by performing a nu-
merical experiment in MATLAB, computing the second derivative of y(x) = e2x

at the point x = 1.
7. Write a MATLAB program which numerically differentiates a given function on a

given interval and plots the function and its first derivative. Test your program on
the functions

f (x) = cosx, 0 ≤ x ≤ 6π,

and

g(x) = e− cos(3x), 0 ≤ x ≤ 2.



8Applications of the Derivative

This chapter is devoted to some applications of the derivative which form part of the
basic skills in modelling. We start with a discussion of features of graphs. More pre-
cisely, we use the derivative to describe geometric properties like maxima, minima
and monotonicity. Even though plotting functions with MATLAB or maple is simple,
understanding the connection with the derivative is important, for example, when a
function with given properties is to be chosen from a particular class of functions.

In the following section we discuss Newton’s method and the concept of order
of convergence. Newton’s method is one of the most important tools for computing
zeros of functions. It is nearly universally in use.

The final section of this chapter is devoted to an elementary method from data
analysis. We show how to compute a regression line through the origin. There are
many areas of application that involve linear regression. This topic will be developed
in more detail in Chap. 18.

8.1 Curve Sketching

In the following we investigate some geometric properties of graphs of functions
using the derivative: maxima and minima, intervals of monotonicity, and convexity.
We further discuss the mean value theorem which is an important technical tool for
proofs.

Definition 8.1 A function f : [a, b] → R has
(a) a global maximum at x0 ∈ [a, b] if

f (x) ≤ f (x0) for all x ∈ [a, b]

(b) a local maximum at x0 ∈ [a, b], if there exists a neighbourhood Uε(x0) so that

f (x) ≤ f (x0) for all x ∈ Uε(x0) ∩ [a, b].
M. Oberguggenberger, A. Ostermann, Analysis for Computer Scientists,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-0-85729-446-3_8, © Springer-Verlag London Limited 2011
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Fig. 8.1 Minima and
maxima of a function

The maximum is called strict if the strict inequality f (x) < f (x0) holds in (a) or
(b) for x �= x0.

The definition for minimum is analogous by inverting the inequalities. Maxima
and minima are subsumed under the term extrema. Figure 8.1 shows some possible
situations. Note that the function there does not have a global minimum on the
chosen interval.

For points x0 in the open interval (a, b) one has a simple necessary condition for
extrema of differentiable functions:

Proposition 8.2 Let x0 ∈ (a, b) and f be differentiable at x0. If f has a local
maximum or minimum at x0 then f ′(x0) = 0.

Proof Due to the differentiability of f we have

f ′(x0) = lim
h→0+

f (x0 + h) − f (x0)

h
= lim

h→0−
f (x0 + h) − f (x0)

h
.

In the case of a maximum the slope of the secant satisfies the inequalities

f (x0 + h) − f (x0)

h
≤ 0, if h > 0,

f (x0 + h) − f (x0)

h
≥ 0, if h < 0.

Consequently the limit f ′(x0) has to be greater than or equal to zero as well as
smaller than or equal to zero, thus necessarily f ′(x0) = 0. �

The function f (x) = x3, whose derivative vanishes at x = 0, shows that the con-
dition of the proposition is not sufficient for the existence of a maximum or mini-
mum.

The geometric content of the proposition is that in the case of differentiability the
graph of the function has a horizontal tangent at a maximum or minimum. A point
x0 ∈ (a, b) where f ′(x0) = 0 is called a stationary point.

Remark 8.3 The proposition shows that the following point sets have to be checked
in order to determine the maxima and minima of a function f : [a, b] → R:
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Fig. 8.2 The mean value
theorem

(a) The boundary points x0 = a, x0 = b.
(b) Points x0 ∈ (a, b) at which f is not differentiable.
(c) Points x0 ∈ (a, b) at which f is differentiable and f ′(x0) = 0.

The following proposition is a useful technical tool for proofs. One of its appli-
cations lies in estimating the error of numerical methods. Similarly to the interme-
diate value theorem, the proof is based on the completeness of the real numbers.
We are not going to present it here but instead refer to the literature, for instance
[3, Chap. 3.2].

Proposition 8.4 (Mean value theorem) Let f be continuous on [a, b] and differen-
tiable on (a, b). Then there exists a point ξ ∈ (a, b) such that

f (b) − f (a)

b − a
= f ′(ξ).

Geometrically this means that the tangent at ξ has the same slope as the secant
through (a, f (a)), (b, f (b)). Figure 8.2 illustrates this fact.

We now turn to the description of the behaviour of the slope of differentiable
functions.

Definition 8.5 A function f : I → R is called monotonically increasing, if

x1 < x2 ⇒ f (x1) ≤ f (x2)

for all x1, x2 ∈ I . It is called strictly monotonically increasing, if

x1 < x2 ⇒ f (x1) < f (x2).

A function f is said to be (strictly) monotonically decreasing, if −f is (strictly)
monotonically increasing.

Examples of strictly monotonically increasing functions are the power functions
x 
→ xn with odd powers n; a monotonically, but not strictly monotonically increas-
ing function is the sign function x 
→ signx, for instance. The behaviour of the slope
of a differentiable function can be described by the sign of the first derivative.
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Fig. 8.3 Local maximum

Proposition 8.6 For differentiable functions f : (a, b) → R the following implica-
tions hold:

(a)
f ′ ≥ 0 on (a, b) ⇔ f is monotonically increasing;
f ′ > 0 on (a, b) ⇒ f is strictly monotonically increasing.

(b)
f ′ ≤ 0 on (a, b) ⇔ f is monotonically decreasing;
f ′ < 0 on (a, b) ⇒ f is strictly monotonically decreasing.

Proof (a) According to the mean value theorem we have f (x2) − f (x1) =
f ′(ξ)(x2 − x1) for a certain ξ ∈ (a, b). If x1 < x2 and f ′(ξ) ≥ 0 then f (x2) −
f (x1) ≥ 0. If f ′(ξ) > 0 then f (x2) − f (x1) > 0. Conversely

f ′(x) = lim
h→0

f (x + h) − f (x)

h
≥ 0,

if f is increasing. The proof for (b) is similar. �

Remark 8.7 The example f (x) = x3 shows that f can be strictly monotonically
increasing even if f ′ = 0 at isolated points.

Proposition 8.8 (Criterion for local extrema) Let f be differentiable on (a, b),
x0 ∈ (a, b) and f ′(x0) = 0. Then

(a)
f ′(x) > 0 for x < x0

f ′(x) < 0 for x > x0

}
⇒ f has a local maximum in x0,

(b)
f ′(x) < 0 for x < x0
f ′(x) > 0 for x > x0

}
⇒ f has a local minimum in x0.

Proof The proof follows from the previous proposition which characterises the
monotonic behaviour as shown in Fig. 8.3. �

Remark 8.9 (Convexity and concavity a function graph) If f ′′ > 0 holds in an
interval, then f ′ is monotonically increasing there. Thus the graph of f is curved to
the left or convex. On the other hand, if f ′′ < 0, then f ′ is monotonically decreasing
and the graph of f is curved to the right or concave (see Fig. 8.4). A quantitative
description of the curvature of the graph of a function will be given in Sect. 14.1.

Let x0 be a point where f ′(x0) = 0. If f ′ does not change its sign at x0, then
x0 is an inflexion point. Here f changes from positive to negative curvature or vice
versa.
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Fig. 8.4
Convexity/concavity and
second derivative

Proposition 8.10 (Second derivative criterion for local extrema) Let f be twice
continuously differentiable on (a, b), x0 ∈ (a, b) and f ′(x0) = 0.
(a) If f ′′(x0) > 0 then f has a local minimum at x0.
(b) If f ′′(x0) < 0 then f has a local maximum at x0.

Proof (a) Since f ′′ is continuous, f ′′(x) > 0 for all x in a neighbourhood of x0. Ac-
cording to Proposition 8.6, f ′ is strictly monotonically increasing in this neighbour-
hood. Because of f ′(x0) = 0 this means that f ′(x0) < 0 for x < x0 and f ′(x) > 0
for x > x0; according to the criterion for local extrema, x0 is a minimum. The as-
sertion (b) can be shown similarly. �

Remark 8.11 If f ′′(x0) = 0 there can either be an inflexion point or a minimum
or maximum. The functions f (x) = xn, n = 2,3,4, . . . supply a typical example.
In fact, they have for n even a global minimum at x = 0, and an inflexion point
for n odd. More general functions can easily be assessed using a Taylor expansion.
An extreme value criterion based on this expansion will be discussed in Applica-
tion 12.14.

One of the applications of the previous propositions is curve sketching, which is
the detailed investigation of the properties of the graph of a function using differ-
ential calculus. Even though graphs can easily be plotted in MATLAB or maple it is
still often necessary to check the graphical output at certain points using analytic
methods.

Experiment 8.12 Plot the function

y = x(signx − 1)(x + 1)3 + (
sign(x − 1) + 1

)(
(x − 2)4 − 1/2

)

on the interval −2 ≤ x ≤ 3 and try to read off the local and global extrema, the
inflexion points and the monotonic behaviour. Check your observations using the
criteria discussed above.

A further application of the previous propositions consists in finding extrema,
i.e., solving one-dimensional optimisation problems. We illustrate this topic using a
standard example.
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Example 8.13 Which rectangle with a given perimeter has the largest area? To an-
swer this question we denote the lengths of the sides of the rectangle by x and y.
Then the perimeter and the area are given by

U = 2x + 2y, F = xy.

Since U is fixed, we obtain y = U/2 − x, and from that

F = x(U/2 − x),

where x can vary in the domain 0 ≤ x ≤ U/2. We want to find the maximum of
the function F on the interval [0,U/2]. Since F is differentiable, we only have to
investigate the boundary points and the stationary points. At the boundary points
x = 0 and x = U/2 we have F(0) = 0 and F(U/2) = 0. The stationary points are
obtained by setting the derivative to zero:

F ′(x) = U/2 − 2x = 0,

which brings us to x = U/4 with the function value F(U/4) = U2/16.
As a result we find that the maximum area is obtained at x = U/4, thus in the

case of a square.

Experiment 8.14 On the website of maths online go to Applications of differential
calculus in the gallery area and open the applet How to find a function’s extremum. It
is about maximising the area of a triangle which is inscribed in a rectangle. Study the
translation of the geometric problem to a problem of differential calculus and curve
sketching. Study the connection between geometry and analysis in an analogous
way for Example 8.13 above.

8.2 Newton’s Method

With the help of differential calculus efficient numerical methods for computing
zeros of differentiable functions can be constructed. One of the basic procedures is
Newton’s method,1 which will be discussed in this section for the case of real-valued
functions f : D ⊂ R → R.

First we recall the bisection method discussed in Sect. 6.3. Consider a continuous,
real-valued function f on an interval [a, b] with

f (a) < 0, f (b) > 0 or f (a) > 0, f (b) < 0.

1I. Newton, 1642–1727.
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With the help of continued bisection of the interval, one obtains a zero ξ of f satis-
fying

a = a1 ≤ a2 ≤ a3 ≤ · · · ≤ ξ ≤ · · · ≤ b3 ≤ b2 ≤ b1 = b,

where

|bn+1 − an+1| = 1

2
|bn − an| = 1

4
|bn−1 − an−1| = · · · = 1

2n
|b1 − a1|.

If one stops after n iterations and chooses an or bn as approximation for ξ , then one
gets a guaranteed error bound

|error| ≤ ϕ(n) = |bn − an|.

Note that we have

ϕ(n + 1) = 1

2
ϕ(n).

The error thus decays with each iteration by (at least) a constant factor 1
2 and one

calls the method linearly convergent. More generally, an iteration scheme is called
convergent of order α if there exist error bounds (ϕ(n))n≥1 and a constant C > 0
such that

lim
n→∞

ϕ(n + 1)

(ϕ(n))α
= C.

For sufficiently large n, one thus has approximately

ϕ(n + 1) ≈ C
(
ϕ(n)

)α
.

Linear convergence (α = 1) therefore implies

ϕ(n + 1) ≈ Cϕ(n) ≈ C2ϕ(n − 1) ≈ · · · ≈ Cnϕ(1).

Plotting the logarithm of ϕ(n) against n (semi-logarithmic representation, as shown
for example in Fig. 8.6) results in a straight line:

logϕ(n + 1) ≈ n logC + logϕ(1).

If C < 1, then the error bound ϕ(n+1) tends to 0 and the number of correct decimal
places increases with each iteration by a constant. Quadratic convergence would
mean that the number of correct decimal places approximately doubles with each
iteration.
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Fig. 8.5 Two steps of
Newton’s method

Derivation of Newton’s Method The aim of the construction is to obtain a pro-
cedure that provides quadratic convergence (α = 2), at least if one starts sufficiently
close to a simple zero ξ of a differentiable function. The geometric idea behind
Newton’s method is simple: Once an approximation xn is chosen, one calculates
xn+1 as the intersection of the tangent to the graph of f through (xn, f (xn)) with
the x-axis; see Fig. 8.5. The equation of the tangent is given by

y = f (xn) + f ′(xn)(x − xn).

The point of intersection xn+1 with the x-axis is obtained from

0 = f (xn) + f ′(xn)(xn+1 − xn),

thus

xn+1 = xn − f (xn)

f ′(xn)
, n ≥ 1.

Obviously it has to be assumed that f ′(xn) �= 0. This condition is fulfilled, if f ′ is
continuous and xn is sufficiently close to the zero ξ .

Proposition 8.15 (Convergence of Newton’s method) Let f be a real-valued func-
tion, twice differentiable with a continuous second derivative. Further, let f (ξ) = 0
and f ′(ξ) �= 0. Then there exists a neighbourhood Uε(ξ) such that Newton’s method
converges quadratically to ξ for every starting value x1 ∈ Uε(ξ).

Proof Since f ′(ξ) �= 0 and f ′ is continuous, there exist a neighbourhood Uδ(ξ)

and a bound m > 0 so that |f ′(x)| ≥ m for all x ∈ Uδ(ξ). Applying the mean value
theorem twice gives

|xn+1 − ξ | =
∣∣∣∣xn − ξ − f (xn) − f (ξ)

f ′(xn)

∣∣∣∣
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≤ |xn − ξ |
∣∣∣∣1 − f ′(η)

f ′(xn)

∣∣∣∣ = |xn − ξ | |f
′(xn) − f ′(η)|

|f ′(xn)|

≤ |xn − ξ |2 |f ′′(ζ )|
|f ′(xn)|

with η between xn and ξ and ζ between xn and η. Let M denote the maximum of
|f ′′| on Uδ(ξ). Under the assumption that all iterates xn lie in the neighbourhood
Uδ(ξ), we obtain the quadratic error bound

ϕ(n + 1) = |xn+1 − ξ | ≤ |xn − ξ |2 M

m
= (

ϕ(n)
)2 M

m

for the error ϕ(n) = |xn − ξ |. Thus, the assertion of the proposition holds with the
neighbourhood Uδ(ξ). Otherwise we have to decrease the neighbourhood by choos-
ing an ε < δ which satisfies the inequality ε M

m
≤ 1. Then

|xn − ξ | ≤ ε ⇒ |xn+1 − ξ | ≤ ε2 M

m
≤ ε.

This means that if an approximate value xn lies in Uε(ξ) then so does the subsequent
value xn+1. Since Uε(ξ) ⊂ Uδ(ξ), the quadratic error estimate from above is still
valid. Thus the assertion of the proposition is valid with the smaller neighbourhood
Uε(ξ). �

Example 8.16 In computing the root ξ = 3
√

2 of x3 − 2 = 0, we compare the bisec-
tion method with starting interval [−2,2] and Newton’s method with starting value
x1 = 2. The interval boundaries [an, bn] and the iterates xn are listed in Tables 8.1
and 8.2, respectively. Newton’s method gives the value

3
√

2 = 1.25992104989487

correct to 14 decimal places after only six iterations.

The error curves for the bisection method and Newton’s method can be seen in
Fig. 8.6. A semi-logarithmic representation (MATLAB command semilogy) is used
there.

Remark 8.17 The convergence behaviour of Newton’s method depends on the con-
ditions of Proposition 8.15. If the starting value x1 is too far away from the zero ξ ,
then the method might diverge, oscillate or converge to a different zero. If f ′(ξ) = 0,
which means the zero ξ has multiplicity > 1, then the order of convergence may be
reduced.

Experiment 8.18 Open the applet Newton’s method and test—using the sine
function—how the choice of the starting value influences the result (in the applet the
right interval boundary is the initial value). Experiment with the intervals [−2, x0]
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Table 8.1 Bisection method for calculating the third root of 2

n an bn error

1 -2.00000000000000 2.00000000000000 4.00000000000000

2 0.00000000000000 2.00000000000000 2.00000000000000

3 1.00000000000000 2.00000000000000 1.00000000000000

4 1.00000000000000 1.50000000000000 0.50000000000000

5 1.25000000000000 1.50000000000000 0.25000000000000

6 1.25000000000000 1.37500000000000 0.12500000000000

7 1.25000000000000 1.31250000000000 0.06250000000000

8 1.25000000000000 1.28125000000000 0.03125000000000

9 1.25000000000000 1.26562500000000 0.01562500000000

10 1.25781250000000 1.26562500000000 0.00781250000000

11 1.25781250000000 1.26171875000000 0.00390625000000

12 1.25976562500000 1.26171875000000 0.00195312500000

13 1.25976562500000 1.26074218750000 0.00097656250000

14 1.25976562500000 1.26025390625000 0.00048828125000

15 1.25976562500000 1.26000976562500 0.00024414062500

16 1.25988769531250 1.26000976562500 0.00012207031250

17 1.25988769531250 1.25994873046875 0.00006103515625

18 1.25991821289063 1.25994873046875 0.00003051757813

Table 8.2 Newton’s method
for calculating the third root
of 2

n xn error

1 2.00000000000000 0.74007895010513

2 1.50000000000000 0.24007895010513

3 1.29629629629630 0.03637524640142

4 1.26093222474175 0.00101117484688

5 1.25992186056593 0.00000081067105

6 1.25992104989539 0.00000000000052

7 1.25992104989487 0.00000000000000

for x0 = 1,1.1,1.2,1.3,1.5,1.57,1.5707,1.57079 and interpret your observations.
Also carry out the calculations with the same starting values with the help of the
M-file mat08_2.m.

Experiment 8.19 With the help of the applet Newton’s method, study how the order
of convergence drops for multiple zeros. For this purpose, use the two polynomial
functions given in the applet.
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Fig. 8.6 Error of the
bisection method and of
Newton’s method for the
calculation of 3

√
2

Remark 8.20 Variants of Newton’s method can be obtained by evaluating the deriva-
tive f ′(xn) numerically. For example, the approximation

f ′(xn) ≈ f (xn) − f (xn−1)

xn − xn−1

provides the secant method

xn+1 = xn − (xn − xn−1)f (xn)

f (xn) − f (xn−1)
,

which computes xn+1 as intercept of the secant through (xn, f (xn)) and (xn−1,

f (xn−1)) with the x-axis. It has a fractional order less than 2.

8.3 Regression Line Through the Origin

This section is a first digression into data analysis: Given a collection of data points
scattered in the plane, find the line of best fit (regression line) through the origin. We
will discuss this problem as an application of differentiation; it can also be solved by
using methods of linear algebra. The general problem of multiple linear regression
will be dealt with in Chap. 18.

In the year 2002, the height x [cm] and the weight y [kg] of 70 students in
Computer Science at the University of Innsbruck were collected. The data can be
obtained from the M-file mat08_3.m.

The measurements (xi, yi), i = 1, . . . , n of height and weight form a scatter plot
in the plane as shown in Fig. 8.7. Under the assumption that there is a linear relation
of the form y = kx between height and weight, k should be determined such that
the straight line y = kx represents the scatter plot as closely as possible (Fig. 8.8).
The approach that we discuss below goes back to Gauss2 and understands the data
fit in the sense of minimising the sum of squares of the errors.

2C.F. Gauss, 1777–1855.
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By setting F ′(k) = 0 we obtain the formula

F ′(k) = −2
n∑

i=1

xiyi + 2k

n∑
i=1

x2
i = 0.

Since evidently F ′′ > 0, its solution

k =
∑

xiyi∑
x2
i

is the global minimum and gives the slope of the line of best fit.

Example 8.22 To illustrate the regression line through the origin we use the Austrian
consumer price index 2000–2006 (data taken from [24]):

year 2000 2001 2002 2003 2004 2005 2006
index 100.0 102.7 104.5 105.9 108.1 110.6 112.2

For the calculation it is useful to introduce new variables x and y, where x = 0
corresponds to the year 2000 and y = 0 to the index 100. This means that x =
(year − 2000) and y = (index − 100); y describes the relative price increase (in
percent) with respect to the year 2000. The re-scaled data are

xi 0 1 2 3 4 5 6
yi 0.0 2.7 4.5 5.9 8.1 10.6 12.2

We are looking for the line of best fit to these data through the origin. For this
purpose we have to minimise

F(k) = (2.7 − k · 1)2 + (4.5 − k · 2)2 + (5.9 − k · 3)2 + (8.1 − k · 4)2

+ (10.6 − k · 5)2 + (12.2 − k · 6)2,

which results in

k = 1 · 2.7 + 2 · 4.5 + 3 · 5.9 + 4 · 8.1 + 5 · 10.6 + 6 · 12.2

1 · 1 + 2 · 2 + 3 · 3 + 4 · 4 + 5 · 5 + 6 · 6
= 188.0

91
= 2.0659.

The line of best fit is thus

y = 2.0659x

or transformed back

index = 100 + (year − 2000) · 2.0659.

The result is shown in Fig. 8.9, in a year/index-scale as well as in the transformed
variables. For the year 2007, extrapolation along the regression line would forecast

index(2007) = 100 + 7 · 2.0659 = 114.5

(the actual consumer price index in 2007 had the value 114.6).
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Fig. 8.9 Consumer price
index and regression line

8.4 Exercises

1. (a) On the website of maths online go to Differentiation 1 in the gallery area
and solve the Derivative puzzles 2 and 3.
(b) On the website of maths online go to Differentiation 2 in the Interactive
tests area and answer the questions posed in Functions with absolute value—
differentiable or not? Plot the graphs of the functions to be investigated (using
curve sketching or MATLAB).

2. Find all maxima and minima of the functions

f (x) = x

x2 + 1
and g(x) = x2e−x2

.

3. Find the maxima of the functions

y = 1

x
e−(logx)2/2, x > 0 and y = e−xe−(e−x), x ∈ R.

These functions represent the densities of the standard lognormal distribution
and of the Gumbel distribution, respectively.

4. Find the proportions of the cylinder which has the smallest surface area F for a
given volume V .
Hint. F = 2rπh + 2r2π → min. Calculate the height h as a function of the
radius r from V = r2πh, substitute and minimise F(r).

5. (From mechanics of solids) The moment of inertia with respect to the central
axis of a beam with rectangular cross section is I = 1

12bh3 (b the width, h the
height). Find the proportions of the beam which can be cut from a log with
circular cross section of given radius r such that its moment of inertia becomes
maximal.
Hint. Write b as function of h, I (h) → max.

6. (From soil mechanics) The mobilised cohesion cm(θ) of a failure wedge with
sliding surface, inclined by an angle θ , is

cm(θ) = γ h sin(θ − ϕm) cos θ

2 cosϕm
.
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Calculate the coefficient c of the regression parabola s = cv2 and plot the result.
12. Show that the best horizontal straight line y = d through the data points (xi, yi),

i = 1, . . . , n is given by the arithmetic mean of the y-values:

d = 1

n

n∑
i=1

yi .

Hint. Minimise G(d) = ∑n
i=1(yi − d)2.

13. (a) Convince yourself by applying the mean value theorem that the function
f (x) = cosx is a contraction (see Definition 24.17) on the interval [0,1] and
compute the fixed point x∗ = cosx∗ up to two decimal places using the iteration
of Proposition 24.18.
(b) Write a MATLAB program which carries out the first N iterations for the
computation of x∗ = cosx∗ for a given initial value x1 ∈ [0,1] and displays
x1, x2, . . . , xN in a column.
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In geometry objects are often defined by explicit rules and transformations which
can easily be translated into mathematical formulae. For example, a circle is the set
of all points which are at a fixed distance r from a centre (a, b):

K = {
(x, y) ∈ R

2; (x − a)2 + (y − b)2 = r2} or

K = {
(x, y) ∈ R

2; x = a + r cosϕ, y = b + r sinϕ, 0 ≤ ϕ < 2π
}
.

In contrast to this, the objects of fractal geometry are usually given by a recur-
sion. These fractal sets (fractals) have recently found many interesting applications,
e.g., in computer graphics (modelling of clouds, plants, trees, landscapes), in image
compression and data analysis. Furthermore, fractals have a certain importance in
modelling growth processes.

Typical properties of fractals are often taken to be their non-integer dimension
and the self-similarity of the entire set with its parts. The latter can frequently be
found in nature, e.g. in geology. There it is often difficult to decide from a photo
without a given scale whether the object in question is a grain of sand, a pebble or a
large piece of rock. For that reason fractal geometry is often exuberantly called the
geometry of nature.

In this chapter we exemplarily have a look at fractals in R
2 and C. Furthermore,

we give a short introduction to L-systems and discuss, as an application, a simple
concept for modelling the growth of plants. For a more in-depth presentation we
refer to the textbooks [20, 21].

9.1 Fractals

To start with we generalise the notions of open and closed interval to subsets of R
2.

For a fixed a = (a, b) ∈ R
2 and ε > 0 the set

B(a, ε) = {
(x, y) ∈ R

2;
√

(x − a)2 + (y − b)2 < ε
}

M. Oberguggenberger, A. Ostermann, Analysis for Computer Scientists,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-0-85729-446-3_9, © Springer-Verlag London Limited 2011
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Fig. 9.2 Covering a curve
using circles

one tends to assign to it a higher dimension than 1. Conversely, if a line segment has
many gaps, its dimension could be between 0 and 1.

Let A ⊆ R
2 be bounded (and not empty) and let N(A,ε) be the smallest number

of closed circles with radius ε which are needed to cover A; see Fig. 9.2.
The following intuitive idea stands behind the definition of the fractal dimension

d of A: For curve segments the number N(A,ε) is inverse proportional to ε, for
plane regions inverse proportional to ε2, so

N(A,ε) ≈ C · ε−d,

where d denotes the dimension. Taking logarithms one obtains

logN(A,ε) ≈ logC − d log ε,

and

d ≈ − logN(A,ε) − logC

log ε
,

respectively. This approximation is getting more precise, the smaller one chooses
ε > 0. Due to

lim
ε→0+

logC

log ε
= 0

this leads to the following definition.

Definition 9.3 Let A ⊆ R
2 be not empty, bounded and N(A,ε) as above. If the

limit

d = d(A) = − lim
ε→0+

logN(A,ε)

log ε

exists, then d is called the fractal dimension of A.

Remark 9.4 In the above definition it is sufficient to choose a zero sequence of the
form

εn = C · qn, 0 < q < 1
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Fig. 9.3 Raster of the plane using squares of side length ε. The boxes that have a non-empty
intersection with the fractal are coloured in grey. In the picture we have N(A,ε) = 27

Fig. 9.4 Covering of a
straight line segment using
circles

for ε. Furthermore it is not essential to use circular discs for the covering. One can
just as well use squares; see [5, Chap. 5]. Hence the number obtained by Defini-
tion 9.3 is also called the box-dimension of A.

Experimentally the dimension of a fractal can be determined in the following
way: For various rasters of the plane with mesh size εn one counts the number of
boxes which have a non-empty intersection with the fractal; see Fig. 9.3. Let us call
this number again N(A,εn). If one plots logN(A,εn) as a function of log εn in a
double-logarithmic diagram and fits the best line to this graph (Sect. 18.1), then

d(A) ≈ −slope of the straight line.

With this procedure one can, for example, determine the fractal dimension of the
coastline of Great Britain; see Exercise 1.

Example 9.5 The line segment

A = {
(x, y) ∈ R

2; a ≤ x ≤ b, y = c
}

has fractal dimension d = 1.
We choose (see Fig. 9.4)

εn = (b − a) · 2−n, q = 1/2.

Due to N(A,εn) = 2n−1 the following holds:

− logN(A,εn)

log εn

= − (n − 1) log 2

log(b − a) − n log 2
→ 1 as n → ∞.

Likewise, it can easily be shown that every set that consists of finitely many
points has fractal dimension 0. Plane regions in R

2 have fractal dimension 2. The
fractal dimension is in this way a generalisation of the intuitive notion of dimension.
Still, caution is advisable here as can be seen in the following example.
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Fig. 9.5 A set of points with box-dimension d = 1
2

Example 9.6 The set F = {0,1, 1
2 , 1

3 , 1
4 , . . .} displayed in Fig. 9.5 has box-dimen-

sion d = 1/2. We check this claim with the following MATLAB experiment.

Experiment 9.7 To determine the dimension of F approximately with the help
of MATLAB we take the following steps. For j = 1,2,3, . . . we split the interval
[0,1] into 4j equally large subintervals, set εj = 4−j and determine the number
Nj = N(F, εj ) of subintervals which have a non-empty intersection with F . Then
we plot logNj as a function of log εj in a double-logarithmic diagram. The slope of
the secant

dj = − logNj+1 − logNj

log εj+1 − log εj

is an approximation to d which is steadily improving with growing j . The values
obtained by using the program mat09_1.m are given in the following table:

4j 4 16 64 256 1024 4096 16384 65536 262144 1048576
dj 0.79 0.61 0.55 0.52 0.512 0.5057 0.5028 0.5014 0.5007 0.50035

Verify the given values and determine that the approximations given by Defini-
tion 9.3

d̃j = − logNj

log εj

are much worse. Explain this behaviour.

Example 9.8 (Cantor set) We construct this set recursively using

A0 = [0,1],
A1 =

[
0,

1

3

]
∪

[
2

3
,1

]
,

A2 =
[

0,
1

9

]
∪

[
2

9
,

1

3

]
∪

[
2

3
,

7

9

]
∪

[
8

9
,1

]
,

...

One obtains An+1 from An by removing the middle third of each line segment of An;
see Fig. 9.6.

The intersection of all these sets

A =
∞⋂

n=0

An
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Fig. 9.6 The construction of
the Cantor set

is called the Cantor set. Let |An| denote the length of An. Obviously the following
holds true: |A0| = 1, |A1| = 2/3, |A2| = (2/3)2 and |An| = (2/3)n. Thus

|A| = lim
n→∞|An| = lim

n→∞(2/3)n = 0,

which means that A has length 0. Nevertheless, A does not simply consist of discrete
points. More information about the structure of A is given by its fractal dimension d .
To determine it we choose

εn = 1

2
· 3−n, i.e. q = 1/3,

and obtain (according to Fig. 9.6) the value N(A,εn) = 2n. Thus

d = − lim
n→∞

log 2n

log 3−n − log 2
= lim

n→∞
n log 2

n log 3 + log 2
= log 2

log 3
= 0.6309 . . . .

The Cantor set is thus an object between points and straight lines. The self-similarity
of A is also noteworthy. Enlarging certain parts of A results in copies of A. This,
together with the non-integer dimension, is a typical property of fractals.

Example 9.9 (Koch’s snowflake1) This is a figure of finite area whose boundary is
a fractal of infinite length. In Fig. 9.7 one can see the first five construction steps
of this fractal. In the step from An to An+1 we substitute each straight boundary
segment by four line segments in the following way: We replace the central third by
two sides of an equilateral triangle; see Fig. 9.8.

The perimeter Un of the figure An is computed as

Un = 4

3
Un−1 =

(
4

3

)2

Un−2 = · · · =
(

4

3

)n

U0 = 3a

(
4

3

)n

.

Hence the perimeter U∞ of Koch’s snowflake A∞ is

U∞ = lim
n→∞Un = ∞.

Next we compute the fractal dimension of ∂A∞. For that we set

εn = a

2
· 3−n, i.e. q = 1/3.

1H. von Koch, 1870–1924.
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Fig. 9.7 Snowflakes of depth 0, 1, 2, 3 and 4

Fig. 9.8 Law of formation of
the snowflake

Since one can use a circle of radius εn to cover each straight boundary piece, we
obtain

N(∂A∞, εn) ≤ 3 · 4n,

and hence

d = d(∂A∞) ≤ log 4

log 3
≈ 1.262.

A covering using equilateral triangles of side length εn shows that N(∂A∞, εn) is
proportional to 4n, and thus

d = log 4

log 3
.

The boundary of the snowflake ∂A∞ is hence a geometric object between a curve
and a plane region.

9.2 Mandelbrot Sets

An interesting class of fractals can be obtained with the help of iteration methods.
As an example we consider in C the iteration

zn+1 = z2
n + c.

Setting z = x + iy and c = a + ib one obtains, by separating the real and the imagi-
nary part, the equivalent real form of the iteration:

xn+1 = x2
n − y2

n + a,

yn+1 = 2xnyn + b.

The real representation is important when working with a programming language
that does not support complex arithmetic.
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Fig. 9.9 The Mandelbrot set of the iteration zn+1 = z2
n + c, z0 = 0, and enlargement of a section

First we investigate for which values of c ∈ C the iteration

zn+1 = z2
n + c, z0 = 0

remains bounded. In the present case this is equivalent to |zn| 	→ ∞ for n → ∞.
The set of all c with this property is obviously not empty since it contains c = 0. On
the other hand it is bounded since the iteration always diverges for |c| > 2 as can
easily be verified with MATLAB.

Definition 9.10 The set

M = {
c ∈ C; |zn| 	→ ∞ as n → ∞}

is called the Mandelbrot set2 of the iteration zn+1 = z2
n + c, z0 = 0.

To get an impression of M we carry out a numerical experiment in MATLAB.

Experiment 9.11 To visualise the Mandelbrot set M one first chooses a raster of a
certain region, for example

−2 ≤ Re c ≤ 1, −1.15 ≤ Im c ≤ 1.15.

Next for each point of the raster one carries out a large number of iterations (e.g. 80)
and decides then whether the iterations remain bounded (for example |zn| ≤ 2). If
this is the case one colours the point in black. This way one successively obtains
a picture of M . For your experiments use the MATLAB program mat09_2.m and
modify it as required. In this way, generate in particular the pictures in Fig. 9.9 in
high resolution.

Figure 9.9 shows as result a little apple man which has smaller apple men at-
tached which finally develop into an antenna. Here one already recognises the
self-similarity. If an enlargement of a certain detail on the antenna (−1.8 ≤ Re c ≤

2B. Mandelbrot, 1924–2010.
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Fig. 9.10 Julia sets of the iteration zn+1 = z2
n + c for the parameter values c = −0.75 (top left),

c = 0.35 + 0.35i (top right), c = −0.03 + 0.655i (bottom left) and −0.12 + 0.74i (bottom right)

−1.72, −0.03 ≤ Im c ≤ 0.03) is made, one finds an almost perfect copy of the com-
plete apple man. The Mandelbrot set is one of the most popular fractals and one of
the most complex mathematical objects which can be visualised.

9.3 Julia Sets

Again we consider the iteration

zn+1 = z2
n + c.

This time, however, we interchange the roles of z0 and c.

Definition 9.12 For a given c ∈ C, the set

Jc = {
z0 ∈ C; |zn| 	→ ∞ as n → ∞}

is called the Julia set3 of the iteration zn+1 = z2
n + c.

3G. Julia, 1893–1978.
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The Julia set for the parameter value c hence consists of those initial values for
which the iteration remains bounded. For some values of c the pictures of Jc are
displayed in Fig. 9.10. Julia sets have many interesting properties, for example

Jc is connected ⇔ c ∈ M.

Thus one can alternatively define the Mandelbrot set M as

M = {c ∈ C; Jc is connected}.
Furthermore, the boundary of a Julia set is self-similar and is a fractal.

Experiment 9.13 Using the MATLAB program mat09_3.m plot the Julia sets Jc in
Fig. 9.10 in high definition. Also try other values of c.

9.4 Newton’s Method in C

Since the arithmetic in C is an extension of that in R, many concepts of real analysis
can be transferred directly to C. For example, a function f : C → C : z �→ f (z) is
called complex differentiable if the difference quotient

f (z + �z) − f (z)

�z

has a limit as �z → 0. This limit is again denoted by

f ′(z) = lim
�z→0

f (z + �z) − f (z)

�z

and called complex derivative of f at the point z. Since differentiation in C is de-
fined in the same way as differentiation in R, the same differentiation rules hold. In
particular, any polynomial

f (z) = anz
n + · · · + a1z + a0

is complex differentiable and has the derivative

f ′(z) = nanz
n−1 + · · · + a1.

Like the real derivative (see Chap. 7.3), the complex derivative has an interpretation
as a linear approximation

f (z) ≈ f (z0) + f ′(z0)(z − z0)

for z close to z0.
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Fig. 9.11 Possible regions of
attraction of Newton’s
iteration for finding the roots
of z3 − 1

Let f : C → C : z �→ f (z) be a complex differentiable function with f (ζ ) = 0
and f ′(ζ ) 	= 0. In order to compute the zero ζ of the function f , one first computes
the linear approximation starting from the initial value z0, so

z1 = z0 − f (z0)

f ′(z0)
.

Subsequently z1 is used as the new initial value and the procedure is iterated. In this
way, one obtains Newton’s method in C:

zn+1 = zn − f (zn)

f ′(zn)
.

For initial values z0 close to ζ the procedure converges (as in R) quadratically.
Otherwise, however, the situation can become very complicated.

In 1983 Eckmann [9] investigated Newton’s method for the function

f (z) = z3 − 1 = (z − 1)
(
z2 + z + 1

)
.

This function has three roots in C

ζ1 = 1, ζ2,3 = −1

2
± i

√
3

2
.

Naively one could think that the complex plane C is split into three equally large
sectors where the iteration with initial values in sector S1 converges to ζ1, the ones
in S2 to ζ2, etc.; see Fig. 9.11.

A numerical experiment, however, shows that it is not that way. If one colours
the initial values according to their convergence, one obtains a very complex picture.
One can prove (however, not easily imagine) that at every point where two colours
meet, the third colour is also present. The boundaries of the regions of attraction are
dominated by pincer-like motifs which reappear again and again when enlarging the
scale; see Fig. 9.12. The boundaries of the regions of attraction are Julia sets. Again
we have found fractals.

Experiment 9.14 Using the MATLAB program mat09_4.m carry out an experi-
ment. Ascertain yourself of the self-similarity of the appearing Julia sets by produc-
ing suitable enlargements of the boundaries of the region of attraction.
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then one obtains a new word. Applying the substitution rules on that again gives
a new word, and so on. Each of these words can be interpreted as a polygon by
assigning the following meaning to the individual letters:

f means forward by one unit;
p stands for a rotation of α radians (plus);
m stands for a rotation of −α radians (minus).

Thereby 0 ≤ α ≤ π is a chosen angle. One plots the polygon by choosing an arbi-
trary initial point and an arbitrary initial direction. Then one sequentially processes
the letters of the word to be displayed according to the rules above.

In maple lists and the substitution command subs lend themselves to the im-
plementation of L-systems. In the example above the axiom would hence be defined
by

a := [f,p,f,p,f,p,f]

and the substitution rules would be

a -> subs(f=(f,p,f,m,f,m,f,f,p,f,p,f,m,f),a).

The letters p and m do not change in the example, they are fixed points in the con-
struction. For the purpose of visualisation one can use polygons in maple, given by
lists of points (in the plane). These lists can be plotted easily using the command
plot.

Construction of Fractals With the graphical interpretation above and α = π/2,
the axiom fpfpfpf is a square which is passed through in a counterclockwise
direction. The substitution rule converts a straight line segment into a zig-zag line.
By an iterative application of the substitution rule the axiom develops into a fractal.

Experiment 9.17 Using the maple worksheet mp09_1.mws create different frac-
tals. Further, try to understand the procedure fractal in detail.

Example 9.18 The substitution rule for Koch’s curve is

a -> subs(f=(f,p,f,m,m,f,p,f),a).

Depending on which axiom one uses, one can build fractal curves or snowflakes
from this; see the maple worksheet mp09_1.mws.

Simulation of Plant Growth As a new element branchings (ramifications) are
added here. Mathematically one can describe this using two new symbols:

v stands for a ramification;
e stands for the end of the branch.
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Fig. 9.13 Plants created using the maple worksheet mp09_2.mws

Let us look, for example, at the word

[f,p,f,v,p,p,f,p,f,e,v,m,f,m,f,e,f,p,f,v,p,f,p,f,e,f,

m,f].

If one removes all branchings that start with v and end with e from the list, then one
obtains the stem of the plant

stem := [f,p,f,f,p,f,f,m,f].

After the second f in the stem obviously a double branching is taking place and the
branches sprout:

branch1 := [p,p,f,p,f] and branch2 := [m,f,m,f].

Further up the stem branches again with the branch [p,f,p,f].
For more realistic modelling one can introduce additional parameters. For ex-

ample, asymmetry can be build in by rotating by the positive angle α at p and by
the negative angle −β at m. In the program mp09_2.mws, this was done; see
Fig. 9.13.

Experiment 9.19 Using the maple worksheet mp09_2.mws create different arti-
ficial plants. Further, try to understand the procedure grow in detail.

To visualise the created plants one can use lists of polygons in maple, i.e., lists
of lists of points (in the plane). To implement the branchings one conveniently uses
a recursive stack. Whenever one comes across the command v for a branching, one
saves the current state as the topmost value in the stack. A state is described by
three numbers (x, y, t) where x and y denote the position in the (x, y)-plane and t

the angle enclosed the with the positive x-axis. Conversely one removes the topmost
state from the stack if one comes across the end of a branch e and returns to this
state in order to continue the plot. At the beginning the stack is empty (at the end it
should be as well).
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Extensions In the context of L-systems many generalisations are possible which
can make the emerging structures more realistic. For example one could:
(a) Represent the letter f by shorter segments as one moves further away from the

root of the plant. For that, one has to save the distance from the root as a further
state parameter in the stack.

(b) Introduce randomness by using different substitution rules for one and the same
letter and in each step choosing one at random. For example, the substitution
rules for random weeds could be such:

f -> (f,v,p,f,e,f,v,m,f,e,f) with probability 1/3;
f -> (f,v,p,f,e,f) with probability 1/3;
f -> (f,v,m,f,e,f) with probability 1/3.

Using random numbers, one selects the according rule in each step.

Experiment 9.20 Using the maple worksheet mp09_3.mws create random plants.
Further, try to understand the implemented substitution rule in detail.

9.6 Exercises

1. Determine experimentally the fractal dimension of the coastline of Great Britain.
In order to do so, take a map of Great Britain (for example a copy from an atlas)
and raster the map using different mesh sizes (for example with 1/64th, 1/32th,
1/16th, 1/8th and 1/4th of the North–South expansion). Count the boxes which
contain parts of the coastline and display this number as a function of the mesh
size in a double-logarithmic diagram. Fit the best line through these points and
determine the fractal dimension in question from the slope of the straight line.

2. Using the program mat09_3.mws visualise the Julia sets of zn+1 = z2
n + c for

c = −1.25 and c = 0.365 − 0.3i. Search for interesting details.
3. Let f (z) = z3 − 1 with z = x + iy. Use Newton’s method to solve f (z) = 0 and

separate the real part and the imaginary part, i.e., find the functions g1 and g2
with

xn+1 = g1(xn, yn),

yn+1 = g2(xn, yn).

4. Modify the procedure grow in the program mp09_2.mws by representing the
letter f by shorter segments depending on how far it is away from the root. With
the result, plot the umbel from Experiment 9.19 again.

5. Modify the program mp09_3.mws by attributing new probabilities to the ex-
isting substitution rules (or invent new substitution rules). Use your modified
program to plot some plants.



10Antiderivatives

The derivative of a function y = F(x) describes its local rate of change, i.e., the
change �y of the y-value with respect to the change �x of the x-value in the limit
�x → 0; more precisely

f (x) = F ′(x) = lim
�x→0

�y

�x
= lim

�x→0

F(x + �x) − F(x)

�x
.

Conversely, the question about the reconstruction of a function F from its local rate
of change f leads to the notion of indefinite integrals, which comprises the totality
of all functions that have f as their derivative, the antiderivatives of f . Chapter 10
addresses this notion, its properties, some basic examples and applications.

By multiplying the rate of change f (x) with the change �x one obtains an ap-
proximation to the change of the values of the function of the antiderivative F in the
segment of length �x:

�y = F(x + �x) − F(x) ≈ f (x)�x.

Adding up these local changes in an interval, for instance between x = a and x = b

in steps of length �x, gives an approximation to the total change F(b)− F(a). The
limit �x → 0 (with an appropriate increase of the number of summands) leads to
the notion of the definite integral of f in the interval [a, b], which is the subject of
Chap. 11.

10.1 Indefinite Integrals

In Sect. 7.2 it was shown that the derivative of a constant is zero. The following
proposition shows that the converse is also true.

Proposition 10.1 If the function F is differentiable on (a, b) and F ′(x) = 0 for all
x ∈ (a, b) then F is constant. This means that F(x) = c for a certain c ∈ R and all
x ∈ (a, b).

M. Oberguggenberger, A. Ostermann, Analysis for Computer Scientists,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-0-85729-446-3_10, © Springer-Verlag London Limited 2011
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Proof We choose an arbitrary x0 ∈ (a, b) and set c = F(x0). If now x ∈ (a, b) then,
according to the mean value theorem (Proposition 8.4),

F(x) − F(x0) = F ′(ξ)(x − x0)

for a point ξ between x and x0. Since F ′(ξ) = 0, it follows that F(x) = F(x0) = c.
This holds for all x ∈ (a, b), and consequently F has to be equal to the constant
function with value c. �

Definition 10.2 (Antiderivatives) Let f be a real-valued function on an interval
(a, b). An antiderivative of f is a differentiable function F : (a, b) → R whose
derivative F ′ equals f .

Example 10.3 The function F(x) = x3

3 is an antiderivative of f (x) = x2, as is

G(x) = x3

3 + 5.

Proposition 10.1 implies that antiderivatives are unique up to an additive con-
stant.

Proposition 10.4 Let F and G be antiderivatives of f in (a, b). Then F(x) =
G(x) + c for a certain c ∈ R and all x ∈ (a, b).

Proof Since F ′(x) − G′(x) = f (x) − f (x) = 0 for all x ∈ (a, b), an application of
Proposition 10.1 gives the desired result. �

Definition 10.5 (Indefinite integrals) The indefinite integral

∫
f (x)dx

denotes the totality of all antiderivatives of f .

Once a particular antiderivative F has been found, one writes accordingly
∫

f (x)dx = F(x) + c.

Example 10.6 The indefinite integral of the quadratic function (Example 10.3) is∫
x2 dx = x3

3 + c.

Example 10.7 (a) An application of indefinite integration to the differential equation
of the vertical throw: Let w(t) denote the height (in metres [m]) at time t (in seconds
[s]) of an object above ground level (w = 0). Then

w′(t) = v(t)
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Fig. 10.1 Free fall: travelled
distance as function of time

is the velocity of the object (positive in upward direction) and

v′(t) = a(t)

the acceleration (positive in upward direction). In this coordinate system the gravi-
tational acceleration

g = 9.81 [m/s2]
acts downwards; consequently

a(t) = −g.

Velocity and distance are obtained by inverting the differentiation process:

v(t) =
∫

a(t)dt + c1 = −gt + c1,

w(t) =
∫

v(t)dt + c2 =
∫

(−gt + c1)dt + c2 = −g

2
t2 + c1t + c2,

where the constants c1, c2 are determined by the initial conditions:

c1 = v(0) initial velocity,
c2 = w(0) initial height.

(b) A concrete example—free fall from a height of 100 metres. Here

w(0) = 100, v(0) = 0

and thus

w(t) = −1

2
9.81t2 + 100.

The travelled distance as a function of time (Fig. 10.1) is given by a parabola.
The time of impact t0 is obtained from the condition w(t0) = 0, i.e.,

0 = −1

2
9.81t2

0 + 100, t0 = √
200/9.81 ≈ 4.5 [s],
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the velocity at impact is

v(t0) = −gt0 ≈ 44.3 [m/s] ≈ 160 [km/h].

10.2 Integration Formulae

It follows immediately from Definition 10.5 that indefinite integration can be seen
as the inversion of differentiation. It is, however, only unique up to a constant:

(∫
f (x)dx

)′
= f (x),

∫
g′(x)dx = g(x) + c.

With this consideration and the formulae from Sect. 7.4 one easily obtains the basic
integration formulae stated in the following table. The formulae are valid in the
according domains.

The formulae in Table 10.1 are a direct consequence of those in Table 7.1.

Experiment 10.8 Antiderivatives can be calculated in maple using the command
int. Explanations and further integration commands can be found in the maple
worksheet mp10_1.mws. Experiment with these maple commands by applying
them to the examples of Table 10.1 and some functions of your choice.

Experiment 10.9 Integrate the following expressions

xe−x2
, e−x2

, sin
(
x2)

with maple.

Functions that are obtained by combining power functions, exponential functions
and trigonometric functions, as well as their inverses, are called elementary func-
tions. The derivative of an elementary function is again an elementary function and
can be obtained using the rules from Chap. 7. In contrast to differentiation there is no
general procedure for computing indefinite integrals. Not only does the calculation
of an integral often turn out to be a difficult task, but there are also many elementary
functions whose antiderivatives are not elementary. An algorithm to decide whether
a functions has an elementary indefinite integral was first deduced by Liouville1

around 1835. This was the starting point for the field of symbolic integration. For
details, we refer to [7].

1J. Liouville, 1809–1882.
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Table 10.1 Integrals of some elementary functions

f (x) xα,α �= −1 1
x

ex ax

∫
f (x)dx xα+1

α+1 + c log |x| + c ex + c 1
loga

ax + c

f (x) sinx cosx 1√
1−x2

1
1+x2∫

f (x)dx − cosx + c sinx + c arcsinx + c arctanx + c

Example 10.10 (Higher transcendental functions) Antiderivatives of functions that
do not possess elementary integrals are frequently called higher transcendental func-
tions. We give the following examples:
Gaussian error function:

2√
π

∫
e−x2

dx = Erf(x) + c;

exponential integral:

∫
ex

x
dx = E i(x) + c;

logarithmic integral:

∫
1

logx
dx = �i(x) + c;

sine integral:

∫
sinx

x
dx = Si(x) + c;

Fresnel2 integral:

∫
sin

(
π

2
x2

)
dx = S(x) + c.

Proposition 10.11 (Rules for indefinite integration) For indefinite integration the
following rules hold:
(a) Sum:

∫
(f (x) + g(x))dx = ∫

f (x)dx + ∫
g(x)dx

(b) Constant factor:
∫

λf (x)dx = λ
∫

f (x)dx (λ ∈ R)

(c) Integration by parts:
∫

f (x)g′(x)dx = f (x)g(x) −
∫

f ′(x)g(x)dx

2A.J. Fresnel, 1788–1827.
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(d) Substitution:

∫
f

(
g(x)

)
g′(x)dx =

∫
f (y)dy

∣∣∣
y=g(x)

.

Proof (a) and (b) are clear; (c) follows from the product rule for the derivative
(Sect. 7.4)

∫
f (x)g′(x)dx +

∫
f ′(x)g(x)dx

=
∫ (

f (x)g′(x) + f ′(x)g(x)
)

dx

=
∫ (

f (x)g(x)
)′ dx = f (x)g(x) + c,

which can be rewritten as
∫

f (x)g′(x)dx = f (x)g(x) −
∫

f ′(x)g(x)dx.

In this formula we can drop the integration constant c, since it is already contained
in the notion of indefinite integrals, which appear on both sides. Point (d) is an
immediate consequence of the chain rule, according to which an antiderivative of
f (g(x))g′(x) is given by the antiderivative of f (y) evaluated at y = g(x). �

Example 10.12 The following five examples show how the rules of Table 10.1 and
Proposition 10.11 can be applied.

(a)
∫

dx
3
√

x
=

∫
x− 1

3 dx = x− 1
3 +1

− 1
3 + 1

+ c = 3

2
x

2
3 + c.

(b)
∫

x cosxdx = x sinx −
∫

sinx dx = x sinx + cosx + c,

which follows via integration by parts:

f (x) = x, g′(x) = cosx,

f ′(x) = 1, g(x) = sinx.

(c)
∫

logx dx =
∫

1 · logx dx = x logx −
∫

x

x
dx = x logx − x + c,

via integration by parts:

f (x) = logx, g′(x) = 1,

f ′(x) = 1

x
, g(x) = x.
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(d)
∫

x sin
(
x2)dx =

∫
1

2
siny dy

∣∣
y=x2 = −1

2
cosy

∣∣
y=x2 + c = −1

2
cos

(
x2) + c,

which follows from the substitution rule with y = g(x) = x2, g′(x) = 2x,
f (y) = 1

2 siny.

(e)
∫

tanx dx =
∫

sinx

cosx
dx = − log |y| ∣∣

y=cosx
+ c = − log | cosx| + c,

again after substitution with y = g(x) = cosx, g′(x) = − sinx and f (y) =
−1/y.

10.3 Exercises

1. An object is thrown vertically upwards from the ground with a velocity of
10 [m/s]. Find its height w(t) as a function of time t , the maximum height as
well as the time of impact on the ground.
Hint. Integrate w′′(t) = −g ≈ 9.81 [m/s2] twice indefinitely and determine the
integration constants from the initial conditions w(0) = 0,w′(0) = 10.

2. Compute the following indefinite integrals by hand and with maple:
(a)

∫
(x + 3x2 + 5x4 + 7x6)dx

(b)
∫ dx√

x

(c)
∫

xe−x2
dx (substitution)

(d)
∫

xex dx (integration by parts).
3. Compute the indefinite integrals

(a)
∫

cos2 x dx

(b)
∫ √

1 − x2 dx

by hand and check the results using maple.

Hints. For (a) use the identity cos2 x = 1
2 (1 + cos 2x); for (b) use the substitution

y = g(x) = arcsinx, f (y) = 1 − sin2 y.
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In the introduction to Chap. 10 the notion of the definite integral of a function f

on an interval [a, b] has already been mentioned. It arises from summing up expres-
sions of the form f (x)�x and taking limits. Such sums appear in many applications
including the calculation of areas, surface areas and volumes as well as the calcula-
tion of lengths of curves. This chapter employs the notion of Riemann integrals as
the basic concept of definite integration. Riemann’s approach provides an intuitive
concept in many applications, as will be elaborated in examples at the end of the
chapter.

The main part of Chap. 11 is dedicated to the properties of the integral. In partic-
ular, the two fundamental theorems of calculus are proven. The first theorem allows
one to calculate a definite integral from the knowledge of an antiderivative. The
second fundamental theorem states that the definite integral of a function f on an
interval [a, x] with variable upper bound provides an antiderivative of f . Since the
definite integral can be approximated, for example by Riemann sums, the second
fundamental theorem offers a possibility to approximate the antiderivative numeri-
cally. This is of importance, for example, for the calculation of distribution functions
in statistics.

11.1 The Riemann Integral

Example 11.1 (From velocity to distance) How can one calculate the distance w

which a vehicle travels between time a and time b if one only knows its velocity
v(t) for all times a ≤ t ≤ b? If v(t) ≡ v is constant, one simply gets

w = v · (b − a).

If the velocity v(t) is time-dependent, one divides the time axis into smaller subin-
tervals (Fig. 11.1): a = t0 < t1 < t2 < · · · < tn = b.

Choosing intermediate points τj ∈ [tj−1, tj ] one obtains approximately

v(t) ≈ v(τj ) for t ∈ [tj−1, tj ],
M. Oberguggenberger, A. Ostermann, Analysis for Computer Scientists,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-0-85729-446-3_11, © Springer-Verlag London Limited 2011

135

http://dx.doi.org/10.1007/978-0-85729-446-3_11


136 11 Definite Integrals

Fig. 11.1 Subdivision of the
time axis

Fig. 11.2 Sums of rectangles
as approximation to the area

if v is a continuous function of time. The approximation is the more precise, the
shorter the intervals [tj−1, tj ] are chosen. The distance travelled in this interval is
approximately equal to

wj ≈ v(τj )(tj − tj−1).

The total distance covered between time a and time b is then

w =
n∑

j=1

wj ≈
n∑

j=1

v(τj )(tj − tj−1).

Letting the length of the subintervals [tj−1, tj ] tend to zero, one expects to obtain
the actual value of the distance in the limit.

Example 11.2 (Area under the graph of a non-negative) In a similar way one can try
to approximate the area under the graph of a function y = f (x) by using rectangles
which are successively refined (Fig. 11.2).

The sum of the areas of the rectangles

F ≈
n∑

j=1

f (ξj )(xj − xj−1)

form an approximation to the actual area under the graph.

The two examples are based on the same concept, the Riemann integral,1 which
we will now introduce. Let an interval [a, b] and a function f = [a, b] → R be
given. Choosing the points

a = x0 < x1 < x2 < · · · < xn−1 < xn = b,

1B. Riemann, 1826–1866.
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the intervals [x0, x1], [x1, x2], . . . , [xn−1, xn] form a partition Z of the interval
[a, b]. We denote the length of the largest subinterval by Φ(Z), i.e.,

Φ(Z) = max
j=1,...,n

|xj − xj−1|.

For arbitrarily chosen intermediate points ξj ∈ [xj−1, xj ] one calls the expression

S =
n∑

j=1

f (ξj )(xj − xj−1)

a Riemann sum. In order to further specify the idea of the limiting process above,
we take a sequence Z1,Z2,Z3, . . . of partitions such that Φ(ZN) → 0 as N → ∞
and corresponding Riemann sums SN .

Definition 11.3 A function f is called Riemann integrable in [a, b] if, for arbitrary
sequences of partitions (ZN)N≥1 with Φ(ZN) → 0, the corresponding Riemann
sums (SN)N≥1 tend to the same limit I (f ), independently of the choice of the in-
termediate points. This limit

I (f ) =
∫ b

a

f (x)dx

is called the definite integral of f on [a, b].

The intuitive approach in the introductory Examples 11.1 and 11.2 can now be
made precise. If the respective functions f and v are Riemann integrable, then the
integral

F =
∫ b

a

f (x)dx

represents the area between the x-axis and the graph, and

w =
∫ b

a

v(t)dt

gives the total distance covered.

Experiment 11.4 Open the M-file mat11_1.m, study the given explanations and
experiment with randomly chosen Riemann sums for the function f (x) = 3x2 in
the interval [0,1]. What happens if you take more and more partition points n?

Experiment 11.5 Open the applet Riemann sums and study the effects of changing
the partition. In particular, vary the maximum length of the subintervals and the
choice of intermediate points. How does the sign of the function influence the result?
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The following examples illustrate the notion of Riemann integrability.

Example 11.6 (a) Let f (x) = c = constant. Then the area under the graph of the
function is the area of the rectangle c(b − a). On the other hand, any Riemann sum
is of the form

f (ξ1)(x1 − x0) + f (ξ2)(x2 − x1) + · · · + f (ξn)(xn − xn−1)

= c(x1 − x0 + x2 − x1 + · · · + xn − xn−1)

= c(xn − x0) = c(b − a).

All Riemann sums are equal and thus, as expected,

∫ b

a

c dx = c(b − a).

(b) Let f (x) = 1
x

for x ∈ (0,1], f (0) = 0. This function is not integrable in [0,1].
The corresponding Riemann sums are of the form

1

ξ1
(x1 − 0) + 1

ξ2
(x2 − x1) + · · · + 1

ξn

(xn − xn−1).

By choosing ξ1 close to 0 every such Riemann sum can be made arbitrarily large,
thus the limit of the Riemann sums does not exist.

(c) Dirichlet’s function2

f (x) =
{

1, x ∈ Q

0, x 	∈ Q

is not integrable in [0,1]. The Riemann sums are of the form

SN = f (ξ1)(x1 − x0) + · · · + f (ξn)(xn − xn−1).

If all ξj ∈ Q then SN = 1. If one takes all ξj 	∈ Q then SN = 0, thus the limit depends
on the choice of intermediate points ξj .

Remark 11.7 Riemann integrable functions f : [a, b] → R are necessarily bounded.
This fact can easily be shown by generalising the argument in Example 11.6 (b).

The most important criteria for Riemann integrability are outlined in the follow-
ing proposition. Its proof is simple, however, requires a few technical considera-
tions about refining partitions. For details, we refer to the literature, for instance
[4, Chap. 5.1].

2P.G.L. Dirichlet, 1805–1859.
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Fig. 11.3 A piecewise
continuous function

Proposition 11.8 (a) Every function which is bounded and monotonically increas-
ing (monotonically decreasing) on an interval [a, b] is Riemann integrable.

(b) Every piecewise continuous function on an interval [a, b] is Riemann inte-
grable.

A function is called piecewise continuous if it is continuous except for a finite
number of points. At these points, the graph may have jumps but is required to have
left- and right-hand limits (Fig. 11.3).

Remark 11.9 By taking equidistant grid points a = x0 < x1 < · · · < xn−1 < xn = b

for the partition, i.e.,

xj − xj−1 =: �x = b − a

n
,

the Riemann sums can be written as

SN =
n∑

j=1

f (ξj )�x.

The transition �x → 0 with simultaneous increase of the number of summands
suggests the notation

∫ b

a

f (x)dx.

Originally it was introduced by Leibniz3 with the interpretation as an infinite sum of
infinitely small rectangles of width dx. After centuries of dispute, this interpretation
can be rigorously justified today within the framework of nonstandard analysis (see
for instance [25]).

Note that the integration variable x in the definite integral is a bound variable
and can be replaced by any other letter:

∫ b

a

f (x)dx =
∫ b

a

f (t)dt =
∫ b

a

f (ξ)dξ = · · · .

3G. Leibniz, 1646–1716.
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This can be used with advantage in order to avoid possible confusion with other
bound variables.

Proposition 11.10 (Properties of the definite integral) In the following, let a < b

and f,g be Riemann integrable on [a, b].
(a) Positivity:

f ≥ 0 in [a, b] ⇒
∫ b

a

f (x)dx ≥ 0,

f ≤ 0 in [a, b] ⇒
∫ b

a

f (x)dx ≤ 0.

(b) Monotonicity:

f ≤ g in [a, b] ⇒
∫ b

a

f (x)dx ≤
∫ b

a

g(x)dx.

In particular, with

m = inf
x∈[a,b]f (x), M = sup

x∈[a,b]
f (x),

the following inequality holds:

m(b − a) ≤
∫ b

a

f (x)dx ≤ M(b − a).

(c) Sum and constant factor (linearity):

∫ b

a

(
f (x) + g(x)

)
dx =

∫ b

a

f (x)dx +
∫ b

a

g(x)dx

∫ b

a

λf (x)dx = λ

∫ b

a

f (x)dx (λ ∈ R).

(d) Partition of the integration domain: Let a < b < c and f be integrable in [a, c],
then

∫ b

a

f (x)dx +
∫ c

b

f (x)dx =
∫ c

a

f (x)dx.

If one defines

∫ a

a

f (x)dx = 0,

∫ a

b

f (x)dx = −
∫ b

a

f (x)dx,

then one obtains the validity of the sum formula even for arbitrary a, b, c ∈ R if
f is integrable on the respective intervals.
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Proof All justifications are easily obtained by considering the corresponding Rie-
mann sums. �

Item (a) from Proposition 11.10 shows that the interpretation of the integral as
the area under the graph is only appropriate if f ≥ 0. On the other hand, the in-
terpretation of the integral of a velocity as distance travelled is also meaningful for
negative velocities (change of direction). Item (d) is especially important for the in-
tegration of piecewise continuous functions (see Fig. 11.3): the integral is obtained
as the sum of the single integrals.

11.2 Fundamental Theorems of Calculus

For a Riemann integrable function f we define a new function

F(x) =
∫ x

a

f (t)dt.

It is obtained by considering the upper boundary of the integration domain as vari-
able.

Remark 11.11 For positive f , the value F(x) is the area under the graph of the
function in the interval [a, x]; see Fig. 11.4.

Experiment 11.12 In maths online go to Integration in the gallery, open the applet
Intuitively understanding the integral and observe the shape of the integrals F(x)

for various integrands f .

Proposition 11.13 (Fundamental theorems of calculus) Let f be continuous in
[a, b]. Then the following assertions hold.
(a) First fundamental theorem: If G is an antiderivative of f , then

∫ b

a

f (x)dx = G(b) − G(a).

(b) Second fundamental theorem: The function

F(x) =
∫ x

a

f (t)dt

is an antiderivative of f , that is, F is differentiable and F ′(x) = f (x).

Proof In the first step we prove the second fundamental theorem. For that let
x ∈ (a, b), h > 0 and x + h ∈ (a, b). According to Proposition 6.15 the function
f has a minimum and a maximum in the interval [x, x + h]:

m(h) = min
t∈[x,x+h]f (t), M(h) = max

t∈[x,x+h]f (t).
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(c)
∫ 1

0
x sin

(
x2)dx = −1

2
cos

(
x2)∣∣∣∣

x=1

x=0
= −1

2
cos 1−

(
− 1

2
cos 0

)
= −1

2
cos 1+ 1

2

(see Example 10.12).

Remark 11.15 In maple the integration of expressions and functions is carried out
using the command int, which requires the analytic expression and the domain as
arguments, for instance

int(x^2, x = 1..3);

Applications of the Second Fundamental Theorem Usually, such applications
are of theoretical nature, like the description of the relation between travelled dis-
tance and velocity,

w(t) = w(0) +
∫ t

0
v(s)ds, w′(t) = v(t),

where w(t) denotes the travelled distance from 0 to time t and v(t) is the instanta-
neous velocity. Other applications arise in numerical analysis, for instance

∫ x

0
e−y2

dy is an antiderivative of e−x2
.

The value of such an integral can be approximately calculated using Taylor poly-
nomials (see Application 12.18) or numerical integration methods (see Sect. 13.1).
This is of particular interest if the antiderivative is not an elementary function, as is
the case for the Gaussian error function from Example 10.10.

11.3 Applications of the Definite Integral

We now turn to further applications of the definite integral, which confirm the mod-
elling power of the notion of the Riemann integral.

The Volume of a Solid of Revolution Assume first that for a three-dimensional
solid (possibly after choosing an appropriate Cartesian coordinate system) the cross-
sectional area A = A(x) is known for every x ∈ [a, b]; see Fig. 11.5. The volume of
a thin slice of thickness �x is approximately equal to A(x)�x. Writing down the
Riemann sums and taking limits, one obtains for the volume V of the solid

V =
∫ b

a

A(x)dx.
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Fig. 11.7 The arc length of a
graph

It is simply given by the sum of the lengths of the individual segments (Fig. 11.7).
According to the mean value theorem (Proposition 8.4), we have

sn =
n∑

j=1

√
(xj − xj−1)2 + f ′(ξj )2(xj − xj−1)2

=
n∑

j=1

√
1 + f ′(ξj )2 (xj − xj−1),

with certain points ξj ∈ [xj−1, xj ]. The sums sn are easily identified as Riemann
sums. Their limit is thus given by

s =
∫ b

a

√
1 + f ′(x)2 dx.

Lateral Surface Area of a Solid of Revolution The lateral surface of a solid of
revolution is obtained by rotating the curve y = f (x), a ≤ x ≤ b around the x-axis.

In order to determine its area, we split the solid into small slices of thickness
�x. Each of these slices is approximately a truncated cone with generator of length
�s and mean radius f (x); see Fig. 11.8. According to Exercise 11 of Chap. 3 the
lateral surface area of this truncated cone is equal to 2πf (x)�s. According to what
has been said previously, �s ≈ √

1 + f ′(x)2�x, and thus the lateral surface area of
a small slice is approximately equal to

2πf (x)

√
1 + f ′(x)2�x.

Writing down the Riemann sums and taking limits, one obtains

M = 2π

∫ b

a

f (x)

√
1 + f ′(x)2 dx

for the lateral surface area.

Example 11.17 (Surface area of a sphere) The surface of a sphere of radius r is
generated by rotation of the graph f (x) = √

r2 − x2,−r ≤ x ≤ r . One obtains

M = 2π

∫ r

−r

√
r2 − x2 r√

r2 − x2
dx = 4πr2.
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Fig. 11.8 Solid of rotation,
curved surface area

11.4 Exercises

1. Modify the MATLAB program mat11_1.m so that it evaluates Riemann sums of
given lengths n for polynomials of degree k on arbitrary intervals [a, b] (MATLAB
command polyval).

2. Prove that every function which is piecewise constant in an interval [a, b] is
Riemann integrable (use Definition 11.3).

3. Compute the area between the graphs of y = sinx and y = √
x on the interval

[0,2π].
4. In maths online go to Integration in the area Interactive tests and solve the ex-

ercises stated under Definite integrals—sine function.
5. (From engineering mechanics) The shear force Q(x) and the bending moment

M(x) of a beam of length L under a distributed load p(x) obey the relationships
M ′(x) = Q(x), Q′(x) = −p(x), 0 ≤ x ≤ L; see Fig. 11.9. Compute Q(x) and
M(x) and sketch their graphs for
(a) a simply supported beam with uniformly distributed load: p(x) = p0,

Q(0) = p0L/2, M(0) = 0.
(b) a cantilever beam with triangular load: p(x) = q0(1 − x/L), Q(L) = 0,

M(L) = 0.
6. Write a MATLAB program which provides a numerical approximation to the inte-

gral

∫ 1

0
e−x2

dx.

For this purpose, use Riemann sums of the form

L =
n∑

j=1

e−x2
j �x, U =

n∑
j=1

e−x2
j−1�x

with xj = j�x,�x = 1/n and try to determine �x and n, respectively, so
that U − L ≤ 0.01, i.e., the result should be correct up to two digits. Com-
pare your result with the value obtained by means of the MATLAB command
sqrt(pi)/2*erf(1).
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Fig. 11.9 Simply supported beam with uniformly distributed load, cantilever beam with triangular
load

Additional task: Extend your program so that it allows one to compute
∫ a

0 e−x2
dx

for arbitrary a > 0.
7. Show that the error of approximating the integral in Exercise 6 either by L or U

is at most U − L. Use the applet Integration to visualise this fact.
Hint. Verify the inequality

L ≤
∫ 1

0
e−x2

dx ≤ U.

Thus, L and U are lower and upper sums, respectively.
8. Rotation of the parabola y = 2

√
x, 0 ≤ x ≤ 1 around the x-axis produces a

paraboloid. Sketch it and compute its volume and its lateral surface area.
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Approximations of complicated functions by simpler functions play a vital part in
applied mathematics. Starting with the concept of linear approximation we discuss
the approximation of a function by Taylor polynomials and by Taylor series in this
chapter. As important applications we will use Taylor series to compute limits of
functions and to analyse various approximation formulae.

12.1 Taylor’s Formula

In this section we consider the approximation of sufficiently smooth functions by
polynomials as well as applications of these approximations. We have already seen
an approximation formula in Chap. 7: Let f be a function that is differentiable at a.
Then

f (x) ≈ g(x) = f (a) + f ′(a) · (x − a),

for all x close to a. The linear approximation g is a polynomial of degree 1 in x, its
graph is just the tangent to f at a. We now want to generalise this approximation
result.

Proposition 12.1 (Taylor’s formula1) Let I ⊆ R be an open interval and f : I → R

an (n + 1)-times continuously differentiable function (i.e., the derivative of order
(n + 1) of f exists and is continuous). Then, for all x, a ∈ I ,

f (x) = f (a) + f ′(a) · (x − a) + f ′′(a)

2! (x − a)2 + · · ·

+ f (n)(a)

n! (x − a)n + Rn+1(x, a)

1B. Taylor, 1685–1731.

M. Oberguggenberger, A. Ostermann, Analysis for Computer Scientists,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-0-85729-446-3_12, © Springer-Verlag London Limited 2011

149

http://dx.doi.org/10.1007/978-0-85729-446-3_12


150 12 Taylor Series

with the remainder term (in integral form)

Rn+1(x, a) = 1

n!
∫ x

a

(x − t)nf (n+1)(t)dt.

Alternatively the remainder term can be expressed by

Rn+1(x, a) = f (n+1)(ξ)

(n + 1)! (x − a)n+1,

where ξ is a point between a and x (Lagrange’s2 form of the remainder term).

Proof According to the fundamental theorem of calculus, we have

∫ x

a

f ′(t)dt = f (x) − f (a),

and thus

f (x) = f (a) +
∫ x

a

f ′(t)dt.

We apply integration by parts to this formula. Due to

∫ x

a

u′(t)v(t)dt = u(t)v(t)
∣∣x
a

−
∫ x

a

u(t)v′(t)dt

with u(t) = t − x and v(t) = f ′(t) we get

f (x) = f (a) + (t − x)f ′(t)
∣∣x
a

−
∫ x

a

(t − x)f ′′(t)dt

= f (a) + f ′(a) · (x − a) +
∫ x

a

(x − t)f ′′(t)dt.

A further integration by parts yields

∫ x

a

(x − t)f ′′(t)dt = − (x − t)2

2
f ′′(t)

∣∣x
a

+
∫ x

a

(x − t)2

2
f ′′′(t)dt

= f ′′(a)

2
(x − a)2 + 1

2

∫ x

a

(x − t)2f ′′′(t)dt,

and one recognises that repeated integration by parts leads to the desired formula
(with the remainder term in integral form). The other representation of the remainder
term follows from the mean value theorem for integrals [4, Chap. 5, Theorem 5.4]. �

2J.L. Lagrange, 1736–1813.
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Example 12.2 (Important special case) If one sets x = a + h and replaces a by x in
Taylor’s formula, then one obtains

f (x + h) = f (x) + hf ′(x) + h2

2
f ′′(x) + · · ·+ hn

n! f
(n)(x) + hn+1

(n + 1)!f
(n+1)(ξ)

with a point ξ between x and x + h. For small h this formula describes how the
function f behaves near x.

Remark 12.3 Often one does not know the remainder term

Rn+1(x, a) = f (n+1)(ξ)

(n + 1)! (x − a)n+1

explicitly since ξ is unknown in general. Let M be the supremum of |f (n+1)| in the
considered interval around a. For x in this interval we obtain the bound

∣∣Rn+1(x, a)
∣∣ ≤ M

(n + 1)! (x − a)n+1.

The remainder term is thus bounded by a constant times hn+1, where h = x − a. In
this situation, one writes for short

Rn+1(a + h,a) = O
(
hn+1)

as h → 0 and calls the remainder a term of order n + 1. This notation is also used
by maple.

Definition 12.4 The polynomial

Tn(x, a) = f (a) + f ′(a) · (x − a) + · · · + f (n)(a)

n! (x − a)n

is called nth Taylor polynomial of f around the point of expansion a.

The graphs of the functions y = Tn(x, a) and y = f (x) both pass through the
point (a, f (a)). Their tangents in this point have the same slope T ′

n(x, a) = f ′(a)

and the graphs have the same curvature (due to T ′′
n (x, a) = f ′′(a); see Chap. 14). It

depends on the size of the remainder term how well the Taylor polynomial approxi-
mates the function.

Example 12.5 (Taylor polynomial of the exponential function) Let f (x) = ex and
a = 0. Due to (ex)′ = ex we have f (k)(0) = e0 = 1 for all k ≥ 0 and hence

ex = 1 + x + x2

2
+ · · · + xn

n! + eξ

(n + 1)!x
n+1,
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where ξ denotes a point between 0 and x. We want to determine the minimal degree
of the Taylor polynomial which approximates the function in the interval [0,1] cor-
rect to five digits. In order to do so we require the following bound on the remainder
term:

∣∣∣∣ex − 1 − x − · · · − xn

n!
∣∣∣∣ = eξ

(n + 1)! xn+1 ≤ 10−5.

Note that x ∈ [0,1] as well as eξ are non-negative. The above remainder will be
maximal for x = ξ = 1. Thus we determine n from the inequality e/(n+1)! ≤ 10−5.
Due to e ≈ 3 this inequality is certainly fulfilled from n = 8 onwards; in particular,

e = 1 + 1 + 1

2
+ · · · + 1

8! ± 10−5.

One has to choose n ≥ 8 in order to determine the first five digits of e.

Experiment 12.6 Repeat the above calculations with the help of the maple work-
sheet mp12_1.mws. In this worksheet the required maple commands for Taylor’s
formula are explained.

Example 12.7 (Taylor polynomial of the sine function) Let f (x) = sinx and a = 0.
Recall that (sinx)′ = cosx and (cosx)′ = − sinx as well as sin 0 = 0 and cos 0 = 1.
Therefore,

sinx =
2n+1∑
k=0

sin(k)(0)

k! xk + R2n+2(x,0)

= x − x3

3! + x5

5! − x7

7! + · · · + (−1)n
x2n+1

(2n + 1)! + R2n+2(x,0).

Note that the Taylor polynomial consists of odd powers of x only. According to
Taylor’s formula, the remainder has the form

R2n+2(x,0) = sin(2n+2)(ξ)

(2n + 2)! x2n+2.

Since all derivatives of the sine function are bounded by 1, we obtain

∣∣R2n+2(x,0)
∣∣ ≤ x2n+2

(2n + 2)! .

For fixed x the remainder term tends to zero as n → ∞, since the expression
x2n+2/(2n + 2)! is a summand of the exponential series, which converges for all
x ∈ R. The above estimate can be interpreted as follows: For every x ∈ R and ε > 0,
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there exists an integer N ∈ N such that the difference of the sine function and its nth
Taylor polynomial is small; more precisely,

∣∣sin t − Tn(t,0)
∣∣ ≤ ε

for all n ≥ N and t ∈ [−x, x].

Experiment 12.8 Using the maple worksheet mp12_2.mws compute the Taylor
polynomials of sinx around the point 0 and determine the accuracy of the approx-
imation (by plotting the difference to sinx). In order to achieve high accuracy for
large x, the degree of the polynomials has to be chosen sufficiently high. Due to
rounding errors, however, this procedure quickly reaches its limits (unless one in-
creases the number of significant digits).

Example 12.9 The fourth degree Taylor polynomial T4(x,0) of the function

f (x) =
{

x
ex−1 x 
= 0,

1 x = 0,

is given by

T4(x,0) = 1 − x

2
+ 1

12
x2 − 1

720
x4.

Experiment 12.10 The maple worksheet mp12_3.mws shows that, for suffi-
ciently large n, the Taylor polynomial of degree n gives a good approximation to
the function from Example 12.9 on closed subintervals of (−2π,2π). For x ≥ 2π

(as well as for x ≤ −2π ) the Taylor polynomial is, however, useless.

12.2 Taylor’s Theorem

The last example gives rise to the question for which points the Taylor polynomial
converges to the function as n → ∞.

Definition 12.11 Let I ⊆ R be an open interval and let f : I → R have arbitrarily
many derivatives. Given a ∈ I , the series

T (x, a,f ) =
∞∑

k=0

f (k)(a)

k! (x − a)k

is called Taylor series of f around the point a.
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Proposition 12.12 (Taylor’s theorem) Let f : I → R be a function with arbitrarily
many derivatives and let T (x, a,f ) be its Taylor series around the point a. Then the
function and its Taylor series coincide at x ∈ I , i.e.,

f (x) =
∞∑

k=0

f (k)(a)

k! (x − a)k,

if and only if the remainder term

Rn(x, a) = f (n)(ξ)

n! (x − a)n

tends to 0 as n → ∞.

Proof According to Taylor’s formula (Proposition 12.1),

f (x) − Tn(x, a) = Rn+1(x, a)

and hence

f (x) = lim
n→∞Tn(x, a) = T (x, a,f ) ⇔ lim

n→∞Rn(x, a) = 0,

which was to be shown. �

Example 12.13 Let f (x) = sinx and a = 0. Due to Rn(x,0) = sin(n)(ξ)
n! xn we have

∣∣Rn(x,0)
∣∣ ≤ |x|n

n! → 0

for x fixed and n → ∞. Hence for all x ∈ R

sinx =
∞∑

k=0

(−1)k
x2k+1

(2k + 1)! = x − x3

3! + x5

5! − x7

7! + x9

9! ∓ · · · .

12.3 Applications of Taylor’s Formula

To complete this chapter we discuss a few important applications of Taylor’s for-
mula.

Application 12.14 (Extremum test) Let the function f : I → R be n-times contin-
uously differentiable in the interval I and assume that

f ′(a) = f ′′(a) = · · · = f (n−1)(a) = 0 and f (n)(a) 
= 0.

Then the following assertions hold:
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(a) The function f has an extremum at a if and only if n is even.
(b) If n is even and f (n)(a) > 0, then a is a local minimum of f .

If n is even and f (n)(a) < 0, then a is a local maximum of f .

Proof Due to Taylor’s formula, we have

f (x) − f (a) = f (n)(ξ)

n! (x − a)n, x ∈ I.

If x is close to a, f (n)(ξ) and f (n)(a) have the same signs (since f (n) is continuous).
For n odd the right-hand side changes its sign at x = a because of the term (x −a)n.
Hence an extremum can only occur for n even. If now n is even and f (n)(a) > 0,
then f (x) > f (a) for all x close to a with x 
= a. Thus a is a local minimum. �

Example 12.15 The polynomial f (x) = 6+4x +6x2 +4x3 +x4 has the derivatives

f ′(−1) = f ′′(−1) = f ′′′(−1) = 0, f (4)(−1) = 24

at the point x = −1. Hence x = −1 is a local minimum of f .

Application 12.16 (Computation of limits of functions) As an example, we inves-
tigate the function

g(x) = x2 log(1 + x)

(1 − cosx) sinx

in the neighbourhood of x = 0. For x = 0 we obtain the undefined expression 0
0 . In

order to determine the limit when x tends to 0, we expand all appearing functions in
Taylor polynomials around the point a = 0. Exercise 1 yields the result that cosx =
1 − x2

2 + O(x4). Taylor’s formula for log(1 + x) around the point a = 0 reads

log(1 + x) = x + O
(
x2),

because of log 1 = 0 and log(1 + x)′|x=0 = 1. We thus obtain

g(x) = x2(x + O(x2))

(1 − 1 + x2

2 + O(x4))(x + O(x3))
= x3 + O(x4)

x3

2 + O(x5)
= 1 + O(x)

1
2 + O(x2)

and consequently limx→0 g(x) = 2.

Application 12.17 (Analysis of approximation formulae) When differentiating nu-
merically in Chap. 7, we considered the symmetric difference quotient

f ′′(x) ≈ f (x + h) − 2f (x) + f (x − h)

h2
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as an approximation to the second derivative f ′′(x). We are now in the position to
investigate the accuracy of this formula. From

f (x + h) = f (x) + hf ′(x) + h2

2
f ′′(x) + h3

6
f ′′′(x) + O

(
h4),

f (x − h) = f (x) − hf ′(x) + h2

2
f ′′(x) − h3

6
f ′′′(x) + O

(
h4),

we infer that

f (x + h) + f (x − h) = 2f (x) + h2f ′′(x) + O
(
h4)

and hence

f (x + h) − 2f (x) + f (x − h)

h2
= f ′′(x) + O

(
h2).

One calls this formula second-order accurate. If one reduces h by the factor λ, then
the error reduces by the factor λ2, as long as rounding errors do not play a decisive
role.

Application 12.18 (Integration of functions that do not possess elementary inte-
grals) As already mentioned in Sect. 10.2 there are functions whose antideriva-
tives cannot be expressed as combinations of elementary functions. For example,
the function f (x) = e−x2

does not have an elementary integral. In order to compute
the definite integral

∫ 1

0
e−x2

dx,

we approximate e−x2
by the Taylor polynomial of degree 8

e−x2 ≈ 1 − x2 + x4

2
− x6

6
+ x8

24

and approximate the integral sought after by

∫ 1

0

(
1 − x2 + x4

2
− x6

6
+ x8

24

)
dx = 5651

7560
.

The error of this approximation is 6.63 · 10−4. For more precise results one takes a
Taylor polynomial of a higher degree.

Experiment 12.19 Using the maple worksheet mp12_4.mws repeat the calcula-
tions from Application 12.18. Subsequently modify the program such that you can
integrate g(x) = cos(x2) with it.
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12.4 Exercises

1. Compute the Taylor polynomials of degree 0,1,2,3 and 4 of the function g(x) =
cosx around the point of expansion a = 0. For which x ∈ R does the Taylor series
of cosx converge?

2. Compute the Taylor polynomials of degree 1,3 and 5 of the function sinx around
the point of expansion a = 9π . Further, compute the Taylor polynomial of de-
gree 39 with maple and plot the graph together with the graph of the function in
the interval [0,18π]. In order to better be able to distinguish the two graphs you
should plot them in different colours.

3. Compute the Taylor polynomials of degree 1,2 and 3 of the function f (t) =√
1 + t around the point of expansion a = 0. Furthermore, compute the Taylor

polynomial of degree 10 with maple.
4. Compute the following limits using Taylor series expansion:

lim
x→0

x sinx − x2

2 cosx − 2 + x2
, lim

x→0

e2x − 1 − 2x

sin2 x
,

lim
x→0

e−x2 − 1

sin2(3x)
, lim

x→0

x2(log(1 − 2x))2

1 − cos(x2)
.

Verify your results with maple.
5. For the approximate evaluation of the integral

∫ 1

0

sin(t2)

t
dt

replace the integrand by its Taylor polynomial of degree 9 and integrate this
polynomial. Verify your result with maple.

6. Prove the formula

eiϕ = cosϕ + i sinϕ

by substituting the value iϕ for x into the series of the exponential function

ex =
∞∑

k=0

xk

k!

and separating real and imaginary parts.
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The fundamental theorem of calculus suggests the following approach to the calcu-
lation of definite integrals: one determines an antiderivative F of the integrand f

and computes from that the value of the integral

∫ b

a

f (x)dx = F(b) − F(a).

In practice, however, it is difficult and often even impossible to find an antiderivative
F as a combination of elementary functions. Apart from that, antiderivatives can
also be fairly complex, as the example

∫
x100 sinx dx shows. Finally, in concrete

applications the integrand is often given numerically and not by an explicit formula.
In all these cases one reverts to numerical methods. In this chapter the basic concepts
of numerical integration (quadrature formulae and their order) are introduced and
explained. By means of instructive examples we analyse the achievable accuracy
for the Gaussian quadrature formulae and the required computational effort.

13.1 Quadrature Formulae

For the numerical computation of
∫ b

a
f (x)dx we first split the interval of integration

[a, b] into subintervals with grid points a = x0 < x1 < x2 < · · · < xN−1 < xN = b;
see Fig. 13.1. From the additivity of the integral (Proposition 11.10 (d)) we get

∫ b

a

f (x)dx =
N−1∑
j=0

∫ xj+1

xj

f (x)dx.

Hence it is sufficient to find an approximation formula for a (small) subinterval
of length hj = xj+1 − xj . One example of such a formula is the trapezoidal rule
through which the area under the graph of a function is approximated by the area of
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be a general polynomial of degree 2. Due to g(0) = α, g
( 1

2

) = α + 1
2β + 1

4γ and
g(1) = α + β + γ we get, by a short calculation,

∫ 1

0

(
α + βτ + γ τ 2)dτ = α + 1

2
β + 1

3
γ = 1

6

(
g(0) + 4g

(
1

2

)
+ g(1)

)
.

The corresponding approximation formula for general g reads
∫ 1

0
g(τ)dτ ≈ 1

6

(
g(0) + 4g

(
1

2

)
+ g(1)

)
.

By construction, it is exact for polynomials of degree less than or equal to 2, and it
is called Simpson’s rule.1

The special forms of the trapezoidal and of Simpson’s rule motivate the following
definition.

Definition 13.1 The approximation formula

∫ 1

0
g(τ)dτ ≈

s∑
i=1

big(ci)

is called a quadrature formula. The numbers b1, . . . , bs are called weights, the num-
bers c1, . . . , cs are called nodes of the quadrature formula; the integer s is called the
number of stages.

A quadrature formula is determined by the specification of the weights and nodes.
Thus, we denote a quadrature formula by {(bi, ci), i = 1, . . . , s} for short. Without
loss of generality the weights bi are not zero, and the nodes are pairwise different
(ci �= ck for i �= k).

Example 13.2 (a) The trapezoidal rule has s = 2 stages and is given by

b1 = b2 = 1

2
, c1 = 0, c2 = 1.

(b) Simpson’s rule has s = 3 stages and is given by

b1 = 1

6
, b2 = 2

3
, b3 = 1

6
, c1 = 0, c2 = 1

2
, c3 = 1.

In order to compute the original integral
∫ b

a
f (x)dx by quadrature formulae, one

has to reverse the transformation from f to g. Due to g(τ) = f (xj + τhj ) one
obtains

∫ xj+1

xj

f (x)dx = hj

∫ 1

0
g(τ)dt ≈ hj

s∑
i=1

big(ci) = hj

s∑
i=1

bif (xj + cihj ),

1T. Simpson, 1710–1761.
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and thus we have the approximation formula

∫ b

a

f (x)dx =
N−1∑
j=0

∫ xj+1

xj

f (x)dx ≈
N−1∑
j=0

hj

s∑
i=1

bif (xj + cihj ).

We now look for quadrature formulae that are as accurate as possible. Since the
integrand is typically well approximated by Taylor polynomials on small intervals,
a good quadrature formula is characterised by the property that it integrates exactly
as many polynomials as possible. This idea motivates the following definition.

Definition 13.3 (Order) The quadrature formula {(bi, ci), i = 1, . . . , s} has order
p if all polynomials g of degree less or equal to p − 1 are integrated exactly by the
quadrature formula, i.e.,

∫ 1

0
g(τ)dτ =

s∑
i=1

big(ci)

for all polynomials g of degree smaller than or equal to p − 1.

Example 13.4 (a) The trapezoidal rule has order 2.
(b) Simpson’s rule has (by construction) at least order 3.

The following proposition yields an algebraic characterisation of the order of
quadrature formulae.

Proposition 13.5 A quadrature formula {(bi, ci), i = 1, . . . , s} has order p if and
only if

s∑
i=1

bic
q−1
i = 1

q
for 1 ≤ q ≤ p.

Proof One uses the fact that a polynomial g of degree p − 1,

g(τ) = α0 + α1τ + · · · + αp−1τ
p−1,

is a linear combination of monomials, and that both integration and application of a
quadrature formula are linear processes. Thus, it is sufficient to prove the result for
the monomials

g(τ) = τq−1, 1 ≤ q ≤ p.

The proposition now follows directly from the identity

1

q
=

∫ 1

0
τq−1 dτ =

s∑
i=1

big(ci) =
s∑

i=1

bic
q−1
i .

�
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The conditions of the proposition

b1 + b2 + · · · + bs = 1,

b1c1 + b2c2 + · · · + bscs = 1

2
,

b1c
2
1 + b2c

2
2 + · · · + bsc

2
s = 1

3
,

...

b1c
p−1
1 + b2c

p−1
2 + · · · + bsc

p−1
s = 1

p

are called order conditions of order p. If s nodes c1, . . . , cs are given, then the
order conditions form a linear system of equations for the unknown weights bi . If
the nodes are pairwise different, then the weights can be determined uniquely from
that. This shows that for s different nodes there always exists a unique quadrature
formula of order p ≥ s.

Example 13.6 We determine once more the order of Simpson’s rule. Due to

b1 + b2 + b3 = 1

6
+ 2

3
+ 1

6
= 1,

b1c1 + b2c2 + b3c3 = 2

3
· 1

2
+ 1

6
= 1

2
,

b1c
2
1 + b2c

2
2 + b3c

2
3 = 2

3
· 1

4
+ 1

6
= 1

3
,

its order is at least 3 (as we already know from the construction). However, addi-
tionally

b1c
3
1 + b2c

3
2 + b3c

3
3 = 4

6
· 1

8
+ 1

6
= 3

12
= 1

4
,

i.e., Simpson’s rule even has order 4.

The best quadrature formulae (high accuracy with little computational effort) are
the Gaussian quadrature formulae. For that we state the following result whose proof
can be found in [22, Chap. 10, Corollary 10.1].

Proposition 13.7 There is no quadrature formula with s stages of order p > 2s. On
the other hand, for every s ∈ N there exists a (unique) quadrature formula of order
p = 2s. This formula is called s-stage Gaussian quadrature formula.
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The Gaussian quadrature formulae for s ≤ 3 are

s = 1 : c1 = 1

2
, b1 = 1, order 2 (midpoint rule);

s = 2 : c1 = 1

2
−

√
3

6
, c2 = 1

2
+

√
3

6
, b1 = b2 = 1

2
, order 4;

s = 3 : c1 = 1

2
−

√
15

10
, c2 = 1

2
, c3 = 1

2
+

√
15

10
,

b1 = 5

18
, b2 = 8

18
, b3 = 5

18
, order 6.

13.2 Accuracy and Efficiency

In the following numerical experiment the accuracy of quadrature formulae will be
illustrated. With the help of the Gaussian quadrature formulae of order 2, 4 and 6
we compute the two integrals

∫ 3

0
cosx dx = sin 3 and

∫ 1

0
x5/2 dx = 2

7
.

In order to do so we choose equidistant grid points

xj = a + jh, j = 0, . . . ,N

with h = (b−a)/N and N = 1,2,4,8,16, . . . ,512. Finally, we plot the costs of the
calculation as a function of the achieved accuracy in a double-logarithmic diagram.

A measure for the computational costs of a quadrature formula is the number
of required function evaluations, abbreviated by fe. For an s-stage quadrature for-
mula, it is the number

fe= s · N.

The achieved accuracy err is the absolute value of the error. The according results
are presented in Fig. 13.3. One makes the following observations:
(a) The curves are straight lines (as long as one does not get into the range of round-

ing errors, like with the three-stage method in the left picture).
(b) In the left picture the straight lines have slope −1/p, where p is the order of

the quadrature formula. In the right picture this is only true for the method of
order 2; the other two methods result in straight lines with slope −2/7.

(c) For given costs the formulae of higher order are more accurate.
In order to understand this behaviour, we expand the integrand into a Taylor

series. On the subinterval [α,α + h] of length h we obtain

f (α + τh) =
p−1∑
q=0

hq

q! f
(q)(α)τq + O

(
hp

)
.
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Fig. 13.3 Accuracy–cost-diagram of the Gaussian quadrature formulae. The crosses are the re-
sults of the one-stage Gaussian method of order 2, the squares the ones of the two-stage method of
order 4 and the circles the ones of the three-stage method of order 6

Since a quadrature formula of order p integrates polynomials of degree less than or
equal to p−1 exactly, the Taylor polynomial of f of degree p−1 is being integrated
exactly. The error of the quadrature formula on this subinterval is proportional to the
length of the interval times the size of the remainder term of the integrand, so

h · O
(
hp

) = O
(
hp+1).

In total we have N subintervals; hence the total error of the quadrature formula is

N · O
(
hp+1) = Nh · O

(
hp

) = (b − a) · O
(
hp

) = O
(
hp

)
.

Thus, we have shown that (for small h) the error err behaves like

err≈ c1 · hp.

Since, furthermore,

fe= sN = s · Nh · h−1 = s · (b − a) · h−1 = c2 · h−1

holds true, we obtain

log(fe) = log c2 − logh and log(err) ≈ log c1 + p · logh,

so altogether

log(fe) ≈ c3 − 1

p
· log(err).

This explains why straight lines with slope −1/p appear in the left picture.
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In the right picture we note that the second derivative of the integrand is discon-
tinuous at 0. Hence the above considerations with the Taylor series are not valid
anymore. The quadrature formula also detects this discontinuity of the high deriva-
tives and reacts with a so-called order reduction, i.e., the methods show a lower
order (in our case p = 7/2).

Experiment 13.8 Compute the integrals

∫ 3

0

√
x dx and

∫ 2

1

dx

x

using the Gaussian quadrature formulae and generate an accuracy-cost-diagram.
For that purpose modify the programs mat13_1.m, mat13_2.m, mat13_3.m,
mat13_4.m and mat13_5.m with which Fig. 13.3 was produced.

Commercial programs for numerical integration determine the grid points adap-
tively based on automatic error estimates. The user can usually specify the desired
accuracy. In MATLAB the routines quad.m and quadl.m serve this purpose.

13.3 Exercises

1. For the calculation of
∫ 1

0 x100 sinx dx first determine an antiderivative F of the
integrand f using maple. Then evaluate F(1) − F(0) to 10, 50, 100, 200 and
400 digits and explain the surprising results.

2. Determine the order of the quadrature formula given by

b1 = b4 = 1

8
, b2 = b3 = 3

8
,

c1 = 0, c2 = 1

3
, c3 = 2

3
, c4 = 1.

3. Determine the unique quadrature formula of order 3 with the nodes

c1 = 1

3
, c2 = 2

3
, c3 = 1.

4. Determine the unique quadrature formula with the nodes

c1 = 1

4
, c2 = 1

2
, c3 = 3

4
.

Which order does it have?
5. Familiarise yourself with the MATLAB programs quad.m and quadl.m for the

computation of definite integrals, and test the programs for

∫ 1

0
e−x2

dx and
∫ 1

0

3
√

x dx.



13.3 Exercises 167

6. Justify the formulae

π = 4
∫ 1

0

dx

1 + x2
and π = 4

∫ 1

0

√
1 − x2 dx,

and use them to calculate π by numerical integration. To do so divide the interval
[0,1] into N equally large parts (N = 10,100, . . .) and use Simpson’s rule on
those subintervals. Why are the results obtained with the first formula always
more accurate?
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The graph of a function y = f (x) represents a curve in the plane. This concept,
however, is too tight to represent more intricate curves, like loops, self-intersections
or even curves of fractal dimension. The aim of this chapter is to introduce the con-
cept of parametrised curves and to study, in particular, the case of differentiable
curves. For the visualisation of the trajectory of a curve, the notions of velocity vec-
tor, moving frame and curvature are important. The chapter contains a collection
of geometrically interesting examples of curves and several of their construction
principles. Further, the computation of the arc length of differentiable curves is dis-
cussed, and an example of a continuous, bounded curve of infinite length is given.
The chapter ends with a short outlook on spatial curves. For the vector algebra used
in this chapter, we refer to Appendix A.

14.1 Parametrised Curves in the Plane

Definition 14.1 A parametrised plane curve is a continuous mapping

t �→ x(t) =
[
x(t)

y(t)

]

of an interval [a, b] to R
2, i.e., both components t �→ x(t) and t �→ y(t) are contin-

uous functions.1 The variable t ∈ [a, b] is called parameter of the curve.

1Concerning the vector notation we remark that x(t), y(t) actually represent the coordinates of a
point in R

2. It is, however, common practise and useful to write this point as a position vector; thus
the column notation.

M. Oberguggenberger, A. Ostermann, Analysis for Computer Scientists,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-0-85729-446-3_14, © Springer-Verlag London Limited 2011
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Fig. 14.1 Parabolic trajectory and circle

Example 14.2 An object that is thrown at height h with horizontal velocity vH and
vertical velocity vV has the trajectory

x(t) = vHt,

y(t) = h + vVt − g

2
t2,

0 ≤ t ≤ t0,

where t0 is the positive solution of the equation h+ vVt0 − g
2 t2

0 = 0 (time of impact;
see Fig. 14.1). In this example we can eliminate t and represent the trajectory as the
graph of a function (ballistic curve). We have t = x/vH and thus

y = h + vV

vH
x − g

2v2
H

x2.

Example 14.3 A circle of radius R with centre at the origin has the parametric
representation

x(t) = R cos t,

y(t) = R sin t,
0 ≤ t ≤ 2π.

In this case t can be interpreted as the angle between the position vector and the
positive x-axis (Fig. 14.1). The components x = x(t), y = y(t) satisfy the quadratic
equation

x2 + y2 = R2;
however, one cannot represent the circle in its entirety as the graph of a function.

Experiment 14.4 Open the M-file mat14_1.m and discuss which curve is being
represented. Compare with the M-files mat14_2.m to mat14_4.m. Are these the
same curves?

Experiment 14.4 suggests that one can view curves statically as a set of points in
the plane or dynamically as the trajectory of a moving point. Both perspectives are
of importance in applications.
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The Kinematic Point of View In the kinematic interpretation, one considers the
parameter t of the curve as time and the curve as path. Different parametrisations of
the same geometric object are viewed as different curves.

The Geometric Point of View In the geometric interpretation, the location, the
moving sense and the number of cycles are considered as the defining properties of
a curve. The particular parametrisation, however, is irrelevant.

A strictly monotonically increasing, continuous mapping of an interval [α,β] to
[a, b],

ϕ : [α,β] → [a, b],
is called a change of parameter. The curve

τ �→ ξ(τ ), α ≤ τ ≤ β

is called a reparametrisation of the curve

t �→ x(t), a ≤ t ≤ b,

if it is obtained through a change of parameter t = ϕ(τ), i.e.,

ξ(τ ) = x
(
ϕ(τ)

)
.

From the geometric point of view, the parametrised curves τ �→ ξ(τ ) and t �→ x(t)

are identified. A plane curve Γ is an equivalence class of parametrised curves which
can be transformed to one another by reparametrisation.

Example 14.5 We consider the segment of a parabola, parametrised by

Γ : x(t) =
[

t

t2

]
, −1 ≤ t ≤ 1.

Reparametrisations are, for instance,

ϕ :
[
−1

2
,

1

2

]
→ [−1,1], ϕ(τ ) = 2τ,

ϕ̃ : [−1,1] → [−1,1], ϕ̃(t) = τ 3.

Consequently

ξ(τ ) =
[

2τ

4τ 2

]
, −1

2
≤ τ ≤ 1

2

and

η(τ ) =
[
τ 3

τ 6

]
, −1 ≤ τ ≤ 1
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geometrically represent the same curve. However,

ψ : [−1,1] → [−1,1], ψ(τ) = −τ,

ψ̃ : [0,1] → [−1,1], ψ̃(τ ) = −1 + 8τ(1 − τ)

are not reparametrisations and yield other curves, namely

y(τ ) =
[−τ

τ 2

]
, −1 ≤ τ ≤ 1,

z(τ ) =
[ −1 + 8τ(1 − τ)

(−1 + 8τ(1 − τ))2

]
, 0 ≤ τ ≤ 1.

In the first case the moving sense of Γ is reversed, in the second case the curve is
traversed twice.

Experiment 14.6 Modify the M-files from Experiment 14.4 so that the curves from
Example 14.5 are represented.

Algebraic Curves These are obtained as the set of zeros of polynomials in two
variables. As examples we already had the parabola and the circle:

y − x2 = 0, x2 + y2 − R2 = 0.

One can also create cusps and loops in this way.

Example 14.7 Neil’s2 parabola

y2 − x3 = 0

has a cusp at x = y = 0 (Fig. 14.2). Generally, one obtains algebraic curves from

y2 − (x + p)x2 = 0, p ∈ R.

For p > 0 they have a loop. A parametric representation of this curve is, for instance,

x(t) = t2 − p,

y(t) = t
(
t2 − p

)
,

− ∞ < t < ∞.

In the following we will primarily deal with curves which are given by differen-
tiable parametrisations.

Definition 14.8 If a plane curve Γ : t �→ x(t) has a parametrisation whose compo-
nents t �→ x(t), t �→ y(t) are differentiable, then Γ is called a differentiable curve.
If the components are k-times differentiable, then Γ is called a k-times differen-
tiable curve.

2W. Neil, 1637–1670.
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Fig. 14.2 Neil’s parabola, the α-curve and an elliptic curve

The graphical representation of a differentiable curve does not have to be smooth
but may have cusps and corners, as Example 14.7 shows.

Example 14.9 (Straight line and half ray) The parametric representation

t �→ x(t) =
[
x0
y0

]
+ t

[
r1
r2

]
, −∞ < t < ∞

describes a straight line through the point x0 = [x0, y0]T in the direction r =
[r1, r2]T. If one restricts the parameter t to 0 ≤ t < ∞ one obtains a half ray. The
parametrisation

xH(t) =
[
x0
y0

]
+ t2

[
r1
r2

]
, −∞ < t < ∞

leads to a double passage through the half ray.

Example 14.10 (Parametric representation of an ellipse) The equation of an ellipse
is

x2

a2
+ y2

b2
= 1.

A parametric representation (single passage in counterclockwise sense) is obtained
by

x(t) = a cos t,

y(t) = b sin t,
0 ≤ t ≤ 2π.

This can be seen by substituting these expressions into the equation of the ellipse.
The meaning of the parameter t can be seen from Fig. 14.3.

Example 14.11 (Parametric representation of a hyperbola) First, we introduce the
hyperbolic functions hyperbolic sine and hyperbolic cosine:

sinh t = 1

2

(
et − e−t

)
, cosh t = 1

2

(
et + e−t

)
.
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Fig. 14.3 Parametric
representation of the ellipse

Fig. 14.4 Hyperbolic sine
and cosine

Their graphs are displayed in Fig. 14.4. An important property is the identity

cosh2 t − sinh2 t = 1,

which can easily be verified by inserting the defining expressions. This shows that

x(t) = a cosh t,

y(t) = b sinh t,
− ∞ < t < ∞

is a parametric representation of the right branch of the hyperbola

x2

a2
− y2

b2
= 1,

which is highlighted in Fig. 14.5.

Example 14.12 (Cycloids) A circle with radius R rolls (without sliding) along the
x-axis. If the starting position of the centre M is initially M = (0,R), its position
will be Mt = (Rt,R) after a turn of angle t . A point P with starting position P =
(0,R − A) thus moves to Pt = Mt − (A sin t,A cos t).

The trajectory of the point P is called a cycloid. It is parametrised by

x(t) = Rt − A sin t,

y(t) = R − A cos t,
− ∞ < t < ∞.
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Fig. 14.5 Parametric
representation of the right
branch of a hyperbola

Compare Fig. 14.6 for the derivation and Fig. 14.7 for some possible shapes of
cycloids.

Definition 14.13 Let Γ : t �→ x(t) be a differentiable curve. The rate of change of
the position vector with regard to the parameter of the curve

ẋ(t) = lim
h→0

1

h

(
x(t + h) − x(t)

) =
[
ẋ(t)

ẏ(t)

]

is called the velocity vector at the point x(t) of the curve. If ẋ(t) �= 0 one defines the
tangent vector

T(t) = ẋ(t)

‖ẋ(t)‖ = 1√
ẋ(t)2 + ẏ(t)2

[
ẋ(t)

ẏ(t)

]

and the normal vector

N(t) = 1√
ẋ(t)2 + ẏ(t)2

[−ẏ(t)

ẋ(t)

]

of the curve. The pair (T(t),N(t)) is called moving frame. If the curve Γ is twice
differentiable then the acceleration vector is given by

ẍ(t) =
[
ẍ(t)

ÿ(t)

]
.

In the kinematic interpretation the parameter t is the time and ẋ(t) the velocity
vector in the physical sense. If it is different from zero, it points in the direction of
the tangent (as limit of secant vectors). The tangent vector is just the unit vector of
the same direction. By rotation of 90° in the counterclockwise sense we obtain the
normal vector of the curve; see Fig. 14.8.

Experiment 14.14 Open the Java applet Parametric curves in the plane. Plot the
curves from Example 14.5 and the corresponding velocity and acceleration vectors.
Use the moving frame to visualise the kinematic curve progression.
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Fig. 14.6 Parametrisation of
a cycloid

Fig. 14.7 Cycloids for
A = R/2, R, 3R/2

Fig. 14.8 Velocity vector,
acceleration vector, tangent
vector, normal vector

Example 14.15 For the parabola from Example 14.2 we get

ẋ(t) = vH, ẍ(t) = 0,

ẏ(t) = vV − gt, ÿ(t) = −g,

T(t) = 1√
v2

H + (vV − gt)2

[
vH

vV − gt

]
,

N(t) = 1√
v2

H + (vV − gt)2

[
gt − vV

vH

]
.
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14.2 Arc Length and Curvature

We start with the question whether and, if so, how a length can be assigned to a
curve segment. Let a continuous curve

Γ : t �→ x(t) =
[
x(t)

y(t)

]
, a ≤ t ≤ b

be given. For a partition Z : a = t0 < t1 < · · · < tn = b of the parameter interval we
consider the (inscribed) polygonal chain through the points

x(t0),x(t1), . . . ,x(tn).

The length of the largest subinterval is again denoted by Φ(Z). The length of the
polygonal chain is

Ln =
n∑

i=1

√(
x(ti) − x(ti−1)

)2 + (
y(ti) − y(ti−1)

)2
.

Definition 14.16 (Curves of finite length) A plane curve Γ is called rectifiable or of
finite length if the lengths Ln of all inscribed polygonal chains Zn converge towards
one (and the same) limit provided that Φ(Zn) → 0.

Example 14.17 (Koch’s snowflake) Koch’s snowflake was introduced in Sect. 9.1
as an example of a finite region whose boundary has the fractal dimension d =
log 4/ log 3 and infinite length. This was proven by the fact that the boundary can
be constructed as the limit of polygonal chains whose lengths tend to infinity. It
remains to verify that the boundary of Koch’s snowflake is indeed a continuous,
parametrised curve. This can be seen as follows. The snowflake of depth 0 is an
equilateral triangle, for instance with the vertices p1,p2,p3 ∈ R

2. Using the unit
interval [0,1] we obtain a continuous parametrisation

x0(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p1 + 3t (p2 − p1), 0 ≤ t ≤ 1
3 ,

p2 + (3t − 1)(p3 − p2),
1
3 ≤ t ≤ 2

3 ,

p3 + (3t − 2)(p1 − p3),
2
3 ≤ t ≤ 1.

We parametrise the snowflake of depth 1 by splitting the three intervals
[0, 1

3 ], [ 1
3 , 2

3 ], [ 2
3 ,1] into three parts each and using the middle parts for the

parametrisation of the inserted next smaller angle (Fig. 14.9). Continuing in this
way, we obtain a sequence of parametrisations

t �→ x0(t), t �→ x1(t), . . . , t �→ xn(t), . . .
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x(tn) is equal to

n∑
i=1

√(
x(ti) − x(ti−1)

)2 + (
y(ti) − y(ti−1)

)2

=
n∑

i=1

√
ẋ(ρi)2 + ẏ(σi)2(ti − ti−1)

for certain ρi, σi ∈ [ti−1, ti]. In order to be able to estimate the difference between
the Riemann sums and the lengths of the inscribed polygonal chains, we use the
inequality (triangle inequality for vectors in the plane)

∣∣√a2 + b2 −
√

c2 + d2
∣∣ ≤

√
(a − c)2 + (b − d)2,

which can be checked directly by squaring. Applying this inequality shows that

∣∣√ẋ(τi)2 + ẏ(τi)2 −
√

ẋ(ρi)2 + ẏ(σi)2
∣∣

≤
√(

ẋ(τi) − ẋ(ρi)
)2 + (

ẏ(τi) − ẏ(σi)
)2

≤
√

C2(τi − ρi)2 + C2(τi − σi)2

≤ √
2CΦ(Z).

For the difference between the Riemann sums and the lengths of the polygonal
chains one obtains the estimate

∣∣∣∣∣
n∑

i=1

(√
ẋ(τi)2 + ẏ(τi)2 −

√
ẋ(ρi)2 + ẏ(σi)2

)
(ti − ti−1)

∣∣∣∣∣
≤ √

2CΦ(Z)

n∑
i=1

(ti − ti−1) = √
2CΦ(Z)(b − a).

For Φ(Z) → 0, this difference tends to zero. Thus the Riemann sums and the lengths
of the inscribed polygonal chains have the same limit, namely L.

The proof of the general case, where the components of the velocity vector are
not Lipschitz continuous, is similar. However, one additionally needs the fact that
continuous functions on bounded, closed intervals are uniformly continuous. This
fact is briefly addressed near the end of Sect. 24.4. �

Example 14.19 (Length of a circular arc) The parametric representation of a circle
of radius R and its derivative is

x(t) = R cos t, ẋ(t) = −R sin t,

y(t) = R sin t, ẏ(t) = R cos t,
0 ≤ t ≤ 2π.
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The circumference of the circle is thus

L =
∫ 2π

0

√
(−R sin t)2 + (R cos t)2 dt =

∫ 2π

0
R dt = 2Rπ.

Experiment 14.20 Use the MATLAB program mat14_5.m to approximate the cir-
cumference of the unit circle using inscribed polygonal chains. Modify the program
so that it approximates the lengths of arbitrary differentiable curves.

Definition 14.21 (Arc length) Let t �→ x(t) be a differentiable curve. The length of
the curve segment from the initial parameter value a to the current parameter value
t is called the arc length,

s = L(t) =
∫ t

a

√
ẋ(τ )2 + ẏ(τ )2 dτ.

The arc length s is a strictly monotonically increasing, continuous (even continu-
ously differentiable) function. It is thus suitable for a reparametrisation t = L−1(s).
The curve

s �→ ξ(s) = x
(
L−1(s)

)

is called parametrised by arc length.
In the following let t �→ x(t) be a differentiable curve (in the plane). The angle

of the tangent vector with the positive x-axis is denoted by ϕ(t), that is,

tanϕ(t) = ẏ(t)

ẋ(t)
.

Definition 14.22 (Curvature of a plane curve) The curvature of a differentiable
curve in the plane is the rate of change of the angle ϕ with respect to the arc length,

κ = dϕ

ds
= d

ds
ϕ
(
L−1(s)

)
.

Figure 14.10 illustrates this definition. If ϕ is the angle at the length s of the arc
and ϕ + 
ϕ the angle at the length s + 
s, then κ = lim
s→0


ϕ

s

. This shows that
the value of κ actually corresponds to the intuitive meaning of curvature. Note that
the curvature of a plane curve comes with a sign; when reversing the moving sense,
the sign changes.

Proposition 14.23 The curvature of a twice continuously differentiable curve at the
point (x(t), y(t)) of the curve is

κ(t) = ẋ(t)ÿ(t) − ẏ(t)ẍ(t)

(ẋ(t)2 + ẏ(t)2)3/2
.
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Fig. 14.10 Curvature

Proof According to the chain rule and the inverse function rule, one gets

κ = d

ds
ϕ
(
L−1(s)

) = ϕ̇
(
L−1(s)

) · d

ds
L−1(s) = ϕ̇

(
L−1(s)

) · 1

L̇(L−1(s))
.

Differentiating the arc length

s = L(t) =
∫ t

a

√
ẋ(τ )2 + ẏ(τ )2 dτ

with respect to t gives

ds

dt
= L̇(t) =

√
ẋ(t)2 + ẏ(t)2.

Differentiating the relationship tanϕ(t) = ẏ(t)/ẋ(t) leads to

ϕ̇(t)
(
1 + tan2 ϕ(t)

) = ẋ(t)ÿ(t) − ẏ(t)ẍ(t)

ẋ(t)2
,

which gives, after substituting the above expression for tanϕ(t) and simplifying,

ϕ̇(t) = ẋ(t)ÿ(t) − ẏ(t)ẍ(t)

ẋ(t)2 + ẏ(t)2
.

If one takes into account the relation t = L−1(s) and substitutes the derived expres-
sions for ϕ̇(t) and L̇(t) into the formula for κ at the beginning of the proof, one
obtains

κ(t) = ϕ̇(t)

L̇(t)
= ẋ(t)ÿ(t) − ẏ(t)ẍ(t)

(ẋ(t)2 + ẏ(t)2)3/2
,

which is the desired assertion. �

Remark 14.24 As a special case, the curvature of the graph of a twice differentiable
function y = f (x) can be obtained as

κ(x) = f ′′(x)

(1 + f ′(x)2)3/2
.

This follows easily from the above proposition by using the parametrisation x = t ,
y = f (t).
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Example 14.25 The curvature of a circle of radius R, traversed in the positive di-
rection, is constant and equal to κ = 1

R
. Indeed

x(t) = R cos t, ẋ(t) = −R sin t, ẍ(t) = −R cos t,

y(t) = R sin t, ẏ(t) = R cos t, ÿ(t) = −R sin t,

and thus

κ = R2 sin2 t + R2 cos2 t

(R2 sin2 t + R2 cos2 t)3/2
= 1

R
.

One obtains the same result from the following geometric consideration. At the
point (x, y) = (R cos t,R sin t) the angle ϕ of the tangent vector with the positive
x-axis is equal to t + π/2, and the arc length is s = Rt . Therefore, ϕ = s/R + π/2,
which differentiated with respect to s gives κ = 1/R.

Definition 14.26 The osculating circle at a point of a differentiable curve is the
circle which has the same tangent and the same curvature as the curve.

According to Example 14.25 it follows that the osculating circle has the radius
1

|κ(t)| and its centre xc(t) lies on the normal of the curve. It is given by

xc(t) = x(t) + 1

κ(t)
N(t).

Example 14.27 (Clothoid) The clothoid is a curve whose curvature is proportional
to its arc length. In applications it serves as a connecting link from a straight line
(with curvature 0) to a circular arc (with curvature 1

R
). It is used in railway engi-

neering and road design. Its defining property is

κ(s) = dϕ

ds
= c · s

for a certain c ∈ R. If one starts with curvature 0 at s = 0 then the angle is equal to

ϕ(s) = c

2
s2.

We use s as the curve parameter.
Differentiating the relation

s =
∫ s

0

√
ẋ(σ )2 + ẏ(σ )2 dσ

shows that

1 =
√

ẋ(s)2 + ẏ(s)2,
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Fig. 14.11 Clothoid

thus the velocity vector of a curve parametrised by arc length has length one. This
implies in particular

dx

ds
= cosϕ(s),

dy

ds
= sinϕ(s).

From this, we can compute the parametrisation of the curve:

x(s) =
∫ s

0

dx

ds
(σ )dσ =

∫ s

0
cosϕ(σ)dσ =

∫ s

0
cos

(
c

2
σ 2

)
dσ,

y(s) =
∫ s

0

dy

ds
(σ )dσ =

∫ s

0
sinϕ(σ)dσ =

∫ s

0
sin

(
c

2
σ 2

)
dσ.

The components of the curve are thus given by Fresnel’s integrals. The shape of the
curve is displayed in Fig. 14.11; its numerical calculation can be seen in the MATLAB
program mat14_6.m.

14.3 Plane Curves in Polar Coordinates

By writing the parametric representation in the form

x(t) = r(t) cos t,

y(t) = r(t) sin t,

in polar coordinates with t as angle and r(t) as radius, one obtains a simple way
of representing many curves. By convention negative radii are plotted in opposite
direction of the ray with angle t .

Example 14.28 (Spirals) The Archimedean3 spiral is defined by

r(t) = t, 0 ≤ t < ∞,

3Archimedes of Syracuse, 287–212 B.C.
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Fig. 14.12 Archimedean, logarithmic and hyperbolic spirals

the logarithmic spiral by

r(t) = et , −∞ < t < ∞,

the hyperbolic spiral by

r(t) = 1

t
, 0 < t < ∞.

Typical parts of these spirals are displayed in Fig. 14.12.

Experiment 14.29 Study the behaviour of the logarithmic spiral near the origin
using the zoom tool (use the M-file mat14_7.m).

Example 14.30 (Loops) Loops are obtained by choosing r(t) = cosnt , n ∈ N. In
Cartesian coordinates the parametric representation thus reads

x(t) = cosnt cos t,

y(t) = cosnt sin t.

The choice n = 1 results in a circle of radius 1
2 about ( 1

2 ,0), for odd n one obtains
n leaves, for even n one obtains 2n leaves; see Figs. 14.13 and 14.14.

The figure eight from Fig. 14.14 is obtained by r(t) = √
cos 2t and r(t) =

−√
cos 2t , respectively, for −π

4 < t < π
4 , where the positive root gives the right

leave and the negative root the left leave. This curve is called lemniscate.

Example 14.31 (Cardioid) The cardioid is a special epicycloid, where one circle is
rolling around another circle with the same radius A. Its parametric representation
is

x(t) = 2A cos t + A cos 2t,

y(t) = 2A sin t + A sin 2t

for 0 ≤ t ≤ 2π . The cardioid with radius A = 1 is shown in Fig. 14.15.
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Fig. 14.13 Loops with
r = cos t and r = cos 2t

Fig. 14.14 Loops with
r = cos 3t and r = ±√

cos 2t

Fig. 14.15 Cardioid with
A = 1

14.4 Parametrised Space Curves

In the same way as for plane curves, a parametrised curve in space is defined as a
continuous mapping of an interval [a, b] to R

3,

t �→ x(t) =
⎡
⎣x(t)

y(t)

z(t)

⎤
⎦ , a ≤ t ≤ b.

The curve is called differentiable, if all three components t �→ x(t), t �→ y(t),
t �→ z(t) are differentiable real-valued functions.

Velocity and tangent vector of a differentiable curve in space are defined as in
the planar case by

ẋ(t) =
⎡
⎣ẋ(t)

ẏ(t)

ż(t)

⎤
⎦ , T(t) = ẋ(t)

‖ẋ(t)‖ = 1√
ẋ(t)2 + ẏ(t)2 + ż(t)2

⎡
⎣ẋ(t)

ẏ(t)

ż(t)

⎤
⎦ .
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Fig. 14.16 Helix with tangent, normal and binormal vector

The second derivative ẍ(t) is the acceleration vector. In the spatial case there is a
normal plane to the curve which is spanned by the normal vector

N(t) = 1

‖Ṫ(t)‖ Ṫ(t)

and the binormal vector

B(t) = T(t) × N(t),

provided that ẋ(t) �= 0, Ṫ(t) �= 0. The formula

0 = d

dt
1 = d

dt

∥∥T(t)
∥∥2 = 2

〈
T(t), Ṫ(t)

〉

(which is verified by a straightforward computation) implies that Ṫ(t) is perpendic-
ular to T(t). Therefore, the three vectors (T(t),N(t),B(t)) form an orthogonal basis
in R

3, called the moving frame of the curve.

Example 14.32 (Helix) The parametric representation of the helix is

x(t) =
⎡
⎣cos t

sin t

t

⎤
⎦ , −∞ < t < ∞.

We obtain

ẋ(t) =
⎡
⎣− sin t

cos t

1

⎤
⎦ , T(t) = 1√

2

⎡
⎣− sin t

cos t

1

⎤
⎦ ,

Ṫ(t) = 1√
2

⎡
⎣− cos t

− sin t

0

⎤
⎦ , N(t) =

⎡
⎣− cos t

− sin t

0

⎤
⎦



14.5 Exercises 187

with binormal vector

B(t) = 1√
2

⎡
⎣− sin t

cos t

1

⎤
⎦ ×

⎡
⎣− cos t

− sin t

0

⎤
⎦ = 1√

2

⎡
⎣ sin t

− cos t

1

⎤
⎦ .

Figure 14.16 was drawn using the MATLAB commands

t=0:pi/100:6*pi;

plot3(cos(t),sin(t),t/10).

The Java applet Parametric curves in space offers dynamic visualising possibili-
ties of those and other curves in space and of their moving frames.

14.5 Exercises

1. Find out which geometric formation is represented by the set of zeros of the
polynomial y2 −x(x2 −1) = 0. Visualise the curve in maple using the command
implicitplot. Can you parametrise it as a continuous curve?

2. (a) Check that the following relations hold for the hyperbolic functions (Exam-
ple 14.11):

(sinh t)′ = cosh t, (cosh t)′ = sinh t, cosh2 t − sinh2 t = 1.

(b) Compute the curvature κ(t) of the branch of the hyperbola

x(t) = cosh t,

y(t) = sinh t,
− ∞ < t < ∞.

3. Using MATLAB or maple, investigate the shape of Lissajous figures4

x(t) = sin(w1t), y(t) = cos(w2t)

and

x(t) = sin(w1t), y(t) = cos

(
w2t + π

2

)
.

Consider the cases w2 = w1, w2 = 2w1, w2 = 3
2w1 and explain the results.

The following exercises use the Java applets Parametric curves in the plane
and Parametric curves in space.

4J.A. Lissajous, 1822–1880.
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4. (a) Using the Java applet analyse where the cycloid

x(t) = t − 2 sin t,

y(t) = 1 − 2 cos t,
− 2π ≤ t ≤ 2π

has its maximal speed (‖ẋ(t)‖ → max), and check your result by hand.
(b) Discuss and explain the shape of the loops

x(t) = cosnt cos t,

y(t) = cosnt sin t,
0 ≤ t ≤ 2π

for n = 1,2,3,4,5, using the Java applets (plot the moving frame).
5. Study the velocity and the acceleration of the following curves by using the Java

applet. Verify your results by computing the points where the curve has either a
horizontal tangent (ẋ(t) �= 0, ẏ(t) = 0) or a vertical tangent (ẋ(t) = 0, ẏ(t) �= 0),
or is singular (ẋ(t) = 0, ẏ(t) = 0).
(a) Cycloid:

x(t) = t − sin t,

y(t) = 1 − cos t,
− 2π ≤ t ≤ 2π.

(b) Cardioid:

x(t) = 2 cos t + cos 2t,

y(t) = 2 sin t + sin 2t,
0 ≤ t ≤ 2π.

6. Analyse and explain the trajectories of the curves

x(t) =
[

1 − 2t2

(1 − 2t2)2

]
, −1 ≤ t ≤ 1,

y(t) =
[

cos t

cos2 t

]
, 0 ≤ t ≤ 2π,

z(t) =
[

t cos t

t2 cos2 t

]
, 6 − 2 ≤ t ≤ 2.

Are these curves (geometrically) equivalent?
7. (a) Analyse the space curve

x(t) =
⎡
⎣ cos t

sin t

2 sin t
2

⎤
⎦ , 0 ≤ t ≤ 4π

using the applet.
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(b) Check that the curve is the intersection of the cylinder x2 + y2 = 1 with the
sphere (x + 1)2 + y2 + z2 = 4.
Hint. Use sin2 t

2 = 1
2 (1 − cos t).

8. Using MATLAB, maple or the applet, sketch and discuss the space curves

x(t) =
⎡
⎣t cos t

t sin t

2t

⎤
⎦ , 0 ≤ t < ∞,

and

y(t) =
⎡
⎣cos t

sin t

0

⎤
⎦ , 0 ≤ t ≤ 4π.
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This chapter is devoted to differential calculus of functions of two variables. In
particular we will study geometrical objects such as tangents and tangent planes,
maxima and minima, as well as linear and quadratic approximations. The restric-
tion to two variables has been made for simplicity of presentation. All ideas in this
and the next chapter can easily be extended (although with slightly more notational
effort) to the case of n variables.

We begin by studying the graph of a function with the help of vertical cuts and
level sets. As a further tool we introduce partial derivatives, which describe the rate
of change of the function in the direction of the coordinate axes. Finally, the notion
of the Fréchet derivative allows us to define the tangent plane to the graph. As for
functions of one variable, the Taylor formula plays a central role. We use it, e.g., to
determine extrema of functions of two variables.

In the entire chapter D denotes a subset of R
2 and

f : D ⊂ R
2 → R : (x, y) �→ z = f (x, y)

denotes a scalar-valued function of two variables. Details of vector and matrix al-
gebra used in this chapter can be found in Appendices A and B.

15.1 Graph and Partial Mappings

The graph

G = {
(x, y, z) ∈ D × R; z = f (x, y)

} ⊂ R
3

of a function of two variables f : D → R is a surface in space, if f is sufficiently
regular. To describe the properties of this surface we consider particular curves on it.

The partial mappings

x �→ (
x, b,f (x, b)

)
, y �→ (

a, y,f (a, y)
)

M. Oberguggenberger, A. Ostermann, Analysis for Computer Scientists,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-0-85729-446-3_15, © Springer-Verlag London Limited 2011

191

http://dx.doi.org/10.1007/978-0-85729-446-3_15
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Example 15.1 The graph of the quadratic function

f : R
2 → R : (x, y) �→ z = x2

a2
− y2

b2

describes a surface in space which is shaped like a saddle and which is called a
hyperbolic paraboloid. Figure 15.2 shows the graph of z = x2/4 − y2/5 with coor-
dinate curves (left) as well as some level curves (right).

Experiment 15.2 With the help of the MATLAB program mat15_1.m visualise the
elliptic paraboloid z = x2 + 2y2 − 4x + 1. Choose a suitable domain D and plot the
graph and some level curves.

15.2 Continuity

Like for functions in one variable (see Chap. 6), we characterise the continuity of
functions of two variables by means of sequences. Thus we need the concept of
convergence of vector-valued sequences.

Let (an)n≥1 = (a1,a2,a3, . . .) be a sequence of points in D with terms

an = (an, bn) ∈ D ⊂ R
2.

The sequence (an)n≥1 is said to converge to a = (a, b) ∈ D as n → ∞, if and only
if both components of the sequence converge, i.e.,

lim
n→∞an = a and lim

n→∞bn = b.

This is denoted by

(an, bn) = an → a = (a, b) as n → ∞ or lim
n→∞ an = a.

Otherwise the sequence is called divergent.
An example of a convergent vector-valued sequence is

lim
n→∞

(
1

n
,

2n

3n + 4

)
=

(
0,

2

3

)
.

Definition 15.3 A function f : D → R is called continuous at the point a ∈ D, if

lim
n→∞f (an) = f (a)

for all sequences (an)n≥1 which converge to a in D.

For continuous functions, the limit and the function sign can be interchanged.
Figure 15.3 shows a function which is discontinuous along a straight line but con-
tinuous everywhere else.
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Fig. 15.5 Partially
differentiable, discontinuous
function

An example is given by the function (see Fig. 15.5)

f (x, y) =
{

xy

x2+y2 , (x, y) �= (0,0),

0, (x, y) = (0,0).

This function is everywhere partially differentiable. In particular, at the point
(x, y) = (0,0) one obtains

∂f

∂x
(0,0) = lim

x→0

f (x,0) − f (0,0)

x
= 0 = lim

y→0

f (0, y) − f (0,0)

y
= ∂f

∂y
(0,0).

However, the function is discontinuous at (0,0). In order to see this, we choose two
sequences which converge to (0,0):

an =
(

1

n
,

1

n

)
and cn =

(
1

n
,−1

n

)
.

We have

lim
n→∞f (an) = lim

n→∞
1/n2

2/n2
= 1

2
,

but also

lim
n→∞f (cn) = lim

n→∞
−1/n2

2/n2
= −1

2
.

The limits do not coincide; in particular, they differ from f (0,0) = 0.

Experiment 15.7 Visualise the function given in Remark 15.6 with the help of
MATLAB and maple. Using the command

plot3d(-x*y/(x^2+y^2), x=-1..1, y=-1..1, shading=zhue)

the corresponding plot can be obtained in maple.



15.3 Partial Derivatives 197

Higher-order Partial Derivatives Let D ⊂ R
2 be open and f : D → R partially

differentiable. The assignments

∂f

∂x
: D → R and

∂f

∂y
: D → R

themselves define scalar-valued functions of two variables. If these functions are
also partially differentiable, then f is called twice partially differentiable. The nota-
tion in this case is

∂2f

∂x2
= ∂

∂x

(
∂f

∂x

)
,

∂2f

∂y∂x
= ∂

∂y

(
∂f

∂x

)
, etc.

Note that there are four partial derivatives of second order.

Definition 15.8 A function f : D → R is k-times continuously (partially) differ-
entiable, denoted f ∈ Ck(D), if f is k-times partially differentiable and all partial
derivatives up to order k are continuous.

Example 15.9 The function f (x, y) = exy2
is arbitrarily often partially differen-

tiable, f ∈ C∞(D), and the following holds:

∂f

∂x
(x, y) = exy2

y2,

∂f

∂y
(x, y) = exy2

2xy,

∂2f

∂x2
(x, y) = exy2

y4,

∂2f

∂y2
(x, y) = exy2(

4x2y2 + 2x
)
,

∂2f

∂y∂x
(x, y) = ∂

∂y

(
∂f

∂x
(x, y)

)
= exy2(

2xy3 + 2y
)
,

∂2f

∂x∂y
(x, y) = ∂

∂x

(
∂f

∂y
(x, y)

)
= exy2(

2xy3 + 2y
)
.

The identity

∂2f

∂y∂x
(x, y) = ∂2f

∂x∂y
(x, y)
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which is evident in this example is generally valid for twice continuously differen-
tiable functions f . This observation is also true for higher derivatives: For k-times
continuously differentiable functions the order of differentiation of the kth partial
derivatives is irrelevant (Theorem of Schwarz1); see [3, Chap. 15, Theorem 1.1].

15.4 The Fréchet Derivative

Our next topic is the study of a simultaneous variation of both variables of the func-
tion. This leads to the notion of the Fréchet2 derivative. For functions of one vari-
able, ϕ : R → R, the derivative was defined by the limit

ϕ′(a) = lim
x→a

ϕ(x) − ϕ(a)

x − a
.

For functions of two variables this expression does not make sense anymore as one
cannot divide by vectors. We therefore will make use of the equivalent definition of
the derivative as a linear approximation

ϕ(x) = ϕ(a) + A · (x − a) + R(x, a)

with A = ϕ′(a) and the remainder term R(x, a) satisfying

lim
x→a

R(x, a)

|x − a| = 0.

This formula can be generalised to functions of two variables.

Definition 15.10 Let D ⊂ R
2 be open and f : D → R. The function f is called

Fréchet differentiable at the point (a, b) ∈ D, if there exists a linear mapping
A : R

2 → R such that

f (x, y) = f (a, b) + A(x − a, y − b) + R(x, y;a, b)

with a remainder R(x, y;a, b) fulfilling the condition

lim
(x,y)→(a,b)

R(x, y;a, b)√
(x − a)2 + (y − b)2

= 0.

The linear mapping A is called derivative of f at the point (a, b). Instead of A

we also write Df (a, b). The (1 × 2)-matrix of the linear mapping is called the
Jacobian3 of f . We denote it by f ′(a, b).

1H.A. Schwarz, 1843–1921.
2M. Fréchet, 1878–1973.
3C.G.J. Jacobi, 1804–1851.
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The questions whether the derivative of a function is unique, and how it can be
calculated, are answered in the following proposition.

Proposition 15.11 Let D ⊂ R
2 be open and f : D → R. If f is Fréchet differen-

tiable at (x, y) ∈ D, then f is also partially differentiable at (x, y) and

f ′(x, y) =
[
∂f

∂x
(x, y),

∂f

∂y
(x, y)

]
.

The components of the Jacobian are the partial derivatives. In particular, the Jaco-
bian and consequently the Fréchet derivative are unique.

Proof Exemplarily, we compute the second component and show that

(
f ′(x, y)

)
2 = ∂f

∂y
(x, y).

Since f is Fréchet differentiable at (x, y), it holds that

f (x, y + h) = f (x, y) + f ′(x, y)

[
0
h

]
+ R(x, y + h;x, y).

Therefore

f (x, y + h) − f (x, y)

h
− (

f ′(x, y)
)

2 = R(x, y + h;x, y)

h
→ 0 as h → 0.

Consequently f is partially differentiable with respect to y, and the second compo-
nent of the Jacobian is the partial derivative of f with respect to y. �

The next proposition follows immediately from the identity

lim
(x,y)→(a,b)

f (x, y)

= lim
(x,y)→(a,b)

(
f (a, b) + Df (a, b)(x − a, y − b) + R(x, y;a, b)

)

= f (a, b).

Proposition 15.12 If f is Fréchet differentiable, then f is continuous.

In particular, the function

f (x, y) =
{

xy

x2+y2 , (x, y) �= (0,0),

0, (x, y) = (0,0)

is not Fréchet differentiable at the point (0,0).
Fréchet differentiability follows from partial differentiability under certain regu-

larity assumptions. In fact, one can show that a continuously partially differentiable
function is Fréchet differentiable; see [4, Chap. 7, Theorem 7.12].
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Example 15.13 The function f : R
2 → R : (x, y) �→ x2e3y is Fréchet differentiable;

its derivative is

f ′(x, y) = [
2xe3y,3x2e3y

] = xe3y[2,3x].

Example 15.14 The affine function f : R
2 → R with

f (x, y) = αx + βy + γ = [α,β]
[
x

y

]
+ γ

is Fréchet differentiable, and f ′(x, y) = [α,β].

Example 15.15 The quadratic function f : R
2 → R with

f (x, y) = αx2 + 2βxy + γy2 + δx + εy + ζ

= [x, y]
[

α β

β γ

][
x

y

]
+ [δ, ε]

[
x

y

]
+ ζ

is Fréchet differentiable with the Jacobian

f ′(x, y) = [2αx + 2βy + δ,2βx + 2γy + ε] = 2[x, y]
[

α β

β γ

]
+ [δ, ε].

The Chain Rule Now we are in the position to generalise the chain rule to the
case of two variables.

Proposition 15.16 Let D ⊂ R
2 be open and f : D → R : (x, y) �→ f (x, y) Fréchet

differentiable. Furthermore, let I ⊂ R be an open interval and ϕ,ψ : I → R differ-
entiable. Then the composition of functions

F : I → R : t �→ F(t) = f
(
ϕ(t),ψ(t)

)

is also differentiable and

dF

dt
(t) = ∂f

∂x

(
ϕ(t),ψ(t)

)dϕ

dt
(t) + ∂f

∂y

(
ϕ(t),ψ(t)

)dψ

dt
(t).

Proof From Fréchet differentiability of f it follows that

F(t + h) − F(t) = f
(
ϕ(t + h),ψ(t + h)

) − f
(
ϕ(t),ψ(t)

)

= f ′(ϕ(t),ψ(t)
)[

ϕ(t + h) − ϕ(t)

ψ(t + h) − ψ(t)

]

+ R
(
ϕ(t + h),ψ(t + h);ϕ(t),ψ(t)

)
.
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We divide this expression by h and subsequently examine the limit as h → 0. Let
g(t, h) = (ϕ(t +h)−ϕ(t))2 + (ψ(t +h)−ψ(t))2. Then, due to the differentiability
of f , ϕ and ψ , we have

lim
h→0

R(ϕ(t + h),ψ(t + h);ϕ(t),ψ(t))√
g(t, h)

·
√

g(t, h)

h
= 0.

Therefore, the function F is differentiable and the formula stated in the proposition
is valid. �

Example 15.17 Let D ⊂ R
2 be an open set that contains the circle x2 + y2 = 1 and

let f : D → R be a differentiable function. Then the restriction F of f to the circle

F : R → R : t �→ f (cos t, sin t)

is differentiable as a function of the angle t and

dF

dt
(t) = −∂f

∂x
(cos t, sin t) · sin t + ∂f

∂y
(cos t, sin t) · cos t.

For instance, for f (x, y) = x2 − y2 the derivative is dF
dt

(t) = −4 cos t sin t .

Interpretation of the Fréchet Derivative Using the Fréchet derivative, we ob-
tain, like in the case of one variable, the linear approximation g(x, y) to the graph
of the function at (a, b):

g(x, y) = f (a, b) + f ′(a, b)

[
x − a

y − b

]
≈ f (x, y).

Now we want to interpret the plane

z = f (a, b) + f ′(a, b)

[
x − a

y − b

]

geometrically. In order to do this we use the fact that the components of the Jacobian
are the partial derivatives. Because of this, we can write the above equation as

z = f (a, b) + ∂f

∂x
(a, b) · (x − a) + ∂f

∂y
(a, b) · (y − b),

or, alternatively, in parametric form (x − a = λ, y − b = μ):

⎡
⎣x

y

z

⎤
⎦ =

⎡
⎣ a

b

f (a, b)

⎤
⎦ + λ

⎡
⎣ 1

0
∂f
∂x

(a, b)

⎤
⎦ + μ

⎡
⎣ 0

1
∂f
∂y

(a, b)

⎤
⎦ .
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The plane intersects the graph of f at the point (a, b, f (a, b)) and is spanned by the
tangent vectors to the coordinate curves. The equation

z = f (a, b) + ∂f

∂x
(a, b) · (x − a) + ∂f

∂y
(a, b) · (y − b)

consequently describes the tangent plane to the graph of f at the point (a, b).
The example shows that the graph of a function which is Fréchet differentiable

at the point (x, y) possesses a tangent plane at this point. Note that the existence of
tangents to the coordinate curves does not imply the existence of a tangent plane;
see Remark 15.6.

Example 15.18 We calculate the tangent plane at a point on the northern hemisphere
(with radius r)

f (x, y) = z =
√

r2 − x2 − y2.

Let c = f (a, b) = √
r2 − a2 − b2. The partial derivatives of f at (a, b) are

∂f

∂x
(a, b) = − a√

r2 − a2 − b2
= −a

c
,

∂f

∂y
(a, b) = − b√

r2 − a2 − b2
= −b

c
.

Therefore, the equation of the tangent plane is

z = c − a

c
(x − a) − b

c
(y − b),

or alternatively

a(x − a) + b(y − b) + c(z − c) = 0.

The last formula actually holds for all points on the surface of the sphere.

15.5 Directional Derivative and Gradient

So far functions f : D ⊂ R
2 → R were defined on R

2 as a point space. For the
purpose of directional derivatives it is useful and customary to write the arguments
(x, y) ∈ R

2 as position vectors x = [x, y]T. In this way each function f : D ⊂ R
2 →

R can also be considered as a function of column vectors. We identify these two
functions and will not distinguish between f (x, y) and f (x) henceforth.

In Sect. 15.3 we have defined partial derivatives along coordinate axes. Now we
want to generalise this concept to differentiation in any direction.
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Definition 15.19 Let D ⊂ R
2 be open, x = [x, y]T ∈ D and f : D → R. Further-

more, let v ∈ R
2 with ‖v‖ = 1. The limit

∂vf (x) = ∂f

∂v
(x) = lim

h→0

f (x + hv) − f (x)

h

= lim
h→0

f (x + hv1, y + hv2) − f (x, y)

h

(in case it exists) is called the directional derivative of f at x in the direction v.

The partial derivatives are special cases of the directional derivative, namely the
derivatives in direction of the coordinate axes.

The directional derivative ∂vf (x) describes the rate of change of the function f

at the point x in the direction of v. Indeed, this can been seen from the following.
Consider the straight line {x + tv|t ∈ R} ⊂ R

2 and the function

g(t) = f (x + tv) (f restricted to this straight line)

with g(0) = f (x). Then

g′(0) = lim
h→0

g(h) − g(0)

h
= lim

h→0

f (x + hv) − f (x)

h
= ∂vf (x).

Next we clarify how the directional derivative can be computed. In order to do this
we need the following definition.

Definition 15.20 Let D ⊂ R
2 be open and f : D → R partially differentiable. The

vector

∇f (x, y) =
⎡
⎣

∂f
∂x

(x, y)

∂f
∂y

(x, y)

⎤
⎦ = f ′(x, y)T

is called the gradient of f .

Proposition 15.21 Let D ⊂ R
2 be open, v = [v1, v2]T ∈ R

2, ‖v‖ = 1 and let
f : D → R be Fréchet differentiable at x = [x, y]T. Then

∂vf (x) = 〈∇f (x),v
〉 = f ′(x, y)v = ∂f

∂x
(x, y)v1 + ∂f

∂y
(x, y)v2.

Proof Since f is Fréchet differentiable at x, the following holds:

f (x + hv) = f (x) + f ′(x) · hv + R(x + hv1, y + hv2;x, y)

and hence

f (x + hv) − f (x)

h
= f ′(x) · v + R(x + hv1, y + hv2;x, y)

h
.

Letting h → 0 proves the desired assertion. �
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Fig. 15.6 Geometric
interpretation of ∇f

Proposition 15.22 (Geometric interpretation of ∇) Let D ⊂ R
2 be open and let

f : D → R be continuously differentiable at x = (x, y) with f ′(x) �= [0,0]. Then
∇f (x) is perpendicular to the level curve Nf (x) = {̃x ∈ R

2; f (̃x) = f (x)} and
points in the direction of the steepest ascent of f ; see Fig. 15.6.

Proof Let v be a tangent vector to the level curve at the point x. From the implicit
function theorem (see [4, Chap. 14.1]) it follows that Nf (x) can be parametrised as
a differentiable curve γ (t) = [x(t), y(t)]T, with

γ (0) = x and γ̇ (0) = v,

in a neighbourhood of x. Thus, for all t near t = 0,

f
(
γ (t)

) = f (x) = const.

Since f and γ are differentiable, it follows from the chain rule (Proposition 15.16)
that

0 = d

dt
f

(
γ (t)

)∣∣
t=0 = f ′(γ (0)

)
γ̇ (0) = 〈∇f (x),v

〉
,

because γ (0) = x and γ̇ (0) = v. Hence ∇f (x) is perpendicular to v. Let w ∈ R
2 be

a further unit vector. Then

∂wf (x) = ∂f

∂w
(x) = 〈∇f (x),w

〉 = ∥∥∇f (x)
∥∥ · ‖w‖ · cos�,

where � denotes the angle enclosed by ∇f (x) and w. From this formula one de-
duces that ∂wf (x) is maximal if and only if cos� = 1, which means that ∇f (x) =
λw for some λ > 0. �

Example 15.23 Let f (x, y) = x2 + y2. Then ∇f (x, y) = 2[x, y]T.

15.6 The Taylor Formula in Two Variables

Let f : D ⊂ R
2 → R be a function of two variables. In the following calculation we

assume that f is at least three times continuously differentiable. In order to expand
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f (x + h,y + k) into a Taylor series in a neighbourhood of (x, y), we first fix the
second variable and expand with respect to the first:

f (x +h,y +k) = f (x, y +k)+ ∂f

∂x
(x, y +k) ·h+ 1

2

∂2f

∂x2
(x, y +k) ·h2 + O

(
h3).

Then we also expand the terms on the right-hand side with respect to the second
variable (while fixing the first one):

f (x, y + k) = f (x, y) + ∂f

∂y
(x, y) · k + 1

2

∂2f

∂y2
(x, y) · k2 + O

(
k3),

∂f

∂x
(x, y + k) = ∂f

∂x
(x, y) + ∂2f

∂y∂x
(x, y) · k + O

(
k2),

∂2f

∂x2
(x, y + k) = ∂2f

∂x2
(x, y) + O(k).

Inserting these expressions into the equation above, we obtain

f (x + h,y + k) = f (x, y) + ∂f

∂x
(x, y) · h + ∂f

∂y
(x, y) · k

+ 1

2

∂2f

∂x2
(x, y) · h2 + 1

2

∂2f

∂y2
(x, y) · k2 + ∂2f

∂y∂x
(x, y) · hk

+ O
(
h3) + O

(
h2k

) + O
(
hk2) + O

(
k3).

In matrix-vector notation we can also write this equation as

f (x + h,y + k) = f (x, y) + f ′(x, y)

[
h

k

]
+ 1

2
[h, k] · Hf (x, y)

[
h

k

]
+ · · ·

with the Hessian matrix4

Hf (x, y) =
⎡
⎢⎣

∂2f

∂x2 (x, y)
∂2f
∂y∂x

(x, y)

∂2f
∂x∂y

(x, y)
∂2f

∂y2 (x, y)

⎤
⎥⎦

collecting the second-order partial derivatives. By the above assumptions, these
derivatives are continuous. Thus the Hessian matrix is symmetric due to Schwarz’s
theorem.

Example 15.24 We compute the second-order approximation to the function
f : R

2 → R : (x, y) �→ x2 siny at the point (a, b) = (2,0). The partial derivatives
are given in Table 15.1.

4L.O. Hesse, 1811–1874.
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Table 15.1 Partial derivatives of z = x2 siny

f
∂f
∂x

∂f
∂y

∂2f

∂x2
∂2f
∂y∂x

∂2f

∂y2

General x2 siny 2x siny x2 cosy 2 siny 2x cosy −x2 siny

At (2,0) 0 0 4 0 4 0

Therefore, the quadratic approximation g(x, y) ≈ f (x, y) is given by the formula

g(x, y) = f (2,0) + f ′(2,0)

[
x − 2

y

]
+ 1

2
[x − 2, y] · Hf (2,0)

[
x − 2

y

]

= 0 + [0,4]
[
x − 2

y

]
+ 1

2
[x − 2, y]

[
0 4
4 0

][
x − 2

y

]

= 4y + 4y(x − 2) = 4y(x − 1).

15.7 Local Maxima and Minima

Let D ⊂ R
2 be open and f : D → R. In this section we investigate the graph of the

function f with respect to maxima and minima.

Definition 15.25 The scalar function f has a local maximum (respectively, local
minimum) at (a, b) ∈ D, if

f (x, y) ≤ f (a, b) (respectively, f (x, y) ≥ f (a, b))

for all (x, y) in a neighbourhood of (a, b). The maximum (minimum) is called iso-
lated, if (a, b) is the only point in a neighbourhood with this property.

Figure 15.7 shows a few typical examples. One observes that the existence of
a horizontal tangent plane is a necessary condition for extrema (i.e., maxima or
minima) of differentiable functions.

Proposition 15.26 Let f be partially differentiable. If f has a local maximum or
minimum at (a, b) ∈ D, then the partial derivatives vanish at (a, b):

∂f

∂x
(a, b) = ∂f

∂y
(a, b) = 0.

If, in addition, f is Fréchet differentiable, then f ′(a, b) = [0,0], i.e., f has a hori-
zontal tangent plane at (a, b).

Proof Due to the assumptions, the function g(h) = f (a + h,b) has an extremum at
h = 0. Thus, Proposition 8.2 implies

g′(0) = ∂f

∂x
(a, b) = 0.

Likewise one can show that ∂f
∂y

(a, b) = 0. �
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If w �= 0, we substitute v = tw with t ∈ R and obtain

αt2w2 + 2βtw2 + γw2 > 0,

or, alternatively (multiplying by α > 0 and simplifying by w2),

t2α2 + 2tαβ + αγ > 0.

Therefore,

(tα + β)2 + αγ − β2 > 0

for all t ∈ R. The left-hand side is smallest for t = −β/α. Inserting this we obtain
the second condition

detHf (a) = αγ − β2 > 0

in terms of the determinant; see Sect. 23.1.
We have thus shown the following result.

Proposition 15.28 The function f has an isolated local minimum at the stationary
point a, if the conditions

∂2f

∂x2
(a) > 0 and detHf (a) > 0

are fulfilled.

By replacing f by −f one gets the corresponding result for isolated maxima.

Proposition 15.29 The function f has an isolated local maximum at the stationary
point a, if the conditions

∂2f

∂x2
(a) < 0 and detHf (a) > 0

are fulfilled.

In a similar way one can prove the following assertion.

Proposition 15.30 The stationary point a of the function f is a saddle point, if
detHf (a) < 0.

If the determinant of the Hessian matrix equals zero, the behaviour of the function
needs to be investigated along vertical cuts. One example is given in Exercise 9.
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Example 15.31 We determine the maxima, minima and saddle points of the function
f (x, y) = x6 + y6 − 3x2 − 3y2. The condition

f ′(x, y) = [
6x5 − 6x,6y5 − 6y

] = [0,0]
gives the following nine stationary points:

x1 = 0, x2,3 = ±1, y1 = 0, y2,3 = ±1.

The Hessian matrix of the function is

Hf (x, y) =
[

30x4 − 6 0
0 30y4 − 6

]
.

Applying the criteria of Propositions 15.28 through 15.30, we obtain the following
results. The point (0,0) is an isolated local maximum of f , the points (−1,−1),
(−1,1), (1,−1) and (1,1) are isolated local minima, and the points (−1,0), (1,0),
(0,−1) and (0,1) are saddle points. The reader is advised to visualise this function
with maple.

15.8 Exercises

1. Compute the partial derivatives of the functions

f (x, y) = arcsin

(
y

x

)
, g(x, y) = log

1√
x2 + y2

.

Verify your results with maple.
2. Show that the function

v(x, t) = 1√
t

exp

(−x2

4t

)

satisfies the heat equation

∂v

∂t
= ∂2v

∂x2

for t > 0 and x ∈ R.
3. Show that the function w(x, t) = g(x − kt) satisfies the transport equation

∂w

∂t
+ k

∂w

∂x
= 0

for any differentiable function g.
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4. Show that the function g(x, y) = log(x2 + 2y2) satisfies the equation

∂2g

∂x2
+ 1

2

∂2g

∂y2
= 0

for (x, y) �= (0,0).
5. Represent the ellipsoid x2 + 2y2 + z2 = 1 as graph of a function (x, y) �→

f (x, y). Distinguish between positive and negative z-coordinates, respectively.
Compute the partial derivatives of f , and sketch the level curves of f . Find the
direction in which ∇f points.

6. Solve Exercise 5 for the hyperboloid x2 + 2y2 − z2 = 1.
7. Consider the function f (x, y) = ye2x−y , where x = x(t) and y = y(t) are dif-

ferentiable functions satisfying

x(0) = 2, y(0) = 4, ẋ(0) = −1, ẏ(0) = 4.

From this information compute the derivative of z(t) = f (x(t), y(t)) at the
point t = 0.

8. Find all stationary points of the function

f (x, y) = x3 − 3xy2 + 6y.

Determine whether they are maxima, minima or saddle points.
9. Investigate the function

f (x, y) = x4 − 3x2y + y3

for local extrema and saddle points. Visualise the graph of the function.
Hint. To study the behaviour of the function at (0,0) consider the partial map-
pings f (x,0) and f (0, y).

10. Determine for the function

f (x, y) = x2ey/3(y − 3) − 1

2
y2

(a) the gradient and the Hessian matrix
(b) the second-order Taylor approximation at (0,0)

(c) all stationary points. Find out whether they are maxima, minima or saddle
points.
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In this section we briefly touch upon the theory of vector-valued functions in several
variables. To simplify matters we limit ourselves again to the case of two variables.

First, we define vector fields in the plane and extend the notions of continuity
and differentiability to vector-valued functions. Then we discuss Newton’s method
in two variables. As an application we compute a common zero of two nonlinear
functions. Finally, as an extension of Sect. 15.1, we show how smooth surfaces can
be described mathematically with the help of parametrisations.

For the required basic notions of vector and matrix algebra we refer to Appen-
dices A and B.

16.1 Vector Fields and the Jacobian

In the entire section D denotes an open subset of R
2 and

F : D ⊂ R
2 → R

2 : (x, y) �→
[
u

v

]
= F(x, y) =

[
f (x, y)

g(x, y)

]

a vector-valued function of two variables with values in R
2. Such functions are also

called vector fields since they assign a vector to every point in the plane. Important
applications are provided in physics. For example, the velocity field of a flowing
liquid or the gravitational field are mathematically described as vector fields.

In the previous chapter we have already encountered a vector field, namely the
gradient of a scalar-valued function of two variables f : D → R : (x, y) �→ f (x, y).
For a partially differentiable function f the gradient

F = ∇f : D → R
2 : (x, y) �→

⎡
⎣

∂f
∂x

(x, y)

∂f
∂y

(x, y)

⎤
⎦

is obviously a vector field.
Continuity and differentiability of vector fields are defined componentwise.

M. Oberguggenberger, A. Ostermann, Analysis for Computer Scientists,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-0-85729-446-3_16, © Springer-Verlag London Limited 2011
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Definition 16.1 The function

F : D ⊂ R
2 → R

2 : (x, y) �→ F(x, y) =
[
f (x, y)

g(x, y)

]

is called continuous (or partially differentiable or Fréchet differentiable, respec-
tively) if and only if its two components f : D → R and g : D → R have the cor-
responding property, i.e., they are continuous (or partially differentiable or Fréchet
differentiable, respectively).

If both f and g are Fréchet differentiable, one has the linearisations

f (x, y) = f (a, b) + [ ∂f
∂x

(a, b),
∂f
∂y

(a, b)
][

x − a

y − b

]
+ R1(x, y;a, b),

g(x, y) = g(a, b) + [ ∂g
∂x

(a, b),
∂g
∂y

(a, b)
][

x − a

y − b

]
+ R2(x, y;a, b)

for (x, y) close to (a, b) with remainder terms R1 and R2. If one combines these
two formulae to one formula using matrix-vector notation, one obtains

[
f (x, y)

g(x, y)

]
=

[
f (a, b)

g(a, b)

]
+

⎡
⎣

∂f
∂x

(a, b)
∂f
∂y

(a, b)

∂g
∂x

(a, b)
∂g
∂y

(a, b)

⎤
⎦

[
x − a

y − b

]
+

[
R1(x, y;a, b)

R2(x, y;a, b)

]
,

or in short-hand notation

F(x, y) = F(a, b) + F′(a, b)

[
x − a

y − b

]
+ R(x, y;a, b)

with the remainder term R(x, y;a, b) and the (2×2)-Jacobian

F′(a, b) =
⎡
⎣

∂f
∂x

(a, b)
∂f
∂y

(a, b)

∂g
∂x

(a, b)
∂g
∂y

(a, b)

⎤
⎦ .

The linear mapping defined by this matrix is called (Fréchet) derivative of the func-
tion F at the point (a, b). The remainder term R has the property

lim
(x,y)→(a,b)

√
R1(x, y;a, b)2 + R2(x, y;a, b)2√

(x − a)2 + (y − b)2
= 0.

Example 16.2 (Polar coordinates) The mapping

F : R
2 → R

2 : (r,φ) �→
[
x

y

]
=

[
r cosϕ

r sinϕ

]
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is (everywhere) differentiable with derivative (Jacobian)

F′(r, ϕ) =
[

cosϕ −r sinϕ

sinϕ r cosϕ

]
.

16.2 Newton’s Method in Two Variables

The linearisation

F(x, y) ≈ F(a, b) + F′(a, b)

[
x − a

y − b

]

is the key for solving nonlinear equations in two (or more) unknowns. In this section,
we derive Newton’s method for determining the zeros of a function

F(x, y) =
[
f (x, y)

g(x, y)

]

of two variables and two components.

Example 16.3 (Intersection of a circle with a hyperbola) Consider the circle x2 +
y2 = 4 and the hyperbola xy = 1. The points of intersection are the zeros of the
vector equation F(x, y) = 0 with

F : R
2 → R

2 : F(x, y) =
[
f (x, y)

g(x, y)

]
=

[
x2 + y2 − 4

xy − 1

]
.

The level curves f (x, y) = 0 and g(x, y) = 0 are sketched in Fig. 16.1.

Newton’s method for determining the zeros is based on the following idea. For
a starting value (x0, y0) which is sufficiently close to the solution, one computes an
improved value by replacing the function by its linear approximation at (x0, y0)

F(x, y) ≈ F(x0, y0) + F′(x0, y0)

[
x − x0
y − y0

]
.

The zero of the linearisation

F(x0, y0) + F′(x0, y0)

[
x − x0
y − y0

]
=

[
0
0

]

is taken as improved approximation (x1, y1), so

F′(x0, y0)

[
x1 − x0
y1 − y0

]
= −F(x0, y0),
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Fig. 16.1 Intersection of a
circle with a hyperbola

and
[
x1
y1

]
=

[
x0
y0

]
− (

F′(x0, y0)
)−1F(x0, y0),

respectively. This can only be carried out if the Jacobian is invertible, i.e., its deter-
minant is not equal to zero. In the example above the Jacobian is

F′(x, y) =
[

2x 2y

y x

]

with determinant det F′(x, y) = 2x2 − 2y2. Thus it is singular on the straight lines
x = ±y. These lines are plotted as dashed lines in Fig. 16.1.

The idea now is to iterate the procedure, i.e., to repeat Newton’s step with the
improved value as new starting value

[
xk+1
yk+1

]
=

[
xk

yk

]
−

⎡
⎣

∂f
∂x

(xk, yk)
∂f
∂y

(xk, yk)

∂g
∂x

(xk, yk)
∂g
∂y

(xk, yk)

⎤
⎦

−1 [
f (xk, yk)

g(xk, yk)

]

for k = 1,2,3, . . . until the desired accuracy is reached. The procedure generally
converges rapidly as is shown in the following proposition. For a proof, see [22,
Chap. 7, Theorem 7.1].

Proposition 16.4 Let F : D → R
2 be twice continuously differentiable with

F(a, b) = 0 and det F′(a, b) �= 0. If the starting value (x0, y0) lies sufficiently close
to the solution (a, b), then Newton’s method converges quadratically.

One often sums up this fact under the term local quadratic convergence of New-
ton’s method.

Example 16.5 The intersection points of the circle and the hyperbola can also be
computed analytically. Since

xy = 1 ⇔ x = 1

y
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we may insert x = 1/y into the equation x2 + y2 = 4 to obtain the biquadratic
equation

y4 − 4y2 + 1 = 0.

By substituting y2 = u the equation is easily solvable. The intersection point with
the largest x-component has the coordinates

x =
√

2 + √
3 = 1.93185165257813657 . . . ,

y =
√

2 − √
3 = 0.51763809020504152 . . . .

Application of Newton’s method with starting values x0 = 2 and y0 = 1 yields
the above solution in five steps with 16 digits accuracy. The quadratic convergence
can be observed from the fact that the number of correct digits doubles with each
step.

x y Error

2.000000000000000 1.000000000000000 4.871521418175E-001

2.000000000000000 5.000000000000000E-001 7.039388810410E-002

1.933333333333333 5.166666666666667E-001 1.771734052060E-003

1.931852741096439 5.176370548219287E-001 1.502295005704E-006

1.931851652578934 5.176380902042443E-001 1.127875985998E-012

1.931851652578136 5.176380902050416E-001 2.220446049250E-016

Experiment 16.6 Using the MATLAB programs mat16_1.m and mat16_2.m
compute the intersection points from Example 16.3. Experiment with different start-
ing values and this way try to determine all four solutions to the problem. What
happens if the starting value is chosen to be (x0, y0) = (1,1)?

16.3 Parametric Surfaces

In Sect. 15.1 we investigated surfaces as graphs of functions f : D ⊂ R
2 → R.

However, similar to the case of curves, this concept is too narrow to represent more
complicated surfaces. The remedy is to use parametrisations like it was done for
curves.

The starting point for the construction of a parametric surface is a (component-
wise) continuous mapping

(u, v) �→ x(u, v) =
⎡
⎣x(u, v)

y(u, v)

z(u, v)

⎤
⎦
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of a parameter domain D ⊂ R
2 to R

3. By fixing one parameter, u = u0 or v = v0,
at a time, one obtains coordinate curves in space

u �→ x(u, v0) u-curve,

v �→ x(u0, v) v-curve.

Definition 16.7 A regular parametric surface is defined by a mapping
D ⊂ R

2 → R
3 : (u, v) �→ x(u, v) which satisfies the following conditions:

(a) The mapping (u, v) �→ x(u, v) is injective.
(b) The u-curves and the v-curves are continuously differentiable.
(c) The tangent vectors to the u-curves and v-curves are linearly independent at

every point (thus, they always span a plane).

These conditions guarantee that the parametric surface is indeed a two-dimen-
sional smooth subset of R

3.

Example 16.8 (Surfaces of rotation) By rotation of the graph of a continuously dif-
ferentiable, positive function z �→ h(z), a < z < b, around the z-axis, one obtains a
surface of rotation with parametrisation

D = (a, b) × (0,2π), x(u, v) =
⎡
⎣h(u) cosv

h(u) sinv

u

⎤
⎦ .

The v-curves are horizontal circles, the u-curves are the generator lines. Note that
the generator line corresponding to the angle v = 0 has been removed to ensure
condition (a). To verify condition (c) we compute the cross product of the tangent
vectors to the u- and the v-curves

∂x
∂u

× ∂x
∂v

=
⎡
⎣h′(u) cosv

h′(u) sinv

1

⎤
⎦ ×

⎡
⎣−h(u) sinv

h(u) cosv

0

⎤
⎦ =

⎡
⎣−h(u) cosv

−h(u) sinv

h(u)h′(u)

⎤
⎦ �= 0.

Due to h(u) > 0 this vector is not zero; the two tangent vectors are hence not
collinear.

Figure 16.2 shows the surface of rotation which is generated by h(u) = 0.4 +
cos(4πu)/3, u ∈ (0,1). In MATLAB one advantageously uses the command cylin-
der in combination with the command mesh for the representation of such sur-
faces.

Example 16.9 (The sphere) The sphere of radius R is obtained by the parametrisa-
tion

D = (0,π) × (0,2π), x(u, v) =
⎡
⎣R sinu cosv

R sinu sinv

R cosu

⎤
⎦ .
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2. Program Newton’s method in several variables and test the program on the prob-
lem

x2 + siny = 4,

xy = 1

with starting values x = 2 and y = 1. If you are working in MATLAB, you can
solve this question by modifying mat16_2.m.
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In Sect. 11.3 we have shown how to calculate the volume of solids of revolution. If
there is no rotational symmetry, however, one needs an extension of integral calcu-
lus to functions of two variables. This arises, for example, if one wants to find the
volume of a solid that lies between a domain D in the (x, y)-plane and the graph
of a non-negative function z = f (x, y). In this section we will extend the notion of
Riemann integrals from Chap. 11 to double integrals of functions of two variables.
Important tools for the computation of double integrals are their representation as
iterated integrals and the transformation formula (change of coordinates). The inte-
gration of functions of several variables occurs in numerous applications, a few of
which we will discuss.

17.1 Double Integrals

We start with the integration of a real-valued function z = f (x, y) which is defined
on a rectangle R = [a, b]×[c, d]. More general domains of integration D ⊂ R

2 will
be discussed below. Since we know from Sect. 11.1 that Riemann integrable func-
tions are necessarily bounded, we assume in this whole section that f is bounded.
If f is non-negative, the integral should be interpretable as the volume of the solid
with base R and top surface given by the graph of f (see Fig. 17.2). This motivates
the following approach in which the solid is approximated by a sum of cuboids.

We place a rectangular grid G over the domain R by partitioning the intervals
[a, b] and [c, d] like in Sect. 11.1:

Zx : a = x0 < x1 < x2 < · · · < xn−1 < xn = b,

Zy : c = y0 < y1 < y2 < · · · < ym−1 < ym = d.

The rectangular grid is made up of the small rectangles

[xi−1, xi] × [yj−1, yj ], i = 1, . . . , n, j = 1, . . . ,m.
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dently of the choice of intermediate points. This limit

I (f ) =
∫ ∫

R

f (x, y)d(x, y)

is called the double integral of f on R.

Experiment 17.2 Study the M-file mat17_1.m and experiment with different
randomly chosen Riemann sums for the function z = x2 + y2 on the rectangle
[0,1] × [0,1]. What happens if you choose ever finer grids?

As in the case of one variable, one may use the definition of the double integral
for obtaining a numerical approximation to the integral. However, it is of little use
for the analytic evaluation of integrals. In Chap. 11 the fundamental theorem of
calculus has proven helpful, here the representation as iterated integral does. In this
way the computation of double integrals is reduced to the integration of functions in
one variable.

Proposition 17.3 (The double integral as iterated integral) If a bounded function
f and its partial functions x �→ f (x, y), y �→ f (x, y) are Riemann integrable on
R = [a, b] × [c, d], then the mappings x �→ ∫ d

c
f (x, y)dy and y �→ ∫ b

a
f (x, y)dx

are Riemann integrable as well and

∫ ∫
R

f (x, y)d(x, y) =
∫ b

a

(∫ d

c

f (x, y)dy

)
dx =

∫ d

c

(∫ b

a

f (x, y)dx

)
dy.

Outline of the proof If one chooses intermediate points in the Riemann sums of the
special form pij = (ξi, ηj ) with ξi ∈ [xi−1, xi], ηj ∈ [yj−1, yj ], then

∫ ∫
R

f (x, y)d(x, y)

≈
n∑

i=1

(
m∑

j=1

f (ξi, ηj )(yj − yj−1)

)
(xi − xi−1)

≈
n∑

i=1

(∫ d

c

f (ξi, y)dy

)
(xi − xi−1) ≈

∫ b

a

(∫ d

c

f (x, y)dy

)
dx

and likewise for the second statement by changing the order. For a rigorous proof
of this argument, we refer to the literature, for instance [4, Theorem 8.13 and corol-
lary]. �

Figure 17.3 serves to illustrate Proposition 17.3. The volume is approximated
by summation of thin slices parallel to the axis instead of small cuboids. Proposi-
tion 17.3 states that the volume of the solid is obtained by integration over the area of
the cross sections (perpendicular to the x- or y-axis). In this form Proposition 17.3
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Example 17.9 For the calculation of the volume of the body lying between the tri-
angle D = {(x, y); 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x} and the graph of z = x2 + y2, we
interpret D as normal domain of type I with the boundaries v(x) = 0, w(x) = 1−x.
Consequently

∫ ∫
D

(
x2 + y2)d(x, y) =

∫ 1

0

(∫ 1−x

0

(
x2 + y2)dy

)
dx

=
∫ 1

0

(
x2y + y3

3

)∣∣∣∣
y=1−x

y=0
dx

=
∫ 1

0

(
x2(1 − x) + (1 − x)3

3

)
dx = 1

6
,

as can be seen by multiplying out and integrating term by term.

17.2 Applications of the Double Integral

For modelling purposes it is useful to introduce a simplified notation for Riemann
sums. In the case of equidistant partitions Zx,Zy , where all subintervals have the
same lengths, one writes

�x = xi − xi−1, �y = yj − yj−1

and calls

�A = �x�y

the area element of the grid G. If one then takes the right upper corner pij = (xi, yj )

of the subrectangle [xi−1, xi] × [yj−1, yj ] as an intermediate point, the correspond-
ing Riemann sum reads

S =
n∑

i=1

m∑
j=1

f (xi, yj )�A =
n∑

i=1

m∑
j=1

f (xi, yj )�x�y.

Application 17.10 (Mass as integral of the density) A thin plane object D has
density ρ(x, y) [mass/unit area] at the point (x, y). If the density ρ is constant ev-
erywhere then its total mass is simply the product of density and area. In the case of
variable density (for example due to a change of the material properties from point to
point), we partition D in smaller rectangles with sides �x, �y. The mass contained
in such a small rectangle around (x, y) is approximately equal to ρ(x, y)�x�y.
The total mass is thus approximately equal to

n∑
i=1

m∑
j=1

ρ(xi, yj )�x�y.
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Fig. 17.7 The statical
moments

However, this is just a Riemann sum for

M =
∫ ∫

D

ρ(x, y)dx dy.

This consideration shows that the integral of the density function is a feasible model
for representing the total mass of a two-dimensional object.

Application 17.11 (Centre of gravity) We consider a two-dimensional flat object
D as in Application 17.10. The two statical moments of a small rectangle close to
(x, y) with respect to a point (x∗, y∗) are

(x − x∗)ρ(x, y)�x�y, (y − y∗)ρ(x, y)�x�y;
see Fig. 17.7.

The relevance of the statical moments can be seen if one considers the object
under the influence of gravity. Multiplied by the gravitational acceleration g one
obtains the moments of force with respect to the axes through (x∗, y∗) in the di-
rection of the coordinates (force times lever arm). The centre of gravity of the two-
dimensional object D is the point (xS, yS) with respect to which the total statical
moments vanish:

n∑
i=1

m∑
j=1

(xi −xS)ρ(xi, yj )�x�y ≈ 0,

n∑
i=1

m∑
j=1

(yj −yS)ρ(xi, yj )�x�y ≈ 0.

In the limit, as the mesh size of the grid tends to zero, one obtains
∫ ∫

D

(x − xS)ρ(x, y)dx dy = 0,

∫ ∫
D

(y − yS)ρ(x, y)dx dy = 0

as defining equations for the centre of gravity, i.e.,

xS = 1

M

∫ ∫
D

xρ(x, y)dx dy, yS = 1

M

∫ ∫
D

yρ(x, y)dx dy,

where M denotes the total mass as in Application 17.10.
For the special case of a constant density ρ(x, y) ≡ 1 one obtains the geometric

centre of gravity of the domain D.
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Fig. 17.8 Centre of gravity
of the quarter circle

Example 17.12 (Geometric centre of gravity of a quarter circle) Let D be the quarter
circle of radius r about (0,0) in the first quadrant, i.e., D = {(x, y); 0 ≤ x ≤ r,

0 ≤ y ≤ √
r2 − x2} (Fig. 17.8). With density ρ(x, y) ≡ 1 one obtains the area M as

r2π/4. The first statical moment is

∫ ∫
D

x dx dy =
∫ r

0

(∫ √
r2−x2

0
x dy

)
dx =

∫ r

0

(
xy

∣∣∣y=
√

r2−x2

y=0

)
dx

=
∫ r

0
x
√

r2 − x2 dx = −1

3

(
r2 − x2)3/2

∣∣∣x=r

x=0
= 1

3
r3.

The x-coordinate of the centre of gravity is thus given by xS = 4
r2π

· 1
3 r3 = 4r

3π
. For

reasons of symmetry, one has yS = xS.

17.3 The Transformation Formula

Similar to the substitution rule for one-dimensional integrals (Sect. 10.2), the trans-
formation formula for double integrals makes it possible to change coordinates on
the domain D of integration. For the purpose of this section it is convenient to as-
sume that D is an open subset of R

2 (see Definition 9.1).

Definition 17.13 A bijective, differentiable mapping F : D → B = F(D) between
two open subsets D,B ⊂ R

2 is called a diffeomorphism if the inverse mapping F−1

is also differentiable.

We use the following notation for the variables:

F : D → B :
[
u

v

]
�→

[
x

y

]
=

[
x(u, v)

y(u, v)

]
.

Figure 17.9 shows the image B of the domain D = (0,1) × (0,1) under the trans-
formation

F :
[
u

v

]
�→

[
x

y

]
=

[
u + v/4

u/4 + v + u2v2

]
.
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Fig. 17.9 Transformation of
a planar domain

The aim is to transform the integral of a real-valued function f over the domain B

to one over D.
For this purpose we lay a grid G over the domain D in the (u, v)-plane and select

a rectangle, for instance with the left lower corner (u, v) and sides spanned by the
vectors[

�u
0

]
,

[
0

�v

]
.

The image of this rectangle under the transformation F will in general have a curvi-
linear boundary. In a first approximation we replace it by a parallelogram. In linear
approximation (see Sect. 15.4) we have

F(u + �u,v) ≈ F(u, v) + F′(u, v)

[
�u
0

]
,

F(u, v + �v) ≈ F(u, v) + F′(u, v)

[
0

�v

]
.

The approximating parallelogram is thus spanned by the vectors

[
∂x
∂u

(u, v)

∂y
∂u

(u, v)

]
�u,

[
∂x
∂v

(u, v)

∂y
∂v

(u, v)

]
�v,

and it has the area (see Sect. 22.5)
∣∣∣∣∣det

[
∂x
∂u

(u, v) ∂x
∂v

(u, v)

∂y
∂u

(u, v)
∂y
∂v

(u, v)

]
�u�v

∣∣∣∣∣ = ∣∣det F′(u, v)
∣∣�u�v.

In short, the area element �A = �u�v is changed by the transformation F to the
area element �F(A) = |det F′(u, v)|�u�v (see Fig. 17.10).

Proposition 17.14 (Transformation formula for double integrals) Let D, B be
open, bounded subsets of R

2, F : D → B a diffeomorphism and f : B → R a
bounded mapping. Then

∫ ∫
B

f (x, y)dx dy =
∫ ∫

D

f
(
F(u, v)

)∣∣det F′(u, v)
∣∣dudv,

as long as the functions f and f (F)|det F′| are Riemann integrable.
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Its volume is obtained by integration of the function f (x, y) = √
R2 − x2 − y2 over

the base B = {(x, y); 0 ≤ x2 + y2 ≤ R2}. In polar coordinates

F : R
2 → R

2 :
[
r
ϕ

]
�→

[
x
y

]
=

[
r cosϕ
r sinϕ

]

the area B can be represented as the image F(D) of the rectangle D = [0,R] ×
[0,2π]. However, in order to fulfill the assumptions of Proposition 17.14 we have
to switch to open domains on which F is a diffeomorphism. We can obtain this, for
instance, by removing the boundary and the half ray {(x, y); 0 ≤ x ≤ R, y = 0} of
the circle B and the boundary of the rectangle D. On the smaller domains D′ and B ′
obtained in this way, F is a diffeomorphism. However, since B differs from B ′ and
D differs from D′ by sets of measure zero, the value of the integral is not changed
if one replaces B by B ′ and D by D′; see Remark 17.6. We have

F′(r, ϕ) =
[

cosϕ −r sinϕ
sinϕ r cosϕ

]
,

∣∣det F′(r, ϕ)
∣∣ = r.

Substituting x = r cosϕ, y = r sinϕ results in x2 + y2 = r2, and we obtain the
volume from the transformation formula:

∫ ∫
B

√
R2 − x2 − y2 dx dy =

∫ R

0

∫ 2π

0

√
R2 − r2r dϕ dr

=
∫ R

0
2πr

√
R2 − r2 dr

= −2π

3

(
R2 − r2)3/2

∣∣∣r=R

r=0
= 2π

3
R3,

which coincides with the known result from elementary geometry.

17.4 Exercises

1. Compute the volume of the parabolic dome z = 2 − x2 − y2 above the quadratic
domain D : −1 ≤ x ≤ 1, −1 ≤ y ≤ 1.

2. (From statics) Compute the axial moment of inertia
∫∫

D
y2 dx dy of a rectangular

cross section D : 0 ≤ x ≤ b, −h/2 ≤ y ≤ h/2, where b > 0, h > 0.
3. Compute the volume of the body bounded by the plane z = x + y above the

domain D : 0 ≤ x ≤ 1,0 ≤ y ≤ √
1 − x2.

4. Compute the volume of the body bounded by the plane z = 6 − x − y above
the domain D, which is bounded by the y-axis and the straight lines x + y = 6,
x + 3y = 6 (x ≥ 0, y ≥ 0).

5. Compute the geometric centre of gravity of the domain D : 0 ≤ x ≤ 1,0 ≤ y ≤
1 − x2.
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6. Compute the area and the geometric centre of gravity of the semi-ellipse

x2

a2
+ y2

b2
≤ 1, y ≥ 0.

Hint. Introduce elliptic coordinates x = ar cosϕ, y = br sinϕ, 0 ≤ r ≤ 1, 0 ≤
ϕ ≤ π , compute the Jacobian and use the transformation formula.

7. (From statics) Compute the axial moment of inertia of a ring with inner radius
R1 and outer radius R2 with respect to the central axis, i.e., the integral

∫∫
D

(x2 +
y2)dx dy over the domain D : R1 ≤ √

x2 + y2 ≤ R2.
8. Modify the M-file mat17_1.m so that it can evaluate Riemann sums over equi-

distant partitions with �x �= �y.
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Linear regression is one of the most important methods of data analysis. It serves
the determination of model parameters, model fitting, assessing the importance of
influencing factors, and prediction, in all areas of human, natural and economic
sciences. Computer scientists who work closely with people from these areas will
definitely come across regression models.

The aim of this chapter is a first introduction into the subject. We deduce the co-
efficients of the regression models using the method of least squares to minimise the
errors. We will only employ methods of descriptive data analysis. We do not touch
upon the more advanced probabilistic approaches which are topics of statistics. For
all that, as well as for nonlinear regression, we refer to the specialised literature.

We start with simple (or univariate) linear regression—a model with a single in-
put and a single output quantity—and explain the basic ideas of analysis of variance
for model evaluation. Then we turn to multiple (or multivariate) linear regression
with several input quantities. The chapter closes with a descriptive approach to de-
termine the influence of the individual coefficients.

18.1 Simple Linear Regression

A first glance at the basic idea of linear regression was already given in Sect. 8.3. In
extension to this, we will now allow for more general models, in particular regres-
sion lines with nonzero intercept.

Consider pairs of data (x1, y1), . . . , (xn, yn), obtained as observations or mea-
surements. Geometrically they form a scatter plot in the plane. The values xi and yi

may appear repeatedly in this list of data. In particular, for a given xi there may be
data points with different values yi1, . . . , yip . The general task of linear regression
is to fit the graph of a function

y = β0ϕ0(x) + β1ϕ1(x) + · · · + βmϕm(x)
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Fig. 18.2 Scatter plot height
of fathers/height of the sons,
regression line

Formally, this problem is identical to the standard problem of linear regression,
however, with transformed data:

(ξi, ηi) = (
ϕ(xi),ψ(yi)

)
.

A typical example is given by the loglinear regression with ξ = logx, η = logy

logy = β0 + β1 logx,

which in the original variables amounts to the approach

y = eβ0xβ1 .

If the variable x itself has several components which enter linearly in the model,
then one speaks of multiple linear regression. We will deal with it in Sect. 18.3.

The notion of regression was introduced by Galton,1 who observed, while inves-
tigating the height of sons/fathers, a tendency of regressing to the average size. The
data taken from [14] clearly show this effect; see Fig. 18.2. The method of least
squares goes back to Gauss.

After these introductory remarks about the general concept of linear regression,
we turn to a simple linear regression. We start with setting up the model. The pos-
tulated relationship between x and y is linear

y = β0 + β1x

with unknown coefficients β0 and β1. In general, the given data will not exactly lie
on a straight line but deviate by εi , i.e.,

yi = β0 + β1xi + εi,

as represented in Fig. 18.3.
From the given data we want to obtain estimated values β̂0, β̂1 for β0, β1. This is

achieved through minimising the sum of squares of the errors

L(β0, β1) =
n∑

i=1

ε2
i =

n∑
i=1

(yi − β0 − β1xi)
2,

1F. Galton, 1822–1911.
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Fig. 18.3 Linear model and
error εi

so that β̂0 and β̂1 solve the minimisation problem

L(β̂0, β̂1) = min
(
L(β0, β1); β0 ∈ R, β1 ∈ R

)
.

We obtain β̂0 and β̂1 by setting the partial derivatives of L with respect to β0 and β1
to zero:

∂L

∂β0
(β̂0, β̂1) = −2

n∑
i=1

(yi − β̂0 − β̂1xi) = 0,

∂L

∂β1
(β̂0, β̂1) = −2

n∑
i=1

xi(yi − β̂0 − β̂1xi) = 0.

This leads to a linear system of equations for β̂0, β̂1, the so-called normal equations

nβ̂0 +
(∑

xi

)
β̂1 =

∑
yi,

(∑
xi

)
β̂0 +

(∑
x2
i

)
β̂1 =

∑
xiyi .

Proposition 18.2 Assume that at least two x-values in the data set (xi, yi), i =
1, . . . , n are different. Then the normal equations have a unique solution

β̂0 =
(

1

n

∑
yi

)
−

(
1

n

∑
xi

)
β̂1, β̂1 =

∑
xiyi − 1

n

∑
xi

∑
yi∑

x2
i − 1

n
(
∑

xi)2

which minimises the sum of squares L(β0, β1) of the errors.

Proof With the notations x = (x1, . . . , xn) and 1 = (1, . . . ,1) the determinant of the
normal equations is n

∑
x2
i − (

∑
xi)

2 = ‖x‖2‖1‖2 − 〈x,1〉2. For vectors of length
n = 2 and n = 3 we know that 〈x,1〉 = ‖x‖‖1‖ · cos�(x,1); see Sect. 22.4, and
thus ‖x‖‖1‖ ≥ |〈x,1〉|. This relation, however, is valid in any dimension n (see for
instance [2, Chap. VI, Theorem 1.1]), and equality can only occur if x is parallel to 1,
so all components xi are equal. As this possibility was excluded, the determinant of
the normal equations is greater than zero and the solution formula is obtained by a
simple calculation.
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Fig. 18.4 Linear model,
prediction, residual

In order to show that this solution minimises L(β0, β1), we compute the Hessian
matrix

HL =
⎡
⎣

∂2L

∂β2
0

∂2L
∂β0∂β1

∂2L
∂β1∂β0

∂2L

∂β2
1

⎤
⎦ = 2

[
n

∑
xi∑

xi

∑
x2
i

]
= 2

[ ‖1‖2 〈x,1〉
〈x,1〉 ‖x‖2

]
.

The entry ∂2L/∂β2
0 = 2n and detHL = 4(‖x‖2‖1‖2 −〈x,1〉2) are both positive. Ac-

cording to Proposition 15.28, L has an isolated local minimum at the point (β̂0, β̂1).
Due to the uniqueness of the solution, this is the only minimum of L. �

The assumption that there are at least two different xi -values in the data set is not
a restriction, since otherwise the regression problem is not meaningful. The result
of the regression is the predicted regression line

y = β̂0 + β̂1x.

The values predicted by the model are then

ŷi = β̂0 + β̂1xi, i = 1, . . . , n.

Their deviations from the data values yi are called residuals

ei = yi − ŷi = yi − β̂0 − β̂1xi, i = 1, . . . , n.

The meaning of these quantities can be seen in Fig. 18.4.
With the above specifications, the deterministic regression model is completed. In

the statistical regression model the errors εi are interpreted as random variables with
mean zero. Under further probabilistic assumptions, the model is made accessible to
statistical tests and diagnostic procedures. As mentioned in the introduction, we will
not pursue this path here but remain in the framework of descriptive data analysis.

In order to obtain a more lucid representation, we will reformulate the normal
equations. For this, we introduce the following vectors and matrices:

y =

⎡
⎢⎢⎢⎣

y1
y2
...

yn

⎤
⎥⎥⎥⎦ , X =

⎡
⎢⎢⎢⎣

1 x1
1 x2
...

...

1 xn

⎤
⎥⎥⎥⎦ , β =

[
β0
β1

]
, ε =

⎡
⎢⎢⎢⎣

ε1
ε2
...

εn

⎤
⎥⎥⎥⎦ .
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Thus, the relations

yi = β0 + β1xi + εi, i = 1, . . . , n,

can be written simply as

y = Xβ + ε.

Furthermore,

XTX =
[

1 1 . . . 1
x1 x2 . . . xn

]
⎡
⎢⎢⎢⎣

1 x1
1 x2
...

...

1 xn

⎤
⎥⎥⎥⎦ =

[
n

∑
xi∑

xi

∑
x2
i

]
,

XTy =
[

1 1 . . . 1
x1 x2 . . . xn

]
⎡
⎢⎢⎢⎣

yi

y2
...

yn

⎤
⎥⎥⎥⎦ =

[ ∑
yi∑

xiyi

]
,

so that the normal equations take the form

XTXβ̂ = XTy

with solution

β̂ = (
XTX

)−1XTy.

The predicted values and residuals are

ŷ = Xβ̂, e = y − ŷ.

Example 18.3 (Continuation of Example 18.1) The data for x = height and y =
weight can be found in the M-file mat08_3.m; the matrix X is generated in MAT-
LAB by

X = [ones(size(x)),x];
the regression coefficients are obtained by

beta = inv(X’*X)*X’*y .

The command beta = X\y permits a more stable calculation in MATLAB. In our
case the result is

β̂0 = −85.02,

β̂1 = 0.8787.

This gives the regression line depicted in Fig. 18.1.
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18.2 Rudiments of the Analysis of Variance

First indications for the quality of fit of the linear model can be obtained from the
analysis of variance (ANOVA), which also forms the basis for more advanced sta-
tistical test procedures.

The arithmetic mean of the y-values y1, . . . , yn is

ȳ = 1

n

n∑
i=1

yi .

The deviation of the measured value yi from the mean value ȳ is yi − ȳ. The total
sum of squares or total variability of the data is

Syy =
n∑

i=1

(yi − ȳ)2.

The total variability is split into two components in the following way:

n∑
i=1

(yi − ȳ)2 =
n∑

i=1

(ŷi − ȳ)2 +
n∑

i=1

(yi − ŷi )
2.

The validity of this relationship will be proven in Proposition 18.4 below. It is in-
terpreted as follows: ŷi − ȳ is the deviation of the predicted value from the mean
value, and

SSR =
n∑

i=1

(ŷi − ȳ)2

the regression sum of squares. This is interpreted as the part of the data variability
accounted for by the model. On the other hand ei = yi − ŷi are the residuals, and

SSE =
n∑

i=1

(yi − ŷi )
2

is the error sum of squares, which is interpreted as the part of the variability that
remains unexplained by the linear model. These notions are best explained by con-
sidering the two extremal cases.
(a) The data values yi themselves already lie on a straight line. Then all ŷi = yi and

thus Syy = SSR, SSE = 0, and the regression model describes the data record
exactly.

(b) The data values are in no linear relation. Then the line of best fit is the horizontal
line through the mean value (see Exercise 12 of Chap. 8), so ŷi = ȳ for all i and
hence Syy = SSE, SSR = 0. This means that the regression model does not offer
any indication for a linear relation between the values.
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The basis of these considerations is the validity of the following formula.

Proposition 18.4 (Partitioning of total variability) Syy = SSR + SSE.

Proof In the following, we use matrix and vector notation. In particular, we employ
the formulae

aTb = bTa =
∑

aibi, 1Ta = aT1 =
∑

ai = nā, aTa =
∑

a2
i

for vectors a,b, and the matrix identity (AB)T = BTAT. We have

Syy = (y − ȳ1)T(y − ȳ1) = yTy − ȳ
(
1Ty

) − (
yT1

)
ȳ + nȳ2

= yTy − nȳ2 − nȳ2 + nȳ2 = yTy − nȳ2,

SSE = eTe = (y − ŷ)T(y − ŷ ) = (y − Xβ̂)T(y − Xβ̂)

= yTy − β̂
T
XTy − yTXβ̂ + β̂

T
XTXβ̂ = yTy − β̂

T
XTy.

For the last equality we have used the normal equations XTXβ̂ = XTy and the trans-

position formula β̂
T
XTy = (yTXβ̂)T = yTXβ̂ . The relation ŷ = Xβ̂ implies, in par-

ticular, XT̂y = XTy. Since the first line of XT consists of ones only, it follows that
1T̂y = 1Ty and thus

SSR = (̂y − ȳ1)T(̂y − ȳ1) = ŷTŷ − ȳ
(
1Tŷ

) − (̂
yT1

)
ȳ + nȳ2

= ŷTŷ − nȳ2 − nȳ2 + nȳ2 = β̂
T(

XTXβ̂
) − nȳ2 = β̂

T
XTy − nȳ2.

Summation of the obtained expressions for SSE and SSR results in the sought-after
formula. �

The partitioning of total variability

Syy = SSR + SSE

and its above interpretation suggest using the quantity

R2 = SSR

Syy

for the assessment of the goodness of fit. The quantity R2 is called the coefficient of
determination and measures the fraction of variability explained by the regression.
In the limiting case of an exact fit, where the regression line passes through all data
points, we have SSE = 0 and thus R2 = 1. A small value of R2 indicates that the
linear model does not fit the data.

Remark 18.5 An essential point in the proof of Proposition 18.4 was the property
of XT that its first line was composed of ones only. This is a consequence of the
fact that β0 was a model parameter. In the regression where a straight line through
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the origin is used (see Sect. 8.3) this is not the case. For a regression which does
not have β0 as a parameter, the variance partition is not valid and the coefficient of
determination is meaningless.

Example 18.6 We continue the investigation of the relation between height and
weight from Example 18.1. Using the MATLAB program mat18_1.m and entering
the data from mat08_3.m results in

Syy = 9584.9, SSE = 8094.4, SSR = 1490.5

and

R2 = 0.1555, R = 0.3943.

The low value of R2 is a clear indication that height and weight are not in a linear
relation.

Example 18.7 In Sect. 9.1 the fractal dimension d = d(A) of a bounded subset A

of R
2 was defined by the limit

d = d(A) = − lim
ε→0+ logN(A,ε)/ log ε,

where N(A,ε) denoted the smallest number of squares of side length ε needed to
cover A. For the experimental determination of the dimension of a fractal set A,
one rasters the plane with different mesh sizes ε and determines the number N =
N(A,ε) of boxes that have a non-empty intersection with the fractal. As explained
in Sect. 9.1, one uses the approximation

N(A,ε) ≈ C · ε−d .

Applying logarithms results in

logN(A,ε) ≈ logC + d log
1

ε
,

which is a linear model,

y ≈ β0 + β1x,

for the quantities x = log 1/ε, y = logN(A,ε). The regression coefficient β̂1 can
be used as an estimate for the fractal dimension d .

In Exercise 1 of Sect. 9.6 this procedure was applied to the coastline of Great
Britain. Assume that the following values were obtained:

1/ε 4 8 12 16 24 32
N(A,ε) 16 48 90 120 192 283
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Fig. 18.5 Fractal dimension
of the coast line of Great
Britain

A linear regression through the logarithms x = log 1/ε, y = logN(A,ε) yields the
coefficients

β̂0 = 0.9849, d ≈ β̂1 = 1.3616,

with the coefficient of determination

R2 = 0.9930.

This is very good fit, which is also confirmed by Fig. 18.5. The given data thus
indicate that the fractal dimension of the coast line of Great Britain is d = 1.36.

A word of caution is in order. Data analysis can only supply indications, but never
a proof that a model is correct. Even if we choose among a number of wrong models
the one with the largest R2, this model will not become correct. A healthy amount of
scepticism with respect to purely empirically inferred relations is advisable; models
should always be critically questioned. Scientific progress arises from the interplay
between the invention of models and their experimental validation through data.

18.3 Multiple Linear Regression

In multiple (multivariate) linear regression the variable y does not just depend on
one regressor variable x, but on several variables, for instance x1, x2, . . . , xk . We
emphasise that the notation with respect to Sect. 18.1 is changed—there xi denoted
the ith data value, now xi refers to the ith regressor variable. The measurements of
the ith regressor variable are now denoted with two indices, namely xi1, xi2, . . . , xin.
In total, there are k × n data values. We again look for a linear model,

y = β0 + β1x1 + β2x2 + · · · + βkxk,

with the yet unknown coefficients β0, β1, . . . , βk .

Example 18.8 A vending machine company wants to analyse the delivery time,
i.e., the time span y which a driver needs to refill a machine. The most im-
portant parameters are the number x1 of refilled product units and the distance
x2 walked by the driver. The results of an observation of 25 services are given
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Fig. 18.6 Multiple linear
regression through a scatter
plot in space

in the M-file mat18_3.m . The data values are taken from [18]. The observa-
tions (x11, x21), (x12, x22), (x13, x23), . . . , (x1,25, x2,25) with the corresponding ser-
vice times y1, y2, y3, . . . , y25 yield a scatter plot in space to which a plane of the
form y = β0 + β1x1 + β2x2 should be fitted (Fig. 18.6; use the M-file mat18_4.m
for visualisation).

Remark 18.9 A special case of the general multiple linear model y = β0 + β1x1 +
· · · + βkxk is a simple linear regression with several nonlinear form functions (as
mentioned in Sect. 18.1), i.e.,

y = β0 + β1ϕ1(x) + β2ϕ2(x) + · · · + βkϕk(x),

where x1 = ϕ1(x), x2 = ϕ2(x), . . ., xk = ϕk(x) are considered as regressor variables.
In particular, one may allow for polynomial models

y = β0 + β1x + β2x
2 + · · · + βkx

k

or still more general interactions between several variables, like for instance

y = β0 + β1x1 + β2x2 + β3x1x2.

All these cases are treated in the same way as the standard problem of multiple
linear regression, after renaming the variables.

The data values for the individual regressor variables are schematically repre-
sented as follows:

variable y x1 x2 . . . xk

observation 1 y1 x11 x21 . . . xk1
observation 2 y2 x12 x22 . . . xk2

...
...

...
...

...

observation n yn x1n x2n . . . xkn

Each value yi is to be approximated by

yi = β0 + β1x1i + β2x2i + · · · + βkxki + εi, i = 1, . . . , n
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with the errors εi . The estimated coefficients β̂0, β̂1, . . . , β̂k are again obtained as
the solution of the minimisation problem

L(β0, β1, . . . , βk) =
n∑

i=1

ε2
i → min.

Using vector and matrix notation

y =

⎡
⎢⎢⎢⎣

y1
y2
...

yn

⎤
⎥⎥⎥⎦ , X =

⎡
⎢⎢⎢⎣

1 x11 x21 . . . xk1
1 x12 x22 . . . xk2
...

...
...

...

1 x1n x2n . . . xkn

⎤
⎥⎥⎥⎦ ,

β =

⎡
⎢⎢⎢⎣

β0
β1
...

βk

⎤
⎥⎥⎥⎦ , ε =

⎡
⎢⎢⎢⎣

ε1
ε2
...

εn

⎤
⎥⎥⎥⎦

the linear model can again be written for brevity as

y = Xβ + ε.

The coefficients of best fit are obtained as in Sect. 18.1 by the formula

β̂ = (
XTX

)−1XTy

with the predicted values and the residuals

ŷ = Xβ̂, e = y − ŷ.

The partitioning of total variability

Syy = SSR + SSE

is still valid; the multiple coefficient of determination

R2 = SSR/Syy

is an indicator of the goodness of fit of the model.

Example 18.10 We continue the analysis of the delivery times from Example 18.8.
Using the MATLAB program mat18_2.m and entering the data from mat18_3.m
results in

β̂ =
⎡
⎣2.3412

1.6159
0.0144

⎤
⎦ .
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We obtain the model

ŷ = 2.3412 + 1.6159x1 + 0.0144x2

with the multiple coefficient of determination of

R2 = 0.9596

and the partitioning of total variability

Syy = 5784.5, SSR = 5550.8, SSE = 233.7.

In this example merely (1 − R2) · 100% ≈ 4% of the variability of the data is not
explained by the regression, a very satisfactory goodness of fit.

18.4 Model Fitting and Variable Selection

A recurring problem is to decide which variables should be included in the model.
Would the inclusion of x3 = x2

2 and x4 = x1x2, i.e., the model

y = β0 + β1x1 + β2x2 + β3x
2
2 + β4x1x2,

lead to better results, and can, e.g., the term β2x2 be eliminated subsequently? It is
not desirable to have too many variables in the model. If there are as many variables
as data points, then one can fit the regression exactly through the data and the model
would loose its predictive power. A criterion will definitely be to reach a value of R2

which is as large as possible. Another aim is to eliminate variables that do not con-
tribute essentially to the total variability. An algorithmic procedure for identifying
these variables is the sequential partitioning of total variability.

Sequential Partitioning of Total Variability We include variables stepwise in the
model, thus consider the increasing sequence of models with corresponding SSR:

y = β0 SSR(β0),

y = β0 + β1x1 SSR(β0, β1),

y = β0 + β1x1 + β2x2 SSR(β0, β1, β2),

...
...

y = β0 + β1x1 + β2x2 + · · · + βkxk SSR(β0, β1, . . . , βk) = SSR.

Note that SSR(β0) = 0, since in the initial model β0 = ȳ. The additional explana-
tory power of the variable x1 is measured by

SSR(β1|β0) = SSR(β0, β1) − 0,



246 18 Linear Regression

the power of variable x2 (if x1 is already in the model) by

SSR(β2|β0, β1) = SSR(β0, β1, β2) − SSR(β0, β1),

the power of variable xk (if x1, x2, . . . , xk−1 are in the model) by

SSR(βk|β0, β1, . . . , βk−1) = SSR(β0, β1, . . . , βk) − SSR(β0, β1, . . . , βk−1).

Obviously,

SSR(β1|β0) + SSR(β2|β0, β1) + SSR(β3|β0, β1, β2) + · · ·
+ SSR(βk|β0, β1, β2, . . . , βk−1) = SSR.

This shows that one can interpret the sequential, partial coefficient of determination

SSR(βj |β0, β1, . . . , βj−1)

Syy

as explanatory power of the variables xj , under the condition that the variables
x1, x2, . . . , xj−1 are already included in the model. This partial coefficient of de-
termination depends on the order of the added variables. This dependency can be
eliminated by averaging over all possible sequences of variables.

Average Explanatory Power of Individual Coefficients One first computes all
possible sequential, partial coefficients of determination which can be obtained by
adding the variable xj to all possible combinations of the already included vari-
ables. Summing up these coefficients and dividing the result by the total number
of possibilities, one obtains a measure for the contribution of the variable xj to the
explanatory power of the model.

Average over orderings was proposed by [15]; further details and advanced con-
siderations can be found, for instance, in [8, 10]. The concept does not use prob-
abilistically motivated indicators. Instead, it is based on the data and on combina-
torics, and thus it belongs to descriptive data analysis. Such descriptive methods,
in contrast to the commonly used statistical hypothesis testing, do not require addi-
tional assumptions, which may be difficult to justify.

Example 18.11 We compute the explanatory power of the coefficients in the deliv-
ery time problem of Example 18.8. First we fit the two univariate models

y = β0 + β1x1, y = β0 + β2x2

and from that obtain

SSR(β0, β1) = 5382.4, SSR(β0, β2) = 4599.1,
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values of SSR.

1 2 3 SSR(β1|β0) SSR(β2|β0, β1) SSR(β3|β0, β1, β2)

1 3 2 SSR(β1|β0) SSR(β3|β0, β1) SSR(β2|β0, β1, β3)

2 1 3 SSR(β2|β0) SSR(β1|β0, β2) SSR(β3|β0, β2, β1)

2 3 1 SSR(β2|β0) SSR(β3|β0, β2) SSR(β1|β0, β2, β3)

3 1 2 SSR(β3|β0) SSR(β1|β0, β3) SSR(β2|β0, β3, β1)

3 2 1 SSR(β3|β0) SSR(β2|β0, β3) SSR(β1|β0, β3, β2)

Obviously the sum of each row is always equal to SSR, so that the sum of all entries
is equal to 6 · SSR. Note that amongst the 18 SSR-values there are actually only 12
different ones.

The average explanatory power of the variable x1 is defined by M1/Syy , where

M1 = 1

6

(
SSR(β1|β0) + SSR(β1|β0) + SSR(β1|β0, β2) + SSR(β1|β0, β3)

+ SSR(β1|β0, β2, β3) + SSR(β1|β0, β3, β2)
)

and analogously for the other variables. As remarked above, we have

M1 + M2 + M3 = SSR,

and thus the total partitioning adds up to 1:

M1

Syy

+ M2

Syy

+ M3

Syy

+ SSE

Syy

= 1.

For a more detailed analysis of the underlying combinatorics, for the necessary mod-
ifications in the case of collinearity of the data (linear dependence of the columns
of the matrix X) and for a discussion of the significance of the average explanatory
power, we refer to the literature quoted above. The algorithm is implemented in the
applet Linear regression.

Experiment 18.12 Open the applet Linear regression and load Data set number 9.
It contains experimental data quantifying the influence of different aggregates on
a mixture of concrete. The meaning of the output variables x1 through x4 and the
input variables x5 through x13 is explained in the online description of the applet.
Experiment with different selections of the variables of the model. An interesting
initial model is obtained, for example, by choosing x6, x8, x9, x10, x11, x12, x13 as
independent and x1 as dependent variable; then remove variables with a low ex-
planatory power and draw a pie chart.
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18.5 Exercises

1. The total consumption of electric energy in Austria in the years 1975–2005 is
given in the table below (from [24, Table 22.13]). The task is to carry out a linear
regression of the form y = β0 + β1x through the data.
(a) Write down the matrix X explicitly and compute the coefficients β̂ =

[β̂0, β̂1]T using the MATLAB command beta = X\y.
(b) Check the goodness of fit by computing R2. Plot a scatter diagram with the

fitted straight line. Compute the forecast ŷ for 2010.

year xi 1975 1980 1985 1990 1995 2000 2005
consumption yi [GWh] 30.663 37.995 42.815 49.951 54.177 60.502 65.199

2. A sample of n = 44 civil engineering students at the University of Innsbruck in
the year 1998 gave the values for x = height [cm] and y = weight [kg] listed in
the M-file mat18_ex2.m. Compute the regression line y = β0 + β1x, plot the
scatter diagram and calculate the coefficient of determination R2.

3. Solve Exercise 1 using Excel.
4. Solve Exercise 1 using the statistics package SPSS.

Hint. Enter the data in the worksheet Data View; the names of the variables and
their properties can be defined in the worksheet Variable View. Go to Analyze →
Regression → Linear.

5. The stock of buildings in Austria in the years 1869–2001 is given in the M-file
mat18_ex5.m (data from [24]). Compute the regression line y = β0 +β1x and
the regression parabola y = α0 + α1(x − 1860)2 through the data and test which
model fits better, using the coefficient of determination R2.

6. The monthly share index for four breweries from November 1999 to November
2000 is given in the M-file mat18_ex6.m (November 1999 = 100%, from the
Austrian magazine profil 46/2000). Fit a univariate linear model y = β0 + β1x

to each of the four data sets (x is for date, y is for share index), plot the results
in four equally scaled windows, evaluate the results by computing R2 and check
whether the caption provided by profil is justified by the data. For the calculation
you may use the MATLAB program mat18_1.m.
Hint. A solution is suggested in the M-file mat18_exsol6.m.

7. Continuation of Exercise 5, stock of buildings in Austria. Fit the model

y = β0 + β1x + β2(x − 1860)2

and compute SSR = SSR(β0, β1, β2) and Syy . Further, analyse the increase of
explanatory power through adding the respective missing variable in the models
of Exercise 5, i.e., compute SSR(β2|β0, β1) and SSR(β1|β0, β2) as well as the
average explanatory power of the individual coefficients. Compare with the result
for Data set number 5 in the applet Linear regression.

8. The M-file mat18_ex8.m contains the mileage per gallon y of 30 cars depend-
ing on the engine displacement x1, the horsepower x2, the overall length x3 and
the weight x4 of the vehicle (from: Motor Trend 1975, according to [18]). Fit the
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linear model

y = β0 + β1x1 + β2x2 + β3x3 + β4x4,

and estimate the explanatory power of the individual coefficients through a sim-
ple sequential analysis:

SSR(β1|β0), SSR(β2|β0, β1), SSR(β3|β0, β1, β2),

SSR(β4|β0, β1, β2, β3).

Compare your result with the average explanatory power of the coefficients for
Data set number 2 in the applet Linear regression.
Hint. A suggested solution is given in the M-file mat18_exsol8.m.

9. Check the results of Exercises 1, 2 and 6 using the applet Linear regression (Data
sets 6, 1 and 4); likewise for the Examples 18.1 and 18.8 with Data sets 8 and 3.
In particular, investigate in Data set 8 whether height, weight and the risk of
breaking a leg are in any linear relation.
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In this chapter we discuss the theory of initial value problems for ordinary differen-
tial equations. We limit ourselves to scalar equations here; systems will be discussed
in the next chapter.

After presenting the general definition of a differential equation and the geomet-
ric significance of its direction field, we start with a detailed discussion of first-order
linear equations. As important applications we discuss the modelling of growth and
decay processes. Subsequently, we investigate questions of existence and (local)
uniqueness of the solution of general differential equations and discuss the method
of power series. Finally, we study the qualitative behaviour of solutions close to an
equilibrium point.

19.1 Initial Value Problems

Differential equations are equations involving a (sought after) function and its
derivative(s). They play a decisive role in modelling time dependent processes.

Definition 19.1 Let D ⊂ R
2 be open and f : D ⊂ R

2 → R continuous. The equa-
tion

y′(x) = f
(
x, y(x)

)
is called (an ordinary) first-order differential equation. A solution is a differentiable
function y : I → D which satisfies the equation for all x ∈ I .

One often suppresses the independent variable x in the notation and writes the
above problem for brevity as

y′ = f (x, y).

The sought-after function y in this equation is also called the dependent variable
(depending on x).

M. Oberguggenberger, A. Ostermann, Analysis for Computer Scientists,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-0-85729-446-3_19, © Springer-Verlag London Limited 2011
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In modelling time dependent processes, one usually denotes the independent
variable by t (for time) and the dependent variable by x = x(t). In this case one
writes the first-order differential equation as

ẋ(t) = f
(
t, x(t)

)
or for short as ẋ = f (t, x).

Example 19.2 (Separation of the variables) We want to find all functions y = y(x)

satisfying the equation y′(x) = x · y(x)2. In this example one obtains the solutions
by separating the variables. For y �= 0 one divides the differential equation by y2

and gets

1

y2
· y′ = x.

The left-hand side of this equation is of the form g(y) ·y′. Let G(y) be an antideriva-
tive of g(y). According to the chain rule, and recalling that y is a function of x, we
obtain

d

dx
G(y) = d

dy
G(y) · dy

dx
= g(y) · y′.

In our example we have g(y) = y−2 and G(y) = −y−1, consequently

d

dx

(
− 1

y

)
= 1

y2
· y′ = x.

Integration of this equation with respect to x results in

− 1

y
= x2

2
+ C,

where C denotes an arbitrary integration constant. By elementary manipulations we
find

y = 1

−x2/2 − C
= 2

K − x2

with the constant K = −2C.
The function y = 0 is also a solution of the differential equation. Formally, one

obtains it from the above solution by setting K = ∞. The example shows that dif-
ferential equations have infinitely many solutions in general. By requiring an addi-
tional condition, a unique solution can be selected. For example, setting y(0) = 1
gives y(x) = 2/(2 − x2).

Definition 19.3 The differential equation y′(x) = f (x, y(x)) together with the ad-
ditional condition y(x0) = y0, i.e.,

y′(x) = f
(
x, y(x)

)
, y(x0) = y0,
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Fig. 19.1 The direction field
of y′ = −2xy/(x2 + 2y)

is called an initial value problem. A solution of an initial value problem is a (con-
tinuously) differentiable function y(x), which satisfies the differential equation and
the initial condition y(x0) = y0.

Geometric Interpretation of a Differential Equation For a given first-order dif-
ferential equation

y′ = f (x, y), (x, y) ∈ D ⊂ R
2

one searches for a differentiable function y = y(x) whose graph lies in D and whose
tangents have the slopes tanϕ = y′(x) = f (x, y(x)) for each x. By plotting short
arrows with slopes tanϕ = f (x, y) at the points (x, y) ∈ D one obtains the direction
field of the differential equation. The direction field is tangential to the solution
curves and offers a good visual impression of their shapes. Figure 19.1 shows the
direction field of the differential equation

y′ = − 2xy

x2 + 2y
.

The right-hand side has singularities along the curve y = −x2/2 which is reflected
by the behaviour of the arrows in the lower part of the figure.

Experiment 19.4 Visualise the direction field of the above differential equation
with the applet Dynamical systems in the plane.

19.2 First-Order Linear Differential Equations

Let a(x) and g(x) be functions defined on some interval. The equation

y′ + a(x)y = g(x)
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is called a first-order linear differential equation. The function a is the coefficient,
the right-hand side g is called an inhomogeneity. The differential equation is called
homogeneous, if g = 0; otherwise inhomogeneous. First we state the following im-
portant result.

Proposition 19.5 (Superposition principle) If y and z are solutions of a linear dif-
ferential equation with possibly different inhomogeneities

y′(x) + a(x)y(x) = g(x),

z′(x) + a(x)z(x) = h(x),

then their linear combination

w(x) = αy(x) + βz(x), α,β ∈ R

solves the linear differential equation

w′(x) + a(x)w(x) = αg(x) + βh(x).

Proof This so-called superposition principle follows from the linearity of the
derivative and the linearity of the equation. �

In a first step we compute all solutions of the homogeneous equation. We will use
the superposition principle later to find all solutions of the inhomogeneous equation.

Proposition 19.6 The general solution of the homogeneous differential equation

y′ + a(x)y = 0

is

yh(x) = Ke−A(x)

with K ∈ R and an arbitrary antiderivative A(x) of a(x).

Proof For y �= 0 we separate the variables

1

y
· y′ = −a(x)

and use

d

dy
log |y| = 1

y

to obtain

log |y| = −A(x) + C
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Fig. 19.2 The direction field of y′ = y (left) and y′ = −y (right)

by integrating the equation. From that we infer

∣∣y(x)
∣∣ = e−A(x)eC.

This formula shows that y(x) cannot change sign, since the right-hand side is never
zero. Thus K = eC · signy(x) is a constant as well, and the formula

y(x) = signy(x) · ∣∣y(x)
∣∣ = Ke−A(x), K ∈ R

yields all solutions of the homogeneous equation. �

Example 19.7 The linear differential equation

ẋ = ax

with constant coefficient a has the general solution

x(t) = Keat , K ∈ R.

The constant K is determined by x(0), for example.

The direction field of the differential equation y′ = ay (depending on the sign of
the coefficient) is shown in Fig. 19.2.

Interpretation Let x(t) be a time dependent function which describes a growth
or decay process (population increase/decrease, change of mass, etc.). We consider
a time interval [t, t + h] with h > 0. For x(t) �= 0 the relative change of x in this
time interval is given by

x(t + h) − x(t)

x(t)
= x(t + h)

x(t)
− 1.
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Fig. 19.3 Radioactive decay
with constants
a = −0.5,−1,−2 (top to
bottom)

The relative rate of change (change per unit of time) is thus

x(t + h) − x(t)

t + h − t
· 1

x(t)
= x(t + h) − x(t)

h · x(t)
.

For an ideal growth process this rate only depends on time t . In the limit h → 0 this
leads to the instantaneous relative rate of change

a(t) = lim
h→0

x(t + h) − x(t)

h · x(t)
= ẋ(t)

x(t)
.

Ideal growth processes thus may be modelled by the linear differential equation

ẋ(t) = a(t)x(t).

Example 19.8 (Radioactive decay) Let x(t) be the concentration of a radioactive
substance at time t . In radioactive decay the rate of change does not depend on time
and is negative,

a(t) ≡ a < 0.

The solution of the equation ẋ = ax with initial value x(0) = x0 is

x(t) = eatx0.

It is exponentially decreasing and limt→∞ x(t) = 0; see Fig. 19.3. The half life T ,
the time in which half of the substance has decayed, is obtained from

x0

2
= eaT x0 as T = − log 2

a
.

The half life for a = −2 is indicated in Fig. 19.3 by the dotted lines.

Example 19.9 (Population models) Let x(t) be the size of a population at time t ,
modelled by ẋ = ax. If a constant, positive rate of growth, a > 0, is presumed, then
the population grows exponentially

x(t) = eatx0, lim
t→∞

∣∣x(t)
∣∣ = ∞.
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Fig. 19.4 Population
increase according to Malthus
and Verhulst

One calls this behaviour the Malthusian law.1 In 1839 Verhulst suggested an im-
proved model which also takes limited resources into account

ẋ(t) = (
α − βx(t)

) · x(t) with α,β > 0.

The corresponding discrete model was already discussed in Example 5.3, where L

denoted the quotient α/β .
The rate of growth in Verhulst’s model is population dependent, namely equal to

α − βx(t), and decreases linearly with increasing population. Verhulst’s model can
be solved by separating the variables (or with maple). One obtains

x(t) = α

β + Cαe−αt

and thus, independently of the initial value,

lim
t→∞x(t) = α

β
;

see also Fig. 19.4. The stationary solution x(t) = α/β is an asymptotically stable
equilibrium point of Verhulst’s model; see Sect. 19.5.

Variation of Constants We now turn to the solution of the inhomogeneous equa-
tion

y′ + a(x)y = g(x).

We already know the general solution

yh(x) = c · e−A(x), c ∈ R

of the homogeneous equation with the antiderivative

A(x) =
∫ x

x0

a(ξ)dξ.

1T.R. Malthus, 1766–1834.
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We look for a particular solution of the inhomogeneous equation of the form

yp(x) = c(x) · yh(x) = c(x) · e−A(x),

where we allow the constant c = c(x) to be a function of x (variation of constant).
Substituting this formula into the inhomogeneous equation and differentiating using
the product rule yields

y′
p(x) + a(x)yp(x) = c′(x)yh(x) + c(x)y′

h(x) + a(x)yp(x)

= c′(x)yh(x) − a(x)c(x)yh(x) + a(x)yp(x)

= c′(x)yh(x).

If one equates this expression with the inhomogeneity g(x), one recognises that c(x)

fulfills the differential equation

c′(x) = eA(x)g(x),

which can be solved by integration,

c(x) =
∫ x

x0

eA(ξ)g(ξ)dξ.

We thus obtain the following proposition.

Proposition 19.10 The differential equation

y′ + a(x)y = g(x)

has the general solution

y(x) = e−A(x)

(∫ x

x0

eA(ξ)g(ξ)dξ + K

)

with A(x) = ∫ x

x0
a(ξ)dξ and an arbitrary constant K ∈ R.

Proof By the above considerations, the function y(x) is a solution of the differen-
tial equation y′ + a(x)y = g(x). Conversely, let z(x) be any other solution. Then,
according to the superposition principle, the difference z(x) − y(x) is a solution of
the homogeneous equation, so

z(x) = y(x) + ce−A(x).

Therefore, z(x) also has the form stated in the proposition. �

Corollary 19.11 Let yp be an arbitrary solution of the inhomogeneous linear dif-
ferential equation

y′ + a(x)y = g(x).
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Then its general solution can be written as

y(x) = yp(x) + yh(x) = yp(x) + Ke−A(x), K ∈ R.

Proof This statement follows from the proof of Proposition 19.10 or directly from
the superposition principle. �

Example 19.12 We solve the problem y′ + 2y = e4x + 1. The solution of the homo-
geneous equation is yh(x) = ce−2x . A particular solution can be found by variation
of constants. From

c(x) =
∫ x

0
e2ξ

(
e4ξ + 1

)
dξ = 1

6
e6x + 1

2
e2x − 2

3

it follows that

yp(x) = 1

6
e4x − 2

3
e−2x + 1

2
.

The general solution is thus

y(x) = yp(x) + yh(x) = Ke−2x + 1

6
e4x + 1

2
.

Here, we have combined the two terms containing e−2x . The new constant K can
be determined from an additional initial condition y(0) = α, namely

K = α − 2

3
.

19.3 Existence and Uniqueness of the Solution

Finding analytic solutions of differential equations can be a difficult problem and
is often impossible. Apart from some types of differential equations (for example,
linear problems or equations with separable variables), there is no general procedure
to determine the solution explicitly. Thus numerical methods are used frequently
(see Chap. 21). In the following we discuss the existence and uniqueness of solutions
of general initial value problems.

Proposition 19.13 (Peano’s theorem2) If the function f is continuous in a neigh-
bourhood of (x0, y0), then the initial value problem

y′ = f (x, y), y(x0) = y0

has a solution y(x) for x close to x0.

2G. Peano, 1858–1932.
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Instead of a proof (see [11, Part I, Theorem 7.6]), we discuss the limitations
of this proposition. First it only guarantees the existence of a local solution in the
neighbourhood of the initial value. The next example shows that one cannot expect
more, in general.

Example 19.14 We solve the differential equation ẋ = x2, x(0) = 1. Separation of
the variables yields

∫
dx

x2
=

∫
dt = t + C,

and thus

x(t) = 1

1 − t
.

This function has a singularity at t = 1, where the solution ceases to exist. This
behaviour is called blow up.

Furthermore, Peano’s theorem does not give any information on how many so-
lutions an initial value problem has. In general, solutions need not be unique, as is
shown in the following example.

Example 19.15 The initial value problem y′ = 2
√|y|, y(0) = 0 has infinitely many

solutions

y(x) =

⎧⎪⎨
⎪⎩

(x − b)2 b < x,

0 −a ≤ x ≤ b,

−(x − a)2 x < −a,

a, b ≥ 0 arbitrary.

For example, for x < −a, one verifies at once

y ′(x) = −2(x − a) = 2(a − x) = 2|x − a| = 2
√

(x − a)2 = 2
√|y|.

Thus the continuity of f is not sufficient to guarantee the uniqueness of the so-
lution of initial value problems. One needs somewhat more regularity, namely Lip-
schitz3 continuity with respect to the second variable (see also Definition 24.14).

Definition 19.16 Let D ⊂ R
2 and f : D → R. The function f is said to satisfy

a Lipschitz condition with Lipschitz constant L on D, if the inequality |f (x, y) −
f (x, z)| ≤ L|y − z| holds for all points (x, y), (x, z) ∈ D.

3R. Lipschitz, 1832–1903.
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According to the mean value theorem (Proposition 8.4)

f (x, y) − f (x, z) = ∂f

∂y
(x, ξ)(y − z)

for every differentiable function. If the derivative is bounded, then the function sat-
isfies a Lipschitz condition. In this case one can choose

L = sup

∣∣∣∣∂f∂y (x, ξ)

∣∣∣∣.

Counterexample 19.17 The function g(x, y) = √|y| does not satisfy a Lipschitz
condition in any D that contains a point with y = 0 because

|g(x, y) − g(x,0)|
|y − 0| =

√|y|
|y| = 1√|y| → ∞ for y → 0.

Proposition 19.18 If the function f satisfies a Lipschitz condition in the neighbour-
hood of (x0, y0), then the initial value problem

y′ = f (x, y), y(x0) = y0

has a unique solution y(x) for x close to x0.

Proof We only show uniqueness, the existence of a solution y(x) on the interval
[x0, x0 + H ] follows (for small H ) from Peano’s theorem. Uniqueness is proven
indirectly. Assume that z is another solution, different from y, on the interval
[x0, x0 + H ] with z(x0) = y0. The number

x1 = inf
{
x ∈ R; x0 ≤ x ≤ x0 + H and y(x) �= z(x)

}

is thus well-defined. We infer from the continuity of y and z that y(x1) = z(x1).
Now we choose h > 0 so small that x1 + h ≤ x0 + H and integrate the differential
equation

y′(x) = f
(
x, y(x)

)

from x1 to x1 + h. This gives

y(x1 + h) − y(x1) =
∫ x1+h

x1

y′(x)dx =
∫ x1+h

x1

f
(
x, y(x)

)
dx

and

z(x1 + h) − y(x1) =
∫ x1+h

x1

f
(
x, z(x)

)
dx.
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Subtracting the first formula above from the second yields

z(x1 + h) − y(x1 + h) =
∫ x1+h

x1

(
f

(
x, z(x)

) − f
(
x, y(x)

))
dx.

The Lipschitz condition on f gives

∣∣z(x1 + h) − y(x1 + h)
∣∣ ≤

∫ x1+h

x1

∣∣f (
x, z(x)

) − f
(
x, y(x)

)∣∣dx

≤ L

∫ x1+h

x1

∣∣z(x) − y(x)
∣∣dx.

Let now

M = max
{∣∣z(x) − y(x)

∣∣; x1 ≤ x ≤ x1 + h
}
.

Due to the continuity of y and z, this maximum exists; see the discussion after
Proposition 6.15. After possibly decreasing h this maximum is attained at x1 + h

and

M = ∣∣z(x1 + h) − y(x1 + h)
∣∣ ≤ L

∫ x1+h

x1

M dx ≤ LhM.

For a sufficiently small h, namely Lh < 1, the inequality

M ≤ LhM

implies M = 0. Since one can choose h arbitrarily small, y(x) = z(x) holds true
for x1 ≤ x ≤ x1 + h, in contradiction to the definition of x1. Hence the assumed
different solution z does not exist. �

19.4 Method of Power Series

We have encountered several examples of functions that can be represented as series,
e.g., in Chap. 12. Motivated by this we try to solve the initial value problem

y′ = f (x, y), y(x0) = y0

by means of a series

y(x) =
∞∑

n=0

an(x − x0)
n.

We will use the fact that convergent power series can be differentiated and rear-
ranged term by term; see for instance [3, Chap. 9, Corollary 7.4].
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Example 19.19 We solve once more the linear initial value problem

y′ = y, y(0) = 1.

In order to do so, we differentiate the ansatz

y(x) =
∞∑

n=0

anx
n = a0 + a1x + a2x

2 + a3x
3 + · · ·

term by term with respect to x,

y′(x) =
∞∑

n=1

nanx
n−1 = a1 + 2a2x + 3a3x

2 + 4a4x
3 + · · · ,

and substitute the result into the differential equation to get

a1 + 2a2x + 3a3x
2 + 4a4x

3 + · · · = a0 + a1x + a2x
2 + a3x

3 + · · · .

Since this equation has to hold for all x, the unknowns an can be determined by
equating the coefficients of same powers of x. This gives

a1 = a0, 2a2 = a1,

3a3 = a2, 4a4 = a3,

and so on. Due to a0 = y(0) = 1 this infinite system of equations can be solved
recursively. One obtains

a0 = 1, a1 = 1, a2 = 1

2! , a3 = 1

3! , . . . , an = 1

n!
and thus the (expected) solution

y(x) =
∞∑

n=0

xn

n! = ex.

Example 19.20 (A particular Riccati differential equation 4) For the solution of the
initial value problem

y′ = y2 + x2, y(0) = 1,

we make the ansatz

y(x) =
∞∑

n=0

anx
n = a0 + a1x + a2x

2 + a3x
3 + · · · .

4J.F. Riccati, 1676–1754.
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The initial condition y(0) = 1 immediately gives a0 = 1. First, we compute the
product (see also Proposition 24.10)

y(x)2 = (
1 + a1x + a2x

2 + a3x
3 + · · · )2

= 1 + 2a1x + (
a2

1 + 2a2
)
x2 + (2a3 + 2a2a1)x

3 + · · ·
and substitute it into the differential equation

a1 + 2a2x + 3a3x
2 + 4a4x

3 + · · ·
= 1 + 2a1x + (

1 + a2
1 + 2a2

)
x2 + (2a3 + 2a2a1)x

3 + · · · .

Equating coefficients results in

a1 = 1,

2a2 = 2a1, a2 = 1,

3a3 = 1 + a2
1 + 2a2, a3 = 4/3,

4a4 = 2a3 + 2a2a1, a4 = 7/6, . . . .

Thus we obtain a good approximation to the solution for small x

y(x) = 1 + x + x2 + 4

3
x3 + 7

6
x4 + O

(
x5).

The maple command

dsolve({diff(y(x),x)=xˆ2+y(x)ˆ2, y(0)=1}, y(x), series);

carries out the above computations.

19.5 Qualitative Theory

Often one can describe the qualitative behaviour of the solutions of differential equa-
tions without solving the equations themselves. As the simplest case we discuss the
stability of nonlinear differential equations in the neighbourhood of an equilibrium
point. A differential equation is called autonomous, if its right-hand side does not
explicitly depend on the independent variable.

Definition 19.21 The point y� ∈ R is called an equilibrium of the autonomous dif-
ferential equation y′ = f (y), if f (y�) = 0.

Equilibrium points are particular solutions of the differential equation; so-called
stationary solutions.
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In order to investigate solutions in the neighbourhood of an equilibrium point,
we linearise the differential equation at the equilibrium. Let

w(x) = y(x) − y�

denote the distance of the solution y(x) from the equilibrium. Taylor series expan-
sion of f shows that

w′ = y′ = f (y) = f (y) − f (y�) = f ′(y�)w + O
(
w2),

hence

w′(x) = (
a + O(w)

)
w

with a = f ′(y�). It is decisive how solutions of this problem behave for small w. Ob-
viously the value of the coefficient a+ O(w) is crucial. If a < 0, then a + O(w) < 0
for sufficiently small w and the function |w(x)| decreases. If on the other hand
a > 0, then the function |w(x)| increases for small w. With these considerations
one has proven the following proposition.

Proposition 19.22 Let y� be an equilibrium point of the differential equation
y′ = f (y) and assume that f ′(y�) < 0. Then all solutions of the differential equa-
tion with initial value w(0) close to y� satisfy the estimate

∣∣w(x)
∣∣ ≤ C · ebx · ∣∣w(0)

∣∣
with constants C > 0 and b < 0.

Under the conditions of the proposition one calls the equilibrium point asymp-
totically stable. An asymptotically stable equilibrium attracts all solutions in a suf-
ficiently small neighbourhood (exponentially fast), since due to b < 0

∣∣w(x)
∣∣ → 0 as x → ∞.

Example 19.23 Verhulst’s model,

y′ = (α − βy)y, α,β > 0,

has two equilibrium points, namely y�
1 = 0 and y�

2 = α/β . Due to

f ′(y�
1) = α − 2βy�

1 = α, f ′(y�
2) = α − 2βy�

2 = −α,

y�
1 = 0 is unstable and y�

2 = α/β is asymptotically stable.
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19.6 Exercises

1. Find the general solution of the following differential equations and sketch some
solution curves

(a) ẋ = x

t
, (b) ẋ = t

x
, (c) ẋ = −t

x
.

The direction field is most easily plotted with maple, e.g., with DEplot.
2. Using the applet Dynamical systems in the plane, solve Exercise 1 by rewrit-

ing the respective differential equation as an equivalent autonomous system by
adding the equation ṫ = 1.
Hint. The variables are denoted by x and y in the applet. For example, Exer-
cise 1(a) would have to be written as x′ = x/y and y′ = 1.

3. According to Newton’s law of cooling, the rate of change of the temperature x

of an object is proportional to the difference of its temperature and the ambient
temperature a. This is modelled by the differential equation

ẋ = k(a − x),

where k is a proportionality constant. Find the general solution of this differential
equation.
How long does it take to cool down an object from x(0) = 100° to 40° at an
ambient temperature of 20°, if it cooled down from 100° to 80° in 5 minutes?

4. Solve Verhulst’s differential equation from Example 19.9 and compute the limit
t → ∞ of the solution.

5. A tank contains 100 l of liquid A. Liquid B is added at a rate of 5 l/s, while at the
same time the mixture is pumped out with a rate of 10 l/s. We are interested in
the amount x(t) of the liquid B in the tank at time t . From the balance equation
ẋ(t) = rate(in) − rate(out) = rate(in) − 10 · x(t)/total amount(t) one obtains the
differential equation

ẋ = 5 − 10x

100 − 5t
, x(0) = 0.

Explain the derivation of this equation in detail and use maple (with dsolve)
to solve the initial value problem. When is the tank empty?
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Systems of differential equations, often called differentiable dynamical systems,
play a vital role in modelling time dependent processes in mechanics, meteorol-
ogy, biology, medicine, economics and other sciences. We limit ourselves to two-
dimensional systems, whose solutions (trajectories) can be graphically represented
as curves in the plane. The first section introduces linear systems, which can be
solved analytically as will be shown. In many applications, however, nonlinear sys-
tems are required. In general, their solution cannot be given explicitly. Here it is
of primary interest to understand the qualitative behaviour of solutions. In the sec-
ond section of this chapter, we touch upon the rich qualitative theory of dynamical
systems. Numerical methods will be discussed in Chap. 21.

20.1 Systems of Linear Differential Equations

We start with the description of various situations which lead to systems of differ-
ential equations. In Chap. 19 Malthus’ population model was presented, where the
rate of change of a population x(t) was assumed to be proportional to the existing
population:

ẋ(t) = ax(t).

The presence of a second population y(t) could result in a decrease or increase of
the rate of change of x(t). Conversely, the population x(t) could also affect the rate
of change of y(t). This results in a coupled system of equations,

ẋ(t) = ax(t) + by(t),

ẏ(t) = cx(t) + dy(t),

with positive or negative coefficients b and c, which describe the interaction of the
populations. This is the general form of a linear system of differential equations in

M. Oberguggenberger, A. Ostermann, Analysis for Computer Scientists,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-0-85729-446-3_20, © Springer-Verlag London Limited 2011
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two unknowns, written briefly as

ẋ = ax + by,

ẏ = cx + dy.

Refined models are obtained if one takes into account the dependence of the rate of
growth on food supply, for instance. For one species this would result in an equation
of the form

ẋ = (v − n)x,

where v denotes the available food supply and n a threshold value. So, the popula-
tion is increasing if the available quantity of food is larger than n, and is otherwise
decreasing. In the case of a predator–prey relationship of species x to species y,
in which y is the food for x, the relative rates of change are not constant. A com-
mon assumption is that these rates contain a term that depends linearly on the other
species. Under this assumption, one obtains the nonlinear system

ẋ = (ay − n)x,

ẏ = (d − cx)y.

This is the famous predator–prey model of Lotka1 and Volterra2 (for a detailed
derivation we refer to [13, Chap. 12.2]).

The general form of a system of nonlinear differential equations is

ẋ = f (x, y),

ẏ = g(x, y).

Geometrically this can be interpreted in the following way. The right-hand side de-
fines a vector field

(x, y) �→
[
f (x, y)
g(x, y)

]

on R
2; the left-hand side is the velocity vector of a plane curve

t �→
[
x(t)
y(t)

]
.

The solutions are thus plane curves whose velocity vectors are given by the vector
field.

Example 20.1 (Rotation of the plane) The vector field

(x, y) �→
[−y

x

]

1A.J. Lotka, 1880–1949.
2V. Volterra, 1860–1940.
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Fig. 20.1 Vector field and
solution curves

is perpendicular to the corresponding position vectors [x, y]T; see Fig. 20.1. The
solutions of the system of differential equations

ẋ = −y,

ẏ = x

are the circles (Fig. 20.1)

x(t) = R cos t,

y(t) = R sin t,

where the radius R is given by the initial values, for instance, x(0) = R and
y(0) = 0.

Remark 20.2 The geometrical, two-dimensional representation is made possible by
the fact that the right-hand side of the system does not dependent on time t explicitly.
Such systems are called autonomous. A representation which includes the time axis
(like in Chap. 19), would require a three-dimensional plot with a three-dimensional
direction field

(x, y, t) �→
⎡
⎣f (x, y)

g(x, y)
1

⎤
⎦ .

The solutions are represented as spatial curves

t �→
⎡
⎣x(t)

y(t)
t

⎤
⎦ ;

see the space-time diagram in Fig. 20.2.

Example 20.3 Another type of example which demonstrates the meaning of the
vector field and the solution curves is obtained from the flow of ideal fluids. For
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Fig. 20.2 Direction field and
space–time diagram for
ẋ = −y, ẏ = x

example,

ẋ = 1 − x2 − y2

(x2 + y2)2
,

ẏ = −2xy

(x2 + y2)2

describes a plane, stationary potential flow around the cylinder x2 + y2 ≤ 1
(Fig. 20.3). The right-hand side describes the flow velocity at the point (x, y). The
solution curves follow the stream lines

y

(
1 − 1

x2 + y2

)
= C.

Here C denotes a constant. This can be checked by differentiating the above relation
with respect to t and substituting ẋ and ẏ by the right-hand side of the differential
equation.

Experiment 20.4 Using the applet Dynamical systems in the plane, study the vec-
tor field and the solution curves of the system of differential equations from Exam-
ples 20.1 and 20.3. In a similar way, study the systems of differential equations

ẋ = y, ẋ = y, ẋ = −y, ẋ = x, ẋ = y,

ẏ = −x, ẏ = x, ẏ = −x, ẏ = x, ẏ = y,

and try to understand the behaviour of the solution curves.

Before turning to the solution theory of planar linear systems of differential equa-
tions, it is useful to introduce a couple of notions that serve to describe the qualitative
behaviour of solution curves. The system of differential equations

ẋ(t) = f
(
x(t), y(t)

)
,

ẏ(t) = g
(
x(t), y(t)

)
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Fig. 20.3 Plane potential
flow around a cylinder

together with prescribed values at t = 0

x(0) = x0, y(0) = y0,

is again called an initial value problem. In this chapter we assume the functions
f and g to be at least continuous. By a solution curve or a trajectory we mean
a continuously differentiable curve t �→ [x(t) y(t)]T whose components fulfill the
system of differential equations.

For the case of a single differential equation the notion of an equilibrium point
was introduced in Definition 19.21. For systems of differential equations one has an
analogous notion.

Definition 20.5 (Equilibrium point) A point (x∗, y∗) is called equilibrium point
or equilibrium of the system of differential equations, if f (x∗, y∗) = 0 and
g(x∗, y∗) = 0.

The name comes from the fact that a solution with initial value x0 = x∗, y0 = y∗
remains at (x∗, y∗) for all times; in other words, if (x∗, y∗) is an equilibrium point,
then x(t) = x∗, y(t) = y∗ is a solution to the system of differential equations, since
both the left- and right-hand side will be zero.

From Chap. 19 we know that solutions of differential equations do not have to
exist for large times. However, if solutions with initial values in a neighbourhood of
an equilibrium point exist for all times, then the following notions are meaningful.

Definition 20.6 Let (x∗, y∗) be an equilibrium point. If there is a neighbourhood
U of (x∗, y∗) so that all trajectories with initial values (x0, y0) in U converge to the
equilibrium point (x∗, y∗) as t → ∞, then this equilibrium is called asymptotically
stable. If for every neighbourhood V of (x∗, y∗) there is a neighbourhood W of
(x∗, y∗) so that all trajectories with initial values (x0, y0) in W stay entirely in V ,
then the equilibrium (x∗, y∗) is called stable. An equilibrium point which is not
stable is called unstable.
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In short, stability means that trajectories that start close to the equilibrium point
remain close to it; asymptotic stability means that the trajectories are attracted by
the equilibrium point. In the case of an unstable equilibrium point there are trajec-
tories that move away from it; in linear systems these trajectories are unbounded, in
the nonlinear case they can also converge to another equilibrium or a periodic so-
lution (for instance, see the discussion of the mathematical pendulum in Sect. 20.2
or [13]).

In the following we determine the solution to the initial value problem

ẋ = ax + by, x(0) = x0,

ẏ = cx + dy, y(0) = y0.

This is a two-dimensional system of first-order linear differential equations. For this
purpose we first discuss the three basic types of such systems and then show how
arbitrary systems can be transformed to a system of basic type.

We denote the coefficient matrix by

A =
[
a b

c d

]
.

The decisive question is whether A is similar to a matrix of type I, II or III, as
described in Sect. 23.2. A matrix of type I has real eigenvalues and is similar to a
diagonal matrix. A matrix of type II has a double real eigenvalue, its canonical form,
however, contains a nilpotent part. The case of two complex conjugate eigenvalues
is finally covered by type III.

Type I—Real Eigenvalues, Diagonalisable Matrix In this case the standard form
of the system is

ẋ = αx, x(0) = x0,

ẏ = βy, y(0) = y0.

We know from Example 19.7 that the solutions are given by

x(t) = x0eαt , y(t) = y0eβt

and in particular exist for all times t ∈ R. Obviously (x∗, y∗) = (0,0) is an equilib-
rium point. If α < 0 and β < 0, then all solution curves approach the equilibrium
(0,0) as t → ∞; this equilibrium is asymptotically stable. If α ≥ 0, β ≥ 0 (not both
equal to zero), then the solution curves leave every neighbourhood of (0,0) and the
equilibrium is unstable. Similarly, instability is present in the case where α > 0,
β < 0 (or vice versa). One calls such an equilibrium a saddle point.

If α 	= 0 and x0 	= 0, then one can solve for t and represent the solution curves as
graphs of functions:

et =
(

x

x0

)1/α

, y = y0

(
x

x0

)β/α

.
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Fig. 20.4 Real eigenvalues,
unstable equilibrium

Fig. 20.5 Real eigenvalues,
asymptotically stable
equilibrium

Example 20.7 The three systems

ẋ = x, ẋ = −x, ẋ = x,

ẏ = 2y, ẏ = −2y, ẏ = −2y

have the solutions

x(t) = x0et , x(t) = x0e−t , x(t) = x0et ,

y(t) = y0e2t , y(t) = y0e−2t , y(t) = y0e−2t ,

respectively. The vector fields and some solutions are shown in Figs. 20.4, 20.5,
and 20.6. One recognises that all coordinate half axes are solution curves.

Type II—Double Real Eigenvalue, not Diagonalisable The case of a double
real eigenvalue α = β is a special case of type I, if the coefficient matrix is diag-
onalisable. There is, however, the particular situation of a double eigenvalue and a
nilpotent part. Then the standard form of the system is

ẋ = αx + y, x(0) = x0,

ẏ = αy, y(0) = y0.

We compute the solution component,

y(t) = y0eαt ,
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Fig. 20.6 Real eigenvalues,
saddle point

Fig. 20.7 Double real
eigenvalue, matrix not
diagonalisable

substitute it into the first equation,

ẋ(t) = αx(t) + y0eαt , x(0) = x0,

and apply the variation of constants formula from Chap. 19:

x(t) = eαt

(
x0 +

∫ t

0
e−αsy0eαs ds

)
= eαt (x0 + ty0).

The vector fields and some solution curves for the case α = −1 are depicted in
Fig. 20.7.

Type III—Complex Conjugate Eigenvalues In this case the standard form of the
system is

ẋ = αx − βy, x(0) = x0,

ẏ = βx + αy, y(0) = y0.

By introducing the complex variable z and the complex coefficients γ, z0 as

z = x + iy, γ = α + iβ, z0 = x0 + iy0,
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we see that the above system represents the real and the imaginary part of the equa-
tion

(ẋ + iẏ) = (α + iβ)(x + iy), x(0) + iy(0) = x0 + iy0.

From the complex formulation

ż = γ z, z(0) = z0,

the solutions can be derived immediately:

z(t) = z0eγ t .

Splitting the left- and right-hand sides into real and imaginary part, one obtains

x(t) + iy(t) = (x0 + iy0)e
(α+iβ)t

= (x0 + iy0)e
αt (cosβt + i sinβt).

From this we get (see Sect. 4.2)

x(t) = x0eαt cosβt − y0eαt sinβt,

y(t) = x0eαt sinβt + y0eαt cosβt.

The point (x∗, y∗) = (0,0) is again an equilibrium point. In the case α < 0 it is
asymptotically stable; for α > 0 it is unstable; for α = 0 it is stable but not asymp-
totically stable. Indeed the solution curves are circles and hence bounded, but they
are not attracted by the origin as t → ∞.

Example 20.8 The vector fields and solution curves for the two systems

ẋ = 1

10
x − y, ẋ = − 1

10
x − y,

ẏ = x + 1

10
y, ẏ = x − 1

10
y

are given in Figs. 20.8 and 20.9. For the stable case, ẋ = −y, ẏ = x, we refer to
Fig. 20.1.

General Solution of a Linear System of Differential Equations The similar-
ity transformation from Appendix B allows us to solve arbitrary linear systems of
differential equations by reduction to the three standard cases.

Proposition 20.9 For an arbitrary (2 × 2)-matrix A, the initial value problem[
ẋ(t)

ẏ(t)

]
= A

[
x(t)

y(t)

]
,

[
x(0)

y(0)

]
=

[
x0
y0

]

has a unique solution that exists for all times t ∈ R. This solution can be computed
explicitly by transformation to one of the types I, II or III.
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Fig. 20.8 Complex
eigenvalues, unstable

Fig. 20.9 Complex
eigenvalues, asymptotically
stable

Proof According to Sect. 23.2 there is an invertible matrix T such that

T−1AT = B,

where B belongs to one of the standard types I, II, III. We set
[
u

v

]
= T−1

[
x

y

]

and obtain the transformed system
[
u̇

v̇

]
= T−1

[
ẋ

ẏ

]
= T−1A

[
x

y

]
= T−1AT

[
u

v

]
= B

[
u

v

]
,

[
u(0)

v(0)

]
= T−1

[
x0
y0

]
.

We solve this system of differential equations depending on its type, as explained
above. Each of these systems in standard form has a unique solution which exists
for all times. The reverse transformation[

x

y

]
= T

[
u

v

]

yields the solution of the original system. �

Thus, modulo a linear transformation, types I, II and III actually comprise all
cases that can occur.
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Fig. 20.10 Example 20.10,
vector field and some solution
curves

Example 20.10 We study the solution curves of the system

ẋ = x + 2y,

ẏ = 2x + y.

The corresponding coefficient matrix

A =
[

1 2
2 1

]

has the eigenvalues λ1 = 3 and λ2 = −1 with respective eigenvectors e1 = [1 1]T

and e2 = [−1 1]T. It is of type I, and the origin is a saddle point. The vector field
and some solutions can be seen in Fig. 20.10.

Remark 20.11 The proof of Proposition 20.9 shows the structure of the general
solution of a linear system of differential equations. Assume, for example, that the
roots λ1 and λ2 of the characteristic polynomial of the coefficient matrix are real and
distinct, so the system is of type I. The general solution in transformed coordinates
is given by

u(t) = C1eλ1t , v(t) = C2eλ2t .

If we denote the columns of the transformation matrix by t1, t2, then the solution in
the original coordinates is

[
x(t)

y(t)

]
= t1u(t) + t2v(t) =

[
t11C1eλ1t + t12C2eλ2t

t21C1eλ1t + t22C2eλ2t

]
.

Every component is a particular linear combination of the transformed solutions
u(t), v(t). In the case of complex conjugate roots μ ± iν (type III) the components
of the general solution are particular linear combinations of the functions eμt cosνt

and eμt sinνt . In the case of a double root α (type II), the components are given as
linear combinations of the functions eαt and teαt .
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20.2 Systems of Nonlinear Differential Equations

In contrast to linear systems of differential equations, the solutions to nonlinear
systems can generally not be expressed by explicit formulae. Apart from numerical
methods (Chap. 21) the qualitative theory is of interest. It describes the behaviour of
solutions without knowing them explicitly. In this section we will demonstrate this
with the help of two examples.

The Lotka–Volterra Model In Sect. 20.1 the predator–prey model of Lotka and
Volterra was introduced. In order to simplify the presentation, we set all coefficients
equal to one. Thus the system becomes

ẋ = x(y − 1),

ẏ = y(1 − x).

The equilibrium points are (x∗, y∗) = (1,1) and (x∗∗, y∗∗) = (0,0). Obviously, the
coordinate half axes are solution curves given by

x(t) = x0e−t , x(t) = 0,

y(t) = 0, y(t) = y0et .

The equilibrium (0,0) is thus a saddle point (unstable); we will later analyse the
type of equilibrium (1,1). In the following we will only consider the first quadrant
x ≥ 0, y ≥ 0, which is relevant in biological models. Along the straight line x = 1
the vector field is horizontal, along the straight line y = 1 it is vertical. It looks as if
the solution curves rotate about the equilibrium point (1,1); see Fig. 20.11.

In order to be able to verify this conjecture we search for a function H(x,y)

which is constant along the solution curves:

H
(
x(t), y(t)

) = C.

Such a function is called a first integral, invariant or conserved quantity of the sys-
tem of differential equations. Consequently, we have

d

dt
H

(
x(t), y(t)

) = 0

or by the chain rule for functions in two variables (Proposition 15.16)

∂H

∂x
ẋ + ∂H

∂y
ẏ = 0.

With the ansatz

H(x,y) = F(x) + G(y),
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Fig. 20.11 Vector field of
the Lotka–Volterra model

we should have

F ′(x)ẋ + G′(y)ẏ = 0.

Inserting the differential equations we obtain

F ′(x)x(y − 1) + G′(y)y(1 − x) = 0,

and a separation of the variables yields

xF ′(x)

x − 1
= yG′(y)

y − 1
.

Since the variables x and y are independent of each other, this is only possible if
both sides are constant:

xF ′(x)

x − 1
= C,

yG′(y)

y − 1
= C.

It follows that

F ′(x) = C

(
1 − 1

x

)
, G′(y) = C

(
1 − 1

y

)

and thus

H(x,y) = C(x − logx + y − logy) + D.

This function has a global minimum at (x∗, y∗) = (1,1), as can also be seen in
Fig. 20.12.

The solution curves of the Lotka–Volterra system lie on the level sets

x − logx + y − logy = const.

These level sets are obviously closed curves. The question arises whether the solu-
tion curves are also closed, and the solutions thus would be periodic. In the follow-
ing proposition we will answer this question affirmatively. Periodic, closed solution
curves are called periodic orbits.
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Fig. 20.13 Solution curves
of the Lotka–Volterra model

However, the latter expression diverges to infinity as t → ∞, a contradiction. Con-
sequently, y(t) has to reach the value 1 and thus the region Q2 in finite time. Like-
wise one reasons for the other regions. Thus, there exists a time τ > 0 such that
(x(τ ), y(τ )) = (x0, y0).

From this the periodicity of the orbit follows. Since the system of differential
equations is autonomous, t �→ (x(t + τ), y(t + τ)) is a solution as well. As just
shown, both solutions have the same initial value at t = 0. The uniqueness of the
solution of initial value problems implies that the two solutions are identical, so

x(t) = x(t + τ), y(t) = y(t + τ)

is fulfilled for all times t ∈ R. However, this proves that the solution t �→ (x(t), y(t))

is periodic with period τ .
All solution curves in the first quadrant with the exception of the equilibrium are

thus periodic orbits. Solution curves that start close to (x∗, y∗) = (1,1), stay close;
see Fig. 20.12. The point (1,1) is thus a stable equilibrium. �

Figure 20.13 shows some solution curves. The populations of predator and prey
thus increase and decrease periodically and in opposite direction. For further popu-
lation models we refer to [6].

Pendulum As a second example we consider the mathematical pendulum. It mod-
els an object of mass m that is attached to the origin with a (massless) cord of length
l and moves under the gravitational force −mg; see Fig. 20.14. The variable x(t)

denotes the angle of deflexion from the vertical direction, measured in counterclock-
wise direction. The tangential acceleration of the object is equal to lẍ(t), the tan-
gential component of the gravitational force is −mg sinx(t). According to Newton’s
law, force = mass × acceleration, we have

−mg sinx = mlẍ

or

ẍ = −g

l
sinx.
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Fig. 20.14 Derivation of the
pendulum equation

If we introduce the new variable y = ẋ and, for simplicity, set the coefficient to 1,
then we obtain the system

ẋ = y, x(0) = x0,

ẏ = − sinx, y(0) = y0

describing the mathematical pendulum. Here x denotes the angle of deflexion and y

the angular velocity of the object.
Note that the linearisation

sinx = x + O
(
x3) ≈ x

for small angles x leads to the approximation

ẋ = y,

ẏ = −x.

Apart from the change in sign this system of differential equations coincides with
that of Example 20.1.

In order to describe the shape of the solutions for the mathematical pendulum,
we search again for a first integral of the form

H(x,y) = F(x) + G(y).

As for the Lotka–Volterra model it follows that

F ′(x)y − G′(y) sinx = 0,
F ′(x)

sinx
= G′(y)

y
= C,

and thus

F ′(x) = C sinx, G′(y) = Cy,

so

F(x) = −C cosx + D, G(y) = C
y2

2
+ E.
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Fig. 20.15 Solution curves,
mathematical pendulum

A suitable choice of constants (C = 1,D = 1,E = 0) yields

H(x,y) = y2

2
+ 1 − cosx,

which corresponds just to the total energy of the pendulum. The solution curves for
prescribed initial values (x0, y0) lie on the level sets H(x,y) = C, i.e.,

y2

2
+ 1 − cosx = y2

0

2
+ 1 − cosx0,

y = ±
√

y2
0 − 2 cosx0 + 2 cosx.

Figure 20.15 shows some solution curves. There are unstable equilibria at y = 0,
x = . . . ,−3π,−π,π,3π, . . . which are connected by limit curves. One of the two
limit curves passes through x0 = 0, y0 = 2. The solution with these initial values lies
on the limit curve and approaches the equilibrium (π,0) as t → ∞, and (−π,0) as
t → −∞. Initial values that lie between these limit curves (for instance the values
x0 = 0, |y0| < 2) give rise to periodic solutions of small amplitude (less than π ). The
solutions outside represent large oscillations where the pendulum loops. We remark
that the effects of friction are not taken into account in this model.

20.3 Exercises

1. The space-time diagram of a two-dimensional system of differential equations
(Remark 20.2) can be obtained by introducing time as third variable z(t) = t and
passing to the three-dimensional system

⎡
⎢⎣

ẋ

ẏ

ż

⎤
⎥⎦ =

⎡
⎢⎣

f (x, y)

g(x, y)

1

⎤
⎥⎦ .
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Use this observation to visualise the systems from Examples 20.1 and 20.3. Study
the time depending solution curves with the applet Dynamical systems in space.

2. Compute the general solutions of the following three systems of differential
equations by transformation to standard form:

ẋ = 3

5
x − 4

5
y, ẋ = −3y, ẋ = 7

4
x − 5

4
y,

ẏ = −4

5
x − 3

5
y, ẏ = x, ẏ = 5

4
x + 1

4
y.

Visualise the solution curves with the applet Dynamical systems in the plane.
3. Small, undamped oscillations of an object of mass m attached to a spring are

described by the differential equation

mẍ + kx = 0.

Here, x = x(t) denotes the displacement from the position of rest and k is the
spring stiffness. Introduce the variable y = ẋ and rewrite the second-order dif-
ferential equation as a linear system of differential equations. Find the general
solution.

4. A company deposits its profits in an account with continuous interest rate a%.
The balance is denoted by x(t). Simultaneously the amount y(t) is withdrawn
continuously from the account, where the rate of withdrawal is equal to b% of
the account balance. With r = a/100, s = b/100 this leads to the linear system
of differential equations

ẋ(t) = r
(
x(t) − y(t)

)
,

ẏ(t) = sx(t).

Find the solution (x(t), y(t)) for the initial values x(0) = 1, y(0) = 0 and analyse
how big s can be in comparison to r so that the account balance x(t) is increasing
for all times without oscillations.

5. A national economy has two sectors (for instance industry and agriculture) with
the production volumes x1(t), x2(t) at time t . If one assumes that the invest-
ments are proportional to the respective growth rate, then the classical model of
Leontief 3 [23, Chap. 9.5] states

x1(t) = a11x1(t) + a12x2(t) + b1ẋ1(t) + c1(t),

x2(t) = a21x1(t) + a22x2(t) + b2ẋ2(t) + c2(t).

Here aij denotes the required amount of goods from sector i to produce one
unit of goods in sector j . Further bi ẋi(t) are the investments, and ci(t) is the
consumption in sector i. Under the simplifying assumptions a11 = a22 = 0,

3W. Leontief, 1906–1999.
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a12 = a21 = a (0 < a < 1), b1 = b2 = 1, c1(t) = c2(t) = 0 (no consumption)
one obtains the system of differential equations

ẋ1(t) = x1(t) − ax2(t),

ẋ2(t) = −ax1(t) + x2(t).

Find the general solution and discuss the result.
6. Use the applet Dynamical systems in the plane to analyse the solution curves of

the differential equations of the mathematical pendulum and translate the math-
ematical results to statements about the mechanical behaviour.



21Numerical Solution of Differential Equations

As we have seen in the previous two chapters, only particular classes of differential
equations can be solved analytically. Especially for nonlinear problems one has to
rely on numerical methods.

In this chapter we discuss several variants of Euler’s method, taking the latter as
a prototype. Motivated by the Taylor expansion of the analytical solution we deduce
Euler approximations and study their stability properties. In this way we introduce
the reader to several important aspects of the numerical solution of differential equa-
tions. We point out, however, that for most real-life applications one has to use more
sophisticated numerical methods.

21.1 The Explicit Euler Method

The differential equation

y′(x) = f
(
x, y(x)

)

defines the slope of the tangent to the solution curve y(x). Expanding the solution
at the point x + h into a Taylor series,

y(x + h) = y(x) + hy′(x) + O
(
h2),

and inserting the above value for y′(x), one obtains

y(x + h) = y(x) + hf
(
x, y(x)

) + O
(
h2),

and consequently for small h we have the approximation

y(x + h) ≈ y(x) + hf
(
x, y(x)

)
.

This observation motivates the (explicit) Euler method.
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Fig. 21.1 Equidistant grid points xj = x0 + jh

Fig. 21.2 Euler
approximation to
y′ = y, y(0) = 1

Euler’s Method For the numerical solution of the initial value problem

y′(x) = f
(
x, y(x)

)
, y(a) = y0

on the interval [a, b] we first divide the interval into N parts of length h = (b−a)/N

and define the grid points xj = x0 + jh, 0 ≤ j ≤ N ; see Fig. 21.1.
The distance h between two grid points is called the step size. We look for a

numerical approximation yn to the exact solution y(xn) at xn, i.e. yn ≈ y(xn). Ac-
cording to the considerations above we should have

y(xn+1) ≈ y(xn) + hf
(
xn, y(xn)

)
.

If one replaces the exact solution by the numerical approximation and ≈ by =,
then one obtains the explicit Euler method

yn+1 = yn + hf (xn, yn),

which defines the approximation yn+1 as a function of yn.
Starting from the initial value y0 one computes from this recursion the approx-

imations y1, y2, . . . , yN ≈ y(b). The points (xi, yi) are the vertices of a polygon
which approximates the graph of the exact solution y(x). Figure 21.2 shows the ex-
act solution of the differential equation y′ = y, y(0) = 1 as well as polygons defined
by Euler’s method for three different step sizes.

Euler’s method is convergent of order 1; see [11, Chap. II.3]. On bounded inter-
vals [a, b] one thus has the uniform error estimate

∣∣y(xn) − yn

∣∣ ≤ Ch
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for all n ≥ 1 and sufficiently small h with 0 ≤ nh ≤ b − a. The constant C depends
on the length of the interval and the solution y(x); however, it does not depend on
n and h.

Example 21.1 The solution of the initial value problem y′ = y, y(0) = 1 is
y(x) = ex . For nh = 1 the numerical solution yn approximates the exact solution
at x = 1. Due to

yn = yn−1 + hyn−1 = (1 + h)yn−1 = · · · = (1 + h)ny0

we have

yn = (1 + h)n =
(

1 + 1

n

)n

≈ e.

The convergence of Euler’s method thus implies

e = lim
n→∞

(
1 + 1

n

)n

.

This formula for e was already deduced in Example 7.11.

In commercial software packages, methods of higher order are used for the
numerical integration, for example Runge–Kutta or multi-step methods. All these
methods are refinements of Euler’s method. In modern implementations of these al-
gorithms the error is automatically estimated and the step size adaptively adjusted
to the problem. For more details, we refer to [11, 12].

Experiment 21.2 In MATLAB you can find information on the numerical solution
of differential equations by calling help funfun. For example, one can solve the
initial value problem

y′ = y2, y(0) = 0.9

on the interval [0,1] with the command

[x,y] = ode23(’qfun’,[0,1],0.9).

The file qfun.m has to contain the definition of the function

function yp = f(x,y)

yp = y.ˆ2 .

For a plot of the solution, one sets the option

myopt = odeset(’OutputFcn’,’odeplot’)
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and calls the solver by

[x,y] = ode23(’qfun’, [0,1], 0.9, myopt) .

Start the program with different initial values and observe the blow up for y(0) ≥ 1.

21.2 Stability and Stiff Problems

The linear differential equation

y′ = ay, y(0) = 1

has the solution

y(x) = eax.

For a ≤ 0 this solution has the following qualitative property, independent of the
size of a:

∣∣y(x)
∣∣ ≤ 1 for all x ≥ 0.

We are investigating whether numerical methods preserve this property. In order to
do so, we solve the differential equation with the explicit Euler method and obtain

yn = yn−1 + hayn−1 = (1 + ha)yn−1 = · · · = (1 + ha)ny0 = (1 + ha)n.

For −2 ≤ ha ≤ 0 the numerical solution obeys the same bound,

|yn| =
∣∣(1 + ha)n

∣∣ = ∣∣1 + ha
∣∣n ≤ 1,

as the exact solution. However, for ha < −2 a dramatic instability occurs although
the exact solution is harmless. In fact, all explicit methods have the same difficulties
in this situation: the solution is only stable under very restrictive conditions on the
step size. For the explicit Euler method the condition for stability is

−2 ≤ ha ≤ 0.

For a � 0 this implies a drastic restriction on the step size, which eventually makes
the method in this situation inefficient.

In this case a remedy is offered by implicit methods, for example, the implicit
Euler method

yn+1 = yn + hf (xn+1, yn+1).

It differs from the explicit method by the fact that the slope of the tangent is now
taken at the endpoint. For the determination of the numerical solution, a nonlinear
equation has to be solved in general. Therefore, such methods are called implicit.
The implicit Euler method has the same accuracy as the explicit one, but by far better
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stability properties, as the following analysis shows. If one applies the implicit Euler
method to the initial value problem

y′ = ay, y(0) = 1, with a ≤ 0,

one obtains

yn = yn−1 + hf (xn, yn) = yn−1 + hayn,

and therefore

yn = 1

1 − ha
yn−1 = · · · = 1

(1 − ha)n
y0 = 1

(1 − ha)n
.

The procedure is thus stable, i.e. |yn| ≤ 1, if∣∣(1 − ha)n
∣∣ ≥ 1.

However, for a ≤ 0 this is fulfilled for all h ≥ 0. Thus the procedure is stable for
arbitrarily large step sizes.

Remark 21.3 A differential equation is called stiff, if for its solution the implicit
Euler method is more efficient than the explicit method. (Often it is dramatically
more efficient.)

Example 21.4 (From [12, Chap. IV.1]) We integrate the initial value problem

y′ = −50(y − cosx), y(0) = 0.997.

Its exact solution is

y(x) = 2500

2501
cosx + 50

2501
sinx − 6503

250100
e−50x

≈ cos(x − 0.02) − 0.0026e−50x.

The solution looks quite harmless and resembles cosx, but the equation is stiff with
a = −50. Warned by the analysis above we expect difficulties for explicit methods.

We integrate this differential equation numerically on the interval [0,10] with
the explicit Euler method and step sizes h = 10/n with n = 250, 248 and 246.
For n < 250, i.e. h > 1/25, exponential instabilities occur; see Fig. 21.3. This is
consistent with the considerations above, because the product ah satisfies ah ≤ −2
for h > 1/25.

However, if one integrates the differential equation with the implicit Euler
method, then even for very large step sizes no instabilities arise; see Fig. 21.4. The
implicit Euler method is more costly than the explicit one, as the computation of
yn+1 from

yn+1 = yn + hf (xn+1, yn+1)

generally requires the solution of a nonlinear equation.
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Fig. 21.3 Instability of the explicit Euler method. In each case the pictures show the exact solution
and the approximating polygons of Euler’s method with n steps

Fig. 21.4 Stability of the implicit Euler method. In each case the pictures show the exact solution
and the approximating polygons of Euler’s method with n steps

21.3 Systems of Differential Equations

For the derivation of a simple numerical method for solving systems of differential
equations

ẋ(t) = f
(
t, x(t), y(t)

)
, x(t0) = x0,

ẏ(t) = g
(
t, x(t), y(t)

)
, y(t0) = y0,

one again starts from the Taylor expansion of the analytic solution

x(t + h) = x(t) + hẋ(t) + O
(
h2),

y(t + h) = y(t) + hẏ(t) + O
(
h2),

and replaces the derivatives by the right-hand sides of the differential equations. For
small step sizes h, this motivates the explicit Euler method

xn+1 = xn + hf (tn, xn, yn),

yn+1 = yn + hg(tn, xn, yn).

One interprets xn and yn as numerical approximations to the exact solution x(tn)

and y(tn) at time tn = t0 + nh.
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Fig. 21.5 Numerical computation of a periodic orbit of the Lotka–Volterra model. The system
was integrated on the interval 0 ≤ t ≤ 14 with Euler’s method and constant step sizes h = 14/n for
n = 250, 500 and 1000

Example 21.5 In Sect. 20.2 we have investigated the Lotka–Volterra model

ẋ = x(y − 1),

ẏ = y(1 − x).

In order to compute the periodic orbit through the point (x0, y0) = (2,2) numeri-
cally, we apply the explicit Euler method and obtain the recursion

xn+1 = xn + hxn(yn − 1),

yn+1 = yn + hyn(1 − xn).

Starting from the initial values x0 = 2 and y0 = 2 this recursion determines the
numerical solution for n ≥ 0. The results for three different step sizes are depicted
in Fig. 21.5. Note the linear convergence of the numerical solution for h → 0.

This numerical experiment shows that one has to choose a very small step size
in order to obtain the periodicity of the true orbit in the numerical solution. Alterna-
tively, one can use numerical methods of higher order or—in the present example—
also the following modification of Euler’s method:

xn+1 = xn + hxn(yn − 1),

yn+1 = yn + hyn(1 − xn+1).

In this method one uses instead of xn the updated value xn+1 for the computation
of yn+1. The numerical results, obtained with this modified Euler method, are given
in Fig. 21.6. One clearly recognises the superiority of this approach compared to
the original one. Clearly, the geometric structure of the solution has better been
captured.

21.4 Exercises

1. Solve the special Riccati equation y′ = x2 + y2, y(0) = −4 for 0 ≤ x ≤ 2 with
MATLAB.
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Fig. 21.6 Numerical computation of a periodic orbit of the Lotka–Volterra model. The system
was integrated on the interval 0 ≤ t ≤ 14 with the modified Euler method with constant step sizes
h = 14/n for n = 50, 100 and 200

2. Solve with MATLAB the linear system of differential equations

ẋ = y, ẏ = −x

with initial values x(0) = 1 and y(0) = 0 on the interval [0, b] for b = 2π , 10π

and 200π . Explain the observations.
Hint. In MATLAB one can use the command ode23(’mat21_1’,[0 2*pi],
[0 1]) where the file mat21_1.m defines the right-hand side of the differen-
tial equation.

3. Solve the Lotka–Volterra system

ẋ = x(y − 1), ẏ = y(1 − x)

for 0 ≤ t ≤ 14 with initial values x(0) = 2 and y(0) = 2 in MATLAB. Compare
your results with Figs. 21.5 and 21.6.



22Appendix A: Vector Algebra

In various sections of this book we referred to the notion of a vector. We assumed
the reader to have a basic knowledge on standard school level. In this appendix we
recapitulate some basic notions of vector algebra. For a more detailed presentation
we refer to [2].

22.1 Cartesian Coordinate Systems

A Cartesian coordinate system in the plane (in space) consists of two (three) real
lines (coordinate axes) which intersect in right angles at the point O (origin). We
always assume that the coordinate system is positively (right-handed) oriented. In a
planar right-handed system, the positive y-axis lies to the left in viewing direction
of the positive x-axis. In a positively oriented three dimensional coordinate system,
the direction of the positive z-axis is obtained by turning the x-axis in the direction
of the y-axis according to the right-hand rule; see Fig. 22.2.

The coordinates of a point are obtained by parallel projection of the point onto
the coordinate axes; see Fig. 22.1. In the case of the plane, the point A has the
coordinates a1 and a2, and we write

A = (a1, a2) ∈ R
2.

In an analogous way a point A in space with coordinates a1, a2 and a3 is denoted as

A = (a1, a2, a3) ∈ R
3.

Thus one has a unique representation of points by pairs or triples of real numbers.

22.2 Vectors

For two points P and Q in the plane (in space) there exists exactly one parallel
translation which moves P to Q. This translation is called a vector. Vectors are thus
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Fig. 22.1 Cartesian
coordinate system in the
plane

Fig. 22.2 Cartesian
coordinate system in space

quantities with direction and length. The direction is that from P to Q, the length
is the distance between the two points. Vectors are used to model, e.g., forces and
velocities. We always write vectors in boldface.

For a vector a, the vector −a denotes the parallel translation which undoes the
action of a; the zero vector 0 does not cause any translation. The composition of
two parallel translations is again a parallel translation. The corresponding operation
for vectors is called addition and is performed according to the parallelogram rule.
For a real number λ ≥ 0, the vector λa is the vector which has the same direction
as a, but λ times the length of a. This operation is called scalar multiplication. For
addition and scalar multiplication the usual rules of computation apply.

Let a be the parallel translation from P to Q. The length of the vector a, i.e., the
distance between P and Q, is called norm (or magnitude) of the vector. We denote
it by ‖a‖. A vector e with ‖e‖ = 1 is called a unit vector.

22.3 Vectors in a Cartesian Coordinate System

In a Cartesian coordinate system with origin O , we denote the three unit vectors in
direction of the three coordinate axes by e1, e2, e3; see Fig. 22.3. These three vectors
are called the standard basis of R

3. Here e1 stands for the parallel translation which
moves O to (1,0,0), etc.

The vector a which moves O to A can be decomposed in a unique way as a =
a1e1 + a2e2 + a3e3. We denote it by

a =
⎡
⎣a1

a2
a3

⎤
⎦ ,
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22.4 The Inner Product (Dot Product)

The angle �(a,b) between two vectors a,b is uniquely determined by the condition
0 ≤ �(a,b) ≤ π . One calls a vector a orthogonal (perpendicular) to b (in symbols:
a ⊥ b), if �(a,b) = π

2 . By definition, the zero vector 0 is orthogonal to all vectors.

Definition 22.3 Let a,b be planar (or spatial) vectors. The number

〈a,b〉 =
{

‖a‖ · ‖b‖ · cos�(a,b) a 	= 0,b 	= 0,

0 otherwise,

is called the inner product (dot product) of a and b.

For planar vectors a,b ∈ R
2, the inner product is calculated from their compo-

nents, thus:

〈a,b〉 =
〈[

a1
a2

]
,

[
b1
b2

]〉
= a1b1 + a2b2.

For vectors a,b ∈ R
3 the analogous formula holds:

〈a,b〉 =
〈⎡
⎣a1

a2
a3

⎤
⎦ ,

⎡
⎣b1

b2
b3

⎤
⎦

〉
= a1b1 + a2b2 + a3b3.

Example 22.4 The standard basis vectors ei have length 1 and are mutually orthog-
onal, i.e.,

〈ei , ej 〉 =
{

1, i = j,

0, i 	= j.

For vectors a, b, c and a scalar λ ∈ R, the inner product obeys the rules
(a) 〈a,b〉 = 〈b,a〉
(b) 〈a,a〉 = ‖a‖2

(c) 〈a,b〉 = 0 ⇔ a ⊥ b
(d) 〈λa,b〉 = 〈a, λb〉 = λ〈a,b〉
(e) 〈a + b, c〉 = 〈a, c〉 + 〈b, c〉.

Example 22.5 For the vectors

a =
⎡
⎣ 2

−4
0

⎤
⎦ , b =

⎡
⎣6

3
4

⎤
⎦ , c =

⎡
⎣ 1

0
−1

⎤
⎦

we have

‖a‖2 = 4 + 16 = 20, ‖b‖2 = 36 + 9 + 16 = 61, ‖c‖2 = 1 + 1 = 2,
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and

〈a,b〉 = 12 − 12 = 0, 〈a, c〉 = 2.

From this we conclude that a is perpendicular to b and

cos�(a, c) = 〈a, c〉
‖a‖ · ‖c‖ = 2√

20
√

2
= 1√

10
.

The value of the angle between a and c is thus

�(a, c) = arccos
1√
10

= 1.249 rad.

22.5 The Outer Product (Cross Product)

For vectors a,b in R
2 one defines

a × b =
[
a1
a2

]
×

[
b1
b2

]
= det

[
a1 b1
a2 b2

]
= a1b2 − a2b1 ∈ R,

the cross product of a and b. An elementary calculation shows that

|a × b| = ‖a‖ · ‖b‖ · sin�(a,b).

Thus |a × b| is the area of the parallelogram spanned by a and b.
For vectors a,b ∈ R

3 one defines the cross product by

a × b =
⎡
⎣a1

a2
a3

⎤
⎦ ×

⎡
⎣b1

b2
b3

⎤
⎦ =

⎡
⎣a2b3 − a3b2

a3b1 − a1b3
a1b2 − a2b1

⎤
⎦ ∈ R

3.

This product has the following geometric interpretation: If a = 0 or b = 0 or a = λb
then a × b = 0. Otherwise a × b is the vector
(a) which is perpendicular to a and b: 〈a × b,a〉 = 〈a × b,b〉 = 0
(b) which is directed such that a,b,a × b forms a right-handed system
(c) whose length is equal to the area F of the parallelogram spanned by a and b:

F = ‖a × b‖ = ‖a‖ · ‖b‖ · sin�(a,b).

Example 22.6 Let E be the plane spanned by the two vectors

a =
⎡
⎣ 1

−1
2

⎤
⎦ and b =

⎡
⎣1

0
1

⎤
⎦ .
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Then

a × b =
⎡
⎣ 1

−1
2

⎤
⎦ ×

⎡
⎣1

0
1

⎤
⎦ =

⎡
⎣−1

1
1

⎤
⎦

is a vector perpendicular to this plane.

For a,b, c ∈ R
3 and λ ∈ R, the following rules apply:

(a) a × a = 0, a × b = −(b × a)

(b) λ(a × b) = (λa) × b = a × (λb)

(c) (a + b) × c = a × c + b × c.
However, the cross product is not associative and

a × (b × c) 	= (a × b) × c

for general a, b, c. For instance, the standard basis vectors of the R
3 satisfy the

following identities:

e1 × (e1 × e2) = e1 × e3 = −e2,

(e1 × e1) × e2 = 0 × e2 = 0.

22.6 Straight Lines in the Plane

The general equation of a straight line in the (x, y)-plane is

ax + by = c,

where at least one of the coefficients a and b must be different from zero. The
straight line consists of all points (x, y) which satisfy the above equation,

g = {
(x, y) ∈ R

2; ax + by = c
}
.

If b = 0 (and thus a 	= 0) we get

x = c

a
,

and thus a line parallel to the y-axis. If b 	= 0, one can solve for y and obtains the
standard form of a straight line:

y = −a

b
x + c

b
= kx + d

with slope k and intercept d .
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The parametric representation of the straight line is obtained from the general
solution of the linear equation

ax + by = c.

Since this equation is underdetermined, one replaces the independent variable by a
parameter and solves for the other variable.

Example 22.7 In the equation

y = kx + d

x is considered as independent variable. One sets x = λ, and one obtains y = kλ+d

and thus the parametric representation

[
x

y

]
=

[
0
d

]
+ λ

[
1
k

]
, λ ∈ R.

Example 22.8 In the equation

x = 4

y is the independent variable (it does not even appear). This straight line in para-
metric representation is

[
x

y

]
=

[
4
0

]
+ λ

[
0
1

]
.

In general, the parametric representation of a straight line is of the form

[
x

y

]
=

[
p

q

]
+ λ

[
u

v

]
, λ ∈ R

(position vector of a point plus a multiple of a direction vector). A vector perpen-
dicular to this straight line is called a normal vector. It is a multiple of

[
v

−u

]
, since

〈[
u

v

]
,

[
v

−u

]〉
= 0.

The conversion to the nonparametric form is obtained by multiplying the equation
in parametric form by a normal vector. Thereby the parameter is eliminated. In the
example above one obtains

vx − uy = pv − qu.

In particular, the coefficients of x and y in the nonparametric form are just the
components of a normal vector of the straight line.
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22.7 Planes in Space

The general form of a plane in R
3 is

ax + by + cz = d,

where at least one of the coefficients a, b, c is different from zero. The plane consists
of all points which satisfy the above equation, i.e.,

E = {
(x, y, z) ∈ R

3; ax + by + cz = d
}
.

Since at least one of the coefficients is nonzero, one can solve the equation for the
corresponding unknown.

For example, if c 	= 0 one can solve for z to obtain

z = −a

c
x − b

c
y + d

c
= kx + ly + e.

Here k represents the slope in the x-direction, l is the slope in the y-direction and e

the intercept on the z-axis (because z = e for x = y = 0). By introducing parameters
for the independent variables x and y,

x = λ, y = μ, z = kλ + lμ + e,

one thus obtains the parametric representation of the plane:

⎡
⎣x

y

z

⎤
⎦ =

⎡
⎣0

0
e

⎤
⎦ + λ

⎡
⎣1

0
k

⎤
⎦ + μ

⎡
⎣0

1
l

⎤
⎦ , λ,μ ∈ R.

In general, the parametric representation of a plane in R
3 is

⎡
⎣x

y

z

⎤
⎦ =

⎡
⎣p

q

r

⎤
⎦ + λ

⎡
⎣v1

v2
v3

⎤
⎦ + μ

⎡
⎣w1

w2
w3

⎤
⎦

with v × w 	= 0. If one multiplies this equation with v × w and uses

〈v,v × w〉 = 〈w,v × w〉 = 0,

one again obtains the nonparametric form

〈⎡
⎣x

y

z

⎤
⎦ ,v × w

〉
=

〈⎡
⎣p

q

r

⎤
⎦ ,v × w

〉
.
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Example 22.9 We compute the nonparametric form of the plane

⎡
⎣x

y

z

⎤
⎦ =

⎡
⎣3

1
1

⎤
⎦ + λ

⎡
⎣ 1

−1
2

⎤
⎦ + μ

⎡
⎣1

0
1

⎤
⎦ .

A normal vector to this plane is given by

v × w =
⎡
⎣ 1

−1
2

⎤
⎦ ×

⎡
⎣1

0
1

⎤
⎦ =

⎡
⎣−1

1
1

⎤
⎦ ,

and thus the equation of the plane is

−x + y + z = −1.

22.8 Straight Lines in Space

A straight line in R
3 can be seen as the intersection of two planes:

g :
{

ax + by + cz = d,

ex + fy + gz = h.

The straight line is the set of all points (x, y, z) which fulfill this system of equations
(two equations in three unknowns). Generically, the solution of the above system
can be parametrised by one parameter (this is the case of a straight line). However,
it may also happen that the planes are parallel. In this situation they either coincide,
or they do not intersect at all.

A straight line can also be represented parametrically by the position vector of a
point and an arbitrary multiple of a direction vector:

⎡
⎣x

y

z

⎤
⎦ =

⎡
⎣p

q

r

⎤
⎦ + λ

⎡
⎣u

v

w

⎤
⎦ , λ ∈ R.

The direction vector is obtained as difference of the position vectors of two points
on the straight line.

Example 22.10 We want to determine the straight line through the points P =
(1,2,0) and Q = (3,1,2). A direction vector a of this line is given by

a =
⎡
⎣3

1
2

⎤
⎦ −

⎡
⎣1

2
0

⎤
⎦ =

⎡
⎣ 2

−1
2

⎤
⎦ .
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Thus a parametric representation of the straight line is

g :
⎡
⎣x

y

z

⎤
⎦ =

⎡
⎣1

2
0

⎤
⎦ + λ

⎡
⎣ 2

−1
2

⎤
⎦ , λ ∈ R.

The conversion from parametric to nonparametric form and vice versa is achieved
by elimination or introduction of a parameter λ. In the example above one computes
z = 2λ from the last equation and inserts it into the first two equations. This yields
the nonparametric form

x − z = 1,

2y + z = 4.
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In this book matrix algebra is required in multi-dimensional calculus, for systems of
differential equations and for linear regression. This appendix serves to outline the
basic notions. A more detailed presentation can be found in [2].

23.1 Matrix Algebra

An (m × n)-matrix A is a rectangular scheme of the form

A =

⎡
⎢⎢⎢⎢⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...

am1 am2 . . . amn

⎤
⎥⎥⎥⎥⎦ .

The entries (coefficients, elements) aij , i = 1, . . . ,m, j = 1, . . . , n of the matrix A
are real or complex numbers. In this section we restrict ourselves to real numbers.
An (m×n)-matrix has m rows and n columns; if m = n, the matrix is called square.
Vectors of length m can be understood as matrices with one column, i.e. as (m× 1)-
matrices. In particular, one refers to the columns

aj =

⎡
⎢⎢⎢⎣

a1j

a2j

...

amj

⎤
⎥⎥⎥⎦ , j = 1, . . . , n,

of a matrix A as column vectors and accordingly also writes

A = [a1
...a2

... . . .
...an]

for the matrix. The rows of the matrix are sometimes called row vectors.
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The product of an (m × n)-matrix A with a vector x of length n is defined as

y = Ax,

⎡
⎢⎢⎢⎣

y1
y2
...

ym

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

a11x1 + a12x2 + · · · + a1nxn

a21x1 + a22x2 + · · · + a2nxn

...

am1x1 + am2x2 + · · · + amnxn

⎤
⎥⎥⎥⎦

and results in a vector y of length m. The kth entry of y is obtained by the inner
product of the kth row vector of the matrix A (written as a column) with the vector x.

Example 23.1 For instance, the product of a (2×3)-matrix with a vector of length 3
is computed as follows:

A =
[

a b c

d e f

]
, x =

⎡
⎣ 3

−1
2

⎤
⎦ , Ax =

[
3a − b + 2c

3d − e + 2f

]
.

The assignment x �→ y = Ax defines a linear mapping from R
n to R

m. The linearity
is characterised by the validity of the relations

A(u + v) = Au + Av, A(λu) = λAu

for all u,v ∈ R
n and λ ∈ R, which follow immediately from the definition of matrix

multiplication. If ej is the j th standard basis vector of R
n, then obviously

aj = Aej .

This means that the columns of the matrix A are just the images of the standard
basis vectors under the linear mapping defined by A.

Matrix Arithmetic Matrices of the same format can be added and subtracted by
adding or subtracting their components. Multiplication with a number λ ∈ R is also
defined componentwise. The transpose AT of a matrix A is obtained by swapping
rows and columns, i.e., the ith row of the matrix AT consists of the elements of the
ith column of A:

A =

⎡
⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...

am1 am2 . . . amn

⎤
⎥⎥⎥⎥⎥⎦

, AT =

⎡
⎢⎢⎢⎢⎢⎣

a11 a21 . . . am1

a12 a22 . . . am2

...
...

...

a1n a2n . . . amn

⎤
⎥⎥⎥⎥⎥⎦

.

By transposition an (m×n)-matrix becomes an (n×m)-matrix. In particular, trans-
position changes a column vector into a row vector and vice versa.
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Example 23.2 For the matrix A and the vector x from Example 23.1, we have

AT =
⎡
⎣a d

b e

c f

⎤
⎦ , xT = [3 − 1 2], x = [3 − 1 2]T.

If a,b are vectors of length n, then one can regard aT as a (1 × n)-matrix. Its
product with the vector b is defined as above and coincides with the inner product:

aTb =
n∑

i=1

aibi = 〈a,b〉.

More generally, the product of an (m × n)-matrix A with an (n × l)-matrix B can
be defined by forming the inner products of the row vectors of A with the column
vectors of B. This means that the element cij in the ith row and j th column of
C = AB is obtained by inner multiplication of the ith row of A with the j th column
of B:

cij =
n∑

k=1

aikbkj .

The result is an (m× l)-matrix. The product is only defined if the dimensions match,
i.e., if the number of columns n of A is equal to the number of rows of B. The matrix
product corresponds to the composition of linear mappings. If B is the matrix of a
linear mapping R

l → R
n and A the matrix of a linear mapping R

n → R
m, then AB

is just the matrix of the composition of the two mappings R
l → R

n → R
m. The

transposition of the product is given by the formula

(AB)T = BTAT,

which can easily be deduced from the definitions.

Square Matrices The entries a11, a22, . . . , ann of an (n × n)-matrix A are called
the diagonal elements. A square matrix D is called a diagonal matrix, if its entries
are all zero with the possible exception of the diagonal elements. Special cases are
the zero matrix and the unit matrix of dimension n × n:

O =

⎡
⎢⎢⎢⎣

0 0 . . . 0
0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎤
⎥⎥⎥⎦ , I =

⎡
⎢⎢⎢⎣

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

⎤
⎥⎥⎥⎦ .

The unit matrix is the identity with respect to matrix multiplication. For all (n × n)-
matrices A the following holds: IA = AI = A. If for a given matrix A there exists a
matrix B with the property

BA = AB = I,
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then one calls A invertible or regular and B the inverse of A, denoted by

B = A−1.

Let x ∈ R
n, A an invertible (n × n)-matrix and y = Ax. Then x can be computed

as x = A−1y; in particular, A−1Ax = x and AA−1y = y. This shows that the linear
mapping R

n → R
n induced by the matrix A is bijective and A−1 represents the in-

verse mapping. The bijectivity of A can be expressed in yet another way. Bijectivity
means that for every y ∈ R

n there is one and only one x ∈ R
n such that

Ax = y, or

a11x1 + a12x2 + · · · + a1nxn = y1,

a21x1 + a22x2 + · · · + a2nxn = y2,
...

...
...

...

am1x1 + am2x2 + · · · + amnxn = yn.

The latter can be considered as a linear system of equations with right-hand side
y and solution x = [x1 x2 . . . xn]T. In other words, invertibility of a matrix A is
equivalent to bijectivity of the corresponding linear mapping and equivalent with
the unique solvability of the corresponding linear system of equations (for arbitrary
right-hand sides).

For the remainder of this appendix we restrict our attention to (2 × 2)-matrices.
Let A be a (2 × 2)-matrix with the corresponding system of equations:

A = [a1
...a2] =

[
a11 a12
a21 a22

]
,

a11x1 + a12x2 = y1,

a21x1 + a22x2 = y2.

An important role is played by the determinant of the matrix A. In the (2 × 2)-case
it is defined as the cross product of the column vectors:

det A = a1 × a2 = a11a22 − a21a12.

Since a1 × a2 = ‖a1‖‖a2‖ sin�(a1,a2), the column vectors a1,a2 are linearly de-
pendent (so—in R

2—multiples of each other), if and only if det A = 0. The follow-
ing theorem characterises invertibility in the (2 × 2)-case completely.

Proposition 23.3 For (2 × 2)-matrices A the following statements are equivalent:
(a) A is invertible.
(b) The linear mapping R

2 → R
2 defined by A is bijective.

(c) The linear system of equations Ax = y has a unique solution x ∈ R
2 for arbi-

trary right-hand sides y ∈ R
2.

(d) The column vectors of A are linearly independent.
(e) The linear mapping R

2 → R
2 defined by A is injective.

(f) The only solution of the linear system of equations Ax = 0 is the zero solution
x = 0.

(g) det A �= 0.
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Proof The equivalence of the statements (a), (b) and (c) was already observed
above. The equivalence of (d), (e) and (f) can easily be seen by negation. Indeed, if
the column vectors are linearly dependent, then there exists x = [x1 x2]T �= 0 with
x1a1 +x2a2 = 0. On the one hand, this means that the vector x is mapped to 0 by A,
thus this mapping is not injective. On the other hand, x is a nontrivial solution of the
linear system of equations Ax = 0. The converse implications are shown in the same
way. Thus (d), (e) and (f) are equivalent. The equivalence of (g) and (d) is obvious
from the geometric meaning of the determinant. If the determinant does not vanish,
then

A−1 = 1

a11a22 − a21a12

[
a22 −a12

−a21 a11

]

is an inverse to A, as can be verified at once. Thus (g) implies (a). Finally, (e) obvi-
ously follows from (b). Hence all statements (a)–(g) are equivalent. �

Proposition 23.3 holds for matrices of arbitrary dimension n × n. For n = 3 one
can still use geometrical arguments. The cross product, however, has to be replaced
by the triple product 〈a1 × a2,a3〉 of the three column vectors, which then also
defines the determinant of the (3 × 3)-matrix A. In higher dimensions the proof
requires tools from combinatorics, for which we refer to the literature.

23.2 Canonical Form of Matrices

In this subsection we will show that every (2 × 2)-matrix A is similar to a matrix of
standard type, which means that it can be put into standard form by a basis transfor-
mation. We need this fact in Sect. 20.1 for the classification and solution of systems
of differential equations. The transformation explained below is a special case of the
Jordan canonical form1 for (n × n)-matrices.

If T is an invertible (2 × 2)-matrix, then the columns t1, t2 form a basis of R
2.

This means that every element x ∈ R
2 can be written in a unique way as a linear

combination c1t1 + c2t2; the coefficients c1, c2 ∈ R are the coordinates of x with
respect to t1 and t2. One can regard T as a linear transformation of R

2 which maps
the standard basis {[1 0]T, [0 1]T} to the basis {t1, t2}.

Definition 23.4 Two matrices A,B are called similar, if there exists an invertible
matrix T such that T−1AT = B.

1C. Jordan, 1838–1922.
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The three standard types which will define the similarity classes of (2 × 2)-matrices
are of the following form:

type I type II type III[
λ1 0
0 λ2

] [
λ 1
0 λ

] [
μ −ν

ν μ

]

Here the coefficients λ1, λ2, λ,μ, ν are real numbers.
In what follows, we need the notion of eigenvalues and eigenvectors. If the equa-

tion

Av = λv

has a solution v �= 0 ∈ R
2 for some λ ∈ R, then λ is called eigenvalue and v eigen-

vector of A. In other words, v is a solution of the equation

(A − λI)v = 0,

where I denotes again the unit matrix. For the existence of a nonzero solution v it is
necessary and sufficient that the matrix A − λI is not invertible, i.e.,

det(A − λI) = 0.

By writing

A =
[
a b

c d

]
,

we see that λ has to be a solution of the characteristic equation:

det

[
a − λ b

c d − λ

]
= λ2 − (a + d)λ + ad − bc = 0.

If this equation has a real solution λ, then the system of equations (A − λI)v = 0 is
underdetermined and thus has a nonzero solution v = [v1 v2]T. Hence one obtains
the eigenvectors to the eigenvalue λ by solving the linear system

(a − λ)v1 + bv2 = 0,

cv1 + (d − λ)v2 = 0.

Depending on whether the characteristic equation has two real, a double real or two
complex conjugate solutions, we obtain one of the three similarity classes of A.

Proposition 23.5 Every (2 × 2)-matrix A is similar to a matrix of type I, II or III.
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Proof (1) The case of two distinct real eigenvalues λ1 �= λ2. With

v1 =
[
v11
v21

]
, v2 =

[
v12
v22

]

we denote the corresponding eigenvectors. They are linearly independent and thus
form a basis of the R

2. Otherwise they would be multiples of each other and so
cv1 = v2 for some nonzero c ∈ R. Applying A would result in cλ1v1 = λ2v2 =
λ2cv1 and thus λ1 = λ2 in contradiction to the hypothesis. According to Proposi-
tion 23.3 the matrix

T = [v1
...v2] =

[
v11 v12
v21 v22

]

is invertible. Using

Av1 = λ1v1, Av2 = λ2v2,

we obtain the identities

T−1AT = T−1A[v1
...v2] = T−1[λ1v1

... λ2v2]
= 1

v11v22 − v21v12

[
v22 −v12

−v21 v11

][
λ1v11 λ2v12
λ1v21 λ2v22

]
=

[
λ1 0
0 λ2

]
.

The matrix A is similar to a diagonal matrix and thus of type I.
(2) The case of a double real eigenvalue λ = λ1 = λ2. Since

λ = 1

2

(
a + d ±

√
(a − d)2 + 4bc

)

is the solution of the characteristic equation, this case occurs if

(a − d)2 = −4bc, λ = 1

2
(a + d).

If b = 0 and c = 0, then a = d and A is already a diagonal matrix of the form

A =
[
a 0
0 a

]
,

thus of type I. If b �= 0, we compute c from (a − d)2 = −4bc and find

A − λI =
[
a − λ b

c d − λ

]
=

[
1
2 (a − d) b

− 1
4b

(a − d)2 − 1
2 (a − d)

]
.

Note that[
1
2 (a − d) b

− 1
4b

(a − d)2 − 1
2 (a − d)

][
1
2 (a − d) b

− 1
4b

(a − d)2 − 1
2 (a − d)

]
=

[
0 0
0 0

]
,
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or (A − λI)2 = O. In this case, A − λI is called a nilpotent matrix. A similar cal-
culation shows that (A − λI)2 = O if c �= 0. We now choose a vector v2 ∈ R

2 for
which (A − λI)v2 �= 0. Due to the above consideration, this vector satisfies

(A − λI)2v2 = 0.

If we set

v1 = (A − λI)v2,

then obviously

Av1 = λv1, Av2 = v1 + λv2.

Furthermore, v1 and v2 are linearly independent (because if v1 were a multiple of v2,
then Av2 = λv2, in contradiction to the construction of v2). We set

T = [v1
...v2].

The computation

T−1AT = T−1[λv1
...v1 + λv2]

= 1

v11v22 − v21v12

[
v22 −v12

−v21 v11

][
λv11 v11 + λv12

λv21 v21 + λv22

]
=

[
λ 1
0 λ

]

shows that A is similar to a matrix of type II.
(3) The case of complex conjugate solutions λ1 = μ+ iν, λ2 = μ− iν. This case

arises if the discriminant (a − d)2 + 4bc is negative. The most elegant way to deal
with this case is to switch to complex variables and to perform the computations in
the complex vector space C

2. We first determine complex vectors v1,v2 ∈ C
2 such

that

Av1 = λ1v1, Av2 = λ2v2,

and then decompose v1 = f + ig into real and imaginary part with vectors f, g in R
2.

Since λ1 = μ + iν, λ2 = μ − iν, it follows that

v2 = f − ig.

Note that {v1,v2} forms a basis of C
2. Thus {g, f} is a basis of R

2 and

A(f + ig) = (μ + iν)(f + ig) = μf − νg + i(νf + μg);
consequently

Ag = νf + μg, Af = μf − νg.
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Again we set

T = [g ... f] =
[
g1 f1
g2 f2

]
,

from which we deduce

T−1AT = T−1[νf + μg
...μf − νg]

= 1

g1f2 − g2f1

[
f2 −f1

−g2 g1

][
νf1 + μg1 μf1 − νg1
νf2 + μg2 μf2 − νg2

]
=

[
μ −ν

ν μ

]
.

Thus A is similar to a matrix of type III. �



24Appendix C: Further Results on Continuity

This appendix covers further material on continuity which is not central for this book
but on the other hand is required in various proofs (like, for instance, in the chapters
on curves and differential equations). It includes assertions about the continuity of
the inverse function, the concept of uniform convergence of sequences of functions,
the power series expansion of the exponential function and the notions of uniform
and Lipschitz continuity.

24.1 Continuity of the Inverse Function

We consider a real-valued function f defined on an interval I ⊂ R. The interval I

can be open, half-open or closed. By J = f (I) we denote the image of f . First, we
show that a continuous function f : I → J is bijective, if and only if it is strictly
monotonically increasing or decreasing. Monotonicity was introduced in Defini-
tion 8.5. Subsequently, we show that the inverse function is continuous if f is con-
tinuous, and we describe the respective ranges.

Proposition 24.1 A real-valued, continuous function f : I → J = f (I) is bijective
if and only if it is strictly monotonically increasing or decreasing.

Proof We already know that the function f : I → f (I) is surjective. It is injective
if and only if

x1 �= x2 ⇒ f (x1) �= f (x2).

Strict monotonicity thus implies injectivity. To prove the converse implication we
start by choosing two points x1 < x2 ∈ I . Let f (x1) < f (x2), for example. We
will show that f is strictly monotonically increasing on the entire interval I . First
we observe that for every x3 ∈ (x1, x2) we must have f (x1) < f (x3) < f (x2).
This is shown by contradiction. Assuming f (x3) > f (x2), Proposition 6.14 im-
plies that every intermediate point f (x2) < η < f (x3) would be the image of a
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point ξ1 ∈ (x1, x3) and also the image of a point ξ2 ∈ (x3, x2), contradicting injec-
tivity.

If we now choose x4 ∈ I such that x2 < x4, then once again f (x2) < f (x4).
Otherwise we would have x1 < x2 < x4 with f (x2) > f (x4); this possibility is ex-
cluded as in the previous case. Finally, the points to the left of x1 are inspected in a
similar way. It follows that f is strictly monotonically increasing on the entire inter-
val I . In the case f (x1) > f (x2), one can deduce similarly that f is monotonically
decreasing. �

The function y = x · 1(−1,0](x) + (1 − x) · 1(0,1)(x), where 1I denotes the indi-
cator function of the interval I (see Sect. 2.2), shows that a discontinuous function
can be bijective on an interval without being strictly monotonically increasing or
decreasing.

Remark 24.2 If I is an open interval and f : I → J a continuous and bijective
function, then J is an open interval as well. Indeed, if J were of the form [a, b),
then a would arise as function value of a point x1 ∈ I , i.e. a = f (x1). However,
since I is open, there are points x2 ∈ I , x2 < x1 and x3 ∈ I with x3 > x1. If f is
strictly monotonically increasing then we would have f (x2) < f (x1) = a. If f is
strictly monotonically decreasing then f (x3) < f (x1) = a. Both cases contradict
the fact that a was assumed to be the lower boundary of the image J = f (I). In the
same way, one excludes the possibilities that J = (a, b] or J = [a, b].

Proposition 24.3 Let I ⊂ R be an open interval and f : I → J continuous and
bijective. Then the inverse function f −1 : J → I is continuous as well.

Proof We take x ∈ I , y ∈ J with y = f (x), x = f −1(y). For small ε > 0 the
ε-neighbourhood Uε(x) of x is contained in I . According to Remark 24.2 f (Uε(x))

is an open interval and therefore contains a δ-neighbourhood Uδ(y) of y for a certain
δ > 0. Consider a sequence of values yn ∈ J which converges to y as n → ∞. Then
there is an index n(δ) ∈ N such that all elements of the sequence yn with n ≥ n(δ)

lie in the δ-neighbourhood Uδ(y). This, however, means that the values of the func-
tion f −1(yn) from n(δ) onwards lie in the ε-neighbourhood Uε(x) of x = f −1(y).
Thus limn→∞ f −1(yn) = f −1(y) which is the continuity of f −1 at y. �

24.2 Limits of Sequences of Functions

We consider a sequence of functions fn : I → R, defined on an interval I ⊂ R. If
the function values fn(x) converge for every fixed x ∈ I , then the sequence (fn)n≥1

is called pointwise convergent. The pointwise limits define a function f : I → R by
f (x) = limn→∞ fn(x), the so-called limit function.
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Example 24.4 Let I = [0,1] and fn(x) = xn. Then limn→∞ fn(x) = 0 if 0 ≤ x < 1,
and limn→∞ fn(1) = 1. The limit function is thus the function

f (x) =
{

0, 0 ≤ x < 1,

1, x = 1.

This example shows that the limit function of a pointwise convergent sequence of
continuous functions is not necessarily continuous.

Definition 24.5 (Uniform convergence of sequences of functions) A sequence of
functions (fn)n≥1 defined on an interval I is called uniformly convergent with limit
function f , if

∀ε > 0 ∃n(ε) ∈ N ∀n ≥ n(ε) ∀x ∈ I : ∣∣f (x) − fn(x)
∣∣ < ε.

Uniform convergence means that the index n(ε) after which the sequence of
function values (fn(x))n≥1 settles in the ε-neighbourhood Uε(f (x)) can be chosen
independently of x ∈ I .

Proposition 24.6 The limit function f of a uniformly convergent sequence of func-
tions (fn)n≥1 is continuous.

Proof We take x ∈ I and a sequence of points xk converging to x as k → ∞. We
have to show that f (x) = limk→∞ f (xk). For this we write

f (x) − f (xk) = (
f (x) − fn(x)

) + (
fn(x) − fn(xk)

) + (
fn(xk) − f (xk)

)
and choose ε > 0. Due to the uniform convergence it is possible to find an index
n ∈ N such that∣∣f (x) − fn(x)

∣∣ <
ε

3
and

∣∣fn(xk) − f (xk)
∣∣ <

ε

3

for all k ∈ N. Since fn is continuous, there is an index k(ε) ∈ N such that

∣∣fn(x) − fn(xk)
∣∣ <

ε

3

for all k ≥ k(ε). For such indices k we have

∣∣f (x) − f (xk)
∣∣ <

ε

3
+ ε

3
+ ε

3
= ε.

Thus f (xk) → f (x) as k → ∞, which implies the continuity of f . �

Application 24.7 The exponential function f (x) = ax is continuous on R. In Ap-
plication 5.14 it was shown that the exponential function with base a > 0 can be
defined for every x ∈ R as a limit. Let rn(x) denote the decimal representation of x,
truncated at the nth decimal place. Then

rn(x) ≤ x < rn(x) + 10−n.
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The value of rn(x) is the same for all real numbers x, which coincide up to the
nth decimal place. Thus the mapping x �→ rn(x) is a step function with jumps at a
distance of 10−n. We define the function fn(x) by linear interpolation between the
points

(
rn(x), arn(x)

)
and

(
rn(x) + 10−n, arn(x)+10−n)

,

which means

fn(x) = arn(x) + x − rn(x)

10−n

(
arn(x)+10−n − arn(x)

)
.

The graph of the function fn(x) is a polygonal chain (with kinks at the distance of
10−n), and thus fn is continuous. We show that the sequence of functions (fn)n≥1
converges uniformly to f on every interval [−T ,T ], 0 < T ∈ Q. Since x − rn(x) ≤
10−n, it follows that∣∣f (x) − fn(x)

∣∣ ≤ ∣∣ax − arn(x)
∣∣ + ∣∣arn(x)+10−n − arn(x)

∣∣.
For x ∈ [−T ,T ] we have

ax − arn(x) = arn(x)
(
ax−rn(x) − 1

) ≤ aT
(
a10−n − 1

)
and likewise

arn(x)+10−n − arn(x) ≤ aT
(
a10−n − 1

)
.

Consequently∣∣f (x) − fn(x)
∣∣ ≤ 2aT

(
10n√

a − 1
)
,

and the term on the right-hand side converges to zero independently of x, as was
proven in Application 5.15.

The rules of calculation for real exponents can now also be derived by taking
limits. Take, for example, r, s ∈ R with decimal approximations (rn)n≥1, (sn)n≥1.
Then Proposition 5.7 and the continuity of the exponential function imply

aras = lim
n→∞

(
arnasn

) = lim
n→∞

(
arn+sn

) = ar+s .

With the help of Proposition 24.3 the continuity of the logarithm follows as well.

24.3 The Exponential Series

The aim of this section is to derive the series representation of the exponential func-
tion

ex =
∞∑

m=0

xm

m!
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by using exclusively the theory of convergent series without resorting to differential
calculus. This is important for our exposition because the differentiability of the
exponential function is proven with the help of the series representation in Sect. 7.2.

As a tool we need two supplements to the theory of series: absolute convergence
and Cauchy’s1 formula for the product of two series.

Definition 24.8 A series
∑∞

k=0 ak is called absolutely convergent, if the series∑∞
k=0 |ak| of the absolute values of its coefficients converges.

Proposition 24.9 Every absolutely convergent series is convergent.

Proof We define the positive and the negative part of the coefficient ak by

a+
k =

{
ak, ak ≥ 0,

0, ak < 0,
a−
k =

{
0, ak ≥ 0,

|ak|, ak < 0.

Obviously, we have 0 ≤ a+
k ≤ |ak| and 0 ≤ a−

k ≤ |ak|. Thus, the two series
∑∞

k=0 a+
k

and
∑∞

k=0 a−
k converge due to the comparison criterion (Proposition 5.21) and the

limit

lim
n→∞

n∑
k=0

ak = lim
n→∞

n∑
k=0

a+
k − lim

n→∞

n∑
k=0

a−
k

exists. Consequently, the series
∑∞

k=0 ak converges. �

We consider two absolutely convergent series
∑∞

i=0 ai and
∑∞

j=0 bj and ask how
their product can be computed. Term-by-term multiplication of the nth partial sums
suggests to consider the following scheme:

a0b0 a0b1 . . . a0bn−1 a0bn

a1b0 a1b1 . . . a1bn−1 a1bn

...
. . .

...

an−1b0 an−1b1 . . . an−1bn−1 an−1bn

anb0 anb1 . . . anbn−1 anbn

Adding all entries of the quadratic scheme one obtains the product of the partial
sums

Pn =
n∑

i=0

ai

n∑
j=0

bj .

1A.L. Cauchy, 1789–1857.
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In contrast, adding only the upper triangle containing the bold entries (diagonal by
diagonal), one obtains the so-called Cauchy product formula

Sn =
n∑

m=0

(
m∑

k=0

akbm−k

)
.

We want to show that, for absolutely convergent series, the limits are equal:

lim
n→∞Pn = lim

n→∞Sn.

Proposition 24.10 (Cauchy product) If the series
∑∞

i=0 ai and
∑∞

j=0 bj converge
absolutely, then

∞∑
i=0

ai

∞∑
j=0

bj =
∞∑

m=0

(
m∑

k=0

akbm−k

)
.

The series defined by the Cauchy product formula also converges absolutely.

Proof We set

cm =
m∑

k=0

akbm−k

and obtain that the partial sums

Tn =
n∑

m=0

|cm| ≤
n∑

i=0

|ai |
n∑

j=0

|bj | ≤
∞∑
i=0

|ai |
∞∑

j=0

|bj |

remain bounded. This follows from the facts that the triangle in the scheme above
has fewer entries than the square and the original series converge absolutely. Ob-
viously the sequence Tn is also monotonically increasing; according to Proposi-
tion 5.10 it thus has a limit. This means that the series

∑∞
m=0 cm converges abso-

lutely, so the Cauchy product exists. It remains to be shown that it coincides with
the product of the series. For the partial sums, we have

|Pn − Sn| =
∣∣∣∣∣

n∑
i=0

ai

n∑
j=0

bj −
n∑

m=0

cm

∣∣∣∣∣ ≤
∣∣∣∣∣

∞∑
m=n+1

cm

∣∣∣∣∣,

since the difference can obviously be approximated by the sum of the terms below
the nth diagonal. The latter sum, however, is just the difference of the partial sum
Sn and the value of the series

∑∞
m=0 cm. It thus converges to zero and the desired

assertion is proven. �
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Let

E(x) =
∞∑

m=0

xm

m! , En(x) =
n∑

m=0

xm

m! .

The convergence of the series for x = 1 was shown in Example 5.24 and for x = 2
in Exercise 14 of Chap. 5. The absolute convergence for arbitrary x ∈ R can either
be shown analogously or by using the ratio test (Exercise 15 in Chap. 5). If x varies
in a bounded interval I = [−R,R], then the sequence of the partial sums En(x)

converges uniformly to E(x), due to the uniform estimate

∣∣E(x) − En(x)
∣∣ =

∣∣∣∣∣
∞∑

m=n+1

xm

m!

∣∣∣∣∣ ≤
∞∑

m=n+1

Rm

m! → 0

on the interval [−R,R]. Proposition 24.6 implies that the function x �→ E(x) is
continuous.

For the derivation of the product formula E(x)E(y) = E(x + y) we recall the
binomial formula:

(x + y)m =
m∑

k=0

(
m

k

)
xkym−k with

(
m

k

)
= m!

k!(m − k)! ,

valid for arbitrary x, y ∈ R and n ∈ N; see for instance [16, Chap. XIII, Theo-
rem 7.2].

Proposition 24.11 For arbitrary x, y ∈ R the following holds:

∞∑
i=0

xi

i!
∞∑

j=0

yj

j ! =
∞∑

m=0

(x + y)m

m! .

Proof Due to the absolute convergence of the above series, Proposition 24.10 yields

∞∑
i=0

xi

i!
∞∑

j=0

yj

j ! =
∞∑

m=0

m∑
k=0

xk

k!
ym−k

(m − k)! .

An application of the binomial formula

m∑
k=0

xk

k!
ym−k

(m − k)! = 1

m!
m∑

k=0

(
m

k

)
xkym−k = 1

m! (x + y)m

shows the desired assertion. �
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Proposition 24.12 (Series representation of the exponential function) The expo-
nential function possesses the series representation

ex =
∞∑

m=0

xm

m! ,

valid for arbitrary x ∈ R.

Proof By definition of the number e (see Example 5.24) we obviously have

e0 = 1 = E(0), e1 = e = E(1).

From Proposition 24.11 we get, in particular,

e2 = e1+1 = e1e1 = E(1)E(1) = E(1 + 1) = E(2)

and recursively

em = E(m) for m ∈ N.

The relation E(m)E(−m) = E(m − m) = E(0) = 1 shows that

e−m = 1

em
= 1

E(m)
= E(−m).

Likewise, one concludes from (E(1/n))n = E(1) that

e1/n = n
√

e = n
√

E(1) = E(1/n).

So far, this shows that ex = E(x) holds for all rational x = m/n. From Applica-
tion 24.7 we know that the exponential function x �→ ex is continuous. The conti-
nuity of the function x �→ E(x) was shown above. But two continuous functions
which coincide for all rational numbers are equal. More precisely, if x ∈ R and xj

is the decimal expansion of x truncated at the j th place, then

ex = lim
j→∞ exj = lim

j→∞E(xj ) = E(x),

which is the desired result. �

Remark 24.13 The rigorous introduction of the exponential function is surprisingly
involved and is handled differently by different authors. The total effort, however, is
approximately the same in all approaches. We took the following route: introduction
of Euler’s number e as the value of a convergent series (Example 5.24); definition
of the exponential function x �→ ex for x ∈ R by using the completeness of the
real numbers (Application 5.14); continuity of the exponential function based on
uniform convergence (Application 24.7); series representation (Proposition 24.12);
differentiability and calculation of the derivative (Sect. 7.2). Finally, in the course
of the computation of the derivative we also obtained the well-known formula e =
limn→∞(1 + 1/n)n, which Euler himself used as a definition.
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24.4 Lipschitz Continuity and Uniform Continuity

Some results on curves and differential equations require more refined continuity
properties. More precisely, methods for quantifying how the function values change
in dependence on the arguments are needed.

Definition 24.14 A function f : D ⊂ R → R is called Lipschitz continuous, if there
exists a constant L > 0 such that the inequality

∣∣f (x1) − f (x2)
∣∣ ≤ L|x1 − x2|

holds for all x1, x2 ∈ D. In this case L is called a Lipschitz constant of the func-
tion f .

If x ∈ D and (xn)n≥1 is a sequence of points in D which converges to x, the in-
equality |f (x) − f (xn)| ≤ L|x − xn| implies that f (xn) → f (x) as n → ∞. Every
Lipschitz continuous function is thus continuous. For Lipschitz continuous func-
tions one can quantify how much change in the x-values can be allowed to obtain a
change in the function values of ε > 0 at the most:

|x1 − x2| < ε/L ⇒ ∣∣f (x1) − f (x2)
∣∣ < ε.

Occasionally the following weaker quantification is required.

Definition 24.15 A function f : D ⊂ R → R is called uniformly continuous, if
there exists a mapping ω : (0,1] → (0,1] : ε �→ ω(ε) such that

|x1 − x2| < ω(ε) ⇒ ∣∣f (x1) − f (x2)
∣∣ < ε

for all x1, x2 ∈ D. In this case the mapping ω is called the modulus of continuity of
the function f .

Every Lipschitz continuous function is uniformly continuous (with ω(ε) = ε/L),
every uniformly continuous function is continuous.

Example 24.16 (a) The quadratic function f (x) = x2 is Lipschitz continuous on
every bounded interval [a, b]. For x1 ∈ [a, b] we have |x1| ≤ M = max(|a|, |b|) and
likewise for x2. Thus

∣∣f (x1) − f (x2)
∣∣ = ∣∣x2

1 − x2
2

∣∣ = |x1 + x2||x1 − x2| ≤ 2M|x1 − x2|
holds for all x1, x2 ∈ [a, b].

(b) The absolute value function f (x) = |x| is Lipschitz continuous on D = R

(with Lipschitz constant L = 1). This follows from the inequality
∣∣|x1| − |x2|

∣∣ ≤ |x1 − x2|,
which is valid for all x1, x2 ∈ R.
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(c) The square root function f (x) = √
x is uniformly continuous on the interval

[0,1], but not Lipschitz continuous. This follows from the inequality
∣∣√x1 − √

x2
∣∣ ≤ √|x1 − x2|,

which is proved immediately by squaring. Thus ω(ε) = ε2 is a modulus of continu-
ity of the square root function on the interval [0,1]. The square root function is not
Lipschitz continuous on [0,1], since otherwise the choice x2 = 0 would imply the
relations

√
x1 ≤ L|x1|, 1√

x1
≤ L,

which cannot hold for fixed L > 0 and all x1 ∈ (0,1].
(d) The function f (x) = 1

x
is continuous on the interval (0,1), but not uniformly

continuous. Assume that we could find a modulus of continuity ε �→ ω(ε) on (0,1).
Then for x1 = 2εω(ε), x2 = εω(ε) and ε < 1 we would get |x1 − x2| < ω(ε), but

∣∣∣∣ 1

x1
− 1

x2

∣∣∣∣ =
∣∣∣∣x2 − x1

x1x2

∣∣∣∣ = εω(ε)

2ε2ω(ε)2
= 1

2εω(ε)

which becomes arbitrarily large as ε → 0. In particular, it cannot be bounded from
above by ε.

From the mean value theorem (Proposition 8.4) it follows that differentiable
functions with bounded derivative are Lipschitz continuous. Further it can be shown
that every function which is continuous on a closed, bounded interval [a, b] is uni-
formly continuous there. The proof requires further tools from analysis for which
we refer to [4, Theorem 3.13].

Apart from the intermediate value theorem, the fixed point theorem is an impor-
tant tool for proving the existence of solutions of equations. Moreover one obtains
an iterative algorithm for approximating the fixed point.

Definition 24.17 A Lipschitz continuous mapping f of an interval I to R is called
a contraction, if f (I) ⊂ I and f has a Lipschitz constant L < 1. A point x∗ ∈ I

with x∗ = f (x∗) is called fixed point of the function f .

Proposition 24.18 (Fixed point theorem) A contraction f on a closed interval
[a, b] has a unique fixed point. The sequence, recursively defined by the iteration

xn+1 = f (xn)

converges to the fixed point x∗ for arbitrary initial values x1 ∈ [a, b].

Proof Since f ([a, b]) ⊂ [a, b] we must have

a ≤ f (a) and f (b) ≤ b.
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If a = f (a) or b = f (b), we are done. Otherwise the intermediate value theorem
applied to the function g(x) = x − f (x) yields the existence of a point x∗ ∈ (a, b)

with g(x∗) = 0. This x∗ is a fixed point of f . Due to the contraction property the
existence of a further fixed point y∗ would result in

|x∗ − y∗| = ∣∣f (x∗) − f (y∗)
∣∣ ≤ L|x∗ − y∗| < |x∗ − y∗|

which is impossible for x∗ �= y∗. Thus the fixed point is unique.
The convergence of the iteration follows from the inequalities

|x∗ − xn+1| =
∣∣f (x∗) − f (xn)

∣∣ ≤ L|x∗ − xn| ≤ · · · ≤ Ln|x∗ − x1|,
since |x∗ − x1| ≤ b − a and limn→∞ Ln = 0. �
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of the Supplementary Software

In our view using and writing software forms an essential component of an analysis
course for computer scientists. The software that has been developed for this book
is available on the website

http://www.springer.com/978-0-85729-445-6.

This site contains the Java applets referred to in the text as well as some source files
in maple and MATLAB.

For the execution of the maple and MATLAB programs additional licenses are
needed. The use of the Java applets requires a plug-in for your browser.

Java Applets The available applets are listed in Table 25.1. For full functionality
of the applets, you need to activate JavaScript in your browser.

Table 25.1 Java applets
Sequences

2D-visualisation of complex functions

3D-visualisation of complex functions

Bisection method

Animation of the intermediate value theorem

Newton’s method

Riemann sums

Integration

Parametric curves in the plane

Parametric curves in space

Surfaces in space

Dynamical systems in the plane

Dynamical systems in space

Linear regression

M. Oberguggenberger, A. Ostermann, Analysis for Computer Scientists,
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Source Codes in MATLAB and maple In addition to the Java applets, you can
find maple and MATLAB programs on this website. These programs are numbered
according to the individual chapters and are mainly used in experiments and exer-
cises. To run the programs, the corresponding software license is required.

The Gallery in Maths Online At various places in the text, we refer to the gallery
of maths online. This gallery was originally developed under the name mathe on-
line as a web-based interactive learning aid for Austrian high schools and univer-
sities by Franz Embacher and Petra Oberhuemer. The pages maths online are an
English translation, provided by the authors of mathe online. The gallery is freely
accessible on the web

http://www.univie.ac.at/future.media/moe/.

Some elements of the gallery are referred to in experiments and exercises. We rec-
ommend to use maths online for further practice as well.

http://www.univie.ac.at/future.media/moe/


References

Textbooks

1. E. HAIRER, G. WANNER: Analysis by Its History. Springer, New York 1996.
2. S. LANG: Introduction to Linear Algebra. Springer, New York 1986 (2nd edition).
3. S. LANG: Undergraduate Analysis. Springer, New York 1983.
4. M.H. PROTTER, C.B. MORREY: A First Course in Real Analysis. Springer, New York 1991

(2nd edition).

Further Reading

5. M. BARNSLEY: Fractals Everywhere, Academic Press, Boston 1988.
6. M. BRAUN, C.C. COLEMAN, D.A. DREW (Eds.): Differential Equation Models. Springer,

Berlin 1983.
7. M. BRONSTEIN: Symbolic Integration I: Transcendental Functions. Springer, Berlin 1997.
8. A. CHEVAN, M. SUTHERLAND: Hierarchical partitioning. The American Statistician 45

(1991), 90–96.
9. J.P. ECKMANN: Savez-vous résoudre z3 = 1? La Recherche 14 (1983), 260–262.

10. N. FICKEL: Partition of the coefficient of determination in multiple regression. In: K. INDER-
FURTH (Ed.), Operations Research Proceedings 1999, Springer, Berlin, 2000, 154–159.

11. E. HAIRER, S.P. NØRSETT, G. WANNER: Solving Ordinary Differential Equations I. Nonstiff
Problems. Springer, Berlin 1993 (2nd edition).

12. E. HAIRER, G. WANNER: Solving Ordinary Differential Equations II. Stiff and Differential-
Algebraic Problems. Springer, Berlin 1996 (2nd edition).

13. M.W. HIRSCH, S. SMALE: Differential Equations, Dynamical Systems, and Linear Algebra.
Academic Press, New York 1974.

14. E. KREYSZIG: Statistische Methoden und ihre Anwendungen. Vandenhoeck & Ruprecht, Göt-
tingen 1968 (3rd edition).

15. W. KRUSKAL: Relative importance by averaging over orderings. The American Statistician
41 (1987), 6–10.

16. S. LANG: A First Course in Calculus. Springer, New York 1986 (5th edition).
17. M. LEFEBVRE: Basic Probability Theory with Applications. Springer, New York 2009.
18. D.C. MONTGOMERY, E.A. PECK, G.G. VINING: Introduction to Linear Regression Analy-

sis. Wiley, New York 2001 (3rd edition).
19. M.L. OVERTON: Numerical Computing with IEEE Floating Point Arithmetic. SIAM,

Philadelphia 2001.
20. H.-O. PEITGEN, H. JÜRGENS, D. SAUPE: Fractals for the Classroom. Part One: Introduction

to Fractals and Chaos. Springer, New York 1992.
21. H.-O. PEITGEN, H. JÜRGENS, D. SAUPE: Fractals for the Classroom. Part Two: Complex

Systems and Mandelbrot Set. Springer, New York 1992.

M. Oberguggenberger, A. Ostermann, Analysis for Computer Scientists,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-0-85729-446-3, © Springer-Verlag London Limited 2011

331

http://dx.doi.org/10.1007/978-0-85729-446-3


332 References

22. A. QUARTERONI, R. SACCO, F. SALERI: Numerical Mathematics. Springer, New York 2000.
23. H. ROMMELFANGER: Differenzen- und Differentialgleichungen. Bibliographisches Institut,

Mannheim 1977.
24. STATISTIK AUSTRIA: Statistisches Jahrbuch Österreichs. Verlag Österreich GmbH, Wien

2007 (http://www.statistik.at).
25. M.A. VÄTH: Nonstandard Analysis. Birkhäuser, Basel 2007.

http://www.statistik.at


Index

Symbols
C, 37
N, 1
N0, 1
Q, 1
R, 4
Z, 1
e, 22, 57, 77, 152, 289
i, 37
π , 3,28
∇ , 204
∞, 7

A
Absolute value, 7, 38

function, 19
Acceleration, 81

vector, 175, 186
Addition theorems, 30, 40, 77
Affine function

derivative, 76
Analysis of variance, 239
Angle, between vectors, 299
ANOVA, 239
Antiderivative, 128
Approximation

linear, 80, 201
quadratic, 205

Arc length, 28, 180
graph, 144
parametrisation, 180

Arccosine, 32
derivative, 86
graph, 32

Archimedean spiral, 183
Archimedes, 183
Arcsine, 31

derivative, 86
graph, 32

Arctangent, 32
derivative, 86
graph, 33

Area
sector, 67
surface of sphere, 145
triangle, 27
under a graph function, 136

Area element, 225
Argument, 39
Arithmetic of real numbers, 52
Ascent, steepest, 204
Axial moment, 230

B
Basis, standard, 296
Beam, 108
Bijective, see function
Binomial formula, 323
Binormal vector, 186
Bisection method, 70, 100, 103
Bolzano, B., 59, 68
Bolzano–Weierstrass

theorem of, 59
Box-dimension, 114

C
Cantor, G., 2

set, 115
Cardioid, 184

parametric representation, 184
Cauchy, A.L., 321

product, 322
Cavalieri, B., 222
Cavalieri’s principle, 222
Centre of gravity, 226

geometric, 226
Chain rule, 83, 200
Characteristic equation, 312
Circle

of latitude, 217
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Circle (cont.)
osculating, 182
parametric representation, 170
unit, 28

Circular arc
length, 179

Clothoid, 182
parametric representation, 182

Coastline, 114, 241
Coefficient of determination, 240

multiple, 244
partial, 246

Column vector, 307
Completeness, 2, 51
Complex conjugate, 38
Complex exponential function, 40
Complex logarithm, 42, 43

principal branch, 43
Complex number, 37

absolute value, 38
argument, 39
conjugate, 38
imaginary part, 38
modulus, 38
polar representation, 39
real part, 38

Complex plane, 39
Complex quadratic function, 42
Complex root, principal value, 43
Concavity, 98, 99
Cone, volume, 144
Consumer price index, 107
Continuity, 64, 193

componentwise, 212
Lipschitz, 178, 325
uniform, 325

Contraction, 326
Convergence

linear, 101
Newton’s method, 102
order, 101
quadratic, 101
sequence, 48

Convexity, 98, 99
Coordinate curve, 192, 216
Coordinate system

Cartesian, 295
positively oriented, 295
right-handed, 295

Coordinate vector, 297
Coordinates

of a point, 295
polar, 32, 40

Cosine, 26
derivative, 76
graph, 30
hyperbolic, 173

Cotangent, 26
graph, 31

Countability, 2
Cuboid, 219
Curvature

curve, 180
graph, 181

Curve, 169
algebraic, 172
arc length, 180
ballistic, 170
change of parameter, 171
curvature, 180
differentiable, 172
figure eight, 184
in the plane, 169, 171
length, 177, 178
normal vector, 175
parameter, 169
polar coordinates, 183
rectifiable, 177
reparametrisation, 171

Curve in space, 185
binormal vector, 186
differentiable, 185
normal plane, 186
normal vector, 186

Curve sketching, 95, 99
Cusp, 172
Cycloid, 174

parametric representation, 174
Cyclometric functions, 31

derivative, 86

D
Density, 225
Derivative, 75, 198

affine function, 76
arccosine, 86
arcsine, 86
arctangent, 86
complex, 120
cosine, 76
cyclometric functions, 86
directional, 203
elementary functions, 87
exponential function, 77, 86
Fréchet, 198, 212
geometric interpretation, 194
higher, 79
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Derivative (cont.)
higher partial, 197
inverse function, 85
linearity, 82
logarithm, 86
numerical, 87
of a real function, 75
partial, 194
power function, 86
quadratic function, 76
root function, 76
second, 79
sine, 76
tangent, 83

Determinant, 310
Diagonal matrix, 309
Diffeomorphism, 227
Difference quotient, 74, 75

accuracy, 155
one-sided, 87, 89
symmetric, 89, 90

Differentiability
componentwise, 212

Differentiable, 75
continuously, 197
Fréchet, 198
nowhere, 78
partially, 194

Differential equation
autonomous, 264
blow up, 260
dependent variable, 251
direction field, 253
equilibrium, 264
existence of solution, 259
first-order, 251
homogeneous, 254
independent variable, 251
inhomogeneous, 254
initial condition, 253
linear, 253
particular solution, 258
power series, 262
qualitative theory, 264
separation of variables, 252
solution, 251
stationary solution, 257, 264
stiff, 291
uniqueness of solution, 261

Differential equations
autonomous, 269
conserved quantity, 278
first integral, 278
initial value problem, 271

invariant, 278
linear system, 267
Lotka–Volterra, 268
nonlinear system, 268
saddle point, 272
solution curve, 271
trajectory, 271

Differentiation, 75
Differentiation rules, 82

chain rule, 83
inverse function rule, 85
product rule, 82
quotient rule, 83

Dimension
box, 114
experimentally, 114
fractal, 113

Direction field, 253
Directional derivative, 203
Dirichlet, P.G.L., 138

function, 138
Discretisation error, 88
Distribution

Gumbel, 108
lognormal, 108

Domain, 14
Double integral, 221

transformation formula, 228

E
Eigenvalue, 312
Eigenvector, 312
Ellipse, 173

parametric representation, 173
Ellipsoid, 210
Epicycloid, 184
eps, 10
Equilibrium, 264, 271

asymptotically stable, 265, 271
stable, 271
unstable, 271

Equilibrium point, 271
Error sum of squares, 239
Euler, L., 22
Euler method

explicit, 288, 292
implicit, 290
modified, 293
stability, 290

Euler’s formulae, 41
Euler’s number, 22, 57, 77, 151, 289
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Exponential function, 21, 53
derivative, 77, 86
series representation, 324
Taylor polynomial, 151

Exponential integral, 131
Extremum, 96, 99, 206

local, 98, 99
necessary condition, 96

Extremum test, 154

F
Failure wedge, 108
Field, 38
First integral, 278
Fixed point, 110, 326
Floor function, 24
Fractal, 111
Fraction, 1
Fréchet, M., 198
Free fall, 73
Fresnel, A.J., 131

integral, 131, 183
Fubini, G., 222
Fubini’s theorem, 222
Function, 14

affine, 200
antiderivative, 128
bijective, 2, 15
complex, 42
complex exponential, 40
complex quadratic, 42
composition, 83
compound, 83
concave, 98
continuous, 64, 193
convex, 98
cyclometric, 31
derivative, 75
differentiable, 75
elementary, 130
exponential, 53
floor, 24
graph, 14, 191
higher transcendental, 131
image, 14
injective, 15
inverse, 15
linear, 17
linear approximation, 80
monotonically decreasing, 97
monotonically increasing, 97
noisy, 90
nowhere differentiable, 78
piecewise continuous, 139

quadratic, 14, 18, 200
range, 14
real-valued, 14
slope, 97
strictly monotonically increasing, 97
surjective, 15
trigonometric, 25, 41
vector valued, 211
zero, 68

Fundamental theorem
of algebra, 38
of calculus, 141

G
Galilei, Galileo, 73
Galton, F., 235
Gauss, C.F., 105, 235
Gaussian error function, 131
Gaussian filter, 92
Gradient, 203, 211

geometric interpretation, 204
Graph, 14, 191

tangent plane, 202
Grid

mesh size, 220
rectangular, 219

Grid points, 159

H
Half life, 256
Half ray, 173
Heat equation, 209
Helix, 186

parametric form, 186
Hesse, L.O., 205
Hessian matrix, 205
Hyperbola, 173

parametric representation, 173
Hyperbolic

cosine, 173
function, 173
sine, 173
spiral, 184

Hyperboloid, 210

I
Image, 14
Imaginary part, 38
Indicator function, 20, 223
Inequality, 7
INF, 9
Infimum, 48
Infinity, 7
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Inflection point, 98
Initial value problem, 253, 271
Injective, see function
Integrable, Riemann, 137, 220
Integral

definite, 135, 137
double, 219, 221
elementary function, 130
indefinite, 128
iterated, 221
properties, 140
Riemann, 135

Integration
by parts, 131
numerical, 159
rules of, 131
substitution, 132
symbolic, 130
Taylor series, 156

Integration variable, 139
Intermediate value theorem, 68
Interval, 6

closed, 7
half-open, 7
improper, 7
open, 7

Interval bisection, 69
Inverse, of a matrix, 310
Inverse function rule, 85
Iterated integral, 221
Iteration method, 326

J
Jacobi, C.G.J., 198
Jacobian, 198, 212
Jordan, C., 311
Julia, G., 119

set, 119
Jump discontinuity, 65, 66

K
Koch, H. von, 116
Koch’s snowflake, 116, 123, 177

L
L-system, 122
Lagrange, J.L., 150
Lateral surface area

solid of revolution, 145
Law of cosines, 34
Law of sines, 34
Least squares method, 234
Leibniz, G., 139

Lemniscate, 184
parametric representation, 184

Length
circular arc, 179
differentiable curve, 178

Leontief, W., 284
Level curve, 192
Limit

computation with Taylor series, 155
improper, 50
inferior, 60
left-hand, 64
of a function, 63
of a sequence, 48
of a sequence of functions, 318
right-hand, 64
superior, 60
trigonometric, 67

Limit function, 318
Lindenmayer, A., 122
Line, parametric representation, 173
Line of best fit, 105, 234

through origin, 105, 106
Linear approximation, 80, 149, 201
Liouville, J., 130
Lipschitz, R.

condition, 260
constant, 260, 325
continuous, 325

Lissajous, J.A., 187
figure, 187

Little apple man, 118
Logarithm, 21

derivative, 86
natural, 22

Logarithmic
integral, 131
spiral, 184

Loop, 184
parametric representation, 184

Lotka, A.J., 268
Lotka–Volterra model, 278, 293

M
Machine accuracy

relative, 10, 11
Malthus, T.R., 257
Mandelbrot, B., 118

set, 118
Mantissa, 8
Mapping, 2, 14

linear, 308
Mass, 225
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Matrix, 307
coefficient, 307
determinant, 310
diagonal element, 309
element, 307
entry, 307
inverse, 310
invertible, 310
Jordan canonical form, 311
nilpotent, 314
product, 309
product with vector, 308
regular, 310
similar, 311
square, 307
transposed, 308
unit, 309
zero, 309

Matrix algebra, 307
Maximum, 48

global, 95
isolated local, 208
local, 95, 98, 154, 206
strict, 96

Mean value theorem, 97
Measurable, 223
Meridian, 217
Minimum, 48

global, 96
isolated local, 208
local, 96, 154, 206

Mobilised cohesion, 108
Model, linear, 234, 242
Modulus, 38
Modulus of continuity, 325
Moment

of inertia, 108
statical, 226

Monotonically decreasing, 97
Monotonically increasing, 97
Moving frame, 175, 186
Multi-step method, 289

N
Nan, 9
Neighbourhood, 48, 112
Neil, W., 172
Newton, I., 100, 266
Newton’s method, 102, 103, 109

in C, 121
local quadratic convergence, 102, 214
two variables, 213

Nonstandard analysis, 139

Normal domain, 224
of type I, 224
of type II, 224

Normal equations, 236
Numbers, 1

complex, 37
decimal, 3
floating point, 8

largest, 9
normalised, 9
smallest, 9

integer, 1
irrational, 4
natural, 1
random, 91
rational, 1
real, 4
transcendental, 3

Numerical differentiation, 87

O
Optimisation problem, 99
Orbit, periodic, 279
Order relation, 5

properties, 6
rules of computation, 6

Osculating circle, 182

P
Parabola

Neil’s, 172
quadratic, 18

Paraboloid
elliptic, 193
hyperbolic, 193

Partial mapping, 191
Partial sum, 54
Partition, 137

equidistant, 139
Peano, G., 259
Pendulum, mathematical, 281, 282
Plane

in space, 303
intercept, 303
normal vector, 304
parametric representation, 303
slope, 303

Plant
growth, 123
random, 125

Point of expansion, 151
Point space, 298
Polar coordinates, 212
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Population model, 256
discrete, 47
Malthusian, 257
Verhulst, 47, 61, 257

Position vector, 297
Power function, 19

derivative, 86
Power series, equating coefficients, 263
Precision

double, 8
single, 8

Predator–prey model, 268
Principal value

argument, 39
Product rule, 82
Proper range, 14
Pythagoras, 25

theorem, 25

Q
Quadratic function

derivative, 76
graph, 18

Quadrature formula, 161
efficiency, 164
error, 165
Gaussian, 163
nodes, 161
order, 162
order conditions, 163
order reduction, 166
Simpson rule, 161
stages, 161
trapezoidal rule, 160
weights, 161

Quotient rule, 83

R
Radian, 28
Radioactive decay, 24, 256
Rate of change, 81, 256
Ratio test, 62
Real part, 38
Rectifiable, 177
Regression

linear, 233
loglinear, 235
multiple linear, 242
multivariate linear, 242
simple linear, 234
univariate linear, 234

Regression line, 234
predicted, 237
through origin, 105

Regression parabola, 110
Regression sum of squares, 239
Remainder term, 150
Residual, 237
Riccati, J.F., 263

equation, 263, 293
Riemann, B., 135

integrable, 137, 220
integral, 136
sum, 137, 220

Right-hand rule, 295
Root, complex, 39, 41
Root function, 19

derivative, 76
Rounding, 10
Rounding error, 89
Row vector, 307
Rules of calculation

for limits, 49
Runge–Kutta method, 289

S
Saddle point, 207, 208
Saddle surface, 193
Scalar multiplication, 296
Scatter plot, 105, 233
Schwarz, H.A., 198

theorem, 198
Secant, 74

slope, 75
Secant method, 105
Self-similarity, 111
Semi-logarithmic, 101
Sequence, 45

accumulation point, 57
bounded from above, 47
bounded from below, 48
complex-valued, 46
convergent, 48
geometric, 50
graph, 46
infinite, 45
limit, 48
monotonically decreasing, 47
monotonically increasing, 47
real-valued, 46
recursively defined, 46
settling, 48
vector-valued, 46, 193

convergence, 193
Sequence of functions

pointwise convergent, 318
uniformly convergent, 319
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Series, 54
absolutely convergent, 321
Cauchy product, 322
comparison criteria, 56
convergent, 54
divergent, 54
geometric, 55
harmonic, 56
infinite, 54
partial sum, 54
ratio test, 62

Set
boundary, 112
boundary point, 112
bounded, 112
Cantor, 115
cardinality, 2
closed, 112
covering, 113
interior point, 112
Julia, 119
Mandelbrot, 118
of measure zero, 223
open, 112

Sexagesimal, 5
Shape function, 234
Sign function, 20
Simpson, T., 161

rule, 161
Sine, 26

derivative, 76
graph, 30
hyperbolic, 173
Taylor polynomial, 152
Taylor series, 154

Sine integral, 131
Snowflake, 116, 117
Solid of revolution

lateral surface area, 145
volume, 143

Space–time diagram, 269
Sphere, 216

surface area, 145
Spiral, 183

Archimedean, 183
hyperbolic, 184
logarithmic, 184
parametric representation, 183

Spline, 92
Square of the error, 106
Standard basis, 296
Stationary point, 96, 207
Step size, 288

Straight line
equation, 301
in space, 304
intercept, 18, 301
normal vector, 302
parametric representation, 302
slope, 18, 27, 301

Subsequence, 58
Substitution, 132
Superposition principle, 254
Supremum, 47
Surface

in space, 191
of rotation, 216
parametric, 215
regular parametric, 216
tangent vector, 195

Surjective, see function
Symmetry, 90

T
Tangent, 26

graph, 31, 74, 79
plane, 202
problem, 74
slope, 79
vector, 175, 185

Taylor, B., 149
formula, 149, 205
polynomial, 151
series, 88, 153
theorem, 154

Telescopic sum, 55
Thales of Miletus, 26

theorem, 26
Total variability, 239
Transformation formula, 228
Transport equation, 209
Transpose

of a matrix, 308
Trapezoidal rule, 160
Triangle

area, 27
hypotenuse, 25
inequality, 11
leg, 25
right-angled, 25

Triangle inequality, 179
Trigonometric functions, 25, 26

addition theorems, 30, 34
inverse, 31

Triple product, 311
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Truncated cone
surface area, 35
surface line, 35

U
Uniform

continuity, 325
convergence, 319

Unit circle, 28, 41
Unit matrix, 309
Unit vector, 296

V
Variability

partitioning, 240
sequential, 245

total, 239
Variation of constants, 257
Vector, 295

cross product, 300
dot product, 299
inner product, 299
magnitude, 296
norm, 296
orthogonal, 299

perpendicular, 299
unit, 296
zero, 296

Vector algebra, 295
Vector field, 211
Vector space, 46, 298
Velocity, 81

average, 73
instantaneous, 74, 81

Velocity vector, 175, 185
Verhulst, P.-F., 47, 61, 257, 265
Vertical throw, 128
Volterra, V., 268
Volume

cone, 144
solid of revolution, 143

W
Weber–Fechner law, 24
Weierstrass, K., 59

Z
Zero matrix, 309
Zero sequence, 63
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